Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions climada/hazard/forecast.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,3 +104,64 @@ def _check_sizes(self):
num_entries = len(self.event_id)
size(exp_len=num_entries, var=self.member, var_name="Forecast.member")
size(exp_len=num_entries, var=self.lead_time, var_name="Forecast.lead_time")

def select(
self,
member=None,
lead_time=None,
event_names=None,
event_id=None,
date=None,
orig=None,
reg_id=None,
extent=None,
reset_frequency=False,
):
"""Select entries based on the parameters and return a new instance.

The selection will contain the intersection of all given parameters.

Parameters
----------
member : Sequence of ints
Ensemble members to select
lead_time : Sequence of numpy.timedelta64
Lead times to select

Returns
-------
HazardForecast

See Also
--------
:py:meth:`~climada.hazard.base.Hazard.select`
"""
if member is not None or lead_time is not None:
mask_member = (
self.idx_member(member)
if member is not None
else np.full_like(self.member, True, dtype=bool)
)
mask_lead_time = (
self.idx_lead_time(lead_time)
if lead_time is not None
else np.full_like(self.lead_time, True, dtype=bool)
)
event_id_from_forecast_mask = np.asarray(self.event_id)[
(mask_member & mask_lead_time)
]
event_id = (
np.intersect1d(event_id, event_id_from_forecast_mask)
if event_id is not None
else event_id_from_forecast_mask
)

return super().select(
event_names=event_names,
event_id=event_id,
date=date,
orig=orig,
reg_id=reg_id,
extent=extent,
reset_frequency=reset_frequency,
)
126 changes: 87 additions & 39 deletions climada/hazard/test/test_forecast.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,46 +107,94 @@ def test_hazard_forecast_concat(haz_fc, lead_time, member):
npt.assert_array_equal(haz_fc_concat.member, np.concatenate([member, member]))


@pytest.mark.parametrize(
"var, var_select",
[("event_id", "event_id"), ("event_name", "event_names"), ("date", "date")],
)
def test_hazard_forecast_select(haz_fc, lead_time, member, haz_kwargs, var, var_select):
"""Check if Hazard.select works on the derived class"""

select_mask = np.array([3, 2])
ordered_select_mask = np.array([3, 2])
if var == "date":
# Date needs to be a valid delta
select_mask = np.array([2, 3])
ordered_select_mask = np.array([2, 3])

var_value = np.array(haz_kwargs[var])[select_mask]
# event_name is a list, convert to numpy array for indexing
haz_fc_sel = haz_fc.select(**{var_select: var_value})
# Note: order is preserved
npt.assert_array_equal(
haz_fc_sel.event_id,
haz_fc.event_id[ordered_select_mask],
)
npt.assert_array_equal(
haz_fc_sel.event_name,
np.array(haz_fc.event_name)[ordered_select_mask],
)
npt.assert_array_equal(haz_fc_sel.date, haz_fc.date[ordered_select_mask])
npt.assert_array_equal(haz_fc_sel.frequency, haz_fc.frequency[ordered_select_mask])
npt.assert_array_equal(haz_fc_sel.member, member[ordered_select_mask])
npt.assert_array_equal(haz_fc_sel.lead_time, lead_time[ordered_select_mask])
npt.assert_array_equal(
haz_fc_sel.intensity.todense(),
haz_fc.intensity.todense()[ordered_select_mask],
)
npt.assert_array_equal(
haz_fc_sel.fraction.todense(),
haz_fc.fraction.todense()[ordered_select_mask],
)
class TestSelect:

assert haz_fc_sel.centroids == haz_fc.centroids
@pytest.mark.parametrize(
"var, var_select",
[("event_id", "event_id"), ("event_name", "event_names"), ("date", "date")],
)
def test_base_class_select(
self, haz_fc, lead_time, member, haz_kwargs, var, var_select
):
"""Check if Hazard.select works on the derived class"""

select_mask = np.array([3, 2])
ordered_select_mask = np.array([3, 2])
if var == "date":
# Date needs to be a valid delta
select_mask = np.array([2, 3])
ordered_select_mask = np.array([2, 3])

var_value = np.array(haz_kwargs[var])[select_mask]
# event_name is a list, convert to numpy array for indexing
haz_fc_sel = haz_fc.select(**{var_select: var_value})
# Note: order is preserved
npt.assert_array_equal(
haz_fc_sel.event_id,
haz_fc.event_id[ordered_select_mask],
)
npt.assert_array_equal(
haz_fc_sel.event_name,
np.array(haz_fc.event_name)[ordered_select_mask],
)
npt.assert_array_equal(haz_fc_sel.date, haz_fc.date[ordered_select_mask])
npt.assert_array_equal(
haz_fc_sel.frequency, haz_fc.frequency[ordered_select_mask]
)
npt.assert_array_equal(haz_fc_sel.member, member[ordered_select_mask])
npt.assert_array_equal(haz_fc_sel.lead_time, lead_time[ordered_select_mask])
npt.assert_array_equal(
haz_fc_sel.intensity.todense(),
haz_fc.intensity.todense()[ordered_select_mask],
)
npt.assert_array_equal(
haz_fc_sel.fraction.todense(),
haz_fc.fraction.todense()[ordered_select_mask],
)

assert haz_fc_sel.centroids == haz_fc.centroids

def test_derived_select_single(self, haz_fc, lead_time, member):
haz_fc_select = haz_fc.select(member=[3, 0])
idx = np.array([0, 3])
npt.assert_array_equal(haz_fc_select.event_id, haz_fc.event_id[idx])
npt.assert_array_equal(haz_fc_select.member, member[idx])
npt.assert_array_equal(haz_fc_select.lead_time, lead_time[idx])

haz_fc_select = haz_fc.select(lead_time=lead_time[np.array([3, 0])])
npt.assert_array_equal(haz_fc_select.event_id, haz_fc.event_id[idx])
npt.assert_array_equal(haz_fc_select.member, member[idx])
npt.assert_array_equal(haz_fc_select.lead_time, lead_time[idx])

def test_derived_select_intersections(self, haz_fc, lead_time, member, haz_kwargs):
haz_fc_select = haz_fc.select(event_id=[1, 4], member=[0, 1, 2])
npt.assert_array_equal(haz_fc_select.event_id, haz_fc.event_id[np.array([0])])

haz_fc_select = haz_fc.select(
event_id=[1, 2, 4], member=[0, 1, 2], lead_time=lead_time[1:3]
)
npt.assert_array_equal(haz_fc_select.event_id, haz_fc.event_id[np.array([1])])

# Test "outer"
haz_fc2 = HazardForecast(
lead_time=lead_time, member=np.zeros_like(member, dtype="int"), **haz_kwargs
)
haz_fc_select = haz_fc2.select(event_id=[1, 2, 4], member=[0])
npt.assert_array_equal(haz_fc_select.event_id, [1, 2, 4])
npt.assert_array_equal(haz_fc_select.member, [0, 0, 0])
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@peanutfun Should we add a test for "no match"?
Something like
haz_fc_empty = haz_fc.select(event_names = haz_fc.event_name[:2], member=member[-2:])
will raise
IndexError: arrays used as indices must be of integer (or boolean) type
that we could test for. Not sure if this is behaviour that we want, though, I would rather expect an empty HazardForecast. But it is the same behaviour as Hazard.select()

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You are correct, there should be a test. But we should not go further than the functionality of Hazard.select. If that's the error from the base class, I'm fine with it being raised here, too.


def test_derived_select_null(self, haz_fc, haz_kwargs):
haz_fc_select = haz_fc.select()
assert_hazard_kwargs(haz_fc_select, **haz_kwargs)

with pytest.raises(IndexError):
haz_fc.select(event_id=[-1])
with pytest.raises(IndexError):
haz_fc.select(member=[-1])
with pytest.raises(IndexError):
haz_fc.select(
lead_time=[np.timedelta64("2", "Y").astype("timedelta64[ns]")]
)


def test_write_read_hazard_forecast(haz_fc, tmp_path):
Expand Down
Loading