From 21b8c323585fc91db3bd7c9e7bcc0212a95e035c Mon Sep 17 00:00:00 2001 From: aliciamirag <2caualiciamira@gmail.com> Date: Tue, 16 Dec 2025 18:30:39 +0100 Subject: [PATCH] Agregar proyecto 100453622 --- _projects/2025/100453622/100453622.Rmd | 837 ++++++ _projects/2025/100453622/100453622.html | 2410 +++++++++++++++++ .../2025/100453622/ImprovementDataBase.xlsx | Bin 0 -> 61090 bytes .../2025/100453622/ReplicationDataBase.xlsx | Bin 0 -> 56756 bytes 4 files changed, 3247 insertions(+) create mode 100644 _projects/2025/100453622/100453622.Rmd create mode 100644 _projects/2025/100453622/100453622.html create mode 100644 _projects/2025/100453622/ImprovementDataBase.xlsx create mode 100644 _projects/2025/100453622/ReplicationDataBase.xlsx diff --git a/_projects/2025/100453622/100453622.Rmd b/_projects/2025/100453622/100453622.Rmd new file mode 100644 index 00000000..99f5394f --- /dev/null +++ b/_projects/2025/100453622/100453622.Rmd @@ -0,0 +1,837 @@ +--- +title: "Protests in spanish regions 2022" +description: Replication and Improvement of the chosen graph and database +categories: "2025" +author: Alicia Mira Guirao +date: "`r Sys.Date()`" +output: + distill::distill_article: + self_contained: false + toc: true +--- + +# GRAPH REPLICATION + +This is the initial version of the graph replication about motive protest distribution across spanish provinces in 2022. + +## Data Preparing + +```{r Data Cleaning and Transformation} +library(readxl) +library(dplyr) +library(tidyverse) +library(sf) +library(mapSpain) +library(rnaturalearth) +library(rnaturalearthdata) +library(ggplot2) +library(grid) +#library(extrafont) +library(showtext) + +# Font adding +font_add("Lexend", regular = "/Users/cguirao/Library/Fonts/LexendDeca-VariableFont_wght.ttf") # needed font for the graph +showtext_auto() + +# Data import +protests <- read_excel("~/Desktop/datavizu/_projects/2025/100453622/ReplicationDataBase.xlsx", + sheet = "TABLA 1-3-7", + skip = 1) # skipping the title + +prov <- esp_get_prov() + +library(giscoR) +neighbors <- gisco_get_countries( + country = c("Portugal", "France", "Morocco", "Algeria", "Andorra")) + +# Adding those that are left bc they are named differently in INE +protests <- protests |> + mutate( + `Comunidad autónoma y provincia` = recode( + `Comunidad autónoma y provincia`, + "Murcia, Región de" = "Murcia", + "Navarra, Comunidad Foral de" = "Navarra", + "Madrid, Comunidad de" = "Madrid", + "Asturias, Principado de" = "Asturias" + ) + ) + +# Filter only provinces +data_prov <- protests %>% + filter(`Comunidad autónoma y provincia` %in% prov$ine.prov.name) + +# Jonning shapefile with filtered dataframe +protest_prov <- prov %>% + left_join(data_prov, + by = c("ine.prov.name" = "Comunidad autónoma y provincia")) + +# Creating data for canary islands map +canarias_data <- protest_prov %>% + filter(ine.prov.name %in% c("Palmas, Las", "Santa Cruz de Tenerife")) + +# Creating data for peninsula and baleares islands map +peninsula_data <- protest_prov %>% + filter(!ine.prov.name %in% c("Palmas, Las", "Santa Cruz de Tenerife")) + +# Obtaining coordenates of each province +peninsula_data <- peninsula_data |> + mutate( + centroide = st_centroid(geometry), + x = st_coordinates(centroide)[,1], + y = st_coordinates(centroide)[,2], + + x = case_when( + ine.prov.name == "Segovia" ~ x + 0.2, + ine.prov.name == "Toledo" ~ x - 0.45, + ine.prov.name == "Pontevedra" ~ x - 0.2, + ine.prov.name == "Sevilla" ~ x - 0.05, + ine.prov.name == "Granada" ~ x - 0.4, + ine.prov.name == "Almería" ~ x + 0.1, + ine.prov.name == "Murcia" ~ x + 0.1, + ine.prov.name == "Alicante/Alacant" ~ x + 0.25, + ine.prov.name == "Castellón/Castelló" ~ x + 0.25, + ine.prov.name == "Valencia/València" ~ x + 0.4, + ine.prov.name == "Balears, Illes" ~ x - 0.3, + ine.prov.name == "Guadalajara" ~ x + 0.2, + ine.prov.name == "Ceuta" ~ x + 0.35, + ine.prov.name == "Melilla" ~ x + 0.25, + TRUE ~ x + ), + y = case_when( + ine.prov.name == "Segovia" ~ y + 0.35, + ine.prov.name == "Coruña, A" ~ y + 0.1, + ine.prov.name == "Pontevedra" ~ y - 0.3, + ine.prov.name == "Navarra" ~ y + 0.25, + ine.prov.name == "Sevilla" ~ y + 0.25, + ine.prov.name == "Granada" ~ y - 0.15, + ine.prov.name == "Almería" ~ y - 0.1, + ine.prov.name == "Murcia" ~ y - 0.25, + ine.prov.name == "Asturias" ~ y + 0.2, + ine.prov.name == "Cantabria" ~ y + 0.2, + ine.prov.name == "Alicante/Alacant" ~ y - 0.2, + ine.prov.name == "Valencia/València" ~ y + 0.1, + ine.prov.name == "Ceuta" ~ y - 0.1, + ine.prov.name == "Melilla" ~ y + 0.1, + TRUE ~ y )) + +canarias_data <- canarias_data |> + mutate( + centroide = st_centroid(geometry), + x = st_coordinates(centroide)[,1], + y = st_coordinates(centroide)[,2], + + x = case_when(ine.prov.name == "Palmas, Las" ~ x - 0.2, + ine.prov.name == "Santa Cruz de Tenerife" ~ x - 0.3, + TRUE ~ x ), + y = case_when( + TRUE ~ y )) + +# Renaming names legend from the dataset as in the original graph +names(peninsula_data)[39] <- "Otras motivaciones*" +names(canarias_data)[39] <- "Otras motivaciones*" + +# Creation of a vector of protest motives +motivo_cols <- c( + "Temas laborales", + "Temas de inmigración", + "Asuntos vecinales", + "Contra la droga y la delincuencia", + "Apoyo a grupos terroristas", + "Libertad de presos de grupos terroristas", + "Contra el terrorismo", + "Enseñanza", + "Temas nacionalistas", + "Contra medidas políticas y legislativas", + "Sanidad", + "Agrarias", + "Ecologistas", + "Contra la violencia de género", + "1º de Mayo", + "Otras motivaciones*" +) + +# Regrouping motives as in the graphic +motivo_cols <- case_when( + motivo_cols %in% c( + "Temas de inmigración", + "Contra la droga y la delincuencia", + "Contra el terrorismo", + "Libertad de presos de grupos terroristas", + "Apoyo a grupos terroristas", + "Temas nacionalistas", + "1º de Mayo", + "Otras motivaciones*" + ) ~ "Otras motivaciones*", + TRUE ~ motivo_cols +) + +# Turning characteres into numeric in order to calculate proportions +peninsula_data <- peninsula_data %>% + mutate(across( + .cols = all_of(c(motivo_cols, "Total")), + ~ as.numeric(.) + )) + +canarias_data <- canarias_data %>% + mutate(across( + .cols = all_of(c(motivo_cols, "Total")), + ~ as.numeric(.) + )) + +# Ordering motives as in the legend from the graph +orden_deseado <- c( + "Temas laborales", + "Asuntos vecinales", + "Enseñanza", + "Contra medidas políticas\ny legislativas", + "Sanidad", + "Agrarias", + "Ecologistas", + "Contra la violencia\nde género", + "Otras motivaciones*" +) + +# Colors for each motive +colores_motivos <- c( + "Temas laborales" = "#de5424", + "Asuntos vecinales" = "#e0945d", + "Enseñanza" = "#63a4bc", + "Contra medidas políticas\ny legislativas" = "#848ab5", + "Sanidad" = "#95bb9e", + "Agrarias" = "#ebd98c", + "Ecologistas" = "#b7c27e", + "Contra la violencia\nde género"= "#a47297", + "Otras motivaciones*" = "#8a898a" +) + +# Creating data for pie charts +pies_peninsula <- peninsula_data |> + select(ine.prov.name, x, y, all_of(motivo_cols), Total) |> + pivot_longer( + cols = all_of(motivo_cols), + names_to = "motivo", + values_to = "valor") |> + mutate( + # ← AQUÍ añades el recode para cambiar los nombres + motivo = recode( + motivo, + "Contra medidas políticas y legislativas" = "Contra medidas políticas\ny legislativas", + "Contra la violencia de género" = "Contra la violencia\nde género" + ), + # Y LUEGO lo conviertes a factor con los nombres ya modificados + motivo = factor(motivo, levels = orden_deseado) + ) |> + arrange(ine.prov.name, motivo) |> + group_by(ine.prov.name) |> + mutate( + prop = valor / sum(valor, na.rm = TRUE), + angle_end = cumsum(prop) * 2 * pi, + angle_start = lag(angle_end, default = 0) + ) |> + ungroup() + +# Pie proportion for each province +max_total <- max(pies_peninsula$Total, na.rm = TRUE) +factor_escala <- 0.9 + +pies_peninsula <- pies_peninsula %>% + mutate( + radius = sqrt(Total / max_total) * factor_escala + ) + +# Same process for canary island pies +canarias_pies <- canarias_data |> + select(ine.prov.name, x, y, all_of(motivo_cols), Total) |> + pivot_longer( + cols = all_of(motivo_cols), + names_to = "motivo", + values_to = "valor") |> + mutate( + + motivo = recode( + motivo, + "Contra medidas políticas y legislativas" = "Contra medidas políticas\ny legislativas", + "Contra la violencia de género" = "Contra la violencia\nde género" + ), + + motivo = factor(motivo, levels = orden_deseado) + ) |> + arrange(ine.prov.name, motivo) |> + group_by(ine.prov.name) |> + mutate( + prop = valor / sum(valor, na.rm = TRUE), + angle_end = cumsum(prop) * 2 * pi, + angle_start = lag(angle_end, default = 0) + ) |> + ungroup() + +max_total <- max(canarias_pies$Total, na.rm = TRUE) +factor_escala <- 0.4 # Ajusta esto para círculos más grandes/pequeños + +canarias_pies <- canarias_pies %>% + mutate( + radius = sqrt(Total / max_total) * factor_escala + ) +``` + +## Pie-charts size legend + +```{r Pie-charts size Legend, fig.width=12, fig.height=7, fig.showtext=TRUE} +# STILL STRUGGLING WITH THIS + +valores_originales <- c(4251, 3498, 2464, 1579, 949, 252, 58) +etiquetas_originales <- c("4.251", "3.500", "2.500", "1.500", "1.000", "250", "58") + + +valores_reales <- rev(valores_originales) +etiquetas_display <- rev(etiquetas_originales) + +max_total_peninsula <- 4251 + +factor_escala_leyenda <- 0.00031 # Factor de escala para coordenadas geográficas + +radios <- sqrt(valores_reales / pi) * factor_escala_leyenda + +y_centers <- c(41.9, 42.05, 42.2, 42.35, 42.5, 42.65, 42.8) + 0.25 + +y_tops <- y_centers + radios + +# Tibble with all the data +legend_data <- tibble( + manifestaciones = valores_reales, + etiqueta = etiquetas_display, + radius = radios, + x = -11, # ← TODOS la misma X + y = y_centers # ← Y va subiendo +) |> + mutate( + # Punto en el borde IZQUIERDO del semicírculo (para las líneas) + x_start = x - radius, # Borde izquierdo (en lugar de x + radius) + y_start = y + ) + +``` + +## Canary island Map + +```{r Canary Island Map, fig.width=12, fig.height=7, fig.showtext=TRUE} + +mapa_canarias <- ggplot() + + + geom_sf( + data = canarias_data, + fill = "#FEFAE0", + color = "#4D5662", + linewidth = 0.3 + ) + + + ggforce::geom_arc_bar( + data = canarias_pies, + aes( + x0 = x, + y0 = y, + r0 = 0, + r = radius, + start = angle_start, + end = angle_end, + fill = motivo + ), + color = "black", + linewidth = 0.2, + alpha = 0.8 + ) + + + scale_fill_manual(values = colores_motivos) + + + coord_sf( + expand = FALSE, + clip = "off") + + theme_void() + + theme( + legend.position = "none", + plot.background = element_rect( + fill = "#e6ffff", + color = "#ffffff", + linewidth = 5 + ), + panel.background = element_blank(), + plot.margin = margin(3,3,8,33, "pt") + ) + +# Transforming the canary island into a graphical object (grob) to insert in the final map +grob_canarias <- ggplotGrob(mapa_canarias) + +mapa_canarias +``` + +## Plotting final map + +```{r Plotting final map, fig.width=12, fig.height=7, fig.showtext=TRUE} + +final_map <- ggplot() + + + # Neighbor Countries + geom_sf( + data = neighbors, + fill = "#D6D6D6", + color = "#4D5662", + linewidth = 0.3 + ) + + + # Spanish provinces + geom_sf( + data = peninsula_data, + fill = "#FEFAE0", + color = "#4D5662", + linewidth = 0.3 + ) + + + # Pie-charts + ggforce::geom_arc_bar( + data = pies_peninsula, + aes( + x0 = x, + y0 = y, + r0 = 0, + r = radius, + start = angle_start, + end = angle_end, + fill = motivo, + color = "black", + ), + color = "black", + linewidth = 0.2, + alpha = 0.8 + ) + +# Colors for protest motives +final_map <- final_map + scale_fill_manual( + values = colores_motivos) + +# Protest motives guides legend +final_map <- final_map + guides( + fill = guide_legend( + override.aes = list( + shape = 24, + size = 1.3, #2 + color = "black", + stroke = 0.4 + ), + byrow = TRUE, # ← Organiza en una sola columna + spacing.y = unit(0.8, "cm") + )) + +# Coordenates +final_map <- final_map + coord_sf(xlim = c(-11.7, 3.8), ylim = c(35.2, 44)) + +# Pie-charts size legend +final_map <- final_map + + ggforce::geom_arc_bar( + data = legend_data, + aes( + x0 = x, + y0 = y, + r0 = 0, + r = radius, + start = pi/2, # Empieza arriba (90°) + end = 3*pi/2 # Termina abajo (270°) → semicírculo IZQUIERDO + ), + color = "black", + fill = NA, + linewidth = 0.4 + ) + + + geom_segment( + data = legend_data, + aes( + x = x, # Empieza en el borde izquierdo del semicírculo + xend = x + max(radius) + 0.3, # Todas terminan a la IZQUIERDA + y = y_tops, # En la parte superior + yend = y_tops # Línea horizontal + ), + linetype = "dotted", + linewidth = 0.3, + color = "black" + ) + + + geom_text( + data = legend_data, + aes( + x = x + max(radius) + 0.4, + y = y_tops, # Alineadas con la parte superior + label = etiqueta + ), + hjust = 1, # Alineado a la derecha del texto + size = 2.5, # 4 + family = "Lexend" + ) + + + annotate( + "text", + x = -11, + y = 43.8, + label = "MANIFESTACIONES\n2022", + size = 3.7, # 6 + hjust = 0.5, + vjust = 0, + lineheight = 0.8, + fontface = "plain", + ) + +# Adding texts +final_map <- final_map + geom_text( + data = data.frame( + x = 4, + y = 44, + label = "MANIFESTACIONES SEGÚN MOTIVACIÓN" + ), + aes(x = x, y = y, label = label), + size = 5, # 8 + fontface = "bold", + hjust = 1, # alineado a la derecha + vjust = 1, # alineado arriba + color = "black" + ) + + + geom_text( + data = data.frame( + x = 4.15, + y = 35.38, + label = "Fuente: Anuario estadístico del Ministerio del Interior 2022" + ), + aes(x = x, y = y, label = label), + size = 2.5, # 4 + family = "Lexend", + hjust = 1, + vjust = 0, + color = "black" + ) + + + geom_text( + data = data.frame( + x = 4.15, + y = 34.99, + label = "Atlas Nacional de España (ANE) CC BY 4.0 ign.es\n\nParticipantes:www.ign.es/resources/ane/participantes.pdf" + ), + aes(x = x, y = y, label = label), + size = 2.5, # 4 + family = "Lexend", + hjust = 1, + vjust = 0, + color = "black", + lineheight = 0.4 + ) + + geom_text( + data = data.frame( + x = -12.2, + y = 37, + label = "*Incluye inmigración, droga y\n\ndelincuencia, apoyo a grupos\n\nterroristas, contra el terrorismo,\n\ntemas nacionalistas o 1ª de mayo\n\n\nCataluña y País Vasco sin datos" + ), + aes(x = x, y = y, label = label), + size = 2.5, # 4 + family = "Lexend", + hjust = 0, + vjust = 0, + color = "black", + lineheight = 0.5, + fontface = "bold" # ← Esto junta las dos últimas líneas + ) + +# Themes + final_map <- final_map + theme_void() + + theme( + plot.background = element_rect(fill = "#ffffff", + color = "#ffffff", + linewidth = 5), + panel.background = element_rect(fill = "#e6ffff" ), + plot.margin = margin(5), + + legend.spacing.y = unit(0.8, "cm"), + + legend.position = c(0.012, 0.52), + legend.justification = c(0, 0.5), + + legend.text = element_text( + size = 7.5, # 11.5 # hay que ajustar los valores a la escala de showtext() + family = "Lexend", + lineheight = 0.9 + ), + + legend.title = element_blank(), + legend.background = element_blank(), + + legend.key = element_rect( + fill = "#e6ffff", + color = NA ) + ) + +# Adding Grob (Canary island map) +final_map <- final_map + +annotation_custom( + grob = grob_canarias, + xmin = -12.87, + xmax = -6.63, + ymin = 34.47, + ymax = 36.8) + +# ggsave("mi_grafico.png", plot = final_map, width = 10, height = 8, dpi = 150) +# system("open mi_grafico.png") + +final_map +``` + +----------------------------------------------------------------------------------------------------------- + +# GRAPH IMPROVEMENT + +This is my initial improved version of the original graph about motive protest distribution in Spain (across autonomous communities in 2024) + +## Data Cleaning and Variable Transformation + +```{r Data Cleaning and Variable Transformation} +library(readxl) +library(dplyr) +library(tidyverse) +library(ggplot2) +library(grid) +library(showtext) +library(tidytext) +library(showtext) + +# FONTS IMPORT +font_add("Gravitas", regular = "/Users/cguirao/Library/Fonts/GravitasOne-Regular.ttf") +font_add("Sans Code", regular = " /Users/cguirao/Library/Fonts/GoogleSansCode-Regular.ttf") + # bold = "/Users/cguirao/Library/Fonts/GoogleSansCode-ExtraBold.ttf") +font_add("Sans Code Extrabold", regular = "/Users/cguirao/Library/Fonts/GoogleSansCode-ExtraBold.ttf") +font_add("Mulish", regular = "/Users/cguirao/Library/Fonts/Mulish-VariableFont_wght.ttf") +# font_add("Mulish Semibold", regular = "/Users/cguirao/Library/Fonts/Mulish-VariableFont_wght.ttf") +showtext_auto() + +#DATA IMPORT +improvdata <- read_excel("~/Desktop/datavizu/_projects/2025/100453622/ImprovementDataBase.xlsx", + sheet = "TABLA 1-3-7", + skip = 1) # skipping the title + + +improvdata <- improvdata |> rename(`Autonomous Communities` = `Comunidad autónoma y provincia`) + +improvdata <- improvdata |> filter(`Autonomous Communities` %in% c( + "Andalucía", + "Aragón", + "Asturias, Principado de", + "Balears, Illes", + "Canarias", + "Cantabria", + "Castilla y León", + "Castilla-La Mancha", + "Comunitat Valenciana", + "Extremadura", + "Galicia", + "Madrid, Comunidad de", + "Murcia, Región de", + "Navarra, Comunidad Foral de", + "Rioja, La" + )) + + +# Creating new group categories of protest motives: +improvdata <- improvdata |> rename(`Labour-Economic` = `Motivos laborales / económicos`, + `Political-Legislative` = `Contra medidas políticas / legislativas`, + `Healthcare` = `Motivos sanitarios`, + `Neighborhood Affairs` = `Movilizaciones vecinales`, + `Against Crime` = `Contra la droga / delincuencia`, + `Education` = `Movilizaciones enseñanza / educación`, + `Nationalism` = `Temas nacionalistas`, + `International Phenomena` = `Asuntos internacionales`, + `Commemorative Days` = `Conmemoración/ homenajes`, + `Religion` = `Temas religiosos`, + `Feminism` = `Contra violencia de género`, + `Other motives*` = `Otras`) + +improvdata <- improvdata |> + mutate(across( + -`Autonomous Communities`, + as.numeric + )) + +improvdata <- improvdata |> + mutate(`Enviromental Matters` = `Ecologismo` + `Cambio climático`, + `Human Rights` = `Derechos humanos` + `Contra el odio, racismo, xenofobia, etc.` + `Insumisión`, + `Terrorism`= Terrorismo + `Contra la radicalización violenta` ) |> + select(-Ecologismo, -`Cambio climático`, -`Derechos humanos`, -`Contra el odio, racismo, xenofobia, etc.`, -`Insumisión`, -Terrorismo, -`Contra la radicalización violenta`) + +improvdata <- improvdata |> relocate(Total, .after = everything()) |> relocate(`Other motives*`, .before = Total) +``` + +## Relative weights for each CCAA and Protest motive + +```{r Calculating relative weights for each CCAA and protest motive} +datos_graphs <- improvdata |> + + pivot_longer( + cols = -c(`Autonomous Communities`, Total), + names_to = "Motivo", + values_to = "Frecuencia" + ) %>% + + mutate( + Porcentaje = (Frecuencia / Total) * 100 + ) %>% + select(`Autonomous Communities`, Motivo, Porcentaje) + +# Filtering top 10 most important motives and ordering them from the most to the least +datos_graphs <- datos_graphs |> filter(Motivo %in% c( + "Labour-Economic", + "Other motives*", + "Political-Legislative", + "Neighborhood Affairs", + "International Phenomena", + "Healthcare", + "Feminism", + "Human Rights", + "Education", + "Enviromental Matters" +)) + +datos_graphs <- datos_graphs |> select(Motivo, `Autonomous Communities`, Porcentaje) |> arrange(Motivo, `Autonomous Communities`) + +# Calculating national average for each motive +national_average <- improvdata |> + + pivot_longer( + cols = -c(`Autonomous Communities`, Total), + names_to = "Motivo", + values_to = "Frecuencia" + ) |> + + group_by(Motivo) |> + + summarise( + Frecuencia_Total = sum(Frecuencia), + Total_General = sum(Total) + ) |> + + mutate( + Media_Nacional_pct = (Frecuencia_Total / Total_General) * 100 + ) |> + + select(Motivo, Media_Nacional_pct) + +# Joinning everithing in the same dataframe +datos_graphs <- datos_graphs |> left_join(national_average, by = "Motivo") + +# Creating divergence column and ordering its values +datos_graphs <- datos_graphs |> + mutate(Divergencia = Porcentaje - Media_Nacional_pct, + CCAA_ordenada = reorder_within(`Autonomous Communities`, Divergencia, Motivo)) + # ¿Qué hace reorder_within()?\n") + # 1. Toma cada CCAA (ej: 'Aragón')\n") + # 2. Le añade el motivo: 'Aragón___Education'\n") + # 3. Ordena por Divergencia DENTRO de cada motivo\n") + # 4. Resultado: orden correcto en cada faceta\n\n") + +# Changing names (ABREVIATURAS?) +datos_graphs <- datos_graphs |> + mutate( + `Autonomous Communities` = recode( + `Autonomous Communities`, + "Murcia, Región de" = "Murcia", + "Navarra, Comunidad Foral de" = "Navarra", + "Madrid, Comunidad de" = "Madrid", + "Asturias, Principado de" = "Asturias", + "Balears, Illes" = "Baleares", + "Rioja, La" = "La Rioja", + "Comunitat Valenciana" = "Comunidad Valenciana" + ) + ) + +# Choosing colors for each CCAA +colores_CCAA <- c( + "Andalucía" = "#EFCE7B", + "Aragón" = "#2B2B23", + "Asturias" = "#238BB0", + "Balears" = "#D8560E", + "Canarias" = "#B28622", + "Cantabria" = "#92A2A6", + "Castilla y León" = "#849E15", + "Castilla-La Mancha" = "#6D1F42", + "Comunidad Valenciana" = "#876929", + "Extremadura" = "#25533F", + "Galicia" = "#F4BEAE", + "Madrid" = "#105666", + "Navarra" = "#976D90", + "La Rioja" = "#D9CBC2", + "Murcia" = "#112250") + +# Creating text labels with national average value for each motive +datos_graphs <- datos_graphs %>% + mutate( + Motivo_label = paste0(Motivo, "\n(avg: ", + round(Media_Nacional_pct, 1), + "%)")) +``` + +## Plotting the graph + +```{r Plotting the final version, fig.width=16, fig.height=10, fig.showtext=TRUE} +g <- ggplot(datos_graphs, aes(x = Divergencia, y = CCAA_ordenada)) + +# Creating color-filled bars with CCAA categories +g <- g + geom_col(aes(fill = `Autonomous Communities`), width = 0.7, alpha = 0.85) + +# Creating middle-line representing average values +g <- g + geom_vline(xintercept = 0, linewidth = 0.3, color = "#6B6B6B") + +# Doing faceting +g <- g + facet_wrap(~ Motivo_label, ncol = 5, scales = "free_y") + #labeller = labeller(group = label_wrap_gen(width = 25))) + +# Colors +g <- g + scale_fill_manual(values = colores_CCAA) + + scale_x_continuous(labels = function(x) sprintf("%+.1f", x)) + + scale_y_reordered() + +# Labs +g <- g + labs(title = "Divergences in Protest Activity and Motives Across Spanish Autonomous Communities, 2024", x = NULL, y = NULL) + +# Text +g <- g + geom_text( + aes( + label = paste0(`Autonomous Communities`, " (", round(Porcentaje, 1), "%)"), + x = Divergencia, # Posición X = final de la barra + hjust = if_else(Divergencia >= 0, -0.05, 1.05) # Ajustar según lado + ), + size = 2.6, # 1.5 html # Tamaño nombres CCAA + family = "Mulish", + fontface = "plain" +) + +# Themes +g <- g + theme_void() + + theme( + panel.spacing = unit(0.25, "cm"), + plot.background = element_rect(fill = "#EFE7DA"), + panel.background = element_rect(fill = "#EFE7DA" ), + plot.margin = margin(10, 10, 30, 10), + aspect.ratio = 1.5, + plot.title = element_text( + size = 15, # 7.5 para html, # Tamaño título principal + fontface = "plain", + family = "Gravitas", + hjust = 0.5, # Centrado (0 = izq, 0.5 = centro, 1 = der) + margin = margin(b = 17) # Espacio abajo + ), + strip.text = element_text( + size = 9.3, # 5 para html --> 5.7 + fontface = "regular", + family = "Sans Code Extrabold", + hjust = 0, + color = "#3D211A", + ), + legend.position = "none" + ) + +g +``` + + diff --git a/_projects/2025/100453622/100453622.html b/_projects/2025/100453622/100453622.html new file mode 100644 index 00000000..dad34f60 --- /dev/null +++ b/_projects/2025/100453622/100453622.html @@ -0,0 +1,2410 @@ + + + + + + + + + + + + + + + + + + + + + Protests in spanish regions 2022 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Protests in spanish regions 2022

+ + +
+
2025
+
+ +

Replication and Improvement of the chosen graph and database

+
+ +
+ + Alicia Mira Guirao + +
2025-12-16 +
+ +
+
+ +
+

GRAPH REPLICATION

+

This is the initial version of the graph replication about motive protest distribution across spanish provinces in 2022.

+

Data Preparing

+
+
+
library(readxl)
+library(dplyr)
+library(tidyverse)
+library(sf)
+library(mapSpain)
+library(rnaturalearth)
+library(rnaturalearthdata)
+library(ggplot2)
+library(grid)
+#library(extrafont)
+library(showtext)
+
+# Font adding
+font_add("Lexend", regular = "/Users/cguirao/Library/Fonts/LexendDeca-VariableFont_wght.ttf") # needed font for the graph
+showtext_auto() 
+
+# Data import
+protests <- read_excel("~/Desktop/datavizu/_projects/2025/100453622/ReplicationDataBase.xlsx", 
+                   sheet = "TABLA 1-3-7",
+                   skip = 1) # skipping the title
+
+prov <- esp_get_prov()
+
+library(giscoR)
+neighbors <- gisco_get_countries(
+  country = c("Portugal", "France", "Morocco", "Algeria", "Andorra"))
+
+# Adding those that are left bc they are named differently in INE
+protests <- protests |>
+  mutate(
+    `Comunidad autónoma y provincia` = recode(
+      `Comunidad autónoma y provincia`,
+      "Murcia, Región de" = "Murcia",
+      "Navarra, Comunidad Foral de" = "Navarra",
+      "Madrid, Comunidad de"    = "Madrid",
+      "Asturias, Principado de"  = "Asturias"
+    )
+  )
+
+# Filter only provinces
+data_prov <- protests %>%
+  filter(`Comunidad autónoma y provincia` %in% prov$ine.prov.name)
+
+# Jonning shapefile with filtered dataframe
+protest_prov <- prov %>%
+  left_join(data_prov, 
+            by = c("ine.prov.name" = "Comunidad autónoma y provincia"))
+
+# Creating data for canary islands map
+canarias_data <- protest_prov %>%
+  filter(ine.prov.name %in% c("Palmas, Las", "Santa Cruz de Tenerife"))
+
+# Creating data for peninsula and baleares islands map
+peninsula_data <- protest_prov %>%
+  filter(!ine.prov.name %in% c("Palmas, Las", "Santa Cruz de Tenerife"))
+
+# Obtaining coordenates of each province
+peninsula_data <- peninsula_data |>
+  mutate(
+    centroide = st_centroid(geometry),
+    x = st_coordinates(centroide)[,1],
+    y = st_coordinates(centroide)[,2],
+
+    x = case_when(
+      ine.prov.name == "Segovia" ~ x + 0.2,
+      ine.prov.name == "Toledo" ~ x - 0.45,
+      ine.prov.name == "Pontevedra" ~ x - 0.2,
+      ine.prov.name == "Sevilla" ~ x - 0.05,
+      ine.prov.name == "Granada" ~ x - 0.4,
+      ine.prov.name == "Almería" ~ x + 0.1,
+      ine.prov.name == "Murcia" ~ x + 0.1,
+      ine.prov.name == "Alicante/Alacant" ~ x + 0.25,
+      ine.prov.name == "Castellón/Castelló" ~ x + 0.25,
+      ine.prov.name == "Valencia/València" ~ x + 0.4,
+      ine.prov.name == "Balears, Illes" ~ x - 0.3,
+      ine.prov.name == "Guadalajara" ~ x + 0.2,
+      ine.prov.name == "Ceuta" ~ x + 0.35,
+      ine.prov.name == "Melilla" ~ x + 0.25,
+      TRUE ~ x                                 
+    ),
+    y = case_when(
+      ine.prov.name == "Segovia" ~ y + 0.35,
+      ine.prov.name == "Coruña, A" ~ y + 0.1,
+      ine.prov.name == "Pontevedra" ~ y - 0.3,
+      ine.prov.name == "Navarra" ~ y + 0.25,
+      ine.prov.name == "Sevilla" ~ y + 0.25,
+      ine.prov.name == "Granada" ~ y - 0.15,
+      ine.prov.name == "Almería" ~ y - 0.1,
+      ine.prov.name == "Murcia" ~ y - 0.25,
+      ine.prov.name == "Asturias" ~ y + 0.2,
+      ine.prov.name == "Cantabria" ~ y + 0.2,
+      ine.prov.name == "Alicante/Alacant" ~ y - 0.2,
+      ine.prov.name == "Valencia/València" ~ y + 0.1,
+      ine.prov.name == "Ceuta" ~ y - 0.1,
+      ine.prov.name == "Melilla" ~ y + 0.1,
+      TRUE ~ y                                  ))
+
+canarias_data <- canarias_data |>
+  mutate(
+    centroide = st_centroid(geometry),
+    x = st_coordinates(centroide)[,1],
+    y = st_coordinates(centroide)[,2],
+
+    x = case_when(ine.prov.name == "Palmas, Las" ~ x - 0.2,
+      ine.prov.name == "Santa Cruz de Tenerife" ~ x - 0.3,
+            TRUE ~ x                                 ),
+     y = case_when(
+      TRUE ~ y                                  ))
+
+# Renaming names legend from the dataset as in the original graph 
+names(peninsula_data)[39] <- "Otras motivaciones*"
+names(canarias_data)[39] <- "Otras motivaciones*"
+
+# Creation of a vector of protest motives
+motivo_cols <- c(
+  "Temas laborales",
+  "Temas de inmigración",
+  "Asuntos vecinales",
+  "Contra la droga y la delincuencia",
+  "Apoyo a grupos terroristas",
+  "Libertad de presos de grupos terroristas",
+  "Contra el terrorismo",
+  "Enseñanza",
+  "Temas nacionalistas", 
+  "Contra medidas políticas y legislativas",
+  "Sanidad",
+  "Agrarias",
+  "Ecologistas",
+  "Contra la violencia de género",
+  "1º de Mayo",
+  "Otras motivaciones*"
+)
+
+# Regrouping motives as in the graphic
+motivo_cols <- case_when(
+  motivo_cols %in% c(
+    "Temas de inmigración",
+    "Contra la droga y la delincuencia",
+    "Contra el terrorismo",
+    "Libertad de presos de grupos terroristas",
+    "Apoyo a grupos terroristas",
+    "Temas nacionalistas",
+    "1º de Mayo",
+    "Otras motivaciones*"
+  ) ~ "Otras motivaciones*",
+  TRUE ~ motivo_cols
+)
+
+# Turning characteres into numeric in order to calculate proportions
+peninsula_data <- peninsula_data %>%
+  mutate(across(
+    .cols = all_of(c(motivo_cols, "Total")),
+    ~ as.numeric(.)
+  ))
+
+canarias_data <- canarias_data %>%
+  mutate(across(
+    .cols = all_of(c(motivo_cols, "Total")),
+    ~ as.numeric(.)
+  ))
+
+# Ordering motives as in the legend from the graph 
+orden_deseado <- c(
+  "Temas laborales",
+  "Asuntos vecinales",
+  "Enseñanza",
+  "Contra medidas políticas\ny legislativas",
+  "Sanidad",
+  "Agrarias",
+  "Ecologistas",
+  "Contra la violencia\nde género",
+  "Otras motivaciones*"
+)
+
+# Colors for each motive
+colores_motivos <- c(
+  "Temas laborales" = "#de5424",              
+  "Asuntos vecinales" = "#e0945d",            
+  "Enseñanza" = "#63a4bc",                    
+  "Contra medidas políticas\ny legislativas" = "#848ab5",
+  "Sanidad" = "#95bb9e",                     
+  "Agrarias" = "#ebd98c",                     
+  "Ecologistas" = "#b7c27e",                
+  "Contra la violencia\nde género"= "#a47297",
+  "Otras motivaciones*" = "#8a898a"        
+)
+
+# Creating data for pie charts
+pies_peninsula <- peninsula_data |>
+  select(ine.prov.name, x, y, all_of(motivo_cols), Total) |>
+  pivot_longer(
+    cols      = all_of(motivo_cols),
+    names_to  = "motivo",             
+    values_to = "valor") |> 
+  mutate(
+    # ← AQUÍ añades el recode para cambiar los nombres
+    motivo = recode(
+      motivo,
+      "Contra medidas políticas y legislativas" = "Contra medidas políticas\ny legislativas",
+      "Contra la violencia de género" = "Contra la violencia\nde género"
+    ),
+    # Y LUEGO lo conviertes a factor con los nombres ya modificados
+    motivo = factor(motivo, levels = orden_deseado)
+  ) |>
+  arrange(ine.prov.name, motivo) |>
+  group_by(ine.prov.name) |>             
+  mutate(
+    prop = valor / sum(valor, na.rm = TRUE),    
+    angle_end = cumsum(prop) * 2 * pi,         
+    angle_start = lag(angle_end, default = 0) 
+  ) |>
+  ungroup()
+
+# Pie proportion for each province
+max_total <- max(pies_peninsula$Total, na.rm = TRUE)
+factor_escala <- 0.9  
+
+pies_peninsula <- pies_peninsula %>%
+  mutate(
+    radius = sqrt(Total / max_total) * factor_escala
+  )
+
+# Same process for canary island pies
+canarias_pies <- canarias_data |>
+  select(ine.prov.name, x, y, all_of(motivo_cols), Total) |>
+  pivot_longer(
+    cols      = all_of(motivo_cols),
+    names_to  = "motivo",             
+    values_to = "valor") |>
+  mutate(
+
+    motivo = recode(
+      motivo,
+      "Contra medidas políticas y legislativas" = "Contra medidas políticas\ny legislativas",
+      "Contra la violencia de género" = "Contra la violencia\nde género"
+    ),
+
+    motivo = factor(motivo, levels = orden_deseado)
+  ) |>
+  arrange(ine.prov.name, motivo) |>
+  group_by(ine.prov.name) |>             
+  mutate(
+    prop = valor / sum(valor, na.rm = TRUE),    
+    angle_end = cumsum(prop) * 2 * pi,         
+    angle_start = lag(angle_end, default = 0) 
+  ) |>
+  ungroup()
+
+max_total <- max(canarias_pies$Total, na.rm = TRUE)
+factor_escala <- 0.4  # Ajusta esto para círculos más grandes/pequeños
+
+canarias_pies <- canarias_pies %>%
+  mutate(
+    radius = sqrt(Total / max_total) * factor_escala
+  )
+
+
+

Pie-charts size legend

+
+
+
# STILL STRUGGLING WITH THIS
+
+valores_originales <- c(4251, 3498, 2464, 1579, 949, 252, 58)
+etiquetas_originales <- c("4.251", "3.500", "2.500", "1.500", "1.000", "250", "58")
+
+
+valores_reales <- rev(valores_originales)
+etiquetas_display <- rev(etiquetas_originales)
+
+max_total_peninsula <- 4251
+
+factor_escala_leyenda <- 0.00031  # Factor de escala para coordenadas geográficas
+
+radios <- sqrt(valores_reales / pi) * factor_escala_leyenda
+
+y_centers <- c(41.9, 42.05, 42.2, 42.35, 42.5, 42.65, 42.8) + 0.25
+
+y_tops <- y_centers + radios
+
+# Tibble with all the data
+legend_data <- tibble(
+  manifestaciones = valores_reales,
+  etiqueta = etiquetas_display,
+  radius = radios,
+  x = -11,              # ← TODOS la misma X
+  y = y_centers           # ← Y va subiendo
+) |>
+  mutate(
+    # Punto en el borde IZQUIERDO del semicírculo (para las líneas)
+    x_start = x - radius,  # Borde izquierdo (en lugar de x + radius)
+    y_start = y
+  )
+
+
+

Canary island Map

+
+
+
mapa_canarias <- ggplot() +
+  
+  geom_sf(
+    data = canarias_data,
+    fill = "#FEFAE0",   
+    color = "#4D5662",      
+    linewidth = 0.3
+  ) +
+  
+  ggforce::geom_arc_bar(
+    data = canarias_pies,
+    aes(
+      x0 = x,
+      y0 = y,
+      r0 = 0,
+      r = radius,
+      start = angle_start,
+      end = angle_end,
+      fill = motivo
+    ),
+    color = "black",
+    linewidth = 0.2,
+    alpha = 0.8
+  ) +
+  
+  scale_fill_manual(values = colores_motivos) +
+  
+  coord_sf(
+    expand = FALSE,   
+    clip = "off") +
+  theme_void() +
+  theme(
+    legend.position = "none",
+    plot.background = element_rect(
+      fill = "#e6ffff",
+      color = "#ffffff",        
+      linewidth = 5 
+    ),
+    panel.background = element_blank(),
+     plot.margin = margin(3,3,8,33, "pt")
+  )
+
+# Transforming the canary island into a graphical object (grob) to insert in the final map 
+grob_canarias <- ggplotGrob(mapa_canarias)
+
+mapa_canarias
+
+

+
+

Plotting final map

+
+
+
final_map <- ggplot() +
+  
+      # Neighbor Countries
+        geom_sf(
+        data = neighbors,
+        fill = "#D6D6D6", 
+        color = "#4D5662",
+        linewidth = 0.3
+      ) +
+  
+      # Spanish provinces 
+      geom_sf(
+        data = peninsula_data,
+        fill = "#FEFAE0",   
+        color = "#4D5662",      
+        linewidth = 0.3
+      ) +
+      
+      # Pie-charts
+      ggforce::geom_arc_bar(
+        data = pies_peninsula,
+        aes(
+          x0 = x,              
+          y0 = y,              
+          r0 = 0,             
+          r = radius,          
+          start = angle_start, 
+          end = angle_end,    
+          fill = motivo,
+          color = "black",
+        ),
+        color = "black",       
+        linewidth = 0.2,
+        alpha = 0.8
+      )
+      
+# Colors for protest motives
+final_map <- final_map + scale_fill_manual(
+        values = colores_motivos)
+
+# Protest motives guides legend  
+final_map <- final_map + guides(
+      fill = guide_legend(
+        override.aes = list(
+          shape = 24,     
+          size = 1.3, #2      
+          color = "black",  
+          stroke = 0.4       
+        ),
+        byrow = TRUE,        # ← Organiza en una sola columna
+        spacing.y = unit(0.8, "cm")
+      ))
+
+# Coordenates
+final_map <- final_map + coord_sf(xlim = c(-11.7, 3.8), ylim = c(35.2, 44))
+  
+# Pie-charts size legend
+final_map <- final_map + 
+  ggforce::geom_arc_bar(
+    data = legend_data,
+    aes(
+      x0 = x,
+      y0 = y,
+      r0 = 0,
+      r = radius,
+      start = pi/2,      # Empieza arriba (90°)
+      end = 3*pi/2       # Termina abajo (270°) → semicírculo IZQUIERDO
+    ),
+    color = "black",
+    fill = NA,
+    linewidth = 0.4
+  ) +
+  
+  geom_segment(
+    data = legend_data,
+    aes(
+      x = x,                    # Empieza en el borde izquierdo del semicírculo
+      xend = x + max(radius) + 0.3,   # Todas terminan a la IZQUIERDA
+      y = y_tops,                      # En la parte superior
+      yend = y_tops                    # Línea horizontal
+    ),
+    linetype = "dotted",
+    linewidth = 0.3,
+    color = "black"
+  ) +
+  
+  geom_text(
+    data = legend_data,
+    aes(
+      x = x + max(radius) + 0.4,      
+      y = y_tops,                      # Alineadas con la parte superior
+      label = etiqueta
+    ),
+    hjust = 1,                        # Alineado a la derecha del texto
+    size = 2.5, # 4
+    family = "Lexend"
+  ) +
+  
+  annotate(
+    "text",
+    x = -11,  
+    y = 43.8,
+    label = "MANIFESTACIONES\n2022",
+    size = 3.7, # 6
+    hjust = 0.5,
+    vjust = 0,
+    lineheight = 0.8,
+    fontface = "plain",
+  )
+      
+# Adding texts      
+final_map <- final_map + geom_text(
+        data = data.frame(
+          x = 4,
+          y = 44,
+          label = "MANIFESTACIONES SEGÚN MOTIVACIÓN"
+        ),
+        aes(x = x, y = y, label = label),
+        size = 5, # 8
+        fontface = "bold",
+        hjust = 1,           # alineado a la derecha
+        vjust = 1,           # alineado arriba
+        color = "black"
+      ) +
+      
+    geom_text(
+      data = data.frame(
+        x = 4.15,
+        y = 35.38,
+        label = "Fuente: Anuario estadístico del Ministerio del Interior 2022"
+      ),
+      aes(x = x, y = y, label = label),
+      size = 2.5, # 4                  
+      family = "Lexend",
+      hjust = 1,
+      vjust = 0,
+      color = "black"
+    ) +
+    
+    geom_text(
+      data = data.frame(
+        x = 4.15,
+        y = 34.99,              
+        label = "Atlas Nacional de España (ANE) CC BY 4.0 ign.es\n\nParticipantes:www.ign.es/resources/ane/participantes.pdf"
+      ),
+      aes(x = x, y = y, label = label),
+      size = 2.5, # 4
+      family = "Lexend",
+      hjust = 1,
+      vjust = 0,
+      color = "black",
+      lineheight = 0.4
+    ) +
+      geom_text(
+      data = data.frame(
+        x = -12.2,
+        y = 37,              
+        label = "*Incluye inmigración, droga y\n\ndelincuencia, apoyo a grupos\n\nterroristas, contra el terrorismo,\n\ntemas nacionalistas o 1ª de mayo\n\n\nCataluña y País Vasco sin datos"
+      ),
+      aes(x = x, y = y, label = label),
+      size = 2.5, # 4
+      family = "Lexend",
+      hjust = 0,
+      vjust = 0,
+      color = "black",
+      lineheight = 0.5,
+      fontface = "bold" # ← Esto junta las dos últimas líneas
+    )
+      
+# Themes
+    final_map <- final_map + theme_void() +
+    theme(
+      plot.background = element_rect(fill = "#ffffff", 
+                                     color = "#ffffff",
+                                     linewidth = 5),
+      panel.background = element_rect(fill = "#e6ffff" ),
+      plot.margin = margin(5),
+      
+      legend.spacing.y = unit(0.8, "cm"),
+      
+      legend.position = c(0.012, 0.52),
+      legend.justification = c(0, 0.5),
+      
+      legend.text = element_text(
+        size = 7.5, # 11.5 # hay que ajustar los valores a la escala de showtext() 
+        family = "Lexend",
+        lineheight = 0.9
+        ),
+      
+      legend.title = element_blank(),
+      legend.background = element_blank(),
+      
+      legend.key = element_rect(
+    fill = "#e6ffff",
+    color = NA )
+    ) 
+
+# Adding Grob (Canary island map)
+final_map <- final_map + 
+annotation_custom(
+    grob = grob_canarias,
+    xmin = -12.87,   
+    xmax = -6.63,    
+    ymin = 34.47,    
+    ymax = 36.8)
+
+# ggsave("mi_grafico.png", plot = final_map, width = 10, height = 8, dpi = 150)
+# system("open mi_grafico.png")
+
+final_map
+
+

+
+
+

GRAPH IMPROVEMENT

+

This is my initial improved version of the original graph about motive protest distribution in Spain (across autonomous communities in 2024)

+

Data Cleaning and Variable Transformation

+
+
+
library(readxl)
+library(dplyr)
+library(tidyverse)
+library(ggplot2)
+library(grid)
+library(showtext)
+library(tidytext)
+library(showtext)
+
+# FONTS IMPORT
+font_add("Gravitas", regular = "/Users/cguirao/Library/Fonts/GravitasOne-Regular.ttf")
+font_add("Sans Code", regular = "  /Users/cguirao/Library/Fonts/GoogleSansCode-Regular.ttf")
+         # bold = "/Users/cguirao/Library/Fonts/GoogleSansCode-ExtraBold.ttf")
+font_add("Sans Code Extrabold", regular = "/Users/cguirao/Library/Fonts/GoogleSansCode-ExtraBold.ttf")
+font_add("Mulish", regular = "/Users/cguirao/Library/Fonts/Mulish-VariableFont_wght.ttf")
+# font_add("Mulish Semibold", regular = "/Users/cguirao/Library/Fonts/Mulish-VariableFont_wght.ttf")
+showtext_auto()
+
+#DATA IMPORT
+improvdata <- read_excel("~/Desktop/datavizu/_projects/2025/100453622/ImprovementDataBase.xlsx", 
+                   sheet = "TABLA 1-3-7",
+                   skip = 1) # skipping the title
+
+
+improvdata <- improvdata |> rename(`Autonomous Communities` = `Comunidad autónoma y provincia`)
+
+improvdata <- improvdata |> filter(`Autonomous Communities` %in% c(
+    "Andalucía",
+    "Aragón",
+    "Asturias, Principado de",
+    "Balears, Illes",
+    "Canarias",
+    "Cantabria",
+    "Castilla y León",
+    "Castilla-La Mancha",
+    "Comunitat Valenciana",
+    "Extremadura",
+    "Galicia",
+    "Madrid, Comunidad de",
+    "Murcia, Región de",
+    "Navarra, Comunidad Foral de",
+    "Rioja, La"
+  ))
+
+
+# Creating new group categories of protest motives: 
+improvdata <- improvdata |> rename(`Labour-Economic` = `Motivos laborales / económicos`,
+                                   `Political-Legislative` = `Contra medidas políticas / legislativas`,
+                                   `Healthcare` = `Motivos sanitarios`,
+                                   `Neighborhood Affairs` = `Movilizaciones vecinales`,
+                                   `Against Crime` = `Contra la droga / delincuencia`,
+                                   `Education` = `Movilizaciones enseñanza / educación`,
+                                   `Nationalism` = `Temas nacionalistas`,
+                                   `International Phenomena` = `Asuntos internacionales`,
+                                   `Commemorative Days` = `Conmemoración/ homenajes`,
+                                   `Religion` = `Temas religiosos`,
+                                   `Feminism` = `Contra violencia de género`,
+                                   `Other motives*` = `Otras`)
+
+improvdata <- improvdata |> 
+  mutate(across(
+    -`Autonomous Communities`,
+    as.numeric
+  ))
+
+improvdata <- improvdata |> 
+  mutate(`Enviromental Matters` = `Ecologismo` + `Cambio climático`,
+         `Human Rights` = `Derechos humanos` + `Contra el odio, racismo, xenofobia, etc.` + `Insumisión`,
+         `Terrorism`= Terrorismo + `Contra la radicalización violenta` ) |> 
+  select(-Ecologismo, -`Cambio climático`, -`Derechos humanos`, -`Contra el odio, racismo, xenofobia, etc.`, -`Insumisión`, -Terrorismo, -`Contra la radicalización violenta`) 
+
+improvdata <- improvdata |> relocate(Total, .after = everything()) |> relocate(`Other motives*`, .before = Total)
+
+
+

Relative weights for each CCAA and Protest motive

+
+
+
datos_graphs <- improvdata |>
+
+  pivot_longer(
+    cols = -c(`Autonomous Communities`, Total),  
+    names_to = "Motivo",
+    values_to = "Frecuencia"
+  ) %>%
+
+  mutate(
+    Porcentaje = (Frecuencia / Total) * 100
+  ) %>%
+  select(`Autonomous Communities`, Motivo, Porcentaje)
+
+# Filtering top 10 most important motives and ordering them from the most to the least
+datos_graphs <- datos_graphs |> filter(Motivo %in% c(
+  "Labour-Economic",
+  "Other motives*",
+  "Political-Legislative",
+  "Neighborhood Affairs",
+  "International Phenomena",
+  "Healthcare",
+  "Feminism",
+  "Human Rights",
+  "Education",
+  "Enviromental Matters"
+)) 
+
+datos_graphs <- datos_graphs |> select(Motivo, `Autonomous Communities`, Porcentaje) |> arrange(Motivo, `Autonomous Communities`) 
+
+# Calculating national average for each motive
+national_average <- improvdata |>
+
+  pivot_longer(
+    cols = -c(`Autonomous Communities`, Total),
+    names_to = "Motivo",
+    values_to = "Frecuencia"
+  ) |>
+
+  group_by(Motivo) |>
+
+  summarise(
+    Frecuencia_Total = sum(Frecuencia),
+    Total_General = sum(Total)
+  ) |>
+
+  mutate(
+    Media_Nacional_pct = (Frecuencia_Total / Total_General) * 100
+  ) |>
+
+  select(Motivo, Media_Nacional_pct)
+
+# Joinning everithing in the same dataframe
+datos_graphs <- datos_graphs |> left_join(national_average, by = "Motivo")
+
+# Creating divergence column and ordering its values
+datos_graphs <- datos_graphs |>
+  mutate(Divergencia = Porcentaje - Media_Nacional_pct,
+         CCAA_ordenada = reorder_within(`Autonomous Communities`, Divergencia, Motivo))
+                          # ¿Qué hace reorder_within()?\n")
+                          # 1. Toma cada CCAA (ej: 'Aragón')\n")
+                          # 2. Le añade el motivo: 'Aragón___Education'\n")
+                          # 3. Ordena por Divergencia DENTRO de cada motivo\n")
+                          # 4. Resultado: orden correcto en cada faceta\n\n")
+
+# Changing names (ABREVIATURAS?)
+datos_graphs <- datos_graphs |>
+  mutate(
+    `Autonomous Communities` = recode(
+      `Autonomous Communities`,
+      "Murcia, Región de" = "Murcia",
+      "Navarra, Comunidad Foral de" = "Navarra",
+      "Madrid, Comunidad de"    = "Madrid",
+      "Asturias, Principado de"  = "Asturias",
+      "Balears, Illes" = "Baleares",
+      "Rioja, La" = "La Rioja",
+      "Comunitat Valenciana" = "Comunidad Valenciana"
+    )
+  )
+          
+# Choosing colors for each CCAA
+colores_CCAA <- c(
+  "Andalucía" = "#EFCE7B",
+  "Aragón" = "#2B2B23",
+  "Asturias" = "#238BB0",
+  "Balears" = "#D8560E",
+  "Canarias" = "#B28622",
+  "Cantabria" = "#92A2A6",
+  "Castilla y León" = "#849E15",
+  "Castilla-La Mancha" = "#6D1F42",
+  "Comunidad Valenciana" = "#876929",
+  "Extremadura" = "#25533F",
+    "Galicia" = "#F4BEAE",
+    "Madrid" = "#105666",
+    "Navarra" = "#976D90",
+    "La Rioja" = "#D9CBC2",
+    "Murcia" = "#112250")
+
+# Creating text labels with national average value for each motive
+datos_graphs <- datos_graphs %>%
+  mutate(
+    Motivo_label = paste0(Motivo, "\n(avg: ", 
+      round(Media_Nacional_pct, 1), 
+      "%)"))
+
+
+

Plotting the graph

+
+
+
g <- ggplot(datos_graphs, aes(x = Divergencia, y = CCAA_ordenada))
+
+# Creating color-filled bars with CCAA categories
+g <- g + geom_col(aes(fill = `Autonomous Communities`), width = 0.7, alpha = 0.85)
+
+# Creating middle-line representing average values
+g <- g + geom_vline(xintercept = 0, linewidth = 0.3, color = "#6B6B6B") 
+
+# Doing faceting  
+g <- g + facet_wrap(~ Motivo_label, ncol = 5, scales = "free_y") 
+                    #labeller = labeller(group = label_wrap_gen(width = 25)))
+ 
+# Colors 
+g <- g + scale_fill_manual(values = colores_CCAA) + 
+  scale_x_continuous(labels = function(x) sprintf("%+.1f", x)) +
+  scale_y_reordered()
+
+# Labs 
+g <- g + labs(title = "Divergences in Protest Activity and Motives Across Spanish Autonomous Communities, 2024", x = NULL, y = NULL)
+
+# Text
+g <- g + geom_text(
+  aes(
+    label = paste0(`Autonomous Communities`, " (", round(Porcentaje, 1), "%)"),
+    x = Divergencia,  # Posición X = final de la barra
+    hjust = if_else(Divergencia >= 0, -0.05, 1.05)  # Ajustar según lado
+  ),
+  size = 2.6, # 1.5  html         # Tamaño nombres CCAA
+  family = "Mulish",
+  fontface = "plain"   
+)
+ 
+# Themes 
+g <- g + theme_void() +
+  theme(
+    panel.spacing = unit(0.25, "cm"),
+    plot.background = element_rect(fill = "#EFE7DA"),
+    panel.background = element_rect(fill = "#EFE7DA" ),
+    plot.margin = margin(10, 10, 30, 10),
+    aspect.ratio = 1.5,
+    plot.title = element_text(
+      size = 15, # 7.5 para html, # Tamaño título principal
+      fontface = "plain",
+      family = "Gravitas",
+      hjust = 0.5,         # Centrado (0 = izq, 0.5 = centro, 1 = der)
+      margin = margin(b = 17)  # Espacio abajo
+    ),
+    strip.text = element_text(
+      size = 9.3, # 5 para html --> 5.7 
+      fontface = "regular",
+      family = "Sans Code Extrabold",
+      hjust = 0,
+      color = "#3D211A",
+      ),
+    legend.position = "none"
+  )
+
+g
+
+

+
+
+ + +
+ +
+
+ + + + + +
+ + + + + + + diff --git a/_projects/2025/100453622/ImprovementDataBase.xlsx b/_projects/2025/100453622/ImprovementDataBase.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..9a833ad9e6a408ff6c1492f362182c7a56614122 GIT binary patch literal 61090 zcmeFYWm_e|vL%eWHSX^2?(XjH);KioE)5%Zch|<<8*kiU1C6^o4CkDgdC$D}-uVM} z>O<}4*_9QQnH6hAUnW=?j#_FX2rrG)HSxHo=hh-6;E#{&KyNe(y@z>X@A8AR|b3L_ufE^r;qfQB>``CcM6t zEB_>ECM#e$we%QKD3VA1Y%T-ix2vhuYOU{YJCgfnTn#mA9-Dg8To+zaFC%lizFYCE zUbJ^#2F2{(s-*0wPpmUiqZIk~0lL4~uP1W6hPYq{tA1aN1;-GTZ+(Th{|J&<38@)_ zuPZt5ARxFPFrc1xO#i}(hoj4PQ%A?|{|JBo3p1c!G4QMHfA6C!RpI+TeJ12R0{FVi z{Z6RhgA-!ddI6m-{+u60Kz~X0=}#Hq9#(jd;s*Pha&F>wTy*_iX<5<;Sl>X2Myn_e zLD?!{Rw?g`ZJ`+TsnCdz0RR%Xv0lwpsvoif(dluV~YRM^So}_{6e)hIN95Eh$42obpSQ+!- zvzh2$RQngH$;pF=QVDKtJAdp_H#8Y&s^*x(%d)(+ze5jqdYF{&?FShVB*hL+g`*DI zqaP=!Zdm_T=`z-ABJK>=i!I!je<{AuCRZ1oTa|wqc>fbVeAcx9#8$gMoUCCj8k=EsXGY@)A>?97|VG6(qVA{8o#5+OOYpPlCd2Wh%4Ly9&+DQ#QO9;2C8}O=t;Yy(y^2PAN(n=@BN_1&YY4=Xend zxFw;D=(Q!yayck!%*(|81WPmb8a8TlFKSwjmeWOf+G=`_Okk9I8bc=4)ucT&HT>%uZtIuWX?{~@*ErOSQNtA?}XK~*91MG0Idpm>gNBOuFlgwaV zCe;x9|EndCtxpPlDtW`P0nd4A@-)1i+ zTHx!H?qiSX!X;Yt(JFIBh!b-Zp8mufNv=+}gNv(Ykp{nEIs6bKjhEjn1YKTfU+ez# zEde&bw3_!Og7v@B3q}NP$6LV&#nW%AM`T3T`59S|4m~=S^4-_xDc+-tmI6?z{*Vd5 z-L1&k@w=3wxuW|*TZLj-X0yAro204=EaB(RM%2JJZe19&*=cWOU0XVQxZS_mtX%kM zAywgePaMf@x+*KozQk$p1mJvcISx{*Tdz3nJ1g1jG;7xnhKwsC?`RgH_R$aSPd$gE z-3cv0!29l~w%t5OF7snFiptxTH&rkSRSuv!6IawHM>b)L$O?toJd8{KJ+Isr?JSQd z?bGFm@&1mh1_Ti3!o?2uc-(XIO|^_(qzb zv3)*yh?mT=K}S{rpbdn3NX+($0SLUX26yEjjm)!y%oBth5B30Mg{Tvxr;EKFIw_q{p$Q4#yacn;wHH3t z&0W4ZL(lz#h)pi&J{jd0hrcOrr{xixPy!uif2>B;g1W4Q`Q^k4kd*M>ZE&b(6_Rsw!6EAY&4kBW6a%6)BG=@1}}S0tb*6h~}5_*jsS-!&gG% zI*--3VCs3I`G(DqiMlGxr;+n3C&E^qtEzKYqP4yv@G?`^lYkD>?oR}SW8Z5qAx-uc zAq{tTSGo~CjZg06<>g$do679vLrK5GjL|0~viMo%J&^cvM)^hEf@P1ye*J-J$2 zSh%?|{qu+YAK^1Q$pElR{IzP}TK)Xvv~4PMW^I;JzIe7_Px&T-teokN)@8j72bl#`BA8T>N;Jg| z;t6bqe|SM^|!p zvPm_89Wy4P3@Rmv_I9-nfo&d+WGqU zXkYYYcRYg)tCh*@46g6WOP1T-Gr+9DnELiWc_NIoImSngMB`5B= zy`Livni2~u^3yNky`_dw0}8iV^gG_kjLY^0vSDIWhJJGM1C%$L3Ycf z4a}P+TZby_o~wfH9>>NdMbsxH+$6qqj5;TSY)z+h;Ar%am zCqb@P=J8cTU#I@usH@uDF-%`XGUHZsY&{JO<&Ds zQ$h)uKPC6|M}QfD8c7A6w_f9jhAGNeJ~i^I{3JRbs?#RmOdj|aUrj13Y#2cDOVhsEu1yRbVOjPGO$uQB zh{z6^X!}+>&90tUl=o}LExhywG@0Vu5thN&ye9WHF{@t8P|=982TzBF=e;T2^f~rk z5-TjC<6R0Q*YJb^-i}Rt6!XXm%l&<`M;I;5{R&mm04f@D6tE^uYAU8wDMj&=hLZuTF{6)Oro0f4Za1xxFn=>)ClKD()G(MHagGcl zP+PaFeA#@>7RHW(XH!i)^nC60xhP(q&2SWzjS1}O zXn#z|xgB5%%m@Z#5;m`{g}Y*b6f{%VX0Ky7+vyBqG$(9bV`|#kqyM=2&e^buqgZtj zpU9$^$gipXtDFk`;9Gd@_x>mSrtaOEQ<8AG6Jr1M$eivubRUSa^3@9ul6hO`$maNg z96o9|bUMu}O}viO_(z&4YIsE`LIkGvj^l$%ewzNDEgkOP;`am(UhndD%hDTz-10uf z(%EAWgi~a{~Qg{eL-*1TF9Bp4J#?2jxMaq{>Zq zeMQ!TKBM+z3f&zR>lY=ddo$q?@Z0mJaU*x!56fVV<~NOr?LrqseatpGjJjjPj`hFX zxQI>L_t$h-StI?1Mxaaug}gKE7WoD+ECX9S^Qip&T*?F6BJqR*KOR>2NcXHookUd; z>`tc*0rfHGHS;I9lVJ;N`CbIzXJJ93Dw$R?AIxB27bwPckz;({Rv|$jf~DuF1GLcN zos52F%R8jk{uU$g{p`T~fd1b;T%Eodx5kVTW(2tpN^C|IS`AVW#q@$3S?Ivj(Yf}= z{`G-ibWeDCNTb3R(glg_c35b1(BHF1zxKjSfZ*}6PDtxAA~<^S%H131X0Z%O=zVDu$Vz4-;{|8!RZ~M>aw}VL;ILN*j z3h+R{0LYs&7ZwKy#J7|w?R=Xt5MdN{(0WO*u>u&+1S{ez6?73u2oZEx>+dERcOt|P zfrsQ_U@MlOUl#%)1BnY=xD@-Bb`e4kRRefF8CCRIPNp+M=o1{Kxk(UlP+yQxuqxGiVV;gQ~m6oq#)o01l2!I3Jtk?%3P z3e%XQa!``2BPp!>H>RaGT#$m6=qq7@q$>CoNs19NZn$r-C2J^unX5=Z*#1eBh!2*| zVBL4#XZaZ{tcSU1FBh+?z-9)e=Ef3ZsNj{IQRn+&-e^5l7_Bx-8=k>Y)I5xzNdn-R zPvp~cvr^f-z(Q1hD3s2wXNf8OZ8rPs@2qFUkvIo|Vsr3QmBJ`FE-66eRZ$ElN1_aK z@mJGMAqhb3m3Mz(3x!qt9$WJK`<<K|C)T!fNi%xhhc*6<=huUI zM|i^yv`Aia32|Te8-Y@WbzH}KQXA0-kjhCk0=vUKEG|Hs=)_E zj`x@b=7R&Xg6HjxkHBZ}{|yN9egk;5dNevD}H-2wt>yRBc^>f%DVw*g>^}eag|AIqTl7W%rOng#3|k^D+*G^;OyR z;M@!u25UMaO*ZH(wm4qWX|i3E$E$Hejd*jY0d$>gbH`In=`LI1%McPn`9AVR6rRi!Q7(7wv zuvI!u+GI=h`?|*7gIbP(zsn`pU7n&WcS}Wa9pAdpi0tbmojK6alA>PNF7{ z_e0Yox8#NI67nA=$;T60N1Iu{k`zYkd0{7Jk<^SoDJXboFHqxz!Wj0{EKQ~++U{;J z0eOKU_hrj0J}AyJw9Bt5*Ufn+j&r&u67aKcmL;`2FMa1UHes!?J@|?QS1!Eoj1NZC zdds+`3JR0T7W>XJ7(q5rF^a}RQP#q+f(+A>HK8U$5&oOVq6L>v&VPp~6-oe>!X%M) zDVV-@E?|f-N0xweQ5~qE1(|_9`1j6lS5kk-j0H$gsXmy{j?<;?+Te*;38PJTeQAAc zWqq{>-aLKzk&?dSErZN|^g#YAUHMmbn`0CAx9wY49cwwbTUm?#&kL|>zZo|6HAp~! z=SaFO;Cx+AHY|A;D;wQawzo3>v5i(7iYR1~=~Ae-`(3*C{psOlzt!mTcHYs*s4FdR z>+}9R?Qy5K*K>A4N$B(GWtT`0@zd|~@fBe7snhemce&RT^k~HN_VCUW@M`q(@bP}0 zwzImE^m+5L|C&B!H0m3k{Bh+WycKcS+v`0FoH*Pz>h=9#tbUq)p$DM8Q!fHo->H`Y zaPQ>{0NVHRB>?Vw`67V#y?hx^J5n?wHp8@esn_wz&F@=#JF4H)12HJ4_wsR8bV?P6 zg?$NKY)&dsAaXOAtvY7&)Z{%6os_&PJv&Uk-@+?lm88CMf}SIK^g7C6txL~wS^u{n;X`;SiC#6bhqqA*wg_(TP=qY{5*gWF? z`{N&RJ1>V_sk{;M-Gm4%y-ZJ(0>6}~SCSg& z=R6hvkOv}bw({PHk5lE3Z$|1udt3G(f|6M3K;Cb@7UY9ey%7mNR}myxlU<1LR>r=b z&^2F^2r4)a!7NYAv4bLzPQnq9J!*kPc~98VC>8T zn%Lq{9RNcOI~D6WV@zaM2kA%bl6C&@q)RvHctX1ggKZRej7FK5HTj%Ozb~lm%^R5Mw!3HX9BE>p_*eYa%wgk0PV?I z2=!xU2LGv*1b*NdRO!shVzQ!tk5V&Bj~fOnb(D-*aU7V*Oj+PBI!yV7ru!qu*dA@r z)Et?~Y%-j)zfK@mx=GDZLm)f=1gjO2&SfPMxsi>+pnb=N%< zMwv>!^+L7S>e0M^u+?^w+ToAjW)06lRafMuw*8_rusjL+>Q!b&eEL8iD_fnQKL-&l3StOo3nn$5M||%7`baXD-!edL!+4-c7o!L;P^017 zolxLBthG8?Te-$&B(6I#eu79Z(3CkrN=h6XGXw{tNdUo8bt`zsZ%YCIj*IHkH0ROA z(9e|Z8R+AiK?7@NT?&IfDxJ@(QI3C<8t5bmi*ZGU)!wIc6dI0^-?LPSOY6hZ`CNQv zkt!2n6GNIG=$1lC|G;W%<+CzT+;0+CkjP7WzgPRS++0wLqfbd)HG_~K1r+(HmsLQ% zz}S1C4&q`qf}%DYv*{hb19u5I&#zOZH}04w5=PL6fy7UzpTV**Dfwje*8+IuH~8Zn#Sm{1WGD^QjLywFp>^(IGG0qSa2g_E&6-; ztdBZm>oU3W*`$WtWg^*TP`~J7>B#>Zk*|xjw%98aeermzIfVDdqnGOPv*UuHHfn; z4c_~FgFp6_cmJ@wXv-yS+pxU5s-ZxFp#odM9c}fhJijeQ6lwW=gLLd|qzE#-7?Qf3 z3(!j2rNA~{lg|<{Zaj?R8cn`p%hps3j0%tn@gO1vCKc;XiEwekKt7?R*E>*;J*n7u zR^I6erd0bmQ_BPa{Lfo67Tf`)cOw;jKFX#me zdjVt+{B|6H@UfxOwVEQ9Bn(XLl=+jOhYsfUO_2P=Rf@KBOonm^Bq6h8;4ux5O@N{m zu?u8+wZYt*mquQR&E#FBH~d*G57NKb7mU9+1%^=*Rdu@?&Y>YOXJM74&kbLGsR`Mj zUt9Y2@1Su6MBAKVU{#F}@N77H-&HOBxSi3`TV5XHN?0dKdSY-L8``g<195#u8+8d# zOMfawB;j|$;S`f{Mn3j}DU&L9_thn;i7^gP5}=Qw29ld)26)VGnS5yFKwyOh zGAwONXsEJI3{A!hLYM7|{CEcgtiFXuWn!|0Rd5^4$8%_H7u=vJo4d|Kl2G+q9zszI zOcT~gqoA7%Ep4BlBnHSKBT16$^WbiK1VXk0T$9!eU<=LbYp8H)VY886!(WJhFl=>&KyDmmW}JQ za61jx&772?q}n2_r+cy<;!h7)6~ZR$*{dFf#f@%$GQ*sz^Suwqg^%n0#?uU6=2+CX0pHy|LRCrj>$Ki;DMJx zbG;=Z%Jl|cdE#zhDvI?yd3EFIEhS0iDKBa+oWxmHLz)vBS|2~cKl}sHm?MeUJZ01Y zC21U-D{xWVba(tvSebTanb;%R`V42q1v=Zu2aGB6O|`=YmS|Svl4{R4K?6}Pzmm3? z0z358v(KxRf}$2*g)Kel*tJyZd06sY7N|bXnYc_(c-cgPq~{RiDzYF@Yshqk-`a-j ztq@XATRww~NScoeCGx(&1^+eHPTN_SRFhRwn$8^So4FNlso0j zVs{){KHVgWT3-Q!IvbjmXt_q@0^3`+kN^Fu&CEL}Z4db&!;~Mrf-EGrB}9)?Ss14X z1KvhO*aoJr-7Jq)U`rAzThtqAgKyU!i`a>tF#~kC2C>WX!?OtSifj}LxFLKN$aYnU z<;xkRfso~OvPA1C=!lkTt)43qCB@;^{0m5_EQ+5OAe+4f?vytO?lhhgXwpDo{DK5f zTLw%xtgy@G4B>2n;*TuA^PhgBGh>O}A?rBUOhKS;q(lZA5zVwvxR9mn69~60Caw?s z$*m*~de~3|#=Ur)$n9|y#HQS03EqCc5#L9WZvo%-1xtfc|B*w5<-rs5Xd5ie^P6Xp z0aASzAYjyU{+<|AO)*j}iBxevk^3GRh``Mdcw4+-)@FMA6n7fC#5L5uORfk&#lw^!j%%cx@@-9(PY`<{t&u6{%c&rf?GwsFd3;*n$tc)%W9T&Fw3RWR>qJ3XdVCdMH@a~As@vYmW7tbsx~ zR#sXh;$D+_xk%S$*z5uFq(My=;L(g}kvoNxBm!G|Ce0tug&va!e$V<@p3S|Jd$5^< z`VO`+cIYbZ=dMHJZ&Wx7-=I;D7ZcG&|191N47E2UkObK3@HjhIf*$ItqG}83qoFIvF^IxX)}^eUCfywKHO@o~#)9FFNS(&DW(W!@c;&afvB69U+YRC!tlNV=itXt ziSb8P_n>bOD(A#jl5Q%Lhx4T|(_S9hmgt`QSNSME$5+1-;JvyPL`B6lg!lV$tWg&d zOi(>T^gzM1aK7Gmg65Eyxi&|TRk(~Yp91k!m)a;Uvx9&C;cKGi;e^8a)9+?*y2DXY z3brmDB$7x~S*U6Fe$~>$EifmH$*;f&u=MtAq?i|Ts0}nbtIoh*{Xzl7)Jefp-0`9( z%a2d|u3sJgtG{5X@_k?2yk9oNt!I;YCWl3JFSG`ib3q=FiHnIn`E_y=gv)5OAS|$9 zboT|pS%K4@klA}OQ*c+Tk>L;+U4^_sLD%Hv-N#|fM(OubaIS6h&0wv*PR{&Fk3*uF zOmSB7qF~ut1ts!z2Z=hn1eZ-jjD406@N@H6G?8YkbWwX*)sa;h5chjtu*Fu&8glsi z9(`V(`B-mm8Au3~>v0gvWp$!eNBl=FjH9-iy^Ky1(3OaFS8-wN0FtvX2yTxbYNc9e z@B^aPsV>E3t=cG7#b{3EMh!2_!I^ED+JvJBt$2&4D+0Er88>-Um_MGh=Jb9JRpNib zk~K(=cEJ)OePgQZLPpa{n3tc)vD?MAbpdX4`y!-G=5(g@rCbJ$R5?R%hmh&;)3=e; z%A1b|M7fH5Xvx$mkgpwM2I&cM6HU+CG{he)+UJ+zp(vjGWr7*>(s0!h0w?+F_r?Q@ zutu*9fu&3Vd*Y9Z!cQnuwTj&3T0tUGW28=J&0Gz>m+_iGT($n^P@_uAMBC1?j1Q7D zrf`Cb5dPR-6uLAoUN}iwMp?+9FdCS^fa04QL!Ax|a7iO}GAag}PO9O62U0A?+LG^G z%jAcw1?BtiTJ{eI2@w8K__BszS$6tmO?;yB*^FcgYLIz3w2gNQ8q9C*CysID?FYP7cW zgh1WVFhm=wTsk3<7*sab$-!h^KgVRAAcIra5FGPpOy=tCUm|Boy@nTrp7r0oSiW&J zD$B9(4lIc|wO#}Pc7Xnj6A!eoU-E)o?=&PLVW+`;-x*jf^Br!;MHmuvz?2|Z!M8|N zgYp>xn)b!6Ro+qKxUdMp=fcKRckqm^O6C5$qS%-|&ygUVy3|sIeYLHQo=|j{b1tBX z9}El$*8Ac4k&n~Gze$wKgoPuITK22KrE-HMm>KIK`VR#ZF<=NGKQbk*D9gfA{yr^K z`u9bbno%qw`m&k0JBj^(tY)U?yiG{oZk~!1{=R|$^}>yM?b^d0eQF7GBTxg{_9C}+ z06DBc`L$uPagE2IuB1VnYJc0N0%nUq6+e3{-l?Y=Lx{KUf+uQpsD6Maeof%2Ohqg? z_6jo^p*+@{O9NGaH796)8A&m@lM;v7H+`_blR;KFa44dTc5(-OY^E46-pBO8HNFfd z*mgy-`3s_80hCQ@n}JL%d9b%5PDAhKRm}91O-XimI>BMj17;-l5b%8eSI)eb>K|w& z0_%kvGj-vM>PwJ-I0$oXi09lb%GRzxqjNRgSF9e0(%@~NrP4efvdz}6L922#y&rff zdZK1&A0z!WM&N;(;`nUr8lCA(UyPXKYFeULJsFk4*8oSQc|25^t=)`PT9c-8Ev?a`u` zO1@DviEQc6%pPNeScV`6!(ae4t-$ur4{Qf*PRQ}mFb}|M36|$Klu5&0I6IcuoZ_=0 z>D3Vvrg3@EoA9jW5o!8d3aDz%;Xv1Q0%oODHV=I^kaQ74K$RhAxXB_wjVsV=kmS3f z^Re@dA+Skb`e&*EWJ`LuLGuTiNa3iAGoj;>o+22lF&}0kmwpvHZUm8PnqnUea`Lrm zO2pbJ2-y|3dk!6x*chA!ToIEjGn8|tkC{0{w*7YvxET}n%F+!!+l}(Slzkn0uO;o==2WYkeH}+HcaA&-mF>Lk0Dqs?1pn9T^ZS33@BR;U zTH~kkoba`tcX)YLak~2i+!tQ0m4WQtXE=ii-e}Jy*-h zn@>rHO2t3EITmT19@`Bo$puSa2z-5W{APYra4>l~N{GUk%{G$)wu&cHAP{UejWIr! zw4V#6!pZcXespA3leHj12LXZd{V(Ndu7AnXdUb`&=waJb8K1&0jLPEZq`BOq={#dz z>GB6R`f>@9vKcK~tQntzof6mNJ=9Sh@V~a#VrqEN>Pe2tM`Iw;ngW9y93?99m}n?R7Pi!(D-#ucoSfH&Yn{CtXH)`l5g)enl?|t-mg(VWAdwld-!}(nGUBL^l zaJ8yB;C4XW$rpHsUQPbGw&9@oE)($B$?tFBtA~^ReLD(KLo-`TUQL?q*AbsH?RVv1 zBPAyvT9TiC|DH6U;hGUqIj4&UE*;o`!zCRV;?dN0Yhww3z41USz?0r5mBIX}B@^yO zak9=4AV==p!CW^u#^LbdCNLO+f!i>OnvCP(4sfn?a>=M_g}kmd7tyW9|{NJs?)5lkdyS9bmpQujlRc72w$0y#4WXehc6`UOrap z@iC%V@OwWLIwUeup0N9HYLwR)~3Sb?as zM&vigVSNlt>QL@~^vPR@DXH)_>iOljpA@bva4wg}9u8+%0Oue&zNL^?eRx-K@N>S& zOm}dMcG<;}t+$KL9Z;9F^W!8ec{51?@icTz0NxP&F}zi(+Yo~B@ZsgKtc!am#>Q7v z^L*AtPbdVR!|UF}mzV(6s(g2Al70n;^k|VQrPk(Wt@O0iJ}5F}vrKL7zJ- zL;r}Q1VKZcshFN`13rqD7hd-_Ut!IQ%`Jg#`Smq8aES})?xd)EeOl^T)sOugScH!# z$#8#dNCtVm9;{cVz_9IoekG`M=0vo%WjDqh7qTR(I;wFbH3L@Xi4^s0!6}%#Z@p6E zNHEg+pjdCY=nO$v5gsgzvZ9B$(6-YyJy`VzwqM-VU2K<-S#YI4;uc(rm*IK0 zV=t;!&*`+oMz?WT_#d4R!#NH6t3RqqRo{jbG7A~S6Km(29ou*x+thid;_H$FC|v0V z%sC3`0&Bh|W4Glk5Yy|+K#NUSOW3+4n;V{K`R$MrnnwRbGCm7DD; zUfFV?^GSY?6%Ejd^&1hUm(qIB#H)4y|_B~Hvy3w}aDc?F1WWaBJt zm|DLb7*7;05`&-|qt(Z}4a&G`24)4|1z~!)E2Qg{*KqMC=Q4r7ms$PG7{=c_GJ$#A zXGC(Q3}~)jNI2V=jy_dSszEuP$gbi?r`z2K96vXcg?Zv1;@;?(Bsn1CGarrpYH`Ij&BZ{9veV<_H~_ zql_ie$kf(+rw~krT58Ic^H||>P(L=GMdU6qIi~Ic;X*`RlB*@xzqSY^-=Pc*MB_>{ zY>a;x@UOv4<^8tkr0F>o)zhV#?tsCay)nRl$mQGy{&Vux^CYN(hwTSPljl`v<2D2` zH*@(wmx(ok4KrVpGf2)5Jq(q~VNY2DtB8j7LTfOA1Gwn4jbseMPqZRiSu7?)q5_^?-5Z5H1o3e4J#fE%F$}n!i29cYZQa zlG-P7vg~j%bk~Gf#e#*Dct9Mw!Z5$ewZK?14Vwg5>@a)sGG8tfp^P{U*56oCsdsk@ z^bq*%3EFHk4u=-KmlBm61FB4#8#=1`8^4#^i2bH>io$W6F3Tm5p5kf)r{pzC(m14E zxT&aI;nBwz2BYtHc?#~Y42`NNikXET;hKKk_Jo6%d?F+Sp+xo|t1#2Y%<8@+__dsMXx64+9gb1_)Y%UUQE=993N|)(Pq`&wMFpHwP z7@+7ztIfhUKh<`^LxW#2e+Qxw^yxc;jBqWmHLtehRe48q&SpFXna0t5><%ZA4l2Na zGC36QPm(a6Y4S{zhyCK@r0rtmB)$K2K2!g*1i^NTQ^MRhoBEg{04a{1Q0uer8WJ&3 zX=BK#t`#BHXWG(H6z0i^48saHxdxeL7eyalMVP9 zP!b4wY8>>vuZZmh1bZJ2`Ja&~qdh0+m7$rTB;-JxH@1!eCO=#EzrU$N1Cc{$r`b`N zoWm;mL)s&`=ZUc9ewe=fjBl)9ZZaPyPHWm7Mui+oAxpHf%!L!x$OmCyWmZrrGDv+> z$U7O-pT2WG1qU9pS<+{%DhR$)m$$-gMPG}V;)o#fpT_}fEi38u;H4seHrVO)bfOF^VD8=y?~Qt znCX;D#+)%g*L4wc3j@W3tGf^LKbfnB@%064=%sUoq!IO*ZiF3Sjpu%i*|@V@%y;s_ z;{2kMuDp!@vNkY#0C9=;aS>@AFX z>c{_%5+SAK?YuHbJ1_JHMO`}A!LSJ^-<){k&rsaFpFTjxhFHuAn%n1fRTSp+Q*hby zg232;U`P!)&{dvKO3Pg*R$wUZX$#JlWX6Y%I1HaA4BeaAD#~hS?x?zrnnd4+g=a>R zom_eGdqR+n(X};Z@xfdJ^mJPVXj_7fq?Z3G*@}R;){7#1G~o;%L%t`z%IQ76{X_kW zXig4>VFnQ?2SzMZ+p1NV*B*<|uh33j=_%w=fF2Qunz*|~8sπnd?2=go-vV2fCB z7YTW*CMQ)_p_DzNv>^)w)>9A*ZFHSH_pTFkx(`<%iw{1CtD2vig_hsRaNuRFeQ|6B zTGNH8aCE%pD3cK%@D8N{hjS5xi_T(rxeH^eTgI1-0|anZZx{*!#2kk$MRc9NY9suN zdVkoH*`tHngbeyIkRLKi z2q#}U+H$ttDR{Zr?2hGDg&6uaqPieDZkcmlV!R-o%+WhSdzxroC1ctw!(*7FZGc*( zWQr(LJ=?t}>*saB7;-Z{PZ!mR^P6rXtTyZ}x-$jC!y~bVGHQ`>-&4W#hfK9#6bE^O zo$Vy|hJOyp^y3&gDWlf7^9)WT;Y@sfcV)ECdsw#L_J!KMy<l$rR^~R54tv!Bp~dHME}J^n822z^@K8gX#AoeY z4tqHIUu2qYD}|grI|A~rgEw}^Y^I1?npNJ z^v|eX+uPrzSY{$_5OpBVE;lo z@E<{Mr&k5*@BDB?g>n$BC#>e=Ep=-RaSiEGX~azA!#5ddNXb8hnnl1^k{Ad&jK^h- zv(yUHF+OmEoIZAf=06Oh7eFKq3F20o0o10ZhKbuWwtXc}Q?YS$8lb}wIfe}69%GQL zqv&Z+W7?{ehi@gI1-sM2F$itUZD5BLYy$`a7b3tF80`1iqiCkvECEN@_OJU#VioD9 zTEW=LqtmvQM0ExD%AaI=qyOSW^gxA1e|!FlLx`%)nHC*04G9(Pvp7s2An97*KWp#g zX1vVI9{>wAFm2#`Je5a!P7nCd+%|hO@(}+gSjX<+fk4EqN zhW$34K+;JRzDU5%FEgtv6vfFzyTWTL3^XTPD(Xbm9Es;~!1%mr_dDZV(j^b1gK@wN zUXq@<@mc}Xpfc1+e72Y?a<&?NAN}UnAU17mF2v9!`(p8qIa7`}0Ul&mPUZ~cT%$V# zZB`UV-rr((z`)BQq|;w(o?}tXF_SMRSz@#r+fYXfyax^jP*JF#5NktSx(BA+t57f4 z2-b3tb5ly%eI)H5y4n*W)ns7e4;7-hMO7VDF$C!tr^Q=+L~edQinEh5|819m(tjV_ zL1JFFBT^CsVdQoL)ILp|d>SL&z>xrlW685=iFdB>`t8s`d$;*dlSn=rg$^WFz@#u&=@`es_&AcJpMC~G< z(I>3>1zRBeige2wv|^e{c2(FNYuR8+_AXu7M11yqLHGepR&)JK(OF=HC&)-g0RWE( zLG4!r^s0Hl4;z%338Go zjNt22C)lfiEjK9rC#D^;jPesNy|Js3A++GcNsjLS;3+@JHtd_SCE1ry5nPF~Lpv z#suFI1At4SZotq+(J&gqGtT0Yt@TQ*84-@#gZqql zj__+ma5w&5n2;Qz`Ughs#qr@3`FuOp^q^{zT+-zd!fi#a(DZr^&+qLldDdbh8XRT) zz*l(}b`{FP@pOmf{|+{@*4OkMsDtIX1f7c*WMu|ioeF3f+Vk^#u9*AUga5xaGW;j1 zVk;r(2_;SGW@D76-`7TltAA`{m}QG9L;GjVE5&1*Skc!;27Q3odh9=HUMn2bE5B-9 ze;+M+^XgsCClV+6035iaAToT*d2U}CphMvgCtXW~A0$<+0l;+EFqa$i_A=q*ssFU* zwLsC)7Lou20O6i zu_0F&m&iR$CgK^QJ0QO~5TAuub|y0yVjOEj61_MS=-<8PvpEaV4M`R0EpR5K9xXt; z)OB!hmQRi1_RwWtOnQpD1y-o@p6`;d0uArj7G;!}-IP0rIefObtYS6E_`8G0P`b*n#Z#Her zlNFcAsZqDM%JYWf13>tdtfIA4!J)4wTL)P&dBqh*w6pzzw~~4%L9QlRR_$5Cn^C5M z3bo`YTEYPhx*AEXu9drkwgMja#@V_GOA6eYZCz_k4{mGJQ)V()yk}`yLQjEpt2Q9= zELgU2!;Zc$65Tw-UY}3*HMv7qhgmK@N7=w_L4Flq$EfLuQ9L0+vswvO)B+n(oQ?C6L#oXQSHVb)oQc&4jy{8|&MUL4ygvb|G1iZuw(wvn2W$`M|`D zzSSE>{O*>JXM~9CAvFf${e~joVd_mHe1~B&wX_C?s)WAhZNfLJ zCvAm<5LJi5tl3!=GI();zTt)N$_L?r*${OZN1h{r$G^GK z=cS7faawAMTo1mC*zNI8`SE{hkn1jgxn07IEDDK?^~?##?eE+|WiVrg#S(_aHa&jw z@%O9{jNW*u!3eyM~tNxKRNE!N^8KMCN`wj85Kl&vbekS<6?yWB~^?p7G3B7;Z zmL1J234NTd3k6IDybHt~1{?_G3ccS=1bja2wFdm{eg6PB26V;y=LGCV^q$kJ`+m-R zwh3hIe{!w)zwTdtegv#O67~9i9=@IJI9`|48Tq$Ye70tN=&hiP&pAC-;jcSRJjo3?Et_%&W`!1cK~P~Rn7%%H>9i{RZay@Hl(l~ zRW1c_H>8SQtzC!=hKpvJbgEmN*&m{(Z0yzk}pp zl1XMVYu4O%)~tIKgi%QqdwX~a#w@J=QP_z|4#pSox(>#-Yx59}ar@hZ!wAo|{+orWNxxa$x5Rx#E@ z^sp-gvEtE}r#UoY!jX;jzAHPB?^~@8T2frSJhoD;k1kTWE2BX)SE^|CWC;p-sLn2W z{*W}LjdI}MmbV__z`uLY1lD1)R*2nFh`Xnf9b4 z(_G6DvOf;HsnHmu$mHj;T|sY&cQezzlpfhCQb*$x>5n_9thI@faMgWh(hH`Dyp67< z3OdilF^Xf48+@Ka)3(Ykn02eXOUE8qW-kAPI0SmeC?-v;Wc?17lmVQ=M&!M4CG;#( zHg}a23Qj9Me4JwN{7Peh-%{Kx9%FzI#Nq&x_i2^fVAhn%AetUW)umz>MezIa_mJFt zf>oqrug{I;FmA{`#9in52OJEsKl40)gcu|9?cLBOx?^@}utwM^h{1->%mRC6e-d;< zSEDG0G0Ey+m4A#BouP4VegX9l}TKII;r%~_)sGRn}f3mWP76P}*Tkt&Qna93@f3REg5s&8HOa5`vm~r24Oe*{6ySzljTmgz9@@V42 z`LxhhW9h$c{Cnn zql|VdlZ?sAlyRcdih{Xhlg)#Hd!z=omR}RZQRXC@0MS!~)DljrjY`+5(wGd(f~=O; zrNy?C_<7>o@FKTjs%s^b#NU|82)i?~=_vIgIM1yg}aJG`~bZi?SwlDmF(B8O+&qclYCISjp1Dr@g;C8%9FMZp*R|ncUIG=1W8t$;;_&0 z>WLNOA`Hqh{k5oQ;0WY410*t>h$Zd0yM9ct!Ja^&`~G@II8q#=GTk_YRN`AGMH@g< zQsz-B^UqeeVYM$n9c<-udNCX0_7NPOLCs%S6+ESWmUOW7kxkNn?u?DKr3; z3FEJPsH=ApYjxoLNgO}eJZM`5^z&VF%#agWv`5V1RIln>yZ0XjSl_@o*q&o|PK{G_ z@)RHr&R$}dI-j!Xds@)E`Zx0gZQcM=x!Uu1)cD%uo1ci8?h|3>iTEmId=a~A(b-K~ zex#eKk6bthrrRB%Wa>LO4B-G-(?sW$>p6d#@6gyInWUnS03<4>GC1`hSe(35vC+al zWC8{%yU;m*(nzzk$5Kwc60a37PbP04I04lX&ZjcRopk$i;_M*SHEk$HG^5bRsBjY zPZNpk`f!BjRxc;#rikRC;;4k^Ru``htb^5(&>01<9?b{ zXsUTjOm*6OLtmeC7)f*4<1c<9-agQSOeb2Fz>cl5nEATcF7ukbbfqqR;q0H@a*RTx zf0_0Zax#QKb7N&1n58gAW8d#&+{xTeT&NrSgG;}k3B%P?faQ988HcG?y3noO?^okB z#5X1)?NUz7E7nb-Uaf6hJns1xqc_VvuW*rP!P9Z8tgnLC;@Zcmj1wEX95ORW!24ALjG!z7Q zfV@eP?X!J!d~R$`19GGo1spe}R(8M|3+~NvEx~)pV@eV@9y{Pe&ZTc=X{#m_?{tV~ z9aIBk@BJloN8wM#lpuRU4J&I@DkmDalR-QzNdiuQD=(n=;R92R-oZB2?{RbQ%?#+n zWh=|DN9DA0z-DD-5)*wXq}=sF)VwmjT}nV|!7HTSAM(ZR{0UmD`xb;fwv`%k<7(tLJ z258M!*cUL{MD{SwN6TK8$z?1DHrz_whG@NCHIe{cv7TTHzDXK3j3(JjTu#pH z{|#^;I_N0JpQj9m@13u23EB8cew+vJcAcV_UGipvhbG{FxNC`*6}x#4^n0lfTHJ>= z{UUFuam)*6A{&sG&)Vr6d^p{NLIPyP%$e+y$4oBMKAKKMS>Rqhu*h~f#ICGCny=Gy zK5aum^^6CLKVUO!uFCk6-({6hy34%tqiim6`tR#L;Y0S4@iUh`PChz5t?B?4MUoH= zMvTnxzHrtv?q=fn2WR4a3&s;rBy})*3FEv#-^T5v)$uBm<|qYO2OSM-bvi>FPva1s zxwucx5Nq1H-Px7+aAm!{n63z~n>vyt+nqQ)I;O}Vji6j+eErpFVTtE3FuA3)r=oZ3 zN&NE_{!|CxhC~FbP9&nPTmg2EQR9i9(Iv(*Hj0+8IeQYgH<9jVSvQn<%(w=5U)y8| z>AnwbXNeq4&$qR&p@!Y|_BYUdR?7)vVlH*ji+AAb)X_?o_;R=$$QjMBu(iVzfz$jD zv7Iq7SjywYO{;x8Owc)=tERdxyo@)UUt9BAHSylF44Ip^dUbW8_5pvka=!V?)$@a$ z(N0IAxZHc0fhNU%8#j%8mNe7}(mvnoCCDCcXff0g}b08i-WnNa5D6dab2Pl$#Cipc zmfYLQNQj5@W+zvMYd(UH*BM7~ipZypx!W>bW<+IO}*-EIbLOn3aXIDmYX_SsleyJjT0$)(2{uFNrEm5-CG( z@ij?p7${@62$_2PP&=ET=C&yGvltih<^8$17V_zc%3T_Pqf$|y*N%4206RpUQ-240 zU=iov1ph^I)wZyM>pNM@3qSE}%sCW;ND6vS^%f*^(55n4#s%}HSGjP&wP$C>6IYHj z4pBU#^Cd>qzyqF6D?~IuNSVhKOVgR2cf9!yn@J>$doL4FQO9Q@vw&>)z%n;`Sf~Q>~x&GzPIf(ZbhzfP*3%$`p0o0q5(}Jt1!=T-H)SE-01stX8xH= zQ7UIhN0!Tp<*oBuFihvUoX6V?`r?Qkd9S%v=QMKC$yhs3h$0yS-#$gHIQYCT+fI+S z=}vhx90YMVKF9X42vRK#LZ-=SFxj6q0`@?dl};>?oUksbTxX4f%T-Rdy>>+fI)}qn zI?cdne%JZL29@zwr?z><<~w30NOJf*kOX$jh+!DSE3WiXEtA+Tl>g9zo!lbd`ay=E7{hiaVAmE`B1lF7Rc0q z1%G`I-?u>XRMIv0^M!vv+b)~Yq5O8|nTnad1;yvu)8i3e4q>&*VeZ&0 z1DG>mUG{`P|JY36p7XxoYs&eb&di9W(X5)4z}1n%@ra0Pr1-4AyROdZ1MPKa!;_}^ zI>a6&I+49uhuD3H5)aj$z5ewl)TC8-qlRF%>Rr{KFD@0VH#@9OJ4jft?1tPT9P=)0 z$9}Kns3IaWOdxD=p5Un~re)@6wcsf^gIbnowUDVJCJ=@=PuSEl69`AVC3xzIX&FtN zpvQdXYkJI@)t~BjkG5J8zqyCjTEgldD-ET#RHkm%=T`H?nK3z}Anf0#XyPM1<^xQi z58^x_Q^QOkEb)>ab6MO|LUF4ea~<4Mbn)XJa}it{q&(TAdOv~`j5cP+sdrnm(Q|vl zS21LrLFb^4p|`s4hu^yaOOJ6rzzm!9qrL-aO_@B3X6xfb??rE74v#+%&*ZoDH$`V^J zYHdbWa8wTbgeF*}*<&6~7L~OR&%v8y zak$b4M`poMtJI35&GpEtHu=fUDEyOZv6mMqLk-u`jf?ga%;0bme{gonngHx};ZO!A ztk+zZu3#FozQ0GAa#0lc_^7dE!sY1X>f$~=(wdKEogXRQBFl&>ZwKS`5UZz1M-5@n(zME>^y?l$dq=eE(M5^4#fO(*Yh2DKKeCzni9j; zriT`kDRkADaXT7;1(2&$^ZHhX$iaSL7*D;G^LPSOoHX#!ke^}~wt$?BurMc!0&+lB zGz}a9;NB9-o=&?zt&RtnedrIo%*{+O{4xN?1I6bKG>?I-C>j%waEtIHHH~fholQ7% z=)AxEvU?V<86aZQDYgxnnM)ULcp}|?^Xx3aAEe{>tR7}c2jus zAoY!}Crx0#*}K91*c)wbY>hsX|6L@cdk5EvDAWlpfa-VLd3>G;^90P`6zSk-sP&I989iU+GIWG|4;LOo zRlCsjXX1}MXr$mFXbY!n)FJmWp+^Y|gl17htOA_g%OS`4!lQH>bt_u7h)yXGC!((D z`QO*u`3X-+6a>Hw^d|7RF=L->^%UA!k}|aJGh`!kc3`K-GMH_mT`T3oY3>a;?S-fF>SP_??8@@XM&-E#9ntUD$#X?F9@Zj8Q1Y~6#g zv_{9f?MWPQ$eKs2w}iLWr_kGGIB@|vp-$4o53bQ9X5CxR{+tUC{vJj#pM4-kSvQ)U z!H%C!4!e{rx->h$2x|qxl}gC6PWPtuFM9di66MhY}Q+q@t}k0u%x3SCDW>NrOfH*CdA;tJewiy@#*>nK);u3`AfmckP1b zHgeRsR?uy)R^)a0K37@2!@^+zIsix5SU3Ca-{rSQ6Y|R~g%lE9vxx>*G_m+dxB36#3I{e`GIE zB#m!qq$T{+j=h;saAa1*;H*Kd)}Nq;y9FnT;2q(d_eQDoN)^5zU`KSjHuDg8v5p(suW3x$T=ZTu#e$Oa21DT`(yHJA;0Ima@t< z$>hAPxozT-4tf8sbtv4?{&!RMK`$+2x-_1xF}gvKU>f@b7Rb>-e4=rehr%9c{U>FY zL#42PD8W>X>wLae+c-~WE3c6H`td~$9SQK-avMvxehhEkr>=3};B^biFP+5iv=2E?>vJj|SdI*zrBmp9vv-_ml5ZywlRE z3XrWaRF>fnx^zDc22cU2r224$KnWxfiwt_s`v^hk0<<#anP}xh4Y*J@?G$M){QFYz z`q@r;Yxj94s2z(PZ!=>PdWi`R)QMR2Athd-UK~BN^S2O`>c;RLjT^Ky-DFEA z9}m~Wi6jCp{`ZI5=X-%_JMg{nr~j6Z(e;l6oS(@OYNZ;puoPrp&BA(~?GM9chV<}` ziVwN4cGv5j(OFWwnbiGI>b~?%14Q_*b)(M$$d^r$9oO(HTGVySXf)Z@L~I?WLn8q*g!lB@Kwc$>m>$hG_8ktD9C z{$P&sS4c%lo}Vu|CjhZXMHg7Abuora|Il!s)7qF#``-E(kLimE6~PE!VJ|ItOM#?{ znNb~*>or8XBK!rTH_%V{YT5aV6iJs0!MwT7oia*3h zcuJ~=Dv;{TIPH~(@~_Gz);whOhG)CH-=8>d;fi0+FC^W;K6*8fZpf`abNA^(g6Qa) zySAwehOqXA^Jn-bSYH_3Ba(uQn@{@kx{5h6?~>aL2vI$29=-Xs#&ofxj2}qk`?!LL!*IZ12?asdhr0u?#v z!UZ`i?;g0}4Tj&@xowfj-&A*Znw7QLlwWo7keRK^dr7iZ(92O*vof%Z8Bc7k`yd&U z*GP^UO}({1oX3{ip|oQYh^EvstQt4uRC0*`$_McuEn4tBl5(=V^}-GZAyNX8+G+h+ zYyRD2%^Ye&<0H_sfc;F#$LXk9`HAwvF9Ko2sc;Q*Y#$blX%TJ{}~i-TV~iqQqN z?T_-VWOL-F%L~)|!`ZqFTevjw*8kiJC`~`MU1bML!%<#9_DZj*A!tL+;BU#?Pf2F)F9SYv$Zib+XXmygLNUT~91ZSY4kc=Q zYkx_Uqx!iW-x@2Lk00(cf@?U=YtG>!-8TZGQJuCP6%2Lf`k#W@Cgeol6hZeQ^eb z1vxQ@sRe3p^lHx3K}ulxlgTuY+`n#8XDNBrpllRVm`f?-2fK=ee!STZd2*N#+R_#g z#`yDumMm~~>?B(Qdn!V-qWUL)um3$>An$ik-AD0~n;JFb{bNYRn_QJ2k<3Cm=!ZwF zV=**!JcZ6a5_zf1_a>jjN05%6EMvgRY@VqWZaH0lZqc;hU}|`(WR?u4^@~$v#|RRU zWuqyXLHX(`f+h!I$e+g2n1#@*Upr~1J_j9A6g|NLrWgo-)-=(%_F&_D60Vx5>atC2063SKu(BqO4y3M}PBOXq;26vM+Hs zf}v_Xwc4eNQEo!XygjaIS?1@sLPL%!muIZN#!`tJlTpB30WGOWsfoUB$H%5W)ROdN zZxqxYR=Bgu0ixDEN`^E0gyC(bcG`G;7%i8qt~S5dBDSrdb~(N^>NGcRy{d$haUm`! z+m8a$>I%xZbFmfr7eSv6k&O_OYnf50T&31k`&gqI!^9aB4CAL`oz&v7*)2{pHyx-O{ZqH4&@DV9W_jGOUhz#Pz59vK>~a$>1?roW zc2Q$!;?koNy|oB{%>(u(`*_))3T6%0VbC(@la2nVbH&kxttcQlVN39 z@|nQatEdJV_q!&3^#BSYWhbg|7N1`I5`IX_FP=|2A_6IAnHd$iYZ2|3g`mmB79UMm zYAbV~7+UdF!soz`G~s%GW3IN6xJ9W8&BI?*2yr&kj{077Fc-XrUmVGuGSxLtr%Z)N zDsr@}&?ZuBPzZCU%&**-#9f)31vO|DKmCL*5u%G!W^$rzvPh+CDj~Q~V+}F5l@upv zz99esWciiEET8y22w&x^Z+Z~^to7Pnj*24;iDM;#-iWZONwo4w=rn5v0|9XNM5g4I zErw#!bx6aR-6owr1i8>fL^ogwa@qqA+G-X@!jW|8Q&{>uw8tX3^ z;YUq`Fp|Gqc?+jMm!MCm)SfeT`Xl9=ASoAO)8uD_KqMq)4VlV7gwMvt)dK24kCL#1 zlc0X)kem4F;aK=@<}O(0B@lvE`Jr>eLYM84a!5tszBag@KC4FiU%~JHDh3Gu!9ZCN z0ljVL#khJU=stt(HXDb%pl2bL9iXf|tHY<)r3CB{ytTQ!D$OhXu z6kE{KKb_@{##Kb_a`ZREH-h;EIuP-$Oc@56%vcUPBC7~^-CgkL=5W;_GpFGWB-vP0 zdfJafi30P)eVF`iIV5&k!v2y-d~5|@^gFsEa?L)tW&_~-3-m+j zx%hkPvW%}>&lY419AkV6f?Go12&jPY@pl&-b-@-)Y^W5RRL|`%BN+QlS|L2kk%v;I zibZ8dWPPXv#GB$}Xi}U5t@Q%H35h!p4>W>XcA-jFmQe{zn7H#6u|^kMg(ZoZ^d)6$ zizKU)v8Ck%Q6|P<=XhfY;V}SMO6MZ11OOTP|%1>+Z);< zzG-BX3I(ZVI(NGjD-gVKc3f~feTgBz{j7@)vHYHU_2c?yfpT(*L99aYX%igNPn@Y` z^RiF}rDTiADDZn6EMsm|251NbAA3vAp5XoAOKjD1d<1?X4Soalv(<%K9X-UNk-~3@ z>!?H9H_Z>0!*`086o&&?YLgsf8MJ3i9Sj$ss2SyAs>6l#9W3Yg&;b%rGi*D5?1B>u z-+OHbWiHM!#RUyNjTgf(`u|FJyjw-u+>Aw|HZmXKESPUZ>+3gzN{HjOkv?Ad7_1#W zZTUSPMDj+fdxhhiH|J{73f{+|Net(32c)u;v%YBve;?m|Hb=)CMbqkytV2w8k?||H zgt;p`!xIRG9<*s)5ZUeT>ECSx5N#>t@N7v1?!1h z!G}S1F7Z;MiXdyD6%XD-)<=JOLv0no=dMWP;qYS?;*oUt#Ek8dK8l=?yWS3i zcxmOsai6{csF&BS7&!&7rywo~8n|-WQ)1l2gdyc<)Bw&3EW|_PsK6bDSwB46H|o89 zN*5LBj#Lr&MO&lGr7f#H|ojz6o0)Qv3iUM4XLR0nn^5w|V^@RFG)KzEO1zAr})8G+yslR5)z1})IpTuNC*VpAu;2-?|&y)3p zEJ`2~8uVt#7bn2?T)|I*5VQGVfgW|CSvw_@nd25#p*QOT{=(Tl{<563z&|9~kMt6I*Mnzg>djG@xiqZv-g0Xbo;WF;p zgj)1$xmj!&RPdoogW15yZ!m@WXUO@VGk#3 z0dXXu(A8~yB7z;~jSmurOh#UyJd`|d(&4=wExdTbY&ARaw^yNSn`dReBO^z$wL3qY zPcq(OdZ|R4SXe$XN-4S;Q&`x3Xh}Nyca19TW~u>iCcEVHGansC<_r(ZbALG(#FILV zoKP|(A0~hCjCjj?EHz{@SV_z?*U1q}si=X!+OJs`?7-tYaI+d1JR>NRmEvj`($_lv zn=qc<96AgXWZO;9sNlryrX!kOut50yzOqndMZK+8+^QFcrQTN3L1z}k#z6TF&SdJm z4Omg0!ar|nvgP*x2%Nut3#&-5A%JYUlPN8_I;#DZ=ASNR1T15vzZv7KnFQ z6&LnXfzZ<+2};x0B|V;v`s4RDcBN?0cn%OabMgUgBK%?~YKJ3})8eR>n6_DhGhbDpdGnvmBf5|;ZledZX5Y~lD_Bg;7#qK|r|KBOf5iutWtwYou zGtz?j6@}D?7Tf2$-QDoqafQ9*Jw}4xbQ~t)W%EwYBw^m&=K;?Cgr! zxv+tbvvz^ycYc>Uzh}4RC;RvNof&Wr_}jzd>Ddsg-br?UeOTxQar@h0`6B9j$#Tmx zIDg!XnE0HeeZ{IE?&;`mZ@urW4;ozAr0&&9i}>_*UyJXCV_~9!W8pq$FVV8R+`-~| za&)URO7iRhznjgisG=w1u%8EF$Js~=>Dh?Z+~r7ITKh8sGW=|;mpO1Y!!_>bin3|G ziZ{}}y;Np!r#ONN4uXo#2{8^OwKmC1t1f;~2z*Muo&G&3c@!Vau)mj%S+Z%7T)$fu8jAnMZ+Y8S=$S*SjnSW)&}9YW@=$7pAarV%Y!z#IV22toq!8c(YW+U zT{L`BnpwF*1YsRavIO-$KpD|;w#I(Dj+0*Mq#XC*r+t7_rYpDF` ziEdzE*>{JUGuu?jX;`7iC2;*@GZ(h?(;MHN8WsnA*EO<$VY_r~BjOgmQ?7i^<`{`~ zriH8H8m6i1*O#IeHL9(0$ox=Xi`>Xc2`Ga3qyvMG88Sy!ww&0V4<_-u*1#9d_k`5u zlQhA;qLs)H%Q{&DdO8>+@&xYtL5?Es{-LlBMyZ(?g{r5bnH>sVBBwB?`6fq$JVmp- zOTd?TF|PeAxs$Ayv3dq`Lw&Lw#abN#K)&kHpx_eDm`#sQ7)Yb=wblf2*KTh%REmoR z0vn<>qt0IOSyP&43D1C~hW%C%%r_|N)JMdJPi@w9q3UczI)(ky9*6*f7BOE(6a0u? zh_a7aq=IMl+FpSNn;GVbrhd@0<mFm;eXx_I^P>UQd5~nd0aWvF+Ed zV$6DNt1se}X{G!yDZ`rx#KiurfLB%2;Tg6V-LbuJqe&43dAu5H{Rv*7wFVy$LIkfO zZhcg~PR9Q5drfdp%xu1-2_dg`Up*_tUuGf{F5kdA;p=o!!{7c5+iNa&_l`ZB8gzUp zxmH8onh7<&0n|f$!xBv=#xa`dmujuO<8QhvrK));bzWAKSBh{7_yZE-!=LVo&By-y z`oymGrdzb6Zzd+V5WdTqo@h7|&6FyoH2^w{uG^k-g>laCrx2_=p#UZ%?NFHIA9K=? zgz~bYcH=43jv5Z1#VZpbI|fbQ$b2l6>6oul#jmH8Exr201sN%oE@!S|qwbEg9bkZ# zGg}r>w47+59oW*n{inyip*jEpv(7Qeh)mGB+MJPIF2}f|*`_LVKH3MLMu7R*%O*;B zV(sf`S{utUq6n^vxFyl`tnui~U=xiXbK>apzOa8%Vv&9NkHx&%gpo{DNvdb2FQF3S zGQdbKm2n;hsGHXPoHiysArtO;Io;wR_k!;;O8(o36H=J)vq&!&($`k8_zv!*jj zB$-kkIzJcZ`nU>s9d!{VlSuY|Q2@7Hh)?s|L!d_zqL2UN<2O>R3}~rltYMI{$&l?2 zQuvVh$3fxNHn=j%ef6}?5;SS9ms6}5N}*zJW6iOdj+}GXo5Oe%hoWXskXSDon!DB2 zKoKskb5tK5DQAYqpZNW!-%2wo2P4OD@C{7YuhaggQFCJ6qPBwhU)cAsu z^TjA`RavW`eZNPe$^s%5ae|eU?YD#qH^0682NS{5Boh=Dn2!avS_R|#JqkFe)}H}I z%s%WyI7pv!kqULpoC;ZUqK~+5+u4nZ7MaKVzZQS5^SoTb?WHZ`zf!XyvfJ&k*8{T$ z6{VOPRUtMdmBRpxrG>Dt%%jFq?9X&Qkc5ja0NNt)q~aX>)Z%1S63XILnqLU~%VAq{ z(WkIEDaq-Jdi0{yKHE^N;ekz1iK&w=t4Zk^)(lPKypYRB_qi0Cg%_5*%2-SNoZg76hv*?OZ5P`KdUaxDPTPd{l_Fh?F1UQpw1N&1M~}{D=n<8o$c7OR3hp#eiHceS z@-BD+b5X2IR(y=+cv#7uXq3c6JKaBk3iv}3?8PNUdEU5Lb=G-+zUptB*pmMETqN*0 zvo#XX9p$kRR|XpN*`FaW2OQ|u?inbo@XTrrGDMCS!pj49&5yfuLq=G3dFC^`+^1pVH3>KMUDL&>b=2wO| zSu_FAwl3<4;wdmvIRH#l7B1C%KDo?QErE^1NAU=u3ZXboN!=%NHW5`s3qyVZPeJNd ztcdQfMSaz|btz3k?YU0lFcv&s(eJ_P4FU9-jsd8x6>?Z0TVm&q6p2=MQ#=G0X zUG^oY`PE$hS9|sBDP+^e;_qF(IY&o|u5I~d)&-fpWe-1w465dJ--iE3iGz6Lf_O7H zTPz41*!Z7_1M|O#gLGUv6WTxJZRj^VsOTev)zX6tzk3!I^N+_ecOmr8y6S@K+wg=6 zstrSzK}A=Y`M%?MwYs-OB4nmcYtPf5Xp>N=DW_gPecR3!sFw@;&i-p$iqa}+n_%X_ zs<#(!A)^AD-(Uxihwo=T$31R9)yld3rSL~81x(ClyRB#mz z5-BCjNSff#M$9j&F3TAq%#!ec7ndP|wHYX)APi9=`52LWb3oNT7Doeid^9VcC#b3*YaNjl_~4!qY;fOMjo49QaP^Sh$JU&^iS zNTg{}P)aX=QT%XGuqkVw*#s_m`~1{3Q$!i7&aHbawu5JeMy0yx9oN}4GfWt}tm|}N zdq%{@w}Nd{C9BB$?7DcPFise7Y#_l(Q@I;4-@lKktEI4&(AuLwMq7uS<@16Th^U_d zbESr}cL?PAgfwcM^qV$E9Gy$C$r4!ljiKQ(*GUU_@k0K@F$9g z$h2c*1g9T0AE?(tRbRCCXw&m0#5NRjZ8B0>GXUND`{tdRFzXL1E5=L(&YFfRQvwX^ zLn#89C&DxT&zN#m$k0_@=1g^u(Fj?qL0#)X6r0fq&=G1l))fSe4!oB;_NAVy>O>Ml z6hW>WVVEaEb?LVx|0l)qKTKf}He4*S8M;2;t9DL>L8JH#iEQMe%SrN zG4AN??Dg{P3~#no>GTjK8QWuMSbE=G3i<8)Y&EE$U?H`@?Lt*Pn|K}80d*s7tS2rl z%O_+R*|?vtwp5|U3wbQ7nl69ZigQ4^_yfe+goEd7BE%deAOBaC#`XvB-MJy?&rP+u zKL*iHpWJ%XwwX>TvxMNe&ae=O;wmw3(Zy%9BTnv( zZ%!u7a&CT<^1)pAS$`^26q}|NtRfI>JL87IQNov_D)GS@YLwl<6PKFm!?du49wilj zq;m5q@mD-0e6qQRq{p{K6o%XES0A?NjTQHeM!#w5yf1BKPQkzA77Xc(XC*#xOAQeI zY)58M9a%GqxL>%Rbo-*P?Cw`FbCWOuCzV+)pgMV&2bal9Elz!CZjP&Qckd$NXSeez z%un&rrFmV$fc{c3ST3uPy!MEYYQCwXq6u=vz2n>8zP4(G-zU+;sq>pGVCufkLArE> z08HHJAr#OMY4g~PBxg^RgR?)1={EU{=S=(0P9JN)DImKDBj!v73xUBBQgpLVn&One ziNr=IOh4W%H+_>waHt;O_?U@7mJC~vrh$pm@V6ot$2Ep!UJGg6O{vpERoF~%z4EFB zu+)-=xdeiG_ipgGklU0h*x}XHs!WV0L#W8NH^a!?R<;)tuIKtUwEo?AtPWJ6jB@!- zO2*iTvv$2qj?w^|VM?G`;G9DD0J$(tlf-YSUF{k9FS{8wmW%8mBu*tv;i=|mpo4bo zpjp*+ctw`fF|LAa+#gQ!MFz)zus!(SrRX3Lfv1u^8PE#&zhY0~v#n_#3ed!z!Q#F- zDkMC+zu+|B%n9lv0fh_IR4|D{HbgkP`}6{9XRtI?Z(;I*pc(W^($Obw@u_bHzYs)b zzsFCzWT?PV^j611B#Ij|sPROE57~tzLMY&V7aCf9vXlu)BJBR=U<^KJK`p0Dmp3B* zdmmOHsGYUI@Slsy<(V{}RW9=M1&R9c*LNEV;MW@vfU-(L{Oba<5*ZTPp9mk!oI3ft z69Q}qkXTUz06_$^P{#E5ftrYpuZ1kqY#MKJ+2WQne72wI_!##K>L8q=l9!6x)m#I9 zCc9DICs)O-hR;rA_+kZXE!3YQK~RevJ4v}2LMAL)1EPn~5owDez~%=8c10-M&&wKs zS+m2;EFqKLc?U)Aom}_IOdt`?GTdf^i9^R`tdL3V{G|f7a&Vfcfv=u%nrK))Ip&Jk zi=+iLf3fgkMnJO<8Cv(n$B{R91=?|EVLF^*_kA+;aCB&umuQ)i3L|yurVysm#8Zr% zUx_7nh(JR;|L2fTe_>y&$JGq-!cXyH(NX`;E-J+%lRo9f8mo*_ef?>xM#V;%%h4{| zrKA2oRMzt~;3gv%004wnER|0cE~W8|{1L6yE)cbms%iV`5T34bjq)H1OP-)%bMWe~ z41DTf9**MCO&jx{b}aai4vgq@EZ84r_78M|NK{OBlH1wu(rGspaBtB`W0t2#r|OVy zr%~Y)8EkV!y?Bce^H-|iD;BJC8C8bcf!SHx<4C6xv@|z#arl+gjy5^fQrT#?O8?X~ zPE;skd3>@~hj-qay2g zEN-SZ?P;8~%)LhwY*5y%aMGqo=UR_O*@jdV3$1|erQ*ZlQY=q~#IWp9#saC-Q%|~Z z*%VkpjcCb14@UK*OD?iRBv{=Fk+AEV5WisdMW>l&F6TQ{6QJv)*~7RYhYQPVD$H1t zB8g^@3V-2CMDu%dVE@H#!%Dwn8xRaQ7mOjz1S#jHe*4I1{snKmGb#fnc#Wl}@M!_E zusJ_0XA2RUVpW806*GrP*ozek5DeVE7(D~2Rd;^}L~)2VzADyFlOpV)tNa#OaL{@) zxvmblhc*?o$kw$E07~APInV+H4Squ;e$X1QeRN~!b$o&zv@~$=?M!~NtO;)j!W`X#p<>#5& z1RhYXFzz@*I<=t1E(J=_=ZJ9C+Wo*q(X(d=E&+C{&EoT z2Xb?TQGqZnekpf7u0Mj+6WFSbcG&p-GR6Ml36(N#S9~y2tSAPNsezY&Zg>oxjTVm# zX+MntY!^o*#cJWI3O>fQU{^>NyyZJK!<^$XXzOup52nN>nyZY_i#aT(&9M_lTQ#n1 zF6Cx`W*PaH2m)7V2biQddyN+#gGTV*J)i-T+d}12ghO5oNF|Y%aarH7u!%=|J;JVm zjc1d$-8_TKCGx`P+0ub4J<5%T*NW$h=>^*tp_~yXxOC`Yw(5&hL)OcC@{uguvEJY4 z{(8NBAKm$Yj2*M1i}W_->s#}OQD*mvk_smiw7Pdj$l20M`iDWMqipF-uIqYHBsLp5 z`~vU)K|%iyMGDxA=S$q70DwM}{~7SJ{0s1p#HNEQpWP=up$vL`hUpf>WceB&Vd|Ayg)$?E&>b79;f|FSk??C+>n9!TZgTC#s3kOT`y3&@n5`1O0Nkb zm!CXbsgIAe1{FRBD+{;92kIfoJ0kDgos<6~EXxl3)WC|r}ISb`Mi z&s9ljwSwNZjrrwuMe!8>+t#3WNBh-+T#sI20~uKU;W*jg2ViEA&=*HesvHLJ65Aw|+NSP8WzFe|1>SXcat^-HAxpZM zi-2!&Mq8aP!t-z~wE6v)s6dk9zbg0!asoaA5mYcOI(uA^dME3{>XZ$vTVAaVzwZ2+ zp}m}?eS3UfYIKdOk@;_FOi zWRALW*jxihMR-DNNL;$DS9yO^GuIU*)`jj`aIM46LaMu@-T1>L_K%O~RqF%vx{Q~r znZdrxRV}}aP)j%^&nE(1tEwQ3M{&T?)Qx+F^atKsg+yjC9;WMr^FHb4KYQMqM|o-5 z?tWPN_-%PQJ^c^Wcgy}u^<9hqR(+QlLnezm(6_d~6}`+xg`z@dN|ApLYYc zjz!wWH?}B5X9x6tE)nvMSX&NQC_Ir;O^?S#zV1X-k7CTBH7SHsG~Rz#-;EWu-1x`P z{_l&Ik+4cU_izBfAjkjgu2}zl^RoOuflV_?MA2Xh?4RVfxy8-e1OsH)4jId)%5!e# zivji@Z8s&!j7BeBuj2-08d&WzC=w$h>IHw|kcQQZCX}vW9qh-|@rcJxH!?U-fIvBj zss}cAk25zP|LD#oSi-`U(JGX=BtN&4v+Zhl>0FwRsJ*a+tuHf*;DC!J{EgT9dt-(gD)AYA3GLo8?u-_ zi%bm*P_6yhI~o~8Mre`U4&PPwWaKi6FZv?1`}*{|v0nLAmRqazK5vP`~iO0z{|*R7DjJ);4KKMmw?>k!w0<&Xcgg1-cxY6 zXI|f9``w~XFDK!gyz4{$tEP4Ok}UxjnwVeTB&=v#Rk9#9nw!8M4x|{S|BtzM43F$< z^G0La>Daby+vwPK$4N&W+qP}nwr$(aN&laj^US>O%;$4HRMmB@+G}gAy6e98`e8&U zR$$-W10eI4ZAZm>p7T8x}!5frx zC3y;7(7Ro+xLu*da@TJ^If?xDTZ&?oEI+p!Z*vBWI|68QU77navY7AQlmkV2I_*bwPnLk_xRtTt-n7JA?kpy0y(m>kUD*|v>li$I=R zd-#Ag+Ivlv!4mK{W1e_0_S#1)VaM|!WxTn9c+2=rV2*6_rO7Sw=6Mj)2`zsb{eZE~ z7m-}b&h;xGboQr3V*+))jtv;&NS;+;ww{fbQqm)G3B6}jkAblOmhi8gap`??dbziQ z@Pr%OvIUwObL^z|)aELH2kDjV_zkT@l^wHVni~b|rQ%#-VHVs;j?#s z3_^%8?4I2WFZ#2`2Q~uBcM!P`gRlZTl>VQFa4dZ;ZevryfeU&?v$E*H-NC>C2G}V; zQ3hd6c$BApGpc(Z*ibC}pWF-~1hX(GPXlID-)Ck|WECMs${?KTOBgc4%7y^CA1kUNUauS~BewCkhCn~ssvk3hlWQ*6S&_M?fFIMV!B!N3SfD4$yr zzcd;{AqPAhF7HpqO)`!sSI8=Q_X6Y!XH@^5gerSFE~XKJ zIanz1KbIZyGupKy2NS~xAtFp2%3-y7=9fO&HMKbd$=mV@=H+_$= zuohAF=GG%D$KI{DrEd+%IrTw^;j9!Sm(^D6>07YN1yaP^Z>)R5j3k% zJl}Won)FAO^}Vz~upT~^;NLw$fmw-vi_AQ&j42LandVOiMvEGl-Z!EQ4f7!Lo%xC zoWGAT%4PY_3xtbR%NZz1JFubYyga6)eZ`l&X>LuPvyecPJrG;?pkpnpxVbJ+yxOqu zTt~0ba9`j)G~@5464i!6*E-Dw&g1aG@gq^iweJ7?xLo1=s$O<#(QVi~%n!j8&A{sG zZZ-qA86vXqI*DwCbicPQ)a2Im4haRHg3c9$|IUx^x)hED)VpAGaq8a@9tcZc@7Z8H zp@N^8L#}WMDcdi%piyksxukt+cVxdFM}H4tgy^Dw;^#rTklffZo9xsXziGSz|M|G6 z688Q#mjC}&_^avq|4`wN5V1MZ?Yp?+ga6;NCFXx+OA_C!IVk_E=0smng9##`Fpe^s z9jdBm|L0;3tIEfvS71PRyc8qSb$HU&+Gl1*y6^>d@~jpsX0MJ9_M*JTwMkk|7N3KQ zAGWo)QnV&3wUBAy%-H)`(uzW9MkNLl9Kw%`oY7>~2QL{a(%?srv6_j4-?`F|XV&L@)@uOV zKRlJ~WwrBe>u=MLYe#~enQkcC>f^X-BcBzA5~ry!n2(8}umw)_@C`d8VOrdQmNuJpC) zEi#cEGxTrTxLX)os$h?+Q0kBc18x({pcjI{I%XM48vbO@oPKLu5VJ%@leivY_S+;9 z*u(_c4IDo?dP!TCL_;m9(dDCjHh)1>qYJY?UMoQaHwpQ45Q@qX?m`2dgZkdYh4A-! z(ZrfL^f|HMLg}w9C0z6U4@I5g0RTS`N;1HAQCI1Uq4`wpOj*8W! z#h2xeOoj*N#m9QFocQu`-@=71S+;S#i3|SxfKalbPaO~0u71%PrO(~L^H4>H0lbnF zxq7+t(smM5$tOsC9Zq@oUDM5geVT7WrU33H%^KNX>W;2oiK}R<@cyyDv`{6$V@Fpf z((l{WQD&x4hKc&4oW?`cK&UF)jJB|kQfa|zsbDC=DKCFpit&u4>z46Rfq_E@9Yx!G zU1ssz`colQHjBhSC0dA`1Xxr~0ua8U7LdCYfScRf3u;hJLm`wzS8`A-&Yx*TUa?!q z#TFon7AUhp+*kx;N-Yz6{W>1y`b}ngMx?uLv7$V9n`x1Ce><=!-$#zsR}3AnY6Y$_ z7t2}*&c;;|>e&g|)d}&syyBbl1St1UlPkLh>#>{D&UNZ9QDYId?U5eXzvobNgmxbn z(Jl89-J66O`n-}^YzprJ=%}i?om}_De!(&!x~#i|tVGrhqzF3VWKwG`KSjzqCil)k zC1oeAo8fl&*#-owX0}ie9G&%=D%`WVN%FkHal~}AoLg>qYB99T5|gy9JHYLxHb=Fa zrtgjicMO5<)JnY&sa_Yk66W{2qw?e5!)+Cz@DH)Bs`ebPoaMh%ch>){x~oB!$j=;P z=!?jzb8Z$g{gxyZ3@UnbwW)d8o6t=D>vLp^j(4(40_PYQ)64nobA(_NTw-!?VE6=~ zrg~7KNcfwK!UzHAKdL)f;nU6kvAUywSMiqlE!@RG*XoOxG%vtJ=U3|k3dSj>yNIiqo`^$QXu z^?2r=yUTE8z6nYWjViT zb=Z+Y((bcfpYZy-)XGj%R^Q=j-;rRzKQm!n?}SX>4ZiL`aUfEKlAWWjKp0uYhm7R{xU|SY`i&k2ymbhSRF<7NtUpIV{XLHrI~R9_V%8Sl~B?hia51 zMU(Rm?7Ohfbi9&5!j3+@M{9O^k{R60F&`YKT$o#|y4kW4Ut|@os_ej4LepR>E%DdH zH&*qR@0#K_R<*fB2F_oA?~N9Ii+qjwJ7WD%M?_sPmtX;W5RCS9lqCk2yM6$vYeMJ` zikifojI1RezM~#R=C^dL^$Uu9_Brv8xP@UY#jR^OK_jK0PSntOau# zi;v~+4$r6pm`KFbJ>jx>{xuc8GL98R-F%Z3keYhc2F^0!L|wj&=${sfsw5{ufU8O3 z?`i~ibIrgOQNngk&Rr}pHm!6H5!{2`;z|j1GrfV?PZWlr%XEV)yqnS)i7~rdLf&s% z7c7QGkooX5;xEo^>un$&R+Nj-HAaZ55#YLrNd~XzocXT}*);z4wpCwqjjp}xk4F1@ zM4Lnyo+xTTZp*Vca0)It81oxtl--@j@f`2mo!gDfAQawndGc3au~q(JN$`;Lk6vqA za;!Y8IhJ)_F>|l;EUxVvOKwR=e(X@-Qb}+(q$PRMLAd@hIAa?{ zLv(f&aLvZ9#L>>g4tv$Xl3OBf55gk+9*LYm)dwJqGVS`BL3;;7LHyG zVKfAsBA@C%APy&o0B4mcooVKZu8}zspok3;dH;m3T;R{05*|mK3Fx_DqZEFSf-S#b zlWM5m0&T2&;4fV)2|XgOv(|Rxf{i}|;&f*vxLyRPZ2dt!c)3P9|1_cyTN)y%tDTMB5DiI==pR*RmZxGndR=J2$|0pSnZK&gCpL<$->T4N z^l1-Hjk`xI0>n?a8&{DKjBoOehZlzM5a^RBNs_+j5&6-gcH=FA9B#GiO8BFF|D!7O ztQ4n&^LGqp`?j0=-w;5o|BAs)@2=17=|rlHSM3%O$Rm(Ysv}ENUB127Pl#V+ODUaYHNYOU)xROH= z(`>3`%oPlf&QNeF|LoniH-AsP zj^>-(oL&1yT=0^Tpskn3rT+}$crZH00_nGrjemJe4q>`(9gNhWk8#3>3nc|GXu3P}!2kOJ`CSHF%3xVAWUIZAMhmr>g2i%Jbb0JhC_c-j zt84>nuWYfmiS{=ezlfKseqisuUpKj9PYDtNWIJqq`gyMrkiOs*%5V=BDbuaGZj$0JIFGiFJA~o7J}ZD3ZO*?RJ9Q5EW~e0M6=tP zXjkSI@*7yrrP+tgrLX^*Iwt*#OQH*UfV+puRfLMqVxQj$mRr0QcBu+oaIv-&n8NSv zs8DJL?7&NU_rk7&rwbpXw4C9*_AvBTH850|ZD9XiNuj-PBL7%c3cN zZkIUR(xPd*Kh41(Of%tMz52P2<`XC+5wjg8psBsfho=fi_d@VKbdbWJ_%0#UM*gut zMzP*#BPb-2gH>zliTD)Z2|X5&?m1aNn~cH`K+#>|t%K^x@csxX##%p_V2nfk66yCi z_4{Y-4fRK50Uv2Jq3{!>oD09zL>VV6&?ZnoSqS`PF&4`0)=mKNLHqzpB_`uxpp~Mf z>oP@{Lo+&OvZug$n2c-d z*mZk->ih1L2pUYF+hn2wsPs#~N#@gFg{ELa_bcHgGrrh`BrIay?gotiMDm}mBB(>2$9WE2(y0y+9@6d)6mJ^T~wx5 z0)vfhn^YnnSS9&607pgg=YIPJ6}y`UVLiSY8H8kTqLh^-vwC#D_6|k*W&?f2wLbzi zt}j#~r@39xS`OA(EK2xKnJo)sEhwR z*}M*wuo#PR8!CPyO^s(PxpYEe?{%iYmZ9SoI4FvT65kb7!B{?F;ki4qW4jKVr{sY{ z*%@B_A8_lw`U`h^jg8CH-~aYS{BH@fN;$qcf4>|&;;%TAIh&PoS1&Ar*S&wDwP-9q znIy$`!W{S5EMVD*7T_5*^l0}tVQwopmYjPJEKkwS4vV9g#zcBCcIsFq8b&af7`+?1 zM5rtuH7pRnlvOkf+fHft4%Ri?4#bLY|0B|>}!5Yf>%>2{9qtBe@J)c-2w-`S(6iyeSz%3vrO_aWK)~d?&h!&xbL4wRuLbGlHiJX>(m#4bUI=md@tTMY=Wn>VtQ2hKA03A1eItqT@uApZsqk> z@pEfZj{`gN|1y`KsSSgL2Uoh_HS%7ClKEyqM# z;pCeL_A#XQt72tzT~Hm21%jvtDRm$H_~uj z$nzpQq{DY_*KVHA9aXwhM`>J}kprLZFCER^I;RJ@pKhL2CtI|6U-uJ9VRKcl&TelG zE#KO-5r+x9q9pkcIaNn^TV9wdUwLzT=1&(@TuViFTnQ!p)L|bZO`p4IMX7aWga!U8S1}|m8obc_XyF^Rs3^N2^zFah8MzreLLJOX>fUNLBV$My)p;&fKO<$ zSczhCg(neYnuiqiHSaZFOhk{c2`LN!Ys|jG(3hz4dBK{bbqz_J>c6UbCb|oWFZqo8 zIB@i!L*WlBp8S~Kfc6j9(y#>^1Nc#*jw(=C$N#Dd5zBiaDb3^q^P{3MFB*Ho+9v?h zVcoaTc=6{M#7HT`tZnC}s3&8bJ~TW50Veq7Aq=FF{3rneKEY|T7mg}Ztv$2B&#B(S zpFJSGCR`v9#PWRtN)E|P5DG&$^y@`hBpl+DiNXQ()uzLlwxE!()HB(Lf?7Q!L4Ob| zxGn_{*jQ`m|DZ|{3TrMh;lHXPAXfQjo5w+%HSNhiM8oa}$pT+dXld_+c&~ z=0X^V+Of&umd@M9i?oTrBMbLJU{&q2-uKTCX^Z1BN#{Wr3^Ekm*+XZq=-*d~L8q`+ zo1J>cU!&wTmkgojhZB=#44s=bVgf5VaZ#sg)$F?T(uAZbwkB^Ts|?gKel~ zpbIn+5wb`sH16nG)9552J;4Wp2Z|XnoE9HQj1S>qo^yenL21LUY?vUI)!W;0tlqQY zmPd$QZ42|C&3R~Lkg+Ot;Aw&`&g}#gYDYci+@}nowjr*8v$;9FI@eyhp(eGMs5`|g zIp&rH8v7TCE#h#Sd~0f9iR$=uhz&|9_3#n3L2CShpZ)#ss__3`VcP0;4bT)E004vl z0N^`P|E1$PnHgIf|Lgr9JpH+bR1_8)QYT&Ym+x^~xmpu0@R)CA<}y>`P7Kcea11#M z&v_xgA`==Au&>vsu`g(Qm=@5vHM~GH03-rY(mMt)t8)jRLD+d>Dz?JoGA3PZPq>e7 z>TBt9O{sc0t;G@ zVAhut&Q(b=F^I1x<&zy*aDwJ}!k7b4pSsQ-bZoCJ6D?Btw!-+BlJ6A1ZSQDtF39|5#>8n ziYZWr!6KwjPkdIyh#@L|V1XYVr@+8F=mFN!m@6H+fkjX`2^-_@7A;zOo{|)ffp=FX za|}`aytWxz0BP&JzzKcB<>g~00Pd9TQYPBUNs|h^Lv`qQuZLq?X7Gnn|EBw;CUzI1 z5BqDd_!Ic1>pTU#^5bn-@;p++&D}#WW6Cf%sb6@lqI-^OSj#IG<;7W}TQ=|ngwx2IcU!Hd)uTN25u6OUYEAvM;vx8lqmt{*` z@2{*6)w{hYRiB@IXIb8^4-dMZ4;PM6kCoj+te(=ygfln}ftPn6XvaHpkppiM;fB&U zkl6k_?*FZin-CB5m^Yk8XHIPoX$M? z$UP)k6!#n=JklMcm~)0?(NH;FsXn@@ynfpjL##pY3Q<3irj$%cbz zt|fN6N*sfbb+Fz(D(6IQ^+?EAZ1GUsJY?UNZ}H+MaV=DO9f@1)G)d?!Qf8m=63%#Af!qsR~n;g|LY{&)^9LC2=oz_Ko_Zv-TfZCe=-xcm+c z6sUl?zcrwu=xmWLFNaXm^moS?wPV;<8mNldINirukXOM2=sg3A00RC9Mt^asG5V?>Nmq`9Gy>0PokC*?A~2sc);FnXWlNQq6w~O zfI~id8!-(JrR71!F@$_~q?+(|o4XKZj!F@Kx*wQa7SgN(h{P&g5i@(4-Z)mChkUXb zM|JtM1o#bAJvYU3wkeK&wg8!;Uw&1WV{RL}M|DfoX4F-drk0hGKKH4yv_0Oc&^W4$ zX)Q2zHdRF_j-ebtE3=9W4c-5ag>Lw55?@2qV6e}h3Kt#Fly(9ECX+ULPs3KxBLbs) zHyG!i25n^&y?x45x|@eVmo1~r0z1<(t};cUX$QGM#AKCPwV!S?=dVc`GsvTA$^ZS6G-j4y}3V_+i%fAfv=T(H1_& z>6q)p8Pr(B%80%gGMv6TpQJz3EgXV(R4W7opEqJHg*0C}Vt|XYC9^?*P3Yep@Fp92&9oc-u171+*~a=lAtLjwz{aaAQNiht7m$}85v5nUL~ zR`UP?4-1X6h}XW3+UE4HxV7|V>io5kRc>olDdVbmcu3i06`WS~X>mcL_VHSZ8}T6H z?L$tSP4}Zgp>6Y$Me@SkMHvdbL$zeX_FmFow2K1+_En*b#~mqK2^g;J!Fw5_Q8L1! zOBV_YwIg1&Z63z5!DjiqF;M?WLTA_e_U@cr27fy4GRE3vIYR~ z{qgsI+0n_(%GmMm^R0cHHJe@WN3Vhp@Ug4<8eovzXa%2a9P`E|mJ!Lj(_}*R3+P&z z)O#~t^DcwmR&pyCqdkAh&KZ?!KInnrXtUlrMxVN@yyQH@6wU*C)Y-b6e!+suHrx3( z)qGwhxtSJQ+8cmFuR#MdFY?Kkf8Aa`b!`ld1O;WPL6H2QM(j8AN+3St>I=?5y}fvr zY8C~2H^vn0%;;V^o(Nt-tVL(&9C?B%Tf@QVya01=?9I5Urruqfd75b53;0}>T~}Lj zjEi!j(Z0)Q)7|o;uhr!N_+|NMCAOC8KRo-bl@)z|I^*cM6w=GCMXIZ(O{7Ju4UXf_ z#V8thfvxJ7a8_aT7*VOx?S-|VRbnc9yfJV-hj*EzAKjmdY~yEC{*%WCWp4Y@1K|_m z@Y%L|cVi0oaxZJO?V<-&iVgQNV;Y)>25=MbMB0<2+AIFUz{2Cwa(_2WYR#o1>fFIy zcl2`O$`d^}>bJ2TKcijnkrVt>$fnNFtLLW77b@Q4?ko9XXD;6ARgNuq7GA2K^UcH9 z$^C_hN27mpyzJy?q=9^5{Jv_F7?~0Y*AJdU)aAM(?w%Nja9pCLN68zCYCR!ZO`zYe z*b2AG-T0_MO0`r0WO=#4pU~1+8FQec)5BhZfIlj{@fn90jc@V6x_3t#e26H>1L037 zQ^wD$(~G|P>0jb5%Ex2`t6lhcVQtIT%&qaY1;zMgVid+CWMNXQ++_CW2CyV*vr(Z0 z6%WfT2wka!=Vw*=hwUxu46c_ek1l|N0pU=$d;55VH6cU&I6P;ZvvheE5y(LhP)stZ zKePv`wg}()>R-><`g4wG=}~Nz7`Y`7e{X0z`h%|K4yfZ9@h147f)i5Pd3le^?vOUc zUEVYNQC-iio3Xl%kKtd>Wn((4;mZ?DRRnB)`ymPq@$dv_fG3`&?a}-+%?JpM*kVid z{za_S_glA**w^)W$9rehR$tG9y>aXc|0)0*aMrgbvm8Ht%6|k0Q_SaVsUllvrllN zXW9BL`n1I?vmr&8JympR47$<2Im>JXe~-}F=@wKlW{c51qdU1DT$?l`5*@hPCevi} zr}|}G74E*oS^=8XdrQ_k)C*O;j@=6P7evU}rD39(u`Yk5Ia`Vy-;<1LMjF_B8nZ{o zBX6h8yBf;G+@xHnnmei*JlqzkIj#Hi=W&azZ8+Gvdk_dOc{Ysdj?WR9DU&cag3r;JWE5%`n}jhmM^*(=U{S`?I^=DL`LfgRt7c zB?=@#zR29{tm#P!b--Q$A6gIqiaAVlh#ZrElK`5LeJGHtdK3G&okkIb>==PQ;W`D4ZO`_$S&c==)yHMjvHIw-`Wn1B*vP?inEK&$$o zHpe!U3H!S7Bo{vl5hJ2OIW>LTar3`R&RC50SXMxElJ9W_my$msaF{CBG*WL%S>=dd zA3Xkg1CrwO_T)T_;||yr_@l|%Y!o_yJT)69cfi1I3N=&yN=%0QLvnuA`-uk3MX4L*dw2n7fS1=xRIgzt&P@JcF{sr($fP#q=W5%Uf2J9R0f$dRN0=GDqcgzT3jq}dyiJN&jN>%os z0mjGtP4Z)vUwasV0+z5q+O2H;2;w7aSU}rnQ~r`RY;a@+j6222WhVRS229NFx8f1L zB&GMaci(%+WEUdbD3*7Uu!7VRmKvaSeDDA%4r-QQoEdPG z=ejt+OtMX8y7mQoKcLD&*;cuH3=1R9PwU%rs-wK3u|lCPnVCl>E50S2(t8oMR!S^} z?TJco7zyPc96>o`%q=kB9(KVfGg1or?i(qDAtGZ;wlNHcmR?_Pip{)hQ1c4i>lq_7 zL1p^Tk6M_IlZzgddt0O0(xYJ52HwS*iXU45zA`o>w#om}N>8*lr#!B_#bvSMQ+Pg5 zgG9`hzAGjo(t!!Ipg@3?%)AgY$#e(TK7*j-u*L#Cq%0O*s=_!AER4y8*|>g<`#h!< zhU9%)o9y*DPGiWiL$+m)FNRupIuM~8Ot;uY`6rpgPk9!$))o4Mbt`n#M41o9Uz-1b z){SL5`88M}JZL>bSi!MmR+ZHE-Onz*k#QuLP>5_lR9@L&361DT`J80)IDzgi(FH#Y zsC~3U*xp%w^AQxpU5%ZxHy9PuTU?815`6l(M$rZ!P#60PUS7GEj>$n*q-$Mig-*#w zZH11l*53lAJDBO=HV`-bst^Cn4vPIml#Wrs5H}#pew4%9x0YfKpO#3IlJlfpHEm$Xj_X2(PykJpGU zYDet9NLI9U$9>Fm0avZ7mJ&q0hv#JyQD2Pn=hek7=n?US&i8iAR)MJG;`HEU$&80?4~P#+#@`}?M!Nsb7EnG~G0r^J zVDQc#R^QkghK^<&w}9|KN7UIKf;_msN-KJYKOo`O9|v23e~ZObcI1)Uf=qte3ADKgCqncN0f35VTmZ{DvgtkO|k2 zy7<9xHIdksvJ%uLl5a1x2sW7S!~t*Yc?b8mt1K@!iluCG52P48QsjpUO|=*E;@3{4 z!u{vg7s%uwv|~pvPEf=diH*-)+Wo>z*41}b)p>EiwypkYCxk9X6u*@n^XQ1RVXfub zot4+)#C|TD#R=@lc@bXNp<~L3Gs&g8b*^!j!r{T(_B%t}iLTW3!E z#C-k)*5ht+zme})T9j>0VC#o0>4$f#nPhFaBK%X>g@arbN>so1gM3V+&jk?8MMP5j z`4{^leAZV8+T|d)x^vg-VP}v;Yri_5=jVjiPZGT`A62uocQmq-uLhZYAdyVcro5H8 z^;4L(IQ=3Q|JMwK-;8JX9&;mBta!gFF7N617oYr|Z7d%LUnwOPT>=rgsP@-x(6@f& z(!(WB+QT)2n~kJ(wX0q_G1TOYuEr(7jy1O9xmvo1&0 zWxSqiK?cYQ@G^pJjq<8nOWAUokhRr==j!W`>0-J{TeO-^<9;~ef95&=aIa3&?qi1U ze!4uHm3j7YxCMtwpbiUo$&Nuz6jMx_%+mAaqPfr{*BaJQ03s%B;Df? zr-jBQuQ|pp&^5L%fFA1S*0!D2a2zlWYnHl4V%7@qYcKagv(Kp1ha7B=Cdbk671Q*YR}^^w9lR{w}wcAbAc_t~VH zz<6U7c{JQnr@d=c6@9h@ySBzi3&YTuhJ?C;{VuiV$sq6Xzt;+;hC2J1mR5C&m}DRE zB7tkl|8($J_G8TO{ske6j9hqxJLCW-T$t zdTsh~cKR_c=OQ8Jq9Mn6X!>z*dU2VVC6#@SzNS!rSEjE&JurkT;_aN`bB4!??dN&* zfC&|6b6X-#)f%q_Y@klv##tj+`N~6uFdlu6;2l5c*^_3>F3VFl94C5T_Vscj-|Nm$m~6*(Qj=$XQ13VFeL%%seXD*r z7X9Lkn}1XEB0`2&U=8VU2#gX%U^b=&mCDG^%8MW&ui|~G7<*7g1cKjf&nf7<%5YEB zx3YA!#A0o$NIFygmbR-o6~DMD<$X`msilB_vaq%I^?XPkQungOvmCtQGgR{V87{`y zp3G)-LU&rXW%4$KaYjmwDn00(tlKRIlu1GX4Fc^3#pML@=Fkls!|Y1Hcr>sS@3mc$Ma@cqvGhROfqe`yObfoYEF9sS3^2pNr=~!@@|JU75G*Pg zt#C}LWB|p(H%4Jfj}RB`3bn~DQ5RqZyLph4f6haC-qA;Q9C#TKpRZI2rvH)9q+0{;Vc;`K^3zoD+YF5>Yam&L7t*z#)YSkGyeQdUG{ct3%RuiZ+L90CI4(o$+Q1#;3!(od}*Z_3Y9&q zsa;Vq;ut6|9w@|`HpAFCo*dUNNxJN!<(4Fx2h|WVl7oW-mmG6F^V?^Eq@fso2!jFD zH#hE1r&2h5_T`oAC3zChoK!NaBePBlwKt+kt5#5AA+~R_m(J>grq4GxH1~8feL)n1pz7UDYk%GT# zC}L^4Lja2W%AfqT1h$jQ-*)em6@ygKR$)k;Vaq7laoBp+b`fq0;?=XeQz^UVpG1TJ z36z74V`&hA>9k}{nq#cB5M01P!}q#bH3`A9!?b#=R`tzrj`}Btr0TS$z-^8aHW$eB z0wZbyV#R8=x)U(Tk^(ZDMdy3M!m7T>+>80v2?&u|(Tajt&?1XZ2+cP?o$Mf+ordt*So~lq+IB?Bv1B z<;t&s9pcKrn$-#YT_O8}XgK277^+rqdmo)dLlCp(ZWcr~G3-n>$M#|n>5}gRyNy>Z z1?GM~w)#0$B5OK?TlEEme1sh#Is-YFJul-YSL8m%xr``=!G}%H`^v}<80-yqSRW4r z<^W<6MzvZ{S_ORb6|fxC6ja@MOKL*#Xjy{ftdp{)sO{gFsNvMBbGl|t#t4bS#5QfI z{l=oi8yU11eB$oFV`N3pW5VcOL1ADp5Z-fInp+mr~O`q_-=aCaq;q1 ztM;j4j0;T(@i5^5a4Ii#QZt-fa)gL?QTb>HqZlS8Jjj%p5)jy1$K!LJ9f<*EF41rx z4T5fN9Rz(56zg1rN$CqI5Dvd5O)P#P5cubQqmAdrQbn(K;)3JqjPkF#L=LfPWu@Hn zCR%s{vBl4a0;u&{jm~)j#?-#Bg`c>CmI-qXx2hTBN7SL^ z01inXf2C*9gZvV6FX~NVD6wF5V~&Nq6T(DQTTRNpQ$VX^$Z>MI4+QUx5kxWoW1w?? z2^P+F#H!M^e^xgo*l)@wSW2VIkkOuG*(b_q11?F_+j=La?G!mg2Gnjm=-r^VN!$WW z3&yTZs)Spq4F`%W0?U%#qy%sN*|sgf&&a$$bG+M^H3zv~eX&q~M?J4R@5Ip8(5a$? zdxO$|m_Uk9Rg#P!rxT_L#kh*5f@V~|w5S`c&{#5#Pt;jy;vasUY5^zMI>-s%s@+`FbuD_Dg5wlpD^gs(q<;IcN4`l2=xyh-wni zsy2sxpm9WW2m65(D@29+-5#WmR8jVbO1*#jggRZuDI?sS#omQ-?yVGR&Jq!!Yhp9w zN1@&Nj-D^kw(@u&(T@CBAknt`XdscE%1GeZYG*X;Qr9mWtV)k3Mpi#m@+y-_5vyU1 z_zHcYQ})^bSP58_p1`~V#qPj7J?*Z*v&~9RSaTPgvZZLS@kUoz4#=}rmV7TK3hlla zyHc&bm~NCxf~CF^n~O$c?+TpkQUomQ_gu-7Ne7g3MmEZVw&oQ_DfR5V&R>+kD+uMW z*u%wr4(pP?t4F=@vBHu#4@D5d{umE}tdNf$D#}Ae$Z}G~7z^+)D}RFKuvbid-$$FQ zx*LeF-NcC-^;F}SBY`2THyDIkhI(oTA&8}3UdsSYL8<+?=({52LWu#|b)fwlu-%!8 zQ7p_H0ewC_xpeo?%4v9ZO}JtB;k*`-Yv9{utB^Mzo(0YxUcD$kXsg+W6_;U>Mi4Ll zN*~z6KE@W55dtY6P@^l_XDIc(9iS?oDDvi9s%`QWKdNj)`o(1^cBsT@sNqTL7}V&E zHDIc3h~+&>{3c*7b+IY@k$2I9Dif z3ej$gZStHMlxnOXnq;8LuN;y@ph_2Xa?pK;WkL#k)LArfz@-kBNT5m&DGbp2Rm~jo zZFjy#PzC-~VoMlMt1mTG1Ss(w7eRUc*=IgLc~@@|uC42e9J zV~+tob9;RpD(Yw^`_cmbS@pYP0Z_|NI3T$|#_lzgQZG(`(%gGsT86M}6aJd!?`48A zGc&U1-8VJRbl>-y=ljJ0Xyum#u2rpduZogqw$qxzw_~dMvXce1%|lFUFFpPvP%zlG9A!4MMCIss9&KZaLyh2^LyNCs_E;KWIsxS~+yNAse; z!bW(xZz132fZ;EB0-uut%9DW)%upn{8-et|Tiri|d{hI2P9O*%H-WS$jK6T(=Nkb^ zG`JgG;-P;*MuVf5LuN6{V=x0$(sw%oX|WItLOr3oTB7>^fp}(oi3D->hVkh+TrXya z1FphGf0;)8M3j{`7QAzSa{YZ?{+zqbW8iL)LRmQ(j(~4OYDZ4SB=#kWoP{=5Hlyw) z-Q>3QL=h^E=l#pNF-v`gt@Yw!rw_}<$>=Jt0<5XM>)4W>##&BAd8)kvEWeEpcBqz% zv9W5<((Sq7=UcH_0eC$8>!K;#>|+yIqbw`v6@1s#+c5@PxkYl?f*I$6!Pfh;(7-hJ z6u^a8m-aXrXOtBR6ej|EajmBXQGF@>^6Snqmw#1}dEYU; zH$*uR0-R{SCb2ZM=|43~Fr`*QAr@+pGExNS>ZY;^#R^;s^~c@$&16D;Shf+uz*;90 zlgi^*>gTI!B0+b#W2MS6DL#bdL*&hn!;(nml;HN?w2y~gd zn%Xc+Wc}m6G+89+?6YjwbI}q+C^x(NYmM^Tf9aHWCqVux|62nf!q)utS%~zn|Iz|0 zfP?GIyZR?_dcZfYZRj! z93fv=Qb|{2?D*7?#AQ(#M%ChqXC_^2mlWB0J>2YHPlEx_F25QFP_NrcPANR)Y zKhm&>R%~;o_U4xOoKuHR5(Y!_##^18G%~e+yeiJpiJ1K8ayFhhT&kQ9LwjITm=qG? zHewUv(620KG(mmniV1ZP`K2MNA;CvgV&gM!$+~guUWUmY)jDO^_+!kC@ziAw(kq~j zHZ_RLUSmCf3t4$OWC^3DJb1pqhnD@a@Mu*6_Fao$wN0q*J3D*8m^HEUt0T7~h0?3xJfG6nO6-#)P zuz!%x9xmQv;`bMw5`I^;_?;l0RT?)W=~KRY;qbaYD-mwyGUD`}nyH83nU*~!T0JQL z*;7NE7JhG07%5=qnBTMOjtA@>w9?+?PV-Pu6b*XtwMb0BZwX*n@_RtEKXA&Bj@%%= zwt!V%@wP!))H zfpP3SS3__d6JO16uL3R{?>d#trlmNZAmSs9+`{3x44t_S@$z0SwtTz(Sxf%s?f-_E z-7g6VZx9dE|74}o*%A%@d}h0X9Z!xSo(}m(93`K}W;(SBlwfPGh9~`})#tMfMeASs zoTUl+@h&lpQlPLmrgqgM1Y>}D-R*k~R{&MntvW?)TO7(Np{q%SysQp&6n4mb=Rbht z|1&J&{>fSk`i7YSV*RgS@n71l@!GcE?76@zvI{=p&Y*q*VIK&U?1vZJn zYD1GWptQ#=7potdAre9fvCHN#tE)82xFW-XN>ZIr`HbSk#O zglFnMnM!_=4-ruhT1}N>eN^C3iJI48L~c8FOibEzsHBa0@74rL-+1m01>c^fFx&2p5Yh1 zStsQ38r$7)%>lCbHr#Yp>~YfKX$TW!R3`^XCCTz*XHJr)ZTmZ*uCynNz+nW2%PuAw z{>{S+0Kuc_^`j$m_9*Pv{y-5cF>C&r|8-2d7 zi%%~1FSvJq$Sb>>^WM$O*`3{)GoLf`%ZnnnL_jqp_l0$m-ULZypk%^8vq2&AFV@tR z%*oiN!Q9W`h>c%#V=*lC<%$S2eh$6_iX%&~6 zP?k^?DzWsGLLDlS1BZ;&cv~}n|0$1Pnvl7E+Tr6hZLqc1BQa61oFguetl?Rxk4X58 z94wkQPN+y=uB=bjk;<+e{kgN*hptr%RFap-UG7|2FR)$t(NeOcv)qP`VeReTB zB4bu!BWXQgeA{V1l?>R_%R3sT===?WFi6s2NQ` z%MmS3@*`4qTYr$nONlGM^bZU#513_rxYLM%=>)1&0E@VN##Rd*Kc_3NAo1*`Rzx>& z0<0*#;H1Q{Vnpf0lwG7K?w37Uz?gT}!yI!Y6p|}&`tSfAR)FuZ3(mi>dNT0<_HI&8 z<59@8;*!6r##2Q&AgURhanna{KdAEYBW}#<0yu-WhI`kgW$q-4V4b6Gt|EdjWY9Lt z?UT{^b@siYz!0-%M=EPWYu*HU(793+@3Y!xV*Bu2FQi{I<5&%^VkWA$mA|?>05Z~Y zLlxC<_<8csUIKCR(OY8`erC|2(AQV2p2t2}sFv3F#326eV_FW~#jRf`-9e2rVwJ~_ z4t~jR8W;W*68kx349cX2sX@z>gz>cRa%}#VSl`O&boy=!$d{8ehh>oKcABT_=% zsc>dyW)@c2)8oaB<#x@g#~mN#3*2kgPeGnNf-!7elH2pUP8+bG9T`bViI!Lq2zmVW z;gOZ|p5;yYSqt6vCDMKyX}-+P&7Cxc*nWlW;pNVS!$YSHcQC`9Y#a#!ykIa$g1RpJ zhFGJWh3J{x2&+@g)i_qXUD5yvmfECu;y(zcx@t~k-iH=>Ofe(xPQkft17x1h*=-c* z_UJtfx8M)w#T%J>42_Xfn+Ue{+Ss|iL2n_Oq^b4H^4e^gI)hmru!jNnD%77bacdHh zmu zkSM@vTQ}(=i(0A0)!sWqm|y;Uwsg(?GGUWh($%^)GoA`>kwH&UDder~#&gGu`jVmEJhPx7)!pz!WP{5HTi>TB#!O_X6TPA;+QEgb@3vYso%Q+6 zXUjuQVsj(!BG^PMti=O3iT$q`-*r_pEu(6i>=})HJQh;=CA?jd<>y@+N$HxTisoM| zZyOm$+xoXjd)$TdZG$v!AFylNou~Sfob0aZ~61p3|7NMN}Siq~& zq#2Xo&`iq7xU1D$VHkhhG=Ms=;L&r)pa8oB@wG8Y-BkFF(RNS|ho$jWt9S3P@>h@X zD}lZIoRkEg2Vx=)Y?ZZJaQU)`bd(D!3`%PR5%P>diEbZ9$eNp<`x`WZiJKk?QZw~7 zM5adxRZ^45QR94J=(aWEn6tR;p46fpCa`arJWl67-Zlkplo@L1D`TU|)kd($L?akP zowNzzG^CD?>N#h$t1nf*nwZ%6vHFPxnJ>IBykgaBv=Jg;RE*9&oF6>dxAJiDYHv7d zh7~{Zsg!?GV!f~i^)hoQe<&=q|9VaQcmcNS>^)eTkou1z6?WrIT~#MOKnwt|-uz!1 z@Bav!Y5o>o4_c2tViTMqMs5;Ne}V?56bvXm*qvRar^@?=5n|-NKX^7N#%Ymmm=XCH|iArTs`xdH4;G@#d{5vlG4C|5)Bh| z?I-#=9M3|%K29WNs7<&#rnj@FuCsb2F~!Pv5jW$(xcWeM&uE6Bbp*l$Y%o#I5Z+MqP%WPPsFcf`>sho^!FO#%Cw0*+@(F15K1w8+8D{|2`hK4z zMHIay_Cl#{Z?8Lfc7dJp9>3#)epBc4vLk_g_Iz|qt@7IA18;!Nb`Wb?m5^NLkN#zM z@8kNW0ym14{lL zFSua{Fy~MF9!|13tUI;Lkv+mi^Hl@N+)dPaEfS=3`6|1EU}D-^CaZ7Zd{gVYJ?nqn z((?@L9p)uT(drxIg++GlY;QS1_Nj|E{3RCmnjJzoHOI#EW5A)e(`9_&RnmRyX{-+ z3y*W0(V8uuDQlKLd-yRR;mmFAq+xjK%z)LHmDM-k>0s=UtNV80(W#}Ik5|shhSWo& z`rR^_h027LvZ{m?!sLv1(0jw>673oqm2*Kft}Omj^aCmcVg)ni5z@7Rm7c_?pByYu z5((26#peCwDjj*IM;umP9ErKVZ2AaZi?SE(lHX>D8q}cATi)oneP1mZ1y|}jjIiab z%FQ7%0k%HA1bhlyi(HDr(`J@YhWw|KoKYGP8xro!%Yk?Vj9@>!B8&^9W zB(mrL=PSl2s&2i%G=n+*RN!tG`{^Q>B6-jm$gedu+Pfu<3m~_6V)8&WoY5DCM=dl7&Z;8ik9$cRGA-H%>J+83x{;?YK4Js=#>%%s z`BohAUXcs7l-!2St(zbrWP0+9;>T=&i75ee(Y!J&boKhGha3?lm-92pW#)+hL+MBp z4+0X-(ICu@_jvGrV6ix*BqK{mc$}sRrC=XuK0TY(OBWC#sIFd3YeTD@X>(&eAmhNG zjOT8!54FyB_8~KNb?B3^EH_sr0jgMWDo}C{IeOw{b)ondeivII8Zz+JN))l!Ctcit z!=AyE#XHWV5wo5+Wdh80X_b0u@%Sb{qJ9*srxiJVJf0zFNKP$-O8dYql2qG$UO#;}YZsKg*do373BWbBQr zYs0HLMlwhSBsg#vqAv3V#o1c|zoR16XqrrX3+MB$S@~6u(!{Tw;t@lqDCO%gw+7Pk z#L(Ijd-2K-dZ!F~idRW;6~BN{!__&-btGhvp}=@IoIQWxx*SO1l|}HCML!MOms>t1 zl$y5zpFrF3c*TnKSs&qF_iBoy-_%Glj%ACiO8>OYyB#4Km+s8FWTALn=zWS{-N*%S6h>-yIoP3|H(;SWNu5m4 z0YJ9c;}xOWvw*NM1kXBHQrqoR+~0YBDSjPBm% zi=N7dqgABPtZ#ITTfCtA!yK2VNk!84xI5aC=~udN_kK+Ep9Shzt1+Sw@seQnF2KyqG?s zNgn5=BUCAjEnO8A$hJt`%!kEy8f+0KC#t8&U-B|7Ci-1vLk7x2GBIwL$|*BfeqD`F zOBb#vyT7#J%&AfkP8jCw)zavwLx;0VcgNs;j)!+Og3#f=@ zSLL+TSN-;;RR2zuc`pIch{Q(J2U8IXsyq^WrX(X{-&tTdl@E|Nmi7Ay(Kiihb<6Uy z`%8;KI%;T?o9>bx+7efUi@Yhe!%lZpDSh8MoF!KRZs9udlAlcj;5QkPk4>|B40=|5r;Y0G;Im`0Fp%Z0F`xwyn$ix zICpiiE*CQ(rXDZT%sQoS6!q@jvn}+}qkdT!eq;P4(zN?20O{M1=TvxQkG#IdxCQ-u zoeuxGXSHhLK%I)MP|zck3CAi++qx1*_%2?uSTzOjWSif}gQbb*KUeGXAP~0`jq-T8 zjDtlfDi-K$;Wfw3j-X%cfZe6t;|#{YWDC5b;qQx-dmH@xzFNI}qej29C=~qAH3yqr zckYI`5A5x#yfZm*;FOy`;A@4UW8?r8K4*#Ze>J23Qs8*-4$=q8{@+yFBFyeO%{NDS zjiY-1C~zob|4gHnJkuP5+i!L{wk!^MN*iqUN3utHg*iy6;Jts5b!+>mh%n&NLWfH_ zXb-Gy6E+>^5(wL}sK^8%Ixke?wFSyvYE}PyTN&FCx1g21F^ouB&w>8 zBW6JHx6hk8IsL!OpI_#Qy7zzQ>pl56AoK9>bz`ArS&KyzkS02YmiXCOW*6Q#qs%8V z|4Gx!y~V3d%i#{Hk2y6?65dOBc=&t}tCIi8c`La{G57wRDz!Th=Op4124$@kt)!|q z4+;5kvuQ$8s74p%yw5^~;KDsO{bHVzSgQ06RhZE?$2d9@madr2M;Ios+(gD}=4~4~ zB|>YaP%vi^H3BhKmK@UJd-tipG_xDir?C?K=mBfwaAy6bdn4t%Y17lkeEosbV1p!? zPXJ*=|1%9MmC(qhPRSo`1>x&(r%VY`=j)aN5v7dR;jrpw%!tyI&3tFONpxm*FO8{4Cm;_L&|qmDT$Mk>BtAV^#TeXMT|3$JlDmOB6bgE zoYBybd`sk2MVS+FvgvBTPICBt#M^_6iw40qHcX|$DgfS_0^#Mf_2)1!d33qf9~CcjBHlvQ-Fbtj|t zzkB;}fI^t~M*;vw0UdA^aKAyZ3W?cAkD0snds_Lw7Xu|n2Ukl6S7TidCrg(nzpo;Q z#=ik24@5b3FjjYg005>b`fK@yX?u)emUb>8!oNSU4SSVUx}RWZn_?Vd7f}USLzgF%uXsp#0Hx!KR?@IYRMSFu}4t*pzvt z3n@1*@(t~dU;`+oT88dmQ`k)}q};lQf}M!`yqfClFQojFmK^&pVW%ZL#~gZGjQKOr zg^j^Zc5;qc4!juiCyW3agPnxn9P>WpV$7eOJ8TTLI`28A8RJD4)VA1#4va0Dd5&?9 zyBKq!2V?8Lonw9_U5vTVg|QWh&M{f37h^8;VQj^WbBtE@9}KpB26o|MPwhPiEEN6$ zoKN({HpLD$KQ|4p`NtGH^cC^0AMgG)cb@yp{67zS5Dk1xEAqQ#VFWBbf6uCek-}3+e^?$GjCQ@|d`WVoHuVmg4rR?C(!^6!nwVxfzNcIp* z&#|md){1GNzP75p2U4L4V^=b0wY;X@{*rjzxiV-j5o!3cWvx!?WEi&K;FH%JS)3N5EKGDisO5CMl++bA6c?tIr#X zmiV=6EcFM)BNU#u6hmSoWakz-?ZzJ$0XoST31}qomT_>Za22Y+=}Yel-3eFelcq!o zACe4Ws#==V@IZG}gG>+Y{AD&X@S}F&;u%>lla}y6>A^o0O&`k^Xg0SCgA|iU>HW$K zb>E;1RdI4BRDr60ShSR|9y*S9it$-DacqpF38Y`aM#UVQi1s=BgdUb5!EKJSzbD#l zi3lvfhaUDJ!6k_RC;1^pTBlAGHmD>)Q!Hudpn?)n75{asa_mIDW6$$33~z$~hJUUK z^0#$g&)ieIH6LQ7otZZ;=jV>ul@Bg&cXZU;61fNHu$%$TV#ZnYV^j|ZLVNAj4^Ox7 zPc-}6l{`)}27TH!j!diI?eCEM`T_-#|NrE5qY4A@{r3~;@3e*e&TBnK6Kf}Wx_>_Z z|9t*GIEnuk(<|d;+X0$Ha5lTiagmg< z13<+9oxbm5>zmwBXCs7C~{HQHyYcfAFOFYYxe1Y#BaR11}0HT~r0vHnZoR zB}``kmXnK5;rT*2rT@;Qp^rEjnyprQk605vykM&+nR8my8fH6k5qantTld@vXLO@} zc+<*ejwlkbpgc28iw%?JJ^(ZuSZ>C%JOXwtAEPhf8`ADcMbfO{XhHaNS3ksSIh)_gzUWSaeUy( zcwq(THeW)f3cuur{iL}f{_-UYaSh6UKyrp2A)6b&8xvgrkXshj+o`Q1L#2`x1|w@0 zF)Ek##?{MNA`+~T$*UGxTK z%(cnBA+N<@BKM&V#$w8jxz=qLss8V!NoHL>CrkAC~4@-#C7oGGs4zz^v;NR)+ z2J*wp7fp9xX@lffwcHfW~_ ziW}x53LW~Y^#tv~T2c9j(yxV=>Lkj7bF0#?eIGNygMT{~b}*G5jwh;^N(Q9I_7JSt z3Yj;|7t*3SG|Sz(zhmk@gERj#eoPb$2ngXjI1#@kzJv3B4a-W^P1^zvv@Si1?cNBg zNpw~SL6ik&F#ibxleuykv&U-3UJLn`QSABR@*_ih{TxfXr@Y5hus!Jvb63*}G=`9? zJ5Ju5>6_Izm+U;Tp^63?QEX0DmVxjV>A5}M!p#ZtSAL!O=5CV8v=q$O?fE@-qw=qdp5-x~6z+J~c(96{&aS!iW<~)`Hdv z<>I_ZRU&D{-uSqs5QCS2N8M}B!(|HyRl!iknQIU7W2tDArd$`YBZ7luJYMI_ywwD~ z-wYkn47&2YLneg$A?q!^s!s4v?i#=QX3^gYWH|$(z+Zo>?@Ah_Y^kIu(RgQ?*9%^DqW7cE zzX4~0pBHwT&hcEP$jrNba^T3?t8>HpxI2C~_4J2Q1(Vaes{SJIz#exQsEy6gXP@4t zqZ*jlR9#B>P3#{1o3ijRomVhlKz6hVL6|9F$p+aeWut55Bh2oJM-MSFJMYbCeE|}b zdd9{`5SO|kY%#|>NWW!&h_q_Zv4T*7XYTJ7PO+Txre^5wlEojV{lS&b)7#IV^{O>StX;lcrruIxk~>=ucx@8Cn@_CXKN)} zT3g9s(Y0}c`=8_Z5U(rEp_g)h!!E(MMfY#pv7_2C-vf6vYaAlDzA*kf$WbR#8@dGj#+vVD5cB_q z94B)V6K5y-e|@q1QxY@PbnGfPkbLwkzCibQfN@4r1gqm`EU)?{)ha&RT|*OcK}6Xs zG^-xFuOcsE7g*Xis99|cqNg*lVt5h`Q<}@~bz7B#N|kaVg|_!y=pIFUq(At40eF+% za*dT+^@q$sYIAI!>of6M^*J0JR_ix!HB0ra2b2W|r>7q6+3))`$!{R8m<6{ae1)IsG)yROy_RLLC)2<67B;`| zmiA>sF<898`3MCA@E$dm_t{S`QunkJK2`p%qoVOHd}QOVv|0mDQ}o;&xErrsLE0Sl zG2WgcD{!e0LWj}HoD_Zoo-b6uvvDafAB(?q;Y`q?&5+@V1yQ%hr_0e77t?g?R0Z=N zBuC2(Gh#prQ)3NsH^0e-7iv7y5#o+kTQ|@l{zEF%neu58Q}NEa~SWT{5t5 zrjs+L2A;sQ#DFPsa|ndWe1K8ykhz~hv0-w}pAxe;gRE(Km0na!p6Aw}7~)i-)a5#Q z);J!OvS1o2%O1-LMkS$CF}|Bm(D>*PC*JEvg}ShEQL#aw%Gr?Z4n&tT}^gw*^|eip5`5QitYs&y(>1 zTjuv-(OT+-)*tNY$d^7&Ba|*RGFE_CIjfI@A(HJyC26G>dz{Iv`nK7~8G#9f9I`O2 ztRMPCvRS`a>yM@zxT4PHr#2t>*2OPz;=R_wdgaUQiYU^jH$Iv}S6uxH$sY}Y`)0DOGUXoLa zZXF$lZlG~wo*uc@24Ri+{4bjH8?9I3zQzvfN|V%X1F}1JJmXC{V24*8gac4l(FC`` zeu!3{&qH@v*vn%^6V5^suAPH&op!ZXeuDpZ7@>hHn^g0?EvZNTA2EXUUl^gT6H_jZ zuRWa;>WoraGmYL|=ec8N- zLWtw%A@Ovio33gZ#Sb!^_2S+L;lFcxwG3aM=PqceqAJ6KbW_5;7)Rta6ZGSHfHXbf z7uBDfHSqcrN*S8lZSU<#y*8E?L`NDO@kLtAH&I-d?+V7WDZ ze2@=i+A_7jL_8V{yHV(i0i|z-pZBg78JjOeOIler(r-#M{dmqp*L0X;JUzx2?&q#J zxGL-LQ=>XQCSmN}cdRzPl#7?)VoIxabd`03y~|0F!2F{I;JGFG5miiW$D}FqacX|n z-ST@N!xe-bXUE<1a*d%{@wbibyo!h9df`( zOp%-@;Q4xeM9JfrzjpwCayug5`NLs{t7#l}nE+_@grG4R)FjGHEv zvr~hN_VBm|B^`t^qIs!oT?fYM#JK`OJgGBj9qc@;3~02nK-+f8uCZ;W&=iV0u#p%n zh@FLrA-8x6mtso!R~Wg(k7C%j>YHMn4$*n+fAGS6i-$}R6JogC@ZD=d)WBN>xS8A^ z4N*3BfKD2pYKMx0;5YgZboxDG2zX?vh~Fjcs<= zOrxwi)JSCWgrvx2i`m*l-E=6`Tl#S*6=5W&>eNW#Bw^7DhB2ar%dBIN{&|}shOAL^ zWs=~6QNRUMi;mNWLqKhk=H>w^l9k2r8--Tjf=PH5tZ|wb5~R21L`CaxR|_bWqa=b$ z@T4rhE-?Xv@v?#EJf{PTkhBRrCRAf8m+8p$HBI?z-a@MqCQW22b@wFbZhY~Qk!N{M zZl57!4(se`GC#v8(H=?IYb^rAfGkZG!t7t-R?Ip=^OQCsifjWZ(9T=v9%R893?(3K z0=Oxb&ECZ|>vgLa;*f$4$GGF4p_Ub>Sf|*AK+C3EP`r$#8W5|HgA_}6FP>Yr)T%p& zNbu=G*!{(p21;336R(|ve~f86o{K=8%&(ox{lyBf>}fDyJd+Q#q$XIP+6kds9CDWj zo_;@{E#H6Jdtv3C|Cas% z1VkJ8KY|?Fzd$a_%5J?aIk+2<;frwOiEVZ;+J=O)lx8&ES|XrVo7bzv7UwU?<%(@P zJH*|#7{=VB=Lp3D@D#7jLzi~p2&v=EVZ8TSOm}t;o$n>W@bJg@X3^8l>#gC_ZSB|l z^X6`|G+E@VS-xynl0g zbMIz$f4lc$5C`yC#cu*|vp#*KVA$f*eR8pU-DP}%=*YNjmY%-c?ACtIBa@dcx#pEE zqnWQeUC#!8DtY3~jcGqfEo5_g*cAwnar@Ou=8;fO`_){xlf%NsgJacxUi*CW{Bn5< zuzNSg_6{$>=k-wf62cAM4WW>pLp-GkHg8$K!IjF+ z`@xsB_;?jHT2Vi_3|M}gp9=Z9u)i68Y|*;R`Fy*%JJq_YWtkp3-b}fODVguS0+_T9 z*KEs9E?PL%RMpe)e*L_PMvO{fi+VX}UgZ9pgPk$?rN_q&4Xw{Vem>TIxy(Mx7@a=*tn&tK^;v~$;>;{;IPx_f zw2v1frU(Db(0%o|^4PstoIYB@PyfPBFl&!Og=*h~XCr+p&a!*Sg3+Ru8DGohRKuE@ zVs)(wXQA{Kf$^5m)Rgci8C0FS!ueY+RaqF;kfp;Vc`~S+4fF&eYcaX)}4FUGa^h@e=n`%HS!m zF(vt^Xr&`DHAV4mZmc6QEyeLp(Lh%-BZcj#Xs$!~R4U<)XX%4f3c!XK>jh}~wnc)O z7G($CyO9N=kpqawcmwRyYa`J~@=ZM->CX69O(`^mj_+5AtvcB7L!-MY|% z((DS;X`VV#-p@mdxxiyXAXy+X#v0CcR0=JVl1iJia`yLt-iDhkz=B{ zsP`(IE9K>40TRp8z3|vN)GL`h8LW#wJz7i<-XOzKp3&I$SJ>Bzea;~GX0=&TXdhZ|?AAQmccOinpi;oovjr+Ko*(s>GPd^1E-_l!4;hR? z+wq+D*B_i~x2^KUn&;_&_KOTxv24^b4uya+?_<7W)NW)dp=a|Ud!wi+# zK(cN$QXZJJ&lDaiL$p&Y!84{k+tJ;kZ?%{padmJWa9MXyx#gt%9X}$#$GpTL#*6>Z z;5&ugQese;#cJnn@S@%NGSXOS&|}>9zR{X=+V_`>E&6S5^dMS+XMk>9DrG@-kUI5X zjsG)}cW?>_tE!W~ql*;S7zbezMUK6{r+tWYljNnrZ7&(d90R_6SbhatfD9dJcw_OI zLTBn-^!JqZH>qHVA8%+gh!M8Kxf0w`xcr2qQcw_XY6nq{;Np5Xj5sidQ5)lH>oP%u zwGRARa|rF+ZAi^0Jff%QChhAnX&WKoJ4*(`hmnXpKN0oTV;D2qqlG)Mo~? zQY&VzR;u}W)JW}!<|29rcS-ua4du@?D=f?LSdfm-BQrzGVO>k5+Nz7EdJVAZ8;Qos zAj*4$jbWjiyKg;p$aR*hf@R=DqC9XHov}I$t-_N9l5gSgba}~^Ml7gVjnWAiY+?zwc5Z;Z^E+Ggx)_%mh7csxIP|=zb>v`#yg8tN1++p z3WTJ~8r_b|+XYhW?8l0rftwE#-u+c3OnH%~!6Akv>=fqMPOo4DANz_sB?&>B5>Qo+ zRxX-FC|_kD#lj)EVHL9+c>#2&EiyMtFuhDN(ZiZtJKRVJ>?@N8c@zcjk2K~km^wNK zEH@3*e+~mJr{EbC%}4}9d85-%5%$$TNf(M#C2nQp7OL??`&X8RJYMjWKGFRqxfi7Demd!dZTu;fAdz znHjH9WPlFj&W%!r-unY6a_*Cx^t00yR0#8g(=rpDRy=Kn0dG;gkJpYB7y)0}AnVu@ z<*`N96y?~IQ0&m$i_oAt!m1%Egd4>aNHgC8?TwUszxa=8%Ot4g;)svZij}k>xqc-$ z&oOQoPK19C<;_qw&6GYDu&<3Zn6XEBKDEZyv0;3#uYM?K3s3e{{`*F3sIiBv2u>n9 zk3cfJTM&#|eec8udRH0hYk_lLG<;U9){c1G{Vt+u1gX9(B+6s8#{|8D>^fy7GYOcq zzk1)0H3J+5Lv)Bf?QUzF(7aV``Ff-ifkt|paM6yFdQSjwREB{+pCrZKm3yGBdO?xgCF_jpehS zpHDv|*n~tr|NKsl6$?DxpEw56I+P(SRPpEFc(p2fDe0XUMaW;S%&<_1JJ5MVWx5EM zKWY6l?)+v(Kyv2%Xs(4Zk-fAW*uS zfvuyNwBYi0AV!MCa^1ijo8t}{C7D1qLM!GcG2r@(4R7WNC3zPJRf`NZa?f{m+DK*V zbtYyJ*d;=IfFu%LC^z0hn`qyY2n-!EB+CzFadb~l%1;$I$1#o0)PPHzS-_I63dCjz zG|PhbX>Gqvp_6ZM(kR)>W#YG~YPG=x9Ek$uLyFYJi=B?m=qIhmoZr*?w@FTj^Ahw3HYC=z0>^sTi(Zo_Je5NAa!A$$pHGok7y3x04$pz>8$FwhN73d^ zAQ*QcrJHiU6Y((=vME*UHLU^?DNd*r8XaEQ;70UZeOqvW8tCicS z4T=}~+5>3C%rG>sAnk4a=xv zhg~s?Z>gh56-sq82zi@QR$B)@g*82W3FHGT=R$GM^$=uT$<*}%OosYCl8ML@w4yX5 zuoZitv@J*uvCRpzUTB6Q6e=W&WuPpUG?lUR*^gjHv;Dkz`0(@p@W&!i(E|`W$ zNPh~OKw!alqZRG3Icb_Qv`SEZn7YOxTGU>OkD9WcnJ?R&zi~umHznNPYkt$`7x)6B zN@PI%3v-AusRjs#F;^Zj%7s5y8q&|g7ARzQ^4cZ|#nd%b@PP@5iAQ@sc^1Fu6a2@+ zRq$|6cwvq&$FO4G$pB`M2M~w#ucUuMAC22tkxiXLY%=nz$buM*{}$g-NP)RX54vDA zNpNw+YpC52yE*cMVwb)a3XmC0Br>;$*zBw5#oPo0!nTDJ*F^atp4j&(*~fj2W$j9* zK>UhY#U|WLU0`dy zI0-HjDH;PS0Ge5Jie!RTHM;nw7k`0z`2^kQj$A~*=$+I$vRnQGr1-~TxuezuyX3=p zm+PPrpxifn0qm=03%3uRR!6)JmePT+h^{aRmePsvkgl*VsKJ%cMq9iHw#<=mG2Hm3 z*gi3ErH+vBwsS%}E`8OwCqw&xr=(cOcJ%&%KnQLj!?gUZ%d}c|DuY&te)`jntGnvW zwcZFrDh!s=g|JFnJPnr8jS!u#uo2c`Uyw>iJc+1tU*=>C^TkxKQ2fe$ zUPA%*mJCvHPf_PgP_s3b2}AKxkV;$J3S(|4NVzSRO2l(G^1EzNn&H4jrTjaTPV%5Pg8n${w}ejAV#q}&UA3rU$bnDU-zEnDugnnjJ04?G&S``iVgGPAW9&&g%LF=>LZ`GhEvi)KbE+f3Q;bTgy(y!Eo|gB7 zU%3W*VPfaQ)g0Sn=Z;ahep#m-I>!7S3#tHZbtZpgu8LShF}jETnub&wm@&EbyCYdK z&{K!KeP7Y2l3Wk|1~ME?VGRWR zLUB7%V~LgL33<2;cO?vt1OcUF_9ZZ5<6CLjWHYrRzqG`#wKU95h$#tcVuzeN@vz&Y z5cjwCdFI|kMDZ%P6>Wn=NgS%AM;Gs&`o-_^O)W1ymB=9HYS<$^8_S^dYu;d=nk9E;zC|q-w4HA=dJ~;V6x~m+MGJa~-AUrs* zRq-2IhvQJ7ogx)6k7sEl_XWODdgR_O$|Cm)_b2R){SO)DB@l%*@hRc)w88@YMociY zUsh2Wnk&YMf7a^qf^K-$#N!%38OXrkzCuYSQs_~jnbG(SicQ5+wNl_1c=tI&f0U+C zdiGy`w<21S(ETn{LD|H>(spMhO)hgs#=2!oP>N?KtYs9MbLQv!4Kebw4Az2dqa&tH9@EOuY)65WC$_ir)JN zvw^RUVQ>8X2WbMT<3if|hm6?1(#1flKw`^uLxS*r*Q+7{A7RRGq?rO$bN`z#wJ>H> zo)m`T3&Fmj;dhb=I}Mu|HcPCcfv8AY@QNM=sFyqBMxuX~0B*IbdQy!ojRKc4p113m z+RLxbasb8m!-)UG?l70*(SkDEDS*IWN)k)*t_mLdyImAM?X_ab^xw4~mrN`c&(&{a z2}EoEZYq+46~=Z4;_FAJEx*e+C<&RJRH|L-APQR|5wwz^xI(%=VR~>XNdg0QwiMdA z1n~UC7VyM<)GjYIuoAKS^?F=y#FR) zr)K%g_2{I5m#h-$z99@9(h1Ub{=Ogj}rH=wb{C)-;LZm%*|!0VCz&2k`$Q~ zdGaHm<}!uiuj@bIa*|OH;mhRrl7Z^%0-L6}Ywmx(Q8&blcBc*S`2He+oT`CBubsZC zt(@iEzw@=`!|nWbuY1v)J3fC1ugS3{vh@~&Bzq>s=5-_cHI0PB)@x!+;LFG`%Hy*` zqwt=$xe^+C*KO#K0&^k*Mkel3odT_X=9OcuO{q6%W{wHW()xd6K(+$85wc8aH#8SE8HK&d^hr z{~eO$|Yk{F6b z;{9dx>BhGD>x}p}6#>c1(^$yDS);NO*y32OgoAX213`&xv8r^16G4gXu`n2OYe5YT zgh_OTl5tx%#q0^(B?X1E(NV2ocKY^@Q5p zqe_20HD*q}q|rNQnCKcObC4L7y*j5lkDG&A$G$?{~z2}PG+CD>R$eeVIp`by}LU84a%#-2RtjKb( z)?HJOe0eseN_^uExy3-%7$9(~FU*-_IXUm`0 zX6$EAU*Cs&{`2%t-@8l2777rMpVR-yK(qggf!6tEphwU@baTIYXPyT3ln__w1jFoX z70`UVRgF0rmzuOCBwQ8lyWPZfsd&vq_jf@u8Yi8Oreag>TFmH1GrHd&-<=Iyikdx-WInZfp6t?PSlU`%}*M&kdSeuV8ribl&DI zygxcTywmP~Btv50yoH1eU)XkT`+9A4W_l8bY|bAQt^wX(pFMFadF*s1cBe@Z`GPM9I~r*G*myO#mz2zKX{m85p)rYTZ8<09~&baEs2vjp^C=%^@ES zU-qx1GE!#ne`x3Bkj9rt8C}Hpk`ZdK*D4hkba{^6UO;_-$ToQA1g;b(_b!izn-| z>r3G;Ubi<-S;3gQn-a|xK<_GA%O$0J$oqcXvgwW7MCs$}?4|C)=8SCped*(UHUq90 z|Ja`oo|`XS+ot=c+}m*;6XkY_^3~a}ZO1`df)qR_ti(AlA#{ALc zQSFyQk*%u9?sJ<(dsp-Q+IrCik@wP>v({xvviGmB1@nBmVTG5Yx2$6k_T}wG@a=NI z*wJe3AMoJz@it7lkr%;kB_k^l)~bi$)-ikE>N+b`rdUC9waCh(FjjIUtNJpmbV-@Y zK{Sc9xC25;_GPgus>osx7L{}v+E^7VnGa_JH-U5i!prSDm6CZYPuUq4Q~QoK&dsaR ziUKd)z`d6Uy4OUlh-_LKIM}T$q)G={PGZ?+14@{z=*xZ!sMy1 zhUT9$^E2$68ot(Fr<4({fy$i>x2Lv{9EE-7cv)UL1_0iYIm(@_$aV>crLuxUpg9{Q z{q`06u;8+0<&{c`VqZm2Jo**S`F)7vQk>0APTCh&CN$j^G-@Cr z=M8LrJJDdJK%TZotRCkJCmi)$gFjjzl5SE#$3g)nn+3izI^p`FK^b^#&xKjrS!Tt_ z(!60O_X*j=yt|(u1W_SYK>MLSzk?g6Kp5TzAbtRO0&j|u_8GT=uw>S0d2+y*yzk&t zojL^QnHs&%#jnyYR3v0GKL^Pgfm8f~;E$>C4!7qoVy;XzH3jlO6Y5_GlHxyYQ&V3k zh->R!%mAEQL845L1=^pSP+Ei&yYP9uQCO6_ zPP+AkvdffW%6AF?$2t4#Jt>+AH#HGfxlvD^9iQC&7v37=K>gcU3WuHqh9?^!Yzx^l z35@)ojEr!>4YK?!JN6+kR_E*kjkaL$^V(n(+ef77M;vIgSQVNe3p zJe&Hni0v+31)8Zs-}A@w%D)dcRnZ`Zn4ou1 z$O-QWr&op!n-t64ClXdEcF9Xv?W81E{tl^+yMwS?PQVWm_uOQTKTWjZ242!?A7^bT zc^#;}P0e7^w~`jMutiz`uSN)m@gI|c1ze(JbA8*TX9S59usrc!G{wPcf1m(kgBf!t zL4+c5Cu1`8NeJ^NYO2a>*pNcX%%?!FIO-ZNnfpu$C=s`eiWD?})gS`$a4bNxpb$DE zxMLQ<>Il`+p2m>iSvAmZ^hFJ9f?Jkia&0vEKo$@iqlL|eoRE8N64O-?WfG!UmY3Ht z2EhS|Ei-iz+B;fQ$ng_m9kVThsica+K6F_qQ%^?09A2a0KSFOK6;Y&{sOe&<&h!xsFlaEU+Ix^sz zgk)Hg=JxWz-R4E@6Cy;zV14oV`t^s2w22B0rgn5V13d)u`*ED_~y@&GczfBe@2n2V5HK&HaQ$Zz!$J_I_58{x54Hb2Yj)2gHcsR`@ zwXJx;RiG6CZ3tR9hF7MMF%K%8)-A0&{j@HRa>2Mmcvn~x94@Yl27MP6$1qf*ZWCoO zCPX*r3Qt>fwH1LC_Gr#+_)%TT;JU3jV?dVgRe-#*5F!c)tqKaejjcd49(|ke%QCA0itEFT>?5g1hmL=xt+6` z`auj2F|7Hx+eOA1MGlYiF;Y3?M6DTXqx+Z` zSRYcmy9O093Il5c?4}?OB?=AmGXulEW0H!*0g2Tmh~gKNLNvMJuS^Y_W7P)!L{Js0 zRTzaWFbri+#F8;q5F9Q!21)UgmA^P!EvR!d9`5c!sUhrw8V(Yx9A@zZQ=pmXv?FXW zRYi@?CL&e>g9101Q|-tb2YCuyg8Jf$J5kZX;{9O4{W$rWSG`fby81>2F+wX7mfYXy znV*UK?HPr3cOQap&m0@yf7|9I8V2PrA-wb8A1f>jb*idCIB{+zOq^||#5C3C@SQOJ z{3QC62;-g`w2nk^B z0dz%kggPg14wDi~VBjB3+FA(){l_)$A#Uy+K)AOYbF1rf1Or+p|0 z3X?pk5Ir6Yl*vcCtU~H{(GP?WG~<$GjjQPS8$6c&A&k-ZWfuQh%itNFW$_5GEiS1* zX955Ed@EtlDLMXB^tTDiU;nZ*RZ$aGO*z$D3zj>uRFkQ8hwLd*5eX#VcaMW1QK3{P zBngO35D*1#^I|KIu<)fFDw+ZhUA zLWV-p4v#=}JYXKX>F!ZMlb^CQWiDGL-+kqGpZQ-j-oKefx@+ zLB*dld%FL$p#LE%Xz2z8Ftx64BOyuf5~IY-+m(pGs*n=&9PT`x0G7IPsryfr?`I!_ zEUj*d@5tB(h^qZ4gq{0a^-~5;HK3F(Wpw{H^{M<#CSoYk7P@V$>ydwtJxZQ8f@nAB zHT5JJcpvTMC8avIHu%jY{#UR2-5QStDZ`%reA1oRgc5_M|Ebl1 zt`NjJpOA{K%R$Pza&M zvUggJ+R`oo>9<8GZc$%gur$IC8WchuC=z6oytFaLKZau*d=;TBN5tnwL`%s@stx(B zH*6(6$5}vAXh<6eISNeD=CKCqcM^dtBMh0>VGQRCp}{o6#i3$r8R|&O!Cdl6=B1RS zw#kN2#Zl&#m{M1bJ3{#3oJoz}`v;&Tx!hyrT?M}+*1 z!_JBg7dHXgSbOOqJ#9yX)>sd9C^C1d@cGR(qN9{QGnQbSwknY4 zf+m5!F+9<2O!2n`%XDSaH!Km97wr>GoP$wK*nw4ocefDIwv6%>+{cPnVe>BLnRvCa31%Ygx*z{$isJI+(+6!^s9k;^&-JA7BJ%>54SKvwn#*3z=7sq=C*%@dc?FBDPc(O^aBsXE9KzJs843f!Gh!#W@CIIzGodeS z*B;bk$w)Z*KZGxkvz*gwr+!aTFx&efXiO}*v{K^_kjZZ1b-~N-P3N+hjz+T6D zMZQvk?L8<_01;Y%JlP@NIzgEVT0vKkjTcnrnH7uCRIs>k@eXw|HWqhKY}T`ywiOO1!JaQF9TTM-DYsX7IU;^2^(ZF!s!32r$e zs+G;E?D<18o9L|Dp^Y?8)DQX2;K+lPf=sZW+x##1hK7qHTn`Z06c%3+j!ycADElVP z{_Cy8T##~WtR;pbF-d^ezQV2W@DVuVu@UTOSKf)BW_zsS|HH49ITNbT6>5qm%EDh=#LfVYITGapJ|Np_M zh*i8B3Z5dPJCLxav>=v3PG>n*a5yw2*1)J{5Y#u3Z^}?$yx?Js?>i~VuE=zJ@s)_THWU_OG+BZJ|aS2BG+VdB6h3BWR(Cms)Q{`fSAQ1)~8yUzjy1 ziD6VgT55F7d(rD$@|512)I%%nhx-}5()`VYUOA%O>HCIWd5zuaFf5>qx3>tN{-fv> zA;q`jHs#Dn`}Jl`ubkeo5g+8;%($x z+g%-eU(;Wy?{mNSynI_<9#4-xZ`MCQUihA-kH4O;uf85Hr-w_nbGk2|=*@~k?53}# zySqBPySrN4yFS_gEgqi_H*cR>Vcx#po-H1fUoZEEdoOSEpGWh(C%d0SogII5xi>a^ ze%0`3^9??`zrVj+y7GB;eB9K2Ju3e4Sliz2NPGZ%dOm%$-aOjl>|gF4oj&1j16qB& zpLN@wFD^eX4|5<(j?EC8m+R@b@p5c^+v(Ro)aJTcdEU;;-t{y;mo39NwVxzCTiSg* zy?x)`Z>>&W@~i8&-#@>Lp{kd3Zl{f$RTdj?WF=efk2l zDEI#szwgI<*aHB1o|5fF#a|_lnxCD{9uD^}uUAoDqXPZsCH333*-!n$Z(m(+_qUDS z>SJby^PhKfgs`#Gzhm*dMRx0a{x1mWj$U$_@Jc2Y^nNiVEb;jKO$^ghX7fJb{Z z9-E>O+fT0d7qg2$E-zL!NxDt(4NktUZ~HHYH+hs3tINrUlV!ByCG%-yKj-iB>E33h zW+%rdL)_$I0NF|L)YLccAH|-23Fn1hqMPHAY8x@=FCQMw)`qL4$A3b;o?{DBuIN4~ z+Ao^kYwkUqwU-od)w1TPelARMxh~5|R(2$+RCqq98@IdB+{jl62w6&XqL{$=EoqWsd_qnS9PvcjW7uH>F*Q`8e_5w87V@Z)lyY2wT( ztb(B8p&14-T|Go&W`Jx&a^`70ScNxH3^~6;XY!OJWcT2~Nj}==22ow4`cM}hW09HN zoURd(nBT?XL=XEVW$3dg3}A7lH})>Y{57}Ho%ogl^EKDk-EdD|^)6-gH8<4VU_<8; z{n1!K4}K}bsXwrt5&r(!p|o{U07Z}}AahC@632L zXI87X{R8i>8!Mi?7N_?>MHNwsCH3|Qp!;d&BOpED{tUwbauOFN5)T(TRBcY3za>k3 zX90w{ie6VolW@eq_GPjv_=l!>cza{*SwkSLuJG?Ye{C)FE%Tt+w{>h8t&sJ#Hjs{r zUB9k!3!8i8Y9b*$w3*x^4j&gT%!^=<613D@@7LkqiUvP88ha){%s`qP`j3(===3p| ziv)jy>X@^a1t)`$G3b<0&NQx-???Hm=`^@%^=CEVa8)xj{KdVLGpm+G)(|Nkxi&_$ zlw}TW%ze!3OTCH)liBsGY)Z|99bqp9H`SyFW(3x9H$F<<)~*;2Yf6@kv#3K#;}X?U zGmTod9Dk|L_nx)2T8T2gzzYu5frk|RLv@126R%<%4o8K(fJ^@8hgd;g4|H}=TyFNr z0;@0?frzPpnkqDrQY=yZ`;p~ZFD)gSXcWe8N7>@y*egkyyn@DDhRxiucdiNp@;?>S z;g!LlMARj!H$)X9Xjo=ntR+~ZijgWp{szAkwWJk?!Uc^$6penQYV1gl3mbj=z&8EI z8Y1op&9D?O=c(9}6@69J)^@2LOr>bX3uZ{j_Z-1g!J*_rt5mEd;SBL`wUdEC*bko| zn08J!;`-n$DaRzz!enJwm}jx5Cd;}lGV8^VvOy+*WelRtP2H-{WH^5bjizP;n-uDw zUyC~Xa07mYgebdd3O6I1j=7ma2EoUtA1E((8LJE3fU(;bGVl=(!Fc^i_`}(e)|8eX z`vyl*4CgfO5>3|pB9Y5s#tWNj)D@i02n1u)W97^qMEYD0b*HqW6#wFm^IwA{?I?@ig{0CAYcDvf$E6|FX3y!W+ zB@45rltb3NI9Y@is@sCwDxp{gmvZ>GLs=EudZ?wG8%A2T9;}>I^Mgf2KdzH+gR$S-ur__W^zgaZ8KV*L03~g8i6;49M*0!sZucQ|$=l0$!jdPP zso7gh2p5v2r5;EtaIZRw0H=o0Pla$lr;X+T^e7N1m@10^c&RKlUxK(rDpRl>FYLnx z=;4B)bm|Tz%)>sV*KA9oh*`uLuE!LzJ28P0KE76)a|5S}LrscU*XzO@f=rk93ameB zQn={1=q&eBcg6HAH>^{vg3nvT^<*ABS<9Z|;DOd8D8pv+DReqbQR!&yN$zuGmbJR_ znhIN5piRFzSuM*-J6YtUhK@@++2l0mSj(Qm&3NeNNQt!j$v(x|=GS9ie;rvFBmjo( zi8oo+ZJClwre-lTa#fAQ$}$fml10sWG2L)9E4GaUly!&RD}U4y%L~oPSWPu6pm=gC zpxD=SRQXoR6I;_;HB9@_vlT@0Beo78>Bq5t@l7cUImr6Q0&3e$Sp5cv zpxG!FrC9722eb$sM4aLw1%`maDz+VSGaOtN)<|+PPL`=rVbd@N~@I`2j)^&h?vj*6i)K~q; z+|n2=Kfx}BByk0$ZB@Nv;-gA$BH|25L@7=Z>It8I&q)XSP5dg8r0%*gG~)|lg;@&( zO%qBq6UdzJ_4h2<>iAI({vK(l38*LaNfEA7LFHE+dY1c<2g?**3n8QgE%9+^#ZsWQ z@kr-(_sp`wdp=U9W*!l83dQ#duR>EfM}yfd^xg^CBLHz;%2CQQr zOhi4sYQZV?t-+x1^3GwoXy$qx+C#;Z1ivkLJ{btp5~Cf+wka-)#$)n^ZnCGV0FP;i znn`hVD5LW7X-s;8sdn74b`>W}!R{l#)kZ(5O=Cit` zxs`dL&e1I@&6ZsEd8|@aOoO)DX{NLwtRCu2(je2=&{#fvmRksY* zF&icV7%ODUCEXY6hnQ^N5kV7@0RSmYuCRYr@WJ(HEn{pTsYTl}VCa_m7l(_}6wTtO$|e_X_z$0WC-Z@ zU$|(-22=z7%WIHvDkk`$%&@8^923F?PNl<%08`a-Dlgm0PU04-?u-gODK5IKGM%rH ze>2ZkAWQw3tdDmyEG+cU{U68i*A9(E9d4kU z6hGW`5cjfusm;e`QiE6kgw4Y;O;l3c%UR>Dw&`Q+9`;P@Yr~Hk4yt>nPW$h`O5}$H6Z3dwFQ&k-ZCM)=OguC zS(q)%LsJ{qYm}E^W%pu|`7G~5h&smmPh7DdF^lc2DijR9EH5tAnK!@q;Oeu_mSG&P|KR6+QK!1@ri%y zBcXIn_~#24a8gl zK*&NGy)j9^JY{%uT%qOOmPDTH}6Wzzi5+v8T}PXmWXV*l2=C!?5(;m;zuPO%O9!8bfh+_~H;kS_APB zz%*4*T@<0Ufw<=1_8Tvs!@+~e{ge*7Zx0`JgBrM?P7%)>_P-Z`t`rNASQn8-%A0 z;?TVu1wy);l)tUQS7a`;df0XD#JKTcP9s6&u1jE*x)2!lB?^LCbuVN9Y9y{{?i=`rMe0)Az&3m4Q>+ z*6cnRMYl>VR!vD$Oz1RdbiPOrAHl^-SxiipeKeNBl=OY|F~+$5Q_Y=O_4rk|!U>-> z;OV>1`2ZBUtlR3kn!TK}^Vbcxo)X%17A(nr`Cto23n;^`=5AV(ept7CLPofiR}==_ zTx#ZwPk0ssNMYT$Z-b*Mw(bMZiK&^y3BF35i*HZlNu?V*Je$eNpH|G9#w_gY9^cwB z6jcg;=J7;@?pDrq^7f}8r^I%1R~wa874jVqh!lWT0aw`P);S@%o~v^WprXODE5?#WlsTwh*-0dESn=a~bA6qQk}_*kCyD zqMh*|7Bsm*37vv$DvOHiz+KQ#R;=L+>pwe6?dbyh3JRzK2$?&brfCYiKaIj;P0L#P zXK|uq7cy`Q@cA~lKC7t{yD5=c5H(zsh6=DN$+&p2U_@*@U~Jz-$+a}>CyP^BUdVZz zQBrK4o_YXYd&6@09A+Bi6Fe=@Zi6_@>7U$Z6_`>=&e#SMcmue||!G>)z@v_$E z)a~YALI%F_i*|MtcLd))!S(FUl)5;l^f}RH1(9tiI~0P>cP%2yp6J-7r?M3Jr5N{8^VO zF;;)*nQOMP!ddRN0f*1#0dsJcS0_TA(7-PR6*YUZbiNJ5rW#j9Ar5>j4KWPlSxa?? zt3TB?7#){q?zCj_p7g)fDu3kPHDm4Mf$M8VbkDA0yD(pyq@`Ahoa$wDP8=432qZU44k{*;`sgaA?sJYWhB3(hg>YnUuca`-L$! z+IWnk@BTgs?A9u_Y|)__Ui`6?S8v`bP!2c=20E^S!!0IX$&Hi2gJDpb1wV3wpIk{O zM!~VAe>Uh=z4}dabztygGH+q?cUzZD!A6{tm0WN-Oyg?3Z1er9jy14(M}PlM%(AQ` zt+Td;#1=d^;bd&unkuI}Jo;^~3g#rF>6}YhL)K#NJZgHNNx^=q`aU=)K|QQ|5!ekF z!z?(?53P`Pvd;O&4EWTqqE832$U=3QtFab;B?0B~XnAY=>yO*ZN1Nj=`(fShr5G|K z=H2MHJ^fPeU1s+CE6{kH+*)>J2<%O=Xm>{Y z%S|fhaU($qF&=y`wfr!njkM^UR~Qx9o~RZ0y15^M`q++sZETl1t*{r>x|FMQ4s7H( zMND3}f>Jt<5ey}V54RLzwbU5h`lv8R<_63^S42WA^!r)Hch#H!(ZFb8h0{uhs@V0j z6#27EWM^HxaMb6AIiY+1ocwPj8S%N0{(1B5?d|d8?sA~9W_wsy+Q<3v-+(z;`+8l; zT%eeTw|BaZtoPp{0e8sRIK2)&%kFRq${=Ux1 z)3mfbZbJSi#rfjCw?HQ;f<0V(+3CEYl{So*mn$j`u+RV+kvJ2XdhhUpH@=K<>ZPr6 zjSmrH60%@74T?_3?>Kdhzu#N5Ug@zIuGpWEa9pg5Ug^2Ec$)BC)!m(uaMi%aTWGzT zEGyVZw|VM0#ecWEp2F*Np_g$?vx5n?Ve#h3)Jd*YZ*(`mJ3ediwnk{%E#^5}Ab;Dx zbf0g>OTW$aGVe?mxprq=scZ}`j;rF1ik;%+v1XH5vsu3z+sq5VNnd;FJw4ZHsLV`i z*oZ)G)Wz@YXxFh`ex=5|tXi{{+sL0hH0o6Map$cYxb2C$fBq&lpFY$`{7%31Zcr}D z+sJ&{m~OaIFIQ+u=U!md(5gEcw&XD*RrAaz2`^9~l~Sj7_bL`vCX^nHPa zOY7WCC5-FU86T+RAu~MVmNB@~^6`E;_}wLgyR5aq!u5TfH%sTiXwv{Mz3_JB?B@P% zyU^tM#bHa1XY4p&(3vys9=)c6 zc@7ltJb8NUerSet9g}cd7J3tc$Ogl=a~oW#bY$zmX2= zc@WM_9G=K@^&CT~81R1d?V4mVGmW9gUjGuy$P4C-LTD!QtioGJPj$xW0GmNH-+xE? zNk(Pof`e*Kr|2$6TtB3EY4Q&+W1?g#2#$tr^}-JVM@0YO04_Qj^Ur1CRL1X-dZCZu z6PZk+8NMxl+W@l0f7=C0U|5tCz*UulPG_q_vTNCu++_CgSeBjqL}sv3Dj1A3;3hon1`@kvGRDtVre6yqd(;|C{)QedVj{wzEsK&ddccFI$cI;F zMraUA{Wpy^or&*q^edH%bh~^WqTIeJjJo<)YJGzg-B{Et6$PI^Ivn`QoMPP{>4Zir zs6*#VGH^y4cjSoRcEgRhM%+Q}mrFr~Pav2G<6v}`f(0@BB1%xhTN|{lHxK=!)2dYU zz}+gdE!3oJbg$CYTlSsb$SX^q*RX+!8r_ld5^4;|2i?4q!S~>Pev&%k&NIkeN<^@3 zgFI=2`eV?>vo?8v$zzDdo+cq!Dka$!976*U#=$2u{l_Q|{IdHzW10XHjBAWeA?j->Xl{=hrx>7wc==ZIcjvqCI2w{@ zS>Urd<|1_`>Rou>oW}9*yi6I`xJTz0)$qvzHwZuKb&{Wn5hhUo{=<_}nE*LG9<9G& z6;+l9QIZh+xsYuI`B*4d(HKT_n|6WCa!DX3XC6sB#Kg$1eL25pL|p-TSCT=)*1bca zsvo8|F)ZMq1R2#k89_G(ClILuGWSwV4_O>ah`tZtCCc4=E(5 z;u9J>o5NO(CgoDW^gF$O>3S~^Ohypq6TiD#8CRHg)RPf9_X94<7V)~KUHsG`{Fs&1 z!~IM=0}k7zf?W@U+*n=g2tRz5 zHXX>fIz5yl>My6HxHJ`Y#hAnNO2z*U`!-GM=jL+`H3!LPFrmk?wps+csntvyq5JV! zfZz?C?#2+l$fe}kx+!qdcI#LF=RE|-r#$>REYITFdd192d_v(2c8pZu5GBlw1fLn^ zodciNk=HA9_D%qWyV~MrjgrJKxusy+P<6M zN$Y&9!Yx4_%k4g zTXRaf52>d=j0F;tIGrEn#~uNnGa&5j$@iQ=Tkbs+;dYOaA6h(BfD)&BS?#tLLeQM{ zG~9-`Iw&D38;q-oMMaq^l?+4+v)ojLvVsrl{;>;X)oiZrm?__4k+40u<-po>(vkL7;{5mirxN zL4J3Zo4EX7k7oKp2!Ns#RYMaGeQk@3hfw8}`LH3-$oWTpTl*R92S>*zgsZ;#AduwF zK+!Bm7G(Uwu$Ae&J-{Nk4|*a?0lT{yC1O1~{3qmx0}pW)4&&ODGqn4rXq`3XOb+-g@By&6a|u5&GIt3 z1YK0viLci5;P%AvCm$O?Xjg>8FqhC_{JPwS!Tr|hc2bdmVhr6bj~V?DY()jNl^qj; zO=|vxNn1p662C^A7Xk98p#4)ZXmV3J*?w~wut5L|=v<1g?}!7^mOXh8@^vimFx6`b>BD<8F(*1D zm^GqFKl%-NtXfqTrIs~*(W!oFs!IDR@#wgHcyVP%ImNjlol%0oK49-hZb4nFsHH(+ zq>^d$*=Eo(V3FdRmgPm>+>6aHN1o3*ltvl47|w+0Rk?(h=&dSQ9-jSa%aSrTh{Iq+4PCkKP|K7sOz2Y;~83b+9K5relPqWzjZTEQ}%Zt=_rF)a7 z#Y+5}(5lRl?ef~&m;VHB4d={VW5Mut1q^S&NlX8?e)s=dOc%)TAMh>NE$bGI0p;QP z>A#2ga7cj_*7-?}j`U$~_gBD#KA|PT#;$dl91iTS#hV$agwEG9_iHX!-#Z>r`*E=zO}bYL^k}>P0Rab=7G@3s`I3o zh3!jgV7l}1f{Ci@!l`C0X59W=RcZ9rM9)Z>Cl~W=e2aNw=H(-I=IPOxPYDYR0x#$C z{{C1?@$&6+#S(sfoKS6fbobkt^YuKIb!&Zei?;W})0<1ZjjOF--?m9B$D6!lVf>oM z<*xAt-qAog;NBHu;dto&$3t|uZ>)Pn%Ne(MqdNX_g*UGb+!&K}E!T^I%IJ}EYPefu9p9f`+MW(fjP32-QdATelufH+$nljFXu{E>_iH&mrZ~5v zbN0QHw?=ANcMlz%AMFRLV2xE?hfEOn2ZkQspDmt^_8jZe|fGE(7yFra}< zB_cFCAfCN1xz19fCI&fMt?d?18B9HA_72YQH>rD&v342^wWngB3o{GGIo+sIv2e<8 zjbE`nLK3z-5VDW82g-9`n_7o|vYDGbTx^7s2 z)O{s+(56xV);L^vt`GBkI#LuPv$s<2U!t@@O~|3(g^bq04L3gtGc@j+ zdw^s9%8I?M4bZ3+6yevZTc>3ZxSNEUF>5iyA}ZbK^hoh(L{e&$v8i=>%Z;6FA0G3^ zHLI4v?+YUYx(c9u!GeWC1Eh&35i9O8}NxW`x#BQ^CJxGcMJL*``Fe0AmB5)d|7XGZ_ z?=KR4>q*oMX$bKxL^0LvA7rVlIi!G8ajP{Q?B%4?RE&S7!+(qTO?dFUdiwuZfhRX7RvslLLMJeIu1TtXkF zn22ba&}UM(rwQX6wW=T~mvm! zfcGHR4)IAHI7$IC+uE*3KSUm;Ap+&e8xr7gcIZMOBsZoW0K=O$#IJ^HU!|C9bWIs!(!H_(VjRJHQMbjQw7~ zVE2JLovR|ZxG97MeZtZ7j-_kj4XI?8SSehonJDJc3!bxK@f7Jm?BUTHdTLk}DNgz5 zp?xebmg&|7Cj4IY2C0(SFIc`DLTFS1x3h707Ftu5l=3hhM;cB1%+wot?kZLiV`c^2 zFTxpT#!xd$&qu<5ZvaMLgBLVrU|dHOL&+0^AgMWCWl<)6hRGmQloXv%N2#I$d2}o| zaC(|EKNNN7v+~5WRzneBfeu*1gQJFsy~PslnZ^(UoJd$LjemLNrydCvOi}Tha-)%k zHUd545P{4`IPN5<;ylZjC<4s?8EFbXS-3rwgXXwH1Ut!nEpLE%ZfsnVzK`^;j)KUT zQfU5A!L2flI8Wny1?VX%23cN{K}g0@3{_+EkwyJ=sjQ8DGMNSZ&N6c24fOuKG*H0@TrpAT|XlgM2e_+A`=~P*3l$MIlK>g~kPYYgkE?L*ERs*A;~S3S)kZ zBsPOf4$~|By!n8Bx^-mZ#w?dnFR;>75VF5$A7zfeP^gO+jMfbsaY{Y#(~K#}ML4xK zSxQ6t_x2>yP&;fIdq5UCU~Hf*f!|vvtUiy{bp#mad0D$S3A6Z)ziBFsry{xSVBr!5 ziaKS3n7lwakyI7^Z71YWwPflj1T8c`tZjO;itbnRnq=TuMZ#e`$K4&pH`I>ZXb&w! z%>b^pq>MVagE{DxPiqQHVkWtF$Rr6!M*oX(OUWje{6~|RxQ`WMS1p&w2(8MxVsQ0A z0)Uc%IDqS`6omXf)9_`JkjRHhe`&n#OTJe|!ET&zi2Q2ZMg=WB9`jFbzbD<{yY@*! zPyC)&_yju^E!8L^y%+dQ)G!wvF!bS~c60&-Pz0M{BPycTY^HEhYou; zwlII{&0_=PD zod86}Qw1O%mhc6e9nuvr=##GX@T2&X!@Whl1+l@e?VSxGjjSQhNY+_liqU}WmKPazZCE{s+gxkKe zArnD(OK0C`jgY|ro zTF>q~%gM2poe^5k*Ms%CVim8f4l+LQ%z$*d*;`lcC$2hrC7pHjVXS&Yr*x=Tu z(i>%D-Bpn*PpGDjEx1db0MGWFaLF;!BYn8bk741RQjXV4(li`|W~^qwTgiPu8GN~=;?1$_P0!E`4|!N^5W5b3i79@k zIluG$k6HJJ>9?&jU>vK>`#e7 zb9Z&(lF)0mGQ2FSTeaw`t5X8Fl$T9G@Jp5L=A^3bHMmrYZF@LeabbF#K1DqCapgca z9depJRe2rraCPN)-RI+NOP3=L-ga=UUA<{Nb9id!lJ;$RI@YD@xO<)mey-q>%>&2d z96Wrvc{3(Vg6F&&weiNEf^Eo28()1|xrh1gU2A)KIyBc0f*aD+(@1u$TD8s#M0*~2 zg~fb5TXmeRJ3UriT5}a@&RIutPu@3uUhVX(SCm6qP95ICb&S_aHh9I+f6k}hUbd=m zW?HH4W>#Iv+#$d-z+^r?oV|S4&A4WS%psA=n<S@(7ChETnm-xfy=y?M6QK5r9mJ@NUK$B86m1Z}ZK2zX5gNpn;+9&c! zyTi~#m+>W2_d$T`_UH3Z;cm9&(^%&M+khvB=gv;^p-pmh`u4_iWvA0|>vOIZxcbkq z=eTW0>?YCmZH?F0Mxtn;M#+L$L9~P?G9jmN-39@MePIVraDWV zTt>z`$6LnNWF|r4XG2f?4-Q)Wpbe3o#QJ_Lm_v$1XBK^(eP+o}r-tkaqd&keH7Ss0DbJd?lkDYon*CY9ef|ZlbbJ5a(u=2q9Os6P0M$ zU$F*BPLh4hHDX|ve8eH|B*t*WAw_{o%}WA?bXES8mV`-z%u@aapQ@y67DqhJ_&`7# zDug3vux=9z^2gBkVgO`GLcES6kMscwP(p=hKqQ-|WahMHsPIBE1gsVx+ikR(FAVTT zet5}6(7ac=@|J%-_4iqT+@c_ah4+GI&?k~(kgno3YZGniMqD(;uqDsHtm<0m{=Qhz zN8o@wK=>iBlcR-@8v0um^8Cf8peX}--$iF+URT->F_P|pTjsv+`pCtiJNc$qrGSoo zBQs0|wZM7*j)NtWkdI^4PMgg+#F(T(t{xKDtVRkcfq-m`z=0~Ddu zB|DJXAX!X8qNpi266q)9WJT<9_fVS2MAPnC@EOI7EomzH5WOVz_uA|YPeWq{|NUeN z`^RZ-1sJL^dJ@9&&+r?L(=`;_LS)!!^@tk><$7O;-FLqNK1Jwbi6$kj6QPjX z!K*+9qlQs<30cNIhFsGEf3PI{j#^qpyo+EcP)^0<1R$ZI8lzzT#;wN)35DQPK^+`t zq+e6kuC8T}n`H3eHF8f{vV*UcF78s#`h4Z~O0{w-5*0t1nEbg0AqgtbL-~Wd=gp)> z7wYFYcZf@pQmQ}wk)JP)BJ`&q{K?d@1KrGM&9G}cATDX7N_($G$S{~kB&Ai#!WdR^ z7@`wOkb8FUQ^Av#WemX5wm(9T4@nN-FhpC=mP|E)2xi%b^c#$fnE%ZG=? znR9_KH1A#7M!7djTZ6*{1PQ7jx|bL8R&!g`j))Yj^|; zp~}S~Xy^Jm+6!6w-NFr7%Mes7{&|{jxbi>e`fjYqK5`{Wm033LYf9f zSTxa5Eg4%i>+8`mnNbzDRaH*aSLN^b8A$Qy5cb_Cb6~3+jK!&0tv?pFD5h|OB*!VX z*RxPNRxL&g568i(7{t&o5>@!KW&Dv)LJcF(+>G`hEQJL%Wcv$aY=0tL8B+rdqIyCt zg_4lv$66|BMd;qFlrC^BwL82nUQMWidjYX4Vc&kLY$k(2&54&gNV%fMy4By$NCPg8N6Sj+QBFTcj zYkc|Iex2v1Kq1Zxx+scKMLziaDYC#+fYuV0kpUKSNURCk#%>PM<2Qfnp@THJMtM;L^Yz zT4X3!9{iVb!8BGdn&d+CZr~n5jiFE!IuBv8nVp@+Pabcjs*^)p z!#;={P7xq%8Ef(t@hj0Lk+iXa_h#m?88kl=LupmhBqM=YQ_e+|bqWY3V<2s&UEA)_C z%UW3mbGg;f2BBCs#&sCTbphxKX2J6i#jK2a-4|PJ7Z|2+e`@i&`ZeI7YiVH5Df-=l z_oKX;dLUnz@1qD~v3VC5Q_8BPdEqtZGZ`?>q~Y5SLL7c2Sh&;TVzv)S++u{Rrof z|1k&`P?Xh@o>3W0Z#I*V&b-=(T^7n9SvcsWYRcRT)bh{skSD4#1g#W${?@y7=(|fS zDkvQ897f{uv+gP#w|6a4-1(arXOdBm*nW!)+zrcW%|Q56e#_l654$Y~5Jw(`ZB+#O za1};Wy26w4m7Tir*_Bavv+Hf2SurE0Fl~%=V_q(7b1q3Gi1##tYDTn@;;NiGQYE=3 zXarqHz7&eWlh!t`9M`-R&-|HT`tDkMg`U_NUu@Y2*Zg@!e8ra7x-+`2__%0qIHP04 zyn%4EPr;GiVdeDv27RW-XpXPM@@JU#vP#QBTGq%)$(5&oXJ*#Ov#XD1eAY<%cc0ca zd}?~`sJdjw4t6fjqsh6xo~w#y@8(X;bAJ=sA^m=7Nqf&XK|0@FX|Pc^k| zw^=c~b^q36^E3#5szWXe$-}b3$DqJixl^}K=mo4?NlG&Q=mQ6Iw?PdE5(7BDPK_L* z=@9AZ-Q6Va&KAy}*G}3GpR7IApf*p5Qdojzp6htp%6{;@UEh)+n!L*6XB}yKn$7=? zEP( zcxynt!(B5zUm@+Xh0_?a>E<>yxr=ww*oFnui!_Ji1{=q{@-=mOE?*&Iw5K_bU30oY zt172`zJBIP<@dEokA6GZPaPZ>Xm}-q@4R%uSQXhgNsAneP#=4DvmG{R)P&N_iP^vL z%~!o-a^=AH&U!C<^-bh>@nrKXdoHkY^|k&Pq{^%Qp!GMH+qiadez*N|>~7cjPp6E# zu1HN;mXDH5=cfAb&?@89Xu+EO&zH{HSCvuLETdc3$NgZ3p|}-pgK!EX35J!nTcOs4 z$f^4yDPHy~DLmCD#PIIz z+^Pze6eJ5*h|9U6h}mm_C$u4Tw}2SVfrNkOC$)0(h4cgj26O-AoR3lZ6W|mas=NaNjuvqB*kE1%u$B=T!l+$*e+;h(TMkAD#JF zP?Y^{5Lo(gsW|NWW{Va6VQy$aa+K!;n+nV)t4BSPFNV>S_GS)KA0}V*M}wRe!J}&; zUD5_RhoM~~Q^NG8Y<2wPH}p2xIm`?5&vX;fT`>T29|ei$Hyx8ts>N?*kBda+L|gB3 z@M4ojO-H~4elv$SJT*rMRf}6wxQ?CcpB2m9Nu@yGJ$r)AYkUzM6LS$ui~EO6B!!D^ zfG+c^IwmZ_u_jb>(?Ro4lxE+Z7aM(v8J5ila#|6VrHq721icVV-CE%mxp)vHZd_CV zIlYa)?Jwzqsc1@y{ulyQL4gTHAtX^jw*9=2i-AQ}Jf||%l>#M-tRnvDP)M5JYBwY*H!qg}Y9?n=s2k&+Q*zMv8%#O2t{VZ<_f!tAeW zM{h{w7LF0YKe^z7cGZkOZr$!&LvM>TZRAD9)D3W-2a_QU-*U!L#Akc9y}u({LWDB* z!IVH78J-dwSMN$Q2u+brl9weG%BfMuMAk=_^^u70FHpIuDIgu7&JWL!mt|tAR7ZD7 zFknQ82F1XZ#7CON{wauUo76`>o1tC{*-kY1-ZKW>k4?P|^ zu3V%ER10YZ9@=xy8^M$SmvCEwHOtfUVp|3y=olr|0tC3T37bIpk0De&S4pF+6}&_P zE6Mkz`}+)T0Xj$__!gLK>zj4gNqGoKh3o+Z!b$_EzQwuuUK1uaCsT`)CI z#iukyg|=SU;15yW#Okz)lH7bvZ)s~e8fsk_)7wq*eNCFwLuUY=n&p%yibQtrJ`ndn zJG);-=-+AGch}#_RYZwUgq>)B&P!Ip*uMSt5vTBrQT^w+rO_bLBum=WVx%C9_x$Py%T|N1{3e^-plQE=>QL4hUFvZP4{@aJW4;4o)D^ML`dAicKgZmO&o6tUTw=FgwpxD46SHb)ji z>Z^$V8mFg*aZ&Y)VA6OVvSl=lpLL#BBWbw~z7W@sSKnI(D4Jze=50h*nRTgG`=g1w7LYnp99<^CaAE;afrXqN!N!1Hw%V9J!k`iMR-(-xHX}lJLz5&R z3Pa?Ov?j~`p3AW2A6OJ!knhy#tP`>wl*I5trpWCanPVJ<{*~|nPm4g%D_$vfEvX1E zMM<|*3Y>U z9q11q%o+aYQ00FiG;pYr70H`^(wE^TYq90YpFO9 zgI%xfzMAm-q(+-tsr=2m<^3|a^}gkCxFV@e z%GB6Ct-{+nlV{b{kz+f4vV*{sYkjSFF3Awh?eVxAxvsVuF63#u7t2UIo)Y`yi}H}3 z#&G0GJ+0qpbJVcz()h={jANye4}W4{x8>fb^PParp4FzLG4rIWwshy2qR;)DnuANK zb4GoND}HQ_M#nYX_~x8j3V)j>%2tJMcSt797?G_uFJ*(f7qQlhH?tz{<+AhO&8GGT zUXm?~Mae0nM+jz4is<$;S0cafY03TF*0uQFwxYIgY>+O&IHXqHT!+TUC?N4-yIe#0 z`IYerM~<-YT|sBp)Q;oKTgQj>jjt5vtsILd(Yn6m-uIk!4GtayK%H)(*>TpoaeV)? zbnRLSY6Ih9kKy)wsQAts-Hk2O|*{ua-xyEC^(Hi}ie=1S<*Yk_WN=#)l=%sgXf z%ItO7<@PsZ&;D)vB*&42nW`7#c)MJbv)OH0&dKmI7$4&c^nVP#QyRYfMqgt_vO#ca zcz?d*M(T!nxGli>5ejC~e_zw=vGJMx=SJklFOG!}5AIwe#X%@lRozHG&;*>8f(}+) zqfLBvTOO(#zFS3M;uth_?}vCMvey1GX0o6=4#O+Uh{+Ugl|!dTvPrRI+wQ#}bMa7Z z(MMyhf`H1PQIxsCfZikUXSd*|n#YjVEg6JDKL=fp6#T+12TGJtpkPq{RQTnZPL#K! z7ltB5u@}&n+s{t%6amq`f~LQUSU^#oU?9z@VTgm~E$X*!9pGyo5~8tu zp`6xgW1Q9!K4%qaUIj=h7*L9EYBBduh4JR{gK2}WztKpOKqR#z|IIa@`RiU$R|3i5 zm>497nn!szq@Ekf2 zvhSIh5+MLehFytdQD}#Y8;wAit_yf%;t=b|oRo@aq@4rTO0b~t6G*@~7A)LTpf(BN zVBbusDA|V|CgDhwGFdvfaQ{7Wf34RuWn!=fuyRCUazz6Zf3CwqYqOiU|4VZC^ zMiC9&2^dX)DQBw=CUFbhQ0P)U`!Y1ur@FN8tk1 zgN;-r3%_6!1(4v}%ipdAik7pVSfby60mP|Qg?*`t)WQu$Zn z@jVicBodpKHlX9|2i}9tn(^j*2De&<>Y3 zHsh&(6~rT%`r2GvuX>`Gf!<NuQI6b0WhYuNv3!`_j_37X&@P8yhIguHN=lFkU%Cij2takX*3r}bPRzS z3eNN5DR`{EEN12jIg_%ZwCAZ6OB$h{zF3|P!Tle~-Z9A1WeF5*PIKC}Z5z|Jt!aDO zwr$(CZQHhO`}N-E{&?@~eQw12Q?a5VS5{V{DyzQCtp8wMU{Gu*n=vsA{=q(vs>S9= z`S(o85%bJy5)eP_NWS>v?()f@~-kC63L0@K?Uiryh;U92M%Ik9@aC`qPW5QxC!4{iAnC*u0?M2))q@!|Xx9p$itzkV zPQX5yZgiVeH7>V}m?h?8`i{^eS12FlNaJ9v5k_!zr14`tO#aA$#=nGCxFxVpX1s4A zjJoz0^GCmBbPXMohZR;X;UZK1IFC0pL)dC9nf14VM%o^NhgSZA+rzk20aLs;8G1H0 z2`rY2)U#PgS8jT{HwvK9oH$X;;}VQON-ibYP~ea58pQaUy{-7GL{m2vJytb1^7=WX zUy!T*b!w>i;sxD;a)=a4;I~z8LEmy4s)m8D^hKoM*oC|Qx%fen(*}q5w|oa7jjHH! zlmL9O?)?9wY{B8kl1d5F6af4*nVqQ;e_ItgrR-qkA!DnV(6{|N?j%qBZR_F4>N)!j zIi1TzVaom8rYWr!9682cCP7Lpb*=CwhKsb;1IwLoP%dbWH;OJkm^HVhlP{yi%-i?( zv~nL2%VDGk9R?0Did)i)OOCKgcjcG#O?eI<6jvx?Y1to5&MK|RG|I2FObz`|&GwYs zS=bv}8KXz1OSLYW*lRPLtEEt5-4!#esiaNUEoCyd7){ie_tD^Xhhw9J0(@~UvMwjwsxv~ z{xTBs^H(|YN)NXdzCI>#Y_)y0Wu;#oj5QGbx=knI>#^)Sc1Bz&^kr67hCA)HCAM+{ z{aLR4J4z&vE)L-%xLsDHcDu!aN^Z)*p+ox_l(&{2d$46;(X^-iE_(n11$wq-sjerj z6r4A)B_+i!poxCb#OB-bI9f^)laCjX)VNKl)31Mw$MRrShwLt1e{6jW=tXb zpyqsC90v`pwFxU|t+69XcHAR^YQO_Dw6}*H#Kh7m)Lpog_$!s(&0FrH3`bJEl-^Fx z4s)Bh&J=f&ki;+(NXc3iE@+>Xfxi=-0FXoY$&UuiXBqLEAmD|E7o-r1S zF}kh$x9L~Lj3RyhFaRV%=QkmQwY2$f#sTPf!EZ|crKyRaU(FXHn2iPUK6VrXFA&~a4NSeAD0Yl z1l&W|Lh{&`4KCK#zN_*hrO8$Y-xR&wr*;oC;HfquD7KpV+Ch>Pfj%OP0Sn_>% z(|lu2VW0;YJP;-|d=1{siT3V#Y%zU&BLX$@i1FZjH7xNj?x@6IRgK-=?|xxDlcE~q zhB=etAPn6#VROOq0vlcSRg>@;QGqftH)V~y99%Ph56lYqnnvNR(Y!(T>V+(Hg+8A6 z;5jb~3I1|w`f4JxaWDj4#=l2ZUp5H|ZXi~7YneeKoDsK~Wn9IyTn<98X$`*`2X7Qo z*Rq~t_=UL`)lgAu)nJHm=J$B~RRxhNB3kuERW99bif+YG5twy90h}|~=jX3Zc(N0H zDV%|h{**W5+3pdMBIJtTs*Dv+bQm(?xd8?Dmb(mla>1i@0 zJS~>b!{wroE|EKkIEQ$Dl3}t9Zr{Pt!wU!l*+DMZ>jyXS0F+_>MZNe1^lzcRvqErS zCZGTS7s&tH4jb+R?i)wUlrQb;qc6{5tlc9Q-7HwR3 zJgW6gDyqxdKzgfmiqMt}a>?8h(BVf&FOwaQ`7^|}6G_IsI!(4M@;e$4)0I2u=*l@*1~rE*7TFk`-eMo z3aAYizgRHIn<19uE>SY=;#-nS_0yM~Qz zm%!OgLNqJKHTLfFc5V;oq=_Nh1n;bvZ!v6@-RzeRhr6!Oo5n?Z;ZIM3fvuMu?!HU! z37hVrd-eLRxF{WKPmU%$t?qpj2f?5!5LWbfV!#)qUy1gCiXrh@Xq&6V@(>6s?65~o;!~QYmvyaY zQ?Rv5Sy>Ii27@IuS%Kq*R6^X-g=8_gF02j4G_?S}rx-tjPiGNSAMaXcZ%gA_A-8kA z|4cn;6(>j%{9G=sB94Vsw-$I6*(+>CVr5f!s9v_bSsBVGnPDFh6G`s%puKJA;f zY3ORaweeHLL2CUKzUZ(2F?nkoui4!3L;Yd97ycfRE90HQ5>)J<^#3!M%xa2i6S1RkoV0s;hyG^T>nr^n{yJz zpa37YRQ&81%zT=GB4}erj_I0)_%7IYugMbcrc3Yb8I3VRxIP>oF{*ZKEGZ+EbEHW& zZC;ij8U}dp#}$f$FJEY}*dblO%^aW|O58wl@Ay=e1fgH0%M0iJISt%I? zo5SfvX?YbULj(;)jT{AC%RfLr;AA?-F3B*U;^zk;mjow#oJovyJvXxwJF8+Dt;+Y% z;>OXIJJQ^p*C`Ct8J=gkNghS@#}7ij<^r4dC(udYX~eioRo^U$bw9p{_+z!mJdoGM zy%N(?bUJL0qhDjfI*?|+c||VKB0Exnb0zgM2540xp_z4!NE13ZGMw=E@w;ZtUhl@X zCU{#9M%uvzjvv-|G|TsRgha*{yp=sHi!M|Rw)ibeg#PT+o;~!LFc=?9q#HdE99*-< z#Uc&Zdv}TSofyWyM%V{$5e=>v z1CSr2nQzs|_qRVcGx~Qm<)eV3lGhbWniGhx)WxE9vveTb6-Cj~;@iuaPV#IEoRQ+w^ zb_n-ys{Lgh2kngN+S&s3G3V?w<*f0=M@jAMIu%>jU?`2^Y`b=)&2ppKVr@$?f##uo zxT1E~L;|+%5Czx0iPARl_Fb_?pEQH1e4Jx@3n#R7VYBod#Yt(=oo68~U4^;XnQAoG z?IL4UIbn+DJgR*JM`HTpmoHV5HpX+_^}~a{YuinJ=`iNzt=5sZv5GCr0qLJzqnGWG zd9OH3gyx@a6#XEXS~FL9g1tSc+?;pcw?a&8h&yIRMS5-3Um2BgZ+O?o`#kr1BP8I3 zacyr*sr{SrgD3VKt$96OkG7rEzXJm(%5>WTJVcDLL@nCJT(bDQkk4B>o-I9g+Fgek z=~etCFYX?y2!JIlJm5;+>>fvDGOR)SkQlUx9te-J0#1OVAG}4z#1q5rYZ;!O`WMSV ztV{vUcC#|oFvjH(AdD{gE^eC&UAAZgwlL1<%~w*ByinIJ0bm1(n+)5|6&<_oj-JYw zaXG4m;TU4<>MqPjSFvKTkJ;?O`BEKLY&Wlsp>6{KQaBLHqQ}8C!D0DLG+s(BoSC2B zL&pxdP^B;ZQIWx$yFf2wBoJQgo*?%3AsaaI_-wrPR+$P2}gVA9ehvb|%#?nKuE)Lz~p>lJ+y*8{4-%1n%pHo)q7aOM)Vc0XXdAxKeB zAibsGHR)stjYT(0&RPqApab{o*iPqQOCct?cGK=em5HgIVUx;5BaXx(-K=+_yUAd~ zB4h~-C;WwEj%}85{1kfjkPelollLw;ho@2m?LWs{T!CI0R z-G}>5_(Ca6+^7B<%a|@Py{o#(cFq9NV57n4TAwC!z7$bLEeI)@XOQGo)L zd+*fUn;Uu-TJbabz2J841}!)B(us@DVjeE4S1&9$G^bLlO=Zpjwj_-i5dC1Pv$UC3 zm?b&qHh15{*=@63@ zX%ky{j%R44Qe(8`lva^&7kB(6_`;Wg`9qbBop2j)J=>Z4}?}@AGR9eANrgkUm?jwwA2D*tfjqz0Fh2l7oRyh(1bBKDb z!v-C1suj$m-M)7U>CBs533|1Iymja3002Aq|Ghx}=k+^Pxu{%GIL|JF zFW?=mYTV4o?MR)*~HXFLl+|y;uae8_g#1x zPc|a@Jg!ayswyI}p4nocuQ3H%8q7v2Pk)-Q(4{dKgu8QSq&6a{(x_C$rP}2$$8i_< z3;F2}>2$KiO{nLZ9j8?bg{mjV(b(o~VqV1`bZN6ko$moHba~B&r)OTlfow)Sl_8?r zqzND9H1JIawY(#RU808#1_YV`USf}wA6-)0mgEI%A!pJf{SWB_2A9o?{izd;fCXVG zLQP+1X9qk!&`?V1Jus9X0neBWOA`;ZG}&GVkII|wi-O#jY+lHLR@G6UNW>CqR1^YX z+fxYvR8lIhPGF(!?@dO?Sw6EC>{h(2?`y4rU8t)x6l%kBxFek$J-UFY+?;|*^{;VV zACs|rCB90q^`Uw_spDnAeiiy(R?E&sEF6qm87HosK4Y!4|U$P#Se2l1*JL(kZv5?Qc@3K%mB z4g{4mk=~3e6Y+4)kNtU=wZsSjUD)4F=qAA4!wqYAIYH48!)dk^!J|N316iB!p_muir$7=TU5QyQv$pm&Le zql^y^Ows>y{}9{dX@Ia=H6Tb_TrVDyDp#MVc)d7RrRAEdFU?_u6@flm@5Ud}XMkc_ z*r%VVg%5dwSr0i>yA&_c5dY^aPd2}Odys;hUk&6v1|*V+;Gh-@xrdM`2}XMRX$o@_ItQT9-4`otsbi#acer~MSZrC;qDn7F%PO|Zz`jhN9UbPEz_ z*lB4GrkXxuD`)i=C2I>yg;8<@N((-F>2HKiZ;0rH#*SUX0WU$c^G(*vOh+`ZBiN;D z{Dr-aqdOd%wBc$X=l9Di!qLW7G1@LZ-I_re>nx;fUe6O=AsTFUZNahBF9!I}bjL#r zts`3X^5>ZSZ|-W3=D4SuoQoiVv-!szM;fCp8Ih$iJ9`5!!2$Xa32MV2S9`xOF??gr zF*qkBPZZz{XfvxJO0>CDE7IqqAAT<54BN~$+wEqZ!BVSUN#$PudP(3XWihP$T^MH= z4*=lX5&bJa*xtm@((pg+-x(F>Y8p|P%t)RhyS%D*nTITKW2NMy4H9i@${Y2;B38Qw z>kr|CYb%!i6gjv3PzVTk+R@H?fcVjTKsUWnCG(+UQQOOmBg>dU+RFrdZ86H|N1Q`L zM_67wcJ2=qK@b8(f}*2y(y|@$5O89o?&5PUq|K~23F?5ckVOjP&f*+Bp~Kr1=2o3H z$X6xFL?Axy6i?Qq!3pZ;31hZEeX80!P_eyMj5G-4+j8S$3O-YOR=uMQ;stWjbW*_a zyCCzC{6C~1TDj9^ARsC$7GTlGV<<|%NF=dL4~UX#s^{WLg@+T)8GWSb&p_zr;F#OH$Ye-klju(S&vL+GeZ(BrW#> zCv^3fmya0%xKg^s88tLBCe(SyYf#AEPG`7HU{005tWK(|R@Ni#hk7t&3whUjql7)K zbNyJep>ZvD^0eDntsgLD1FbA}(h@H5EI3|&k{K~^ul!QU74GQLzWBkgXR!rkC9+ej zHkN=&HXJDBctUQ(rPO9i-2>Z<2FM4DuFNE4)_}*z<->KUFB}Cb1ZIyTuuE+{N(`-H zmLOLE^YuW=v?VEcgVU2(-v~t&qam=0LqzIJqe$8es16Kudta25$@RH2vWJ`He%%u{ zv~_5QsT8@+BYo7kex>8_K7@Lex7GP|`y|6NQOFaO#PYeqip%r%lGG&+OG%@7b6{`p>5OfyFlFfC+%9?aIWjOixH0fN z&+3F*B<&qE20BgoP;x%hPk#r~SJG=2ix6;c_3jThb-GzFe{+VP0Z#KGnd3x$s(b1% zl8nO{q6mI52eMmxiw>US=x*nX`@nWr;mRkiMPvar&NUbXVYlv#O^Yn;PBFx$+t>$N z9qJ*BQ_HVPNz%=;^h%y4>z95T0Q~)J*~t}$bm!e z#z(Urqoh049CAosr51n3%8bTj#yk(6{|+M;G02A7nm&INEmjt)@K&&o(qjm1&7a?_ zDi3zzMEr%7D}}?r6dCc{1a_T$nSBfFyJ|a3J$gxp8gLGz4m@_}3WJuo8 zwAw}MiP?SPmpe2SPI~9*TCZxacMinq&mF@!ejYE|hEK%9(MgGbdS1F);q-PSWC%v# zIo;PY)WK{!w1W37X8noUEh%lLVRU@D`}3R-Qdt`B>6C7{UWMm3sC1~Z*U!jb8S=)c z1?O3m){Z-$eufhOv~!#w(y^A4t>tDkWvSa?nd!7gbjN8e5sXD{;a7d;6J1|NAHPPsk?=sb?$z|`K3Ww7({QMVwdjb zq0weDD>6?^wu~!H5vyB6U=uQ0q?YWb|Cw`ACkb*-b>Jvd+E^IZB&(qqq?|FrYE`5V zU`-Wz`jfYLFK|>i*2=;+))@}JXiy375CuQ+fG4<96;4Ol21mJyL#eL*!J&9Y_D2)2 z&@vaOY8_mAo|7NR2;0D9kl%%8!DcjdPmmA+S;bqSpEr@k}%WZm4K79E4~H6c;#yL!sSwj8>=6<6$RP>C5e zQj>YYW|fp}A<|_2A+$~ssA24qtya3UzJW2p5R1Mp$T}*2MPRDE@tr_>1{Tp`0wDTS zd!UYYDVFMa>)@ISb>LsmOBhQ()L)v=!T6p0B#jsuV(4Y z5C=%^p#O;4>qok*K6ks0EIZGH z82c|FR=M8#t-q8nfc3XlGKE;tOk8MKdcFe;>jOLmNfhQo5U;C2K?~_P0;kOUu!sqw zsDj_YREJ!J*eny=sMZO4EfA-~NbGf0C2z?6(=i{B>*|1}MCqq}0gpvRAzdoxsLSh1 z3Eenabusb0xZqLSS2uDPLNKDprG_%mwo)rf}=N%W{g*mAzI$t^;@ zZ4*18m%mEM>Lq-%WhDB2F&WjDgXF(xFT|BjGUtE>?Gp7>Gftbya4yY8iJ;AGk+y_ctQm zWAQ~F2f!Le+=n-K3Of=;ly)j^J$Nar{`Ty2j(#2-!aqy-&Y+F;~hY zZ4A6)zeT-j4cj#H7q~{baOB~BVdo?2Ir}OBGci`<^n9I#Tsxv zgNKgVuqdiGvlgn3-}-EZEmJ>$AE|uTX}SufTshJZ*N<~?FxB*cn}2G-bv8)7Nu}EZ zRr%aBJK!_Z}Hx^PV8R5gQmtv)h{sSO35jkCox7(*gDRSj3a=XnJOj_QJ_hSTJOL< z)s5Pk%U?tGGLeeM@z~CrF!YxY%)JkKr5M6htaLwwV~D~#P^_yOj;O^J5V89G|M&-h zV3ahsV}!-9fI_F{ap2pK^R_+f5PN3E?v1%o&qQMkOMnlf=X6R=rOn;whmRjp7VZcjZ`h= zv@E#^Jfh}yJ0yaKK5#!Oli$3;I_ns~dB0tiorfU=FM4!&<5 zPpzS!-QcXlB--P&)46uH3Bl3eS8@sh2YZOES?sQsp$#K*oEhJu{eRpXgC16+QNy$M|xZ9@SHI$(6V-Vw2gumCmt zst!z+7$6N!@?$XQnt)^BWNKj_59Z6!j1!^c_*qgK6PM{RTjf@QP=;|6z*)jdpbd$Dvwt=pwlKJUWHrzwaKpQV#8UfTsNf??K)Vo#x_w z1D8{JrH4R?1@n%4oQ2!u{fO23!*cm~x2Un43`X`J^C z<{hN-jPRqza)7NT!JnAO5uy?#)fKlu^ch~su}nVP%|5)Y2{Bo&mPD#=8gItsP280P z-2d8tT>2O70XujGE*+IPgc=_o=g9uKvb`P?1P~0i&9x_tFTbDQZ$Iy}0xXN)egGx- zLJ^_A2Krqa>G2z!Jtg5H1U1k>S`@?CIL?-+;G!|2u)_pM@pLlfe*7Mx-T{xTDe)nb zC-LZ2rWRnTGh1Oyuv_0gS?{Ombs9_;z(AMw?Lkfz|?BB%sfRr19yV)mdyL4|i56_{2g+rj8>F+{)g z@uy&JfhuTQ37i6^fWdSYIC@kv$K7&C7898F)ZCtEU^a30ro?eK#@_K5VLfe66W#*# z%#a<&)gzSiQ*G`p>q1%h^hW~kxt3vb$sX~HeFtMLt3N3vTwM}BA^1%uiII~-8Du-^ zT=jfv?H3YuCj*ew2>wuXlLp@{PQ{lg=~YV(Kr#W2D-Yk$fF2qyqby5QUM)d!6)R@i zApSlHiM7N}1UgW=9quo|A~jWJrx6ibu1&t>%5q+SGW1ax$XC^_e&X0PQjJAzY%b(F zMOP@rPD`1ob&>SlWx6J!@oi=pc$v*FH%DTi77Ejfmaj44!w}l(kqI8xXidl+oHYOp zJ$f#s@tS0LX`!{=APsmSb4x;T9%J3vPU~vq0;NjpVi*TdgAyj9NHJ^p5oq29KpZAB zIjlBUcY7zWu4fu((TS8W(4QHB!bP1#(#}8D5BFN%`Z$ZgYp@AGR9UpGp^PBa77(a? ziX4XFNEA!|{PKX};;1HX!;y;cMfJgp<;Tx^kdvr%pga~$iIhwyxX~*n^HU>j@(oh$ zuA&~n$4FjpLNv`fMsXmXqRr2=DpDFo(O^}!kEx@0O{l4_1Q%)JLi0G8_=efW z+I+K_k?9*!!3w#g0N?G0;3{fSI_I!Ar$HI z(i4;YIxE(-RJxfq+uXY~Mze3_SZZk(J0_?5%azX7YAZj=u6L5U1vaaryZ!Lf&&~lV zPC{;vD@Kmubz(h&-2j!NNMNclEzeqxPZr^(#T~{a*lB*}@A6THixF8cI?@a8cUO8{E)-`pkMi?d$q)5GL%gH8KC!XLUrXr~=PGrvFCm;yo0 z`$APf9htRcXs`vlVXgFs>a>QY{Am!GYmxJR;!NS?7^Y9(Lg5>KeMcsJeK)caz#vEf zKLEZxApm>;7Gln>_V1sN3;+N~|HmmZ(X}-+P_VZ({bT&MZ#1qUVTIX*viY6m<^wk^ zrK^z`dnmU|G3ZJ}Q4U5$%y$);nqycvFMBW!p5XWasO7Mv<@lY^6?)m)em8VE6f-Cv z7%%v=TFV;vE0djzXljr1h|YNHiviwXP_f_8S-UhnJrNwr1O3|CUE7t_0=tVMhOAJR zF93SQ#dI=v_Nk%j(*Z?@zNbmoUb{79@5JfAc7LlHB0_pUJ|MXz(d?K0yF$d+j3PaT zAZz#lqFiNWW+#~p8LUKqk{Fu)hH;fnyePtL7NWAw&kj$u(hQ+?N0g;NhQi%)tfk3O z*Wc{PpNp3DXHv5!u{lmQCqF|$u1a?2k4|*(Us~CYPJR-5zNVlU(-i+!6cWj&1_=wT zvnt-^VdXg`g3J@y4~?jM05YN~K1Pd0>yu086Q^2I;kti`{}G$4vt(M#svkU81Vrj7 zNHb9a_)}l}ltRrL7ri!`+|x1`bdVm~$3d=|BSMb`gxJn@gv$5mZYU|<-sE^om2G=A z_Fl&Bm$da9eZ+`c`uD>^6X-|2`hh0p=Mbe{%l-Pl_^N9YiQY^%zhd3c$MU~s&XCAc zyZRw1Fo{M9@@H#t;j5nIf_{X8iR5Qm5@!1xbhg?HC-g3v=O!vDs*1ibePHbn5$Ir) z4x{qQDV(ypr&4*w1`exedUnSq9crs0q*09dcW%)xDK;=J3}wloD>vdXQv6O!K=?e6 zz(wC{@mC%51u?HXEVSo^_cf$Qi0U@eg~ktu6%{MVCpgVNsB0_jJ@`SF0>r z(x7&^8Z*7R*J3K*X-8R?>7NfzFw5U_SgSbveY~*N@yCwuwS#ij6sEHU*`#m4UJ`8D z9~&KYL66W7{Zh7p&V*YvZD)+b{tw(I0AUR@q}?>;7#WKwm<5I%i;sa&$LWiW9{S~I zN=7GOlCdF3UyuyH^EEuTDu`7j^;(h7Nn~ig0s|;>qY%x1lB40z8Dvr;Q&3%VdCMkQ@OSlE74>h&z9jZXV)~ zsyv1!kv>o*1|v$X3BoDA)nF~tr9cI4d{`@X=Cp`;w+yEZ$3Anos|~u3jqpQGhyZh+hRj z?6wCV!uax_mGf4JBu16}ywmpz$7BwqA7sbN33uKTwQSnfKpK&-zeGAI&+rwN^YZ4u z3iEXkLC$ zCi|Tg*OEPIJRFoxyg!=pEKlbzw3K0z%67=0xACzjl63-p;%J^UvdlJ5?OB*a zhC(phMt=!xP>T+wNxQ6IFF1Bm1w_|g-Jb(@SyvQb4PV6Bp?ft7Y4;{BZ9tVUXNXsP z$M%uWkCK+TLul}Up(mJg8~WWxRDu06d< zBc&c^`ZaxTYaN!AB0~UlbYRXnJOH)rwvIwEj}kpBAA1792bP^qE5!YPQSxN#;3KGO z&Fs30ii)HnOu^w)mMXy#X5$uN9WYM=sXfDCouSmQ*h)}qc0jv+ew>qvl9ngP+qT4k zdSZ6^;vGSJpLGS};oY>y0LMF_JK?o_Hc|8r*INh(@4W*avz)+0+Gq<=e0b7nc)SRp zmWdRN`VuiNJ+iS9j0t8~V#)I6)%jr~0#Y`;j?FF_eQGdD@em%dT^Rb91UO@pcWTCh zu*$5YYWCf9&Hs8=qRWy;1zgA2L0KRuf6z~P7jVv;}o2wj=&}=a5_5N?*< z2fz#6t%gqb_}H0^3tjA1OID5G{sFh@LCw2b$e9MwYSzdb1{r1?cvFnL82fT5oc+NcrUxN@&ogQ;c8dvgUs+32TKj?kpH^EA<(mcD7L2jMc2Tx1V>Tuo7HF;Y+fD=62r!+v zVjBe3n=3hSf7p&FY`8TiFjMwbF14Jd%O;)Q%bu*B4FOBKEc4_)SOO^C7krRDS@tGxYp(#IG(0WSFd}}nch!w&Gezk`60K=dSC!U9gbTe zUA3^Wl{aJ+hl2D+Pqa+ka|a1KUf`lN_mNDu>6_=v&5LR z;1BT23#XB}q_*3@2aR}@4`vp5w9WStTQ2|6O5g%*T|m!aG3%JQZKJDCG#dD%HySVg|~Wjp`*uMZJ)5N3HyefvS{|Cb1D zhQH&1k}R#tSdfOcWLBN{+GV;y#1R8DiLKk#ES*vdx!WCs2Gzl^%u~b%5S+N*rxQpS}{ze`7@!2+_D{ewMNe77P_MSxt`|6bd_=b z5LJtxL%M9|1AA?T?2d^L;##$B#_}dy*R}~gMvPLVm(=WKtQ*baZ|)UqM4w`@Yt5qu zmh~ZaKDGDo!Ljyi^BmQtehKN^+e{%+?Xg=qvWv=K*RfD*p3Mv8n8@nIxg4c2nMHR4 ze)mlFKy@Lo6x9W3EI};c@}g2>9yR?u{lwW=R8;#Bk=0ebYi)t=3by{djoP*pK7z#o z6J7+Ue$?*&vQwmh{CvpQH=T6(q^1`5dGCqx%!nXZ8JA@+RyJnf+KvGca4GyN;$9Tt z<49CSYJ-|Ok6Mcwl$UdwyBiNP^ol?&+8O{mS*}gkW>@&ywJ()u{>??G_hr^Cu=L>i zXJ!XIUMKzFs=q9KLuse_7b9US(IxbtmT~yy8#-rs1PY)QEo5I)s-mfNfQr<;avZr- ze(Sa)wd~=I&@XxME3DB8WY=vNlg2;FM`N?cFa#JctQ2}z2NiPB$o5#{`?D2u zz1xRkN{QOFmw%AtH#XttR1FE_F8e}5ixOjaD~mOF5MGXl??j$uQOfAYvCSkl!&pF$OUzSsHVUX+3o+Rv=&ar$L6-6Sg z?gdNlYDUxCVkSF9%>JA^i|**&)d)aR_z#d&>u#mf7|E;`UsHI4nY~I=&DD^dO1sB< zGz!2v9)oe-55RD*=HOmT%QzkzbKWn&>^PK}w?}GgfzJnsZ*WkMz)%?)l4qo6U7Ps_ zN#J&9t{Fj5{nQ?;1Xdmk#93CMfDxk3h`nfYLq6yFrPcmUj$_o`v!)EK@s`+R?a}Ja z(dz{dZFV99Xg%fP_Tn9P|CLn!`5pWB&ofWg$Y*Ed_X@zx`#-CD{QXh3KJ7bqR2U)f z3U%3O`jmuKA`L7CA>syvi+Sq)_uvRY5=IIR6royVKKliMOpVhUhf7Tb3VE3tZv?y_ zk*LMXSe4O@ab20XUf1i*nJe?Frj^s!#NNYl^Yl>Ot4&Rd29IYm&X+x9{fcw_+7#~9 zVcCSf2luD))gW)@=i8RH$BG5-CC;fUZ!SEJ)6!nh$LGoEt!K#i#;TwZR|u!+}@K<6$^>ZdIjzetg@0j1X+o4SlHof#J|W|F&s zH$2-+SQ@S%)m_sgDl8aSs5A{v0s4v38PWbPb$`eG+>Gu);!(^P*RMrQoF>9k% zeW9)hovv1mS>!}x=GDcgCH<-9Qj*u_+lR6~kXIKquNCqtk++vOr-xGQb90VhdYlip zI<+p1@q-3NNsX7bSVr3gdG@d^D;C@XYw`}cBH$~SzG2`g)VG5pj$##}C#j@Me;wGG z;U%Qu13RMAGkwKfy1Ok4k*lLNj^*;thW0hyY26c;wz8|EEakVRG+MEa_v>oX(`W(P zP^}FQsIv{?v7!W)z< z$G3@B=VixyBk0!VAo}Ac8|bkXyrgUHq=_BaB8Fh0gJx<$~JM+DT17n6iGiL8`!mbh`E<8v9E}uF1&#o5OlPWlCR^2_L zlf_KrQ@Bc@RYUfvMc3Ft8GLy;pb9g~T2j*{;YY{6U{bK#Z0kLsU9yzx} z$c=cU9S-&LPB!f#$HFayiXcY#`+c_Y4)J#I4)FHyjHR7*}&qg zB}USd&ZX?oF5H*uBMMTK^6el9fbe{Jco5M@qCbehqp?H*^FicG^3Bh(ABT=lyo|W08*(cvxM&*)7L-kV z_z1oG`4I5PqoGA%@&V+5N)%@sl$4*2ng*n3r!y+JBt{M~PyjOv)nm*kt+)uL!SU#$ zK|~>mfMbElz2o^P66`Ip=dsYaH)5d3%itZ1Df6jJqE>4bga9yzrvHK2LAH#DH-9(5 z`y04O%@*H~ziB?QViocO!Q`LpD7Is8RVPK2SC+Zj|267+Sc0w5fV@ijPpnETKaQ#@ zq%ddHG_*w3B8uz4o1<%;gAg#%1^Gat(L{lWKw|+%e31CW@e;&a8(~h$fPgUw@ZjM9 ziGIWai1`@s+2VmlBZwBnMxq}^Z<4VUABgPS>bt(^+JO@R5&VNe%=)q-`Z%1adFY-J zMpKU<)N()lv_YAGM4^cQV}VAz_xT|4h@-`cwfX`*6l~6wqyw1+nZuv3av-$8|2bx* zu3szM-Eu%Ww0W=@+7(Ifqn0=f$iIwgA?u}!^A;ATJ7lyg>Z_c$89UAH{V#%E&YtA= zRB$J=kqKlrC@t5WMy$V*H%7Y$$^M5B<~JfJ8(5{m=*3%1Pu2W9`iU~XD@ESO7mH3|9tg<%Pu zpb4H5ihbF$R^KqPC;!H+|1Uw=vta){eXYJ9O0Ou2uYW0+c-O*Tq{F8Ew>}5{EWM{L zzSsDcV1j4aUy!&=|81jxb4V(n^8b#CBXB0s8(#*Ob&6r7Xz}>k^8xW4K=hv`5Tij1 zBeRbCNRE|RVC6{36m?y7b`jLq8Mt9m^Fs85fp#zY$>_0Z!#}k@W_%-ayHthK$-S_) zaC<{|A?ED4(cV*}XWpQO^|-4U<<W=@1ueEK_Zq7`A4X*NGN7qLSOxt9k%Xj&h!ax z6)VhWPlt`}-!QJ0@;x$s7^S-xDTRic^;SQ0`XKbG#e- zn<-`_KKMDJ8{XXA>cq~>hpTog$I`RUDnoEQWo}j2n z7p}f2^O{)m=m@5@EGLuMXxATqNm2zJ1{?+!R<+C+{NlAwLjlkL?_=~E$@fx=f*bDsEmwYwo$n+B$x9!IYzYm`drhk_Qk>$f1GQt!i}Kgkfk4e9+<(mq^0}O?{IxO5rE&bdg+eo)ml!oSUSURFlfFU~-RaG~YA?nb6Cnzqjhs(Y{c1W% z>r3afF$`gXcG{KZQeiZy%42~?RJg;Yp9>$h?-;fl4z;)ouyxUNTQL3&_wXPj{L)N{tR8vAHaI^^l2c&b7;Ptqnt3=Ung8qiG4rc{ zvv+wKra%&bQ3up|j6|#Urc7uXgVVyC8Q4~rET`Q`XwH1@rb45Z&a#&u3-FzY7)Uj6 zpBAN4noYcE!y+NCN#0k){H^g~rwS1dn)e>Ol0z^+Ly`8>;r2P8t(qlV8H-fB!4`83 zQlxY+ORw@3Qdx(%r?#CR)$Z#N$`2p9oYdc`J&$XrsQ0d2F0pAAMNDd2R*&^6kIzfM zmI_rTrZ^wIC_!%%Mqcj%D1B3yTRLC3|8|CHpc7;h`3{`Fh54UnnEza4e5ab1e#gyk z{T(--14xVZun(^P$aQX1w`AO}JOW?|FqFc*^3|!N=%=oSLW)lM%j4rgCFzplNN2Nd z-Z@SvrPy6JG{+KyA!>nTWe zuw64bsFY)psw^CqA#5~NtvtjE~7iz?H`L9mmd0Tc=hNn1#y+r6frE%#IM_tb*kxbRLO0;rKPOSE2ZMy4^BR+WYykbW_Wqa1>or4bO z*F61e!*ghSoR9Gw%H?Gtz9Oi6?m+n`a-RYqZrIF6XRJ>-8Y$CbO#6#!<<;ucs3XA5 zd~_9s#$0kHe<+4}>$`+suZN^O{q|Z$%h7>vqw|;p&>|Lmv^-h0JNtSmzvMa4rjxu%bb%*CO6H6H2FEaI`rPd#+xvR~H}GAV9KT)g;+(n?hwy*=v$= zIeb7)>P8q>LZlxgKCEMv5PU!}M0MbA>dXG9CI(`#L;=bfgs;YFptpAA)`gcimQI)A zZ%Scz&cF&(%Nr}U2$N!6@{ky!N)v}2jjUTQxx>MAWME}bn;usqK>Qf-*~IMIBJBvS z%uJ{`X+IlqR_6?calKt^Zk{w>gaPG{n8rEMR*%wp3hI+O@22lLW!_C#Qr|8?ai*NX z-F)FQPyVOiwvq_^|7q{c|C+k803H`Wga9J47|LQO1qqMq9K^cU^ zutpFC0|SUCp^>F*f*=rNv4FD5BC(=jRk2nefL8Xc8K@{SFL63AywCd&X6_I9YDpcaxHx5WY5$+E?hYu9K#9&Q{7T(1=!yXm(#?QvEN^e^V zCsRewWf2VBW=LuSHAckHb_d0~*OvngpA-CkrFX25+NjaV%S#_hUVlgPze9ED>En_u zuGW43c=YHu7aDTSi}#nsUZ|&;w36+_x6i8oK)QS4M}Q?-Jvo3!!~Kx)H%$21NrqkIx=3PRYJhKrLdjUCGDq)Nk^ugs)lbEQ2b4B{U$2Su98h?jlWADkl#J#{IxtmFo5*U2mn`bUqD!iB)hm{;D0EMi`U=U%Iaj33HoY<;cP zqx&W!lQuh#+i+bOaaGzGH=ZW@M_S&NIXb82U|S_yGS;yE#V5)%>*gXI6F(TMKX|#JJ4=^{J1*3!gMz?=F(=ULLI`h)+0TLu?frj3iI( ziPziJF<_9p?+@{`x zlDawiXX4zSak~vAdKyQKZ9eD}tFuEL=Tl6~$rRlQxoe)|DO!iStGyfjYTETB7K0Ph z&8wGG%9>T;n!|d<7jjUzDb@WEJPEjIzO*|P*#+2<18``uL)g-M$yCz+O%42ep{H?z z-m1yPtuR-m5}L0s8vFaw5?0e}QcZrmgMU$Gx_xlxZj=l*^s~JiPicwRxtwgevv#UG zJ$UZPXe{f`Cv_HPZ8Q>3cEG4(TMgE6k|R5EPe1K};>Xt7ch~!>9)BMZ)$R4DjIJAZ zfij*fq97L`XZt3-U2pNywmOZ+*CNl=6AG=4R`0KPuYN1Y3Zoz$wMC=nzEi&?mmzjs z^fdA8o?-Q(jMT8{tQ~41F{19hZ9B6Zm!6(9?Y^QemK+X(P|C+SwV0uR9Z43jW(&XyoE`P+frv>Sjvii?b zg2b#IXFcI3O}E1`g!=|MQVEd=l&Xnz6|N%B51qm)%)7Go-`a|sHtPbuNPl}MIdoVy z<^d+42>5LCqo+1D4=Zv|2q`GU`vi?b3O>a*346PZfLdoPng>YXff)-hGNJYwuqtmV z>3p!h9{&|8*mvY;&ncki96)NfkQf5N*AeMIlk(17PX@A7SBAlY$IWP>P%Kab_i;!Y@Fa z?M4bt7M3DNS_7phm0hS`jtpKI8e-3301HE1ehEg(gVJU(DU?_!g zWQ3dvRNFkrf>O%OVJXINV*^^59=ySk?ywX=oqDJ)&;px>x+Ge*^Qd%JTpK literal 0 HcmV?d00001