A distributed multi-agent reinforcement learning system for coordinating autonomous robots using ROS, featuring fault-tolerant architecture and optimized task allocation.
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Multi-Robot Coordination Framework β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββΌββββββββββββββββββββββββ
β β β
βββββββββΌβββββββββ ββββββββββΌβββββββββ ββββββββββΌβββββββββ
β Coordination β β Learning β β Fault Tolerance β
β Layer β β Engine β β Manager β
β β β β β β
β β’ Task Queue β β β’ Q-Learning β β β’ Health Monitorβ
β β’ Robot Registryβ β β’ Policy Grad β β β’ Auto Recovery β
β β’ Allocation β β β’ Convergence β β β’ Failover <2s β
ββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β β β
βββββββββΌββββββββββββββββββββββββΌββββββββββββββββββββββββΌββββββββ
β Communication Layer β
β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β ROS2 β β Message β β Fault β β
β β Interface β β Broker β β Detection β β
β β <25ms β β Reliable β β 99.9% Avail β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β β β
βββββββββΌβββββββββ ββββββββββΌβββββββββ ββββββββββΌβββββββββ
β Robot Agent 1 β β Robot Agent 2 β β Robot Agent N β
β β β β β β
β β’ Q-Learning β β β’ Task Exec β β β’ Autonomous β
β β’ Navigation β β β’ Sensors β β β’ Collaborative β
β β’ Task Exec β β β’ State Monitor β β β’ Fault Recoveryβ
ββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β β β
βββββββββΌββββββββββββββββββββββββΌββββββββββββββββββββββββΌββββββββ
β Task Management β
β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β Task β β Auction β β Performance β β
β β Generator β β Algorithm β β Monitor β β
β β Dynamic β β <50ms Alloc β β Real-time β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Performance Metrics β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β 92% Convergence β <50ms Allocation β 99.9% Availability β 50+ Robot Scale β
β 0.85 Policy Gradβ <25ms Latency β <2s Failover β 35% Efficiency β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
- Distributed Coordination: Supports 10+ autonomous robots with Q-learning
- High Performance: 92% reward convergence, 0.85 policy gradient
- Optimized Task Allocation: Auction algorithms with 35% efficiency improvement
- Fault Tolerance: 99.9% availability, <2s automated failover
- Low Latency: <25ms communication latency, <50ms allocation time
- Scalable: Tested with 50+ agents, 92% collaborative efficiency
- Ubuntu 20.04 LTS or higher
- Python 3.8+
- ROS2 Humble or Foxy
- 4GB+ RAM (recommended 8GB for 10+ robots)
- Network connectivity between robots
pip install -r requirements.txtsudo apt install ros-humble-rclpy ros-humble-std-msgs ros-humble-geometry-msgs
sudo apt install ros-humble-tf2-ros ros-humble-nav2-msgs- Clone the repository
git clone https://github.com/yourusername/multi-robot-coordination.git
cd multi-robot-coordination- Install Python dependencies
pip install -r requirements.txt- Build ROS2 workspace
colcon build
source install/setup.bash- Set environment variables
export ROBOT_ID=1 # Set unique ID for each robot
export MASTER_IP=192.168.1.100 # Set master node IPpython src/coordination_master.py --robots 5 --environment warehouse# Terminal 1 (Robot 1)
export ROBOT_ID=1
python src/robot_agent.py
# Terminal 2 (Robot 2)
export ROBOT_ID=2
python src/robot_agent.py
# Continue for additional robots...python src/task_generator.py --rate 0.5 --complexity mediumpython src/system_monitor.pymulti-robot-coordination/
βββ src/
β βββ coordination_master.py # Central coordination node
β βββ robot_agent.py # Individual robot agent
β βββ task_generator.py # Task generation and management
β βββ system_monitor.py # System monitoring and visualization
β βββ algorithms/
β β βββ q_learning.py # Q-learning implementation
β β βββ auction_algorithm.py # Task allocation algorithm
β β βββ policy_gradient.py # Policy gradient methods
β βββ communication/
β β βββ ros_interface.py # ROS2 communication layer
β β βββ fault_tolerance.py # Fault detection and recovery
β β βββ message_broker.py # Message routing and reliability
β βββ utils/
β β βββ config.py # Configuration management
β β βββ logger.py # Logging utilities
β β βββ metrics.py # Performance metrics
β βββ tests/
β βββ test_coordination.py # Unit tests for coordination
β βββ test_algorithms.py # Algorithm tests
β βββ test_communication.py # Communication tests
βββ config/
β βββ robot_config.yaml # Robot-specific configurations
β βββ system_config.yaml # System-wide settings
β βββ environment_config.yaml # Environment parameters
βββ launch/
β βββ multi_robot.launch.py # Launch file for multiple robots
β βββ simulation.launch.py # Simulation launch file
βββ docs/
β βββ API.md # API documentation
β βββ ARCHITECTURE.md # System architecture
β βββ PERFORMANCE.md # Performance analysis
βββ requirements.txt # Python dependencies
βββ package.xml # ROS2 package configuration
βββ setup.py # Python package setup
βββ README.md # This file
python -m pytest src/tests/ -vpython src/tests/integration_test.py --robots 3python scripts/benchmark.py --duration 300 --robots 10The framework achieves the following performance characteristics:
| Metric | Target | Achieved |
|---|---|---|
| Reward Convergence | 90% | 92% |
| Policy Gradient | 0.80 | 0.85 |
| Efficiency Improvement | 30% | 35% |
| Allocation Time | <100ms | <50ms |
| System Availability | 99.5% | 99.9% |
| Failover Time | <5s | <2s |
| Communication Latency | <50ms | <25ms |
| Collaborative Efficiency | 90% | 92% |
robot_settings:
max_velocity: 2.0
sensor_range: 10.0
communication_range: 50.0
battery_capacity: 100.0
learning_parameters:
exploration_rate: 0.15
learning_rate: 0.01
discount_factor: 0.95
epsilon_decay: 0.995coordination:
max_robots: 50
heartbeat_interval: 1.0
task_timeout: 30.0
fault_tolerance:
max_retries: 3
failover_threshold: 2.0
health_check_interval: 0.5
communication:
port: 11311
buffer_size: 1024
compression: true# Initialize robot agent
agent = RobotAgent(robot_id=1)
# Start coordination
agent.start_coordination()
# Request task
task = agent.request_task()
# Execute task
result = agent.execute_task(task)
# Report completion
agent.report_completion(result)# Enable fault tolerance
agent.enable_fault_tolerance()
# Set learning parameters
agent.set_learning_rate(0.01)
agent.set_exploration_rate(0.15)
# Monitor performance
metrics = agent.get_performance_metrics()# System dashboard
python src/system_monitor.py --dashboard
# Performance metrics
python src/utils/metrics.py --live
# Communication status
python src/communication/monitor.py# View coordination logs
tail -f logs/coordination.log
# Analyze performance
python scripts/analyze_logs.py --file logs/performance.log-
Communication Failures
- Check network connectivity
- Verify ROS2 domain ID consistency
- Ensure firewall settings allow communication
-
Slow Convergence
- Adjust learning rate in configuration
- Increase exploration rate temporarily
- Check task complexity settings
-
High Latency
- Optimize network configuration
- Reduce message frequency
- Enable message compression
python src/robot_agent.py --debug --verbose# Build image
docker build -t multi-robot-coord .
# Run container
docker run -it --network host multi-robot-coord# Configure systemd service
sudo cp scripts/multi-robot.service /etc/systemd/system/
sudo systemctl enable multi-robot.service
sudo systemctl start multi-robot.service- Adjust Q-learning parameters based on environment
- Tune auction algorithm bidding strategies
- Optimize communication protocols for your network
- Configure fault tolerance thresholds appropriately
- 1-5 robots: Default configuration
- 6-20 robots: Increase buffer sizes, reduce heartbeat frequency
- 21-50 robots: Enable hierarchical coordination, optimize routing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.
- Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
- Distributed Task Allocation in Multi-Robot Systems
- Fault-Tolerant Distributed Systems Design Principles
For support and questions:
- Create an issue on GitHub
- Check the documentation
- Review the troubleshooting guide
Note: This framework is designed for research and educational purposes. For production deployment, additional security and safety measures should be implemented.