From f69675be6ed2950266a5b6d1d47e7f0ae1c54512 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Joanna=20Pylv=C3=A4n=C3=A4inen?= Date: Tue, 24 Jun 2025 22:37:44 +0300 Subject: [PATCH] some bugs fixed at least the prediction part works for in this notebook - training part has not been tested. Please merge if feels appropriate --- .../Cellpose_2D_ZeroCostDL4Mic.ipynb | 2582 +---------------- 1 file changed, 1 insertion(+), 2581 deletions(-) diff --git a/Colab_notebooks/Cellpose_2D_ZeroCostDL4Mic.ipynb b/Colab_notebooks/Cellpose_2D_ZeroCostDL4Mic.ipynb index 831929c9..d1e04671 100644 --- a/Colab_notebooks/Cellpose_2D_ZeroCostDL4Mic.ipynb +++ b/Colab_notebooks/Cellpose_2D_ZeroCostDL4Mic.ipynb @@ -1,2581 +1 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "V9zNGvape2-I" - }, - "source": [ - "# **Cellpose - Omnipose (2D)**\n", - "\n", - "---\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pwLsIXtEw3Kx" - }, - "source": [ - "**Cellpose 2D** is a deep-learning method that can be used to segment cell and/or nuclei from bioimages and was first published by [Stringer *et al.* in 2020, in Nature Method](https://www.nature.com/articles/s41592-020-01018-x). Omnipose was developped by [Kevin John Cutler and colleagues](https://www.biorxiv.org/content/10.1101/2021.11.03.467199v2).\n", - "\n", - " **This particular notebook enables segmentation of 2D and 3D datasets. Hovewer, training is limited to 2D images. If you are interested in using 3D datasets for training, you should use the StarDist or U-Net 3D notebooks instead.**\n", - "\n", - "---\n", - "*Disclaimer*:\n", - "\n", - "This notebook is part of the Zero-Cost Deep-Learning to Enhance Microscopy project (https://github.com/HenriquesLab/DeepLearning_Collab/wiki). Jointly developed by the Jacquemet (link to https://cellmig.org/) and Henriques (https://henriqueslab.github.io/) laboratories.\n", - "\n", - "This notebook is largely based on the paper:\n", - "\n", - "**Cellpose: a generalist algorithm for cellular segmentation** from Stringer *et al.*, Nature Methods, 2020. (https://www.nature.com/articles/s41592-020-01018-x)\n", - "\n", - "**Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation** from Kevin J. Cutler et al, biorXiv, 2021. (https://www.biorxiv.org/content/10.1101/2021.11.03.467199v2)\n", - "\n", - "**The Original code** is freely available in GitHub:\n", - "https://github.com/MouseLand/cellpose\n", - "\n", - "**Please also cite these original papers when using or developing this notebook.**\n", - "\n", - "**This notebook was also inspired by the one created by @pr4deepr** which is available here:\n", - "https://colab.research.google.com/github/MouseLand/cellpose/blob/8dadbe528b1ee3f59533bc23ab0ed371d5e7b769/notebooks/Cellpose_2D_v0_1.ipynb\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "C5oYf0Q5yXrl" - }, - "source": [ - "# **0. Before getting started**\n", - "---\n", - " For Cellpose to train, **it needs to have access to a paired training dataset made of images and their corresponding masks (label images)**. Information on how to generate a training dataset is available in our Wiki page: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki\n", - "\n", - "**We strongly recommend that you generate extra paired images. These images can be used to assess the quality of your trained model**. The quality control assessment can be done directly in this notebook.\n", - "\n", - "The data structure is important. It is necessary that all the input data are in the same folder and that all the output data is in a separate folder. The provided training dataset is already split in two folders called \"Training - Images\" (Training_source) and \"Training - Masks\" (Training_target).\n", - "\n", - "Additionally, the corresponding Training_source and Training_target files need to have **the same name**.\n", - "\n", - " **Use 8/16 bit png or Tiff images**.\n", - "\n", - "\n", - "You can also provide a folder that contains the data that you wish to analyse with the trained network once all training has been performed. This can include Test dataset for which you have the equivalent output and can compare to what the network provides.\n", - "\n", - "Here's a common data structure that can work:\n", - "* Experiment A\n", - " - **Training dataset**\n", - " - Images (Training_source)\n", - " - img_1.tif, img_2.tif, ...\n", - " - Label images (Training_target)\n", - " - img_1.tif, img_2.tif, ...\n", - " - **Quality control dataset**\n", - " - Images\n", - " - img_1.tif, img_2.tif\n", - " - Masks\n", - " - img_1.tif, img_2.tif\n", - " - **Data to be predicted**\n", - " - **Results**\n", - "\n", - "---\n", - "**Important note**\n", - "\n", - "- If you wish to **Train a network from scratch** using your own dataset (and we encourage everyone to do that), you will need to run **sections 1 - 4**, then use **section 5** to assess the quality of your model and **section 6** to run predictions using the model that you trained.\n", - "\n", - "- If you wish to **Evaluate your model** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 5** to assess the quality of your model.\n", - "\n", - "- If you only wish to **run predictions** using a pretrained model you will only need to run **sections 1 and 2** to set up the notebook, then use **section 6** to run the predictions on the desired model.\n", - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "n4yWFoJNnoin" - }, - "source": [ - "# **1. Install Cellpose and dependencies**\n", - "---\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "WlPYHrPHlUtl" - }, - "source": [ - "\n", - "## **1.1. Install dependencies**\n", - "---\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "3u2mXn3XsWzd" - }, - "outputs": [], - "source": [ - "\n", - "#@markdown ##Install Cellpose\n", - "\n", - "#Libraries contains information of certain topics.\n", - "#For example the tifffile library contains information on how to handle tif-files.\n", - "\n", - "#Here, we install libraries which are not already included in Colab.\n", - "\n", - "!pip uninstall -y -q yellowbrick\n", - "\n", - "!pip install -q tifffile # contains tools to operate tiff-files\n", - "!pip install -q folium==0.2.1\n", - "!pip install -q imgaug==0.2.5\n", - "!pip install \"opencv-python-headless<4.3\"\n", - "#!pip install -q numpy==1.20.0\n", - "!pip install -q cellpose\n", - "!pip install -q wget\n", - "!pip install -q memory_profiler\n", - "!pip install -q fpdf2\n", - "\n", - "\n", - "\n", - "#Force session restart\n", - "exit(0)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "w-FE-qZI5U_k" - }, - "source": [ - "\n", - "## **1.2. Restart your runtime**\n", - "---\n", - "\n", - "\n", - "\n", - "** Ignore the following message error message. Your Runtime has automatically restarted. This is normal.**\n", - "\n", - "\"\"
\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "wgeU4cC55Sej" - }, - "source": [ - "## **1.3. Load key dependencies**\n", - "---\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "Kkbr0GAA5ZAQ" - }, - "outputs": [], - "source": [ - "#@markdown ##Load key dependencies\n", - "\n", - "Notebook_version = '1.16.3'\n", - "Network = 'Cellpose'\n", - "\n", - "from builtins import any as b_any\n", - "\n", - "%load_ext memory_profiler\n", - "\n", - "def get_requirements_path():\n", - " # Store requirements file in 'contents' directory\n", - " current_dir = os.getcwd()\n", - " dir_count = current_dir.count('/') - 1\n", - " path = '../' * (dir_count) + 'requirements.txt'\n", - " return path\n", - "\n", - "def filter_files(file_list, filter_list):\n", - " filtered_list = []\n", - " for fname in file_list:\n", - " if b_any(fname.split('==')[0] in s for s in filter_list):\n", - " filtered_list.append(fname)\n", - " return filtered_list\n", - "\n", - "def build_requirements_file(before, after):\n", - " path = get_requirements_path()\n", - "\n", - " # Exporting requirements.txt for local run\n", - " !pip freeze > $path\n", - "\n", - " # Get minimum requirements file\n", - " df = pd.read_csv(path)\n", - " mod_list = [m.split('.')[0] for m in after if not m in before]\n", - " req_list_temp = df.values.tolist()\n", - " req_list = [x[0] for x in req_list_temp]\n", - "\n", - " # Replace with package name and handle cases where import name is different to module name\n", - " mod_name_list = [['sklearn', 'scikit-learn'], ['skimage', 'scikit-image']]\n", - " mod_replace_list = [[x[1] for x in mod_name_list] if s in [x[0] for x in mod_name_list] else s for s in mod_list]\n", - " filtered_list = filter_files(req_list, mod_replace_list)\n", - "\n", - " file=open(path,'w')\n", - " for item in filtered_list:\n", - " file.writelines(item + '\\n')\n", - "\n", - " file.close()\n", - "\n", - "import sys\n", - "before = [str(m) for m in sys.modules]\n", - "\n", - "\n", - "\n", - "# ------- Variable specific to Cellpose -------\n", - "\n", - "from urllib.parse import urlparse\n", - "%matplotlib inline\n", - "from cellpose import models\n", - "#use_GPU = models.use_gpu()\n", - "\n", - "#import mxnet as mx\n", - "\n", - "from skimage.util import img_as_ubyte\n", - "import cv2\n", - "from cellpose import plot\n", - "from ipywidgets import interact, interact_manual\n", - "from zipfile import ZIP_DEFLATED\n", - "\n", - "\n", - "# For sliders and dropdown menu and progress bar\n", - "from ipywidgets import interact\n", - "import ipywidgets as widgets\n", - "\n", - "\n", - "# ------- Common variable to all ZeroCostDL4Mic notebooks -------\n", - "import numpy as np\n", - "from matplotlib import pyplot as plt\n", - "import urllib\n", - "import os, random\n", - "import shutil\n", - "import zipfile\n", - "from tifffile import imread, imsave\n", - "import time\n", - "import sys\n", - "import wget\n", - "from pathlib import Path\n", - "import pandas as pd\n", - "import csv\n", - "from glob import glob\n", - "from scipy import signal\n", - "from scipy import ndimage\n", - "from skimage import io\n", - "from sklearn.linear_model import LinearRegression\n", - "from skimage.util import img_as_uint\n", - "import matplotlib as mpl\n", - "from skimage.metrics import structural_similarity\n", - "from skimage.metrics import peak_signal_noise_ratio as psnr\n", - "from astropy.visualization import simple_norm\n", - "from skimage import img_as_float32\n", - "from skimage.util import img_as_ubyte\n", - "from tqdm import tqdm\n", - "from fpdf import FPDF, HTMLMixin\n", - "from datetime import datetime\n", - "import subprocess\n", - "from pip._internal.operations.freeze import freeze\n", - "\n", - "\n", - "#Create a variable to get and store relative base path\n", - "base_path = os.getcwd()\n", - "\n", - "# Colors for the warning messages\n", - "class bcolors:\n", - " WARNING = '\\033[31m'\n", - "\n", - "W = '\\033[0m' # white (normal)\n", - "R = '\\033[31m' # red\n", - "\n", - "#Disable some of the tensorflow warnings\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "\n", - "print(\"Libraries installed\")\n", - "\n", - "# Check if this is the latest version of the notebook\n", - "All_notebook_versions = pd.read_csv(\"https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Latest_Notebook_versions.csv\", dtype=str)\n", - "print('Notebook version: '+Notebook_version)\n", - "Latest_Notebook_version = All_notebook_versions[All_notebook_versions[\"Notebook\"] == Network]['Version'].iloc[0]\n", - "print('Latest notebook version: '+Latest_Notebook_version)\n", - "if Notebook_version == Latest_Notebook_version:\n", - " print(\"This notebook is up-to-date.\")\n", - "else:\n", - " print(bcolors.WARNING +\"A new version of this notebook has been released. We recommend that you download it at https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki\")\n", - "\n", - "\n", - "!pip freeze > requirements.txt\n", - "\n", - "#Create a pdf document with training summary\n", - "\n", - "def pdf_export(trained = False, augmentation = False, pretrained_model = False):\n", - " # save FPDF() class into a\n", - " # variable pdf\n", - " #from datetime import datetime\n", - "\n", - " class MyFPDF(FPDF, HTMLMixin):\n", - " pass\n", - "\n", - " pdf = MyFPDF()\n", - " pdf.add_page()\n", - " pdf.set_right_margin(-1)\n", - " pdf.set_font(\"Arial\", size = 11, style='B')\n", - "\n", - "\n", - " day = datetime.now()\n", - " datetime_str = str(day)[0:10]\n", - "\n", - " Header = 'Training report for '+Network+' model ('+model_name+')\\nDate: '+datetime_str\n", - " pdf.multi_cell(180, 5, txt = Header, align = 'L')\n", - "\n", - " # add another cell\n", - " if trained:\n", - " training_time = \"Training time: \"+str(hour)+ \"hour(s) \"+str(mins)+\"min(s) \"+str(round(sec))+\"sec(s)\"\n", - " pdf.cell(190, 5, txt = training_time, ln = 1, align='L')\n", - " pdf.ln(1)\n", - "\n", - " Header_2 = 'Information for your materials and methods:'\n", - " pdf.cell(190, 5, txt=Header_2, ln=1, align='L')\n", - "\n", - " all_packages = ''\n", - " for requirement in freeze(local_only=True):\n", - " all_packages = all_packages+requirement+', '\n", - " #print(all_packages)\n", - "\n", - " #Main Packages\n", - " main_packages = ''\n", - " version_numbers = []\n", - " for name in ['tensorflow','numpy','Keras','csbdeep']:\n", - " find_name=all_packages.find(name)\n", - " main_packages = main_packages+all_packages[find_name:all_packages.find(',',find_name)]+', '\n", - " #Version numbers only here:\n", - " version_numbers.append(all_packages[find_name+len(name)+2:all_packages.find(',',find_name)])\n", - "\n", - " try:\n", - " cuda_version = subprocess.run([\"nvcc\",\"--version\"],stdout=subprocess.PIPE)\n", - " cuda_version = cuda_version.stdout.decode('utf-8')\n", - " cuda_version = cuda_version[cuda_version.find(', V')+3:-1]\n", - " except:\n", - " cuda_version = ' - No cuda found - '\n", - " try:\n", - " gpu_name = subprocess.run([\"nvidia-smi\"],stdout=subprocess.PIPE)\n", - " gpu_name = gpu_name.stdout.decode('utf-8')\n", - " gpu_name = gpu_name[gpu_name.find('Tesla'):gpu_name.find('Tesla')+10]\n", - " except:\n", - " gpu_name = ' - No GPU found - '\n", - " #print(cuda_version[cuda_version.find(', V')+3:-1])\n", - " #print(gpu_name)\n", - "\n", - " shape = io.imread(Training_source+'/'+os.listdir(Training_source)[1]).shape\n", - " dataset_size = len(os.listdir(Training_source))\n", - "\n", - " text = 'The '+Network+' model was trained from scratch for '+str(number_of_epochs)+' epochs on '+str(dataset_size)+' paired image patches (image dimensions: '+str(shape)+', with a batch size of '+str(batch_size)+', using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.'\n", - "\n", - "\n", - " if pretrained_model:\n", - " text = 'The '+Network+' model was trained for '+str(number_of_epochs)+' epochs on '+str(dataset_size)+' paired image patches (image dimensions: '+str(shape)+', with a batch size of '+str(batch_size)+', using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). The model was re-trained from a pretrained model. Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.'\n", - "\n", - " # print(text)\n", - "\n", - " pdf.set_font('')\n", - " pdf.set_font_size(10.)\n", - " pdf.multi_cell(190, 5, txt = text, align='L')\n", - " pdf.set_font('')\n", - " pdf.set_font('Arial', size = 10, style = 'B')\n", - " pdf.ln(1)\n", - " pdf.cell(28, 5, txt='Augmentation: ', ln=0)\n", - " pdf.set_font('')\n", - " if augmentation:\n", - " aug_text = 'The dataset was augmented by a factor of '+str(Multiply_dataset_by)\n", - "\n", - " else:\n", - " aug_text = 'No augmentation was used for training.'\n", - " pdf.multi_cell(190, 5, txt=aug_text, align='L')\n", - " pdf.set_font('Arial', size = 11, style = 'B')\n", - " pdf.ln(1)\n", - " pdf.cell(180, 5, txt = 'Parameters', align='L', ln=1)\n", - " pdf.set_font('')\n", - " pdf.set_font_size(10.)\n", - " if Use_Default_Advanced_Parameters:\n", - " pdf.cell(200, 5, txt='Default Advanced Parameters were enabled')\n", - " pdf.cell(200, 5, txt='The following parameters were used for training:')\n", - " pdf.ln(1)\n", - " html = \"\"\"\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ParameterValue
number_of_epochs{0}
batch_size{1}
percentage_validation{2}
initial_learning_rate{3}
\n", - " \"\"\".format(number_of_epochs,batch_size,percentage_validation,initial_learning_rate)\n", - " pdf.write_html(html)\n", - "\n", - " #pdf.multi_cell(190, 5, txt = text_2, align='L')\n", - " pdf.set_font(\"Arial\", size = 11, style='B')\n", - " pdf.ln(1)\n", - " pdf.cell(190, 5, txt = 'Training Dataset', align='L', ln=1)\n", - " pdf.set_font('')\n", - " pdf.set_font('Arial', size = 10, style = 'B')\n", - " pdf.cell(29, 5, txt= 'Training_source:', align = 'L', ln=0)\n", - " pdf.set_font('')\n", - " pdf.multi_cell(170, 5, txt = Training_source, align = 'L')\n", - " pdf.set_font('')\n", - " pdf.set_font('Arial', size = 10, style = 'B')\n", - " pdf.cell(27, 5, txt= 'Training_target:', align = 'L', ln=0)\n", - " pdf.set_font('')\n", - " pdf.multi_cell(170, 5, txt = Training_target, align = 'L')\n", - " #pdf.cell(190, 5, txt=aug_text, align='L', ln=1)\n", - " pdf.ln(1)\n", - " pdf.set_font('')\n", - " pdf.set_font('Arial', size = 10, style = 'B')\n", - " pdf.cell(22, 5, txt= 'Model Path:', align = 'L', ln=0)\n", - " pdf.set_font('')\n", - " pdf.multi_cell(170, 5, txt = model_path+'/'+model_name, align = 'L')\n", - " pdf.ln(1)\n", - " pdf.cell(60, 5, txt = 'Example Training pair', ln=1)\n", - " pdf.ln(1)\n", - " exp_size = io.imread(base_path + '/TrainingDataExample_Cellpose2D.png').shape\n", - " pdf.image(base_path + '/TrainingDataExample_Cellpose2D.png', x = 11, y = None, w = round(exp_size[1]/8), h = round(exp_size[0]/8))\n", - " pdf.ln(1)\n", - " ref_1 = 'References:\\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. \"ZeroCostDL4Mic: an open platform to simplify access and use of Deep-Learning in Microscopy.\" BioRxiv (2020).'\n", - " pdf.multi_cell(190, 5, txt = ref_1, align='L')\n", - " ref_2 = '- Cellpose: Stringer, Carsen, et al. \"Cellpose: a generalist algorithm for cellular segmentation.\" Nature Methods 18, pages100-106(2021).'\n", - " pdf.multi_cell(190, 5, txt = ref_2, align='L')\n", - " pdf.ln(3)\n", - " reminder = 'Important:\\nRemember to perform the quality control step on all newly trained models\\nPlease consider depositing your training dataset on Zenodo'\n", - " pdf.set_font('')\n", - " pdf.set_font('Arial', size = 11, style='B')\n", - " pdf.multi_cell(190, 5, txt=reminder, align='C')\n", - "\n", - " pdf.output(model_path+'/'+model_name+'/'+model_name+\"_training_report.pdf\")\n", - " # pdf.output(Saving_path+'/train_folder/models/'+model_name+\"_training_report.pdf\")\n", - "\n", - "\n", - "\n", - "#Make a pdf summary of the QC results\n", - "\n", - "def qc_pdf_export():\n", - " class MyFPDF(FPDF, HTMLMixin):\n", - " pass\n", - "\n", - " pdf = MyFPDF()\n", - " pdf.add_page()\n", - " pdf.set_right_margin(-1)\n", - " pdf.set_font('')\n", - " pdf.set_font(\"Arial\", size = 11, style='B')\n", - "\n", - " Network = 'Cellpose 2D'\n", - " #model_name = os.path.basename(full_QC_model_path)\n", - " day = datetime.now()\n", - " datetime_str = str(day)[0:10]\n", - "\n", - " Header = 'Quality Control report for '+Network+' model ('+QC_model_name+')\\nDate: '+datetime_str\n", - " pdf.multi_cell(180, 5, txt = Header, align = 'L')\n", - "\n", - " all_packages = ''\n", - " for requirement in freeze(local_only=True):\n", - " all_packages = all_packages+requirement+', '\n", - "\n", - " pdf.set_font('')\n", - " pdf.set_font('Arial', size = 11, style = 'B')\n", - " pdf.ln(2)\n", - " pdf.cell(190, 5, txt = 'Development of Training Losses', ln=1, align='L')\n", - " pdf.ln(1)\n", - " exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape\n", - " if os.path.exists(full_QC_model_path+'Quality Control/lossCurvePlots.png'):\n", - " pdf.image(full_QC_model_path+'Quality Control/lossCurvePlots.png', x = 11, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/13))\n", - " else:\n", - " pdf.set_font('')\n", - " pdf.set_font('Arial', size=10)\n", - " pdf.multi_cell(190, 5, txt='If you would like to see the evolution of the loss function during training please play the first cell of the QC section in the notebook.', align='L')\n", - " pdf.ln(2)\n", - " pdf.set_font('')\n", - " pdf.set_font('Arial', size = 10, style = 'B')\n", - " pdf.ln(3)\n", - " pdf.cell(80, 5, txt = 'Example Quality Control Visualisation', ln=1)\n", - " pdf.ln(1)\n", - " exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape\n", - " pdf.image(full_QC_model_path+'Quality Control/QC_example_data.png', x = 16, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/10))\n", - " pdf.ln(1)\n", - " pdf.set_font('')\n", - " pdf.set_font('Arial', size = 11, style = 'B')\n", - " pdf.ln(1)\n", - " pdf.cell(180, 5, txt = 'Quality Control Metrics', align='L', ln=1)\n", - " pdf.set_font('')\n", - " pdf.set_font_size(10.)\n", - "\n", - " pdf.ln(1)\n", - " html = \"\"\"\n", - " \n", - " \n", - " \"\"\"\n", - " with open(full_QC_model_path+'Quality Control/Quality_Control for '+QC_model_name+'.csv', 'r') as csvfile:\n", - " metrics = csv.reader(csvfile)\n", - " header = next(metrics)\n", - " image = header[0]\n", - " mSSIM_PvsGT = header[1]\n", - " mSSIM_SvsGT = header[2]\n", - " NRMSE_PvsGT = header[3]\n", - " NRMSE_SvsGT = header[4]\n", - " PSNR_PvsGT = header[5]\n", - " PSNR_SvsGT = header[6]\n", - " header = \"\"\"\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \"\"\".format(image,mSSIM_PvsGT,mSSIM_SvsGT,NRMSE_PvsGT,NRMSE_SvsGT,PSNR_PvsGT,PSNR_SvsGT)\n", - " html = html+header\n", - " for row in metrics:\n", - " image = row[0]\n", - " mSSIM_PvsGT = row[1]\n", - " mSSIM_SvsGT = row[2]\n", - " NRMSE_PvsGT = row[3]\n", - " NRMSE_SvsGT = row[4]\n", - " PSNR_PvsGT = row[5]\n", - " PSNR_SvsGT = row[6]\n", - " cells = \"\"\"\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \"\"\".format(image,str(round(float(mSSIM_PvsGT),3)),str(round(float(mSSIM_SvsGT),3)),str(round(float(NRMSE_PvsGT),3)),str(round(float(NRMSE_SvsGT),3)),str(round(float(PSNR_PvsGT),3)),str(round(float(PSNR_SvsGT),3)))\n", - " html = html+cells\n", - " html = html+\"\"\"
{0}{1}{2}{3}{4}{5}{6}
{0}{1}{2}{3}{4}{5}{6}
\"\"\"\n", - "\n", - " pdf.write_html(html)\n", - "\n", - " pdf.ln(1)\n", - " pdf.set_font('')\n", - " pdf.set_font_size(10.)\n", - " ref_1 = 'References:\\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. \"ZeroCostDL4Mic: an open platform to simplify access and use of Deep-Learning in Microscopy.\" BioRxiv (2020).'\n", - " pdf.multi_cell(190, 5, txt = ref_1, align='L')\n", - " ref_2 = '- CARE: Weigert, Martin, et al. \"Content-aware image restoration: pushing the limits of fluorescence microscopy.\" Nature methods 15.12 (2018): 1090-1097.'\n", - " pdf.multi_cell(190, 5, txt = ref_2, align='L')\n", - "\n", - " pdf.ln(3)\n", - " reminder = 'To find the parameters and other information about how this model was trained, go to the training_report.pdf of this model which should be in the folder of the same name.'\n", - "\n", - " pdf.set_font('Arial', size = 11, style='B')\n", - " pdf.multi_cell(190, 5, txt=reminder, align='C')\n", - "\n", - " pdf.output(full_QC_model_path+'Quality Control/'+QC_model_name+'_QC_report.pdf')\n", - "\n", - "\n", - "# Build requirements file for local run\n", - "after = [str(m) for m in sys.modules]\n", - "build_requirements_file(before, after)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "b4-r1gE7Iamv" - }, - "source": [ - "# **2. Initialise the Colab session**\n", - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DMNHVZfHmbKb" - }, - "source": [ - "\n", - "## **2.1. Check for GPU access**\n", - "---\n", - "\n", - "By default, the session should be using Python 3 and GPU acceleration, but it is possible to ensure that these are set properly by doing the following:\n", - "\n", - "Go to **Runtime -> Change the Runtime type**\n", - "\n", - "**Runtime type: Python 3** *(Python 3 is programming language in which this program is written)*\n", - "\n", - "**Accelerator: GPU** *(Graphics processing unit)*\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "BDhmUgqCStlm" - }, - "outputs": [], - "source": [ - "#@markdown ##Run this cell to check if you have GPU access\n", - "\n", - "#%tensorflow_version 1.x\n", - "\n", - "import tensorflow as tf\n", - "if tf.test.gpu_device_name()=='':\n", - " print('You do not have GPU access.')\n", - " print('Did you change your runtime ?')\n", - " print('If the runtime setting is correct then Google did not allocate a GPU for your session')\n", - " print('Expect slow performance. To access GPU try reconnecting later')\n", - "\n", - "else:\n", - " print('You have GPU access')\n", - " !nvidia-smi" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-oqBTeLaImnU" - }, - "source": [ - "## **2.2. Mount your Google Drive**\n", - "---\n", - " To use this notebook on the data present in your Google Drive, you need to mount your Google Drive to this notebook.\n", - "\n", - " Play the cell below to mount your Google Drive and follow the instructions.\n", - "\n", - " Once this is done, your data are available in the **Files** tab on the top left of notebook." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "01Djr8v-5pPk" - }, - "outputs": [], - "source": [ - "\n", - "#@markdown ##Run this cell to connect your Google Drive to Colab\n", - "\n", - "#@markdown * Follow the instructions.\n", - "\n", - "\n", - "#@markdown * Click on \"Files\" site on the right. Refresh the site. Your Google Drive folder should now be available here as \"drive\".\n", - "\n", - "#mounts user's Google Drive to Google Colab.\n", - "\n", - "from google.colab import drive\n", - "drive.mount('/content/gdrive')\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2UfUWjI_askO" - }, - "source": [ - "# **3. Select your parameters and paths**\n", - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZyMxrSWvavVL" - }, - "source": [ - "## **3.1. Setting main training parameters**\n", - "---\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5MlTyQVXXvDx" - }, - "source": [ - " **Paths for training, predictions and results**\n", - "\n", - "\n", - "**`Training_source:`, `Training_target`:** These are the paths to your folders containing the Training_source (images of cells) and Training_target (masks) training data respecively. To find the paths of the folders containing the respective datasets, go to your Files on the left of the notebook, navigate to the folder containing your files and copy the path by right-clicking on the folder, **Copy path** and pasting it into the right box below.\n", - "\n", - "**`model_name`:** Use only my_model -style, not my-model (Use \"_\" not \"-\"). Do not use spaces in the name. Avoid using the name of an existing model (saved in the same folder) as it will be overwritten.\n", - "\n", - "**`model_path`**: Enter the path where your model will be saved once trained (for instance your result folder).\n", - "\n", - "\n", - "**Training parameters**\n", - "\n", - "**`number_of_epochs`:** Input how many epochs (rounds) the network will be trained. Preliminary results can already be observed after a 100 epochs, but a full training should run for up to 500-1000 epochs. Evaluate the performance after training (see 5.). **Default value: 500**\n", - "\n", - "**Advanced Parameters - experienced users only**\n", - "\n", - "**`batch_size:`** This parameter defines the number of patches seen in each training step. Reducing or increasing the **batch size** may slow or speed up your training, respectively, and can influence network performance. **Default value: 8**\n", - "\n", - "\n", - "**`percentage_validation`:** Input the percentage of your training dataset you want to use to validate the network during the training. **Default value: 10**\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "2HkNZ16BdfJv" - }, - "outputs": [], - "source": [ - "#@markdown ###Path to training images:\n", - "\n", - "Training_source = \"\" #@param {type:\"string\"}\n", - "Training_target = \"\" #@param {type:\"string\"}\n", - "\n", - "#Define where the patch file will be saved\n", - "base = base_path\n", - "\n", - "# model name and path\n", - "#@markdown ###Name of the model and path to model folder:\n", - "model_name = \"\" #@param {type:\"string\"}\n", - "model_path = \"\" #@param {type:\"string\"}\n", - "\n", - "# other parameters for training.\n", - "#@markdown ###Training Parameters:\n", - "#@markdown Number of epochs:\n", - "number_of_epochs = 500#@param {type:\"number\"}\n", - "\n", - "Channel_to_use_for_training = \"Red\" #@param [\"Grayscale\", \"Blue\", \"Green\", \"Red\"]\n", - "\n", - "# @markdown ###If you have a secondary channel that can be used for training, for instance nuclei, choose it here:\n", - "\n", - "Second_training_channel= \"None\" #@param [\"None\", \"Blue\", \"Green\", \"Red\"]\n", - "\n", - "\n", - "#@markdown ###Advanced Parameters\n", - "\n", - "Use_Default_Advanced_Parameters = True #@param {type:\"boolean\"}\n", - "#@markdown ###If not, please input:\n", - "batch_size = 8#@param {type:\"number\"}\n", - "initial_learning_rate = 0.0002 #@param {type:\"number\"}\n", - "percentage_validation = 10#@param {type:\"number\"}\n", - "\n", - "if (Use_Default_Advanced_Parameters):\n", - " print(\"Default advanced parameters enabled\")\n", - " batch_size = 8\n", - " initial_learning_rate = 0.0002\n", - " percentage_validation = 10\n", - "\n", - "#here we check that no model with the same name already exist, if so delete\n", - "if os.path.exists(model_path+'/'+model_name):\n", - " print(bcolors.WARNING +\"!! WARNING: \"+model_name+\" already exists and will be deleted in the following cell !!\")\n", - " print(bcolors.WARNING +\"To continue training \"+model_name+\", choose a new model_name here, and load \"+model_name+\" in section 3.3\"+W)\n", - "\n", - "# Here we enable the cyto pre-trained model by default (in case the cell is not ran)\n", - "model_to_load = \"cyto\"\n", - "# Here we disable data augmentation by default (in case the cell is not ran)\n", - "\n", - "Use_Data_augmentation = True\n", - "\n", - "# This will display a randomly chosen dataset input and output\n", - "random_choice = random.choice(os.listdir(Training_source))\n", - "x = io.imread(Training_source+\"/\"+random_choice)\n", - "norm = simple_norm(x, percent = 99)\n", - "y = io.imread(Training_target+\"/\"+random_choice)\n", - "\n", - "# Find the number of channel in the input image\n", - "\n", - "n_channel = 1 if x.ndim == 2 else x.shape[-1]\n", - "\n", - "\n", - "# Here we match the channel to number\n", - "\n", - "if Channel_to_use_for_training == \"Grayscale\":\n", - " Training_channel = 0\n", - "\n", - " if not n_channel == 1:\n", - " print(bcolors.WARNING +\"!! WARNING: your image has more than one channel, choose which channel you want to use for trainning !!\")\n", - "\n", - "if Channel_to_use_for_training == \"Blue\":\n", - " Training_channel = 3\n", - "\n", - "if Channel_to_use_for_training == \"Green\":\n", - " Training_channel = 2\n", - "\n", - "if Channel_to_use_for_training == \"Red\":\n", - " Training_channel = 1\n", - "\n", - "\n", - "if Second_training_channel == \"Blue\":\n", - " Second_training_channel = 3\n", - "\n", - "if Second_training_channel == \"Green\":\n", - " Second_training_channel = 2\n", - "\n", - "if Second_training_channel == \"Red\":\n", - " Second_training_channel = 1\n", - "\n", - "if Second_training_channel == \"None\":\n", - " Second_training_channel = 0\n", - "\n", - "\n", - "if n_channel ==1:\n", - "\n", - " f=plt.figure(figsize=(16,8))\n", - " plt.subplot(1,2,1)\n", - " plt.imshow(x, norm=norm, cmap='magma', interpolation='nearest')\n", - " plt.title('Training source')\n", - " plt.axis('off');\n", - "\n", - " plt.subplot(1,2,2)\n", - " plt.imshow(y,cmap='nipy_spectral', interpolation='nearest')\n", - " plt.title('Training target')\n", - " plt.axis('off');\n", - "\n", - " plt.savefig(base_path + '/TrainingDataExample_Cellpose2D.png',bbox_inches='tight',pad_inches=0)\n", - "\n", - "else:\n", - "\n", - " f=plt.figure(figsize=(20,10))\n", - " plt.subplot(1,3,1)\n", - " plt.imshow(x, interpolation='nearest')\n", - " plt.title('Training source')\n", - " plt.axis('off');\n", - "\n", - " plt.subplot(1,3,2)\n", - " plt.imshow(x[:, :, int(Training_channel-1)],cmap='magma', interpolation='nearest')\n", - " plt.title('Channel used for training')\n", - " plt.axis('off');\n", - "\n", - " plt.subplot(1,3,3)\n", - " plt.imshow(y,cmap='nipy_spectral', interpolation='nearest')\n", - " plt.title('Training target')\n", - " plt.axis('off');\n", - "\n", - " plt.savefig(base_path + '/TrainingDataExample_Cellpose2D.png',bbox_inches='tight',pad_inches=0)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qEg6ar0PhuDY" - }, - "source": [ - "## **3.2. Data augmentation**\n", - "---\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "t6q9aqDUhxlw" - }, - "source": [ - "Data augmentation can improve training progress by amplifying differences in the dataset. This can be useful if the available dataset is small since, in this case, it is possible that a network could quickly learn every example in the dataset (overfitting), without augmentation. Augmentation is not necessary for training and if your training dataset is large you should disable it.\n", - "\n", - "By default, a x4 data augmentation is enabled in this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "SblwpgmahfBl" - }, - "outputs": [], - "source": [ - "#Data augmentation\n", - "\n", - "Use_Data_augmentation = False #@param {type:\"boolean\"}\n", - "\n", - "if Use_Data_augmentation:\n", - " print(bcolors.WARNING+\"Data augmentation enabled\")\n", - " Multiply_dataset_by = 4\n", - "\n", - "\n", - "if not Use_Data_augmentation:\n", - " print(bcolors.WARNING+\"Data augmentation disabled\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "s2NC_-Tuc02W" - }, - "source": [ - "\n", - "## **3.3. Using weights from a pre-trained model as initial weights**\n", - "---\n", - " Here, you can set the path to a pre-trained model from which the weights can be extracted and used as a starting point for this training session. **This pre-trained model needs to be a Cellpose model**.\n", - "\n", - " You can also use the pretrained models already available in Cellpose:\n", - "\n", - "- The cytoplasm model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is an optional nuclear channel.\n", - "\n", - "- The cytoplasm2 model is an updated cytoplasm model trained with user-submitted images.\n", - "\n", - "- The nuclear model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is always set to an array of zeros.\n", - "\n", - " This option allows you to perform training over multiple Colab runtimes or to do transfer learning using models trained outside of ZeroCostDL4Mic. **You do not need to run this section if you want to train a network from scratch**.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "sLdgQM6Rc7vp" - }, - "outputs": [], - "source": [ - "# @markdown ##Loading weights from a pre-trained network\n", - "\n", - "Use_pretrained_model = True #@param {type:\"boolean\"}\n", - "\n", - "Pretrained_model = \"Cytoplasm3\" #@param [\"Cytoplasm\",\"Cytoplasm2\", \"Cytoplasm3\", \"Nuclei\", \"LiveCell\", \"TissueNet\", \"Own_model\"]\n", - "\n", - "#@markdown ###If using your own model, please provide the path to the model (not the folder):\n", - "pretrained_model_path = \"\" #@param {type:\"string\"}\n", - "\n", - "# --------------------- Check if we load a previously trained model ------------------------\n", - "\n", - "if Use_pretrained_model == True :\n", - "\n", - " if Pretrained_model == \"Own_model\":\n", - "\n", - " model_to_load = pretrained_model_path\n", - "\n", - " print('The model '+ str(model_to_load) + \"will be used as a starting point\")\n", - "\n", - " if Pretrained_model == \"Cytoplasm\":\n", - " model_to_load = \"cyto\"\n", - " print('The model Cytoplasm will be used as a starting point')\n", - "\n", - " if Pretrained_model == \"Cytoplasm2\":\n", - " model_to_load = \"cyto2\"\n", - " print('The model Cytoplasm2 (cyto2) will be used as a starting point')\n", - "\n", - " if Pretrained_model == \"Cytoplasm3\":\n", - " model_to_load = \"cyto3\"\n", - " print('The model Cytoplasm3 (cyto3) will be used as a starting point')\n", - "\n", - " if Pretrained_model == \"Nuclei\":\n", - " model_to_load = \"nuclei\"\n", - " print('The model nuclei will be used as a starting point')\n", - "\n", - " if Pretrained_model == \"LiveCell\":\n", - " model_to_load = \"livecell\"\n", - " print('The model LiveCell will be used as a starting point')\n", - "\n", - " if Pretrained_model == \"TissueNet\":\n", - " model_to_load = \"tissuenet\"\n", - " print('The model TissueNet will be used as a starting point')\n", - "\n", - "else:\n", - " model_to_load = None\n", - " print(bcolors.WARNING+'No pretrained network will be used.')\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qeYZ7PeValfs" - }, - "source": [ - "# **4. Train the network**\n", - "---" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "tsn8WV3Wl0sG" - }, - "outputs": [], - "source": [ - "#@markdown ##Create the model and dataset objects\n", - "\n", - "\n", - "# Here we check that the model destination folder is empty\n", - "if os.path.exists(model_path+'/'+model_name):\n", - " print(bcolors.WARNING +\"!! WARNING: Model folder already exists and has been removed !!\" + W)\n", - " shutil.rmtree(model_path+'/'+model_name)\n", - "\n", - "os.makedirs(model_path+\"/\"+model_name)\n", - "\n", - "\n", - "#To use cellpose to work we need to organise the data in a way the network can understand\n", - "\n", - "# Here we count the number of files in the training target folder\n", - "Filelist = os.listdir(Training_target)\n", - "number_files = len(Filelist)\n", - "\n", - "# Here we count the number of file to use for validation\n", - "Image_for_validation = int((number_files)*(percentage_validation/100))\n", - "\n", - "if Image_for_validation == 0:\n", - " Image_for_validation = 1\n", - "\n", - "Saving_path = base_path + \"/\" + model_name\n", - "\n", - "if os.path.exists(Saving_path):\n", - " shutil.rmtree(Saving_path)\n", - "os.makedirs(Saving_path)\n", - "\n", - "train_folder = Saving_path+\"/train_folder\"\n", - "os.makedirs(train_folder)\n", - "\n", - "test_folder = Saving_path+\"/test_folder\"\n", - "os.makedirs(test_folder)\n", - "\n", - "index = 0\n", - "\n", - "print('Copying training source data...')\n", - "for f in tqdm(os.listdir(Training_source)):\n", - " short_name = os.path.splitext(f)\n", - "\n", - " if index < Image_for_validation:\n", - " shutil.copyfile(Training_source+\"/\"+f, test_folder+\"/\"+short_name[0]+\"_img.tif\")\n", - " shutil.copyfile(Training_target+\"/\"+f, test_folder+\"/\"+short_name[0]+\"_masks.tif\")\n", - " else:\n", - " shutil.copyfile(Training_source+\"/\"+f, train_folder+\"/\"+short_name[0]+\"_img.tif\")\n", - " shutil.copyfile(Training_target+\"/\"+f, train_folder+\"/\"+short_name[0]+\"_masks.tif\")\n", - " index = index +1\n", - "\n", - "print(\"Done\")\n", - "\n", - "pdf_export(augmentation = Use_Data_augmentation, pretrained_model = Use_pretrained_model)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jRorFe296LgI" - }, - "source": [ - "## **4.2. Start Training**\n", - "---\n", - "\n", - "When playing the cell below you should see updates after each epoch (round). Network training can take some time.\n", - "\n", - "* **CRITICAL NOTE:** Training is currently done using Torch.\n", - "\n", - "* **CRITICAL NOTE:** Google Colab has a time limit for processing (to prevent using GPU power for datamining). Training time must be less than 12 hours! If training takes longer than 12 hours, please decrease the number of epochs or number of patches. Another way circumvent this is to save the parameters of the model after training and start training again from this point.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "YXUnd3awi6K3" - }, - "outputs": [], - "source": [ - "#@markdown ##Start training\n", - "\n", - "start = time.time()\n", - "\n", - "if not Use_Data_augmentation:\n", - " !python -m cellpose --train --use_gpu --dir \"$train_folder\" --test_dir \"$test_folder\" --pretrained_model $model_to_load --chan $Training_channel --chan2 $Second_training_channel --n_epochs $number_of_epochs --learning_rate $initial_learning_rate --batch_size $batch_size --img_filter img --mask_filter masks --verbose\n", - "\n", - "else:\n", - " !python -m cellpose --train --use_gpu --dir \"$train_folder\" --test_dir \"$test_folder\" --pretrained_model $model_to_load --chan $Training_channel --chan2 $Second_training_channel --n_epochs $number_of_epochs --learning_rate $initial_learning_rate --batch_size $batch_size --img_filter img --mask_filter masks --verbose\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "#Here we copy the model to the result folder after training\n", - "\n", - "if os.path.exists(model_path+'/'+model_name):\n", - " print(bcolors.WARNING +\"!! WARNING: Model folder already exists and has been removed !!\" + W)\n", - " shutil.rmtree(model_path+'/'+model_name)\n", - "destination = shutil.copytree(Saving_path+\"/train_folder/models\", model_path+\"/\"+model_name)\n", - "\n", - "# Displaying the time elapsed for training\n", - "dt = time.time() - start\n", - "mins, sec = divmod(dt, 60)\n", - "hour, mins = divmod(mins, 60)\n", - "print(\"Time elapsed:\",hour, \"hour(s)\",mins,\"min(s)\",round(sec),\"sec(s)\")\n", - "print(\"Your model is also available here: \"+str(model_path+\"/\"+model_name))\n", - "\n", - "\n", - "pdf_export(trained=True, augmentation = Use_Data_augmentation, pretrained_model = Use_pretrained_model)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qvbm9EJGaXr9" - }, - "source": [ - "# **5. Evaluate your model**\n", - "---\n", - "\n", - "This section allows the user to perform important quality checks on the validity and generalisability of the trained model. \n", - "\n", - "\n", - "**We highly recommend to perform quality control on all newly trained models.**\n", - "\n", - "**`model_choice`:** Choose the model to use to make predictions. This model needs to be a Cellpose model. You can also use the pretrained models already available in cellpose:\n", - "\n", - "- The cytoplasm model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is an optional nuclear channel.\n", - "- The cytoplasm2 and 3 models are updated cytoplasm model trained with user-submitted images.\n", - "\n", - "- The Nuclei model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is always set to an array of zeros.\n", - "\n", - "- The 'livecell' model was trained on all training images from the [livecell dataset](https://sartorius-research.github.io/LIVECell/). These images only have a cytoplasm channel.\n", - "\n", - "- The 'tissuenet' model was trained on all training images from the [tissuenet dataset](https://datasets.deepcell.org/). These images have a cytoplasm channel and a nuclear channel\n", - "\n", - "- The bacteria Omnipose model is an Omnipose model dedicated to the segmentation of bacteria or other elongated cells.\n", - "\n", - "- The cytoplasm2 Omnipose model is an Omnipose model trained using the same dataset as the cellpose cytoplasm2 model.\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "IeiU6D2jGDh4" - }, - "outputs": [], - "source": [ - "# model name and path\n", - "#@markdown ###Do you want to assess the model you just trained ?\n", - "Use_the_current_trained_model = True #@param {type:\"boolean\"}\n", - "\n", - "#@markdown ###If not, indicate which model you want to assess:\n", - "\n", - "QC_model = \"Own_model\" #@param [\"Cytoplasm\",\"Cytoplasm2\", \"Cytoplasm3\", \"LiveCell\", \"TissueNet\", \"Cytoplasm2_Omnipose\", \"Bacteria_Omnipose\", \"Nuclei\", \"Own_model\"]\n", - "\n", - "#@markdown ###If using your own model, please provide the path to the model (not the folder):\n", - "\n", - "QC_model_path = \"\" #@param {type:\"string\"}\n", - "\n", - "#@markdown ###If using the Cellpose or Omnipose models, please indicate where you want to save the results:\n", - "Saving_path = \"\" #@param {type:\"string\"}\n", - "\n", - "\n", - "if Use_the_current_trained_model :\n", - "\n", - " list_files = sorted([i for i in os.listdir(model_path+\"/\"+model_name) if not i.endswith('.pdf')])\n", - "\n", - " QC_model_path = model_path+\"/\"+model_name+\"/\"+list_files[0]\n", - " QC_model = \"Own_model\"\n", - "\n", - " #model = models.CellposeModel(gpu=True, pretrained_model=QC_model_path, torch=False, diam_mean=30.0, net_avg=True, device=None, residual_on=True, style_on=True, concatenation=False)\n", - " #model = models.CellposeModel(gpu=True, pretrained_model=QC_model_path, diam_mean=30.0, net_avg=True, device=None, residual_on=True, style_on=True, concatenation=False)\n", - " model = models.CellposeModel(gpu=True, pretrained_model=QC_model_path)\n", - "\n", - " QC_model_folder = os.path.dirname(QC_model_path)\n", - " QC_model_name = os.path.basename(QC_model_folder)\n", - " Saving_path = QC_model_folder\n", - "\n", - " print(\"The \"+str(QC_model_name)+\" model will be evaluated\")\n", - "\n", - "if not Use_the_current_trained_model:\n", - "\n", - " if QC_model == \"Cytoplasm\":\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto\")\n", - " QC_model_folder = Saving_path\n", - " QC_model_name = \"Cytoplasm\"\n", - "\n", - " print('The model \"Cytoplasm\" will be evaluated')\n", - "\n", - " if QC_model == \"Cytoplasm2\":\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto2\")\n", - " QC_model_folder = Saving_path\n", - " QC_model_name = \"Cytoplasm2\"\n", - "\n", - " print('The model \"Cytoplasm2\" will be evaluated')\n", - "\n", - " if model_choice == \"Cytoplasm3\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto3\")\n", - " print(\"Cytoplasm 3 model enabled\")\n", - "\n", - " if QC_model == \"Cytoplasm2_Omnipose\":\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto2_omni\")\n", - " QC_model_folder = Saving_path\n", - " QC_model_name = \"Cytoplasm2_Omnipose\"\n", - " print(\"The model Cytoplasm2_Omnipose will be evaluated\")\n", - "\n", - " if QC_model == \"LiveCell\":\n", - " channels=[segment_channel,0]\n", - " model = models.CellposeModel(gpu=True, model_type=\"livecell\")\n", - " print(\"LiveCell model enabled\")\n", - "\n", - " if QC_model == \"Bacteria_Omnipose\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"bact_omni\")\n", - " Object_diameter = 0\n", - " print(\"Bacteria_omnipose model enabled\")\n", - "\n", - " if QC_model == \"TissueNet\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.CellposeModel(gpu=True, model_type='tissuenet')\n", - " print(\"TissueNet model enabled\")\n", - "\n", - " if QC_model == \"Nuclei\":\n", - " model = models.Cellpose(gpu=True, model_type=\"nuclei\")\n", - "\n", - " QC_model_folder = Saving_path\n", - " QC_model_name = \"Nuclei\"\n", - "\n", - " print('The model \"Nuclei\" will be evaluated')\n", - "\n", - " if QC_model == \"Own_model\":\n", - "\n", - " if os.path.exists(QC_model_path):\n", - " model = models.CellposeModel(gpu=True, pretrained_model=QC_model_path, torch=True, diam_mean=30.0, net_avg=True, device=None, residual_on=True, style_on=True, concatenation=False)\n", - "\n", - " QC_model_folder = os.path.dirname(QC_model_path)\n", - " Saving_path = QC_model_folder\n", - " QC_model_name = os.path.basename(QC_model_folder)\n", - " print(\"The \"+str(QC_model_name)+\" model will be evaluated\")\n", - "\n", - " else:\n", - " print(bcolors.WARNING+'!! WARNING: The chosen model does not exist !!')\n", - " print('Please make sure you provide a valid model path and model name before proceeding further.')\n", - "\n", - "#Here we make the folder to save the resuslts if it does not exists\n", - "\n", - "if not Saving_path == \"\":\n", - " if os.path.exists(QC_model_folder) == False:\n", - " os.makedirs(QC_model_folder)\n", - "else:\n", - " print(bcolors.WARNING+'!! WARNING: Indicate where you want to save the results')\n", - "\n", - "\n", - "# Here we load the def that perform the QC, code taken from StarDist https://github.com/mpicbg-csbd/stardist/blob/master/stardist/matching.py\n", - "\n", - "import numpy as np\n", - "from numba import jit\n", - "from tqdm import tqdm\n", - "from scipy.optimize import linear_sum_assignment\n", - "from collections import namedtuple\n", - "\n", - "\n", - "matching_criteria = dict()\n", - "\n", - "def label_are_sequential(y):\n", - " \"\"\" returns true if y has only sequential labels from 1... \"\"\"\n", - " labels = np.unique(y)\n", - " return (set(labels)-{0}) == set(range(1,1+labels.max()))\n", - "\n", - "\n", - "def is_array_of_integers(y):\n", - " return isinstance(y,np.ndarray) and np.issubdtype(y.dtype, np.integer)\n", - "\n", - "\n", - "def _check_label_array(y, name=None, check_sequential=False):\n", - " err = ValueError(\"{label} must be an array of {integers}.\".format(\n", - " label = 'labels' if name is None else name,\n", - " integers = ('sequential ' if check_sequential else '') + 'non-negative integers',\n", - " ))\n", - " is_array_of_integers(y) or print(\"An error occured\")\n", - " if check_sequential:\n", - " label_are_sequential(y) or print(\"An error occured\")\n", - " else:\n", - " y.min() >= 0 or print(\"An error occured\")\n", - " return True\n", - "\n", - "\n", - "def label_overlap(x, y, check=True):\n", - " if check:\n", - " _check_label_array(x,'x',True)\n", - " _check_label_array(y,'y',True)\n", - " x.shape == y.shape or _raise(ValueError(\"x and y must have the same shape\"))\n", - " return _label_overlap(x, y)\n", - "\n", - "@jit(nopython=True)\n", - "def _label_overlap(x, y):\n", - " x = x.ravel()\n", - " y = y.ravel()\n", - " overlap = np.zeros((1+x.max(),1+y.max()), dtype=np.uint)\n", - " for i in range(len(x)):\n", - " overlap[x[i],y[i]] += 1\n", - " return overlap\n", - "\n", - "\n", - "def intersection_over_union(overlap):\n", - " _check_label_array(overlap,'overlap')\n", - " if np.sum(overlap) == 0:\n", - " return overlap\n", - " n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)\n", - " n_pixels_true = np.sum(overlap, axis=1, keepdims=True)\n", - " return overlap / (n_pixels_pred + n_pixels_true - overlap)\n", - "\n", - "matching_criteria['iou'] = intersection_over_union\n", - "\n", - "\n", - "def intersection_over_true(overlap):\n", - " _check_label_array(overlap,'overlap')\n", - " if np.sum(overlap) == 0:\n", - " return overlap\n", - " n_pixels_true = np.sum(overlap, axis=1, keepdims=True)\n", - " return overlap / n_pixels_true\n", - "\n", - "matching_criteria['iot'] = intersection_over_true\n", - "\n", - "\n", - "def intersection_over_pred(overlap):\n", - " _check_label_array(overlap,'overlap')\n", - " if np.sum(overlap) == 0:\n", - " return overlap\n", - " n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)\n", - " return overlap / n_pixels_pred\n", - "\n", - "matching_criteria['iop'] = intersection_over_pred\n", - "\n", - "\n", - "def precision(tp,fp,fn):\n", - " return tp/(tp+fp) if tp > 0 else 0\n", - "def recall(tp,fp,fn):\n", - " return tp/(tp+fn) if tp > 0 else 0\n", - "def accuracy(tp,fp,fn):\n", - " # also known as \"average precision\" (?)\n", - " # -> https://www.kaggle.com/c/data-science-bowl-2018#evaluation\n", - " return tp/(tp+fp+fn) if tp > 0 else 0\n", - "def f1(tp,fp,fn):\n", - " # also known as \"dice coefficient\"\n", - " return (2*tp)/(2*tp+fp+fn) if tp > 0 else 0\n", - "\n", - "\n", - "def _safe_divide(x,y):\n", - " return x/y if y>0 else 0.0\n", - "\n", - "def matching(y_true, y_pred, thresh=0.5, criterion='iou', report_matches=False):\n", - " \"\"\"Calculate detection/instance segmentation metrics between ground truth and predicted label images.\n", - " Currently, the following metrics are implemented:\n", - " 'fp', 'tp', 'fn', 'precision', 'recall', 'accuracy', 'f1', 'criterion', 'thresh', 'n_true', 'n_pred', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'\n", - " Corresponding objects of y_true and y_pred are counted as true positives (tp), false positives (fp), and false negatives (fn)\n", - " whether their intersection over union (IoU) >= thresh (for criterion='iou', which can be changed)\n", - " * mean_matched_score is the mean IoUs of matched true positives\n", - " * mean_true_score is the mean IoUs of matched true positives but normalized by the total number of GT objects\n", - " * panoptic_quality defined as in Eq. 1 of Kirillov et al. \"Panoptic Segmentation\", CVPR 2019\n", - " Parameters\n", - " ----------\n", - " y_true: ndarray\n", - " ground truth label image (integer valued)\n", - " predicted label image (integer valued)\n", - " thresh: float\n", - " threshold for matching criterion (default 0.5)\n", - " criterion: string\n", - " matching criterion (default IoU)\n", - " report_matches: bool\n", - " if True, additionally calculate matched_pairs and matched_scores (note, that this returns even gt-pred pairs whose scores are below 'thresh')\n", - " Returns\n", - " -------\n", - " Matching object with different metrics as attributes\n", - " Examples\n", - " --------\n", - " >>> y_true = np.zeros((100,100), np.uint16)\n", - " >>> y_true[10:20,10:20] = 1\n", - " >>> y_pred = np.roll(y_true,5,axis = 0)\n", - " >>> stats = matching(y_true, y_pred)\n", - " >>> print(stats)\n", - " Matching(criterion='iou', thresh=0.5, fp=1, tp=0, fn=1, precision=0, recall=0, accuracy=0, f1=0, n_true=1, n_pred=1, mean_true_score=0.0, mean_matched_score=0.0, panoptic_quality=0.0)\n", - " \"\"\"\n", - " _check_label_array(y_true,'y_true')\n", - " _check_label_array(y_pred,'y_pred')\n", - " y_true.shape == y_pred.shape or _raise(ValueError(\"y_true ({y_true.shape}) and y_pred ({y_pred.shape}) have different shapes\".format(y_true=y_true, y_pred=y_pred)))\n", - " criterion in matching_criteria or _raise(ValueError(\"Matching criterion '%s' not supported.\" % criterion))\n", - " if thresh is None: thresh = 0\n", - " thresh = float(thresh) if np.isscalar(thresh) else map(float,thresh)\n", - "\n", - " y_true, _, map_rev_true = relabel_sequential(y_true)\n", - " y_pred, _, map_rev_pred = relabel_sequential(y_pred)\n", - "\n", - " overlap = label_overlap(y_true, y_pred, check=False)\n", - " scores = matching_criteria[criterion](overlap)\n", - " assert 0 <= np.min(scores) <= np.max(scores) <= 1\n", - "\n", - " # ignoring background\n", - " scores = scores[1:,1:]\n", - " n_true, n_pred = scores.shape\n", - " n_matched = min(n_true, n_pred)\n", - "\n", - " def _single(thr):\n", - " not_trivial = n_matched > 0 and np.any(scores >= thr)\n", - " if not_trivial:\n", - " # compute optimal matching with scores as tie-breaker\n", - " costs = -(scores >= thr).astype(float) - scores / (2*n_matched)\n", - " true_ind, pred_ind = linear_sum_assignment(costs)\n", - " assert n_matched == len(true_ind) == len(pred_ind)\n", - " match_ok = scores[true_ind,pred_ind] >= thr\n", - " tp = np.count_nonzero(match_ok)\n", - " else:\n", - " tp = 0\n", - " fp = n_pred - tp\n", - " fn = n_true - tp\n", - " # assert tp+fp == n_pred\n", - " # assert tp+fn == n_true\n", - "\n", - " # the score sum over all matched objects (tp)\n", - " sum_matched_score = np.sum(scores[true_ind,pred_ind][match_ok]) if not_trivial else 0.0\n", - "\n", - " # the score average over all matched objects (tp)\n", - " mean_matched_score = _safe_divide(sum_matched_score, tp)\n", - " # the score average over all gt/true objects\n", - " mean_true_score = _safe_divide(sum_matched_score, n_true)\n", - " panoptic_quality = _safe_divide(sum_matched_score, tp+fp/2+fn/2)\n", - "\n", - " stats_dict = dict (\n", - " criterion = criterion,\n", - " thresh = thr,\n", - " fp = fp,\n", - " tp = tp,\n", - " fn = fn,\n", - " precision = precision(tp,fp,fn),\n", - " recall = recall(tp,fp,fn),\n", - " accuracy = accuracy(tp,fp,fn),\n", - " f1 = f1(tp,fp,fn),\n", - " n_true = n_true,\n", - " n_pred = n_pred,\n", - " mean_true_score = mean_true_score,\n", - " mean_matched_score = mean_matched_score,\n", - " panoptic_quality = panoptic_quality,\n", - " )\n", - " if bool(report_matches):\n", - " if not_trivial:\n", - " stats_dict.update (\n", - " # int() to be json serializable\n", - " matched_pairs = tuple((int(map_rev_true[i]),int(map_rev_pred[j])) for i,j in zip(1+true_ind,1+pred_ind)),\n", - " matched_scores = tuple(scores[true_ind,pred_ind]),\n", - " matched_tps = tuple(map(int,np.flatnonzero(match_ok))),\n", - " )\n", - " else:\n", - " stats_dict.update (\n", - " matched_pairs = (),\n", - " matched_scores = (),\n", - " matched_tps = (),\n", - " )\n", - " return namedtuple('Matching',stats_dict.keys())(*stats_dict.values())\n", - "\n", - " return _single(thresh) if np.isscalar(thresh) else tuple(map(_single,thresh))\n", - "\n", - "\n", - "\n", - "def matching_dataset(y_true, y_pred, thresh=0.5, criterion='iou', by_image=False, show_progress=True, parallel=False):\n", - " \"\"\"matching metrics for list of images, see `stardist.matching.matching`\n", - " \"\"\"\n", - " len(y_true) == len(y_pred) or _raise(ValueError(\"y_true and y_pred must have the same length.\"))\n", - " return matching_dataset_lazy (\n", - " tuple(zip(y_true,y_pred)), thresh=thresh, criterion=criterion, by_image=by_image, show_progress=show_progress, parallel=parallel,\n", - " )\n", - "\n", - "\n", - "\n", - "def matching_dataset_lazy(y_gen, thresh=0.5, criterion='iou', by_image=False, show_progress=True, parallel=False):\n", - "\n", - " expected_keys = set(('fp', 'tp', 'fn', 'precision', 'recall', 'accuracy', 'f1', 'criterion', 'thresh', 'n_true', 'n_pred', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'))\n", - "\n", - " single_thresh = False\n", - " if np.isscalar(thresh):\n", - " single_thresh = True\n", - " thresh = (thresh,)\n", - "\n", - " tqdm_kwargs = {}\n", - " tqdm_kwargs['disable'] = not bool(show_progress)\n", - " if int(show_progress) > 1:\n", - " tqdm_kwargs['total'] = int(show_progress)\n", - "\n", - " # compute matching stats for every pair of label images\n", - " if parallel:\n", - " from concurrent.futures import ThreadPoolExecutor\n", - " fn = lambda pair: matching(*pair, thresh=thresh, criterion=criterion, report_matches=False)\n", - " with ThreadPoolExecutor() as pool:\n", - " stats_all = tuple(pool.map(fn, tqdm(y_gen,**tqdm_kwargs)))\n", - " else:\n", - " stats_all = tuple (\n", - " matching(y_t, y_p, thresh=thresh, criterion=criterion, report_matches=False)\n", - " for y_t,y_p in tqdm(y_gen,**tqdm_kwargs)\n", - " )\n", - "\n", - " # accumulate results over all images for each threshold separately\n", - " n_images, n_threshs = len(stats_all), len(thresh)\n", - " accumulate = [{} for _ in range(n_threshs)]\n", - " for stats in stats_all:\n", - " for i,s in enumerate(stats):\n", - " acc = accumulate[i]\n", - " for k,v in s._asdict().items():\n", - " if k == 'mean_true_score' and not bool(by_image):\n", - " # convert mean_true_score to \"sum_matched_score\"\n", - " acc[k] = acc.setdefault(k,0) + v * s.n_true\n", - " else:\n", - " try:\n", - " acc[k] = acc.setdefault(k,0) + v\n", - " except TypeError:\n", - " pass\n", - "\n", - " # normalize/compute 'precision', 'recall', 'accuracy', 'f1'\n", - " for thr,acc in zip(thresh,accumulate):\n", - " set(acc.keys()) == expected_keys or _raise(ValueError(\"unexpected keys\"))\n", - " acc['criterion'] = criterion\n", - " acc['thresh'] = thr\n", - " acc['by_image'] = bool(by_image)\n", - " if bool(by_image):\n", - " for k in ('precision', 'recall', 'accuracy', 'f1', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'):\n", - " acc[k] /= n_images\n", - " else:\n", - " tp, fp, fn, n_true = acc['tp'], acc['fp'], acc['fn'], acc['n_true']\n", - " sum_matched_score = acc['mean_true_score']\n", - "\n", - " mean_matched_score = _safe_divide(sum_matched_score, tp)\n", - " mean_true_score = _safe_divide(sum_matched_score, n_true)\n", - " panoptic_quality = _safe_divide(sum_matched_score, tp+fp/2+fn/2)\n", - "\n", - " acc.update(\n", - " precision = precision(tp,fp,fn),\n", - " recall = recall(tp,fp,fn),\n", - " accuracy = accuracy(tp,fp,fn),\n", - " f1 = f1(tp,fp,fn),\n", - " mean_true_score = mean_true_score,\n", - " mean_matched_score = mean_matched_score,\n", - " panoptic_quality = panoptic_quality,\n", - " )\n", - "\n", - " accumulate = tuple(namedtuple('DatasetMatching',acc.keys())(*acc.values()) for acc in accumulate)\n", - " return accumulate[0] if single_thresh else accumulate\n", - "\n", - "\n", - "\n", - "# copied from scikit-image master for now (remove when part of a release)\n", - "def relabel_sequential(label_field, offset=1):\n", - " \"\"\"Relabel arbitrary labels to {`offset`, ... `offset` + number_of_labels}.\n", - " This function also returns the forward map (mapping the original labels to\n", - " the reduced labels) and the inverse map (mapping the reduced labels back\n", - " to the original ones).\n", - " Parameters\n", - " ----------\n", - " label_field : numpy array of int, arbitrary shape\n", - " An array of labels, which must be non-negative integers.\n", - " offset : int, optional\n", - " The return labels will start at `offset`, which should be\n", - " strictly positive.\n", - " Returns\n", - " -------\n", - " relabeled : numpy array of int, same shape as `label_field`\n", - " The input label field with labels mapped to\n", - " {offset, ..., number_of_labels + offset - 1}.\n", - " The data type will be the same as `label_field`, except when\n", - " offset + number_of_labels causes overflow of the current data type.\n", - " forward_map : numpy array of int, shape ``(label_field.max() + 1,)``\n", - " The map from the original label space to the returned label\n", - " space. Can be used to re-apply the same mapping. See examples\n", - " for usage. The data type will be the same as `relabeled`.\n", - " inverse_map : 1D numpy array of int, of length offset + number of labels\n", - " The map from the new label space to the original space. This\n", - " can be used to reconstruct the original label field from the\n", - " relabeled one. The data type will be the same as `relabeled`.\n", - " Notes\n", - " -----\n", - " The label 0 is assumed to denote the background and is never remapped.\n", - " The forward map can be extremely big for some inputs, since its\n", - " length is given by the maximum of the label field. However, in most\n", - " situations, ``label_field.max()`` is much smaller than\n", - " ``label_field.size``, and in these cases the forward map is\n", - " guaranteed to be smaller than either the input or output images.\n", - " Examples\n", - " --------\n", - " >>> from skimage.segmentation import relabel_sequential\n", - " >>> label_field = np.array([1, 1, 5, 5, 8, 99, 42])\n", - " >>> relab, fw, inv = relabel_sequential(label_field)\n", - " >>> relab\n", - " array([1, 1, 2, 2, 3, 5, 4])\n", - " >>> fw\n", - " array([0, 1, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5])\n", - " >>> inv\n", - " array([ 0, 1, 5, 8, 42, 99])\n", - " >>> (fw[label_field] == relab).all()\n", - " True\n", - " >>> (inv[relab] == label_field).all()\n", - " True\n", - " >>> relab, fw, inv = relabel_sequential(label_field, offset=5)\n", - " >>> relab\n", - " array([5, 5, 6, 6, 7, 9, 8])\n", - " \"\"\"\n", - " offset = int(offset)\n", - " if offset <= 0:\n", - " raise ValueError(\"Offset must be strictly positive.\")\n", - " if np.min(label_field) < 0:\n", - " raise ValueError(\"Cannot relabel array that contains negative values.\")\n", - " max_label = int(label_field.max()) # Ensure max_label is an integer\n", - " if not np.issubdtype(label_field.dtype, np.integer):\n", - " new_type = np.min_scalar_type(max_label)\n", - " label_field = label_field.astype(new_type)\n", - " labels = np.unique(label_field)\n", - " labels0 = labels[labels != 0]\n", - " new_max_label = offset - 1 + len(labels0)\n", - " new_labels0 = np.arange(offset, new_max_label + 1)\n", - " output_type = label_field.dtype\n", - " required_type = np.min_scalar_type(new_max_label)\n", - " if np.dtype(required_type).itemsize > np.dtype(label_field.dtype).itemsize:\n", - " output_type = required_type\n", - " forward_map = np.zeros(max_label + 1, dtype=output_type)\n", - " forward_map[labels0] = new_labels0\n", - " inverse_map = np.zeros(new_max_label + 1, dtype=output_type)\n", - " inverse_map[offset:] = labels0\n", - " relabeled = forward_map[label_field]\n", - " return relabeled, forward_map, inverse_map\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Tbv6DpxZjVN3" - }, - "source": [ - "## **5.1. Inspection of the loss function**\n", - "---\n", - "\n", - "First, it is good practice to evaluate the training progress by comparing the training loss with the validation loss. The latter is a metric which shows how well the network performs on a subset of unseen data which is set aside from the training dataset. For more information on this, see for example [this review](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381354/) by Nichols *et al.*\n", - "\n", - "**Training loss** describes an error value after each epoch for the difference between the model's prediction and its ground-truth target.\n", - "\n", - "**Validation loss** describes the same error value between the model's prediction on a validation image and compared to it's target.\n", - "\n", - "During training both values should decrease before reaching a minimal value which does not decrease further even after more training. Comparing the development of the validation loss with the training loss can give insights into the model's performance.\n", - "\n", - "Decreasing **Training loss** and **Validation loss** indicates that training is still necessary and increasing the `number_of_epochs` is recommended. Note that the curves can look flat towards the right side, just because of the y-axis scaling. The network has reached convergence once the curves flatten out. After this point no further training is required. If the **Validation loss** suddenly increases again an the **Training loss** simultaneously goes towards zero, it means that the network is overfitting to the training data. In other words the network is remembering the exact patterns from the training data and no longer generalizes well to unseen data. In this case the training dataset has to be increased.\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "jtSv-B0AjX8j" - }, - "outputs": [], - "source": [ - "#@markdown ###Not implemented yet" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "s2VXDuiOF7r4" - }, - "source": [ - "## **5.2. Error mapping and quality metrics estimation**\n", - "---\n", - "This section will calculate the Intersection over Union score for all the images provided in the Source_QC_folder and Target_QC_folder ! The result for one of the image will also be displayed.\n", - "\n", - "The **Intersection over Union** (IuO) metric is a method that can be used to quantify the percent overlap between the target mask and your prediction output. **Therefore, the closer to 1, the better the performance.** This metric can be used to assess the quality of your model to accurately predict nuclei.\n", - "\n", - "Here, the IuO is both calculated over the whole image and on a per-object basis. The value displayed below is the IuO value calculated over the entire image. The IuO value calculated on a per-object basis is used to calculate the other metrics displayed.\n", - "\n", - "“n_true” refers to the number of objects present in the ground truth image. “n_pred” refers to the number of objects present in the predicted image.\n", - "\n", - "When a segmented object has an IuO value above 0.5 (compared to the corresponding ground truth), it is then considered a true positive. The number of “**true positives**” is available in the table below. The number of “false positive” is then defined as “**false positive**” = “n_pred” - “true positive”. The number of “false negative” is defined as “false negative” = “n_true” - “true positive”.\n", - "\n", - "The mean_matched_score is the mean IoUs of matched true positives. The mean_true_score is the mean IoUs of matched true positives but normalized by the total number of ground truth objects. The panoptic_quality is calculated as described by [Kirillov et al. 2019](https://arxiv.org/abs/1801.00868).\n", - "\n", - "For more information about the other metric displayed, please consult the SI of the paper describing ZeroCostDL4Mic.\n", - "\n", - " The results can be found in the \"*Quality Control*\" folder which is located inside your \"model_folder\".\n", - "\n", - "**`Channel_to_segment`:** Choose the channel to segment. If using single-channel grayscale images, choose \"Grayscale\".\n", - "\n", - "**`Nuclear_channel`:** If you are using a model that segment the \"cytoplasm\", you can use a nuclear channel to aid the segmentation.\n", - "\n", - "**`Object_diameter`:** Indicate the diameter of the objects (cells or Nuclei) you want to segment (in pixel). If you input \"0\", this parameter will be estimated automatically for each of your images.\n", - "\n", - "**`Flow_threshold`:** This parameter controls the maximum allowed error of the flows for each mask. Increase this threshold if cellpose is not returning as many masks as you'd expect. Similarly, decrease this threshold if cellpose is returning too many ill-shaped masks. Set to 0.0 to turn off so no cells are discarded. **Default value: 0.4**\n", - "\n", - "**`mask_threshold`:** The pixels greater than the mask_threshold are used to run dynamics and determine masks. Decrease this threshold if cellpose is not returning as many masks as you'd expect. Similarly, increase this threshold if cellpose is returning too many masks, particularly from dim areas. **Default value: 0.0**" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "BUrTuonhEH5J" - }, - "outputs": [], - "source": [ - "#@markdown ##Choose the folders that contain your Quality Control dataset\n", - "\n", - "Source_QC_folder = \"\" #@param{type:\"string\"}\n", - "Target_QC_folder = \"\" #@param{type:\"string\"}\n", - "\n", - "Channel_to_segment= \"Red\" #@param [\"Grayscale\", \"Blue\", \"Green\", \"Red\"]\n", - "\n", - "# @markdown ###If you chose the model \"cytoplasm\" indicate if you also have a nuclear channel that can be used to aid the segmentation.\n", - "\n", - "Nuclear_channel= \"None\" #@param [\"None\", \"Blue\", \"Green\", \"Red\"]\n", - "\n", - "#@markdown ### Segmentation parameters:\n", - "Object_diameter = 0#@param {type:\"number\"}\n", - "\n", - "Flow_threshold = 0.4 #@param {type:\"slider\", min:0.0, max:3, step:0.1}\n", - "\n", - "mask_threshold=0 #@param {type:\"slider\", min:-6, max:6, step:1}\n", - "\n", - "if Object_diameter is 0:\n", - " Object_diameter = None\n", - " print(\"The cell size will be estimated automatically for each image\")\n", - "\n", - "\n", - "# Find the number of channel in the input image\n", - "\n", - "random_choice = random.choice(os.listdir(Source_QC_folder))\n", - "x = io.imread(Source_QC_folder+\"/\"+random_choice)\n", - "n_channel = 1 if x.ndim == 2 else x.shape[-1]\n", - "\n", - "if Channel_to_segment == \"Grayscale\":\n", - " segment_channel = 0\n", - "\n", - " if not n_channel == 1:\n", - " print(bcolors.WARNING +\"!! WARNING: your image has more than one channel, choose which channel you want to use for QC !!\")\n", - "\n", - "if Channel_to_segment == \"Blue\":\n", - " segment_channel = 3\n", - "\n", - "if Channel_to_segment == \"Green\":\n", - " segment_channel = 2\n", - "\n", - "if Channel_to_segment == \"Red\":\n", - " segment_channel = 1\n", - "\n", - "if Nuclear_channel == \"Blue\":\n", - " nuclear_channel = 3\n", - "\n", - "if Nuclear_channel == \"Green\":\n", - " nuclear_channel = 2\n", - "\n", - "if Nuclear_channel == \"Red\":\n", - " nuclear_channel = 1\n", - "\n", - "if Nuclear_channel == \"None\":\n", - " nuclear_channel = 0\n", - "\n", - "if QC_model == \"Cytoplasm\":\n", - " channels=[segment_channel,nuclear_channel]\n", - "\n", - "if QC_model == \"Cytoplasm2_Omnipose\":\n", - " channels=[segment_channel,nuclear_channel]\n", - "\n", - "if QC_model == \"Bacteria_Omnipose\":\n", - " channels=[segment_channel,nuclear_channel]\n", - "\n", - "if QC_model == \"Cytoplasm2\":\n", - " channels=[segment_channel,nuclear_channel]\n", - "\n", - "if QC_model == \"Nuclei\":\n", - " channels=[segment_channel,0]\n", - "\n", - "if QC_model == \"Own_model\":\n", - " channels=[segment_channel,nuclear_channel]\n", - "\n", - "#Create a quality control Folder and check if the folder already exist\n", - "if os.path.exists(QC_model_folder+\"/Quality Control\") == False:\n", - " os.makedirs(QC_model_folder+\"/Quality Control\")\n", - "\n", - "if os.path.exists(QC_model_folder+\"/Quality Control/Prediction\"):\n", - " shutil.rmtree(QC_model_folder+\"/Quality Control/Prediction\")\n", - "os.makedirs(QC_model_folder+\"/Quality Control/Prediction\")\n", - "\n", - "\n", - "# Here we need to make predictions\n", - "\n", - "for name in os.listdir(Source_QC_folder):\n", - "\n", - " print(\"Performing prediction on: \"+name)\n", - " image = io.imread(Source_QC_folder+\"/\"+name)\n", - "\n", - " short_name = os.path.splitext(name)\n", - "\n", - " if QC_model == \"Own_model\" or QC_model == \"LiveCell\" or QC_model == \"TissueNet\":\n", - " masks, flows, styles = model.eval(image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n", - " else:\n", - " masks, flows, styles, diams = model.eval(image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n", - "\n", - " os.chdir(QC_model_folder+\"/Quality Control/Prediction\")\n", - " imsave(str(short_name[0])+\".tif\", masks)\n", - "\n", - "# Here we start testing the differences between GT and predicted masks\n", - "\n", - "with open(QC_model_folder+\"/Quality Control/Quality_Control for \"+QC_model_name+\".csv\", \"w\", newline='') as file:\n", - " writer = csv.writer(file, delimiter=\",\")\n", - " writer.writerow([\"image\",\"Prediction v. GT Intersection over Union\", \"false positive\", \"true positive\", \"false negative\", \"precision\", \"recall\", \"accuracy\", \"f1 score\", \"n_true\", \"n_pred\", \"mean_true_score\", \"mean_matched_score\", \"panoptic_quality\"])\n", - "\n", - "# define the images\n", - "\n", - " for n in os.listdir(Source_QC_folder):\n", - "\n", - " if not os.path.isdir(os.path.join(Source_QC_folder,n)):\n", - " print('Running QC on: '+n)\n", - " test_input = io.imread(os.path.join(Source_QC_folder,n))\n", - " test_prediction = io.imread(os.path.join(QC_model_folder+\"/Quality Control/Prediction\",n))\n", - " test_ground_truth_image = io.imread(os.path.join(Target_QC_folder, n))\n", - "\n", - " # Calculate the matching (with IoU threshold `thresh`) and all metrics\n", - "\n", - " stats = matching(test_ground_truth_image, test_prediction, thresh=0.5)\n", - "\n", - "\n", - " #Convert pixel values to 0 or 255\n", - " test_prediction_0_to_255 = test_prediction\n", - " test_prediction_0_to_255[test_prediction_0_to_255>0] = 255\n", - "\n", - " #Convert pixel values to 0 or 255\n", - " test_ground_truth_0_to_255 = test_ground_truth_image\n", - " test_ground_truth_0_to_255[test_ground_truth_0_to_255>0] = 255\n", - "\n", - "\n", - " # Intersection over Union metric\n", - "\n", - " intersection = np.logical_and(test_ground_truth_0_to_255, test_prediction_0_to_255)\n", - " union = np.logical_or(test_ground_truth_0_to_255, test_prediction_0_to_255)\n", - " iou_score = np.sum(intersection) / np.sum(union)\n", - " writer.writerow([n, str(iou_score), str(stats.fp), str(stats.tp), str(stats.fn), str(stats.precision), str(stats.recall), str(stats.accuracy), str(stats.f1), str(stats.n_true), str(stats.n_pred), str(stats.mean_true_score), str(stats.mean_matched_score), str(stats.panoptic_quality)])\n", - "\n", - "from tabulate import tabulate\n", - "\n", - "df = pd.read_csv (QC_model_folder+\"/Quality Control/Quality_Control for \"+QC_model_name+\".csv\")\n", - "print(tabulate(df, headers='keys', tablefmt='psql'))\n", - "\n", - "\n", - "from astropy.visualization import simple_norm\n", - "\n", - "# ------------- For display ------------\n", - "print('--------------------------------------------------------------')\n", - "@interact\n", - "def show_QC_results(file = os.listdir(Source_QC_folder)):\n", - "\n", - "\n", - " plt.figure(figsize=(25,5))\n", - " if n_channel > 1:\n", - " source_image = io.imread(os.path.join(Source_QC_folder, file))\n", - " if n_channel == 1:\n", - " source_image = io.imread(os.path.join(Source_QC_folder, file), as_gray = True)\n", - "\n", - " target_image = io.imread(os.path.join(Target_QC_folder, file), as_gray = True)\n", - " prediction = io.imread(QC_model_folder+\"/Quality Control/Prediction/\"+file, as_gray = True)\n", - "\n", - " stats = matching(prediction, target_image, thresh=0.5)\n", - "\n", - " target_image_mask = np.empty_like(target_image)\n", - " target_image_mask[target_image > 0] = 255\n", - " target_image_mask[target_image == 0] = 0\n", - "\n", - " prediction_mask = np.empty_like(prediction)\n", - " prediction_mask[prediction > 0] = 255\n", - " prediction_mask[prediction == 0] = 0\n", - "\n", - " intersection = np.logical_and(target_image_mask, prediction_mask)\n", - " union = np.logical_or(target_image_mask, prediction_mask)\n", - " iou_score = np.sum(intersection) / np.sum(union)\n", - "\n", - " norm = simple_norm(source_image, percent = 99)\n", - "\n", - " #Input\n", - " plt.subplot(1,4,1)\n", - " plt.axis('off')\n", - " if n_channel > 1:\n", - " plt.imshow(source_image)\n", - " if n_channel == 1:\n", - " plt.imshow(source_image, aspect='equal', norm=norm, cmap='magma', interpolation='nearest')\n", - " plt.title('Input')\n", - "\n", - " #Ground-truth\n", - " plt.subplot(1,4,2)\n", - " plt.axis('off')\n", - " plt.imshow(target_image_mask, aspect='equal', cmap='Greens')\n", - " plt.title('Ground Truth')\n", - "\n", - " #Prediction\n", - " plt.subplot(1,4,3)\n", - " plt.axis('off')\n", - " plt.imshow(prediction_mask, aspect='equal', cmap='Purples')\n", - " plt.title('Prediction')\n", - "\n", - " #Overlay\n", - " plt.subplot(1,4,4)\n", - " plt.axis('off')\n", - " plt.imshow(target_image_mask, cmap='Greens')\n", - " plt.imshow(prediction_mask, alpha=0.5, cmap='Purples')\n", - " plt.title('Ground Truth and Prediction, Intersection over Union:'+str(round(iou_score,3 )));\n", - " plt.savefig(QC_model_folder+'/Quality Control/QC_example_data.png',bbox_inches='tight',pad_inches=0)\n", - "\n", - "\n", - "full_QC_model_path = QC_model_folder+'/'\n", - "qc_pdf_export()\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Io62PUMLagFS" - }, - "source": [ - "# **6. Using the trained model**\n", - "\n", - "---\n", - "\n", - "In this section the unseen data is processed using the trained model (in section 4). First, your unseen images are uploaded and prepared for prediction. After that your trained model from section 4 is activated and finally saved into your Google Drive." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "E29LWfWpjkZU" - }, - "source": [ - "\n", - "\n", - "## **6.1 Generate prediction(s) from unseen dataset (2D and 2D + t data)**\n", - "---\n", - "\n", - "The current trained model (from section 4.3) can now be used to process images. If an older model needs to be used, please untick the **Use_the_current_trained_model** box and enter the model's name and path to use. Predicted output images are saved in your **Prediction_folder** folder as restored image stacks (ImageJ-compatible TIFF images).\n", - "\n", - "**`Data_folder`:** This folder should contain the images that you want to predict using the network that you will train.\n", - "\n", - "**`Result_folder`:** This folder will contain the predicted output.\n", - "\n", - "**`Data_type`:** Please indicate if the images you want to predict are single images or stacks\n", - "\n", - "**`model_choice`:** Choose the model to use to make predictions. This model needs to be a Cellpose model. You can also use the pretrained models already available in cellpose:\n", - "\n", - "- The cytoplasm model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is an optional nuclear channel.\n", - "\n", - "- The cytoplasm2 model is an updated cytoplasm model trained with user-submitted images.\n", - "\n", - "- The Nuclei model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is always set to an array of zeros.\n", - "\n", - "- The 'LiveCell' model was trained on all training images from the [livecell dataset](https://sartorius-research.github.io/LIVECell/). These images only have a cytoplasm channel.\n", - "\n", - "- The 'TissueNet' model was trained on all training images from the [tissuenet dataset](https://datasets.deepcell.org/). These images have a cytoplasm channel and a nuclear channel\n", - "\n", - "- The bacteria Omnipose model is an Omnipose model dedicated to the segmentation of bacteria or other elongated cells.\n", - "\n", - "- The cytoplasm2 Omnipose model is an Omnipose model trained using the same dataset as the cellpose cytoplasm2 model.\n", - "\n", - "**`Channel_to_segment`:** Choose the channel to segment. If using single-channel grayscale images, choose \"Grayscale\".\n", - "\n", - "**`Nuclear_channel`:** If you are using a model that segment the \"cytoplasm\", you can use a nuclear channel to aid the segmentation.\n", - "\n", - "**`Object_diameter`:** Indicate the diameter of the objects (cells or Nuclei) you want to segment (in pixel). If you input \"0\", this parameter will be estimated automatically for each of your images.\n", - "\n", - "**`Flow_threshold`:** This parameter controls the maximum allowed error of the flows for each mask. Increase this threshold if cellpose is not returning as many masks as you'd expect. Similarly, decrease this threshold if cellpose is returning too many ill-shaped masks. **Default value: 0.4**\n", - "\n", - "**`mask_threshold`:** The pixels greater than the mask_threshold are used to run dynamics and determine masks. Decrease this threshold if cellpose is not returning as many masks as you'd expect. Similarly, increase this threshold if cellpose is returning too many masks, particularly from dim areas. **Default value: 0.0**\n", - "\n", - "**IMPORTANT:** One example result will be displayed first so that you can assess the quality of the prediction and change your settings accordingly. Once the most suitable settings have been chosen, press on the yellow button \"process your images\".\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "mfgvhMk2xid9" - }, - "outputs": [], - "source": [ - "\n", - "#@markdown ### Provide the path to your dataset and to the folder where the predictions are saved, then play the cell to predict outputs from your unseen images.\n", - "\n", - "Data_folder = \"\" #@param {type:\"string\"}\n", - "Result_folder = \"\" #@param {type:\"string\"}\n", - "\n", - "#@markdown ###Are your data single images or stacks?\n", - "\n", - "Data_type = \"Single_Images\" #@param [\"Single_Images\", \"Stacks (2D + t)\"]\n", - "\n", - "#@markdown ###What model do you want to use?\n", - "\n", - "model_choice = \"Cytoplasm3\" #@param [\"Cytoplasm\",\"Cytoplasm2\",\"Cytoplasm3\",\"LiveCell\", \"TissueNet\", \"Cytoplasm2_Omnipose\", \"Bacteria_Omnipose\", \"Nuclei\", \"Own_model\"]\n", - "\n", - "#@markdown ####If using your own model, please provide the path to the model (not the folder):\n", - "\n", - "Prediction_model = \"\" #@param {type:\"string\"}\n", - "\n", - "#@markdown ### What channel do you want to segment?\n", - "\n", - "Channel_to_segment= \"Red\" #@param [\"Grayscale\", \"Blue\", \"Green\", \"Red\"]\n", - "\n", - "# @markdown ###If you chose the model \"cytoplasm\" indicate if you also have a nuclear channel that can be used to aid the segmentation.\n", - "\n", - "Nuclear_channel= \"Blue\" #@param [\"None\", \"Blue\", \"Green\", \"Red\"]\n", - "\n", - "#@markdown ### Segmentation parameters:\n", - "Object_diameter = 500#@param {type:\"number\"}\n", - "\n", - "Flow_threshold = 1.5 #@param {type:\"slider\", min:0.0, max:3, step:0.1}\n", - "\n", - "mask_threshold=0 #@param {type:\"slider\", min:-6, max:6, step:1}\n", - "\n", - "# Find the number of channel in the input image\n", - "\n", - "random_choice = random.choice(os.listdir(Data_folder))\n", - "x = io.imread(Data_folder+\"/\"+random_choice)\n", - "n_channel = 1 if x.ndim == 2 else x.shape[-1]\n", - "\n", - "if Channel_to_segment == \"Grayscale\":\n", - " segment_channel = 0\n", - "\n", - " if Data_type == \"Single_Images\":\n", - " if not n_channel == 1:\n", - " print(bcolors.WARNING +\"!! WARNING: your image has more than one channel, choose which channel you want to use for your predictions !!\")\n", - "\n", - "if Channel_to_segment == \"Blue\":\n", - " segment_channel = 3\n", - "\n", - "if Channel_to_segment == \"Green\":\n", - " segment_channel = 2\n", - "\n", - "if Channel_to_segment == \"Red\":\n", - " segment_channel = 1\n", - "\n", - "if Nuclear_channel == \"Blue\":\n", - " nuclear_channel = 3\n", - "\n", - "if Nuclear_channel == \"Green\":\n", - " nuclear_channel = 2\n", - "\n", - "if Nuclear_channel == \"Red\":\n", - " nuclear_channel = 1\n", - "\n", - "if Nuclear_channel == \"None\":\n", - " nuclear_channel = 0\n", - "\n", - "if model_choice == \"Cytoplasm\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto\")\n", - " print(\"Cytoplasm model enabled\")\n", - "\n", - "if model_choice == \"Cytoplasm3\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto3\")\n", - " print(\"Cytoplasm 3 model enabled\")\n", - "\n", - "if model_choice == \"Cytoplasm2\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto2\")\n", - " print(\"Cytoplasm2 model enabled\")\n", - "\n", - "if model_choice == \"Cytoplasm2_Omnipose\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto2_omni\")\n", - " print(\"Cytoplasm2_Omnipose model enabled\")\n", - "\n", - "if model_choice == \"Nuclei\":\n", - " channels=[segment_channel,0]\n", - " model = models.Cellpose(gpu=True, model_type=\"nuclei\")\n", - " print(\"Nuclei model enabled\")\n", - "\n", - "if model_choice == \"LiveCell\":\n", - " channels=[segment_channel,0]\n", - " model = models.CellposeModel(gpu=True, model_type=\"livecell\")\n", - " print(\"LiveCell model enabled\")\n", - "\n", - "if model_choice == \"Bacteria_Omnipose\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"bact_omni\")\n", - " Object_diameter = 0\n", - " print(\"Bacteria_omnipose model enabled\")\n", - "\n", - "if model_choice == \"TissueNet\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.CellposeModel(gpu=True, model_type='tissuenet')\n", - " print(\"TissueNet model enabled\")\n", - "\n", - "if model_choice == \"Own_model\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.CellposeModel(gpu=True, pretrained_model=Prediction_model)\n", - "\n", - " print(\"Own model enabled\")\n", - "\n", - "if Object_diameter is 0:\n", - " Object_diameter = None\n", - " print(\"The cell size will be estimated automatically for each image\")\n", - "\n", - "if Data_type == \"Single_Images\" :\n", - "\n", - " print('--------------------------------------------------------------')\n", - " @interact\n", - " def preview_results(file = os.listdir(Data_folder)):\n", - " source_image = io.imread(os.path.join(Data_folder, file))\n", - "\n", - " if model_choice == \"Own_model\" or model_choice == \"LiveCell\" or model_choice == \"TissueNet\":\n", - " masks, flows, styles = model.eval(source_image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n", - "\n", - " else:\n", - " masks, flows, styles, diams = model.eval(source_image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n", - "\n", - " flowi = flows[0]\n", - " fig = plt.figure(figsize=(20,10))\n", - " plot.show_segmentation(fig, source_image, masks, flowi, channels=channels)\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "\n", - " def batch_process():\n", - " print(\"Your images are now beeing processed\")\n", - "\n", - " for name in os.listdir(Data_folder):\n", - " print(\"Performing prediction on: \"+name)\n", - " image = io.imread(Data_folder+\"/\"+name)\n", - " short_name = os.path.splitext(name)\n", - "\n", - " if model_choice == \"Own_model\" or model_choice == \"LiveCell\" or model_choice == \"TissueNet\":\n", - " masks, flows, styles = model.eval(image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n", - " else:\n", - " masks, flows, styles, diams = model.eval(image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n", - "\n", - " os.chdir(Result_folder)\n", - " imsave(str(short_name[0])+\"_mask.tif\", masks)\n", - "\n", - " im = interact_manual(batch_process)\n", - " im.widget.children[0].description = 'Process your images'\n", - " im.widget.children[0].style.button_color = 'yellow'\n", - " display(im)\n", - "\n", - "if Data_type == \"Stacks (2D + t)\" :\n", - " print(\"Stacks (2D + t) are now beeing predicted\")\n", - "\n", - " print('--------------------------------------------------------------')\n", - " @interact\n", - " def preview_results_stacks(file = os.listdir(Data_folder)):\n", - " timelapse = imread(Data_folder+\"/\"+file)\n", - "\n", - " if model_choice == \"Own_model\" or model_choice == \"LiveCell\" or model_choice == \"TissueNet\":\n", - " masks, flows, styles = model.eval(timelapse[0], diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n", - " else:\n", - " masks, flows, styles, diams = model.eval(timelapse[0], diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n", - "\n", - " flowi = flows[0]\n", - " fig = plt.figure(figsize=(20,10))\n", - " plot.show_segmentation(fig, timelapse[0], masks, flowi, channels=channels)\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - " def batch_process_stack():\n", - " print(\"Your images are now beeing processed\")\n", - " for image in os.listdir(Data_folder):\n", - " print(\"Performing prediction on: \"+image)\n", - " timelapse = imread(Data_folder+\"/\"+image)\n", - " short_name = os.path.splitext(image)\n", - " n_timepoint = timelapse.shape[0]\n", - " prediction_stack = np.zeros((n_timepoint, timelapse.shape[1], timelapse.shape[2]))\n", - "\n", - " for t in range(n_timepoint):\n", - " print(\"Frame number: \"+str(t))\n", - " img_t = timelapse[t]\n", - "\n", - " if model_choice == \"Own_model\" or model_choice == \"LiveCell\" or model_choice == \"TissueNet\":\n", - " masks, flows, styles = model.eval(img_t, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n", - " else:\n", - " masks, flows, styles, diams = model.eval(img_t, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n", - "\n", - "\n", - " prediction_stack[t] = masks\n", - "\n", - " prediction_stack = img_as_float32(prediction_stack, force_copy=False)\n", - " os.chdir(Result_folder)\n", - " imsave(str(short_name[0])+\".tif\", prediction_stack, compression ='zlib')\n", - " del prediction_stack\n", - "\n", - " im = interact_manual(batch_process_stack)\n", - " im.widget.children[0].description = 'Process your images'\n", - " im.widget.children[0].style.button_color = 'yellow'\n", - " display(im)\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rk7GNKr5tYBY" - }, - "source": [ - "\n", - "\n", - "## **6.2 Generate prediction(s) from unseen dataset (3D stacks)**\n", - "---\n", - "\n", - "The current trained model (from section 4.3) can now be used to process images. If an older model needs to be used, please untick the **Use_the_current_trained_model** box and enter the model's name and path to use. Predicted output images are saved in your **Prediction_folder** folder as restored image stacks (ImageJ-compatible TIFF images).\n", - "\n", - "**`Data_folder`:** This folder should contain the images that you want to predict using the network that you will train.\n", - "\n", - "**`Result_folder`:** This folder will contain the predicted output.\n", - "\n", - "**`model_choice`:** Choose the model to use to make predictions. This model needs to be a Cellpose model. You can also use the pretrained models already available in cellpose:\n", - "\n", - "- The cytoplasm model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is an optional nuclear channel.\n", - "- The cytoplasm2 model is an updated cytoplasm model trained with user-submitted images.\n", - "\n", - "- The nuclear model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is always set to an array of zeros.\n", - "\n", - "\n", - "**`Channel_to_segment`:** Choose the channel to segment. If using single-channel grayscale images, choose \"Grayscale\".\n", - "\n", - "**`Nuclear_channel`:** If you are using a model that segment the \"cytoplasm\", you can use a nuclear channel to aid the segmentation.\n", - "\n", - "**`Object_diameter`:** Indicate the diameter of the objects (cells or Nuclei) you want to segment (in pixel). Do not input \"0\" to perform 3D predictions.\n", - "\n", - "**`Anisotropy`:** Optional rescaling factor to use when the images to segment are not isotropic (e.g. set to 2.0 if Z is sampled half as dense as X or Y). **Default value: 1**\n", - "\n", - "**`Min_size`:** Minimum number of pixels per mask. Can be turned off using -1. **Default value: 15**\n", - "\n", - "**`mask_threshold`:** The pixels greater than the mask_threshold are used to run dynamics and determine masks. Decrease this threshold if cellpose is not returning as many masks as you'd expect. Similarly, increase this threshold if cellpose is returning too many masks, particularly from dim areas. **Default value: 0.0**\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "Qf2Mn-2Yo7tI" - }, - "outputs": [], - "source": [ - "from cellpose import utils\n", - "from numba.experimental import jitclass\n", - "from numba import jit, float64\n", - "\n", - "\n", - "#@markdown ### Provide the path to your dataset and to the folder where the predictions are saved, then play the cell to predict outputs from your unseen images.\n", - "\n", - "Data_folder = \"\" #@param {type:\"string\"}\n", - "Result_folder = \"\" #@param {type:\"string\"}\n", - "\n", - "#@markdown ###What model do you want to use?\n", - "model_choice = \"Cytoplasm\" #@param [\"Cytoplasm\",\"Cytoplasm2\", \"Nuclei\", \"Own_model\"]\n", - "\n", - "\n", - "#@markdown ####If using your own model, please provide the path to the model (not the folder):\n", - "\n", - "Prediction_model = \"\" #@param {type:\"string\"}\n", - "\n", - "#@markdown ### What channel do you want to segment?\n", - "\n", - "Channel_to_segment= \"Grayscale\" #@param [\"Grayscale\", \"Blue\", \"Green\", \"Red\"]\n", - "\n", - "# @markdown ###If you chose the model \"cytoplasm\" indicate if you also have a nuclear channel that can be used to aid the segmentation.\n", - "\n", - "Nuclear_channel= \"None\" #@param [\"None\", \"Blue\", \"Green\", \"Red\"]\n", - "\n", - "#@markdown ###How do you want to generate the 3D labels?\n", - "\n", - "#Choose_3D_mode = \"2D predictions and stitching\" #@param [\"3D predictions\", \"2D predictions and stitching\"]\n", - "\n", - "Choose_3D_mode = \"3D predictions\" #@param [\"3D predictions\"]\n", - "\n", - "#@markdown ### Segmentation parameters:\n", - "Object_diameter = 10#@param {type:\"number\"}\n", - "Anisotropy = 1 #@param {type:\"number\"}\n", - "Min_size = 200#@param {type:\"number\"}\n", - "mask_threshold=0 #@param {type:\"slider\", min:-6, max:6, step:1}\n", - "\n", - "##@markdown ### Additional parameters for 2D predictions and stitching:\n", - "\n", - "#Flow_threshold = 0.5 #@param {type:\"slider\", min:0.1, max:1.1, step:0.1}\n", - "#Stitch_threshold= 0.1#@param {type:\"slider\", min:0, max:1.0, step:0.1}\n", - "\n", - "#failsafes\n", - "if Choose_3D_mode == \"3D predictions\":\n", - " do_3D = True\n", - " Stitch_threshold= 0\n", - "\n", - " if Object_diameter == 0:\n", - " Object_diameter= 40\n", - " print(\"Object_diameter set to 40. If you want to use a different Object_diameter enable it in your segmentation parameters\")\n", - "\n", - "else:\n", - " do_3D = False\n", - " Anisotropy = 0\n", - "\n", - "if Choose_3D_mode == \"2D predictions and stitching\" and Stitch_threshold== 0:\n", - " Stitch_threshold= 0.5\n", - " print(\"Stitch_threshold has now automatically be enabled with an IoU of 0.5. If you want to use a different threshold enable it in your segmentation parameters\")\n", - "\n", - "\n", - "if Channel_to_segment == \"Grayscale\":\n", - " segment_channel = 0\n", - "\n", - "if Channel_to_segment == \"Blue\":\n", - " segment_channel = 3\n", - "\n", - "if Channel_to_segment == \"Green\":\n", - " segment_channel = 2\n", - "\n", - "if Channel_to_segment == \"Red\":\n", - " segment_channel = 1\n", - "\n", - "if Nuclear_channel == \"Blue\":\n", - " nuclear_channel = 3\n", - "\n", - "if Nuclear_channel == \"Green\":\n", - " nuclear_channel = 2\n", - "\n", - "if Nuclear_channel == \"Red\":\n", - " nuclear_channel = 1\n", - "\n", - "if Nuclear_channel == \"None\":\n", - " nuclear_channel = 0\n", - "\n", - "if model_choice == \"Cytoplasm\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto\")\n", - " print(\"Cytoplasm model enabled\")\n", - "\n", - "if model_choice == \"Cytoplasm2\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto2\")\n", - " print(\"Cytoplasm2 model enabled\")\n", - "\n", - "if model_choice == \"Nuclei\":\n", - " channels=[segment_channel,0]\n", - " model = models.Cellpose(gpu=True, model_type=\"nuclei\")\n", - " print(\"Nuclei model enabled\")\n", - "\n", - "if model_choice == \"Cytoplasm2_Omnipose\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"cyto2_omni\")\n", - " print(\"Cytoplasm2_Omnipose model enabled\")\n", - "\n", - "if model_choice == \"Bacteria_Omnipose\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.Cellpose(gpu=True, model_type=\"bact_omni\")\n", - " print(\"Bacteria_omnipose model enabled\")\n", - "\n", - "if model_choice == \"Own_model\":\n", - " channels=[segment_channel,nuclear_channel]\n", - " model = models.CellposeModel(gpu=True, pretrained_model=Prediction_model, torch=True, diam_mean=30.0, net_avg=True, device=None, residual_on=True, style_on=True, concatenation=False)\n", - "\n", - " print(\"Own model enabled\")\n", - "\n", - "if Object_diameter is 0:\n", - " Object_diameter = None\n", - " print(\"The cell size will be estimated automatically for each image\")\n", - "\n", - "if Choose_3D_mode == \"2D predictions and stitching\":\n", - "\n", - " for image in os.listdir(Data_folder):\n", - " print(\"Performing prediction on: \"+image)\n", - " stack = imread(Data_folder+\"/\"+image)\n", - " short_name = os.path.splitext(image)\n", - " n_plane = stack.shape[0]\n", - " prediction_stack = np.zeros((n_plane, stack.shape[1], stack.shape[2]))\n", - "\n", - " for t in range(n_plane):\n", - " print(\"Z plane number: \"+str(t))\n", - " img_t = stack[t]\n", - "\n", - " if model_choice == \"Own_model\":\n", - " masks, flows, styles = model.eval(img_t, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels, do_3D=do_3D, anisotropy = Anisotropy, stitch_threshold=Stitch_threshold, min_size=Min_size)\n", - " else:\n", - " masks, flows, styles, diams = model.eval(img_t, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels, do_3D=do_3D, anisotropy = Anisotropy, stitch_threshold=Stitch_threshold, min_size=Min_size)\n", - "\n", - " prediction_stack = masks\n", - "\n", - " os.chdir(Result_folder)\n", - " imsave(str(short_name[0])+\".tif\", prediction_stack)\n", - "\n", - "\n", - "if Choose_3D_mode == \"3D predictions\":\n", - "\n", - " for image in os.listdir(Data_folder):\n", - " print(\"Performing prediction on: \"+image)\n", - " stack = imread(Data_folder+\"/\"+image)\n", - " short_name = os.path.splitext(image)\n", - "\n", - " if model_choice == \"Own_model\":\n", - " masks, flows, styles = model.eval(stack, diameter=Object_diameter, channels=channels, do_3D=True, anisotropy = Anisotropy, min_size=Min_size, cellprob_threshold=mask_threshold)\n", - " else:\n", - " masks, flows, styles, diams = model.eval(stack, diameter=Object_diameter, channels=channels, do_3D=True, anisotropy = Anisotropy, min_size=Min_size, cellprob_threshold=mask_threshold)\n", - "\n", - " prediction_stack_32 = img_as_float32(masks, force_copy=False)\n", - " os.chdir(Result_folder)\n", - " imsave(str(short_name[0])+\".tif\", prediction_stack_32)\n", - "\n", - "\n", - " def f(Z_plane):\n", - " flowi = flows[0]\n", - " fig = plt.figure(figsize=(20,10))\n", - " plot.show_segmentation(fig, stack[Z_plane], masks[Z_plane], flowi[Z_plane], channels=channels)\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - " print('--------------------------------------------------------------')\n", - " interact(f, Z_plane=widgets.IntSlider(min=0, max=masks.shape[0], step=1, value=0));\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hvkd66PldsXB" - }, - "source": [ - "## **6.3. Download your predictions**\n", - "---\n", - "\n", - "**Store your data** and ALL its results elsewhere by downloading it from Google Drive and after that clean the original folder tree (datasets, results, trained model etc.) if you plan to train or use new networks. Please note that the notebook will otherwise **OVERWRITE** all files which have the same name." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dHUKCoSZ7dzV" - }, - "source": [ - "# **7. Version log**\n", - "---\n", - "**v1.16.3**:\n", - "* Cyto3 added\n", - "* --fast mode removed\n", - "\n", - "**v1.16.2**:\n", - "* Debug in load a model or run QC with the current model (list of files avoids pdf and QC_model is checked rather than the model type)\n", - "\n", - "**v1.16.1**:\n", - "* Replaced all absolute pathing with relative pathing\n", - "\n", - "**v1.16**:\n", - "* Cellpose 2.2 is now used by default\n", - "* LiveCell and TissueNet models added\n", - "* A few minor text change\n", - "\n", - "\n", - "**v1.15.4**:\n", - "* ZIP compression when saving label images removed\n", - "\n", - "**v1.15.3**:\n", - "* A few minor text change\n", - "\n", - "**v1.15.2**:\n", - "\n", - "* !pip install cellpose==1.0.2\n", - "\n", - "* add verbose option and fix issues when less than 10 images are used for training.\n", - "\n", - "\n", - "\n", - "**v1.15.1**:\n", - "* !pip install opencv-python-headless==4.1.2.30\n", - "\n", - "\n", - "**v1.15**:\n", - "* Cellpose updated to 0.7.\n", - "* Omnipose bacteria and Cyto2 models added.\n", - "* Various dependencies issues fixed.\n", - "\n", - "\n", - "**v1.14**:\n", - "* Added the possibility to perform 3D predictions (section 6.2).\n", - "\n", - "**v1.13**: \n", - "\n", - "* Training now uses TORCH.\n", - "* This version also now includes built-in version check and the version log that you're reading now." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "u4pcBe8Z3T2J" - }, - "source": [ - "# **Thank you for using Cellpose 2D!**" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "machine_shape": "hm", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.4" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file +{"cells":[{"cell_type":"markdown","metadata":{"id":"V9zNGvape2-I"},"source":["# **Cellpose - Omnipose (2D)**\n","\n","---\n","\n"]},{"cell_type":"markdown","metadata":{"id":"pwLsIXtEw3Kx"},"source":["**Cellpose 2D** is a deep-learning method that can be used to segment cell and/or nuclei from bioimages and was first published by [Stringer *et al.* in 2020, in Nature Method](https://www.nature.com/articles/s41592-020-01018-x). Omnipose was developped by [Kevin John Cutler and colleagues](https://www.biorxiv.org/content/10.1101/2021.11.03.467199v2).\n","\n"," **This particular notebook enables segmentation of 2D and 3D datasets. Hovewer, training is limited to 2D images. If you are interested in using 3D datasets for training, you should use the StarDist or U-Net 3D notebooks instead.**\n","\n","---\n","*Disclaimer*:\n","\n","This notebook is part of the Zero-Cost Deep-Learning to Enhance Microscopy project (https://github.com/HenriquesLab/DeepLearning_Collab/wiki). Jointly developed by the Jacquemet (link to https://cellmig.org/) and Henriques (https://henriqueslab.github.io/) laboratories.\n","\n","This notebook is largely based on the paper:\n","\n","**Cellpose: a generalist algorithm for cellular segmentation** from Stringer *et al.*, Nature Methods, 2020. (https://www.nature.com/articles/s41592-020-01018-x)\n","\n","**Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation** from Kevin J. Cutler et al, biorXiv, 2021. (https://www.biorxiv.org/content/10.1101/2021.11.03.467199v2)\n","\n","**The Original code** is freely available in GitHub:\n","https://github.com/MouseLand/cellpose\n","\n","**Please also cite these original papers when using or developing this notebook.**\n","\n","**This notebook was also inspired by the one created by @pr4deepr** which is available here:\n","https://colab.research.google.com/github/MouseLand/cellpose/blob/8dadbe528b1ee3f59533bc23ab0ed371d5e7b769/notebooks/Cellpose_2D_v0_1.ipynb\n"]},{"cell_type":"markdown","metadata":{"id":"C5oYf0Q5yXrl"},"source":["# **0. Before getting started**\n","---\n"," For Cellpose to train, **it needs to have access to a paired training dataset made of images and their corresponding masks (label images)**. Information on how to generate a training dataset is available in our Wiki page: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki\n","\n","**We strongly recommend that you generate extra paired images. These images can be used to assess the quality of your trained model**. The quality control assessment can be done directly in this notebook.\n","\n","The data structure is important. It is necessary that all the input data are in the same folder and that all the output data is in a separate folder. The provided training dataset is already split in two folders called \"Training - Images\" (Training_source) and \"Training - Masks\" (Training_target).\n","\n","Additionally, the corresponding Training_source and Training_target files need to have **the same name**.\n","\n"," **Use 8/16 bit png or Tiff images**.\n","\n","\n","You can also provide a folder that contains the data that you wish to analyse with the trained network once all training has been performed. This can include Test dataset for which you have the equivalent output and can compare to what the network provides.\n","\n","Here's a common data structure that can work:\n","* Experiment A\n"," - **Training dataset**\n"," - Images (Training_source)\n"," - img_1.tif, img_2.tif, ...\n"," - Label images (Training_target)\n"," - img_1.tif, img_2.tif, ...\n"," - **Quality control dataset**\n"," - Images\n"," - img_1.tif, img_2.tif\n"," - Masks\n"," - img_1.tif, img_2.tif\n"," - **Data to be predicted**\n"," - **Results**\n","\n","---\n","**Important note**\n","\n","- If you wish to **Train a network from scratch** using your own dataset (and we encourage everyone to do that), you will need to run **sections 1 - 4**, then use **section 5** to assess the quality of your model and **section 6** to run predictions using the model that you trained.\n","\n","- If you wish to **Evaluate your model** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 5** to assess the quality of your model.\n","\n","- If you only wish to **run predictions** using a pretrained model you will only need to run **sections 1 and 2** to set up the notebook, then use **section 6** to run the predictions on the desired model.\n","---"]},{"cell_type":"markdown","metadata":{"id":"n4yWFoJNnoin"},"source":["# **1. Install Cellpose and dependencies**\n","---\n"]},{"cell_type":"markdown","metadata":{"id":"WlPYHrPHlUtl"},"source":["\n","## **1.1. Install dependencies**\n","---\n","\n","\n","\n"]},{"cell_type":"code","execution_count":1,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":199645,"status":"ok","timestamp":1744793412834,"user":{"displayName":"guillaume Jacquemet","userId":"03282992684407736974"},"user_tz":-180},"id":"3u2mXn3XsWzd","outputId":"bfc2c1a8-b13d-4d9c-b457-15b38edbf550"},"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/70.0 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m70.0/70.0 kB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n"," Building wheel for folium (setup.py) ... \u001b[?25l\u001b[?25hdone\n","\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","datascience 0.17.6 requires folium>=0.9.1, but you have folium 0.2.1 which is incompatible.\n","geemap 0.35.3 requires folium>=0.17.0, but you have folium 0.2.1 which is incompatible.\u001b[0m\u001b[31m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m562.7/562.7 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n"," Building wheel for imgaug (setup.py) ... \u001b[?25l\u001b[?25hdone\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.0/61.0 kB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.3/18.3 MB\u001b[0m \u001b[31m104.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","datascience 0.17.6 requires folium>=0.9.1, but you have folium 0.2.1 which is incompatible.\n","geemap 0.35.3 requires folium>=0.17.0, but you have folium 0.2.1 which is incompatible.\n","thinc 8.3.6 requires numpy<3.0.0,>=2.0.0, but you have numpy 1.26.4 which is incompatible.\u001b[0m\u001b[31m\n","\u001b[0mCollecting opencv-python-headless<4.3\n"," Downloading opencv_python_headless-3.4.18.65-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB)\n","Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.11/dist-packages (from opencv-python-headless<4.3) (1.26.4)\n","Downloading opencv_python_headless-3.4.18.65-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (45.7 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 MB\u001b[0m \u001b[31m51.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hInstalling collected packages: opencv-python-headless\n"," Attempting uninstall: opencv-python-headless\n"," Found existing installation: opencv-python-headless 4.11.0.86\n"," Uninstalling opencv-python-headless-4.11.0.86:\n"," Successfully uninstalled opencv-python-headless-4.11.0.86\n","\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","albumentations 2.0.5 requires opencv-python-headless>=4.9.0.80, but you have opencv-python-headless 3.4.18.65 which is incompatible.\n","albucore 0.0.23 requires opencv-python-headless>=4.9.0.80, but you have opencv-python-headless 3.4.18.65 which is incompatible.\u001b[0m\u001b[31m\n","\u001b[0mSuccessfully installed opencv-python-headless-3.4.18.65\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m225.9/225.9 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m117.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m85.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m59.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m41.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m18.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m95.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.4/6.4 MB\u001b[0m \u001b[31m58.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.6/45.6 MB\u001b[0m \u001b[31m50.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n"," Building wheel for wget (setup.py) ... \u001b[?25l\u001b[?25hdone\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m236.3/236.3 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hFound existing installation: opencv-python 4.11.0.86\n","Uninstalling opencv-python-4.11.0.86:\n"," Would remove:\n"," /usr/local/lib/python3.11/dist-packages/cv2/*\n"," /usr/local/lib/python3.11/dist-packages/opencv_python-4.11.0.86.dist-info/*\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libQt5Core-e7f476e2.so.5.15.16\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libQt5Gui-1ce8cbfe.so.5.15.16\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libQt5Test-9ac3ed15.so.5.15.16\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libQt5Widgets-cd430389.so.5.15.16\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libQt5XcbQpa-b18b5a78.so.5.15.16\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libX11-xcb-0e257303.so.1.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libXau-00ec42fe.so.6.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libavcodec-76c43bf0.so.59.37.100\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libavformat-d296e685.so.59.27.100\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libavutil-734d06dd.so.57.28.100\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libcrypto-8c1ab3ad.so.1.1\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libgfortran-91cc3cb1.so.3.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libopenblas-r0-f650aae0.3.3.so\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libpng16-ef62451c.so.16.44.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libquadmath-96973f99.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libssl-28bef1ac.so.1.1\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libswresample-3e7db482.so.4.7.100\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libswscale-95ddd674.so.6.7.100\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libvpx-9f572e11.so.9.1.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-icccm-413c9f41.so.4.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-image-e82a276d.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-keysyms-21015570.so.1.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-randr-a96a5a87.so.0.1.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-render-637b984a.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-render-util-43ce00f5.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-shape-25c2b258.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-shm-7a199f70.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-sync-89374f40.so.1.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-util-4d666913.so.1.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-xfixes-9be3ba6f.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-xinerama-ae147f87.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxcb-xkb-9ba31ab3.so.1.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxkbcommon-71ae2972.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_python.libs/libxkbcommon-x11-c65ed502.so.0.0.0\n"," Would not remove (might be manually added):\n"," /usr/local/lib/python3.11/dist-packages/cv2/bgsegm/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/bioinspired/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/ccm/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/colored_kinfu/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/data/haarcascade_licence_plate_rus_16stages.xml\n"," /usr/local/lib/python3.11/dist-packages/cv2/datasets/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/dnn_superres/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/dpm/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/dynafu/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/face/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/ft/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/hfs/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/img_hash/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/intensity_transform/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/kinfu/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/kinfu/detail/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/large_kinfu/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/legacy/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/line_descriptor/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/linemod/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/mcc/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/motempl/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/multicalib/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/omnidir/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/optflow/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/phase_unwrapping/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/plot/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/ppf_match_3d/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/quality/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/rapid/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/reg/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/rgbd/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/saliency/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/signal/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/stereo/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/structured_light/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/text/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/videostab/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/wechat_qrcode/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/xfeatures2d/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/ximgproc/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/ximgproc/segmentation/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/xphoto/__init__.pyi\n","Proceed (Y/n)? Y\n"," Successfully uninstalled opencv-python-4.11.0.86\n","Found existing installation: opencv-contrib-python 4.11.0.86\n","Uninstalling opencv-contrib-python-4.11.0.86:\n"," Would remove:\n"," /usr/local/lib/python3.11/dist-packages/cv2/bgsegm/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/bioinspired/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/ccm/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/colored_kinfu/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/datasets/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/dnn_superres/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/dpm/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/dynafu/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/face/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/ft/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/hfs/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/img_hash/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/intensity_transform/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/kinfu/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/kinfu/detail/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/large_kinfu/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/legacy/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/line_descriptor/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/linemod/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/mcc/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/motempl/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/multicalib/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/omnidir/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/optflow/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/phase_unwrapping/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/plot/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/ppf_match_3d/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/quality/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/rapid/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/reg/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/rgbd/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/saliency/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/signal/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/stereo/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/structured_light/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/text/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/videostab/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/wechat_qrcode/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/xfeatures2d/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/ximgproc/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/ximgproc/segmentation/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/cv2/xphoto/__init__.pyi\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python-4.11.0.86.dist-info/*\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libQt5Core-e7f476e2.so.5.15.16\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libQt5Gui-1ce8cbfe.so.5.15.16\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libQt5Test-9ac3ed15.so.5.15.16\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libQt5Widgets-cd430389.so.5.15.16\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libQt5XcbQpa-b18b5a78.so.5.15.16\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libX11-xcb-0e257303.so.1.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libXau-00ec42fe.so.6.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libavcodec-76c43bf0.so.59.37.100\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libavformat-d296e685.so.59.27.100\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libavutil-734d06dd.so.57.28.100\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libcrypto-8c1ab3ad.so.1.1\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libgfortran-91cc3cb1.so.3.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libopenblas-r0-f650aae0.3.3.so\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libpng16-ef62451c.so.16.44.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libquadmath-96973f99.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libssl-28bef1ac.so.1.1\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libswresample-3e7db482.so.4.7.100\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libswscale-95ddd674.so.6.7.100\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libvpx-9f572e11.so.9.1.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-icccm-413c9f41.so.4.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-image-e82a276d.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-keysyms-21015570.so.1.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-randr-a96a5a87.so.0.1.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-render-637b984a.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-render-util-43ce00f5.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-shape-25c2b258.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-shm-7a199f70.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-sync-89374f40.so.1.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-util-4d666913.so.1.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-xfixes-9be3ba6f.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-xinerama-ae147f87.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxcb-xkb-9ba31ab3.so.1.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxkbcommon-71ae2972.so.0.0.0\n"," /usr/local/lib/python3.11/dist-packages/opencv_contrib_python.libs/libxkbcommon-x11-c65ed502.so.0.0.0\n","Proceed (Y/n)? Y\n"," Successfully uninstalled opencv-contrib-python-4.11.0.86\n","Collecting opencv-python\n"," Downloading opencv_python-4.11.0.86-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)\n","Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.11/dist-packages (from opencv-python) (1.26.4)\n","Downloading opencv_python-4.11.0.86-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (63.0 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m63.0/63.0 MB\u001b[0m \u001b[31m39.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hInstalling collected packages: opencv-python\n","Successfully installed opencv-python-4.11.0.86\n","Collecting opencv-contrib-python\n"," Downloading opencv_contrib_python-4.11.0.86-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)\n","Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.11/dist-packages (from opencv-contrib-python) (1.26.4)\n","Downloading opencv_contrib_python-4.11.0.86-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (69.1 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.1/69.1 MB\u001b[0m \u001b[31m36.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hInstalling collected packages: opencv-contrib-python\n","Successfully installed opencv-contrib-python-4.11.0.86\n"]}],"source":["\n","#@markdown ##Install Cellpose\n","\n","#Libraries contains information of certain topics.\n","#For example the tifffile library contains information on how to handle tif-files.\n","\n","#Here, we install libraries which are not already included in Colab.\n","\n","!pip uninstall -y -q yellowbrick\n","\n","!pip install -q tifffile # contains tools to operate tiff-files\n","!pip install -q folium==0.2.1\n","!pip install -q imgaug==0.2.5\n","!pip install -q numpy==1.26.4\n","!pip install \"opencv-python-headless<4.3\"\n","!pip install -q cellpose\n","!pip install -q wget\n","!pip install -q memory_profiler\n","!pip install -q fpdf2\n","\n","# --- suggested changes ---\n","!pip uninstall opencv-python opencv-contrib-python # Uninstall conflicting packages\n","!pip install opencv-python # Reinstall opencv-python, potentially with ==4.8.1 if issues persist\n","!pip install opencv-contrib-python # Reinstall the contrib package if needed\n","# --- end of suggested changes ---\n","\n","#Force session restart\n","exit(0)\n","\n"]},{"cell_type":"markdown","metadata":{"id":"w-FE-qZI5U_k"},"source":["\n","## **1.2. Restart your runtime**\n","---\n","\n","\n","\n","** Ignore the following message error message. Your Runtime has automatically restarted. This is normal.**\n","\n","\"\"
\n","\n","\n","\n","\n"]},{"cell_type":"markdown","metadata":{"id":"wgeU4cC55Sej"},"source":["## **1.3. Load key dependencies**\n","---\n",""]},{"cell_type":"code","execution_count":3,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":3012,"status":"ok","timestamp":1744793439612,"user":{"displayName":"guillaume Jacquemet","userId":"03282992684407736974"},"user_tz":-180},"id":"Kkbr0GAA5ZAQ","outputId":"c952d975-a16c-421f-f518-0ef09ca6e147","cellView":"form"},"outputs":[{"output_type":"stream","name":"stdout","text":["The memory_profiler extension is already loaded. To reload it, use:\n"," %reload_ext memory_profiler\n","Libraries installed\n","Notebook version: 1.16.3\n","Latest notebook version: 1.16.3\n","This notebook is up-to-date.\n"]}],"source":["#@markdown ##Load key dependencies\n","\n","Notebook_version = '1.16.3'\n","Network = 'Cellpose'\n","\n","from builtins import any as b_any\n","\n","%load_ext memory_profiler\n","\n","def get_requirements_path():\n"," # Store requirements file in 'contents' directory\n"," current_dir = os.getcwd()\n"," dir_count = current_dir.count('/') - 1\n"," path = '../' * (dir_count) + 'requirements.txt'\n"," return path\n","\n","def filter_files(file_list, filter_list):\n"," filtered_list = []\n"," for fname in file_list:\n"," if b_any(fname.split('==')[0] in s for s in filter_list):\n"," filtered_list.append(fname)\n"," return filtered_list\n","\n","def build_requirements_file(before, after):\n"," path = get_requirements_path()\n","\n"," # Exporting requirements.txt for local run\n"," !pip freeze > $path\n","\n"," # Get minimum requirements file\n"," df = pd.read_csv(path)\n"," mod_list = [m.split('.')[0] for m in after if not m in before]\n"," req_list_temp = df.values.tolist()\n"," req_list = [x[0] for x in req_list_temp]\n","\n"," # Replace with package name and handle cases where import name is different to module name\n"," mod_name_list = [['sklearn', 'scikit-learn'], ['skimage', 'scikit-image']]\n"," mod_replace_list = [[x[1] for x in mod_name_list] if s in [x[0] for x in mod_name_list] else s for s in mod_list]\n"," filtered_list = filter_files(req_list, mod_replace_list)\n","\n"," file=open(path,'w')\n"," for item in filtered_list:\n"," file.writelines(item + '\\n')\n","\n"," file.close()\n","\n","import sys\n","before = [str(m) for m in sys.modules]\n","\n","\n","\n","# ------- Variable specific to Cellpose -------\n","\n","from urllib.parse import urlparse\n","%matplotlib inline\n","from cellpose import models\n","#use_GPU = models.use_gpu()\n","\n","#import mxnet as mx\n","\n","from skimage.util import img_as_ubyte\n","import cv2\n","from cellpose import plot\n","from ipywidgets import interact, interact_manual\n","from zipfile import ZIP_DEFLATED\n","\n","\n","# For sliders and dropdown menu and progress bar\n","from ipywidgets import interact\n","import ipywidgets as widgets\n","\n","\n","# ------- Common variable to all ZeroCostDL4Mic notebooks -------\n","import numpy as np\n","from matplotlib import pyplot as plt\n","import urllib\n","import os, random\n","import shutil\n","import zipfile\n","from tifffile import imread, imwrite as imsave\n","import time\n","import sys\n","import wget\n","from pathlib import Path\n","import pandas as pd\n","import csv\n","from glob import glob\n","from scipy import signal\n","from scipy import ndimage\n","from skimage import io\n","from sklearn.linear_model import LinearRegression\n","from skimage.util import img_as_uint\n","import matplotlib as mpl\n","from skimage.metrics import structural_similarity\n","from skimage.metrics import peak_signal_noise_ratio as psnr\n","from astropy.visualization import simple_norm\n","from skimage import img_as_float32\n","from skimage.util import img_as_ubyte\n","from tqdm import tqdm\n","from fpdf import FPDF, HTMLMixin\n","from datetime import datetime\n","import subprocess\n","from pip._internal.operations.freeze import freeze\n","\n","\n","#Create a variable to get and store relative base path\n","base_path = os.getcwd()\n","\n","# Colors for the warning messages\n","class bcolors:\n"," WARNING = '\\033[31m'\n","\n","W = '\\033[0m' # white (normal)\n","R = '\\033[31m' # red\n","\n","#Disable some of the tensorflow warnings\n","import warnings\n","warnings.filterwarnings(\"ignore\")\n","\n","print(\"Libraries installed\")\n","\n","# Check if this is the latest version of the notebook\n","All_notebook_versions = pd.read_csv(\"https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Latest_Notebook_versions.csv\", dtype=str)\n","print('Notebook version: '+Notebook_version)\n","Latest_Notebook_version = All_notebook_versions[All_notebook_versions[\"Notebook\"] == Network]['Version'].iloc[0]\n","print('Latest notebook version: '+Latest_Notebook_version)\n","if Notebook_version == Latest_Notebook_version:\n"," print(\"This notebook is up-to-date.\")\n","else:\n"," print(bcolors.WARNING +\"A new version of this notebook has been released. We recommend that you download it at https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki\")\n","\n","\n","!pip freeze > requirements.txt\n","\n","#Create a pdf document with training summary\n","\n","def pdf_export(trained = False, augmentation = False, pretrained_model = False):\n"," # save FPDF() class into a\n"," # variable pdf\n"," #from datetime import datetime\n","\n"," class MyFPDF(FPDF, HTMLMixin):\n"," pass\n","\n"," pdf = MyFPDF()\n"," pdf.add_page()\n"," pdf.set_right_margin(-1)\n"," pdf.set_font(\"Arial\", size = 11, style='B')\n","\n","\n"," day = datetime.now()\n"," datetime_str = str(day)[0:10]\n","\n"," Header = 'Training report for '+Network+' model ('+model_name+')\\nDate: '+datetime_str\n"," pdf.multi_cell(180, 5, txt = Header, align = 'L')\n","\n"," # add another cell\n"," if trained:\n"," training_time = \"Training time: \"+str(hour)+ \"hour(s) \"+str(mins)+\"min(s) \"+str(round(sec))+\"sec(s)\"\n"," pdf.cell(190, 5, txt = training_time, ln = 1, align='L')\n"," pdf.ln(1)\n","\n"," Header_2 = 'Information for your materials and methods:'\n"," pdf.cell(190, 5, txt=Header_2, ln=1, align='L')\n","\n"," all_packages = ''\n"," for requirement in freeze(local_only=True):\n"," all_packages = all_packages+requirement+', '\n"," #print(all_packages)\n","\n"," #Main Packages\n"," main_packages = ''\n"," version_numbers = []\n"," for name in ['tensorflow','numpy','Keras','csbdeep']:\n"," find_name=all_packages.find(name)\n"," main_packages = main_packages+all_packages[find_name:all_packages.find(',',find_name)]+', '\n"," #Version numbers only here:\n"," version_numbers.append(all_packages[find_name+len(name)+2:all_packages.find(',',find_name)])\n","\n"," try:\n"," cuda_version = subprocess.run([\"nvcc\",\"--version\"],stdout=subprocess.PIPE)\n"," cuda_version = cuda_version.stdout.decode('utf-8')\n"," cuda_version = cuda_version[cuda_version.find(', V')+3:-1]\n"," except:\n"," cuda_version = ' - No cuda found - '\n"," try:\n"," gpu_name = subprocess.run([\"nvidia-smi\"],stdout=subprocess.PIPE)\n"," gpu_name = gpu_name.stdout.decode('utf-8')\n"," gpu_name = gpu_name[gpu_name.find('Tesla'):gpu_name.find('Tesla')+10]\n"," except:\n"," gpu_name = ' - No GPU found - '\n"," #print(cuda_version[cuda_version.find(', V')+3:-1])\n"," #print(gpu_name)\n","\n"," shape = io.imread(Training_source+'/'+os.listdir(Training_source)[1]).shape\n"," dataset_size = len(os.listdir(Training_source))\n","\n"," text = 'The '+Network+' model was trained from scratch for '+str(number_of_epochs)+' epochs on '+str(dataset_size)+' paired image patches (image dimensions: '+str(shape)+', with a batch size of '+str(batch_size)+', using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.'\n","\n","\n"," if pretrained_model:\n"," text = 'The '+Network+' model was trained for '+str(number_of_epochs)+' epochs on '+str(dataset_size)+' paired image patches (image dimensions: '+str(shape)+', with a batch size of '+str(batch_size)+', using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). The model was re-trained from a pretrained model. Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.'\n","\n"," # print(text)\n","\n"," pdf.set_font('')\n"," pdf.set_font_size(10.)\n"," pdf.multi_cell(190, 5, txt = text, align='L')\n"," pdf.set_font('')\n"," pdf.set_font('Arial', size = 10, style = 'B')\n"," pdf.ln(1)\n"," pdf.cell(28, 5, txt='Augmentation: ', ln=0)\n"," pdf.set_font('')\n"," if augmentation:\n"," aug_text = 'The dataset was augmented by a factor of '+str(Multiply_dataset_by)\n","\n"," else:\n"," aug_text = 'No augmentation was used for training.'\n"," pdf.multi_cell(190, 5, txt=aug_text, align='L')\n"," pdf.set_font('Arial', size = 11, style = 'B')\n"," pdf.ln(1)\n"," pdf.cell(180, 5, txt = 'Parameters', align='L', ln=1)\n"," pdf.set_font('')\n"," pdf.set_font_size(10.)\n"," if Use_Default_Advanced_Parameters:\n"," pdf.cell(200, 5, txt='Default Advanced Parameters were enabled')\n"," pdf.cell(200, 5, txt='The following parameters were used for training:')\n"," pdf.ln(1)\n"," html = \"\"\"\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
ParameterValue
number_of_epochs{0}
batch_size{1}
percentage_validation{2}
initial_learning_rate{3}
\n"," \"\"\".format(number_of_epochs,batch_size,percentage_validation,initial_learning_rate)\n"," pdf.write_html(html)\n","\n"," #pdf.multi_cell(190, 5, txt = text_2, align='L')\n"," pdf.set_font(\"Arial\", size = 11, style='B')\n"," pdf.ln(1)\n"," pdf.cell(190, 5, txt = 'Training Dataset', align='L', ln=1)\n"," pdf.set_font('')\n"," pdf.set_font('Arial', size = 10, style = 'B')\n"," pdf.cell(29, 5, txt= 'Training_source:', align = 'L', ln=0)\n"," pdf.set_font('')\n"," pdf.multi_cell(170, 5, txt = Training_source, align = 'L')\n"," pdf.set_font('')\n"," pdf.set_font('Arial', size = 10, style = 'B')\n"," pdf.cell(27, 5, txt= 'Training_target:', align = 'L', ln=0)\n"," pdf.set_font('')\n"," pdf.multi_cell(170, 5, txt = Training_target, align = 'L')\n"," #pdf.cell(190, 5, txt=aug_text, align='L', ln=1)\n"," pdf.ln(1)\n"," pdf.set_font('')\n"," pdf.set_font('Arial', size = 10, style = 'B')\n"," pdf.cell(22, 5, txt= 'Model Path:', align = 'L', ln=0)\n"," pdf.set_font('')\n"," pdf.multi_cell(170, 5, txt = model_path+'/'+model_name, align = 'L')\n"," pdf.ln(1)\n"," pdf.cell(60, 5, txt = 'Example Training pair', ln=1)\n"," pdf.ln(1)\n"," exp_size = io.imread(base_path + '/TrainingDataExample_Cellpose2D.png').shape\n"," pdf.image(base_path + '/TrainingDataExample_Cellpose2D.png', x = 11, y = None, w = round(exp_size[1]/8), h = round(exp_size[0]/8))\n"," pdf.ln(1)\n"," ref_1 = 'References:\\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. \"ZeroCostDL4Mic: an open platform to simplify access and use of Deep-Learning in Microscopy.\" BioRxiv (2020).'\n"," pdf.multi_cell(190, 5, txt = ref_1, align='L')\n"," ref_2 = '- Cellpose: Stringer, Carsen, et al. \"Cellpose: a generalist algorithm for cellular segmentation.\" Nature Methods 18, pages100-106(2021).'\n"," pdf.multi_cell(190, 5, txt = ref_2, align='L')\n"," pdf.ln(3)\n"," reminder = 'Important:\\nRemember to perform the quality control step on all newly trained models\\nPlease consider depositing your training dataset on Zenodo'\n"," pdf.set_font('')\n"," pdf.set_font('Arial', size = 11, style='B')\n"," pdf.multi_cell(190, 5, txt=reminder, align='C')\n","\n"," pdf.output(model_path+'/'+model_name+'/'+model_name+\"_training_report.pdf\")\n"," # pdf.output(Saving_path+'/train_folder/models/'+model_name+\"_training_report.pdf\")\n","\n","\n","\n","#Make a pdf summary of the QC results\n","\n","def qc_pdf_export():\n"," class MyFPDF(FPDF, HTMLMixin):\n"," pass\n","\n"," pdf = MyFPDF()\n"," pdf.add_page()\n"," pdf.set_right_margin(-1)\n"," pdf.set_font('')\n"," pdf.set_font(\"Arial\", size = 11, style='B')\n","\n"," Network = 'Cellpose 2D'\n"," #model_name = os.path.basename(full_QC_model_path)\n"," day = datetime.now()\n"," datetime_str = str(day)[0:10]\n","\n"," Header = 'Quality Control report for '+Network+' model ('+QC_model_name+')\\nDate: '+datetime_str\n"," pdf.multi_cell(180, 5, txt = Header, align = 'L')\n","\n"," all_packages = ''\n"," for requirement in freeze(local_only=True):\n"," all_packages = all_packages+requirement+', '\n","\n"," pdf.set_font('')\n"," pdf.set_font('Arial', size = 11, style = 'B')\n"," pdf.ln(2)\n"," pdf.cell(190, 5, txt = 'Development of Training Losses', ln=1, align='L')\n"," pdf.ln(1)\n"," exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape\n"," if os.path.exists(full_QC_model_path+'Quality Control/lossCurvePlots.png'):\n"," pdf.image(full_QC_model_path+'Quality Control/lossCurvePlots.png', x = 11, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/13))\n"," else:\n"," pdf.set_font('')\n"," pdf.set_font('Arial', size=10)\n"," pdf.multi_cell(190, 5, txt='If you would like to see the evolution of the loss function during training please play the first cell of the QC section in the notebook.', align='L')\n"," pdf.ln(2)\n"," pdf.set_font('')\n"," pdf.set_font('Arial', size = 10, style = 'B')\n"," pdf.ln(3)\n"," pdf.cell(80, 5, txt = 'Example Quality Control Visualisation', ln=1)\n"," pdf.ln(1)\n"," exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape\n"," pdf.image(full_QC_model_path+'Quality Control/QC_example_data.png', x = 16, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/10))\n"," pdf.ln(1)\n"," pdf.set_font('')\n"," pdf.set_font('Arial', size = 11, style = 'B')\n"," pdf.ln(1)\n"," pdf.cell(180, 5, txt = 'Quality Control Metrics', align='L', ln=1)\n"," pdf.set_font('')\n"," pdf.set_font_size(10.)\n","\n"," pdf.ln(1)\n"," html = \"\"\"\n"," \n"," \n"," \"\"\"\n"," with open(full_QC_model_path+'Quality Control/Quality_Control for '+QC_model_name+'.csv', 'r') as csvfile:\n"," metrics = csv.reader(csvfile)\n"," header = next(metrics)\n"," image = header[0]\n"," mSSIM_PvsGT = header[1]\n"," mSSIM_SvsGT = header[2]\n"," NRMSE_PvsGT = header[3]\n"," NRMSE_SvsGT = header[4]\n"," PSNR_PvsGT = header[5]\n"," PSNR_SvsGT = header[6]\n"," header = \"\"\"\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \"\"\".format(image,mSSIM_PvsGT,mSSIM_SvsGT,NRMSE_PvsGT,NRMSE_SvsGT,PSNR_PvsGT,PSNR_SvsGT)\n"," html = html+header\n"," for row in metrics:\n"," image = row[0]\n"," mSSIM_PvsGT = row[1]\n"," mSSIM_SvsGT = row[2]\n"," NRMSE_PvsGT = row[3]\n"," NRMSE_SvsGT = row[4]\n"," PSNR_PvsGT = row[5]\n"," PSNR_SvsGT = row[6]\n"," cells = \"\"\"\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \"\"\".format(image,str(round(float(mSSIM_PvsGT),3)),str(round(float(mSSIM_SvsGT),3)),str(round(float(NRMSE_PvsGT),3)),str(round(float(NRMSE_SvsGT),3)),str(round(float(PSNR_PvsGT),3)),str(round(float(PSNR_SvsGT),3)))\n"," html = html+cells\n"," html = html+\"\"\"
{0}{1}{2}{3}{4}{5}{6}
{0}{1}{2}{3}{4}{5}{6}
\"\"\"\n","\n"," pdf.write_html(html)\n","\n"," pdf.ln(1)\n"," pdf.set_font('')\n"," pdf.set_font_size(10.)\n"," ref_1 = 'References:\\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. \"ZeroCostDL4Mic: an open platform to simplify access and use of Deep-Learning in Microscopy.\" BioRxiv (2020).'\n"," pdf.multi_cell(190, 5, txt = ref_1, align='L')\n"," ref_2 = '- CARE: Weigert, Martin, et al. \"Content-aware image restoration: pushing the limits of fluorescence microscopy.\" Nature methods 15.12 (2018): 1090-1097.'\n"," pdf.multi_cell(190, 5, txt = ref_2, align='L')\n","\n"," pdf.ln(3)\n"," reminder = 'To find the parameters and other information about how this model was trained, go to the training_report.pdf of this model which should be in the folder of the same name.'\n","\n"," pdf.set_font('Arial', size = 11, style='B')\n"," pdf.multi_cell(190, 5, txt=reminder, align='C')\n","\n"," pdf.output(full_QC_model_path+'Quality Control/'+QC_model_name+'_QC_report.pdf')\n","\n","\n","# Build requirements file for local run\n","after = [str(m) for m in sys.modules]\n","build_requirements_file(before, after)\n"]},{"cell_type":"markdown","metadata":{"id":"b4-r1gE7Iamv"},"source":["# **2. Initialise the Colab session**\n","---"]},{"cell_type":"markdown","metadata":{"id":"DMNHVZfHmbKb"},"source":["\n","## **2.1. Check for GPU access**\n","---\n","\n","By default, the session should be using Python 3 and GPU acceleration, but it is possible to ensure that these are set properly by doing the following:\n","\n","Go to **Runtime -> Change the Runtime type**\n","\n","**Runtime type: Python 3** *(Python 3 is programming language in which this program is written)*\n","\n","**Accelerator: GPU** *(Graphics processing unit)*\n"]},{"cell_type":"code","execution_count":7,"metadata":{"cellView":"form","id":"BDhmUgqCStlm","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1744829046534,"user_tz":-180,"elapsed":105,"user":{"displayName":"guillaume Jacquemet","userId":"03282992684407736974"}},"outputId":"19c353bd-efe5-44be-b080-27da85a3d3c7"},"outputs":[{"output_type":"stream","name":"stdout","text":["You have GPU access\n","Wed Apr 16 18:44:05 2025 \n","+-----------------------------------------------------------------------------------------+\n","| NVIDIA-SMI 550.54.15 Driver Version: 550.54.15 CUDA Version: 12.4 |\n","|-----------------------------------------+------------------------+----------------------+\n","| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n","| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n","| | | MIG M. |\n","|=========================================+========================+======================|\n","| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n","| N/A 71C P0 31W / 70W | 8582MiB / 15360MiB | 0% Default |\n","| | | N/A |\n","+-----------------------------------------+------------------------+----------------------+\n"," \n","+-----------------------------------------------------------------------------------------+\n","| Processes: |\n","| GPU GI CI PID Type Process name GPU Memory |\n","| ID ID Usage |\n","|=========================================================================================|\n","+-----------------------------------------------------------------------------------------+\n"]}],"source":["#@markdown ##Run this cell to check if you have GPU access\n","\n","#%tensorflow_version 1.x\n","\n","import tensorflow as tf\n","if tf.test.gpu_device_name()=='':\n"," print('You do not have GPU access.')\n"," print('Did you change your runtime ?')\n"," print('If the runtime setting is correct then Google did not allocate a GPU for your session')\n"," print('Expect slow performance. To access GPU try reconnecting later')\n","\n","else:\n"," print('You have GPU access')\n"," !nvidia-smi"]},{"cell_type":"markdown","metadata":{"id":"-oqBTeLaImnU"},"source":["## **2.2. Mount your Google Drive**\n","---\n"," To use this notebook on the data present in your Google Drive, you need to mount your Google Drive to this notebook.\n","\n"," Play the cell below to mount your Google Drive and follow the instructions.\n","\n"," Once this is done, your data are available in the **Files** tab on the top left of notebook."]},{"cell_type":"code","execution_count":4,"metadata":{"cellView":"form","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":4,"status":"ok","timestamp":1744793467160,"user":{"displayName":"guillaume Jacquemet","userId":"03282992684407736974"},"user_tz":-180},"id":"01Djr8v-5pPk","outputId":"a5ebef4a-b579-465b-e756-d437c9b68d69"},"outputs":[{"metadata":{"tags":null},"name":"stdout","output_type":"stream","text":["Mounted at /content/gdrive\n"]}],"source":["\n","#@markdown ##Run this cell to connect your Google Drive to Colab\n","\n","#@markdown * Follow the instructions.\n","\n","\n","#@markdown * Click on \"Files\" site on the right. Refresh the site. Your Google Drive folder should now be available here as \"drive\".\n","\n","#mounts user's Google Drive to Google Colab.\n","\n","from google.colab import drive\n","drive.mount('/content/gdrive')\n","\n","\n"]},{"cell_type":"markdown","metadata":{"id":"2UfUWjI_askO"},"source":["# **3. Select your parameters and paths**\n","---"]},{"cell_type":"markdown","metadata":{"id":"ZyMxrSWvavVL"},"source":["## **3.1. Setting main training parameters**\n","---\n",""]},{"cell_type":"markdown","metadata":{"id":"5MlTyQVXXvDx"},"source":[" **Paths for training, predictions and results**\n","\n","\n","**`Training_source:`, `Training_target`:** These are the paths to your folders containing the Training_source (images of cells) and Training_target (masks) training data respecively. To find the paths of the folders containing the respective datasets, go to your Files on the left of the notebook, navigate to the folder containing your files and copy the path by right-clicking on the folder, **Copy path** and pasting it into the right box below.\n","\n","**`model_name`:** Use only my_model -style, not my-model (Use \"_\" not \"-\"). Do not use spaces in the name. Avoid using the name of an existing model (saved in the same folder) as it will be overwritten.\n","\n","**`model_path`**: Enter the path where your model will be saved once trained (for instance your result folder).\n","\n","\n","**Training parameters**\n","\n","**`number_of_epochs`:** Input how many epochs (rounds) the network will be trained. Preliminary results can already be observed after a 100 epochs, but a full training should run for up to 500-1000 epochs. Evaluate the performance after training (see 5.). **Default value: 500**\n","\n","**Advanced Parameters - experienced users only**\n","\n","**`batch_size:`** This parameter defines the number of patches seen in each training step. Reducing or increasing the **batch size** may slow or speed up your training, respectively, and can influence network performance. **Default value: 8**\n","\n","\n","**`percentage_validation`:** Input the percentage of your training dataset you want to use to validate the network during the training. **Default value: 10**\n","\n","\n","\n","\n"]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","id":"2HkNZ16BdfJv"},"outputs":[],"source":["#@markdown ###Path to training images:\n","\n","Training_source = \"\" #@param {type:\"string\"}\n","Training_target = \"\" #@param {type:\"string\"}\n","\n","#Define where the patch file will be saved\n","base = base_path\n","\n","# model name and path\n","#@markdown ###Name of the model and path to model folder:\n","model_name = \"\" #@param {type:\"string\"}\n","model_path = \"\" #@param {type:\"string\"}\n","\n","# other parameters for training.\n","#@markdown ###Training Parameters:\n","#@markdown Number of epochs:\n","number_of_epochs = 500#@param {type:\"number\"}\n","\n","Channel_to_use_for_training = \"Red\" #@param [\"Grayscale\", \"Blue\", \"Green\", \"Red\"]\n","\n","# @markdown ###If you have a secondary channel that can be used for training, for instance nuclei, choose it here:\n","\n","Second_training_channel= \"None\" #@param [\"None\", \"Blue\", \"Green\", \"Red\"]\n","\n","\n","#@markdown ###Advanced Parameters\n","\n","Use_Default_Advanced_Parameters = True #@param {type:\"boolean\"}\n","#@markdown ###If not, please input:\n","batch_size = 8#@param {type:\"number\"}\n","initial_learning_rate = 0.0002 #@param {type:\"number\"}\n","percentage_validation = 10#@param {type:\"number\"}\n","\n","if (Use_Default_Advanced_Parameters):\n"," print(\"Default advanced parameters enabled\")\n"," batch_size = 8\n"," initial_learning_rate = 0.0002\n"," percentage_validation = 10\n","\n","#here we check that no model with the same name already exist, if so delete\n","if os.path.exists(model_path+'/'+model_name):\n"," print(bcolors.WARNING +\"!! WARNING: \"+model_name+\" already exists and will be deleted in the following cell !!\")\n"," print(bcolors.WARNING +\"To continue training \"+model_name+\", choose a new model_name here, and load \"+model_name+\" in section 3.3\"+W)\n","\n","# Here we enable the cyto pre-trained model by default (in case the cell is not ran)\n","model_to_load = \"cyto\"\n","# Here we disable data augmentation by default (in case the cell is not ran)\n","\n","Use_Data_augmentation = True\n","\n","# This will display a randomly chosen dataset input and output\n","random_choice = random.choice(os.listdir(Training_source))\n","x = io.imread(Training_source+\"/\"+random_choice)\n","norm = simple_norm(x, percent = 99)\n","y = io.imread(Training_target+\"/\"+random_choice)\n","\n","# Find the number of channel in the input image\n","\n","n_channel = 1 if x.ndim == 2 else x.shape[-1]\n","\n","\n","# Here we match the channel to number\n","\n","if Channel_to_use_for_training == \"Grayscale\":\n"," Training_channel = 0\n","\n"," if not n_channel == 1:\n"," print(bcolors.WARNING +\"!! WARNING: your image has more than one channel, choose which channel you want to use for trainning !!\")\n","\n","if Channel_to_use_for_training == \"Blue\":\n"," Training_channel = 3\n","\n","if Channel_to_use_for_training == \"Green\":\n"," Training_channel = 2\n","\n","if Channel_to_use_for_training == \"Red\":\n"," Training_channel = 1\n","\n","\n","if Second_training_channel == \"Blue\":\n"," Second_training_channel = 3\n","\n","if Second_training_channel == \"Green\":\n"," Second_training_channel = 2\n","\n","if Second_training_channel == \"Red\":\n"," Second_training_channel = 1\n","\n","if Second_training_channel == \"None\":\n"," Second_training_channel = 0\n","\n","\n","if n_channel ==1:\n","\n"," f=plt.figure(figsize=(16,8))\n"," plt.subplot(1,2,1)\n"," plt.imshow(x, norm=norm, cmap='magma', interpolation='nearest')\n"," plt.title('Training source')\n"," plt.axis('off');\n","\n"," plt.subplot(1,2,2)\n"," plt.imshow(y,cmap='nipy_spectral', interpolation='nearest')\n"," plt.title('Training target')\n"," plt.axis('off');\n","\n"," plt.savefig(base_path + '/TrainingDataExample_Cellpose2D.png',bbox_inches='tight',pad_inches=0)\n","\n","else:\n","\n"," f=plt.figure(figsize=(20,10))\n"," plt.subplot(1,3,1)\n"," plt.imshow(x, interpolation='nearest')\n"," plt.title('Training source')\n"," plt.axis('off');\n","\n"," plt.subplot(1,3,2)\n"," plt.imshow(x[:, :, int(Training_channel-1)],cmap='magma', interpolation='nearest')\n"," plt.title('Channel used for training')\n"," plt.axis('off');\n","\n"," plt.subplot(1,3,3)\n"," plt.imshow(y,cmap='nipy_spectral', interpolation='nearest')\n"," plt.title('Training target')\n"," plt.axis('off');\n","\n"," plt.savefig(base_path + '/TrainingDataExample_Cellpose2D.png',bbox_inches='tight',pad_inches=0)"]},{"cell_type":"markdown","metadata":{"id":"qEg6ar0PhuDY"},"source":["## **3.2. Data augmentation**\n","---\n",""]},{"cell_type":"markdown","metadata":{"id":"t6q9aqDUhxlw"},"source":["Data augmentation can improve training progress by amplifying differences in the dataset. This can be useful if the available dataset is small since, in this case, it is possible that a network could quickly learn every example in the dataset (overfitting), without augmentation. Augmentation is not necessary for training and if your training dataset is large you should disable it.\n","\n","By default, a x4 data augmentation is enabled in this notebook."]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","id":"SblwpgmahfBl"},"outputs":[],"source":["#Data augmentation\n","\n","Use_Data_augmentation = False #@param {type:\"boolean\"}\n","\n","if Use_Data_augmentation:\n"," print(bcolors.WARNING+\"Data augmentation enabled\")\n"," Multiply_dataset_by = 4\n","\n","\n","if not Use_Data_augmentation:\n"," print(bcolors.WARNING+\"Data augmentation disabled\")"]},{"cell_type":"markdown","metadata":{"id":"s2NC_-Tuc02W"},"source":["\n","## **3.3. Using weights from a pre-trained model as initial weights**\n","---\n"," Here, you can set the path to a pre-trained model from which the weights can be extracted and used as a starting point for this training session. **This pre-trained model needs to be a Cellpose model**.\n","\n"," You can also use the pretrained models already available in Cellpose:\n","\n","- The cytoplasm model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is an optional nuclear channel.\n","\n","- The cytoplasm2 model is an updated cytoplasm model trained with user-submitted images.\n","\n","- The nuclear model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is always set to an array of zeros.\n","\n"," This option allows you to perform training over multiple Colab runtimes or to do transfer learning using models trained outside of ZeroCostDL4Mic. **You do not need to run this section if you want to train a network from scratch**.\n"]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":27,"status":"ok","timestamp":1744184288926,"user":{"displayName":"guillaume Jacquemet","userId":"03282992684407736974"},"user_tz":-180},"id":"sLdgQM6Rc7vp","outputId":"a8f51ab5-aca2-4c3c-b366-70d2359006ac"},"outputs":[{"name":"stdout","output_type":"stream","text":["\u001b[31mNo pretrained network will be used.\n"]}],"source":["# @markdown ##Loading weights from a pre-trained network\n","\n","Use_pretrained_model = False #@param {type:\"boolean\"}\n","\n","Pretrained_model = \"Own_model\" #@param [\"Cytoplasm\",\"Cytoplasm2\", \"Cytoplasm3\", \"Nuclei\", \"LiveCell\", \"TissueNet\", \"Own_model\"]\n","\n","#@markdown ###If using your own model, please provide the path to the model (not the folder):\n","pretrained_model_path = \"/content/gdrive/Shareddrives/CDM-annotations-Johanna/Ana_model2\" #@param {type:\"string\"}\n","\n","# --------------------- Check if we load a previously trained model ------------------------\n","\n","if Use_pretrained_model == True :\n","\n"," if Pretrained_model == \"Own_model\":\n","\n"," model_to_load = pretrained_model_path\n","\n"," print('The model '+ str(model_to_load) + \"will be used as a starting point\")\n","\n"," if Pretrained_model == \"Cytoplasm\":\n"," model_to_load = \"cyto\"\n"," print('The model Cytoplasm will be used as a starting point')\n","\n"," if Pretrained_model == \"Cytoplasm2\":\n"," model_to_load = \"cyto2\"\n"," print('The model Cytoplasm2 (cyto2) will be used as a starting point')\n","\n"," if Pretrained_model == \"Cytoplasm3\":\n"," model_to_load = \"cyto3\"\n"," print('The model Cytoplasm3 (cyto3) will be used as a starting point')\n","\n"," if Pretrained_model == \"Nuclei\":\n"," model_to_load = \"nuclei\"\n"," print('The model nuclei will be used as a starting point')\n","\n"," if Pretrained_model == \"LiveCell\":\n"," model_to_load = \"livecell\"\n"," print('The model LiveCell will be used as a starting point')\n","\n"," if Pretrained_model == \"TissueNet\":\n"," model_to_load = \"tissuenet\"\n"," print('The model TissueNet will be used as a starting point')\n","\n","else:\n"," model_to_load = None\n"," print(bcolors.WARNING+'No pretrained network will be used.')\n","\n"]},{"cell_type":"markdown","metadata":{"id":"qeYZ7PeValfs"},"source":["# **4. Train the network**\n","---"]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","id":"tsn8WV3Wl0sG"},"outputs":[],"source":["#@markdown ##Create the model and dataset objects\n","\n","\n","# Here we check that the model destination folder is empty\n","if os.path.exists(model_path+'/'+model_name):\n"," print(bcolors.WARNING +\"!! WARNING: Model folder already exists and has been removed !!\" + W)\n"," shutil.rmtree(model_path+'/'+model_name)\n","\n","os.makedirs(model_path+\"/\"+model_name)\n","\n","\n","#To use cellpose to work we need to organise the data in a way the network can understand\n","\n","# Here we count the number of files in the training target folder\n","Filelist = os.listdir(Training_target)\n","number_files = len(Filelist)\n","\n","# Here we count the number of file to use for validation\n","Image_for_validation = int((number_files)*(percentage_validation/100))\n","\n","if Image_for_validation == 0:\n"," Image_for_validation = 1\n","\n","Saving_path = base_path + \"/\" + model_name\n","\n","if os.path.exists(Saving_path):\n"," shutil.rmtree(Saving_path)\n","os.makedirs(Saving_path)\n","\n","train_folder = Saving_path+\"/train_folder\"\n","os.makedirs(train_folder)\n","\n","test_folder = Saving_path+\"/test_folder\"\n","os.makedirs(test_folder)\n","\n","index = 0\n","\n","print('Copying training source data...')\n","for f in tqdm(os.listdir(Training_source)):\n"," short_name = os.path.splitext(f)\n","\n"," if index < Image_for_validation:\n"," shutil.copyfile(Training_source+\"/\"+f, test_folder+\"/\"+short_name[0]+\"_img.tif\")\n"," shutil.copyfile(Training_target+\"/\"+f, test_folder+\"/\"+short_name[0]+\"_masks.tif\")\n"," else:\n"," shutil.copyfile(Training_source+\"/\"+f, train_folder+\"/\"+short_name[0]+\"_img.tif\")\n"," shutil.copyfile(Training_target+\"/\"+f, train_folder+\"/\"+short_name[0]+\"_masks.tif\")\n"," index = index +1\n","\n","print(\"Done\")\n","\n","pdf_export(augmentation = Use_Data_augmentation, pretrained_model = Use_pretrained_model)\n","\n"]},{"cell_type":"markdown","metadata":{"id":"jRorFe296LgI"},"source":["## **4.2. Start Training**\n","---\n","\n","When playing the cell below you should see updates after each epoch (round). Network training can take some time.\n","\n","* **CRITICAL NOTE:** Training is currently done using Torch.\n","\n","* **CRITICAL NOTE:** Google Colab has a time limit for processing (to prevent using GPU power for datamining). Training time must be less than 12 hours! If training takes longer than 12 hours, please decrease the number of epochs or number of patches. Another way circumvent this is to save the parameters of the model after training and start training again from this point.\n"]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","id":"YXUnd3awi6K3"},"outputs":[],"source":["#@markdown ##Start training\n","\n","start = time.time()\n","\n","if not Use_Data_augmentation:\n"," !python -m cellpose --train --use_gpu --dir \"$train_folder\" --test_dir \"$test_folder\" --pretrained_model $model_to_load --chan $Training_channel --chan2 $Second_training_channel --n_epochs $number_of_epochs --learning_rate $initial_learning_rate --batch_size $batch_size --img_filter img --mask_filter masks --verbose\n","\n","else:\n"," !python -m cellpose --train --use_gpu --dir \"$train_folder\" --test_dir \"$test_folder\" --pretrained_model $model_to_load --chan $Training_channel --chan2 $Second_training_channel --n_epochs $number_of_epochs --learning_rate $initial_learning_rate --batch_size $batch_size --img_filter img --mask_filter masks --verbose\n","\n","\n","\n","\n","\n","#Here we copy the model to the result folder after training\n","\n","if os.path.exists(model_path+'/'+model_name):\n"," print(bcolors.WARNING +\"!! WARNING: Model folder already exists and has been removed !!\" + W)\n"," shutil.rmtree(model_path+'/'+model_name)\n","destination = shutil.copytree(Saving_path+\"/train_folder/models\", model_path+\"/\"+model_name)\n","\n","# Displaying the time elapsed for training\n","dt = time.time() - start\n","mins, sec = divmod(dt, 60)\n","hour, mins = divmod(mins, 60)\n","print(\"Time elapsed:\",hour, \"hour(s)\",mins,\"min(s)\",round(sec),\"sec(s)\")\n","print(\"Your model is also available here: \"+str(model_path+\"/\"+model_name))\n","\n","\n","pdf_export(trained=True, augmentation = Use_Data_augmentation, pretrained_model = Use_pretrained_model)\n","\n"]},{"cell_type":"markdown","metadata":{"id":"qvbm9EJGaXr9"},"source":["# **5. Evaluate your model**\n","---\n","\n","This section allows the user to perform important quality checks on the validity and generalisability of the trained model. \n","\n","\n","**We highly recommend to perform quality control on all newly trained models.**\n","\n","**`model_choice`:** Choose the model to use to make predictions. This model needs to be a Cellpose model. You can also use the pretrained models already available in cellpose:\n","\n","- The cytoplasm model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is an optional nuclear channel.\n","- The cytoplasm2 and 3 models are updated cytoplasm model trained with user-submitted images.\n","\n","- The Nuclei model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is always set to an array of zeros.\n","\n","- The 'livecell' model was trained on all training images from the [livecell dataset](https://sartorius-research.github.io/LIVECell/). These images only have a cytoplasm channel.\n","\n","- The 'tissuenet' model was trained on all training images from the [tissuenet dataset](https://datasets.deepcell.org/). These images have a cytoplasm channel and a nuclear channel\n","\n","- The bacteria Omnipose model is an Omnipose model dedicated to the segmentation of bacteria or other elongated cells.\n","\n","- The cytoplasm2 Omnipose model is an Omnipose model trained using the same dataset as the cellpose cytoplasm2 model.\n","\n","\n"]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","id":"IeiU6D2jGDh4"},"outputs":[],"source":["# model name and path\n","#@markdown ###Do you want to assess the model you just trained ?\n","Use_the_current_trained_model = True #@param {type:\"boolean\"}\n","\n","#@markdown ###If not, indicate which model you want to assess:\n","\n","QC_model = \"Own_model\" #@param [\"Cytoplasm\",\"Cytoplasm2\", \"Cytoplasm3\", \"LiveCell\", \"TissueNet\", \"Cytoplasm2_Omnipose\", \"Bacteria_Omnipose\", \"Nuclei\", \"Own_model\"]\n","\n","#@markdown ###If using your own model, please provide the path to the model (not the folder):\n","\n","QC_model_path = \"\" #@param {type:\"string\"}\n","\n","#@markdown ###If using the Cellpose or Omnipose models, please indicate where you want to save the results:\n","Saving_path = \"\" #@param {type:\"string\"}\n","\n","\n","if Use_the_current_trained_model :\n","\n"," list_files = sorted([i for i in os.listdir(model_path+\"/\"+model_name) if not i.endswith('.pdf')])\n","\n"," QC_model_path = model_path+\"/\"+model_name+\"/\"+list_files[0]\n"," QC_model = \"Own_model\"\n","\n"," #model = models.CellposeModel(gpu=True, pretrained_model=QC_model_path, torch=False, diam_mean=30.0, net_avg=True, device=None, residual_on=True, style_on=True, concatenation=False)\n"," #model = models.CellposeModel(gpu=True, pretrained_model=QC_model_path, diam_mean=30.0, net_avg=True, device=None, residual_on=True, style_on=True, concatenation=False)\n"," model = models.CellposeModel(gpu=True, pretrained_model=QC_model_path)\n","\n"," QC_model_folder = os.path.dirname(QC_model_path)\n"," QC_model_name = os.path.basename(QC_model_folder)\n"," Saving_path = QC_model_folder\n","\n"," print(\"The \"+str(QC_model_name)+\" model will be evaluated\")\n","\n","if not Use_the_current_trained_model:\n","\n"," if QC_model == \"Cytoplasm\":\n"," model = models.Cellpose(gpu=True, model_type=\"cyto\")\n"," QC_model_folder = Saving_path\n"," QC_model_name = \"Cytoplasm\"\n","\n"," print('The model \"Cytoplasm\" will be evaluated')\n","\n"," if QC_model == \"Cytoplasm2\":\n"," model = models.Cellpose(gpu=True, model_type=\"cyto2\")\n"," QC_model_folder = Saving_path\n"," QC_model_name = \"Cytoplasm2\"\n","\n"," print('The model \"Cytoplasm2\" will be evaluated')\n","\n"," if model_choice == \"Cytoplasm3\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"cyto3\")\n"," print(\"Cytoplasm 3 model enabled\")\n","\n"," if QC_model == \"Cytoplasm2_Omnipose\":\n"," model = models.Cellpose(gpu=True, model_type=\"cyto2_omni\")\n"," QC_model_folder = Saving_path\n"," QC_model_name = \"Cytoplasm2_Omnipose\"\n"," print(\"The model Cytoplasm2_Omnipose will be evaluated\")\n","\n"," if QC_model == \"LiveCell\":\n"," channels=[segment_channel,0]\n"," model = models.CellposeModel(gpu=True, model_type=\"livecell\")\n"," print(\"LiveCell model enabled\")\n","\n"," if QC_model == \"Bacteria_Omnipose\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"bact_omni\")\n"," Object_diameter = 0\n"," print(\"Bacteria_omnipose model enabled\")\n","\n"," if QC_model == \"TissueNet\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.CellposeModel(gpu=True, model_type='tissuenet')\n"," print(\"TissueNet model enabled\")\n","\n"," if QC_model == \"Nuclei\":\n"," model = models.Cellpose(gpu=True, model_type=\"nuclei\")\n","\n"," QC_model_folder = Saving_path\n"," QC_model_name = \"Nuclei\"\n","\n"," print('The model \"Nuclei\" will be evaluated')\n","\n"," if QC_model == \"Own_model\":\n","\n"," if os.path.exists(QC_model_path):\n"," model = models.CellposeModel(gpu=True, pretrained_model=QC_model_path, torch=True, diam_mean=30.0, net_avg=True, device=None, residual_on=True, style_on=True, concatenation=False)\n","\n"," QC_model_folder = os.path.dirname(QC_model_path)\n"," Saving_path = QC_model_folder\n"," QC_model_name = os.path.basename(QC_model_folder)\n"," print(\"The \"+str(QC_model_name)+\" model will be evaluated\")\n","\n"," else:\n"," print(bcolors.WARNING+'!! WARNING: The chosen model does not exist !!')\n"," print('Please make sure you provide a valid model path and model name before proceeding further.')\n","\n","#Here we make the folder to save the resuslts if it does not exists\n","\n","if not Saving_path == \"\":\n"," if os.path.exists(QC_model_folder) == False:\n"," os.makedirs(QC_model_folder)\n","else:\n"," print(bcolors.WARNING+'!! WARNING: Indicate where you want to save the results')\n","\n","\n","# Here we load the def that perform the QC, code taken from StarDist https://github.com/mpicbg-csbd/stardist/blob/master/stardist/matching.py\n","\n","import numpy as np\n","from numba import jit\n","from tqdm import tqdm\n","from scipy.optimize import linear_sum_assignment\n","from collections import namedtuple\n","\n","\n","matching_criteria = dict()\n","\n","def label_are_sequential(y):\n"," \"\"\" returns true if y has only sequential labels from 1... \"\"\"\n"," labels = np.unique(y)\n"," return (set(labels)-{0}) == set(range(1,1+labels.max()))\n","\n","\n","def is_array_of_integers(y):\n"," return isinstance(y,np.ndarray) and np.issubdtype(y.dtype, np.integer)\n","\n","\n","def _check_label_array(y, name=None, check_sequential=False):\n"," err = ValueError(\"{label} must be an array of {integers}.\".format(\n"," label = 'labels' if name is None else name,\n"," integers = ('sequential ' if check_sequential else '') + 'non-negative integers',\n"," ))\n"," is_array_of_integers(y) or print(\"An error occured\")\n"," if check_sequential:\n"," label_are_sequential(y) or print(\"An error occured\")\n"," else:\n"," y.min() >= 0 or print(\"An error occured\")\n"," return True\n","\n","\n","def label_overlap(x, y, check=True):\n"," if check:\n"," _check_label_array(x,'x',True)\n"," _check_label_array(y,'y',True)\n"," x.shape == y.shape or _raise(ValueError(\"x and y must have the same shape\"))\n"," return _label_overlap(x, y)\n","\n","@jit(nopython=True)\n","def _label_overlap(x, y):\n"," x = x.ravel()\n"," y = y.ravel()\n"," overlap = np.zeros((1+x.max(),1+y.max()), dtype=np.uint)\n"," for i in range(len(x)):\n"," overlap[x[i],y[i]] += 1\n"," return overlap\n","\n","\n","def intersection_over_union(overlap):\n"," _check_label_array(overlap,'overlap')\n"," if np.sum(overlap) == 0:\n"," return overlap\n"," n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)\n"," n_pixels_true = np.sum(overlap, axis=1, keepdims=True)\n"," return overlap / (n_pixels_pred + n_pixels_true - overlap)\n","\n","matching_criteria['iou'] = intersection_over_union\n","\n","\n","def intersection_over_true(overlap):\n"," _check_label_array(overlap,'overlap')\n"," if np.sum(overlap) == 0:\n"," return overlap\n"," n_pixels_true = np.sum(overlap, axis=1, keepdims=True)\n"," return overlap / n_pixels_true\n","\n","matching_criteria['iot'] = intersection_over_true\n","\n","\n","def intersection_over_pred(overlap):\n"," _check_label_array(overlap,'overlap')\n"," if np.sum(overlap) == 0:\n"," return overlap\n"," n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)\n"," return overlap / n_pixels_pred\n","\n","matching_criteria['iop'] = intersection_over_pred\n","\n","\n","def precision(tp,fp,fn):\n"," return tp/(tp+fp) if tp > 0 else 0\n","def recall(tp,fp,fn):\n"," return tp/(tp+fn) if tp > 0 else 0\n","def accuracy(tp,fp,fn):\n"," # also known as \"average precision\" (?)\n"," # -> https://www.kaggle.com/c/data-science-bowl-2018#evaluation\n"," return tp/(tp+fp+fn) if tp > 0 else 0\n","def f1(tp,fp,fn):\n"," # also known as \"dice coefficient\"\n"," return (2*tp)/(2*tp+fp+fn) if tp > 0 else 0\n","\n","\n","def _safe_divide(x,y):\n"," return x/y if y>0 else 0.0\n","\n","def matching(y_true, y_pred, thresh=0.5, criterion='iou', report_matches=False):\n"," \"\"\"Calculate detection/instance segmentation metrics between ground truth and predicted label images.\n"," Currently, the following metrics are implemented:\n"," 'fp', 'tp', 'fn', 'precision', 'recall', 'accuracy', 'f1', 'criterion', 'thresh', 'n_true', 'n_pred', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'\n"," Corresponding objects of y_true and y_pred are counted as true positives (tp), false positives (fp), and false negatives (fn)\n"," whether their intersection over union (IoU) >= thresh (for criterion='iou', which can be changed)\n"," * mean_matched_score is the mean IoUs of matched true positives\n"," * mean_true_score is the mean IoUs of matched true positives but normalized by the total number of GT objects\n"," * panoptic_quality defined as in Eq. 1 of Kirillov et al. \"Panoptic Segmentation\", CVPR 2019\n"," Parameters\n"," ----------\n"," y_true: ndarray\n"," ground truth label image (integer valued)\n"," predicted label image (integer valued)\n"," thresh: float\n"," threshold for matching criterion (default 0.5)\n"," criterion: string\n"," matching criterion (default IoU)\n"," report_matches: bool\n"," if True, additionally calculate matched_pairs and matched_scores (note, that this returns even gt-pred pairs whose scores are below 'thresh')\n"," Returns\n"," -------\n"," Matching object with different metrics as attributes\n"," Examples\n"," --------\n"," >>> y_true = np.zeros((100,100), np.uint16)\n"," >>> y_true[10:20,10:20] = 1\n"," >>> y_pred = np.roll(y_true,5,axis = 0)\n"," >>> stats = matching(y_true, y_pred)\n"," >>> print(stats)\n"," Matching(criterion='iou', thresh=0.5, fp=1, tp=0, fn=1, precision=0, recall=0, accuracy=0, f1=0, n_true=1, n_pred=1, mean_true_score=0.0, mean_matched_score=0.0, panoptic_quality=0.0)\n"," \"\"\"\n"," _check_label_array(y_true,'y_true')\n"," _check_label_array(y_pred,'y_pred')\n"," y_true.shape == y_pred.shape or _raise(ValueError(\"y_true ({y_true.shape}) and y_pred ({y_pred.shape}) have different shapes\".format(y_true=y_true, y_pred=y_pred)))\n"," criterion in matching_criteria or _raise(ValueError(\"Matching criterion '%s' not supported.\" % criterion))\n"," if thresh is None: thresh = 0\n"," thresh = float(thresh) if np.isscalar(thresh) else map(float,thresh)\n","\n"," y_true, _, map_rev_true = relabel_sequential(y_true)\n"," y_pred, _, map_rev_pred = relabel_sequential(y_pred)\n","\n"," overlap = label_overlap(y_true, y_pred, check=False)\n"," scores = matching_criteria[criterion](overlap)\n"," assert 0 <= np.min(scores) <= np.max(scores) <= 1\n","\n"," # ignoring background\n"," scores = scores[1:,1:]\n"," n_true, n_pred = scores.shape\n"," n_matched = min(n_true, n_pred)\n","\n"," def _single(thr):\n"," not_trivial = n_matched > 0 and np.any(scores >= thr)\n"," if not_trivial:\n"," # compute optimal matching with scores as tie-breaker\n"," costs = -(scores >= thr).astype(float) - scores / (2*n_matched)\n"," true_ind, pred_ind = linear_sum_assignment(costs)\n"," assert n_matched == len(true_ind) == len(pred_ind)\n"," match_ok = scores[true_ind,pred_ind] >= thr\n"," tp = np.count_nonzero(match_ok)\n"," else:\n"," tp = 0\n"," fp = n_pred - tp\n"," fn = n_true - tp\n"," # assert tp+fp == n_pred\n"," # assert tp+fn == n_true\n","\n"," # the score sum over all matched objects (tp)\n"," sum_matched_score = np.sum(scores[true_ind,pred_ind][match_ok]) if not_trivial else 0.0\n","\n"," # the score average over all matched objects (tp)\n"," mean_matched_score = _safe_divide(sum_matched_score, tp)\n"," # the score average over all gt/true objects\n"," mean_true_score = _safe_divide(sum_matched_score, n_true)\n"," panoptic_quality = _safe_divide(sum_matched_score, tp+fp/2+fn/2)\n","\n"," stats_dict = dict (\n"," criterion = criterion,\n"," thresh = thr,\n"," fp = fp,\n"," tp = tp,\n"," fn = fn,\n"," precision = precision(tp,fp,fn),\n"," recall = recall(tp,fp,fn),\n"," accuracy = accuracy(tp,fp,fn),\n"," f1 = f1(tp,fp,fn),\n"," n_true = n_true,\n"," n_pred = n_pred,\n"," mean_true_score = mean_true_score,\n"," mean_matched_score = mean_matched_score,\n"," panoptic_quality = panoptic_quality,\n"," )\n"," if bool(report_matches):\n"," if not_trivial:\n"," stats_dict.update (\n"," # int() to be json serializable\n"," matched_pairs = tuple((int(map_rev_true[i]),int(map_rev_pred[j])) for i,j in zip(1+true_ind,1+pred_ind)),\n"," matched_scores = tuple(scores[true_ind,pred_ind]),\n"," matched_tps = tuple(map(int,np.flatnonzero(match_ok))),\n"," )\n"," else:\n"," stats_dict.update (\n"," matched_pairs = (),\n"," matched_scores = (),\n"," matched_tps = (),\n"," )\n"," return namedtuple('Matching',stats_dict.keys())(*stats_dict.values())\n","\n"," return _single(thresh) if np.isscalar(thresh) else tuple(map(_single,thresh))\n","\n","\n","\n","def matching_dataset(y_true, y_pred, thresh=0.5, criterion='iou', by_image=False, show_progress=True, parallel=False):\n"," \"\"\"matching metrics for list of images, see `stardist.matching.matching`\n"," \"\"\"\n"," len(y_true) == len(y_pred) or _raise(ValueError(\"y_true and y_pred must have the same length.\"))\n"," return matching_dataset_lazy (\n"," tuple(zip(y_true,y_pred)), thresh=thresh, criterion=criterion, by_image=by_image, show_progress=show_progress, parallel=parallel,\n"," )\n","\n","\n","\n","def matching_dataset_lazy(y_gen, thresh=0.5, criterion='iou', by_image=False, show_progress=True, parallel=False):\n","\n"," expected_keys = set(('fp', 'tp', 'fn', 'precision', 'recall', 'accuracy', 'f1', 'criterion', 'thresh', 'n_true', 'n_pred', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'))\n","\n"," single_thresh = False\n"," if np.isscalar(thresh):\n"," single_thresh = True\n"," thresh = (thresh,)\n","\n"," tqdm_kwargs = {}\n"," tqdm_kwargs['disable'] = not bool(show_progress)\n"," if int(show_progress) > 1:\n"," tqdm_kwargs['total'] = int(show_progress)\n","\n"," # compute matching stats for every pair of label images\n"," if parallel:\n"," from concurrent.futures import ThreadPoolExecutor\n"," fn = lambda pair: matching(*pair, thresh=thresh, criterion=criterion, report_matches=False)\n"," with ThreadPoolExecutor() as pool:\n"," stats_all = tuple(pool.map(fn, tqdm(y_gen,**tqdm_kwargs)))\n"," else:\n"," stats_all = tuple (\n"," matching(y_t, y_p, thresh=thresh, criterion=criterion, report_matches=False)\n"," for y_t,y_p in tqdm(y_gen,**tqdm_kwargs)\n"," )\n","\n"," # accumulate results over all images for each threshold separately\n"," n_images, n_threshs = len(stats_all), len(thresh)\n"," accumulate = [{} for _ in range(n_threshs)]\n"," for stats in stats_all:\n"," for i,s in enumerate(stats):\n"," acc = accumulate[i]\n"," for k,v in s._asdict().items():\n"," if k == 'mean_true_score' and not bool(by_image):\n"," # convert mean_true_score to \"sum_matched_score\"\n"," acc[k] = acc.setdefault(k,0) + v * s.n_true\n"," else:\n"," try:\n"," acc[k] = acc.setdefault(k,0) + v\n"," except TypeError:\n"," pass\n","\n"," # normalize/compute 'precision', 'recall', 'accuracy', 'f1'\n"," for thr,acc in zip(thresh,accumulate):\n"," set(acc.keys()) == expected_keys or _raise(ValueError(\"unexpected keys\"))\n"," acc['criterion'] = criterion\n"," acc['thresh'] = thr\n"," acc['by_image'] = bool(by_image)\n"," if bool(by_image):\n"," for k in ('precision', 'recall', 'accuracy', 'f1', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'):\n"," acc[k] /= n_images\n"," else:\n"," tp, fp, fn, n_true = acc['tp'], acc['fp'], acc['fn'], acc['n_true']\n"," sum_matched_score = acc['mean_true_score']\n","\n"," mean_matched_score = _safe_divide(sum_matched_score, tp)\n"," mean_true_score = _safe_divide(sum_matched_score, n_true)\n"," panoptic_quality = _safe_divide(sum_matched_score, tp+fp/2+fn/2)\n","\n"," acc.update(\n"," precision = precision(tp,fp,fn),\n"," recall = recall(tp,fp,fn),\n"," accuracy = accuracy(tp,fp,fn),\n"," f1 = f1(tp,fp,fn),\n"," mean_true_score = mean_true_score,\n"," mean_matched_score = mean_matched_score,\n"," panoptic_quality = panoptic_quality,\n"," )\n","\n"," accumulate = tuple(namedtuple('DatasetMatching',acc.keys())(*acc.values()) for acc in accumulate)\n"," return accumulate[0] if single_thresh else accumulate\n","\n","\n","\n","# copied from scikit-image master for now (remove when part of a release)\n","def relabel_sequential(label_field, offset=1):\n"," \"\"\"Relabel arbitrary labels to {`offset`, ... `offset` + number_of_labels}.\n"," This function also returns the forward map (mapping the original labels to\n"," the reduced labels) and the inverse map (mapping the reduced labels back\n"," to the original ones).\n"," Parameters\n"," ----------\n"," label_field : numpy array of int, arbitrary shape\n"," An array of labels, which must be non-negative integers.\n"," offset : int, optional\n"," The return labels will start at `offset`, which should be\n"," strictly positive.\n"," Returns\n"," -------\n"," relabeled : numpy array of int, same shape as `label_field`\n"," The input label field with labels mapped to\n"," {offset, ..., number_of_labels + offset - 1}.\n"," The data type will be the same as `label_field`, except when\n"," offset + number_of_labels causes overflow of the current data type.\n"," forward_map : numpy array of int, shape ``(label_field.max() + 1,)``\n"," The map from the original label space to the returned label\n"," space. Can be used to re-apply the same mapping. See examples\n"," for usage. The data type will be the same as `relabeled`.\n"," inverse_map : 1D numpy array of int, of length offset + number of labels\n"," The map from the new label space to the original space. This\n"," can be used to reconstruct the original label field from the\n"," relabeled one. The data type will be the same as `relabeled`.\n"," Notes\n"," -----\n"," The label 0 is assumed to denote the background and is never remapped.\n"," The forward map can be extremely big for some inputs, since its\n"," length is given by the maximum of the label field. However, in most\n"," situations, ``label_field.max()`` is much smaller than\n"," ``label_field.size``, and in these cases the forward map is\n"," guaranteed to be smaller than either the input or output images.\n"," Examples\n"," --------\n"," >>> from skimage.segmentation import relabel_sequential\n"," >>> label_field = np.array([1, 1, 5, 5, 8, 99, 42])\n"," >>> relab, fw, inv = relabel_sequential(label_field)\n"," >>> relab\n"," array([1, 1, 2, 2, 3, 5, 4])\n"," >>> fw\n"," array([0, 1, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n"," 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,\n"," 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n"," 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n"," 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5])\n"," >>> inv\n"," array([ 0, 1, 5, 8, 42, 99])\n"," >>> (fw[label_field] == relab).all()\n"," True\n"," >>> (inv[relab] == label_field).all()\n"," True\n"," >>> relab, fw, inv = relabel_sequential(label_field, offset=5)\n"," >>> relab\n"," array([5, 5, 6, 6, 7, 9, 8])\n"," \"\"\"\n"," offset = int(offset)\n"," if offset <= 0:\n"," raise ValueError(\"Offset must be strictly positive.\")\n"," if np.min(label_field) < 0:\n"," raise ValueError(\"Cannot relabel array that contains negative values.\")\n"," max_label = int(label_field.max()) # Ensure max_label is an integer\n"," if not np.issubdtype(label_field.dtype, np.integer):\n"," new_type = np.min_scalar_type(max_label)\n"," label_field = label_field.astype(new_type)\n"," labels = np.unique(label_field)\n"," labels0 = labels[labels != 0]\n"," new_max_label = offset - 1 + len(labels0)\n"," new_labels0 = np.arange(offset, new_max_label + 1)\n"," output_type = label_field.dtype\n"," required_type = np.min_scalar_type(new_max_label)\n"," if np.dtype(required_type).itemsize > np.dtype(label_field.dtype).itemsize:\n"," output_type = required_type\n"," forward_map = np.zeros(max_label + 1, dtype=output_type)\n"," forward_map[labels0] = new_labels0\n"," inverse_map = np.zeros(new_max_label + 1, dtype=output_type)\n"," inverse_map[offset:] = labels0\n"," relabeled = forward_map[label_field]\n"," return relabeled, forward_map, inverse_map\n","\n","\n","\n"]},{"cell_type":"markdown","metadata":{"id":"Tbv6DpxZjVN3"},"source":["## **5.1. Inspection of the loss function**\n","---\n","\n","First, it is good practice to evaluate the training progress by comparing the training loss with the validation loss. The latter is a metric which shows how well the network performs on a subset of unseen data which is set aside from the training dataset. For more information on this, see for example [this review](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381354/) by Nichols *et al.*\n","\n","**Training loss** describes an error value after each epoch for the difference between the model's prediction and its ground-truth target.\n","\n","**Validation loss** describes the same error value between the model's prediction on a validation image and compared to it's target.\n","\n","During training both values should decrease before reaching a minimal value which does not decrease further even after more training. Comparing the development of the validation loss with the training loss can give insights into the model's performance.\n","\n","Decreasing **Training loss** and **Validation loss** indicates that training is still necessary and increasing the `number_of_epochs` is recommended. Note that the curves can look flat towards the right side, just because of the y-axis scaling. The network has reached convergence once the curves flatten out. After this point no further training is required. If the **Validation loss** suddenly increases again an the **Training loss** simultaneously goes towards zero, it means that the network is overfitting to the training data. In other words the network is remembering the exact patterns from the training data and no longer generalizes well to unseen data. In this case the training dataset has to be increased.\n","\n","\n"]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","id":"jtSv-B0AjX8j"},"outputs":[],"source":["#@markdown ###Not implemented yet"]},{"cell_type":"markdown","metadata":{"id":"s2VXDuiOF7r4"},"source":["## **5.2. Error mapping and quality metrics estimation**\n","---\n","This section will calculate the Intersection over Union score for all the images provided in the Source_QC_folder and Target_QC_folder ! The result for one of the image will also be displayed.\n","\n","The **Intersection over Union** (IuO) metric is a method that can be used to quantify the percent overlap between the target mask and your prediction output. **Therefore, the closer to 1, the better the performance.** This metric can be used to assess the quality of your model to accurately predict nuclei.\n","\n","Here, the IuO is both calculated over the whole image and on a per-object basis. The value displayed below is the IuO value calculated over the entire image. The IuO value calculated on a per-object basis is used to calculate the other metrics displayed.\n","\n","“n_true” refers to the number of objects present in the ground truth image. “n_pred” refers to the number of objects present in the predicted image.\n","\n","When a segmented object has an IuO value above 0.5 (compared to the corresponding ground truth), it is then considered a true positive. The number of “**true positives**” is available in the table below. The number of “false positive” is then defined as “**false positive**” = “n_pred” - “true positive”. The number of “false negative” is defined as “false negative” = “n_true” - “true positive”.\n","\n","The mean_matched_score is the mean IoUs of matched true positives. The mean_true_score is the mean IoUs of matched true positives but normalized by the total number of ground truth objects. The panoptic_quality is calculated as described by [Kirillov et al. 2019](https://arxiv.org/abs/1801.00868).\n","\n","For more information about the other metric displayed, please consult the SI of the paper describing ZeroCostDL4Mic.\n","\n"," The results can be found in the \"*Quality Control*\" folder which is located inside your \"model_folder\".\n","\n","**`Channel_to_segment`:** Choose the channel to segment. If using single-channel grayscale images, choose \"Grayscale\".\n","\n","**`Nuclear_channel`:** If you are using a model that segment the \"cytoplasm\", you can use a nuclear channel to aid the segmentation.\n","\n","**`Object_diameter`:** Indicate the diameter of the objects (cells or Nuclei) you want to segment (in pixel). If you input \"0\", this parameter will be estimated automatically for each of your images.\n","\n","**`Flow_threshold`:** This parameter controls the maximum allowed error of the flows for each mask. Increase this threshold if cellpose is not returning as many masks as you'd expect. Similarly, decrease this threshold if cellpose is returning too many ill-shaped masks. Set to 0.0 to turn off so no cells are discarded. **Default value: 0.4**\n","\n","**`mask_threshold`:** The pixels greater than the mask_threshold are used to run dynamics and determine masks. Decrease this threshold if cellpose is not returning as many masks as you'd expect. Similarly, increase this threshold if cellpose is returning too many masks, particularly from dim areas. **Default value: 0.0**"]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","id":"BUrTuonhEH5J"},"outputs":[],"source":["#@markdown ##Choose the folders that contain your Quality Control dataset\n","\n","Source_QC_folder = \"\" #@param{type:\"string\"}\n","Target_QC_folder = \"\" #@param{type:\"string\"}\n","\n","Channel_to_segment= \"Red\" #@param [\"Grayscale\", \"Blue\", \"Green\", \"Red\"]\n","\n","# @markdown ###If you chose the model \"cytoplasm\" indicate if you also have a nuclear channel that can be used to aid the segmentation.\n","\n","Nuclear_channel= \"None\" #@param [\"None\", \"Blue\", \"Green\", \"Red\"]\n","\n","#@markdown ### Segmentation parameters:\n","Object_diameter = 0#@param {type:\"number\"}\n","\n","Flow_threshold = 0.4 #@param {type:\"slider\", min:0.0, max:3, step:0.1}\n","\n","mask_threshold=0 #@param {type:\"slider\", min:-6, max:6, step:1}\n","\n","if Object_diameter is 0:\n"," Object_diameter = None\n"," print(\"The cell size will be estimated automatically for each image\")\n","\n","\n","# Find the number of channel in the input image\n","\n","random_choice = random.choice(os.listdir(Source_QC_folder))\n","x = io.imread(Source_QC_folder+\"/\"+random_choice)\n","n_channel = 1 if x.ndim == 2 else x.shape[-1]\n","\n","if Channel_to_segment == \"Grayscale\":\n"," segment_channel = 0\n","\n"," if not n_channel == 1:\n"," print(bcolors.WARNING +\"!! WARNING: your image has more than one channel, choose which channel you want to use for QC !!\")\n","\n","if Channel_to_segment == \"Blue\":\n"," segment_channel = 3\n","\n","if Channel_to_segment == \"Green\":\n"," segment_channel = 2\n","\n","if Channel_to_segment == \"Red\":\n"," segment_channel = 1\n","\n","if Nuclear_channel == \"Blue\":\n"," nuclear_channel = 3\n","\n","if Nuclear_channel == \"Green\":\n"," nuclear_channel = 2\n","\n","if Nuclear_channel == \"Red\":\n"," nuclear_channel = 1\n","\n","if Nuclear_channel == \"None\":\n"," nuclear_channel = 0\n","\n","if QC_model == \"Cytoplasm\":\n"," channels=[segment_channel,nuclear_channel]\n","\n","if QC_model == \"Cytoplasm2_Omnipose\":\n"," channels=[segment_channel,nuclear_channel]\n","\n","if QC_model == \"Bacteria_Omnipose\":\n"," channels=[segment_channel,nuclear_channel]\n","\n","if QC_model == \"Cytoplasm2\":\n"," channels=[segment_channel,nuclear_channel]\n","\n","if QC_model == \"Nuclei\":\n"," channels=[segment_channel,0]\n","\n","if QC_model == \"Own_model\":\n"," channels=[segment_channel,nuclear_channel]\n","\n","#Create a quality control Folder and check if the folder already exist\n","if os.path.exists(QC_model_folder+\"/Quality Control\") == False:\n"," os.makedirs(QC_model_folder+\"/Quality Control\")\n","\n","if os.path.exists(QC_model_folder+\"/Quality Control/Prediction\"):\n"," shutil.rmtree(QC_model_folder+\"/Quality Control/Prediction\")\n","os.makedirs(QC_model_folder+\"/Quality Control/Prediction\")\n","\n","\n","# Here we need to make predictions\n","\n","for name in os.listdir(Source_QC_folder):\n","\n"," print(\"Performing prediction on: \"+name)\n"," image = io.imread(Source_QC_folder+\"/\"+name)\n","\n"," short_name = os.path.splitext(name)\n","\n"," if QC_model == \"Own_model\" or QC_model == \"LiveCell\" or QC_model == \"TissueNet\":\n"," masks, flows, styles = model.eval(image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n"," else:\n"," masks, flows, styles, diams = model.eval(image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n","\n"," os.chdir(QC_model_folder+\"/Quality Control/Prediction\")\n"," imsave(str(short_name[0])+\".tif\", masks)\n","\n","# Here we start testing the differences between GT and predicted masks\n","\n","with open(QC_model_folder+\"/Quality Control/Quality_Control for \"+QC_model_name+\".csv\", \"w\", newline='') as file:\n"," writer = csv.writer(file, delimiter=\",\")\n"," writer.writerow([\"image\",\"Prediction v. GT Intersection over Union\", \"false positive\", \"true positive\", \"false negative\", \"precision\", \"recall\", \"accuracy\", \"f1 score\", \"n_true\", \"n_pred\", \"mean_true_score\", \"mean_matched_score\", \"panoptic_quality\"])\n","\n","# define the images\n","\n"," for n in os.listdir(Source_QC_folder):\n","\n"," if not os.path.isdir(os.path.join(Source_QC_folder,n)):\n"," print('Running QC on: '+n)\n"," test_input = io.imread(os.path.join(Source_QC_folder,n))\n"," test_prediction = io.imread(os.path.join(QC_model_folder+\"/Quality Control/Prediction\",n))\n"," test_ground_truth_image = io.imread(os.path.join(Target_QC_folder, n))\n","\n"," # Calculate the matching (with IoU threshold `thresh`) and all metrics\n","\n"," stats = matching(test_ground_truth_image, test_prediction, thresh=0.5)\n","\n","\n"," #Convert pixel values to 0 or 255\n"," test_prediction_0_to_255 = test_prediction\n"," test_prediction_0_to_255[test_prediction_0_to_255>0] = 255\n","\n"," #Convert pixel values to 0 or 255\n"," test_ground_truth_0_to_255 = test_ground_truth_image\n"," test_ground_truth_0_to_255[test_ground_truth_0_to_255>0] = 255\n","\n","\n"," # Intersection over Union metric\n","\n"," intersection = np.logical_and(test_ground_truth_0_to_255, test_prediction_0_to_255)\n"," union = np.logical_or(test_ground_truth_0_to_255, test_prediction_0_to_255)\n"," iou_score = np.sum(intersection) / np.sum(union)\n"," writer.writerow([n, str(iou_score), str(stats.fp), str(stats.tp), str(stats.fn), str(stats.precision), str(stats.recall), str(stats.accuracy), str(stats.f1), str(stats.n_true), str(stats.n_pred), str(stats.mean_true_score), str(stats.mean_matched_score), str(stats.panoptic_quality)])\n","\n","from tabulate import tabulate\n","\n","df = pd.read_csv (QC_model_folder+\"/Quality Control/Quality_Control for \"+QC_model_name+\".csv\")\n","print(tabulate(df, headers='keys', tablefmt='psql'))\n","\n","\n","from astropy.visualization import simple_norm\n","\n","# ------------- For display ------------\n","print('--------------------------------------------------------------')\n","@interact\n","def show_QC_results(file = os.listdir(Source_QC_folder)):\n","\n","\n"," plt.figure(figsize=(25,5))\n"," if n_channel > 1:\n"," source_image = io.imread(os.path.join(Source_QC_folder, file))\n"," if n_channel == 1:\n"," source_image = io.imread(os.path.join(Source_QC_folder, file), as_gray = True)\n","\n"," target_image = io.imread(os.path.join(Target_QC_folder, file), as_gray = True)\n"," prediction = io.imread(QC_model_folder+\"/Quality Control/Prediction/\"+file, as_gray = True)\n","\n"," stats = matching(prediction, target_image, thresh=0.5)\n","\n"," target_image_mask = np.empty_like(target_image)\n"," target_image_mask[target_image > 0] = 255\n"," target_image_mask[target_image == 0] = 0\n","\n"," prediction_mask = np.empty_like(prediction)\n"," prediction_mask[prediction > 0] = 255\n"," prediction_mask[prediction == 0] = 0\n","\n"," intersection = np.logical_and(target_image_mask, prediction_mask)\n"," union = np.logical_or(target_image_mask, prediction_mask)\n"," iou_score = np.sum(intersection) / np.sum(union)\n","\n"," norm = simple_norm(source_image, percent = 99)\n","\n"," #Input\n"," plt.subplot(1,4,1)\n"," plt.axis('off')\n"," if n_channel > 1:\n"," plt.imshow(source_image)\n"," if n_channel == 1:\n"," plt.imshow(source_image, aspect='equal', norm=norm, cmap='magma', interpolation='nearest')\n"," plt.title('Input')\n","\n"," #Ground-truth\n"," plt.subplot(1,4,2)\n"," plt.axis('off')\n"," plt.imshow(target_image_mask, aspect='equal', cmap='Greens')\n"," plt.title('Ground Truth')\n","\n"," #Prediction\n"," plt.subplot(1,4,3)\n"," plt.axis('off')\n"," plt.imshow(prediction_mask, aspect='equal', cmap='Purples')\n"," plt.title('Prediction')\n","\n"," #Overlay\n"," plt.subplot(1,4,4)\n"," plt.axis('off')\n"," plt.imshow(target_image_mask, cmap='Greens')\n"," plt.imshow(prediction_mask, alpha=0.5, cmap='Purples')\n"," plt.title('Ground Truth and Prediction, Intersection over Union:'+str(round(iou_score,3 )));\n"," plt.savefig(QC_model_folder+'/Quality Control/QC_example_data.png',bbox_inches='tight',pad_inches=0)\n","\n","\n","full_QC_model_path = QC_model_folder+'/'\n","qc_pdf_export()\n","\n"]},{"cell_type":"markdown","metadata":{"id":"Io62PUMLagFS"},"source":["# **6. Using the trained model**\n","\n","---\n","\n","In this section the unseen data is processed using the trained model (in section 4). First, your unseen images are uploaded and prepared for prediction. After that your trained model from section 4 is activated and finally saved into your Google Drive."]},{"cell_type":"markdown","metadata":{"id":"E29LWfWpjkZU"},"source":["\n","\n","## **6.1 Generate prediction(s) from unseen dataset (2D and 2D + t data)**\n","---\n","\n","The current trained model (from section 4.3) can now be used to process images. If an older model needs to be used, please untick the **Use_the_current_trained_model** box and enter the model's name and path to use. Predicted output images are saved in your **Prediction_folder** folder as restored image stacks (ImageJ-compatible TIFF images).\n","\n","**`Data_folder`:** This folder should contain the images that you want to predict using the network that you will train.\n","\n","**`Result_folder`:** This folder will contain the predicted output.\n","\n","**`Data_type`:** Please indicate if the images you want to predict are single images or stacks\n","\n","**`model_choice`:** Choose the model to use to make predictions. This model needs to be a Cellpose model. You can also use the pretrained models already available in cellpose:\n","\n","- The cytoplasm model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is an optional nuclear channel.\n","\n","- The cytoplasm2 model is an updated cytoplasm model trained with user-submitted images.\n","\n","- The Nuclei model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is always set to an array of zeros.\n","\n","- The 'LiveCell' model was trained on all training images from the [livecell dataset](https://sartorius-research.github.io/LIVECell/). These images only have a cytoplasm channel.\n","\n","- The 'TissueNet' model was trained on all training images from the [tissuenet dataset](https://datasets.deepcell.org/). These images have a cytoplasm channel and a nuclear channel\n","\n","- The bacteria Omnipose model is an Omnipose model dedicated to the segmentation of bacteria or other elongated cells.\n","\n","- The cytoplasm2 Omnipose model is an Omnipose model trained using the same dataset as the cellpose cytoplasm2 model.\n","\n","**`Channel_to_segment`:** Choose the channel to segment. If using single-channel grayscale images, choose \"Grayscale\".\n","\n","**`Nuclear_channel`:** If you are using a model that segment the \"cytoplasm\", you can use a nuclear channel to aid the segmentation.\n","\n","**`Object_diameter`:** Indicate the diameter of the objects (cells or Nuclei) you want to segment (in pixel). If you input \"0\", this parameter will be estimated automatically for each of your images.\n","\n","**`Flow_threshold`:** This parameter controls the maximum allowed error of the flows for each mask. Increase this threshold if cellpose is not returning as many masks as you'd expect. Similarly, decrease this threshold if cellpose is returning too many ill-shaped masks. **Default value: 0.4**\n","\n","**`mask_threshold`:** The pixels greater than the mask_threshold are used to run dynamics and determine masks. Decrease this threshold if cellpose is not returning as many masks as you'd expect. Similarly, increase this threshold if cellpose is returning too many masks, particularly from dim areas. **Default value: 0.0**\n","\n","**IMPORTANT:** One example result will be displayed first so that you can assess the quality of the prediction and change your settings accordingly. Once the most suitable settings have been chosen, press on the yellow button \"process your images\".\n","\n","\n","\n","\n","\n","\n"]},{"cell_type":"code","execution_count":5,"metadata":{"cellView":"form","colab":{"base_uri":"https://localhost:8080/","height":1000,"referenced_widgets":["f768803545d041638b66941d850b32cd","790d6e6e473a46e78ffbfc1f72a931ed","dc90ae8a475c46f982be4967a6a83cb1","02f07ea9cda84469b0baf05bb6db2c8a","c2166230f60e4a72b094a9b20d79c774","8d43f28e23ed45b08129ed41526b4ca1","f5f6be3714e4455bb60cb90716dfe132","ba02d67024864367b9758224d2dd0db5","915fb161c4be4a38bb79b978b052fb5a","4dbbaa86e35c4e62bff56c8ef611932c","c21b34855eb846b7849b2f3d9a6c9682","bc880185cd8c43949ffcfd9cde6da3ee","a27783dced594a85bc19d29c84f99ce9","6b775a4590bf43f09e9c43be6304477b"]},"executionInfo":{"elapsed":155614,"status":"ok","timestamp":1744793708570,"user":{"displayName":"guillaume Jacquemet","userId":"03282992684407736974"},"user_tz":-180},"id":"mfgvhMk2xid9","outputId":"f45e0423-0675-41ba-a65c-fc54962ada7d"},"outputs":[{"output_type":"stream","name":"stdout","text":["Own model enabled\n","Stacks (2D + t) are now beeing predicted\n","--------------------------------------------------------------\n"]},{"output_type":"display_data","data":{"text/plain":["interactive(children=(Dropdown(description='file', options=('C2-Slide1.sld - Capture 6 - Position 1.tif', 'C2-…"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"f768803545d041638b66941d850b32cd"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["interactive(children=(Button(description='Run Interact', style=ButtonStyle()), Output()), _dom_classes=('widge…"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"ba02d67024864367b9758224d2dd0db5"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":[""],"text/html":["
\n","
batch_process_stack
def batch_process_stack()
/content/<ipython-input-5-baee4452ba30><no docstring>
"]},"metadata":{}}],"source":["\n","#@markdown ### Provide the path to your dataset and to the folder where the predictions are saved, then play the cell to predict outputs from your unseen images.\n","\n","Data_folder = \"/content/gdrive/Shareddrives/CDM-annotations-Johanna/Repeat3/siCTRL/Cellpose\" #@param {type:\"string\"}\n","Result_folder = \"/content/gdrive/Shareddrives/CDM-annotations-Johanna/Repeat3/siCTRL/Cellpose_labels_JP\" #@param {type:\"string\"}\n","\n","#@markdown ###Are your data single images or stacks?\n","\n","Data_type = \"Stacks (2D + t)\" #@param [\"Single_Images\", \"Stacks (2D + t)\"]\n","\n","#@markdown ###What model do you want to use?\n","\n","model_choice = \"Own_model\" #@param [\"Cytoplasm\",\"Cytoplasm2\",\"Cytoplasm3\",\"LiveCell\", \"TissueNet\", \"Cytoplasm2_Omnipose\", \"Bacteria_Omnipose\", \"Nuclei\", \"Own_model\"]\n","\n","#@markdown ####If using your own model, please provide the path to the model (not the folder):\n","\n","Prediction_model = \"/content/gdrive/Shareddrives/CDM-annotations-Johanna/Ana_model_3\" #@param {type:\"string\"}\n","\n","#@markdown ### What channel do you want to segment?\n","\n","Channel_to_segment= \"Grayscale\" #@param [\"Grayscale\", \"Blue\", \"Green\", \"Red\"]\n","\n","# @markdown ###If you chose the model \"cytoplasm\" indicate if you also have a nuclear channel that can be used to aid the segmentation.\n","\n","Nuclear_channel= \"None\" #@param [\"None\", \"Blue\", \"Green\", \"Red\"]\n","\n","#@markdown ### Segmentation parameters:\n","Object_diameter = 340#@param {type:\"number\"}\n","\n","Flow_threshold = 0.4 #@param {type:\"slider\", min:0.0, max:3, step:0.1}\n","\n","mask_threshold=0 #@param {type:\"slider\", min:-6, max:6, step:1}\n","\n","# Find the number of channel in the input image\n","\n","random_choice = random.choice(os.listdir(Data_folder))\n","x = io.imread(Data_folder+\"/\"+random_choice)\n","n_channel = 1 if x.ndim == 2 else x.shape[-1]\n","\n","if Channel_to_segment == \"Grayscale\":\n"," segment_channel = 0\n","\n"," if Data_type == \"Single_Images\":\n"," if not n_channel == 1:\n"," print(bcolors.WARNING +\"!! WARNING: your image has more than one channel, choose which channel you want to use for your predictions !!\")\n","\n","if Channel_to_segment == \"Blue\":\n"," segment_channel = 3\n","\n","if Channel_to_segment == \"Green\":\n"," segment_channel = 2\n","\n","if Channel_to_segment == \"Red\":\n"," segment_channel = 1\n","\n","if Nuclear_channel == \"Blue\":\n"," nuclear_channel = 3\n","\n","if Nuclear_channel == \"Green\":\n"," nuclear_channel = 2\n","\n","if Nuclear_channel == \"Red\":\n"," nuclear_channel = 1\n","\n","if Nuclear_channel == \"None\":\n"," nuclear_channel = 0\n","\n","if model_choice == \"Cytoplasm\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"cyto\")\n"," print(\"Cytoplasm model enabled\")\n","\n","if model_choice == \"Cytoplasm3\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"cyto3\")\n"," print(\"Cytoplasm 3 model enabled\")\n","\n","if model_choice == \"Cytoplasm2\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"cyto2\")\n"," print(\"Cytoplasm2 model enabled\")\n","\n","if model_choice == \"Cytoplasm2_Omnipose\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"cyto2_omni\")\n"," print(\"Cytoplasm2_Omnipose model enabled\")\n","\n","if model_choice == \"Nuclei\":\n"," channels=[segment_channel,0]\n"," model = models.Cellpose(gpu=True, model_type=\"nuclei\")\n"," print(\"Nuclei model enabled\")\n","\n","if model_choice == \"LiveCell\":\n"," channels=[segment_channel,0]\n"," model = models.CellposeModel(gpu=True, model_type=\"livecell\")\n"," print(\"LiveCell model enabled\")\n","\n","if model_choice == \"Bacteria_Omnipose\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"bact_omni\")\n"," Object_diameter = 0\n"," print(\"Bacteria_omnipose model enabled\")\n","\n","if model_choice == \"TissueNet\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.CellposeModel(gpu=True, model_type='tissuenet')\n"," print(\"TissueNet model enabled\")\n","\n","if model_choice == \"Own_model\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.CellposeModel(gpu=True, pretrained_model=Prediction_model)\n","\n"," print(\"Own model enabled\")\n","\n","if Object_diameter is 0:\n"," Object_diameter = None\n"," print(\"The cell size will be estimated automatically for each image\")\n","\n","if Data_type == \"Single_Images\" :\n","\n"," print('--------------------------------------------------------------')\n"," @interact\n"," def preview_results(file = os.listdir(Data_folder)):\n"," source_image = io.imread(os.path.join(Data_folder, file))\n","\n"," if model_choice == \"Own_model\" or model_choice == \"LiveCell\" or model_choice == \"TissueNet\":\n"," masks, flows, styles = model.eval(source_image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n","\n"," else:\n"," masks, flows, styles, diams = model.eval(source_image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n","\n"," flowi = flows[0]\n"," fig = plt.figure(figsize=(20,10))\n"," plot.show_segmentation(fig, source_image, masks, flowi, channels=channels)\n"," plt.tight_layout()\n"," plt.show()\n","\n","\n"," def batch_process():\n"," print(\"Your images are now beeing processed\")\n","\n"," for name in os.listdir(Data_folder):\n"," print(\"Performing prediction on: \"+name)\n"," image = io.imread(Data_folder+\"/\"+name)\n"," short_name = os.path.splitext(name)\n","\n"," if model_choice == \"Own_model\" or model_choice == \"LiveCell\" or model_choice == \"TissueNet\":\n"," masks, flows, styles = model.eval(image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n"," else:\n"," masks, flows, styles, diams = model.eval(image, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n","\n"," os.chdir(Result_folder)\n"," imsave(str(short_name[0])+\"_mask.tif\", masks)\n","\n"," im = interact_manual(batch_process)\n"," im.widget.children[0].description = 'Process your images'\n"," im.widget.children[0].style.button_color = 'yellow'\n"," display(im)\n","\n","if Data_type == \"Stacks (2D + t)\" :\n"," print(\"Stacks (2D + t) are now beeing predicted\")\n","\n"," print('--------------------------------------------------------------')\n"," @interact\n"," def preview_results_stacks(file = os.listdir(Data_folder)):\n"," timelapse = imread(Data_folder+\"/\"+file)\n","\n"," if model_choice == \"Own_model\" or model_choice == \"LiveCell\" or model_choice == \"TissueNet\":\n"," masks, flows, styles = model.eval(timelapse[0], diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n"," else:\n"," masks, flows, styles, diams = model.eval(timelapse[0], diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n","\n"," flowi = flows[0]\n"," fig = plt.figure(figsize=(20,10))\n"," plot.show_segmentation(fig, timelapse[0], masks, flowi, channels=channels)\n"," plt.tight_layout()\n"," plt.show()\n","\n"," def batch_process_stack():\n"," print(\"Your images are now beeing processed\")\n"," for image in os.listdir(Data_folder):\n"," print(\"Performing prediction on: \"+image)\n"," timelapse = imread(Data_folder+\"/\"+image)\n"," short_name = os.path.splitext(image)\n"," n_timepoint = timelapse.shape[0]\n"," prediction_stack = np.zeros((n_timepoint, timelapse.shape[1], timelapse.shape[2]))\n","\n"," for t in range(n_timepoint):\n"," print(\"Frame number: \"+str(t))\n"," img_t = timelapse[t]\n","\n"," if model_choice == \"Own_model\" or model_choice == \"LiveCell\" or model_choice == \"TissueNet\":\n"," masks, flows, styles = model.eval(img_t, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n"," else:\n"," masks, flows, styles, diams = model.eval(img_t, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels)\n","\n","\n"," prediction_stack[t] = masks\n","\n"," prediction_stack = img_as_float32(prediction_stack, force_copy=False)\n"," os.chdir(Result_folder)\n"," imsave(str(short_name[0])+\".tif\", prediction_stack, compression ='zlib')\n"," del prediction_stack\n","\n"," im = interact_manual(batch_process_stack)\n"," im.widget.children[0].description = 'Process your images'\n"," im.widget.children[0].style.button_color = 'yellow'\n"," display(im)\n","\n","\n"]},{"cell_type":"markdown","metadata":{"id":"rk7GNKr5tYBY"},"source":["\n","\n","## **6.2 Generate prediction(s) from unseen dataset (3D stacks)**\n","---\n","\n","The current trained model (from section 4.3) can now be used to process images. If an older model needs to be used, please untick the **Use_the_current_trained_model** box and enter the model's name and path to use. Predicted output images are saved in your **Prediction_folder** folder as restored image stacks (ImageJ-compatible TIFF images).\n","\n","**`Data_folder`:** This folder should contain the images that you want to predict using the network that you will train.\n","\n","**`Result_folder`:** This folder will contain the predicted output.\n","\n","**`model_choice`:** Choose the model to use to make predictions. This model needs to be a Cellpose model. You can also use the pretrained models already available in cellpose:\n","\n","- The cytoplasm model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is an optional nuclear channel.\n","- The cytoplasm2 model is an updated cytoplasm model trained with user-submitted images.\n","\n","- The nuclear model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and the second channel is always set to an array of zeros.\n","\n","\n","**`Channel_to_segment`:** Choose the channel to segment. If using single-channel grayscale images, choose \"Grayscale\".\n","\n","**`Nuclear_channel`:** If you are using a model that segment the \"cytoplasm\", you can use a nuclear channel to aid the segmentation.\n","\n","**`Object_diameter`:** Indicate the diameter of the objects (cells or Nuclei) you want to segment (in pixel). Do not input \"0\" to perform 3D predictions.\n","\n","**`Anisotropy`:** Optional rescaling factor to use when the images to segment are not isotropic (e.g. set to 2.0 if Z is sampled half as dense as X or Y). **Default value: 1**\n","\n","**`Min_size`:** Minimum number of pixels per mask. Can be turned off using -1. **Default value: 15**\n","\n","**`mask_threshold`:** The pixels greater than the mask_threshold are used to run dynamics and determine masks. Decrease this threshold if cellpose is not returning as many masks as you'd expect. Similarly, increase this threshold if cellpose is returning too many masks, particularly from dim areas. **Default value: 0.0**\n"]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","id":"Qf2Mn-2Yo7tI"},"outputs":[],"source":["from cellpose import utils\n","from numba.experimental import jitclass\n","from numba import jit, float64\n","\n","\n","#@markdown ### Provide the path to your dataset and to the folder where the predictions are saved, then play the cell to predict outputs from your unseen images.\n","\n","Data_folder = \"\" #@param {type:\"string\"}\n","Result_folder = \"\" #@param {type:\"string\"}\n","\n","#@markdown ###What model do you want to use?\n","model_choice = \"Cytoplasm\" #@param [\"Cytoplasm\",\"Cytoplasm2\", \"Nuclei\", \"Own_model\"]\n","\n","\n","#@markdown ####If using your own model, please provide the path to the model (not the folder):\n","\n","Prediction_model = \"\" #@param {type:\"string\"}\n","\n","#@markdown ### What channel do you want to segment?\n","\n","Channel_to_segment= \"Grayscale\" #@param [\"Grayscale\", \"Blue\", \"Green\", \"Red\"]\n","\n","# @markdown ###If you chose the model \"cytoplasm\" indicate if you also have a nuclear channel that can be used to aid the segmentation.\n","\n","Nuclear_channel= \"None\" #@param [\"None\", \"Blue\", \"Green\", \"Red\"]\n","\n","#@markdown ###How do you want to generate the 3D labels?\n","\n","#Choose_3D_mode = \"2D predictions and stitching\" #@param [\"3D predictions\", \"2D predictions and stitching\"]\n","\n","Choose_3D_mode = \"3D predictions\" #@param [\"3D predictions\"]\n","\n","#@markdown ### Segmentation parameters:\n","Object_diameter = 10#@param {type:\"number\"}\n","Anisotropy = 1 #@param {type:\"number\"}\n","Min_size = 200#@param {type:\"number\"}\n","mask_threshold=0 #@param {type:\"slider\", min:-6, max:6, step:1}\n","\n","##@markdown ### Additional parameters for 2D predictions and stitching:\n","\n","#Flow_threshold = 0.5 #@param {type:\"slider\", min:0.1, max:1.1, step:0.1}\n","#Stitch_threshold= 0.1#@param {type:\"slider\", min:0, max:1.0, step:0.1}\n","\n","#failsafes\n","if Choose_3D_mode == \"3D predictions\":\n"," do_3D = True\n"," Stitch_threshold= 0\n","\n"," if Object_diameter == 0:\n"," Object_diameter= 40\n"," print(\"Object_diameter set to 40. If you want to use a different Object_diameter enable it in your segmentation parameters\")\n","\n","else:\n"," do_3D = False\n"," Anisotropy = 0\n","\n","if Choose_3D_mode == \"2D predictions and stitching\" and Stitch_threshold== 0:\n"," Stitch_threshold= 0.5\n"," print(\"Stitch_threshold has now automatically be enabled with an IoU of 0.5. If you want to use a different threshold enable it in your segmentation parameters\")\n","\n","\n","if Channel_to_segment == \"Grayscale\":\n"," segment_channel = 0\n","\n","if Channel_to_segment == \"Blue\":\n"," segment_channel = 3\n","\n","if Channel_to_segment == \"Green\":\n"," segment_channel = 2\n","\n","if Channel_to_segment == \"Red\":\n"," segment_channel = 1\n","\n","if Nuclear_channel == \"Blue\":\n"," nuclear_channel = 3\n","\n","if Nuclear_channel == \"Green\":\n"," nuclear_channel = 2\n","\n","if Nuclear_channel == \"Red\":\n"," nuclear_channel = 1\n","\n","if Nuclear_channel == \"None\":\n"," nuclear_channel = 0\n","\n","if model_choice == \"Cytoplasm\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"cyto\")\n"," print(\"Cytoplasm model enabled\")\n","\n","if model_choice == \"Cytoplasm2\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"cyto2\")\n"," print(\"Cytoplasm2 model enabled\")\n","\n","if model_choice == \"Nuclei\":\n"," channels=[segment_channel,0]\n"," model = models.Cellpose(gpu=True, model_type=\"nuclei\")\n"," print(\"Nuclei model enabled\")\n","\n","if model_choice == \"Cytoplasm2_Omnipose\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"cyto2_omni\")\n"," print(\"Cytoplasm2_Omnipose model enabled\")\n","\n","if model_choice == \"Bacteria_Omnipose\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.Cellpose(gpu=True, model_type=\"bact_omni\")\n"," print(\"Bacteria_omnipose model enabled\")\n","\n","if model_choice == \"Own_model\":\n"," channels=[segment_channel,nuclear_channel]\n"," model = models.CellposeModel(gpu=True, pretrained_model=Prediction_model, torch=True, diam_mean=30.0, net_avg=True, device=None, residual_on=True, style_on=True, concatenation=False)\n","\n"," print(\"Own model enabled\")\n","\n","if Object_diameter is 0:\n"," Object_diameter = None\n"," print(\"The cell size will be estimated automatically for each image\")\n","\n","if Choose_3D_mode == \"2D predictions and stitching\":\n","\n"," for image in os.listdir(Data_folder):\n"," print(\"Performing prediction on: \"+image)\n"," stack = imread(Data_folder+\"/\"+image)\n"," short_name = os.path.splitext(image)\n"," n_plane = stack.shape[0]\n"," prediction_stack = np.zeros((n_plane, stack.shape[1], stack.shape[2]))\n","\n"," for t in range(n_plane):\n"," print(\"Z plane number: \"+str(t))\n"," img_t = stack[t]\n","\n"," if model_choice == \"Own_model\":\n"," masks, flows, styles = model.eval(img_t, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels, do_3D=do_3D, anisotropy = Anisotropy, stitch_threshold=Stitch_threshold, min_size=Min_size)\n"," else:\n"," masks, flows, styles, diams = model.eval(img_t, diameter=Object_diameter, flow_threshold=Flow_threshold,cellprob_threshold=mask_threshold, channels=channels, do_3D=do_3D, anisotropy = Anisotropy, stitch_threshold=Stitch_threshold, min_size=Min_size)\n","\n"," prediction_stack = masks\n","\n"," os.chdir(Result_folder)\n"," imsave(str(short_name[0])+\".tif\", prediction_stack)\n","\n","\n","if Choose_3D_mode == \"3D predictions\":\n","\n"," for image in os.listdir(Data_folder):\n"," print(\"Performing prediction on: \"+image)\n"," stack = imread(Data_folder+\"/\"+image)\n"," short_name = os.path.splitext(image)\n","\n"," if model_choice == \"Own_model\":\n"," masks, flows, styles = model.eval(stack, diameter=Object_diameter, channels=channels, do_3D=True, anisotropy = Anisotropy, min_size=Min_size, cellprob_threshold=mask_threshold)\n"," else:\n"," masks, flows, styles, diams = model.eval(stack, diameter=Object_diameter, channels=channels, do_3D=True, anisotropy = Anisotropy, min_size=Min_size, cellprob_threshold=mask_threshold)\n","\n"," prediction_stack_32 = img_as_float32(masks, force_copy=False)\n"," os.chdir(Result_folder)\n"," imsave(str(short_name[0])+\".tif\", prediction_stack_32)\n","\n","\n"," def f(Z_plane):\n"," flowi = flows[0]\n"," fig = plt.figure(figsize=(20,10))\n"," plot.show_segmentation(fig, stack[Z_plane], masks[Z_plane], flowi[Z_plane], channels=channels)\n"," plt.tight_layout()\n"," plt.show()\n","\n"," print('--------------------------------------------------------------')\n"," interact(f, Z_plane=widgets.IntSlider(min=0, max=masks.shape[0], step=1, value=0));\n"]},{"cell_type":"markdown","metadata":{"id":"hvkd66PldsXB"},"source":["## **6.3. Download your predictions**\n","---\n","\n","**Store your data** and ALL its results elsewhere by downloading it from Google Drive and after that clean the original folder tree (datasets, results, trained model etc.) if you plan to train or use new networks. Please note that the notebook will otherwise **OVERWRITE** all files which have the same name."]},{"cell_type":"markdown","metadata":{"id":"dHUKCoSZ7dzV"},"source":["# **7. Version log**\n","---\n","**v1.16.3**:\n","* Cyto3 added\n","* --fast mode removed\n","\n","**v1.16.2**:\n","* Debug in load a model or run QC with the current model (list of files avoids pdf and QC_model is checked rather than the model type)\n","\n","**v1.16.1**:\n","* Replaced all absolute pathing with relative pathing\n","\n","**v1.16**:\n","* Cellpose 2.2 is now used by default\n","* LiveCell and TissueNet models added\n","* A few minor text change\n","\n","\n","**v1.15.4**:\n","* ZIP compression when saving label images removed\n","\n","**v1.15.3**:\n","* A few minor text change\n","\n","**v1.15.2**:\n","\n","* !pip install cellpose==1.0.2\n","\n","* add verbose option and fix issues when less than 10 images are used for training.\n","\n","\n","\n","**v1.15.1**:\n","* !pip install opencv-python-headless==4.1.2.30\n","\n","\n","**v1.15**:\n","* Cellpose updated to 0.7.\n","* Omnipose bacteria and Cyto2 models added.\n","* Various dependencies issues fixed.\n","\n","\n","**v1.14**:\n","* Added the possibility to perform 3D predictions (section 6.2).\n","\n","**v1.13**: \n","\n","* Training now uses TORCH.\n","* This version also now includes built-in version check and the version log that you're reading now."]},{"cell_type":"markdown","metadata":{"id":"u4pcBe8Z3T2J"},"source":["# **Thank you for using Cellpose 2D!**"]}],"metadata":{"accelerator":"GPU","colab":{"machine_shape":"hm","provenance":[{"file_id":"https://github.com/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Cellpose_2D_ZeroCostDL4Mic.ipynb","timestamp":1742283178934}]},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.6.4"},"widgets":{"application/vnd.jupyter.widget-state+json":{"f768803545d041638b66941d850b32cd":{"model_module":"@jupyter-widgets/controls","model_name":"VBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":["widget-interact"],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"VBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"VBoxView","box_style":"","children":["IPY_MODEL_790d6e6e473a46e78ffbfc1f72a931ed","IPY_MODEL_dc90ae8a475c46f982be4967a6a83cb1"],"layout":"IPY_MODEL_02f07ea9cda84469b0baf05bb6db2c8a"}},"790d6e6e473a46e78ffbfc1f72a931ed":{"model_module":"@jupyter-widgets/controls","model_name":"DropdownModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DropdownModel","_options_labels":["C2-Slide1.sld - Capture 6 - Position 1.tif","C2-Slide1.sld - Capture 6 - Position 2.tif","C2-Slide1.sld - Capture 6 - Position 4.tif","C2-Slide1.sld - Capture 6 - Position 3.tif","C2-Slide1.sld - Capture 6 - Position 6.tif","C2-Slide1.sld - Capture 6 - Position 5.tif","C2-Slide1.sld - Capture 6 - Position 8.tif","C2-Slide1.sld - Capture 6 - Position 7.tif","C2-Slide1.sld - Capture 6 - Position 9.tif","C2-Slide1.sld - Capture 6 - Position 10.tif","C2-Slide1.sld - Capture 6 - Position 11.tif","C2-Slide1.sld - Capture 6 - Position 12.tif","C2-Slide1.sld - Capture 6 - Position 13.tif","C2-Slide1.sld - Capture 6 - Position 15.tif","C2-Slide1.sld - Capture 6 - Position 14.tif"],"_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"DropdownView","description":"file","description_tooltip":null,"disabled":false,"index":0,"layout":"IPY_MODEL_c2166230f60e4a72b094a9b20d79c774","style":"IPY_MODEL_8d43f28e23ed45b08129ed41526b4ca1"}},"dc90ae8a475c46f982be4967a6a83cb1":{"model_module":"@jupyter-widgets/output","model_name":"OutputModel","model_module_version":"1.0.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/output","_model_module_version":"1.0.0","_model_name":"OutputModel","_view_count":null,"_view_module":"@jupyter-widgets/output","_view_module_version":"1.0.0","_view_name":"OutputView","layout":"IPY_MODEL_f5f6be3714e4455bb60cb90716dfe132","msg_id":"","outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAB8YAAAILCAYAAACaSfadAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xe8JUdxNo4/PXPCzXdzllYJhBBB/CQLDELRIMkSAgte2fgFEUTwS7CwAX/BfGQB5gWTsY0xYGywCa+NhV/Arw0iySSDTTAiysoSWkmrjXdvPGn698c5NbdO3aqeOXd3tUH9SGfvOTMdqqurq7q6pnuc994jIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLiKEVyqAmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIg4mIiB8YiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIoxoxMB4RERERERERERERERERERERERERERERERERERERcVQjBsYjIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIo5qxMB4RERERERERERERERERERERERERERERERERERERMRRjRgYj4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIg4qhED4xERERERERERERERERERERERERERERERERERERERRzViYDwiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi4qhGDIxHRERERERERERERERERERERERERERERERERERERBzViIHxiIj9xMc+9jE453DnnXcOnPff/u3f4JzDv/3bvx1wujicc3jjG98YTHPnnXfCOYePfexjB5WWiIiIiIiIwwWaHX7+85+P44477pDRJPFgzRUGwZHAt4iIiIiIhx6OBPt0ONr1ItCax/e///1DTUpERERExBGGaJttyPX6/YkxREREDIYYGI+IiIiIiIiIiIjYT7z1rW/FZz/72UNNxgHFBz7wgfjAXERERETEQxJHo12PiIiIiIg4khFtc0RExIFCDIxHROwnnvvc52J+fh5bt24dOO/ZZ5+N+fl5nH322QeBssGwdetWzM/P47nPfe6hJiUiIiIiIuKQ4a/+6q/w3//93wPnOxqd9EEC48vlW0RERERExMFEtOsRERERERGHF6JtjoiIONSoHGoCIiKOVMzOzmJ0dBRpmiJN02WVkSQJhoaGDjBly4Nz7rChJSIiIiIiIoQsy9BsNg+K3apWqwe8zIcCIt8iIiIiIpaLaNcjIiIiIiIOL0TbHBERcTQj7hiPeMjjv/7rv3DxxRdjYmICY2NjuOCCC/Dd7363Lw294+PrX/86Xvayl2HdunXYsmVL3z3+/o8sy/DGN74RmzZtwsjICM477zz8/Oc/x3HHHYfnP//5eTrtHSbnnnsuHvWoR+HnP/85zjvvPIyMjGDz5s14xzve0UdTs9nEH/3RH+H000/H5OQkRkdH8eQnPxk33HDDsvigvWP8+c9/PsbGxnD33Xfj0ksvxdjYGDZv3oy/+Iu/AAD85Cc/wfnnn4/R0VFs3boVn/rUp/rK3L17N17zmtfg0Y9+NMbGxjAxMYGLL74YN95445L677rrLlx22WUYHR3FunXr8Hu/93u4/vrr1Xe8/Md//AcuuugiTE5OYmRkBOeccw6+/e1vL6vdERERERGHBm984xvhnMNNN92EK664AhMTE1i9ejWuvvpqLCws9KV1zuEVr3gFPvnJT+LUU09FvV7HF7/4RQDAtm3b8MIXvhDr169HvV7Hqaeeir/5m79ZUt8999yDZzzjGX12ptFoLEmnve8syzL86Z/+KR796EdjaGgIa9euxUUXXZS/a9M5h9nZWfzt3/4tnHNwzvXZ+wNNo4Uycxriu4Sczxx33HH42c9+hq9//et5m84991yzbsk3mle8613vwoc//GGceOKJqNfr+JVf+RV873vfW5L/pptuwrOe9SysWrUKQ0NDOOOMM/D5z3++L02r1cKb3vQmPOxhD8PQ0BBWr16Ns846C1/+8pdL8ygiIiIi4uAg2vUDa9eJnzfffDOe85znYHJyEmvXrsU111wD7z1++ctf4ulPfzomJiawYcMGvPvd7+7LP8h6wd///d/j9NNPx/j4OCYmJvDoRz8af/qnfxqkb8+ePTjzzDOxZcuWfNff/fffjxe84AXYsmUL6vU6Nm7ciKc//enxXakRERERhwjRNh94n3vbtm246qqrsGnTJtTrdRx//PH4X//rf6HZbOZp9u7di1e96lU45phjUK/XcdJJJ+Htb387siwrXU8ItF5/++2348ILL8To6Cg2bdqEN7/5zfDe96WdnZ3Fq1/96pyWk08+Ge9617uWpPvyl7+Ms846CytWrMDY2BhOPvlk/OEf/mFfmkajgWuvvRYnnXQS6vU6jjnmGPzBH/zBQPyLiDhcEHeMRzyk8bOf/QxPfvKTMTExgT/4gz9AtVrFhz70IZx77rn4+te/jsc//vF96V/2spdh7dq1+KM/+iPMzs6a5b7+9a/HO97xDjztaU/DhRdeiBtvvBEXXnjhkkmHhT179uCiiy7C5ZdfjiuuuALXXXcd/r//7//Dox/9aFx88cUAgH379uEjH/kInv3sZ+PFL34xpqen8dd//de48MIL8Z//+Z847bTTls0Xjk6ng4svvhhnn3023vGOd+CTn/wkXvGKV2B0dBRveMMb8D//5//E5Zdfjg9+8IO48sor8au/+qs4/vjjAQC33347PvvZz+J//I//geOPPx7bt2/Hhz70IZxzzjn4+c9/jk2bNgHoGunzzz8f9913H66++mps2LABn/rUp1Sn/Wtf+xouvvhinH766bj22muRJAk++tGP4vzzz8c3v/lNnHnmmQek3RERERERDw6uuOIKHHfccXjb296G7373u/izP/sz7NmzB3/3d3/Xl+5rX/saPv3pT+MVr3gF1qxZg+OOOw7bt2/HE57whNyJX7t2Lb7whS/gqquuwr59+/CqV70KADA/P48LLrgAd999N373d38XmzZtwsc//nF87WtfK0XjVVddhY997GO4+OKL8aIXvQjtdhvf/OY38d3vfhdnnHEGPv7xj+NFL3oRzjzzTLzkJS8BAJx44okA8KDROOicpgjve9/78MpXvhJjY2N4wxveAABYv379QGUAwKc+9SlMT0/jpS99KZxzeMc73oHLL78ct99+e75T4Gc/+xme9KQnYfPmzXjd616H0dFRfPrTn8YznvEMfOYzn8Fv/MZvAOgu7LztbW/Leb1v3z58//vfxw9/+EM85SlPGZi2iIiIiIgDj2jXDwyNhN/8zd/EKaecgj/5kz/Bv/zLv+Atb3kLVq1ahQ996EM4//zz8fa3vx2f/OQn8ZrXvAa/8iu/kr+mrex6wZe//GU8+9nPxgUXXIC3v/3tAIBf/OIX+Pa3v42rr75apWnnzp14ylOegt27d+PrX/96zptnPvOZ+NnPfoZXvvKVOO644/DAAw/gy1/+Mu6+++4lAZCIiIiIiAcP0TYfGBrvvfdenHnmmdi7dy9e8pKX4BGPeAS2bduG6667DnNzc6jVapibm8M555yDbdu24aUvfSmOPfZY/Pu//zte//rX47777sP73ve+UnUVodPp4KKLLsITnvAEvOMd78AXv/hFXHvttWi323jzm98MAPDe47LLLsMNN9yAq666Cqeddhquv/56vPa1r8W2bdvw3ve+F0DXH7/00kvxmMc8Bm9+85tRr9dx66239m1Cy7IMl112Gb71rW/hJS95CU455RT85Cc/wXvf+17cfPPN8Yj7iCMPPiLiIYxnPOMZvlar+dtuuy2/du+99/rx8XF/9tln59c++tGPegD+rLPO8u12u68MunfHHXd4772///77faVS8c94xjP60r3xjW/0APzznve8/NoNN9zgAfgbbrghv3bOOed4AP7v/u7v8muNRsNv2LDBP/OZz8yvtdtt32g0+urYs2ePX79+vX/hC1/Ydx2Av/baa4O8uOOOOzwA/9GPfjS/9rznPc8D8G9961v76hgeHvbOOf/3f//3+fWbbrppST0LCwu+0+ksqader/s3v/nN+bV3v/vdHoD/7Gc/m1+bn5/3j3jEI/r4k2WZf9jDHuYvvPBCn2VZnnZubs4ff/zx/ilPeUqwjRERERERhw+uvfZaD8Bfdtllfddf9rKXeQD+xhtvzK8B8EmS+J/97Gd9aa+66iq/ceNGv3Pnzr7rv/Vbv+UnJyf93Nyc9977973vfR6A//SnP52nmZ2d9SeddNISO/y85z3Pb926Nf/9ta99zQPwv/u7v7ukDdwWjY6O9tn4g0mjhrJzGuK7hJzPeO/9qaee6s8555wlabX5i+QbzStWr17td+/enV//3Oc+5wH4f/7nf86vXXDBBf7Rj360X1hYyK9lWeaf+MQn+oc97GH5tcc+9rH+kksuCfIhIiIiIuLQINr1A2vXiZ8veclL8mvtdttv2bLFO+f8n/zJn+TXyUfn9JZdL7j66qv9xMTEknUODpojfO973/P33XefP/XUU/0JJ5zg77zzzr6yAfh3vvOdwXZFRERERDx4iLb5wNrmK6+80idJ4r/3ve+ZdP7xH/+xHx0d9TfffHPf/de97nU+TVN/991359fkOrrmk2ug9fpXvvKVffVfcsklvlar+R07dnjvvf/sZz/rAfi3vOUtffmf9axneeecv/XWW7333r/3ve/1APJ8Gj7+8Y/7JEn8N7/5zb7rH/zgBz0A/+1vfztIc0TE4YZ4lHrEQxadTgdf+tKX8IxnPAMnnHBCfn3jxo347d/+bXzrW9/Cvn37+vK8+MUvLnyf+Fe/+lW022287GUv67v+yle+sjRtY2NjeM5znpP/rtVqOPPMM3H77bfn19I0Ra1WA9B9amv37t1ot9s444wz8MMf/rB0XWXwohe9KP++YsUKnHzyyRgdHcUVV1yRXz/55JOxYsWKPhrr9TqSpKtmOp0Odu3alR/Hwmn84he/iM2bN+Oyyy7Lrw0NDeHFL35xHx0/+tGPcMstt+C3f/u3sWvXLuzcuRM7d+7E7OwsLrjgAnzjG984YMfSREREREQ8OHj5y1/e95vs5b/+67/2XT/nnHPwyEc+Mv/tvcdnPvMZPO1pT4P3PrcJO3fuxIUXXoipqanc1vzrv/4rNm7ciGc961l5/pGRkfxJ8xA+85nPwDmHa6+9dsk97UhyjgeLxuXMaR4s/OZv/iZWrlyZ/37yk58MAPl8Yffu3fja176GK664AtPT0zl/du3ahQsvvBC33HILtm3bBqA7B/nZz36GW2655cFvSEREREREKUS7vv80cnBfPE1TnHHGGfDe46qrrsqvk4++nPWCFStWYHZ2ttRrSe655x6cc845aLVa+MY3voGtW7fm94aHh1Gr1fBv//Zv2LNnz0BtjIiIiIg4uIi2ef9pzLIMn/3sZ/G0pz0NZ5xxhknnP/7jP+LJT34yVq5c2UfLr/3ar6HT6eAb3/hGYV1l8YpXvKKv/le84hVoNpv4yle+AqDb3jRN8bu/+7t9+V796lfDe48vfOELALpzAQD43Oc+Z66r/+M//iNOOeUUPOIRj+hr1/nnnw8Ay361a0TEoUI8Sj3iIYsdO3Zgbm4OJ5988pJ7p5xyCrIswy9/+Uuceuqp+XU6IjyEu+66CwBw0kkn9V1ftWpV38JwCFu2bFli+FeuXIkf//jHfdf+9m//Fu9+97tx0003odVqDURnWdB7XTgmJydVGicnJ/ucYHo/zAc+8AHccccd6HQ6+b3Vq1fn3++66y6ceOKJS8qTPKSF8Oc973kmvVNTU6X5HBERERFx6PGwhz2s7/eJJ56IJEmWvI9S2rYdO3Zg7969+PCHP4wPf/jDatkPPPAAgK6dOemkk5bYGW0OIHHbbbdh06ZNWLVqVWFaiQeLxuXMaR4sHHvssX2/yUbTfOHWW2+F9x7XXHMNrrnmGrWMBx54AJs3b8ab3/xmPP3pT8fDH/5wPOpRj8JFF12E5z73uXjMYx5zcBsREREREVEa0a7vP40c0o5OTk5iaGgIa9asWXJ9165dfdfKrBe87GUvw6c//WlcfPHF2Lx5M5761KfiiiuuwEUXXbSEluc+97moVCr4xS9+gQ0bNvTdq9frePvb345Xv/rVWL9+PZ7whCfg0ksvxZVXXrkkbURERETEg4tomw+Mz71v3z486lGPCqa75ZZb8OMf/3jJWrqkZX+RJEnfQ/EA8PCHPxwA8n696667sGnTJoyPj/elO+WUU/L7QPdh9o985CN40YtehNe97nW44IILcPnll+NZz3pWvuHtlltuwS9+8YuD3q6IiAcLMTAeETEAhoeHH5R6rF3p3vv8+yc+8Qk8//nPxzOe8Qy89rWvxbp165CmKd72trfhtttuO+i0lKHxrW99K6655hq88IUvxB//8R9j1apVSJIEr3rVq5a1s5vyvPOd7zTfoT42NjZwuRERERERhw+sJ8KlDSab8JznPMd8YOpQB0wPRxot/vKH1w4kiuYLxKPXvOY1uPDCC9W09KDc2Wefjdtuuw2f+9zn8KUvfQkf+chH8N73vhcf/OAH+3bURUREREQcPoh2ff+g2dEDuV6wbt06/OhHP8L111+PL3zhC/jCF76Aj370o7jyyivxt3/7t33lX3755fi7v/s7/Omf/ine9ra3Lan/Va96FZ72tKfhs5/9LK6//npcc801eNvb3oavfe1reNzjHrdcFkREREREHGBE23xw6XnKU56CP/iDP1DvU/D6cMLw8DC+8Y1v4IYbbsC//Mu/4Itf/CL+4R/+Aeeffz6+9KUvIU1TZFmGRz/60XjPe96jlnHMMcc8yFRHROwfYmA84iGLtWvXYmRkBP/93/+95N5NN92EJEmWpdTpOLFbb72170m7Xbt2HdAjxa677jqccMIJ+Kd/+qe+CY127MyhwnXXXYfzzjsPf/3Xf913fe/evX1PuG/duhU///nP4b3va8utt97al+/EE08EAExMTODXfu3XDiLlEREREREPFm655ZY+e3nrrbciyzIcd9xxwXxr167F+Pg4Op1OoU3YunUrfvrTny6xM9ocQOLEE0/E9ddfj927dwefYNcWFx4sGgeZ09CO7b179+ZHpgGLT4sXtelAg55yr1arpWz7qlWr8IIXvAAveMELMDMzg7PPPhtvfOMbY2A8IiIi4jBBtOv7T+OBwCDrBbVaDU972tPwtKc9DVmW4WUvexk+9KEP4Zprruk7xe2Vr3wlTjrpJPzRH/0RJicn8brXvW5JWSeeeCJe/epX49WvfjVuueUWnHbaaXj3u9+NT3ziEwenoRERERERhYi2ef9pXLt2LSYmJvDTn/40mO7EE0/EzMzMQV+3zrIMt99+e1+g/eabbwaAvF+3bt2Kr3zlK5ienu7bNX7TTTfl9wlJkuCCCy7ABRdcgPe85z1461vfije84Q244YYb8Gu/9ms48cQTceONN+KCCy54UNYJIiIONuI7xiMeskjTFE996lPxuc99ru/omO3bt+NTn/oUzjrrLExMTAxc7gUXXIBKpYK//Mu/7Lv+/ve/f39J7gM9Jc6fCv+P//gPfOc73zmg9ewP0jTtow/ovpOE3hVKuPDCC7Ft2zZ8/vOfz68tLCzgr/7qr/rSnX766TjxxBPxrne9CzMzM0vq27FjxwGkPiIiIiLiwcBf/MVf9P3+8z//cwDAxRdfHMyXpime+cxn4jOf+YzqnHKb8Ou//uu49957cd111+XX5ubmzKPWOJ75zGfCe483velNS+5xGzc6Ooq9e/ceEhoHmdPQQ2b83Wazs7NLdoVZbTrQWLduHc4991x86EMfwn333bfkPueRPCJ2bGwMJ510EhqNxkGlMSIiIiKiPKJd338aDwTKrhdI25okSb6zTrOv11xzDV7zmtfg9a9/fd+ax9zcHBYWFvrSnnjiiRgfH492OiIiIuIQI9rm/acxSRI84xnPwD//8z/j+9//vknnFVdcge985zu4/vrrl6TZu3cv2u12YV1lwWMN3nu8//3vR7VaxQUXXACg295Op7MkJvHe974Xzrm8/3fv3r2kbDqplWz4FVdcgW3bti1ZqweA+fl5zM7OHpA2RUQ8WIg7xiMe0njLW96CL3/5yzjrrLPwspe9DJVKBR/60IfQaDTwjne8Y1llrl+/HldffTXe/e5347LLLsNFF12EG2+8EV/4whewZs2aA/ZU1aWXXop/+qd/wm/8xm/gkksuwR133IEPfvCDeOQjH6kGjQ8FLr30Urz5zW/GC17wAjzxiU/ET37yE3zyk59c8g6Ul770pXj/+9+PZz/72bj66quxceNGfPKTn8TQ0BCAxScCkyTBRz7yEVx88cU49dRT8YIXvACbN2/Gtm3bcMMNN2BiYgL//M///KC3MyIiIiJi+bjjjjtye/md73wHn/jEJ/Dbv/3beOxjH1uY90/+5E9www034PGPfzxe/OIX45GPfCR2796NH/7wh/jKV76SO3gvfvGL8f73vx9XXnklfvCDH2Djxo34+Mc/jpGRkcI6zjvvPDz3uc/Fn/3Zn+GWW27BRRddhCzL8M1vfhPnnXceXvGKVwDoPrz1la98Be95z3uwadMmHH/88Xj84x//oNAIlJ/TPPWpT8Wxxx6Lq666Cq997WuRpin+5m/+BmvXrsXdd9/dV+bpp5+Ov/zLv8Rb3vIWnHTSSVi3bh3OP//8UvQMgr/4i7/AWWedhUc/+tF48YtfjBNOOAHbt2/Hd77zHdxzzz248cYbAQCPfOQjce655+L000/HqlWr8P3vfx/XXXdd3gcREREREYce0a4fGLu+vyi7XvCiF70Iu3fvxvnnn48tW7bgrrvuwp//+Z/jtNNOy99BKvHOd74TU1NTePnLX47x8XE85znPwc0334wLLrgAV1xxBR75yEeiUqng//7f/4vt27fjt37rtx6UNkdERERE6Ii2+cDY5re+9a340pe+hHPOOQcveclLcMopp+C+++7DP/7jP+Jb3/oWVqxYgde+9rX4/Oc/j0svvRTPf/7zcfrpp2N2dhY/+clPcN111+HOO+/sO0V1uRgaGsIXv/hFPO95z8PjH/94fOELX8C//Mu/4A//8A/z94A/7WlPw3nnnYc3vOENuPPOO/HYxz4WX/rSl/C5z30Or3rVq/KH5t/85jfjG9/4Bi655BJs3boVDzzwAD7wgQ9gy5YtOOusswAAz33uc/HpT38av/M7v4MbbrgBT3rSk9DpdHDTTTfh05/+NK6//nqcccYZ+92uiIgHDT4i4iGOH/7wh/7CCy/0Y2NjfmRkxJ933nn+3//93/vSfPSjH/UA/Pe+970l+eneHXfckV9rt9v+mmuu8Rs2bPDDw8P+/PPP97/4xS/86tWr/e/8zu/k6W644QYPwN9www35tXPOOcefeuqpS+p53vOe57du3Zr/zrLMv/Wtb/Vbt2719XrdP+5xj/P/7//9vyXpvPcegL/22muDfLjjjjs8AP/Rj360r87R0dElaS0at27d6i+55JL898LCgn/1q1/tN27c6IeHh/2TnvQk/53vfMefc845/pxzzunLe/vtt/tLLrnEDw8P+7Vr1/pXv/rV/jOf+YwH4L/73e/2pf2v//ovf/nll/vVq1f7er3ut27d6q+44gr/1a9+NdjGiIiIiIjDB9dee60H4H/+85/7Zz3rWX58fNyvXLnSv+IVr/Dz8/N9aQH4l7/85Wo527dv9y9/+cv9Mccc46vVqt+wYYO/4IIL/Ic//OG+dHfddZe/7LLL/MjIiF+zZo2/+uqr/Re/+MUldlizo+1227/zne/0j3jEI3ytVvNr1671F198sf/BD36Qp7npppv82Wef7YeHhz0A/7znPe+g0WihzJzGe+9/8IMf+Mc//vG+Vqv5Y4891r/nPe9R5zP333+/v+SSS/z4+LgHkNtubf4i+Ubzine+851L6tfmJbfddpu/8sor/YYNG3y1WvWbN2/2l156qb/uuuvyNG95y1v8mWee6VesWOGHh4f9Ix7xCP+///f/9s1ms5A3EREREREHF9GuH1i7TvzcsWNH3/WyPnrZ9YLrrrvOP/WpT/Xr1q3L5wUvfelL/X333Zen0dZDOp2Of/azn+0rlYr/7Gc/63fu3Olf/vKX+0c84hF+dHTUT05O+sc//vH+05/+dLCdEREREREHD9E2H3if+6677vJXXnmlX7t2ra/X6/6EE07wL3/5y32j0cjTTE9P+9e//vX+pJNO8rVaza9Zs8Y/8YlP9O9617v6fFfpF2s+uQaaC9x2223+qU99qh8ZGfHr16/31157re90On1pp6en/e/93u/5TZs2+Wq16h/2sIf5d77znT7LsjzNV7/6Vf/0pz/db9q0yddqNb9p0yb/7Gc/29988819ZTWbTf/2t7/dn3rqqb5er/uVK1f6008/3b/pTW/yU1NThbyLiDic4LwX5xxHREQcFOzduxcrV67EW97yFrzhDW841OQcEXjf+96H3/u938M999yDzZs3H2pyIiIiIiIOIN74xjfiTW96E3bs2HFAnpiOiIiIiIiIOHSIdj0iIiIiIuLwQrTNRyee//zn47rrrjtsToyNiDgSEd8xHhFxEDA/P7/k2vve9z4AwLnnnvvgEnOEQPJsYWEBH/rQh/Cwhz0sBsUjIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi9gvxHeMREQcB//AP/4CPfexj+PVf/3WMjY3hW9/6Fv7P//k/eOpTn4onPelJh5q8wxKXX345jj32WJx22mmYmprCJz7xCdx000345Cc/eahJi4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiDjCEQPjEREHAY95zGNQqVTwjne8A/v27cP69etx9dVX4y1vecuhJu2wxYUXXoiPfOQj+OQnP4lOp4NHPvKR+Pu//3v85m/+5qEmLSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIuIIR3zHeERERERERERERERERERERERERERERERERERERETEUY34jvGIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKMaMTAeEREREREREREREREREREREREREREREREREREREXFUIwbGIyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKOalTKJqxWq+p17z2ccwCQ//Xew3uPJEny3xzOuSXXLFBaXrbMP0h5oXokrfSd7oXq4nRa9PK/zjlkWbakfJ6Xg9OifZf9oNGilRlqT5Zlats1GrR7/H6SJHl7eZu1tljQ2sJ5Sd85TzSe8XuyLK0uqw+1exq9WZYhSRKVZ1obQ/wJ1WW1wRp/nKYy4PWuWLECGzduxO23345Go9FXtka3rFsrU0srdQjpFl6XxkfJBwKVB3R1GslkkiT5PZ63Uqn05eU8y7Ksj/5Op5Nfp3K993k6Sb9sV5ZlSNPUlF9t3A2qR7VrzjnUajWsWbMG4+Pj2Lt3L3bv3o12u72E35Q+SRI451CtVjE0NISxsTFUKhVkWYaZmRm0Wi00m0202+28/bINllyExqF2v0ybLf2k8cbSl6RfKpUKhoaGsGLFCiRJgrm5OSwsLMA5l/OMZEDqACqH+EfQ5Erjz/T0tNneEKL9DtcV7Xe039F+R/tN16P9jvb7cLLfAFCv1wGEecp1KKdZ2pmy9pLaJm2JlofLiJauSOfRX6Jbsze8LllGkY6XkDact0HTrZpul3Mmy4Zr5XG7Z/G+rA2XfNbGA/HUslEaz7UxL+20lDFqKx8DvOyQDedl8bo4n4psuKZflmvDpYxo9Wv84WVJvnIeWWPLaiflAYANGzbgYQ97GH7wgx9gdnbWHCMS8h7XExLSZpJekeXJMczp5DylMiltvV7P7W6apkjTtK8csm3EhzRNl+jaTqeT2912uw0Aud3iaaR+5u2nv1mW5XbQOYdOp7NEt3CeyTmEhCYPUlbp+9DQEI477jisXr0a999/P7Zt24Zms9lHO9WZJAnSNM15ODY2hlWrVuX83L17NxYWFrCwsJDbcT6meB/KMcH5H2qTlEutzZYN18rTdJY21pIkQbVaxfj4ONavX49KpYKpqSnMzMzAOYdms5nLAvGO+pJ4RrLE+6BSqeT93el0+uaBPN2uXbtM3oQQ4mlEREQEAMABGGQ5zBnf4bq/HQDnuttgnQMS1/3r2P08bfe6S9h9uC45kiZ2Py83TeDSBKikQCWFr6RApdr7VICkCiQVwCeAd0DHAR0AHQ+0MqDV7n7aLaDV7P5tt4BOu/vJMiDrAN4v+Th4QaNXvhcx1pdKFQZ1Qtk6j2JoJu8Qs6PMmkvpwDgvVDoYskLpOHGEJuyWw1a06FHkAIQmrjyNbKNEyHGUdYUWAnh9IQeX/spyLAfNgrZAE3JO+SQ01F+yDm1yq/VhWRq1hRNtoq2VYZWtTdJDtFn0c2fWKp9+y0URbXGhyCGRMqrlCfWp1aaitJp8OucwOjqKarVq9jehzGKI1gZygIh35NhpwTpZpuZMSZmqVCp5+eQ8SYeP7vPfBE6PlKUkSXLnutVqLWmrJoNyMUnqAqkPrL7jbZDBJk1X1Go1rFy5EmvXrsXCwgLuuusuLCwsLJFv7kxzOlutFubm5rB3797cWU/TFENDQ1i5ciUAoNVq5U5ps9nE/Px8voAh+S51qNa/ZeyMlAVZZtlxr8kSADSbTezduxfeezSbTXOxQfYBp0cu8Djncr7Iusvq4SJE+x3tt1VHtN/Rfkf7He13tN+Ht/0OtZ/zSga0KJ+l5zU5894vCSTxe7Jf+Diw2q3pI2mXZSCTIINRlMayLdY4lIFa2RZtzGrg41Re57RbD5UV6QCrv7Q8Wr3EHz72LYRolDqU16cFrUNlU99yfSt5ruWVY9Gy4bJfOR/4dTmurYckpO6kv5wO+VCWtNFSHxLt2kM0GmQ5SZJgcnISQ0NDfbRR/ZZsS9o5pFyRPaC2NZvNvnGplaPpS42nQNeGk73hDyTxh9zoPpXDHzxrtVo5L3gbKLhNc4NGo6HONTn9znUfmKI2ch7w8cPbGBq/kp8h/T88PIyNGzdi69atmJ2dxY033ojp6ekl8k06i48H7z0ajQb27duH7du3I01TVCoVVCoVjI2NYdOmTciyLA+OVyoVzM3NYXp6Go1GY4k8W3MNTYcTTZrO4bSXteFcdqWel+mcc5ifn8f999+PLMswPz+fy5HU4USL9pBYmqY5P9vtNpIkQbPZzOvh9iVJkj77HhEREXFQMGhwfEl+FvROKNjd+05BbxH85mn70oHim06ULz6JA5IESBMgTYE0hauk8GmlFxSvAEkKuBTwCZAlyIn0ACoe8FU4dADXAVwLSFpAyoPjHSDrBch91vvrux/QXyz+XnItY4zVGLy/jCeE6og43DFwYFxzouk6vw/oDmXIidSu878h50HSZU1EiybyFh1ycszp0SZtIXo1HklHXJYnJ/Uyb2gBQgNvt0YHvydRxF9KI2m22sF5EnIm+ITb4lUZGSmbT3McQwsgob7UZMJyTItoK2qnBY3/mvOj9buUs06ns2TXjDZ+OD/k4oTlRNMTweQQ05O/ZWnk4OlpsZscfnKiqE7ev+QwdTodVCqVnF5qAz3ZzscKp4nqIl7Rk8jS6ePOmtShRbKm8VQ6nhx8l0K1WsXExARWrVqF+fl53H333ZiZmcnp5Pwjp5D6QPKXyqWnrJvNJhqNBvbu3ZvTRMGGFStWYHx8HM1mEzMzM/lChOYga7qJ/9XaGhpfFqSjLnnPF144rXzBheSBp+eLGbwdVBfxWuoLWTdfDNlfRPu9iGi/o/2O9jva72i/o/0+Uuw3b6dlq7Xr/Jq04bwsLYDI5VzyQuvPIhsuAxQ8cCFlieigsRey4VJvaZBBNC4vst2yfqJVk4lBbbhmpzXdrj0cwO9b8zHJL61vJKT8aG2SOpDTzXnEf8v6rbYW2XCup+UY42PQmqfIurUxwH9bepnXKcu17IHGE62sonHM/7bb7b7ANadbezCU9JwMOGoPKSRJgqGhIVSrVTjn+oKF1ryH2qLxlu5Vq9U8QFutVtFoNPJgN7WF6qhWq+h0Onn6NE3zB7SyLMsf7JM2nOqmE2W893kQndNFD9TJ9hO4XpJ2hfdpyIZL8PnJ0NAQ1q5diy1btmDfvn34yU9+kp/0IvuP6OCBXz7OiSdZluXB27m5OWzfvj1vX5qmqNfrWL9+PdasWYO5uTns2bMHCwsLOX+0Nli2Qup8nsZ6CFlCjn2iVQbWObIsy085mpuby8uheR6Vw2mh/pPltlqtvvkP128E4i09vBERERFxwMHVXBk1o09xAbcY5O4Lhifo7gTPP0nvZcoU2O7lze8tBsbzcsXOcjgHnyS9fMliYDzpBceTFEgr3Y/rfZACPgVcgh6BvcY4OO/hnAdcB0g6QNrbPZ42WXC81d01nnUWA+Tes78eeUDcZ4Dr/YUHvIPvC45rDHcsPC7TWUznaeXfiAcP1D/7x/uBA+MEzeGm6wQ5wbccE3lPW1DRygvRxtNpT84TNKdKS6fRpDmkobI0x12rR3OuQ86ORpecyMuyNdqtsuVvzVkOOdKyLMsR1H7z73JRne5b7bXqtNoroS14aE+jW3Kgyb/V77ztmhMuF6FlPv63SC4tHoRkQNLWbDbzxVI6ukrji3S2ZFu1cSRlSTokGu+l3uCL/pI/fPGN6OKOXKVSycvjT6uTDJEDxstzzuVOK+Xj9JHzT+XyhUat30MyZfWb5CV/Ij9JEtRqNVSr1fy79x733Xcf5ubmch5rzig5lLKPNDolj+l+p9NBq9XCwsICqtUqRkdHMTk5iVqthtnZWczPz+eLIPz4M1ku7wdtHFi6SZahyU9If2n1SF5JeeA0St3FgzRSHqmNJEe0IMIX7/cX0X5H+621O9rvaL+j/Y72O9rvw9N+yzEng8zyu2xjGRsu02tpNFsmwfsjZMP5Qyza+KD0fMzxnXwaX7g8WHqKygzNWaQ91gLVmi2kemXguowNl7IXknstD9Ury5V1UXqLbzI/54HcXa21S9pfGWC09IOWl5dPD/hQOy2eWPpwOTpDttmC1j7JX562aF7D+5LbxSzLsLCwkNsCChASeNCWlyVtl6SPX+O8kXMETpt8GIDLiaZHgcWgNE9LgW9qE9HPj1gnO0yvlaB6eVCT2khHYxMdFCgnO09lUUDZkmM5H9Jk3gqeV6tVVKvV3JaPjIygXq8jTVMMDw8jyzLcfPPNmJqaynksxwvRJneQWzJE16ldRFer1UKj0cD09HT+KpH169djeHgYe/bswfT0dP4KFf4ggdYuTpusl893Od+o/znvtIc6LDvE03F55mnlWCEayQZz2ughC3rwUeo3OnWA5KTZbOZyGXGUwiHGsyIOLqzpw/7Knev/OIdeMLz7lz4uAZACSHw3EeVJlI9jhedlu/zjXdILtrNAei/w7nt/nQM87d7Oen9973uG3sfB+e4HHnA9Qp1Lu4H3LOkG2X0L8Am656+3u5lp5zgFvF2vfCrc9671fjvfQZciz/4uHfiud92X6hiZJioRAMhZe9BxYCspHRjXHEv5ZJ02geTXiyacvFx5jaeT12UdoXotp7ZM22V51kROo8UqqwwtIQeSTy619vIJteZoFvWZRUeIHq29HNJpl/wYtO5QXq091jUtjdbv2nfJP6uPZfoyacuk0+7L8aaVreW1nsDn6efn59FoNDA2NoaFhYW+RWWLptCuGUk3OWcyjdZGzYHT0spdlnzxXT6BTvnJKSJHip50p6ff6ag2fsQWd9SpDnK85BP7PE9o0a3oGvGaHPF6vY7JyUnU6/Wc72maotVqYe/evbkjLo/+lOUPInPaooik2fvu0W90fGm9Xs8X/Gu1Wr74Hno62xrjIRm26JX3ivSfpuu5Q86/yx1QvM9lgE6TW5IfGlv8fbmDItrvaL+j/Y72mxDtd7Tf8n6034ev/eb18zZy+yHbzdNLm6zpBM2uaGUV2fDQdc22hwKO0qZJ2y1lQSuf001/uXzJMiXd2hxA/pZBQBmwlcF8LaDIy5L1yL4Hls6zNJ0py+d5OUK6lo9JSZfcNc6/W3qIt0MG0ORcR6ONrmltDOk+bTxY/OH5y+hTOZeWtMkdtPweL1vuQpbjldO9b98+zM3NYdWqVZiZmcntrWaHKI88NYS3UcorzRE4j+TDK1Ifcl1IO5l5W+VJNfw9z51OB/V6vW8MkZ3mwc1arYZ6vY4kSVCv19FutzE3N9c336AAeJIsvk6FHtqigDmVGdL5sq80mZF9WK/XMTw8jJGREaxbtw4jIyM536vVKhYWFrB9+3Zs374d8/PzS+ZJnB7iEQ9wc57LMUl5pU6SfTM7O4u5ubk8QD88PIyhoSEMDQ1hYWEBMzMzS2y4pSc5uJxrNpxsYmguqQXdebu1B8ySJOl7II8etCLe0c5wfsoL0UPlc93DA+j0Chman0UcpXDsb/GyQkTEgcP+ypvjXz3gHJzzABy9IRx5sNyJfK6XfvFCjyCKsC9m9iL67pyHd0kvPc1/enam4+GzDHB59BtAB/AVwKfdYHcnBToOrpMAnaQbIO90s7jMA5mH66CbNksBn3UD1Tm/OoBfjOw7CoR7oofvDidaqJzux7EgORZbkH9jHITdUVFhlAbJ3wFjmZy773/BpT31Mo6DXHTQ0sqFhJDTE3JINSeIp7EcxFB+LW9oIUCDRpPmoGl5ihZ2eJmURh7jJCfP0unTnFZZtsYHa5EgVI/lRMin9GVdWjllZKzIKda+a+VIaBN5TUakQ6+l19ps9YVVpsUPq4wQvYSQo6ctUtBRm8PDw7mjqZVTlh+aLtB2W8gyQvzgTpL8zd9Vxhe/AfQd6cbLr1QqqNfrfTwgx4mcdu7QUX3cIeMI8Zxfk7LA05HjT44tHVXXbrexZ88eNBqNvr7hO3NCOs26r/FaXgv1N2870A3Q0M4HcjwpwKEtSltyqwV5NeeXQ9Js2RT+V+7+lOXyevnOllDdfAcHT0t95b3Pj8FbLqL9jvZb1i/zRPsd7Xe039F+R/t9+NlvwA54aTqI6LJ0gdzxW6QzZLt5Oo0+Xq6sg49b7aEvSYOlI+m63OHP6+O2KqSbrPbK+rS2yP7n5ckxJv/Ka9ocQMqVtlte8kS2ifNC8oXSyKCWxusiPlnyIWVO449WJqWlnZ1Sn/CPDGxJWjgNsnwtrdRV2lyNp5dtC8k0b4Nsk8Z3ySPvPWZnZ3H//fdjYmIitxtauTyv7D/roRRKJ4/1tuRCkyfOV/mXduTya2TDqf/k0dhZlqFWq2FkZCRv39zcXJ6W7DjpXSqbHzdPf6XMSD3B+5o/1MLbzR9Yq1arGBsbw/j4OOr1ev5g4L333tsXtPfe5yer8LbLPpJ9IXmuySbvy5Ct4Oh0OpiensbMzEzOJwrsz83N5bvOiQ6NP/SbP/RAfa/pNa19chzzPuL085MF+H3+wAevh8rm80UCzU/o4Qxuj6jPqa9IXsfGxhDxEIBDjHVFHBx4YH83uKrZ3eLHUbDb9eyE84vPfeSZPcu0mB7O9RK5xYKd66bu3fN5mqQXWKbguO8Gqr3vBp190gs+d+B97wh13+kGuTMKjnc/rpPAZQ4uS3qBcbe40ds7IEvgsxTOUz29KvM2ZEAexvaA9z36em2lI9UdBcU78L0AOQXQexZNDH/Fj+77VW5P+UMZpryi102HGZb1jnFAn9CVQWgBRnMMOCxHX5Yt65ELLBY0h4UmfdYTjlo7NOdWc1Ss9g7iOGmT39BvrVxZp6RPcwxkmhBv5QReo8WitcgJt+RRyoJFn+StllbbIRQqS6NfOoba/aI2ak62VZ8sVz6ZL8svs/Ah65yamsKaNWtyR1C20+pPzTkq6vsQ/Ty9dtwYd4ppPGv0JEn3CDe6xnf40AI2d5b4NaqPFtfpyXRyqihfGT7IhVutH7gzPjIyglqthp07d2JqaiqvUzqy2sJdGRnS6AjJhtY/cgFFlkO8oCezuaOqpZU6R1u0ssarpjMsPsg0cjeBXOyzypC080VKzhtel3Oub2fD0NCQ2p5BEO330jzRfkf7LWmQ9Ef73V9GtN/RfvPr0X4ffPst+yJkw7W+1GTWsuH0kWm1vuFlcp7IcSDr1PrYukflaTyhYIyUJ+vBDFmmrIe3U+6I1vT5oDbckm+tX3lbrB2YZevk5VE9MsBl2R+eV9rCIhtu6X/LxmnzAr4LVuqJorkCTxeyU1z2OU28DBmA1NrPg69aXdaY03il8ZK394EHHsCxxx6bn/zC26nxUZNtKc/8Gm+LFbCUOoM/RMZ33QKLR6FzXSlfUzI8PJzTwu05BW7TNEW73Uaj0ciD51Q+7Q4GkO8ubzab+e5hvjs7JD/yxBjJOwCo1+uo1+tYtWoVJicnMTw8jF/+8pd44IEH8tNcNBsu5UHTKWV/a2Xx38QT6ktNrxIoCE66Rtoznl6zAXxsygfQpI7RytFkXLZJ2m8px5rd08p2rnuCCz81QI5bStdqtWJg/EgGiUIoAONwEPYdRkTo6G3mBrBMOXPsj+YmeXQDyL0gtQPyN2d366Z73cTOIf/t8uuOFe56dDrAU2AcgHPwvvcwVObQPafdLabzrhsc9w7wtOs7FYHxtBsM7/1NsgTOJ0jyo9U9QHbae3iPxY3g9OpwRrfLmep6QXQsJgL96bWf9YDvtZJZl/yeY+kC3RFMZa0+He16Rmt3VxJ739mPwXlRVPryMHBgXHMCy0xotImV5XTJvARt0UyDNdHSHE66rjkTPK9GU8gJ067JxS2L9qIFH+nAyXwazdaEVmuLNRkvk1a2w+ov7nhpjrlGH88nJ9uyrNAEnu5bDoIGGRCQebTJP/9uyVGoXaH2h3jF0/O0Wv3Wk/Va+VK+FhYWMDs7i5GRESwsLPQ9FR2SHY1WucggFwiILqkD5AKlJpd8/PP0dMwWf6KcP0FOzhB/ZyktqvN3RpJzxumip5ArlQoWFhb66Kc0lq60glgA8vd70oJBp9PBjh070Gq11ONL5RjhZYV0rYaQUy7LltDokPc1OeB0WmVK+nh+TVdqZWrjQ/6l/uOyotFOkLsopF6w+pnXQQs0fFfn/iDa735eRPsd7bdGT7Tf0X5H+x2mQ96P9vvg2m8uf/yahMUzGdjSAs1a8ETaWGmPNduh1U9lcfCgGG+j1AuDyLocp1wf8N2GobI4TcuZM8ndh3RN6jFZJ9eBRXpY7mqVeS2e0G8epNR2hVo8KbLhErw/JR2kw6k8jccELeCs5ZG7gHl+bf7G+a7Jtyxb5tP4ZLVB+815IGUgxAvvPaanp7F7925MTExgenoaCwsLAPrlQbO7slyrXqkz6AExXq4cq1IGOE/58dbe+3ynO9lpYFFn0lilV3WQrMr3YHMZJvrpwTbnuqeYNBqNPABKdXNZkfMNGawnngPAyMgIVqxYkQfwW60W7rrrLiwsLPS9i93qcwnNVlo6p0hvWXM+YOkpGRqIN9RPki5Zrqb7Jd+kLFr0ygd/eP+EbLiUYU6ffAiI84DsgTbWafc78YLkSB57H3GYIyzuERGHBB7Ig+MO6MZoy7lxS2W6Vw47MT2/7igQnjnA9b77xbrhfTdg7rsZKBDtMnTfFU4l9tJ7v3it+9Xlu8e9c+jV2G2Qd71XgPcC3JmDp2B4thgcd+xv4vs/DgngPeA7oGPUve8el+4zv8gzz9rvu3Q5us4Y5L3r7in3QNaLrHseYe+1wMMrQfLBumeQ7ixf+tEBb/44UBi0F/qxrMC4tcAiHTcObcJk5ZeTIJk2RAO/L8uSv+WkWtKhla05raE2aNe0e1p7tImovB5yoCwatbYA9vFy1mRW0q7tmNDqlBNRjWbN6ZbfZblyITbECymLoT4Pgder8U62ySqfLxqE5C409uRCgCVPGm+1frHaSGnoGK5Vq1ZhxYoV2Lt3b+6sFkE6O7weSW/RApGWt0gXcUjnq1Kp9DlefCFNOmJ0j5ws+gugb1eaxj/5hLVFKx0BOzY2hizLsLCwkL9jlPpMk185ljTnWpMDrY802iz5svor5ERr9YXKlb8tXSXTWvqW1xt6sp+XV1SWJt+S95RP28VDf9M0zd/fur+I9jva72i/9Xqj/Y72O9rvaL8PV/ttyQDfHa3ZHK192o5ATa7kSQlWeo0uSYd8eIW+A+gLWPPrIb2p6cwiu6PpGI03MiDI5UXjkaWHLRm15jU86MPzW3MGnkbaKes0BM5jawyTTEv9JNuhlUn0y/yaXLTb7SXjKqSTNLmTfNaucd5op29w2mQgX97n8yVN1niekA2nfPzBCR60lfzVbFCr1cKuXbuwZcsWbNiwAdu3b8fCwkIw0C7p1Oqx+MfbreXV3mGu8UfSRHaaUKvV8ofT+BHdnU4nP4WDeEfvj+YPvtC7oFutVn7Mugzik24m0D0+LuharVbD6OgoVq9ejU6ng5mZmfwd4ZSHyuS2gPNQzlM0GdZsqcyj/dZg2eUiWeW6SBuTHHIc8b619IRFs6ZzQ3Ze7h4Hluocfh1YfKc9f2iJ20PZ7yRPlUolf4A04qEB5wBFhCMiDjisVQtL/HwvD/3tK4df7H133i/uqM6/k27vpuvm7QbFXcLu9/71jCCfZ0Q3hOzcYli5t1PcZ+h9et87rhugp+PTsxTwFbisgsTTJ0XiK0jhkXTD4oDvBcORwefBcd8lIreDov3ED08/6aKn/0UAnAfCmX00+sEtSaXYOnE1qpKDAeKqE3/3j9sDBcY158pyhsuWI2FNiPi9MjRpkz/LOQjtHAjVx39bjp3VFkmD1j6LT9pEMVRG0QKG1d6Qg6m1IeT4W+WHJumD8MZyHDQ6ZTrupGnOngUtbRl54N/LOABaWyVdfLJv0Wm1UUtD17TxwPup0Whgenoaa9euRbVaxdTUFObn51WnRUKri9+T17R2h+SRwBdr5MIELZQAi8et8vdkttvt3GGXO434+9DoOpVLzry2C0wuDHA+czmoVqsYGRnByMgIms0m9u3bh0ajkb+fTPJAjgHZ36ExUlaHW3XxfgjpO0tHaH1N97T6+T3ZPrpn5ZV1yfaHxgfQv7jKy9UWrug+PZmuLUbSdXLaeXn0blLvu+/T2x9E+x3td7TfelskjdF+R/sd7Xe033T/cLDfVJeUNWuMW/kB9O365LyW+lULfBTZAG1nrnaN56WxKAP8RINspyYLfC6g6WyZ35J9KR/aznqeRwZ0ZBmWDZcP3NB17eEiuUtS47tsq2VLtd+aziG9qclGyKZpuzwlnRpftB2jxCfNtmrjPPSQJH3n80VJE09r6SVL1/G2S77zAJylX3mAnJerjUFe99zcHHbu3ImtW7diaGgIDzzwAKamppBlWd940saP1CO877jO4/0jeSbfLc15xe0pf8+zZrf593q9jqGhIWRZhkajkT9UxHd9O+fy6xTgJloo0J4kifkAGqdZjmEqs1arYcWKFZiYmMD8/Dx27NiB2dnZ/NUzmg6y5Ir3sZQRmUcrT/625gU8XcjWc33LH8rg/arJiOSTRgP1j/ZwjLQr9FeeXCHbFLLhVI5GM/2lo9PpgUeu3+iBC/5QJbfho6OjyLIM+/btW1JvRERExKAgbZZrUSW+qodcl5ajzfYdT4Cu/kzEOwO6qtUvHpruu3+d93BZL233Qm8n9mKZzCr1Nmw7eM/+9oLjWQYgc0g6QNZx8B303ivee9+4z3rBeiABegFxhwQJEgpa+w48ummBrHdEOtkrv/je8fzIdJ8T6jzfFU7vFO+W5/Pfvm9/uOS+W8aLFsqvqB7d8J7k7KDWgsX+2v/Klv2OcT650RwUYLBFd+4AAfqxP6F6OG3a/ZAzz2FNAq0JrLaQIMuznEhr0me1w2qz5qhq9YWcda2veJ+E2s/zakfEFbWBQ6NBa2+oDGshIHTdWrApWw+f9FvQxoxGm9YXmhMiyw45ZfK4M60sy3m26KK/s7OzSJIE4+PjWL9+PWZmZjA1NYVGo1E4ZmUbeNmcXou3XP61XVuyPeTo8OtZlvW9j5TKpEVx/iS6LI9+y3vc+ZLjk37zxS7KW6lUUKvVUK/X8yPgdu7cueSItrKyIWVOLl5ZfcGvaw631g8yreSn5pjzeop0pXZtkEWtULkaL6yxInVF6C/lITkgyAVckl++Y5HvcJibmzsgT6tH+x3tt2x/tN/Rfkf7He23TCv5Ge33obffQP+R0mVsB/9L0Pgi7YwM8ml8k2VYcqbtPtRsLW8jBfYserW2anaSH1UtabX0gTW25H1Oq9R92s5RCtZR+zkNJC9yp7cMOmr087ySdjm2pR6RaWR7Nb5psldkA3l9PJ3Vn5Imy9ZyXgBLj3OXO8Ctea/kDee/TBOy4XzccGgP1xB9cl4u7YrkmZSHvXv3IkkSrFmzBscffzx2796dB3GtPpZBSKKRAobygRTtIQ7+ndtmTqukl+w115WdTid/gIj6MMuy3G5S0JJsOu8TKo9Ou6F7jUYjf6+4DPpyG058oeB9vV7H8PAwRkZGMDQ0hLm5Odx999357nBer+SDZZd5n0q+aDLAeWr1ubTL1lxf9r1mw2WA3LIP1ri2bD/pcNk2Xo+mL2Xd8re0/fwjaSIettvtPtvG20xl05yvWq3COZe/cifLMkxNTWFmZgYRRyE8DkQ8JSJi/1AyEu4obe8via/3i0HIXKQ9Fo9uz/P6PNjLA97dOLjv7hp3vrtzvJem77h3zwrOA+Pd+ikwnvnuX9cLjvtuPBq+DWRtB3QSuCyjw9fzHeIpHBLXDYx36enA+w4osO287wazvV+s2aMX2KbfWf7ds4D44ocHxj1spjMms8b7gp3J5VbQIgCUk/mBsP+FOR/yqhnofT15RmfvcAndK3I8eZoy0Bz2UJOK7g8Ca3FgkPzWgkVowSeUn9JqjpXVJ1Z5oUU0bYJahrZQ3USv1f/WIpdGszb51+oqWkSQ3/lv7brVdo0uK488ok3jd5FcaJBOp9V22U6tfI0uerp6ZGQk34k2NzfXt6io8VG7ZrVNlqGNfa1cy2miRSdaWCdHXVtMox1BfDzxJ/K5880X9uSiquaUV6tVrFy5EvV6HQsLC5ienkaj0ViyYC+dcUu2eVoJarekqYzs0zXOQ15vGb0ladXqK3LqtTZx59vSYzJNGX1nlSHv8QUNfq/M4i7JIaXjR7k55/LFneUurkf7rZclaRk0f7Tfi+mJ3mi/o/222ibLiPY72m9ZRrTfOui99JK2/bXhvD3UfhlMtMrgeSm/No65PtSOHpe0F/WjpSNkULkIZXSzFnCyZJXzp8iGS74U8U4rN0R32fkAv0/599eG019L34X0k8YDLXhcZMN5+ZbNt9pB9iM0jrQyJI9kudocQaObX7fsnqTLOYfh4WFs2LAh3+G8c+dOTE1N5QFlOW5onFs8kvMM3gcE3hb5YIdMx9vAX11CJ70AyE97qdVqffaTAuD8ZA7aAczT8AA+3edpKB+3/d77nHejo6P5u9tnZmbyo9uLbLhmo/iDMFZfazrA4ruE1HmavbLmGCHdrvUjlx9N3i3dJn9TGm2XekhHcZokTzndUj9QsJvLozb2uI/snMvls1qtIk1TLCwsoN1uY3Z2VqWvCEU6JOIggFhewpXVuqfEFCIiYv/gsPSZjDJyJzLl8usAl7C/vXsuAVwFSFIHJCwNfcC+U/red3XDdD44SKd2L3df/U3BcXR3jXcA3wGytodvAZ2Wh28nSH0NqashRQ0pqkhctfsXFSSuAoekG7z2/UFsCoz3aly8Tkeu5zvEPQuEZ3kZWe9ahkxlt1/aI/kdv8gAxoxyXfZQRtD8efVruDw1Pa9EL6mUX+jLpALySat0IjQnt8gBsxxLLV8ZJ1RtWMDhtpwNfl/bOWVNqoomPNYE1aJVq99ahChTZmi30aDOs6SHwBdSQuUMel2rs2ghpYjfZWghWIsPgH5smuYA8HLk8XnWooqW1yozRLv1u4zcWuVYIGdidHQUIyMjSJIE8/PzmJ6e7nNMAZt3vF0WL7V65WKBHMuA/k5QvpDunOvbeSadbAnt2D7pQPOn7qUDnCQJhoaGMDw8nKelnUWaHpQ80hZ9JN8kQs6wdZ3zS+740OoL0VJkI0L6XpMPjVaNPu0+lxHexiJ9GFpMCOXXxiLJi3T0+bvvgMUn+pe7sB7td7TfWpsI0X5H+x3td7Tf8ne034eH/QaAer3eR1+RDdcC+jK/1sYiG87LsNLxsui6pntlWsuGyzI0exuiSwapi+YGB8uGS8gHELgelPRKG1bWhnPeyTQ8nZQdTd4tHgx6rWjsh2w45xcPeGm8tuZmRbaft1faBWmfZNvkbmbZVtkvFrR+KdLLSZKgUqlg5cqVmJycRKVSwb59+7Br1y40Go2+/g/ZRo026zdPy4OQvB7aSU47xbnOJN+EjrGu1Wp5HXTENaWXPODBVZJb7YhsGk90j3hFJ+WMj4/naffu3ZvvDJY6SbZbjl/rwZwiG0vlaf3O+UVt0sqwAtMhG67Vy3/zcq0xyaHpV0mTRotlw/l413SfHLP8xAL6S6cgaDaI5JVkgZdND2gQSI5iYPwIgh490ZMqwb9yqxUREfsBJneOy2tI+BRV4vh1EfQGAJcASQq4tPvdJa4bIHdgQXGf50noXqLU16PPMTI9AO+BLD9Kvffp9HaMtz2yFro7xlsAOglSVHufGhJUkKKCBBU4VOBcCodUBLa7NXl2ZDoFu3ngm45HRx4EX7wHkU5ZhVFZ7/tayq9ELVEGffIp4dWv4bIGSN9XleGv9ZXvy6TC4uR1SQFicly0uMEJkxMdzVmwJnHyvlZP6AlGTovmIMk2aZNIa+EhNOmVbZLXQ5PwEEK8lzSWoWWQMouc35DDHHKWZd5BoPVbmTYeyMmr5pRrss3vcxo058Mqo8jJlmXRX81x586IVa/l+NDfarWKsbEx1Go1ZFmG+fl5zM/P9zmpluNfpv1y3FpOnKSbO05pmqJSqWBoaAhjY2MYGRnB/Px8fiRbo9HIj3KTOoJAT7HTwjinm/6S406O7dDQEIaGhlCpVNDpdDAzM4O5ubkli2FFO34kLZJ3fJEmNI403pe5rqUpo7e0dJIens5Kv5zxotFv1RVqhzXWuF2QC56hsUr3aEFd2jGqv9FoqPUWIdrvaL+tMqP9DtNAiPY72u9ov6P9PhT2G+gGxrUxQgjpbE0GNJ1i2XAKIvD8snz+m7dd7jyXeomPLU0G5FgK2XDLbvC6pN6R1+VORq6beF1ynGt8GGRuo9FkBbFlecux4RIh+1bWjmv84IEt+TCS1qZB5y1Wek2PaA8PhNqn0cX5ZPWpVr+UPR44DgUEJV9lm3haKt+57u7xlStXYnh4GO12GzMzM9i3b1/f0eKWjuNtBbBk7HOea6824eOZ9CKl4ae5VKtV1Ot1jI6OYvXq1ZiYmMD09HT+ANHs7Gw+76CH3+Q4pKOvKSjOeS2PhacA6NjYGMbGxlCtVtFqtbBnzx5MTU315bdO5tF4wNNzeecPBUh5ssqTfazJq9wVz2nVZDtk25drwzVbyYP4csxJHsr6pCxbNEmaLX3Ay5IPWdE1Xjflk6erEb8p39zcnNqGIlh6N+Igglhewnwt6R5fKtthC96cI7kdRz0c+wCLR5t7LOk4B/R1rOfXtfIc+5oALu0Fx7sv84Zz+idxvfTWrvEebY5ocIDvjZfMd79T7Jp2i/v24gdth6STIkE1D4Z3P91gOH3Q2zGeoUPh8L4ANf3Hg98Ze2f4YgC8//vibnLORfrWrzSEl57XDOVuRBhlLWCIq1oZg/RCGV9m4MC4tQDRV6hyT3NY6bq20KaVcyAmd3Rd+87zWQ6IVZdVd1laQ/m1PNrEnCZ3ZcoOOceyPosfGh2h+suUU4Z2Ds2R1+ST12MtGofaYk3YrXFgOTpFTr/W1jKLBYNCkyfpIISc/lCZ3AGmd3XV63V0Oh3s2bMn31FljT1g6XGxIRnjeUJylCQJ0jTN6arVaqhUKrnjnqYpms1mvvjfarWWvNOMHCTamSYdcbmgxuudmJjId/3Mzs5iamoqX7iXjrPGV7mgJMe8VUZIl/E0RfIlF0uscsvqU/5b2x2klVtUlpU/1B6Zl98raotVnrRjRWXQNb6gxBcR6e/+Bsaj/Y72O9rv/vqj/e4vM9rvaL81OkO/o/0+uPYbWDxKfX9suKSZrpex4bzusn00qA235gxl7JTMy7/zIIil0y3+hMZpGRsemgeF6B5kzPG2yfc8WzRaNiOkwyQPJR0k89pO+JANl+3Uxl9oXqBBG8ucH5YsSlBbNJqL9LHFV0ve5UMv/L710JjWPkpbq9UwPj6OyclJjI6Ootls4r777sPMzIz6YKgcM9KGWzyksijoLU/QIKRpimq1ikqlgvHxcYyMjORB7Wq1imq1ioWFhdx2NxoNtFqt/B3j3vvcRpNPQ++OJnr40edEH9W7Zs0ajIyMwDmHPXv24IEHHsjfHc5tP+cvb7uVRsqPdSKG9js0L5LlynwhmdSuWeNeK7tIzorqs0664vVwG8nrG2Q+wvNqbbB0Cf/N0/Oj+kmeuXzEwPgRBGJ5GdfLiaCLL5ftcENIyoraI/Meie0/4uDQx/j8q1euaeCd5PS/DljcMZ70f/qOU+998sA4/8uJUATDA/BefDJ0g+L0aQHoAK6TIPGV7gepEhTvRe7zwDgPcFN9PCyeLdkZzsPovi/34l9qiDITXRIul1fj6Ng/WDId4ur+6LY8neEz99Xjy6RCd2HdmkDnhRmOozXB0pxdOekD9CPCOB3a76LJHKdTThAtyPqtiZc2GdRoHRRWm7RJrkbLcia4g9ARcoi0MojGQesmhBwPfl170lrmlzI4CH+sujW5CDngIRm0xknRmCxCkdyHHDp+jeqX351b3H22YsUKNJtNzMzMYHZ2Nl+0ttrIy5F/NQfIWiQA0PceM74oTvm480NlcgdJOsakn+goLtnX9Xodw8PDSJIEjUYDjUYD3vvcyec77yRCiy8aj7U8vO3yvuaAWn3Lj8aTdWo0Wu0J1VEk1yEUOfBFiw5FeqeorCKZ5bDax6+TzAGLx/7xuvcnMB7td7TfITqi/bbTR/sd7Xe039F+Hyr7DSzuGJdlctmSOzXL2nBt17Nmw3kZVLe1k5Xft463pr/aUeeazuTpNdvI26A9mFPWTlnzHP5dexhE7oiWgR++q1MbUxp91pjTApfaO421tgHoo6uM7eL5NBo5bRxyN6tmk2S5Um55uZpcSL5r/a3t6JVtCM03tCCepMfS6ZoOKpqzSFnX6tPKl2U71z3lZNWqVVi/fj0WFhawe/du7NmzJ3+wi5cjd/1y/sqd6Zqe4XqD6Af6T3ih49KbzWZ+ygY9UMGDz/zVKFQ32Ws67YXknrc5SRKMjIxgfHwcaZpibm4uPx6dB961Y8k576V+tGy41Ge8T3j5mj62TgCh+2maot1u53ykMV40d5Bjlh8Vbs1deHmD6EmeV8qA3FUu85c5GUyWz/NrY0mWLeWTt4+Pe6D/XeP86H3KFwPjRxCI5WVcK4clgfGyWQ8nhKSsqC0y75HW9iMFnM9eXnTdi05Jr+bTOknJ7Fw3MJ7woHgv6F0YHKc0BW3wHqDXf/sMi4HxDN3d4r2guPMJkiztHZue9oLji7vEFwPjjgW9eTib/vXo9N4VnqGTX1vcC679leH1fiYu3Q2uB8kjHnxYum2QXgnNL/J6fJlUKH8Uq1a55QRok5kyZWt1yHxaHTyP5oCVZEVf/ZZTo6Xh9MlJm0a35iiFHFCLR3Lix+sK5eV5Qo6XRZ91TbuvyYvlJFuyJdtaJDOS39ZT7DJv0QTXol1bFCnqA62dobSak1KmPHktVJ90DovSkqNKu8+Gh4fRaDQwPT2d7/DSnBmtHSF54w64xl/NIeJ5uYPKP5SWlyllrlaroVar5YvttGNtYWEB7XYb7XY7b5ukKbTIIdvA6wyNHVmeljYEzdkv0k8ajYPe42mozqJ7ll4s0qOak12GPyHdV1SGJpdy0VhbbKB7+/uO8RA90X6H03D6ov3uvx/td7TflDfa72i/o/0+sPYbAIaGhkyZ4W2Q9RKNmk4N2XWtbGtcynwyaMzLkrSS7pblloHU/6EyJH2AHoyVZUu9wXUKfxCHB540/lj2mBCy4UXjKCS31jgpo2MlLZRXky0O/kBOaDzQbxl45XRKuovu8TZz/kkbLgN3nFatLmsMyfo1W2jpXq1viuglmnkbi9I65/Jd2itWrMDY2Bjm5uawe/duzM3N5a8f4X2nPfgh5VwGy+kefxCXjxs5hnhZvF5qk/adypC0DQ8PY3h4OH+ILssyLCwsYHZ2Nt95DqBvvsLps2SHX5dp5DHmEtbYC9k8+s0fTOB9I9ttjX3LTod0RWgcyT6U9GrtkfMybS6knTgRskOSXoL2YK9WhizLe5+/TofLJe8nfi++Y/wIArG8zLTCLSbn6QebkRwe0CTtSGzH0QpLE3h+0y+mJdUh83mWrqgy59DdNW7sGNeC4/LDx4gqY/RqbwqK8+B4B0Dm4LIELkvhPAXDE7ZbvBsQd72guM8D43QUOvp2gHf3h3d6R63zneLopeKs9OyqD17vv1aGyREPBoLjpiTK+JjLPkq9r5CAw1IWlkPP74WcIg4+oQk9HazRKdui1Vu2jaFFiNB1a0JrTdgHqVNzyqyFC61eShdapJfXrAmhNQnXeKA58mXqKCrbmtDzMjWHtkzZklYtj+YoFbXJcrYGhVXPoOXJfpBOOoF2fNExqLVaDc1mE/v27Vvy5LpGK+8D7pRSvWma5k+i811dWr9JZ4+cbnqXGaeZy7t0nOg+vXOUnkan+qlMbYFBk325iCBlSTrMof6ivNaReWWc5uXo+pDc0v0iBzyUl6fXxo1Mp9Ea0ntl+KTds3gT0lNWGTwP/91sNlVaihDtd7Tf0X5H+60h2u9ov7V6JaL9PnT2G0B+jD+vg+/u5IFIqpfTXKQTih4sCpW5HBuuBVRDtId4b9FdZFdkWUXl0fgFoOpIq0457qUO1Ma49uCdtOFS3ng9PK/Vt7J8LYilfeflStq19KGxbo3ZkF0Ogaflut8KumunD5Sdl1hzqhAfePslrVI2rDmPRgPPy+nhNCRJgnq9jomJiTyQPD8/j507d+bv8rZsl0Uj371cq9UwNDQE51y+K5tOlpE2m/OeHkjjNpynIf1Gv3leeo3K6OgoqtUq5ubmMD8/n9txooXqpeA7n1vw/pfBcKkX5JjVwGWLzyG0wLaUFVl2yIYXnX5g2aKQntsfGy75Jn9bNj6kn+SOeksvaDpWa5PMKwPqmtxz+ufn55fQWQZl9VfEAQSxvKw75HpZWPrBPbPDA1zajtQ2HM3QtIHVT1x1LMk3gGznQXG3+BdyV7jxyceGw5LgeD5m6NPbNQ6+YzxzQG+3uMu6we9ucDwRQfEuUb53xjw/JL0bDAfbF57lu8UpcI4l+8Qhfi3dAS6D4p7di6Pn8MIg40ZDkY8LYP92jFsTO+mkcWIsB8eajFn3rEkWr8sqM+TMWvWUccDL3gtNEC2n2oKWR1tc0OqndNbTrmWxnMUJbaIcSivvyyeVQzyynHyNfm2Cr5VT1K7Qd6380EReo7VsvSEsZyzK9hfJmkY7LbCPjY1hZGQE7XYb8/Pz6vGsvExrLNJveawavy8XGui6PBpO0qrxlN7hx/WblEe+w4wvHFE+6YSH5EM6thpvQiij66zFkDJjtIycltHfZfSn5uxbaYrqssoKwZK9UDptYaKIbsuR39/AOEe038ujP9rvaL9l+dF+R/sd7Xe03wfLfgPdwLjVx9Y4puOG+XgiuV9On8i5AU/Px482Zor0oyXXkuZB5MwqW+sfjTf8ulWX1FNW+yQ9PCBTFLwtQtH8x2pTkX6w2kk08z7nZdJ3+i0D6FqdXMeH6uXlWjq3zEMePL3kh6RB443kEc8nj4eWdfHfmt2S94vmR5p91MqgtGmaYmhoCCtXrsTk5CRarRampqYwNTWVvzaEt037K8e5c93XriRJkgeiua7gD+8Q6DqBv6M8ZMOr1Sq8930PwmVZlud3zqHZbOZ10pxCvjOa5htFcyYpe9Y9zQ7TPf5X00ehPrTkicuehDWO+H1Jg6U/pB6WD23I/BofZICbP2BQdBoD1WONS6vtvB4uj1IGpW4K1RMD40cQiOXlTAGOpsA4ADqVO+IwhaYR1P5yAA9I55e8yBPqbAc4/uEBceXI9Py767/HyOn7gOihT19w3AGZA7IE8A7Op90Aue8FyNnR6Y4FxbvZPfrfHg52tHp/2BzKLnFmrY2AOH3jzPOII+fwROkxY6CMX7Csd4yXWQgomoRZjnLIidAcEElPmYZbk1ZrYcD6uxxYEy45+ZQ0yPbJCa88Qkhrn6SD37PaFGqzNmm2nATNaQjRpbVByga/ZvEm1KdWHWWdUZlXq0+jTas3VKZ1j7ddOqGSDi19WYQcPqudofsEcs5HR0dRr9fR6XSwZ8+e3DHX6Nf6nJcfcjytPAQeBLT0i3VdOq7kfGuyJ49j5W2U37XFCK1crYwQQuUWjWsJbYxZ9YTGJYAlC2OWnhpEhg/EmCvSoZotK1oMlNetvuD17E9gPNrvaL+te1obov3uTxvtd7Tf0X5H+y3LeDDsN9D/jnHJT82GWHqM7mljy7Lhlu4uY8M1/kpYciWPdbZk25IlzhepBywbLsdokQ2ne3LXoaYP+H0pJxYvQvMXLquyrEFtuKaftX6U9orLAU9n9Y9li4r6UesH/l0bqyF7x+9L3mkyYNEELAbXKA8/tURLb8mfVpfsA/nwBE/DZV3jvdQRdLz6ypUr84fctm3bhrm5ub72WPKj6Y4Qz7isaH/pQ0FuyQMZSAegBladW3zAjssF6RPNvnO+0Xc+NwjJP2+H9boES76pDG0XO+dHaMzKXeacz9rJErLPNH5y2vh3oqeMfaR81pxW2i0qm//m6SVCNhzof6UD5y9PE9Jn/EQWqicGxo9iOBxVgfGIwx8hreB5Itef3nnkDz44nj4ksA5w8pP0X+/bGS6uA73frH7+m+jiu8d95npB8d6HAuK9oDj84i5xiHC7Rzcw3snD3+gLifPj07Uj0okVVnhcSyk4H3GYQRsvg/SWNU/pq8OXSYX+o1i1SrRJW15JYNJkpbUcbl6v5XDJcoocXIvWokm+VbcsT7ZDc4SLHC+tzWUcQKu9IedLprec9hBNVjt5Gu1YKYsXVruKaCmCdDrK1Kk5CpKmQfs0VOegE+rQWLTSakf5cScwtMMv1E4rHeddkiT5u8+895ibm8uPZ9WcWm0RqMzxgbxOTU40x4ocbHLS+aIHvZeKQEe9cdrkcWu8Pdxh1fglxwanTesvnkfTR5qTL/PydhelteovK99ldHeobJk3pBP4d0vXWe0r4mkZWAsYsm28Dk0nHoij1GW9/Hq030vbI9sR7Xe030Xpyt7XEO13tN/Rfkf7LUHvGNfGBW9LqI2WTuF9YAXYi3il6W+ud3g9gH4MsGVvKb1sQ5E9C9Gt9ZV2PWTnrLEsy5D3Q/3Iyyiyb/K+pM8az5o88zxld65b/A/xWiL08IPsT6v80C5/rZwimnh7NP1t8UbaohBN9Jto105EobbJV4pIncnnMZxuGbzUeOtc9/3jq1evxsaNG5FlGaamprBjx478eHXKn6Yp2u12H83yaHNOhxw7nA4twC+v0afT6aBSqeTl0PdqtZrTB2BJMBxAn3zz31SutOHaUepa32gBXN4nmt6gOvlOad4fPJ2sf5BTEEII6aYiG26VRem04Lyln2Q5koaQ3dH0m9YGrU381ABePw+CU19o9SwsLAR5EuJVxGEOh26wcf+HWUTEQNC0wxIxdP1p3dJbfRlVMXaA68k5HBbfN67d49dcf/3WB8BicDxz7K9bEhgHXC9A3l+K7wXFPZbuGO8PhfNfCATHtd3ikkNx0B8JKDVOAigzhyodGKd3/xU51tb1IiekjBPG0xMtRU5KWUeoiOZBFh0sZ8m6ZrVBTqS0iap0fsrQai0aFLWtqF0hGZA003Xp4JWlVcLi36COhFWHtsAwCJ2WwxGa/IfqKqqjCEXjtYxTJBe2NPqKxj4hTVPU63WsWLEC4+PjaDab2L17N6anp9V3TMl6yrab0klnSt6nv5qsagsB0omSR8ZpT9/LoxS18cbby69b8kjfrUVES4a0PtJ0pzWWNX5JSNrL6NaQPimjdyw+auVZNIbyl9XXsg5LX2j6kNffarXUNhQh2u9ov6P9jvabI9rvaL+j/T4y7DfQDYxzGiStVqBVe+jEkh9ejlam1mZel+xLTceEdAkfo/zBDl5niPf8SPLQzsOQfMv2WGn4NVmfdXRvmfIlPyQ4X7Td8LKcIlvDg5yybuIptUHqcSlTlE/7XlZnaafnEB2hfixriy29oMk6pZG7kTUdyOXc2nEryy6rS612aQ/qSL6WnW9UKhWMjo5iw4YNWL16NRYWFvDLX/4Su3fvzu2hZsO1ALdGB78uP9ZcgLeP7zqm16HQw228n/jx6bxMCprTg3JZlvW9z5xenyL5xvUKvy7brAWAJb9lmTyN1pehcVxkazR51R6Wk31YZEMtvROawwxiw3kZ1lzJ0jFSRqXekrpKQ5qmuaxo9MXA+FEMB8T4WMShhNQSS8SRyaij9G5pPvileek3qSLneh/aNS7u8TQ8UM7r1j7w6AXHHfoC474XCO/9zY9P9325e+FtxwLj8j3jcp+4/Bfs2+Jf+W/EkQku64P2ZMj25+X7MqlgL6yXdXStexJy0mOVZS2u8DTa06ohOmV5ljOklVfGGbPaE3LoNH5ok1jtexm6itLQ/TK7T8qUJekMTdZ5eSGnkpdpOS1am63vGr1anVqbLEc9NG40J0aWG0qjtcWqk9OlXQvJkkRoTFg0Wmm5Izw0NIQNGzagWq1i27ZtmJ2dVd8BpfUZH/vWTg5epyXPNMbIGQ/taON0aO8r408nW+NWQnNGrbYuRweH5L2MXuI0ltVBIZkNtZ2nl2MgRIM1lizaLPsS0qmWk87plG3Tfod0Csdyd5xF+x3td7Tf0X5rbYj2O9rvaL8Pb/sNAMPDw0v6VdLPZV8bH9oYkG0J6R9LFrV6qXz6Hto9Lu0J/15kwy35tviipSnqRyvwzfkV+r4/kO21dF4ZPsg2Ub5BbTjJgnx1ggTVI+kH9Hf78vqsugex4dp9rV0km5o+4f1P5Us51fgq66Y2S17I9LJeoP9hCJ6O6CDa5UMMRQF9WRbZyrGxMZx00kmo1+u46aabsGfPHjPwK/U1/S5rw+V1yZckSZCmqapf+O5fyk8BbnmNaLPGreStDFwXzWGkfMu2lj1phPddkY6TdRdBq0OW79zirnaZR7ONId8ipFOKHia09OggepXz1uprbV4iZZnnjYHxoxgOiDGziEMNS1Nooklpl6gXJTG/ROnpXeNLAuNYvEa7xsGv9dLI7w5gx6k7FiBfDIDTLnHaNQ64HnEup5M+cqc4f5u47wt+W4Hw/r8RD22UmSsd8MB4yCm0Jlj8vuXEh5xyQD92cUlj93PSNQjNg5a93PqoXSGn2YKc/Fn1S+etiIaybRmExtB1y6HWnJaytIScSA0WTzh90mGVNMu8/Elpqy1lZFq7r+UNLRxo9Mm82n3ZnjJy45xDvV7HmjVrMDQ0hB07dmB6elod+6HFLgvccdfaxRck+GIJb4Ol2+i77HNtcV3Lq9Eq2xTSrbIdGsqMKSvdIDqpqG0WivSRdq3MeNXGANC/WGUdlcph1aE52PSd11mWN5rtaDQawTwWov2O9jvabxvRfkf7zb9H+x3t9+Fkv4HFHeNSVmXASHtVQRloOleWy+uV6SwbLvlq1U1pLbqlDgrZCMs2an1cxtZY8innQpZu1/jMy7V0Nw860S5Zft2ai3H6tbZb9Fi2WO6+13ih9bPkqyUvWh+ETg3Q2mj1LYd1ykdojEta5QNVRfbd6mNej3VUdpHdCOlNy4ZbgXhZ3ujoKI499liMjY3hrrvuws6dO/varembojbL/uevOJF5+a5wagvtBqd0nF55fLrkG71bnKeV9Fl2QcoAz6eNVcl/2XehsaOhyNZo5fN6yvS3Vl9o3Mp2a2WFxre04XLcW3JN6bXAOgcfw0Qfn5PTPam/NT5y2ufm5pbQUwaD2OKIQwfZS4PPgCMiDixIJoOy6LC4o9t3P4Uax/Xy9T4A+6uVC+W7+OuAxcA4FgPji0Fx1wuKO3GEejcdtZM+S49Qh9gpDjUsrn+LeKijaC4FYPB3jPdlViYToUl62clYkOABJo9yUhdyVC1HWraJpy0Dy2HSFhGsiXSZiXbRdaucUF7paIbedTYIHRJFzp+kndNitakMvVp7i97jZPW97Curz3gZIdo0WdUc/6J81qKH9aT/IDJYhvYimrU+pH6g956tWLEC9913H2ZmZlSH16Jfq0NDkiRLjv2SuymSJMnfZ6YtDkhnT3O0NSeMEHrqWqblPOL1SP0Uchol/6x+tcZmEc+LYMnTIOVqYy7k1GppBtFTVGbIYedpiq5LmSkju/v7jnFZNhDtdwjRfhcj2m+9Hp5H0hvtd7Tf0X5H+z0I6vW6Wj7QH/DTYNlRq/80e8/rC9HBIYObPCjJx8BybLhGrzZmLD2ojX2LDpmP8zw0rqxxa9mpEA1FNtFqj0yj0cnrt3hMf63XR2jlDTLnIMgHOySfrOPDeRs0mrQ+1Y575r95IFbjmcVjTd9L3UblaoF2SiN3acu2SsgyvO9/5QeXXd7HWjlJkqBer2PLli3YsGEDbr31VuzatWtJgFnjjRyPIZkEkO8I52XQbnBuw+v1et/ub142pSPQu8d5OrL/2hyH97M2t9LmBPJEDDl2OM81+bNsuJRRGciX35cDKU+aPdPGhHaf8vExZUGbu2ptKjPeLP0vxy23P9rDVdb8S9NBccf40Q2tl8qtFkREHDwUyqVjiTy6AWkj35KCk8V0pKZ4vj7VpdyH69aXk0B1ewAUAPeAo/98/o2V1E1DbfK9jwyK9ywhC4UjEBSPIfGIflh+P0dlOQVbkxg+UbIme3zipTne8rfmtEka6HcZ59RyRq0Jl9aWkFMmEXI8QtD4RvmsiSG/FloI0OqyJr1FDp7VLq3/Q+m0dvN0Gg0azdxJsXgi6+JOsNbvloPOIevT5LHovixPOhjWRF3yRkLrg9DCjFaflEFebqiPuEOi0WUt8GdZhmaziR07dgAA1q9fj2q1ipmZGTSbzVLtt3SR1FX8uFVyvsfGxuC9z99V1m630Wq1cmebnmbnCwP0O8QbzYGX96zfmqxrTnoZeeU0yiPTNF7K+nn+ojzyepHDrV3XbIK1g7EMbzX6injPFycscJmW5Ugdbh3FqC04lNkJVxbRfkf7bSHa78W80X5H+x3td7Tfh5v95uOR12cFx4tkUH630vL6+TXeRk2GLbssd6Dztkg5sGy41TdW+7WyQjpXo13mLZp/aDwM0Uftk3pV9qNWF+W12m21l9MvZasoPf8tH4TgbSAZscoNzc8477VgMf8emrvwa3yXqmbrNTmWNlS235IlLW+Zo/2Jn/y0AI1OCS4DNJYqlYraJitInmUZ5ufncdddd8E5hxNOOAG1Wg27d+/GwsKCOmfi40FrP3+ogp/mQu/5TtMUaZpiZGQEq1atgvce7XYb7XYbjUYDCwsLaLfbAJC3h79LnH5LHUl1cj3Jj1yXY1v2P2+LxmcC9RPn8SCyyMuTcxKexypXs5+WPrV0G28b54W0eaG5irYzW9Ik5VkbY7y9FOyWDyNJ+p1zS/pW8kCeHCBttqTzQNvwiCMH4Vl4RMSDAw+Eg9yeJfL9l1EirwfgHOB9fxH03bG0+cnnlMaLcdL7kZfV+9tPlxc0Ldbie/e1v+j7HtofHkduxPKw30ep9xUWcLzoftEEyXJqQs6lNfGk9NpkRnMIihw2bUHAqjfkKMuyrfZaCwvab20CLyeLRQ66pFVzzLUJLJ90FpVtwXLwNJokLTK/dZSg1hbru1YfoC/mFfVRmbZbZWvOVRGveJqQrGryMKjc8vxWXkuOeNrQk+dpmmJ0dBTDw8OYm5vLnXK++0zSoR1vx//SIh53zuv1OoaGhjA6OoqxsTHMzMxgamoK8/PzaLfb+aK6bD+w+ISyrE87ss1yCi2EHOyS6tscn5JXoXuaPFl/tbJ4WyyZsxz7Miha1JB087LLyH3IcbbaxWmSfBgU3nu0Wq2B8wHRfms0RPsd7TfRFu13tN/Rfkf7fbjab0A/Sp3TIvtXwrq3HBsuywrpTBpbmj63bLhVZlG/azpJ5pUo0tlF8xOLn2VsuMZ7oh3oD97yMrR2W2PPkgVJk3Z0OYfsf0qnBeLlLmh5XdLGabd4Qn/5UdqW/grtiNZ0uHYc+CD2UZYteayl5/VpDwxo8wrNJnvv+x700oKR0oZrR1FbNpxOf1mxYgUmJiYwNTWFmZmZfOe43CnNaSI6pB2iY9TpQ3WNjo5idHQUK1euxKpVq7B792488MAD2LdvH5rNZr5bXGsDBbsl70le5MkVPKDO5yLWmKZ08rqUmxBCNlj2Gf3mD0XIeYfGV6s8zYZr+oQfZS7br7XdGndFc5vQPELSbtkBeW85Nly7ro1V+rvc16EsZ84Q8eCD91K52XlExIMHqUVCMuqM72pC15+uL69bmlwrNC+mR5TrHY3Od4z3/ysK8X1/8h3jHmABchhvEYdyJyKiH0XzEgCDH6UechKBsPOtESYnUFr5NOEKPSmolaVNzuSEcLl0S2hlag6YzFNUZhmnuyhv2Yl4iCdyEi3vW/mt/izqc0mvRg9Px++H6NQm2Np9zYkomsiXKdfiQVF5vB2cvrJ5LYTyLXeMDEJHGQeKZI8vgssjWeWCBJeBSqXS57xzx5yXx59m5+VSem0BSLbVWtzRnlDmCPGgpIoOQi4MaONKq7PM+JP5QrrFcuRD7QzRbI1J+VfyXqsrpG+tOkNjoeh+mfbKdMtdWI/2O9rvaL+j/dbqjvZ7EdF+R/st+WHdfzDtN9B98EMbz1r9Gn3LteFyjMn7WhDSsjH8ehn9pPWHJb/aTudQX/O2SzkJ2URZR9kyKR/pIusBsDI2PPRAAS9Ds3tanqKH4sqOW8kDKle2lfNGBnO1tFL3FdUbKitk24se1JABbK0s66/WL1rf8rbItmsBfNkv/Lesq6hNvAwO6sNKZfGQSX6kOu9rYOkDHbVaLQ9q8zTValW14fwYdO+7u8DTNF3yfnHePvrL03CbQWVau5k5/RrPOIr0lgYejJcyL/Unp7OM3PN0ls2U6Tgd/LdWB9dZnH/a2NLkXqNP45llw602S1p5Go0eTrdWv8YjXgeAGBiPiIg45NC0iQ/cl7+9uOlkWu2aUpCWxgGg94UDyAPkyMPhi3+XErN4qftZGhhH3/7w/t+IQfGIAIrmaQDKB8YrlUopw65N7kNVLPd+kUMo02iwHBKt/iIHR3PgrTZojjOnl+eXE9IyjpbFJ41ey2Eq048hGrgjZx0/JNsbchC5A8dh8U/es9LIdlvXNYdTli/p0/LQ9bK7fCxovNbuhxYOQu0dtK6ysHiilavJwyDjNTTO5IID72c5DghycV3qIO2p85B+0u5b4OUV8U2DbGPIMdWu87pCY0CjydJzUhZCvJc6WOtXjY5QXl52ke7T6JXt13hnXbP0mLWjhvTCct9RGu13tN/Rfkf7He13tN/Rfh959hvonvoS4gNB6uyi8SbboOkcQH/dhJbe4l9ZHaHRqOnVkA0P9ZHWbk2fyQBQSOdYfLJ0A2/PoDZc6lONBlmOtdPVGkfaSRPe+76joov4Ku8PYmd4Xv7Ak9Tbkh+SvpDdsWTA6htL3mU7Q+lDulu2V5ZlPZQ1SJ30W+vnkDzKgCgfC7IOzmdrJ3wRDyw7Qu8dl+UQrHeI87ZxeuTv0LyGvhedOlSk67TvvD45V9BoWK4N53+1OU6I97IdWjtDY8zihayXPnxHv0Wvxj+Lp9aR9LIc7QEryp8kSXzHeERExGGBQTQKT6vOtB30QDgAqbq0et2Se66vonyHuHd9aSy6fP7pPzbd5/e9ks/HgHhEEJafyTHwjvG+zIYzyyfN2qTOcixUAhUnVJsUlZkoWY611pbQwoNss7XgW0QnT2dNpkPOcKhcSUPRxFpe1xYBQrRp0JxSy4EookvWa8EqQ6O7SA5l/dYT/rKtIWjp+Hc5brijrDlK1m+tLvodarfmmFnpLMeIX5NOmMxvOdSyDk6/1m7pyFlt1eRNo9Gq2/ot26zJdIifocU0qbOKdMGgCMmzVkeRTrbKLRqLGjRdYV0fZCzL+q36NF4UOeaWjtPqLKNfOfZ3x3hR+XQ92u9ov6P91suU6aL9jvY72u9ovw+m/Qa6O8Y1OjW9UsaG02/OB22syyOLpS2m8qwjf3mZ2vjmZfJr1tjmoPvaA1xWP4ceXtDq0Y4Yl+Vy+otosB6coj7TgokhvcHza/Xz+4PacFlOkX202iz1LD+uWeOHpJXua4F5Krto13tI9rnsyfvUJ9Kma7zk5fGyZBstWknWqS4rHachZMMtPSDbECpLG5uy3ZRG9rPWT1IGeJ38mmXTJL+JNl6nZcNDr1dYjg2X477MiTKWzuagfpO8o7I0X6jM2NTqobokHVz3StkBdL8pVI9lG3h9/JqUUVmWdnoDv2/ZcCl7oTmY1j9xx3hERMThhLKaxQF24Njp5chrTlx0Vlqv5A4ExfMs7HtPY6s7xcGuybwRERbKzFkGesd4yOHRJpxykllUleXsy/Lkb22SadUZmohqdWsTztAErKhujfb9mTCFaLXaqeXX7nMnXaYpS3fZdFq/hPq8TL287FBdlkMo88hytd9aXpleOogaTVqZRY6Q5vBr5YacEe1akYxp7zQL0S6h7aoMlSfbYfFUQqYLOe/SqeYOlHTCpBOr1VvkDGrXLXmXtGmLHSGEdJZMp90L6Rkpe7wtdM1qV+i9gGXqDY3fUJvKjDvNnnGaZF/IhbMiO2SVKbE/7xiP9nuxbu1+tN86fdF+96eP9rsf0X7r16P9tunW6o32O4yhoaE+GZF1aA9CWTZcs33e68Ht0JHfZWyixjst4Fdkwy2eau9V1tqrHV8sv5fRXZK+oiOPJXggTbNHnMZBbLgmk0VzmiK6rT63+kjTadRmjRZJl9TLMo81z5Bt08a6lYbTaL2uwbI3koeyvZbcarpVkwuZzrIPZWx46P3P1HZ+XLlWHm+TNZ4s2yT5KR9GsOYB1G7NhvN7nJda3Vqg2bmlO5M5v0LjwnqgVjuxQ8sfGldFY1nes+rjZWoPN8l+4TJijWerj0I20SpD8sWSFU0+NN2h2XBZBsHqJz5WNDpiYPzIggNi0CziIYP90jIuXIYzvgNAn3rrG3Cu77rTc/dl9KwIv+RfGLvFIyKKEfLtCJXCFKwwzYHi9zRHRk4eyzjPlgNl/bXo5XVqEzeJkANj0VnGMbUcBa18ns+aZBbRXJSnzEKANgktQ49Fn+WQEbT3O1m/y9YraZAyQN+1J/0lNJ4V1W31t8YDTe5CNIfkQTo1nH65eFambzX65fgepBytbfI9Z5xmrSwC33lQZizwuovKl45kyLELHTnM69VoCuk+zaEMOc3aNWuMW/Xw60XQnHVLpxWVLcehxgtKpy1gldETIX0bGreWjpD9I6/xcqz7ZWncH0T7rdMZ7XcY0X5H+y1/R/vdT1O0311E+x2m8UDAotd6lyxg23AtrTZG5Fi39LuUb81GhcarJefamJHvM9bqkbIkdZ2sV9aptVvel/y0xpDsN263QnXxv3KHrbaLV6uP36OjqHlddI8HxbRAtsavMv1J5dEx1/K+xltOs7QpVhu1/i1jwy09LvkTolvTW2maLqHbuW4glve9HDPWOCmyx/yIcy0v54u2W5weignZcP6d0pNMydMOZBnylQT0zm+LfjlONBsux77Wd5rdkf0k361N9cr3akveWeB9yttA5fN2U5kSFr2yXu0hI/6wgEaTZhO4DHA+aPNFrkcs/Stp1mTamhNJmnk+bVxqNpH+Wg9OhfpP9pccPxGHP2JPRTwUQVptWfLvuxm5ZnTidmHFAYpc/kvW4EVqbWd4DIhHPDgoXlFk0CYi8r7mDGsTJwk5AdImVjwtn/zKcmQZRQtGIQfCys/LljRok9GidvFJqFxksPimTfJkH8nytfZqtGl0FvW/LEfWV8Qnfr2I/xr92nVJh8YPy8mRZUhHWHtvm0Yz71MOrc9keZKfmtNRVD+HdFy1dkgaQwsDsizpUGhpZJnWWLIcKf6dHwFmyQnvd21nrKQpJLdaXu7kh+iVfakd/Rg6DlI6hNY40/QiX2zQ+DqIDMhFM00nyrbL8srAckQ1PaYtMFi6VV6jssroOE1OJM2arZILAEX6NdT+5SLa72i/tTZyRPu9lOZov6P9puvRfkf7fSjtt6XrOK1asIiCdGVsuGW7NFkGwrLH82r1ad/l7lDnlgb7eBqt/FB6DVQOBfi09lptk3XKdlvzAksvW7+5DqDf1pzAmidpfWXNiTQZt2iX6SRN1nHeWvlSV9E9edwzXdPGJU8f0h/8u9bfchyE3m8t83F7wK/zschtkMZXrR3WuKS0Gs+0k1z4X9k+rT08Daez0+nk+eSDGxqtnEZJB+Wnv6Ej7qk+st/8wQvN5mq8s2y41jeyTkmL/K3JqkYfb5+USclzTf9qepTLjIaieYr2nafjQXEpT1K+eXu4ftXkWqNZ9r3Fe06vLJfqpfvWAweyD0gGQ/ou4vCC633ktYiIhxK88Rk0oxcfLZlVnyzYs2PRFz/af3oamGVHRBw4DBQY55O4Mk4BgSasciKnOSbab16+5bTJOq0JlqSV/w45zlp52sR/OYsh1gRXtlObdMs2aXVb/aW1q2jhpIhuy4EJyYtFV5nrchJryY6ss2gRQiubOwQWbRqPpMNelhbZx/wdXjKftRhWZkHHcuZ4uZY8WLuEZPtCfcLzaQs8Wp9a8mTpEt4eubsxdLSh5tRbzqnsf8vB0/hg6TWtHHndWiiRC1G8PbJca2wXlW/RwsejVj4vy4LFJ+n0Wwsd0rmXNJfR3Zae1dpURu8Pordl+v11zqP9jva7iO5ov6P91toX7Xe031abLUT7fWDtN69Ls5Va39HfdrvdR4/c9Sj7g48XuibvyR3Pkq4QP2R7rD7heSS91A6pZ6RcyHo1GZGvAZC8lOnlR5atjSd57LRGpyzDshchO190XcoHhxyLmu6X9pDf50EkGciXfSNpsOZHsq+tvgzd43IcejhA5pdyre0Cp7R0j/OgVqupR4ZLPvL7kj5ep6bvQjbceqhVG4fW2KT28GCo1EO8D+XDJVq5PDieJMmSYL7Wr/ThR5/LNsuxJYPRGk0h/SLlX9arPSgh67TmYCE51mRZG6t8TsnHidydH6pDtl/jA8/PZYH3Fb9G6bSTEaSO5bzU5iWWDdX0l8ZPCaJL6mhL//CHPooeAos4NHDsc7TgaGxTxKGHVz4D5feLn77guVJeXz15Giv4LctYTM3Li4g42CgdGNccRnlfTmDkxDm0cEHftUmTNSm0HGBtEhZqC7DUiZP0yUVNLa11XJ/ljMi2yDKKFhqko205ITyNvC6/a3llW6SDG8oTWjzgaYpoCUEuYmiONv8dSmOVT3Ty9HzSX7Q4G6JF0sF5rMFy3jTaNIdOkzEtneSpRo/cySSdNWsMc2eY7mtPh/P70pkroytCDo+EltfSc5pe4454aHxxWrWyiurnbdF4xe+VLYvyaN/L6G4+RjTZDbVRtsVahJD0aPVpfS1/a452kS6T5XNay/TbcnAgyiBE+x3tN5UT7XcX0X5H+x3td39Z0X4fnvYb0Me2pF+zJZy/WnDRsuG8ThrfIR3K67bKsPS299604QQeICTIoA89TBTSedo44u2QgciQjEkbLsvn3+WuXUsXWkff8zK9X7oj19Kdmqxr40DWF7JtVh9LeZTyFrIxkm5tzEq+8t2p2oOOnCZ51DqnxdJ5Go1kJ2R6+VAPHUst5YfXKeWGyyKl1fqNaJD1Eg/IPkvZ5mWkadr38F2SJDk/+Q5bTguVJXfghnhq2VJtvGuBXl4Oyb2UZz4f4ce687ZxcD5KmebHiVs2jFBkw7WTXmT9/Jq0o1wmOA94eplfPvwpx6/kr6VfLDrpN13TjlTXxiz/rbWxrM2QMqSNG60cDj5mrLmqdi/i8MTh1EuDe8CL+fjnQJR5MHE40hSxPCx3/PQFstkP72EExfXc/L/Fa/3pD6cxHnF0w/mSlr9Wqy2ZLGmOsJy0aRMq7swWVV/kmGqTRGtSIyeIWl28XVody4Hm/Gi84enlzhirLRptvA6rjUW85/0k67PoL0OL1WY+ydbK1/ggHVSNz4MgxBOrfstJkbDGAi+zqH6rP61xadEh8yZJgpUrV6LdbmN6etqUNesIK/n0LaWVjlxRe7hjGKJf46NcNLFkSDpxg5atXdf4Qx/pgFnlhRzZIlo0hNKGHOJBdGyZ/tLawWnU7vG+K6NvrHJ5WUW6TpZH37XgpZWH3w/JUqg9oXEBAK1Wy2xHCNF+R/tdRH+039F+R/sd7XeoTkmjdi/a7wNvvwFgaGgoaMN5YIjS8AAR5wm9OkDuHJc6WdKvXdd0RWgMSITuy/5fjg0PjVntXbIAcr5pMiV5QDtYNbuptY/bcOsIbWDxdIxBbGHR+ObfJb1SFjR6qL28PVJ2pD0J6YJB5kVaG+Xv0FyW7vF0mnyVnfNY8gD0y4+l9zjP0zTFxo0b0Ww2sXPnTlVmaKzJOik/H9+8TVa/WvONQW24pX+1012IN3zshWSElyPBy5c2nO5zXaeNBdku2SZZppQLa2yF6pH35fgvsmfaqTeh/pJ2Tdaj3S8at5Zd1uSCz6MsWiW/pb3iPAuNKc4f7eEVK7+ExQfvPZrNZjCvheXYrojlgXO63Iz78IElJUdaOyKOPBxIDbWcsiwZj7IfcaAQWksglN4xbk0iQxMuus4/2juM+CdUr5yIlZnk8nI5HaE6tfZYtGmTZv6R1zVaJfhEskx6jV5twhpqq3TyQu9QsujR6uCTY2syzWkITXw1h1ibiIfoLJInmaao/tDfQerU8hU5IbJO/qSwlEGZnvO5Wq3ixBNPxNatW/MAmia7zulP+ofaJ3VBqK18XGp5LQdec8i1dsvyyyDkRGljXbZP8qssr6z6Qmlln1l5rTQaTVb5skxN7or0ndWnIYdW0qH1pxwTGnhejT65I9Ki3/otaZKLQDxPiFfSFiwX0X5H+22VHaoj2u9ov8u2NdrvaL+j/T449hvQ3wsr/3K55e3geXlgU7OzZfUDfbcCb3LMWuMtpC80+mQd8oEWWU+R/tbaRP0WGiOW7Fm0WvIqaaC+o1fYhPKE6tbGWYg/1jgnyF3Csl5Ou2XjLX5TnlCfybSSHzKtnDfydmh5Ob30l9siLmuaXPMjxHm9cmc0DwxTOUNDQzjjjDPw2Mc+FsPDw0v0KD/Gmes2ra9lfdJ+heZ4RBe1TTtJR+bXxl+apua4lLpG9hW/TuXLeajkrzy+ndPF2yPnYtbuamtscRq0tHLerekPS3bpuzyy25qDWfzSxrelnznNUs61XfYyj5QTWV+WZX0PJkg+8mPfKQ3XJWVO8ZJjTpbD66JypQ4P2QtuCwaZe0YcOnj2OdJwJNIccXTAl/wcyLKsco/kMRxxZKP0jvFqtQpAX2iSE1ttYUs6d3xCLP/ycrU6eBla/fIaTWzkRAlY+l4bOXnTJrPaBD8EOXnVHN3QNX4v5IwPWo90VmS7i8osqkemkU+Cyvya3IR4aPGgaAKrtaMobVFflOkjrSzZPq29Mn+ITomQE0b3yTF3zmF+fr5vN0mofNlm7pRLR8kau3JclnE+BklTdpwNWgbd18qUOyboKebQAqmmC3nZsg5NZxbJjCWrRe2VKNJBFl08ncWDUJ1lFtxl3UV9NUj79id9aKwPwrflPq0e7Xe039F+R/st80b7He23vB7tt56GcCjsNwDU6/W8XMuGU53aUc18zPI01Dfa8cfaA16aHdZokgEtubN8EBvO88nypR23dDeVGdIL1m55TebL2OYHw4ZrbeQg/UW7Z3md0kaUteESsp+1tsr2cnrkfEMrX8opp1eOP06HxSOtvSE9UzRfsOykNlZl2iRJMDY2hjRNMTU1hXa7Def6j/WWtlqTBS7DvG1yfPO28yBoWT0r6df0gKSbp7Xm85YO0dI7139ag2bDiQ8kazLAGbLJnBfWyQ6aLqP6qcz9teGanFp5BrXhFh9k+yQfLNosmbTartFUhn5Jn1WmlHetjbxunkdLmyQJ5ufnVVqKoOnNhwQcYnRrQGiSElkYcbjhQGm0KNsRDxbKrA0MHBgvgzLOnJz0WBMTbTJoOcoc2mTJmkSFfhc5xmUcU9kOy/kMOb2h+yFeWtcs2oraWTSZL+pHa+LOQU/48ieAtXL5RL3IaZH3ingyKKx+0xYDeRrpUMiy+L0iJ0GWG5L3ojZYdGr3ZH5eTmisFo0TrR38miyDp7XoDcmodPw0HnIHS6NJo42/B6/T6fQ9Jd1ut5e0O+S4awg5v9r4sVCkfyyelNWBmsxzOrW0sm7ZtrLyGXJ2i+rU2qkt5hb1g2ZXytzn5exvYLwMov2O9juUL9rvaL8tOqL9jvY7VLdsW7Tf5aEFxkO6ga7z42X5GNDkX0uj7dgso7eLbDinMWT/rOsaHVZ+Skvf5fHMst3WiSshnoX637IBmr7T+Mr7o6wNpzbzI/ZD+o7XnyTd90232+0lwUSN75LmIho1/kkaNL6Hxr01JnlfamNHk0/t+G6tHsuuadDuawFPrQ2AHnSV/NPmptRXfBe3lEd+zRq7PA+XJe0BPNIbEkU2PE3TvhMtLNrK2nCai/J3qXc6nfz96lmW5TpZPgQUsuGyDZZsEviDCUUo0mVcPotsuKRL6hBpIyQd8re2I157OEWWofHHSi/HgNVOzYZrOlLKhdZmS4fL+X8MjC8D1Oxi0Y/oQZOUA8a+kBjGPjo84fJ/lsKbPw4Zymq6w4PaiIcSyszBSh+lThMQbbIU+i0nJdp9+iudFF6enJzIvGVol06RlkbLw+nj9RVNhmU+OdEOOYMhPsnJoJZP46VWl+UghejSeGc52JzfkvdWeyuVCmq1mtq+UDsktAm3zFfUdo0+7Z5Gp9U3Gs0h3sl3BEray/CnbDu1e1p98ig3rT0hObXotK7zI01DR2RKh7KIBn6PLxpIZ5g7U1ZZ1rim/PTEeqfTyZ3/SqWyhFZy4i2Z1XSAtRBVxHcNmkOtlW+126pP06G8PVpaTY/xo/FkvdZT4Zqu1saErNMas5oDL8vV5E7jLV2XTrost4xBtxDtd7Tf9D3a76X3ov2O9jva72i/+b3DyX7zurUjbmVd/LekX+bnfaodS6sd2yx1GpfpkC2hvNo9+m7pVSl/vB5L1um+FlSUfzV7Z9lKTpsWUOJyqLWN84PScL7IhxF4H9BvTqMlA1oQla7LfLz+Wq2GoaEhNa/GX2vccRmyaOb08LLkd8sWEqwxqelgmU7TJdqR4kW2NUSrJnuWTpD3iAZOk7QzUp6krEiZkrD0Ar9vyY8cfzJwHtKlvBz+oBl/IIPzgx5U09ohxzMvK8sytNttdDodtFottFotONd9FQ3RSDyuVCr5d4svnOdcb8rd4tZud05/SF9KaHpE0mbpWO0EEGCpvqFrcizKPpOn6wDok0ttLmXZKbrP6+V1Wm3S2qyNCyl3mt6WwXaLvxElMdjUNeJgwaEb7Ul7fxMAqev/8Pux3w4POADOIdghTv449J3nS34iIg5HVMom5BPU0HU+SdLyyIlRWQcnRINWtpzMWA5RUXutfNaEVbsmHZai+pdbp0xj8ULLX2YBTnM0Zd1yIqotsmg08Gu1Wi3owFnXtOPCitpkyQz/LZ1zzfmXT9xa46BMf2n5NHqLaC/bpyFnH1i6a07rV403kk/0XWu3xlNZj+Q3dzql3A3CI9luWYc2fjT9ovGR5FI6mNpOF413ksfA0sUujSbZJk0O5ZPYIVkhx9Qa/1b9ofKWm1fbrSSdWatOaxxyWGOM0mqyr4210PgL8TLU98tFtN/9+aL91umL9nuxXMmXaL+j/ab00X5H+/1g2m9OjzW2QnbS2jVL16y6eBqScRkMKctPfk/Wq+lbuaNb0s5tMpcdTqt1rawe0OqTvOVlh/Q45bUClJqu4nXz9CFdI/mh3bf6l64NDw+r/NbotuqyTiXg9HO6NH7yHaChnd9ZlvXtiNb4rLVH47X2IAjvX0tva/yUx5rLnb6yHouH/J6m/2VfyHEq+yKkL2R6WT7xmALU7Xa7j2e8zRSQ5u3nPJUPQkk6NRtuHZFvySm1gR5sI3Q6nfzIeh7Y5vzh5Usea/Vq0GxbSCeE+qVSqeT8lnIpaeM0abTJtNKmhWw69aklf/w7T8MfkrDGkKUbNPD82g5yKf+8riRZfJWDVV9obEZEHGhYI6681FEJLEcCwDnkQVYnklJy74Bcvn2MXB5quPyfkmnB+kyRg4iIiFIYaMe49Z07Y5Zjbk0qQpNKzRHl94rK0ibLRRObogmmbJOFMosjZSarPJ2sU+aXCwkaHRbN2iRVq8eqX3PqZfnS4dXoTpIE4+PjS+ij8uXTqLwcbbeJRkcIXI619lj9GuJd2Qk1r4N/157OlrRZCyWcJl6G5tRQGv6UtCYzmjxKR1bjh8ZXbbGC+lnmIdp4fpIHybuy/JYfS4a18U7p5W4O6cTL/tTu8fvazrfQ2Cq6zu9pujG0CMB/W+9ZK6qvKH0ZXUmQuw+IfoJc4NDokXRZMsPtmuyLkJ7mNFltk7yUNlTKe5HeKkK039F+y3vRfkf7He13tN9F9UX7vfT+g22/OU1aG0OyL/kgy7H6g3jGd26GdAkvj9cvd/JZul22RwtQSjun7RIM6Xqr/dr8SOpsLa2mu6VekZDjVrMN8lpRMF27FzrKGugfi1xnpWmKNWvWmPqeH0st+0nb+a0FMmXZ8l5o3Fi6qWiuEJI7q08JfN5CaSy9xQOMFg95mVKXOefyHcv8mtXXcrxopwRIOdVOfJD8qFQqS67J/s+yDNVqFc65JXZPK5OPD8pDHynnnC5t7sDL1U5p4XaPPrLv+HvH+YdOhNHk17JxnCfSPmtpeRqpx6w6KZCv6WoOzmfJc40mbRxpelLTV1b7LT0s5UOTQ/6Xy6pWn0xPH/kQhqRBBsWl7tVOZzhscBiREnFgcGC61HcLShyQJkA1BSoVoFoBKtXu97QCpCngUsDR9nHHPt1iIg4hXP6PcVP7hNJGRESUxUCBcWuyZzmag04kNAeBvmt1hhZHJK2hSao2GZOOcJEzLNPISbw2SSzLH+7cWLRb/Nb6ibfJmuTzdHLSbn2XTqPVbzTxp7L5BLRarWLz5s1LFmOIhjRNMTk5mTtjfAIcajvRJSe/Iec7tMgh5clyBC35oDySd/Rbcxq0uq2FHlmP5dRYdHEnX2tTqD7JW9nHVjqg27+c75InUrY0yHEo6bacOk2n8Lq1NmqLANwhDzlzoXZIOZV5ZV0abTxPyBGWtITq0yDlUV6zypH5yi4maOCLKqExQ2klj+RY5Xnkk+i8DO1JdLovr1lyp/FJpg3JexlYbZPfOS1l+58Q7bcOSyZ5eRa/tX6S8lpUb7Tf0X7LNoXqk7yN9jva7zL5ov0+ePZb1hWqm65ZY5Zg2SPtPcSabZb9xMeNLFPSViQfXB4APbgu6ZDtTNNU3flqBd+079KGyLZo+iGkn/hv2RZeJm9TkiR9DxrJMkN2SDtCnuSCgn/EJ6qrVqvhEY94RJ8N5w9b1Wo1rFu3DkNDQ3n9Gm8kjaF5mSbLXBa1I605zRYftbK1Xcgh3tF3ThfvHz6HsWyUPN1DC15zyEC7ZdP4+JD85eOfZEg+NEe/+XyXbDjXm5zHtDuft1+OMc5j/l32b9mxw3ko+5/zS8ogD7rzNsvTBzS6tbljyB5K/vO//DsfC5o+ITq0ckK6RZNhPt5l3Tyv5ImkXbZBtlf+Dvkc1vxQq0fT9bw+0vO8rySP5C51rS7tw6HNByIeWnC9z8Eq28JAM8fELQbFK2k3IF6rAtXq4t9KBUgqgEvRf7Z6r4X+wLfUBT4RDDlTBGecY59AZkqzhLuR0xERZVE6MC4nvgRtoiCdaP5XmxiHFpGk86eVI9NaNFmQk7CiMixa5SRROwpOS2uVIeuWk0L+3Zpga9ck37WJqixbczw12kOTSple3nfOYXx8HA9/+MORpmnuyKVpikqlgqGhIUxMTGBkZESdIGv0aNB4ZU14rbIoD3cmQk80a7wLOQP8PVpUn9Z/ITrLyktobFgOrXTMObhDbjlS0lmhv5pjGJIn6WRqdcq2aI4hr7vIYbMcR83ZDo0r7ZpFO/9t0Sp5opUp26W11ZJLrXxJZ9mxJ22J7LuQTFoIyYnVp6GFmdB4lWOhDD3A0nfzWQjp2eUg2u9ov6P9Xpon2u9ovwnRfkf7HaIHOHT22yorZOs0G67ZX4Ic91JOZTmkM7U+0GSR81rju/d+SUDNqlsGSqVeoO9akF+bB3FaQ/bIGlsWr3l9vE5Ol2yXxitZvuSp7CvJf+19utp4cc5h7dq1+NVf/VVUKpV853KlUkGtVsP4+DjWrl2LFStWLDnhpUgmOXiwUtoi2Q4e9OVpqE2dTqePD9bDVFwmiuokGy51nNZvnKeSF5oMy/bL+vlfuqc9BBAK8NMOVz5OpBzyXbCS13wOo8k8D0Tz3d7UZin3IRuq9TMfBzIP54PGV01GeH9oR9nTbzoiXNKo0WzpEG28azaf7/CX9lMbQ1Im5Kt/imy2RqtFP2A/4BSaZ2lzAKtt1hjS5hAh/nB54WmtdmsnK8h2yg8vN2IZGHw6eNjhYDXBkig/aJ30rvBaCozUgPEhYHIEWDkOrFkBrF4BrF4FrFoNrFoFrFwFTK4EJlYAY5PAyAQwNAbUh4FqHUirQEK7yg98+/h9VyLdUYsQA5zr/1BC7RovJP/KC37IcjgiYiCUfsc4sHRBjSbIHNbEiEM74ovXoeXRHBk5UQk527xMbeKlOSQaHdwhkRM3y6EugjX5l/dl2XICKJ1TiRA9ZfgYopFfL3JsrDIJtVoNGzZswLZt2/Kjo2q1GoaGhgAA09PTaLVaQWdSq0NOlq3Js+X8SEdPm4DTNW1chJwXWX/o/XpFzrhVptwdQ9/lE+nyqWmNz9r4lLTw9NxBpXfBcV5SGs3Z1eRfjrfQmJZt0cap5aSFdEYovXaP8yDkuIVokr8t55zfK9Jh9FsuGGlly+CBVh+/JukMOb2yfAuW7IX0n+z3on7VxpWmZy1dadUjF9Y0GmQfaIsky0G039F+h9LQ9QNpv327jUkAk5UKhup1wHssTE2h1Wxi2ns0usSb7Yv2e7HMaL+j/abf0X4/NO231re085fTU8Q/K6jCx3GRDZdHBtM13p+aPbH4y/teGz+8TL7DUUNIvrW2FdlsOfatthSNKW3clJFRWRbntWW/5BxPK88ac8PDwzjppJPwi1/8As1mE857DFcqGB8ZgW+3sfP++9GYn1dtiyxL44m0RZqulXpBC2jKuiQPLFAZ2mkSBAq4h+rS6rX0vWXDnevfsVtk3zT7w+njtoCup2mat4cedJAB7TRN8/UWSYel1ymQLNPK4KN2SgP/LdvPr/M2Ur9ymeE6Qfa7NkeR9IfsPoesj0PyRfoYmp6QOlHa9JBcy/bIh0cs3W3pOZ6v7DxH9inQHTNyt7usR/PnZN+EZEXWHdJ/nL/UFjpCXdOrUo75wzHWqRgRDx0M2vuDzvqWLV2JAyq9o9OHa3ATw8D4CDA6DD88CtSHAFcFXAXwCdBG99PsAM020GgDCw2gsQAsLACNOaAxD7SbQKcNdDqAzwDv94fKQnB+PSRGmiogDnlQm/SeOu9wXSY5z5jl+wvtu0cVPiQ4GxGxbDhf0tJXq9XFTMI5KbNIYOXlaUPOrjZJDN2XNGgI3decEfndaqdcECmasIbKLUpj8VfLozniFl/kfT5ZtOooKlfSKMtOkgTVahWnnHIKnHPYt28fZmZmUK/XMTExgXa7jT179mB6ehqNRqPvHUFpmqJaraLRaORPOlPwnOrTnjzXaLK+F8lcqI+5HGjOgVYeL1OTR8t5spxv6QBYx0hqCN2XDm6oTVJ+iQ7pzPI+0xxduRAsr/G6uDNdRj9J3lpOmEYvrzOkWjUdqI2n/UVIbkL0hsZ3aJxb8lSmfZasltVVRfRptGl5pI6QPCqydxZdGh3aAqBFN9DVactBtN/RfgMPnv2uAJjYtQu1mRl0RkaQTEyg3Wphz969mJ2ZQdpoYDjLUAcwD+DeSgWz1Srmms1ov6P97qsr2u9ovy3aHir2GwDq9foSumVgiusbGjPamLbaS2NQk13eNipfu6/pXKKJYN236NTaIcvS7LbkVUg2pcyEbGVoXhAaO/Kadp23V7ZPtqNMXUW2gdOSpimGhoZw1llnIXEOO2+9Fbtvuw0jCwtY6z1aALYB2A1gxnu0nYNLUyBJUKnXMTQ0hLn5eVQqFTjnsLCwELThWv+HdLzU5TIoS9+1Y6GpHCvIG+oTPqY0PSdllQLPsh4pgxSw1uoN/ZZ2k7efB/N4uVK+pV3l45nrlSRJ+h6+0ew1D9DKgKmsi65J/cT5LHW3pE3rb9k2um9BPjxgpbVk0rrH+4d/JzpD8xw5Nqx2WuOc27eQbgjprUHmC5L3If0j5zEa7ZzWkA3X+Ef5rRMmNPvD6Q/pSU5bo9Ew04VQpIcHK6z393CPcR0pdB4kDNLjy2ZRgu7R6fUK3FAFmByBWzsBrJsEJifhJ1YAo+Pw6RDg6oCvAK0EaDlgvg3MNYHZBjAzC8zMADP7gJkpYHaqGxxvNroB8oyC4xmj1pcivCwfqKiHhNiYTHGAYx9g8S+A7lH39B0A6aY++8W+ey+uHdVcjYgIIjQnJJQOjNdqNfUJQc0B1QixJnoW0XIXDK+vTPk8X5HzKJ0ay5GQE7eyDmdR2iL+yQmzVY+VT0unOXcyrzUJl4sDloMYcnQtmpIkwfj4ONavX49qtYp6vY7169djZGQEMzMz2LFjB/bu3Yu9e/didnYWrVYLlUoldwZHRkZw3HHH4f7778fOnTvzhSjJB4v3Fj9kPu2dTFYe7hhqfAnVpcmzVqd0TovSW3RqzoiEHB+aTFFfagsRfGxzx5rLFJd37UgvbUxLmiTvNadWtitUrla3xWNLj1jjRGufJodF4ynEozJptHqt8Txo2WXySFq0MjUeyF0SWhusvpV1DaITNPks6mvvl+7qDNHD6Vruwnq039F+y3IOlv3ePDaGMyYnsWt4GLNjY1gXsN+dVgvjlQqOBTDhPar1OoY3b8Yte/fi7j170Ij2u5BGTme039F+R/t99NlvABgaGjJtOJVfdLqKJtfyN41dzYYX9U9ZGy5hjUlJI7+m8UJCtsOydZI3kjZLTiy9UtSeUBp+39KvMj8vQz5AoPUl6XdtJ3ylUsHqFStwQruN+vbtGO10cCKASXQD4ncCuL/32QugAaAGIE0SoFLBZK2G0049FbfOzeHu++7DwsICAP2UAtk2yVetj+g3nVyi9ZHMV2TD5XeNN2QLNTvI83jv84f7LJ0QmnNZdWjyRfVKmaFr/H3hPC0PHloylmVZXyDXCoBKflE6usZ3csuApnYKAOXlMsPplGNNC8RzurjMSP2mzbnK2FDtuoQcd1Z+eQy4daIVr8eaA8n6B0mv3R9krsBlTytP05GyTzmdkv6QDZf84nIseUrX+bvJuexy+rW2xsD4ADhS6DxIKNvjy2ZP4rqB8VoKN1GHmxiCWzsOt2klsHEV/MqV8OMrgJEJ+GQY3g0BWQ1oVYBWCsxlwFwHmG3BzcwBM3PA9AwwPdX9zE0D89PAwizQnINvzgOdJuDbgO8A3gOZL2xBiA8PUdHQmUI6wiXd7/Thib3y1/vup+8GxDXO6Ycs1yMe4iiaAwEYfMe45kTTdWuCYhFnTSZDjrV0wMs63mXTa4sLHLyN2iS9THss5yI0ibXSar/L0qK1y/ptlaXRaj01LGXFWtio1WpYuXIlVq5cieOPPx6bN29GvV5Hq9VCs9lEp9PB3Nwc7r//fkxNTaHT6WBiYgIbN27E4x73ODQaDXz1q1/Frbfeir179+b9FVqgKHJeLD6G+oXKstoZWojh97Unm7X+seRbo4GXaS0SWIs1gP5ULk8rnQs+rugJdE2GuSPT6XSWOO2aU8mdZypfllkkz5x26ZzxskPlyDTaYpT8bt0ro/fKjnutf637Gr2DQHN+rfFj0VNUd9GiSNGCqaXX5T1LN3O50HYxhfQD/Q053xa9zjk0m83S+Tii/V5sT7TfB89+T3iP46pV7Fy9GhPLsN9nnnYaqtPT+NGXv4wdd9yBu2dmcAeAJmx+Rvsd7TenPdrvaL/ltSPdfgPdwHiRrGljTBvfgH4Urkwn5ck5lx+Xa9lQS7dpQTArj2VjyowDWbYVjJPgbZQ80vSHpY+LdLHMK9MV2RrZJ5oMy5M6OG0kv5aeQpZhuNXCpk4HmwD8/wCcDGAUwELv0wQwBeBWANsBdACsBHAsgPMAVJIEf1up4HuVCu4DkPWCUJxOGQDW+onDkh/Npsh01k5vPpY5f3hAWT60I2XImnto8s3/8p3i2oM2sh5puyuVSt9ObpmuUll8UyJvF9B/bDql50dMZ1mWpyEaaNzzh9SoTHk8NfUBnyfwPrVknO6lTF74/MDqc0unLceGF819uUxo9y2dK22/xgcpm1Z+mVYipIe4XBXpKV6eVb42LkO2RcqBtMWcBn6Nn2DAZaLIhmvXiwLgGp8pLz3oMyhCtnawgtj3wz2+RbQe7nQeJFg9fkDY4dB9p3glgRuuIFk/imT9GNymFcAxa+A2r0E2Pgk/MgFfH4PHMDIMA5060KwCrRqwkADzCdwCgPk23Hwbrrd73M3MAtN7gH27gH274Gd2ws/sgl/YB99Z6AXIe8Fx+hi7kg8qH45USKaQfnAOcEn3oQfnAPSC5Jy1+XeP/sA4u+mBpf2h909ExEMF1hyHo/Q7xi3nmk+srAUTbRKqEcjzavflAodGl5ZO1sedRF530eRQlgHY750JObk8jUa35WhZCzJaW8vUF0pfJDyyr3h5oQULjjRNl5SRJAnqvSPZVq1ahTRN8+PUN2zYgI0bN2LLli1YvXp1flxbs9nE+vXrMTk5iTRNsWvXLpxyyil473vfi4WFBTSbzfxpZc4HzZmRzkQZJ4TTzvln5ZHjJOQkFo0p6SBq9Uh50pwCuWgi26Q5CZYzrzmj5Ojyp3R5PUQTOfqyr2Q7KG3RGNPo5m3mf+m+pS/kNf5b0iGdKZ6G/5ZBAE0mrH7VHPuQXFj6jkNe57oypOcsaPdCOyJDCxYh+rhzXuQoh3SzJhPWooTVPn5ds1dFY1fTiXwxajmI9rufpmi/D7z9rgF4uPe4dXgYk/tpvzecdhre9973YuGmm/DYhQXcg+4ONY+lYy/a72i/KW2039F+a/Qc6fably35xK+FToXhcmDpIdl3kma+A1RrK89n9VdIJ/CAhzXPsOTOgmVzQ32m6S9rN7KWXxvjGrjsW+NGsyWa7uF9T/LG5znayR9UXp4fQDI7i5FOB6MANgNI0d0pPgrgJHSD3yvRXddtAGj1PuMA6uguKrWyDBubTVzTbGIawHylgs7QELIeHWma9u0KlraI7zImWeBHhGv857wJ6UcOHhTn5XC+yr7UArUc2nU+Jsj2yV3lfAzTPUpv2SM6sp1fk/My4m+lUlnCR6qH5221WkseBiBauAwlSYJ2u71ELjX+cV7LdvDyKK02j7BsuOS7pu80+8R5wMeLNm4lvaEAPB9PvF95nRr9ErwdWiCe81XKgKU/CPzBA9kO7SFGzgc+Vnl7ZflF+tKyxVq51gMOsl2SVq08aqclp9Yc5kDY74iIAyJFSe9TTeCqCdxoFcmqYaSbx+GOnQSOXQFsXgk3Oo6sNoasMgqfDcFlw/DtIaA5BLTqQKPW/TQrcI0Erung5jO42SaS2QVg7y5gz3b44fvhq/fAowLvUmStWfjWHJC1gCxDN0CedXeP50ets/kx+xbWeg9xONf9UFCcdo4jwZLXg3sPuriEp6TLHgyaIyKOMpQOjHPICaB2X06o6brmpGoTDznZKjspsSZM2vFi0iEJtcG6b028LXot59dy4Iro1NpaBOmQlKnD4pFWnka/1r4kSfrkoVarYWxsDMcddxxGR0dRrVYxOzsLAFi1ahW2bNmCJz7xidi4cSNGRkbUNnnvsWXLFvzGb/wGOp0OPvjBD+LWW2/Fvn37+uiWDi85kyGnV3MAQjuvNIcw1M+Wo2TJIN2zFopC37WFG3ry26rXcvalQykXZCgvd/Dld1oQ0NqjjTW5m0DyQltskG3QdIXWVukwyTZqvJHXtTFnLSQMijKOYohmSYtsp0arVZcm39bT4yGaNZnS2l2mLH6/LM+t4/k0aE6+bIeUL2uhQJOT0ELFchDtd7TfvM4DYb9rAE5JEuxYsQKPOMD2+/Zbb8WqvXuxpdPB/c5hO4B2tN/Rfkf73Zc/2u9FHK32m/cp1cdtowzQyLbIsau1Xdq10NiSdBEN8hQIeZ3Tw3/z8rUHgHgaGXgpoy+5vpJpZdssW6/lleNEk2dNRqz5hiZH0lZZeaQMeO+X7Nyl72ma5kGySppiaHYWqzsdnIbu0enD6B6X7gBsAXAMgA293w7AEHTUAJwC4A8AvB/A99tt7JibQ6tSQaVWyx9w835xFzM9KEcPTFkPy8gHc+Tubt5GLvOyzwjWgzhaX2jXtR2ssi7Zfzy4yB8CqFQq6usWNPvH9QCVKe0ysHhaFD/xpd1uo1qt5vVSG2hXuJxHUHn8YTaNF9YY4f1ZZMPlO9eljtBseNE41mSI+MblTNNHsjztt+SJpfM1nS3ppDFA/cnHr5UndE3qXZ5O6nmNp/SRwXeugyUsHaXVL/Umlx2pY7U6rN/StlnzLE2WNVt0oGx4xEMXy5IeMraUOQFc6oDUwY1VkUzWkKweQXLsONLjJuGOmQDWj8KvriMbqsGlFTiXwnUq8O0USFN0H3erAFm1+/E1IEsBn8B1HFynA+fH4LIhwI0ClRXwtRXww2vgZ3cgaexD1tgH35oFWgvw7YXue8g7TaDdgs/agG93g+bIAHXcxLGUwzn26QXDk6T7Pd8xzoUA3e8+9KCBh+sJTuR0RER5DBQY5xMlfo2gLaJokxM56ZAOW9FEr2iCo01etGvWYonVPuuanKiHJntWvlAd3HHS0sk+sdqkLXCUmRxqCyJaPul0yDz0mzto3EGv1WpYvXo1nvjEJ2Lv3r1oNBqYm5vDxo0bcfbZZ+OMM87Ahg0bAAAzMzOo1Wr5grhcQEnTFJdffjlqtRre//7348c//jGazWafE6k5c9rTsNYkX3P+KA8vM8QL6ehp/NegOYccWh9IR0dCK0tzRrT7kp/cQef3+eKFtdgjj9Ti40lzWjS9YjlU0vErahunS3P6LcixoMkDL7uor3mZ0lnj5YZ2c1njXY5hS65C+rIM/TxtSMfK9JqO0fpaG6ch3Vt2fEmE6C9yxC0eavdCZS0H0X7r16L93j/7XQfwcADbhoex8iDabzQa2OA9HpdlaAC4PUkwC8Ap9iTab/TllW2W96P9XspLane039F+a/lCZRaVtVyQzMjgrkaLZecojTUO5ckZ/J7VXm18y7zS/ln2lcrWArz0XQbYtZ2/Mhis1S3LLrJ7PECljWtLP2mywecasi1yPPPyZP9IfSsfKAjZ8Nz+Ood0bg7DCwvYAuB/oHtE+hy6R6ZvBfAEABuBfJ2+CA7ArwB4PYB3APhqlgHNJnyzCV+pIBka6h6xzmwa7Zbm7QntYuVyxe0M5wsFcymN7Ccuu/L4eW7b1DYa8gUg383Ny+I0yPFD7ZGyqe0I5u2nsqgvve/uJOe/iY8kw3TMOuc3p5OuUYCcjyeNL5I2ekhPk0N+QoCmwyx7w/tGO77bsiOSBpIZTRfy+rUxK+VP6j3ipzaHkTJn9av1gKFFD9eVXB54mbK8kH/Dy6A02sNO9Fu2Q8qH1jeUztoFb9lMTS/y6xyaXg895Mfl1WqD9mB4xOEJh0Mbet3/2V6vkMQtNsZ5uMQBFQdXS5FM1pBuGEGyeRzpCZNITlgBt3ECfuUI/GQNSCvwSOF8Atd2cInr7i9uu+4x7Ilju5MdHFI4l8ClVbiqQzIyBJdOAkPrgZEN8BO74Gd3I1vYBTe/G35hL/z8FPzCPqA5A9+YA1pzQLvRO2699y7yLEN3Jzk1xOPQ99BhCEf9kfR/+mZdHvCAgwecB7zvfgebR4pvMUAeEVEeyz5K3YK2sKOVZd2X12nCF5qQlHV6iyAnZ1p+a1JlXdMm6lo6mUab1JWhvWyaEI/kPa0doTT8uzwGTE48ef40TTExMYFHPepRWFhYwPj4OI477jgce+yxWLFiBZrNJu68807Mz89j3759GB0dRavVwtDQEFavXo2JiQnU6/XcManVarjkkkuwY8cOPPDAA9i+fXv+3ktg6fungK4ze/zxx+Pee+/Nd5kT7ZpscKeUHy1mLbBoPJbOTIj3ljNjOZCagyj7UHN0ZLv5ddl27pxJ+rWjF/kxW/SXLyJwmqwxwcGdcToynzugocULopHaUrSoFKJDppELH6GyyuhXzXmUdGrOuAbpCMsyLAfRckil/GmOuVW/1oYQbSF9L9st6Qvxo+yOHK0erTyZ1tL1smzpjFv1D4Jov/W6iq5F+x2236Pe43jvcUethqRSOej2+95OB9uyDGPe4+FZhor32AtgB4BZ54Bov6P9jvY72u+jzH7z/Jp88HrkQy0ynUabbBevw3rYSF7T+Btqs9bH9FvqS2teIdup7dzV6uV0WTvZNZm3dK+kn/+W9/lvbfzJtBrftXvUVzJYx3U25wulTQBgbg5uYQEVAGsAPBbADLo7v0cBrOh958vaRAVvleztBN2d4y8EcBeA29E9dj1rt4GZGSBN4et1oFZD5hyQJKjVajjttNNw8803Y8eOHUtsonzHPX0oGNxqtfrsiBYY1eTS4j/xyrLDcj3BOde3zmD1laSHdmzzOqgd1O/86HMa57KfeXuIH/xkAOccqtVqfpw71UnXtHkD/67ZB/pL7z1vt9tLgt9a23kQmNt8q51af2j8lXVRP3F54Tzi81tpv0LzD6ljLF3J8xf5BVp9nH5rvsnbLOcrfNxLPabpckkvf5iB18P5BqBP5nl/anOO0Bwi9HAA1wdShqR90/hl8Z3Pc+XpBvtrux+yOISRuCM+COgAOAceHHfOdY9OH07hRipI1w0jPWYc6dZJJFsnkBwzBrd2FH6kBj+cAnDwmYOnA0A84FLAp6xs53qVJYBPAKRwrgKXpHDVBEmSwlUzoLoSGFoHPzKFbGEXsoXd8HN74Od3w8/v6b57fGEavjED3+4dtd5uwNNO8qwNdDqA7wXLfQaHLIZrif+OfXhwHL3AOE2+4HqB8F72/FsC2p3vxEzM5wFyLPkWERHRj2XtGA85FtZ3bWIUcs75b8sRJWjlyLq0iZ+8p5UhJ2ZFaSwaeV2WU8/rCLWZX7cmbNzZtxx2bYIqJ778eplJonRe+HXNISSHrV6vY3h4GOvWrcOZZ56JLVu2IE1TNJtN7N69Gz/96U8xPT2NnTt35ju/x8bGMDw8jHa7je3bt2NkZAQbNmzAypUrMTExgaTnZD/rWc/Cnj178B//8R+47777cqeVFuibzSY6nQ46nQ5WrlyJ3//938cHPvAB3HjjjSa/uTM+PDyMWq2W75Brt9tLeGQ5mhLSgdGcrNACi7bwJe/Lvrb6nL5bOwg1x8GiRS4+0UINOdKUhzskmgxzeqTzwhcQOH1UjhxzltzL36HxLe9b+TR5kGVZCPW5dl3Wp/VvSKfIOrlOsujS+ryonRotZXSdxWNNRmU5Vroyjm9I3xLkwhHlk4sysg1F+jVk48oi2u9ov3l+DYPY7wnvcZxzuKNWA4aGHnT7vWt+Hgv79mG00cAJ7TbqnQ4mh4fxnMsuw8c+/3l8Y98+NIQuivY72u9ov5fSFe13F4ez/eb0kJ4J9TFPR7/5dakv5D1eFn9AJsR/i8eWrSx6mMayr9o1TrccM9pJOFpQrogWS89o7ZV6qww/ZN1yp6aUSy2Qp9ltfp3/9p0O0rk5VFotjKB7fPqxAFah+37xvNze3xa67xVv9n4PA6iydCn7zlt8JoDfBfDvWAyOdwDs63Swc24OC3NzaKcpWkmCjZOTeOsTnoA/np/H13buBJxbclw68cY5h3q9jrGxMYyMjGB2dhZTU1N9wXNpj3ngVdOXsi8026/ZUZlO6yNN5/FxoOkXOU5lebKdPL/kF98BTg+z0XW6RzvDuZ2W5cuxS9f4XIDziY8FoouPPc3W8jbKhwzK2HBJmzbGZT+WsV9aGXwOo/WD1p+WzdX0kmZnJI1UFm8Dt2fW6QVF+s96WEDTt5KXUgYkP6Rc8HuSVl631X7ZZg754Kh1CgOVKfl6IG14xNGN4tnoAAUlrntseqUbFE/GqkhW1pGsHsqD4umxE3Abx5CsHgLGK/DVBFnFw3kPhwzOZ3Cu+/HovQPc9WTZ935mDs47uCyByxIkWYKkk3Y/7QqQAS6pANU6vBtHVl0LPzQL35qBb84ga87AN6fhmzPwzdnu38Y00Oj+9c1ZoNkNmPvOAnyn0X1HOXrHrZdh5tE0/DwW2+YAONf7sOPTeQLqJ+8B77rd5zl7PChwvli4g0cGxx4/oLsRERE6SgfGixx/LZ32m/LzyZS2GKNNaqz7ZSYrVvqiybK8x+lfDkJ0cD5oixySRm3iLdNok1bZFpleK4f/Dj2tC4QX1KkMcnQpKL5y5UqccsopeMlLXoLjjz8e7XYb9957L2677Tbs2rULjUYDjUYD8/PzaDabqNfrmJmZAQCMjY1hdHQU3nv88pe/xP3334+NGzdi06ZNqNVqWLVqFX7/938fu3fvxt69e/M2TU9P4/rrr8f3vvc97N69G/v27cPWrVtx2mmnoVqtolarIcsytFqtJRP8Wq2Ger2Oer0O5xwajQYWFhaWLPRozrY8SkzyS1uY43Vri0SyP2U/8+8WXbIc7thoCzn8nua4a3LDf3OnW5ZD9zSnmO8E4AsXWpuk46fJt8bLUHprDGv9qfFP8lfSzCHThXSPNpYtHVG0mBC6ruWT8iJ5WEb/av0Y0rNlaOZjTl6z+BFaACmqWzr5PK+Why+kyDqsXYrLQbTf0X7T7wNhv9ckCdZlGW6p1VA5TOz3A/v2YeTYY3HypZdi+EtfwmmVChpZhlsB7GNtjPY72m+Lv9F+R/t9ONpvDku2ObjMaUFhqaeIdgoqaEED2VZZn9QjVp9Ytseil98L6TD+u8zYsHQGoO8i55A6TIO1C13aYMknmZau83tFu3H5jlv6LfugmiTIZmZQabUwiu4x6U8CcCW6AW9aQG2jGwynv/vQDYwP9757ABMAxnrf095ffgBoHcDTAVwMYAGgpXnMoRss/x6A+zod7Oh0cMrOnTjujW/EUJJgOEnQHh5GQ9iyNE0xNDSEkZERjI6OIkkSzM3NYWZmpu/92No8itYeNBtOafkx/JK/cqc2lcuDzhyaLModuLI/OX3yBABeh5QP3t9cpmm808k43H7TRz7wyfUA/8tp4vpA7tzlD9JYNpnKpLS8Hn5NGw+8vzh/pQ3X+MfzyFcuaHMRrR+0ujWbydtl6RtOu6TPgpZGq4vXJ3WG9l22Q6PVqj+kd7XxIeXXmjtLujltshyqh1/jPJEPCHjff2pAqO0Hw55HHB0okoyBVhwcugaU4qMp4OopkpEUyao60k2jSDePdoPix00i3TIBt2IYmBwC6hVkiUPiPHyng8x34LIOnOsALusGxB1ZYPr0/vSC4t33jCdIOgmSVoK0ncBlQ3Cow1XG4Cse3mXwvg3vm/BZA1l7Fr7V/WTN6W4wfG43/Nwu+Nld8HO7kM3vhl/YA9+cRuYB7wHnW72wrV/CAk9fiLk0pVre8s1hCtcfFKfvYB/vQEFx5x3g/WJgPGcdpffol0bH3jYOHGXMi4g44FhWYFxek5NAaxKswZoEyTo1x96aZGrOZKhdZdqq5ZFOedFCSNGkapBJV6hNy12QKErP74f4zY9q4+npOx3hNTw8jGq1irVr1+KJT3wifuu3fgu/8iu/Auccdu7ciW3btuXHqM7MzKDVaqHVaqHRaGB0dDR3/vfu3YuRkRGMjY0hSRJUKhXMzs5ibm4Oq1evxpo1a1CtVrF+/XqsW7euj/bHPOYx+M///E/88Ic/xLZt2+Ccwze+8Q0AQK1Ww8LCQt9iRrVaxfj4OEZGRtBqtTA7O4v5+fl8Fxtvp9Wf3AnXjvvTFnpkPrrHn461JvKW86w5GnLhiz9ZL+lNkmTJIjrd5wsx0tEgmpOke3QtPd1P5XMHSnMUtfEm21YGVvm8vRoPrTK0+jX9o+kXrb/lb96/WpmhcrR6ykBzVkM61WpXSCcV6eiQnuL5Q4uUcjGjSM9ZkDRQWdrOSAmLPrmYIJ94H7TPLLqj/e7PE+13f7oy9tsB2NJqYcQ5bJuYwEitdtjZ7xv+8z9xb7WK/x4eRmV+HsdnGYY6HUw5hweqVSSTkxiO9jva74J78r5WtmxTtN92mdF+79+CFA9Mc/A+1saWZs81G8j7QT7MQvXw9HI3s0Wvxl8uSxZfQjZQygLXn5xe+V2OReu+RqtGryyHp5NtljIM9O+YlH0g65F0cd2u2XDn+t87nQd0AbTn51HZtw/jnQ7qAI4DcBmASwCsx+Lyaobu7u57AexFNzA+j25AeyUWd4vvQjc4PoFuYDxBN1BeRd/yLoZ6H8JqAFcAuBDAnb0PANwGIM0yjGQZpqenkSYJPJ0uNzKCNevXY2JiAo1GA3v27MH09HR+hLqmW6TekPaO85mPB6D/AQfiuexD/u55GUDVdnjLfuPgeQH0vQ88SZIlfUqnt/B5G9A9Gp23U8qJ9z4/Sp1sNgUIW63WEnuu6UhpW+R8IjS3t+RbsynWLmBNX1k2XuqTkE3hIN7yh6Y03SPbosmS9DnkvM+aO/ATELS2EY+0cooehC1zTRsLWnoeYKY0WjrZb3JupP3VAv6cT/IBCq1vOH38urRjfExbPIx4aKOstzKw1Dh0A+GpA6pJNyA+nCKZqCGZqCJdP4x0yxgqx4wh2TKKdPMIknV1YKQCDDn4SrfWzPd2iveC4oufrD8QnaEbL89c99NJkLQTJC2HpOmQthzSdoKk45B0epbcJUDi4OHhkw68a8O7BrxbgE/mup90Fj6Zgk92w6d7kFV2wVd2IqvsQja/Ex23E1lrCp3ODHw2h+47yJkeJV44dHfNe6D7Tm3G/KNhSFqC5OkfB3gKiHcvLQbFHSui/1B619snrrHKxRB5RIQJ50ta+1qtln+3Fhf4b55OTvaKnpYuJFpMmrRJrbV4FVrckW0rQ0Oo/OVMpDQaNQfBymctPFj0EsryUOaTE3D6kFNOaeSCTZIkWLNmDY455hg84QlPwAtf+EIcc8wxcM5hfn4e//3f/42f/OQnuOeee7Br1678iNM0TdFoNFCpVDA5OYk0TVGr1ZAkCYaHhzE8PIwVK1agVquh3W5jcnISmzdvxubNm7F69WosLCxgYWEBw8PDqNfr6HQ6qFQq2LlzJ37605/iG9/4Br7//e/jnnvuwfz8PJxzmJ2dRZZlmJiYwNjYGDqdDmZmZjA1NYW5ubn8+DBtcYXz0eK/vK/JLV/skGOMO66aQ6otfsl6Lfr4fR4oIWec0vAdCtz5r1ar+WIBv080t1qtJbyi9Hxsc6dUWySyeCgdLq1fZJmybJ5eg6RB21ljjU1ZzqA0Wvk0SAe6bF6pB7SFBEsXaosWVgAy5BRb9C5Xz1p61GpzCNbCiJU/VDbxx8rfbDaXXCuDaL91GkLlR/vdb7+HvccJ7TZ2OIed1SpWH0H2G1mGY8fHcXythmang5+2WtgV7Xe03woN0X5H+03XBy37YNlvABgaGuqzmbxO+iv5rgVnrd2qRdD6VJOPUP/y9FKfyfmAJqP8Om8fb2MZ+q08mryG2kB5ZFmaTFEQUrO/Vn3W3IyXQcEe+k4fesiMaO4ViGzfPrjpaVS8x7EAHonuTu6noruzm9ABsAPdd4PfA2AK3Z3iFXQD43UAa9F99/gQugHxcXSD42t6v9tYDJDzELTsKeLUPnR3j/8zgJ8BmO6l3dujZy2AVfU6Wg9/OPbU69j+wAOYmppCu91e0kccRQ89WvNNXp5z3ePHpexlWZbPIXg93I7wdQ/ej3KnthZUpyAdBcH5w2uUn/qaywf1fb3e7VUKdhN97XYbANBoNPp4wI9U53abfyd6NB5qsswDu3JcyDEg82t9pfkhvDztJA8tsBqy4Zoekv6KZQusNFznlpFJrTxOt2XDuW4mOQnVLXVqiK6Qjh/ED+EPXfC2WPPDUP2yf6065X2rH7VTBggLCwsWa4IoOx8pLoh9j5GtBx1le3FZXeOweGx6zcGNVJGMV5FM1pCuHUK6to7KhhFUNo8g3TSKZO0I3OphuMkhoFqFr1bgXQUZKsh8inanhk67hnZ7CJ3mMNqtEWSNEWRzI8DCKDA3BMzWkcwPIZmrIV2oozJfRTqfotLoftJWgrSd9gLjgMsc4Chi3Y3Qengga8H7NnynBWRN+E4TaC90j05vzcI39sEvTCGb34H27D3ozN6D5sJ9aLbuQ7u9s/sOchEcz4PiiQMy3ztqxu8Hgw2ea5DlH4yx5gAkSffjHJCkPd72fvvusQHdoHj3+PRuUNz3jlT3vRPxfY93/Fh61wuVd4/P99RP7KGIqD4iHmoo4+sO9I5xQDfuRZMo+dta7AotptB9/rcsTdpigqyDT5TKLGbxcmV9g07sQrTL9NZiUJEjXVSvxUPNced1cqecnDFaTKXFVkpDiwLkuFcqFZx88sm48sorceyxxwIAtm/fjh/84Af48Y9/jDvvvBPz8/NotVqYn5/va/vY2BhmZmbgnMuPYl1YWMidv7Vr1+JJT3oS6vU6/v3f/x0/+tGPsG7dOjz2sY9FvV7Hrbfemjuqxx13HNavX496vY4f//jHaDabOPfcc3Huuedi06ZN+PKXv4wf/vCHGB4exvT0NO68807Mzs72OR+Wc6A5WZKP0gGU6bQdfNLZ0RzBkFOnLf5q/c1p5eVxR53TKHeakSNPT/Pzo9j4IoG1u0LjnXTsOP/5WLfGseYUyTp5Ws4bbfyEHH3LAeP6KEQjh+ZwWn2l6deQjJFMaPVrCxCyHk2XS/6VdVglfUULKSFdbenAIuNIbeJ80fpfW6wIlSkXdLSyQvzZX0T7vbQtsr5ov5fa7zWdDta2WrilWkWzUkH1CLbfu2+/HQ+fmsJ/sp1A0X5H+83LlvyO9jva70Ntv3l/htpE0PpKkys5/ihdKPBk0Wf1qdXHmsxRvdYuV63P+HXtwQSLNtlmPtat/HxnotYWa6xovzUey7YW8V7STK8J8d7ngdxKpQLfaKC1fTuy+XlU0V38qQJ4HIALsBgUz9ANRP+i99mH7vHn0+gGugHAobtjfFfv+6re7xl0d5UD3SD2yt79PQBmAYyiGzjXFp4cuoH1UXQD708H8PheOT8C8J+9vDsbDfzopz/F3okJZGNj+QMHfFevlB+tHyS/rXFFdpDKJFtZqVT6TkuRR7hz+1jGhlM9Wh6pz7RgudwpTm2iBw+dc2i32zmP6OQ+ajddl7u+CTyQSe8nJ8gTMqid0s4v6XOhF7QHnrRxq+lgOW8gXmnjkvJTXZZOl/qnjL3Q5m5aHv5wIt3THpwheq1yLL3D9RXPo/GX37P0jGY7i2wap0XaT+2eNq/ju7flPEejQ/aThFZH6L6kMWJAODzkInDLaq5DNx5acXC1BG4oQTpZ7R6dvnYYlU30GUFlwzDSDcNIJmrASAoMA95lyFwHHg7eOzg4JK6DzHWQuDaypLtbPD9Ond5JnbnFo9PbvaPTWwnSRoK06VBpJd1d4x0gabtu9l5exwn3CeBryIPbPoN3GVDtwKct+HQOvjqLrLoDLUyilQ0BHmj7WcDv7dKV9Wii4ZsAcK77IRXo5dgOz9sXO8ToFdf78LHtlWuBIpYPt1i/6w0UL/92iaFj1POj073Wcr5rnBO7dBA+xIZkRERpDBwYL3qakKNockJ/QwsyZessWiAI1cXLlk/wyvKtCRJPbznMMq01EQ+10UpbRJNVhpaOlyWdAv5bcyYqlQpGR0cxNDSEdrudf7Is63MkR0dH8fCHPxxXXnklTjjhBLRaLdxyyy340Y9+hJtvvhl33XUXdu7ciWazmeenT5IkmJ2dzR27qakpjI2NYWxsDI1GA81mE6tWrcLk5CQAYM+ePbj//vvxy1/+EnfeeSfOPvtsbN26FXfeeSceeOABjI6O5jvVfv3Xfx0nnXQSzj//fIyOjgIATjjhBPzoRz/CL3/5S/zwhz/Enj170Gw2sW/fvvwoUY2XoUUlzXELyRA5zHxnFzkMdE0eJWU5MtbiEqdZA7/HHXHe95wWolc6u3yMcQefO6qcLxbv6Lqkg6fXxoU2JiS/NF1hjRErPb8u9Z3lmGmOIk+nPXWvlWUtssm82ji3+MT5YC3caOVI/mmLKKG2hCDrtsYaXeOLBZZuDOl4iwZ5v4w9KmqLZbf2B9F+R/tNv8vY76zdxuaFBWTe46ahIbQ7HaRHgf3e3mzi5L17cWNvUV3jZbTf0X5H+72Uf9F+Hxr7rbVdkwVep9U/PL2ls7TAFy/XaleovVb9vD1yR7vMz+9r49SSaynfIfmRf7VxRbQQrGAd12/WnESrp4hm/qAVL7NWq2HFihUYHx9Hs9lEs9FAa9cutLdvR63VQgvdhZ+VAM4E8AwAI738TXR3hv8UwI0A7kY3KN5ENyje6X0q6Aa7273v29E9Fn01ukHteXR3iq/olbsH3ePYM3R3k5+EbiCeuJdgcS36FACvAvBwLC5QHYtukHwvgO8AuM97zO/bhx31OpqVSn5yidRL9JHvEKb5D7Boq/j8hPjL+5MCzvSwAd1rt9v57mzeV1pQVtNvBLomH1SRepfu0QYDXk6tVsvp40FsHtSmNQu+45zbcJ7OsolSzxHP5NxTyqyUZ6mDtNMntHkP1Unp+W+uJyVvNVvD65P1yocXiO9yfmO1XdKm2bIifslyNZo1GgD00c7TyzSW3Zd5i8rhrxSQPCfwPgvpYP7Ahjb30PhhtdUaa7I/tHmNnO885CFZEJraOPH3wCxjHDIctN5PkO8UT4ZTJGOV7rHpa+pI1w2jsn4IlQ1DqG6so7KugnR1gsqEB4YzuFoLPvHwLkWGpPtOcXTQ8Rk8gMQ5eJfCoQ3n2nCgd40D3V3ICdCpIGlXkDQrSJsVpI0ElUaCSjNBpQlUWh5p2yHpeCQZegFaj25wtvcd6P72PWvuXbdhPgVQgW+nQKeGrAO0MY9W0kSSTKPl7kfLp/C9XdG5kNBYox3jrreb2vV2WCe97/SObilsHgCjC94DPuv9BfvOrme97+ild46lPwjC6xi9QLf9rse33rvFXd/LaETWvHH8m2cpvLgWERFRhAOyY5xDTqSLnM+ievjEmC94ywlg2YUHbWKuLRbxMkMTVa3toTLkBFebbPJ2899ysq3VLdtpOWPW4oFMF+pP+k0OOpXRaDQwNjaWO+f79u3Drl278knu2NgYzj77bFx11VV47GMfi0ajgW9/+9v43ve+B6D7zlFKS+//TNM0P4oVQL6LiY4wA7rHe9Ei/E9/+lPMzMzgnHPOwerVq3HPPfdgbm4OMzMzuPnmm7F582YMDQ1hYmIC9957L+r1OtatW4eTTz4ZD3/4w+Gcy8sfHx/Hk5/8ZHjvceqpp+Kee+7B/f9/9v40WLflvOsEf7mmd9rzcObxnjuPEpauLdmywGCDoKBwMziCMFAfOgxBUEVHVFRERxcRfKgK6CaiA6I/MER1OBq7y4AxEIAHGmyMy7qCa+nqSrqj7nDms8/Z8/DOa8jsD7ly7dx5cr17nyvJupLe58Q+611r5cp8cnwyn38+Tz54wHg8rtyR2eVul43bfs2fu6CsW/CYhbjrRs0s5N0FCBy1AHHjs9N2v5u0kHDbim+hb+K3w+Z5/pCSwgUADM9uPC6fbr4Nz64ywc2LLw9uHR1HvvLwfevrT3Vl6SoTJi16JykO3HzV8V6XT18+6pQHk9KalF+bbEWhrw7q2q6brm8RO4mH49q3/f2jlJUbd12+fOEnhTVjq69tfFSayu+p/Hbv6+T38vw8zwjBWpbx/v4+DSmJv0/k91sPHnApTYmKAtu58VR+T+X3VH5P5ffHUX7bdeorC1/67kYx35hV1/98Mtpu8y4w5ZbDSdqtG7dd/u54ZYdzx2Zf2m76J5m72DyZMnH5svPua7tu+flksFsP9jjoymXbKtmXDzusAe0GgwFLS0ucOXWKlRs32Fxb466UFbi9iD5P/GfQFtmgrb8/QKtkH6BB6wJtMW4AcAOqg3aVPi6fmVEtK5/l5XUPDXC3OATdd8r0z8IR4zDK3/Pln3muSp7Oln+LaEv295VisLtLVm6Ac8m3ecbIYHsDmGvBate7oSRJKi939reupbWxXjfx2rLO3chgzyEMcF8nm935iMmH27bNfMPOW5qmR3iR8tD1u51fA4ibOA1PrhW9HY/Jl6+869q/3dfdfLnkzrPsvJrfNnhtk68c6+Y7dlq+eO3wk2S4IbdufPVqp3vcWGXXk3nu5rlu7PaNP2479L13y8P3Td2GiLq27ObNrf/j5Leblh2vby7uygeXB/e3Ha/5bY4oeJRN5b8fpGGvjwF9bBj5+NCxRSI4KvhKS/GgIQg6IeFyQrTS0JbhZ1vEp5tEq4n+WwyJ5iFsF4hYocIQRI4kRBJSkCNUDEiUAoVAihAhMoTIQRQIZGl4LUCFBDIiyCKiNCIaR8SpIE4DojEaGE8hzBVhIQgkBFKVbr3FofV49adAqcNzsCnBd5mADFG5Ii9GZCJHiW2GzDCkBMaByiJcAEJQAeFxCFEMcQRRqP+CAA2YG4DcAMqqdLvO4W8pQRblVelrUUCR66ssoJCH7ynB8iO1+e1q6IIKFK82BBj+yzxY7tQFwZEmYz61z10/hMBdXm2erbHx25yjKU3p+4UeGRivI3vi4ZsM1U10jpu0GaqbeNnv7TjqJkc+nt0JYB2PvsnoSRffbvm4YSZNuCZNXOvCu2F8So66xZfLr8uznQ/3uVFsb25usru7S7PZZGlpiWeffZZLly4RxzGf+cxn+Kmf+inm5uYYDof87u/+Lr/xG7/BvXv3KgszIUR1Hp9RqoPexdxutytXccPhEKUUeZ6zt7d35BwtKSUrKytHlPNKKa5fv87Gxgaj0YhOp8Ply5e5f/8+cRyzurpa7Xzd3t7m9u3bfPjhh8zNzfHyyy/zQz/0Q/yVv/JX+Pt//++zvb19pO1Masu2+3gzyfZZVbkLDnMGq9kFbru+zfO8AhjsxaaxzHfbvK8+ffXv9lt70W6HtRUMdv5dSxNf+4LDM8zs9/Zi3ebVVbzb7du3S9m9+hQgPuWWr7276frK1a43dzzxLTB97cYt97r7unqsy3vdODHpXV06hhffAtqX10l5s+vGN5a4SoE6qqs7O67jqC6Mbxx3v/HxPWns9ckM3xjiKkO+kzSV31P5bcvv3sYGZ4FX222aq6s8830ov9e2tjglJTc+gvwWZlFtyg9QrsJUCNRUfk/lN/7xw63Hqfz28zqV30d599W73afdtN26dXnyWVa6ebHTdccv+70hHzDkk+F2ujYAZ6fnlu9J20dd3U9qq/Y47ObD5qmuXOzfLoDv5sfN73H16wtnxkE7nNkQduvmTR689RadzU3OK8XngBfRltrPo6224/K7DeA3gffQFt8ZWnFqTtON0MC2Kq9zaJfnEu1iXZbfrKMB8QANnKfldYAGy5My7P3yuzH6fPKrFi9ubabAFtrN+ixwBvhLaCD/bpYh8/xQBeyMy/amvyiKiKKIJEmq9XeeZyglEEaXLs0mBAgCrYqO45hms1m5JI/juKo7AzqbTfL2BgUzl6lrL25/sTdFuG28mnc4MtPwY8tuu20B1XzMBvANmbmHazXvkwV1ruLNNyb9us04tpW6CVMn58w3dQC6r//UAfW+8bnOc4sbt1tnbn3Z7+325yuDR5Vjbnh3LPKNpcfJWvtbX7m445SbX3vu5ePFHrvrxu06GeuOyXZYO4zdPm15B0c3urh81dWBr/3ZbcndmPRxoI8PJ8eQ3URtZK9+2vo9TSfKljj6JwQQCoJmQNAOCRdi4tWE6GxpIX6uQXw6IVqKiBcDolkIWwVhQyJCgRKBBr/RFuMFETkFxqW5AiRCnztOiiADDEAMIhOINCQch4SjkGgUEo8gHgniMUSpIk61xXhYKELLG3ugsABxtLtvWV6Vct4HoARKNsiyGbJikYx5urQRKkKDwiEEEiIBodBgeBxBEkEzgVYDGgnEsf4LQxCh/k4EVMC4OWq7UNa1BL4Lcy1/ZxnkOeSF/ivyEiAvDsFzWRzeyzJypU5a4zzUY4VV+aIEwCuA/xAcFwiEKN3UizI5QZl++dtY2Zv3D7VIZZ0tPqUpTek4emRg3F2gTVqku5O8kypyJoVxw/p+T1oQT1pw1qUzSUHiLmTcRfBJ8lCnePGFdSfz7sS7buLny/MkSwLfRNHmwV5cSSkrBatZtBkF+Wg0Yn9/n4ODA+bn5/nc5z7HT/7kTzI3N8fu7i7/4T/8B377t3+bBw8e0O/3q0W9WTyZhZtxGZZlGVEUMTc3x/z8PHNzczQaDe0yLk2JoohGQ5+WdvfuXX7jN36D27dvk+c58/PzrKys0Ov12N3dpdfrsbe3R6fTYXl5ufrO0GAw4NatW1y/fp0rV65wcHDAysoKf+yP/TFOnTrF3/gbf4NvfOMbDy0g4ejCKwgCms0mZ86cod1uc3BwUIEA5jy4wWBwRNFsFtdCiMoyrt3WDu+GwyGj0YjRaHSkfo3yHvSC1z5PzF0o1LUzm9yFiBveXoSZhVOWZVXezYLcbbt1Y4P57Yax790Fu2+B5ebTjtdNz4T1LfR8cfho0mLVx1ddP52Uli/vvnz78jcp/roxyDfO2799bb5u8VmXd/daV46+eqkbY+t4dsPUxV8XZ92zujQmjdF1deaG98X1rdJUfk/l93Hyu1EUnC8K3o4iRt0uotf7vpTf//f//r/nm9/4RnmUWL38DoOA03HMU4uLnGs2GQ4G7He7jJWikSQkjUYF3lfyUAiiMCRUihiYaTYRjQZFEDAejRilKZtoMKEfBOyHISqK9O5/pvJ7Kr+n8nsqv4+Sr2+5G05cvt2NYJMsK916qatXe4y043DzXDcG+Mqnzvqx7tmkMW3SfMEeD912Y57bcU8Cv+rmT76+W2d9au5dGW7z7/ZX887lx7j6llIii4LR7i7paEQXDVhvokHlPw48bfgCPgR+u7zuocHwUnWOLO8lGrgWaKA6RluanwZOoS3CR2gX6nF5r4B7aHfqG+V3KyUPPTTYvYsGxlfQ55RXet+SFBpAvwU8gQbGBfAC8LfR55b/lhDaOMwqV3t+ZMqw00l4/PEZFha6bG6OuX9/zGiU0W4LOp2AvT1Jlimt90YQBBBFAiESZmZGrK42mJ+fBZp0uxm9XkavZ/qddhcbxwlRpOthOBySpulDm9x8wF7d5hS3HfrAYgNYGxBvPB5Xm+HG4/FDZeH2ddM2DdhuW4rbbcwFmus23th5sueodRbudr3VzQNcWWOT2//cscG+t8vSjatuTuLyYW8E8MlRuw365kuGJslP3707Xvjis/N9XHn6+LbD2PXveg1wz0J326w7Xk2Spyb+SZ5ofPk1c1afa3uXH7s8fGO2XX72vV0WU6qhk05vTDhBDYj38aZJM/KJWRFHr8K+DwUiFIiGPk88nI+ITjVIzjWIzyckpyOiU4J4SRHPFsQtRZgIwlBvODOWxhoYD5AE5CoiJCYQOYHIEUK7TpcEFCpCFAnkqQaERzliUBD2JGFfEfcgGSiSISRDRZRCnAniTFuMRwUEBQTKuFS3wHFpgHB9DQxALiWBUmh35QVSjkiLEUGRkmSSSAaEJBRBAlGud+61YkQrQnQa0GlApwkzbeh0oNVExQlECQQRCgOOm3POg8MzXwpVngGjNNidG0Bcle/KZwYUz/LyryyfdAzjIaQj/ZeN9V+RacBcFaCU1QLcluC0GlE2/qAE8YXlEt4CxY37dIHeTCCE0Bb4QumrsTivfgtQokxdvzgEw4/RYx0bYkpT+sGij+xK3V2kmeskJUDdpMSnKKmbwPkmXSfdlV/HW91C+rh7dyJtwthUV17ugtudKJ5E2eROxN3nkxRE7sLep8ioy4fNv312prF0cifnc3NznDt3jtOnT/Pyyy8zPz/P3t4e//Sf/lNeeeWVyvLanH1lK9btCXMQBLRarSO7jxcWFkiSpDr3ezQa0e12ybKMMAx57733iKKI06dPE0URw+GQU6dOsbm5SZ7nNJtN0jTl7t27nDp1irm5uSqts2fPsry8zNNPP821a9c4depUVV7Ly8vMzs4+VJZuXYVhSKPR4NKlSzz//PPMz8+zv7/PjRs3iMqz0dI0RQi9M73dbrO1tcVwOKzcoCVJwtLSEu12Gym1K9vBYMBgMKjACLsOzIaE4XB4pA7NYta3MLEXDcBDi17zfd0OXfPcXjC5CxG73/qudQtTXz/zhXOf+/pr3RjlLvx83/vGmbr+Uvfso1BdP/b1V9/46Yujrn+bd27du899cR1Xf5P48o21Pj7Nu0njvU9ZUVcX7kLYzWtdOr68+eL1jbe+eMw3k8rep9R+VJrK76n8niS/kzznMaX4IIrIhfi+lt+d2dkKFPf2N+CUEDwRhiycP8/pF14gWF4mOzhgv5TfwwnyOyzld5wkLC8vM99qEZTu4keDAQv9PsN+n/k05UkhSIQgDgJ6RcGGlNyVkq5Vh1P5PZXfk+K0303l9/ef/HbrwSdvfG3Lx6fbX0x41wuD2xbcDVV16bnl4bs3fE0aAya5Lrbz5WsHdX3aN1cxabntxo3DB6qZunXH1Enh3Xc+jxp1bcmEM2O18UYSRRFxHJOnKeLgADEeA1rJswI8BVwBzpdxFMBrwG+hAWyJBq8zjp4nnlMq4cu4Eg7dqsdooLuFPkN8iAa9d8q4IrQVegNtFZ6gAfRTZXw5+izyvHze5GFqooH8eeuZQLtUX9SFUXpMPQr26jJThCG022NeeKHHT/zEBqdPKzY24KtfhUYDhkP9F4aQJDA3B3fvwsEBRBEMBhmtFpw/DwsLGxQFLC/D3h4cHAj29mA0EqUHlgaNRpM0bRGGIQcH4ZG8GBnubs5w+x74AXQT1oQX4tDVvpnL2ToY49rd7qfm3t10Z9I0fLr3k/qpOy+pG3/ceUkdoOn2g7o5BBy6fHfHArssjhvvbapbC7jp22OiqVfznT1m1Y0FvjyZuq4buybx7ytb3zs3nUkbgXzjpFtGdXXtygzfWG2XkTs2u2C5ryx8PE8K75ZvnYcgN7+++48DfU+CWorJKPP3GNWWvzj691DTESUongQErVCD4qsNkrNNkvMNGhcaJCsR8VJAPK+IWwVxuyBKIIwUgUZKUQiU0sC4EoKciIycsATGg0CDtwUBuYwIZILIxqg0g1FG0C8Ie4q4p0j6ikZfkYwgGUGclX85hIXGrUOptCt1WQLkSpRAuKpA8dC8kwohC4SSCJmBysnlkEgNEXJEUuTEMiAQCSKKUc0AZkLEfINgoQkLbcTSDCzOwNwsan5Og+NhA6IGSkQIFaJUiAbFQ5ACcqEnFTmQqUNwPFdHwfIc/SxXiKwExtMMRiMYDWHYh/6B/ht0YdRFjfoaJBdjKAQa8Dd+2yc0CiEAA4SHh9buQlSguDBhrLPFBXDk7HVUCYRb8Sq7seEBxZXD0vfkyDGlKf2+0EdypV43YZwUxp0022F8SqzjFBqT0vLFNWmR7MZxXPhJk1N3MetTZri7D32LDcNHXbn4Fg8uD77J6nGKpkmTdN+k2oTPsgyAOI5pNBrVLunZ2VlmZ2dJkoRnn32WZ555htFoxG/91m/x6quv0u12iaIIKSWtVksrlMsdoEY5bi8U4zhmYWGBK1eusLOzw2g0Ym9vDyEEvV6vmkinacqf/tN/mtFoxFe+8hWuXbvG0tIS169f5/bt24zHY+I4rtLudrtsbW1x4cKFStHQarX4sR/7scoN7Lvvvkur1SJJEn7913+dmzdvHnGN7tZBs9kkiiJarRaXL1/mscce4/z58yRJwoMHD3jjjTfY29tjbm6OK1eu8JnPfIZnn32WV155hbfffpt+v8/9+/fZ39+n0WjQbDYrN27GOnxvb49+v1+ln2VZBaoDtFotLl68yHA4ZG1tjW63W+XHXii4Fg2TFkX2M3OembvQcMmOLwi0+1h3EW7z9LCCY7Ly3aThLn4mjSm+MauuX9SNMXWKgrq4fK7hfGn4FAR2unaZHDd2HdfnfWPgcYtdX3hfvL7FqI8/3xhWlx+bv7r3bp59bei4+vYt+n3x+vj2va+rm7qyPYkM+yg0ld9T+e2T30tKcTEIuD0zgygKou9z+f2NW7dYCgJCYbkZBZaUYlUpluKYgzjmvZkZPvnEEyw/9VQlv5/9CPK7YcnveUd+H5Tp51mG6veJDw54rt9nLo6ZXV3lfpZxY2eHjcGAzDoLdCq/eeh7H03l91R+18X7vSa/3fzZdNy9+8zOm6+OfcCEWycmnFvWbpg6+evKO598sr/xWULav915gR0PHLqbntRm3Q3erky347bjtX8b4NI3b3LTdTcAGKpzDWyXg0l3OByiioJmr0d7PCZHg90r5V8buIS2uga4A3wR7ZI8KsOadxFabTri0FIcNFDeRoPhnwDuoi2676PB853yuo4Gyb9QfvsGcBENiD8Abpbvk/KvQFt/N6y0KH93OHTbvoYG4UPg94A3gUQIVLkh/LCuQamMTkeRJBlzc4oXX4QXXoCLF7Vu/cd/HH77t+HBA1hd1e8+8QlYXIQPPoBvflPrxz/4ANbXod2GmRlotbSxWBRBFCnW12F3V1EUkqLIGY/7dLsQhlrJPTfX5umnV+n353jvvS5bWwdkmebVbmd5nh/x3OOT4a7MUkqRJMmRdmCfMW73axt4F0IfdWPrLdx0TDgfuGxkOzzcJ6q5lAOI2mHtvLjfnETO2f3CNx93ZaL9zO5rZpOmy5tvDeDr9z55boety7f73De3sZ/X5dEdX33y3a1PO7ybLzt/djq+jZZ2HL4x1/1tt4c6q32X97p6cNufHcblyZUrbtlM+q6u7D5O9PsOcZnEPkLCbgn+vvL9LZLio/EvKsxSUAHkgUBEAtEKCNoR0XxEfLZBfKZJci6hcS6mcSogWYB4VpK0FHFDEUWSKFAEKEJleBAlBCpQKqAgIFMRmYqIZEyqUoIiReY5RVqQDxX0A+g2EHsRwW6DeDcl6UY0+5LWUJGMBY1xaS2eK6IcogKiQh0C40pfA0UJjqsKIA+U5k/IgkAVIHOUHCHVCFSPkdohZ5ux2mEYDMibAjXbQiwEBEsJYqmFWGojFjuwOKuB8ZkZ1MwMNNuoIEEFDSBCqRAhQ1AhSoZQBCUwLiAThzv9zF+Bfldo8FzkAgoQmYRMQpojximMxjAcQL+LGHRRgwMYdmHQRY1KkDztQzZG5WOQOahyO2HVMMrKF+YvgCAs/4z7+HJsKcFtvd+hvJZnuBu4m9IxvokZC/A2bVOVLtjVCVvo91IfnNKUfj/oxMC4OznxLYLrvoH6Bax9f5yiw5eubyJap+hwJ3Yn+canmKnL60me+cqsTnnj8uCG9y2Wfby6E8mTpg0P70J1y8ZeaBkFtJ3WwcEBYRjyiU98gj/1p/4UcRzzwQcf8I1vfIMsy2i32yilGI1G5HlOkiTVeV3m3iz00jRlPB4fObt0c3MTpbQbuTjWp5QZd61vvPHGEZfuFy5coNPpsLa2xvvvv1+5fVVKAwCDwaByQ2bylCQJBwcH/OIv/iL/4l/8iyq/9+/fRylFo9F4yOWo4W1lZYXHHnuMp556ij/yR/4In/3sZwH44IMPKsA8iiJmZ2e5fPky58+f59KlS1y8eJH333+fr371q7z11lvs7+/Tbrc5d+4cFy9eZHt7m62tLXZ3d1leXiZJEtrtNjs7Ozx48IAsyyrLuy984Qv87M/+LP1+n3/1r/4V//yf/3Pu3LlzxGWqrw3YdWsWkiasrfCx+5LPLZzdDk189vloJt5JYJO78HQX0O7VtzBz+4SvT9W1ex9NeufybN+7LvPcb9x8TVKO+MYkN9++cnQXq74F9aR2YX675WGn7y4obaWhTwnwKOOqy4svrG/Mc3k4rg342spx37h00jQnjeffDprK76n8niS/rwDtLOOtJCEoFabw/S2/A6X4bBBwpyiYVYpZIFKKvSBgKwzpnT7Nlcce44e/i/L7D33hC/x3P/MzqK0t/vO//tf8+3/1r7jx4AHvSUl/Kr+96bnt3kdT+T2V35P4e9Q0v9Py28Rrl73rAcEn0yc9m9QOwQ+Q+OK04/HJW1+/cMFtNx3feOICbe6cwAfe1JWRW5du/tx+dVyadp7tcdVX3m6+6sged+vqxH4fSEna62nXpWj9L2gX6hHwGeCl8lkGvI8+43serWrtl/et8vcIbfXdQoPXCg1m98sr5fPbZVotDi2+R+W798rvjCV6G+1+vQ18UKZnAPzF8s8lUcb/n4F/YOXrehl3hxGpaGvLOCRG+x1FikuX4KWX4Lnn4Cd/Ep56SgPaSsH8vAbIo0gD3ouL0Cwz8OKL8PzzsLUFCwuwsaEtyc+c0X9pCru7cP8+XLigv2u1YHMTrl/XgHqvp9jaKvizf7bLT/1UlzSN+c3fjPjH/xjefjtkNAqqjX12+zb1bOrWyFrbJbs9x7E3pZiN+vZ54PDwJgr73GTj4cc9Q9ztn8b63MTjzitsfo+T4b4+76bpbgqxebPLxH3n9lGbB+AIEO4bH3wy3M6ryaeJwx1LfTLcHVtsXl2Ld9/448u/O2773OX7ZLhPHtjl4qbpKyOTP0PueG/4seeLdrtxvznJWs4O65un1JG7yclN0yej3Hx/p2T6RyWFDYR9F5k4IdXVzu87qP8tkl3uH+VrIQREgqARIJoh0UJEuJgQr8Qk5xo0zickp2KSpZDGEsRtRdyUJLEiCiSxkoRSEZZgadWkBRoYFwKpBIUKyFVIWkSMiyFRlqDGI+RoRN4bk+0VyN0IsQnRekxzv017ENEeJbTGEY1M0MgC4hziTBHnkkgqwqK0GFeydJ1eguFoYFy7VjeAuSRQBULmKJWSyx6p6pGrHQassyfusx3cZb+1R346JjjbJjzdJDjVQix1EEsdmGvBbBs6LVTSREUJKix91hi36TIAqUFxISNUEUIe6L8ogFhAFlhgePlXBCUoHiAKoX/nIHKl/zJVguRjGJcu1Ud9GHZRvS1UdxPV20YNd1CDPVQ+QBUpyMyqc3HoNj0oLcSDECEMMK4BcQ2C6/KjOqO9bDMoPWFR5uB0AUqH0b81oK4qC/NDKP1oazWtVx15MqUpTekonRgY9ylSjps01E1W6pRd7rtJEzD3vW9C6ob3XY+b8EyacPkUJW65nCQd385at0zs53YZ1Sn46hYlPv4n1Z9vwu/mVQjtsssots25Vo1GgzAM+cxnPsPP/dzPsbS0RFEUrK+vA7CwsMB4PGZ/f588zxmPx4xGI9I0rRZ3BnS2eeh2u7z33nuVFfV4PGYwGFQT2TiOWVlZ4dy5c7zzzjuEYcjzzz/Piy++CEC32+WrX/0qr776Kvv7+5WFWbvdrizflVIMh0N6vR6vvfYaOzs7nDp1irW1NcbjMaurq4zHY3Z2dipwPAxD5ubmaLVaPPHEE/zZP/tn+fznP8+pU6cYj8e88sorrK2tsbu7y3g8JkkSFhYWWFpa4vLly8zOzpJlGXEcc+rUKT75yU/y2GOP0Ww2WV5eZmVlhTiOuXv3Ll/96ldJ05QgCCoLvL29Pd5880329vbI85wsy/irf/WvsrS0BMBf/+t/nTt37vCrv/qrHBwcVHXoKnd8C0W7roMgqDwDGPf5ps5Me3bblqk/swh3+6G7qLPvXZeudtyupYqvLbvjh69vTLKU831nW53UkY8/tx/54vXVgX315ec4/uvGizo3ZJMW5r7xtW4Mrxt/6sY095mP6sYym+qUKXWLeR9Pbl7dMD6eJ/F1nALgO7kIn8rv+ny4z36Q5HcoBM8oRTeKuJEkAGQ/APL71OoqL+3tcS9JWCkKdoqCjTCkOT9Ps9Xikx8T+f1zRn5fu8Yff/ppfmdvj/V/9+94fH+foVLcDALGU/k9ld9OvFP5/f0lv11ezL1vc+sk2ermYZJcsX/7ZKIbrq7NuUDIJBl+nEw2NKk9+MK7LuJ9efOVj+/ZSWR43bjgxmXKzD2z185PHTBe5RcQeU6cpjSVtiDql8/baIvvPw78nzi0/h6jT7M0531vlM+GwAEa2FZoMDvkUJ0alNct4L+U8XfK7/ao1LY0gAvl3wdoRdNi+f2s9fduGVeCPmPcN2IotFV6Dlwrvxmg3cL323BvJaOTH5CmiijS1t9zc/DpT8Nf/IvwxBOHgPf6unaR3u1q8LrV0uFtUNxUQxDod3/0j2q9dBhqEB30/YMHcOmSDrewoEH2PIfbt2F//xA8/yN/BLRqJOPP/JmMtTVYW4PNzRBoE0UxeX70CBO7XSmlPbuY52EYEgQBjUaDTqdDkiSVpzgj10wYKY+ehx0EQXXkjd0n7E1x9jzAfG+8ANnW1m77tgHeujWAO6+w+4TPJbrNi+HPlI0B6Y+TTXY+3Xh946FPhtv9050XmPgM/26+7HvXA4dJz7535wR1Y+6keYidD3f+5ZZRXd3YXi/c+q4jO6xvk4TJv7sJxFcPk+ZV5rc7ttaVvU8emDZUlz/fuP5xo48jd/WtwyKLccHHMx91dCJey0Komp0AEQgIIWgEBJ2QcDYiWk2ITzdIziQ0zic0zyc0lkPiGUg6ECcFSSyJI0kcSCIhCZUkKF2VC1HGbaWjMOC4IJMB4yIkySIYD1GjAVl3yGgzh62Q4D4kG03a3Tk6aYOZrKCdSZIioJFra3HzF0ltLR5KiVCyBMUVQgl9MrayzxiXBEqCykBlKDlmqHqgdsjYoM9ddoM77CZrjJfGhFdbhJc6hBdnCc7OaFB8sQOdFjQaqCRBocFvJQN9LYT+kwFKBlCEqEJfiSLIQ4hCDYqHxpL88E+UALooQkQRIGSgr4UG2KvnhULksjx3fAzDHnJ/DbV3D7W3hjxYQwYJpAeQDVHF6LDyhQARIoyVeAmICxHo3wiEVCAVQkp9RW860OeJSwRHAfFydNbnjyPRs6qyZYpSXlT25G5v/F7qaVOa0neHHsmVum+Rbb87KbludHwTt7r0T7porvvWN7F3w9nvJik76nh1d1ja8bjfnnSSWbd495WH73edostNY9Ik2C1/o2BtNpssLi6ysLDAYDCoQNfl5WUef/xx/tpf+2tcvXoVgDzPkVKSpinr6+t0u92qvIwrNJOWENrFa57nNBqNisc0Tdnc3Kxci9sLvSAIaLfbfOpTn+KJJ57gzp07pGnK3t4eBwcHzM3NMTs7y+OPP86Xv/xlkiQhKc8APX36NDMzMxWf7777LmmacuPGDe7evQvA3NwcS0tLdDodbt++TbPZrM5EbTablaL80qVLPPfcc5w7d65yj7awsECr1araoXFldubMmSpMURQ0Gg2Wl5crIMIo/qWUbG5uMjMzwxe+8AUajUa10zsIAra3twEqd7Znz55laWmpKtOZmZnKFawpT59CJkmSKr0gCKp7IfSO9CiKKvdtRqFu/uyFj71T2N7ZbRbn5ht7J7rbzuzFpr2AnGTt7usXxym8fNaYNi8+3nx9d1J/8YU5iaKyru/WpeP77eaj7nvfOFxXbnUL8+Py5As3SZHi5sPHf12e3KuvTE4iP1xe7PKcVB919TkpfZ8ioa59PgpN5fdR+kGX37NC8HQYst7pECwu8uQPkPx+Sil47z2+sbjIQbeLzDIWv0fkd9Zo8M1Wi2Up+WSWaVBCCLaBkdAbC0QQTOW3xctUfj/Mz1R+f+/Jb/feBz64PNjf2n3dlhd2XL507fy49eADe3zp2vOFOjDDTsOVc776cp+ZMcyMqTYP5mrGJLdO3LTMb7ue3fbs2/QzqY3XyfDj0qiLKxSCRpYxMx5zDm2NfYAGukG7L38B+Itoa24DQig0uPwhGpguynepnQ5a5TpEg+bGnblAA+c30eB2g0OL8BCtVJoH/hDwBNpVuzmP3MQLGlRX5bUJzFnvKN8Zte8a8E75fBUNuC+04Y0fhZkWbG0pxmNt+X3mDJw7py2+r13TLtB1eWo9daejwxmQO4osYOFIOeu/RuPhdwBnzz4cPo7h6lXtah1ASv3MxB+G2sK81YJOp0DKLlkWl6UYYU5zb7VaVTsOw5B2u121jSRJiOOYdruNlJLRaPSQDLf7gWlbtswOguCIx504jh+Sk6Z/mLmNeeYb2+r6jEuT5Knrst2QC6L60rItkX3jnjsOuRvR3PGnbiy006yTO+5Y5crzSfMHUw5mI4KvnHxywM2D3Q7sMPb6yR5zfK7N3Xh96bhhbXnk1osd9ri1m88zjz0/dfn2xWXXtf3M7St1lvSTNo18HOjjw8lRquOrbqX8cc3Ht0wBEIKIBEFsrMQDwpmIcCEiWoiJV2NtIX4qorEa0FhUJDMFSVORxKoCxGMkEZJYFoRCu1IPhCqtxs0VhDldWgmUgjwXpKmgORRE3YB4J6C4EzF4e43s9jrR9iVmBpKFvMWshI4UtGRBomISGREXEBWSWGog3JwdbgDbyo06lL+VtldWOUIVSJVSqDEZA8ZqiwPW2WaN9eA2D6K7dBe6iMsB8WNtwottwnMtgtUmzDVgNkY1Q4gFKlQoqZCFRBWgCoEMBRQSCokqJAgJIkAI06YE1bnjqrQwDzQgLYSuHCHKP0KEChAqRKiQQEUIFRGoAKGElt9BgQhzVKND0IlRdFDRIrK5guycQaX7yKyPyocYkBpE2fBF9SdUyaBSiEJCkUOeI4pc/6ZACKnrVejzy4VQVGeZq3JyocqZXPlcqRylciQZCv37cLbnIzHh3ZSm9INLj2QxLoTwAmmG3MmY+c5dOLrv3HTqFEDmvUnLnWC6vLjv6xT4k3g7qYLEx8ek55MWz76FtqsEmcS7WwbuQvs45YeP3ImmAYGXl5e5fPkyzz77LFeuXOHg4ID333+fJEn4w3/4D/PDP/zDLC8vA9qSvN/v8+GHH/L+++/T7XYZjUaVEsOeEJv8SilJkqRSxtv8D4dDBoOBVhCUizfjmqzf73Pv3j0ajQYrKyvs7e1V54ECPHjwgDRNiaKI1dVVXnrpJc6dO1dNgre3t7l37x5nzpyh3+9z584dRqMR7Xab0WjE5uYms7OzXLp0ieXlZS5dusSlS5cAuHPnDkEQsLKyUvHVbDYrV6ymnNM0rRamRvFsK7FNWZuyN3EaMt+0Wi0Azpw5w/LyMsPhkE6nU1nwu+U1NzdXvev3+4xGo6rcoyii2WxWfJtzXBuNBjMzM+R5zv7+Pv1+X59pZ9WZsT6z255RoruLC3eBZte5TW4ftMPYu37teFzFnf2tr/+739YtPH1KvOO+mfTdcQvN4+I9yQLTDVe3KD9u0e3L56QxzBfeDVOntLB5/1bSqlMYuO/rxuy6evaVgVu+Jym3R5GFx43Px9FUfk/lt4kvDgKejCLOzc+zd+YML/6Aye8ze3sU6+u8ffEiz66ufs/KbwW82+8Tj0bM5TnPKEUnDImjCFGWgwHCzQbGgVLsDoc86HZZH41IYSq/p/L7ROHdMFP5/fsnvw2FYVgdWeXjwbbqdMvPHod8Mton1yaVmQtGuWXtq1N7fuG6I/bxUmdNaf/25dGXd0M+60OXdzf/dvnaZWDeu2Xhaz++/uqmXzceuHFEYUhHKc4Mh1wsCp4HfgR4HA2Kv4VW7vxBNDhuQHFD19FndG9xaI1tzhkvoLIOL0/MJC6vxoW6iWvfuo/Ka1zGYwD6WWABDfkq69uhFfdpYMbhkZKvGH0u+Rto6/YFoJfArU/B0vPw/AVYWdHW2+fOwewsbG9rHbgNaguhQXOX3CI3954h60hcdc/DUKftC6eUtipfXT3kbW8vo9/PyDIBBDQaITMzGVGkAzSbAUlS0OmELC7OkmUJ6+s5u7tbdLt9pDycd5mNhjotVW02NEenAdWc5TgZbrdL+5n9XRAE1cY4c2/6vr2BtW4sd8eX42S375kvPl9cNn/uvY8/H0Du469OTrpxu9/UedLxfefOo3yy9rj5iK9ezTfupgJbdrn5fpT1yqSx1S4jV35MageT5no27zYg72trJqwLnLt5qZNlU3o0smteOPe/f2TX4XeIA6H/hECD4o2AsB0QzoaEcxHRYky0HBMvxyTLEclySGMpIJmDpCNJGookUSSRJBaSmEID40oSobTFOIpQaRA6KP8EEAh1JGtFBkWmyMaKmb5ibl+SrEvy9yXizXvMDzPOhkucDs/QEQktIhooYmJiFRMqCFWZlkKnpwwwbrlRRxBWwLgElaNURsYIyYCcLgO1wY64x7q4w3p0h4PFXbgSkjzeJrnWIjzTIlhtIBYjaAlUU6HiAgJQQiGFRIgAKUKkUAQSpNCFLUyhqwClJIRKl0EISHHozpwQHaEGwIWMEFKfUS6KgCA314CgEIhCEOT6KkqX7ULF2oI9WEA1ziBnLiDHO8jsAJn1UMUAZWZRSmp+lCxB8PKaZxoMN1boYgRiDKSgUoSQIBRCKO1WPcACxqXG3U0vMsC4zJAqRcgxhRqXLthldQq5r8999/rhlKb08aVHOmPcnSz4JhLgX+jVXScpDCZNROomhS4vNrk7W+3vjpts1aVV936SEsq3UK4rP/NukmLouMWErz589ejbcWueG8B0cXGRixcv8tJLL/Hcc8/x+OOPc/HiRVZWVioFrznns9lsVrykacqHH37I3NwcURSRZdmR+lDq6I5mWzFiu8yyF1tGSWTchhn+0zTlS1/6Es1mk8uXL/P5z3+eu3fvMhzqZb2Ukm63y9zcHM1mk2vXrnH58uXqe9vKbW1tjffee4/t7W0GgwHtdpvZ2VnOnTvHpz71KZ588kn6/T67u7vcvXuX1dVVFhYW6PV63Lt3j1arxfLyclWmxr3s5uYm169fZ3Nzk16vx2ik3a8sLS2xsrJCp9Oh2WyysrLC2bNnq/yHYVgBEgcHB+R5TqvVot1u02q16HQ6NCxtgN02Go0GP/dzP8cf/IN/kPv373Pz5k0+/PBD1tbW2NnZod/vkyQJi4uLdDqdh5Ro3W6X7e1tut1uZeVn6snscDZ1ZOrVte60XbvZvLkKP9+iytSPASt88fsUXnZcvsWRHXbSgs8ln5JuUpq+Z25cbrm4/f2k46YvLnescRexdXmbtHvejW9Sebnh3d9145mvDHz1NSld19LJXfi7C2k73ePk0HH5dZUxbvxue3DHv+PydhKayu+p/G42mywtLPATCwtc+uxnOf3ii1z7AZPfj0URp6KId55+mh/79Ke/r+T3vVJ+Ly8uMlOayaVW/XS7XXobG2S9HjNpylNFQRYE3ApDhuWGhKn8nsrvqfyuT9sX/++H/DZkz7l95WBbi/pkts2TTb424papnT9fGj6QyY3PLQ+37bn8+WSfSz65a8ftAwAn1aebT0PuecZu2r5+6+bvOKDf5cV8EwSHrrPPnTnDkw8e8MP37vGiUlxCW1G30IrOp4EfLX8HHIUCTOoZh+d7h2iLb1leXQBD2zBpCsp7E2eMth6PynfGVfsA+DU02P1SyZM5S7xUYaNKvmfQbtTDh0pXx7mHtha/hwbi9yNY/nF48kfhxz+vXaUPh7C3B4MBnD6trcD390Ep/ed2PfN8ONRu1Xs9beWd59ql+syMtuqOIg1gB4E/Dpvs93VdXQj4E39Cn2G+uanPMH/vPfjgA7h3T7G7W9BuF5w7l7KwoNMIAm15rpQG/O/c0dfxOKQoQoToEAQtwjCu+rHZrFgUxZGzyU3/MrLa7hs2wA31luCgN9GZMGaznBvO3kxn2rBvrDJx+iycdTnXe/bw3dtjosmfO0+2n9nf2rzZ9+48wU7H5cFOwy4P13raLQffnMIutzq+J42P7jzMJ6dc+ey71s1jfPXgpuP7zieLfGVsf+ubj7nxul5CTLyTZHhdHZs2bB8H9bGijxk7j0Lfw6yfjErhG8SCqCkIO4J4ISReDomWQ+LViHglorEY0FgUNOYgbhUkDUgiSRJKkkARi0JbiivtQj0SGhg3YLUByAMHIDdnVpMpGCvkSJIOJGlfMt+XzI4ChrJDY5yxpEYsBQMaQYtEJMRCEJIQipxAicMTq6v2r8FvoZQFigudvgJBri3FScnpk3PAkF32uc8md3gQ3WZ/bhsuC5InWjSuNYgvNwmWE8RChJgJUbFAxQqCorR5VgghkeX2OiEUZuiQSs8TpBIQmnPHQ5RmRgtdUVaIsgBuGWp36XmoAfEs1IB4FhAU+rcoAfKgEAhVfo+AoINqCFSSIpuryLyHzLvIoo8sBkCOorTuLnJUkSHy0jI8yyEdI9IRhCMQfWAIYohiBIxBSkQg9WYEjZHrM8WV1O/KGZiuZ+3aXooUKUdIhggVkEuJVGZ81QC5KGvvsAeKysvAlKY0JU2PZDHuTgxOMmmctFh047fjtCeYtjLADnNcOi6fx6U3Ke91ZeBTUhynAPG9Py4fdXGeZMHgxudTKrlpmWfmfMynnnqKl19+mR/7sR/j2WefZXV1tbJoAqrFVr/fZ2dnhzzPabfbrKys0Gw2GQ6H7O7u8pWvfIU33niDLMtQSivTzSLNPhfLLOaiKJq46ArDsOJXSlmFH4/HzMzMoJTitddeq6zcd3d3abVaDAYDAGZnZ3nssce0+9Eynm63y4MHD9jb2+Pf/tt/y40bN2g0GtVfs9kkCAJef/11/st/+S8AXL58mSeffLI6a9S4NxNCsLe3Vyn+d3d32d3d5b/+1//K7du3K+W4KT8htCvUJEloNps8//zz/Pk//+eJ48NF79raGu+88w5pmhLHMaurq1y4cIE4jqt04zg+AjaY8jt//jyXL1+mKAqGwyE7Ozu88cYbfPjhh6yvr3NwcEC73a7qZmNjg/X1dba2tqqzVQ2fvvZktx17wWzu3bZntx+3Ddt1bVskugoqn9stt6+6i1C33U9SlLnPJn1j8+/rd773blzH5aFuLJ40ptX9rlvY+8rouHHNjd9WCJyEF5sn3+K/btFuh/GRL491PNc9q7OyOsli2c2/208mje3fLprK76n8fvnll/n8hQu8+JnPMPfkkz9w8vt0EPByr8drZ8/SCsMfbPkdhqggYEYprkpJK03ZFYKNMCRXClUC5bFSuArywml7eRBQTOX3ifMwld9T+f3tokn1b5epy+tHleF2uEexppzUHtz26pJbxm6fsr1y+GS4WxZuXn1xu2507fJzxwYzftmW6DYwZpPPra+PD7vs2+02Fy5c4Ed/9Ef53Oc+x6f29znzN/4GTaWOgMyGcvQZ46VtVOWkW6EB7nXgfTSgDYdu0DMOAe6ijEeV35sRu1QvV6daSusbxaGFt0SD40vl89voc8Q7ppw5BOlbHALqWO8LtMX5LwKvo12utwPovAQz1yCK4ZVX4N//ew1gv/givPCCdp0+OwvLy4cuzV2SEq5fh/ff1+D0eKzDZpnWoTeb+m92Fp5+Gp588ijArpQ+o7wodNpRpAFsg3tO6vpzc/Dss4f3aarB+bU1uHlT8zM/r+MYj/Wz69f12eVra9Dv62+CwNjzp0AXpdoURQMhGmjwICnnYfKhTW/g3/Rm7l25bY6DgcPNgb5v7TbvgsN2n/L1d986xDfG2vMR35rF/Lb58QHSx8lw0//qZPOkcXbSeOc+s1102/l307fLwgbMfeOpT4b7yqhuLuTKcJtv++rWXd2YVifD6/ixvzfPjtvgVCeHfXOYSbLC/n3cpsLvCimODpZT+gj0HZyblThsEEAUK+0WvQPJjCSZkcQzBXErI04kSRSQCEFDCWKpSCQkUpEUijhQ2o260G7UIySRsoBxqUHxsLTiDpWqzvmmUAgJwUgSjBSip8h3FPkOzPUDVkQL2Z4lGMU0xymdokdYJIQiKl20N0Ak5TnWZo5hAFRVguWqPF9clPMCDZhLlVMwJGPIgD322GaTDe6Jm9wNb7I9u426JGg80SK5khCfjYmWQsSsQLQUxBIVFahQoIRCIVEqBCERQYEgRJoZTahAKaRSpVW1QAUBCCMbwxJMVvqvAHKByIQGwrMAkYYE5e8gCwhzYzGu/0QhCKQG1AUlQC70zEuRoGQHKUOUbCKZQwbj0mJcolQBKkOpDBHkEGSIMNOAeDQGOdB/aoBiCGIMYQqy0GeOK6U3JygQUhEUEiFLwLz6Ky3GGSPFiEIMSOW+BseFQKoUaR2S484XpzSlKR2lR7IYP0kY32LXpTrFkPu+bkLji6Pu96SF+6MooCY98y2A63it2xVr359E8eXe+xYOvjjqFFC+iWKSJJw9e5aXX36Zz33uczz//POsrq6ysbFBnuecOnWK3d1drl+/zv3797l79y5vvfUWa2tr1dnbf+kv/SV+5md+hiiKOH/+PJubmyRJQqvVqlyRmvRtvm2XgG6e3PyYsHb5/YE/8Af46Z/+aeI45pVXXmE4HHL79m0GgwFRFLG5ucny8jIXL15kYWHhobL4N//m3/A7v/M7XL9+nSzLKhephifjWrzVajE/P0+z2eTzn/88165dIwgCxuMxW1tb3Lt3DyklvV6PKIo4ffo0d+7c4fbt29y7d69yRx7HMcPhsMpHkiS0221ef/11pJR86lOf4plnniFNUwaDQXVOnlKK3d1dpJTs7OyglKLVarG/v49SitnZWaSU3L9/nyiKWFhYoCgK+v0+/X6f2dlZVldXq/vxeEyWZYxGIzY2Nrh79y67u7t0u91q97lbD7YbNVP+tvLbri8DmPgWrPZu6CiKjuTR7Dq3rQ8nKSbr3Li5z+qobuFU97tuvKvrbyehurHOXeSedOE2qe+77+3xqs6ayFeu5t5VHLjv6/Lrlm9d2r506/Lly6NPsTKpnmylZ1291JFPQVJXPr7Fuy8/j0pT+V3/7AdFfn/q1Cnm5ua4k2Us3b//AyW/T8cxL49G/EqrRe/992ncvj2V30rRBb4hBCGwDFwqCmKgMR6jlNIW51b/sC3GjeK2neeMpeReUXCnHNum8nsqv6fy+9snv23ypWn6omuZ6Vop2mFNGJ87WzvPdUCUKwt9cwJfm/C1eVOmPivV4+TlpLmKr61N4tu8M2OXLw77mS89IcRD46xP5tX1STt/rVaLJ598kj/9p/80f+bP/BlW795F/U//E93Se0oLDUbvoV2X3wW+gnaVPgtsos8X//EyjRANTrfK9yM0IA6HYLQNeoccnj8urXelyrnCaHI0gG4A8gD4HPCH0ID4vTItA8IX5f1yyY8PFP9V4FeA19DW7S1ALGq9cfFFfVb40pIGr0+d0kD2k09qV+amaM1VKQ1iF4V+v7+vQfF334WDA/2+2dS/DcDdbmuAejjU7x9/XH8LVNZqSunfRaHTMs+FOJqelBpIbzT0meN5rr9NUw2qLy/rbw4OdHoGLL95E956SwPi29sauM/zowC85iFHiIOSv4gggCxLSl5SpDwsizw3PCuUMmetx0BEUQQopfuiOUbNtF8zfzCegew26/YvW9YbssO4Y0pV91ZfqwtTN++2AWaoB8PNtW7NYZNPbthp1YHTdryurD3JGsguJ2PJb1vg+8ZKNz2f3J40Rtvyoq4e6srTjsveTGTHfxKQ2W0vdrnaG6zdTRZ18yhXXvvG/kky6jslw6f03aLvTP2J6j89zgoBgdCbt5IWNGeU/pstSNoQNRRxXJAEggRBIm1gHGKp9B+qPF9caVfqqgTHpSKSh2C4AckjCUGhIFcEOUQjRTKAsAvqQKB6Ifm4gYxmCdtzMGohFITZCCWHKNVAqgCJRFKghLFB1/JfHSlDdeiVRqEtpJHkpEj6ZHTps8kOD3gg7nFPXGdrZgOuCppPd2g+2SS+3CA8ExMuhIi2QDUVxCUoHooSjA+QSiIIkAQICm2xTulW3LhNVwKpAoQIUMZtuipdrSgJMoAcRI4GxtOAIA0J0pAwjQhSQZgZi/HSalwKAlmC40qD4gJBZTmOQKkSIKdACYkUEiWKsjxylE5Qg+KBvhKOQA5R0RBUH6X6JSg+RhUpQhYlOF5uPlCCoFAEQUFQlGe7S1UC5sZifEwhh+T0CQhBFZhzxpUqLdj13XekD0xpSt8vdGJg3KaTTER8zyYpSdwJjP0OHl4Q25Ma+/s6ZcmjKGHs+Ovu674zz3zPTzK5dMMdV151ShL7++Py7sZr89Dv93n77be5e/cuQgiGwyHD4ZArV67w6U9/mt3dXW7fvs3m5ia7u7v0ej3CMOTg4ICiKNje3kZKyX/9r/+VKIp46aWXAOj1epUSN03TI9bFhgejQEzTtFI4m0m3OTvTTJaNIiMMQ6IoYmtri7feeouLFy9SFAXj8ZjXX3+dZrNJs9mk0+nw3HPPcfHiRdrtdtU+Hzx4wC/90i/xz/7ZP+Pg4IAwDCs3oUVRsLi4eGTyH4YhSZJw6dIlrly5QpIkpGlaKaZv3brF/v4+e3t79Pv9atG4t7dXWZkVRUGWZQghKquzIAjodruMx2O+8pWvVOeZh2HIlStXuHbtGl/72teq81CzLOPDDz+szhLd2dmpyrDRaDAejxFCsL6+TlEUNBoNDg4OuHPnDqdOnSIIAi5dusTc3FwFCty4cYPd3d0j58AqpY6cOQqHZ4WasrcX0b52rZQ6UnfmdxDo88qMK1nTPnz9yac4P64tu4tAO7xv7DDfPmqfsa8+QMhdkB232HL7/HHvJ4XzjRc2T3Vxu/y771xyF9h1eZ1U1ifNt/vspHXo5r2uXfjSq6t7O25z77Me8skpmx83HXsc/1ZpKr/rvzPPvh/l96vdLrejiM3R6AdKfreDgM/2evx2HFO02zSn8vsh+Y0Q7IUhPZ/8tjYt5HmOLOMyMjtJEmZHIy5KyXqSTOX3hHSm8tv/rf1sKr/95PLvAyx8bdduN+6GVft7GwSyw5xEzrn8mfTtONx43XbojhO+eYBvbuErJ3d88bVbnzcb3xznpP3dN6cx6bi822m4ZeU+393d5Xd+53d4++23Ee+8w8Ht23SBF4GfQIPi7wG3gDVgGw1zbqJB6J8s4xuiwewFtKv1PbRV97D8M4rvovxtWrxCg9ghWvdvXJ5HaNA7RyvHjVV6XD7fRAP1Z9GA+Ai4Q2n5jQbEDShuSkOVPP3/gP9HGUdU/qXzkM/AudlDwBk0sNtu6/PDbVBcKf23vw+7uxp03t3VoHJRwIMH+pqmGq6Q/4wAAQAASURBVCwej/V3WabDjMfaettYaJ8+DWYPXhBoID3LNIDdbOpnw6EGv8NQPw8CHXeSaDfvJm4pNUC+v6/jXl3VcTz1lP49GGgL8ddfh/v3dTgh9DdS6nhM/g0/QaDTSZK8dAufVwC8TaUhGklyCLLHcUGWQRTNEkVtOh1t228227mgsyuPffN6u3/bm+R8Y6VPhpvfdW6wzXf21Tf+1Y2Tde/cuN10fOO7b3Otb8y3w7nvfF5N6tZTbnyTxh7fXMbNi+shw7yfNE9zefLNXya1D9/RJ745l/27bjz1lY/9ne2G3i1Xuyx9PNXJvyn9YJIAyxH10R92ExElOB4Giqi0/k6ARCkSKUlyQSMX+loIYgmJgtgA4wVEUhKjtDt1qYiUIpJSg+KF0meAG1C80L9Lw2SCDOIhNIYQ9wUMQ8Q4RskGBC2ipIFqhKhMIVRKkY8o5IiCkAJJToFUxg5cVPMDA68eZl0BiqL6N2TEPl322OE+D7jDHXGHzfY6XFE0n27TvNagcTkhOh0RLAqCGVXuCChQIahAaZCZAKUCBCFKCDToHWokPlCHQj5QqABEIBBBgBB6S5+i4NBiHIREW4znAUEaEIxDwjQkHAeEaUCYBYSZKEHxoATGtbV4IAVC2X+m4jWMpgSo8jx0hSwt3QuQGRQ5yBxR5OXvEUq10bOiNkrMQDAGlYLMEGQIlSGUBscDKRFFQVBkBEVBIPVmCKFUaTFeIJUiVwWZypAyJlMhQVlvbru1afLqdUpT+sGjjwSMG/IpcXxK4ToFhm+i4ZsUTZqg+hasx03W3DC+fE3iaxJNWjifRInkU7bUTczcSfRx8bg8TOI/CALSNGVzc5Otra0jrjCFENy8eZNXX32VOI4ryzFz7lS/3yfPc+I4Zn9/nzRNGY/H3Lt3j3v37pHnOSsrK+zv7xNFEcPhkPF4fMR9qXHjZc4gNa67oiiqdjI3Go0jk11jpWQU5++88w537tyh2Wxy9uxZFhcXOTg4YGlpiaeffpqLFy9WPI9GI37rt36Lf/SP/hGvvfYa/X4fKbVr15mZGc6ePUuj0aDVajEej+n3+8zPz3Pt2jVeeuklvvCFL1RWdHfv3uXWrVtcv36dO3fusL29Xe2yNkpt+14pDRQb5bddR0VRcOrUKTqdDuPxmOXlZVqtFkIIPvnJT7KyssLy8jK7u7tV/g4ODhBCVLw/8cQTxHHMm2++ye7uLp1Oh7Nnz3JwcMAHH3zA7u4uy8vLPP3003z961+n2+0yPz/PhQsX2Nvbq86aDYKAfr9Pt9utLMCE0Eryubk5rl69yunTp9nZ2WFjY4O9vb2qvqSUlaLcfBuGIQsLC8zNzbG3t4dSqlLs93q9Cpyxd6j72rDb5t0FYd2i1v62buxw460bt45TGvviqlOg1o2pkxSRx5WN+8ynlPTRcWOqL/8+ZYG7QK4bp+p496Xv/vaF9S3U6/LgjrPuotj+fZxS2L53y8FOw0cfZdz+KDSV3/5vv1/l99el5HEpeT8IfmDk90wU8VNBwNrVqyyWFuJT+f3tld/zs7OcvX+f95tNnpmfn8rvqfz2plnH/1R+n4wm5cu++tqyDyCp6wu+uvKBBgZUrusP9jv3mfvOpGHCuQCNzbevTNy8+oAqOx54GMxyQSb7Gzs9l/9JwJtbnie5N3GFYchwOOTWrVvcuXNHP5eSIggIpOTrwL9BW2rrUy01IC2AXTQY3SzfgVaA9sqrAi6hXZUnaGvzQfneWIbH5TUtf5e4MUmZZgNtxV1wqFxN0EqlGfT54XfRoPsMcL68ZuV3LZPf8loAbwP/GPgPZR5Umfbioj5TvDOnXZH3ehosPnUKPvUp+KEfgpde0mCEUvpvONTneF+/DnfvHgW+Wy19lfLQgtqA14f1ouPLc7h4UYPSun4Ow8Sx5s08n53Vv4dDDVyHoQa8o0hbuKepBug7Hf1sfl4D9Ht7mqelJZ1uHOu8PfOMBsY7HQ1gh6EG93d2NF/GUj2KdPhPfhKuXdP5vXlTx50kmoc81/kbjw+/jSI4e1aD8ffvX0Spa6yurjIYDNjd3WV9ff3IcTknHevtfuP2OdfyuW7+71sfnET2+niyn7ljT114Oz7b84rLg08W+eKt+2aSbKu72nMkH7+G6jbc2DJ+0rrKVxd16dnxHLeRrE4OuHH5ZIRvs2LdPMId831j9KR5isvLlH6wSTjXh96VMkOgsVsKpQVzqmAoUQOFiARhUBALQSMUtBqCphTEShAriJQGx6NcW4vHShErDYrHSlWgeJSXluKS6i8qIMwhSCEcQzyCZBQQDQMYRYg0RhURUoQEAahIIaKMIB+j1BgphhRSUKiCnBxJaNtnV7Le9ARt0S3LfzmSjDE9umyzzSZr3OWWuM1aa538sqT1bJv2ky2SiwnxqYhoUSA6iiDJIVKooAARIAlRKtTAOPqqrcVDpNAIt0BCUO7yKoFxAoEKjNV4RLXNT6lyt59AFEHlNj1IA8JxQDQONSieCu1KvQgI5aEb9QogV4KgOvPbKoiqERzaYysFKKEt1WWIkAJUCDLSf0UCRROKFhoQTxEyQ8iUoBgTZGNEPkYUY0SeasvwAoKiQChJUJ4tbizDC1JSxgg1JlNjAjnW4DrF9BzxKU3pEeiRXKlPWnxPUpj44nLJVcLXPQOO7P47Ttl9EmV43QTaTbNuAlw3cTqJ8mSSYuIkE327LtyJtm8iOonsb93d/u5EdzgcHnEJ2m63ARgMBpjzQFutVvW82WySpin7+/uVZXC73a6sl0w+skw7drPdcxsrrqIoCMOwOk/UdjNlFL/NZpP5+XmuXr1aKbCbzSbnz5/npZde4otf/CLtdpulpaVKqV4UBf/yX/5L/uE//IfcuHGDNE0rfoTQ57Q+/fTT/PAP/zDtdpv33nuPW7dusbCwwAsvvMCf/JN/krNnz5JlGW+88QZf+cpXuH37NnmeMxgMGI1GpGlaLWYajQYrKytsbGzQ7Xarcg/DkDRNK0VyEATMzMxw5coVPvGJTzBrVt1lvczOzvL000/T7XZ58sknKYqC+/fv8+677zIYDFheXuaFF17gm9/8ZlXeV69epd/vs7y8zOLiIqdOnWJ+fp48z3nzzTcrpfbt27crQGB2dpYLFy6wsLDAzs4Om5ub7OzsVJaAy8vLPP/88/zRP/pHmZ+fRwh9jmq322VxcZGzZ8+S53llvba3t8dwOKTT6ZAkCUophsMh29vbfPjhh7z//vtHrNFcy3O3rZ5UEekuauuUs5MWzD7ln+/cQHfsOsl4WDde1CkjfHnzKRxPMi75xpqTKK/r8uWWk3tWm/ut+3tSfm2FgG9c9ilZ3Dq3n9V9V9cmTH7sBfeksbfufNPjyu7buSCfyu+p/O6hXZpeKQo+/AGQ36EQ/GSWcePUKc688AJ/dCq/vzX5vb7O8O5dDra3GY5GzDYadPKcRCn25+Z4Usqp/J7wfiq/NU3l90cjF0hy69Qd+yeVh2sJWFe2huw+Yu7tMd5O043DJwPdsna/95V3GIa1oIjPqtQnW31y1i0/d7yw702e3bKx43SBcnucsV2s2+Qb++xjp2zLdpUkyPGYA6XY5/BM7/kyrgO0VfcM2l16u3weoUHqPofW3vMcPVtcoIFw7QSUylVqq/w2L+Nulu+K8lvzPCzTPAU8Z4VrlfwYoN4onkxJKODrwN8tr0MOzzoXDX2m+Of+IPyJP6Gtw19/XbsYP3MGPvOZQxfqcPRcbgNE93oarJby0ML80iUNEG9vl7r1QL8bjXQc7bZ+trSk4++YA9ItEuIoUK7r79AqPEkOXadHkb43btOFOAStjRX7+rqOY2cH3nxTA9xZBisr+lzyM2fg3j2dv7U1DXSHoQbuf/RH4ad/WoPzea7j2tk5PG89TbX1+3jcoN8PGI9hbq7B3Nw8SXKJg4P/gc3NWV577TVeffVVsiwjiiKazWa1Ic5toz5X1pPmzaYP+2SFbzzwkW+Msfu6z825+W7SWsF8Yz+rm0/X8W2T64Z9kjx2eXHD+cat4+Y9Jm3f2GqHqePH3QwwSeZMko0+OTBpnuPG6Ya1254QDx9b4W7gMmHdOOzycfP2nZLhU/o+JcURtLwCTSWoHGSqUCOF6gtEAKGAOIBGQ9DOBS0liJQgRmgPKYUiVhBLbSleAeOUluG5IsohMqB4cfgXZRoUj1JBPAqIxgHRMIQ0gixGyphChFrAhpIgLggL7dNFFTFSCAopyZWkUBqQLhDoU7sPLcd19iQFkoKcjDEFY0YccMAGm9xnjTvcT+6TXVY0n23RfqZN6/Em8WpCtBwSzghEUyKSHAKJEqJ0316C4wRIZYDxkIIQQYgQkeZEKIRQ2p26PATFRRCCyIGYyp26BIoAUQSlxbixFtfXqHSlHuWidKUuSqtxLHCc0oJcHYLjHF6rtgAIJUpgPNTW6oRlu1CgJEo1Spfp2pJcg+IZgUwJ8iFhNiDIBohclOeyCCgkQuXaklwVGhQnRyld/oIRihGhGhOQIqqDa6bj15SmdFI6MTBuTxTsiUqd0uC4yVfdhKhuMlW3iPYtjicpsSblbZKSo065Vce/nQdfWLccfFSnEPMp4o5TfLn3dj2elB9fHtxdtE899RSf/OQnuXz5Mv1+nyeffBIhBIPBoFrgj8vzK2dmZiq3pUbJHUVRtSALgqA6wzNJkiMLM/s8PeN+tdPpMDs7y8rKCnme88wzz7C9vU2r1eLBgwckScJzzz3HlStXiMvt3wcHB/zar/0av/iLv8jm5iZxHFcTbRP/3NwcFy5cAGB1dZXLly/z5S9/mQcPHnDhwgWWlpYYjUaMx2O++c1v8uabb1aAQ5Zl1ZmfQmjl+e7uLkVRkKYpoBeLpgz7/T5KqcrF66lTp/ipn/oper0eq6urVbmbyX8QBERRhBD6TLAzZ84wKl3lnj59muFwSK/XIwgCer0erVaL559/nsFgwHA4ZDQacefOHd555x3m5+fp9/ukacrCwgJpmtJut5mdneWll15idXW1Urxvb28TBAGrq6s88cQTPPXUUywtLVWWgnZ7yfOc8XjMwcEBt2/f5tatW3z44Yd8/etf5+7duxwcHDAYDNjf36fX6zEcDh9y3Wbapk+B5FNKmed1faauX/sW0SdRRJoFv/3c13fstNzndVSnxPONNScZ93yLeXe8nsTfpPHcx1tdHiYtmN1068a849L18e+OfyctSzd8nUKhbkx129YkBYnNx7eDpvJ7Kr8Btsp0HpOSD4X4vpbfL2UZgzBkZ3GRT03l90eT30ohb91ieP06B80md86f504Q8OGHH/K1W7e4vbfH/mhEfzyeyu8amsrvqfz+dpA9dhoeTNv1lVudDLfbjLk3bd91n29fTRw2YDKprfjqp6683bZi82nn1VceLg91rnjtvPp4c8vDDWvKxy3bOn7ccnDjt+vRrSd3nDzyOwig0UClKUrKypW5UVb/CPBjwBNo0PuHyrhzqKy+hmXYJbQzzx4aKAdtCT5Cg9ghGmiXaHDbroHAuo/Lv0VgBW2NngFX0ZbmIYeAeBuOuE/PgK8BP492B28s0gO0TjlYhlOntfV0EGiQ9wtfgHPn4MMPNXAdBFrfDNrC+tVXD92OG6DbuDY34Hee6yvoZ0Lo8Lu7hwD67CxcuADPP2/q56Fqf4iE0O7UyxNFqmdSanC62dT35pkBxO/c0dbbu7ua3zNnNH9zcxoY//zntVX4eAwbG/ovz3X+L17UVt/Gqh3080OaR8ofZjT6YQ4OPsXGxoDbt2/xyit3+OCDA7a3exwc/L/Z3Nxke3ubXq9HURTeDazunNGeu7vv4eiYosuiXoabuNz3dSCzzZMZByetBwxNmoMfN6d2+XffTRobfd/VjVWuHsX9xs2rbzw7qdz1Pbfrwi4H39juy6/Lo8urL4yblo8fV4a7GyAmyUJbhtrtqk6GudePDU1xro8VHWkZSuOhitIjSQbZSDGOBEIoQiASkISgOhrMNsePJChtLY4iLspzxsurdqOurcKjAqLcA4oXEGWCcCyIUg2Kh6OAcBTBOIY8QskQKQLNRCwJ4pSwGKIIUSJAFopCFISyQKqIQoUUBEh1CIybvxwNzGakpAzo0WeXHTZY4x53uBfcJj0zpvXkLO1rEe3zAc1VQbSgCDuSoJEjQn1et1J6VqCU0JbipeW4PvM8pFAhgdJXzVdUcaJKi+gAgSJAqRChYpTKQRWUzCNygcjCChSPxiFRGhCPA6JUu1HXwLguz6BQJRhu/2lQPJAKFIfeAcrfKIVQqrrqd6IE0gWg0EbvIUJCkMsSiNcW6qIAshyRjZBFl6LYIy/2KGSPXA2QaqjzVLqJ15b6BXlpMZ4yYsQBOSMkWenW3cwOVa1L9SlNaUqaPvIZ4/bvkygI3O9Oouww4eomeO6C9ri06ibKkybCk5QnvgW/b3Lp5qNuQm3n87gyrVP8uGnaV1/ejpsg101YzbswDJmZmeH06dN88pOf5K/9tb/G888/TxRF5HnOnTt3UEpx7do1er0eALu7uyRJwszMDEmS0Gq1KmC0KAqSJCFJkupsK7PoyfO8snICKuV7o9Gg2WyyurrKhQsXOHXqFBcvXiTLMpIkIYoiLly4wOOPP86ZM2eqdpZlGT//8z/Pv/7X/5p+v8/Zs2eJ45iNjQ329/cZj8c0m00WFxfZ2dlhMBhw7949Lly4wP7+Ps1mk0984hNEUcTbb7/N17/+dW7cuEFYbl3Psox+v89wOKz4NtZke3t7xHFcnU0qhGA0Gj2kGO50OmRZxvnz5ytFilvnnU6nqpckSeh0OmxtbdHv9wnDkOeee46iKHj33Xernd8rKysA3Lx5k3v37rG0tMTc3Fy1YJidnWVpaalyY3vlyhXm5+dZXFyk0WiglKLRaBDH8RFlUZZlbG5usrm5ycbGBrdv3+b69evcv3+fW7dusbGxQa/XYzAYVFaEZvE9SSF5koVs3QLL1098iqe6BZJLvm99u+DdPm2e1fXTusXZSfioI3ec8r23ea2Lzzz3uRWti9P33E3DHa/dRe+k8WdSPure1aVbF4eraLB59MVdJ+N8MuUk355Evj4qTeX3D7b83kRbdZ0BNr9P5Xd7a4trec5vzs9zdSq/P5L83l5fp/vlL/PVDz7gTlFw6969qfyeyu+p/P4uym+fPFVKHRl3fOSrH18/8rU3tz7dPmHuXRDF7ltuGiZeO3xdeU/KU50s9uXZTd995+atDjTxUd2mmrr2f9x8wd6w6FpAVmlFEWGaEqEB7mvo88T/Etpi2y2ZFlruB8ADNPC9hAaq59Bnjm9w6OrcWHfnHFqGpxyeVS7QyvwAfVb4LHAZeBq4CJyGyhV6ZF3t3Ei02/R/inad/mSZ7g1gPYDBKeisahB8bU27T3/vPW3BvbmpQWZz7reUOsz164cA8XisgeZe79C6Ok1BKe1mvNHQ4LMQGjTv9zXYbM4qNxbjHiPUR6Jy32BlGR5ZmrfRSPO3uqpBcNPcHn8czp/XLtZPndJu141V/NmzOr9BcAjW283UWMrv78P9+1e4efPPsra2wLvvfsDt26+ws7PD/v4+w+HwyPEovvHUN9aae9/mDhe89G2Sc8cg91s3HZceVYa7fXnS+HycDLN5cud7dpq+Z+64a4+Px8l5O4xvLK4b/904fTz7nvs2Ik0as9zy8rUlN+66Mc7+xm0r7jeT2qdvvuZrA751nztnOokcmNL3Nykelqu+lwo9HhcFZCmIoX4uS+PdIIAohnbpniUWikQomlBaimsr8bhQxLk5b7wEvy1wPCxdp4eFKJ8JokxoF+GZIByFRKOQYBRBFkEeolSEEgEiBBFLRJIRyBFShEghkELpc6yRSBVX4LgUpUt1RWk9DoqcXKUUjBiyzwF7bLPBfe5yl1v0l/dpPzVD56mY1pWQ1hlBsqgIOwVhUyEiu39qUFxR/omgBMUPgfGCiEBFFMZiWkqMRbgCghJUFypEqAxUrAvdAONZQJBFhFlEmOq/eBwSj7XFeJRBmIuyTCGsgHF1aDGubItxVVmOC4U+b7167gDj6GPRRWnlHxRC12cOca4ICqktyIuMvBiQ5/uM5RZDuUkmtxixz1j1SBkgKapzzGVpt1+Udvt6m4IGyPMSNKey88e6TmlKU/LRIwHjdQqHSRNH30TXvK+Lz03TF68bxnxfN8E6yXk8x+XJ5zbK/tZVTkxSmPgmlL582/G6E7063uv495EvH3VlYL8Lw5CVlRXa7TZCCA4ODtjZ2eHatWsURcFwOGR5eZmiKPjSl77E5z73OdbW1tjd3a0UyHmekyQJKysrDAYD5ubm6Ha7jMfjyq2qEKLaCWy75BRCVIr1JElYXFzkypUrfPrTn+axxx7jzJkzKKXY2Nig0+kwNzdHo9zCbXbrP3jwgFdffbVy6f0jP/Ij/MRP/AS/+Zu/ye/93u/R7Xa5cOECzz33HPPz8wA8ePCAb37zm8zOzvKH//Af5vTp02xubvL2229z/fp1Dg4Oqjodj8eVhZZ9tlYcx5XFWxRFjEaj6lxVQ61Wi+XlZebn59na2uKJJ56YWKd2H4jjmMFgwI0bN3jqqae4cOFCpfC+desWX/7yl1lYWKDX69HpdHjxxRc5ffo0URTxta99jTiOK0uzVqvF6dOnmZmZYX5+vlK+A9W5szs7O/R6PT788EM++OAD3n//fW7fvl1ZkBlrPLNANXXgUxJNUuy6Y8akRaT7jS+82+98yuW6ha093hy3ePbF68Zvh6t7Z+I0v+2FoW9ccfmwXV66C/S6Mc0ld3z1fe9beJr7Ov7cRajv25MoTHz8++q0jqe6xfgkBac79ruKg5PIQld2TUr7o9JUfk/lt3m3EYZ8ZnGRD+bmvu/k9yu//uskv/Zr/Pr583zi4sWp/P4I8nt48yaNjQ3eHI/ZLj2+TOX3VH5P5fd3T34bfu34fYCsWxc+wLouf+a5G6ePj7o6cIExt20fVx6T+pTt2cHNg/vO5s3lx+VlkowX4tBdr/v9cfMNNx++vNk8unXiegOwv4+ShMtKMZdlBGhQ+zbaatvu5b3y3VU0gL0HdNGK7QwNRF9Eg+OngC20u3XjFl2gQW1VhhccnkOelOFawDngJeATHFqf2+Sr9QHwZTRA3wL+OPBZ4HcC+I8/Ajun4Zln4cd/HE6f1nrwmzfhK1/R1tyf+pR2R64UbG3B++/rqymyfl//bW9rkMIAy43GoeV2kmhgenb2EGQHmJnRlthnzhyC5Y9KLnidJBoIV0qD41mm03nqqcMwjYYGw5tN/TtJDoF6m8JQx5PnegPAwYHeGPD++/Duu/D224L19Q67uxG93r884vXHtDXX7bg7B7bHF3MUgM9q1yW3LU/q83YfcI8bcMcPd8yxxzqfbDNk8+z2Xd+aw07D5cOOx2yidMdUn7wxY5SZB7vlMmk+NWlO4z5z+XDlmzsmmvJzy/JR5ztufieNk7YsNfXutqU6OeLLu0+G+8Z2n0t1m+os5E8iE6f0g0s2YG5+S7TMIQOCEiwv5UEcQ6OpXaxTAqWxhKSAhlIkxlo8R4Pi+VEwPJIlUJ4L/VeC4nGhAfHq/OxRSDgKCcYxKo0gj6EIESJEhAEiVoi8QMiUwpwnLiAQilBAIQukjAhVpK24laAQkCudU0FKwZiUAX322FNbbHCfB+Iu+7O7tJ5o0HkyoXMtonkuoLGsiGcLwoYiiCWiLJcST+YIMF5afxcYd+6R5lFF5CpGqEgXaAn6SqUtxgOl3a+jYoTMUEWhXZBnCpEKgrE5V7y0FC+vcaqt7aNMA+JhrrTVuNSAdmUxrlR5zrgNittAuf4LLMAcDuMIlSIsJFFREBU5cZYSFymiGCHVECn7jOQeqtgCtU6u1hmzwYB9BvQYMaQogXFp/V9Uju01TG4gc1X9O2yfU5rSlOrpkYBxexJxEkWR/Y09SXEXgyeZYNXxcZJJixu/O7H0LUrrJvt1eXZ3FU6a2NcpDHzpmffuBNqddNYtnn282nHUTfjr4jYkpeTg4IC9vT2yLCMo3Wvevn2bZ599llarhZSSr33ta/zCL/wCZ86c4emnn67Ovbx9+zZBEBDHMbOzswghmJubY2VlpYpzPB7T6XSqcPaCSUpJp9Oh0+kwPz/P5cuXuXr1KlevXqXdbtNqtQC4cuXKkXLL87yaiO/s7NBut9nf3yeOY1ZWVnjuuecQQlQK8+eff57V1VVarRYzMzPs7+8zGAx49tlnOX/+POvr6/zu7/4ub731Fr1er1r8ZFlGmqaMx+Pq3FXjNtUocIyi0yj8zTUIAk6fPl39raysVK5qJ9WpoeXlZYbDIW+//XZVblEUsbq6Sq/XY3Fxkb29PW7fvs2TTz5Jq9WqFDBhGPL888/TaDSqPADMzs5W54VmWca9e/f40pe+xFe/+lVu377N+vo6u7u7dLvdagFurOvsRYuvrdad8TRJkeoueiYtoI777cZfNxadZFH0qGPZo6bhG8t8Y4N9b39XN/a46brjqi9eX9rH5aNusekb03wKBpc/X3nX8VQXZtJ7t335vp3ULl1+fXkziik3vjrePypN5fdUfhsaKUXa7XK/1yP9PpLfzz/zDFd+93f57Z/9WT43HE7l9yPI773dXeL9fZb6ffal5LqUGgiZyu8jPB73/aPEP5XfU/n9KGT3v0nyzPDka2tKqYeApLoyd+WhTy764vC180l14GtPdvp2W7FduRvygeI20G9vKrHLweXdfufOdXzfuXRcu7frxdee7DLwubW3w0ul2FSKB2h35QEa3N5Cg9QCqrO7/z/A3yqfL6Jdpb+DBrUbaGBaoAHti8D9Ms4hsMDhueIph6B7UcY1X4a5AKyWcZwUPhoDyyXPjTLtU8AXfhqe+b/C2jZ88pPaWho0mPzkk9r6e2Hh0PL6/n14443D88INAD0a6bDjsQ4XhofnfhfF4VngZk9buw1C6OePPab/zp3T35xAfFQkhOZjNNJxKqWfCaEBb9Dp7uxoN+kmbhNudfUQ+Lbf2ZSm2pX866/D229rS/n79/XGgIODiKKYYTwOUGrniJy2N7W5/cmd17vjnH31zT/N9bi5sf3OHofcTaR13xgy4SZtQqmTfW5e7G8nUd08qG5c9rmBP27ddNz4aKdj37tjYF18bl3aY41vE4HvO9/RV75v6ryZ+Mb5unyaeAxg75adnW+zuWISnzavbnq+/J6kXUzp409GJn4rZH8v3OeqTEOBkGgv3jkUAQSBIg+gyPQzlYPKBWQKMgjGEClFEiiSQoPkcXlmuGsxHkpR3mtgPMoDbS1eHILiQRoSjEPCUUQwirUr9SyGIkHImECFIAJEqCAsEFFOQEpR5UqCyBBCg9BCBUilrcaVkhRKkjJmwJAuPXbUJg/EA+5zj932Fo1rgva1mPaFkNaKoDGvSFqSKIYwLAic7qZBceuKKK3FRXm+eEZBRK5CAnJCohI2L8hKcFgpiZQKIQWi0GeqM85gmCOGBcGwIBwUhANJNFDEI0UygsYY4kwQZaoCxiPblbqCUKrKYly7U3cBcHNfXo3LdaUQ6O8jqYgKSSAzwmKMKIaIogeyR6q6DNUBQ7XPUG0zUFsM1DZ99hiwx4g+Y8akjEvA2ziRl5W7dGU9OXw2pSlN6VHokc4YP25iMGmSeRJlkJm018XrfmsmgnWL6kedzNRNRm3e6hQmkybzdh58ZTNp8TBpEl+neKhT7vjSd5UZPqWAm4aJe2QO6AKKomBtbY2f//mf5+/+3b9Lo9EgTVO++tWv8sYbb/DLv/zL/M2/+Tf5xCc+Qbfb5fHHH6/chc7NzTEcDmm328zPz7O7u8twOGRvb4/hUPugSZKEZrNJq9VCKe0q9PLly5w5c6ZyIxoes6VbCFFZeoF2Q/r222/TaDQ4f/48g8GAV199lbm5Oa5evcrp06d5+umnmZmZod1uE0URV69eZTwes729Tbfb5Y033uCdd95he3sbIQ6t44xSPU3Th5RQZuJuFO5SStI0Jc9zGo0GRVEQhiHj8ZgwDHniiSdqdzX7yJwdWhQFv/Vbv8XnPvc5giCozi/d398H4OzZs7TbbYqi4N69ewgheO6551BKsbm5yXg8ptFosLe3R7fbJcsy1tfX+eCDD3jjjTd477332NzcZDQakabpkYWZ2zfr+uFxff84ZVudcm7SYtjcu+RT8NcpOSc9t5Vwvny4ZCsm6qxW7TycZAFXF4eP6srqJItxO43jxkbfIrourC/euvr01Zcv/76x1N25bqfpy6urGICHz7Ss43uSsqYuvyeRLSehqfyeym+b51wpsvGYcdmGv1/k9wf/2/9G4+xZVs+coTMYTOX3CeV3kqZcy3MOpOTNIGDAw2eJ+mgqv6fy2xfWF+9Ufn90+e3Lq68PuPXkkyVu2dvfmLbs6xd1stlX73Z51IVx5ZX7zE7HACL2sQ2T5L1bHr56t8vFTdctO581vZtfF2B0y90uc5tH1+rfxG3cW9cBVVJKulb6BfAe8C+A/4FDpf2bwO8AvwH8n9FA9gz6KJVe+d08GpCOyt89tDX3Ftq6XKCB63b5bV7+nufQatyk9yit/E7JWxt4Bm1c138W2v9PePocXOhpUFwI/QcaxG61Sms8YDjUFtJ37+r7JNFA+GCgrcWHw6MW30IcujQ3gLkszyJPUx1/nmvwfDjUcayuPkKmLLK/t5uLlPpvYeHo+eiggXTQz5TS/Oa5Dp9l+mzxt9+Gr31Nn6V+65a2eB+NoChiiqKBEAlFoZCyOCKfJ8keQ65VuC6zo5tSzHeT5qNuXzlOputyOWqtXDf/OG5ebTbK1M2x7fD2uGd/7+PRZ03tzn184/4kee4bS9zx0r6vG2N88dbJdXdOO2md5cuf3R4m1bsd3s6HHe44Ge7mzebVHZeBh7x72DRJ1rtp+3j7VmX4lL77JPjWwXFDioflnTL/KT1mkwOBHueDAGSmQXEKtOl1JmAMIaWVONCQ0KjcbJcW46oEw5UglKI8X/wQFA/zgKgICLIAMQ4QaUg4jgjHMeE4QqUxpAkijxFFRGAONglAhZJA5RQEZX4UiAJR5CBjkBGoAFSAUCCVpFAFYzVkQJ99dcCW2OIB99lI1uFCwexTbVrXYlrnAppLkMxK4iZEUaHLwi03Uco8RHWVSpQu3Et36uTkhOTk5CImEKVLdQqUKoFxBUURIopyI8A4gVEGg5xgkJeguCQeKpIhNMaKRgpxpv+Mdb45tz1QCiGVLnNFBYpXALg6DHP47PB5IBWBksTSeAIoCOQQUQxR8oBU7pCpbVK2OVDb7LFNj1367DKgy4gBYwakZKXD9KOAt6rcpOs/88a+HoaFb28PmNKUvv/oI7tSt5+Bf5LrTg7dxbkd56SJmRunm3bd+7pF7Ekm2fbvOmWJzbfPTavv+0l5OE6x4IafpIRy43B5mZR332Tex7dbv0VRcP78eRqNBqPRiDzPK1eeFy5cIAgCHn/8cQD6/T43btxga2uLbrdLEATMzs4SBAFLS0s0Go3KwqnRaNButyvltnER2mq1vAsEty3u7u7y3nvvEYYhp0+fpt1uk6Ypb775Jq1Wi0uXLnH16lU6nQ6zs7M8+eSTfPWrXyVJEi5dulQtlIqiYHd3lzfeeIO33nqLv/AX/gILCwsMh0OCIKgWU8PhkOFwiJT6bNUoioiiqFLqG96CIKgs4Ix7M3Ou+XA4ZH5+nieeeIIk8Tmm85OUkp2dHZaXl/n0pz/NzZs3ybKMr3/967z88suEYcidO3e4cOECSilu3brFeDxmc3OTJ554gtFoxO7uLgcHB+zv77O7u8v+/j4bGxvs7u5y584d1tbW2NnZIc/z6oxVe8Hm9gXfLnC3n9W1Q3vxdVxbdvunHaZOCWfzULeAq6M6Xup2bdctluvarZsfe4F6koXopDHZx5sp57rytnn2jT1uOfjKZlIej4trknLBLlOfEuY48vHqy2td/ie17ZOO8fZ7X9s6qYyso6n8nsrvI3w5Cs7vdfl9ejTiVJLQ+RN/gvuvvz6V3yeQ3yrLuKoUDSl5QwjGQhAIgSqVylP5fUhT+T2V399N+V0nD4877sRXjubZJNfJbplMkqN1abvyddI3bjp2nt1v7f5krq4M9/Vp1wrbLh/Xa4w9ftn3tntzt54fRYbX9S87LheEc9u3cWmuymuBttq2a7wJPAY8XoYTaMXPIhrYltbzEpNlDu1GfQWt1xccAuCuQvskvVSiXbgPy3iT8tmHZVrPo12wL86A/NsQXILx0OTzEBTXZaDdhr/3HnziE/q+2z10UQv6fberwe841mB5khxaaxtg3Jw5HgT6GoYayJ6Z0XGcOqUtuj8KCaFB/dJpC8OhTl/KwzSF0M+zTFt6nzmjgXlRguH7+/os9d1duH1bW4S/9ZbeCHDvno5Hxx+gVIOiiAmCkCDQym97bmfaoOs23bRrE9a0b/OdLq/A2+90fUw+0sSO2+cyu26cP86lt29+Yt65x/bUzZt9MnyS/DTzSPNtnRytG3fttH15N2ON+9zn7cJ3dfPiu9rpuGnVAeY+eenm59shw+vGTres3THbF5cdp1uuvvmAm69JeZ7SlGqpbCZKAQVIoRAZGlcO9TOhtCwNpSAs9BnicaZIlN6A1sgPgfEo15bgkRREqvxGCgKpn4dFULpUN8B4iBiHh8B4GhOOE0Qaa1fqubYYR4XlWd6gAglBrs8dV9pGOxAFSuQIGYGMkFKQK0EqYaxyBqqgq/rsqS7baodNcZ+taJ18dUDnsYTOlYjWuZDGkqAxU4LisSQMBIFQBMZ/+tFiK12oU1pEC1RpNW5cqueE5CoiVxmhiglUTmBM8EvX6UWuKDKBGAeoYQz9JkE/IejnRP2CuK9oDBWNETRSaKa6/ONMn+keFtq6OyggULIEuAWhEqVLdB8ILo+A5oEq3aYrSSglkSxIZEEoMwp5QK72SeUOA7XBgA322GKHbXbZpk+3dJuuAfGMrHSO/rAF+CEwbpfi4VtrBKtvrFOa0pQqOjEwXqekmRTmJEowe1I1Selw3IRl0uLfR+6k0p2suotc1x3SpLgmpW/npy5v7rO6PNfly6ZJSgs3fF15uc/tb42LUKX02ZgLCwvs7u5y9+5drl+/zjvvvMPnP/95er0ef//v/31+9md/lvPnz1dKc6UUp0+fJgxDzp8/T7vdptFoVMroSYuLwWDA2toarVaLCxcuUBQFW1tbpGnK+fPnCYKAXq/H7du3+Xt/7+9x/fp1kiRhZmaGMAw5ODjg8uXLfPazn+X5559nZ2eHVqvFeDzm3Llz9Pt97t+/z/LycuUefG1tjcFgQBRFzM3Nsbm5yczMDGmaVsr08Xh85OyuVqtVLfCU0metJklCEAT0+33G4zFRFFXfFEVBs9lkZmaGpaWliXXjKxd34fvuu++ysrLCaDRic3OTH/3RH2VpaQmlFPfv3+fNN98EYGlpiTt37nDjxg0GgwEPHjxgbW2tOit8d3eX7e1tRqMRRVHUWnvaizhX8Wb3c3chZYdx82TH75Jvce97Zz/zpTOJp7qy9qUzqR/53tWl4yuTuvycpPxM2Dp+Jy2kfXXoe+Z7bv/2lX1dPdjfHDe2Thqj3Oc2H74d5G66vjbsjuN2nUySTydpey6v3w6ayu+p/LbvI0B+H8nvFy5fZu4//Ad2f/qnCdN0Kr+Pkd+qKFgpCs5KyW0h2CqV4VP5PZXfU/n98ZPfdpwuGOD2STus+8xXL3DU2tkuB/vq8jFJhpv3LhD2qGVi102dDLfr0OXf8GDnvc6ye9LYManNnbR92HHZYd38+sK7HkcMn6HSFmYCDTQ3gNNodWeBPnP8m8BfLJ/9GvAT6LPGKb9TaEVQh6OW30AVtzcfZRr9MlyrJqxCW53/v4DXy7DzJa97wIvAF4BLEcj/G7T/uAaGWy19xvbRsji8CqHB5TCE5WVtMb2/r4Hn4VAD31Jqd+tzczqccZ2e5zr+MNSg82CggfOi0HHnuQbHFxYe3Y26TWGo8zAeH7p9V0qnbajR0LwLodPqdjVI3u1qV+nvvQfr69rt+tqatow3oL/Gf5so1QBCguDw3HBfezX39rzYntto/o6C5nV91u4vZlyqk6F1Mr4u3iAIvBt+fH3d7ntu3t30J8nw42S/22/dcc0uZx/APGluc5xcdfl252m2XLDHOXe8t+N0Nwv5ZIh9b76ftJayv3HHLDcet336ZIQQh+fO2+TzzGOXidt2XD5POl776n1K35skPL+/HbMzOw5hPzTTtLwME4KItFvuCEgENAJFE2hKaOXQUtCS2ko8zkpA3ALGYwsUD6QGw4MKGA8J8hIYT0OCTIPiURoTZTEiixF5jCpilAyR0gDOEikKikBbgsuoQFGAyFFBiixCChlqQFzCUEi6MqcrM3ZElw21ywO22U7uky936TwW0LwS0T4T0FiEZEaSJAVhKImEIKC0pBbq6HxBadmoECCw3KlbfyqgUAG5yihUQCojQpkSyoRAxgRFAkVKnhXkY4UYAf0Qeg1ELyHs5sR9RTKAxkjQHAsaqaCZalA8yRVxLvUZ44UkVKpyix6o0mJcCQKlyt82EK7K56qyFA+VJFL6GsgUocZIOWCoNjlQG3RZ54B1umzSZZcuB/ToMmZExpiMtDot/PhTwtXEu0lvpzSlKR3SRz5jHPxKYvv+JItDX7xuOHdC4lsA2zzZEzzfBM2Nty7+uvzZcbuTvLo8+ibTLs8nnYQdp1g4Lm9uON+E3SWX/zAMaTQadDodoihCKcUTTzzBnTt3+Nt/+2+TZRkPHjxgfn6e+fl5sizjhRdeYHFxESEEjUaD5557jqIoiOOYMAyP8FyXx+FwyDe/+U1eeeUVXnvtNW7cuMFnP/tZ/tbf+lvs7e2xubnJ/Pw8Qgg2Njb44he/yBtvvMFrr73G7u5uFXcYhly5cqXi4zOf+UzlNlUIwfLyMvv7+3S7XTqdDoPBgKIoaLVajEYjsixDKe1ytdlsVopxE87EY58tWhRFld8oimg0GozHY5RS1S7kKIpIkqQCC1ZWVhgMBpVy/iQ0Pz9fuXO9c+cOGxsbXLt2jYWFBS5dusSZM2dQSrG3t8fa2hrz8/M8/vjjzMzM8MYbb/C1r32NbrfLeDxmNBrR6/XY399nZ2ench9rt4s6xZe7KHPbka/NuX3G7ct17bluDPKFNXHXLYom9WdfGidZTNvfHMebzZ+9CD1uQXpcPnzjct34VTcOTRp7XN7q5AUcKid9ygabL9/37hjqhvUpGnz1dNyY6xvjfXLLlwc3fbcP1JXRpLwfN+4fR1P5fTTMD7r8TpKEhbm57335/eST/MjNm2T/4/9IUfI3ld/18lsAzxQFXaV4I4rInHF4Kr8f5t/+Ziq/p/L74yC/fenWfecrJztPPvfI5t7IYF9f9rlntp+bNmJcG7v16Gu/Nrhhv/fJxDp+bapzPVwnZyfJcLcs3HduOfie+75x25yPH/cs5jiO6QjBIhpsBvhhtFX2/xcNWt9Eu0ifR7tHv4K21rbJSLiYh0lxqEIV5W8JrAFfK//eB/4Q8Jc5Cj4o9Jnku8AraFD+AYcgfoS2Eu+gwfz2fwf8Xw4ZEkID2YflcPjbuA43xdTpHALbBwfaAtucIW6syIXQz7NMg9FJot2W9/uHYHkQ6OetlgbTL1zQ90o9GjhueBVCx7+9fXhuuHUaDEpp0FwIuHxZg+e3b8N/+k/6m17v8PuNDW0lfpjvCKU6BEFMUTwsw32uxO3rcfN8IQ4tvIUQtZbSdWOAb6x1xxl3E6ChOrfvbl7svuGTrebeHa9dWVxXDu646YK4dl7Mb3dcdc+4tnk6rs/7ytIuG9/3dWVvvxNCPORu3vWMYcdjj8XuUTNufuvkS906zq0P+509t/aVvV0mdh58Gz7s8jLxuTy75TSpHqb0vUN1I4krr75VsmWlEZZKlQ8KEBJCBbGAJNCbw5pKg+Et9LVZQJwKoiw4ai1eBERSEMqAoBAEhUAUgQbDq78QkYcEaYTIIoI0JshjgixB5PqZLKIS7BbkUpEpSa5yClEgA4EigChCFSG5CMhEQCoFw0IxFJKeKDggZ1+kbKt9tsQ22+EWo8UDmo9B/GRM41JI81RAsgBxWxElBWEoCEsX6gYcL0eKI869q6eCynrcnG1u/gql3azHKiJWGZHKCGREIGMoxuRZTj4qyPoSugHioEmw3yDuZiSDguZQ0RoLWqmgkUEzUySZIskK4kIRFoU+U7y0FtdnhWOB41TAeKC09bsNih+xFFeKUBUoNaZQfUZqnwHr7KjbbLHGLuvss0mfLiNGpIxKh+lFeU642WNhQ+N2a1XOE9+vk7yb0pSmBI8IjIN/Aee6WTITijoF1aQF9aQFp2/y6S4GjlNI1E0a65QivklV3f2keN33PnLfu5NpX5iTTODcCbNPGVDHizvhNRPqdrvN8vIyZ86codls0ul0uHDhAh988AFRFHHx4kU++9nPEscxrVaLZrPJxYsXaZRbwIUQ1W+TVpqmHBwcsLOzw2g0YmNjg42NDV544QVarRa/93u/x2//9m/z+uuvs7GxUbl7PTg44M/9uT/H008/TRzHzM7O0u12+Qf/4B/wO7/zO9y7d4/Nzc2HFkf379/n0qVLPHjwgDzPaZZ+1pRSJEnCwcFBdZbovXv3mJubo9FocPPmTTY3N9nZ2SEMQ5rNJlmWkaZppTw3iw4DOsBRN1nGKi0IAuI4rtyyglbAj8djzp49S5ZlbG9vc+XKlUlNp+I7yzLeeustTp8+zalTpzh16hSbm5vcv3+fTqfDlStXODg4IM9zpJQsLy8zGo0YDAbs7e3x4YcfsrGxQa/Xq3Ztm7yFYUgYhkfO+zNni9s8+BRH7qLmJIqlOkWcKcO6/ueOCb7Fr28hOklxZuKzqW5R74b1xXPcuDJpLJgUzo7P1+/rxiC3zOre22Hq0nbHZTd+eLg91KV3koWoryzrZI/vLDifez/7vY98IMekuHx5ssOdZHyfNF6flKbym9r7HyT53Wm3WZ6Z4fHLlz/28nvt3j22NjeJpSQRghkpaQDZ2hrdixfJfu3XkD/7szTOnYOyjKby2y+/ozDkglLsxTFrZZ1N5fdUftvvpvL74y2/3T56Ejnj6+M+N7Ru+fvmA/a3dUeQuPz40qr7xv1t37v59oEtx7VhN2/H1ctxfbauzH3HJvj49vFqx+eT4Y1Gg4X5eS7kOdfynBlgCXgaeA0Nfj+HBp4FGvRuowFoGwA3qSkqPT4ZMCqvO2ir7qfLcF8H/g/gS2jQvV+G2wB+EjjPIYCeoc87/49oq/VbZfwGGAcNqr8ApD8E/K8gLEvqo2V2+FtKbUl96xZ8+tMabO50tJX4aKQBbuMmvSgOgW2lDsHtINCAswnXbGrA3Lg9zzL93rhefxRSSn9vLNSbTf17NDr8becpDA9/Z5l2k379urYQj6LDb4dDfR/HEEUxabpMGAaVp5vD9I+2L9OODMAIk+WEeW7HabwD2WHq3FMbmarL+TDMpDlE3VjujiV1a5fjZLj7zE7HjdsmuwxcINUug7pxxLz3zanq1jI2neR9nRy3562+8rTnZMetOeq8idhh6uY8Lj8+fs182x4zjxubXbDd5MVs0j3Om4yJw33m8lmX7yl975CiHhw/fob60dOr0lUglAbGAwmh1OdYxxnanfdAW5AnQhAXgigNSovxoLQSDwiLEhTPBRQBqhCoPEDmASIPyPMAkYeILITyT+SCIBOQK2ReUBSKPC8YZ4I0F6SFvmZSIKUGnJUUCBWCDErwPCCTMJKKoZQMZEGXjC5jtoJ91qMd9tv7qNMFzQsRjXMhjZWAZBbipiJKJHEIgaAClQ2YLKpTr8s+Z9VSBZArMzcxVuOHAHlCzliFxDIlzgOSNCAchBR7B+TbTdK1DvnaAcFuStzNaQ0jZtIWM1nITBbRyhXNPKCRC5IC4kIRF9ICxUEozUmgIEBUoHhlMY6xFpcVIK5/65PRA1UgVM6YLkO1w4HaYpd7bHOPbe5zwA4H7DJmSEZOTmadIu6zEz98opz7o+GoCTelKU1pEj2SK3V3clc36XDfm98+xcJJlD6T4nXfnSQfdb/dyfEk5YIvXt9EbtKkta5M6xYG9vuT8GTCu3l007UXL+7E2TwXQlTnbLbbbZaWljh37hyPPfYYzWYTIUQFQAsh2Nvb4+bNmywuLvLiiy/y8ssvc+bMmcql6Xg8ZjweVy4/33vvPd544w02NjYAPWHt9/uEYcgHH3zAF7/4Rd58801GoxFSyiNnX62trfF3/s7f4a//9b/OY489xgcffMAv//Iv8yu/8ivs7u5WFmBuGff7fYbDIXfv3uXu3btcvXq1Kq8sy9jZ2eHg4ICDgwMNJnQ6zM3N8clPfpJvfOMbPHjwgCzLaDQaNJvNI8CxUqqyNgvDkPF4jBCCOI4rq2ujhDeT+DiOaTQazM3N0Ww2efLJJ7l582Z1vmsd2W2g0Whw6tQper0e169fZ39/n1OnTjE7O8vCwgJxHNPv95FS8uabb/L+++8zGo0QQiv7X3/9dbIsI45jxuNxtSBuNBoIoUGV4XBYlamvLdoLTrfM3XZ20nbsU+T5FE/uoqeu/bv9yCzM7Pjq4vXluU4xWbeYrVOwTRqf7HB1afj4qauH4xbibnzmvm6RWRfnpPiO+87dbe/Lh5snX9m6YScteut4cduPj+oAg7pvXMVBXTkfJx+Po6n8nspvW36fWlzkzOwsi8888/suvyMpmctzVtHWYvO3b/Pv/uf/meC//W9ZXl7mwcEBX/rSl3jzN36D+OCAy0XBBSkZK0UuBF0h6APL3S7P3LjBzvnz3J6d5SqHyo+p/H5YfgdCsKIU+0XBmlIUU/k9ld9T+X2EPq7y28RZB0QfJ2fcZy4gcJwMd9NwrQvr2kVdXEYm+Xivm6cYvuv6t/1+Uj3b7829z/uBPV7Z45ev7fvSrGvXJn+23HY9rphv3Pw2Gg0ajQbz8/OcP3uWp3o9fmg4ZAYt+95Fu08HbZ29ApwBXkJbizfRluRABV4PgW00cP1m+TtCg9e75e8/AvwrNCjeLePIASUEYRDwfhjy9+KYn1ta4sziItt7e/z6zg7/23DIfSAPAn1WuRCoIECEIQrYi2N6Szkbf7PH8tJR0N40gTzXf42GBraDAB5/XN+bMO22dn2+va2BY+MyPSnN45NEW18HwaFrc9DP8lzHWxQauG639dnizaaOM8s0IH2Cpl3Wk+ZBKQ1mSwlLSzpdywENSmnrdtsKvN/X1uLjsbZa7/c1fyaPQQDdbkK3u0qeS/I8e8iFtt12Jo1BvrF/0hht+okvfF3br5Ph9r0hc7b5SeWdbY1twtrkfjdpzDlO7tpk0qnzHOGm75NRbnlMmh/Y4eru6+LyvZ9EPj7cOrXHO3ej46PKARPW59XD/e1b+7h5suNy83PSuc6jzIem9L1DCr7tFuInStRclQbGRQFhroHxJIVkCI0YEgJiBHERlNbiAbEMiJW2FBdFgCgE5AEqL0HxTP+WeVA+D1FZgMxDZCaQuaDIJXmeM85hXCiGOdr6O4dRDmmh/wolkBKUEkCAKK2yD88Wl6RKMVI5QzIGjNkLD+i2u2QrKfH5gOa5iOZqSDIvSFqKKFFEoSQUilCUltbmfG4MOF5XQ2XxKVN8AiUEUgiU0EfBFUqQEJBJQZZDmioaAxD7ArURkN6MSK/PE+2ndFLBfNFhSc4zIyM6MqIlJc0ioFluQIgkpdX3oUW7KBkIMG7gRWkhbgH8qrQQV0UJiBcESiJUjiKnICVll331gG3W2OIe26yxxyYDeozLs8S12/SquRxuDqg9O9yEPGxsnlXhR2q6U5rSDyqdGBivm3C5EyHfYt0O55s4+SZDbhqTJoUn+WYS+SaUk5QtvgWvbzI1aZFsyD0T6bgy9vExSQniy5N977qgMot1s0ixF/HGhWgYhsRxzNzcHGfPniVJEnq9HhsbG+zv79NqtVheXubUqVNcvHiRVqvFf/7P/5l79+4xHo9ZWloiSRI2Nja4ceMG3/zmNxkMBiRJwurqKhcuXKDZbLK/v8/u7i6/9Eu/VCmxfXU2HA75T//pP/GVr3ylsjbb2dl5yBrKrZPxeMyHH37IhQsX+MQnPsGVK1eqd1//+tf54he/yObmJnme85f/8l/m1KlTBEHAyy+/zNbWFpubm5Vl1vLyMv1+nyAISNO04i0MQ4qiqCzKjGLdVgIJcQharK6uaiV2EPCVr3yFK1euMDc3N7ENuPV+7tw59vf3WV5eptVq8c4779BsNllZWaHT6TAajdje3ubg4IC9vT2yTC+ub926xXg8rtJTSp8Da9qDUQ6ZcjXtwrThusWK+8yuO5/CqK4PTFokT0rXd+9bZNfFYZe73UfcvuXy6C7EzTNfvHVpTsqD/b3L+0nHCV88dYvKuu/cb0/ynSsf3EX2JPLlZ1LefN/X8XTc87q6sNP3uZM7Lk/uTnmXT5/F1aPQVH5P5bctv8M4ptPpsHzmDHGj8R2R3729PXo7O/zH//1/p3v/PleyjBZaob4DbAnBnSCgyDK+/Oqr/JO33mJmZoZer1fJJaUUuVJaa2zKq8z/ep4T7uwQ7eywfOcOV6yNbVP5/bD8Pi0l+1JytyiQU/k9ld9OHt14Jn03ld9H6Tstv+243Tpz24odzraqmyTDJ4E8bn25bd4un0ll7ZOxhlwA2NcP7W8nWbzX9Sm7jdo8mM1Dbtm5/JlysjdPHDd3cfm2/+ywrqtiONzsY475MN5NqqM8mk1W5+Z4YmeHFlqmXkdbb88BF4GrwBNo16X/B3AfrXq+WIa5iT73+78AB2jg/ArwLNrCfL385n9FW3ePg+DwYG9zDUO6ccwvNxr89sICC/Pz7CnF2nDIUIhK1gjrd1CWywD48pkLPLNxnYu9lIUFLeqV0iD39ev6TO0sg//mv9GW4QDnzh0Fn6MILl7UZ4xHkT4zPAj0+yjS4HIUacDZAOPm2GKTpTjWYPiVKzqdRkMD0/PzJwfFDZnw5ixxawpz5D7P9Xni47EG0L/xDc376qoOUxQ6T0pp/rIsoiguMhqNq83pZo4Cfo8apt27/dS8d/ueaZ+TvEJNmrNOkiF2u3c9VdkyvG4joTvvcuW2jyf7nU/G+vqqL1+urLB5ccvd5dmuA/uZLx1D7nEldWXhfuv77asDm6e6+Z2bP7eO3Y0JdXVt57Uu3755ls2THZ+vTHxt182HzZvbDlwvKG7YunSn9L1D39XaU6AkUIAyblkGIHoCoW2S9RnaUluAkwcIpf+UFFAEYKzEM30tsoA8FxRZQJEL/ZcJ8lyR54osL0hzyaiAQSEZFAWDQtIvFINcMioU4wJSCVJBIYWWTSVHCoFSAqkgV3otnpKTiow0SBkmfdR8RnxGEJ+JaJwKaS4FJHOCuAVRIgkjQRgIQuNuXB6ex22AZzMkeEdgpeWfxutFee441TVXUEjIC0meSjpjSdyXRHuK4oEk/XCbuX7CSrDIajBgSYzo0KBNQktCQ4U0ZEikxKFVOCCcxmJAfB3mKCiugfKiBMYLBDmBKpCkZIyRjBixzT4P2OIuO9xnj3UO2CVlTEpaOk7HsqOngrqVdWcXjDoCjPvCTGlKU3pUeiSLcXdyU7eAPIlixEd1u7LdSbvNky9u38J00oTGF7876a6LZ1L8kxQB7rd1k2mfEsPlDepdQz3K4t1VQJh7s3BXSlVKBOMudGNjg/n5eba3t+l0OpVC/uDggLt37/Kbv/mbDIfDSkF7+vRpPvOZz/Diiy9y7ty5yuIpCAJmZ2eZmZmhKAp2dna4ffs2Ozs71bmfLv8mD8ZVaL/fZ21t7UR1ZcpmfX2dV155hUuXLnHhwgWiKOLdd9/ll37pl/jggw8oioKZmRl+5md+5ggI0Wq1qnNa+/0+43ILuhCH55K67muByuLOuDZtNBraxWkUHXHlHoYhV69e5cUXX3yoHvM8Z2tri2azydzc3EOLyDAMWVhYoCgKoijiD/yBP1DxXhQFd+/e5fbt27TbbV566SXG4zHf/OY3abVarKys0Gg0WF9fp9frVdZpZrFh2lqe50ee2e3lpAuIuj5uX93xxF5E+xZY7r27eHTr37eYdxVrdrqTxra6ccp+5vbHujZq83XcOGJ/O6nt+xZ7dWPMpIWyS8eNycfx6ysXl+dJyhg77CTlRh3vvm99bdgdM00Yn4WTTw7Vlc1J2s1xMvU4msrvqfy25XcuJfek5PLNm4zOnfvI8vuD999HDocsKcW5RoOLUjK7tcV4f590fZ2s22VnPKYrJXeBodCLPqX0aldIicgyhmnKwWCAWl/314lnPJJK8f7+Pk+8+irhM89M5fcE+b2Q54RZxnoUIYIANZXftfmZyu+T0VR++/PgK4NvVX67/NfJc7su3PCT+PHJTTtvbjp1307q0z5ZPCn8JMDJlzeX6tqD2zfNc9c1dF18k76zNxn5xj373m1f7hhl82i8mRgPJUppjx/9T3+aG1tbnOr1uAcsot2oS2ATeAcNbB+UfwCPAX8ebQXeAL6MtgIPhGA5DFlqNknjmHutFm+Ox9wbj9mTklwzqv84lOGq3Gg1HI3Y299/yJLXrTMjd0x5fXh9l3/2z2IuXEj5zGd02AcP4Fd+Bd54Q4Piy8vwYz92CIyDBrGNBbaUGsRWJeBcnvJSnTMeBIdhu10NSA+HGmxutfQ1SbSFuIkvinQaQVBl+ZHouG/GY53uCy/osG+9pc81v3RJW4ffuKHdqe/t6XwoFZLnjyNEghCHm/5t3YgPMNa8+McoMze0712ZYrtgt7+xzxyva/O6LA9lvdvH3LHW1y9d3h4u58nfueF8Y8ck+eX2c98mKDfPk2SBIZOm6wXElU12GdZtfKjjY9KzuvH4JPVQl2ffOHccD+57mx9304a7vjRhXID+OHnrG5vr1r6T8jOlKZ2IFMhCj+PjMQz6sB9BWwnauSDsCYZCMECfJy5yAbl2u65BZBBSghQaWM8FqoAsk2S5IM303zgXpDnln2BcKNICxlIxloqRlIyl1PeFIpeQKcilQikNNB9iq2VbV3rNXihFgaKgIAtycpUho5xkRhDPhwRzAdFMQNKGuAlJQxHGEAWKEA7P4ObwLG4hSsD5cFpxVG5qZcHh70IcWpErUIWiyECmCjmUqGFBNpC0+wVzPUVnAMtpSGc4YpEBy6LPfDCgKWKaIiJBERMTqYiQgKDcEiBKyP4oIxoUF1AC4bJ0o26uBSE5QhVAiiJFMmBEly4H7PKAHdbYZp19dhjQJyUlJy8txQ9h7kNg3IXIjxTMQ/xNaUpT+tbpkSzG7eukCaVLdQtxdwLu7uZ2J2yTlDaVsrRmB+RJeHOVCnYY95u6fJvJbN0ky6css3fOTuIT/BOz43iepAhxJ+Q2uQsDMwkdDAYopRiNRty/f5+FhQXyPK/OC93d3aXb7VbncBoKw5CNjQ2+9rWvEQQBMzMzbG5ukqYpURQxHA5ZW1tjPB7T7Xbp9/uVNZTNjy9/vqtdXm75mfs8z7l//z6/8Au/wK/+6q+S5zn7+/uVe1KjjNjf36++K4qC559/HiEEb731Fnt7e9V5pnmeV9+YHd2mXY5GI4DK4swoURqNRqVYNwtRE5d9ZlKlECkKdnd3q8Xp0tLSQ3VnzhdVSlVK/eFwWNXBl7/8ZYqi4PTp05Xb20ajwXA45MGDB9U5pqZeQJ9HOh6PybKMPM+P1IdZnBxnGTNJ6ebri2491ylcfPHULYInxW/yclxfdBdw9rWujxryxe8DENw4feNYXZ8/brx0+7YvXlexctyY71M8+t65eayjunHXvvflY5JCYlI5PopCYFJ6Nq91MugkY7Yb/luhqfw++s1Ufiv+y2jE1uYmj83O0i0KVBCQ9nqwu0uv26WRpixLiQJ6QBGGdJRi5ytfYW8wYCmKOP3hh+T9PuMoYjAa8VpRMNjYYLvfpz8YfMfl9zjPWV9f5yv/5J9M5XeN/KbfZylNeVsIRlP5PZXfU/n9PSe/oV6GH5feJLk4qR3X1dWkdHzxHieP3TRtGWw/c+Mz4dx4zZhb58HAjHV17cqN3ydrfTLLbCrzlZnbPt1vTVpCHAUqXY8e5n5/fx+lFN2DA95/4glOv/8+WZqSZRnrSnEf7RJ9IETlOh2lFdQC+I0gIEgSlmdmuBHHjIuCuNOhu7zMN9tt+sMhW3t77GUZIysOASiPd4689Pdt8mTAWrfPmTya+6IoSNOM995T/C//C5w5o4Hw7W3t5lwIDR7n+VHgWwiYndXxpimsr2vL6zzX99q6Wv82wHhRaFBcSu26XEoDOGvAPUl0nEGgvy2KQzfrLplqPmYIrMgOp5RO/7XXdBqXLul09vY0IH5woM9Q39zUIEqSQLcrgAuMRjP0+3uMx+PKs43pP8azjSsHfWO3z6LWrlM7Dp8Md+cJJxkr695NkuF1stkd5918+L71eYuwyZSfy7PLa91c3KRhymeSy2/3G/u96/3GHfd95WHHZT/31blLdXLfLb/j4vHNHX1jal2btMdb97lvTnKSfLjt3P5dV5cmjNsGfWUxpSmdhJTS8ibP9Zje6+pzxhsZNEYC1QxoBwFtERBIQZFDkYOS5fgohQZtlUBIfa8KSZrDKBOMMhjkimEGw1wxzBWjQjGSSrtAl6qy+M6V0tbhaCtxpajw56p1H2nm4tByWSgkEikKlJAkTUU0E8F8RDgbErUD4pYgaULcgChWhCUwHkpFiNQAuTmXW+izx0VpjS0ElaW23TNFxaRmWpRXCg2Kq1QRjCVBKiGVjHPIlaCfNBjNzpGkLVrjgLaUtGVKTEokxgQi0NbhKEQJjYPeCacIrKJQlVPzQzfwElG6TRdKIij0b3IKhhQMyekyYJt9ttjhPtusscM6XboMGZCRUliwuMliPSD+8N2UpjSlby89ksW4jyYpUczvusmF/Z074bV/102S3ImwfTVh3TR8FjJufty0TqJQmFQevrzUKRjcCVndwt2Qbyepy4sdri5f5rfPrRYc3S1rztwcDAZ0u122trbodDr0+/3KhbmZ7NuLgyzLqrMzt7e3iaKI7e1tsixDCMH29jZSyiMWynUKhbpy9L0/biGTZRnr6+sVT6ZsjOVYlmV88Ytf5PHHH2dubo75+XlWV1fZ2Njg4OCAzc1Ndnd3q80BRkmQpilBEJBlGaPRiKIoyLKM4XBYxd8ot7ab8p2fn6fRaLCwsECv1+Pu3bucPXuWOI6rfBiwYXV1lWazSb/fryzgfO3SWMPdv3+f5eVlzp07x0/8xE/w5ptvsrm5yd7eXqWk2NraotfrHfEMYCzyzWLcBgZMOzmp8tL32w3jGxfseOsWwD5yFzlu+nULNneB5KblW6i7i7G6fPoWaT73XeZad66kWz5uOdr5sJ/XuQpzebTf1cXn+8b+Xae4qCsbX5ruwrYurMujG/9J2uUkPn1tcdJCfVLeJsVTN+Z/K4vyqfyeym8Tjy2/e80m7x8ccCpJSHo9RgcHbOU5Y6U44BD0n1WKKM8Z9np0b9zgxtYWwyRhY3eXrARZZbf7XZHfuRBsbmywsbMzld+O/F5IU1r9Pm8KQT9Np/J7Kr+n8pv6cf44+m7JbztuX/n6xkyffPUBTuadaVd1ssbNh68v+eS3abP2c9/47ubD7otuuj654ua9rl0dN2bY5eQDAN282mHr6tm891k2uvLMHZdNvLYMj6KIwWDA/v4+2zMz3L56lYUkYe/+fe7t7TGQ5VmVShGEIaqUxYVS7CQJr7Xb3FtZIep0uHv/PuM8JxgMuHNwgJSy2txl2oO7WfC4ccXXd331DRpUH48FN25ot+lJ8v9n719jLUuO80D0y7XWfp53napT7+rqZje7+ehmi6L4EmmLQ9OWZFswBUMjj2FDgCAI1li6wB1ZxtiGbUC4gDEG7viH7q/xAIN7bd87hjGj8diydGlJV6LNJs1Xk+wX+8Hq6npXnTrPfc7ee73y/sid+8SJE5Fr7epusqp6RWHXWY/MyMjIyIiMjJWZh7c3t9YFkl9+GXjssYPzvo1x7zY2gCtXgBs3XCDc/4xx+eJ4EowYuID3eOyCzx5/v+9o9CvK19ZcoHxpya0mt7Z+ALwKPFtaLeDZZ13w+9Yt9ysKR9/ly65OWebS53mM0egUhsMl7O1tYzgcThcdSH1c6rMeqGxpY0WKQ8Mv6dhQv+Z9ifdBn4fj5O84jZIcaoF7Wi7tj/6annEu0cv5Utf+8b7BP9zxz+hHI7RM3v+koDvPQ2mRgs0azz3dUp+nddHGMaF+z8dC0nuJ9xJeXq86tpXLHG8Tjae8vAYamAks3JnY1un4NAX2DWBKIMkMMDIYdoCuATrGBX3z3CIvDIrJFucoAYOD4PjkkG23GjwHRpOg+H5uMSwsRkV5EBRHicxad4wJnE2xB6RV0j4FM8kYWcBYRAkQdyPYfgTTc7+4YxC3gaQFtBLrVosbd263O4P7YLV4DB8Yd3+9TTfA9FxvA0w+BHB/3RntB3+RWyC1MGMgHpRoDYBoHyjHEVC2kMU95N05tHpdJGWMVlaiXWaIkMLYFMbGsChh0QJc+B4wEayNpieg+4C1OTjpfBoUNyhhkMOggEUOiwwlUqQYYIQBdrCJDdzGHdzBOm5hE3ewgy0MMUSKMXLk05D4wb8D5jfapoEGfvhQOzBOQXOAuGMJHD2vJTQI5rg5Tv4sNHklpdecaa08LW3VZBalq85qMloWxy85J1I9Qg55aLDn/9KvVOl7Xwf/Bbi1drqFqF+p5L9e53iMOfwVszEGeZ5Pt/ikeGkezaHg9GnOnMZfjQd+UBzHMebn56eT1FEUod1uo9vtYnNzE5cuXcKTTz6JlZUVWOvONh8MBtjd3cVwOJxOqEdRNJ2gp+fXlWU5XXFtrUWWZdOVZq1WCwsLC1hdXcWpU6fwgQ98ADs7O7h27RpWV1enk/zGGPT7fbz//e9Hq9UCAOzu7mIwGGBxcVGsfxRF2Nrawq1bt9Dr9XDu3DkcP34cg8EAt27dQr/fn54xu7u7O93a3gfC/TNPM+ep1j7cGfXX3LH0kz5Vq9VomdrkFqeLT4yFIKRrNLnT+hy/531bcq55upDTJzlpmr7ivA+tqJMmLDwO6VmVXgs57VW6LQRSG3BnV6KlSk9K+aVn1JHWZDuES5pYCF3X4XVdaOx3Y7+9/R7s7WErz3GF2+9J2eXEfo98vcoSZjiEmdiI+8J+T2hv7PeB/U6Mwem9PYxHI3wzTTEcjxv7TfA39rux3w+a/ZbkhV/Tcnx6bat4LkfSakNOu8QvTps0vqA4tB1ZQrqHp9WCGCHZkFaXS32L3lPdz9ue1ivUN6huDK2q9FtT048B/Ht6fJW1Fq1WC/1+f3rs2C3ysVPOAvV5nru6GzfzPM5zZIMBtvb3p3hpW/PV+pqu9jY3pKP5GEdrm6Iop9udr666ldutlgte9/suUD0YuEn9w/jd8zt33Fnc3rzFsdtO3a/+9mwvJ1uuj0Yur083P+/+Hj8OnDvnzjBfWHDps8wF6w/TfaQqlWCtw+frOTfnrq9fd0H4u3cPtk/f3XXvhsMO9vcfwfq6xWBwB9ba6YdylKdUdqU24+1Ln3mgZ5V7nFJfrtIPUn+QVmtr41lJx4bG15QWjof2fd63tUAn1zmajedH4Ej2VeITPRLBA9/OXuJrVRkSTzV7yeWC5wmtdtfyS+3GeVUV1K+yk1wna0dQ+bK4LEq4Nbni7Ud3FGiggSqwwOScbvef1/957o4XtwVQZhbDUYn1xKBlLBIYwLozs8vSHKzotpgEjI1bLT0Jjhcl3HboJZAVFmkJZKVFRlaIF3AfxLkP5RDYgJveCbbaWsBYN4yIASSAaRmYlgGSCCY2iGJnt2JjkRgggQuAx9YiLku3atySZwYwk8D4wcptH3ufBMBLC1PABcQLC5O76ygHotQiGgPxGIh34QLj2xHsfgsYt1HYLmzSQauVIGoBic2Q5COYsg2gNQl1JyiRTSiNYG2Mydr2Q4Fx+FXtk9PN3c8FxIEMGcbIMcII+9jBFraxiQ1s4A7WcQfr2MAmtrE9CYqnkw3UHfby0Dpx+n8DDTTww4Z7Cox70AZugDwgkyYTKC4OdSYVuFNcd1BNB1HayhlOQxVIDrNWX56uzmCQ4uL08AEnTxOahJDKoPd0EG+MQbfbRRzHGI1G0+1CQ1tkahMYfAspaSAuOeTaYN/zkQ+Mqwa+/iv9OI6xsLCAc+fO4eTJk5ibm0Oe59jc3MTi4iJWVlawuro6zT8ajabbtnoeeKczz3O0Wq1pHZMkQZZlaLfb01VoSZJMA/LdbhfLy8t44okncObMGfT7fVy9ehWrq6uYm5ub0uvr5FegWWux4PeUU6DVamF5eRlPP/00Wq0W0jTFq6++iv/yX/4L7ty5g8FggGvXrmFzcxObm5uHtoItigKj0WgaDJDamPc7yu/QRBBNL50hL7Wvpmekd7TNNUdXw8tBchS1iQJeB4lWrfw69Pt7zWHXQGo7bfJDok+iW6K9rvOp6QuKX6NJSssnXzSdV8f55nIbkqPQREUIaB34RHGVM/9OQGO/j9Ir0dLY7/vbfhtrkVmLdmO/sbm5iU6e4/RwiLcA3AIa+43Gfjf2++Gx39z28eCAL1OyCX5inwdmeH1oHqojqmRd4wPFw7crptuFSzITCoJL9l7jE6WDX4f6EucDB4qHf2wh0UbT02BmaMUiP0d6bm4OSZJgMBhMVw/TIDWlmfd//977eLweki7nPKC7C/i8/j3dUp5+EODbmvPK1S9HFLkA9Ooq8MEPutXhS0sukHDjhgtacyhLt4X63t7BueB+tfl47M4Iz3MXCG+33Wq9Xu9gFXm77a5bLRcIX1sDLl48OMt8NHK43imguLLMbad+5YoLir/yiqvnjRvuXZbNI02PI8/LQ+3M5Ze3gee3bye+xTp9T2WCb4cvyb8ko5J8hXkQqXIZskdUT9B7+l7TTXVXkHN9x22NRB+nh4PU97RxAQWqLzj/uX6UdgKQxuUULy1bGn/QdyH7JvGVp6M0U9nUZEWz4Vy3cn7y9tNokvRs1ZiB24cGHjyYBqp/BFCWjoBscp3lwHBssRXZydnWB/RZC1jrguSUXrfN+EQGLUkLt7J8srja2YXpu4MtuiH8rceRie6A2/o8juEC4i0Dk0QwiUGUAFEMt3V6BMSwLjBuLRJrXVC8PFg17gPjfsW4O7/bnaceTVaHR6ULhEc+IJ5PAuIZEOVAMna/9ghI9iIkgwjRXoJy2IJNu7BlFyZuI2nFiNpAXBaIkQLFGLZswVqgQIISMflF5PpoYNzxwQXGgRzldJX4PlIMMMAONrA+XSd+B5tYxyZ2McA+9jHCCLnbkP7QFupoAuINNHBfwD0FxkMONCBPxGiTEdLEmAdpS0MNr+QQc5Bo5ANgOjiuM9APDb4k3nD6pIEuBT7o42VR5yDULqGVf1pentY/HwwGwYGrNujX6spxSbIRmgCpQ7eWxuP3K8P6/T4uXryIv/pX/yrOnj2LV155Bc8//zyWl5dx8+ZNdDodXLhwAZ1OZ5qv0+lgPB6j3W5PJ9BbrRaSJJlux7q/v49Op4MoitBqtdBut1GWJebn57G0tITjx49jYWEBi4uLWF1dxXg8xg9+8AOUZTk9S2wwGGB/cm7r2bNnpzRoziB9tru7i62tLZw4cQJFUeDatWu4fPkytrfd1mw7OzvY2trC1tbWkVWAPnhC+wvtK1WrSqW2k5xuel/HweFtSEHKT9NL25tK/YDj9PklXSfRKjlhnCaNT/y9RhOnJwQhPcHrI6XnfK3rMEt4uP7gk2acNg6hdzydL1ObAOB96F62TdPsX9Uki2S7pLrVWZE5C51SmRpdjf1u7Pf9aL9hnbOaN/YbO1tbWLl7F908xzfiGNkEd2O/j9arsd+N/Q6Vcz/bby4zvF9LsuTf8XoC1QEl3p+1/kp1SYhXPEjtg/S0HGr3KF1c7jRaKFSNCaQ+GLL3HifPH9rCmdaF818bf2k62VqLjY2Nqf2S6q7pMb+FM28DvrWzRJ8m7z4tD4LzMrguPVxeiTx3AYPFReAjHwF+9meB5WVgc9MFjc+ccVvRxjFgjPv5Fd1zc8D+vgt6t1ouAN7puMD3aOQC5ll2EBTvdNx1UQArKy4gfuECcOyYC6a7egBvvunetduuvLcD1jqcceyu794FXnzxYLX7nTvAzZvAzZsRsmwOwDyADGXpdqkpiuJQQJuOHT1vtR0PpPbkMi/1Ey4P0q4SFCd/Vye9RqNmj3ldeZ00fRCys7PYbS7HoZ1HpPGD/1ghZDc0G0TLl2y4ZAc8cP1EPzSo4pukn3jZGk81mxTSg14ncT0olSPhDIGk+yV5l55zfdvA/Q2Syjb44QUfrS9vclFawJaANW5VuJkQZKYRcHOwwpxTaQ8uJj3ucEjVIhj8ptika9Z7j743LpGN4QLinQhRJ4JpG0QtTFaLW0TGuKC4tUhKtx47Li2SskRcuGduBbk7ezwy7jTvyMKdO24BU1pEJWAKFxSPcrgA+eQXZy443kqB9tigPTZIhjFaoxhR2kKRtVEWLVi0YKIESWIQJSWiJENkUwBjWLRgbYTCliiRTP4WKBBPzv2OWGCcQgmLAjlSjLGPMfaxg21sYhub2MQd3MU67uIutrCFHWxjgCFGZKX4QUj8aFs10EADP0qYKTBeNYjwaWh6LY00ONe2F6T5pa1sJCeWDhCldJQOfi0NrqRBrIRL4g3Pr9EkOe118tdxYLXtFzV6OX3cIZHooY6VX3lFB93a4LhKpng9q+55ufQZLZ/LX5qmyPMcTz75JD760Y8iSRK0221cuHABm5ub2N7expUrV3D8+HHcunULw+EQjzzyyHR7Umstut3uVI79CrPRaIQ0TafbrnqnNooidDqdQ+eU5nmO0WiEK1euYG9vD5ubm3j55Zdx8eJFrKysYGlpCWmaTrdhpfUpigKbm5sYjUZYXV1Fp9PB/v4+dnZ28NJLLyFJEuR5jj/5kz/Biy++iLt372I0GmFjY2N6Vqk//5T3T8mJ4Q6hX73C24O3hTZ55HkglSfpDOkdxSe1uSYTnI6Q4yw52h5439D6MtU1IUdPei7xpi5U9aM6+UN88s9COqzO5IQ2UcH1jiYPIZro5CafvJHaVKpDSNdwGkKTHLyuml2ZtZ002hv73djvh8l+d6zFaJL2vWy/d27fxum7d3GlLHHLWpSTidfGfuvvGvvd2O8HyX5zWkL22fOFB2M5D306/pyWx/uulIbaFcmGSzzS+jtvP//Ml6sdb8JlgesP6Z6XHwKaR/uYSMLD7Suvp9SOXL58W0o6mNJFV6DHcXwo4K19uEJpC8l2SNdxvnobqe0E4O89fUVhEcfAcOhWeH/gA27luDFupfinPuWe+3O4/dbmrRbwxBNu9berh9sWPY7d9XjstmLf3XXB8E7HBSliv+Vr7ILq/pxxH7TOc7dF+86OW7XuA9r3Ap6FWeboL0vg9deB733Pnak+GLjt1C9dAm7e7CJN+8hzwNrRof7JeSf1b79zAG0vqe9LuwJw2aZ6S+qzIdtMy5LokMoK9ddQ8JlCld4J2Sgq23wcFCpHutdskNbHJH3O8fDxE09Xx75QPtbZactfe+DjI+ljH2l8ptl9qq94fTSfh9eF6hlOjwZ1bfjbGWs18KOF+6WlLLuwk/+momQP3hmeR0R0+IEVklghsB1ERZ5pNFgDdwx3YoB2BNONYDoGcdsgbgFx4mxkbOz0TPGktEhsiVZpERclksIeBMdLi9hict44pivFXWDc/aKC/DISGM+BJANamUFrHKGdRmilMVpZgihLkBcJ8rIFixhRZBAnFlFSIEpyRGUKixRAirKMUFp3HJvbcj52f2FQIJpucE60AyyAAjkKFMiwj31sYwfbuIO7uIV13MFdbEyC5DsYYB8jDDFChny6fXqJQ83eBMUbaOA+gpkC4yFnrg5ogzo+SKLPfblSmVWDLm3gG5rUqlM3bYJEGvTWAT6RINFRB680KNccW83J5QNEzfENTZwBRx33UB3qyJTkiPB6aU47n6zh5Vrrtkrt9Xo4efIknn322en5bQsLCzhx4sR0C9M0TdHpdKbbsz799NM4deoUXn75Zezs7ODs2bMAgMuXL2M4HKIoCvR6PeR5jjzPEccxjDHTM0c7nc6Utrm5OYxGI3zlK18BAJw4cQJRFGEwGCDLsulkQ6/Xm/LYGDPdAm1jYwOvv/46+v0+lpeXMRgM8IMf/ABXrlzBSy+9hJs3byJNU2xsbGB9fR27u7vY3NzEcDicrmTzK+elyS3ON62/8naZxWHU8ktOKMVH5bLKwZRo1vpO3b6syTB3DrlekuRZ61+hetC8mkMZalMNf1WeEI+0elSt5pLa3D+n9eNyQLd3lOikwT4pOCjJqjSxLMmhBJq+kt5rkzlV7T0LNPb7KJ7Gfh8tH3hw7HcfwNC4cxvfq/a7v7eHtcEAL5Ql9tkKoMZ+N/a7sd8Ph/32+LguDMkBT8Pp5e9DKzyl5zzwCWDaTn6FqyZfkox4kMqlPA7JGK0fLSsk+1r9eHrpHec15620jbtWX6le/EMQTc74c75NO8Uh6QMfaA21CdfXFPjqfqmvcbrdylkAsNPtzB991P08emPciu8kAXxWWvS5c26V+eXLbhX2xYvu+auvuoB4lrn3aeoC5f7scv9tWr/v8EbRwRbqd++6Z2fOHATTrT1cLgfatDRtWbrg98svu+D3/j5w65ajd33dbZ2+s2Owvd3FeDyHPC8OBfr8VuiSDacrj2k703RUX3v9y/H4sYkmn1SGtY9tQjacp6XA+2BIr1b1YclnoHWuGqNKz7gsc5okOyHZYf6c9iFNd0g4tC3btTqFbLim52gbh8aBtN5Uf0j8AtyHMF6m6YcdnF6J15JPwmVbGqvVHSNK4wV+3cCDAxY4Ehz/UbakD4Qa67Y7p8RoWok+VzyKypXgs4KYzx8CHgGIDaK2QdQxiDsR4g6QtCeB8chtjx6jnK4Wb00C40leIsktktwFxZPCBcJdcNz94hJupTgNjPu/fqV4DiS5QVIYtFKDVhqhncZI0sQFxosEeZkgn5wVbuIIcWwnK8ZzGB8Yt2NYRCgtUJSTwDhKt2LcGhQACWDbyXnjbq14hgwZUgyxiy1s4C7WcQN3cB23cRPr2MEAu9jDPsbIJwFxf6L4wUpxK7RgAw008KOG2oFxbRKCvwOODvJCTjbHoTm0ISeYQ2hSSnLotHRV5YQc+qqy+QCZp5MmQKRBXMjRvtdVZh7owNXTIX0pH5rI0wa+WltIjpx/rkFVm4Z4HUXRNCjuV4PNz89Pz9nu9XrTyfBer4derwdrLdrtNvr9Pubn5/HYY49hcXER3//+93Hx4kXs7e1hMBhMJ7H39/eRJMl0YB/H8XRiPYrceXHLy8vodrsYj8c4efIkHn/8cbz11lv4wQ9+gPn5eSwuLgJwjnCSJBgOh9MJ9fX1dVhrcePGDbTbbQyHQ/zgBz/A9evX8frrr+Py5cu4c+cOOp0O0jTF9evXce3aNezt7U3PEfd/Kb9ou9bdKlfqv/SatxPNR9Pz/kfTaO2t4dDan7/j5VGa+TMJX8iZlRxUDSfPw+sfAs3Z9fg0vkn85nn5+5CepXjrOpnSRJvWPqEJN95eEl1SmVr7cPvF08+qYzk+TkPIBt4rNPb7KDT2+8G33+cBXG6335P2e7S3hwvjMbKiwPPWIm3s96HyKM2N/W7s94NsvyWatH7FbY/U9hL/Kb1SfaQArxaY4DRTuqTgg9Q20riDt5kkK1pfoIFlDrQenHeh8ZG0IjakX0P4OHB+UbzSVu4UpHGGf8ZXcmt9kF9Lepnj1uSct89h/DnabYv5ebfaO4pcMFoC3nTGuN/Skls5fvy42w49z10Aejh0q7G3ttwq86Jw6ZPkoIwkcdupnzzpAuNp6gL0vZ4LpK+vO/yH6yPTY+3BuzR1AfH1dbdl+ltvOfzDoQuSf//7bpv48ThBns8jTWNkWXqIN3meT++lbfPpuI6vqg7ZJo7Dv5PGdv7aly/1I37PZZcDP5IgpKesPfgQSkuvlcN1I18lTdOEtpIPBWAlmqU6hHQs/0vz8A9iaLnS+IzbdmnnBk47vZfqx2miH2pI9obbIp9OWiFOywvZEolmboe4bqZtKtkUrhPr0NDAgwP3Y+vZyc+wZwD8RupHnmt46jx7W2DgjBwJjJsYiBIg6QCtLtDuAp0u0G5btBKgZawLhheTv6W79kHxJJ+sGs8nQW+Lg+B4eRAI94FxHyyPCyDKDeLJL8kNkixCK42QpDGSLEKcxYjzGKaMESOGjSK3xXtiYSYrxk2ZorRjWJugNMadYw6LyJYwNoaxEYyJYKyZBsZLAAVK5LbEGDl2McAOBtjAFm7hDm5hHeuTs8Q3sTNZJT5GhgzFJChOt06n/zfQQAP3F8y8YpwPYkKD2dDgRpqY4YM9PhisokvCxemmAyZOD88XKkdyxqU6hwbFmiMqDZq1wXaoDlpdQo44rafUHtyh1srzfOZ0hSYnNJ5UOQSUZu0+xANj3Kqt3d3d6ZaprVZresbRYDCYbpvabrdhjMGZM2emk+MA8MEPfhAnTpzAsWPH8I1vfAMrKytYX1+frjaz1mJ5eRnj8RjWuhXqRVFgZWUFp06dwtLSEvr9Ph599FGcP38eSZLgzTffRL/fnzq9fmvW27dvoyxLPP7447h8+TKstVhbW8PW1hb29vYwNzeHr3/969jY2MB4PMaxY8fQarXwxhtv4LXXXsPNmzcxHo8PrQ7315rjwSdoJAe8LkhypemLkKxRpwfAEfpoeo6P0qLpLO4USrIpOVucJyHdVAdC/K2jczXdQt9r+fnEX1W9NF3HHWb6TOurEj3SRIAkT/RvVftJ/NBWrUkQah+JRkk2uRxLkzSzyo1GS2O/G/v9MNjvGEAPwL4xSN5j9rscj/F4muKaMdjAwRnrjf1u7Hdjvx9O+63xWusvdWy4VA/PP3ovBZ7q2FLez6w92Bac55FsC++jWt20tuDvpLprNpzLnwfevnXxSvg5bn6cicTzUFCbyypfaczblvNI0j1+e24+rivL8sgqUQohm344vVs1nmVupfb+/kFwuS4Y4wLZk81YsL/vtmK/dcsFucdjh/P0aResttYFyvPcPXvsMbeqvNs9wOHodPe+GmV5sEV7FLn0Zemuy9JtvT4aOVxua3S3av3MGZf2m98EvvpVt5X6/j6Q522U5TysjVAU+SFecV7SDx2lVeB1dvLgfUxqb//cX9MV69wG+He+PWk6rQ/6tFof0GyYxx/SdVodeB01e6XJv8ZPXr6GWxtD8D4l8UTaBaBKv1EehoLDITxV7cfL43mkelH9pQXsqY6UdGCdNpJ0KtVhUj+gx07wPvVO2fAGGvDgpdiQ+xnN3rsLZvKLzORnYQxgIrd1etIxaPeATg/o9Cw6baAd+8C4Raso0Z4ExVvFZLV45gLi8eTnA+PTADkJjPvV4nFp3LvCIC4wCYxH7m82CYpPfj4wHpUxLCKYKIKJzSQwXsIkOVBmKG2KEjHKwqCcrAUvbAHYGJEPjsOghAuOGwsUKJCbDEOMsGU3cBt3cRPruIY7uIF1bE3WiO9jiHSySjxHcWSV+ES73V9t3UADDUzB2NBImkCr1VIHPx6kgTmfpKga1IYcXgraoFd7XzV5Q6+1yYQQHskRrlNmCE+d+zp0VLVbXahqQyl9iBdVbUjT8DL5YFXanpHSIeGh7d1ut/Hkk0/ib/2tv4Vf+IVfwNzc3DTteDzG3bt3EUUR1tbWDjmAw+FwuoLsxo0b2NzcxNraGvb39/GVr3xlOgm+v7+PNE1RliXyPEdZluj3+3jf+96Hixcv4plnnplOwB8/fhwAcOfOHdy5cwc3b97Ezs4Orl27Nl2RtrKygm63izfeeAOj0Qg3b97EjRs3cO7cOTz++OPTVfCbm5v4kz/5E3z3u9/F+vo6sixDlmXTFeLS5JnUlrQPa7KuOebSZFGobbQyQvIx673UL0K0SHlD/Zvmo8+q6A/VPaQjZ+3b2mSE1p73Usa95JkFN3BYZ0sTGJLOkXhetQWcpt/oO60faXqvrlzTuvnzkGeFxn6H8TT2+8Gz36es20r9UhS9p+x3J8twdjzGa9ZiH7reodDY78Z+N/Zbp8Hf36/2G3DHNki8om0vBW0l2aD18vhCWyTzsqQ68mdVZ8RK/YHWo0oXaTRyGrTAEq+XfxeSpTrPQkFLSS9JuOroKl8WLYfziX7cVod3nBbpuZRfs+HU1spyWSKKRjDGBY4//WngH/wD4Md/3AWb64Ank1bDWheovnsXuHPHrRTf2XGrtYvCreYuCrcS/NlnXfCcfCc3xeVxj0YukH3pkqPr9GkXMM9zYGPD4X79dRcI/8AHgKefdu/abZf33/wb4EtfAq5ccTS4bd1byPMerJVXrPL+Q4PQkm6nHzBwmaTywMfzmp3zW17X0XUHfDsqq3VsOJUdSW9IepzLnEQTL1frAzwt10c8jSTLHB/HyevO7QjXx7Sdq/Qdh5DeDYFmCyV54WMNY8yhrf1DPJDajfaBkA3X7BfPx/NzmqmdqZJJWsZoNJqJpxofGmjgvoYIzhDGBogMTAzEsUV73qC/FmHuZITlcxGOXTQ4dj7C4jGLxWVgvl+ia0v0bIl2MQmM5+6X5HArxbNJYLw42EbdBcF9YNxMVosbt5q8NIhLFxyPJoHxKI/cKvE0QpImiMcJ4lGCaNSCGbWBYRtm2EE06iEa9oHRHMx4HhjPoch6KPOu+5UdlEUbhU1QlgkKGyO3kTtnfLKlem4tBhhjxw6xiQFu4A6u2du4jju4iQ3cxAb2MESKDCkylJMV4uWRNeJNSLyBBn6UUGdO4562Upe2D6Pp+AAmRBx35rVBLh+MSYNVKT135rQBH73W6hQa2EiDNak8/0xyrjU6JLpC9HBHWKprHeGQQJpskeiWnAaNTmkgrU3KaHUJ8VPjg//barXwkY98BH/n7/wdfOELX0CH7OM2Go3w5ptvotVqYW1tDcYYjMdj9Ho9FEWB27dvo9Pp4Pjx4zh58iROnjyJJEmws7ODJ554Ynqe6LVr1zAYDNDpdKYO59zcHJIkwdzc3PRr1X6/j7Issbu7i6tXr+LLX/4ybt26he3tbezs7OD8+fPY2trCtWvXMBwOMR6Pp07Jk08+iV/4hV/A8vIybt26hZdeegl/8Ad/gG9+85vY3d2dTuhz2Qg5ytK5dnUmv6T2CDk5HHg+qa15eaE+oTmhWr/V8FbpNG0SoaoPVMEs8s3xhvRjiBapjar0IC8nBBKNWoCMtkNo4kfS+9J7ileqo1RfjT+8HiG9V1fvSrr67TjWjf1u7Den6UG23wbAeWvx7Sh6T9nvuaLAmaLAa1GEYVkC1jb2G0f7rYa3sd+N/ebpHgT7zfPT1W9SOl9vaXtYeu+BB8x4wIB/WCPRpT2X3nEaKH20PC6vdJWhBnR8ExoTcDkNjUukQL2kk7isVY0dND0TGi/RsnmfqtrymZdZNb6h5XGeVPHOv/MfBkhyYoxbJd3pAJ//PPCP/hHw5JOHg+KevFm6jzEOx/HjLoAdRS4ovbPj7uP44OzxKHJBcYrfWhdY3911Z5XfuXPw+9CH3Pbsb7zh3g+HDp8xwEc/6oL7c3Mu/+3bwP/yvwD/5//pAug+IF+WfVjbgbXu43S/ZTqXOc8//o62Oz9nXLJj/poHoDUdTduNygzHJ/U1CpQen57ST3HS51R3VR05JOGRdKA0ftD0A7c50hiV5qflhkDSL1p/lHQArY9Wp6oxDsctrZ6W7DNtaxq4l/Lwekg0c17wle0avZoeDvFQ4gEFaWwgyf7bteEPA3AO3Jsn2sB9DWbyiw7uoxiIO0CrD3QXgP7y5LcI9OYseh2LXmzRtSW6RYFO7laKtwocCor7FeORXzFOfrE1k23TzWTFuHHB8dJdR8UkKJ65wHicuu3ToyyGSWOYLAbyGMgjREVMtkY3gLEwpgDiHKbMYEp3/riBgbFuS3UbuS3VI2tQWgMLILclRqbErh1g3Wzjlt3EVdzBFdzBbWxiCwPsYYgxUuSTTdNdULwk55MDTUi8gQYeDJh5K3X/V5tkkN5pg0FpMCMNfDS8NJ8GmoMn0aABdxA4rSHaNdpCgzCJt9wp0s5E0+iXBpZ1668NVqvqRR0sCaeWRzrL7p0E6mR0u1187GMfwz/8h/8Qn/rUp6bnkXq6d3d3sbe3h4WFBYzHY8zPz08n3o0xOH/+/JEVCUVRYH9/H+fPn8f8/DxeeOEF9Ho9RFGEbreLhYUFXLx4Ea1WC+vr6zh27BjKssTm5iZeeeUVjEYj/NEf/RF2d3dx/fp1jEYj5HmOLMtw/fp1GGOmE/Tdbhfdbhdra2v42Mc+hlarha9+9au4cuUKrl27hhs3bmB/fx9FUaAsy+lfieeaY0SByoLmCHneac8lHaCVKTn5kmMaOh9Mc7KkNNJkUyivpqu097M4rxLtVXmraJzFUdSuub6RJmzqgFQnzh/NznBaNT5VyY9UTmjSRqq7Rp/EC16Oxi9tIubtQGO/G/sdqhN/dz/b7zMA1qMIrV7vPWO/54oCp/McLwHI2URjY78b+63haOz3UXwPov2muLXVuVTmqd7mk/w+H9V9VDZ4sETT5T6NFoCnNId4Kd1LfVfSSxKOKvsrlUFX2/K8XG4kGx6qJ13ty/GGzlzX9KEkX7yf03u6ZbEvR1pJz+2DtnpeKoO/838pPv8BmcMNRFGO+XngL/wFFxS/eHG2ALgrI/yu33ertpeWgFbLBca73YPzzK11P8BtkZ7nLnj9J39yEBgfDPwqb3cPuOB3HLu/i4uO9o9/3AX5b91yQfRXXwVee80F5LPM4+4hz1vwQXHPJykQLbWxT8vbRTo2g7c5IO+iQNsuVDZP43Fx+eL2neskqY9wWvjYgKat0tlcJ/Kyqvq4Nt6uY7tD/PJpNF9D6su8npKepmn40QdauRyfpCd5Ho1ujafA0dX1IX0i8UuqI/+QywP/iILraZ+G2isJP+dt1e4n72UwQBPwe1twH35qYCZ21QB2cu3OFTfozBn0Fg3mlg3mloH+AtDvW/TaJXqRdSvFc4t25v66wLgLhicF2Ua9cOeGm2ISDLdAZCdB8MK44Pg0MG5cutwgKiaBcf9LDwLjyGKYfPIrI5gyQmTN5Kh0O92n3UQ5TJy5oLl154kblIhsCVvGLlgOt816hhwjm2PbbOG2Xcc1cwdX7Drewh1sYBcjpCQobqeniZdNQLyBBh5IqL2VervdFh1QaSBypBDFKZUmL0KOljSA0/JyOrQvvjmd0uBTAy1tyDHg5VSVQdNoTjLFK+Xz77TBXQj/vYA0eA4NgrU0/DmlV3teh/44jtHv9/HYY4/h2WefxS/90i/hE5/4xJHz2Ky1yLJs+kV2NFmdFmrTvb09tFotXL9+HW+++SauXr2K27dvI45jnDx5EufOnUOv18Njjz0GYwz29/extLSE1157Df/u3/07bG5uYjAY4Nq1a4jjGGmaTs819f0tiiIsLCxgZWUFy8vLKMsS6+vrAIBnn30WURTh6tWruHHjBq5du4abN2/i7t27yLLsSFA81HepzEjyXUf+pa+1Q21Wp219Gtqn6aQCz6/ppCqHuQqoPtIctVlxavil/uNBm8ig77V+EXJoNdy8fA4hfksTDtK99kyDumnvtT2qeFqlo7VyeT/y6aVJCeDet2Jt7PdRaOy3DPe7/e5EET7Z7WL78cfxkR/7sfeE/U7X13EyTfF9AFljvxv7rdDX2G8ZHnT7DQDdbveIPZX6jS+f0+n/8tV7nmb+zAPFTYNgfLUgz8txhvSH1kc0Pkq00bIoX0J1lGRYkm2qR7UxU8g2czwhOijUsbs8LS+b6tsqXNrYRqKTyoAmVxw8ziSJsbQ0xI//eIEvfAH4xV8Ejh2bTMa/TaBVKksXoL592wXF19aAlRVP4+Hy0hR47jmXdn3dBbWTxK0I3993wXLgYIX56qo7O/zUKRf0vnLFvf/CF9wW6i+95ILir7zitlm/cgUYjfooitYhHksBONpmfvzC+xz9y/sQDY7WteGanqM46bb41h7+mIQH3KkMSB9XSscL1PFHKH5Pr68v/QBF6ndaXUPXtF0ovyTbK41h+BiA55M+sKFQ14bzvqvVy+fjW5dzPkllUJqq7Cmli/MoVE5Vm2s6WtJbnD6ahsqqRIf28Vmapip9IQiNuR4k0Gpxb6PkBhwY3DccNACiiW2cbKduEoPOAtBbMpg/YbByIcLKeYPlUwYra8DSKrDQKbHQKtFHiXZq0c4sWrkLiicFDp0t7gLj7sxwtxJ8EhSfrBiPShIYn/yNiggmNzCTbdRdYHwSFM9iRFmCKHU/k7YRTX4m7SDK2rBpB8i6sFkHZdZGmXdQ5m2UhdtKvSwTFGWM3MZIrcW4tNizObZtik07wjV7F5ftHVyxd3ATW7hpt7GDfeST88T9tulHzxNvoIEG7heoM38w01bqfMAhTfxUOXo0r4eqs/C4g6zh4fn5YEsaMEmDFc3B5fXjdfbX0gCV4pEcY4kGjWaJVq0dQuXyOmm8qZoQ0ujltPFnEg2hAXYdmiSgTmWr1cLKygqOHz+OJ598Ek8++SROnTp1ZFLd52u32yJOijfLMrRaztlNkgRFUWBhYWG6Sqwsy2lgyhiDLMvw0ksv4fTp0xgOh7h+/TquXLmC119/HRsbG9jf30ccx9NJfP83jmPEcYwTJ07g3LlzOHPmDNbW1rC5uYnf+73fwwsvvIAbN27gwx/+MAaDAVZWVrC4uIjl5WV87WtfOzSgl5xPbXIqxNc6vPegbbMZwqlNfPEJhart1nidaN1CslQ1WcDxzQIhPtQpi7dRSMdpeoSXL02eabTw59KWbFodJb0YgqrJhCrHXNLHWh3r6GguO1VyWKXD6cTSu+FAN/a7sd8SfSF671f7/eO9HrLTp/H+p556T9jvM/PzuHb3Ll4wBnlAjzX2W87T2G+ZFv68sd/3r/2m5Uh1k/Sx1H6cr1S3UhutbddLy6T4tPEAhZCM8GCWVD8JnySvgLzVPK+DtlKQ0yTt2EJxaQFnnofy2efjfK4aL4TSSXIYssUeB92ymuLyeXn9Jd5JgUPaZ/1K8SRJ0O12cfp0gvPnB/jUp9zW5PPzwLvRbbLMBceLwq3kLgq3ajuaTPz7FeMAsL0NfOMbbpv0nR23GnxpyaVpt919HLsA+yOPuC3fn3jCpdnacgHwP/xDF1D/r/4rt3X6qVPAiRPA2prB//a/zWE4TAAc/XCFrmClPPZ8lYLIvj1ou0j8p+lCNpx+5CCN5+l59RSfzyedb+7pkbbc9n/5UUzS8S9cnrhs0/S0vjwtx6fxib/nPg6njZepbTEfsuFVNpvrmxDwbfglfcRX70vHZUhyQtuN23BJhjg/qazzMaskm5oN0PQktz/UtvM6h+SZt12ozPcSeM42nHgn4f4KoRpL7LEBotii1THozgP9JWB+CVhYBhbmLebbFvOwmMtL9KxF11q0U4tWNtk6vSBbqGdAkk/ODy/c1ugR3SrdToLgk1Xi0TQo7gLjIIFxk8WIch8UnwTG8wRR4X5xOdlKHREMIlhjYI2FNeXkcPMciKPpqnHAwqJAaQ3SssQwKrBTjrGOPdy2A1zFBq7gNq5iA1t2H/sYTUPiR7dOb4LiDTTwoELtwHhoEEnfS+9C+ICj2zZKg02pDP8MkLeK41DX8ZTqoOWpmiDSJhSkAaeER6IhxCfNqQnh1ybAQs43f6bVT2sviR5tAEwH39IESmjA7NMmSYJOp4PFxUU88cQT+NznPoef+7mfw2OPPYZut6vWtw74LcrTNMWNGzdw+fJldDodjEYjZFmGLMuws7OD27dv45VXXsHa2hpGoxG63S76/T7OnTsHay1ardZ08qDf76PVaiFJEhhjkOc5Wq0WLl68iI997GM4ffo0Ll++jN3dXaRpitu3b+Pu3bvY2trCeDzGhQsXppPzRVFMfxLfPc9om3FHhr/TgDt5vF1COoTi0OQslJe/53i4c11VrpSWO3FSHSkeutWc1j/qOHy8z0tOp5ZHwylBXd0h9WttoiBUVkgnhnSCtAIhpMc0COkR+l6aPAhN1HCcVSuFNCe8qq/UhcZ+N/Zbw/kg2e/j8/N45sIFnPzZn3347XcU4WSWAVtb+GMA48Z+N/a7Ahr7Lb9/0O03pZPTrdlNSddK/YPj8Nc8mOX7g1YPypMqnc6f8fz8LGIpD9dvnFdcF3qe0ECwxrtQ36MyJa2Spn8l/cVlp2qnjNA5vnzsZYw5EpzSdAGXe953OS84vdKKy1AfbrfbmJubw/Hjy/jYx67gC18A/uyfdYHjOD5C3szgi8xzt3V6r+eC4nnutkBfXwfeestN+D/yiNsevdcDFhYOVqv3ei59q+W2R+/1XEDdGLeivNMBPvIR4DOfcSvP79xxK8pHI3fm+NWrwM2bboX500+7leW9Xhd5/iiKYhtZtnOIZi6btO9RPtNzxOW6H5WrkI2TPobQdKPPw8vj9Ifo4ni4TEk00Hsq59rRAxodoV1zPA+4/ZP0jKQnpfpSmrh+0nSBVA/JHlN7pH2QLNXNPw+1Fa8vv5YC6bwOmu3W6iGVzaGO3eQBbT6GA3CoD3Fa/L30QdWstLxXwAJNcPwhBwPAGIs4Nmh3gO4cMLcIzC1aLCwACz2L+cRizlr0ixL9wqJbAEk2WSmeue3SXVDcTFaNm4Ot0ouDrdJ9YNyUB8Fx9z5CVBggj2Amf6M8hjkUHE8Q5bELjOcJ4iJ2AfJycsY4DEoDlKaEiQqYKHLbqdsINooAa1AiRg6DUWmxZ3Ls2Ax3zT5u2R1cwzauYgPX7F3ctFsYIcMYOfLpieJ2EhZHExRvoIEHHGYKjANHnV9tUFRnsofn0dLwMiRnP0S3NmEjDf74e22QpA1EtTrQus7qVEjXtN7a4FjCw+kLDfJDz6XBvpY+5JhL9eVtX3elkiZ/xrjVWqurq/jVX/1VfPGLX8Tx48dx584dPP/887h27RrW1tbw2GOP4fjx42i1WodWfmjyRXn3yiuv4Otf/zpu3bqFvb09nDt3DidOnMDW1hZu3bqFOI4xHo/RbrcxHo+xt7eHxcVFdLtdXL58GVmWYTQaTc83HY/HyPMc1lrMz8/j3Llz+MAHPoALFy4gyzIMBgOcP38eL774Ir797W9jZ2cHeZ5jOBzipZdewvXr13Hx4kWMRiNcunQJo9EoyHPq9PCt3fjWV/Qvbxupb1X1J82B1/Jq/U5yvulfafJG60scJEdeokPr41xfSRPDofK1/s/rUKUr6wLNG9JDdXBrbSvVhT+j9xxfHZ2i1Y3zitIQcvRD6evqJs5bXid+XadOVdDYb53Gxn4/OPb7N372Z/Hzv/RLmHvssYfWfr/80ksYXbuGj6+t4fnhEN+4fRt743GQ5439buw3L6+x3w+P/ab08b5Jg2i8LG1VNE3HZZnqDnpPcWj9IyRTfFWsRKf/8d0LND7U6W/Sc2kVeBVezQ5L+pfnkWRW4jMtg9LFnwM4EiyV0nL9y2VIC+yHVpPSdqRpOHg8XkZbrRbOnTuH3/qtn8LnP/9/x8KCW5n95psuuLy6Ciwvu+AzXRRbpaJ8U+3vu8D09rb7XbjgcN66BVy65ILUe3su2L2/71Z5Hz/uVqt///suuD0YuFXl29subZo6/MeOAR/4APCpTwHve9/BeeMrK8Dly+488rt33bOdHXf//e8DH/nIMvb2nsC3vrWOnZ3BIb5xefLtyflfFMWhbcL5tv5UDvjW2FQ2jDFHgsCcFq7TaBppm3NPA60XlYkQPn8v6RltLEDrSMvS7KsEmq2n+KW68nERr5821tHsn0SXxiuKm4/d6xwzJbVRyIZLbcLL5HmlciUZ5PWR7CtvbymNr5eUXiufp6F8vpdxVgMNPKxg4GxvFAOtxKLTAfo9YK4HLHSAhZbFfGTRLy162WSluAXakzPFW5lbIR5nxv1yIMkjJH6leHE4AE5Xi7tfNEkTudXihYEpIhcQz6PpWeIuSO4C46Zwf1EkQBkBk6C4MUBkLBD5XwkblYDNUUZAZkvsW2AXJXZsgXU7xB07xO1yDzfKXdy0O7htd7GJAYZIkaGYrBQvD22fDqAJijfQwAMOM2+l7q+lSQEKfBCkfd3IB+q0PH7NHczQoJzTpg0eNWeV4+S4ed3qToBIE0ihtNrAsor/0gCUlknPiuP1ktpJczqqnkv01AGt/bU0nF4KURRhaWkJP/mTP4m/8lf+Co4dO4aXX34Z//gf/2O89tprAIClpSUcO3YMZ86cmZ4l+sEPfhA/8RM/gaWlpSPtUBQFtra28IMf/ADf/e538d3vfhd7e3vo9/soigIbGxuHnIw4jtFut7G6uoqNjQ2UZYnNzc3pVq87OzsYDAYYDofY399HWZbY2dnB6uoqPvWpT+GZZ57BjRs38Kd/+qd466238GM/9mN45plnsLS0hNXVVezs7ExXhKdpijt37uDu3btTx1Pa6k7iJZ9EkbbXk/qppBukvifJgdS/Ka4q3SA5k1KakPxo+kNKTyfXQtuahegOnX+ogdTf+UQKLzvkwIbagupsSXdzXnJZkWip0ybAUd7U0XWSDZHS+Gut7lXtEZIZ7RnFLU0O0GupL0h2alZo7Pdh3I39fjDt9899+tPonT//0NrvFoDHx2MUt2/j32xsYNTY78Z+C3kb+/3est+AzFdOB38eT5biSrR4mfPbXHP+S+VJtp+v7ua88+l9OVUrNEP6hMszLZevuPXvqL2W9FGV/vHvpBWSHK9UB88rnj6OY+R5Lso2XdErBfGl9qH5+TWlRasjr69WD8m+aLrD0x9FEdbW1vDzP//z+HN/7joWF3MMBsB//9+77csBt3L8zBng7NmD3zPPAOfPA5xU33x5DuzuAjduAN/6lgtoLy+7LdSvXXMrxo1xwe44dkHxc+fcu6Jwq7t7PYdvfd0Ft3d2XNDcWnfe+LlzwBe/CHz8466c//1/B15+2Z0l/olPuOD66dNu9XieO7qGwwhvvtnF1asxyvINFEVx6CM1rm/5vU/nxx5Uxnh/lfQAb1u+hT9Nq+0CQXFJ2/5LelsbT3C5lcqQtvKm9ZL0Bv2YQLIx2rbaGtQZN0j1p/TzviXtTKHpolBf5mN/zh8vK1yXh+yYZpskvcE/opT4Iulmj0Pajp7znKfz7zX50urIgcohr4dkvyjP30kb/rCBBaarxg2aoODDAr5NI+PsZpIA3Q7Q71ks9ICFjsViAiwYi7nComeBbgl0ShIYz4EkNYhSgziNEOcGSeEC46Y8CI6bMjoaECeBcTMJjJsiAkoDU0xWixeHA+OmiA/9UMRAaQBrXH0MYIyFiUqYqEQUFygsUMYlMptjUBbYQI7bNsU1u4ur5Q5ulgPcsgPcKfcwsCPsT1aKH2yf3pwn3kADDxvUDowD8oQTHzjQZzwdxSENSiS89J004OIDFur08WupPvSvRCcHaUAmDXol/kj1pOVzXkpOPc+n4ZP4Sd9LK14oHdrkg4Szio9V9eb4uTxVtYVWB8AN1BcXF3H27Fk8//zz+KVf+iV85jOfwe7uLl5++WWMRiNYa7G7u4u33noLzz//PKIowvz8PH76p38aH/jAB7C4uDjFXxQFbt68iddeew1f/epXcenSJezu7mI8HqPb7U6D03Nzc1M+tlqtaf7t7W2MRiPs7e0hyzIsLCxMaU3TFGmaTleezc3N4cKFC4iiCH/4h3+IL3/5y7h9+zaSJMHCwsJ0wt9ai729PRRFcYjvdOt0zfny7cy/kpb6Nf+KmMuEJuOh55rTWdUPJdzcafXPpTpxPkj1knRQlQPm09JtvarqTkGaQKuafKDPJPo0Pkt10nSsTxdy4uvoIk6H5HxKtGh5q0Brr7r6ZJb6cOArOzTeSXRKkyzaKsW60Njvxn5LOB8U+/3S88/j//ad72Dl299+uOx3WcLu7eFinmPRWrxhDHaMgc0ykVeN/W7st1anxn5X43tQ7bfHpW0dTq812dPoq7PqkNfBl8PbM0RfHVtaJR+SXHkdGOKB1g687WgeHmTiwR2JbxSHRLsvzwf1eF+ieKoCoFK5Hviqe2lspa0k5eMXaUtmqY5Uj/nyoyjCyZMn8dRTT+GP//iP8F/+y9fwF/+iW5H9la+4wLa1Lij94ovuOkncKu1f+RX3o1utW+sC3uMx8M1vujx377pV4PPzB8HplRWX1hi3Ct3R5VaQDwYu+D0aucB2Wbq0o5Fbvb6354Lry8suOB/HwP/6vwL/+l+7Fe6tlluNfurUwer2jQ0gzw3KMgbQgTER8nw85Yc0zqQy5FeG850VKN/9+ISP9Wib0/akciX1O22MyOVc+yhE00ceh8fL+xyVv1AfoHWQxi9SkL1qfMCB88d/iCCtzue4tfGPpOck3cLfAfqKZ01H8Hrwd5Ls0XbT+KTZK64PPdAyKE9o+ZJd4O3Gx3uS/pLGUxK9lNeSDddsHv344J204Q00cN+DBXxk3ERAHDl73EosuolBL7HoR0AfQK+0LiBuJgFx/8sMWrlBnBpE4whR6oLiceGD3e7McFMamMk9Shf4RhnBFga2jNxvEhBHEcGUkwD55Gcmq8SRx9N0ZQHYwqIsCsBamNLC2AJlkaMsYhR57P4WMdLSYFgC+yVwt8xxu8xwqxzhWrmLa+UubtsBNsshNu0Q6XSVuCVBccewas+jgQYaeFCgdmCcr67QBoj0OjTYpQMWes9xhEBzziT6tHw8P3cKZ6GDlhsCqUyJdp4nNKlAB+5VNIScJv+cpw85waHBIncoNHySg8HL46sNpPpIbTscDvHqq69iNBqhLEt85zvfAQDMz8+j2+1OzxHN83zqeJZliatXr2JzcxNLS0vTLVU3Njbwve99D9euXZueH+pXmllr0e12MRqNMBwOkSTJ9OzSvb09jMfjKd2j0QhLS0tTZ7csS7TbbXS73elKgjRN8eKLL+LrX/86BoMBxuMxrLXo9Xp46aWXkKYpjh07hu9+97sYDodiH5LkjDtn/L0mj9wZ4RMkvDy+XRUF7pBJcqg57ZqDrtVZSis5rRIPNB2g8UrCJdVHe1Y3D+dHHb3lcWlb1/G21PJrDnodnckddM7HUPBG2/65ih5athS4kGjU6sDloo6+5/RKfOK4pCDX24HGflfTQcsNQWO/f3T2e74o8PXXXwfw4Njvb3z96xhN7HerLLHY6+HuCy/g5tYWjvf72H3tNZzb28NVa3EpiuBbo7Hfjf2WcDX2++D+vWK/AdmG037Iy/d5OH/9M/rX10n6IETjkSS3UhpOL72u0lWSPtHK0dozJF/82oO2Q4ck81QX+8CmZms5/Zre4nXj+p63Pe93vP3o2blau0lyJNVRWh0utRstY3t7G8899xwGgwHKcog//mMXpD52zJ3xPR67oPR47ALbxrgV3a+95gLVc3MuUJ2mrrxXX3VneieJS7u1BSwtuQD33JwLbO/sAO02YK17v7Xlgue+KQYDYG3Nvc9z9+v1XHA9SVxZoxHwR38E/O7vusD3/r4rY3HRbZc+HCY4e3YOX/pSit1doCwNjIlF3ezHCsDhVduSnZWe+f7JA9H84wlJXni7e9y8H2jtT8vn/ZLXVRtbUBo02ZHwSONZjpPnp7wL6Rqt71O8Ul+pshuSrqFlUTngtIZwUZxS/SXbxPFS/STtJqPJF7+W6KHlS/rFHwcg0SXVl8sB12E0DaVF4hvHG/owKWRPGjgALgkGaIKEDzjQ7m0MCY4DaFk7CXwDrRRoA2gboAUgKYA4B0xuYDIDZBGQGiCNgNQFuG1pUBburHDrg91+i/TJinFT+gD4JFjuV4qXB3/tJDBuC+OC4HmJvLDIihJ5YZAWQFoAeWmQl0BRAnlhUJQR8sIgKyJkpcG4sNgvLfaLAptFjo08w2aRYtOOsFWOsGPH2LcZUhST88TpKnE0IfEGGngIwdialp+umglNcFGQBkjSQLwKV2jgow2KQ/mr6Pb4ZhkUVU0saYO1KtDwaQ4Dd+A5v/2kLU1TRV+dOoUG6do2vFWgTaL5v3RrMo47tD2upzdJEsRxjCRJppPqURRhYWEBjz/+OJ5++ml86EMfgrUWN27cQKvVQrvdxmuvvYbt7W382I/9GDqdDt544w3cvXsXOzs7AFxfyfN8urLMT6j7yYl2u41Wq4W1tTUURTENeg8GA4xGoyktfiWbP6uU8iCOY7RaLRhjMB6PD60WD23dJcko51NI5ngebcLH3/t20AJoEg11+idPp339LDlWWgBK6wN1J7V4f6rjaFX1B6lPz5L/nQJJn2ggOZocT53yKK5QWXWgqlwvo7PaNk5rVVr+jP/V8vq/qZ8ZnBEa+x2Gxn4/GPb702WJ/zyRyfvNfu8NBiiHQ3SzDAt5Dru7C4zHKIsC+aQeqTHYA2DiGDtJgnEUYZBlyBv73djvdxEa+3203AfJfgNAu90W+4ivg9Sfq2y4FMCX+gvH46+1IAuny/dbTpeUNnRPadGA27NQ22nl8zEKrzuvQxWtlEetVmsqB1KZPPgk0STpf41/PJit2YuQrqXpZrXhvB7AGNYWMMat5E4SF8Aejw+2PF9ddVuXf/7zwMc+5oLXV664oHW3C3z1q26b85/+aRcI/+Y33fv1dZe223WB7d3dwwHxZLIUpNt1v8cecwH3jQ0XTN/YcAHzNHWrv9fXDfb24slZ4xGMsZO/Bq1WjG63gyhqYW9vhDTNpjySbLi2lbqkQ7Tt87l9qrN7RMiG8zYN2XAuh/xZ1VboVTac8kT70IPzhvOH0iHZ8FDdQnzU6k2fS3zV+mUdOrTyJVsn4ZbugaPHM2h2j8tnSN6qdJR/x9uCl0c/8pD0qzQm8+9pPqnMKtD0OZfb4XBYCx+HkM16UEGqURMqfLDBGPeLYiBpA50e0J8H1k4Bp04Dp066Y09OrAKLbbdyvA+3UjzJDZLMIEkjtNIIURohyiLEmdsOPZqsFEdhJr9JkDt3q8aN9dulTwLfpZkG1FEaGOsC6m41uQuy57lBXhiMC2BUWIxyi/3CYj+37r4sMS5LZCWQlQZZAaSlxbgERmWBvbLAfpljp8yxU2YYlDnGtkBqy8lZ4hY5OUW8CYo30MCDC7XmL2zNUQOdWD+EQHHG6g74JMeQpgk5gNKgR5oc0AYkUhl18oXSzTIQ4/B28mrA+e4nkaVJDImGEE2ao0DfaQ5enTI1h4LXjTr+1DHl9PG2iuMYnU4H7XZ7+m5+fh6nT5/G448/jlarheXlZQwGA1hr0Znsx7a/v4/FxUXEcYw7d+7g6tWr2NjYwN7eHgDXV/wKtjRNpysJfBkLCwvodDpotVrY3t7G7u4uyrI8tOKNBrtDPKN89s8150WT81A78DT0neY88LYL9T+OJ0QrLVuaPNIcNu74h/q7zyOtbJTyS3WV0vi/oe28qhxdzXHjvKml+AN9t6qu/IwzKe0PAyiv68qD1vbaCg6pPIqL/6U4JRx1bGWI5nciME6hsd+N/fa4pXf3m/3+uLV43hhkxrzr9ruY2G8UBebi2M24A1iYm8PJdhudVgt7OzswOzswRQFbFBiVJXYA3Mky7JYlRgAKe9SFbux3Y78b+93Y71nA6y/NjobqI9EiyW1VG/AyJFmqC1Vtxe2CRId/x1cx8/4s0a/VMVSWdC/VS9NH1trph1ca7zTbrtlUrmP8c/+XnsNM+xpNS2nl+SU+c1o4T6Momv48noPtuDMArh8kiQts+3O+jXFboL///S4w3u267crv3nXv5+bc350dNzmfJMBbbwEvveQC49vbji+djlvtnWVuxXmeu7TWuq3PV1eBubkInY4LsN+9GyPPI6RpgjzvAIixv58iyyysPeAtradvP7oVOrXnnFfSds6cl9yGhGRTC3hrNlzCKdnwqrK5HEll0nrQLfU5HkmmqQxJtpSPSSV5lurp3/MPOaQ6S7a6jg3XeMnTSPWTdLjGpziODx2Vx3HXHUdoIOkZzhf/nO9AIum9KhqpbjmsK3T7Ix0zoelCrU14XTTe0XdNYPwAQjVqwoYPJhgfGI9cYLzdBfpzwMk1Z4tPrQFrq8DaMRcYnzNAD5OAeGaQZBGScYQkjRFlLjAe5W4L9Kg0sIVBkRsUk7957v6WJVywuzQoC/IrDYrSwJaAtS6df5ZPVoVnPiheWAyLEqPSYlhYjCdB8bEtkZeY/lJrkZUWY1tiZAuMbIHhJEA+snS7dBwJiKMJiTfQwAMLdcZFM50xDtSbDJAGm9rAnOfx+bTBMnB46yjNSeT5tAFvVR14Hv6syqmeFeo63dK9Npil19SJ0gbeoQkLjk+jlToh2oBUokHCwe95Wu5wcSeVT0DEcYwoitDr9bCysoL5+Xn0ej10u10sLi4iiiLs7OxMt2D1z8+ePYs8z7G1tYU33ngDr776Km7dujU9UxTAoUl6v+rMl2mtxfHjx7GysoLLly9jf39/ug2r/+vbKDSIp86mT8/bl0KVoyalrZJDzfHQZJP3Id4nQ3KkTRpITmrIUeJ6SKuvRDfPL9VXu+b10e4lp7OKVs2ZprgpTrpiIQSaUwrgyEQEL+PtOuVaW9XNx+nhNIb4zCevJLmT9KpUjgRVdk4qq8rezgKN/T78rLHfD5b93gRwLIpwN47fMfudjkbo5zmWyxJLSYL+pF7l5OO2EkAaxyitxeqxY1jq9/HSjRvYGw6RlSW2AIyLAhmR78Z+H07X2O/GftfNx+nhNL6X7XddWqv4J23hW2Xn6T0NhtB7qT+HbJFUBqXH0xvSCaHgSx2eSLaIQgiPpHv4Oy4DdOt6mo7n046ykPSpNJ7xz73vKZXpbZF0VrOnlfJdslu0XEq7x22t+6CvLMtJWQZJ4laGLy0Bp0+7LdUXF92K8OPH3bs7d4CTJ4GbN93zEyeAxx93q8pv3AC+9S3guefcluqDgT9bPEKvF8HaBECMNI2xt1fAmAhx3IW1FhcunMHZsyfw/PNvYmdnD2laoiiAPC8m4w6Lohgf2VLby4evl9+hxl9LYyrJXkg6UUonjYto+9Oxgm8DPn7gbabpQiofUltq4+SQfaPjNwk3x6XZP46T9nfJFkr5QrzmZUt0SHzhoPVnDlEUHdrhj9PEdaCELyRvVeMkqTxOB9fn2jhH03v8GQdNp3q59kdShMqT9B2XOak8iT++XKnO2visgTD4lmk49uAA7bEWgC2BMgeKFCjGQDkCyiFg9wF0AJNP+hMMTBoB42iydXoMk8YwWQzk0eQMcBfMLgqDcQaMc2CUA6PMrfJOCyAr3Mputwoch4LZfkv0wk7uCyAr3ervrLQYl251eFpaZNY9y637FbAoLFBOfoV197l1q8Fza5HZEpktkQsBcZD7Bhpo4OGG2ivGkyQRv/jkg3Ft0MGfhyY3NJJCTrsG0qAyNHB9O+klZ6MqX2hiom79PMwy+aI5ApJDVhefRBN/H2pbCpIzow346XvPS+1rY8AFqbvdLtbW1vDII4/g+PHj08kDH6xeXFzEU089haIopk69n1C/efMmbt26ha2tLeR5jjiOp7T51QDeWaZ8tdai3+/DGIP9/f1DkwcSP3i/4nWkz6V20yZwtAknmpeuwJHkmkOVM8jzSaslJCcw5NxJeaU8Gg0aaI6Q1jc1mmfpj7w8bdVIiBZKhzahodGrtW2V/uJlag40xafRFSqH5g85474f8K/XOc57qZ9mGyhIk0Ch+ki4pPL8uyzLxLxV0Njvxn5X4ZNo4u9/1PZ7CcAjUYQ3er23Zb9v37yJYmsLp7MM88ZgzxhsxzHSdhu7RYGiLJE29vtIGg+N/ZZxNPY7TGtjv+/NfgPuo1uuI/jWw778Khvu21Hbzjn08QTFRWmh6ar6KdXxXA44fl8/bcWphJvLnPRcCoRoeqBOfQD5zF5ND1FZo/qU2gKKm9ZFoi90bjXv4xJOrR34X4kfXC/wYLtP4/KWSJIx5uctHnsMeOYZ4MIFoNUCrHWrvtPUnf/9yU+6Z62WO9v72jUXEH/jDeD114Fbt4A0jZEkHRjTRRx30Ol0kaYuyJ3nGazFITu9tLQEANjZ2Tn0YTrvrz6AyXUyDY5zW8zPctdsOMWhtSu34T6fp6OubeWy5oF/ZMX1A5cDCZ+k2yXZCY1/aJ0pbZIs0/ySbFJcnM4q28hXIPOtvbW/FFdVcNVfa6vtOS+8TPHnXEfzPizxgPKWy3VI19G+zPFL7cT5Tt/RetWlnfczyYZTuqtseAik9uQ7M4zH45lwepiVlgcF6taqvjfawI8CaDuaCDAGiBOgFbudW9aOA6dOAKdWgdMrwKkVYKltMB9FbsX4OEI0ihGPYyRpgiSbBMaLCMgjlIWBLdzq7r3MbXU+yCwGWYm9zE5XfI8LOz0jPCus2wLdukB3VgJ5efhZWlqktnS/0gW6Swu34tvi8Grv6b0bV0yvp0FwHFkVzu8baOBBAa6bGxmuOYdk66SCvBWr5jjTwkODLmkgqDmTHP+soOHTBqWSQ8PrJtEUKqdOfqk87RmnV3PEQukpDdpgX6uXhlcDid91QXLepPL8c77VlE8XT1aanTlzBqdOncLS0hKOHTs2PbM7yzIY47ZkjeMYw+EQb7zxxqHtVvM8n5773el0pk61D5AXRTEtm/KMOtW8HaSJQE3uQrLIZVlzPClwJ1jiqybDknOl0UZpkhwjKZ9GpyYDVbqEO2JSWVUON6dHclBDILVRqE48r38vtUmo/JBshPQGdcI5DXVAwl8VOPD4tb6gpZuFDv+M4qmbP9TvePrQpAMtt05/vdeJ9cZ+N/b7YbDfSRzjU60W7p4/j+OnT9ey3z944w3cvnIF5eYmsLuL+SxDVBTYBXCr08FWWaJs7Hdjvxv7XVmuv2/s92H6Q/gpvJ3AuN9KXSub3vNndWy41G8k+1Rl47WyeKCJPuMyxcuS3vM6aHpEooWXwZ9J7cfT1+m7ob4itYUUBPLpJP6EdDoto0pH1WlPjQfaNvZJkkzlnbZRq9XCwkKBJ5/cw+OPu1XhZ8644Hen484ajyK3ijyO3Tnh3/iG2y79+nV3DniaxkjTCNa20O8vIs9dgLvVasEYMz3KjNLj7bQPXnNe0y3n/TNJDgH5wyfNJvK8UluHbDingZZH+c/blm9HLfW7urZSoyNkjyleWl5oNTJPzwPw/KMszluJHqlfaqvgJZ5L/NB0oVSe1q9CH3/5NLSsqgBxCHg/lfq7pLur2q2OzqVpqtpPesfrUWXDuXxqq8c1+qQPiynOJjB+GOrUqnp018D9AgaAMYCJJtupx0CnDawuA8dXgJMrwJkVgzNLBsttg3kToW8jxGkMM46BcQykEWwaI88MssIgyycrvAuDcW6xl5fYm/4tsZ+7gPh4svrbrwjPrVvdnZeHV3kXpXs3XRE++ZujRGH9im8Alge4D4A/t0fe2SPPG2jgfoJ7sSjvdXmuM9cw01bqIYc5tEK3rqMplSNVRsMn4ab3nPY65Ut4tAEOd9r5AFIa/NF7vjWZVseqgbR2LzlsUnrNwac4OA38S3kP2oSc5HCGHIrQAJw/84N4ms/LqN9C3W+/urS0hNXVVfR6PeR5jitXruDKlSvY29vDYDDAaDTCYDCYBsQpD/x2T2maHnJEpRVknj5/thzlj6eTOh9VTjZ3/iSHQXMWJCdTk03OT38f2qpKyi9da/caLq2/VtFQR19Izhbvz1p5Ur/hTqV/LzmG9G/oDFN+H3LwqugLtYm0UkHjTx1nTytLshchx1eDkPNc1fb8vVYnze5JTnUVDo12qd7vJDT2u7HfD7r9NlGEO70enmy1MOp2Rft99coVpIMB5nZ30R8MYPb20B0OcbcsMQDwKoB0Yr9jazFu7Hdjv3FURhv7HS6rsd8/XPvty9DstXR2Ls/HgfdJar94IITiqeIlIG/DzfWi346a08RXUEt9U7LTEm28/0j5+CrDqraU+jV/LvFOC4ZR/cHLoPpiFp3g68LbkeOVVkBLda3SFZx/eZ4f4aX3wRcXV7Gycg0LCynW1oDz591W6uMx8OKL7rexAWxuGgwGLdy9m2B722I8NgAMrHXyniQJiqLEcDic1pXv1sblgwa/pFX6fKwk8UEai2o2nPKf8pjbF1qmJEfUhvtVrLTcumM1TRdw3RKqP6+7dpwB1yucLr5jhSRTlL/0GeeXlJfXma6WlmyWpN812iXeSXogFITX2iK0UprXSwLpPe/v/Lmk8/i4kdPO00u6mMtuqB9xOeY4+W4yvM6SDaeyQ/FxWowx6m5bml1t4Ci8e6OfBn4YYMmFtYAtgSIHxiN3ZEkvApaMwdAa9Fox2oiQ2Mnq8HGMMo2Rjg3SNMJ+ZieB7xKj3GI0OQt8ryjc88L9RsVkRbidbHleTsqG2/rcWqD015OV4IeuJ9uf+2eW10WtpxXTNTLcwIMAdeTUW6xGpuvDzGeMe5AGydJAjA84pUEJhxAef8+vQ+8lGrRBpTTY8n+rtjbUBtecJu0d56VGkzQonxW4Y0Mh9IW7REPIqdAm3HnZtE20VVl1aZGcCP/zK8bn5+enK81u3ryJNE1x9epV3Lp1Czs7OxiNRlMa/HZrnGZrLdI0PZROki3JoeH0SjKtOV+cb4A+oSI5ypQWDhp9NC+nI+Sc8TpxWeFtXEWn1J8lGqpklT+vclRDddHaVcpX1VdDeoLipvyapQ003VelRyU5kGgP1S+kt7V+ey+g1ZlPwmgTv1L52rUHaWthjkeTF6ksbbLhnYLGfh+lt7HfD4b93p+fR6ffxweLAnY0ws61a9hOU2xcuYLBjRvo7u6iHI9xGcAdYzAsS+c0k/IMGvsdwkPTS+U39luGxn439vvdtN8ctyb3Em08AB2iTbPZHK+k+6Q+KOk7bStgSRdIvJdop7aCly3V24OnRdr+m0MVr/jzKhmS9L22zbyWX5J7/55u7621Kc3vg9f0QwauP3h/5PzyASqOA3BHAszPH8fq6lM4d+5FtFo38frrKYZD4OWXI7z+usGdOzH29hKUZQdlmSDPi8kubQeBbB8EHw6H077rbTgPRlNaqz6C0GSL1p2+02w4Lc/zJFQe57V/z8dgIdo4/TQv3T5bkgVfrueldMyCNB6ktNM+HfqAkPOS939tTCD1Fak+9JmmLzkPQ3yltoHLvueZZBOktHQ1vFSGxB+NXxwk28Tz049BOK5ZxjuSXtXsBtdnUltyGdPsq1aepL99Gmlrd8kGaXZDC5g3cADvJGfMO4yvgRnBM7+cBKQLYJwCe/tA1wDbBpgrDZAYpIiwbyMgi2AzgzwFhmNgmFoM8hK7eYFBXmJY+O3SS+yXJYZFgVFpMS5LjEs7XRFeWk6HmV5Oz/u2h8k8/Jfo+3uocgMNPEzQyPXsUHsr9Xa7XemoTZEKjrE2CJe+TpWca2nQr9HBHSMNtAG+VG4orzb4lmisGmxq9apKR+Fe8FcNPilezqfQQF4KRoTkQxqoaiIaesfBnyu+uLiIbreLJEmQJAn29/cxGo2mwe88z6f3tA6eD1WOiUYnpVdzHqpw1HGEJXySg82BptG+cKZl8nLqTCTUqUdVOkkuJH3BQaK7Dm0hHFUTHDQfXz0T4lOdfiThCOln6V7iBy1PqnsdZ7mOE1vn2dvRmXVxaH2H59FsAuedJE9V7c1xanRYa+95K9bGfut5G/v9YNrvThShtbOD/sReD6zFTlliPcswbuy3+L6x3wc4Gvt9FBr7fX/abwDodru1bDi1y5QGbSvuqhWiIZ3J9T4Fej6r1jdCZVbJTMiGU9p4G1IdxOmQ+qS2mw6vB6W/TiBFs68Uj0QLzUv5FLInHB//EITi8Kv4q7Z6pvkkHnBIkgQLCws4ceIE5ufn0Wq10OnE2Nm5id3dDWRZgaJoIU0t9vbGh7Zh93Wl8jjLcQ4hG85lQ8qv1avKhvM+JPVBnkfaqcTaowFrn2dWOyF9uBhKJ+GkckHxSB8XzWoDKA0cD8XHr4Gju1RQCO3oxPuItpqf16eqr/HxDtUnVHakfsz7p6Ybtfaj73weqU9rOpjj1NpPaw9uY3jZvD4aPzhIPJV4JLWVRLcmnxqOZiv1w+BrVc+Tq4/vncTZwGxgJv9Fk18cue3Uuy1goQsc70dY7RvMxxF6iNC2MWweocwMstxgnBmMMmC/sBgWBYZlibTE5JxwtzI8LUtkdrIFugVKe3AmOABIpt2yv2Bnf9eRl0amGmjgvQtVPgOAewuMSwM0PsDggxHpOuTg1x1ESHjowD90FtQRZggO0r0M6iV8tGz6fhYcmpNeswmDDhMdlGsODq/DvfKE4vDPpMGrNmDnA2mOj+M0xp1rliQJrLWHzg/1Djf9qpuXwc9YqlNHzYHmvK3TfppDVJcGydHl7aA9r7rndePtJ9HFQZpECG3tLKXnzp5E56wwS9/i9anSL9IzTV9V4ajjsNehbxadN8t7SdbuRddT4G3PZTyko+rySMsv1VHDXZWmThkUxzsRGG/sdz1o7PdRaOx3Y785NPa7sd+zQmO/ZwcaGPf4+LbQmg239mDlMH3OVzPydq3Th0I2HND7cmhMQWWAHw0gtQfHERq3cLpCOtHXhdoQHvTWxlASfVWrhumPbz0v1UELwGs80upbJxDIy6e0SnWh5UVRNP2gzVo7PZbMb3vuaaA2XeKbRKMUwK2y4XT1tPaRAOePp00bt1TRRfFI5dBdC2hZvE+E2pzXRfv4gfKKlq3R7/NxeaTl8O3d+Qc3dXQp56M03qJ5KV08T2hHA1o2pZnyV6Oxzu4iFDT6eFpaV6qfNTtT9bGelEcaq2h11oCXyVfL+yMG79WGU5kEjvYZSpuka/iuBaGt7Lke5Th53wSaM8Y5GGDmYKPnhJZvImEs7NnADxMMAGNIcDwGkmgSHG8bzHcMusYgQYQEBmVuUBSTwHhhkRZAWroAeGoPtj8vMfHd4YLhFgfPfGvzvzh0b9m9lKaBBhpo4ChU+bMA6gfGW63WQSbBEaTvQvf8eciJrQMSfskxreNUSxByKCVnnqbVaOP4NNDqEUrL6dEciTrlSe+l/FKduANP31WV83aA8zyO4+mEkF8VzgfBUn7qNNU5u0t7p+GnIDkpoW7J21qT75ADFuozdfqPJlsheuukD8lrSI9o9ZLyhhwmiXaKW5pckOrKryW8UjpNX0pl8XqGdIukp7iOCvVvrb4hpzdEu7ZKiacPtWkoj1Z21cRKlb2iOLQ8mm3zeer2GwlvmqZq+hA09rux3439bux3Y78b+83LDdVNo72x30dpC5Xp7+/VfgNAp9M5hItehz7WqWPDgaN6IiTLobz+nm+lrNnwEHA7ROkKyZ5/LuliflZzaDwgtbem37V+Q3VD1QrxWewHf0brxJ9z/mk7WNTpGxIdobFOq9WaBsuKwm2JHsexSDvnRciG+2sfkAWOblcewk/rQ88m5m0g6SUq79qxAD5PnSAop53znG79LAU0Kb9CfT/UfjSN1gfqjFlofwWOfuyktUNI54bqEtLJnEe0HL7dPtUZPEAt4dZ4Kj3nEBozVOmAOmVo+LkeoGkl+fFptQ8sNFmT8HkZoEc7aPa1yh5rxzVpfVQqQ+JpHZkbjUYiz6tgFrt3v4IBjgQepWf3goe/B1k7zkbp94i1gVnAcz8ygDEHAfJWDHQToJMYJMYgBhDBBcXLwiAvMfm5leC5ddukWwBUtdjpX8vuaRp7JD2HpsUbaKCBuhDyrTzMdMa4NOj1z32BocGVNlCh7znx0sCdPufOBc8v5dFo12jh9EtlSOVx2jQHa5ZVcRIePgimaUJOnVaeNtjUcFQNJmkaLivSmUBVEHL2uBPqzyHjbRVyOkJONS/P32tfaYcG2PQ+5PjT9FUTEbyPVrVzlTPD6Q3JvJQPOLqqQXP+PX4uF5oM8zpIZWvtx/mlAddRGk6pXGkCgZarpQ+1EaVfqxNvI6m8UD0kmQ21dR05kuRX0jmhOvrnvEzNpmg6ok55Gh+lvNp9Hf6G7EpVObNCY78b+y2lb+x3Y7+lOnlo7Hdjvxv7ffT9D9t+U1vzTttw/lzSQZyfGi00Dbczkhz5d1Jwn6al5Un2kdNrjDl0JJakN6i+4jglO0vrRmmi5fI0wOGV/ZoerdIhvAzpudT+UjpaTmi1qNaneLCR85yfbe0/aqN4pXqH+m0Ioig6tArcX3Oa+UcR9JgVGtwO6Q5/TYPVlFe8DSU9qvE8NJaU7B2nVXrv8dJ7n1aqH62b1M9oOfxeGjNX6VG+IwR/H8rLeSTpHL6iWauzB35EgUSblJfKYB0Z5jwO1SNEg/SevwvpEE4Txa/ZGZrX45ZWePMPRiSZ4uXxv5It4iv2JTkNjQkkPmljrJCsvBfBADNvX82hKo+Fga71OQXV9qGB2cFiwukJq8vJMxTuWVZaRJNUBha2BMrSwFpMV4dbi+nKcI/zqOzQ//m76mcNNNBAA+8kzBQYrzt4lQbufAASGpiEBr2hcjQHSpq8kMqRnHVtQKlN/PB8IadFoyNEM6cz5DyHBtN0gClNGlC6eFtJg1dt8kSrq4ZL4wt/J9FYR84kR02rr1QvacDNvy6uGmxL6SQ67wVo/TT5kXjF81I6aR2ld1X0SBMD/DrkwEgTcKHJEk2mQo5lKI0k05wuyUnVyqhLl6YXtDrzv3X0XR3Hl6alzmqdd5wWTc4lR17C76/rrNoJ2RMpn/S3yt6F+nJVmZRezcbV7Wd1oLHfjf3meBv73djvKnoa+y3TV0VXY7+P4m/s972DpLOl9pLoDfFVkvU6NpzLKm9j/l5aEcuDVnVok/gh0apte63JRh39wt9pNpbrFrqq2afjNo3X1deB1ok+l+SB22WeP6SnJNnVbKPUPtbaQ4FB/04KUkurqPlKXQ/+GT8jWvqYTdIvkh7h8ijVSdJtIT5xuig/uBxqR93UseG8rWk6TbYp3dLW8bxfh/oGLV/TedrOPtLqeir/Wltx3D4N37ab0irpDpo/9FEnbUve/pL80Tata8Pr2Gotj6QzeLtJ/OX4tPFDSA55G/L3Er2z6BoJt4bf0yP1bQ0/B8mmavV9L4NRrt+Z0Y0O7zb+BnSw5MICMJO/RQmMi8k74/slXDR8mpHpvkN/w5vkN23eQAMN/KhgpuU+miNK32uDOW1Qw9/7ew+hQabmGNBBu0SrNCjjuGiZ2mQApyFUl1kmW7SyNdokJzs0OKXppIEzBe88cMdLwqfxUXPSaHrJSQm1i0Qzb3OpjhJIjhWlk0PIYdbam95TB8r/eP0p7ySZ0mRb4qfGK84TrY04fq0fhngspa+TrmrSQqJbo1OqX6idpHJDNNUpt6qvahDqW5ITKU1cUBxaHk1/avqI1k+ajDDGHNIhVe0p2Q2p79Cv+qW24biqoMq2VOEL2Tcpnb8O6ch7rYsGjf1u7Hdjvxv73djvxn5L9Wvs9/1tv2k5kk2Q2pzS6f9KQQPtnGWOh+olXh6XtdB7Xo4kB5RmKkez2nBaD61vS3pC6hdSmby+1tpDO51otPA6afWj2457vNqYgPPAB+S53HC6ARwJ3vNnoX4kjd2qeKzVX9PBEk5JF2sBT1oGbRt/PYsN13jjnwMH7eb7HOWPZP+kMjTZC+lNqd4cQrqJ9jfJ3kllVb3zeKQt5yXbxPsT74scn2S3tDrzs9ClFf+0LE6T9E7Ti7y9pecel6eLfwCi6Syuo2j5VJ6jKDqkB3gdQruQSDLpd+GQZETTFZps8PKkv6FrXgZwdKcvzn9J14fSa3x4r4CZ/N5JfO8Otvdm+7zbYP3Pul9pgcICZekC5EXhfmWJQ+eIl7CHfpb8tRw3+zXQQAMN/KhgpsB41eQBHVzRyRQKVQMMbfAfKld6J01gVDkIWhl8cB6ilw8UOY5Q2R6fNKER4n1Vu2h143UKOeeUZokf0j2vIx+803yhOoR4wAfndetA83vnIES7BNypr5IPDUKyyScMKE4aEJAG/1UOBC3H/+UOiORwcZpoGu+ESfg0OjQHkKavM0ETcmykSZ86IDl4oQkA6Trk3PJy+LNQX9PkjdMq0UOvaX28Y06dS0kuJDql+mn01AXumHJ58xMbXDYluQ3RR3WIJkca7yhOKR2vi0aHRluob8wCjf1u7Hdjv3EkXWO/G/vN6Wnsd2O/tbpodGi0vVP2m9IYkiluw7lulHSNpvs57XxlroRHa2fpr89L//IVg15/aH2Xtz3nOe8bPB/nIa0n53fV0SGh9ub0e9nX7DCnhfNLwifxmbefxG+p33E5oO+KohD7KU8ntSUtmz6jAUu+nTWvk4SD14E/k+ijtHN5pnXgNHr8/OMHSZ+EZFaigz+XPiKi5VK59veeTm43uczR9NT2S7Tw4CqXP023UhsubZvOeSS1c137Kx2Dw/Np9kwbl0hpJVmrKkOSLeDwVvL+vWTDeX253pPkhv6VaOVjUCkdtSNcH/o8fAt56WNVbZt9qY/SfD6ttMsM77eSjpbycHsl0UOfvZM2/EGBugHxe+FKVR7/Xh9tvtPh+gZCYPnPup8U0ZYeWxxsxc6SN9BAAw3cV1B7K/XQoIAPgCTngN/z59x58gMRaWstqTztfagOIWdFSysN6rlDzweOmiNH81YNvjhfNR5q6SVHWWsXml9zsHkdq+ohnXHFadDuKW3cceN1q8Ir1RE46sBTuqUBvbZCLuR0U5yajEoOc4gnvN7a9oG8/ppj7tPQvifl1+TR06BBlROm0aTxi9dJeq7h0NqLvue01umfoX4v8U/qh5xeTX4lujRnX6Nf6stSn5J4wiHEIylfiCbtWRV+iYe8DTQ6JPtUpbNouYC8tZsm94B+PrFW/r1AY78b+93Y78Z+N/a7sd+cZgqN/b4/7TelS9LNPIhC77XzrSlI9tEYI+pPn05bYQvoOoTKp9SGkn2jtkOyyzSttF27ZgNpHbWyOe1VfZfbGEqrv5aC0/Q5lUMeYOJbhPN+r9lHn1eqCw/28rpIupEGSelziR/8uRbgkuSM8kHiL8eh6WWpj4RsvWR3fbma/vdl0LOjNb2i9UvelvTcdJpO4r3ES1onei21hYSblhuyM5KMcH5yG891FadXa08Jv68LXc0c4g+XV83+Sn2PlkPrwPFI/UGyK1QvSHLNeaPpT1pXSU9o/ZP+5c8lmvl7Ka/Ef8ofes8/6uD6UTtuQ7IB/t5vsV9Ft1SmNq5r4O2DPvI7DA2370/w7WJQr42admyggQYeNKi9YlwaLNYZZEnP+CBDckQofsnRmiUNL4sPzmi5fPBeZ2KJOxTSAE4adHHHTQNt0CrVm9ZB4ok2EK4qW+Kp9ky6lpwiCpqTSq+1SQGenw/MKR7+JXror+Q4aQ5JXRnlfOA4JLkK8YbXpWqygNNKn9HyNGeG10m657Kulav1RSmf5FBp8ij1i7rOjkSj1J94eZpMheRcai8NQk6mllbKQ2mow79QOVK5Gs6QzIcmZChIbVAl19JzqQ1Ck7waXbT9+ERAFQ0UL/1JKyPr8j8Ejf2urg+X1ZBu4jQ29rux31K+Kt409vtoOqlfNPa7sd9anveC/eZ0hWw4f8YD6pIu146j0GyhxKsQz0N9je9OY+3hM5j59svSbjb0naYvefl8FwttlxyOgwLHwesg6S6p/8/Ke03euH3lvOBjNZpX+iiL5qe85fWkepbzh9eBbgfPZYTzXJKhujac85JvoV3XflC+aTqMyxVvT9rHqnSzL8cHzmk7U33F+4NW7xCPJDpD+Sgtkvzx97wsTq/0MapGf2jsT3UcL0Parcb/5TKh8YmCp1nqDzy99EGSpBNoPbR8/l7TbRJf6LXW1hJ9HGj5mgxJsq/h4M+jKDp0ZESILm774jg+wgftIxtOiyTXHp/mgzRw70BbvuHogwu25q+BBhpo4EGD2oFxycECjn4ZrjkQmlPhcQP65LJUrlRmiHYNLx9kSQPX0ARnHfqkskI4qminPOY/n0dy3kJ08gG0NCjk9Id4HqI/lJc/r5vOlxVyOnmbhvghtZc0IeDx0TyS4xI6B1UrU+J/yIHT+MLTaRMlofy8vtyZ5Y6LVp5WF8kplq6r+o6kC6T6SY477+ucbk1GpDarC1Jf0iZVtLySbtZ45dNrzzX+aTpAq9Msuk5yZrk8aPg0ZzvEG0pjSF609tRkRKOxqt9KddDqda/Q2O/Gfkv2rAoa+93Yb00v8frS9pHobuy3nLex3439rguSvPrVi1od+DNJFryc8uCEpEM1/UDx0F+Ifqk+vM/Qa20lekhmKb0+qKXJqpSfBnukbYn9j54rzgP0Gh8kXvF8VLfxILQk/5Q+SU9yfoVsEC8jJOuc3pANp6vhuf6g5fKtyin/qU3jtEpyK62+l+rr60Fp4/ZSq7/WHhyHB2kra46Xy5cxh4PP2nbYGl08uC7pQwlPiAdSO/AyeF5pzKHh9+XzYzd8Xt4vKUj8pfWqknep3Xg9KR6aVzsGgePTxi4af6S6SmMzTVY5/lA70HttbAccHSNzeZNo83m0vBKvePlcR1CQ5I7X0/cniZ+cplnHhw8qPJi1NKhP+YNZwwYaaKCBBt5dmGnFuDSYk84vo/d8kKcNcLgzqA06pbxVaULOEk8j4Q0NhiS+aMAdgdCWlRrtEi7ugIYGkRRn1eSbxicJJ73XBt9S3aS6eOBOcF2gg26JjhAvQyA5y7RM3r4S3dLWaRJOiQ+8jlV8Dck3pznUViEHTKqzhEOb7Ak53ZJzp020aH1BeqbJPZdtqS1CPA/ptyqnSiqDPwv1K+7IhnhGaabppDPNJGeflkdxafXhOCUaOO7QpIkGXL4kea8LtL0k2yDpQc4bXg+Ki08GcB1Qx67NAo39lqGx30fLaOx3Y785NPa7sd+N/f7R2W9ahqaTeFmaDZb6iRYkDNlkml8qg+Pi/AqVR2mSxikahPQM13dlWR7aqlqzDVR/ax//aXyow5/QWInKmybPnA76l9IhybwUVJX6Lm8/iVYKPojrzyLnUHc8JI1jrLWHZEPDo9EntWGVfpfOPJdwSXqXXvMtm7lu1OioY8NDOHwfkmy4tJMPPeNak1NJxrSxA6dRk8cQ8P7L80pBc5pGKrfKxnJbEDqSwhhzRMfxdFqba7pZekd3D+D2SKsDp1Urk+eTdGMd/cuPZwjprCpc/lo6LkRqB8kmS/bDWouiKEQ513Z+eadseQOoOD+86llIX1TrklDpDTTQQAMNvHfB2JqWvtVqHXFSpAkMzSHTBhX07KdDhAWcG/6OD2DoGU8ahOjSaA05m9IAkt5XDcA5VA3sOU5pQC1NDmhOV9WgTxoUS/i18umAWXPeZuVVyJn1A2d/LTlEkhNd5VRzOrljHOJliMd1yr0XuJfBfB351fr8LGlpnjq0an2Vl1GFq2oSRMLPJzTutY9Jz0P0ao5piM+SLIX0k1SeVCZPV0fHV+kpiR919God2rX6SLz011LfrrJv/L5q4kA6f1DigZQnyzIVdwga+93Yb05XY78b+82fNfa7sd9V6aSyeJmN/X5n7TcAdDod0YZzG0z1pWZzaFp6Zi5/R+ugvePPrLWiDQ/p7Cp76YHaH5+OrqKVbBPHEwqyc/5K7zy/78WG03OlKc+kbcw5aPpYolnqA/5dHMeH7ml6rW9p9eJ0V+m4qne8DC7D0ntNFmexm5q+4PSG7I7U16S+KJUhyQ/nMcfH89fBK9FM8VJaKV6Or47d930zRB8vQ+K1/yt9xMLbpM64QZMvSl+VDXsnbTinLwRSn6XX74YNl44G0PSNVm/NHvF6z2rDaXl8W35OJ7UP/gzye7Hh4/H4SPo6UNW29xvMQu076PHMSIVU8jtHTQMNNNBAAw8P1PELaq8Y5wjrTDD4e8lZ5YMb7R1/xnHS+2ml2JlqPD8tlw/eOE2cNq2unB7pLx+Ecfp5ek4Xp5/SEnJgeD6NBlqeVneJBm3gH5IXfi3VhfKljjBr7STVzwPdhomXK9WV08nTau1RVYfQu5AcGyOv9ghBXSeV0sYd9SpcWh/W0kl0SA6vJJOaPNN0fDKqyknRZEFy2CW6QzpNkxkJjyY3XF9w/SU56LxNJEdc0xdVekCaJNAcdw1XnT5C6aHlcF5J9kKrJ31PV6JIuOrQHKqjNKkgpamDa1Zo7Lde98Z+N/ZbqgPN39jvxn439rux3z8q+83LrLLZNI9mw609CGJLZ/HyelEdItlw2g7WHv7wiOs5KahK5YDLh1ZX/55v58z/cvwhuaLlUN7w9qe0UdnjaSmukA3X7HgIpHy0T3OehXa60eyeNMbR+o2mg/yPy5kmn9o5wTydRIdU/9A2/Px9HR1P3/m257ZV0xF8q30ub5o+9mml/qetaqd1oryhtEj15u1Jr6XzoDkdvH9zG171IUJoPOffSx82+rKk88+pnpB2WJHKCH34y2VEw0PfS+1O24TzO2RXpfEBL9MDP4ddorVKJ3I5kz7y0cYRWr/l77kND/E1ZNskGjwf/Idg0hiBlyWtHm/gAOp5LfcCDc8baKCBBg5DoxffbZgpMA7IkzH+OSAPjqSBRd2JDm1QGKJBcqolh1NyTjm+OrRQeqT6S5MRfIBK04UmJygeyfGumkCQnvHytTqGaOFlUidM4hGln/OYpqcTEiH+0bwcZ2iAzgfqs9RdqocHzakPPZNoltJwkOqpyQ5tG2kbOM1Z52WFaJZknubVnBhaRpV+kNJyeaHlSJNmof6l8SCkd+h9aNtBDUeIz1J+7kBKfZ5PnPDyNR7U4ZHm5FKaJFmUJgWkyRetTK7PubxU6XX6jus/yb7RdJq807R19IhWlkbjrLqpCp/03NPF7xv73dhvXq/Gfh991tjvgzIa+93Yb63Mxn6/PaA4pTrQwJqvNw9GSjyiMs/PspaOtaB9U2rTKhvug2tSX5X6AL+XbCdv69B4QbJBHB/nEU/D6dd0gESv5x0tL2TDQzqZy7fWD6v0hZS+yobzbZMlfFJen47WnW7hzccXEo00AMr561cYS/1b4gPfcYBv167pCYkXklzRa1/HOI6PpJVsuH/OadGCzZ4vknzw/mnt4a3pefmS3uT22N/7cqWPbOiKXq9ftK3JaXk84K/1E94+fht/ie9S/6b8rLITnG+cD/SZpFOlukjnbGt0cuByyNtR2r2j6l4DDbeWXzpCw+Ph8ullQ7IBmmxyPlbpDMlOVbVLSC838E6BUa4baKCBBho4AINGR757UHsr9Xa7XTlY8n/5oFJzmAF9AknCQ9Nx509yFDkuXg59z699Ou6k8WvAOTf+C0SJpirgebQJsNAZQpKzpzmAHCTeaI611l6c3hBfJZwh2qvwV9WtbjtIA+Oq80FDcufvJWeU4pJAktlQ35HSaXyT6OROmFSWRvusZWm8kPJIdZX6dhXfq6CqberKUF2QJixCafh7zVEL8danD7WRhFMrT2u/kAyF8kq4quqklUflmW9FGKpjyE7wNFV9WtNpdXWFBPe6FWtjvxv7raVt7Hdjvxv7PRs09rux3z9M+w0A3W5XlRdKj/8bWnFLAyV04p+npQFxvwU3T8f1qbf7PNBYx4Zr7zkOvn18kiTT82J5QFACTeb8O847ylOtL9Wx4XXtsiT7UnqpHrQN3kkbznUdlyOtP/B0tJ68PtyO+Xbm7U9xarLDt1bmdfL5pQ87OF38ufQ+lI4+44E/qXxtvCDZTp+njg2XeELza/pNs2G+v9EjAqS+U3X+dUhOND6GbKcmkxR4n6lKV0f/S7hD5Wq0eH7wenEaeVtWjZfouype87pJOkCrj2Zn6V+pzxtjDm2ZX2WD6bEWGu9C+TlPpWMyeP40TYM80yCkf+9XqENx9ej8Xkqryyup9HeOogYaaKCB+wuobmx03axQNeYBZlgxzrdF0gqrckh5Ws0B9ji01Wo0TWhQq9EkPZNoqaoLp4cPGCU66l6HaJllEF5nkkDio/aXOzMSbo2vEn0ardxR5Gmk/DSNJg91HF+pHE2O6tRBoi3kdGvyyfNq+fw7LY9UvvRcwy1dS/WV0tfByUHTE3VkQfrL8Yacy1nktw5QR7CKxtAkSx35pmVKTqlWlyp8IQi1g0ST1B84j0L6NVQfSTdKcq/VQ9M3mh7mOKv6ehWvQrp9Fmjstw6N/W7sd1UdGvvd2G+arrHfjf0O1Yfz4Z0AyYaHyg+tZqTXdFtkXk+6AlSzk5Smql0Nqvjt77lcSdtva+Vq7c31myZ/kixqqzm1ewp1bJmnjwYXNfnl7cDbQuIr312Elq3VneOS6lNFm4SX46a6go8XNdssBcX9e7rqXCrb3/M2rSObEo9CWy3753zrcyrjUv+QVh7T58bIRwfQa17vql1XuG3hPOBtFvpgSWrfKl1I04TGIhr9UlrOc0qnJDsSz0I2vE5ZWj1D+qfKhlT1EU3PSfTyH+cRt5UhuePlarTR537XBFq+hEeSy5AdoDtJ8LpJeei1xn9JjzbwTkPd8ZJkU+uN4Rto4L4EA8CYw79mZXADh6DRce82zLRi3EPdgW4oneQo+cG+tO2P5qRVlc2v7wUkPHxLJslBraKLP5e+4KR1r/OFp0T7veTxZc8CmhNdxXtpMkOaeORlSU7drJOOoTpKMifJoiTL0nZQEq1VPJZ4yQf4klNM+5PmtEp9U+tjvBwu8yF6qvqu5ATzL4GrdEmojFCbafUK0RjCUUcOpUmRt6OjpHpL9ajiXVX5Id1VF4ck+5IMVvFF4yFdpcRXs0jl1bFRIX1WV+e9HVtJ4V6/Vm/sd2O/q6Cx3wf5Gvt9lGYJL8/T2O/ZobHfjf2uA91u9xDf6EpNTQ+F6NFseFEUh1aHczxUv9fRpxLU0ascL8fNgyDWHg7+8/6k1VmrIwfP87p4OJ9oPkkGOT5tXKKlB8JHgNTJ78HLlUQDr6eH0McTITsT6m8heaK2hpdF7Q+lR8Mb6idVNkXbptrLZZ1di7Ry+X1odax/RmXB55FW1tJ605X5HiQbXsUbaWzD/1bp6irZkPLx3SloHaVz3/mOE6Gy6rSVRL/U9hJ/JHnVxiaz6PuqcY3GZy5nVO/xtBqdAI7QSmkI+YkhvlK89H1oDEKf1eFdlcyNRiP1XQiqxlb3I9SheDYvs06J91rqO0tJAw2862DMRNwNEPlf5O6NcSJdlkBRAtYe/AA08t5AA7NDHf/0bX/+xh0+/penrXIoeV5t0C/h5IMkjYZQHSQaJaeH007pm3UAJA3u6IDf49b4wnFJPNHqw+mnOKrqwdPTZ1r9qoCmkc55pGVL5YdkjKevQ4/m5GuOjuSASPLE02l/Q/1LamdKQ9XqDYnOqj7mgU9K0bKreEnplfBLjjQHrZ1DkxvSM6ncOmVpDl1IDqW20ugLySYvI9TnKIRkUgOJxlA9pDprOpqn5/UJtYWmbyRHPdTfeTqKR6uvlkaiX6u7RFPdvv5OQp12oWk13arl5f2rsd96PaQ61OWBL4PiaOx3Y7+1OjT2u7HfUj2kOms6mqeX7J9Ur5C+oc/r2L/3mv2uWx4g69+QXPn3VbaK6iiNJo1G+lzTIaE8NC23IcDB+erSyj5J7nlbSjqUjgs4nfy5/9EVwtJqYf6MluNBCvJLbeHTSucnc5qlLa15+9NVkxIN9C8PmPm/Gk+r7CqHkD6R2oM+53XS5JTTxsdsXEdX9W+Kyx/Rw88C5/WQ5I0CP2eb14mebc4/UKD2WBsjcvyUFloO54O1h88np3RI7VIHpLO4pf5CQdPbfAyl0cT7DB/D8DYJ4eE6lF5LZ5hTPLQuIXq0tpL4zvu0pF+5bPBrTb9p4OVC0/G8fO2ZtusJ73O8DElneFnm+ble5jwIlfewgyW/H26ps75/b7VLAw84GBwEwuMIaEVAOwE6baDbAfpdoN8Dej2g0wXaHSBpAXECRDFgIvdrVpM30MA7DsmsGTTnxL8LTWDxwQofTNJBY9UgOjQRJQ1S6TtpAo0PgENOFN9eSXPMJMed08Zp5unqDB61eoTaQwKJHg1mSau1g8cTagtepuRY8DbjDjN9ptEn1U1ziEP0ae81+dTo0HBJdZScmLptwq8lh1p6LuGYm5tDq9XC9vY2Wq0W8jxHURSqExeiS+sfnAdanfhzuu0br1NIp3GZlXgmtYWGV0sv0ayBJD8anVp+jYceNN6EaOT10v5S/BItIbnkcsDzSPXSJor8tYZDSqvJV4g/IVkK9Ysq/t8LNPa7sd+zpm3s93vDfs9P7PfW1hZarRaKokDe2O8jdWjsd2O/f1T2m9LDy/Pv/LPQijxNn0vvJf5IuKQPeTwNnBZp5R5dYclXgNLVlFEUiefQctn15UrtyOWG1kda5amB1g8pHVR+Q3pDaqsqGqp0lgdJ94dwS/qa8pTea2MUyfZIq5Zpe3AeSDgleymNPSlOTddJPPP3fMtoyab5AKG0Yhk4uvUyp4+vEtbklteDy5R/fuzYMXQ6Hdy8eRPdbhdpmiLLsiP8DgGtV0i+pDbj97Sf835VZQd93elRD/Q5/9iAf8TB+71EH29Xek1p5/2R2zJ+z2mtsiVSnpAOlvjOrzUbLtHF+RQaX2j4QzY8juMjOpun02iReK7VX+sXtJ9JOoH2RdqXOS3vZbCAGIYzeDfC0h5jWFc10MADAwaAMQfB8CQCWpNgeKftAuDdSRDcJO6XAxhlwDgDxmP3S0dAnrpfkQO2BEqLgz7zbugrrR82urGBhw9mDoxLg/WqtB5Czp42aAs5LrysqgkQmp87ydLgVXPCNJycBmkApjlYdSA0WNUGkhKNPF2oLCnfLDRrZ/LUceC5DIS2savCV2dyQ8pXJ73WllUTINLkQZ12lNpQo5f2NS7LdesbqhPdbm9hYQHHjx9HlmV46qmncO3aNdy8efMQHu/k0kmAqrbjZUtyDOiOt+TgaI5pHd0h6SpebkgXSf1Yc1JnoU0DOmmgOaF15FaSV54n5PCHeC6VXTXRIOkILf0soNEdmtyQyqqyfyEe8HJDfXwWaOx3Y79nobmx3w+//Y6MwUlr8cF2G6eWl3FzPMa5c+ewvr6OW3fvYgPAFQBpY7+PpOd4Q2ka+320rMZ+zw6eBumoAv7RF6dBqoMm/1U6J8QDmk/KS1eo8vaXZKEKn1QHjXat70vlhcqX6iS1Oe1zvH9IbUbpkvqrxh+pn4TsrrR1M62r1D81fSbZ6VAeTbdTnHTsEdqOnD/jPNf4qtkBqU58S2haH433kt6RAvj0WtqymsseLRc4OKMZJbC6v4oLexcwSsf4TOcn8XL+Cl7PX4ONLdzurAatVmvKU2sPr/6VxgearEn9nQY/OU+r9Djll9Te/t6XwduO6i2JXgpSXmlrdd5OPFgulc/L8G3ldw+QZIb3b+njXaoveB6p//D3WpuF+izHx4PGWtkcr6+7xiutD2v6XDsyQpMziZch+/Zu2/AHFSzwIw5Vzz5+bqCBHzkYHGyTnkRApwV0W8BcD1hecL/FJWBhGZhbBNAGyhYwBjBIgd0xzO4usLsF7G7BDneB4S6Q7rvgOArAlgAs6SKkr3i9JXaft9OnzNvM30AD9x/UDozTwQT/OlZyprWBDh+0SU64NsD1+aRBDB84cZopVDnV/KtDDpJDKA1ItW2ctLJDNElOVtXgUsLH70PpNcczxBNpskB6T51fzcHQnGcOGm2z8KNOGs3p4HTz9HUG01Jaqaw6vJEcaZqmThmSk8h5QHF1Oh08++yz+Imf+AlcunQJJ0+exJe+9CXcvn0bxhgkSYJ+v48kSbC7u4uyLFEUxRGnHMChr+WlLd6SJDnSv6q2CpPq2G63EUURxuOxujWY5uhxoM4slwVJBurIZaideP5Q35DaTpMfrke1eoTkldJfhweUHk12OQ7JznBcoXI1Pkr1kGiW2lmjIdRXZ6EjRFcVNPb7cP7Gfss8aez3e8t+rxqDx8oSu50O5j7+cTz28Y8Dly5h9eRJfOtLX8L3t7exCuBjcYys28X1dht39/Ya+93Y78Z+Q29PiY63Y795WbR/0WAaPXecl1nXhvPxAAXfT6y1h84hl85z5jRX2VyKn680leyodHawZsPpBz2Un5y3Ei5Ok3RuLtdllBecb3T8RX+S7dX6qXT2syZ7ml4M6TCuD0N2SBpf0L+03jx9qO9xvmjtw9Nq9ZLK5udA+7+U7ioeSn1M6z8aPVo/o2V54PIXIYIdAb2si5/a+xx+Gj+Nl/EyHt94HP8c/xxv4hKQG7STFpaPLaO90sb65jqKopiuJueBS2+juXz6v61Wa7pzg6fJX4dW2lOdE0URer0e4jjG/v4+8jxX28mDdua5ZvOkNqG6k9sg2p/9O84H3j4UnwRcP3C5DvUt+jzUx2gaSV/wcvg7rUz+tyiK6fiO256QXuDAx4Vc19HxoATe/tB8tB6cB1w+OC6+C4nEn7drvxu4F6jiedMmDdzHYAAY44LiSQQksVslPt8F5rswKwvA2irsyVXg2Bpw7ASwcBywHSDvAEMAW2OYrRHMxgawcRvo3AZ21mGjBDDRwerxchIct9QOWVf+lBgcdBlr3Y8emGBJvoMKKJWjaZp+2MDDAzOtGNecTgCHHEdtYAYcHrSEBlCSU0Of13HqtQGTB2lS19elzkRPiEbuHEn0aIM0fi9NFHHe1ZnoqaqDRE/oOc+vOdiagxgaOGvlhfJSPlPHPpRfc8K5EwLgCD6aXnKwq+pcR54k/klyTfFJDhQHzbHi/ZP3BYn+VquFp556Cn/7b/9tPPnkk7h9+zbSNMX29jbyPMfS0hL29vamW7x5J9ifi8fpi6LoED9pPbvdLp555hmsrq7itddew82bNzEej0We8skdT38cx1hZWUGn08H+/j6KokCapip/q9qIv+N/Jbq0NtTkmus6jlfSLfR5SF/QPDRfiMZZeBGqj1SuxruqcjVdI/WBqkkATnsdZz9EAy+HX/Nnoba+V2jsd2O/JbzSNc3X2G+Z7gfZfi8DOF+WKI3Bi50OnvjAB/Arv/7rQfu9liQ4fuUKNqzF94sC2439FvM29rux3++G/eblcPtkrQsW8K3nJT2lnV8t8YyX6/u2T+eDCnx8odlwCtpHbJLe4nXR+id9V9eG8+3BpTT+uRSco3zRZMy/l7Z8ruITB/peam9tXEV5IvFOszlaf9NwcZsbsqnaOE7iAcXH+UjlkuPk45wqGx7iF6dTysfrIH1MQdNS2iUbTssxxsCWE/oLwGZAx3bwaXwav4HfwEVcxJ/Dn0OBArdwCzkyrGENm/kW5tb7eH3wOrbb20htOv3ATeqXSZJMP36jPJ6fn8cXvvAFnDt3Dl/72tfw2muvYTgcBgPN9K/Hffr0aczPz2N7extZlk3LCtkO3lZc52j2J4RTKkOS96rzwbVxXOjMd218x8v2+XgeSa6q9KbEL64jaX24PHqgH0ZJ9kbrW/ReapeqcTjPF+KTv5d2V9Fo5W2i7V7QwI8amrZo4D4FA7c6PDaTYHgM9NrAXAdmvgcszwNL88CxZeD4KrC6CiweA+aPAb0VoOgCWQfoRDBRDtPKYdrHgM4xmN4a7MI67M46sLcBO94DxgPYfAyUufsZ64gwBofOI/ddpijcr8yBPAOK1F37bdnNpBImAkzs6mIBU5ZAWQK2gEUJQP4YrIEGHmSoHRjngy4+UKwa5NV1/LQBNcfBBzmakyyVyx1HKR3Po00Y8GchZ4rzp8rZ1Jy0OmWHeKHVVZt80AaN3EGQBua8rlJ7UQg5NBpNIac05JBzB4JO9oTy0TySY6DRotFfJz+nmYPmQEryqLUvXW3SbrcB4NCEM4UoihDHMdrtNk6fPo1f//Vfx5/9s392in9paQl/42/8DVy8eBGXLl3C1atXceXKFQwGA6RpeuTscc/PKIqwsLCAPM8xHA6P1Gl+fh5/4S/8BZw5cwZ/+qd/it///d/H/v7+Eeed3vut5sqyRJIkWFlZwbFjx7Czs4PxeIwsy9S+T9uC85S2kba6g/O5ylHl9dXKk3BLeaQ6Ud0XknNJr1f1Iw0k+ef5JL2s1a8Kt/Y+hIPr3zr8rkOXlz3+PKRbqq5nhcZ+N/ab09LY7/ee/Z6zFu+3FmkU4VqrhfGM9vtGngNliUeKAi1r8SaAdcLPxn439rux3++8/fb5JRtuzMH2wvycVF6PKt0q2VReLg9aSyukJbrptfQhXhVf/Tutb/AAVIiP/JrLA60zryPnJ20HqYwqnvL+AhzmMdXrnF+elxI/KB08fZ32ovXm+HldpT7l0/lxprSiVpMtrc9y2ZfqzduFB2xpm1IeSe1CeaCN12iZIXopXVyf+Hva1r1eDwAwHA4P01FaoADiPEZiE/TQw+N4HH8HfweP4BEYGMSIESHCX8VfxbN4Fi/ge3gRL+Gl8kVs7G9guD9CHuUoE4sojmBxIMNxHOP48eMYj8cYDAZH+sixY8fwy7/8y3j/+9+PU6dO4Xd+53ewvb19KLDvV/N6SJJk+gFNq9XCmTNncObMGayvr2Nvbw9pmorjVEmHU/3m21iyORQP11ncftL68TaWxoLa+FCzixr+0LiR9n+tb3E7N8vW91ofkvgj6QqpPhS39K4KhzRW0fSPNN7neH1f90H8kK3R6vhO2vCHFQyaMHUDDQDAQVA8cgHxbgJ02zArfZjVBWB1ETi+DKweg11ZAZZWgMUVoLMIJPOAmQfyLhB3YEwLBsYdOd4ew3RPwSwMgJ27sLvrsIN12L0N2P1NIB0AxQi2SHGwUj0GogSIYhi44DYsgCwDstSdVz7egx0PgHzsVp2bHEDk6mASmLgFxC3AWiDLYIpsGoC3U4QNNPDwwMxnjEtOBqAPNoGjk7H0L0/Hr/lglF5XDWpD91WDYCmdhIvnp3mkyQnNcQ8NQkODUw1naCCrpdd4rDmO2nlLWn2qZIOD9CU5L1OiWaqzxAu+qklrW2nwLZXF80nyqbWLdparVBavd4j3HqRVlPya5iuKYuqYj8fjaVq6fZYxBktLS/jiF7+ICxcu4NVXX8WFCxdw9uxZAMCzzz6LNE1x5coV3LlzB3fv3p1ue0rLj+MYrVYLCwsLOHHiBIqiwNWrV6d8McZtxd7pdLC0tIRLly7hrbfewvPPP4/BYHBkyz9632630e12pyvf1tbWYK3F+vo6Njc3jzjkmtOr8ZtPRGr9SOtzmvxzZ156L+Hy9NF+Iq2eCDmgIadYcii1SQIpT1Wdedmh/ivhkiZAaB7puVaOhKeKFzwNL5PbhFkm3N8JaOx3Y78b+/3es98tAI8C6JYlXo4ijI1BYgyO34P9HpclvmsM2gAuAni/MRgmCcb9PhZPnYK1FteuXUOnLLFkDBIAcRSh1Wphqd3Gne9/H3cuX8Z3vv3txn4zXJ6+xn439lsDPwbn9eIruSlU2XBNLiQ82nuJj5K9AMIyTX88n4ST0i/ZcL5tL+/n/rkWMNb6kpd1qR7+mm4xzXkk2ULNLkkyLI2hqu4lHlG51uw1T8vxSbRxPvG0ngf87GXOZ40HXMdq/Vizvzwf9Ws5HkkHUpB4y/HQldm07ek2/xRvnudYWFgAgOlHZiiBMi1hygmtMFjDSfwt/Bo+hA9jhBG66CJCBAODRSziSTyJV/AKLuMyruAK9rCPAjlQAiYFYNw2691WF6srx/HoBy4itSlefvlllHmJCBEiG6EVtTDXmsNatIYXv/EiXn35Vfz+f/h9bG5uHmkHyqder4e5uTlkWYa1tTU8+uijsNbirbfewvXr16erzUP6nfLMjxF8Grq9N22LkM4I9ROpz1C6qsaUtF3pBw91yuJ6nYNGN6VL03W8z0tyGsLB+742Dgh9eKO1sUSbVF/6TOrDEp/4OIy3X8iGS23egAwGOBQik0e+7xw0rdHADwWoIGtCZwAYg2lQvHWwStwsdIGFHsyJReDUMszaCuzxY8CxVRcU7y8BvSXA9IGy61aLowPYDlC2AZvARDFMYhG1cpheCttbhZk/ATu4OwmOr8Omu7D5EChGjhYfnI9aMFELQARTwq0IT1MgHQOjfdjhNsz+Fmw6nKwcz+BWiicwcQJEbZioDRQFjBkC6T4sRoC1cCvHq5jTQAMPFsx0xjhw1GmQnOyQw80HJaGBkgdtUlAavEm0VdGhpZe+cA4NbP17yQmj6asGo1XOXmgQGKIlNHEj8ULiGcdTh5Yq2eHXoW3FQgNy7pD5MqW6cLo0vNpgONTGnB4tAMGdAfpcknM+QUFBcyy0+1D5vpw0TdHv92Gtna7K8o5RHMdYXV3FL/7iL+JnfuZn8KUvfQmbm5v44he/iM9+9rPTCY8XXngB3/zmN3HlyhWMRiMA7jzyVquFfr+PEydOoN/vT88Xu3PnDm7fvo2yLNHr9TA/P4/jx4/j5MmTmJubg7UW3//+93Hp0iVsbW1NJ1V8Hfv9/vTcUWMMlpeX0el08MEPfhBf+MIX8OUvfxn/6T/9p+nKde9k80kUTTfU6f8hB1p6p8ldSI4l0NqzSo9JTjTlgaQHaF7tbDUpj9b/JLqqHFHJyedbc0oTD75MCX+onXi5NA/nu5Zf0xtVddYmGupCY7+Plsnp8e8b+y3jbuz3g2e/F/t9nMhzzOU53jQGd+MYFkDyDtnvzokTMP0+VtIUnf197K+vY2dnB8etRdLtIl9YwNLEfvd6Pdgsw+3vfhd3r1/HymCADxUFrhuDTWtRGoMOsd+RMVhZXESn3cZTH/4wvvDn/3xjvxl+Sltjvx9e+w3oZ9jS95KekYIy/r2kq/07batcLmPSKkWJZs0e0WcUJ72nOKQ+zHH5PDwoTnFwfFKflvqH9EGW1LY+b6ivajRJzzU9o/FDatOQnqJ89kE9bXygffTDZU/qP1J/0o7x0WSm7lhBkic+RpPo5jsA0DKk8R1vV/rxCsfJg8BelrjOz7IMw+EQy0vLKEclxqMxbGkRwW2LmiDBeVzAf4f/K34OP4ev4Cu4jVv4S/jLWMTiFNf38D38O/w7vIgXsItdAMAc5tBBB0tYxiP2ApayJaRZCuTAm1tv4s3xmyjyAgtYwDF7DBdwAe/D+7CEZZS7Jb7y21/Bt/At3EpvIUMGE5npqvOFhQUkSYLBYIA4jnHy+En0e3188ic/if/mr/83+IM/+AP8q3/1r7CxsYHRaHToeAHal7hODule3u7Unkh9UMKt9U0uXxyk8SeXc6ovNPvGZSU0FqAfYlJ9xOmQ+rbUH7lO531bG1d5mmi7hewB71uz2nDOX/9RiVQ3fy/pCP5es0Wcjrdrwx928Nyxk5/0rjp3/bLCI8wGGpgRuAga9lASUWMwDYgnk6B4vw0z14ZZ7gMnlmBOLLlV4seXgWNLwPwi7Nwi0F2Abc0DcQ8oO0DZAvIEKGKYIoIpDYw1gDUwZnJGeSeBKQ0QdWBa87C9Y8DiKdh8iLIcATaFjYyjJ4pgTAKYSZ4CMIWFyTIXGB8PYYfbsPtbLuCdj1xw3ERAlMAggbExIpvAjEdAtAlgE2W6jdxa2CIHUAhMaaCBBxdqB8al1T91JpW0AauHqokFaRCpOaF1nklnSUp1lOo3C0i0aoNh/kzb4laaJAiVXbcO2iBYolFzlKXypHbT6Jdo4Nd1BqjSO+1r3VA5NH2VrFetfgjhkeqngUYD3S7O15eXG8cxkiRBmqZBB49eZ1mG0WiEY8eOYXFxEWtra1haWkIcxzh//jx+8id/Ep/73OfQ6/WwvLyMu3fv4oMf/CCiKEKaui/OR6MRPvaxj+Gxxx7DwsICTp06hW63i83NTdy8eRObm5t49dVXcfv2bQBAu93G2tratCz/hfnFixdx9+5dfP3rX8edO3ews7NziMf+Nz8/j7Nnz6IsS7z//e/H5z//ebz//e9Hv9/HP//n/xzf+MY3MBgMkGWZWO+3o684/yQdoE1Qac6f5vxrIDmBktxI9ZVwSXRwXLPq5Trv+PtQv62bRvsanz7jbS5NkkjOtVa+pAdCX9RLckDLuFdo7Pds0Njvxn4/6PY7yjJcHA4xXF3FzvIynvwh2e/506eD9vtboxGuj0YojEE/jnHaWjxqLVrGoN9u49TqKowxuHDhAj792c/i5KlTaLXb+H98+cuN/UZjv9+L9hs4vLKUywbdrlqj2+elQUiOQwrgSMcMeNxVbSbpT49TSyetSJbK4O3MgdNK6yUFlmj6kM2R7CSnwT+TZIXLYFU/1/qRf08/FtE+QpS2mZf6l8RPTYYkCLUZlwWOn9eFpwnxR9Pz9Jpvq65BlT7letXLi7UHW6T74z8ora1WC61WC6PR6FDfkz7s8njHozEGowHO7p/DCXscp3AaS1hCBIPH8Bg+g8/io/goYsT4OD6ODWygh9603AzOTn4OP4X34wksYwWncRrHsYohRngTb+IGruM5fBWX8APYFOilPTyKx3ARF3ESJ/EoHsUzeBrvw+PYwAb+Q/l7eHPwJtaxjhKl26IVQBw5PqzMreAD9gPIbI4PxR/C57c+j0d3LmK1exz/r//8/8S//bf/FhsbG0d2e/F8ovJFeSS1Q6iPUFnS8khtLcldlZ7kcsJ1K3+v6T/tWrLTWv/W0mk6XKOD4uZlcNmXcEj9PYoiNXDO60rTaCvVpbGQpE9pHwXCq9olPSGV916EOh71e5tDDTywYMhvKummQugNEE1+SQy0Y6Dbglnqwax0YdaWgAtrMOdPAKsrsMvLwMIikPSBqAtregC6gO0Ctg0Uk8B4HgGFAUrjjvG2AOC3Z2/DoA2TzAPdFSBPgTyFtSmMyWBNBkQGNnZnixvEMDaGKQCTW5jMAnnutlNPh8D+Duxwe3JO+dCdVW4MTDQJiucGcWZg9nZhyxtAniAvS5TFECX2J7yy5G8DDTzYYGxNS+/PLATkCV86INGcM5pfc644Lq1MPojiTnLI8eE4/fWsE+vapEvdOknp+JfTklNKoW69JWe8Tp1omXygOcsgUXLopcErLytURmhyIbSNZVXZWjl1+BIqqwqH5BBwOkLla062v+50OsjzfHq+NwU/6Ua/sE6SBMvLy/jsZz+LX/7lX8azzz6Lubk5RJE7X5z3X//l987ODtrt9qH3RVHg1q1buHXrFr797W/jueeeO/TFeJIkOH36NM6ePYvl5WWcOXMGo9EIS0tLePrppzEej/Hiiy/ie9/7Hl588UW8+uqr2Nvbm9Ld7XaxsrKCJ554Aj/1Uz+Fz3zmM7hw4QLm5uawv7+P3/md38H/9D/9T7h9+/Z0a3jaNvya8z00ASfxOtRnpXI4DXXlfhaoqxfrlFXl/GtlVvF7Fr17L85qaPKB17WOfqjbpyUZquIbB2PMkTOD60Jjv8P5Q3ka+93Y7wfJfkdFgfPW4lgc49bKCj72Z/7MA2O/P/j44/jM5z6Hn/zMZ3Dh/HnMzc9jf38f/+Kf/lP86//5f8bXt7cb+z0DNPYbR9JX0Xs/2m/A9RGOj+tiP373K1bLsjy08tsDX3ko4eJ8lXSux6W1pzTOoGk0nHSMoeX3+lILpEuyon1YR2mmQU7PU84HXrcqmin/aH5Jb1SNN/xzaftziY9am/n33A5QXmm6L6QX/F+6dbjUJr7tpPJmse8Uv0QPl11JhiR5r1sObQsuX1z2+v0+0jRFlmVHxjhJ4tapxHGMoihQ5iXaWQen8pP4BfzX+Jv4mziLs4gxsfU42E79EE2TyWkDAzv5N6UfBgUKvIAX8Hv4PVzDVQwwQIkSLbTxBJ7AU3gSp3Aa53EeKVL00MMqVpEgwW3cxlfxHP4Yf4yv4qvYwCZaSAAYLGAea1jDj+Gj+Dw+jw/hQ1jCEhIkKFDg/4h+F//Do/8DLm1fwt7e3qG2ph/2UHmU5ERa7c/blX8IwmVA6p+0P2kfifByqmSEl8P1VWgc73Hx4xi0ukvXGu7QOEnS/7y+XG+E9FSIJsmWcvshjYc1WiifaR5eH62PavRRevzOSbPCrGO3+xHq1ECTvHBe+W1VqM02gbgG3gkwABLjVnwnERDHQJy4gLc1TgitPfhN85E8nZYLis91YI7Pu9+pZeDcCeDsCWBpCba3ANudh0UHtmy7rdLzNlB0gCwBxgmQtWCyBMgTmDxGlCUwWQxTxIjyBKaYBLknPxQlUJYACliTw5oS0xXsxgB2svK8AExmYfISJi+APIfJUtjRABjvAelwsmJ8DFgDA5cvHhVIRgWwdxfF9mUUu5eRja4jHd9Anm/AooA9iN430MB9DXXmG2YKjGuTDlWOcB2HWCUwMNnBSedffmuTJXUHpNozbaAcAskprpNHKzc0mSOVy2mQHFUO0kQAxxkqi+II0UzTVU02hZzxKqeW4wpt+cShCn9ILutMIEnpq9q0ytHjEwv+a908z0Xng6bxQfGVlRX8xm/8Bv76X//r0/ecVj8Rt7e3h/F4jHa7jX6/j1arNa13WZZue9Qowq1bt3Dp0iUsLS2h0+lMV4D789Q2NjZw/PhxdDod9Pt9PP7447h27Rr+83/+z7h16xYATCcX/Jaup0+fxkc+8pFpMNyvLkrTFP/iX/wL/PZv//Z0i3bqZALyhIwka9qKGqmNaBqtjaWVOPQ9dVI1vRTSU1o66XlVH6+jt0JOekh3hvp1CKpkPlSPEA0ajaFnIb0q8VZy5kOy4vP4IwdmhcZ+N/a7sd8Pt/2OjMFpY3DBGNxotZCtrGDpIbHf//S3fxvHb97EN4DGfgvPG/v9cNtvwAXGJRviZZE/57Rx+nlajXafR8JPywEObLi0Qw3Hp/Gvbj8IyY3UHpwHUvBMGudwWqroC8krp5nrCUp7qL14fg5UP9FrCaS+rtklqW19XkknhvSSdi3xjdLHg8+8DNofaB7KZy5vEl8p70PtqvURia4kSaY7svD03ubFJkEyipGkLZzGKZzBGfx9/AN8Ap84EgSXgAbGtfcpUmxhC220kSBBjhwWJeYwB8AgRYo++lMc/u81XMV1XAcAbGMHY4zRQw9ddDGHPs7gDI5hFTHiaZ4SJf4Qf4jfwm/hze4lFEkx1YOetzQwzoH3WfrBBf+QUOqT9Jr3rZANp4sEpA9qpH5VRzdotojqUJqH16NOn+e00K39+bikSh9J5Uh6jftvWt0l2iXfj5bHdQvlcYjnnF7er/1HYxI/aF5K+71+3FZnTHS/Q90a8Baul0/wYRV8B+U0wbgG3gaYyS8yMJ0Y6CUw3RZsrwv0OkDcgi3hVm4XLpiMYmKjjAFiA7RjmHYC9DvAfNetFl9bhDm15LZRX12GXVmC7czBxj3YuAcUbRcYz1sHv6wFpAmQuYC4yRKY3AXFoyx2QfIingTGDaLcwBRmcm44YPx4Btb1G+sqaEoA1rgt1PPS/YoCpihdffIUJs+APAOKHChyRKWFKYAoK5Hsj5AMRyj2bmC8+32ke69hPL6ONL2JrNhsAuMNPFCg+ekUagfG/STZNKMwiPDPJQI0R4um03CFJjBCAyaOmz4LOfdVA6wQrjoTCJozqNFDQRvE+3fSQJ8PWuvUQbuvcmbr1CfkHPhrni/09bqEn5dRRZsGVc66lkdzZDQHSesT/lpbOQHIE8P8K3hr7dQpL4riyJfZvgz/O3bsGJ544gl84hOfwK//+q9jbW3tEK6iKKZpOX/4xEKe58iybFq+p9kYg+FwiMFgAGvdOeZ+FVkURbh8+TL29vbw2GOPYWdnB8YY9Ho9DIdDWGtx6dIl3Lp1C5/85Cfx7LPPIooitFqtQ07vv//3/x6/+Zu/ibfeeuuInqB0h/pqSG7rtJ/En6qypfda+4fokurBJ4mqypXqQOsh9eVZns/yLqT/OO2afgjxLzTpwOmr8yykKyWQJiso3KtT3tjvxn5X0d/Y74M8D5L9bgFYLUucNwZbcYwrcYylh8x+X3vrLfx4UeBrNeSIP2/s99E60Ho09vv+t9+A+7iN2k1KF5UHST6pDpLoulcbzt9zvmm2ggdQaB38vWYDQvZTsxmaDtd26JBwePp4QJ3WF9CDbXXsSIiOUPtpMiDJrabneB6p3hSPxGN+JAhNF6JbGj+EZIHTwfntaaH5Q+fde3r5xwScVloWfZ4kyTSISndroHyw1m2n7o9E4XwuixJxESPJE8RljLM4i0/gE/gcPoe/hL88CVrPDlWBcim92yLdoESJDBm6cLtV5MineCJE2MAGruM6nsSTaKMtrl5/Ht/Gr+HX8AJeRJkUMG29n2kyIOmnkK6V+hrXL/6vpov4e3pN+yOnhZbpr9+ODec4NTnm8k/5JqXncly1A4XEUwk3LVezNfx5Vd+z9nAQW6qPxhP+oQGvt9T+tFxOf7Ni/IeDnZcljbiawHgDbwsiuKB4YmDm2zCLHWChCyzOwS7OA602bBEBOWCzHEgzmDx3oWdjYJII6CZAN4FZ6AKLfZiVeZjTyzCnV4Bji7D9PtDru1XiRRu2aMEWJCieuVXiyGIXFD8UGI9h0hhRfjgwHhUGJo/c3yJCVEYwZXRwHrkFjIULmJcWsIAp3EpxU5TuV1qYwgLWwkzSGeueRXmJOCsRpxmSwQDJ/i6yvcvY2/seBvsvYpxewzi7hazcQtkExht4gEDz3SnUPmMcODrgqCpUc7alQVlocKjl0ZxgaZCtDbir6kDza7SE0oec7RC9HF+ovv4+xCPtL6dDG+xX8WuWQZ/m4EoDaG2grKXjdeTObNWgtw6tmuxK8iA5bFIayvs6Dgd/b4w5NGnuIY7j6Yovv1VbnueHJsV9+T5fq9XCysoKnn32WfzKr/zKdFIdwNT5z/P8ULCN0l0UxXSL1Nu3b+PSpUs4deoUVlZW0G63MRqNkKbpdGXaysoKjDHY29vDysoK+v0+RqMRhsMhrl+/jjfeeAP7+/vo9XooyxLD4RDz8/M4deoULl68iA9/+MNot9sYDAaI43jqQF26dAn/7J/9M1y/fn1Kd0j3hHSI9J47WlXOsSR7WloOkkyH+iR36CnwL9/r9gvOs1l0KH3G6aeypU1Q0HQafl6W1Oc9npD+DtVH0lFSuaH3/lnVVpV1aasLjf1u7LfGr8Z+3x/2O8pznC5LrFmLBEAcRSitm/4pjEEJIJvoyba1aBuDHMBtAM8DyK1FJ44fWvstfdzW2O/GflfBw2C/gTAPJZtJ6aU6WFr5q8kTLY/i5R9rcfpomZot0vjExyi8H9Dy/XsekKbXXn9osqvpCUn3S+kozVo6Xieugzy/6Kp7Wq+QDQ2t0pfqpsmOZIcpfzlQPtO6063a/TNpRam2kj1UD97/KS0+nZRfq6tPL9ES6lN89xX/QViWZSiyErawiBChZVrIbY7SlGjHbaAAbG4RmcmENiLYokRZlChRIkeBDjo4jdP4NH4SfxF/CX30j/CoLvhAN13FHQIDgxgxLOzkb4kd7GAXu2ghwRAjJEiwhCV00MH78D4xKA4Am9jE/4j/Ea/iNZQo3cbuZdj34EFjbZcX2s6aDa/z0W1oC3VNDqX+TNN4kGw4lSFN3rRxgjZuoXXT+iTFpY1p+YdCGvDxiabH/TsedOf5vH6W8NN7ia6qcZTUJrTt6+h1DVcD7w7U90YbaOAewQCIDaJOBNONER3vIDo5B3NiHuXSIuzSEmy7B1smsEUMpAWQpkBWwBgAxm2hbtox0Elg5iYrxhd7wOo8cGwBWOgDSRc26sDaFiwSWNsCytj9Cv+LDq7LaPrXFJOAd2GmvygHTG4QZUCUG0SlcQHy0iCyEYyNpoFulJOgd2EP4ygi96y0iEq3qjyarCqPSiDOS8RZgTg1iIcJ4mGEdAykWYm4KGDKcrLY3jQnizfw0MFMgXEPmgPC30tOBX1PocqhlCawfBrg8CQFnxzmdGn0SANrrY7aQFsqQ5sUCIE2MK6igw/atcFtnUkqaZAsDcxD9dXKluRCqnOo7aUBfMhRkZwQnjY0cRKSzzr103jo32mrBY0x6Ha7KMvy0BZsPr8xBnEco9VqwVo7/aL16aefxjPPPIMrV67gW9/6FsqyxGg0muZPkmS6CmV/f3+6vVmn08HTTz+NX/3VX8WFCxcO1dv3Lbp6bTweY3t7G2mawhiDoiiwuLiIhYUFbGxsoCgKrKysYGFhYUrraDRCp9OZTi4YY7C4uAjABe6fe+45fOc738GlS5dw5coVbGxsTM9XjaIIJ0+exMWLF5GmKT75yU/iz/yZP4M0TTE3N4fTp08jz3P8y3/5L/H8889Pt17T2oL/lSaHuKOtyU+V7HB5rlp9IuWXypDSaVvMarhp+VXOZuhdSCdwHvC68AmHUP+T6i9BiL+c3tDkWEivhSYH+PsqvT7r81mhsd+N/W7s9/1nv89Nfj9IU3zHGHyQ2e9WUSAbjZBjMnHUbsN0Oofsd4SH235L8sz/Nva7sd9SnR50+83pplv98jbx6SndfBWrT6O1K31GcXK59/n9R7hSfj6m4DaBpw/1GY9H+xDD45b0cZVto2WE7BnP43mi0aXZGd4GPJ12TjfdMYTSxo+L4PgkWZD0oTQG8XXTtlLXeBTqe1w/SDulSIFLiT6Kx9s2Xi9Kuy+Lfojg+e3Lonydn59HnucYDodTnL7No8gdP9aLeyj2CgyyAQwMfgqfw6fwKbyBN/Al/H9R5AV2MYAFUMKiizZ66COCwRa2kSJFBKCHPj6JT+Ln8HOYw1zt1d4AJlupmiPXs4CFxS3cwpt4E6/hVbyMl3EN1zDGGDlyxEjwGB7Fh/Ah7GMfP4aP4iP4CFpoHdpC/d/j3+OP8f9DgXy6ztxC3m7fg/ThF72nMqLZutA4V7Lh9J0HLldSf5PScRvO6eF10GgLfYgi2U36jO+WEOINL9fTxIP6mm4EjvpsUpuGxkoab2gdQtvecz0h6XdJ53GaNZmkfHsvgwWC2kTizuzapz4YpcwGGqgEA7dSvBcjXkwQn+oifnQB5vwyyqVllEsrKDvzKG0Hpe0AaQmMMyArAGPc+eNxBLRimJYLjqPXcr9+B+h3YNttWNOGtQlsmQBlMgmKJyQoHgOFuzflZKv0SVAcfiW4D5LnZhoUj1MgyoGoMIh9YNyv/PZ/ffB78tfkQFTQnwusx4XLO/2bA0lmEWcGZgREI4soLTHMXWA8Ksvp1u0TVjb9sIGHBmYKjNeZbJGcMH9NByZVTmdokkIqj38ZGqKD4+D3Ul2qnHVpgMlxagM6XnfpveS0SvkkJzc0ESCVF6I55ARo6SS666QN0RUqkw92pXbWJim0CSZKh0ZzqL40LwDRyZJ4638LCwtYWVnBlStXpsFtmtdai06ng9OnT2NnZwfdbhe/+Zu/iU9/+tO4dOkS/t7f+3u4dOkSRqMRWq3W1NFvt9uYn5/H5uYm0jTF/Pw8/vyf//P4u3/37+LixYtH6PZl+V+WZdjc3MT6+jq2traQpul0xZgP0C8tLR2a4BmPx7DWbSvnJ8qBg5XsL7zwAv7JP/knePPNN7G/vz/dfjJJEuR5jn6/jzNnzuC5557DW2+9hf/4H/8jfuZnfga/9mu/hqWlJQyHQ6yvr+MP//APMR6Pg5M0VbKt5aXpNXnTdINUnvReSsf7Js3LcXAnMdQXQuVSp5OWVUVjyFGW+h+VaU03azRr+DhejX6aT9NTUh0k3oZo47hD+kSTt3uFxn439rux3/en/W5Zi4utFtbPn4fZ2cEj3S7+O8F+743HwMR+LywsNPa7sd+N/Wb5Hlb7zfFKwQ//nPKNXsdxPA0Y0j7C+xWtt/9Lz6jlYIyZ6gi+lXSoDbX28s+lrc41O6/dh/QE5YOkM+h7jlPKL7WHtVYNhPFyOI1av9H6Ky+bg/bRoQQSH+hRGpxm/5yuyNT4JQXweZuH9B6VMSmddF6x1GdoefxjA96eq6urOHv2LL73ve9hb29vuhPbtC4W6G338f7sCdzGHcxjHv8M/wyP4BFsYxu/hgG+g+9ggAHaaKOFBMewij76OIYVXMd17GOIVazi5/Hz+G/x32IJSzNtgW5hUaBAhGi6Qtyv/OZpp7wX8N/ETfwj/EN8Dy9gC1sYYQgLoIM2MmRYwCKexPvxu/g/8D18F8dxAr+MX8bfxN9EMplWHGKI38d/wB72gOlZ5ZCDZ4pdNsYcCqjSdqXtRdtJG4vxa00+tD7H8XIZlvq1VCfpwxJanpSPlhfSIZoO19JJUCePVA63FxKfJbqksUJofMRp1QLivC9L7cyvNZ0YGnM00EADDxgY9zMtg7gfIVluIV7rIDnfh3lsAcXSIorFRZjOIoAeYLuwGYC0gM1KwBggitwvidyW6kkMtCa/JIKNY8AkQNmaBMR9cJyuED9YKe7ODo8mf/31wS+anCseZcat5M4m14VbMe6D3KbEJBAOd0745GcKFyD393FhEOcGcWmQFAZxAcQFkBRAnFskhQvAY1wCaQ6b5mjlOeKyQGRLt107MBljNNDAwwMzrxjXJmH8O+maP9PSaYNjLX8VHXUmQkLlazRIAzmNJj6olpzo0IQVT8OfaQNNqX4SfRL+UBuEBtSAfE4Rd+jpYFRLx8uSHBNOm+YQ8QkgKY+00kR6xx0B7oxR/JrTTunmODgv/PuNjQ0YY3Dy5EkMh0OMx2MURTFdheVXg3e7XXz2s5/FRz/6UXzuc5+DMW7C6sKFCzh58iTu3LmDlZUVt0Lt3Dlsb2/j5MmT6Ha7GAwG+MQnPoGf/umfxvz8PKx1E+dZlsEYg36/P6XVOx1+Yn4wGGA4HGJnZwdFUSBNU2xvb8MYt1ouz3OMRiNsbGzg9ddfx+7uLpaWlrC2tobl5WUY484f7Xa7eO655/DGG29gc3Pz0OSD3951ZWUFb775Jm7duoUTJ07gwx/+MH72Z38WZ8+exXg8Rp7n0zLKsjw0ESjJjtTXJVnh7ai1e6hvS5M02pacHAcFbRKA5+VQd1KsDi+09BR/HYcylCakH0J5NTul6ToJ6vBIolGjO5RPa2P6vi49VbQ29rux3xo09vtHY78v5DleyzKsdbv4i439PmK/OwAya92EBGuDxn7L0Njvh9N+h2SNfrgm2SX6nueXbJuUhpfJ8Unl03t+5itfCajp6xD/6DutP2k2nH/wR/NJH5RIdi7EE55P2/Kc0075wZ+F8vj6aNuUh2ywtOUxH6dwvSjJnzZO8PiljzekFbK0PrzefHt8CTQ+S9dSgI3K7rVr1xBFEd73vvdhd3cXe3t7yPN8arPyUY7BeBdzmMf/BX8Nj+IxnMd5AMAe9vAUnsJ5nMMVXMUa1tBHD0/gCWxjB4/gAnro4y7u4ik8hafx9KHV13WhRIkRRuigEwyIZ8hQoECMGC24I1XoKvMX8SK+hW/jOq7DTrZ3jxGhhRYsgLM4g+/gO3gdb+AiLuLj+AQ+iU8eKm8LW9iEO4M0Q+ZwG1lP0L7Ej0eQZM6PYUI2PDRunPKL7aDBafN0UDnQxhBSfipTPp20g53UrykeyosQUH5J4yJeN+3e84TzVNJhIb2n2dNQuRS0Mb1/J5XF9Z+mM7l8cJy0fE0/NXAY3v4IR8ehflRDrqtHqw00ABcUj4CoZRAvxEhWEyTHW0hWE5iVCNECYOYtilYOoIBBAVtEsFnktlU3EWAiWB8cjyK3ejyO3c+/twmsjd2vZFum5wc/k0fuOnPXJovcGeLZ5JceXMd5hHgSHI/yaLLKO0JURC7oXbqV5AeBcIsot5Ng+MEK82QaCDfTgHiSWyRE1DW4AAEAAElEQVSFRZIXSPICUZ6hyEYosn2M833ExRhRmcPYAu5gN6DpdQ08bDBzYJw7tR4kp7pqEkRyQEIDqRA+zaEPOan8rzbAlQZi2gAqhF/jg/ROc/Z43SR+S1/rhyZppIkC3h5VNIQmBzge6UvxKkdc40lo4oQPfjnPeFqehm/bprWJ5tSEJmtmoQ1wq7Fu376NTqcz/S0vL6Pf70+3aTXGYG5uDgsLC3jiiSfwpS99CU8++SQuXryIv//3/z6iKMKbb76JXq+H/f19LC0t4Wtf+xpOnDiBZ599FsePH8eJEyemTsDW1hbG4/H0fFC/0jzLMuzu7qLb7aLf76PdbiNJErRaLXS7XbRarem27J6HV69eRZqmuH37Nra3t6fnjbZaLczNzWF1dRWdTgevvPIKfvd3fxf7+/tTPMa47VvTNMXq6irW1tawt7eHj3/84/hrf+2v4fOf/zyWlpYwHo/R7XanDrP/YID3DU9XZ7INrQ9QAG7rQj7ZIwGf1AmlrSvP2r2kH7js8DyUfk33SDhC+qKqr1fVR3OOufOqlcPLkvqk5vCH+hanQ5oI4Pm1dgzZrSq9r7UzT/t2oLHfjf1u7Pdh+FHb77luF0/t7uKF+fnGfiv2e95a7E3weLoa+93Yb07vw26/Ad2G+3Joe2vBUU63T8tplewBlbnQtt3S1rk+j8dB5dKn56tAJV2urbqUbF9VO/M6abaT2zlpDMFtcMiuUhy8PC24TetCeSF9xBWij7eTxBMuZ5Iu0upA+SCt7OU84Xz1z+I4rrTh2riJA9cFVN4kG875nqYpLl26hLm5OWe35+awtLSE5eVlLMwtIP9yAewDK1hGH308g2fwEl7EBTyCUziF38JvIUaMEUawcOePR4jwA7yBkziFVaxOn9cJiEvbpBsYdNAhzy3AtlUfYYQh9tETzi23sLiN2/j/4P+NHWyjiy5STHZ8QQsjDHEO53ERj2ILW/g5/GX81/hFfBAfFAP5OTLkKKYr101kEMWO30mSoNfrIYqi6QcGAKZ2X9tK/BC9Qj+mfU/rX1U2T+or9F3oSAqJZkm/Uv3M+76kL6T+6OsmrZyXaOf6oMp2h2yBpt81W6j1ydB9iCZta3XJTofG/1z/+Xvpg6QG3k040FUa0LehIHkTqmtABQMft0bUNkgWYrRWXVA8ORbDLEUwc4DpF/j/s/ensZZl12Em+O0z3XvffXPMGcHIiBwjSWYymaRISxQplkXKkmDJcEmuki39sIGyUehudcM//MfdgLv/GEYZKhjdQLtQja6SCpYB2YZVEmVTbUiWBJmURCVJkUzmEMwppoyI9+LN745n2P3jnH1ivxV7n3sjM0iRGWcFbrx7z9nD2tMa9tpr7SDKUaQUKqQoYoq8MnATolWAUiEoha4LDNGEoAN0EaB1CESgq7vDjXE8C+8xkKssJKj+lkbx8K5hPA0Iq99hGhBOKY3jWVAaxYuA0BjGc12GWM/Kv2Fefg9zCDNjEC//RoUiyiiN4bkmzjRxXhBlBXGWofKUaTphmg8Y5aVhXBUZSheUq6xdaS28/2Buw7gRLoyS4xIEXUqXS5F0CWmu+mSaJuHHV65rU8hVr0+A9CmZTULwvOBSXH1tdKWVioM9RjKPrRz4BE1XOyUuUnH0bSK4cG5S0m2cpILvgyZFx74vzFWWT6D2bSa48PCFk3P1oasvXLi5NjfMb601k8mkViC3trYIw5DV1VXOnDnDo48+ygc/+EGef/55vv71r/P222/z1ltvceLEifou8TfffJMwDOn1ekRRRKfT4UMf+hBPPfUUURTV96Ca77u7u6RpWt9FmqYpRVGwtbXFmTNnWF9fZzKZ1KFcp9Mpg8GAY8eO1QrbwsJCHXL12LFjjMdjsizj1KlTTKdThsMhjzzyCNevX+ef/bN/xksvvcR4PK6VY611ff/oY489xvPPP8+ZM2f43Oc+x6VLl45sInW7XYDaGHD27Nn6fZIkHD9+nPX1ddI0ZTAYsLe3x2AwYDKZcHh4WJeT53mtoM8z/2zwKeFN+V0Kom9zztQh6zNzRJYnNy99ZblopGseyzyu3zb4aLiNe5OCPE//uWhbE51z8Qv5TCr+s+hd0zq28/twd/WXLP/dQsu/W/4ty2z59/cH/z63tMToxAnOnTvX8m8P/35yOOTO8jIfb/m3t6yWf79/+bddv+Thrrnm8oD2GVxskEZMaYB2RRSx22ePm0ljaIc04LrqlzzMtSbk3HaV1zTnfPzBbrvJ7+LFvrLsZ9IIJvvMt+5k++21ZRvjbM9QSePsuSBDm7vmqot+2Gl97fThbb5LHi77yHe9g49+2fPSPDcHpeYZdxftkt8lz7brNX01GAwYDAZsbGzUB8pOHTvFU7tP8RzP8Rk+w4d5lstc5gpX2Gab05ymQ4eQkNd5nYSEJZaIiFEE9OihUAQc9VyWIc/NbyWM3ea5RjNlSkpKnz4hYZ3G5AkIiEnIyejQOVLPIYf8S/7f/DF/zCGHZOQU5LUn+iqrfIyP8Xk+xyJLPM/zrLN+j0Fco8lIWWaZZ7hEQEixltP7YI9HLzzKmTNnmEwm7O3tcevWrZqPb21t1bw7y7JadvHJp01j7FpHch1KT3EXD3CBK+qDjDxh8x8Ttc4u105jzzVZro/eSdrkmq+yXb410NS/Ljrg42Vm3ft4uJ3OTuMzcrt4uI2TxN0lK/nomFzXvnJcdKKF7w7Mr33fXzntqLVggwKUgiBSBL2AaDkkWg6IlhTBIqhegerm5WXbZOQqQ2mFKhRaB6VJWCm0icmOAgK0VlAo0AEQgA5LA3lRfq+N40V5fzhHwqcHkJee4vYnSEvP8CCrQp+n1d+sNI6Xd4SXBvHQhEnPyk+ZR5fpc01UGcbjHKIMYssYHmcFcZ4T5zlhNiXMJ+jigCLfZVJskxc75MUBhR5RMEWT16bxdn218H6C+/IYdynTrs0YKZBIYUoKF7MEuKYNJtf7eRQgHzS99+HgEy59myp2WtdGkO+3xFH2ra/fpPLsUn7tdz4h2tcXTZtITX3WNKau+po2Y+zfvvJ9+V11u+qbZwNsnvkj18WsMny42JtMYRiysbHBlStX+N3f/V22trYoioJTp07x/PPP87GPfYx+v0+/36+9yJ599lk++9nPsrq6CpQbWLu7uyhVhn41in+322Vra+vInOx0Ouzt7bG8vEyv1yNNU0ajEWEYsrS0xOLiIt1ul16vx8rKCidOnODmzZsMBgOCIGA4HLKwsEAQBKysrLC7u8v/9D/9T/zRH/1RfX+b7f21sLDAhz/8Yf723/7b/MiP/AgXLlwgiiKUUmRZxnQ6rT3nAZ599ln+xb/4F2RZxsHBATdv3uTtt9/m1q1bvPXWW1y9epXNzc36/lOjvGqt6zaHYViHvZVj6Btb33i53jXNd3CHaJ2VrokG+TbnZtEWF51zbTK4aI8sr4lWm7TyFP08a99FV1w0QOLmw0XWKTc6XO2bpbTLcZh3nhhwhfu7H2j5d8u/XX3R8u/mOuwy7XIeFP/uAWkct/zbw7+n166x9dZbfGs8bvl3y78fWv4tcbDxluNoP7ONoz4eLq8FUErdY7h0tcnGRxpk5Pi75AQb7DqaxqDJwN+0fmzDlcTPvJf5XDKT7DOfbGDSGJx9UWBca1w+c/Wja77b4yBxlCDHrIk2Nr13eb0a/ibzu9om2+f665sXrkMBTe2VfeYzyMn+sXGwx7sOi50roiLmLd7mm3wTRcA1rlJQ8DiP83l+gk/zoyyyxAqrjBmzww5P8TQnOen0Ejd3hletPWIkLyiOGMRN+pSUgIAllmoju20UL8Orl3WNGLFAv06Tk/Nb/Bb/nt9kl10ycjJSCgo0sMIKn+W/4r/nv+cJnhCe6ffCGR7h/8n/q2zDomL3n+7w1rm3uH79Ol/72td46aWXuHLlCsPhEKD2HDeRaBYXF4miiIODA4bDoVdGtsfTHhuXLOyT4Xw81H7mogW+deGiAWa+uWiJi7e4IiC46L5cf3b7Jc2zeYKrD104N/WBT6aW/Sx/y3Xn++7qJ3m4atbVG5JH2XXbv2V93y0e/rCD6WU565qlaXc58xrk7idtC+9vUApQ5V8VVuHUu4qop4h6ECwU0CnQ8V3DOKQlF9WKAoXWpVFcUxrK0Rpd2LwY0Kr6BHcN4br0Jr9rJC8/qqjuEi8CVKGqsOilQfzI/eJZdZd4ZfQuPcI1UaZrw3hYGcMjYzzP7/6Oq9DpSVaQpLr8m+V0spwkz0nyjDhPoRihiwHTYpeBvs2keIeRvsVYbzPhgJQxBRka4zneQgvvH5jbMD5LcQL/6XJXep/ia9c3Dy4ynU+xkmma2uPDxafIzuoX4B5hzie4NdXjKte3EeCqa952+JTHpj6R31193NRP8m4y32aAK68LZm1YSQXDdYeZry4paLvKa5qHvg0N+cy1GeBq92Aw4M0332Q6nZJlGSsrK/R6Pfr9PmfPnuUnfuIn+Mmf/EmCIODll1/m6tWrXLx4kUuXLpEkCVmWcXh4yHg8ZmdnhyAI2NvbY3t7myAI6Pf7HBwcoFQZ/szUHwQBJ06cYGVlhSRJWFpaIsuyOhxrkiQAtRfa1tYWaZpy7Nix2uPl9OnTRFHEv/t3/46vf/3rTKfTI5vqSilWVlb4zGc+wz/6R/+I5557ri7XQBiGdDodBoMBQB3ibnNzkz/6oz/iD//wD3n99dfZ29tjNBqRZdmRPpfroCgK0jRlaWmJ5eXl2kjhUj5dirZLEfStX3u8JbjmhK9MmcY31+yym3CT/WOXf7+bTy78ffhKHGatSVed8p0L16ayfXTX55kj1+gsvCUuMvynq88kLvcLLf9u+XdTn8jvLf/+3vFvNRjw8pUrXM+yln9zlH+/+Id/yLe/8AV+/9Ytdg8OWv5tld3y74eHf8t2yTJ9vMjnNe+a63b7fO13PZfzQuLro382/Z2nXDkHXQbyprXqGn+Xh6bdb672+NauBJnWNlLZ4Xp9a9wlf9hlyn5x0TcJ8vCCXYbNw+3DFC6vWhu/eQ8Ayf7z8VxfhAy7LrsdJtx60/qWz2Q7zHe7n++Hh2/vbvNi9iJjRkyZcopTLLHEMss8xdN8mk9ziUtAaWC+wx1WWWWNNa9xufS6zggI6ju6FYqICKqww5qi8jpXFBQkJPU7k15CgSYhISSs32dkfJWv8mf8KSOG5ORkZBRoAkJOcIKf4+f4ZX6Zs5ydO9T7lCl/wp/wn/u/zzf+P9/gzvYdDg4OmEwmRw7r2HOjKIr6sNyxY8c4ceIE169fr69Lcclv5vcseuDjV7N4vJ3fljfhXsOsCwcXP7fLc/2WRnQ5H2XZ5re8VsG1fuWclvLzrPy+fpHfTZk+HUTi6xovF6218/kOEPhkABcP9B2ackWuauG9QduDLXxfgKK6ZxyCjiLsKeIeBF0NSYGOSvdrTQaEqOpAmUJRaEVhbMKFhgJQCnSAVhVvrsKp1x7kRUBtFNeWQbwIIFfl71xVHuSq9BjPjbd4dYd4bRyn9hqPMgjTorwrvAqdHmXmo6rnQeUdXhrHOyl00oJumtPNMrpZRpKnJMWUqJiSFwdM9T65vkPObcb6JkNuM2aHKQMyxuRk1dE9aFd1C+8nuK9Q6vZ3Kcja4FJwXJszUsBxCWVNmxU+IcWnqLueuep0tRe4R+CUCpQLZ5Pf1X+utjYJ5z5hXbaraUPHJbTKd7M2jFx1u4R7+cxXj1RGXXPF573wbnCblaapD807qUi78rrmoW+zxZVmnrma5zmj0YjRaASUm8o/8iM/wvLyMoPBgF/4hV/gp37qp+pQrB/96Ef56Ec/ek+5w+GQKIoIgoDpdMpoNGJ3d5fNzU329vYYj8dEUUQYhvXdpEVRcOfOHR5//HHW1taI45jNzU0WFxc5duwYCwsLHBwccHh4yObmJoPBgOPHj9PpdFhYWODYsWNsbm7yla98hZdeeok4jul0Ouzv7wMQxzEnTpzg7/ydv8M/+Af/gHPnzh3BW/b7eDzm7bff5i/+4i/4whe+wEsvvcT29jaTyeSeueMDe87t7e3Vm/j2GPnm1KwNGNnn7/W93QcuutVU3qx8vjrttehTWJvKk+vffiZhFv1w0QCJu4tWSNo2z9qTOLnaIfGy87hogm9zVOLyIKDl3y3/bvn33XffT/x7muccTKeMafm34d+/+9u/zcFLLzG8c4dvZBlpy79b/v0Q82+Dh42/9ESUdcvnLt5gt2GWgVP2gY+/+cLQNvEHO72Ph0t+JtvvmodNuMryXOlc7fPNdRcOrjVmP5NGHSmjmL+ucfa1t2m9uN7D0RD6cgx8Xuc+Gib/2nPLN798c8u1Rk2Z5nftte1olwtX1yFHeYCk6aCdpFlZlnGYHXLIIZryjvH/hv+GYxznDnf4JX6RJ3iyNiYvV/98YLaac3L22eMmN9lggwFDYmIiInr0WGaJAs1pTrPOOjFxnd9luDYe6CZdVG3/5eS8yZu8wRv06NFnkU3uANCjy3ke5Zf5ZX6On6NPv9GQP2HCDW7wGq/xW/zvfIWvcCO5wehgRPHK0esdfGvSrIk8z9nY2KDb7d7Dt8yckuM0r3won7vop00f7bKb5AQpN9vp5BqTMrM5bGj6wkcL7oeHu+iR7Ge77+VY+PrWxcNdOLtorF2+rw7JZ118126HDy+Tzi7TPnAgr6WQuMow/g+ap7dwF0zP+jnwewNl1dHCQwqK2iBOoCBQqECVBvJAE0SaMNYUUUERFmhVGsY1IdjXnFQTqSgUKKo7xssXSkNJJsrKNAG193ihjniKm9+qNoqr2jheeo2HBNWzoA6NTh1OPapCppdGcOMlXhrATah0YyRPMkiygk6m6aQZ3TSlk01JshFJPiIshhTFkIkeMGSHA73DPnfY5CZb3GSPTYbsMa2M4kXtLd6uqhbeX3BfodRtwcK1MeJSCH2K4v1sJjaV7/rtEo5kvS7ByYWXrw9kXXZ+34aPr91SAXYJu776ZimCvjLkO5+A6hOsXb9dwrJsu8RBCvy+TQGXct60ieFrgwt/CbP611eG/dw1B5r60Ye/XZ4PX6C+C/SRRx7h4x//OC+88AIrKys8//zzxHHsnOODwYAoitC6DD86mUzY3NzkjTfe4Pr16xweHnJwcMDBwQF5nhNFEXmek6ZprZCsrKzwxhtv8DM/8zNcuHCBLMuI45iTJ0+SJAmDwYDhcEhRFPXn2LFjLC8vc/PmTV566SUAjh07xu3bt0mShE6nU9+d+ku/9Ev8/M//PP1+3zkOeZ7z+uuv8x//43/ki1/8IpcvX2Zvb6/2XJMbSb7NHUlnTDrTVte88ynh8vusNS3HelZZPmXVRZN9a7EJd9cablrTPtrta18TLr56ZNom+m+X1ZTGRXNcc6CpLT7jsQvXecZjFq19L9Dy75Z/t/z7+5R/K8Viv//Q8+/XX3uNY3t79CYTrmjNbX03WGzLv1v+LX8/TPzbxlfycOPZJttp2uPjUy4PWZ8x3TZGusbXd/DMPJd1yT5xzVVXv8nxdR1M8HmC2/WY73a/+up04ebiDU3z2lW2xMO1PuVYudLLMTb97fOEdOEqjWSz3suxdnm/N/Fw1xr0jY0styl8tOw3ex7abZKGSl+fmDqaDo6UIcpDVljhaS7xX/FXeY7n6NGjS3duD2sovbdvcIMrvM0Bh9zhDlvcISUloUNOxogRuvLmPs0pnuQpPspHa4N7+S64p+y6Dy1P8V12WWSRc5zjzco4vsACi/T5NJ/m7/MP+Dgfrw3pLrx32eUP+UN+m9/mRV5kkw1G0YgiLsh1js6PjkudV6wFeU+3Uqr2LvfNLZ/sadK56rLf+XiPveZ8a9JXtkum9EWhMO/s33L+2jjJtWbjIvvOh4uk866ITy4a7/rtW4OmPFef2M+aZCcXDZF5bL7n4uGyfNccs78/CD7dwrsHzf0Yx1tzdwvvAhQoYyAH0OXvIKwM42FBEeQUKiMgJCSnDKlONUEVpaFcUegApWzf6dIgXl1ELj7BEeO48Q4nL0OoqzxAZZZxPDsaRt02iod5+YkyTZxBlN71FI+rZ3FW3iceZ4pOqummml6W001TupVRPMz3CIs98mKXEbuM2GGbTe6wyTZ32GWHPXYZcMCIESlTcnJ0dcVKu/paeL/BfYVSN4JDk9Jpfsvwcq50LsHOt4Fllynz2OmbNkRc6byKjngvy2yqoykUmK+dvvqa+tnO68JNKvLybh2XwGyX4dskmWfDRypAsp556jfpmsLNufK7lAnfvPDl89Xle2a3WW6UuBQpV1r5Tm7amefmZLFSijAMiaKIU6dO8aM/+qMcHBzwB3/wB1y5coV//I//8ZFNddcGzs7ODgB37tzhjTfe4Nvf/jbXrl1jb2+vDkkqT83meU5RlPeAFUXBwcEB29vbPPXUU/T7fZ599ll6vR5A7aXW6XTq8KadToe33nqL6XRKmqaEYUiSJLWH2eOPP85P//RP85M/+ZNH7iK1QWvNaDTi3//7f8+v/dqv8dJLLzEYDOo7ynz93rTu5TxpGuf7UaKa6p+1juw6fTi4cLfzyDXXRNN8Sq1875u7Lpx9/MCVXtbv4h8uOu9bM004uWjwu8Vv3jY2bSzIZxLXWXytCVr+3fLvln/7n9lt/l7z714QcPzUKZ76zGceWv792ksvsXhwwLk05QqwUXakSXxPP7b8u+XfDxP/NuUYPGV7Xf3sa4/9bB46Ow9/l2DjJD38bNpply3Lsfmd1ndDZpuymta5oXku+u2SQeR737qeJQ/N6gt7nvl4qOw7Y/gxv+1w7E10LAgCp2eprMfUL+VCFw+Xfd4kA9jzydbJZL/aZboOT7iM166+ssuSbbD7S64jl5HR1fcmD1BfSRIEQRkphQ4XR4/x3/LfssM2/5Z/y6u8yt/j781lFAdqA/M3+Aav8zqbbJCTM2ZMWoVUN9vQKRkFOV26vMNN7rDFO7zDJZ7mFKc5wQniKsT6kf6w7ho3xvOcnISELl0SOjzKeZ7lWX6Gv86n+QwrrDR6ib/Ii/zP/M/8EX/IrtplEk7Io5yCgkCV4Wd9cpQEOU+a5rY9lk30el5Z0p6PLtlNgo8W2uvEdT2VaacsQ5bTVIfLkC5/y3Y3Hezw9beLN8r0cq3aRmeTRuoudl+5aHDTVRY2uLzJXWMsQ9/Pqt/Vrw+Ch7/fwTW73k2P2eU055/fLNca8FoAMHZrQlV7jROo8r7xqPoEmkAVhBQU5GiVgy65oFKADtBBgNKKyv0c5Th+hjSQC6P43TvGrRDqtbd4+VE5pXE8t4zjmao/d73GNXFaGcMzTZzpyktck2SabprTSzMW0pTYeInnh+jiDpm+w4gtDrjDPnfYYIPbbLLFNgMGDBkxYUpGTkaOPmIWb1dWC+8vuC+P8aYNAJ9y4tq8mFW2S9lzKTjzCCnzbJL4NllMXS6YtQHja4erHDuPTxCTfTyrXl9bXb9dZcC99/HI91II9wmycmPBhaMPD5cXQhPOPgV9llDrUlCaBHMpUMs0tnA+ayPGV5cBo8AHQVAbwpMkqUOnRlFEmqZ86UtfYnt7mzNnzvBzP/dznDp1ytkus2G+vb3N3t4eu7u7vPHGG3zrW99ic3OTw8NDRqPRkb5P07QO52ru+jIeZEEQcPXqVd555x2OHz/O/v4+i4uL9Ho9NjY2eOSRRzh+/Dhvv/02g8GA7e1thsMhi4uLhGHI3t5e7WH20z/903z2s5/l9OnT9/Sr1po7d+7wyiuvoJRid3eXX//1X+ett94iiiK63W7t3Sb7UI6Tb634wnLZ4zRr7tp1+HBomsc+uuejFa78PsXftTk1a5PAl9b3ztU/9jPfRpRr7cyisea7DIXXBC5aKOv25ZvVRt/Ghi+vi+/Y7X6QCnnLv+9Cy79b/v39wr/Pas2bWfZQ8u/f/Ff/is7ly3ykKLjR7fJNYFLdIU7Lv49Ay7/vxeVh4t8GbE9XCa66XDRPvtfaf92FAdvA7TJAyP6RBvEmPl0UxT2Gb/NXPpf97/IYb5pfrjVk951rDjfNG7tMV7l2X/hokuwTk6aJh9tz3TXurrXgG39Zv/1cepY2yW++8Zin3bINrnlj5qksV/aLbK8rXRM/l+MQhmH9N45j4jhmYWGh/p4MEyabY/4t/4br3OBJnuDn+fnqzm8/mK30gpwb3ODP+ApXuco22xywT0Zee36PGbPAAgqYkgKanIKMnJCAVxnyFm/yAc7zET7Ch/hQfY+4NGybcOvG032PXfos8Ck+xU/wEzzJk86w6RrNgAHXuEZMzJQp/xu/xjc63yBZS1gMF8kHOUVaoIp76bHd975w9fLAh2tduSI8uPiqj55LcK0xV5m+QykSVxf99NFB+53vt912WYfdn00HBuy1MKutkv7JNrpw8h2AddF0l4e6XbaLhpiy7PUvy/HVK9e3K1KKzQO/2zz8Bx3MzFSOZ6608/fcvan1fdXWQgtzQKBQoULFAaoToLohqhOWv0NFEECgCxQ5ocrR5KAUWqvqrvGcgBwdBARFgKb8oEKUKsp7xuuPqVSVn9pAXn7UkY8Jq14ZyQvu3iteeYkHRUBYKMI8IMqFUTwtjeBxqomzgk5W0J3m9LKCTjqhkw6J8gFFvs+g2CfV2wz1BiM2GLDNIbscsMsee+yxzwEDJkyYkpKRkVPUh+q45yBACy28P+C+Q6n7lAk7jUzrE/Jc5cvvPgHSp+DZdbkEsiYl1Ce0uuq3fzfhawtbPiVM5nfh7xNIZRl2W2VZs5SCprrsMlxjLjdWbPxc9fl+u+aYXVZTv8mymhRm2W7fPHbhItO7lHdXO5s2VeYBc5ra3L+lta49pJVSrK6u8slPfpK///f/Pj/6oz9ah1n14by+vk4cx3z5y1/mxRdfZGdnh/F4TJqmRzbNoTwhXxQF0+kUrXV9kj4IArrdLt1ul6Io2Nra4sUXX2Rvb49nnnmG1dVV3nnnHQaDARsbGwyHQ3Z2djg8PGRnZwelFCdOnODMmTM8+eSTnDx5st6EMO0D2Nvb43d+53f4tV/7NV599VU6nQ7dbpeDg4M6bPp0OiUzm+pWO5tohg2z5qUrva/cprkmf/vSuhRg894VIr6J3vloxTxztml9yjyutsh3Usn00RrZF7Nw8NU9aw746IOvXBf4xtNFF2S7ZL5Z9ObdQsu/W/7d8u972/aXyb/zLGMvy3gjDFl5iPj3QqfDB+OY6d4el/Ocfa2Zpilpy79b/i3Kbfn3XZB0ehattXHwhay2y/bxcNkWGZbark+Olf3cnvt2ufZfaeCR+Jm0xpgucXPxMWNcd4XgdhmTmviJ3X+udWjeyTu7Zf/Icl197xrDedabK31THb4+NmDGRdIuV91yvtj9JsG3rl3lzFpPMjKKr92ueprWrvlt2j6dTsnzvObhk8mEfJijUJziND/NT/F/4P/Ik9a94rPgTd7i9/k93uEdBgwYMyYjo0ATEqCBDh1yckaMKCjISNFAREifRZZYJCPnOtfYYZt99nie5+mxQEDpuZ2TH/EanzIhJuYkJwmJ6NKt0x7pJzRDhvwxf8yv8r/yVb5GnwWWgiXuLG0x7A9K7/bRmGk6vWdOyIM0dn/b880VtcC1FiRfkfTIx0/m4eGueWzaIA8P+Wioiz/M4yVuf5+Fq4tWuXDyeXHbtMi0y3W9wCwZ3q7H1eeSZrj4a5OM78vvom0++m2DpM2uyBsuGvigePgPOmjP91l5XJTQ5JfU5u6Td1NbCy00gAIVKIgUKlGobkjQKw3jxEHpSa5AaU2gC7QqCMigui9cUxBQoMkJVIBWAUoFKBWiKNPXxnHpVV17jpffVW0gN8Zwy1O8qLzEK+N3mENQlIbxILdCqedFGUrdeImnmjjNy/vE04yFaUY/zeikh4TZLkGxx0jf4VBvsscG29xkm1scsMOQAUMGjJlUBvEyMk0Z/0WLf9CuyRbej3DfHuNNGxxNinSTUuMSwJrKdQmeUiFyCTZ2HTKtfN+U1/XOCJ9SeJf4S0VAbhrId03gE7B9gqxsp1RKXe1z9Y0vBJxLIHdtHtjluU6ZupSKJpxm9a/vdK8rn2zrPMKwS4CWCkfTnHS1xe4Ll9edfXdmp9Ph2Wef5ROf+ASPPvooly9fptvt0u/3OXnyJBcuXEBrXd8vmqYpi4uL5HnO5cuXeemll7hz5079Lk3TGgej/JuNpfF4XG92m/ZlWcZkMqHf79d5Ll++zGg04uLFi6yurhLHMdPptFYuO50OSql6Q/3MmTPEcXzPGGdZxp/+6Z/yz//5P+crX/kKg8HA2Y8+xc+nLPnW/SxaZedt2kSRYNLLO/9ca89Hz+w8PqXNpUjK8uV8mtUGucZc/TMP7XGtKR+tt0+Fu2iHBFf5Nt3x9VnTmnS1tWkOzfKEnpdey763370XaPl3y79NW1v+fbQdNnwv+fc6MEoSPvqRjzwU/DsfDDhVFBwHvq4UW+ruxradr+XfLf9u+fe99ZvoEwZ84/KgeLiBWVECJJ6uMgxIj19Zv88b3m6XTZtlndKr2V4zkqbYc0CG1jbfTV2yfbNkDN+c9vEyHx910cSmq0zssmUZvj5zjYHPA9S3bsx3eSjL12f2M18/SLya1pyPRso6XDjIvpNlZll2pIw0TRmPx2V5KBayPp/jc/xN/iYf4ANscJsTnGCPPZZY4hjHvEbybbb5E/6Eq1xlwoRx9TFQVP/K8KUFhxwwYQrV9nRIxIQpQwassU6AYkrKV/kaYyY8x7Mss0JAUIY3JyAiQqEIiVikU3uWSzB1vsIr/I/8j/wev8cuO2U5UYCOdXlH6v7dPvLNL/POFS7ffu+bAy66Io3Ns8a4iYfPOnDkuxrHxfts2iHxcPFwG2fX+pX4yDbI8m18ZOhw+51Pbpb8w0fr7Pw2zr6+Ne9s3cIVAaWJp7jq8tVj4+krt4mf+trTwv1DU8/Z79TM1A+mzhYeMlBQOnUrVEcRLgQEixHhUkiwFKEWKo9xBQqNsgzgYRUuXROgdWkMD6iM4phPjlI5ihBNURnJNUfOeFTe4sZDnEJV4dPLz93w6eZvaRgPrHdBriqPcVXfKW4bxZM0Lz9ZRpJOCdMRKh2S5TtMig2yYpMDNthlk1022KruEi/litIknlWm8EIYwXX9v2lQCy28/+A9hVL3KRvmnS0A+4TgJsHDfu46cSqVIanwusqU4BIWXUKgnVYKqnZfyLRNZbuUV1e5LlxtkHlc4FIqZrW3qR9caX2n2X1l+9ojFQ1XepcS1bQxJfPYv2e1V9bvwssGX6g3+cy3ASDb5MNRKUW/3+fTn/40a2trvPjii7zzzjucOHGC3/u93+O1117jl3/5l/nlX/7lenwODg7Y3Nzk/PnzXL9+nd/93d9la2uLyWRyJEyY/d3cSTqdTmuvbIAwDOuT8+ZZFEX1yf0bN26glOLpp5+uQ88FQVCHO79w4QLr6+ucO3eubtNoNCKOY6Io4tq1a/yLf/Ev+M3f/E1u3759xHBl94lvPF395RvTWc9cdfnGzAeuOWzyNrXLBb6166M7Eg/X96a6fLRqFu2Yh365FP93A7PW1ay8Nu6mjZLmN5XZRLdceMr3TX3zIKDl3y3/tvPJtC3/LuF7yb8/2O1y4rOfpfc+598bt29zqig4WRRsKMXXlSIvO6jl3+J5y79b/u0CX/+YNd703DbWmLJ8octtY5P93qYrTfzft0bsv+ad5Du+sZa0X/aJ1kc9OuUcb+I/pm/s37NkkVlzSvadi8/J8uy88rssz3X1gKsvXaGBm8DU4/IKd92XbIzgdh9LfG3cpMFd4ixpn4sOudacHZbb4Grj7up7OS+a+JBrPhlYy9b4Jf1LnOEMv81v8TSXeJTz/Bv+LX/Gn/J/5f/Gz/Kzzv4eM+ZP+DLXuc4hg/I+0yq8eV5yyMpjXJOTMWTEiBFTpoAiIiJjQkpKyhSAmLi+k/xVXkWheJ7nWWKJiIiQoLontCAmcYZaB+o7z3+VX+V/49d4k7fIydFxgYoUOqjWWXG0b2zZQ46p/bxpXOV8k2Pl4pE+2mPPARsng4vB12WgddEck19G4PCld80rlywj0/vaJo3iPnlB9pM8+CtxdK07F8hxcrVBjpXULWbReVcdLjpml91UvixD5nHxM5ueuGhCC98dkL38bqSndqRauAcUqABUpAh7IeFKRLweEa3FRGsxYT8kiCiN4rogKPLSEK7uhkrXKLRSaK1Aqbu/lbprJLfCqStlzMqq/BjjuA6OGsUz6vvFVR7WBvDy7907xo2XeJgpolwR5XfvFE/SgiSrjOJpSpKlxNmQIt9hWGwzKW5xoK9xyHUO2eaAHQ7YY8ABAw4rg3jmMIrbpvDWU7yF9z/MbRj3KXou5VAKET5Br6kuuyw4qvjYIAVRKdA14SzrmSUYSoHbxqfpfh1fuVKY9vWjS+iTv131zNMuW8CXyq0sx/fXh5NrPOT7pufzCLq+cXIpKL4QcD7FZZYg7FME5tmIkGX7BH5Zj41fr9fjox/9KJ1Oh1dffZWiKLhx4wZ/8id/wu7uLisrKzzzzDN1/iRJ6PV6pGnKyy+/zDe/+U1u3LjBzs7OEZy1vrtpZkKvmrrNpon5HkURYRgC5YnxNE0Jw5AsyxiPx/W9pevr66ysrDAajZhMJgRBwPb2NtPptL7P1NyBqrXmT/7kT/in//Sf8l/+y39hPB47+86lPMlnrjXgemb3swzj6JoHrvk3i6b55rAP5OlnuTZcv13P7fqaFGOZ3gWuu91smLWGmtaVVEQlbk10XrbfRWtnbQq45pJMZ567wsb5FGvzt0mBn2eD4b1Ay79b/t3y73vrkXV+L/n3apLwzAc/yOb7nH9PxmPOak0EfEMpihKZln+3/PuevC3/9oOvb1xGB5v+mDTSIOUypvvG3rTfLt+3dmSbXcZ0g88sOuvCyzdHXaG0ffTEvJfts/P4+K3Bv2kN2WHHTR6ZT/aXpOH2M9sL3h4Dux3ymW20do2TC2+49x5x1zi6ftsgDyjYY2TXbctfJp/BWdJPl2xj12/e+8pw9a/sh/vl4UvdJX768KdZYIE/5r+Qk/Mqr/Bv+Tfc5BYnOMEFLtzTP8YT+wpv8xqXucVNCjRBdaO4RhMTkVMwZkxBTrm5risjeXnbZ0FBQkxEhAamTJkyIaru/z7kkMu8xlnOssJK7RmuyQiJyMnJyEhIjoRQLyh4ndf5H/gf+B1+hwGH5VZ4R0MAhS7vEHetL981CPIAiuTh9pjZz+TYyzGzx8suR46ba6xlpBpJZ8wz1/jL9Wi3055zMjS5nIcSP5dx3gb7GhzXPJb0UcrNRr6z+8GA61CQ3ac+3mzX5Qub7+tLuW59feSbOz75yrTHxl3ycCkrzGpfC9970HBfxvFmqbyFhxIUd73FY0XQD4hXI6L1uPysRYT9ABWrUjfVBUqr8i7xykNcq8oQrktDONXfwsh3lVEclVNeDl6Asmajhruh1I96ipfG8YAguxtKPchKA7jtIR7kQX23eJQpokwTZQ7jeJaSZFOCbMg032KSv8NecYVN/QZbXOGQPYYcMmZIRkZK6giWzhFDuIbWKN7CQwFzG8abNi1scG0K2Pldgo5LCJH1ut7NA3adPkHKp6jOW59PyJVpTJ2u9D7BzKf0ugR4iY8B10aG/W4Wzr7+b+o3qXy60sk8vrngE/5lWU24yLy+TQFXWqXubiK5FBnzd9b8MmUZBcI3z3xts4X9fr/PY489xuHhIW+++SbT6ZTBYFBvhC8vL/MzP/Mz/MiP/EiNy/7+Pru7uwwGA65evcrLL7/MYDAgz/NaGTNKl/kbhmG9wWLCspo22PdSxXFcb4xHUVSHXZ1MJmxsbPDMM88cUZzzPOfll1/mzp07nDp1ik9+8pM88sgjLC0t8a//9b/mV37lV7hy5YozXJhLufUpsa45JMdOlu2bt3YaF21zpbXrtpVmGwffpotr4+Z+oIkmSYW0Sal2KaES11l4mjS+8G9Nz+ahP0003bUJbtLIMfQp7q56fMZeA64NGlf/ufBvoifvBlr+PV8dTWlMnS3/bvn3e+Xfi/0+P3biBC9PJrz953/+vubfZ7VGAVeUKlXqln/PBS3/LqHl30fb4uIxEhcXnrZx3NXPLj5r12VohisMsZ1Pznu7TlOOObjjW8M+nGx87HSudrnGx6wJu58kni7PSt9ck/zSXpO+PnTNh6Z560rvG2MbT0P7Xf3r8v6XfSnlABe+TfTZ9LUv/L+Ph0uD37vh4XI+yD6TfEfi4eITdt4wDFlbXeNjix9j65UtXuSrjBiyyy4jxmgKjnOcv8ff5RKXjtzrDZCRccghX+Pr7LBTe3iDIiUDdPVXEROTo6oN7PLecVCElRm9NLLnJCT0WEAREBMzZkxISETEVa7yGI9VBnRdGcc1V7nKNa5ymtM8xdM1jn/IH/BP+L/zEi+Vd5krDQmoqPQulx7LrsMvckzgXv7hOpDq88S2f8sxdK0vMw+k8XsemicPErl4pYufzaJfdhmSv9htcMlELnowi4e7aKC8FsAFrvpceeQBGt96cR2WsPPb7bRlGhe9lwcnmniaay75DjS4aKpsrytSRwsttPB9DAoIIIgVQaIIF0OitYj4ZEJyMiZeD4mWAqKeIgire8WhNIJTgMorr3F11zheeZArFRCo6nkQoIlQFKVhvdCW13iFiFZQBNW94gpMCPXMCp2emQ+1l/gRb/Gc+q8dRj3OC6K8IMwzKMbk+YBpscVh8Q77+k129VW2eIcdNhkxYMKYlGntH35XOuGIOVw+a6GF9zvcVyh1G6RyDn6ly6S3081T/v0+s4UYl9LjUz59ArMPL5nOVh5d5fjwtgU9l/Is+9ilLJu22uBS4mV7fQqBqxyXEiA3BFz96StHKtj2X5neftYErnJd89C8c80FnwLiO+U/zxxzgewHl/JoryWpmKyvr3Pp0iV2dna4cuXKkXu3gyDgkUce4fOf/zz/8B/+w/re0DRN2djYYGtri/39fXZ2dmpP7CRJ6o1zs6Fu8CqKovYo63a7KFXej5pl2ZH5a+5ENZvmtrIyHA45ODig1+uhtSaO4/rUcpZlHB4ecufOHVZWVvjmN7/Jr/zKr3D9+nXnGNn9L/tUriPZty4l1S7Pt06lwiRxkWW45q957/I0ca1HF8h09vpztde38WR/9+Hka6OvPBdtsXFxeVtJfOflC650vs0U11hIuutrm6tNEg8X/2iat652+OaSzD9P/8wLLf++m67l3y3/lv3SBA+Cf//wY48x3tzkW1euMBgO35f8G635QNlwronxbfl3y79taPn3bHD1vYufmb+GFvjmq6ufTXpDO2R9LuOkpL2Shzf1p2tsXP3kymPAplWucnz83cXDzXvzsY1qso1yDUrcfDzc/PV51vr6QuJt8wzf+pV9PIuHmzpkmHSJi4tWu4yQrkM7djvkGvYdkvIZCiWvMji4vG5nyUx2+fbcDcPwSBuVUpw9e5ZPP/9pbnzhBt/Q32CXvepeUUVIyFNc4u/x9/hFfpGE5C4e9YZzwSabHHIAQI8eeeW5lZHV/lnGKzyqbgVfIkQBMRETJrVvV3lX+CJrrBIQkJFWHuCl9/c++4wYEROjK8/0goIJE6ZMOeCQnJyQkNd4jX/CP+EVXkVTEKgA3dUQHp2fcr3bfeoacxf/s8FFq+W6s+eDjYMPJF+xx9Y1L1w0QpYnDwfZXsk+XFw8wEcT5RpqAp8B2cXDfXzIrJsmvM131xq28XbRekMfm/iva1643jXhYZfXNK5NdFk+n7efWvjuwYPb9WjhoQNF6SkeUHqKL4RESyHxekx8KiE5lZCsRcRLirADQaCBnEBTGcFzUKoswIRDrwrVKkSTowMFoUJT/aZA6wJU9THg8xbP7nqIB5WHeJBBmCnClNJzPFcERVDdK65qg3iUa+K8/BvmmrDICYoMXYyY6l3GxQbb+hp39OvscYN9tjlkn5RpHTRd33OTePl/axBv4WGF+zKMS0HNJTzYQpBvM0KW4xPebAFmVr12OpeSfj912/X7BC+Jo8wjcXfVK8uQQrNPafMJ7bOERNlvvo0lW5htAtk2O09Tn84LLiVoFi5SMXPhKvtCPnPll21x4WPeu07iy7bYz6QCI5VwKE//h2HI4uIiKysrfOc732E4HJIkCZ1OhyzLiKKIxx57jM9+9rP89b/+1zl//jxAfYfo0tISe3t7FEXBzs4Og8GANE2P1Cs3a4IgqO8dlf1l8nQ6HTqdDnEc12u/KArSNAVgPB7z1ltvEccxi4uLnDhxgtXVVR577DHG4zFJktQKx2/8xm+wsbHROH5yLFwKk08xl+lkm2S9vpPOdj2u+mQ62RbX5swsxVzOD/Pe1TfzlOtSzF3PfOVJHGfROt8zn+eGndZHO5rG2Ucnzbumdepqu++vq09c7XTNObtO2V5fOe8WWv7d8m9XG1r+ffT9d5t/H19eZvSd7/BilpF0OnS63fcl/+4BJ7TmazPWU8u/W/7d8u/ZIPlC0xy0o0O4xso3pyXP8fEISW99NNkVHrdpPRkcTV0+HO00Ps9LSU/mGXu7vS5Pd1mfnB+mDLuPJH2xwRfSX46XbeyVeEr6JtejC3/ffJy1BiW+TePmoyumb+WYNdEHue7sMlzzwg43LQ3lLgOerMOAnS+KIuI4Zn19nVMnTvGnf/Cn7B3s0WOBRRaZMKFDhxd4gV/il/gxPkuHzpH7u42HtwZuc5tddpkwJij9zAgICAkrH67SiysiJCEpPbcJWaBfeX0HlZFb0WeBPgt06NT3h+fkjCgPzx1wwNu8zTM8Q0IMVT1P8iTnOEdCQkREQcEX+AJXuAJmQ7wDOtCg7+VXPvoon89zeMtH5+1yXXPbtbbt/LI8O71MZ88hiZehZ7Jck961rlx8dl4ebuNi5rsvyoMcC7ssH++122kOPLnwsXH1RQuR/Eji6aM3Ph3FVbeLRsvxNWt91rxy8TX53ientfC9BdPr8xjI2xFq4QhUNm0VKYJOQNgPiFYj4mMxyamY5EREvBoQLyiCRKOCgnKZKzQKlKK8/CuzylRosirEuoKg0veJKMhRKi89xoOCu3eMU07OQqEK2zheeYpnoRVCHcKMOpR6HU49o/IWpw6hbozj5acgLAqCIiMrhkyLXQbFBrvFO9zR19jnFiOGTBiRk1dyiPGOv/u/QbZdSy08rHBfhnGfgNWUVm4GuZSqeTZM5qnfVV9TnU1KoBS+XAK2r16XUOfaOPKVAX6BsakclzDn6jOTxrcBIRUG31hI8Ck2LgHWN5a+zQR7vFzCsUtY9pXf9Ewq3O+lLa6y7TpkGrsce0M3iiIWFhZYW1uj3+9zeHjI4eEhaZqS5zknT57kueeeI0kSnnvuOf7aX/trXLhwofb+Gg6HdDodVlZW2NraYjgcsru7W298Q7lxb9KbU/hRFJGmKUVRkGVZrXQsLCzUSmAYhiRJUodhNfeP2m3a2dnh6tWrLC8v87GPfYwnnnjiyN2mJhx8GIa8+eabtTfbLKXKBqk4zhovuck1a2Om6bmLpvjyNylgrrXlW2dyzTetPRc9cqWT5fmUdlcZsh98dFXmn2e93g/f8dHeWeuzibbJcZ1Vrqtv5LtZYyLTPAho+Tf3lOOqt+XfR8tq+ffdsu06ZJp5+fcj29u8NB4zzHOi9zH/vgC8PSfNafl3y79lGS3/doPPcOOq08bNdSety7PWfg9++uhaQy6juSxLtkWOnWveuzz1ZFpX6ONZa9I2okijm32YyC7Xt3aUOurBbNfhO1A1z6Ex+72Nr+8uX5fs5qIzhn66wo7L9pq8vkMwPhoq+8u17uQYGZya6Lpr3Tfh75MzmmiCPY5xHLO8vMyZM2dYW1tj+41ttm5tMWFKSsYFLvB5Ps8CPT7Dj/ExPnbkzu4jOKGZMOE2txlXhmuAsPqXMSAlJSKkS6e+Y3xKWnt1r7BSh0CNiOjRo0sXRcCQA8LK8F0GPg+4xS1e5tuss845zlV+b2WY9pi4xmHIkJd4qb5zlACIQBf3ynKusbejF9hj4DpQoZSqZRbXmNm/XX9taFo/Lh7um69mPbra4eLzNu1xyfyz+L+rXANNh2t8Zdg0wReRwpXWJ8O41kWT/GFoil1fE32xy/PRchfuEq9Z881Vp2temLLsA0ktfH9Aa6hr4b5AgQqpjOKKaDEkXo9ITkQkJyM6JyKStZC4r4jigiBUEIBW1JNNHS2uBq0Vurr6hIDqmFpOoHJ0nlMUOUqVB9tQcDeEegBFiMrD0hiehQRpSJgF5d9UEU4DwlQRpYowCyoP8eqTKuKM6l5x4y1O6TFeaIIiR1WG8XGxzUBvMmSbEfuMGVWh03Nxn3jVJuv/Flp4mGFuw7gUwnyCsf1eClQuRXuWsNT03KVcNQl5rnJ8AtKsspo2Q2T7feDaDHAJnb62yL5oEmqbcLbLd42rLbDKNrnKlMK2TwmQ+YxyITdupFLrOjXsaouse1YfyPyy3fYz+7dLafDhYKcPgsB5Atm8j6KIJEkIw7D26sqyjH6/z8rKSq1Ydjodbt68ydmzZ/nYxz7GM888c8RL7OrVqyRJwvHjx2vch8MhWZYdCbdo6jSbEmbz29Sjta5DqNrh5cIwJM9z56aYeTYcDtnY2GA0GnH16lXyPOf8+fPEccz+/j7Ly8sMBgNGo9GRvPOCax37+lWOsW/cfOW76IKsy4CL5rmU7qY2yPKa5rQLxyZc5bOmDasmun0//eGjcb72NNFR16aBq55ZirAPD4mjrw8kjXLRSZnGhZvEv4mH3Q+0/Lvl3y3//svn38vjMVG/z/ETJzjxPubfHa3pFAU7c9Ktln+3/Fvi0fLvozCLZtn1yr4zdNmXx4WjTOOidXZfvhse7vLKtvmGDbNotOTdPjzsfDIks0sGaupbG6Tx2/S7TX8l3r72+Nau7dkp+awLb1c77PrMXe+SF0j8TB0yzLOrr2U9Nkg5xM7fJCPZnqCyvwy/s3mhLFuGWzftNt9d9Wqt6XQ6dLtdoiii3++zuLhIupeydmWNk/pU5eEd0KfPd7jMUzzNBzh3j1HcbD+r6t+ECfvsVYHTSw/vgBBNQUxSlapqT+7SvF16ksdETJkS16UpEuLq/vFh7XVe1luQkxGg2GOf61zjDGeIiMjIauO5gYyMAYc1zkV8r0zg4732mLjmgByTWXNFlufi4fbcMb9d5Zv30tgs14ktw7rogV2WXK++NS7nn2zzrMOAPp48iw/NI4vIMl39ab7PMnBL+ujrwyY6a+f30XLXXLTrA7x01zf/TB5TvktveRA8vIUWWvgegKL0FDd3i3cDwqWAZD2icyqmczKuDOMB8QJEkUYFBSgoTH4NSmvQ5Xcqr2qqeC3lhzJCehgQqJxQ5WidoYKcMpS6SVB9igBVeYirPCLIIoI8IshCwjSoPoowDYikUTyjNIqn5V/ziXJNVGhCXXqMK52R6wGjYptBsclQ7zJiwJQxGdk9RvGKOv7ljFMLLXwfwtyGcZ9S6FN+XAKFVIDsd7OUYFm2XZ5PUW/axJACoGzjLOXVpby52urC337vqmMeoVb2hwvvprBnLoVflue7X8yF8/0IkT5h1ij9dtku/H3Kvq+tLnxl3U1tcb1zzWW7bb5wTq7+ca0JWxnp9Xp0Oh201iRJQhzHdXrjPd7v9/n0pz/NJz7xibrMMAw5PDxke3ubhYUFAPb399nf3689G8yGQhTdJQVm8xzKk/LT6ZQ4jhmPx3Uek0/r8s7RKIru2agxmxnmbtPxeMyNGzfY3d2tcVNKEccxp06dYm9v75476Vwh2GYpXr408tn9gEvhnacM3/xqSu/Dz7dOJY52XT567VP45TuJ1yxcm8p3tcPVLhe+rny+tjfxH5neh6+PdjYp+fa8l+1taotZ/9ILdV4eMA+0/Lvl3y5o+ff3jn8rrflAUfDmygpmpb9f+fc5rbmuFIWDtrf8u+XfrncyXcu/j4JNU1xlu9poGwhsvFx8x8fv7DRSPoejHr52/XYauzzTxwY/ibu9LqQ8INsn22+nc+Eq80t5xNf+WfTf9nAuiqI2tvqucrDrc81lM16u+7Jd5dj4zeLhrnVv8mRZds/akKHwZZ0+PJqMgU1r2fcM3HxZzj9Zl8RBjr/9cR16CsOQ5eVl+v0+RV7Qu71AZ5LUG8rb7LDDDius8qN8ilOcvscoXnqAR/XzQw7JKoO1QpFREBKhCIC8Nn4rFB06jBjTpcuAQzTUhves8v7q0CUhRlMQAjlF5X2e1aHeQwKGjJgwpiCpjO0WzUJVnuZRGWBVgYrujYLgWp/2O98VFy65rIlX+kDOMd9cs0GOqy/ygUvecL2XbW56L+espAn2b5+c4ntu03iJky/summ/zyvbNab2WnFFrZC4ybGW4+TqLx8dcOWz2yXbZ0chmEW3XW2T5fvmwsMBpt0PVpZpoYXvOlT8S3UUYS8gXq48xo9HdNYDktWAZEkR9zRhVKBC0EoTKE2hNQUFuQpRQK41SpU3iKMrw7iiWh4KlLlzPCUIQ4I8qwztBShNaRgPIC8/Kg9Lo3gWlZ7i05AoDYimAVEaEFce41Fa3SeeQpTqu8ZxRwj10ihegM7I9ZiJ3mekdxnrASmTI0ZxO4B6Cy20cBTeVSh1n1Jl0rhAKry+8mV5sm5Zpq8M38aSS4gzIE+L+oQon8Bvp5N1+xT+pnbaQu+8gplvXGwcfLjL/K42zapX5pfzxa5zluIhx7wJH7tts8IoyTJcfeDasJDt8vWBS6nxzV9XuD5Tzng8ZjKZMJ1OWVhYoNvtkqZpna/T6XD8+HFWVlb43Oc+x8/+7M+yu7vL8ePH65P/V69eZWtri+XlZbrdLnEcs7CwUIdhNZ5jcRzXmwtpmrKwsEAURQyHQ4IgIE1Toiiqw7OCO2zXdDqt22rCu06nU4IgYDKZsL6+zhNPPMHNmze5fv06AKdOnWJra4uDgwPW1taOKCdyc8vVn3KeucbNN1/kbzkn5Jj5FEHpTeGag7617Rv/JnC1cx5F3rdJ5Zvrdhm++e1Swpv63lemi0bI+mQZrjp8tMhVlm+tzjM2ci7a/eDCuYmONtGJWXnnhZZ/t/x7Vr0t//7u8e9TUcSVKOLO7u77nn+vas3btPzbBy3/bvn3uwG7H2xjkPnYaXw0+n55uGyb67uBWXzR1ccSX9vz1wbTZt+cbWqTjauLRrjoERylC3Je2nXaeY1R3K7Px8ub8JXhxF1ejLJvXWvXNTdk+a5+drXVNtjLsu26Jd2XNNc1d2RbZB/KdjUdmrY9zF2e5vZ3c4jM5DPlKKUYDAYMh0NGoxGrq6v0VZ/R22M0moyMBXo8yqMc5zg/xU/xKX70iLEZqEOnhwRQvYuIqvu/FTERAYoOXUIClggYM2GFVRJi9tgnImTChIiYhIQxBQqICMmhMogHaBQjRtX94wUxMSEhI0aEhBxySFDdWW7jFVe/YxJOc7q8C71CNyQ80r9RFDkPtrjmqZ3GHid7jORvpdSRwzNy7sg89pxzXVlgg12uPRdccsL9gpz/5pm891rSIpecIct10S6XXOXjf/LgQBiG9yW/uMZQjr/5a9MP+c7O7yrP7kcZJcJH82xc7L+z+tVV//eCh/9gwffadGb6tzXZtfAeQJUfFSrCbkC0FBKvhCTrIZ1jpVG8swhJTxMlEMZFFUZdUaBRqqgOn5VGZKULCl2gKD/1NFWq/mgdonVAoUNUkJUfE04doACVg8oUQVqFTp9GpTF8GhBNyk88VaW3eKpK7/DKKB6nmniqidMqjHqmCet7xQtUUYDO0eRkesqUERNGZEyq8Om69hW/axRv11kLLUi4r1DqUpmRgomBps0LuRnlUpBcypKrDp9Q1yTUNNXVtIHjEtBdAl+TsutrnwS5we8rz6XQS5x9ONjPZp2edZXRNBds/Hxlyve+DRaXoNtUNrhDU7na7WqTCx9bCZHpfG1rqqup3a4NgDRNGQwGZFlWh0pNkoSlpSU+9KEP8fM///OcO3eOPM/rDfLpdMr169fRWvP5z3+eJEnY39/n0qVL9Ho9vvzlL7O3t1d7ipm8nU6HXq8HQBRFKFV6ik2nU4qioCgK8jyvw7EmSVJvLkhFJgxDJpMJSZLU+RcXF1lcXGRvb4+dnR0WFhZQSnFwcECv1+PixYu8+OKL94R2NQqmVI6a+tP13KV02kqcnJ/yr2+eSrxcc0O+n3c9up41rRdZnnzum79SufW1xzWf51EYXXTUVad8/26UUdlnLiV5Xnrta0tTvlk0wsZBfneV2fR+Hmj5d8u/7TJa/n0vfDf592gwoB8EfKvXg/c5//7qiy+STKcUShG2/Lvl3y3/fs/8265Dzmdp+LPXm423C89ZsoA0kNrPXGtvVh02uH67+LzkJRIf89tHS1z83rdOTVpjOJJ5bV7i4+Gz1oeEJhnAl9ek8xkd7TZKsMdN9lcTLXXh5Hpn8HKt/yY655oP8vCH/d01doaHNRk25aEnqWfK/IaH7mzvMD4ck+QdIkJ69DjOcT7Np/mb/NessFKHMAescKWaRRaP4LDGGiuscJvbxCREaDJSOvTp02eRJQA6JAQEHDJgyICcnJyMnIwxExJiunQpKq/0jLwKya6r4OsRQ4b06DFiRE5OSkqPHlOm7LPHAn2i6p7xDh0+xIf4D/wOeZKRR2UUIOOFa2QISQ/sMfHRbTm/7DS+QxpmPOVBDJPXrltGNnDxfhlFyUU3ZBt8NNInd8t22zTUR0dc5dvlSDoyK51852qf/btJPm7i4S55rEkmmKcMV7t87ZFzwTfvfDxpHh7umycttNDC9ykoQClUZAzjAfFqSGe9+qwokj4kXU3YgSACVIHWUFRh0gs0AaWXuCIoDeTGME5FQwxtVAFapWitKHRIEGQEQV55jd81jFMoVKZQWUCYRoRpSGiM4tPSKB5PqxDqKZW3eGUUtwziceUxHudF5TGeE+i8MuDn5BjD+JCUaeUpXn6Mt3gLLbTghvsKpS7BFhZ8Ck+TgCLf+QS+JsWxSTBtEtokfq5NAamcN22ayLKlgi+FL997V5lNdfv63VeOnVYKzHY9Mixq09i58PHhIOeLVJ59v+XmSFN7Zb6mPLPG2PdOKgu2McTksxVt35x3bRoURUGSJJw5c4Ysy5hMJgAsLCywtrZGkiQEQcD58+c5c+YMX/rSl3jyySd5/vnnOXbsGEopXnnlFb7xjW/w8Y9/nOl0ynA4RClFv9/nAx/4AIuLiyhVbtqbUKoGz4WFBeI4JgxDFhcX2d3drQ3zZkM9y7Lai8x4sgNHjPdKqTp9p9MB4K233mIwGLC1tcXu7i69Xo/BYFDn3dzcrBVx0xd2v8jxkcquy9NrltInaY8r/bzz3i6viSb6nrnK921wSvCtcbluZynC8yh/TfjOyucqR+LsaoOst4nX+Opw4e+jsa7nLgV7Fm+4H3znfXa/0PLvln+3/Psvj3+vFQVFp8Ppkyff9/y7pxRZlb/l3y3/bvn3g9mEkvPc4Darblc/yTlu0roMQrZRSs5FSR9NPskjZ7UL7g137KpbhiFuan8Tj5Ztl3W5+kZ+9803V9t8PNzUa57Z/S95nqSf98PDXXzNBlluEy11tcfVH/Zf6c3rK1d6Ect3TXKGqcPVb+ZOcdcccOGdZRndbpennnqq5r+ksLy1whlOs8ACISHP8hxP8TTf4ls8x3OssopCVd7YY7bY5jSny/6p3MwUih49llgiQDFhTIdOfZ94gWaFFbp0iElY5xi3uEVIwJQpE6ZVWPYpASFDRizSZ8S4vr+8Q0JIUueJiVikj0JVBvSMESM22eQDdMt+qrzK3uGd8p7yKEQHuj5MZ/pSzgG7z330wDf25n0T/5UGb9dhD7tcn4zqqt8nUzY9s+dNk+zfFN7dRUfnAbuNvn6w00ocm+iai7/55DGbVkk53YWvlBMkf3DxYR8dkuNr42LPHRm5wMU7fbzBVdcsnaWFFlr4PoDSTo0KIUgU4YIiWgyIlxTJsqKzBMkCxF1NlGjCEFSgoQqPHujKMK40hS49xwMdUFAQ6ICAggBNVhQoVZCFmtqDPIBCh4RBShaUd40rVaCVrl5GqDwhTBPCSUw8jknGkIwV8RjiKcSprsOml8ZxTZwWxBkk6V3DeJxDlOeERV6GUS9y0ClaT8n1hFSPSZmQkwpz+IPRR1po4f0K7zqUuv27Sfl1bY740kuF3LcB4CpXCmvmnQSXgOMSmmfV7VMs7TJkm+1nTW2VgphLmJP1SmXat5Fkf3cpuua7DIUm07meufrK1zfzvvNtQvjSufBz4eVSllwCtKsPXJ6SPuVBzkmfYC7fFUXB4eFhHVI1iiJOnjzJo48+yv7+PlB6NVy/fp3l5WV6vV4danVnZ4dXX32V3d1dXnrpJd5++23W1tY4duxYHVK11+vVmwWmXrNZrpSqvcnG4/E9ypV9f5NSqt5UN201J8vNHaZRFNUeZ2macufOHfr9PhcvXuT48eMAvP3223Q6Ha5du8Z0Oq3zyr6dV8GWY+dSopoUIh/4aFgTXXHlcSlbvvV2P/i58PXh5tpc8imqEj/X2mnagJiFj3znU9h9dMa1KeJb8020RJYhn7u+y7Ka+EMTbjJdUx3vBlr+fbQfZpXR8m9/38z7ruXfJf8+ozXFmTM8cfHi+55/6+mUcVFQOPq25d/3By3/PprmYebfcC/t8vW5xFManZtC1M5aB/KZNF7bh7JkmyV/880720Dq41VNvMV8d/FTO2Szq29Nm2bNc9kPNg+X7+SYSWOfa175eLjdJlde17xwHShwyRTSsGW3telaDNfYNI2b5Kt2fbJu1/xz8XDZ76bd9jv53jWn7bmzs7NDGIblAbRRzIX8Ah/hI9xhE6ow6K/yCic4ceQOcYABQ/bYY4lFksrwbRvHF1msQ5qX4dcVU6aEhCgUMTE9uhxwWN1EriiqEOpTUhSgKVAoxkyqFOWzlIyCIRkpGkjIGTIiJ6vep3TpcoGLdOiQk7PDDgUFr/IKI0akOqXIi3vmqz2PXHKnPQ6u+Wv61uUl7psTdhoZIr+Jfkme0cTDffzRF6VCtl9GRpq1NiQPt/PaYcFdURx8tMmFn0/OkkZvudZ8eX18tOkgj12HXc48xn1ZjynbvrLC/gvUsrHE3aRzjbuPn8zTzy08KGiNdi28R1CgwtJbPEiq+8UXy/vEO4vUIdTjRBNFmiCsaIHSoCmvA6+N44pCl9eU5FoRqoBc5+Q6JygygqBAKY2qSLRWiiIISYOUIEhRQQa117hCFeXd4mEaE09iknFEMtIkI0gmtmG8uke8+sRZURnEIcnLv+X94nkVTj2DIqMoUtBTCj0hZ1KFUb97t3i7vlpoYTbcVyh1cCumNjQpq/K3S+mxhTEZ2lHmm3ejwbd54FJYJQ5NGxwu5dgl+DUpi1Jxcym3si5Zhl12k5Dv2xBo+u1rf5NSPA/I8XApxLJtrr92W11tMe9dY2XXNe+c9s1n3xyR7bXBF3LXzPm9vT2SJKk9zPb393n11VeJooi1tbX6brSlpSWKomA6nbK3t8cbb7zB7u4u0+mU0WhU4zedTjk4OODYsWMsLy+zuLjIaDQiTdO6LNNXttI6Ho9J07ROVxQFWZbVeNv3/hlvtCiKyPO89kpTStUG/jAMiaKI48ePc/LkSQ4PD1lZWeEv/uIv2Nraqu9Rt5U321De1MeuvvYpSPaY3g89sfvJLs835raS69uIcc1vF86+d7456vre1E4XfZS/JZ4u+ufqlybcXLRg3k0GWd+8Y+lTjO33tvLuw8d+56M/rnJdvNDVP64NkvuFln/f24aWf7f8+3vBv7tJwqJSvH5wwOZDwL970yl7ulTDW/7tTivftfy75d+zYB6ebP8269rlxSfntl2+9FqW4Y+11kfWRBPvmDXHXOlkefIgjL12JY7SMOdqvxwHV3QqO79rzrj4l6QPdlmGDrp4eFP/yf6w+8AOMW2eu4yFEhf5zKQPw9C7Duy0rnp9eNv5JR3x8XAXvvacdtEjlzwi54rhdfZck5FiTDozb27dukWv16PX6xENIjbZ5Ev8F2JiHuEsYyYsssRxjld3iINGk5Ozxx4TxpXROiCs/hnj+AlOsMYaBxwwZkLKtMpbbmLvsE1AQE7BgAETpowZM608wMbV3aFBVbZCERAQoSvDeUxGVnmVD1BASkZcGehjYjp0ag/3RRb5Ml/mGtcZM6ZQR2VaIzvIcTHP7IN6TQdcXXKuHDPXbzkXZIQf88y1tqTR2icTzwuyDleIePNuXh7ukkl80Tjs7y6a5OJt8rukW661YdPPJpx99TWBSw5o4rW+sbTT2jqnrGtWuU38/EHx8BZaaOG7CIq73uKxIuwqogVFvKhIzKcKoR7HmigsUIFCmXDnCrQGrcofZVh1qgDqpXE8pzSOhzoo7/cOdc35UVAQEDEmUx0CNUVRHkQvw6iHhJOIcBwRj0KSYUhnVNAZaeLJ3ZDppcd4UYdMj7KiCp1O+Sk0ca6JiiqMelGgdUZhjOJ6QqbHZHpSH4bT9b3iLbTQQhPcl8c43CtwgTvElW8zRYIUiKSg50vfBL40PiVKvvfV63puC6fznpictRHlyu8SaF2Ku11OkwLaND6y/+cRvn39IvP76pL1+fDxCbGudHbdrra4BGH53YC9GWDX4ZtLMr9rE8E1juZ7GIZ0u106nU59v9edO3fQWrO0tFR7mZ05c4Z+v0+WZezs7HD79m201vR6PYqioNfrkSQJm5ubJEnCysoKq6urPProo9y5c4etrS2yLGM0GjEejxmNRhweHhJFEd1ulyAIGA6HtXJkvMYmk0mNb7/fJ0mSI+2dTqf1Jrq5ry9JEpRSxHHM+fPnWVhYYGdnh8FgwMbGBi+++CKHh4d1GSaf61Sxay64+tYezybl1zeOrjSucXbNHRmCdx7Fex765ktnzx/f5oJvDdnvmsp39aVrHrvW5Lzt9OEgy2xSfpvWpKvuWfTKx5dcfSmV86Z65fumDY0HAS3/Pgot/3ZDy78fHP9eBfbTlDtbWw8F/z4D3AkCQiu0rYSWf7f8u+Xf7x5smmjzLvt7E32De/mTaYPdFpdcMIvfmPSuNeOaW/Y7X/tc9Uq8TJvs/HJN+XiND195uE/W57urex4e3tTvdrkumiXxfTdrwsbBnu+uul1zzUevXSDnhsvj2wYXvpKHu9oo67DTNc0pu83mjvEoilhcXCyN4ioiHadc4xoazTHWOclJllniSZ5kjTVS0vpO8ZCQBRYAWGCBiJBddqqQ6R06dHiMx9jgNte5wYQJBxwwYMABB+ywQ0LMIkuEBOyxR1FtsOfkTBgzZIimDPW6yio9evXWt0YzYlyFZy9QxOTk9OgSEKBQ9X3oxlC/ySb/if8f22yhFahQEYTl3oN9sM3uQ3N4zl5Dclx84ynH27fG7DH0HU5z/ZY0YJaMKHFrqkeml1Ez7GdNPFxCE0920WJXekkrm/ieq077r48n+/qxaQ646pLvfPTKnh9SRnL1h+tAl2yba3x9/EH2XwsttPB9Bqr8qOCuUTzsBcR9YRTvURrFg7yM8aJVfQ042DyroiX6rnE8JyCv/4ZEqiDSBZHOicgIyQjIKApNniuyLILpAmSrMMoJ9gvi/YDOHnT3oXeo6Qw1nVFBMikqw7gu7w3PS6N4mGuiorpTvIAop/xdaKIiJyhyVJFTFBlaTymKMTkjUj0iY0RRySUttNDCfHBfd4y7BBI4KkT4hKEmhXoeYdRVvw3SM20eodwnXNrvmvCS7Xd5x9k4yLyz2urbmPMJuDY0Cc7m7yyhT26O2M+k4O5qq6tt9ytczjPHJH4u/F2Khg8f3+aFqx5f/8jv4D/NDHe9O8zfTqdDHMf1vaBxHNfhTU26w8NDnn32WaIootPpkKYpa2tr3Lp1i9OnT9Pv91lZWeH1119nOBzWIeG2trZ44YUXWFpa4gtf+AJpmh5ROOxwqvbdo1pr0jStw6qaPkjTlCAIao8DpVR9etx4l3W7XVZXV1lZWSGOY06ePMne3h5LS0sEQcC3vvUtvvOd75R3uUHdXt+4+DZiXGlcp3xdc9a3lmSeeRRbU6arLvnOVd4sXHz1uhRkqWDa6ZrokAtn2Zc+JdhHE3xt9bX/fjYTXPi6+tdHE+W7prVt5/fROx8dkHl880Ti7Jvz80DLv1v+bT9r+ff3jn8vTybcSpKHhn8vac21OEZ56EjLv/24tfz7aJ0t/74XzEEVuzxp2PT1v/3c0CGDaxNPsNvja4trjGW90iDa1Lcyr69cG2yPcde8nIcHyPJkG11z3yU72LxB1mf/lXxErvP74XFN8obJ4/KotME3JnY50jPfxksetLQ95H08XbZLeqWbd661L8fEddDT/LYNufK94X9hGBIEAf1+v+bLh/sDummXnJyUaW1Y3mGHS1wiIaHPIgVFbXBeZ51jHCMkZMKEAYMj4daXWeajvMAd7jCxQqErFAU5GYqMjAkZoJkwqe8uHzGq7gQv/x8zISIiIq78xksf9YKciC4JCYsscpJTLLBQb5QbXDIy/pg/5k/5U/Y5QAUQd+7KLK55Z4zlrrnoozNNPEFGn/DRkybaZP918Q+7fnmIRs7FWfltcOXzXdkj+Y5vffvoo4+H222y07l4gazLxft9B8Tk+Nh9M88Y2O3z0RCDt6utsg7ZB3YZvgM4rnnoapttYH+QPLyFFlp4gKBAlcwTAlDGW7yvSsP4kiLpl4bxuAdxoolVQagrnqupfMOpriOpQJfftVaVYbz6qwJylZOrkFzlJDpjqjIiUkKVkWtNVsA0jVCTPozGqIOUcDcj2Sno7hb09gt6A0V3VNAZFyTTgiQtiLPSKB4W1UdrgkITFVSf0igeFppAl4ZxdE6hU3QxJWdMpkdkDMkYk5MCzVdWtNBCC3fhvuLCuBRR+R5mbxDI9Aak0OSqzycI2c/nETh9wp39zFW+rEM+N8K9r22+5y5wCauz0s5SqA1uBldXm2R+Hx5237nyPwhwbUL47iXy1e9TTFzta1LWZ9XVVH/TvDVKVBRFxHFMr9dDKcVoNGI0GpHnOb1ej3PnznHmzBlOnz7NYDAgSRLOnz/PU089RZIkXLx4kbW1NSaTCYeHhywsLDAejxkOh8RxXNcZhiGdToenn36a06dP1+vBeI0lSUKv17tnc92EY7X7KIqiI+vGhHQ168BsiiRJwuLiIsPhkM3NTf7sz/6MwWDAqVOnuHXrFq+++mrt/QZ3N7jkJpf93bVRYitMctOviZ741soscJU3Tz6fgm+/n4WXb07JOnxt981/uc5cfe8Kqdf02wdSOXWtFVf9dht8668pvJ2v/TK9vVkj8XNt2Nl1NNHDWfRcwqy72OaBln/f/d7y75Z/y+/fDf49Hg5ZzDLG/f5Dw78jrclFtJeWf99bZ8u/W/59v6C1PmKosp/bf32b/TK9DJM7qx/stE04zOqvpnVhz3v7nX0YQB4MMGBozv3QhXn5gz3ffP0k57prHOw1KNeoyyN2HoPMLB7eJLfJNjWlNX0rZQ/7vY2P+e4LM9/UP7K/fXjLemWfKaWOzAnf2AZBQKfTodvtsry8jFKK/f199vf3yQ4ylljigzzDUzzFEzzJLrskdFhmmXXW65DmUBqaR4yq35opk+o+cer7PhWKYxzjIhcBCAnp0SNA0aPHEktkpOTkjBkDikn1L682ugMCEpI6jLtCMWUC1X3kBZqwMpN36bHOeoXbkAnj2sP9Ju/UYdSnTCCCKIxqGULObzt8urwr3B4Lm4fLtWmPgZQH5Ds5J1xzwMdPZ/FXO53ULey0so4mvibnVRMPlzzJ7kepj9jfJU+RdM815100wUVnZVQIFw4+nO02zQox36RXmXJcPNzVllm6hqyjKSy6i3/4eE4LLbTwfQDGKB6q0mO8FxAvVIbxviLuQ9ytjOKhrry9c6IiJ9YZsc6Ji4y4yEjMR2d0ioyOTukUKd0ipatTekzpqSkLwYS+mrCoRiypAUscsJTvsZhu0x9t0Nl9h/DWNbh6HXXlJsm1XRZujlm8k7K4k7G0n7N4WLA01CyONP1xUX6mBQvTgl5a0J0WdNOCTpbTyXKSPCfOS7yjIq+M4xnolFwPmRYHpHpAqsdkTCnIWo/xFlq4D7ivUOpGMJF/bXAJDlJoaVJy5lECTRl2fVIhcm2Sy/KblDNXe31129B0utClWEsB0we+ND4l1leWMTjK+zGb+txXlm+DwIenbKsR3uXpc5dya3CfhaccfxsnqfjM0+++vpHzyxb0fQqcnU9rfcRDy4Rvs+/kjKKIJEnqcKYXLlxgdXWVt956i/39fY4dO8bZs2e5c+cOWZZx+fJloigiCAK63S57e3sMh0P6/T7dbpfRaFTf4b2zs8OFCxd47rnnuH37NlmWMZlM6k39KIoYDAb1Rnme57XXGdz16O50OgC1Z7tpTxiWGwRFUbCyssLa2horKytorYnjGK01/X6fN998k1/91V/l6tWrRFFUp5lOp0f6zZ4jvnHxrV05D1zr2Shxcn7K9eGjgbI+1/d55oXE09WupjzzPvdtgtk4+xTHpg0D1zMXrZtFeyVOvrHwtcWV10dXXO2StELW46MlPn7YxDNceEiaNYv2zQMt/3bXbUPLv1v+/SD594koYqIUwUPCv08uLxOn6T3e4i3/drdR5pn3ecu/Hz7+bY+v9Hp1pZX5DL125Zd9LJ/7cHG11TfH4a7hxOeN6KrDxfeb+tMY6lw8y7WWpSFP9p2d1yWbNK192R6Dn8kn+aYEF11yvXPVNw8PN9d0hWFYRzNp4tn2PdK+v5Iem3ZKD105prNkj6Z2mTJsA7zLW1SueWPYNZFR7D7Jsqw8ZBb3CHciYiKe53lOcYq/4C+4wR1OcpIuXaA0eINGVaHKzfOUlA5dEjqMGLHHHn36dOgQE/MET3KVq9wmZcAhiywREBATs8cuE6YoAlImTJlSUBCgiOhSkNOjB7XRfFrZB8r8JV6addZ4hDOss46mqHAM0GgO2Of/y//CS3yLhJgTnESvaSbxGD26Oy72HDHgum7It/ZcfFjOM7kmbB7mktF8NErWb+ajDG/uW18uHuWan7PWvos+NpUh6aJsv12eHYlB1ueTC2ywy3F5btvpTF3SYP6geLhcn03vZNkuXuDi7TJvEz92zakHwcNbaKGFBwwKlKr+BgoVKcJEEXUh6qnSOL5QGsWjBKJIEypNpDVhUXqHKq2raC3V33qda4xNWaPQugyproOAIlBoFaBVdf84AZkOmGQB8Sgk3g8pbm4yevU206sbhDcu0t9VHJussTQJ6KeKXqZJMkWSq7v3iReaoCgItCbQGqXvfg+1JtBY73IKnVWfEak+YKx3megDUsZkZPVBvCMd1hrKW2jBC+/pjvEmxdlOY+eVm2O+su1nLmXQp/i7hF2XcOurTyqaPkHPhWOToO5qp0sod+Hkw8NXt8TL/m63zyWcu/rO1aYmPH0bKT4F34W3TONqs6sOiYsN8uTurM0EV5+56vIpOXD0riOXMmGM3mEYEsfxkVCsQP18YWGBwWDA5z//ea5du8b58+f5iZ/4CZIkIU3T+i60vb09kiQhCAIee+wxvv3tb9d3hEVRxHQ6ZTQaEYYha2trvPDCCwRBwDe+8Q1ee+01Dg8PieOY6XRa42uUIbN5YDYNbHyLojhyJ7hSqg7BurS0xFNPPcXx48fJsox+v8/a2hoLCwv85//8n7l16xbr6+u1J93Gxgaj0ahuvzm1LpXM+wEzfi7PBTkuPqXMpUz5xt63tubF1YamzbamzQbZJpfy76NlPnya1q0LR9+Ggg/k5qGr/iYe5KL1rs2xWW1x0QH7WVOINtkeH02RZd8PnX230PLvln+78HHVKfFt+ff98+/Hsowr/T79fv+h4N9ru7tc39ggb/n3ERx9+Vv+3fLv+wUbB611o/HIgG0QkkYQ37pqapOrD2xaYpcjcZd/Zfk+Ht7EV1zh45sOa9kH4GTfuOq22yrnpmt+ybSu99LQ4lszsm1yLHxyiGutyTaZPnJ5qtt12X1sv5dl+9akyStD3cv+cuFuz3Of7GD3kfRSNTzcNfeDIKgPn8dxTLfbrdP2+30Aor2ITtFhlVV22eW/5ud4iW/zYT7M5/gcQeWtHRKiULU3uLnLO6dAU0AVuLygYMqkNl4f5zg/zo/zCq/wdf6CbbZJSBgzqje0MzJAEVbh0nMypqR06FTh0yGnICKioCAjRxHQIaFPn2Mc5+N8nGWWUSg6VeB1heI1LvMWb/IIj/A4j7MX7vHW4lscDPZrOcDIDHJMJPjmrb2eTDh7WY4ZY/uqiHl4qTwkKnFxzUPXfHXRCbte+a5pbc1a66553iRn2H3o44t2XTKvCz8fPTXP5Dpy0R2Jj2vtyjbbeMhx8MkvLh5lDunMOpxh12eD75CEPMTZwjygaI1tLfylgaK0cIegIkXQUYS1UVyRLCiSyls8CjVRYAzjujSMq+ov+q6RvPoLQE2TFOXV46UxXGuFzkErVRvOsxx6qWZhqAm2NYM3A0bfuE53Y8zx/DRnggmLRY9ukdHRAZEOiXRAVECYQ1hUOGhNQAG6KL9rTaCLCscSV3QOZGidkusxU33ARO8w0YekjMnJKMgtw7hZp6Zl7ZptoQUJcxvG7dOW4N9oMu9scAlOLpDKp3w2C+bdkGgSaH3gu0NslnLoq18K56bNvn6dhbNLQPbhaITMJkFWKvQ+RcK1SeDDSyoePhxtmLddTfjYZbnqd6VtEqplH7n6x6Xk2N+jKKo9zsxmdFEURFFUC/vmNHuapkwmE9I05Ytf/CLj8ZhPfepTPPPMM0wmE1ZXV+l0Ohw/fpybN28yGAzodrusra1x+vRpXnnlFR599FEeffRRXnvttdr7vNPpUBQFn//853n22Wf5/d//fb785S8zGAzuMYAZfGz8TT8ahTmKSnJiQj2aTYrjx49z8eJFzpw5w9raWr2xv729zdLSEj/0Qz/E1atXeeONN9jc3GQ8Hh/xdJN9KE9Vu/pZzg3fhpcvvxnLee7jmwd889je8JHGg1n1yY0en3Ip17JLOW1SJF0KrU959Cn6PiVe1mXKsA1Sdrt9dHoWHfL1q90Hvo06u37ZznnoxDzj2VRPE/7zQsu/W/4t29by7+8u/+6EIXmWsR0EhNPpQ8G/l27d4p3K+9yU1fJvd30t/z5aRsu/m6Fpzbjq8c1Xezx9nudm7btoseudK79PXvDRdVf7fGW6fjfVIfmjXS/cpS/yEJSdRs41Fx+yyzbgC6Xsi/hivpt8LrriW+eyr3zrVvaNNBjKMnxyiJx3rigVNp1z9Z0cAx++s+Qcu1/NO1mPPXfiOCaOY5RS9eGtLMtqvloUBVEYEWyX4cqHDBkz5l/z6wwZ8Df4Wc5y9ogxHKjuClf175iYIUM6lMb1xWqjOq6230JCTnCSFVZY5xhf5kvssENWhUBVVZmaovYCB1gkqY3yKRkBig5J9TuFyjgfEfIBzvEBztOhU+Nl4Dzn+Rv8Db7Nt/kKf87V+AoH04P6ChbbIO6iHfK3pKty3GVEB9fa8/Fwu1yT3pYxmuiHj5bY9RvZxzW/TB0ywoQ0sJp8TeXY/SnnsGttS3nOVZ9c7773LrnBBpPOPlDi4l0ufuuKBGK31WfEtsv0yUKyPjPu0uNd9oUNUgd2tUfi4KI7LbhA8kJXX6kZ71to4T6hZJClt3jlMR4kEHUVUY/SW7wHcQfisLxbPNKVYVxrglwTWIbxQBrHNbUneQ1aoQt1t35dptWZJh9qFrZzljYzkls52bWC+I0dlvaOcT7c5Fx0h25QkNAnUl0CouoDQeUdjtZQmtrv+V5RovKQnS6AnNIwPiHVQ8b6kJRhZRSX3uKCZt/zpIUWWnhXodTNd/uZT8iw0/pAKiwGXEKUnaZpA2BW2RJH12/Xc1tocikAs8Cl7NvPfG12ldMkaLqEQp9A2iTEu06f+kAqNrYC4RsDibP87drYdP32hY10zRGX4O1SvF2bNyaP3FT0bc6YE9BSMQRqZdxAmqb15rU5VW3ShmFIlmW88cYbfOhDH+KFF16gKApOnjyJUuXm9u3bt3nnnXfY29uj1+tx69Yt7ty5U+N2+/ZtRqMRzz33HOfPn0drzf7+Pi+++CJRFPHDP/zDbGxs8Prrr1MURa14mE31LMuOKLWusVKq9JYzbVldXeXixYucO3eOJ554gl6vx2Aw4OWXX2Zra4sbN27w2muv8eqrr7K/v09RFIzH43rTSM6heeakS7F2gWvtyg1dU4ZrbH2bRfK7xNE111xKcdPcda0nl4I9iz77xnIecLXPp5i7+mRWuU2baLL+Jl4g+8vVvvsZNx+4lHr53lfOLN7ka9v9QMu/W/7d8u/vHf9eV4obQcD+/v5Dwb+He3scn07Zs+4lbfl3y79b/u1O827Apl1N/EDOJTkG9ntTpjw85uJBdttcc1OuA7s+iaPEz8UXfOlcc1PW5cPT99fQLNkmlze6eW+MaU3ta5IX7HJc7fdFLHHxQPlu1lqx65Hp7XXrCy8v+84O7WyXI2mAnJ82X3DNQ7tM24hpxsv0n90Xkn+YA2vmt8E1TdPaGGrSm2u80jQlVCHhuNwmi4mYMOVrfJ0f48f4K/zwEaO4rv7JzeiMjJSUmJgpKQVFZaCuxhVNSooi4IN8kAljvsbXyCnIyCqv85yImIyUoLo1vKwTAhQZOTlFfc/5An3GjImJOcUpnuZSbRQ3uAJMmXKFK3yJL/MlvsQmG+RJzuBwUF+94jpAZRtM5djaaUx++1Cenc7IV2YOGVlIeivbh/UkTbDn6yw6IXGwcbfngV2GndZVn5zXMmKGKxKESSfxm1WHrx12PfbakwfgXLzUx0dMetc7l4zgeibXuUuucLXFx7clrzL1uuiXja9rrFw8Q76T/eaTRVuw+0tZf33yVmuOa+EBgKpmm+Lu/eIRVSj1ylu8p0gWzN3iBZFWxFoT6aL0GFeUBnLufkoPbSxPbXNAraovr+rWpeE8KDSkGqYaBgXFnQzuFJzcUZycxEw7a0RBwspkxNp0m1BpCCYotQAqRqnElIwWHwMaXXmrm+caRY7WGQUpOROmesiUQ1I9oSA7kvtuae3aa6GFJpjbMO5Sxmcp+kYwa3rvE5ZcwqJLyJq1cSMFaZfCNS/4NgFcwpbEYR5Bft66pXAqcfEJdb5yZf3vtSxfuRJ3uw5X37r6xyWEz0rvyuuqx7VhYJflmvsuJd8WoI0Sbp+6zvP8HuUlDEO63W4dcjVN0/pjlIHJZEK32+WFF17gxIkTxHFce3m98sor/MVf/AVJkrCwsMDa2hpLS0vcvHmTT37yk2xubtZ3mF65coVjx47R6/XI85wbN26Q5zknT57k3LlzLC8vMx6PuXHjBhsbG+zs7DCdTr1KK1CHf+12u2hd3j/a7/d56qmnePLJJ1lYWKjDyx4cHNR3qn7xi1/k6tWrHB4eMh6Pj2y0mP50hd6bZ93IcbM3ROyT4WY8XHPGp1RKHHz5fXl97THlNRnMmsr2bQ7ItE1rzaUoSpBr1kczXPX5+sNVXxO9tb9LPFz4+upponGz5tn9lGu/d9E/+c4Gl8HnfqDl3y3/nrcsX7kSd7uOln/fy79PTSa8XBRkDwn/XhqNuFOV2/Lvln/L7y3/fm+b6jJqgqnPRzfNx+W5b4Nrvsg2GbANki4PTzu/pLF2/T7eO2u87HXlKsOmN7J9sm7JO5rmiL2m7XRynbvwk/3iKt/3XfaxlENc73y81CevSP7n+itlNknvXH3g8kKXPMFXn2sO2fXJ7675Y3ir4c/GA1prTZqmR/Ay14z0+33W19fZ2dlhPB4zPhiT6jEBipyMiIhF+vw4P84aa0fGYcqUffZYYIGEDiGlwXfMmFVWAMUhh4SExFUYc+O9be4OX2SRJ3iSNdYZMOBN3uBN3uQWtxgwJCRkwoSwMqqrOmQ79OhV+C1SULDGKqus8Vf4K5yrPNtto7hG8zIv8y/5l3yLb7LNNoccEoR3DdpmDFye1OZAiGvd2Dzb/DVzwkTCM1FliqI4MjambjN/TD32c7nGpPHZ5Rks169vLRmYFdnGlc+mQfK7K639zE7rkwlkeomvXa7EVRrJfRFu5Fr3vZP9dT88vEmOkd9duquLXtkgaZWLXs3i2RIeBA9/OEDDPd7j9rsWWniAoEApKm9xCGJF2FHEPUhsj/FEEwUQUxBR3uUdqupjGcXNPd5KV6HWdfVOczeMuS4N5UGuCbLqM60+A02yp+keKvQ0ZhovEy4dQ4+XCA40STog1xFpocvjbCopP4QUSlGgKBTkKAqljK84hQKtFQWgVbmSCspQ6oXOyPSUlDFTPSJjQkGldx/pLG13WwsttOCA+75jHJqVaymAuDZ5fJs4LqHIpTS6NmlcdfoUO1de3waNaxPRtankUrwlSCHO104fXk2CoAv3WfXNUmrMdymYuvrVhbOtGLuUEVmPS9B3PW+aH650rv5yleHrV9d88oF5Z5Q5W6mTaYyimCQJURSxvr7Opz71KZaXlxkOh3z1q1/l6tWrTCYTgiDgQx/6EH/rb/0tPvOZz5AkCevr63WZo9GITqfD2toaWZZx48YNiqKofx8/fpzhcMidO3cYDAbs7e2xsLCA1prhcEi322V/f58TJ07wzDPPkCRJvRl/+fJlrl27xsHBQd0W4ymhtabT6RBFUd2OOI5ZX1/nqaeeYn19naIo6rvb9vf3+fa3v81bb73Fl7/8Zd566y0Gg4F300XOZTlG9hx2hf1SSt1zIt0o2GZ85Lr1rWOX8iUVL9ea8tEcH+2xvze1v0mBnWcez/NO0h3XRoSsU+Lu2xiYRZt8Cq+rXb6NBx/tcaWzv/vosQ8Hn4LvSufywJD1uMahKd/9QMu/W/7d8m83PCj+Xezvs/HlL/Pa1hbRQ8K/I6XIi+LoKfeWf3vb3/Jv7snr6rOWfx8t28d/XePsol2GJ8rwvHZ6U5ak4bbnpmss7LLscsyadRkWZuV1rStfGHJfX/nGd94yXG12pbfxc9Xv44M+XO20rnXl4+GyTNkfTVEH5PjbdFmOlf3MpqX2R47hLH7toqeutTOrv4zhVY6LpBdBENDr9YjjmLNnz/ILv/ALnDx5kp1bO/yH/8d/4FvjlxgwICTgM/wY/x3/HS/wwhHDNlCFR09YoE9W+XBnpHTpElRG8gUWGDOioMD2oR4yJCFhypQ+fZZZBjQXucDTXOIlXuJVXuFOdfRMUxASkZKiKejRo0OHLj0SEjp0OMs5PsknOMmp2jvdQErKO7zDF/gCX+dr7LBLUBnZtdZ3jeeOuWOPqek/890YvWW48TiOj/BtO6KN8UyX42+vcQOuaAIGJ3ts5YESg6ePN9hzyTdX7f6Q9MO02aaXTXTZBT4eJfFx4dmU1nx8ER18PFw+awIfjZX42oeqfDTXPnzlko/s6BCy3ZL++nD08WIpL8n59KB08Pc/+Od5Cy08MFB3Pyqk9BbvlIbwZFHRWVJ0FiDpQhJr4kATU4ZRjygN4qG+968yBvHqb3nvN+XzwvzVBBmEqSZINdFYE40gGkBnX7EwDFFZQh4mBJ2QoqNhMiYs9kkLRao1GTmF7pDrhJyInIBcBeQE5YF6gtIgXhnJi8pInitjIM9QZGgyiuo+8VzErFGiu1xd2LxaZYrZOVpo4QcZ3nModXBvJLvS+pQ3uxyfoiZ/+/42KdSucppwtoVtGz+X4uYD2WZXXl+7Zd/Yf02aWZ6Aru8+BdvXB/Z3l6LtA5+Hg2yH3UYbJzsUl094l2HufPjIDRBXu5s2QHwbKK5xkd9ddctx7Ha7AHzpS18iCAIWFxfpdDo8/fTTABw/fpxf/MVf5K/+1b/KYDCow8ONRiO01vUd5IuLiwRBwPXr1+n1epw4cYKLFy8SRRErKyu8/PLLRFHEeDxmc3OTd955h4ODA7QuN70uXLjA448/ThiGPPnkk/zQD/0Qr7/+Ol/84he5cuUKh4eHtQI4Ho/ru0q73S6Li4v0+306nQ6nT5/m6aef5tixY/T7fU6dOkWWZXzzm9/kypUrXL58mW9961tkWUa/3yer7iU1eMgxtcPs2eNkvMiiKKq/m7TGy29hYaH24jNjIr3Y5Nj7FMSmMfS9k/PaLs+XXz73KYmuTYKm9e+b1xJc6Xxz3K7HpdzPopOuNeTCz6d4++pu2oSw3zfRMt+4yvGYxQN9Zfn4qQuX93paveXfLf9u+ff3hn8/nyTsLC3x9PHjwMPBv9emUzbCEF3x8ZZ/t/y75d934UHwb4mD3Xf2x4WvwcHFE+6nTvud9HCUPNw2ULlCCrvGw3egyoWXBNf4uPi/r81NfSHnmzSW2Hl9bZXfbd4oo1v42uqTSex2G5CGOq01YRh6w0abj8HfbqNvTMwzQ7d9fFiW4avTLstuv2+Nmr6QdZlxcB3ssXEw7/r9PgC/8Ru/QRiGrIfr9AeL/Ag/jCLgA5zj/8Qv8wE+cA8eACEBWXWvZ0BASkpETEhYG9Hj6ndghVHPyNhjr/Iqh5XqryJgkSUucYkLXOAsZ3mFl6v7x8vt70MOSKq7xhfos846a6zSp89FLvIIZ+nSPeItPmbEDrt8ja/yn/l9JkxYY40pE6ZBShHlkHHPmIZheCQagOl/w7uTJCEMw/qT5zmTyYQwDFlZWWFnZ4fDw8N6DAx/l+Mj6ZIdMt9Hq30ypGttybkkw/D7wMXDfWWZ9K722GVJPO30LrnB7gfXejJtlTzXxTdc8sAsHu7yoG+KktFUh4+W+KCJr9ryYBNtb+LhPl3EziOvBGihhR8cmLXf4ad935eg7I9CBaW3eJSUIdQ7i4pksQyjnnRNKHWIlL7rNa41oS4IzXese8cLjSrKMOlBoVF56SGuck2YQ5iXBvFwAuEUkhEkQ+gMFN2DiO4oIshj8iCGJKDo5NAZE+QHpFlAmisyratDdCkZMRkhmQ7JCMh0aSQvdGUU10HlTa4ItKoM5nkZTp0MXckEBdoyizd3H3AkvoPMpSpDfAstPEwwt2Hcp4T6lBafUuhSsps2NlwbE1LAdIFL4PJtdLiEKam4yU2IWZsK8rmr/KZ22fX4ynbh6BPofH3SJMg2PZ8HV7t8eVrXJUj7+si1sWCXH4YhnU6H6XR6JOSX7AdXX/g2LVzvfOM+j3Avy7TLnk6nFEXB3t5efYo6CAJWV1c5fvw458+f5+/+3b/LJz7xCW7dusVoNOKpp54CYH9/nyRJuHXrFmEYcnh4SJIkrK6uEscxjz/+OFEUURQF6+vrXLx4kbfffptXXnmFU6dO8eEPf5ilpSUmkwmnT59Ga83Xv/51zp07x4kTJ+j3+1y6dIkkSXjttdeYTCYsLS0xGo34zne+Q6/X49ixY2RZxunTp1laWiJJEvb29njsscc4c+YM3W6XPM955ZVX+NrXvsZrr73G66+/ThAEHD9+nMPDwzrUqwHpPWZvnpv+M8/stWmUdxNGTynFyZMnOX36NC+++GJ9j7mcC/bGjGs++JRY17jLsudR9mwa4/JqkHTKR8tk/fK9qyzfGnTRale77HLvFzcfHhIfWYdM39Rmn7LvSjvrma8uk156CrlwmZfu2mP2Xk+qt/y75d+z2tPyb3c7XGU28e9YKR4BvrO+zrGHiH8HLf9u+bcDb1cdMn3Lv2eDa+5I3ubCyUW7XWGF7Tqa2tZEP+XzJrppaIDLM9TG3WUgLYriiKHO1y92edLb1MZNzjUf7bDb6VvfvrUj51dTObK/XWXahw4kbnb5sk45x13lu3CTvNPOY8KQj8djsizzeqRLOgn+A3TmncHZnrcy+oAcOxcdlPPBnkvj8ZitrS02Njbq60aCYcCZ/AznOc+HeZb/M/8XznK23nQ23uK6+rfPgXX7d2kEV9Y/k6c0imtSMkJCIiIucrE2lpsy7Tq6dPkEn+ApnmLIEIViyoR3uEmHhGMcR1OwzjodusTEAPVfU2ZOznf4Dl/lq3yFrxAS8igX2GaLEcMyKHs1HmEY1n1p1qoxfptnYRjW17CYvo6iiDzPSZKkHsMLFy7wuc99jt/+7d/mzp079SF4M2ZG7gvD0LuG7fH00XvX+PrGXs4pV9kuGupbH3Z6G2za42pTEy33tcFXrl2GD7f3wsNlPhdeLjrho4mufBKaeK2L3s7LwyX4Dinb86X1GG/hBw7MfFYK6rjj6u5vAK3LT1GUf++54fr7GBSlUTyCMIGoB8kCpbd4Hzo9SBJNElUe47oyjGtNREGojYG8+luUxu/SOC4M45lGZRBmmjCDaArRpPx0htAdBXSHIckoojONS8O4iiBS6KSAJEVlI1JiUmKyIiDTRfkhJyUiJSIjICUkq4zhuQ6qsOrl7wxVepdX/yuVgy6Aou4UdeR/BcJc7hpd5fhlnlna2gMZthZa+H6FuQ3jPsV11uaG771vA8dOayt/PlykMjlLAHO1oUmIlEqzb+PAfu7aiHB9t3/7hMsmQVri52tzE94uQdrVD66y5EaAVCJkW+xyZX6fUC/HIY5jkiRhNBrVmyOrq6sAtUJmvLBc/eVSPmwcXfND9okEX3+YZ76wUeZ9nue1chZFEcePH+fixYv1pvQnP/lJHn30UQ4ODrhz5w7PPvssnU6Hvb093nrrLQ4PD3njjTc4ceIEi4uLnDp1iqWlJabTKVEUsbOzw+3bt7lw4QIrKyv0ej0WFha4dOkS/X6fD33oQzWeeZ6zvb3N2tpafYI+SRIuXbrE+fPn0VofCeFqFOXBYECSJHWY12PHjpHnOVevXuXs2bNsbGzw7W9/m8uXL7Ozs0NRFKyurnLz5s0jd41FUUSn0zlyQMAo4raybpQU03/yDrTAUu6vXbvGysoKy8vL7O3teRVEuaEt54Nv/F1pXe9cc0OC644xU7dUMGUdNo72XHR5TbiU+6a2SPriUrZddMj3V9btoyUu2uraQHPRKxcutuI8D/iUdVmXqw3yna8cH/j67d1Ay79b/i3Lavn3vX31IPj3B5eWOPPEE5z5wAceKv69XRQciyJ2W/7d8u+Wfz9Q/u3CT84JkwaOGr9t3G2DYhPdM8/N/PPNF1OOzYtcvMO1HuyxlOnMO/PbFarYxcvssu12+8IoG5DlutaI/Vs+s9stjfl2Ga6xNH1slyNxscuW9bnKt3GQeLr4p4uHuzzYlSqji5irO4zOdubMGaDkNVmWcXBwUHsEy7lhex37+lKOi90O17pqCtFv5AzZ13b+NE1rnhXHMeeXzvPCwQs8yVP06fMTfJ4zlG3UFASVF7jZap4w5i3e5DjH6dKlS682dKt7tpsVGoise8bNfeSmTFeeiIhj1T8DF3nsnrR+0Oyww9f4Ou9wk5yCU5zmO3yHCZMyRGuRk6gEtaDq8YuiqD7AprUmjuN6fphDEGma3mPsNn0eRREvvfQSJ0+e5OTJk2xubh4xSttjK2m7PABhj6sEk1bSApPHx8Ob5OEmviRxcvFdmw77oi641uK8PNxF23283rWuJD/xyf5yDbrSyjrk2pa0RcoSvv710fomPuMrQ8onElzlPEge3kILDxSU+AvctVtaBvFAQRBCGFR/o/IviuqyashSyDIosspAXliFfZ/Oe6v9QaSIOne9xTuL0O1D0tV0ouJuGHU0kS7K70XpMR4VpUHcfFReGsAD88x4i2cQZBCk1IbxeAzJBDrjgM44IJ4ERNOQYBoSZKWcEISgI42KU4jHqCJB6Q4BEWGhCAkINeUd52imBJXpO6z+DyqP8VL6MKbuHE1Y3k5eer5rVV+JYn+zueo8I+mSKdSceVto4Qcd7iuUukvY8Cm+PqV1lmDhE8p8Qqedzn4my3DhZad3CcMSfGX7BDbfd1mWq598aXzQlNZWhF04+Pq3qQ64974nAz5F18wTc9LfV45vLMwmutkgHY/HnDx5kjRNuXHjxpF6jSJn31/lE3Bntd+3QeJ658vb1LdmkyCOY9bW1njuuefqzYcLFy5QFAWXL19meXkZgL29vTrc6jPPPMObb76JUoqDgwM++MEPsri4SJqmDIdDXn75ZSaTCQsLC8RxXG8SjMfjOiyUrXiaEKyu07MLCwtHcDYb70VR3kEaRRGbm5scHh4SRVE9Rq+99hoAd+6U96PFccyFCxe4du0ay8vLpGnKwcFB/c4o3MZrzMwbs4Guta4VcrPRYuPr2kz58z//8zqt7PsmRUwqoFIpdM1x1/ibd/ZGjm8Ovpd56HrvUgZd89W1Pnxr24WrrMe1ydD0zteWJpxctHMe/F39M48CLMfNh5uvf2fV0fT+vYZibfl3y79taPn3d4d//8i5c9w+deqh49+doqAXRSxU49by73vniV1Hy79b/n2/IOegKVd639r42u2y18IsXj6LNto4mN8uOiwNxa55Jts2L09y8XBXOtkGe/7b+V2HDWRd0rDa9N3ks8twGawlTr5yZB6TToYB9nnBmn4wUUjMb2lwt0MT2+/CMOT06dMcP36cjY0NDg8PuXjxIuPxmFdfffWIwc14Ek+n0yP1+A75NPWhyztejod87porMp1dvvF+Pnv2LD+x9NdYvNpnkUWe41liYvbZo8cCUbVtZjywjde3QjFiVBu5TRoTWt3ebC6f54RVWfa7JkO3y2BuyjO/bb8wE1h1yJCYmA02UJQe6B/hI7zESxznGFOm3OFO+W6pSxZlpGl6xAhu9HIznuYwgTkYaA63KaXqQwZ23//Wb/1WXYY9BvPQa1suMN9t73IX3bXLtOeIwanpugMfrbfr95UB7isMTPkueiVxs9+7eJbEVfaBLM9OL2mf+S3704ZZcoWdxsbFl9ZAkxwl+8n0hZF7XeMs+07i5uI1Euz5IeXNB8HD399gj3VrRvuugjIf5e52DQRB+T4MIYogjiBKIIrLv1pBoSDXMJ3AZAzZFKgM5FpzdBy//8ZUKRNGHaJu6S2e9KGzCJ0F6HQgiTRJoElUUXqM69JbPCo0UVEQ5sYAXhrBVaYrr3FKo3kOQV4aw1VlGFdTiKfQmSi6E0UyDkgmIfE0JKwN4wEBIWGgICogzlDxlCCfEBRjQl16h4dFKTUEGkI0qrpuJaCofMLD8r5xQgqtUSoADTlF2Q7yMgQ81GbzoDaKq/s2amu4R9L4fhz7Flr4bsC7umPcd/pankZvEjpsaFIIZT2zFOB30x67bvvdPG3wfW9678N1lrD5bp7PEmh9wrRrk0P2vRRg7eeuu5ZsMN5h8r1LcLUV7TzPuX79OlEU8dhjj/HII4/wx3/8x/XcW1lZYWFhga2tLdI0rXGxvQ/m3dCS/Win8/W3SSMVBKk02MJ3kiR0u13iOGZpaYmbN28SxzGrq6ukacrOzg5nz54lTVMef/xxFhYW2N/fZ2lpieXlZaIo4uTJk4RhyM7ODmmaMp1O2d7eJk1TVlZW2N/fr+827fV63Lp1i6997Wt84hOfqMfCKBy9Xq8eGxNWzt7YGI/HxHHMYDBgOByyt7fHaDTizJkzXL16lZMnTzKZTLh69SpBELCxscHy8jL9fp/z58/T6XT44Ac/yHA45Nd//dd57bXXSJKEXq9HHMf1fatmg2Y6ndYb6bYi7lIy5aaf6f/JZOIcc9+c9s0P1xyatcHomzfynWtu+p65ymh6L9PY72fRsHnq9m1qyXe2UW0emu2iSy6a1ZRvnjb6+Il8Ljc1m8bOBVKZb6K/8vc85TdBy7/vbUPLv1v+/SD59+riIns7O7ytNavD4UPFv49FEWGSsJDnLf/25DPPXGU0vZdp7Pct/344+Lddlrw2wPw1dMDVJhf9kutiFu5yzUn+6+pHH+21cZL4wVFj6LzjIw1gMo/rENcsvu8qyyXXmLKk4VfOQZ8xzTWHpIHNxY9cxmaJs12OAcM3TD0GV1e/m7wLCwtMp1NefvllkiThhRde4NKlS/yrf/WvyPOcIAg4efIka2trXLt2rY7+YvNwV5/IuWfPc1c/ur5LumXLsqZuE/3Afh+GId1ul6WlJbrdLsfWj/GdVy6T0OEMp5kw4TYbPMVTnOIUJzlZ4xRWXuEBIY9wloiIotpAzskZcAgoFlg4YrQOCMjIycjp0LkPr++jYMozBviIqPY4LyjYY5eYhA02WKTPEkt8mA/TpccH+AA77PC/8r/wJb5EjwWWoiW6J7oMigGTyaQ2iE+n05qP2x9JG+x5JNfWcDhsXGuz5rD9zhVC3FWGj2408d6mtSnfudpp8JP1yDLt+lw0wXeARrZhFh+VdNrc/27e+yIiSd4maaY8fDNLnrHxdsltMr2vTLne5aGgpn5oeueTHew0D4KHv7+h7Z+/HFDURvJAlQbxMIQohDguP0kXOl1IOqUFOepCEUAGpDlqPILRCMZDSMfo6QjytPIgzzlqcf9LBlV+lAIVlneLx50qhHq/Moj3IOloklATK0pjeFEZxHXpNR4VmijXwjCuURnWXeJ3P2U49fJO8SCtDONTRWcakKQBURrW3uJhGhJkEVEREhGiggAVAmGOijLIpyg9rbzCQ4KibFagzWGEEIUmrz8hBZBDbbnOdUFMXrUpJyBD6TLQOvVt4/c7Xg38hO+L0W+hhe8q3Ncd47bwaUAKDy6F06W4NAmrvs0UG3x3k9n1SOFtHoXYheP9bAS5ypHKm68sO49UZOfd+PGVJ9PagmSTYGyXI8fR1S7ZXvnMFs5dgqZLcTAwmUzq+zyVUpw9e5a33nqLyWRCFEWcOnWKtbU1rl69ymQyqdvmC9nmEqZ932WfNilPdvukgmS3PwxD4jiu71g1d3JlWcbKygpRFDGZTNjf36fX63H27Nn6DtC3336b06dPA3D27Fm+/e1v884776BUGepua2urrkcpxXQ65dq1a4zHY5544gmUUgwGA7a3t+tNeSjv+ppMJvR6PaCch7du3apDq/b7fbrdLlB6vm1ubpJXG+FKlZ5+q6urTCYTTpw4walTp7hw4QJvv/02BwcHPPLII0wmE7IsY2Njo96kN6f10zStFXJjIE/T9EgYRbmp7lNWZikxTe+b5rtrTcn5IX/LEKu+zUIXLZNl2fiY5yadb8OgCWcf7i4aM2uTwU7nSm9vjvnwmkWbfel8v5uU/nnxdrXTtb5lu3yKvVS0XfTdRbPeLbT8u+Xff9n8ezoe051M+EBRcLwoeGFhgauvvcax8Zg8DDl++vQPPP9ez3O2ooiFhYWHjn+fyTKuBgFUYfJb/t3ybxd+Lf9+d2B7sElPNsmv5DMbTzPHXOFwXWMn56zkz02ygrnewVWmXFNNONj1+PhWEw90jZdsj73uTJ2uNeoq1xWFwpRhr2l7ndtGRBmFRdYj+9YGn1zkM6yZdsdxfKTNdohzu8123wwGA4ajIVmeMVRDRh8c8Qdf+wMOB4fEccwTTzzB6dOneemllxgOh3X7oyhiOp0eqV/2j8S/aR3b/WfLIiavieBiH/a0+97wujiO62gpCwsLZVSVCUy3ppzkJAkJQwZssMESi5zlrDBiq/pfRMQtblZ3fR9jxIiAsPYsVyhSUkaMWGX1SAj1WWBvbvuM6GYT3LwPCFhmhZCQmJgpE1L2eJQLTCgPmu2zzyGHdOkSEdNLukz6EwYHA/I8ZzgcMplM6rvjzVq2o73YtEDCrEMi9jM5RsCR+qRO4Jrz9nvzzsVLfXKjjw65aFw9HqIsycPtdLJsuaZ9/MZF+1z0ywYfjZQHWl202wWuvnSlcfVtE22WbW6qw8czXHg3zTvX2Bs8faH7HwQPb6GFBwZmCptpaQzicQhJDJ0Yul3o9apPH7qLpeU4Xigv484C1ETDJEcNBjAYwOAAhnsw2oPpEJ2OQU8oQ6u7EPjLAxUogsoJPu4qOn1Fd1HRXajOAMSaJISYyks8rzzEdWUkzwvCgtogHuaaqAqbHhgv8aIyimd3DeNRBnEGSaboZIokM0bxKox6GhJMI8IsIs4jOjpCqRAChQ51WWCUovSEQIcEVcQZipK/G/KkKMOrl58y4n0lzYDWpVFc5cQ6J9QZAVMUUzQpmgxdGcfvu18f2Ai10MIPHtyXxzg0CzPy+TzlyDw+IVbm9W2+2OBT2F3vm8r01WPj6trEmqXANpXdtJHgSmsLznZdPoHZtWHgEsQlLvNuRMjybIHWvIvjuN40NbgaA2mWZXXIUKmERVHEhQsX6HQ6pGlKkiScPn2a06dP861vfYvBYHCkfvt0rNzQeTfQpBiZUE+mnfZJdRn+y2z6G0UdyjvaFhcXWVlZYWlpie3t7fr+z36/z4kTJ1haWuLEiRNordnb26tP/R8cHLC2tlaHOjNe54888gibm5sEQcD29jZXrlzh/PnzHDt2jDfffLMOh3p4eMhkMuHcuXM1PnEcA3D58mWefvrpeqNBqTIUa7/fpygK3njjDS5fvlznG41GLCwscP78efI8r+uYTqdcvnyZF198kW984xuMx2N6vR6Hh4fs7u4yHo85PDw8splu97nc7Jm1BuVcdI2fLE++lyG1mhRR17p14dOk/Plog4sW2unkRoV8J8uUNM9F012bZPO22S7Hxy9kPp9y7+MDEnxjMo9y69rIaKKDsm2zNoCa8JwH3i29sqHl3/eW3/Lve/F+UPw7HY9ZynPOaE1fa4ZKsR1FjB9/nI0TJ7h++zaLScILq6ssHD/Of3r9dQ6Gwx9Y/n1Ka3ZWVx9K/p0eHPBOUbA7GLT8GzcNaPm3ux6ZXuLX8u8S7LbYa0vOIZnHRfddodjt8kzfNEUP8fEog480UhlwGThmrXEfX5Y4N60n35rwzTvJD21Dq6uMJrplt0Ma0u3De6ZMiatd3zx90vRea117So/H49oAaYzYvV6PNE2JoojDQamP5TqnyAp0oNGxho/CHyz8AYyBBVh+cpkTj5/g67/3dfZ29470VZqmNT6Sh0vZrkk2dMkndrlAfWDN8B9Thzl8YOcLw7Dm+QbX7n6XY+kxTnKS4xznBjfYZZcFFrx3gSsUORlbbLHGGhkZGk1AwCKLQOlBrtGMGBIS0qdPSEhGVodnN2XdLxgje0pah3W3y+pU/5ZYRqPZYouv8TV+n9/jkEOWWGKbHW6rDQ5u7rO7t8toNLonuoukl/Kwjh29QB7+gKNGYzmOUn41z+yxazo84lszPvo3j8wh6Yk9d304uHi4bJNss8FZ0gHzzt4Dc9FjH/111e9qqy+v3W4bT5c8IOuRY2uvwya658JdHjqy59k8PHweWcNun69/HgQPb6GFBwZKlZ+oMojHEXQTWOhCvwf9fvVZhIXl8tNZgqgPYR/SAEYFapSjDgao3iF0dtFRD1QEKgYC0BpdZKBz7t49rqq/3+s23/2UIdQVYaKIeqWneLdveYvHijjQJMY7XFd3jBfFXQ/xwniGG+/xu8bwIL/7V1ke43FGaRDPA5IsIM4CojQgTEOiNESl5f3iYRYRFxGxjspDckqhgwId5ugwgyJF6SmKCHQ5loqg7NWqa8uQ6KVhPOeofJBTEOuciJSwNopP0EwpyOqrVO6eoSjHzDdqftmjpXstPDxw34ZxnyBr/7af+fL7NmlkXp8SOEtAmSXsudI34eQKXScF7qZNL1eZvo0zl9DpEtCb+sC3WeZ75srv6o+mMbefNykdRrg3d2mazWHT/lOnThHHMQcHB2xsbAB3Tw6HYcjZs2c5e/Ys+/v7XLp0ibNnz7K3t3ePUTxJErTWdYg3O3Sc7IdZ7Zdj7hPkbaXF9jozf413WRRF9Pv9I2FQbUUhyzJ2d3cZDAbEccylS5c4c+YM3W6Xq1evcuPGDZ588kl6vR47OztcunSpDr0+GAyYTqe1F9j+/j43btxgNBoB8IlPfIIPf/jD9X1hd+7c4fLlywRBwKOPPnpko19rTafTqXG1+64oCl555ZU6/HuapnzqU59iMBjwxhtvsLa2Vp/Gj+OY69evs7a2xtraGuPxmJs3bzIajdjd3WV3d5eDg4P63jJb2bbnkVR8Jc2R869JyfNthrmeS2ia3zLfLNrjA1f7fOnkZp+s16Vs2vmblFlZhkvhdPVd05pxtVPi7foteY+rTU3f7XIkXhJvF53w5ZHpXDCLFjeV86AU8pZ/t/y7qQ0Pgn9fOHGCM1oTHx6yNxqxGwRcLQoOlCIIQ86dO8exs2fZGgx45IMf5OADH+Dt3V3ufOc7PDocsgJcU4rgB5B/d7KMcRDQfcj49+HuLns7O2xW49Xy75Z/t/x7/rLvB2zjyDz03DUP5+27pjJMmlnhi128yDUPmni45K02X3eFCTcwK7S6XCtK3WvQc7Vtnjkk14trXdrtkmvLxsm3Dnx00i7DZUw0/PrEiROMx2Nu375dh8ZWSvHo44+SdlKubV1j9OaIPM4hpdyQjoBngEvAJvDp8vf+7X3+0+/9J4LdgEhHhEFYRydJ0/RIVDDD113jIeeB+Ssj/5i09jUiZvxMuYbn2Tw8jmMWFhbKCC/r6zVOURSV/bVb5p0y5Sa32GGHDh0+wkdYZrkOU56SkpDUm8nrHOMjPE+HTnWDeE5GRlDt4r/DDQ4ZoIDTnCGmPLQWVD5gOXn93bdB7XqeMiUkYsyIKSmrrDrLM9vhCsVxjnOWs1zgAgcccKv6t8UdxrfG9cE2Iye4eLiPLpixknNTznEXX3Ctf7s8OUdcIchdOM26GqjpnY/XunCRaVxr3U5jaE3TQU97/fpkJ/uZq5x5ebhJK9tu8tm03kV3JK2X/MkV/clFAyTNajpQ6ZIHfGXb+VxGfvPed7jsQfLxFlp4TxAoSMLy00tQSz1YWoDFPnppCZaWSi/x3mL5N1kqL96OFkAtgOqiJgGqC6qbo5IxqjuCzh6qswKdVfThFnqwhR7uoNIhOh2hiyl3jeNYf793oBQQUIZRjyBMKq/xThkxPk6qCPJhQUxpEI/z6juV57gxhBdH7xKPLE9x2zAeWIbyJFMkmSJOFVFqjOIBYRYQZCEqCwnziLAICYoQpSv+ozRaaUore4YKUlQQo4q0PGRPQFgoQqBAobWqpIcyrHr5KcPaazQZGYopMCJnyJQBYwZMGVcH8cw4aahlANeBhqbjeNrxrYUW3r9w34ZxFzQJtS6Bokm4aNq4sOtoqtMluLrKaNpMaFKGfQqvL79djq/NJp9UNlxKte95U//7wPfOh6t831S+T2nSurwzstPpsLa2RpZlHBwcoLUmyzIODw85d+4cQRDQ7/c5ODhge3sbgCeeeIIPf/jDdejS3d1dNjY2eOONNxiNRvVp9yiKCMOwDsstPb2MAda3Cdc0B3zttAVq+5lRxu25UxQFo9Go9jgzm+BKlRvht2/frj3GPvKRj/ChD32I06dPMxwOuX79+hFjxLFjxzh58iRnzpzh7bff5sqVK0ynU0ajUZ1uOp3yzDPPcPz4cR599FHiOGZ/f59HH30Upcrwrevr66ytrR1pW5ZljMdjVldXAeoNiMlkUtcVxzFZlrG0tMRoNOLwsAyrt7Ozw9WrV3nsscfI85yrV6/y9NNPc/LkSZ555hlee+21emzH4/E9yo2t+Mp155rn8rfcwJI0w4yXVJp9m3UuOiLzSdrjA5m2aaPBtfZdc9P+Pg8dcOHqotM+fHzg6wMXXXMpxa7fvnpd+V3946p/VtlN4+maVy6cfHR6nrZ/r6Dl3y3/9pV9P/x7QWueSFOO7e6iz53jRq/HeH2d/YMDJtvbJPj59+tvvsloPGYzjnms1+MzWnM1jrld3U39g8C/E2Ary7iW59x6yPh3fzhkKwhQ1oZ4y79b/t3y7wcLrvnkGyPfdR4+kLzb9lQ0+X2G6CZ+6RoHaWxztcXVdoOD+d3k6e6qX4bJNe/teu0oIa6+sWmZ7APpIT9rzkme5CrPpPPh3SRrSXnLLm84HDIej3nkkUeYTqdsbm6WfG064uvbXyd9JqUIC1gD7gDXq4I/CfxVYKH63ALeBF4E9qFICqbLU5I4YSVaIRuWIbhN6HaDj7mzWrbP7hvXGLjkPzu/bWg0+aMoqvcE7L7Y39+vr0UZj8coFHe2t9hggzd4gy5dTnGaH+fH+SAfrHy39BHDOJTbygkJMXHlFT5iypQDDqpQ6hl77PEIj7DMyhGv7rAKt94UVt21ba2rf4cMSEjIyGp8AAIUBTkBYZ0/JSUkJCDgAhd4mZfZ5A43eIdDdYBaUGUbHXMdmq9AsmU0H7930SJ50EeOu2/M7XJ8c6GJ9rl4uMTHpTe46JfrGgVZxyye7pNXJX2ah4f70s7DwyW4ZBsf/bLHzscfXPPC9d03ZjbOs3ihTDuLz8zq1+8Fj2+hhZmgqA3jarEDyz3UiRU4uYZeX0OtrKGX18vQ6XEVOj1cgKAHqgtFB4oEJgGqq1A9jeqmBL0JdA+huw6dY+jkFjrsognRo10odGUUz9E6txD6SzCZKoUK1V3DeEcRdSqjeKKJI00caGKliQtzr3h1t3iuiTNdGb917SEeuQzi1buwKN9HuSLOVHmneOUtHmYBYVaFUDfe4nn5CXSA0goqw7RWBVoVtRu6UikqiAh0QKgCUGVg9UIH6No9Xh/5mBDpIRmKCZohOQOmHDLisDKMZ7WMYHJZnXff3d0axVt4WGBuw7hPMLXfNeVzPXcJaXbZLqHJJ1z6lFVXvfbfWcr5LOFu1uaAD6TS3iSozdrsut/67xdPu05faDzXGDQpAmYzvdvtcurUKbTWtbf3sAqlevr0aR555BEODw955513SJKEkydPEkURnU6HyWTCjRs3uHnzJkmSEMcxvV6PXq9X42nfoxaGIdPplMFgcGRT3RbUJZ4uoVqmlX0hT7YbRd3e6DDl2cqYwcVsti8vL3P27Fm63S5vv/02H/vYx9ja2mI0GvHEE09w6tQpAJaWltjY2ODmzZtMJpM6fxiGDAaD+r7Qj370oywvL9Pr9VCqDKUKZdjU5eVlLl68eM+4KaU4efIkaZoyGo1YWlpCa12fxE+SBKVKL3/j2be4uIhSiu3tbfb39ymKguXlZT7+8Y/T7XbZ3Nzkq1/9Kn/2Z3/GtWvX2N/fJ6sMIDb4xsOnZLuUolnlyRPnLkXYV15T+U14SNztdSXrbaI5rjY04WWDK49RaiVttvHw0Sv5XuLuan8T/XTRlqaNh3nqda1hl5LuapfsK5fiLnmYi7bINtkhNV042N5L70Upb/l3y7+/m/y7XxScGAx4QynezDKejGOOnTjxrvj3tNfjraLgsSxjfTrlWhhS/ADw75Nac1VrNiuD+cPCvw/29zk7mfCKKs+y23PKNR4t/275t6ucln83gzTG2Lj4+tZFz2UZ5rfPK89urz3H7DaZ97bhfJ52zLMWfPKE7H87nauf7HrsdK60vrk0a440zVHfGpNjJ/PINeYKP9zUX77DDGmasrm5Sb/f57HHHiMtUjZ2NyiKgmyvNFjzBKVn+DbwGtADLgIdoA8MgVeA71AaybvAMrAI02LKTXWTM70zrBaroEsD9Xg8Znt7u75z3NXfTevWNS5238krPLTWtWE+CIIjV7PYV6fkeY4uNGqkCImICDnOcS5xiRVWuc51Hufxsu9I6dF1GqxL7+wCRWn03mOXIUNOcJKznPPmeTegKWpj+BJL4i7y4Mgdo6q6B12hyMj4Jt/kN/lNXuIltrjDRE0o0uLInrlvrjXxcEnP7eeu367Dc3Y4drseU5evXvvdLC9xOZekbHc/PNwnD5h3krbaZdl4ykOgTXTIFTLeha+PFs7Lj+xxctH2++VrNk72XJGHHJvKl/1tnjXRZzu9fCf5jpxHD4qHt9DCewZFaRQPA+jFqNUenFiCM8fgkeOo48fRy8dh6RjEixBUBnHdATqQJ5DFqKy891qhyru6VYYKc1Q4gnAJFa6ggx6aBK0jClVGcCu0Lr3Giyn8ZRjHFcJbvAqlnkDUgSjRRJGqjeJRURnCqYzjRWkUj4xhvLgbOv1ICPXi7l9jFI8LVRnGA+JcEWWlcTzMjLd4QJAHtVE8LEJUEYAO0PquWRtVoFSBCnKCIC/D1Ach6BBUSKEDIpUDAUoHtbc4lQd4gapiwUzIGDLhgBH7jDhkxJApE8swfnds9JFONN8sundPZ7fm8BYePpjbMO7a9HAJq7MESju/q3yfUG2/c4EUamT9rueuDYWmOiT4NqdcfeFrqwt/Gw+fsDYv+DYHXBuKLgHSVb9LmZdKt69uW9jUurxjc2lpiQ9/+MP15rAJBbqwsMDp06fRutzIXVxcrEOsX79+na2tLTY2SkV+ZWWFXq/H/5+9Pw227bjuO8Ff7unM59z5zXh4eAAIggBBEhRp2JRpibIlq0oty2q7O2S5o1z9wR2WXeGKqIoOO6Id/mArFG23Xf5gVTDKlsMlq9tymaStwZZMSbQhEhJFECQxjw8PeOOd7z3zOXvI/pA798mbL/e594EACZpn3bffOWfv3Dlnrsz1z7VWpVJBCGVGfTQaFSfSoyii1+vR6/WYTqcnOtlv5vc4wUtZ/9Wf5sl4UyCjzY7q3xog8H2fRqNBq9UiSRIajQaVSoULFy4QRRFLS0uMRiOEEIWw4c0336TT6dBsNgvfn1rIniQJTz31FM1mk42NDVZXV2m323Q6HdI0ZWNjAyEEvV6PZrNJFKnN9sHBAfV6HSEElUqlEDpo36nD4bDYzDWbTTzP4/Tp01QqFba2tnjttde4evUqly5dYmlpia2tLf75P//nfOlLX2Jzc5PhcEgcx0fM+Ln6i1nv5qaq7KR2WR+0+7BLsGULm1zj2N78utJz5cnuH64+5Ro3+l1XPsrCl9G88PM25GWCuuPm3uOEgK64XIKOsry75q2yMh2nRTWvLPPmYlsg4po/j4vjpPl5J7Tg33fSgn9/+/y7e3jIpWqVP3b//fxRr0d26xbhu8S/t0YjKjs7fDhJeLvZZKfff1/z72VgO4qIouj7in/X4phhmtLjzjG74N9H313w7wX/fqd0Eh6u9042EKMv01+wnSfXXPlO+kNZn7LftdvTnhfmkY7H5uF22W1ftHZ7lQE9tinosnFvl8+sA3s+mDc29XPXIQvXfGam4+J3Zh2YbW6G0wDc9vY2wVrA+IfHZFczeBXwAQ9YAi6jwPAQWEWB4jvAiygt8iso55frQAcFkAugCpP+hGs3r7HOOvfV7mN/d5+dnZ2C79j1btd9WR2D2yyzLq9Z9xpw0ybcbR6u3/E8D5EKqrJGlSohIcussMoqMdPC9Dkon90mmC2RxMSMGNGgQUSFKTHN3I+4l0PtfXpUqBIQlJpNPwpul/QVQ9A9ZECGqsuICN/QEA8IyPI/L/+Lifk1fo0v8AXe4A16dBkzZhrFZNP0DkDZdi+TJMkRzXHf94vDBq55xbbq4GpbG3zU7+t75nNnfTjmZdf4cKVvpqk/XUB2GU9w8T0Xz3GNZ9fccty6RNeHHa8Z9rg8zJtbXHzTNRZdYLL+nHfYzwaZzfjs/M4rhz3PmodXXetKV98s49dla4Bvl4cvaEHfNmlQPPIRrSpiow3nVuDsGpw9hVxag+oyVJdA1EFW1ZVFkIVAiCBAyCAHXT08BMKLEEGGF0WIWgUhm0hZBVlDigaZVyOTAiE9srhHlkjIJPKIWfX3loQHeOAFAhEKvEhdfiUHx0NBEEDgSQJBAYQHyQwUD1KJn0ilHZ6CJ9WlAXAXUB5kglBri6ceQSoIUg8/FXipwE8VIK4uHy81NMYzHzIB0gOZz7+6GQUgVAaElCpxmZKJLPcPngGZeje3VJMf+SNDkjBiSJd99jhgnz693KXKNDeljtE2ZhtJNDgu73i2oAV9f9M7MqVetrGDo4sy89O1KXQtbsxn8zbn8/JjL+jsxaBr8WqHMcvj2vib+dLvuYQ2rnoo26S78uXyKeRanB9HrgVv2eLbXNiWbSxcQgNXnZj1okkLe4MgoF6vEwQBDz30EJ/+9Ke5du0ajUaj8CG+srLC1atXCcOQ5eVlbt26xSuvvMJwOCxAVYBKpcI999wDqIV3FEXcvHmTer0OUGg/6Q2cmdcy4YIZzuU/ylW3Oowt7DHDmuHsutP+0vRmc39/n9XVVR5//PFCu+vs2bNsbW2xs7NTaO596UtfYmtriw996EOsrq4ynU6p1WqcOXOGe++9l2984xvEccy9997L6uoqzz33HEtLS4WPOf3O1atX2dzc5J577qHT6XBwcMD58+dJ05Q333yz0GC7efMmnudRr9eZTqcsLS2xsbFRABxZltHr9Tg4OODBBx8s+tOTTz7JV77yFQ4PD4u2s4VIrk2zuVm1223eWLABJNcmtuyZ3TfsjZVrPnLNFfPmNTte17xQVh7Xps6M3743zxfjOyUzL664583hZfV30vp1kSv94+I00y1rv5PWmS3QnRdfWX8q68/vVrst+PeCf79b/Hu9WmXd8wg/+lF+6tSpd51/d1stplJyemuLN0cjkvcx/25kGW+kKV4ONH8/8G8PuJxlfMvzoATQWPBvd3kW/PtOWvDv48met+25S//WYJINKrnmfRefgpl5ZNeYOwlPs/uVy2SyKz4zPRvomHcoap7WuzkP2fnRcekw87TizfFopuWiefdtTW57jrTBJbuudH5833fWiZlfbWFFh9F7zDAMqbfrvBi9yPhTY/i/Ac+jzKd/ANgFzgHfRGmDn0EB518BusAhMMkz2AAezb8nKO3yVyBdSrktbzO9MYVtdcjMVS+utaSrj7oAUhsI04e9dFl1XK42OQKkp5AQk6EAhJgpt7jFCquc5WwBOAttFjUXKA8Z8mW+zC1u8XE+zj3cw5QJVWosscxpTnHAIVNiGjTx8EhIjoDYRT0gGTGkSk1DFkeeaaH3lAkREXUaTBhTpXpHfBqw11rlEskrvMJ/5D9ym9tMGCORCmQIBTJz81Rd91p+YoKbprsFF9lucMwxaM8hrnGn07VdKOhDQC6yx41r/rOfu+YUF+85joebdNw4tOev43hI2ZoEjgLqrnVEWRrz0nfVr30gxSyn/V2H13GW7TXsurLzXVZPrrzq/lZWLhdPd8X5TtYvC1rQe0pCKEQ18CEKlF/xjTbiwiqcWUee2YDWKtJvg9eGrApJBRKlJU4WKFA88xC572sNjgtP4PkCL5QI2cQTCdAA0UR6TVLpI+IYkgSQyHSKLGyEucDXd7/oCBA+iAC8UJlQP3KFEAQobXEkYZZrimczUDxMJX4CfgJBps7/aXDcBMgL0+mZIEzVFaSCIBH4qb48BYonJjCuNcYD/CyAzIcsB8WN6hFIPCFBqM9UZCAUMu/LFHXgIEOg7ktJvhqQQEpGSsyQAV32879eDozHxDmwrs2ou2gBhi9oQS66K1Pq9inFsoWQTWXCCXPhPU+oVLaAK1uYme+4nruemd/tBWZZWNfiy1702QvZsoXrPKHXSRegNrnq3VVPZQtOVzz2RskVVsdbtrg22zqOY3Z2dnj++ecLn5z9fp+33367eH9lZYUoimi327zxxhv0+30GgwG+79NqtfB9n3q9Xgiih8MhzWazuLe7u8tkMik2yMfVtavNXRuLsmdmn9ZxugRPrkV/kih/bJPJhGazySOPPMJP/uRPcvnyZYQQDAYD4jim3W5zeHjI3t4eL774Iq+++mpRxvvuu492u83a2hrtdpuNjQ2azSa1Wu0I+DCdTqnX6+zu7tLr9Th9+jRJkjAcDrl27RpLS0v4vs/bb7/NaDTixo0bTCYTRqMRaZqytLREpVIhDMPiGg6HBEFAHMfEcczjjz/O+vo6ALdu3eJ3f/d36fV6ymydlHeYtXONUZcgxFXnOuw8c1xl49E1xsrmGFt4My8Ou78ct5E2hT+ufnbSucmOz1Uf8+aOeWQLTlzlOG6DX5aHsg2s+WyeYKIsr/M2uvZ86vo8jsreNfNtC1vmzc/z5ph3Qgv+fWfYBf92p6njPY5/e0JwfjLhm90u688/z0ffI/69s7vLfpryEPCiAQK8n/h3fpCdSZrCaPR9w7+X45hDIYgpn5cX/HvBv81nC/79zkhKWYCgdn403ztJucz82GCjGUb/Nj/tede+72oLTTagYj633y0bJ3acrvZ19S8zTtfhBzNfdp3O61/z8uGqB1ub2Q5rv2eWyZwbbZ5Ulj+7nc37Gjzen+wzvjaGL6G0wc8A+8ALgO5S51Ga4KsoMPwgDxPk9wKUdnkM3MzDrKDMqsfAddgb7NEO2wQER4BOe83hGiuuPmGWzQZaTTBWx63vmfVoty9SAcmHHBIwYJllPsEn+TAfJigRl0kyrnGNb/JNBgwICfHxWWaZWgFWB9SoFeC1tP400A6QkACi0PJWaahnAwYkJAxyLfE2bWq5BrooNMCMfpz7PtfxjxjxO3yRXXZJSHJf6Qmipvq7h3dkLtCfLu1+cx6yzYGX8fBi7WgdZHDxg3ljzOYz5vjSz139307DlY49J7rW3GYeyvJopq3Lba/BXXlxaU7b+TDjLpvb7XfLymyXxz68YLab/m4expm3VzDr0XzuWmvZfMFu75PwVlefMdMtK4+rrlz8bEEL+q5RDgzj+1ANEM0IlmqI1RZirY1cbkO7haw3Qeaa4kkFiEDmoHgWIFIfkXpHPzMPLxN4Mj+KJcDzJCLwoeJDzcerjUnrQ0SckEqJTCZkUkI2YaY1LnjPAFcBQoAozKgLvEDgh1pbHIJQmVEPhCTMIExz0+lCgeJBKpV59BwYLwBxclBcGhrjGfi56XT78rTp9FTMAPFE1aWXKI1xL8u1xaU2pa4bUJXD09OUkIXfcX15+srhbU9KBZBDzrNjxkwY0KdLlwMO6NJjxJiYhJQ01y2XxrWgBS3oJHRiYNy1iCtbONztBtmOr2zxZJNrA2iHnyfgcW1my8w1lS3W7LwdJ8ix866/2xpe9mJ6Xt274ivL80nIVa6yxfpJ4nHd1xur0WhEv98vzKqur69Tr9epVqvEccwrr7zChQsXuH79OgD9fh8pZeEHEyAMQ7Is48aNG4DSPqvVarRaLfb39wsNNF3PQojCdLern9obDHvh7TLfZ7f7cX3ZtSHS9SyEYGlpiZ/8yZ/kr//1v86lS5cAJZh+6623mE6nrK+vF3650zRlbW2N0WjExsYGk8kEKSVhGDIajXjqqacKk/VCCCaTSfG5v79Pmqbs7e3h+z4f+MAHiOOY1dVVms0mN2/epNfrMR6POXfuHKPRiNFoVJQtCJSQI01TxuMxSZLw2muv0Ww2WV5e5tSpU3iex9tvv80v/dIv8dprrxXmcqWUjEajwtfccRsWu53K+lZZvdt1bf4um0vsdFybTzvfrvHjCmenMW+DOW/jaQoFyurF3nC75hPXRtn87qqjsnm+bD52lckMU1ZO81mZAHgeHTcX299dbVi24bbryH5+Ev5kv3O35TuOFvx7wb/N8t1NPK77QgjqWcYwjrk+HnN9b+895d+TSoUmcF+aclUI4vcZ/w6kJFYPv2/4N1Jy/vCQr+XfF/x7wb8X/Pu94d9wp1asnX9TM9IEC8s0Il183sW39HvztOntvuXis646dGmOusahPYfbz+yxYbeFq53ssmqwx9Qad73nIruMZfzfLJdJrvnILrep+ezqlzaQ5Sq3WR+e55GkCYfdQ6UZfg1lFv1elEn0BjAGngIeQZlOlyh/4xkK+NZy8CrKnPpL+e8GChRfA25RaJD3vT5tv03NqxUuUWwAUufNrJeyfm+GN8O6DrLZQK7dT7MsU0AB4OFzilP83/nv+Rl+hho1ACZMSEiOmCyXgIfHBc7To8+9XGTIkDZtAsJCc0uZNjXaEz8Hv8XM9ygQEhZmz0EB5QJBSkpISEhAg0YOoKt4ArwjcZvk5c8SEn6H3+E5nqdOvQDLu5Ue42CEyGb14jJH7RpzZTzXNZeYVKYxXrY2sPmX2f7mu2ZYV9/Xc44Zzn7f7oNm2V3fXXzTzq9+ZgP0ZniX9Qy7XK737+jDFh8rmz9ddWnXj6vMOh2zvHaZXW1Sth50hXWVwXxml8WsX9f8Z/ZFVzrz5hm7PRa0oO84CUAIhaaGHqIRIpaqiOU6YrkBSy1oNpCVGvi5H3FTWzkV6kr05SEMn9hHPhOhrlTgIdWeNhBk0RC/NiGZppBMkdM+ZOpwFWmCfI9B8cK3uBAITxRa454GxENBGEDoS6JcWzxIclBcKPPpvgbFcz/inoRcaXumMS5zbfFMqCsHw7WWuGeYUPcSD5EIROIhUg8v8fMDBz5eprTxlRl0kf/NmlHh5CrxLNcal7kJdaF9kEsFiM9WCGodMWGc64p3OeSQAw7p02fChCxfZ8z+FrD4ghZ0N3RiYNzeWM9bwJqfrmfHbTDnbUbtBbF937VBd6V90oWaaxNwHLkWVvM29y6a50/JjvskYc10zfTL8memYQMhx9WBmYYZj1mfWhiryfM8+v0+nudxcHCgNu1JQqvV4u2332YwGCClZDKZUKvVCoHuKNfOqtVq1Ov1wj93HMeF/9Jms1n4sZ5Op/R6vSP50pfWgtL5mact4KKyDaJZZ2X1KKUsNOcefvhhfvZnf5af+ZmfodFoAHDjxg3+7t/9u4zHYz71qU8B0Ol0OHv2LACtVos0TanX64W/0Ha7TbVa5dVXXz2iLb+1tUWSJEwmE1566SUqlQrj8ZibN29y6dIlPvKRj/Dyyy/zB3/wB3Q6HUajEXEc88ADD7C7u8vzzz9PlmXs7u4SBAGXL1+mXq8zHA6PaLitrq4qjYT9ff71v/7XfPnLX2YwGBT9NQzDO/qJWS/zNneucW5vpsrapazdXKfYXX29LO4y4UzZ+HTNZcf1obJylG3czE2+S9PSnpNceXOlW7ahLaOyOFzpu+p93rOT0kn4j5leWR7M+MricgmN7ibvZXPEO6UF/17w73ebf59KEt4U6hzzd4J/d6tVLg2HHAyHbBv5ej/w71PArufRaDS+b/j3ku8zBqYL/l2a1wX/Pv7ZSen7mX/DnQcnzD5q5k1/usDZMi1FO68uk+J2+cvWEWUmvzWZY7+sjfQz1/xrP7Pv23lwxW/WZ1ncNv+Yx2NdY9O8b6c/by604/Y87w5gZx7fP25O0PnKsoxxPCYV+T7cQwHkPgrMDlBm0teAZ1Fa4hIYAi0gQmmD94x7S/n9EAWqv4ECzFdVXNkkYzAe0N5tH5nb9Kd5YD0MQ9I0dQLndr84ybrR5KHmAZIirBT4MqBDhyd4gv+O/47P8BlCQgSCPn3+V/5XJBl/np/mIhcLX+H3ci8N6sQkLNHBJ6BCpQClx4wLjXMTwM7ImOSAN1CA31qrfMIk/660xGrUivgkki02qVDlFKcQiNwXeoRNKSm/x+/x6/waB+yTkgKCKlVEjaK/a7K1+U2XDK5+bvNwF2+0+6L9/W54uJmPMh5uW1gom6/M5+Z62cxf2aE1V15dPFoIccQXu2seddWTbheX1rkrPy4eWTZn2u/b88NJeYVdB/b949ZI9nua7D2rK17zMJirz9hh7DzYfMPmlyaP1Xla0IK+oySEAoV9T12VANGsKFB8pQnLLei0kPUGhDWkV4FUaYiT+pB6kCogXCQCEevPHNDNQd0C3NXmwHMNciEChO8jowlZJUZUp8hJFxnsIdMxMouRTODdhGCF8am/+xhm1EVxBREEkSAMJVEAkQ+hUCbTw0SB4gG5T3GtKW74EzdBcQWMi5m2uA2MZzkontxpPt1LTG1xZarey3JNcSkQBjiumlUWwLjUQDhKU1ygAXENimdIAZnMSEmYMKafA+P6b8Awd7Oij+Lp1niX2mRBC/o+oRMD48ctVM0wmuwNimtxY79ftpGel68y4Yyd73lp2HGdVBjiWvCVLXLnxWEuzsrKBG6tEpeZqJMsPM0FoL3QNjfjLh9SZUKCeUIY1yLXrnMTLPd9vzANqrWnfN9HCKXxDUqgXKlUWFlZIU1TptMp1WqVXq/HYDAgitQmUQvhR6MRnucVWmrmJkrnRwO25iK4rB2Pa2vXRl3Xjd6E6TLXajU++clP8gu/8At88IMfJAiC4r033niDr3zlK7RaLf78n//zXLp0qdCs29zcpNVqcfv2bQ4PDzl37hztdpswDPFyYb3v+4VQfDgcIqUCKQaDAUEQUKlUig1Eq9WiWq2SZRkXLlwgDEPeeOMN/uiP/qgwgbe1tcWbb75Jp9NheXmZ119/ne3tbc6fP8+f/bN/ltXV1WKD9Xu/93v81m/9FoeHh0VbaOGEbk/XBsUke0Pi6udlwhL7u4tcYcs2wuY7rnjK0jvJmCzLkyvteeNPf7fHuCvdeeWcN/fZ7x8neLDz6BJ4HZemHeYk86sml5aCnceTlHceufjHcfl0CU7LBHzvlBb8200L/l0e5zz+vQokUnLwHebfL4zHfBA4DEPS9wn/ztKUU1JypV7/vuLf58ZjXqlUEDmYseDf5Xlypb3g3wv+fTdk83ATRCqrV7tN7fu2VrSZd7s8+retgQ5us8Pmu2X93a47G1QvC2umVTaO5q0Z5s07Zv92ta2eQ49b48zrQ8f1ByFE4Qdc81XNx+31gs6ryyqM3VZHxnrur3qWKEqGGhsZCYApyjR6BeVXPECB6PrVNZQ/8fP5u2OUxvguCkyv5XHvqvfjfszEn1Cr1orDbOY6RQhBpVIBOLKeMPtsWf+eV58uFwS6juM4RsaSNi3+HH+Ov8PfYZXVI/66b3KTX+fXWGWNn+LPF+bLJRIPjyYtbnCDAw64h3uoUzeqMSi0vbSmuf4bMSRmSpUaCUkBxGsAPSAgI2NKv/A5HhBwk5s8y3Oc4hRt2uyxyw1ucIELnOfCEdPqL/Ii/5p/zSabCMiNrSaklZRgOUAcimJO0fVq15f2j21TGY9z7QPsdbk9Nu13zGeuOcz8tPu4PT/MS6MsfvuAVNl621Un9nzi6ss6n656MOvN/u6qW/2ea4/hmifNOc6e746bx13jsKw+7PWFef8k6w07P676mbc2c4Hidlh9z3WI+KRr0AV9H9E8dvNudRGBUi32ckA8zP2KL9VhvQOnl2B9Bbm0jKx3kEETmVUhiyAOYeoXl5j6ChCfeojYw4tzEFcDvIlfaEAX2uLaTHgWIGSEFA18fxkR9JDBMlnQQSZDZDpBemOQoIaHNuF9F+UU+RcBCKHWF/l3IQAPPH/mVzyoCYKaIGwIojpENUmlCpUKREGuJZ5rjAdIfDiiLa61wj2Jcust1b1ACoJMf5qa4jkgnglDs97LTar7BUiugHNtRl35FReZp5ylSFEUTeaX0EXO72iwXGmMq+9SKi3yFElMypSYEWN69Dmkx4AhEybExIZVGn0taEELuls6MTBuU9nCwaZ5iwl7IWpvro8TCs1bIJWl6TIpZ5bJtVA7qVDEpuM2bK5yHVeHZRv7eZuCeXXnWvxWKhV83y9MnZVtfPTvskXpvMWqvcCu1WosLy/T6XRI05Q4jqlWq0XYKIoYj8fFxi2KIrIs4/Tp00RRhOd5+L7P5uYm9Xqd8XgMQBAEhGFIv9+nUqlQrVYRQtDtdhmNRkX5pFQn1IMgwPM8xuPxHeaiXH2xrH3LfF3pd7Qwu9lssrOzg+/7rK+v0263OX/+/BGhOsDOzg6e5zGdTvmjP/ojHn74YU6fPs1LL73ElStXuHnzZqFhJ6Xk4sWLAFy7dq1IL01Tbt26BczM8iVJgu/7VKtVlpeX6Xa7hdZatVpFSsmZM2e4ffs2QRAU74RhSLVaZTKZsLOzw+3bt9nd3aVWUybydL0cHh7yuc99jtu3bx8RTkgpmU6nBEFAEARMJpM76tT8tPuhWafzTH+5xoDdHmVm+8o+zf7smoOOm/PKNoj2b9s0ok7bBTLMm4+P28zNM+Fqk6sO7Ptl48WmsrweN86O4z1lc6nZn2xBgJ0HO12z79ppu/qJK027ncy07HhcbXbSNjoJLfj30TK4aMG/3fe1DPxZZlo53yn+LapVGpMJrfGYvdwU+Xebf8udHeIgoPN9xL89KRH9PsMoIphMFvx7wb+PxLPg3+8d/zb7lJ2mXR/zymbmyTVXmqTHme7Xdhr277I6MNMw82yP97L4j6tXs1+UtWXZ77L37HfMOpvH/+14XJqLdn1o0tZTRqPRHW6/XBqSrs+y9tfPYy9W3yVKWtsCzgIbKNPnE6AJhevQOjDQmUaZT8+Ay/kzD6Ut/noezyAPF6FA9b08vjbExLS320x70yNa4ZVKpbAa0+/3CzBR59t1KMM1d+h60u/YGvee51GpVGg0GiwvL3Pt7Wv4A5+L3Msyy3ToHAHFJZI99vDxGTHkaZ7mEpcK0HqPXd7kKm/yZmH6vE0bgJSk0BwHZRrdQ5Ahc8A7zvXFKUy2a9Lm1D08arn58wCfmISAgBYthgzZZ5+rvMV1rtGgyTnOF/mPiflVfpXXeR0PjzQ3wS6RDJtDonpEOAyJ47ioN93Pdd1qNwNpmhZrD7Pe5/HwefOu/m5aZylbP5S5wLHnHCGOan2bc785j9n9xQyv+5mtIe8a++Z9O82yMWqSPefNy5urDK4w+ncZzynj22bZzHRc85sZzqyHeXO/nXZZWBcP10okrvfLeIar/MfVm3nfjuvd4uEL+h4l3fy6H5iAru5Guj8d6VaueyeI3/Mg8CAMoBZCPYKVBmJjCc6uIddXobOCrC0hRROZ1pQZ9WkIcQDTADENcmBcXV6swHGlOZ5rOKfahLo3A8UTocyNZx5eFgJ18DuIYIUsWCYNOki/R+YPydJhXm5pWESZU1iznEJ/5t89Ab4yl46H8inugRdKBYpXFDAe1gRRA6K6pFqHSg0qFUklhCjXGA+QCgSXOSCeaTPpEEjDlHqWa4rLmaZ4WGiLK+15v/AnrurGN8BxL/Xx9ZX7FheZp8zYS6FMqs+MqYPQtaMzYIDihul0yMhERipTEjISUiZMGTKmS58ufYaMmDIlISl0xWetIBfw+IIWdJd018C4vYl1CbDKBCrHbdJ1/K7vLrLjcQk6XMKCk8ZfRmVx2/fKNufzym+Wo+z3vM24azHnSkdvNIIgKDbenufRarVotVoMh0Om06mzTC6BhquOzPyY4UxBpjYbevnyZZ544glu3LjB7du3iziSJClMoFcqFaSUVCoVsmzmNzwMQwaDAadOneLw8JCtrS0mkwmVSoUoilhfXycIAnZ3dxmNRhweHpIkSeHndDgcFvmK47jYqLv6r11G10bMri/tc/Xw8JA0TalUKoWm1sHBQVH34/GY1dVVoig6ktatW7f45V/+ZcbjMWma8tWvfpU/9sf+GKurqwUIEoYhGxsbBYAQRRFxHDMYDApBuAahe70ezWaTMAyZTCYFKJFlGXt7e7RaLQ4ODkjTlGq1ShiGtNttbt++TZZlRbzaTKzeUC8vL/OhD32IpaWloo9tbm7y3HPPcXh4WGgLaoHFcDgsNtu63rTwXtefayNk93W7b7rawNVm9juuZ3bbz+sDUso7NvZlGzZ7rrTTmTemXWQL3Y4Lb5eh7L3j8mNuWl1h5wkjXTzCjrcsjP3MFH640rXJNXcfl9fjylRWlrL8nKRPzQv3TmjBvxf8+9vh30vAPULwihAgJeF3gX+/1u9zLkmYvg/4d3xwQCtNebNSof59xL83koQ3h0MOhFjw7wX/viP9Bf9+b/h3GbnmdVedmHnXdW734zLfwS6+Zqfl6sN2HbrScsVrl8/8rtPSfE+TqXXsmnfMPLvGtw7j6l/2+/PI1dauutQA7WQyKSxora2tsbq6yuHhIaPR6Egdmu/rspfxajOdI+3kC2I/JpOZArYDlKnzHwB+CngNZQIdlKB6ml8jFACeoTTCU2aAeAWlHX4KBX6/iQLGG6iTdPeiAPIbQBcmWxOG8ZCVlRWEEIU1Et/3mUwmxHHsBB9dAKyuBxPEM/u153m0221arRZbW1tMp1Pq9TobGxucPXuW27duk40yIhnRp8cyywUgralHj1/hV+jTJybmP/HbfIyP8SAPIhB4eFSpcol72WOfOjXDR3hKxhQPv9AWnzChgtKKr1AptMel0i0rPjW4rbXEBwxQxlRTevRYogPAmDEgOc0Z7uXeI6D+Pvs8xVfYYis3/S5yc6sp3bRLupUWFnyklIWVHl1/0+n0SD2b48PFw23LHuZ7JpnrruLA3Zx1mD2X2NrOplxJa7e7xniZ5RHze5m1CNd8ZteHXVfz+LMrDRuMds2H8+pIk8uChFknrnnOjMduazOueTy8bH48jp+4yG4T1327nc250c6jXYZ5PM3sUyfN74L+KyIBCMER4FZrcGstbpF/1/1LAlkGSQpZCpkEmalPmIHmzvTELD2dTuhDJYRqBM0qolWDjQ7y9Dri1DpyZR3qy8igjUzrkFQh1sB4aIDiQQ6Em77Fldb47LcwfGdrUDwHg6WPoIIQTTyvTep3SP0lMv+Q1OshvAhJXk6pAN1ZhbjqEaM+9UUBiItAIHyB8KQCxn3wQ0kQScIKhFV1VRuSWgOqNajmoHjFk0QyN6OeKgDc1BD3svw36pNM5MB4Doob2uJBbjrdT836UVrivta0zy8NivsaFJfKx7iUChxXGLiYAdXFlCQVEC7UZ2FivQC4UzIgJSMmISZhzIQhY4aMGFug+IwW89WCFvRO6B1pjLsWFiddcNkLKpcgS3/ejSaEmZ+yhWLZPde7Zj7scpc9n3fPtXB25cm1AC3bIMxbZLu+24vmIAhoNpv0ej2klGxsbHDhwgW2trYKAaedjsuMW1n+7cWoEKIwH6qF2LVajbW1Nc6ePUuSJAwGA6rVamGCVQuhG40GBwcHhXA9yzKlQSYEcRxTr9fpdDrEcUy/32c8HhfmRc+ePcv6+jrf+ta3Cj+aURQxHA7pdrtIKQtwwayzMuFSmSBidXWVRqPB9evXAXX6/aGHHuKxxx7jtdde45lnngGUAPr06dNsbW2xv79PlmUsLy/zt/7W3+KnfuqnqNfrhdZdt9vlF3/xF/na175WCMEHgwH/9J/+U4Ig4Ad+4AdYXl5mf3+fH/zBH+SZZ55BCMGNGzeI45iVlRWazSbj8Zg4jo/4eK1Wq4VgRW+AsywrTK6eOnWKTqdDkiQ89thj9Pt9vvjFLxLHMY1Go9D0G41G3H///dxzzz2cPXu26Due59HtdouT17rddH3r+77vF/1KC4h1WJcZLHs8nXQcmPfmzTtlG8F5AjdNtk8z19ibNw8et5Eu25yVbf5cgox584ldTyetW7tOTmIe2tU2x83BZWm78m/mx55757XvPJ5jv2cLcsxy6/CuPuAqg4vfzJuH3ikt+Lf7+bx73+/8uy4l90lJUKlwo9Gg4XlE3yX+nXU6XEpTtqTk4LvEv8+ePk10+zbT3V2eB1ZWVr6v+Hc0nbIJC/694N9zy7Hg3+8u/7bb0xb+m3l1ze9mvvVzW0O07D27zK48zRuD88qky2Jqhh43vl1ziVknrjHq0hYt6xP2c/1M15lrPnH1l7J29zyPKIpYWVlhZ2eHLMu4dOkSjzzyCFeuXCl4pat89lgwD9a4yq1/Z35GWk9JW6mS/oyBNnAB+AAK7N5HAdoxyoR6HQV4d4DN/LfMwzZQAm0dz6n8+x7Qz5/7edz3AF/M41yDaq1K67DF9vY2WZaRJMkRc9OuPujqG2Y5z58/z9LSEi+99BJSShqNBp/61Kf4kR/5EZ5++ml+4zd+g0qlwrlz57j/8v1cee0Kt964RTrJOM1p/h5/nx/ihwoN74yMIUN+hV/hd/giA4b4+OxzwD/g/83/xP/MB/hADnn7fIhHuMlNfAImTPDwcjPqPgE+WQ54h7lv8oCAkJCMrDCTDuQ+wDkC0Pv4TBjzu/wuYyYssUSNGgE+PXo8xEMssVwA7ZrGjHMYPCXLIfGMjFjEpL46mB4EQWG2Xx+2BIoDCnY/Nuvf1hy23QzoeO150OzbrsM4ZfOWKx6T5vE1eyy73rfniZOQmTf9XdfLcTzclQczXvv9efPtcbzXBntdY8zkg/P4H5Svl/S7rjY160b3Hzv8vPo381y2frR5QNlhA5cVArMO5rXZgr7HSZR8P2LSOwfAA392ReHsCkMII2XnW+PB0ymMxjAeQxxDnCigXJrAMSikVOTp5Gl5Anzf0BKvQKMKrRp0mrDUgrUl5KlV5OoKNJaR/hIkTUgqEFdgqkypKzA8QCS+unIT4CL1Eal/xBx4oTGeGoB4Rv491xqXgQLHvTqB3yINOmRBmzQ5JPVqQKYO25HlRcyMetR1KVTZ8ksE+l4OhueXF4AIJJ4n8YTE8zKCUBKEmfIlHkmiiqRWhXpD0qhJ6qGk5kmqUhIlkjBTSxyfXDMcy5c4ojClLgy/4r7MAfBMg+EeXmaYU088/ESD46pu/cTHSwO8dKYprj5FDooLyD2Hg75ndzkFhs8uZVNGIpAizf2LpyQkxKQFSK4A8QUtaEHvFt01MF4mZNHPXAIMe4FUJkTSNM9Ulv6t07AXVcfl3bVZPckCtSy+4xaOxwkIXAvksgWm7/sEQVBo2donX4UQNJtN+v2+s6zmgjiKItrtdqFptLa2xoc//GFeeuklbt26pXxuWYvlsjqeV6euckgpWV5eptVq0Ww2C+2ovb09fN8vBOq1Wo1er8fa2hqNRgPPU77B9WJ6MpkUQnjPU744dfn7/T6+7xNFURFnu91mPB7T7XbZ2tpiPB4rYYEhvHUJTex6MEkvrlutFhsbGwRBwP7+Pvfddx8f/ehHOTw85JVXXiEIAs6cOUOr1eLRRx/lm9/8Jpubm8RxjOd5/MAP/AB/+S//5cL8aZIk/ON//I/5tV/7NV5//fXCtCzAaDTi6aef5p/8k3/Cz//8z7OxsYHv+9x3331sbW3R7XbpdDoIIajValy+fJnDw0OuXLlCkiTU63UajQaTyaTQOgOKDbHuS+fPny+EM0EQsLOzw/b2Nr7vU6/XC9P0Fy9e5NFHHy0OHJhj/oEHHuBnf/Zneeqpp9jf3+fw8JDxeFyYCNSAhhaIpGl6RDiiN3Jlm13XPOJqI/OdeafBv53xbG+67b5UNobKBFr2u3YaJyHTL5wrjjJhoJkPV52V0bx5oiysztO8jedx49BO21V/8+IwhQFlm2BXPZrxzztdbgstzPjm0d3wo5PQgn/fWd7vVf691G5TF4Kl3Iz2w48+yjNXrryr/DsQgvNSsgxc9TzGQlCVkrXvMv9+dm+P5njMphDfGf7t+1xaW+O87/PYpUtcv3qVpzY3eTtNEd+H/Hul2+UWEOUa4Qv+veDfC/59J70X/NvmwWZ+7HrQnzYPN8O76sUFoJh5MN8p08As4412fu3vdjjzud3murzmXHJc2q42McPOs1wghDrcrQ8+2UC+53ksLy+zt7d3JG39rjkX1mo11tfXEYGgkTQ4fc9pPvOnP8M3fv8bvPbaa4UWuasd7TaYx8OFEAUQmolsJnc9g/IPvowCu8fATSBE+RKvo8yr76JA7U7+rIKSMqcorfAmCkT38zAfRQHje3n4KkrS1M3T6wPbsHl1k36vT0BQWBbRfc/mETbZ/Uhr2l+6dIkwDLl9+zYf+9jH+PEf/3E2Nzf5gz/4AypRhQfOP8Baf43PtD/Dbz/927zx9hUm6Rgfn0/xg/wYP4aPMhWekfF/8H/wr/hlnuU5+vRyq/KCLof8Jv8BCfxD/iFtOlSpUqXGKU4xYUyE0rzWgLfMfZ0mJASEBehtGj7Vv1X6KSHREZB7k03e5CoRIUt0aNCgTp2znGWdjSLvJp3mNH+Tv8mT/D63ucUmW/Tp0wt7TFsTpvG0OJgghDqoGMdx0df04beyPqhlSC7+Z7aRix/Z49rF78rWB3ZfsdMyD4vYc59rHoE7wfJ5fMR+7uK9dpnKym3Wiz2W7Tp3ldUON8/UutkOdtntQw7z2nTefGrXlStfrvlcH6Ioi9Nc5xzXNjCrb9sSkGuedPGmeXlZ0Pcw5fjk7LvRb4QBVoeBuqJQaW5XQqhV1VWvKlXlSg2CkFytF4ZD6Hah14fRCEYTmMZKkzxNQfcnKWdgsZeD777yI04UqLRaDVhqKEB8dQm5ugzLS7C0BO0ORE3wmpDUFCCuNcU1KB77uZa4X4Diyhy4b3zX4DiGb3EQBSieA+UywBMRQtQIvGauNd7G85t4fhVJgpApslg/yVk9+h6EuQZ86EPFR0Q+IlL3ReghIoEXCbwIPF/iBQoQ90WKLzKCICMMMqIgIwpSKiHUo4x6Feo1ST2S1HNgvJJAKA1gXKjze8UlhVJQlyIHxmcm1H19pQLfAMdnwLhfgOIzQFyD4r4BiiutcaRA5pdee8mi4zGrq1xbXGhQvNAaz8gQxeG2JAfH1Z867jYznH5nRxcLc+oLWtBd0V0B467NmGuxZC/27HDmAkV/zluAlAlcyhbfZWHKBBn2Au844ZoZX1m+XItklxDALt+8xaZe3G1sbCClZGdnh8lkckfcURQV5q9ALSa1wFZKBUovLy8zHA6RUrKyssIjjzzCjRs3uHr16h2nhO2FtM6r60SlNuupTxzrjYY2A3rx4kXOnj1Lo9HgoYceIk1Tbty4wcHBQXFqPgiCwvdXlmUMh0OGwyFhGBJFUaEtNRwOC8H87u5u4Ruz0+kUJ6A1QHDhwgVAnYDWvk61H1C9KdcbA21a1NU+WrChN4rat2eWZezu7vLggw/yN//m3yzM2b788sucPn2aVqvF5cuXue+++xgOhzz//PNFHetNfRiGRZp7e3v85m/+Js8++6zTpFOapnzjG9/gs5/9LD/3cz/H5cuXkVLy8MMPI6UsTLBWKhWuX7+ugJOHH6bX6/Hmm28WJmGbzSYHBweMRqNC2291dZUkSbh69Sqj0QjgiA/SRqPBJz7xCc6ePUu1WuX8+fO0Wq1C0ywMw2KDt7y8zM/93M+xtrbGl770JV5//fXClP10Oi00x82yueYPF7nGkDmOXJojxwnvTJo3d7nCleXNdX+esMd85tJosrXw5uXHFhKcNP92nmxTq/Z8bc/prniP28TOS9/mFea9k8z5tgDguI2+Kx1X3lz5ct131a+rP7r63Lw+eje04N93pv+9wL9DIWhVq7SzjEqWcabR4FSrxXQ6ZQQEZ8/ywAMPcOPaNVbeeINhknBTSqYc7U8n4d+R51H3PFppypqUVIXgpufxUhjiBwGX3if8ezsI+IDv0xKCvjXH3S3/XllexksS+rdu8dC5c/yFv/SXWKvXSQ4PefPwkHO+z0q9TvqRj7D+6KNsTya8vL/PddRGNPg+5N/DNEWkKVPDP6wu24J/L/i3nf6Cf3/7/LssbhsEscGiMh7gGnP2mLTD6vg0HdefXWm5+KiLh5eZAj6uXXW+yni0qy7N7zY4ZFKapniex8WLF0nTlLfffruYY/W7nudRr9cLFx9S5i7DWk3iLCbOYoKzAf45n62DLQbZgPh8zN6f2uO1V14j+WaiQOpsllf9KcTRQwsuoMnzPIIwYBpPSWVK6qUKEI9Q14dRGtxLwA+iQO1XUKD42yjhfpQ/Pwe8hDKTfoAyi15FgeMNFNi9nN+/jsq3B6yjQPEA5atcAg/nn2OgB9KXjCtjOpk6BJamKWEYkiRJcdjL1f80D9eH7BqNBmfPnCWNU669fI1PXv4kn/1/fpbz9fMMrw358otf5oHJA6xur/IDr/4AH+l9hO7LXX6PL5GRIoGQkHXWjmhoDxjwb/hVfp/fzzW6Z6CzzP19fpH/xD/jf+Ov8XOFf3DlW7x9pN+YoumAoNAIh6Na4VpzXGugZ3kn8PAKf+Rt2izR4Qf4BCusEBEVJtpdFBHxf+In+QAP8QW+wIg/YpNNJumEyWjMJJ7ccZjNnttMgLlsLNvrHH1ft5npS95832xj+32dpvmp33fxEXMOc81L9pxnjqky3jqPh7vmFBf/sU29u8phHy4w4zcP4Jhx2oDvvDzZ9V7GD1xrIRcPs/cRrvdcacCdVgQ0zWszs17KeLVNZVYB7Lp17Y9cfXRB/5WQBsYLTeZci9n3IVKgLVGoNLbrFahWoVrJryqyVlX3oipUquCFkEiIJQyGcNiEw54CyUdjmEwVKJ7lwLiUKn2tHR7kAHyYa6JXotx8el1pireb0OlApw2tNtSaEDZB1JT59Kwy8yleAOKB8ieeA+NaY9w0/620xGd+xUXKEY1xkUlEJnJg3McjBK+K77cIwhXS9BA/7eJlfaQnlGJ0JoBEXT4zDfFKoADxSgAVD1Hx8SKBCMlBcfCj3Jd4kOH7UiuT4wtJ6GVEvroqfkY1kNQCSSPKaPiSOpJqIqlMFSjuS446RNFtrvmkzMd5Jgpg3JcaFPfwDTPq6rvSqvfTmca4rkeRepBqTXGhAHFTW9zQGufIqQxQJtTVJ6bPcW1eXWYIvBwgn9l8SXN9cvNyQeALUHxBC7o7uitg/KSCEXvjfpygzN4oH7eRLlso23EeZ45nnkDmOEGT/Vun5UqzTChkLwxdG3W77qbTKaPRiPPnz5MkCVtbW0fS6vf71Gq1IqzneYUmUJZlnDlzhqWlJbrdLt1ul/X1dR588EFu377NN7/5zcIvqZ1vTS5NGjOM9mdpmlQdj8e0220uXrzIxsYGURQVGlFaqB6GYXHyWPvcBDh16lQhTNfaY1JKwjCkVqtRrVYZjUZUKhXG4zGtVot6vU4URaRpSq/Xo91us7S0VBwG6PV6dLvdApjVm0LT9JVZLl22IAjodDq0223q9Tq1Wo3Tp09z+vRpptMp6+vrtFqtwjTe9vZ2IUjZ29tDCMHq6irXrl3jxo0bxSZAgwgvvfQS6+vrbG5u8tnPfpYXX3yxCOPaAI3HY37nd36HRqPBT//0TzMej1laWqJarRbaie12m1dffZUsy6jVanS73cKkaxAEhVafFopnWUYYhgyHQ1555RXefvttLl68yM7ODmfPni182D766KM88MADRzYX2gdpv9/ny1/+MmfPnuXRRx+l1Wrx8MMP8/u///tFefThC3vDbda56/SyS1BStmmbt0G2w5XNZS4TXHa/MNtkXl7LNp4uOk4YUFZWV/5Ns4+ud46bI8vm2budX+8mTFm7uISqrrzN28S6hKCueFz1dZLNsYuP2P3DlZZLqOLK8zulBf/+3uLftcmE+4GlRgOiiEMhWD57Fm9pidf7fba2t1nL+fczt2/z9JUrjJOEM1LykTzdQ2BbCCZSkgJTz6MqpTo1nWUso0S4FSmpCAFCEDWb3J5M2K7V6CUJo/GYzvuQf785mXBxMuFbed2dlH+frtc5FwSs+D4XNjZYXlmBMKTW6ZDUarTbbXaGQzbTlP1WiyzLeCvnIQ9OJly7do3r3+f8u58kBAv+XUoL/r3g32V5fqd0XJzmbxcPP64Pu3hXGQ/XZANdZj5d/PS4MWTO3a621WWx49Tv6jTNecmO1y6vHb9ZFrNdNSA7HA45PDzk4YcfJo5j3nzzzSP52dvbo9Vq0Wg0GAwHJH5CupFyUDtgmk6RD0o4DWwDWyj/209A+nrK5D9OYAhIBYZ6ePgiBz2lAlh93yeTuSak1OJQSSZyzaEKTDemJPuJ0vieAj0UWP0YcAkFbp9GSY5fBm7l9yIUMO5DjvPCZeNZHSU1kihwvJVfWsO8h9IK7+TvJ8BOnvY6ytT6IUoLfQeSUcJgOsBP1LpAA4CmhrLZh6IoYmNjg/X2Oh06tEZtHhjez31b9zHeHHOvd4n27TZrf7TGznSba5PrJCR4eNzgBgKPc5zjBV7gJV4kIUUgWGKJD/ABttmmSZM99vjf+d/5A/6w0MiSJDn4LPJPSZ8+/4pfYZkVfpqfpk499+M9M4uu28f8nebpAgUQrkFwUKbUhwzp06NOgzZtUlIucYkllljO/9dx2KB4QsLbvM0pTtGggYfHGc5QISJBKS2MszFpPJN/SDnzza3Hiw3ImoeSzGeutbA5nrSiRNka3QWq6+cuLeKyuW4eX5m3xijj/66y2Hkx68WVH9dhAbNfz1sPzePz5tzs4p1l5XOl6ao71/7FXIvZ2tt23jS55vx5BwVc98x5vWydUJZ3nb65ljLv3826w8VHFvQ9RgIQQvG+wjx6gKiFUIsQzQq0KohWdQZKNxvIaq4hHlUgrEAQIb1QgeKZD3EGkxQGY2i3oTPINcZHOTCezIBxnYdAa4iHEEUKEI9yAL5ShVoN6vlVrefp18CvQVaDNMqvUIHh+kqMKzf/LZJcQzzXHve1X/HEm5lQT1Ea1PmlAHIFjgs8BAGeV8EPWgTRKmnWJ8j6pAyRiSDzBEL6SKYgErVWqHhQ8aEaIOoBoqo0xUVF4IUSL8zwwww/ksqPeCDxvYzAzwhICURCKFIikRGJlIqfUfEyqr6k5mfUfUkDSS1FgeKZ8iuuR6pEnTHMhFBK3AJlnlyqT+37W2QCTyot8QIUzzwCDYwnpnZ9romfA+IiNU2n60QEhX9xjMzIO7uj5Cg4LvLLQyIECCkLU+uyAMFnxtY1WC6LvwUtaEHvlN6Rj3G4U9voOMGB/ey4Tem8xYorreMWeS4qEyrYi0l7c2yGtxd9JzEjW1YXZYt6eyHX7Xa5detWYZpUbzp0GK2d1Ww2qVar1Go1wjAsfGju7u4yGo24cOEC9957L/1+n+3tbaIoYjI5enq4bDPheV6xgdUa19VqlXa7TbPZLATfGjBeWVnhvvvuK95L05Rbt27h+z7Ly8usrq6SZRmj0Yhms8nly5cZj8fs7OwwHo9ZXl4mTdMjGyzf9/F9n5WVFYIgKMDWSqVCEARHBM2VSoXpdMrt27e5du0ao9GoqD+zDOYC3DQRJoRgaWmJD3/4w5w7d64wRaq1+3TbvPrqq4W2QLVapdFoFGDIdDot6rnf7wPqIMGFCxd49tln+fznP18Iujc3N49oDbo2LVEUUalU+OpXv8q1a9dYX1/nQx/6ED/5kz/JmTNnCAJlou7MmTP4vs9kMmF3dxeAyWRCt9stNPK0v9Fbt27x4osv8tZbb1GtVrl06RLVapVqtcqpU6c4d+4co9GI06dPF3GcOnWqEMxPJhOefPJJnnnmGT796U8X9dhsNjl9+jRvv/02w+GQNE0ZjUalwjizrK4TyWWbv7I5pmyuOk5gaQsEysi10Sx7x7UBLtvcziuXPS+4ymTXjWtjP08o4KoPW3BoP3OVx4y/7Ledn3kbdTttO/+uNOw60vdcbXeStnaRq9xlvPG4vLvieLdowb/fn/zbzzI6gwHnfR9Rr3O70WDL4N+xwb/Pl/DvG2nKdSkJUUpfZ4CKEPgoAHwoJQiB9H16QcCtNGUMYPDvAqCfTll7n/JvfJ8siriQZdySkmwO//aE4FKjwY/eey8rFy4QLy8TNxpQrXJ7OmUwGLC8vMzNmzepx3HBv4PlZabTKenBAdPRaMG/c/49SRJWBgNuL/j3Hd/tvC/49/x6sONb8O/5pOOytbVtkErny2wPcz/jWnvrcHYfMevZzIPZh/XcW7aecI0RM15X/3VZNdFAmfncTMs0Xewqp/5dpm1ZNr7MOLa3t3n11VcJgoBKpXLEdUmWZRx0DyCCydqErJGp02dVlAb2Ekq7ug98CPgIyq/3VRS4PARiCl/QicgB2VzS6wmPLM3AA+lLJcVJUALXBgqAXmEGXI+Bi8B5lJnzEBWX1hQPgLMoP+MpCuReQWmWT4y8nsnT0WzNY6YVfg4FnE9QUuha/nuAAuBbedhD4HXg+TxODybVCZ20AwnFYWndt8MwLA6XCyE43TjNjwx+hAdvP8jSYJlW1qRGjSFD9jlAIHiar9EZd+jSo0GdNh0mjOnRY0Sft3iLGrU8PFSo8AiP8DRf55/yi9Spsc8+V7nKiFEBOWu/4xKlwQUeNWo0afBb/EeucIWL3MMTPMEjPHoErDa/JyQIICYmISHKzaX7+Hh4HHLIda7zAs/TpMkjPEqVKiFhDocvF3EpI6viSPwSyT773OAGpzhVpF+lyv3cz3M8R5ceiUzoZd0j40OvmfRv3f9tUFHfh6PzkDl+7DnEnovsMW/Hq/Ngj3VXPGYezThcc71dFj0v2nk237f3DWU8vGyOdNWHeXCwTOvaRa79jfmsbO6fV3f2+673zLX1ce1ZlmeTzPnXPlhg1o+LXDza1Rbmc7ONXTzPVZ55aS7oe5CEcGgxh4haBdpVRKuGWK4hVuqIlQasdGClg2y3EJUaslJDBhWECJEiRGQ+MvMgEQoUn6QwmCit7s5YgeLjMUwnM41xcmBcm2qv5BrilSpUckBca6JXKup7ECkA3otQjDTMAfEAkQSQ+AhTO7wwna7ueYnI/YpbvsWPaIzLmen03Iy60L8leFId95Kighe08KMJvhwSyD4JIzJfkPkeUgZIJkgvV92ueuqq+4hGgKh5iEgVxQ9TgpDCf3gQ5oC4lxKK/CIlIiUioyJSKiKj4kmqnvIpXkNSB+opVCREuaL6DBgXpHl1Sx+kEDmorKB+KRV/VMC4hy+V9rwGyL3cjPoMFPcKUHwGiFsa4pn1aWiLazD+aL9UOVV9Q1W8yC9PitwUfIbIfbjPEHZRAOVZKSguuDPBBS1oQWV0YmB83kKhTJhiL6Ltxcs8cgnYyvIxT4B1knTssCddTLoEW/MWVnbeXOFciy8zbKPRII7jQgC9srJCr9djMpkU8YRhSKPRoNVqEUURzWaTTqfDYDCg2+0ipTKfvr6+zq1bt+j1esVJ7Fqtxvb2duH7WZM2vx7HMYPBgE6nQ6vVYjAYMB6PC5/lly5d4uDggF6vx9LSEpcvX6ZerxcgqDad2uv1CgA/CAIuXLiAlJLRaFT40NQb4na7TaVSwfM8ms1mATJPp9MCgG82m4zHY4QQhZBCb5a63S5vvPEGu7u7BEHA2bNnC2D24OCg8P+pDwQIIajX67Tb7QJAP3XqFB/5yEf4xCc+QbPZZG9vjzfeeIPr168jpSyE4EtLSwyHQ4QQfOYznyEMQ5566ikajQZPPPEE/X6fF154gfvuu08J4et14jjmq1/9Kr1eb+4JbU0aUAmCgMFgQJZlRFHEQw89xKOPPsqZM2cKjb0gCDh//jxSKtO9999/f+HDVb87Ho+J45h2u43neWxubtLtdguQQvuSXV5eJggCTp06Rb/f5/Of/zxPPPEE6+vrBViyvb3NdDrlYx/7GI888khx8v/ixYs88cQTJEnClStXODg4YGtri/39fQaDwZGxaG+YTZDDHjOuMeYSzLkEdq4NrjneXHPDPCqb/1xj3R7n5sa7TLDoSmPe3HvcRs41v9nx6rzNE3C68lmWl7LNuB2X2V7zNt2uudhMf146dn7tjbmrrew8nWT+dplqK+NrZXzs26UF/35/8u/15WW8bpfOZEJbSqQQHAQB15pNwtzSyzvl37GU7AjBDuX8WwwG1MZjOt+j/PvGwQFnBgPOpSlXgF0hwODf49GIRpbxiUaDB594gtOf+hSNVqvg3zs3by749zvg3+zukty8SXM4XPBvFvzbjmvBv48+ezfIBk/0/GjWd9m40PfKeK0LJJ73zKwTM286zEnaXuevbIyY2nnmvePmD7v9zfuu+rQ1EeeNJSEEy8vLTCYT+v0+KysrnD13ls3dTQaDAWmmzJZnUaZMjK+jAPEVYANljnwHJac8i9IWfxXlj7ue/24Bb6EA6PzcgxRSAdNnIJ2mCkjfAFZR3wcoMHodBX7fRmllnwJ+II9zgJIWr+R52kUB1RUUiP1Qnq8BSuNbx+3naTXy95dQoPYEBeJXUMD/spHGRFcYSsq0nZfpWp7WB1HAfBfkbUmv31MmwafKaok+jLWxsUG32yXxEy6NLvGTt/8cP57+OHXqHHLIN/kGL/AiGRljRggEZzjLIQcAfJpPs8IqX+bLdFjiY3wMkDzLs3yMj/IKr9Chw5gJn+dzbLNDRoqPX4iYNSCuwPAMEHj4VPK/PfZJSalR53EeZ52NUlAclNl2UKC2/q61uAMCJBlv8RY77JIhiYgIDZ/k2mvoiBFf5+t8lI/SpHkkjZiYD/AgderFvQoVPsbH6NHjeZ7nNpu8efZNbo6V1R9bm9YcP2ma3sHDy8a2va7W77jM/rvmKvu+Tq+M95rp2nG43nFZoDHnG10PZn7nmTkv4/V2GJt/zFu/uOa+sjTMcHb+dP3b87WmMlPj5rwIR7X2j1s7uNrvuLnYNZ+7wui6c5mVN9+z1yxlPNzsw67+adbjPD62oO8Byh1Mi3qIaEeIdgXRqUOnBu06olWHVg06NUS7iujUlKZ4q4GoKUAcv0JxGkwGyEz5lZaJUCBwlCl/42EFalPlWzyOc23xDKT2j4IC6QsT6oECv4MQwggCpZGOH81AcZl7zM6C4hLpTDOcxJuZTs81mpWmuDii6ewlHl6ca4onYnZpM+qpLEypK21xpTmufXELAnyvDkGHVI4JmBD6QNqApI3IDhFySMaQzJsgRQwygVRCPEX44JPhSUkgFegdeimhl6lLZIQyI/QUGF6A4kgqZERCUhGSioCqUMuPqoBQKIv42lx6JmaQsEQoi/m+Uu5PUYflFTcXZAik1uyWotAgJ5t9Flfq5c9tQDwHyTUIbn4WGuSz+7IAy2EGiKcgBJ5IlOIhEh9t4j0l9GIiOSWSKRGCCI8ApfRgzZYLKHxBC3qH9I41xqF8kWYLYcoWzmWLp7KTgmXCHXuhW7aINO+7FtC2oMlOz1We4xb19qK2bHHtKpcr7wArKytFPjqdDhsbG+zu7jIcDvE85d9M+99qNpucOXOmML+pn3c6HbXhTNQEPBqNiHNNKftk8Pr6On/6T/9p1tfX+drXvsZkMqHdbrO2tsZoNKLb7VKpVLjvvvuKBfTa2hqtVotqtUqn0wGU6VANPlcqFaSU1Ot1pJSFP1GtHba5uUmWZYVJOu233GwfbfpTC0s0UN/v9wutgSAISJJE+cXMy1apVIrwUsriVLqOW+dZm53XfjsBnn32WZIkYXV1tRDuZ1nGysoKQojChHy73cb3fW7cuMHa2hrb29vs7+8zHo+RUvLEE09w9epVbty4Qa/XA5SZOFN70D7Z7Pt+IVTXWvm6HrIs48d+7Mf41Kc+5RxXWZYVgIUGJkxT9wDNZpOPf/zjZFnGyy+/TKvV4syZM4Vm29raGkEQ0O/3+dznPsd9993Hgw8+yPb2NktLS1QqFc6cOcNP/MRPIKUkCIIiH0tLS/zET/wEH//4x3n22Wf5xje+wdNPP82rr75a+JTTbWaeSLbnhOM2J2XCrXnzkOueS7Bmb55c79kCQVc6LmHsvDnFTMPe9LnmqLK5s2xOgzsFnXZatnnKMuHEPC0c+915ggSXBoKrblyb37K455GLZ5WlNY/vuerFFmjb/K1sY34cr/h2acG/v3v8W0jJ+emUC/U68cWLvN7t8upohMz5c2XBv0/Mv7fDkL005VKS8NE0xQsC/FaLc2trLDWbhM0mj+3t8eTZs3zruecW/Ptd4N+v/cEf8MpXvsKVzc0F/17w7zvKvuDf7z3/1nkx07P7rplHM5yeU8z51+5j9jxkl900h6vHvtnfdBo6Lnts2uNLp+fS3jR/29qe9rpA/y7ToLfzY1NZHzfvnT17Fikl3axLd6NL91KX9FqqtK01eFzNX1wBHmQGGgco4HkDBRjHKPC5hwKUD1Ga2XpZJFAa338VuAf49Tyu9fz+IQpsrwOPo+T2Mn+2BjRRoPomCtBO8jgbeRpLefhKnn4zj0v7G1/N8xugwHqZXzDTPtfXap6f/bxcHgoIn+bpH+Zx1vM8rKq40krKKBnhZR4VWcFv+nQ2OngPeiSnE/Yb+3z6v3yae/7dPTzJk8TEnOccQ4aMGJKScZ5zeHjss0eDJuusA4JXeYXznMv9cqYkJGRI/iJ/kW/yTV7mZXbYAaBOjZi4MH0uct/eGSkgCKng4xMRscIKVSoIPKLcRPkn+SSnOV3q79skrek9M46q3umwxGN8mBpVlllhiaUjptlBmVr/Bt9gmWXq1ElIjvgZP8OZIg1NHh4XuIef4S/Rp8+3xLf4zQd/g6e2nyoOTCZJUjoX64OO9nxuu/pw8Q17vjTHctk+wraIoZ+VHWQp4+GuOdn+PY9P2flzrQ3sOcMGtk/yacbv0m4260PPva7y2LywrMw6HtdcKIQo1vr2OtYE020T+GYeXPkx6+9u6tQM57ISYvIkmwe6eKJ9gNXkh/q3mb5tiWBB32MkUEC0LxDNEO9UA/9ME84sIU53YLWl/Hk36tCoKJPqtQiiCBmFymS6VGA4mYfUvqQzgZQeIvCQPopHBqHS9m5kkMkcEM/7nqQAbvEECE/5OPd8EH7+GeRXqD7Rl0Z1fUSqPw3t5XhmLl0k6rdXmFEXSls8949tAuJ+ylH/4oWfcXLN6RwglwJPgiTA82oQQuBlhAHItIJIOoh0Hy89IMkOSdMuieyR0oOkD5MJghgvS/HTlDDNiGSuBe5JIpERCkkk1PdI6k8NiksilFZ4CEQSIqGWF5FQl49ACJBCHFk+SSHwfEiDHBwXglSAJ1T4mQ52DlbrG/lZBpkBqTgKkOca4QVIbvsT12A4HkjVZ7SZ9aOgOLk/8QzyLiGkwM/XBgngS6k052VKJYupklGTUMWzwPHF/LSgBX27dNc+xl0LYJeQQ5NrAWS+43rffrdsA+vabJfldd578/JRtjibF3fZb/M9WzjhWoCbaWjNHX36s1qtFs8mkwmdTodms1kIn7U/z3q9TpIkjEYjGo1GIfDt9/vEcQzA/v5+cQK+3+8XGj6ghK1PPPEES0tLvPXWWxwcHLC2tka1Wi0Eyqurq6RpysrKCqdOnWIymRRmUNfX10nTlCAIaDabhQB9MpkU30+fPk21WmU6nTKZTIjjuBD4ai2zRqOhtOAsc6s6br1wl1IJ6afTaXFQYDweE4YhrVarMHs+mUwKX6lRFBHHMbVajeXlZRqNBqurq4UG3XPPPcfVq1eL/Gjh9HA45ODgAM/zGAwGRf+5//77aTQafP7zn1cmX4F6vc5gMODixYv4vs+1a9eYTCYkSVK0kxCiKB9QmEcNgqDwO6r7kRDKFCsorbLLly9z+fLlOzYpOk/j8Rjf99nf32dvb6/wre77PlEUce7cOc6ePYsQgscff5yNjQ08z+PChQsMh0PW1tZot9tIKbl69So//uM/znQ65cknn2Rra4tOp4PnKV/qYRgynU55/PHHuf/++4njmFu3bnH9+nWGwyFbW1vs7e3R6/UKTT0hRNGO2rS9vUGfR64x7ZoT9Bi6GzOprjliXj7scK55zb5vzyll844Zhy3MPC7tsvLac5KdB7Mfucrjyv+8vNqbensT7RJqlAku7DTsvMyrl3lt6Wqbk7b9SWheOwNHhD/v1mZ8wb9PFnfZ73eLf/tZxoc8j71Gg+eqVcWzlpZYbbUW/Pvb4N+9Wo1geZl2vc6p5WXCpSWWL13iueefZ+3tt7n23HMMc/cmC/79zvn34Y0b8PbbXE2SBf+28r/g3wv+De8N/3bl0axr83lZXZa9a7abbmOzfPY4tvuDWU5932V297hxUrY+scs4j4e78jhvHeAyDWw+1/fDMCzCp1nKYeOQm95NMpEpzelTKBA8RglWtSZ2GwU49/Ln6yggfB9l5hyUj+8BSot7N38/QMlOV4C/mMf/LEob/B6UFniCMmN+Dwp8PpN/H+bpnc6fT/O8rKKkyqM8TJTn4RIKrB7nzyZ5OXp5PpbzcqT58wwFoMd5HrRv8lyYjJ+H0wcFeqiDAqt5uu38eTWvj5pKO2tljM6OGC2NOLhwoA4PPAL8F3iq/hQrYpVQBiyzTI8ehxxwi1v4+BxykPvZhE/wCZZZ4t/xBQ7pArBEh0MO+CAPExHyTV5gyIgJU0JCOnQQeEwYk+ZAeI1qDoRXaNAoNLw9BF5uSl0iCQh5hEdYNvx+zyPTnziAT0CQi+MEgnOcZ4NTCERx3ySB4BN8goCAQw4YMGBKnJuLH5GSUqXCB3mYKtVCw3xAHw+fvtfj1gdusRPuFNYG9aE9Pb9rkHze3GwD1Hq8mNYYtNKBJn3P5CGuMVhmxcG19zhSlw6f5PN4tSuMa/620zLjcFlIsdO7ow2td8vyZtb1PP5ZZkrefK7vmfVvp2XWgVmPrkMRZj2cZE9lz+HzNPHt+tDP7bo1+VUZv7X5R1kdm+HMdazL8tOCvofIAwKBqPh4nYjgbB3/vg7iwjKcW4G1NtTryFot9/MdQBAgPTXTS+kjU6H8aKcCUpCpAjDJhALKfYEMPKW6XBEKSEWAyD/tq7ifqzlLz7h8dWXGZw6Eq08x83GdCETuO3ymJW5oiyciB8hz3+KpwItzDfEjmuICYWqLpwoQ178LjXHpIYRy/xF6qbJm4wUIr4qX1vCTGn5cIckCRCoRyYgky0CMIRrhVxOiakalKqmmGTUpqSLVcklKZQ7dk+oS+W/yKwfFQ5n7EkfkxwYUMKwwbVFUrZ4pPCHUuYNAXcJTGuSplwPpCKQw2kRri6fqIvVm9wxwXJSZTTe1xbMcCD/id3wGkOslU4YkExmJlKRCkoiMWEyZeBnjLGPkpYyzhImImTIglmNSpmTESNJcR1xdBod8b8fVghb0XyGdGBgvW4zaiwvbpE1ZPK4FpEkuoYsZ3hQgmu+4Fk9m2mUCguOEJvp9l0DOFa+Zj+M27/Oe6Xj05iJNU+I4Znl5mXa7DXBkQxNFkfINKpQ50Xq9XpgCX11dpdlscv36ddI0JU1T9vf3C1+fQghWVlbwfZ/V1VWCIKDVanH58uXCjOn999/P0tJSof3UaDSK/A0GA/b39+l0OtRqNRqNBvfccw8At27d4vDw8IhQTUpJq9UqBP0HBwekaVrECRQCf9/3CYKA0WhUmCHVi/vpdEq32y0EzZ1Op3guhCiE6FmmfJbFcVxovIVhSBRFpGnKPffcw0c+8hF6vR6VSoXbt2/zrW99i8PDw0KrfDKZMBwOkVKSJEkhoNbaX9PplFdeeaUwWwtw6tQparUaBwcHPP300xweHtLv9wsgQQPESZIQRRFBEHDmzBkeeOAB6vV6YSo1CALa7TaNRoNqtcra2hrLy8s0m00ee+wxzpw5U/Q5KWUhTBdCUK1WGQwG7O3tEUUR9XqdNE3p9/vU63XOnDlDq9Vif3+fWq3GpUuX8H2/AFH0ZnY8HnPp0iXefvtt/vN//s987Wtf4+WXX+bg4ACAJElot9t87GMf49lnn6VWqzEajbh9+zZJklCtVhmNRty6dYvbt28X2oGuMWOOe7Ncx22WzLCuzVCZIO5uBNLzNrqu+cQl3HPdt/M4r4zmae2yjakr3ePAinmbenMOnFdH89qprL7n8YJ587Mrbf1ZJkgw4z2OH5S1tfnuvHm+TDg8rw6Pq9+7pQX/fn/w7yxNWZ1MuLK8jGw01LZ4wb/fO/797LMcHh6y3W6z0e3ykpQL/v0O+bc/nXJBSibdLl/v97m+vb3g3wv+XVpnJ3lWlrb+XPDvo/mw86/jNvNmam+b2n1ldTjPkoBdVrMezL47r4xmHyrru3a/dvU9TS7XAGY+7PmmLD9m2q5nZvqaX2RZRq/XozvpMjozQq5LJXv0USCvBrSb+b1OfnnAZRRIvQq8wAxUvpmHDfJwF5j57dZg8sdRvr4rKNPop1ESYh8FWss8ri4KWF/P89BBAeUyD7eFArA1cJ3mYSsoc+6383tLunJQgP1+niftN1yD/tM8zAiltV7Nf+s4EyOOav67igLea3m+aihQPgEeBf5MXoYmyh/57wLbsH12m16tRzgMOaRLRkZMzJQJMTEVqngIRoz5Cl/hHGcZMcZDcIn7aNPmNrf5Lf4jm2yxyw4jxgwZsMseQ4bExFSpEhHxAA/wST5JmzYDhkyZEBKxxhrLLFGnwRId6jQICLjEpSOmy8tI5KC6JgWsB3eE0SC8C2j38OjT5wVe4Eme5Bm+zm02EcCUKeus89/w3/AKr+DjM2TIdW4QE9OsN+l9rMtr66/x+pXXi4N2cJTv6jWDyc9sc+vm+HSNbRMUd/FPVzz2fKPjNt8r4ymuecO1x7HXJa45vSwtM5w+CFi29tH3bLI1m111ZN6z66tMS7usDlyHlOzy2MC3nZ6rfuy6s+/rspp7Blcc5vfj+JaLD9th7TLY1g5MvudqF1d8ZfxkQe9j0l3HF3g1H68REKxXCO9pEDzQglN1WK8iOxEy8pARyCBDqUmnCssE9Z/wQAg8T5L5UoHjUiIyCZlE+rnmuAZSU23XOzenYvma1ua3C1Bcm+aWHqABcXVPaYjPfIir7yLXGNfAuAmO55riqcj9iwvlJ7vwKw5eMgPETU1xYfgYVwC5NPyNm2Cvh5AhyBqeTAjSlCTJSOOUZDIlnYyIJwHTqWQ6nZCmfYJoSL0hqTUk1TrUE2ikUM+gkuRnEkKIfIi8XDOcwni9AsIlyrS4BE8q7igluTn0HGT2wPMEQuRzC4IsV7wXgeoP+DlALiDzclDcy+24SA8v9y8uch/sIs3v5c+EqTmem19XuLQGwE2g3EPmWuNSzi6kRyYFiYRYZkwzmErJWE4ZSxjJjKFM6BPTI+aQCftiwpYcsCkGbMs+h3QZMSYmJi0AckWL2WpBC7p7ekem1MuEOK6Fhrkwcy2A7bCuRUmZwKJM+FEWr2vjfFy8rkXZceXQ75UJR+z8mPG5zETZC2MhRCHIBajVatTrdaIoolqtFhpK2hdamqY0m02klBwcHDAcDgFot9ucOnWK6XRamAHV5jm1T1BtrnRlZaXQMtOCWS20nU6nBIHqStq0qxZkv/XWW4RhWJj7nEwmRXpra2uEYVjkKY5jfN8vgAHtg3MwGBRl1gvcLMsYDoecO3eu0JjTGmym71JtYlbXoalprzXadFjf93n11VcLYX2v1yvenU6nCCHodruFIF0LuqMoOtKGWnNKCMH29jY3btxgMpnQ7XYZDoeFILkAS7KZD64wDHn44Yd5/PHHuXbtGl/72tfY399nOp0WGme63oECGPipn/op/v7f//tFHrQQR5/8rtVqhdC70WjQaDQKYX6lUqHZbBIEAY1Gg06nUwAnZj/X977whS/w2c9+lpdffrloS23qV0rlZ/arX/1qAaRok6y67uM4ptfrFdqF9tiyzXPZY8oM79o4l23cXZvpMgGZSfOEiq7n8wQBLsGjGfYkc2pZfu3yuTaix82rZWUy5ydXPu05dd5zM32XibKyja+rjPOEIGXtZubTjrcs/En7kevZcXVWlpbNJ94tWvDv7x7/bkuJJwTDSoX6gn9/R/i3D1wRgg/1+3xdSqZJQpAD2Av+PZ9/iyxjw/c5nWVEQcCXw5CtLKPX7y/4N3fO+wv+veDf7zX/NtMw28Wci8z82X3INcY0uXibGZerHl11o+/rZzY4Yoc1+4v9zAaBXHNFmXb+cXOCi4e7+rWpXan8WY+RVTkTvLfzq4rS5A7zz9Mo0DhGaX5LlHZ4F/XuGgowH6IA4ikzTewaCsBeR0l7z+bPkvzZEjOt8hEKiCaPw0eBzSkzQL2Xpz/Iw9eYge+38zyNmQH72gz6QX55zMBuP4+7i/KLvpfHGzLTOo/yOujleSLPqz40AMq0u8/MT3kIfDVPa4QCyCfqvUE84GD5AIYQM6VKNQeq16lTJyPDQ7WPNm3u4/EWb/EiLzFkyDbbHHJAkguQUxJSw1S6j0eVKn+KT/Nj/Fle5iX+Pb/GLW4xYpiD1UqL28tNnVapUaPGX+Gv8Ff5q5yENNitTbbb9+3vJmVkfJWv8r/wv/A1/ogRI6rUGDLAJyAjo0uXz/N5ttgiISGighcJmmdbeKcEo2TE7vPK/Z7WGIfZ+NLjTq9ZyuZOk9ebc0/ZIRd7bLn4Wdm8eVJ+Z5bF1sYG7phPXPkw82+7iTDJtS9yHWAy57F5fNgupzkv2vVklsdcg5bxW7suXPy5rJ7tOnTto+y8mfN+WRyu8thp2mUp4xVmu9rP7fWoKw+uflO2HlrQ9wCJ2SUCTwHjnRB/o0J4sU54fxO5Uke2K2Q1pR0uPYn0lK9niZqfpfSROeCKEOAJvMxD+jI3sy0LKykyBZF5yNTU/vaYaRSbJre1FrId1p8B60e0xL3cn7gGyGfAuDafrrXCtZa4SMXMTLrWFreB8czSFi/uGVrjqcjNqWMAwh6eDPFlVWk5pxlZKkmThHQ6JpsMSMYV4klIGgcIIipeSj1OqEwzqr6kHkgaAdQD5SdcaYgLQg9CDwIh1Pk/KZSVFpnr12ttbXUmAZkpF+YaCU59ZaFejVu1TpO+MKzTC0SgwHPfA+kJpOfpl/CkpzTjUwMcL4ByYbSbMC6s3x4zUFx/zsyqy0yB4mkGsZRMpGQkU0YypS8T+jKhR0yPCV0mHMoxB4zYZ8Rufu0zym3EjIjztYypOb6gBS3o7umuNMZdC0+TXEIPTbYvG5ewx7XYsfPwTsgl9NLf7QWqSxBVFo9rQe8q/zxhgPm+ufCzw5vgYqvVKkyMtlot2u02SZKwvLxcaHs1m02q1WqhKaa1y0zNplarxdraGkBhenNra4s0TQuNJC1ID8Ow2CTp3+PxmEajQaVSYTQaUa1WC403bUpVSiXk7fV6dLvdQnOsXq/TbrcRQnB4eFgIbaWUDAaD4hSuFkhoLTBzkxFFEYPBoNDcyrKs8IO6sbFRLMpbrVbhR7XVarG5ucmFCxdot9s899xzjEYjKpUKtVoNgOl0Sq1WK4S+w+GwMLuqzdpqAGF5eZlut3vEhK02yb63t0e32y3MjboW2kIoH6MrKys8/PDDPPjgg+zv7/PFL36Rt956i/F4fESjw+43nqf8zl67du2If7AwDAuhugY9Wq0WrVaLNE0LkMSs4yzLirYbjUYMBgOyTPk2XVpaIo5j/s2/+Tf8wi/8Ardv3yYIApaXlxFCMBqNirhGo1EBJui8aq1GoOhX+irblNjjr4xc49U1fsvGYllc9vtlY74sHnv8uzbernnBjN9+35XevDyUbX5d6c2bo+z2KJsj573ryq8OY2sb2PXlSt8Ma5f1uE12GZW9Py//ZTxv3j1XH5hXn8f12+Nowb+/+/zbE4IP+T6by8sL/v0d4N/pdEqn1yPs9RgPBry5t8eZgwOyJEEAqe8jOh1uDYfc6PcZSYn3Dvn3+tISH37wQR574AFuDof83he/yJXvUf49GY1Irl3j3smEANgTgqeDgGkQIFnw7wX/XvDv7zT/LsuT6+BFWZnK2sick+1wJuhixnVcvuw2sMER/V1KWfAKs/5sjUq7bHadm/GXzSf2OCo7wOMad1LKYk6eNCbIVakA3QEK3F5DgdlnUea/2ygN7RYKmA7z5zdRwPEEBUivoTS6QZkz94ErKPC5gwKfExTIre2JShSoXcnTX0b5C+/l9zUgPc2fy/z7LkqrW6thLeXpg/J1HuTpgALCQ5TAX/sP32Wm5U1+r4YC9bVp9izPR4ICzLV2+mqeRjNP8w3g4TzvX0b5Hm/k+SaPLzdB36LFvYf3Eh/GXOm8QXPUpD/sM0mm+NLnjDjDdrLNHnukJISEtGlzhjPc4CbbbDNiBIY3b5AIPEDi4REQcp5z/Ek+zSfEJ9iUm/wz/jee5Vl69Ehz0+cyFzxrjW+l++0REHCVq2Rk+AXqfzzdrU9QieQP+UP+Z/4nXucNIqLcn7igl2vRe/j06fOyeJm+N8ALBSIUBLWAMA2RN2YH7/Qn3Dl2df8v4yvmOHPNLean+f04nqbDmO/Z/NMGt+209G977jJNvNvlnrfH0Xlyza0mL3DlXVOZOwrz93HrirL1TFkarrnftRYRYmZp87Vu1wABAABJREFUxLxnl9s1f5fl0zSVr9Msqxub7INJ9vuutfRJ1oX2GsNsv3llhTsPHSzo/U0CkAKl6F0ReO2AYKNCeKZGcLpKsFFBtkKyuocIyfFMk0OAlDkgninMVGaCLBPKb3iWQZYqDXGR5jO5UGkKlF/qwle1p/hlJlXOigRMkNzLTabfCYiT+AoUL0ymiwIcn2mG58B4bmZda4KrZ+Cl+p7AS+QdvsSPaovLmcZ4Jo78FpkGx0FKD18GBFlIlkRkcUg2CUmnHukU4ljipRkpSiEgwifIJH4MwpfgS3UYAZAJqlxhDlj7gkBotyUoIByQUiClqts0gyQHxbPcpbsEPE/i+3nbC6UVngSQpZAFSntcBgJ88HyB5wlSXyjNcU9p8XvSvDw8w5+4yLz8e25a/Uhb5lduYl9Kkfuln4HjUgoyKZhmMMoyBYZnCV05pZtNOJATDjIFhvfkhL6c0JUTenJCV47pMqHHlD7TXFc8KbTFFzPUOyGTjy5q8PudTgyMuwQNJ9nslwkoTiJULhMmud7R4e282QtX16LHfL/MnJAdv/nbJRxxfXeFcZEdTghRCE3H4zFBELC2tkalUil8d/q+z/r6OmfOnKHT6bC7u1v4zxRC0Gw2C80rrZ2mNbs0mNlsNllZWWE4HCKEoNFoFIJbUIJZ0+SW9hPa7/dZXV3lh3/4h6lUKvyn//SfCj+k4/GY8XhcaIS1Wi0ajQZRFDEej6nValSr1UL7KkmSQntpPB4f8cM5Ho8LzSvtV1SbRQUKDaY0Tel2u4X5Uq09p8u8urpaCIM9T/kAjeOYOI4JQ2W+bGVlhclkwq1bt3jzzTcZDAYFUKA3XEEQFGZgdf8yNfm1H1hz4W1qHniex7lz53jssceo1WrcvHmTf/fv/h37+/vEcVzaX8xxoYGPH/qhH6JSqRQ+W+EoGK0FO1LK4pCF2dcPDg7Y3d0tABMhBJ1Op9BGu3HjBtevX+dzn/scYRjyyCOPEIYhvV6PJEmKuHV/6ecaZebmU9dF2TjT9aLrUmsXlo0Jk8o2rCfZYJpxmJ/zNqH23GMLEO14yoQG9rzgEjqUzb3z4igrT9mcPe9ZGdn1Y5+eL5uby9KeF78mV9xmGe3v76Qs9sl6U8DiGot3m0YZ77PrUL9TVj93Qwv+/d3n3ytC0M8y9sbjBf9+j/n36vIyZ2/f5pl+n2/dvk3f4t8yy6j7PqfjGNHrcT5NqQhBHARsS4lYWjqWf/tC8NDSEp+65x7CKOLW7i6/89xzBIMBjSThUZRC3VXPY2T1j/cj/xZSspFlnE4Sbk4mPB/HTKTaaIs0RRo+Rxf8e8G/7bTnxa9pwb/fXXL1WzNvOozdrmYY87ltbtc0pazvmb+PI7Me5pkwNu/5vn8HoFU2ps10zPzN63uueilrN/P+ZDJBeIKRHClg+R4UmNtBgd4BCgx+AAWOX0dpYvsoofgqCqD28neqKPBX5O/2UEDxeRRQ7KG0zHPLqsg8Dm2kQ6KAbG0G/QxwEQVov5XHOcjjHaCA6zCPczlPf5i/30KB2FmexyEz4L+ap6fNqI/yeLRJ9ANmssQBCvhPUCD8OH+vkZdDl/keZubcRZ6HcX5V8ntn4dLgEh967UO89Y236O/12RxsqgNZYUbqpURRxKg9ZHtnhzRJENKjIit4qdLy22OPCRM8RAFuKyhbQdo+AQ/VP8CPPvqjtOsdXrn5Mv9w5x9ws3+TSTYhy83kernJW11M5SNc4OVezSNqfIpPHTGRflLSoux5ILkOM2DAv+FXqVLlM3yGKhV22GGam4AH1WeDtYDdxi7DwyGZVAfosiRjEk+KcaDHmQ0K6oOYcNQMtmsN5JpnbNcM9lxcxsNdPMCcP/V41AcC7TnVngvtuUCvRebND2XrkDJQ9Li9jAnEH1cn8/iEHb+ZhllmXQfmHOpaax0X97x86L7gAvrNMpp5NPNcVmfmc1e8dnp2fHYe7HKYdezi4a78me+5DlEt6H1KQl1CoMyoV3381Qrh+Trh2SrBWoTfDsjqub1uXyJFRiZy09woUFzmX6RQwCuQWyVJoYDCFcniu59/1/NcHiDzQOhI9VszEJXMKzTFC1C8MJvuF2bSRTozl36n2fRcq1n7FT9iKj0HxhN9T2uC2ybU1X2RA+F+ZppSl0pzPJWIHPjPpFD+12MBU0E2yUgmMcl0jExGxNmYjDEpCZlMSZKUiZCESCYZTFPBZAq1KL9CqAWCLBCk3lFwXFWoAsazHBSfppI4k6Q5QC4leD74vgLHAw8CHyqBIE0VQJ4GFOC48AVeIEiyGTiu/Y0fBccVKI7hY/yoBYDZb5nZ93JN8dzEeiqVlvhIZhxmCd0sZjcbsSMH7GQDduSQnWzIoRwzkFMGMmZEzEQmjEiYyISxTJiSEpPlmuJ6GbYAx7890jPAgr5f6dsypa6/25tp14bV/F4mRDmpIMm1obbjtxdktpkdO11zkelauJllsIU7x5XHVaayeihbUAohipP1URSxsbFBo9EozI82m81CKNputwutKa2NBUpTTAuSdbtpIXan0ynMsdbr9UJbWghBpVJhdXWVRx55hCtXrnD9+nWSJKHT6RRaXkEQkCQJN27coNvtMhgMCh+ek8mESqXC8vIy4/GY0WjEeDzm4sWLfPKTn+T3fu/3GA6HxTvaJ2alUikE3lpDSpuZ1d+TJEFKSa1WK4T3QRCgzZqaAnOtgaXf8X2fSqWCEMqcrJSy8Il67do19vb22NnZodfr3SGo0ZdphgyUMLvT6bC0tFSYaNXPtaA7CIJCK7DVavHCCy9w5coVRqPRkVO7ekOmQQf92+wnnufx4IMP8sM//MPF4n3eYt8WaO/v7xflb7VahYaZNjPr+z69Xo/d3V0qlQqf+cxnePbZZxkOh1y4cIF7772XN998k69//etcu3atMJ9uAjCuOUJvbs2+rvu4bifd310b1XkbLvOea0y5frvSMJ+5NqRl6c/bFJrP7TRc7VQ2n84TFrrmN1e6ZYJFm8rKPq8dzGeu+d+Ox+6rZXO7WTd2uvPy5SrnPEHHvO9l79wN37PzYI7Lk6b7TmnBv7/z/DsCLgnBi0LQXvDv95R/D/p9/Ndf58rhIa8fHDj5dyYlY+BmHDMGpOfhCcFyEPBotcpFKXl0fZ2x7zOWkjTLCHyfCKjmZVxqtcjW1/nytWu8/vLLR/m3EARC0BGCh3L+/aYQHL5P+feLTz9N5epVbvR6PCkEkzQlAbIF/y7Nz4J/z+JZ8O/3nn+78qTTLjPfa+dBh3X1CT3/mPHocGXv6DjNfuMCMPTc4HrPnFPsucbMh/nbfnde25jjxtVXXfXsIiEEk3BCJjOlKX0JBTBr8+ErKFC3jwKwhygQeJhfkpl5dO0fPGUGQm8wM6feQYHOWoZez9NaQ2lu76HA5+U8jggKyfEQBUof5nFMUQB0HQWe91Entvp5GU4xM+2uzam38zzV8t/axHvCTCNdf4/zPLSZmVPXTkEreR60hnyQxzXlTn/so/zeSJWv9XyL9RvrvPz2y+zu7hZ7Snu9N5wOkV6GCAVCQFgLONXZ4MzkNPXdGjKRZGkGHoQyJKiERO2QdtRh+YEl1h5Z40uvfolnvvUM3W5XWYMLZoCm5/mkk5QszhQ4kGuEezn0EeDzcT7OH+eP37UG+N1QSoqPz/+Zv8B9XOaQQx7kAS5xietc59f5DV6IXmC3vUlaSZkMVV+1x5UGuzX4rUkDqnr9pV3jSDkzr26+DxyZZ/Rz22KMa+2vyTVG7XGt5ywXT7X5lcl/dZns8OY8Z+fFtXaw1zD2ey6yQdQyfmiX1Z7PTrJvMedom2fb5XLxT9c8qJ+bvMV8RwPvJ+EJrud2HZStX8r4gB2v6wCma61lxumKbx4/KOMXC3qfkTA+A4EIPby6T7AWEV6oE5ytEaxG+E0fEQmUfe5MgaG5n2pBrgAlJZ70lfa3l2uPF0nkcw2z+xLIoyFXcEZk+XchULbI5SwWEzjVPsZTvwDFtba4pzXGtR/x1ADGYw14e4XpdH2JAgRX4LhffJczE+uFL/FcI7y4l2uVmxrjKYjiPjOAOPUgFogpZLFkksSQjvGyMZIxKRNSkTDNUrxU4iPxM0mUwCSB8UQwjmASCqYRJKFHGggiH3yhNL7zalUK+Lm2eJzCOINpCkkOjmeA74PnS0Jf+SyvBII4kCSpMEBxIAAvUC7lIx9iHxINjnuzhhQS9ZlriAtbO/yOyzCNnykwXIPmqcz9iGcpvSxjP5uwk064nfW4KQ+5lXXZkn22ZZ8DOWKcg+AxGamUJPlhPHUuwbSCY0LiC3D87mhRWwua0V1rjLsWMnezWCjb3B8n5HDdm/e8TLCjyTal5FqIutKw4zxOgGN+t+OeJ0Sy0xRCaSOfPXuWCxcuUK1WCxOfKysr1Go1giAogN0gCAqT341Gg1OnThWaQ+PxuDC1qk2Ca+0trSGVJEnhSzvLMtI05eDggLW1Na5cuVJoJWkQ9Pbt2/zLf/kvGY/HDAYDRqMR0+m02GxVKhUGgwH9fr/wDXrt2jWef/55ut0uQKEBp/Pg+34hBNd+UH3fZzgcFppoWng+Ho8LoXwURQyHQ3zfp1pVx90bjQb9fh/P82i323Q6HdrtNoPBgGvXrtHtdjk8PCy0ncfjMQcHB4Ww215wawG/zh9QgAw7OztFWbV2nM6vXsSbbaU1q+12D8OQ5eXlwie3NmFqbhjvv/9+/vbf/ttcvHhx7mYsSRK2traIoohms1mA9NVqlf39fXzfp9FoEMcx7Xa7AF9AaRp++MMfLky1njp1it3dXa5du8av//qv88YbbxRmfu1ymCem541xWyhpb4LN8WibBSujeRtwl/BsXlx2vPM2U/OEvPY7x20GXXl1lalsDivbmLrm7bLN6Unq2LXhhqO+H+fVi5mOvWG3285lZs3Oj53GvPY9KT9ylds1r9vplwmJXGFOkvY7oQX/5sjz7zT/fhC4EUWcPXduwb/fY/5dPTjgxmDAq6PRXfHvNMvYm075o8GAF7KMYbdLUwhqnkcYRSAlsecxDUP86ZTR7i79F14o5d9eGBIsL3M1jol7PS4mCeeyjNc8j/R9wr9/89d/neS110j29vh6kjCw+vKCfy/494J/f/f5d1meTR5ellc7Xy4Qf14ZXenb98w8mH1Tp2Onrb+b/nvLrEu46resr9n5tUGdsnlEA2+2VruZZuIlJJUEHgQeQYHDykK3MqHeQoG/A5QWdQUFNE9RZssv55+vokDpDgpc1lrkYyM8+Wecx5nm3xsosFqbLhf5sykKLP9GHvcBM5A7ZWYmfT8Pp317b6BA/IM8Lq3BrjW5gzxdDVhH+b19ZmbXozz9PgoA1/XQZQZ8k5d3n5nf9HUUsN8FXkCZWt9Uz71djzODM2zf3i7cmZh9SwglD2k2m8UzUHPLYDTg7fBtDloH7A53CWVI1a9Sr9SVGNmX+HWfMAoZXhuy/9w+g8HgyKF0HV+1WuXMmTOMx2MFzo8TknGqwAJ8PAQf43H+X/wdlllmHkkkCQrcDwgKEP0kYLrI/ZoHBDzO45znPFOmPMdz/DP+Od/yvsWt2k1GlRFpkuINZuPMdFVgjxPXXkDzbxvg1tZrzHF7Rxmtseqam1xpa7K1we15yn7fXpe40jKVC8wwOg7znjkX2euUsj2HXVZdDtdawfw037Of23y5jEeZ90wtcTP9soMMZeUww5jzopmWWQ92fzDzXLZXsvPhOgxVtvZwld9lCt3Vzq40jzuod5L7C3qfkDCuQODVA7xWQHC6RnC+QXhvk+BsHa8dIiKBCCQeCg3OhGLDUkiQAikyhPTIpIIekRITcMysZHP0GynzeSDHQjW4ehQUh8L8dqGBPNMWLzTDY+1XfKYxrgBwDy8WOUDuGdrgwgDHmfkTz+/5uYa4KMDxGTBuguTiiCn1kislB4q1pruENCVOJ2TpgGl2wER2mTBiQkIqU2Su5q010eNMME1hHEtGUxgEUA2hGmRUA+Vr3PcUOG7WmzadHmeSaa41nkrytlLAuO9DFEAtFNQCST0UJKHSFk8DUVwyEMhQIHLtcQKQPhCouEIJkVQa9KbJdO3jvPiuTeQf0RYXSENbPJbKdHo3y+imKbvplNvZIL96bGY9NmWPAzniQI4YyClTUqZyphVuehHHAYUvZqgFLejbo3ekMW5S2SbZXLSWLcrNsPYCqEzw4loYnuS5S+Bi37PLMy/esvD2otZO2w5zEqGO1r5aWVlhaWmpEIRnmfJFqU2Naq2q4XBImqakacr6+royN5b7ENXazFpIur+/X5gr1ULVwWBAs9mk2WwWGlpRFPH000+TpinD4ZBer8fBwQHT6ZTDw8NCoK/LpTXN9KnkSqVCt9stwN00Tdna2iIIgkJIrn1hbmxsUK1WmUwmhQl5IWYaB7VajTRNCwG9EEpjSmvG7e7uIoTg/PnzVCoV6vU6h4eHhSBca9WNRqNiQT2dTgvzr71er9CKM0+p67bQYIHWZjPbVLeHNgUrpWQ4HB5597iNkO4LcRzT7XZZX1/n3nvvZXt7m52dHbIso9Vq8cQTT/A3/sbf4NSpUzz99NPs7++zt7dXbFTOnTvHxYsXWVtbY3d3l1/6pV+iWq3yJ/7En+DjH/94YYJWm1w1N7722MiyjJ2dHV588UWefPJJXn/9dTY3N7l27dodm07z096o6fnArgt7A2qeaPd9vzDL6gLeXZuqMkGl63vZRrXst9lOZlzzNrOu+calqXvcHGmnVbZhLhOKnmSTOa9OjnvXrocyQYJL+OFK57jyuequTOhRlne73Vzzdln+XfVSxhPsTbudf7tt7LLM433vlBb8+73n320hqFUq+KurC/79HvPv6XjMxsEBX8sPqb1T/n2Q8+++bus8r++Uf6/l/Dve3uajSUK/2eTyE0/w1//H//G7xr93NzdpXr3K7SzjthC5tsOCfy/494J/m/R+4d+uNpXyTjPx9vjSYcyDN2XlP07z3TVOzDhd9aDDuuZIlyWYsr5eNo5d48ksv/nuvEMBrjSKPHuCpJEoM+enUeDuBAVsN1EgsY8Cwz2UtnbMzNd2DQUA11Bg9CkUYN1EgcFRHscEBVQfokD0JWageA14Lf/eRwHJt1GA9RYKkN+DAmfVJtETKMyu7xj5SoGrKO3uWv5eJy/fpTxvA2bAvUBJjDIUgJ6gzLT7+TXM0zgP3MjDP5jHXc/L32SmMd7K39eKy1pzvg/NvSZpN6XX6zGdTo/0GQ0A+r5fuHsx27BarVKv19na3mI8Hs/acXiU3wghjhzMMPuIpvF4zPb2NhcvXuQjH/kIb731Fm9ffZukn7A6WeO/Tf9b/hp/jRZNXud1unTZZx8fHw+PddY5zWlatJBkfJHfoUmDx3mcBs270jCXSIYMeY7n+Cp/yEu8xBu8wfPBCySNGOmrMuj8m1rT5vypy2pbejB5vud5xcFGIURh3ccEX814XP6pzfTM9jHNs7vmR/tZ2bi3v9tlscFbOx8uHu5K47h51sUPyniS617Z/qpsDnXNz2ZbmHO9a3438+DSrDfvAUfcadj5MXmL7mcubXzXWsGuCzu8bT2pjGeZ9WLWh61Bb8Zp1rnrUKsr3rJwC3qfkJh9Ck8gQqFA8fUKwbka4cUGwb1NgjM1vHaACFDa4jkDEuQuwYVykyHxCghSeh7avnrmqbDKpLoi5T5cqFjkDJwUUiCFhxAZUpgHnwVHtItNUDz1c1Dc0hKP/dyPuPYtrs2j50B54T+cI1rj6neuLZ5poBxEloPjhu9wL5P5Z25KXarfQubPpTavri4Vh8q7TCVZlkA6Ziq7DOUeQw4YM2JMTCaVD2wyicjjmaSSwAM/zk2ee5LQF4S+JArUPc8CxqWKgiyDREqS/DOT6hlCgeKBL6kGgkYoaIYecQhZpHyMpwEkvgLJZajBcaVJngaSLJTIVJB5kmreN7SmuG+03QwQty9P+RfPctPqUpBIGGcZgyxjL03YTqfcSodczw64lh2ylfXYkUP25JChjBmTMJUpaaEhXvRGVQ+6Pu74f0ELWtC3QycGxssEH/PC2AtJk+YJEXRc9mKqbCGq3y8TUJjvuAQgrsXmvMXqSRa7rnpxLfTtcrjyrQWNepOWJAlra2vUajVarVZhqlRvAqvVKsvLy0p7KjdbKoSg1WpRr9eLvA6HQ+r1ehFGSuUjtN1us7Kywvb2NuPxmDAM2dzc5NatW3S7XTxP+TTVG4vJZOa3SgtAtQBd1+topLxs6o2V9l2q/ZZWKhWm02nhc/T8+fMIIQqhexRFxcI2iiKyLCu0wXzfp91us7S0xL333lvUxwc+8AFu3rxZaLDpE+b9fp/NzU1GoxFbW1uFwD+OY/b29uj3+wUwYZ8S1sJeDXrbm6Q4jgtz4nbbuk6ku/qMvqfLePPmTaSUPPbYY0ynUw4ODvjgBz/I2toa/+gf/SNee+01Dg4OiOO42Mhq36KtVovLly/zZ/7Mn+HcuXOFduBoNGJ5ebkwz6tJ+3dttVrFZnJnZ4cvfOEL/Oqv/iqvvPIKw+GQLMvuON1tnyw2zZ/p5/Y4sMekCbLbY8E0F1lmWs31nms+mHffdW/eO/M2+Gb+zPqxQQVX/u16suM/Lr9l81FZuY8jO76TbBTNudW8Z4fR8R9XluPq6bi2M/PjGr92vGW8xvxtv2fnxW5nc4NfVp6yOnqntODfd8bzneDfnpTc53lc8TxY8O/3nH8nOztsDocMhXjf8u/ewQF/9sIFVtOU3/17f48Xrl3j9cND9pKE/neAf4+GQ5bSlHNJwitCMDK0whf8e8G/XWkt+Pd3l3/b+bfbpYzHubTz9ft6jNv909XWOi7zPRe/t+cNF0+251bzPTPNsv5Z1hfLeLidTxfvt+vNDJ9lGUSQeZkCct9GAbsXUUDyGgrQbqOegwJ9z6KA3iYULkmX80vbXz3M39OmySUKuF7Kw+2iwOka8CYKGN/O49Xmz7U5di3ZT/LnGvxO83j7+WeY3+vn+Q1R2tu1PJ7DPJ6H8zhreZlqeb69/HuW5yHJw2kt8HuY+SE/l+c/zd8L8rIdoPygH6LA+e283GPgBkR7EcNYHRDUPq9122krL6aLMbPdRqPRESsu5nzh6pvzgDHNT1955RWyLOPHfuzHGA6HbN7e5FMPfIqlLy/x/3nqH/Ls6Fm25DYTJkyZIhA0aLCc/z3Ko/wF/gL3ci8ZKVOmNO5I0U0SyZgx/4X/zL/iV3iGZ+hySEpKUkmQNak03eSd85Y+QKD360EQ3DFv2P1fm1B31Y1eP+m6sYHWsrnWjN9+bs/nrvm7bM1hzs0uy0D2+s/m4WZeXPOmq0+YwL4dh102+0CSnY6rzHYYu9zmOszVd131Y+fNtQZy8cXjeLQ5huz0XPN0GQ830zfr1A6jn5l1ateBaw1h91PdLmZ/sMnFJ94NPr6gd5kMQByB0vwNPbxGgL86A8WVf/Ea3mqEqPjg59rieXdRps+lArCFQEoFZiutcV/xO5FrjguFZStAnAKML0DSXF1cehJkBp7I35NHM276F89mADnan3gOinvxDCD3EqG0xRPwslxbPNM+xo+C4n6CGxjPQKQyN5NOriEuChC8AMhTkX8Xha9xv7h0XMq8eJKlZOmENBsQZ33G8pARfaZMiDW8K6WuPoTI0xDgCeVDXAjwvBws9zUoru6pRlLNpYHxTGpNcQotaiFyjXEPqoFkEsI0kExDiKeCSSip+oKKD7UARoFkGKrv9SCjHni0ooxhCM0AmkLQ8ARV6VGRkiiTqvx5lkSetvpPtamUIKUgk0q7PZEZgyzmMIP9NONWOuZGOuZG2udats91uc9uNuBAjunJaV5fsjCZfqc2uP4tjtw9+vR9QO7sLWhB72u6K1Pq8xaLZZv2eQszezNetugy0yhbmLgWc3dL8+IuE7yY91xCAFcZTkLme1pIPZ1OqVarrKys0Gg0EEIU5kujKCqE07VajUqlQqVSIUkSgiCg2Wyyv78PUGgXafNhSZIUGldSykI4nKYpk8mE7e1t9vf3ieO4MK8KSqtMb7b0b20y1T5BqvtPkiSFppbWPBsMBsXGTfsZXVpaotVqkaYpURQd8VdpCvXDMCSKItrtNvV6vShvkiS8+OKLjMdjoihiMBgwnU4LAbou63Q6LczOmqbTzU232e/n9UGgdIzo9rfb2I7T1T/SNOX69evs7Oxw8eJFWq0WTz75JJubm0WZzL4mhGAymdDtdpFS8sYbb/Dyyy/zqU99ik984hN87GMfK8yu6vbT7R+GIWEYFvF9/etf5+d//uf5wz/8wwIQd22q7TFv14O9SbQ3Q3a9mCd7ywRwZXVsb0zL2sw158xrB1f6OpwpRDfjMcO45oQyId88Osmc4pqb7PDHCR1d98s2u2Ubbrt+XHnTcbjKMq/tjqN5/cdsR1MQ4hIyHBf/cffK8jxPSFHGP98pLfj3d55/B0LwoJS8mWVMpSRc8O/3nH+f7/d5Hd73/PtzzzzD5uYm6XRKI03ZAO6RkhDYFoIb4/F7wr9FmnI5UybZnvOUSXddtgX/XvDvBf9+f/JvO177vjlmzd92PZnlM4Husj51kj5f1j72c7O/zRunJ10nmL9dY1TPQ3ZdmZ+ufNr5SEVKEicK3B2hgO7zKIDXRwHbGiyu52FaKLPnVRTgG6KA7p088jpKS/wwfx7n7/koAfwEBYqnKGD5KnALBRyPmAHtk/x7JY9Xa4lHzHyYk3/3mJldH+eXNpG+nz9L8vQClOb4KjNt9TAPL1GAuo6vkj9fz8uc5WEBruTp1VBg+BilIT9m5hNd+zBPgdsQdkP8xC/WJ0KI4sC3Oa7K+ohei4AbSDX7l639bI4jk9fp9ci1a9d47LHHWF1d5Ze/+MtcuXKFUTQiFSkCQZZkSrMsEQzkgC22AMk38r//K/8XPsNnWGI59w4q79AaN39LJNe5zj/kH/Bb/DaHHJCQKsClDl5F4BmaiGa/t8eG53nF+kqX19bONutQrwPtOccEhl08xNbKd/mGN/M7b852fTfXF2aZy/xe2/OTbaXGzkPZgT2z77i03u3ymGmUtY192NAm1zxp52neWsS8Z6Zr0nHrCxe4r+/beXXxJtd7+r5Zh+ahC9cayeZBZpvbbThvPWLHqe/b7+v9jWtNuKDvMuXYs/lbCMATiJqP3wrxVyLCiw2iy02i+1sEZ6r4bR+vgkJ2pWJVXg5Wa5/gUkhAIBGF72ahw4lcXTxPPBPqfiby/iE8pJepyEQGQiDETPO8IP1Taxhr39WZp67UuLTp9ERfubn0XFt7dt1pOl0B4sy+HwHGZ77ElTa0LDTHhWEyXeTguZ8J/FR/qu8aWCfLSNIJSdZlIg+Zyh5TOSYhJs1BXlXkGcQrZY6bSsiE4oOeUEBzmoPwQswuk7R2uMzbsBjmqulUGT1IE0hiydjP6AeCw0BSCwQVXxDl4HjVF1QDkYPlgnogaEUerVCwFPoshZJlDZAjqCOIZEaUCYLMUwcG8szIbHYAL5MpceYxSmGUZOwlKdtJzGYy5UYy5EY64FbWZycbsCMH9OSEoYyZMNMS13WmEeZ3Jhn7LtL3XIYXtKC7NKXuWhxB+Wa1bFFrP3PRPIGRvXCy37PTKRPozBOClC2GjiuHvWmzF3fmgs21GHMJEfTnysoKH/rQh+h0OsRxTKPRKLS7TJ+ca2trtNvtQpA8mUyoVNTOOUkSKpVKoUmm393e3qbRaLC8vFyY0Nrf32dzc7MQmGstKx2vlLLwiwoUQmst8DY3IDpOLdT2fb9YqPu+f0R7rFqtcuvWLcIwLDZylUqFyWTCZDIpFtO1Wg0pZZHXXq/H5uYmOzs7+L5PGIbUarVCwKw13CaTSXF/Op0yHo/Z29uj2+0W+dCbRhN0LhMumpulecI2l1DP3FyYfcu1uRuNRrzyyiulgh87fq1x2Ol0WF5eZm9vj6985Ss8/fTT9Pt9zp07xz333EOtVmNjY4OPf/zjhXbh5uYm586d41/8i3/Bl7/85UKb0U7X3GjCbI6wN8dlG2DXOHQJuVzl02Rrvdjt5dokmcDPPMFfWbvMq3tXuq5x7kqzbPy76s1Mwya77srmYrsN7H5X1kbz6uok86qrLHcb/rh37XBlc60rnXlpfjs0b8M+r43eDVrw7+8c//aE4ANScsvz6ApBbcG/33P+PTo8hPGYPTHTFvpe4N/7wIEQZFISeB4bUvLhLGPoedys16kvLb0r/HtFSu7JMq4CB7nZ9QX/5sizBf9e8O959N3k33AnD9dx2/OQqw+7LD64yOZzdtiy/mTzzrJ3T5oHE8gpG+NmmmZduNY6ZhwuTUE770IIpZUrEiWX9FEa0D+EAoEnzLS/ExTwG6LA4XtQoLIGsYf5fYECgRsoALqCAp4PUJroS8CZPJ4pcJMZuDxEgciSGZgsUSD4MP+uta6zPG4NtGtt7Ul++flvP38vYAbShyhg/7U8jmn+qfM8YAa0t/P4dV41QH8tj7OSx7WTh9PvDvN3tQn4HnAd2Aa/7zOZqgN2pjlvFw/X6w+zT9qWT8w+ZFsq0W4+9HNbm9x8P8syut0uX/nKV4r7WiNbCiXll4FUmoMSRAJ+7NNIm5zmFGc5yy1u8Wv8GgkpfXp8kId5hEeoUGGDDeooP+g9eowYscoqX+Dz/Bq/To+egmMqElnJCCIlvtNa9ZqP6r6vy2aWa964te/p+tX15qpHHcbm/3YbmPHq5+b66Tge7tK6tu+X7QnMtYyrjK61h0mu9+bxFHsutNctdv263jspudYZLp7q4rt2emXrChffcB2qctWVKx/2/XnrLdd8XVZ/dt7tvmHXl10frnRdc8aCvsskoFAvznVmc+QakfsV91cigjNKUzx6sE10X5PwdBW/6SMioUBMmSpFbiRCYdMIocFbgUSZTz/ie1zI/Ae5BnkO6goFgON5yry2EApVlp4yzS487vAxrn1Sa3Pq0jCnnmnz6DY4Lo6aTU+P+hefaYd7CrQufpta4+ClsgC/hRQGOM7sfgGOyxkwnqk41Hf128tAphKZTYizbu5bfMCUGTAuC5B3dgkUoC3Q1aIOGJA3rdCH/xxDLg8+MycuZ8F0fxACYgFjAX1PEmoz7R5EviDy808PQl8Qeep7NRC0Qo925LESSTYqsFERLPmCji9oCUGVjKpUAHmQZvhphsgyhMyQMiORKUmWMs6gl6Z0E8HtZMr1eMT1ZMj1tMf1tMu2HNLPpvRlzJSUmCwHxU0Y3CyZa79Udn9BC1rQO6F3bErdteA7bkFZRscJgFyLv+MWKicVhrg23ydZALkWwyelskW9q449z6PVavHII49w//33U61W6fV6SKkErZVKhU6ng+/71Ot1giAgDEN6PWXTzRRKj0YjptPpkY2LFrhrzbU4jknTlNu3b7Ozs8NwOCQM1fHvNE0LDa0kSQjDsFisas21IAiKjao+uZ1lyvSqjltrqPm+X5xKjuOY8XhcmC4Lw5B2u83Zs2c5c+YMvu+ztbVFtVolDEP6/T5xHDMajajX64V5Vr2JHg6HrK2tcerUKW7cuMF4PKbValGr1dje3qbT6RQb3eFwyN7eXiF4bzQaLC0tMZlM2NvbK4ADe7NjtqNrg2GSSxBT1s/KxpLdP10bWG0eqlKp0Gg0Cr+sN27c4LXXXmM8HhcL/QcffJAf/dEf5U/+yT/JQw89xJtvvsm//bf/lieffJIsy/iJn/gJOp0OP/zDP8yXv/xler1eATbofOo8aP+mZn7NE/e6jxw3TkzBhCm0KKsTcwNkt4t+z6wfU8hh5s0lzLPr1k7jOA3ceRvo4+ZDO0yZ4NVO05Vfs1wuKjtJ7trE2mnbAhe7nsrSL9sMl22MXemXjUeXcMOmMgFtmXCljE5Sv2Y4V1iX4OW4fn23tODfd8Y/7/c8Oo5/BygXnQeeR8/3WVrw7+8I/14ZjdgPQ9q5r/PvRf6N57HjefQqFc7VavwJzyOJY25fv85XXnuNwV3y76VOhx/743+ca089xWA04sUgYJJlSo604N/OMiz494J/l4Vzhf1O8G8zbd1m9uEVc44y61bnYV4ZTLJ5qqucZjh939ZStQEps2+45kFXX5iXnhmn/m7y5LI1hjn2zTaywb+EhFjEiqGvAT8EfAKlMb6DkkVqv9nrKEC5k39GKH/foMDhKsp0+QAFCmfMNLobeVwtKLTAExQw/TYKsK7kzxJmoPg0T0drcWvN8yozQNwQ4NPP303yPApU2bR2uQ6ToEybV/JyfwDlJ91Hgd/N/NluHl8PBXLXmGmkgwL77wEuAG+gDgms5uV8C+VrPcnrsqviFn1BO1BuVU6dOsVwOOTmzZuFdRxNdl+y+55rzrHnJjiqvWr2SdcYsK2g2OF0PvS6qF6vs9xapnHQIN6KeSl+iT/kDxnQJyHFx+MJnmCZ/wcf5jEiQq5znd/kN/giXwQE/wP/A/fzAP+991f4/wb/P/aqu4iqKOpCp6U1vO2xZI89zcPLDgHqcup1XxiGxHEMUKSjy2rWjZmWzTvLNKtdc5SLD5jx6IMIOn9l85Quo0nHrfHs/mLmoey53fZm2DIebpfPpTVu99d5/M7Fw+1+WvauSXpdqevZzpe5trPXZfqZCzC38zivzs06O+4wg/npiqssvePWKHb9uAD2BX0XSahLGcoQ6l/gIao+ou4TbFQJztcJ72koQPyeOsHpitIWD0GIfA7LNC6dQ+FCkgmZ+xb3lBFr4RcAbCYEntBMlRwgz8FuIZBCgenC8yAHSDFAcZGnU4DjGhTP8isHxLG0xb1kBnwLrRGezEBxv/Al7tIWV37E/SPa46YmuCz8fQspEVl+yZnvcX35GQQmQG4A55lMkXJKkg2J5YCU8RG9ZwWGHzUIbo6kAgKW1o28io4lOesaR/oJIIS6piI30y6U//HQEwS52fbAE+pTKC3yRiBpBpKDSNKtwGFFshRIOr6k7WfURUZd+FRkRpClBFmKl6aIJIUkIY4DkjhhGHvsx5KDWHIrmeSa4kNupwM2ZZ+DbMxIpkxIyYRAegL8IO8zyqQ/Mu+AUir78VLmnVeq60jJzd+LuWpBC3ondFem1OGo4MFeXNgLjLJFnStOk8oWNK5FnkuY4toI6/v2ItuMd54ZTTPP9uL9pHkvK49rgSaE0qg6f/48Dz/8MOfOnWN7e5s333zzDp+cjUaDra2tIt79/X2iKGJ9fR2g0OSK45jJZMLNmzcLc6zNZrMwxVmv1+n1ety6dYubN28yGo3wPK8QfgPFCW4tSNV1pjXIQGm1mYtrbWJVb+aklIVGmt40aQ0xvbGM45jBYFBs5obDIcPhkGq1WgjvgyAoBPJBEFCr1QrwQOfr+vXrBEHA8vIy586dKwTyh4eHhQnWJEmoVquFXy2tAafNtx5npvEk/cZe5LvINYbMtOYJJ3X96U1KGIYMh0MODg4KU/w6rOd5LC0tcfbsWdI05bd/+7f5xV/8RV577TVu3brFZDLhzJkzvPDCCwCsra3x0EMP8cwzzxQbUzi6UTb7sXly3RwrtmaaKaAyx5W5QbMBCXuslm2MXXNO2Zg9CdnznB23K09l8bgEf2UbvXntbocvEwKabXNc3Cedr8vmYXsOszfqrnjLylaWr5PksazeXMIK16ZYP3NpHtllnbfJdqV/XL2XlbFM4/sktODfszy/l/y7IQQfyDJueB79ep3LC/79HePf57KMa2FIGAT/VfDvm+MxV6dTKknCqTTlAUAKwaHnkSwvc/HUKSf/nk4m3HvqFDtf+xrNwYAHlpfpfvCDfOu55xb8e8G/F/z7e5B/6zhhNl9pcKisT5bxLLs889rTFc41luz4XePJ1uQ2D8645gWXhmBZWnZ+7HfM7/a8ptvUXFtM5VSB4m2Ur+0/BTyEMmn+DZTkZANlbvxRYCV/BkomuYkCj88z0yj3mGl5v4ICxIP83RUUyNxGAeqvAi+jgGovj8vL49ZnmIL8t/bxHRrP4jy8BuBjFCAf5881eO8z0/4OUaB6wEy7fD/Pr0SB14coYLyZv08ers9MO7zHTFMeZprnGyiAfZy/s8UMzM+16IMgYEksUQkr9Ho99vf3C2s0ZfMm3Hloyx4TrvWuC5DUYKvmkWVrUfO3jisMQyqVCkKI4kDj4eCQW/EtkmZCOk0hyUGLzOeMPM2D8gPEJPx7/j3P8xwv8CKv8RpDhjzAAzwVfQW5Irnwpy7wg/6n+A9f+g9HDidqq0F6HaYvm0+b5dWmzfU75oEDk4cDxVrNdk1jHpB3jS1XvZr3bDDXbteysetqV/1pzuU6TNkcV8bD7flf15u5rnG966LjeJtZn3bfNevLte6x+/I8Xukqkyte1x7RXgPYeXTxk+Pq037u+m7ecx1SMXmKq45d9TJvTzpvPaTffSfrzgW9C5QD4Ud+a/IFwhOIuo+3UsFfrRJeqBPe1yK6t0F4oUp4pkrQCfCrCtgWEqTMoUMhAeVLXBbgtQbGhTKoLiUZHuAhj/QBidYClwK8XJU9E57yTa5VrmUGWW4YW5iFEGhtcWVCfQaOm6bU///s/WmPZEl63wv+zM7iS4RHREbutXZ1VzXZzW5SpKirhqhLSheQhAvMWwEzA32VeTHAfJGBCFy9FiCAd0RCgrirufTCXqpYa2dWVmZkxh6+nsXmhdlz3NzSzD2yuvp2VZdbItLdz7F9e5a/PY/JneJi/W0twxWZ0BIHjsud4Cuu0138zHepLm7K5dOY7m5x1YKWz9Z0cXULeePfLw6ZszSnbVFtg2kXNGZGbeY01PbAgVEb4VmT+N5Bu5u32o0ZG2MzbI07g2CgUoZM2bvIM3eXeabsFXhj3XKRwXkGZ0XNUWEY5S17ecMo1+xkGbs6o6cyijYnbzOyNkO1GarJqKuMqsoZV3C8aDiuGo7qOUfNjGfNnPN2zoWZMzE1c1raXEORQ5lDXoDOQOWAtmB4Y6BpnG/42n5vGzu3lnbzfq8F37dhG7bhuuGFXKmHYZNSJxbPDynhZJ0FhJ92XVkxBtv/HTJM6xQj12HertvWMK8Y81aWJTdv3uSNN97gpZdeoigKfvKTnzCfzxkOh51L1ps3b3JwcMDDhw9XlJDibnU4HKKU4uzsrFMiZ1nGZDLh9PSU/f195vN5Z1nc7/c5OjriyZMnnJ2ddW5T5R5QX2kr+fmKDjmxLPUIhVKpo9yDaYzplPBaa8qy7OJWVcXZ2RknJyeUZcl0OmUymVDXdXd6/N69ewCdAr6qKpRS7OzsrChVpIzj42PG4zG7u7uMRiM++eQT+v1+Z0knyn+5FzW888hvy4sov/35JXFiivaUUjWldJO+zvO8u5dVBFhxfe4LDuLm9u7du9y7d4+joyO++93vcnV1tVKnoig4ODjgpz/9KU+ePKHf7/PNb36zE5DFolCUEaJE8MdY5rp/v1g4N1JCU7gWQ0HSjxP2jS+wx8YnNUbhGIRxYiehfYuYlJAdtikFsKT2nU11i/WNn9+LlJXK2y87li5WTkrgDIOvBAjbmEq/SVEQ5u+3JVQYhOlT/b1J4E/lIc9TCiM/v03hOnFeJGzp92dLv4fAV4F/HAzYu3mT397S7/9L6Xc2n3O0WFD9itHvBXCpFB9kGaN+n6/fvs1XRyPUBx/w07/+ayaTCW3bct8Y7jt6fHc45Idvv8075+cUg8GWfm/p98rnpnK29Hv1+eeBfsfWjw9u+e9lHfk0OhX8NS3t9N0w++G6NNzPy197kk72H79d/vt1BxpifRGbU7H0/jiGe5kxVnE9V3PqQW0tnX8HazHdB/4HFlzex7pU/wMsMH4DawEtIHODBX6HWABZY62rFyyttc+Bx1iweIJ1ob6LBcY/xLpPl7u4M1f+ADpgvM/SslwAc8PSsjx374z357tU77k/gwWmJc3AxcOVfQR87J4LML7AWoPXwNdc2jOXbuZ+32B5D3rm6ir9cIa1HL+BtSTfpbtjXU0UZ/UZdVUzGAyo6zq65lP78Lq9IVynm+a3/PYB0fC5UhYElwN/ct2MMYarq6uuHGMMKlNkpfUA+NXXv8qbvTf58MMP+M8f/2dO2mNaY2h0jdKaXlFy/1v3+bPZn/H++fvsvrPLH/zBH3QHG/M873QVQAeUG2O6O8TFsnqxWHR1lgOQvsW1D1KHhwj9Q3L+HhNbf/66ivFeMT79unuqPw5+8Gm4P97ryg69BKTq5MeP1V8+fbD8uvJELIR94efnz+GQr1xHE8M6xPrZn8v+c3881/VbGFJ8cCpOio+MtcP/HrNqX0fDZT2k6ix96c+x67R3G36BQbFC3xTyW1lQvNCoUqP3S/I7A7JXdii+uuvcp++Q3yzIb2TkQ4VSBk27zEfhMlUWxFXG3hfugPEW7RBVg7hgMc6PulIGJRkprLW40iijUWQonWGMA8XFhbpanZOdC3UfEPdAce3uFVfiIl0+K8hqlpbi8tfi7h0XQJzlXeA1ZK0hawy6wXOZbtx3ewBArMa1MZ4bdZvOpnf5OHBcGQOmpTU1xlQ0zGnM3FqQ48OyJviM/WLtu+usvlh+jq2z5/Tc97pFvO+jlLUk18pOLa0MOZqclp6G48ww0IadQrGT1+wUmt1cs5tlDLQmbzMKk6GNRrtDDk2TUdeacWV4WlU8rSpOmgVn7YLzpmLurMRrDabIoFdAr7R/ZQ/r2qCw86NuoW6gqqFagFqAqqCuUMYxebL/PdcTivW9vA3bsA1heCFX6qFwkVLOpBQ8McYzpkyLlRt+ppiUsIyUkj4VP5Y2pUDx6+sLBimBLcY8+/kIcPnSSy/x8ssvY4zhww8/ZDAYUJZl9/7GjRtcXV1x9+5drq6uVu5/Vkqxt7fHzs5Od6/ofD5nNpt1CvcbN26wWCwYDAYrCpBHjx7x8OFDFotFdw+p3PMlwpEo232rBXnnt1uEQ3k+GAw6RbwoZkWAk3x8RUrTNMxmM548edIp4qfTKRcXF+zs7HT1+l//1/+Vv/mbv+GNN97gvffeYzKZ0Ov1Ois5yX86nTKbzbrysyzrrMl8AVN+i/uwUCEmbfWFhXD8/bib5k5MIIgx+aEQGeY/n887QTecm0oper0ed+7cYW9vj9lsxj/8wz8wmUy6/gbo9/vcvn2b3d1drq6uePLkCVVVUdc1FxcXnRJA+sUX1GJtip1Ql/qIYB62Z5PAFRPi/HdSTuwksa8AiylKUiElwKfGKeyH8HeszNg+FdtjUu9i6WL1CN+vexaCFKm9OfbsOsIxPO8SNywnlS62X8dCqMAJw7r0qXEP27dOYPYVTn49/LxDi8pfRNjS7+fT+PX9eeh3BrzathxqzfvDIfe29PuXQr810HwJ6PfJbMZPP/poLf3+aDrlybNnVFVFz7m339LvLf32w5Z+L39vKv+XTb/9uvrrINzfwv6S/UH2vRS99OejnyYsV9obAlR+n/hlGLMEJDbNqdga+3lpuPSRny7FizQ01HlNO2rh68A3sDrF72PB2yFWY7ILvIS1pn4dax09YamD1FjX6vssraEn7m/h8nnJpRthgfIKq3v/KfBj927mnhuWVuFiyS3W4IYlAF2456KRnrO0GFeuLCmncHHEFbtiFWSXu8avsCB9HwukX2Jdnx+4usywBwc+xB4keIAF0IcsLdJliC+xruTlbnPN0rK8tmVqNG1jDwfOZrNu3ob0QABepdSK/B7j0XzwLDbfY3u3f2Aqto/45Uh6sWyPeVzRWjMcDnnjjTe4ffs24/GY//bBf+P8/Jx20Hb139nZ4Y033uDw8JCTi2PeP3qf2WzGol5wdHTUeZYBVrz2SJ/I2vW93wEr/JB81nW90q9+m8M+CfmC2Hr2eUj/0Em4H/n9GFpgX5e2+/tLmC6MF8b1yw/rv8kzUIqGp2j0Opki1Sb/u9Dw6/ASsTz8evvz2W9n6JkjHKdwDw7jbGpnav+O1TnMaxPPFeYR8gr+Oo3RcHnmr4OQZ3oRXnMbPsOgln9KqeXvQqN6GaqfofcK9F5Bftu6T89f2aF8dUDxap/yVk42UuQ9Q5YJmN2u4oRauT9Dq+WVzBlHSIWuO6tya3ms0EphTIPFJZWzOnfAOBlKaYs+qxajzSo4bry/1t1L3mhUo5wLdeX+LBCuKhw47v4a1X1m7dJ1uvatxmssoL1yx7gDwx3gvQTDcd9bZzVuPItxQ9a2HihuyIwFzzHG9UGDocGYtnOfLg30m+qHF11NYfwU5BvbaY2XgcENg7IW5Np9KrU8c9FgrDObpmXeKKbacNUo+hn0FopBphlkNaXSZMb+aTTaKJRRNI2mbTXTxnBe15w3NZdtxbitrZW4ai0g3i9g0INhDwZ96A+g7GOZpwIaDYsW5g0sFqj5HPQcFjO6O3XaGrDW46pzV78FxLdhGz5teGGL8VDolbCJMYwJ5P77kHkOGZEYwxN+jzEvqd+x+sZOtochJdyHgnas7qFCwY9fFAW3b9/mxo0bjEYjlLL3hfpWPvfu3aMsy+7v6dOnDIfDTnEuz+XO0vF43FkTGWM6t1uj0Yher8dsNmM8HndC0uPHj7m8vKRtW/r9vrXCcgKo1EUEUbF0EsU0WOGrbVvKsqQoChaLRVevoiieO9UsfRO6+pb+qqqK09NTRqMRw+Gwc6vWti2j0WilnkdHR0wmE5qm6e5kFcFPym7blr29Pc7Pz3n06BEff/wxR0dHnYJdhNler9e5RBOQIRTkNp08TT1LCS7+71AwiLki9ZVe8l4EZr8Pxb3b/v4+dV3zwQcfRJXwSqmujx4+fMhsNuveV1XFe++999wdbyII+woC3wWbzBupty/o+QKXv35iJ/NDQS0lZKaU6X6f+v0Y5hf2dUrgXJffumep/SQU8MNT0OvmyXUE7jBubA8O999wjseUSuHv8FmMToRtiPXLOiE0FHBjdCVmHRi2c92zdWHTXIm1JdbedQqYMO6L1nFd2NLvz5Z+HwBvKcXTwYCnt2/z6pZ+/9LoN7Cl31v6/dx4hHmty2/dsy39fr4NsX7Z0u9fDP0Ox9RvQyz/WF/5azw1TjEa7seLgeKp8Za0sfkSo7MhDY8F2avCPT22l/mHeYAONFxpk4Iqq6h6lXX1fR9r0aywukexvi6At7DW030s+PsIa+U9wYLI8vwWVst6ibWydrpLSizofNPFG2MtqDMsSPwuFniusa7WpfzMfRf35TVLy3EBlo3Lo2UJZE9dvaTOpWtXy/KeceXloViC47gyH7n67gOfuPa86tpYubwW7rncUb7n2rZw73uuvAZrKf4U607+p8AHy3orZcHc4XDIcDhEa810Ou34BlgCwL57dX8uhXTJH/8wbmxPDN8rtfRaA8/TcB+Y7/f7XR0kfb/fZzgccufOHRaLBX//93/fec3x81JKdZ5ufvzjH3N1ddXN4fl8zt/8zd909FjKEJ5O8pG+Acs7+AcIhGeQq26kL33LcSkvXDvCY4b7ZtinKZoTPgvpVEiTYs/CAxKbZINw70rxdn5d5Lvfj369/XTXeefvaTH+KGyHv/f5vGHYnnU0PGyff4AxVscwn1Q8f2/1vU356VI0Jqx7jCcM12qqv/x3MnfDdGFesTJT/RV+l/m46ZD2NnxGQWiS++5GwSKYmbKA+KhA75dk9wbk94fkLw0oXnZ/t0uKw5z8QJGVhiy3ILd2QLdS0A2jsq7YjXayGqAM9q5x40BGJZUwtFqjfVDVHVAzSmG0xpgMQ40yGUprjLGusJVqHaguf65xDkjFtxZ3gLgFxY37XFqNZ5679KwDw+nuERcAPKu97w4gFyvwFWDcB8jd7+eB8dU/3bbotsW0LaZtMKbGmMbdI24wtPaO9ucgcQvYfharKJXHprw7yNhFbLBDohUrzsgVhkZBZQyz1lnfK7q7yHOlyJRCG4VGuX+AURijaFtFbQyztmVmGhamZW5aKtViehkMStjpo/YGMBrCcAfTH0I5BFNCU0ClYdqgZi3MFqhsCnoGagxGYy9gV9ajOuB9+bTdug3b8KUPL2wxLt/9sI45WyfghgxreDIxZKo2MVSp/P16pASksH3XyXOTQiim9PGfySni27dvs7e3x/7+Pru7u50wqJR1K9rr9bh79y63b9/m4uKis6oSl6P9fr+rb57nzGYz2tbeCypMnZQ3Ho/p9/vd6WZxn/r48WPG43GnKFdKsbu7C6zeaSdWYuFpY3GD6t9H5Vth+4KbvPcFKYljzBIAAGtJdXFxQVmW7OzsMBgMKIqC+XzOhx9+yIMHD+j3+1xeXqK1Znd3tzttLveWrrhbzTI+/vhjPvzwQ46Ojri8vOysqcqyRGtNv99fcfnqj7WAALH5ElMiblKIrVtX0i/+fPHjSnxh2rXWK6fIpZ5VVfHo0aOVAwB+3eRzMpkwnU67Z/7akvkIS4HcjycCdlEUnfJJhEsRpGRe+QK3f59t2C6/f2Iny0NrmbAP1yngwnEL9zA/fqioDfeh2JjGyg1D7H3MwjEc89helhJqY3tzrI2p72HcTfPZjxNToKQE01SfhX2xSTDdNCZh28L5lhKe161Rv36x9sTSxRQTsfpummvXDVv6/XyePw/9zozhK0pxOBhweucOe/v7W/r9OaDfpVL0tvR7S7+39Dsad0u/v5j02y8ntgdImSFo7ce5Th18C8XYXiVxYmCLlBWOf4rOx+ZQbG2HITxYEfZ1aP0XHgDy92QymO/PaV9vrVvzu1jgNsdaPiusdfQO8AYWOH/q3u26dw0W5BaFfoEFhVssYN66OAYLZp+7/C6xIHKJBaPfxVqhC0itXf6apbvzGgsyiyW6f+vE3Cu/duXW0hEstb6+FbfEMy6OdJ2UgWvDUyywfuDa3XfP3wd+hrVGP3N533Bpx64uI1bcpZMDPwG+hwXFj7Eu2zXooWYwG7C7u8t8Pu+uhPHngn/liL8HpPYDCfI8PEjhzzt/bsgzWQ8+LZP8fBouNLPf73c0VviN2WzGO++80x10lLka8syXl5fd1WbCB0jZFxcXHU32LcclD+G7er0eTdN0wLjwF3Vdd+C2f7DRP8Dptyvsx9AVtfCTPu8X7k9hn8szv79jltohXf80NHwdjxHKKH66EHCV+kt9/TrGZJzYnpgCVlN050XpZthnUuam/TkMYXmpT7//QnoU8g1hG2P5hHRiXXn+mgvz8NeLhHC9xnipMPjt8tf8NvyCg1r+KfmuFSpXqDJD9TRqryQ77KFv9yle2aF4bYf85QHF/R7FvR7FniYfQNYHrVu0Mmglc8V4BbEEvZV2pM+6VFcoWt/WWWcWCQeLRXb3g4N4XDdGW3C81RiVWXBcZaBbTGvB+Q4SlqxbBa1auVNcidv0ygLiWQeKQ+aAcQuKK3Tr//aswhvj3K0LKG5dqGctDhRvV4DwODCOA8ADUNw4wNwYjGkxWIvxJSPhgjHPQeCfDRf88wV/Bhj3wGDHUKZD65gl1e0/y5TdFJUpJIC4e47cq25sPs6WnlaByRSmyFA7PdjtofaGcLAD+7uYwQ70dqHYcaB4AXMNWYvSLUrNgR7KTKHV0BhM6+ptZK83ntU4Xq0+Dz2/DdvwxQjXBsZjliB+CBnZWLxNgsw6xiWl4Llu/JSSJMYY+SdmQ4Y3VX6MsYvl7ddPQNg7d+7w0ksvMZvNmEwmjEYj7t27x3A4pCgKnj17xuXlZSf8yH2ig8GAg4MDJpMJk8mEq6sr6rpmOp1294gqZa2mRqMRk8mku8/SFzbm8znz+ZzxeNxZjSmlOsW7CGPi8lWUqmCFRrFgyrJsJb58FwHPGKts908eCyMrgplv0SXlSLmj0WjFBVhd151FWF3X7O3tMZlMun6V8pqm6e47/cd//EeOj4+ZTqedUrfX63UK+JOTk64vfBeisZOpMQWNP74xISScT+sEvHVKpVAJJOMzn8+fix9bA2FesbXrK/Jlvvou2kRY8F3qStkSB5aKDDkNL2MoAn7oKiymIAvbEtY91paUVaAf1883VmYoXMcE6ZiAnOrvVLxwv/Lrl2rfdfoh5qEilT6ME2tfql7+7xddA2Ed1n2P1WtdnTb1T/g9tp+HZfvxwnbF9vyw39el3UQ3Pm3Y0u/Phn4XSvFK23JbKR5p6zr9a3fvbun354B+j+qacrHY0m8XtvR7S7+39PtXg35LHuEe5ZcbA/z8ssO1FRvfmIViOBfDg0V+GbE9NMwv7I/wu5QlNCRm4R5bc/4BMp8+yTu/Xg0Nta5pdGNB269iXYKLhfdN4E2s5XMP6yL8xFWyjwW2d7CA+KH7nLg4lctngAWrxdr7EAuoF1gw3GDBaI0FkcV6fMYS8G5Yuj6XO7xxv4HO7fmYpVW7b53tPHLayzNdmc5teWftLW7Nc5Zu2Q1LkBysJbhiaQkvoHzt2ui8enKbpeZ4x6WtXLzH2PvKL4GHri8WrvwdYATFbsHg0YDxeMzp6emKC3DfgtbnM8L9O9xX/HgQBzf9NRHOLX/ux9aazLumaTovP36+ko+/btbxGqnDdMKHCV/mX5NTluXKOpFD/kVRdDxkXdfdoX//oJrcWy48QmjJHvLS4b4SWnL7z/3DlTE6m1rTfj7+eIdp/HR+3ik6KHmF88DPO9aWcF6leLt1lu5hv4X1itGt1HyMzU+/7f58jc3t1P4f24v9/vf7x3/ntyd87pfjf8bylz70wewwj5DmhfWN0aJNvFOKx0nlvQ2/gOB1rVJYQLxQ9g7xnRy9X6IPSrLbfbI7A7I7fYq7PYq7PfJbJfmhphgZsn5Dnhsydw+4dmCh8u5iXhbo/kyLUtYddutSKDRKZcuY2ljQ1GWhBE112RpTOYBVWbfqLr1ROYSW085KnFajmswDxTW68v8UutJklSZr3F+doRtN1uoOELeu040HjjsX6rWA4mLpvbQYD4FwHxzX8lzcpneW4va3uF3vkFlMZwjvVtwaJ+qfj2BYsjryKSC5tMHtwitNUCwTrMbzc3YtN0bOPkChoJejhwVqfwA3Bqj9HcxoB0a70BtCPsSoPiwK0KWdH4VB5S0qL1B5hsozyAxkLSYzmNZgWntxvHlujn8++34btuHzHF7IlXqMubkOExcLMSYx9tuPG2NMQqbcr0fsd4wZ9BlL4DnGL1bfGHMXxvXLFgFE/kajES+//DKHh4dkWdadEr5//z53797l4uKCp0+fkuc5/X6ftm1ZLBYURYExpnM1+uzZs65MeQ50glJd12RZxnQ6xRiz4kJLqeXdoXKXtJwABlbcr8qpbWB5p6cTfMRVqdRPLOD8PpNx8t1wSnopQ4QH/6SzUorpdEqWZfR6PS4uLhgMBp0b2fF4jFKKu3fvdvNBhMe2bTk+Pubs7IzpdMrZ2RlnZ2dcXl4yn8+7ukifTqfT7k5XeebPD/9kdGyuhoqa2DwI04SMfozZD/MNy0ytuVhZ4TPpYykzFGZ8EEWEdDlt7gMnoUAVCn++FaGUJ8oEX4AO04syJFR2pNoT6/t17Q/z8+PGhGs/Tfg+lm9qb0gpANaNXSzuOkEtJmhfJ01YZkwpkNr7wjJCGhCO4abxWye4p2hRrM+lvqHiwy8r/B1LE2t72F6/3inaleq38F2o+Ph5wpZ+f3r6jTHc1pqvac1RWfLR3h73t/T7c0W//TvZt/R7S7+39HtLv38V6Xf4PfXpg4mpfvf3qzDvcG+KAUZSTng4JpZHDDTy6+Rbjvp7dVjfsI6pd+EBOWMMKlcsigV1Xlvw+xvAy1hNyDFWj/h1LFB+BHyEBZflfu4pS1BbwOgjlvpHwxJEFmtscYd+6d774LbGguoVFmBeYIFtufd7xtLluViEwxLYzr16Gfc5wIL9iqURl7hjFyty435LXlKXuXvXZwmUi0v4wtX1qeuPMdbC/czl8zWZEC7v0pX1EAuKX7rPx1h38ROvLj3XfZem4w3kcBzY+SEH9mI0MvZb6NOmeP6nzDvflXZsH/GtyH3aK8/CNSfBX5syf4WGSj6hNxfxCiT1Ev5IKUWv11uh4xJ8nsDvD/+woO+SXsBxf035hw98ni9mvR2u5TD4e8gmGh6j3TEan6Lt/p61bgzCPSQWYntPWH7IC6TK9+dPig+I0d1wHvppUnQ69j3FD6TG0a9rSD9jZcqzmEzng93++xTt9ueAv/b8+LEDGeF7mb9+nLBPw0MDKR4h1q5t+DlDuOzU8k9loHoaPczJDkuy+0Py+wPyl4b2716f/EZGfpBTjKyVeD5oyXLjLMWttbgdcgeOy/xQSmyCwSiMUmgyWqx1eWs0WrU0xqCUoVHGWoDbrJy7dfv9OezXKEybYVSGaWsUOUoZZ2lu33d/Dhyn0ag6Q1dZB4pnCweI15q81hYMbzJnIa6dS3XrPl2sw5eW4sazFm+fB8ZN+7yluLHgdgeKG89y3CyBcW3aDhhvTWvzcvdbq+6f7ajnbcZlkH8+XvizCibyqYJP+X/ZKoLqyw+18syAeDq3/FAvQ+0W6FEPdWuAurUDN3YxOzuY4S4mG4AagOmDLsCUUGeo3KByUHmFyjJ0lkFuuovjW93QqgUoe8+4wb9rfBu2YRteNPxcrtRTTI0fYooOySc8hRpjfv08/LzCE8Nh3JCh9r+nGM1YHWMh9W5TmuFwyGAw4ObNm7z00kv0+31ms1l3Wreuaz755BPefffdzppMmMGDg4POvZhvUeVbYw2Hw07JXVVVd2LYVwz4p42NMZ21mAhCckrfF9J8Btm/Twvo3HuK0BbmL/3qu+cTRbovLGVZRlmWneDmM6dVVXF1dUVVVVRVRVEUzGazzrWqCHyz2azrNxGui6LoLPHErZn032Qy6cptmmblpHdMURPOMalnzBozpliKzfGY8BdbZ9cR3EJlVXi6PhQAfcHZr7v/J3PAByx8wVnGWoAMHyTxLct8ATysi8z/sE0xATw87R0KMCnBZl2IpfXHNbZHpPo9lu91yg+F1E3lpspJKSlCAT8m+MXSy7Ow7JhgnqpDrK2pdZFKE8s7XC/r+iX2OwyxeocKilR7/c/r0sF1dQj75rpzKRW29Hvzu3VpXgcOBwM+3Nnh4OZNvrKl3587+r1YLMBTTm/p95Z+b+n3ln7/KtDvMK9wjvnlydyX52H5sT0kpvCPzT2/fJ+Gh6CcD3zE9ql1NFzS+3uNn3esT9c9634rw2J/QTtq7R3Zv4YFeC+x4LDGAtHvAP/TvbvH0sX4fazV9xirOdmFDiA3LO/hnrjfM5dnn1VQWiy6c/dszNJCPHPfxULcsLzjHJaAuwDKsHTX3rq4pfsU7U7jpZP7w8VKPHO/pcwBFpw3Lj8Zujn24MDM/fVdv4lr9Nb14RXWyv6e+z5x7T1x+YqVeuH679zVYWjfNxdNx2PIHBDew+dbIL7vSojR8NhcDfMK14a/1sK48iwFrPkHRnya5NcxrItPm0Manuc5WlsPORJHeET5a9u2i1dVFXmedzylHKAUDzGSf1EU3cHJkC+XOq+j4T5w7/ebn19sHUtf+p/yXNJdh4aHIeRFYuOcqoc/VjGaG45/LP9QLgp5zRTvE+7dsTbF2p+qy6b+SvVNbLzC9sf6y5+vKTobgtt+3NR3fy76IfY8xUNI3WIHE2JrV4I/XqlDHdvwGQS1/FSFQpcK1c/I9guyg4L8To/i5T75KwPy+z3yuyX57Zx8pMl3IO+35IUhK1q0NiuguLhPV8awdKVuyzI2AtaVunEW46r7VMrQ0qJoO7fYyt2gbe/+MNi7ng04a11jNFovaE2GUrkFLJUl5h3YGtwrrmsHiC80WZWRLVQHime1tRTXtYDhnqV4LaB421mIawHFW89avGk7ULyzDm9bz0Kc58Fxs3SZroPvEte4+ApQZnnftg1GWhuEn58X/kWGVO1MYBke2W2f/6ax1wAUGrWTo/cL9I0SdbNE3erBfknbK2n7BYoC0+bQ5JDloHMUS48Ftm/dAQ8qUAtQ7kSlKmipEEby893D27ANn+/wQhbjEBdA4HnGNia0h89jJ9ljIcX4bFJ4xH6nFEcpxigWL8Y0h3UDOrenRVGwv7/PvXv3uH//Pjs7O0ynU46Pj5lMJp2l1ng8Js9zhsMhdV1zfn7OaDTirbfe4vXXX+fjjz/uBKPFYsH5+XmnyD47O+tcqor7LK01ZVkynU5pW3tnaa/Xo23tvaZg7wAty5KDgwNOT0+ZTCbdXVRyh5XcV+W7ApO+FWW1KFhFWPNdq0oQC6/pdNq5+vL7UYQ86U/fSmk6nTKZTBiPx8xmM6qqoixLDg8PGQ6H3TjM5/POLa3cw3rjxg2ePXvWWeoL2PCVr3yFyWTCw4cPOT8/70ACcRcbzo11lhex+en/DgXMcG7G1oU/r2JrYx1zHxP0w/rEhMTYGojVRea2X/+iKOj1eiuCdVmWz9VB5kzMAk3ShRYoYX/F9p3YOoztR+HvlDAVG9/Y85jQnBqPsE9j+02qzqmxjdUl1r5U/6wTVGNtisWJBT9OTKi8br/F+mRT36Xal0qzTvnhxwsF7FS5qfWaonGb+nMdXXqRsKXfL0a/d7KMb2pNc3gI9+/zz7b0+3NLv6uqonLK6C393tLvLf1ebe+Wfn/x6fe6/KQPQgtwqV9sbsWsAmPlbNq/1vV9OOdTc9a37o7t136ZPvC+br0XRUHey5n0JszvzuEt7N8BFth9gAVnp1iw9wwL2u5jgdwjLOD9T4FvYe/UFiB36t6Lu/IjLBA8cXnh4gqI3Lh3Q/d9B6vxHGMB6ftYa+pzltbjYp1eYQFmw9KKG5Zge43V5ojlt7hfr708cPkYrBvzAav3jYtb9T5Li/W+q4dYjZ+7vytXxwHW4v6A5T3mYxfnmOU96i9jre8L1589V9Y/cXX5ke2/elozq2ed9xd4fu6mDrLJ9zCe/973juLPHfmdouGxIHFjc1ZoYQiES3wpL8Yr+KCwn1by82l4WZYr9ZdrZYwxlGW5cue55CmeiPxrcWB5iDLmBSZGK6WvffA/BB7D9Z7yThEbq3Dc/RA+9/t6Ey3y+zRFN1K8lN82v31Sh1jd/DRhWdIn4Tz08w7rEeMNw704bGPYb7F+CPPy53EYL1WetCcEwFP8VoyG+OMSrgF5JvPOfxeWEeYvdVu3piXvLQj+f31Q7roP3ddkuznZQW4B8Ts9int9e4f4/YL8UJPfaMl2a/K+Iistjphl1n26BcTtp9xVrpQFrZVxKC4Kub8cJVC3plUOelTKwuGmpXUweaNaNBkNGQ0WtGyUsfePe1PKmAqTZRgWGJNhTI5RJQgobxQY31LcuVBfaLJFZv8EEK9V9103yt0x7lyk14qsbslXAHHnTr1dguO6caB2a8gMzlI8DYp3rtSNbzHOc6C4BcbdWTsHiGtCcBy+qDBtWGsVPNvYKg1kyno96GfovZzssEDfKlGHBdzIMTsZ5AqTYc9OADTKzpFWOVf7oBvlxjdHNwWqLaHtgemhKKndSciW2sH3ams1vg3b8CnDtYHxkIkMmZ8Yc5VSZqWUBCmlhR9CAcmPex2lT4wp8oWTGIOYSpd6Jorl3d1d3nzzTb71rW/x0ksvMZ1OefjwIQ8ePGAymXTl7u7ukmUZOzs7nUsrEU5Eif748WN2d3cZDAYcHx+zcHdp7u3tdQrzg4MDnj171rkuXSwWNE3DbDZbUZJXVdW54AK6+z0Hg0F352eWZZ2SXk7ui+Jc2ij3YQozKZ9Slh9krHwrIl8g8y3HpO9FaBMmeG9vD2MMV1dXFEXBaDRiMBh0SvrhcMh8Pufo6GjFiq0sS3Z3dzk9PeX8/BytNd/61rc4OTnh6OiIi4sLptNp1z+hssUXRlPzfd2cCOdSyHjHBDa/jHDdpNZRTPgIhWm//0MXp/5YybiIJZmcCge60+lK2ZP9w+EQoBPA5T4zEcxFyPYt4KRs38Iw7N91fRzbW1JjsSlerO9jgnQYJ/U7NWaxOsTSyvNY+lSfpIRb/8R+rJywzbH8U/PUzys299YJ23682NpKtSvMf53iJPYZa3+qrBg9S+0BKVq3Lq919fHblhrzFwlb+v3i9PtgZ4f//ZVXGP3u73Lw8stb+v05p9+N7aAt/d7S7y39jrRvS7+/uPRbyhWaLQeYQpe0/pwL96nUGPvvQxqemgewBKNCkDrFG/h9E4YUDffz8/e7GO/gz/Msy+yB9Bv7nP8v58z+t9nyDvEfub9zllbUhywB8YKlq3KNBbArLIh+6H5/ggXGJ9h7tcUyeh8LGF9itStTV8YVFmQ2LO/lHrAEuxfAHay19ZSlJbbkW7K04BZX65l7r1xcuUdcuTiiyZXuFGv0OogLS0vzlqXLduXqJXEqV0ewLtR7WJB7xNL1+r5r6/ssLcP7rq2Hrt+OXF3+NfAI+ADrnv0CWtrOS4k/r+QAof88BnKF+0Vs/ob7scT352jqgMam/Ty1B/mAW0jTY/WQ3wJ++5bgStkDa71er/MCs7+/D1jPQ1mWdQc2h8NhdwiuqqoV70BSj8Vi0ZUdo+G+23i/T1L7f6qf1u0TKXq2joaHe1e4B1xnXGJ9v46HidFSf4xTNDOUtfyQmnvr+ik2b8IQ7s3X4aNi8zq1zkJaI3FiVuHX4RliazNmXb+OpvnPwjqm6FM47imZdJ1cuw0/X1DKAuMqV2QDTbafU9wuKV7qUb46oLzfo7xbUN7OyEeKbNiSDWqy0pAVkGU4S3HjsG5j7yh3dEyJpa2A00oKtSC4BcNb54R6aZfbqCUwrk1Di7UCVxgaY3BIMkpbQqswmExhTIUxmlbntG2NUjVKtZ61uAM9HSiu5C7xRUZWZeSdC3Xl7hZXzjrcfVaQu/vD5R7xpXU4ntt0PBfo9tlzd4tDAhSnsx73Lc21cUyF+25ZCQHF7T3tKr69fKHDCzVJY+dfrtE9TbajyRwwnt0q4CBH7We0fUWNogWoDap1e04LtMp5EwBdK7I678ZaNT2UWWAogRJDAWT2Xnvf5fs2bMM2vHD4VBbjkFZUxJQsYVr/eUqIDpncVB4xISWVtzA3PqMXngzcxHDH6uH/7vV67O3t8dprr/H666/zyiuvcHJywg9+8APOzs46paMINGVZsrOz090tKsrqPM/Z3d3t7uXs9/tdurIsO9dXs9kMrTU7Ozt85Stf4eTkpFOq+/0hwqa4J5V6AF2eoiwty7ITRquqeu470ClURWEqd376brmkbHHd5d+xbozp4sp7iSMnQYUJLsuSfr/flScAhLiyHQwGKKVYLBYdwA32jtXJZMJsNmM0GtE0DaenpwB8//vfp21bBoMBQAdUKKU6l7Z1XVNV1XMu3FJzz38nyqtYujB+6nv4zBfWwzSpeRw7oe3H8YES+S1l+daD8kzmpliXSd8DDAaDzjJR7reVE+iiqBIXb6G7NVh//1goJKVCSoBL9W9q/Pw+jgmRsTrEhMQw/rq6r9sLY89eZO+M7b0pQd5vSyrvcI+8Tjtiv68j4Mfirmtfqg6pPEPaFYZQoI7RhzDvVHvCPruOguizFMi39Pv5evi/ffr9z/b3ufnVr/LRbMbPtvT7c0+/z+dzellGvqXfW/q9pd9b+u3CrxL9hvXAiR9CsDlsV2ys/LqH6yGk037c1CGd1F4Xs5oNyw7T+3FilqnSLzs7O9y+fZtvfetb9H+rz//xzf/D3nP9/2Np1S2g9xAL2t7AWjrjPhUWKL7p3j/DAuILLKg7wILXGRYIzrDA730Xt2AJWsvwy/3dAipPXX6wdLnu7truQPQC67q8dfWZsQS7BcgXi3G587znytJe2YVLk7PqZl3iCtgu5VTS0S5dH+v6fM/V+YClO/mxe65cmy/dd+XqO3dxbrp8P3F5/p9YoF7uQ59CPalpdMP+/j7T6bSTy32eRILMm3Du+byhzLNw3vvzOvwuwZ9bIQ3338v3mNWynyZcPz6t9oHv8GCb0F55Jjye8FR7e3tdHUejUcfDysFI4YOKougOv8lVNlKPPM+fO+QWrjE59OnXObaXhntLqr9je6+fT2xMw34NxypGG8PywnKvU6eQboZ7VGp/DL/7c0X6dJ3ME7YvZl0e9n+M7qT25li/rqMpPs8Xa3dY3xiv4bd/nbW8/+nz5OEYp/pk3TjH+jdGx9e1cRs+m6AUqAx0T6EHmmI/I7+hKQ815YGi3DOUOw1lX1GWkBctWabItEKr5a0gGuOd9VKosAwFiDts97IDxbsbsrW7F1t+W1fqrRFrcetWXZsGbRpUm6HajKbNoM1Rxq1n5BxbhqagpYDWubo2BhoDFahKoRaabJE7a3FNvsjIF/aO8byyQLj9NN1fXgkgvrxPXO4Rzxwg3oHixrh7xQNX6qb1wHD7qcADxz0r8bZdfseAcYyBsccIMpeH7m4YV9DdMC5r0P/+KxzcoUOV2SsBsqG2Lv/3FfmBIjsAdg2mrGmyyt5H32a0rYba/VUK5jlqkaEWyrnY1xR1TtYoVFtBW9C2BcZktMYe5mhd77vdqhuFbdiGbbh+eCFgPCVMxOJJ2KRIDJnXkCGJCcWpsiSsOykZumwKGeiUomOd8sMY0wkj9+7d4+bNm1RVxaNHj3j//fep63pFuSyWY1VVMZvNOD097azG+v0+/X6fLMu4d+8e+/v7KGUtc0Qpvb+/37ksFYX248ePubq66hTOUi9xqypWZSIYKaU6RbXWmqurK3Z3dzslfp7njMfjrh9FuSx9O5lMKIqic7Up94b695tKHaQM+e3fYykW2r4SVkAAyVfaIW5kLy4uuvvaxa2sMaYDLsRVq884P3nyhPl83lnVHR8fc3BwwL/5N/+G//gf/yNAJziKUCgWb5uEHP/TFxxiAkbqtGsq+PMzFOrWKT/Due6/kzGMCRTyXtajgCUy9/r9PgcHB52bXFG6i5Auafb29phOpx3w4Vs/hv3jr9dQcPIFk5Rg6/d/rF9SacJ04bNwrFPC0bo9I6YkWFfvTXWIpfMt+GLzMVbPdX0p71NzPxZCAXadoiG1p69TSITpNsVdV79NbQjnX7i2Y32zKc9PE15kn7huflv6fT36nc1mXDx+zF+fnFBt6fcXgn7nRcHucMglbOn3ln5v6feWfv9K0W+gW68yX3xgJaTRmw7VhPMnNt7hug3bFtsvwz0qBL7Dfc0HDmP7rr8fhsGvx2Aw4Pbt27z11lu88sorXMwu+O8//e/Uf1dbcFZciudYEHsPC9xeYi2Xx1igfIQFwXPga8BdrLJT7vXOWLoDb7EAd4UF3yeunMxVUFydi2v0W17eGRbYbtz3UyxAf+TqUGJduws4LfeMC+B97urQZ2lJPnbpBCHIXdrKfZduLdz3hqWb9tz9lrvAjYvju3PfdWUfuf7bc2lG7rlY0o9d38rd6hnWinzi8pgCH7u+/Q/A/9s1ra+5sXsD01i+Qw4IyhiHe2W4pv0gPBvE9wZ4HrSO0Wbhbfw6pEJYRz8vyVu84Qhf5ZdljFkBycF6BBKerigKdnd3uXfvHmVZdvQdYHd3l729PbTW1HXNnTt3uLi44Orqir29vY6vurq66gB4KTfP8xWX6OF+6/OBMTrk92fsAFxqTcf6L5YuRj9TvJSMcYp+xWQKP52ff1hmSp7w50iKp5TvMf4utb+G78K93v+U7zFeIgTJY33mP/M/w3jr+IIUf5zir8JwXRou/RcezljHb7wILQ9pk1/vbfiMglr+qVwAxIziwIHiNxTlyNDrN5SFotCGkobcWLg5czcwWzffWCAX5eiW9+mKEe/pfvk+KN4a535aqRVgXBvlgeMK3WbWMrqtUW2GNrkFyE1D07pD4uAg9IyWHGUKlKmgbaBuoDKoCgt6VhnaAeMCind/lbUSzyssGF61DhRvO0Dcuku3fbBiKe6AcB8Qt7+XfxojRu8dGG7bbLxnHiju/vDAcWMsKJ557tTdaoQOGv+SrB2Zz5lCFaB7kA8V5Z6m2Nfk+5DvQdtvaIsKrZZzTzfQ1goWGuYKNc9Rsww9z8gXiqLSFHVG3jTQlmAKGpNjTEaDpjUa3c1bxZeo17dhGz7T8MIW4zEmIWSm/JPq8DzTFXu3jhlep2CIMUUxy5WYwB9LH8aPKZ9iDLlYZD19+pS6rjk8PKSqqk4h3O/32d3dRWvrlnI6nXJ1dWXvxXSuUQeDAaPRiL29PXq9Hnfv3mVvb68D1qfTaecaU1yl+gyvKMJns1mnoPYFFVFSj0Yjdnd3O6X28fExeZ5zeHjIfD5fcVsmd32J8kPKFaWqMWbl3lP/flRx0SXWW2JhJ8p3X3EtDK64oQW6toZCgQAP/X6/sz579uwZFxcXGLO0cBOBZzqdMhqNODg4IMsyTk5OqOua2WzGu+++y87ODnVdc3l5yWw2605Yr1M4wvMul2Jz+LpKxVicUCnrz9Ew/bqT7LG8ZeykPeHpaxGaRREnp9Z7vR6//uu/zs2bN/ne975HVVXs7Ox04962rb3Xz42dAELD4ZDxeNzNIbFMkzaFyoewT2WOpNZi+Cy1pkPBLWatErN+CQVFv+xUSO0t/poM38XSpkKs7bE5k1IgpMoNv4ftXVe3sC9T/RMT9Dft2RLCMfTjp+jPur08rMcmgXxdv4VtiNHAWNpQGRHL47MIW/p9Pfr9T/Kch3lOtaXfXxj6XZ6eMp3NGDt381v6vaXffr9v6feWfod9FPbVF4V+h4diwvdhXdbRcHkfWy8SwsNSYZlhnuEYyn4exvXnQZh3CHyEcy383ev1mM/nfPTRR5ZmvVTzYP7AgtI77u8mS5D7AnsPtoDWQyzQexPrHn0HC4zfYgkeX7B0tZ65dHK3tsIC2Q3Witx3xy7bxcB9v4EF58Vi/AILQL/CElwvXNwJS/fmcnf4BUuw27C8t3yXpRt1ccUOS8vt0tWhYNUVu3HpW5evgPC+C3c/zq7LYxcL7ufYgwFPXbzC+2tdfW9hLeoLLCh+hAXQf+j6Yw7m2HB5eUm9qJnP59F9zwd0BcyVOH5cfy7FaI+E2H4S21f831IP/71/ECW0VPfzD2lz+FviCK2V53me0+v1GA6H/N7v/R6vvvoqf/RHf8RsNuPGjRvdocmmaej1eh1wvlgs7LUC+/ucnp52luj9fr/rP+HvxONReHhAfscA1hhdDfsnHB9/nFL0ICzDH8PQOt+vRzh+4T4m4xPS8BjtjNGnWFvDeeXXL6zbunThs3A/9ffpWHv9evrtDcv352hsX5XPFPgc7t1hn4W8oP88Ft/PN5Yu1i/hQYQYH5XiN2P9HaPh/ud1eLpteLGglP3TOWQ9Rb6jKXY15a6itwO9fktZ1JS6pVQZhdHk7i9z91kr6MBYZVQHeNsv6nlAXIJhBRgXkNIY5VyqKzRtB1wa4wBM06Bb7f4yageQK2MBcNoW0zqvG0bTmBzdFqhmAfUC6hqqFrWwwHg20+TzjHymyeeKYqbIFwKG04Hi9q+1FuMOGNceEG7Bafnu3Q3uwHDfFbp/p7g2Fgx/HhznuTQClEMLpnVOwFsa06IdgE4Hha9ajH92XPDnNAgorrAeEHJFVirygaLYVZS7UOxCvtPSZjWNgtoYO1caQ1u1NHODmhrMxMAkQ00zspkin0Ox0JS1Jm8yaHLaNkcZ7eaksmymUci/X/n+3oZt+AWFawPjKWVNjFGIMWHyXH6HzFdMAPo0dYsxbGGcVP3W5R/m5QtHYE/17u/vc+vWLRaLBZ988gnGmM7ySRTPt2/fBqzLVXFlNRwOOTg46BTecqemuBXd399fsdJaLBbdPZ0+Az6dTjuFtQg4cn+npB8Oh9R13SnMpd5nZ2fcvXuXGzduMJlMGI/HnJ+fdwpYX4CSOyqlXxaLRcekilK7aZoVxbhSqlOYS//7d2b5TLrvtlPqPhqNyPOce/fudZZLWmu+8pWv8I1vfIPvf//75HnOD37wA87Pzzuhr21bhsMhWZZx+/btTgE8GAwYDoc8fvyYsiw7Rbso1NfN7evMw3CehOlip6pjcyylrAotsvw4oUDq5x0rQ4QMmSO+4CkCuz/f3333XcbjMYPBgMFg0LlXk75VSnX33w4GA/I87+69lfH0hS1/bvgCz4v0nfyOCe6pEAo/sT0tJnSH71J5bVLEpJR8fryw/JSSZl37wnrFyl4XQgE8tt/G5luq7euE1ZjCNGzLdZUK16EjsXr47VlHj66jJEn1jYSYAnndfPi0YUu/X4x+/+z0tDPK2tLvLwb91vM5521rhc0t/d7S78i7WPpUXlv6vaXfnxf6HaaXvFMAUay82Nzzx8lvy6el4WEd/Dnq5x/b48Lnfl/6+xmsAnSSZrFYcOfOHV577TWm0ynH7x6jW007a5eWy7vAV1zCMRYsbrGA+F0seHuIBZoPsYAuWKBcLK7lHu5TLAgtd3bj4mdYcFlcrO+ydF+uXVk11mp67uLexgLFXwHuYQH2c+AJSzfoUk7F0u166+o0YQm+l158qZ9T2lJhgXEBw3ssrcdzLFBv3PeeK0/qftPl/abL89K9f8m1sY8F9n+GdSe/iwXSGyzwnQOvuzwU1sp8H3vHeN/mmY0zZvMZbfP8ncwxGghxOpPaZ8P1HMYL803tL7A6B0MPLn6c2FqSuS50VHgusf4Weio017d+z/Oc7373u5ydnbG3t9e5TQc6b0PCOwLs7e1RlmV3MFP4MzlYKetKymzbtqtXzPJa9grpi/CQjg+ix+hVbM+6zjiso2N+uf7zWN3CeSLtlzb54xfOgRhIHNY1/B7up2HaGB+0iS7F9mh/3/TnVyzfFM2K5X8dGh7u1ZvaE+unVNtCuuSXKeMbHhxIlef3TVh//zO2T0hdtuEzCAIgagERHTieG3LdktNQtFA0LWXVUFYZZdVQVJq81uStJmvFcbfuwEClAKXEYfqKQ/XVe6/duAowrizwbbxnrVIrwHnr/jKjaYyyf61G17YumcmpydFtiTI1qm1oW2haTdNkqKqERQ/mfZg1qBlkE0U+VhTurzc2FPOWYmEoKuXAcHufeF61yzvFW3enuPEAcIO7Nxzvz3R3iXfu0s3SJXoHjBvbY2J5r1gFw33LcUVrwXHTkmFdyremJmsrMHOMWWCoAzfqX46wnNMKXWCB8R6UPUNZtpR5Ta6gJaNpa3SjoapgMaedlNSXM5rLGZwtUFeQTTXFVFHOS8paWWC8NrSNom0Mpm099/jC5smcFyZvG7ZhG14kvLDFuIQUQ5FSkIQMlP9+nTJsHQMVMt2xTz9tTFhJKTFiDFBMUNvb22MwGFCWJfP5nHfeeacTUnzGVJixp0+fsru7y+7uLnfu3OHll1/m5s2bnSJ8Op127lrFcvn8/LyzaLu6usIY090N6SvX+/0+4/GYsiw7t6hVVXV3dx4cHHTC182bN3n11Vd55513OuHm7t27vPrqq4zHYx4+fMjZ2RmTyYSmaZjP59Yqqyxp26ULVbCgglgaycljX/AKhTs5wSzv2rbtrOfyPO/mR13XDIdDbty4wc7OTqfcl7tJLy4u+PjjjynLkldeeYV/+k//Kefn5/zwhz8ELCAhFnRSr9u3b9Pr9Tg+Pl6xUBuNRh2QEQIA4RxLzcWYcOifGg7ThPMyNl9DAWWdcOgLCeEzv14xRUMouPmCoijdgc613aNHjzrrSJmHMu5Kqc6KUk6nn5+frwgyYomWstoLBZFQmR4Krqm+vc7v2J6TUgz7ITY/1s2R2LOYJYNfr5hiNny/qW2x9sTaF6vvOmVT+D6lTE0J4v732F4eyzf8vmmMYu1aV5dUnLDsUGhOjcO6MmPKDUjPiVT/fpqwpd/r6fc+Vof7sZd2S78/v/R7bzSid35O1raYLf3e0u8t/e7i+e+39HuZ5xeNfqf2sBA48PeuFAgl78M0sfbH6Hu4r6V+x4BB2T9iVuj+WPlAlZ82LOPWrVsdHZ9MJvzVX/0V4/EYowxGGwvMgtURauBDLOh9A2sR/mvAq1hwWWMBaXG3vsBaWx+xvI/7xOU1cvkKQK3ds1P3TIDjucvzAgt633bv94GXXX00FkS/gQWa51i35E9cWrlDfIEFkcWyWyy5xWV73z0vXBlyV7iA8r77d7nHPHdpJ+5T4ir3e+jqdMgSnN/FAv9y97ocKhAw/MSlv8vSvfvCfX7FpXno+tW454dQXBT06XdXd8TmUEhbJPhxjTEr18eEBy78EFubQjclz9BDS2qdhDQ8Fj+st9BVv47yW3gwOahojGE8HqOU4u233+bmzZvcuXMHsKC4WIprrZnP5wyHw+4g5JMnT1ZoeFVV3eFHn05rrVc87vj9EK5zeR/y4LG9LyZTpOhQCgwNxyvMK+zv1F7sj4F/qM/nnV6Er/DLD+dTaLUd1tPfKzfxLrH9PAwxmp/iaVJ0W76nDjfE+iXWJ7G+Ccck7OsY37RujYbtCueiPJPrC67DS6VkWl8e2IZPH5T7T2kBxRVZDpk25KolN1A0hqLWFJXywHEHjDeazLjbxZWBbl7Kny1AAYINulnsfacDwjEKo+gsxcO/1oHnjYDjCDAOeQN1o8mxwHhlapSpoW1oWmgaTd1kqLpELfqY2QKmDWqqyKaafKIprzS9MfQmUM6MA8ahqIwFxeuWrIG8sxL3AfFVgFv739vQ6hsHiC+Bcg2e5bj/bBVE992pa9OiTENrGjS1A8YX0M5pzZzWVED75YJlZepp0BnoQpGVUPQMRc/QK1vKrKbQhhY7N7Jao6sFapHRTHPqy4L6bIY5rdDjjHzRo1iU9GpDr1EUjSZvoWkUVWNomxbdyoEFmddyTIQvV/9vwzZ8RuGFgPGY+6GQUQgZsBRDG2M8Y8xVjGmJpQuVTetO6vqMV+pE7Dolhp/HeDzulMJyt6YEscTx+6htWw4PD/nN3/zN7q7HZ8+eMZ1OO+bt3r17XFzYo+o3b95kMBh07k+rquqUnLPZ7Ln6ihK7LMvu3qgsy1gsFpydnXX3eu7v7/Ptb3+b6XTK22+/TVmWnVXXaDTi937v91gsFvz93/89dV1zfn7OfD7vLNqqquraKJZjvmWb774V6NyySn8Igyr5yJiJlZhYM926dYvvfOc7HB0ddeUWRcFgMMAYw4cffsh7773H4eEhP/7xjzk+Pubw8JDFYkFZllRVRVmWnbvY8XjMrVu3uLy8pN/vMxqNaNuWXq+H1rq7L3Y6nXbjFzL4sbmQUvz68aTtsTUSm4MxBj+WZ0oYjZXhnw6PuXuTekhcGVP5Lm2QOQbWqkwsBIfDIcPhkKOjo85F6+npadeXAnKEd6z5Ak6oVIsp8vz6ht9T4xSGdcrTWF/6/RjrW//7un0rNqapdqT2olScmCC86fe68kMBMuw7oQHrrI1ignrYf7GQ6q+wzqn9/zph3Zik4sfG9UUVDpvWtp+H366fJ2zp9/N5pOj3BUDT0NOa+ZZ+f+7p980sI1ss2J9OmW3p95Z+b+n3ln4n4n9R6bes6dB9tE/D/TGMWbP79fLvFI7lFWuHhBCc8esVjmFs/P04ft+Hln+pPvMtyMMDYH4ZWZ1RUy8tusECty8D/wYLVPexVs7n7n2OtYo+wmoaX8EC3hMs0DzDArlgQV/oFKI0LC2sBy6euF2fYsHuERZgHmDB8VssraZvuHwGwFeB/83lvWDpelxcuM9c2UKaBVzPXJq597xw5UsQMFyxBM+l/jXLe8N3gdeA/xv2HnZpf4/l/eLvAj92fXnDvX/Zlddzv/tYgL12/fwaFlQfYQH3FtRQ8Vb+Fu0nls5fXFx0/EU4R2LBXxcx+u3P1fBZOCcl3nWBNynzOvGE/sYOh/g0Xim1cihRDqlJHlmWdXzU/v4+vV6PPM85ODhgf3+f999/n4ODAwaDAZ988knHw/V6vY4PlboIGC7964P88kz429j+nTo847ct3EvDPvPpUWx8/L4My4ztIb5FvpQjfEtq/OSZf0ghRp9j7ZR6bzrIEaOffh2lD2J0JkarpGwB+MNyw/Hy65HiM/0+keehlw//mT9/w7093MfX8Rfh801t9ddMyMOE8y42Lil+JtYP1+UxtmFDUMsPpUBpZa1s5X1rUJWBRYtaGPRCoytDVts7tHMDuYJMgVIW2gYNRjmkWyHIe5eniQPj/hNjWLlfPPwtFuOtEgfi0Bj3iaI2ObXKyKjRxv6ZpsHUDc2ioZoY1DiDywJ1PiC72CM/71Ge1/SvGvoTTX9q6M0VxQLKGvK6tcC4A8SzFUAcB3SrJehtBCR3nx0I7j83rLpLp7MeV0Rcq9N2YHhmWmc53tg71U1FywxlxrTtmMpcUZkxDQtad8eM+TLAs8rOZfuprBcE5wkhy6DIDaVu6CkojMEYe9180UBeKbK5oh1DfaZZPM1pj6fks4x+22fQFgzaPqXJyY0iM4aqrmnbirqt7CEM06BMu3IsxIYvQd9vwzZ8xuHawHiMSQmtWcL4EFekSNpYWKeYiQkem+oY5plSGvnvUnnF3td1/dxdoPJeGDa523EwGLC3t8dwOOwsvXq9Hvv7+3zrW9/i5OSkE1j8ex/lvtGqqjoFvrShbVtGoxFFUXBxcdEp0/369Ho9Dg4OMMaeEh6Px3zve99DKcV3vvMd3nvvvc6q7f79+1RVxenpKQCvvfYaZVkymUz46le/ymg04oc//CGPHj3iyZMnXF5edieqRWiS+vmMqNxN6gu6eZ6vuGv1hTS5U/TevXudwh2s8Ht2dgbQCYrGGGazGR9++GF3B9dwOKRpmu7eLVG0y91avV6Py8tLrq6uePz4MePxmJ2dHYBOyeKfhA7HP8aQh8xzSrCSEDtJHM7VcI3F6hKb42E6EQx8odvPR9LIuMmzpmk6V7YS5AS6jKvcfSan2uVOWq01s9msuytO5p+vDAuFYd+SMaaQ9ENMUPPbFBPA1+0t4TM/v3V7gz/2/niEcde9j+2XYQjbH/sda+cmwTPWB6k6xcpIPfPzDPsyVJKk9uVwncWUMrF2xvoh1T/+/AvrmlrPqXUYm3up7yn6GavzzyuQb+n3i9HvVinezTJ+HfhpWVJu6ffnmn6/enrKyf4+Zjrd0u8t/X4uvy393tLvLzL9jpUvZaXWjz9W4VoDVvYEP8QOm0mItdnv19j7sA5CZ9at77DOIQ8h+yDQeVURWuTn2dM9jDY0g8aCzXtYi+194C9ZgtB3gN/DgrVzLJB8iAW2BTAWMFruEDfQacgPseDvMywYvMBqVxqspnIXaz1tXP5nwPexQPM9LDD+BAvIy1SRpnzL1ePC1XvXxX/gPo9d3ILlnePiEt14+Q3c+7n3rnB5Sz3FWlxcp98D3mLpwh33+dh9z1neIz7DAv9yV7sA50MsWC8Aeek+d1zdT4B3Yed8h1cPXuVD8yHn5+ed1Tisp8X+3PHnRzgXY3PTtwQXQDhFi2P7hv/pzz1/bfn5+byS1FfeCQAOSytmAdDlEKbkJTwQ0Hk82tnZ6Q46jsfjbk1cXV1ZDwqO35zNZite8aTdUnZ4oNDv0/BQgn+tip8m7G9//wv36nB/9Nd+Ko6fZzj2IR3xx80HT1O8SYw3CJ+HcWP7ls9bpg5ZxGj4uvr7fGBsXsVouF9Xf+8M85G/cA+V9/6hAliO4zr+JPU9bLNvCe+3J1x7YX+G68f/TPVJbL8IxzAc9xRt24YXD9HZYsC0YGpoFlDPDfUM6hk0c4OpFKYxFrhVxlqWZwaUQanWZaAwLRYOV86tusvbL1fZy8VXKmQENjddDOdeXX4rWhdPvrcKGg2tttbjtWmoySioyVVFwQLdLlDVjHY6ZTGuqM6BE4V6WpCd71Bc5PSvegzHPQYzzXCq6VWKojYUtbUQz5rWA8SdpTcKZcSJvIDiOItvAstwE1h/s7QYx79XnOU796k6l+oWFNemcXeJNyhTM2eGMZcszBlzc8LMnDLjnIopLY3nTl3+frWDUt6fXnpAKDAUGHrGUNqJhGkNTW29AhRzg5oY2rOW+olBPZ2y2w7Z0/sM1YChWpCj0XLYoJ1TN3NUOwdTgakxNBi8w2Jfgv7ehm34RYQXumP8usqMF81vU1kxRYu8C5lcP07I4Lxo/VJ1vY7Cpd/vMxwOV5jN8XjMyckJH330EUVR8Nprr3H37l1+//d/n9Fo1N1Z2uv1UEoxm81WGF8RXuR+0/F43Fk6DwYDer1ed3enpMnznLIsO2Wn3Hl+cXHBkydPODw85ODggCdPngDwxhtvUNc1TdPw6quvdndvTyYTfuM3foOiKPi3//bf8uDBA/7Lf/kv/Pmf/znj8bgTyKQ/BAzwlevSF6J0DcEVUbT3+30ODw85PDwkz3M++uijTpAry7LLv2kayrLs7nA1xir1J5NJ1+Zer0dRFNy4cYOTkxOapuH111+n3+/zx3/8xzx8+BCAN998k7Zt+elPf9qNwzplVshQ+4JXSmCICS0x4W+TwLZOsefHDQVM/yS2X1YolAhYIel8S0rf9VrbtkwmE9rW3ps7GAw6V60i0IsFR1EUnVJdhCvJQ0AMCTHBWfrWD+EJ7LCfJGzaQ2JCfTgWqf0lLDPMN1TsxeobE+jDuqUUA2GdY20MLYdSSoRNcz7WF2F9wu+xOZtKH1MYyPPYWK9TaPjvwzaG9ZLf11mvsbjrfscURbH5E9bZF/xjbXvRsKXfL06/e8MhtC1vKcXHSm3p9+eUfudty1uvvso/DIecvfPOln5v6feWfkfCln4//3zT788L/fbr5pcVhtiBGn8e++0L2xnOfdkHlFrePxxLnyojVnel4t5gwvXq5xHWVeoV9q/vJlcpxe7uLnt7eyyyBQ94YOfgKfZ+lO9jwdlvA/8c+L9jrZe/5wrfwWqJxX05LO/L7mGtx6fY/AT4NS7dJVazMsUCxgIET1iC6xoLCJ9i3bgPsVbrl1ira+XivOn+cpeXaGx+w+X/l8D/ibXCFlfl0oUVyzvUxeW6aL/Fil3y8+8nL7Hg+0tYy+8S+BFLYHzo8qpYWr7fYQnKV1gQf+DaOnR9dg9rdb4AftM9/ynwE5vtv/tf/h2vN6/zV3/2V0yn0+eAL3h+X/K/+zQ8jB+LJ3H9+Rw7YBPmE85ff/7H5rHMVR+s98sSvkeAR6ADwaUs8WoE9qCk8Hht23JxcUHTNMxms5X7xsXTkFzfI1f0CG8nPJjQcB8Ql7r57qf9fUDaKGnW8TGx9+HYhuMZ8v7hXhDyRpvGy38Wq1Moh8TGO5xLm/Z0P51/LUBYZqzv1tUx7KOw7bF9OUUbY/n4ayHkI8N6hP0W0pjY+1TfhXR1HX8Wy99fTxDnQ32PB6ny/fbHDuZsw2cQhA4BYDBG0baGtjYWGJ9BXULTh3ZuaCtjLcmNQSnQCjINStvfSiBYoxwwbMFHZbNfKVbK9IpfsSM37qsx3m+UM0hXnft1Hxy3d45rGjR1qylVRqU0mZmj6wwznzK/rJiftvC0RT3Jyc/36F/12ZnuMJrVDOcZw7mhVysLirfYO8WNvUd6CWwrLCQuNVYdIA48D5AbH+A2q+7TkfdeOgeo+2k0hqwVcLxGmQaoqMyUxlywwILiU06ZcUnNzAG1S2j8SxMUbo4aO0+B3EDZNvTaln6jUMbO57aFummpanu3fD43DBaapjLsNi27qqGnanq6RquKloZWGdp2xsLMHDC+YOnmp430+Jeq97dhG37u8EIW4xI2KSVCxiMmMFyHwYgpIVLfY3VNvY+1IRU/Vs9QURXm1+v1uH//PsfHx0yn006RKH9yf6e4X10sFjx79ozhcMhisUBr3VlVwfJEvK9Av7q66u4n9V1kye+2bTu3q2LBJYKQuNACmM/nvPXWW+R5znQ6ZTqddsrtl19+Ocro7u3t8c1vfpPbt29zeHjIRx99xKNHj5hMJsxms07YHI/HK+5jxVrOV/xLfcQyrN/vc+vWLfb391cE3Z2dnU7AqOuaXq/X3Zvq5yFjMJvNyPO8c+k6HA45OTnh2bNn/Mmf/EkHBki/zWYz/vEf/zGqAAqZ9XVCYGyOp4S32Pxap9xLKY98oS2mRAjzCYUi3/oilpfcNyYCvtx/K0K2KM0ln7qu6ff7ZFnWKeWrquqAIl9IkfkQU67L+MT6VuoXE1j8dl5nPYf5rSvTf7cuhIqRWL6xeq17HttXw99hPqn2x+ZGqm9ie2RqbqWehXt2aq8NheJNdCc19mE56+oS5hnmFavvOjqWyneTotyv5zoa82nCln4vw4vQ73enU369qjj19pot/f780G8N/Lox/FgpfvSjH23p95Z+ry3Tf7cubOn3ln6Hefwy6XdYF3/tr+uDlNVcal6FfRuCgOHeEz6Lzc9YX4Rl+fmEbYjNTdl3wrYIvdzd3eWtt97iwYMHXF5eoiq1BH9bLFBbYwFcsXaeY0HpKVZjLFbRO+7dDKvlHGFB3RNW7+w2Lq78brFW07VLdwsLGssd4AJMG+ANlhbdXcNd/hKy4N0Q+H0sKP0+1oL80v01Lt9TlgC5gOv+3eSiT82xYHjm2vCayxcXr2EJ2C9cHjvYgwNz975weRiX/5V7Ji7Zd7DA+EPgPVe3hc3zYHDA/tU+//2v//sK3QgPfYV7RmovDudW7DAGPO/5yKeT4Rrw//y6hHmlaHlqL5A2+BavofWreG0Rj0KTyYSiKLi8vKSqqo6fEkv1qqrY3d3tPMBIHuPxeMWiWa7OEW9AdV13ddV66V5dqeevRkjt42G7YwcV/LSpwzz+7xivkNpPY3FD0DQchxidDsdF2uK3Pba/hm0N27+OBvv1SB3wSPEUm2htOGYxWut/T1ltp+hoiteN0Z8wxOiPH2K8uT/G62hISMPD/ML3Ap7H6FZ4uHMbXix0o2qWf6YF0xjaStEsDHoOdQ5VAcVAUc8NzcJgahtfYRzoaIFHLYiug8cVdMB4aC2OB4irlXno5oDqonkplnGM97BtvT8DDZrWKGqjqY2ibhRFpSjmoC40809OmH1wRPXhDfLjGbvzHfarkhv1kP26x6AuGNQZZZtZULy1brOt63KzYtVtb0O3v1T31DZYQG3M8vsSEJdPtXSd7vWFct9V52bdphE36plpwNS0ZkbDjJk55YInnJiHXHDEhAvmTKmo3A3jZqUHvzTBYA9y1KAqg14o9BzyKRQZZMaga2BhaCb2rzeHYaOos4K27NGbKfqmJjML8nZGq1pqBRUtijGYCa2Z0bKgpcbQen9fwj7fhm34jMIL3THuh08r9MeYtzCsc1mzTtnl57mJkUwpAlL5+fFSyhSwlmY3b97k4uKic1Maa7cor3/7t3+bf/fv/h3vvPMOT58+5fj4uLv3tCiKzsJM3I6KxZW4RxWBqWkaxuMxVVUxn8+7E8b9fr8D5kXhKfdVjcdj/vAP/5Bbt27xL/7Fv+jyFWVoyKiH7b116xb/4T/8B+bzOd/97nf5y7/8S05PT1FKcXx83NXFV9yKgl0Y0DzP2dvboyxLiqJgb2+PXq/HSy+9xNHRUecO7PDwkH/2z/4Zf/d3f8fl5WWnGJH7UYHOwk3uy9zZ2emUtsfHx1xcXDCfzzk/P+fs7Ixnz57x+PFj6rrmZz/7WSco+oJ5GNa5/wznZkpoWPc9nHsxAWFdHvI7dHsm6UKrFxmblGAkQkIYT8AeYwzz+by7D7Zt204RP5lMurtqsyzrXLiKsC0n20X5IfX1XbOl2p0SxGP9HuvHdf0Ze78pxOq1KY9U3JSQnhIaJaQE7Vg6yS+mGIq1aV1b1gnoqT4JQxhnXVs2CdYpAT7s15SAL7/XtTucW9fpl9S7mKtGv8xQQfNZhC39jrcrRr9zY1Bad6LGln5/fuj33ief8Nd1zdWzZ1v6vaXfyfebwpZ+b+l3rE6fR/q9bq8K+2/TnArrG7oB9tOF+fj18WlNzMtIrM7yPLVfhPtqCFCG/QF0oPirr77K06dPefbs2bI+/hQ2LIHcf4l1V77AukJ/hHV1PsFaehfue461nh5gAeYB1lJ74n7XLt3MPRtjAeNd985gAeUhS8vsCvgB1r37N3gxHbJyeXwba0F+irXsfoLVdj90dZFyNUurc7F+L137brv29Nz3IfBrWFftcqf6beCbWFD7DAuIa5dGQHuxUC/cuwOWruifuP69wt6X/hj4Gej3NO285b/+w3/t6IzQJj+E62gTDffnhfAtqX3Gn6MxDx1hHcL1lVoj/pyV7wJu+3NZ+BwBtoWmyvUmxpgOxJa85/N5d5BxMpnQ7/e7w25yaPPs7Kw70CZXpvT7/Y7vnEwmKKW6soXXDA+6Sb/4v6VOsb05ZqXtA8z+2Eq/bDpMFO5bIf8Q24P9sYrtf+G8CcM6WrSOh/HbtW4/3kTDU8/8dOtoWCzE4qb43lic69DMcM9OrVG//pvqGD5P1cf/DD2L+Pn4efj7wzp+J3X9yDZ8imDAGKCB1gGIzdzezay0QmdQDQ313LpXN40H7uIAcgyZg4YFDOzAYyNgMd3zJVBueG6EjRcvSog91NzY+pgW+2fo7iBvUDQt1C0MKsN83tKbtLRHNc17LfUPB+yNC+7mr3JTHXLAjD0Wzs12Tm5aNBpt1Mod4bYGXq2V8VsbdKpxYHcAjosVOOKGnQ4g7/rFWJKtXbnaGDIMurXAuKFibqZUXDI2zzjlY57yM055whUXzJlRU9E6aHylc78UwUALplGYyli+cmrQPcgKKJShMNZNvl6Amdq/ptK05JD3MWWPrNFkVQvGnmysTM3cGFpqFFe0jGmYdsB4S+P6PGY1vg3bsA3XDS8MjMeUHymlSIrBWsfApZQnKcYmTBOWnSo3pkjZJPzHmFv/fVEUDAaD7u7LGOM8HA67+x3zPOfu3btcXV3x05/+tLPYArq7NiWduB2Vuz7FmkuErMViQVEUlGXJfD7vlPBKKQaDQXeC2BdARLG5u7vLYDDg7bffptfr8eqrr65lDqV/2ral1+vR6/V48803OTo64s6dO3z88cf84Ac/QCnF+fn5c1bzYiknDKko1A8PDztGVu5MFSW/CAECCojytqqqzjptOp121nXT6RSlFNPp1FoMKMVkMuHx48e89957nJ2ddXnLPbO+YOgzyCmLh9Q8WDfnYvMztU7CeH6dUkJhmC6mTAjXWCydBGm7DzZIfP+UulgCypgKkCGCuvxVVUXTNCuAUMw1nV92SoAK94mYoiMlSPm/w/xCRec6YTsUsMI2xPYhHzhcJ2SGAp7/3J8Dqb0qrMc64d0P69Z9TBhNzflUHfz+9eOF+ftp17VJ1mhYfixs2tdS7V2nsInFT7U/NkdCgTwW57MKW/r94vTb4AyslNrS788R/T6oKvpty+O2RY3HW/rN8+tmS7+39Dt8t6XfX1z6Hc6d1DP/AE04/1Ih1obU+vCfhXPBX7exdRL257p55Jfvg/WxOa+UvXt5NBpxfHzM8fFx13aNa7/G3tNdsgSWX8ICx3/LEtAGCw4fsAR9xW24gOXn7lnpPidYkHjgvguIrrGW4zOWVtet+5y6OKUrY+5+v0hQro6HwG+730+9d0dYy/iKpa5ULOaNa0sfC3y/jNUKVS5dz3337zCXTwHdpy6twYLeyrXz0n0fY93EK9dn7wJ/gwXGKxg0A5qq4aw66w62CTDsz5uU547Y3EutR1hPR9bR8NjaiJUX5ilp5XCabwUfpgG6A20S5CCiWH77ccV6XO5klwMFeZ7zs5/9jKdPn3J1ddXpOCSOXFkj+fqegPy+Dq8nCOlN7FCLv0bX0XC/nHCvCEH0cK+J7QWxsQnf+3MpZj0cmydhn/tzIhYvjOuPa1g3eZ7a70Ka4+cZ82Cybj/16ylAcCzfWBs30XOpz6Y+DGmrHyccr3B9r6NPsb4Jy4kd2PbXUcoyft1esg2fIhgQJNY4OmgaaCtQmQXBVWaoC2jmimYBbW1BaFxShXNTrRSZapfQsGLpVjwYKokjrsNx+XR16uKYDkQPZ5fEV9ZEHNOaDos2LmXbQFsZ2rmhmrfUs4adcUM5rhhdGQ6vDDsXY17KphxkM0Z6xo6ekZuWghZFBkqjHM/SWYCjQMkBfVcTpbxay/+uQuL43QTAOKDM0hX7yiEBI6B4aw8dmNZaN5sGbWq0qamZUZtLppxwyRGnfMIxjzjnmClXVCxoHEDLl9F22WBdCNRABWZuMO6wpM4tq1YAvRbyCtQM9EJDk6NUSZb3aMsSVWdgDHVT07RzZmgaajQVMKZlQsOUxgPGfVBc/m3DNmzDi4UXumMcnmecYozvJgZiHcN5HaYnFLKFCQpPB6aUEpuUCuE7P02KSZX7NSeTSecKFZYnDI0xDIfDTvEuyuz/9t/+G++++y6PHj3ixo0bneJdBBwBbHu9HoeHh531VFVVXTyxTiuKorsrVCyx5I5OrTV37tyhKIrOIm04HPJrv/ZrHB4edqfs9/f36ff7GxU6TdPw0UcfcePGDXZ2dri6umKxWPDkyROm0yn7+/t8+9vfZjab8f777zOZTBgMBkwmE05OTri4uKAsS4bDITdv3mR/f5+yLDslvNy1KuP87Nkz/uIv/sJa8DkXq0rZe1/Pz88ZDoedklaEP6WsQljuJn348CHvvPNOB0oIIx8KZjHhIBQ81s3N1DxaJ4ivE7RiSqWwLql6SvCFspiQGgpavuWILyCL+1yxcJQ5KvO23+9TVRXn5+fM5/POCk0s0WazWZdGgB2/3lIHcYm7yZ1YKFivE7zCPNa9i41lSihLjU0qyLtQ8A3rFo6TKFRCq8HUHIrVI1Wv1LxO1cn/nhKGU/2xTiAP+zj8jM2BTUJraq2m0q5TcvjtC7+HIabQCX/7eaTmXKpeLxK29PvT02/l6rSl358f+p3VNfeahh9762lLv7f0OzUGqXH0427p9zLNln5/vug3xNeSzCmfjsb2mPB7uF+En+vcH8fmR0jDw7RhkL4UGSxcB7ExUko9t3b8vMqypNfrcXFx0d1RbYxzP20aq7Dcc3/HWPB2D/jPWIvrd7H3YB9gAeEp1tK5xmoyd9z7FmuNPWd53/gYCy73Wd71LQDyjvudAa+7zwUWOB4CN1neae67Tn/RYLBgtb3+07pC/44r5x0sKD1ynx9jwfMB9qDAK8Bd9/vC1X2M05K7Nj9iCYaLi3SFtR4/cv22cPFn7m/h+umhq9OPgb+ic/Fe1AXaaOq27ugUPM+Hpvi2rukb9skQfJS5l7JiXkdbwzjhvuC/9+d1zILY53mFbso1JGKN7R9ck3fiief09LTjmfb39+n1euzt7XF1dcXR0VHnvUho/nw+5+rqqjuMOZlMnuuzkIaH4HjY93K4M0bDZW/y+1D+YgfYwj0mtX9eh4bH9sPUPEjRg/C5jI/U3W+TxI/NPb8eIY+Xolc+nxGmS7U5zCdcQ/58TvV9qh7h/I31q99vfr6p9XUd3mvdePg8blh3n+eK0fBYP8Xo6Lo+3oZPH4wBZRyo3BpMqzAtFlh2ltitgdZY6NYohVzarLX9qgXo7VyorwK9qhtm8xwwbt/5IHj6O7D6rgUaIz7ULWhvjMWkK4OZGczU0J42mJOWxUnL3gTmqmC6MySfGG5UVwzrcwZ6l57KyVSPzDEORmUYpR20bWwL5bfSXosUKB8cN7aSK+C4i22MB4a3nRN2OQAgf+I+3d4nboHxjAZj5hgzo+KCK55y3AHiz7jighlTZyluHCi+7PsvTTA4a3EwtaFZQDODZuzuold2fqMsm5TXoKeabJ6h6wzd5mQqp9UaMoPJajAVrXEH0alYsGDBmIqpO4RQeaB4uwXEt2Ebfs7wwhbjKaYlZDQlrFPMbFL+rGMcQwWLMEHhszBNjHENy17HBMWUDsIwi9IxZOTkbzabUVVVd6p9sVhwcnJClmWUZcnNmzfJsozFYsFgMCDPc4bDIcPhkMvLSz755BMmk0knLIkS/eDgoMtflJXD4bBzveW7LN3b26OqKsbjMffv3+f27ds8evSIe/fuMRgM2N/fj1oXyN1T/p1XovyvqorRaMS//tf/mr/7u7/j9PSUu3fv8uqrr3ZjcnJywr1798jznHfffZejo6NO8T8ajSjLEq01t2/f5uOPP+bk5KSzLhP3nZeXl51rWQmDwQCtdfdc0vR6vU5BX5YlFxcXnJ+fd9Z+MlZAJ4DKeMU+QwFjnULNjx8qpmJzx38WxoNVwSgUCENB1H8Xq0/qe1hPObXu95EI5f4daGIVeHFxQZZl7O7u0uv1VupcVVXnutUHP0Q4E8W7pAkF1U19njo5HhPEYv0b6/+YkOd/j7nPvI4A5ccJhepUHuuUL2F7QiFw3ZxLvU/1iR/Wzf8YLbjuevDzj7VvkzIhDOE6Sbk9jZUVE4xDJUK4JmNrNFW/2PxJhXXvXiRs6feno9/tln5/buh3Dny1afipMcyN2dLvLf1+rv+39Pv5PvHDln5/8eh3qk9lHvoHL3yA0U+f2mv8sZV46+h7OO/leXhoIgTffVof699YPWLtCOslNFyuI/Hzb5rGKgpbrEXzDAvq3sSC35+wtPR+DasVmbo4JRbwFcD4fSywLHdqz12cu9j8x1igHJcuh86iu4fVho6wgHHu6lCyBJR/Hm/7Gms1fu7K+wpw35VRYIHwr7q4PwQ+dGl2XJyBS/caFkj/2NUtxwL+c+yBghEW5Jawx/Jucrk/vcCC/jXLAwBHWHfqDvzPm5yiLmhpV7zQyLj68xpWD134a2/dPp6ijX6IzW9//ci+E4sv+afoVczTi78e/LhCmzue061nubpEDkhWVdVdY2OMvT5nsVjw9OlT8jynqqruGhrpP3G7Pp1OO68v4oZd/gSMB1Zcqft7ruTnr0tJ77dJxirF08fooN+3Mct0P47wN6m9KRbCMfD3zFQ+4dzyeZywTRKk7am6SLkpGcivjx831l+pOSXfU3Q7ts/75YReYfyy1tFfyT8VwvaFaykWYnyI39awr/06psY2tWeEfR3O10384TZcMxhAgTGgnCtyjAPHDc49ucIYC+G2agmKK61Q2t4trpSQTQG7w09bWAh4x+Ip5yJdOXfiy09W7iPXxqVrDNTGXUtiwXLVGNTcoKYtamJQ54bsDLhS1E2BKQfUuzswLhiOK/JmQtZekjnXLIoerSpoyWhUZl2zK+kDTauWRwFQSzh7CfuzajneAaR+fyBO1FcA8c6Fug+K4yzGaWjMnIoJC8645AnPeMAxjzjjmCsuHTAud13z5QNoXXfL/G1raBfQTKHOoFZ2qrQNoEErRd4q8nlGvsjQdU5mcjIyB4xDnTU0bUVl7D5XmTlzZiwYs2BGxdwdRhA36uG4b8M2bMOLhhcCxmOMov8OnrcmCJlA/3PdifUYY5pSQsSUIbF6x/Jdp5BJMUMhQyntDuP7QoTcs3n79u2O8ZTfZVly584der1e505U4vf7fc7Oznj69OlKfauqYjqd0u/3u5PCcpeUlHvv3r1O+V7XNbu7uyt3oI5GI46Ojrq7VJ8+fcq9e/ei/SHCmChXB4MBt27dYjQadXepfu973+Pk5ISdnR2+/vWvk2UZk8mE3/qt3+KDDz6gqiqePHnC8fExdV1TFAXGGBaLBWVZdoqNuq6pqorBYMBgMOhcfApw0e/3u3STyYSdnR0uLy8ZDoedq9rhcIjWmv39fSaTCRcXF90dpWL15FtV+WMYzkM/xARc/3nqt5/nOmFD0oanhMN0MSF809r0hfvUnBZhWsqQfl8sFvT7/e69jInMCxFCer1eBw7JPbnigtUXwv2+liB5+vUJFe7Sjtg+E+ubcD2mhPGYki+V/7oyYsFv0yahPcw7NT9S9fQVDusE1FR/hfUJ90m/LuH+t6mPYnXYJFzH6hlba9cR0mPzYF0dwjIlfgzIibXNz2PdfnLd8PMK5Vv6/Xw/SFhHv2lbKIot/f6c0O/70ymPjGGutb1/bUu/t/R7S7+j9dnS718d+i15pOa2fPoHj4xZ3p8apgk9tPjWs+sOIIRzJ0Y3wzGWfn8RUCRG98M2+8H3AubHa5qGmtqCta9grbZbrBb4ZSyA3AfewIK751igt8QCywLqfsQSvDZYMPsCe4d46eJdScFYLejXWILFlcv/2KWbujSKpfW51OvThgoLzA+AWy6vHHjV1VPu+n7o6t93bZG61K79Yuk9wgLfC1e31muHpDvDWt8fu7hDV+Zt17Ybrr1PXZwx6LGm3/TRme7mhRwWFAtleJ5nDfeKdWs4RcNjazvM16fhYVjHo4ZrJnaXuF+GX04IRvrtlXvDd3d3Oz5O6LNYjytlPR/t7Ox0noXEO554e/GvRYn1tX+oRNoh94/Ld+C5a2vCsQj329i7sK1hnBit8n/H9o8UrU7R5Fhav+9TPGBMHkmljZUd5rmO/4uV7feDv++HYxEeKAjHJjb3wzHywzp+dh3PFeMHwjrF1mU4f1LjHO4Tflk+7Ym1KVXXWH234RcUHKCIMdaSWWP/MlA5qFx1fzqzoLgGMiMWznj3cbMKbsMSIA/edSC3i9O9656tAspg0C3o1gHjFaja2L/GoGrIZoZ8YsgnkF1BMVFk85y26aH0gLY3QPVzyrqB+RzTTMGMMTQYGlpT0JBTm5wGRa0UNZpGaRqV0d2yrhQISI5zse6mq53Dbq34Fu+4/nW/7DfjLMVVd7d4RtMB49pYoi+g+JhjznnKCU847azFJ856ufEA8evzxl/4YLAdbLA8UgNGWXC8mUOVQaVgoWDRQpkpaq1ojCarNFQa1Wh0a29+V8pgdEOrKiptmLc1M9UwZcbUTJkxZeFA8Ya6c11vVnr/S9T/27ANn2F4YYtxCSlGJMZIxeLEmFKfCUox0CnGal24riAVa6OEkDkLma+wfX795b5QrTWvvPIKX//61/n444954403OqX0zZs3mc/n3Yl/sbKq65rLy8tOYem7t7q6uqKqqhWFslj15HnOxcUFTdMwHA7p9XqMx2MeP37cKe8fPHjA+fk5WZbxk5/8hFdffbVTWoft11p37lFFkXp4eNjFefLkCT/60Y84Pj7m9u3bFEXBRx99xCeffEKWZfz2b/82h4eH/Omf/in379/n4cOHtK11qyr9J8Jav9/n9u3bXXsknrj8zPO8U6ofHx8zm824detWp9gdDAaUZcnZ2RkffvghP/rRj3jvvfc4OTnpXIf58ya8X0j+fBdi68Y3nGsxASY2p1JCXhg/NcfDuRcK8mE9RQiPrVHf5b/fHz5gJO5/ZS34CjixaLy8vOzu2hVLM7nf1Feyy2//069PrP7++3BP8E+Qx8Yq7JOw/2NjELrhkucpYfm6YZ3AHYsba8s6AXpT2f5n6v26+sb283Bepeb2urLD9+vaGBN+Y/MiRY/C3y/Sl5vWYlj+dWnNOtr5acd7U3lb+r2efg+AJs8ptvT7c0G/1WTC0Bje8cZ5S7+39HtLv0k+39Lv1fBFpd8perqO7ob18Ovqg8h+3/v5+xZ0Mdrttz+1T8bipvbL8Lc/L2P7jMxd/32M92iLdmkR/etYF+P/iL2TW+4MfwlrTS7gdw8LDlfACRbwFYBbY0HkEyw4vO/yKd0zuXv8qft+gC3/CvjAfQpofcfVS9J/2tBggeenWFAaV84jl/+rXry3sG7NpZ6KJei9wILoYj0/c/GkP/ZcmjkWRH+ItZR/1fXPwPWVxoLmPwT+O/BdV5dz6JmeBUOc8ta3lhYeSinVebqB5/f+2Gc4V2Wex+anP+fFy0Jsrm/aI/1n/sE0iRPOxTAfAZjFm50xyyt4fPptjPUqJN51tNZMp9OujkVRkGUZJycnnJ+fc3V11RkCVFW1wqPN5/Nu35A6+P3o/w7rG+OpfBoes+AN+8TPx89jHa8W9vO6vGIhtQ9u2vNDWhjKIKn2pWjoOn4wpBEx+SRWtvCAvkeFdfnExq/bK4ODYzG64OexiYbHDlDH2p6qd6pfYmWFZfh8YJh/bD6E+YdlhjRoGz67oNx/Sru7mEvI+opsoMkGCt1TZIUFxjNlyFrQ2gLVmbJwsYDkHeidsgI3q3E6MNzQAeI+aE74XMDwhUFXBlWBcp/FDMop9CaQTzT5LCNbFDRNiWpLjCpQhabIG0yzwDDFNGOMaWlpaehZYJycGk1tNDWK2uTUqqVxLtVb4zoLDyD3aKoPjBrflTyg0R08LpbikssSGG9Q2L+GOXPOueQZZxxxylNOOeGSC6ZMqKgcPNt+eZ15m+Wn6dypQ13BYgZTZdkp3YLKQFuR3VqQNwpTK0wDWWvcjeEVcwVjKi5RXFBxyZwrZkyZs2BBQ+163O/1L13Pb8M2fKbhhYDxmGCeYirCdCnGx3+/TgmREsxjDGysnOsoU9YpQNYpU2LPfSZN3F+dn59zenpKURS88sorDAYDgM4dab/fp65rZrNZl9fl5SVXV1eUZdnVXYQosfy6urqi3+9z48aNzt1oXdecnp52wpDcuVYUBaPRiMFggDHWkv23f/u3ee2119jZ2ekU3WEoy7JTnvpjNZvNWCwWjEYj/uAP/oA/+ZM/oa5rHj58yHg87gS53d1d9vb2GA6HvPqqldDFlasxpgMJqqpib2+PXq/XCcZlWVIURSdAaq0ZjUacn593J6cHgwGj0ajrZxEA79+/z1//9V9zeXnZpQ+FTaXUyunnF1VgxQSfcI6EAnzobsufMynmPbVGYoogv+xNir11goefXvpIgBtfaJa4VVWt9KdYkYly3XdVLIJGKKyF/RezZgr7KnQ/JiEGNki9w+fh75QC70X2q3UKgnUKwti8SY1z2LZUHrFyrzP2Yb6p5+FYxdZRrC/CteG3J5Y+pizx54HfF7H2pdoW5p0K4ZxP1dXP048XmzPXaeumdbwpbOn35mfyXN69bgwPtvT7c0G/TdPwtabhJ0BrDGzpd7T+4bMt/X6+zC393tLvLxr9DveD2B7kh5j753AOxtoVm/dhHVLzPjUvlFLPXXkRG4fYmgjLje1tsb6Sv1rVGG0skPvY/Q2Bb2BBXuN+77vPBgv04t6dYO/E7kMHIMMSKB65ODtYl+pHLF2PP3J5VFgwuXbvDl38ucvrBkuA+kWDdF/myhdwv3btGLM8FKBd+V937Vi49K1rw9ylv4MFx3H5DFx7Gxc/c2144vIcY/ty37X1mYu7wALsJ1jQvoKszdDN6sEtAaZlfIXeQHyPC8M6Gh4CzBJSLq9Taz52SCScixIvpGebeFN/L5P8pU98sL2ua6bTacdX+QfKBLRbLBZdH8pBNv9AmzyXsuu6XgH8Yl4XwkMn/vry63sdGh4eVEhZ8r4IDY/R6fAzxYvE5lZsv5ZxDcHRTd6Bwv0x/B47eBALMVop456ifWG+KT5V3q/r8+vSs5DuhH3mlx++872Y+HM6lS41ZzbxSOHzdXzUZ0nDv+xBergDm113KmUfKixomOWKrGf/8r4i62uynkKXFlC01uItWQsZhkyJC3AHkMcsvw1xYLyLwyogbgjSuvctDgQ36AVkC/up3F85g+FUMZhaUDyf5+iqpGlKjOlhdInONUXR0LYLDDNaprTuTvXGGGoKaloLjKOp0FS0VCanQSOQNWiUdweLWenn52FS182uj5SzFGcJimP7JTO2FEPl/iYOGH/KKU844xmnnHLBJVOmVFSeM+8vJSxug/H+nDv1WsHcWJYpM1iX+xnoXIFSGKNQLTQ15K093FGbhspUTGm5BC4wHjA+Z0YVHEZog9H+kvb/NmzDZxCuDYxvUvSE78KwTvGwKW5KSL9OvmGd1jGFsfLW/faF+zCe1pqdnR2Msad8Dw4O+OY3v8n9+/d5/Pgxw+GQfr/P4eHhyklPsRITSyux2DHGdC6yptMp0+mUoihYLBZMp1MODg54/fXX0Vrz7NkzLi4uuniibNdas7u7S7/f5+DggH/+z/85dV3z+uuvd4r7dYoG3yrp6dOnfPjhh1xcXPDs2TPKsuR3f/d3eeONN/joo494/Pgx8/mc/f19XnrpJX74wx92den3+wyHQ5qmYT6fM5lMOquy3d3dFWZZ2pzneacsN8bQ7/e5d+8eo9Goy+fk5ASlFLu7u5RlyXA45MaNGyilur7wraRi4xsqbsJ5FhNyY8qaTYK87/YqNn/WKbLkM6bEjM3TmDAYa7sfxxfu/dPjIkgvFotOYJeDH8YsLdckve/eUCzOpD7hAYVUO9cJbKk0fhy/rSl3tKm+D9/5z8N6pfaYda7AwrGItTP2PswjJriFc3nTnh3Ld91eHD5fF0IhM9ae64Tr0p+Y0jVsQ7guwvihQkji+Gs3LDulBImVv04JERPwN/XxurCl3y9Ov2/s7HB7seD9puFgf39Lv3+J9Hs2nfLaeMwHxnRXuK6bX1v6vaXfW/q9pd+/KvQ7zBuWe1BYj9Rv4Ln+kO8xt9Fhf6bWdZgmNR/Cste5tPfXerg2/e8x9+yST57n7B/s88w8s5bTd4A/wILC72JB3F2spXgJHUD8DAvuzrDg7gwLGDdYALuPdQ1+iQWLp+77bawFeg48cPmI2/QjFzdzeci93jvuGbw4KN5gQesF1n166dp0H2up/YSlNfstrHX3DGtR3nfPz7Cg9pnLr4cFvAVYV6xaw1cs7xffwbqKP3RpJ9hDB5qlhfyApdb9EtSF6u4V98fYB8P88U65Ho/NMT997ICNH/xrPYS2hXvwdWi4753Fr4dfZ38fCoE/fx8L6y3X6Mh3v5+EbxS36lmWdXeGyxU3wpOJFyLJx3eh7nt98YFGn8b7Y5RyL7+OBwj7Q3iMMK3fd6n1HobQSjpWnvSFfyjULyOsS8rCOEavQjqUAt79sU3NxZC/Se23Pn2M1T/F74TvQ3rrtynFq8X6LuShNvFVfvqQFoc0R2u9ckhG4vieJGJp/Tak+J2QX/br6LflOvLANrxYMHhguBagEHShyEpF1lcUA0UxVBRDKAeQl5BlkGnjXKkbdGuBbK2MBciN/ewsx00IjKdA8uVz3X0GcVrT3SOunYV4tsCB46Dn9rM3g8FcMZhr8kVGXmfoJqcxOYYMpTU6h7xoaNuK1sxpmVI39ta2um2dtXaLIkOhUWQOuFbUxtCgaa09vOtP0/UryW+rwLhykLq00QfGnY06NXNqpsy45IITnvGUZzzljDPGjDuI1rda/tIGA0a5T4O9Z1xZwLsG5srOKRoghzYzLJRhagx9DHndklcNuqqoKkPVtMxazYVpuaTlirq7WXzhHKivuk//Uh9J2IZt+MzCC1uMxxjLT8M4pJRT4fsUU7xOYbiOkY4JPuvSrFM2wPPu3SSIAFQUBTdv3mQwGHB8fExRFHz1q1/l3r179Pt99vb2uLq64oMPPqAsy+5Ub1VV3b2jxlgLM/kTJnY2m1GWZSfofPjhh50iXix/5PSw5C3KzkePHvEnf/InDIdDjDG8+eabK0KifJe7RP1+qeuaH//4x3z3u99lNpsxHo8pioLZbMb9+/fZ29vjwYMHNE3D7//+7/Ptb3+bv/iLv+DP//zPOTk56fpF/vy6SX3yPCfLMnq93kp7er1eZ2WmlOLWrVtd2rIsO0u1+XzO3/3d3/HRRx91THRqrGICcWo+bgoxxU1KiL9OPjFBz6/vOoWqr0yNpY8pW/20/t1iMg/E5V24fn1Fui+Uy3tRvPsCka+Q8PsqrE+qfb4wntpHwn1p014VmwfXUaKuG0+/r1LzcJ0QF86p2NiH4xprT6ysdWWG39cJiqky/HrEvsfoQOgCNzVmsT7xf1+nbWF9fYVDTGhPjXNsPMJ0qTEM+ySs47pxepGwpd8vRr+/VlV81O9z2O9v6fcvmX7fxJ6kP4mM1ZZ+b+l32D/+9y393tJvv/2x8EWg37FyYvP9OumAtfuHX3dYBcXCsY6N7zpewC87TBOj75v4Ct/q10+vteayuWTan9q7xUdYt9994HeAN1kC1GdYl98Dllbcc5buz41LN3CfGVbDPHa/5Q7u91i6IxfL7RlLV+lzrNalAj50zw6wwPUqXrg5zLDu4MdYi/Ye8JsurwEWAG+wd6dLO94GPnbt6Xl/0u6MpRV96eo6ZHnnuHa/M+hOqL2C1fyKNbqA4VPgT4DvufQayrZc3m8aobXhwSef5sizWFp/PfrvhKbF1izE10VYVrg3hYcx1tVNgNvYvuvv9f5+KfRF7lwXbzuLxaLjpwQQ99ehgPRy+LBpmhVPRfP5fMXjixxyE55A0iq1av0deqUQEN1/F9ItP8T6SfokdqglBONj++y6/TbcB8Mxj7kcj/FTIU0IeZ0YHyV6Px/8D+dvjDbE6p4Cq/3vsfrGyrnOPPfrIm3w+ynM319/Ie+S4q1i45bif2QOx9rr5xvSFXkXOzAR44HC+sXmcYw324ZPGaS7NZBh7xHPFKpw7tL7inyoyHcU5RB6O4piAHlpyDKFVnTgd2aMdauOITdLcHzl3nEIrMdZAcqB563CHRiuHRhOC7qx33VtgXFdW1BcVxYQzxdQzKE31/QXmrLS5LV2wHiGMdZ/tso0WQF52dC0FU07pzEFGXIWrbWoqjFgcgeOC5CtyLFkvUHTmnbFSHnZxeF6N+DdLN71i4uroAPeVXenirUUr7hkwilnPOOII57wjDPOmTJx7rxDF+pfTmjW9rD73oLR1k167Q2QcZbhdQYLDVNtKE1LaRR525A1oBuoqoaqrpk3MG5bJqZlahpmNJ4Dden158f/yzkC27ANn024NjAeU1yEjEnq5HZKueUzm/I8FmJKm/B5LO11FGjrlEU+oxtLE4YsyyjLksFggNb2Ts/pdMp4PMYYw+3bt/n93/99vv71rzMajXj69Kl1Eerya5qmsyITBfre3l4nQIjLUbFEv3HjBi+//DIff/wxk8mEk5OT7l7Pfr/fKZtFSW+M6dyjTqdTjo6OuH//Pg8ePEApxc7ODlmW8eTJE1566SXyPOfhw4d84xvfWHHRmuc5X/va1/jbv/1bzs/PKcuSGzdu8MknnwBwcnLSWYc9fvyYmzdvcnp62rmYlf7WWndKe7n/UoQN+ROgQNy2yn2r0p9lWXJ8fNwJePO51WqMRiPeffddfvrTn2LM8ydMU4q62Bxf9+nH9fONMe+p9ZOaW5uUXDGByM9n3fyPlRmuy/CkuL8OfOFY5oZ/stcY89xdpFKnUKDyFZgxixY/xASa2P6wrn9jeW76HobYyf9U2X7bw3xj9VpXbkywjn3670OB8jrppG7r6pF6nurjTX0vZaaE1lQ+qT6MrQn/96b9IEV3UmGT0mbd3IrNieuWe52wpd8vRr9HSqHGY45mM9rJZEu/f4n0WxvDK1XFd7VGJdaYP75Sxy393tLvVNjS7y39DsPnmX779QrXnU+Hw3kt8WP0PEbDw+C/99MLr+ADEeEYhmVeZ13E5kYI0PhtDPe/LMsYDofWc0mm+Wj8kbWUlhNVrwH/T+CfYwHpx1hQuWFpJd3Hgr49rIbkNp0SnysscHwDq328hwXY38OW84lLM8VaowtYLPd2t668K/eXY+/73sdqVQ3iFXX5WzSuYff1Xb0fu+83vPJPXVsq15bCfcrd5o3LTwB77ersu1yX93LP+szVZc/FM9h7xXOsZXzj4k1d/fax94r/qf2Zz3MKVdCq5+9BlrkbW9syxuFBMZmbfhw/xA6WSbmx9RlaSafokMSVMmLrI7Zvh+tX6HDYbn+Oy6dcfyLlNk3T8WhAB4DLb2nHfD7v0ksd/INd0u++fkTA7phlvqxHaZsPBMdkh1S/h+vdlz188NEvK5wXMd5e8k7R6lT9wvGKzT+/3HDf9d+l2uvnJelT/Jukj7UjlmesvjGamqpTLO+w7Ni68esYHoaLtTlGc1J8Sqq+fojxXSnew69janzDAxnyXuq8iSffhjVBLT+VAjTWWjxX6EKhS21B8YGi2FGUO4pyV1HuQG8ARQl5Zsi16dymZxiy1pDTrgDjFhwHrQgAcToLadx35F0XxwHjzjpcNaAaB5I3WPCygqy2nwKMlwsoF5pyoektMsoqI68ysjonc8C4IkNniiyHPG9p8pq6rajN3DlFV7ZvGhyM3aJM0d0LLpbiFhiHFuVstd3cd/8Lu+A/lc5X7n/7z7j4pnPKDg2GBQ1zGsZMOeOCZ5zylGc845gTLrlixryzFm87QHy7Poyx89u0YJRl+Wpjn7cCjCvDQsNEQYGhwF0LYAyqNdS1omoUixZmbcvMtM6Vfkvt7MRX73K3fb/8vg3bsA2fNryQxbgfNgkCMaZnHXOXyjv2LvydUmSEzGyMSZR4IUMaY5Bi5Uu6LMs6N6JlWbJYLDplMMDt27f59//+3/Otb32Ltm25vLykKAr6/T7j8ZjhcIhS1s1lv9/vFMS7u7ud+ys5OTwajZjP59R1zdHRUXcKWOo9GAw6C5+Dg4PuJPH9+/f59V//df7qr/6K8/Pz7s7Ry8tLvve973FwcMDe3h5f+cpX2NvbYzKZdNZcYdjb2+Of/JN/wmKx4NatW3zjG9/gT//0TzvLOXGd+jd/8zf88Ic/7Fx39vt9AAaDAYPBgMlkQq/XI8uyDhRomoZ+v7/iglX6V5T/VVUxm826tpdl2Qltcj/r+fk5i8WCq6urTkCMzZ/YHEvN2+soQGMMfUy4SimRQ0EpDP5c3qR4Cud5TPjy4/lrwRegfYE6FGxCV1fhXmCMWYkTurnz+8Lvr1BpsM6V27p2bxIaY+s/JiDG8gjDOgVganzCPMO+Twlx65Q+sTakhMhUfWNtWhc3VIquq3tYh1idriMwrxNUYwqHdUJx2IZUnLCMlFu7MI+YAi1Vnl/uL0IY39JvVtru0+9+WfLGdMrfNw1y8caWfv9y6He1WHDn4oJ3FwsWkb1qS7+39HtLv7f0O9aGVJywjC8S/Q5pXKjo9+dWLB08Dw6EfeznHxvT2JwPvSj4eUpdwn0vHLewzika7gd/7ed5zo0bNzpw/GR6wmK6sJpJhQXF/19Yd+oG6/687/4usUCuxgLBuywtog+xwHbl4tbu2dg9f+ieGay2WqyuBSC+i61DhnVz/irwI6x79ZKlpfgF1oJ9qdH2OjTSeI21Bp+5Mu66fN9h1fX5j7BA9gyr8ZEyRu77pXufu7+ZS7fr8ihc+3Is+L7vns1dGwuWbthrl6bBgvTOnbs+0ZSTMmoB6gNqkN7vwudKqRUAe6W7IntVuEcrpVbuNffjQvqQT2gRnOKVY3M93PvDeD7w7YPi8kziCZ8kZc/n8yhIL/mAvXtcys6yrCtbvMP418zJ3hIeHotZy8faJ+E6dETi+QD7OrkjBobH9o8UP7CJ7oTlhHUI2xZrV/gZzt11+2bst39Y47o03Of3UjxPiqb739e1MzxMHauLv45SwPS6MkMaHVsz4ZxMzYXwQFXI50oI65nyjLIN1wgq+K6woHiGtRIvFXqgyYeafFdR7GnKPU25r+mNFP0d6A0MvRKKzJB3QKIhMy25sxbPTeuAcdxd4yzvGgcLhj/nPj14ZpwrdYc8CzCuW8ha99k4a3H3mTmQvKgVRa3Ia0VWK7JKo6sMXWl0naHajAyNUppMGXTmZZbVYOyfMTVGZ/aCagdfa6PQ1GQOFM86kFxcqisHh/tdrliCpG69dJ8CkFtA1c/BUFMxoWLCJSc84wmf8JgjnnLKKVdcMWNGQ+1Bs9t1AR4obgBl74zv+E9ArMZbZe8ezxVuzrb2IIcxKGNoWkXTKuoWKtNSGUNN65ynswKKf3lt9LdhG34x4YXuGI8pQMLf65ROfpzwWVhGSiiJKXmuw/TFlFEpZUJMcRPm7ws28lssw0WgMMbepfnyyy/zL//lv+Tg4IBnz551yvS7d+927q5EMBFhT1ysjsfjzm2W3E96enrKYrFgMpl0rlaFwbu6uuoEnN3dXW7evMn5+Tl37tzh61//Or/3e7/H06dPefLkCVVV8ejRI1599VW++c1vcnJy0lmI7e7ucnZ2tqK0n06nXZuzLONf/at/xWKx4G//9m95+vQpV1dXlGXZKb6n02nnLrbf73eKcK01o9GI3/iN32A8HnN0dMTx8XFXhlgz7e/vk2UZeZ5T13X3XFyJCbP61ltvUZYlFxcXXFxc8NFHH/GDH/yAs7MzZrNZB4qHwVe8+PPBnwMxpjk2F2NzLhVS6yjMPyaYbVLy+SEUklNrct368ZVSMna+MkEEWik/7JvwTndjTOfCLdYHMUEkXGup9sbaFWtjSsAKn8XKiJV5HaE71s5Q4AtPXMeUD6GScJ2QGdY3Nc4x5UVKWN7U/lS6WNtjfbtujqbKT9X3RQXZWP+k3Ob69Q1Pl193/myq34vE3RS29Pv69PtQKT5oW6s339LvXyr9vjeZ8Gyx4Elk7m/p92qdt/R7S79T6a7b/i39/nzS7zCPcI+J9W+MPvrt9fOKWd6GazhG22XNbBp3SRdbr7E6puob4xn8vjg7O6NtW56dPuOyvrRKyRHwDeD/AbyMtbAeYoHo11je1S1AMliwWoDeMyz4m7nPKyzoO3XvZuCMu6x++NjL5ybwOhYg/grW+nzf1eNDl/Zt73mDBdwLV77Urceqnhv3+wb2nu93sa7Tz7CguADXl1iAf4AFuq9Yuj3fx1q7Ny6tuF6/dHFaL6+Cpbt4wyogrrD3tItl/AT4MdaN+iegrhSDyYC2eX4tyh3aKRoOcRAxtqf5e3Iqv5DWbdqXfCtR4TdCl9t+COsqNDe2Rvz0MTfe8in8kuQnoLgAybI+xIW6T4e01h0g7gdJL3HEAt2ngXIYzs9r03oOQ4yG+2l9bxCxPvDH5jp78aYxlbGR9oTl+rq7GD30Pe28CB8Zfvc9bcRoaSq/kL9I8QSxfFL7vN+GVJ3DfTZWx3W8WNjGdfs+PH/4ch3fJe0K+1RCjAcI+3HdWPl1/nlp+K98iE3D4JlSoLSy94qXCtXXZANNtqPJR5pipCwofqDo7Sl6u4reAMrSUGZQqpbctOStoTDOUtwIOO7uGMdZ30LSZTru03etrlsczTUg4LcDxTNjARPdeKC4AOOVcm7TFXmjyWptAfFKo6oMVWdkTUZuMjTaWsp3GTfQNMuMTQ0mR6m6s+vWKDKjaFBkGBosyN7am9bdn3KdLa01yc9VYLxlCY631CxombDgkktOOOIxH/MxTzjq7havqFccqK/m/yUPhu6ucViyTOIdv2mgUVAp39W/G0Gj0caC38YoWmOvkGswNAaMA8b9TynUrHxuw690CJf4Nnym4YVdqa8TCPx4EnwGKMaISZyQ8YkxfD4Tk2IEU/Xz84gpGPz0m5RVsWfCMAuj3+v1uHXrFm+++SbD4ZD5fM75+TlFUdC2LYPBgPl8Tr/f7yzMRcCZTCbdydmqqpjP5+zv7/PWW2/x3nvvdQpvsd4aj8fs7e0xn8+7+Lu7u929oUopZrMZp6envPvuu1xeXnbuTPv9Po8fP6bX6/HSSy/R6/X4sz/7M958800uLi74yU9+wmQy4Tvf+Q5/+7d/y5MnTzg4OODb3/42k8mEBw8ecHV1tTIHFosFx8fHlGXJzs4Ou7u7nXIclq47xXUr0AlwYkW3s7PD3t5e19cisPR6vc4SbTQasbOzwyuvvMLFxQUPHjxgPB7z5MkTHjx4wMXFBfP5fCPTmxJOYmliefhMeqjMjqUPy/brIO9icy6mkArz8csK3XpJiMVNrTU/XijMxgSnmFWaCC2+O7eUYiN2onddH20SVFLCcypuSskXSxvLKzW/YvFTguqmfK8TNs2NWLzUHFm3l24S6MM2XUeA9+On1m6qPX7a69Q59t3vt03jvWmc/Lm8qU7hXhLm+/MI5Vv6/Xw+fhD6fag1A2P4oN/nlS39/qXS7/z8nHY2Y1nKln6n4m7p95Z+b+n3ry79Duvmr7XYvFtHf8O9JxyrGA0P8/Xzvs64hnWDtKvrMKxb034QcE/nmlkzwwyNBaX/GdZt+oSllXaJBcynLK3Gp8hFmxY0z7GKp5lLewtrof0AC3TXLg+DdaN+Gwtqz138G1hA+xKryBI37FMXZ8el3cGC6T2W95c/xVqlT4APsAD2DS//HRe/dWnPWFWSTbCW7APX9kMskF25uoil+tily1275S7xD1x5t9x77eI02EMF2uXtHxhoXRsvXfofAc9gZ7KDahUtzx+W8umFD1qHYRPfKvRJqeVhrhhQlqJbsnbD8sL08jsFjobrKrTM9p+H7Qhpp7+XCMAu8eQgZvjebz/QWZULDRceLka3pGz/gGcIEvv97PdRKr8Y/ZB8YjxIzCuHhNh+ERun2N4Um28+z+eH6+6Nfv7XoSNhfWP8axjPpxvhPriOL4nxBCF4HOu/VP3956l4qT7xxz7kS1JrLEznp4kdoEjlK3n73g9idZS5sY4v/Sxo+K9kECxWq+WfUh5G61x2KwDjQGGs+3TnOj0faYp9TXmgKW9oejcU/QNFbwS9IZQ9Qy+HUllr8cI4ULy1luIWHIfcODfr0FmMYwjAcVbcq2NwrtONsxIHalD10kLcWqGvAuPKAePWQlx34HhWafRCoxcZepGRVTlZnZO3FhhXuPmqW+yl5S3oBuPQdmNyjAPHcQ7ONYoGjTa6cz4j7rSXbsyVOxKA+74cnlXw2njwuYHOBrlx1uJTxpxzxgnPeMoTjnjirMXHjJkzp3XWy8t/2yDBYOeVAel8wFqPG+zSsEbkxh1PMN1BDWv/rzBGRoruuxxBWP65PX57MOHLF7ZD/QsNL2QxLp8hg+G/S72PKWpCJiTG0KTq4Yd16WPv/GcxBgnoLLyUUt3p2li54nJKLKPKsmQ0GvHGG29weHhIXddcXV1xcHDA7du36fV6XRniPlQElvPz85X7nqqqom2t29amaXj//fc7pTzQuS2VOsznc8bjcefaVFy4zudzlFK88847/MM//EN3B+pwOOQ3fuM3unr82q/9GlprTk5OePLkSae4f/vtt/nWt77Fu+++y7NnzxgMBrz++uv88R//MR988AHT6ZSyLCmKgslkwnA4ZDQadUz42dlZ52ZVBC+xzsvznKqqOgFS8hFX9MPhkKIo7L2voxF5njMYDLq2f/zxx7Rty+3bt/nggw/4r//1v/L48WMuLi46V/bhHXXh3Egpj/z4YZrYXFyXxhfGYnMuxpCn5u8mBYHP4Mfcofn5bRJQYu98wdhfB1JOePeXCPOhtVQ4Hv6zWPtiQlHYltQ4xNoTClepNOHzVJ1jStHUfpYSKFNzKuzTWJ5hG2PzZN08jPVrqt7rnqUE+VhIzbfU/PbTXKcOqXr55cRcAce+h3UM80nRklhavz6p/SDsp58nbOn3Zvp9U2teLQqODg743S39/qXSb3NxwZ3ZjHeU2tLvLf2OtmdLv7f0+8tCv8O8QlDcfxfS8Fg9/H1jEw1fR9djazBVr3U0XMbRr0+e5x29FXoRW99aa/I8tzSopzgbnNHcbOB3sJbZCyx4fA8LlO9gteYtFlwWMLzGAufyXWFB4hZ4hgWVM6xSSgDxufc8xwLSZ1jwWIBouedbu88pS0B+D2vNLtbqA/c3wgLyPffuKRbgfoIF7XtYS/GfYkFocYfec+/3saC24K+fuPpM3bMKC+bD0rpcrMKHLh+p6577vefyLVm6Zi9ce/ddf/0t8P8F/tH2WTktKdsSk6/ebe2Pow9WxvbS2Nz0aZU/j/00sXyFlwgBWP+ObIjvfdeh4TJvxXo7tr5Cl+fraHhsbYrXHT9tGCc8/ObT8bCc1L4q6cOxkj4P3WhL3SSvMPhtD/eNGF1K5SN5+e9D/sl/FrZt3f6c2uv8Qwdh3NScSM0R3/1/rN0xGh47JJniR8J2pD7le4qfWrcGU3PUzzNcYyk6bczqYc1UmtAjjx/8uRf2dRjPr3fKG0msT6UO2+CCcn8ayDSq0FBkkGtUriFTCBqtFA4cNygFWht0Dlkf8r6i2FMWED/U9G8q+oeK/gH0R1AOl27US+VA8ba194q3hrxdWowLIJ4pCxErWAHCfZBcnmOwYHhLd5+4uE/XzlI88z516+4Wr8VS3LlOrzXZwoHi8ww1z9CLnKzKyeucrMnRRjsw1PWLNijVonWLduB41jYYZb+bVoOxDIqixaiW1igHZS8h7bYDxlvPpbqK4GcGOmDcuN8NhoaKBQvmXHHRAeIf85gnPOOYUy4ZM6ei8Rx5Sw5swfGVYEcDTPdl+cz/Q8Bx13mtfDHdoxUwnJU+X/b68nMbtmEbft6gTEqTFISyLJNCsi/YAlHGQ0KMqbnOu1T8lcasEWRS6UUpLaC2CFu9Xo/BYNBZbIlwrtRS4S0nd8uyBOju2dzZ2WE0GmGMdUd148YNvva1r3Hnzh1u3LjBcDhkMpnQNA2DwYAsy7i4uKCqqhVF+dXVFW3bMp1O2dvb6+rZ7/eZTCada9TZbNaBAIvFolMmKKU65fpwOGQ2m1FVFUop7t27x/7+Pq+99lpXz8lkgtaa8XjM1772Nd577z1OT0+p65o33niDd955h729PS4vLxkOhxwdHTGfzxkMBp1iYjqddhZlohS/uLigrutufhRFwf7+PmVZdmBCr9frXLdWVUWv1+OVV16h3+9jjGE2mzEajTrlep7n7OzsAPDgwQMePnzIH/7hH/L22293Qiks78ry3X+GcyZUEqWAo9S8ii2hmLAQ5hHGXxdCgSFV5qZ3oeATKoND4cOP5+cVnhD34/r1CBUBEkIBOhSYQndnMYHbF8bXjV1qH1g3jinhOabISAlrYT4xRUAspMreNObXmW+b9t6YsBvr85jwHtYntW5iSo3Y99Q8W6fUiIVNdYrFjYWUMmbTWl9XNz9NKn8/xNwiXids6fd6+n23bTkAftbv09/Sb+CXR7+LuubNtuXHStFu6ffKuy39fr5P/d9+Hbb0e0u/Y3G/iPQbYDAYrKXh4rHMLztFw/204fMXoe/+HJJ5lZpbsbxlj8iyjLIsGQ6HKKW6A1R7e3tcXV11YNJsNgNgNpt1AKHQ+oaGR8UjLovLJTDcYsHe+1jL8Tewbr9HWABZ7tLOgRNWge4MOMWC5FcsgebCpblwfxpreV2671MsuJxBB65X2DpdsXS9/jWsq/W7rjNmLj8BG25jAflnrg4vA++7ehxjwelHWAB7hAWvcyxIXrh89rAA/DNXj9z1ycDlP8AeBsiwBwYuXFtm7t1brq2ta9eIpbW5p/RljHUJ//8B/tL2edmWlKok01l3gM63Zg7nW4wOxOavpI0985+nDpWF5UsdNu3b4Rxfd8A0VucwrdTPv1db+NcYDfetz8O9VfK7Lg2X535cH/SVPP36rdvL5VN4tbANMf4n1U/++09Dw8Ox8OsX8jChFXqKJvi8VjiX/OfhuPl5hvH9vGNtD0Nsbfht9+OF7Q37LDa/YvX1PQSEcy81rrGwbhxi6yvVH6nxCePGeJ4UKB/2W2qOSZhOp9E2bgrreJMvXHA0SlkUGooM1c+hn6PKDNVzALmiQ6EVBq0Myv3pzFD0Ie8byj1N/1AzuKnYvaUY3YLdQ8Nwx7AzNAz7Lf28pZ8berQUbUvRGvK2daC1daHeWYorbFnG/pb7w4GlO/VVdHkJiBsHfgsg7t0vrltrJa5r0JUiWyjySllAfKbRs4xskpFNC/JJSTEtKWY9ilkPPbd/LHow78O8T7sY0C76tNWApiqpmx5N3aNu+jRNn6YtqNuC1nh/ZLRG7he3btRb55Tbh7xXgXE335+LZW+tbqiYMWHChGNO+BmP+JlzoP4JRzzlhClzFlTU3d3ibO3FNwR/xcvyV95z5cc0z6daHnIwK/+b4Ol2BLZhG64XNsny8CktxiXzFEMVCifh8xdVSKSY3PBZqi6x/IX5EaHcGNNZGIN1b+or94qiwBizcmo91g5RJF9eXrK/v9+VuVgsGI/HjEYjqqrqFIZ1XXcuSNu2ZT6fU5Zlx3iKktwYw3w+X7mrM8/zFcWjWGUVRUFd11RVxWKxYDqdslgsuLi4oCgKdnZ2UMpad81mM77yla/w7rvv8g//8A8opRgOh118sIzge++9R9M0XF1dddZxohxvmoa7d+9yfHyM1pqqqjqluig8RPEuz5RSXRlaaw4PDymKorM4E6u1tm2pqqpzLVvXNffv3+fg4ICiKPijP/ojvv/97/PDH/6wq68vaKaEkNhcCsczJgTHxj6ldArnxrp3KcEi9t7Pz79jLBVSQklYNz8vX9gDkgoGv76xk+Dy3P8M8/DT+fH8sUsJiuG7lCtLP01ouRATslJ5+KfwY3VZ1z8xZUSqbjHBPMw/pQSIpU/VMRQkY3nE5vq6cYk9j9U7Fm/dHr+uHWG81LiGdQrzvW67wrHZtDZiecboxyYFw6cNW/odp98aq2+eGcNfK4UuCsot/f6l0W8N/Drwj3lOu6Xf0by39HtLv7f0+8tFv/28/fJ8YCek1RLXP/Dmt3XdOvBDuJfC8+6Hw/1G4qzLT+ol3tbA0irJ++TkhJ/97Gfd3tbv9zswXMpqW+uRxWSGaTulobFA8AALHt9hqYmUO8FvsgruNlgguHLfJ1hgW+7PFgtzw/L+b7mLtMfSKrvBAse3WFqAixv2C/f5FFu/Gyzdk9euvDHWAlxjAe051qq7dnV/wPLO88q9v+3qAxZgP3b1mbO07i5YvStcAHTpk2euTHHlLhbju64e0kc7LN3LyzmrCvgZ8FfAH7u8gDIvGZohpn3+6o7wkJQ/v2JrKrTWjc1x+bwOvQ73Jn9dpPYc4SN9GiDzT/hPfw2G+4A8jwHYPl0NabifRwhcx9oo/G1IR+VAQkjD/TrEaJ1vSR+THcKx8tsaBr+8kA8K38XaJnlsouFhG0Jr61g7JX2Khod7rz9fwn3Ol01CC3N/DGJ19udgqi/C/o3RrDDfcL9OrRn/fdhOyT82z2N5hzy3H2L0PVaXsD82Bb+ufn+E9DDcg2LzOcYX/CLo+hcqKCwgnoHKFKrU9q+fwzBHDQpUL7PPCk1nMY5B0dpP1aK1IcsMxQDKIfT2YHCoGNxQDA9gMDIMBoZB2dLPWnqmpdcaytqB4o21Gu9AcUPnQl0p580dAcVNYCUOYjkuF0ArAcY9K/EVYFwsyBvQtSKr5FN5rtOtxXi2yMgXOXmVkbm7xVWboTxrcYPBKINR7bJw3aDaBqUalKrdnyLTGtVqd9O4su1Rme1LYzqwewl589z3ZVg6XVcYGmpnKz7jggvOOOcJz3jMEY95xjFnXDJmxtzdKy4O1Ldw7HWC9JAC/K3DyLPnnjyXKsgr9f82bMP1wmYqmg5flrn2qe8YTzEfPtMWO2Eay3NdeWHZfjmpdLEQU8YIUxsKXGEdmqbp7mZK1U3yk3vO2tbep5nnOYeHh+zv73Pnzh329vY6Jf3p6Sm9Xo/ZbEaWZVRV1VmOiZJZlP3hSVywCgWpe57nGGOV70VR0DRNZ52Q53nn+vTmzZvkec7JyQnHx8e8/vrr/M7v/E5Xd7k39fj4mL29PX7rt36Ld999l7Is6ff7HB4edlZgt2/f5qOPPuIHP/gB8/mc27dvd4LZZDJhMBgwHA7p9/udxdjt27c5PT1lPB53VgHi8lXubxUL/Ol0ijGmc92qlLX2m0wmvP766/z5n/85b7/9NuPxmHfeeaezdhO3e8DK2MYY3JgQEs6XcG7571JpUnM3NVdTiqp1ZceY+rAuftqYAOrns6mv/HxlLqbakhIkUtYrqT6K5RlrV6x9qbFdV96mPWlTCNvm1yPMO+zXUOEfq1dsL40Jf2GfxOZNrL5++k37dahU2KRAifVfCkiItWtT38TW6rr04fwILSokpNoQ6+fU+1Sd1rU7lc+nCVv6vUq/tVK8bAz3jeF9rTl2+eVb+v1Lo9/z6ZS3lOJjpbjc0u/n0m7p92r/bOn3ln5/Weg3PL/2/Hnp1z9Gw8P6he2W/FLtCPcciIPhYbqwjDBPoYviCSVsiwT/ShE/z9a0VKai1a6dCgvWyn3Yu1gw+GWsK/XXsC7JB4DBAtU9LOCcs3RfrtznAAsetyxdrIvVNSyBbYUFoQ0WAJc8xbiwZHkP+Cvu/cfYe8DfAH4Na9leYwHyHSzIfAPr/v2xKz9j6crcYIHsBmutPXdtdMp+zrDAdunyG7u233B1PGd51/quq6fUe8ASOFcsreaV66MDl+5Pgfew1vZ/BVxCVmT0Zj2auukOMvhr1D8MGM5XeB6siq3rMI9wz4t9j4GDfn3CtfQie7qU71vES76pPcIHyyUIDY9ZBfv1NsZ6CZK7xpVSXT9Lv6TWXIyPkPrGaEKKFkmIHXqQuL6lelgn/4ocv6yw7WFZYT/6/eLnFdtPNtHeVF/5ZafGMyxrnbeCsG838bWp97H2p/bbsE3+ukjR+tjYhf21jk6mgt8O33vCOtoRW4ubaHZs3skaXddPsbzk2Zc2KPuncoXKFbqnUYMMPcxQOwV6t0Dt5EuwPFMoZ6ZtXZYrVNuitbLAeAnljqG3C4M9GO7D8MCws2stxQc9C4r3aem1LWXbUtJStoaiMeSNdaGuzfI+cQHE5a9znW48QMh4ILkXRws+bZyFuHH3iztgXDlQXNf2M3egeFZpdOXuFJ/bO8XzKqNorPt01WSoVoERoBoLirt7vVvlXKfbAkBnKJOhTI02chLBAuMrsJYxKGVojT10YG9Xx7MHj4HjvgP0lpYFC2aMmXDCKU94yicc8QlPOeKEUy6YMKOmofVuM9+C4i8WYr1lCEFKP5YFxSMSbjK/bdiGTeHnpV6rRzV+dcMLW4xLiDFt8jyWJsbYhWliAnpKUZVi/MM6pxje2LOUAiNse3hHlH/yvSgKer0eh4eH3L17l/39fX73d3+Xfr/fWYiJOzhxXaqUVaRXVcV0Ou3yz/O8+5zP5yv3rYkCummaLk2v12MymXT5X15eorVmOByyt7eHUop+v7+S5uHDh/yn//SfUEp1DON0OqUoCp49e8Y777zDb/7mb3Z3mcpp52fPnvE//+f/5KOPPmI4HPLSSy8xnU4Zj8fM53O01p1iXyzkXnrpJb7zne/wP/7H/+jaNBwOybIMrTWXl5eda1oBByaTSecCd7FYMJ/Pubi4YDqd8s477/DBBx/w7NmzzhJPBC6ZIz4gsm6+rHvmv1snPKbWwTrG3Y8TU27F8g2FcT/OOuWSn094Yjb8Hlun4fOYwBcT9lKu4fxyUwq8lHAvn7GTy37dUv0Sa5Nf51g8/3m4t1xnf4sFP59YHTeNQ6qen0W4Tt6hYiW0Hly3n4YKizC/69QnptiIKVVS6yL8nmrbdQTwlFJlXT+u2zfCfH6e8GWj34qlbtcPI2O4oRS7bctTpfg7rTFaW53zln7/Uun3a1XFmVKc5jm5K3NLv7f0O9YvsTb5dd7S7y39/lWi37AE2sI+kHUUq0NsHvqya9j/4XoL2x8Cm5vmSYrvkHx8MG/dPrAyJ7Ga8EW7sBbiAhjD0iJ6iAWgv4q1Gv/fWYLEsASsxfW4culm7neNBZwL91mytCRXLMHyPhaIv3B5DbGA86XL/5mr2z7WultjQWrJX2HB8bFLX7l0VyzB8wJ41WujH86xVuJDLFjdYgHxicvPB7YbF+eWq1/p3u+7uNrltcfyzvTa5SV3pE9dXY+xgP27wN8DHwELyJqM/XYfnWla1XYH/MJ5BWkaG9tX/Pcp196xdRHLP6RXqbSxfc7PQ67MiQHusbqHeYfW3bG5v64ekoek99el77VF+szvL+kDyUsOacb2A798KSdlee7XX97HLLbDwxChFXWMjoR7TexgTmosN/EN4e/wwERYB/95bD8N6xrO6RRv4sf1+y9sS9gvsXGM7av+Z4p3iXlpSs3pWBkxmuvnG46PP/9TtNzPL/z02+PTpBh9CtP6/EZs35Dgz4cvZVCqo7OqUGR9jR5o9ChDjwr0bo7ezVG7BbpUDjxnCcsaYw2jjbtfPIO8NPRGzjp8ZNgZGYYjGA6s6/RB0TJUDQNa+gKMt4ayMeS1vVtcQHGFc5/uVxm6MjuL8difonOt7t8rrh0gnlljbpQDxTP/TvHKWo3rzmo8sxbjdU7R5NZS3N0Troy3dwCtWlqNG+9yc6WWVuNaa3BW5K0PjBvoQHFlaFFAizFLQHwVIJdkAm23zoH6nAlTLrjkmFMe85RHPOUJJxxzzhVjFixWgHG+FNDYLy6YyPdwt/MhcRXE3YZt+LThReZQSmJVL5jPFzG8sMX4JmUTxJkaP966ZynGC553zRgyQtfJI8YMp9oVMpFKqU7p6zNVRVF0d4f2+/3OsurOnTvs7+8znU65vLzsrKbG4zHD4ZDBYNAp4tu27e5DFUu12WxG0zTcunWL6XTauR999uwZp6ennatVgKqqOoW6MKF5nqOUYj6fA7C7u9spIqQvxa2q/BZ3p2DvcXvw4AFFUXB1ddW1qaoq3nnnHd5++22qqurq9/7773fWc5eXl1RVxf3797s7Sc/Pz3nnnXe6Oihl3cFOp1OyLOPWrVsdACFuYouiYDqdUpYlo9GIfr9PXdf87Gc/4+joiCdPnnB+fs5wOOzuMEu5/AzHNcakp4LEiZ2c9QWkcL6F82ydkBZTHsSUfX6aMH5MQIm1O5ZmncIglp//LOaeSt5vOgkcE3LWCWBhmpRgHqtvqi2pMYm5hQsVBKkxCtuX+v1pQ9j2dYKwX++YkmedYiMW/v/s/VmzZcl1mAl+vocznzvEjTkyIjKBRCYSIECAADgWyZJMklmxmm1Fk7qMZnrssn5ss7Y26x/ST6qXfirr15apJaNU3RKrSZEQOCqBxJCZyCkyxht3PPPZg3s/+PZ9/Hq473MiEyQzI8+6tu/Zgw/Llw9ruS9fy33jvW8C7cZx0/TVuY2PTd/QYoldT6HJsy/PEI7u9xANQuOLrzwhcOsn1L8/LXxR+HcfuKMUu0qxFAKUAot/z6KIWavFQyBXivaWf38m+PftbpdoseCQsMtuA1v+veXfW/695d9fJP5tp++jtS8vt758bc2mv51PqJ+6rpWNxbePFiEaNI1fBkpKSqUXYwFjEgYCVKK0Qtqs0Qq0Etm4/+6jlb8vo62xr6IVuufoM8Oj6n6H1dncfbRS2VhF99CK4ylaOXwHrfw+qMI/rq4lWpkOK6W6qNKKq7CwUlDvo5XfRplvzkA/YeXavVOlCysFe8/CNbLi3avSu1q9f4+Vkv1plc5rVVmuVPEKK31R5Teu4tys8kqqvOasFPbdqvzGzfy7aIX4e8AhiD3BYDkgljGlXLnu9lmEu2Ozy3+axh/X8w6s2plthe7yax+fsn9d5VdTn7LjuOFtcMdy3xhvx3P7k2s97XMB7SoDTTp22kYmdN20G7At3X3xbdq5YX18zI7n1pNP4Wyn49LId0SEkUvcTQUhOcSA/a5pU4PBw5apXD5rp2Pn6ePHvvL6wNfWfF4RfPKXCWvjHArnyoa+8tsyklu3PlnIrSe3n7t5+ni1S4MmOvn6tJ23T75bJz/5PBK4ZftCgSFdjHafngqSfkQyiIiHMfFOTDyMEP2IqCsQXUWUgkgUUQKiOodcoGrldJwIkkSRtqHTV3T6il5P0uspel1JryXpRiU9JekqSVdWFuOlIjXW4hISo/QWrNymu+grfUWVnCCsMIJVXBPGVo6vXKdDVAqiQiAqxXhSRCSFICqildV45TY9KWNiGRHJygW6EvpCIJTG0uChhFr91pdECEkkSlR1r0RZW4wbkUcqXTiFQhiFuDCK8AijJNf5aZtyWSnES0oKCibMOGXEMacccsoTTjninBEz5uRkSApUfRT7Sslu/9/Cp4UmOm5pvIV/CHDbnfDcv6ht87ksxn3ChIF1gk1okSIk7PmEWlewchdffEKlHc6HW9PCAkC/339mp2Oe5/W97aZ1NptxcHDAyy+/zKuvvlpbaN27d4/JZMJgMKDf73P37l2+/vWvc//+fYqiYDgcslgs6HQ65Hleu41TStWuTI2l2GKxoCgKut0uy+WSxWJRTwKjKKoX6vv9Psvlsnblau/aNnmYc9tgNSFTSpEkCbPZjLOzM2azGQBPnz5lMBjQ6/VQSvH48WOklFy5coXd3V1ms1m9QF4URT15jeOYdrtNp9NhNpvxs5/9jMlkghBaITGdTul2u3XaaZqyWCw4OzurLdeWyyWnp6cATCYThsMhf/u3f8uHH35YvzcWeEqpumxGyDXudo3i3Nc23TYVWpzzTXbWCfKhfuK2Q987d5f3Jott6yY8obA+qy87bui9jWdop7WLc9M332K1+943HvnS9tVhqIwmrk1r34SraTK2aVtwJ9J2Gu5333OozG56vjihhYPQ+1D9N9ElRE8bfBPjTfqKD0Jt93kns+twdGm7ST5N/TGUv69dbLJgEIIXmX8LpdhTijtVuI+AnwoBQmz59+eAf7eU4lKe8+Nul86Wf2/595Z/N8bZ8u8wvKj825enr2y+dmff+8bDde3Dbad2WNOnjTtnOz1fW7Zp4+KilNILtqJYWcwItJWzcV9uXJov0crZGK20zdDK3XO02/RvA99DK3MT4Edo5fMltHL6VbTifI5e3dlHK8W7Vdo52kpaohXofVZuy+dVfoMqzLjCwyi7jYJ+D62kNtblS1YmbSaNhJUb86R6p1i5Xn+CVsiDVmwPqitHK+YLtDJ7r0rfWIovq28R2uK8X8WbVHmcsjpX/AytdN9ntcHAnMc+rco0Bx5V9XGC3njwR2hr8YcavR25w0H3ANmS5Hlee8xRStVy1nK5JM+NWbwGlzfbfMJnLesbo+BZpbU7Hob6vPn1KdN9PNxt6768QvJAqD/63KrbOPiUuG6ZDa19PNzkbTa22Hn5xir3qBUD7kYH+9fdVGDX4fN6iLJpEpJdbBra790z7W2c7F/fRgw7f3uThQ9vd0y3XafbafhkP3eDQxP/bJJX3LxD5bXpab9z27tbxpAnILv8Jp5N83XynEu/EB2aZKtN793y2rj48vSVL7Sh5IUGW4McUVuKJ4OI1n5MspeQ7GjluOhGRC0QLandrCcQxWjleKJdpwuhjzBLUkXSglYbfY54V9JrS7qtyko8LukKSU9JOkpbi7elIi0UaUGtFI+VVmxDpeC2q9yID4oLluF1WKtoJm7tTr1SiAupleKiFLW1eFSKlcV4bpTiMVF1nrhWiutLyIhICX02eG0xLkBVV01nrW5WRikeSSKpETGW5FLEQFm7RJc1/tpq3CjEUVopLlEoEWlFtjKnu5coJAUFOTlLMsZMOOWcw0oxfsgZx4wZs2BJWTuaUbUF+vPJ41vYwhZeDPgi9fyNFeMQFvpdARCaFyHcdEKLF/Zz00KELQj7hFDfJMXN331vfo2LbrMg67oaFELUrk4PDg44ODjg6tWr9UJyHGv/Z3t7e1y+fJnd3V3u3r1LHMf0ej0mk0l9byaQxv2qcc96eHhYL9IbfMz5UsYCq9frUZYlSZIQxzGz2YyyLInjmOFwWNMhz3NarVadn4HhcIhSina7jVKKe/fu1YveZpH/7OyMKIrY2dkhjuPaAu74+JiTkxOUUvX5pXt7ewB0u90Lk7Ioiuh2uyRJUl/G7epoNEIpVS/QLxYLFosF8/m8nlBLKfnrv/5r3nnnHY6Pjy9MBs2kyK4bIVbnvRq6NC0CuW0gtKBjvwu1HV+YprbtttvQ5Dw04fNNjFycQ/3OBrc/u27O7DxtGtkTB1//t9MMLXi4+W1CN5f2btl8rrpC9HPHL9945CtfaCLo4hwqj6+8vsmy/c03Fje1zRA0tSe3fkM4hcbTdYshPnDrsaksm9AuhI/b73z9MNT/fTzFh4cNLo3cfu3Dw43/aeBF5N+3lOK2UpwLwbtCMLXxgy3//hzw79fLkp8qxXmliN/yb3/69rtQWub9ln9v+feWf79Y/NsFX7/z8U9fm3LHkFDfAjYaS4wS1P3m4uRrT8aGqXbVqdBKWxMkR1tj53UEfQnr2kMra19Cux1/Ga3sPUevcgjgRvXtahWug1b6Tqt0d6z8jPv0TpX3R2ileWR9z1gpwTO0S/KiipdWeZszyQ9YWb0vq7T2rHLIKsy1Kr4AfspKaT2t6PG4+nalSvdyhcMxWnFtzlXvVeWlim/yMGmbs9dbVTotVhsMztEK9BSt9J+ilfMzVkr+/zfwfeBjnadQum2ccEKapjUfMe7GzbvZbMZoNLpg0RqyKDftzR3fzXufC/ImHu7rjyZ/Xz/x8XDXWt03zoRccJv8TJ72+yalKlw8x9tO37UmNpsZXf5i7m2lvq2w9inJbZzccSMk+4R4rpHx3XIZcOcfNk4h+chHY/fduvhN75r4r4+H+8oUcvfuk+FC46/Lc5rCh2jUxPdDEOLhbl/xtV3zvikdO63Qry+u217dtNx07XC+Pm76RCjeOnnlhYaKv0YxRKkgbkPaE7R3BK19iIeCZAeitkIkEpGKWiEeJRClVbxYEUXajXqaKtKWotXS54j3WiXdVNKN9NVRkq4q6SpFu5R0pKJVQlJAWmiFeCwtC/EKR7vlq/ofK6V4FUBYYc0340rdWIwL2326ZTUeF4K4jKrfyp26ucqIuIyJS2MtLi5Yi6MEQl1UMAnQMk+lFF8px0siJVGqQogCpKgV43U5lUAIVSnAo0pBrkBFlfJc1O8kklKVFJVSfM6SCXPOmHDKmHOmjJkzIyNDVsp4aVn7l1tX6lvYwhZeeHhuV+ou2JOV0AS4aaIemjz4nl18fIt4blo+/FutFt1ut17I9ZXJgHGPaqdhXIUOh0MODg64ceMGN27cqK2rjIvV27dvs1gsyLKMLMvodDocHBzQ7/c5OTkhz/PaBfjZ2RmLxaJePM7znCiKaLX0oWgHBwfEcczp6Wm9eJwkCQcHB/U5XmZXthH24jhmMBjUk6Vut3thsd+4kF0ul1y9epW9vT1GoxHvvvsurVaLO3fuMJvNaheyg4He2m7cxE6nU5TSC+Gz2YxWq1Vbx/X7fYqi4OnTp6RpymAwqCcKpsxZlnHlypX6zNT5XB/8NhwOyfO8duGqlF7UPz8/5/79+7z55pu1gsCuQyHEhTNJ7cmbefZNcOx2GBLINxWIQ221aQLmm7SY9u0qckKLWJukHyqbi+u6iVrT+xC93HPJQuV368zFyS6Hb7yxv/vibjpW+Mrlo7svXd9CjS+/EN6+RZoQbr50ffXuSycU1q3/de1mXXtx092kLL7FlSb6h9J125IPX1M2Xx6mH/rirAN33PHVo2+hCZ491/fTTshfNP7d63a5fn7OHPhBFK2mak5aW/792ebf89GIttTnvSPlln9/grK5uG7595Z/+95t+ffnl3+7OLv52kou37jQlBb4z8k1+bhueW1FiH2usQnvo4mbZrfbZTgc8vjpY3LyC2cqPrPuatybm28CrbQ1rr1vo92Ff6V6b9yOt4AvoxXbWfU7QCufjcJbVGElcIhWAhtr9AVacd6r8r1RhT9mdSZ3C22xbcIb5TLVfYK2Uo8r3AaszvdW1fcOWuF8ucorA35c3X8TrRw/rfI7qOK1q3RGFU7T6rnDyqrcpPWoCr+PVtTDSpk/rd6b88iNAn6vwn+/wktV9DmscPsPVfwucASxiilUQSnK+ngYuNg+TdvxtRVXxjRx7X7n8zgS6hMu+MY+t626cX8RPNyXvz1e2QpyAyGrcZdO7tjm0mgTHu7K4D4ebnsjsuM1bXpxxwkj1/r4lEnPLcem0JRu05xHKfWMZbzLw+06WjeW+2QIFy/7u0+566bnfrffNclYIfDJKKH20iQPuvg0ySKbynahthuSJUK4+/q4vSHEztsn39l90t3Q+ovg458LsBXNAqIIklSRtgXtnqIzUHSGimRQkvQgasv6XPE40crxONVX1II4hjhSJLEijRWtVNJKFN24UogrSaes3KYrRUdpK/F2Ca0S0uqs79g6A7y2EBeW4rtCWlr3iCqs9U5Zn5XSL4TZcFeCqC3F9a9xpb76jYiKiKisFOKV6/RIautwpEBVl1CilmmqrFb/6wPQVa0cp3KfjigRUQmy0AWMBKoeFpW2FifSp4Yroc8rRyBVRCR0FmXl+lwrxktKUZCrnAVLpiwYM6+uBXMKympXoiAlIiIWMRElkoJSZZVqXIFVhi1sYQtbeJHguSzGbfAJwj4ILX6Zb3Z8N83QYoSJ6xPKzLO7I9cWpG7evEm322U8HjcuNtj4m0Xjfr/P7du3uXr1Kjdu3GB/f59er0e73SbLMq5du0YURezt7fEbv/EbPHjwgB/84AfMZjPSNEVKydHREZPJpD471OBqFtHNgnuapvR6PaSUtUtVc25pFEWcnp7WVltC6IX2KIrI85zBYIBSqnaN2ul06gV2s+gexzFJopvAzs4ORVHULk93dnbq8u7t7bFcLun1erUF2NOnT+l2u7UL82vXrqGUtjQTQlt5jUYjlsvlM+d+L5dLhsMhd+7codPpcH5+jhDa2tu4uTV4tdttDg8PmU6nfPjhh7z55ptMp3qLf6fT8bYtV6i2f9dNJpomk264TRag7Db0vEK1b8f2ugmK7ywk38SkaUEiNLn0TT7XLQD6JhTPM9lsKod9H0rDnQjaYV0XbyFa+2jkw8MuX9N4GCpLqF5CabqWdKH4vv4Qmmiuw8fFoYlGoUm8C24bcOvJhlBdhOo+VGZfuFD4pr7QlJ9dFl9YHz9rwnnT8WYT+Dzz71s3bvBdIfjfRiOeNuBj47/l359N/n0X+FiYlY1n28mWf2/595Z/b/m3G94X7ovGv+00fWONDUa5ZdeL3Y/tdNfx8HXjjBlvQxa9URTx2muvsdxZcu/4Hqq06qJerWbldtyYhnXRLsEvAV9Hnx/+FbRiegetCJ6izwOPq2uIVgYfoZXI5mxyo0g254PH1W+3+l2iLcA7VdoFK7frY7RSOEK7EX8ZregGrfyOq3QvoRXm5ozuISvX5nkVrmPF7Vbvz6rny2gF9hBtIb6ocJmirbrvVd/KKu4r1f3lKn4HrVCfVfjnFR1VVb4+WtEeV98FK3fuZYVrUqX9cYXXfwX+1+peUVujJzIJ9mfTjnxn0bthXRDi4qYPn9waGn/cdNaFMeFsftfkojo0lghxUSkcwsNHL99YGxp/Td91LcRD+LgK95B3GJ+8YT/b4eyyuLKWOy6HyuCjZxMPt59ducD95tLBBR/vcN+F2oApc6j9+mQnO37I9XwIRxMu9G4dLu53V/7wyScuDr56aJL/muQUNz27Dp9HPrfT8fWvdeNBSL5ax1O/EFBNzaJIkSSCtK1od6Hbh+5AkfYlSQ/ittBnkCeCOKG+khbELUgSSGJFEilasaQVKTqxpCMkXVG5TFeKjlK0paIlK4V4AUmpr9rNuazOA1crHOsrAhVpnFV08Vtdy1Y8pSqRQ4Gq3KdTANV54lGlFI9d5bj1PpZaOR6VEZEUCCm0Zt64TFcXs1XmEtWdpRA3VyQkKipZMWKdpjL9kLiyCFfVn6gU5JEOqqoptdJ52SeL5+QsyJiyZMKSMQsmLFlSIBEIEiIRkYhkdTJ5dbyNVIVlOb4SJ7awhS1s4UWBT3XGuA1NC2TujvPQAoSb1jqw07PzNu5IbYGx1+uRZRm7u7t87WtfYzqdcnx8zGQyAbT1lRGSWq0Wg8Gg3tXe7/d55ZVX6oXmJEnodrtcuXKldktq3HyOx2OWyyXL5ZLz83Om0ymz2ax2UZplGUVRMJvNaiuxnZ0d+v3+hclYq9WqF7OllEwmE87Pz+l0Ovzjf/yPOT8/58c//nHtQtUstp+cnNRlMW7MWq0WQgjOz88ZDoecnZ3VrmKNJdz9+/drS7bLly/Xi++dTockSRiN9EFn5nzRg4MD5vM57XYb0AvgaZqys7NTu5i9dOkS8/kcpRSDwaDOy5zLOplMamu8LMtYLBaMx2OKoqjPKNvd3a3dzx4dHVGWJbu7u5ydnT2zscHXZt370EJSaNHQ3dXrCvLrBPCmyaodxn4XSt995wvny8/N2zfxdPNfN0nxlamp37oLEr7n0EKDD2c3H3fy6k56fBNKd/e8uxBo49k06XTB1+7WhfMt2KyblNn4htqduW9ahHfj+crgq2u3HKGFiE3Gdl+bDpV5k/7WlEeo7Td9t8O44U3YJhq56fjSDS0++OI8L7xI/PvrX/86+x9/jLhyhd6Wf3+u+XdHKfrKzOKfbbPu/ZZ/b/m3HcfFbcu/t/z7ReTfJg1b6ezmb9pJk6tiO06I39tpuWOSb6zztXfjzcSEj+OYnZ0d5vM5165d43f/29/lj07/CHVf6TOrQVs161XclTX4EK3o3QO+VT3vsVIqX0NbNRsl7gStCF5U74zV9AitZFasrLonaAVxhlZim7O+d1hZQxsFskQrg0+q99+o3j1FK9AFqzO9D1lZhBv3690qzHGF79MKt3O0wn1glSFBK/dNeperd+dVmqdVWi9V5TJ59FidJ55U8Q/Qinwq2uUVblkVrrBonlW0O63KvazCHrCyov+oSuMa2q37sY6rRJiXufdmLGtyYWxv2HItzN1+bL8zXm3gWd5kt2sT10BINl7Hw31x3D5hg8FBKVV7/rHBHbt8ymufnNCEv1sHNj+BlctvW6ntbjhzy+4Dtz59PNw3Lrlpu3Xr4+E+Godo1ISzj1+sG8tdXENtwaazS/MQPWw8zHgfKkOIh4faq2/89v26/cQni7r4uHkY3uGW1Scvun2+iSbuRoqQDOHi6oIPf/u+qU19kUBcuBSR0irZFGijaAtBKypJhKhcpUMcaQtxrQzXVxpDGinSSNESihaVRTiKjtDKcH2tLMTTQluJJ4V2ax5JgSipzgIXzyrGI0AoVAQyBhUp6mO9K4W5qsKJKl5dNkV9tnhUuU+PK8V3YhTgpSCSlpK8vGgxLqwLoyBXq0soUIoL557b1u4aN9OHqqMz6nPGBYioVoxLzL5BoxiPkKpKz1KKIyoeWinGc5WzJGdOzpSMKQUzYElEQQp0SCor9AgoRYlUOQUZihzJsjr9RViW7yazLWxhC1v4/MMnshhvEgRdIc4VaNYtbti/NviEE98EQQhteWXO2oyiiGvXrvHKK69wdHTEK6+8wuuvv85iseDWrVt8/PHHtbvP0WiEEILhcEi73WZvb692CXrjxg1eeukl9vb2KIqiXmB++PAhT548qRfDi6Kg3+8zHo/5oz/6oxq/5XJJv9+vF/h7vR67u7u1ZZexsLpy5QrXrl3j3r17nJ2d1S7f8zxnb2+PKIr40Y9+VFu6GXeoaZpydHTEyclJfZ6TOYvUnPG1v79PlmUIIepf447cLIybCZuxTMvznKIo2N3dBajduUopSdOUdrtdT4ja7XZt4WZcxLZaLU5PT1ksFrXlHMDJyUntslYI7QJ9Z2eHVqvFeDymLMtaqTEcDmuLsziOOTo6Yj6fe92cmfo3SoIsy2pc0zQFYDweN7r+84Et+IcEd99Ebd2uYN9EydfGQ+Cm54b35Wm7tfOVz02nqc82TT58aYUWCnwTanPf5CLSt/gSopNdvqYwPnDf+8JuOnFaN6FtGk9DbdVXdkO7dUqBUB4hXN37dbDp4kSoDDYuPjqFwtvv1qXt5mHHa4rT1K43yd9Hk3WLA58WXgT+fWUwYPpLv8S9+/e3/PtzzL/PpORASr6qFB9FETKKtvx7y7+9dNrybz9s+fcKXmT+bafru7cVCz7ears9X8fDXZxD42OIh6dpSr/fR0pJHMe8+uqrfPvb3+bevXt8+9vf5jd/8ze5N7nHD9/4IbyFVrRKtGW3cRneq95naAXtV9DW2R20knaKVpDfR1tuG0V0xkpZ/lH1PkYroIdV/AKtAE9YncEds1rjjSt8qO5LtHL4cvV8jLbiNud/yyrdh9VlFNM9tOI8Qiv+r1d4iCo9UeH8tCrjAK14bldxZPVcoDcEqCrPcYVTh4sKbnOGeI5WkkfAl1htArDPZjfniJs4xiK/hVaOG2v5QfXtOtpivFXRdVSlX0KmMjqiQ5s2SZTU/FoIUcsO5gg7pRTHx8cXeLg9l1+nIPONHyE+ZO5daBp73X6xjq/4xvsml+amvEKIZ6zolVqdNx5SBJuyurRwy2Cn5eLiygC2S3GTt01H29tEiB7mva/+fDS1+dvzKIB9fNVNM1SHvjO/fWn75js+XuHLx03T3qzhlsvk0yRn2vGb2nKTDOUeZRAK4+tbPnnCJ7+E8LNxs+Ou45NNMorbF3w8L1SGJnr5+KuPx73oULseN6DQ/KaQRLkgLaBTKjoSOhJSJfTZ36ra2yUgFZBE+jdF0ULRUoqWVLQE9XNbQUtWynBjJV5AXGjldFRoZbWQWiFdG1YrgRBY54yr2mJcxgoZa8W4VoorVAyqemeMsEV1RZWyPSq1lbio8o6lvhKpleKRjGoLcaMQN2eLa4V4pX1X2qW6OV9cK5JFrVAWCCLLt7tR4BsFudap64LKyrW6ECVRVH3EKMfVSiFe1ZMQAqEUihKJQgmJVNpePKdgScGcggklMxQLYnLRrhyzR6QiJ0ZRCkVRxRCAZEFUl+GL0Q+2sIUtfPHguRTjIUHFnZTYwoMriG4yGfcJIqFFP98kfbFYsFwua2Epz3Pu379PURS88847/PSnPyWOYx49ekSapvz6r/86x8fHjMfj2tIriiJGoxGXL18miiLu3bvH+++/T1mWpGnKnTt3+IM/+APefvttxuMxx8fH9Hq92gJtsVhcsJAyeCil6nNKh8MhAL1ej0ePHtWLy2Yn8aNHj8jznPfee4/ZbIZS2tXp1atXa5es0+mUdrvNzs5ObSU2m81quiRJUrt1vX37No8fPyaOY6bTKUmiJ7BmUtTtduuFdOO21V44n8/nSCkpy7K2HJNSMhwOGQwGXLp0qbYMKMuS4+Nj76JMFEX0+32uXbtGmqbM5/P6bFaTp7F2m81m7O7ucnJywsHBAdeuXeODDz7g5s2bNc2UUrVbdVMOoxQwSglz7qtRCjQJ9a7A7JuUbjIZaZp8u205NNFzJ3nuQpdrEbfpZN7Ow50o2vmaPF1FxLrJ66bg20Xtw2uTSUnTpMy9b1rkNd/dxQnz3p3k+iZ9Ppzdccs3iQtNFENjZKhcocmcrx3atG5a+Giil533Otyb0gq1d3eybodfV15357uLs7uQ41vICuHrLoa5cUI08YUJ9StfH/0k8CLx71ezjJ+enjJptbb8+3POv0uluJWm/Mpsxs/29uhs+feWfwfeb/n3ln9v+fez+LvjmqkHe2PF8/BwV1Fjfu2xq4mHG08rpg8ul0t+/OMfk2UZ3//+9/mTP/kTjpIj+DlaCfx/QLsGN5bURun9FH2GeIRWoP81WgncQSvK/5sKyXO0pfYucBW9sjFFK6nz6l2EtiTvoRXAO6yU4aAX/wtWqyKyij8D3kEroyVaWX+7Cq+q970Kp70qnwkrV/BphVdS5dmu3p2hlcxttDI/qd4rVq7WjbV5UX2bsFKW96t4hZVuu8pTVOmYe1shDivrdKOAN2XJq+/dqkyiosE+ejPAS2hF+98Cr1d0yXXdLwYLrovrfCf+DsPhkKIoajnKyB7L5ZKzs7Nnzpx23e+Hxm3fmGG++3h6qH/Y6YbGKHtc8MkSpm37lMbumOLyCVvZ6SrATXjXHbvZOGA2DTbJFj6waWDjaHtnMvmYstmK1JCsEeKZoTHPpatbh26ZbPxMmq43C5t2vnzMs/s9xMN98xeXlq484Ibz1ZH9zUejTeQl861pA4kPZ1+5fW3fxzNsnN1yh9q4TSOf9bn97OPhTfzJxTnEw0M0aMIjdDzPp+Xfn2tQoEqFygUiV0S5JMmgnUO3gHZSKcMjSBS0VPUrIZVaCd5WVNbikCrN+lKp79PKMjwpIc4FcSGIcqpzvrULc3PWt5BgLLABSzFOpRhXiFhfKlb6nVGUJ6J+Z85OF0I/RnLlOl1UFupxqZXica0Yr6zGzVWu3KgbS3FkhFJCK8WNmXr1bJTjNQidP0KwUowrhFDISJ8MLuxLVgryVbUA2nV6BEghEErqLwKUqmzFRUmhSnJKsko5vqzswEtilGgTAS1iIgqtTEeSqyVLSn1uuYos7LWA8QXuEVvYwhZeUHhuxXiTIOpOaNYtErkCliuEbirU2Hm5iyZKKWazWf0uyzJ+9rOf0el0aoupvb09Dg4OOD8/Zz6fs7+/z/7+Pmma1pO76XRKr9er3ZR2u13u37/P5cuX+eY3v8lf/MVfkKYpeZ7XVlZmx/T+/n49qTHWUMPhkGvXrvH06VMePHjA48ePmUwm/OxnP+Pk5ISHDx/y4Ycf1gvD/X6fwWDArVu3yLKMx48f8/LLL3P37l1AC3R5ntPtdhFC0Ol0uHLlCk+ePKmt7r71rW/V+RnFQ1mWnJ6e1ueNwsqVbZqmLJdLut0ui8WCwWBAURQsl0sWiwXtdpv9/X263S5xHNeuVs15rFmWsVwuL1iAKbVyR3tycoJSijzPOTs749GjRzx58qS2opNS8vjxY3q9HvP5nMlkQqfTodVq8S/+xb/ghz/8IX/zN39DURSkacrTp09rpUG/32d3d5fZbMbp6Smz2YyiKGpFemiBEWhc3HPbn+99KF1fm/VNipq++SbQPsHdt+DeJOT7Joe+Xzft0ESoqfw+OjWltW6SGMontCASmsz6Fg3cfN0FG1+ePhztiZ5v/LNxC5U3lM66/N34vnfPm5aN7zp8fGVpWlBw8w/ReF3bCtHSffYtnDTVzaZpNJ0zGOJ7vjr+RU3IXyT+/aDT4WtCIFutLf9+Afj3LE3JT0+ZTqdMtvx7y7+tNLf8+2J837st/37x+bednq8/mF+7jYcsFU1aob6/bgywFRAubq5SvSxLzs/P63fz+Zw/+7M/YzAYcLl9maPukVZc30Irt0foc8NvoJXNefXuHK14vo22XttFK7+voV2PP0ErdI2f0cMqfIp2lW4goV5ER7CyBn+KtubO0MrgnwM/qt4vqrQO0ArhGfA+2qX6N1kpngtWSvBOle9hle8+WhvQsr4lFR7GKttYgWN9My7NC1bnkMdV2Y3LeRNWVXhg4WMs7hNWCvCClfv0qHoeAx8A76GV9rLC572qTCO0K3mD6/8F+DPgP2gcVUcx+mjEaXLK6ekpe3t7XL9+nfPzcx4+fMj5+TlZlpHneW0pbYPd5my33OvGdbdfh2RUA27/td/7wrj4mfRda+x1PNzFzy2Dqxx003XL6KObTwbxpRkqv62w9ynmXfo3yUchHEL523TwKeNN2Carb5du5jc0LjdZcrtjnK/sIdfem8qFbjyXJr70fWO1D4cmHuHSAy6O6b6jN1yc7Tg+mdnn8cBtS27e6+TPJr7rc/8famc+Hm63Cbfum9rbiwg1G6n4hZIgCygyRTYTZCPFsqUV4EqCyBRJCq0WtFJot6CdQiuprmjF+lJWivO0sjZPKkvt2JzhXSnDKc0FlAJVCqQUKIMTWj1bW1zXluGgEhAJRDGrTWepglggIrRL9UghIrQFt6ysxiVaCW8U4aX1W92LMkIYhXhpuVCvFOHCthhXlsV4pRw3F5VmXAitEEeoSjEuEUKBrRQ3VuNC1CKOrBTV9X8lMU1dKVCiRKqCkkL/Va7RISempA30EUgZsSQhR+oj1skpqp1yGUskCxQZqnaj88XpC1vYwha+WPBcZ4wbcIWV0ITafXaFe1cg8X334dC08OTG9YUty5Llclkrxn/4wx9y+/ZtTk5OeO+99xgOh3zlK1/hK1/5Cnfu3KHb7bJcLmu3pU+fPmWxWPBXf/VX9c7oVrVAb9yj9no9+v0+b731FtPplLIs6/NIjQVcu93mz//8z3n77bd58uQJV69e5cqVK/zX//pfOTo6IkmSesF/sViQJAk/+tGPWC6XAPz6r/86V69e5fr169y8eZNWq8VisajLlSQJ165dq8/6fPjwYX3WqHuGl1l0Xi6XDAYDWq1WfRbrpUuXODs7I89zlssl4/GYdrtdL+IrpepFdFNGo8wYDAYkSVKHS5KEyWSClJJ+v0+32wWgKAqA2rLOuLoVQnB2dkaapsRxXNfb3/zN3zAej3nllVeYTCbEcVwrHUxZ3n77bQ4PD2t6NS2U2c/uxMs3qfC1rXUTxnULfD4ITeLt7+CfWLgLX039wu17dvxNF/lC9PCNDU2LizZOIWgag9aND6ExJlRfPvxCbSKEayhdA6GJYSiNpvzceHY9+mgWmtDb8d103O/uve97CP9QP2yK79Iw9OwuEpgJtItHaALvS9uO+2no5cPB7Xsha4fnhReNf0+WS97r9/m1KOKdN9/k6p07HG/59+eaf7+WJCz297f8e8u/t/zbirfl31v+7aah1LNKGZcP++rFLrfx8GHT0zeO+HAItb2mM5Ht+zzPmU6n7LX3WAwWTP6/E/gltFv0v0S7LP914NfQluEdtHI6RSulP0Yrdd9GK21fZeUKPEEvpLer3w+rOCV6Jf3ASmsO/EfgL9AK4C8Bd4F/j7Zgb6MV9k/R1totVhbtAvjn1fe9Kv/LFaHarM4Lv8rKSrxSNNSW3UahbkhdVrgNWSm7W2hFeGGFP2Zl+W7iF1UaaRXepG/eGdfqAq1cz1ltEkirvEErwBWrs8wF+jxxo9WYVfXx/0O7vv8WWmGewo3Xb/Bbi98iyzKyLOPP/uzP+OCDD2qLcbjYrlw30aYNuXwxNF67XlfsPufrB6bdh/q2AXfM9ckONr52ui6e7jtbAR7K37agt/twyL26C+44YI9NNl62tbudbmgcdPF1y2KX0bd5Zt0Z0T6auOPKOh4eqneXPu6vS3/TlkIymJuuO+a5+fk2PthtyNc/bHqELPd9MoL9znaTb0NTuXz5r5OD3Pbt49NuHw3l8Tw83IebTZfQvf3O3gxi087l4b58XlhQaIWzAllCWYBYQjZTLEbQjrUb9aLaYBW3oNWGTgu6KXRSHaYdQ1sYhbjQFuJSkCh9pdIom1eW4aJ6VqVAlqCkvldSICWUEkqpKNBXCZjDtVWsIJWIBOIUklTjRok+RzwGYohihYiqs9EBocRKMV6dER7JFS7CujeKcuF812eLG+V45TDdUpar+jDxlTq7JrYAhUJYynElIoRRlKtqLKosxmXtpB2iSn0eAbqJVumpnFLklGjleKkKJDkRBS0kXRQlETFxdYq4Vn9ri3JJQY5gQcmMkmVF6S9QH9jCFrbwhYONFeMhIcWdEJjvTQtETcKKAd/EpSl930TEfm+HNe6vRqMRk8mkdvc5GAzo9/ssFgs++ugjPv74Y/Jc+xYzLlWvXr1Kt9tlf3+fs7MzTk9P+U//6T+R5zmdTodvfOMbZFnG6ekpcRzT6/U4ODjg9PSUjz76iKIo6Ha73Lp1i7feeou/+Iu/YD6fA/Dw4UP29/cBavetZ2dntYtV0ILb5cuX+epXv8o3vvENLl26xKVLlzg8POTRo0ecnJzUC9fGcg6oLcSU0ovbZrHbLLxHUURRFMzncy5fvlzTypxbagRGgOvXrwNw6dIlFotFbWFmFvPNovzt27drl6jT6bS2wJtOp8znc4qiII5jDg8P6zNZp9MpZ2dnNU3MYv/Ozg7ttl5NyLKMP/3TPyXPc65evcorr7xCr9djNBoRRRF37tzhyZMntVeAoigoyzK4WOM+u5OOkLtQ30TBN5l+nolaaDLum9i6uNrt210c8C2aNaXfhKOJY86xddPxucXyTRTt+9DEJUR7N1134tS06OCbPPom8evo4Oa9Cf1CCzJNky7f2GjfbzJZ850rFpoQN5UjNIH1peEbh5vaf9OCg5tXqA274PYTXx/14RZqu+vamQ8P30KGr1wuPUJl+STwIvLvp+MxfzKZ8KvzOTejiCv9Potej5O/R/79l3/xFxSzGQjB4cOHDLf8+7n595fu3uXl+ZzzwWDLv9nybxuXpnhb/r3l318U/m2XxaRtW3TaijQT1uei2U7HV4YQD/fR0fQ7lybV9WkAAQAASURBVD6uMs8Oa4fJ85zjp8eIU8GN8xsUVwvOLp2RX8q14vlNtPv0RZVQgbYO/xLaavkG2kr8ISuF8gD4R2gr68doBfEe2gX4I+CH1bdd4KvAfwL+X2hlMGhF+63q/hp6/foJqzO7QSub76LduP8jtJK4i1YSn1a/ZxW+N6t0IrTS3KyJG4V0tUhfn4neQSugu1y0ALeV5wJtNU9VtoyVS/gWXPCzasz0XMhZKfplhffPq7KeVrQbV2lk6Pq4ilbGK7Ry/P9Z0fIu8Cvwxs4b/DfH/w1xHvONb3yD999/n+FwSKfTIc9zsizz9r/QWN/Ew41C3Vieu2dCN/HwTd062+99/Nfgb7dr893wVjtPV962ebzvTGu7nKHxJEmS2ouOna5xP+7jyT76hsZQNy1XznD7vx3fdUtth3GPerHr0sYtNAY18SOfHOPm5xu7QnLPOv4SOqrC1058cqSPD/rqxqWNXV73u0/+dMP7+kYojyYe3nTUgK8cvj7q8i/T7t1y2P0mhLPL9+x07PZgwO5jNi199eXbYPCigoLaXbmxGC8F5HOYjyvX6QWkGcRdEG2I2iBSrZCOUrQ1dgwgkEpfhRLkSlTnkmvleFRqpTKlpWQuBaXUSnkpBUqCkvpdISGXkClFBpRGESwUIlFEFQ6ttrZeb7UFSUe7ak8SRZyAiAXEGr9IQKSEvirFeKRYWYvX54sbt+oRkbxoLW4sxoU5Y7yyEKdWhoNfKV69QlUEr5TjtZJcIkSEEFIrwMUqflRFk4jKklyBPlkcqVSlFM8oVEYhtNW4sQmPVUGLgk61tSCuLn2yeIZiTsmcgjklCyQ5ilJb6G+V41vYwhZeUBDKJ3F7oNVaza5CCw3rFnlCk2s7HTcPV9j0pePGC03k3XTMc7vdptPpoJSqXXaaMzrTNK3P8cyyjDRNa9eii8WCxWJRpx3HMTdv3uTLX/4y165do9frcXp6yttvv829e/coy5J+v8/NmzfpdDrcu3ePx48fP4OfLXy1Wq3azakQgm63y5e//GU6nQ47Ozt0u106nQ6XL1+m3+/XrluzLOPOnTvcvXuX09PTesG73+8TRVF91qnZIGAW4OM4rhfZzRlxg8GA5XKJUtotXlEUZFl24cwrc46cEIKDgwPa7TZCCM7Pz3ny5AlFUZDnOaenpzx+/JizszP6/X69s3w8HhPHMefn57z//vuAdgnb7/cpioJ+v8+VK1dotVo8fPiQs7Mz4jjm+vXrvPHGG9y9e5cf/vCHjEYjsiyrXbd+9NFHjMdjTk9Pve1xXRv1ta0mCC0OhsK5kwVfXvZ9aCd20+Kob2Lkm6j5Jk8urvZ9kiT1ZDY0sQstQDbhGvruo9EmZfZNzEPjji8fX5qhb76JdVN53bI0jZFNeG6Sr4unr1xN7cCd0PryDZXLxRvCbdnGIzTpd/Pz1U2ovpro44vb1M58aa8789TNw14EW9fusixrxDsELzL/7rTb9NttBnnOcLFgICWxEORRRBTHlO02E6Wt1EgSZmmKiKL6LHOXf7/88stcvXqV4XDI5OyMxz/7Wc2/d9ttXr1+nW63y+HHH3N8dERucFOKtMp3IgT3hSDf8u9G/n3j2jV++/Jl9r7+df7q5z/f8m9P3lv+veXfPjx95dry72fjvgj8G6i9c5g0bZwN+JRoTW0rhL/dz0L17Wt39tgUwtNO1/Cffr9Pt99lruaMzkaUeYmMJKqlatfjspDawtucpR2jlbtTLlpGvw58F61A30Uref8MrRQvINqLiF6PYADiRwL1niJSlXILba2l4upXKa2kNtblEfo87++ilfBX0NbdA7Q79z20YnxRXb9U4XPMSkndNxXKxfPMXZ2LAO/6s7Eap/quWCnRDURO+AUr1+lHaGt442p+VpXtuCrnE+BvqrgtVsr3PeDlCu+3K7omwKvwrd/6Fv/zG/8z7/zpO7VHntFoxMnJCT/84Q85Pj7mwYMHzxTF5TWhNgI8o9D2jQ+m/9rfffzHbZe+scKOb/cre0OZjacbt+m8Yx8PtxXJbtque3Pz3qxNGTztMd6lm4+327SxcQt995W5KR0bBxdHd6zYhAc2lSHkAj7EA5vS9h254hvrQu+a0jBeOtxvBm/TDtxyufi7/Mknw9jlD9HMtpJ28wmFD23edJXWTRtWmvDyffPJgT68DZ6+PHwyhks733e7nGbT7/PCOpnlswii+icifUUJtDvQ6UK3C4MeDLrQb0O3Bb0WdJLKSjyBViRIBSRCkChIEPpSAu3hXCvHhRKVYpzKUjsCCaUUFCVIuboKCblS5FKxVIpMSYpKgy8ipa3EW4pWS9HvQL8j6HcVvT50e9qivW1cvKeQJpBEAn30eKUQ954lLojKiLiIiLOYOE+Is5goT4jyBFHEkMeIIkYUCRT6njJGFUn1G6PKRD8XCZQJSPMbo8oYJRNkGSOl/qZkgpQxSsZIpX+VipEq0r/mvYooEWRKsVSSpSqZkzNnyVxlWsWtCmaqqO/n5MxUxpwlM3LmZExZcM6UEVMmTJkyZc6cgpKSElkp3rnwfwtb2MIWPvvQNP838IlcqZvE3Xe+c2l8kxI3TVf48Z3tY9+7gu06Iatpl59Sqj5z086rLEuklPWkwywmm4UNX/5KKY6Pj7l58ybvvPMOH374Iefn5xcmUUVRcH5+jpTyGYHU3NtCscHLQJqmtWX0zs4OWZbR6/Vqy7GzszMWiwXdbpd+v0+e55ycnLCzs8PVq1e5evUqnU6nFhzNQnm73ebatWtIKXn48CFJknD58mXOzs5otVp0Oh3G43G9QL+7u8t8Puf4+JiiKOpd4aPRCCEE/X6f6XRabxww57waK/3FYlG7VyvLkvl8TpZlTCaT2u3qzs4OaZrS7XYZDAb1GaaHh4e0Wi3KsuTJkyecnZ3x13/91xwfH/P48WNOT09r4b0oigt0Dk12bOHe1zZ9cXzPbpzQJMz97puEuO3LbWuhCV9IAA/1x9Aksil/WLnPtcF3zpM9+Qrtfm/CNTRBNviE4vomr27abnpNY5i7e983Ebbf+yZzJk13nPMtOPjq2D1/zYC7KGCn6d776Ocrc6g9+WgfmqD6wNeWXVq7vyH+s24Bxffs8hA333X8wpdeCA/f+OJrP+Bf1LbT+DTwIvPvxXLJfLHgyORVxe2UJYlS7MUx7Yp/p0JwVUe8kB+AKEv6T59yZThkcu8eHzx9ymg241RKZIXjOM95+733KKVkoRQFIMziT4VrGxhIyZeUQpUl7whBXuWx5d+af3daLXaKgvz+ff7z7dtMPv54y7+3/PtC3C3/3vJv3/MXkX8bPN10fZa0dlhfnfjS3ISH2+3WfjbxN+Hhph+5OE8mE8bjMUIIoupPFQpKiLOYHj2yZcZivoC5XoyVUlZnd6paKSykYPfjXd54/Q3uf/8+h28ekh/miFyA1DilWUp0qC1UZSlXih5VjXEighKkknopeKIXg3UGaKX8U1ZW4Au0Av4VVorlCVqBvlt9f4h24f4lVq7RXVBcVHC71SXQlvHGHbqy3pXo1ZwMrejetcKYOHn17RxtFT6uroLVGeNztFt04/r9SnW/gz4T/R302eofoK3bCxi+P+TLj7/M/9L9X7h//z4///nPefjwYW1tbI43c/t8iAfWxRXPKk6N9adtXRxqg7526Murqd36wrs80u0PTf3dtaK2f0ObScw3d1xTStUekWz8ffRdZ11v09KN6xsb7fHQHSvsccnG3x6bbb5r52vo67pcN+maNuVzl+9aGYfq1x6TXNnSxxt9PNwdw4Dast7lQW74EO19x1C4+PrapU1PX3tyy+Cjif0+lL8rS9nprOPhTd9DcpOPRr72Ypd3nYci8NPR3XASkoV+Ubz88wKGxSgFVFbj2UJbcedLyGcwT2FSnSlulOKtCNJIkERaKa4do1S/AmKhiMwzikhVtFVCuzuXEqSgkKq2EJeVC3WjFF8pgGVtMS4iaKWKdhs6Hdjtwm5XsNuHvRJ2JciOQKUQtQSJBKEgirUb8thWjCujGI/q36h+jio361HtQh1ZKfiVQBt/C1T1rJQmpqpoqeodbfoSxg5bKK14FpE+z1voSwi9riGqM8nBOmNcaOtxiUQpkEJVZ4qX5GTkakkuluTk+q0okKqsnNBnIJYolpRqSaaWzJgxZsIZE2YsyMjJyS8oxKn/b2ELW9jCiwXP5UrdN2kJLSiYOCasLw0bfOmFwvriNr3zCVgmTGgCZX8zQrdbLjudKIro9XpcvnyZn//855ycnHh3wtoWA03Cqoub+W4sxO7evctwOOT09JT5fM67775bW4Xt7e2xu7tLq9XipZde4tKlS7TbbQaVq9Jer8f5+TmTyYTr16+TpmntSt6cLTqbzWo3q8Zq3d6dbKzlx+MxeZ4zGAwoy5Jer1dbn02n03rRI0kSdnZ2uHz5Mp1Oh+PjY46Pj3ny5AnL5ZI8zymKonbXmiQJe3t7vP322ywWC37lV36lPss1TVN6vR7z+Zzbt2/z7rvv1vQ2dSWEIM9zb1vy1XtTPZj70KJXSIi28/EtVNnhfROV0GJTCHzt1zfxDU36mhYrQi7R3DR9i5I+d4s+Wtn5ubj7JjVNEyeTZlNaocm+m7a7COCblDWNhb4FRRt87S80prn5u2WyYd15br68Q+9Dcd2Jqm8sDcX3vV835of6UVMY33NT32rq03Y438JKCJcQ7uvo6kvnk8AXkX8vlCJCrwvnSlHYbdSkb9Wl4d9vP3lykX8DwixaWcrEUF9aKMVSCI7QhmRflZIPgfMo+sLz79Hjx3wpjrnSavG0KHhy5w6P7t3jeMu/t/zbk+aWf2/595Z/XyxHiL/62kiovfnGqyalknu/Sbt08XDHltDYbPdXpRRKKihBlZXSulpEjyyzaH1WaMTu7i537tzh8AeHPH3wFFlKYi66lc7nuRcHt4yR0Ar6RCX1onJ9PvdT4BtoxfgjtFL5B2jFswSuo12Px2iF8rer+y4XFd+yeh/ay2GHUVY4815aeRo3513re17FmaEV8vtoy+8O2uL7QXVN0UrxvPpmzja/Bny/Kt9/j7a8fx+STsJgZ0A0jvjWL32Ld//iXf74/h/XG/6N173lcvkMrX3tyFUYm2/u2G2fiW3SssPYadrphnimHd5WbNrfmniuLz+jgDY4N23GMuHscrh91jybspt3TbzSvoALbt1dJaDL+0N81qRtK3pNWr66c/HyHe0Q4lN23bvtwG0DNu3X8XB7A5o99vvSsuOtkyFsWtjl8FmH2+VexwdtOvk2Tvh4uEvHJv7s0nZTPuW2HTtPOx+3jdoW5yFZYx2ft8H0txAPd9MKbV5z244Pp18ED/9cQkUGQw5ZQKFAlaAKyBNYLrTldSumUoZDIhSREJUSnNVVKcUjoSrWJyrlu1Ygm7O+UdVZ4tWvVFAqRamgUIpCKa0kV9rBtxDaJXqaVGedz2GygMkcphksSkEmIS8URUfojXKqUoanGg/t8VwruFfnjLM6S9wowS2Ft1QQKTCe0IWxgFeVIrtyn67Me9Bx6xPCL4IQVG7UDdHrhBF6d98qLECktIt50GeEK8mCnJkomKklM7FgxlJbhoucmcqZUTATOVO1ZEr1nYypyJioBSPmzJixJK+sxMvaOlzZjWKrHt/CFrbwgsEnthh3ISTcrftmp+0KSu7kwYBvZ+C6PNcJTG4Y+365XHp3xRpBr9Pp0G636fV6PH36tF6cXidoNeHmw7XdbvOlL32JP/zDP2Q4HPLmm2+yWCy4cuUKd+7cYWdnh/39fZTSlmRpmtbnp+/s7FCWZe0+1iy+GxevURQxGo0YjUYcHR0RRRFJkpCmKWdnZ/R6vXqya84RTZKE+XzOYDBgZ2eHOI7ricCDBw+QUtLva79xZVlycnJCu90mTVM6nQ69Xo/hcEgcx0ynU87Pzzk8PKzPMwW9kWBnZ4dHjx6xt7fHdDq9MEl4/Pgxs9nswiK6r55c2jYJ0XadrGu7m4Tx5elr60142+m49+smQaH+5VtUCPVzX36hyZEbzw7jm8SF8vF98/Wh0OS2KU2XButo56vDTdqLm+66iaodrqks6yakoTRCY6qvvYXS9eFjP/vag1tXblhfW2rCZxP8fXHdvNfVjQ9/X9lCbcKXX9N44VsMaFoY2BS2/Psfhn9PgB9GEa9JyaU0pfMF5d9Hjx7x7V6PUbfL/SThYyFYSEn65MmWf2/595Z/b/n3ln+vgXV9y6ecCuXttqPQGBOyOnQV3W4/9NEg1F9t3H39UAjBbDa7oHC0cTBHdvT7fXZ2dvjwww8ZjUbP5ONabvr6mq/NArSjNpGMKHoF8jsS/s/os8j/C5rJ3wVeQ7tV30VrABJWVty223RYrScbhbeorprApvAY0zAuWIkrtCI7RSuzB076An3OuVHGgz4P/AitQO+hXbrvoi3Z4yqPQ+BDtEV5u4o3Q28AeBe617vsnu7SiTrEMmbKlPd//j5nZ2eNxwT42qFdj6GxriaHI781hW3KP4SHK6+aME1jfRMPN/emj7gW1L7xpAlHX35mI4vP8+C68tm4bcKz3b69jh4uhDZ5GTzcMqzj5T4L3xC9fHzCxiMUx+Dto4mdrk/+87Vtu5y+OrcV3/aznaavXn314KtzG29TH/aGlNAmkhA/C8kqIbr6xn1fv/XJICG+7/Ynu2xNcUP5wsVNOi5f/bQ8/PMICi6eNV69U2ilcCFhGUGcQxxp5XSM/tXqXx2/vq+uSIgL52TXlFWiOmpbn5ktVZWn0pd5p9CKclnFF1WeSQxJpt2kz5eCaVsxzWApIVeQl4JSVrkJbSkeKRAxxJGpZ6qNZ0JbgksB1Rnn+qzzKgyr37jC2SjCRV2uStFuKFCdP36RGhevWmFuklMKrRhXqKis5QOtqBbICAqpyJAsKJmRMVEZU7FgwoKpWjAVS6YqY8KSERljtdQXC6ZqyZKcJQUZBQtyluQUyMpSnAtK8Yu/W9jCFrbw4sAnVow3udIJLViEBOeQ4OoTapoEk6bJbchNkStgu2UOTTBsISpN09qNqHFP6U7wQ7tM7XRdwdVAHMcMh0NeffVVrly5wp//+Z/zwQcfcHx8TBzHvPXWW1y+fJk33ngDgDzPUUrRarW4dOkSr732Gm+88QbD4ZAsy1BKcX5+ztHREULoM0UfPHhQn6fe6XSYTqe0Wi2m0ymnp6e1JVie5+zu7nLp0iWyLKvPWxdCu189PDxkNBqxWCxqIXs+n5MkuqmVZcmrr77K0dEReZ6T5zmLxYL33nuPJ0+ekOc5ZVnWrtJv377N22+/zXg85uDggDiOGY1G9SKJfca7TcOQmz/7eVMBPNTmfBMkt92535sm5iF817WXpgmpHd6HuzsBdSdnbv7r3jf1XR+uoTKZb+5Ex07DN+Fzv/niNeEUahOhug1BUz1vio/97C56unn52v063ELPdt6+iacvfKi8TXn7aNtURh+O6/jOunRDODWFDeEdqr+mthJa3Ail9Ulhy7//4fi3iGMe7+3xW7dvc+fyZb7/Z3/G+x9++MLzb1mWfP3WLWY/+xnZaMSDgwPutdtb/r3l38/EdfPc8u/1uIWe7by3/PvZsJ9H/m2nZcDl4a7F5zq6NH0PuXt2ebiPRr4xxOWJrmt133ju6xO+9IQQtNvt+mgQ2720nabP0tQ3frn0E0J7QLl2cI2Xf+1lvn/3+8z/P3N9ZvkD9CrKfwRuA7+DdlGzYKWUvgV8E30+t1Fyg3ZfTvUuhQurzMJ5nlbpGQV2q0rbuFBXVrwCrQQvq/dzVuejK7Si/hZaiZ9VuI6BvwLeq+Iay/Ec+CWI/3NM96+6fOX2V5i2phweHtaWmuPx+EK7MHRzLZxt2jf17VBduLzEbTe+eD6X26G2Zqcf4n+hfuSOr7425MPbxd9HK5tm6/jtJ+HhdnzfOGDoEtoMA8+6AXfxcPO2XeKb9O2NLz55p4kXr3vvhjHQVB6XjmVZet3Z++rJl986Gc43LtnpmzoIuez3xQ8p9u3+YeQTOz+X1k0yhvnuWteHyhECO46PJi7+Lp6GPr5yhtqE3eddnE1amx4f9CJDzV4UWilMtVdLaetxIcB4+TZKdNeoWFgkFABqpRq2g2NpyRUYPfNFXDx5RKqySI+0gj5JYL5UTFswzwUF+uiz0uBT4RoriJUgSnScqMJKVYW0XaWbSyn0d4OnUtWetZVCvFaQK11irSCvlOIqWhVMiQvsW7GipyaFqu5Xu+WU0K7TSzS7z1AshFGK55Xye8lYzRmzYCzmTNSSCQvGYsmZWnDOkhELRmrJlGV1hrisVeGSiwpw+371u4UtbGELLxYItSHH73Q6XsH7mQQ3EFg3FeqaFhVCk3VfPqHFi6a8moQ4VyC0hfp10ISH+z6KIgaDAd1ul6IoKMuSyWRyYdepiZMkCa+//jrD4ZDJZMJLL73Eq6++yu3bt/nqV79Kq9Xi/Pycp0+fcnJywmAw4ObNm3S7XbrdLmVZslwuieOY2WzGcDiszyW9dOkSSimyLKvPNJ3P57SrRW5zFqhRLoBe8DbnmRZFwWAwYLlccv/+ffb29pBScnp6yoMHDzg/P68X4yeTCcfHx0wmkxqH2WxWx3/y5Ek9QWnaRR6ic6h9hibMoTSbJqjrcPDlF1pcC8Vvmjy6E4ym/uMrUyi/pjBu/7XLZ7/35e2b8IbS2xQ2rc9Qnk04N8XxjR+bvrPBXQxxaearD/vbuvPu1tEyNIb68AstuoTq2/1uwN6p3bS4sK7sTf3ieSa4my7GuHm45QvxqE3as7tIYLumfB7Y8m9/nL9P/i3LktZ4zC0peRuYvqD8++T4GHF+zi/1eohOh/fzHDkcbvn3mnJs+fcKtvx7y7/tuF90/g3Q7/eDPNx+H3Ld7FrCuWm4inXzTqln3QSb8thhnoeH2/ehzSBN46mNYxzHNQ9zoanN+8LZ741ssL+/X3tnKYqCw+NDZuUMacznjMK5Dfwm2rr6BHgD+GXg69V9jFZCn6LdmO8BN6t4ZkW8rMLlrJTlZXVvUCure/O7QCvHjev08yrejNVZ4QXaQnyOPh/8oArzCHgbfS76Edr6/QT4GMSxYOfyDpeHl0nOEw72D5jNZrz//vvkeX6Bh7vtLkRnQ1dfOPPrygahscRtk7YSMNTm7Ph2u/fxKF/bcfHwbTANtfMmmTmUZ0j+bZIJzHe3X4N/g4Jv/N+Eh68bX21LZFemsMceu+34XOq7btDtDRehsrtl2TScjZu7ece889HQrSe7bdjg8gMf/V1+Y+YnvnHWTsM3jvrys+O6/cx4jPKlZ+MVcrtv8PXRxE1j0/bsphPiMzbOPhraz3a6IX7l1q35Pp/Pn8F1E9hEXvjcgAAh9K853qN+VtVlwLm3qeCjiLLjiOo2GHCVpkFFiJVyvJXoq9+BvSHsDQQHQ7gyFFweCi739bXfEfRTfbVjQSoEKYJERiSlvkQpiMqIqIgQRUxUxIg8gjwmKhLiIiHKY6IygSJGlDEUMZQJlDEUCcr6Vea9TFAyRskIZFzdO5eKkDKiUIJCUbuRN2esL2TJTJXMVclYZZzJBedqwbmac85cK8jVkglLbUmuMu1SXeXMyVmQU1aqcFchbt+577ewhS1s4fMEm6whPNcZ4+a3SQgDv0Dpgiu0+oQ9O2xokuUTXHxhXEHWxcPFwY7n4mGDu9MytPjSJHjZuJkJQKfTqa28Tk9P613wLp3MuzzPefDgAXt7e9y4cYNXX32VS5cu8fTpU/r9Pvv7+0ynUxaLBdeuXaPT6XBwcEC32yWOYxaLRZ1er9ej1WoxmUw4OjoiyzK63W4toJdleUEA7ff7JEnCdDplMBgwGo2QUvL48WOm0ynT6ZRer8dyueT09LQ+V3U6nXJyckKaprVLPCEEt27dql3JFkVRu2g17llNmX3CrgHfzl637kO0dOP52pZvMmnH9+0yDQn1bhp2GdZNgH1pu/i78XwTBDcd99fFO0SXdX3IF8ZdYAn1U98CR2hi7rYN36KtW59u+d2zVX3lDE3SbPDRwl0caJokrhuD3DR8O7ebwB3PffXeNFkMldFHCztM03jcNAHehOa+MTbUbkIQ6iM2hOgU6jvmalLE+uptU5zXlWXLv//h+fc58JpSfCQEI14s/t0CfvvSJYrdXQ6HQ6ZlyfFHH5Fv+Xdj2C3/3vLvLf/202PLvzW47cJ+dpWCNg9vak++McVt2+A/g9Wmj0s3O67B3ViJ2nmE+K6v7t1w5p2xOnUVcXY6Nj4hHm7nbdyzd7tdhBA8fPiQ5XJZ49yiRSlKcpGvFuiXwE/R54u/BnwH2AHuo88ZP0Bbfk/QCvEWWnFtqs4+S9woxSXamrtfhVdohbhRxpuDW1vW83W0G3WJVoKfVtdelf8jtKX7pHr/sMIjrvKNYPDVAV8vvs7t9m3yLOfNx2/y4fmHtFqtC/VkFGk+MGd2u3VtK5N9PMLHS3xjl90mQ2ORL/0Q/3TbV5M86BvnQpv93HbufnPH703GRbctu/0/xIN8ZbRx9/F/N1xorLC/w7NntpvnEF4mP7te7WOXfF6b7PLauIXGADu9EA83+bpzJFsGca3n3TRCY66P/gZfu93b+Jn39hjqa5Mhr1q+uvTVsztW+ja6uHRz49r03ISHN/FJXx9tkk9cJX+IF5mxoyiKZ3i9nZZbv5vIYl8YUFCTyx7yBDRpTYW6+Fm5JFWNj03oXLC2Vmp1FVKzzBJY5oosF+SZIs9AFYJEQSIhagtSKYgTQRILRKRdqItSX5GM6ktIrSgXMtJW4ErUZ48r52zxCwWprMPNeeoYzb+qiPEMQXRkLQoofY64kixVyUKVzFTBVOVMqc4NVwUjlXHCjFM151TNOVNzztVCK8ZVxpycXJXklORICmRlKa7qvxXKtnL84vMWtrCFLbyI8FyKcVvo80HTwosruDYtFDQtIGyy6OCbpIfSDQnq9n2oXD7hOoTnunsjrHW7XTqdDkVRMJlM6gUYd7LjlrnVaiGE4OzsjNPTU37+858zHA75rd/6Le7evUu32+XOnTsMh0OOjo7qc1R3dnbodrucnZ0xm83IsgwpJbPZDKX0Wad5nrOzs0MURSwWi9q1+3Q6Zblcslwua/epZld9u93mzp075HnOe++9h5SSLMvqxYU4jmm329y8eZPlcslsNqsVCeYMVLOQL6UkSZI6H7fuQnUdamO+BZgQXX116abhxre/2zi6bp58gnYo76Y+4eazrl+5kwHfYoFdFl8bD+Hv4u3eu2n78nXBxa+prkPphs6x86URWgyw35k4IVx990352uE3WRgJ5euOLevyt8OG0vctIITG2+ctn5vHJu3cV/cGQtZHvkl2KIyPb4XAtRix02kae0L10dRPPg1s+fdnh3/PgZ9EEV+R+uyuEZ9//l2Ox1xfLrmcJLwLfDwaEY3HW/695d9b/h0I78t3y7+3/HsTWMfDQ99dBViTsmldO/a1DTdv885nje7S2aTn46/rXK/7+v+mPNymjeGN/X6fPM85OTmpjzZxaZqKFBTkVK7bu2jF9GO0svkv0Mrw/xH4KlpxvgvsVwnkcGGVOUK7Nk/QFt4F9bp6fcY41a9gdX55gVae21bmCq1Mfx2tAH+zCjetLoVWhPeqMFPgHLqdLq9Er3BwdsDx42Pejt/W3m6kJE1T5vP5M8fN2PS0x1rXTbOJY9fTprzABya+u2nD4LOOh7t52mn6vjfxV7joqj80PrrPLt2a5BJ3I0yo77r5uZtS3H5reyB0y+X2V1t5a4f19bkQD7e/+/q1jw4hK2QfHu57m05NsqZdZlsZ7yqjfTzF11ZNuk3HCITS8PEwtz597dulkZ2eeWfHD43hIVo3yZTmvWvd3sTv3bgh/t+0MdLl4aH+a8Mmm8Xc+5Ds9oUHtfoR/qbtBm148enQMDgoQMrqDHSlf6WEPIeyVJSFoCggkopUCa0YLysFeQviVLtVjyUYhbWQgqi6hKyU4valBKho5Xpd+S9RK8yrd/V541y0lofagrtQkqVSLBXMVclM5UxVzlhltcJ7pgpm5FoxrmacqDlnasGZWjBSC61AVxlZZRvunh3eZBV+8dsWtrCFzxt8Gs71Rev3n+iM8SahzSf02QKZLSCae9/iRGhxxyf4rhPamhaNQvnZEBK0fPiGJuuhCRNoN6q9Xo/hcAhQW2T5XBn5II5jWq0W8/mcVqvFL//yL/O7v/u7vPrqq3zta1+jLEtOT095/Pgx77zzDoeHh7RaLfb29njw4AFxHNeL69euXWMwGHB2dka320UpxXA4rK259/f3GY/HtNvteqIznU4vWKJNJhOSJKHT6XD9+nXSNK0X/AeDAUoplssl5+fnzGYzZrNZLVALIRiPx7UFXLvdptPpkGXZhbPj4NkJgltfPlqvm3A3td/Q5CsETQK3O5kx96E4mwrkvomZe+9OMNyJhgnj9uumxS03fhPNfH3CF9adyLnjR9Oipq8/2uNNE93dvurDzwZfHbllDbXJTSZnofAhWobGnHWLCJvm6yvzunjmfl05ff3KRx9fmw2Nx2740L0b113Y8OHt4zvrxnvfggVcVP6E6P1JYcu/Lz7/Q/PvEnhHCF5TijhJyD+H/Htyfs6l8Zjo6IjHUvI0TflZt8uTp0+3/NuJs+XfW/7tS3fLv7f8e1Nw24X7ze5nbjldHm5/D/FweHZTiQkXco/s68vufaiufBsYQmN1qN59fWYdDxdCkKYpe3t7HBwcAPDo0SPG1caupjqMiQHI01wrxsfo338M/HPgVeAlVi7OT9FK7in6jG9zzncbGFTx99AW4DHUCnCzUmMsxI0L91b1bVGlI9AK8HO0kjxFW5CnaBfph2jFvKpwOAIxEnTPulyPrvNS/hK70S4fHX3EZDKpN/sNBgPm8zmLxeJC+W0lmFs/vvHUVydufNcdcqi92HmFxvim8dPNx3xrGtNNH2iSM1w6+Ojj8jBfOj75yDdubdLGfbK3j0Z2+HU83OaLITzgoiW9y8NtZblLd3uMWScr2HHsb74y+3jC8/Bwd4z10cXOM6TEdvFxy+LWh8nHlNGlUxOPcTcH2GX0xfO981nam/d22Wy3+HZaNg6+vmen5daZ60XCJye6ebleFOzvbrs1Yd2NM3b//UXw8BcdfDOq56Hap1HAmHyUlVAJCKtKldLhZKnIc3MuuQIJqlTESiCUZq0J+jc2bUWBUAKhKqtxtbIWtxXkWL/ICErrvlKeU6WjEM+WWei8JIoCSa5gqSRTVTKRBWOZc64yRnLJSOlropbMVcGCgonKOJVaKT6u3KZPVc5SFeT1OeJqA4W4qxzfwhZeILgwYDSE+Rw2/F80p9qEVC8SbHzGeKvV0hHExR2VEBY6XCHR/g0tVriTgKYFkaaJRQgPN5xP4LaFqqZFHTeeD9wJhB0+iiJarRa9Xg8htKV0nucXrMxC5TYTyuFwSBRF7O7u8pWvfIWDgwO+8Y1v8PjxY+7fv18vmI9GI3q9Hnfu3KHf73P9+nWUUuzu7pKmKcPhkHa7TbvdJooijo6OaiuyW7du0ev1ODk5qd/1ej3Ozs748MMPmc/ntXJ+sVhwcnLCZDJhNBqxXC55/PgxWZZx79495vM5eZ4znU4v7FSOooibN28SRREPHz6sd6mb3brtdrtWNtj18LzCqq+t+tyDNcVx62Zde/OFXYejr40/T1wbH1/cUN/xfbfbsEs3O59QXwlNZkNxXNw2od/z0HZTWEfHULuwy/A8Y6JbVnjWHW/TIoZ7v67cJq04jus4rovQ5x2PfWVwadeEy7p3TeCm7y64uLRpwtfXbn0T+SZcmsL56OqO7z6Xk65ycVPY8u8VfJb4995wyK8oxeHeHtdef/1zwb9llnF9OmVYFNwDDoVAbfl3MO0t/97ybzv/Lf/2w5Z/N4PZ6GQrHlwebvLzKcCb2p2vfL627ytzyMrPrjdbeWSnZeL7ymPXl1uXbnmbxna7LtxyxHFMp9Nhb28PIQTn5+fM5/O6H7mKEjfdJEk4ODhgGS95fO0x8tck3Ea7UX8feAet6D6url3gG2jX6l9CK7j30JbbHbQyPEavyI+r7220st1dnRJohfsZ2io8rcJO0RbrJ+hzw6fAz9Fnjr+FdlGzAM4hKRJaskWsYpIk4bXXXiOOY9555x2WyyVSynp86fV69WYBm9YuXXwQGnfMN9uTgV2fvr4d+ma3xdD47atHX56hTXs+aOKZoTHUpYUv7DpFtAlj4oZo5Hu20/eVwcatqe5C5fY923g2xff1bd/YYacV4vWhNNeFC/Fwdyzz1YsJ4+Lpo4mJnyRJnY/xyGCnF8Ldx9dC7cqmXxMPt8O7tPfVsQ0hmbKp/dr1GCqDnZZrPR6q59AmMV+7dvMx9WePSWZMcDcHbQqhsXELv3gQ1o0QEAmIhT53PI31ueO9FK7vRtzcE9zcjbi1K7i5E3HQF+x1BDttQU/EdIloy1ifNV7ExHmCyGOiPEYU9qXPFqdI9Pni9Rnj+lJlAtLcm+cIJWNQ0eqccRVRSkEhI5YlZFIwKxVnMuO0zDiRS07lgpPqHPGRWjBmyVIVLCmZqYxztWQkl8xVzoKSpdIK8dJRiFc9YasM38KLD/bwa8ZiUf3zNnRl/ajPdWdwOc/nuCifGjaR6Z/bYtwWKtxdeW54n6Due/ZNdHzCyjqc7HxdIdoOt25BxbdDsEmYt/P2CZI2XiadNE3pdrukacpisagXjV2hNEQrgOFwiJSyXvze2dnhxz/+MX/8x3/MaDSiKAru3r3L17/+dXZ3d9nf3+fq1asopdjZ2eHWrVskSUJZluzs7LBYLMiyjOl0CsDt27dJ07Q+69sI7dPplIcPH9ZCZ1EUlGVZnwV+dHREURRkWcbx8THz+Zx2u83Vq1fp9Xqcnp5y//79evHcWKudnp6ilKLVatUCqMkjyzJv+/DVy7rFGrdOQ5PDproO5W3n0zTp9aXtWzTadPEqBOsmQ74FKN9Ez06jaSeuL3+Xxr5xwTeJdNNtKmtowWVdG7DLsK4cdpqhvEJjkvvOfh9aLHEXJ9y6cXdwN411bvoGV9O/TT8047oPHx/NfPUXyr/pXdPY7+Id6ktNk3R38cCO41u0aOJXNj4hfH2LCaF240vfXoBZ18c2gS3//mzy71xK3mq3+cd7e1xJU/7ks8y/r1zhOtA7OeFvheAnZUkpJcmWf2/595Z/e8ux5d/P4r3l358M3Dxd18S+8L7+6KOhraCwrfaEEBespt14vnOD7e823uv4rw2+DSVN47ytqHItK+04ttzTbrfZ2dmh3W4znU4ZjUZ1H7LLb4PbDg4ODjT/7exw7fVr/Ozqz5j/8Rz+H8BTtBX3N4H/FriGPlv8FfTKVAe4ilZ6S1Zu0Eu023WFPqPcPoOc6r1xoW6e8+p6DHwI3KvCLNBnnI/QrtVfgc5uhy89/BLZTzKKvKiPWymKgkePHqGUotPpEMcxk8mkPovX9oJj94lQXzHW5E190e0nPprb6dp91tevfLjZ7+GiVar9G9q4sU6u3WQ883lrcWlg5+H2bR8P98muTTzKZw0bGtNsPHxHkdj1HhoffbKCTx5wx2EfT2qSg3w81w1nj28+/uymZcrm23TpPodw8NHCLX8URaRpWntwMnK6lDIoc7n4ujj4+KjNI0MyoN3+fWOnnZ+vr9hpueFDfCrEu92235SH3UZtWtlHG7gW+W76TV4v3HFjC599MDVZu1VXgACltEv1ooSyhDRW2gGLlJRlRF5K5oVgWUSUEspEIWJFhCJSoC2+qd2mI5+9hLESLyOtCJexVn5X71X1TluORxViVVu8YCVeMleKmVSMVcmRXHJUKcRP5JxTtdAKcLVgojKySjG+qM4dn6mcJSW50ueINynE3ZPDm2e7W9jC5whEdUWR3hmTRPqchCTWv6b/KaCszl+QuqegrEsqUOa7XJ3VUB/i8NmFzzZ2nz14rjPG3eemCYkr9JowIUHcJzC7z6GJU5Og5kvDLU/TgkUoPzsNu0yhyZMdL47jerF6Nps9Mxl347g0M2Udj8d1fsfHx7z99tu1VVgcx9y8eZOdnR3Oz88pioIkSdjb2+M3fuM32NnZqS3FlFLcu3ePg4MDkiTh9PSUVqvF4eFhPWmdz+fM53OWyyVPnz4lz3MuX75MmqaMx+P6fNPZbEYcxxRFUS86mG9pmhLHMdevX+e3f/u3+fDDD7l//z7Hx8dMJpN6MiCEtjCDZ63/omh17nhosmDXSWhiG6K3b1Ll1nHTxD2Eg53HOnztdyEcfTg19SMXD3syum5i4/YVXx/yhfWFCU1y1y0u+Mpnx9mE/uadCz462ZOl0ATdxWPd96YJrhuuCUczoe73+/X40ZS/+xxFEUmS1NalsFJc2XiYeL603LKsa0suDZvGNx8dQvxm3bMPfx/OTfws1M597dgtr3tv5+1OxkNjxSbjxzrY8u9wWp8F/v23WYb6/vdpnZ1xLCXyM8a/5XLJnemULE1Zfuc7/NOrV7f8uyGsnc+Wf2/595Z/b/n3p+HfEFbWu+Uy9yH6Gx5kx/NZyDbRzbRhQ4eQS2Rfm/a105ALXbscvjpxFVh2PFt2seOZ/mOO+Dg/P6/PEffhaZfJVcIcHR3V7+4+uMvZn59x7+E9yqLUlt9fRSu/n6KV3RHwNeBbaKW3KZIA5mjX6KAV2gna2ruNXtlaVu+nwEdoxfhLaAX7U7SF+QytBG+hFeVX0ArxM53+QeeAf5b8M7715W/xyr98hTfffJOf/OQnNR83m9SFELWHAmM1buhp5AMT1qaVXQ+hOnH5mE1zX78NjQMha1O7Ldl1ZbcJ11raxc+Hj69NbTJ2+Mppl98tl5teyELWDWtwdPuyb9wJ8TkfvwzxcJ8y0tdHm8YCG283nKknXxrr+FVI1rDrw1fPPpx836MoIo5j9vb2avncLbcLrqV5u92m3+/XfWs+n9d5+DxV2GXxbaTw1ZE7htnjtFseX19y6bmOv4fkAh+4vMQFuy27im3zLcRbTJlC9PO9t9/Z40SoPrfw2QcFK+U4oBRaB6b0x/O5opAwz2Gal4wywSiLWBRQygjZkcRtQRJLYhWRoIgrRZpwzhqndFyoy1grwkvLalwm1a8Oo6pzx5WCUmml+FLBAslcaYX4WElOZc5TOeeJmnFSnRtuXKWPpXaXvkSSqVJflOSqpKjOKLddpxNQiH866XQLW/gMgkC7i4iEVoh3Uui0oNuGfhc6HcAceQBkJeQFFHKl/FZKK8BLCWUBRXXl1a+UoCR8DhTkv0gwXPFFLPHGinEILxCYX1tg8UHTwo/9LiS4uIKWO+FYJ/DY70NCcwjvprL43vm+w2pRy7hc9dEqJNTb32wBdz6f89FHH12w0BJC79g+Pj7mG9/4Br//+7/Pyy+/TFmWfPTRR/z0pz+l3+/T6/WYTCacn5/zzjvv1Lu8O50OnU6H3d3desH8/v37xHFc4/348WNOT0+ZzWY1fka4n0wmxLF2zzYajXj8+DFnZ2fkeU6SJNy9e5dHjx5xdnZWTyrsia2xhIvjuL5sCFmUmXR89PftfA7VfdOkygcht2u+ieKm8LwTW3cy4mtHvj5mP7vfQ3mHFi9c/Nxnty2Hyt00YfGFN7++nfS+/NwJpBveV0YXP99EfR00jTsmTdP2bUsdt+7a7Ta7u7t131s3CTWQpin9fp9ut4uUkuVy2ej+OTSmhdpLCJr6UBO/sOOEJue+BR1fOm7+vkWEdXXoa79NZbfxc9/bv7B+Iv9pJ+hb/u0vi+/d3zf//rDi310peU0p3v+M8O9eFNE/Pmbx+DH/djLhXMot/94Qtvzbn68vvPn9IvBvoRQHacrLvR5Pp1PKKp0MrdsCrQO76BRdw5Z/f7H5t8HHVv4Z+rv0bWoDbvtfh7fbr+wwIZqGxq7Qsw3ud1sxaENImW/TyaWF2dhm+k5RFM8oZnz9yAabh0dRxHg85s0332QymZCWKQBlVGrl9MfAbwD/O+AArdA+Qp8DfgWt+J6jldfH6I6fot2r99FK7mX1/f3qWVXh3ke7TT9jtVI1rr6dold4WtA56tB/t0/ncYc/Wf4J/6X1X/jlX/5l3nnnHZ48ecJisag3rQkhLmz+S5Kk3tRuyg6rYxuaeJTb5uM4fkahta7/hejvjiWuhwYb7Hbvw83XrkM8xO03Ph5kK/TcduS2SR+O9ne7TCHeZX/zeUwKldNHa1/5DdhtxEdHX/ncuvbxErtufHRuwrkpjRDNbPwNzjaerVaLoihqbwm+9tFu9xgOr3F2NsJmgTqd8Nhr5PKdnR2klMxmM+bzeW0t3jQW2mO/HS7kFj809jfx8E3q1CeLm3tfG3Hx9fF7V0aw03brK9QHXLqZuDaf9I0pobKYZ3tDwxY+O2BqY/3KF5jqLpVWkpdSX/NMMc0U0wJGmWBeKJTSe9giBa1I0BaCREJLVZkpqM8Ll+LieeLGUryMa4txYzWuqvPGZaUU10anikIpMilZKslcSmZSMpUl57LgTBYcy4xDOeOJnHEq5/pscanPDp+qnLkqWKqSzLIO16o6ZanrtgrxLXxBQLBSihsr8U6KGHZh2IWdPuwOYdBHqaQ69gBY5LAoIK9cShgL8lLp5yyHPIflEhZL/VvkUGYgy2qQWfWyFxkUKzL7vn2e4bkU4+sWKGyhJST8umn5JglGiGlaKHGFotCkwhffl65PuHqe7y40CV9mohNaUGoS5Hw0NAtjZherEU7zPOf27dvs7+/z1ltv8W/+zb9hNptx9+5dvvrVrzIcDjk9PeWdd96p3aQNBgPa7TZ5nhNFEaenp7XC3SzGSSk5Pj7m6dOnHB0dMR6PieO4rsvZbMbR0RHT6ZRer8fNmzcpy5LRaFSXfTqd0mq1nllABOqFe+Me0t7N77ar5118aZrouvF8wrvvfSh+KF5o0upCqN2uaw9uGr4wZoEiRBdfGe001vWFdYsfPhq471x8NqWJW7e+eL70Qm3Kxs3Xn5to5msL8KxrPXvcMuce2tZkQugFd6CerF++fJnz8/MLlqcuHkKIOr1ut8vBwQFRFDGfz+szkYuiqBe+lsslWZZ5ae/iCxcnjE3jvO/7puNnU7x196F3vvKF6t18C521Zi8cuODrKz587bChhYwmem0CW/792effWRzzUAi+qhRP8pxrf8/8u1WWtCcTyqMj1GzGtNNhcusWHyQJj6fTLf/e8m9vmr53W/59kX8Pk4RXpKRXlpRCcOXyZabTKeOxVocPgJtVGm20wakQgiiOSVotRJLQvnSJWavFg7JktOXf3jL54r8I/NtXLl+epjzrrAjtsDZ+obHUV2YXN1NewMv/QuWx8bTvm+QAd9zzldHdNGDA8DHX4tkOZ3s3cePaOBiPLGbTd5qmdEWXaTwlW2bwS2gX6u8Ab6OV3L+EPoc8RSuy32Kl0N5Hr8ov0atOEm0lXqKtzFV1/zHacvweWtGeoAcNBeJcEN2LEGeCwe6A77z+HUbFiLeP3q4VcKenp/R6vVr+MHzclMlYhZtxxaalXa+h+rTpaX5dJa/bR3zxQmGbxv6Q7OWmG+Lj63ieTz4w+drWvG48uyxmA5X9zk5zHU/38Wx7g4fLw5v4ny2v2t/tcdFt9757X7imsdX9dS3EQ3TwlTHE2+z87Hdmk6gr5yilSNOUwWDA+fl57RFKCEGatskyRZblZFnE6ekdpDxEd0AAgRAKUESRqN9BSpL0SZIdrl27zeXLCUqNODk5qY9AarfbJElSK8p9NLLLFWpzRgax683H45vat03HUF+z8bG/2ZtBfG02NH+zf+3w63i1ufe1HR+Odhhf37TxsN2x/6J4+BZ+MSCc+1DNKCdMHVZVhqEAmfa0LJUiBmKk1omVkAhBqiIiFC0gUSCkAMtifGUtHteW4vr8cK04V1JQSoFUkEtJJiVZCXNZMquuiSyZyoKpLJjIkoksGJcFo7LgXOacySVncslYZcwrZfgCrRBfqpJCKXJkpRbHsg+3aWH1m09dA1vYwmcEXDEuEhALSGLEoIUYtmGvh7iyC1d2YXcHNRiiugOESlFlAkUESwVLCUU1OJRKy9ol+t0yh2UBszliPIbxGCZnqOkpLCYgC33VfOKL2ctMdXxeSy/Uhpy+1dI+vtYJVxcSb1hwXBfHJwj7BGxXAGsS+EITm9ACn11On4WTLy8f/nZ+QujdqPbE08bbR1+fAGfjasIa4djg2u/3OTg4oNvtcuPGDb773e/y8ssv1xZveZ7XrlV7vR6z2YwkSbh8+TJCCLIsY2dnp3addnJywtHREUdHRzx8+JAHDx5wdnbGdDqlLEsODg7o9/scHR2RZRnz+RwhtEs2k5dN3yRJSJKExWLhpacJZwRee1K9rv5Cu7Kb6sxOt4nOofpx69r3zX6/ri+FvjctNG1Szk3ydXH10SNUbvPd7W/r0lqXx6a4huju9uNQvT9PW7CfQ2mG8GoKaxTZ0+mU5XKJEKK2EjfWHC+//DJ5nvPuu+/WSm4zATSuVvf39zk4OODq1asMBgPm8zn379/n8PCQ0WhUT8g7nQ7L5bK2ojG42G3VV1+bjn9ued10NoF1/GYT8OHuaw+h8L6xxk7DDhf69aXti+uW24zJnwS2/Pvzxb/7wDe6XZ5cvUr775B/n5+dEU+n3CoKbgyHiG6X987OOC5LjhYLVBRt+feWf2/596fg39lyyU3gVppytr/PNElInpN/37h6lZ1+HzWZMProI8TTp3w8m/F2UZBu+Xcw/ReFfwO1a2s7T5d/+srr1lnoiAF3XLMt/5rG7ZAr9SZ6uPi771130FEU1RtC7Xg+JYnr4tntA8ajSlmWZFl2YfNKiI6uhaQv/SiKLvBwBCz2FpS3SxgCrwG/B7yOtgafo61UMrRyew9tRd4C7lQFWqCtzGO09fkD9Jnh94GfAT8FngBnEOURuy/tcnnvMuN7Y+RcMh1NiaKInZ0dlsulPhbFUhq3Wi3SNGU6nT7TngyYcgEXNgqE2o9NM1OXoTHZ9z7Uvn1txs7fvfdZbJswdp25vM6GJv7VNN6EfpvGV195Qmm54cyzu2FrXVo+vN3y1e2Zi/3ffg61BZ/c7bYt1012CHf7nYnjK6/P60zTd997c9TJzs5O7VVJKUFZ9iiK6+hdKB3gl9E7WP4L9XkFGCVsC+3y4Tq6Q78C7CPEhCT5Mf3+B8TxU4piTq/Xq+fnZs5v2qW94cE3XjZ5X/LVlU3XJktoX1vx8ZsQhMb9Jh7d1N/csOvy80Go3ftws/Gw27KZ7zwvPI+stIXNwKboJpKlWwMCEEIblLYSaKew24NLA8G1HcFXLsW8fjnm5WHCtTjlatSiX7ZIlylp1iLKE0SeQp4gigSVJ1AkUCZQaCW5LKPq/PKIXArmpWJaSCZlyVmZcyIzzsrqkjnnZcZY5owrJflUlcxkwUIVzCtX6TmSorIOL5SkrF2mY7lMv6gI35RGW9jC5wIEz3Zo0B3aKMU7CeJKn+jaAHFzD25fhdtXUbt7qM4A1RqgZBtVtnS/zSPIBRRCy+aFgLK6cmBRIpYl4nwCxyeI4yPU0X3U03twfogqFyvr8Quu1dWFnxcFmjjaZ7Wom6xBPJfFuAFXOHIz8wkvPuHcN+lpmkg3CWO+iasvbx+OoQUE+37deVm+eCFc3cUHn6Dpo5+vfHYZXPdF8/mc8XhMnue1a6i/+Zu/YTqdMp/PGQwG7O7u0u/3uXbtGkIIHjx4wGQyodPpAHB4eMhiseDw8JDT01MODw85PDzk7OysPlvJ4L5YLEiSpF7kM+8nk8kzNABqV1WhiV6IrqF37mR8XT2EaNmUpx3Hh7ddl6GJtq8u17UlG7/Qe1PudQJ4qN/6cHH7aVO7bKLX80BoocNOq2mMsXHxhQnR0X3X1HdDuLl92TfZd8vpqwPj2nBvb4/xeFzvKs/znBs3bvCbv/mbvPbaa+zs7LBYLJhMJnz44Yd8/PHH5HnOwcEB7Xabl156iX6/z2g04vz8nIcPH9bpJElCt9sljmOyLCPLsgtnpdnldSeJbvlDtArRFp5d1PCBbxIf+h6a9IZw2qS/h8KE0mniO00LUb4wTXh8Gtjy788+/54A9xcLrpyfc/gL5t9Hh4csTk/pnZ/zSp4zBd4Rgg+VohdFPK7GB6UUQsot/3bibvl3M2z594p/X9rb4/L5OZPlkr8uS3aLgjs3b34q/v2BEBwJwW6a8qutFh+124zzfMu/vwD8O8R3Q+f9hvicEOKZsdZtC+sshEM0CPFQHw18vNM823iFrGFdxY4vHR/Yyvwm6/oQzvavTUe3jbfGLRbHC9RSaWX4Avhj9DngY+AS+gzyfeBuFennaJfqg+r5I7RA8CHabfr71buHwCFEWUSiEmIRczA5YC/d4/jsmMViUdP39PTUK38Yud9WILtjhHkXcp1uwJWJbB7uk+9844+7acP1RmPC+mQCN63QeBI6rsPG3Vd+F0JlD23CtOO4Gz/cdOw49r1PkWnXW4gnukcFbMKfffF99eSTq0P0cftpUx8NtbMm/O22t4kXEN8Yb+JPp3pTybVr13n48JjRaIxSc7Ty+5vA/1j9dtAd+gT4CXrXigRuoRXjX0V39CPgCUq9TZ7POTtbAin7+0N2d1OWyzmz2azuj275fPTy1Y0bz8cz7L7g4ychPuzyCncMdq3TQ31wXV4uPm79uXnY7TvUf+z+7SuX20fseG6f28JnAz6t8kVV/woJqjpaWCkolD57vJdIdtqCfiRptxSDVJFIBSVEUmhL8eqSRYQqImQhtBfmQpGXJXkpySQsS1iUMClKzo1SvMg4KhccV8rx0zJjJHMmKmMqtSJ8KUuWlfK7UCuLcNsyXFm0UM/838IWXlAQzn0UQSy0QrzXgmGb6NYO0e09xJ0DuHMN7lxDDfeQSR/iPqpsQ9mGolKOGwV54Vx5hFhIxEIhhhNE+wTROkKJLqqMUCSIxQiVTVDFEmSuBxUlNXLK7qWfF3genvfijDnPfcZ40yTYDhd6toUS30TNDuMT+N3dpb50Qzi7EJqwu/k2Te59332CN6zO3vTh6ebvhvFNIn1x7PDGSsxMjE9OTtjd3WV/f7+2aLl06RKXL1+m1+txdnbGeDzm5OSkXgw3E+fz83NOT085Pz+vhXdjmWLyWy6XtNvteoHAB249+SZK5tmdoPvKGVrMsb+7wnZoMtfU7lz8Q/nb4ZomAE3gE9JD7dDF257o2JOHEA5msmAvRNn52WULtf3QxMa3yzmEi8/t2SYTJDd9t8yhiXEI7yYIpeXDZ9O83DTjOK4tQo0r1p2dHfr9PkIIrl+/zq/+6q9y+/Zt2u027XabN954oz5L+OnTpywWi3oh3ZxhZuq31+tx+/Zter0ey+WS+XzOaDSq+3SIDm77sPtnaMHDDmvf+2jm+9ZEw1DaoW+hCXoIJ9/CS1P7D435Pth0TPCNU58Gtvz788W/70vJzukpk9NTTj4F/86zjOzsDHF8TPfsjJfmc0Z5zsdFwbtC1GcZ95dL0i3/fiZdN+w62PLvLf/O85zebMaXsoyz3V0mwyEHfwf8+2w65bXTUw6nU35WFMgt/35h+bcB09dshYivzuzy+cruG+NdPH3tIlSW0JjjWpS74Zve+erWWDA3tUNbsWS7FTbeluw4rqzgK3MTn7PhGdkjE6T3UzIyrci+j1aE30QrvnfQ+rNbaMX5CVopfh99RjjADK1QP4ToYUT0JCIaRcSzGLmUCFW1YamPMev3+7Vlt4/Gvk0Fvn5gymPChmRHt527yuym/uk+uxsUQta9bvty24BJy970sCmY8tr8z03fbevmm+HFrvWxTzZy8fRZuLubV3xyhU0v+9fnXcXXds07n1IzdMyCTw5zaWTnEXJl7ablG1/c7+547ss7ZDVul88dP008461F8+Exo1HJcnkFpfbQC8WvAv8D8DV0B+6hrcEB/hHa76pEm5hNrN+o+rYLfL36nXJ6Oma5fEocjyiKuXdssfuhS1/fGGS76A/JV4YGvo1RLk3dtmSnbbcR31nkJmyT1y63vt324dvYYefpq0eXjk381yfr2rCpbLCFf1gQ8NyKGVX9M10rK2C2gEQojiaKB21JW0jSjqTXUfp0kxxEAXEhiHKBygV5BnmuWOaSZSmZFzArJJOyuior8VFZcFYWjMqc8zJnJHPGMmcmS6aqYCFLFqpkSUmupFbSVwrx0nNmuH1/oUxb2MKLDgrNVhGQCEQ7gU5CtN8lutpHXB0QvbRL9NI+3NxDXd6Fyz1ku4UQCaA3tVAIVCy0Yl1EoBJQ1bEIItbhiBCRQMQC0W4TDbsIuQf0Id1DDW4gR49Royeo+YlWkOeT6uxxCUKBqi5Y/dYF+SQgNlZd/yLHBH+e4hkPFZ9X+MRnjPsEYFdIt4Ur32TaNxHzpef75sPHN/l3n23B0BfOnWD40mnCPyRU2bgVRXFhounGDU3YmwQ2Fy8DZtKV53m90BbHMb/2a7/Gb//2b9NqtXj//ff5q7/6K9566y0ODw9rwdpYqRpXqufn5ywWiwsuH+26WC6XjEajZ85ts2kVwnPTiZY7AQ1NsOw8ffXTJOiuq/d139aVyZeObyGhqZ02tTO7v4Umsja4Z1SFFi3cb+vw3HS8cMtvT7BC4e136+jyi4KmBbzn7aOh8cr0T3P232w24+zsjGvXrvHd736X3/u93wNgPB4zHo+ZTCaMx+N60txut7ly5Qqg3Web80ZNmt1ul+FwSBzH3Lt3j9FoVHuVaKKjr134yugbk9eNUc/TVn35N7XXdfn58l13b9LzLdaE8POFCZXV9+4XMSHf8m8/jp9V/q2AnyrF14GPn5N/y7KExYLL8zlX45hJUXBvNuNhljGu8IeVgLvl3/4wW/7tx3fLv8P8O4ljvtZuQ1HwV4sFajT6O+PfTyYTfr5Y0C8KfklK3gGmnnJs+feLyb/d8oTiuOX0lXfT/mDADmv3YzttVxnS5LrXh7erKHW/b8LvfVaOxruCTRe3nm3FsqtktfNrUrwqpRBKkEYp+TKHQ7RuLEW7Vf8NtH7sAfDvgP8MfFBFLoExxPOY3Z1dBssByydLsknGcqHP/LaXxZRStUt0t2xNMpBNJ9cDjm/Dk0nLbDjwtbF1PNxWApvLR1s3rttvTRi3TKF6M+VcN8a4aTSBnZa96cDXLn1HxNh0du/dfuWTEWw6hcZxn7waGv9MuJBlvS/9Tca30BjrGytDY7zdh31yj9uObNrY/dotg/stjmMGg2s8fbqgLM+BR8CXgd8H/iegjXadPgGmaOU3aKk9RnfqqAqn0JJ2jD4vYRe4gna1/kPgKbPZMTAnjlV1PdtOQu3dfRe6d+ns21zktsF1PMynMHfxcuvOfnbz8fFtdxzyjdm+Z588Emqnvr7TxE+38NmEdbVjvvtagVJaOZ4X1Mryo5aikyhaSHq5ZFcq0kghSoglxDmIXCAzwTyDeaaY5AWTQjIqJGdFwWmRc1oUnJY5p4VWhp/LnFGZM1Ml88oiXLtGV5RKu0U3v4pnrcNXZbH/b2ELX0QQ2ko8jRG9FDFsEV3vE39pn+jlfaJbe4hb+3B5B9UbIHsdhEgRZYQqQQiFUhKUBKm02/Q4gjIGkQAxQsUIlSCIEVFM1BJEgz2iqIT0EnSvo4a3EEfvI5MuatRCzo50ujJbKcdR+tfwEaWqd6ze6Q+blDr45IfnHSVEIOWmdD7J1qTPHmysGPcJpqGJl0942FRoMhCaEDctTqzL0zcpCQltvglD6H1IsPfhaSasrkAYWlxxn0O0bRKgbUFxb2+P3/u93+N3fud3ePToEd///vf5y7/8Sx49eoRSqnarPJ/P6/OHi6JgsVgwnU4bd46bM1d9ddo0wfJNnn2TNt+EyUerpvAhmvuE85DAbsKH6t2Ob0NowunSJ1SPdnmb3ISF0muiVSjeJn3bTbuprTal0xTHXSxYh4v93Z24+SZN6/D14ermERoLffnb39yJ4nw+R0rJtWvXuH79OtPplO9973t8+9vfZjKZMJ1OL1i+jMdjQLer8/NzJpMJrVarPnc0TVOGwyGDwYDRaMT+/j7D4fBCe51Op7XF+Cb151u0cSfJvn7qo7sLobbty98GO23fjnE3rm8c8qXn3m/6PYSX/a6Jv/nGxU8KW/5N8P1nmX+XwM+F4OtlyfsN/PvJo0d0ypL9KGKYZUTzOZM85+NOh3f7fWaLBdNqXNny7y3/bkp7y78/Of+OpeTubMZJu424fp071fm9f+f8Wwh+nGW8ISWxUjwWgmOlWDaUf8u/Pz/8G8JK5eft877nEE3dML6x2YCPP7ttwRemyRrWprmvbCEI9WMpZe2q2FX6+mQiu7w2z3fr3I3remdIVIIsJaUq4QbwfwR+F+0S/V8D/yvwLlCCSAViLogmEcksYbe3y362z3Q6ZXIyueDRxR2TjMK/aQOCee+jpc/K2FVg22V0ebOPZ9vKYt9RKSF5w4e7Ww7fGdWuG2r711Wwufc+pbn73oefb5wM9cFQXJeebhz7fUgGstNwLdDdNEMeZnxlEEIbS9iKaLsemmQGuw/7+pjtAcP+ZsK7+bh1a965bvDdsplfnwW/zXOklJyejslziVJfQivEz4H/PfDfo903PEHvbmmhF4PPq9zi6vsY7Ua9hz6stA1cRrtUf4o+d/ygiisx55KX5RIpy6o8EOoCoXHa7atm84qPJi4/s9tvHMde5XiobfqOlIrjuN5k6ztKwScT2jj4zo+347tl97Vhn8cDn8t0Ox1Tdt+3LbwYYGpUOM8oKCVQwBIYz+E4UXRQDApFv5Qso5IdVdCXESIDckmeJUwymGSCcS4ZlSWjouC8XF3aQrxgIvU1kwWZkrVVeOh8cGXhaFtkblvlFr4Q4OOBAr3vLI4Q7RjRTbRC/KBLdNAjur2rFeN39xBXh4grA9Swi0xSojhCSYVAIVSJikpEFEMkUUJCVFl3C5NRlZmKgAghYkSUaEV8RyBUClEXlfQRURuR9lGDK4jpIWJ2jCrmIDOUzEEWIAuULPUuHFmulOZSWr9K3xslurmwf7Geq3svVHyzImTTuLGJev1iKF9qn3/luFAbcv1Wq7WK5JkomPc+Acf8rlvACk1YfGn7BDRX6LaffWfQNMEm+IbK4OLkpvm8gpYvTtNChktHIQSdTocvf/nLfO973yOKIu7du8fPf/5zTk5O6gmPlJK8OqtQKUWr1aoV41mW1UKuDb7JpVvOUD35aGSXo4kebriQAL9J/NDk8nlx2CQfGz9f+KY2HnpnQ6hMbp6blrMJR19ZXdik3pvwNM+hxdZQnOdtk+vAF9fXxjbpq+vGP3Pf7/f5J//kn/Dqq69ycHBAHMdEUUSWZcxmM+I4rsMppWrFVpIkJEmCEII8zxFCcOnSJYQQTCYTBoMBJycn/PCHP+To6IjpdMp4POb09JTxeMxsNqstyF287WezSGKXyYw3aZpemGDmeb46t7ih7bmLIqGFkucdQ0P9JZR30/jRxJ/W9QO3jn1WOqF4SqkLx1c8D2z592bwWeXf19ttfvPGDb72zW8ih0M+fPiQj997j+L4mKgsaQNTpTguCh6XJVOlSLb8+7lw2CQfGz9f+C3//mLyb4H2kHwHeE8Izv4B+beazTjIMvalJAFmQnCMtm+bK4Xc8u/PHf8G6HQ6wTHIpB9ya9s0nvj6QJN80NQnDbjWnDYvM3mH+KkJ4yp3Q/XmflsHdp7rymLj7VOk2+UMuaY333vDHu3vthn9DyNmYkb5oxLxlwLxUBDlEZ2kQ1zGyLmkXJQoqeh2u/R6vXqzelEU3jzccrnP63i4XWY7TffebmfAM4pXN7wvbTudUL3ZSvQQHi746tBctnv3pnbc1J5CfKypzzfxaLfNNMkFdro+xW5THF/9+dqxSx+bDk31IYRWNrtn0Nt0NutL7hnsofHXJxv7cHbLbeflhve1y2frXpDnoIsigH3g/wR8D33+QRttTzRHnyueVOH20IvBGdp6vIVWnEdV2Ai9I0agzxrvAB8D30e7ixhX7x9VvyNgjhDGglygi6OoF7qFqI92cssTRRGdTockSeq2v1gsmM/nF+gXGiPsfm57P7DH46a2G+IJbp0YnH115OMZNu6hDQ6+duzGN2DarU9xb9/b7WS5DG03bIZN+dMW/v5BVBdAJPSVxrDTEex1BFe6MXd6Kbe7KXtRSlcltGWCLGLKPGKZR5xnilGmGJUl47JgUmpr8IWULFT1KyWZkiwvKMS1i3TAYxFu3rrvtrCFFxiEe1W904znQrs0pxUT7bWI9jtEV3vEt3aIbg2JXtrRZ4vfGMKwC/0Oqt1G0kaqlLJsIcsWstCXylvIXP+St2GZQpZWvwlimSByfUVFQpQlRHlClMWIrERkOSwXqPk5an6Gmp+iFifI+Skqn6CKmb7yBRRLVLmEIocigzKHMkeVOZRacU5pXbXivPpVaqVEtxXqtUU6XBwp3FHDN4o8D2/yxVfOl8/uSLXJ2sMnUox/GvBNQkPCTGjCsUn6oW+hdHzC0Dph+nnANyFZh8emOPpwM+HiOGZ3d5cbN26wu7vLyckJh4eH9a5ycxaZfSaZSb/dbiOE8C6qN03AfTTyTSZDE8xPE7YpfEgA9y1sbRo/VF+hsofStycBvrbXVKZN2kIovXXp+spl99tNaRTaHeyb4DYtWPhoui5/X7ncfJv6e6h9h9JuSiuUhlvOdrvNd77zHX7/93+f8/PzC5Zio9GIoijo9Xq0Wi2UUiwWC6SU9WTYtkZLkoQrV66wWCy4evUqe3t77O7u0u/3iaKodul6//59fvKTn/DWW2/Vlmunp6csl8sLuCVJwqVLl7h06RJKKU5OTmpvEmZcKYrignWtvbBu17Fb3yG6b/I+1E5Ci1lN/atpfAlBE19o6nu+MTNU7izLNsbHhi3/vojH55F/XxoOmRwesjw6IilLFkpxJiVLpZiVJeWWf2/5N+G25eKx5d/+tJ+Xf6foE0YV8L4QSD47/Pvs9JR0sWBfSvaFoK0UaRwjul1Ur4fsdHgym3G+WDCXkrwaR7b8+9lvbl5/n/wbVorxdW3Z983tO74xwDfmuWOaz+LWx+99tLDTasLLx3vcZzuOi3OINm7duvmF8vWNd76xMMQTkiTh6tWrvPbaaxxcPeCDBx/w/gfvU+QFFKByhZKKvMgpi4seW0wfN0pxF99QWdz3bnhf2dy+to4nbRLWBnfThq1Yc92y+/J0627dxrBQuzW/Pitw+3vofWicsN+77c8usx3G7YduuiEr6qZNGC7fNukYBakvD1epbce3ldo2rm65ffm7fd3Hw934vs0Wbllcmth5r+PhofqTEvIclDLfemjX6f9X9BkIT9HK8YPqPkO7Re+iLb4n6PMPBmjFeLtK57h6voVWkps4KVqJvqziToDHwM+Bt6o8jqt3M0AhRIRWlrdot2/wpS/d4c4dxXh8n+n0DClL8lzL+1mWXfCOYbxAGjq6yuXQBi9f2/SNNyFe69aN/a5Jue5LNzTeuvj4eLMvfoiHh/qYGYs/CTSNVVv4hwdbDxcJ7U25mwj6qWC3FXOtHXO1k9CPYlIVE6uIohDkhWBWwHlecpZLxkXJVBZMZUGJolTaFbp0fhVcsAK3WvlGqqwtbOGFhQiMobYQ1U4Ve/hMIkQaIboJ0bUe8Y0+8e0h8cv7xK/sEd0YIq70iS51UWmKimKUiillipQpskwpi0o5nhvleBuZtyCrFOO1cjxBLFNEZinG84QoT/VVRIhSIEoqC/AClc9Qy3PkcoTKx8h8hMrG+n02g3wO+aJWlJMvUUWlLC8zKDJUken7stA79aR9WdbmsrhoeV5bmVvKcrPlRsGzo4mhbSVrOX401IU4yrrctJ4dyT6LsMmawHMrxl1htWmhxL33IhCYXPqElqbFl9BEPAS+icqngXXltPG1cXzedH2TDDttVwjd2dnh5s2bxHHMw4cPtUWJWu349lmGmrTiOAaod6lvirOvzOvihibuTeHtcKH0n3dyFIoXWngIpdkkeK/LYxOwBXg3XTu9pm8+i4xQ/FDfc3Fah68d1zdJcfNbV7du3puGd/H14efDxRc+RN9N2qSPJu12m9/5nd/hD//wD5lOpzx69Ig8z9nZ2UEp7fa83W7T7XbpdDrMZjNGoxGz2YzBYECv12N3d7fu57PZDIDZbEav1yNNU3Z2dgC9gL+7u8uXvvQloiji4cOHzGYzXnrpJdrtNsvlksViUZd3NpvVi/D/8T/+R372s5/VC/3G20RZls+cw+zjE7668U1GN6WrDaF6c/Ozwwohaks9O4y9mLCunYXasoubiwM8u1DnS/fTWoxv+Xc4vS3/Dpd5y7+3/HvLvy9+i9BL3deU4p4QHFX99rPOv6eTCU8++oj/7d/9Oz766U+JplPSsiSREpnn5FKSVUcqLJVivCLahSlvjnYguxCCfMu//075N2jFuJteyGrO5hHrxhabFrZiq8lVtp2u7YLYh0+o/9n4uuUKPfvAJ0/70nfLYuPppuVrX+5447qVtuMZN8JxHHPlyhVef/114jjmnXfe4ejoCKVUzZ+Xy+UFBaGBKIpI0xSlVO3FzS6bjXMI15Ds1dQmzHcfj3Jp6EtrUz7TxG/teKG27Qvf5GXAtX710SVEJ1/bdduAL6y5D7lw38QSu2lM9Y1XbnkM+I7KcDd5hPrLOpr44oX6oIuTL4yvfD6e3ZRX05EeF/utIM8VUhq1mEK7Qf9D4P+GVnZ/gFaEX0Erwc/QivNBFXaMVmSfo92l71ZhFXqVf1zdj4EhWml+qUpboRXlg+q+qPIQVZ5TtPJcoS3Ujev1J8TxfyCO/zOt1iFRlJOmS/J8hpQFSmX10UiabCv3+CsSC4S42J/dTRI+HuFrk6Ex0t1UYfMu886Mh0JobzXmm/k1G4Ps+m7i4TY08XDXE5nNw0Jjw9Zi/MUEYf0aq/FWLGjH0IsjdtKI3TSmLSIiBJGKKEsopGBZKqaFYlpKFqW2EF8qiVQXFeCmNZl31M8OD/27LuwWtvBZBcOGIxCmI0YCkQhoxdp1ej8l2mkR7bWJb/aJb/WJbw6Jbg2Ibg6J9ruInTb0WygRo1SEVHGlFE8oy5SybFuK8TYyb6OyFmrZhmWrUo63VorxpbEST4iylChPiPOUqIgRZUQkI5AKoRSqzCql9xxZzlFypn/LJZRZZTG+1MrvwtxbivEyR5WFtiaXJUJKrRw3FuJS6ndSXlCm67Szyip9gSqXKJVr1+2qQKlKdlCAEJUSPEKICKpLUPFEpRXwSpUoVYAqL96zUrrbI9qz23o+W7DJ+sPGZ4z7EnaFh9BEyo7n7jK2v7nhmxbCzHcfDr64IXxC75uEK5+gvk7oMWFDbqSa8nbL7OLvwzWOY3q9HkmS8ODBAxaLRT25NhOu0OKALbS6C0o2Hm6d+ejii+vDfd1k2o3rq/NQ2E3y8pVlHb6+NmDXc6itu2m6uG4iQLt42n1v3eKkHT6EW1OYdYsJTfiG8nHz8PXn0GTIft80DjThuG6s8aW5jm5NfdX0P3OZM0cPDg74Z//sn/EHf/AHZFmGEILr16/X8c3iuenDxgKp3W7X7hZN2zO7xs1E16Q3nU6ZTCb1pDVJEg4PD4miiKIoaLVaDAYD2u02cRwzHo+JoogPP/yQ8/Nz3nnnHf7tv/23HB0d1VYsIRqYMhs3smbh2jwbHKbT6YXjHHz1sQn9jRtapdQzuNn42O5qgXqREqg9aOR5fuHM5Sb+0wTrxkX7W2gxwh6TPy1s+feWf2/595Z/h56b8A3l4+bxovPv/SjiVaU4iSJ+KARRktB/Qfh3BCQVDVro5fooiojjeMW/o4h+FPFKFJGUJdl0Si4ER0LwoCxZbPn33wn/tscHpVRtBeqOI671n42Xq9iw49oup01+Li2axg5ffdnhmniz+95XL018y713n90x3cbXju+mF8IvxPOU0gqWNE3Z29sjTVN++tOfMplMmM/ndR0YWtsbSA1IKWsrapcf2P3AWIMa/ELjnttW7W/uZgY3H7us5jek7PKBnbbvTGObtj4Fsq892vjYfcvtC/ZZyaFzg13a2M++dz5cfPXnw9WFEN3Me3tzSognGllwpQR9djywaenrh24+Pnq5cpKbpg9nH/hcePvo4cPV3XzUtBnJLbubXxTFZBkUhTFPS9EK6pvAPwf+J7QSewx8iZWyeoRWagtWbtUVWkE+r8KXaE5aoq29zREIsyodBZxWYVSVzvXqV1Vp76FdrrfQinHQZ5vPgL8G/u+U5UeUZUaW+WitrPQF+vzzhNW56AkQI0RCFBUIcUocJ8RxQVkua5q5iuJ1G8DSNKXVatVzeV//j6KIVqtVb9g28Uw+RvZZLpf1ETPwrPt2u54vlDzAB3zt3qTla+O+8WQLLz4opXtpLhVKQSEly1JxnkliIRCVVwklBVLpc8lzpcglFEpRKu0e3SjDLW4TdIvePAPbwha+oCAwu1SIhi2i3ZTock9bil/XSvHkVp/oWo/oUodov4PoptASEJdVX654oNBzSqEEkYhRIkZEEoRECKmVvcIojxWVewf0a4EoBKIAUUCUQ5QpokIRlRCVVRgpQLZBJqC6qKhExgUqLVBVHkoVIHN97nhhFOWVW3VZoGRRKb/LCgcFSiKqe1HhJqSCfAn5ArI5KptCPkFmE2R2jspHyGKOkkuUzFCqsjBHoXm/PjMdkehz00UCouJxpVa4K1ld5RKlMqRcarwxCnJlVdSLMYptrBgPTQ594E7efQK1C77dne6ELyTU+CbqTYKRD9+mMtvPTffrhLNQvj4BvgmnJjCLRuZsUZ8LNsA7GfdNnkOLDHY9umGbFixcQduX96a4uLj7FlZ8E77QAsc6fHx146u3dZPTJgiVdx34FhOa6td+1/RsxzNx3YUam7buooIb3w3vK7cP3Pa2biHGrXPfOOQro4/mvvq0wU3P1wbM4oVxk9pqteh2u+zs7LC3t8e1a9e4e/cuv/3bv81Xv/pVPvjgA46OjurF6KIoODo6Yj6f02q1KMuS+XxOp9O5MA5KKVksFoDu48vlkjiO6Xa7/P7v/z7Xrl3jX//rf82TJ0/odrt1Wg8ePKgXvzudDtPptHa9tlgs6Ha7zOdzlstlvaBuyiqEqJXenU4HpVZnI3a7XXZ3d3n55Ze5cuUKN2/eZLlcslwu+eCDD/jggw+QUnJyckJZljx8+LAer9bVUxzHtFoter3eBUu6VquFEILxeMzOzg5lWTKZTC5M0ouiqJWNWZbVi+juQrqvXt024I5VocWdTdpS0xixicIsBFv+veXfW/695d9b/v3p+Hc3jvlyHLPT6XC/16Ozs8N3vuD8e1nx76QoUA8f8rVS7zR/IgRPWS3pu/W05d/PB+74FzoX1S2X++zyDjc9mw6b8vCmsS5UB004u/R234XGNHdMCrnqdcc5+71r5Wjj4ebtjtfm3rTrLMs4Pz8nz/NnFI2mrbp83cZ1HU+zcfEprHy4ujzcR2tffBdCbd+tY3tDgmvR7eLubkYLySD2r11fIR6+qWehED19solLf/d7k1vxTfGw8Xe/u23Gp3B2+5hNF5cmdn/x8Ug3Dx+PNuDKbb6NOr6+7qOBW15fWZrkLvPeWCQnSYuy7DCddpFyCFxGK6W/DHwd+C7wElqpbfylGOX5x9W7Htqa21iA56wWhku0W3SFXlWfoZXufeA3gB3gh8D9Km63iv9xlU9ShV1W6S+qNAbV8xR9Lrk5lsOMUzFa6T2s8h2iLdcHwLWqbAfVfVrh+yOUerNSPD+o5IJ3ECInjiVxbOj6bB0bmaHdbtfHu7Tbba5evUq32wXg5OSEy5cvUxQFJycntXcMozQfj8fM53MWiwXL5dJ7ZIvhV/ZmYHdsb+LhtqcIt93Yce20QnKkeyTVFl4cUDiqHaUV3lJopfeiVCtvzkYxrlZxleIZpXfVwoLqos24wRa28AUBgWZnsbYQF0kEbW0lHg1SooMO8UFHu05/aaCtxW/0iK/3iA/aiF6K6CUVSywB7bUBFWuWiEIJhRIRipgoilFRjIgSlNZsU29cMx1aot2kV5coBCIHkUGUQVRAXFApx7ViXG+cSREIVAQy0iioSoxQQmEssLV1uDlrvDpjXMlKGW6U4CCUQki0MlxpVCOJVoxn80oxPkZlE1R6TpkcI5enlMUYWc6Q5UxbsssMVIkQEdpaXG+OI0oRolKOA4olsESKOZI5UgmkVAhRaoKoqLIaN6PiZ91WfHN4bovxpgUo30LapuF8Qrobxgeh9H0TeR/uPoHaNwmywRb03TRC8ZoW99yFZh8dbPzX5SmEqBeLfHXhm/T4Jm0mLde1UmiC6QqUITquo5X7HKJBCHwTtaY24Hvv5ulbqAilaVvr+Sb161wAN008N5nc2zi56fomzm4Z7MlrKJ6Lq88axtc/fOnbbS/Urt1yNJV30zEnlLYPl6ZJuq9s5jlJknqRTAjBYDCg3+/T7XYZDAbs7+9zcHDAq6++yksvvUQcx/zgBz9guVzWC72z2ay2qratq4XQrlGVUnVfN2OJcWWeZVm90DwajQDdPofDYT0JbbVatfW2WXC+cuUK0+kUpRS7u7v1onWapnz5y1/mV37lVzg8POTk5KQu2+7uLjdv3uTSpUtcuXKlzvPw8JB2u81rr73G9evXmUwmvPvuu1y/fr0+d/X27dv84Ac/4N133+Xp06ecnZ3Vk2V7ET9JErrdLpcvX+bll1/m0qVLDAYD0jRlNBpxdnbGbDYjiiLu3LnD9773PT766CP+/b//9xwdHdWWZIY+vvbj6+fP2/9Ci0a2tZbdB+y8N108+ySw5d9b/r3l381pbvk33jRD6X8R+PflToe7RcFet8v5pUvMBwNe2fLvIP+en52xN59zZ7FAlSVHwJMoYpmmW/79KSHEh8yzHcbF36VDiG7r6NXEdw1dTJh1XlZsWvs2XYGf7vY792xilx4+nEPjszsehsY5l+/a/EMIUW9E8bmLtn9DaZnyxHFce1Gy6eSj/SayjauktN/buLn089HQpkuI59ppuu3TpYVRcLs8y867Sbaw6WJo6ItrLPZ9ZfLlGeL3TbzMpYs7XjTxUQOmrlwPQb56N9as9rjo6x8+Hm7j7fMo4eONbv4+vH3g23Bg52GfNx8ap5pkKrtsQgja7Tb9fp9eb4ezs4jZbJ/F4hJKDdCW3zfRivDvAXcAgXaVXqBXw80Z4MaFeln9xugV+HMrnKreS7TiukArtrsVdiXaqjxFK6kX1ndRxTUK7751fwWt9L5chXkD+B3gHfQ55AO0e/bLVXmMq/Zele7EyjOp3o2AV9AHwgzQVvF/DPwApT6kKJ5QFBOEmBJFOUmiSJKYTqfNzs4Ot2/f5lvf+ha3bt3i0qVLdDodnj59yuPHjzk/PyeOY775zW/yT//pP+WnP/0p/+pf/Ss+/vjjC5vaTB/0yWl2+3CV4vY3Xxu237ubNJIkudD3XZ7nG9OfR3bYwucXFFxQjitAKH09G9L8CCu88oV6YRRGW9jC3xlEQAwiFloR3ksQ/YRoV7tMjy61iS93ia50ia92iK92iS93iPdbRHsRUVchWoW2AI8EIFBKIJC6h0ZaoawiUBQoqV2HSxkjokJbTEclShjFOBeU4qJQWiGeC6JcEOeCKNNK8bjQCvKo1MpqIbWbckGk99AIql+BEtUIoyptuYy1dXlZnRVeuTA3CvFI6fQqw3aEVAglasW4KAtEkVcW5wuUWiDFBBmdUiZnlJxRqBGlGiHVlFLNUCrTbthRGEy1Bbm+FAolE6QqKWVMIQUohVKyVugrpOUPw1wvBjz3GeM2hBbLfEKOO7F14/tg3WTeN8nwpWFPkkITMzdMaLHBxsd378PFnST6aLbJQmuIXr7JYqhaNxHwTHxjzWLcPfrSsuM05euL55sU2ek9D9iT4E3D27iYd74J1ycVkte1Sd/Ckrtg4kvHt4Dl6yvPI8xvWne+cL4Jvq/MdlmfN19fWnZ6m9LLl9a6tvc8tDEL6Wma0ul0SNMUKSXtdrsOZ84W3dnZ4ZVXXuHOnTu8/PLLtFqtetK4WCzqhfTRaIQQol4MNgvexo1qnucsFguEEPW5hLY7VuNytNPpMBwOOTg44OTkpO7XRVHUC+eXLl3i4cOH/Oqv/irvvfcejx49QilFmqYURcFwOKytu/b29uh0OjW+RVHUOA4GA/I8ZzQaEUVR7UayKIp6Ytrr9Xjttde4evUq77zzDoeHh9y5c4cPP/yQo6MjhNCKg/F4zHg8JkkS9vb2aLfbDAaDmuY3btwgyzJ+8pOfcHx8DFC7UHzy5Akff/wxo9HIW9e+ttDURpq+28+h9tPES5rwMOE+7Rnjbj522lv+veXfW/69gi3/vhjGLuvz5utLy07vs8q/O2nKK4sF3TTl4zRlWllvb/n35vx7Ph7TGo24UhT053Mevv46veqM9C3/3hw6nY53bHPLF3KV7lOI+sYw+33IwtdXzk15uE8BayDE5035fMq9dbjYYUMW7qF2Zd67VodNPNwuq5u/HbZpTDJ11e/3kVLWLth9tLLj2Pj4wOBgK0ztsL7y+cpqf/O1RzduiLZuuqF+auO1Tt5y823qo266dl5N8l2IZ/raoUvjkOzio5MPd99YZeMTkinccWCTPELhQnKWTyHuo1+oTuzvdhh3TAvxfMM/O50O3W6Xfr9Pp9Ph7Kzk6dM+o5FCq7520IrnK8CvAL8EfBWtdAat5J6xUno/reJlrBTjCq34Nq7OJ9Sr+7TRynGj6G5X8fusLNQPqzxMup3q22XgwwqfJ8CjKq022rJ8H20NbsoxrPLPqu/zCpe9Kv8JWhl+glaGL6u4Cq0Q/1b1+zHaEv1VtML9fhXuBHgIHJEkfb773dv8y3854MqV/Zr2L7/8Mnme86d/+qd8/PHHAKRpSlmWvP/++7z11ls8ffrUOz8L1akPNuHhbnt30w7xcF/79rXx7RnjXwwQgfsQ+Frui6Mq2sIW/g5BoJXiiUC0IqJBQrzbItpva2vw6oqudrVC/FJLf99NiTqCqB0RtQQipvIErhXQCkGpEkqVIGVKKWNkGVPKlFK2KGWbomhT5l3KrEM576IWXdSsDbMOTDuIeYKYp8SLlGiekixaxMuUZBGTZDFxXl1lRFQK4lIgZKTVzSqqxg5RF1SYe0Wl/JYIc3a4pRQXEoSCSArrorqE/qYEUanPGxdSnweOKpByTpGfUxbnFMUJeX5MXpzo53KELKfaHbrS1ulCUR3trs8YVyhKMgqW5GpKLsdkckKpphRyhlRL6vPKPQdGfJZHvo3WgtSGq1pmYb1pMhpCwDdR8E1QmyYKn2TRzMWlaSK2DpfQhHhdfj5hK4STK9zBs5Z4TeVw8WxasFlHN9/EaNOFJR+sm0z7XLv5cHIXdpryC9Ft07r04dM00fel2VQnoXYXmtQ/b5l9ebq4u5OJpjjuQoCPNptMsNfhFwpnpxPCd10bf56wbtl9OJld+kqp+txss6hrLLiiKOLSpUsMh0MArly5Qrfb5eWXX+a1116rrc7iOOb09JTj4+PatbiU+rzMbrfLV77yFU5OTnjvvfcoioLZbAboReTlckm73abT6TCbzWorM2NtbdyWpmnKlStXKIqidqsK+oxTKSW9Xq923zqfz0mSpH42341Luv39fdrtNk+ePKm/3bx5k5OTE4QQnJ2dcXx8zNOnTzk/P2c0GtWL81//+tf59V//dbrdLk+ePGE8HiOEXvy/f/8+0+mUy5cv88Ybb3DlyhV6vR5lWfLRRx8xm804PT3l/Pyc09NTer0e8/mcH/3oR8zncyaTCefn50wmE5bLZT1mPG9/c8Pa7c9tS/Zz6NdOb5N+48M3pORcB1v+veXfW/695d9b/n0xrSb+3YsiXslz7kcR8cHBln9/Qv599coVLi0WyI8/5t50ytPhkNOzsy3/fk4w7mmbrFfX9UUhtJIqjuPaas4eu11rTnu8Do3fLt8L4WD4hB0ntNnNPPvK1mTZ7ON36+gSGlNsHt5kAevi1uR+3m4TPlqvG+/c8rpp+tprU3y7jMZS15emAXuDgJtGqM/YePro0MQbfHFsjy6+codcqvvwdPtoqE26deNrs6Exwtd23LxDNAiVwc3b92zj6qtXt3xueDdtu9/55D/XzbovPx8N7Pr0eTtoGn+NO2/zLkkSkiSp+V0cx4zHObNZhFK30BbTAC+jFcrfBn6tej9AK7ZHaMX3I7QSvKiunSreCfA2WhE9AhTaGnuGttAeoBXq3So9o0g1Z5i3gdvoReUp8BF6WbpX5TdEW5EnVfrtKu2k+r5TpRWh3aJ3qzTMt1vAY7Si/Qit8P4Qrdw/rPDeB74J/HdV+KOqzLJK9//P3r/FapYk56HYl+v2//++1K5d90v3TPfMdM80Zzg38mhEk2PeAMMCKYxsQiAE+YWSDiD4AMeCn/ykB78IhnRgG+dBAm2AtGGTNEgRo0PIoHVESDzUXDDkXJrD6Z7u6e6Z7q577ap9/69rrfRDrlx/7NgRudZfXT1T3Z1R2PWvS2ZkZGRkREbGysy3mjo83aRbx/p6iV/7tQz/9X99jI985Ai7uw/aFeKj0Qjj8Rj/6T/9JxweHrbjhp2dnXZXHGvtqV0/JFnSZF7rs5oe5bpA+7Cb5qNAy6O60R91sypo49MITy6s2mJPbjgoQoQnFAyABDC5QTJKkIxSF/i+MER2adieIZ5eGSG9MEB6boDkTI50LUWyliDJAJNaJCl8dNf9ZwxqJKiRtcHxqk5R1ZkLjNsmML4YopyPUM5HqCZrqKdrsMdD4LAJjI8LJOMc6aRANimQTQtk02wZGJ8nyMoEaZkgqRKkzTnjiW0C4xYuGN78tjtQNL9uBXjdnB1eN4Hx5UrxtDZIa4c3qS3SqkZSAWnt/pK6RlJXLjAOt5q7shMsyj3Mq13MqgeYVvcxq3Ywr/Ywr3dR1sewdtFsq94E5pvV44BpAuMlKsyxsFMs7DFKe4zSTlHZKWo7dxVo/k5vov7kasI+81Urb6WuDailCQjJyQP6n7WmOSRauXyAzkFy5mg50r2UvsuJ4PWV6ODX2gROqL68HO7wSQNAjbYup1YqR8IVyqs50xQkZ1dz7jn9wMmv5iXomiThaTVaJV5okwHSNcWhPZNkj+PW2kErU0sbkklNljRnlfNB6y/UyeHvJbwSTsmJ1uoo0ayBJKucNj+R7uvhzwIeDAYoigLT6bSdaAeAjY0NbGxstNuufvSjH0We58iyDPv7+7h79257HqHfZsyfxZUkCWazGfb399vVI/58zTzPsbGxgY9+9KOw1uLWrVvtGaZ+Unx9fb2l1Z8R6s8LPTw8bAP4Fy5cwJkzZ/DSSy9hMBi09THGtMHVzc1NXL58GQcHBzg+PsbNmzdRVRWuX7/enjO2s7ODPM9x+fJlAMCzzz4LAHjmmWfwi7/4i9ja2sIbb7yBW7duAXCroa5du4Zf+IVfwNe//nU8fPgQeZ7jwYMH+OY3v9luR+snznd3d9tzR8uyxGKxwPHxcbv6zT/n7ceBT8RI6aQ+3jVJxmWtSx9TXF067p1AtN/Rfkf7He23ls7ff9Dt91ZR4Np4jDfSFPMscyd1Rvu9uv3e2cGP/sf/EfvHx9jf2sJ4Nov2+x2AZqsk3SYFDICT20hTWyP1SfoRHLdp/hltAx/c0oLJvK2kY0i4LeP14jQbc3IlOk3PV1FzeqkO03RKl67htIVW5vO6c9q69CtNH7I/kk2XeMrL5fzwMhT6MIDzkm57LNHn8UryxmnWzunmNHm8XX1Dswvae01v8D4TGv9pbSsF8KXxX0j+pD7J66LxuWusJ/FGK5+vBNbGErwc7V4bb3LafCDc29r5fI7ZbIa1tTWMRmu4c+cQZZliOdV5rvn7rwA8D3fu9hAuGHwIFzi+Dxc8nmC5QnwOt/q6hAsgH8JN/o7hgth+6/KfhQsuv9qkPcAyqL3d4LBYnhv+LFxw/AGW55RfaPD9AG6FeQ0XNE8aWgEXyD8PF3TfBfD9Jv/HAfw0XLD8QZP+ow3ezzZ5r8CtRt9oaNlr6FqDC8pfgdtW/RhuNfxDXLnyF/gH/+AAH/94ie997wh//uc7uH37NnZ3dzGbzVq+7+7u4vDwEMfHx+1zLvPAaRujyTx9J8mI/6V9h6apqqrVRzRPn3Gr9O5x2PAI7x+I0hAhwjsEAxgDJLlBup4iO5sjvTxAfnWA7NoI2bUBsusF0gsZ0jMG6WaNZLRAMiiRpAZJYmEM3OprALAGtkFqTYIKKRKbIbEZDHIYU8Mktj0eoU4SJIk7Z9uY5vgUv4K7rGEWQDJPkc5zpLMM2bRZLT5LkM8SZIsE6SJBVhkkFVndbc1y23Nrm4C4bQLedhkUry1MXSOxdvncNqvBa4vUAmltkdZAVlbIyhJZVSOvLLLKIqsqpHUJUy1gsUBtF1jUR5jWDzCtd3Bc34e197CwO6jtLhZ2D3N7jAoLWLtwW6I3q78bKwkLixoValSoUKK2c1QNbosS7TnsjuE/Xnn5MUDvwLjkFADywJkP0qnzygcw9LnPqzmEkpNN8dE0oQkEbbDfd9DDy5MGVaF68PSS4xaqv5SfToZIuLqce+29ViZ/R+9p2Vq9+fPQNllePqTtAaUBb9821uRHcxy7eKi1WchZ1+RXc3J5mi78UjqtLSXnn4LWftKqSOma3nf1Nd6OocmNkBMu8UeSka625fR7eaRn4vnfoigwHA4xn8/bNKPRCM8++yyeffZZvPDCCzh79iz29vbas7Tv3bvXOpR0W1PArTK6ceMGvv/97yPLMljrtkadTCY4Pj5GnuftiurJZIIzZ860E/CezvF43AbqZ7MZtra28LGPfQy7u7vY29tDWZZYX1/H1atXceXKFbz22mtIkgRra2s4Pj5uzzMdDAY4d+4cPvrRj+JP/uRP8Pbbb6MoCmxtbWE4HOKVV15p6a/rGsPhEJ///OfxoQ99CNZanD9/HmVZoigKfP7zn8dzzz2HP//zP0dd19jf38cf/MEf4PXXX8etW7dgrcXe3h5u3LiB/f399rxxzxfAraSjf0mSYDgcIk1THB0dibJA5aTr/Ms+8iQBL6NPOlpe17NVIdrvJUT7He23BNF+ny77g2i/t4oCn8gyfDtNMbUWWbTfj2S/163Fxu3b+MbNm3i7CeZH+/3ooK2u5vWlfKJ5aSCRBq+5DaergqW+JtVJ0oF8vMB5QG1s6L3UXhxnaBcb3n50PMPTU6B2i+4swWnjz3h5obQ0jcRXei3VsWt1OteRkq2m9ZVoAZYBJv9BBeeFxHOpH0oyQgNXmvxKfJJsHwXazl32LTQm5Dgpv6R21Pq7hF/SabSevO7auLRra/nQ2IbXl/eP0Acunq7QsQEhHvNrmk7Tl74svyrcfzzmd0JJkgSj0Rrm8w2U5RgusF1juUL8s3CB8TNwwd/7cEHqN7FcOX2M5fbkgAtkvwTgv8AFi/3W5odN+mGDr4RbaX0OLjB9ABfQ9ueTH8EFoY8BXIJb8X0LboX3HMBW83wLbqV31lzvNu+ncMHyc3CB8T9r6Bo1+c4AeLmha96Uuw7giwCuNvdDYLm0Di5gD7hA+RjA1+GC8q8BqDEY3Mb6+sv48pfvYzx2Ae/FYtG2m/84wX8kmKYpNjY2kGUZ5vO52Pdo21MdJumzPuNRfy3pjpBO9teajaDXIZmM8P6E2NoRIryLYACTAEjdFurpRorsXIb8co7iqQHypwfIrg6QXc2RbadIR0A6rJDkFUwCJClgjHV/ALx6tjCwSGBhkCJFZVNUyJCgQmlql96PQU2C2qRITI4KTWC8CYpjYWHmTWB8lrkt1GcZ8lmKfGqQzRNkc4OsdH+ntjy3LvjtftEGv5PaP7dIfGC8tk1AHc1qc5cvq4Gstu6vLJGXc+RlhUFVo6hqZNUCWT1HUs9R2RlqTDGzBziudzC29wF7FzPcRWLvw2IXJfYww7ELeKNEDX9eOJmfazSfbf+FzxM3p568t2HlFeOAPunXd3JKGjRTXDSNNPklOVNSOmnyIDRJwenvqk/I0eUOT2hwGJrgkxyGrrzc2dHSajygvAp9sdm1vVzoudZmUl0oXXTwqznC3NHkvNfOVZPS+mfaBJFWvlS2v++zhV6o3BDftDI5r7r43ZU3VD9Adoi1OmsTFRJoEwgSr0JtxfNx/Nr7JEnaPy9LANov1gHg+PgY4/EYSZJgfX0dH//4x/FLv/RLeOqpp9rVZLdv38aDBw9weHiInZ0dHB4etpPX0+n0xIqzsixbevyWXoPBoJ1INsZgMplgPB7j0qVL+PjHP44//dM/xfnz59vJ/9ls1p5jOplMUFUVvvWtb+HBgwftuZdlWeKll17CX//1X2OxWODs2bMnvsifTqfIsgz37t3D97///ROT7/7sUn/26dNPP43BYICyLHHlyhVsbW3BGLd9a13X2N7exnw+R1EUeOqpp/AHf/AH+NrXvtauuvN0S04tn5zyK/1ou0p6XpLlPquaJJyajEl6l+br2nJa0j+8zHcK0X4v30f7He23VH603x9M+50CuH54iG+mKebRfq9kv7/+ta9h7+5d5Pv7uFiWuGktfgDgKNrvx2q/aTm83/AV2LxOko7VeO9BWrXrbThd9SwFbjXd3FUvSreWn9eLt40vW1rBHhpbSDqD0hAaG0hlUNr4xwl9ZMin43aH06bxiT/j29nTNJJtoHz1wUhtTERxaStB/YcGNAhGcUh4pS3cpb5Kdw7gZdN2q6qqpVHiER+D8TTUdtD0nF7a/r5MCtIKWg24TGofdlC+U7xdRzDwdpDaz6endfE8lcaa0hbrvJ9pK+f5e5+PfkjlZckYc+Kjq6OjORaLfbig9DaA/xmA/w3cKnE/sXsPLiD9AC4IvQMXePbnhU/gVmH7FeO+vXMsV3FnWE6jHsIFxbcAfAjA/wTgqSZtBRd0PsRyu/YFgG81NPjt1udwAelZ83euKa9o0s+b6zsA/qr5S5syz8EFve839Xi6STuCWwXuV5tboA2KWyxXi/8+gP8BwOsA7iFJSmRZjSyzuH27OmXP/L0f33AbJNkWn1fSo7wfa7pfs+8cN8VPdz2huqfP2JHmf5w2PEKECBE+sGAAk6A5V9wgW0+Qb2cYXM5RXM0xuJYhv5YiuwhkZ2ukGxXSHEgKLFeJNyFwAzTrnIktQAJrDSqboEYTGDcVElRIrNsoHE04uEaCyqZI6gx1lcOWGbDIXVB8AqTHQHZskI+BYmKRzyzymUE+t8hKIFsYZJXf1nwZGE99ALxGE/j2wXByX1uk7TsXTE9qtCvFsxrIayCrKmTlFGk1QVpNkdYzpPUM1k4wtxOUdowZJphijIk9wDF2Mba7OIT/28cER5jiGAtMUTdrwm37xwPell0tw+VKcwo535vQ+4zxPM9POU4UJOdHG8x0OcvaJILkCEkgOW18i1ZKR8gp6VtfbSIlRCfHTQeWfber7UuvNulB33V9ddy3nL7P+z6T6Neccq0t+tLJQXLmpPchWukAXaJpVXnW3vetk6eR98nQJICUT7rvKovjpnWQ8vH3WluE6O+qQ996pGmKPM9hrW0nvXkb+zPPRqMRnn76aXziE5/A9evXsVgsMJlMcP78eVy6dAnj8Rg3btzA7u5uewaXd+xnsxmqqkJZlqiq6kTQPcsy1HXd6mNrLdbW1rC9vY2iKHD27FmcOXMGk8kERVG0E+Pnz5/HwcEBbt++3Z7b6SeR8jxHnuftGZb+DK319XVkWYbFYgFjDGazWVvHhw8ftqvUtra28Mu//Mv4zGc+g9/5nd/B2bNn8elPfxpra2t466238IUvfAGj0aj9ovzll1/Gq6++isPDQ/zCL/wCptMp/tk/+2f4xje+cWJFCuUrbUM++ai1oSZjIR3Rtw916TnJBnXZNI1umu5RzyiN9jtc32i/V38e7beO41HeR/v9k7XfiTH4KWOwk+eYRvvd235Xh4f47/7b/xY//Pa3MatrPABwyxjMcVL2o/1+dPsNuHPkfTCaj5OozQ7xhfON2kAtD30vBWdpPo47pNu5Dfd2nucNBdx9Ou2DBU0f0nw8SOL7COWxposkXmlBy5Cdpu0j8Z6PnULyqH04prU7L1fjG6efptXsqCRz/p2XWV4OpZHLhVSOf8/z0j5BA+Zc7vh4V+KrtPuBBCHeazaLy8gJm8SCwr4MTq8kU5zXEh4pfYimUF2kfhQax/Fn2kcXNG2e5xgOh6hrd0QJ/YB6SUeK2ayAWz39SQC/AOAFuED3IVzA+Fm4Fdwvw50lvgc3nTuDW/V91PzO4QLSzUoyAG6leNn8pnCB7y244PMa3Mrt8015wyZdAeBiU85rcEFy2+BMSLozTRl+t5SzTd4Z3NTzuPlN4Vaaz+AC/5cB/K2m3K/CnRt+HS6oXjY4aHsfA3ijKf8zACZI038M4P+LJKnawIOf4qZ937eVZMPpPW9/3p9Du11IeCkdkq73QD+ikeyCZCO0D4hpH/X0xjPGI0SIEOEdgItkw6RAMkyQriXIL+QYPTvE8Nkhhs8MMfjwEIOnhki3MqSbKdJRgiT1QfFlQBymCZIT9WoBwBrU8OeMuy3VS5OjNAUWKDCvCyzqAWazEWazEeaTdcyONlCOz6Da3QQenkGydwbZ3jqGe+sYHK1hMM5QTDMUsxT53CBfuPPFs9K4rdRrIK3QBLtxIgCe8iB4DaTWttukp7YJmDfP8toir4G8rtzK8HqBpDqEqQ+B+gi1PURtjzDFAcY4wBEOcIBD7OMIRzjEGIdNIHyMKSaYYooFFlhgjgrViRPC0Z4Tbk8105KnlnJXDX6fPm/8yYI+8wO9V4xzp0hy0KTBu4RDGyBITnvI4ZLKpwMtbWKjz0Cf1kejgafhPNCAD8p4+dSZ6zOYkgZ8vC00ukITF5qDEnIOpbqF6syd2K46apMf3EmX8tO69PkCVOKNNGHA01Lom0bjFcWhDe5DdZAmATh0OTgSaLi0tDxPFy80OqR+otHL20r6SlhLS+n177wzzicl0zRtJ7D9lovb29u4cOECrLW4c+cORqMRNjY2kKYp7t69i93dXezv7+P4+Bjz+bx18v2KM2ttWw79Its7cbPZrJ3YODg4QFmWWFtbw3g8xu7uLgaDAS5fvoyzZ8/i6aefxtNPPw1jDG7fvo1bt27h8PAQt27dwmKxaCcakiTB7u4u8jxHmqY4ODho6VhfX8doNGq/yN/e3sZwOMT58+cxGAywubmJmzdvYjQaYX19HXfu3GlXqBVFgePjY3z3u9/Fd7/7XXzlK1/Bj370I4xGI7z22mt4/fXX8corr6CqKlG+ua6nTi8FaVtVrY35vaSTNOij60P9TJoklPBKeu5RIdrvaL81ervqFqpztN/Rfmv0SnQ8yfb7fJJgLUkwTlOcj/Zbtd9f/cpXcOtHP8JTgwHSb38b33v5ZXzlBz/AW9a2oQMDuc9H+/3o4O0APR88VDbfEt0/93Tx1aqUd33o5mMJ/8zj1dqTyoFmn+g9lxeJNp+Ojy18nXk+bz/4xzEe6NbhfXQetUfUDnJZCNlUzgetzJAelOwcxSnJi8ZbiZaQ7eZ5eDo6VpBoDNlriVeS7dB4Iu0mQPNzueHtJgXV+9giQN5FgNJP8YV2x+LPJPupyaq2lbTUR3jgneIOyazUl7nu19qH0ijJk8/rdz7hu4z4rbzTtMDubtHkugq3cruG2xp8Cy6InMOtir4D4C7cNuVjuCB4Cbfa+hiAbZ4ZLFeM+7M1kyZPQt7P4ALZ+w3udbizui/BBamvNPk/DRfUvgfgR015G827FC5QP4Sbnt1pnpcN7ZuEpqtNGVea3024YPz55r5saESDrwbwEMC3Afz/AHwXwAZGo1/HtWuv4vj4r7C3tzjB87o+3Ud54JkClRvpYxKqdz0+SUZCeoX+Su95/5R0ntT3QuOJkM6NECFChAg4sQ9JV0JjAJMYJAPjAuNbKYrzKYaXMowupxhcSjC8AKTrNZIhkOQ1kjYgbt1W6NaeOBTEmwzb/GcBEhhPUKJCaSoktoSxJUxdoW7+qsoiKQ0wz4FZDkyGMOMK6VGN7AgYHAKDCTCYAsXcIl8A+aJGVlnkVYK0MkgrHxBvgt1tMBxtUDwl54YntUVm3Vbp7rlFUtfIbI2srpBXJVK7QFrPkNQT1PU+KruLCvtYYB9z7OMI+zjAHvaxj10cYg+HOMQxJiQY7k4Kr5p14T4EzsZrne1omidGCH4/6eHw1WClFePS13d9JiG0iW/tvUioMGks4aXv+9AXopvn1yZEpHKkcqU0Uj1CNPWpS8hh64Of09Xl2HTR8k5WsknO9CoTunxwrJURmnSh+frCuzGIlpxyqU/1mcgJvdfS9c3HaaXtEAry9AWJt/7+ceCn5UhlcBr8lqh+RdpoNMJP/dRP4ezZs8jzHFtbW9ja2sLm5iayLMPt27dx9+5djMdjTCYTWGsxm83aa/o1vDGmnaQry7JdkU63V/TP1tbW2kluv2L9/PnzuHjxIo6Pj3Hu3DmMRiM888wzmM1m+KM/+iMAwOc+9zkcHBzglVdewfHxcVtXWr+iKDAYDFpa0jTFtWvX8Ku/+qt45ZVXsL+/j2vXruHhw4d4+umnUVUVbt26hePjY9y/fx8vv/wybt26hZs3b+LBgwcYj8cnJm/9X6gtumyP5OSGJnc0x1lqY4pLs1ldzrwktyH6Jfr8trmrQrTf0X5H+x3td598nNYPgv1OkwT/FYCXBwNka2vRfjP7/f2XX8b+jRvI3n4b0wcPcDidYscY3E9TTJp6RPv97tlvAO32+15m+GpbrZ9LdeTb3Wo8CPUhqrukFbldYwxJJqRxAh8f0HeabaF2i+OUApU+H8+j2QHOL83mSnpOw0+f0SCh1gYSDVJf0PoBbxttzMPzSdsch/qIxDcNP6+7NGbUZL2rXiFZ60M7cHq1NuWHxhNJZ1DaJBq4vZXGCV12ncsTxanxScLXZ8zp+eB5RN91jfm63nNe82fWWhRFgSRJsFhkGI+HcEHiX8RyC3F/nvd5uNXTrzV/B81fjeVW537r8xmWK7rncEHrRXNfwAWu/fnlKZYrvtebcjYBfApuO/XLDe5zcEHwAVwQ+0+bWvwcXDD+W3CBegDtCq4aLpi/1uBeNOVlcIH/T8NtB38IFzxPsFx57s9AfwnANwG8jjR9FUnyFoADZJlBUWSwdrnDDec9HZtpW5D7dpD6IfU7pV0FKEh6OWTDuZ73dojn4TqFyyXX1yEbPpvN8CgQkvEIESJEeD9AZ3C8CYojAZKBQb6dIb+QY/hUgY2PD7D+/BCjpwsMrxUoLmVIBwZJYZAkgDHNyeHWBcdhLYzH15wz7uO31hpYC9RNKL1CgtJkqJBiUWeYVxnmZYbpbIDpbIjx8RqO9s5ienge5f2zwN2zyB+cx/DhJjb2trB+vInBLMNwnqGYJ8gXQLEA8sqtFs/I9ultINw29xYnVoanFu2KcXd+eI28rpE2AfGkniOpxzB2jIU9wNTuY2r3cIyHGOMhJtjHHEeY4xgTHGOCMcaYYIwpjjHFFHMsMEeJBSrUzT8aFPftQ21S97yLPZHOCs+efOgzv7TSinHuSEtOpk/L82mDJ/4bckbpe16e5LCH8mqgTbpovAg5uV30a4MvSgctUxpESuVLPOzj9NG0vJ4STX0dnz6Ot9Sm2orFLmdeAm3SgJbV5TBK70LlSSC1A3d2Q5MH/JnkPHT1hb716ZJJDXdoIqYvdPUjLpsajRpurV/79139mbZXVVXtyipj3HaZ8/kc58+fb8/kHAwGyLIMR0dH7fars9msXW02n89R13X7a4xpJ9IBtFuyAsB8Pocxpg121nWNqqowm82wWCxQliXm8znW1taQJEl75vnu7i4+//nP46mnnsK3vvUtFEWBqqpw//59HB8fo65rDIdDWGvbwLXvg347VmOWwewHDx7gL/7iL7C1tYUvfvGL+PCHP4zvfe97SJIEr732Gr72ta/h29/+Nt58800cHx+3daIOOO9jfSZjeHtJ6fvqo1CZXbKlTQRwuQnZNklHd/W7R4Fov2VeRPsd7bdWngTRfveD95r9fipNcTQYoEoS1NF+n7DfD3/0I1w9PMQcwBvWYq+qUNlmUoLplmi/3x37zfH7lczchlM6Kf38vc9P6ZTOceaBKK5rub7XAvYab0L8oXn5tc8n2XutHJ5HysfHQ9yuaLLA+cPxU/6G6irhk8ry1zzQJPEyJLMeh6cvZBOks6B9fmnLb59XWzHN6+XxhNpQ4nloDCbJf2hbdt9+mozSla40j6aTNDq6+oJWJy0wLPXPvjZc6g8cL6dHksEukGSG0ybZcP6RCLfv1roPjgaDNUwma3CTvVO4wPNTcKu1S7jAcgG3avoW3Mru4ybdrPn1Z4HXDZ4ZXBDaNDjK5n7aPBs29xVcwPoYy/PBt+HOLk/hgt2HcAHzzzZ5xw1NJZaB7Qou+G3hAvamoWXR0GeaP1/mDtyW6Bebeo4aTtZN2X8Gtzr8r5FlexgODbJsjsVi1uzQBszn5Yl2DOlPzZ745yFbyuWUg/Rek00P0tb7mh3SaKK/2pjxcdnwCBEiRHg/g6opzclrkwAmNUhGCbJmtfjgQorRxQSjcwaDMxbFqEaSAUlqkRiQM8WbADkJhhtj22Ks8bS47dSt9eeIlyiRIK9TFFWCRZUgqwok1QT1YobpDEjGBXCYwezlSHfXUewOMTyosD6uMVhYDBZAsbDtX175M8ANEgsS9CZ/tSH39sS7rLbI6xp5XSGvS2S2cqvD7R5qu4s57uEId/AAd/EA9/EAOzjEAWaYYI5Zsz162fyrUaFq14bX7dnhOLVKvLGIPULahp02bpp8JtTa72lYeSt1YDlIkByM0IQVH+hLAxAJjzbA11aXSE40BUo/IJ+b1jU48rjpwEwbPPFBV5+JE83R6Dtokxw0yYGTytQGtKH2Ck02SG3Bn2mDbWkAS9u9i08Sbopfeia1Z5dM0TK1OnG6NFo5hGRSwknp1yYlNJD6p0SPJMN0UkOjT6u/NEEh6QvJceY0dU2qSPLLaZPkUZrY8jqEToI/9dRT+OIXv4jnnnsOOzs7ePDgQTupfufOHTx48ACHh4ftBLi17itkv+qKth3fltFvherPDs2yrK0D3bKVbgX5mc98BlevXsXDhw/x5ptvtmejpmmK+/fvt/Stra1hY2MDDx8+xHQ6xXw+R57nANyqs6OjI5w7dw6DwQDGmHYV3NNPP42NjQ3UdY0sy/A7v/M7+A//4T/g9u3bJwIFWntzHdFXn0lt1UcvaHZIoi80cUXL5jKlyXyIfglnyK6sAtF+R/sd7Xe037Re0X47HZJbi0tliZeTBJUx0X439vvh7du4NpvhTF3jO0mCGalHtN+n6X837TcAMTCpBcU1ncHrK62kk/orDbZxGy7xxdtWittfU7srbecu8dOXRe11HxvO69LH9tD0XD9JdEm2RquTZrM4PVIfozyl+Pnqf0oT5w+viyRDUvnAyaCwtCqYA9/avs9W97zcPlt6c/7wduNb+kt9k15LZ2/TsSalmaejQO0ALZvnl2ikbST1Mcle+rR+Vwn+Tqqz1A6SfuF9n+MFcKJcekQBp12SLVpuqH/y4yFoWx8fL2DtpEn5SQD/AC4IfRdue/IBXFD8Nbig8QO4APYUyxXjJZZBcWAZgPZQkfuiyUvP754THCXcFGsJ4JcBfBgukH2nSbvbvH8TwA24VeFn4QLqt+AC5VO44Ltt0u7CBfvXmjI9/rUmv8f7/wHwewBegzFj5HmNwSABYEEXhVP9zvkJyL4PzSfpKem5hk/DQ4GPJaWxhGZjtTECL5PbK0lfPy47HiFChAgfBDAGS1NK1LvJgKRIkK4nyM+6gPjwUorR+RTDbYPhJlAMaxSZO1PcrxJPyDbq7bVHbZdBcr8k2tI/GNTWoIJBVRlUpcFiYZDPM+TTDDg6wvTeMWZ3j2DePgtz8wqKvQSjI4ONyQCb8wKDssagqlGUCYoKKEqLrHarxVPrgt9J85e2vwZZ885vo5417zNrkdUlMrtAWs9h7BTWTjG3+5jgHia4h4e4i/u4gx3cwwM8xC52cYRjzJuQeNWEv2sS5JYsFX92MrU59ZQ+AwmCC5a0Qwree9A7MK4NLCSHUEoXmszQHMfQ5AV9HxpUSY4np0FybLUBW9dkjOb4UNAcal4vKa9WP8lpCvFMG/BpDpREj1SOlkdKQ9NqDnDIge0L0gA8NLDXJjkoLaF6UlwaSGk9fs1J7isLPl2fbUlD8h3qU1314fhoPqnMkFxSGdP6hiRTEmh81+4pSKs9/NlmRVHg/PnzSJIEly9fxnQ6xUsvvYTpdIqLFy9ifX0d9+/fx9HRUbvSzG+9SldQ0y/p/aoeP2GdZdmJdHTihcv0fD7HwcEB1tfXkaYpjDE4Pj7G/v5+ew6qX6m2WCwwHo+xtbWFF154Aa+88gpu3ryJ2WzWbu9qjGkn/6uqQlEUKIoCn/70p/FzP/dzuHfvHv7tv/23+O3f/m1897vfbdNymfC09OlHfZznkL3guHi6EI6uyRuaj+sM7Tw/rsukvFI/6tv/QxDtN8S8Uh04L6L9jvabQ7Tf7w/7nWcZfjpJcG84xOULF6L9/u3fxt9897s4P53i2brGj+BCCbbhXbTfPxn7zemi/Kf1kWwk73+8PfhWtFIdpcAYL0Ozizw/vdfGFLwOWrtR4Omkld70Xmp/Sf/30dtSHskWUHzSbj2UXxpPpHZcpZ/RZ5Ju9r/S9vj8OgRUHvgW9SF6Q2Mf+oyvdJdwhuy5VGf/nO+oEJJxSd910cP1DW9X3hc1eeW8Dr2TgNIobd8vrSKm+KkM+/zSCnLKN183jWdcX9AyfbtQ+ofDIep6iOl0CLe1eALgo3ArrP8SwBGAZ+CCzodYnilOt073AW1guX26wXLr9AouAF6QdP688bpJk8AF0v2zCdw54mfhploTuG3N78EF5P0K8QVcALyC2/L9pxv8Lzc0WrhV5AbL4H0Jtzp8CHfW+KDJ/1UA/xcAfwHgGFlWIU0tjAH8KR7ehud5fuJjPspTCpqO5n2B26KuPk7TabpQsrm87/HyvXzRcnk/kvqiVB8+rokQIUKECB1g2F/S6E5rAbMMimdbzSrxKxnWrqQYXjAYbRkM1moUuUVuaiRw527T4PgyKG5JMbb9dYFx/+uu3a2BtUBdGVSVRVUaTGfAZGyQ7RuUtxMsfpBj/soGsrvPYnM+wHZZYLtaw1Y9wKCuMKgr5HWK3AJZbZqAuEFijRsFWLMMjsOvDDftavHMWuQWyGuL3FqkdobUzmDtGBO7jwn2sI97eIBbeIBb2MMD7OIhDrCP42bL9Dnm7cpwFxZHu006TqzwNqfC2cy6k1+axpB7c+q9lOf9BCsFxqXBDn+v5aP3HiTHiQN39CWQHE+er48zJzliUn14HlrH0NfXfSdHNMeflhdyjDxItNAvbjUIDYwpDbxsfi3lDaUJDXhXoUcqQ3ouDbap7EhlaYNoXgbHzb80585gqG6h+kh1Cw36/TNt2zyKK+SQSHzhMi71S4kH2jOpP3M6JLq1d9qEi7TitC9UVYW6rtvJ8vPnz2NrawuAC5pvbW21q7bquj4xqe37oZ+sTtO0vS/L8sSX8bPZrMXj28+3YVmWyPMc1tqWnjRNMZ/PcXh4iNFohJ/5mZ/BYDDAG2+8cWIiZjAYwFqLg4MDzOdzHB0dtXiKomjpHwwG7Vmow+EQ165dw9bWFj72sY/hhz/8If71v/7X+PKXv4z79++3q+KkiQ8+4aRNAkntqrWpNLmipeOywPGHaND6kiS70jZuvNwuWfPptEnSVSDab/lZtN/Rfkf7/cG139tliWNjcKMsMVgsPvD2e+f+fVxdLGDgTjtFtN9PhP2m9Hn54c+69AGni9o8quMkfUj1iVQe1/fGmFNHW4QCwZKNCcmClNaXxwOltL5aEFLC12VrqB3mdaU8oOV7OmleqT5cp/HxlXTeLy9HwxUaz9C8vE68DfracM5niWZeJ27fQvglm8zPApfaXqKFr5DWxkkh4HKn2dxQG/hfzQZzPRQaZ0njF4lmvrKd6kLtOAFeD63NuvSUVD+JRundfL7AbFZhuS36h+ACzIALGK/DBZABF1CeYhmUrsmvX+Htdf+8eWex3GJ9ALTbm9NAuN9i3ZdRwa3gnsCtErcArjX5fkjyWyy3Tr/VpN9r7hcN3Zeb37WmjKLJ87Hmdwsu2P97AP5vAN6EMXPkuYUxp9uD23Av63wLcklHSzqR5qOyxkGSDSltl43zNFMapJ1ANJnvsuH0vb/WjoqIECFChAgEDJbflRm4oHhiYAzg46jJ0CDdTJGfyzC4kGF0JcXocorRObdafDCyyDKL3AfFrUVi6zYovgyOozlvHGSLdQDWwlj3DtbC1O6ZL99WgK0s6hKYLyxmM4u1cY1kr0Jyu0L5aorBgxxX0mdwLhnjrJlhw8wwsEBhgdymSJC4gDhM+y+x/rf5VM7aJg1ZIW4tCmtR2BqFrZHYCWDHWOAAJe7iAHdxD7dwA2/hFm5gH3s4wjEmmKBst0lfBsOxZGt7d/JzAQqWXWn2zD8njSYGxt+f8MhbqWurWegAik86aBByuiQHNeRc8IF3aIDN8XD83BnTHOVQXaR80uSLRFeo3hJuDtJkLv+SUsMn8SE02dRFU4hOra36yFefgWqXQy7Rwdsg5FByHH3kucvhluqn8V9zMqXJlFDf7aqbBNyJ4TT1dYI1WQ/JnIab81jq57wOUtlaGfQ53y7y6tWruHbtGgaDAa5evdquKjs8PMTDhw/bs0D9xNii+Yw7TVOUZdniraqqPYvU/y0WC6RpiizL2r7sJ+T9Na2PD9h/73vfw8///M/jS1/6Er7yla/ge9/7HnZ2drC7u4v19fXmfLYBdnd38eKLL6IsS6ytrSHLshNbxa+treHcuXO4dOkSLly4gKtXr+L111/Hv/gX/wLf/va3cXh4eMqp5v2VthHnP++b3BGX2izUR6SJI20yjafXygzpHE3mumyFpg+6JpNWgWi/o/2O9vs0RPv9wbXfhTF4qq7xHWNQR/uN2eEhPl5V2IPbaLZhVLTfT4D9pnj9uLPLhnfRG6KJ0s7rx8vWzp7mefk24CF+SLZU6ttaXsn+SbaDtxtNx8vitsunkXSYxuMuHkjjNP+cB8J5GV26uo+9fRw2XKJRqy8Hqvv4hxRacEpalc/9ECkorn1QpfGM56dpNBulyVKXjuJ5+tzTo1CkXSA4aP2A3vOxAa+T1CeA7nPHJZnxz6U+I+kB/3w+r0m/qgE8B+DjWAaPD5t3DwDchAs8+4B4BRcAr+GmQ+dAuxLKn+vtV4MbuKB6Dhec9jgWWG5p7uvleeYD9t8C8JHm7xKAV5u0t+EC2zO4wPcdAF9v6NhqyvEBd//sGtx26hcaWt4G8H+EO0/8AYyp2qA45zHXg7T9PK+57pTal77jq86lsWSXDef08fJoGlpel+6RgOskqWypPz8OGx4hQoQI71toTWUTCDfu3jTm0yQGJjPIzqQoLmQYXc3davFLKdbOGQw3gCKvkRuLvLbISovU1kjqGilYYNzapjgfELeNlaZBcfdr6uZZZYHaNmbbws4tqsMa5UGNzb0aw/0aZ46B7WqEdDbHJXuEM8kRNpIjrJk1ZMYiA5DCBcZPhsVdhf3VMji+XDme2RqZrZHbGhlqZLbEHPuYYheH2ME93MYd3MJd3MFd3MUDPMAYY0wxwxzzZrt0eyogLl/bpgHcNRvhkRyaT2CEd91zSqdQcFgRxU8CegfGgdMDae448wFNH2eZ46eDEmkQwgcsmrNI8XH6+zopUr0pfXRiILRirsvRWcVhDN2H+NyVf5Xy+jiGXh74l510MK2BRHNooCzRHnLwuwbPoXbRZHeV911lSM7DKvi0fJoz0YWf844+19ok5LSEZIvXh9dLyqfVndMaqleIFn7N8ydJgjzP8bGPfQxf+MIXcPnyZWxubiJNU0wmE8zncxwfH+P4+BhlWWI2m2E6nZ7qr16P0JVmlEa6jSmnY7FYtO+oPhqPx3j11Vfx4osv4sqVK9jb28N4PMZ0Om3TbW9vY3NzE+PxGMfHx5hMJkjTtF1pluc5Njc3sb6+ju3tbZw7dw4bGxuoqgr/8l/+S3zjG99oV9FxR1jTzRSkvtqn3aX0fdqS5gkFmSQb53FJ8i+VI9UxJI+8jC68q0C039F+e9xaufRZtN/y+64yov1+8u13Ygyeq2u8ZgxskqD4gNvvfDrF81WFHwI4NM6xj/ZbruNPyn5zOoDTK4e9HIZsOKdHsqddNpzi8ysQtbFEF35pm23p7HFOA8Un2XA+FpXqzfFLAVSJR/6Z1D+kMnzaNE3BoUuvdullqe6cl/ydMab9EEeiRwqQUZ5KdGrlU77xdvf003ry/CF7o9HPy9PGPNq4JGTDpeeSHEo6KzR+1urO21LaeYHXM7QVf2j8x3nDeRSy0ZwXms4O2XWOi9JA730dy9Kiqizc1PMAwBcA/K/gtlI/Bxc4PoILTu81fzOc3EYdWK7e9meK+5XiFi7g7d/7LdENeeYDwTPyLsVyy/UDAN8E8DMAXmho2W9+04aGKwDON8/9Xw63UnwdLkB+EW5b9ktN2qTB/X8C8O8BHCNNK2SZhWNR98cKvG01HdNl2yS55mVxW81tuGSPJRtOPxbS9K/U77V6U/qkXUA0PRQhQoQIERpIAKSmCYIb+KCoMQAMYFKDJDdIBgbZ2RTDyxlG1zOsXUsxupxgdM5gsGZRZBVyWORVjayukdoaaV0jhW3/Evpr6SpyFygH0AbH/W9SW5iy+Vs0fzMLHNVIDi3KY+DiLMHMFBivnYEdjbA+qVBUcxTVDLmZwpgEBimMsW0gHE1w3H0B0IxTfPmeLdZZ+sxWyG2NFCUMSgBzzPEQe7iN+7iFG7iJG7iBHezgAIc4whHmmKNs1onzsLi3YNzK8TD4aegzh9R/nkkEzVyad4763YbHspW65kR0OeQUpOfSYERzdiQHvE85fZ0sCnybvdAkAKWNTgJIZfQZeGn14l9Nc4eKPuf4JOdXK1uikT/jjqE0YRGakNIG54A+uOYDc22Azlc3hECTyRBIX69rEx+0DD7A7/vFtcbjEGgTRtK1xmuNHp6WvgvJoUZjiIfapFkXbaE6SBMloX5hjDur6/nnn8ff+Tt/B5/61Kdw/vx5HBwc4OHDh+1ZoePxGPP5HFVVwVrbri6j5dDJKDppRSc+6Sozv+0qsHTq/LX/nc1m2N/fx7e//W389E//NB4+fIiDg4PWwVxfX8dnP/tZvPzyy5hOp1hfX8fR0RGyLMNoNMLa2hrW1tZwoTl/dWNjA5cvX8ZsNsO/+Tf/Bl/72tfaoHioTehz2ge11QA+LXeIqQOtTcrw9uHvNMeZ60uOQ9KnXSA56tpkU4gGXpdVIdrvJUT7fRKi/V5CtN8n09J37yf7/TRcAPjAGBQfcPtdTCa4bi2+bwymdd0GxaU2iPb7J2O/PUiBcEoXLUezaz5NyJZ5kOy/tm2+Zrf62GhJ32t919Og4aHl0ZXHvl9JHxj5PPxM7b62gLe5xAu+uxRNy+tLaaLpaX0kPlE948vn/KL3HB/FQ3USr7ske9K9NJ70O2SE5CIkl1rdpfcaz/v0EeljA14OlSsu75RPUl66wpvzVTt2QPqQlKehIB2TEBo7cbkMBfo5H6S2pqCNUSQ8kpxxObbWoCwN3EzrEMDfBvDfAPhZAGfgAtMP4VZ934cLNk+w3Op85jGRX7/q2wjXprn3gfMMbrW4v/dnkQPLFeQZXAD8Hlxw/JmGlgdYbqd+FsDPAfhOk/Zs874AsNnUZQsuIJ7DrSwv4AL7/z2ALwM4Qp5bpKnn45KnvO9o8iXJkiQPwMmV5VJfou3Gd3rg7U7bVNsVQtKF/H3ouWaXqF7lZUm6j++eECFChAgfeGhWipsmOA40cVHTPEsMksIgW0+QbiQYXswwupph/XqGtcsJ1s8bjDaBwbBGYSzyukaOul1hndoaWRMEpwHy08HxJjBufWAczTbsFknlguHJAkjmFsncIp1ZZMdAcQyYaYJFXaBO17EYbaJeGyGvDMy8AuoFjJ2jthkssibwbNyW5caQkv14BA0PTHvgiqtDhbQJiFeYYoExjnAPO7iJW3gbt3ATt3Abu9hr1ojPWUDctluoN9b0yY0x+6HTE0ugDiutGPcQchLpYNqnoe+kSQXNyZEG4tIEhUYLfc5p4PchJ7xrkoPTwqHv+TSaI97lUITw8WutjNBEQ5fzKb2XytfK8e+5I07zaYNqPhmkOcA+rzTY5ekonTy/lE+aKKB5Q/LHJzIkerrolYC3m+SESteA/mVxaJUgx631u9Dkida2Gt2rAC1DwsFlpg9taZpibW0Nn/jEJ/D3/t7fw/PPP49z586hrmvs7Ozg7t27mEwmmM2cA54kSTspPhqNMJvNMJvNxHMI8zxvzymV+pl3TOkv7wt+UqSqKrz44ot46aWXcOHCBbz00ksA3PaqDx8+xHe+8x08ePAA8/kcg8EAm5ubGI1GGA6H2NjYwIc//GH82q/9Gm7cuIHXXnsN4/EYf/iHf4j/+B//Y7vVLKcvNLEl8bwPSJPw9JqXrfVXLZ+Uhve3rnpwfS3Vk9PKJxRW0fGPAtF+R/sd7Xe036Gy38/2+0PN7+0sw+YH3H5Xkwmeq2t8zxjMo/1+ou23RJPEu7qu2w8vAJwKgki6UtNHUl/i9pCX/U5tONfFtM9IOpSWq7VLn+MnuNz4PymAKcmyZmclHvC6SzZLkyV/z3WL9NEYtZn+Hf1oR9LpNGhOy+Ple+C87aqr32HAA623NlYIXXM5oLzhsi7Vg9pwfj49tztSf+uyxTyYxscMFL+HqqrEgDsP9GsyzduSymyf3X44v/rYe84zSqfUV0LQZcPr2mCxMHBTmFsAvgjgfw/gp+GCxxVcMPptuFXV4yZnAhfMzpt8R3DBcr9y209sW7gV6HMsg+Jonvv3PnDuzyj3+8hakj7Bcov2rwP4Ww3egybdHG57968BuNHQuQG3Inyz+TsHN2p5qskzg9vS/f8B4P8F4BBZ5s5kldrPP+vahcPn4f2C6hYvz1q/8M9oeo5Lswe8PK5/NBuu2Xr6XrOX/JmmxyNEiBAhggBtUNwszxIHAGtdcDptVolvJijOZxhcSLH+VIbNDyXYuG6wcR5YW68xKiwGiUVRN1uNs7/UuvO5aXA8g0Vi0ATI4VaGW/eLGjC1RVIBaWWRlBbpAkgWFukcSGdANgXyQ2BwlMCMM5TzAnU9RJkMUOcpsryGreew5QSmHqOGgft0PG+D4NYmZJN3/979mWaz9RRAghoGcxjMMccYx9jHAfZwp1klfhM3cR8PcIgjTDFH2awTp6eJvycC4hTeE0SehpW3UueDGj54BnDqrDz6TnIiQg6lx9PlAPD3fFAYmrDQBkohoAMtaWJGoiGER8KrpQmVJYE2UcEdcI6bOzqSs6KVp7WH1M4aHRKtNF2X3Ejpu8rmA2OtHloZqwKfDNEmRaR+J8m2xmdNRrvaXsLB8WjODs2nTSRIExdd+EJ6SGuHPu2j0cifJUmCra0tnDlzBs8//zz+4T/8h/joRz+Ke/fu4aWXXsJ4PMbDhw8xHo8xGAywvr6Ow8NDGGOwvr6Ora0tFEWB3d1d7O/vYz6fY7FYtCvIvFMoreTI8xxZ5tS2tOrMn1+apmmLp6oqTCYTfPOb38TW1hbm8zkmk0m7BfzOzg6m0ymKooC1FmfPnkVRFC3O6XSKH/3oRxiPxzDG4A//8A/x7//9v8fe3l7bX3j/4RNMmvPM20hrE36t9VdJbjT9rslRyHmX+iV/T+siyaVmA0N8eBwQ7fdp+qL9lsuL9rsfRPv93rLfT1sLkyQ4OHsW1z/g9vtgdxc/Vdd4xSyD4tF+P7n220OoD3pZojac00jrIn3IJK3wM6b7w5ouG07poW1Iy9Daj9dTwttVVhceSed16Tcuu6Gxh2Yj/DXfupc+5+MV/jxUZ56+y4Zrge5HseFSv5PwcPniPA7ZRv/MB5NDNElyIvUVTX/wMrV28u81/eR1fEjHhnZ0oPk870L6idLD+cFly5dNf6XyJfycbl63UP+maUL9v6osFosEbgX1Jbhg838Dd7b4DMAtuADzHbit09fhVl0/hJuwPge3dfkA7ozve036OZYrwP1W6CnQBrq9vRvCBdY9lHCB8bpJ788f9+eD+8D5IYAXG5oncMHxtMH3Ftxq8WGT/mpzDSyD9gty/f8E8G8A3EGWWeR5eMcK3hZcBj1IfZC3gSSvfDzAP8gAcEqPaWlCOozrDv+O/nLZpEF6LoNSekm3v9s2PUKECBHec9CsBjdp8+tPErFwQfEESHKDdGRQbKXuPPHrGTaeTnHmQyk2rxqMzlisrVsM8xqFcUHxvOaB8SYoXlu3vTrgVpA3gXF3lrdtVojDbaFeAWiC4Vnzm5Zw93MgnwLF1CA/SlAcZ0gmBRaLAap6gCopYPMESVGhruewdgZgAmtT99d8ROcC4Qn8Ceh1c2/b8YJpP5dLUMNijgoTlDjAIXZwH3dxGzfwNm7gJm7jCEc4xrhZKe7/NfbpvRIMfx/Aylup82cUpIFGyNnQHLzQJEWXs9KVR3KqAH0w/yggOYGa88Pp0pwaCTRHVcun8U5zkiTnhw9G+9IqyULfvD6NtP2T5nD7Z3SCUipLkqEQTVL+EH+6nPSuSQVOpyTftM6hfLy8Po6Ux8sdBY4j1IZ9eRma+OjKo7WjlI87SLxMaULCy1+SJBgOh3jmmWfw67/+6/jSl76Ezc1NvPLKK3j55Zexu7vbTnZba/HhD38Yv/Irv4IXX3wRaZriO9/5Duq6xmAwwJtvvonXXnsNu7u7p3ShnyTn9xT8hE5ZlqecS78Na1VVyHPnxPvJdJ9vsVhgOBwiz3OkaYrhcHhii1hj3DbxfsXaxYsX8Wd/9mf48pe/jMPDw7aOIT2htYGmX1eRCe6QS3pe6q/8PeW7VBeuV7v6qESjZLv6wuNwzqP97g/RfstlR/t9Ok2030t4ku13Yi0+bgwmaYr7oxGe+4Db79nhIZ6vKrxpbbuWLtrvJ9d+0/ya3aD6wd9L20FLuoDrDW5fJL7TciQ6/S/fgUZbvR2y4X1kj77ndHOeaEFlXn9thxKeh9MspfPP+8oZzyPJIaXZ6yxpBwsNPy1fuqbp/E4EfCt9aWt92q8lGx6yOxqPaH1oPXgwj9JKcfG20XSTpnMk+kM85Cv1aR2kILq0YwBvR41XUjmaruRlSvpJGmvw+klb+nOe0Oe0LL9rAG1PqsO1XSzqOkFZpnArqT8L4B8C+FW41d8HAH4A4C5OBqufgTtzfKd5/jJcgHkNLlD9l3CrtpsZ/Tb4nMEFt+lZ4sPmGk16v5p8Tu592hQu4F42eAAX3D5ufi3cyu9NuCB9DrdafI6Tq9d9gHy3ofn/DeC/A/AASVIiTWtYK4/3PP9pH6bPJF3F30njc94XpF21tLEdtQv8XtJD/HgLDiGd7OvcZcMlvSKNzeluGxEiRIjwgQVz8pfemhQwhUFaGORnU+Tb7kzx9adTbDydYuNqgjMXgY2zNYZDi1ETFC98UNwHxmuLDCcD42ltm23VlyvFE8sC4xVgKgtTAlkTEM8WzV8J5DOgmCXIpwb5NEMxy2AWOcq6QI0cdZYCuYEpKtTVArWdwmKCuk5gawOLArCu9AopatSomsB41W7q7oLjzorXACpMcYwJDrCPHdzDbdzELdzCLdzHDvawh2mzfXolnike4ccFvQPj2uDZgzYokvDwgYw0OOeDPO7EdDlyfEAnpZcGPlK9OG7pnTRg0+oU4iG9Dk0A8G3T+kxK+vecLml1CE3b5QRKjhHH1YVDopPfS+cAdQ2KJYc9lF56J7WL9l6bANTK1JzJLmdToofmlZxxif7QJATHKU0qSRND9FpyPkL5tLpJdGt0Sjg4L7iMdvHZ48qyDJ/85Cfxj//xP8bP/uzP4v79+/jLv/xL3Lx5E4vF4kSweG1tDUVRYDKZ4Jd/+Zcxn89x8+ZN7O7uIk1TbGxsYDAYtBPhaZoCcBPeWZadknnArTijEwmLxaK9L8sSwLI/p2mKNE2R5zkGgwHm8zmyLEOapiiKoqXXT+ADwNraGobDIRaLBTY3N7G1tYWnn34aFy5cwB/8wR/gj/7oj9ozTj1PpPbl7cEn0EI6R5MBqTz6jOsbPhmmyabmFEt11OrJaebpNVtE8Un9IFTOKhDtd/hdtN/Rfmv4ov0+SVcon1a3n6T9HgL4hLV4G8BxnuMzH3D7PT44wAtVhR8agwPG+2i/n0z77cuhOGlZ/oMJzQ76fLwv+ee+TaW8Up/ivJZWlvry+Bbo1i4/eOJ5uHzx+vK6SzacpqHBl5B8cxz+WtvSlwZeQ1vVU1y0blRmfF/nARyprXh/5GOAkI4N2fCuvu/L4NuwS0D5rgXNQ/IlveP80t55kIJs0nsquxxfiC6aTsuryYJkg0N6kpfPdyOhQOWG9ztfb2kcJpVF9YKk/1c5moXKvMcfsuH0vYfFwq0Wd0HmLwL4PwD4BFyQ+SaAH8KtGLfNXw0XMD8LF6S+0jw/hAsyZ3Bblq811ymWU6ILuGC1wfLccDT5hzi5dfoMy9Xi8yadX2meNzhHcCvXp3CrxfPm3p95voXlivQtuAD5DMCF5u9S8+53AfxLAPeRJDWKwss2Wt5JciXZzi4bzvuhpON4O2ltKelt/sEUp4Ov9KbA+wq3B1r/kWSX5tf0laaPI0SIEOEDCwaA31HF2tYsJkWCbM0gP5NieCXD8EqG9asp1q8l2LhisHHOYn3LYn1oMchqDG2NoqqR1xVy61aFZ7VtzuV2G5en1iKpm4B43WypbgFTA6aySGoXFE9rIKkBU8Fto16SgPgCyEuDfG6QzxIU8wTZPEW2yJBUKSqkQJrAZglMASQLFxiv7BQVxqgqoKoAa0tYm6O2GWqkqGzWBMZdcNwHxm3zUZ0BsMAMU+xjFzu4gzt4GzfwFm7iHh5gHweYYY4Si2aNeAyK/yThkc4YB7onAul137R80KS99zj6TMzQckKDm9BkiTbxwmnTHPjQPacxRA8vU5qM6XJaKE5tooXiC50/F6JNes7pkNpDciqlwb1WriQj2kSwRj+952VpskPTSk4fpQU4vUUZp5nj1p6vCl3OvvYs5MRr+UKTC/Sd5Kz3obPPe6kduJz3Kctai8FggC984Qv4zd/8TYzHY3z5y19GnuftqqyyLFtZ8yu37t27hxs3buAjH/kI/vN//s+4c+cOjo6OkOc59vb22rL8tqqLxQLGLM8B9BMKfmLCT6JVVdW2CZ2g41vgDQYDjEYjnD9/HlmWtZPrfhvWLMvaFWd+YpUGB4qiwMWLF/H7v//7+L3f+z3s7++L/PU8etS24v1W4n/fvBo9Xbapz3tJ/rn+57T0sS1S3TRb8Tgg2u9ov0O0Sc85HdF+y3RE+/3k2O8tAM9ai+8DsIMB/vYH3H4f7u/jeWvxtjE4NMatkYv2+z1nvzlQ3eTvebk8OOXTeeAfuNFtdqVzoH1aKZjgQbLzxiwDp1yf8LantPNAn2Y7tDbrk4/++mA1rYv/pbym50H7cmmgmwPd8UKz4XxbdcnO8rpRXJqtoe3n/3xZqxyf0LcvcR1N6yLZeykNTafZcMp7Xk8+jtD4JOHT+MafU3xdfV7iSYh+DlTWtDrSNguNsShO+mGGfybJn9bXtZ0gpPShj3BO0wyUpUFdW7gg9m8A+N/BBZW/0TwbwQWw51huX+5XZd+EC6afhQue34DbVn0It926pyWDC1JPgWYq20Ha3JsGrw94+9Xh/t7i5FnlPqC+Brcq/Cm4YPu0SZ8290Xz67dv93n9ivesofG3AfyfAdxDkgBFIctlH/st6R7et2l70HRan+b4uez4sYkHyaZINpiWJ9kaqX/zfs7fSbTycv0v/yAoQoQIESI4MBbuTG/jzhdPEiAdupXiw4sZ1p/OsP6hDBvXUmxcBDYvGKxt1FgbWowGFQa2xsBWKCq3Mjyv62bL9OXq8MzABcYtXHC8Xv66LdObIHi9DIynFkibwLgLjhsUpfvL50nzlyJdZEgXGUyZATaDSVIkWYKkAJKyRlUvUGKGykywKA0qY1DVNeq6QtkEx11IPIU7b9y05427P/evwhjH2MMD3MNt3MIN3MRbuIl9HGKMCWaYN+vEaWg8wk8CVloxvurESShd10SJ5NiFBmb+Xho0ddVJGgRqddHSaDRq9epyiiQckvPPr+m9Vpcu6KKT45KcVwknpzXk5EpfVNN3vFzNidTkNjTRRdNo7aRNAnH83KmkToh/p53jRaFP35N4LG3ZJslFyJHvSis5In1olRziULtTnJKOCE0W0TL71p/y8MyZM/jCF76AT33qU/jmN7+Jg4MDXLhwAdevX2/PATXGYLFYtFujHh4eYjKZ4MGDB0jTFG+//XZ7Funx8TF2d3cxHo9RFAXm8znSNEVZlu0qMGC55Zy1tp0QpysG/OSln9QviuJEurquURQFzp07h+3tbRwfH2MwGGA8HqMsS6Rp2pY9Ho8xn89hjEGWZVhbW8NoNMIf//Ef4/d///dPBcVpW/cBPnFLeSzh5G1H32uTMxpO/1zLE6Klq5+H3nPnXKJHuqbPeL94FIj2O9pvjbZov+W8FEe036fxPMn228CtsToP4Htpio2trQ+8/T7c38fHrMU9ALusrftAtN8/OfsNnAxUSUEMqo8kW0r1HtfH/Dm97rJPGo8ke8L7sKc3JFtcF0r9XWobeh2SSY9TWoXLaeCBHb4dsOex9OFUSHalPhGy4ZIu5HaD0sPrII2LOP80nSy97zM24baU4+R4pHFJaNyl1cPLJX+nBdIkurTxAC+L0sM/luC/vE5SHXjflXik1UvDSevDg+w8v8ZPiifUL30eqpMkungQnqRoguIJgMsA/tcAfgXA1wDcB/AhuFXjJZbbmc+xXLn9AG6F+JsAfgkumD6DCzzfhTuPfA8usA64YHjSvPfniJfNsxoumO7f+1Xh/kxxfwb4GpaB77pJuwbgOtyqdV/eQUOL33K9ALDf0Gia+zNwQfN/C+D/CuAujHFBcc9/zksuq1zXcz0gjTs5boqfpw3ZIg5dzzRc9Bm3bTxYrulw7mtoepbTw3eUiBAhQoQIDRgAiUFauIB4upZgeD7F6HKKtSsJNq4bbF612LhQYf0MsD60WEtrjGyN4aJGUVcoattsob4MiKfWBb5TY92nYU1QPPGB7+Y3qeBWh5PnKb0ugaw0yEqDvDQoFk1QfJYim6VIphnSWYZkkSGpM6Q2R5KkSFIDk1lUeY2qLlHVc2RIUSJBWVlUpkZSV6hsjqSukCBbnjdul4HxGRaYYIo9HOA27uJN3MTbuI17eICDJii+wOLU9ukRfnKw8opxbeAhbY1GQRrAreJMSek1Jz5UfsiR6nI4tPpw/CGa+g48KQ2SMxZy/DUHpatOPp/kbEvOluY8rTJ5JQ1Q6TVvN85XXveuyYe+oMndKhMBNJ3GO2nSTKvDqjIp0cHTriIrIfmUZJk6LRpuuhKE0tVFH6enT927nHxKt/87e/YsPve5z+Ezn/kMrl27hsPDQ6Rpis9+9rO4fPkyDg8PsbOzg7W1tfbcbTrZPZ/PMZlM8JWvfAXWWkynU1jrVp9vbGxgOp1iPp+3dfBbsmZZBmst8jw/wZvBYICyLNttVP3WrL7MNE1b59f/jsdj3L17F5cuXcIXv/hFfOQjH8Gf/umf4s0332wn8a11W8dmWYbBYICnnnoKly9fxosvvog//uM/xv7+/omJiz7yw9tWahNtIkWSqa729PhCss7xd/XjkP7tk1+iqatf0XyhCadHgWi/T9eH4w/RFO13tN/0PtrvJ89+J8bgI027PNjexi9F+42D/X18pK6xC+BhtN/vSftN8Ulnh1dVhTRNxb4o0cDtE7dzPL9Gk08fWpUHyEeuSNtK+/xSwIPik+wNfddHv0g46L2nz9MS+vCH1yFUrkSjhJOm07YHl/oT/ziC4peupbFOl8xqZ/eG6qrpBYku3m81+dRkmNcrZPu1PsP7QWjMwnnof7XV0VKdOD5J7qX82niVrgTnOHyeLMtObWnNZauPLpACiNo29SH74/iQoKoM5vME1l4B8L8E8L+AOyt8F27q8hfh9oQBXJD8LFwgvIQLNidwAXK/XflfNs+O4ALWawDONfcTQkGK5Wpui+WW6mju1+CC4D7APmjw5Viu8Pblm+ZvH8DrcMHxn23K/WsArzU4sibvGbiA+Agu4H8NwFcB/PcA7sEYi6LwcrHkF9/ZQuIvt5shO9ylO/n7PrqW6nO6GweXM00vaWVq8hjSfdIHpxIe2nf6jhciRIgQ4f0KBoBtzJoBYBLApEAycKvEB+dSrF9J3ArxawnOXALOXKqxfgZYG9YYpRajusJoUWNY1sgqi7xyv2kNZLVbGZ5atxG5t8bLs8OXwe+09gFz8nsiQG7civHKIFskyBcuMJ7NU2TTFNksQzJzgfF0niMtc2Q2Q4IUSAxsYmHSCiZdwORzGCRIYJAYi6qqkZgKZV0hQQFja9TIUFkLY9w546W1mOEY+zjEPTzADdzCG3gLt3APezhog+JlPFP8iYLegXHN4eADeCkd38JtlYFGaPJEG0zxdJRODSevo+RAdE0QdA0OucMTqp+GV8Mj4dLu+w5keR7tPcenbckWqpNUlr/XAjYct+Ycd00+dOXpcsglHH3rzPFL9Iae+/4l4ZAmUSieUN/r6k9SGm0CQ8Ltn2vbDUrwqI6J5Ixz+qisXb16FZ/73Oewvr6O8+fP47nnnsNP//RP42Mf+xju3r2LL3/5y0iSBKPRCNPptN3OdG1trZ3oLssSZVmiqioURYH9/X1UVYXZbAYAyLKs3R7Vp/P181uk+u27/Koz/+cn3/0kvjQh6ic8PM7BYIDPfe5z+Pmf/3mkaYozZ860eOhEfJ7neOqpp7C1tYVXXnkFf/Znf4Y7d+6c4CNvE0kGud7tq28eFbhNoKBNZnbZD4l2n14qm15LOl6ymZwv0qolTvejQLTf0X5r76P9jvab3r+X7XeaJPjCuXN44W/9LRxtbkb73djvbeu+ur8vtEm030++/Q7h8m3oz7jndHq6eJBMqi+37T4vf8a3A9dWhFJaOI9DYw5NT0m0h/BoEGoriQ5ajsQnTqtm32k+aet7abzDA6tSX9BsbsiGa8Eh2r4eJHy0PIl3nCdcFnibae0l8ZGfESxB6Gxizb5r7cXzh3hJ+w091kIDiSberhyobFD8vp1o0JHn4zJWVdWpwDivoyRrUj20utKVt1z2eRs5W/gcJpNfhbXnATwL4DNwQeUhXCD723DTlwVc0Dtv3m3CBar9Vurz5v0Ibvv0EsBxU9IAwNNN3jmW25cbLLc4L5u0fiW5wXIluA9++y3Y/ZnjtvmrGhy2ybcO4Kfggt22oSltyk/I3xDA83D73XwbwP8dwA8AWOS5gTFyn5HGb1KbSXLdx06G7CnXX5QeDrz/8vIlWrnMamMAmpZ+dEWf+bGSz09xSHloundj7BMhQoQI7xkwaD8TQwIkGZAOgGLDYHQuwehygs1rCbauG5y5CpzZrnFmy2J9ZDFKK4xgMazcueKDukZWAWll3R8JdhuHvrWyiQVMiXZ1eOq3S7dNUNy61eNJbZr3zW/lVouniwT5IkG+cCvFs1mKdJq7FePzHOmiQFblMFUKYxMXnE5qmKSCSUsk9RzWGjReFgxqGFO7X1gYW6OqaxhkqJCitG5V+RiHeGgf4Dbu4Bbu4Abu4B4eYopZu316HdeKP1HwyGeMUwhNBEiOnuSQ8GvqbFOc0rPQQF271xwjqW7aREKIfnqv0RgaOPaZ/OlySiXnV8qn4QlB14CcPn8U/BRH1yC+a0AuTSRxfBz6ykMIh4ZHm6zg0FV3bZJCc4xWaQdNdkO80vhKnRJ6r+HzaTSZX+XcXI3ePM8xHA6RJAmyLENRFEiSBOvr6/jSl76E3/iN38Cbb76JsiwxHA7xzDPPIEmSdrvS+/fv4969ezh//jwuXbqExWKB6XSKvb091HWN6XTaTjhY6876rOsag8Gg3SK1rmtsbm7iypUrAIDxeNxuo0rpBID5fN6edeXPP/WTndQppY6fnyg/d+4czp07hx/84Ae4desW0jTFW2+9hSzL2ol5ACcm1b///e/jq1/9Kn74wx+iLMuWd5LulfqeNFkjTeiFZFybiOmigePSnnP9xPtln8kD6Z3m5HOaeP+QbGWfst8pRPsd7Td/Rp9H+x3tN/Dk2+/CGHwiy/A//43fwK/+5m9G+93Y782yxDPW4jtJArB+H+336XdPqv3mq6s9eLnhzzxIgdWQbtTeaTo6ZDN54E7CyWWf808LonjclC+azdS2au6rh3y5lE+hHXak1ZGhMUFo+2peb49XsuHSFu4cB6+b1sekfLRsvl07bXMOkj7Q7BItQ7K9vDyNxtC4TvuVxoYh/SaNBaT20egIjSG1rfol4DRpZUir/Kms0vI9SFvO+4+9aPqQfeCrg71N3dzcRJqmGAwGGA6HMCbF7dvb2Nn538LaX4Nble0D20MsV2RP4M4Hvw23PflluOD2BbjPvyzcFuollmd1j+C2LN9onjeHk+IilueJ78EFxb0M26Zc25SZYRlwt1iuDrc4ebY4ndIfwgXDrze0HTW478IFxf155aZJ+zEA2wC+CbeF+ncALFAUQJYB1p5sG/5Rg2Sv6XvJfvE247t7aDqc63oKXJ54f5TGgZIsSu8lmrnul+qr1enHZcMjRIgQ4T0PBm1QvFg3GGwarF0wWL8CrF+1OHPRBcPPjCw2U4sz1mK9WSE+hMXQWgxqi8LaE1uft38W7V4rCYDEuGeoSWC8oivGjQuQVwZpExxPK9PcG6RlgnRhkC1St1p8nrpV4s1K8WSRIy0zmDKFqROgtbEWMDVM4v6SpIJNKtjU22tiD2rrCLM1SgvMUOHIzrGDHbyNW3gTt3EXOzjEMaaYYYGyCYnHoPiTBsb28YqAdoLnRGZl8oA/54MRyfkNTWhI7ySHiafrcvpCdIYmRkL4JOegqyypPhy0+oecEVo2HYj2cY67+Bt6J/Gvi3YtrQZd/O2bVnNUpXaRJh9W2aJWqqNW95A8aA5sqKxQmpCzzp2NEI8oXavypS9wZ0drS60+HvI8x8bGBra2tnDp0iVcu3YNm5ub7YT33t5eO0m+traGra0tzOdzXLt2DVeuXGnTHx0dtduiHh4e4ujoqKVrsVjAWtueO0pXhs1ms/Y80dFohN3dXdy4cQOTyeTEajWf359BCrhJdh+sphPjfgJiMBggTVOsra1hY2MDly9fxvr6OpIkwXw+x2g0QtEcUuZpM8bg8uXLuHDhAl588UX89V//NW7cuIE7d+60E/mSvl7FWewrj7xdKXQ953hCeXj+rjxc1iR+8PsuXSbZQ56HpvHb9q4K0X53Q7Tf0X5reaV30X6vDu+W/X766lU8t1hgd2MDB2ka7Xdjv3fv3MHz8zm+YwyqaL/bZ+81+w0Ag8HgBD6tnv65txn8/lFtuIfQ6nAfqKHbj/OxI3Ay2Mbp5HXkvJR0E68Dv+Z1oO+7+gC1G5J+13QZfe7/fECxy57RevLyJaC89/j56mGJJj6mk7a7D/FF0gla/fl2z7zOEg84bspHDyFbFZKVLugzjpFkR+v/Gn7Kf+B0O1t7cutpLb9P699J/TlEb9dYhstJ19hD6g+UlsFg0H6Y9pGPfAQf+9jH8fWvn8ef/VmFul7AnQv+AC7gfBZum/EKbtX1h+FWe5+DC1LPmlJ34VaGA25KfQLAYrki3J8Nbpp3I7hV3RtwQfaX4ALXMyxXm/vzw+dYBswnzTOLZbDcNPf+TPGsoXsbbgv4bSzPE9+CC8ADyyA9mnSXAfxnAP+xoec1ZNkMeS4Hp7uOO6Ft4GWoz5EQ2kdN/Dm1RbSNuY7jcsjLpkF+ilfqI/69ZDe0+mvjF2+vJH3G8yVJgslkgkeBdzJujhAhQoQnAYwBkAAmAbIhsH4hwcZFg40rCc5cT3DmaoLNbYszW8DmpsVmUePMoMZaYjGyLihe1EBRA7ltAttwMWXj/3DyLzHuFzVgbLMyvAKSsgmI18Ztm165FeJplbigeGlcmkWCpEyRzhOkixTZnATFZxmSWYFkVgCzAmZWAPMB7GwAOx/ALgrYxQB1WaAuC1RlgbrKUVc5qjpHXRVY1BnKOkdVZyjrDGNbY9/O8NBO8AN7Cy/ZN/E6buI+drGDPRxjiiqeKv4TgT7+wMorxqnDpTlF/plEgDZwlgbVfECt4dUm/UKDRc2hCJXhB0aaM605Q3xwJU06hJxzPpiUypBAaheKg2711ZdvUhrJ0eJ14++0QTLPRwfDnO/aYFuru5Y2VG+alpet4em6D20ty2mXaAy1BS9Xki3JoeY08LSh95wOa09vxSfVsUs/SM6a5txofYjfZ1mGtbU1bG5uttud3rlzB2+//TastRiPx5hMJu2ktsdhjEGaphgOh+1k+PPPP49PfvKTuHz5MmazGeq6RlmWyLIMzz//PHZ3d3F4eIjxeIzFYoEkSTAcDttVY2maYmtrC5/+9KeRpim+973vYTweY3d3Fz/84Q/bVWzeafMTQlwPpWnaTtj7FXSj0QhbW1u4cOEC0jRtJ9D9+af+WZqmKIoCGxsbMMbgm9/8Jt544432vFUfUPUfDIT6GO+PUtuGJmhW0dma00vbS7IfGl2hd120SvXVJoOkZ1JeTkMo/SoQ7Xe039F+R/vN79/r9vvozTdxd7HAX5dltN+N/bZ1jReSBK/nOYy1SKL9Fml9r9jvkP6iz7XV45qd5u9CvKeyq9Eo2ViOQ9LlvL9quCW7F7L5nidSm2syzfHxNFrdpLb3IG1v7T+M4Xayj7zSNNKKc01mtXFFaAxH+cjrx7fJluqgBdz76iCOt2+f4rrFP5NseEhetXqFxkr8OW8v6SMVSfZ5wJCXpdlwTU9xXRHqfxIeHlz170JHXtB0RVG0ti3Pc5Rliddeew0vvvg9/OAHFep6H261tw88A8ttxlO4IHYBt236zwH4Fbjt1n2wegYXdH4OLsh9CHfGtz9r3K8YL+GmQC8B+HRTzk81aW/DbWM+g9t6PSV0+NViCVzQ3GK58ttgeT75JlyQ+0NNOT4477eA91u4Z3Arxc81ZfwHuNXiOwAqZNkA6+sWdV2dGNfwNqftG7LhPC9tJ21HLy4P/p1/T8uTPpzieibkh2k0S2OGrry0nh78zj10O3WJJ1wfPA4bHiFChAjvdTAGMAmQpkBRWIxGwOZaja2Rxdlhjc0cOGMsNkqLDVtjo7RYAzCs3V9ugbwGMgsX6Ib7bf/Q/JnmD4CBaddn+6B4Ui23TXfnifuV4km7WjxZJEhKFxBPFinSRYp0nrm/RQYzz2EWGVCmQJUAJ1aMe0JcxN4kFZKkQnvIOgALC4MKNUoskGCGBIf1Ag8xwV17hDu4hzu4j3t4iAMcYYp5ExKPQfEnFVYOjGuDcP5OuqcgbYkTckQ5nq5BkTboob98GyL+K006eDo1p0RyWkPAcUsDUcnJ4HWSQKMlxG9aZggfp1WiQ5t84GVoTnDX5AS95nn4toPS4Fqjl5cdkmttUoTT3jWBE7qX6JScbY+fr9TQeLUqbi09rR+tY2iiZdU69+WzlE8qa29vr50MlyYGuNzleY5Lly7hmWeewcHBAd5++228+uqr7Vml/ut3n3ZjYwOj0Qiz2QzT6RTz+bydXB+Pxzhz5ky7OmxzcxNra2u4cOEC7t+/D2strl+/jqOjIxwdHbVbtM7n8xMTVH4Fm58cr+saw+EQa2trOHv2bHtG+mAwwK1btzAcDrG+vt62jT+r9OLFi7h16xZefvll3LlzB8fHx5hOpydWrxnjVsnN5/NTukPimeZwc5nqandtErZvv9baVHsm5afyzO0KX0XUVzdzfmhppTLfCUT7He13tN/RfnNa3+v2+1lr8TqAAyHPB9F+L6ZTPD2fY384xKKusR7t93vefnP+P4oN93WkK7vpc183Xieql7V68jx9bLiXLZ6Op+f08ZWFmr7iNNE6+3chG+7r3CWfPn+XDHHcEt+ke4nePjacppO2s+6yhZyHUvvynWxo3+Kr3kNl8HFGHxvOafL5pLYIjQ05UJkMBaW1cRDnp3RkBgetXaV0Unvw8qRV3SE9L8mt1Le62oLzl+Pw9b9z5w7G43F7ZEldWyz8jubt6mtPUw0XPH4WwOfgtiT/GwBfh5vG3IRbpf1Ukz6HO6P7PJYryv1fAhcwvwgX5B42OHK4Lc99+TO41ecP4EYWBVxw3Z817s8xz5v8o4bOdbiV4lea3+twgfI34ILyZ0ndcrjt368C+BGA/wnAa3Bbuh+jKCpcvLiOJHEfqE8mE4zHY8cR9qEb5T8Hz3PpbHdJlum9ZsO5D8jxcpw+IC2N90P6Szoqg5ZB9fOq+jBEO+VP6NiMCBEiRPgggGn+SwyQJECWAIPEYmQs1mGwWQFn58DmFNg0FhslsGacZR7VwKD5y5qtz1NryHniZhkUN4BJmpXizXX7HICpDZLSrQ53Z4o3QfIqabdQT6rEPS+bwHiZIpmnSMsM6Tx1QfFFDtNsoY4qhalTwCZAbXByO3UL0wbHSxAPAgY1apQoYTC2FofGYsdMcdMe4Cb2cBP3sINdHOIYE8xRtuvET45wIjw5sHJgnA+SJCePv5MciT4TZZpjozmTEj6Khw8YQ+eySfRQ3HTVXWhwJdGmOaYUHy27jyP9OEFy0Hi9pK+YPUhOlNQGkvNEaehyED2OkEPH6dYcSSl9l8PLaaK0hmSA10lyTnl+qb01nmoTPJzPmrxLEGqDUL/p46TQ9PxZyImizo1GH5/UKssSh4eHIg2cDn+fpikuXLiAz3/+8/jFX/xFzOdz/OhHP8KFCxewubmJ7e1tnD17FnmeY3t7G+fPn8fGxkY7+T2ZTDCfz5GmKay1ePPNN7G/v4+yLPGpT30Kly5dwptvvnnirNBz585he3sb0+kU+/v7WCwWOD4+bicR/Dav/nzV0WjUbr/qg9kbGxv4whe+gGeffRZ/8id/gtlshjzPUVUVhsMhLl26hPX1dWxubuIb3/gGHj58iNlshtlshrIs23Ncq6rCeDxueem3huUTJhI//b2kH0N9RMNFQdPNEn5NV2myyfuLpAt4WZIcSbzw7zUnXtO/jwOi/Y72G4j2m+fnNEf7/d6y336aGtF+I5lM8NHxGHeLApONDWxH+/2+sd+AvA2u/5WCuCE9KOkfaYxA8fhn3K6F9BjHLdlB/56DRKfnP9UhUnvT/PRa0qs00OTz+2BOaJzE+RSiO2RDu8ZK3C7RrdN9Hl8Hif8ST7g8S3XSaNHaX5IXmk6z4VKZtE05vZxvIXtDgbY3fy7d87PUtXEOz6vpTemDTo1vNK/Wt7U+q8m6pg9DNpzjpPTQYKdEBw3IWmtbH5OW6f4ke+Kf5XArr38dwD+AC1D/DVzQ+QLcNuUbWK7G9ud7J1gGrIHlNPQMwBQuaL7Z4Kcr1AdwQfJrcCvO7zXp95p0VXNvm/JGcFu95w2+jYaG8wA+BRcMX8Ny+/Y5XED+UpMPAL4H4BbcCvVjnDkzx0c+MsDa2jrKssT+/n4rN4vF4sRHblxGeXt5XrdcZTrjFNcF/cD1G/eh+DUvhx4Zo+lnTrPfIcTXUfvYw6elH//Q9BS4fpH6Lw/Eh/pmhAgRInxQwAAwBkibwHhugKEB1mqLzRLYWgBnZs4Kri/cCvFBBQxqg6IyKKrEbX/eBMUTa9r9VxxugySxLjCeurKSxP36v/YMcRoU90HwysDUSfMsaZ41W6kvXGA8WWQwixRmkcGUGVBlMBVdMc5Xjdvm/PAKxppmlGBhUaOEwRzAxFoc1CV2UeEOjnADu3gTD3ELD/EQ+zjCGIsmLB7Xij/ZsFJgnA6iJKdLGojxCQrp60NtsC8NWLQ82ntpQNN17lRooEfTSHmkAZ808aDVIeQoSe9oOVqZISdWcpCkunAaQ/wLtY0kI9qkgCZb2qC6q2wPWvt31VdyxjUc0vsQX7UBulQe71e0vFB/5HRJ5WkTJZKjxOVRcy666kCf0V+JXi3tKnpCm8ig10mSoCiKdtvWS5cu4dy5c+1WpoPBAHfu3MF3v/td7O3tYTAYtCu+tre3sb6+3m6lOpvNkCQJ1tfXcfnyZZw9exZXr17FU089haIosLOzg/39fayvr6OqKhweHmI4HKIsy3bbueeeew5JkuDVV1/F3t4eFotFuy2sP390OBxiMBigKArM53MkSYK9vT3s7Ozgueeea9tva2sLFy9eRF3X+OY3v4kvf/nLeP3117G7u4ujo6N2q1hrbTsp6J1wvupE4qEkU1JaabWvdMYYv+87MefzdOmHLn1Fr7Vz1yQ9D5ycPFgVumzQo+CL9nuZRsoT7Xe0376eHKL9fnLt901j8IK12AFgP4D2+43XXoN9+BDbBweYLxb4tjEYA9F+v4/stwcaCJZWy/kypbNgNRtO6fXQxQOfnm+pzNPwMQTNQ/FoPNLkj7ejNFbQdJJmw7lOlmiUdDZvC6l8bVzCgzD0vUY3LZ/+Upz0Heclr5vULzjvuKxRmqSAFcdDoUsGuSzTfLw+vG4+L1/JTtPzVaf0fd+PM6S0mo3U7KiUzl/z1b3+nHGud2lbc776j7m6+ifFp8ksz6/tBhDSe7yOJ2k1qCqLujZAuyW5DzhfhFstfhUuyG3gAs1vAPhzuIByDheoHjR51uFWhE/hAtJp8/wZuID6M3CBaR8Ur+CC3BfhzirfaJ6P4LZE/1iD/w0Ad+CC6+tNeWcb/GvNXwEX/Pb1TwF8vMm/aPJlzf1rAP4HAN8CcBtZtovNzQXOnJljd7fG/fvuGJXJZAJrLcqyPMFf2k5dYzYK9KMfqg/pdu1cL/CdDySdpulCjz+kIyQZonogZL+4LNIt//l4RcuvjWlD5UaIECHCBwqs+7M1UM+A8ggoB0CVu7hyPXbXZQrMaoO6Mlg0K7nTulkZbt1vYo37hM2439QASWKQNlu1pwna6yx1wfgUBrAuAG6tAWp3nVbuL6kTpHUTGK8SJFWKpExgSh8MT5u/Zgv1ZsW4I77B6f/gQuAVasyxwBwVphaY1gaTGjiqahxWFfarEg/rBR7aOe7aY9y2B7iNA+zgCEeYYIESZRMUR1wr/kSDsT0tvT9rts0YcPQkB6KPc0BBwtc1QSLl7Uqj4eyqA+eBNrETGkhyeh6Fjj580/CHaJEmifrwVKKfg4ZHG7BqZWi84emltNLEikRbSJYkeQ6lDX3VTfP2qRcvP1RnaSIkxJsQ/j5yR9/xs+VC5Wn1DfUxzWnvowNoOmMM8jxvtzX1k+rr6+vtOYD+TM/xeIyDgwMsFosTq68oPnquaJ7nyPMcWZa1X8+vr6/j+vXreOaZZ3DlyhUA7vxUX8bGxkbrAF+9ehWf/OQnUVUVXnrpJRwdHWFrawtV5c4c87RubW21k/NHR0fthP7GxgaOj48xHo9xfHzcbve6v7+P//Jf/gtu376N4+Pj9hxT/2W3n+wKba0p6ReJv5J8aH1BamPNhoTaOKRPVrURmtxp+q2vzqRl0fz8uXfsvUysCtF+R/sd7XeYllDdov1+8u33h7MMwyTB3cEA2WBwyn7XiwWyLMN4PG5XfFP7XRF87wX7fbC/j7/5i7+AuXUL9vAQD8oSbxqD49q53tF+v3/sNwAMBoMTeH2gTAqGcH3lecBXb1Lo0p2aHpJAax/KW09jaCt1CSfPT5/zOgOng/Ba0EbSu8DJDxFW1VGaDl/l474QzVI+j9/fSzRrMiC1B0/T1Yd5Pi57XB/0HRfyMkI2kafj9aP5NVu76kcxkp7jdaJlUno1PtL0q/Q/HxAHcOIMe+0MaalMSX+E8tE6+t/QRzOcZ87WDnB8XKCqhnAB6bMAtuCC1yVcMDqHOwf8XnPvzxX3+GsszyM3zd+w+SuwDKyfA/A8gM80v4ALci+avOeaawB4Gi6YbuHOH9+DW6XuzxgfYLlyPG+ee3rT5tefm34AF8iv4FaH/zsY8wPk+S4GgzmKokRdOx/cjxH4amtJXrrsHbUVXD9Q2eDyxo9EkOSXtqXUvhJQOiitUho+DvW4tXt+HaJDKl/Sn55H8/k8iEeDvrotQoQIEZ5EMIA7WzwB0gwYFMCZDWBrEzi/BVzaBi6dBc4MDNZTg1GyXNGNGrCVga3h/gDAB8UBZDDIjEGWAJkxyFMgS9xvngJFBgxy91skBgUS5MYgqw0ymyC3CfI6RV4nyGoXHE/qBKZKYKoUpvS/zbbpZdL8Zi4oXqZA5QLltsqAMkddZliUCeaVwbQ0OK4sjkuLw6rGflnjoKywVy+wW82xW8/wsJ7hYTXDrp1i106wb6c4tjNMMMcMJWpYslo8wk8C+oznewfGi6JokfZxBgHZsdKcLT7w1xydPk5Ul7PUtx5d6bVnUtnSAPJx0hDiS5dTswpoA/MuZ1mj3z/ng99QWVKZUvqQHGl1o7AKDt4Oq7RBn8mFvuWEaOv7vO97CSQHXsK3Cv2rlM3L5Oco0rIp5HmO69evoygKWOu+yp7NZm3wezqdttuf0j9aNq+jn4DyutM7uF7Oi6LAhz/8YXzyk5/Es88+265ou3r1aruFeV3XuHz5MkajEabTKSaTSXvu6a1bt3B8fIzJZIK6rtvJ84cPH7aOdJIkODg4wP3791GWJUajUXsOKQDMZrMTX4hzCH35rU148EmVPu1E81J+amlW1S+r6G5efui5di855JKO1PSLZkMXy0P4VoJov6P95uVF+326btF+v3ft91PXr+NZANuzGWprcViWKMoSVVm6M8Ibe+rxniiblD82BpW1OEgSLNIU06LAAsDiCbDfa6MRDu/cwdbREc7WNe7NZrhhLQ6x3CyW8y/a7/e+/QaA4XB46pnWFl023JiTq/t9m2u2TdN3ofJDvKZlSvTxZxoOCWjb0XtpxTP/sEACqe7SM4pD+4iKvu9awRiiQ6tnl83VgNpwLSAqyTuVM4nHnF5tRatkc/roAkpT1zECnF+0TN6uNA23FZzHIT2kAS2br7zuGsfwcjgfaT34Dh68PSiPJL511Yenk/pSVVVtP5d2sfAwGAzwwgsvYDYb4u5di/39BabTIyTJFNaWsPYAxszhLJ3focACsAA87zxfDVwRBsvzvy1csLqEC0qb5vmnAfwK3NnlV5rnl+FWfi/gpu03Gzw+4F3DrUR/Cy7QfYjlmeQHcGegl6T8+03aGdyqdXeOeJpa5PkxjKka+k73O77zgdQfuwLHvO2lvkfbUSqHgjbm7SP7IRz0edcYWyqb5pU+aOJ1Dul+rX9Mp9PedeQ0RogQIcJ7Ebz2MsYFxpMUyDNgYwisD4HtDeDSlsGFTWCzSLCWGAyMAWoDWwFVBZS1+6vr5pMy23zCZgxSALkx7i9xf0UCFJlBkQLDHBgVwNrAYJQaDFODYdIExG2CovnLrQuOJ3V6MjheJ+126T5YjjqBbQLltvmrywR1lWKxSLEoE0wrYFIajCuLw7JywfCqwsNFid2qXAbC6xl26yn26hmO7BwTLDC1bpV4dSIg/j4Livc1a09IpXuNz23PkYyfWA8V1Gdg1jWZoE2ArOLodTkRfeogvedOfGhAqTlqXbx6VOgzKH2nZa3SBl1OcSh930FwiD6N/xIO7oCEytImjiQaNFolnNIETahN+7Q373NdaTz9obpKfKP15o6Jxpcu0GhepU59y7bWtivFqSzwldO03pLTRb9+7lqVkmUZLl++jM9//vN44YUX8Pzzz+OTn/wkhsMhFosF7ty5g52dHUyn03al2P7+Pg4PD/HWW29hZ2cHOzs7mEwm7Wp2SmeaphgMBu12aePxGNa6M00nk8mp7di6dLbEyz6mo08/CfX9LpvB82vlcmdbw0t5wJ+FaAnxifaFLrun4fbwTgPjEkT7fRpHtN/Rfmu0RvvdDT9p+23qGnlZYmIMqroGrEXVYb/TJHEbtFqLxFqcRbMpq7XI4KbBbxmDB8bA/Bjs93pRYJQkWC9L5OMx1uoaRZJgdz7HjarCA+MC+NF+v//tN+AC45o+0s4sDtnwLn3uoU/wmOaj7RPqy33ksItmrqc8Pm/rV6Gd4uR09ZWpvjacr5QMjZsk+vqUK9WDr5jW+qG0SjSEl9Mt9clQ3/B5fBBVa3N6r9la/jEVlxE+vvM4pQCk9580HtB6a/znaaQxSl3X7Q4QnI+h4ynoM2lFcBft2tiG990++oO3pXR2tUS3b8ssyzAajQjtNebzBYwBqqo81eZ89wvfXu7ef/zmeQPUtUUzFGieFwA+CuDXAPw83Fng5+Gm7H2Q+6hJ61el323+XgXwNoAbcKvXK7it0yssV5FncMH1DMAcxhwgyyzStIALnvuVx0uecr7SsSWtt68r3w1GGguE5iL6HIOhtXWXDZfK43RrabRnfcYTnh7pIx2uP6Rr3xfpc2pfY2A8QoQIH0QwcIFxY9y531kTsB4WLji+tQacWTMYZUBhXJC7roC6NqgqoKqBqraobfMht23wwbQB8swsf/2K8SIxGOXAxsBgY2BwpjA4kyfYzBPkSJBbt2o8q1NkNkFaJ80Z5k1gvNl2HbVx26X7s8SrBHX7Z1BWCarKYF4mmC4MZqXBpLIYVxbHVY2jqsIh+TuqKhzbBY7sAsf1AsfW/c1shTkqLFCRVeJ4fwXFu8zZE1rRXn6s7ekx+pWUbUbFUaTP+CBNG/SoxCl5eH5ptZKUros+WmaffF3O5Sp08AkFiQ9Sfokmnk7Dzeuu8bprEKqV5593fRGt1VW616BPO4R4HKqbJMdavemEK4BTE1bac5rfX4cmPqjzq5Wh1V961pfPq4LWz7RJAg4hmvuUTfNIdPXBFUrT9Y6XZYzB2toannvuOfzMz/wMnn32WUwmE9y/fx937tzB7u4uHjx4gL29PdR1je3tbaRpiqOjIxwdHWEymWCxWJwI2nu81Hn2gYKqqrBYLLBYLNp7vvW7xCNNp/eBLp3N0/pyQvn66L1Qv/Yg6bE+stils0Ll0Mm1VW0UL+dRt3GL9vt0vmi/5TTRfkf7TemM9tuVtW4MrgO4Nhxi/fp1PPO3/zae+vjHcTyd4v7ODu7dvo3Z3h4e7Oxgv7HfW2fPIssyHB0d4djb72Yl+zpO2u91YzBqaBkmCZBlmFiLB1WFh2WJ+WCAabTfp/B9EOw3sFwxTutLdSKlW6KNrwiW8vK2oDqRpqF14jzi70L84baft6+nT1rFLMmNxBNKj0SHpPNXseGcRxy0fsl57/FIZ1yHaNLk17+TcEo2o884KWTbeTtw4G3K+1Ooj/IjbSg+LtO8vjyfpjdCtk6is8uGS/yR6sHLkPigtXVXG9Fy6ZnLEk/62njeHzlf+DOpj1Lc2scHtO6cRxJvNP5QvEnitlcfDLawWHwBx8e/Dms/BxfcfhVuJfc9uO3S78EFuq/CbY/+EMsV4XO4YLlt0rgNYdPUnxtukec5imIEY0pYO0VVzbC2Nmp3o5OOONF20OByRPkiPQuNCTUZ4TpNw6PpwpAelNpD6qdaH+U4JN3uy5eePU4bHgPjESJE+CCCaf4zAIxZBsezBCiaAPmwaM4Bb9JV1TIoXlvAWqD29oPihYEBkDT5EuPOHc8TIDPAWm5wZpBga2BwfpTg4jDB9iBFYVxQPG2C36YJihtrkDTnhBtrGrNsYGv65wLhVW1QVQaLCphXwLQEJs3fuKpx7P/qEkd1hWldYVZbzGyNha2xgPstUaNsfv0qcRoUf1+CN2vvker1mQd55BXjoQkRyXnh130J9GXQ/KEJGA1CA+6uPHwg3zWB09dp7jOQlOiUBrGa0yiVJaWX6qANrEPpgdPnUvI6aE53yNEOlU3xh5yIEH8k3CHnftV8Gkg864Nbc1ol3DT9jwNWcdz64tPSarLDQerDXWVp/UyjScJLt5AbjUY4d+4cPvKRj+DDH/4wjo6O8Pbbb+P27dvY3d1tnWXvwA2HQ4xGoxPbuWsOqTEGg8EAZVmiqiqkadqeeeq3SvcrEvhKwBCPQ7o99Cz0PJSuj+z4a+0sRM1xpmV11UPKH5qs6LKDEn6tf4bk83GtGI/2O9pvKT0Q7Xe039F+e5Ds90effRY/dekSqlu3MH3wAPsPH+Lw8BCz+RyHxL4OhkMUeY6yqtx27s1RLAAwsRbHROaTJEFZFDgsS5RVBZtlSKP9PpGelvVBs9/AMjBO9b9EO7+ngcNV5IRCly0K1Vl7R/s+p4HKtVQnDW9I1qRgnlQXiQc8YNVFi8YjLQjPdZNUpiZ7/GMsireLVt6f+AcIIf0s9WGJFxRHqB36yo8kN5w/Eg6pvrwuUjvSfLS9pLpzkM6853n66j2NHxpIOkHSYRo+LmOU55wmWtcu/vu0fVcNa7rZ2tNnVPNxgi8LcB+Lb21t4erVq/iZn/lZPP30p/HVrz7Et771Nzg4eA2LxS1Y67Y1t7aCMcDa2gby/AwWiymqao7Z7Lh5ZwDUMCaBMd6Gp1hbG2E+n6Ms3YfoeZ63H6bXdY08z0+cGU55Iuk6rd0lPdl1TIGGh/dzbfcR+kzrayFZ7lp1Lj0L9W0uQ9JHVqF+ovUPei/pytlspuIMQZ+xVIQIESI8qeA1mFdlxvgAtttaPUuBNHUBcwPAwu3W4rdPt9Y99GpZ087G/xkXYM8MMMjcSvHNwuDcMMH5UYKzRYLcJEjRBMHr5Z+BAawLtvuCbBMgt9agrg1sDVS1aWlcNH+zCpiW1m2jXtWY1DUmdeX+bIWFdTvQVbCorW32iFn+WuE3wpMBfcbOvQPjeZ67DIFBi7/uGvxIhPKBCB+89R3k8IEeHzBqdPNBUp+JTo6PgjQ40waCnBYJtMFtKH9fB0pzyHqKhphPGxT3ccI8aOlWlS+et69TK9HzbgxuH5XXfXED/ZSB5DTT6z6ODC+7TxtK+CTHWdMNq8h4yLFfhU6ahtPvn+d5jjRN2+utrS2cO3cOeZ5jb28Pu7u7ODg4OLGtOcXrJ0LLssRisRAnN+gvlevBYIC6rtstWj1+qU371vedyqmkiyVd22cCKfSMvuPtzp91TQRQOjQnvesdLbcP7hCPH3ViPdrvMP0cov2O9rsvRPt9Gl+039F+0/rR59F+PxrQM8Yl+8FtVkhPryInvt0prykumo6XL9lRiie0XbcU5JDS8fpwPSHZ8L52TBvTeNql4J7WR0PXnLeUN7x+IVopbp7Hbw/M8fH+RN9Lss7rxvWC1md9nfyHv9LuKhJ0jcG0PivxpI/9X7XvS+XwMrXxXh/9TfuC53UoL8UtyVAXv3w+31YUP991Qmtniada4JbmlfQ75xsvU9Ih/vlwOESapu315cuXce3aNQyHQ9y5cwe3bt3C/fv3sWg+WqN1SpIE6+vrAID5fN7u9iGtSgZwSkeORiPUdY35fH5C5n166QNUja+8nUPyrKX3ZfoP7Gib0tXUkpxy3F1ppTrydu/SxZr95+Vz2qTdRaRrCqFxhr/3sv+ou7700T0RIkSI8CQDDY774LX/SxL310a20awSb1aLN5FiBNyPEzt0G7jAeGLcturDFBhmBqPcYD03WMsMErg/YwE0K8T96vAWbIPNLu+tNbDNb23R/lU1UFpgUVuUNTCvLRbW/7mV4S4gjlNbpJ+8jgHxJxFCvq+HRwqMdw0qJAL4QCY0qAsNhrrK4efB0F+tql04aR3oO+0LSE4PH3BLTkwXPZwPGnQ5f6EBb9+Bm9ZGoXbri4fe95n85nSvUqYHaeKjT7t03dPn/MtmXja/5vkpdNU3NMnQh9YQXZrcSGVq/WpVB4E71X3x9OkLq9LSp72McWeIp2naPvMTDUmSYLFYYD6fi1up0fzU8SzLsrN/UUfXT4L51Wa8HE0n9pXpLt5I9NF0fVfaShMkfZzbPnogRHtX3fqA1k6SDupbzuMIjEf7He13tN/RflM80X6fTBPtd7TfT5L9BtzHEloZVHY0m7aqDefPusrxIG1bG1o56+VCwsltCy+PngXL60vpoTacBrB43/PXoQ/rJHvXxb8+OGgbcT6FyuLnLNPfkH2R7CjH6wOj0up1TY5CNoXn88C3QqfPJB5JoLWbf04/DOB0h/Qy52OovhT6jAv62vCu7c+1crQyNFvE02j0dPUfjlOTtdBuTJwfEi7uL9DnRVGcsMNpmrY7qc1mM4zHY9R1faJ9fXlJkiDP8xPnTku6m7c9LSvP8zafxy/5NvyDmC4ZpzwJ8Z3i7rLhVB544J/rGKqrV7Xhkmx09ROeN6Qf+vCLA9eXvK4cV1wxHiFChA8yeE3mVZpp/jOmuWn+LABY8uuWVJ9YxS3h5WUYuG3V/er0NHF/ftt10xTmyzkRFOcYebnWLOPlDQ5LrtsV4fZ0ILwtrrnj1xGePOgzD5CtglAaTEuOAk1PCQlNlGpOiuRI8fK4A6MN9kODOE6H5nRodFEcdLCufV0aclwl3tD82oBNq6s0KOZpJR7wPNIWjvyawyoTBBRXCCfnBy+PD3S5rGgOrEQvb3OJzlAeaQJCKleiQ5IPyTkO4dRo5LRJ/YnKG+enNsEggUTvKk65xL9V5CrUV7uc91B6es/TVFV14qtsrgMlWjzQc+u8U+7T95Ejn4+WR/kpbWVI60xp4w5wlx6UQJJhrU01x1mTt5AO12gI9TNOX8iplyYBeJl9bZFGp2aPHgWi/Y72W8If7Xe039F+R/sd7ffpej9p9pvTxc9X5rzhz/oEfDnvaIDUP+d4pOAz5Qd9R+mTdBKlQ6PR55d2U/D08H4nyRgvmz7jba/1KV4fWobUFhp+TdZC+pryVbI5ob7E66XxVqoL1UvSLhJdcs9X20s7EXA6uQ2i+lniEQ1qcpolnafpAFp+yJZxHnAcXTacB/q4jEjtqJUp0aaVT38lHa+VrfUnXmdeD0nefD4vF1yGqY7TgLflYrE4tTuBlwdeZ96mXn/5D9Oo/qO85XXm+fy1Zt80vlOg7SDJi5SX94sQXt7X+9pwCY8Hb5codOWX+q9kr6j+pR9hcaB88jLFaaLlcb0i3Us6IkKECBE+SGABt1W6RbtlOpr7NiBuWAb/a9EzaOztEGCaLcsBwBgAVfNrmlRUL1sjr9W2TR6hDJqc51ySbk+9JxbrRBUjvLdhpcC4B+7YaeeXaQMx7Z30XHsm4ZWcz5CzIg0aJWefpuf5JdpDA1+tXnSyQXJSabmSUx+ihdPR1U5SHbscqxAdobaQBpqaQ99FL88PyKsCNfpXLUuT4VWBO+0hurocVImGPufjaXRpaSQ6NJCcij71lBw9Wl7IWeF9JlSPkJPXR9Y0+gCcOEuMg7YlnlRGaHKFl8n1rIZf4h3X7XyCQ+s/XWX5e/6VOsch1Uk6R47m5zpTw9dX5vnEA6WR8kaqs/ZMKjek+7rq8k4g2u9ov2kaCW+03/0h2u9ovzX6KO5ov6P9fhxAeeV3NdBkJtQvuUxI/KW81PBwmaE84AFQzj8+9uCyIeXn+EP235fD80sgBWs1meNl8rNuKc98+TzgouktSQ9p7STZR8oTSoN2Ji/FuYptCck6lzNNT/E6amVJeaW2DMm7ZD/pOIOvjqf11Oqu9Tv+TNvZwIMUsONtqekqiV+8nNBRCBx/iKcct7S6VmpP+l5rC65ztL4SklHetta63Vo0eeN1pnXi/OmyyTwNXdnMP2CitlSTb847SQa0NtPGXpoN1/oexSV9EMTrxHnC+UhB438fG06fSx8K8v6p2QWpTXng/d2w4REiRIjwXgYLnAiKn4oMG3bfE+fy2sooTiZaxt9PECKMi0RaZOKkp/bU/11YIrxXofdW6kVRiM+lQdmJAnpMDnAHi+Kl7/zZOH3KlQau9Lk0kKTPpfuQI6cNTnk6qa4SDm0wruUJ8UN71ydvH3ySM78Kb6T0FLeEp0/7r1KnLuhqB0prlyMl5eMOh8Yv/l5zdrvqQOnU3ms4tDbrg6uPPtBAc6jpvYZf4m2I3zxvl47TypLShSYI/ASGf8adwr60aXzQ2khytkNlaJMDmiyG2j0kS1q/k+QwpJe79D6vG3+vOdqa3eD1flT9x3E96vlm0X5H+63hi/b7JK3Rfkf7HUoX7Xe4DtF+P377DbgzxqV201aN++vQCmdPLw9Qa7KR53m7GrJLj4YC4vQZ70daMEKqixb85v2Ols9XENI695HRLjstyYQUjOJ0U9o1+0Pp5MGh0Hnn0spLSU7oO/qe4uErm6V6cF6FbI7Udn37U0imNb0R0kmcFpqGrlCnOEM2XKKnS54kvlF8/HxoTYY4bkm2JJoluiQ+cpmiMiTxP7QqWeMZp0fTTVpbdvVVXj8A7fbrvo4el2ZvOf1d5YX6DE/Lxxe0bOmjImutyOeQ3aQyxWmg7SbJpMQLmleqQ6jOms4JyXGXLgrZE4pPC8LzDxim06lYhy7okpEIESJEeL8A1XarzhiENGUI1zvRsKYDd5/yIzz5oI27KKx0xnjICe47aKSDpjRNW4fOf9VJcUiOqQZ9ndeuvPQZ38pHqltfnH1p4mV0OU78GZ8U6MM3zbnqs+3eqrzWoMtZ6JO/j6MhvePnm0lpH2c9JQd8FaCOEb3nZfh3j9JOoXyS87LK5AUvg153OV0076N8zdvFB0mH8JWgGo4uRzDEK8prCY+UVsPRVbdVcEoOK00f0rtcTnoZpEfsxyG6Q/T1mRCS6t9HjkJ6XJoQ0uwmzfuoE+vRfkf7LZUX7fej0Rntd7TfPG+039F+cxw87zsNjEu0cRq0lX3+vacnSRJkWYYsy1DXNWaz2Sm7zdshxEtty9k+OiHUJ3ng36eX0vI2C+0ao+XlASepXhx3H10r8c3/+o8Gef7QKnPOH15uqC/yttPkJpRXgr6ywXlJ6x86+1jCEeoPIbqkuodw82c+Hx8TrGpHJNnpagMqq9TOUQiNg0J9QtqFQNJlvt2kXVVCNq6rHbtsOK0/bx+ePmT36D1vH//Ht12nfJe28pe2/+6yNSG7po1XKH197KrU3zn/KF7e/pxXIf0Ssh38wxrJrvSx85Ke4LRy4GVruLtoiIHxCBEiRPjxggE6g9KratgY5P7gQdfYGgDkA1d6IPQDH/rnITRY8YPHLMuwtraG9fV1rK2tIcuyE2m6nNlHcSKkZ6FBJc+n1Ve65wNbnj+UV6onH5hLDqy13V+LSoM9rZ4aP0Lv+vKSPwvxpY8gS7z19IRoovImyUJo4B9KJ8knd8hCTkhX+byfUOAOcgg/p5U/k95JkzCc/6u0nYRHqofmTHfhlOrVRQO97jvxwOmX+m6fNDxtl4x0Pafv6RfwtB5deXk/kvqL5rxrciqBRF+XbuHpOA3c+eb2KESbFrwJ6QCuh0N9OlQ+5/EqfUnDx3FLejPa72i/tffasxBf+sitxFtPT7Tf0X7zenXRQK+j/Y72W8Mrlc/1cKhPh8rnPF6lL2n4JPz+T9pynG6hbK1tt17PsgyDwQDb29s4e/Yszpw50+4qIwVIJTmhPKRBii5bIPWZLjmkuKiMUVy8zfi55xIfqW6g11300nScD7wPaIEXSoOGW7I99J7LbMh+Sv2G6yheX8kOSHRJdIbkh7+jAUgvs5wOei/xjNdDAtpmdMtsHgCVQOIt5zt9puWV5KKrz/FyfT+m9aL18+XwcjVbQfkmyTCl2fPLGIOqqk60V5es+7qGxrGaTEpjPV6e1ge4vGvlUHo4D/gxC7RuPI3UBzg/qCyuaiOo3PGxntQWmv7j+a1156lzPkrXmn7jdZJsOF+FHvqI18u6Jsu8fT0+abV/SI9I4zSueyJEiBAhQheYjr/V4VG8J9vxFyGCBCudMc4Hb3wwLzkoFOjgaGNjA6PRqD3byf9pgxQO0oBFOrNHokGqE6WPPpecdM2x4DikNFr50iBToocDLy804cjbh6fVnA1poMvrwx0bbaDPHSw+wNVoDgGvTyh/H56GytYGytJgmzrcIQjRobVFX3za5AKvD08r5dcmiEJpQ7SH+on0G3JgHlV2umiUHEeOX+pDUn2ke4mHfb841/jA+5X0XsKhObqc1j79RtOT/h3d+rGPXGiTHZIOk+pL5Zymk5xjiV4pj0SXRLPUn6S68HppOB4Vov2O9pvSEu33EqL9jvZboyXa79Pvov0+XRdeLw3Ho4IkU1L7SzbdAz33dnt7G2fOnEGWZZjP5yjLEmVZngpy07J5PUM2XEvDcfKdMzR5kuqvtY1m27rkI6QvNNBWp2plaM8k3mjyJtWX4pVwUnp9ni7drI15QmNDrU48bZcs0Wder9Jt8CW93AcP76O8vTXafbrQLkSSDHBa+O4H0jnvXbaJBsI5fzg/KF0afZIuluindHg6pQ/OtL6s9SeOU1pVzOVG03O8P0o2JWTzjXEBf962/COrkM3iK8f9c/qM4pNsqdYPJRmS+KLpR5/f+25Snwn1Y8kmSHaA4qL9VqLX84bi5bgkOfXXoZ2ieD20umgfTj5OGx4hQoQI728I+5d4F0PSUUNHeBzQOzDOByNAeKIl5Jz5QdloNEKe5xiPxye+bKc4umiiOCWHgtOrbV9JQXLctLKl8jQapUGv5pxJ71ZxXiTQnG1tAoEOvrVJAmkwLclKHzp4XkpbqD4+HaeT3kuOMa+zhj/E91DduiY5NHyhcvq0cx/afDkSzj5bBEp85bRL+bS6heol4dQmHrT6So6RROcqOoc+65JXTa5Dzm0Ij5RGc6g5dMk7TyfJcsiBD+kmf911Jl+oXhr+vulo/aRJWZ5HmzTo0iM8L8fRV1YeB0T7LZcd7Xe031rdov2O9pumifY72m/+ToJ3w3578GVKZ4KnaXrChko21adPkgRpmmJzcxOj0Qh7e3tI0/SEXuB1pmVJOlraiYKmofwBTsoQ52VoK2QKUhuF7DQNHvKtkCX82rNHseG0DEn26HOflttwvpKT87WvzFL8fJWrdF69BJxmulUxrwMPimm80Z5JbUXTUHr5WemeBk43lWP63F9rH2xI9jI05pTGHxy31Ec4DVJgNmTDeTt4+QnZdKkutDxplXJIj3I51uxOl83jdPCypDaX0tMPg7T298812Zc+zuA08b7BA9m0PI6bAucL7Qc0P+8fIZtM+6vU3tKxApzfvJ9oukJqd14/vyKc2wPKOy630tEg78SG01+K+92w4REiRIjw/oUYno7w3oaVtlLngzoKfDDZNVHhv04H0H6tHnLCtHJ5+XwA5AeA2iBcok2b2JAG0j6fNujT+MDLC9EmDdS1QR2vu/RLcVLaeT1ouVK9Q+3F6dPq1ecZd/i09FL9u+jWHDqJFq2N+X3IqerCo03QhOQ35HTQMvkkBi2Ht7X0x+vInXHu9GrOiEajxgvahyUnrwtPH5kK1VlrY3rdddYX3dYr9OV0SAalcrW0UnpJxrUt8/rKG5cx+kyTLY4nVCbNp+lZXl9JLimNq/TzkD72aXkdpMmiLh7RCQ4qJxoNjwLRfkf7reHT6sb5wOvV51m039F+R/sd7Xe03+8ctP5izOmgaWhFf13XWCwWmM/nqOsa0+kUs9lMPf6AgtYeXCeFdBNd6crpo3Kl4aJ11GRd0wOSrtPo5M/5ik9eriQznHeSDqD15atl/S8PHHXpedom9JrSFnpGecRXIms4NN1B21rSIxKvaf014Hzh+CReSXWgIMkipyX0UQcF6XgD3//82dycN1SmaVvQ6xBfJX0lna0s8cfn4deeXmtPfwDD8XTxQUrHdXDIrvG+yNtXG/d7H8Xa5XbhnB+cD/6ZZCMkPnb1UUovz8PbX6KD84zTw9PyVelSX5N8BtpmlC6P05cl1YfrManfhfjm03E6KPit0iWcXkY1G87ll/tPdBV9n63xI0SIECFChAjvD1hpK3U6sPO/0peQFKRBalVVWCwWOD4+Rl3X7SR7n0GHNslKvwTnA1n/LFQvj1ub2NTyrAJ9nOVQWm3CR6NZm2yl6ek938pWGlRKToH2ntIhpQ3RyuVslQkajYYQ8LJoHqlcPpjmzzWa/TvNgZXqIr3ndeM4pfpIMitNTNF3q+LTHGetv0gyLU2q8HvexzX+SUDzSF9Hh/RZn/aQ2oGmC/UfTW776Adenk/HHWONFq3/aH1RW33Ar0N9T1sJwumQ2p6nkcqRJoSk/qXVgdZf4g2njefneTlujq/PKt9HhWi/T+dZBaL9jvbbv4v2+3Rdov2O9lurS7Tfjw9820myz9taqq8Pcs1mM+zt7aGqKkynUywWiyC9XGdSfnia6NnHEq8oLt6uXOdK5YTkU+oLvBzJ1kl1Cdkg2h/pO82+S8802n1/4qvaKV1UR0vBoZDt0urD60vvpR1Iuniq9QGOi/IipMdD2+1L9or2EcneaCt+NTp4fs1GUpx81wMJNJ1D+UXbUlrNL/UrvqKW84yCtKW3NHaQ8ElBUm1MwOnmdaU2KWQHJZwSnyU7zflI21OiT8Oj6TJ+LdVd6/uU11pbafyiELKvHDftB5pt1FaxS3qDyw3lbciu0vJ5nSQ54HWh9fD3Un5r7alt8n0dOb2AO998lV3QIkSIECFChAjvXTC2p+deFMWJQYs0gOFOAx84+Wu/FWuWZUjTFGVZYj6fnxo0hpx7CfjAlg/2tOs+97R+HkKDfE6P5gCFHIeuOnO8fBJJSs/xhsrSHAUpPR2MdtW1C5eUT3Ny6L10FlFXHaU6r4pDqq+GRyvzUd+HZPpRy6NptHqH5Fh6r+WRZJGX1/Vca6O+fV+ql1Ynfh3q232gSzY1PaT1V6n8PrqNP5fqr50BxvV0SGa6nHip7FX0hiYfki4LpQ2Vw/PwdCG5lsoIlcnlbD6fi7R0QbTf0X5TiPb7NP3Rfkf7LdEZgmi/o/3+cdhvABgOh+25sN4O+2vehpR+aYvrLMuQJAmKokCe55jP55hMJmLA0OfTPkKh0GXD6TP6MZwEkrzxQDG1G/SZzx/C+yjyTtNJdddseNdYqOt5SP5DshrS61KdOK30XgomUv7Tbdk5rRqPpbrxtJR2Sb4lmkMQktuudNrzrvbt4r+EW5JPzgspXx8b3nf8QO+lfF02nH4sw/WQtJ28TyfZOy9r/LoPrV06y6fp6oN9gPYPfx+SC95PfDranzzfJBsu9Y/HbcPpOwkvxxUac1A80gccfXSzhIvT2iUTkj6hfU/6UNsYg+l0KtLSBV19LkKECBEiRIjw7kEvH8H2HO3leX7KWebXq4DkeNN3mpPUZ8AXGizx5zxfH4dByh8awPFBPKcrhF8rU0rT19npM9js46RL9IRwhAbdXfm7HM9HqcejgCQvkjPL8/g69MEvpeU8k74UDgHPE+q3ISdyVbq1/uLfrdI+kvyGeMsd3lUcVK2OfRzNEHTJSh/o68hK5a5SZh85C034SLq7b7tK6bn+4Q42fa7pWV8nfy21u9ZGob4tlcXT0a/Ptb4olUXLWCwWIv4uiPZ7WY6UP9rvbhzRfkf7He13tN9afaL9fvfsNwAMBgOxTGkKe1QsAAEAAElEQVRFHgfJ7vhn2pa3tO48HU/D6+zvPWg0SjsC8IAZLYvjoOfPSu1L7yUb3rUCV6Kbl8lXd2s8kHgltcuq4zGtj3E772nk5Uh2OlSOtg2+1P7aOKDr2ueXQMJJ01NZpXkAub2lay6Hvr607lVViR9ChPqA/5Clq/68HXg6jUeUbg/SiletnhyP1Dd4e0t0S/TxMkPtEIJQ/+L2RbI3NOAs4ZZ4zX+p/g+1IQepfpIOoNdezqSyaDnSh6XSx640jyQ/nL88eC3pXG8fuQxxHcT5p9GhpdXGM7x9JLzWWuR53m6Vzo/F4PRqcjybzU6V3we0sUWECBEiRIgQ4d2HPmPM3meMa44jfyal0YjzgxNpcCaVT/80nFJ6+iyEKzTgpoNqmo8PuDW6uIOq1YPTpTmLIT5wfPxaOhtNysPx8+e+DaVBLc8bcqBDNHPgW3eF8mnt0ddhCUFoYkMqr4unNJ2Ulp9dJclqyLHU8kh0rMoLSjunJ1QnXmaXPGv9N8RbzfHiOLlDRenqoinEy0eFVfpHl04BwpNMGkh6XkoT4m2fPs/ppzi79BN1mDk9vH/ydxL+rvqE6sjx8fL6bsn2KP2vC6L9jvY72u+T6aP9Ppk/2u/T9XpUiPY72u/HDZoNl2ywlI/X0//RM1V9egqSXQ6t9KblaWe9SrZbkh+Kj9twaQU7tS+8ntR+htq9y4Zr25tLuCR+ehokoHqsr97l4zBrl2fs0nQ8mCfhp3zU6kG3y9foovWU9AjPx21gnz6k8VyiictLF0hp/JnggL5Nuia/Xn9I7Url11/zLa4pbl9fqc5dNpzzRvrYJdQ2Eu1+BynezpI+4TqdP/O4KGi6i9dXwtsFfeWM857j1sa1VP9otEkr5HmeLv0sveO6hI/heXqJdmr3aF6uZ306ro8kPazRzp/TX4lvmpxy/tG6+iO/eF15We/GmDDCaTDNX4QIESJEiPAkQO/AeNeAps/kAr/XBoP0neYsS+XSZ9pgi77jEwoSLol2iVZOo3TNB2R8slSjV5tMoPn4gFejn5erORwaTRKE2p7Wgzt42mBTGlDziTNpoM0H030cbGniQaNJcoy6BvaSY8Dp1HC9UycvNPDX6te3zUN17kMLL9dfe0e7D92arIfq0uUM0T7HZZTLsISzLw95nwjp1xDN0tl7IZAmPrrSS+lC+aR+6H9DvOJ6TtIrUj35ZEtX3+S0dtmxPjq1ix8hWjQ5XaU/dkG039F+axDtd7Tf/Fm032GI9jvabwkfpeNx2m+Om9Il0UPf0YAFz8dtn9fVtK2lPk1p0c54ltqmq99QuaFpOY3W2hOBSk1Pa/rBg2TD+fu+Nlzry9zecDq5zFJb2Re6bAXnpZSe0yHZcPqr2UR+T8dpvB39M0k/STTyetC6Ur1D8dMt36U2kcqi5Un86Mv70JhUks/QRy7acz5e1uRf4pvUXsBJWeb9kdPU1d94/+V8oXn4WdFa/Xj9uU7R6sVx9tH7tAxeFnDyQxEOmlzz+vH3nEbJpkp2QOr3AE7oFPqxktYnOF1cL2m84XWQ8PK2COk5rV48jbdDnFddY3P/XtpBQNJVER4vRK5GiBAhQoQnCbJVEvedXNEmY/gzPtigX/RKW+ZoAyzu5EiDYWniRcMvOTahOkkD7NAAk+fVIDRo5/RKA1E6qNbOF1ylPIqbppf43MWTLtwcpO2+KE6pfbWBviQfmnMQol2aaJAcTz5x1Ld/aOV54GXz/Fo7hPBTCDnitHz+nDvBHBdvq9Ckg0SXVDZ9FnJ6OQ9pPt7/Q+3TJS8a/V2TGxI/Q9uhdum0UJ5Voe/ETMguhJxMSbYlHDy91F599JwmBxynJMd90oZkTaPlndiDLoj2O9rvaL9PPov2O9rvaL+j/ZbSPmn2m9Mk2UX+jufjfZzfU13HgwWSPvLPtPbmOi5kuzndVNY8bf6Xb+cdsv38nvMr1MZSHs+b0Dbukhxo+k2jWRoL+bJ5+3LcWptoZ6BzOiXg8ia95/RoHxZQGvvoE45fGjfwsnn50nbJGmhtydtckiWOWxsLa/jpM2mMyGU9ZO803cbrqtETolXKr+lyTa9qelPTVRp/u+Ta5/Ht12Uf/Dufz2+Br8lbSIalsYmULkQ3T6fZoT64+n58EbLhXEdL/ZHrKEqDJMuaXuyy91zfdfUHyW5Q/BJv++iMCI8GjzaajRAhQoQIER4/rLSVOgdtAMIdHsmJ0yYr/C8f8EhptQE2dzRCA1dOk/TlIK0H//qe1z80iJNAG1B25ZfK93zWBp9dA3ONl1JZkgOh8VkbUIYcX+l5qA37OtqaMysN8EN4+X1d1+qX/hJ+DY80cRKivwskR0HjUR/+hZ5pfYKn11ZariI7PA93cLhu4LLNy+iig5fF6evSZ11yFipbmnDiefryLqQDJNDkk9KqyTvXi1SuJedakm2eR6uL1JdD7c7rpLUtt0W8LpwnGv4umrvkoI8NC0G039F+a/WL9jvab34d7Xe039F+L/F00fxu229aPqVX+2DK91OtzpzHPNgnpZPa29+HZFqz4ZIc1XXdbu0u4TPGnNj6XdKlmo2TcFIaeBpprEDvpS3VQ3K+in3kKzk1fnE9pMmDlIffh+TTl0ttJK8rXVGuleXf+zRcNuivFCTm5VLecBvu0/KV7hyvtvOQxEtfBpVtyUZzGiRZlPhN6ZTsYUgPUt5LeGm9pG316TWVK+nDQF5PnlcaI2i6XEoXqivXU6ExBsdZVdUJOdDsmcY7qcwQvZJtojIp0Su1KZVVQP6AQpJ53nahOms6lf5KfOA6UcKl1Y3zl/NJs1keaB/VdKF/xsum+KW24tddR5ZEiBAhQoQIEd7b0Dsw7oE7J3wAITmGNB9wemCt5QGWjgdPF3KE6ZY6kvMoQWhgzAdPfHCo5aF157ygeDlIOCVHl9MbcproM2mAKvEmVIY2EcQnCrR6hdpcGjBL2/vxPJJcSWlpGbyuksOt4eDpJAdYGpBL5XugTqvmPIfkWKON5w+1dxd+ybHS6NIcHnofyq/xgKcJlSmVJzmAPH+obP5OmhzRtpiUyvTPQmcPas9DuiaUXpJLjV5/HdJJXfpH0jOa/GiTDRxPSJZD9K+iGyS57aJLA033d/WFvn2+C6L9jvZboifa72i/o/2O9rvrPtrvn6z99mVJdFAbFzprm9Kk2WZKr98qmOvokK5J07Q9L5gH6yQ58c/52di0HKl+Hgf9lcrRdm2Q7BznqYRPuqfppfGVRq8mU9wWa4F6bSwVsnl9xjD+nW8T/sGC1ke11bs8vabD+diPnw3OZZmP7XgbUHo4H6U68PO9eV00HU/5ptWd8ylkxymN9NeXw8fWEm18TCTxSaJTs7XSPa13X13L32njNuD0cQdSWZoOoPzQbAaXpzRNT/Ffo43j5un69E0u7xwPrQPf4l6ri9SOxsg7eYX0uWY3eJ277DWvJwVtNynevpIs87Ran6b3fe221EYRIkSIECFChPcvrHzG+CqDPQ/c0Qjh1wZHUnrNoQs5sxL+0IQBH5yFnDkK0r3mlEiTG1qdeXotDaWhq36cVj5QDTlSEk5evnZPaZPaQSpDk5NQW4Tqz9OEzhqSHD+tnTktkkxJ5UjOfZezqTkJ2kQCzxfiucRv72BpjolEV0h2+QQExxF6L7WD1v85Hv9O+7pd0wEcL02v0cHvtZWt0vaVfepHf7kukdqZ14/XNdTPNMdSk1WeTqJJ6088j1aOlD70TNO32gSH9F5KK8lpFy0/Doj2O9rvaL+j/fZ4o/2O9luiJdrvJ9N+h0CTAxocpyvrJJtB24TLMF95p72jOlhbNeyf8V/+Z8wy+M1pD+l52oc1OyHd97Hhmgxr6Xh7SLqU0+Rp5iupeb20Omj9SRr3afaoT72pTFGcvN60DG21OW976SzjLhveNZajfKU8C9kkScdqNPP27aOTJL5rYyxOgzHuQwWaRtLJmrz20eu8PbvqKMlTSCY5r7V6c75RXnCaQjZc6/scr7Rin9ZFa19N5jWe0efSx5SSPpb4xWnRZEzS1VJbaW0iyQZw+kPmEL+5PeA80vBoukuSLbqrQ5eOlvimQUiOI0SIECFChAjvfVhpxbjmBGjppOfSNX0WGihToIM4yRmQBqP8WdegScKxymSKNsiV0koOvTYIlgaKIX6vgoenk9KG+LMKPyTHSpqQk8rmdZTK1vgh0RhyqDRnTMMnTeCE2oemldpMc84pDmnCgPKOTgj0cRZCciZt08Vp4mWE+CvxhJcZ0gvSRIgkI5rzRWWvi0beT0N9zN9LskbfSXUJyZZUX61srlO09pd0iNYW0rsuXF2g9Sv/TqKpKy1P86gTNBQP7xM0Tx/Z7KLDv1+Vf32A1iFEsyYjIb3rn0X7He23lC/a72i/tXzRfkf7LaXlaT7o9hs4vVUtIPNR0l20/hoO+r5PvbhcajaA08bp4bh9cIMHSX2ZoTrSZ9JHMxoPKR0+2MO3yqa4NDmSnkl15PUJyTCnVXoWaj+q9/mfBhwXtUEajyUdxfu/NgYLjQlXteH0XrPh1DbRtLRcrjO4jFO8mj3h219TueYBPO2DNQo08Mftu1QX3s80+6PxxtOh7f5EaeW2NSSzEh1aX9Bo1sbcvB6SzqH4JV5IH2j4vHy1v7Q9P+UJrQfvLx6PtNpf6qsep7ZtPsclta+m37WAsjY+lOijsiP1ZV4Pqb4eaB1DwW6JBo5Xq4/ED7rTiSS7Tx6Y5i9ChAgRIkSI8KiQ9U3It0STBqEacKfCP+P3Uh4PksPHBz9a/lA+aeC6CoScWcm50NJw0BxcKY1Etzbo1HDTQak0QJeupcEuv+fOp/Re4gmvh5anj2xxZ7ZrkKzVs296rY6cLp6XO+Kh9qfOFJ/8kWRCk0Nedt/6SLRJba7VSwOtPSWaQtC3jaQ0fLsxTc4lnchxUdnX5FbKL+WRZIfjoOm6dCtNx+sstS8/l06T5T50chq6HM6QPHbxVquXJk9a35V+tWca3aH+rPHtcUC03911k95F+x3td7Tf0X5H+x3tN6VJK/Pdst+0DHrf1Rc5HyQ9z4Momn7h8gMsz6yl1xovuP6R+iN936VHebt16WZef/pc4xtweht2+o7ruS65lvgv8Ylvha/VSbPTGm/oGEGT177P+PO6rk/QzfnE5Uw6H5iPYfq0G5VjTZcCJ88Dl/RBSO9wXPR9mqanVm/TMiX+SH2B5ue0Ud5QOeP6V9oZgufn5Wpjiz42vM+4mT4P2VSqR7SjD/i2+JT3ffpKl73ranMpT8j2SXj5Th70qALaXpJcU75IdfLXPp2km3webfeEkA2Q+ED5RPsElzdaf/qxSJcM8fJ9HppXk9OQHeJ1oHJHdZBko55cMACe1OB9hAgRIkSI8GTDSlupawMMPjiXBjP0WpuUofikQbw2MUcH+XywKtFEn3PaJHr4vVY3XoZEq5bW4+9yRPi7UBmUh1LZ3KmV8nUN/rV0kgxode4CXg/NmdIGvJpjGZIHDlLbdgGVW62MkEMsrXbgIE3M8PQhx05znkJyK9HAywnVSwLOK62uGp4+uCmOUBkaHfwZn1SXtlHtqlMX3fy+j9yFnDetjbT2khz1LropDl53OjnFJxek8kJA04cmYqT6a7hDusrTKelVnoZf0zwh29OlIx4Vov2O9luCaL+780T7He13iLa+76L9Pl2XaL/7g7XyZL2kp+mKRh5wpvWhW3ZzXSfVU5Mfje+SrfM4aBBC45HWVhJeX29ttWQf2y6NGTiNvMyQ3uYre0N5abCIrxymtGhjAN4X/TPaZpQ/tB9r5Xjg9FD5ojacjkNo8F3a8USSB04DvZZW6Yb0gdQu0o4/Uv4ue8P7POUpr6s27tXGMty+U+CyLck07fdcV3fZdW7v+LXEP65n6DOpfbjMSfca8BX99IME/57f8zppbS3RErIzWhsBss7V7BmXb60fh2ylBLydaD+VdBMPumv1lGROG7OE9BRvF+m9VCbdbUHr/9rYm/KC60aNX5Lt+smACfzxdBEiRIgQIUKEVWHlz9+0wR39pRCaeKX3/pk0MdvlpNOytAkW6VqjmZfBnbLQJCcfaIYmVf1zyWGitPFBdmggz8vS6ic5nlL6rsnMLp7w9FLerjzU0dScnD5OHq8TTR8awPM80j19LjkivKwuuaA08Tx9+dbnvTRRKDnHobaW6AzxS5vsovm5oxVyQiWaNNx9+BLqkxpIssnLDclMX5B4L11zuvqWI6XXyghda060JsOrTFZI0KdPeFwhO0WvNT3aJUervOOyQW1I13Z4jwLRfkf7TXFH+30ad7Tf0X5L5Ub7He33T9p+e1wUt8YT/p7bC6mPaG2s2XBpO1+KR7Lp/F2fj6KMMUjT9AS/Jf3ut5n26WjwRzoTu8vG0C3VuZ3lba7xXLNDnE+SvFDcXDeH5LtLJmj9+TMJN19tTWmQVkHTd6HjSDi9PDgo1dsD31pZag+KV5IZnlbqxzSPJu/SPW1/yUbTd/zDA02ncLmm6TkNUpBYop33Uf+bpump9Fz3aLjoM94PQuMynk7jnyRrHDe/lvRMSAdotHC6u2yqtlMAT6fxz6fh15QmXg/aTpzvmn3S/ihtNL+k3yjd2nvKD56HX0vtRe+ldCH+8ncUL+W/ZiMfpx1fDQxcDNyc/FOD5PQ6QoQIESJEiNAHHnlfmL4DBmkwIw02+Zle2uCliwZpIKkNeimEnDbtvZaHO0ZSeRodUpmSQyg91wZ+IQg50NpzyRHt4/SEHHqNlxT/o/KSl9tVL3+t0R8CSYal86Y0ZypUH2m1SJdDINUjVEYIZ5dT539DfV669/mkvktxSrSFQGq/Ll0glaU5iLwczUnsktsQzVo9tDIkR1Lq45r+0xzPvnRrjr02IaHRpE1IcNr6yLikrziE2i30TOMjd7JDQNuHB3BXaYNVINrvaL+j/ZZpiPY72m8Jf7TfJ+mK9nuZ58dtv31ZEg1SX+bt4YE+94EwLTjpVxtLupz3MfoOOL07g8dHn4V0kMdB20OSScoPWhdu4/hYQ6orL4OmDQV7NX5L+pGm8zRKWwRzCAU9JdvFy/f3oXbT6i7RReVMakvJhks2RZNjrQ48H5UtyktuwyWapXpxPvk+0mfcpfGR10E7u1vilXa2OMfP5Z7vFCAB39pek8GQveSyxfP5P877rvPruV59pzac4+JyJ43ZQ+M2nl+ywyFe8TJD8hjCQWkL2U2NR5Lt0voEcHL1toTX09XnIw1JH4TaUruXdI42LpP0B+0rmv768YKBi3MnQJoAadr8Ze43Sdy7E0FxCNcRIkSIECFChBD0PmOcD5D4IEtyhPgXmkmSYH19HQAwnU7bM3U8Dp+vy0EL0dc1kOT0c8fU06kNqkIOifaM4w/Vjw/SNafkUYDXVRvod03ohAbKfdN3pemaJKHvJNDokeoZqitP01WmxFupPn3e8fLoSghNhnh+7QwnrY01PmhnfkmTJ7wuoT7EZV2rF30ecsIkOiSaQ3yW6OS4JMeR0qhN6nT151V0Cs0v1VM6b06T3666avTSvJoTycuWdLynV+qPId0SWsHRhxaep+8kQpe+oHmlukr9hNf7cTrk0X7jRHp+HXrG8Uf73Z0m2u9ovyn+aL9liPY72u++wPlC+U37FaeBbiecZRm2t7dhrcXh4SHKsmxXYtNgGj+jlgdeKVCZ4Nt0S31d44kmh/4Zte998HD6kiRBVVWqfvfl0uCjpmsk4LpN6if+16+k5mWF7DoFvgV+F300vU/H+aSd0e3T8q3MNfooHzl/uFxQ+xw6yiJkcz1uSqvGB86zkP3Uxne0PK3uPK1EN0+rldc1dpE+iuDp+e5Hms6i+Gi7cD1I+7vUT3kbSHpRG1/wNBr/pfO2ef6uduD8oOloGmm1uYSHg2TfJBo1+rQyOZ+ltgqNJaWjGvxz39elj2ooHsk20PRa+1EZ7WvDeX6eRypb4wHlJcch6e0QPT82SIwLgKcJYFIXCLcGqOvln/V/Fjhx1ji9fm8C1Xrv7ZpEiBAhQoQnGR55xThwcgDi7/2vNOi7cuUK/tW/+lf40pe+hOFwiDRNURQFhsMhiqI4sVWaz0MdMvouNLCVHFL6TqoHTcvppn90YNeHP1IZkkPAy+G0a86D9i5Uz9AkBx080meSA0XpDH2NHHJiJaA8WMUZ97+hAbXkAGkg1bfvQJm3J5XlUDmSkykN0jkdGm2SXITkt4s+/qxPv+NyLeHS5Ibnk+rKy6EOYOjcs5Cj29V3eRpOd586djns/r6PQxZKF3IeafmSPHGQ9LOURrvv0rWavGsQ0g19Jh043yS5lfJIekTTLyE9zXFrdXk3INrvbv5IZUT7He23Vk6032Fao/2WIdrvk/gl3Pz5B91+AzgRXNVo8O2QJAk++tGP4nd+53fwT//pP8Xm5iayLMPa2ho2NjYwGAxQFIV49IcUPKe4uY3xAWhu/zW+aHLF24OfY82BP6O2kgf8fDlcJjR9L9HN8YTGODSdPxtZ062S3ZR2COA2XOvT/KMJyYZTnPzMbF5PLbDm0/A24raP1p3zSrIXWvqQLZfGYlSWaTpJP9B6UjqobfLP6cpmSrt2zetCr/kW5l22QZJnWmff96XxC5d/iS8hu6et/NWOD+oab1C5DNlwrm94ORK/+myDz+vh02hnVmv4NJmh77TxFq8vz6fxVOtD/l4rk+bz7aZ95CbJt6RLaRrNjmoyq9lw3xf5OfM0naZPvUyGZItfS/c/ETAAjAGyBMgyIM+AfAAUAyAvgDR3K8fbVeOGZIRwHSFChAgRIkSQoPeKcTpAks5r8mm0vEmS4Pr168jzHG+//TaMMRgMBjh79iystZhMJphOp6qjI026dJXr8Whp+coyPtjs68yE0mrpuvJqfOxyzjW8Eh5tYkGbuAgNxPnXu9zZ5HUO1VcbqHJHTKu3VAdpMN7FI4kmDT+vH607XeHQxxHjuHga3g+lbf8k+kO0U37QX97WXHYkp1ribV950xxzLa9Em9TOGl+kfJpDG6Jb4xHXlVoflejUeC6l5ytCtHy8XlJ6Xp9Q/TXcmnMq4eF5pEkPXm+t/4bkyU+qan2D2xepjJAs8fShNvXvJX501elRINrvaL+j/Y72O9pvmW6NR9F+49R76Vm033Ia7dmjgK+/1xn0V2szKsdpmuLjH/84zpw5g1dffbXdAebKlSuo6xpHR0c4PDw8FUSlOACcCAJKbczvJT56nqRp2mlnJD3B8VLe8HI1mQvZcK0/SkDrE7Lhkk7QaJVWw3JcnC9+B5+QfpLkWdKXWp8K9SdOF8UT4m3IVtHyaLCdr2gN8YXSae3p3RAoXZJ9lnB5+n2f4FsvS7zhdFCg99qqXy1/l77hvNZo4vSH0oVk01p7YjcpnpfTyXHxcYMWpJXqSusQsuESXdy2aP3V08T5wJ/TciRdyVfic9wSrbw/SjRzkGST85CWFaof1Rchvarp2DRNVdngdZfkQ6oj5b3vk9LRCdJ4QOtjmpw9Dju+Ehjj/vwW6nkKJDlgcsAmgKkAVECZAPUCLv7drByHBZ7A1eKU230pe7JqECFChAgR3q9gbE9Ln+f5yYyKs8rf+4FblmV49tlnURQF3nzzTSRJgmeeeQbb29u4c+cO7t27h/F4jLIsW7zSgJ0OeOjguWtwrIE0YJbutYE1B60srZy+jorm5PH6S/WWBtQabbx+UtqQw9iFI1QWTRuiuavNJH71qSNPQx2PkGz0AU1mJJnStsmTcEr1XlXOuurC5Uyiqw+/NbnuqkMoX4hHXU4+dSo1fFK9OK9WyaPR1NXWIRpXxaOl0/oSr5MEWv8LyUKXnllF70p4+vSfUH6OI8SzkC2Syu2rNyhd1losFouV8nmI9jvab/8u2u9ov6P9jvabQrTfT7b9BoDBYHCCp5qO5b9VVSFJEuR5js9//vMYjUZ48cUXkaYpPvvZz+LatWt47bXX8MMf/hD7+/uYzWaqzjTGtKud6TbgUqDS2xoe5KXvKV76zNdPOk6APpf4TNPT6y7dStNpO29o+o1vU8zlgwfuJTsp8YbbM04fbX+Nv5SftCyNLxIP+XNexy59pOXhdEs23D/jwbo+NlyqA+/f/IMP2p59dBatT8j+SXLB6yJt2U3biJ6ZHrLhPBAr1SNkj6Q6cPnTxgz0OU/L+zEPkvKytXveRyX5lHgs6U+tHJ43RCNNW9f1iWC89Kvh4M+7rn1ZHCgPpA/KtLbX+ovkM0h92pen6Q2Jj5wm3q60rUNyT/sQxy2l7+I9B0//bDYT33fBqmOG9lzxxABF7v7yggTGU6CsYaoKWCyAxQwoF4CtYG0FwJI/kN+fLFAuPBkURYgQIUKEDwL0GdOvtJW65HhLDjolwKdNkgTHx8e4desWkiTB3/27fxf/5J/8E2xubuLg4ACTyQSLxaLF4/+kbeIkh11zEPmgT2OMNtnA6xEabGkDTI2PtEzKT80xkLZXk2iifJL4EhIMShOfNKBpKF7eDvSZ5DzwdpRokL4c1epN3/MvuCkO6b6PTGj81Zx8es8nB2gbSv0IOH22ZKh8mq9PPWl6qb20vKG0XGY0fKH+2eUw0ckBKb8GUpnavdbevDzNeeRldU020N9Qv6R11yYftHp38TWEQ2qbEL+1Mvs4hFKervbQdAvnl6QPu2iU0oTqKU1OaLCKDHf1qVUg2u9ovyW80X5H+x3td7Tf0X73gyfFfnO7ovHKv8uyDHt7e3j11VeRpil+67d+C//8n/9zXLhwATs7Ozg8PGwn/and9tu1e7z0l+o8zVbxbZUp7ZIMSIEN2vekFb+cJkl+ND3L28ivYufjCWoDOB6+QpG3hXb8iWaL+PbllE5N//O+psmLlF/Sh/SjstAqTMpzWh4P3odsG20zbre0cYzED81u0XQhG04Dz7wvcbo4HbxeHKTtxWkbhI4NkcYWWh21fiH1T/rL3/Nr+iFM13iJ45WAt1dITjheKfgqtYlkr7kekfSGxgONpi67JeXpA9p4w1/zDxQ8SB8UaaDZVSofmv7nx2RJNlwqQ9LLXF9IfZDSzPmh+Ve8LpJN1mwRf/dObfhqYFxQPG3OFvfbqGf5yb+0CZYnGYxJAJMAJ+g07PcnC5b8RYgQIUKECE8SrLSV+irvQgPZL37xi/it3/ot/O7v/i7+6q/+Cg8ePGi/QpfyaoPTVWikeaVtjbhjpg0muwbtXc9CAyxePs0nDVgl2ni9Qo6QhE9zNLsG9CG+cF5yh7eL5xLtWh34NmQhZ0RyxvvWjddRSiPVmabnK8tC8sHbhLcLd+a4o8LThBxrydEMfYHex1mQZFqqH+et5vhJdEpyxeu4ioxptGr0Sm3YR49IkwxSn9TkQ7rWZJrn79tPQvcSbs057tPXeb09SLLQ1TdDMu9pkt5r/UO7D9HUN+2j6N2+sIp+4+VSXQVE+63RGu13tN9d9Yv2+yQ+Ca8mS9F+R/vN4YNiv2kZNDDs7/n5qZL8JUnSnv399//+38c/+kf/CL/7u7+Lf/fv/h1u3LjRrmaX+ibVfZrOomVpusLTTukNBVC7+p62TTA/i1yyZZxWrtv9M2mbdo1m3x6UTsmWdIFme/hYQssXkmEup7Rf+/OtpTQ88ETrSvNIx7JI5fFfrS21sR5w+lggrg+orHEbyOXQ4+ABavqe84K2h3b+cmh1tSZ/Go84Dg/aquyQ3pPSU50Skheaj/c1Crz9pf4itZk0hpFo4TRKvJb4ro0vNOD18GWFQKsjx0n1ufYBjYaXP6d9iQaztSM3uAxyPJJepSDxmtOg5edyz+vEV91LbRayDyG9z+tJ+URp4m3+uO15EAyWgfEsA/IcKAoAOWBzoKLtmABoguK2hoGBbQPhMQQdIUKECBEi9IHeW6kXRfFoBTQDr9FohM3NTWxvb+OFF17A66+/ju9///tYLBbi9jiAPMHeZ0JmFZCc/NDzx1GG5vx31S/kUPBnIQdASyu90+rAn2mOhjT41Ab0ISdOAk6nNMAO4dYm6rRJHc3B0d53pe9KIzn7IRxd6bv42UdWumim77uc8EeBR+UppUmbqHin8LjkV3JWQ3mlCYs+NHbh0OjX+g7H36edQxMUEp1dTvwqoNGq6S0KfeT6UfSjRAuFR92KNdrvx1dGtN/RfvdJE+23jnvVNNF+n6Yp2u8Pjv0GgNFo9Mh6Ok1TbG5u4vz587h27Rq++MUv4hvf+Aa++tWvYjqdnlodTOXK//IzzqX6dfGb001/eZDTb7OsBRxD9eYyRcuQ6ONbZ2v18Hi1+oTkm6bx73jwapU6AP1XhlK6tS29Jd7y1fkhXcX51yWnmn3pSq/xh9aP1kuigZcp6R7eTiFdw+nQzj/XAs5S2lA9OR28jryvSnZC6lcaD0L8ku4l+ny6uq6RpukpXoTGPRJuDST51crgvNFseKgdOD1dYxTJhnta+QdD2hni0ntJ54bkzd9r/hvnkxTAD/UvDqvYdy6ntG0oTf651h+7bLhGd8iG/9i2Uk8Td6Z4kQODIbC2BhRDwKZAlbrA+LyCWVTAfA4spkA5A+oFrC0BVA3t/g/kN0KECBEiRPhgQZ9xSO8V4xwxHXyEBsp+YDMYDHDmzBkMh0N8/etfx927d8VtVqVyVoEuWjQHldIq1Ynikhy7LtpDEwOhuvQJOvBnGv08reTkS5MDoTpwHkqOA//V6A6VR6/7bIFF8UrQx2nn+aljIDmJ0iRCF0gySfP1cVo4Pg268IQmAmgaenaVNHmjtXeofM2J7lM3npY7SzzvKg4az9O3Lfo6jJR2bbI6RE+oTKkcLrdcB3TpLE4zpUVr75AuCukUjp9fA8v+wSeitD6l6dIuOjRZkmRWs4sS/dJ9l215pxDtd7Tf/Fm039F+8/pE+30yf7TfMq6uZ9F+Px7gfOS6jKaRAjPr6+u4ePEiNjY28Ed/9Ed44403UJblqby0LbhO1GRB06n+nuPj+aS+w5/RdFRutLIl+8/vfV1pnWk+v8q+S7dJef29JBPcPkk2XMrTxz5rtpX+SXWRZImXzceNnJ8Uj//jAX+tHBps4/pO4gf/9XIhrWqV+jZ/72ngcldV1QlbGZIFXg+PX+ORlk7iF5ftuq6R57m6zTUvr8+58DSfNI6S+pRvY94XeRlcriUaJL3b1b6UDp6Pyh7Nq+l3/nFOSA6la4+D5qW46Xb0lJ+SXFN9J5XD+RySa639Kb38OaeF/tK6STuWULySjqZlhcZNofGMhC+0cwoHml/SZZIc/FjAk5IYIEub4LjfQr0AqgSoDQDrElufxbhV4sYA1hBEPya6I0SIECFChPc49D5YTXPiAJya1KBgjEGWZdja2sLGxgbu3r2LnZ2ddku30MBFGsT1nWzoM1FCB87+Waie2oQAH9AC8nlRPD09n0crU8sbGqRJ9Ej1eCe81J6HJiO447IKPj7YlWQjhI+3h+RIhUBzDkOTGxot0nPuIHUNxEO86uKN5AhwPFr/8e+kVSU0TYheqV9Jzpk2YaOlo7R0OfyrguTc83ertn9o0mEVJ6yrPn5SQKK7S/9KbSylC+kcTZ4knH3K42XzX83R7cqr0dbVltpElFZGn3carY8K0X5H+93nebTfMk3Rfkf73Zd2KX8f2jSI9jvab04nB2mVLO1LRVHg4sWLOH/+PN544w289dZbYlDcX/s/fta1lwUt8MD7vWQf+Z9ka7nu8PfSWEU6W5bLtFaGdEautGW4dM1tWaiekh3kaTWeanTQtKGxRd9xh1YHzYZzfLzv8/xdAXIuZ5wu3vYaL7mM0jI13tE0kt3qsoke6FEBXfkkeyPJGsVBA6VZlrV2gfJU2tqc11eij8urtzt8vMD7tE/nr3mdNR6G2lvjDwDRFvI60HS8n/J25jLdxx5LZfL6UJx1XYs+k6Y/ed01mew7HggdbyDVjfdNSR/z/qTRIZUrveMg9WMpr1QPCacmL6ExJ+0PIf4+VjCm2T69CYiPCmBQuK3U0wwwCQADUwOmtjC1BawF2s3TjcPxhJwpHiFChAgRIrxXYOUzxiWniDs/9HmSJNje3sa1a9fw8OFDPHjwAIvF4tTglOIOOYcc+jhpfHAlDS6lwSh/HnICpQGmVA/pq9rQtkS8fKkOGs8k2qR2pNBnoM4hNLCUBqySA8rp7WoTqdwQb6R2DPGMA6cj9JWr9Dy0FVsor9ZetE6SXPL8fmKBp++iR8Lf5XiH+KCBxB/qVHa1Iwcu848jn+b4SqudpD4XKktKx2kO4dHkU3MYQw4xfxbqbyHdo8lUCCi+rnxSv+8qT2rfPmlDOmlVvBp+DTe/fhSI9jvabw2i/e6uc7TfYYj2O9pvSlu034/Xfnu6NLxUjrMsO9EHkyTB1atX8YlPfAK3bt3C22+/jdlsJtZZs5shnmj0+HvOF75yUVqlqwHtuzS/RpPUJlQfUR1F6ea4+RiE6g6u57TyNTur9XH/K51ZziE0BtF4I+k+KZ/WX+iK0P8/e//Wa0tynQeiX2TmnGuutfatdtWuIot3mWRJlERKsmlaktXdlttUq9FuA3488EMD7Yfz2A00DPSfOI8CGvDLAfoABoRuQ27APlIfudkSKJMSKRUpUqUi60ayNqt2Ve3rus5LZpyHnDH3WN/6RmTOtXcVWcUYG2vPOTMjRowxYsS4RGREpocJLB3qe+5YfOWbcv3I71G25RWO3LHTnq2w/PPYsAu0agx4Y4llymWVnqmx2bbtBhfrYgLllxV+9T31F48Zi9Pupmfw4pSc/7I020/1LnlPj3P2iq+peh5Ynfd447LKh+d0kOVjP20bOR+u9EW1Z8syqJNcFI9Kr1nHFI9jbFCiQ9XNycjy5fGnYlXWbcZp23rXIKBf1K4C0FTATgPM1ovizQQIDRAiEFugA9BFoOv6z3gWzbtMaYECBQoUKPCBg9E7xoH8k4b2nv28du0annvuOcznc7z++utYLBZnyjCOXNsJvKTNggq8qqqSxzDZOrnAR7WlArEh2sbQ7dFh5TzUBtex/eIl0GMnJxg/38/RzzhUUjqmrOIjx2OOlqH+YPrU9Vygzu0yT7mEWZVVSQnjHkrIhvpJyUQdb5iThdI7ZSssXV7bY657iZCiTyWhij5v0sOrw7TxZIe9Z+lXOuTRbn+ryQIul7PdlgdF/5ixpOhjPbVlLP+58a3oUXh4MkDxyTx5Yy7Hm/r0yjHuofE6RPejQvHfxX+rMsV/F//t0Vz8d/HfxX+f/f6T9N+8sGj7vqoq1HV9xsZVVYVnn30Wv/mbv4mjoyN897vfxcnJyTmdSTTzDmrbFu8eT5+eX+WF0VS2rusz9Ft8/J1/53yf58OHfJn32+If8pm5e0O2lMuNtX/c5pBdt2WVXHJxyVCfKJ+R6yvFz5hYUPnHVE+92sdes6DeLa3sibLrSbfTmFB82SP6Lc22vKWR27X82nt2/Kj2lC9hnImOZDM8XVD0cAxujw2339UJFjlQ9sR+eg9LJN6VvvE1ZW94PDItTI/t+1SGH/zzdFnFCXzfq8Ny93Ap+hTkxrP9rk7aUHRaPeLFbCUPz4ePsX3q0yvHC91q/DGdSsdsP7+rEAA0AZjW/aL4TtotPgWqBkAFxIDQhX6neBcRYv+HdynuKFCgQIECBX5WYKuFccCfaOFgsqoqXL9+HZ/73OdwcnKCV155BcfHx5sy2ySWtl3v/lCSl0t+bEA0JllWwbRtJwdDAbOiy373gm8OLL3E2wsoVfsWvMmiXLLhBdsqefH4UJMinpzVdcXT2AmBsckL86HwDel7bsEnJy9VztOlIbrtOPBwMx51nLBHt62fm+xinfL48MafN6GQq2frKz68RNobr6qex6Oia4g3b9zleGO8tt6Q3WJ8Hs/Mi+o7ZY+5npI3t5ezVcr2KL49unO/ve85nvm7OlbyvQDPzxX/Xfx38d/Ff+fotvWL/y7+u/jv99Z/53TRfk9/dV3j2WefxW/91m/h4OAAf/mXf4l79+5l9cb6JvZTOXkpXOp+jPHMQpZtl+Wf8PHR5ik+sfds+55vZLq4XVVX+XCWE//Z46d5QcvWswtYlgZ+R3GOL0WnxcE0M2wjC9um3a3N91k2TCtwfpe/d9T9kC3ga2ocKxpYr1M/jbEVtk+9+MbaewtqPOX6wELCyQufagx4Y9YDNcZUvJ3aV/gsbxaf5xPtNdZ5Vc6zR16/Whl5clVxrecLLG3qAUOuy7KzPKoxpsa5F2/lbIG95vV5Dgfba3VdycUCj1vv5A0lYx67Sd4sR/udx4Eqm+hI9DdNs6lr+c/Zydzu9keGACCE/gj1tFN8Zwrs7PQ7xkMNxPX7xbsArI9SR9cBsQMQ138ou8ULFChQoECBC8BWC+M2sU2ggtOqqrC3t4dPf/rTOD4+xmuvvYaDgwN0XXfm6Cuux23ZT+/JXwsqoVJ1vIDf3vcCaC8hy7XBvzlgV3W9ID6X3DD/uTIenbnyqmwO3zb37H07MZPD4SUm3kQC4xlzTwX92+D05Ds0UZDK8PjiZIXvefjtfaXD6foYuVj99BIexs31c7gtME22nVx7OTpyvPE1ZRdsn3g6rewigzfGh+yEpWOonxnHEL2eDOyY9JLgXHJsdZb707O13pPvOZ48nBY46ffkzJNVHh2KV26P6VJHtnGb3HaOpzFQ/Hfx38V/+1D8d/Hflk6+xlD8d/HfjOvd9N+WTjtu1aJiVVW4du0a/v7f//s4ODjA888/j3feeQdt2276hReo7XcrAz5W19N5q9M5fU24lMyU72AdtvzmFirG+nC1E1DZCpaL4p+veT6X6VLvaE6famF9iJYxR6srf8HvZc7ZXk+fbf+ruG9oLDKkRXhvjPG1nP3N2VyPBjumAGziYLa/3N+5h+WYvvTJ+sb02rLphIjcbnGWkR37QzbfAz4iXI0xzwbkxiTTofQv8e3ZVO4TNYbZLyib7dmEBNZ2eg91WFuY6vCYUPQyrWz/cr/H9qdnk1iHcq+SsLJS+HJ+PIePbSnT672uYQy+1F8xRrRt6/pwxsU24LFDWP+tj1APOxOE3cnD3eL1dLMwHmJAiFj/xfUx6us/szheoECBAgUKFNgOtj5KPX1y0HcGaVXhYx/7GADg5s2bODw8PPM+pPQ5m81w5coVTKfTwSAW0BODuUmHXFCWmzTJJcF8XQX63IbC6QXlXvsq+Fb05PrGXrPlcvgYhiasmKehJCtXLpfIeAkE0zh0f6hdFaR74CVpXn1O2O01b2xxIjYGcgm/R7PSR8VPrm9smVzfWVrGjmOlawrn2P7L8Wbb88a6/e3hVkmruq70j+Ws+sfSmbvHuwOGQPUx48z1KfM7NC44CWVblbNdOdqs7Dw5KZ3x6LXXPT20+JS+KNtr+8izAxcBptfDXfx38d8JT/HfxX+zzczZ+rHjWOmawln8d/HfSnaenJTOePTa654eWnw/Df7bytbiZxrrusbnPvc5hBDwN3/zN7hz5w6Wy+UZmVZVhf39fTzzzDPY3d2VfcI88EKDlceQTJWfA84uMiX8no1UuJTtYNqZHsuH0mO1I7iua1e3U1lPp+1fwml3KefGM8tUydiWVbt/LXh6m7NN3g7g1FcXGceKHm/8eQ8HsDxYb9TYZ3ko/fN8eGrD9r8CT74qZvBoVOXtSQnbxK4hnD/JQNGpfIE3jnN21eq47V9PXkOxstVr9SCAJwP725O/AntPPWTCfZVbrGd+0gMNatx48Y7lh22/sgu2bXV8+JB9tT7CyzlsGUu7Z5OYP8+WWb6YH1VG2XZlc3MPMLAM2DY/Lh9+DsL6rwpAXQGT9W7x3Um/Y3zaAHUDhBrA+R3j/Rp4RNoxHqNdIN9w9O7QXqBAgQIFCnzAYPQMXS6o5MD98uXLeOKJJ/Dmm2/i5OQEy+XyTGDRNA2uXbuGz372s7hx48Y53Awq+FH0cXlv8smbsMwlZ14bCjxeOFhTOD0Z2ESNgzn7JDMndoqGHH5Vlmm2dTz8nny85EIFxqkNTlS9CU0Ojvk7t6cScvt9m2A4p7tj6FByGGprbGKnEu5c+RzuIZmo5DzX3tDYV/i9scP4h+yEd80bQ6qcLa9kPmTTFO32GidwqqyVH++g8Xjje55cxurY0HUvCR6CIbutkmNVJuHy+pQT521gaEyxPVOgbKs38fUoNBb/fb68oqX47+K/PZqK/y7+u/jv4r9VWcb5uPw3gHO7PNXiWFp0uXHjBj7ykY/gpZdewoMHDzbvFU+0TiYTfPjDH8av//qv4+Mf//i5McP94T2MwePZG2MptuBy9nrOr3p1vXHK5biOxcl0en3H785lvADQtu05XVGytZCzEakNbxEtN8YZbwLvHdE5n8OnBbFPV4uH6r5tyy6asrz5ZCKu69GY6+dUhvVGxSW5WC/n78bYVC+W4N/Kh2zT/pC/UT7cs8WqX/n7EC9e/Md1Uhk+cSQ3Ju0R2VZWymewH2P6FR8hhDO7yJmXND4sTSoOseNB9YOtl/B677HPyVzprRrjuT5TOBWoV2N4uqtspuVZvfNe2UXlV2051edsl4f0VZV/VB/+sIH1X/q+3imOaY0wa/rd4ruT/gj1Ki2Mp93i1WbHOGLE5hh1e5x6xMPvBQoUKFCgQIFRsPVMAk/ipms2Cbly5QpOTk42O81s2ZSQP/fcczg9PcXNmzexWq2ygZUNFDnI4yDHS+4sqOBR3edrKlHygmgV9Hnl+fpQwpvK8HePH68uTz7w91wCY2nnOmqSIodDJalecjqmv1gfvYDaw8HtenJS/Cl5WJpUGTWhNyYAV5MGCdRxXVYmY9rLjYNceW+8enVYLjnI6bc3FhMMTUxxPdYJnpzzdNTyktPdHC3b9H9u3HN/ezZWTRIO0arwqOuM05vYGbLdfE3hUBM+ORjqA2UDhxJq7kMPxxCPno97FCj+u/hvpp3rFP9d/Hfx38V/F//90+W/2d6oxcYQ+nen3rhxAw8ePMCdO3ewWq3OLMRMp1N89rOfxa//+q/j8PAQL7zwAhaLRdaHe8fl2ndNe/ZejQl1moBnpxPd6h2y6TrjV2PC4rHlPZ/g2QilV6ls7jQH5jHGeGZBj3GxDD1/oXwUy1YtCHuyTm1ZfhRvyjYqWrie9zoeiy/V8Xaj237IxTBJxgmnfZgkZ/+Bhw85jIkPlCy8hwHYF+XsgrKZrNteuVSWj5tWbVg9GbK7ni21Y8veU36XyyndV/YondrAcs+dvKD0y7bl8cSxz5Bv8NpmPebd+kluKsZUbQzF/zlQNozveX9clusp4DHq0Wr7wcrajl9Li4qB2X6wHRgTI1v7p/gYK+cshPVfZb8HYFIhTGtgJ+0WnwDNw0Xxfrd41a91d+uF8NitF8fTInhE3HwWKFCgQIECBbaBZmxBL1hMkAKHyWSCyWSCu3fvbhLyFLA0TYNPfvKTuHr1Kl566SXcu3fvzBPWKujLJXDq/tgJKZss8nXGy21691VZFXgxcKCv6OG6NoDM0cABp21D4Vf4vAkmG0SqBGHMxJ/qX9YDDuaZhpRYpDq2X1UCw0nOWLoYXy7AzwXWuU+uM6Z/ub7SY+8a82chyXFMP9rynjyUHHMyZF75/pBO5WjZZuxw+x5uz554kze5dhi/1e9tEzRPv7gM85Zrw9M7Wy9Hb05Onj3ksp5tZV1XY5LbY/ko3GPssaLPayunpzmduQgU/138t0df8d84V7b47/PyKP67+G9ug+kr/vvd8d85SDSlBYTZbIbpdIo33ngD8/l88y7VEAKm0yl+5Vd+BU8//TT+4i/+Am+88QZWq5Vrhy1+y1viR/lxJTvuo/RpabNgcVs+cz6c9c7DwXZxyJ4q3nK+issl/nI+wtJg+4CBx4PF7733Hni40Kzeyc58M/5cnGHpt3TbfrVl0g5Y5c8tLTn+h+ySvaZijW38aM72Wpmr49i9PldjSC2Uq/EVQji3uK/o5DKez/Rs7TbxjBqTXl+n+mkBnvm2dPJuaTWePbkyXfzbtsUPjXjjiHWZeVP0WNrTQ0RDMRXLysObw+H5cEUv20rWTaZF+Uhl+9RDU7zrHji741zZJ09nlL1XPCt7mWiz48W25Y2ZnP6NgmD/Aja7xpv1ovhsAkwbxMkEqCdAbIBY9wviXUDoItB2QLda/7UAOkR0tBQe138FChQoUKBAgbEwemGcA30vsanrGvP5HPP5/Ewwu7Ozg1/4hV/ApUuX8K1vfQsHBwejgg4VmPE9r6697gWZFryEKieHHC4lJxWcezx5OBWNuXq5AE8lfkw3B5fcvgo8PRoUL15i5k1uKOCnsy2tTKe658nC0qoC8VwC4yWMfI9/ewmCpVHxxWPRXvNA6dTQmMvRlJOr/e7pk5fsq88hueTo8/gakpdHn23XsxEez7mJC0Vzrn8V75yQ53Cre7l6Q/rg3fPsDvPBslQJsKqT48NL+Ifqe9eUbbWTADw+uT2L75ETbweK/9ZyyOEq/vs8DYqX4r+L/1b0F/+Nc+WZv+K/Ievk+PhZ9N8W99CYb5oGR0dHODk52dTrug77+/v4h//wH+LJJ5/EH/7hH+L27dvneOeFjFTXHnHL/eDtwLbjQsUfuQVgD09qR407pZPeWFN+QP1WNNk2vQdeuL43flW9hM/udFZ9z7qp/JvqI9te7iG01LY6vUTJVD1IYXHGGFHX9ZmyjMOzyekeL7bZT88WKXlb4N2liX5vp7XSLyUXy4/3nmp1P+dLgLM77sfwbm0Z1/NsJveJ8t3KFrA+2vYVfayLAM74O68fx/pCa8OYX+5vz6/YsrYd5ZdsmywP9XqAob5OZdjODPE95rpnC629YN3kvvLGgqKR9YUfisrZR6U/tg31sFPOh6uHH5RcVHxxYUib3AP6HeIB6NeuA1AHYKdB2G2AnQnipEGsG6Bdv1c8hv6d4h0Quq5fEO9WQGwRYwvE2P/ZXeOb3wUKFChQoECBMXCxl7KtgYOGtNus67rNU+gAcPnyZfzqr/4qdnd38e1vfxsHBwebOirBB3QgxZONY4IWFeTy04G2PQsqWeDrNvnkeypBZFy5wJB/q6DdlmUeVJLvBeIpyU/ARzsN0cr31W/FyxAP3JZKUlM7qn1uk+nykgR7NBcn67acwu9NXORo8ugcotsDpYdDbeX0UCWUTGduDNrynHhwom2vq4Rc8T9WLl7yltNbr5x3zeJWY4Cv5XZxWPyKN28BhnHlJhm4Tz076E0OqP73knguMzbxtHZ2yP55dkThZNwerUr/0/UhG6/49XyGqsftPC4o/rv4b8ZR/Hfx3wzFfxf/zbxwXb7n0Vj89+OBhM/a+LquMZvNMJvN0HXdZrc4ANy4cQO/+7u/i6tXr+KP/uiPcPv27Q0ee5y39y7v5L89H2X55v5g2558uLIfY304l1Hv9eV6nr4qX85t8XfvKF/FO3D+xAi+z+0kGSkfrtpOdfg796m9b/tB0ZKjy/Jp+9HSq/xG7uh4pl0dF847s5UMcrZDxRk5u8y2yDvu2uJmvOwPle218uLvjFvZUZaVirE8XlV7aiF9yP5xee4nOxaUPCyPno4z5HyEN85U3OMtnLMuKr/OD44oGzbGh9v6PLa8RfUE6nh25Z+UjubGBOuZ94AH88pysaB8rrUNXJa/K91W+BRYfjz6UltjdXBrCA/bQFMh7NQIu5P1e8Wn/a7xZgLUDVClY9Sx3i2+2vzFboXNojj694vHGNe/BxovUKBAgQIFCpyD0TvG+Z1ANsCo6xpVVWFnZ+fMxHoIAU8++SQ++9nP4u7du3jxxRdxfHy8weG1k5s84e9ecO4B41CBLk8SePhVAsjJigokLc5ccs4JUG6ixmtj7ITMUGCvEhxVN33mnpAfSgC5XY9eL8hnfLng16Odj3waooNxeO3l7quy3NbY+/zUdY6mIfl4Ojg2yU5lvWRf6bE3bobGuTcWFV/c9rZtMT5FhxoLQ+N2G94uYhOG8OUmExR/XhJt7+doZjpyEy12oiK3Q0XJW8lm7EQFg0rSLY1jdUfJbIimi0Dx38V/F//t08E4vPZy91VZbmvs/eK/i/8eor34758d/w2cXfywcgR6H17XNXZ3dzGbzdC2LZbLJaqqwkc/+lH8+q//Ot5880189atfxf3798/wpvyo5Yu/Mz3pGo+T3Hj0xhPXqev6XP8rHfN2Vdd1Lf0Bt816rh4QsHUtz7nFZU8eSp45/zxkF3JjicHjn8sw7x7kbGXO5im9SrK3r+jhNqzuW9nk7I3izdMHz1YyzcwL10u65/EPnD1GWoG1kzlZMG9KJ9UYyPlRT+88e5Cry35G4VO+JhcHpPrpT73TPcki7U5O93JHmjO9zD+PDfXQi+1Tr51cnzNur6/TddYzzw/bet4DfVyXx2aSXV3Xm3Fq73E7VibMA58a4vkZrqfGvG2TZaRk5uFK1+w4GrKpoyACm13iAUAV+kXxnQbYnyBcmgL7U8SdCTBpgNAAXVoYb4G2BVZLoF0+PEY99tvI4+bo9PVfTN8LFChQoECBAmNhq6PUgbOJaHrys65rNE2DyWSyOSqraRrcuHEDzz33HH74wx/ihRdewGKxOHdsVYJc8GtpUIGpl1hwcKcCb9W+l1ApWhLwJKYNVpkWhUcFX/aTyzBfOdpUkqL49IJhT7Zen+V4GsKjkqKhtixPXllPTqrNhC+nA6yLXF7hGwIvIeQ2crzmdIfLKBxj+8krYz+9BETRwMBjVY1hbiOnc7l+yMlA6SbT6z1d78nE+8285BZGvHEzNO6Gfqe2WQYKn2dDbdLtyXsbGavJBMWHlzx7/CnePfmwDc3ZGdsOT0CMtUMKxtgQD4r/1rQkKP57HE9DeIr/Lv7b1i3+u/jv4r8f4nsUYJseQtj48XTay+7uLpqmQYwR0+kUn/zkJ/Ebv/Eb+Pa3v40//dM/xcnJybkFjJzNYLpjfHhiC7+j1evnVMfKh4/RZf1P13jxxtKq3kFscaV2xsrV0j50NK8t69kVhZvB0yXmUdk3JTPGMdaHJ1p4bKkH5JRvUrLyxrPnry3PXE+NLftQwhh/qXb9qnbU+7ltGat3vNhsaUmLhvY1BCy/9OkdyZ/we3rH31W/KX1g+6naZn/EdChfp+hT40vJPvdb0W8h90qAZAO8Nrz+Ztvv0cLg0ZHuKVl7usZjU+GzeNmHW3vNeHnseeOZ6U7y8sapktHQmLO/c2WGZMb0Jh9pdYD7zbOX7Aceyw7yCCD06+Ko1wvj+xPg0hRhf70wXqf3i9fAqgbCemG8a/vd4nZRPD5cFI+j3yseRpYrUKBAgQIFfrZg9MK4BZuUpwl1m6yHEPDpT38an/70p/Gd73wH3//+9zc70AA/+BkLuYTdezKcAz4vGLK4OIhSgaT6VGW8ZI0TQnV8mOI/F2wq/F4AzXTn+BwKSL1EQdHmBbi5pCIBt8HJjOLFW9BR9LPMlK7kJiPUhJot48lR9U0Ocnx717y+5e9c1hsLXl11jfnmMioZs7jUuM7puaLH07uh5Eq1xwmbV8brm5yOe7ZE6fc2faLu5+Su8Hj6yTiU/qtxPpRM52ywom/Itl8U+Ml1xa93ZKaib8iGc52xdmEIiv8u/rv47+K/VdncteK/z+PmuozD8lL8d/HfjwLsD9Mu8el0itlsdsZ/13WNL37xi/jSl76EP/7jP8bXv/71Mw+2Kbosv549t/WYJltPlbH+XdlfvpZ23Kox77WlaLJ0eAt7CXixfajP1NhSes9lVHmF11vMzcVCuV2mtpznrz0fbvuNdyRbe8H8pYcgbB27g1fxxX2Qs+9KPpZWK6ec/Ul8ebu4Ob6weDw5q5OaLK70fcjm2LKefg75D88fq/61faxiacW7t7jv7ai25bxxvI0PV7yP8eGe3WNahtrK2YKh3zx+hmJYtgv8aRd0PZq995Yr/2ZlqE7QYVAPG+boGQLr21g/bRn1QJP3cJSVI1+3fWBt1iMvjldAaALCpELYrYFLE4TL04e7xXenQJgCYQK0E2BVAaEC0hHoMeLhmna/FN5fi0BZ7C5QoECBAgUeCUYvjNvApKoqTKfTzTvNUkASY0Rd1/jUpz6FT33qU3j++efx6quvDiam6Z4XMOWC23Sf8an73m9bdyiAG5qE8sqrAJODPBVIMl9essN4bXkvQFU47DVPrqqvvORmiK5c0qPaVskp4+Z2c7+HJg+8+opv+9viz+16ULTba6yXQwlbjh/VnuoDTtg8vFxX0ewlXAqPl5AOTdCy3nm0erIbSmCH+B6St9ffY/RpqN42dtObLFD9kuMtx0/Ohni0qrGr7nl9MmTPxtivsXjGjoOhPmT/osZcjudtofhvTWfx3+evFf9d/LeqU/z3w/pKDh7tuXrFfxf/PRas/67rGnt7e2iaBvv7+wghbBYAJpMJfu3Xfg2/9mu/hn//7/89nn/++VG73vn1Ddx2KuPRNsQn232mgRckx5xaoI6XZ0h8ecdaW1x2wWnMwpH9ZLxsF7mM1SHvgTrrg4biLdueF//wornyH9wPXjzj+Wfl07gMv2Pe8wWe/VI6YeVg9Z1f2xBjPPMQjKKJ+bD+27OJnv9ieaRrHg9q4dtrh2Wk+sTzkR4f3njj317c4Ok4+3DbrqeXalHeG0tKNkoXFS6+p945zn3j2QfVPvcLvxOc+yRnT3Nj1+vn5B+UHnHfKJpSWX54LJXhI/+9kzxYPkOxgqdHqu5Yf2Bl4tkoT9dyJwgMQuj/wqRC2KkQ9hqEyxOEa1NgbwdxdweYTgFMgTgBlg1QpUrVOTxxI664/sPDz4B1gZh+CGIeLR4pUKBAgQIFPmiw9Y7x9IT6/v4+Ll++jNlshslkgtVqheVyif39fTz55JN44403cHp6eibptEGIN8E+9r4Nlu393PtoPFDBMidt6TonFPxEsG2Pg0IOOO2nglziyHU9PKpMLgHKBadeHZX0pc9c4Mmy8QJzr14Ohmi2/cPvos0ltiopG0qCPF488BLVXKCfu5bTmVyCxfVzNHtt2z6zdKT2eIKE6c1Njin55+hXvKq+U33P7efoyU0aeHSoe1xvzBj3EuUkX5Xwj7WNnj1QtHoTBooPlscYmY+xTd4YyN0b6g/FM+tujoccLQqPavNRoPjv4r8VncV/F//ttVH8d/HfHr3Mc/Hf757/TvibpsHe3h6uXbuGJ598EpcuXcJsNsNiscB8Pse1a9fwsY99DC+++CKOjo42OsPv21bHZCc61ftiLf9qsTFBakfp1pA+qgUytt/2L8Z45j3kCZd3zDbTMGTH2b9YPLZPOEbimINlnGSndn7yolIOl+XH8+EJF8tR7fDN2WJvt7+ihWnw+p1l7Nlx+57oMT58zLuZlZxsX3hj38PJwPrH9VSs4dlD3k1s+9GzUyx/q3cJp9UD9dCLZycUrx4PFoe1HaqPhux1zl/Ya0o2PEZUe6qO1x6PS89XenTY32qhXLWrdN4+0KQegFJ2LKd3nmxSW1ZOLDPVd6zHqg8tjV7ssI0PTw8qe7rrLXDn7MvQGBiEAIQqIDQB1axG2K8RLjUIV6bA7hTddAI0U4Rugtg1QGyA9SvGEQIQKqAKiCGsfwdsFsmB9X8B/mK4IAibigUKFChQoMDPPGy1Y7yu681T1W3bYrlcbt5Jmibbm6bBSy+9hNVqhbZt0TTN5kl2LwhXgeOYwI2TIQ641ESPumcDzKZp0DTNJrBq23bzrigOBhM/TIdtb7FYnDmGlkHxrSYbPdrtdXV8EfPoydZLEBS93K7Hlwe5ANNLbC4alOZ0wwvkh76n356MxtA05p7CP5S05cozDCV9atLgIuDpK9/LlRu6Zuur8TiUUHM9r72x+MaMP9XetjL3eFT0q8k7tRDJuHM05WTObefKMf4cL97kSWpH2Tc7SZWbgFKQG1Mef49qF4bswEVwF/9d/Hfx3w9/F/89Dor/Lv67+O9heDf9d4J0fHpVVVgul5jP55hMJgCA3d1dPPHEE5hMJpuj01erFabTKZbL5YaW5Lvtu4+tfHO7ij19Yv+l5GCvsa+1PnxnZweTyQRN0yCEgOVyieVyeU5vEv1JHtx36fP4+Dh7nK6NZ+xioaWV6WQc9runQ5Zvi8cuGir/qdoaY1dVzJQ+08MLXD8Xx3n027r8nWlRdoSvq/Y55kxlh3btKh1j8GyAkpvVc/udxxDz7Nlg7iNLi41x+Lqi37M5Q/5J9ZXqD8ah+GBek4xy7Xs08n3VT9YW8Jjx9FfRw/mMsnWe7C1OpQPcd+yzeTGYZc/0ct/ahybsgvAQP5a+XOzGY8A+2MAPRw3lDbkHKDzI0c117XW1+M28eDyr74/qw0MI/VHqkwrVboVqf704vl+j26kRmhqxroE2/VX9wngNoK6BpkasG4S6Bqr1Eesh9H8xAJst6QGIcf0J5Be+y6J4gQIFChQokGD0wngKCtKEOvAw0KmqCvP5HPP5HF3Xbb5zcsmJhMVrkwBul4PBhDP99o5/GwOJh52dHVy+fBlXr17FZDLBcrlECAHz+XzD72q1QozxTPJsg7DlcnnmnWinp6fnAlSPByVrJZ9UT9XxEjrGmWsvd81et3yrZDkXeHpPcXoJt/qeynvvv2IcQxMNqo4N9nPJYCqn3r00hj7FuzcRwPqj6Fa0eQn50HizOue9Q47bZXkPJWPqaK6LQI5HldDmFqK8/sol/Tnw7NuYOpYXpkPZCg+4fW88eLiVHVY0W/psO6o/huTBdVQ/MR411hUeBZ6u5OzhNnKx+BQt9pq3aHsRGPLfy9NT7Bwf4w6A0/XOs+K/i/9mKP5bQ/HfxX97dSwvTEfx38V/bwMhBKxWK8zncwDYHKte1zWOjo5w/+gIoW1xfHyMk5OTTfv2mPA0buxisX14zPNDPNbs+LF+zpOpNyYTD+m0mmeeeQY7OzuYz+cIIeDo6AiLxQIxRiwWC3Rdt3nfa13XG5xt22KxWKBt2w1daVGc7SDrm+LR3ufvXn+qRS7eFW7rq/iAYytP39hvWX+lxpitpx4U8Hjj33ZBjP3c2LE3NB7Tpz25wDtNyPKrjkhne6W+K9uUcHk2TrWh7JjtG+ad+yw3fqzccw9EMT/qnemsd6rPczZryK9ZGlg+XjyT8w2eza/remO7FD3cBtPItDOeMb5I1edrHEMpuhT/Q3rh+U/VlvJV6ruiL9Xjscj+LpWxvLON8PhnGeRiA5ZDblxbfIzT8+GJDzv+h8bcIAT0O8anAdVujWpvvTC+VwPTCrGqEUJ6p3jVL35vFsYrxLpGaBpgVQPVenE8rv9CBNJO8RgQENZL3o8ecxQoUKBAgQI/K7DVUeo2obZBwtHREULoj3jb2dnB3t4elsvlphzw8CisFMiqY6YSDAWXHECOCVi8AHUymeDKlSu4fPkyQgg4PDzcTKanBFslXqldm4il8jZQt/R6QTfT6NHLeLwkw4IXCLNsFK1K3rnkypO1156XtCl+vUmDoWTHBtIKrzfxreTm8aTqc/u5a6qMpy85Hhksz2OTFFXftuElMYq+IboSqIWxXIKck10u+Va0KZpt+1ZH7W/FL+O1uHLJnke3V2esnHP8jukbr3+V7Lwx4k0i5PpJ2RPG4fWbx69XzrYxJGePtpxvYhnY3549V7yOHbM5UP67iRFX7t/Hja7Dsq7xxM4OXi/+u/jv4r/dOsV/F/9d/Hfx3++1/wYeLjqk0166rkMXI27dvYu3qgr3plN8em8PH7t2DfP5HKvVanPUeFVVWK1WaJpmc52PaGaerf3l71Ymdlx5dtTbKbmzs4MbN27gqaeeQggBd+7cwfHxMU5PTzd+XPnwGOPmRJv0O510kx6CS3+8GD6005f59PrB4rB12Y4oW5JgjC2xfWLbUrro4Vc8sQ9Xuq7svdfmWByWp6SHysbx2PRiGaaH5ePpN8vV82HbPEDFcki4LU1qh7MF1s1Eg2fb2GeNfaDP8jfWh6uYb6xe2bI5f6jaT7hCePhgh33Aw9oHKw+lL55es51T5cf6GsUT12GcSk6sU+q49K7rNnae8XqvX/EeilXySd/Zj1l6eYzk4g+lv7YO208eizxWmQ6m1447psXTRz6NIsn3ohAaIDQBYWp2jO/VCLsV4qRCSDu+0wvEmwqoY78w3lRAU/c7x9NfWwNdi37neAQQgRiB0OMIMSLC9uvFaS9QoECBAgV+FmDrd4ynAGO5XKKqKsxms03QkBLYdBQaJ7SpvjpOxwa7QwFz7ru6piZkQgiYTqe4dOkSJpMJ7t27h9PTU8znc1nWC4hytHoJyVBC531XeHPJjJeY5pKFITz2d44PLznmBGsMpACVJzjHgCqnktLcZIVKlLx2lGxZrjm9GDqO0NMRRasK9pUuD/Hn6YuaFBkCNRmQk5d3XU14qEQzp6NKxzkZ82zQ2AkH1U9qfOdkmOuznO3L2QkPPBl6upyujbWPY8ctt8X4vMkJPnJV4cnxxPe9iYqcbHncefquJj082/8oCTnzlvx3XVX4BQBv1zX+ZjpFV9d4pqrwi8slvtk0OCz+O1uHyxb/raH47+K/+Xrx38V/F/+9HXA/zedz1E2Dk/kcbwBoAWC5xAsxYrG/jydnM6wODzdy5cVgy0/iyfpwRbOyb57+8MILy7iqKuzu7uL69evY3d3Fm2++iYODA5ycnMiHV7y+UP3qydsby56tsWWVXwT0u6Q9e2vxqLHk8ZajX+HI4R6Kizwbwj48t5DM40fZSV6MZX7VA5PeuPbatzzZ9nmBzy4eqgVojxZuw356uj/GLuXscc6WqDhgjA+1n0kGCgfrotIVboNpsO/D9vqOHzxh+m0bVn6KX1vWo83aRM/nWf/EdCj+FS2erczZOU/GjF/5tfQ5JFOFy8M7xN8YH85tKt1X/ZU7QcKTvScXQC/mqyPiVdltIUwCwiSg2lnvGN+tEHYrhFlAbAJiDOi6gBD7v7gC0ASgievPio5TX//Fbr0IHoEQgRiB9QJ7CI9v7qBAgQIFChT4oMPWC+PAw2AhPZm9s7ODqqo27wVLT3nXdb051jTGh08G26NMU7LlHc/JbdrfCVTC4iWTNjGq6xrL5RIHBwdnnjD3IJfkqEDRSwqZJqad8XJ9FeiphCQnz1zy65Ufglx7jIPpU8fbWdoUjqH2bDl1vJNXf6ysvbZy11XSPDT5oegYSqw9WhRuLxn3krWhukqnuV1bz+PXo5Nxek+7D40Re13p/7bJHLdpJyNtGS8xHjN+xkx8eLpr+c3phvqtElGPttykSK49pl/1hzdB4yX/St5WhqxDOTrVhEUO2Dfk6OG2crQ+KiQaJqsVTqZT/Hg2Q1VVmE4mON7Zwa22xYfmc7xa/Hfx3w6O4r+L/071iv8u/lvRX/z3u+e/gZ7nxWKB+4sF2v39fhfZzg7ayQQvnZ6iXi6x1zSYTqeb15wlH75arRBCf8pb8t+sIxe1lRaUPOxu76ZpcHp6infeeWfzKpPcKy3Uq1x4V6Ciy7PXyi6r/lRHpHv9mtuJmbNj6dPb8ar0NmePxozfnH4y73w9J4McTTmb7dVX5bbRU6bV03Xl58fQY8sxXsVbzmYoHodiGq+swmV1jW0u42Fec77Ka8PSlNP9JDveEa144IdRPEgbdnJxiJKPxy/vlvf8VE6PPFtk77PvSfcSPwq8EwWUjudkl7OJnu6y/VLtsVy5H7yd7cnuWx7ZL1vIjY30nfm3dZIvtHSO8XVDUE3Wx6jPKlR7Feq9GmFWAbMKsQ7oOqBqgS5GoANCA8Qa/aJ4HYB6vWt8/S7yUNdAV6OvGBHaCIQOMaaHfhJ/lvbHE4MUKFCgQIECH0QYfb6bSkZj7I8u29vbw97eHnZ3d7G3t7d5L8ve3h4mk8mmDtAHtE3TnMFpgw8OarwglsELlBiv/b5YLDbvL7PBkMKt2hkK9GzdXALIgSbzkgvimD7G6d3jQNAD1fZQMqLaTDqhEnElX07aUtvqu2qP5afK5xJylRjZAF21p3RQ4eGE0EIuEPfkxDrmJfU5OXntKNq4XG4SgNvxdFklo0qHle5zecX3UPI/hlelU7kELcfz0ATDGBq5nkeLskGeTfPwMx6v3lD7Ci+D5YVtgCdHpmWMbtry3hFrqq5nW5W+DNm6HE18fcju5kD574+1LX4AnPPf9ycTXO867Bf/Xfw3iv/2aC/+u/hv5qv47+K/FTyq/070WdnWdY1512GxXAJXrwJXrgCXLwNXr6KrKtyvKly9ehWz2exMH9R1jel0es6v2nbsd1tGHQmf6EqL2gzWdzCek5MT3Lt3DycnJ2feDT40HtJv2+/2Peq5svae4ln1k1osUXUtDm9XvvLhOX5Zrp4dsLSM9eHcfvpuFwBzPpx5svRtO4b5t2f3VL8p+2F3Jiva1XfLV06XlJ8Gzr4H3OJgu8S+PyeX9F3xkegYeo1Bzm55cUxOxzy5K7229sG2p2Q55B+sLNg+8/hk3bX0pD/Vh7ZOase2pfApWSh6ece55/OUrbF6Y+lXY8izJ5Zn+/7sHP3ewwqWFm6PZaPyBm6nrms3BvZ8ONsmZdfsd9YbVcYbm1aHLwLVtEK1U6GeVaj3KtT7FardgHoG1FOgaiKqpkNVR4Qmro9QX/9NKmBSI05qoGmAZgLU6a8Gwvqd5Fj3aQj9NYT1Ee0FChQoUKBAgSHY6sVnNlGwiV/btpitd52F0B9xure3h0uXLp1LihOe9KS6CmYsqEBZBd6qHRVMpcCnbdvNH7eTgzEBHge1HJTmEmz1Z3lRdHp1vDYsHg4SPRqZF0WHCmg5MVBJLfNiceWSxyHg+ozLa1/J2iYBHs2eblp+7L3cpABf8/qVjxzclv4hvQLOTzqqeqynYyZBcve8BEfJTeHgCQhFLyduSka5caWSZdZbTx65vlcyVeOWeU02UPGhJgAsL0O0qPue3ufwqqTa3vP6wMOt9F75AsXDEN3ecZ4e/57tSzQxfltP9Y/yJ48CloadrsN+VeFuCOf8d72zg2o2w5PmIbfiv4v/Lv67+G8Piv8u/rv473fXfycdSdB2HY7XD6lhuQQuXeonzesa2N3F0ZUruHL9Ouq6PiPTGPvd2tPp9MzR6TyWhmRm7ysfznK1uLuuw3K53PwlPMyvbcNet32sbEvOnvIiN7fp6S7rFfPHC8/eGLG/lX+0OpXqc//Z+hY8G598jeKdcfA8T86HK1ujbJu3cOuNCeV3lT1mmTLk3ss95MNVbOXpA9u/VJ9PPxiyax5Y3+DRwuNuaGHffioZef4n8cVluI1038sTuC+VP1L6b697/s07tcH2k1o0Z57G+nDg4SlW6Z7y4Xzd81+5eMnyYI9/9+hW8uH2GLcnB4Wb7VSSxRDeoZgmxujmdx4PQz5cjRk+4YH1JucvtoFqGvq/3X63eL1Xod6t+qPVp0A9iajqDqHpEOr+D3VcH6Me1ovjTf/XTNaL4w1QNf2R6qHq/0DvKw8BYbNAzvRfnJ9Hi2YKFChQoECBnz7YamHcBhJN02x2mlVVhePjY7Rtu3nn53Q6xWQywXw+B4BNcm6DEy9Q4b8ENklTAa8XWCdIiSEniF7SZ8FLzLl9FUCn77lk3eJWdZlHRV+uLgMnFbmJLW7fSxJyfDHfKtD2JpcYh7qnEggPOKnmJMRLXrwkzOOBExyPf046PV68fuXJCy+xGZrcYDoS8C4OJYsh+ecSilwSl2vDsx+MW/UN24ucbD1acrbLK2evjUnAcwmlkg3bSM9meEmv+s30eW3zfbYXY+wKt5mTv3oPnqrDtHs+RdFg8arvjEfRyXqmxu6Q7j9KQs58NFWFn68q3Lx0CbuO/357fx8fWS6L/zb3i/8u/rv4b/9e8d/Ff3ObxX+f5eFRILW1eY3IdIpV2ile18DBQb9A/sQTwGyGg709vLmzg+Pj497vN82ZxRt7LeFPY5I/0/1UhnXTxgT82y7QdV232Rnetu1om2/5T3jVuEygduraz1yfKT209e0ipWeTbHlvl6HnwxV9vHM1R6NnLz25DdXh2IkXzsfAUGyh/JHnw7fh2/PT3Bb3Hf8pyPlw2z7bFlVW0Wi/q0VcFfcwH56f8GydOhHC3rdjVvmGMT5c2Vo+Gp15U3owxJ9qx/YJ2zZP31i2Xt/ZvITLeA9Wqfvqt+KJdWrIhysZKF/LcsjFVsq2qfGVcHonTykfrr5zGRVDskz4XfaeD1c8eH14Eah2AqpZQL0bUO8HNPtV/z0tik/SjvFuvUAeERo8XBSf1sC0RpxMgMkEmEyBZgrUE4RqghAabBbHQ7843vPx8C/9T9yu/8ZDMJ/2r0CBAgV+NqFYwg8KjH7HuA1E0sL3pUuXsLOzg9lstnnf5+npKZbLJS5dunTmaXQAm11m6ZoNdNQ7g7zEUQX+Ktjj5C6XCCvwglBVz0vAOEj2EhKVVPF3xbcK1jmAzPH+uGSQS7q89odwD9Hm1fUSl6HE0L5HLpdgMk6buHoBtgUvCRuiM6cTqn4aC8yXh0PJjXU4p4v295gJk1w51a6aPMnhHlNO1VFyZt6VHL1JEa6fo9W7541nxWcu0cvJkfn2Jm6YX6//x47p3LhUtpMnZngyhfniMWDxjrE/Q32X81mMY4ytuojuDoH13x+va8ynU4TLl7Hn+O/pE08Ax8f4cNvitRAQUfy3h6f47+K/x9BZ/Hfx38V/F/99UbCLCvVshpPZDLh+Hdjb63eLTybA6SlwdAScnqK7fh3PL5d42tCe3jEOYPOecYs7xvO7XK382YdbGbAP53hAjS8eH6yfY2IEpQtszxWNTBcv+CudU3RZ+nMyGevD2WYqGnhc5eIqz56oeE31kye3JDOPB9sH6XvuoQrbnn3AQsWNql7u/c9Mny3r9RvX8b57tjqB5Sen00k+apd5zicw2N3SQ/Rxfyhb7bWv4nTGn4vjrF1henjcWBo9PfWuWVo8feb6iibuR89+cftWp7lcTu5JF5RftHqcaEz3LE6WrxpPQ2CPUk9+QrXLx8QzrR54fapsGutEqu+d4mHHONt1lon9ruwY07ct1LN+YbzZq/pF8b0A7ETEJiJ2EXXXoas7VE2H0K53jTcV4iQA0wAsK2BVAysALYA29O8i7yIQAUQgxAggIHYAwvoaImL6YT7762d6Yn1ve3h8UU6BAgUKvB/B2tcC72fY6h3jIQRMJhPMZjNcvXoVly9fRgihn0ifTtE0De7fv4+TkxPs7e1t6m0aWz89bpMpe43vcxCS3kGT7qnklANML7D0QAXGqp6X+I+plwOFQwWNHn7VHsvMw6t4Ggpqc/znElovMbbtjuV7jHwtbWPxKX1S9RWPtn6uPxi85FOBmixRZZgOr0+9pG4Iv2qP73lj07ar5K6SWcWTrcdJkaLXGxO58Tsm6R4DQ0/lK1ATJam8kq1ni9Skp8czyzrhV7rh0cY4VV8r/r26Hh1KH5imIbuv8LM8h+ybZ1950oT5VW2pchcF678/2jQ4feKJQf/9+s4OJlWFT7YtAor/Hmrbw1H8d/HfCor/Lv67+O/iv8dCCP2k/mw2Q7u/j/ihDwFPPtm/W3Q+B3Z3gZ0d4Natfvf4lSs4DQE36xrHaxx1XW/+Es50Gow9FcYeCWw/rQ9POyQTXcy7fdUay8nK1LMf3BchnF+kiPH8Qr5aJLG4+T7j4/ZjPPtgAINXx97P6RjTzrh4tynroncktMVnf7NepzaULRhjjzxZMD1J9mNstsKvTi9IdKZP7gPbpqUh5z+U7VD3uW2mge2Ler8x42S/mcD77v0ekk0Ce1S1kh3jTGM958N55zQvRCq6PXvAfWDxsh/j6xa3J8MxPl/hVfzbdpQcLQ+27SQv1a7Fx++uT3bJi89VW2N9k9Vd9n/qIVJvEZ9xeu98T3i9cc20jxnPlu7Ubu5Bg4vElttAPQuoZwHNbsDkUsBkP6DeAeomol7vEn+4Y7xFaDpgEvtF8WkN7DTAzgTYmQLTGTDdRZjMgGaGHtE0vawcIdQIdvd4CMCZfd79p726DUTz+eiRTYECBQp8EKBYww8CjN4xDgDT6RSXL1/eHKGedpql4Oz69evY3d3FW2+9tanjJc022UwJLwd+vOPcBiYqUfUCHnU/l6CoNlVZpsEGkZb/HG0chPE1TnIYj0pymV4vYbBlPdnmkowxvKr7dkI19b2VuzdxwXx6fcUJleI7168ez8y7evLUk5MqM9SuV47x5vTDa9fjX9Hj4eXrzOeQXo1J/JW+8acnA/XkfE5Wud9K3opWmzBzsjVWP3N2S8GQrfLaUTwoXvh6DreiwcpC2ZWh38rW5GCs/DzbnKNhLP6xtHrt5ei+KEynU1y9fBnXALx96dKg/44AXq9rXKlr/GrX4UcA3llfL/67+O/iv/PteuUYb/HfxX+zDBiK/z4PP2v+GwBmsxmeeuop/PjqVeDqVeDy5X6neF0DIQAf+Uh/7dVXN3VaAPfqGh2A/a7rd5Wt+9HaQF50sj5c7Qyu6/qcD1cLMTkfzpDz4apsol/5HKt31i9ZWnM+XPGV2/HM8uT7/J3btDiTvNWDMEpeOTtpr1m8LAtLo2fnuU37m2OpbXy4ra90JvUx86vslvJb3junWV72t+o/Kyv2Zaktjwc+gt6LxZT8WT5MlxdP8IKl2vHs9Znil/FbuIgP914zMNS2N26UfrD8bDkLyr+lz8QH86Pq23pefKHa9mSngPngxWHVNtdXdpLrD/lGlqtqP+e/lcy9Pkr+qOs6eaKEwu3RzuWtL/DoHdLVIZjspR3jaS07oqsi2qpDhYC668dqW7eomhZV2yI2DWIbEacBaKv+b1UBqwnQNkCsELoaiHX/PQbEGIAu9PEAEj9xvZex/35OLuvPbSKWxx/dFChQoMC7BewPigUroGH0wvh0OsXu7i6m0ylWqxVOT0/RNH31yWSyCcB3dnbw4Q9/GMvlEk3TnEmw+bsNAAGcS3J54lIFw15QNGZSIpewecngUNDIZTkRYR4SLm8ygBM2RaMqm0v0cvSm3yqx84J8Czm5ee0zzSp4VYnDULuMa4xeKFq972pixUsyPH74uqJd0afKe+PAk2cuucslmmrMeTR67TPuHF+MZ8zYU79zepOSrZw9GbIVSk9y9TxeWNY5yMnM60su540zi8MbT8y3vZdLiNW9XHI9dC2Ha8z1nP5ZPsfov2prTH+OSc4vCsl/X6trPFitcHJ6inqk/36naXC3bfHJrsPHug5vALgVAhbFf29wFf9d/LdHu6JPlS/+u/jv4r8vdv2D7r8BYHd3F5cvX8ZkdxeHiwVweNjvEAf6z6YBVitgfx/4zGf6XeTTKVDXiFWF+22LoxCwGwJ2Vqve5693cyd60xiyC+L2PsvOLrwp+bNts/rn2QSl92q8sd56YyPtfrf1PRvJbTCu3Os6gLOLJ0NjzvO9np1XOqj0mRfVx9hwZedCOLtw6dmU1BbvJFZ8cVvq/b+p3ZwPt/K2pxTx4pXlQdlBTx9yvovlaMvz3BbzPda+W2D9TNesz2NIuNXDBIw7yc7DpWgFhuMnNVY9nQ8hoG1b+coGz/+psZA+hx4oYdkmWanYg22Bd53bztGd5Mf0jbFFqh9VrrWtreTfti7LiPvJky3TosY42xEvZmC9GopDvHGoZMTjU/m9R/Xr00sBYRYwmQHNNKJqIkKIQIiIdUTXtajagLru0FYtqrpF17QIXURs0R+jvlMDqwC0QIhThNggdBOE2C+So6sQugqoAjakhjUPiP3C+UMJAHT0rzpgXcHZWgUKFCjw0w7J3hUokIfRC+O7u7tndpjt7e3h6aef3nw/OjpC13VYrVabgOL+/ftYLpdYrZNw4GwgbsumgIUTnFxwl96XxkdUqYCHQSUgagLFCyAVDkWnSsSYRlvOS1A5qRsboA2V9XDnko4x8mXcKrHNTUAwHntvKEDmBFf1J99Xya8Fq7desqcSbOaJZeLRr+Q21Oceb6rcUH8w74yHd0aM6WN7nfGrdryxkpuk8JLx3MRA4kfJaSyoJMx+VxMFOfnx+w0vmujm2hnLX85WKno825nT3xzd3L/KZqVy2yavnr54tG0j5xwfHi1e+9voooLkv2/EiIPZbGv/3VUVvl/XmFQVnmlb/HLb4vtdh3vU18V/F/9d/Hfx35af4r+L/7bXi/++GFy5cgVXrlzBvGmwqOt+x/gnP9kfpX7tGnD3LtB1wGIBxNj/vfkmcHLSL5jXNVYx4iBGHFYVdmLE7mqFQHaWj0C3fNndt13XoWmazS4+6/PtAge/e9a7nq6xLD1/ynLn8qkc7zplflIde9yud5rIUEyh6FT2gcsx/d7nEF41rhJPuTGu2re/bdtqB3Jup7QnP77OPCpboE4uSPwxHs/eKlpytlXt9PZ0kvFZ2XB5lqvqU2VLeIwM6f+QD088cRzu6aGlX51sYO27d8oMj3vLF8vI/mZZKP49e610imWY8+HcBtPmjSlld4Z8OPOQixc8elT8Ye/zgzOsE3yaiOXTjjvbd56+WZ3gNpNPSTK3fCuZePGCxWftuS3Desqfik4LudfoDMHkUkCYApNdYDKNCE2HLoR+MToCXQV0dYeualHXFbp6vThedwhN7N813jX9AnlbAR2AdoLQThHaBiHtKO8C0K1DgA7oQlwviq8/0dHidwDOLI4ju+j96JFMgQIFCvwkIFm2YsUK+DDay89ms00Ak74fHR3h2rVr2NvbQ9M02N/fx+7uLo6Pj3Hr1i3cvn0by+USwNlgZrlcngmUObhR7zBSwe5qtcq+tyl9coDNZdTvMe/C4nsqmcnVUXVzgbpHvxc0cxklx1wgP6Y9b4LCS77SPRV0coDqQS7BYD5t2+qepzeKN05Ccv2s6PXu5RJhS7/if0ifVDlPJ3PJiPfJ+HMy8mjzeGXd5e8JvARniDeur+p6Mua6ahwxXx6P3P8x5t/Fx8kb31M2dVuZq3vqPpcdsh0WlNxzNiThGXqHpK3LOpGbXBnq6xwv1s94NHi4h/Dl6o6F5LMvr1ZY7O9f2H/PY8QrXYdv1zU+AuCXY8Ss+O/iv6Htr4Liv4v/tlD8d/HfxX8Pw/7abz9oW8RLl/rj0+/eBT70oX6RfGenXyC/fBm4fx946SXg5s1+odxC1yGenuI0RjyoKsyrCghnFxLsu8Rtn7EfWCwWm4Vx1TchnD8uWelqqmvHDZezNDAu256tr3RC1bf9bN+/bj9z9dU4tnQr++rZ5BRDKVA2gW02+1Jb15ZR98eMN1V/yCbxIpXiQ7WV67tcv3hxhPrOfHk2y3s/sUcn2ze+xv3HZZnWIVnncLL/yPmTnDz5O+s/609Ozy1YelL+oMbyEB+52FONBUsf5y3WFim9ZZrU6xw8fR0aL7a8smdKHiwTJYdcG3Zcsw1hnuxDU2NOBkvyVe9ET5/J7uZkk7M73Bc81sbYcXuNd/4PvUN9COoJ0ExD/07xKqKpOjRVi6ZqMalaTKoVJmGJplqs/+aowgJVNUcISyCs0K+GRyDUCGGCqpqhqvdRN5dRT66imTyBenINdXMFdXUJdbWHupqhClOE0L97HKgQUNEbxq1sQnbZKK7/ChQoUOD9CWMtWM4SFvigwugd46vVCovFAl3XYbFYYHd3F4vFAjHGzfHqzzzzzOa9Y13XbSbVgT7gSLvTLl++jOl0iuVyifv37+Pg4GCTjNd1jfl8vqnDn95ElgrePPASFO84LuBsgMjBsReMM63Mh0oqvGTG3lf31H0V+HnBuaKPZcby46eBc+2ppM0DlVQq+liGKqlVMvTusey36WuFx9ZTNAwF7CqBZjxjk1quo/pM4eSnb7mMp4uK1xx/nr57fHtt87XcuFS4VN8N0cF85coM6Y4ClSgmveHj2HL8DCV1Kjlk2lU/cnt8X9k6i1PxlrN/zKunR7a8mri1crFJb06/vHdo5myaslHsd7y6uffMbQPJf5+cnuKdqsLkMfjvo+US3b17+MKDB1jEiDcmExxOJsV/F/9d/DfG+Y/iv4v/5useP8V//+z6bwBYLpc4PT3Fg7YFTk/7BfDTUyBGYHe3Pzr905/u3zkeY797/OQkMdH/bpp+8fz6dWBvD+3JCY7eegvL27cxCwGXmwY7kwmOjo42bSodtfKyv3lRy8rNylKNgeSTQgibhZcE1l9xe+zPuI5tj/lg4DHg2SKvvmov0ar8hWqL9Ss3NtWiVA6v8hkqjmBaeXwm2bM81NjdxmYo++/ZIR6zVh+G7MmQj7HyVe9vTmB3uzIupf+2jGd7uK30kIp9MMS2q3TNQs4OD/lw5sXjU/0ealf5t8SnR5fa8ZujlW2RV0+NAfY/XN7aL9uOHZM5/WE+bN8ln8Zy8vyZpcnjSX3PxWDMi5UN11Vjja8rX2jxp9PKuB2mN73mIzeOvFjgoj6caboIVE1AVWOzKF5XHboAVAEIset3e1cdYugQQ0QMEV0I6ND/IVZAbIBYr09HrxFCg7oKqJodhHaG0M2Bbgp0E8TYoFtVCBEIIaILEd16WbvnIwDnjhc2fX3mV4ECBQp80ODx5GYFPlgwemH88PBwE1SsViscHR2haRo8ePAATz75JHZ2dnDv3r3NU4HpiLUQ+gXv69ev4x/8g3+AX/3VX8Xly5dx584d/OhHP8Lrr7+OV199Fffv39/gbpoGp6enbhCUIJdU2uu5oNj+zk2+KFBBkpcYMS0qcGM8XhkO9rz2vSBZtaGSZi8pZXy5RIsTH08eXuI4hrehsqrtXPKUo1e1YYNulayzbnqJmUp8uD2L39KlnlZWvHtHHHsTKjax8yYuPF68iRG+5rXNfHN5D5TO5cCTl6LLa4/xKR0YmniwfZdrU+kZ0+LZCGUnh+wE86RozSWNXt95euLpg9cOv6tsyBYwLSqpV0n+NjrogSdzz/YO6c1YSP4bqxXuHx4Cj9F/v/bqq1jdu4dfXq3wfQD3iv8u/tuRifo+VFa1Xfx38d8eD8V/+216tBb/PQ5+Uv4bAG7fvo0q7fCez/vd4js7wFtvAR/7WL84/sYb/eJ3VfXvF1+tgBD6788+C/y3/y3wn/1n/fd794Dvfhd44QUs/vIvsbh1C6uqws8tFtjZ2cHBwQEODw8B4Nziju0r5m9Ir5UuMi6LY+g9yqoNxqfsUc6+KeD+zI0Zq3tDuq18OI9Pb+xY+eXey81tq7Fi8XtHo3u+1OPNQjqi3iufo1m9miKVT34xxa58skCuv3LxjYIh3+wt3HI/2Tq59ixP1v8rXckt4HtxU/r0bJj97tlPFVuoskr227TDeLwYxBs3Vk88Oj0f7smGdU3FaGP8ZGrX9mO6b8cN06D0MWfrlIyYNmWvWI6eD8/pc85m8D1vTHq6xHW9sZ4+Y9SvVvL036N/G6iqiKpaL4yHDjVadCGirjpUa5qrEIBQA6EF0KJDRBcjujaiWwFxWQHLAKwahNUEVVujig1qTFBVU1T1Tn+STFUhVlV/snoX0aZ3mcf1jnPE9bHqYX2segQ2i0QPv4fNb5RF8gIFChQo8IGH0Qvji8XiTHISQsB8PsfJyQkODw9x9erV/qjWy5c3R+KkIOmpp57CP/pH/wg///M/jxgjfvzjH2M+n2NnZwdXr17Fxz/+cSwWCxwcHODBgwc4PDzEarUCcD7485INLwhVSTsHghx8DQVAjG+bhNNLXGx9DkA9nrgtC7kkm2XKZYf4VklzLpnwEiAuNyYQ9QJ/T2ZeGU9uufa98l4Qr/gdSjwVjZZvT0Zen3p05GRhZaieSs/xn+tjS5t3PVfOS6JydsAbb15S7ZWxSXVu7Co+uB88fcnhytmrMXi8pG9I/5VscjqYAzVxosbMGP687x4dY8Z6buIlhyuHl+vw5zY0Pgok/z1frbCIEfEx+u+PffzjWHzoQzh48AC/9NZbeH61Kv67+O/iv6le8d/Ffxf/fZ6G4r/HwenpKaqqQhtjv/AdAnB8DDx4ANy5AzzzTL8o/tRT/a5x4OHC+Mc/Dvx3/x3wxS8CyyXw2mv95/4+cOMG8PnPA8fHOL59GwdvvYWn7tzBYrHY7BznhUmlj2kBj4+gHePD0/UE6v2+to56PznTF0I482Cess+sB4q/dJ0fMrJQVdXmQUKPLtsmH5U+ZO/5t7JjOdvm+R8L3G8Wp+o/pQOeD7fH06t+V3VS+ywfS4dt24tDLHj+ecgn5fAxDem7kmfiaUwck65bveJTE2y7ljdbnvGx7HJyYHl49j4nLzXWEo28sJx+23dOe7yrMcpjjGnj97MrX5GzSyzHnM+2fLLM7H1+cNHSzzQx3jH9aMt640jZJI9fNc6GxhP3N7fvjT9PH62tY/psXc8HqbKMy9bzfP42ELqI0AFV16GOLZoIRHRArFADqAEsAYRYoeoqhLZCXC0QlqfoTk/RHc3RHi+BoyXCaYdqEVEvdtCsAupVhbqtUa0CQtcvfscQ0IaINmC98A4gRHRAv3M8Yr04Hs3i+JleSJRv/i9L5AUKFPjgQATKrvECBKMXxoGzwWoKptq23RzTeunSJdy4cQO7u7t4+eWXN7u/27bFd7/7Xbz66qs4PDzEcrlEXdd46qmnNoHGhz/8YXzoQx/CzZs3cfPmTRwdHclkjL/b+7mkENBBLB/bxPVU8OQFWUpWlrahwIwDYy8wZHq9xFXxoXCpOjZgT/dVeb6unti2dHDbuWTWC7753phkbkj2ajLHlgPO75pQdHEdj3dvcsHet7LMJeeMc+w9L/Hz7nlJtRpf3lhi3Dl9GkpeVf8zTo8urz/UJA3rgkrClOwUTYqubZJs+90bk6q+l9xbPDwJNTQhwLJgGhRfQ0ei5kAl76q9bcbmmPHslVUytGW8fh1jHxj/44Cu67BC7/QX74L/jh/6EO7t7uILL7+M78SIo+K/i/8u/jvLo8I59l7x3+fpK/67+O8Pqv8G1vLvkQMxAm3bv0N8Pu+PVX/iCeATnwCuXAG+8Y1+8Xs67T//7/8b+Ku/6nean572i+cf/3h/xHoIwGc/C7QtfvTiizh84QVcWp/ixrqR7C37inScvbLJQ3VZlqlNttl8XdGW+o59uAJvTObK2LK2fV6sV/4hp+McM4QQNouiSjYJeEymRXqPdxUXKVuuxoXXrrcon3Dx4h8vWloa7CtxmC7PhngyVWMwZ+tUnyofrnxMzkcwbm7T8582dsnx670igsvlZODRyfUsXcynZxt5IZN5su2yfnA7bJvtjmrP5o714d7rAbxYxNaz/aja5fs8dhLfiSdLVwL7cA7roJI362eyiywftSPdAvNty+fGET+MyHrn6amyJ7m4w7MtbFM9u2zv5fA/ii9/uDAeUXUdmhj6I9HXR6o3IaIBUCOgjkC1XiCv2hrt4hTt8RztwRI4WiHMgWpZoV4FTFYNmq5CHWtUXYMQAwIqRNRoA7CqgFWMQOiA0GKFCMQOXeg/Y39Qe2a529hVAPHMzvICBQoU+CBD3joW+ODB6IXx9O5RFWTEGLFarXD79m18+tOfRtM0ODg4wN7eHmazGZqmwf3793H79m10XYednR3M53McHx+jbVucnp7i6tWr+JVf+RUAwHw+x2q12rxnzLaZ2gVwJoBMvxlUsjkm+VWJUq6OF1QxzqEkN8fLUKLK4AXz6p5KJNJ1DqRVcG/rJMg9wa7Ke2VU4OzJx36qCYmkC96Ey1hac+W9o6+YRpXgejQrOr1+sHxywscJuC2vJkcYOBljXDxuhhJVTngZn5qAYPkNTXqMgVzS7CVk6p6ik+nxxiDjsN/5vWVDPNhrXvLM9bxJDoWDJycULmUTlZ4pHhUPQH4h1EuULYzVi5yPGFuf+VV2iem213K/t4Xkv6cAuhD6UO9d8N9HVYUf1jU+sljgx22LVfHfkq7iv4v/Lv67+G+PLnut+O+H8LPqvwGgaZqH0zOJhxD6o1O7rl8cf/114Etf6hfDb98Grl4FLl3qj1y/dQv40Y/6xfT9/X63+f37/aL54WG/4/y/+q/QxYjbx8c4nM8xXa0Ao7fcd9aHsx3xxjL7fc/WWB3wjtJO5RiXpyc5X2hB9VfOh3g8jHkHcLrm+Ry7ODtmwYhfy8ELkEOxlKUvd1/ZGb5n/YkaR8qf23tMD49H1d8xxuyx7Qqv50+HfLiHW5XL7X7nthW/ubrK/ypfy3Tzwr9qM5Wx5T2/qGyAolfFDep+0ndeKPf8koWxOmXxcfxjcfKJmR69XJ8Xvj3e1bhIY0MtdPOYUv2t2lI6lcpYfWBIdfhhHQuqn3K+2Nv5zf1gr3FZJb/0ybFWzn8M2fxH9eEBERWAKnaou4C6698vXgH9UeltRNMBdbv+WwH1MqCaA91xheWDI6zuHKE7OEa1bDHpgJ0O2EGDSaxQo0KFCqFrgK532yusUKFFCB2Q/hCwCnFNUbv+6wBzzDqQ7ou+21wN63IFChQoUKDABwNGL4xz0paOxrLBSV3XuHLlCt555x3MZjNUVYVLly5htVrh5ORkE+RcunQJu7u7OD4+xtHREU5OTnBwcIDr16/jiSeewGKxwOnp6QavSuy8gJbLjUkocjyrAM1rj+njoEpNsoylxYLiZWjCwKNpCHfut8efLTtEcy5JVPR7uDzgZICTCy/xZF44eM4lq55OqgkAxWvu2jb3VSI1xDfXtzyrct6EgsWb0yE1llX7jHvbOko2KjHcNvnJyYYTNtW+SsRVebXb0avj9bECdSRlwsGLlkO2w/LGuC29Kjnn9lWd9DuXPOf4z8nN40/ZM9YTpYtDR2Xm/JfS80dJyC09dYzoQkAt3q/2uPz33y4W+OvlEn+n6/C9qsKi+O8zUPx38d9j7hf/Xfx38d/FfydIOTdiBELoj1NfLvvfVdX/TSb90eg/+AGwt9f/vn69XzR/8OBh2SefBC5f7q/duwccHPTHsX/kI/3fV7+K+eEhIoAdIX8AZ44ptzJKupd+q92F6gEJ1b+8+8+TOYNnB3Jj2rvu0af4TsD6kj6TXCzuId/Pu609H61sF9dVY3fId1icQ2NMyT31I19TNsHTCR6bVr+Ublg95PHq8a78VGrP0yXlY+1vpot3N/MCPs+zee+NV7JT8vJsle0Tzx/nZJuTBdtZLmfB8qn4Vz6C+VXHy3Obns2wfe09tGXbYLr5nrV5qh7zbstyXyo5MO1cjn+zbNgmMx5vUVzhsvrL13P+WfkBr39yC/Weftq6LA81flg2uc9HgTq9YxwRddehWcV+Z3gVgVVEt4rolhHNKqJZAs0yopkDk9MIHEe0D4D2nQdY3TvArAP2qwa7ocGsmqEJDapQIYQK/RHpFTo0qOMMNTpUISKEiFABoauAKqCNFTqsELFCjC1iaBFjC8ij1e339YP1ZVG8QIEC70cIAOK4OShT4V0i5nGC5en9QO9PJ+itCwK8BCJ9zmYzXL9+HVVV4f76CLbFYoH79+8DAKbT6eZo1suXL+Opp57CycnJmWPV0lGtqT37aduzv1WwYt9TFGPEzs4OPvaxj+Hy5cubel5Q6SWgnDxwMMXte2W5PduWuq5+K9otDtUe08Tg1eUyijYLzK/ieyjA9GTv0a/w53hlGlSynP6S3FRCpb7neM3JNydvvqbo9PqG6VSTPHbHxxjalM6N4Yfp9/jxwPaF16+qPWDYduTGBOPK6Yeiz9P7MTZO0ZtrQ7Xj4bO6qPhQddI9b4HIGyeK9yG759k2Bd5Y8CaVUhmv/2x55sMbYx6P3m9Vx2vD22U4FmKMmIaApbEB76b/PgTwo6rC57sOszUNxX8X/63o98a7xyvTUPx38d/Ffxf/ze1/kPy3xdMmvsJ6cTzBpUvAs8/21956q99JfnwMvPlmf39vrz92fTrtF8s//vF+x3jb9mVXK+Av/7JfIAeArsMiRpx23dlpcSNXtWBkbVLqn729PfziL/4innrqqXM4Uj3u31w/KR9uy7JeME7rT23ZIduYs4td123+FN50T419xmvxKDnlFrASv+nEPU9GHi8qLmPZM93c70r2tk3+tD6cZWnxWnqsP1Rxmu0HpW9D9jxnF3IxGj/8wPUSWPpYV3K2iMvl7LBXh/vQ61MGTy8TcGzO93L2k2N0LqP0K8b+dVBKhuzvvD5JfFk6vHI5HVG6wDit7bIncNg63GcesD6xDJUsbV22S0ynKsfjlR8KUHbAfio6U/vpQSu2HUqGjJPvqX7x8jjvNQUs/3Tq2kWhqoA6xM3CeN12aFYtpssW0+UKs+UKu6sV9lYr7LUrXFqtcGW1xNXlAk8sF3hytcDTqwVuLBd4cj7Hk6cLXDtd4eppiyvzDpcXEZcWEXurgN22wqydYKfbwQ72MMU+puESJuEyJtU+JmEPddhFHXZQhSlCmCCgQQgNQqgRUCOgQuj3uJu/gLOLL9ssLhUoUKDATxjC2oZ9oEwX22XvWoExsNVR6imgq+v6zNFKQD9xno5YvX//Ph48eIAYI3Z3d3FwcICqqjCZTFDXNW7evImmabBcLjGdTtF1HVar1ebdWDZQaZrmXNCUQCUowNkJlLqu8XM/93P4zGc+g69//es4PDx0J4Usfg7IONBWdbzgT03oJFA7PnIBrQqErSy4bVXPtuMlI7nkWPGu8OV4yAWYzJPabaP4Zjkr+XuQe0eVN6k5NLkxln+ml8HTN9WnasJIJUtMj/dENP9WR2V5/PCYsWVzY8Lise0r3sbW47aYLsWPV97D5dGiJqSUntn7ihc+TlLxrOhT9Hrjx07ceX2j7KCiK6cjQwnmkH3w7LFKnsf0ta2fyqcj44b6Wvkhz3+oMkN85J6aHwt1XSOGgEkImEwm74n/PgDwUtPgF9oWzwv7U/x38d/Ff5+/Vvx38d/Ffxf/zdA0DRAC6hCwnEz6BW27MD6b9Yvjx8f9wvjbb/dHrF++DLzzTr/4PZsBTQO8+GK/m3yxAHZ3e1wh9GUWi4e/Q8CyaVB1HerlEiGEMzvFWS7pu9X1pmnwd//u38WXvvQl/Nt/+29x586dc6+r8Gwh94VnB4d8eAK2f0mu6jh4zz94/Z3b3at2RrJd42ueD0/2XvE3hpacL1G8c1leRGP8fE/xpdpJPKkdwFZu3jhlOj298WTG95R9TPdzMuBdzyrW4P6tqso9oYNjlxz+MXaO7ymfbq/b9tXpD7mxq/RajfecD7Z0WvDe682g3jmt+LXgjUU77tSnlQH3p/JdrANjfTi3pX5fpK6yHUPyVT6Y7yVelF1S/ZG+r1YraTOGdNHzxV68YOXu1csdIT8G6mCOUm8DmhXQVBENIqpVBJYdsOx3jU+WQLuM/d8KmLbADAFXmwbtdIpJFzDtOjRxhSauUHUrIDSIVY0uBLQhYBWABjWWYYIKOwhYIaBFQH+kegDQol7vHK/Rhbo/Vj12QIibXeO9RPrd5BEdgG590DrKrvECBQq8vyDGPrfZGnqLd/6abOQC+C8Kli5FT7pWbPVYGL0wboOWNBk+n8/Rdd3mSbp79+7hu9/9Lu7cuYPlcommaXDt2jUsl0scHR1tFtQPDg4A9AnWcrncJBmXL19GCGFzZNzu7i5++Zd/Ga+88greeuutbEKnEr+qqnDjxg384i/+Im7duoX79++7wVEuUVXtqcBVJVf2nUzeJIIFnjCwvNm2+bpKOFg26jrTPqaeB16C4bWpyime1G/L65A+2PKejDjBGtvnqk07MaRg6LpHh6c7ucBftadkYCeGWFeHkiRFt6XL0u7J1yYnHu25pMWjLUc7J/6Krlzb3oQA05TTdyWTXB/mEt9cAqsmWVIiDuBMMj6UaFrex4zDoTJDtHvl2GbbpNuTv+LRXh8zrrxxYa/ZibOc3xq6p+i5CIQQEAHU77H//vlf/mV0L7+MZ99+GzeL/3avF/+taSn+u/hvj/biv4v//lnx36l+COtF0d3dfof38XF/s1mn8m++CXzlK8DNm8Dpab87/MMf7r/fvdv/btt+0TzG/vvpab+AHgLw1FP9Z8J3+TLwj/8xFn/5l5i9+uoZfnP8pXtVVeETn/gEfvu3fxsvvfQSbt26tbnHiyT2tzou25OvZ6c8H8712WblFu1tXctzzt6ybJgOpWtD8YbnS22bqi3vGvNgy1k5Mn5Vz7bDvCd+lZ2P8exJFjm+LC7VlvKDiieWR86u8zV+3zbTaNti2pOOWXzpgRNFk+XPjq0x9kfJJX23ug70D9CmBcCcvC3OXH/mYgiW0RCwPLxYhu+pUxos3UrPcmPN8+3KV6rYwP62OsCbgqyMbB17zZMR10/6OsaXeePPi2usDVY785UN82yq9eEcvwzR4u16V7Jh++vF++yrHsWHV4ioAdSb94hHNG3EZL0wHlYdwioiroC4/uza/m8vBiyrGt1kim66g7ptUC8BdB2q2AKxRcQKXVejDRVWocIqAMsQsAg16jBBwAwhRPQzAWt+UCEgoMMSHRrE2CJWcXOY+loKiHGFDgvEuFhf78qieIECBd6f8K6brvBeNLKGSN8fLc8ssOXC+GQywWQyQQj9MavpKde0o/vw8BBHR0do2xY7Ozvoug5HR0eoqgrT6RR7e3tYLpdo2xZt2/ZPwONh4prqLBaLTZs2eLdB6VDwE0LA/v4+fumXfglHR0f47ne/i9PT03OBoQp0cgFWbsLU0jAmmFXBnhc4Knxe4M5tMG6uo+rl+PImQhR4k0+c9Fuaxva1akcFvJZ/ptcLvJlvFbRzPW9Sw9I4pBteYuPxnEv4c3x4crDXckmgh2esfrKMvF2gSoZj2vESe4Wf+VF9pmRgy6hJlIu0zfc9fob440kRm4in++qapStHjy2fk3kuUVc0q3I5W8X6mBs/29oPlo9qU+FQ34fsY86W2uT8opD892wyQdM076n/fjVGPAHgBoC3iO/iv4v/9soU/+3z4cnBXiv+u/hvjx5bvvjvszjU95+0/wZ6PnZ2dlDPZv1O8bbtF7Bj7L8vFsDt2/1R6KsVsL/ff9692+8E390Frlzp3ze+WPT3JhMghB5fCH2drgNOThKDQIyIbYvTqsKu40u9sffEE0/gt3/7t3H37l185StfweHh4Rnd9XTGO3Ic6BfvVqtVVlaeb7Z41HjJ+YicjUj9642hVD+EszsPvTGrbIqSmyrjtZ3kmuopH57APphg2+E6SkZWz+2DlxYv88g+mun3fLhnr3JlWG4sa7tonbOpHAspWSodHrrG/ZyznZ7esC56Ppz5zsUHrMfqCGp+oIXLeH4y3VeLt6of0u+E3ztBwftu61g61JH9nn9UO8IZEs/2IQorP2vT0qsPGFeOBm4/NyZYX1Vf5/yceuhX1VFj0IuVOM5heq18cm3a+uq314a65+FXdnIbqGK/Y7yO/aJ4vex3izeIqFcR1SIiLCPCEggrAG3/F7uADjViNQEmU8TpBFVbAzGgWwGxaxHRokOLLrZYRawXxYFFCGhChSo0QJgCiA93jEegSvvIw3pRPLT9knfAmYXxDguEGPs2EBHPHdN7cbkUKFCgQIECPy0wemEc6J9ovHTpEhaLxblkIO0cC6E/Oi39HR8fY2dnZ3MMa5por6oKTz/9NK5cuYJXXnkFMUacnp4CwAb/YrHAiy++iKOjIwBng28bqKsEaHd3F5///Odx/fp1fO1rX8O9e/fcJDx99yYvVMBkg71c4O4FhEMBLn/n+1yX+0OVs6ACVNU+86JoVjwOJYdcRrWrEnBPBmPw8Y4ULzjOyYz5UX3l0cM668FQQuFN0OQSswQ2GVT9pcYEjzOmkX/n6LHXGYe9Zq97TzqP0V+bmNrExtOnXOKu2vESNM8e5IB5VwlmLsllXbH9lyZ6qqo6N7GYyvGRn0M2jO/lEuyxyfdY3fHKKTnkbF2OFtsf3L7iOQdeHypf5vE8pp0cdG2LZjrdtP1e+u/7VYVPty1OABwW/138d/HfxX8X/138d/HfW8FqtUK1t9fv8o4RCKFf9Ab6xe6083s6BXZ2+oXv+/f794vv7PQL6WmhvGmAT34SePpp4Bvf6PEdHvafx8c9rtNT4KtfBe7dQwwBp22LKc4+jOH50cuXL+Of/JN/go9+9KP4/d///c1ucW8seA94qN9J7upBN8+HMa1Mr/ee4ZwNV2D1Th2j7x0BrfR0yEeonYyKf+8o95ytZl6YTqXvuYVFAGceClA+KH3m7JhasLftqdiA7YrtFy+W4N3USn/4CH4vnrBteEdAj/HhSrY5n+ft8lcyV3QnSKdFWbq5rMeP9V+A3mGecHkPl3jlvddUDPkNhjH9wHaL41E7xqzuJNmlvKmu683DycxLwmtxKt7U96GYRfGo8I2JsTx9zsUXybZ4pywoutI1ts1sC8b6cIYY45lXgw758EeBGhFVB1RtRLUKqJYRIUZUXYdqFVEvgXoBVAugTovjqwC0FbpYAaiBqkasK1R1AOqILraIcYUuLtChQocKK3RYxQrLGNAEYBGSzGqEMEUVWgREVAhYokKNCi2WiGGFDu3mAPUuRER0iDFdXSAirP/BHKdeoECBAj9r8Og+ocBPJ2y1ML67u4u2bbFcLs8ESGmiZrVaYTKZbL5Pp9NNMJjeSbpYLDZP/1VVhf39fQD9ZPrp6SkWiwXatj0TPKZ2cu9qS0F5XdeYzWb4/Oc/j+eeew5/9md/hjfffPPMMVWAThiGAiwvsAT0ZJ4XfNp2VSCqgnGVRDK9uSRHBdnepJyH1+ND0avAu55LOHL1VLLCPCf8Hh6VPA3171BiwnjGypLbU7rhJSuKl6H2rHzGytuD3GSKSryGkjPG7Y2DBN4EmUoSx/I9JM8hGEo4LU+5Omrcc3krmzQJkWxmutY0zbn3btqdEXykWC5JHmv/hnQppyMKlMzs9THAfHm6oe6P6Qtv0sijQ+F5VN1TMNvdRVwusaR32L0X/rsNAS/VNT7dtvgh+vePWyj+u/hvxXPC7+Ep/rv471y7xX8X//1B8d8xRly6dAkPlst+R3fXPdzpXdfActnvBp/NHu4K393t79V1vzA+n/d1J5O+fl0D1671DZyc9Avjx8cPd6NPp/31EIAQ0NU1Fl2HnRj7BXQDyT/VdY1Lly7hy1/+Mn7zN38T/+bf/Bu8/PLLZ+YNgPPv/k0yUnJim6TkqRbWPb1SdKj+HvLhXEbtXE3Xqqo6957aMT5c2UElwyGeLS5P3qkPx/jwdE0dRax8uG1ryA8OvcrELlgPlWUZM1/eOFY7ipl2r8/SNfs9J0PmmRcbPf4SDs/PqNOTmC/mV7XVUc6g6LcLjPY+65xHvzdO7fhU44/xeDDkw63seTwN+Q0ej2kBPISwkUtd15hOp/3DTVV1riyftMCy8dpnOpTOq7JWxnxtyDd617gN9WqEodjBo8vaB6Yzh9uOBdbHRCM/KGPpVbRdBKrY7xbvF8YjqhBRdRGhi6hXQLMEJuvF8XoJ1OtF8dBW6GIDhAYINVBXCE0A2n5hHHGFrluh7VboUGOFiBUqLFGhiUATA6oAVKFGVYV+53rod4vXqLAMNdq46I9ijy1iiP2u8BjR9svsCGgRUaHbLIujLIoXKFDgZwwezQc8fkj0OJbYkluM9WgYvTCekrqTkxMsl8tNEshJn703n88xmUw2R7EeHx9vjmFt2xavv/46bt68ifl8vjnKdTabAXh4dI4N5G0goyCEgL29PXzhC1/AJz/5SXzta1/DK6+8sqGJExVbz8KYJMYLnmw5LzlM1+ykgApih5L6oaAtN/k1xJfCw+2pdzSpJN+TJQevuaffc/QzPhXQsiyUrL2EUekH86qS7yHdGJp84AkP5sdLEFWdi0AuAfN0S8leyUAlebnkU7WVIJcM2zJjxsxQ24pOlXDn7MfYMTY0dvgzfa/revNXVdVmMTPZ1K7rNrqXytg2+V13CnKTUdynjEd9H9LpIbsyJCdFmyo3pNs5OXj9pXhNwLZE0Tmkj2Ogqip0bYvj01Ocxgj8hPz3yyHgF9sW3wkBcyGf4r/PllN0jeFL4Sn++2FZ5rX47+K/Lc7iv4v/VvQwre+V/waweTBieXjY7+QO4eGid/qeFserqv87OuoXytNR6vfv92Xatv984QXgb/+2XwxfLvuj2C9d6htMi+cxPnzneIzo2haLtu0Xx8Wx2FevXsXv/M7v4Atf+AJ+//d/H9/85jcxn8/P9b1nHxmfvTe0A9b+tu1YvOwneHfyGJ3I+QluL5XhhRmFx2uPj4xOPNoHZZRdsWV5HAwtBik8vEhp6yrb5/lLxSvHivYzZ1d4N6myBfY77+RlfCwnWy9nw9TJKN5pKdwm0zkmDvFiYNbhEIZPXOFY1rOZqt9tXStD1hPbv0OxzVD8wLyPiVnUd4tvjA/3/ByP8el0iqZpNidtHR8fYzqdYjKZbHx0GruT9eut0iutvLGl9E3tsPf0dyimUfaDZWPB8+HqZCc1rlVMYPnyaOWxoux1zgaqdvnkh20eshoLVbdekG77hfAaEXUX+/eNL/uF8bQ43qwCqmW/KB66GjFWQOh9eqwDQh2BukPXrRfGsUSHGm1XoUFEi7o/oh0BNQKqCFQAqq5Cjf6d402IWCBiGQNa1D2OuEK3PjC9RYtqvSwe1/UT9wFlnaVAgQLvY0jG7ANlyIL8WmA7GL0wnt4tyscppeTCBhlpF0N6b06qk3adrVYrxNgf31qvj4Gr63qTPKenKkMImyMDQ+iPeE3tJrzpCdW6rnHt2jV8/vOfx5NPPom/+Iu/wGuvvYblcrmpnz69QC9BLgkZSshVPRvA2ute8v4owddY2rYpn7uuAlsGDl7TtTFBp7rOCZiqn0tohiYRbHnGNSZBUMG5l6wovlL7OVnl5MN65skufeaSUKZF4RhTh8HKgWXE1xmfl5BZftSTytvC2PEwJGMFKpHzcI7RT3u9aRrs7Oxgb28PJycnmM/nG3sLnH36n3XLO15wiH6GnOxtH+Vw5IAnDzw55mhjXtJ3NfHD7Srbwrwou5CjI9cfqv42kPz3yXKJSdNg8RP03691HT63WuFvAcyL/x7Nx0XLF/9d/HcOx5g6DMV/F/9d/Pd7578BbB5KR3rwIcb+bzLpryV67E7yyaR/l3g6en8y6RfOl8uHR6VPJj2epukX0kPoF9OXy/57OvI3hH4HedehjRGr1Qq7XYd2HQ/UdY0Pf/jD+PKXv4yPfvSj+Hf/7t/h+eefx+np6Rm7neTCfsDKXPVJTqfZD6dPuyvTW0BVdXN65+mE568sHR5+plfxptrj2ITL2N9em0P2To1Na2cSHUN053y4xcU0DclG0a/qp1g1/VZH5+fiOG7Ljnf22UO6YttI8lN0qwcRbDl7n8t48ki/lc57C5gsSy/2smVzPlzVz5XxaPLGhopLmBd1DL7nl1UfqLIhhM3O8L29PVy5cgUHBweIsV98Tb48vU88jV8+hj0nb6Y/dzS9rctjKYRwbiGe28r5PMaXdl6rMez1Sfq0D/4M2auxPlyVY5688dq27YYXbyPWthC6iBD694s3LdCEiGaF/s8sjDergGZVoV71C+NVVyGiQgwBqIFYA6g7xLpD1bVAt0QXG3RY9seix4guRtSoUKHqF8YRUMeAJgITAJNQYYEGC3RYAmgRNn+ruEK/1B6xRLvZMY7YAeuD1gsUKFDg/QUBcrFYXXtfmLjgfD//s8B2MHphPAVv6UigFDjYnQz2qL+qqjCbzTCfz7FcLnF4eIjJZLJ5UpInmpv1E+knJyeb4CXhT7vW0ntPd3Z20DQNDg4OcHJygslkgs985jP4whe+gDt37uAb3/gGbt68ucHBdC4Wi83E/ZjJChWcqoCLk9T03QbgQ0eOcbucTOZozO0CUfi2ARXkMt1DwfkQXV5/KHq9BMyb8PASJC8hGOoPrjsmgLb1xiR3qk2GIZ1Q5RX9uXJj7ikd9ZJvxuHxMPa6Gote+bG67+nBGJuR0x2m76I8KjrStWSnk+0FHtqilJTbvrIPGfFkQY6PHP18P6fjno7Y30O67Mnc3lMyVTs6PFnneB2rY2rCQY0L+3uMDR0C279d12G1nsT4Sfnvqq7xG3fu4C/btvhvB/cQvm2g+O/iv3P3iv/O0138d/HfFtd77b+BXgeWyyXa1apfxE6fTfNwd/d02l+vqv76/n5/FPp83r9bfGfn4W7xtJie/iaTvqHDw9Rgf20yefh+8um0/723h8XODp585x3sPniA2WyGL37xi/jd3/1d3Lx5E3/wB3+AF198EV3XoWmazakzaWdkWuS3x4sr+839khvTdm7Cjg3VBtcHxi9K2/jG/ra4PH3nU1p4bLBtydGjTmhJ9bxxa9tUuNWx8p6tsmV45zrTq/yLosO+m5l9svcqmQQpfsvFNjamY1nyyRseDwzcj1be3N9so7xTZ+x9rz3Lq6WX+fB21LKMPJky/lQv5xNsmSFQeJReW7xemxbUCUIsB4/uIVB23erSarXanLCZFsPTEerpu8WRHly2O8m9h9y8+Ih1h2Vpf1vbwbhVXGzL5Y6az8XYTIuSPz9sl1soz8lA7aS3Zdlm5+Kix+XDqy6iAlB3QN2tF8eX62PTNwvjFZr24cJ41VaoY1oYrxCrgG59JnusW8S2BeoWXVz2ZVChjkDsgBoNqhjRrBfHJ+u/KQKmscICNZaYYImwXhyP68XwDv2jcP3e8QorBKwQYBfG7V+BAgUKvFew3dzXcPFUIGYvbQ+PBcnFm7VQzPRWMHphfG9v72Fivn7aMf2eTqcAzj65uLOzAwCbINDuMkt17VOG/M6orus2x6p+4Qtf2BwZuFqtsLOzg/v37+PP//zP8eDBA/zKr/wKvvjFL+J73/sefvCDH6DrOly6dAnz+XxDQwqwlsvl4E4HLxDjyQ9VzwuuhnDbe+m+N1mgQCVZHj0qoFd05RLkoUl8BUM88LFuTHfCYdtWyTLDkKyZNk9O9jvrQi4Qt0E4T06oyQIFObnl9NhL5MfgtOW9REclF6pdvjakO2pCJ8fP2LHn6beatPDoUomn14a9ZpM2j0alQ14CqdoBcMbWhvDwHWeJ9qZpNkknL5gyLiVb1Tde8p6bgPHkperzd6/doUkN1efeBMdQQs62kPtZLaLmdG6I/0eB5L+b09MNrT9J/41bt/Dd//Sf8KG2Lf4bxX/b+wzFf2tcxX8X/13898+G/wb6I8rbtsXi9BTHqxUQY7+4PZ/3x6TH2C9mpzb39vrvMfa7vheL/vt83pfr1u8Yb9v+M/nwEPrvbQtcvQr8l/8l8Nu/3e8ib5p+UX1/H/Xbb+Mz//v/jtnbb+N3fud38OUvfxnPP/88vv3tb6PrOjzxxBM4Pj7eyCM92HZycrKZQ7AyGvLPwNmFOqV7vOCTO8qabYC18+na2J3etn2vjhqHSn+9hUzegctHgY/x50O7y3nBmGlQMQeXVzQNnTjDeNQYTDJIkGhKZVg+XC/dSw9LMG8WlN2zMmA52H73bEEO/5hYJYHXh8w741Tjgf0+X8/FWdy258MtDu4ji0c9mKDsLftwT1/tdWsXQghndmwrOpStYBrUA50JlsslDg4OcHp6unkoyM6b2oeFU05jF8WVHHLAclc6quSl4iHbthqTrE8s8xxtwPlF6zE+nMt59flhIbaR2/hwxq142QaqDv3SdQdULVBj/dkC9QqoVgHVKiC0/WfVBlRthdBVQPew3aoCYhURqg6xboFuhVDXWB/OjtgFdBVQxYiAClWsNu8T70t1qNGiQYv5+m3kwBIRcwBztDjFEnMsscAKC7Trvw4rRLRYv4H8wnIoUKBAgYvBFvZ3qKi15dFWMLYtnP15MRB4Hxkc5tTl+Ljb/uDD6IXx9B6ctm1xenq6mbQG+kRjMplsjk2tqmqzuyxBumchBTH2KcoUbD399NP4p//0n+L69ev49re/jbZt8eEPfxhd1+HOnTu4e/cuptMpfumXfgknJyf41//6X+Pu3bvY2dnB5cuXsb+/j7ZtcXR0hJOTEywWi81CQC7Rvchklw3EvCDdw+3R4SU2KkFl2tWEw1CiYdvd5gljplnRxMG3l2AzHgW5BC6X8NvrLENLs+oL5s3KTCWyXvu5INtrNwfMy5i+4bZziS7X83Qix7dXVv3m8eQl3UPJmjeW1HvWlA6pcTNGP1SSbfF5OzzUWFfyVLrn9XlKwnd2djCZTHB6eorFYoEQ+on2NLmeknEGJVd7nWnLPd3OuHgiWpXlNmxfKbvl6ZeiVf1WtDNdnu3gPhk7SeDJicE7Km8bSP57v64xW62wSsej4ifjv6+//jqOLl/GL330o8V/E+3Ffxf/7dHPbRf/Xfx38d8PcXxQ/TfQP6y2s7ODdrHAvcPD/r3gCVarfnE8LX7Xdb+QnRbQu65f6I6x/+sJS0z1C94xPjxivWmAT30K+B//R+Dpp4GvfKW//pnP9J+vv469N97AJ3d38Yv/+B/j8PAQ/+pf/SvcvHkT+/v7ePLJJ/HEE09gtVrh7t27ePDgAY6PjzcnISR9Uzt1czplZc4nvCi9VHZB9Ssv2Hk0WFuUePB2UNp7ih6m2dZnP5nu2U9P1y0epkn5mnRNvdvXGw/Kh3u0qOtqHPJ9ZS/Sb/ugkPIDioacbAB/nFrf4PXzEC9Wlqm8J6ecD2ealE/x5MYPJCrePR+ueLE7+wGc8UOMJ+FPc4hqTKmHMsbY4fTbPpyQ6rHP5t+sx5ZWizdB4plPAlD9k3Kmvb097Ozs4OjoCMfHxxv/PZ1OEULAYrHYnAxjaWL+x+qOesBAydHra2XP7HdbnuXJMhmj5xa8sWzbtP1kcakxkIuNLA1Dsn0cPjys3zEeun6RPKBfGA+r9PdwYRxtAFbrzzYgxABE036IQNUhpFX2uP7DChEBXQS6LiKEfsd5HddHqSNsFsVrrNZ7xRdYYY6IYyxxggVOcYo55phjhRbL9f8t+vePR/NvLalHkkuBAgUKjIOIrRbHx6CK9oKA4N/aDh4bovEQN/8V2AJGL4ynSZmmafDEE09gb28PTdPgxo0buHTpEgDgzTffxP379zdPQMYYNxM3KYgCzgahHMDXdY2rV6/in/2zf4YnnngC3/zmN9G2LW7cuIEHDx4AAJ555hlcunQJt2/fxosvvogf/OAHm/f4pImj2WyG69ev49q1a7h06RLeeeedzTGvFnITGha2CdC9YNILeBMdfG9MgsTlOehXgbWiX8khNzmQg5xMVcCseFF8DeHiujncObxesq/aUb8Zj/3uJeVD8lK4GK9t16vr4fd+e/cU/wqXpWXoSeEcLSpZ9saZopvp9UAl5qqMuu+NES95zY0j5tEmgpy0M+8Jb9u2mM/nm2Pd7CRIStrT9TF2Madz28o4NzaG7LFnK8fozxi99e7nxrkH3sSGTe63sUEXheS/q6rCE088gaf3999z/33w4AH2j47wa02Dk2eewZtdV/w3zutw8d/Ff3t1Pfzeb+9e8d/n7xf/Xfy3h8OW+0n4b6B/TUld14g7O8CVK/1u7ukU+PjH+99NA7zyCvDWW/27w9u2X8RerR5+TwsF3fo95NX6XeQhADE+XBT/0IeA/+l/Ap59Fvj3/75fMP/EJ4B33sE0Rnzq7/wd/KPr1/Hk66/jq1/9Kr71rW/h9u3bG3lMp1NcunQJzz77LD784Q/jiSeewA9/+MONn7fAC1GqX1neuX5Udtre5zp8P8VJPK48XUj2gHcmAg93JydcyjcybsbLtCsauAzL1JPPkP2zv9XuUG7DymGMz/faTWXUgq1XX9kCxm0Xk62clU1nG67ozMUgSgaeH/TK2DY8nWBa2C4rH86/1fhTNLE/8/rG09G0UPk4fLjXHo8tS4cFNWaH/Iul39okbjvBarXC8fHxZvFb2Yj0sO82PtzyoOqxLiiZ2OtWL7xd/dyGBe+hQduGsmW5cWvvc3nWaQXpnjo1hPvP7ixne/K4fHgV+wXxulvvEsf6s8V6d3i/KB5W1XpBvEJsA+L6O7qAkN6TG+IGYahbhPXCeECLDgFVB3RVRFjvFg8hLa4DHVb9EelxiYAFIubocIoljrHA8WZZ/HT9hvEOHVbrd413Zbd4gQIFfqKQ7M/AvF8cKhKH14wfu6lLBHmIw0Cjw3OdGyhm+sIwemE87ViYTqe4cuUKZrMZnn76aXzoQx/C1atXN+/RSe8jTUeup3eKpd1k9ilr4GGAkhKWyWSCL3zhC2iaBi+99BKefvpp7OzsYDqdbt4Vdv/+fXz3u9/Fa6+9hgcPHmwCzhTkpJ1lx8fHePDgAW7cuIHLly/j+Pj4zBOEuYTGgk0AxhxBqhIVFehxcpejwd7j5Mfy4yVqXiKiJsl494hKthQo2aigVU2qKfqHJj+8exZU0mTvcblcIDyEP1dH8eRNung4WJ84YfcmOrzJDo++Mck7lx1KKjkx8WSSo3OIrhyfY67nrlk+vbJDeHhCIge2nreTjeXPdUM4v6MsxnjmHdHqKf9UN6e7Hq1DY1Yl51xO2cptxmS67vWzGudjdED1pbrnJeJD+HL4PRrHQvLfixCw3NvD5ffYf+8BeOr0FIurV/Fq1+FbL76IV4v/Lv5b3LNQ/Hfx3zm8qn11rfjv4r/fz/4bAA4PD3FycoLjvT3gqaeAS5eAn/s54JOf7BfJ0zvD5/OHR6wvl/07wVerh7vHk87Udf+7rvt6zXo6YDYD/sk/6T+/8Y0e//4+6r09fLGu8c8WC+zeuoX/9JWv4P96/nm8/fbbOD09PePDT09PcXp6ivv37+Odd97BJz7xCTz55JMbf+/5IED7HL5mx42yM2P9VvrNi2Rq0c/qBL+/mHcvqnGt/CTrTLqWHkxkfN7vBHx0MPDw/d9Mr5UFL1qpHdLpfvrzFuUYeBevKpfwjdmJy9+HYgTLk+WB/a8Fz74oHfLiIQU5u+bR4MUeyscxTdv6cLbxVidz7TE/F/HhQ37dG0tMD4PXJ3aM2XLK9ufwKFrSmAshYLlcbnaEJ/zpYbc0p5nwK7nnaPD0nmXCOcG2PjyHW9nDIb2z9VUdpofL2LJqwX3bXfOePWZ4FB/eH6XeL4xPIjDtgDoCTRfQdAFV1y+MxxboVgFYBVTLClhWCG2FquuPVY8xAAiIoXfbCBGh6vrFcbQICP2aUIxABGLs+VqiwylanGCJ47jEcVjgMM5xhP7vBKc4xhzz9UHqS6zQIaID0K2XyM/vFi9QoECBnwSMsEERQHqY6DGjfjRQBMWBhrdlIuEssC2MXhhPQWQ61vT+/fv4/ve/D6APIJqmwWw2QwgBu7u7m4AvTZjbY5K8wK5pGnzuc5/DZz7zGbz55pt47rnncOXKFdy/fx9vvfUWfvCDH+DVV1/FrVu3cHBwsJms94KZtm1x9+5dnJyc4Mknn8Te3h5OTk7ksbCprgqQLKjEO1de0TUmWVAJjqqba4fbyCWANhD3AkLuO6+MbW+IJi8BYNqYP5XAKTqYV3vfC/7508oulwgPJXJjElNPRjnITcJY4KMGPdl6+PnamHEyhMcDlu829KZ7nDzlJlVy42Io0Vf2LId7TJ/meMwlqdyOoiNnC3I4VaKb+ianx7mx5uFXYzDHN9sFT75jjolLoOgcsvVqLHJ9xU9u0oAnAC4Cyf8u2xZvvfMO7r6H/ju+8w6O//Zv8bWDA3z/9deL/x7ZDrdR/Hfx38V/P6RPlVP1i/8+e7/47/ef/wYeng5wcnAAnJz0O8O//nWskfe7xy9d6mfLL1/ur61W/YJ3VT18r3gI6xn1db1Ee9cBOzvAf/6fA//gHwAvv9x/Pvkkwu3b+LuvvIJf/+u/xp/+1V/h5ZdfxjvvvIPFYnFmfLFcFosFfvzjH+PBgwf46Ec/iqtXr+LBgwebB/FYTjxuc/3A45rtc/Lzyi9wO94u5zG+e8jGMW3Kj8V4/mjqnD336Ep4Ek41Pu2n3empduN7vtXe8/ogt1NT2SBbh+3+0FjP+QdPlmNiKuD8e+s9YDxsq5SMPFtpPxV+hU/pFdOt+oTxMP32lUlqh7mVpyfHIV/vfTKtyldwG549UXg8mTL9qY4av6y7Fjyd9U7fUf7F4sz5v9RHqq53koNnI71+s9dSTmjbHOpn3sGt6OU2lBw8/CwXb4FctZUbq6lcjr8hqDqgCkAT+4XxSQSa9eJ4HfuFcXQBaAO6VUBcBsRVAFYV6lWF0NaoYoUYK6DfNg6ECISIsF4cB1pgvTCOGNHFiBCBLq6wjEucxCUO4hwHmONB+sQpTrDAYv1W8dXm0PQOcY0rrn+rxZtw7kqBAgUK/LRAfLhAbj5Usfc9RBiD/EFg6CcDoxfGn3vuOZyenuL4+BhVVWE2m+H09BR37tzBarVC13WYTCaYzWaYTqeYTCabnWdA/yQz8DDQ4Z0OIQR89rOfxT//5/8cP/rRj/Dss8/izp07+JM/+RP88Ic/xO3btzdHEvGRN4A/sRpjxHw+x71797C3t4fpdHrmCU0FKpm03zlR8yYFxiRTqZxKklRw69GnAvNcUMtJs6IpV9eDIV4tboXPJhAqCfLkqRJEizvXD14yk+p5AXEucVVBuKJ5LG+KLm5TlVfvm/VgSB/UxINq16szBreXlHrjWwFPpig61LjO4cnRbmkaM2685JbrqUklD7yJJjU5sg1wP+Rozk20KJ49HVZtWt64zhiZe+Mwh4dp9uhSdRXNY9r37l+k7ywk/33tzh08ubf3rvrvmz/8IX7+2jVcfuUVvPrCC/jezZv41uEh7s7nxX879BX/Xfy3Kl/8d/HfxX8X/w0Av/Ebv4GjoyN868ED3A6hPz79wQPgxz/uj05frfpd3vv7wN5e//3OnX7neIwPd4SnneVt2/+lneNV1S+E/w//A/Dqq6g/+1ns3byJ5n/9X3H5O9/BWz/6Ef4/9+/j5OREntzCOp+ud12Ho6MjvPnmm7h69Spms5k8VpjHoNILboflm2ymrTPW9qXxxkeG2+/sw5kmtUCb84dc1tLqPUjBdlHZStWmhyuEs4viym6qsctt5E7GsPXsAl0uhlBjl8spXLZ92653z95XvkfhGKujrI9Kfoo3BUqPczELjyXls4b45Gv8jm2v/xiv0kM1dpm2ofFl76dFVwvKHrOOp7o5GlnPPP9p+zyVS3Tl7BCPX7aHvKBs27Nyyr3aY8zrX2xZ79QNKwdvIR44qyu2jgLV58oW24czmPYxPtaLJ3N4+IHUi8L6teCoun5BfIJ+QbxOu8XXn/0R6v0u8bCq+7+2RugqVF2NfmG8XxyPm6PVO8TQ+/U2dFiFCksEzNFijhZHcYkDLNZ/cxxggUPMcbj+nG8WxNvNYemp9+N6peX8LvFHj2kKFChQ4L2BCCA8XDzmWz8xGNu4V46YidvgLKBg9ML4z//8z6OqKty5cweHh4e4cuUKTk9PMZ/PcXh4uAkoJpMJdnd3sbu7i+PjYyyXS1y5cgV7e3s4Pj7GnTt3cHR0tAmW6rpG0zT47Gc/i3/5L/8ldnZ28PLLL+OFF17ACy+8cOapdDWhnr7z05Bc5vj4GHVdYzKZYLFYnNt15k1wWPxe0GzLjUnCGYcXcHFd9VslRjnITX6p74o+rsfBPPPH5XJJt0p8vUkEjx4GdZ/pyCWIQ5MQXIZ5ZRq8BF7JxkuGlcz46dhtdZFlZmny7tu2GNST9l5fDSXJKhn2wMpRLUbZ315y79Hm8ZqzH3yd9Ujh4vq58ejRyr+HxruaRLHASbjinXEP0em1yXR75byEf6xtZDpzkxAKb+6a14ZHj7Kd24zZHCT//fT3v4+3dnbeHf/93//3eObwEIvXXsPzP/oRvv7DH+KNe/dwUvy3+7v47+K/i/8+C8V/F/9d/Pd5+K3f+i3UdY1bN2/i9p07wI0bwOEh8Kd/2i+Ap13hs1m/Y/zKFeDevX5h/Omn+9/37wM3bwJ37/ZlgX5hfGcH+NKXgP/5f8ZHn3oKf/dv/gbtn/wJfvCnf4pbP/oR7p2coOu6M++6t31sjwROwLv9Hjx4sIkv0qtdVExgZef5ZW7f0qFsPeO1kBZbho4Gz/W5tQsKlI6l33zMsZWfve49nOKNfSVTS6tqU/n41DbLgNv2jrsHIBe0Ujt2p7znw+272m1f5WI9ZWuVvWB6GHhxjo97t/GreqiC8ac6Xlya6LLyT68YUnLi9ux1uyjL/A/5McZl6+eO2reffM/TQa9dS1vSIRU7efZD3VN0KhqZD88PeGPMXsvZISWzXJusO6rfLaixYsvn9Ih1lOMHTx8ULi8Wsr+9fkh08C71BN7OcmXrecwqnbTtWtvuyXgMhLV5TIvj6Vj1tFs8/aGrgG69GN7WqNoadVujapv1AnkNdGnnOABEdKFDF1ZoQ4dTAKcAjmOHw7jAYbfEQVxs/k7jqv/DCnOsMDcL4mlRPG4wQ1yxn2vezl0pUKBAgZ9SiMDg6763QmbhsSG+YPsFHhVGL4y/8cYbeOqpp84cr7pYLFDXNa5evYrpdIrd3V1cvXoVTz/99Gb32bPPPovPfe5zAIBXXnkFN2/exJtvvom3334by+US+/v7+NznPod/8S/+BX7u534O//E//kd897vfxfPPP4979+6dScSB8xOLKpjkgCvVOzk5wf7+/rknyr2ESCWJCReX4+PLvADKS0gtb/w9h2MMbJMcpvvek7dDEw32t5eMeBMEFrx3OA4lIgqXop2vqeOkFCg5qsRGJe2PE7xkc0wd77cFlUCl7969IfCSjvRdJSpclvst199eksa0e7qtEutcuwpyR9d5dOXsgqLTm1gYo59cfsjOjbnGuq9sLE8WeBMVCq/CrcDaYjVOOBHPyYo/vXrejpNEi30Sf1s7/iiQ/HcEUK/5fhT//c6tW6hPTnBlOsXnP/Yx/LP/5r/Bc5MJ/n9vvon/7717eP7ll4v/Lv57kJfiv4v/9top/rv47+K/H8L3v/99fOxjH8POctkvZldVv1O8afqF793dfkH8mWf6d4/v7PS7x597DviN3+jLf+tbwAsvAC+9BLz2Gqr5HPXVq7j+pS+h+pf/Ej/3yU/i//md7+AbX/kK/sN/+A+4desWlsulqzfW/jKwPe66DgcHB7h27drmBBrPHvN45XaVn+Z3SFucXDf9zu18zfkqz6Z449rzJzkfnmRkryU8arc948z5FsWXojVnT5XdAM4fa87te7ZT7cpVslUxSvrND1pwW8pHDNkgT06enD2fwH2d7IniRemYahvwX7GSs51Wzlbu3isFcjwqmapxx+0r+jx8OZptGaXnOV+t6gzxy23ZnepMq9XHXFzgxQDqYRPPd7Ld4zGsHirwxkRujKvjyb2HYux73K2+e/ZA9YWyq7wQbsuoMWXp9WyAB4/Lz8cWSFuxqw6o0S+E111AFdNf/x7x0FbrBfAaoWtQtTWqrv+L613jMYZ+yTpEtKHFKnRYBOAwdDiILR7EFe52p7gf18emdwscxgWW6NDGiBb938M3h2OzEP7wu/FhA/yFEWUKFChQ4IMPxRK+n2H0wvje3h6effZZfOITn8CdO3fwxhtv4M6dO5vdZbPZDFVVbSbYr1y5gqeffhqf+cxn8OSTT+I73/kO7t69i+vXr+MLX/gCPv7xj+OZZ57B1atXMZlM8OMf/xi/93u/h69+9au4efPmmV1pnORY4IkMlZikwKZtWyyXSzRNs0n2vaCYP3NJkUpKbLlccqVwWjrGXBt7f0xyGII+Ls5LdBj/mCDSk5W6b9vzJgDG0OhNDHgJNuNnnVDJuaI9B0N6pRJP1ZbCqep740Lh8NrihCSXjDO+IfmoRMcmWGwDPLoVKH3z5MGQ48Wjhcvk2vJkoiY1PHuiEvccDB17qOjg9phPpXe2rOovvucl46nv1WQB86/w5OwN86ra9drhurm+4TE4ZK+20e8hSP77Q1ev4pcPDvD9Bw8u5L8/tbeHL//CL+DZ/+K/wLOf/jQu3biBxaVLePUHP8D/6w//EF/95jeL/zZ0FP9d/Hfx38V/e+WK/z5bRtFsf/+s+m8AuHr1Kp577jn8P77wBfz1zZtYfv/7wOuv9zvBL1/u3y9e1/0C+aVL/Y7yT30K+Ht/r//+ta8BP/4xJh/5CD735S/jv75xA782neLDu7t4ejbDm7du4Wv/y/+C//cf/AFefPFF3L17F23bnuGNfUuM/QIuLwCx7NO15XKJ+XyO6XSK+XyO1Wrl2t8heXE/2Lpqd/UY36vGlXrILGd3vPZt3SGfkBbFE925BzYYUp/Z+zlZWXl69z0bpuy5Nw68eICB+8r6Le7LnJ6ofvF4zckgFx+o38xD6j9emGS+xvCg2lTvq7afLKdUn3er83i1ZRmfotHD6YHn0z05KL3jB0Ry4Nkk7qMEuXdvW6jrGjHGc7wrWVj6+aE7Ht9KLz19y+mt8ulWJvZzjOxCCOdOB/FkY+nndpQtZBrt9TFHmudsimeHuK5Hi4d7LBwfAdMaWFZANwFCA1SrgGoVULcBdVuhSgvi693iaGug7XeQd23Aqg1YtRGrtsOyi1i2ActuiUUHLLqIedfhsG1x0LU46FY46Ppd4sdxieO4xGlcrRfDcWYBvP8VzH7wswenR/M/yqJPgQIFCjhQ7OP7HUYvjM9mM3zrW99CCAHz+XyT3E4mEwDA4eEhAODg4ABd12E2m+Hpp5/GYrHAN7/5TfzxH/8x7t+/j729Pfzwhz/E9773PcxmM7zzzjt4++23cffu3c0x7emdpyooTQEOP3moghkOMmOMaNsWdV2feWdqAi/gUtdscGUnezjQ896jNgTMQ44WLm/pG3sPOB94esH4EN1jyqkAmftW4cvJ0Auox8ibQb1jifF4NKhkb4xe5YJ6+6mSHG5XyWIMDbmyQ22q+7m6qT1Px5W+WjrHjo0h2oeScY/WXGLv9bmi15uYUTQPfeffig4ee6quGp+qnJ1U8GSh2s/J3bMFafKBy/LRhqptTw7cn2NklLPhOV3iup4MOEEf6zNykPz3i22LZ+7fx1uTyVb++//64z/GU7dv453pFC984hN44vQUs1u3iv92oPjv4r9tfftZ/Hfx38V/Pyxb/Pc42N/fxx/90R9hGQL2jo9x/+ioXwTf2QFC6I9TB4Dbt/v3jV+61C+Mz+fAf/yPwL/+16jffBOfuXYNf++v/xr7H/kIvhcC/uTNN/HGG2/g1q1b+PGPf4zbt29juVxitVplF5jTb+Uj1fHYqe5qtULTNJsFJV5kyclUyTedYJfwcP/w8bvK5ikbrfp3qP9Zf9n/5sa9lduQTbH8D9nRnJ8b4iN9Di14jrH16qGKnA1mH271ztI8FG9YnNvYlxzYep4/sb+94/KZ5xwtSoeV7fN2zDJOLqd2iydZq3tMQy5+UXL3/Iu9p050sHId8uEWnzfOmU7rkxjU/Zw9UTyka2r3tKqfa4NlwLIeg1uBp0+JdpaHfYAq17dMw1B/2O9qjORklRtHQzZc+fBHhcMHwE4DzCugmwZgGhBWAVVboV5VqNsK9WYxvOn/1jvEuy4tigMnbYfTVcRxm/46nHYdTmOLk67DUbfCUbfCcWwxjy0WscUCHVaxxfLM7vBIS93xzMI4ztxL3x5dDgUKFCjw3kLwfwY8oll7ZASPGX7a6Hn/weiF8T/8wz9E13Wbd4Tt7+9jNpthb28POzs7WC6XODo6OhfQPnjwAN/4xjfw2muv4fT0FADwgx/84EzCGkLAdDpF13VYrVZuklBV1ZndYuk+oAMq9U6r1Wp15mlsC7lgytLCwVQuELe47WcugWS86t7QdebLm/hXZTnZU/R6MlDv2PKSdi84zcmRr+eC4G2CWebX29UyBnITE7mgXE0Q2jq5frbJsrqnkpWcnnIdr02lL14dry+5HuuOl1xxPTUBMTSmlY3wZMhtK51V34cSeNXuEP9Mm+pj7hu+nuPRQm4cW1vLdWz7Y8ammlhRExS2HC/AMo1j7aPF6/Ul86wS8iFQdCu9GDP+tgHrv3+9rnF07Rrq3d1B/310/z7e+frX8cRLL+E7qxXuAGhu3Sr+u/jv4r+L/y7+22m3+O/ivx+n/waA3/u930PbttiZzRCuXAGuXu0Xv69dA/b2+mPV790DYgRCANq2Pz79nXdQ/R//B+q/+ivsHB3hdQB/8O1vb94ZnhZpZrMZuq7DYrFwbU5d15hOpzg9PT2nO0ln0ji24znd77oO8/nc9eG2rLpnF5l4p2zCl+7bndPe2MzRwGNP3bd0MC41lsfwOcZuc7lEa4xnF09zRxcDDxe9vAXXhJt3zVv+mW+mMxen5WTi7UrNXRszpr1d2lyWj+b3bLICpsnziWzjhnyXh1ddz+FRuDzePBvND1N5tKh+9nyAas9eTzAkJ4/+BN4rUhT+IR/EflL5TI6N2DbaNtnmqnvcduKT7yl6PNs5ZHMtL8yrtSNMB/Oek7cXa3jXckfVM+2MZ4wPH6JjGzh4ACwnwGkDLHcCulghtpVZHO/fJR5XFdDW6FYV2lWFrg1YrID5KmK+anHUdjhsOxy0LQ5WLQ7aFsdd2y+MxxVOYovjboUFWnQR5r3h8czS9rpX5D7weOZboLsFChQo8JOAi9vfbPVHNnE/CRv5iLIo4MLohfHT09NNojCbzTaL3Lu7u7h06RJu3LiB69evY7Va4d69e6iqCrdu3cJLL72Ev/mbv8HJyQmAPrhYLpfngqeqqmTyZQORpmlw5coV3L9/fzMBnwIt+54fW5eDQj7OSrXnBa1jJ6S8JFTxpQIyG8CqxIkTNW6bk4pcAsv31PuDcjLgJFMlIUPBpJfAe0fC8jtmuQ2VWHjtcv0h/qzOjZmwU0lJLkGwtHAyzjyqHYLeREuOHpYF12O+1f1cQjg00ZPK5fDydVvHa1vhU+15faraztHj6YM3Vi0+T79yybICT888Wr0EXtGfq+fZF8WjvaZoHrqW48OW509l1xm3+q3aYNrUb9uGwu+Np0dNwBVY//3GZIKPHh3hByG4/nsSAqrvfx+3XnwRf/HSS3h1ueyPXyv++8z14r+L/1b1bFvFfxf/Xfx38d+PCgcHB5sF5av7+5gfHeEE6I9Sv34d+OQngWefBZZL4I03gKbBpZdfxjN//uc4/MpXcHhwAABYdd1mUTzRW1XV5iQWTy4h9A/A3bhxA2+99RYWi8WZBRalZwm/tXep3bqusVgspE3lvk7xgSdjtbhm6VeQ6yNl81ke6Zp6HYySg4c/Nxat3BLw7/QAgPLBSl95jFm/zPW9uCAnU4uD7abyAcqHW9qHjhu37fI1i4fbU7JhOSi7ZHGxzMbEGsrGs9yUvFJ7Od1WdNjFQ+Z3DAzZddX+GOCFSV5o5/GUG49Klt7rB5hOlqG1acnmsC/y6LDf+aETll+qr3IfboPlkuyjZ2+5j4diBOZFyU/Jypb3fLHXDpdTY8nyM6QLSeYpR/RwWBmm8mxfPDvxKHB81G8CP2iABxNgtgL2Y0CDfsd4XFbAqkK3qtEuAxbLgJNlt/4DjlbA8SriqGtx3LY46jocty2Ou269M7xb//XfV+jOvDccm++b3nAWw+2vcOaOvVqgQIEC7z68R9bGNrP1Gvd7sSg+Vg7lIaZHhdEL48DDAGE2m6FpGsQYsVgssFgsNu8j/au/+ivcu3cPx8fHuHXrFt58883NTjQVXCbo1sl6uq+Cq8VisXnvWS6B8BJOm+x4R5ap9r3vqg3vmgKVwI65p9oZChgZhhJ2T75jj1Tz3oHIdVgnVPKuaFXl+boqq2j1Ep/ERw7HEF0JhzpuMN0bok/xuU3Sw/x4SQPXV5MnOb4tbd77tcaMDTWRoOSqeFZ6ptr0JixYFrmdFKptbjf9VomnGg+si4oXTy62jte24plhjO3ybF6unz0bpSYNuA637U2MKPqUTPia6ldOlm25XIKfo0Xh8q7lJhguAgnP/f19TKoKn5nP8cZ8fsZ/f+uv/grLO3ewevtt/Ie7d/G9u3dxeHKCrvjvc1D8d/HfxX/ncSlei//WcrF1iv8u/pvByvfJy5fx1HSK73UdDk5OgJOTfmH87/094P/8P4Fbt/Dkiy/iE6+8gndefhnHd+4gdh26NS12N27Cm3aPx9gv1qSjzhP9Xdfh9PQUP/7xj9G27bnjcxWtrFcJj13oTnjsApEax/Y67/jkMeHZL6YtpwPeTnDGyb6Vx0fO9tqxZvF4fiv1DdOh+kG9xkDZDn64gWWqfJaln/lUvtHzdYl2NZZtLOLJQo1xpivhsCcIMI+5se/5Rc/3Wz3I6Y3Hm9JLjzbmwYsvPJ1X/k+B8k9WHoyHF3rH+HClWzz2PVmoB3RYF5leZZssrwmvfSCH6VOLxywbrqseKvZkku4rfVBtWxxKH5Sv5rIePywfDxeXU/bBXkuyUjF2bnwzDQmP7RclQ1uPHxqx19S48R5gGANHh8CqAQ6bgAcNMFsFVFXAtA5o2gpxVSOuarTLCotlheMFcH/Z4d6iw4NlhwerFoerDsfdeod412G+XgxfxYgOEW36PHNk+ppn5xPO79zVAgUKFHhvIAI/U4/iBFzc7hZ7/Thg9MK4DSRWqxWuXr2K69evY29vD5PJBJcuXcLXvvY1/Pmf/znu37+P09NTHB8fbybBc4lhSo7t7wQcbK1WqzPlhgI4dQyQva+CLlXWlldBvmrfu+8leNwuJ6ZjgvmhRDzXrmojxwe3N0aeQ4mopW8Ij9IrD5+X0FtalG6oJHdb2aqkxtKhaFR9k5sMUrx6SY+XjHp0egmtx7f97SVUnKh47Sn99O5xG0N6pMB793FuMoNpSW3njmvzkknmweNvzP1cuzn5eHrD/DGM6Xtb3xuTSodzYylnCz3ecsm8qjc0AcFtezQMJfnKzih5bgvWfy9XKyyefBL7V67gt2NENZ/j0wcHeOcP/xAPvvUt3Dk4wJ+tVrh9elr8t7hf/Hfx35YORWPx37rt4r+L/1a4i/8ehhjjZqf3YrHAx555Bs89+yxuXbuGN6ZT3L52DUf/2/+G6t/9O8zeegvTw0O8ev/+5tUlnu1J19MpLl7/pmvL5fIMHiUry7Pnw+0YYz+kynJ7Y3TYK6deTaJ03OIY8k25sZnTf7U42ratXJDj9uzuSHs956c9/VS0KX6HYrLcNS/28NqyYBcCbf957aVFTRVnWNq3seV1XcvFNFuffU0at55Nsb+ZL48OT25WNrZczjZzG1Yuydcn2njsqbHIY9rjw6OF7TLTnmjicor+1F9KB4YWOXO6Y3WM5cg73/kVOzk/kOsbfs0M85rrH66XZGh1xeqsas/qcrqes53KvzI+lqdnQ3NySW3YMcp2xtNzxh9jlGP8UX03AMznQLcCDo6AOzVQr4CuAWIDnHbAtI2oVx0Wi4D5HDhcAHeXLe4uWjxYtThYdThs2837xNOu8H4xHOd2hkP+3kjB3D0nDfPJfD+s9+gSKVCgQIECBX66YKsd4yGEzVGr6fdiscDBwQEePHiA733vezg4OMBqtdo8fW7rqmQml0zmAlIveM5NRqRgLb2n1AaGqn4uQbQ0MG22jkrQvaTdSyS84EwFaywflVCpe17gpxIclUDa8l47fD/Hh0eTSsBUGU/2uTaH+s9e8wJ1hYuTEKUHuUkB26ZNOvhaKss0Mp3eRIWnAyoR80CNIdWOwqGScR7fYyFXVumHV1fxknsvpq2vJkCsXcmNI0VHzhbYMmNgqK+9pJbL5PB5vI1J2j29HKPXCUfO7niyspMDnu6lPhx7pKHFwZ+ePHI4Lwrsv78XAm7u7+PwwQN864UX8P2XXsKdw0Ms17vBiv8u/rv47+K/i/8+y1/x38V//yT8d8J5enqKN954Y4PvQ6enCG+/jS++8w6+/md/hrvvvIPlcomT5fLce7Zz73/1xr3l3/KVFhC479NnsgFs80MImM/nmEwmm528FhKNuWOMrTyG4hGlb56fVjiUD1Y22vLq+U6LM+eDGY/Su5zdSvIf8qGeTic8ahzZskreOfo8/8L94F33/DbzDpy1AXaRXMksZ4eULCz99vU+3F+5464TXRaXgiG7ovqQfTH7PUuD/a1s5dCDECp+UXQqHrwxavtDLfR7J0IwPco+hRA2tolf7zDk0y2tSn+98e3ZC9Um2+ucncidWGRp5baUD+P2cj5OjQtltxi3xTH2oWe2mwk4Jvd81pAPV3rEfeHJcxtYtkCMwMFpRBOA5aLDURNw0ARM4wpNGxHaFvNlhfki4HiF/h3iqw4nbYeTrsNp12EZI1axwwoRXUy7w9f0rf+Pm+8wS+OBfp/hzKGar4+P4QsUKFDg8cBD+/WeQIBvEh9PhQI/xRDiSE+/s7PzsJIJJnZ3d/GpT30Kd+7cwZ07d848da6O6FLJA4NH0jYJqr3P9Zum2ST16el3bntMgJxra+g6gyeLsfe5vUehfygY3LaNXKI8Rt5efQ+8JJ3pVom+DaqBs0/Pqj4Yoi2XwA/JQMnE0wOvrHrP1Vh61G81QcDXx+rqEKi+8+55Ex8ezlRX3VeJtb13Ef7U+FL6xrxdBB6H7eLJjov2p5csqwmYHM1j7OvjonNMucchn4u0yf5qLBT/nYfiv/O4c3j4+9j6HhT//bBs8d8aZ6qr7hf/Xfz3ULn3m/8GgL29vc33EB4u7ly+fBm/9mu/hps3b+LmzZubd39bH85Hp/NYYHl4PObsjfLraWwnSDRPJhNMJhO0bYv5fH6mPW7To83Sk76rXZVK98bacYvfexct4/OOOB6jL1ZufF31VQ6HitnG1FGy4L70YgxlY5VsFL/sA5K82YfbdpgWJSOlg1Znrd+z7xz2ZOK1aXln2aV2vYXanGwZ0msOLqrriv5cXds36uHAMfLiOmPGh+evbV+psaDKc7u2T5KdZPB8Uy6O8fres2nc/zn5Kdl5upKTvXrlldJfjw/G6bWn8KjfCU/u9RfMG9uWoQcllCwUP14de936q21gUgdUAdidALuTgP1JwKWmwuW6QoMKoQuIXYX5EpivAk7biJP24WL4Mq6PSo9At1n8PvsJnF0cf/ib4fEs5CRJPjqmAgUKFMjBI8xJXKTqhYzao1pCz6KGhx+DTRRrnINcHpRgqx3jjDz9HR8f48GDB+eObEvAQZUNdi8SyOfAJlAJPwd86Sn6lHTxE+uqbRWg870x13N0c9sc/KV7uUSKJym8tlTg592z7Y5tQ+HOXc+V8fpe6Ym9nu5xsJs+7VFOXkKodNBLbC2eVIaPch2SRY5fS7PSR0427G+lKzk9ULzY6zkZKn3NgVfG0zMvYeTEUrWRSzpV+0PvyRsLOV1X+pmzjTnah8bxEG0J1Lse+feYvs0lobn2vckQ1a8K5xgacjwoW2f9yVi6+drQ+Pf4G9uXY6H47/P3xlzP0c1tF/9d/DdD8d/Ffxf/rWkv/jsPTJs9IvjBgwd4++23MZ/PN+9rtTqkjs1VeprGDC80MB3eOLR1+DhwG3O0bbs59aWu63OvWEnfud2cTHiM5nYI23rsFzx7kT7Vu9Bt2SQ79S5wlvmQLVT8eu169G4TK+TGoG2T5efZPiszFfMo/VN4mG6mN+cbbLyY8Hj4xxyhzP3HOuXZNHVag9ID/u7J04sVmFYPRw6U/fTe423bSddzi5yK7zH+3tPrHE85e527p9r25Oj5pLFyZhmqsTHkdyw+Dy+XH/KF9npuXA7ZDMWLp/sKh22f+fPe4+7Rnb57+Dwfk5PRWIgR6CKwWGHtA4Fl3eGkAmpEIAbE2GLZBizbfof5InbOgvga59YL4hh1dzRPjwVLgQIFCgxBxLkVbnY9bJAeYS39YvAojwoF5ztdGsNTMcyPBKN3jE+nUxlspcQ2JeMe5IL29J3LDgXyuQQv3VfBX6I5BfDpPaqqrqV1zBO9KlHyeGLexyYtQ+14CXUugPUScZbtUH+oQHtMP4+l1QMvUfd0g2FsOa+e0pchfGn8qKR4W/5Vm0PJMl8Dzj95e1HIJbbpvm13CNfYsqncmKR5KDnfti0FFx0vufb4fXXe2M+NA2+8KJ209DFt3iSFSoiH5MHt5ZJWL6FnWQy1l9NT5sW2YeXk2TYvqc+NSc8/pGuLxSIrNw+K/y7+ewhP8d/Ffyco/huD7Rf/7UPx34/XfwP96S6WtoS3ruvNe1WVL7Q8MW/b2Dm+ZvuVd5NyWyzruq43R6mvVqtz7ze39CacaeyM0Ymh0y88H27pz/Wlhy/RyK+SsKDsPKBPt1Djb9s4Azh/7LBtwxurylYM2Up+0MrKhHFZ+oZiRA+UXqh4xNLPfPCDIOp45lz9If+4jQ6k9m3bnv5yXWXzlS6zPeYTDtRnkq967/0YGpWsrN3gvhsb93jXc7rKfCmZ5HSffXgOPP0Bzo53fi0U2w9u07MPjNf2GftgJQ+vPdtPtp4FNQbY16r+9eoxfcoPN00jH4xWvCQ+lBw4ZrC0sIxOT0/PtTcG6hAQAlAFoA5AXQGTENBU4eFaRwzoOqDrAtqI9VHp/WcEzi2Er73CmXWQ7bOgAgUKFHi/QJBfNxAz9y4CFzaoXDEMIMsQvBUvsTiBDAzlFAC2WxgHtpvsVkTYIMleU4HJmKTdA9WOvQ70yTmATWA1lPTlkqShRN1CLgjk8l7AZstxksE05YJZj8+x94YStFzC5LWjgniWA+uGpzdDbV0UxuLNjYcxsvTwMc4x42dIT1XCx+15SaFqS93bhrYhelWZoeO4uB+2wa9kOyYBH8LN+rrthMhYmsfYbcabo4Mnb4ZsdU5OXnuqn9TkDZdRNCpZeHbdw8c0e3ZW1c/JweqVmmBOcNGjWIv/Lv67+O/xPHjliv8u/ptxF/9d/Pe77b+BfmHc+kVPz6ysPJswRo6KB6UrOVnyTnVbJ4SAyWQCAJuF8THvfbcLz4onRR/3yRj7Z/1yancbH85gyyoa2Ybk9DJnq7ktBbn7FkfOXnkys3rn8T3G3njA8YVajLdt5k7myfksz4+q+p6e5GSkaA0hbHa4e215suO+H/LhHG/yuPBiBW4r58OVDuf8sSez3Hush2yMsilDY2rot+oTe13ZWNVvY2IH1S9eG97YyumGlRX7DvWb2/b0x5bjPvL8EstkrA8fWvBWMsmVzfnwix6lXp/pQyBg/cfDK6K/E8PmZ9wsgaci/LtAgQIFfhYgnP86ZAAfx/TR1kbWVhhDqHQE68vbMBCLQ8jAmLzjwgvjYyAX7HqBipd0p/v2Wi4RV4GlSgzsk5AeXzaI82hQQe3QZIMnG26b+ffu58rl2sklL4zXC3yHEuihIDjX3jYBc04eQ/03VJ954omQoaTEg6E+ySXvY/B6tI0da0N66tHi0e61bROcsfjs9SEeh3RD4fLo4DoK/9h+sjgULUxXjt6xNjR3Pd0ban/MNSUnbtv+zu0syU0WDNHP5XLjVbU7JlFXOIbknXQ+15Ytm44c3RaK/y7+u/jvszwV/32+3hCdxX9rKP67+O93038DD3eMM/05Ou2rRrwd8rauGj8sa9YrtRucFxasrU3XQwib3e5t257bkZiTI/NpaVE7tlmXxvpwrqMW2dQYyuHyHkzy5M88JtlxGzk7qcaLxcVHErN+885aJTMvTlL3VH94J/ooPHbcqYVRlqPXv0w7t8uyyemTwpXrR0W7bcfKzOsfrqPklTvVJjfe+TvjU/JIY8/zZ++mD8+NFw+8cZQ78SHXtu2rMT7nIj7cgyF/yddYLxLPq9VK6vaQD1ftKb16XD5c2QWuq3yWpdXKYoiP9HnRU1+qRFOi8QzBqeH008h58xnP/ObvBQoUKPCzAePy8gtVeWxGlRGFAeSWwEiXt+Q3E+v+rEMuD0iw9TvGh5JHFYBz/aEJGC/4V9e4bZUIMF5VfmjiPB1HZK+rgDqXVHg8KdpsG0ouKhDne4ou1VdjkpChgNiTi0qsuN+G2h+TgOb494LjIdl6wbEKzD26VfKo8ORgqHyuz737Fi/zqCYSPL0ek4ip9rjNBN7kCNM1xFtOZxIefueilxx5/Cie1H1Pv4fu2U8vUbV40j0eY17yaEGNU4tb6bon91wyrsaSZ0dzslCTrAqn0pWcjxoa04xvaLJCJe9Ddp/r5MbUtlD8d/HfxX8X/138t+ZJ3S/+u/hvJQP+7tV5XP7bsz/Aw8VotpXsFxmPZ5PsGMuVSZB8dnolCx+96/mvhD+d/mJp98aJpS2VT2Xsu6yV3nDf8XhT+mF5VTaP21D0Wx54h3OSH8tajQPVvpILy1zFO964sjR4R5TnZKvkzDQre6l2BauxbHlNOpSjw8aTOV3wZJM+bR1vsVnRyvxZsD7MjiGmWx2t7bWbOzXG0wFlE5XdYB+r9DaHX8lF4ffosfWH/Geuz8eMCe5zZS/sqQjctu1Da49tW2rcsb9R/cG0DJ0yYK+na2wn+AEQlVdZvOmBJsWLLdt13eZVH8rWqFOCuE+YBitXJRM1LrgcX/dk/Th9OIDNm3IthSGeL9N/RnGtQIECBX6WIVnRLasgU+2xGlaF7FEa2Ibf4iEeFS78jnEXoZMA23t838PB8KjBCQdlQB/Yp+PcUnCZC0TTe9GapkHTNAgh4ODgACcnJzKh8xIYJScupxIRTnw9HhmXlzTmElpbj3ny6nlllEy8NnPXFXDSOSYpUDBGvxW+Ib3MyZjlxXiGJhPsPS8x8ep79OXKDkGu/3Nlc9cUrZ6+KZ5U/TG/x47ZIfyMQ13P3VP05egYc2/s2PToYFze5JPHo9dGrmy6psY5J8RjZZnDPzQOx9Du6ZAqr94tyGUf5Sj14r+L/87hypVRMvHazF1XUPx38d/Ff/s0qHvFf/9s+W/A3zHO9Fq+03defPB2ADMOxjfmNQzeNYvP3qvrGrPZDDHGzUJLWlxPC/5JR0MImM1maJoGk8lk489v376Ng4MDaT/tomLOp3K99J0X6zz5MY+KDruj1uKyNPIiKO/IH/L93J5Hp0fvEHi4+D3JqayHQ9GdG1/KV6j6Y3BYGtSxyWNtNttQe32MHBLw6wE8P8m8ePpny/D7nXP02fg0d/pLup9oT7/5YTVlK3KvdrDlLG7Ft+rPNE6UT2Hctu1t/Y6nD2xvld4+Lh9uZRljPHNShxcH5eIKBq9s7uh6y5+l0cObG6c5u8y8cZs53mxdHmd8MoO9lvA86o5xhpxliM73AgUKFChwEbjY3Mh2cBFrHfL1wvq/6OBPbBVHkYVcTJtg6x3juSRYJSz2kydCuJxHuJfYevRYvFzWfqZyy+XSDaYsnjShXtc1dnZ2cOPGDezs7ODw8BCvvfYaTk5OJP1eYKoSOo92i4dxqABPtcfXc0F3Tg62rMeDbcMry2XGlmXa+LviZeykgJcY5UDRPFQ2115uEoPvsy6PTfSGaBqaLMndz9XzaE9gk3EvgclNBgzR4PGa2h7CMTTBkcOvdDpnp7bps1ybaXKEj7kbg8+Tt62Te6/iGFotqIQ+Jw9PR8Yk0Wqyw6NLjYmcDVW05HCOwf04oPjv4r9t2eK/i/8ewjeG9gTFfxf/Xfz3u+e/LW5lW72drOoYde893ZYfqyM5n69AycTzUaenp2fsQ7pudwMD/SL6dDrFZDLB3t4ePvGJT2B/fx937tzBt771LTx48OAcn0pWliZLq921qxb6PF/v+XDvWmp7aLdtooVxcT+ptlQ/5XTH0yFPVlwmtwDG7bKOKj3hExAsHgVWp1X/Myh5ebx6/Kjy6bddMGb8jEMtiqv2rQ1UfCZQDxoqXpTtsrQkmaYHVph222bugU/mTfk4vu7ZVA9/zk/zb+77nDw8fVfjmvmwvtvaUqV7ueO8VfuWTm+xmmXCY93eY96YJ8bJ5T37qNrw+M3pDveN18+2rPrO487z4Rb3EG2PAkNRQlnnKFCgQIH3C1zUYg/U8xbEH7XZAudg9MK4TZg4uBozATCUVKmgwyanuUQkFxiNCWa8o3w4uEsySJMEaddZuq4Ct6GgS7UzJlj3cNjrSibeb5WschmPXoV7DHhJJ9No9cxL7jz6VFnvyLqhRITpst85CbXXx8hGvbdL8ab4VHSp5HNsXS6fS0S3vaeSu9xuQS9hTmW8PvLG3ZAdUeU46cvBmMSTJwI82sfojUeTStqHdJrxjS2fyg7RpXRZ0W3bVjo59FtNEA3ZKu6TZCeYJo9+xslHxeb8lLKxyj+O8bMeFP9d/Hfx32fpst+L/x53r/jv4r+L/z5b773w30Dv55K/YrxD7abr3q5lr5/YhzNulo0ad/wOdpZHjGeP8U3gHa19enqKuq4RQsB0OsV0OpU+3OqBpYVjnxAeLqiqXf9WJso+8H2WXU53Pf+Z0x9lgxWOXD8pXeSHmph/75Uv3MdMG+uEWsRjmhJObtOWV9+ZNiUD9WnxWNuhZMl08Bjje1w3F1Ny22P6XfVbAl58VHhUO5Yvq8dc1+ujnL/l/md7rcrxyRGKFosvfeZyA6Xrqg9ZZmzv2fbYMkn+9tQJr9+VXim5KDpV/3NsxrQrvbXX1DH5nn1QcV8CdbKA4sfa6MQ7H9XOcmc8jE/58FTf9pHSU9UfjwKP5v0LFChQoMCjQwTek13jBbaB1CM/DX5y9FHqOzs7m+9DwRHf44RHBVrq9zlinfteAJ5L2sfg8AKhuq43x79VVYWjo6PB43U8GlXwqmBINh7+bcvk2vOC320CRg5Qc/2mQNEwVq5DMlQ02HaU7jIduQkNj4axuB4FlJzUpMDQ+FPv8uU+ueg4zt2zbfO4HgIuN2STVEJly1l+c7IY039DiazSC5YH08YJJNM5xh4yL7kdZY8DHre+Mwzpijc+Em05GeQmTSxsY589XZvP51kcHhT//RCK/y7+u/jv4r+L/358UPz3u+u/AWBvb0/SlvQuhPMLCbyoldP/bfSXcSmdVGOR8TAvnj9hXtNDbfv7+2iaBvfu3duc+KIg8e8dd82L954N47pKBlxnTPzkxWDclpIl4O9KVjSkut5DAKwHTKM6atuj1TvhwspC2T6mIeGzeqZk7umkJ7eh9tWir+o3xVNO9jneGR+34+mblZl6mEWN+yE9Z1BHvqu6Ob+kgGXkHcuubLjXT2oBXo1v1hl7JLmi0+q097AI4/V+23r8afso7dr3FrpVO7n2mJ5c3GQhFy8xL1xnTNyi6jB9Ssa5cTTGvyg9tteS3ocQsn5miKcCBQoUKPCThnfTFr97eXCBR4cx8xRbvWN8U8kJ6PiaLesRpQI7L8DMJdPek41c3wZRTBfjzwVxXnklCy9Q9WThwVDSoWi09Ybk4rWZC+4Vv6oc4xyaLPHoUIE4TwqoBHCIprGQS37GJBMWhzduWA4q2R9qY4jXXN8P8aT6zwJPaqj7XkJnrw3pkro+pEc5yI35HA3Mx0UhN7bs75wO8PsKFY1DCbyCnE1WtvVxjDVu3/Iylm7FA9sp9UT+trrl3fMmDrx6nn1OcNH3mxX/jVHli/8u/tujnXEU/138d66N4r/Ptm95GUu34uFn0X8DwGw2G9Qf5Z9yu3ntfV6I4iOVWf5D7wr2ZDfGrvBY4DJKV+09+zCA2rE+Jl5hyPHGOC0PwNkdo1bOuV3R3K4am5ZHlskQvlz/KRnkduryPQ+Xt1hpv3s6bnGrPk04PL5y8UySh+0PS4fFm/P/jFfJS8mFaVT6yLZlyIenBV5v/PG4sbjUddVPORnnZJSLG9Q1b+yxLuToYZpUe7k+UzaGZW4XsBlsn/E4zfWntbfKJiv8fD8nP9W3LBfg7FH5qVxd1+4x+0M+WMUeFodXf+ghIC5vbY/icwgn6/rp6em5MmPAiz0KFChQoMB7Ae+FDX58eXOBxw9j5hzOR28jkNkndzlBU8Fw+uP3hY0lktvIBVt83ZbPPQ055pqlw2tf4bHBMOO3xwYpnhUvnLTk6ql76jMnvxxwApcg9bXXfm5CxZMFyykXVDMPrAsqYVAwVF7ph8Kh+Bu65umbrcPjLEcXjyMP9xBPuXdZJbq8MmoM2E/LlzfurT3xaFQJnmd3cvqmynNZ1vWc7HP65pXNjXeur8YDyy834aQ+Pb5Un3D7ShZqIiSBl9iq/htjn7wynjzUePImjZjuHD9en1p6eMxYeVocFwFbt/jv4r8tD+p78d9nyxT/Xfy3aku169n64r+L/34UsLJUiyjcb3YcWh+q7Dfj4nZTvdQuj92xPkjtAk2QG685feHxNdaHp/Jj33Xr+SKLV/W37QNeuFIPdeT4ztngxEtuDFh8ng/P9QmPB9arVMez/4p+7zU2CXIysrL1fIrF7cVqtm0+FluNbUtHbgyq+1ZerEOq75QNVUeRM49pwVLhsu2qUyKs3Jg31eeez7CQXmOkylm++Tv3Metg13Vo29YdI954tGD1x5N3jFGOL5bJkH+2/Kbr/ACDxWdlYenruu7cbwVKLt6uf+bbysTqFsvLi+tzoOpa2Sh5Jbzew3BWXmyP7AMvivckTx6bj9OHv+cQ8N6sBRUoUKDATwUE/ReCe+vM3wCaYk8/+DB6x/hkMskmzoBOrG2Q5N0/Q5Ao4wWyKkHKlRkqq+jgIE9N2Cng8kOTYopelSR4CY2S81g6x9CWozmHP9deTic8OYxtN8dXLkFK4E2IpWvqXXWqHOMbkzAwrjG6OSTTbcBrf+i3pW9b2sbc8/QgN6HmJdnMh+LpIjrNeO3vbXbhDenRmDEy5rq9bxNLJZMxvHtlmH7bxhgfoe4PtZ1L0D2bnrO/ufo28bblPVucs805+7RcLl1+c1D8d/HfXv0c/lx7xX9rKP5b3yv+u/jv4r8v5r+B/nUodgzwWLB6YK+lz6Hj9NUYY7tnr9ujsj1+GacnK/vdo5F38ibwbPMYH8685nZRq+9eHyj+PPvBfefpfc73qHiK2/d4VPJUuqJwWl+qyng0q77xZJ1o4XiJF/eUDNQDJGrnO9Nt+zfRoGRh2/ds+5iYgcvl/BnbXR6bij6WpaJL6bS9N0Z/Le2KFuYn56+GdkgPXVfjMXfqgeJR2T2FPzduFe85+tq23dpP5nY823LMg+fDeTza0xJsW0oGim/10Bi/ZiHVVXkR86DsTlVVWK1WgyfueD7dkxXzdNHXoeT6sECBAgUKXAQG7Oq7aXbPubvhOK/ATxbGxOKjd4zbJIEb8J6i5PqqbsJr8asEX9GTm/hQv1XSwQmGuu7xb69Z3LnkVeFSdVRypep58vH4578h2vma168eziGexuBU15TsFQ4FVl+5fznRVHK39zkwZxrU5AnzpmjnBFLx69E2Brapk9N7JUseN5ZmhlwCMmaCQSWQahwP8eVNJDCd6XvOuHryHFNHJdeq/5UuDI2DsfdzEw1D8lftKD21+Hh8eGPE68+cfbI05iYbPDmxH+D6duLAA2X3lY6qXbpKbheB4r+L/1Z4i/8u/rv4bx+vh8OrU/x38d9M++Pw3xaXlXlqr67rM7yonbP2OG++x/ppT0JRdjx9V4vVOX5ZRspWK/6SfVbjnI+C38aHW131dvxb+Xm2Sekw21G7E1H5EyufMfZK6WPOP3HMpWTCdHMf8O+hdr1+YFnm3h1c1/W5vs/pMOsR97W3I1T55aQX6beiI+2EZtqGfLTqP698zneqtlVdpd/2k8eiolO178UXns/w+OSyHI95u/bH+HM77nLxhOe/VFyidHAI95iHk/g7+za+PpaOnL1gu+vZ0jF8eP5XydB7qMazf6oP0jXvCHvm0/JicQHnT0GwcntcfrxAgQIFCrzP4ZyL9WOQAu8vGL0wDpydTPACQxUAeXhy7TBeCxwoqrJ8HBYncSrYG6KPE10VwKkgSgW2ucQ9177lhcsyffyZ+1O0qra4HAenKmD1AnnFn+ozlRRavOq30pEEHPTnkj7Gr4J01Y5KLlUbXtKT44vr5JLqXLLhQS659mS+TQKscHi6603uWDw5GljHh2Sg7ImiIafDXp/kEj5bzpb35JpL9HIJ/VBylxujPBY9m8DAkw1eezzelc4oW2fbYLvoyWmsLeL2mQaWdU72jIsnGLyyubG6DRT/Xfw3lyv+W7df/Hfx34ru4r+L//5J+e9En538t35SjZec/VXjlP2FGqs5mdjvys+lOt4CefqeW3jhRXt+CCCE84uVaqHfkxfzafnK0ezJlX2qpc1e83Q6lckdV86yV+ONZciQyvBile0zZaN4/FieFDDdrNMsR08PPeD+Tde4r726uVd8KHnnFmwVTVzf6yPPB3F7udcqWJ3y+sO2reTj+YmcX/Cu8ZhQ4yeHy/Onqr7KIca8RiZnzwF9ekBOLzw/MvRd6YXtR9avnF/07ISFhFe9SkDRyfaAX9HFts9C4iONfc+neL5U6aDizcrLysfz4VYW6hUbBQoUKFDgpwli/i/av/XlsShyZc5dLPBBga0Xxvm9MLlgIRecDSU4KuBRwZXCryY7uB4HbF6QynX53U62DLc1BrcKyoeCWi6v6FFBqUrUGMYGfypB5/a99lQ/JVwKD/PM372gWvWL1+eKNk4CLL+55Nq26cl5zPjx+GVQch6L/1Hp477MySU3+RRC2Ox68fQiffeSP25rTB9544e/8/FerCdeks+/+fsQD57+q3tefabbG5ee/WKclobcZEy6NqYvFIy1e7k6XqKt7JHHl2qXy9pJF89+efY+R6+6flEo/rv4by5X/LeG4r/PQ/HfxX9vA8V/P37/HWM89z5dtchsafPstmcrbVleBPKOGrZ4GYcaX54NsXgZT/pu+beLRNaXWV1WfpVl6vVrzo4O6XHOVym77emzaovlaReZmN5Uj08SyMlY6U+SrbeIrXyu0ofc6Qy2/SEfzuX5uzo22/bL0E5r25aViSrL+mdxDtkBb2x45Vk/x/hwO1482QFA0zQu3WpXf45WdQIP08M41DHYica6rs+NEcWjst8535CTh7rGR/h7emF1zB5FzvQnGz4kGw+8MWLxqdM2FA4ed7lYwzslQdlSdU094Mp/ik62qXbhm/M7lq33bnLLK+tgblwVKFCgQIH3C8T+L6a/9SW+rxbVB1fOC3xQYPTCuAow7acX8HFdTrq2CTZUgq9gCKcKEtXkkgp0OcnnNr2k3wMVBA4F7vb7UBKtAkzuA1WPIfdEu0pMrZyUrnByqmSq2krXxsqW6fNkq4J3b7Ik4VTgTbLkxof9nkumh/Re8efRr/Dl9Hob/IoHrw7zmRJzr90czseVvHi8qDGaG3cK7xjYRrdy9KujPVXSm7NXrPPecXy2Xc8u5WjO8WHr5cbx2IkENQk4lg6FiyedlH1V/aD48GQ3NJaGoPjv4r+L/y7+u/jvs/QU/1389/vBf6s20yfbYO84bvtdLZBxG/a78ptjeFJyj/H88djcnmdPmRZl89XR1kO+j32Z1y7LzBvPXFYtWHtHwytfzOVz9o2/2991XZ+jnXeIWlmq8WWv2Z34qk3FC/Ph6SHTZOXIMcRQ3KquM0+5mEbFAEqnPLq5HNOTvnsPE7C8FC3ea1EUTbbPWCen0+nmO5fP0WZxqPa4Do99NX7sde+BCpZNzoerup5sLXh0eOWTDbIPozCvOduR2mQauX1bzo4xPl0iZ8c8G534UHJV49bTPYWXd5sP+Uo7LhmsPNQpAUpOlj6WReozxU+BAgUKFPigQKS/AgWAEEd6+xQsbypS4uQFyRZUADQmeL1IeRV05gIcG1R69xnGBt4Jt3qa07bt8ZG7N5aOHIydXFKJ80Xa8JLthPeioIJcThpy5T3gZGYsXjW5sK3Oezxa3InGsX2SJo+GEkDLOyc+Xjvb8qf0qus6OZGk2hlKwD1Q9b3vQzBkO7isxe8lpTk7ObYvLCjdTbL27OO2uL17CpQtUZM5jCNHz0XG20V8koc/1y7bN1U2N6mWYLlcZmnzoPjv4r+L/y7+217L0TcWiv8u/rv473fffwPAbDY7N7b5+Fq+b2m3tKZ7aayqMZjjzbP/6Z61bbZ8WrhQx1Unu2bbtWWUXBPtY3Q4hIC2bUeNWb5n22GaPDs2NPY8W6fqhhA2C22KDq++NyatrO19W4frX8RWe3LYxlYpnee4zIsb6ro+t9CVizM82TOftj7vZPf6h+OORJvCN9aHKzmqo6E9vpIeWJlWVYW2bdE0jRynjMuzHzy2c7LM+VVle8bEHB6ui4xZZR/G2EDPR9hy1iapuG4bm8tgbT23rfTWgtWjMXRZXeJynrwZz7axEMuB2+WTgsbGBjkbMJ/PB2n06C5QoECBAgUK/GRgTIyx1VHqCvkYZ58L6Oy1oQTLm2DJJVQcGKrgLhdkcSDNPI0JtNKnR//YgJDbY5pUm0M47O8xwSa3MXQt1wbf3zZwHCuzIZqGcLM8ue9y+pVrJ5egczuMS02QjJ2gsBNTQ5DDOWYMbotfJZNqrNnJgotALnkHHsp3jJ1TCd5QWY+GdF2VU7+Hkj3Pbipax9pC77vHm5ds5mj22vXKx6jfcTaEw5b16OS6YxLyHF+2PW/CJber5nFA8d/Ff4+5lmuD7xf/Xfx38d/Ffxf//e75b9uuOlpaHQcPnD/WmGXryTxdz/liVS8By6Lrus1R6Ba/XdhiPKls2oWZ6PB2DyuZpbY9H66OfVZ2S411K6v0lxunqT1vDDNsY5+8vlA2iXWY+1jh4/aHdvFye0yrV9bet6COpLb65dkRL+5SvCkbynK0Y5Cvef3l+fCcvnh9zeOdefH6U+FUC5l2gdOONbVAancnW53iNj2f7/WBZ2eVTvN48l6dovgf48fHHLuvQNnOdN3qqRcXcnu2HtNsx4Ky1fxqAbZVzDPLhvtA2TqPNsubkg/fz/lg5lmNgZw/4LGj2qqqanOqiZXL4/LjBQoUKFCgQIGfPmguUmlM0GsTDE6COZhSAYcKVrwkj/HwE8WqnArs+L7lj7+ryYShBJdlxm16vNrfXJbptPeZ1gS8y8Ti8BJdTi44QcrR59Hh8crXcsmmxavqe4G4kpvFq/AP0eSB0tt0jZ9kt6B0TclvTLCunkJn/hS9Xnk1jphmW3eIB9Zb1jdPxjndzo1/RSOXydmvIdnlaPQglzRyGQ8f85fTU8/ueWMkd1/h4Hu58cM0K/7V+6G5XZbRNvLwrql7alKAx4uy4Z59UbIaa1+2heK/i/8u/rv47+K/i/9WbRf//dPpv5WvS591Xcv2Eh1qZ7nnwz09YB1Quq3eqatkzQtvTHei2btv2/B+s4w8/+rV5YVLZd/VdXtfydTiVuDxrXz4ECQ5eu9iT5AbS6rskE1kO+DpLdfxxp2yWZ4dUzi9dy8zHawHdjExZ/eY3vTb8q5OKxiyt0oeiU5b334f4/OYb8W7pSN9Zxvu7W5P19R9+zBB7pjxMfwoW+vZHM9m5/yqAvWeaq9+jPFcv6uYkflLddgmcnvKvnjySv2n+obHQMLND6K0bStlkpMvgDOnXdgy9o8X7hk/2+5ULvfQQs6W5uJA1lvvpJECBQoUKFCgwAcHtt4xrpJDdX0seIlNLghM320Zb9KHg3nFixfYc+Bk/+w1LuPRz+16CSBfY35zdCtZMf3e9dRGLjmybam6gH6fWo7nXEDtJXEWhxewsuw4sLb3hoLeMYk941Z9x+VVouy1q+qnMjk5DeHisePRofqG9XJIB/lT0aQmMXgCQY1RW07BUL+p6zlcKglVNmNo8kbpJPPvjVv7XdHv2c+hel4bXI71JofLG/NcL9HN7/rzdM3TO76vbKiiITfpYu9bGdg+5u8en3xN+RN1/VGg+O/iv4v/Lv47XSv+u/jv4r/fH/7b6ye1oDDW7qTf6qEFa1vV+LDf7RHpyifk3m3PbTKvSg7e76HxMFTG3t/WhzM97Ge9d78rm3gRH27pSe8St7sivfGk7Dq3o+57/saLh3L2MfdeakVHzhdwPOn5Go8u5tEbS0pnlJxyoPpB2SRFi+p3T35ch2n0eGF+PX3lemp3sK3D/eLZ7CFbzHbC7pjm/h9a0B66p+yaJ8+Ew/NZY/RXyZvbU/iUrQD0Qx+sewzqnd05H+7po9evNlZQ9iLZzVRGvTpGyVPpjRqfnmxzMi5QoECBAgUKfDBh9MJ4Lpn0Alxb1+LIJSqqjv30grJ0Lxe82KDcSwptG+q7l1x59zmYZjpzwWAOOGBU98ckmdxujmZvYoT1ID1V6smKeeaAmT+9dodgqJ7SVctHus/HU+V03dNBb+x4CdgY+hWoZMHiUuOS73MfWbxjr9kjqPiTx6DilSHGs0fmcbv2tzeuuZ1cH3J5lo1HI9u4BEO7O5RO5WxTzg554Mncq6d03Ss/JBMPP9dneY9pg+n17JelR40tr12+n+OD6VT2neuN8R9jbZ4HxX8X/z2kf8V/F/9tZab45HaG/IKltfjv4r9zwP2k2vpZ9d+Wlpyu8xhjnpLf8ehiOVt5J5/GDzwAegerrcfXbB+rcZnzuXxMsi2T6wOLl3XXyiMtwAw9kGffXe09TKZiAw9ytpH5U+PaQtrh6PUx923Onqcj7K0N9PTM8phr3+LJ8ZvaUT6cj1C3uHM+nPllPWRdy9mHHE98zxuXihbbR6oNRTu36dklT288/2WBZZ6LvdQYtXJl2Xi8cpsez1an1QM6Qz7c6hrzZx8wyfXnkB9Ssamty3GDN9Y9W+GVUTvzvbg3yYAXq3P22V5P9dTYSt+93+nP+gy2O167uesJv9Ulfi2Hsq2JDrZ/BQoUKFCgQIEPHoz29CpA46BJTVqo4E69p8i2Y9uz17xA3N7zAv70yUm4Stx4AiIXdKlEhuvmJkdUoK8CX5X4MK1D+MckLLkg2OszFczbuiwLrx3G6d33cKjJlxw+L+gHht935CUV6bcHilbWGS5rA3KPfoXTS+hzcrH66tXx+LJjYMw7UJl+Pu7RAusO2yLmR133kslUPnc/x0MOEk6rT7kJEqUDY/TJk4PXDtsrW2dI35m2MbIbey133d5TNjPXDvsmb+x4v9mnMV6vvDd5kupzsm7bt5M0OR0YA8V/+zKxuFVdlgm3Vfy3xund93AwDTn+FN0Wiv8u/nsMDJUr/nu7a7nr9l7x39uD8q3Mg1r05n4OIaCu66xOAA8XRJUv83wBt8W0eD7c3gMejrcxtlvR9/9v79x29DiSa53NJinJGm8PbF8a8AP4/R/IdwZ8MxjbOlBs/vtCk+Tq1d+KyGqSGomMBTS6/qrMyIjIyDjUUfu6T9R9Ls/2e/pqevJnOrbTcT5dp8mndPZIuna5/UldWmc0f24rZFPk63W+nFYXB5yOr++Hhwf8DrDqb/+mJ05prkiH9FvH8DVOek9zRPrtfJz28XmqbMT5Tq9bJ1583pPN09pzXdMbY5IenF71tqJEy/l3Oav1RnxXNE5Qfbt679/80vfZK5kVypvrjezkhOaml9aRrte0xmjuaG2RD9vQnNnXOfnKymeSnO7vaX73JyjmgvhgMPi6cHf4Nxh8eXj2E+NV0kgJuyeDVIh5X2/j+3zslAhRoaLH6HVjSW4vWJym3nlIdHw/JbTUnxJOkp36JfiJFtJ3l1wnPitbod+KlJRTG7IfKsy7AiedyKEx17p+stt5Szw4j6mQTjol+6RCj+i5jSY7dNlI95V8pOPOrqhN2ue8pCLO29BxPebzU+mS+KtOnHjBTmMlWyCfVbXXNpt2mo+0Nive16pPbBKq74sRH8p3apfmp/KxJ2vf6VdrQven+EIXlHw9nuoxYeL3h98TvzP9id8Tvzv5Jn5P/HZM/P688Zt46mK4rxvdp99MdVuipwt9DFoXul3ZrY+puv0UMfz+/j7erEDzQTHc5SK5d5vkVyiO6W/lUW23W7MO17+uRYod1X/X6ZX1uNeCXmwiP12tXW1TvUnn7u7u/evi18rfS9Y+SWfd2nx4eMCcyOmovPv37ucX2Cv9uo5oDOe9uhib9OH80qvGuzlX+s5vN+8nsdFl2H30hiNat7Rf+21ZvXYgXSm/5Ff1+P7Tb3NXcvk8k8/o8g63rx2PqptKkm3Rd8DJPzg90hcdd7pkQ+6P3S+l/Epp03rVWO0yp5tIPkXcHgwGgz8OwGff8e7B4EvEpVvhUiGa2unvDUqWFZ6U+XYqKLpCh5Ip33YZqt+nfDqNLtHyExPEfzVWSuRTYZeSRd3efyevFXNeEm/eJvGWivc0P6kgomIiFWmJ36oIq04uuExO3wuEk8K+Ok7yJXtMa4H60lo5GUd58uPpla3dOH6s6us8bHTrkQp3mj892UH22vm5xHvym+lkio/rdqX7iK9kjw6i5W3Jtjq6lS5IfrVznZtKJ1Uc2QWyy5d8qG77SU7nr7PNyhbT9/quYuL3dT6dxsTvp3JN/J74PfF74neli4nfn+4Ee+dPlJ/OL/t25f91P43ntqi687Wm+1Is6HxLmstK37Rukr36NvkBuvjUxXA6vi++ev+1HutBn2Sn8TZPnc/z/p5HkE9UnlMMT6/a9m1/1fXtdnsy39SX5KL47f20r9PW49qP4ofTcR36b/JDpEvfl5BuFqALxdSO5PU1eZIPJF12MZnWZmWfKa/zdr4uSPfuh7be3J6Tb0qxYLen2OO6TTfekvwpDvq+KoYnXfp6TH30uMu29/k6Vr6Urvt9kuHdu3fvfaHvJ551bLrRKMVw3a5ukt3/q09rDAaDwZeD29O/29/+nhwbDL48XHpivPq9Fif5uy0VlKlYqGh74p0SvN2H+PCEJ7UnOdI4VOxX9FIyS0V7SsYpkXd6qT8lpaTXqqinRLnTCfFY6ee0kHW6NEep6FM7oORZZU96TO2qgtiRCgxvT3OX2iWdJ9vU8b3IoLE7eboxuhMOV+j5dlVw09h+zLdpzE4HJ/vJzokXl6UqAn3N0nfvKluu+E7H3TZOZElI69zl9LY+hvOR5tn1UdkH8VoVzVV887n7XJj4PfF74vfE74nfj8eZ+M18TfxmWUi23yJ+73FdZ+4j6AK/87yhMVzlr9Zdsrvk31O89n30xJ7zoDGA+KLX3qbX4Grsc1tJ8df1qv2TTpSvqk2KtVs/ri9fU86j7tdP36T46XKTT3fduz16XHBa1Sd4brfbo7cY0PHkN3QfveqZbNx1oeMoLW1HsdkvdFY5CtlsFROdlsvtNlX5Su/vPG6bqnhKa4R433C/4rpKPryKPSRXxbP38fncbehV6j62H9d5om9y67bb/0nORf5W91fzmOyBdEU8q5/Rp7hdlxT/fL5SnK5u6vU1X9kGXbiu4pjKpjxW8/O54/tgMBgMBoO/L16eNkwJOCWZqchzelpoeRHj+ypeum3imRJVbVsl2xVcDt+noASc2vjxKnlTmbrxT2VRWqftHT7Xm89K3hOeyV6ojZ4E6vgkmZx/sllK3E91nuw90U3o9Kn8kixpPC9OKjn267yqpw6oH/FPciVek5+gNUNryY9X/CQQzRObrvxY5QsTDe+fClUao5KLTnqQniu7q2KJFvcul69z2iZ/4D6RYg3xstvr/9M42K1hKsTpxInL8VxM/D7DxG/GxO8aE78nfqftid8Tv/fxj4HySzdKVP0SDddnkrvip7Jt8rvadvsaP1bNQ/Kjvp8uCHtu4GPSGtELkA8PD/iqXxpX14M+0Xviz4gXim2ki3QRK8Xw/b355ItPY7helNNje6x94dvp0/pOa3nvT31Itx29yg84HY+7roPKl3obp9V9jqLSh/Kx7U2/kVx9S3mD5k/p0u/kIyp/qvL4/uS/kw/beiM6qu/qVfsb6lOT/VdxgXIs9zNpfeu8uZy0v/Mh5Ntp3C03xV8fT1/TnmKdfwPcx61iu7bzY8nXkj9Lb1XYctCnQjxG+40iqoPBYDAYDAZfJi5FeU9SfNv3paTR+6fiTxM9Gtt5qk5a6H7t6/03L15IeAGtCTDpg/jy7xmlRNR59u2qENE7MF3/yr/zTWNQoU560310LM076ey0CPd9qZ/Pq8ro7Ui27jWIyc6q4y4LFTBEKxWRNAcnSMU/jZEKgnSSIdlY4i8VlMQLHa/0VH03K43R2aG2Tz7F+UlFf4fqhIzT8yKT/qc5qWROY6YC3WkrjWruiE/yXcQb6SbpJMnY6ZL8hPORxk7rwuVK9vKxr3Kb+D3xm/Sm+yZ+T/ye+D3x22krjYnff5/47Xwln+fxiZ7K8z7uH9yneXuPJ1u+Li6Sf3J5dl+PhacxPOmJ9lWxx/ndeur6+Gt/nXf9T36hi+F7Tv0GFJ0H/Yayzonrh/RHFwg9TlyN4f4kaxUryN/T2qRXxif/708uazu/UOavdN/bRDv5xsr3KPxieGXX+3XhPn5lJ2lc3e9jdnkxte3g63nLnuBr4JS2+8HdN323+mQMnw/3fe4/yd9Wtu+6obipv5UPHVPpu72rfohuFcMopuw25Ae8T6UP5dHl0k+jqN5TDCc/4KD1QjKnm5/mdeqDwWAwGHy5OL4w7gVDVZSmEyXUNo1FdBJtKpqojxf73r9L+KuTK56MUXHrBUuSq6JLoLGrQtz7VjxUc0kgXTstksfHqhLcU3uiIrXr48VBVwRXNkEnIqh/JU9nB2RXNAeJdlVYKO30mqr9n57eTLaS1qCPS+Ml2r5maF1XdLsilPZRgUcg++/s2veRH0mFZzWnFb9ua8nefAzyEcnvdDboNGit0W89GeBrwuVJ/ptiCfHZ2RHJlOT3Pkr31atXpY6uYOL3xG9vQ5j4PfF7Y+L3Y94mfk/8Tjolu/+U8XutDzrVV3P7/Ozf/rS0PjVKdN2+KQZpe+eJbFZ/VzabPhNQ5SjJr5KuSS6Xz/e5vaRXzRNPa/HT6k6X/Ik/cVmteW3nMqpM2i7xQ/Td92jfai07f6qbxIe2oXXs8tEbZCof6tv7v99csPcRz6QP55/Wgsrgvt6fwPWYoPLRxV+d2/v7+yc8+Vp1nkgnZHdVfku0CCmGu751DPL9ur19R/pOutPQC55E/+TtBa732+32/rvYrgeNa3qTSqUf589Bukg3WOxt70vb6VMDlc9ynW89qJxEJ31rnvI+1Y2vJ9JHWqe+fkgHPj/ffPNNPDYYDAaDweDLwrOeGN/bniymhGO3oe1E/0rxTSe4qJikBNELACoSvE81Tio+TmX3hJLkIN26fqoTG7SvSzrT2LqvKlRdto7/ireElBAnXXixXaGbt0TXk30fqyqAUnFzdS1V+6siLfWltUEn3ZLtbB3QkxUJbiM0ZycnYug7YslmOx1u2iffrqP1mXxONZb37/wcjXUiI/GgcnS8Okj3TlN5JR5p7tP6If9ORXY6aaD7PEY4D5X+rxbSysPDw8OTsT4GE78nfk/8fjpmRXfiN/ef+D3x22kqrxO/P3383rTIT276Oqb3o++Pu070QqHOZZpXfTMLzRPZt/Zf6+nbXejpRu9T5ReVrqsY5jdmkAy+5p0Pt1uyPW2vtEifldw+F1WeVeU1KT9xeZIPc3nJNlUXenHSP9eR1qTLR/4wfXObYrjejKE0nGdaMy67j0c2oseS/0x+iPyyr521Pqx911uKQftmme7GrOQDSI8pN/IY7vuqGJ5ysy3/7fb0wjQh6d6Pkwx7m/yd2ojLRLG30vdJXkC0k404DbrhYq18I08Xp52my6pj+VpSfeoYZPduf962imv7t9uqy0DH3r59+4SXwWAwGAwGXyaOvzG+Vi4qU/FaJRNeCKU2ilRAEN1UKKaTIydJ9Um7roCtaJy260CyVwVZl2D7b9Kpy03jKW9Jvorfqk86QZFk8aI50SJ9kF5TkewydXJou1SIuI1Twe1z6/NCxboXHifFfOLb95/oLM0TjVHNUSqunG+ik2ynsn/indZEaptAhV/Sm8/H6TpMJ32S3LpN3yi9wlM1ZuJb6Wtf8mXOC/XtkHwV0UtrjmhWvmf3r/T7HEz8nvhNtCZ+T/x2vn3/xO/cNmHi98RvpfOx8VvHoP06RrJv/V7t3udPG95uH55g3d+F3rTJQSWs4AAARadJREFU5ziqp3lprn1f8mUkW7WWuxiucqRvEJ/EMPKNyrPaAfX1/cQLPRGa/K3qinjWeaEnprs5Jp/g/b2d/z/RPYHkT76a5FI6ad37eLQu9LjrS+dMX3lf+c1tJynW6vyTH6b9vk70G9HKe9Kv2q7qIsUm7UtzSnZHttrFcFozqR35xbQOScYUP5PcLmvKf/Y49H30tT7YTorBm5a+ceA0jtLadxukteqgm6hcN9Q2tSFdkf/TNeH0UgxPPjvZx97eN5t8yhg+GAwGg8Hg94njJ8ZTQefbetz7eR+i3SUe6aSAJ00ntFOB7t/YulKsJf5Pi+6qf6Kfklc/MUPjOE0dh+armnMvItOY6Zj+pcKlso/Ul+7oJT6unGioePJiX9v4SZNUWJDdVv8rWdLa9H1pXqhQ9CKLxnW5tQ2dyPDflf5Oaeg+LfQrO6Z+aRw61hWLNPdJP7SP1lhXCCZ4AdzZnp8YSVCZXMfdCZnEv68dGpN0736exnV5Ktvz7YoW2ajvq/SZ5uUqJn5nTPx+zEcn28Tvid8Tvyd+Ex8Tv1nmj43fmxb5et9OMqzF348mmyEZ9/j7IgX5PI3hZCfKj/p7fc3wflV8RcNpJVtNdkDHKn+s7elp4+TPKIafxE/fT3OY/JDbOfk5Wq8Uw4mXJAvFGeWZnkrVC6SqT9dZ+h51FX+rmx1IL55n+Jrwb4/fbo9f5e3ovkdM65V0rhdJq7a0FlQ3flE82ebJ+q1ijY+t+zYfakspv3Pd0NrYdqU6IVt22kSv+1wCyU3x5CSGE19K2797T3aR5FDdbLq0PpJf9Xib4jB9AsP5PfGpKfZs+DjuZ3QM15vKm57sT3xqW3oqfjAYDAaDwZeFu9thpH/9+vWjhKFKYDW59mNrrXg80Ut9UsKb6FR3bne8V3xV41YFNp2YqRJ5SmaVX+Lpqo6rsZJMVSGQ5oxoaUF+clKlKsQJlEwTXWpDBXyyzbSd6Cd9Vse6Pqc8nPTXNid8V/qldsnO09qq1lQav+Kr0gfxQDbY8UT9SGaS79SGKv07D8R/J0ey7yQjjX3iN0/HqdbSic2ofCc+U3V0euLWx3FeyH8n3G639692u4qJ35mvatyJ3xO/J35P/KZ+JDPJN/F74vdu+9z4vdZa3377beujbrdfvzWsv51/51vjVjV3W2/dBTWnpeN/6hjuNCskX6BjpjhRyZfsKsmZ9hG/tF9l3tgXj1y/ZLN+gVpvSri7u1v39/ePnnSu+KpiBR1LtuHtdS7274eHh3iBPNlmilFOP+UlpOuqj49FT4EnGqSL09yD5ltlcJsk/fk4zstpe+3jMiRavm6cbhX7u9jrx6hfsgelU/mPajvpRt/e4cedxqeO4e43SUeJxt6vtk1Pn6exlb7Sq447DYrhpzHD6VdxTdtsvHnzphyjG3swGAwGg8Fvjy5HWOviE+NVwVv9Vhqe7Omf9/fC3cfV5E15q4ouTzRpTKXpbWmcrmig/umY6inJ2hUxnXxJB8R/tZ+STJdJ9V4lvarTynCdfiVHlYhWxVoq6P34SfFAfZP8JFviIW0TTadPBVeSjY6djKtyug2cFG4+P5182u6KPdDadL+zaVdFWFrLiV+fb++rr0bzfSRnV5Qmvjp/uGlWspxC29Mr5E7sKcnu+3VfdbKkGj/FqSu+VNslPdL/ip/nYOL3erR/4vfE74nfE78TL2ksmg/iY+L34/0Tvz8ufq91FsMr/+Dfl91/+tQlyZdiuM+n6jM9LbvH0z60TW2VxubFL+oqbxWILvkL14Nudz6/s8ckN60F5ZHyB92vT4oqLfU/vrZ87ioeSC7ST3pNtPvivU9p+EXxLddJXpVigvahJ7DJR7jM6Y0LyQ40Duh6SzHVdUH+MMUNl8X17fsTzyl3cCT+9VhVa9C8etyk+XY7V1oeo0h+8jNqr/vv/v7+SXv/DEVaF1V8dP/hfZUGrRWlR347rU+fb3pDQmUPyku1dtW+yYem9UI8up9MeZXyWvlZsidaa2n85OsHg8FgMBj88XF8YXytfFJwH9M21UkEb+PtU5JfJSWUqBIfHf+J565tkolko2NV4qX76HVPVVGUZCA5UgKdCmmin3TuSTRtE88nc7iLmhP505guX7Lh7qREopGK2XSCJRUqiSbJR8dIzmRz6WSZt0vzr4VIp7dk/yQ/FU8uB42d1vgVnPqUtAZInjSOH698po7RyesnNLxgdR6okE/+erev5EgFKj3tQTihSSdmVeZqzrqTA/s/6SDNMfloimtV3PxYTPzObSd+P22r+yZ+T/zWPtR24vfT/RO/n2Li98fB5STZ9sVNvcjpF0L81cpJ/ymuOdLrnp3v7pXFLmsXw/dxf91titMqe+XD0jrUvslO6QJOt/Yq+yV+Ul6l80q6Il/r+nJdpSextZ/GG38qneJC0l9aq5Wu9LjPLT0JWsUwHUO/uay+h+aK/BLZ0uZHaaUYrj6P5F7r6cVkvwGG1ory0tl/iuH+W/dXc16trxRnfXy3DbIj35e+a07fUXe+TnNwt0E6tsf3V53TZ2K0ffXZgUqHbg+bZhXDu9fbVzGc/LzzpfxQTEq2Q35AeXH5aN3RHHR6+dQxfDAYDP4QuPvb32DwleDShXFNKtMJsJTUEY21niYzXUKcTlwkfhMdH5foVEVTGo/0ogmY76dEl/pUY6cTB1UhneaR6ND8efFcyeaJsNJVebu5d3m9PX2LiGSgvsS/0tB9XhRWx72NjkF37J4k5ZX903wk2RJcbyQvyUa8etHuciXbVd1c4TfJQMcSLZej4oVshY5vHqj4rQqvyqec+KNUPOtvWuN7Drxfsr10Ukh1n54gIbq6L/nEijdfj9UaSvOmx92fnVx0qmgR710c7Ob7hI9kOxS3iReKWR3fGxO/87hJRpXL9Xzqy2n+Jn6vo+PeRseY+D3xO+mN6BPNCrruiL+J309ppOPuz/6I8dvH6uxqPwnu81Y9lek0yH9U+nN/Qk/5Ujzxvkl/JzpOeqGLIKSLzdf9/X15w1aSf//RxTGdm85O9n/yOd6G8jCSrfpWtfu6DXoi0/s5764P51Xp0pg6X85f97viyXXkTwVTHL8aw+m396UbJ0hHlPv5fn9du/OWLnJ2uZvnryc+WC/6+40qfkOA01Ba6VMBpAN6spvW+H5ddtJp2qc0N+/0JgDSDdGmeK6vVdex6An1qq6gHN19P72x4JSWv13Ebc7lrfy16rOL4Vs/nd4J3lb1Su1cb1dy2cFgMPiicPvb32DwleD4G+OvXr16VLx4wkQn2KoTRhupbSqmNWGsvmtDJ9SoLZ2UpH6puEuyJx4IiZeKBh0nOtTHkU5OJd1coeFt0hzQ3FXyVe1JZmpzhc8035UeujYnSXY1N4l2VeAQTmz0ytx3tvAx+q/oXuE12dIpr1f4qVDRP50zXyOfSv7K5ju9VD7tdFyX1/s+1yY6396NUfn1LobRsaRT0v8vv/wSZaww8Xvi98Tvid8nPE78PsfE7zyuy+t9J35fwzfffFP6r0oPymvyFSe+R3/rd1mrtq6ru7tfvxe9v4VexalTG+5iE9FRnMSrk/H2sWQ7aZzdZ+tnt3Ha6bvfeqxbm/vYu3fvHn2PnnyQ8+B0lBZtb7oV7zp2xXMlV+pfxdm1nt6Mp8dcnjQXJ/FXeUy+PtmlxwmSV9v4zSg+F1um/ZvW6L4QqfNf2bTbUMfraSxR2ZyeP0FNOMlD9ClpGpdo7fb+FHK1Pq/4Xeeh8n/pEwMncaDzjVUuSL7uU8Zw7+d6T/6p++SC7iOfS3Fex5pvjA8Gg8Fg8MfDSa5++VXqaz1NfilB19/6R/TS/z2Wb1ORVBU/jiuFTCVTOjGhsnqBsP9TQk9y+/9ONqXvY6V58jbKvx7zRHgXJyRj4ivJQHOfipkETXJTcaL/qSCgEwLEE8nix5K8XYJMhaDu93apvxdOvgb3b72Tm2h7QUPFUFqnxL//TsVVtXbIn1QyKNLcUT/SfVUI+vqokOY5rdcTHpJfSrZXzUWaN+XR+7qd6B3eiXby+ydFcpKjk2Xv69o7HzSnJ7EnrflubaQxn4OJ349lmvg98Vv3T/z+8Lvif+L3YzoTvyd+/xbxe9Ny+6J1mmIevd42+XHar3qonur0fr6PLirt/+Q/fGw6TvwnX3539/iNH9pf/S7FA7INWh+U56jM7reVPr1SmNbsptPJuuFPXNIc+6vIuxjuNOhpeI/tVQxwXVD8q/yLj0nHnbfES/IfRNvpaTt9Wtl59E8aVHSoj/KZYtFem2orni/qXCf/4uMkH006S+sn0enmoLIBt+WE6vXlzivpzsf1/VXbje4tKj4X1Toi+3E/577R9ysdmguKEck3dTGcZHf5/U0fFHforQiVz0jxxnmh7cFgMBgMBl8mjp8Yf/nyZUwiPHGjuya9Teq/f29QEUrHqAhNhc4+lgo+Kg4Sr2lfAiVvdIfvxyRiqf8eS8df6/Edlj5HV+VNhUo6qZEK1W6s6iRJVZil4iUVup9jHmgtpCJb5Ul9qsKjKkav8JHW7hVaNEdprsgmq7G0T0f7RI5OhpNivxontfXCs1pPpzZb+Vdv3x07PQlCsnV87nbVkyXOi46f7MJP4lQnP6qxPhV8jv17jNVYz33ibOI385r2JUz8frxv4vfE74nfH9pO/J74/Tni91prvX79+r2NbT0rT2t9eOUsvY3lNIY/1zen48l+/ZjymfpSvCX+q/lw/pRm0tXWLdl1JZ+301cmaxt9vTHN3Ynf6nxK5QuT36jmwvWUxqtkIjou74k/dBshn0I0dO6TH1rr8VPjzqPrS9em6lWfwnY+XP80Vrd2qzVMuunGcV7JFl1eX0ek7xO+97zQmntODPfjaZ34hdpUC+n+SofOQxrbfY+Ppb/T2tSxk005nSqG0xhO62oM9zcV+Hjkf93nV3Gq4tllPI3hTvfnn39Gmh0SL4PBYDAYDD4/Ts4FXHpifK3+DkxK7hIzqbBKCVt1TJMc/dOxqH+VrFTj0MmBtZ7ekU30PalWOqnwdh4oSdXjlJhTMertu2TT93nRQfPgSTgVNtWck5ypQKfxtW+iQfu6E3xE8yT5dT59H8lXFXXJttM+oum8pzWUbJRo0Z3wVHzQWN6eeFzr6RMYnV4dyd6TP0lFaIKvFbIZ1UeaP1pz1QkBKlSdJvUlvVGxnmRNfoToJx10unK+u3hz4t8S0pxU89/5gCr+7GPV91w/BhO/J35P/H7Mz8Tvid8JE7+fttn/J37/9vF7rV/XCV14U7mSnXVxRdu5L+3WpPbbPNLc6Tpcaz15ItDpKZ8ed4ifE/ujmwrS7xRD/RvYlT/09ZziGa2rNL77Mn+S0ttRDKrWWZe36D7iQ23BdeBjuk9TWpW/9Ivaex+B7Dn5V+ftSgz3mwD2PnpLwokfT29WSPzqMf/UgfO+j+t6rXhw33K73dbDw8MTvbr+yDZdDsoBnY7KuOeevhvuunQ79SeM93F/W4KPv8dIa7Fa80Qz6cLbdDGcxjixL/Vh7pO1Fjp5stvXJ9kS+XDVudqlr1eX3WWufL7zW31rfu/Xb9dXudrgGu7+9jcYDAaDwe8Nl58YRyJQrK6VC70TVEWYjqnJkSddt9vTOw07XqhQon1Xjl9FdyKJ2tMdrJ28VFxpf9+m3xVoTjTBvHqS63TsjmdNvv0JvMSr/t59PaH2wu6KHFdtiBJ1XxP+/yovHZ9Xt6/IVvG7cWUMmsvTPt238RRp3V3RSbde0rfVfM51f8X7FT+dbOJ0HJKPfNfHFqKui1M/dmqvlb6qtVm19xNqemzjY58YT+NP/J74TTxP/D6TY+J3zZPLvdbE74nfGRO/n2I/MU78VzH85Fu8hMrH65ykGL7bPieG61ibhl+c8z7k85Qnp1nZFOn2OTHcnxBXnm6326NvfHe8dP6H5ua5MZxyEM3Hqnir+6v/a+UYTvz5b30C2y+Q06volQ69eec0rnc25ePQ/PoY/jR55Uc/RQyv5FI5ko+lfl0eciWGu45PYriuOZeB1kDySWR/3vfh4eE9TZWPvkef9Kh26DKexBu3CfJTle5VxoeHh3V/f/+IN19rrsNqfdHcVz7N5fP5Jv+eYmylI+Jd/+95TfRvt/nG+HNB0n+6qnswGAwGgxon5weOnxivkg8a+CRp2dv0W+/o9P86RhpH6WoCS/SIfiVf14aSrufSoWIj9fdk1wty13WimQqyjgc/RgWGy9TNo/NFYySZkg3oCRuiSzbpvHpbKkiSXvbYaRz6TUUCFbb+OxWsp8WEH6+KLEI3Z9X6SfNx4l8qvZ7w5fT8P/FE7UmnVIhX/qvyAV5sVidTSAe6Fkgu3edjVbZ/YhOqC59vsu8kB6F7Yqs6mVXhxK9Xa5PWI9lzp8OrmPjNmPidj038Zr3ssSd+T/xO4078nvj9KeO30uzWhvLksZj6eazef77f7T75zP1/P3GndLfP9qfE/Xfy8c47rWPltbLx/buy09utfuLZ++xj+8JOpQOKZS7H3r7ic9JcVRegk09WvpxfnTu3MYoRpL/Ek2+rHMoD6Yl4JH2dxHCF0+r8xFpPvyOvtCgOpHhD7dyf6/GKp5N5oThBa23bVeVf3Ba1bxWvOl69715zPu/+Zoe9revQ147L4E/C09ylvJJ04v1Uj2ld7+OuO7U1n7cqTro8SSbX24kfXOvp+tP/7m/SeA4fP+UJJ2tzY78tQf086beSedDjtuZC+GAwGAx+37j8KnWFF5YnCfeGJhyeIFWgQoeKAiqY1npc6J0kef5KoZT4epJd0XRZqn2UnDko+a1Oxjnouz809nOTQkrQPfkkXknffjzxulZdXO59iQeSIelDT8ZQcaQng7Sd85PkIB2cnghN+tJ1kgoRWh/Oi84tzRe16XSb9EprzGm4fI5Eo7KbxJuPn/ioCiu3m8QH0aDiz9eaH6vWk455VYYO1Trr9lVzpb8r20r2l3gnXflJQrIL4n0tPklQnUzs5PoUmPg98fsE7lNUd8kXOz9pvhOva038rvQ18Xvid2UXV2XoMPH79xO/03on/+K8eNvKn3kfuqhNfqV67fJa69GTibsPybT3v3jxAl9r63T9Yq3OudP2PuSzSK9JlxQ3PL+qsF9HXcUDH7vyyc5rtYa6C8i0TmjdkOyK5Ju27tIr0J1PHSPZA639u7tfb1TQV3DvNmQ7ydduPskmSRfKG/2nvEOP0f5ka5svkp3igMvlfUgm75/y/xT/PCdPffWPXuvt9PWJe39Vero4Tj4w6Tv5gPQddIrtaa116zrF8PSfQG8O2dv65go9luYn3bSb/MEe33kgu9j7KYZp7PC+aX58Xfu+dGPYPp7i7eB5uMnfYDAYDAa/J7y80tgTcCpEFNXJXT3mr0lTaGJCJwEpefT/xL/yTrJt6KuRkh7oxAIVC56UKx80jvLgeut07/pQnM5j6q99qrakb5XBtysefb/zXOnF6ZycqHAaxIfTIhslO9k20X0D1eXtbJXscu8/mcfqZDGNnYoxGrcapxpXx6QT3i57Wu/VGqBCWX8nne7f238lHZOOquPJx6UTDT6u+8wkXwLJS9+09DY+T916SCcD/GTQiY9I8+Tblaxp/+bHv5PXrUdtk75p6TTc11e0r2LiN+th4vfEb+Vt4vfEb8fE74nfynei8Tnjd0JaozSuX1Ta/ehV5buNX1RKfpV8nf+vbEr767Z/q3y3VbjdrvVhzvRiC73u3i+Ukt6U/pVXNftaIP1q38qH+ZoiH0Kvre/WbJoLP0bzW8njuna5SMe0j+Kfx2GSTXWxefGL4XpDQoo1xCP5k5QzqE50DJUh9U0xnN5ioDbk8+ht1d4pPnv7rUOC24WO6a/ed524bfqFU51H9+O+33Xrc5JiH81BZwtpbtynuG62PKRnpUX8bj/otPcx52/zQeujir0uT4ph5KN8nivfU8Vf+q2xgNp1cVbH9JigfOhr8nXcLu8aDAaDwWDwx8alC+Mp8UhFsvZLCWpKurokJ4271tO7/NKJjDRel0x3/SvelK7z6PvohAHRSfxRoko6SUj6q/qm4jnJ4/SomEjjpaRbf1cFYiq6nbby7PRo3FTYVPSVn8Q39b0qNyX53fqlY144+ZhUWLq+XYcnOkt9fG68HbWnMUmepA8tSp+zVpy26qeS2fv6yYN0Etfppic0OpvzsVPfZMO+5igmKP3KPiv77/xHkqOKVdSP/F2KD5V9dDQ+FhO/89gTvx+PO/F74rfzOvGbMfF74nfFx+cAjdX5nsq3VTE8xfhqXJ87vbjexXBfR12+kebbL8r52lRfenf39I0CHn9J1mSf5NeS7qrcQP9SbE3z1MVwl8Uvqp/GcPLVyj/dLJJsU7cpVvt+ygGqdU268G2iQeO7LvVV3kpPf6cYTnC5kr78N8VE3U6+2o9XsVR/0w0QSjPB+U32tnVOn1vQGJ6Ok4wuh29X+tQ2vm+3V5uvnjp2H1X5Ktfb7u839Sn/6Wl2t1Oa685O6LfvS/6DfIXSoSf8nSftn2I46c3n1tentqlq0cFgMBgMBl8WLr9KnRLCnZj43z6m/3W7Kma612qlgnMng84DJfap4HB6NMbJ8av66Ao44pnGokQv9VN0xRTR0Dnz7zBV9FOC6Ykp8ZyS9G6+nS8qsBK0TernhZjqjfomfWs7lzcl+5UcZH8VqCj1/YlP0rX3pycou3Wk/d3uOlsnGnRc+U/F0IkN63Gak+RjKv2SL9G+aZ4qXfjd14mm2zHx4WMlu3QbqOy1s21vRyeuSH/KB9lvNUb1n+yv47mT71Nj4vfEb92vczbxe+L3xO/16DjNycTvid9pv+/7lKjs+na7PfHfSf/atroYTK8sJpquk/3KXBpzj+PzlNZltV4ST9pP+ajsv3qbgMua2up/f511pT/ygaQDjdGqa6WbbGDz0eVlCp+TtP58nkm/KiPd2EVrVMdx3Se/4DpV/fi8OR+JBz1O80njK41kw1UsohyF8genudslX6R6uZIrV77cY27SY/KHLhPF3UTXX5nu85HyWpfdc5rKBsnWvZ/Sr942ot+29vGTLWnfrXPVkdJIdqR8pXmh4/TENtFWPogv51vbeq5yRSe0Pmidu75dR+pvqe1gMBgMBoMvD3e3w0j/6tWrtdbT5OVZg949vdOXEkqir339uO/zJC2deHOaRMeTQSoquhNtRIv2n+o2nVSsTjB6f+X/Ch/eV9vqXax0/IpcXZtOho5eeh1X4t1tv5It2XcqzlSGjveTOa7WUme/bkfVyeA0D47b7YYn26q1XM3l6fpO8qY+WrCl1/S53M+dI6WnoFfQEU7t6WQtX/U5FR9X1voeu/LPhFTgUnzq5onGP/XpJyCfQcc6Gm/evHnW+BO/J35XfSd+T/xOY+n+id9PMfF74vfnjt9rrfXNN988Gl9fk0u8djZD6/nEF/j66uIYrcPKX3gfPa58ncRw1QO9gjjpK21Xc0+y0wXItObJhqt1Wb02XWO487//+5PNxE+C69P7fOoY7m30WLL13Wbroponl83pnMTLZEdVOx/3agwnHekx8rF6c0Q1X0qHXnHu7Sp/UsUAytV07vR19/t/dXPFaUwif6LjK80Kp/ZEY+79KY+p/BT5A3o9fmdnaZ2RjN7e+aObn1xOv6DvsmkfWkeEE39DfKtN0TyrP93tfvzxx5KXisfBYHAN3ap53lmswWDwNeKkVn/WE+NK3JMRTYjod8WkJ1PaX4/5K5OIP9/nNAinJ1J0fJf1hLc0BunKeVY5KLFObWk/8ZZ40uNe/HSFo7ZN+qjm28d1Wan462wx8dUVNt6n068WAUk3iRfni+QmO0mFViWfziGt7V1MpOJDjyfbSjbtxZ3zluQn+Yi+64OKU23XFfUnvHfrTbHvek90aXwqOr1f6p+Q5qeiQf46rY+rfBDcDk/WeDcXarPVU00nfBIv5N9OcHpS4ArcTiZ+T/x2XiZ+T/ymMZNNT/ye+H3K78Tv58Pp0RN97pPVNpPu0nrZvzcNfTrTx6l8n9LZf37Mf9OFE/3rYjjFD/e3rte9P9Fea0Xayb9Re58XH8vhPK213j+Rrm08htNFyqRjt/HE3/39/SN+KJfoZCR9uCyuC4rD7kOSLvXtCO7fdEziwW3Q//ua8XVH8tF4m46vacqNkl95eHjAnC7x7nQ36K0COuf7t8uX1qvS1bmrahC3VdcnrZXb7dc3NVT8kG6UN6VFMSrJr+tN2/g28UTzlHIRwj5ON8K4z+xo0RojG/QbTdxnkm2oDkjfKofTqvz13kc1jP45L+Sfkn7d5wwGg8+Lu7/9fap2g8FgcILjJ8Zfvnz5JLFMJ1C75Gu3S3dwv2cu7E/0KNGsaHmyQ0/DpHGu8kpF6Em/NEbVzwuDkzEq/aSCJNmA96eTHMpnok0J7RVd+RgpufZjOn41Hh2nk0tdn6vzo/OS+qXCsSrWO366vpWtnIyReNb2rgdq043ptlXxUtkoFbVXCif1gSdtTwrkxM9V3ujkxOcArflK559irCuxJvmlDiqL+9ETpH6//PLLMQ3FxO/H41zldeL3xO/UZ+J3zbO2n/idMfH7bKyvMX6vtdbr16/XWk9P1HcxPPF+u/16IYme+q62U6ymdbn3a/9Ec60cw70dyUxPFSdbVHr06RLlgWJCt/ZdvpOns2lOnxvDqY3ur/xjNc/EY5VT3d09ffI/6Unb6BiVj9706Rv2+yLp1Rh+Evur2OP2onBeHdUacT3RuM7/SQx3e6PjfszppzhFMTfdvORy05ymGJ7mg9aSy5DW8YkstM7d3sk+nY7qkOif+JvK31ZIc5DmP8XaKibROD7mlRju9KiP8nSqC9Kjy/fct758rhxsMPgjwVeBr/hPuUrOK6bBYPA1IOVQistPjCvhlEx38MSdEpBUDHTj7r6pANP2Sr8rArQdIRUXzp+3dR4qnEzoppXuXq14PBlv66hLTnV/9RRRx1+ytaSvlNTqvhM9dgXliU0mu+7GoZMaJ0m9wuepKvBo3Moe0xrr/EBXWDmPncynJ2icflX4JNon69NpdWst+T4a78THVnb9nALZ+9F8P1c/Sr/i+8Qmr8Yc70NrrPvvcpyOX9Hy9ld1eoqJ308x8fspDxsTv/t+ad/E74nfTmPid27T0fna43fnV3XsxK8e9xi+tymG6za9Rntv65N45MN0rnS78ke7zf39ffxO9r7An54MJnqUp5BNuz8m+HpKb0hx/Xd8Eg065tsKekKT+hIt4sH/iH/S2d72bxVr31OZVb+eh7nt+bxUcqbvmOsTuWndrfX0gi754spXKT1/PbofpzmhNes8JpvR9vTK62otu1w0nq/1KhfVJ+BdRgfZ0osXL96/4UD9GunD91V6cj0r6CYQ8nMUv9Smk2zEf/pzWaq5TPmc00u+98QHpT6qn7QuNF74k97kX9K8Vr6Ffp8+VT64htHi14ub/X1O+oO/L+6av8Hg94jjC+NVQkZFZErOKLnskipK6Ij2PpZOKDpNkjEVgzQWISXM3q9KRGncbkzlj+4spYKGjldF7kkhp/R8rHSc+HFU89klwUQn8VOdpKh49RNMSQYv4H1cXROpAOhsm4rRinfnj/j04zRexUvHL61vL4ySLOlEQHUiIY17BVfaJ//pxzv+935f8xUt97VJB1dOtKntEq9On8YknVz1u2ntE07WS+VfEm+kA4ptPm9dbLpqjxUmfk/8nvideZ34zZj4/WGsjhenOfH7KY9E/2Rfx6OPT8f/yPGb6KuP8TH9m8CVnem2y6xjuq2lGL4vqOnFT1oLpzHLbZVw4gvI5lPuo3xsPStdsm89Rk8r+7hkbxXtzh9q3+Tr000LSWeuG2p3uz19jbTK5K/gT3mS2kzn49LcJf70WPdadr3pQy+salt95bnPgcq8j+kF08S38koxnPIN17XrtHp9ttsfrW8fW/uRD0wx3OmlMZWO90syJD9U8bvbnrwtguQj/VBcSTFcxyM7cb5ofpOuCerD9HcVp0lfRLeaP8eJzyWd06v0K9mrNqcxvFpvg4/DaHOQcFvX7eO2ntdv8Hlxa/4Gg98jjl+l/urVq8cdi6RiH1/rcdJzNblIxTolTnqsG6/j/Qp/Kak+1Y/32dvP4UF/+//UnvjxfpWc3j/1qXgkPqokO/Ff8eP7TpP5bl682HE9UeFMJyVSHy/ECDQm0fP/FSoeqsI4yZHWcJq3JF+nB23jxXwlc8Wf/nY5aV0kmrT/hG5ax0kO5/tq4eq8JHnIHk72Ey8nuqJ9la9T2tW+u7u79yeSO7htOS19nWc35gmvLuvbt29bHgkTv2s6E78nfrv83t/7TPye+D3xe+J3te9Txe+1fn2Vusp4NUat9fRp2Ct99Vh6PTbNxWnsqGho37TP/Z2PXcnoY16J5yl2dj7b9aLt9uuXdb6chschpUHjJp6c730BLT396secH9JL4oX04LSqufA44fPg/VVGulid+tDYpA+yBbUtHfs0hquM1WcPiC+iR/tSHEzy0XhpbtJNBJ0vSHZN/FHOUMWFKuejdldjuK6j58TwNCdOt5u/FPOJF9WhHqd52/6JfM3HxvAuRu99vo52m/15kJMxlaa2UZn9VfjzKvXB4PPjdLV8/JmgwWDwtaCr59Za6+UVgppYdIUrFSrerkqIT4+looiOUdKjfaj4pIIpyeWoCqrU96TgoSTR9aLz1PHitJyu96nms5KvOjFw0qea2yRLOilBIHm7cVKbyia1WDwtDn37lDdaj2utR4VNKlwqHk511K3han15MUY0vRhO8vrYzkdVpCb+TnxBOllQ0a70TSeMTopt4uvUfmiuiAfiuzqRQm3JP/uYuw+tucqWK335HfqnPpv87knfFIdO/PRzMfF74jfRmPg98Xvi98Tvid+/7/i9Vh/D9YIfrfHdvoufTlv7KR2/UOcXG9Mr17sYrk8IKi9VvqD7Nn260SHF3A192j49wUz09FhlT1W80f2q27ReSS9pXen4hE2ziyVpnXle5/sr3+bx3r9DfeKfO52qXROvnd9Ivq27yO03EehaoRhO+qKL+FVsc3krm0hr0UHtfd46XTsPKkv6hvZuR29tqGIa+cHdluLT3d3denh4iPaqfHQxvIt/qa8eo3Z7bZA/12OO0xwx8UNx7uHhAY+ntUX2qP10LZA/8zn1Odigm3YIVQxX/Z7mZIPB4NPhtvqL458nyx4MBl8znvUq9ZQsdAl1andCW49T8kQFf8UfFYGpsEq8+e9KriTLVV1eobtWfpVWKpSrcRMNmgv9SwW78ul9tPBKBelJwnoiTyre9Btmaa6qgshl2+138dUV5KmYcXrOC+mV2uh/51nbp/mj9t7H21QnjJJ8lR58HSfd+NjVPpKrs0H6nmCag8SDz0nnT2ntpPlKJ4HItmn9kU68Twe3A9WpFr3OM80xja8yOY3ED8UBp62/yZ8m/XQgX1GtnY/BxO+J34nGxO+n8ih/E78nfk/8nvhN4/v254rfaz3+vmuau+qiAMVP4pP0pHOp65l4Svbt457EcL+41b3+N10MU3Q+k+Kht6vWuOov2Vyyz47XBH+lfhXDT+bJx1a6ZDfku3xMb6809ivLUwxXfXq7zg9SDNUYXvl6kpdokp4SzSs57/arHhPSPG28e/cOL6AqDd92Gf2J5yoeKY/JJna/tOa7GE6vwNd2fhOO6j35fR97y3x/f/+kjcvmulK+SOe0Nsl23b6qGK58kW90HdPckE7pP8nlcuy25B9TztjlkiTn9hcuX/WN9moeSSeusyqmDAaDT49qxc1qHAwGnwPHF8bTyYcroMRU/5+Mn5L605Mbpzw7T7fb42+mpfZaRFCxoNspCe34Jd78f3cyqktYU0FINFxOKlpJlqsnkVKimvqlJDzJ7Lymua747Owztafi2U/yeOHiRYrLRWuG5CM9ntpiJZv38ZN2WsQ4rypfKsz9OBXiHU/dCY7KRpSG80hFd0Jaf77mEo/0+6RQ1bG7EwAV7yey0RjepgPNL508SDKe8k68+p3qHT0/sdHhynp7DiZ+T/ye+N3zOfE795n4zZj4PfH7c8fvNEb6Ri7xQhe7kz8lv6bxgmh4e0V69XryCd5nH394eGjX9u324anOdMGui+HKS2UH/lpj/dtj735+0cbHTPFij6/z5xfCVS9dDE9r2n2W6+Hdu3dPbgpzf9rliD4m2YU/RU25TNK706pizka6oYf4TzHC++s4pGeiVelP5SLbdZ7V1nQ7xXDiUy9E65pyOXXMbSekm2QnbnNpbVY6qeTZPCVovk92fRLDyQ7cT6YcJ61HvVmPxvHYmXy4z0dlsyefSHBaFMMpRtDT7MQv8aw0tx9y36H8q75d52SbxF+yy8FgMBgMBl8mLj8xXiVY3QlPKkoSvOCi42mMvZ+Sny7J9n1dUtzxqW1TsZZ4I/66QlahhbSPSScJaNwqgVc4HU1sXcYqMU+6oJMpZJOJJypMaWw6gdbJfWJTCrqrleBz5MVehdSm6kt6TSd3lSfi1+loHx8v8ZHmi9pWx13myta8OOzWGNGo1hPxnE4EqH79pNnJWknrzE+4UT/6plw1XzRXp3bmY5/67oqniv7+nWyC+hJPlR8hnSQ/keicxMlTTPye+D3xe+K38jbx+ym9xO/E78ftU9uJ358nfu9x3JfRxZe1+JvAdKGLkHypHtNt99Fk/8p7ek22+0mV22Vxmr7tfVU/KaalOXea+2ncDX1aVMe9u3t8M0Kaq/SUo86D86f7KBe43T7cRJBk3ftULj+mF0P9qVjSL62xFMN1PrZON9+7ve4nm986phhQrT/XeefzdZzOzjb2TQREt4v/ajMUw/fceCx48eIF3oDhdpLs3mWntZxQ+UP/7U/Bu911MVz5Ubugual8195WfSsvalsphldP9Kd14vNG/fY66HJ8hdtKytncrrS98ufj+Romf61yKB31he4blT7RcN5STkv+jmRzfex1433TGh4MBp8fs/IGg8FvjeML46fQpCXdIXiS5J0kI568dckw0aTEsBvH+6ZisysQnBYlstSfxnU5PUnsTlwl2dJJJeJNi5J0MuNEJuKBxq94oiKa+lX6Pi1I6ISN/k9FaeInjePHaVwqwKhtV8hpOyp8nH7i9wSpkEsnVKp1ktae9u18gr+Ctyr8qvFojDTviba/4jX1OzlRk4rDao3reiad+/7upE86IdHppVqjqU1F00+guA7ohBDZJfHS+ZO05lzXzu9vUaBP/J74PfF74vcVTPzm9hO/H49DmPh9DvINNB8Uw32uyF4qn3Yyf/o7zYXbmtOo7DS1J94rn5zss/K1KT7uGFXlDymGJ1AM3t+O93Hu7h5/d3e38YtQTtP1qjbhF/5d35Wu/SnX58ZwX9cdfO5SDCc/7DxSG7e/xN+eK+1f8bT/q/59ft32FN6meysS2fjmmeIE+Rz/S34k6ZFuSnAaakd6Q4K2p/0J6Vhat8+J4d4mxZm9T9v6GyCobZobsuuTGE42RXPq7VLMIZm9n/bVG7W8L8Usl7mSxdeg80o+meLU9q9p/X2tuAt/g8GnQmdPY2+DvyfG/r5cXHqV+lpc+KaEsUoMvU1Kuq7gygkZ7ePJlR+rTnjsMU4LOOI3FWzOfyoefZuKf/+dktV9LBWENFaiT0Wjb6c2Ou6pnVGCfzonnqCf6j0VZclOtA8l/qn4rcbxufR9fszpUCGUZEjyKy9pPSXa3p4KL9dF8g1UYHYnF5T3pAvilfYrPR27sgeHykd3dick3pxm+u18peN+MibZZ/ItKYZUclavwqvGS99oJrlof7f2TnjY+9UWUqyqbPtjMPF74vfE76e/J35P/KbfE78nfvv+v2f8Xuvpa6d1ntX2yU+4bXmb2+3DBSCPHUmepD/9n9ppe4rhyTZTTuL2l3xc4kf7+3G/0cb7OF1fWxXSfCT/Tjf9KK0rMVTH8wuRbk++hsgXu86vzAn1qWJ46pfszvnXmwnoW9rOg+ugGmc/ZZqe3KZ+/tQ7taH17bJVMVBjEvHt65BA69L51RhOvols3d+6oG2cX39dtsupOtV+5DvoBhKn18Vwl4+Ok86qmxhOYrjzuPWh9kxvm0hrUkHtyW6qz+ls0PfAk62ldsS7t1edpc9D6XbKb9J+53XwFNcq6MGAMXY0+D1j7PPLxqUnxrtifLfR9onOxkmiQcVSl9h1x5w20ewKy5TY7eS0S3q96KKi54o8VcKbTgbQsS4ppMKmKn7JZpQ2JaJX9HBaDCc6zj8l7m77if80/tWEurO5kz40N6l40wLH5fRXtlEh7n1O5s5PxOnxpG+iR8UU2WNaz1smKvxO/U1nd6e+gMZI9tXxofsqmXT76lidnzn53Y2dfHC3j9ZmxU/yY0TzxA6o30Z10uwktj0HE78fY+L3xO+J3xO/ff/E72u/J37/NvF707y/v38/pr4ClvSU9HV/f4/xIPXZMbG7UcHXTBfzlbb+PolPa/HrjXcbj+HVGtKY0fmR/Zf8KL1aPemKviO8+fGLO6TbpENvp3Iqj6qnFMPJD5LvP4mhOibprosFyWfQt+SJX+1DdCg3IDkIqlsfh+RzG9rrmmjqMe2na1Ltkta0635vJ5/o9PwY0fY8mNZyeiV/tfYq/+T7kw6Sfaj8ibb7V99O65Rsl+yd7P5UVudT26Q58L4+f2rHnW46WV2eTbfzAdV4Xr+6zGnb+fA1nmJ4V9t9Teg0MBoa/BaYW1QGfy/c1tjfl4zLr1JPJ630uG6nwpRAibnTpX1dHz2WEk5P5EiGdFLSx9sJfkqSU4LVFZupaCOZPVHXMbV4obZJrk5u30c86/g+Nv2mY3RCwlHNr+vLT65oO5Wjk4V4SHal4xNPfqKHCiDXh/PqdyT7uvWCNq1PL1aTjXR2Qu1Jdtp2XdKrspTPpGull8b09X5iX2m8zv/RK/yqMbuCuYPLSoXraX//nfS+j/maVj9EdJM+dG1WMaDi1fdV9IivLvYQ39ouyUTfm/yUxfjE74nfJ8cnfk/8rjDxez3iWY9P/J74XdF9LigWEFwPyS9SvypO+Wu6iY7nF74G7+74yUOXye1n90m+jOQ5+Y6uI8Vw8s1uc+53qhhO3872eOj+neSs1tKmSW8a0Nelu06fE8MdtD/pnXhRO0vfuif7OOHD+5Ost9vjb7STvV+N4WTjenGOPl2kvPh+4oHm8mPjqbZRfZ7EcMqLyE69X3qaOq0PlZH4J5tWnl22E99f+RHiJdmQr9/uhkPy7x4HnQeNTS6n+yDnzbdVV95v/1YZEq9pXXfz7jrzOSEZ3H+RLraO6Caa7oawwWPcyd9gcBVdJXpeqQ4Gg8E1XHqVuie2npDp/9S/G4NOTqSENyXaG1Wy63xXSXUqLDreiX8qxrqEqzqeChoqmCs90fHqpENFkxJz/X+aYFZjeCLenUAgmyW6XmBX9pwS8Wq7sqN0rHpy4ISvNA9EX0FF7Qm/3p+K/UTT21ORo4VzWluJb++XxiU6znvVpyoq6T/RI/35mqZj3t9th3y221U191Scazu1wWodKk55oX10siHZQzqBdhLHKvsnHVGfvY/WxLZrp9+tsxNM/J74rZj4PfF74vfEb5d54vdj/n4v8XutDxcQ9bW5XQxPMdfhtl7Zz/5Nr+l1eu7Huhju/Wid0DwlG/I+FZ+JXx/ffyddVTE82Y/zfBLbq294pzVO+lTZU+yhOaHfxBfFsSqGpxhNtqp8JV7dVklHelwvhp3E8MSX80ZzUL1Wm8bp4pivCz+uNx2QzdGa1PF0/Xtf14W38xieYprLk9Z0lZ+oX3ad+BsWUlz1MVL8VPl2e79AXPk1P6YXaCudOa8+lvNEF6RJbuKN9LShY+pNVN6/u7lJdVf5dO+jsdHp+vfMUwwkm6b/XyvOKr9fcfvb32DwHCTbGZsaDAafE8cXxqsTDhtdYln11X6ahPhrotb6kNTTK8tS4qRjePtUBBDPp/tILuKH2tBvT2C90KraJ5q6jxJGLxD9T48ldHPuY2lx4EVdV4zSHdcuE9GhgiDNU3r1XRrT5arsa/8mfTvfiU4qMtM8VLaTTkxQ27QOq/lIfoLmKxUmia9kK+Qzko6dxz3+yQmrE92TzjrZaU6It1OfkE5SXdFzZRv0VEHlA7vCc7fRta5xYiO9HlJ5TrZNfqfz4aTrLlb6yQsaw9s8F5UP9THTuux48DUx8ZvlSGs6tU80dR/5o4nfTzHxm+VM67Caj+QnJn4/bjPx+2mbid/XUfl6H9d9ke5L8hDtPTf+GvW9vb8f260Dl0P7pBjudpF8FdF0WbZNVPmEt6/sJq1r0qmPp/+rfWrHNAe7jX7Dl/w2rWH9vdtWTxt3cW/rwC9A+rjJFn0/2aH3U97IJvZFLr0otnXpsvj4J696r3TiuqlkSrZT+S9fJz5GukCY5jr5Fte1HiOQ7fhx+p548lPuh1Q2tTviScdJeZ+PpbRUp10Mr94WpejytROfrrwnfWlff2W406zGI943rSsx3GWjdee6fffuHV5YJzlJD8lvURt6SnyPoW8UoDfCDJ5iLl4OPgVu8DcYDAafEy9PG6ZkjpKV6sRTR2+tp99LpGRQky1NpLSdJ2I+PhVdNE7FK8lEyWYa27eJT+I3FQ7pial0UqAam5BOoPjx1J7apKTd+zndpKs0HhV9VADSWBv06sxUALpMabxU6BK9K3r3wkOP0UkeGtN/k+1SAZLWSLee/IRAKoC6NZjWSCUP8dcViQk63zTviW46sUC0XBd+zE9+6IkFQkUryUZ8+/+r87ULYpq3zkapHem/a1v5JJK3Oubjv3jx4v1rGpNukvzPxcRv5pVkmvid21Obid8Tv+n4xO+J30rLt7U/8ZjkOmn7pcXvTVPp7bVLF4+Vt6S7zSPZgl5M8QtZOs+VH6riUzU/lBfQ+k3z7uORnSffR/6riuGet9zf38dPYCjPOndbl/q9eJ0fWpPKL+VNKhO9Ap8ujKo+OptNenH9E880vvah8V1v1Rw5f0pj51gp11A9JBo+nzqH5DucN51X0j+NpUi2q/CnbbUfHXe5SJ9Ev/Of9/f3T+yK/ALNb4q1yjvNY4pha31YZ64LHVt51v3kL7evpLnf4ylvlJu47nxeuz6d/Eo39Ul68mNdrKPx0hjaTvWbxtPPV2y9b//ntVP1ffS7u19vJvrll1/eH6ebgrYvP1lvXwtua83r0QeDwWDwxeLudli1v3r16sm+lMA+GQSSpKqtYheL9/f3jwoQ/f6TF4dELyXmFa+Jp80DJbE07hWk8alQ1KKiku2k0K14TicnnJcNKvyqpNxPLijPrmOXu5tHtz3apt9p36lOqv4n64FkP+HLaaYinsY84duRTh6c8lqNT3OkYyb7oPanY6Z9NBfd+B3dU/46Gp1P61DRT4Ws/j6RoRuvavcxevoYfk7WGZ18+Zi56Ph88+bNs/pO/H6Mid9PedmY+F33n/hdY+L3OW8Tv6/TPe33JcXvtdb69ttvH/GlPmHznuLavnCgPqSL4fv/jt+vXr1a9/f3a621Hh4e3l9YuN1+/Qby1RieeEg26sdc1hPbPokTp230ScK0ltP6TnlHuvnFYyz5bJXXL0iqHpJ9PDw8PGqrF/yqGJ7iaBfD6WKWX2BUP+Z5SRXDd5t00TLFcJKziuHuN2guPjaG+/apv9u6pQuXBOXV51513unG14nOUyWv2ni3lrxvujCtsmh7lzeNQXOgdD4mhqc59uNq+5U8LjvxpTRO4vFajy+SpzlRujpO8nOJR8pX6DX4zp/vp5uMfcwrUPv/6aefLvXVcb8UdJJ8+uxpMBgMBoOPw0nsP35inHB6wsOPd0XnTkJevnz5/sT669ev1+vXr9davyZCv/zyy3rz5s16+/YtJmubjtPV/1WCd5rwk06UTlUIurw0VlUEOU+JF6XZnRRJdLrklsZMT8D5PKRjNHe63RUBu43PCY3ttE74O9XJCejESyrGE6igS/2p0OhQFX+V/ryYJzpekCb+KvugNeTFPPFH27sg8zvjuwtMSj8h2b/i6kmAVFR+bOFOdDboqYGTkzbE64bvT/Z6Raau7ek+54cK9is+IoHW8XOK+Q4Tvyd+Ky8+5sTvc0z8nvitmPj94XfFy8Tva3QV/qTjHkf/b+gFpy27r1ed1/1/Xwy/v79f33333fruu+/e0/vpp5/Wjz/+uN68ebPu7h5fjPBxXAaK2/SEtK8jl7WKURrHHh4e8JXCSX/E496nT476vLivdOz+lZ0lv0r5jvK82yl/W3bv4+OQT0pzp9vk86kt2ZfPm39b3G/mcD1VvpziBrWhuOc6V55Sn92miuFOi/bTcVoPPtZea0rTL6aqLSjtTZOeEHa9OD9JRued4mBFS23Bb4i4cpOnjnHym27UcL34TQN6zO1GefL40t2YuRbbqPPo9Nz/0RzQGxu8rdoE6TXlOLTeKp0lkG25nVAMUxuhG218jM5mT/n9mrC18OVc6h8MBoPB4BNcGK+KjrWeJhLptWi0ve9Uf/ny5fruu+/Wn/70p/Xy5cv1yy+/rB9++GHd39+vH3/8cb19+/ZJwn/Cb5XwdAVu6kNJ90lC5zRPTlAlXrrCrKJZnSCoQCcxqkSYTnQQX0mmVNycJq7pJINCCyM/SaD9UgJ9WjhQcu8ynZxYq/jQbRqj4u/0GLVJJ0VUVjqhkNYSybuRfMu333671lrr559/flIw0gkUmgsakwqx7gSX06nmqpqbdFJ3tzl5KsGPJ9tz/qo5TUVlpUfyhZVPrOyLaLp9EV3vd1LsVyd7Ol+b1gKt1TT+x2Li98Rvl2fi9wd+Jn5P/Pa2Tmfi98Rv3f9bxO/KN5E8Pr5eKPVjbuf7SfHXr1+vf/zHf1z/8i//sl6/fr1++umn9de//nW9fPly/c///M/7m9ySLVW+OvkLiuGUj+i2vspcX7Wrr8UlWicxXNdlWv8bfpG/m6fkS50Pt6/0VORus3nW/Mpp6U0S/iRpiuHqM0/jm4691uMb75I+7+/v39/U4J8vUL1185F0s8d2n0s0TuQjv7lpdxcj9zbZnedkm06yK7ogqPrbxzU36nTgcZf8Hcl4u93W999/v+7u7tYPP/zwKBfzTwi4b6UcwfWtYzv/yjO9cYCwj+nFeaJZxXDiJcUbpZlyu6T7JA/RTm117OR3nhvDN/xGLGpD/CjI15FO1Y5SW5LH55L8ZOXHv0bc1tOL45/+TMVgMBgMBr8Nji+Me1JztdCvikwqUF68eLFevny5Xr9+vf7hH/5h/elPf1rff//9evfu3Xr58uX79jvh8iS2SzRPZd7/q2JA26fC33nqdEW/KYHzZNETaN3n26mIO0leE7+kGy1KKBHtkE4uUXHuPKeCnXTpfbUAcpkSP6mg7VC1rRL2U7tUOicFwwmoGEoyuV3SyZ59vJq7ZF9Jd69evVr/+q//ut68ebP++7//+wktp+Hrg9ay80/7SBf0e//vimgq3IjHShfPmVvyb/67WwcnYyV+yTbo+3gV/GRA8sNpHisdEL1kV2neUnFf8XoVE78nfp/wO/F74jfJNPF74nc1VuJ34venid+bVvVtXx1f+VAb9VcV+9PLun/H7++++2790z/90/rnf/7n9ec//3k9PDys169fv9fTfo3627dvn/BLMvh2Zasphmu/va3xxGnsPGO/LryaM9Wh/lY+9/a+cOv9/EKQxnkfR/MA95/JR7vOiF96xTDFcP2d7Mrp7wt/e/5V3ynOOR2/QcO3db50DKfp/bqnRLXPaex8bgynHEptWvOqaq4rn0V807x7vKtuTFCe3Jb2vOvNZHueSN/ffPPN+vd///f1448/rv/8z/985I/U/2zaahd0MTvlHS5D0ofrcP/3b4snnZN+q1e5d7wlOF2nRb/3vvR2K1oL9OkkWpPqp/aNRjom6YdutFE6NLbu1z57HOeP/ICvp7RO1YapvY/5KeL4l4ZrVflgMBgMBr9fHF8Yp6SUEqGUxFNiS0me7r+7u1vff//9+rd/+7f14sWL9d133603b968/7bZzz//vF69erV+/vnnJ3xUPOpvHc+L9ipJ9O1Kb57MpXFS4V8l9B1N54MKIIUnqlWR0SWpfpwSTyoCSc5KX7uf099tUnFcyadI9ktyJppVgb6LGC0WXG4f50pxmHhyukqvWgup8HMZqxMSJwVi16az/z3OX/7yl/cn7ap17uvK9eKvKjvBSdu0VskHpXVc6aMaV+9sT69iuzL3tKYrkO0lXpOfpv7kU9MFMuqTeEy8aTvng/x6xWcqwK/olXic+D3xm/ia+D3xe+I3Y+J3jYnfv038Xmu9v4ikFw10vtT3080HelG4i+Gb3osXL9af//zn9R//8R/r/v5+/b//9//WDz/8sH7++ef17t279cMPP6xvv/12/fDDD090s2n4a5F1XNK18kKv0KYY2/ltfyMErbvkn31N6G//LvfeTxfK0ivY/QKTX9SqcoMUR1J+0MXwRN/7UN8Uw13Hez/d5KF2QTLphVSdJ73ASxfjUh6x9+0bHHSuSPdKk+R22mTn9P3uLYPKrk9WUyzxsYi3hE2/A8UQpeGxWm1bdfhf//Vf682bN2ut9eitDmk8Xbc6Rnch33nz7bX4+9rdOtc51LjrdkX2QrmVjksx3H188tG7z14X+7f6JefB12/lN92u9C0cxI/bucNjuPvlFMPT09punycxXG0zxYTEy8maGQwGg8Fg8MfE08wlgAqtnShpUqPJmSeV1I4Smf17f9vsxx9/fE9TX4+pr4FKyQ3J0MmV+KF9/puKI29bFVhdX+Lfk7VU1LmsXpxQYdDxlU5IEJ+UxLptdLTU3pw2JeupsKHi209wUNF/KmPXL+3zAo1sxU9WdHZyMj+7f5Ih8anHSZ9UXHX8kL9QWdLJCud3F4j/93//t3766acnJz2cRjoh4zyfbBNtkr8qyq6eAHG77uxOZaMTeclnJ7lP7czHUPqJBp1g8v4Ef/Ul0a3s8zS2qAwuX/IxNEYaK51YOcXE74nftH/iN8vY9Zv4XfMx8Xvit7ef+P38+L3Wen/hTv3k/lzJlnvH9LU+xAfy05X/VH5fvXq1Xr16tf7617+utdZ6+/bt+4uIL1++XHd3H54Y99chbzoUN3TME1+5ZU0xQMeoYnjl02j+T+K/r7+11pM5SXFh31Dl9pHskJ6gTTdKEJ8uj97M1d3QtY97DFcd0FOkOsb9/f2j8d0GlQfn18clObsY7rmLtyNdub6VN8pdKLYqPX+SX+PZ3q+vPa9yDf+t86g6U1679aL0XG8615RnuS73myT+8pe/rP/93/999JmDjW6eSacui68XfzMGyeC80roi/dO4SmvPgfd3G3JatHZ8jnVu1X5ovbhsPq7bl77S3uV1nbrMpMeNtG5d1k2D+KSL7AkfE8OVVz++Zfkj4u5vf4PBYDAYDDLubt3ZgsFgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgM/sD4Y97+NhgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPBIebC+GAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAy+aMyF8cFgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBh80ZgL44PBYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDD4ojEXxgeDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWDwRWMujA8Gg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8Hgi8ZcGB8MBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPBF425MD4YDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDLxpzYXwwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGXzT+P1jwc6TXf93XAAAAAElFTkSuQmCC\n"},"metadata":{}}]}},"02f07ea9cda84469b0baf05bb6db2c8a":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c2166230f60e4a72b094a9b20d79c774":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"8d43f28e23ed45b08129ed41526b4ca1":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"f5f6be3714e4455bb60cb90716dfe132":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ba02d67024864367b9758224d2dd0db5":{"model_module":"@jupyter-widgets/controls","model_name":"VBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":["widget-interact"],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"VBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"VBoxView","box_style":"","children":["IPY_MODEL_915fb161c4be4a38bb79b978b052fb5a","IPY_MODEL_4dbbaa86e35c4e62bff56c8ef611932c"],"layout":"IPY_MODEL_c21b34855eb846b7849b2f3d9a6c9682"}},"915fb161c4be4a38bb79b978b052fb5a":{"model_module":"@jupyter-widgets/controls","model_name":"ButtonModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ButtonModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ButtonView","button_style":"","description":"Process your images","disabled":false,"icon":"","layout":"IPY_MODEL_bc880185cd8c43949ffcfd9cde6da3ee","style":"IPY_MODEL_a27783dced594a85bc19d29c84f99ce9","tooltip":""}},"4dbbaa86e35c4e62bff56c8ef611932c":{"model_module":"@jupyter-widgets/output","model_name":"OutputModel","model_module_version":"1.0.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/output","_model_module_version":"1.0.0","_model_name":"OutputModel","_view_count":null,"_view_module":"@jupyter-widgets/output","_view_module_version":"1.0.0","_view_name":"OutputView","layout":"IPY_MODEL_6b775a4590bf43f09e9c43be6304477b","msg_id":"","outputs":[{"output_type":"stream","name":"stdout","text":["Your images are now beeing processed\n","Performing prediction on: C2-Slide1.sld - Capture 6 - Position 1.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 2.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 4.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 3.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 6.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 5.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 8.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 7.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 9.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 10.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 11.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 12.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 13.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 15.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]},{"output_type":"stream","name":"stdout","text":["Performing prediction on: C2-Slide1.sld - Capture 6 - Position 14.tif\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 0\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 1\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 2\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 3\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 4\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 5\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 6\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 7\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 8\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 9\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 10\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 11\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 12\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 13\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 14\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 15\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 16\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 17\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 18\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 19\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 20\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 21\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 22\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 23\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 24\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 25\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 26\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 27\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 28\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 29\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 30\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 31\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 32\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 33\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 34\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 35\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 36\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 37\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 38\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 39\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 40\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 41\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 42\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 43\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 44\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 45\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 46\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 47\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 48\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 49\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 50\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 51\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 52\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 53\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 54\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 55\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 56\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 57\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 58\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 59\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 60\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 61\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 62\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 63\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 64\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 65\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 66\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 67\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 68\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 69\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 70\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 71\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 72\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 73\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 74\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 75\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 76\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 77\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 78\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 79\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 80\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 81\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 82\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 83\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 84\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 85\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 86\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 87\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 88\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 89\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 90\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 91\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 92\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 93\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 94\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 95\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 96\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 97\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 98\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 99\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 100\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 101\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 102\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 103\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 104\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 105\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 106\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 107\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 108\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 109\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 110\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 111\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 112\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 113\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 114\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 115\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 116\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 117\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 118\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 119\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 120\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 121\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 122\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 123\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 124\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 125\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 126\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 127\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 128\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 129\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 130\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 131\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 132\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 133\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 134\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 135\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 136\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 137\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 138\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 139\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 140\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 141\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 142\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 143\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 144\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 145\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 146\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 147\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 148\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 149\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 150\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 151\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 152\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 153\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 154\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 155\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 156\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 157\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 158\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 159\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 160\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 161\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 162\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 163\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 164\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 165\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 166\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 167\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 168\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 169\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 170\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 171\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 172\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 173\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 174\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 175\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 176\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 177\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 178\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 179\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 180\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 181\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 182\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 183\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 184\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 185\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 186\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 187\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 188\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 189\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 190\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 191\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 192\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 193\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 194\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 195\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 196\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 197\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 198\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 199\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 200\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 201\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 202\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 203\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 204\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 205\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 206\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 207\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 208\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 209\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 210\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 211\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 212\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 213\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 214\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 215\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 216\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 217\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 218\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 219\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 220\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 221\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 222\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 223\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 224\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 225\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 226\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 227\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 228\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 229\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 230\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 231\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 232\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 233\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 234\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 235\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 236\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 237\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 238\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 239\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 240\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 241\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 242\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 243\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 244\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 245\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 246\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 247\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 248\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 249\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 250\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 251\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 252\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 253\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 254\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 255\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 256\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 257\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 258\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 259\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 260\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 261\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 262\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 263\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 264\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 265\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 266\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 267\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 268\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 269\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 270\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 271\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 272\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 273\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 274\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 275\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 276\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 277\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 278\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 279\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 280\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 281\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 282\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 283\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 284\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 285\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 286\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 287\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 288\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 289\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 290\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 291\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 292\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 293\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 294\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 295\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 296\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 297\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 298\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 299\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 300\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 301\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 302\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 303\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 304\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 305\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 306\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 307\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 308\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 309\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 310\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 311\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 312\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 313\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 314\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 315\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 316\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 317\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 318\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 319\n"]},{"output_type":"stream","name":"stdout","text":["Frame number: 320\n"]}]}},"c21b34855eb846b7849b2f3d9a6c9682":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"bc880185cd8c43949ffcfd9cde6da3ee":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a27783dced594a85bc19d29c84f99ce9":{"model_module":"@jupyter-widgets/controls","model_name":"ButtonStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ButtonStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","button_color":"yellow","font_weight":""}},"6b775a4590bf43f09e9c43be6304477b":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}}}}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file