diff --git a/.ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb b/.ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb
new file mode 100644
index 0000000..02b14e5
--- /dev/null
+++ b/.ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb
@@ -0,0 +1,3599 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "2LTtpUJEibjg"
+ },
+ "source": [
+ "# Pandas Exercise :\n",
+ "\n",
+ "\n",
+ "#### import necessary modules"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "c3_UBbMRhiKx"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "tp-cTCyWi8mR"
+ },
+ "source": [
+ "#### Load url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\" to a dataframe named wine_df\n",
+ "\n",
+ "This is a wine dataset\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "DMojQY3thrRi"
+ },
+ "outputs": [],
+ "source": [
+ "wine_df = pd.read_csv(\"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "BF9MMjoZjSlg"
+ },
+ "source": [
+ "#### print first five rows"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "colab_type": "code",
+ "id": "1vSMQdnHjYNU",
+ "outputId": "d5521c9a-0974-41fe-b0a6-12c26fc828f3"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n",
+ "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n",
+ "\n",
+ " 1065 \n",
+ "0 1050 \n",
+ "1 1185 \n",
+ "2 1480 \n",
+ "3 735 \n",
+ "4 1450 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "Tet6P2DvjY3T"
+ },
+ "source": [
+ "#### assign wine_df to a different variable wine_df_copy and then delete all odd rows of wine_df_copy\n",
+ "\n",
+ "[Hint](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 571
+ },
+ "colab_type": "code",
+ "id": "CMj3qSdJjx0u",
+ "outputId": "f466433c-6f8f-4188-dfd1-a9ddfdc71264"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.380000 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.800000 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.750000 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 1 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.050000 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.220000 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 1 | \n",
+ " 14.12 | \n",
+ " 1.48 | \n",
+ " 2.32 | \n",
+ " 16.8 | \n",
+ " 95 | \n",
+ " 2.20 | \n",
+ " 2.43 | \n",
+ " 0.26 | \n",
+ " 1.57 | \n",
+ " 5.000000 | \n",
+ " 1.17 | \n",
+ " 2.82 | \n",
+ " 1280 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 1 | \n",
+ " 14.75 | \n",
+ " 1.73 | \n",
+ " 2.39 | \n",
+ " 11.4 | \n",
+ " 91 | \n",
+ " 3.10 | \n",
+ " 3.69 | \n",
+ " 0.43 | \n",
+ " 2.81 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 2.73 | \n",
+ " 1150 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 1 | \n",
+ " 13.63 | \n",
+ " 1.81 | \n",
+ " 2.70 | \n",
+ " 17.2 | \n",
+ " 112 | \n",
+ " 2.85 | \n",
+ " 2.91 | \n",
+ " 0.30 | \n",
+ " 1.46 | \n",
+ " 7.300000 | \n",
+ " 1.28 | \n",
+ " 2.88 | \n",
+ " 1310 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 1 | \n",
+ " 13.83 | \n",
+ " 1.57 | \n",
+ " 2.62 | \n",
+ " 20.0 | \n",
+ " 115 | \n",
+ " 2.95 | \n",
+ " 3.40 | \n",
+ " 0.40 | \n",
+ " 1.72 | \n",
+ " 6.600000 | \n",
+ " 1.13 | \n",
+ " 2.57 | \n",
+ " 1130 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 1 | \n",
+ " 13.64 | \n",
+ " 3.10 | \n",
+ " 2.56 | \n",
+ " 15.2 | \n",
+ " 116 | \n",
+ " 2.70 | \n",
+ " 3.03 | \n",
+ " 0.17 | \n",
+ " 1.66 | \n",
+ " 5.100000 | \n",
+ " 0.96 | \n",
+ " 3.36 | \n",
+ " 845 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 1 | \n",
+ " 12.93 | \n",
+ " 3.80 | \n",
+ " 2.65 | \n",
+ " 18.6 | \n",
+ " 102 | \n",
+ " 2.41 | \n",
+ " 2.41 | \n",
+ " 0.25 | \n",
+ " 1.98 | \n",
+ " 4.500000 | \n",
+ " 1.03 | \n",
+ " 3.52 | \n",
+ " 770 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 1 | \n",
+ " 12.85 | \n",
+ " 1.60 | \n",
+ " 2.52 | \n",
+ " 17.8 | \n",
+ " 95 | \n",
+ " 2.48 | \n",
+ " 2.37 | \n",
+ " 0.26 | \n",
+ " 1.46 | \n",
+ " 3.930000 | \n",
+ " 1.09 | \n",
+ " 3.63 | \n",
+ " 1015 | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 1 | \n",
+ " 13.05 | \n",
+ " 2.05 | \n",
+ " 3.22 | \n",
+ " 25.0 | \n",
+ " 124 | \n",
+ " 2.63 | \n",
+ " 2.68 | \n",
+ " 0.47 | \n",
+ " 1.92 | \n",
+ " 3.580000 | \n",
+ " 1.13 | \n",
+ " 3.20 | \n",
+ " 830 | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 1 | \n",
+ " 13.30 | \n",
+ " 1.72 | \n",
+ " 2.14 | \n",
+ " 17.0 | \n",
+ " 94 | \n",
+ " 2.40 | \n",
+ " 2.19 | \n",
+ " 0.27 | \n",
+ " 1.35 | \n",
+ " 3.950000 | \n",
+ " 1.02 | \n",
+ " 2.77 | \n",
+ " 1285 | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 1 | \n",
+ " 14.02 | \n",
+ " 1.68 | \n",
+ " 2.21 | \n",
+ " 16.0 | \n",
+ " 96 | \n",
+ " 2.65 | \n",
+ " 2.33 | \n",
+ " 0.26 | \n",
+ " 1.98 | \n",
+ " 4.700000 | \n",
+ " 1.04 | \n",
+ " 3.59 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 30 | \n",
+ " 1 | \n",
+ " 13.58 | \n",
+ " 1.66 | \n",
+ " 2.36 | \n",
+ " 19.1 | \n",
+ " 106 | \n",
+ " 2.86 | \n",
+ " 3.19 | \n",
+ " 0.22 | \n",
+ " 1.95 | \n",
+ " 6.900000 | \n",
+ " 1.09 | \n",
+ " 2.88 | \n",
+ " 1515 | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 1 | \n",
+ " 13.76 | \n",
+ " 1.53 | \n",
+ " 2.70 | \n",
+ " 19.5 | \n",
+ " 132 | \n",
+ " 2.95 | \n",
+ " 2.74 | \n",
+ " 0.50 | \n",
+ " 1.35 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 3.00 | \n",
+ " 1235 | \n",
+ "
\n",
+ " \n",
+ " | 34 | \n",
+ " 1 | \n",
+ " 13.48 | \n",
+ " 1.81 | \n",
+ " 2.41 | \n",
+ " 20.5 | \n",
+ " 100 | \n",
+ " 2.70 | \n",
+ " 2.98 | \n",
+ " 0.26 | \n",
+ " 1.86 | \n",
+ " 5.100000 | \n",
+ " 1.04 | \n",
+ " 3.47 | \n",
+ " 920 | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 1 | \n",
+ " 13.05 | \n",
+ " 1.65 | \n",
+ " 2.55 | \n",
+ " 18.0 | \n",
+ " 98 | \n",
+ " 2.45 | \n",
+ " 2.43 | \n",
+ " 0.29 | \n",
+ " 1.44 | \n",
+ " 4.250000 | \n",
+ " 1.12 | \n",
+ " 2.51 | \n",
+ " 1105 | \n",
+ "
\n",
+ " \n",
+ " | 38 | \n",
+ " 1 | \n",
+ " 14.22 | \n",
+ " 3.99 | \n",
+ " 2.51 | \n",
+ " 13.2 | \n",
+ " 128 | \n",
+ " 3.00 | \n",
+ " 3.04 | \n",
+ " 0.20 | \n",
+ " 2.08 | \n",
+ " 5.100000 | \n",
+ " 0.89 | \n",
+ " 3.53 | \n",
+ " 760 | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 1 | \n",
+ " 13.41 | \n",
+ " 3.84 | \n",
+ " 2.12 | \n",
+ " 18.8 | \n",
+ " 90 | \n",
+ " 2.45 | \n",
+ " 2.68 | \n",
+ " 0.27 | \n",
+ " 1.48 | \n",
+ " 4.280000 | \n",
+ " 0.91 | \n",
+ " 3.00 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 42 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 3.98 | \n",
+ " 2.29 | \n",
+ " 17.5 | \n",
+ " 103 | \n",
+ " 2.64 | \n",
+ " 2.63 | \n",
+ " 0.32 | \n",
+ " 1.66 | \n",
+ " 4.360000 | \n",
+ " 0.82 | \n",
+ " 3.00 | \n",
+ " 680 | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 1 | \n",
+ " 14.21 | \n",
+ " 4.04 | \n",
+ " 2.44 | \n",
+ " 18.9 | \n",
+ " 111 | \n",
+ " 2.85 | \n",
+ " 2.65 | \n",
+ " 0.30 | \n",
+ " 1.25 | \n",
+ " 5.240000 | \n",
+ " 0.87 | \n",
+ " 3.33 | \n",
+ " 1080 | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 1 | \n",
+ " 13.90 | \n",
+ " 1.68 | \n",
+ " 2.12 | \n",
+ " 16.0 | \n",
+ " 101 | \n",
+ " 3.10 | \n",
+ " 3.39 | \n",
+ " 0.21 | \n",
+ " 2.14 | \n",
+ " 6.100000 | \n",
+ " 0.91 | \n",
+ " 3.33 | \n",
+ " 985 | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 1 | \n",
+ " 13.94 | \n",
+ " 1.73 | \n",
+ " 2.27 | \n",
+ " 17.4 | \n",
+ " 108 | \n",
+ " 2.88 | \n",
+ " 3.54 | \n",
+ " 0.32 | \n",
+ " 2.08 | \n",
+ " 8.900000 | \n",
+ " 1.12 | \n",
+ " 3.10 | \n",
+ " 1260 | \n",
+ "
\n",
+ " \n",
+ " | 50 | \n",
+ " 1 | \n",
+ " 13.83 | \n",
+ " 1.65 | \n",
+ " 2.60 | \n",
+ " 17.2 | \n",
+ " 94 | \n",
+ " 2.45 | \n",
+ " 2.99 | \n",
+ " 0.22 | \n",
+ " 2.29 | \n",
+ " 5.600000 | \n",
+ " 1.24 | \n",
+ " 3.37 | \n",
+ " 1265 | \n",
+ "
\n",
+ " \n",
+ " | 52 | \n",
+ " 1 | \n",
+ " 13.77 | \n",
+ " 1.90 | \n",
+ " 2.68 | \n",
+ " 17.1 | \n",
+ " 115 | \n",
+ " 3.00 | \n",
+ " 2.79 | \n",
+ " 0.39 | \n",
+ " 1.68 | \n",
+ " 6.300000 | \n",
+ " 1.13 | \n",
+ " 2.93 | \n",
+ " 1375 | \n",
+ "
\n",
+ " \n",
+ " | 54 | \n",
+ " 1 | \n",
+ " 13.56 | \n",
+ " 1.73 | \n",
+ " 2.46 | \n",
+ " 20.5 | \n",
+ " 116 | \n",
+ " 2.96 | \n",
+ " 2.78 | \n",
+ " 0.20 | \n",
+ " 2.45 | \n",
+ " 6.250000 | \n",
+ " 0.98 | \n",
+ " 3.03 | \n",
+ " 1120 | \n",
+ "
\n",
+ " \n",
+ " | 56 | \n",
+ " 1 | \n",
+ " 13.29 | \n",
+ " 1.97 | \n",
+ " 2.68 | \n",
+ " 16.8 | \n",
+ " 102 | \n",
+ " 3.00 | \n",
+ " 3.23 | \n",
+ " 0.31 | \n",
+ " 1.66 | \n",
+ " 6.000000 | \n",
+ " 1.07 | \n",
+ " 2.84 | \n",
+ " 1270 | \n",
+ "
\n",
+ " \n",
+ " | 58 | \n",
+ " 2 | \n",
+ " 12.37 | \n",
+ " 0.94 | \n",
+ " 1.36 | \n",
+ " 10.6 | \n",
+ " 88 | \n",
+ " 1.98 | \n",
+ " 0.57 | \n",
+ " 0.28 | \n",
+ " 0.42 | \n",
+ " 1.950000 | \n",
+ " 1.05 | \n",
+ " 1.82 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 118 | \n",
+ " 2 | \n",
+ " 12.00 | \n",
+ " 3.43 | \n",
+ " 2.00 | \n",
+ " 19.0 | \n",
+ " 87 | \n",
+ " 2.00 | \n",
+ " 1.64 | \n",
+ " 0.37 | \n",
+ " 1.87 | \n",
+ " 1.280000 | \n",
+ " 0.93 | \n",
+ " 3.05 | \n",
+ " 564 | \n",
+ "
\n",
+ " \n",
+ " | 120 | \n",
+ " 2 | \n",
+ " 11.56 | \n",
+ " 2.05 | \n",
+ " 3.23 | \n",
+ " 28.5 | \n",
+ " 119 | \n",
+ " 3.18 | \n",
+ " 5.08 | \n",
+ " 0.47 | \n",
+ " 1.87 | \n",
+ " 6.000000 | \n",
+ " 0.93 | \n",
+ " 3.69 | \n",
+ " 465 | \n",
+ "
\n",
+ " \n",
+ " | 122 | \n",
+ " 2 | \n",
+ " 13.05 | \n",
+ " 5.80 | \n",
+ " 2.13 | \n",
+ " 21.5 | \n",
+ " 86 | \n",
+ " 2.62 | \n",
+ " 2.65 | \n",
+ " 0.30 | \n",
+ " 2.01 | \n",
+ " 2.600000 | \n",
+ " 0.73 | \n",
+ " 3.10 | \n",
+ " 380 | \n",
+ "
\n",
+ " \n",
+ " | 124 | \n",
+ " 2 | \n",
+ " 12.07 | \n",
+ " 2.16 | \n",
+ " 2.17 | \n",
+ " 21.0 | \n",
+ " 85 | \n",
+ " 2.60 | \n",
+ " 2.65 | \n",
+ " 0.37 | \n",
+ " 1.35 | \n",
+ " 2.760000 | \n",
+ " 0.86 | \n",
+ " 3.28 | \n",
+ " 378 | \n",
+ "
\n",
+ " \n",
+ " | 126 | \n",
+ " 2 | \n",
+ " 11.79 | \n",
+ " 2.13 | \n",
+ " 2.78 | \n",
+ " 28.5 | \n",
+ " 92 | \n",
+ " 2.13 | \n",
+ " 2.24 | \n",
+ " 0.58 | \n",
+ " 1.76 | \n",
+ " 3.000000 | \n",
+ " 0.97 | \n",
+ " 2.44 | \n",
+ " 466 | \n",
+ "
\n",
+ " \n",
+ " | 128 | \n",
+ " 2 | \n",
+ " 12.04 | \n",
+ " 4.30 | \n",
+ " 2.38 | \n",
+ " 22.0 | \n",
+ " 80 | \n",
+ " 2.10 | \n",
+ " 1.75 | \n",
+ " 0.42 | \n",
+ " 1.35 | \n",
+ " 2.600000 | \n",
+ " 0.79 | \n",
+ " 2.57 | \n",
+ " 580 | \n",
+ "
\n",
+ " \n",
+ " | 130 | \n",
+ " 3 | \n",
+ " 12.88 | \n",
+ " 2.99 | \n",
+ " 2.40 | \n",
+ " 20.0 | \n",
+ " 104 | \n",
+ " 1.30 | \n",
+ " 1.22 | \n",
+ " 0.24 | \n",
+ " 0.83 | \n",
+ " 5.400000 | \n",
+ " 0.74 | \n",
+ " 1.42 | \n",
+ " 530 | \n",
+ "
\n",
+ " \n",
+ " | 132 | \n",
+ " 3 | \n",
+ " 12.70 | \n",
+ " 3.55 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 106 | \n",
+ " 1.70 | \n",
+ " 1.20 | \n",
+ " 0.17 | \n",
+ " 0.84 | \n",
+ " 5.000000 | \n",
+ " 0.78 | \n",
+ " 1.29 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " | 134 | \n",
+ " 3 | \n",
+ " 12.60 | \n",
+ " 2.46 | \n",
+ " 2.20 | \n",
+ " 18.5 | \n",
+ " 94 | \n",
+ " 1.62 | \n",
+ " 0.66 | \n",
+ " 0.63 | \n",
+ " 0.94 | \n",
+ " 7.100000 | \n",
+ " 0.73 | \n",
+ " 1.58 | \n",
+ " 695 | \n",
+ "
\n",
+ " \n",
+ " | 136 | \n",
+ " 3 | \n",
+ " 12.53 | \n",
+ " 5.51 | \n",
+ " 2.64 | \n",
+ " 25.0 | \n",
+ " 96 | \n",
+ " 1.79 | \n",
+ " 0.60 | \n",
+ " 0.63 | \n",
+ " 1.10 | \n",
+ " 5.000000 | \n",
+ " 0.82 | \n",
+ " 1.69 | \n",
+ " 515 | \n",
+ "
\n",
+ " \n",
+ " | 138 | \n",
+ " 3 | \n",
+ " 12.84 | \n",
+ " 2.96 | \n",
+ " 2.61 | \n",
+ " 24.0 | \n",
+ " 101 | \n",
+ " 2.32 | \n",
+ " 0.60 | \n",
+ " 0.53 | \n",
+ " 0.81 | \n",
+ " 4.920000 | \n",
+ " 0.89 | \n",
+ " 2.15 | \n",
+ " 590 | \n",
+ "
\n",
+ " \n",
+ " | 140 | \n",
+ " 3 | \n",
+ " 13.36 | \n",
+ " 2.56 | \n",
+ " 2.35 | \n",
+ " 20.0 | \n",
+ " 89 | \n",
+ " 1.40 | \n",
+ " 0.50 | \n",
+ " 0.37 | \n",
+ " 0.64 | \n",
+ " 5.600000 | \n",
+ " 0.70 | \n",
+ " 2.47 | \n",
+ " 780 | \n",
+ "
\n",
+ " \n",
+ " | 142 | \n",
+ " 3 | \n",
+ " 13.62 | \n",
+ " 4.95 | \n",
+ " 2.35 | \n",
+ " 20.0 | \n",
+ " 92 | \n",
+ " 2.00 | \n",
+ " 0.80 | \n",
+ " 0.47 | \n",
+ " 1.02 | \n",
+ " 4.400000 | \n",
+ " 0.91 | \n",
+ " 2.05 | \n",
+ " 550 | \n",
+ "
\n",
+ " \n",
+ " | 144 | \n",
+ " 3 | \n",
+ " 13.16 | \n",
+ " 3.57 | \n",
+ " 2.15 | \n",
+ " 21.0 | \n",
+ " 102 | \n",
+ " 1.50 | \n",
+ " 0.55 | \n",
+ " 0.43 | \n",
+ " 1.30 | \n",
+ " 4.000000 | \n",
+ " 0.60 | \n",
+ " 1.68 | \n",
+ " 830 | \n",
+ "
\n",
+ " \n",
+ " | 146 | \n",
+ " 3 | \n",
+ " 12.87 | \n",
+ " 4.61 | \n",
+ " 2.48 | \n",
+ " 21.5 | \n",
+ " 86 | \n",
+ " 1.70 | \n",
+ " 0.65 | \n",
+ " 0.47 | \n",
+ " 0.86 | \n",
+ " 7.650000 | \n",
+ " 0.54 | \n",
+ " 1.86 | \n",
+ " 625 | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 3 | \n",
+ " 13.08 | \n",
+ " 3.90 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 113 | \n",
+ " 1.41 | \n",
+ " 1.39 | \n",
+ " 0.34 | \n",
+ " 1.14 | \n",
+ " 9.400000 | \n",
+ " 0.57 | \n",
+ " 1.33 | \n",
+ " 550 | \n",
+ "
\n",
+ " \n",
+ " | 150 | \n",
+ " 3 | \n",
+ " 12.79 | \n",
+ " 2.67 | \n",
+ " 2.48 | \n",
+ " 22.0 | \n",
+ " 112 | \n",
+ " 1.48 | \n",
+ " 1.36 | \n",
+ " 0.24 | \n",
+ " 1.26 | \n",
+ " 10.800000 | \n",
+ " 0.48 | \n",
+ " 1.47 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 152 | \n",
+ " 3 | \n",
+ " 13.23 | \n",
+ " 3.30 | \n",
+ " 2.28 | \n",
+ " 18.5 | \n",
+ " 98 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.61 | \n",
+ " 1.87 | \n",
+ " 10.520000 | \n",
+ " 0.56 | \n",
+ " 1.51 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 154 | \n",
+ " 3 | \n",
+ " 13.17 | \n",
+ " 5.19 | \n",
+ " 2.32 | \n",
+ " 22.0 | \n",
+ " 93 | \n",
+ " 1.74 | \n",
+ " 0.63 | \n",
+ " 0.61 | \n",
+ " 1.55 | \n",
+ " 7.900000 | \n",
+ " 0.60 | \n",
+ " 1.48 | \n",
+ " 725 | \n",
+ "
\n",
+ " \n",
+ " | 156 | \n",
+ " 3 | \n",
+ " 12.45 | \n",
+ " 3.03 | \n",
+ " 2.64 | \n",
+ " 27.0 | \n",
+ " 97 | \n",
+ " 1.90 | \n",
+ " 0.58 | \n",
+ " 0.63 | \n",
+ " 1.14 | \n",
+ " 7.500000 | \n",
+ " 0.67 | \n",
+ " 1.73 | \n",
+ " 880 | \n",
+ "
\n",
+ " \n",
+ " | 158 | \n",
+ " 3 | \n",
+ " 13.48 | \n",
+ " 1.67 | \n",
+ " 2.64 | \n",
+ " 22.5 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 1.10 | \n",
+ " 0.52 | \n",
+ " 2.29 | \n",
+ " 11.750000 | \n",
+ " 0.57 | \n",
+ " 1.78 | \n",
+ " 620 | \n",
+ "
\n",
+ " \n",
+ " | 160 | \n",
+ " 3 | \n",
+ " 13.69 | \n",
+ " 3.26 | \n",
+ " 2.54 | \n",
+ " 20.0 | \n",
+ " 107 | \n",
+ " 1.83 | \n",
+ " 0.56 | \n",
+ " 0.50 | \n",
+ " 0.80 | \n",
+ " 5.880000 | \n",
+ " 0.96 | \n",
+ " 1.82 | \n",
+ " 680 | \n",
+ "
\n",
+ " \n",
+ " | 162 | \n",
+ " 3 | \n",
+ " 12.96 | \n",
+ " 3.45 | \n",
+ " 2.35 | \n",
+ " 18.5 | \n",
+ " 106 | \n",
+ " 1.39 | \n",
+ " 0.70 | \n",
+ " 0.40 | \n",
+ " 0.94 | \n",
+ " 5.280000 | \n",
+ " 0.68 | \n",
+ " 1.75 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 164 | \n",
+ " 3 | \n",
+ " 13.73 | \n",
+ " 4.36 | \n",
+ " 2.26 | \n",
+ " 22.5 | \n",
+ " 88 | \n",
+ " 1.28 | \n",
+ " 0.47 | \n",
+ " 0.52 | \n",
+ " 1.15 | \n",
+ " 6.620000 | \n",
+ " 0.78 | \n",
+ " 1.75 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 166 | \n",
+ " 3 | \n",
+ " 12.82 | \n",
+ " 3.37 | \n",
+ " 2.30 | \n",
+ " 19.5 | \n",
+ " 88 | \n",
+ " 1.48 | \n",
+ " 0.66 | \n",
+ " 0.40 | \n",
+ " 0.97 | \n",
+ " 10.260000 | \n",
+ " 0.72 | \n",
+ " 1.75 | \n",
+ " 685 | \n",
+ "
\n",
+ " \n",
+ " | 168 | \n",
+ " 3 | \n",
+ " 13.40 | \n",
+ " 4.60 | \n",
+ " 2.86 | \n",
+ " 25.0 | \n",
+ " 112 | \n",
+ " 1.98 | \n",
+ " 0.96 | \n",
+ " 0.27 | \n",
+ " 1.11 | \n",
+ " 8.500000 | \n",
+ " 0.67 | \n",
+ " 1.92 | \n",
+ " 630 | \n",
+ "
\n",
+ " \n",
+ " | 170 | \n",
+ " 3 | \n",
+ " 12.77 | \n",
+ " 2.39 | \n",
+ " 2.28 | \n",
+ " 19.5 | \n",
+ " 86 | \n",
+ " 1.39 | \n",
+ " 0.51 | \n",
+ " 0.48 | \n",
+ " 0.64 | \n",
+ " 9.899999 | \n",
+ " 0.57 | \n",
+ " 1.63 | \n",
+ " 470 | \n",
+ "
\n",
+ " \n",
+ " | 172 | \n",
+ " 3 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.700000 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 3 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.200000 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 3 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.200000 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
89 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 1.05 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 0.86 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 1.05 \n",
+ "6 1 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 1.06 \n",
+ "8 1 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 1.01 \n",
+ "10 1 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 1.17 \n",
+ "12 1 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 1.25 \n",
+ "14 1 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 1.28 \n",
+ "16 1 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 1.13 \n",
+ "18 1 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 0.96 \n",
+ "20 1 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 1.03 \n",
+ "22 1 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 1.09 \n",
+ "24 1 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 1.13 \n",
+ "26 1 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 1.02 \n",
+ "28 1 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 1.04 \n",
+ "30 1 13.58 1.66 2.36 19.1 106 2.86 3.19 0.22 1.95 6.900000 1.09 \n",
+ "32 1 13.76 1.53 2.70 19.5 132 2.95 2.74 0.50 1.35 5.400000 1.25 \n",
+ "34 1 13.48 1.81 2.41 20.5 100 2.70 2.98 0.26 1.86 5.100000 1.04 \n",
+ "36 1 13.05 1.65 2.55 18.0 98 2.45 2.43 0.29 1.44 4.250000 1.12 \n",
+ "38 1 14.22 3.99 2.51 13.2 128 3.00 3.04 0.20 2.08 5.100000 0.89 \n",
+ "40 1 13.41 3.84 2.12 18.8 90 2.45 2.68 0.27 1.48 4.280000 0.91 \n",
+ "42 1 13.24 3.98 2.29 17.5 103 2.64 2.63 0.32 1.66 4.360000 0.82 \n",
+ "44 1 14.21 4.04 2.44 18.9 111 2.85 2.65 0.30 1.25 5.240000 0.87 \n",
+ "46 1 13.90 1.68 2.12 16.0 101 3.10 3.39 0.21 2.14 6.100000 0.91 \n",
+ "48 1 13.94 1.73 2.27 17.4 108 2.88 3.54 0.32 2.08 8.900000 1.12 \n",
+ "50 1 13.83 1.65 2.60 17.2 94 2.45 2.99 0.22 2.29 5.600000 1.24 \n",
+ "52 1 13.77 1.90 2.68 17.1 115 3.00 2.79 0.39 1.68 6.300000 1.13 \n",
+ "54 1 13.56 1.73 2.46 20.5 116 2.96 2.78 0.20 2.45 6.250000 0.98 \n",
+ "56 1 13.29 1.97 2.68 16.8 102 3.00 3.23 0.31 1.66 6.000000 1.07 \n",
+ "58 2 12.37 0.94 1.36 10.6 88 1.98 0.57 0.28 0.42 1.950000 1.05 \n",
+ ".. .. ... ... ... ... ... ... ... ... ... ... ... \n",
+ "118 2 12.00 3.43 2.00 19.0 87 2.00 1.64 0.37 1.87 1.280000 0.93 \n",
+ "120 2 11.56 2.05 3.23 28.5 119 3.18 5.08 0.47 1.87 6.000000 0.93 \n",
+ "122 2 13.05 5.80 2.13 21.5 86 2.62 2.65 0.30 2.01 2.600000 0.73 \n",
+ "124 2 12.07 2.16 2.17 21.0 85 2.60 2.65 0.37 1.35 2.760000 0.86 \n",
+ "126 2 11.79 2.13 2.78 28.5 92 2.13 2.24 0.58 1.76 3.000000 0.97 \n",
+ "128 2 12.04 4.30 2.38 22.0 80 2.10 1.75 0.42 1.35 2.600000 0.79 \n",
+ "130 3 12.88 2.99 2.40 20.0 104 1.30 1.22 0.24 0.83 5.400000 0.74 \n",
+ "132 3 12.70 3.55 2.36 21.5 106 1.70 1.20 0.17 0.84 5.000000 0.78 \n",
+ "134 3 12.60 2.46 2.20 18.5 94 1.62 0.66 0.63 0.94 7.100000 0.73 \n",
+ "136 3 12.53 5.51 2.64 25.0 96 1.79 0.60 0.63 1.10 5.000000 0.82 \n",
+ "138 3 12.84 2.96 2.61 24.0 101 2.32 0.60 0.53 0.81 4.920000 0.89 \n",
+ "140 3 13.36 2.56 2.35 20.0 89 1.40 0.50 0.37 0.64 5.600000 0.70 \n",
+ "142 3 13.62 4.95 2.35 20.0 92 2.00 0.80 0.47 1.02 4.400000 0.91 \n",
+ "144 3 13.16 3.57 2.15 21.0 102 1.50 0.55 0.43 1.30 4.000000 0.60 \n",
+ "146 3 12.87 4.61 2.48 21.5 86 1.70 0.65 0.47 0.86 7.650000 0.54 \n",
+ "148 3 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 0.57 \n",
+ "150 3 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 0.48 \n",
+ "152 3 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 0.56 \n",
+ "154 3 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 0.60 \n",
+ "156 3 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 0.67 \n",
+ "158 3 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 0.57 \n",
+ "160 3 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 0.96 \n",
+ "162 3 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 0.68 \n",
+ "164 3 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 0.78 \n",
+ "166 3 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 0.72 \n",
+ "168 3 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 0.67 \n",
+ "170 3 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 0.57 \n",
+ "172 3 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 0.64 \n",
+ "174 3 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 0.59 \n",
+ "176 3 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 0.61 \n",
+ "\n",
+ " 3.92 1065 \n",
+ "0 3.40 1050 \n",
+ "2 3.45 1480 \n",
+ "4 2.85 1450 \n",
+ "6 3.58 1295 \n",
+ "8 3.55 1045 \n",
+ "10 2.82 1280 \n",
+ "12 2.73 1150 \n",
+ "14 2.88 1310 \n",
+ "16 2.57 1130 \n",
+ "18 3.36 845 \n",
+ "20 3.52 770 \n",
+ "22 3.63 1015 \n",
+ "24 3.20 830 \n",
+ "26 2.77 1285 \n",
+ "28 3.59 1035 \n",
+ "30 2.88 1515 \n",
+ "32 3.00 1235 \n",
+ "34 3.47 920 \n",
+ "36 2.51 1105 \n",
+ "38 3.53 760 \n",
+ "40 3.00 1035 \n",
+ "42 3.00 680 \n",
+ "44 3.33 1080 \n",
+ "46 3.33 985 \n",
+ "48 3.10 1260 \n",
+ "50 3.37 1265 \n",
+ "52 2.93 1375 \n",
+ "54 3.03 1120 \n",
+ "56 2.84 1270 \n",
+ "58 1.82 520 \n",
+ ".. ... ... \n",
+ "118 3.05 564 \n",
+ "120 3.69 465 \n",
+ "122 3.10 380 \n",
+ "124 3.28 378 \n",
+ "126 2.44 466 \n",
+ "128 2.57 580 \n",
+ "130 1.42 530 \n",
+ "132 1.29 600 \n",
+ "134 1.58 695 \n",
+ "136 1.69 515 \n",
+ "138 2.15 590 \n",
+ "140 2.47 780 \n",
+ "142 2.05 550 \n",
+ "144 1.68 830 \n",
+ "146 1.86 625 \n",
+ "148 1.33 550 \n",
+ "150 1.47 480 \n",
+ "152 1.51 675 \n",
+ "154 1.48 725 \n",
+ "156 1.73 880 \n",
+ "158 1.78 620 \n",
+ "160 1.82 680 \n",
+ "162 1.75 675 \n",
+ "164 1.75 520 \n",
+ "166 1.75 685 \n",
+ "168 1.92 630 \n",
+ "170 1.63 470 \n",
+ "172 1.74 740 \n",
+ "174 1.56 835 \n",
+ "176 1.60 560 \n",
+ "\n",
+ "[89 rows x 14 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df_copy = wine_df.copy(deep =True)\n",
+ "wine_df_copy.head()\n",
+ "odd_rows= [i for i in range(1,len(wine_df_copy.count(axis = 1))) if i%2!=0]\n",
+ "wine_df_copy.drop(odd_rows)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "o6Cs6T1Rjz71"
+ },
+ "source": [
+ "#### Assign the columns as below:\n",
+ "\n",
+ "The attributes are (dontated by Riccardo Leardi, riclea '@' anchem.unige.it): \n",
+ "1) Alcohol \n",
+ "2) Malic acid \n",
+ "3) Ash \n",
+ "4) Alcalinity of ash \n",
+ "5) Magnesium \n",
+ "6) Total phenols \n",
+ "7) Flavanoids \n",
+ "8) Nonflavanoid phenols \n",
+ "9) Proanthocyanins \n",
+ "10)Color intensity \n",
+ "11)Hue \n",
+ "12)OD280/OD315 of diluted wines \n",
+ "13)Proline "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "my8HB4V4j779"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Count | \n",
+ " Alcohol | \n",
+ " MAlic acid | \n",
+ " Ash | \n",
+ " Alcalinity of ash | \n",
+ " Magnesium | \n",
+ " Total phenols | \n",
+ " Flavanoids | \n",
+ " Nonflavanoid phenols | \n",
+ " Proanthocyanins | \n",
+ " Color intensity | \n",
+ " Hue | \n",
+ " OD280/OD315 OF diluted wines | \n",
+ " Proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 \n",
+ "1 1 13.16 2.36 2.67 18.6 101 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 \n",
+ "\n",
+ " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n",
+ "0 2.65 2.76 0.26 1.28 \n",
+ "1 2.80 3.24 0.30 2.81 \n",
+ "2 3.85 3.49 0.24 2.18 \n",
+ "3 2.80 2.69 0.39 1.82 \n",
+ "4 3.27 3.39 0.34 1.97 \n",
+ "\n",
+ " Color intensity Hue OD280/OD315 OF diluted wines Proline \n",
+ "0 4.38 1.05 3.40 1050 \n",
+ "1 5.68 1.03 3.17 1185 \n",
+ "2 7.80 0.86 3.45 1480 \n",
+ "3 4.32 1.04 2.93 735 \n",
+ "4 6.75 1.05 2.85 1450 "
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.columns = ['Count','Alcohol','MAlic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids','Nonflavanoid phenols', 'Proanthocyanins','Color intensity','Hue', 'OD280/OD315 OF diluted wines', 'Proline']\n",
+ "wine_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "Zqi7hwWpkNbH"
+ },
+ "source": [
+ "#### Set the values of the first 3 rows from alcohol as NaN\n",
+ "\n",
+ "Hint- Use iloc to select 3 rows of wine_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "buyT4vX4kPMl"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Count | \n",
+ " Alcohol | \n",
+ " MAlic acid | \n",
+ " Ash | \n",
+ " Alcalinity of ash | \n",
+ " Magnesium | \n",
+ " Total phenols | \n",
+ " Flavanoids | \n",
+ " Nonflavanoid phenols | \n",
+ " Proanthocyanins | \n",
+ " Color intensity | \n",
+ " Hue | \n",
+ " OD280/OD315 OF diluted wines | \n",
+ " Proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1.0 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118.0 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735.0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1.0 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112.0 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n",
+ "0 NaN NaN NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN NaN NaN \n",
+ "3 1.0 13.24 2.59 2.87 21.0 118.0 \n",
+ "4 1.0 14.20 1.76 2.45 15.2 112.0 \n",
+ "\n",
+ " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n",
+ "0 NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN \n",
+ "3 2.80 2.69 0.39 1.82 \n",
+ "4 3.27 3.39 0.34 1.97 \n",
+ "\n",
+ " Color intensity Hue OD280/OD315 OF diluted wines Proline \n",
+ "0 NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN \n",
+ "3 4.32 1.04 2.93 735.0 \n",
+ "4 6.75 1.05 2.85 1450.0 "
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.iloc[:3]=np.nan\n",
+ "wine_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "RQMNI2UHkP3o"
+ },
+ "source": [
+ "#### Create an array of 10 random numbers uptill 10 and assign it to a variable named `random`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "xunmCjaEmDwZ"
+ },
+ "outputs": [],
+ "source": [
+ "from random import *\n",
+ "random=[]\n",
+ "for i in range(10):\n",
+ " random.append(randrange(0,10))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "hELUakyXmFSu"
+ },
+ "source": [
+ "#### Use random numbers you generated as an index and assign NaN value to each of cell of the column alcohol"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "zMgaNnNHmP01"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Count | \n",
+ " Alcohol | \n",
+ " MAlic acid | \n",
+ " Ash | \n",
+ " Alcalinity of ash | \n",
+ " Magnesium | \n",
+ " Total phenols | \n",
+ " Flavanoids | \n",
+ " Nonflavanoid phenols | \n",
+ " Proanthocyanins | \n",
+ " Color intensity | \n",
+ " Hue | \n",
+ " OD280/OD315 OF diluted wines | \n",
+ " Proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118.0 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735.0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112.0 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450.0 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1.87 | \n",
+ " 2.45 | \n",
+ " 14.6 | \n",
+ " 96.0 | \n",
+ " 2.50 | \n",
+ " 2.52 | \n",
+ " 0.30 | \n",
+ " 1.98 | \n",
+ " 5.25 | \n",
+ " 1.02 | \n",
+ " 3.58 | \n",
+ " 1290.0 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121.0 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.05 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295.0 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 1.0 | \n",
+ " 14.83 | \n",
+ " 1.64 | \n",
+ " 2.17 | \n",
+ " 14.0 | \n",
+ " 97.0 | \n",
+ " 2.80 | \n",
+ " 2.98 | \n",
+ " 0.29 | \n",
+ " 1.98 | \n",
+ " 5.20 | \n",
+ " 1.08 | \n",
+ " 2.85 | \n",
+ " 1045.0 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1.0 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98.0 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.22 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045.0 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 2.16 | \n",
+ " 2.30 | \n",
+ " 18.0 | \n",
+ " 105.0 | \n",
+ " 2.95 | \n",
+ " 3.32 | \n",
+ " 0.22 | \n",
+ " 2.38 | \n",
+ " 5.75 | \n",
+ " 1.25 | \n",
+ " 3.17 | \n",
+ " 1510.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n",
+ "0 NaN NaN NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN NaN NaN \n",
+ "3 1.0 NaN 2.59 2.87 21.0 118.0 \n",
+ "4 1.0 NaN 1.76 2.45 15.2 112.0 \n",
+ "5 1.0 NaN 1.87 2.45 14.6 96.0 \n",
+ "6 1.0 14.06 2.15 2.61 17.6 121.0 \n",
+ "7 1.0 14.83 1.64 2.17 14.0 97.0 \n",
+ "8 1.0 13.86 1.35 2.27 16.0 98.0 \n",
+ "9 1.0 NaN 2.16 2.30 18.0 105.0 \n",
+ "\n",
+ " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n",
+ "0 NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN \n",
+ "3 2.80 2.69 0.39 1.82 \n",
+ "4 3.27 3.39 0.34 1.97 \n",
+ "5 2.50 2.52 0.30 1.98 \n",
+ "6 2.60 2.51 0.31 1.25 \n",
+ "7 2.80 2.98 0.29 1.98 \n",
+ "8 2.98 3.15 0.22 1.85 \n",
+ "9 2.95 3.32 0.22 2.38 \n",
+ "\n",
+ " Color intensity Hue OD280/OD315 OF diluted wines Proline \n",
+ "0 NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN \n",
+ "3 4.32 1.04 2.93 735.0 \n",
+ "4 6.75 1.05 2.85 1450.0 \n",
+ "5 5.25 1.02 3.58 1290.0 \n",
+ "6 5.05 1.06 3.58 1295.0 \n",
+ "7 5.20 1.08 2.85 1045.0 \n",
+ "8 7.22 1.01 3.55 1045.0 \n",
+ "9 5.75 1.25 3.17 1510.0 "
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.loc[random,'Alcohol']=np.nan\n",
+ "wine_df.head(10)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "PHyK_vRsmRwV"
+ },
+ "source": [
+ "#### How many missing values do we have? \n",
+ "\n",
+ "Hint: you can use isnull() and sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "EnOYhmEqmfKp"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "46"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.isnull()\n",
+ "wine_df.isnull().sum().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "-Fd4WBklmf1_"
+ },
+ "source": [
+ "#### Delete the rows that contain missing values "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "As7IC6Ktms8-"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Count | \n",
+ " Alcohol | \n",
+ " MAlic acid | \n",
+ " Ash | \n",
+ " Alcalinity of ash | \n",
+ " Magnesium | \n",
+ " Total phenols | \n",
+ " Flavanoids | \n",
+ " Nonflavanoid phenols | \n",
+ " Proanthocyanins | \n",
+ " Color intensity | \n",
+ " Hue | \n",
+ " OD280/OD315 OF diluted wines | \n",
+ " Proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 6 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121.0 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.050000 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295.0 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 1.0 | \n",
+ " 14.83 | \n",
+ " 1.64 | \n",
+ " 2.17 | \n",
+ " 14.0 | \n",
+ " 97.0 | \n",
+ " 2.80 | \n",
+ " 2.98 | \n",
+ " 0.29 | \n",
+ " 1.98 | \n",
+ " 5.200000 | \n",
+ " 1.08 | \n",
+ " 2.85 | \n",
+ " 1045.0 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1.0 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98.0 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.220000 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045.0 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 1.0 | \n",
+ " 14.12 | \n",
+ " 1.48 | \n",
+ " 2.32 | \n",
+ " 16.8 | \n",
+ " 95.0 | \n",
+ " 2.20 | \n",
+ " 2.43 | \n",
+ " 0.26 | \n",
+ " 1.57 | \n",
+ " 5.000000 | \n",
+ " 1.17 | \n",
+ " 2.82 | \n",
+ " 1280.0 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 1.0 | \n",
+ " 13.75 | \n",
+ " 1.73 | \n",
+ " 2.41 | \n",
+ " 16.0 | \n",
+ " 89.0 | \n",
+ " 2.60 | \n",
+ " 2.76 | \n",
+ " 0.29 | \n",
+ " 1.81 | \n",
+ " 5.600000 | \n",
+ " 1.15 | \n",
+ " 2.90 | \n",
+ " 1320.0 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 1.0 | \n",
+ " 14.75 | \n",
+ " 1.73 | \n",
+ " 2.39 | \n",
+ " 11.4 | \n",
+ " 91.0 | \n",
+ " 3.10 | \n",
+ " 3.69 | \n",
+ " 0.43 | \n",
+ " 2.81 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 2.73 | \n",
+ " 1150.0 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 1.0 | \n",
+ " 14.38 | \n",
+ " 1.87 | \n",
+ " 2.38 | \n",
+ " 12.0 | \n",
+ " 102.0 | \n",
+ " 3.30 | \n",
+ " 3.64 | \n",
+ " 0.29 | \n",
+ " 2.96 | \n",
+ " 7.500000 | \n",
+ " 1.20 | \n",
+ " 3.00 | \n",
+ " 1547.0 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 1.0 | \n",
+ " 13.63 | \n",
+ " 1.81 | \n",
+ " 2.70 | \n",
+ " 17.2 | \n",
+ " 112.0 | \n",
+ " 2.85 | \n",
+ " 2.91 | \n",
+ " 0.30 | \n",
+ " 1.46 | \n",
+ " 7.300000 | \n",
+ " 1.28 | \n",
+ " 2.88 | \n",
+ " 1310.0 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 1.0 | \n",
+ " 14.30 | \n",
+ " 1.92 | \n",
+ " 2.72 | \n",
+ " 20.0 | \n",
+ " 120.0 | \n",
+ " 2.80 | \n",
+ " 3.14 | \n",
+ " 0.33 | \n",
+ " 1.97 | \n",
+ " 6.200000 | \n",
+ " 1.07 | \n",
+ " 2.65 | \n",
+ " 1280.0 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 1.0 | \n",
+ " 13.83 | \n",
+ " 1.57 | \n",
+ " 2.62 | \n",
+ " 20.0 | \n",
+ " 115.0 | \n",
+ " 2.95 | \n",
+ " 3.40 | \n",
+ " 0.40 | \n",
+ " 1.72 | \n",
+ " 6.600000 | \n",
+ " 1.13 | \n",
+ " 2.57 | \n",
+ " 1130.0 | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 1.0 | \n",
+ " 14.19 | \n",
+ " 1.59 | \n",
+ " 2.48 | \n",
+ " 16.5 | \n",
+ " 108.0 | \n",
+ " 3.30 | \n",
+ " 3.93 | \n",
+ " 0.32 | \n",
+ " 1.86 | \n",
+ " 8.700000 | \n",
+ " 1.23 | \n",
+ " 2.82 | \n",
+ " 1680.0 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 1.0 | \n",
+ " 13.64 | \n",
+ " 3.10 | \n",
+ " 2.56 | \n",
+ " 15.2 | \n",
+ " 116.0 | \n",
+ " 2.70 | \n",
+ " 3.03 | \n",
+ " 0.17 | \n",
+ " 1.66 | \n",
+ " 5.100000 | \n",
+ " 0.96 | \n",
+ " 3.36 | \n",
+ " 845.0 | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 1.63 | \n",
+ " 2.28 | \n",
+ " 16.0 | \n",
+ " 126.0 | \n",
+ " 3.00 | \n",
+ " 3.17 | \n",
+ " 0.24 | \n",
+ " 2.10 | \n",
+ " 5.650000 | \n",
+ " 1.09 | \n",
+ " 3.71 | \n",
+ " 780.0 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 1.0 | \n",
+ " 12.93 | \n",
+ " 3.80 | \n",
+ " 2.65 | \n",
+ " 18.6 | \n",
+ " 102.0 | \n",
+ " 2.41 | \n",
+ " 2.41 | \n",
+ " 0.25 | \n",
+ " 1.98 | \n",
+ " 4.500000 | \n",
+ " 1.03 | \n",
+ " 3.52 | \n",
+ " 770.0 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 1.0 | \n",
+ " 13.71 | \n",
+ " 1.86 | \n",
+ " 2.36 | \n",
+ " 16.6 | \n",
+ " 101.0 | \n",
+ " 2.61 | \n",
+ " 2.88 | \n",
+ " 0.27 | \n",
+ " 1.69 | \n",
+ " 3.800000 | \n",
+ " 1.11 | \n",
+ " 4.00 | \n",
+ " 1035.0 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 1.0 | \n",
+ " 12.85 | \n",
+ " 1.60 | \n",
+ " 2.52 | \n",
+ " 17.8 | \n",
+ " 95.0 | \n",
+ " 2.48 | \n",
+ " 2.37 | \n",
+ " 0.26 | \n",
+ " 1.46 | \n",
+ " 3.930000 | \n",
+ " 1.09 | \n",
+ " 3.63 | \n",
+ " 1015.0 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 1.0 | \n",
+ " 13.50 | \n",
+ " 1.81 | \n",
+ " 2.61 | \n",
+ " 20.0 | \n",
+ " 96.0 | \n",
+ " 2.53 | \n",
+ " 2.61 | \n",
+ " 0.28 | \n",
+ " 1.66 | \n",
+ " 3.520000 | \n",
+ " 1.12 | \n",
+ " 3.82 | \n",
+ " 845.0 | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 1.0 | \n",
+ " 13.05 | \n",
+ " 2.05 | \n",
+ " 3.22 | \n",
+ " 25.0 | \n",
+ " 124.0 | \n",
+ " 2.63 | \n",
+ " 2.68 | \n",
+ " 0.47 | \n",
+ " 1.92 | \n",
+ " 3.580000 | \n",
+ " 1.13 | \n",
+ " 3.20 | \n",
+ " 830.0 | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " 1.0 | \n",
+ " 13.39 | \n",
+ " 1.77 | \n",
+ " 2.62 | \n",
+ " 16.1 | \n",
+ " 93.0 | \n",
+ " 2.85 | \n",
+ " 2.94 | \n",
+ " 0.34 | \n",
+ " 1.45 | \n",
+ " 4.800000 | \n",
+ " 0.92 | \n",
+ " 3.22 | \n",
+ " 1195.0 | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 1.0 | \n",
+ " 13.30 | \n",
+ " 1.72 | \n",
+ " 2.14 | \n",
+ " 17.0 | \n",
+ " 94.0 | \n",
+ " 2.40 | \n",
+ " 2.19 | \n",
+ " 0.27 | \n",
+ " 1.35 | \n",
+ " 3.950000 | \n",
+ " 1.02 | \n",
+ " 2.77 | \n",
+ " 1285.0 | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 1.0 | \n",
+ " 13.87 | \n",
+ " 1.90 | \n",
+ " 2.80 | \n",
+ " 19.4 | \n",
+ " 107.0 | \n",
+ " 2.95 | \n",
+ " 2.97 | \n",
+ " 0.37 | \n",
+ " 1.76 | \n",
+ " 4.500000 | \n",
+ " 1.25 | \n",
+ " 3.40 | \n",
+ " 915.0 | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 1.0 | \n",
+ " 14.02 | \n",
+ " 1.68 | \n",
+ " 2.21 | \n",
+ " 16.0 | \n",
+ " 96.0 | \n",
+ " 2.65 | \n",
+ " 2.33 | \n",
+ " 0.26 | \n",
+ " 1.98 | \n",
+ " 4.700000 | \n",
+ " 1.04 | \n",
+ " 3.59 | \n",
+ " 1035.0 | \n",
+ "
\n",
+ " \n",
+ " | 29 | \n",
+ " 1.0 | \n",
+ " 13.73 | \n",
+ " 1.50 | \n",
+ " 2.70 | \n",
+ " 22.5 | \n",
+ " 101.0 | \n",
+ " 3.00 | \n",
+ " 3.25 | \n",
+ " 0.29 | \n",
+ " 2.38 | \n",
+ " 5.700000 | \n",
+ " 1.19 | \n",
+ " 2.71 | \n",
+ " 1285.0 | \n",
+ "
\n",
+ " \n",
+ " | 30 | \n",
+ " 1.0 | \n",
+ " 13.58 | \n",
+ " 1.66 | \n",
+ " 2.36 | \n",
+ " 19.1 | \n",
+ " 106.0 | \n",
+ " 2.86 | \n",
+ " 3.19 | \n",
+ " 0.22 | \n",
+ " 1.95 | \n",
+ " 6.900000 | \n",
+ " 1.09 | \n",
+ " 2.88 | \n",
+ " 1515.0 | \n",
+ "
\n",
+ " \n",
+ " | 31 | \n",
+ " 1.0 | \n",
+ " 13.68 | \n",
+ " 1.83 | \n",
+ " 2.36 | \n",
+ " 17.2 | \n",
+ " 104.0 | \n",
+ " 2.42 | \n",
+ " 2.69 | \n",
+ " 0.42 | \n",
+ " 1.97 | \n",
+ " 3.840000 | \n",
+ " 1.23 | \n",
+ " 2.87 | \n",
+ " 990.0 | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 1.0 | \n",
+ " 13.76 | \n",
+ " 1.53 | \n",
+ " 2.70 | \n",
+ " 19.5 | \n",
+ " 132.0 | \n",
+ " 2.95 | \n",
+ " 2.74 | \n",
+ " 0.50 | \n",
+ " 1.35 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 3.00 | \n",
+ " 1235.0 | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 1.0 | \n",
+ " 13.51 | \n",
+ " 1.80 | \n",
+ " 2.65 | \n",
+ " 19.0 | \n",
+ " 110.0 | \n",
+ " 2.35 | \n",
+ " 2.53 | \n",
+ " 0.29 | \n",
+ " 1.54 | \n",
+ " 4.200000 | \n",
+ " 1.10 | \n",
+ " 2.87 | \n",
+ " 1095.0 | \n",
+ "
\n",
+ " \n",
+ " | 34 | \n",
+ " 1.0 | \n",
+ " 13.48 | \n",
+ " 1.81 | \n",
+ " 2.41 | \n",
+ " 20.5 | \n",
+ " 100.0 | \n",
+ " 2.70 | \n",
+ " 2.98 | \n",
+ " 0.26 | \n",
+ " 1.86 | \n",
+ " 5.100000 | \n",
+ " 1.04 | \n",
+ " 3.47 | \n",
+ " 920.0 | \n",
+ "
\n",
+ " \n",
+ " | 35 | \n",
+ " 1.0 | \n",
+ " 13.28 | \n",
+ " 1.64 | \n",
+ " 2.84 | \n",
+ " 15.5 | \n",
+ " 110.0 | \n",
+ " 2.60 | \n",
+ " 2.68 | \n",
+ " 0.34 | \n",
+ " 1.36 | \n",
+ " 4.600000 | \n",
+ " 1.09 | \n",
+ " 2.78 | \n",
+ " 880.0 | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 1.0 | \n",
+ " 13.05 | \n",
+ " 1.65 | \n",
+ " 2.55 | \n",
+ " 18.0 | \n",
+ " 98.0 | \n",
+ " 2.45 | \n",
+ " 2.43 | \n",
+ " 0.29 | \n",
+ " 1.44 | \n",
+ " 4.250000 | \n",
+ " 1.12 | \n",
+ " 2.51 | \n",
+ " 1105.0 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 147 | \n",
+ " 3.0 | \n",
+ " 13.32 | \n",
+ " 3.24 | \n",
+ " 2.38 | \n",
+ " 21.5 | \n",
+ " 92.0 | \n",
+ " 1.93 | \n",
+ " 0.76 | \n",
+ " 0.45 | \n",
+ " 1.25 | \n",
+ " 8.420000 | \n",
+ " 0.55 | \n",
+ " 1.62 | \n",
+ " 650.0 | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 3.0 | \n",
+ " 13.08 | \n",
+ " 3.90 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 113.0 | \n",
+ " 1.41 | \n",
+ " 1.39 | \n",
+ " 0.34 | \n",
+ " 1.14 | \n",
+ " 9.400000 | \n",
+ " 0.57 | \n",
+ " 1.33 | \n",
+ " 550.0 | \n",
+ "
\n",
+ " \n",
+ " | 149 | \n",
+ " 3.0 | \n",
+ " 13.50 | \n",
+ " 3.12 | \n",
+ " 2.62 | \n",
+ " 24.0 | \n",
+ " 123.0 | \n",
+ " 1.40 | \n",
+ " 1.57 | \n",
+ " 0.22 | \n",
+ " 1.25 | \n",
+ " 8.600000 | \n",
+ " 0.59 | \n",
+ " 1.30 | \n",
+ " 500.0 | \n",
+ "
\n",
+ " \n",
+ " | 150 | \n",
+ " 3.0 | \n",
+ " 12.79 | \n",
+ " 2.67 | \n",
+ " 2.48 | \n",
+ " 22.0 | \n",
+ " 112.0 | \n",
+ " 1.48 | \n",
+ " 1.36 | \n",
+ " 0.24 | \n",
+ " 1.26 | \n",
+ " 10.800000 | \n",
+ " 0.48 | \n",
+ " 1.47 | \n",
+ " 480.0 | \n",
+ "
\n",
+ " \n",
+ " | 151 | \n",
+ " 3.0 | \n",
+ " 13.11 | \n",
+ " 1.90 | \n",
+ " 2.75 | \n",
+ " 25.5 | \n",
+ " 116.0 | \n",
+ " 2.20 | \n",
+ " 1.28 | \n",
+ " 0.26 | \n",
+ " 1.56 | \n",
+ " 7.100000 | \n",
+ " 0.61 | \n",
+ " 1.33 | \n",
+ " 425.0 | \n",
+ "
\n",
+ " \n",
+ " | 152 | \n",
+ " 3.0 | \n",
+ " 13.23 | \n",
+ " 3.30 | \n",
+ " 2.28 | \n",
+ " 18.5 | \n",
+ " 98.0 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.61 | \n",
+ " 1.87 | \n",
+ " 10.520000 | \n",
+ " 0.56 | \n",
+ " 1.51 | \n",
+ " 675.0 | \n",
+ "
\n",
+ " \n",
+ " | 153 | \n",
+ " 3.0 | \n",
+ " 12.58 | \n",
+ " 1.29 | \n",
+ " 2.10 | \n",
+ " 20.0 | \n",
+ " 103.0 | \n",
+ " 1.48 | \n",
+ " 0.58 | \n",
+ " 0.53 | \n",
+ " 1.40 | \n",
+ " 7.600000 | \n",
+ " 0.58 | \n",
+ " 1.55 | \n",
+ " 640.0 | \n",
+ "
\n",
+ " \n",
+ " | 154 | \n",
+ " 3.0 | \n",
+ " 13.17 | \n",
+ " 5.19 | \n",
+ " 2.32 | \n",
+ " 22.0 | \n",
+ " 93.0 | \n",
+ " 1.74 | \n",
+ " 0.63 | \n",
+ " 0.61 | \n",
+ " 1.55 | \n",
+ " 7.900000 | \n",
+ " 0.60 | \n",
+ " 1.48 | \n",
+ " 725.0 | \n",
+ "
\n",
+ " \n",
+ " | 155 | \n",
+ " 3.0 | \n",
+ " 13.84 | \n",
+ " 4.12 | \n",
+ " 2.38 | \n",
+ " 19.5 | \n",
+ " 89.0 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.48 | \n",
+ " 1.56 | \n",
+ " 9.010000 | \n",
+ " 0.57 | \n",
+ " 1.64 | \n",
+ " 480.0 | \n",
+ "
\n",
+ " \n",
+ " | 156 | \n",
+ " 3.0 | \n",
+ " 12.45 | \n",
+ " 3.03 | \n",
+ " 2.64 | \n",
+ " 27.0 | \n",
+ " 97.0 | \n",
+ " 1.90 | \n",
+ " 0.58 | \n",
+ " 0.63 | \n",
+ " 1.14 | \n",
+ " 7.500000 | \n",
+ " 0.67 | \n",
+ " 1.73 | \n",
+ " 880.0 | \n",
+ "
\n",
+ " \n",
+ " | 157 | \n",
+ " 3.0 | \n",
+ " 14.34 | \n",
+ " 1.68 | \n",
+ " 2.70 | \n",
+ " 25.0 | \n",
+ " 98.0 | \n",
+ " 2.80 | \n",
+ " 1.31 | \n",
+ " 0.53 | \n",
+ " 2.70 | \n",
+ " 13.000000 | \n",
+ " 0.57 | \n",
+ " 1.96 | \n",
+ " 660.0 | \n",
+ "
\n",
+ " \n",
+ " | 158 | \n",
+ " 3.0 | \n",
+ " 13.48 | \n",
+ " 1.67 | \n",
+ " 2.64 | \n",
+ " 22.5 | \n",
+ " 89.0 | \n",
+ " 2.60 | \n",
+ " 1.10 | \n",
+ " 0.52 | \n",
+ " 2.29 | \n",
+ " 11.750000 | \n",
+ " 0.57 | \n",
+ " 1.78 | \n",
+ " 620.0 | \n",
+ "
\n",
+ " \n",
+ " | 159 | \n",
+ " 3.0 | \n",
+ " 12.36 | \n",
+ " 3.83 | \n",
+ " 2.38 | \n",
+ " 21.0 | \n",
+ " 88.0 | \n",
+ " 2.30 | \n",
+ " 0.92 | \n",
+ " 0.50 | \n",
+ " 1.04 | \n",
+ " 7.650000 | \n",
+ " 0.56 | \n",
+ " 1.58 | \n",
+ " 520.0 | \n",
+ "
\n",
+ " \n",
+ " | 160 | \n",
+ " 3.0 | \n",
+ " 13.69 | \n",
+ " 3.26 | \n",
+ " 2.54 | \n",
+ " 20.0 | \n",
+ " 107.0 | \n",
+ " 1.83 | \n",
+ " 0.56 | \n",
+ " 0.50 | \n",
+ " 0.80 | \n",
+ " 5.880000 | \n",
+ " 0.96 | \n",
+ " 1.82 | \n",
+ " 680.0 | \n",
+ "
\n",
+ " \n",
+ " | 161 | \n",
+ " 3.0 | \n",
+ " 12.85 | \n",
+ " 3.27 | \n",
+ " 2.58 | \n",
+ " 22.0 | \n",
+ " 106.0 | \n",
+ " 1.65 | \n",
+ " 0.60 | \n",
+ " 0.60 | \n",
+ " 0.96 | \n",
+ " 5.580000 | \n",
+ " 0.87 | \n",
+ " 2.11 | \n",
+ " 570.0 | \n",
+ "
\n",
+ " \n",
+ " | 162 | \n",
+ " 3.0 | \n",
+ " 12.96 | \n",
+ " 3.45 | \n",
+ " 2.35 | \n",
+ " 18.5 | \n",
+ " 106.0 | \n",
+ " 1.39 | \n",
+ " 0.70 | \n",
+ " 0.40 | \n",
+ " 0.94 | \n",
+ " 5.280000 | \n",
+ " 0.68 | \n",
+ " 1.75 | \n",
+ " 675.0 | \n",
+ "
\n",
+ " \n",
+ " | 163 | \n",
+ " 3.0 | \n",
+ " 13.78 | \n",
+ " 2.76 | \n",
+ " 2.30 | \n",
+ " 22.0 | \n",
+ " 90.0 | \n",
+ " 1.35 | \n",
+ " 0.68 | \n",
+ " 0.41 | \n",
+ " 1.03 | \n",
+ " 9.580000 | \n",
+ " 0.70 | \n",
+ " 1.68 | \n",
+ " 615.0 | \n",
+ "
\n",
+ " \n",
+ " | 164 | \n",
+ " 3.0 | \n",
+ " 13.73 | \n",
+ " 4.36 | \n",
+ " 2.26 | \n",
+ " 22.5 | \n",
+ " 88.0 | \n",
+ " 1.28 | \n",
+ " 0.47 | \n",
+ " 0.52 | \n",
+ " 1.15 | \n",
+ " 6.620000 | \n",
+ " 0.78 | \n",
+ " 1.75 | \n",
+ " 520.0 | \n",
+ "
\n",
+ " \n",
+ " | 165 | \n",
+ " 3.0 | \n",
+ " 13.45 | \n",
+ " 3.70 | \n",
+ " 2.60 | \n",
+ " 23.0 | \n",
+ " 111.0 | \n",
+ " 1.70 | \n",
+ " 0.92 | \n",
+ " 0.43 | \n",
+ " 1.46 | \n",
+ " 10.680000 | \n",
+ " 0.85 | \n",
+ " 1.56 | \n",
+ " 695.0 | \n",
+ "
\n",
+ " \n",
+ " | 166 | \n",
+ " 3.0 | \n",
+ " 12.82 | \n",
+ " 3.37 | \n",
+ " 2.30 | \n",
+ " 19.5 | \n",
+ " 88.0 | \n",
+ " 1.48 | \n",
+ " 0.66 | \n",
+ " 0.40 | \n",
+ " 0.97 | \n",
+ " 10.260000 | \n",
+ " 0.72 | \n",
+ " 1.75 | \n",
+ " 685.0 | \n",
+ "
\n",
+ " \n",
+ " | 167 | \n",
+ " 3.0 | \n",
+ " 13.58 | \n",
+ " 2.58 | \n",
+ " 2.69 | \n",
+ " 24.5 | \n",
+ " 105.0 | \n",
+ " 1.55 | \n",
+ " 0.84 | \n",
+ " 0.39 | \n",
+ " 1.54 | \n",
+ " 8.660000 | \n",
+ " 0.74 | \n",
+ " 1.80 | \n",
+ " 750.0 | \n",
+ "
\n",
+ " \n",
+ " | 168 | \n",
+ " 3.0 | \n",
+ " 13.40 | \n",
+ " 4.60 | \n",
+ " 2.86 | \n",
+ " 25.0 | \n",
+ " 112.0 | \n",
+ " 1.98 | \n",
+ " 0.96 | \n",
+ " 0.27 | \n",
+ " 1.11 | \n",
+ " 8.500000 | \n",
+ " 0.67 | \n",
+ " 1.92 | \n",
+ " 630.0 | \n",
+ "
\n",
+ " \n",
+ " | 169 | \n",
+ " 3.0 | \n",
+ " 12.20 | \n",
+ " 3.03 | \n",
+ " 2.32 | \n",
+ " 19.0 | \n",
+ " 96.0 | \n",
+ " 1.25 | \n",
+ " 0.49 | \n",
+ " 0.40 | \n",
+ " 0.73 | \n",
+ " 5.500000 | \n",
+ " 0.66 | \n",
+ " 1.83 | \n",
+ " 510.0 | \n",
+ "
\n",
+ " \n",
+ " | 170 | \n",
+ " 3.0 | \n",
+ " 12.77 | \n",
+ " 2.39 | \n",
+ " 2.28 | \n",
+ " 19.5 | \n",
+ " 86.0 | \n",
+ " 1.39 | \n",
+ " 0.51 | \n",
+ " 0.48 | \n",
+ " 0.64 | \n",
+ " 9.899999 | \n",
+ " 0.57 | \n",
+ " 1.63 | \n",
+ " 470.0 | \n",
+ "
\n",
+ " \n",
+ " | 171 | \n",
+ " 3.0 | \n",
+ " 14.16 | \n",
+ " 2.51 | \n",
+ " 2.48 | \n",
+ " 20.0 | \n",
+ " 91.0 | \n",
+ " 1.68 | \n",
+ " 0.70 | \n",
+ " 0.44 | \n",
+ " 1.24 | \n",
+ " 9.700000 | \n",
+ " 0.62 | \n",
+ " 1.71 | \n",
+ " 660.0 | \n",
+ "
\n",
+ " \n",
+ " | 172 | \n",
+ " 3.0 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95.0 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.700000 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740.0 | \n",
+ "
\n",
+ " \n",
+ " | 173 | \n",
+ " 3.0 | \n",
+ " 13.40 | \n",
+ " 3.91 | \n",
+ " 2.48 | \n",
+ " 23.0 | \n",
+ " 102.0 | \n",
+ " 1.80 | \n",
+ " 0.75 | \n",
+ " 0.43 | \n",
+ " 1.41 | \n",
+ " 7.300000 | \n",
+ " 0.70 | \n",
+ " 1.56 | \n",
+ " 750.0 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 3.0 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120.0 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.200000 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835.0 | \n",
+ "
\n",
+ " \n",
+ " | 175 | \n",
+ " 3.0 | \n",
+ " 13.17 | \n",
+ " 2.59 | \n",
+ " 2.37 | \n",
+ " 20.0 | \n",
+ " 120.0 | \n",
+ " 1.65 | \n",
+ " 0.68 | \n",
+ " 0.53 | \n",
+ " 1.46 | \n",
+ " 9.300000 | \n",
+ " 0.60 | \n",
+ " 1.62 | \n",
+ " 840.0 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 3.0 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96.0 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.200000 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
170 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n",
+ "6 1.0 14.06 2.15 2.61 17.6 121.0 \n",
+ "7 1.0 14.83 1.64 2.17 14.0 97.0 \n",
+ "8 1.0 13.86 1.35 2.27 16.0 98.0 \n",
+ "10 1.0 14.12 1.48 2.32 16.8 95.0 \n",
+ "11 1.0 13.75 1.73 2.41 16.0 89.0 \n",
+ "12 1.0 14.75 1.73 2.39 11.4 91.0 \n",
+ "13 1.0 14.38 1.87 2.38 12.0 102.0 \n",
+ "14 1.0 13.63 1.81 2.70 17.2 112.0 \n",
+ "15 1.0 14.30 1.92 2.72 20.0 120.0 \n",
+ "16 1.0 13.83 1.57 2.62 20.0 115.0 \n",
+ "17 1.0 14.19 1.59 2.48 16.5 108.0 \n",
+ "18 1.0 13.64 3.10 2.56 15.2 116.0 \n",
+ "19 1.0 14.06 1.63 2.28 16.0 126.0 \n",
+ "20 1.0 12.93 3.80 2.65 18.6 102.0 \n",
+ "21 1.0 13.71 1.86 2.36 16.6 101.0 \n",
+ "22 1.0 12.85 1.60 2.52 17.8 95.0 \n",
+ "23 1.0 13.50 1.81 2.61 20.0 96.0 \n",
+ "24 1.0 13.05 2.05 3.22 25.0 124.0 \n",
+ "25 1.0 13.39 1.77 2.62 16.1 93.0 \n",
+ "26 1.0 13.30 1.72 2.14 17.0 94.0 \n",
+ "27 1.0 13.87 1.90 2.80 19.4 107.0 \n",
+ "28 1.0 14.02 1.68 2.21 16.0 96.0 \n",
+ "29 1.0 13.73 1.50 2.70 22.5 101.0 \n",
+ "30 1.0 13.58 1.66 2.36 19.1 106.0 \n",
+ "31 1.0 13.68 1.83 2.36 17.2 104.0 \n",
+ "32 1.0 13.76 1.53 2.70 19.5 132.0 \n",
+ "33 1.0 13.51 1.80 2.65 19.0 110.0 \n",
+ "34 1.0 13.48 1.81 2.41 20.5 100.0 \n",
+ "35 1.0 13.28 1.64 2.84 15.5 110.0 \n",
+ "36 1.0 13.05 1.65 2.55 18.0 98.0 \n",
+ ".. ... ... ... ... ... ... \n",
+ "147 3.0 13.32 3.24 2.38 21.5 92.0 \n",
+ "148 3.0 13.08 3.90 2.36 21.5 113.0 \n",
+ "149 3.0 13.50 3.12 2.62 24.0 123.0 \n",
+ "150 3.0 12.79 2.67 2.48 22.0 112.0 \n",
+ "151 3.0 13.11 1.90 2.75 25.5 116.0 \n",
+ "152 3.0 13.23 3.30 2.28 18.5 98.0 \n",
+ "153 3.0 12.58 1.29 2.10 20.0 103.0 \n",
+ "154 3.0 13.17 5.19 2.32 22.0 93.0 \n",
+ "155 3.0 13.84 4.12 2.38 19.5 89.0 \n",
+ "156 3.0 12.45 3.03 2.64 27.0 97.0 \n",
+ "157 3.0 14.34 1.68 2.70 25.0 98.0 \n",
+ "158 3.0 13.48 1.67 2.64 22.5 89.0 \n",
+ "159 3.0 12.36 3.83 2.38 21.0 88.0 \n",
+ "160 3.0 13.69 3.26 2.54 20.0 107.0 \n",
+ "161 3.0 12.85 3.27 2.58 22.0 106.0 \n",
+ "162 3.0 12.96 3.45 2.35 18.5 106.0 \n",
+ "163 3.0 13.78 2.76 2.30 22.0 90.0 \n",
+ "164 3.0 13.73 4.36 2.26 22.5 88.0 \n",
+ "165 3.0 13.45 3.70 2.60 23.0 111.0 \n",
+ "166 3.0 12.82 3.37 2.30 19.5 88.0 \n",
+ "167 3.0 13.58 2.58 2.69 24.5 105.0 \n",
+ "168 3.0 13.40 4.60 2.86 25.0 112.0 \n",
+ "169 3.0 12.20 3.03 2.32 19.0 96.0 \n",
+ "170 3.0 12.77 2.39 2.28 19.5 86.0 \n",
+ "171 3.0 14.16 2.51 2.48 20.0 91.0 \n",
+ "172 3.0 13.71 5.65 2.45 20.5 95.0 \n",
+ "173 3.0 13.40 3.91 2.48 23.0 102.0 \n",
+ "174 3.0 13.27 4.28 2.26 20.0 120.0 \n",
+ "175 3.0 13.17 2.59 2.37 20.0 120.0 \n",
+ "176 3.0 14.13 4.10 2.74 24.5 96.0 \n",
+ "\n",
+ " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n",
+ "6 2.60 2.51 0.31 1.25 \n",
+ "7 2.80 2.98 0.29 1.98 \n",
+ "8 2.98 3.15 0.22 1.85 \n",
+ "10 2.20 2.43 0.26 1.57 \n",
+ "11 2.60 2.76 0.29 1.81 \n",
+ "12 3.10 3.69 0.43 2.81 \n",
+ "13 3.30 3.64 0.29 2.96 \n",
+ "14 2.85 2.91 0.30 1.46 \n",
+ "15 2.80 3.14 0.33 1.97 \n",
+ "16 2.95 3.40 0.40 1.72 \n",
+ "17 3.30 3.93 0.32 1.86 \n",
+ "18 2.70 3.03 0.17 1.66 \n",
+ "19 3.00 3.17 0.24 2.10 \n",
+ "20 2.41 2.41 0.25 1.98 \n",
+ "21 2.61 2.88 0.27 1.69 \n",
+ "22 2.48 2.37 0.26 1.46 \n",
+ "23 2.53 2.61 0.28 1.66 \n",
+ "24 2.63 2.68 0.47 1.92 \n",
+ "25 2.85 2.94 0.34 1.45 \n",
+ "26 2.40 2.19 0.27 1.35 \n",
+ "27 2.95 2.97 0.37 1.76 \n",
+ "28 2.65 2.33 0.26 1.98 \n",
+ "29 3.00 3.25 0.29 2.38 \n",
+ "30 2.86 3.19 0.22 1.95 \n",
+ "31 2.42 2.69 0.42 1.97 \n",
+ "32 2.95 2.74 0.50 1.35 \n",
+ "33 2.35 2.53 0.29 1.54 \n",
+ "34 2.70 2.98 0.26 1.86 \n",
+ "35 2.60 2.68 0.34 1.36 \n",
+ "36 2.45 2.43 0.29 1.44 \n",
+ ".. ... ... ... ... \n",
+ "147 1.93 0.76 0.45 1.25 \n",
+ "148 1.41 1.39 0.34 1.14 \n",
+ "149 1.40 1.57 0.22 1.25 \n",
+ "150 1.48 1.36 0.24 1.26 \n",
+ "151 2.20 1.28 0.26 1.56 \n",
+ "152 1.80 0.83 0.61 1.87 \n",
+ "153 1.48 0.58 0.53 1.40 \n",
+ "154 1.74 0.63 0.61 1.55 \n",
+ "155 1.80 0.83 0.48 1.56 \n",
+ "156 1.90 0.58 0.63 1.14 \n",
+ "157 2.80 1.31 0.53 2.70 \n",
+ "158 2.60 1.10 0.52 2.29 \n",
+ "159 2.30 0.92 0.50 1.04 \n",
+ "160 1.83 0.56 0.50 0.80 \n",
+ "161 1.65 0.60 0.60 0.96 \n",
+ "162 1.39 0.70 0.40 0.94 \n",
+ "163 1.35 0.68 0.41 1.03 \n",
+ "164 1.28 0.47 0.52 1.15 \n",
+ "165 1.70 0.92 0.43 1.46 \n",
+ "166 1.48 0.66 0.40 0.97 \n",
+ "167 1.55 0.84 0.39 1.54 \n",
+ "168 1.98 0.96 0.27 1.11 \n",
+ "169 1.25 0.49 0.40 0.73 \n",
+ "170 1.39 0.51 0.48 0.64 \n",
+ "171 1.68 0.70 0.44 1.24 \n",
+ "172 1.68 0.61 0.52 1.06 \n",
+ "173 1.80 0.75 0.43 1.41 \n",
+ "174 1.59 0.69 0.43 1.35 \n",
+ "175 1.65 0.68 0.53 1.46 \n",
+ "176 2.05 0.76 0.56 1.35 \n",
+ "\n",
+ " Color intensity Hue OD280/OD315 OF diluted wines Proline \n",
+ "6 5.050000 1.06 3.58 1295.0 \n",
+ "7 5.200000 1.08 2.85 1045.0 \n",
+ "8 7.220000 1.01 3.55 1045.0 \n",
+ "10 5.000000 1.17 2.82 1280.0 \n",
+ "11 5.600000 1.15 2.90 1320.0 \n",
+ "12 5.400000 1.25 2.73 1150.0 \n",
+ "13 7.500000 1.20 3.00 1547.0 \n",
+ "14 7.300000 1.28 2.88 1310.0 \n",
+ "15 6.200000 1.07 2.65 1280.0 \n",
+ "16 6.600000 1.13 2.57 1130.0 \n",
+ "17 8.700000 1.23 2.82 1680.0 \n",
+ "18 5.100000 0.96 3.36 845.0 \n",
+ "19 5.650000 1.09 3.71 780.0 \n",
+ "20 4.500000 1.03 3.52 770.0 \n",
+ "21 3.800000 1.11 4.00 1035.0 \n",
+ "22 3.930000 1.09 3.63 1015.0 \n",
+ "23 3.520000 1.12 3.82 845.0 \n",
+ "24 3.580000 1.13 3.20 830.0 \n",
+ "25 4.800000 0.92 3.22 1195.0 \n",
+ "26 3.950000 1.02 2.77 1285.0 \n",
+ "27 4.500000 1.25 3.40 915.0 \n",
+ "28 4.700000 1.04 3.59 1035.0 \n",
+ "29 5.700000 1.19 2.71 1285.0 \n",
+ "30 6.900000 1.09 2.88 1515.0 \n",
+ "31 3.840000 1.23 2.87 990.0 \n",
+ "32 5.400000 1.25 3.00 1235.0 \n",
+ "33 4.200000 1.10 2.87 1095.0 \n",
+ "34 5.100000 1.04 3.47 920.0 \n",
+ "35 4.600000 1.09 2.78 880.0 \n",
+ "36 4.250000 1.12 2.51 1105.0 \n",
+ ".. ... ... ... ... \n",
+ "147 8.420000 0.55 1.62 650.0 \n",
+ "148 9.400000 0.57 1.33 550.0 \n",
+ "149 8.600000 0.59 1.30 500.0 \n",
+ "150 10.800000 0.48 1.47 480.0 \n",
+ "151 7.100000 0.61 1.33 425.0 \n",
+ "152 10.520000 0.56 1.51 675.0 \n",
+ "153 7.600000 0.58 1.55 640.0 \n",
+ "154 7.900000 0.60 1.48 725.0 \n",
+ "155 9.010000 0.57 1.64 480.0 \n",
+ "156 7.500000 0.67 1.73 880.0 \n",
+ "157 13.000000 0.57 1.96 660.0 \n",
+ "158 11.750000 0.57 1.78 620.0 \n",
+ "159 7.650000 0.56 1.58 520.0 \n",
+ "160 5.880000 0.96 1.82 680.0 \n",
+ "161 5.580000 0.87 2.11 570.0 \n",
+ "162 5.280000 0.68 1.75 675.0 \n",
+ "163 9.580000 0.70 1.68 615.0 \n",
+ "164 6.620000 0.78 1.75 520.0 \n",
+ "165 10.680000 0.85 1.56 695.0 \n",
+ "166 10.260000 0.72 1.75 685.0 \n",
+ "167 8.660000 0.74 1.80 750.0 \n",
+ "168 8.500000 0.67 1.92 630.0 \n",
+ "169 5.500000 0.66 1.83 510.0 \n",
+ "170 9.899999 0.57 1.63 470.0 \n",
+ "171 9.700000 0.62 1.71 660.0 \n",
+ "172 7.700000 0.64 1.74 740.0 \n",
+ "173 7.300000 0.70 1.56 750.0 \n",
+ "174 10.200000 0.59 1.56 835.0 \n",
+ "175 9.300000 0.60 1.62 840.0 \n",
+ "176 9.200000 0.61 1.60 560.0 \n",
+ "\n",
+ "[170 rows x 14 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.dropna()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "DlpG8drhmz7W"
+ },
+ "source": [
+ "### BONUS: Play with the data set below"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "mD40T0Cnm5SA"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " ,\n",
+ " ,\n",
+ " ]], dtype=object)"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJztnXe4XFX1v98PIdQEAgRCEgJXEEGKRhIBRTE2mgVUQIpIlKaC5WcsERtNBaUooihNqiBfqVLEiERFpQUDAREJkJBGQggJKbSE9ftj7ck9mczMnT5z76z3eeaZ0/bea69d1m5nH5kZQRAEQeexRqsFCIIgCFpDGIAgCIIOJQxAEARBhxIGIAiCoEMJAxAEQdChhAEIgiDoUBpmACRdKum0Gv0YI2lm5vxRSWPKdFv2s7Ug5zeSXpB0Xx39PUnSlfXyrwY56pGOVcelHuF3Avllpa9S73hKul3SkfXyrx5I+pWk7zYjrJoNgKSJqfJbux4ClcLMdjSziZU+2+DK9F3AB4EtzGzXBoXRFJqZlkHP9OX0kHSYpAckLZE0J1XE72q2HGa2r5ldVs6zKT2OboJMnzOzU1OYDTXsNRkASV3AuwEDPloHeXojWwHTzGxpqwWphUjL9qIvp4ekrwI/BX4IDAG2BH4J7N/gcPs10v/eSK09gE8D9wCXAiW7UZL2lzRZ0ouSnpS0T7r+GUmPSVos6SlJx5XwY5qkD6TjkyRdK+ny5PZRSaPzn03hnAh8MrU2HpJ0kKRJeX6Pk3RjkXCHSbpZ0gJJUyUdk64fBVwEvCP5fXIBt9tI+ouk5yXNl3SVpEGZ+9+UNCvF4XFJ7884X6tY/BpAWWlZIh0L6ihD0bhIenNqXS1M9/pUhVclBdND0n6S/pP0OEvS17KOUj6el1rVn2muyD0jaUPgFOB4M7vezJaa2Wtm9gcz+3p6Zm1JP5U0O/1+WqwXVCrvpOHD8yXdJmkp8N4C7le26iWNlXS3pDNTz+tpSfumez/ADfJ5qayfl65vL2lCyvePSzo4L/xfSLo1pde9krZJ9yTpnJRWiyQ9LGmnjLvTJK0P3A4MS2EuSeVsmaRNMuGMkvScpP4VJ4iZVf0DpgJfAEYBrwFDMvcuBU5Lx7sCi/ChkjWA4cD26d6HgG0AAe8BlgG7pHtjgJkZP6cBH0jHJwEvA/sB/YAfAfeUePbKzL21gQXAmzPX/g18okg8/4q3UNYBRgLPAe9P98YCd5fQ0RtTvNcGNgX+Bvw03dsOmAEMS+ddwDblxK/ev2JpWUE6ltJR0bgA/VPYJwJrAe8DFgPb5YffSb8S6TEHeHc63iivrCzHK9f+SdfLgI1aHZe8eO2T5FyzxDOn4MZvs1Rm/gmcmonnzAryziJgj5Rf1ykQ1kTg6HQ8Nun6mJRPPw/MBpT/bDpfP5XfzwBrArsA84EdM+EvSOVmTeAq4Jp0b29gEjAIr/veDAwtUOZWxjcT7m3A5zPn5wA/ryY9qu4ByMfrtgKuNbNJwJPAYUUePwq4xMwmmNnrZjbLzP4LYGa3mtmT5vwV+BNuacvhbjO7zcxWAFcAby3HkZm9AvwO+FSKy4545XtLgXiOwMf5v2lmL5vZZLzVf0SZYU1N8X7FzJ4DzsYNHcAK3DDsIKm/mU0zsydrjV+lVJCWBdOxTB0Vi8vuwADgdDN71cz+gqfDoY2Ia2+gh/R4Dc8vG5jZC2b2YMbpa8Ap5i3q24AleCOjndgEmG9my0s8czgej3mpzJxM4fJWTt65ycz+kfLry2XIN93MLkz59DJgKD5MVYgP48O/vzGz5SktrgMOzDxzvZndl+J7Fd44Ak+rgcD2uIF5zMzmlCEfSa5c3dUPj+8VZbpdhVqGgI4E/mRm89P5byk+dDACz8SrIWlfSfekLtRCvOUyuEwZns0cLwPWkbRmmW4vAw6TJDxzXZsMQz7DgAVmtjhzbTre+u0RSZtJuiZ1118EriTFz8ymAl/BW8jz0nPDMs5riV8llJuWxdKxHB0Vi8swYIaZvV7CbadRKj0+gZeR6ZL+KukdGXfP51Wsy/AKsp14HhjcQz4ehueBHNPTtULP9ZR3ZlQo38p8ambL0mExHW4F7JaGnxam+utwYPNC/pFJj2SszgN+AcyVdIGkDcqU8Sa8EbA13htfZGZVrUCsygBIWhc4GHiPpGclPQv8P+Ctkgq1Umfgwzz5/qyNW8wz8S7uILx7o2rkKsFqW56a2T3Aq3hv4zCKW9DZwMaSBmaubQnMKjPsH6Xw32JmG+CWe2X8zOy3ZpZr8RlwRpn+1oUK07JgOlKbjmYDIyRl82Il+u1T9JQeZna/me2PD4/cCFzbQnGr4V/4cOABJZ6ZjZeHHFuma4We6ynv1HO743y/ZgB/NbNBmd8AM/t8WZ6ZnWtmo4AdgTcBXy8jTFJP5lrc2BxBla1/qL4HcAA+fLED3qUZiY9h/R2fvMrnYuAzkt4vaQ1JwyVtj4/brY2PFy9PEy57VSlTKeYCXXkZBeBy3AovN7O7Czk0sxn4GOSPJK0j6S34UMhVZYY9EO+KL5Q0nEwiS9pO0vuSIXwZeAnXazOpJC0LpmONOroXWAp8Q1J/+bsbHwGuqUPceiOl0mOspMMlbWhmrwEv0vz8UhNmtgj4HvALSQdIWi+l+76Sfpweuxr4jqRNJQ1Ozxdaxt3svDMX2DpzfgvwJklHpPD7S3q7pDf35FF6brc0cbsUL/+F0nIusIl88jzL5ficxUcprJuyqNYAHAn8xsyeMbNncz+8Mj08v3uXuiefwScrFuEThlulIYMv4dbsBbwlfnOVMpXi/9L/85KyY6ZXADvRswU9FJ8jmA3cAHzfzCaUGfbJ+OTQIuBW4PrMvbWB0/GJo2fxVt2JZfpbL0qmJT55BRRPx3S7Kh2Z2at4Jt4X18MvgU/n5og6kFLpcSSu/2lpOPFzpLHg3oSZnQ18FfgO3vibAZyA92gATgMeAB4GpgAPpmv5/jQ77/wMOFC+QujcVH/tBRyC5/tn8R58Oe9tbABciNd70/GhsTPzH0pxuRp4Kg0zDUvX/wG8DjxoZtOqjVBudrsjSd3tefhKiidaLU8QBEG5SPoL8Fszu6haPxoxodib+Dxwf1T+QRD0JiS9HR9ZqOnluY41AJKm4ZOxpSajgiAI2gpJl+H11pfzVt5V7lcnDwEFQRB0MrEddBAEQYfS1CGgwYMH26abbsr666/fzGBXYenSpW0T/qRJk+ab2ab19H/w4MHW1dVVTy+L0mpdlkNv1HE76LUSGeqt40bqt5m6rWdYjcjHQG17AVX6GzVqlN11113WStopfOABa4COm0WrdVkOvVHH7aDXSmSot44bqd9m6raeYTUiH5tZ354E7hp/62rXxu28nDHNF6XX0xd0mSb+F+Mv3Cw3s9GSNsb3herCNxA82MxeaJWMlVAoTQCmnf6hJkvSGjo9/vUg5gCCTuO9ZjbSzHLbUY8H7jSzbYE703kQdARhAIJOZ398Y0DSfywLDjqGPj0EFAR5GPAnSQb82swuwDchnANgZnMkbVbIoaRjgWMBhgwZwsSJExsm5JIlS8ryf9zOhXdUrods5coQ9G7CAASdxB5mNjtV8hMklb1nTDIWFwCMHj3axowZ0yARvQIvx/+xxcbAD+/Zbb1kCHo3MQQUdAxmNjv9z8M3rNsV34t9KED6n9c6CYOguYQBCDoCSevnvleQvrW6F/AIvvts7mMrR+If2wiCjiCGgIJOYQhwg38AjjXxXRT/KOl+4FpJRwHPAAe1UMaggXSNv5VxOy9fbeisk5eNhgEIOgIze4oC31Q2s+eB9zdfoiBoPWEAgqZS7OWdUnRyCw2q01kQlEMYgKAhRKUVBO1PRxqAeIU8CIKgQw1AuyFpBP6R583x73xeYGY/68371ARBq4jeZ/nEMtD2YDkwzszeDOwOHC9pB2KfmiAIGkif6AH0douftiLIbUewWNJjwHB8n5ox6bHLgInAN1sgYlF6u+6D+lCiF3sScAzwXHr0RDO7rTVSBvn0CQPQl5DUBbwNuJc22qem0L4zQ9Ytvh9NPYk9aXoFuV7sg+mFu0mSJqR755jZmS2ULShCGIA2QtIA4DrgK2b2YnppqUeasU9NoX1nxu28nLOmND4L1WNvm6CxlOjFBm1Mj6U3unbNQVJ/vPK/ysyuT5fnShqaWv8N36cmhnOCepDXi90DOEHSp4EH8F5CLGRoE8ppvkXXrsHIm/oXA4+Z2dmZW7l9ak4n9qkJegEFerHnA6fiW3GfCpwFfLaAu4qHMasZfiw0bNmoIcbesKV2jwYgunZNYQ/gCGCKpMnp2ol4xR/71AQV0ar3XAr1Ys1sbub+hcAthdxWM4xZbDvsUhQatmzUEGNv2FK7ogHcarp2+Za9EVaxkpZAqYnLZljrQvE3s7uBYgP+sU9N0PYU68XmhjDT6cfwHViDNqFsA1Bt1y7fsg8YMKDuVrGSlkCpictmTDb2hlZBEFRBsV7soZJG4vXENOC41ogXFKIsA1BL165exARlELQvJXqxsTCkjenxTeBSXbvMY9G1C4Ig6GWU0wOIrl0QBEEfpJxVQNG1C4Ig6IPEm8AZSs0zxFbRrSO27w4aSSeX+zAAQRC0NbEApHGEAQiCDiF6UkE+YQA6kGhRBUEA8UGYIAiCjiV6AEEQBEXo68NmYQCCoA3IVjTjdl5e1UZnQVApYQCCIAgqpK/0DMIAlElfSfAgCIIcMQkcBEHQoYQBCIIg6FBiCCgImki8g9G3KTaZ365DxdEDCIIg6FBa1gOISdUgCILWUpMBkLQP8DOgH3CRmZ1eq0B9pYtcLB6X7rN+Rf40Qsd9hXo1Ijo9HxeSNTd8Ua8GWafn43Zt8FZtACT1A34BfBCYCdwv6WYz+0+9hOsNNLKg16rjQrItXzSXWb86ii2/fhNao19d5a0Xc6/9Puu/eU8G7Pz+1e7VW/7Ix6WpR8XVTjq+92938uytd7L5p34MwDNnH8jQz55H/0GbNzzsl2c8wvN//DnDj/l1wftjx45liy224LTTTmu4LDlq6QHsCkw1s6cAJF0D7A80JVGX/mciL95/I689P5M11lqX/pttzYbvPJh1ttixYWFOP+PDDDv2AvpvNKxhYeRRk45nnv9ZXl+2ENQ91bPZwac2Qs66MuTgk5sZXE06rncDYOb5n+XxLxwPjFp5bcmUP7PkoT+trLR6ITXXFTPP/ywrlixgi+Mvo996G668Pvs3X+S1eU8z/HMXs+aGQ1ZeX3j3VSz6x9VsfsRZrD1su6L+bvnV31cemypZZ8ROq1X+2fwzf9JM+v3vZa5s4sSxzKw6h9KBwD5mdnQ6PwLYzcxOyHvuWODYdLod8Dwwv2qJnSHA5sB04EX8s5QbAAPxFkYpBtcQ/ij828evVOk+P/ytzGzTYg/WoOPH0/HO+Oc6F2ceXytdn1RDHHLUostqqVT+7cxsYLGbddBxvdkZeIFV8/EmuK4bFWYhKknbmvNxGfrdGS/n89IPYF1gG2BtYArwaub5nfAG7gLgmcz1rvR8M3RZafnowuMwu8C9kjquGjOr6gcchI/l5c6PAH5ehrsHqg0zud8QWAIcVOT+2sBPkxJnp+O1072xwOK85w14Yzq+FO+q3opXmvcC26R7f0vPLk3hf7JK+cuOf7U6zjw/DfhA3rWuFI810/lngMdSfJ8Cjss8+xjw4cz5mniG3iWdLwCeBRYl/eyYebaoLtP9dwL3J7f3A+/M3JsIHJ2O+wFnpnCfAo7Pk39sur4YeBo4vBJ916rjev9Smj2ed20scHd+fs3o+bTM+YeBycBC4J/AWxqdTxudjzN6+Q5wf+bamcC3k066Mtf3BF4CPoU3ONfK3Hs6p8t8feIG5Sy8YbkIuBtYt4AsGwG3AM/hxvoWYIvM/Y2B3+CV+QvAjen6GGBm5rm3AQ+mvPs74JpsWjbjV8sy0JnAiMz5FhS2XPXmHcA6wA1F7n8b2B0YCbwV735+pwL/DwVOxhN5KvADADPbM91/q5kNMLPfVS56xTRDx/PwSmMD3BicI2mXdO9qXB859gbmm9mD6XwRsC2wGZ6Rr8rzu6AuJW2MG4Zz8dbt2cCtkjYpIN8xSb63AaOBA3M3JK2f/NjXvJX/Trzyq4RW5eO6k9LtEuA4XK+/Bm6WtHZLBaufju8BNpD05jSv8EngygLPHQn8Aa9UwfNPOZyJ9/LfiVfi3wBeL/DcGngFvxWwJW5szsvcvwJYD3gULxvn5HsgaS3gxvTsxsD/AZ8oU876UYNVXxNveb0B75Y/RKYF2KiWBXA48GyJ+08C+2XO9wampeOx9NwDyLZU9gP+W+jZGuSvpAdQlY4z7qfhvZWF6XcjeT2AAm5uBL6cjt+It07WS+dXAd8rFBdgUPJ3w550ibcA78sL91/A2HQ8ke4ewF+Az2We2ysnP7B+itcnKNBSK0ffteq43r+UZisyabYQWEYZPQDgfODUPP8eB97TyHza6Hyc0csH8Mbcj4B9gAnJ75U9ALzifRE4IJ3/Grgp40/BHgBeqb+EN/Aqjd9I4IV0PBQ3Ghvl65BMDwDvpcwmDcOna/+kt/QAzGw5cAJwBz5UcK2ZPVqG0wuqDTPxPDBYUrEJ7GF4Fy7H9HQtx7M9+J+9vwwYULGEpSk7/jXoOMsBZjYo/Q7IvylpX0n3SFogaSFeUQ9O4U9N4X5E0nrAR4HfJnf9gOckPSnpRbyAknObKKbL/DQinQ8vIP8wYEbecyT5luKtwM8BcyTdKmn7PPcl9V0nHdebn2XSbBDwhTLdbQWMk7Qw98Nb3tWsWqi1nK6kzjq+AjgMb8xdXuD+x4DlwG3p/CpgX0m58fOJRfwdjI8sPNmTAJLWk/RrSdNT3v8bMCiViRHAAjN7gdI6HAbMslTzJ/LLRMOp6T0AM7uNbkWX66bWjPUv4GXgAKDQFP5svCDkMtiWdHc3l5KZEJXU+LVfeVQa/2p0XC5paOA64NN4K+k1STcCyjyWGwZaA/hPMgrghbALb5VNw+dmXshzW4xcGmXZEvhjgWfnsOrwwZbZm2Z2B3CHpHWB04ALgXdn7veo70bquEpKybIMb+Xm2JzuCeMZwA/M7Ae1ClCHcprvX110bGbTJT2NN1SOKvDIkXhD4xlJ4PmxP56HzwX+ig9b5jMfr1e2wXsopRiHT1TvZmbPShoJ/DuFNQPYWNKgHnQ4BxguSRkjsCVlGKB60uu2gjCzRcD3gF9IOiBZ4/6pJftjvML6jqRNJQ1Oz+bGCR8CdpQ0UtI6wEkVBj8X2Lo+MWkL1sInzZ8DlkvaFx9iyXJNuvZ5Uus/MRBfDfU8XiH9sIJwbwPeJOkwSWtK+iSwAz6Zls+1wJckbSFpI2B87oakIZI+muYCXsGHu1ZUIEdvZDJwmKR+6eWq92TuXQh8TtJuctaX9CFJRVdB9VKOAt6XeoArkTQceD8+5j+S7nnAM3DDUBQzex2fPzlb0rCk33cUmT8ZiA8XLUzzWd/P+DMHuB34paSNUt20ZwE//oX3VL6UysDH8fnKptLrDACAmZ0NfBUfD3wOt7on4OPXpwEPAA/jS8MeTNcws/8BpwB/Bp7AZ/kr4STgstS9PrjmiLQYM1sMfAmvZF/AW/U35z0zB8+s76R7Ug28+z0dmIWv576ngnCfxwvpONyAfANfbVRoydyF+NDBQ3haXp+5t0byYza+Iuk9lD9c0lv5MvARfG7gcDzPA2BmD+CT5ufh6TkVHyrpU5jZkymu+RwBTDazP5nZs7kf3vJ/i6SdevD6a3idcT+en86gcB35U3zF0Hw83+f3XI8AXgP+iy+y+EqBOLwKfBxPnxfwoczr859rOI2cYMAt6jzgkcy1jfHJmyfS/0YNDH8EcBc+7vgo3ZObTZEBH1O8D6+8HgVOTtffgC+LfAKvVNdqRPh1Tref4Bn6YXwF1qAibqfhhWgydZxILFPGk3CDNDn99ividh98cnQqML7V+u4pvzZZhoJ5ti/8Gpk3W13XVS13gxW+J7BLnlJ+nCt0eHf+jAaGP5TuNesDgf/hQw1NkQEfExyQjvunSn93vMV9SLr+K+Dzrc4IZaTbXnSvvT+jmM5SIRvcIhlPAr7Wg7t++Djr1nSvSNmh1TpPshXMr02WoWCebbVu6hS3huXNVtd11f4aOgRkZn/Du1JZ9gcuS8eX4ZO5jQp/jqU16+bDHY/hK02aIoM5S9Jp//Qz4H10T2A3VAfVUCjdzLvVy9PpPfha7pZRJG+Vw8ptCcy74bltCVpOifzaTBmK5dmgBK2u66qlFXMAQ8zHlUn/mzUjUEld+MtE9zZThjSZNBnvHk7AW58LM5XpTJpcyOvAZ/GJrkIY8CdJk9Lr/c3mBEkPS7okTRrnM5xVl5W2pf7z8muzw14lz5pZ02VoEM3Omy2p6yqhV04CV4qkAfhyx6+Y2YvNDNvMVpjZSLzFvCvw5kKPNVOmWpD0bXz1Qv5bvzn2MLNdgH2B44usgGgU5+PL+Ebiy+zOKvBMoWWqbaX/VuZXWD3PljF52ltoZd5sS6reDK7sALwlc4uZ7TR48GDr6uoCYOnSpay/fmV749eLdgl70qRJ8/GXq04ys73r4X9Wx82mlXotJsOkSZPmW2YTLUnvIKNvSd8CMLMflRtGvo6bEe92DiNfx7XSjDzcLnVAudRbxytp9CQD/rLQI2bGqFGjLMddd91lraJdwsaXq/4K+ILVSd9ZHTebVuq1mAys/jp+zdsS5Ou4GfFu5zDydVzrrxl5uF3qgHKpt45zv4Z+ElLS1fj+F4MlzRw1alQPLprDlFmLVn6sOUsLvs6zE743ycWN8Lxdv0LUbCQNw/cl2s/MlkvKbUvQD7jEWr/1Q8nvCnRaepVL5O/aaagBMLPsTpKMHj26rcZa24BHzOygVgtRC9lCmPuMILRXITSz2fjWAbnzdtv6oSRd429dRbc52knHQe+kIyaBgyAIgtVpaA8gCILOQtI0fMPFFcByMxud9sv5HT4fOA042Hy3zKDFhAEIGkKMz3Y077VV93UaD9xpZqdLGp/Ov9ka0YIsMQQUBEGjafs3YjuV6AEEQVBPcm/bGvBr8z3xV3kjVtJqb8RmPwo/ZMgQJk6c2GNA43ZeXvB6OW6XLFlS1nONoJVh5xMGIAiCerKHmc1OlfwESf8tx1EyFBeArxYcM2ZMj24KLeUGmHZ4z24nTpxIOWE0glaGnU8MAQVBUDfSklvMbB6+bfiuwFxJQwHS/7zWSRhkCQMQBEFdSF8gG5g7xrcQfwT/yFDui1xHAje1RsIgn7KGgBqxtKuN3sYNgqA+DAFuSN/iXRP4rZn9UdL9wLWSjgKeAXr1y499iUrmAGJpVxAERTGzp/Bv8OZffx7/Vm/QZtQyBBRLu4IgCHox5fYAqlraBcWXdw1Zt/AyrmYsj2pl2O20BCyf2JAsCDqLcg1AVUu7oPjyrp9fdRNnTVk9+HKWcNVKM8IuVpleus+A1ZaASRoBXA5sDrwOXGBmP4tX6INSxNvWQa2UNQQUS7saznJgnJm9Gf9o/PGSdqB7nmVb4M50HgRBUBd6NACxtKvxWIs/Xt8JSBoh6S5Jj0l6VNKX0/WNJU2Q9ET6L/Qd4SDok5QzBBRLu5pIqY/XVzrPUumr8sWeBx82K+ym+7jY3Eo5YdeLEnMsuV7Wg6lBM0nSBGAssZot6FB6NACxtKt55H8MPBndHik2z1Lpq/LFni+XcTsvLzi3Uk7Y9aLYa/bJkOaM6WJJ2V5WzsFlwETCAAQdQuwF1CZI6o9X/leZ2fXp8lxJQ1Prv27zLKVW+3QC9exlQWUru6bMWlTwerYnVYhyelc5ivXWdh6+YUl37bxCLWgMYQDaAHlT/2LgMTM7O3MrN89yOjHPUhfq3cuCyjb3qraXVU7vqid66n210yZltRCro8on9gJqD/YAjgDeJ2ly+u2HV/wflPQE8MF0HlRJqV5Wuh+r2YKOInoAbYCZ3Q0Ua4rGPEsdaFQvKz7YHvRmwgAEnUKulzVF0uR07US84o/VbEFHEgYg6Aia3cvq9In2oHcQcwBBEAQdShiAIAiCDiWGgIKmEkv0gqB9iB5AEARBhxI9gCAI2pqYUG8c0QMIgiDoUKIHEARBR5DtSWRf3uvk+acwAEEQdDTVfAq1ryxmiCGgIAiCDiV6AEEQBEXo6xPQ0QMIgiDoUKIHELQF1YzDBkFQG2EAgqBD6CsTl+1Mb9NxDAEFQRB0KDUZAEn7SHpc0lRJ4+slVNBN6LjxhI4bT+i4Pal6CEhSP+AX+KcKZwL3S7rZzP5TL+E6ndBx4wkdN57QcfGX0ErRjGGjWnoAuwJTzewpM3sVuAbYvz5itQ/PPPMMAwYMYMWKFa0IvqiOJX1M0gxJSyS9TdI0SR9ohZDlsOhf1/L87ecWvT/z/M/y0rTJRe8Xomv8rXSNvxVJDD/uQrrG38qUWYsqFa2qfDxt2jQkYa+3JF80hEMOOYQ///nPAPzwhz/k6KOPpmv8rWzx+UuQxFbfuHmlziukIh0//vjjXHTRRdVGA4Dn7ziPhf+4uuC9+beewy3/d1VN/jeTAQMGAKzVCL9lZtU5lA4E9jGzo9P5EcBuZnZC3nPHAsem013S/8PAIGB+Ot8BWBeYArxalUCVMTgTdqPYGTewU4DXM+FuDjySzrcys02LeVBKx5KeBL5qZjclHf8cmAYMAx5vQHxKsQkwBFgHWAG8AMxKxySZNgdyme014EVgTjoGeEs6Xjs9txiYkbkvYASwUTpeAkxP90cBjwFDgQ3TtVnAAjI6lnQB8ICZXSBpC+AM4KNJ7n8DpyT/czo2YFlG7teB54DNgKfxNJ6Lp6uA5en+sxndbAUMTPGaBjyfp7cuuvMHwNQU93wGJ7fDgI2B/nhZeS7JkGM7YP2MzAD/A5YW8DOfkcCTBcJfC4/rpCLusjruwnXTP8VlSOa5a4AvAh8jr67IqydG4j2FepTRTXDdZctEFz76MbUO/ldDNfVPybqiasysqh/+7dSLMudHAD/vwc00PCG+iBdE8Iz1OJ5hu6qVp0LZH2hCGNPwAnti5trRwOJ66BivbN6YF94HmqG/PBnH4RXQPngF0QXcBtwPrJWeOQk0zSIbAAAgAElEQVS4Mh33B3YEfg/MBoam63PxCngDYD3gEuCPmXC+ATxEt6G5Arg+3TPgD8DvgAeBdwGLgB3zZH0G2AKvQKcBvwGOSf+H4kbp3IyOLadjvNAegVe430/xNLzx8mB6ZjjwKPDxTJjH45+cfAAYmyfPWODucvMs/gH7+4Cd8Apsd+AJ4NzMcxOBo6tMy1cK5aFMXNcsw4+Vz+byZMrHv8UbPqfn5WMBa+T5UXUcCsizmo6BS4HZzS4r2bRsVdiryVJDJN4B3JE5/xbwrR7cTAO+g1cOOQNwJvDtlGm6gA/hrbEX8RbgSXl+fBpv+T0PfJdMxYdXNNcCl+OtmEeB0Rm3w4Dr8Bbi08CXMvd2TYXsRbwyOjs/Q2fi8IGMu5Portxyz34Gr6CX4S2v9+K9nmXAqxm370y6WJT+35lXCC7BW9OLgT8Bpyb9LUnhLAWezJcrxeVfwEK8lX0e3ZXxr4Az83R6E96bABhPdyvwP8DH8gtTSrMXUpgvAQen+w/hldSCFP9LMzp6OKenTDq+mtx/u4BedyEZS7zAPpqeWQz8NcnyeLpvKbxp6f8XuIE4Pd3/LPBUuncHXsk/gvfQLPn9REqfV0j5ON07G89v8/B89WngZbyVmqvoHkjyTMd7PQuAw/N0fDe1GYDHU7gj8q7vlsLMGaqJlFl54hVxrix9m4wBoHC+LqcMPJOeXYL3bL6I1xWPpHBeTXr+J/CPlP5H4q3x11IcXwIuyyubufxswEV4r+Q7KU0N+FzS+8sp/S8Fzk/nK5IsL6V0XIaX81vx/HQfcGGSfS5wQ0rTRXhd9I8U9oIkx2/wxssLwI1JxkeAj2Rk7o+38kem8//De4aLUpg7Zp69NMmck+deYJvM/WxDpOizuDE9J8VxEV7mdiqVB2qZA7gf2FbSGyStBRyCF/6euAdv5a2TJoc+CVyZub8UL2SDcGPweUkHAEjaAfglcDjd3f3hef5/FO9qDkrynJfcroG3Eh/CFfN+4CuS9k7ufgb8zMw2ALbBDUm17IYPQZyMt1Z/hbeEvgesKek9kjbGE/FcvJt6NnCrpE0y/rwHL0hvx4cQjgVuMLMB6f5bzWybAuGvAP4f3mp9R4rrF9K93wKflCQASRsBe+E6A6/8343r9mTgSklD8+L2ePL7Dyl+16d7W+Nd92F4L+AQSat9cD2Tjr/Fh8g2wVvmWfbEK+YcXXiG3xkvbD8Gbs96i1fK/wEOxgv+jinvnIgX6jOBv+MG+jozez3j9yeAffGKJbs44hO4Ad8aGJB0tSbw1swzQ/FKYUu8Qv0AUO6ExtskzZf0P0nflVRsYcYGwL1mNiN70czuxXVe0YftUxqcjxuBYXga1GOcec/0PwivUHNDc9vh6XcW0A8YjefnLnz48hXgYrxR1x/4eCbvZPPzfXhv8wsprOnpmQ+nsL6Ip/9w3OB8Ds8TrwM/Sdf/gQ/LnY0P+W0A7Ifnn7fj9c7spJNnkqzb4b1Pw3uoO+JDgeek8C8HPpXRw37AHDPL5YPbgW2Tm2VA/iTEoXh52wg3hj8ooNuent0r6eRNuP4/yapDjqtRtQEws+XACXiL6jHgWjN7tLSrlVyBt+4/CPwXryxz/k40sylm9rqZPQxcjVeEAAcCfzCzu80nk77HqmOd4C2q28xsRQonV1DfDmxqZqcAvzazp3Crf0i6/xrwRkmDzWyJmd1TZlwKcWqSaxKe6Uek84W4gXsbnsmeMLMrzGy5mV2ddPGRjD+/AY7DDdkOwKJydGxmk8zsnuTvNODXdOvw70mWd6fzA4F/mdns5Pb/zGx20v/v8Jbxrhnvp5vZhUm//07XBksagY89f9PMXsYL3Ry8gsnnQOAWvDGwEV7oV46DS3oLnrZfz7i5Ha/4n0462RRvCeZYaGYLcYN/Fz7MMzA9+6MUh1uBHyY5X8m4/T4+JPWbdD4sc+8S88nLJXgv95N4y25Q5pkf4S2ur+P59Ykyy8Lf8OGczXBDc2henLNMxfVZiDl45ZjjXEkL0+/BIm4OBG4xs7+Z2St4GjRiRvtGfGjuJborpdl0z+PsjcdtezzuZ+It5b+T8k42P+M94aeAMfi8UW5lwdl4r/EGutM/y2vAKWaWmx96DS+LK3Aj9LKZLcDLyVRg5xTeQ+m5I3Ed7w58zsxeMLPXzOyvyf8rgf0kbZDOj8DrH1IcLjGzxUnXPwTeKmnDjHzXm9l9KcyrcGNUjGLPvobn+e3x+d3HzKxYngFqfA8gVbRvMrNtzKyUxcrnCrxCG4tbzpVI2k3SXZKek7QIt+C5zD0MNxy58JexuoXLTsAtw3saa+KTccMkLQR+nP5PpHuS6ijccv5X0v2SPlxBfPLJTsotwVscubXPy/CW5DC6Wy85prNqj+bZnI7xwjGvnMAlvUnSLZKelfQinuEGA5j3Fa/BKxuAw8i0RiR9WtLkXAWCV1DZyiWr39npf8MUn+fNLDeBOBSvKPN7aNCdjsOBBWa2lJSOkt6IV/ZfNrO/Z9zsgPc2NsEr8GV091rAW2WY2QXp3ga48d0K793tgfdYFqTnsz2nG5OOcy3ObKNiVuZ4Ot763xQ35qQwz8Mrtr2BrwIPSdq+QLxXIRmWp5OxnYLPgRxY5PF/4DotRE7XOb5kZoPSb5cibvLL0lJ8fqPeHIA3InJ1zcZ0N4iGJzlewPPB4pQ/Z+D5YTismp9x/b4LT9cpwITk71B8pdF8PP3ze1LPpwozR64cbor3rt+Q8vsFeEs9N+H6E7zcjceHhV4ysxfyI5kaUP8APiFpEN6bvCrJ30/S6ZKeTOXx5OSsWLnKyVaMgs+a2V/wBtAvgLmSLsgYpIK05E1gM5uOt+T2o3v4IMdv8RbvCDPbEB8+Ubo3h8xQgaR18QqhHGYAT2cKxiAzG2hm+yWZnjCzQ/HW2BnA7yWtX8CfpaTKJrF5GWFfik82ZivD2XgmzrIlq1Y41XI+3pvYNg1pnUi3DsFbqQdK2gof0rkOIJ1fiPfsNjGzQXirO+s2y7/S/154fDaWNDDpbV+84BSKzxy8EvgI8HdJ6+HpuBnwZ+BUM7siz80wfE5hAT5EsA4+xJMrRP0kbZt5fgg+hDQDb9lfm0t33CDuloYFsxyMp++CzLVsmm2JtxhzLcOVmNkdZvZBPO+8juuxUoziuv5zknlE9qKkXXFd/qXCsHJpkPMnlwblUKoM5PfIwdPguIz+7wa+YGb/THJsRHfeya322pjuvLMyP+MV8+t45flX636XYAw+N5RPIXmyzMd7g88m2Y4F/p0bZk0NmgW44TkMWE/SR4v4dRk+DHQQ3qvOyX8Yvuz1A3hjqStdL5bWVWNm55rZKHyIKtdwLEort4I4CnhfanlkGYi3Bl5OmfuwzL3fAx+R9M4073Ay5SvxPuBFSd+UtG6yyjtJejuApE9J2jSNC+dad4W6xJPxse3+kkZTvMWWZRbeDf5S5tptwJskHSZpTUmfxFu5t5QZn1IMxCe5lqSW6OezN83s33hr7yJ8Ij8X39zywecAJH0G7wEUxMxyi+6/j2e4f+EtkOvwgjWavLFOSf3xlTqfwAv6z/GW7xp49/8XZvarAsGtB/y/VOH/AB/3np1afOBDA6ck47MZnvmvwBsQnyJV2Knb/STeQ7g4uV1L0qH4ROgDeeF+Js1zjUj+vYZX8jmdHZNaqB+VtCc+5PQEKe9IWkvSOng+7S9pnZzhkbSvpCHpeHt8GOamIrr+M3AncJ2kHVP+3T3p93wze6KQuxL8HviwpHelspRLg3IoVQaewyvorTPXfgV8S9KO6bwfvnQXfFhuW3xe6XS8ot0cb+Xn8s7K/Iwb4dfwFn+2wj+EwgZgLt2t+dVI5f0WYJCkzfByuV1qsa8p6Qy8DNyCDz29AnxJ0kYp/ntmvLsRH4b6MquObAxM7p7H8/EPi8lTC5LenkZQ+uNGOjcBXhyrchVQNT989cAf8ZbhI5nra9K9CuhAvKu9GFf6eay6emQsPjGTWwU0C3i35a1GsMKrF0bjGWJ5Usw0ulc9XJnkWoK3HA8o4sfW+Mz7EroncVdbLUH3EriZeOvkjXjBeC3JcDKeySfh48eTgHdlZJ9IZjUHeStGyKwMyOg2F5c98RbTEnws9RRWXwr33eTHQXnXf4C3eObj46p/zcmRZLgPH2N9LOnJ8LHxR/Bx3lfwlR4r8Jbf5PT8CrrHXZ/AK7NZdK9AeYHu1SMrf9a98uE3eGvx9ZR+r+BjtZOTu1F4AVya3N6Q0mZqCvspuleWXYJXJFcnt8vwRQ37p7BOy+j41RRmLty5+HBALq3vSLK/ns5fT+F/N5OOlvcbk+6dmfxbmuT7N3llIy9t1sEN1GspnBlJljWK5ZsCflySCwMf186VpdxKrHF4fnw25YPvUUEZSPdPodsQfNG6VxxNSWnwMqvm5X1S/LOrgK7I3M/Pz3enNF07k04GDMnkl4eSXBPpfpcjm58W4uVzTPJ3BZ6nXk56eCbpYQae75biZfmHeEt/bkr36/P0e1F6dkDyZwq+6CS3mm86vsjF8DrhXLpXHu6S/BgDzCxU1snkz/xn8SHMh1N85uMGdEDJOrmZBiCTmLtQJJNX6NcAvFC+ocznh2aUPBB/QWaHJsVbucTAhzDuBXZvtv7rEI8edZgy5S11DHOVTJ+uTQMGl3CzHz6XsCtuqO6tIfx+eK9ha3ylzEMF4jwWOK/GeJYsG5k4CZ+MrDhOZYRR17Rr5a9FefV7dDcIy82jVadnrb+mDwGZ2d9YdYy1IiR9RNJ6qat/Jm5hp5UZ9hwzezAdL8ZbsYUmKeuOOUvSaf/062l8su1opQ4rZH+6u+Ffw7v4xSZRe6Ip256UUTb2By5PeekeqohTreWvN9HsvCpf2n0UPpFcDjWnZ630xu2g98cnHGfjY4eHWDKnlSB/Zf1teEu8KaRx28l4F3yC+RruXksPOnyHpIck3Z4Z+60nBvxJ0iT5NgL5DAdmmC+Xux3vvldb+IeTWTFTwq9PSHpY0u/zJ2vrRLly1Eqj067pNDqvSjoGT5vbk5GFMvNo5rxR6VmUXvdBGPN9cY6uxQ9JA/CJyq+Y2Yt1EawMzNfOj0zLxG6QtJOZPdKTu3akBx0+iO9dskTSfvjY/Lb5fpSLmY0tcHkPM5udJu4mSPpvpuBB4cUB1fa4yvHrD8DVZvaKpM/h48TvqzK8WuSolbqmXTvQjLxqZhey+sqvZubRquiNPYCaSDPk1wFXmVn+EtSmYL7qZiI++dXr6EmHZvZibrjLzG7DV78Mzn+uFqz7xbV5+ITvrnmPzCSzzBFfPjyb6ujRLzN73vwlH/CKYBT1p55xKkgz0q6ZtDKvNjmPVkXVu4FWw+DBg62rq6shfi9dupT11y+0bL+5VCLHpEmTXjR/16Fu1EPHrdBlo8KcNGnSfPx9g3PNLL8AloX8RcL/4assZm2yySav1Csft0u+rZSs3JMmTZpvddypspY8XG991tO/Wvyqt45X0swZ51GjRlmjuOuuuxrmdyVUIgcN2BWwHjpuhS4bFSa+rG8KmU0Bq/nhKzb+BzxZz3zcLvm2UrJy1zsf16Lfeuuznv7V4lcj6goza785gN72UeVOoRenyyNmNrpWT8yHB24DGD16dFus3urFadISQl+r03FzAEEQBIHTdj2Aaugaf2vB72x2smUPgiDoiV5jAKr4DmkQBEFQghgCCoIg6FDCAARBEHQovWYIKAiC8ojVLkG5hAEIgqCjKTW/eOk+ve8lvUoIAxCsJFcQCq2oCoKg7xFzAEEQBB1K9ACCoAHEOHzQG4geQBAEQYcSPYAg6BCiVxLkEwYg6AjSF7ouBzbHP1Z+gZn9LH3G73f4h8+nAQeb2QutkjOondg1oHx6NAAlCs5JwDHAc+nRE9OOiUHQjq3N5cA4M3tQ0kBgkqQJ+Mfc7zSz0yWNB8YD32yVkL2VqCd6J+X0AIoVHIBzzOzMxokXBPXBzOYAc9LxYkm5D4TvD4xJj12Gf6ktDEDlRD3RC+nRAJQoOEGdiOGJ5pL3gfAhKY9jZnPS91sLuTkWOBZgyJAhTJw4sWQY43ZeXvB6vrslS5b06FelYVRKNeHnyx31RO+kojmAvIKzB3CCpE8DD+DWPyqn6ojhiSaR/4FwqdB3uVfHzC4ALgD/IMyYMWNKPl/sRbpph6/qbuLEifTkV6VhVEq+TOVQSu6oJ3oPZRuAAgXnfOBU/Cv2pwJnAZ8t4K4uLaeeGLLu6m6rbVnVQjUtuhieaA5FPhA+V9LQ1PofCsxrnYS9n2bVEwBTZi1a7ZrXAzVEII9aemiN9KtelGUAChUcM5ubuX8hcEsht/VqOfXEuJ2Xc9aUVaNTTcumVmpp0UFzhieKkTOghYxpMYqFVe4QSI5GFw55U/9i4DEzOztz62bgSOD09H9Tw4To4zSznoDCdUWheqAWLt1n/ZrKc5Za64ZGUM4qoIIFJ9dqSqcfAx5pjIjV04YrUUrSrOGJYozN7AVUbiEqZmTLHQLJ0YTCsQdwBDBF0uR07US84r9W0lHAM8BBjRSir9Kb64lOppxSXqzgHCppJN61mwYc1xAJO4QYnmgsZnY3UMyivr+ZsvRRop7ohZSzCqhYwYm1vHUihieCVlLqxalye8tRT/RO4k3g9iCGJ4IgaDphANqAZg9PtPJV+WJh9/UPb+TIj3/u2wvtOi8V9G3CAARBDcS+M0FvJgxAUBNRAdaH0GPQCjrSAPS25aGdwJRZi4ovHY10CVpEsXzZV/JkfBAmCIKgQwkDEARB0KGEAQiCIOhQwgAEQRB0KGEAgiAIOpSOXAXUKfT1pYWxmisIaiMMQND29HVDFpSmHdO/rzQ+YggoCIKgQ4keQBAEQZ3obT2D6AEEQRB0KC3rAfSmcT1oXwseBEFQLTUZAEn7AD8D+gEXmdnpdZEqWEnouPGEjotTr+27Q8ftSdUGQFI/4BfAB4GZwP2Sbjaz/9RLuEaw8O6rWP7CHAZ/5Gssf3Eesy/6AiO+8ju0Rr+S7loxttcOOrblr/LMWR9n+OcvZc0NBlfk9rXnZzD74uPZ6hs3N0i6wvzxj3/khBNOYOrUqT0+2w467uuEjovT6lGHWnoAuwJTzewpAEnXAPsDDUnUmed/lteXLQStgfqvw7pbj2bjDx7HGmutW7Wfa26wGVt+9fc1yVXsAx/FqDBRC+pY0n2ZZ9YDXgFWAHR1dZX08KWnJrFgwq8YftyFlcjRl2lqPu5QOl7HXeNv7bFuaAUys+ocSgcC+5jZ0en8CGA3Mzsh77ljgWPT6XbA41XKujP+UenFQH/gTcBCYFa6PxiYX4Y/w4C1gaerlKMnypUDYCsz27TYzXJ0LGkacD2wZ7rUk443ALYEHinxTDYOAnYBHgZeKxWZAqwD7AhMKuPZSvTWE9k41qzjdL1e+Tifesa7mWTlrkc+rpd+663PevpXi18ldVw1ZlbVD/8+7UWZ8yOAn1frXxnhTQM+kDn/CXALMBH4AbAEeAl4I17J3wwsAKYCx2TcnQRcmY67AAPWTOcTgVOBf+CG5k/A4Izb3YF/4obnIWBMATkfqGOce9Rxvl7StXXxLvccvMv9E9xobpJ09HrS15J0bQ/gXmARMBuYm9HJOklHWxSR8Z6ks0nJ/XXAhune9sBy4DNJjueAr2fc9gO+CzyFG5ergEFlui0Yx3RvH7zFmXv2u+m5F4HHgHe3Kh83Mr8081eJ3M3Ucb31Wefy3HZpXcsy0JnAiMz5Fnjl0XAkjQD2A/6dLh2BV4QDgenA1Um+YcCBwA8llftt3cPwSmczYC3gaynM4cCtwGnAxun6dZLqb5W7qVbHJwNvwXtNo4AxwDfM7HngY8BTZjYg/Z7HK98T8Hi9G9gQOLoCOT8NHA4Mx3V2VuZeP2A0bpj3A34gaet07+vAXsC76O5hnFOm24JxzBdM0lvx9ByZ4vUhXK85WpaPO4jQcbtSgzVbE2+5vQEv9A8BOzbKUuEV/BK89T0d+CXeCpwInEKyrnhGWwEMzLj9EXBpOj6J0j2A72TcfQH4Yzr+JnBFnkx3AEc2sMXQo44p3AOYBbwvc74/8N90vErruEi4M4Gr03E5PYCTMue7AEvT8fbJbbYX9TBwQDp+Gtgjp7cUz2X4sFNPbsuKIz4ENQd4by6dW5mPC4Tfdq3CesvdTB3XW591Ls9tl9ZVTwKb2XJJJ+CVYD/gEjN7tFr/yuQAM/tz9oIkgBnABenSMGCBmS3OPDYdb0mWw7OZ42XAgHS8FXCQpI9k7vcH7spzfwF1ohodyxWyOR7nHNPx1nkxNzvgrfZdcKO6Nj5eWS4z8sJaT9KG6XyFmWXHPZcBA5KcI4DbJBleMfwbfzlxkzLclhVHM3tU0nh8mHB7SbcDXzWzuel+K/JxlrrllyZTttxN1nG99VlP/9ourWt6D8DMbgNuq5MstWBmllvWMhvYWNLAjBHYku7J4mqZgfcAjulBkLomcqU6NjOT9CxusJ5Ml7PxLzTrfyHe+znIzJakCvMDFYiZ7d5vCSwzs0WShvYg5yzg42a22iSxpKIGqIw45j9/GXCZpEHAxfgw3jGZ+y3Lx/XOL82iUrmbpeMGlL96NujaLq373FYQZjYDn6j9kaR1JL0FOAqfYKyFK4GPSNpbUr/k9xhJW9QqcwO4Gvi+pE0kbQZ8G5cffIJ3M0kDMs8PBBalyn9HMpVjmYyV9Kbk50nA78p09yvg9DSng6TN8npYpSgVx5VI2kHSeyStjU+Av0RaMhsEnU6fMwCJQ/Hx/dnADcD3zWxCLR4mw7I/cCK+ImUGPonZjjr8Hr7G+lFgMr6q6cfp3kP4CqnpkhZK2hj4f8DRkpbgK2vKrcBzXIFXyLPwFUbjynT3Y+DPwF8kLcYN9y5lui0Vxyzr4sNb8/G5gAHJbRAErZ6EqGAC5RJgHvBI5trGwATgifS/Ubou4Fx8CejDwC4NluMkvPKbnH77Ze59K8nxOLB3i3W4T5JjKjC+wP2v4pXqw8Cd+Nrj3L0VmfjdnLl+D/CpGsMdixvVnP9HZ+4dmdL3CfIm3HvzDx82uwtflvoo8OVWy1SB7P3w+ZpbWi1LRqbVymW7pA2+kOI+vPH1KHByq/W1UrZWC1CBEvfEW4fZivfHuQoFGA+ckY73A25PhmB34N4Gy3ES8LUCz+6QEn1tfAXEk0C/FumvXwp/a7pXYuyQ98x7gfXS8eeB32XuLSnib0kDUGa4Y4HzCrjdGF89sjGwUTreqNV5sU7pMZTUMMGH4P6Xr5d2/eENhd+2mQFYrVy2S9qkemhAOu6Pv3Oze6t1ZlbbewBNxcz+hr/YlWV/4LJ0fBlwQOb65ebcAwwqNSFZBzmKsT9wjZm9YmZP4y3gXeshRxWsfB3fzF4Fcq/jr8TM7jKzZen0Hny9dsPDLcHewAQzW2BmL+C9vH3qIFPLMbM5ZvZgOl6MtzaLrtRqF9Kc14eAi1otS5YKy2VPftU1bVI9tCSd9k+/6rZgqDO9xgAUYYiZzQFPNPzlLfDEyi5NnEnjC9cJkh6WdImkjVooRzEqleUovBeVYx1JD0i6R1LO0GJmu5vZapOvVYT7iaS/3+cmhauQuVciqQt4G94ybHd+ir9w93qrBWkG9UqbtHBkMj5MNcHM2iKte7sBKIYKXGukxT0f2AZ/23QO3W/CNluOUpQti6RP4e9N/CRzeUszG42/Kf1TSdvUMdw/AF1m9hZ8UjjXq2sn/TWEtHLqOuArZvZiq+UphaQPA/OswLLdvkg908bMVpjZSLxXvaukneohY61UvRlcNQwePNh62q0yn6VLl7L++pXtPd5b/J00adJ8q/MGT9XouFIapbtG0Agd1wtJ/fH9rO4ws7NbLU9PSPoRvu3KcnxicwPgejP7VEsFS6TW+i1mVnPl2si0kfR9/G35M+vpb1U0c8Jh1KhRVil33XVXxW56i7804NXwanRcKY3SXSNohI7r8cN7N5cDP221LFXKP4Y2mgROMnVRn0nguqYNsCndmxyuC/wd+HCr9WXWiyaBg6CPsQfemn6fpMnpt1+rheqtSLoa+BewnaSZko6qwbt6p81Q4C5JDwP343MAt9TgX91o2TeBK6XVX84J6kMrvqzWjpjZ3RSe4+gVmNlEfPuQtsDMDq2jX3VNGzN7GJ9IbjuiBxAEQdCh9JoeQNC7KNVjC4KgPYgeQBAEQYfSdj2ASj+yHgRBEFRH9ACCIAg6lLbrAQStI1ZaBUFnET2AIAiCDiUMQBAEQYcSQ0BBWWSHh7IT8zE0FAS9l+gBBEEQdChhANoASSMk3SXpMUmPSvpyur6xpAmSnkj/G/XkVxAEQbnEEFB7sBwYZ2YPShoITJI0Af9U4p1mdrqk8fhnL79Za2Dxlm4QBFBGD6BE6/QkSbNiJ8PaseKfoCv2ycsgCIKaKacHUKx1CnCOtcNHDfoQeZ+gW+WTl5I2K+E0CIKgIno0AKkCylVCiyX1io9X90byP0EnlbcjraRjgWMBhgwZwsSJE0s+P27n5TXJOWTdbj9+ftVNRcKozM+eZA6CoP5U9EnI1Dr9G7AT8FV8jPpF4AG8l/BCATfZymnUNddcUzKMKbMWrXI+ZF2Y+1JpuXYevmFZ8mdZsmQJAwYMqNhdPf1973vfO8n8O7sFP0En6XFgTGr9DwUmmtl2pfwcPXq0PfDAAyXDrXUOYNzOyzlrSn2njxq1nFTSSh0HQbAqZZfiAq3T84FT8Y90n4p/CP2z+e7M7ALgAvDKacyYMSXDyd/4rZzKZtrhpf0sxMSJE+lJlmqoxl95U/9i4DFb9fujNwNHAqen/8LN7SAIgiooywCk1ul1wFVmdj2Amc3N3L8Qb70G1ZH7BN0USZPTtRPxiv/a9Hm7Z4CDWiRfEAR9kB4NQLHWqaShuQlK4GPAI5UEHEsRu+nhE3Tvb6YsQRB0DuX0AIq1Tg+VNBIfApoGHNcQCYMgCMMlzIsAAAUbSURBVIKGUM4qoGKt09vqL04QBEHQLPrEm8DFhpNio7IgCILixF5AQRAEHUqf6AFUStf4Wwt+azh6DEEQdBLRAwiCIOhQwgAEQRB0KGEAgiAIOpQ+PQdQz5fNYqVRYymVVqHjIGgM0QMIgiDoUMIABEEQdChhAIIgCDqUPj0HEPQNYv4lCBpD9ACCIAg6lDAAQRAEHUoMAWWIbxQEQdBJhAHow4RBC4KgFDEEFARB0KGEAQiCIOhQahoCkrQP8DOgH3CRmZ1eF6l6EfnDLLltpuu1RDF0HARBo6jaAEjqB/wC+CAwE7hf0s1m9p96Cdebqcfa9dBxaeL9gCCojVqGgHYFpprZU2b2KnANsH99xAoSoeMgCBpGLUNAw4EZmfOZwG75D0k6Fjg2nS6R9HglgXwJBgPzqxWy3fzVGaucbtWDd03RcaU0Snf1Ik/H27VIjCBoe2oxACpwzVa7YHYBcEHVgUgPmNnoat33cn+bouNKaZTuGoGkB1otQxC0K7UMAc0ERmTOtwBm1yZOkEfoOAiChlGLAbgf2FbSGyStBRwC3FwfsYJE6DgIgoZR9RCQmS2XdAJwB75E8RIze7RuknXTqKGNtve3iTqulKYNN9WB3iRrEDQVma02pBwEQRB0APEmcBAEQYcSBiAIgqBDabkBkDRN0hRJk3NL9iRtLGmCpCfS/0bpuiSdK2mqpIcl7ZLn1yWS5kl6JHOtYr8kHZmefyIdF/L3JEmzktyTJe2Xufet5O/jkvbOXN8nXZsqaXwj9NkoJI2QdJekxyQ9KunLrZapJyT1k/RvSbe0WpYgaEdabgAS7zWzkZm15eOBO81sW+DOdA6wL7Bt+h0LnJ/nz6XAPnnXKvJL0sbA9/EXrnZNx78v4C/AOUnukWZ2W3K/A75aZ8fk5pepIspt67AvsANwaHq2t7AcGGdmbwZ2B47vBfJ/GXis1UIEQbvSLgYgn/2By9LxZcABmeuXm3MPMEjS0JwjM/sbsKBGv/YGJpjZAjN7AZgAbFjA31KyX2Nmr5jZ08BU3JD06m0dzGyOmT2YjhfjFevw1kpVHElbAB8CLmq1LEHQrrSDATDgT5ImpS0NAIaY2RzwigfYLF0vtDVCT5VQpX5VEsYJafjoktzQUp38bWskdQFvA+5trSQl+SnwDeD1VgsSBO1KOxiAPcxsF3xo5HhJe5Z4tqytEcqkmF/lhnE+sA0wEpgDnFUnf9saSQOA64CvmNmLrZanEJI+DMwzs0mtliUI2pmWGwAzm53+5wE34EMlc3NDO+l/Xnq8mq0RKvWrrDDMbK6ZrTCz14ELk9w1+9vOSOqPV/5Xmdn1rZanBHsAH5U0DR9qe5+kK1srUhC0Hy01AJLWlzQwdwzsBTyCb3dwZHrsSOCmdHwz8Om0gmd3YFFueKcElfp1B7CXpI3SsM5e6Vq+7EMzpx9Lcuf8PUTS2pLegE8y30cv39ZBkoCLgcfM7OxWy1MKM/uWmW1hZl24nv9iZp9qsVhB0Ha0+qPwQ4AbvG5hTeC3ZvZHSfcD10o6CngGOCg9fxuwHz6xugz4TNYzSVcDY4DBkmbiK3hOr8QvM1sg6VS8wgY4BV+9k+/vGEkj8WGcacBxyf2jkq4F/oOvnDnezFYk+dpxW4dy2QM4ApgiaXK6dmJu9VMQBL2P2AoiCIKgQ2n5HEAQBEHQGsIABEEQdChhAIIgCDqUMABBEAQdShiAIAiCDiUMQBAEQYcSBiAIgqBD+f9H8T3XicwUtgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "wine_df.hist(bins=10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "name": "Exercise.ipynb",
+ "provenance": [],
+ "version": "0.3.2"
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/.ipynb_checkpoints/Get_to_know_your_Data-checkpoint-checkpoint.ipynb b/.ipynb_checkpoints/Get_to_know_your_Data-checkpoint-checkpoint.ipynb
new file mode 100644
index 0000000..dbf59d4
--- /dev/null
+++ b/.ipynb_checkpoints/Get_to_know_your_Data-checkpoint-checkpoint.ipynb
@@ -0,0 +1,2354 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "Get to know your Data.ipynb",
+ "version": "0.3.2",
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ }
+ },
+ "cells": [
+ {
+ "metadata": {
+ "id": "J82LU53m_OU0",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Get to know your Data\n",
+ "\n",
+ "\n",
+ "#### Import necessary modules\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ZyO1UXL8mtSj",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "yXTzTowtnwGI",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Loading CSV Data to a DataFrame"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "H1Bjlb5wm9f-",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "KE-k7b_Mn5iN",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### See the top 10 rows\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "HY2Ps7xMn4ao",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "7d342633-1b72-4558-fcec-76ebe66d7430"
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df.head()"
+ ],
+ "execution_count": 4,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 4.9 | \n",
+ " 3.0 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 4.7 | \n",
+ " 3.2 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4.6 | \n",
+ " 3.1 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "1 4.9 3.0 1.4 0.2 setosa\n",
+ "2 4.7 3.2 1.3 0.2 setosa\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 4
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ZQXekIodqOZu",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Find number of rows and columns\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "6Y-A-lbFqR82",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "2fe6e676-1bec-453f-8e2b-3bc21ac0a999"
+ },
+ "cell_type": "code",
+ "source": [
+ "print(iris_df.shape)\n",
+ "\n",
+ "#first is row and second is column\n",
+ "#select row by simple indexing\n",
+ "\n",
+ "#print(iris_df.shape[0])\n",
+ "#print(iris_df.shape[1])"
+ ],
+ "execution_count": 5,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "(150, 5)\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "4ckCiGPhrC_t",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Print all columns"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "S6jgMyRDrF2a",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 68
+ },
+ "outputId": "798d5ef2-0f98-4972-c98c-c896f879af64"
+ },
+ "cell_type": "code",
+ "source": [
+ "print(iris_df.columns)"
+ ],
+ "execution_count": 6,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',\n",
+ " 'species'],\n",
+ " dtype='object')\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "kVav5-ACtIqS",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Check Index\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "iu3I9zIGtLDX",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "21786651-605d-4636-d253-5694edb6f969"
+ },
+ "cell_type": "code",
+ "source": [
+ "print(iris_df.index)"
+ ],
+ "execution_count": 7,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "RangeIndex(start=0, stop=150, step=1)\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "psCc7PborOCQ",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Right now the iris_data set has all the species grouped together let's shuffle it"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Bxc8i6avrZPw",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 221
+ },
+ "outputId": "11e956f5-d253-4025-9c3a-1e88f54528b2"
+ },
+ "cell_type": "code",
+ "source": [
+ "#generate a random permutaion on index\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "new_index = np.random.permutation(iris_df.index)\n",
+ "iris_df = iris_df.reindex(index = new_index)\n",
+ "\n",
+ "print(iris_df.head())"
+ ],
+ "execution_count": 8,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "1 4.9 3.0 1.4 0.2 setosa\n",
+ "2 4.7 3.2 1.3 0.2 setosa\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "115 6.4 3.2 5.3 2.3 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "j32h8022sRT8",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### We can also apply an operation on whole column of iris_df"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "seYXHXsYsYJI",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 323
+ },
+ "outputId": "5f8ae149-0829-45fa-a537-ed81be0bd743"
+ },
+ "cell_type": "code",
+ "source": [
+ "#original\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "iris_df['sepal_width'] *= 10\n",
+ "\n",
+ "#changed\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "#lets undo the operation\n",
+ "\n",
+ "iris_df['sepal_width'] /= 10\n",
+ "\n",
+ "print(iris_df.head())"
+ ],
+ "execution_count": 9,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "115 6.4 3.2 5.3 2.3 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "3 4.6 31.0 1.5 0.2 setosa\n",
+ "115 6.4 32.0 5.3 2.3 virginica\n",
+ "113 5.7 25.0 5.0 2.0 virginica\n",
+ "43 5.0 35.0 1.6 0.6 setosa\n",
+ "126 6.2 28.0 4.8 1.8 virginica\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "115 6.4 3.2 5.3 2.3 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "R-Ca-LBLzjiF",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Show all the rows where sepal_width > 3.3"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "WJ7W-F-d0AoZ",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1165
+ },
+ "outputId": "ee9c12fa-f9da-468a-dead-9d3ced177e8b"
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df[iris_df['sepal_width']>3.3]"
+ ],
+ "execution_count": 10,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 43 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.6 | \n",
+ " 0.6 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 136 | \n",
+ " 6.3 | \n",
+ " 3.4 | \n",
+ " 5.6 | \n",
+ " 2.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.3 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.9 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 39 | \n",
+ " 5.1 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 5.2 | \n",
+ " 3.5 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 109 | \n",
+ " 7.2 | \n",
+ " 3.6 | \n",
+ " 6.1 | \n",
+ " 2.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.7 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.5 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 5.4 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 131 | \n",
+ " 7.9 | \n",
+ " 3.8 | \n",
+ " 6.4 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 5.7 | \n",
+ " 4.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 5.5 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.7 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 5.8 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.9 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 5.1 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 4.6 | \n",
+ " 3.6 | \n",
+ " 1.0 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 5.2 | \n",
+ " 3.4 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 31 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 4.6 | \n",
+ " 3.4 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 5.2 | \n",
+ " 4.1 | \n",
+ " 1.5 | \n",
+ " 0.1 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 6.2 | \n",
+ " 3.4 | \n",
+ " 5.4 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 5.3 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 5.5 | \n",
+ " 4.2 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 117 | \n",
+ " 7.7 | \n",
+ " 3.8 | \n",
+ " 6.7 | \n",
+ " 2.2 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "7 5.0 3.4 1.5 0.2 setosa\n",
+ "18 5.7 3.8 1.7 0.3 setosa\n",
+ "136 6.3 3.4 5.6 2.4 virginica\n",
+ "16 5.4 3.9 1.3 0.4 setosa\n",
+ "24 4.8 3.4 1.9 0.2 setosa\n",
+ "39 5.1 3.4 1.5 0.2 setosa\n",
+ "27 5.2 3.5 1.5 0.2 setosa\n",
+ "85 6.0 3.4 4.5 1.6 versicolor\n",
+ "109 7.2 3.6 6.1 2.5 virginica\n",
+ "5 5.4 3.9 1.7 0.4 setosa\n",
+ "19 5.1 3.8 1.5 0.3 setosa\n",
+ "10 5.4 3.7 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ "131 7.9 3.8 6.4 2.0 virginica\n",
+ "15 5.7 4.4 1.5 0.4 setosa\n",
+ "36 5.5 3.5 1.3 0.2 setosa\n",
+ "20 5.4 3.4 1.7 0.2 setosa\n",
+ "14 5.8 4.0 1.2 0.2 setosa\n",
+ "44 5.1 3.8 1.9 0.4 setosa\n",
+ "21 5.1 3.7 1.5 0.4 setosa\n",
+ "22 4.6 3.6 1.0 0.2 setosa\n",
+ "28 5.2 3.4 1.4 0.2 setosa\n",
+ "11 4.8 3.4 1.6 0.2 setosa\n",
+ "46 5.1 3.8 1.6 0.2 setosa\n",
+ "31 5.4 3.4 1.5 0.4 setosa\n",
+ "6 4.6 3.4 1.4 0.3 setosa\n",
+ "32 5.2 4.1 1.5 0.1 setosa\n",
+ "148 6.2 3.4 5.4 2.3 virginica\n",
+ "26 5.0 3.4 1.6 0.4 setosa\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "48 5.3 3.7 1.5 0.2 setosa\n",
+ "40 5.0 3.5 1.3 0.3 setosa\n",
+ "33 5.5 4.2 1.4 0.2 setosa\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "117 7.7 3.8 6.7 2.2 virginica"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 10
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "gH3DnhCq2Cbl",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Club two filters together - Find all samples where sepal_width > 3.3 and species is versicolor"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "4U7ksr_R2H7M",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 80
+ },
+ "outputId": "a245bbce-09c2-41e0-fb41-6138e8f8eddc"
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df[(iris_df['sepal_width']>3.3) & (iris_df['species'] == 'versicolor')] "
+ ],
+ "execution_count": 11,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "85 6.0 3.4 4.5 1.6 versicolor"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 11
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "1lmnB3ot2u7I",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Sorting a column by value"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "K7KIj6fv2zWP",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1969
+ },
+ "outputId": "c38831d3-1fd3-4728-bfbf-c9355e4a96a5"
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df.sort_values(by='sepal_width')#, ascending = False)\n",
+ "#pass ascending = False for descending order"
+ ],
+ "execution_count": 12,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 60 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 62 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 4.0 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 68 | \n",
+ " 6.2 | \n",
+ " 2.2 | \n",
+ " 4.5 | \n",
+ " 1.5 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 119 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 5.0 | \n",
+ " 1.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 87 | \n",
+ " 6.3 | \n",
+ " 2.3 | \n",
+ " 4.4 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 53 | \n",
+ " 5.5 | \n",
+ " 2.3 | \n",
+ " 4.0 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 93 | \n",
+ " 5.0 | \n",
+ " 2.3 | \n",
+ " 3.3 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 41 | \n",
+ " 4.5 | \n",
+ " 2.3 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 57 | \n",
+ " 4.9 | \n",
+ " 2.4 | \n",
+ " 3.3 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 81 | \n",
+ " 5.5 | \n",
+ " 2.4 | \n",
+ " 3.7 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 80 | \n",
+ " 5.5 | \n",
+ " 2.4 | \n",
+ " 3.8 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 72 | \n",
+ " 6.3 | \n",
+ " 2.5 | \n",
+ " 4.9 | \n",
+ " 1.5 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 108 | \n",
+ " 6.7 | \n",
+ " 2.5 | \n",
+ " 5.8 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 89 | \n",
+ " 5.5 | \n",
+ " 2.5 | \n",
+ " 4.0 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 98 | \n",
+ " 5.1 | \n",
+ " 2.5 | \n",
+ " 3.0 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 106 | \n",
+ " 4.9 | \n",
+ " 2.5 | \n",
+ " 4.5 | \n",
+ " 1.7 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 69 | \n",
+ " 5.6 | \n",
+ " 2.5 | \n",
+ " 3.9 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 146 | \n",
+ " 6.3 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 113 | \n",
+ " 5.7 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 79 | \n",
+ " 5.7 | \n",
+ " 2.6 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 118 | \n",
+ " 7.7 | \n",
+ " 2.6 | \n",
+ " 6.9 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 92 | \n",
+ " 5.8 | \n",
+ " 2.6 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 90 | \n",
+ " 5.5 | \n",
+ " 2.6 | \n",
+ " 4.4 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 134 | \n",
+ " 6.1 | \n",
+ " 2.6 | \n",
+ " 5.6 | \n",
+ " 1.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 67 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 4.1 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 59 | \n",
+ " 5.2 | \n",
+ " 2.7 | \n",
+ " 3.9 | \n",
+ " 1.4 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 94 | \n",
+ " 5.6 | \n",
+ " 2.7 | \n",
+ " 4.2 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 83 | \n",
+ " 6.0 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 123 | \n",
+ " 6.3 | \n",
+ " 2.7 | \n",
+ " 4.9 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 101 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 6.2 | \n",
+ " 3.4 | \n",
+ " 5.4 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 136 | \n",
+ " 6.3 | \n",
+ " 3.4 | \n",
+ " 5.6 | \n",
+ " 2.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.9 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.7 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 5.5 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 43 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.6 | \n",
+ " 0.6 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 5.2 | \n",
+ " 3.5 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 4.6 | \n",
+ " 3.6 | \n",
+ " 1.0 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 109 | \n",
+ " 7.2 | \n",
+ " 3.6 | \n",
+ " 6.1 | \n",
+ " 2.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 5.1 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 5.3 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 5.4 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.9 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.5 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 131 | \n",
+ " 7.9 | \n",
+ " 3.8 | \n",
+ " 6.4 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 117 | \n",
+ " 7.7 | \n",
+ " 3.8 | \n",
+ " 6.7 | \n",
+ " 2.2 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.3 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.7 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 5.8 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 5.2 | \n",
+ " 4.1 | \n",
+ " 1.5 | \n",
+ " 0.1 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 5.5 | \n",
+ " 4.2 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 5.7 | \n",
+ " 4.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
150 rows × 5 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "60 5.0 2.0 3.5 1.0 versicolor\n",
+ "62 6.0 2.2 4.0 1.0 versicolor\n",
+ "68 6.2 2.2 4.5 1.5 versicolor\n",
+ "119 6.0 2.2 5.0 1.5 virginica\n",
+ "87 6.3 2.3 4.4 1.3 versicolor\n",
+ "53 5.5 2.3 4.0 1.3 versicolor\n",
+ "93 5.0 2.3 3.3 1.0 versicolor\n",
+ "41 4.5 2.3 1.3 0.3 setosa\n",
+ "57 4.9 2.4 3.3 1.0 versicolor\n",
+ "81 5.5 2.4 3.7 1.0 versicolor\n",
+ "80 5.5 2.4 3.8 1.1 versicolor\n",
+ "72 6.3 2.5 4.9 1.5 versicolor\n",
+ "108 6.7 2.5 5.8 1.8 virginica\n",
+ "89 5.5 2.5 4.0 1.3 versicolor\n",
+ "98 5.1 2.5 3.0 1.1 versicolor\n",
+ "106 4.9 2.5 4.5 1.7 virginica\n",
+ "69 5.6 2.5 3.9 1.1 versicolor\n",
+ "146 6.3 2.5 5.0 1.9 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "79 5.7 2.6 3.5 1.0 versicolor\n",
+ "118 7.7 2.6 6.9 2.3 virginica\n",
+ "92 5.8 2.6 4.0 1.2 versicolor\n",
+ "90 5.5 2.6 4.4 1.2 versicolor\n",
+ "134 6.1 2.6 5.6 1.4 virginica\n",
+ "67 5.8 2.7 4.1 1.0 versicolor\n",
+ "59 5.2 2.7 3.9 1.4 versicolor\n",
+ "94 5.6 2.7 4.2 1.3 versicolor\n",
+ "83 6.0 2.7 5.1 1.6 versicolor\n",
+ "123 6.3 2.7 4.9 1.8 virginica\n",
+ "101 5.8 2.7 5.1 1.9 virginica\n",
+ ".. ... ... ... ... ...\n",
+ "148 6.2 3.4 5.4 2.3 virginica\n",
+ "136 6.3 3.4 5.6 2.4 virginica\n",
+ "85 6.0 3.4 4.5 1.6 versicolor\n",
+ "26 5.0 3.4 1.6 0.4 setosa\n",
+ "24 4.8 3.4 1.9 0.2 setosa\n",
+ "20 5.4 3.4 1.7 0.2 setosa\n",
+ "36 5.5 3.5 1.3 0.2 setosa\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "40 5.0 3.5 1.3 0.3 setosa\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "27 5.2 3.5 1.5 0.2 setosa\n",
+ "22 4.6 3.6 1.0 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ "109 7.2 3.6 6.1 2.5 virginica\n",
+ "21 5.1 3.7 1.5 0.4 setosa\n",
+ "48 5.3 3.7 1.5 0.2 setosa\n",
+ "10 5.4 3.7 1.5 0.2 setosa\n",
+ "44 5.1 3.8 1.9 0.4 setosa\n",
+ "18 5.7 3.8 1.7 0.3 setosa\n",
+ "46 5.1 3.8 1.6 0.2 setosa\n",
+ "19 5.1 3.8 1.5 0.3 setosa\n",
+ "131 7.9 3.8 6.4 2.0 virginica\n",
+ "117 7.7 3.8 6.7 2.2 virginica\n",
+ "16 5.4 3.9 1.3 0.4 setosa\n",
+ "5 5.4 3.9 1.7 0.4 setosa\n",
+ "14 5.8 4.0 1.2 0.2 setosa\n",
+ "32 5.2 4.1 1.5 0.1 setosa\n",
+ "33 5.5 4.2 1.4 0.2 setosa\n",
+ "15 5.7 4.4 1.5 0.4 setosa\n",
+ "\n",
+ "[150 rows x 5 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 12
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "9jg_Z4YCoMSV",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### List all the unique species"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "M6EN78ufoJY7",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "4ae0c425-f973-486f-817f-63cbe6897bdf"
+ },
+ "cell_type": "code",
+ "source": [
+ "species = iris_df['species'].unique()\n",
+ "\n",
+ "print(species)"
+ ],
+ "execution_count": 13,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "['setosa' 'virginica' 'versicolor']\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "wG1i5nxBodmB",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Selecting a particular species using boolean mask (learnt in previous exercise)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "gZvpbKBwoVUe",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "213a3376-8e60-4f9f-cf7e-937e98475206"
+ },
+ "cell_type": "code",
+ "source": [
+ "setosa = iris_df[iris_df['species'] == species[0]]\n",
+ "\n",
+ "setosa.head()"
+ ],
+ "execution_count": 14,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 3 | \n",
+ " 4.6 | \n",
+ " 3.1 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 43 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.6 | \n",
+ " 0.6 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 42 | \n",
+ " 4.4 | \n",
+ " 3.2 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "7 5.0 3.4 1.5 0.2 setosa\n",
+ "18 5.7 3.8 1.7 0.3 setosa\n",
+ "42 4.4 3.2 1.3 0.2 setosa"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 14
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "7tumfZ3DotPG",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "bf3850ab-a0eb-45fa-9816-fdd4c97517d2"
+ },
+ "cell_type": "code",
+ "source": [
+ "# do the same for other 2 species \n",
+ "versicolor = iris_df[iris_df['species'] == species[1]]\n",
+ "\n",
+ "versicolor.head()"
+ ],
+ "execution_count": 15,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 115 | \n",
+ " 6.4 | \n",
+ " 3.2 | \n",
+ " 5.3 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 113 | \n",
+ " 5.7 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 126 | \n",
+ " 6.2 | \n",
+ " 2.8 | \n",
+ " 4.8 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 122 | \n",
+ " 7.7 | \n",
+ " 2.8 | \n",
+ " 6.7 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 116 | \n",
+ " 6.5 | \n",
+ " 3.0 | \n",
+ " 5.5 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "115 6.4 3.2 5.3 2.3 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n",
+ "122 7.7 2.8 6.7 2.0 virginica\n",
+ "116 6.5 3.0 5.5 1.8 virginica"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 15
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "cUYm5UqVpDPy",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "a3cc4a4c-b06e-43c1-ed6a-b1f8fcb14de6"
+ },
+ "cell_type": "code",
+ "source": [
+ "\n",
+ "\n",
+ "virginica = iris_df[iris_df['species'] == species[2]]\n",
+ "\n",
+ "virginica.head()"
+ ],
+ "execution_count": 16,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 90 | \n",
+ " 5.5 | \n",
+ " 2.6 | \n",
+ " 4.4 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 93 | \n",
+ " 5.0 | \n",
+ " 2.3 | \n",
+ " 3.3 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 50 | \n",
+ " 7.0 | \n",
+ " 3.2 | \n",
+ " 4.7 | \n",
+ " 1.4 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 60 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 62 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 4.0 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "90 5.5 2.6 4.4 1.2 versicolor\n",
+ "93 5.0 2.3 3.3 1.0 versicolor\n",
+ "50 7.0 3.2 4.7 1.4 versicolor\n",
+ "60 5.0 2.0 3.5 1.0 versicolor\n",
+ "62 6.0 2.2 4.0 1.0 versicolor"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 16
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "-y1wDc8SpdQs",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Describe each created species to see the difference\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "eHrn3ZVRpOk5",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 297
+ },
+ "outputId": "58e878f8-2aed-49b2-9529-545308332808"
+ },
+ "cell_type": "code",
+ "source": [
+ "setosa.describe()"
+ ],
+ "execution_count": 17,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 50.00000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.00000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 5.00600 | \n",
+ " 3.418000 | \n",
+ " 1.464000 | \n",
+ " 0.24400 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 0.35249 | \n",
+ " 0.381024 | \n",
+ " 0.173511 | \n",
+ " 0.10721 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 4.30000 | \n",
+ " 2.300000 | \n",
+ " 1.000000 | \n",
+ " 0.10000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 4.80000 | \n",
+ " 3.125000 | \n",
+ " 1.400000 | \n",
+ " 0.20000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 5.00000 | \n",
+ " 3.400000 | \n",
+ " 1.500000 | \n",
+ " 0.20000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 5.20000 | \n",
+ " 3.675000 | \n",
+ " 1.575000 | \n",
+ " 0.30000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 5.80000 | \n",
+ " 4.400000 | \n",
+ " 1.900000 | \n",
+ " 0.60000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.00000 50.000000 50.000000 50.00000\n",
+ "mean 5.00600 3.418000 1.464000 0.24400\n",
+ "std 0.35249 0.381024 0.173511 0.10721\n",
+ "min 4.30000 2.300000 1.000000 0.10000\n",
+ "25% 4.80000 3.125000 1.400000 0.20000\n",
+ "50% 5.00000 3.400000 1.500000 0.20000\n",
+ "75% 5.20000 3.675000 1.575000 0.30000\n",
+ "max 5.80000 4.400000 1.900000 0.60000"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 17
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "GwJFT2GlpwUv",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 297
+ },
+ "outputId": "3b040a37-357b-4f35-b1ba-9fa0c6166f9f"
+ },
+ "cell_type": "code",
+ "source": [
+ "versicolor.describe()"
+ ],
+ "execution_count": 18,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 50.00000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.00000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 6.58800 | \n",
+ " 2.974000 | \n",
+ " 5.552000 | \n",
+ " 2.02600 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 0.63588 | \n",
+ " 0.322497 | \n",
+ " 0.551895 | \n",
+ " 0.27465 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 4.90000 | \n",
+ " 2.200000 | \n",
+ " 4.500000 | \n",
+ " 1.40000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 6.22500 | \n",
+ " 2.800000 | \n",
+ " 5.100000 | \n",
+ " 1.80000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 6.50000 | \n",
+ " 3.000000 | \n",
+ " 5.550000 | \n",
+ " 2.00000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 6.90000 | \n",
+ " 3.175000 | \n",
+ " 5.875000 | \n",
+ " 2.30000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 7.90000 | \n",
+ " 3.800000 | \n",
+ " 6.900000 | \n",
+ " 2.50000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.00000 50.000000 50.000000 50.00000\n",
+ "mean 6.58800 2.974000 5.552000 2.02600\n",
+ "std 0.63588 0.322497 0.551895 0.27465\n",
+ "min 4.90000 2.200000 4.500000 1.40000\n",
+ "25% 6.22500 2.800000 5.100000 1.80000\n",
+ "50% 6.50000 3.000000 5.550000 2.00000\n",
+ "75% 6.90000 3.175000 5.875000 2.30000\n",
+ "max 7.90000 3.800000 6.900000 2.50000"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 18
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Ad4qhSZLpztf",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 297
+ },
+ "outputId": "4a986bae-72a1-4e49-bb19-5999479897c6"
+ },
+ "cell_type": "code",
+ "source": [
+ "virginica.describe()"
+ ],
+ "execution_count": 19,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 5.936000 | \n",
+ " 2.770000 | \n",
+ " 4.260000 | \n",
+ " 1.326000 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 0.516171 | \n",
+ " 0.313798 | \n",
+ " 0.469911 | \n",
+ " 0.197753 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 4.900000 | \n",
+ " 2.000000 | \n",
+ " 3.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 5.600000 | \n",
+ " 2.525000 | \n",
+ " 4.000000 | \n",
+ " 1.200000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 5.900000 | \n",
+ " 2.800000 | \n",
+ " 4.350000 | \n",
+ " 1.300000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 6.300000 | \n",
+ " 3.000000 | \n",
+ " 4.600000 | \n",
+ " 1.500000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 7.000000 | \n",
+ " 3.400000 | \n",
+ " 5.100000 | \n",
+ " 1.800000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.000000 50.000000 50.000000 50.000000\n",
+ "mean 5.936000 2.770000 4.260000 1.326000\n",
+ "std 0.516171 0.313798 0.469911 0.197753\n",
+ "min 4.900000 2.000000 3.000000 1.000000\n",
+ "25% 5.600000 2.525000 4.000000 1.200000\n",
+ "50% 5.900000 2.800000 4.350000 1.300000\n",
+ "75% 6.300000 3.000000 4.600000 1.500000\n",
+ "max 7.000000 3.400000 5.100000 1.800000"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 19
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Vdu0ulZWtr09",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Let's plot and see the difference"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "PEVMzRvpttmD",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "##### import matplotlib.pyplot "
+ ]
+ },
+ {
+ "metadata": {
+ "id": "rqDXuuAtt7C3",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 398
+ },
+ "outputId": "e1111c09-8877-43f8-ac45-f92b53899a5c"
+ },
+ "cell_type": "code",
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#hist creates a histogram there are many more plots(see the documentation) you can play with it.\n",
+ "\n",
+ "plt.hist(setosa['sepal_length'])\n",
+ "plt.hist(versicolor['sepal_length'])\n",
+ "plt.hist(virginica['sepal_length'])"
+ ],
+ "execution_count": 20,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(array([ 4., 1., 6., 10., 5., 8., 5., 3., 5., 3.]),\n",
+ " array([4.9 , 5.11, 5.32, 5.53, 5.74, 5.95, 6.16, 6.37, 6.58, 6.79, 7. ]),\n",
+ " )"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 20
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFG9JREFUeJzt3X9s1PX9wPFX6Q1JS8cqa0E2Ycbv\nFjOVCdFFEJgyfkyZv9gsP4LMzG8yBoJLWIQ1LJCQLGLQ4KbTTRnuCyFBkUFdlmGGkCwKbBkLG0sM\nwpKFHwpFCuVnkHrfPxaaMaGF6/V93PXx+It+7vq517vv5p69O3oty2az2QAAkulW6AEAoKsRXwBI\nTHwBIDHxBYDExBcAEhNfAEgsk+JGGhuPpbiZvKiuroimppOFHqNTlfoara/4lfoara/4Xcoaa2qq\nLnqZR77/JZMpL/QIna7U12h9xa/U12h9xa+jaxRfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWA\nxMQXABK7pPju3LkzRo0aFStWrIiIiPfffz8eeeSRmDJlSjzyyCPR2NjYqUMCQClpN74nT56MhQsX\nxpAhQ1qPLVmyJOrq6mLFihUxevToWLZsWacOCQClpN34du/ePV566aWora1tPTZ//vwYO3ZsRERU\nV1fHkSNHOm9CACgx7cY3k8lEjx49zjtWUVER5eXl0dLSEitXrox777230wYEgFKT8181amlpiSee\neCJuv/32856SvpDq6oqieqPttv4SxZXo3tnrOnyON56+Pw+TXDmKbQ8vV6mvL6L012h9xa8ja8w5\nvj/60Y9iwIAB8dhjj7V73WL601I1NVVF9ScQ86WU1lzqe1jq64so/TVaX/G7lDXm/U8KNjQ0xKc+\n9amYNWtWLp8OAF1au498d+zYEYsWLYp9+/ZFJpOJ9evXx4cffhhXXXVVPPzwwxERcf3118eCBQs6\ne1YAKAntxvemm26K5cuXp5gFALoE73AFAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY\n+AJAYuILAImJLwAkJr4AkNglxXfnzp0xatSoWLFiRUREvP/++/Hwww/H5MmT4/HHH48zZ8506pAA\nUEraje/Jkydj4cKFMWTIkNZjP/3pT2Py5MmxcuXKGDBgQKxevbpThwSAUtJufLt37x4vvfRS1NbW\nth7bunVrfP3rX4+IiLvuuis2b97ceRMCQInJtHuFTCYymfOvdurUqejevXtERPTu3TsaGxs7ZzoA\nKEHtxrc92Wy23etUV1dEJlPe0ZtKpqamqtAjJFdqaz63nrfv/1an3s4d617v1PNfTKnt14V0xhrr\nVn0/7+fMxasTXij5PSz19UV0bI05xbeioiJOnz4dPXr0iAMHDpz3lPSFNDWdzGm4QqipqYrGxmOF\nHiO5Ulpzyj0sxNetK3yPdoU1lvL6usL+Xcoa24pzTr9qNHTo0Fi/fn1ERLz55psxfPjwXE4DAF1S\nu498d+zYEYsWLYp9+/ZFJpOJ9evXx+LFi2Pu3LmxatWq6NevXzzwwAMpZgWAktBufG+66aZYvnz5\nJ44vW7asUwYCgFLnHa4AIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQX\nABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMQyhR4AKH0z3nqi0CPAFcUjXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcA\nEhNfAEhMfAEgMfEFgMQyuXzSiRMnYs6cOXH06NH46KOPYsaMGTF8+PB8zwYAJSmn+P7mN7+J6667\nLmbPnh0HDhyI73znO/H73/8+37MBQEnK6Wnn6urqOHLkSERENDc3R3V1dV6HAoBSltMj33HjxsWa\nNWti9OjR0dzcHL/4xS/yPRcAlKyc4rtu3bro169fLF26NN59992or6+PNWvWXPT61dUVkcmU5zxk\najU1VYUeIbnvPvlWh8/xxtP352GS/Di3hzsT3U5nefv+b33iWL7W9Ozk2jydiVyU+v1Mqa8vomNr\nzCm+27Zti2HDhkVExA033BAHDx6MlpaWKC+/cGCbmk7mPGBqNTVV0dh4rNBjFKUr5euWcg+vlDVT\nfEr5e6cr3I9eyhrbinNOr/kOGDAgtm/fHhER+/bti8rKyouGFwA4X06PfCdMmBD19fUxZcqUOHv2\nbCxYsCDPYwFA6copvpWVlfHss8/mexYA6BK8wxUAJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi\n4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkv\nACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQ\nmPgCQGLiCwCJiS8AJCa+AJCY+AJAYjnHt6GhIe67774YP358bNq0KY8jAUBpyym+TU1N8fzzz8fK\nlSvjxRdfjA0bNuR7LgAoWZlcPmnz5s0xZMiQ6NmzZ/Ts2TMWLlyY77kAoGTlFN+9e/fG6dOnY9q0\nadHc3BwzZ86MIUOGXPT61dUVkcmU5zxkajU1VZd83Xtnr+vQbb3x9P0d+vwryeV83f7T2/d/K69z\n7Mzr2dqW65ovVcq1kFZnf+8U2uWsr27V9ztxkkv36oQXLuv6HdnDnOIbEXHkyJF47rnnYv/+/TF1\n6tTYuHFjlJWVXfC6TU0ncx4wtZqaqmhsPJbs9lLeVmcrpbVcqq64ZvKjlL93Ut+P5svlzHwpa2wr\nzjm95tu7d+8YNGhQZDKZ6N+/f1RWVsbhw4dzORUAdDk5xXfYsGGxZcuW+Pjjj6OpqSlOnjwZ1dXV\n+Z4NAEpSTk879+nTJ8aOHRt1dXURETFv3rzo1s2vDAPApcj5Nd+JEyfGxIkT8zkLAHQJHq4CQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAIllCj1AV/fdJ98q9Ah0wM7/faTQI+Ts8ZUHO/X8z06u7dTzd+b8nT173arv\nd+r5L9XzI58q9Ahdlke+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiXUovqdPn45Ro0bFmjVr8jUPAJS8\nDsX3hRdeiF69euVrFgDoEnKO7+7du2PXrl1x55135nEcACh9Ocd30aJFMXfu3HzOAgBdQiaXT1q7\ndm3ccsstce21117S9aurKyKTKc/lpi7q3tnrOnyON56+/4LHa2qqOnzulObu+r9OPf+T/zP1kq73\n3Sffyun8foSDwujM+7piux+NuPyZO7LGnOK7adOm2LNnT2zatCk++OCD6N69e/Tt2zeGDh16wes3\nNZ3MecDO1Nh47BPHamqqLngcoNR01n1dsd6PXs7Ml7LGtuKcU3yXLFnS+u+f/exn8bnPfe6i4QUA\nzuf3fAEgsZwe+f6nmTNn5mMOAOgyPPIFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBILFPoAYDS9PjKg4Ue\nIWedPfuzk2s79fxc+TzyBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABIT\nXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASCyT6yc+9dRT8Ze//CXOnj0b3/ve\n92LMmDH5nAsASlZO8d2yZUu89957sWrVqmhqaooHH3xQfAHgEuUU39tuuy0GDhwYERGf/vSn49Sp\nU9HS0hLl5eV5HQ4ASlFO8S0vL4+KioqIiFi9enWMGDGizfBWV1dEJnPlhbmmpuqyjgOUks68ryvG\n+9HLnbkja8z5Nd+IiD/84Q+xevXq+NWvftXm9ZqaTnbkZjpNY+OxTxyrqam64HGAUtNZ93XFej96\nOTNfyhrbinPO8f3jH/8YL774Yrz88stRVVV8P+EAQKHkFN9jx47FU089Fa+88kp85jOfyfdMAFDS\ncorv7373u2hqaoof/OAHrccWLVoU/fr1y9tgAFCqcorvhAkTYsKECfmeBQC6BO9wBQCJiS8AJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAklin0AIX03SffKvQIRWHurv8r9AhAJ5jx1hOFHqHL8sgXABITXwBITHwBIDHxBYDE\nxBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNf\nAEhMfAEgsUyun/iTn/wktm/fHmVlZVFfXx8DBw7M51wAULJyiu+f/vSn+Ne//hWrVq2K3bt3R319\nfaxatSrfswFAScrpaefNmzfHqFGjIiLi+uuvj6NHj8bx48fzOhgAlKqc4nvo0KGorq5u/fjqq6+O\nxsbGvA0FAKUs59d8/1M2m23z8pqaqnzczHneePr+vJ+zePlaQDG5o9ADkBcdaVtOj3xra2vj0KFD\nrR8fPHgwampqch4CALqSnOJ7xx13xPr16yMi4h//+EfU1tZGz5498zoYAJSqnJ52Hjx4cNx4440x\nceLEKCsri/nz5+d7LgAoWWXZ9l6wBQDyyjtcAUBi4gsAieXlV42K2enTp+Ob3/xmTJ8+PcaPH996\nfOTIkdG3b98oLy+PiIjFixdHnz59CjXmZdu6dWs8/vjj8cUvfjEiIr70pS/Fj3/849bL33nnnXjm\nmWeivLw8RowYETNmzCjUqDlpb33Fvn/nNDQ0xMsvvxyZTCZmzZoVd955Z+tlxb6HEW2vrxT28LXX\nXouGhobWj3fs2BF//etfWz9uaGiIX//619GtW7eoq6uLhx56qBBj5qy99d14440xePDg1o9feeWV\n1v0sBidOnIg5c+bE0aNH46OPPooZM2bE8OHDWy/v0P5lu7hnnnkmO378+Ozrr79+3vG77rore/z4\n8QJN1XFbtmzJzpw586KX33333dn9+/dnW1paspMmTcq+9957CafruPbWV+z7l81ms4cPH86OGTMm\ne+zYseyBAwey8+bNO+/yYt/D9tZXCnv4n7Zu3ZpdsGBB68cnTpzIjhkzJtvc3Jw9depUdty4cdmm\npqYCTtgx/72+bDab/epXv1qgafJj+fLl2cWLF2ez2Wz2gw8+yI4dO7b1so7uX5d+2nn37t2xa9eu\n837a7gr27NkTvXr1imuuuSa6desWX/va12Lz5s2FHov/snnz5hgyZEj07NkzamtrY+HCha2XlcIe\ntrW+UvT888/H9OnTWz/evn173HzzzVFVVRU9evSIwYMHx7Zt2wo4Ycf89/pKQXV1dRw5ciQiIpqb\nm897Z8eO7l+Xju+iRYti7ty5F718/vz5MWnSpFi8eHG77+J1Jdq1a1dMmzYtJk2aFG+//Xbr8cbG\nxrj66qtbPy7Wtwe92PrOKfb927t3b5w+fTqmTZsWkydPPi+upbCHba3vnGLfw3P+9re/xTXXXHPe\nmxEdOnSo6PfwnAutLyLizJkzMXv27Jg4cWIsW7asQNPlbty4cbF///4YPXp0TJkyJebMmdN6WUf3\nr8u+5rt27dq45ZZb4tprr73g5bNmzYrhw4dHr169YsaMGbF+/fr4xje+kXjK3H3hC1+Ixx57LO6+\n++7Ys2dPTJ06Nd58883o3r17oUfLi/bWV+z7d86RI0fiueeei/3798fUqVNj48aNUVZWVuix8qat\n9ZXKHkZErF69Oh588ME2r1PMP1xcbH1PPPFE3HfffVFWVhZTpkyJW2+9NW6++eYCTJibdevWRb9+\n/WLp0qXx7rvvRn19faxZs+aC173c/euyj3w3bdoUGzZsiLq6unjttdfi5z//ebzzzjutlz/wwAPR\nu3fvyGQyMWLEiNi5c2cBp718ffr0iXvuuSfKysqif//+8dnPfjYOHDgQEZ98e9ADBw5EbW1toUbN\nSVvriyj+/YuI6N27dwwaNCgymUz0798/Kisr4/DhwxFRGnvY1voiSmMPz9m6dWsMGjTovGMXepve\nYtvDcy60voiISZMmRWVlZVRUVMTtt99edHu4bdu2GDZsWERE3HDDDXHw4MFoaWmJiI7vX5eN75Il\nS+L111+PV199NR566KGYPn16DB06NCIijh07Fo8++micOXMmIiL+/Oc/t/6v2mLR0NAQS5cujYh/\nP0X54Ycftv5P0c9//vNx/Pjx2Lt3b5w9ezY2btwYd9xRXG/13tb6SmH/IiKGDRsWW7ZsiY8//jia\nmpri5MmTra85lcIetrW+UtnDiH//YFRZWfmJZ52+8pWvxN///vdobm6OEydOxLZt2+LWW28t0JS5\nu9j6/vnPf8bs2bMjm83G2bNnY9u2bUW3hwMGDIjt27dHRMS+ffuisrKy9X9rd3T/uuzTzheyZs2a\nqKqqitGjR8eIESNiwoQJcdVVV8WXv/zlonu6a+TIkfHDH/4wNmzYEB999FEsWLAgfvvb37aub8GC\nBTF79uyIiLjnnnviuuuuK/DEl6e99RX7/kX8+9H92LFjo66uLiIi5s2bF2vXri2ZPWxvfaWwhxGf\nfH3+l7/8Zdx2220xaNCgmD17djz66KNRVlYWM2bMiKqq/P8FuM7W1vr69u0b3/72t6Nbt24xcuTI\nGDhwYAEnvXwTJkyI+vr6mDJlSpw9ezYWLFiQt/3z9pIAkFiXfdoZAApFfAEgMfEFgMTEFwASE18A\nSEx8ASAx8QWAxMQXABL7f56BiVURCnM3AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "pl4RPzBfl5mI",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ ""
+ ],
+ "execution_count": 0,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file
diff --git a/Basic_Pandas-checkpoint.ipynb b/Basic_Pandas-checkpoint.ipynb
new file mode 100644
index 0000000..a9be676
--- /dev/null
+++ b/Basic_Pandas-checkpoint.ipynb
@@ -0,0 +1,1044 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "Basic Pandas.ipynb",
+ "version": "0.3.2",
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ }
+ },
+ "cells": [
+ {
+ "metadata": {
+ "id": "cGbE814_Xaf9",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Pandas\n",
+ "\n",
+ "Pandas is an open-source, BSD-licensed Python library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. Python with Pandas is used in a wide range of fields including academic and commercial domains including finance, economics, Statistics, analytics, etc.In this tutorial, we will learn the various features of Python Pandas and how to use them in practice.\n",
+ "\n",
+ "\n",
+ "## Import pandas and numpy"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "irlVYeeAXPDL",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "BI2J-zdMbGwE",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### This is your playground feel free to explore other functions on pandas\n",
+ "\n",
+ "#### Create Series from numpy array, list and dict\n",
+ "\n",
+ "Don't know what a series is?\n",
+ "\n",
+ "[Series Doc](https://pandas.pydata.org/pandas-docs/version/0.22/generated/pandas.Series.html)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "GeEct691YGE3",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 139
+ },
+ "outputId": "49a1f081-7c31-4abc-c8e1-e3c87f53afaa"
+ },
+ "cell_type": "code",
+ "source": [
+ "a_ascii = ord('A')\n",
+ "z_ascii = ord('Z')\n",
+ "alphabets = [chr(i) for i in range(a_ascii, z_ascii+1)]\n",
+ "\n",
+ "print(alphabets)\n",
+ "\n",
+ "numbers = np.arange(26)\n",
+ "\n",
+ "print(numbers)\n",
+ "\n",
+ "print(type(alphabets), type(numbers))\n",
+ "\n",
+ "alpha_numbers = dict(zip(alphabets, numbers))\n",
+ "\n",
+ "print(alpha_numbers)\n",
+ "\n",
+ "print(type(alpha_numbers))\n"
+ ],
+ "execution_count": 3,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']\n",
+ "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23\n",
+ " 24 25]\n",
+ " \n",
+ "{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9, 'K': 10, 'L': 11, 'M': 12, 'N': 13, 'O': 14, 'P': 15, 'Q': 16, 'R': 17, 'S': 18, 'T': 19, 'U': 20, 'V': 21, 'W': 22, 'X': 23, 'Y': 24, 'Z': 25}\n",
+ "\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "6ouDfjWab_Mc",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 476
+ },
+ "outputId": "26cb349e-34ff-46aa-daf7-9102bbb66ce8"
+ },
+ "cell_type": "code",
+ "source": [
+ "series1 = pd.Series(alphabets)\n",
+ "print(series1)"
+ ],
+ "execution_count": 4,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "0 A\n",
+ "1 B\n",
+ "2 C\n",
+ "3 D\n",
+ "4 E\n",
+ "5 F\n",
+ "6 G\n",
+ "7 H\n",
+ "8 I\n",
+ "9 J\n",
+ "10 K\n",
+ "11 L\n",
+ "12 M\n",
+ "13 N\n",
+ "14 O\n",
+ "15 P\n",
+ "16 Q\n",
+ "17 R\n",
+ "18 S\n",
+ "19 T\n",
+ "20 U\n",
+ "21 V\n",
+ "22 W\n",
+ "23 X\n",
+ "24 Y\n",
+ "25 Z\n",
+ "dtype: object\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "At7nY7vVcBZ3",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 476
+ },
+ "outputId": "ddd95b3b-56ca-4a6a-a3cb-ad46a61b956f"
+ },
+ "cell_type": "code",
+ "source": [
+ "series2 = pd.Series(numbers)\n",
+ "print(series2)"
+ ],
+ "execution_count": 5,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "0 0\n",
+ "1 1\n",
+ "2 2\n",
+ "3 3\n",
+ "4 4\n",
+ "5 5\n",
+ "6 6\n",
+ "7 7\n",
+ "8 8\n",
+ "9 9\n",
+ "10 10\n",
+ "11 11\n",
+ "12 12\n",
+ "13 13\n",
+ "14 14\n",
+ "15 15\n",
+ "16 16\n",
+ "17 17\n",
+ "18 18\n",
+ "19 19\n",
+ "20 20\n",
+ "21 21\n",
+ "22 22\n",
+ "23 23\n",
+ "24 24\n",
+ "25 25\n",
+ "dtype: int64\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "J5z-2CWAdH6N",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 476
+ },
+ "outputId": "96fbd118-de14-44ea-bcdb-705c13e0b51f"
+ },
+ "cell_type": "code",
+ "source": [
+ "series3 = pd.Series(alpha_numbers)\n",
+ "print(series3)"
+ ],
+ "execution_count": 6,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "A 0\n",
+ "B 1\n",
+ "C 2\n",
+ "D 3\n",
+ "E 4\n",
+ "F 5\n",
+ "G 6\n",
+ "H 7\n",
+ "I 8\n",
+ "J 9\n",
+ "K 10\n",
+ "L 11\n",
+ "M 12\n",
+ "N 13\n",
+ "O 14\n",
+ "P 15\n",
+ "Q 16\n",
+ "R 17\n",
+ "S 18\n",
+ "T 19\n",
+ "U 20\n",
+ "V 21\n",
+ "W 22\n",
+ "X 23\n",
+ "Y 24\n",
+ "Z 25\n",
+ "dtype: int64\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "fYzblGGudKjO",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 374
+ },
+ "outputId": "721edece-a3ac-4a7e-be36-e1e40328d2c8"
+ },
+ "cell_type": "code",
+ "source": [
+ "#replace head() with head(n) where n can be any number between [0-25] and observe the output in deach case \n",
+ "series3.head(20)"
+ ],
+ "execution_count": 8,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "A 0\n",
+ "B 1\n",
+ "C 2\n",
+ "D 3\n",
+ "E 4\n",
+ "F 5\n",
+ "G 6\n",
+ "H 7\n",
+ "I 8\n",
+ "J 9\n",
+ "K 10\n",
+ "L 11\n",
+ "M 12\n",
+ "N 13\n",
+ "O 14\n",
+ "P 15\n",
+ "Q 16\n",
+ "R 17\n",
+ "S 18\n",
+ "T 19\n",
+ "dtype: int64"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 8
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "OwsJIf5feTtg",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Create DataFrame from lists\n",
+ "\n",
+ "[DataFrame Doc](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "73UTZ07EdWki",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 855
+ },
+ "outputId": "ae8e8bd7-11d2-4fb6-dd26-f9dfdbbcf1a9"
+ },
+ "cell_type": "code",
+ "source": [
+ "data = {'alphabets': alphabets, 'values': numbers}\n",
+ "\n",
+ "df = pd.DataFrame(data)\n",
+ "\n",
+ "#Lets Change the column `values` to `alpha_numbers`\n",
+ "\n",
+ "#df.columns = ['alphabets', 'alpha_numbers']\n",
+ "\n",
+ "df"
+ ],
+ "execution_count": 11,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " alphabets | \n",
+ " values | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " A | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " B | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " C | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " D | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " E | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " F | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " G | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " H | \n",
+ " 7 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " I | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " J | \n",
+ " 9 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " K | \n",
+ " 10 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " L | \n",
+ " 11 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " M | \n",
+ " 12 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " N | \n",
+ " 13 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " O | \n",
+ " 14 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " P | \n",
+ " 15 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " Q | \n",
+ " 16 | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " R | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " S | \n",
+ " 18 | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " T | \n",
+ " 19 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " U | \n",
+ " 20 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " V | \n",
+ " 21 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " W | \n",
+ " 22 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " X | \n",
+ " 23 | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " Y | \n",
+ " 24 | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " Z | \n",
+ " 25 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alphabets values\n",
+ "0 A 0\n",
+ "1 B 1\n",
+ "2 C 2\n",
+ "3 D 3\n",
+ "4 E 4\n",
+ "5 F 5\n",
+ "6 G 6\n",
+ "7 H 7\n",
+ "8 I 8\n",
+ "9 J 9\n",
+ "10 K 10\n",
+ "11 L 11\n",
+ "12 M 12\n",
+ "13 N 13\n",
+ "14 O 14\n",
+ "15 P 15\n",
+ "16 Q 16\n",
+ "17 R 17\n",
+ "18 S 18\n",
+ "19 T 19\n",
+ "20 U 20\n",
+ "21 V 21\n",
+ "22 W 22\n",
+ "23 X 23\n",
+ "24 Y 24\n",
+ "25 Z 25"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 11
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "uaK_1EO9etGS",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 140
+ },
+ "outputId": "8a7ed095-a63d-4b1d-e719-3bf1a4a0437c"
+ },
+ "cell_type": "code",
+ "source": [
+ "# transpose\n",
+ "\n",
+ "df.T\n",
+ "\n",
+ "# there are many more operations which we can perform look at the documentation with the subsequent exercises we will learn more"
+ ],
+ "execution_count": 12,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 16 | \n",
+ " 17 | \n",
+ " 18 | \n",
+ " 19 | \n",
+ " 20 | \n",
+ " 21 | \n",
+ " 22 | \n",
+ " 23 | \n",
+ " 24 | \n",
+ " 25 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | alphabets | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ " E | \n",
+ " F | \n",
+ " G | \n",
+ " H | \n",
+ " I | \n",
+ " J | \n",
+ " ... | \n",
+ " Q | \n",
+ " R | \n",
+ " S | \n",
+ " T | \n",
+ " U | \n",
+ " V | \n",
+ " W | \n",
+ " X | \n",
+ " Y | \n",
+ " Z | \n",
+ "
\n",
+ " \n",
+ " | values | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 16 | \n",
+ " 17 | \n",
+ " 18 | \n",
+ " 19 | \n",
+ " 20 | \n",
+ " 21 | \n",
+ " 22 | \n",
+ " 23 | \n",
+ " 24 | \n",
+ " 25 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2 rows × 26 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 23 \\\n",
+ "alphabets A B C D E F G H I J ... Q R S T U V W X \n",
+ "values 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 23 \n",
+ "\n",
+ " 24 25 \n",
+ "alphabets Y Z \n",
+ "values 24 25 \n",
+ "\n",
+ "[2 rows x 26 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 12
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ZYonoaW8gEAJ",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Extract Items from a series"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "tc1-KX_Bfe7U",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "4699fc83-bcd0-4b4a-ad74-dc362a1cbe4a"
+ },
+ "cell_type": "code",
+ "source": [
+ "ser = pd.Series(list('abcdefghijklmnopqrstuvwxyz'))\n",
+ "pos = [0, 4, 8, 14, 20]\n",
+ "\n",
+ "vowels = ser.take(pos)\n",
+ "\n",
+ "df = pd.DataFrame(vowels)#, columns=['vowels'])\n",
+ "\n",
+ "df.columns = ['vowels']\n",
+ "\n",
+ "#df.index = [0, 1, 2, 3, 4]\n",
+ "df\n",
+ "\n",
+ "\n"
+ ],
+ "execution_count": 20,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " vowels | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " a | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " e | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " i | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " o | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " u | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " vowels\n",
+ "0 a\n",
+ "4 e\n",
+ "8 i\n",
+ "14 o\n",
+ "20 u"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 20
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "cmDxwtDNjWpO",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Change the first character of each word to upper case in each word of ser"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "5KagP9PpgV2F",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "1eb68607-3bd9-4e3c-b006-b5fdd037a7e4"
+ },
+ "cell_type": "code",
+ "source": [
+ "ser = pd.Series(['we', 'are', 'learning', 'pandas'])\n",
+ "\n",
+ "ser.map(lambda x : x.title())\n",
+ "\n",
+ "titles = [i.title() for i in ser]\n",
+ "\n",
+ "titles\n"
+ ],
+ "execution_count": 28,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "['We', 'Are', 'Learning', 'Pandas']"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 28
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "qn47ee-MkZN8",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Reindexing"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "h5R0JL2NjuFS",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "cb61a5fe-6fb0-44bd-b73d-b1372d1d4bdc"
+ },
+ "cell_type": "code",
+ "source": [
+ "my_index = [1, 2, 3, 4, 5]\n",
+ "\n",
+ "df1 = pd.DataFrame({'upper values': ['A', 'B', 'C', 'D', 'E'],\n",
+ " 'lower values': ['a', 'b', 'c', 'd', 'e']},\n",
+ " index = my_index)\n",
+ "\n",
+ "df1"
+ ],
+ "execution_count": 29,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " lower values | \n",
+ " upper values | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " a | \n",
+ " A | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " b | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " c | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " d | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " e | \n",
+ " E | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " lower values upper values\n",
+ "1 a A\n",
+ "2 b B\n",
+ "3 c C\n",
+ "4 d D\n",
+ "5 e E"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 29
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "G_Frvc3mk93k",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "ad2c0077-bf21-484e-ee9d-716dfd598113"
+ },
+ "cell_type": "code",
+ "source": [
+ "new_index = [2, 5, 4, 3, 1]\n",
+ "\n",
+ "df1.reindex(index = new_index)"
+ ],
+ "execution_count": 30,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " lower values | \n",
+ " upper values | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 2 | \n",
+ " b | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " e | \n",
+ " E | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " d | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " c | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " a | \n",
+ " A | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " lower values upper values\n",
+ "2 b B\n",
+ "5 e E\n",
+ "4 d D\n",
+ "3 c C\n",
+ "1 a A"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 30
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "adCU_4N1ca5r",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ ""
+ ],
+ "execution_count": 0,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file
diff --git a/Exercise-checkpoint.ipynb b/Exercise-checkpoint.ipynb
new file mode 100644
index 0000000..02b14e5
--- /dev/null
+++ b/Exercise-checkpoint.ipynb
@@ -0,0 +1,3599 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "2LTtpUJEibjg"
+ },
+ "source": [
+ "# Pandas Exercise :\n",
+ "\n",
+ "\n",
+ "#### import necessary modules"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "c3_UBbMRhiKx"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "tp-cTCyWi8mR"
+ },
+ "source": [
+ "#### Load url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\" to a dataframe named wine_df\n",
+ "\n",
+ "This is a wine dataset\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "DMojQY3thrRi"
+ },
+ "outputs": [],
+ "source": [
+ "wine_df = pd.read_csv(\"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "BF9MMjoZjSlg"
+ },
+ "source": [
+ "#### print first five rows"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "colab_type": "code",
+ "id": "1vSMQdnHjYNU",
+ "outputId": "d5521c9a-0974-41fe-b0a6-12c26fc828f3"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n",
+ "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n",
+ "\n",
+ " 1065 \n",
+ "0 1050 \n",
+ "1 1185 \n",
+ "2 1480 \n",
+ "3 735 \n",
+ "4 1450 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "Tet6P2DvjY3T"
+ },
+ "source": [
+ "#### assign wine_df to a different variable wine_df_copy and then delete all odd rows of wine_df_copy\n",
+ "\n",
+ "[Hint](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 571
+ },
+ "colab_type": "code",
+ "id": "CMj3qSdJjx0u",
+ "outputId": "f466433c-6f8f-4188-dfd1-a9ddfdc71264"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.380000 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.800000 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.750000 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 1 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.050000 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.220000 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 1 | \n",
+ " 14.12 | \n",
+ " 1.48 | \n",
+ " 2.32 | \n",
+ " 16.8 | \n",
+ " 95 | \n",
+ " 2.20 | \n",
+ " 2.43 | \n",
+ " 0.26 | \n",
+ " 1.57 | \n",
+ " 5.000000 | \n",
+ " 1.17 | \n",
+ " 2.82 | \n",
+ " 1280 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 1 | \n",
+ " 14.75 | \n",
+ " 1.73 | \n",
+ " 2.39 | \n",
+ " 11.4 | \n",
+ " 91 | \n",
+ " 3.10 | \n",
+ " 3.69 | \n",
+ " 0.43 | \n",
+ " 2.81 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 2.73 | \n",
+ " 1150 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 1 | \n",
+ " 13.63 | \n",
+ " 1.81 | \n",
+ " 2.70 | \n",
+ " 17.2 | \n",
+ " 112 | \n",
+ " 2.85 | \n",
+ " 2.91 | \n",
+ " 0.30 | \n",
+ " 1.46 | \n",
+ " 7.300000 | \n",
+ " 1.28 | \n",
+ " 2.88 | \n",
+ " 1310 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 1 | \n",
+ " 13.83 | \n",
+ " 1.57 | \n",
+ " 2.62 | \n",
+ " 20.0 | \n",
+ " 115 | \n",
+ " 2.95 | \n",
+ " 3.40 | \n",
+ " 0.40 | \n",
+ " 1.72 | \n",
+ " 6.600000 | \n",
+ " 1.13 | \n",
+ " 2.57 | \n",
+ " 1130 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 1 | \n",
+ " 13.64 | \n",
+ " 3.10 | \n",
+ " 2.56 | \n",
+ " 15.2 | \n",
+ " 116 | \n",
+ " 2.70 | \n",
+ " 3.03 | \n",
+ " 0.17 | \n",
+ " 1.66 | \n",
+ " 5.100000 | \n",
+ " 0.96 | \n",
+ " 3.36 | \n",
+ " 845 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 1 | \n",
+ " 12.93 | \n",
+ " 3.80 | \n",
+ " 2.65 | \n",
+ " 18.6 | \n",
+ " 102 | \n",
+ " 2.41 | \n",
+ " 2.41 | \n",
+ " 0.25 | \n",
+ " 1.98 | \n",
+ " 4.500000 | \n",
+ " 1.03 | \n",
+ " 3.52 | \n",
+ " 770 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 1 | \n",
+ " 12.85 | \n",
+ " 1.60 | \n",
+ " 2.52 | \n",
+ " 17.8 | \n",
+ " 95 | \n",
+ " 2.48 | \n",
+ " 2.37 | \n",
+ " 0.26 | \n",
+ " 1.46 | \n",
+ " 3.930000 | \n",
+ " 1.09 | \n",
+ " 3.63 | \n",
+ " 1015 | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 1 | \n",
+ " 13.05 | \n",
+ " 2.05 | \n",
+ " 3.22 | \n",
+ " 25.0 | \n",
+ " 124 | \n",
+ " 2.63 | \n",
+ " 2.68 | \n",
+ " 0.47 | \n",
+ " 1.92 | \n",
+ " 3.580000 | \n",
+ " 1.13 | \n",
+ " 3.20 | \n",
+ " 830 | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 1 | \n",
+ " 13.30 | \n",
+ " 1.72 | \n",
+ " 2.14 | \n",
+ " 17.0 | \n",
+ " 94 | \n",
+ " 2.40 | \n",
+ " 2.19 | \n",
+ " 0.27 | \n",
+ " 1.35 | \n",
+ " 3.950000 | \n",
+ " 1.02 | \n",
+ " 2.77 | \n",
+ " 1285 | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 1 | \n",
+ " 14.02 | \n",
+ " 1.68 | \n",
+ " 2.21 | \n",
+ " 16.0 | \n",
+ " 96 | \n",
+ " 2.65 | \n",
+ " 2.33 | \n",
+ " 0.26 | \n",
+ " 1.98 | \n",
+ " 4.700000 | \n",
+ " 1.04 | \n",
+ " 3.59 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 30 | \n",
+ " 1 | \n",
+ " 13.58 | \n",
+ " 1.66 | \n",
+ " 2.36 | \n",
+ " 19.1 | \n",
+ " 106 | \n",
+ " 2.86 | \n",
+ " 3.19 | \n",
+ " 0.22 | \n",
+ " 1.95 | \n",
+ " 6.900000 | \n",
+ " 1.09 | \n",
+ " 2.88 | \n",
+ " 1515 | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 1 | \n",
+ " 13.76 | \n",
+ " 1.53 | \n",
+ " 2.70 | \n",
+ " 19.5 | \n",
+ " 132 | \n",
+ " 2.95 | \n",
+ " 2.74 | \n",
+ " 0.50 | \n",
+ " 1.35 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 3.00 | \n",
+ " 1235 | \n",
+ "
\n",
+ " \n",
+ " | 34 | \n",
+ " 1 | \n",
+ " 13.48 | \n",
+ " 1.81 | \n",
+ " 2.41 | \n",
+ " 20.5 | \n",
+ " 100 | \n",
+ " 2.70 | \n",
+ " 2.98 | \n",
+ " 0.26 | \n",
+ " 1.86 | \n",
+ " 5.100000 | \n",
+ " 1.04 | \n",
+ " 3.47 | \n",
+ " 920 | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 1 | \n",
+ " 13.05 | \n",
+ " 1.65 | \n",
+ " 2.55 | \n",
+ " 18.0 | \n",
+ " 98 | \n",
+ " 2.45 | \n",
+ " 2.43 | \n",
+ " 0.29 | \n",
+ " 1.44 | \n",
+ " 4.250000 | \n",
+ " 1.12 | \n",
+ " 2.51 | \n",
+ " 1105 | \n",
+ "
\n",
+ " \n",
+ " | 38 | \n",
+ " 1 | \n",
+ " 14.22 | \n",
+ " 3.99 | \n",
+ " 2.51 | \n",
+ " 13.2 | \n",
+ " 128 | \n",
+ " 3.00 | \n",
+ " 3.04 | \n",
+ " 0.20 | \n",
+ " 2.08 | \n",
+ " 5.100000 | \n",
+ " 0.89 | \n",
+ " 3.53 | \n",
+ " 760 | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 1 | \n",
+ " 13.41 | \n",
+ " 3.84 | \n",
+ " 2.12 | \n",
+ " 18.8 | \n",
+ " 90 | \n",
+ " 2.45 | \n",
+ " 2.68 | \n",
+ " 0.27 | \n",
+ " 1.48 | \n",
+ " 4.280000 | \n",
+ " 0.91 | \n",
+ " 3.00 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 42 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 3.98 | \n",
+ " 2.29 | \n",
+ " 17.5 | \n",
+ " 103 | \n",
+ " 2.64 | \n",
+ " 2.63 | \n",
+ " 0.32 | \n",
+ " 1.66 | \n",
+ " 4.360000 | \n",
+ " 0.82 | \n",
+ " 3.00 | \n",
+ " 680 | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 1 | \n",
+ " 14.21 | \n",
+ " 4.04 | \n",
+ " 2.44 | \n",
+ " 18.9 | \n",
+ " 111 | \n",
+ " 2.85 | \n",
+ " 2.65 | \n",
+ " 0.30 | \n",
+ " 1.25 | \n",
+ " 5.240000 | \n",
+ " 0.87 | \n",
+ " 3.33 | \n",
+ " 1080 | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 1 | \n",
+ " 13.90 | \n",
+ " 1.68 | \n",
+ " 2.12 | \n",
+ " 16.0 | \n",
+ " 101 | \n",
+ " 3.10 | \n",
+ " 3.39 | \n",
+ " 0.21 | \n",
+ " 2.14 | \n",
+ " 6.100000 | \n",
+ " 0.91 | \n",
+ " 3.33 | \n",
+ " 985 | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 1 | \n",
+ " 13.94 | \n",
+ " 1.73 | \n",
+ " 2.27 | \n",
+ " 17.4 | \n",
+ " 108 | \n",
+ " 2.88 | \n",
+ " 3.54 | \n",
+ " 0.32 | \n",
+ " 2.08 | \n",
+ " 8.900000 | \n",
+ " 1.12 | \n",
+ " 3.10 | \n",
+ " 1260 | \n",
+ "
\n",
+ " \n",
+ " | 50 | \n",
+ " 1 | \n",
+ " 13.83 | \n",
+ " 1.65 | \n",
+ " 2.60 | \n",
+ " 17.2 | \n",
+ " 94 | \n",
+ " 2.45 | \n",
+ " 2.99 | \n",
+ " 0.22 | \n",
+ " 2.29 | \n",
+ " 5.600000 | \n",
+ " 1.24 | \n",
+ " 3.37 | \n",
+ " 1265 | \n",
+ "
\n",
+ " \n",
+ " | 52 | \n",
+ " 1 | \n",
+ " 13.77 | \n",
+ " 1.90 | \n",
+ " 2.68 | \n",
+ " 17.1 | \n",
+ " 115 | \n",
+ " 3.00 | \n",
+ " 2.79 | \n",
+ " 0.39 | \n",
+ " 1.68 | \n",
+ " 6.300000 | \n",
+ " 1.13 | \n",
+ " 2.93 | \n",
+ " 1375 | \n",
+ "
\n",
+ " \n",
+ " | 54 | \n",
+ " 1 | \n",
+ " 13.56 | \n",
+ " 1.73 | \n",
+ " 2.46 | \n",
+ " 20.5 | \n",
+ " 116 | \n",
+ " 2.96 | \n",
+ " 2.78 | \n",
+ " 0.20 | \n",
+ " 2.45 | \n",
+ " 6.250000 | \n",
+ " 0.98 | \n",
+ " 3.03 | \n",
+ " 1120 | \n",
+ "
\n",
+ " \n",
+ " | 56 | \n",
+ " 1 | \n",
+ " 13.29 | \n",
+ " 1.97 | \n",
+ " 2.68 | \n",
+ " 16.8 | \n",
+ " 102 | \n",
+ " 3.00 | \n",
+ " 3.23 | \n",
+ " 0.31 | \n",
+ " 1.66 | \n",
+ " 6.000000 | \n",
+ " 1.07 | \n",
+ " 2.84 | \n",
+ " 1270 | \n",
+ "
\n",
+ " \n",
+ " | 58 | \n",
+ " 2 | \n",
+ " 12.37 | \n",
+ " 0.94 | \n",
+ " 1.36 | \n",
+ " 10.6 | \n",
+ " 88 | \n",
+ " 1.98 | \n",
+ " 0.57 | \n",
+ " 0.28 | \n",
+ " 0.42 | \n",
+ " 1.950000 | \n",
+ " 1.05 | \n",
+ " 1.82 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 118 | \n",
+ " 2 | \n",
+ " 12.00 | \n",
+ " 3.43 | \n",
+ " 2.00 | \n",
+ " 19.0 | \n",
+ " 87 | \n",
+ " 2.00 | \n",
+ " 1.64 | \n",
+ " 0.37 | \n",
+ " 1.87 | \n",
+ " 1.280000 | \n",
+ " 0.93 | \n",
+ " 3.05 | \n",
+ " 564 | \n",
+ "
\n",
+ " \n",
+ " | 120 | \n",
+ " 2 | \n",
+ " 11.56 | \n",
+ " 2.05 | \n",
+ " 3.23 | \n",
+ " 28.5 | \n",
+ " 119 | \n",
+ " 3.18 | \n",
+ " 5.08 | \n",
+ " 0.47 | \n",
+ " 1.87 | \n",
+ " 6.000000 | \n",
+ " 0.93 | \n",
+ " 3.69 | \n",
+ " 465 | \n",
+ "
\n",
+ " \n",
+ " | 122 | \n",
+ " 2 | \n",
+ " 13.05 | \n",
+ " 5.80 | \n",
+ " 2.13 | \n",
+ " 21.5 | \n",
+ " 86 | \n",
+ " 2.62 | \n",
+ " 2.65 | \n",
+ " 0.30 | \n",
+ " 2.01 | \n",
+ " 2.600000 | \n",
+ " 0.73 | \n",
+ " 3.10 | \n",
+ " 380 | \n",
+ "
\n",
+ " \n",
+ " | 124 | \n",
+ " 2 | \n",
+ " 12.07 | \n",
+ " 2.16 | \n",
+ " 2.17 | \n",
+ " 21.0 | \n",
+ " 85 | \n",
+ " 2.60 | \n",
+ " 2.65 | \n",
+ " 0.37 | \n",
+ " 1.35 | \n",
+ " 2.760000 | \n",
+ " 0.86 | \n",
+ " 3.28 | \n",
+ " 378 | \n",
+ "
\n",
+ " \n",
+ " | 126 | \n",
+ " 2 | \n",
+ " 11.79 | \n",
+ " 2.13 | \n",
+ " 2.78 | \n",
+ " 28.5 | \n",
+ " 92 | \n",
+ " 2.13 | \n",
+ " 2.24 | \n",
+ " 0.58 | \n",
+ " 1.76 | \n",
+ " 3.000000 | \n",
+ " 0.97 | \n",
+ " 2.44 | \n",
+ " 466 | \n",
+ "
\n",
+ " \n",
+ " | 128 | \n",
+ " 2 | \n",
+ " 12.04 | \n",
+ " 4.30 | \n",
+ " 2.38 | \n",
+ " 22.0 | \n",
+ " 80 | \n",
+ " 2.10 | \n",
+ " 1.75 | \n",
+ " 0.42 | \n",
+ " 1.35 | \n",
+ " 2.600000 | \n",
+ " 0.79 | \n",
+ " 2.57 | \n",
+ " 580 | \n",
+ "
\n",
+ " \n",
+ " | 130 | \n",
+ " 3 | \n",
+ " 12.88 | \n",
+ " 2.99 | \n",
+ " 2.40 | \n",
+ " 20.0 | \n",
+ " 104 | \n",
+ " 1.30 | \n",
+ " 1.22 | \n",
+ " 0.24 | \n",
+ " 0.83 | \n",
+ " 5.400000 | \n",
+ " 0.74 | \n",
+ " 1.42 | \n",
+ " 530 | \n",
+ "
\n",
+ " \n",
+ " | 132 | \n",
+ " 3 | \n",
+ " 12.70 | \n",
+ " 3.55 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 106 | \n",
+ " 1.70 | \n",
+ " 1.20 | \n",
+ " 0.17 | \n",
+ " 0.84 | \n",
+ " 5.000000 | \n",
+ " 0.78 | \n",
+ " 1.29 | \n",
+ " 600 | \n",
+ "
\n",
+ " \n",
+ " | 134 | \n",
+ " 3 | \n",
+ " 12.60 | \n",
+ " 2.46 | \n",
+ " 2.20 | \n",
+ " 18.5 | \n",
+ " 94 | \n",
+ " 1.62 | \n",
+ " 0.66 | \n",
+ " 0.63 | \n",
+ " 0.94 | \n",
+ " 7.100000 | \n",
+ " 0.73 | \n",
+ " 1.58 | \n",
+ " 695 | \n",
+ "
\n",
+ " \n",
+ " | 136 | \n",
+ " 3 | \n",
+ " 12.53 | \n",
+ " 5.51 | \n",
+ " 2.64 | \n",
+ " 25.0 | \n",
+ " 96 | \n",
+ " 1.79 | \n",
+ " 0.60 | \n",
+ " 0.63 | \n",
+ " 1.10 | \n",
+ " 5.000000 | \n",
+ " 0.82 | \n",
+ " 1.69 | \n",
+ " 515 | \n",
+ "
\n",
+ " \n",
+ " | 138 | \n",
+ " 3 | \n",
+ " 12.84 | \n",
+ " 2.96 | \n",
+ " 2.61 | \n",
+ " 24.0 | \n",
+ " 101 | \n",
+ " 2.32 | \n",
+ " 0.60 | \n",
+ " 0.53 | \n",
+ " 0.81 | \n",
+ " 4.920000 | \n",
+ " 0.89 | \n",
+ " 2.15 | \n",
+ " 590 | \n",
+ "
\n",
+ " \n",
+ " | 140 | \n",
+ " 3 | \n",
+ " 13.36 | \n",
+ " 2.56 | \n",
+ " 2.35 | \n",
+ " 20.0 | \n",
+ " 89 | \n",
+ " 1.40 | \n",
+ " 0.50 | \n",
+ " 0.37 | \n",
+ " 0.64 | \n",
+ " 5.600000 | \n",
+ " 0.70 | \n",
+ " 2.47 | \n",
+ " 780 | \n",
+ "
\n",
+ " \n",
+ " | 142 | \n",
+ " 3 | \n",
+ " 13.62 | \n",
+ " 4.95 | \n",
+ " 2.35 | \n",
+ " 20.0 | \n",
+ " 92 | \n",
+ " 2.00 | \n",
+ " 0.80 | \n",
+ " 0.47 | \n",
+ " 1.02 | \n",
+ " 4.400000 | \n",
+ " 0.91 | \n",
+ " 2.05 | \n",
+ " 550 | \n",
+ "
\n",
+ " \n",
+ " | 144 | \n",
+ " 3 | \n",
+ " 13.16 | \n",
+ " 3.57 | \n",
+ " 2.15 | \n",
+ " 21.0 | \n",
+ " 102 | \n",
+ " 1.50 | \n",
+ " 0.55 | \n",
+ " 0.43 | \n",
+ " 1.30 | \n",
+ " 4.000000 | \n",
+ " 0.60 | \n",
+ " 1.68 | \n",
+ " 830 | \n",
+ "
\n",
+ " \n",
+ " | 146 | \n",
+ " 3 | \n",
+ " 12.87 | \n",
+ " 4.61 | \n",
+ " 2.48 | \n",
+ " 21.5 | \n",
+ " 86 | \n",
+ " 1.70 | \n",
+ " 0.65 | \n",
+ " 0.47 | \n",
+ " 0.86 | \n",
+ " 7.650000 | \n",
+ " 0.54 | \n",
+ " 1.86 | \n",
+ " 625 | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 3 | \n",
+ " 13.08 | \n",
+ " 3.90 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 113 | \n",
+ " 1.41 | \n",
+ " 1.39 | \n",
+ " 0.34 | \n",
+ " 1.14 | \n",
+ " 9.400000 | \n",
+ " 0.57 | \n",
+ " 1.33 | \n",
+ " 550 | \n",
+ "
\n",
+ " \n",
+ " | 150 | \n",
+ " 3 | \n",
+ " 12.79 | \n",
+ " 2.67 | \n",
+ " 2.48 | \n",
+ " 22.0 | \n",
+ " 112 | \n",
+ " 1.48 | \n",
+ " 1.36 | \n",
+ " 0.24 | \n",
+ " 1.26 | \n",
+ " 10.800000 | \n",
+ " 0.48 | \n",
+ " 1.47 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 152 | \n",
+ " 3 | \n",
+ " 13.23 | \n",
+ " 3.30 | \n",
+ " 2.28 | \n",
+ " 18.5 | \n",
+ " 98 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.61 | \n",
+ " 1.87 | \n",
+ " 10.520000 | \n",
+ " 0.56 | \n",
+ " 1.51 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 154 | \n",
+ " 3 | \n",
+ " 13.17 | \n",
+ " 5.19 | \n",
+ " 2.32 | \n",
+ " 22.0 | \n",
+ " 93 | \n",
+ " 1.74 | \n",
+ " 0.63 | \n",
+ " 0.61 | \n",
+ " 1.55 | \n",
+ " 7.900000 | \n",
+ " 0.60 | \n",
+ " 1.48 | \n",
+ " 725 | \n",
+ "
\n",
+ " \n",
+ " | 156 | \n",
+ " 3 | \n",
+ " 12.45 | \n",
+ " 3.03 | \n",
+ " 2.64 | \n",
+ " 27.0 | \n",
+ " 97 | \n",
+ " 1.90 | \n",
+ " 0.58 | \n",
+ " 0.63 | \n",
+ " 1.14 | \n",
+ " 7.500000 | \n",
+ " 0.67 | \n",
+ " 1.73 | \n",
+ " 880 | \n",
+ "
\n",
+ " \n",
+ " | 158 | \n",
+ " 3 | \n",
+ " 13.48 | \n",
+ " 1.67 | \n",
+ " 2.64 | \n",
+ " 22.5 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 1.10 | \n",
+ " 0.52 | \n",
+ " 2.29 | \n",
+ " 11.750000 | \n",
+ " 0.57 | \n",
+ " 1.78 | \n",
+ " 620 | \n",
+ "
\n",
+ " \n",
+ " | 160 | \n",
+ " 3 | \n",
+ " 13.69 | \n",
+ " 3.26 | \n",
+ " 2.54 | \n",
+ " 20.0 | \n",
+ " 107 | \n",
+ " 1.83 | \n",
+ " 0.56 | \n",
+ " 0.50 | \n",
+ " 0.80 | \n",
+ " 5.880000 | \n",
+ " 0.96 | \n",
+ " 1.82 | \n",
+ " 680 | \n",
+ "
\n",
+ " \n",
+ " | 162 | \n",
+ " 3 | \n",
+ " 12.96 | \n",
+ " 3.45 | \n",
+ " 2.35 | \n",
+ " 18.5 | \n",
+ " 106 | \n",
+ " 1.39 | \n",
+ " 0.70 | \n",
+ " 0.40 | \n",
+ " 0.94 | \n",
+ " 5.280000 | \n",
+ " 0.68 | \n",
+ " 1.75 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 164 | \n",
+ " 3 | \n",
+ " 13.73 | \n",
+ " 4.36 | \n",
+ " 2.26 | \n",
+ " 22.5 | \n",
+ " 88 | \n",
+ " 1.28 | \n",
+ " 0.47 | \n",
+ " 0.52 | \n",
+ " 1.15 | \n",
+ " 6.620000 | \n",
+ " 0.78 | \n",
+ " 1.75 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 166 | \n",
+ " 3 | \n",
+ " 12.82 | \n",
+ " 3.37 | \n",
+ " 2.30 | \n",
+ " 19.5 | \n",
+ " 88 | \n",
+ " 1.48 | \n",
+ " 0.66 | \n",
+ " 0.40 | \n",
+ " 0.97 | \n",
+ " 10.260000 | \n",
+ " 0.72 | \n",
+ " 1.75 | \n",
+ " 685 | \n",
+ "
\n",
+ " \n",
+ " | 168 | \n",
+ " 3 | \n",
+ " 13.40 | \n",
+ " 4.60 | \n",
+ " 2.86 | \n",
+ " 25.0 | \n",
+ " 112 | \n",
+ " 1.98 | \n",
+ " 0.96 | \n",
+ " 0.27 | \n",
+ " 1.11 | \n",
+ " 8.500000 | \n",
+ " 0.67 | \n",
+ " 1.92 | \n",
+ " 630 | \n",
+ "
\n",
+ " \n",
+ " | 170 | \n",
+ " 3 | \n",
+ " 12.77 | \n",
+ " 2.39 | \n",
+ " 2.28 | \n",
+ " 19.5 | \n",
+ " 86 | \n",
+ " 1.39 | \n",
+ " 0.51 | \n",
+ " 0.48 | \n",
+ " 0.64 | \n",
+ " 9.899999 | \n",
+ " 0.57 | \n",
+ " 1.63 | \n",
+ " 470 | \n",
+ "
\n",
+ " \n",
+ " | 172 | \n",
+ " 3 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.700000 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 3 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.200000 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 3 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.200000 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
89 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 1.05 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 0.86 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 1.05 \n",
+ "6 1 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 1.06 \n",
+ "8 1 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 1.01 \n",
+ "10 1 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 1.17 \n",
+ "12 1 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 1.25 \n",
+ "14 1 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 1.28 \n",
+ "16 1 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 1.13 \n",
+ "18 1 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 0.96 \n",
+ "20 1 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 1.03 \n",
+ "22 1 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 1.09 \n",
+ "24 1 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 1.13 \n",
+ "26 1 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 1.02 \n",
+ "28 1 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 1.04 \n",
+ "30 1 13.58 1.66 2.36 19.1 106 2.86 3.19 0.22 1.95 6.900000 1.09 \n",
+ "32 1 13.76 1.53 2.70 19.5 132 2.95 2.74 0.50 1.35 5.400000 1.25 \n",
+ "34 1 13.48 1.81 2.41 20.5 100 2.70 2.98 0.26 1.86 5.100000 1.04 \n",
+ "36 1 13.05 1.65 2.55 18.0 98 2.45 2.43 0.29 1.44 4.250000 1.12 \n",
+ "38 1 14.22 3.99 2.51 13.2 128 3.00 3.04 0.20 2.08 5.100000 0.89 \n",
+ "40 1 13.41 3.84 2.12 18.8 90 2.45 2.68 0.27 1.48 4.280000 0.91 \n",
+ "42 1 13.24 3.98 2.29 17.5 103 2.64 2.63 0.32 1.66 4.360000 0.82 \n",
+ "44 1 14.21 4.04 2.44 18.9 111 2.85 2.65 0.30 1.25 5.240000 0.87 \n",
+ "46 1 13.90 1.68 2.12 16.0 101 3.10 3.39 0.21 2.14 6.100000 0.91 \n",
+ "48 1 13.94 1.73 2.27 17.4 108 2.88 3.54 0.32 2.08 8.900000 1.12 \n",
+ "50 1 13.83 1.65 2.60 17.2 94 2.45 2.99 0.22 2.29 5.600000 1.24 \n",
+ "52 1 13.77 1.90 2.68 17.1 115 3.00 2.79 0.39 1.68 6.300000 1.13 \n",
+ "54 1 13.56 1.73 2.46 20.5 116 2.96 2.78 0.20 2.45 6.250000 0.98 \n",
+ "56 1 13.29 1.97 2.68 16.8 102 3.00 3.23 0.31 1.66 6.000000 1.07 \n",
+ "58 2 12.37 0.94 1.36 10.6 88 1.98 0.57 0.28 0.42 1.950000 1.05 \n",
+ ".. .. ... ... ... ... ... ... ... ... ... ... ... \n",
+ "118 2 12.00 3.43 2.00 19.0 87 2.00 1.64 0.37 1.87 1.280000 0.93 \n",
+ "120 2 11.56 2.05 3.23 28.5 119 3.18 5.08 0.47 1.87 6.000000 0.93 \n",
+ "122 2 13.05 5.80 2.13 21.5 86 2.62 2.65 0.30 2.01 2.600000 0.73 \n",
+ "124 2 12.07 2.16 2.17 21.0 85 2.60 2.65 0.37 1.35 2.760000 0.86 \n",
+ "126 2 11.79 2.13 2.78 28.5 92 2.13 2.24 0.58 1.76 3.000000 0.97 \n",
+ "128 2 12.04 4.30 2.38 22.0 80 2.10 1.75 0.42 1.35 2.600000 0.79 \n",
+ "130 3 12.88 2.99 2.40 20.0 104 1.30 1.22 0.24 0.83 5.400000 0.74 \n",
+ "132 3 12.70 3.55 2.36 21.5 106 1.70 1.20 0.17 0.84 5.000000 0.78 \n",
+ "134 3 12.60 2.46 2.20 18.5 94 1.62 0.66 0.63 0.94 7.100000 0.73 \n",
+ "136 3 12.53 5.51 2.64 25.0 96 1.79 0.60 0.63 1.10 5.000000 0.82 \n",
+ "138 3 12.84 2.96 2.61 24.0 101 2.32 0.60 0.53 0.81 4.920000 0.89 \n",
+ "140 3 13.36 2.56 2.35 20.0 89 1.40 0.50 0.37 0.64 5.600000 0.70 \n",
+ "142 3 13.62 4.95 2.35 20.0 92 2.00 0.80 0.47 1.02 4.400000 0.91 \n",
+ "144 3 13.16 3.57 2.15 21.0 102 1.50 0.55 0.43 1.30 4.000000 0.60 \n",
+ "146 3 12.87 4.61 2.48 21.5 86 1.70 0.65 0.47 0.86 7.650000 0.54 \n",
+ "148 3 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 0.57 \n",
+ "150 3 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 0.48 \n",
+ "152 3 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 0.56 \n",
+ "154 3 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 0.60 \n",
+ "156 3 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 0.67 \n",
+ "158 3 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 0.57 \n",
+ "160 3 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 0.96 \n",
+ "162 3 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 0.68 \n",
+ "164 3 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 0.78 \n",
+ "166 3 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 0.72 \n",
+ "168 3 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 0.67 \n",
+ "170 3 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 0.57 \n",
+ "172 3 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 0.64 \n",
+ "174 3 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 0.59 \n",
+ "176 3 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 0.61 \n",
+ "\n",
+ " 3.92 1065 \n",
+ "0 3.40 1050 \n",
+ "2 3.45 1480 \n",
+ "4 2.85 1450 \n",
+ "6 3.58 1295 \n",
+ "8 3.55 1045 \n",
+ "10 2.82 1280 \n",
+ "12 2.73 1150 \n",
+ "14 2.88 1310 \n",
+ "16 2.57 1130 \n",
+ "18 3.36 845 \n",
+ "20 3.52 770 \n",
+ "22 3.63 1015 \n",
+ "24 3.20 830 \n",
+ "26 2.77 1285 \n",
+ "28 3.59 1035 \n",
+ "30 2.88 1515 \n",
+ "32 3.00 1235 \n",
+ "34 3.47 920 \n",
+ "36 2.51 1105 \n",
+ "38 3.53 760 \n",
+ "40 3.00 1035 \n",
+ "42 3.00 680 \n",
+ "44 3.33 1080 \n",
+ "46 3.33 985 \n",
+ "48 3.10 1260 \n",
+ "50 3.37 1265 \n",
+ "52 2.93 1375 \n",
+ "54 3.03 1120 \n",
+ "56 2.84 1270 \n",
+ "58 1.82 520 \n",
+ ".. ... ... \n",
+ "118 3.05 564 \n",
+ "120 3.69 465 \n",
+ "122 3.10 380 \n",
+ "124 3.28 378 \n",
+ "126 2.44 466 \n",
+ "128 2.57 580 \n",
+ "130 1.42 530 \n",
+ "132 1.29 600 \n",
+ "134 1.58 695 \n",
+ "136 1.69 515 \n",
+ "138 2.15 590 \n",
+ "140 2.47 780 \n",
+ "142 2.05 550 \n",
+ "144 1.68 830 \n",
+ "146 1.86 625 \n",
+ "148 1.33 550 \n",
+ "150 1.47 480 \n",
+ "152 1.51 675 \n",
+ "154 1.48 725 \n",
+ "156 1.73 880 \n",
+ "158 1.78 620 \n",
+ "160 1.82 680 \n",
+ "162 1.75 675 \n",
+ "164 1.75 520 \n",
+ "166 1.75 685 \n",
+ "168 1.92 630 \n",
+ "170 1.63 470 \n",
+ "172 1.74 740 \n",
+ "174 1.56 835 \n",
+ "176 1.60 560 \n",
+ "\n",
+ "[89 rows x 14 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df_copy = wine_df.copy(deep =True)\n",
+ "wine_df_copy.head()\n",
+ "odd_rows= [i for i in range(1,len(wine_df_copy.count(axis = 1))) if i%2!=0]\n",
+ "wine_df_copy.drop(odd_rows)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "o6Cs6T1Rjz71"
+ },
+ "source": [
+ "#### Assign the columns as below:\n",
+ "\n",
+ "The attributes are (dontated by Riccardo Leardi, riclea '@' anchem.unige.it): \n",
+ "1) Alcohol \n",
+ "2) Malic acid \n",
+ "3) Ash \n",
+ "4) Alcalinity of ash \n",
+ "5) Magnesium \n",
+ "6) Total phenols \n",
+ "7) Flavanoids \n",
+ "8) Nonflavanoid phenols \n",
+ "9) Proanthocyanins \n",
+ "10)Color intensity \n",
+ "11)Hue \n",
+ "12)OD280/OD315 of diluted wines \n",
+ "13)Proline "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "my8HB4V4j779"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Count | \n",
+ " Alcohol | \n",
+ " MAlic acid | \n",
+ " Ash | \n",
+ " Alcalinity of ash | \n",
+ " Magnesium | \n",
+ " Total phenols | \n",
+ " Flavanoids | \n",
+ " Nonflavanoid phenols | \n",
+ " Proanthocyanins | \n",
+ " Color intensity | \n",
+ " Hue | \n",
+ " OD280/OD315 OF diluted wines | \n",
+ " Proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 \n",
+ "1 1 13.16 2.36 2.67 18.6 101 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 \n",
+ "\n",
+ " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n",
+ "0 2.65 2.76 0.26 1.28 \n",
+ "1 2.80 3.24 0.30 2.81 \n",
+ "2 3.85 3.49 0.24 2.18 \n",
+ "3 2.80 2.69 0.39 1.82 \n",
+ "4 3.27 3.39 0.34 1.97 \n",
+ "\n",
+ " Color intensity Hue OD280/OD315 OF diluted wines Proline \n",
+ "0 4.38 1.05 3.40 1050 \n",
+ "1 5.68 1.03 3.17 1185 \n",
+ "2 7.80 0.86 3.45 1480 \n",
+ "3 4.32 1.04 2.93 735 \n",
+ "4 6.75 1.05 2.85 1450 "
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.columns = ['Count','Alcohol','MAlic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids','Nonflavanoid phenols', 'Proanthocyanins','Color intensity','Hue', 'OD280/OD315 OF diluted wines', 'Proline']\n",
+ "wine_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "Zqi7hwWpkNbH"
+ },
+ "source": [
+ "#### Set the values of the first 3 rows from alcohol as NaN\n",
+ "\n",
+ "Hint- Use iloc to select 3 rows of wine_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "buyT4vX4kPMl"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Count | \n",
+ " Alcohol | \n",
+ " MAlic acid | \n",
+ " Ash | \n",
+ " Alcalinity of ash | \n",
+ " Magnesium | \n",
+ " Total phenols | \n",
+ " Flavanoids | \n",
+ " Nonflavanoid phenols | \n",
+ " Proanthocyanins | \n",
+ " Color intensity | \n",
+ " Hue | \n",
+ " OD280/OD315 OF diluted wines | \n",
+ " Proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1.0 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118.0 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735.0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1.0 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112.0 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n",
+ "0 NaN NaN NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN NaN NaN \n",
+ "3 1.0 13.24 2.59 2.87 21.0 118.0 \n",
+ "4 1.0 14.20 1.76 2.45 15.2 112.0 \n",
+ "\n",
+ " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n",
+ "0 NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN \n",
+ "3 2.80 2.69 0.39 1.82 \n",
+ "4 3.27 3.39 0.34 1.97 \n",
+ "\n",
+ " Color intensity Hue OD280/OD315 OF diluted wines Proline \n",
+ "0 NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN \n",
+ "3 4.32 1.04 2.93 735.0 \n",
+ "4 6.75 1.05 2.85 1450.0 "
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.iloc[:3]=np.nan\n",
+ "wine_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "RQMNI2UHkP3o"
+ },
+ "source": [
+ "#### Create an array of 10 random numbers uptill 10 and assign it to a variable named `random`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "xunmCjaEmDwZ"
+ },
+ "outputs": [],
+ "source": [
+ "from random import *\n",
+ "random=[]\n",
+ "for i in range(10):\n",
+ " random.append(randrange(0,10))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "hELUakyXmFSu"
+ },
+ "source": [
+ "#### Use random numbers you generated as an index and assign NaN value to each of cell of the column alcohol"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "zMgaNnNHmP01"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Count | \n",
+ " Alcohol | \n",
+ " MAlic acid | \n",
+ " Ash | \n",
+ " Alcalinity of ash | \n",
+ " Magnesium | \n",
+ " Total phenols | \n",
+ " Flavanoids | \n",
+ " Nonflavanoid phenols | \n",
+ " Proanthocyanins | \n",
+ " Color intensity | \n",
+ " Hue | \n",
+ " OD280/OD315 OF diluted wines | \n",
+ " Proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118.0 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735.0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112.0 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450.0 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 1.87 | \n",
+ " 2.45 | \n",
+ " 14.6 | \n",
+ " 96.0 | \n",
+ " 2.50 | \n",
+ " 2.52 | \n",
+ " 0.30 | \n",
+ " 1.98 | \n",
+ " 5.25 | \n",
+ " 1.02 | \n",
+ " 3.58 | \n",
+ " 1290.0 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121.0 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.05 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295.0 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 1.0 | \n",
+ " 14.83 | \n",
+ " 1.64 | \n",
+ " 2.17 | \n",
+ " 14.0 | \n",
+ " 97.0 | \n",
+ " 2.80 | \n",
+ " 2.98 | \n",
+ " 0.29 | \n",
+ " 1.98 | \n",
+ " 5.20 | \n",
+ " 1.08 | \n",
+ " 2.85 | \n",
+ " 1045.0 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1.0 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98.0 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.22 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045.0 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " 2.16 | \n",
+ " 2.30 | \n",
+ " 18.0 | \n",
+ " 105.0 | \n",
+ " 2.95 | \n",
+ " 3.32 | \n",
+ " 0.22 | \n",
+ " 2.38 | \n",
+ " 5.75 | \n",
+ " 1.25 | \n",
+ " 3.17 | \n",
+ " 1510.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n",
+ "0 NaN NaN NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN NaN NaN \n",
+ "3 1.0 NaN 2.59 2.87 21.0 118.0 \n",
+ "4 1.0 NaN 1.76 2.45 15.2 112.0 \n",
+ "5 1.0 NaN 1.87 2.45 14.6 96.0 \n",
+ "6 1.0 14.06 2.15 2.61 17.6 121.0 \n",
+ "7 1.0 14.83 1.64 2.17 14.0 97.0 \n",
+ "8 1.0 13.86 1.35 2.27 16.0 98.0 \n",
+ "9 1.0 NaN 2.16 2.30 18.0 105.0 \n",
+ "\n",
+ " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n",
+ "0 NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN \n",
+ "3 2.80 2.69 0.39 1.82 \n",
+ "4 3.27 3.39 0.34 1.97 \n",
+ "5 2.50 2.52 0.30 1.98 \n",
+ "6 2.60 2.51 0.31 1.25 \n",
+ "7 2.80 2.98 0.29 1.98 \n",
+ "8 2.98 3.15 0.22 1.85 \n",
+ "9 2.95 3.32 0.22 2.38 \n",
+ "\n",
+ " Color intensity Hue OD280/OD315 OF diluted wines Proline \n",
+ "0 NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN \n",
+ "3 4.32 1.04 2.93 735.0 \n",
+ "4 6.75 1.05 2.85 1450.0 \n",
+ "5 5.25 1.02 3.58 1290.0 \n",
+ "6 5.05 1.06 3.58 1295.0 \n",
+ "7 5.20 1.08 2.85 1045.0 \n",
+ "8 7.22 1.01 3.55 1045.0 \n",
+ "9 5.75 1.25 3.17 1510.0 "
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.loc[random,'Alcohol']=np.nan\n",
+ "wine_df.head(10)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "PHyK_vRsmRwV"
+ },
+ "source": [
+ "#### How many missing values do we have? \n",
+ "\n",
+ "Hint: you can use isnull() and sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "EnOYhmEqmfKp"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "46"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.isnull()\n",
+ "wine_df.isnull().sum().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "-Fd4WBklmf1_"
+ },
+ "source": [
+ "#### Delete the rows that contain missing values "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "As7IC6Ktms8-"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Count | \n",
+ " Alcohol | \n",
+ " MAlic acid | \n",
+ " Ash | \n",
+ " Alcalinity of ash | \n",
+ " Magnesium | \n",
+ " Total phenols | \n",
+ " Flavanoids | \n",
+ " Nonflavanoid phenols | \n",
+ " Proanthocyanins | \n",
+ " Color intensity | \n",
+ " Hue | \n",
+ " OD280/OD315 OF diluted wines | \n",
+ " Proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 6 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121.0 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.050000 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295.0 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 1.0 | \n",
+ " 14.83 | \n",
+ " 1.64 | \n",
+ " 2.17 | \n",
+ " 14.0 | \n",
+ " 97.0 | \n",
+ " 2.80 | \n",
+ " 2.98 | \n",
+ " 0.29 | \n",
+ " 1.98 | \n",
+ " 5.200000 | \n",
+ " 1.08 | \n",
+ " 2.85 | \n",
+ " 1045.0 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1.0 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98.0 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.220000 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045.0 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 1.0 | \n",
+ " 14.12 | \n",
+ " 1.48 | \n",
+ " 2.32 | \n",
+ " 16.8 | \n",
+ " 95.0 | \n",
+ " 2.20 | \n",
+ " 2.43 | \n",
+ " 0.26 | \n",
+ " 1.57 | \n",
+ " 5.000000 | \n",
+ " 1.17 | \n",
+ " 2.82 | \n",
+ " 1280.0 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 1.0 | \n",
+ " 13.75 | \n",
+ " 1.73 | \n",
+ " 2.41 | \n",
+ " 16.0 | \n",
+ " 89.0 | \n",
+ " 2.60 | \n",
+ " 2.76 | \n",
+ " 0.29 | \n",
+ " 1.81 | \n",
+ " 5.600000 | \n",
+ " 1.15 | \n",
+ " 2.90 | \n",
+ " 1320.0 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 1.0 | \n",
+ " 14.75 | \n",
+ " 1.73 | \n",
+ " 2.39 | \n",
+ " 11.4 | \n",
+ " 91.0 | \n",
+ " 3.10 | \n",
+ " 3.69 | \n",
+ " 0.43 | \n",
+ " 2.81 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 2.73 | \n",
+ " 1150.0 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 1.0 | \n",
+ " 14.38 | \n",
+ " 1.87 | \n",
+ " 2.38 | \n",
+ " 12.0 | \n",
+ " 102.0 | \n",
+ " 3.30 | \n",
+ " 3.64 | \n",
+ " 0.29 | \n",
+ " 2.96 | \n",
+ " 7.500000 | \n",
+ " 1.20 | \n",
+ " 3.00 | \n",
+ " 1547.0 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 1.0 | \n",
+ " 13.63 | \n",
+ " 1.81 | \n",
+ " 2.70 | \n",
+ " 17.2 | \n",
+ " 112.0 | \n",
+ " 2.85 | \n",
+ " 2.91 | \n",
+ " 0.30 | \n",
+ " 1.46 | \n",
+ " 7.300000 | \n",
+ " 1.28 | \n",
+ " 2.88 | \n",
+ " 1310.0 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 1.0 | \n",
+ " 14.30 | \n",
+ " 1.92 | \n",
+ " 2.72 | \n",
+ " 20.0 | \n",
+ " 120.0 | \n",
+ " 2.80 | \n",
+ " 3.14 | \n",
+ " 0.33 | \n",
+ " 1.97 | \n",
+ " 6.200000 | \n",
+ " 1.07 | \n",
+ " 2.65 | \n",
+ " 1280.0 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 1.0 | \n",
+ " 13.83 | \n",
+ " 1.57 | \n",
+ " 2.62 | \n",
+ " 20.0 | \n",
+ " 115.0 | \n",
+ " 2.95 | \n",
+ " 3.40 | \n",
+ " 0.40 | \n",
+ " 1.72 | \n",
+ " 6.600000 | \n",
+ " 1.13 | \n",
+ " 2.57 | \n",
+ " 1130.0 | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 1.0 | \n",
+ " 14.19 | \n",
+ " 1.59 | \n",
+ " 2.48 | \n",
+ " 16.5 | \n",
+ " 108.0 | \n",
+ " 3.30 | \n",
+ " 3.93 | \n",
+ " 0.32 | \n",
+ " 1.86 | \n",
+ " 8.700000 | \n",
+ " 1.23 | \n",
+ " 2.82 | \n",
+ " 1680.0 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 1.0 | \n",
+ " 13.64 | \n",
+ " 3.10 | \n",
+ " 2.56 | \n",
+ " 15.2 | \n",
+ " 116.0 | \n",
+ " 2.70 | \n",
+ " 3.03 | \n",
+ " 0.17 | \n",
+ " 1.66 | \n",
+ " 5.100000 | \n",
+ " 0.96 | \n",
+ " 3.36 | \n",
+ " 845.0 | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 1.63 | \n",
+ " 2.28 | \n",
+ " 16.0 | \n",
+ " 126.0 | \n",
+ " 3.00 | \n",
+ " 3.17 | \n",
+ " 0.24 | \n",
+ " 2.10 | \n",
+ " 5.650000 | \n",
+ " 1.09 | \n",
+ " 3.71 | \n",
+ " 780.0 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 1.0 | \n",
+ " 12.93 | \n",
+ " 3.80 | \n",
+ " 2.65 | \n",
+ " 18.6 | \n",
+ " 102.0 | \n",
+ " 2.41 | \n",
+ " 2.41 | \n",
+ " 0.25 | \n",
+ " 1.98 | \n",
+ " 4.500000 | \n",
+ " 1.03 | \n",
+ " 3.52 | \n",
+ " 770.0 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 1.0 | \n",
+ " 13.71 | \n",
+ " 1.86 | \n",
+ " 2.36 | \n",
+ " 16.6 | \n",
+ " 101.0 | \n",
+ " 2.61 | \n",
+ " 2.88 | \n",
+ " 0.27 | \n",
+ " 1.69 | \n",
+ " 3.800000 | \n",
+ " 1.11 | \n",
+ " 4.00 | \n",
+ " 1035.0 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 1.0 | \n",
+ " 12.85 | \n",
+ " 1.60 | \n",
+ " 2.52 | \n",
+ " 17.8 | \n",
+ " 95.0 | \n",
+ " 2.48 | \n",
+ " 2.37 | \n",
+ " 0.26 | \n",
+ " 1.46 | \n",
+ " 3.930000 | \n",
+ " 1.09 | \n",
+ " 3.63 | \n",
+ " 1015.0 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 1.0 | \n",
+ " 13.50 | \n",
+ " 1.81 | \n",
+ " 2.61 | \n",
+ " 20.0 | \n",
+ " 96.0 | \n",
+ " 2.53 | \n",
+ " 2.61 | \n",
+ " 0.28 | \n",
+ " 1.66 | \n",
+ " 3.520000 | \n",
+ " 1.12 | \n",
+ " 3.82 | \n",
+ " 845.0 | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 1.0 | \n",
+ " 13.05 | \n",
+ " 2.05 | \n",
+ " 3.22 | \n",
+ " 25.0 | \n",
+ " 124.0 | \n",
+ " 2.63 | \n",
+ " 2.68 | \n",
+ " 0.47 | \n",
+ " 1.92 | \n",
+ " 3.580000 | \n",
+ " 1.13 | \n",
+ " 3.20 | \n",
+ " 830.0 | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " 1.0 | \n",
+ " 13.39 | \n",
+ " 1.77 | \n",
+ " 2.62 | \n",
+ " 16.1 | \n",
+ " 93.0 | \n",
+ " 2.85 | \n",
+ " 2.94 | \n",
+ " 0.34 | \n",
+ " 1.45 | \n",
+ " 4.800000 | \n",
+ " 0.92 | \n",
+ " 3.22 | \n",
+ " 1195.0 | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 1.0 | \n",
+ " 13.30 | \n",
+ " 1.72 | \n",
+ " 2.14 | \n",
+ " 17.0 | \n",
+ " 94.0 | \n",
+ " 2.40 | \n",
+ " 2.19 | \n",
+ " 0.27 | \n",
+ " 1.35 | \n",
+ " 3.950000 | \n",
+ " 1.02 | \n",
+ " 2.77 | \n",
+ " 1285.0 | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 1.0 | \n",
+ " 13.87 | \n",
+ " 1.90 | \n",
+ " 2.80 | \n",
+ " 19.4 | \n",
+ " 107.0 | \n",
+ " 2.95 | \n",
+ " 2.97 | \n",
+ " 0.37 | \n",
+ " 1.76 | \n",
+ " 4.500000 | \n",
+ " 1.25 | \n",
+ " 3.40 | \n",
+ " 915.0 | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 1.0 | \n",
+ " 14.02 | \n",
+ " 1.68 | \n",
+ " 2.21 | \n",
+ " 16.0 | \n",
+ " 96.0 | \n",
+ " 2.65 | \n",
+ " 2.33 | \n",
+ " 0.26 | \n",
+ " 1.98 | \n",
+ " 4.700000 | \n",
+ " 1.04 | \n",
+ " 3.59 | \n",
+ " 1035.0 | \n",
+ "
\n",
+ " \n",
+ " | 29 | \n",
+ " 1.0 | \n",
+ " 13.73 | \n",
+ " 1.50 | \n",
+ " 2.70 | \n",
+ " 22.5 | \n",
+ " 101.0 | \n",
+ " 3.00 | \n",
+ " 3.25 | \n",
+ " 0.29 | \n",
+ " 2.38 | \n",
+ " 5.700000 | \n",
+ " 1.19 | \n",
+ " 2.71 | \n",
+ " 1285.0 | \n",
+ "
\n",
+ " \n",
+ " | 30 | \n",
+ " 1.0 | \n",
+ " 13.58 | \n",
+ " 1.66 | \n",
+ " 2.36 | \n",
+ " 19.1 | \n",
+ " 106.0 | \n",
+ " 2.86 | \n",
+ " 3.19 | \n",
+ " 0.22 | \n",
+ " 1.95 | \n",
+ " 6.900000 | \n",
+ " 1.09 | \n",
+ " 2.88 | \n",
+ " 1515.0 | \n",
+ "
\n",
+ " \n",
+ " | 31 | \n",
+ " 1.0 | \n",
+ " 13.68 | \n",
+ " 1.83 | \n",
+ " 2.36 | \n",
+ " 17.2 | \n",
+ " 104.0 | \n",
+ " 2.42 | \n",
+ " 2.69 | \n",
+ " 0.42 | \n",
+ " 1.97 | \n",
+ " 3.840000 | \n",
+ " 1.23 | \n",
+ " 2.87 | \n",
+ " 990.0 | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 1.0 | \n",
+ " 13.76 | \n",
+ " 1.53 | \n",
+ " 2.70 | \n",
+ " 19.5 | \n",
+ " 132.0 | \n",
+ " 2.95 | \n",
+ " 2.74 | \n",
+ " 0.50 | \n",
+ " 1.35 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 3.00 | \n",
+ " 1235.0 | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 1.0 | \n",
+ " 13.51 | \n",
+ " 1.80 | \n",
+ " 2.65 | \n",
+ " 19.0 | \n",
+ " 110.0 | \n",
+ " 2.35 | \n",
+ " 2.53 | \n",
+ " 0.29 | \n",
+ " 1.54 | \n",
+ " 4.200000 | \n",
+ " 1.10 | \n",
+ " 2.87 | \n",
+ " 1095.0 | \n",
+ "
\n",
+ " \n",
+ " | 34 | \n",
+ " 1.0 | \n",
+ " 13.48 | \n",
+ " 1.81 | \n",
+ " 2.41 | \n",
+ " 20.5 | \n",
+ " 100.0 | \n",
+ " 2.70 | \n",
+ " 2.98 | \n",
+ " 0.26 | \n",
+ " 1.86 | \n",
+ " 5.100000 | \n",
+ " 1.04 | \n",
+ " 3.47 | \n",
+ " 920.0 | \n",
+ "
\n",
+ " \n",
+ " | 35 | \n",
+ " 1.0 | \n",
+ " 13.28 | \n",
+ " 1.64 | \n",
+ " 2.84 | \n",
+ " 15.5 | \n",
+ " 110.0 | \n",
+ " 2.60 | \n",
+ " 2.68 | \n",
+ " 0.34 | \n",
+ " 1.36 | \n",
+ " 4.600000 | \n",
+ " 1.09 | \n",
+ " 2.78 | \n",
+ " 880.0 | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 1.0 | \n",
+ " 13.05 | \n",
+ " 1.65 | \n",
+ " 2.55 | \n",
+ " 18.0 | \n",
+ " 98.0 | \n",
+ " 2.45 | \n",
+ " 2.43 | \n",
+ " 0.29 | \n",
+ " 1.44 | \n",
+ " 4.250000 | \n",
+ " 1.12 | \n",
+ " 2.51 | \n",
+ " 1105.0 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 147 | \n",
+ " 3.0 | \n",
+ " 13.32 | \n",
+ " 3.24 | \n",
+ " 2.38 | \n",
+ " 21.5 | \n",
+ " 92.0 | \n",
+ " 1.93 | \n",
+ " 0.76 | \n",
+ " 0.45 | \n",
+ " 1.25 | \n",
+ " 8.420000 | \n",
+ " 0.55 | \n",
+ " 1.62 | \n",
+ " 650.0 | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 3.0 | \n",
+ " 13.08 | \n",
+ " 3.90 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 113.0 | \n",
+ " 1.41 | \n",
+ " 1.39 | \n",
+ " 0.34 | \n",
+ " 1.14 | \n",
+ " 9.400000 | \n",
+ " 0.57 | \n",
+ " 1.33 | \n",
+ " 550.0 | \n",
+ "
\n",
+ " \n",
+ " | 149 | \n",
+ " 3.0 | \n",
+ " 13.50 | \n",
+ " 3.12 | \n",
+ " 2.62 | \n",
+ " 24.0 | \n",
+ " 123.0 | \n",
+ " 1.40 | \n",
+ " 1.57 | \n",
+ " 0.22 | \n",
+ " 1.25 | \n",
+ " 8.600000 | \n",
+ " 0.59 | \n",
+ " 1.30 | \n",
+ " 500.0 | \n",
+ "
\n",
+ " \n",
+ " | 150 | \n",
+ " 3.0 | \n",
+ " 12.79 | \n",
+ " 2.67 | \n",
+ " 2.48 | \n",
+ " 22.0 | \n",
+ " 112.0 | \n",
+ " 1.48 | \n",
+ " 1.36 | \n",
+ " 0.24 | \n",
+ " 1.26 | \n",
+ " 10.800000 | \n",
+ " 0.48 | \n",
+ " 1.47 | \n",
+ " 480.0 | \n",
+ "
\n",
+ " \n",
+ " | 151 | \n",
+ " 3.0 | \n",
+ " 13.11 | \n",
+ " 1.90 | \n",
+ " 2.75 | \n",
+ " 25.5 | \n",
+ " 116.0 | \n",
+ " 2.20 | \n",
+ " 1.28 | \n",
+ " 0.26 | \n",
+ " 1.56 | \n",
+ " 7.100000 | \n",
+ " 0.61 | \n",
+ " 1.33 | \n",
+ " 425.0 | \n",
+ "
\n",
+ " \n",
+ " | 152 | \n",
+ " 3.0 | \n",
+ " 13.23 | \n",
+ " 3.30 | \n",
+ " 2.28 | \n",
+ " 18.5 | \n",
+ " 98.0 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.61 | \n",
+ " 1.87 | \n",
+ " 10.520000 | \n",
+ " 0.56 | \n",
+ " 1.51 | \n",
+ " 675.0 | \n",
+ "
\n",
+ " \n",
+ " | 153 | \n",
+ " 3.0 | \n",
+ " 12.58 | \n",
+ " 1.29 | \n",
+ " 2.10 | \n",
+ " 20.0 | \n",
+ " 103.0 | \n",
+ " 1.48 | \n",
+ " 0.58 | \n",
+ " 0.53 | \n",
+ " 1.40 | \n",
+ " 7.600000 | \n",
+ " 0.58 | \n",
+ " 1.55 | \n",
+ " 640.0 | \n",
+ "
\n",
+ " \n",
+ " | 154 | \n",
+ " 3.0 | \n",
+ " 13.17 | \n",
+ " 5.19 | \n",
+ " 2.32 | \n",
+ " 22.0 | \n",
+ " 93.0 | \n",
+ " 1.74 | \n",
+ " 0.63 | \n",
+ " 0.61 | \n",
+ " 1.55 | \n",
+ " 7.900000 | \n",
+ " 0.60 | \n",
+ " 1.48 | \n",
+ " 725.0 | \n",
+ "
\n",
+ " \n",
+ " | 155 | \n",
+ " 3.0 | \n",
+ " 13.84 | \n",
+ " 4.12 | \n",
+ " 2.38 | \n",
+ " 19.5 | \n",
+ " 89.0 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.48 | \n",
+ " 1.56 | \n",
+ " 9.010000 | \n",
+ " 0.57 | \n",
+ " 1.64 | \n",
+ " 480.0 | \n",
+ "
\n",
+ " \n",
+ " | 156 | \n",
+ " 3.0 | \n",
+ " 12.45 | \n",
+ " 3.03 | \n",
+ " 2.64 | \n",
+ " 27.0 | \n",
+ " 97.0 | \n",
+ " 1.90 | \n",
+ " 0.58 | \n",
+ " 0.63 | \n",
+ " 1.14 | \n",
+ " 7.500000 | \n",
+ " 0.67 | \n",
+ " 1.73 | \n",
+ " 880.0 | \n",
+ "
\n",
+ " \n",
+ " | 157 | \n",
+ " 3.0 | \n",
+ " 14.34 | \n",
+ " 1.68 | \n",
+ " 2.70 | \n",
+ " 25.0 | \n",
+ " 98.0 | \n",
+ " 2.80 | \n",
+ " 1.31 | \n",
+ " 0.53 | \n",
+ " 2.70 | \n",
+ " 13.000000 | \n",
+ " 0.57 | \n",
+ " 1.96 | \n",
+ " 660.0 | \n",
+ "
\n",
+ " \n",
+ " | 158 | \n",
+ " 3.0 | \n",
+ " 13.48 | \n",
+ " 1.67 | \n",
+ " 2.64 | \n",
+ " 22.5 | \n",
+ " 89.0 | \n",
+ " 2.60 | \n",
+ " 1.10 | \n",
+ " 0.52 | \n",
+ " 2.29 | \n",
+ " 11.750000 | \n",
+ " 0.57 | \n",
+ " 1.78 | \n",
+ " 620.0 | \n",
+ "
\n",
+ " \n",
+ " | 159 | \n",
+ " 3.0 | \n",
+ " 12.36 | \n",
+ " 3.83 | \n",
+ " 2.38 | \n",
+ " 21.0 | \n",
+ " 88.0 | \n",
+ " 2.30 | \n",
+ " 0.92 | \n",
+ " 0.50 | \n",
+ " 1.04 | \n",
+ " 7.650000 | \n",
+ " 0.56 | \n",
+ " 1.58 | \n",
+ " 520.0 | \n",
+ "
\n",
+ " \n",
+ " | 160 | \n",
+ " 3.0 | \n",
+ " 13.69 | \n",
+ " 3.26 | \n",
+ " 2.54 | \n",
+ " 20.0 | \n",
+ " 107.0 | \n",
+ " 1.83 | \n",
+ " 0.56 | \n",
+ " 0.50 | \n",
+ " 0.80 | \n",
+ " 5.880000 | \n",
+ " 0.96 | \n",
+ " 1.82 | \n",
+ " 680.0 | \n",
+ "
\n",
+ " \n",
+ " | 161 | \n",
+ " 3.0 | \n",
+ " 12.85 | \n",
+ " 3.27 | \n",
+ " 2.58 | \n",
+ " 22.0 | \n",
+ " 106.0 | \n",
+ " 1.65 | \n",
+ " 0.60 | \n",
+ " 0.60 | \n",
+ " 0.96 | \n",
+ " 5.580000 | \n",
+ " 0.87 | \n",
+ " 2.11 | \n",
+ " 570.0 | \n",
+ "
\n",
+ " \n",
+ " | 162 | \n",
+ " 3.0 | \n",
+ " 12.96 | \n",
+ " 3.45 | \n",
+ " 2.35 | \n",
+ " 18.5 | \n",
+ " 106.0 | \n",
+ " 1.39 | \n",
+ " 0.70 | \n",
+ " 0.40 | \n",
+ " 0.94 | \n",
+ " 5.280000 | \n",
+ " 0.68 | \n",
+ " 1.75 | \n",
+ " 675.0 | \n",
+ "
\n",
+ " \n",
+ " | 163 | \n",
+ " 3.0 | \n",
+ " 13.78 | \n",
+ " 2.76 | \n",
+ " 2.30 | \n",
+ " 22.0 | \n",
+ " 90.0 | \n",
+ " 1.35 | \n",
+ " 0.68 | \n",
+ " 0.41 | \n",
+ " 1.03 | \n",
+ " 9.580000 | \n",
+ " 0.70 | \n",
+ " 1.68 | \n",
+ " 615.0 | \n",
+ "
\n",
+ " \n",
+ " | 164 | \n",
+ " 3.0 | \n",
+ " 13.73 | \n",
+ " 4.36 | \n",
+ " 2.26 | \n",
+ " 22.5 | \n",
+ " 88.0 | \n",
+ " 1.28 | \n",
+ " 0.47 | \n",
+ " 0.52 | \n",
+ " 1.15 | \n",
+ " 6.620000 | \n",
+ " 0.78 | \n",
+ " 1.75 | \n",
+ " 520.0 | \n",
+ "
\n",
+ " \n",
+ " | 165 | \n",
+ " 3.0 | \n",
+ " 13.45 | \n",
+ " 3.70 | \n",
+ " 2.60 | \n",
+ " 23.0 | \n",
+ " 111.0 | \n",
+ " 1.70 | \n",
+ " 0.92 | \n",
+ " 0.43 | \n",
+ " 1.46 | \n",
+ " 10.680000 | \n",
+ " 0.85 | \n",
+ " 1.56 | \n",
+ " 695.0 | \n",
+ "
\n",
+ " \n",
+ " | 166 | \n",
+ " 3.0 | \n",
+ " 12.82 | \n",
+ " 3.37 | \n",
+ " 2.30 | \n",
+ " 19.5 | \n",
+ " 88.0 | \n",
+ " 1.48 | \n",
+ " 0.66 | \n",
+ " 0.40 | \n",
+ " 0.97 | \n",
+ " 10.260000 | \n",
+ " 0.72 | \n",
+ " 1.75 | \n",
+ " 685.0 | \n",
+ "
\n",
+ " \n",
+ " | 167 | \n",
+ " 3.0 | \n",
+ " 13.58 | \n",
+ " 2.58 | \n",
+ " 2.69 | \n",
+ " 24.5 | \n",
+ " 105.0 | \n",
+ " 1.55 | \n",
+ " 0.84 | \n",
+ " 0.39 | \n",
+ " 1.54 | \n",
+ " 8.660000 | \n",
+ " 0.74 | \n",
+ " 1.80 | \n",
+ " 750.0 | \n",
+ "
\n",
+ " \n",
+ " | 168 | \n",
+ " 3.0 | \n",
+ " 13.40 | \n",
+ " 4.60 | \n",
+ " 2.86 | \n",
+ " 25.0 | \n",
+ " 112.0 | \n",
+ " 1.98 | \n",
+ " 0.96 | \n",
+ " 0.27 | \n",
+ " 1.11 | \n",
+ " 8.500000 | \n",
+ " 0.67 | \n",
+ " 1.92 | \n",
+ " 630.0 | \n",
+ "
\n",
+ " \n",
+ " | 169 | \n",
+ " 3.0 | \n",
+ " 12.20 | \n",
+ " 3.03 | \n",
+ " 2.32 | \n",
+ " 19.0 | \n",
+ " 96.0 | \n",
+ " 1.25 | \n",
+ " 0.49 | \n",
+ " 0.40 | \n",
+ " 0.73 | \n",
+ " 5.500000 | \n",
+ " 0.66 | \n",
+ " 1.83 | \n",
+ " 510.0 | \n",
+ "
\n",
+ " \n",
+ " | 170 | \n",
+ " 3.0 | \n",
+ " 12.77 | \n",
+ " 2.39 | \n",
+ " 2.28 | \n",
+ " 19.5 | \n",
+ " 86.0 | \n",
+ " 1.39 | \n",
+ " 0.51 | \n",
+ " 0.48 | \n",
+ " 0.64 | \n",
+ " 9.899999 | \n",
+ " 0.57 | \n",
+ " 1.63 | \n",
+ " 470.0 | \n",
+ "
\n",
+ " \n",
+ " | 171 | \n",
+ " 3.0 | \n",
+ " 14.16 | \n",
+ " 2.51 | \n",
+ " 2.48 | \n",
+ " 20.0 | \n",
+ " 91.0 | \n",
+ " 1.68 | \n",
+ " 0.70 | \n",
+ " 0.44 | \n",
+ " 1.24 | \n",
+ " 9.700000 | \n",
+ " 0.62 | \n",
+ " 1.71 | \n",
+ " 660.0 | \n",
+ "
\n",
+ " \n",
+ " | 172 | \n",
+ " 3.0 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95.0 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.700000 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740.0 | \n",
+ "
\n",
+ " \n",
+ " | 173 | \n",
+ " 3.0 | \n",
+ " 13.40 | \n",
+ " 3.91 | \n",
+ " 2.48 | \n",
+ " 23.0 | \n",
+ " 102.0 | \n",
+ " 1.80 | \n",
+ " 0.75 | \n",
+ " 0.43 | \n",
+ " 1.41 | \n",
+ " 7.300000 | \n",
+ " 0.70 | \n",
+ " 1.56 | \n",
+ " 750.0 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 3.0 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120.0 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.200000 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835.0 | \n",
+ "
\n",
+ " \n",
+ " | 175 | \n",
+ " 3.0 | \n",
+ " 13.17 | \n",
+ " 2.59 | \n",
+ " 2.37 | \n",
+ " 20.0 | \n",
+ " 120.0 | \n",
+ " 1.65 | \n",
+ " 0.68 | \n",
+ " 0.53 | \n",
+ " 1.46 | \n",
+ " 9.300000 | \n",
+ " 0.60 | \n",
+ " 1.62 | \n",
+ " 840.0 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 3.0 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96.0 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.200000 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
170 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n",
+ "6 1.0 14.06 2.15 2.61 17.6 121.0 \n",
+ "7 1.0 14.83 1.64 2.17 14.0 97.0 \n",
+ "8 1.0 13.86 1.35 2.27 16.0 98.0 \n",
+ "10 1.0 14.12 1.48 2.32 16.8 95.0 \n",
+ "11 1.0 13.75 1.73 2.41 16.0 89.0 \n",
+ "12 1.0 14.75 1.73 2.39 11.4 91.0 \n",
+ "13 1.0 14.38 1.87 2.38 12.0 102.0 \n",
+ "14 1.0 13.63 1.81 2.70 17.2 112.0 \n",
+ "15 1.0 14.30 1.92 2.72 20.0 120.0 \n",
+ "16 1.0 13.83 1.57 2.62 20.0 115.0 \n",
+ "17 1.0 14.19 1.59 2.48 16.5 108.0 \n",
+ "18 1.0 13.64 3.10 2.56 15.2 116.0 \n",
+ "19 1.0 14.06 1.63 2.28 16.0 126.0 \n",
+ "20 1.0 12.93 3.80 2.65 18.6 102.0 \n",
+ "21 1.0 13.71 1.86 2.36 16.6 101.0 \n",
+ "22 1.0 12.85 1.60 2.52 17.8 95.0 \n",
+ "23 1.0 13.50 1.81 2.61 20.0 96.0 \n",
+ "24 1.0 13.05 2.05 3.22 25.0 124.0 \n",
+ "25 1.0 13.39 1.77 2.62 16.1 93.0 \n",
+ "26 1.0 13.30 1.72 2.14 17.0 94.0 \n",
+ "27 1.0 13.87 1.90 2.80 19.4 107.0 \n",
+ "28 1.0 14.02 1.68 2.21 16.0 96.0 \n",
+ "29 1.0 13.73 1.50 2.70 22.5 101.0 \n",
+ "30 1.0 13.58 1.66 2.36 19.1 106.0 \n",
+ "31 1.0 13.68 1.83 2.36 17.2 104.0 \n",
+ "32 1.0 13.76 1.53 2.70 19.5 132.0 \n",
+ "33 1.0 13.51 1.80 2.65 19.0 110.0 \n",
+ "34 1.0 13.48 1.81 2.41 20.5 100.0 \n",
+ "35 1.0 13.28 1.64 2.84 15.5 110.0 \n",
+ "36 1.0 13.05 1.65 2.55 18.0 98.0 \n",
+ ".. ... ... ... ... ... ... \n",
+ "147 3.0 13.32 3.24 2.38 21.5 92.0 \n",
+ "148 3.0 13.08 3.90 2.36 21.5 113.0 \n",
+ "149 3.0 13.50 3.12 2.62 24.0 123.0 \n",
+ "150 3.0 12.79 2.67 2.48 22.0 112.0 \n",
+ "151 3.0 13.11 1.90 2.75 25.5 116.0 \n",
+ "152 3.0 13.23 3.30 2.28 18.5 98.0 \n",
+ "153 3.0 12.58 1.29 2.10 20.0 103.0 \n",
+ "154 3.0 13.17 5.19 2.32 22.0 93.0 \n",
+ "155 3.0 13.84 4.12 2.38 19.5 89.0 \n",
+ "156 3.0 12.45 3.03 2.64 27.0 97.0 \n",
+ "157 3.0 14.34 1.68 2.70 25.0 98.0 \n",
+ "158 3.0 13.48 1.67 2.64 22.5 89.0 \n",
+ "159 3.0 12.36 3.83 2.38 21.0 88.0 \n",
+ "160 3.0 13.69 3.26 2.54 20.0 107.0 \n",
+ "161 3.0 12.85 3.27 2.58 22.0 106.0 \n",
+ "162 3.0 12.96 3.45 2.35 18.5 106.0 \n",
+ "163 3.0 13.78 2.76 2.30 22.0 90.0 \n",
+ "164 3.0 13.73 4.36 2.26 22.5 88.0 \n",
+ "165 3.0 13.45 3.70 2.60 23.0 111.0 \n",
+ "166 3.0 12.82 3.37 2.30 19.5 88.0 \n",
+ "167 3.0 13.58 2.58 2.69 24.5 105.0 \n",
+ "168 3.0 13.40 4.60 2.86 25.0 112.0 \n",
+ "169 3.0 12.20 3.03 2.32 19.0 96.0 \n",
+ "170 3.0 12.77 2.39 2.28 19.5 86.0 \n",
+ "171 3.0 14.16 2.51 2.48 20.0 91.0 \n",
+ "172 3.0 13.71 5.65 2.45 20.5 95.0 \n",
+ "173 3.0 13.40 3.91 2.48 23.0 102.0 \n",
+ "174 3.0 13.27 4.28 2.26 20.0 120.0 \n",
+ "175 3.0 13.17 2.59 2.37 20.0 120.0 \n",
+ "176 3.0 14.13 4.10 2.74 24.5 96.0 \n",
+ "\n",
+ " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n",
+ "6 2.60 2.51 0.31 1.25 \n",
+ "7 2.80 2.98 0.29 1.98 \n",
+ "8 2.98 3.15 0.22 1.85 \n",
+ "10 2.20 2.43 0.26 1.57 \n",
+ "11 2.60 2.76 0.29 1.81 \n",
+ "12 3.10 3.69 0.43 2.81 \n",
+ "13 3.30 3.64 0.29 2.96 \n",
+ "14 2.85 2.91 0.30 1.46 \n",
+ "15 2.80 3.14 0.33 1.97 \n",
+ "16 2.95 3.40 0.40 1.72 \n",
+ "17 3.30 3.93 0.32 1.86 \n",
+ "18 2.70 3.03 0.17 1.66 \n",
+ "19 3.00 3.17 0.24 2.10 \n",
+ "20 2.41 2.41 0.25 1.98 \n",
+ "21 2.61 2.88 0.27 1.69 \n",
+ "22 2.48 2.37 0.26 1.46 \n",
+ "23 2.53 2.61 0.28 1.66 \n",
+ "24 2.63 2.68 0.47 1.92 \n",
+ "25 2.85 2.94 0.34 1.45 \n",
+ "26 2.40 2.19 0.27 1.35 \n",
+ "27 2.95 2.97 0.37 1.76 \n",
+ "28 2.65 2.33 0.26 1.98 \n",
+ "29 3.00 3.25 0.29 2.38 \n",
+ "30 2.86 3.19 0.22 1.95 \n",
+ "31 2.42 2.69 0.42 1.97 \n",
+ "32 2.95 2.74 0.50 1.35 \n",
+ "33 2.35 2.53 0.29 1.54 \n",
+ "34 2.70 2.98 0.26 1.86 \n",
+ "35 2.60 2.68 0.34 1.36 \n",
+ "36 2.45 2.43 0.29 1.44 \n",
+ ".. ... ... ... ... \n",
+ "147 1.93 0.76 0.45 1.25 \n",
+ "148 1.41 1.39 0.34 1.14 \n",
+ "149 1.40 1.57 0.22 1.25 \n",
+ "150 1.48 1.36 0.24 1.26 \n",
+ "151 2.20 1.28 0.26 1.56 \n",
+ "152 1.80 0.83 0.61 1.87 \n",
+ "153 1.48 0.58 0.53 1.40 \n",
+ "154 1.74 0.63 0.61 1.55 \n",
+ "155 1.80 0.83 0.48 1.56 \n",
+ "156 1.90 0.58 0.63 1.14 \n",
+ "157 2.80 1.31 0.53 2.70 \n",
+ "158 2.60 1.10 0.52 2.29 \n",
+ "159 2.30 0.92 0.50 1.04 \n",
+ "160 1.83 0.56 0.50 0.80 \n",
+ "161 1.65 0.60 0.60 0.96 \n",
+ "162 1.39 0.70 0.40 0.94 \n",
+ "163 1.35 0.68 0.41 1.03 \n",
+ "164 1.28 0.47 0.52 1.15 \n",
+ "165 1.70 0.92 0.43 1.46 \n",
+ "166 1.48 0.66 0.40 0.97 \n",
+ "167 1.55 0.84 0.39 1.54 \n",
+ "168 1.98 0.96 0.27 1.11 \n",
+ "169 1.25 0.49 0.40 0.73 \n",
+ "170 1.39 0.51 0.48 0.64 \n",
+ "171 1.68 0.70 0.44 1.24 \n",
+ "172 1.68 0.61 0.52 1.06 \n",
+ "173 1.80 0.75 0.43 1.41 \n",
+ "174 1.59 0.69 0.43 1.35 \n",
+ "175 1.65 0.68 0.53 1.46 \n",
+ "176 2.05 0.76 0.56 1.35 \n",
+ "\n",
+ " Color intensity Hue OD280/OD315 OF diluted wines Proline \n",
+ "6 5.050000 1.06 3.58 1295.0 \n",
+ "7 5.200000 1.08 2.85 1045.0 \n",
+ "8 7.220000 1.01 3.55 1045.0 \n",
+ "10 5.000000 1.17 2.82 1280.0 \n",
+ "11 5.600000 1.15 2.90 1320.0 \n",
+ "12 5.400000 1.25 2.73 1150.0 \n",
+ "13 7.500000 1.20 3.00 1547.0 \n",
+ "14 7.300000 1.28 2.88 1310.0 \n",
+ "15 6.200000 1.07 2.65 1280.0 \n",
+ "16 6.600000 1.13 2.57 1130.0 \n",
+ "17 8.700000 1.23 2.82 1680.0 \n",
+ "18 5.100000 0.96 3.36 845.0 \n",
+ "19 5.650000 1.09 3.71 780.0 \n",
+ "20 4.500000 1.03 3.52 770.0 \n",
+ "21 3.800000 1.11 4.00 1035.0 \n",
+ "22 3.930000 1.09 3.63 1015.0 \n",
+ "23 3.520000 1.12 3.82 845.0 \n",
+ "24 3.580000 1.13 3.20 830.0 \n",
+ "25 4.800000 0.92 3.22 1195.0 \n",
+ "26 3.950000 1.02 2.77 1285.0 \n",
+ "27 4.500000 1.25 3.40 915.0 \n",
+ "28 4.700000 1.04 3.59 1035.0 \n",
+ "29 5.700000 1.19 2.71 1285.0 \n",
+ "30 6.900000 1.09 2.88 1515.0 \n",
+ "31 3.840000 1.23 2.87 990.0 \n",
+ "32 5.400000 1.25 3.00 1235.0 \n",
+ "33 4.200000 1.10 2.87 1095.0 \n",
+ "34 5.100000 1.04 3.47 920.0 \n",
+ "35 4.600000 1.09 2.78 880.0 \n",
+ "36 4.250000 1.12 2.51 1105.0 \n",
+ ".. ... ... ... ... \n",
+ "147 8.420000 0.55 1.62 650.0 \n",
+ "148 9.400000 0.57 1.33 550.0 \n",
+ "149 8.600000 0.59 1.30 500.0 \n",
+ "150 10.800000 0.48 1.47 480.0 \n",
+ "151 7.100000 0.61 1.33 425.0 \n",
+ "152 10.520000 0.56 1.51 675.0 \n",
+ "153 7.600000 0.58 1.55 640.0 \n",
+ "154 7.900000 0.60 1.48 725.0 \n",
+ "155 9.010000 0.57 1.64 480.0 \n",
+ "156 7.500000 0.67 1.73 880.0 \n",
+ "157 13.000000 0.57 1.96 660.0 \n",
+ "158 11.750000 0.57 1.78 620.0 \n",
+ "159 7.650000 0.56 1.58 520.0 \n",
+ "160 5.880000 0.96 1.82 680.0 \n",
+ "161 5.580000 0.87 2.11 570.0 \n",
+ "162 5.280000 0.68 1.75 675.0 \n",
+ "163 9.580000 0.70 1.68 615.0 \n",
+ "164 6.620000 0.78 1.75 520.0 \n",
+ "165 10.680000 0.85 1.56 695.0 \n",
+ "166 10.260000 0.72 1.75 685.0 \n",
+ "167 8.660000 0.74 1.80 750.0 \n",
+ "168 8.500000 0.67 1.92 630.0 \n",
+ "169 5.500000 0.66 1.83 510.0 \n",
+ "170 9.899999 0.57 1.63 470.0 \n",
+ "171 9.700000 0.62 1.71 660.0 \n",
+ "172 7.700000 0.64 1.74 740.0 \n",
+ "173 7.300000 0.70 1.56 750.0 \n",
+ "174 10.200000 0.59 1.56 835.0 \n",
+ "175 9.300000 0.60 1.62 840.0 \n",
+ "176 9.200000 0.61 1.60 560.0 \n",
+ "\n",
+ "[170 rows x 14 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine_df.dropna()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "DlpG8drhmz7W"
+ },
+ "source": [
+ "### BONUS: Play with the data set below"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "mD40T0Cnm5SA"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " ,\n",
+ " ,\n",
+ " ]], dtype=object)"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJztnXe4XFX1v98PIdQEAgRCEgJXEEGKRhIBRTE2mgVUQIpIlKaC5WcsERtNBaUooihNqiBfqVLEiERFpQUDAREJkJBGQggJKbSE9ftj7ck9mczMnT5z76z3eeaZ0/bea69d1m5nH5kZQRAEQeexRqsFCIIgCFpDGIAgCIIOJQxAEARBhxIGIAiCoEMJAxAEQdChhAEIgiDoUBpmACRdKum0Gv0YI2lm5vxRSWPKdFv2s7Ug5zeSXpB0Xx39PUnSlfXyrwY56pGOVcelHuF3Avllpa9S73hKul3SkfXyrx5I+pWk7zYjrJoNgKSJqfJbux4ClcLMdjSziZU+2+DK9F3AB4EtzGzXBoXRFJqZlkHP9OX0kHSYpAckLZE0J1XE72q2HGa2r5ldVs6zKT2OboJMnzOzU1OYDTXsNRkASV3AuwEDPloHeXojWwHTzGxpqwWphUjL9qIvp4ekrwI/BX4IDAG2BH4J7N/gcPs10v/eSK09gE8D9wCXAiW7UZL2lzRZ0ouSnpS0T7r+GUmPSVos6SlJx5XwY5qkD6TjkyRdK+ny5PZRSaPzn03hnAh8MrU2HpJ0kKRJeX6Pk3RjkXCHSbpZ0gJJUyUdk64fBVwEvCP5fXIBt9tI+ouk5yXNl3SVpEGZ+9+UNCvF4XFJ7884X6tY/BpAWWlZIh0L6ihD0bhIenNqXS1M9/pUhVclBdND0n6S/pP0OEvS17KOUj6el1rVn2muyD0jaUPgFOB4M7vezJaa2Wtm9gcz+3p6Zm1JP5U0O/1+WqwXVCrvpOHD8yXdJmkp8N4C7le26iWNlXS3pDNTz+tpSfumez/ADfJ5qayfl65vL2lCyvePSzo4L/xfSLo1pde9krZJ9yTpnJRWiyQ9LGmnjLvTJK0P3A4MS2EuSeVsmaRNMuGMkvScpP4VJ4iZVf0DpgJfAEYBrwFDMvcuBU5Lx7sCi/ChkjWA4cD26d6HgG0AAe8BlgG7pHtjgJkZP6cBH0jHJwEvA/sB/YAfAfeUePbKzL21gQXAmzPX/g18okg8/4q3UNYBRgLPAe9P98YCd5fQ0RtTvNcGNgX+Bvw03dsOmAEMS+ddwDblxK/ev2JpWUE6ltJR0bgA/VPYJwJrAe8DFgPb5YffSb8S6TEHeHc63iivrCzHK9f+SdfLgI1aHZe8eO2T5FyzxDOn4MZvs1Rm/gmcmonnzAryziJgj5Rf1ykQ1kTg6HQ8Nun6mJRPPw/MBpT/bDpfP5XfzwBrArsA84EdM+EvSOVmTeAq4Jp0b29gEjAIr/veDAwtUOZWxjcT7m3A5zPn5wA/ryY9qu4ByMfrtgKuNbNJwJPAYUUePwq4xMwmmNnrZjbLzP4LYGa3mtmT5vwV+BNuacvhbjO7zcxWAFcAby3HkZm9AvwO+FSKy4545XtLgXiOwMf5v2lmL5vZZLzVf0SZYU1N8X7FzJ4DzsYNHcAK3DDsIKm/mU0zsydrjV+lVJCWBdOxTB0Vi8vuwADgdDN71cz+gqfDoY2Ia2+gh/R4Dc8vG5jZC2b2YMbpa8Ap5i3q24AleCOjndgEmG9my0s8czgej3mpzJxM4fJWTt65ycz+kfLry2XIN93MLkz59DJgKD5MVYgP48O/vzGz5SktrgMOzDxzvZndl+J7Fd44Ak+rgcD2uIF5zMzmlCEfSa5c3dUPj+8VZbpdhVqGgI4E/mRm89P5byk+dDACz8SrIWlfSfekLtRCvOUyuEwZns0cLwPWkbRmmW4vAw6TJDxzXZsMQz7DgAVmtjhzbTre+u0RSZtJuiZ1118EriTFz8ymAl/BW8jz0nPDMs5riV8llJuWxdKxHB0Vi8swYIaZvV7CbadRKj0+gZeR6ZL+KukdGXfP51Wsy/AKsp14HhjcQz4ehueBHNPTtULP9ZR3ZlQo38p8ambL0mExHW4F7JaGnxam+utwYPNC/pFJj2SszgN+AcyVdIGkDcqU8Sa8EbA13htfZGZVrUCsygBIWhc4GHiPpGclPQv8P+Ctkgq1Umfgwzz5/qyNW8wz8S7uILx7o2rkKsFqW56a2T3Aq3hv4zCKW9DZwMaSBmaubQnMKjPsH6Xw32JmG+CWe2X8zOy3ZpZr8RlwRpn+1oUK07JgOlKbjmYDIyRl82Il+u1T9JQeZna/me2PD4/cCFzbQnGr4V/4cOABJZ6ZjZeHHFuma4We6ynv1HO743y/ZgB/NbNBmd8AM/t8WZ6ZnWtmo4AdgTcBXy8jTFJP5lrc2BxBla1/qL4HcAA+fLED3qUZiY9h/R2fvMrnYuAzkt4vaQ1JwyVtj4/brY2PFy9PEy57VSlTKeYCXXkZBeBy3AovN7O7Czk0sxn4GOSPJK0j6S34UMhVZYY9EO+KL5Q0nEwiS9pO0vuSIXwZeAnXazOpJC0LpmONOroXWAp8Q1J/+bsbHwGuqUPceiOl0mOspMMlbWhmrwEv0vz8UhNmtgj4HvALSQdIWi+l+76Sfpweuxr4jqRNJQ1Ozxdaxt3svDMX2DpzfgvwJklHpPD7S3q7pDf35FF6brc0cbsUL/+F0nIusIl88jzL5ficxUcprJuyqNYAHAn8xsyeMbNncz+8Mj08v3uXuiefwScrFuEThlulIYMv4dbsBbwlfnOVMpXi/9L/85KyY6ZXADvRswU9FJ8jmA3cAHzfzCaUGfbJ+OTQIuBW4PrMvbWB0/GJo2fxVt2JZfpbL0qmJT55BRRPx3S7Kh2Z2at4Jt4X18MvgU/n5og6kFLpcSSu/2lpOPFzpLHg3oSZnQ18FfgO3vibAZyA92gATgMeAB4GpgAPpmv5/jQ77/wMOFC+QujcVH/tBRyC5/tn8R58Oe9tbABciNd70/GhsTPzH0pxuRp4Kg0zDUvX/wG8DjxoZtOqjVBudrsjSd3tefhKiidaLU8QBEG5SPoL8Fszu6haPxoxodib+Dxwf1T+QRD0JiS9HR9ZqOnluY41AJKm4ZOxpSajgiAI2gpJl+H11pfzVt5V7lcnDwEFQRB0MrEddBAEQYfS1CGgwYMH26abbsr666/fzGBXYenSpW0T/qRJk+ab2ab19H/w4MHW1dVVTy+L0mpdlkNv1HE76LUSGeqt40bqt5m6rWdYjcjHQG17AVX6GzVqlN11113WStopfOABa4COm0WrdVkOvVHH7aDXSmSot44bqd9m6raeYTUiH5tZ354E7hp/62rXxu28nDHNF6XX0xd0mSb+F+Mv3Cw3s9GSNsb3herCNxA82MxeaJWMlVAoTQCmnf6hJkvSGjo9/vUg5gCCTuO9ZjbSzHLbUY8H7jSzbYE703kQdARhAIJOZ398Y0DSfywLDjqGPj0EFAR5GPAnSQb82swuwDchnANgZnMkbVbIoaRjgWMBhgwZwsSJExsm5JIlS8ryf9zOhXdUrods5coQ9G7CAASdxB5mNjtV8hMklb1nTDIWFwCMHj3axowZ0yARvQIvx/+xxcbAD+/Zbb1kCHo3MQQUdAxmNjv9z8M3rNsV34t9KED6n9c6CYOguYQBCDoCSevnvleQvrW6F/AIvvts7mMrR+If2wiCjiCGgIJOYQhwg38AjjXxXRT/KOl+4FpJRwHPAAe1UMaggXSNv5VxOy9fbeisk5eNhgEIOgIze4oC31Q2s+eB9zdfoiBoPWEAgqZS7OWdUnRyCw2q01kQlEMYgKAhRKUVBO1PRxqAeIU8CIKgQw1AuyFpBP6R583x73xeYGY/68371ARBq4jeZ/nEMtD2YDkwzszeDOwOHC9pB2KfmiAIGkif6AH0douftiLIbUewWNJjwHB8n5ox6bHLgInAN1sgYlF6u+6D+lCiF3sScAzwXHr0RDO7rTVSBvn0CQPQl5DUBbwNuJc22qem0L4zQ9Ytvh9NPYk9aXoFuV7sg+mFu0mSJqR755jZmS2ULShCGIA2QtIA4DrgK2b2YnppqUeasU9NoX1nxu28nLOmND4L1WNvm6CxlOjFBm1Mj6U3unbNQVJ/vPK/ysyuT5fnShqaWv8N36cmhnOCepDXi90DOEHSp4EH8F5CLGRoE8ppvkXXrsHIm/oXA4+Z2dmZW7l9ak4n9qkJegEFerHnA6fiW3GfCpwFfLaAu4qHMasZfiw0bNmoIcbesKV2jwYgunZNYQ/gCGCKpMnp2ol4xR/71AQV0ar3XAr1Ys1sbub+hcAthdxWM4xZbDvsUhQatmzUEGNv2FK7ogHcarp2+Za9EVaxkpZAqYnLZljrQvE3s7uBYgP+sU9N0PYU68XmhjDT6cfwHViDNqFsA1Bt1y7fsg8YMKDuVrGSlkCpictmTDb2hlZBEFRBsV7soZJG4vXENOC41ogXFKIsA1BL165exARlELQvJXqxsTCkjenxTeBSXbvMY9G1C4Ig6GWU0wOIrl0QBEEfpJxVQNG1C4Ig6IPEm8AZSs0zxFbRrSO27w4aSSeX+zAAQRC0NbEApHGEAQiCDiF6UkE+YQA6kGhRBUEA8UGYIAiCjiV6AEEQBEXo68NmYQCCoA3IVjTjdl5e1UZnQVApYQCCIAgqpK/0DMIAlElfSfAgCIIcMQkcBEHQoYQBCIIg6FBiCCgImki8g9G3KTaZ365DxdEDCIIg6FBa1gOISdUgCILWUpMBkLQP8DOgH3CRmZ1eq0B9pYtcLB6X7rN+Rf40Qsd9hXo1Ijo9HxeSNTd8Ua8GWafn43Zt8FZtACT1A34BfBCYCdwv6WYz+0+9hOsNNLKg16rjQrItXzSXWb86ii2/fhNao19d5a0Xc6/9Puu/eU8G7Pz+1e7VW/7Ix6WpR8XVTjq+92938uytd7L5p34MwDNnH8jQz55H/0GbNzzsl2c8wvN//DnDj/l1wftjx45liy224LTTTmu4LDlq6QHsCkw1s6cAJF0D7A80JVGX/mciL95/I689P5M11lqX/pttzYbvPJh1ttixYWFOP+PDDDv2AvpvNKxhYeRRk45nnv9ZXl+2ENQ91bPZwac2Qs66MuTgk5sZXE06rncDYOb5n+XxLxwPjFp5bcmUP7PkoT+trLR6ITXXFTPP/ywrlixgi+Mvo996G668Pvs3X+S1eU8z/HMXs+aGQ1ZeX3j3VSz6x9VsfsRZrD1su6L+bvnV31cemypZZ8ROq1X+2fwzf9JM+v3vZa5s4sSxzKw6h9KBwD5mdnQ6PwLYzcxOyHvuWODYdLod8Dwwv2qJnSHA5sB04EX8s5QbAAPxFkYpBtcQ/ij828evVOk+P/ytzGzTYg/WoOPH0/HO+Oc6F2ceXytdn1RDHHLUostqqVT+7cxsYLGbddBxvdkZeIFV8/EmuK4bFWYhKknbmvNxGfrdGS/n89IPYF1gG2BtYArwaub5nfAG7gLgmcz1rvR8M3RZafnowuMwu8C9kjquGjOr6gcchI/l5c6PAH5ehrsHqg0zud8QWAIcVOT+2sBPkxJnp+O1072xwOK85w14Yzq+FO+q3opXmvcC26R7f0vPLk3hf7JK+cuOf7U6zjw/DfhA3rWuFI810/lngMdSfJ8Cjss8+xjw4cz5mniG3iWdLwCeBRYl/eyYebaoLtP9dwL3J7f3A+/M3JsIHJ2O+wFnpnCfAo7Pk39sur4YeBo4vBJ916rjev9Smj2ed20scHd+fs3o+bTM+YeBycBC4J/AWxqdTxudjzN6+Q5wf+bamcC3k066Mtf3BF4CPoU3ONfK3Hs6p8t8feIG5Sy8YbkIuBtYt4AsGwG3AM/hxvoWYIvM/Y2B3+CV+QvAjen6GGBm5rm3AQ+mvPs74JpsWjbjV8sy0JnAiMz5FhS2XPXmHcA6wA1F7n8b2B0YCbwV735+pwL/DwVOxhN5KvADADPbM91/q5kNMLPfVS56xTRDx/PwSmMD3BicI2mXdO9qXB859gbmm9mD6XwRsC2wGZ6Rr8rzu6AuJW2MG4Zz8dbt2cCtkjYpIN8xSb63AaOBA3M3JK2f/NjXvJX/Trzyq4RW5eO6k9LtEuA4XK+/Bm6WtHZLBaufju8BNpD05jSv8EngygLPHQn8Aa9UwfNPOZyJ9/LfiVfi3wBeL/DcGngFvxWwJW5szsvcvwJYD3gULxvn5HsgaS3gxvTsxsD/AZ8oU876UYNVXxNveb0B75Y/RKYF2KiWBXA48GyJ+08C+2XO9wampeOx9NwDyLZU9gP+W+jZGuSvpAdQlY4z7qfhvZWF6XcjeT2AAm5uBL6cjt+It07WS+dXAd8rFBdgUPJ3w550ibcA78sL91/A2HQ8ke4ewF+Az2We2ysnP7B+itcnKNBSK0ffteq43r+UZisyabYQWEYZPQDgfODUPP8eB97TyHza6Hyc0csH8Mbcj4B9gAnJ75U9ALzifRE4IJ3/Grgp40/BHgBeqb+EN/Aqjd9I4IV0PBQ3Ghvl65BMDwDvpcwmDcOna/+kt/QAzGw5cAJwBz5UcK2ZPVqG0wuqDTPxPDBYUrEJ7GF4Fy7H9HQtx7M9+J+9vwwYULGEpSk7/jXoOMsBZjYo/Q7IvylpX0n3SFogaSFeUQ9O4U9N4X5E0nrAR4HfJnf9gOckPSnpRbyAknObKKbL/DQinQ8vIP8wYEbecyT5luKtwM8BcyTdKmn7PPcl9V0nHdebn2XSbBDwhTLdbQWMk7Qw98Nb3tWsWqi1nK6kzjq+AjgMb8xdXuD+x4DlwG3p/CpgX0m58fOJRfwdjI8sPNmTAJLWk/RrSdNT3v8bMCiViRHAAjN7gdI6HAbMslTzJ/LLRMOp6T0AM7uNbkWX66bWjPUv4GXgAKDQFP5svCDkMtiWdHc3l5KZEJXU+LVfeVQa/2p0XC5paOA64NN4K+k1STcCyjyWGwZaA/hPMgrghbALb5VNw+dmXshzW4xcGmXZEvhjgWfnsOrwwZbZm2Z2B3CHpHWB04ALgXdn7veo70bquEpKybIMb+Xm2JzuCeMZwA/M7Ae1ClCHcprvX110bGbTJT2NN1SOKvDIkXhD4xlJ4PmxP56HzwX+ig9b5jMfr1e2wXsopRiHT1TvZmbPShoJ/DuFNQPYWNKgHnQ4BxguSRkjsCVlGKB60uu2gjCzRcD3gF9IOiBZ4/6pJftjvML6jqRNJQ1Oz+bGCR8CdpQ0UtI6wEkVBj8X2Lo+MWkL1sInzZ8DlkvaFx9iyXJNuvZ5Uus/MRBfDfU8XiH9sIJwbwPeJOkwSWtK+iSwAz6Zls+1wJckbSFpI2B87oakIZI+muYCXsGHu1ZUIEdvZDJwmKR+6eWq92TuXQh8TtJuctaX9CFJRVdB9VKOAt6XeoArkTQceD8+5j+S7nnAM3DDUBQzex2fPzlb0rCk33cUmT8ZiA8XLUzzWd/P+DMHuB34paSNUt20ZwE//oX3VL6UysDH8fnKptLrDACAmZ0NfBUfD3wOt7on4OPXpwEPAA/jS8MeTNcws/8BpwB/Bp7AZ/kr4STgstS9PrjmiLQYM1sMfAmvZF/AW/U35z0zB8+s76R7Ug28+z0dmIWv576ngnCfxwvpONyAfANfbVRoydyF+NDBQ3haXp+5t0byYza+Iuk9lD9c0lv5MvARfG7gcDzPA2BmD+CT5ufh6TkVHyrpU5jZkymu+RwBTDazP5nZs7kf3vJ/i6SdevD6a3idcT+en86gcB35U3zF0Hw83+f3XI8AXgP+iy+y+EqBOLwKfBxPnxfwoczr859rOI2cYMAt6jzgkcy1jfHJmyfS/0YNDH8EcBc+7vgo3ZObTZEBH1O8D6+8HgVOTtffgC+LfAKvVNdqRPh1Tref4Bn6YXwF1qAibqfhhWgydZxILFPGk3CDNDn99ividh98cnQqML7V+u4pvzZZhoJ5ti/8Gpk3W13XVS13gxW+J7BLnlJ+nCt0eHf+jAaGP5TuNesDgf/hQw1NkQEfExyQjvunSn93vMV9SLr+K+Dzrc4IZaTbXnSvvT+jmM5SIRvcIhlPAr7Wg7t++Djr1nSvSNmh1TpPshXMr02WoWCebbVu6hS3huXNVtd11f4aOgRkZn/Du1JZ9gcuS8eX4ZO5jQp/jqU16+bDHY/hK02aIoM5S9Jp//Qz4H10T2A3VAfVUCjdzLvVy9PpPfha7pZRJG+Vw8ptCcy74bltCVpOifzaTBmK5dmgBK2u66qlFXMAQ8zHlUn/mzUjUEld+MtE9zZThjSZNBnvHk7AW58LM5XpTJpcyOvAZ/GJrkIY8CdJk9Lr/c3mBEkPS7okTRrnM5xVl5W2pf7z8muzw14lz5pZ02VoEM3Omy2p6yqhV04CV4qkAfhyx6+Y2YvNDNvMVpjZSLzFvCvw5kKPNVOmWpD0bXz1Qv5bvzn2MLNdgH2B44usgGgU5+PL+Ebiy+zOKvBMoWWqbaX/VuZXWD3PljF52ltoZd5sS6reDK7sALwlc4uZ7TR48GDr6uoCYOnSpay/fmV749eLdgl70qRJ8/GXq04ys73r4X9Wx82mlXotJsOkSZPmW2YTLUnvIKNvSd8CMLMflRtGvo6bEe92DiNfx7XSjDzcLnVAudRbxytp9CQD/rLQI2bGqFGjLMddd91lraJdwsaXq/4K+ILVSd9ZHTebVuq1mAys/jp+zdsS5Ou4GfFu5zDydVzrrxl5uF3qgHKpt45zv4Z+ElLS1fj+F4MlzRw1alQPLprDlFmLVn6sOUsLvs6zE743ycWN8Lxdv0LUbCQNw/cl2s/MlkvKbUvQD7jEWr/1Q8nvCnRaepVL5O/aaagBMLPsTpKMHj26rcZa24BHzOygVgtRC9lCmPuMILRXITSz2fjWAbnzdtv6oSRd429dRbc52knHQe+kIyaBgyAIgtVpaA8gCILOQtI0fMPFFcByMxud9sv5HT4fOA042Hy3zKDFhAEIGkKMz3Y077VV93UaD9xpZqdLGp/Ov9ka0YIsMQQUBEGjafs3YjuV6AEEQVBPcm/bGvBr8z3xV3kjVtJqb8RmPwo/ZMgQJk6c2GNA43ZeXvB6OW6XLFlS1nONoJVh5xMGIAiCerKHmc1OlfwESf8tx1EyFBeArxYcM2ZMj24KLeUGmHZ4z24nTpxIOWE0glaGnU8MAQVBUDfSklvMbB6+bfiuwFxJQwHS/7zWSRhkCQMQBEFdSF8gG5g7xrcQfwT/yFDui1xHAje1RsIgn7KGgBqxtKuN3sYNgqA+DAFuSN/iXRP4rZn9UdL9wLWSjgKeAXr1y499iUrmAGJpVxAERTGzp/Bv8OZffx7/Vm/QZtQyBBRLu4IgCHox5fYAqlraBcWXdw1Zt/AyrmYsj2pl2O20BCyf2JAsCDqLcg1AVUu7oPjyrp9fdRNnTVk9+HKWcNVKM8IuVpleus+A1ZaASRoBXA5sDrwOXGBmP4tX6INSxNvWQa2UNQQUS7saznJgnJm9Gf9o/PGSdqB7nmVb4M50HgRBUBd6NACxtKvxWIs/Xt8JSBoh6S5Jj0l6VNKX0/WNJU2Q9ET6L/Qd4SDok5QzBBRLu5pIqY/XVzrPUumr8sWeBx82K+ym+7jY3Eo5YdeLEnMsuV7Wg6lBM0nSBGAssZot6FB6NACxtKt55H8MPBndHik2z1Lpq/LFni+XcTsvLzi3Uk7Y9aLYa/bJkOaM6WJJ2V5WzsFlwETCAAQdQuwF1CZI6o9X/leZ2fXp8lxJQ1Prv27zLKVW+3QC9exlQWUru6bMWlTwerYnVYhyelc5ivXWdh6+YUl37bxCLWgMYQDaAHlT/2LgMTM7O3MrN89yOjHPUhfq3cuCyjb3qraXVU7vqid66n210yZltRCro8on9gJqD/YAjgDeJ2ly+u2HV/wflPQE8MF0HlRJqV5Wuh+r2YKOInoAbYCZ3Q0Ua4rGPEsdaFQvKz7YHvRmwgAEnUKulzVF0uR07US84o/VbEFHEgYg6Aia3cvq9In2oHcQcwBBEAQdShiAIAiCDiWGgIKmEkv0gqB9iB5AEARBhxI9gCAI2pqYUG8c0QMIgiDoUKIHEARBR5DtSWRf3uvk+acwAEEQdDTVfAq1ryxmiCGgIAiCDiV6AEEQBEXo6xPQ0QMIgiDoUKIHELQF1YzDBkFQG2EAgqBD6CsTl+1Mb9NxDAEFQRB0KDUZAEn7SHpc0lRJ4+slVNBN6LjxhI4bT+i4Pal6CEhSP+AX+KcKZwL3S7rZzP5TL+E6ndBx4wkdN57QcfGX0ErRjGGjWnoAuwJTzewpM3sVuAbYvz5itQ/PPPMMAwYMYMWKFa0IvqiOJX1M0gxJSyS9TdI0SR9ohZDlsOhf1/L87ecWvT/z/M/y0rTJRe8Xomv8rXSNvxVJDD/uQrrG38qUWYsqFa2qfDxt2jQkYa+3JF80hEMOOYQ///nPAPzwhz/k6KOPpmv8rWzx+UuQxFbfuHmlziukIh0//vjjXHTRRdVGA4Dn7ziPhf+4uuC9+beewy3/d1VN/jeTAQMGAKzVCL9lZtU5lA4E9jGzo9P5EcBuZnZC3nPHAsem013S/8PAIGB+Ot8BWBeYArxalUCVMTgTdqPYGTewU4DXM+FuDjySzrcys02LeVBKx5KeBL5qZjclHf8cmAYMAx5vQHxKsQkwBFgHWAG8AMxKxySZNgdyme014EVgTjoGeEs6Xjs9txiYkbkvYASwUTpeAkxP90cBjwFDgQ3TtVnAAjI6lnQB8ICZXSBpC+AM4KNJ7n8DpyT/czo2YFlG7teB54DNgKfxNJ6Lp6uA5en+sxndbAUMTPGaBjyfp7cuuvMHwNQU93wGJ7fDgI2B/nhZeS7JkGM7YP2MzAD/A5YW8DOfkcCTBcJfC4/rpCLusjruwnXTP8VlSOa5a4AvAh8jr67IqydG4j2FepTRTXDdZctEFz76MbUO/ldDNfVPybqiasysqh/+7dSLMudHAD/vwc00PCG+iBdE8Iz1OJ5hu6qVp0LZH2hCGNPwAnti5trRwOJ66BivbN6YF94HmqG/PBnH4RXQPngF0QXcBtwPrJWeOQk0zSIbAAAgAElEQVS4Mh33B3YEfg/MBoam63PxCngDYD3gEuCPmXC+ATxEt6G5Arg+3TPgD8DvgAeBdwGLgB3zZH0G2AKvQKcBvwGOSf+H4kbp3IyOLadjvNAegVe430/xNLzx8mB6ZjjwKPDxTJjH45+cfAAYmyfPWODucvMs/gH7+4Cd8Apsd+AJ4NzMcxOBo6tMy1cK5aFMXNcsw4+Vz+byZMrHv8UbPqfn5WMBa+T5UXUcCsizmo6BS4HZzS4r2bRsVdiryVJDJN4B3JE5/xbwrR7cTAO+g1cOOQNwJvDtlGm6gA/hrbEX8RbgSXl+fBpv+T0PfJdMxYdXNNcCl+OtmEeB0Rm3w4Dr8Bbi08CXMvd2TYXsRbwyOjs/Q2fi8IGMu5Portxyz34Gr6CX4S2v9+K9nmXAqxm370y6WJT+35lXCC7BW9OLgT8Bpyb9LUnhLAWezJcrxeVfwEK8lX0e3ZXxr4Az83R6E96bABhPdyvwP8DH8gtTSrMXUpgvAQen+w/hldSCFP9LMzp6OKenTDq+mtx/u4BedyEZS7zAPpqeWQz8NcnyeLpvKbxp6f8XuIE4Pd3/LPBUuncHXsk/gvfQLPn9REqfV0j5ON07G89v8/B89WngZbyVmqvoHkjyTMd7PQuAw/N0fDe1GYDHU7gj8q7vlsLMGaqJlFl54hVxrix9m4wBoHC+LqcMPJOeXYL3bL6I1xWPpHBeTXr+J/CPlP5H4q3x11IcXwIuyyubufxswEV4r+Q7KU0N+FzS+8sp/S8Fzk/nK5IsL6V0XIaX81vx/HQfcGGSfS5wQ0rTRXhd9I8U9oIkx2/wxssLwI1JxkeAj2Rk7o+38kem8//De4aLUpg7Zp69NMmck+deYJvM/WxDpOizuDE9J8VxEV7mdiqVB2qZA7gf2FbSGyStBRyCF/6euAdv5a2TJoc+CVyZub8UL2SDcGPweUkHAEjaAfglcDjd3f3hef5/FO9qDkrynJfcroG3Eh/CFfN+4CuS9k7ufgb8zMw2ALbBDUm17IYPQZyMt1Z/hbeEvgesKek9kjbGE/FcvJt6NnCrpE0y/rwHL0hvx4cQjgVuMLMB6f5bzWybAuGvAP4f3mp9R4rrF9K93wKflCQASRsBe+E6A6/8343r9mTgSklD8+L2ePL7Dyl+16d7W+Nd92F4L+AQSat9cD2Tjr/Fh8g2wVvmWfbEK+YcXXiG3xkvbD8Gbs96i1fK/wEOxgv+jinvnIgX6jOBv+MG+jozez3j9yeAffGKJbs44hO4Ad8aGJB0tSbw1swzQ/FKYUu8Qv0AUO6ExtskzZf0P0nflVRsYcYGwL1mNiN70czuxXVe0YftUxqcjxuBYXga1GOcec/0PwivUHNDc9vh6XcW0A8YjefnLnz48hXgYrxR1x/4eCbvZPPzfXhv8wsprOnpmQ+nsL6Ip/9w3OB8Ds8TrwM/Sdf/gQ/LnY0P+W0A7Ifnn7fj9c7spJNnkqzb4b1Pw3uoO+JDgeek8C8HPpXRw37AHDPL5YPbgW2Tm2VA/iTEoXh52wg3hj8ooNuent0r6eRNuP4/yapDjqtRtQEws+XACXiL6jHgWjN7tLSrlVyBt+4/CPwXryxz/k40sylm9rqZPQxcjVeEAAcCfzCzu80nk77HqmOd4C2q28xsRQonV1DfDmxqZqcAvzazp3Crf0i6/xrwRkmDzWyJmd1TZlwKcWqSaxKe6Uek84W4gXsbnsmeMLMrzGy5mV2ddPGRjD+/AY7DDdkOwKJydGxmk8zsnuTvNODXdOvw70mWd6fzA4F/mdns5Pb/zGx20v/v8Jbxrhnvp5vZhUm//07XBksagY89f9PMXsYL3Ry8gsnnQOAWvDGwEV7oV46DS3oLnrZfz7i5Ha/4n0462RRvCeZYaGYLcYN/Fz7MMzA9+6MUh1uBHyY5X8m4/T4+JPWbdD4sc+8S88nLJXgv95N4y25Q5pkf4S2ur+P59Ykyy8Lf8OGczXBDc2henLNMxfVZiDl45ZjjXEkL0+/BIm4OBG4xs7+Z2St4GjRiRvtGfGjuJborpdl0z+PsjcdtezzuZ+It5b+T8k42P+M94aeAMfi8UW5lwdl4r/EGutM/y2vAKWaWmx96DS+LK3Aj9LKZLcDLyVRg5xTeQ+m5I3Ed7w58zsxeMLPXzOyvyf8rgf0kbZDOj8DrH1IcLjGzxUnXPwTeKmnDjHzXm9l9KcyrcGNUjGLPvobn+e3x+d3HzKxYngFqfA8gVbRvMrNtzKyUxcrnCrxCG4tbzpVI2k3SXZKek7QIt+C5zD0MNxy58JexuoXLTsAtw3saa+KTccMkLQR+nP5PpHuS6ijccv5X0v2SPlxBfPLJTsotwVscubXPy/CW5DC6Wy85prNqj+bZnI7xwjGvnMAlvUnSLZKelfQinuEGA5j3Fa/BKxuAw8i0RiR9WtLkXAWCV1DZyiWr39npf8MUn+fNLDeBOBSvKPN7aNCdjsOBBWa2lJSOkt6IV/ZfNrO/Z9zsgPc2NsEr8GV091rAW2WY2QXp3ga48d0K793tgfdYFqTnsz2nG5OOcy3ObKNiVuZ4Ot763xQ35qQwz8Mrtr2BrwIPSdq+QLxXIRmWp5OxnYLPgRxY5PF/4DotRE7XOb5kZoPSb5cibvLL0lJ8fqPeHIA3InJ1zcZ0N4iGJzlewPPB4pQ/Z+D5YTismp9x/b4LT9cpwITk71B8pdF8PP3ze1LPpwozR64cbor3rt+Q8vsFeEs9N+H6E7zcjceHhV4ysxfyI5kaUP8APiFpEN6bvCrJ30/S6ZKeTOXx5OSsWLnKyVaMgs+a2V/wBtAvgLmSLsgYpIK05E1gM5uOt+T2o3v4IMdv8RbvCDPbEB8+Ubo3h8xQgaR18QqhHGYAT2cKxiAzG2hm+yWZnjCzQ/HW2BnA7yWtX8CfpaTKJrF5GWFfik82ZivD2XgmzrIlq1Y41XI+3pvYNg1pnUi3DsFbqQdK2gof0rkOIJ1fiPfsNjGzQXirO+s2y7/S/154fDaWNDDpbV+84BSKzxy8EvgI8HdJ6+HpuBnwZ+BUM7siz80wfE5hAT5EsA4+xJMrRP0kbZt5fgg+hDQDb9lfm0t33CDuloYFsxyMp++CzLVsmm2JtxhzLcOVmNkdZvZBPO+8juuxUoziuv5zknlE9qKkXXFd/qXCsHJpkPMnlwblUKoM5PfIwdPguIz+7wa+YGb/THJsRHfeya322pjuvLMyP+MV8+t45flX636XYAw+N5RPIXmyzMd7g88m2Y4F/p0bZk0NmgW44TkMWE/SR4v4dRk+DHQQ3qvOyX8Yvuz1A3hjqStdL5bWVWNm55rZKHyIKtdwLEort4I4CnhfanlkGYi3Bl5OmfuwzL3fAx+R9M4073Ay5SvxPuBFSd+UtG6yyjtJejuApE9J2jSNC+dad4W6xJPxse3+kkZTvMWWZRbeDf5S5tptwJskHSZpTUmfxFu5t5QZn1IMxCe5lqSW6OezN83s33hr7yJ8Ij8X39zywecAJH0G7wEUxMxyi+6/j2e4f+EtkOvwgjWavLFOSf3xlTqfwAv6z/GW7xp49/8XZvarAsGtB/y/VOH/AB/3np1afOBDA6ck47MZnvmvwBsQnyJV2Knb/STeQ7g4uV1L0qH4ROgDeeF+Js1zjUj+vYZX8jmdHZNaqB+VtCc+5PQEKe9IWkvSOng+7S9pnZzhkbSvpCHpeHt8GOamIrr+M3AncJ2kHVP+3T3p93wze6KQuxL8HviwpHelspRLg3IoVQaewyvorTPXfgV8S9KO6bwfvnQXfFhuW3xe6XS8ot0cb+Xn8s7K/Iwb4dfwFn+2wj+EwgZgLt2t+dVI5f0WYJCkzfByuV1qsa8p6Qy8DNyCDz29AnxJ0kYp/ntmvLsRH4b6MquObAxM7p7H8/EPi8lTC5LenkZQ+uNGOjcBXhyrchVQNT989cAf8ZbhI5nra9K9CuhAvKu9GFf6eay6emQsPjGTWwU0C3i35a1GsMKrF0bjGWJ5Usw0ulc9XJnkWoK3HA8o4sfW+Mz7EroncVdbLUH3EriZeOvkjXjBeC3JcDKeySfh48eTgHdlZJ9IZjUHeStGyKwMyOg2F5c98RbTEnws9RRWXwr33eTHQXnXf4C3eObj46p/zcmRZLgPH2N9LOnJ8LHxR/Bx3lfwlR4r8Jbf5PT8CrrHXZ/AK7NZdK9AeYHu1SMrf9a98uE3eGvx9ZR+r+BjtZOTu1F4AVya3N6Q0mZqCvspuleWXYJXJFcnt8vwRQ37p7BOy+j41RRmLty5+HBALq3vSLK/ns5fT+F/N5OOlvcbk+6dmfxbmuT7N3llIy9t1sEN1GspnBlJljWK5ZsCflySCwMf186VpdxKrHF4fnw25YPvUUEZSPdPodsQfNG6VxxNSWnwMqvm5X1S/LOrgK7I3M/Pz3enNF07k04GDMnkl4eSXBPpfpcjm58W4uVzTPJ3BZ6nXk56eCbpYQae75biZfmHeEt/bkr36/P0e1F6dkDyZwq+6CS3mm86vsjF8DrhXLpXHu6S/BgDzCxU1snkz/xn8SHMh1N85uMGdEDJOrmZBiCTmLtQJJNX6NcAvFC+ocznh2aUPBB/QWaHJsVbucTAhzDuBXZvtv7rEI8edZgy5S11DHOVTJ+uTQMGl3CzHz6XsCtuqO6tIfx+eK9ha3ylzEMF4jwWOK/GeJYsG5k4CZ+MrDhOZYRR17Rr5a9FefV7dDcIy82jVadnrb+mDwGZ2d9YdYy1IiR9RNJ6qat/Jm5hp5UZ9hwzezAdL8ZbsYUmKeuOOUvSaf/062l8su1opQ4rZH+6u+Ffw7v4xSZRe6Ip256UUTb2By5PeekeqohTreWvN9HsvCpf2n0UPpFcDjWnZ630xu2g98cnHGfjY4eHWDKnlSB/Zf1teEu8KaRx28l4F3yC+RruXksPOnyHpIck3Z4Z+60nBvxJ0iT5NgL5DAdmmC+Xux3vvldb+IeTWTFTwq9PSHpY0u/zJ2vrRLly1Eqj067pNDqvSjoGT5vbk5GFMvNo5rxR6VmUXvdBGPN9cY6uxQ9JA/CJyq+Y2Yt1EawMzNfOj0zLxG6QtJOZPdKTu3akBx0+iO9dskTSfvjY/Lb5fpSLmY0tcHkPM5udJu4mSPpvpuBB4cUB1fa4yvHrD8DVZvaKpM/h48TvqzK8WuSolbqmXTvQjLxqZhey+sqvZubRquiNPYCaSDPk1wFXmVn+EtSmYL7qZiI++dXr6EmHZvZibrjLzG7DV78Mzn+uFqz7xbV5+ITvrnmPzCSzzBFfPjyb6ujRLzN73vwlH/CKYBT1p55xKkgz0q6ZtDKvNjmPVkXVu4FWw+DBg62rq6shfi9dupT11y+0bL+5VCLHpEmTXjR/16Fu1EPHrdBlo8KcNGnSfPx9g3PNLL8AloX8RcL/4assZm2yySav1Csft0u+rZSs3JMmTZpvddypspY8XG991tO/Wvyqt45X0swZ51GjRlmjuOuuuxrmdyVUIgcN2BWwHjpuhS4bFSa+rG8KmU0Bq/nhKzb+BzxZz3zcLvm2UrJy1zsf16Lfeuuznv7V4lcj6goza785gN72UeVOoRenyyNmNrpWT8yHB24DGD16dFus3urFadISQl+r03FzAEEQBIHTdj2Aaugaf2vB72x2smUPgiDoiV5jAKr4DmkQBEFQghgCCoIg6FDCAARBEHQovWYIKAiC8ojVLkG5hAEIgqCjKTW/eOk+ve8lvUoIAxCsJFcQCq2oCoKg7xFzAEEQBB1K9ACCoAHEOHzQG4geQBAEQYcSPYAg6BCiVxLkEwYg6AjSF7ouBzbHP1Z+gZn9LH3G73f4h8+nAQeb2QutkjOondg1oHx6NAAlCs5JwDHAc+nRE9OOiUHQjq3N5cA4M3tQ0kBgkqQJ+Mfc7zSz0yWNB8YD32yVkL2VqCd6J+X0AIoVHIBzzOzMxokXBPXBzOYAc9LxYkm5D4TvD4xJj12Gf6ktDEDlRD3RC+nRAJQoOEGdiOGJ5pL3gfAhKY9jZnPS91sLuTkWOBZgyJAhTJw4sWQY43ZeXvB6vrslS5b06FelYVRKNeHnyx31RO+kojmAvIKzB3CCpE8DD+DWPyqn6ojhiSaR/4FwqdB3uVfHzC4ALgD/IMyYMWNKPl/sRbpph6/qbuLEifTkV6VhVEq+TOVQSu6oJ3oPZRuAAgXnfOBU/Cv2pwJnAZ8t4K4uLaeeGLLu6m6rbVnVQjUtuhieaA5FPhA+V9LQ1PofCsxrnYS9n2bVEwBTZi1a7ZrXAzVEII9aemiN9KtelGUAChUcM5ubuX8hcEsht/VqOfXEuJ2Xc9aUVaNTTcumVmpp0UFzhieKkTOghYxpMYqFVe4QSI5GFw55U/9i4DEzOztz62bgSOD09H9Tw4To4zSznoDCdUWheqAWLt1n/ZrKc5Za64ZGUM4qoIIFJ9dqSqcfAx5pjIjV04YrUUrSrOGJYozN7AVUbiEqZmTLHQLJ0YTCsQdwBDBF0uR07US84r9W0lHAM8BBjRSir9Kb64lOppxSXqzgHCppJN61mwYc1xAJO4QYnmgsZnY3UMyivr+ZsvRRop7ohZSzCqhYwYm1vHUihieCVlLqxalye8tRT/RO4k3g9iCGJ4IgaDphANqAZg9PtPJV+WJh9/UPb+TIj3/u2wvtOi8V9G3CAARBDcS+M0FvJgxAUBNRAdaH0GPQCjrSAPS25aGdwJRZi4ovHY10CVpEsXzZV/JkfBAmCIKgQwkDEARB0KGEAQiCIOhQwgAEQRB0KGEAgiAIOpSOXAXUKfT1pYWxmisIaiMMQND29HVDFpSmHdO/rzQ+YggoCIKgQ4keQBAEQZ3obT2D6AEEQRB0KC3rAfSmcT1oXwseBEFQLTUZAEn7AD8D+gEXmdnpdZEqWEnouPGEjotTr+27Q8ftSdUGQFI/4BfAB4GZwP2Sbjaz/9RLuEaw8O6rWP7CHAZ/5Gssf3Eesy/6AiO+8ju0Rr+S7loxttcOOrblr/LMWR9n+OcvZc0NBlfk9rXnZzD74uPZ6hs3N0i6wvzxj3/khBNOYOrUqT0+2w467uuEjovT6lGHWnoAuwJTzewpAEnXAPsDDUnUmed/lteXLQStgfqvw7pbj2bjDx7HGmutW7Wfa26wGVt+9fc1yVXsAx/FqDBRC+pY0n2ZZ9YDXgFWAHR1dZX08KWnJrFgwq8YftyFlcjRl2lqPu5QOl7HXeNv7bFuaAUys+ocSgcC+5jZ0en8CGA3Mzsh77ljgWPT6XbA41XKujP+UenFQH/gTcBCYFa6PxiYX4Y/w4C1gaerlKMnypUDYCsz27TYzXJ0LGkacD2wZ7rUk443ALYEHinxTDYOAnYBHgZeKxWZAqwD7AhMKuPZSvTWE9k41qzjdL1e+Tifesa7mWTlrkc+rpd+663PevpXi18ldVw1ZlbVD/8+7UWZ8yOAn1frXxnhTQM+kDn/CXALMBH4AbAEeAl4I17J3wwsAKYCx2TcnQRcmY67AAPWTOcTgVOBf+CG5k/A4Izb3YF/4obnIWBMATkfqGOce9Rxvl7StXXxLvccvMv9E9xobpJ09HrS15J0bQ/gXmARMBuYm9HJOklHWxSR8Z6ks0nJ/XXAhune9sBy4DNJjueAr2fc9gO+CzyFG5ergEFlui0Yx3RvH7zFmXv2u+m5F4HHgHe3Kh83Mr8081eJ3M3Ucb31Wefy3HZpXcsy0JnAiMz5Fnjl0XAkjQD2A/6dLh2BV4QDgenA1Um+YcCBwA8llftt3cPwSmczYC3gaynM4cCtwGnAxun6dZLqb5W7qVbHJwNvwXtNo4AxwDfM7HngY8BTZjYg/Z7HK98T8Hi9G9gQOLoCOT8NHA4Mx3V2VuZeP2A0bpj3A34gaet07+vAXsC76O5hnFOm24JxzBdM0lvx9ByZ4vUhXK85WpaPO4jQcbtSgzVbE2+5vQEv9A8BOzbKUuEV/BK89T0d+CXeCpwInEKyrnhGWwEMzLj9EXBpOj6J0j2A72TcfQH4Yzr+JnBFnkx3AEc2sMXQo44p3AOYBbwvc74/8N90vErruEi4M4Gr03E5PYCTMue7AEvT8fbJbbYX9TBwQDp+Gtgjp7cUz2X4sFNPbsuKIz4ENQd4by6dW5mPC4Tfdq3CesvdTB3XW591Ls9tl9ZVTwKb2XJJJ+CVYD/gEjN7tFr/yuQAM/tz9oIkgBnABenSMGCBmS3OPDYdb0mWw7OZ42XAgHS8FXCQpI9k7vcH7spzfwF1ohodyxWyOR7nHNPx1nkxNzvgrfZdcKO6Nj5eWS4z8sJaT9KG6XyFmWXHPZcBA5KcI4DbJBleMfwbfzlxkzLclhVHM3tU0nh8mHB7SbcDXzWzuel+K/JxlrrllyZTttxN1nG99VlP/9ourWt6D8DMbgNuq5MstWBmllvWMhvYWNLAjBHYku7J4mqZgfcAjulBkLomcqU6NjOT9CxusJ5Ml7PxLzTrfyHe+znIzJakCvMDFYiZ7d5vCSwzs0WShvYg5yzg42a22iSxpKIGqIw45j9/GXCZpEHAxfgw3jGZ+y3Lx/XOL82iUrmbpeMGlL96NujaLq373FYQZjYDn6j9kaR1JL0FOAqfYKyFK4GPSNpbUr/k9xhJW9QqcwO4Gvi+pE0kbQZ8G5cffIJ3M0kDMs8PBBalyn9HMpVjmYyV9Kbk50nA78p09yvg9DSng6TN8npYpSgVx5VI2kHSeyStjU+Av0RaMhsEnU6fMwCJQ/Hx/dnADcD3zWxCLR4mw7I/cCK+ImUGPonZjjr8Hr7G+lFgMr6q6cfp3kP4CqnpkhZK2hj4f8DRkpbgK2vKrcBzXIFXyLPwFUbjynT3Y+DPwF8kLcYN9y5lui0Vxyzr4sNb8/G5gAHJbRAErZ6EqGAC5RJgHvBI5trGwATgifS/Ubou4Fx8CejDwC4NluMkvPKbnH77Ze59K8nxOLB3i3W4T5JjKjC+wP2v4pXqw8Cd+Nrj3L0VmfjdnLl+D/CpGsMdixvVnP9HZ+4dmdL3CfIm3HvzDx82uwtflvoo8OVWy1SB7P3w+ZpbWi1LRqbVymW7pA2+kOI+vPH1KHByq/W1UrZWC1CBEvfEW4fZivfHuQoFGA+ckY73A25PhmB34N4Gy3ES8LUCz+6QEn1tfAXEk0C/FumvXwp/a7pXYuyQ98x7gfXS8eeB32XuLSnib0kDUGa4Y4HzCrjdGF89sjGwUTreqNV5sU7pMZTUMMGH4P6Xr5d2/eENhd+2mQFYrVy2S9qkemhAOu6Pv3Oze6t1ZlbbewBNxcz+hr/YlWV/4LJ0fBlwQOb65ebcAwwqNSFZBzmKsT9wjZm9YmZP4y3gXeshRxWsfB3fzF4Fcq/jr8TM7jKzZen0Hny9dsPDLcHewAQzW2BmL+C9vH3qIFPLMbM5ZvZgOl6MtzaLrtRqF9Kc14eAi1otS5YKy2VPftU1bVI9tCSd9k+/6rZgqDO9xgAUYYiZzQFPNPzlLfDEyi5NnEnjC9cJkh6WdImkjVooRzEqleUovBeVYx1JD0i6R1LO0GJmu5vZapOvVYT7iaS/3+cmhauQuVciqQt4G94ybHd+ir9w93qrBWkG9UqbtHBkMj5MNcHM2iKte7sBKIYKXGukxT0f2AZ/23QO3W/CNluOUpQti6RP4e9N/CRzeUszG42/Kf1TSdvUMdw/AF1m9hZ8UjjXq2sn/TWEtHLqOuArZvZiq+UphaQPA/OswLLdvkg908bMVpjZSLxXvaukneohY61UvRlcNQwePNh62q0yn6VLl7L++pXtPd5b/J00adJ8q/MGT9XouFIapbtG0Agd1wtJ/fH9rO4ws7NbLU9PSPoRvu3KcnxicwPgejP7VEsFS6TW+i1mVnPl2si0kfR9/G35M+vpb1U0c8Jh1KhRVil33XVXxW56i7804NXwanRcKY3SXSNohI7r8cN7N5cDP221LFXKP4Y2mgROMnVRn0nguqYNsCndmxyuC/wd+HCr9WXWiyaBg6CPsQfemn6fpMnpt1+rheqtSLoa+BewnaSZko6qwbt6p81Q4C5JDwP343MAt9TgX91o2TeBK6XVX84J6kMrvqzWjpjZ3RSe4+gVmNlEfPuQtsDMDq2jX3VNGzN7GJ9IbjuiBxAEQdCh9JoeQNC7KNVjC4KgPYgeQBAEQYfSdj2ASj+yHgRBEFRH9ACCIAg6lLbrAQStI1ZaBUFnET2AIAiCDiUMQBAEQYcSQ0BBWWSHh7IT8zE0FAS9l+gBBEEQdChhANoASSMk3SXpMUmPSvpyur6xpAmSnkj/G/XkVxAEQbnEEFB7sBwYZ2YPShoITJI0Af9U4p1mdrqk8fhnL79Za2Dxlm4QBFBGD6BE6/QkSbNiJ8PaseKfoCv2ycsgCIKaKacHUKx1CnCOtcNHDfoQeZ+gW+WTl5I2K+E0CIKgIno0AKkCylVCiyX1io9X90byP0EnlbcjraRjgWMBhgwZwsSJE0s+P27n5TXJOWTdbj9+ftVNRcKozM+eZA6CoP5U9EnI1Dr9G7AT8FV8jPpF4AG8l/BCATfZymnUNddcUzKMKbMWrXI+ZF2Y+1JpuXYevmFZ8mdZsmQJAwYMqNhdPf1973vfO8n8O7sFP0En6XFgTGr9DwUmmtl2pfwcPXq0PfDAAyXDrXUOYNzOyzlrSn2njxq1nFTSSh0HQbAqZZfiAq3T84FT8Y90n4p/CP2z+e7M7ALgAvDKacyYMSXDyd/4rZzKZtrhpf0sxMSJE+lJlmqoxl95U/9i4DFb9fujNwNHAqen/8LN7SAIgiooywCk1ul1wFVmdj2Amc3N3L8Qb70G1ZH7BN0USZPTtRPxiv/a9Hm7Z4CDWiRfEAR9kB4NQLHWqaShuQlK4GPAI5UEHEsRu+nhE3Tvb6YsQRB0DuX0AIq1Tg+VNBIfApoGHNcQCYMgCMMlzIsAAAUbSURBVIKGUM4qoGKt09vqL04QBEHQLPrEm8DFhpNio7IgCILixF5AQRAEHUqf6AFUStf4Wwt+azh6DEEQdBLRAwiCIOhQwgAEQRB0KGEAgiAIOpQ+PQdQz5fNYqVRYymVVqHjIGgM0QMIgiDoUMIABEEQdChhAIIgCDqUPj0HEPQNYv4lCBpD9ACCIAg6lDAAQRAEHUoMAWWIbxQEQdBJhAHow4RBC4KgFDEEFARB0KGEAQiCIOhQahoCkrQP8DOgH3CRmZ1eF6l6EfnDLLltpuu1RDF0HARBo6jaAEjqB/wC+CAwE7hf0s1m9p96Cdebqcfa9dBxaeL9gCCojVqGgHYFpprZU2b2KnANsH99xAoSoeMgCBpGLUNAw4EZmfOZwG75D0k6Fjg2nS6R9HglgXwJBgPzqxWy3fzVGaucbtWDd03RcaU0Snf1Ik/H27VIjCBoe2oxACpwzVa7YHYBcEHVgUgPmNnoat33cn+bouNKaZTuGoGkB1otQxC0K7UMAc0ERmTOtwBm1yZOkEfoOAiChlGLAbgf2FbSGyStBRwC3FwfsYJE6DgIgoZR9RCQmS2XdAJwB75E8RIze7RuknXTqKGNtve3iTqulKYNN9WB3iRrEDQVma02pBwEQRB0APEmcBAEQYcSBiAIgqBDabkBkDRN0hRJk3NL9iRtLGmCpCfS/0bpuiSdK2mqpIcl7ZLn1yWS5kl6JHOtYr8kHZmefyIdF/L3JEmzktyTJe2Xufet5O/jkvbOXN8nXZsqaXwj9NkoJI2QdJekxyQ9KunLrZapJyT1k/RvSbe0WpYgaEdabgAS7zWzkZm15eOBO81sW+DOdA6wL7Bt+h0LnJ/nz6XAPnnXKvJL0sbA9/EXrnZNx78v4C/AOUnukWZ2W3K/A75aZ8fk5pepIspt67AvsANwaHq2t7AcGGdmbwZ2B47vBfJ/GXis1UIEQbvSLgYgn/2By9LxZcABmeuXm3MPMEjS0JwjM/sbsKBGv/YGJpjZAjN7AZgAbFjA31KyX2Nmr5jZ08BU3JD06m0dzGyOmT2YjhfjFevw1kpVHElbAB8CLmq1LEHQrrSDATDgT5ImpS0NAIaY2RzwigfYLF0vtDVCT5VQpX5VEsYJafjoktzQUp38bWskdQFvA+5trSQl+SnwDeD1VgsSBO1KOxiAPcxsF3xo5HhJe5Z4tqytEcqkmF/lhnE+sA0wEpgDnFUnf9saSQOA64CvmNmLrZanEJI+DMwzs0mtliUI2pmWGwAzm53+5wE34EMlc3NDO+l/Xnq8mq0RKvWrrDDMbK6ZrTCz14ELk9w1+9vOSOqPV/5Xmdn1rZanBHsAH5U0DR9qe5+kK1srUhC0Hy01AJLWlzQwdwzsBTyCb3dwZHrsSOCmdHwz8Om0gmd3YFFueKcElfp1B7CXpI3SsM5e6Vq+7EMzpx9Lcuf8PUTS2pLegE8y30cv39ZBkoCLgcfM7OxWy1MKM/uWmW1hZl24nv9iZp9qsVhB0Ha0+qPwQ4AbvG5hTeC3ZvZHSfcD10o6CngGOCg9fxuwHz6xugz4TNYzSVcDY4DBkmbiK3hOr8QvM1sg6VS8wgY4BV+9k+/vGEkj8WGcacBxyf2jkq4F/oOvnDnezFYk+dpxW4dy2QM4ApgiaXK6dmJu9VMQBL2P2AoiCIKgQ2n5HEAQBEHQGsIABEEQdChhAIIgCDqUMABBEAQdShiAIAiCDiUMQBAEQYcSBiAIgqBD+f9H8T3XicwUtgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "wine_df.hist(bins=10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "name": "Exercise.ipynb",
+ "provenance": [],
+ "version": "0.3.2"
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Get_to_know_your_Data-checkpoint.ipynb b/Get_to_know_your_Data-checkpoint.ipynb
new file mode 100644
index 0000000..d6ff895
--- /dev/null
+++ b/Get_to_know_your_Data-checkpoint.ipynb
@@ -0,0 +1,2365 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "J82LU53m_OU0"
+ },
+ "source": [
+ "# Get to know your Data\n",
+ "\n",
+ "\n",
+ "#### Import necessary modules\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "ZyO1UXL8mtSj"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "yXTzTowtnwGI"
+ },
+ "source": [
+ "#### Loading CSV Data to a DataFrame"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "H1Bjlb5wm9f-"
+ },
+ "outputs": [],
+ "source": [
+ "iris_df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "KE-k7b_Mn5iN"
+ },
+ "source": [
+ "#### See the top 10 rows\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "colab_type": "code",
+ "id": "HY2Ps7xMn4ao",
+ "outputId": "7d342633-1b72-4558-fcec-76ebe66d7430"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 4.9 | \n",
+ " 3.0 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 4.7 | \n",
+ " 3.2 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4.6 | \n",
+ " 3.1 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "1 4.9 3.0 1.4 0.2 setosa\n",
+ "2 4.7 3.2 1.3 0.2 setosa\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "iris_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "ZQXekIodqOZu"
+ },
+ "source": [
+ "#### Find number of rows and columns\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "colab_type": "code",
+ "id": "6Y-A-lbFqR82",
+ "outputId": "2fe6e676-1bec-453f-8e2b-3bc21ac0a999"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(150, 5)\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(iris_df.shape)\n",
+ "\n",
+ "#first is row and second is column\n",
+ "#select row by simple indexing\n",
+ "\n",
+ "#print(iris_df.shape[0])\n",
+ "#print(iris_df.shape[1])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "4ckCiGPhrC_t"
+ },
+ "source": [
+ "#### Print all columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 68
+ },
+ "colab_type": "code",
+ "id": "S6jgMyRDrF2a",
+ "outputId": "798d5ef2-0f98-4972-c98c-c896f879af64"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',\n",
+ " 'species'],\n",
+ " dtype='object')\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(iris_df.columns)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "kVav5-ACtIqS"
+ },
+ "source": [
+ "#### Check Index\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "colab_type": "code",
+ "id": "iu3I9zIGtLDX",
+ "outputId": "21786651-605d-4636-d253-5694edb6f969"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RangeIndex(start=0, stop=150, step=1)\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(iris_df.index)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "psCc7PborOCQ"
+ },
+ "source": [
+ "#### Right now the iris_data set has all the species grouped together let's shuffle it"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 221
+ },
+ "colab_type": "code",
+ "id": "Bxc8i6avrZPw",
+ "outputId": "11e956f5-d253-4025-9c3a-1e88f54528b2"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "1 4.9 3.0 1.4 0.2 setosa\n",
+ "2 4.7 3.2 1.3 0.2 setosa\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "115 6.4 3.2 5.3 2.3 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n"
+ ]
+ }
+ ],
+ "source": [
+ "#generate a random permutaion on index\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "new_index = np.random.permutation(iris_df.index)\n",
+ "iris_df = iris_df.reindex(index = new_index)\n",
+ "\n",
+ "print(iris_df.head())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "j32h8022sRT8"
+ },
+ "source": [
+ "#### We can also apply an operation on whole column of iris_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 323
+ },
+ "colab_type": "code",
+ "id": "seYXHXsYsYJI",
+ "outputId": "5f8ae149-0829-45fa-a537-ed81be0bd743"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "115 6.4 3.2 5.3 2.3 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "3 4.6 31.0 1.5 0.2 setosa\n",
+ "115 6.4 32.0 5.3 2.3 virginica\n",
+ "113 5.7 25.0 5.0 2.0 virginica\n",
+ "43 5.0 35.0 1.6 0.6 setosa\n",
+ "126 6.2 28.0 4.8 1.8 virginica\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "115 6.4 3.2 5.3 2.3 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n"
+ ]
+ }
+ ],
+ "source": [
+ "#original\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "iris_df['sepal_width'] *= 10\n",
+ "\n",
+ "#changed\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "#lets undo the operation\n",
+ "\n",
+ "iris_df['sepal_width'] /= 10\n",
+ "\n",
+ "print(iris_df.head())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "R-Ca-LBLzjiF"
+ },
+ "source": [
+ "#### Show all the rows where sepal_width > 3.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1165
+ },
+ "colab_type": "code",
+ "id": "WJ7W-F-d0AoZ",
+ "outputId": "ee9c12fa-f9da-468a-dead-9d3ced177e8b"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 43 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.6 | \n",
+ " 0.6 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 136 | \n",
+ " 6.3 | \n",
+ " 3.4 | \n",
+ " 5.6 | \n",
+ " 2.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.3 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.9 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 39 | \n",
+ " 5.1 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 5.2 | \n",
+ " 3.5 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 109 | \n",
+ " 7.2 | \n",
+ " 3.6 | \n",
+ " 6.1 | \n",
+ " 2.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.7 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.5 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 5.4 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 131 | \n",
+ " 7.9 | \n",
+ " 3.8 | \n",
+ " 6.4 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 5.7 | \n",
+ " 4.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 5.5 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.7 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 5.8 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.9 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 5.1 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 4.6 | \n",
+ " 3.6 | \n",
+ " 1.0 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 5.2 | \n",
+ " 3.4 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 31 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 4.6 | \n",
+ " 3.4 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 5.2 | \n",
+ " 4.1 | \n",
+ " 1.5 | \n",
+ " 0.1 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 6.2 | \n",
+ " 3.4 | \n",
+ " 5.4 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 5.3 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 5.5 | \n",
+ " 4.2 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 117 | \n",
+ " 7.7 | \n",
+ " 3.8 | \n",
+ " 6.7 | \n",
+ " 2.2 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "7 5.0 3.4 1.5 0.2 setosa\n",
+ "18 5.7 3.8 1.7 0.3 setosa\n",
+ "136 6.3 3.4 5.6 2.4 virginica\n",
+ "16 5.4 3.9 1.3 0.4 setosa\n",
+ "24 4.8 3.4 1.9 0.2 setosa\n",
+ "39 5.1 3.4 1.5 0.2 setosa\n",
+ "27 5.2 3.5 1.5 0.2 setosa\n",
+ "85 6.0 3.4 4.5 1.6 versicolor\n",
+ "109 7.2 3.6 6.1 2.5 virginica\n",
+ "5 5.4 3.9 1.7 0.4 setosa\n",
+ "19 5.1 3.8 1.5 0.3 setosa\n",
+ "10 5.4 3.7 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ "131 7.9 3.8 6.4 2.0 virginica\n",
+ "15 5.7 4.4 1.5 0.4 setosa\n",
+ "36 5.5 3.5 1.3 0.2 setosa\n",
+ "20 5.4 3.4 1.7 0.2 setosa\n",
+ "14 5.8 4.0 1.2 0.2 setosa\n",
+ "44 5.1 3.8 1.9 0.4 setosa\n",
+ "21 5.1 3.7 1.5 0.4 setosa\n",
+ "22 4.6 3.6 1.0 0.2 setosa\n",
+ "28 5.2 3.4 1.4 0.2 setosa\n",
+ "11 4.8 3.4 1.6 0.2 setosa\n",
+ "46 5.1 3.8 1.6 0.2 setosa\n",
+ "31 5.4 3.4 1.5 0.4 setosa\n",
+ "6 4.6 3.4 1.4 0.3 setosa\n",
+ "32 5.2 4.1 1.5 0.1 setosa\n",
+ "148 6.2 3.4 5.4 2.3 virginica\n",
+ "26 5.0 3.4 1.6 0.4 setosa\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "48 5.3 3.7 1.5 0.2 setosa\n",
+ "40 5.0 3.5 1.3 0.3 setosa\n",
+ "33 5.5 4.2 1.4 0.2 setosa\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "117 7.7 3.8 6.7 2.2 virginica"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "iris_df[iris_df['sepal_width']>3.3]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "gH3DnhCq2Cbl"
+ },
+ "source": [
+ "#### Club two filters together - Find all samples where sepal_width > 3.3 and species is versicolor"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 80
+ },
+ "colab_type": "code",
+ "id": "4U7ksr_R2H7M",
+ "outputId": "a245bbce-09c2-41e0-fb41-6138e8f8eddc"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "85 6.0 3.4 4.5 1.6 versicolor"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "iris_df[(iris_df['sepal_width']>3.3) & (iris_df['species'] == 'versicolor')] "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "1lmnB3ot2u7I"
+ },
+ "source": [
+ "#### Sorting a column by value"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1969
+ },
+ "colab_type": "code",
+ "id": "K7KIj6fv2zWP",
+ "outputId": "c38831d3-1fd3-4728-bfbf-c9355e4a96a5"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 60 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 62 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 4.0 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 68 | \n",
+ " 6.2 | \n",
+ " 2.2 | \n",
+ " 4.5 | \n",
+ " 1.5 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 119 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 5.0 | \n",
+ " 1.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 87 | \n",
+ " 6.3 | \n",
+ " 2.3 | \n",
+ " 4.4 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 53 | \n",
+ " 5.5 | \n",
+ " 2.3 | \n",
+ " 4.0 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 93 | \n",
+ " 5.0 | \n",
+ " 2.3 | \n",
+ " 3.3 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 41 | \n",
+ " 4.5 | \n",
+ " 2.3 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 57 | \n",
+ " 4.9 | \n",
+ " 2.4 | \n",
+ " 3.3 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 81 | \n",
+ " 5.5 | \n",
+ " 2.4 | \n",
+ " 3.7 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 80 | \n",
+ " 5.5 | \n",
+ " 2.4 | \n",
+ " 3.8 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 72 | \n",
+ " 6.3 | \n",
+ " 2.5 | \n",
+ " 4.9 | \n",
+ " 1.5 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 108 | \n",
+ " 6.7 | \n",
+ " 2.5 | \n",
+ " 5.8 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 89 | \n",
+ " 5.5 | \n",
+ " 2.5 | \n",
+ " 4.0 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 98 | \n",
+ " 5.1 | \n",
+ " 2.5 | \n",
+ " 3.0 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 106 | \n",
+ " 4.9 | \n",
+ " 2.5 | \n",
+ " 4.5 | \n",
+ " 1.7 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 69 | \n",
+ " 5.6 | \n",
+ " 2.5 | \n",
+ " 3.9 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 146 | \n",
+ " 6.3 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 113 | \n",
+ " 5.7 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 79 | \n",
+ " 5.7 | \n",
+ " 2.6 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 118 | \n",
+ " 7.7 | \n",
+ " 2.6 | \n",
+ " 6.9 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 92 | \n",
+ " 5.8 | \n",
+ " 2.6 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 90 | \n",
+ " 5.5 | \n",
+ " 2.6 | \n",
+ " 4.4 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 134 | \n",
+ " 6.1 | \n",
+ " 2.6 | \n",
+ " 5.6 | \n",
+ " 1.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 67 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 4.1 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 59 | \n",
+ " 5.2 | \n",
+ " 2.7 | \n",
+ " 3.9 | \n",
+ " 1.4 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 94 | \n",
+ " 5.6 | \n",
+ " 2.7 | \n",
+ " 4.2 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 83 | \n",
+ " 6.0 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 123 | \n",
+ " 6.3 | \n",
+ " 2.7 | \n",
+ " 4.9 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 101 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 6.2 | \n",
+ " 3.4 | \n",
+ " 5.4 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 136 | \n",
+ " 6.3 | \n",
+ " 3.4 | \n",
+ " 5.6 | \n",
+ " 2.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.9 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.7 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 5.5 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 43 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.6 | \n",
+ " 0.6 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 5.2 | \n",
+ " 3.5 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 4.6 | \n",
+ " 3.6 | \n",
+ " 1.0 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 109 | \n",
+ " 7.2 | \n",
+ " 3.6 | \n",
+ " 6.1 | \n",
+ " 2.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 5.1 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 5.3 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 5.4 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.9 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.5 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 131 | \n",
+ " 7.9 | \n",
+ " 3.8 | \n",
+ " 6.4 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 117 | \n",
+ " 7.7 | \n",
+ " 3.8 | \n",
+ " 6.7 | \n",
+ " 2.2 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.3 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.7 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 5.8 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 5.2 | \n",
+ " 4.1 | \n",
+ " 1.5 | \n",
+ " 0.1 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 5.5 | \n",
+ " 4.2 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 5.7 | \n",
+ " 4.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
150 rows × 5 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "60 5.0 2.0 3.5 1.0 versicolor\n",
+ "62 6.0 2.2 4.0 1.0 versicolor\n",
+ "68 6.2 2.2 4.5 1.5 versicolor\n",
+ "119 6.0 2.2 5.0 1.5 virginica\n",
+ "87 6.3 2.3 4.4 1.3 versicolor\n",
+ "53 5.5 2.3 4.0 1.3 versicolor\n",
+ "93 5.0 2.3 3.3 1.0 versicolor\n",
+ "41 4.5 2.3 1.3 0.3 setosa\n",
+ "57 4.9 2.4 3.3 1.0 versicolor\n",
+ "81 5.5 2.4 3.7 1.0 versicolor\n",
+ "80 5.5 2.4 3.8 1.1 versicolor\n",
+ "72 6.3 2.5 4.9 1.5 versicolor\n",
+ "108 6.7 2.5 5.8 1.8 virginica\n",
+ "89 5.5 2.5 4.0 1.3 versicolor\n",
+ "98 5.1 2.5 3.0 1.1 versicolor\n",
+ "106 4.9 2.5 4.5 1.7 virginica\n",
+ "69 5.6 2.5 3.9 1.1 versicolor\n",
+ "146 6.3 2.5 5.0 1.9 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "79 5.7 2.6 3.5 1.0 versicolor\n",
+ "118 7.7 2.6 6.9 2.3 virginica\n",
+ "92 5.8 2.6 4.0 1.2 versicolor\n",
+ "90 5.5 2.6 4.4 1.2 versicolor\n",
+ "134 6.1 2.6 5.6 1.4 virginica\n",
+ "67 5.8 2.7 4.1 1.0 versicolor\n",
+ "59 5.2 2.7 3.9 1.4 versicolor\n",
+ "94 5.6 2.7 4.2 1.3 versicolor\n",
+ "83 6.0 2.7 5.1 1.6 versicolor\n",
+ "123 6.3 2.7 4.9 1.8 virginica\n",
+ "101 5.8 2.7 5.1 1.9 virginica\n",
+ ".. ... ... ... ... ...\n",
+ "148 6.2 3.4 5.4 2.3 virginica\n",
+ "136 6.3 3.4 5.6 2.4 virginica\n",
+ "85 6.0 3.4 4.5 1.6 versicolor\n",
+ "26 5.0 3.4 1.6 0.4 setosa\n",
+ "24 4.8 3.4 1.9 0.2 setosa\n",
+ "20 5.4 3.4 1.7 0.2 setosa\n",
+ "36 5.5 3.5 1.3 0.2 setosa\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "40 5.0 3.5 1.3 0.3 setosa\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "27 5.2 3.5 1.5 0.2 setosa\n",
+ "22 4.6 3.6 1.0 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ "109 7.2 3.6 6.1 2.5 virginica\n",
+ "21 5.1 3.7 1.5 0.4 setosa\n",
+ "48 5.3 3.7 1.5 0.2 setosa\n",
+ "10 5.4 3.7 1.5 0.2 setosa\n",
+ "44 5.1 3.8 1.9 0.4 setosa\n",
+ "18 5.7 3.8 1.7 0.3 setosa\n",
+ "46 5.1 3.8 1.6 0.2 setosa\n",
+ "19 5.1 3.8 1.5 0.3 setosa\n",
+ "131 7.9 3.8 6.4 2.0 virginica\n",
+ "117 7.7 3.8 6.7 2.2 virginica\n",
+ "16 5.4 3.9 1.3 0.4 setosa\n",
+ "5 5.4 3.9 1.7 0.4 setosa\n",
+ "14 5.8 4.0 1.2 0.2 setosa\n",
+ "32 5.2 4.1 1.5 0.1 setosa\n",
+ "33 5.5 4.2 1.4 0.2 setosa\n",
+ "15 5.7 4.4 1.5 0.4 setosa\n",
+ "\n",
+ "[150 rows x 5 columns]"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "iris_df.sort_values(by='sepal_width')#, ascending = False)\n",
+ "#pass ascending = False for descending order"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "9jg_Z4YCoMSV"
+ },
+ "source": [
+ "#### List all the unique species"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "colab_type": "code",
+ "id": "M6EN78ufoJY7",
+ "outputId": "4ae0c425-f973-486f-817f-63cbe6897bdf"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "['setosa' 'virginica' 'versicolor']\n"
+ ]
+ }
+ ],
+ "source": [
+ "species = iris_df['species'].unique()\n",
+ "\n",
+ "print(species)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "wG1i5nxBodmB"
+ },
+ "source": [
+ "#### Selecting a particular species using boolean mask (learnt in previous exercise)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "colab_type": "code",
+ "id": "gZvpbKBwoVUe",
+ "outputId": "213a3376-8e60-4f9f-cf7e-937e98475206"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 3 | \n",
+ " 4.6 | \n",
+ " 3.1 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 43 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.6 | \n",
+ " 0.6 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 42 | \n",
+ " 4.4 | \n",
+ " 3.2 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "7 5.0 3.4 1.5 0.2 setosa\n",
+ "18 5.7 3.8 1.7 0.3 setosa\n",
+ "42 4.4 3.2 1.3 0.2 setosa"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "setosa = iris_df[iris_df['species'] == species[0]]\n",
+ "\n",
+ "setosa.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "colab_type": "code",
+ "id": "7tumfZ3DotPG",
+ "outputId": "bf3850ab-a0eb-45fa-9816-fdd4c97517d2"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 115 | \n",
+ " 6.4 | \n",
+ " 3.2 | \n",
+ " 5.3 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 113 | \n",
+ " 5.7 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 126 | \n",
+ " 6.2 | \n",
+ " 2.8 | \n",
+ " 4.8 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 122 | \n",
+ " 7.7 | \n",
+ " 2.8 | \n",
+ " 6.7 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 116 | \n",
+ " 6.5 | \n",
+ " 3.0 | \n",
+ " 5.5 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "115 6.4 3.2 5.3 2.3 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n",
+ "122 7.7 2.8 6.7 2.0 virginica\n",
+ "116 6.5 3.0 5.5 1.8 virginica"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# do the same for other 2 species \n",
+ "versicolor = iris_df[iris_df['species'] == species[1]]\n",
+ "\n",
+ "versicolor.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "colab_type": "code",
+ "id": "cUYm5UqVpDPy",
+ "outputId": "a3cc4a4c-b06e-43c1-ed6a-b1f8fcb14de6"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 90 | \n",
+ " 5.5 | \n",
+ " 2.6 | \n",
+ " 4.4 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 93 | \n",
+ " 5.0 | \n",
+ " 2.3 | \n",
+ " 3.3 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 50 | \n",
+ " 7.0 | \n",
+ " 3.2 | \n",
+ " 4.7 | \n",
+ " 1.4 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 60 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 62 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 4.0 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "90 5.5 2.6 4.4 1.2 versicolor\n",
+ "93 5.0 2.3 3.3 1.0 versicolor\n",
+ "50 7.0 3.2 4.7 1.4 versicolor\n",
+ "60 5.0 2.0 3.5 1.0 versicolor\n",
+ "62 6.0 2.2 4.0 1.0 versicolor"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "virginica = iris_df[iris_df['species'] == species[2]]\n",
+ "\n",
+ "virginica.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "-y1wDc8SpdQs"
+ },
+ "source": [
+ "#### Describe each created species to see the difference\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 297
+ },
+ "colab_type": "code",
+ "id": "eHrn3ZVRpOk5",
+ "outputId": "58e878f8-2aed-49b2-9529-545308332808"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 50.00000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.00000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 5.00600 | \n",
+ " 3.418000 | \n",
+ " 1.464000 | \n",
+ " 0.24400 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 0.35249 | \n",
+ " 0.381024 | \n",
+ " 0.173511 | \n",
+ " 0.10721 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 4.30000 | \n",
+ " 2.300000 | \n",
+ " 1.000000 | \n",
+ " 0.10000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 4.80000 | \n",
+ " 3.125000 | \n",
+ " 1.400000 | \n",
+ " 0.20000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 5.00000 | \n",
+ " 3.400000 | \n",
+ " 1.500000 | \n",
+ " 0.20000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 5.20000 | \n",
+ " 3.675000 | \n",
+ " 1.575000 | \n",
+ " 0.30000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 5.80000 | \n",
+ " 4.400000 | \n",
+ " 1.900000 | \n",
+ " 0.60000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.00000 50.000000 50.000000 50.00000\n",
+ "mean 5.00600 3.418000 1.464000 0.24400\n",
+ "std 0.35249 0.381024 0.173511 0.10721\n",
+ "min 4.30000 2.300000 1.000000 0.10000\n",
+ "25% 4.80000 3.125000 1.400000 0.20000\n",
+ "50% 5.00000 3.400000 1.500000 0.20000\n",
+ "75% 5.20000 3.675000 1.575000 0.30000\n",
+ "max 5.80000 4.400000 1.900000 0.60000"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "setosa.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 297
+ },
+ "colab_type": "code",
+ "id": "GwJFT2GlpwUv",
+ "outputId": "3b040a37-357b-4f35-b1ba-9fa0c6166f9f"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 50.00000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.00000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 6.58800 | \n",
+ " 2.974000 | \n",
+ " 5.552000 | \n",
+ " 2.02600 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 0.63588 | \n",
+ " 0.322497 | \n",
+ " 0.551895 | \n",
+ " 0.27465 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 4.90000 | \n",
+ " 2.200000 | \n",
+ " 4.500000 | \n",
+ " 1.40000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 6.22500 | \n",
+ " 2.800000 | \n",
+ " 5.100000 | \n",
+ " 1.80000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 6.50000 | \n",
+ " 3.000000 | \n",
+ " 5.550000 | \n",
+ " 2.00000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 6.90000 | \n",
+ " 3.175000 | \n",
+ " 5.875000 | \n",
+ " 2.30000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 7.90000 | \n",
+ " 3.800000 | \n",
+ " 6.900000 | \n",
+ " 2.50000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.00000 50.000000 50.000000 50.00000\n",
+ "mean 6.58800 2.974000 5.552000 2.02600\n",
+ "std 0.63588 0.322497 0.551895 0.27465\n",
+ "min 4.90000 2.200000 4.500000 1.40000\n",
+ "25% 6.22500 2.800000 5.100000 1.80000\n",
+ "50% 6.50000 3.000000 5.550000 2.00000\n",
+ "75% 6.90000 3.175000 5.875000 2.30000\n",
+ "max 7.90000 3.800000 6.900000 2.50000"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "versicolor.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 297
+ },
+ "colab_type": "code",
+ "id": "Ad4qhSZLpztf",
+ "outputId": "4a986bae-72a1-4e49-bb19-5999479897c6"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 5.936000 | \n",
+ " 2.770000 | \n",
+ " 4.260000 | \n",
+ " 1.326000 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 0.516171 | \n",
+ " 0.313798 | \n",
+ " 0.469911 | \n",
+ " 0.197753 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 4.900000 | \n",
+ " 2.000000 | \n",
+ " 3.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 5.600000 | \n",
+ " 2.525000 | \n",
+ " 4.000000 | \n",
+ " 1.200000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 5.900000 | \n",
+ " 2.800000 | \n",
+ " 4.350000 | \n",
+ " 1.300000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 6.300000 | \n",
+ " 3.000000 | \n",
+ " 4.600000 | \n",
+ " 1.500000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 7.000000 | \n",
+ " 3.400000 | \n",
+ " 5.100000 | \n",
+ " 1.800000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.000000 50.000000 50.000000 50.000000\n",
+ "mean 5.936000 2.770000 4.260000 1.326000\n",
+ "std 0.516171 0.313798 0.469911 0.197753\n",
+ "min 4.900000 2.000000 3.000000 1.000000\n",
+ "25% 5.600000 2.525000 4.000000 1.200000\n",
+ "50% 5.900000 2.800000 4.350000 1.300000\n",
+ "75% 6.300000 3.000000 4.600000 1.500000\n",
+ "max 7.000000 3.400000 5.100000 1.800000"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "virginica.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "Vdu0ulZWtr09"
+ },
+ "source": [
+ "#### Let's plot and see the difference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "PEVMzRvpttmD"
+ },
+ "source": [
+ "##### import matplotlib.pyplot "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 398
+ },
+ "colab_type": "code",
+ "id": "rqDXuuAtt7C3",
+ "outputId": "e1111c09-8877-43f8-ac45-f92b53899a5c"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(array([ 4., 1., 6., 10., 5., 8., 5., 3., 5., 3.]),\n",
+ " array([4.9 , 5.11, 5.32, 5.53, 5.74, 5.95, 6.16, 6.37, 6.58, 6.79, 7. ]),\n",
+ " )"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFG9JREFUeJzt3X9s1PX9wPFX6Q1JS8cqa0E2Ycbv\nFjOVCdFFEJgyfkyZv9gsP4LMzG8yBoJLWIQ1LJCQLGLQ4KbTTRnuCyFBkUFdlmGGkCwKbBkLG0sM\nwpKFHwpFCuVnkHrfPxaaMaGF6/V93PXx+It+7vq517vv5p69O3oty2az2QAAkulW6AEAoKsRXwBI\nTHwBIDHxBYDExBcAEhNfAEgsk+JGGhuPpbiZvKiuroimppOFHqNTlfoara/4lfoara/4Xcoaa2qq\nLnqZR77/JZMpL/QIna7U12h9xa/U12h9xa+jaxRfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWA\nxMQXABK7pPju3LkzRo0aFStWrIiIiPfffz8eeeSRmDJlSjzyyCPR2NjYqUMCQClpN74nT56MhQsX\nxpAhQ1qPLVmyJOrq6mLFihUxevToWLZsWacOCQClpN34du/ePV566aWora1tPTZ//vwYO3ZsRERU\nV1fHkSNHOm9CACgx7cY3k8lEjx49zjtWUVER5eXl0dLSEitXrox777230wYEgFKT8181amlpiSee\neCJuv/32856SvpDq6oqieqPttv4SxZXo3tnrOnyON56+Pw+TXDmKbQ8vV6mvL6L012h9xa8ja8w5\nvj/60Y9iwIAB8dhjj7V73WL601I1NVVF9ScQ86WU1lzqe1jq64so/TVaX/G7lDXm/U8KNjQ0xKc+\n9amYNWtWLp8OAF1au498d+zYEYsWLYp9+/ZFJpOJ9evXx4cffhhXXXVVPPzwwxERcf3118eCBQs6\ne1YAKAntxvemm26K5cuXp5gFALoE73AFAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY\n+AJAYuILAImJLwAkJr4AkNglxXfnzp0xatSoWLFiRUREvP/++/Hwww/H5MmT4/HHH48zZ8506pAA\nUEraje/Jkydj4cKFMWTIkNZjP/3pT2Py5MmxcuXKGDBgQKxevbpThwSAUtJufLt37x4vvfRS1NbW\nth7bunVrfP3rX4+IiLvuuis2b97ceRMCQInJtHuFTCYymfOvdurUqejevXtERPTu3TsaGxs7ZzoA\nKEHtxrc92Wy23etUV1dEJlPe0ZtKpqamqtAjJFdqaz63nrfv/1an3s4d617v1PNfTKnt14V0xhrr\nVn0/7+fMxasTXij5PSz19UV0bI05xbeioiJOnz4dPXr0iAMHDpz3lPSFNDWdzGm4QqipqYrGxmOF\nHiO5Ulpzyj0sxNetK3yPdoU1lvL6usL+Xcoa24pzTr9qNHTo0Fi/fn1ERLz55psxfPjwXE4DAF1S\nu498d+zYEYsWLYp9+/ZFJpOJ9evXx+LFi2Pu3LmxatWq6NevXzzwwAMpZgWAktBufG+66aZYvnz5\nJ44vW7asUwYCgFLnHa4AIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQX\nABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMQyhR4AKH0z3nqi0CPAFcUjXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcA\nEhNfAEhMfAEgMfEFgMQyuXzSiRMnYs6cOXH06NH46KOPYsaMGTF8+PB8zwYAJSmn+P7mN7+J6667\nLmbPnh0HDhyI73znO/H73/8+37MBQEnK6Wnn6urqOHLkSERENDc3R3V1dV6HAoBSltMj33HjxsWa\nNWti9OjR0dzcHL/4xS/yPRcAlKyc4rtu3bro169fLF26NN59992or6+PNWvWXPT61dUVkcmU5zxk\najU1VYUeIbnvPvlWh8/xxtP352GS/Di3hzsT3U5nefv+b33iWL7W9Ozk2jydiVyU+v1Mqa8vomNr\nzCm+27Zti2HDhkVExA033BAHDx6MlpaWKC+/cGCbmk7mPGBqNTVV0dh4rNBjFKUr5euWcg+vlDVT\nfEr5e6cr3I9eyhrbinNOr/kOGDAgtm/fHhER+/bti8rKyouGFwA4X06PfCdMmBD19fUxZcqUOHv2\nbCxYsCDPYwFA6copvpWVlfHss8/mexYA6BK8wxUAJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi\n4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkv\nACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQ\nmPgCQGLiCwCJiS8AJCa+AJCY+AJAYjnHt6GhIe67774YP358bNq0KY8jAUBpyym+TU1N8fzzz8fK\nlSvjxRdfjA0bNuR7LgAoWZlcPmnz5s0xZMiQ6NmzZ/Ts2TMWLlyY77kAoGTlFN+9e/fG6dOnY9q0\nadHc3BwzZ86MIUOGXPT61dUVkcmU5zxkajU1VZd83Xtnr+vQbb3x9P0d+vwryeV83f7T2/d/K69z\n7Mzr2dqW65ovVcq1kFZnf+8U2uWsr27V9ztxkkv36oQXLuv6HdnDnOIbEXHkyJF47rnnYv/+/TF1\n6tTYuHFjlJWVXfC6TU0ncx4wtZqaqmhsPJbs9lLeVmcrpbVcqq64ZvKjlL93Ut+P5svlzHwpa2wr\nzjm95tu7d+8YNGhQZDKZ6N+/f1RWVsbhw4dzORUAdDk5xXfYsGGxZcuW+Pjjj6OpqSlOnjwZ1dXV\n+Z4NAEpSTk879+nTJ8aOHRt1dXURETFv3rzo1s2vDAPApcj5Nd+JEyfGxIkT8zkLAHQJHq4CQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAIllCj1AV/fdJ98q9Ah0wM7/faTQI+Ts8ZUHO/X8z06u7dTzd+b8nT173arv\nd+r5L9XzI58q9Ahdlke+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiXUovqdPn45Ro0bFmjVr8jUPAJS8\nDsX3hRdeiF69euVrFgDoEnKO7+7du2PXrl1x55135nEcACh9Ocd30aJFMXfu3HzOAgBdQiaXT1q7\ndm3ccsstce21117S9aurKyKTKc/lpi7q3tnrOnyON56+/4LHa2qqOnzulObu+r9OPf+T/zP1kq73\n3Sffyun8foSDwujM+7piux+NuPyZO7LGnOK7adOm2LNnT2zatCk++OCD6N69e/Tt2zeGDh16wes3\nNZ3MecDO1Nh47BPHamqqLngcoNR01n1dsd6PXs7Ml7LGtuKcU3yXLFnS+u+f/exn8bnPfe6i4QUA\nzuf3fAEgsZwe+f6nmTNn5mMOAOgyPPIFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBILFPoAYDS9PjKg4Ue\nIWedPfuzk2s79fxc+TzyBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABIT\nXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASCyT6yc+9dRT8Ze//CXOnj0b3/ve\n92LMmDH5nAsASlZO8d2yZUu89957sWrVqmhqaooHH3xQfAHgEuUU39tuuy0GDhwYERGf/vSn49Sp\nU9HS0hLl5eV5HQ4ASlFO8S0vL4+KioqIiFi9enWMGDGizfBWV1dEJnPlhbmmpuqyjgOUks68ryvG\n+9HLnbkja8z5Nd+IiD/84Q+xevXq+NWvftXm9ZqaTnbkZjpNY+OxTxyrqam64HGAUtNZ93XFej96\nOTNfyhrbinPO8f3jH/8YL774Yrz88stRVVV8P+EAQKHkFN9jx47FU089Fa+88kp85jOfyfdMAFDS\ncorv7373u2hqaoof/OAHrccWLVoU/fr1y9tgAFCqcorvhAkTYsKECfmeBQC6BO9wBQCJiS8AJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAklin0AIX03SffKvQIRWHurv8r9AhAJ5jx1hOFHqHL8sgXABITXwBITHwBIDHxBYDE\nxBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNf\nAEhMfAEgsUyun/iTn/wktm/fHmVlZVFfXx8DBw7M51wAULJyiu+f/vSn+Ne//hWrVq2K3bt3R319\nfaxatSrfswFAScrpaefNmzfHqFGjIiLi+uuvj6NHj8bx48fzOhgAlKqc4nvo0KGorq5u/fjqq6+O\nxsbGvA0FAKUs59d8/1M2m23z8pqaqnzczHneePr+vJ+zePlaQDG5o9ADkBcdaVtOj3xra2vj0KFD\nrR8fPHgwampqch4CALqSnOJ7xx13xPr16yMi4h//+EfU1tZGz5498zoYAJSqnJ52Hjx4cNx4440x\nceLEKCsri/nz5+d7LgAoWWXZ9l6wBQDyyjtcAUBi4gsAieXlV42K2enTp+Ob3/xmTJ8+PcaPH996\nfOTIkdG3b98oLy+PiIjFixdHnz59CjXmZdu6dWs8/vjj8cUvfjEiIr70pS/Fj3/849bL33nnnXjm\nmWeivLw8RowYETNmzCjUqDlpb33Fvn/nNDQ0xMsvvxyZTCZmzZoVd955Z+tlxb6HEW2vrxT28LXX\nXouGhobWj3fs2BF//etfWz9uaGiIX//619GtW7eoq6uLhx56qBBj5qy99d14440xePDg1o9feeWV\n1v0sBidOnIg5c+bE0aNH46OPPooZM2bE8OHDWy/v0P5lu7hnnnkmO378+Ozrr79+3vG77rore/z4\n8QJN1XFbtmzJzpw586KX33333dn9+/dnW1paspMmTcq+9957CafruPbWV+z7l81ms4cPH86OGTMm\ne+zYseyBAwey8+bNO+/yYt/D9tZXCnv4n7Zu3ZpdsGBB68cnTpzIjhkzJtvc3Jw9depUdty4cdmm\npqYCTtgx/72+bDab/epXv1qgafJj+fLl2cWLF2ez2Wz2gw8+yI4dO7b1so7uX5d+2nn37t2xa9eu\n837a7gr27NkTvXr1imuuuSa6desWX/va12Lz5s2FHov/snnz5hgyZEj07NkzamtrY+HCha2XlcIe\ntrW+UvT888/H9OnTWz/evn173HzzzVFVVRU9evSIwYMHx7Zt2wo4Ycf89/pKQXV1dRw5ciQiIpqb\nm897Z8eO7l+Xju+iRYti7ty5F718/vz5MWnSpFi8eHG77+J1Jdq1a1dMmzYtJk2aFG+//Xbr8cbG\nxrj66qtbPy7Wtwe92PrOKfb927t3b5w+fTqmTZsWkydPPi+upbCHba3vnGLfw3P+9re/xTXXXHPe\nmxEdOnSo6PfwnAutLyLizJkzMXv27Jg4cWIsW7asQNPlbty4cbF///4YPXp0TJkyJebMmdN6WUf3\nr8u+5rt27dq45ZZb4tprr73g5bNmzYrhw4dHr169YsaMGbF+/fr4xje+kXjK3H3hC1+Ixx57LO6+\n++7Ys2dPTJ06Nd58883o3r17oUfLi/bWV+z7d86RI0fiueeei/3798fUqVNj48aNUVZWVuix8qat\n9ZXKHkZErF69Oh588ME2r1PMP1xcbH1PPPFE3HfffVFWVhZTpkyJW2+9NW6++eYCTJibdevWRb9+\n/WLp0qXx7rvvRn19faxZs+aC173c/euyj3w3bdoUGzZsiLq6unjttdfi5z//ebzzzjutlz/wwAPR\nu3fvyGQyMWLEiNi5c2cBp718ffr0iXvuuSfKysqif//+8dnPfjYOHDgQEZ98e9ADBw5EbW1toUbN\nSVvriyj+/YuI6N27dwwaNCgymUz0798/Kisr4/DhwxFRGnvY1voiSmMPz9m6dWsMGjTovGMXepve\nYtvDcy60voiISZMmRWVlZVRUVMTtt99edHu4bdu2GDZsWERE3HDDDXHw4MFoaWmJiI7vX5eN75Il\nS+L111+PV199NR566KGYPn16DB06NCIijh07Fo8++micOXMmIiL+/Oc/t/6v2mLR0NAQS5cujYh/\nP0X54Ycftv5P0c9//vNx/Pjx2Lt3b5w9ezY2btwYd9xRXG/13tb6SmH/IiKGDRsWW7ZsiY8//jia\nmpri5MmTra85lcIetrW+UtnDiH//YFRZWfmJZ52+8pWvxN///vdobm6OEydOxLZt2+LWW28t0JS5\nu9j6/vnPf8bs2bMjm83G2bNnY9u2bUW3hwMGDIjt27dHRMS+ffuisrKy9X9rd3T/uuzTzheyZs2a\nqKqqitGjR8eIESNiwoQJcdVVV8WXv/zlonu6a+TIkfHDH/4wNmzYEB999FEsWLAgfvvb37aub8GC\nBTF79uyIiLjnnnviuuuuK/DEl6e99RX7/kX8+9H92LFjo66uLiIi5s2bF2vXri2ZPWxvfaWwhxGf\nfH3+l7/8Zdx2220xaNCgmD17djz66KNRVlYWM2bMiKqq/P8FuM7W1vr69u0b3/72t6Nbt24xcuTI\nGDhwYAEnvXwTJkyI+vr6mDJlSpw9ezYWLFiQt/3z9pIAkFiXfdoZAApFfAEgMfEFgMTEFwASE18A\nSEx8ASAx8QWAxMQXABL7f56BiVURCnM3AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#hist creates a histogram there are many more plots(see the documentation) you can play with it.\n",
+ "\n",
+ "plt.hist(setosa['sepal_length'])\n",
+ "plt.hist(versicolor['sepal_length'])\n",
+ "plt.hist(virginica['sepal_length'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "pl4RPzBfl5mI"
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "name": "Get to know your Data.ipynb",
+ "provenance": [],
+ "version": "0.3.2"
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/SoumanPaul.ipynb b/SoumanPaul.ipynb
new file mode 100644
index 0000000..9e2543a
--- /dev/null
+++ b/SoumanPaul.ipynb
@@ -0,0 +1,32 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.5.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}