|
| 1 | +using NNlib, NNlibCUDA, CUDA, Test |
| 2 | +using Zygote, ChainRulesCore |
| 3 | + |
| 4 | +@testset "dropout + CUDA" begin |
| 5 | + # Basics |
| 6 | + x1 = CUDA.randn(3, 4) |
| 7 | + @test size(@inferred dropout(x1, 0.1)) == (3, 4) |
| 8 | + @test size(@inferred dropout(x1, 0.2; dims=2)) == (3, 4) |
| 9 | + @test size(@inferred dropout(x1, 0.3; dims=(1,2))) == (3, 4) |
| 10 | + |
| 11 | + rng = CUDA.default_rng() |
| 12 | + @test size(@inferred dropout(rng, x1, 0.1)) == (3, 4) |
| 13 | + @test size(@inferred dropout(rng, x1, 0.1; dims=2)) == (3, 4) |
| 14 | + |
| 15 | + # Values |
| 16 | + d45 = dropout(CUDA.ones(100, 100, 100), 0.45) |
| 17 | + @test mean(d45) ≈ 1 atol=1e-2 |
| 18 | + dpi2 = dropout(CUDA.fill(1f0 * pi, 1000), 0.2) |
| 19 | + @test sort(unique(Array(dpi2))) ≈ [0, 5pi/4] |
| 20 | + d33 = dropout(CUDA.fill(3f0, 10, 1000), 0.3, dims=2) |
| 21 | + @test sort(unique(vec(Array(d33)))) ≈ [0, 3/(1-0.3)] |
| 22 | + |
| 23 | + # Gradient rule |
| 24 | + y, back = rrule(dropout, rng, hcat(CUDA.ones(1000), CUDA.zeros(1000)), 0.45) |
| 25 | + dx = back(CUDA.fill(3f0, 1000, 2))[3] |
| 26 | + @test !all(iszero, dx[:,2]) # this is why we save the random choices |
| 27 | + @test sort(unique(vec(Array(dx)))) ≈ [0, 3/(1-0.45)] |
| 28 | + |
| 29 | + @testset "Zygote" begin |
| 30 | + @test Zygote.gradient(x -> sum(dropout(x, 0.3)), x1)[1] isa CuArray{Float32} |
| 31 | + @test Zygote.gradient(x -> sum(dropout(rng, x, 0.3)), x1)[1] isa CuArray{Float32} |
| 32 | + @test Zygote.gradient(x -> sum(dropout(x, 0.3, dims=1)), x1)[1] isa CuArray{Float32} |
| 33 | + end |
| 34 | +end |
0 commit comments