Skip to content

Commit 9a6713e

Browse files
Automated commit of generated code
1 parent 106b70a commit 9a6713e

File tree

8 files changed

+14
-14
lines changed

8 files changed

+14
-14
lines changed

core/generated-sources/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/DataColumnType.kt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ public fun AnyCol.isPrimitiveOrMixedNumber(): Boolean = type().isPrimitiveOrMixe
6767

6868
public fun AnyCol.isList(): Boolean = typeClass == List::class
6969

70-
/** Returns `true` if [this] column is intra-comparable, i.e.
70+
/** Returns `true` if [this] column is intra-comparable (mutually comparable), i.e.,
7171
* its values can be compared with each other and thus ordered.
7272
*
7373
* If true, operations like [`min()`][AnyCol.min], [`max()`][AnyCol.max], [`median()`][AnyCol.median], etc.
@@ -82,7 +82,7 @@ public fun AnyCol.isList(): Boolean = typeClass == List::class
8282
public fun AnyCol.isComparable(): Boolean = valuesAreComparable()
8383

8484
/**
85-
* Returns `true` if [this] column is intra-comparable, i.e.
85+
* Returns `true` if [this] column is intra-comparable (mutually comparable), i.e.,
8686
* its values can be compared with each other and thus ordered.
8787
*
8888
* If true, operations like [`min()`][AnyCol.min], [`max()`][AnyCol.max], [`median()`][AnyCol.median], etc.

core/generated-sources/src/main/kotlin/org/jetbrains/kotlinx/dataframe/impl/TypeUtils.kt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -696,7 +696,7 @@ internal fun Iterable<Any?>.types(): Set<KType> =
696696
}
697697

698698
/**
699-
* Checks whether this KType adheres to `T : Comparable<T & Any>?`, aka, it is comparable with itself.
699+
* Checks whether this KType adheres to `T : Comparable<T & Any>?`, aka, it is mutually comparable with itself.
700700
*/
701701
internal fun KType.isIntraComparable(): Boolean =
702702
this.isSubtypeOf(

core/generated-sources/src/main/kotlin/org/jetbrains/kotlinx/dataframe/impl/aggregation/getColumns.kt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ internal inline fun <T> Aggregatable<T>.remainingColumns(
1818
): ColumnsSelector<T, Any?> = remainingColumnsSelector().filter { predicate(it.data) }
1919

2020
/**
21-
* Emulates selecting all columns whose values are comparable to each other.
21+
* Emulates selecting all columns whose values are mutually comparable to each other.
2222
* These are columns of type `R` where `R : Comparable<R>`.
2323
*
2424
* There is no way to denote this generically in types, however,

core/generated-sources/src/test/kotlin/org/jetbrains/kotlinx/dataframe/samples/api/Analyze.kt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -179,7 +179,7 @@ class Analyze : TestBase() {
179179
@TransformDataFrameExpressions
180180
fun minmaxModes() {
181181
// SampleStart
182-
df.min() // min of values per every comparable column
182+
df.min() // min of values for every comparable column with mutually comparable values
183183
df.min { age and weight } // min of all values in `age` and `weight`
184184
df.minFor(skipNaN = true) { age and name.firstName } // min of values per `age` and `firstName` separately
185185
df.minOf { (weight ?: 0) / age } // min of expression evaluated for every row
@@ -203,7 +203,7 @@ class Analyze : TestBase() {
203203
@TransformDataFrameExpressions
204204
fun medianModes() {
205205
// SampleStart
206-
df.median() // median of values per every comparable column
206+
df.median() // median of values for every column with mutually comparable values
207207
df.median { age and weight } // median of all values in `age` and `weight`
208208
df.medianFor(skipNaN = true) { age and name.firstName } // median of values per `age` and `firstName` separately
209209
df.medianOf { (weight ?: 0) / age } // median of expression evaluated for every row
@@ -227,7 +227,7 @@ class Analyze : TestBase() {
227227
@TransformDataFrameExpressions
228228
fun percentileModes() {
229229
// SampleStart
230-
df.percentile(25.0) // 25th percentile of values per every comparable column
230+
df.percentile(25.0) // 25th percentile of values for every column with mutually comparable values
231231
df.percentile(75.0) { age and weight } // 75th percentile of all values in `age` and `weight`
232232
df.percentileFor(50.0, skipNaN = true) { age and name.firstName } // 50th percentile of values per `age` and `firstName` separately
233233
df.percentileOf(75.0) { (weight ?: 0) / age } // 75th percentile of expression evaluated for every row
@@ -638,7 +638,7 @@ class Analyze : TestBase() {
638638
@TransformDataFrameExpressions
639639
fun groupByDirectAggregations_properties() {
640640
// SampleStart
641-
df.groupBy { city }.max() // max for every comparable column
641+
df.groupBy { city }.max() // max for every column with mutually comparable values
642642
df.groupBy { city }.mean() // mean for every numeric column
643643
df.groupBy { city }.max { age } // max age into column "age"
644644
df.groupBy { city }.sum("total weight") { weight } // sum of weights into column "total weight"
@@ -657,7 +657,7 @@ class Analyze : TestBase() {
657657
@TransformDataFrameExpressions
658658
fun groupByDirectAggregations_strings() {
659659
// SampleStart
660-
df.groupBy("city").max() // max for every comparable column
660+
df.groupBy("city").max() // max for every column with mutually comparable values
661661
df.groupBy("city").mean() // mean for every numeric column
662662
df.groupBy("city").max("age") // max age into column "age"
663663
df.groupBy("city").sum("weight", name = "total weight") // sum of weights into column "total weight"

docs/StardustDocs/topics/groupBy.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -215,7 +215,7 @@ Most common aggregation functions can be computed directly at [`GroupBy DataFram
215215
<tab title="Properties">
216216

217217
```kotlin
218-
df.groupBy { city }.max() // max for every comparable column
218+
df.groupBy { city }.max() // max for every column with mutually comparable values
219219
df.groupBy { city }.mean() // mean for every numeric column
220220
df.groupBy { city }.max { age } // max age into column "age"
221221
df.groupBy { city }.sum("total weight") { weight } // sum of weights into column "total weight"
@@ -233,7 +233,7 @@ df.groupBy { city }.meanOf("mean ratio") { weight?.div(age) } // mean of weight/
233233
<tab title="Strings">
234234

235235
```kotlin
236-
df.groupBy("city").max() // max for every comparable column
236+
df.groupBy("city").max() // max for every column with mutually comparable values
237237
df.groupBy("city").mean() // mean for every numeric column
238238
df.groupBy("city").max("age") // max age into column "age"
239239
df.groupBy("city").sum("weight", name = "total weight") // sum of weights into column "total weight"

docs/StardustDocs/topics/median.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ When it's set to `true`, `NaN` values are ignored.
3030
<!---FUN medianModes-->
3131

3232
```kotlin
33-
df.median() // median of values per every comparable column
33+
df.median() // median of values for every column with mutually comparable values
3434
df.median { age and weight } // median of all values in `age` and `weight`
3535
df.medianFor(skipNaN = true) { age and name.firstName } // median of values per `age` and `firstName` separately
3636
df.medianOf { (weight ?: 0) / age } // median of expression evaluated for every row

docs/StardustDocs/topics/minmax.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ When it's set to `true`, `NaN` values are ignored.
1919
<!---FUN minmaxModes-->
2020

2121
```kotlin
22-
df.min() // min of values per every comparable column
22+
df.min() // min of values for every comparable column with mutually comparable values
2323
df.min { age and weight } // min of all values in `age` and `weight`
2424
df.minFor(skipNaN = true) { age and name.firstName } // min of values per `age` and `firstName` separately
2525
df.minOf { (weight ?: 0) / age } // min of expression evaluated for every row

docs/StardustDocs/topics/percentile.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ In the future we might add an option to change the quantile estimation method.
5252
<!---FUN percentileModes-->
5353

5454
```kotlin
55-
df.percentile(25.0) // 25th percentile of values per every comparable column
55+
df.percentile(25.0) // 25th percentile of values for every column with mutually comparable values
5656
df.percentile(75.0) { age and weight } // 75th percentile of all values in `age` and `weight`
5757
df.percentileFor(50.0, skipNaN = true) { age and name.firstName } // 50th percentile of values per `age` and `firstName` separately
5858
df.percentileOf(75.0) { (weight ?: 0) / age } // 75th percentile of expression evaluated for every row

0 commit comments

Comments
 (0)