11{
22 "all_KK_decays.ipynb" : [
33 " physics" ,
4- " programming" ,
5- " visualization"
4+ " programming"
65 ],
76 "asymmetric errors.ipynb" : [
87 " physics" ,
1514 " programming"
1615 ],
1716 "chance_of_deviations_in_random_splits.ipynb" : [
18- " data analysis" ,
1917 " programming" ,
2018 " simulation" ,
2119 " statistics"
2220 ],
2321 "comparison_chisquare_test_statistics.ipynb" : [
2422 " simulation" ,
2523 " statistics" ,
26- " symbolic computation" ,
27- " visualization"
24+ " symbolic computation"
2825 ],
2926 "Correlation.ipynb" : [
30- " data analysis" ,
31- " high performance computing" ,
3227 " physics" ,
33- " programming" ,
3428 " simulation" ,
35- " visualization "
29+ " statistics "
3630 ],
3731 "cows.ipynb" : [
3832 " programming" ,
3933 " sWeights" ,
40- " statistics" ,
41- " visualization"
34+ " statistics"
4235 ],
4336 "cross_section_extrapolation_error.ipynb" : [
44- " data analysis" ,
4537 " physics" ,
4638 " statistics" ,
47- " uncertainty analysis" ,
48- " visualization"
39+ " uncertainty analysis"
4940 ],
5041 "cross_section_pip_vs_pp.ipynb" : [
5142 " data analysis" ,
5243 " physics" ,
53- " visualization "
44+ " statistics "
5445 ],
5546 "duffing.ipynb" : [
5647 " physics" ,
7465 " programming"
7566 ],
7667 "factorization_test.ipynb" : [
77- " data analysis" ,
78- " programming" ,
7968 " sWeights" ,
80- " statistics " ,
81- " visualization "
69+ " simulation " ,
70+ " statistics "
8271 ],
8372 "fast_deep_set.ipynb" : [
8473 " high performance computing" ,
8574 " machine learning" ,
8675 " neural networks" ,
8776 " physics" ,
88- " programming"
77+ " programming" ,
78+ " simulation" ,
79+ " statistics"
8980 ],
9081 "Fit weighted histograms with SPD method.ipynb" : [
91- " data analysis" ,
9282 " physics" ,
93- " programming" ,
94- " science" ,
95- " statistics" ,
96- " visualization"
83+ " simulation" ,
84+ " statistics"
9785 ],
9886 "From fixed target to sqrt_s_nn and back.ipynb" : [
9987 " physics" ,
10088 " symbolic computation"
10189 ],
10290 "gof_test_statistic.ipynb" : [
10391 " data analysis" ,
104- " science " ,
92+ " physics " ,
10593 " simulation" ,
10694 " statistics"
10795 ],
10896 "HESSE_vs_MINOS_TwoGauss.ipynb" : [
109- " data analysis " ,
97+ " programming " ,
11098 " simulation" ,
11199 " statistics" ,
112- " uncertainty analysis" ,
113- " visualization"
100+ " uncertainty analysis"
114101 ],
115102 "hyperon_feed_down.ipynb" : [
116103 " data analysis" ,
117104 " physics" ,
105+ " simulation" ,
106+ " statistics"
107+ ],
108+ "iminuit_update.ipynb" : [
109+ " high performance computing" ,
110+ " physics" ,
118111 " programming" ,
119- " visualization "
112+ " statistics "
120113 ],
121114 "Interactive plotting in Jupyter with matplotlib.ipynb" : [
122115 " programming" ,
116+ " statistics" ,
123117 " visualization"
124118 ],
125119 "invariant mass combinatorial background.ipynb" : [
130124 ],
131125 "Leave-one-out cross-validation.ipynb" : [
132126 " data analysis" ,
127+ " programming" ,
128+ " simulation" ,
133129 " statistics"
134130 ],
135131 "llama_index_rag.ipynb" : [
149145 ],
150146 "look_elsewhere_effect.ipynb" : [
151147 " bootstrap" ,
152- " data analysis" ,
153148 " physics" ,
154- " programming" ,
155149 " simulation" ,
156150 " statistics" ,
157- " uncertainty analysis" ,
158- " visualization"
151+ " uncertainty analysis"
159152 ],
160153 "MCMC.ipynb" : [
161154 " programming" ,
162155 " simulation" ,
163- " statistics" ,
164- " visualization"
156+ " statistics"
165157 ],
166158 "naive_calibration_bias.ipynb" : [
167- " data analysis" ,
168159 " physics" ,
169- " programming" ,
170160 " simulation" ,
171- " statistics"
161+ " statistics" ,
162+ " uncertainty analysis"
172163 ],
173164 "New iminuit displays.ipynb" : [
174- " programming"
165+ " programming" ,
166+ " visualization"
175167 ],
176168 "Numerically stable calculation of invariant mass.ipynb" : [
177169 " high performance computing" ,
178170 " physics" ,
179171 " programming"
180172 ],
181173 "p-value conversion.ipynb" : [
182- " data analysis" ,
183- " science" ,
184- " statistics" ,
185- " visualization"
174+ " physics" ,
175+ " simulation" ,
176+ " statistics"
186177 ],
187178 "parse_latex.ipynb" : [
188179 " parsing" ,
206197 " visualization"
207198 ],
208199 "ratio bias.ipynb" : [
209- " data analysis" ,
210- " statistics" ,
211- " visualization"
200+ " programming" ,
201+ " statistics"
212202 ],
213203 "regression.ipynb" : [
214204 " machine learning" ,
215205 " neural networks" ,
216- " programming"
206+ " programming" ,
207+ " statistics"
217208 ],
218209 "render_latex_to_svg.ipynb" : [
219210 " programming" ,
222213 "resample and numba.ipynb" : [
223214 " high performance computing" ,
224215 " programming" ,
225- " statistics" ,
226- " visualization"
216+ " statistics"
227217 ],
228218 "RooFit.ipynb" : [
229219 " physics" ,
230220 " programming" ,
231- " simulation" ,
232221 " statistics"
233222 ],
234223 "Simple parallelization in Jupyter Notebooks.ipynb" : [
235224 " high performance computing" ,
236225 " programming"
237226 ],
238227 "Sleep mode power consumption.ipynb" : [
239- " data analysis" ,
240228 " environment"
241229 ],
242230 "SPD with negative weights.ipynb" : [
252240 ],
253241 "template_with_distortion.ipynb" : [
254242 " bootstrap" ,
255- " programming " ,
243+ " physics " ,
256244 " simulation" ,
257245 " statistics" ,
258- " uncertainty analysis" ,
259- " visualization"
246+ " uncertainty analysis"
260247 ],
261248 "tracking_efficiency.ipynb" : [
249+ " data analysis" ,
262250 " physics" ,
263- " programming" ,
264251 " statistics" ,
265252 " uncertainty analysis"
266253 ],
267254 "UnbiasedEML.ipynb" : [
268- " science" ,
269- " simulation" ,
255+ " physics" ,
270256 " statistics" ,
271257 " symbolic computation"
272258 ],
273259 "Uncertainty of efficiency computed from fitted yields.ipynb" : [
274- " data analysis" ,
260+ " physics" ,
261+ " programming" ,
275262 " simulation" ,
276263 " statistics" ,
277264 " symbolic computation" ,
278- " uncertainty analysis" ,
279- " visualization"
265+ " uncertainty analysis"
280266 ],
281267 "visual_cross_section.ipynb" : [
282268 " physics" ,
283- " programming" ,
284269 " simulation"
285270 ],
286271 "Wilson Score Interval with Weighted Histograms.ipynb" : [
287- " bootstrap" ,
288- " data analysis" ,
289- " simulation" ,
272+ " programming" ,
290273 " statistics"
291274 ]
292- }
275+ }
0 commit comments