From ff7b7f363cd418e2b9fe983ffdaf714261cfbe64 Mon Sep 17 00:00:00 2001 From: captain-pool Date: Wed, 26 Sep 2018 06:57:33 +0530 Subject: [PATCH 1/4] Code Committed for SoumanPaul --- SoumanPaul.ipynb | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) create mode 100644 SoumanPaul.ipynb diff --git a/SoumanPaul.ipynb b/SoumanPaul.ipynb new file mode 100644 index 0000000..9e2543a --- /dev/null +++ b/SoumanPaul.ipynb @@ -0,0 +1,32 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 1a158af79b279f087c0fb71115ca9d147860d96e Mon Sep 17 00:00:00 2001 From: Soumanpaul Date: Mon, 8 Oct 2018 23:07:41 +0530 Subject: [PATCH 2/4] Completed NumpyExercises --- Basic_Pandas-checkpoint.ipynb | 1044 +++++++++++ Exercise-checkpoint.ipynb | 2277 +++++++++++++++++++++++ Get_to_know_your_Data-checkpoint.ipynb | 2354 ++++++++++++++++++++++++ 3 files changed, 5675 insertions(+) create mode 100644 Basic_Pandas-checkpoint.ipynb create mode 100644 Exercise-checkpoint.ipynb create mode 100644 Get_to_know_your_Data-checkpoint.ipynb diff --git a/Basic_Pandas-checkpoint.ipynb b/Basic_Pandas-checkpoint.ipynb new file mode 100644 index 0000000..a9be676 --- /dev/null +++ b/Basic_Pandas-checkpoint.ipynb @@ -0,0 +1,1044 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Basic Pandas.ipynb", + "version": "0.3.2", + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "cells": [ + { + "metadata": { + "id": "cGbE814_Xaf9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Pandas\n", + "\n", + "Pandas is an open-source, BSD-licensed Python library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. Python with Pandas is used in a wide range of fields including academic and commercial domains including finance, economics, Statistics, analytics, etc.In this tutorial, we will learn the various features of Python Pandas and how to use them in practice.\n", + "\n", + "\n", + "## Import pandas and numpy" + ] + }, + { + "metadata": { + "id": "irlVYeeAXPDL", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "BI2J-zdMbGwE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### This is your playground feel free to explore other functions on pandas\n", + "\n", + "#### Create Series from numpy array, list and dict\n", + "\n", + "Don't know what a series is?\n", + "\n", + "[Series Doc](https://pandas.pydata.org/pandas-docs/version/0.22/generated/pandas.Series.html)" + ] + }, + { + "metadata": { + "id": "GeEct691YGE3", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 139 + }, + "outputId": "49a1f081-7c31-4abc-c8e1-e3c87f53afaa" + }, + "cell_type": "code", + "source": [ + "a_ascii = ord('A')\n", + "z_ascii = ord('Z')\n", + "alphabets = [chr(i) for i in range(a_ascii, z_ascii+1)]\n", + "\n", + "print(alphabets)\n", + "\n", + "numbers = np.arange(26)\n", + "\n", + "print(numbers)\n", + "\n", + "print(type(alphabets), type(numbers))\n", + "\n", + "alpha_numbers = dict(zip(alphabets, numbers))\n", + "\n", + "print(alpha_numbers)\n", + "\n", + "print(type(alpha_numbers))\n" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']\n", + "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23\n", + " 24 25]\n", + " \n", + "{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9, 'K': 10, 'L': 11, 'M': 12, 'N': 13, 'O': 14, 'P': 15, 'Q': 16, 'R': 17, 'S': 18, 'T': 19, 'U': 20, 'V': 21, 'W': 22, 'X': 23, 'Y': 24, 'Z': 25}\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "6ouDfjWab_Mc", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 476 + }, + "outputId": "26cb349e-34ff-46aa-daf7-9102bbb66ce8" + }, + "cell_type": "code", + "source": [ + "series1 = pd.Series(alphabets)\n", + "print(series1)" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "0 A\n", + "1 B\n", + "2 C\n", + "3 D\n", + "4 E\n", + "5 F\n", + "6 G\n", + "7 H\n", + "8 I\n", + "9 J\n", + "10 K\n", + "11 L\n", + "12 M\n", + "13 N\n", + "14 O\n", + "15 P\n", + "16 Q\n", + "17 R\n", + "18 S\n", + "19 T\n", + "20 U\n", + "21 V\n", + "22 W\n", + "23 X\n", + "24 Y\n", + "25 Z\n", + "dtype: object\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "At7nY7vVcBZ3", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 476 + }, + "outputId": "ddd95b3b-56ca-4a6a-a3cb-ad46a61b956f" + }, + "cell_type": "code", + "source": [ + "series2 = pd.Series(numbers)\n", + "print(series2)" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "0 0\n", + "1 1\n", + "2 2\n", + "3 3\n", + "4 4\n", + "5 5\n", + "6 6\n", + "7 7\n", + "8 8\n", + "9 9\n", + "10 10\n", + "11 11\n", + "12 12\n", + "13 13\n", + "14 14\n", + "15 15\n", + "16 16\n", + "17 17\n", + "18 18\n", + "19 19\n", + "20 20\n", + "21 21\n", + "22 22\n", + "23 23\n", + "24 24\n", + "25 25\n", + "dtype: int64\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "J5z-2CWAdH6N", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 476 + }, + "outputId": "96fbd118-de14-44ea-bcdb-705c13e0b51f" + }, + "cell_type": "code", + "source": [ + "series3 = pd.Series(alpha_numbers)\n", + "print(series3)" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "text": [ + "A 0\n", + "B 1\n", + "C 2\n", + "D 3\n", + "E 4\n", + "F 5\n", + "G 6\n", + "H 7\n", + "I 8\n", + "J 9\n", + "K 10\n", + "L 11\n", + "M 12\n", + "N 13\n", + "O 14\n", + "P 15\n", + "Q 16\n", + "R 17\n", + "S 18\n", + "T 19\n", + "U 20\n", + "V 21\n", + "W 22\n", + "X 23\n", + "Y 24\n", + "Z 25\n", + "dtype: int64\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "fYzblGGudKjO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + }, + "outputId": "721edece-a3ac-4a7e-be36-e1e40328d2c8" + }, + "cell_type": "code", + "source": [ + "#replace head() with head(n) where n can be any number between [0-25] and observe the output in deach case \n", + "series3.head(20)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "A 0\n", + "B 1\n", + "C 2\n", + "D 3\n", + "E 4\n", + "F 5\n", + "G 6\n", + "H 7\n", + "I 8\n", + "J 9\n", + "K 10\n", + "L 11\n", + "M 12\n", + "N 13\n", + "O 14\n", + "P 15\n", + "Q 16\n", + "R 17\n", + "S 18\n", + "T 19\n", + "dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + } + ] + }, + { + "metadata": { + "id": "OwsJIf5feTtg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Create DataFrame from lists\n", + "\n", + "[DataFrame Doc](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html)" + ] + }, + { + "metadata": { + "id": "73UTZ07EdWki", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 855 + }, + "outputId": "ae8e8bd7-11d2-4fb6-dd26-f9dfdbbcf1a9" + }, + "cell_type": "code", + "source": [ + "data = {'alphabets': alphabets, 'values': numbers}\n", + "\n", + "df = pd.DataFrame(data)\n", + "\n", + "#Lets Change the column `values` to `alpha_numbers`\n", + "\n", + "#df.columns = ['alphabets', 'alpha_numbers']\n", + "\n", + "df" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
alphabetsvalues
0A0
1B1
2C2
3D3
4E4
5F5
6G6
7H7
8I8
9J9
10K10
11L11
12M12
13N13
14O14
15P15
16Q16
17R17
18S18
19T19
20U20
21V21
22W22
23X23
24Y24
25Z25
\n", + "
" + ], + "text/plain": [ + " alphabets values\n", + "0 A 0\n", + "1 B 1\n", + "2 C 2\n", + "3 D 3\n", + "4 E 4\n", + "5 F 5\n", + "6 G 6\n", + "7 H 7\n", + "8 I 8\n", + "9 J 9\n", + "10 K 10\n", + "11 L 11\n", + "12 M 12\n", + "13 N 13\n", + "14 O 14\n", + "15 P 15\n", + "16 Q 16\n", + "17 R 17\n", + "18 S 18\n", + "19 T 19\n", + "20 U 20\n", + "21 V 21\n", + "22 W 22\n", + "23 X 23\n", + "24 Y 24\n", + "25 Z 25" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "id": "uaK_1EO9etGS", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 140 + }, + "outputId": "8a7ed095-a63d-4b1d-e719-3bf1a4a0437c" + }, + "cell_type": "code", + "source": [ + "# transpose\n", + "\n", + "df.T\n", + "\n", + "# there are many more operations which we can perform look at the documentation with the subsequent exercises we will learn more" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...16171819202122232425
alphabetsABCDEFGHIJ...QRSTUVWXYZ
values0123456789...16171819202122232425
\n", + "

2 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 23 \\\n", + "alphabets A B C D E F G H I J ... Q R S T U V W X \n", + "values 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 23 \n", + "\n", + " 24 25 \n", + "alphabets Y Z \n", + "values 24 25 \n", + "\n", + "[2 rows x 26 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "ZYonoaW8gEAJ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Extract Items from a series" + ] + }, + { + "metadata": { + "id": "tc1-KX_Bfe7U", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "4699fc83-bcd0-4b4a-ad74-dc362a1cbe4a" + }, + "cell_type": "code", + "source": [ + "ser = pd.Series(list('abcdefghijklmnopqrstuvwxyz'))\n", + "pos = [0, 4, 8, 14, 20]\n", + "\n", + "vowels = ser.take(pos)\n", + "\n", + "df = pd.DataFrame(vowels)#, columns=['vowels'])\n", + "\n", + "df.columns = ['vowels']\n", + "\n", + "#df.index = [0, 1, 2, 3, 4]\n", + "df\n", + "\n", + "\n" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
vowels
0a
4e
8i
14o
20u
\n", + "
" + ], + "text/plain": [ + " vowels\n", + "0 a\n", + "4 e\n", + "8 i\n", + "14 o\n", + "20 u" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + } + ] + }, + { + "metadata": { + "id": "cmDxwtDNjWpO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Change the first character of each word to upper case in each word of ser" + ] + }, + { + "metadata": { + "id": "5KagP9PpgV2F", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "1eb68607-3bd9-4e3c-b006-b5fdd037a7e4" + }, + "cell_type": "code", + "source": [ + "ser = pd.Series(['we', 'are', 'learning', 'pandas'])\n", + "\n", + "ser.map(lambda x : x.title())\n", + "\n", + "titles = [i.title() for i in ser]\n", + "\n", + "titles\n" + ], + "execution_count": 28, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['We', 'Are', 'Learning', 'Pandas']" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 28 + } + ] + }, + { + "metadata": { + "id": "qn47ee-MkZN8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Reindexing" + ] + }, + { + "metadata": { + "id": "h5R0JL2NjuFS", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "cb61a5fe-6fb0-44bd-b73d-b1372d1d4bdc" + }, + "cell_type": "code", + "source": [ + "my_index = [1, 2, 3, 4, 5]\n", + "\n", + "df1 = pd.DataFrame({'upper values': ['A', 'B', 'C', 'D', 'E'],\n", + " 'lower values': ['a', 'b', 'c', 'd', 'e']},\n", + " index = my_index)\n", + "\n", + "df1" + ], + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
lower valuesupper values
1aA
2bB
3cC
4dD
5eE
\n", + "
" + ], + "text/plain": [ + " lower values upper values\n", + "1 a A\n", + "2 b B\n", + "3 c C\n", + "4 d D\n", + "5 e E" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 29 + } + ] + }, + { + "metadata": { + "id": "G_Frvc3mk93k", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "ad2c0077-bf21-484e-ee9d-716dfd598113" + }, + "cell_type": "code", + "source": [ + "new_index = [2, 5, 4, 3, 1]\n", + "\n", + "df1.reindex(index = new_index)" + ], + "execution_count": 30, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
lower valuesupper values
2bB
5eE
4dD
3cC
1aA
\n", + "
" + ], + "text/plain": [ + " lower values upper values\n", + "2 b B\n", + "5 e E\n", + "4 d D\n", + "3 c C\n", + "1 a A" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 30 + } + ] + }, + { + "metadata": { + "id": "adCU_4N1ca5r", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/Exercise-checkpoint.ipynb b/Exercise-checkpoint.ipynb new file mode 100644 index 0000000..18ae2fd --- /dev/null +++ b/Exercise-checkpoint.ipynb @@ -0,0 +1,2277 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "2LTtpUJEibjg" + }, + "source": [ + "# Pandas Exercise :\n", + "\n", + "\n", + "#### import necessary modules" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "c3_UBbMRhiKx" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "tp-cTCyWi8mR" + }, + "source": [ + "#### Load url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\" to a dataframe named wine_df\n", + "\n", + "This is a wine dataset\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "DMojQY3thrRi" + }, + "outputs": [], + "source": [ + "wine_df = pd.read_csv(\"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "BF9MMjoZjSlg" + }, + "source": [ + "#### print first five rows" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "colab_type": "code", + "id": "1vSMQdnHjYNU", + "outputId": "d5521c9a-0974-41fe-b0a6-12c26fc828f3" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
114.231.712.4315.61272.83.06.282.295.641.043.921065
0113.201.782.1411.21002.652.760.261.284.381.053.401050
1113.162.362.6718.61012.803.240.302.815.681.033.171185
2114.371.952.5016.81133.853.490.242.187.800.863.451480
3113.242.592.8721.01182.802.690.391.824.321.042.93735
4114.201.762.4515.21123.273.390.341.976.751.052.851450
\n", + "
" + ], + "text/plain": [ + " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 \\\n", + "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n", + "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n", + "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n", + "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n", + "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n", + "\n", + " 1065 \n", + "0 1050 \n", + "1 1185 \n", + "2 1480 \n", + "3 735 \n", + "4 1450 " + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "Tet6P2DvjY3T" + }, + "source": [ + "#### assign wine_df to a different variable wine_df_copy and then delete all odd rows of wine_df_copy\n", + "\n", + "[Hint](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html)" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 571 + }, + "colab_type": "code", + "id": "CMj3qSdJjx0u", + "outputId": "f466433c-6f8f-4188-dfd1-a9ddfdc71264" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
114.231.712.4315.61272.83.06.282.295.641.043.921065
0113.201.782.1411.21002.652.760.261.284.3800001.053.401050
2114.371.952.5016.81133.853.490.242.187.8000000.863.451480
4114.201.762.4515.21123.273.390.341.976.7500001.052.851450
6114.062.152.6117.61212.602.510.311.255.0500001.063.581295
8113.861.352.2716.0982.983.150.221.857.2200001.013.551045
10114.121.482.3216.8952.202.430.261.575.0000001.172.821280
12114.751.732.3911.4913.103.690.432.815.4000001.252.731150
14113.631.812.7017.21122.852.910.301.467.3000001.282.881310
16113.831.572.6220.01152.953.400.401.726.6000001.132.571130
18113.643.102.5615.21162.703.030.171.665.1000000.963.36845
20112.933.802.6518.61022.412.410.251.984.5000001.033.52770
22112.851.602.5217.8952.482.370.261.463.9300001.093.631015
24113.052.053.2225.01242.632.680.471.923.5800001.133.20830
26113.301.722.1417.0942.402.190.271.353.9500001.022.771285
28114.021.682.2116.0962.652.330.261.984.7000001.043.591035
30113.581.662.3619.11062.863.190.221.956.9000001.092.881515
32113.761.532.7019.51322.952.740.501.355.4000001.253.001235
34113.481.812.4120.51002.702.980.261.865.1000001.043.47920
36113.051.652.5518.0982.452.430.291.444.2500001.122.511105
38114.223.992.5113.21283.003.040.202.085.1000000.893.53760
40113.413.842.1218.8902.452.680.271.484.2800000.913.001035
42113.243.982.2917.51032.642.630.321.664.3600000.823.00680
44114.214.042.4418.91112.852.650.301.255.2400000.873.331080
46113.901.682.1216.01013.103.390.212.146.1000000.913.33985
48113.941.732.2717.41082.883.540.322.088.9000001.123.101260
50113.831.652.6017.2942.452.990.222.295.6000001.243.371265
52113.771.902.6817.11153.002.790.391.686.3000001.132.931375
54113.561.732.4620.51162.962.780.202.456.2500000.983.031120
56113.291.972.6816.81023.003.230.311.666.0000001.072.841270
58212.370.941.3610.6881.980.570.280.421.9500001.051.82520
.............................................
118212.003.432.0019.0872.001.640.371.871.2800000.933.05564
120211.562.053.2328.51193.185.080.471.876.0000000.933.69465
122213.055.802.1321.5862.622.650.302.012.6000000.733.10380
124212.072.162.1721.0852.602.650.371.352.7600000.863.28378
126211.792.132.7828.5922.132.240.581.763.0000000.972.44466
128212.044.302.3822.0802.101.750.421.352.6000000.792.57580
130312.882.992.4020.01041.301.220.240.835.4000000.741.42530
132312.703.552.3621.51061.701.200.170.845.0000000.781.29600
134312.602.462.2018.5941.620.660.630.947.1000000.731.58695
136312.535.512.6425.0961.790.600.631.105.0000000.821.69515
138312.842.962.6124.01012.320.600.530.814.9200000.892.15590
140313.362.562.3520.0891.400.500.370.645.6000000.702.47780
142313.624.952.3520.0922.000.800.471.024.4000000.912.05550
144313.163.572.1521.01021.500.550.431.304.0000000.601.68830
146312.874.612.4821.5861.700.650.470.867.6500000.541.86625
148313.083.902.3621.51131.411.390.341.149.4000000.571.33550
150312.792.672.4822.01121.481.360.241.2610.8000000.481.47480
152313.233.302.2818.5981.800.830.611.8710.5200000.561.51675
154313.175.192.3222.0931.740.630.611.557.9000000.601.48725
156312.453.032.6427.0971.900.580.631.147.5000000.671.73880
158313.481.672.6422.5892.601.100.522.2911.7500000.571.78620
160313.693.262.5420.01071.830.560.500.805.8800000.961.82680
162312.963.452.3518.51061.390.700.400.945.2800000.681.75675
164313.734.362.2622.5881.280.470.521.156.6200000.781.75520
166312.823.372.3019.5881.480.660.400.9710.2600000.721.75685
168313.404.602.8625.01121.980.960.271.118.5000000.671.92630
170312.772.392.2819.5861.390.510.480.649.8999990.571.63470
172313.715.652.4520.5951.680.610.521.067.7000000.641.74740
174313.274.282.2620.01201.590.690.431.3510.2000000.591.56835
176314.134.102.7424.5962.050.760.561.359.2000000.611.60560
\n", + "

89 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n", + "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 1.05 \n", + "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 0.86 \n", + "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 1.05 \n", + "6 1 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 1.06 \n", + "8 1 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 1.01 \n", + "10 1 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 1.17 \n", + "12 1 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 1.25 \n", + "14 1 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 1.28 \n", + "16 1 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 1.13 \n", + "18 1 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 0.96 \n", + "20 1 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 1.03 \n", + "22 1 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 1.09 \n", + "24 1 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 1.13 \n", + "26 1 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 1.02 \n", + "28 1 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 1.04 \n", + "30 1 13.58 1.66 2.36 19.1 106 2.86 3.19 0.22 1.95 6.900000 1.09 \n", + "32 1 13.76 1.53 2.70 19.5 132 2.95 2.74 0.50 1.35 5.400000 1.25 \n", + "34 1 13.48 1.81 2.41 20.5 100 2.70 2.98 0.26 1.86 5.100000 1.04 \n", + "36 1 13.05 1.65 2.55 18.0 98 2.45 2.43 0.29 1.44 4.250000 1.12 \n", + "38 1 14.22 3.99 2.51 13.2 128 3.00 3.04 0.20 2.08 5.100000 0.89 \n", + "40 1 13.41 3.84 2.12 18.8 90 2.45 2.68 0.27 1.48 4.280000 0.91 \n", + "42 1 13.24 3.98 2.29 17.5 103 2.64 2.63 0.32 1.66 4.360000 0.82 \n", + "44 1 14.21 4.04 2.44 18.9 111 2.85 2.65 0.30 1.25 5.240000 0.87 \n", + "46 1 13.90 1.68 2.12 16.0 101 3.10 3.39 0.21 2.14 6.100000 0.91 \n", + "48 1 13.94 1.73 2.27 17.4 108 2.88 3.54 0.32 2.08 8.900000 1.12 \n", + "50 1 13.83 1.65 2.60 17.2 94 2.45 2.99 0.22 2.29 5.600000 1.24 \n", + "52 1 13.77 1.90 2.68 17.1 115 3.00 2.79 0.39 1.68 6.300000 1.13 \n", + "54 1 13.56 1.73 2.46 20.5 116 2.96 2.78 0.20 2.45 6.250000 0.98 \n", + "56 1 13.29 1.97 2.68 16.8 102 3.00 3.23 0.31 1.66 6.000000 1.07 \n", + "58 2 12.37 0.94 1.36 10.6 88 1.98 0.57 0.28 0.42 1.950000 1.05 \n", + ".. .. ... ... ... ... ... ... ... ... ... ... ... \n", + "118 2 12.00 3.43 2.00 19.0 87 2.00 1.64 0.37 1.87 1.280000 0.93 \n", + "120 2 11.56 2.05 3.23 28.5 119 3.18 5.08 0.47 1.87 6.000000 0.93 \n", + "122 2 13.05 5.80 2.13 21.5 86 2.62 2.65 0.30 2.01 2.600000 0.73 \n", + "124 2 12.07 2.16 2.17 21.0 85 2.60 2.65 0.37 1.35 2.760000 0.86 \n", + "126 2 11.79 2.13 2.78 28.5 92 2.13 2.24 0.58 1.76 3.000000 0.97 \n", + "128 2 12.04 4.30 2.38 22.0 80 2.10 1.75 0.42 1.35 2.600000 0.79 \n", + "130 3 12.88 2.99 2.40 20.0 104 1.30 1.22 0.24 0.83 5.400000 0.74 \n", + "132 3 12.70 3.55 2.36 21.5 106 1.70 1.20 0.17 0.84 5.000000 0.78 \n", + "134 3 12.60 2.46 2.20 18.5 94 1.62 0.66 0.63 0.94 7.100000 0.73 \n", + "136 3 12.53 5.51 2.64 25.0 96 1.79 0.60 0.63 1.10 5.000000 0.82 \n", + "138 3 12.84 2.96 2.61 24.0 101 2.32 0.60 0.53 0.81 4.920000 0.89 \n", + "140 3 13.36 2.56 2.35 20.0 89 1.40 0.50 0.37 0.64 5.600000 0.70 \n", + "142 3 13.62 4.95 2.35 20.0 92 2.00 0.80 0.47 1.02 4.400000 0.91 \n", + "144 3 13.16 3.57 2.15 21.0 102 1.50 0.55 0.43 1.30 4.000000 0.60 \n", + "146 3 12.87 4.61 2.48 21.5 86 1.70 0.65 0.47 0.86 7.650000 0.54 \n", + "148 3 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 0.57 \n", + "150 3 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 0.48 \n", + "152 3 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 0.56 \n", + "154 3 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 0.60 \n", + "156 3 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 0.67 \n", + "158 3 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 0.57 \n", + "160 3 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 0.96 \n", + "162 3 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 0.68 \n", + "164 3 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 0.78 \n", + "166 3 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 0.72 \n", + "168 3 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 0.67 \n", + "170 3 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 0.57 \n", + "172 3 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 0.64 \n", + "174 3 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 0.59 \n", + "176 3 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 0.61 \n", + "\n", + " 3.92 1065 \n", + "0 3.40 1050 \n", + "2 3.45 1480 \n", + "4 2.85 1450 \n", + "6 3.58 1295 \n", + "8 3.55 1045 \n", + "10 2.82 1280 \n", + "12 2.73 1150 \n", + "14 2.88 1310 \n", + "16 2.57 1130 \n", + "18 3.36 845 \n", + "20 3.52 770 \n", + "22 3.63 1015 \n", + "24 3.20 830 \n", + "26 2.77 1285 \n", + "28 3.59 1035 \n", + "30 2.88 1515 \n", + "32 3.00 1235 \n", + "34 3.47 920 \n", + "36 2.51 1105 \n", + "38 3.53 760 \n", + "40 3.00 1035 \n", + "42 3.00 680 \n", + "44 3.33 1080 \n", + "46 3.33 985 \n", + "48 3.10 1260 \n", + "50 3.37 1265 \n", + "52 2.93 1375 \n", + "54 3.03 1120 \n", + "56 2.84 1270 \n", + "58 1.82 520 \n", + ".. ... ... \n", + "118 3.05 564 \n", + "120 3.69 465 \n", + "122 3.10 380 \n", + "124 3.28 378 \n", + "126 2.44 466 \n", + "128 2.57 580 \n", + "130 1.42 530 \n", + "132 1.29 600 \n", + "134 1.58 695 \n", + "136 1.69 515 \n", + "138 2.15 590 \n", + "140 2.47 780 \n", + "142 2.05 550 \n", + "144 1.68 830 \n", + "146 1.86 625 \n", + "148 1.33 550 \n", + "150 1.47 480 \n", + "152 1.51 675 \n", + "154 1.48 725 \n", + "156 1.73 880 \n", + "158 1.78 620 \n", + "160 1.82 680 \n", + "162 1.75 675 \n", + "164 1.75 520 \n", + "166 1.75 685 \n", + "168 1.92 630 \n", + "170 1.63 470 \n", + "172 1.74 740 \n", + "174 1.56 835 \n", + "176 1.60 560 \n", + "\n", + "[89 rows x 14 columns]" + ] + }, + "execution_count": 171, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df_copy = wine_df.copy(deep =True)\n", + "wine_df_copy.head()\n", + "odd_rows= [i for i in range(1,len(wine_df_copy.count(axis = 1))) if i%2!=0]\n", + "wine_df_copy.drop(odd_rows)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "o6Cs6T1Rjz71" + }, + "source": [ + "#### Assign the columns as below:\n", + "\n", + "The attributes are (dontated by Riccardo Leardi, riclea '@' anchem.unige.it): \n", + "1) Alcohol \n", + "2) Malic acid \n", + "3) Ash \n", + "4) Alcalinity of ash \n", + "5) Magnesium \n", + "6) Total phenols \n", + "7) Flavanoids \n", + "8) Nonflavanoid phenols \n", + "9) Proanthocyanins \n", + "10)Color intensity \n", + "11)Hue \n", + "12)OD280/OD315 of diluted wines \n", + "13)Proline " + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "my8HB4V4j779" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountAlcoholMAlic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 OF diluted winesProline
0113.201.782.1411.21002.652.760.261.284.381.053.401050
1113.162.362.6718.61012.803.240.302.815.681.033.171185
2114.371.952.5016.81133.853.490.242.187.800.863.451480
3113.242.592.8721.01182.802.690.391.824.321.042.93735
4114.201.762.4515.21123.273.390.341.976.751.052.851450
\n", + "
" + ], + "text/plain": [ + " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n", + "0 1 13.20 1.78 2.14 11.2 100 \n", + "1 1 13.16 2.36 2.67 18.6 101 \n", + "2 1 14.37 1.95 2.50 16.8 113 \n", + "3 1 13.24 2.59 2.87 21.0 118 \n", + "4 1 14.20 1.76 2.45 15.2 112 \n", + "\n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "0 2.65 2.76 0.26 1.28 \n", + "1 2.80 3.24 0.30 2.81 \n", + "2 3.85 3.49 0.24 2.18 \n", + "3 2.80 2.69 0.39 1.82 \n", + "4 3.27 3.39 0.34 1.97 \n", + "\n", + " Color intensity Hue OD280/OD315 OF diluted wines Proline \n", + "0 4.38 1.05 3.40 1050 \n", + "1 5.68 1.03 3.17 1185 \n", + "2 7.80 0.86 3.45 1480 \n", + "3 4.32 1.04 2.93 735 \n", + "4 6.75 1.05 2.85 1450 " + ] + }, + "execution_count": 172, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.columns = ['Count','Alcohol','MAlic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids','Nonflavanoid phenols', 'Proanthocyanins','Color intensity','Hue', 'OD280/OD315 OF diluted wines', 'Proline']\n", + "wine_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "Zqi7hwWpkNbH" + }, + "source": [ + "#### Set the values of the first 3 rows from alcohol as NaN\n", + "\n", + "Hint- Use iloc to select 3 rows of wine_df" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "buyT4vX4kPMl" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountAlcoholMAlic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 OF diluted winesProline
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
3113.242.592.87211182.82.690.391.824.321.042.93735
4114.21.762.4515.21123.273.390.341.976.751.052.851450
\n", + "
" + ], + "text/plain": [ + " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium Total phenols \\\n", + "0 NaN NaN NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN NaN \n", + "3 1 13.24 2.59 2.87 21 118 2.8 \n", + "4 1 14.2 1.76 2.45 15.2 112 3.27 \n", + "\n", + " Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity Hue \\\n", + "0 NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN \n", + "3 2.69 0.39 1.82 4.32 1.04 \n", + "4 3.39 0.34 1.97 6.75 1.05 \n", + "\n", + " OD280/OD315 OF diluted wines Proline \n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 2.93 735 \n", + "4 2.85 1450 " + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.iloc[:3]='NaN'\n", + "wine_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "RQMNI2UHkP3o" + }, + "source": [ + "#### Create an array of 10 random numbers uptill 10 and assign it to a variable named `random`" + ] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "xunmCjaEmDwZ" + }, + "outputs": [], + "source": [ + "from random import *\n", + "random=[]\n", + "for i in range(10):\n", + " random.append(randrange(0,10))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "hELUakyXmFSu" + }, + "source": [ + "#### Use random numbers you generated as an index and assign NaN value to each of cell of the column alcohol" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "zMgaNnNHmP01" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountAlcoholMAlic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 OF diluted winesProline
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
3113.242.592.87211182.82.690.391.824.321.042.93735
4114.21.762.4515.21123.273.390.341.976.751.052.851450
5114.391.872.4514.6962.52.520.31.985.251.023.581290
61NaN2.152.6117.61212.62.510.311.255.051.063.581295
71NaN1.642.1714972.82.980.291.985.21.082.851045
81NaN1.352.2716982.983.150.221.857.221.013.551045
9114.12.162.3181052.953.320.222.385.751.253.171510
\n", + "
" + ], + "text/plain": [ + " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium Total phenols \\\n", + "0 NaN NaN NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN NaN \n", + "3 1 13.24 2.59 2.87 21 118 2.8 \n", + "4 1 14.2 1.76 2.45 15.2 112 3.27 \n", + "5 1 14.39 1.87 2.45 14.6 96 2.5 \n", + "6 1 NaN 2.15 2.61 17.6 121 2.6 \n", + "7 1 NaN 1.64 2.17 14 97 2.8 \n", + "8 1 NaN 1.35 2.27 16 98 2.98 \n", + "9 1 14.1 2.16 2.3 18 105 2.95 \n", + "\n", + " Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity Hue \\\n", + "0 NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN \n", + "3 2.69 0.39 1.82 4.32 1.04 \n", + "4 3.39 0.34 1.97 6.75 1.05 \n", + "5 2.52 0.3 1.98 5.25 1.02 \n", + "6 2.51 0.31 1.25 5.05 1.06 \n", + "7 2.98 0.29 1.98 5.2 1.08 \n", + "8 3.15 0.22 1.85 7.22 1.01 \n", + "9 3.32 0.22 2.38 5.75 1.25 \n", + "\n", + " OD280/OD315 OF diluted wines Proline \n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 2.93 735 \n", + "4 2.85 1450 \n", + "5 3.58 1290 \n", + "6 3.58 1295 \n", + "7 2.85 1045 \n", + "8 3.55 1045 \n", + "9 3.17 1510 " + ] + }, + "execution_count": 175, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.loc[random,'Alcohol']='NaN'\n", + "wine_df.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "PHyK_vRsmRwV" + }, + "source": [ + "#### How many missing values do we have? \n", + "\n", + "Hint: you can use isnull() and sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "EnOYhmEqmfKp" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Count 0\n", + "Alcohol 0\n", + "MAlic acid 0\n", + "Ash 0\n", + "Alcalinity of ash 0\n", + "Magnesium 0\n", + "Total phenols 0\n", + "Flavanoids 0\n", + "Nonflavanoid phenols 0\n", + "Proanthocyanins 0\n", + "Color intensity 0\n", + "Hue 0\n", + "OD280/OD315 OF diluted wines 0\n", + "Proline 0\n", + "dtype: int64" + ] + }, + "execution_count": 182, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "-Fd4WBklmf1_" + }, + "source": [ + "#### Delete the rows that contain missing values " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "As7IC6Ktms8-" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "DlpG8drhmz7W" + }, + "source": [ + "### BONUS: Play with the data set below" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "mD40T0Cnm5SA" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "name": "Exercise.ipynb", + "provenance": [], + "version": "0.3.2" + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Get_to_know_your_Data-checkpoint.ipynb b/Get_to_know_your_Data-checkpoint.ipynb new file mode 100644 index 0000000..dbf59d4 --- /dev/null +++ b/Get_to_know_your_Data-checkpoint.ipynb @@ -0,0 +1,2354 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Get to know your Data.ipynb", + "version": "0.3.2", + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "cells": [ + { + "metadata": { + "id": "J82LU53m_OU0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Get to know your Data\n", + "\n", + "\n", + "#### Import necessary modules\n" + ] + }, + { + "metadata": { + "id": "ZyO1UXL8mtSj", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "yXTzTowtnwGI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Loading CSV Data to a DataFrame" + ] + }, + { + "metadata": { + "id": "H1Bjlb5wm9f-", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "iris_df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "KE-k7b_Mn5iN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### See the top 10 rows\n" + ] + }, + { + "metadata": { + "id": "HY2Ps7xMn4ao", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "7d342633-1b72-4558-fcec-76ebe66d7430" + }, + "cell_type": "code", + "source": [ + "iris_df.head()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "ZQXekIodqOZu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Find number of rows and columns\n" + ] + }, + { + "metadata": { + "id": "6Y-A-lbFqR82", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "2fe6e676-1bec-453f-8e2b-3bc21ac0a999" + }, + "cell_type": "code", + "source": [ + "print(iris_df.shape)\n", + "\n", + "#first is row and second is column\n", + "#select row by simple indexing\n", + "\n", + "#print(iris_df.shape[0])\n", + "#print(iris_df.shape[1])" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(150, 5)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "4ckCiGPhrC_t", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Print all columns" + ] + }, + { + "metadata": { + "id": "S6jgMyRDrF2a", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + }, + "outputId": "798d5ef2-0f98-4972-c98c-c896f879af64" + }, + "cell_type": "code", + "source": [ + "print(iris_df.columns)" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',\n", + " 'species'],\n", + " dtype='object')\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "kVav5-ACtIqS", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Check Index\n" + ] + }, + { + "metadata": { + "id": "iu3I9zIGtLDX", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "21786651-605d-4636-d253-5694edb6f969" + }, + "cell_type": "code", + "source": [ + "print(iris_df.index)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "RangeIndex(start=0, stop=150, step=1)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "psCc7PborOCQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Right now the iris_data set has all the species grouped together let's shuffle it" + ] + }, + { + "metadata": { + "id": "Bxc8i6avrZPw", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 221 + }, + "outputId": "11e956f5-d253-4025-9c3a-1e88f54528b2" + }, + "cell_type": "code", + "source": [ + "#generate a random permutaion on index\n", + "\n", + "print(iris_df.head())\n", + "\n", + "new_index = np.random.permutation(iris_df.index)\n", + "iris_df = iris_df.reindex(index = new_index)\n", + "\n", + "print(iris_df.head())" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "126 6.2 2.8 4.8 1.8 virginica\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "j32h8022sRT8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### We can also apply an operation on whole column of iris_df" + ] + }, + { + "metadata": { + "id": "seYXHXsYsYJI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 323 + }, + "outputId": "5f8ae149-0829-45fa-a537-ed81be0bd743" + }, + "cell_type": "code", + "source": [ + "#original\n", + "\n", + "print(iris_df.head())\n", + "\n", + "iris_df['sepal_width'] *= 10\n", + "\n", + "#changed\n", + "\n", + "print(iris_df.head())\n", + "\n", + "#lets undo the operation\n", + "\n", + "iris_df['sepal_width'] /= 10\n", + "\n", + "print(iris_df.head())" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "126 6.2 2.8 4.8 1.8 virginica\n", + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 31.0 1.5 0.2 setosa\n", + "115 6.4 32.0 5.3 2.3 virginica\n", + "113 5.7 25.0 5.0 2.0 virginica\n", + "43 5.0 35.0 1.6 0.6 setosa\n", + "126 6.2 28.0 4.8 1.8 virginica\n", + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "126 6.2 2.8 4.8 1.8 virginica\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "R-Ca-LBLzjiF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Show all the rows where sepal_width > 3.3" + ] + }, + { + "metadata": { + "id": "WJ7W-F-d0AoZ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1165 + }, + "outputId": "ee9c12fa-f9da-468a-dead-9d3ced177e8b" + }, + "cell_type": "code", + "source": [ + "iris_df[iris_df['sepal_width']>3.3]" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
435.03.51.60.6setosa
75.03.41.50.2setosa
185.73.81.70.3setosa
1366.33.45.62.4virginica
165.43.91.30.4setosa
244.83.41.90.2setosa
395.13.41.50.2setosa
275.23.51.50.2setosa
856.03.44.51.6versicolor
1097.23.66.12.5virginica
55.43.91.70.4setosa
195.13.81.50.3setosa
105.43.71.50.2setosa
45.03.61.40.2setosa
1317.93.86.42.0virginica
155.74.41.50.4setosa
365.53.51.30.2setosa
205.43.41.70.2setosa
145.84.01.20.2setosa
445.13.81.90.4setosa
215.13.71.50.4setosa
224.63.61.00.2setosa
285.23.41.40.2setosa
114.83.41.60.2setosa
465.13.81.60.2setosa
315.43.41.50.4setosa
64.63.41.40.3setosa
325.24.11.50.1setosa
1486.23.45.42.3virginica
265.03.41.60.4setosa
05.13.51.40.2setosa
485.33.71.50.2setosa
405.03.51.30.3setosa
335.54.21.40.2setosa
175.13.51.40.3setosa
1177.73.86.72.2virginica
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "7 5.0 3.4 1.5 0.2 setosa\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "136 6.3 3.4 5.6 2.4 virginica\n", + "16 5.4 3.9 1.3 0.4 setosa\n", + "24 4.8 3.4 1.9 0.2 setosa\n", + "39 5.1 3.4 1.5 0.2 setosa\n", + "27 5.2 3.5 1.5 0.2 setosa\n", + "85 6.0 3.4 4.5 1.6 versicolor\n", + "109 7.2 3.6 6.1 2.5 virginica\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "19 5.1 3.8 1.5 0.3 setosa\n", + "10 5.4 3.7 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + "131 7.9 3.8 6.4 2.0 virginica\n", + "15 5.7 4.4 1.5 0.4 setosa\n", + "36 5.5 3.5 1.3 0.2 setosa\n", + "20 5.4 3.4 1.7 0.2 setosa\n", + "14 5.8 4.0 1.2 0.2 setosa\n", + "44 5.1 3.8 1.9 0.4 setosa\n", + "21 5.1 3.7 1.5 0.4 setosa\n", + "22 4.6 3.6 1.0 0.2 setosa\n", + "28 5.2 3.4 1.4 0.2 setosa\n", + "11 4.8 3.4 1.6 0.2 setosa\n", + "46 5.1 3.8 1.6 0.2 setosa\n", + "31 5.4 3.4 1.5 0.4 setosa\n", + "6 4.6 3.4 1.4 0.3 setosa\n", + "32 5.2 4.1 1.5 0.1 setosa\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "26 5.0 3.4 1.6 0.4 setosa\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "48 5.3 3.7 1.5 0.2 setosa\n", + "40 5.0 3.5 1.3 0.3 setosa\n", + "33 5.5 4.2 1.4 0.2 setosa\n", + "17 5.1 3.5 1.4 0.3 setosa\n", + "117 7.7 3.8 6.7 2.2 virginica" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "id": "gH3DnhCq2Cbl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Club two filters together - Find all samples where sepal_width > 3.3 and species is versicolor" + ] + }, + { + "metadata": { + "id": "4U7ksr_R2H7M", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "outputId": "a245bbce-09c2-41e0-fb41-6138e8f8eddc" + }, + "cell_type": "code", + "source": [ + "iris_df[(iris_df['sepal_width']>3.3) & (iris_df['species'] == 'versicolor')] " + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
856.03.44.51.6versicolor
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "85 6.0 3.4 4.5 1.6 versicolor" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "id": "1lmnB3ot2u7I", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Sorting a column by value" + ] + }, + { + "metadata": { + "id": "K7KIj6fv2zWP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1969 + }, + "outputId": "c38831d3-1fd3-4728-bfbf-c9355e4a96a5" + }, + "cell_type": "code", + "source": [ + "iris_df.sort_values(by='sepal_width')#, ascending = False)\n", + "#pass ascending = False for descending order" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
605.02.03.51.0versicolor
626.02.24.01.0versicolor
686.22.24.51.5versicolor
1196.02.25.01.5virginica
876.32.34.41.3versicolor
535.52.34.01.3versicolor
935.02.33.31.0versicolor
414.52.31.30.3setosa
574.92.43.31.0versicolor
815.52.43.71.0versicolor
805.52.43.81.1versicolor
726.32.54.91.5versicolor
1086.72.55.81.8virginica
895.52.54.01.3versicolor
985.12.53.01.1versicolor
1064.92.54.51.7virginica
695.62.53.91.1versicolor
1466.32.55.01.9virginica
1135.72.55.02.0virginica
795.72.63.51.0versicolor
1187.72.66.92.3virginica
925.82.64.01.2versicolor
905.52.64.41.2versicolor
1346.12.65.61.4virginica
675.82.74.11.0versicolor
595.22.73.91.4versicolor
945.62.74.21.3versicolor
836.02.75.11.6versicolor
1236.32.74.91.8virginica
1015.82.75.11.9virginica
..................
1486.23.45.42.3virginica
1366.33.45.62.4virginica
856.03.44.51.6versicolor
265.03.41.60.4setosa
244.83.41.90.2setosa
205.43.41.70.2setosa
365.53.51.30.2setosa
175.13.51.40.3setosa
405.03.51.30.3setosa
435.03.51.60.6setosa
05.13.51.40.2setosa
275.23.51.50.2setosa
224.63.61.00.2setosa
45.03.61.40.2setosa
1097.23.66.12.5virginica
215.13.71.50.4setosa
485.33.71.50.2setosa
105.43.71.50.2setosa
445.13.81.90.4setosa
185.73.81.70.3setosa
465.13.81.60.2setosa
195.13.81.50.3setosa
1317.93.86.42.0virginica
1177.73.86.72.2virginica
165.43.91.30.4setosa
55.43.91.70.4setosa
145.84.01.20.2setosa
325.24.11.50.1setosa
335.54.21.40.2setosa
155.74.41.50.4setosa
\n", + "

150 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "60 5.0 2.0 3.5 1.0 versicolor\n", + "62 6.0 2.2 4.0 1.0 versicolor\n", + "68 6.2 2.2 4.5 1.5 versicolor\n", + "119 6.0 2.2 5.0 1.5 virginica\n", + "87 6.3 2.3 4.4 1.3 versicolor\n", + "53 5.5 2.3 4.0 1.3 versicolor\n", + "93 5.0 2.3 3.3 1.0 versicolor\n", + "41 4.5 2.3 1.3 0.3 setosa\n", + "57 4.9 2.4 3.3 1.0 versicolor\n", + "81 5.5 2.4 3.7 1.0 versicolor\n", + "80 5.5 2.4 3.8 1.1 versicolor\n", + "72 6.3 2.5 4.9 1.5 versicolor\n", + "108 6.7 2.5 5.8 1.8 virginica\n", + "89 5.5 2.5 4.0 1.3 versicolor\n", + "98 5.1 2.5 3.0 1.1 versicolor\n", + "106 4.9 2.5 4.5 1.7 virginica\n", + "69 5.6 2.5 3.9 1.1 versicolor\n", + "146 6.3 2.5 5.0 1.9 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "79 5.7 2.6 3.5 1.0 versicolor\n", + "118 7.7 2.6 6.9 2.3 virginica\n", + "92 5.8 2.6 4.0 1.2 versicolor\n", + "90 5.5 2.6 4.4 1.2 versicolor\n", + "134 6.1 2.6 5.6 1.4 virginica\n", + "67 5.8 2.7 4.1 1.0 versicolor\n", + "59 5.2 2.7 3.9 1.4 versicolor\n", + "94 5.6 2.7 4.2 1.3 versicolor\n", + "83 6.0 2.7 5.1 1.6 versicolor\n", + "123 6.3 2.7 4.9 1.8 virginica\n", + "101 5.8 2.7 5.1 1.9 virginica\n", + ".. ... ... ... ... ...\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "136 6.3 3.4 5.6 2.4 virginica\n", + "85 6.0 3.4 4.5 1.6 versicolor\n", + "26 5.0 3.4 1.6 0.4 setosa\n", + "24 4.8 3.4 1.9 0.2 setosa\n", + "20 5.4 3.4 1.7 0.2 setosa\n", + "36 5.5 3.5 1.3 0.2 setosa\n", + "17 5.1 3.5 1.4 0.3 setosa\n", + "40 5.0 3.5 1.3 0.3 setosa\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "27 5.2 3.5 1.5 0.2 setosa\n", + "22 4.6 3.6 1.0 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + "109 7.2 3.6 6.1 2.5 virginica\n", + "21 5.1 3.7 1.5 0.4 setosa\n", + "48 5.3 3.7 1.5 0.2 setosa\n", + "10 5.4 3.7 1.5 0.2 setosa\n", + "44 5.1 3.8 1.9 0.4 setosa\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "46 5.1 3.8 1.6 0.2 setosa\n", + "19 5.1 3.8 1.5 0.3 setosa\n", + "131 7.9 3.8 6.4 2.0 virginica\n", + "117 7.7 3.8 6.7 2.2 virginica\n", + "16 5.4 3.9 1.3 0.4 setosa\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "14 5.8 4.0 1.2 0.2 setosa\n", + "32 5.2 4.1 1.5 0.1 setosa\n", + "33 5.5 4.2 1.4 0.2 setosa\n", + "15 5.7 4.4 1.5 0.4 setosa\n", + "\n", + "[150 rows x 5 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "9jg_Z4YCoMSV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### List all the unique species" + ] + }, + { + "metadata": { + "id": "M6EN78ufoJY7", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "4ae0c425-f973-486f-817f-63cbe6897bdf" + }, + "cell_type": "code", + "source": [ + "species = iris_df['species'].unique()\n", + "\n", + "print(species)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['setosa' 'virginica' 'versicolor']\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "wG1i5nxBodmB", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Selecting a particular species using boolean mask (learnt in previous exercise)" + ] + }, + { + "metadata": { + "id": "gZvpbKBwoVUe", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "213a3376-8e60-4f9f-cf7e-937e98475206" + }, + "cell_type": "code", + "source": [ + "setosa = iris_df[iris_df['species'] == species[0]]\n", + "\n", + "setosa.head()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
34.63.11.50.2setosa
435.03.51.60.6setosa
75.03.41.50.2setosa
185.73.81.70.3setosa
424.43.21.30.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "7 5.0 3.4 1.5 0.2 setosa\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "42 4.4 3.2 1.3 0.2 setosa" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "id": "7tumfZ3DotPG", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "bf3850ab-a0eb-45fa-9816-fdd4c97517d2" + }, + "cell_type": "code", + "source": [ + "# do the same for other 2 species \n", + "versicolor = iris_df[iris_df['species'] == species[1]]\n", + "\n", + "versicolor.head()" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
1156.43.25.32.3virginica
1135.72.55.02.0virginica
1266.22.84.81.8virginica
1227.72.86.72.0virginica
1166.53.05.51.8virginica
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "126 6.2 2.8 4.8 1.8 virginica\n", + "122 7.7 2.8 6.7 2.0 virginica\n", + "116 6.5 3.0 5.5 1.8 virginica" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 15 + } + ] + }, + { + "metadata": { + "id": "cUYm5UqVpDPy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "a3cc4a4c-b06e-43c1-ed6a-b1f8fcb14de6" + }, + "cell_type": "code", + "source": [ + "\n", + "\n", + "virginica = iris_df[iris_df['species'] == species[2]]\n", + "\n", + "virginica.head()" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
905.52.64.41.2versicolor
935.02.33.31.0versicolor
507.03.24.71.4versicolor
605.02.03.51.0versicolor
626.02.24.01.0versicolor
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "90 5.5 2.6 4.4 1.2 versicolor\n", + "93 5.0 2.3 3.3 1.0 versicolor\n", + "50 7.0 3.2 4.7 1.4 versicolor\n", + "60 5.0 2.0 3.5 1.0 versicolor\n", + "62 6.0 2.2 4.0 1.0 versicolor" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "id": "-y1wDc8SpdQs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Describe each created species to see the difference\n", + "\n" + ] + }, + { + "metadata": { + "id": "eHrn3ZVRpOk5", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "58e878f8-2aed-49b2-9529-545308332808" + }, + "cell_type": "code", + "source": [ + "setosa.describe()" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.0000050.00000050.00000050.00000
mean5.006003.4180001.4640000.24400
std0.352490.3810240.1735110.10721
min4.300002.3000001.0000000.10000
25%4.800003.1250001.4000000.20000
50%5.000003.4000001.5000000.20000
75%5.200003.6750001.5750000.30000
max5.800004.4000001.9000000.60000
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.00000 50.000000 50.000000 50.00000\n", + "mean 5.00600 3.418000 1.464000 0.24400\n", + "std 0.35249 0.381024 0.173511 0.10721\n", + "min 4.30000 2.300000 1.000000 0.10000\n", + "25% 4.80000 3.125000 1.400000 0.20000\n", + "50% 5.00000 3.400000 1.500000 0.20000\n", + "75% 5.20000 3.675000 1.575000 0.30000\n", + "max 5.80000 4.400000 1.900000 0.60000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + } + ] + }, + { + "metadata": { + "id": "GwJFT2GlpwUv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "3b040a37-357b-4f35-b1ba-9fa0c6166f9f" + }, + "cell_type": "code", + "source": [ + "versicolor.describe()" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.0000050.00000050.00000050.00000
mean6.588002.9740005.5520002.02600
std0.635880.3224970.5518950.27465
min4.900002.2000004.5000001.40000
25%6.225002.8000005.1000001.80000
50%6.500003.0000005.5500002.00000
75%6.900003.1750005.8750002.30000
max7.900003.8000006.9000002.50000
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.00000 50.000000 50.000000 50.00000\n", + "mean 6.58800 2.974000 5.552000 2.02600\n", + "std 0.63588 0.322497 0.551895 0.27465\n", + "min 4.90000 2.200000 4.500000 1.40000\n", + "25% 6.22500 2.800000 5.100000 1.80000\n", + "50% 6.50000 3.000000 5.550000 2.00000\n", + "75% 6.90000 3.175000 5.875000 2.30000\n", + "max 7.90000 3.800000 6.900000 2.50000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + } + ] + }, + { + "metadata": { + "id": "Ad4qhSZLpztf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "4a986bae-72a1-4e49-bb19-5999479897c6" + }, + "cell_type": "code", + "source": [ + "virginica.describe()" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.00000050.00000050.00000050.000000
mean5.9360002.7700004.2600001.326000
std0.5161710.3137980.4699110.197753
min4.9000002.0000003.0000001.000000
25%5.6000002.5250004.0000001.200000
50%5.9000002.8000004.3500001.300000
75%6.3000003.0000004.6000001.500000
max7.0000003.4000005.1000001.800000
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.000000 50.000000 50.000000 50.000000\n", + "mean 5.936000 2.770000 4.260000 1.326000\n", + "std 0.516171 0.313798 0.469911 0.197753\n", + "min 4.900000 2.000000 3.000000 1.000000\n", + "25% 5.600000 2.525000 4.000000 1.200000\n", + "50% 5.900000 2.800000 4.350000 1.300000\n", + "75% 6.300000 3.000000 4.600000 1.500000\n", + "max 7.000000 3.400000 5.100000 1.800000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + } + ] + }, + { + "metadata": { + "id": "Vdu0ulZWtr09", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Let's plot and see the difference" + ] + }, + { + "metadata": { + "id": "PEVMzRvpttmD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "##### import matplotlib.pyplot " + ] + }, + { + "metadata": { + "id": "rqDXuuAtt7C3", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 398 + }, + "outputId": "e1111c09-8877-43f8-ac45-f92b53899a5c" + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "#hist creates a histogram there are many more plots(see the documentation) you can play with it.\n", + "\n", + "plt.hist(setosa['sepal_length'])\n", + "plt.hist(versicolor['sepal_length'])\n", + "plt.hist(virginica['sepal_length'])" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([ 4., 1., 6., 10., 5., 8., 5., 3., 5., 3.]),\n", + " array([4.9 , 5.11, 5.32, 5.53, 5.74, 5.95, 6.16, 6.37, 6.58, 6.79, 7. ]),\n", + " )" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFG9JREFUeJzt3X9s1PX9wPFX6Q1JS8cqa0E2Ycbv\nFjOVCdFFEJgyfkyZv9gsP4LMzG8yBoJLWIQ1LJCQLGLQ4KbTTRnuCyFBkUFdlmGGkCwKbBkLG0sM\nwpKFHwpFCuVnkHrfPxaaMaGF6/V93PXx+It+7vq517vv5p69O3oty2az2QAAkulW6AEAoKsRXwBI\nTHwBIDHxBYDExBcAEhNfAEgsk+JGGhuPpbiZvKiuroimppOFHqNTlfoara/4lfoara/4Xcoaa2qq\nLnqZR77/JZMpL/QIna7U12h9xa/U12h9xa+jaxRfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWA\nxMQXABK7pPju3LkzRo0aFStWrIiIiPfffz8eeeSRmDJlSjzyyCPR2NjYqUMCQClpN74nT56MhQsX\nxpAhQ1qPLVmyJOrq6mLFihUxevToWLZsWacOCQClpN34du/ePV566aWora1tPTZ//vwYO3ZsRERU\nV1fHkSNHOm9CACgx7cY3k8lEjx49zjtWUVER5eXl0dLSEitXrox777230wYEgFKT8181amlpiSee\neCJuv/32856SvpDq6oqieqPttv4SxZXo3tnrOnyON56+Pw+TXDmKbQ8vV6mvL6L012h9xa8ja8w5\nvj/60Y9iwIAB8dhjj7V73WL601I1NVVF9ScQ86WU1lzqe1jq64so/TVaX/G7lDXm/U8KNjQ0xKc+\n9amYNWtWLp8OAF1au498d+zYEYsWLYp9+/ZFJpOJ9evXx4cffhhXXXVVPPzwwxERcf3118eCBQs6\ne1YAKAntxvemm26K5cuXp5gFALoE73AFAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY\n+AJAYuILAImJLwAkJr4AkNglxXfnzp0xatSoWLFiRUREvP/++/Hwww/H5MmT4/HHH48zZ8506pAA\nUEraje/Jkydj4cKFMWTIkNZjP/3pT2Py5MmxcuXKGDBgQKxevbpThwSAUtJufLt37x4vvfRS1NbW\nth7bunVrfP3rX4+IiLvuuis2b97ceRMCQInJtHuFTCYymfOvdurUqejevXtERPTu3TsaGxs7ZzoA\nKEHtxrc92Wy23etUV1dEJlPe0ZtKpqamqtAjJFdqaz63nrfv/1an3s4d617v1PNfTKnt14V0xhrr\nVn0/7+fMxasTXij5PSz19UV0bI05xbeioiJOnz4dPXr0iAMHDpz3lPSFNDWdzGm4QqipqYrGxmOF\nHiO5Ulpzyj0sxNetK3yPdoU1lvL6usL+Xcoa24pzTr9qNHTo0Fi/fn1ERLz55psxfPjwXE4DAF1S\nu498d+zYEYsWLYp9+/ZFJpOJ9evXx+LFi2Pu3LmxatWq6NevXzzwwAMpZgWAktBufG+66aZYvnz5\nJ44vW7asUwYCgFLnHa4AIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQX\nABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMQyhR4AKH0z3nqi0CPAFcUjXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcA\nEhNfAEhMfAEgMfEFgMQyuXzSiRMnYs6cOXH06NH46KOPYsaMGTF8+PB8zwYAJSmn+P7mN7+J6667\nLmbPnh0HDhyI73znO/H73/8+37MBQEnK6Wnn6urqOHLkSERENDc3R3V1dV6HAoBSltMj33HjxsWa\nNWti9OjR0dzcHL/4xS/yPRcAlKyc4rtu3bro169fLF26NN59992or6+PNWvWXPT61dUVkcmU5zxk\najU1VYUeIbnvPvlWh8/xxtP352GS/Di3hzsT3U5nefv+b33iWL7W9Ozk2jydiVyU+v1Mqa8vomNr\nzCm+27Zti2HDhkVExA033BAHDx6MlpaWKC+/cGCbmk7mPGBqNTVV0dh4rNBjFKUr5euWcg+vlDVT\nfEr5e6cr3I9eyhrbinNOr/kOGDAgtm/fHhER+/bti8rKyouGFwA4X06PfCdMmBD19fUxZcqUOHv2\nbCxYsCDPYwFA6copvpWVlfHss8/mexYA6BK8wxUAJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi\n4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkv\nACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQ\nmPgCQGLiCwCJiS8AJCa+AJCY+AJAYjnHt6GhIe67774YP358bNq0KY8jAUBpyym+TU1N8fzzz8fK\nlSvjxRdfjA0bNuR7LgAoWZlcPmnz5s0xZMiQ6NmzZ/Ts2TMWLlyY77kAoGTlFN+9e/fG6dOnY9q0\nadHc3BwzZ86MIUOGXPT61dUVkcmU5zxkajU1VZd83Xtnr+vQbb3x9P0d+vwryeV83f7T2/d/K69z\n7Mzr2dqW65ovVcq1kFZnf+8U2uWsr27V9ztxkkv36oQXLuv6HdnDnOIbEXHkyJF47rnnYv/+/TF1\n6tTYuHFjlJWVXfC6TU0ncx4wtZqaqmhsPJbs9lLeVmcrpbVcqq64ZvKjlL93Ut+P5svlzHwpa2wr\nzjm95tu7d+8YNGhQZDKZ6N+/f1RWVsbhw4dzORUAdDk5xXfYsGGxZcuW+Pjjj6OpqSlOnjwZ1dXV\n+Z4NAEpSTk879+nTJ8aOHRt1dXURETFv3rzo1s2vDAPApcj5Nd+JEyfGxIkT8zkLAHQJHq4CQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAIllCj1AV/fdJ98q9Ah0wM7/faTQI+Ts8ZUHO/X8z06u7dTzd+b8nT173arv\nd+r5L9XzI58q9Ahdlke+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiXUovqdPn45Ro0bFmjVr8jUPAJS8\nDsX3hRdeiF69euVrFgDoEnKO7+7du2PXrl1x55135nEcACh9Ocd30aJFMXfu3HzOAgBdQiaXT1q7\ndm3ccsstce21117S9aurKyKTKc/lpi7q3tnrOnyON56+/4LHa2qqOnzulObu+r9OPf+T/zP1kq73\n3Sffyun8foSDwujM+7piux+NuPyZO7LGnOK7adOm2LNnT2zatCk++OCD6N69e/Tt2zeGDh16wes3\nNZ3MecDO1Nh47BPHamqqLngcoNR01n1dsd6PXs7Ml7LGtuKcU3yXLFnS+u+f/exn8bnPfe6i4QUA\nzuf3fAEgsZwe+f6nmTNn5mMOAOgyPPIFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBILFPoAYDS9PjKg4Ue\nIWedPfuzk2s79fxc+TzyBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABIT\nXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASCyT6yc+9dRT8Ze//CXOnj0b3/ve\n92LMmDH5nAsASlZO8d2yZUu89957sWrVqmhqaooHH3xQfAHgEuUU39tuuy0GDhwYERGf/vSn49Sp\nU9HS0hLl5eV5HQ4ASlFO8S0vL4+KioqIiFi9enWMGDGizfBWV1dEJnPlhbmmpuqyjgOUks68ryvG\n+9HLnbkja8z5Nd+IiD/84Q+xevXq+NWvftXm9ZqaTnbkZjpNY+OxTxyrqam64HGAUtNZ93XFej96\nOTNfyhrbinPO8f3jH/8YL774Yrz88stRVVV8P+EAQKHkFN9jx47FU089Fa+88kp85jOfyfdMAFDS\ncorv7373u2hqaoof/OAHrccWLVoU/fr1y9tgAFCqcorvhAkTYsKECfmeBQC6BO9wBQCJiS8AJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAklin0AIX03SffKvQIRWHurv8r9AhAJ5jx1hOFHqHL8sgXABITXwBITHwBIDHxBYDE\nxBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNf\nAEhMfAEgsUyun/iTn/wktm/fHmVlZVFfXx8DBw7M51wAULJyiu+f/vSn+Ne//hWrVq2K3bt3R319\nfaxatSrfswFAScrpaefNmzfHqFGjIiLi+uuvj6NHj8bx48fzOhgAlKqc4nvo0KGorq5u/fjqq6+O\nxsbGvA0FAKUs59d8/1M2m23z8pqaqnzczHneePr+vJ+zePlaQDG5o9ADkBcdaVtOj3xra2vj0KFD\nrR8fPHgwampqch4CALqSnOJ7xx13xPr16yMi4h//+EfU1tZGz5498zoYAJSqnJ52Hjx4cNx4440x\nceLEKCsri/nz5+d7LgAoWWXZ9l6wBQDyyjtcAUBi4gsAieXlV42K2enTp+Ob3/xmTJ8+PcaPH996\nfOTIkdG3b98oLy+PiIjFixdHnz59CjXmZdu6dWs8/vjj8cUvfjEiIr70pS/Fj3/849bL33nnnXjm\nmWeivLw8RowYETNmzCjUqDlpb33Fvn/nNDQ0xMsvvxyZTCZmzZoVd955Z+tlxb6HEW2vrxT28LXX\nXouGhobWj3fs2BF//etfWz9uaGiIX//619GtW7eoq6uLhx56qBBj5qy99d14440xePDg1o9feeWV\n1v0sBidOnIg5c+bE0aNH46OPPooZM2bE8OHDWy/v0P5lu7hnnnkmO378+Ozrr79+3vG77rore/z4\n8QJN1XFbtmzJzpw586KX33333dn9+/dnW1paspMmTcq+9957CafruPbWV+z7l81ms4cPH86OGTMm\ne+zYseyBAwey8+bNO+/yYt/D9tZXCnv4n7Zu3ZpdsGBB68cnTpzIjhkzJtvc3Jw9depUdty4cdmm\npqYCTtgx/72+bDab/epXv1qgafJj+fLl2cWLF2ez2Wz2gw8+yI4dO7b1so7uX5d+2nn37t2xa9eu\n837a7gr27NkTvXr1imuuuSa6desWX/va12Lz5s2FHov/snnz5hgyZEj07NkzamtrY+HCha2XlcIe\ntrW+UvT888/H9OnTWz/evn173HzzzVFVVRU9evSIwYMHx7Zt2wo4Ycf89/pKQXV1dRw5ciQiIpqb\nm897Z8eO7l+Xju+iRYti7ty5F718/vz5MWnSpFi8eHG77+J1Jdq1a1dMmzYtJk2aFG+//Xbr8cbG\nxrj66qtbPy7Wtwe92PrOKfb927t3b5w+fTqmTZsWkydPPi+upbCHba3vnGLfw3P+9re/xTXXXHPe\nmxEdOnSo6PfwnAutLyLizJkzMXv27Jg4cWIsW7asQNPlbty4cbF///4YPXp0TJkyJebMmdN6WUf3\nr8u+5rt27dq45ZZb4tprr73g5bNmzYrhw4dHr169YsaMGbF+/fr4xje+kXjK3H3hC1+Ixx57LO6+\n++7Ys2dPTJ06Nd58883o3r17oUfLi/bWV+z7d86RI0fiueeei/3798fUqVNj48aNUVZWVuix8qat\n9ZXKHkZErF69Oh588ME2r1PMP1xcbH1PPPFE3HfffVFWVhZTpkyJW2+9NW6++eYCTJibdevWRb9+\n/WLp0qXx7rvvRn19faxZs+aC173c/euyj3w3bdoUGzZsiLq6unjttdfi5z//ebzzzjutlz/wwAPR\nu3fvyGQyMWLEiNi5c2cBp718ffr0iXvuuSfKysqif//+8dnPfjYOHDgQEZ98e9ADBw5EbW1toUbN\nSVvriyj+/YuI6N27dwwaNCgymUz0798/Kisr4/DhwxFRGnvY1voiSmMPz9m6dWsMGjTovGMXepve\nYtvDcy60voiISZMmRWVlZVRUVMTtt99edHu4bdu2GDZsWERE3HDDDXHw4MFoaWmJiI7vX5eN75Il\nS+L111+PV199NR566KGYPn16DB06NCIijh07Fo8++micOXMmIiL+/Oc/t/6v2mLR0NAQS5cujYh/\nP0X54Ycftv5P0c9//vNx/Pjx2Lt3b5w9ezY2btwYd9xRXG/13tb6SmH/IiKGDRsWW7ZsiY8//jia\nmpri5MmTra85lcIetrW+UtnDiH//YFRZWfmJZ52+8pWvxN///vdobm6OEydOxLZt2+LWW28t0JS5\nu9j6/vnPf8bs2bMjm83G2bNnY9u2bUW3hwMGDIjt27dHRMS+ffuisrKy9X9rd3T/uuzTzheyZs2a\nqKqqitGjR8eIESNiwoQJcdVVV8WXv/zlonu6a+TIkfHDH/4wNmzYEB999FEsWLAgfvvb37aub8GC\nBTF79uyIiLjnnnviuuuuK/DEl6e99RX7/kX8+9H92LFjo66uLiIi5s2bF2vXri2ZPWxvfaWwhxGf\nfH3+l7/8Zdx2220xaNCgmD17djz66KNRVlYWM2bMiKqq/P8FuM7W1vr69u0b3/72t6Nbt24xcuTI\nGDhwYAEnvXwTJkyI+vr6mDJlSpw9ezYWLFiQt/3z9pIAkFiXfdoZAApFfAEgMfEFgMTEFwASE18A\nSEx8ASAx8QWAxMQXABL7f56BiVURCnM3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "pl4RPzBfl5mI", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From cc99112dc4c9b6153c9143e841d370a74a517825 Mon Sep 17 00:00:00 2001 From: Soumanpaul Date: Wed, 10 Oct 2018 21:51:16 +0530 Subject: [PATCH 3/4] Completed Assignment 3 --- .../Exercise-checkpoint-checkpoint.ipynb | 3544 +++++++++++++++++ Exercise-checkpoint.ipynb | 1531 ++++++- 2 files changed, 4943 insertions(+), 132 deletions(-) create mode 100644 .ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb diff --git a/.ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb b/.ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb new file mode 100644 index 0000000..e7d30e9 --- /dev/null +++ b/.ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb @@ -0,0 +1,3544 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "2LTtpUJEibjg" + }, + "source": [ + "# Pandas Exercise :\n", + "\n", + "\n", + "#### import necessary modules" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "c3_UBbMRhiKx" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "tp-cTCyWi8mR" + }, + "source": [ + "#### Load url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\" to a dataframe named wine_df\n", + "\n", + "This is a wine dataset\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "DMojQY3thrRi" + }, + "outputs": [], + "source": [ + "wine_df = pd.read_csv(\"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "BF9MMjoZjSlg" + }, + "source": [ + "#### print first five rows" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "colab_type": "code", + "id": "1vSMQdnHjYNU", + "outputId": "d5521c9a-0974-41fe-b0a6-12c26fc828f3" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
114.231.712.4315.61272.83.06.282.295.641.043.921065
0113.201.782.1411.21002.652.760.261.284.381.053.401050
1113.162.362.6718.61012.803.240.302.815.681.033.171185
2114.371.952.5016.81133.853.490.242.187.800.863.451480
3113.242.592.8721.01182.802.690.391.824.321.042.93735
4114.201.762.4515.21123.273.390.341.976.751.052.851450
\n", + "
" + ], + "text/plain": [ + " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 \\\n", + "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n", + "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n", + "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n", + "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n", + "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n", + "\n", + " 1065 \n", + "0 1050 \n", + "1 1185 \n", + "2 1480 \n", + "3 735 \n", + "4 1450 " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "Tet6P2DvjY3T" + }, + "source": [ + "#### assign wine_df to a different variable wine_df_copy and then delete all odd rows of wine_df_copy\n", + "\n", + "[Hint](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 571 + }, + "colab_type": "code", + "id": "CMj3qSdJjx0u", + "outputId": "f466433c-6f8f-4188-dfd1-a9ddfdc71264" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
114.231.712.4315.61272.83.06.282.295.641.043.921065
0113.201.782.1411.21002.652.760.261.284.3800001.053.401050
2114.371.952.5016.81133.853.490.242.187.8000000.863.451480
4114.201.762.4515.21123.273.390.341.976.7500001.052.851450
6114.062.152.6117.61212.602.510.311.255.0500001.063.581295
8113.861.352.2716.0982.983.150.221.857.2200001.013.551045
10114.121.482.3216.8952.202.430.261.575.0000001.172.821280
12114.751.732.3911.4913.103.690.432.815.4000001.252.731150
14113.631.812.7017.21122.852.910.301.467.3000001.282.881310
16113.831.572.6220.01152.953.400.401.726.6000001.132.571130
18113.643.102.5615.21162.703.030.171.665.1000000.963.36845
20112.933.802.6518.61022.412.410.251.984.5000001.033.52770
22112.851.602.5217.8952.482.370.261.463.9300001.093.631015
24113.052.053.2225.01242.632.680.471.923.5800001.133.20830
26113.301.722.1417.0942.402.190.271.353.9500001.022.771285
28114.021.682.2116.0962.652.330.261.984.7000001.043.591035
30113.581.662.3619.11062.863.190.221.956.9000001.092.881515
32113.761.532.7019.51322.952.740.501.355.4000001.253.001235
34113.481.812.4120.51002.702.980.261.865.1000001.043.47920
36113.051.652.5518.0982.452.430.291.444.2500001.122.511105
38114.223.992.5113.21283.003.040.202.085.1000000.893.53760
40113.413.842.1218.8902.452.680.271.484.2800000.913.001035
42113.243.982.2917.51032.642.630.321.664.3600000.823.00680
44114.214.042.4418.91112.852.650.301.255.2400000.873.331080
46113.901.682.1216.01013.103.390.212.146.1000000.913.33985
48113.941.732.2717.41082.883.540.322.088.9000001.123.101260
50113.831.652.6017.2942.452.990.222.295.6000001.243.371265
52113.771.902.6817.11153.002.790.391.686.3000001.132.931375
54113.561.732.4620.51162.962.780.202.456.2500000.983.031120
56113.291.972.6816.81023.003.230.311.666.0000001.072.841270
58212.370.941.3610.6881.980.570.280.421.9500001.051.82520
.............................................
118212.003.432.0019.0872.001.640.371.871.2800000.933.05564
120211.562.053.2328.51193.185.080.471.876.0000000.933.69465
122213.055.802.1321.5862.622.650.302.012.6000000.733.10380
124212.072.162.1721.0852.602.650.371.352.7600000.863.28378
126211.792.132.7828.5922.132.240.581.763.0000000.972.44466
128212.044.302.3822.0802.101.750.421.352.6000000.792.57580
130312.882.992.4020.01041.301.220.240.835.4000000.741.42530
132312.703.552.3621.51061.701.200.170.845.0000000.781.29600
134312.602.462.2018.5941.620.660.630.947.1000000.731.58695
136312.535.512.6425.0961.790.600.631.105.0000000.821.69515
138312.842.962.6124.01012.320.600.530.814.9200000.892.15590
140313.362.562.3520.0891.400.500.370.645.6000000.702.47780
142313.624.952.3520.0922.000.800.471.024.4000000.912.05550
144313.163.572.1521.01021.500.550.431.304.0000000.601.68830
146312.874.612.4821.5861.700.650.470.867.6500000.541.86625
148313.083.902.3621.51131.411.390.341.149.4000000.571.33550
150312.792.672.4822.01121.481.360.241.2610.8000000.481.47480
152313.233.302.2818.5981.800.830.611.8710.5200000.561.51675
154313.175.192.3222.0931.740.630.611.557.9000000.601.48725
156312.453.032.6427.0971.900.580.631.147.5000000.671.73880
158313.481.672.6422.5892.601.100.522.2911.7500000.571.78620
160313.693.262.5420.01071.830.560.500.805.8800000.961.82680
162312.963.452.3518.51061.390.700.400.945.2800000.681.75675
164313.734.362.2622.5881.280.470.521.156.6200000.781.75520
166312.823.372.3019.5881.480.660.400.9710.2600000.721.75685
168313.404.602.8625.01121.980.960.271.118.5000000.671.92630
170312.772.392.2819.5861.390.510.480.649.8999990.571.63470
172313.715.652.4520.5951.680.610.521.067.7000000.641.74740
174313.274.282.2620.01201.590.690.431.3510.2000000.591.56835
176314.134.102.7424.5962.050.760.561.359.2000000.611.60560
\n", + "

89 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n", + "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 1.05 \n", + "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 0.86 \n", + "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 1.05 \n", + "6 1 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 1.06 \n", + "8 1 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 1.01 \n", + "10 1 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 1.17 \n", + "12 1 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 1.25 \n", + "14 1 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 1.28 \n", + "16 1 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 1.13 \n", + "18 1 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 0.96 \n", + "20 1 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 1.03 \n", + "22 1 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 1.09 \n", + "24 1 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 1.13 \n", + "26 1 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 1.02 \n", + "28 1 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 1.04 \n", + "30 1 13.58 1.66 2.36 19.1 106 2.86 3.19 0.22 1.95 6.900000 1.09 \n", + "32 1 13.76 1.53 2.70 19.5 132 2.95 2.74 0.50 1.35 5.400000 1.25 \n", + "34 1 13.48 1.81 2.41 20.5 100 2.70 2.98 0.26 1.86 5.100000 1.04 \n", + "36 1 13.05 1.65 2.55 18.0 98 2.45 2.43 0.29 1.44 4.250000 1.12 \n", + "38 1 14.22 3.99 2.51 13.2 128 3.00 3.04 0.20 2.08 5.100000 0.89 \n", + "40 1 13.41 3.84 2.12 18.8 90 2.45 2.68 0.27 1.48 4.280000 0.91 \n", + "42 1 13.24 3.98 2.29 17.5 103 2.64 2.63 0.32 1.66 4.360000 0.82 \n", + "44 1 14.21 4.04 2.44 18.9 111 2.85 2.65 0.30 1.25 5.240000 0.87 \n", + "46 1 13.90 1.68 2.12 16.0 101 3.10 3.39 0.21 2.14 6.100000 0.91 \n", + "48 1 13.94 1.73 2.27 17.4 108 2.88 3.54 0.32 2.08 8.900000 1.12 \n", + "50 1 13.83 1.65 2.60 17.2 94 2.45 2.99 0.22 2.29 5.600000 1.24 \n", + "52 1 13.77 1.90 2.68 17.1 115 3.00 2.79 0.39 1.68 6.300000 1.13 \n", + "54 1 13.56 1.73 2.46 20.5 116 2.96 2.78 0.20 2.45 6.250000 0.98 \n", + "56 1 13.29 1.97 2.68 16.8 102 3.00 3.23 0.31 1.66 6.000000 1.07 \n", + "58 2 12.37 0.94 1.36 10.6 88 1.98 0.57 0.28 0.42 1.950000 1.05 \n", + ".. .. ... ... ... ... ... ... ... ... ... ... ... \n", + "118 2 12.00 3.43 2.00 19.0 87 2.00 1.64 0.37 1.87 1.280000 0.93 \n", + "120 2 11.56 2.05 3.23 28.5 119 3.18 5.08 0.47 1.87 6.000000 0.93 \n", + "122 2 13.05 5.80 2.13 21.5 86 2.62 2.65 0.30 2.01 2.600000 0.73 \n", + "124 2 12.07 2.16 2.17 21.0 85 2.60 2.65 0.37 1.35 2.760000 0.86 \n", + "126 2 11.79 2.13 2.78 28.5 92 2.13 2.24 0.58 1.76 3.000000 0.97 \n", + "128 2 12.04 4.30 2.38 22.0 80 2.10 1.75 0.42 1.35 2.600000 0.79 \n", + "130 3 12.88 2.99 2.40 20.0 104 1.30 1.22 0.24 0.83 5.400000 0.74 \n", + "132 3 12.70 3.55 2.36 21.5 106 1.70 1.20 0.17 0.84 5.000000 0.78 \n", + "134 3 12.60 2.46 2.20 18.5 94 1.62 0.66 0.63 0.94 7.100000 0.73 \n", + "136 3 12.53 5.51 2.64 25.0 96 1.79 0.60 0.63 1.10 5.000000 0.82 \n", + "138 3 12.84 2.96 2.61 24.0 101 2.32 0.60 0.53 0.81 4.920000 0.89 \n", + "140 3 13.36 2.56 2.35 20.0 89 1.40 0.50 0.37 0.64 5.600000 0.70 \n", + "142 3 13.62 4.95 2.35 20.0 92 2.00 0.80 0.47 1.02 4.400000 0.91 \n", + "144 3 13.16 3.57 2.15 21.0 102 1.50 0.55 0.43 1.30 4.000000 0.60 \n", + "146 3 12.87 4.61 2.48 21.5 86 1.70 0.65 0.47 0.86 7.650000 0.54 \n", + "148 3 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 0.57 \n", + "150 3 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 0.48 \n", + "152 3 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 0.56 \n", + "154 3 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 0.60 \n", + "156 3 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 0.67 \n", + "158 3 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 0.57 \n", + "160 3 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 0.96 \n", + "162 3 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 0.68 \n", + "164 3 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 0.78 \n", + "166 3 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 0.72 \n", + "168 3 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 0.67 \n", + "170 3 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 0.57 \n", + "172 3 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 0.64 \n", + "174 3 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 0.59 \n", + "176 3 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 0.61 \n", + "\n", + " 3.92 1065 \n", + "0 3.40 1050 \n", + "2 3.45 1480 \n", + "4 2.85 1450 \n", + "6 3.58 1295 \n", + "8 3.55 1045 \n", + "10 2.82 1280 \n", + "12 2.73 1150 \n", + "14 2.88 1310 \n", + "16 2.57 1130 \n", + "18 3.36 845 \n", + "20 3.52 770 \n", + "22 3.63 1015 \n", + "24 3.20 830 \n", + "26 2.77 1285 \n", + "28 3.59 1035 \n", + "30 2.88 1515 \n", + "32 3.00 1235 \n", + "34 3.47 920 \n", + "36 2.51 1105 \n", + "38 3.53 760 \n", + "40 3.00 1035 \n", + "42 3.00 680 \n", + "44 3.33 1080 \n", + "46 3.33 985 \n", + "48 3.10 1260 \n", + "50 3.37 1265 \n", + "52 2.93 1375 \n", + "54 3.03 1120 \n", + "56 2.84 1270 \n", + "58 1.82 520 \n", + ".. ... ... \n", + "118 3.05 564 \n", + "120 3.69 465 \n", + "122 3.10 380 \n", + "124 3.28 378 \n", + "126 2.44 466 \n", + "128 2.57 580 \n", + "130 1.42 530 \n", + "132 1.29 600 \n", + "134 1.58 695 \n", + "136 1.69 515 \n", + "138 2.15 590 \n", + "140 2.47 780 \n", + "142 2.05 550 \n", + "144 1.68 830 \n", + "146 1.86 625 \n", + "148 1.33 550 \n", + "150 1.47 480 \n", + "152 1.51 675 \n", + "154 1.48 725 \n", + "156 1.73 880 \n", + "158 1.78 620 \n", + "160 1.82 680 \n", + "162 1.75 675 \n", + "164 1.75 520 \n", + "166 1.75 685 \n", + "168 1.92 630 \n", + "170 1.63 470 \n", + "172 1.74 740 \n", + "174 1.56 835 \n", + "176 1.60 560 \n", + "\n", + "[89 rows x 14 columns]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df_copy = wine_df.copy(deep =True)\n", + "wine_df_copy.head()\n", + "odd_rows= [i for i in range(1,len(wine_df_copy.count(axis = 1))) if i%2!=0]\n", + "wine_df_copy.drop(odd_rows)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "o6Cs6T1Rjz71" + }, + "source": [ + "#### Assign the columns as below:\n", + "\n", + "The attributes are (dontated by Riccardo Leardi, riclea '@' anchem.unige.it): \n", + "1) Alcohol \n", + "2) Malic acid \n", + "3) Ash \n", + "4) Alcalinity of ash \n", + "5) Magnesium \n", + "6) Total phenols \n", + "7) Flavanoids \n", + "8) Nonflavanoid phenols \n", + "9) Proanthocyanins \n", + "10)Color intensity \n", + "11)Hue \n", + "12)OD280/OD315 of diluted wines \n", + "13)Proline " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "my8HB4V4j779" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountAlcoholMAlic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 OF diluted winesProline
0113.201.782.1411.21002.652.760.261.284.381.053.401050
1113.162.362.6718.61012.803.240.302.815.681.033.171185
2114.371.952.5016.81133.853.490.242.187.800.863.451480
3113.242.592.8721.01182.802.690.391.824.321.042.93735
4114.201.762.4515.21123.273.390.341.976.751.052.851450
\n", + "
" + ], + "text/plain": [ + " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n", + "0 1 13.20 1.78 2.14 11.2 100 \n", + "1 1 13.16 2.36 2.67 18.6 101 \n", + "2 1 14.37 1.95 2.50 16.8 113 \n", + "3 1 13.24 2.59 2.87 21.0 118 \n", + "4 1 14.20 1.76 2.45 15.2 112 \n", + "\n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "0 2.65 2.76 0.26 1.28 \n", + "1 2.80 3.24 0.30 2.81 \n", + "2 3.85 3.49 0.24 2.18 \n", + "3 2.80 2.69 0.39 1.82 \n", + "4 3.27 3.39 0.34 1.97 \n", + "\n", + " Color intensity Hue OD280/OD315 OF diluted wines Proline \n", + "0 4.38 1.05 3.40 1050 \n", + "1 5.68 1.03 3.17 1185 \n", + "2 7.80 0.86 3.45 1480 \n", + "3 4.32 1.04 2.93 735 \n", + "4 6.75 1.05 2.85 1450 " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.columns = ['Count','Alcohol','MAlic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids','Nonflavanoid phenols', 'Proanthocyanins','Color intensity','Hue', 'OD280/OD315 OF diluted wines', 'Proline']\n", + "wine_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "Zqi7hwWpkNbH" + }, + "source": [ + "#### Set the values of the first 3 rows from alcohol as NaN\n", + "\n", + "Hint- Use iloc to select 3 rows of wine_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "buyT4vX4kPMl" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountAlcoholMAlic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 OF diluted winesProline
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
31.013.242.592.8721.0118.02.802.690.391.824.321.042.93735.0
41.014.201.762.4515.2112.03.273.390.341.976.751.052.851450.0
\n", + "
" + ], + "text/plain": [ + " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n", + "0 NaN NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN \n", + "3 1.0 13.24 2.59 2.87 21.0 118.0 \n", + "4 1.0 14.20 1.76 2.45 15.2 112.0 \n", + "\n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 2.80 2.69 0.39 1.82 \n", + "4 3.27 3.39 0.34 1.97 \n", + "\n", + " Color intensity Hue OD280/OD315 OF diluted wines Proline \n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 4.32 1.04 2.93 735.0 \n", + "4 6.75 1.05 2.85 1450.0 " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.iloc[:3]=np.nan\n", + "wine_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "RQMNI2UHkP3o" + }, + "source": [ + "#### Create an array of 10 random numbers uptill 10 and assign it to a variable named `random`" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "xunmCjaEmDwZ" + }, + "outputs": [], + "source": [ + "from random import *\n", + "random=[]\n", + "for i in range(10):\n", + " random.append(randrange(0,10))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "hELUakyXmFSu" + }, + "source": [ + "#### Use random numbers you generated as an index and assign NaN value to each of cell of the column alcohol" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "zMgaNnNHmP01" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountAlcoholMAlic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 OF diluted winesProline
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
31.013.242.592.8721.0118.02.802.690.391.824.321.042.93735.0
41.014.201.762.4515.2112.03.273.390.341.976.751.052.851450.0
51.0NaN1.872.4514.696.02.502.520.301.985.251.023.581290.0
61.0NaN2.152.6117.6121.02.602.510.311.255.051.063.581295.0
71.0NaN1.642.1714.097.02.802.980.291.985.201.082.851045.0
81.013.861.352.2716.098.02.983.150.221.857.221.013.551045.0
91.0NaN2.162.3018.0105.02.953.320.222.385.751.253.171510.0
\n", + "
" + ], + "text/plain": [ + " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n", + "0 NaN NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN \n", + "3 1.0 13.24 2.59 2.87 21.0 118.0 \n", + "4 1.0 14.20 1.76 2.45 15.2 112.0 \n", + "5 1.0 NaN 1.87 2.45 14.6 96.0 \n", + "6 1.0 NaN 2.15 2.61 17.6 121.0 \n", + "7 1.0 NaN 1.64 2.17 14.0 97.0 \n", + "8 1.0 13.86 1.35 2.27 16.0 98.0 \n", + "9 1.0 NaN 2.16 2.30 18.0 105.0 \n", + "\n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 2.80 2.69 0.39 1.82 \n", + "4 3.27 3.39 0.34 1.97 \n", + "5 2.50 2.52 0.30 1.98 \n", + "6 2.60 2.51 0.31 1.25 \n", + "7 2.80 2.98 0.29 1.98 \n", + "8 2.98 3.15 0.22 1.85 \n", + "9 2.95 3.32 0.22 2.38 \n", + "\n", + " Color intensity Hue OD280/OD315 OF diluted wines Proline \n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 4.32 1.04 2.93 735.0 \n", + "4 6.75 1.05 2.85 1450.0 \n", + "5 5.25 1.02 3.58 1290.0 \n", + "6 5.05 1.06 3.58 1295.0 \n", + "7 5.20 1.08 2.85 1045.0 \n", + "8 7.22 1.01 3.55 1045.0 \n", + "9 5.75 1.25 3.17 1510.0 " + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.loc[random,'Alcohol']=np.nan\n", + "wine_df.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "PHyK_vRsmRwV" + }, + "source": [ + "#### How many missing values do we have? \n", + "\n", + "Hint: you can use isnull() and sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "EnOYhmEqmfKp" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "46" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.isnull()\n", + "wine_df.isnull().sum().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "-Fd4WBklmf1_" + }, + "source": [ + "#### Delete the rows that contain missing values " + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "As7IC6Ktms8-" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountAlcoholMAlic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 OF diluted winesProline
31.013.242.592.8721.0118.02.802.690.391.824.3200001.042.93735.0
41.014.201.762.4515.2112.03.273.390.341.976.7500001.052.851450.0
81.013.861.352.2716.098.02.983.150.221.857.2200001.013.551045.0
101.014.121.482.3216.895.02.202.430.261.575.0000001.172.821280.0
111.013.751.732.4116.089.02.602.760.291.815.6000001.152.901320.0
121.014.751.732.3911.491.03.103.690.432.815.4000001.252.731150.0
131.014.381.872.3812.0102.03.303.640.292.967.5000001.203.001547.0
141.013.631.812.7017.2112.02.852.910.301.467.3000001.282.881310.0
151.014.301.922.7220.0120.02.803.140.331.976.2000001.072.651280.0
161.013.831.572.6220.0115.02.953.400.401.726.6000001.132.571130.0
171.014.191.592.4816.5108.03.303.930.321.868.7000001.232.821680.0
181.013.643.102.5615.2116.02.703.030.171.665.1000000.963.36845.0
191.014.061.632.2816.0126.03.003.170.242.105.6500001.093.71780.0
201.012.933.802.6518.6102.02.412.410.251.984.5000001.033.52770.0
211.013.711.862.3616.6101.02.612.880.271.693.8000001.114.001035.0
221.012.851.602.5217.895.02.482.370.261.463.9300001.093.631015.0
231.013.501.812.6120.096.02.532.610.281.663.5200001.123.82845.0
241.013.052.053.2225.0124.02.632.680.471.923.5800001.133.20830.0
251.013.391.772.6216.193.02.852.940.341.454.8000000.923.221195.0
261.013.301.722.1417.094.02.402.190.271.353.9500001.022.771285.0
271.013.871.902.8019.4107.02.952.970.371.764.5000001.253.40915.0
281.014.021.682.2116.096.02.652.330.261.984.7000001.043.591035.0
291.013.731.502.7022.5101.03.003.250.292.385.7000001.192.711285.0
301.013.581.662.3619.1106.02.863.190.221.956.9000001.092.881515.0
311.013.681.832.3617.2104.02.422.690.421.973.8400001.232.87990.0
321.013.761.532.7019.5132.02.952.740.501.355.4000001.253.001235.0
331.013.511.802.6519.0110.02.352.530.291.544.2000001.102.871095.0
341.013.481.812.4120.5100.02.702.980.261.865.1000001.043.47920.0
351.013.281.642.8415.5110.02.602.680.341.364.6000001.092.78880.0
361.013.051.652.5518.098.02.452.430.291.444.2500001.122.511105.0
.............................................
1473.013.323.242.3821.592.01.930.760.451.258.4200000.551.62650.0
1483.013.083.902.3621.5113.01.411.390.341.149.4000000.571.33550.0
1493.013.503.122.6224.0123.01.401.570.221.258.6000000.591.30500.0
1503.012.792.672.4822.0112.01.481.360.241.2610.8000000.481.47480.0
1513.013.111.902.7525.5116.02.201.280.261.567.1000000.611.33425.0
1523.013.233.302.2818.598.01.800.830.611.8710.5200000.561.51675.0
1533.012.581.292.1020.0103.01.480.580.531.407.6000000.581.55640.0
1543.013.175.192.3222.093.01.740.630.611.557.9000000.601.48725.0
1553.013.844.122.3819.589.01.800.830.481.569.0100000.571.64480.0
1563.012.453.032.6427.097.01.900.580.631.147.5000000.671.73880.0
1573.014.341.682.7025.098.02.801.310.532.7013.0000000.571.96660.0
1583.013.481.672.6422.589.02.601.100.522.2911.7500000.571.78620.0
1593.012.363.832.3821.088.02.300.920.501.047.6500000.561.58520.0
1603.013.693.262.5420.0107.01.830.560.500.805.8800000.961.82680.0
1613.012.853.272.5822.0106.01.650.600.600.965.5800000.872.11570.0
1623.012.963.452.3518.5106.01.390.700.400.945.2800000.681.75675.0
1633.013.782.762.3022.090.01.350.680.411.039.5800000.701.68615.0
1643.013.734.362.2622.588.01.280.470.521.156.6200000.781.75520.0
1653.013.453.702.6023.0111.01.700.920.431.4610.6800000.851.56695.0
1663.012.823.372.3019.588.01.480.660.400.9710.2600000.721.75685.0
1673.013.582.582.6924.5105.01.550.840.391.548.6600000.741.80750.0
1683.013.404.602.8625.0112.01.980.960.271.118.5000000.671.92630.0
1693.012.203.032.3219.096.01.250.490.400.735.5000000.661.83510.0
1703.012.772.392.2819.586.01.390.510.480.649.8999990.571.63470.0
1713.014.162.512.4820.091.01.680.700.441.249.7000000.621.71660.0
1723.013.715.652.4520.595.01.680.610.521.067.7000000.641.74740.0
1733.013.403.912.4823.0102.01.800.750.431.417.3000000.701.56750.0
1743.013.274.282.2620.0120.01.590.690.431.3510.2000000.591.56835.0
1753.013.172.592.3720.0120.01.650.680.531.469.3000000.601.62840.0
1763.014.134.102.7424.596.02.050.760.561.359.2000000.611.60560.0
\n", + "

170 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n", + "3 1.0 13.24 2.59 2.87 21.0 118.0 \n", + "4 1.0 14.20 1.76 2.45 15.2 112.0 \n", + "8 1.0 13.86 1.35 2.27 16.0 98.0 \n", + "10 1.0 14.12 1.48 2.32 16.8 95.0 \n", + "11 1.0 13.75 1.73 2.41 16.0 89.0 \n", + "12 1.0 14.75 1.73 2.39 11.4 91.0 \n", + "13 1.0 14.38 1.87 2.38 12.0 102.0 \n", + "14 1.0 13.63 1.81 2.70 17.2 112.0 \n", + "15 1.0 14.30 1.92 2.72 20.0 120.0 \n", + "16 1.0 13.83 1.57 2.62 20.0 115.0 \n", + "17 1.0 14.19 1.59 2.48 16.5 108.0 \n", + "18 1.0 13.64 3.10 2.56 15.2 116.0 \n", + "19 1.0 14.06 1.63 2.28 16.0 126.0 \n", + "20 1.0 12.93 3.80 2.65 18.6 102.0 \n", + "21 1.0 13.71 1.86 2.36 16.6 101.0 \n", + "22 1.0 12.85 1.60 2.52 17.8 95.0 \n", + "23 1.0 13.50 1.81 2.61 20.0 96.0 \n", + "24 1.0 13.05 2.05 3.22 25.0 124.0 \n", + "25 1.0 13.39 1.77 2.62 16.1 93.0 \n", + "26 1.0 13.30 1.72 2.14 17.0 94.0 \n", + "27 1.0 13.87 1.90 2.80 19.4 107.0 \n", + "28 1.0 14.02 1.68 2.21 16.0 96.0 \n", + "29 1.0 13.73 1.50 2.70 22.5 101.0 \n", + "30 1.0 13.58 1.66 2.36 19.1 106.0 \n", + "31 1.0 13.68 1.83 2.36 17.2 104.0 \n", + "32 1.0 13.76 1.53 2.70 19.5 132.0 \n", + "33 1.0 13.51 1.80 2.65 19.0 110.0 \n", + "34 1.0 13.48 1.81 2.41 20.5 100.0 \n", + "35 1.0 13.28 1.64 2.84 15.5 110.0 \n", + "36 1.0 13.05 1.65 2.55 18.0 98.0 \n", + ".. ... ... ... ... ... ... \n", + "147 3.0 13.32 3.24 2.38 21.5 92.0 \n", + "148 3.0 13.08 3.90 2.36 21.5 113.0 \n", + "149 3.0 13.50 3.12 2.62 24.0 123.0 \n", + "150 3.0 12.79 2.67 2.48 22.0 112.0 \n", + "151 3.0 13.11 1.90 2.75 25.5 116.0 \n", + "152 3.0 13.23 3.30 2.28 18.5 98.0 \n", + "153 3.0 12.58 1.29 2.10 20.0 103.0 \n", + "154 3.0 13.17 5.19 2.32 22.0 93.0 \n", + "155 3.0 13.84 4.12 2.38 19.5 89.0 \n", + "156 3.0 12.45 3.03 2.64 27.0 97.0 \n", + "157 3.0 14.34 1.68 2.70 25.0 98.0 \n", + "158 3.0 13.48 1.67 2.64 22.5 89.0 \n", + "159 3.0 12.36 3.83 2.38 21.0 88.0 \n", + "160 3.0 13.69 3.26 2.54 20.0 107.0 \n", + "161 3.0 12.85 3.27 2.58 22.0 106.0 \n", + "162 3.0 12.96 3.45 2.35 18.5 106.0 \n", + "163 3.0 13.78 2.76 2.30 22.0 90.0 \n", + "164 3.0 13.73 4.36 2.26 22.5 88.0 \n", + "165 3.0 13.45 3.70 2.60 23.0 111.0 \n", + "166 3.0 12.82 3.37 2.30 19.5 88.0 \n", + "167 3.0 13.58 2.58 2.69 24.5 105.0 \n", + "168 3.0 13.40 4.60 2.86 25.0 112.0 \n", + "169 3.0 12.20 3.03 2.32 19.0 96.0 \n", + "170 3.0 12.77 2.39 2.28 19.5 86.0 \n", + "171 3.0 14.16 2.51 2.48 20.0 91.0 \n", + "172 3.0 13.71 5.65 2.45 20.5 95.0 \n", + "173 3.0 13.40 3.91 2.48 23.0 102.0 \n", + "174 3.0 13.27 4.28 2.26 20.0 120.0 \n", + "175 3.0 13.17 2.59 2.37 20.0 120.0 \n", + "176 3.0 14.13 4.10 2.74 24.5 96.0 \n", + "\n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "3 2.80 2.69 0.39 1.82 \n", + "4 3.27 3.39 0.34 1.97 \n", + "8 2.98 3.15 0.22 1.85 \n", + "10 2.20 2.43 0.26 1.57 \n", + "11 2.60 2.76 0.29 1.81 \n", + "12 3.10 3.69 0.43 2.81 \n", + "13 3.30 3.64 0.29 2.96 \n", + "14 2.85 2.91 0.30 1.46 \n", + "15 2.80 3.14 0.33 1.97 \n", + "16 2.95 3.40 0.40 1.72 \n", + "17 3.30 3.93 0.32 1.86 \n", + "18 2.70 3.03 0.17 1.66 \n", + "19 3.00 3.17 0.24 2.10 \n", + "20 2.41 2.41 0.25 1.98 \n", + "21 2.61 2.88 0.27 1.69 \n", + "22 2.48 2.37 0.26 1.46 \n", + "23 2.53 2.61 0.28 1.66 \n", + "24 2.63 2.68 0.47 1.92 \n", + "25 2.85 2.94 0.34 1.45 \n", + "26 2.40 2.19 0.27 1.35 \n", + "27 2.95 2.97 0.37 1.76 \n", + "28 2.65 2.33 0.26 1.98 \n", + "29 3.00 3.25 0.29 2.38 \n", + "30 2.86 3.19 0.22 1.95 \n", + "31 2.42 2.69 0.42 1.97 \n", + "32 2.95 2.74 0.50 1.35 \n", + "33 2.35 2.53 0.29 1.54 \n", + "34 2.70 2.98 0.26 1.86 \n", + "35 2.60 2.68 0.34 1.36 \n", + "36 2.45 2.43 0.29 1.44 \n", + ".. ... ... ... ... \n", + "147 1.93 0.76 0.45 1.25 \n", + "148 1.41 1.39 0.34 1.14 \n", + "149 1.40 1.57 0.22 1.25 \n", + "150 1.48 1.36 0.24 1.26 \n", + "151 2.20 1.28 0.26 1.56 \n", + "152 1.80 0.83 0.61 1.87 \n", + "153 1.48 0.58 0.53 1.40 \n", + "154 1.74 0.63 0.61 1.55 \n", + "155 1.80 0.83 0.48 1.56 \n", + "156 1.90 0.58 0.63 1.14 \n", + "157 2.80 1.31 0.53 2.70 \n", + "158 2.60 1.10 0.52 2.29 \n", + "159 2.30 0.92 0.50 1.04 \n", + "160 1.83 0.56 0.50 0.80 \n", + "161 1.65 0.60 0.60 0.96 \n", + "162 1.39 0.70 0.40 0.94 \n", + "163 1.35 0.68 0.41 1.03 \n", + "164 1.28 0.47 0.52 1.15 \n", + "165 1.70 0.92 0.43 1.46 \n", + "166 1.48 0.66 0.40 0.97 \n", + "167 1.55 0.84 0.39 1.54 \n", + "168 1.98 0.96 0.27 1.11 \n", + "169 1.25 0.49 0.40 0.73 \n", + "170 1.39 0.51 0.48 0.64 \n", + "171 1.68 0.70 0.44 1.24 \n", + "172 1.68 0.61 0.52 1.06 \n", + "173 1.80 0.75 0.43 1.41 \n", + "174 1.59 0.69 0.43 1.35 \n", + "175 1.65 0.68 0.53 1.46 \n", + "176 2.05 0.76 0.56 1.35 \n", + "\n", + " Color intensity Hue OD280/OD315 OF diluted wines Proline \n", + "3 4.320000 1.04 2.93 735.0 \n", + "4 6.750000 1.05 2.85 1450.0 \n", + "8 7.220000 1.01 3.55 1045.0 \n", + "10 5.000000 1.17 2.82 1280.0 \n", + "11 5.600000 1.15 2.90 1320.0 \n", + "12 5.400000 1.25 2.73 1150.0 \n", + "13 7.500000 1.20 3.00 1547.0 \n", + "14 7.300000 1.28 2.88 1310.0 \n", + "15 6.200000 1.07 2.65 1280.0 \n", + "16 6.600000 1.13 2.57 1130.0 \n", + "17 8.700000 1.23 2.82 1680.0 \n", + "18 5.100000 0.96 3.36 845.0 \n", + "19 5.650000 1.09 3.71 780.0 \n", + "20 4.500000 1.03 3.52 770.0 \n", + "21 3.800000 1.11 4.00 1035.0 \n", + "22 3.930000 1.09 3.63 1015.0 \n", + "23 3.520000 1.12 3.82 845.0 \n", + "24 3.580000 1.13 3.20 830.0 \n", + "25 4.800000 0.92 3.22 1195.0 \n", + "26 3.950000 1.02 2.77 1285.0 \n", + "27 4.500000 1.25 3.40 915.0 \n", + "28 4.700000 1.04 3.59 1035.0 \n", + "29 5.700000 1.19 2.71 1285.0 \n", + "30 6.900000 1.09 2.88 1515.0 \n", + "31 3.840000 1.23 2.87 990.0 \n", + "32 5.400000 1.25 3.00 1235.0 \n", + "33 4.200000 1.10 2.87 1095.0 \n", + "34 5.100000 1.04 3.47 920.0 \n", + "35 4.600000 1.09 2.78 880.0 \n", + "36 4.250000 1.12 2.51 1105.0 \n", + ".. ... ... ... ... \n", + "147 8.420000 0.55 1.62 650.0 \n", + "148 9.400000 0.57 1.33 550.0 \n", + "149 8.600000 0.59 1.30 500.0 \n", + "150 10.800000 0.48 1.47 480.0 \n", + "151 7.100000 0.61 1.33 425.0 \n", + "152 10.520000 0.56 1.51 675.0 \n", + "153 7.600000 0.58 1.55 640.0 \n", + "154 7.900000 0.60 1.48 725.0 \n", + "155 9.010000 0.57 1.64 480.0 \n", + "156 7.500000 0.67 1.73 880.0 \n", + "157 13.000000 0.57 1.96 660.0 \n", + "158 11.750000 0.57 1.78 620.0 \n", + "159 7.650000 0.56 1.58 520.0 \n", + "160 5.880000 0.96 1.82 680.0 \n", + "161 5.580000 0.87 2.11 570.0 \n", + "162 5.280000 0.68 1.75 675.0 \n", + "163 9.580000 0.70 1.68 615.0 \n", + "164 6.620000 0.78 1.75 520.0 \n", + "165 10.680000 0.85 1.56 695.0 \n", + "166 10.260000 0.72 1.75 685.0 \n", + "167 8.660000 0.74 1.80 750.0 \n", + "168 8.500000 0.67 1.92 630.0 \n", + "169 5.500000 0.66 1.83 510.0 \n", + "170 9.899999 0.57 1.63 470.0 \n", + "171 9.700000 0.62 1.71 660.0 \n", + "172 7.700000 0.64 1.74 740.0 \n", + "173 7.300000 0.70 1.56 750.0 \n", + "174 10.200000 0.59 1.56 835.0 \n", + "175 9.300000 0.60 1.62 840.0 \n", + "176 9.200000 0.61 1.60 560.0 \n", + "\n", + "[170 rows x 14 columns]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.dropna()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "DlpG8drhmz7W" + }, + "source": [ + "### BONUS: Play with the data set below" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "mD40T0Cnm5SA" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "name": "Exercise.ipynb", + "provenance": [], + "version": "0.3.2" + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Exercise-checkpoint.ipynb b/Exercise-checkpoint.ipynb index 18ae2fd..e7d30e9 100644 --- a/Exercise-checkpoint.ipynb +++ b/Exercise-checkpoint.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 168, + "execution_count": 15, "metadata": { "colab": {}, "colab_type": "code", @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 169, + "execution_count": 16, "metadata": { "colab": {}, "colab_type": "code", @@ -65,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 170, + "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -219,7 +219,7 @@ "4 1450 " ] }, - "execution_count": 170, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -242,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1463,7 +1463,7 @@ "[89 rows x 14 columns]" ] }, - "execution_count": 171, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1502,7 +1502,7 @@ }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 19, "metadata": { "colab": {}, "colab_type": "code", @@ -1659,7 +1659,7 @@ "4 6.75 1.05 2.85 1450 " ] }, - "execution_count": 172, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1683,7 +1683,7 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 20, "metadata": { "colab": {}, "colab_type": "code", @@ -1781,29 +1781,29 @@ " \n", " \n", " 3\n", - " 1\n", + " 1.0\n", " 13.24\n", " 2.59\n", " 2.87\n", - " 21\n", - " 118\n", - " 2.8\n", + " 21.0\n", + " 118.0\n", + " 2.80\n", " 2.69\n", " 0.39\n", " 1.82\n", " 4.32\n", " 1.04\n", " 2.93\n", - " 735\n", + " 735.0\n", " \n", " \n", " 4\n", - " 1\n", - " 14.2\n", + " 1.0\n", + " 14.20\n", " 1.76\n", " 2.45\n", " 15.2\n", - " 112\n", + " 112.0\n", " 3.27\n", " 3.39\n", " 0.34\n", @@ -1811,42 +1811,42 @@ " 6.75\n", " 1.05\n", " 2.85\n", - " 1450\n", + " 1450.0\n", " \n", " \n", "\n", "" ], "text/plain": [ - " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium Total phenols \\\n", - "0 NaN NaN NaN NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN NaN NaN NaN \n", - "3 1 13.24 2.59 2.87 21 118 2.8 \n", - "4 1 14.2 1.76 2.45 15.2 112 3.27 \n", + " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n", + "0 NaN NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN \n", + "3 1.0 13.24 2.59 2.87 21.0 118.0 \n", + "4 1.0 14.20 1.76 2.45 15.2 112.0 \n", "\n", - " Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity Hue \\\n", - "0 NaN NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN NaN \n", - "3 2.69 0.39 1.82 4.32 1.04 \n", - "4 3.39 0.34 1.97 6.75 1.05 \n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 2.80 2.69 0.39 1.82 \n", + "4 3.27 3.39 0.34 1.97 \n", "\n", - " OD280/OD315 OF diluted wines Proline \n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 2.93 735 \n", - "4 2.85 1450 " + " Color intensity Hue OD280/OD315 OF diluted wines Proline \n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 4.32 1.04 2.93 735.0 \n", + "4 6.75 1.05 2.85 1450.0 " ] }, - "execution_count": 173, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "wine_df.iloc[:3]='NaN'\n", + "wine_df.iloc[:3]=np.nan\n", "wine_df.head()" ] }, @@ -1862,7 +1862,7 @@ }, { "cell_type": "code", - "execution_count": 174, + "execution_count": 21, "metadata": { "colab": {}, "colab_type": "code", @@ -1888,7 +1888,7 @@ }, { "cell_type": "code", - "execution_count": 175, + "execution_count": 22, "metadata": { "colab": {}, "colab_type": "code", @@ -1986,29 +1986,29 @@ " \n", " \n", " 3\n", - " 1\n", + " 1.0\n", " 13.24\n", " 2.59\n", " 2.87\n", - " 21\n", - " 118\n", - " 2.8\n", + " 21.0\n", + " 118.0\n", + " 2.80\n", " 2.69\n", " 0.39\n", " 1.82\n", " 4.32\n", " 1.04\n", " 2.93\n", - " 735\n", + " 735.0\n", " \n", " \n", " 4\n", - " 1\n", - " 14.2\n", + " 1.0\n", + " 14.20\n", " 1.76\n", " 2.45\n", " 15.2\n", - " 112\n", + " 112.0\n", " 3.27\n", " 3.39\n", " 0.34\n", @@ -2016,67 +2016,67 @@ " 6.75\n", " 1.05\n", " 2.85\n", - " 1450\n", + " 1450.0\n", " \n", " \n", " 5\n", - " 1\n", - " 14.39\n", + " 1.0\n", + " NaN\n", " 1.87\n", " 2.45\n", " 14.6\n", - " 96\n", - " 2.5\n", + " 96.0\n", + " 2.50\n", " 2.52\n", - " 0.3\n", + " 0.30\n", " 1.98\n", " 5.25\n", " 1.02\n", " 3.58\n", - " 1290\n", + " 1290.0\n", " \n", " \n", " 6\n", - " 1\n", + " 1.0\n", " NaN\n", " 2.15\n", " 2.61\n", " 17.6\n", - " 121\n", - " 2.6\n", + " 121.0\n", + " 2.60\n", " 2.51\n", " 0.31\n", " 1.25\n", " 5.05\n", " 1.06\n", " 3.58\n", - " 1295\n", + " 1295.0\n", " \n", " \n", " 7\n", - " 1\n", + " 1.0\n", " NaN\n", " 1.64\n", " 2.17\n", - " 14\n", - " 97\n", - " 2.8\n", + " 14.0\n", + " 97.0\n", + " 2.80\n", " 2.98\n", " 0.29\n", " 1.98\n", - " 5.2\n", + " 5.20\n", " 1.08\n", " 2.85\n", - " 1045\n", + " 1045.0\n", " \n", " \n", " 8\n", - " 1\n", - " NaN\n", + " 1.0\n", + " 13.86\n", " 1.35\n", " 2.27\n", - " 16\n", - " 98\n", + " 16.0\n", + " 98.0\n", " 2.98\n", " 3.15\n", " 0.22\n", @@ -2084,16 +2084,16 @@ " 7.22\n", " 1.01\n", " 3.55\n", - " 1045\n", + " 1045.0\n", " \n", " \n", " 9\n", - " 1\n", - " 14.1\n", + " 1.0\n", + " NaN\n", " 2.16\n", - " 2.3\n", - " 18\n", - " 105\n", + " 2.30\n", + " 18.0\n", + " 105.0\n", " 2.95\n", " 3.32\n", " 0.22\n", @@ -2101,57 +2101,57 @@ " 5.75\n", " 1.25\n", " 3.17\n", - " 1510\n", + " 1510.0\n", " \n", " \n", "\n", "" ], "text/plain": [ - " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium Total phenols \\\n", - "0 NaN NaN NaN NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN NaN NaN NaN \n", - "3 1 13.24 2.59 2.87 21 118 2.8 \n", - "4 1 14.2 1.76 2.45 15.2 112 3.27 \n", - "5 1 14.39 1.87 2.45 14.6 96 2.5 \n", - "6 1 NaN 2.15 2.61 17.6 121 2.6 \n", - "7 1 NaN 1.64 2.17 14 97 2.8 \n", - "8 1 NaN 1.35 2.27 16 98 2.98 \n", - "9 1 14.1 2.16 2.3 18 105 2.95 \n", + " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n", + "0 NaN NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN \n", + "3 1.0 13.24 2.59 2.87 21.0 118.0 \n", + "4 1.0 14.20 1.76 2.45 15.2 112.0 \n", + "5 1.0 NaN 1.87 2.45 14.6 96.0 \n", + "6 1.0 NaN 2.15 2.61 17.6 121.0 \n", + "7 1.0 NaN 1.64 2.17 14.0 97.0 \n", + "8 1.0 13.86 1.35 2.27 16.0 98.0 \n", + "9 1.0 NaN 2.16 2.30 18.0 105.0 \n", "\n", - " Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity Hue \\\n", - "0 NaN NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN NaN \n", - "3 2.69 0.39 1.82 4.32 1.04 \n", - "4 3.39 0.34 1.97 6.75 1.05 \n", - "5 2.52 0.3 1.98 5.25 1.02 \n", - "6 2.51 0.31 1.25 5.05 1.06 \n", - "7 2.98 0.29 1.98 5.2 1.08 \n", - "8 3.15 0.22 1.85 7.22 1.01 \n", - "9 3.32 0.22 2.38 5.75 1.25 \n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 2.80 2.69 0.39 1.82 \n", + "4 3.27 3.39 0.34 1.97 \n", + "5 2.50 2.52 0.30 1.98 \n", + "6 2.60 2.51 0.31 1.25 \n", + "7 2.80 2.98 0.29 1.98 \n", + "8 2.98 3.15 0.22 1.85 \n", + "9 2.95 3.32 0.22 2.38 \n", "\n", - " OD280/OD315 OF diluted wines Proline \n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 2.93 735 \n", - "4 2.85 1450 \n", - "5 3.58 1290 \n", - "6 3.58 1295 \n", - "7 2.85 1045 \n", - "8 3.55 1045 \n", - "9 3.17 1510 " + " Color intensity Hue OD280/OD315 OF diluted wines Proline \n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 4.32 1.04 2.93 735.0 \n", + "4 6.75 1.05 2.85 1450.0 \n", + "5 5.25 1.02 3.58 1290.0 \n", + "6 5.05 1.06 3.58 1295.0 \n", + "7 5.20 1.08 2.85 1045.0 \n", + "8 7.22 1.01 3.55 1045.0 \n", + "9 5.75 1.25 3.17 1510.0 " ] }, - "execution_count": 175, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "wine_df.loc[random,'Alcohol']='NaN'\n", + "wine_df.loc[random,'Alcohol']=np.nan\n", "wine_df.head(10)" ] }, @@ -2169,7 +2169,7 @@ }, { "cell_type": "code", - "execution_count": 182, + "execution_count": 25, "metadata": { "colab": {}, "colab_type": "code", @@ -2179,30 +2179,17 @@ { "data": { "text/plain": [ - "Count 0\n", - "Alcohol 0\n", - "MAlic acid 0\n", - "Ash 0\n", - "Alcalinity of ash 0\n", - "Magnesium 0\n", - "Total phenols 0\n", - "Flavanoids 0\n", - "Nonflavanoid phenols 0\n", - "Proanthocyanins 0\n", - "Color intensity 0\n", - "Hue 0\n", - "OD280/OD315 OF diluted wines 0\n", - "Proline 0\n", - "dtype: int64" + "46" ] }, - "execution_count": 182, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "wine_df.isnull().sum()" + "wine_df.isnull()\n", + "wine_df.isnull().sum().sum()" ] }, { @@ -2217,14 +2204,1294 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": { "colab": {}, "colab_type": "code", "id": "As7IC6Ktms8-" }, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountAlcoholMAlic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 OF diluted winesProline
31.013.242.592.8721.0118.02.802.690.391.824.3200001.042.93735.0
41.014.201.762.4515.2112.03.273.390.341.976.7500001.052.851450.0
81.013.861.352.2716.098.02.983.150.221.857.2200001.013.551045.0
101.014.121.482.3216.895.02.202.430.261.575.0000001.172.821280.0
111.013.751.732.4116.089.02.602.760.291.815.6000001.152.901320.0
121.014.751.732.3911.491.03.103.690.432.815.4000001.252.731150.0
131.014.381.872.3812.0102.03.303.640.292.967.5000001.203.001547.0
141.013.631.812.7017.2112.02.852.910.301.467.3000001.282.881310.0
151.014.301.922.7220.0120.02.803.140.331.976.2000001.072.651280.0
161.013.831.572.6220.0115.02.953.400.401.726.6000001.132.571130.0
171.014.191.592.4816.5108.03.303.930.321.868.7000001.232.821680.0
181.013.643.102.5615.2116.02.703.030.171.665.1000000.963.36845.0
191.014.061.632.2816.0126.03.003.170.242.105.6500001.093.71780.0
201.012.933.802.6518.6102.02.412.410.251.984.5000001.033.52770.0
211.013.711.862.3616.6101.02.612.880.271.693.8000001.114.001035.0
221.012.851.602.5217.895.02.482.370.261.463.9300001.093.631015.0
231.013.501.812.6120.096.02.532.610.281.663.5200001.123.82845.0
241.013.052.053.2225.0124.02.632.680.471.923.5800001.133.20830.0
251.013.391.772.6216.193.02.852.940.341.454.8000000.923.221195.0
261.013.301.722.1417.094.02.402.190.271.353.9500001.022.771285.0
271.013.871.902.8019.4107.02.952.970.371.764.5000001.253.40915.0
281.014.021.682.2116.096.02.652.330.261.984.7000001.043.591035.0
291.013.731.502.7022.5101.03.003.250.292.385.7000001.192.711285.0
301.013.581.662.3619.1106.02.863.190.221.956.9000001.092.881515.0
311.013.681.832.3617.2104.02.422.690.421.973.8400001.232.87990.0
321.013.761.532.7019.5132.02.952.740.501.355.4000001.253.001235.0
331.013.511.802.6519.0110.02.352.530.291.544.2000001.102.871095.0
341.013.481.812.4120.5100.02.702.980.261.865.1000001.043.47920.0
351.013.281.642.8415.5110.02.602.680.341.364.6000001.092.78880.0
361.013.051.652.5518.098.02.452.430.291.444.2500001.122.511105.0
.............................................
1473.013.323.242.3821.592.01.930.760.451.258.4200000.551.62650.0
1483.013.083.902.3621.5113.01.411.390.341.149.4000000.571.33550.0
1493.013.503.122.6224.0123.01.401.570.221.258.6000000.591.30500.0
1503.012.792.672.4822.0112.01.481.360.241.2610.8000000.481.47480.0
1513.013.111.902.7525.5116.02.201.280.261.567.1000000.611.33425.0
1523.013.233.302.2818.598.01.800.830.611.8710.5200000.561.51675.0
1533.012.581.292.1020.0103.01.480.580.531.407.6000000.581.55640.0
1543.013.175.192.3222.093.01.740.630.611.557.9000000.601.48725.0
1553.013.844.122.3819.589.01.800.830.481.569.0100000.571.64480.0
1563.012.453.032.6427.097.01.900.580.631.147.5000000.671.73880.0
1573.014.341.682.7025.098.02.801.310.532.7013.0000000.571.96660.0
1583.013.481.672.6422.589.02.601.100.522.2911.7500000.571.78620.0
1593.012.363.832.3821.088.02.300.920.501.047.6500000.561.58520.0
1603.013.693.262.5420.0107.01.830.560.500.805.8800000.961.82680.0
1613.012.853.272.5822.0106.01.650.600.600.965.5800000.872.11570.0
1623.012.963.452.3518.5106.01.390.700.400.945.2800000.681.75675.0
1633.013.782.762.3022.090.01.350.680.411.039.5800000.701.68615.0
1643.013.734.362.2622.588.01.280.470.521.156.6200000.781.75520.0
1653.013.453.702.6023.0111.01.700.920.431.4610.6800000.851.56695.0
1663.012.823.372.3019.588.01.480.660.400.9710.2600000.721.75685.0
1673.013.582.582.6924.5105.01.550.840.391.548.6600000.741.80750.0
1683.013.404.602.8625.0112.01.980.960.271.118.5000000.671.92630.0
1693.012.203.032.3219.096.01.250.490.400.735.5000000.661.83510.0
1703.012.772.392.2819.586.01.390.510.480.649.8999990.571.63470.0
1713.014.162.512.4820.091.01.680.700.441.249.7000000.621.71660.0
1723.013.715.652.4520.595.01.680.610.521.067.7000000.641.74740.0
1733.013.403.912.4823.0102.01.800.750.431.417.3000000.701.56750.0
1743.013.274.282.2620.0120.01.590.690.431.3510.2000000.591.56835.0
1753.013.172.592.3720.0120.01.650.680.531.469.3000000.601.62840.0
1763.014.134.102.7424.596.02.050.760.561.359.2000000.611.60560.0
\n", + "

170 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n", + "3 1.0 13.24 2.59 2.87 21.0 118.0 \n", + "4 1.0 14.20 1.76 2.45 15.2 112.0 \n", + "8 1.0 13.86 1.35 2.27 16.0 98.0 \n", + "10 1.0 14.12 1.48 2.32 16.8 95.0 \n", + "11 1.0 13.75 1.73 2.41 16.0 89.0 \n", + "12 1.0 14.75 1.73 2.39 11.4 91.0 \n", + "13 1.0 14.38 1.87 2.38 12.0 102.0 \n", + "14 1.0 13.63 1.81 2.70 17.2 112.0 \n", + "15 1.0 14.30 1.92 2.72 20.0 120.0 \n", + "16 1.0 13.83 1.57 2.62 20.0 115.0 \n", + "17 1.0 14.19 1.59 2.48 16.5 108.0 \n", + "18 1.0 13.64 3.10 2.56 15.2 116.0 \n", + "19 1.0 14.06 1.63 2.28 16.0 126.0 \n", + "20 1.0 12.93 3.80 2.65 18.6 102.0 \n", + "21 1.0 13.71 1.86 2.36 16.6 101.0 \n", + "22 1.0 12.85 1.60 2.52 17.8 95.0 \n", + "23 1.0 13.50 1.81 2.61 20.0 96.0 \n", + "24 1.0 13.05 2.05 3.22 25.0 124.0 \n", + "25 1.0 13.39 1.77 2.62 16.1 93.0 \n", + "26 1.0 13.30 1.72 2.14 17.0 94.0 \n", + "27 1.0 13.87 1.90 2.80 19.4 107.0 \n", + "28 1.0 14.02 1.68 2.21 16.0 96.0 \n", + "29 1.0 13.73 1.50 2.70 22.5 101.0 \n", + "30 1.0 13.58 1.66 2.36 19.1 106.0 \n", + "31 1.0 13.68 1.83 2.36 17.2 104.0 \n", + "32 1.0 13.76 1.53 2.70 19.5 132.0 \n", + "33 1.0 13.51 1.80 2.65 19.0 110.0 \n", + "34 1.0 13.48 1.81 2.41 20.5 100.0 \n", + "35 1.0 13.28 1.64 2.84 15.5 110.0 \n", + "36 1.0 13.05 1.65 2.55 18.0 98.0 \n", + ".. ... ... ... ... ... ... \n", + "147 3.0 13.32 3.24 2.38 21.5 92.0 \n", + "148 3.0 13.08 3.90 2.36 21.5 113.0 \n", + "149 3.0 13.50 3.12 2.62 24.0 123.0 \n", + "150 3.0 12.79 2.67 2.48 22.0 112.0 \n", + "151 3.0 13.11 1.90 2.75 25.5 116.0 \n", + "152 3.0 13.23 3.30 2.28 18.5 98.0 \n", + "153 3.0 12.58 1.29 2.10 20.0 103.0 \n", + "154 3.0 13.17 5.19 2.32 22.0 93.0 \n", + "155 3.0 13.84 4.12 2.38 19.5 89.0 \n", + "156 3.0 12.45 3.03 2.64 27.0 97.0 \n", + "157 3.0 14.34 1.68 2.70 25.0 98.0 \n", + "158 3.0 13.48 1.67 2.64 22.5 89.0 \n", + "159 3.0 12.36 3.83 2.38 21.0 88.0 \n", + "160 3.0 13.69 3.26 2.54 20.0 107.0 \n", + "161 3.0 12.85 3.27 2.58 22.0 106.0 \n", + "162 3.0 12.96 3.45 2.35 18.5 106.0 \n", + "163 3.0 13.78 2.76 2.30 22.0 90.0 \n", + "164 3.0 13.73 4.36 2.26 22.5 88.0 \n", + "165 3.0 13.45 3.70 2.60 23.0 111.0 \n", + "166 3.0 12.82 3.37 2.30 19.5 88.0 \n", + "167 3.0 13.58 2.58 2.69 24.5 105.0 \n", + "168 3.0 13.40 4.60 2.86 25.0 112.0 \n", + "169 3.0 12.20 3.03 2.32 19.0 96.0 \n", + "170 3.0 12.77 2.39 2.28 19.5 86.0 \n", + "171 3.0 14.16 2.51 2.48 20.0 91.0 \n", + "172 3.0 13.71 5.65 2.45 20.5 95.0 \n", + "173 3.0 13.40 3.91 2.48 23.0 102.0 \n", + "174 3.0 13.27 4.28 2.26 20.0 120.0 \n", + "175 3.0 13.17 2.59 2.37 20.0 120.0 \n", + "176 3.0 14.13 4.10 2.74 24.5 96.0 \n", + "\n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "3 2.80 2.69 0.39 1.82 \n", + "4 3.27 3.39 0.34 1.97 \n", + "8 2.98 3.15 0.22 1.85 \n", + "10 2.20 2.43 0.26 1.57 \n", + "11 2.60 2.76 0.29 1.81 \n", + "12 3.10 3.69 0.43 2.81 \n", + "13 3.30 3.64 0.29 2.96 \n", + "14 2.85 2.91 0.30 1.46 \n", + "15 2.80 3.14 0.33 1.97 \n", + "16 2.95 3.40 0.40 1.72 \n", + "17 3.30 3.93 0.32 1.86 \n", + "18 2.70 3.03 0.17 1.66 \n", + "19 3.00 3.17 0.24 2.10 \n", + "20 2.41 2.41 0.25 1.98 \n", + "21 2.61 2.88 0.27 1.69 \n", + "22 2.48 2.37 0.26 1.46 \n", + "23 2.53 2.61 0.28 1.66 \n", + "24 2.63 2.68 0.47 1.92 \n", + "25 2.85 2.94 0.34 1.45 \n", + "26 2.40 2.19 0.27 1.35 \n", + "27 2.95 2.97 0.37 1.76 \n", + "28 2.65 2.33 0.26 1.98 \n", + "29 3.00 3.25 0.29 2.38 \n", + "30 2.86 3.19 0.22 1.95 \n", + "31 2.42 2.69 0.42 1.97 \n", + "32 2.95 2.74 0.50 1.35 \n", + "33 2.35 2.53 0.29 1.54 \n", + "34 2.70 2.98 0.26 1.86 \n", + "35 2.60 2.68 0.34 1.36 \n", + "36 2.45 2.43 0.29 1.44 \n", + ".. ... ... ... ... \n", + "147 1.93 0.76 0.45 1.25 \n", + "148 1.41 1.39 0.34 1.14 \n", + "149 1.40 1.57 0.22 1.25 \n", + "150 1.48 1.36 0.24 1.26 \n", + "151 2.20 1.28 0.26 1.56 \n", + "152 1.80 0.83 0.61 1.87 \n", + "153 1.48 0.58 0.53 1.40 \n", + "154 1.74 0.63 0.61 1.55 \n", + "155 1.80 0.83 0.48 1.56 \n", + "156 1.90 0.58 0.63 1.14 \n", + "157 2.80 1.31 0.53 2.70 \n", + "158 2.60 1.10 0.52 2.29 \n", + "159 2.30 0.92 0.50 1.04 \n", + "160 1.83 0.56 0.50 0.80 \n", + "161 1.65 0.60 0.60 0.96 \n", + "162 1.39 0.70 0.40 0.94 \n", + "163 1.35 0.68 0.41 1.03 \n", + "164 1.28 0.47 0.52 1.15 \n", + "165 1.70 0.92 0.43 1.46 \n", + "166 1.48 0.66 0.40 0.97 \n", + "167 1.55 0.84 0.39 1.54 \n", + "168 1.98 0.96 0.27 1.11 \n", + "169 1.25 0.49 0.40 0.73 \n", + "170 1.39 0.51 0.48 0.64 \n", + "171 1.68 0.70 0.44 1.24 \n", + "172 1.68 0.61 0.52 1.06 \n", + "173 1.80 0.75 0.43 1.41 \n", + "174 1.59 0.69 0.43 1.35 \n", + "175 1.65 0.68 0.53 1.46 \n", + "176 2.05 0.76 0.56 1.35 \n", + "\n", + " Color intensity Hue OD280/OD315 OF diluted wines Proline \n", + "3 4.320000 1.04 2.93 735.0 \n", + "4 6.750000 1.05 2.85 1450.0 \n", + "8 7.220000 1.01 3.55 1045.0 \n", + "10 5.000000 1.17 2.82 1280.0 \n", + "11 5.600000 1.15 2.90 1320.0 \n", + "12 5.400000 1.25 2.73 1150.0 \n", + "13 7.500000 1.20 3.00 1547.0 \n", + "14 7.300000 1.28 2.88 1310.0 \n", + "15 6.200000 1.07 2.65 1280.0 \n", + "16 6.600000 1.13 2.57 1130.0 \n", + "17 8.700000 1.23 2.82 1680.0 \n", + "18 5.100000 0.96 3.36 845.0 \n", + "19 5.650000 1.09 3.71 780.0 \n", + "20 4.500000 1.03 3.52 770.0 \n", + "21 3.800000 1.11 4.00 1035.0 \n", + "22 3.930000 1.09 3.63 1015.0 \n", + "23 3.520000 1.12 3.82 845.0 \n", + "24 3.580000 1.13 3.20 830.0 \n", + "25 4.800000 0.92 3.22 1195.0 \n", + "26 3.950000 1.02 2.77 1285.0 \n", + "27 4.500000 1.25 3.40 915.0 \n", + "28 4.700000 1.04 3.59 1035.0 \n", + "29 5.700000 1.19 2.71 1285.0 \n", + "30 6.900000 1.09 2.88 1515.0 \n", + "31 3.840000 1.23 2.87 990.0 \n", + "32 5.400000 1.25 3.00 1235.0 \n", + "33 4.200000 1.10 2.87 1095.0 \n", + "34 5.100000 1.04 3.47 920.0 \n", + "35 4.600000 1.09 2.78 880.0 \n", + "36 4.250000 1.12 2.51 1105.0 \n", + ".. ... ... ... ... \n", + "147 8.420000 0.55 1.62 650.0 \n", + "148 9.400000 0.57 1.33 550.0 \n", + "149 8.600000 0.59 1.30 500.0 \n", + "150 10.800000 0.48 1.47 480.0 \n", + "151 7.100000 0.61 1.33 425.0 \n", + "152 10.520000 0.56 1.51 675.0 \n", + "153 7.600000 0.58 1.55 640.0 \n", + "154 7.900000 0.60 1.48 725.0 \n", + "155 9.010000 0.57 1.64 480.0 \n", + "156 7.500000 0.67 1.73 880.0 \n", + "157 13.000000 0.57 1.96 660.0 \n", + "158 11.750000 0.57 1.78 620.0 \n", + "159 7.650000 0.56 1.58 520.0 \n", + "160 5.880000 0.96 1.82 680.0 \n", + "161 5.580000 0.87 2.11 570.0 \n", + "162 5.280000 0.68 1.75 675.0 \n", + "163 9.580000 0.70 1.68 615.0 \n", + "164 6.620000 0.78 1.75 520.0 \n", + "165 10.680000 0.85 1.56 695.0 \n", + "166 10.260000 0.72 1.75 685.0 \n", + "167 8.660000 0.74 1.80 750.0 \n", + "168 8.500000 0.67 1.92 630.0 \n", + "169 5.500000 0.66 1.83 510.0 \n", + "170 9.899999 0.57 1.63 470.0 \n", + "171 9.700000 0.62 1.71 660.0 \n", + "172 7.700000 0.64 1.74 740.0 \n", + "173 7.300000 0.70 1.56 750.0 \n", + "174 10.200000 0.59 1.56 835.0 \n", + "175 9.300000 0.60 1.62 840.0 \n", + "176 9.200000 0.61 1.60 560.0 \n", + "\n", + "[170 rows x 14 columns]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_df.dropna()" + ] }, { "cell_type": "markdown", From 6eace9510181a82064d80f4425291063d8730957 Mon Sep 17 00:00:00 2001 From: Soumanpaul Date: Wed, 10 Oct 2018 22:26:24 +0530 Subject: [PATCH 4/4] Completed Assignment 3 --- .../Exercise-checkpoint-checkpoint.ipynb | 173 +- ...know_your_Data-checkpoint-checkpoint.ipynb | 2354 +++++++++ Exercise-checkpoint.ipynb | 173 +- Get_to_know_your_Data-checkpoint.ipynb | 4597 +++++++++-------- 4 files changed, 4886 insertions(+), 2411 deletions(-) create mode 100644 .ipynb_checkpoints/Get_to_know_your_Data-checkpoint-checkpoint.ipynb diff --git a/.ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb b/.ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb index e7d30e9..02b14e5 100644 --- a/.ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb +++ b/.ipynb_checkpoints/Exercise-checkpoint-checkpoint.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 2, "metadata": { "colab": {}, "colab_type": "code", @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 3, "metadata": { "colab": {}, "colab_type": "code", @@ -65,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -219,7 +219,7 @@ "4 1450 " ] }, - "execution_count": 17, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -242,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1463,7 +1463,7 @@ "[89 rows x 14 columns]" ] }, - "execution_count": 18, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -1502,7 +1502,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 6, "metadata": { "colab": {}, "colab_type": "code", @@ -1659,7 +1659,7 @@ "4 6.75 1.05 2.85 1450 " ] }, - "execution_count": 19, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -1683,7 +1683,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 7, "metadata": { "colab": {}, "colab_type": "code", @@ -1840,7 +1840,7 @@ "4 6.75 1.05 2.85 1450.0 " ] }, - "execution_count": 20, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -1862,7 +1862,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 8, "metadata": { "colab": {}, "colab_type": "code", @@ -1888,7 +1888,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 9, "metadata": { "colab": {}, "colab_type": "code", @@ -1987,7 +1987,7 @@ " \n", " 3\n", " 1.0\n", - " 13.24\n", + " NaN\n", " 2.59\n", " 2.87\n", " 21.0\n", @@ -2004,7 +2004,7 @@ " \n", " 4\n", " 1.0\n", - " 14.20\n", + " NaN\n", " 1.76\n", " 2.45\n", " 15.2\n", @@ -2038,7 +2038,7 @@ " \n", " 6\n", " 1.0\n", - " NaN\n", + " 14.06\n", " 2.15\n", " 2.61\n", " 17.6\n", @@ -2055,7 +2055,7 @@ " \n", " 7\n", " 1.0\n", - " NaN\n", + " 14.83\n", " 1.64\n", " 2.17\n", " 14.0\n", @@ -2112,11 +2112,11 @@ "0 NaN NaN NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN NaN NaN \n", - "3 1.0 13.24 2.59 2.87 21.0 118.0 \n", - "4 1.0 14.20 1.76 2.45 15.2 112.0 \n", + "3 1.0 NaN 2.59 2.87 21.0 118.0 \n", + "4 1.0 NaN 1.76 2.45 15.2 112.0 \n", "5 1.0 NaN 1.87 2.45 14.6 96.0 \n", - "6 1.0 NaN 2.15 2.61 17.6 121.0 \n", - "7 1.0 NaN 1.64 2.17 14.0 97.0 \n", + "6 1.0 14.06 2.15 2.61 17.6 121.0 \n", + "7 1.0 14.83 1.64 2.17 14.0 97.0 \n", "8 1.0 13.86 1.35 2.27 16.0 98.0 \n", "9 1.0 NaN 2.16 2.30 18.0 105.0 \n", "\n", @@ -2145,7 +2145,7 @@ "9 5.75 1.25 3.17 1510.0 " ] }, - "execution_count": 22, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -2169,7 +2169,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 10, "metadata": { "colab": {}, "colab_type": "code", @@ -2182,7 +2182,7 @@ "46" ] }, - "execution_count": 25, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -2204,7 +2204,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 11, "metadata": { "colab": {}, "colab_type": "code", @@ -2250,38 +2250,38 @@ " \n", " \n", " \n", - " 3\n", + " 6\n", " 1.0\n", - " 13.24\n", - " 2.59\n", - " 2.87\n", - " 21.0\n", - " 118.0\n", - " 2.80\n", - " 2.69\n", - " 0.39\n", - " 1.82\n", - " 4.320000\n", - " 1.04\n", - " 2.93\n", - " 735.0\n", + " 14.06\n", + " 2.15\n", + " 2.61\n", + " 17.6\n", + " 121.0\n", + " 2.60\n", + " 2.51\n", + " 0.31\n", + " 1.25\n", + " 5.050000\n", + " 1.06\n", + " 3.58\n", + " 1295.0\n", " \n", " \n", - " 4\n", + " 7\n", " 1.0\n", - " 14.20\n", - " 1.76\n", - " 2.45\n", - " 15.2\n", - " 112.0\n", - " 3.27\n", - " 3.39\n", - " 0.34\n", - " 1.97\n", - " 6.750000\n", - " 1.05\n", + " 14.83\n", + " 1.64\n", + " 2.17\n", + " 14.0\n", + " 97.0\n", + " 2.80\n", + " 2.98\n", + " 0.29\n", + " 1.98\n", + " 5.200000\n", + " 1.08\n", " 2.85\n", - " 1450.0\n", + " 1045.0\n", " \n", " \n", " 8\n", @@ -3293,8 +3293,8 @@ ], "text/plain": [ " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n", - "3 1.0 13.24 2.59 2.87 21.0 118.0 \n", - "4 1.0 14.20 1.76 2.45 15.2 112.0 \n", + "6 1.0 14.06 2.15 2.61 17.6 121.0 \n", + "7 1.0 14.83 1.64 2.17 14.0 97.0 \n", "8 1.0 13.86 1.35 2.27 16.0 98.0 \n", "10 1.0 14.12 1.48 2.32 16.8 95.0 \n", "11 1.0 13.75 1.73 2.41 16.0 89.0 \n", @@ -3356,8 +3356,8 @@ "176 3.0 14.13 4.10 2.74 24.5 96.0 \n", "\n", " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", - "3 2.80 2.69 0.39 1.82 \n", - "4 3.27 3.39 0.34 1.97 \n", + "6 2.60 2.51 0.31 1.25 \n", + "7 2.80 2.98 0.29 1.98 \n", "8 2.98 3.15 0.22 1.85 \n", "10 2.20 2.43 0.26 1.57 \n", "11 2.60 2.76 0.29 1.81 \n", @@ -3419,8 +3419,8 @@ "176 2.05 0.76 0.56 1.35 \n", "\n", " Color intensity Hue OD280/OD315 OF diluted wines Proline \n", - "3 4.320000 1.04 2.93 735.0 \n", - "4 6.750000 1.05 2.85 1450.0 \n", + "6 5.050000 1.06 3.58 1295.0 \n", + "7 5.200000 1.08 2.85 1045.0 \n", "8 7.220000 1.01 3.55 1045.0 \n", "10 5.000000 1.17 2.82 1280.0 \n", "11 5.600000 1.15 2.90 1320.0 \n", @@ -3484,7 +3484,7 @@ "[170 rows x 14 columns]" ] }, - "execution_count": 34, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -3505,12 +3505,67 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "colab": {}, "colab_type": "code", "id": "mD40T0Cnm5SA" }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ]], dtype=object)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJztnXe4XFX1v98PIdQEAgRCEgJXEEGKRhIBRTE2mgVUQIpIlKaC5WcsERtNBaUooihNqiBfqVLEiERFpQUDAREJkJBGQggJKbSE9ftj7ck9mczMnT5z76z3eeaZ0/bea69d1m5nH5kZQRAEQeexRqsFCIIgCFpDGIAgCIIOJQxAEARBhxIGIAiCoEMJAxAEQdChhAEIgiDoUBpmACRdKum0Gv0YI2lm5vxRSWPKdFv2s7Ug5zeSXpB0Xx39PUnSlfXyrwY56pGOVcelHuF3Avllpa9S73hKul3SkfXyrx5I+pWk7zYjrJoNgKSJqfJbux4ClcLMdjSziZU+2+DK9F3AB4EtzGzXBoXRFJqZlkHP9OX0kHSYpAckLZE0J1XE72q2HGa2r5ldVs6zKT2OboJMnzOzU1OYDTXsNRkASV3AuwEDPloHeXojWwHTzGxpqwWphUjL9qIvp4ekrwI/BX4IDAG2BH4J7N/gcPs10v/eSK09gE8D9wCXAiW7UZL2lzRZ0ouSnpS0T7r+GUmPSVos6SlJx5XwY5qkD6TjkyRdK+ny5PZRSaPzn03hnAh8MrU2HpJ0kKRJeX6Pk3RjkXCHSbpZ0gJJUyUdk64fBVwEvCP5fXIBt9tI+ouk5yXNl3SVpEGZ+9+UNCvF4XFJ7884X6tY/BpAWWlZIh0L6ihD0bhIenNqXS1M9/pUhVclBdND0n6S/pP0OEvS17KOUj6el1rVn2muyD0jaUPgFOB4M7vezJaa2Wtm9gcz+3p6Zm1JP5U0O/1+WqwXVCrvpOHD8yXdJmkp8N4C7le26iWNlXS3pDNTz+tpSfumez/ADfJ5qayfl65vL2lCyvePSzo4L/xfSLo1pde9krZJ9yTpnJRWiyQ9LGmnjLvTJK0P3A4MS2EuSeVsmaRNMuGMkvScpP4VJ4iZVf0DpgJfAEYBrwFDMvcuBU5Lx7sCi/ChkjWA4cD26d6HgG0AAe8BlgG7pHtjgJkZP6cBH0jHJwEvA/sB/YAfAfeUePbKzL21gQXAmzPX/g18okg8/4q3UNYBRgLPAe9P98YCd5fQ0RtTvNcGNgX+Bvw03dsOmAEMS+ddwDblxK/ev2JpWUE6ltJR0bgA/VPYJwJrAe8DFgPb5YffSb8S6TEHeHc63iivrCzHK9f+SdfLgI1aHZe8eO2T5FyzxDOn4MZvs1Rm/gmcmonnzAryziJgj5Rf1ykQ1kTg6HQ8Nun6mJRPPw/MBpT/bDpfP5XfzwBrArsA84EdM+EvSOVmTeAq4Jp0b29gEjAIr/veDAwtUOZWxjcT7m3A5zPn5wA/ryY9qu4ByMfrtgKuNbNJwJPAYUUePwq4xMwmmNnrZjbLzP4LYGa3mtmT5vwV+BNuacvhbjO7zcxWAFcAby3HkZm9AvwO+FSKy4545XtLgXiOwMf5v2lmL5vZZLzVf0SZYU1N8X7FzJ4DzsYNHcAK3DDsIKm/mU0zsydrjV+lVJCWBdOxTB0Vi8vuwADgdDN71cz+gqfDoY2Ia2+gh/R4Dc8vG5jZC2b2YMbpa8Ap5i3q24AleCOjndgEmG9my0s8czgej3mpzJxM4fJWTt65ycz+kfLry2XIN93MLkz59DJgKD5MVYgP48O/vzGz5SktrgMOzDxzvZndl+J7Fd44Ak+rgcD2uIF5zMzmlCEfSa5c3dUPj+8VZbpdhVqGgI4E/mRm89P5byk+dDACz8SrIWlfSfekLtRCvOUyuEwZns0cLwPWkbRmmW4vAw6TJDxzXZsMQz7DgAVmtjhzbTre+u0RSZtJuiZ1118EriTFz8ymAl/BW8jz0nPDMs5riV8llJuWxdKxHB0Vi8swYIaZvV7CbadRKj0+gZeR6ZL+KukdGXfP51Wsy/AKsp14HhjcQz4ehueBHNPTtULP9ZR3ZlQo38p8ambL0mExHW4F7JaGnxam+utwYPNC/pFJj2SszgN+AcyVdIGkDcqU8Sa8EbA13htfZGZVrUCsygBIWhc4GHiPpGclPQv8P+Ctkgq1Umfgwzz5/qyNW8wz8S7uILx7o2rkKsFqW56a2T3Aq3hv4zCKW9DZwMaSBmaubQnMKjPsH6Xw32JmG+CWe2X8zOy3ZpZr8RlwRpn+1oUK07JgOlKbjmYDIyRl82Il+u1T9JQeZna/me2PD4/cCFzbQnGr4V/4cOABJZ6ZjZeHHFuma4We6ynv1HO743y/ZgB/NbNBmd8AM/t8WZ6ZnWtmo4AdgTcBXy8jTFJP5lrc2BxBla1/qL4HcAA+fLED3qUZiY9h/R2fvMrnYuAzkt4vaQ1JwyVtj4/brY2PFy9PEy57VSlTKeYCXXkZBeBy3AovN7O7Czk0sxn4GOSPJK0j6S34UMhVZYY9EO+KL5Q0nEwiS9pO0vuSIXwZeAnXazOpJC0LpmONOroXWAp8Q1J/+bsbHwGuqUPceiOl0mOspMMlbWhmrwEv0vz8UhNmtgj4HvALSQdIWi+l+76Sfpweuxr4jqRNJQ1Ozxdaxt3svDMX2DpzfgvwJklHpPD7S3q7pDf35FF6brc0cbsUL/+F0nIusIl88jzL5ficxUcprJuyqNYAHAn8xsyeMbNncz+8Mj08v3uXuiefwScrFuEThlulIYMv4dbsBbwlfnOVMpXi/9L/85KyY6ZXADvRswU9FJ8jmA3cAHzfzCaUGfbJ+OTQIuBW4PrMvbWB0/GJo2fxVt2JZfpbL0qmJT55BRRPx3S7Kh2Z2at4Jt4X18MvgU/n5og6kFLpcSSu/2lpOPFzpLHg3oSZnQ18FfgO3vibAZyA92gATgMeAB4GpgAPpmv5/jQ77/wMOFC+QujcVH/tBRyC5/tn8R58Oe9tbABciNd70/GhsTPzH0pxuRp4Kg0zDUvX/wG8DjxoZtOqjVBudrsjSd3tefhKiidaLU8QBEG5SPoL8Fszu6haPxoxodib+Dxwf1T+QRD0JiS9HR9ZqOnluY41AJKm4ZOxpSajgiAI2gpJl+H11pfzVt5V7lcnDwEFQRB0MrEddBAEQYfS1CGgwYMH26abbsr666/fzGBXYenSpW0T/qRJk+ab2ab19H/w4MHW1dVVTy+L0mpdlkNv1HE76LUSGeqt40bqt5m6rWdYjcjHQG17AVX6GzVqlN11113WStopfOABa4COm0WrdVkOvVHH7aDXSmSot44bqd9m6raeYTUiH5tZ354E7hp/62rXxu28nDHNF6XX0xd0mSb+F+Mv3Cw3s9GSNsb3herCNxA82MxeaJWMlVAoTQCmnf6hJkvSGjo9/vUg5gCCTuO9ZjbSzHLbUY8H7jSzbYE703kQdARhAIJOZ398Y0DSfywLDjqGPj0EFAR5GPAnSQb82swuwDchnANgZnMkbVbIoaRjgWMBhgwZwsSJExsm5JIlS8ryf9zOhXdUrods5coQ9G7CAASdxB5mNjtV8hMklb1nTDIWFwCMHj3axowZ0yARvQIvx/+xxcbAD+/Zbb1kCHo3MQQUdAxmNjv9z8M3rNsV34t9KED6n9c6CYOguYQBCDoCSevnvleQvrW6F/AIvvts7mMrR+If2wiCjiCGgIJOYQhwg38AjjXxXRT/KOl+4FpJRwHPAAe1UMaggXSNv5VxOy9fbeisk5eNhgEIOgIze4oC31Q2s+eB9zdfoiBoPWEAgqZS7OWdUnRyCw2q01kQlEMYgKAhRKUVBO1PRxqAeIU8CIKgQw1AuyFpBP6R583x73xeYGY/68371ARBq4jeZ/nEMtD2YDkwzszeDOwOHC9pB2KfmiAIGkif6AH0douftiLIbUewWNJjwHB8n5ox6bHLgInAN1sgYlF6u+6D+lCiF3sScAzwXHr0RDO7rTVSBvn0CQPQl5DUBbwNuJc22qem0L4zQ9Ytvh9NPYk9aXoFuV7sg+mFu0mSJqR755jZmS2ULShCGIA2QtIA4DrgK2b2YnppqUeasU9NoX1nxu28nLOmND4L1WNvm6CxlOjFBm1Mj6U3unbNQVJ/vPK/ysyuT5fnShqaWv8N36cmhnOCepDXi90DOEHSp4EH8F5CLGRoE8ppvkXXrsHIm/oXA4+Z2dmZW7l9ak4n9qkJegEFerHnA6fiW3GfCpwFfLaAu4qHMasZfiw0bNmoIcbesKV2jwYgunZNYQ/gCGCKpMnp2ol4xR/71AQV0ar3XAr1Ys1sbub+hcAthdxWM4xZbDvsUhQatmzUEGNv2FK7ogHcarp2+Za9EVaxkpZAqYnLZljrQvE3s7uBYgP+sU9N0PYU68XmhjDT6cfwHViDNqFsA1Bt1y7fsg8YMKDuVrGSlkCpictmTDb2hlZBEFRBsV7soZJG4vXENOC41ogXFKIsA1BL165exARlELQvJXqxsTCkjenxTeBSXbvMY9G1C4Ig6GWU0wOIrl0QBEEfpJxVQNG1C4Ig6IPEm8AZSs0zxFbRrSO27w4aSSeX+zAAQRC0NbEApHGEAQiCDiF6UkE+YQA6kGhRBUEA8UGYIAiCjiV6AEEQBEXo68NmYQCCoA3IVjTjdl5e1UZnQVApYQCCIAgqpK/0DMIAlElfSfAgCIIcMQkcBEHQoYQBCIIg6FBiCCgImki8g9G3KTaZ365DxdEDCIIg6FBa1gOISdUgCILWUpMBkLQP8DOgH3CRmZ1eq0B9pYtcLB6X7rN+Rf40Qsd9hXo1Ijo9HxeSNTd8Ua8GWafn43Zt8FZtACT1A34BfBCYCdwv6WYz+0+9hOsNNLKg16rjQrItXzSXWb86ii2/fhNao19d5a0Xc6/9Puu/eU8G7Pz+1e7VW/7Ix6WpR8XVTjq+92938uytd7L5p34MwDNnH8jQz55H/0GbNzzsl2c8wvN//DnDj/l1wftjx45liy224LTTTmu4LDlq6QHsCkw1s6cAJF0D7A80JVGX/mciL95/I689P5M11lqX/pttzYbvPJh1ttixYWFOP+PDDDv2AvpvNKxhYeRRk45nnv9ZXl+2ENQ91bPZwac2Qs66MuTgk5sZXE06rncDYOb5n+XxLxwPjFp5bcmUP7PkoT+trLR6ITXXFTPP/ywrlixgi+Mvo996G668Pvs3X+S1eU8z/HMXs+aGQ1ZeX3j3VSz6x9VsfsRZrD1su6L+bvnV31cemypZZ8ROq1X+2fwzf9JM+v3vZa5s4sSxzKw6h9KBwD5mdnQ6PwLYzcxOyHvuWODYdLod8Dwwv2qJnSHA5sB04EX8s5QbAAPxFkYpBtcQ/ij828evVOk+P/ytzGzTYg/WoOPH0/HO+Oc6F2ceXytdn1RDHHLUostqqVT+7cxsYLGbddBxvdkZeIFV8/EmuK4bFWYhKknbmvNxGfrdGS/n89IPYF1gG2BtYArwaub5nfAG7gLgmcz1rvR8M3RZafnowuMwu8C9kjquGjOr6gcchI/l5c6PAH5ehrsHqg0zud8QWAIcVOT+2sBPkxJnp+O1072xwOK85w14Yzq+FO+q3opXmvcC26R7f0vPLk3hf7JK+cuOf7U6zjw/DfhA3rWuFI810/lngMdSfJ8Cjss8+xjw4cz5mniG3iWdLwCeBRYl/eyYebaoLtP9dwL3J7f3A+/M3JsIHJ2O+wFnpnCfAo7Pk39sur4YeBo4vBJ916rjev9Smj2ed20scHd+fs3o+bTM+YeBycBC4J/AWxqdTxudjzN6+Q5wf+bamcC3k066Mtf3BF4CPoU3ONfK3Hs6p8t8feIG5Sy8YbkIuBtYt4AsGwG3AM/hxvoWYIvM/Y2B3+CV+QvAjen6GGBm5rm3AQ+mvPs74JpsWjbjV8sy0JnAiMz5FhS2XPXmHcA6wA1F7n8b2B0YCbwV735+pwL/DwVOxhN5KvADADPbM91/q5kNMLPfVS56xTRDx/PwSmMD3BicI2mXdO9qXB859gbmm9mD6XwRsC2wGZ6Rr8rzu6AuJW2MG4Zz8dbt2cCtkjYpIN8xSb63AaOBA3M3JK2f/NjXvJX/Trzyq4RW5eO6k9LtEuA4XK+/Bm6WtHZLBaufju8BNpD05jSv8EngygLPHQn8Aa9UwfNPOZyJ9/LfiVfi3wBeL/DcGngFvxWwJW5szsvcvwJYD3gULxvn5HsgaS3gxvTsxsD/AZ8oU876UYNVXxNveb0B75Y/RKYF2KiWBXA48GyJ+08C+2XO9wampeOx9NwDyLZU9gP+W+jZGuSvpAdQlY4z7qfhvZWF6XcjeT2AAm5uBL6cjt+It07WS+dXAd8rFBdgUPJ3w550ibcA78sL91/A2HQ8ke4ewF+Az2We2ysnP7B+itcnKNBSK0ffteq43r+UZisyabYQWEYZPQDgfODUPP8eB97TyHza6Hyc0csH8Mbcj4B9gAnJ75U9ALzifRE4IJ3/Grgp40/BHgBeqb+EN/Aqjd9I4IV0PBQ3Ghvl65BMDwDvpcwmDcOna/+kt/QAzGw5cAJwBz5UcK2ZPVqG0wuqDTPxPDBYUrEJ7GF4Fy7H9HQtx7M9+J+9vwwYULGEpSk7/jXoOMsBZjYo/Q7IvylpX0n3SFogaSFeUQ9O4U9N4X5E0nrAR4HfJnf9gOckPSnpRbyAknObKKbL/DQinQ8vIP8wYEbecyT5luKtwM8BcyTdKmn7PPcl9V0nHdebn2XSbBDwhTLdbQWMk7Qw98Nb3tWsWqi1nK6kzjq+AjgMb8xdXuD+x4DlwG3p/CpgX0m58fOJRfwdjI8sPNmTAJLWk/RrSdNT3v8bMCiViRHAAjN7gdI6HAbMslTzJ/LLRMOp6T0AM7uNbkWX66bWjPUv4GXgAKDQFP5svCDkMtiWdHc3l5KZEJXU+LVfeVQa/2p0XC5paOA64NN4K+k1STcCyjyWGwZaA/hPMgrghbALb5VNw+dmXshzW4xcGmXZEvhjgWfnsOrwwZbZm2Z2B3CHpHWB04ALgXdn7veo70bquEpKybIMb+Xm2JzuCeMZwA/M7Ae1ClCHcprvX110bGbTJT2NN1SOKvDIkXhD4xlJ4PmxP56HzwX+ig9b5jMfr1e2wXsopRiHT1TvZmbPShoJ/DuFNQPYWNKgHnQ4BxguSRkjsCVlGKB60uu2gjCzRcD3gF9IOiBZ4/6pJftjvML6jqRNJQ1Oz+bGCR8CdpQ0UtI6wEkVBj8X2Lo+MWkL1sInzZ8DlkvaFx9iyXJNuvZ5Uus/MRBfDfU8XiH9sIJwbwPeJOkwSWtK+iSwAz6Zls+1wJckbSFpI2B87oakIZI+muYCXsGHu1ZUIEdvZDJwmKR+6eWq92TuXQh8TtJuctaX9CFJRVdB9VKOAt6XeoArkTQceD8+5j+S7nnAM3DDUBQzex2fPzlb0rCk33cUmT8ZiA8XLUzzWd/P+DMHuB34paSNUt20ZwE//oX3VL6UysDH8fnKptLrDACAmZ0NfBUfD3wOt7on4OPXpwEPAA/jS8MeTNcws/8BpwB/Bp7AZ/kr4STgstS9PrjmiLQYM1sMfAmvZF/AW/U35z0zB8+s76R7Ug28+z0dmIWv576ngnCfxwvpONyAfANfbVRoydyF+NDBQ3haXp+5t0byYza+Iuk9lD9c0lv5MvARfG7gcDzPA2BmD+CT5ufh6TkVHyrpU5jZkymu+RwBTDazP5nZs7kf3vJ/i6SdevD6a3idcT+en86gcB35U3zF0Hw83+f3XI8AXgP+iy+y+EqBOLwKfBxPnxfwoczr859rOI2cYMAt6jzgkcy1jfHJmyfS/0YNDH8EcBc+7vgo3ZObTZEBH1O8D6+8HgVOTtffgC+LfAKvVNdqRPh1Tref4Bn6YXwF1qAibqfhhWgydZxILFPGk3CDNDn99ividh98cnQqML7V+u4pvzZZhoJ5ti/8Gpk3W13XVS13gxW+J7BLnlJ+nCt0eHf+jAaGP5TuNesDgf/hQw1NkQEfExyQjvunSn93vMV9SLr+K+Dzrc4IZaTbXnSvvT+jmM5SIRvcIhlPAr7Wg7t++Djr1nSvSNmh1TpPshXMr02WoWCebbVu6hS3huXNVtd11f4aOgRkZn/Du1JZ9gcuS8eX4ZO5jQp/jqU16+bDHY/hK02aIoM5S9Jp//Qz4H10T2A3VAfVUCjdzLvVy9PpPfha7pZRJG+Vw8ptCcy74bltCVpOifzaTBmK5dmgBK2u66qlFXMAQ8zHlUn/mzUjUEld+MtE9zZThjSZNBnvHk7AW58LM5XpTJpcyOvAZ/GJrkIY8CdJk9Lr/c3mBEkPS7okTRrnM5xVl5W2pf7z8muzw14lz5pZ02VoEM3Omy2p6yqhV04CV4qkAfhyx6+Y2YvNDNvMVpjZSLzFvCvw5kKPNVOmWpD0bXz1Qv5bvzn2MLNdgH2B44usgGgU5+PL+Ebiy+zOKvBMoWWqbaX/VuZXWD3PljF52ltoZd5sS6reDK7sALwlc4uZ7TR48GDr6uoCYOnSpay/fmV749eLdgl70qRJ8/GXq04ys73r4X9Wx82mlXotJsOkSZPmW2YTLUnvIKNvSd8CMLMflRtGvo6bEe92DiNfx7XSjDzcLnVAudRbxytp9CQD/rLQI2bGqFGjLMddd91lraJdwsaXq/4K+ILVSd9ZHTebVuq1mAys/jp+zdsS5Ou4GfFu5zDydVzrrxl5uF3qgHKpt45zv4Z+ElLS1fj+F4MlzRw1alQPLprDlFmLVn6sOUsLvs6zE743ycWN8Lxdv0LUbCQNw/cl2s/MlkvKbUvQD7jEWr/1Q8nvCnRaepVL5O/aaagBMLPsTpKMHj26rcZa24BHzOygVgtRC9lCmPuMILRXITSz2fjWAbnzdtv6oSRd429dRbc52knHQe+kIyaBgyAIgtVpaA8gCILOQtI0fMPFFcByMxud9sv5HT4fOA042Hy3zKDFhAEIGkKMz3Y077VV93UaD9xpZqdLGp/Ov9ka0YIsMQQUBEGjafs3YjuV6AEEQVBPcm/bGvBr8z3xV3kjVtJqb8RmPwo/ZMgQJk6c2GNA43ZeXvB6OW6XLFlS1nONoJVh5xMGIAiCerKHmc1OlfwESf8tx1EyFBeArxYcM2ZMj24KLeUGmHZ4z24nTpxIOWE0glaGnU8MAQVBUDfSklvMbB6+bfiuwFxJQwHS/7zWSRhkCQMQBEFdSF8gG5g7xrcQfwT/yFDui1xHAje1RsIgn7KGgBqxtKuN3sYNgqA+DAFuSN/iXRP4rZn9UdL9wLWSjgKeAXr1y499iUrmAGJpVxAERTGzp/Bv8OZffx7/Vm/QZtQyBBRLu4IgCHox5fYAqlraBcWXdw1Zt/AyrmYsj2pl2O20BCyf2JAsCDqLcg1AVUu7oPjyrp9fdRNnTVk9+HKWcNVKM8IuVpleus+A1ZaASRoBXA5sDrwOXGBmP4tX6INSxNvWQa2UNQQUS7saznJgnJm9Gf9o/PGSdqB7nmVb4M50HgRBUBd6NACxtKvxWIs/Xt8JSBoh6S5Jj0l6VNKX0/WNJU2Q9ET6L/Qd4SDok5QzBBRLu5pIqY/XVzrPUumr8sWeBx82K+ym+7jY3Eo5YdeLEnMsuV7Wg6lBM0nSBGAssZot6FB6NACxtKt55H8MPBndHik2z1Lpq/LFni+XcTsvLzi3Uk7Y9aLYa/bJkOaM6WJJ2V5WzsFlwETCAAQdQuwF1CZI6o9X/leZ2fXp8lxJQ1Prv27zLKVW+3QC9exlQWUru6bMWlTwerYnVYhyelc5ivXWdh6+YUl37bxCLWgMYQDaAHlT/2LgMTM7O3MrN89yOjHPUhfq3cuCyjb3qraXVU7vqid66n210yZltRCro8on9gJqD/YAjgDeJ2ly+u2HV/wflPQE8MF0HlRJqV5Wuh+r2YKOInoAbYCZ3Q0Ua4rGPEsdaFQvKz7YHvRmwgAEnUKulzVF0uR07US84o/VbEFHEgYg6Aia3cvq9In2oHcQcwBBEAQdShiAIAiCDiWGgIKmEkv0gqB9iB5AEARBhxI9gCAI2pqYUG8c0QMIgiDoUKIHEARBR5DtSWRf3uvk+acwAEEQdDTVfAq1ryxmiCGgIAiCDiV6AEEQBEXo6xPQ0QMIgiDoUKIHELQF1YzDBkFQG2EAgqBD6CsTl+1Mb9NxDAEFQRB0KDUZAEn7SHpc0lRJ4+slVNBN6LjxhI4bT+i4Pal6CEhSP+AX+KcKZwL3S7rZzP5TL+E6ndBx4wkdN57QcfGX0ErRjGGjWnoAuwJTzewpM3sVuAbYvz5itQ/PPPMMAwYMYMWKFa0IvqiOJX1M0gxJSyS9TdI0SR9ohZDlsOhf1/L87ecWvT/z/M/y0rTJRe8Xomv8rXSNvxVJDD/uQrrG38qUWYsqFa2qfDxt2jQkYa+3JF80hEMOOYQ///nPAPzwhz/k6KOPpmv8rWzx+UuQxFbfuHmlziukIh0//vjjXHTRRdVGA4Dn7ziPhf+4uuC9+beewy3/d1VN/jeTAQMGAKzVCL9lZtU5lA4E9jGzo9P5EcBuZnZC3nPHAsem013S/8PAIGB+Ot8BWBeYArxalUCVMTgTdqPYGTewU4DXM+FuDjySzrcys02LeVBKx5KeBL5qZjclHf8cmAYMAx5vQHxKsQkwBFgHWAG8AMxKxySZNgdyme014EVgTjoGeEs6Xjs9txiYkbkvYASwUTpeAkxP90cBjwFDgQ3TtVnAAjI6lnQB8ICZXSBpC+AM4KNJ7n8DpyT/czo2YFlG7teB54DNgKfxNJ6Lp6uA5en+sxndbAUMTPGaBjyfp7cuuvMHwNQU93wGJ7fDgI2B/nhZeS7JkGM7YP2MzAD/A5YW8DOfkcCTBcJfC4/rpCLusjruwnXTP8VlSOa5a4AvAh8jr67IqydG4j2FepTRTXDdZctEFz76MbUO/ldDNfVPybqiasysqh/+7dSLMudHAD/vwc00PCG+iBdE8Iz1OJ5hu6qVp0LZH2hCGNPwAnti5trRwOJ66BivbN6YF94HmqG/PBnH4RXQPngF0QXcBtwPrJWeOQk0zSIbAAAgAElEQVS4Mh33B3YEfg/MBoam63PxCngDYD3gEuCPmXC+ATxEt6G5Arg+3TPgD8DvgAeBdwGLgB3zZH0G2AKvQKcBvwGOSf+H4kbp3IyOLadjvNAegVe430/xNLzx8mB6ZjjwKPDxTJjH45+cfAAYmyfPWODucvMs/gH7+4Cd8Apsd+AJ4NzMcxOBo6tMy1cK5aFMXNcsw4+Vz+byZMrHv8UbPqfn5WMBa+T5UXUcCsizmo6BS4HZzS4r2bRsVdiryVJDJN4B3JE5/xbwrR7cTAO+g1cOOQNwJvDtlGm6gA/hrbEX8RbgSXl+fBpv+T0PfJdMxYdXNNcCl+OtmEeB0Rm3w4Dr8Bbi08CXMvd2TYXsRbwyOjs/Q2fi8IGMu5Portxyz34Gr6CX4S2v9+K9nmXAqxm370y6WJT+35lXCC7BW9OLgT8Bpyb9LUnhLAWezJcrxeVfwEK8lX0e3ZXxr4Az83R6E96bABhPdyvwP8DH8gtTSrMXUpgvAQen+w/hldSCFP9LMzp6OKenTDq+mtx/u4BedyEZS7zAPpqeWQz8NcnyeLpvKbxp6f8XuIE4Pd3/LPBUuncHXsk/gvfQLPn9REqfV0j5ON07G89v8/B89WngZbyVmqvoHkjyTMd7PQuAw/N0fDe1GYDHU7gj8q7vlsLMGaqJlFl54hVxrix9m4wBoHC+LqcMPJOeXYL3bL6I1xWPpHBeTXr+J/CPlP5H4q3x11IcXwIuyyubufxswEV4r+Q7KU0N+FzS+8sp/S8Fzk/nK5IsL6V0XIaX81vx/HQfcGGSfS5wQ0rTRXhd9I8U9oIkx2/wxssLwI1JxkeAj2Rk7o+38kem8//De4aLUpg7Zp69NMmck+deYJvM/WxDpOizuDE9J8VxEV7mdiqVB2qZA7gf2FbSGyStBRyCF/6euAdv5a2TJoc+CVyZub8UL2SDcGPweUkHAEjaAfglcDjd3f3hef5/FO9qDkrynJfcroG3Eh/CFfN+4CuS9k7ufgb8zMw2ALbBDUm17IYPQZyMt1Z/hbeEvgesKek9kjbGE/FcvJt6NnCrpE0y/rwHL0hvx4cQjgVuMLMB6f5bzWybAuGvAP4f3mp9R4rrF9K93wKflCQASRsBe+E6A6/8343r9mTgSklD8+L2ePL7Dyl+16d7W+Nd92F4L+AQSat9cD2Tjr/Fh8g2wVvmWfbEK+YcXXiG3xkvbD8Gbs96i1fK/wEOxgv+jinvnIgX6jOBv+MG+jozez3j9yeAffGKJbs44hO4Ad8aGJB0tSbw1swzQ/FKYUu8Qv0AUO6ExtskzZf0P0nflVRsYcYGwL1mNiN70czuxXVe0YftUxqcjxuBYXga1GOcec/0PwivUHNDc9vh6XcW0A8YjefnLnz48hXgYrxR1x/4eCbvZPPzfXhv8wsprOnpmQ+nsL6Ip/9w3OB8Ds8TrwM/Sdf/gQ/LnY0P+W0A7Ifnn7fj9c7spJNnkqzb4b1Pw3uoO+JDgeek8C8HPpXRw37AHDPL5YPbgW2Tm2VA/iTEoXh52wg3hj8ooNuent0r6eRNuP4/yapDjqtRtQEws+XACXiL6jHgWjN7tLSrlVyBt+4/CPwXryxz/k40sylm9rqZPQxcjVeEAAcCfzCzu80nk77HqmOd4C2q28xsRQonV1DfDmxqZqcAvzazp3Crf0i6/xrwRkmDzWyJmd1TZlwKcWqSaxKe6Uek84W4gXsbnsmeMLMrzGy5mV2ddPGRjD+/AY7DDdkOwKJydGxmk8zsnuTvNODXdOvw70mWd6fzA4F/mdns5Pb/zGx20v/v8Jbxrhnvp5vZhUm//07XBksagY89f9PMXsYL3Ry8gsnnQOAWvDGwEV7oV46DS3oLnrZfz7i5Ha/4n0462RRvCeZYaGYLcYN/Fz7MMzA9+6MUh1uBHyY5X8m4/T4+JPWbdD4sc+8S88nLJXgv95N4y25Q5pkf4S2ur+P59Ykyy8Lf8OGczXBDc2henLNMxfVZiDl45ZjjXEkL0+/BIm4OBG4xs7+Z2St4GjRiRvtGfGjuJborpdl0z+PsjcdtezzuZ+It5b+T8k42P+M94aeAMfi8UW5lwdl4r/EGutM/y2vAKWaWmx96DS+LK3Aj9LKZLcDLyVRg5xTeQ+m5I3Ed7w58zsxeMLPXzOyvyf8rgf0kbZDOj8DrH1IcLjGzxUnXPwTeKmnDjHzXm9l9KcyrcGNUjGLPvobn+e3x+d3HzKxYngFqfA8gVbRvMrNtzKyUxcrnCrxCG4tbzpVI2k3SXZKek7QIt+C5zD0MNxy58JexuoXLTsAtw3saa+KTccMkLQR+nP5PpHuS6ijccv5X0v2SPlxBfPLJTsotwVscubXPy/CW5DC6Wy85prNqj+bZnI7xwjGvnMAlvUnSLZKelfQinuEGA5j3Fa/BKxuAw8i0RiR9WtLkXAWCV1DZyiWr39npf8MUn+fNLDeBOBSvKPN7aNCdjsOBBWa2lJSOkt6IV/ZfNrO/Z9zsgPc2NsEr8GV091rAW2WY2QXp3ga48d0K793tgfdYFqTnsz2nG5OOcy3ObKNiVuZ4Ot763xQ35qQwz8Mrtr2BrwIPSdq+QLxXIRmWp5OxnYLPgRxY5PF/4DotRE7XOb5kZoPSb5cibvLL0lJ8fqPeHIA3InJ1zcZ0N4iGJzlewPPB4pQ/Z+D5YTismp9x/b4LT9cpwITk71B8pdF8PP3ze1LPpwozR64cbor3rt+Q8vsFeEs9N+H6E7zcjceHhV4ysxfyI5kaUP8APiFpEN6bvCrJ30/S6ZKeTOXx5OSsWLnKyVaMgs+a2V/wBtAvgLmSLsgYpIK05E1gM5uOt+T2o3v4IMdv8RbvCDPbEB8+Ubo3h8xQgaR18QqhHGYAT2cKxiAzG2hm+yWZnjCzQ/HW2BnA7yWtX8CfpaTKJrF5GWFfik82ZivD2XgmzrIlq1Y41XI+3pvYNg1pnUi3DsFbqQdK2gof0rkOIJ1fiPfsNjGzQXirO+s2y7/S/154fDaWNDDpbV+84BSKzxy8EvgI8HdJ6+HpuBnwZ+BUM7siz80wfE5hAT5EsA4+xJMrRP0kbZt5fgg+hDQDb9lfm0t33CDuloYFsxyMp++CzLVsmm2JtxhzLcOVmNkdZvZBPO+8juuxUoziuv5zknlE9qKkXXFd/qXCsHJpkPMnlwblUKoM5PfIwdPguIz+7wa+YGb/THJsRHfeya322pjuvLMyP+MV8+t45flX636XYAw+N5RPIXmyzMd7g88m2Y4F/p0bZk0NmgW44TkMWE/SR4v4dRk+DHQQ3qvOyX8Yvuz1A3hjqStdL5bWVWNm55rZKHyIKtdwLEort4I4CnhfanlkGYi3Bl5OmfuwzL3fAx+R9M4073Ay5SvxPuBFSd+UtG6yyjtJejuApE9J2jSNC+dad4W6xJPxse3+kkZTvMWWZRbeDf5S5tptwJskHSZpTUmfxFu5t5QZn1IMxCe5lqSW6OezN83s33hr7yJ8Ij8X39zywecAJH0G7wEUxMxyi+6/j2e4f+EtkOvwgjWavLFOSf3xlTqfwAv6z/GW7xp49/8XZvarAsGtB/y/VOH/AB/3np1afOBDA6ck47MZnvmvwBsQnyJV2Knb/STeQ7g4uV1L0qH4ROgDeeF+Js1zjUj+vYZX8jmdHZNaqB+VtCc+5PQEKe9IWkvSOng+7S9pnZzhkbSvpCHpeHt8GOamIrr+M3AncJ2kHVP+3T3p93wze6KQuxL8HviwpHelspRLg3IoVQaewyvorTPXfgV8S9KO6bwfvnQXfFhuW3xe6XS8ot0cb+Xn8s7K/Iwb4dfwFn+2wj+EwgZgLt2t+dVI5f0WYJCkzfByuV1qsa8p6Qy8DNyCDz29AnxJ0kYp/ntmvLsRH4b6MquObAxM7p7H8/EPi8lTC5LenkZQ+uNGOjcBXhyrchVQNT989cAf8ZbhI5nra9K9CuhAvKu9GFf6eay6emQsPjGTWwU0C3i35a1GsMKrF0bjGWJ5Usw0ulc9XJnkWoK3HA8o4sfW+Mz7EroncVdbLUH3EriZeOvkjXjBeC3JcDKeySfh48eTgHdlZJ9IZjUHeStGyKwMyOg2F5c98RbTEnws9RRWXwr33eTHQXnXf4C3eObj46p/zcmRZLgPH2N9LOnJ8LHxR/Bx3lfwlR4r8Jbf5PT8CrrHXZ/AK7NZdK9AeYHu1SMrf9a98uE3eGvx9ZR+r+BjtZOTu1F4AVya3N6Q0mZqCvspuleWXYJXJFcnt8vwRQ37p7BOy+j41RRmLty5+HBALq3vSLK/ns5fT+F/N5OOlvcbk+6dmfxbmuT7N3llIy9t1sEN1GspnBlJljWK5ZsCflySCwMf186VpdxKrHF4fnw25YPvUUEZSPdPodsQfNG6VxxNSWnwMqvm5X1S/LOrgK7I3M/Pz3enNF07k04GDMnkl4eSXBPpfpcjm58W4uVzTPJ3BZ6nXk56eCbpYQae75biZfmHeEt/bkr36/P0e1F6dkDyZwq+6CS3mm86vsjF8DrhXLpXHu6S/BgDzCxU1snkz/xn8SHMh1N85uMGdEDJOrmZBiCTmLtQJJNX6NcAvFC+ocznh2aUPBB/QWaHJsVbucTAhzDuBXZvtv7rEI8edZgy5S11DHOVTJ+uTQMGl3CzHz6XsCtuqO6tIfx+eK9ha3ylzEMF4jwWOK/GeJYsG5k4CZ+MrDhOZYRR17Rr5a9FefV7dDcIy82jVadnrb+mDwGZ2d9YdYy1IiR9RNJ6qat/Jm5hp5UZ9hwzezAdL8ZbsYUmKeuOOUvSaf/062l8su1opQ4rZH+6u+Ffw7v4xSZRe6Ip256UUTb2By5PeekeqohTreWvN9HsvCpf2n0UPpFcDjWnZ630xu2g98cnHGfjY4eHWDKnlSB/Zf1teEu8KaRx28l4F3yC+RruXksPOnyHpIck3Z4Z+60nBvxJ0iT5NgL5DAdmmC+Xux3vvldb+IeTWTFTwq9PSHpY0u/zJ2vrRLly1Eqj067pNDqvSjoGT5vbk5GFMvNo5rxR6VmUXvdBGPN9cY6uxQ9JA/CJyq+Y2Yt1EawMzNfOj0zLxG6QtJOZPdKTu3akBx0+iO9dskTSfvjY/Lb5fpSLmY0tcHkPM5udJu4mSPpvpuBB4cUB1fa4yvHrD8DVZvaKpM/h48TvqzK8WuSolbqmXTvQjLxqZhey+sqvZubRquiNPYCaSDPk1wFXmVn+EtSmYL7qZiI++dXr6EmHZvZibrjLzG7DV78Mzn+uFqz7xbV5+ITvrnmPzCSzzBFfPjyb6ujRLzN73vwlH/CKYBT1p55xKkgz0q6ZtDKvNjmPVkXVu4FWw+DBg62rq6shfi9dupT11y+0bL+5VCLHpEmTXjR/16Fu1EPHrdBlo8KcNGnSfPx9g3PNLL8AloX8RcL/4assZm2yySav1Csft0u+rZSs3JMmTZpvddypspY8XG991tO/Wvyqt45X0swZ51GjRlmjuOuuuxrmdyVUIgcN2BWwHjpuhS4bFSa+rG8KmU0Bq/nhKzb+BzxZz3zcLvm2UrJy1zsf16Lfeuuznv7V4lcj6goza785gN72UeVOoRenyyNmNrpWT8yHB24DGD16dFus3urFadISQl+r03FzAEEQBIHTdj2Aaugaf2vB72x2smUPgiDoiV5jAKr4DmkQBEFQghgCCoIg6FDCAARBEHQovWYIKAiC8ojVLkG5hAEIgqCjKTW/eOk+ve8lvUoIAxCsJFcQCq2oCoKg7xFzAEEQBB1K9ACCoAHEOHzQG4geQBAEQYcSPYAg6BCiVxLkEwYg6AjSF7ouBzbHP1Z+gZn9LH3G73f4h8+nAQeb2QutkjOondg1oHx6NAAlCs5JwDHAc+nRE9OOiUHQjq3N5cA4M3tQ0kBgkqQJ+Mfc7zSz0yWNB8YD32yVkL2VqCd6J+X0AIoVHIBzzOzMxokXBPXBzOYAc9LxYkm5D4TvD4xJj12Gf6ktDEDlRD3RC+nRAJQoOEGdiOGJ5pL3gfAhKY9jZnPS91sLuTkWOBZgyJAhTJw4sWQY43ZeXvB6vrslS5b06FelYVRKNeHnyx31RO+kojmAvIKzB3CCpE8DD+DWPyqn6ojhiSaR/4FwqdB3uVfHzC4ALgD/IMyYMWNKPl/sRbpph6/qbuLEifTkV6VhVEq+TOVQSu6oJ3oPZRuAAgXnfOBU/Cv2pwJnAZ8t4K4uLaeeGLLu6m6rbVnVQjUtuhieaA5FPhA+V9LQ1PofCsxrnYS9n2bVEwBTZi1a7ZrXAzVEII9aemiN9KtelGUAChUcM5ubuX8hcEsht/VqOfXEuJ2Xc9aUVaNTTcumVmpp0UFzhieKkTOghYxpMYqFVe4QSI5GFw55U/9i4DEzOztz62bgSOD09H9Tw4To4zSznoDCdUWheqAWLt1n/ZrKc5Za64ZGUM4qoIIFJ9dqSqcfAx5pjIjV04YrUUrSrOGJYozN7AVUbiEqZmTLHQLJ0YTCsQdwBDBF0uR07US84r9W0lHAM8BBjRSir9Kb64lOppxSXqzgHCppJN61mwYc1xAJO4QYnmgsZnY3UMyivr+ZsvRRop7ohZSzCqhYwYm1vHUihieCVlLqxalye8tRT/RO4k3g9iCGJ4IgaDphANqAZg9PtPJV+WJh9/UPb+TIj3/u2wvtOi8V9G3CAARBDcS+M0FvJgxAUBNRAdaH0GPQCjrSAPS25aGdwJRZi4ovHY10CVpEsXzZV/JkfBAmCIKgQwkDEARB0KGEAQiCIOhQwgAEQRB0KGEAgiAIOpSOXAXUKfT1pYWxmisIaiMMQND29HVDFpSmHdO/rzQ+YggoCIKgQ4keQBAEQZ3obT2D6AEEQRB0KC3rAfSmcT1oXwseBEFQLTUZAEn7AD8D+gEXmdnpdZEqWEnouPGEjotTr+27Q8ftSdUGQFI/4BfAB4GZwP2Sbjaz/9RLuEaw8O6rWP7CHAZ/5Gssf3Eesy/6AiO+8ju0Rr+S7loxttcOOrblr/LMWR9n+OcvZc0NBlfk9rXnZzD74uPZ6hs3N0i6wvzxj3/khBNOYOrUqT0+2w467uuEjovT6lGHWnoAuwJTzewpAEnXAPsDDUnUmed/lteXLQStgfqvw7pbj2bjDx7HGmutW7Wfa26wGVt+9fc1yVXsAx/FqDBRC+pY0n2ZZ9YDXgFWAHR1dZX08KWnJrFgwq8YftyFlcjRl2lqPu5QOl7HXeNv7bFuaAUys+ocSgcC+5jZ0en8CGA3Mzsh77ljgWPT6XbA41XKujP+UenFQH/gTcBCYFa6PxiYX4Y/w4C1gaerlKMnypUDYCsz27TYzXJ0LGkacD2wZ7rUk443ALYEHinxTDYOAnYBHgZeKxWZAqwD7AhMKuPZSvTWE9k41qzjdL1e+Tifesa7mWTlrkc+rpd+663PevpXi18ldVw1ZlbVD/8+7UWZ8yOAn1frXxnhTQM+kDn/CXALMBH4AbAEeAl4I17J3wwsAKYCx2TcnQRcmY67AAPWTOcTgVOBf+CG5k/A4Izb3YF/4obnIWBMATkfqGOce9Rxvl7StXXxLvccvMv9E9xobpJ09HrS15J0bQ/gXmARMBuYm9HJOklHWxSR8Z6ks0nJ/XXAhune9sBy4DNJjueAr2fc9gO+CzyFG5ergEFlui0Yx3RvH7zFmXv2u+m5F4HHgHe3Kh83Mr8081eJ3M3Ucb31Wefy3HZpXcsy0JnAiMz5Fnjl0XAkjQD2A/6dLh2BV4QDgenA1Um+YcCBwA8llftt3cPwSmczYC3gaynM4cCtwGnAxun6dZLqb5W7qVbHJwNvwXtNo4AxwDfM7HngY8BTZjYg/Z7HK98T8Hi9G9gQOLoCOT8NHA4Mx3V2VuZeP2A0bpj3A34gaet07+vAXsC76O5hnFOm24JxzBdM0lvx9ByZ4vUhXK85WpaPO4jQcbtSgzVbE2+5vQEv9A8BOzbKUuEV/BK89T0d+CXeCpwInEKyrnhGWwEMzLj9EXBpOj6J0j2A72TcfQH4Yzr+JnBFnkx3AEc2sMXQo44p3AOYBbwvc74/8N90vErruEi4M4Gr03E5PYCTMue7AEvT8fbJbbYX9TBwQDp+Gtgjp7cUz2X4sFNPbsuKIz4ENQd4by6dW5mPC4Tfdq3CesvdTB3XW591Ls9tl9ZVTwKb2XJJJ+CVYD/gEjN7tFr/yuQAM/tz9oIkgBnABenSMGCBmS3OPDYdb0mWw7OZ42XAgHS8FXCQpI9k7vcH7spzfwF1ohodyxWyOR7nHNPx1nkxNzvgrfZdcKO6Nj5eWS4z8sJaT9KG6XyFmWXHPZcBA5KcI4DbJBleMfwbfzlxkzLclhVHM3tU0nh8mHB7SbcDXzWzuel+K/JxlrrllyZTttxN1nG99VlP/9ourWt6D8DMbgNuq5MstWBmllvWMhvYWNLAjBHYku7J4mqZgfcAjulBkLomcqU6NjOT9CxusJ5Ml7PxLzTrfyHe+znIzJakCvMDFYiZ7d5vCSwzs0WShvYg5yzg42a22iSxpKIGqIw45j9/GXCZpEHAxfgw3jGZ+y3Lx/XOL82iUrmbpeMGlL96NujaLq373FYQZjYDn6j9kaR1JL0FOAqfYKyFK4GPSNpbUr/k9xhJW9QqcwO4Gvi+pE0kbQZ8G5cffIJ3M0kDMs8PBBalyn9HMpVjmYyV9Kbk50nA78p09yvg9DSng6TN8npYpSgVx5VI2kHSeyStjU+Av0RaMhsEnU6fMwCJQ/Hx/dnADcD3zWxCLR4mw7I/cCK+ImUGPonZjjr8Hr7G+lFgMr6q6cfp3kP4CqnpkhZK2hj4f8DRkpbgK2vKrcBzXIFXyLPwFUbjynT3Y+DPwF8kLcYN9y5lui0Vxyzr4sNb8/G5gAHJbRAErZ6EqGAC5RJgHvBI5trGwATgifS/Ubou4Fx8CejDwC4NluMkvPKbnH77Ze59K8nxOLB3i3W4T5JjKjC+wP2v4pXqw8Cd+Nrj3L0VmfjdnLl+D/CpGsMdixvVnP9HZ+4dmdL3CfIm3HvzDx82uwtflvoo8OVWy1SB7P3w+ZpbWi1LRqbVymW7pA2+kOI+vPH1KHByq/W1UrZWC1CBEvfEW4fZivfHuQoFGA+ckY73A25PhmB34N4Gy3ES8LUCz+6QEn1tfAXEk0C/FumvXwp/a7pXYuyQ98x7gfXS8eeB32XuLSnib0kDUGa4Y4HzCrjdGF89sjGwUTreqNV5sU7pMZTUMMGH4P6Xr5d2/eENhd+2mQFYrVy2S9qkemhAOu6Pv3Oze6t1ZlbbewBNxcz+hr/YlWV/4LJ0fBlwQOb65ebcAwwqNSFZBzmKsT9wjZm9YmZP4y3gXeshRxWsfB3fzF4Fcq/jr8TM7jKzZen0Hny9dsPDLcHewAQzW2BmL+C9vH3qIFPLMbM5ZvZgOl6MtzaLrtRqF9Kc14eAi1otS5YKy2VPftU1bVI9tCSd9k+/6rZgqDO9xgAUYYiZzQFPNPzlLfDEyi5NnEnjC9cJkh6WdImkjVooRzEqleUovBeVYx1JD0i6R1LO0GJmu5vZapOvVYT7iaS/3+cmhauQuVciqQt4G94ybHd+ir9w93qrBWkG9UqbtHBkMj5MNcHM2iKte7sBKIYKXGukxT0f2AZ/23QO3W/CNluOUpQti6RP4e9N/CRzeUszG42/Kf1TSdvUMdw/AF1m9hZ8UjjXq2sn/TWEtHLqOuArZvZiq+UphaQPA/OswLLdvkg908bMVpjZSLxXvaukneohY61UvRlcNQwePNh62q0yn6VLl7L++pXtPd5b/J00adJ8q/MGT9XouFIapbtG0Agd1wtJ/fH9rO4ws7NbLU9PSPoRvu3KcnxicwPgejP7VEsFS6TW+i1mVnPl2si0kfR9/G35M+vpb1U0c8Jh1KhRVil33XVXxW56i7804NXwanRcKY3SXSNohI7r8cN7N5cDP221LFXKP4Y2mgROMnVRn0nguqYNsCndmxyuC/wd+HCr9WXWiyaBg6CPsQfemn6fpMnpt1+rheqtSLoa+BewnaSZko6qwbt6p81Q4C5JDwP343MAt9TgX91o2TeBK6XVX84J6kMrvqzWjpjZ3RSe4+gVmNlEfPuQtsDMDq2jX3VNGzN7GJ9IbjuiBxAEQdCh9JoeQNC7KNVjC4KgPYgeQBAEQYfSdj2ASj+yHgRBEFRH9ACCIAg6lLbrAQStI1ZaBUFnET2AIAiCDiUMQBAEQYcSQ0BBWWSHh7IT8zE0FAS9l+gBBEEQdChhANoASSMk3SXpMUmPSvpyur6xpAmSnkj/G/XkVxAEQbnEEFB7sBwYZ2YPShoITJI0Af9U4p1mdrqk8fhnL79Za2Dxlm4QBFBGD6BE6/QkSbNiJ8PaseKfoCv2ycsgCIKaKacHUKx1CnCOtcNHDfoQeZ+gW+WTl5I2K+E0CIKgIno0AKkCylVCiyX1io9X90byP0EnlbcjraRjgWMBhgwZwsSJE0s+P27n5TXJOWTdbj9+ftVNRcKozM+eZA6CoP5U9EnI1Dr9G7AT8FV8jPpF4AG8l/BCATfZymnUNddcUzKMKbMWrXI+ZF2Y+1JpuXYevmFZ8mdZsmQJAwYMqNhdPf1973vfO8n8O7sFP0En6XFgTGr9DwUmmtl2pfwcPXq0PfDAAyXDrXUOYNzOyzlrSn2njxq1nFTSSh0HQbAqZZfiAq3T84FT8Y90n4p/CP2z+e7M7ALgAvDKacyYMSXDyd/4rZzKZtrhpf0sxMSJE+lJlmqoxl95U/9i4DFb9fujNwNHAqen/8LN7SAIgiooywCk1ul1wFVmdj2Amc3N3L8Qb70G1ZH7BN0USZPTtRPxiv/a9Hm7Z4CDWiRfEAR9kB4NQLHWqaShuQlK4GPAI5UEHEsRu+nhE3Tvb6YsQRB0DuX0AIq1Tg+VNBIfApoGHNcQCYMgCMMlzIsAAAUbSURBVIKGUM4qoGKt09vqL04QBEHQLPrEm8DFhpNio7IgCILixF5AQRAEHUqf6AFUStf4Wwt+azh6DEEQdBLRAwiCIOhQwgAEQRB0KGEAgiAIOpQ+PQdQz5fNYqVRYymVVqHjIGgM0QMIgiDoUMIABEEQdChhAIIgCDqUPj0HEPQNYv4lCBpD9ACCIAg6lDAAQRAEHUoMAWWIbxQEQdBJhAHow4RBC4KgFDEEFARB0KGEAQiCIOhQahoCkrQP8DOgH3CRmZ1eF6l6EfnDLLltpuu1RDF0HARBo6jaAEjqB/wC+CAwE7hf0s1m9p96Cdebqcfa9dBxaeL9gCCojVqGgHYFpprZU2b2KnANsH99xAoSoeMgCBpGLUNAw4EZmfOZwG75D0k6Fjg2nS6R9HglgXwJBgPzqxWy3fzVGaucbtWDd03RcaU0Snf1Ik/H27VIjCBoe2oxACpwzVa7YHYBcEHVgUgPmNnoat33cn+bouNKaZTuGoGkB1otQxC0K7UMAc0ERmTOtwBm1yZOkEfoOAiChlGLAbgf2FbSGyStBRwC3FwfsYJE6DgIgoZR9RCQmS2XdAJwB75E8RIze7RuknXTqKGNtve3iTqulKYNN9WB3iRrEDQVma02pBwEQRB0APEmcBAEQYcSBiAIgqBDabkBkDRN0hRJk3NL9iRtLGmCpCfS/0bpuiSdK2mqpIcl7ZLn1yWS5kl6JHOtYr8kHZmefyIdF/L3JEmzktyTJe2Xufet5O/jkvbOXN8nXZsqaXwj9NkoJI2QdJekxyQ9KunLrZapJyT1k/RvSbe0WpYgaEdabgAS7zWzkZm15eOBO81sW+DOdA6wL7Bt+h0LnJ/nz6XAPnnXKvJL0sbA9/EXrnZNx78v4C/AOUnukWZ2W3K/A75aZ8fk5pepIspt67AvsANwaHq2t7AcGGdmbwZ2B47vBfJ/GXis1UIEQbvSLgYgn/2By9LxZcABmeuXm3MPMEjS0JwjM/sbsKBGv/YGJpjZAjN7AZgAbFjA31KyX2Nmr5jZ08BU3JD06m0dzGyOmT2YjhfjFevw1kpVHElbAB8CLmq1LEHQrrSDATDgT5ImpS0NAIaY2RzwigfYLF0vtDVCT5VQpX5VEsYJafjoktzQUp38bWskdQFvA+5trSQl+SnwDeD1VgsSBO1KOxiAPcxsF3xo5HhJe5Z4tqytEcqkmF/lhnE+sA0wEpgDnFUnf9saSQOA64CvmNmLrZanEJI+DMwzs0mtliUI2pmWGwAzm53+5wE34EMlc3NDO+l/Xnq8mq0RKvWrrDDMbK6ZrTCz14ELk9w1+9vOSOqPV/5Xmdn1rZanBHsAH5U0DR9qe5+kK1srUhC0Hy01AJLWlzQwdwzsBTyCb3dwZHrsSOCmdHwz8Om0gmd3YFFueKcElfp1B7CXpI3SsM5e6Vq+7EMzpx9Lcuf8PUTS2pLegE8y30cv39ZBkoCLgcfM7OxWy1MKM/uWmW1hZl24nv9iZp9qsVhB0Ha0+qPwQ4AbvG5hTeC3ZvZHSfcD10o6CngGOCg9fxuwHz6xugz4TNYzSVcDY4DBkmbiK3hOr8QvM1sg6VS8wgY4BV+9k+/vGEkj8WGcacBxyf2jkq4F/oOvnDnezFYk+dpxW4dy2QM4ApgiaXK6dmJu9VMQBL2P2AoiCIKgQ2n5HEAQBEHQGsIABEEQdChhAIIgCDqUMABBEAQdShiAIAiCDiUMQBAEQYcSBiAIgqBD+f9H8T3XicwUtgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "wine_df.hist(bins=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, "outputs": [], "source": [] } diff --git a/.ipynb_checkpoints/Get_to_know_your_Data-checkpoint-checkpoint.ipynb b/.ipynb_checkpoints/Get_to_know_your_Data-checkpoint-checkpoint.ipynb new file mode 100644 index 0000000..dbf59d4 --- /dev/null +++ b/.ipynb_checkpoints/Get_to_know_your_Data-checkpoint-checkpoint.ipynb @@ -0,0 +1,2354 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Get to know your Data.ipynb", + "version": "0.3.2", + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "cells": [ + { + "metadata": { + "id": "J82LU53m_OU0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Get to know your Data\n", + "\n", + "\n", + "#### Import necessary modules\n" + ] + }, + { + "metadata": { + "id": "ZyO1UXL8mtSj", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "yXTzTowtnwGI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Loading CSV Data to a DataFrame" + ] + }, + { + "metadata": { + "id": "H1Bjlb5wm9f-", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "iris_df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "KE-k7b_Mn5iN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### See the top 10 rows\n" + ] + }, + { + "metadata": { + "id": "HY2Ps7xMn4ao", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "7d342633-1b72-4558-fcec-76ebe66d7430" + }, + "cell_type": "code", + "source": [ + "iris_df.head()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "ZQXekIodqOZu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Find number of rows and columns\n" + ] + }, + { + "metadata": { + "id": "6Y-A-lbFqR82", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "2fe6e676-1bec-453f-8e2b-3bc21ac0a999" + }, + "cell_type": "code", + "source": [ + "print(iris_df.shape)\n", + "\n", + "#first is row and second is column\n", + "#select row by simple indexing\n", + "\n", + "#print(iris_df.shape[0])\n", + "#print(iris_df.shape[1])" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(150, 5)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "4ckCiGPhrC_t", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Print all columns" + ] + }, + { + "metadata": { + "id": "S6jgMyRDrF2a", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + }, + "outputId": "798d5ef2-0f98-4972-c98c-c896f879af64" + }, + "cell_type": "code", + "source": [ + "print(iris_df.columns)" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',\n", + " 'species'],\n", + " dtype='object')\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "kVav5-ACtIqS", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Check Index\n" + ] + }, + { + "metadata": { + "id": "iu3I9zIGtLDX", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "21786651-605d-4636-d253-5694edb6f969" + }, + "cell_type": "code", + "source": [ + "print(iris_df.index)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "RangeIndex(start=0, stop=150, step=1)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "psCc7PborOCQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Right now the iris_data set has all the species grouped together let's shuffle it" + ] + }, + { + "metadata": { + "id": "Bxc8i6avrZPw", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 221 + }, + "outputId": "11e956f5-d253-4025-9c3a-1e88f54528b2" + }, + "cell_type": "code", + "source": [ + "#generate a random permutaion on index\n", + "\n", + "print(iris_df.head())\n", + "\n", + "new_index = np.random.permutation(iris_df.index)\n", + "iris_df = iris_df.reindex(index = new_index)\n", + "\n", + "print(iris_df.head())" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "126 6.2 2.8 4.8 1.8 virginica\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "j32h8022sRT8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### We can also apply an operation on whole column of iris_df" + ] + }, + { + "metadata": { + "id": "seYXHXsYsYJI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 323 + }, + "outputId": "5f8ae149-0829-45fa-a537-ed81be0bd743" + }, + "cell_type": "code", + "source": [ + "#original\n", + "\n", + "print(iris_df.head())\n", + "\n", + "iris_df['sepal_width'] *= 10\n", + "\n", + "#changed\n", + "\n", + "print(iris_df.head())\n", + "\n", + "#lets undo the operation\n", + "\n", + "iris_df['sepal_width'] /= 10\n", + "\n", + "print(iris_df.head())" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "126 6.2 2.8 4.8 1.8 virginica\n", + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 31.0 1.5 0.2 setosa\n", + "115 6.4 32.0 5.3 2.3 virginica\n", + "113 5.7 25.0 5.0 2.0 virginica\n", + "43 5.0 35.0 1.6 0.6 setosa\n", + "126 6.2 28.0 4.8 1.8 virginica\n", + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "126 6.2 2.8 4.8 1.8 virginica\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "R-Ca-LBLzjiF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Show all the rows where sepal_width > 3.3" + ] + }, + { + "metadata": { + "id": "WJ7W-F-d0AoZ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1165 + }, + "outputId": "ee9c12fa-f9da-468a-dead-9d3ced177e8b" + }, + "cell_type": "code", + "source": [ + "iris_df[iris_df['sepal_width']>3.3]" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
435.03.51.60.6setosa
75.03.41.50.2setosa
185.73.81.70.3setosa
1366.33.45.62.4virginica
165.43.91.30.4setosa
244.83.41.90.2setosa
395.13.41.50.2setosa
275.23.51.50.2setosa
856.03.44.51.6versicolor
1097.23.66.12.5virginica
55.43.91.70.4setosa
195.13.81.50.3setosa
105.43.71.50.2setosa
45.03.61.40.2setosa
1317.93.86.42.0virginica
155.74.41.50.4setosa
365.53.51.30.2setosa
205.43.41.70.2setosa
145.84.01.20.2setosa
445.13.81.90.4setosa
215.13.71.50.4setosa
224.63.61.00.2setosa
285.23.41.40.2setosa
114.83.41.60.2setosa
465.13.81.60.2setosa
315.43.41.50.4setosa
64.63.41.40.3setosa
325.24.11.50.1setosa
1486.23.45.42.3virginica
265.03.41.60.4setosa
05.13.51.40.2setosa
485.33.71.50.2setosa
405.03.51.30.3setosa
335.54.21.40.2setosa
175.13.51.40.3setosa
1177.73.86.72.2virginica
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "7 5.0 3.4 1.5 0.2 setosa\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "136 6.3 3.4 5.6 2.4 virginica\n", + "16 5.4 3.9 1.3 0.4 setosa\n", + "24 4.8 3.4 1.9 0.2 setosa\n", + "39 5.1 3.4 1.5 0.2 setosa\n", + "27 5.2 3.5 1.5 0.2 setosa\n", + "85 6.0 3.4 4.5 1.6 versicolor\n", + "109 7.2 3.6 6.1 2.5 virginica\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "19 5.1 3.8 1.5 0.3 setosa\n", + "10 5.4 3.7 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + "131 7.9 3.8 6.4 2.0 virginica\n", + "15 5.7 4.4 1.5 0.4 setosa\n", + "36 5.5 3.5 1.3 0.2 setosa\n", + "20 5.4 3.4 1.7 0.2 setosa\n", + "14 5.8 4.0 1.2 0.2 setosa\n", + "44 5.1 3.8 1.9 0.4 setosa\n", + "21 5.1 3.7 1.5 0.4 setosa\n", + "22 4.6 3.6 1.0 0.2 setosa\n", + "28 5.2 3.4 1.4 0.2 setosa\n", + "11 4.8 3.4 1.6 0.2 setosa\n", + "46 5.1 3.8 1.6 0.2 setosa\n", + "31 5.4 3.4 1.5 0.4 setosa\n", + "6 4.6 3.4 1.4 0.3 setosa\n", + "32 5.2 4.1 1.5 0.1 setosa\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "26 5.0 3.4 1.6 0.4 setosa\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "48 5.3 3.7 1.5 0.2 setosa\n", + "40 5.0 3.5 1.3 0.3 setosa\n", + "33 5.5 4.2 1.4 0.2 setosa\n", + "17 5.1 3.5 1.4 0.3 setosa\n", + "117 7.7 3.8 6.7 2.2 virginica" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "id": "gH3DnhCq2Cbl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Club two filters together - Find all samples where sepal_width > 3.3 and species is versicolor" + ] + }, + { + "metadata": { + "id": "4U7ksr_R2H7M", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "outputId": "a245bbce-09c2-41e0-fb41-6138e8f8eddc" + }, + "cell_type": "code", + "source": [ + "iris_df[(iris_df['sepal_width']>3.3) & (iris_df['species'] == 'versicolor')] " + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
856.03.44.51.6versicolor
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "85 6.0 3.4 4.5 1.6 versicolor" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "id": "1lmnB3ot2u7I", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Sorting a column by value" + ] + }, + { + "metadata": { + "id": "K7KIj6fv2zWP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1969 + }, + "outputId": "c38831d3-1fd3-4728-bfbf-c9355e4a96a5" + }, + "cell_type": "code", + "source": [ + "iris_df.sort_values(by='sepal_width')#, ascending = False)\n", + "#pass ascending = False for descending order" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
605.02.03.51.0versicolor
626.02.24.01.0versicolor
686.22.24.51.5versicolor
1196.02.25.01.5virginica
876.32.34.41.3versicolor
535.52.34.01.3versicolor
935.02.33.31.0versicolor
414.52.31.30.3setosa
574.92.43.31.0versicolor
815.52.43.71.0versicolor
805.52.43.81.1versicolor
726.32.54.91.5versicolor
1086.72.55.81.8virginica
895.52.54.01.3versicolor
985.12.53.01.1versicolor
1064.92.54.51.7virginica
695.62.53.91.1versicolor
1466.32.55.01.9virginica
1135.72.55.02.0virginica
795.72.63.51.0versicolor
1187.72.66.92.3virginica
925.82.64.01.2versicolor
905.52.64.41.2versicolor
1346.12.65.61.4virginica
675.82.74.11.0versicolor
595.22.73.91.4versicolor
945.62.74.21.3versicolor
836.02.75.11.6versicolor
1236.32.74.91.8virginica
1015.82.75.11.9virginica
..................
1486.23.45.42.3virginica
1366.33.45.62.4virginica
856.03.44.51.6versicolor
265.03.41.60.4setosa
244.83.41.90.2setosa
205.43.41.70.2setosa
365.53.51.30.2setosa
175.13.51.40.3setosa
405.03.51.30.3setosa
435.03.51.60.6setosa
05.13.51.40.2setosa
275.23.51.50.2setosa
224.63.61.00.2setosa
45.03.61.40.2setosa
1097.23.66.12.5virginica
215.13.71.50.4setosa
485.33.71.50.2setosa
105.43.71.50.2setosa
445.13.81.90.4setosa
185.73.81.70.3setosa
465.13.81.60.2setosa
195.13.81.50.3setosa
1317.93.86.42.0virginica
1177.73.86.72.2virginica
165.43.91.30.4setosa
55.43.91.70.4setosa
145.84.01.20.2setosa
325.24.11.50.1setosa
335.54.21.40.2setosa
155.74.41.50.4setosa
\n", + "

150 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "60 5.0 2.0 3.5 1.0 versicolor\n", + "62 6.0 2.2 4.0 1.0 versicolor\n", + "68 6.2 2.2 4.5 1.5 versicolor\n", + "119 6.0 2.2 5.0 1.5 virginica\n", + "87 6.3 2.3 4.4 1.3 versicolor\n", + "53 5.5 2.3 4.0 1.3 versicolor\n", + "93 5.0 2.3 3.3 1.0 versicolor\n", + "41 4.5 2.3 1.3 0.3 setosa\n", + "57 4.9 2.4 3.3 1.0 versicolor\n", + "81 5.5 2.4 3.7 1.0 versicolor\n", + "80 5.5 2.4 3.8 1.1 versicolor\n", + "72 6.3 2.5 4.9 1.5 versicolor\n", + "108 6.7 2.5 5.8 1.8 virginica\n", + "89 5.5 2.5 4.0 1.3 versicolor\n", + "98 5.1 2.5 3.0 1.1 versicolor\n", + "106 4.9 2.5 4.5 1.7 virginica\n", + "69 5.6 2.5 3.9 1.1 versicolor\n", + "146 6.3 2.5 5.0 1.9 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "79 5.7 2.6 3.5 1.0 versicolor\n", + "118 7.7 2.6 6.9 2.3 virginica\n", + "92 5.8 2.6 4.0 1.2 versicolor\n", + "90 5.5 2.6 4.4 1.2 versicolor\n", + "134 6.1 2.6 5.6 1.4 virginica\n", + "67 5.8 2.7 4.1 1.0 versicolor\n", + "59 5.2 2.7 3.9 1.4 versicolor\n", + "94 5.6 2.7 4.2 1.3 versicolor\n", + "83 6.0 2.7 5.1 1.6 versicolor\n", + "123 6.3 2.7 4.9 1.8 virginica\n", + "101 5.8 2.7 5.1 1.9 virginica\n", + ".. ... ... ... ... ...\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "136 6.3 3.4 5.6 2.4 virginica\n", + "85 6.0 3.4 4.5 1.6 versicolor\n", + "26 5.0 3.4 1.6 0.4 setosa\n", + "24 4.8 3.4 1.9 0.2 setosa\n", + "20 5.4 3.4 1.7 0.2 setosa\n", + "36 5.5 3.5 1.3 0.2 setosa\n", + "17 5.1 3.5 1.4 0.3 setosa\n", + "40 5.0 3.5 1.3 0.3 setosa\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "27 5.2 3.5 1.5 0.2 setosa\n", + "22 4.6 3.6 1.0 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + "109 7.2 3.6 6.1 2.5 virginica\n", + "21 5.1 3.7 1.5 0.4 setosa\n", + "48 5.3 3.7 1.5 0.2 setosa\n", + "10 5.4 3.7 1.5 0.2 setosa\n", + "44 5.1 3.8 1.9 0.4 setosa\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "46 5.1 3.8 1.6 0.2 setosa\n", + "19 5.1 3.8 1.5 0.3 setosa\n", + "131 7.9 3.8 6.4 2.0 virginica\n", + "117 7.7 3.8 6.7 2.2 virginica\n", + "16 5.4 3.9 1.3 0.4 setosa\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "14 5.8 4.0 1.2 0.2 setosa\n", + "32 5.2 4.1 1.5 0.1 setosa\n", + "33 5.5 4.2 1.4 0.2 setosa\n", + "15 5.7 4.4 1.5 0.4 setosa\n", + "\n", + "[150 rows x 5 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "9jg_Z4YCoMSV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### List all the unique species" + ] + }, + { + "metadata": { + "id": "M6EN78ufoJY7", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "4ae0c425-f973-486f-817f-63cbe6897bdf" + }, + "cell_type": "code", + "source": [ + "species = iris_df['species'].unique()\n", + "\n", + "print(species)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['setosa' 'virginica' 'versicolor']\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "wG1i5nxBodmB", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Selecting a particular species using boolean mask (learnt in previous exercise)" + ] + }, + { + "metadata": { + "id": "gZvpbKBwoVUe", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "213a3376-8e60-4f9f-cf7e-937e98475206" + }, + "cell_type": "code", + "source": [ + "setosa = iris_df[iris_df['species'] == species[0]]\n", + "\n", + "setosa.head()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
34.63.11.50.2setosa
435.03.51.60.6setosa
75.03.41.50.2setosa
185.73.81.70.3setosa
424.43.21.30.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "7 5.0 3.4 1.5 0.2 setosa\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "42 4.4 3.2 1.3 0.2 setosa" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "id": "7tumfZ3DotPG", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "bf3850ab-a0eb-45fa-9816-fdd4c97517d2" + }, + "cell_type": "code", + "source": [ + "# do the same for other 2 species \n", + "versicolor = iris_df[iris_df['species'] == species[1]]\n", + "\n", + "versicolor.head()" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
1156.43.25.32.3virginica
1135.72.55.02.0virginica
1266.22.84.81.8virginica
1227.72.86.72.0virginica
1166.53.05.51.8virginica
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "126 6.2 2.8 4.8 1.8 virginica\n", + "122 7.7 2.8 6.7 2.0 virginica\n", + "116 6.5 3.0 5.5 1.8 virginica" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 15 + } + ] + }, + { + "metadata": { + "id": "cUYm5UqVpDPy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "a3cc4a4c-b06e-43c1-ed6a-b1f8fcb14de6" + }, + "cell_type": "code", + "source": [ + "\n", + "\n", + "virginica = iris_df[iris_df['species'] == species[2]]\n", + "\n", + "virginica.head()" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
905.52.64.41.2versicolor
935.02.33.31.0versicolor
507.03.24.71.4versicolor
605.02.03.51.0versicolor
626.02.24.01.0versicolor
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "90 5.5 2.6 4.4 1.2 versicolor\n", + "93 5.0 2.3 3.3 1.0 versicolor\n", + "50 7.0 3.2 4.7 1.4 versicolor\n", + "60 5.0 2.0 3.5 1.0 versicolor\n", + "62 6.0 2.2 4.0 1.0 versicolor" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "id": "-y1wDc8SpdQs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Describe each created species to see the difference\n", + "\n" + ] + }, + { + "metadata": { + "id": "eHrn3ZVRpOk5", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "58e878f8-2aed-49b2-9529-545308332808" + }, + "cell_type": "code", + "source": [ + "setosa.describe()" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.0000050.00000050.00000050.00000
mean5.006003.4180001.4640000.24400
std0.352490.3810240.1735110.10721
min4.300002.3000001.0000000.10000
25%4.800003.1250001.4000000.20000
50%5.000003.4000001.5000000.20000
75%5.200003.6750001.5750000.30000
max5.800004.4000001.9000000.60000
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.00000 50.000000 50.000000 50.00000\n", + "mean 5.00600 3.418000 1.464000 0.24400\n", + "std 0.35249 0.381024 0.173511 0.10721\n", + "min 4.30000 2.300000 1.000000 0.10000\n", + "25% 4.80000 3.125000 1.400000 0.20000\n", + "50% 5.00000 3.400000 1.500000 0.20000\n", + "75% 5.20000 3.675000 1.575000 0.30000\n", + "max 5.80000 4.400000 1.900000 0.60000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + } + ] + }, + { + "metadata": { + "id": "GwJFT2GlpwUv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "3b040a37-357b-4f35-b1ba-9fa0c6166f9f" + }, + "cell_type": "code", + "source": [ + "versicolor.describe()" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.0000050.00000050.00000050.00000
mean6.588002.9740005.5520002.02600
std0.635880.3224970.5518950.27465
min4.900002.2000004.5000001.40000
25%6.225002.8000005.1000001.80000
50%6.500003.0000005.5500002.00000
75%6.900003.1750005.8750002.30000
max7.900003.8000006.9000002.50000
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.00000 50.000000 50.000000 50.00000\n", + "mean 6.58800 2.974000 5.552000 2.02600\n", + "std 0.63588 0.322497 0.551895 0.27465\n", + "min 4.90000 2.200000 4.500000 1.40000\n", + "25% 6.22500 2.800000 5.100000 1.80000\n", + "50% 6.50000 3.000000 5.550000 2.00000\n", + "75% 6.90000 3.175000 5.875000 2.30000\n", + "max 7.90000 3.800000 6.900000 2.50000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + } + ] + }, + { + "metadata": { + "id": "Ad4qhSZLpztf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "4a986bae-72a1-4e49-bb19-5999479897c6" + }, + "cell_type": "code", + "source": [ + "virginica.describe()" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.00000050.00000050.00000050.000000
mean5.9360002.7700004.2600001.326000
std0.5161710.3137980.4699110.197753
min4.9000002.0000003.0000001.000000
25%5.6000002.5250004.0000001.200000
50%5.9000002.8000004.3500001.300000
75%6.3000003.0000004.6000001.500000
max7.0000003.4000005.1000001.800000
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.000000 50.000000 50.000000 50.000000\n", + "mean 5.936000 2.770000 4.260000 1.326000\n", + "std 0.516171 0.313798 0.469911 0.197753\n", + "min 4.900000 2.000000 3.000000 1.000000\n", + "25% 5.600000 2.525000 4.000000 1.200000\n", + "50% 5.900000 2.800000 4.350000 1.300000\n", + "75% 6.300000 3.000000 4.600000 1.500000\n", + "max 7.000000 3.400000 5.100000 1.800000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + } + ] + }, + { + "metadata": { + "id": "Vdu0ulZWtr09", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Let's plot and see the difference" + ] + }, + { + "metadata": { + "id": "PEVMzRvpttmD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "##### import matplotlib.pyplot " + ] + }, + { + "metadata": { + "id": "rqDXuuAtt7C3", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 398 + }, + "outputId": "e1111c09-8877-43f8-ac45-f92b53899a5c" + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "#hist creates a histogram there are many more plots(see the documentation) you can play with it.\n", + "\n", + "plt.hist(setosa['sepal_length'])\n", + "plt.hist(versicolor['sepal_length'])\n", + "plt.hist(virginica['sepal_length'])" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([ 4., 1., 6., 10., 5., 8., 5., 3., 5., 3.]),\n", + " array([4.9 , 5.11, 5.32, 5.53, 5.74, 5.95, 6.16, 6.37, 6.58, 6.79, 7. ]),\n", + "
)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFG9JREFUeJzt3X9s1PX9wPFX6Q1JS8cqa0E2Ycbv\nFjOVCdFFEJgyfkyZv9gsP4LMzG8yBoJLWIQ1LJCQLGLQ4KbTTRnuCyFBkUFdlmGGkCwKbBkLG0sM\nwpKFHwpFCuVnkHrfPxaaMaGF6/V93PXx+It+7vq517vv5p69O3oty2az2QAAkulW6AEAoKsRXwBI\nTHwBIDHxBYDExBcAEhNfAEgsk+JGGhuPpbiZvKiuroimppOFHqNTlfoara/4lfoara/4Xcoaa2qq\nLnqZR77/JZMpL/QIna7U12h9xa/U12h9xa+jaxRfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWA\nxMQXABK7pPju3LkzRo0aFStWrIiIiPfffz8eeeSRmDJlSjzyyCPR2NjYqUMCQClpN74nT56MhQsX\nxpAhQ1qPLVmyJOrq6mLFihUxevToWLZsWacOCQClpN34du/ePV566aWora1tPTZ//vwYO3ZsRERU\nV1fHkSNHOm9CACgx7cY3k8lEjx49zjtWUVER5eXl0dLSEitXrox777230wYEgFKT8181amlpiSee\neCJuv/32856SvpDq6oqieqPttv4SxZXo3tnrOnyON56+Pw+TXDmKbQ8vV6mvL6L012h9xa8ja8w5\nvj/60Y9iwIAB8dhjj7V73WL601I1NVVF9ScQ86WU1lzqe1jq64so/TVaX/G7lDXm/U8KNjQ0xKc+\n9amYNWtWLp8OAF1au498d+zYEYsWLYp9+/ZFJpOJ9evXx4cffhhXXXVVPPzwwxERcf3118eCBQs6\ne1YAKAntxvemm26K5cuXp5gFALoE73AFAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY\n+AJAYuILAImJLwAkJr4AkNglxXfnzp0xatSoWLFiRUREvP/++/Hwww/H5MmT4/HHH48zZ8506pAA\nUEraje/Jkydj4cKFMWTIkNZjP/3pT2Py5MmxcuXKGDBgQKxevbpThwSAUtJufLt37x4vvfRS1NbW\nth7bunVrfP3rX4+IiLvuuis2b97ceRMCQInJtHuFTCYymfOvdurUqejevXtERPTu3TsaGxs7ZzoA\nKEHtxrc92Wy23etUV1dEJlPe0ZtKpqamqtAjJFdqaz63nrfv/1an3s4d617v1PNfTKnt14V0xhrr\nVn0/7+fMxasTXij5PSz19UV0bI05xbeioiJOnz4dPXr0iAMHDpz3lPSFNDWdzGm4QqipqYrGxmOF\nHiO5Ulpzyj0sxNetK3yPdoU1lvL6usL+Xcoa24pzTr9qNHTo0Fi/fn1ERLz55psxfPjwXE4DAF1S\nu498d+zYEYsWLYp9+/ZFJpOJ9evXx+LFi2Pu3LmxatWq6NevXzzwwAMpZgWAktBufG+66aZYvnz5\nJ44vW7asUwYCgFLnHa4AIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQX\nABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMQyhR4AKH0z3nqi0CPAFcUjXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcA\nEhNfAEhMfAEgMfEFgMQyuXzSiRMnYs6cOXH06NH46KOPYsaMGTF8+PB8zwYAJSmn+P7mN7+J6667\nLmbPnh0HDhyI73znO/H73/8+37MBQEnK6Wnn6urqOHLkSERENDc3R3V1dV6HAoBSltMj33HjxsWa\nNWti9OjR0dzcHL/4xS/yPRcAlKyc4rtu3bro169fLF26NN59992or6+PNWvWXPT61dUVkcmU5zxk\najU1VYUeIbnvPvlWh8/xxtP352GS/Di3hzsT3U5nefv+b33iWL7W9Ozk2jydiVyU+v1Mqa8vomNr\nzCm+27Zti2HDhkVExA033BAHDx6MlpaWKC+/cGCbmk7mPGBqNTVV0dh4rNBjFKUr5euWcg+vlDVT\nfEr5e6cr3I9eyhrbinNOr/kOGDAgtm/fHhER+/bti8rKyouGFwA4X06PfCdMmBD19fUxZcqUOHv2\nbCxYsCDPYwFA6copvpWVlfHss8/mexYA6BK8wxUAJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi\n4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkv\nACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQ\nmPgCQGLiCwCJiS8AJCa+AJCY+AJAYjnHt6GhIe67774YP358bNq0KY8jAUBpyym+TU1N8fzzz8fK\nlSvjxRdfjA0bNuR7LgAoWZlcPmnz5s0xZMiQ6NmzZ/Ts2TMWLlyY77kAoGTlFN+9e/fG6dOnY9q0\nadHc3BwzZ86MIUOGXPT61dUVkcmU5zxkajU1VZd83Xtnr+vQbb3x9P0d+vwryeV83f7T2/d/K69z\n7Mzr2dqW65ovVcq1kFZnf+8U2uWsr27V9ztxkkv36oQXLuv6HdnDnOIbEXHkyJF47rnnYv/+/TF1\n6tTYuHFjlJWVXfC6TU0ncx4wtZqaqmhsPJbs9lLeVmcrpbVcqq64ZvKjlL93Ut+P5svlzHwpa2wr\nzjm95tu7d+8YNGhQZDKZ6N+/f1RWVsbhw4dzORUAdDk5xXfYsGGxZcuW+Pjjj6OpqSlOnjwZ1dXV\n+Z4NAEpSTk879+nTJ8aOHRt1dXURETFv3rzo1s2vDAPApcj5Nd+JEyfGxIkT8zkLAHQJHq4CQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAIllCj1AV/fdJ98q9Ah0wM7/faTQI+Ts8ZUHO/X8z06u7dTzd+b8nT173arv\nd+r5L9XzI58q9Ahdlke+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiXUovqdPn45Ro0bFmjVr8jUPAJS8\nDsX3hRdeiF69euVrFgDoEnKO7+7du2PXrl1x55135nEcACh9Ocd30aJFMXfu3HzOAgBdQiaXT1q7\ndm3ccsstce21117S9aurKyKTKc/lpi7q3tnrOnyON56+/4LHa2qqOnzulObu+r9OPf+T/zP1kq73\n3Sffyun8foSDwujM+7piux+NuPyZO7LGnOK7adOm2LNnT2zatCk++OCD6N69e/Tt2zeGDh16wes3\nNZ3MecDO1Nh47BPHamqqLngcoNR01n1dsd6PXs7Ml7LGtuKcU3yXLFnS+u+f/exn8bnPfe6i4QUA\nzuf3fAEgsZwe+f6nmTNn5mMOAOgyPPIFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBILFPoAYDS9PjKg4Ue\nIWedPfuzk2s79fxc+TzyBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABIT\nXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASCyT6yc+9dRT8Ze//CXOnj0b3/ve\n92LMmDH5nAsASlZO8d2yZUu89957sWrVqmhqaooHH3xQfAHgEuUU39tuuy0GDhwYERGf/vSn49Sp\nU9HS0hLl5eV5HQ4ASlFO8S0vL4+KioqIiFi9enWMGDGizfBWV1dEJnPlhbmmpuqyjgOUks68ryvG\n+9HLnbkja8z5Nd+IiD/84Q+xevXq+NWvftXm9ZqaTnbkZjpNY+OxTxyrqam64HGAUtNZ93XFej96\nOTNfyhrbinPO8f3jH/8YL774Yrz88stRVVV8P+EAQKHkFN9jx47FU089Fa+88kp85jOfyfdMAFDS\ncorv7373u2hqaoof/OAHrccWLVoU/fr1y9tgAFCqcorvhAkTYsKECfmeBQC6BO9wBQCJiS8AJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAklin0AIX03SffKvQIRWHurv8r9AhAJ5jx1hOFHqHL8sgXABITXwBITHwBIDHxBYDE\nxBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNf\nAEhMfAEgsUyun/iTn/wktm/fHmVlZVFfXx8DBw7M51wAULJyiu+f/vSn+Ne//hWrVq2K3bt3R319\nfaxatSrfswFAScrpaefNmzfHqFGjIiLi+uuvj6NHj8bx48fzOhgAlKqc4nvo0KGorq5u/fjqq6+O\nxsbGvA0FAKUs59d8/1M2m23z8pqaqnzczHneePr+vJ+zePlaQDG5o9ADkBcdaVtOj3xra2vj0KFD\nrR8fPHgwampqch4CALqSnOJ7xx13xPr16yMi4h//+EfU1tZGz5498zoYAJSqnJ52Hjx4cNx4440x\nceLEKCsri/nz5+d7LgAoWWXZ9l6wBQDyyjtcAUBi4gsAieXlV42K2enTp+Ob3/xmTJ8+PcaPH996\nfOTIkdG3b98oLy+PiIjFixdHnz59CjXmZdu6dWs8/vjj8cUvfjEiIr70pS/Fj3/849bL33nnnXjm\nmWeivLw8RowYETNmzCjUqDlpb33Fvn/nNDQ0xMsvvxyZTCZmzZoVd955Z+tlxb6HEW2vrxT28LXX\nXouGhobWj3fs2BF//etfWz9uaGiIX//619GtW7eoq6uLhx56qBBj5qy99d14440xePDg1o9feeWV\n1v0sBidOnIg5c+bE0aNH46OPPooZM2bE8OHDWy/v0P5lu7hnnnkmO378+Ozrr79+3vG77rore/z4\n8QJN1XFbtmzJzpw586KX33333dn9+/dnW1paspMmTcq+9957CafruPbWV+z7l81ms4cPH86OGTMm\ne+zYseyBAwey8+bNO+/yYt/D9tZXCnv4n7Zu3ZpdsGBB68cnTpzIjhkzJtvc3Jw9depUdty4cdmm\npqYCTtgx/72+bDab/epXv1qgafJj+fLl2cWLF2ez2Wz2gw8+yI4dO7b1so7uX5d+2nn37t2xa9eu\n837a7gr27NkTvXr1imuuuSa6desWX/va12Lz5s2FHov/snnz5hgyZEj07NkzamtrY+HCha2XlcIe\ntrW+UvT888/H9OnTWz/evn173HzzzVFVVRU9evSIwYMHx7Zt2wo4Ycf89/pKQXV1dRw5ciQiIpqb\nm897Z8eO7l+Xju+iRYti7ty5F718/vz5MWnSpFi8eHG77+J1Jdq1a1dMmzYtJk2aFG+//Xbr8cbG\nxrj66qtbPy7Wtwe92PrOKfb927t3b5w+fTqmTZsWkydPPi+upbCHba3vnGLfw3P+9re/xTXXXHPe\nmxEdOnSo6PfwnAutLyLizJkzMXv27Jg4cWIsW7asQNPlbty4cbF///4YPXp0TJkyJebMmdN6WUf3\nr8u+5rt27dq45ZZb4tprr73g5bNmzYrhw4dHr169YsaMGbF+/fr4xje+kXjK3H3hC1+Ixx57LO6+\n++7Ys2dPTJ06Nd58883o3r17oUfLi/bWV+z7d86RI0fiueeei/3798fUqVNj48aNUVZWVuix8qat\n9ZXKHkZErF69Oh588ME2r1PMP1xcbH1PPPFE3HfffVFWVhZTpkyJW2+9NW6++eYCTJibdevWRb9+\n/WLp0qXx7rvvRn19faxZs+aC173c/euyj3w3bdoUGzZsiLq6unjttdfi5z//ebzzzjutlz/wwAPR\nu3fvyGQyMWLEiNi5c2cBp718ffr0iXvuuSfKysqif//+8dnPfjYOHDgQEZ98e9ADBw5EbW1toUbN\nSVvriyj+/YuI6N27dwwaNCgymUz0798/Kisr4/DhwxFRGnvY1voiSmMPz9m6dWsMGjTovGMXepve\nYtvDcy60voiISZMmRWVlZVRUVMTtt99edHu4bdu2GDZsWERE3HDDDXHw4MFoaWmJiI7vX5eN75Il\nS+L111+PV199NR566KGYPn16DB06NCIijh07Fo8++micOXMmIiL+/Oc/t/6v2mLR0NAQS5cujYh/\nP0X54Ycftv5P0c9//vNx/Pjx2Lt3b5w9ezY2btwYd9xRXG/13tb6SmH/IiKGDRsWW7ZsiY8//jia\nmpri5MmTra85lcIetrW+UtnDiH//YFRZWfmJZ52+8pWvxN///vdobm6OEydOxLZt2+LWW28t0JS5\nu9j6/vnPf8bs2bMjm83G2bNnY9u2bUW3hwMGDIjt27dHRMS+ffuisrKy9X9rd3T/uuzTzheyZs2a\nqKqqitGjR8eIESNiwoQJcdVVV8WXv/zlonu6a+TIkfHDH/4wNmzYEB999FEsWLAgfvvb37aub8GC\nBTF79uyIiLjnnnviuuuuK/DEl6e99RX7/kX8+9H92LFjo66uLiIi5s2bF2vXri2ZPWxvfaWwhxGf\nfH3+l7/8Zdx2220xaNCgmD17djz66KNRVlYWM2bMiKqq/P8FuM7W1vr69u0b3/72t6Nbt24xcuTI\nGDhwYAEnvXwTJkyI+vr6mDJlSpw9ezYWLFiQt/3z9pIAkFiXfdoZAApFfAEgMfEFgMTEFwASE18A\nSEx8ASAx8QWAxMQXABL7f56BiVURCnM3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "pl4RPzBfl5mI", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/Exercise-checkpoint.ipynb b/Exercise-checkpoint.ipynb index e7d30e9..02b14e5 100644 --- a/Exercise-checkpoint.ipynb +++ b/Exercise-checkpoint.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 2, "metadata": { "colab": {}, "colab_type": "code", @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 3, "metadata": { "colab": {}, "colab_type": "code", @@ -65,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -219,7 +219,7 @@ "4 1450 " ] }, - "execution_count": 17, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -242,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1463,7 +1463,7 @@ "[89 rows x 14 columns]" ] }, - "execution_count": 18, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -1502,7 +1502,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 6, "metadata": { "colab": {}, "colab_type": "code", @@ -1659,7 +1659,7 @@ "4 6.75 1.05 2.85 1450 " ] }, - "execution_count": 19, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -1683,7 +1683,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 7, "metadata": { "colab": {}, "colab_type": "code", @@ -1840,7 +1840,7 @@ "4 6.75 1.05 2.85 1450.0 " ] }, - "execution_count": 20, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -1862,7 +1862,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 8, "metadata": { "colab": {}, "colab_type": "code", @@ -1888,7 +1888,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 9, "metadata": { "colab": {}, "colab_type": "code", @@ -1987,7 +1987,7 @@ " \n", " 3\n", " 1.0\n", - " 13.24\n", + " NaN\n", " 2.59\n", " 2.87\n", " 21.0\n", @@ -2004,7 +2004,7 @@ " \n", " 4\n", " 1.0\n", - " 14.20\n", + " NaN\n", " 1.76\n", " 2.45\n", " 15.2\n", @@ -2038,7 +2038,7 @@ " \n", " 6\n", " 1.0\n", - " NaN\n", + " 14.06\n", " 2.15\n", " 2.61\n", " 17.6\n", @@ -2055,7 +2055,7 @@ " \n", " 7\n", " 1.0\n", - " NaN\n", + " 14.83\n", " 1.64\n", " 2.17\n", " 14.0\n", @@ -2112,11 +2112,11 @@ "0 NaN NaN NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN NaN NaN \n", - "3 1.0 13.24 2.59 2.87 21.0 118.0 \n", - "4 1.0 14.20 1.76 2.45 15.2 112.0 \n", + "3 1.0 NaN 2.59 2.87 21.0 118.0 \n", + "4 1.0 NaN 1.76 2.45 15.2 112.0 \n", "5 1.0 NaN 1.87 2.45 14.6 96.0 \n", - "6 1.0 NaN 2.15 2.61 17.6 121.0 \n", - "7 1.0 NaN 1.64 2.17 14.0 97.0 \n", + "6 1.0 14.06 2.15 2.61 17.6 121.0 \n", + "7 1.0 14.83 1.64 2.17 14.0 97.0 \n", "8 1.0 13.86 1.35 2.27 16.0 98.0 \n", "9 1.0 NaN 2.16 2.30 18.0 105.0 \n", "\n", @@ -2145,7 +2145,7 @@ "9 5.75 1.25 3.17 1510.0 " ] }, - "execution_count": 22, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -2169,7 +2169,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 10, "metadata": { "colab": {}, "colab_type": "code", @@ -2182,7 +2182,7 @@ "46" ] }, - "execution_count": 25, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -2204,7 +2204,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 11, "metadata": { "colab": {}, "colab_type": "code", @@ -2250,38 +2250,38 @@ " \n", " \n", " \n", - " 3\n", + " 6\n", " 1.0\n", - " 13.24\n", - " 2.59\n", - " 2.87\n", - " 21.0\n", - " 118.0\n", - " 2.80\n", - " 2.69\n", - " 0.39\n", - " 1.82\n", - " 4.320000\n", - " 1.04\n", - " 2.93\n", - " 735.0\n", + " 14.06\n", + " 2.15\n", + " 2.61\n", + " 17.6\n", + " 121.0\n", + " 2.60\n", + " 2.51\n", + " 0.31\n", + " 1.25\n", + " 5.050000\n", + " 1.06\n", + " 3.58\n", + " 1295.0\n", " \n", " \n", - " 4\n", + " 7\n", " 1.0\n", - " 14.20\n", - " 1.76\n", - " 2.45\n", - " 15.2\n", - " 112.0\n", - " 3.27\n", - " 3.39\n", - " 0.34\n", - " 1.97\n", - " 6.750000\n", - " 1.05\n", + " 14.83\n", + " 1.64\n", + " 2.17\n", + " 14.0\n", + " 97.0\n", + " 2.80\n", + " 2.98\n", + " 0.29\n", + " 1.98\n", + " 5.200000\n", + " 1.08\n", " 2.85\n", - " 1450.0\n", + " 1045.0\n", " \n", " \n", " 8\n", @@ -3293,8 +3293,8 @@ ], "text/plain": [ " Count Alcohol MAlic acid Ash Alcalinity of ash Magnesium \\\n", - "3 1.0 13.24 2.59 2.87 21.0 118.0 \n", - "4 1.0 14.20 1.76 2.45 15.2 112.0 \n", + "6 1.0 14.06 2.15 2.61 17.6 121.0 \n", + "7 1.0 14.83 1.64 2.17 14.0 97.0 \n", "8 1.0 13.86 1.35 2.27 16.0 98.0 \n", "10 1.0 14.12 1.48 2.32 16.8 95.0 \n", "11 1.0 13.75 1.73 2.41 16.0 89.0 \n", @@ -3356,8 +3356,8 @@ "176 3.0 14.13 4.10 2.74 24.5 96.0 \n", "\n", " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", - "3 2.80 2.69 0.39 1.82 \n", - "4 3.27 3.39 0.34 1.97 \n", + "6 2.60 2.51 0.31 1.25 \n", + "7 2.80 2.98 0.29 1.98 \n", "8 2.98 3.15 0.22 1.85 \n", "10 2.20 2.43 0.26 1.57 \n", "11 2.60 2.76 0.29 1.81 \n", @@ -3419,8 +3419,8 @@ "176 2.05 0.76 0.56 1.35 \n", "\n", " Color intensity Hue OD280/OD315 OF diluted wines Proline \n", - "3 4.320000 1.04 2.93 735.0 \n", - "4 6.750000 1.05 2.85 1450.0 \n", + "6 5.050000 1.06 3.58 1295.0 \n", + "7 5.200000 1.08 2.85 1045.0 \n", "8 7.220000 1.01 3.55 1045.0 \n", "10 5.000000 1.17 2.82 1280.0 \n", "11 5.600000 1.15 2.90 1320.0 \n", @@ -3484,7 +3484,7 @@ "[170 rows x 14 columns]" ] }, - "execution_count": 34, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -3505,12 +3505,67 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "colab": {}, "colab_type": "code", "id": "mD40T0Cnm5SA" }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ,\n", + " ]], dtype=object)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJztnXe4XFX1v98PIdQEAgRCEgJXEEGKRhIBRTE2mgVUQIpIlKaC5WcsERtNBaUooihNqiBfqVLEiERFpQUDAREJkJBGQggJKbSE9ftj7ck9mczMnT5z76z3eeaZ0/bea69d1m5nH5kZQRAEQeexRqsFCIIgCFpDGIAgCIIOJQxAEARBhxIGIAiCoEMJAxAEQdChhAEIgiDoUBpmACRdKum0Gv0YI2lm5vxRSWPKdFv2s7Ug5zeSXpB0Xx39PUnSlfXyrwY56pGOVcelHuF3Avllpa9S73hKul3SkfXyrx5I+pWk7zYjrJoNgKSJqfJbux4ClcLMdjSziZU+2+DK9F3AB4EtzGzXBoXRFJqZlkHP9OX0kHSYpAckLZE0J1XE72q2HGa2r5ldVs6zKT2OboJMnzOzU1OYDTXsNRkASV3AuwEDPloHeXojWwHTzGxpqwWphUjL9qIvp4ekrwI/BX4IDAG2BH4J7N/gcPs10v/eSK09gE8D9wCXAiW7UZL2lzRZ0ouSnpS0T7r+GUmPSVos6SlJx5XwY5qkD6TjkyRdK+ny5PZRSaPzn03hnAh8MrU2HpJ0kKRJeX6Pk3RjkXCHSbpZ0gJJUyUdk64fBVwEvCP5fXIBt9tI+ouk5yXNl3SVpEGZ+9+UNCvF4XFJ7884X6tY/BpAWWlZIh0L6ihD0bhIenNqXS1M9/pUhVclBdND0n6S/pP0OEvS17KOUj6el1rVn2muyD0jaUPgFOB4M7vezJaa2Wtm9gcz+3p6Zm1JP5U0O/1+WqwXVCrvpOHD8yXdJmkp8N4C7le26iWNlXS3pDNTz+tpSfumez/ADfJ5qayfl65vL2lCyvePSzo4L/xfSLo1pde9krZJ9yTpnJRWiyQ9LGmnjLvTJK0P3A4MS2EuSeVsmaRNMuGMkvScpP4VJ4iZVf0DpgJfAEYBrwFDMvcuBU5Lx7sCi/ChkjWA4cD26d6HgG0AAe8BlgG7pHtjgJkZP6cBH0jHJwEvA/sB/YAfAfeUePbKzL21gQXAmzPX/g18okg8/4q3UNYBRgLPAe9P98YCd5fQ0RtTvNcGNgX+Bvw03dsOmAEMS+ddwDblxK/ev2JpWUE6ltJR0bgA/VPYJwJrAe8DFgPb5YffSb8S6TEHeHc63iivrCzHK9f+SdfLgI1aHZe8eO2T5FyzxDOn4MZvs1Rm/gmcmonnzAryziJgj5Rf1ykQ1kTg6HQ8Nun6mJRPPw/MBpT/bDpfP5XfzwBrArsA84EdM+EvSOVmTeAq4Jp0b29gEjAIr/veDAwtUOZWxjcT7m3A5zPn5wA/ryY9qu4ByMfrtgKuNbNJwJPAYUUePwq4xMwmmNnrZjbLzP4LYGa3mtmT5vwV+BNuacvhbjO7zcxWAFcAby3HkZm9AvwO+FSKy4545XtLgXiOwMf5v2lmL5vZZLzVf0SZYU1N8X7FzJ4DzsYNHcAK3DDsIKm/mU0zsydrjV+lVJCWBdOxTB0Vi8vuwADgdDN71cz+gqfDoY2Ia2+gh/R4Dc8vG5jZC2b2YMbpa8Ap5i3q24AleCOjndgEmG9my0s8czgej3mpzJxM4fJWTt65ycz+kfLry2XIN93MLkz59DJgKD5MVYgP48O/vzGz5SktrgMOzDxzvZndl+J7Fd44Ak+rgcD2uIF5zMzmlCEfSa5c3dUPj+8VZbpdhVqGgI4E/mRm89P5byk+dDACz8SrIWlfSfekLtRCvOUyuEwZns0cLwPWkbRmmW4vAw6TJDxzXZsMQz7DgAVmtjhzbTre+u0RSZtJuiZ1118EriTFz8ymAl/BW8jz0nPDMs5riV8llJuWxdKxHB0Vi8swYIaZvV7CbadRKj0+gZeR6ZL+KukdGXfP51Wsy/AKsp14HhjcQz4ehueBHNPTtULP9ZR3ZlQo38p8ambL0mExHW4F7JaGnxam+utwYPNC/pFJj2SszgN+AcyVdIGkDcqU8Sa8EbA13htfZGZVrUCsygBIWhc4GHiPpGclPQv8P+Ctkgq1Umfgwzz5/qyNW8wz8S7uILx7o2rkKsFqW56a2T3Aq3hv4zCKW9DZwMaSBmaubQnMKjPsH6Xw32JmG+CWe2X8zOy3ZpZr8RlwRpn+1oUK07JgOlKbjmYDIyRl82Il+u1T9JQeZna/me2PD4/cCFzbQnGr4V/4cOABJZ6ZjZeHHFuma4We6ynv1HO743y/ZgB/NbNBmd8AM/t8WZ6ZnWtmo4AdgTcBXy8jTFJP5lrc2BxBla1/qL4HcAA+fLED3qUZiY9h/R2fvMrnYuAzkt4vaQ1JwyVtj4/brY2PFy9PEy57VSlTKeYCXXkZBeBy3AovN7O7Czk0sxn4GOSPJK0j6S34UMhVZYY9EO+KL5Q0nEwiS9pO0vuSIXwZeAnXazOpJC0LpmONOroXWAp8Q1J/+bsbHwGuqUPceiOl0mOspMMlbWhmrwEv0vz8UhNmtgj4HvALSQdIWi+l+76Sfpweuxr4jqRNJQ1Ozxdaxt3svDMX2DpzfgvwJklHpPD7S3q7pDf35FF6brc0cbsUL/+F0nIusIl88jzL5ficxUcprJuyqNYAHAn8xsyeMbNncz+8Mj08v3uXuiefwScrFuEThlulIYMv4dbsBbwlfnOVMpXi/9L/85KyY6ZXADvRswU9FJ8jmA3cAHzfzCaUGfbJ+OTQIuBW4PrMvbWB0/GJo2fxVt2JZfpbL0qmJT55BRRPx3S7Kh2Z2at4Jt4X18MvgU/n5og6kFLpcSSu/2lpOPFzpLHg3oSZnQ18FfgO3vibAZyA92gATgMeAB4GpgAPpmv5/jQ77/wMOFC+QujcVH/tBRyC5/tn8R58Oe9tbABciNd70/GhsTPzH0pxuRp4Kg0zDUvX/wG8DjxoZtOqjVBudrsjSd3tefhKiidaLU8QBEG5SPoL8Fszu6haPxoxodib+Dxwf1T+QRD0JiS9HR9ZqOnluY41AJKm4ZOxpSajgiAI2gpJl+H11pfzVt5V7lcnDwEFQRB0MrEddBAEQYfS1CGgwYMH26abbsr666/fzGBXYenSpW0T/qRJk+ab2ab19H/w4MHW1dVVTy+L0mpdlkNv1HE76LUSGeqt40bqt5m6rWdYjcjHQG17AVX6GzVqlN11113WStopfOABa4COm0WrdVkOvVHH7aDXSmSot44bqd9m6raeYTUiH5tZ354E7hp/62rXxu28nDHNF6XX0xd0mSb+F+Mv3Cw3s9GSNsb3herCNxA82MxeaJWMlVAoTQCmnf6hJkvSGjo9/vUg5gCCTuO9ZjbSzHLbUY8H7jSzbYE703kQdARhAIJOZ398Y0DSfywLDjqGPj0EFAR5GPAnSQb82swuwDchnANgZnMkbVbIoaRjgWMBhgwZwsSJExsm5JIlS8ryf9zOhXdUrods5coQ9G7CAASdxB5mNjtV8hMklb1nTDIWFwCMHj3axowZ0yARvQIvx/+xxcbAD+/Zbb1kCHo3MQQUdAxmNjv9z8M3rNsV34t9KED6n9c6CYOguYQBCDoCSevnvleQvrW6F/AIvvts7mMrR+If2wiCjiCGgIJOYQhwg38AjjXxXRT/KOl+4FpJRwHPAAe1UMaggXSNv5VxOy9fbeisk5eNhgEIOgIze4oC31Q2s+eB9zdfoiBoPWEAgqZS7OWdUnRyCw2q01kQlEMYgKAhRKUVBO1PRxqAeIU8CIKgQw1AuyFpBP6R583x73xeYGY/68371ARBq4jeZ/nEMtD2YDkwzszeDOwOHC9pB2KfmiAIGkif6AH0douftiLIbUewWNJjwHB8n5ox6bHLgInAN1sgYlF6u+6D+lCiF3sScAzwXHr0RDO7rTVSBvn0CQPQl5DUBbwNuJc22qem0L4zQ9Ytvh9NPYk9aXoFuV7sg+mFu0mSJqR755jZmS2ULShCGIA2QtIA4DrgK2b2YnppqUeasU9NoX1nxu28nLOmND4L1WNvm6CxlOjFBm1Mj6U3unbNQVJ/vPK/ysyuT5fnShqaWv8N36cmhnOCepDXi90DOEHSp4EH8F5CLGRoE8ppvkXXrsHIm/oXA4+Z2dmZW7l9ak4n9qkJegEFerHnA6fiW3GfCpwFfLaAu4qHMasZfiw0bNmoIcbesKV2jwYgunZNYQ/gCGCKpMnp2ol4xR/71AQV0ar3XAr1Ys1sbub+hcAthdxWM4xZbDvsUhQatmzUEGNv2FK7ogHcarp2+Za9EVaxkpZAqYnLZljrQvE3s7uBYgP+sU9N0PYU68XmhjDT6cfwHViDNqFsA1Bt1y7fsg8YMKDuVrGSlkCpictmTDb2hlZBEFRBsV7soZJG4vXENOC41ogXFKIsA1BL165exARlELQvJXqxsTCkjenxTeBSXbvMY9G1C4Ig6GWU0wOIrl0QBEEfpJxVQNG1C4Ig6IPEm8AZSs0zxFbRrSO27w4aSSeX+zAAQRC0NbEApHGEAQiCDiF6UkE+YQA6kGhRBUEA8UGYIAiCjiV6AEEQBEXo68NmYQCCoA3IVjTjdl5e1UZnQVApYQCCIAgqpK/0DMIAlElfSfAgCIIcMQkcBEHQoYQBCIIg6FBiCCgImki8g9G3KTaZ365DxdEDCIIg6FBa1gOISdUgCILWUpMBkLQP8DOgH3CRmZ1eq0B9pYtcLB6X7rN+Rf40Qsd9hXo1Ijo9HxeSNTd8Ua8GWafn43Zt8FZtACT1A34BfBCYCdwv6WYz+0+9hOsNNLKg16rjQrItXzSXWb86ii2/fhNao19d5a0Xc6/9Puu/eU8G7Pz+1e7VW/7Ix6WpR8XVTjq+92938uytd7L5p34MwDNnH8jQz55H/0GbNzzsl2c8wvN//DnDj/l1wftjx45liy224LTTTmu4LDlq6QHsCkw1s6cAJF0D7A80JVGX/mciL95/I689P5M11lqX/pttzYbvPJh1ttixYWFOP+PDDDv2AvpvNKxhYeRRk45nnv9ZXl+2ENQ91bPZwac2Qs66MuTgk5sZXE06rncDYOb5n+XxLxwPjFp5bcmUP7PkoT+trLR6ITXXFTPP/ywrlixgi+Mvo996G668Pvs3X+S1eU8z/HMXs+aGQ1ZeX3j3VSz6x9VsfsRZrD1su6L+bvnV31cemypZZ8ROq1X+2fwzf9JM+v3vZa5s4sSxzKw6h9KBwD5mdnQ6PwLYzcxOyHvuWODYdLod8Dwwv2qJnSHA5sB04EX8s5QbAAPxFkYpBtcQ/ij828evVOk+P/ytzGzTYg/WoOPH0/HO+Oc6F2ceXytdn1RDHHLUostqqVT+7cxsYLGbddBxvdkZeIFV8/EmuK4bFWYhKknbmvNxGfrdGS/n89IPYF1gG2BtYArwaub5nfAG7gLgmcz1rvR8M3RZafnowuMwu8C9kjquGjOr6gcchI/l5c6PAH5ehrsHqg0zud8QWAIcVOT+2sBPkxJnp+O1072xwOK85w14Yzq+FO+q3opXmvcC26R7f0vPLk3hf7JK+cuOf7U6zjw/DfhA3rWuFI810/lngMdSfJ8Cjss8+xjw4cz5mniG3iWdLwCeBRYl/eyYebaoLtP9dwL3J7f3A+/M3JsIHJ2O+wFnpnCfAo7Pk39sur4YeBo4vBJ916rjev9Smj2ed20scHd+fs3o+bTM+YeBycBC4J/AWxqdTxudjzN6+Q5wf+bamcC3k066Mtf3BF4CPoU3ONfK3Hs6p8t8feIG5Sy8YbkIuBtYt4AsGwG3AM/hxvoWYIvM/Y2B3+CV+QvAjen6GGBm5rm3AQ+mvPs74JpsWjbjV8sy0JnAiMz5FhS2XPXmHcA6wA1F7n8b2B0YCbwV735+pwL/DwVOxhN5KvADADPbM91/q5kNMLPfVS56xTRDx/PwSmMD3BicI2mXdO9qXB859gbmm9mD6XwRsC2wGZ6Rr8rzu6AuJW2MG4Zz8dbt2cCtkjYpIN8xSb63AaOBA3M3JK2f/NjXvJX/Trzyq4RW5eO6k9LtEuA4XK+/Bm6WtHZLBaufju8BNpD05jSv8EngygLPHQn8Aa9UwfNPOZyJ9/LfiVfi3wBeL/DcGngFvxWwJW5szsvcvwJYD3gULxvn5HsgaS3gxvTsxsD/AZ8oU876UYNVXxNveb0B75Y/RKYF2KiWBXA48GyJ+08C+2XO9wampeOx9NwDyLZU9gP+W+jZGuSvpAdQlY4z7qfhvZWF6XcjeT2AAm5uBL6cjt+It07WS+dXAd8rFBdgUPJ3w550ibcA78sL91/A2HQ8ke4ewF+Az2We2ysnP7B+itcnKNBSK0ffteq43r+UZisyabYQWEYZPQDgfODUPP8eB97TyHza6Hyc0csH8Mbcj4B9gAnJ75U9ALzifRE4IJ3/Grgp40/BHgBeqb+EN/Aqjd9I4IV0PBQ3Ghvl65BMDwDvpcwmDcOna/+kt/QAzGw5cAJwBz5UcK2ZPVqG0wuqDTPxPDBYUrEJ7GF4Fy7H9HQtx7M9+J+9vwwYULGEpSk7/jXoOMsBZjYo/Q7IvylpX0n3SFogaSFeUQ9O4U9N4X5E0nrAR4HfJnf9gOckPSnpRbyAknObKKbL/DQinQ8vIP8wYEbecyT5luKtwM8BcyTdKmn7PPcl9V0nHdebn2XSbBDwhTLdbQWMk7Qw98Nb3tWsWqi1nK6kzjq+AjgMb8xdXuD+x4DlwG3p/CpgX0m58fOJRfwdjI8sPNmTAJLWk/RrSdNT3v8bMCiViRHAAjN7gdI6HAbMslTzJ/LLRMOp6T0AM7uNbkWX66bWjPUv4GXgAKDQFP5svCDkMtiWdHc3l5KZEJXU+LVfeVQa/2p0XC5paOA64NN4K+k1STcCyjyWGwZaA/hPMgrghbALb5VNw+dmXshzW4xcGmXZEvhjgWfnsOrwwZbZm2Z2B3CHpHWB04ALgXdn7veo70bquEpKybIMb+Xm2JzuCeMZwA/M7Ae1ClCHcprvX110bGbTJT2NN1SOKvDIkXhD4xlJ4PmxP56HzwX+ig9b5jMfr1e2wXsopRiHT1TvZmbPShoJ/DuFNQPYWNKgHnQ4BxguSRkjsCVlGKB60uu2gjCzRcD3gF9IOiBZ4/6pJftjvML6jqRNJQ1Oz+bGCR8CdpQ0UtI6wEkVBj8X2Lo+MWkL1sInzZ8DlkvaFx9iyXJNuvZ5Uus/MRBfDfU8XiH9sIJwbwPeJOkwSWtK+iSwAz6Zls+1wJckbSFpI2B87oakIZI+muYCXsGHu1ZUIEdvZDJwmKR+6eWq92TuXQh8TtJuctaX9CFJRVdB9VKOAt6XeoArkTQceD8+5j+S7nnAM3DDUBQzex2fPzlb0rCk33cUmT8ZiA8XLUzzWd/P+DMHuB34paSNUt20ZwE//oX3VL6UysDH8fnKptLrDACAmZ0NfBUfD3wOt7on4OPXpwEPAA/jS8MeTNcws/8BpwB/Bp7AZ/kr4STgstS9PrjmiLQYM1sMfAmvZF/AW/U35z0zB8+s76R7Ug28+z0dmIWv576ngnCfxwvpONyAfANfbVRoydyF+NDBQ3haXp+5t0byYza+Iuk9lD9c0lv5MvARfG7gcDzPA2BmD+CT5ufh6TkVHyrpU5jZkymu+RwBTDazP5nZs7kf3vJ/i6SdevD6a3idcT+en86gcB35U3zF0Hw83+f3XI8AXgP+iy+y+EqBOLwKfBxPnxfwoczr859rOI2cYMAt6jzgkcy1jfHJmyfS/0YNDH8EcBc+7vgo3ZObTZEBH1O8D6+8HgVOTtffgC+LfAKvVNdqRPh1Tref4Bn6YXwF1qAibqfhhWgydZxILFPGk3CDNDn99ividh98cnQqML7V+u4pvzZZhoJ5ti/8Gpk3W13XVS13gxW+J7BLnlJ+nCt0eHf+jAaGP5TuNesDgf/hQw1NkQEfExyQjvunSn93vMV9SLr+K+Dzrc4IZaTbXnSvvT+jmM5SIRvcIhlPAr7Wg7t++Djr1nSvSNmh1TpPshXMr02WoWCebbVu6hS3huXNVtd11f4aOgRkZn/Du1JZ9gcuS8eX4ZO5jQp/jqU16+bDHY/hK02aIoM5S9Jp//Qz4H10T2A3VAfVUCjdzLvVy9PpPfha7pZRJG+Vw8ptCcy74bltCVpOifzaTBmK5dmgBK2u66qlFXMAQ8zHlUn/mzUjUEld+MtE9zZThjSZNBnvHk7AW58LM5XpTJpcyOvAZ/GJrkIY8CdJk9Lr/c3mBEkPS7okTRrnM5xVl5W2pf7z8muzw14lz5pZ02VoEM3Omy2p6yqhV04CV4qkAfhyx6+Y2YvNDNvMVpjZSLzFvCvw5kKPNVOmWpD0bXz1Qv5bvzn2MLNdgH2B44usgGgU5+PL+Ebiy+zOKvBMoWWqbaX/VuZXWD3PljF52ltoZd5sS6reDK7sALwlc4uZ7TR48GDr6uoCYOnSpay/fmV749eLdgl70qRJ8/GXq04ys73r4X9Wx82mlXotJsOkSZPmW2YTLUnvIKNvSd8CMLMflRtGvo6bEe92DiNfx7XSjDzcLnVAudRbxytp9CQD/rLQI2bGqFGjLMddd91lraJdwsaXq/4K+ILVSd9ZHTebVuq1mAys/jp+zdsS5Ou4GfFu5zDydVzrrxl5uF3qgHKpt45zv4Z+ElLS1fj+F4MlzRw1alQPLprDlFmLVn6sOUsLvs6zE743ycWN8Lxdv0LUbCQNw/cl2s/MlkvKbUvQD7jEWr/1Q8nvCnRaepVL5O/aaagBMLPsTpKMHj26rcZa24BHzOygVgtRC9lCmPuMILRXITSz2fjWAbnzdtv6oSRd429dRbc52knHQe+kIyaBgyAIgtVpaA8gCILOQtI0fMPFFcByMxud9sv5HT4fOA042Hy3zKDFhAEIGkKMz3Y077VV93UaD9xpZqdLGp/Ov9ka0YIsMQQUBEGjafs3YjuV6AEEQVBPcm/bGvBr8z3xV3kjVtJqb8RmPwo/ZMgQJk6c2GNA43ZeXvB6OW6XLFlS1nONoJVh5xMGIAiCerKHmc1OlfwESf8tx1EyFBeArxYcM2ZMj24KLeUGmHZ4z24nTpxIOWE0glaGnU8MAQVBUDfSklvMbB6+bfiuwFxJQwHS/7zWSRhkCQMQBEFdSF8gG5g7xrcQfwT/yFDui1xHAje1RsIgn7KGgBqxtKuN3sYNgqA+DAFuSN/iXRP4rZn9UdL9wLWSjgKeAXr1y499iUrmAGJpVxAERTGzp/Bv8OZffx7/Vm/QZtQyBBRLu4IgCHox5fYAqlraBcWXdw1Zt/AyrmYsj2pl2O20BCyf2JAsCDqLcg1AVUu7oPjyrp9fdRNnTVk9+HKWcNVKM8IuVpleus+A1ZaASRoBXA5sDrwOXGBmP4tX6INSxNvWQa2UNQQUS7saznJgnJm9Gf9o/PGSdqB7nmVb4M50HgRBUBd6NACxtKvxWIs/Xt8JSBoh6S5Jj0l6VNKX0/WNJU2Q9ET6L/Qd4SDok5QzBBRLu5pIqY/XVzrPUumr8sWeBx82K+ym+7jY3Eo5YdeLEnMsuV7Wg6lBM0nSBGAssZot6FB6NACxtKt55H8MPBndHik2z1Lpq/LFni+XcTsvLzi3Uk7Y9aLYa/bJkOaM6WJJ2V5WzsFlwETCAAQdQuwF1CZI6o9X/leZ2fXp8lxJQ1Prv27zLKVW+3QC9exlQWUru6bMWlTwerYnVYhyelc5ivXWdh6+YUl37bxCLWgMYQDaAHlT/2LgMTM7O3MrN89yOjHPUhfq3cuCyjb3qraXVU7vqid66n210yZltRCro8on9gJqD/YAjgDeJ2ly+u2HV/wflPQE8MF0HlRJqV5Wuh+r2YKOInoAbYCZ3Q0Ua4rGPEsdaFQvKz7YHvRmwgAEnUKulzVF0uR07US84o/VbEFHEgYg6Aia3cvq9In2oHcQcwBBEAQdShiAIAiCDiWGgIKmEkv0gqB9iB5AEARBhxI9gCAI2pqYUG8c0QMIgiDoUKIHEARBR5DtSWRf3uvk+acwAEEQdDTVfAq1ryxmiCGgIAiCDiV6AEEQBEXo6xPQ0QMIgiDoUKIHELQF1YzDBkFQG2EAgqBD6CsTl+1Mb9NxDAEFQRB0KDUZAEn7SHpc0lRJ4+slVNBN6LjxhI4bT+i4Pal6CEhSP+AX+KcKZwL3S7rZzP5TL+E6ndBx4wkdN57QcfGX0ErRjGGjWnoAuwJTzewpM3sVuAbYvz5itQ/PPPMMAwYMYMWKFa0IvqiOJX1M0gxJSyS9TdI0SR9ohZDlsOhf1/L87ecWvT/z/M/y0rTJRe8Xomv8rXSNvxVJDD/uQrrG38qUWYsqFa2qfDxt2jQkYa+3JF80hEMOOYQ///nPAPzwhz/k6KOPpmv8rWzx+UuQxFbfuHmlziukIh0//vjjXHTRRdVGA4Dn7ziPhf+4uuC9+beewy3/d1VN/jeTAQMGAKzVCL9lZtU5lA4E9jGzo9P5EcBuZnZC3nPHAsem013S/8PAIGB+Ot8BWBeYArxalUCVMTgTdqPYGTewU4DXM+FuDjySzrcys02LeVBKx5KeBL5qZjclHf8cmAYMAx5vQHxKsQkwBFgHWAG8AMxKxySZNgdyme014EVgTjoGeEs6Xjs9txiYkbkvYASwUTpeAkxP90cBjwFDgQ3TtVnAAjI6lnQB8ICZXSBpC+AM4KNJ7n8DpyT/czo2YFlG7teB54DNgKfxNJ6Lp6uA5en+sxndbAUMTPGaBjyfp7cuuvMHwNQU93wGJ7fDgI2B/nhZeS7JkGM7YP2MzAD/A5YW8DOfkcCTBcJfC4/rpCLusjruwnXTP8VlSOa5a4AvAh8jr67IqydG4j2FepTRTXDdZctEFz76MbUO/ldDNfVPybqiasysqh/+7dSLMudHAD/vwc00PCG+iBdE8Iz1OJ5hu6qVp0LZH2hCGNPwAnti5trRwOJ66BivbN6YF94HmqG/PBnH4RXQPngF0QXcBtwPrJWeOQk0zSIbAAAgAElEQVS4Mh33B3YEfg/MBoam63PxCngDYD3gEuCPmXC+ATxEt6G5Arg+3TPgD8DvgAeBdwGLgB3zZH0G2AKvQKcBvwGOSf+H4kbp3IyOLadjvNAegVe430/xNLzx8mB6ZjjwKPDxTJjH45+cfAAYmyfPWODucvMs/gH7+4Cd8Apsd+AJ4NzMcxOBo6tMy1cK5aFMXNcsw4+Vz+byZMrHv8UbPqfn5WMBa+T5UXUcCsizmo6BS4HZzS4r2bRsVdiryVJDJN4B3JE5/xbwrR7cTAO+g1cOOQNwJvDtlGm6gA/hrbEX8RbgSXl+fBpv+T0PfJdMxYdXNNcCl+OtmEeB0Rm3w4Dr8Bbi08CXMvd2TYXsRbwyOjs/Q2fi8IGMu5Portxyz34Gr6CX4S2v9+K9nmXAqxm370y6WJT+35lXCC7BW9OLgT8Bpyb9LUnhLAWezJcrxeVfwEK8lX0e3ZXxr4Az83R6E96bABhPdyvwP8DH8gtTSrMXUpgvAQen+w/hldSCFP9LMzp6OKenTDq+mtx/u4BedyEZS7zAPpqeWQz8NcnyeLpvKbxp6f8XuIE4Pd3/LPBUuncHXsk/gvfQLPn9REqfV0j5ON07G89v8/B89WngZbyVmqvoHkjyTMd7PQuAw/N0fDe1GYDHU7gj8q7vlsLMGaqJlFl54hVxrix9m4wBoHC+LqcMPJOeXYL3bL6I1xWPpHBeTXr+J/CPlP5H4q3x11IcXwIuyyubufxswEV4r+Q7KU0N+FzS+8sp/S8Fzk/nK5IsL6V0XIaX81vx/HQfcGGSfS5wQ0rTRXhd9I8U9oIkx2/wxssLwI1JxkeAj2Rk7o+38kem8//De4aLUpg7Zp69NMmck+deYJvM/WxDpOizuDE9J8VxEV7mdiqVB2qZA7gf2FbSGyStBRyCF/6euAdv5a2TJoc+CVyZub8UL2SDcGPweUkHAEjaAfglcDjd3f3hef5/FO9qDkrynJfcroG3Eh/CFfN+4CuS9k7ufgb8zMw2ALbBDUm17IYPQZyMt1Z/hbeEvgesKek9kjbGE/FcvJt6NnCrpE0y/rwHL0hvx4cQjgVuMLMB6f5bzWybAuGvAP4f3mp9R4rrF9K93wKflCQASRsBe+E6A6/8343r9mTgSklD8+L2ePL7Dyl+16d7W+Nd92F4L+AQSat9cD2Tjr/Fh8g2wVvmWfbEK+YcXXiG3xkvbD8Gbs96i1fK/wEOxgv+jinvnIgX6jOBv+MG+jozez3j9yeAffGKJbs44hO4Ad8aGJB0tSbw1swzQ/FKYUu8Qv0AUO6ExtskzZf0P0nflVRsYcYGwL1mNiN70czuxXVe0YftUxqcjxuBYXga1GOcec/0PwivUHNDc9vh6XcW0A8YjefnLnz48hXgYrxR1x/4eCbvZPPzfXhv8wsprOnpmQ+nsL6Ip/9w3OB8Ds8TrwM/Sdf/gQ/LnY0P+W0A7Ifnn7fj9c7spJNnkqzb4b1Pw3uoO+JDgeek8C8HPpXRw37AHDPL5YPbgW2Tm2VA/iTEoXh52wg3hj8ooNuent0r6eRNuP4/yapDjqtRtQEws+XACXiL6jHgWjN7tLSrlVyBt+4/CPwXryxz/k40sylm9rqZPQxcjVeEAAcCfzCzu80nk77HqmOd4C2q28xsRQonV1DfDmxqZqcAvzazp3Crf0i6/xrwRkmDzWyJmd1TZlwKcWqSaxKe6Uek84W4gXsbnsmeMLMrzGy5mV2ddPGRjD+/AY7DDdkOwKJydGxmk8zsnuTvNODXdOvw70mWd6fzA4F/mdns5Pb/zGx20v/v8Jbxrhnvp5vZhUm//07XBksagY89f9PMXsYL3Ry8gsnnQOAWvDGwEV7oV46DS3oLnrZfz7i5Ha/4n0462RRvCeZYaGYLcYN/Fz7MMzA9+6MUh1uBHyY5X8m4/T4+JPWbdD4sc+8S88nLJXgv95N4y25Q5pkf4S2ur+P59Ykyy8Lf8OGczXBDc2henLNMxfVZiDl45ZjjXEkL0+/BIm4OBG4xs7+Z2St4GjRiRvtGfGjuJborpdl0z+PsjcdtezzuZ+It5b+T8k42P+M94aeAMfi8UW5lwdl4r/EGutM/y2vAKWaWmx96DS+LK3Aj9LKZLcDLyVRg5xTeQ+m5I3Ed7w58zsxeMLPXzOyvyf8rgf0kbZDOj8DrH1IcLjGzxUnXPwTeKmnDjHzXm9l9KcyrcGNUjGLPvobn+e3x+d3HzKxYngFqfA8gVbRvMrNtzKyUxcrnCrxCG4tbzpVI2k3SXZKek7QIt+C5zD0MNxy58JexuoXLTsAtw3saa+KTccMkLQR+nP5PpHuS6ijccv5X0v2SPlxBfPLJTsotwVscubXPy/CW5DC6Wy85prNqj+bZnI7xwjGvnMAlvUnSLZKelfQinuEGA5j3Fa/BKxuAw8i0RiR9WtLkXAWCV1DZyiWr39npf8MUn+fNLDeBOBSvKPN7aNCdjsOBBWa2lJSOkt6IV/ZfNrO/Z9zsgPc2NsEr8GV091rAW2WY2QXp3ga48d0K793tgfdYFqTnsz2nG5OOcy3ObKNiVuZ4Ot763xQ35qQwz8Mrtr2BrwIPSdq+QLxXIRmWp5OxnYLPgRxY5PF/4DotRE7XOb5kZoPSb5cibvLL0lJ8fqPeHIA3InJ1zcZ0N4iGJzlewPPB4pQ/Z+D5YTismp9x/b4LT9cpwITk71B8pdF8PP3ze1LPpwozR64cbor3rt+Q8vsFeEs9N+H6E7zcjceHhV4ysxfyI5kaUP8APiFpEN6bvCrJ30/S6ZKeTOXx5OSsWLnKyVaMgs+a2V/wBtAvgLmSLsgYpIK05E1gM5uOt+T2o3v4IMdv8RbvCDPbEB8+Ubo3h8xQgaR18QqhHGYAT2cKxiAzG2hm+yWZnjCzQ/HW2BnA7yWtX8CfpaTKJrF5GWFfik82ZivD2XgmzrIlq1Y41XI+3pvYNg1pnUi3DsFbqQdK2gof0rkOIJ1fiPfsNjGzQXirO+s2y7/S/154fDaWNDDpbV+84BSKzxy8EvgI8HdJ6+HpuBnwZ+BUM7siz80wfE5hAT5EsA4+xJMrRP0kbZt5fgg+hDQDb9lfm0t33CDuloYFsxyMp++CzLVsmm2JtxhzLcOVmNkdZvZBPO+8juuxUoziuv5zknlE9qKkXXFd/qXCsHJpkPMnlwblUKoM5PfIwdPguIz+7wa+YGb/THJsRHfeya322pjuvLMyP+MV8+t45flX636XYAw+N5RPIXmyzMd7g88m2Y4F/p0bZk0NmgW44TkMWE/SR4v4dRk+DHQQ3qvOyX8Yvuz1A3hjqStdL5bWVWNm55rZKHyIKtdwLEort4I4CnhfanlkGYi3Bl5OmfuwzL3fAx+R9M4073Ay5SvxPuBFSd+UtG6yyjtJejuApE9J2jSNC+dad4W6xJPxse3+kkZTvMWWZRbeDf5S5tptwJskHSZpTUmfxFu5t5QZn1IMxCe5lqSW6OezN83s33hr7yJ8Ij8X39zywecAJH0G7wEUxMxyi+6/j2e4f+EtkOvwgjWavLFOSf3xlTqfwAv6z/GW7xp49/8XZvarAsGtB/y/VOH/AB/3np1afOBDA6ck47MZnvmvwBsQnyJV2Knb/STeQ7g4uV1L0qH4ROgDeeF+Js1zjUj+vYZX8jmdHZNaqB+VtCc+5PQEKe9IWkvSOng+7S9pnZzhkbSvpCHpeHt8GOamIrr+M3AncJ2kHVP+3T3p93wze6KQuxL8HviwpHelspRLg3IoVQaewyvorTPXfgV8S9KO6bwfvnQXfFhuW3xe6XS8ot0cb+Xn8s7K/Iwb4dfwFn+2wj+EwgZgLt2t+dVI5f0WYJCkzfByuV1qsa8p6Qy8DNyCDz29AnxJ0kYp/ntmvLsRH4b6MquObAxM7p7H8/EPi8lTC5LenkZQ+uNGOjcBXhyrchVQNT989cAf8ZbhI5nra9K9CuhAvKu9GFf6eay6emQsPjGTWwU0C3i35a1GsMKrF0bjGWJ5Usw0ulc9XJnkWoK3HA8o4sfW+Mz7EroncVdbLUH3EriZeOvkjXjBeC3JcDKeySfh48eTgHdlZJ9IZjUHeStGyKwMyOg2F5c98RbTEnws9RRWXwr33eTHQXnXf4C3eObj46p/zcmRZLgPH2N9LOnJ8LHxR/Bx3lfwlR4r8Jbf5PT8CrrHXZ/AK7NZdK9AeYHu1SMrf9a98uE3eGvx9ZR+r+BjtZOTu1F4AVya3N6Q0mZqCvspuleWXYJXJFcnt8vwRQ37p7BOy+j41RRmLty5+HBALq3vSLK/ns5fT+F/N5OOlvcbk+6dmfxbmuT7N3llIy9t1sEN1GspnBlJljWK5ZsCflySCwMf186VpdxKrHF4fnw25YPvUUEZSPdPodsQfNG6VxxNSWnwMqvm5X1S/LOrgK7I3M/Pz3enNF07k04GDMnkl4eSXBPpfpcjm58W4uVzTPJ3BZ6nXk56eCbpYQae75biZfmHeEt/bkr36/P0e1F6dkDyZwq+6CS3mm86vsjF8DrhXLpXHu6S/BgDzCxU1snkz/xn8SHMh1N85uMGdEDJOrmZBiCTmLtQJJNX6NcAvFC+ocznh2aUPBB/QWaHJsVbucTAhzDuBXZvtv7rEI8edZgy5S11DHOVTJ+uTQMGl3CzHz6XsCtuqO6tIfx+eK9ha3ylzEMF4jwWOK/GeJYsG5k4CZ+MrDhOZYRR17Rr5a9FefV7dDcIy82jVadnrb+mDwGZ2d9YdYy1IiR9RNJ6qat/Jm5hp5UZ9hwzezAdL8ZbsYUmKeuOOUvSaf/062l8su1opQ4rZH+6u+Ffw7v4xSZRe6Ip256UUTb2By5PeekeqohTreWvN9HsvCpf2n0UPpFcDjWnZ630xu2g98cnHGfjY4eHWDKnlSB/Zf1teEu8KaRx28l4F3yC+RruXksPOnyHpIck3Z4Z+60nBvxJ0iT5NgL5DAdmmC+Xux3vvldb+IeTWTFTwq9PSHpY0u/zJ2vrRLly1Eqj067pNDqvSjoGT5vbk5GFMvNo5rxR6VmUXvdBGPN9cY6uxQ9JA/CJyq+Y2Yt1EawMzNfOj0zLxG6QtJOZPdKTu3akBx0+iO9dskTSfvjY/Lb5fpSLmY0tcHkPM5udJu4mSPpvpuBB4cUB1fa4yvHrD8DVZvaKpM/h48TvqzK8WuSolbqmXTvQjLxqZhey+sqvZubRquiNPYCaSDPk1wFXmVn+EtSmYL7qZiI++dXr6EmHZvZibrjLzG7DV78Mzn+uFqz7xbV5+ITvrnmPzCSzzBFfPjyb6ujRLzN73vwlH/CKYBT1p55xKkgz0q6ZtDKvNjmPVkXVu4FWw+DBg62rq6shfi9dupT11y+0bL+5VCLHpEmTXjR/16Fu1EPHrdBlo8KcNGnSfPx9g3PNLL8AloX8RcL/4assZm2yySav1Csft0u+rZSs3JMmTZpvddypspY8XG991tO/Wvyqt45X0swZ51GjRlmjuOuuuxrmdyVUIgcN2BWwHjpuhS4bFSa+rG8KmU0Bq/nhKzb+BzxZz3zcLvm2UrJy1zsf16Lfeuuznv7V4lcj6goza785gN72UeVOoRenyyNmNrpWT8yHB24DGD16dFus3urFadISQl+r03FzAEEQBIHTdj2Aaugaf2vB72x2smUPgiDoiV5jAKr4DmkQBEFQghgCCoIg6FDCAARBEHQovWYIKAiC8ojVLkG5hAEIgqCjKTW/eOk+ve8lvUoIAxCsJFcQCq2oCoKg7xFzAEEQBB1K9ACCoAHEOHzQG4geQBAEQYcSPYAg6BCiVxLkEwYg6AjSF7ouBzbHP1Z+gZn9LH3G73f4h8+nAQeb2QutkjOondg1oHx6NAAlCs5JwDHAc+nRE9OOiUHQjq3N5cA4M3tQ0kBgkqQJ+Mfc7zSz0yWNB8YD32yVkL2VqCd6J+X0AIoVHIBzzOzMxokXBPXBzOYAc9LxYkm5D4TvD4xJj12Gf6ktDEDlRD3RC+nRAJQoOEGdiOGJ5pL3gfAhKY9jZnPS91sLuTkWOBZgyJAhTJw4sWQY43ZeXvB6vrslS5b06FelYVRKNeHnyx31RO+kojmAvIKzB3CCpE8DD+DWPyqn6ojhiSaR/4FwqdB3uVfHzC4ALgD/IMyYMWNKPl/sRbpph6/qbuLEifTkV6VhVEq+TOVQSu6oJ3oPZRuAAgXnfOBU/Cv2pwJnAZ8t4K4uLaeeGLLu6m6rbVnVQjUtuhieaA5FPhA+V9LQ1PofCsxrnYS9n2bVEwBTZi1a7ZrXAzVEII9aemiN9KtelGUAChUcM5ubuX8hcEsht/VqOfXEuJ2Xc9aUVaNTTcumVmpp0UFzhieKkTOghYxpMYqFVe4QSI5GFw55U/9i4DEzOztz62bgSOD09H9Tw4To4zSznoDCdUWheqAWLt1n/ZrKc5Za64ZGUM4qoIIFJ9dqSqcfAx5pjIjV04YrUUrSrOGJYozN7AVUbiEqZmTLHQLJ0YTCsQdwBDBF0uR07US84r9W0lHAM8BBjRSir9Kb64lOppxSXqzgHCppJN61mwYc1xAJO4QYnmgsZnY3UMyivr+ZsvRRop7ohZSzCqhYwYm1vHUihieCVlLqxalye8tRT/RO4k3g9iCGJ4IgaDphANqAZg9PtPJV+WJh9/UPb+TIj3/u2wvtOi8V9G3CAARBDcS+M0FvJgxAUBNRAdaH0GPQCjrSAPS25aGdwJRZi4ovHY10CVpEsXzZV/JkfBAmCIKgQwkDEARB0KGEAQiCIOhQwgAEQRB0KGEAgiAIOpSOXAXUKfT1pYWxmisIaiMMQND29HVDFpSmHdO/rzQ+YggoCIKgQ4keQBAEQZ3obT2D6AEEQRB0KC3rAfSmcT1oXwseBEFQLTUZAEn7AD8D+gEXmdnpdZEqWEnouPGEjotTr+27Q8ftSdUGQFI/4BfAB4GZwP2Sbjaz/9RLuEaw8O6rWP7CHAZ/5Gssf3Eesy/6AiO+8ju0Rr+S7loxttcOOrblr/LMWR9n+OcvZc0NBlfk9rXnZzD74uPZ6hs3N0i6wvzxj3/khBNOYOrUqT0+2w467uuEjovT6lGHWnoAuwJTzewpAEnXAPsDDUnUmed/lteXLQStgfqvw7pbj2bjDx7HGmutW7Wfa26wGVt+9fc1yVXsAx/FqDBRC+pY0n2ZZ9YDXgFWAHR1dZX08KWnJrFgwq8YftyFlcjRl2lqPu5QOl7HXeNv7bFuaAUys+ocSgcC+5jZ0en8CGA3Mzsh77ljgWPT6XbA41XKujP+UenFQH/gTcBCYFa6PxiYX4Y/w4C1gaerlKMnypUDYCsz27TYzXJ0LGkacD2wZ7rUk443ALYEHinxTDYOAnYBHgZeKxWZAqwD7AhMKuPZSvTWE9k41qzjdL1e+Tifesa7mWTlrkc+rpd+663PevpXi18ldVw1ZlbVD/8+7UWZ8yOAn1frXxnhTQM+kDn/CXALMBH4AbAEeAl4I17J3wwsAKYCx2TcnQRcmY67AAPWTOcTgVOBf+CG5k/A4Izb3YF/4obnIWBMATkfqGOce9Rxvl7StXXxLvccvMv9E9xobpJ09HrS15J0bQ/gXmARMBuYm9HJOklHWxSR8Z6ks0nJ/XXAhune9sBy4DNJjueAr2fc9gO+CzyFG5ergEFlui0Yx3RvH7zFmXv2u+m5F4HHgHe3Kh83Mr8081eJ3M3Ucb31Wefy3HZpXcsy0JnAiMz5Fnjl0XAkjQD2A/6dLh2BV4QDgenA1Um+YcCBwA8llftt3cPwSmczYC3gaynM4cCtwGnAxun6dZLqb5W7qVbHJwNvwXtNo4AxwDfM7HngY8BTZjYg/Z7HK98T8Hi9G9gQOLoCOT8NHA4Mx3V2VuZeP2A0bpj3A34gaet07+vAXsC76O5hnFOm24JxzBdM0lvx9ByZ4vUhXK85WpaPO4jQcbtSgzVbE2+5vQEv9A8BOzbKUuEV/BK89T0d+CXeCpwInEKyrnhGWwEMzLj9EXBpOj6J0j2A72TcfQH4Yzr+JnBFnkx3AEc2sMXQo44p3AOYBbwvc74/8N90vErruEi4M4Gr03E5PYCTMue7AEvT8fbJbbYX9TBwQDp+Gtgjp7cUz2X4sFNPbsuKIz4ENQd4by6dW5mPC4Tfdq3CesvdTB3XW591Ls9tl9ZVTwKb2XJJJ+CVYD/gEjN7tFr/yuQAM/tz9oIkgBnABenSMGCBmS3OPDYdb0mWw7OZ42XAgHS8FXCQpI9k7vcH7spzfwF1ohodyxWyOR7nHNPx1nkxNzvgrfZdcKO6Nj5eWS4z8sJaT9KG6XyFmWXHPZcBA5KcI4DbJBleMfwbfzlxkzLclhVHM3tU0nh8mHB7SbcDXzWzuel+K/JxlrrllyZTttxN1nG99VlP/9ourWt6D8DMbgNuq5MstWBmllvWMhvYWNLAjBHYku7J4mqZgfcAjulBkLomcqU6NjOT9CxusJ5Ml7PxLzTrfyHe+znIzJakCvMDFYiZ7d5vCSwzs0WShvYg5yzg42a22iSxpKIGqIw45j9/GXCZpEHAxfgw3jGZ+y3Lx/XOL82iUrmbpeMGlL96NujaLq373FYQZjYDn6j9kaR1JL0FOAqfYKyFK4GPSNpbUr/k9xhJW9QqcwO4Gvi+pE0kbQZ8G5cffIJ3M0kDMs8PBBalyn9HMpVjmYyV9Kbk50nA78p09yvg9DSng6TN8npYpSgVx5VI2kHSeyStjU+Av0RaMhsEnU6fMwCJQ/Hx/dnADcD3zWxCLR4mw7I/cCK+ImUGPonZjjr8Hr7G+lFgMr6q6cfp3kP4CqnpkhZK2hj4f8DRkpbgK2vKrcBzXIFXyLPwFUbjynT3Y+DPwF8kLcYN9y5lui0Vxyzr4sNb8/G5gAHJbRAErZ6EqGAC5RJgHvBI5trGwATgifS/Ubou4Fx8CejDwC4NluMkvPKbnH77Ze59K8nxOLB3i3W4T5JjKjC+wP2v4pXqw8Cd+Nrj3L0VmfjdnLl+D/CpGsMdixvVnP9HZ+4dmdL3CfIm3HvzDx82uwtflvoo8OVWy1SB7P3w+ZpbWi1LRqbVymW7pA2+kOI+vPH1KHByq/W1UrZWC1CBEvfEW4fZivfHuQoFGA+ckY73A25PhmB34N4Gy3ES8LUCz+6QEn1tfAXEk0C/FumvXwp/a7pXYuyQ98x7gfXS8eeB32XuLSnib0kDUGa4Y4HzCrjdGF89sjGwUTreqNV5sU7pMZTUMMGH4P6Xr5d2/eENhd+2mQFYrVy2S9qkemhAOu6Pv3Oze6t1ZlbbewBNxcz+hr/YlWV/4LJ0fBlwQOb65ebcAwwqNSFZBzmKsT9wjZm9YmZP4y3gXeshRxWsfB3fzF4Fcq/jr8TM7jKzZen0Hny9dsPDLcHewAQzW2BmL+C9vH3qIFPLMbM5ZvZgOl6MtzaLrtRqF9Kc14eAi1otS5YKy2VPftU1bVI9tCSd9k+/6rZgqDO9xgAUYYiZzQFPNPzlLfDEyi5NnEnjC9cJkh6WdImkjVooRzEqleUovBeVYx1JD0i6R1LO0GJmu5vZapOvVYT7iaS/3+cmhauQuVciqQt4G94ybHd+ir9w93qrBWkG9UqbtHBkMj5MNcHM2iKte7sBKIYKXGukxT0f2AZ/23QO3W/CNluOUpQti6RP4e9N/CRzeUszG42/Kf1TSdvUMdw/AF1m9hZ8UjjXq2sn/TWEtHLqOuArZvZiq+UphaQPA/OswLLdvkg908bMVpjZSLxXvaukneohY61UvRlcNQwePNh62q0yn6VLl7L++pXtPd5b/J00adJ8q/MGT9XouFIapbtG0Agd1wtJ/fH9rO4ws7NbLU9PSPoRvu3KcnxicwPgejP7VEsFS6TW+i1mVnPl2si0kfR9/G35M+vpb1U0c8Jh1KhRVil33XVXxW56i7804NXwanRcKY3SXSNohI7r8cN7N5cDP221LFXKP4Y2mgROMnVRn0nguqYNsCndmxyuC/wd+HCr9WXWiyaBg6CPsQfemn6fpMnpt1+rheqtSLoa+BewnaSZko6qwbt6p81Q4C5JDwP343MAt9TgX91o2TeBK6XVX84J6kMrvqzWjpjZ3RSe4+gVmNlEfPuQtsDMDq2jX3VNGzN7GJ9IbjuiBxAEQdCh9JoeQNC7KNVjC4KgPYgeQBAEQYfSdj2ASj+yHgRBEFRH9ACCIAg6lLbrAQStI1ZaBUFnET2AIAiCDiUMQBAEQYcSQ0BBWWSHh7IT8zE0FAS9l+gBBEEQdChhANoASSMk3SXpMUmPSvpyur6xpAmSnkj/G/XkVxAEQbnEEFB7sBwYZ2YPShoITJI0Af9U4p1mdrqk8fhnL79Za2Dxlm4QBFBGD6BE6/QkSbNiJ8PaseKfoCv2ycsgCIKaKacHUKx1CnCOtcNHDfoQeZ+gW+WTl5I2K+E0CIKgIno0AKkCylVCiyX1io9X90byP0EnlbcjraRjgWMBhgwZwsSJE0s+P27n5TXJOWTdbj9+ftVNRcKozM+eZA6CoP5U9EnI1Dr9G7AT8FV8jPpF4AG8l/BCATfZymnUNddcUzKMKbMWrXI+ZF2Y+1JpuXYevmFZ8mdZsmQJAwYMqNhdPf1973vfO8n8O7sFP0En6XFgTGr9DwUmmtl2pfwcPXq0PfDAAyXDrXUOYNzOyzlrSn2njxq1nFTSSh0HQbAqZZfiAq3T84FT8Y90n4p/CP2z+e7M7ALgAvDKacyYMSXDyd/4rZzKZtrhpf0sxMSJE+lJlmqoxl95U/9i4DFb9fujNwNHAqen/8LN7SAIgiooywCk1ul1wFVmdj2Amc3N3L8Qb70G1ZH7BN0USZPTtRPxiv/a9Hm7Z4CDWiRfEAR9kB4NQLHWqaShuQlK4GPAI5UEHEsRu+nhE3Tvb6YsQRB0DuX0AIq1Tg+VNBIfApoGHNcQCYMgCMMlzIsAAAUbSURBVIKGUM4qoGKt09vqL04QBEHQLPrEm8DFhpNio7IgCILixF5AQRAEHUqf6AFUStf4Wwt+azh6DEEQdBLRAwiCIOhQwgAEQRB0KGEAgiAIOpQ+PQdQz5fNYqVRYymVVqHjIGgM0QMIgiDoUMIABEEQdChhAIIgCDqUPj0HEPQNYv4lCBpD9ACCIAg6lDAAQRAEHUoMAWWIbxQEQdBJhAHow4RBC4KgFDEEFARB0KGEAQiCIOhQahoCkrQP8DOgH3CRmZ1eF6l6EfnDLLltpuu1RDF0HARBo6jaAEjqB/wC+CAwE7hf0s1m9p96Cdebqcfa9dBxaeL9gCCojVqGgHYFpprZU2b2KnANsH99xAoSoeMgCBpGLUNAw4EZmfOZwG75D0k6Fjg2nS6R9HglgXwJBgPzqxWy3fzVGaucbtWDd03RcaU0Snf1Ik/H27VIjCBoe2oxACpwzVa7YHYBcEHVgUgPmNnoat33cn+bouNKaZTuGoGkB1otQxC0K7UMAc0ERmTOtwBm1yZOkEfoOAiChlGLAbgf2FbSGyStBRwC3FwfsYJE6DgIgoZR9RCQmS2XdAJwB75E8RIze7RuknXTqKGNtve3iTqulKYNN9WB3iRrEDQVma02pBwEQRB0APEmcBAEQYcSBiAIgqBDabkBkDRN0hRJk3NL9iRtLGmCpCfS/0bpuiSdK2mqpIcl7ZLn1yWS5kl6JHOtYr8kHZmefyIdF/L3JEmzktyTJe2Xufet5O/jkvbOXN8nXZsqaXwj9NkoJI2QdJekxyQ9KunLrZapJyT1k/RvSbe0WpYgaEdabgAS7zWzkZm15eOBO81sW+DOdA6wL7Bt+h0LnJ/nz6XAPnnXKvJL0sbA9/EXrnZNx78v4C/AOUnukWZ2W3K/A75aZ8fk5pepIspt67AvsANwaHq2t7AcGGdmbwZ2B47vBfJ/GXis1UIEQbvSLgYgn/2By9LxZcABmeuXm3MPMEjS0JwjM/sbsKBGv/YGJpjZAjN7AZgAbFjA31KyX2Nmr5jZ08BU3JD06m0dzGyOmT2YjhfjFevw1kpVHElbAB8CLmq1LEHQrrSDATDgT5ImpS0NAIaY2RzwigfYLF0vtDVCT5VQpX5VEsYJafjoktzQUp38bWskdQFvA+5trSQl+SnwDeD1VgsSBO1KOxiAPcxsF3xo5HhJe5Z4tqytEcqkmF/lhnE+sA0wEpgDnFUnf9saSQOA64CvmNmLrZanEJI+DMwzs0mtliUI2pmWGwAzm53+5wE34EMlc3NDO+l/Xnq8mq0RKvWrrDDMbK6ZrTCz14ELk9w1+9vOSOqPV/5Xmdn1rZanBHsAH5U0DR9qe5+kK1srUhC0Hy01AJLWlzQwdwzsBTyCb3dwZHrsSOCmdHwz8Om0gmd3YFFueKcElfp1B7CXpI3SsM5e6Vq+7EMzpx9Lcuf8PUTS2pLegE8y30cv39ZBkoCLgcfM7OxWy1MKM/uWmW1hZl24nv9iZp9qsVhB0Ha0+qPwQ4AbvG5hTeC3ZvZHSfcD10o6CngGOCg9fxuwHz6xugz4TNYzSVcDY4DBkmbiK3hOr8QvM1sg6VS8wgY4BV+9k+/vGEkj8WGcacBxyf2jkq4F/oOvnDnezFYk+dpxW4dy2QM4ApgiaXK6dmJu9VMQBL2P2AoiCIKgQ2n5HEAQBEHQGsIABEEQdChhAIIgCDqUMABBEAQdShiAIAiCDiUMQBAEQYcSBiAIgqBD+f9H8T3XicwUtgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "wine_df.hist(bins=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, "outputs": [], "source": [] } diff --git a/Get_to_know_your_Data-checkpoint.ipynb b/Get_to_know_your_Data-checkpoint.ipynb index dbf59d4..d6ff895 100644 --- a/Get_to_know_your_Data-checkpoint.ipynb +++ b/Get_to_know_your_Data-checkpoint.ipynb @@ -1,2354 +1,2365 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "name": "Get to know your Data.ipynb", - "version": "0.3.2", - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "J82LU53m_OU0" + }, + "source": [ + "# Get to know your Data\n", + "\n", + "\n", + "#### Import necessary modules\n" + ] }, - "cells": [ - { - "metadata": { - "id": "J82LU53m_OU0", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "# Get to know your Data\n", - "\n", - "\n", - "#### Import necessary modules\n" - ] - }, - { - "metadata": { - "id": "ZyO1UXL8mtSj", - "colab_type": "code", - "colab": {} - }, - "cell_type": "code", - "source": [ - "import pandas as pd\n", - "import numpy as np" - ], - "execution_count": 0, - "outputs": [] - }, - { - "metadata": { - "id": "yXTzTowtnwGI", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Loading CSV Data to a DataFrame" - ] - }, - { - "metadata": { - "id": "H1Bjlb5wm9f-", - "colab_type": "code", - "colab": {} - }, - "cell_type": "code", - "source": [ - "iris_df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')" - ], - "execution_count": 0, - "outputs": [] - }, - { - "metadata": { - "id": "KE-k7b_Mn5iN", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### See the top 10 rows\n" - ] - }, - { - "metadata": { - "id": "HY2Ps7xMn4ao", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 204 - }, - "outputId": "7d342633-1b72-4558-fcec-76ebe66d7430" - }, - "cell_type": "code", - "source": [ - "iris_df.head()" - ], - "execution_count": 4, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "0 5.1 3.5 1.4 0.2 setosa\n", - "1 4.9 3.0 1.4 0.2 setosa\n", - "2 4.7 3.2 1.3 0.2 setosa\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "4 5.0 3.6 1.4 0.2 setosa" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 4 - } - ] - }, - { - "metadata": { - "id": "ZQXekIodqOZu", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Find number of rows and columns\n" - ] - }, - { - "metadata": { - "id": "6Y-A-lbFqR82", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "outputId": "2fe6e676-1bec-453f-8e2b-3bc21ac0a999" - }, - "cell_type": "code", - "source": [ - "print(iris_df.shape)\n", - "\n", - "#first is row and second is column\n", - "#select row by simple indexing\n", - "\n", - "#print(iris_df.shape[0])\n", - "#print(iris_df.shape[1])" - ], - "execution_count": 5, - "outputs": [ - { - "output_type": "stream", - "text": [ - "(150, 5)\n" - ], - "name": "stdout" - } - ] - }, - { - "metadata": { - "id": "4ckCiGPhrC_t", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Print all columns" - ] - }, - { - "metadata": { - "id": "S6jgMyRDrF2a", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 68 - }, - "outputId": "798d5ef2-0f98-4972-c98c-c896f879af64" - }, - "cell_type": "code", - "source": [ - "print(iris_df.columns)" - ], - "execution_count": 6, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',\n", - " 'species'],\n", - " dtype='object')\n" - ], - "name": "stdout" - } - ] - }, - { - "metadata": { - "id": "kVav5-ACtIqS", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Check Index\n" - ] - }, - { - "metadata": { - "id": "iu3I9zIGtLDX", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "outputId": "21786651-605d-4636-d253-5694edb6f969" - }, - "cell_type": "code", - "source": [ - "print(iris_df.index)" - ], - "execution_count": 7, - "outputs": [ - { - "output_type": "stream", - "text": [ - "RangeIndex(start=0, stop=150, step=1)\n" - ], - "name": "stdout" - } - ] - }, - { - "metadata": { - "id": "psCc7PborOCQ", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Right now the iris_data set has all the species grouped together let's shuffle it" - ] + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "ZyO1UXL8mtSj" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "yXTzTowtnwGI" + }, + "source": [ + "#### Loading CSV Data to a DataFrame" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "H1Bjlb5wm9f-" + }, + "outputs": [], + "source": [ + "iris_df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "KE-k7b_Mn5iN" + }, + "source": [ + "#### See the top 10 rows\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 }, + "colab_type": "code", + "id": "HY2Ps7xMn4ao", + "outputId": "7d342633-1b72-4558-fcec-76ebe66d7430" + }, + "outputs": [ { - "metadata": { - "id": "Bxc8i6avrZPw", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 221 - }, - "outputId": "11e956f5-d253-4025-9c3a-1e88f54528b2" - }, - "cell_type": "code", - "source": [ - "#generate a random permutaion on index\n", - "\n", - "print(iris_df.head())\n", - "\n", - "new_index = np.random.permutation(iris_df.index)\n", - "iris_df = iris_df.reindex(index = new_index)\n", - "\n", - "print(iris_df.head())" + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", + "
" ], - "execution_count": 8, - "outputs": [ - { - "output_type": "stream", - "text": [ - " sepal_length sepal_width petal_length petal_width species\n", - "0 5.1 3.5 1.4 0.2 setosa\n", - "1 4.9 3.0 1.4 0.2 setosa\n", - "2 4.7 3.2 1.3 0.2 setosa\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "4 5.0 3.6 1.4 0.2 setosa\n", - " sepal_length sepal_width petal_length petal_width species\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "115 6.4 3.2 5.3 2.3 virginica\n", - "113 5.7 2.5 5.0 2.0 virginica\n", - "43 5.0 3.5 1.6 0.6 setosa\n", - "126 6.2 2.8 4.8 1.8 virginica\n" - ], - "name": "stdout" - } + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa" ] + }, + "execution_count": 4, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "iris_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "ZQXekIodqOZu" + }, + "source": [ + "#### Find number of rows and columns\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 }, + "colab_type": "code", + "id": "6Y-A-lbFqR82", + "outputId": "2fe6e676-1bec-453f-8e2b-3bc21ac0a999" + }, + "outputs": [ { - "metadata": { - "id": "j32h8022sRT8", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### We can also apply an operation on whole column of iris_df" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "(150, 5)\n" + ] + } + ], + "source": [ + "print(iris_df.shape)\n", + "\n", + "#first is row and second is column\n", + "#select row by simple indexing\n", + "\n", + "#print(iris_df.shape[0])\n", + "#print(iris_df.shape[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "4ckCiGPhrC_t" + }, + "source": [ + "#### Print all columns" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 }, + "colab_type": "code", + "id": "S6jgMyRDrF2a", + "outputId": "798d5ef2-0f98-4972-c98c-c896f879af64" + }, + "outputs": [ { - "metadata": { - "id": "seYXHXsYsYJI", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 323 - }, - "outputId": "5f8ae149-0829-45fa-a537-ed81be0bd743" - }, - "cell_type": "code", - "source": [ - "#original\n", - "\n", - "print(iris_df.head())\n", - "\n", - "iris_df['sepal_width'] *= 10\n", - "\n", - "#changed\n", - "\n", - "print(iris_df.head())\n", - "\n", - "#lets undo the operation\n", - "\n", - "iris_df['sepal_width'] /= 10\n", - "\n", - "print(iris_df.head())" - ], - "execution_count": 9, - "outputs": [ - { - "output_type": "stream", - "text": [ - " sepal_length sepal_width petal_length petal_width species\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "115 6.4 3.2 5.3 2.3 virginica\n", - "113 5.7 2.5 5.0 2.0 virginica\n", - "43 5.0 3.5 1.6 0.6 setosa\n", - "126 6.2 2.8 4.8 1.8 virginica\n", - " sepal_length sepal_width petal_length petal_width species\n", - "3 4.6 31.0 1.5 0.2 setosa\n", - "115 6.4 32.0 5.3 2.3 virginica\n", - "113 5.7 25.0 5.0 2.0 virginica\n", - "43 5.0 35.0 1.6 0.6 setosa\n", - "126 6.2 28.0 4.8 1.8 virginica\n", - " sepal_length sepal_width petal_length petal_width species\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "115 6.4 3.2 5.3 2.3 virginica\n", - "113 5.7 2.5 5.0 2.0 virginica\n", - "43 5.0 3.5 1.6 0.6 setosa\n", - "126 6.2 2.8 4.8 1.8 virginica\n" - ], - "name": "stdout" - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',\n", + " 'species'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "print(iris_df.columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "kVav5-ACtIqS" + }, + "source": [ + "#### Check Index\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 }, + "colab_type": "code", + "id": "iu3I9zIGtLDX", + "outputId": "21786651-605d-4636-d253-5694edb6f969" + }, + "outputs": [ { - "metadata": { - "id": "R-Ca-LBLzjiF", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Show all the rows where sepal_width > 3.3" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "RangeIndex(start=0, stop=150, step=1)\n" + ] + } + ], + "source": [ + "print(iris_df.index)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "psCc7PborOCQ" + }, + "source": [ + "#### Right now the iris_data set has all the species grouped together let's shuffle it" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 221 }, + "colab_type": "code", + "id": "Bxc8i6avrZPw", + "outputId": "11e956f5-d253-4025-9c3a-1e88f54528b2" + }, + "outputs": [ { - "metadata": { - "id": "WJ7W-F-d0AoZ", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1165 - }, - "outputId": "ee9c12fa-f9da-468a-dead-9d3ced177e8b" - }, - "cell_type": "code", - "source": [ - "iris_df[iris_df['sepal_width']>3.3]" - ], - "execution_count": 10, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
435.03.51.60.6setosa
75.03.41.50.2setosa
185.73.81.70.3setosa
1366.33.45.62.4virginica
165.43.91.30.4setosa
244.83.41.90.2setosa
395.13.41.50.2setosa
275.23.51.50.2setosa
856.03.44.51.6versicolor
1097.23.66.12.5virginica
55.43.91.70.4setosa
195.13.81.50.3setosa
105.43.71.50.2setosa
45.03.61.40.2setosa
1317.93.86.42.0virginica
155.74.41.50.4setosa
365.53.51.30.2setosa
205.43.41.70.2setosa
145.84.01.20.2setosa
445.13.81.90.4setosa
215.13.71.50.4setosa
224.63.61.00.2setosa
285.23.41.40.2setosa
114.83.41.60.2setosa
465.13.81.60.2setosa
315.43.41.50.4setosa
64.63.41.40.3setosa
325.24.11.50.1setosa
1486.23.45.42.3virginica
265.03.41.60.4setosa
05.13.51.40.2setosa
485.33.71.50.2setosa
405.03.51.30.3setosa
335.54.21.40.2setosa
175.13.51.40.3setosa
1177.73.86.72.2virginica
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "43 5.0 3.5 1.6 0.6 setosa\n", - "7 5.0 3.4 1.5 0.2 setosa\n", - "18 5.7 3.8 1.7 0.3 setosa\n", - "136 6.3 3.4 5.6 2.4 virginica\n", - "16 5.4 3.9 1.3 0.4 setosa\n", - "24 4.8 3.4 1.9 0.2 setosa\n", - "39 5.1 3.4 1.5 0.2 setosa\n", - "27 5.2 3.5 1.5 0.2 setosa\n", - "85 6.0 3.4 4.5 1.6 versicolor\n", - "109 7.2 3.6 6.1 2.5 virginica\n", - "5 5.4 3.9 1.7 0.4 setosa\n", - "19 5.1 3.8 1.5 0.3 setosa\n", - "10 5.4 3.7 1.5 0.2 setosa\n", - "4 5.0 3.6 1.4 0.2 setosa\n", - "131 7.9 3.8 6.4 2.0 virginica\n", - "15 5.7 4.4 1.5 0.4 setosa\n", - "36 5.5 3.5 1.3 0.2 setosa\n", - "20 5.4 3.4 1.7 0.2 setosa\n", - "14 5.8 4.0 1.2 0.2 setosa\n", - "44 5.1 3.8 1.9 0.4 setosa\n", - "21 5.1 3.7 1.5 0.4 setosa\n", - "22 4.6 3.6 1.0 0.2 setosa\n", - "28 5.2 3.4 1.4 0.2 setosa\n", - "11 4.8 3.4 1.6 0.2 setosa\n", - "46 5.1 3.8 1.6 0.2 setosa\n", - "31 5.4 3.4 1.5 0.4 setosa\n", - "6 4.6 3.4 1.4 0.3 setosa\n", - "32 5.2 4.1 1.5 0.1 setosa\n", - "148 6.2 3.4 5.4 2.3 virginica\n", - "26 5.0 3.4 1.6 0.4 setosa\n", - "0 5.1 3.5 1.4 0.2 setosa\n", - "48 5.3 3.7 1.5 0.2 setosa\n", - "40 5.0 3.5 1.3 0.3 setosa\n", - "33 5.5 4.2 1.4 0.2 setosa\n", - "17 5.1 3.5 1.4 0.3 setosa\n", - "117 7.7 3.8 6.7 2.2 virginica" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 10 - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "126 6.2 2.8 4.8 1.8 virginica\n" + ] + } + ], + "source": [ + "#generate a random permutaion on index\n", + "\n", + "print(iris_df.head())\n", + "\n", + "new_index = np.random.permutation(iris_df.index)\n", + "iris_df = iris_df.reindex(index = new_index)\n", + "\n", + "print(iris_df.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "j32h8022sRT8" + }, + "source": [ + "#### We can also apply an operation on whole column of iris_df" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 323 }, + "colab_type": "code", + "id": "seYXHXsYsYJI", + "outputId": "5f8ae149-0829-45fa-a537-ed81be0bd743" + }, + "outputs": [ { - "metadata": { - "id": "gH3DnhCq2Cbl", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Club two filters together - Find all samples where sepal_width > 3.3 and species is versicolor" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "126 6.2 2.8 4.8 1.8 virginica\n", + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 31.0 1.5 0.2 setosa\n", + "115 6.4 32.0 5.3 2.3 virginica\n", + "113 5.7 25.0 5.0 2.0 virginica\n", + "43 5.0 35.0 1.6 0.6 setosa\n", + "126 6.2 28.0 4.8 1.8 virginica\n", + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "126 6.2 2.8 4.8 1.8 virginica\n" + ] + } + ], + "source": [ + "#original\n", + "\n", + "print(iris_df.head())\n", + "\n", + "iris_df['sepal_width'] *= 10\n", + "\n", + "#changed\n", + "\n", + "print(iris_df.head())\n", + "\n", + "#lets undo the operation\n", + "\n", + "iris_df['sepal_width'] /= 10\n", + "\n", + "print(iris_df.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "R-Ca-LBLzjiF" + }, + "source": [ + "#### Show all the rows where sepal_width > 3.3" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1165 }, + "colab_type": "code", + "id": "WJ7W-F-d0AoZ", + "outputId": "ee9c12fa-f9da-468a-dead-9d3ced177e8b" + }, + "outputs": [ { - "metadata": { - "id": "4U7ksr_R2H7M", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 80 - }, - "outputId": "a245bbce-09c2-41e0-fb41-6138e8f8eddc" - }, - "cell_type": "code", - "source": [ - "iris_df[(iris_df['sepal_width']>3.3) & (iris_df['species'] == 'versicolor')] " + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
435.03.51.60.6setosa
75.03.41.50.2setosa
185.73.81.70.3setosa
1366.33.45.62.4virginica
165.43.91.30.4setosa
244.83.41.90.2setosa
395.13.41.50.2setosa
275.23.51.50.2setosa
856.03.44.51.6versicolor
1097.23.66.12.5virginica
55.43.91.70.4setosa
195.13.81.50.3setosa
105.43.71.50.2setosa
45.03.61.40.2setosa
1317.93.86.42.0virginica
155.74.41.50.4setosa
365.53.51.30.2setosa
205.43.41.70.2setosa
145.84.01.20.2setosa
445.13.81.90.4setosa
215.13.71.50.4setosa
224.63.61.00.2setosa
285.23.41.40.2setosa
114.83.41.60.2setosa
465.13.81.60.2setosa
315.43.41.50.4setosa
64.63.41.40.3setosa
325.24.11.50.1setosa
1486.23.45.42.3virginica
265.03.41.60.4setosa
05.13.51.40.2setosa
485.33.71.50.2setosa
405.03.51.30.3setosa
335.54.21.40.2setosa
175.13.51.40.3setosa
1177.73.86.72.2virginica
\n", + "
" ], - "execution_count": 11, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
856.03.44.51.6versicolor
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "85 6.0 3.4 4.5 1.6 versicolor" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 11 - } - ] - }, - { - "metadata": { - "id": "1lmnB3ot2u7I", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Sorting a column by value" + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "7 5.0 3.4 1.5 0.2 setosa\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "136 6.3 3.4 5.6 2.4 virginica\n", + "16 5.4 3.9 1.3 0.4 setosa\n", + "24 4.8 3.4 1.9 0.2 setosa\n", + "39 5.1 3.4 1.5 0.2 setosa\n", + "27 5.2 3.5 1.5 0.2 setosa\n", + "85 6.0 3.4 4.5 1.6 versicolor\n", + "109 7.2 3.6 6.1 2.5 virginica\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "19 5.1 3.8 1.5 0.3 setosa\n", + "10 5.4 3.7 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + "131 7.9 3.8 6.4 2.0 virginica\n", + "15 5.7 4.4 1.5 0.4 setosa\n", + "36 5.5 3.5 1.3 0.2 setosa\n", + "20 5.4 3.4 1.7 0.2 setosa\n", + "14 5.8 4.0 1.2 0.2 setosa\n", + "44 5.1 3.8 1.9 0.4 setosa\n", + "21 5.1 3.7 1.5 0.4 setosa\n", + "22 4.6 3.6 1.0 0.2 setosa\n", + "28 5.2 3.4 1.4 0.2 setosa\n", + "11 4.8 3.4 1.6 0.2 setosa\n", + "46 5.1 3.8 1.6 0.2 setosa\n", + "31 5.4 3.4 1.5 0.4 setosa\n", + "6 4.6 3.4 1.4 0.3 setosa\n", + "32 5.2 4.1 1.5 0.1 setosa\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "26 5.0 3.4 1.6 0.4 setosa\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "48 5.3 3.7 1.5 0.2 setosa\n", + "40 5.0 3.5 1.3 0.3 setosa\n", + "33 5.5 4.2 1.4 0.2 setosa\n", + "17 5.1 3.5 1.4 0.3 setosa\n", + "117 7.7 3.8 6.7 2.2 virginica" ] + }, + "execution_count": 10, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "iris_df[iris_df['sepal_width']>3.3]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "gH3DnhCq2Cbl" + }, + "source": [ + "#### Club two filters together - Find all samples where sepal_width > 3.3 and species is versicolor" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 }, + "colab_type": "code", + "id": "4U7ksr_R2H7M", + "outputId": "a245bbce-09c2-41e0-fb41-6138e8f8eddc" + }, + "outputs": [ { - "metadata": { - "id": "K7KIj6fv2zWP", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1969 - }, - "outputId": "c38831d3-1fd3-4728-bfbf-c9355e4a96a5" - }, - "cell_type": "code", - "source": [ - "iris_df.sort_values(by='sepal_width')#, ascending = False)\n", - "#pass ascending = False for descending order" + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
856.03.44.51.6versicolor
\n", + "
" ], - "execution_count": 12, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
605.02.03.51.0versicolor
626.02.24.01.0versicolor
686.22.24.51.5versicolor
1196.02.25.01.5virginica
876.32.34.41.3versicolor
535.52.34.01.3versicolor
935.02.33.31.0versicolor
414.52.31.30.3setosa
574.92.43.31.0versicolor
815.52.43.71.0versicolor
805.52.43.81.1versicolor
726.32.54.91.5versicolor
1086.72.55.81.8virginica
895.52.54.01.3versicolor
985.12.53.01.1versicolor
1064.92.54.51.7virginica
695.62.53.91.1versicolor
1466.32.55.01.9virginica
1135.72.55.02.0virginica
795.72.63.51.0versicolor
1187.72.66.92.3virginica
925.82.64.01.2versicolor
905.52.64.41.2versicolor
1346.12.65.61.4virginica
675.82.74.11.0versicolor
595.22.73.91.4versicolor
945.62.74.21.3versicolor
836.02.75.11.6versicolor
1236.32.74.91.8virginica
1015.82.75.11.9virginica
..................
1486.23.45.42.3virginica
1366.33.45.62.4virginica
856.03.44.51.6versicolor
265.03.41.60.4setosa
244.83.41.90.2setosa
205.43.41.70.2setosa
365.53.51.30.2setosa
175.13.51.40.3setosa
405.03.51.30.3setosa
435.03.51.60.6setosa
05.13.51.40.2setosa
275.23.51.50.2setosa
224.63.61.00.2setosa
45.03.61.40.2setosa
1097.23.66.12.5virginica
215.13.71.50.4setosa
485.33.71.50.2setosa
105.43.71.50.2setosa
445.13.81.90.4setosa
185.73.81.70.3setosa
465.13.81.60.2setosa
195.13.81.50.3setosa
1317.93.86.42.0virginica
1177.73.86.72.2virginica
165.43.91.30.4setosa
55.43.91.70.4setosa
145.84.01.20.2setosa
325.24.11.50.1setosa
335.54.21.40.2setosa
155.74.41.50.4setosa
\n", - "

150 rows × 5 columns

\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "60 5.0 2.0 3.5 1.0 versicolor\n", - "62 6.0 2.2 4.0 1.0 versicolor\n", - "68 6.2 2.2 4.5 1.5 versicolor\n", - "119 6.0 2.2 5.0 1.5 virginica\n", - "87 6.3 2.3 4.4 1.3 versicolor\n", - "53 5.5 2.3 4.0 1.3 versicolor\n", - "93 5.0 2.3 3.3 1.0 versicolor\n", - "41 4.5 2.3 1.3 0.3 setosa\n", - "57 4.9 2.4 3.3 1.0 versicolor\n", - "81 5.5 2.4 3.7 1.0 versicolor\n", - "80 5.5 2.4 3.8 1.1 versicolor\n", - "72 6.3 2.5 4.9 1.5 versicolor\n", - "108 6.7 2.5 5.8 1.8 virginica\n", - "89 5.5 2.5 4.0 1.3 versicolor\n", - "98 5.1 2.5 3.0 1.1 versicolor\n", - "106 4.9 2.5 4.5 1.7 virginica\n", - "69 5.6 2.5 3.9 1.1 versicolor\n", - "146 6.3 2.5 5.0 1.9 virginica\n", - "113 5.7 2.5 5.0 2.0 virginica\n", - "79 5.7 2.6 3.5 1.0 versicolor\n", - "118 7.7 2.6 6.9 2.3 virginica\n", - "92 5.8 2.6 4.0 1.2 versicolor\n", - "90 5.5 2.6 4.4 1.2 versicolor\n", - "134 6.1 2.6 5.6 1.4 virginica\n", - "67 5.8 2.7 4.1 1.0 versicolor\n", - "59 5.2 2.7 3.9 1.4 versicolor\n", - "94 5.6 2.7 4.2 1.3 versicolor\n", - "83 6.0 2.7 5.1 1.6 versicolor\n", - "123 6.3 2.7 4.9 1.8 virginica\n", - "101 5.8 2.7 5.1 1.9 virginica\n", - ".. ... ... ... ... ...\n", - "148 6.2 3.4 5.4 2.3 virginica\n", - "136 6.3 3.4 5.6 2.4 virginica\n", - "85 6.0 3.4 4.5 1.6 versicolor\n", - "26 5.0 3.4 1.6 0.4 setosa\n", - "24 4.8 3.4 1.9 0.2 setosa\n", - "20 5.4 3.4 1.7 0.2 setosa\n", - "36 5.5 3.5 1.3 0.2 setosa\n", - "17 5.1 3.5 1.4 0.3 setosa\n", - "40 5.0 3.5 1.3 0.3 setosa\n", - "43 5.0 3.5 1.6 0.6 setosa\n", - "0 5.1 3.5 1.4 0.2 setosa\n", - "27 5.2 3.5 1.5 0.2 setosa\n", - "22 4.6 3.6 1.0 0.2 setosa\n", - "4 5.0 3.6 1.4 0.2 setosa\n", - "109 7.2 3.6 6.1 2.5 virginica\n", - "21 5.1 3.7 1.5 0.4 setosa\n", - "48 5.3 3.7 1.5 0.2 setosa\n", - "10 5.4 3.7 1.5 0.2 setosa\n", - "44 5.1 3.8 1.9 0.4 setosa\n", - "18 5.7 3.8 1.7 0.3 setosa\n", - "46 5.1 3.8 1.6 0.2 setosa\n", - "19 5.1 3.8 1.5 0.3 setosa\n", - "131 7.9 3.8 6.4 2.0 virginica\n", - "117 7.7 3.8 6.7 2.2 virginica\n", - "16 5.4 3.9 1.3 0.4 setosa\n", - "5 5.4 3.9 1.7 0.4 setosa\n", - "14 5.8 4.0 1.2 0.2 setosa\n", - "32 5.2 4.1 1.5 0.1 setosa\n", - "33 5.5 4.2 1.4 0.2 setosa\n", - "15 5.7 4.4 1.5 0.4 setosa\n", - "\n", - "[150 rows x 5 columns]" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 12 - } - ] - }, - { - "metadata": { - "id": "9jg_Z4YCoMSV", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### List all the unique species" + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "85 6.0 3.4 4.5 1.6 versicolor" ] + }, + "execution_count": 11, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "iris_df[(iris_df['sepal_width']>3.3) & (iris_df['species'] == 'versicolor')] " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "1lmnB3ot2u7I" + }, + "source": [ + "#### Sorting a column by value" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1969 }, + "colab_type": "code", + "id": "K7KIj6fv2zWP", + "outputId": "c38831d3-1fd3-4728-bfbf-c9355e4a96a5" + }, + "outputs": [ { - "metadata": { - "id": "M6EN78ufoJY7", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "outputId": "4ae0c425-f973-486f-817f-63cbe6897bdf" - }, - "cell_type": "code", - "source": [ - "species = iris_df['species'].unique()\n", - "\n", - "print(species)" + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
605.02.03.51.0versicolor
626.02.24.01.0versicolor
686.22.24.51.5versicolor
1196.02.25.01.5virginica
876.32.34.41.3versicolor
535.52.34.01.3versicolor
935.02.33.31.0versicolor
414.52.31.30.3setosa
574.92.43.31.0versicolor
815.52.43.71.0versicolor
805.52.43.81.1versicolor
726.32.54.91.5versicolor
1086.72.55.81.8virginica
895.52.54.01.3versicolor
985.12.53.01.1versicolor
1064.92.54.51.7virginica
695.62.53.91.1versicolor
1466.32.55.01.9virginica
1135.72.55.02.0virginica
795.72.63.51.0versicolor
1187.72.66.92.3virginica
925.82.64.01.2versicolor
905.52.64.41.2versicolor
1346.12.65.61.4virginica
675.82.74.11.0versicolor
595.22.73.91.4versicolor
945.62.74.21.3versicolor
836.02.75.11.6versicolor
1236.32.74.91.8virginica
1015.82.75.11.9virginica
..................
1486.23.45.42.3virginica
1366.33.45.62.4virginica
856.03.44.51.6versicolor
265.03.41.60.4setosa
244.83.41.90.2setosa
205.43.41.70.2setosa
365.53.51.30.2setosa
175.13.51.40.3setosa
405.03.51.30.3setosa
435.03.51.60.6setosa
05.13.51.40.2setosa
275.23.51.50.2setosa
224.63.61.00.2setosa
45.03.61.40.2setosa
1097.23.66.12.5virginica
215.13.71.50.4setosa
485.33.71.50.2setosa
105.43.71.50.2setosa
445.13.81.90.4setosa
185.73.81.70.3setosa
465.13.81.60.2setosa
195.13.81.50.3setosa
1317.93.86.42.0virginica
1177.73.86.72.2virginica
165.43.91.30.4setosa
55.43.91.70.4setosa
145.84.01.20.2setosa
325.24.11.50.1setosa
335.54.21.40.2setosa
155.74.41.50.4setosa
\n", + "

150 rows × 5 columns

\n", + "
" ], - "execution_count": 13, - "outputs": [ - { - "output_type": "stream", - "text": [ - "['setosa' 'virginica' 'versicolor']\n" - ], - "name": "stdout" - } + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "60 5.0 2.0 3.5 1.0 versicolor\n", + "62 6.0 2.2 4.0 1.0 versicolor\n", + "68 6.2 2.2 4.5 1.5 versicolor\n", + "119 6.0 2.2 5.0 1.5 virginica\n", + "87 6.3 2.3 4.4 1.3 versicolor\n", + "53 5.5 2.3 4.0 1.3 versicolor\n", + "93 5.0 2.3 3.3 1.0 versicolor\n", + "41 4.5 2.3 1.3 0.3 setosa\n", + "57 4.9 2.4 3.3 1.0 versicolor\n", + "81 5.5 2.4 3.7 1.0 versicolor\n", + "80 5.5 2.4 3.8 1.1 versicolor\n", + "72 6.3 2.5 4.9 1.5 versicolor\n", + "108 6.7 2.5 5.8 1.8 virginica\n", + "89 5.5 2.5 4.0 1.3 versicolor\n", + "98 5.1 2.5 3.0 1.1 versicolor\n", + "106 4.9 2.5 4.5 1.7 virginica\n", + "69 5.6 2.5 3.9 1.1 versicolor\n", + "146 6.3 2.5 5.0 1.9 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "79 5.7 2.6 3.5 1.0 versicolor\n", + "118 7.7 2.6 6.9 2.3 virginica\n", + "92 5.8 2.6 4.0 1.2 versicolor\n", + "90 5.5 2.6 4.4 1.2 versicolor\n", + "134 6.1 2.6 5.6 1.4 virginica\n", + "67 5.8 2.7 4.1 1.0 versicolor\n", + "59 5.2 2.7 3.9 1.4 versicolor\n", + "94 5.6 2.7 4.2 1.3 versicolor\n", + "83 6.0 2.7 5.1 1.6 versicolor\n", + "123 6.3 2.7 4.9 1.8 virginica\n", + "101 5.8 2.7 5.1 1.9 virginica\n", + ".. ... ... ... ... ...\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "136 6.3 3.4 5.6 2.4 virginica\n", + "85 6.0 3.4 4.5 1.6 versicolor\n", + "26 5.0 3.4 1.6 0.4 setosa\n", + "24 4.8 3.4 1.9 0.2 setosa\n", + "20 5.4 3.4 1.7 0.2 setosa\n", + "36 5.5 3.5 1.3 0.2 setosa\n", + "17 5.1 3.5 1.4 0.3 setosa\n", + "40 5.0 3.5 1.3 0.3 setosa\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "27 5.2 3.5 1.5 0.2 setosa\n", + "22 4.6 3.6 1.0 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + "109 7.2 3.6 6.1 2.5 virginica\n", + "21 5.1 3.7 1.5 0.4 setosa\n", + "48 5.3 3.7 1.5 0.2 setosa\n", + "10 5.4 3.7 1.5 0.2 setosa\n", + "44 5.1 3.8 1.9 0.4 setosa\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "46 5.1 3.8 1.6 0.2 setosa\n", + "19 5.1 3.8 1.5 0.3 setosa\n", + "131 7.9 3.8 6.4 2.0 virginica\n", + "117 7.7 3.8 6.7 2.2 virginica\n", + "16 5.4 3.9 1.3 0.4 setosa\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "14 5.8 4.0 1.2 0.2 setosa\n", + "32 5.2 4.1 1.5 0.1 setosa\n", + "33 5.5 4.2 1.4 0.2 setosa\n", + "15 5.7 4.4 1.5 0.4 setosa\n", + "\n", + "[150 rows x 5 columns]" ] + }, + "execution_count": 12, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "iris_df.sort_values(by='sepal_width')#, ascending = False)\n", + "#pass ascending = False for descending order" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "9jg_Z4YCoMSV" + }, + "source": [ + "#### List all the unique species" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 }, + "colab_type": "code", + "id": "M6EN78ufoJY7", + "outputId": "4ae0c425-f973-486f-817f-63cbe6897bdf" + }, + "outputs": [ { - "metadata": { - "id": "wG1i5nxBodmB", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Selecting a particular species using boolean mask (learnt in previous exercise)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "['setosa' 'virginica' 'versicolor']\n" + ] + } + ], + "source": [ + "species = iris_df['species'].unique()\n", + "\n", + "print(species)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "wG1i5nxBodmB" + }, + "source": [ + "#### Selecting a particular species using boolean mask (learnt in previous exercise)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 }, + "colab_type": "code", + "id": "gZvpbKBwoVUe", + "outputId": "213a3376-8e60-4f9f-cf7e-937e98475206" + }, + "outputs": [ { - "metadata": { - "id": "gZvpbKBwoVUe", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 204 - }, - "outputId": "213a3376-8e60-4f9f-cf7e-937e98475206" - }, - "cell_type": "code", - "source": [ - "setosa = iris_df[iris_df['species'] == species[0]]\n", - "\n", - "setosa.head()" + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
34.63.11.50.2setosa
435.03.51.60.6setosa
75.03.41.50.2setosa
185.73.81.70.3setosa
424.43.21.30.2setosa
\n", + "
" ], - "execution_count": 14, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
34.63.11.50.2setosa
435.03.51.60.6setosa
75.03.41.50.2setosa
185.73.81.70.3setosa
424.43.21.30.2setosa
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "43 5.0 3.5 1.6 0.6 setosa\n", - "7 5.0 3.4 1.5 0.2 setosa\n", - "18 5.7 3.8 1.7 0.3 setosa\n", - "42 4.4 3.2 1.3 0.2 setosa" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 14 - } + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "7 5.0 3.4 1.5 0.2 setosa\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "42 4.4 3.2 1.3 0.2 setosa" ] + }, + "execution_count": 14, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "setosa = iris_df[iris_df['species'] == species[0]]\n", + "\n", + "setosa.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 }, + "colab_type": "code", + "id": "7tumfZ3DotPG", + "outputId": "bf3850ab-a0eb-45fa-9816-fdd4c97517d2" + }, + "outputs": [ { - "metadata": { - "id": "7tumfZ3DotPG", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 204 - }, - "outputId": "bf3850ab-a0eb-45fa-9816-fdd4c97517d2" - }, - "cell_type": "code", - "source": [ - "# do the same for other 2 species \n", - "versicolor = iris_df[iris_df['species'] == species[1]]\n", - "\n", - "versicolor.head()" + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
1156.43.25.32.3virginica
1135.72.55.02.0virginica
1266.22.84.81.8virginica
1227.72.86.72.0virginica
1166.53.05.51.8virginica
\n", + "
" ], - "execution_count": 15, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
1156.43.25.32.3virginica
1135.72.55.02.0virginica
1266.22.84.81.8virginica
1227.72.86.72.0virginica
1166.53.05.51.8virginica
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "115 6.4 3.2 5.3 2.3 virginica\n", - "113 5.7 2.5 5.0 2.0 virginica\n", - "126 6.2 2.8 4.8 1.8 virginica\n", - "122 7.7 2.8 6.7 2.0 virginica\n", - "116 6.5 3.0 5.5 1.8 virginica" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 15 - } + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "126 6.2 2.8 4.8 1.8 virginica\n", + "122 7.7 2.8 6.7 2.0 virginica\n", + "116 6.5 3.0 5.5 1.8 virginica" ] + }, + "execution_count": 15, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "# do the same for other 2 species \n", + "versicolor = iris_df[iris_df['species'] == species[1]]\n", + "\n", + "versicolor.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 }, + "colab_type": "code", + "id": "cUYm5UqVpDPy", + "outputId": "a3cc4a4c-b06e-43c1-ed6a-b1f8fcb14de6" + }, + "outputs": [ { - "metadata": { - "id": "cUYm5UqVpDPy", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 204 - }, - "outputId": "a3cc4a4c-b06e-43c1-ed6a-b1f8fcb14de6" - }, - "cell_type": "code", - "source": [ - "\n", - "\n", - "virginica = iris_df[iris_df['species'] == species[2]]\n", - "\n", - "virginica.head()" + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
905.52.64.41.2versicolor
935.02.33.31.0versicolor
507.03.24.71.4versicolor
605.02.03.51.0versicolor
626.02.24.01.0versicolor
\n", + "
" ], - "execution_count": 16, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
905.52.64.41.2versicolor
935.02.33.31.0versicolor
507.03.24.71.4versicolor
605.02.03.51.0versicolor
626.02.24.01.0versicolor
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "90 5.5 2.6 4.4 1.2 versicolor\n", - "93 5.0 2.3 3.3 1.0 versicolor\n", - "50 7.0 3.2 4.7 1.4 versicolor\n", - "60 5.0 2.0 3.5 1.0 versicolor\n", - "62 6.0 2.2 4.0 1.0 versicolor" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 16 - } - ] - }, - { - "metadata": { - "id": "-y1wDc8SpdQs", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Describe each created species to see the difference\n", - "\n" + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "90 5.5 2.6 4.4 1.2 versicolor\n", + "93 5.0 2.3 3.3 1.0 versicolor\n", + "50 7.0 3.2 4.7 1.4 versicolor\n", + "60 5.0 2.0 3.5 1.0 versicolor\n", + "62 6.0 2.2 4.0 1.0 versicolor" ] + }, + "execution_count": 16, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "virginica = iris_df[iris_df['species'] == species[2]]\n", + "\n", + "virginica.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "-y1wDc8SpdQs" + }, + "source": [ + "#### Describe each created species to see the difference\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 }, + "colab_type": "code", + "id": "eHrn3ZVRpOk5", + "outputId": "58e878f8-2aed-49b2-9529-545308332808" + }, + "outputs": [ { - "metadata": { - "id": "eHrn3ZVRpOk5", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 297 - }, - "outputId": "58e878f8-2aed-49b2-9529-545308332808" - }, - "cell_type": "code", - "source": [ - "setosa.describe()" + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.0000050.00000050.00000050.00000
mean5.006003.4180001.4640000.24400
std0.352490.3810240.1735110.10721
min4.300002.3000001.0000000.10000
25%4.800003.1250001.4000000.20000
50%5.000003.4000001.5000000.20000
75%5.200003.6750001.5750000.30000
max5.800004.4000001.9000000.60000
\n", + "
" ], - "execution_count": 17, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.0000050.00000050.00000050.00000
mean5.006003.4180001.4640000.24400
std0.352490.3810240.1735110.10721
min4.300002.3000001.0000000.10000
25%4.800003.1250001.4000000.20000
50%5.000003.4000001.5000000.20000
75%5.200003.6750001.5750000.30000
max5.800004.4000001.9000000.60000
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width\n", - "count 50.00000 50.000000 50.000000 50.00000\n", - "mean 5.00600 3.418000 1.464000 0.24400\n", - "std 0.35249 0.381024 0.173511 0.10721\n", - "min 4.30000 2.300000 1.000000 0.10000\n", - "25% 4.80000 3.125000 1.400000 0.20000\n", - "50% 5.00000 3.400000 1.500000 0.20000\n", - "75% 5.20000 3.675000 1.575000 0.30000\n", - "max 5.80000 4.400000 1.900000 0.60000" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 17 - } + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.00000 50.000000 50.000000 50.00000\n", + "mean 5.00600 3.418000 1.464000 0.24400\n", + "std 0.35249 0.381024 0.173511 0.10721\n", + "min 4.30000 2.300000 1.000000 0.10000\n", + "25% 4.80000 3.125000 1.400000 0.20000\n", + "50% 5.00000 3.400000 1.500000 0.20000\n", + "75% 5.20000 3.675000 1.575000 0.30000\n", + "max 5.80000 4.400000 1.900000 0.60000" ] + }, + "execution_count": 17, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "setosa.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 }, + "colab_type": "code", + "id": "GwJFT2GlpwUv", + "outputId": "3b040a37-357b-4f35-b1ba-9fa0c6166f9f" + }, + "outputs": [ { - "metadata": { - "id": "GwJFT2GlpwUv", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 297 - }, - "outputId": "3b040a37-357b-4f35-b1ba-9fa0c6166f9f" - }, - "cell_type": "code", - "source": [ - "versicolor.describe()" + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.0000050.00000050.00000050.00000
mean6.588002.9740005.5520002.02600
std0.635880.3224970.5518950.27465
min4.900002.2000004.5000001.40000
25%6.225002.8000005.1000001.80000
50%6.500003.0000005.5500002.00000
75%6.900003.1750005.8750002.30000
max7.900003.8000006.9000002.50000
\n", + "
" ], - "execution_count": 18, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.0000050.00000050.00000050.00000
mean6.588002.9740005.5520002.02600
std0.635880.3224970.5518950.27465
min4.900002.2000004.5000001.40000
25%6.225002.8000005.1000001.80000
50%6.500003.0000005.5500002.00000
75%6.900003.1750005.8750002.30000
max7.900003.8000006.9000002.50000
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width\n", - "count 50.00000 50.000000 50.000000 50.00000\n", - "mean 6.58800 2.974000 5.552000 2.02600\n", - "std 0.63588 0.322497 0.551895 0.27465\n", - "min 4.90000 2.200000 4.500000 1.40000\n", - "25% 6.22500 2.800000 5.100000 1.80000\n", - "50% 6.50000 3.000000 5.550000 2.00000\n", - "75% 6.90000 3.175000 5.875000 2.30000\n", - "max 7.90000 3.800000 6.900000 2.50000" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 18 - } + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.00000 50.000000 50.000000 50.00000\n", + "mean 6.58800 2.974000 5.552000 2.02600\n", + "std 0.63588 0.322497 0.551895 0.27465\n", + "min 4.90000 2.200000 4.500000 1.40000\n", + "25% 6.22500 2.800000 5.100000 1.80000\n", + "50% 6.50000 3.000000 5.550000 2.00000\n", + "75% 6.90000 3.175000 5.875000 2.30000\n", + "max 7.90000 3.800000 6.900000 2.50000" ] + }, + "execution_count": 18, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "versicolor.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 }, + "colab_type": "code", + "id": "Ad4qhSZLpztf", + "outputId": "4a986bae-72a1-4e49-bb19-5999479897c6" + }, + "outputs": [ { - "metadata": { - "id": "Ad4qhSZLpztf", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 297 - }, - "outputId": "4a986bae-72a1-4e49-bb19-5999479897c6" - }, - "cell_type": "code", - "source": [ - "virginica.describe()" + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.00000050.00000050.00000050.000000
mean5.9360002.7700004.2600001.326000
std0.5161710.3137980.4699110.197753
min4.9000002.0000003.0000001.000000
25%5.6000002.5250004.0000001.200000
50%5.9000002.8000004.3500001.300000
75%6.3000003.0000004.6000001.500000
max7.0000003.4000005.1000001.800000
\n", + "
" ], - "execution_count": 19, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.00000050.00000050.00000050.000000
mean5.9360002.7700004.2600001.326000
std0.5161710.3137980.4699110.197753
min4.9000002.0000003.0000001.000000
25%5.6000002.5250004.0000001.200000
50%5.9000002.8000004.3500001.300000
75%6.3000003.0000004.6000001.500000
max7.0000003.4000005.1000001.800000
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width\n", - "count 50.000000 50.000000 50.000000 50.000000\n", - "mean 5.936000 2.770000 4.260000 1.326000\n", - "std 0.516171 0.313798 0.469911 0.197753\n", - "min 4.900000 2.000000 3.000000 1.000000\n", - "25% 5.600000 2.525000 4.000000 1.200000\n", - "50% 5.900000 2.800000 4.350000 1.300000\n", - "75% 6.300000 3.000000 4.600000 1.500000\n", - "max 7.000000 3.400000 5.100000 1.800000" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 19 - } - ] - }, - { - "metadata": { - "id": "Vdu0ulZWtr09", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "#### Let's plot and see the difference" + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.000000 50.000000 50.000000 50.000000\n", + "mean 5.936000 2.770000 4.260000 1.326000\n", + "std 0.516171 0.313798 0.469911 0.197753\n", + "min 4.900000 2.000000 3.000000 1.000000\n", + "25% 5.600000 2.525000 4.000000 1.200000\n", + "50% 5.900000 2.800000 4.350000 1.300000\n", + "75% 6.300000 3.000000 4.600000 1.500000\n", + "max 7.000000 3.400000 5.100000 1.800000" ] + }, + "execution_count": 19, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "virginica.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "Vdu0ulZWtr09" + }, + "source": [ + "#### Let's plot and see the difference" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "PEVMzRvpttmD" + }, + "source": [ + "##### import matplotlib.pyplot " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 398 }, + "colab_type": "code", + "id": "rqDXuuAtt7C3", + "outputId": "e1111c09-8877-43f8-ac45-f92b53899a5c" + }, + "outputs": [ { - "metadata": { - "id": "PEVMzRvpttmD", - "colab_type": "text" - }, - "cell_type": "markdown", - "source": [ - "##### import matplotlib.pyplot " + "data": { + "text/plain": [ + "(array([ 4., 1., 6., 10., 5., 8., 5., 3., 5., 3.]),\n", + " array([4.9 , 5.11, 5.32, 5.53, 5.74, 5.95, 6.16, 6.37, 6.58, 6.79, 7. ]),\n", + "
)" ] + }, + "execution_count": 20, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" }, { - "metadata": { - "id": "rqDXuuAtt7C3", - "colab_type": "code", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 398 - }, - "outputId": "e1111c09-8877-43f8-ac45-f92b53899a5c" - }, - "cell_type": "code", - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "#hist creates a histogram there are many more plots(see the documentation) you can play with it.\n", - "\n", - "plt.hist(setosa['sepal_length'])\n", - "plt.hist(versicolor['sepal_length'])\n", - "plt.hist(virginica['sepal_length'])" - ], - "execution_count": 20, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(array([ 4., 1., 6., 10., 5., 8., 5., 3., 5., 3.]),\n", - " array([4.9 , 5.11, 5.32, 5.53, 5.74, 5.95, 6.16, 6.37, 6.58, 6.79, 7. ]),\n", - " )" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 20 - }, - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFG9JREFUeJzt3X9s1PX9wPFX6Q1JS8cqa0E2Ycbv\nFjOVCdFFEJgyfkyZv9gsP4LMzG8yBoJLWIQ1LJCQLGLQ4KbTTRnuCyFBkUFdlmGGkCwKbBkLG0sM\nwpKFHwpFCuVnkHrfPxaaMaGF6/V93PXx+It+7vq517vv5p69O3oty2az2QAAkulW6AEAoKsRXwBI\nTHwBIDHxBYDExBcAEhNfAEgsk+JGGhuPpbiZvKiuroimppOFHqNTlfoara/4lfoara/4Xcoaa2qq\nLnqZR77/JZMpL/QIna7U12h9xa/U12h9xa+jaxRfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWA\nxMQXABK7pPju3LkzRo0aFStWrIiIiPfffz8eeeSRmDJlSjzyyCPR2NjYqUMCQClpN74nT56MhQsX\nxpAhQ1qPLVmyJOrq6mLFihUxevToWLZsWacOCQClpN34du/ePV566aWora1tPTZ//vwYO3ZsRERU\nV1fHkSNHOm9CACgx7cY3k8lEjx49zjtWUVER5eXl0dLSEitXrox777230wYEgFKT8181amlpiSee\neCJuv/32856SvpDq6oqieqPttv4SxZXo3tnrOnyON56+Pw+TXDmKbQ8vV6mvL6L012h9xa8ja8w5\nvj/60Y9iwIAB8dhjj7V73WL601I1NVVF9ScQ86WU1lzqe1jq64so/TVaX/G7lDXm/U8KNjQ0xKc+\n9amYNWtWLp8OAF1au498d+zYEYsWLYp9+/ZFJpOJ9evXx4cffhhXXXVVPPzwwxERcf3118eCBQs6\ne1YAKAntxvemm26K5cuXp5gFALoE73AFAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY\n+AJAYuILAImJLwAkJr4AkNglxXfnzp0xatSoWLFiRUREvP/++/Hwww/H5MmT4/HHH48zZ8506pAA\nUEraje/Jkydj4cKFMWTIkNZjP/3pT2Py5MmxcuXKGDBgQKxevbpThwSAUtJufLt37x4vvfRS1NbW\nth7bunVrfP3rX4+IiLvuuis2b97ceRMCQInJtHuFTCYymfOvdurUqejevXtERPTu3TsaGxs7ZzoA\nKEHtxrc92Wy23etUV1dEJlPe0ZtKpqamqtAjJFdqaz63nrfv/1an3s4d617v1PNfTKnt14V0xhrr\nVn0/7+fMxasTXij5PSz19UV0bI05xbeioiJOnz4dPXr0iAMHDpz3lPSFNDWdzGm4QqipqYrGxmOF\nHiO5Ulpzyj0sxNetK3yPdoU1lvL6usL+Xcoa24pzTr9qNHTo0Fi/fn1ERLz55psxfPjwXE4DAF1S\nu498d+zYEYsWLYp9+/ZFJpOJ9evXx+LFi2Pu3LmxatWq6NevXzzwwAMpZgWAktBufG+66aZYvnz5\nJ44vW7asUwYCgFLnHa4AIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQX\nABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMQyhR4AKH0z3nqi0CPAFcUjXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcA\nEhNfAEhMfAEgMfEFgMQyuXzSiRMnYs6cOXH06NH46KOPYsaMGTF8+PB8zwYAJSmn+P7mN7+J6667\nLmbPnh0HDhyI73znO/H73/8+37MBQEnK6Wnn6urqOHLkSERENDc3R3V1dV6HAoBSltMj33HjxsWa\nNWti9OjR0dzcHL/4xS/yPRcAlKyc4rtu3bro169fLF26NN59992or6+PNWvWXPT61dUVkcmU5zxk\najU1VYUeIbnvPvlWh8/xxtP352GS/Di3hzsT3U5nefv+b33iWL7W9Ozk2jydiVyU+v1Mqa8vomNr\nzCm+27Zti2HDhkVExA033BAHDx6MlpaWKC+/cGCbmk7mPGBqNTVV0dh4rNBjFKUr5euWcg+vlDVT\nfEr5e6cr3I9eyhrbinNOr/kOGDAgtm/fHhER+/bti8rKyouGFwA4X06PfCdMmBD19fUxZcqUOHv2\nbCxYsCDPYwFA6copvpWVlfHss8/mexYA6BK8wxUAJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi\n4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkv\nACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQ\nmPgCQGLiCwCJiS8AJCa+AJCY+AJAYjnHt6GhIe67774YP358bNq0KY8jAUBpyym+TU1N8fzzz8fK\nlSvjxRdfjA0bNuR7LgAoWZlcPmnz5s0xZMiQ6NmzZ/Ts2TMWLlyY77kAoGTlFN+9e/fG6dOnY9q0\nadHc3BwzZ86MIUOGXPT61dUVkcmU5zxkajU1VZd83Xtnr+vQbb3x9P0d+vwryeV83f7T2/d/K69z\n7Mzr2dqW65ovVcq1kFZnf+8U2uWsr27V9ztxkkv36oQXLuv6HdnDnOIbEXHkyJF47rnnYv/+/TF1\n6tTYuHFjlJWVXfC6TU0ncx4wtZqaqmhsPJbs9lLeVmcrpbVcqq64ZvKjlL93Ut+P5svlzHwpa2wr\nzjm95tu7d+8YNGhQZDKZ6N+/f1RWVsbhw4dzORUAdDk5xXfYsGGxZcuW+Pjjj6OpqSlOnjwZ1dXV\n+Z4NAEpSTk879+nTJ8aOHRt1dXURETFv3rzo1s2vDAPApcj5Nd+JEyfGxIkT8zkLAHQJHq4CQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAIllCj1AV/fdJ98q9Ah0wM7/faTQI+Ts8ZUHO/X8z06u7dTzd+b8nT173arv\nd+r5L9XzI58q9Ahdlke+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiXUovqdPn45Ro0bFmjVr8jUPAJS8\nDsX3hRdeiF69euVrFgDoEnKO7+7du2PXrl1x55135nEcACh9Ocd30aJFMXfu3HzOAgBdQiaXT1q7\ndm3ccsstce21117S9aurKyKTKc/lpi7q3tnrOnyON56+/4LHa2qqOnzulObu+r9OPf+T/zP1kq73\n3Sffyun8foSDwujM+7piux+NuPyZO7LGnOK7adOm2LNnT2zatCk++OCD6N69e/Tt2zeGDh16wes3\nNZ3MecDO1Nh47BPHamqqLngcoNR01n1dsd6PXs7Ml7LGtuKcU3yXLFnS+u+f/exn8bnPfe6i4QUA\nzuf3fAEgsZwe+f6nmTNn5mMOAOgyPPIFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBILFPoAYDS9PjKg4Ue\nIWedPfuzk2s79fxc+TzyBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABIT\nXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASCyT6yc+9dRT8Ze//CXOnj0b3/ve\n92LMmDH5nAsASlZO8d2yZUu89957sWrVqmhqaooHH3xQfAHgEuUU39tuuy0GDhwYERGf/vSn49Sp\nU9HS0hLl5eV5HQ4ASlFO8S0vL4+KioqIiFi9enWMGDGizfBWV1dEJnPlhbmmpuqyjgOUks68ryvG\n+9HLnbkja8z5Nd+IiD/84Q+xevXq+NWvftXm9ZqaTnbkZjpNY+OxTxyrqam64HGAUtNZ93XFej96\nOTNfyhrbinPO8f3jH/8YL774Yrz88stRVVV8P+EAQKHkFN9jx47FU089Fa+88kp85jOfyfdMAFDS\ncorv7373u2hqaoof/OAHrccWLVoU/fr1y9tgAFCqcorvhAkTYsKECfmeBQC6BO9wBQCJiS8AJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAklin0AIX03SffKvQIRWHurv8r9AhAJ5jx1hOFHqHL8sgXABITXwBITHwBIDHxBYDE\nxBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNf\nAEhMfAEgsUyun/iTn/wktm/fHmVlZVFfXx8DBw7M51wAULJyiu+f/vSn+Ne//hWrVq2K3bt3R319\nfaxatSrfswFAScrpaefNmzfHqFGjIiLi+uuvj6NHj8bx48fzOhgAlKqc4nvo0KGorq5u/fjqq6+O\nxsbGvA0FAKUs59d8/1M2m23z8pqaqnzczHneePr+vJ+zePlaQDG5o9ADkBcdaVtOj3xra2vj0KFD\nrR8fPHgwampqch4CALqSnOJ7xx13xPr16yMi4h//+EfU1tZGz5498zoYAJSqnJ52Hjx4cNx4440x\nceLEKCsri/nz5+d7LgAoWWXZ9l6wBQDyyjtcAUBi4gsAieXlV42K2enTp+Ob3/xmTJ8+PcaPH996\nfOTIkdG3b98oLy+PiIjFixdHnz59CjXmZdu6dWs8/vjj8cUvfjEiIr70pS/Fj3/849bL33nnnXjm\nmWeivLw8RowYETNmzCjUqDlpb33Fvn/nNDQ0xMsvvxyZTCZmzZoVd955Z+tlxb6HEW2vrxT28LXX\nXouGhobWj3fs2BF//etfWz9uaGiIX//619GtW7eoq6uLhx56qBBj5qy99d14440xePDg1o9feeWV\n1v0sBidOnIg5c+bE0aNH46OPPooZM2bE8OHDWy/v0P5lu7hnnnkmO378+Ozrr79+3vG77rore/z4\n8QJN1XFbtmzJzpw586KX33333dn9+/dnW1paspMmTcq+9957CafruPbWV+z7l81ms4cPH86OGTMm\ne+zYseyBAwey8+bNO+/yYt/D9tZXCnv4n7Zu3ZpdsGBB68cnTpzIjhkzJtvc3Jw9depUdty4cdmm\npqYCTtgx/72+bDab/epXv1qgafJj+fLl2cWLF2ez2Wz2gw8+yI4dO7b1so7uX5d+2nn37t2xa9eu\n837a7gr27NkTvXr1imuuuSa6desWX/va12Lz5s2FHov/snnz5hgyZEj07NkzamtrY+HCha2XlcIe\ntrW+UvT888/H9OnTWz/evn173HzzzVFVVRU9evSIwYMHx7Zt2wo4Ycf89/pKQXV1dRw5ciQiIpqb\nm897Z8eO7l+Xju+iRYti7ty5F718/vz5MWnSpFi8eHG77+J1Jdq1a1dMmzYtJk2aFG+//Xbr8cbG\nxrj66qtbPy7Wtwe92PrOKfb927t3b5w+fTqmTZsWkydPPi+upbCHba3vnGLfw3P+9re/xTXXXHPe\nmxEdOnSo6PfwnAutLyLizJkzMXv27Jg4cWIsW7asQNPlbty4cbF///4YPXp0TJkyJebMmdN6WUf3\nr8u+5rt27dq45ZZb4tprr73g5bNmzYrhw4dHr169YsaMGbF+/fr4xje+kXjK3H3hC1+Ixx57LO6+\n++7Ys2dPTJ06Nd58883o3r17oUfLi/bWV+z7d86RI0fiueeei/3798fUqVNj48aNUVZWVuix8qat\n9ZXKHkZErF69Oh588ME2r1PMP1xcbH1PPPFE3HfffVFWVhZTpkyJW2+9NW6++eYCTJibdevWRb9+\n/WLp0qXx7rvvRn19faxZs+aC173c/euyj3w3bdoUGzZsiLq6unjttdfi5z//ebzzzjutlz/wwAPR\nu3fvyGQyMWLEiNi5c2cBp718ffr0iXvuuSfKysqif//+8dnPfjYOHDgQEZ98e9ADBw5EbW1toUbN\nSVvriyj+/YuI6N27dwwaNCgymUz0798/Kisr4/DhwxFRGnvY1voiSmMPz9m6dWsMGjTovGMXepve\nYtvDcy60voiISZMmRWVlZVRUVMTtt99edHu4bdu2GDZsWERE3HDDDXHw4MFoaWmJiI7vX5eN75Il\nS+L111+PV199NR566KGYPn16DB06NCIijh07Fo8++micOXMmIiL+/Oc/t/6v2mLR0NAQS5cujYh/\nP0X54Ycftv5P0c9//vNx/Pjx2Lt3b5w9ezY2btwYd9xRXG/13tb6SmH/IiKGDRsWW7ZsiY8//jia\nmpri5MmTra85lcIetrW+UtnDiH//YFRZWfmJZ52+8pWvxN///vdobm6OEydOxLZt2+LWW28t0JS5\nu9j6/vnPf8bs2bMjm83G2bNnY9u2bUW3hwMGDIjt27dHRMS+ffuisrKy9X9rd3T/uuzTzheyZs2a\nqKqqitGjR8eIESNiwoQJcdVVV8WXv/zlonu6a+TIkfHDH/4wNmzYEB999FEsWLAgfvvb37aub8GC\nBTF79uyIiLjnnnviuuuuK/DEl6e99RX7/kX8+9H92LFjo66uLiIi5s2bF2vXri2ZPWxvfaWwhxGf\nfH3+l7/8Zdx2220xaNCgmD17djz66KNRVlYWM2bMiKqq/P8FuM7W1vr69u0b3/72t6Nbt24xcuTI\nGDhwYAEnvXwTJkyI+vr6mDJlSpw9ezYWLFiQt/3z9pIAkFiXfdoZAApFfAEgMfEFgMTEFwASE18A\nSEx8ASAx8QWAxMQXABL7f56BiVURCnM3AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFG9JREFUeJzt3X9s1PX9wPFX6Q1JS8cqa0E2Ycbv\nFjOVCdFFEJgyfkyZv9gsP4LMzG8yBoJLWIQ1LJCQLGLQ4KbTTRnuCyFBkUFdlmGGkCwKbBkLG0sM\nwpKFHwpFCuVnkHrfPxaaMaGF6/V93PXx+It+7vq517vv5p69O3oty2az2QAAkulW6AEAoKsRXwBI\nTHwBIDHxBYDExBcAEhNfAEgsk+JGGhuPpbiZvKiuroimppOFHqNTlfoara/4lfoara/4Xcoaa2qq\nLnqZR77/JZMpL/QIna7U12h9xa/U12h9xa+jaxRfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWA\nxMQXABK7pPju3LkzRo0aFStWrIiIiPfffz8eeeSRmDJlSjzyyCPR2NjYqUMCQClpN74nT56MhQsX\nxpAhQ1qPLVmyJOrq6mLFihUxevToWLZsWacOCQClpN34du/ePV566aWora1tPTZ//vwYO3ZsRERU\nV1fHkSNHOm9CACgx7cY3k8lEjx49zjtWUVER5eXl0dLSEitXrox777230wYEgFKT8181amlpiSee\neCJuv/32856SvpDq6oqieqPttv4SxZXo3tnrOnyON56+Pw+TXDmKbQ8vV6mvL6L012h9xa8ja8w5\nvj/60Y9iwIAB8dhjj7V73WL601I1NVVF9ScQ86WU1lzqe1jq64so/TVaX/G7lDXm/U8KNjQ0xKc+\n9amYNWtWLp8OAF1au498d+zYEYsWLYp9+/ZFJpOJ9evXx4cffhhXXXVVPPzwwxERcf3118eCBQs6\ne1YAKAntxvemm26K5cuXp5gFALoE73AFAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY\n+AJAYuILAImJLwAkJr4AkNglxXfnzp0xatSoWLFiRUREvP/++/Hwww/H5MmT4/HHH48zZ8506pAA\nUEraje/Jkydj4cKFMWTIkNZjP/3pT2Py5MmxcuXKGDBgQKxevbpThwSAUtJufLt37x4vvfRS1NbW\nth7bunVrfP3rX4+IiLvuuis2b97ceRMCQInJtHuFTCYymfOvdurUqejevXtERPTu3TsaGxs7ZzoA\nKEHtxrc92Wy23etUV1dEJlPe0ZtKpqamqtAjJFdqaz63nrfv/1an3s4d617v1PNfTKnt14V0xhrr\nVn0/7+fMxasTXij5PSz19UV0bI05xbeioiJOnz4dPXr0iAMHDpz3lPSFNDWdzGm4QqipqYrGxmOF\nHiO5Ulpzyj0sxNetK3yPdoU1lvL6usL+Xcoa24pzTr9qNHTo0Fi/fn1ERLz55psxfPjwXE4DAF1S\nu498d+zYEYsWLYp9+/ZFJpOJ9evXx+LFi2Pu3LmxatWq6NevXzzwwAMpZgWAktBufG+66aZYvnz5\nJ44vW7asUwYCgFLnHa4AIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQX\nABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMQyhR4AKH0z3nqi0CPAFcUjXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcA\nEhNfAEhMfAEgMfEFgMQyuXzSiRMnYs6cOXH06NH46KOPYsaMGTF8+PB8zwYAJSmn+P7mN7+J6667\nLmbPnh0HDhyI73znO/H73/8+37MBQEnK6Wnn6urqOHLkSERENDc3R3V1dV6HAoBSltMj33HjxsWa\nNWti9OjR0dzcHL/4xS/yPRcAlKyc4rtu3bro169fLF26NN59992or6+PNWvWXPT61dUVkcmU5zxk\najU1VYUeIbnvPvlWh8/xxtP352GS/Di3hzsT3U5nefv+b33iWL7W9Ozk2jydiVyU+v1Mqa8vomNr\nzCm+27Zti2HDhkVExA033BAHDx6MlpaWKC+/cGCbmk7mPGBqNTVV0dh4rNBjFKUr5euWcg+vlDVT\nfEr5e6cr3I9eyhrbinNOr/kOGDAgtm/fHhER+/bti8rKyouGFwA4X06PfCdMmBD19fUxZcqUOHv2\nbCxYsCDPYwFA6copvpWVlfHss8/mexYA6BK8wxUAJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi\n4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkv\nACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQ\nmPgCQGLiCwCJiS8AJCa+AJCY+AJAYjnHt6GhIe67774YP358bNq0KY8jAUBpyym+TU1N8fzzz8fK\nlSvjxRdfjA0bNuR7LgAoWZlcPmnz5s0xZMiQ6NmzZ/Ts2TMWLlyY77kAoGTlFN+9e/fG6dOnY9q0\nadHc3BwzZ86MIUOGXPT61dUVkcmU5zxkajU1VZd83Xtnr+vQbb3x9P0d+vwryeV83f7T2/d/K69z\n7Mzr2dqW65ovVcq1kFZnf+8U2uWsr27V9ztxkkv36oQXLuv6HdnDnOIbEXHkyJF47rnnYv/+/TF1\n6tTYuHFjlJWVXfC6TU0ncx4wtZqaqmhsPJbs9lLeVmcrpbVcqq64ZvKjlL93Ut+P5svlzHwpa2wr\nzjm95tu7d+8YNGhQZDKZ6N+/f1RWVsbhw4dzORUAdDk5xXfYsGGxZcuW+Pjjj6OpqSlOnjwZ1dXV\n+Z4NAEpSTk879+nTJ8aOHRt1dXURETFv3rzo1s2vDAPApcj5Nd+JEyfGxIkT8zkLAHQJHq4CQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAIllCj1AV/fdJ98q9Ah0wM7/faTQI+Ts8ZUHO/X8z06u7dTzd+b8nT173arv\nd+r5L9XzI58q9Ahdlke+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiXUovqdPn45Ro0bFmjVr8jUPAJS8\nDsX3hRdeiF69euVrFgDoEnKO7+7du2PXrl1x55135nEcACh9Ocd30aJFMXfu3HzOAgBdQiaXT1q7\ndm3ccsstce21117S9aurKyKTKc/lpi7q3tnrOnyON56+/4LHa2qqOnzulObu+r9OPf+T/zP1kq73\n3Sffyun8foSDwujM+7piux+NuPyZO7LGnOK7adOm2LNnT2zatCk++OCD6N69e/Tt2zeGDh16wes3\nNZ3MecDO1Nh47BPHamqqLngcoNR01n1dsd6PXs7Ml7LGtuKcU3yXLFnS+u+f/exn8bnPfe6i4QUA\nzuf3fAEgsZwe+f6nmTNn5mMOAOgyPPIFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHx\nBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBILFPoAYDS9PjKg4Ue\nIWedPfuzk2s79fxc+TzyBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABIT\nXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASCyT6yc+9dRT8Ze//CXOnj0b3/ve\n92LMmDH5nAsASlZO8d2yZUu89957sWrVqmhqaooHH3xQfAHgEuUU39tuuy0GDhwYERGf/vSn49Sp\nU9HS0hLl5eV5HQ4ASlFO8S0vL4+KioqIiFi9enWMGDGizfBWV1dEJnPlhbmmpuqyjgOUks68ryvG\n+9HLnbkja8z5Nd+IiD/84Q+xevXq+NWvftXm9ZqaTnbkZjpNY+OxTxyrqam64HGAUtNZ93XFej96\nOTNfyhrbinPO8f3jH/8YL774Yrz88stRVVV8P+EAQKHkFN9jx47FU089Fa+88kp85jOfyfdMAFDS\ncorv7373u2hqaoof/OAHrccWLVoU/fr1y9tgAFCqcorvhAkTYsKECfmeBQC6BO9wBQCJiS8AJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAklin0AIX03SffKvQIRWHurv8r9AhAJ5jx1hOFHqHL8sgXABITXwBITHwBIDHxBYDE\nxBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNf\nAEhMfAEgsUyun/iTn/wktm/fHmVlZVFfXx8DBw7M51wAULJyiu+f/vSn+Ne//hWrVq2K3bt3R319\nfaxatSrfswFAScrpaefNmzfHqFGjIiLi+uuvj6NHj8bx48fzOhgAlKqc4nvo0KGorq5u/fjqq6+O\nxsbGvA0FAKUs59d8/1M2m23z8pqaqnzczHneePr+vJ+zePlaQDG5o9ADkBcdaVtOj3xra2vj0KFD\nrR8fPHgwampqch4CALqSnOJ7xx13xPr16yMi4h//+EfU1tZGz5498zoYAJSqnJ52Hjx4cNx4440x\nceLEKCsri/nz5+d7LgAoWWXZ9l6wBQDyyjtcAUBi4gsAieXlV42K2enTp+Ob3/xmTJ8+PcaPH996\nfOTIkdG3b98oLy+PiIjFixdHnz59CjXmZdu6dWs8/vjj8cUvfjEiIr70pS/Fj3/849bL33nnnXjm\nmWeivLw8RowYETNmzCjUqDlpb33Fvn/nNDQ0xMsvvxyZTCZmzZoVd955Z+tlxb6HEW2vrxT28LXX\nXouGhobWj3fs2BF//etfWz9uaGiIX//619GtW7eoq6uLhx56qBBj5qy99d14440xePDg1o9feeWV\n1v0sBidOnIg5c+bE0aNH46OPPooZM2bE8OHDWy/v0P5lu7hnnnkmO378+Ozrr79+3vG77rore/z4\n8QJN1XFbtmzJzpw586KX33333dn9+/dnW1paspMmTcq+9957CafruPbWV+z7l81ms4cPH86OGTMm\ne+zYseyBAwey8+bNO+/yYt/D9tZXCnv4n7Zu3ZpdsGBB68cnTpzIjhkzJtvc3Jw9depUdty4cdmm\npqYCTtgx/72+bDab/epXv1qgafJj+fLl2cWLF2ez2Wz2gw8+yI4dO7b1so7uX5d+2nn37t2xa9eu\n837a7gr27NkTvXr1imuuuSa6desWX/va12Lz5s2FHov/snnz5hgyZEj07NkzamtrY+HCha2XlcIe\ntrW+UvT888/H9OnTWz/evn173HzzzVFVVRU9evSIwYMHx7Zt2wo4Ycf89/pKQXV1dRw5ciQiIpqb\nm897Z8eO7l+Xju+iRYti7ty5F718/vz5MWnSpFi8eHG77+J1Jdq1a1dMmzYtJk2aFG+//Xbr8cbG\nxrj66qtbPy7Wtwe92PrOKfb927t3b5w+fTqmTZsWkydPPi+upbCHba3vnGLfw3P+9re/xTXXXHPe\nmxEdOnSo6PfwnAutLyLizJkzMXv27Jg4cWIsW7asQNPlbty4cbF///4YPXp0TJkyJebMmdN6WUf3\nr8u+5rt27dq45ZZb4tprr73g5bNmzYrhw4dHr169YsaMGbF+/fr4xje+kXjK3H3hC1+Ixx57LO6+\n++7Ys2dPTJ06Nd58883o3r17oUfLi/bWV+z7d86RI0fiueeei/3798fUqVNj48aNUVZWVuix8qat\n9ZXKHkZErF69Oh588ME2r1PMP1xcbH1PPPFE3HfffVFWVhZTpkyJW2+9NW6++eYCTJibdevWRb9+\n/WLp0qXx7rvvRn19faxZs+aC173c/euyj3w3bdoUGzZsiLq6unjttdfi5z//ebzzzjutlz/wwAPR\nu3fvyGQyMWLEiNi5c2cBp718ffr0iXvuuSfKysqif//+8dnPfjYOHDgQEZ98e9ADBw5EbW1toUbN\nSVvriyj+/YuI6N27dwwaNCgymUz0798/Kisr4/DhwxFRGnvY1voiSmMPz9m6dWsMGjTovGMXepve\nYtvDcy60voiISZMmRWVlZVRUVMTtt99edHu4bdu2GDZsWERE3HDDDXHw4MFoaWmJiI7vX5eN75Il\nS+L111+PV199NR566KGYPn16DB06NCIijh07Fo8++micOXMmIiL+/Oc/t/6v2mLR0NAQS5cujYh/\nP0X54Ycftv5P0c9//vNx/Pjx2Lt3b5w9ezY2btwYd9xRXG/13tb6SmH/IiKGDRsWW7ZsiY8//jia\nmpri5MmTra85lcIetrW+UtnDiH//YFRZWfmJZ52+8pWvxN///vdobm6OEydOxLZt2+LWW28t0JS5\nu9j6/vnPf8bs2bMjm83G2bNnY9u2bUW3hwMGDIjt27dHRMS+ffuisrKy9X9rd3T/uuzTzheyZs2a\nqKqqitGjR8eIESNiwoQJcdVVV8WXv/zlonu6a+TIkfHDH/4wNmzYEB999FEsWLAgfvvb37aub8GC\nBTF79uyIiLjnnnviuuuuK/DEl6e99RX7/kX8+9H92LFjo66uLiIi5s2bF2vXri2ZPWxvfaWwhxGf\nfH3+l7/8Zdx2220xaNCgmD17djz66KNRVlYWM2bMiKqq/P8FuM7W1vr69u0b3/72t6Nbt24xcuTI\nGDhwYAEnvXwTJkyI+vr6mDJlSpw9ezYWLFiQt/3z9pIAkFiXfdoZAApFfAEgMfEFgMTEFwASE18A\nSEx8ASAx8QWAxMQXABL7f56BiVURCnM3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" ] - }, - { - "metadata": { - "id": "pl4RPzBfl5mI", - "colab_type": "code", - "colab": {} - }, - "cell_type": "code", - "source": [ - "" - ], - "execution_count": 0, - "outputs": [] + }, + "metadata": { + "tags": [] + }, + "output_type": "display_data" } - ] -} \ No newline at end of file + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "#hist creates a histogram there are many more plots(see the documentation) you can play with it.\n", + "\n", + "plt.hist(setosa['sepal_length'])\n", + "plt.hist(versicolor['sepal_length'])\n", + "plt.hist(virginica['sepal_length'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "pl4RPzBfl5mI" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "name": "Get to know your Data.ipynb", + "provenance": [], + "version": "0.3.2" + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}