|
| 1 | +--- |
| 2 | +Title: '.argmax()' |
| 3 | +Description: 'Returns the indices of the maximum values along a specified axis.' |
| 4 | +Subjects: |
| 5 | + - 'Computer Science' |
| 6 | + - 'Data Science' |
| 7 | +Tags: |
| 8 | + - 'Arrays' |
| 9 | + - 'Methods' |
| 10 | + - 'NumPy' |
| 11 | +CatalogContent: |
| 12 | + - 'learn-python-3' |
| 13 | + - 'paths/data-science' |
| 14 | +--- |
| 15 | + |
| 16 | +The **`.argmax()`** method returns the indices of the maximum values along a specified axis in a NumPy ndarray. |
| 17 | + |
| 18 | +## Syntax |
| 19 | + |
| 20 | +```pseudo |
| 21 | +ndarray.argmax(axis=None, out=None, *, keepdims=False) |
| 22 | +``` |
| 23 | + |
| 24 | +**Parameters:** |
| 25 | + |
| 26 | +- `axis` (int, optional): Axis along which to find the maximum value; flattens the array if `None`. |
| 27 | +- `out` (ndarray, optional): Output array to store the result; must match the expected shape. |
| 28 | +- `keepdims` (bool, optional): If `True`, retains reduced dimensions with size 1. |
| 29 | + |
| 30 | +**Return value:** |
| 31 | + |
| 32 | +Returns an integer or ndarray of integers indicating the indices of the maximum values. |
| 33 | + |
| 34 | +## Example 1: Finding Maximum Index in 1D Array |
| 35 | + |
| 36 | +In this example, the `.argmax()` method returns the index of the maximum value in a one-dimensional array: |
| 37 | + |
| 38 | +```py |
| 39 | +import numpy as np |
| 40 | + |
| 41 | +arr = np.array([3, 1, 4, 1, 5, 9, 2]) |
| 42 | +max_index = arr.argmax() |
| 43 | + |
| 44 | +print("Array:", arr) |
| 45 | +print("Index of maximum value:", max_index) |
| 46 | +print("Maximum value:", arr[max_index]) |
| 47 | +``` |
| 48 | + |
| 49 | +The output of this code is: |
| 50 | + |
| 51 | +```shell |
| 52 | +Array: [3 1 4 1 5 9 2] |
| 53 | +Index of maximum value: 5 |
| 54 | +Maximum value: 9 |
| 55 | +``` |
| 56 | + |
| 57 | +## Example 2: Finding Maximum Indices Along Axis in 2D Array |
| 58 | + |
| 59 | +In this example, the `.argmax()` method finds the indices of maximum values along each axis in a two-dimensional array: |
| 60 | + |
| 61 | +```py |
| 62 | +import numpy as np |
| 63 | + |
| 64 | +matrix = np.array([[1, 5, 3], |
| 65 | + [9, 2, 8], |
| 66 | + [4, 7, 6]]) |
| 67 | + |
| 68 | +# Maximum index along axis 0 (columns) |
| 69 | +max_col = matrix.argmax(axis=0) |
| 70 | + |
| 71 | +# Maximum index along axis 1 (rows) |
| 72 | +max_row = matrix.argmax(axis=1) |
| 73 | + |
| 74 | +print("Matrix:") |
| 75 | +print(matrix) |
| 76 | +print("\nMax indices along axis 0 (columns):", max_col) |
| 77 | +print("Max indices along axis 1 (rows):", max_row) |
| 78 | +``` |
| 79 | + |
| 80 | +The output of this code is: |
| 81 | + |
| 82 | +```shell |
| 83 | +Matrix: |
| 84 | +[[1 5 3] |
| 85 | + [9 2 8] |
| 86 | + [4 7 6]] |
| 87 | + |
| 88 | +Max indices along axis 0 (columns): [1 2 1] |
| 89 | +Max indices along axis 1 (rows): [1 0 1] |
| 90 | +``` |
| 91 | + |
| 92 | +## Example 3: Flattened Array Maximum |
| 93 | + |
| 94 | +In this example, the `.argmax()` method returns the index of the maximum element from the flattened version of the array: |
| 95 | + |
| 96 | +```py |
| 97 | +import numpy as np |
| 98 | + |
| 99 | +matrix = np.array([[10, 25, 15], |
| 100 | + [30, 20, 35]]) |
| 101 | + |
| 102 | +# Find index in flattened array |
| 103 | +flat_max_index = matrix.argmax() |
| 104 | + |
| 105 | +print("Matrix:", matrix) |
| 106 | +print("Index of maximum in flattened array:", flat_max_index) |
| 107 | +print("Maximum value:", matrix.flat[flat_max_index]) |
| 108 | +``` |
| 109 | + |
| 110 | +The output of this code is: |
| 111 | + |
| 112 | +```shell |
| 113 | +Matrix: [[10 25 15] |
| 114 | + [30 20 35]] |
| 115 | +Index of maximum in flattened array: 5 |
| 116 | +Maximum value: 35 |
| 117 | +``` |
| 118 | + |
| 119 | +## Codebyte Example |
| 120 | + |
| 121 | +In this example, the `.argmax()` method identifies the student with the highest score using their index position: |
| 122 | + |
| 123 | +```codebyte/python |
| 124 | +import numpy as np |
| 125 | +
|
| 126 | +# Create sample data |
| 127 | +scores = np.array([85, 92, 78, 95, 88]) |
| 128 | +students = ['Alice', 'Bob', 'Carol', 'David', 'Eve'] |
| 129 | +
|
| 130 | +# Find the student with highest score |
| 131 | +top_student_index = scores.argmax() |
| 132 | +
|
| 133 | +print(f"Scores: {scores}") |
| 134 | +print(f"Highest score index: {top_student_index}") |
| 135 | +print(f"Top student: {students[top_student_index]}") |
| 136 | +print(f"Score: {scores[top_student_index]}") |
| 137 | +``` |
0 commit comments