Skip to content

Mismatch between loss_mask and attention_mask/seq length — will this cause issues during training? #80

@YurainSoon

Description

@YurainSoon

In the method generate_sequences of vLLMRolloutWithTool located at src/verl/workers/rollout/vllm_rollout/vllm_rollout_spmd.py, I have a question regarding the batch construction:

response_attention_mask = torch.stack(response_attention_mask_list, dim=0)
response = torch.stack(response_list, dim=0)
result_mask = torch.stack(result_mask_list_padded, dim=0)

if self.config.n > 1 and do_sample:
    ori_input_ids = ori_input_ids.repeat_interleave(self.config.n, dim=0)
    attention_mask = attention_mask.repeat_interleave(self.config.n, dim=0)
    position_ids = position_ids.repeat_interleave(self.config.n, dim=0)
    batch_size = batch_size * self.config.n

seq = torch.cat([ori_input_ids, response], dim=-1)

response_length = response.size(1)
delta_position_id = torch.arange(1, response_length + 1, device=position_ids.device)
delta_position_id = delta_position_id.unsqueeze(0).repeat(batch_size, 1)

response_position_ids = position_ids[:, -1:] + delta_position_id
position_ids = torch.cat([position_ids, response_position_ids], dim=-1)
attention_mask = torch.cat((attention_mask, response_attention_mask), dim=-1)

# result mask: result part is 0, other part is 1
loss_mask = result_mask * response_attention_mask

batch = TensorDict({
    'prompts': ori_input_ids,
    'responses': response,
    'input_ids': seq,  # here input_ids become the whole sentences
    'attention_mask': attention_mask,
    'loss_mask': loss_mask,
    'position_ids': position_ids
}, batch_size=batch_size)

Here, the loss_mask is shorter than both attention_mask and seq (since it only covers the response part). Will this mismatch cause any problems during training? For example, could it result in misaligned masking, uncovered tokens, or potential errors in downstream loss computation?

Will the loss computation logic later on automatically handle this kind of length mismatch? I’d appreciate any clarification. Thank you!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions