|
264 | 264 | 2, |
265 | 265 | None, |
266 | 266 | 'exercise-set-for-first-week-to-be-discussed-january-28'), |
267 | | - ('Exewrcise 1: Bell states', 2, None, 'exewrcise-1-bell-states'), |
268 | | - ('And the next two', 2, None, 'and-the-next-two'), |
269 | | - ('Exercise 2: Entangled state', |
| 267 | + ('1: Commutator identities', 2, None, '1-commutator-identities'), |
| 268 | + ('2: Pauli matrices', 2, None, '2-pauli-matrices'), |
| 269 | + ('3: Shared eigenvectors', 2, None, '3-shared-eigenvectors'), |
| 270 | + ('4: One-qubit basis and Pauli matrices', |
270 | 271 | 2, |
271 | 272 | None, |
272 | | - 'exercise-2-entangled-state'), |
273 | | - ('Exercise 3: Commutator identities', |
| 273 | + '4-one-qubit-basis-and-pauli-matrices'), |
| 274 | + ('5: Hadamard and Phase gates', |
274 | 275 | 2, |
275 | 276 | None, |
276 | | - 'exercise-3-commutator-identities'), |
277 | | - ('Exercise 4: Pauli matrices', |
278 | | - 2, |
279 | | - None, |
280 | | - 'exercise-4-pauli-matrices'), |
281 | | - ('Exercise 5: Shared eigenvectors', |
282 | | - 2, |
283 | | - None, |
284 | | - 'exercise-5-shared-eigenvectors'), |
285 | | - ('Exercise 6: One-qubit basis and Pauli matrices', |
286 | | - 2, |
287 | | - None, |
288 | | - 'exercise-6-one-qubit-basis-and-pauli-matrices'), |
289 | | - ('Exercise 7: Hadamard and Phase gates', |
290 | | - 2, |
291 | | - None, |
292 | | - 'exercise-7-hadamard-and-phase-gates')]} |
| 277 | + '5-hadamard-and-phase-gates')]} |
293 | 278 | end of tocinfo --> |
294 | 279 |
|
295 | 280 | <body> |
|
429 | 414 | <!-- navigation toc: --> <li><a href="#explicit-results" style="font-size: 80%;">Explicit results</a></li> |
430 | 415 | <!-- navigation toc: --> <li><a href="#the-spectral-decomposition" style="font-size: 80%;">The spectral decomposition</a></li> |
431 | 416 | <!-- navigation toc: --> <li><a href="#exercise-set-for-first-week-to-be-discussed-january-28" style="font-size: 80%;">Exercise set for first week, to be discussed January 28</a></li> |
432 | | - <!-- navigation toc: --> <li><a href="#exewrcise-1-bell-states" style="font-size: 80%;">Exewrcise 1: Bell states</a></li> |
433 | | - <!-- navigation toc: --> <li><a href="#and-the-next-two" style="font-size: 80%;">And the next two</a></li> |
434 | | - <!-- navigation toc: --> <li><a href="#exercise-2-entangled-state" style="font-size: 80%;">Exercise 2: Entangled state</a></li> |
435 | | - <!-- navigation toc: --> <li><a href="#exercise-3-commutator-identities" style="font-size: 80%;">Exercise 3: Commutator identities</a></li> |
436 | | - <!-- navigation toc: --> <li><a href="#exercise-4-pauli-matrices" style="font-size: 80%;">Exercise 4: Pauli matrices</a></li> |
437 | | - <!-- navigation toc: --> <li><a href="#exercise-5-shared-eigenvectors" style="font-size: 80%;">Exercise 5: Shared eigenvectors</a></li> |
438 | | - <!-- navigation toc: --> <li><a href="#exercise-6-one-qubit-basis-and-pauli-matrices" style="font-size: 80%;">Exercise 6: One-qubit basis and Pauli matrices</a></li> |
439 | | - <!-- navigation toc: --> <li><a href="#exercise-7-hadamard-and-phase-gates" style="font-size: 80%;">Exercise 7: Hadamard and Phase gates</a></li> |
| 417 | + <!-- navigation toc: --> <li><a href="#1-commutator-identities" style="font-size: 80%;">1: Commutator identities</a></li> |
| 418 | + <!-- navigation toc: --> <li><a href="#2-pauli-matrices" style="font-size: 80%;">2: Pauli matrices</a></li> |
| 419 | + <!-- navigation toc: --> <li><a href="#3-shared-eigenvectors" style="font-size: 80%;">3: Shared eigenvectors</a></li> |
| 420 | + <!-- navigation toc: --> <li><a href="#4-one-qubit-basis-and-pauli-matrices" style="font-size: 80%;">4: One-qubit basis and Pauli matrices</a></li> |
| 421 | + <!-- navigation toc: --> <li><a href="#5-hadamard-and-phase-gates" style="font-size: 80%;">5: Hadamard and Phase gates</a></li> |
440 | 422 |
|
441 | 423 | </ul> |
442 | 424 | </li> |
@@ -2366,64 +2348,32 @@ <h2 id="exercise-set-for-first-week-to-be-discussed-january-28" class="anchor">E |
2366 | 2348 | </p> |
2367 | 2349 |
|
2368 | 2350 | <!-- !split --> |
2369 | | -<h2 id="exewrcise-1-bell-states" class="anchor">Exewrcise 1: Bell states </h2> |
2370 | | - |
2371 | | -<p>Show that the so-called Bell states listed here (and to be encountered many times in this course) form an orthogonal basis</p> |
2372 | | -$$ |
2373 | | -\vert \Phi^+\rangle = \frac{1}{\sqrt{2}}\left[\vert 00\rangle +\vert 11\rangle\right]=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1\end{bmatrix}, |
2374 | | -$$ |
2375 | | - |
2376 | | - |
2377 | | -$$ |
2378 | | -\vert \Phi^-\rangle = \frac{1}{\sqrt{2}}\left[\vert 00\rangle -\vert 11\rangle\right]=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ 0 \\ 0 \\ -1\end{bmatrix}, |
2379 | | -$$ |
2380 | | - |
2381 | | - |
2382 | | -<!-- !split --> |
2383 | | -<h2 id="and-the-next-two" class="anchor">And the next two </h2> |
2384 | | -$$ |
2385 | | -\vert \Psi^+\rangle = \frac{1}{\sqrt{2}}\left[\vert 10\rangle +\vert 01\rangle\right]=\frac{1}{\sqrt{2}}\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0\end{bmatrix}, |
2386 | | -$$ |
2387 | | - |
2388 | | -<p>and</p> |
2389 | | - |
2390 | | -$$ |
2391 | | -\vert \Psi^-\rangle = \frac{1}{\sqrt{2}}\left[\vert 10\rangle -\vert 01\rangle\right]=\frac{1}{\sqrt{2}}\begin{bmatrix} 0 \\ 1 \\ -1 \\ 0\end{bmatrix}. |
2392 | | -$$ |
2393 | | - |
2394 | | - |
2395 | | -<!-- !split --> |
2396 | | -<h2 id="exercise-2-entangled-state" class="anchor">Exercise 2: Entangled state </h2> |
2397 | | - |
2398 | | -<p>Show that the state \( \alpha \vert 00\rangle+\beta\vert 11\rangle \) cannot be written as the product of the tensor product of two states and is thus entangle. The constants \( \alpha \) and \( \beta \) are both nonzero.</p> |
2399 | | - |
2400 | | -<!-- !split --> |
2401 | | -<h2 id="exercise-3-commutator-identities" class="anchor">Exercise 3: Commutator identities </h2> |
| 2351 | +<h2 id="1-commutator-identities" class="anchor">1: Commutator identities </h2> |
2402 | 2352 | <p>Prove the following commutator relations for different operators (marked with a hat)</p> |
2403 | 2353 | <ol> |
2404 | 2354 | <li> \( [\hat{A}+\hat{B},\hat{C}]= [\hat{A},\hat{C}]+[\hat{B},\hat{C}] \);</li> |
2405 | 2355 | <li> \( [\hat{A},\hat{B}\hat{C}]= [\hat{A},\hat{B}]\hat{C}+\hat{B}[\hat{A},\hat{C}] \); and</li> |
2406 | 2356 | <li> \( [\hat{A},[\hat{B}\hat{C}]]= [\hat{B},[\hat{C},\hat{A}]]+[\hat{C},[\hat{A},\hat{B}]]=0 \) (the so-called Jacobi identity).</li> |
2407 | 2357 | </ol> |
2408 | 2358 | <!-- !split --> |
2409 | | -<h2 id="exercise-4-pauli-matrices" class="anchor">Exercise 4: Pauli matrices </h2> |
| 2359 | +<h2 id="2-pauli-matrices" class="anchor">2: Pauli matrices </h2> |
2410 | 2360 | <ol> |
2411 | 2361 | <li> Set up the commutation rules for the Pauli matrices, that is find \( [\sigma_i,\sigma_j] \) where \( i,j=x,y,z \).</li> |
2412 | 2362 | <li> We define \( \boldsymbol{X}=\sigma_x \), \( \boldsymbol{Y}=\sigma_y \) and \( \boldsymbol{Z}=\sigma_z \). Show that \( \boldsymbol{XX}=\boldsymbol{YY}=\boldsymbol{ZZ}=\boldsymbol{I} \).</li> |
2413 | 2363 | <li> Which one of the Pauli matrices has the qubit basis \( \vert 0\rangle \) and \( \vert 1\rangle \) as eigenbasis? What are the eigenvalues?</li> |
2414 | 2364 | </ol> |
2415 | 2365 | <!-- !split --> |
2416 | | -<h2 id="exercise-5-shared-eigenvectors" class="anchor">Exercise 5: Shared eigenvectors </h2> |
| 2366 | +<h2 id="3-shared-eigenvectors" class="anchor">3: Shared eigenvectors </h2> |
2417 | 2367 |
|
2418 | 2368 | <p>Prove that if two operators \( \hat{A} \) and \( \hat{B} \) commute they will share a basis of eigenstates</p> |
2419 | 2369 |
|
2420 | 2370 | <!-- !split --> |
2421 | | -<h2 id="exercise-6-one-qubit-basis-and-pauli-matrices" class="anchor">Exercise 6: One-qubit basis and Pauli matrices </h2> |
| 2371 | +<h2 id="4-one-qubit-basis-and-pauli-matrices" class="anchor">4: One-qubit basis and Pauli matrices </h2> |
2422 | 2372 |
|
2423 | 2373 | <p>Write a function (in Python for example) which sets up a one-qubit basis and apply the various Pauli matrices to these basis states.</p> |
2424 | 2374 |
|
2425 | 2375 | <!-- !split --> |
2426 | | -<h2 id="exercise-7-hadamard-and-phase-gates" class="anchor">Exercise 7: Hadamard and Phase gates </h2> |
| 2376 | +<h2 id="5-hadamard-and-phase-gates" class="anchor">5: Hadamard and Phase gates </h2> |
2427 | 2377 |
|
2428 | 2378 | <p>Apply the Hadamard and Phase matrices (or gates) to the same one-qubit basis states and study their actions on these states. |
2429 | 2379 | Write a code which applies these matrices to the same one-qubit basis. |
|
0 commit comments