|
19 | 19 | - [Training](#training) |
20 | 20 | + [Data format](#data-format) |
21 | 21 | + [For training with NeuralNetwork](#for-training-with-neuralnetwork) |
| 22 | + + [For training with `RNNTimeStep`, `LSTMTimeStep` and `GRUTimeStep`](#for-training-with-rnntimestep-lstmtimestep-and-gputimestep) |
22 | 23 | + [For training with `RNN`, `LSTM` and `GRU`](#for-training-with-rnn-lstm-and-gpu) |
23 | 24 | + [Training Options](#training-options) |
24 | 25 | + [Async Training](#async-training) |
@@ -126,6 +127,38 @@ net.train([{input: { r: 0.03, g: 0.7 }, output: { black: 1 }}, |
126 | 127 |
|
127 | 128 | var output = net.run({ r: 1, g: 0.4, b: 0 }); // { white: 0.81, black: 0.18 } |
128 | 129 | ``` |
| 130 | + |
| 131 | +#### For training with `RNNTimeStep`, `LSTMTimeStep` and `GRUTimeStep` |
| 132 | +Eeach training pattern can either: |
| 133 | +* Be an array of numbers |
| 134 | +* Be an array of arrays of numbers |
| 135 | + |
| 136 | +Example using an array of numbers: |
| 137 | +```javascript |
| 138 | +var net = new brain.recurrent.LSTMTimeStep(); |
| 139 | + |
| 140 | +net.train([ |
| 141 | + 1, |
| 142 | + 2, |
| 143 | + 3, |
| 144 | +]); |
| 145 | + |
| 146 | +var output = net.run([1, 2]); // 3 |
| 147 | +``` |
| 148 | + |
| 149 | +Example using an array of arrays of numbers: |
| 150 | +```javascript |
| 151 | +var net = new brain.recurrent.LSTMTimeStep(); |
| 152 | + |
| 153 | +net.train([ |
| 154 | + [1, 3], |
| 155 | + [2, 2], |
| 156 | + [3, 1], |
| 157 | +]); |
| 158 | + |
| 159 | +var output = net.run([[1, 3], [2, 2]]); // [3, 1] |
| 160 | +``` |
| 161 | + |
129 | 162 | #### For training with `RNN`, `LSTM` and `GRU` |
130 | 163 | Each training pattern can either: |
131 | 164 | * Be an array of values |
|
0 commit comments