Skip to content

Explicit information in tutorials. #195

@borisalmonacid

Description

@borisalmonacid

Please add explicitly in these tutorials whether it is a minimization or maximization problem.

https://github.com/IOHprofiler/IOHexperimenter/blob/master/example/example_star_discr.ipynb
https://github.com/IOHprofiler/IOHexperimenter/blob/master/example/example_sbox.ipynb
https://github.com/IOHprofiler/IOHexperimenter/blob/master/example/example_submodular.ipynb

Add the explicit information in the tutorial example.

class RandomSearch:
    'Simple random search algorithm'
    def __init__(self, n: int, length: float = 0.0):
        self.n: int = n
        self.length: float = length
        
    def __call__(self, problem: ioh.problem.RealSingleObjective) -> None:
        'Evaluate the problem n times with a randomly generated solution'
        best_fitness = 99999              <-- for minimisation
        for _ in range(self.n):
            # We can use the problems bounds accessor to get information about the problem bounds
            x = np.random.uniform(problem.bounds.lb, problem.bounds.ub)
            self.length = np.linalg.norm(x)
            
            fitness = problem(x)          <-- get fitness
            if fitness < best_fitness:    <-- explicit minimisation
                 best_fitness = fitness   <-- explicit asignation

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions