From 77ec91f48e4af715ee985d4a61fb79e8601090a9 Mon Sep 17 00:00:00 2001 From: MONA7584908095 <43202653+MONA7584908095@users.noreply.github.com> Date: Fri, 12 Oct 2018 20:45:49 +0530 Subject: [PATCH] i completed assignment 3 --- MONA7584908095.ipynb | 7133 +++++++++++++++++++++++++++++++++++++++++- 1 file changed, 7103 insertions(+), 30 deletions(-) diff --git a/MONA7584908095.ipynb b/MONA7584908095.ipynb index 9e2543a..10cf189 100644 --- a/MONA7584908095.ipynb +++ b/MONA7584908095.ipynb @@ -1,32 +1,7105 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "MONA7584908095.ipynb", + "version": "0.3.2", + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "[View in Colaboratory](https://colab.research.google.com/github/MONA7584908095/Assignment-3/blob/MONA7584908095/MONA7584908095.ipynb)" + ] + }, + { + "metadata": { + "id": "YOJQVOsdxqya", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "uSEYujUOxtlU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 139 + }, + "outputId": "090ff9e1-b10c-4e96-80b5-f691e7c1cf99" + }, + "cell_type": "code", + "source": [ + "a_ascii = ord('A')\n", + "z_ascii = ord('Z')\n", + "alphabets = [chr(i) for i in range(a_ascii, z_ascii+1)]\n", + "\n", + "print(alphabets)\n", + "\n", + "numbers = np.arange(26)\n", + "\n", + "print(numbers)\n", + "\n", + "print(type(alphabets), type(numbers))\n", + "\n", + "alpha_numbers = dict(zip(alphabets, numbers))\n", + "\n", + "print(alpha_numbers)\n", + "\n", + "print(type(alpha_numbers))" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']\n", + "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23\n", + " 24 25]\n", + " \n", + "{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9, 'K': 10, 'L': 11, 'M': 12, 'N': 13, 'O': 14, 'P': 15, 'Q': 16, 'R': 17, 'S': 18, 'T': 19, 'U': 20, 'V': 21, 'W': 22, 'X': 23, 'Y': 24, 'Z': 25}\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-nzFHlBJx-GU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 476 + }, + "outputId": "61ab6562-2a38-4f2f-82ed-39fa3a861c3f" + }, + "cell_type": "code", + "source": [ + "series1 = pd.Series(alphabets)\n", + "print(series1)\n" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "0 A\n", + "1 B\n", + "2 C\n", + "3 D\n", + "4 E\n", + "5 F\n", + "6 G\n", + "7 H\n", + "8 I\n", + "9 J\n", + "10 K\n", + "11 L\n", + "12 M\n", + "13 N\n", + "14 O\n", + "15 P\n", + "16 Q\n", + "17 R\n", + "18 S\n", + "19 T\n", + "20 U\n", + "21 V\n", + "22 W\n", + "23 X\n", + "24 Y\n", + "25 Z\n", + "dtype: object\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "aEo7tuhMxtnm", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 476 + }, + "outputId": "a468591b-1edd-40fd-d900-60d174d33155" + }, + "cell_type": "code", + "source": [ + "series2 = pd.Series(numbers)\n", + "print(series2)" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "0 0\n", + "1 1\n", + "2 2\n", + "3 3\n", + "4 4\n", + "5 5\n", + "6 6\n", + "7 7\n", + "8 8\n", + "9 9\n", + "10 10\n", + "11 11\n", + "12 12\n", + "13 13\n", + "14 14\n", + "15 15\n", + "16 16\n", + "17 17\n", + "18 18\n", + "19 19\n", + "20 20\n", + "21 21\n", + "22 22\n", + "23 23\n", + "24 24\n", + "25 25\n", + "dtype: int64\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "XAp1Pvz2xtpn", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 476 + }, + "outputId": "0396ab0c-77ab-47b3-d85b-cf596452cebf" + }, + "cell_type": "code", + "source": [ + "series3 = pd.Series(alpha_numbers)\n", + "print(series3)" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "text": [ + "A 0\n", + "B 1\n", + "C 2\n", + "D 3\n", + "E 4\n", + "F 5\n", + "G 6\n", + "H 7\n", + "I 8\n", + "J 9\n", + "K 10\n", + "L 11\n", + "M 12\n", + "N 13\n", + "O 14\n", + "P 15\n", + "Q 16\n", + "R 17\n", + "S 18\n", + "T 19\n", + "U 20\n", + "V 21\n", + "W 22\n", + "X 23\n", + "Y 24\n", + "Z 25\n", + "dtype: int64\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "jSO4X7sqxtrA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 136 + }, + "outputId": "44f3d911-3a12-4551-edd6-301d8b40cf54" + }, + "cell_type": "code", + "source": [ + "#replace head() with head(n) where n can be any number between [0-25] and observe the output in deach case \n", + "series3.head(6)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "A 0\n", + "B 1\n", + "C 2\n", + "D 3\n", + "E 4\n", + "F 5\n", + "dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "metadata": { + "id": "RPHTMAvnxttv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 855 + }, + "outputId": "7ca92b69-9390-40ce-8fec-6e81902f79a4" + }, + "cell_type": "code", + "source": [ + "data = {'alphabets': alphabets, 'values': numbers}\n", + "\n", + "df = pd.DataFrame(data)\n", + "\n", + "#Lets Change the column `values` to `alpha_numbers`\n", + "\n", + "df.columns = ['alphabets', 'alpha_numbers']\n", + "\n", + "df" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
alphabetsalpha_numbers
0A0
1B1
2C2
3D3
4E4
5F5
6G6
7H7
8I8
9J9
10K10
11L11
12M12
13N13
14O14
15P15
16Q16
17R17
18S18
19T19
20U20
21V21
22W22
23X23
24Y24
25Z25
\n", + "
" + ], + "text/plain": [ + " alphabets alpha_numbers\n", + "0 A 0\n", + "1 B 1\n", + "2 C 2\n", + "3 D 3\n", + "4 E 4\n", + "5 F 5\n", + "6 G 6\n", + "7 H 7\n", + "8 I 8\n", + "9 J 9\n", + "10 K 10\n", + "11 L 11\n", + "12 M 12\n", + "13 N 13\n", + "14 O 14\n", + "15 P 15\n", + "16 Q 16\n", + "17 R 17\n", + "18 S 18\n", + "19 T 19\n", + "20 U 20\n", + "21 V 21\n", + "22 W 22\n", + "23 X 23\n", + "24 Y 24\n", + "25 Z 25" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + } + ] + }, + { + "metadata": { + "id": "MAig0mqfxtvJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 140 + }, + "outputId": "19ea20e9-1fd5-44ac-d54d-edec330d86b9" + }, + "cell_type": "code", + "source": [ + "# transpose\n", + "\n", + "df.T\n", + "\n", + "# there are many more operations which we can perform look at the documentation with the subsequent exercises we will learn more" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...16171819202122232425
alphabetsABCDEFGHIJ...QRSTUVWXYZ
alpha_numbers0123456789...16171819202122232425
\n", + "

2 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 \\\n", + "alphabets A B C D E F G H I J ... Q R S T U V W \n", + "alpha_numbers 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 \n", + "\n", + " 23 24 25 \n", + "alphabets X Y Z \n", + "alpha_numbers 23 24 25 \n", + "\n", + "[2 rows x 26 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + } + ] + }, + { + "metadata": { + "id": "grOlNd65xtx4", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "3e9fabf1-96c3-4cc7-cfef-90aab0ec84b2" + }, + "cell_type": "code", + "source": [ + "ser = pd.Series(list('abcdefghijklmnopqrstuvwxyz'))\n", + "pos = [0, 4, 8, 14, 20]\n", + "\n", + "vowels = ser.take(pos)\n", + "\n", + "df = pd.DataFrame(vowels)#, columns=['vowels'])\n", + "\n", + "df.columns = ['vowels']\n", + "\n", + "df.index = [0, 1, 2, 3, 4]\n", + "\n", + "df" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
vowels
0a
1e
2i
3o
4u
\n", + "
" + ], + "text/plain": [ + " vowels\n", + "0 a\n", + "1 e\n", + "2 i\n", + "3 o\n", + "4 u" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "id": "NvOsR8AXxtzk", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "435ded71-34e7-451e-b035-652f780318f2" + }, + "cell_type": "code", + "source": [ + "ser = pd.Series(['we', 'are', 'learning', 'pandas'])\n", + "\n", + "ser.map(lambda x : x.title())\n", + "\n", + "titles = [i.title() for i in ser]\n", + "\n", + "titles" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['We', 'Are', 'Learning', 'Pandas']" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "id": "K_wYdgP8xt3S", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "49847f3d-486b-4f34-a3a0-d73cd512f58c" + }, + "cell_type": "code", + "source": [ + "\n", + "my_index = [1, 2, 3, 4, 5]\n", + "\n", + "df1 = pd.DataFrame({'upper values': ['A', 'B', 'C', 'D', 'E'],\n", + " 'lower values': ['a', 'b', 'c', 'd', 'e']},\n", + " index = my_index)\n", + "\n", + "df1" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
lower valuesupper values
1aA
2bB
3cC
4dD
5eE
\n", + "
" + ], + "text/plain": [ + " lower values upper values\n", + "1 a A\n", + "2 b B\n", + "3 c C\n", + "4 d D\n", + "5 e E" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "HQnqjfWixt6G", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "9b7a232e-22a5-4ee0-ffd0-e22b247fa0ba" + }, + "cell_type": "code", + "source": [ + "\n", + "new_index = [2, 5, 4, 3, 1]\n", + "\n", + "df1.reindex(index = new_index)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
lower valuesupper values
2bB
5eE
4dD
3cC
1aA
\n", + "
" + ], + "text/plain": [ + " lower values upper values\n", + "2 b B\n", + "5 e E\n", + "4 d D\n", + "3 c C\n", + "1 a A" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "id": "svVgGSqLxt7r", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "oX7p0tLWxt9u", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "iris_df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "w6UpYjwnxt_O", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "5f310edf-6d4e-426a-e818-fe0d3a993d50" + }, + "cell_type": "code", + "source": [ + "iris_df.head()" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "id": "wTq8voN8xuB6", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + }, + "outputId": "079c2389-1629-4bd4-9fee-40b66804a502" + }, + "cell_type": "code", + "source": [ + "print(iris_df.shape)\n", + "\n", + "#first is row and second is column\n", + "#select row by simple indexing\n", + "\n", + "print(iris_df.shape[0])\n", + "print(iris_df.shape[1])" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(150, 5)\n", + "150\n", + "5\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "FHa09nbNxuD7", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + }, + "outputId": "e004079b-521c-45d9-ce7d-9d5886407172" + }, + "cell_type": "code", + "source": [ + "print(iris_df.columns)\n" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',\n", + " 'species'],\n", + " dtype='object')\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "8s3y7XDWxuHv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "ff97a932-bb61-412b-902c-636f7ae27d9d" + }, + "cell_type": "code", + "source": [ + "\n", + "print(iris_df.index)" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "text": [ + "RangeIndex(start=0, stop=150, step=1)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-vNTOl9SxuKd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 221 + }, + "outputId": "2754602b-5fe9-4104-e82b-9caa608a0a6d" + }, + "cell_type": "code", + "source": [ + "#generate a random permutaion on index\n", + "\n", + "print(iris_df.head())\n", + "\n", + "new_index = np.random.permutation(iris_df.index)\n", + "iris_df = iris_df.reindex(index = new_index)\n", + "\n", + "print(iris_df.head())" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + " sepal_length sepal_width petal_length petal_width species\n", + "125 7.2 3.2 6.0 1.8 virginica\n", + "76 6.8 2.8 4.8 1.4 versicolor\n", + "119 6.0 2.2 5.0 1.5 virginica\n", + "89 5.5 2.5 4.0 1.3 versicolor\n", + "88 5.6 3.0 4.1 1.3 versicolor\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "xa3wJ-zzxuMI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 323 + }, + "outputId": "716a496a-cf36-4a5c-ec96-97f6a5c1b41a" + }, + "cell_type": "code", + "source": [ + "#original\n", + "\n", + "print(iris_df.head())\n", + "\n", + "iris_df['sepal_width'] *= 10\n", + "\n", + "#changed\n", + "\n", + "print(iris_df.head())\n", + "\n", + "#lets undo the operation\n", + "\n", + "iris_df['sepal_width'] /= 10\n", + "\n", + "print(iris_df.head())" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "125 7.2 3.2 6.0 1.8 virginica\n", + "76 6.8 2.8 4.8 1.4 versicolor\n", + "119 6.0 2.2 5.0 1.5 virginica\n", + "89 5.5 2.5 4.0 1.3 versicolor\n", + "88 5.6 3.0 4.1 1.3 versicolor\n", + " sepal_length sepal_width petal_length petal_width species\n", + "125 7.2 32.0 6.0 1.8 virginica\n", + "76 6.8 28.0 4.8 1.4 versicolor\n", + "119 6.0 22.0 5.0 1.5 virginica\n", + "89 5.5 25.0 4.0 1.3 versicolor\n", + "88 5.6 30.0 4.1 1.3 versicolor\n", + " sepal_length sepal_width petal_length petal_width species\n", + "125 7.2 3.2 6.0 1.8 virginica\n", + "76 6.8 2.8 4.8 1.4 versicolor\n", + "119 6.0 2.2 5.0 1.5 virginica\n", + "89 5.5 2.5 4.0 1.3 versicolor\n", + "88 5.6 3.0 4.1 1.3 versicolor\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ZTdXsrNxxuO8", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1165 + }, + "outputId": "befca5ab-1ff8-43fd-f818-0cae5ec8ff73" + }, + "cell_type": "code", + "source": [ + "iris_df[iris_df['sepal_width']>3.3]" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
365.53.51.30.2setosa
55.43.91.70.4setosa
465.13.81.60.2setosa
75.03.41.50.2setosa
244.83.41.90.2setosa
265.03.41.60.4setosa
395.13.41.50.2setosa
165.43.91.30.4setosa
315.43.41.50.4setosa
1097.23.66.12.5virginica
1366.33.45.62.4virginica
195.13.81.50.3setosa
856.03.44.51.6versicolor
335.54.21.40.2setosa
205.43.41.70.2setosa
1317.93.86.42.0virginica
45.03.61.40.2setosa
1177.73.86.72.2virginica
405.03.51.30.3setosa
224.63.61.00.2setosa
215.13.71.50.4setosa
485.33.71.50.2setosa
175.13.51.40.3setosa
64.63.41.40.3setosa
155.74.41.50.4setosa
185.73.81.70.3setosa
435.03.51.60.6setosa
145.84.01.20.2setosa
114.83.41.60.2setosa
275.23.51.50.2setosa
325.24.11.50.1setosa
05.13.51.40.2setosa
105.43.71.50.2setosa
1486.23.45.42.3virginica
445.13.81.90.4setosa
285.23.41.40.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "36 5.5 3.5 1.3 0.2 setosa\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "46 5.1 3.8 1.6 0.2 setosa\n", + "7 5.0 3.4 1.5 0.2 setosa\n", + "24 4.8 3.4 1.9 0.2 setosa\n", + "26 5.0 3.4 1.6 0.4 setosa\n", + "39 5.1 3.4 1.5 0.2 setosa\n", + "16 5.4 3.9 1.3 0.4 setosa\n", + "31 5.4 3.4 1.5 0.4 setosa\n", + "109 7.2 3.6 6.1 2.5 virginica\n", + "136 6.3 3.4 5.6 2.4 virginica\n", + "19 5.1 3.8 1.5 0.3 setosa\n", + "85 6.0 3.4 4.5 1.6 versicolor\n", + "33 5.5 4.2 1.4 0.2 setosa\n", + "20 5.4 3.4 1.7 0.2 setosa\n", + "131 7.9 3.8 6.4 2.0 virginica\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + "117 7.7 3.8 6.7 2.2 virginica\n", + "40 5.0 3.5 1.3 0.3 setosa\n", + "22 4.6 3.6 1.0 0.2 setosa\n", + "21 5.1 3.7 1.5 0.4 setosa\n", + "48 5.3 3.7 1.5 0.2 setosa\n", + "17 5.1 3.5 1.4 0.3 setosa\n", + "6 4.6 3.4 1.4 0.3 setosa\n", + "15 5.7 4.4 1.5 0.4 setosa\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "14 5.8 4.0 1.2 0.2 setosa\n", + "11 4.8 3.4 1.6 0.2 setosa\n", + "27 5.2 3.5 1.5 0.2 setosa\n", + "32 5.2 4.1 1.5 0.1 setosa\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "10 5.4 3.7 1.5 0.2 setosa\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "44 5.1 3.8 1.9 0.4 setosa\n", + "28 5.2 3.4 1.4 0.2 setosa" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 22 + } + ] + }, + { + "metadata": { + "id": "cteCoPoexuRy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "outputId": "8733954a-7f4d-4c82-e4cf-157508b18716" + }, + "cell_type": "code", + "source": [ + "iris_df[(iris_df['sepal_width']>3.3) & (iris_df['species'] == 'versicolor')]" + ], + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
856.03.44.51.6versicolor
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "85 6.0 3.4 4.5 1.6 versicolor" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 23 + } + ] + }, + { + "metadata": { + "id": "GqO9bZu-xuGb", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1969 + }, + "outputId": "34e539d0-5280-4a6c-e19e-4947b0bf3166" + }, + "cell_type": "code", + "source": [ + "iris_df.sort_values(by='sepal_width', ascending = False)\n", + "#pass ascending = False for descending order" + ], + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
155.74.41.50.4setosa
335.54.21.40.2setosa
325.24.11.50.1setosa
145.84.01.20.2setosa
165.43.91.30.4setosa
55.43.91.70.4setosa
445.13.81.90.4setosa
195.13.81.50.3setosa
1317.93.86.42.0virginica
465.13.81.60.2setosa
1177.73.86.72.2virginica
185.73.81.70.3setosa
215.13.71.50.4setosa
485.33.71.50.2setosa
105.43.71.50.2setosa
1097.23.66.12.5virginica
224.63.61.00.2setosa
45.03.61.40.2setosa
05.13.51.40.2setosa
365.53.51.30.2setosa
435.03.51.60.6setosa
175.13.51.40.3setosa
275.23.51.50.2setosa
405.03.51.30.3setosa
205.43.41.70.2setosa
114.83.41.60.2setosa
856.03.44.51.6versicolor
1486.23.45.42.3virginica
1366.33.45.62.4virginica
395.13.41.50.2setosa
..................
945.62.74.21.3versicolor
1015.82.75.11.9virginica
836.02.75.11.6versicolor
1236.32.74.91.8virginica
675.82.74.11.0versicolor
825.82.73.91.2versicolor
795.72.63.51.0versicolor
925.82.64.01.2versicolor
1187.72.66.92.3virginica
1346.12.65.61.4virginica
905.52.64.41.2versicolor
695.62.53.91.1versicolor
895.52.54.01.3versicolor
1466.32.55.01.9virginica
985.12.53.01.1versicolor
726.32.54.91.5versicolor
1064.92.54.51.7virginica
1135.72.55.02.0virginica
1086.72.55.81.8virginica
815.52.43.71.0versicolor
574.92.43.31.0versicolor
805.52.43.81.1versicolor
876.32.34.41.3versicolor
535.52.34.01.3versicolor
935.02.33.31.0versicolor
414.52.31.30.3setosa
686.22.24.51.5versicolor
626.02.24.01.0versicolor
1196.02.25.01.5virginica
605.02.03.51.0versicolor
\n", + "

150 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "15 5.7 4.4 1.5 0.4 setosa\n", + "33 5.5 4.2 1.4 0.2 setosa\n", + "32 5.2 4.1 1.5 0.1 setosa\n", + "14 5.8 4.0 1.2 0.2 setosa\n", + "16 5.4 3.9 1.3 0.4 setosa\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "44 5.1 3.8 1.9 0.4 setosa\n", + "19 5.1 3.8 1.5 0.3 setosa\n", + "131 7.9 3.8 6.4 2.0 virginica\n", + "46 5.1 3.8 1.6 0.2 setosa\n", + "117 7.7 3.8 6.7 2.2 virginica\n", + "18 5.7 3.8 1.7 0.3 setosa\n", + "21 5.1 3.7 1.5 0.4 setosa\n", + "48 5.3 3.7 1.5 0.2 setosa\n", + "10 5.4 3.7 1.5 0.2 setosa\n", + "109 7.2 3.6 6.1 2.5 virginica\n", + "22 4.6 3.6 1.0 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "36 5.5 3.5 1.3 0.2 setosa\n", + "43 5.0 3.5 1.6 0.6 setosa\n", + "17 5.1 3.5 1.4 0.3 setosa\n", + "27 5.2 3.5 1.5 0.2 setosa\n", + "40 5.0 3.5 1.3 0.3 setosa\n", + "20 5.4 3.4 1.7 0.2 setosa\n", + "11 4.8 3.4 1.6 0.2 setosa\n", + "85 6.0 3.4 4.5 1.6 versicolor\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "136 6.3 3.4 5.6 2.4 virginica\n", + "39 5.1 3.4 1.5 0.2 setosa\n", + ".. ... ... ... ... ...\n", + "94 5.6 2.7 4.2 1.3 versicolor\n", + "101 5.8 2.7 5.1 1.9 virginica\n", + "83 6.0 2.7 5.1 1.6 versicolor\n", + "123 6.3 2.7 4.9 1.8 virginica\n", + "67 5.8 2.7 4.1 1.0 versicolor\n", + "82 5.8 2.7 3.9 1.2 versicolor\n", + "79 5.7 2.6 3.5 1.0 versicolor\n", + "92 5.8 2.6 4.0 1.2 versicolor\n", + "118 7.7 2.6 6.9 2.3 virginica\n", + "134 6.1 2.6 5.6 1.4 virginica\n", + "90 5.5 2.6 4.4 1.2 versicolor\n", + "69 5.6 2.5 3.9 1.1 versicolor\n", + "89 5.5 2.5 4.0 1.3 versicolor\n", + "146 6.3 2.5 5.0 1.9 virginica\n", + "98 5.1 2.5 3.0 1.1 versicolor\n", + "72 6.3 2.5 4.9 1.5 versicolor\n", + "106 4.9 2.5 4.5 1.7 virginica\n", + "113 5.7 2.5 5.0 2.0 virginica\n", + "108 6.7 2.5 5.8 1.8 virginica\n", + "81 5.5 2.4 3.7 1.0 versicolor\n", + "57 4.9 2.4 3.3 1.0 versicolor\n", + "80 5.5 2.4 3.8 1.1 versicolor\n", + "87 6.3 2.3 4.4 1.3 versicolor\n", + "53 5.5 2.3 4.0 1.3 versicolor\n", + "93 5.0 2.3 3.3 1.0 versicolor\n", + "41 4.5 2.3 1.3 0.3 setosa\n", + "68 6.2 2.2 4.5 1.5 versicolor\n", + "62 6.0 2.2 4.0 1.0 versicolor\n", + "119 6.0 2.2 5.0 1.5 virginica\n", + "60 5.0 2.0 3.5 1.0 versicolor\n", + "\n", + "[150 rows x 5 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 24 + } + ] + }, + { + "metadata": { + "id": "LtkCKQ08xt17", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "8bae74a9-d3dd-423b-cfb5-265cc61c30c8" + }, + "cell_type": "code", + "source": [ + "\n", + "species = iris_df['species'].unique()\n", + "\n", + "print(species)" + ], + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['virginica' 'versicolor' 'setosa']\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "722RQ-sTzk4t", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "46e6e014-73e7-4328-e595-b85487d3d4cb" + }, + "cell_type": "code", + "source": [ + "\n", + "setosa = iris_df[iris_df['species'] == species[0]]\n", + "\n", + "setosa.head()" + ], + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
1257.23.26.01.8virginica
1196.02.25.01.5virginica
1156.43.25.32.3virginica
1376.43.15.51.8virginica
1446.73.35.72.5virginica
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "125 7.2 3.2 6.0 1.8 virginica\n", + "119 6.0 2.2 5.0 1.5 virginica\n", + "115 6.4 3.2 5.3 2.3 virginica\n", + "137 6.4 3.1 5.5 1.8 virginica\n", + "144 6.7 3.3 5.7 2.5 virginica" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 26 + } + ] + }, + { + "metadata": { + "id": "ZdpWbCQKzk9J", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "cd457826-c474-4a23-fed6-24920493d489" + }, + "cell_type": "code", + "source": [ + "# do the same for other 2 species \n", + "versicolor = iris_df[iris_df['species'] == species[1]]\n", + "\n", + "versicolor.head()" + ], + "execution_count": 27, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
766.82.84.81.4versicolor
895.52.54.01.3versicolor
885.63.04.11.3versicolor
645.62.93.61.3versicolor
836.02.75.11.6versicolor
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "76 6.8 2.8 4.8 1.4 versicolor\n", + "89 5.5 2.5 4.0 1.3 versicolor\n", + "88 5.6 3.0 4.1 1.3 versicolor\n", + "64 5.6 2.9 3.6 1.3 versicolor\n", + "83 6.0 2.7 5.1 1.6 versicolor" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 27 + } + ] + }, + { + "metadata": { + "id": "bc24MvpEzlAt", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "baf4021d-31a9-4bd6-8b24-4b149d1aff30" + }, + "cell_type": "code", + "source": [ + "\n", + "virginica = iris_df[iris_df['species'] == species[2]]\n", + "virginica.head()" + ], + "execution_count": 28, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
365.53.51.30.2setosa
235.13.31.70.5setosa
55.43.91.70.4setosa
124.83.01.40.1setosa
465.13.81.60.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "36 5.5 3.5 1.3 0.2 setosa\n", + "23 5.1 3.3 1.7 0.5 setosa\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "12 4.8 3.0 1.4 0.1 setosa\n", + "46 5.1 3.8 1.6 0.2 setosa" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 28 + } + ] + }, + { + "metadata": { + "id": "Fb_ADop5zk7d", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "1fd6c194-a615-49d5-aae0-920ddb5c36f1" + }, + "cell_type": "code", + "source": [ + "\n", + "setosa.describe()" + ], + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.0000050.00000050.00000050.00000
mean6.588002.9740005.5520002.02600
std0.635880.3224970.5518950.27465
min4.900002.2000004.5000001.40000
25%6.225002.8000005.1000001.80000
50%6.500003.0000005.5500002.00000
75%6.900003.1750005.8750002.30000
max7.900003.8000006.9000002.50000
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.00000 50.000000 50.000000 50.00000\n", + "mean 6.58800 2.974000 5.552000 2.02600\n", + "std 0.63588 0.322497 0.551895 0.27465\n", + "min 4.90000 2.200000 4.500000 1.40000\n", + "25% 6.22500 2.800000 5.100000 1.80000\n", + "50% 6.50000 3.000000 5.550000 2.00000\n", + "75% 6.90000 3.175000 5.875000 2.30000\n", + "max 7.90000 3.800000 6.900000 2.50000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 29 + } + ] + }, + { + "metadata": { + "id": "mCjhcoUVzk3C", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "c3c06210-bf26-4b1a-f9e5-f460ac853ba5" + }, + "cell_type": "code", + "source": [ + "versicolor.describe()" + ], + "execution_count": 30, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.00000050.00000050.00000050.000000
mean5.9360002.7700004.2600001.326000
std0.5161710.3137980.4699110.197753
min4.9000002.0000003.0000001.000000
25%5.6000002.5250004.0000001.200000
50%5.9000002.8000004.3500001.300000
75%6.3000003.0000004.6000001.500000
max7.0000003.4000005.1000001.800000
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.000000 50.000000 50.000000 50.000000\n", + "mean 5.936000 2.770000 4.260000 1.326000\n", + "std 0.516171 0.313798 0.469911 0.197753\n", + "min 4.900000 2.000000 3.000000 1.000000\n", + "25% 5.600000 2.525000 4.000000 1.200000\n", + "50% 5.900000 2.800000 4.350000 1.300000\n", + "75% 6.300000 3.000000 4.600000 1.500000\n", + "max 7.000000 3.400000 5.100000 1.800000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 30 + } + ] + }, + { + "metadata": { + "id": "0AmyE6Jcz7c8", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "0a52cff8-7086-41d5-8f6d-abd5f6fba0dd" + }, + "cell_type": "code", + "source": [ + "virginica.describe()" + ], + "execution_count": 31, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count50.0000050.00000050.00000050.00000
mean5.006003.4180001.4640000.24400
std0.352490.3810240.1735110.10721
min4.300002.3000001.0000000.10000
25%4.800003.1250001.4000000.20000
50%5.000003.4000001.5000000.20000
75%5.200003.6750001.5750000.30000
max5.800004.4000001.9000000.60000
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 50.00000 50.000000 50.000000 50.00000\n", + "mean 5.00600 3.418000 1.464000 0.24400\n", + "std 0.35249 0.381024 0.173511 0.10721\n", + "min 4.30000 2.300000 1.000000 0.10000\n", + "25% 4.80000 3.125000 1.400000 0.20000\n", + "50% 5.00000 3.400000 1.500000 0.20000\n", + "75% 5.20000 3.675000 1.575000 0.30000\n", + "max 5.80000 4.400000 1.900000 0.60000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 31 + } + ] + }, + { + "metadata": { + "id": "SGacl2Dez7fY", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 398 + }, + "outputId": "f89dfe44-0a3c-4aed-f941-05d08d2c8d0f" + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "#hist creates a histogram there are many more plots(see the documentation) you can play with it.\n", + "\n", + "plt.hist(setosa['sepal_length'])\n", + "plt.hist(versicolor['sepal_length'])\n", + "plt.hist(virginica['sepal_length'])" + ], + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([ 4., 1., 6., 5., 12., 8., 4., 5., 2., 3.]),\n", + " array([4.3 , 4.45, 4.6 , 4.75, 4.9 , 5.05, 5.2 , 5.35, 5.5 , 5.65, 5.8 ]),\n", + " )" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 32 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFJNJREFUeJzt3XuM1Ge5wPFn2ZFydllxi7tQtGDT\naBrbYiFtU662yKUt9oaWWyiSUxMRCphgWtxgICExh4bTUG212iI1EBIsIHCMKY0IiWmBGjEoJg0F\nE8OlhaUsLNdw6Zw/DBuxsJfZ2XeY2c/nL+Y3s795Xl4y350ZdrYsm81mAwBIpkuhBwCAzkZ8ASAx\n8QWAxMQXABITXwBITHwBILFMijuprz+Z4m7yorq6IhoazhR6jA5V6mu0vuJX6mu0vuLXmjXW1FRd\n8zrPfP9DJlNe6BE6XKmv0fqKX6mv0fqKX3vXKL4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJ\niS8AJNaq+O7ZsydGjhwZK1eujIiIDz74IKZNmxZTpkyJadOmRX19fYcOCQClpMX4njlzJhYtWhSD\nBg1qOrZ06dIYP358rFy5MkaNGhXLly/v0CEBoJS0GN+uXbvGq6++GrW1tU3HFixYEGPGjImIiOrq\n6jh+/HjHTQgAJabF+GYymejWrdsVxyoqKqK8vDwuXboUq1atikceeaTDBgSAUpPzbzW6dOlSPPvs\ns3Hfffdd8ZL01VRXVxTVB20395sorkdvP/aNNt1+z1WODdmwNj/DXCeKbQ/bqtTXF1H6a7S+4tee\nNeYc3x/84AfRr1+/eOaZZ1q8bTH9aqmamqqi+hWI+VJKay71PSz19UWU/hqtr/i1Zo15/5WCGzdu\njE996lMxe/bsXL4cADq1Fp/57t69OxYvXhwHDx6MTCYTmzZtio8++ihuuOGGeOqppyIi4tZbb42F\nCxd29KwAUBJajO8dd9wRK1asSDELAHQKPuEKABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEF\ngMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwAS\nE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8\nASAx8QWAxMQXABITXwBITHwBILFWxXfPnj0xcuTIWLlyZUREfPDBB/HUU0/F5MmTY86cOXH+/PkO\nHRIASkmL8T1z5kwsWrQoBg0a1HTsxz/+cUyePDlWrVoV/fr1izVr1nTokABQSlqMb9euXePVV1+N\n2trapmM7duyIr33taxER8cADD8S2bds6bkIAKDGZFm+QyUQmc+XNzp49G127do2IiJ49e0Z9fX3H\nTAcAJajF+LYkm822eJvq6orIZMrbe1fJ1NRUFXqENtmTh3MU25pbcnk941d/t0Pv59cTftah57+W\nUtuvq+mINT4yd0Pez5mL//vfx0p+D0t9fRHtW2NO8a2oqIhz585Ft27d4vDhw1e8JH01DQ1nchqu\nEGpqqqK+/mShx0iulNaccg8L8ffWGf6NdoY1lvL6OsP+tWaNzcU5px81Gjx4cGzatCkiIt56660Y\nNmxYLqcBgE6pxWe+u3fvjsWLF8fBgwcjk8nEpk2bYsmSJTFv3rxYvXp19OnTJx5//PEUswJASWgx\nvnfccUesWLHiE8eXL1/eIQMBQKnzCVcAkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGKZQg8AlL7//p8/FHoEuK54\n5gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkv\nACQmvgCQmPgCQGLiCwCJiS8AJCa+AJBYJpcvOn36dDz33HNx4sSJuHDhQsycOTOGDRuW79kAoCTl\nFN/f/OY3ccstt8TcuXPj8OHD8a1vfSvefPPNfM8GACUpp5edq6ur4/jx4xER0djYGNXV1XkdCgBK\nWU7PfMeOHRvr1q2LUaNGRWNjY/z85z/P91wAULJyiu+GDRuiT58+sWzZsnjvvfeirq4u1q1bd83b\nV1dXRCZTnvOQqdXUVBV6hDbZk49zfHtau88xZMPa9g+SJ6n2sKPvZ/zq73bYuc+++2CHnZuWFdvj\nTFuV+voi2rfGnOK7c+fOGDp0aERE3HbbbXHkyJG4dOlSlJdfPbANDWdyHjC1mpqqqK8/WegxitL1\n8veWcg+vlzVTfEr5305neBxtzRqbi3NO7/n269cvdu3aFRERBw8ejMrKymuGFwC4Uk7PfCdMmBB1\ndXUxZcqUuHjxYixcuDDPYwFA6copvpWVlfHiiy/mexYA6BR8whUAJCa+AJCY+AJAYuILAImJLwAk\nJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4\nAkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsA\niYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYjnHd+PGjfHoo4/GuHHjYuvWrXkcCQBKW07x\nbWhoiJdffjlWrVoVr7zySmzevDnfcwFAycrk8kXbtm2LQYMGRffu3aN79+6xaNGifM8FACUrp/ge\nOHAgzp07F9OnT4/GxsaYNWtWDBo06Jq3r66uiEymPOchU6upqWr1bd9+7Bvtuq8hG9a26+sjIva0\n+wz50Za/t383fvV38zxJOrmuGUr9305b1vfI3A0dOEnr/d//Ptam27dnD3OKb0TE8ePH46WXXopD\nhw7F1KlTY8uWLVFWVnbV2zY0nMl5wNRqaqqivv5ksvtLeV8drZTW0lqdcc3kRyn/20n9OJovbZm5\nNWtsLs45vefbs2fPGDBgQGQymejbt29UVlbGsWPHcjkVAHQ6OcV36NChsX379vj444+joaEhzpw5\nE9XV1fmeDQBKUk4vO/fq1SvGjBkT48ePj4iI+fPnR5cufmQYAFoj5/d8J06cGBMnTsznLADQKXi6\nCgCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAImJLwAklin0AJ3dnm9PK/QI15U5q460+xwvTq7NwyStM/MPzya7r3z7r3vf\n7NDzn333wQ49f0fO39GzPzJ3Q4eev7V+OW9EoUfotDzzBYDExBcAEhNfAEhMfAEgMfEFgMTEFwAS\nE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASKxd\n8T137lyMHDky1q1bl695AKDktSu+P/vZz6JHjx75mgUAOoWc47tv377Yu3dv3H///XkcBwBKX87x\nXbx4ccybNy+fswBAp5DJ5YvWr18fd911V9x8882tun11dUVkMuW53NU1vf3YN9p9jiEb1l71eE1N\nVavPsafdU5SOPd+eltPXzcnvGEArteWx7no6d0dp68ztWWNO8d26dWvs378/tm7dGh9++GF07do1\nevfuHYMHD77q7RsazuQ8YEeqrz/5iWM1NVVXPQ5Qajrqsa5YH0fbMnNr1thcnHOK79KlS5v+/JOf\n/CQ+97nPXTO8AMCV/JwvACSW0zPffzdr1qx8zAEAnYZnvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAIll\nCj0AXI/mrDrS7nO8OLk2D5MUr/+6981Cj5Czjp797LsPduj5uf555gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJBYJtcvfP755+PPf/5zXLx4Mb7zne/E6NGj8zkXAJSsnOK7ffv2eP/992P16tXR0NAQTzzx\nhPgCQCvlFN977rkn+vfvHxERn/70p+Ps2bNx6dKlKC8vz+twAFCKcopveXl5VFRURETEmjVrYvjw\n4c2Gt7q6IjKZ/IZ5Tx7OUVNT1abjHTUH+TVn1ZFCjwBFoS2PddfTuTtKW2duzxpzfs83IuL3v/99\nrFmzJn75y182e7uGhjPtuZsOU19/8hPHamqqrnocoNR01GNdsT6OtmXm1qyxuTjnHN8//vGP8cor\nr8Rrr70WVVXF9x0OABRKTvE9efJkPP/88/H666/HZz7zmXzPBAAlLaf4/u53v4uGhob43ve+13Rs\n8eLF0adPn7wNBgClKqf4TpgwISZMmJDvWQCgU/AJVwCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuIL\nAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYplCD1BIe749\n7ZPH0o8BUBD//T9/KPQInZZnvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4\nAkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAIllcv3CH/3oR7Fr164oKyuL\nurq66N+/fz7nAoCSlVN833333fjnP/8Zq1evjn379kVdXV2sXr0637MBQEnK6WXnbdu2xciRIyMi\n4tZbb40TJ07EqVOn8joYAJSqnOJ79OjRqK6ubrp84403Rn19fd6GAoBSlvN7vv8um802e31NTVU+\n7ubKc25Ym/dzQj4NKfQAXL8mFHoA8qE9bcvpmW9tbW0cPXq06fKRI0eipqYm5yEAoDPJKb5DhgyJ\nTZs2RUTE3//+96itrY3u3bvndTAAKFU5vew8cODAuP3222PixIlRVlYWCxYsyPdcAFCyyrItvWEL\nAOSVT7gCgMTEFwASy8uPGhWzc+fOxde//vWYMWNGjBs3run4iBEjonfv3lFeXh4REUuWLIlevXoV\nasw227FjR8yZMye++MUvRkTEl770pfjhD3/YdP0777wTL7zwQpSXl8fw4cNj5syZhRo1Jy2tr9j3\n77KNGzfGa6+9FplMJmbPnh33339/03XFvocRza+vFPbwjTfeiI0bNzZd3r17d/zlL39purxx48b4\n1a9+FV26dInx48fHk08+WYgxc9bS+m6//fYYOHBg0+XXX3+9aT+LwenTp+O5556LEydOxIULF2Lm\nzJkxbNiwpuvbtX/ZTu6FF17Ijhs3Lrt27dorjj/wwAPZU6dOFWiq9tu+fXt21qxZ17z+oYceyh46\ndCh76dKl7KRJk7Lvv/9+wunar6X1Ffv+ZbPZ7LFjx7KjR4/Onjx5Mnv48OHs/Pnzr7i+2PewpfWV\nwh7+ux07dmQXLlzYdPn06dPZ0aNHZxsbG7Nnz57Njh07NtvQ0FDACdvnP9eXzWaz9957b4GmyY8V\nK1ZklyxZks1ms9kPP/wwO2bMmKbr2rt/nfpl53379sXevXuv+G67M9i/f3/06NEjbrrppujSpUt8\n9atfjW3bthV6LP7Dtm3bYtCgQdG9e/eora2NRYsWNV1XCnvY3PpK0csvvxwzZsxourxr16648847\no6qqKrp16xYDBw6MnTt3FnDC9vnP9ZWC6urqOH78eERENDY2XvHJju3dv04d38WLF8e8efOuef2C\nBQti0qRJsWTJkhY/xet6tHfv3pg+fXpMmjQp3n777abj9fX1ceONNzZdLtaPB73W+i4r9v07cOBA\nnDt3LqZPnx6TJ0++Iq6lsIfNre+yYt/Dy/7617/GTTfddMWHER09erTo9/Cyq60vIuL8+fMxd+7c\nmDhxYixfvrxA0+Vu7NixcejQoRg1alRMmTIlnnvuuabr2rt/nfY93/Xr18ddd90VN99881Wvnz17\ndgwbNix69OgRM2fOjE2bNsWDDz6YeMrcfeELX4hnnnkmHnroodi/f39MnTo13nrrrejatWuhR8uL\nltZX7Pt32fHjx+Oll16KQ4cOxdSpU2PLli1RVlZW6LHyprn1lcoeRkSsWbMmnnjiiWZvU8zfXFxr\nfc8++2w8+uijUVZWFlOmTIm777477rzzzgJMmJsNGzZEnz59YtmyZfHee+9FXV1drFu37qq3bev+\nddpnvlu3bo3NmzfH+PHj44033oif/vSn8c477zRd//jjj0fPnj0jk8nE8OHDY8+ePQWctu169eoV\nDz/8cJSVlUXfvn3js5/9bBw+fDgiPvnxoIcPH47a2tpCjZqT5tYXUfz7FxHRs2fPGDBgQGQymejb\nt29UVlbGsWPHIqI09rC59UWUxh5etmPHjhgwYMAVx672Mb3FtoeXXW19ERGTJk2KysrKqKioiPvu\nu6/o9nDnzp0xdOjQiIi47bbb4siRI3Hp0qWIaP/+ddr4Ll26NNauXRu//vWv48knn4wZM2bE4MGD\nIyLi5MmT8fTTT8f58+cjIuJPf/pT0/+qLRYbN26MZcuWRcS/XqL86KOPmv6n6Oc///k4depUHDhw\nIC5evBhbtmyJIUOK69cANLe+Uti/iIihQ4fG9u3b4+OPP46GhoY4c+ZM03tOpbCHza2vVPYw4l/f\nGFVWVn7iVaevfOUr8be//S0aGxvj9OnTsXPnzrj77rsLNGXurrW+f/zjHzF37tzIZrNx8eLF2Llz\nZ9HtYb9+/WLXrl0REXHw4MGorKxs+t/a7d2/Tvuy89WsW7cuqqqqYtSoUTF8+PCYMGFC3HDDDfHl\nL3+56F7uGjFiRHz/+9+PzZs3x4ULF2LhwoXx29/+tml9CxcujLlz50ZExMMPPxy33HJLgSdum5bW\nV+z7F/GvZ/djxoyJ8ePHR0TE/PnzY/369SWzhy2trxT2MOKT78//4he/iHvuuScGDBgQc+fOjaef\nfjrKyspi5syZUVWV/98A19GaW1/v3r3jm9/8ZnTp0iVGjBgR/fv3L+CkbTdhwoSoq6uLKVOmxMWL\nF2PhwoV52z8fLwkAiXXal50BoFDEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBILH/By91j6Ca\n07jKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "nVrjZ6pIz7h0", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "\n", + "import numpy as np\n", + "import pandas as pd" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "yKKfmIuAz7j-", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "wine_df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "9SfIlWr7z7nB", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "bcbc22d0-6b16-4f11-ef6e-b749897609b6" + }, + "cell_type": "code", + "source": [ + "\n", + "wine_df.head(5)" + ], + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
012345678910111213
0114.231.712.4315.61272.803.060.282.295.641.043.921065
1113.201.782.1411.21002.652.760.261.284.381.053.401050
2113.162.362.6718.61012.803.240.302.815.681.033.171185
3114.371.952.5016.81133.853.490.242.187.800.863.451480
4113.242.592.8721.01182.802.690.391.824.321.042.93735
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 11 12 \\\n", + "0 1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 \n", + "1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n", + "2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n", + "3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n", + "4 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n", + "\n", + " 13 \n", + "0 1065 \n", + "1 1050 \n", + "2 1185 \n", + "3 1480 \n", + "4 735 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 35 + } + ] + }, + { + "metadata": { + "id": "BATd8onp0WX8", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "\n", + "n = len(wine_df)\n", + "wine_df_copy = wine_df.drop(range(1,n,2))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "7Mv6d6Sc0aoI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "ca4c724b-2366-490d-b95c-561c61749768" + }, + "cell_type": "code", + "source": [ + "wine_df.head()" + ], + "execution_count": 37, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
012345678910111213
0114.231.712.4315.61272.803.060.282.295.641.043.921065
1113.201.782.1411.21002.652.760.261.284.381.053.401050
2113.162.362.6718.61012.803.240.302.815.681.033.171185
3114.371.952.5016.81133.853.490.242.187.800.863.451480
4113.242.592.8721.01182.802.690.391.824.321.042.93735
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 11 12 \\\n", + "0 1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 \n", + "1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n", + "2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n", + "3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n", + "4 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n", + "\n", + " 13 \n", + "0 1065 \n", + "1 1050 \n", + "2 1185 \n", + "3 1480 \n", + "4 735 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 37 + } + ] + }, + { + "metadata": { + "id": "HA421gKu0aqv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "7746116e-acdf-4d03-a393-edbd4e52f865" + }, + "cell_type": "code", + "source": [ + "wine_df_copy.head()" + ], + "execution_count": 38, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
012345678910111213
0114.231.712.4315.61272.83.060.282.295.641.043.921065
2113.162.362.6718.61012.83.240.302.815.681.033.171185
4113.242.592.8721.01182.82.690.391.824.321.042.93735
6114.391.872.4514.6962.52.520.301.985.251.023.581290
8114.831.642.1714.0972.82.980.291.985.201.082.851045
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 11 12 \\\n", + "0 1 14.23 1.71 2.43 15.6 127 2.8 3.06 0.28 2.29 5.64 1.04 3.92 \n", + "2 1 13.16 2.36 2.67 18.6 101 2.8 3.24 0.30 2.81 5.68 1.03 3.17 \n", + "4 1 13.24 2.59 2.87 21.0 118 2.8 2.69 0.39 1.82 4.32 1.04 2.93 \n", + "6 1 14.39 1.87 2.45 14.6 96 2.5 2.52 0.30 1.98 5.25 1.02 3.58 \n", + "8 1 14.83 1.64 2.17 14.0 97 2.8 2.98 0.29 1.98 5.20 1.08 2.85 \n", + "\n", + " 13 \n", + "0 1065 \n", + "2 1185 \n", + "4 735 \n", + "6 1290 \n", + "8 1045 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 38 + } + ] + }, + { + "metadata": { + "id": "q63ZaQXg0aug", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#alt\n", + "wine_df_copy2 = wine_df[wine_df.index%2==0]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "0ygY_qAC0ax2", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "e6796d1a-05bb-4efe-e110-ded5b8d922a3" + }, + "cell_type": "code", + "source": [ + "wine_df_copy2.head()" + ], + "execution_count": 40, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
012345678910111213
0114.231.712.4315.61272.83.060.282.295.641.043.921065
2113.162.362.6718.61012.83.240.302.815.681.033.171185
4113.242.592.8721.01182.82.690.391.824.321.042.93735
6114.391.872.4514.6962.52.520.301.985.251.023.581290
8114.831.642.1714.0972.82.980.291.985.201.082.851045
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 11 12 \\\n", + "0 1 14.23 1.71 2.43 15.6 127 2.8 3.06 0.28 2.29 5.64 1.04 3.92 \n", + "2 1 13.16 2.36 2.67 18.6 101 2.8 3.24 0.30 2.81 5.68 1.03 3.17 \n", + "4 1 13.24 2.59 2.87 21.0 118 2.8 2.69 0.39 1.82 4.32 1.04 2.93 \n", + "6 1 14.39 1.87 2.45 14.6 96 2.5 2.52 0.30 1.98 5.25 1.02 3.58 \n", + "8 1 14.83 1.64 2.17 14.0 97 2.8 2.98 0.29 1.98 5.20 1.08 2.85 \n", + "\n", + " 13 \n", + "0 1065 \n", + "2 1185 \n", + "4 735 \n", + "6 1290 \n", + "8 1045 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 40 + } + ] + }, + { + "metadata": { + "id": "WdE9devq0atd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "outputId": "919c6984-f05e-4052-fe07-506472051e2a" + }, + "cell_type": "code", + "source": [ + "features_str = '''1) Alcohol\n", + "2) Malic acid\n", + "3) Ash\n", + "4) Alcalinity of ash\n", + "5) Magnesium\n", + "6) Total phenols\n", + "7) Flavanoids\n", + "8) Nonflavanoid phenols\n", + "9) Proanthocyanins\n", + "10)Color intensity\n", + "11)Hue\n", + "12)OD280/OD315 of diluted wines\n", + "13)Proline'''\n", + "features_lst = [s[3:] for s in features_str.split('\\n')]\n", + "features_lst" + ], + "execution_count": 41, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['Alcohol',\n", + " 'Malic acid',\n", + " 'Ash',\n", + " 'Alcalinity of ash',\n", + " 'Magnesium',\n", + " 'Total phenols',\n", + " 'Flavanoids',\n", + " 'Nonflavanoid phenols',\n", + " 'Proanthocyanins',\n", + " 'Color intensity',\n", + " 'Hue',\n", + " 'OD280/OD315 of diluted wines',\n", + " 'Proline']" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 41 + } + ] + }, + { + "metadata": { + "id": "O7s3xxMt0rGW", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "wine_df.columns = ['target'] + features_lst" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FbvtyXZt0raf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 102 + }, + "outputId": "7f0c166d-b73f-46aa-80cb-d590fe6cae49" + }, + "cell_type": "code", + "source": [ + "wine_df['Alcohol'].iloc[range(3)] = np.NaN" + ], + "execution_count": 43, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py:194: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame\n", + "\n", + "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n", + " self._setitem_with_indexer(indexer, value)\n" + ], + "name": "stderr" + } + ] + }, + { + "metadata": { + "id": "mKLFARIn0rim", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 221 + }, + "outputId": "9757e528-fb4f-49b0-f7c1-5b336544c62f" + }, + "cell_type": "code", + "source": [ + "wine_df.head()" + ], + "execution_count": 44, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
targetAlcoholMalic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 of diluted winesProline
01NaN1.712.4315.61272.803.060.282.295.641.043.921065
11NaN1.782.1411.21002.652.760.261.284.381.053.401050
21NaN2.362.6718.61012.803.240.302.815.681.033.171185
3114.371.952.5016.81133.853.490.242.187.800.863.451480
4113.242.592.8721.01182.802.690.391.824.321.042.93735
\n", + "
" + ], + "text/plain": [ + " target Alcohol Malic acid Ash Alcalinity of ash Magnesium \\\n", + "0 1 NaN 1.71 2.43 15.6 127 \n", + "1 1 NaN 1.78 2.14 11.2 100 \n", + "2 1 NaN 2.36 2.67 18.6 101 \n", + "3 1 14.37 1.95 2.50 16.8 113 \n", + "4 1 13.24 2.59 2.87 21.0 118 \n", + "\n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "0 2.80 3.06 0.28 2.29 \n", + "1 2.65 2.76 0.26 1.28 \n", + "2 2.80 3.24 0.30 2.81 \n", + "3 3.85 3.49 0.24 2.18 \n", + "4 2.80 2.69 0.39 1.82 \n", + "\n", + " Color intensity Hue OD280/OD315 of diluted wines Proline \n", + "0 5.64 1.04 3.92 1065 \n", + "1 4.38 1.05 3.40 1050 \n", + "2 5.68 1.03 3.17 1185 \n", + "3 7.80 0.86 3.45 1480 \n", + "4 4.32 1.04 2.93 735 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 44 + } + ] + }, + { + "metadata": { + "id": "kJcHzGAg0ruC", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "3c7b3e2b-8ca9-428a-d95c-5036176e29d7" + }, + "cell_type": "code", + "source": [ + "random = [np.random.randint(10) for i in range(10)]\n", + "random" + ], + "execution_count": 45, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[8, 0, 8, 3, 4, 0, 4, 6, 3, 4]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 45 + } + ] + }, + { + "metadata": { + "id": "2f4mqAN_091F", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 102 + }, + "outputId": "6e4ae9fb-2d35-42d3-fae9-d16d6b2eb0f0" + }, + "cell_type": "code", + "source": [ + "wine_df['Alcohol'].loc[random] = np.NaN" + ], + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py:194: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame\n", + "\n", + "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n", + " self._setitem_with_indexer(indexer, value)\n" + ], + "name": "stderr" + } + ] + }, + { + "metadata": { + "id": "fg0kkCL6097p", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 376 + }, + "outputId": "d7d0584e-f65e-4f7d-de0c-405ae4a50340" + }, + "cell_type": "code", + "source": [ + "wine_df.head(10)" + ], + "execution_count": 47, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
targetAlcoholMalic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 of diluted winesProline
01NaN1.712.4315.61272.803.060.282.295.641.043.921065
11NaN1.782.1411.21002.652.760.261.284.381.053.401050
21NaN2.362.6718.61012.803.240.302.815.681.033.171185
31NaN1.952.5016.81133.853.490.242.187.800.863.451480
41NaN2.592.8721.01182.802.690.391.824.321.042.93735
5114.201.762.4515.21123.273.390.341.976.751.052.851450
61NaN1.872.4514.6962.502.520.301.985.251.023.581290
7114.062.152.6117.61212.602.510.311.255.051.063.581295
81NaN1.642.1714.0972.802.980.291.985.201.082.851045
9113.861.352.2716.0982.983.150.221.857.221.013.551045
\n", + "
" + ], + "text/plain": [ + " target Alcohol Malic acid Ash Alcalinity of ash Magnesium \\\n", + "0 1 NaN 1.71 2.43 15.6 127 \n", + "1 1 NaN 1.78 2.14 11.2 100 \n", + "2 1 NaN 2.36 2.67 18.6 101 \n", + "3 1 NaN 1.95 2.50 16.8 113 \n", + "4 1 NaN 2.59 2.87 21.0 118 \n", + "5 1 14.20 1.76 2.45 15.2 112 \n", + "6 1 NaN 1.87 2.45 14.6 96 \n", + "7 1 14.06 2.15 2.61 17.6 121 \n", + "8 1 NaN 1.64 2.17 14.0 97 \n", + "9 1 13.86 1.35 2.27 16.0 98 \n", + "\n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "0 2.80 3.06 0.28 2.29 \n", + "1 2.65 2.76 0.26 1.28 \n", + "2 2.80 3.24 0.30 2.81 \n", + "3 3.85 3.49 0.24 2.18 \n", + "4 2.80 2.69 0.39 1.82 \n", + "5 3.27 3.39 0.34 1.97 \n", + "6 2.50 2.52 0.30 1.98 \n", + "7 2.60 2.51 0.31 1.25 \n", + "8 2.80 2.98 0.29 1.98 \n", + "9 2.98 3.15 0.22 1.85 \n", + "\n", + " Color intensity Hue OD280/OD315 of diluted wines Proline \n", + "0 5.64 1.04 3.92 1065 \n", + "1 4.38 1.05 3.40 1050 \n", + "2 5.68 1.03 3.17 1185 \n", + "3 7.80 0.86 3.45 1480 \n", + "4 4.32 1.04 2.93 735 \n", + "5 6.75 1.05 2.85 1450 \n", + "6 5.25 1.02 3.58 1290 \n", + "7 5.05 1.06 3.58 1295 \n", + "8 5.20 1.08 2.85 1045 \n", + "9 7.22 1.01 3.55 1045 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 47 + } + ] + }, + { + "metadata": { + "id": "4s66OPC109-l", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 272 + }, + "outputId": "f746eae8-3f8e-4c49-f315-59b199e6baa1" + }, + "cell_type": "code", + "source": [ + "\n", + "wine_df.isnull().sum()" + ], + "execution_count": 48, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "target 0\n", + "Alcohol 7\n", + "Malic acid 0\n", + "Ash 0\n", + "Alcalinity of ash 0\n", + "Magnesium 0\n", + "Total phenols 0\n", + "Flavanoids 0\n", + "Nonflavanoid phenols 0\n", + "Proanthocyanins 0\n", + "Color intensity 0\n", + "Hue 0\n", + "OD280/OD315 of diluted wines 0\n", + "Proline 0\n", + "dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 48 + } + ] + }, + { + "metadata": { + "id": "r8lHgEIk0-D1", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1986 + }, + "outputId": "97056860-ddda-4500-f11a-d80b7c896b92" + }, + "cell_type": "code", + "source": [ + "wine_df.dropna(0)" + ], + "execution_count": 49, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
targetAlcoholMalic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 of diluted winesProline
5114.201.762.4515.21123.273.390.341.976.7500001.052.851450
7114.062.152.6117.61212.602.510.311.255.0500001.063.581295
9113.861.352.2716.0982.983.150.221.857.2200001.013.551045
10114.102.162.3018.01052.953.320.222.385.7500001.253.171510
11114.121.482.3216.8952.202.430.261.575.0000001.172.821280
12113.751.732.4116.0892.602.760.291.815.6000001.152.901320
13114.751.732.3911.4913.103.690.432.815.4000001.252.731150
14114.381.872.3812.01023.303.640.292.967.5000001.203.001547
15113.631.812.7017.21122.852.910.301.467.3000001.282.881310
16114.301.922.7220.01202.803.140.331.976.2000001.072.651280
17113.831.572.6220.01152.953.400.401.726.6000001.132.571130
18114.191.592.4816.51083.303.930.321.868.7000001.232.821680
19113.643.102.5615.21162.703.030.171.665.1000000.963.36845
20114.061.632.2816.01263.003.170.242.105.6500001.093.71780
21112.933.802.6518.61022.412.410.251.984.5000001.033.52770
22113.711.862.3616.61012.612.880.271.693.8000001.114.001035
23112.851.602.5217.8952.482.370.261.463.9300001.093.631015
24113.501.812.6120.0962.532.610.281.663.5200001.123.82845
25113.052.053.2225.01242.632.680.471.923.5800001.133.20830
26113.391.772.6216.1932.852.940.341.454.8000000.923.221195
27113.301.722.1417.0942.402.190.271.353.9500001.022.771285
28113.871.902.8019.41072.952.970.371.764.5000001.253.40915
29114.021.682.2116.0962.652.330.261.984.7000001.043.591035
30113.731.502.7022.51013.003.250.292.385.7000001.192.711285
31113.581.662.3619.11062.863.190.221.956.9000001.092.881515
32113.681.832.3617.21042.422.690.421.973.8400001.232.87990
33113.761.532.7019.51322.952.740.501.355.4000001.253.001235
34113.511.802.6519.01102.352.530.291.544.2000001.102.871095
35113.481.812.4120.51002.702.980.261.865.1000001.043.47920
36113.281.642.8415.51102.602.680.341.364.6000001.092.78880
.............................................
148313.323.242.3821.5921.930.760.451.258.4200000.551.62650
149313.083.902.3621.51131.411.390.341.149.4000000.571.33550
150313.503.122.6224.01231.401.570.221.258.6000000.591.30500
151312.792.672.4822.01121.481.360.241.2610.8000000.481.47480
152313.111.902.7525.51162.201.280.261.567.1000000.611.33425
153313.233.302.2818.5981.800.830.611.8710.5200000.561.51675
154312.581.292.1020.01031.480.580.531.407.6000000.581.55640
155313.175.192.3222.0931.740.630.611.557.9000000.601.48725
156313.844.122.3819.5891.800.830.481.569.0100000.571.64480
157312.453.032.6427.0971.900.580.631.147.5000000.671.73880
158314.341.682.7025.0982.801.310.532.7013.0000000.571.96660
159313.481.672.6422.5892.601.100.522.2911.7500000.571.78620
160312.363.832.3821.0882.300.920.501.047.6500000.561.58520
161313.693.262.5420.01071.830.560.500.805.8800000.961.82680
162312.853.272.5822.01061.650.600.600.965.5800000.872.11570
163312.963.452.3518.51061.390.700.400.945.2800000.681.75675
164313.782.762.3022.0901.350.680.411.039.5800000.701.68615
165313.734.362.2622.5881.280.470.521.156.6200000.781.75520
166313.453.702.6023.01111.700.920.431.4610.6800000.851.56695
167312.823.372.3019.5881.480.660.400.9710.2600000.721.75685
168313.582.582.6924.51051.550.840.391.548.6600000.741.80750
169313.404.602.8625.01121.980.960.271.118.5000000.671.92630
170312.203.032.3219.0961.250.490.400.735.5000000.661.83510
171312.772.392.2819.5861.390.510.480.649.8999990.571.63470
172314.162.512.4820.0911.680.700.441.249.7000000.621.71660
173313.715.652.4520.5951.680.610.521.067.7000000.641.74740
174313.403.912.4823.01021.800.750.431.417.3000000.701.56750
175313.274.282.2620.01201.590.690.431.3510.2000000.591.56835
176313.172.592.3720.01201.650.680.531.469.3000000.601.62840
177314.134.102.7424.5962.050.760.561.359.2000000.611.60560
\n", + "

171 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " target Alcohol Malic acid Ash Alcalinity of ash Magnesium \\\n", + "5 1 14.20 1.76 2.45 15.2 112 \n", + "7 1 14.06 2.15 2.61 17.6 121 \n", + "9 1 13.86 1.35 2.27 16.0 98 \n", + "10 1 14.10 2.16 2.30 18.0 105 \n", + "11 1 14.12 1.48 2.32 16.8 95 \n", + "12 1 13.75 1.73 2.41 16.0 89 \n", + "13 1 14.75 1.73 2.39 11.4 91 \n", + "14 1 14.38 1.87 2.38 12.0 102 \n", + "15 1 13.63 1.81 2.70 17.2 112 \n", + "16 1 14.30 1.92 2.72 20.0 120 \n", + "17 1 13.83 1.57 2.62 20.0 115 \n", + "18 1 14.19 1.59 2.48 16.5 108 \n", + "19 1 13.64 3.10 2.56 15.2 116 \n", + "20 1 14.06 1.63 2.28 16.0 126 \n", + "21 1 12.93 3.80 2.65 18.6 102 \n", + "22 1 13.71 1.86 2.36 16.6 101 \n", + "23 1 12.85 1.60 2.52 17.8 95 \n", + "24 1 13.50 1.81 2.61 20.0 96 \n", + "25 1 13.05 2.05 3.22 25.0 124 \n", + "26 1 13.39 1.77 2.62 16.1 93 \n", + "27 1 13.30 1.72 2.14 17.0 94 \n", + "28 1 13.87 1.90 2.80 19.4 107 \n", + "29 1 14.02 1.68 2.21 16.0 96 \n", + "30 1 13.73 1.50 2.70 22.5 101 \n", + "31 1 13.58 1.66 2.36 19.1 106 \n", + "32 1 13.68 1.83 2.36 17.2 104 \n", + "33 1 13.76 1.53 2.70 19.5 132 \n", + "34 1 13.51 1.80 2.65 19.0 110 \n", + "35 1 13.48 1.81 2.41 20.5 100 \n", + "36 1 13.28 1.64 2.84 15.5 110 \n", + ".. ... ... ... ... ... ... \n", + "148 3 13.32 3.24 2.38 21.5 92 \n", + "149 3 13.08 3.90 2.36 21.5 113 \n", + "150 3 13.50 3.12 2.62 24.0 123 \n", + "151 3 12.79 2.67 2.48 22.0 112 \n", + "152 3 13.11 1.90 2.75 25.5 116 \n", + "153 3 13.23 3.30 2.28 18.5 98 \n", + "154 3 12.58 1.29 2.10 20.0 103 \n", + "155 3 13.17 5.19 2.32 22.0 93 \n", + "156 3 13.84 4.12 2.38 19.5 89 \n", + "157 3 12.45 3.03 2.64 27.0 97 \n", + "158 3 14.34 1.68 2.70 25.0 98 \n", + "159 3 13.48 1.67 2.64 22.5 89 \n", + "160 3 12.36 3.83 2.38 21.0 88 \n", + "161 3 13.69 3.26 2.54 20.0 107 \n", + "162 3 12.85 3.27 2.58 22.0 106 \n", + "163 3 12.96 3.45 2.35 18.5 106 \n", + "164 3 13.78 2.76 2.30 22.0 90 \n", + "165 3 13.73 4.36 2.26 22.5 88 \n", + "166 3 13.45 3.70 2.60 23.0 111 \n", + "167 3 12.82 3.37 2.30 19.5 88 \n", + "168 3 13.58 2.58 2.69 24.5 105 \n", + "169 3 13.40 4.60 2.86 25.0 112 \n", + "170 3 12.20 3.03 2.32 19.0 96 \n", + "171 3 12.77 2.39 2.28 19.5 86 \n", + "172 3 14.16 2.51 2.48 20.0 91 \n", + "173 3 13.71 5.65 2.45 20.5 95 \n", + "174 3 13.40 3.91 2.48 23.0 102 \n", + "175 3 13.27 4.28 2.26 20.0 120 \n", + "176 3 13.17 2.59 2.37 20.0 120 \n", + "177 3 14.13 4.10 2.74 24.5 96 \n", + "\n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "5 3.27 3.39 0.34 1.97 \n", + "7 2.60 2.51 0.31 1.25 \n", + "9 2.98 3.15 0.22 1.85 \n", + "10 2.95 3.32 0.22 2.38 \n", + "11 2.20 2.43 0.26 1.57 \n", + "12 2.60 2.76 0.29 1.81 \n", + "13 3.10 3.69 0.43 2.81 \n", + "14 3.30 3.64 0.29 2.96 \n", + "15 2.85 2.91 0.30 1.46 \n", + "16 2.80 3.14 0.33 1.97 \n", + "17 2.95 3.40 0.40 1.72 \n", + "18 3.30 3.93 0.32 1.86 \n", + "19 2.70 3.03 0.17 1.66 \n", + "20 3.00 3.17 0.24 2.10 \n", + "21 2.41 2.41 0.25 1.98 \n", + "22 2.61 2.88 0.27 1.69 \n", + "23 2.48 2.37 0.26 1.46 \n", + "24 2.53 2.61 0.28 1.66 \n", + "25 2.63 2.68 0.47 1.92 \n", + "26 2.85 2.94 0.34 1.45 \n", + "27 2.40 2.19 0.27 1.35 \n", + "28 2.95 2.97 0.37 1.76 \n", + "29 2.65 2.33 0.26 1.98 \n", + "30 3.00 3.25 0.29 2.38 \n", + "31 2.86 3.19 0.22 1.95 \n", + "32 2.42 2.69 0.42 1.97 \n", + "33 2.95 2.74 0.50 1.35 \n", + "34 2.35 2.53 0.29 1.54 \n", + "35 2.70 2.98 0.26 1.86 \n", + "36 2.60 2.68 0.34 1.36 \n", + ".. ... ... ... ... \n", + "148 1.93 0.76 0.45 1.25 \n", + "149 1.41 1.39 0.34 1.14 \n", + "150 1.40 1.57 0.22 1.25 \n", + "151 1.48 1.36 0.24 1.26 \n", + "152 2.20 1.28 0.26 1.56 \n", + "153 1.80 0.83 0.61 1.87 \n", + "154 1.48 0.58 0.53 1.40 \n", + "155 1.74 0.63 0.61 1.55 \n", + "156 1.80 0.83 0.48 1.56 \n", + "157 1.90 0.58 0.63 1.14 \n", + "158 2.80 1.31 0.53 2.70 \n", + "159 2.60 1.10 0.52 2.29 \n", + "160 2.30 0.92 0.50 1.04 \n", + "161 1.83 0.56 0.50 0.80 \n", + "162 1.65 0.60 0.60 0.96 \n", + "163 1.39 0.70 0.40 0.94 \n", + "164 1.35 0.68 0.41 1.03 \n", + "165 1.28 0.47 0.52 1.15 \n", + "166 1.70 0.92 0.43 1.46 \n", + "167 1.48 0.66 0.40 0.97 \n", + "168 1.55 0.84 0.39 1.54 \n", + "169 1.98 0.96 0.27 1.11 \n", + "170 1.25 0.49 0.40 0.73 \n", + "171 1.39 0.51 0.48 0.64 \n", + "172 1.68 0.70 0.44 1.24 \n", + "173 1.68 0.61 0.52 1.06 \n", + "174 1.80 0.75 0.43 1.41 \n", + "175 1.59 0.69 0.43 1.35 \n", + "176 1.65 0.68 0.53 1.46 \n", + "177 2.05 0.76 0.56 1.35 \n", + "\n", + " Color intensity Hue OD280/OD315 of diluted wines Proline \n", + "5 6.750000 1.05 2.85 1450 \n", + "7 5.050000 1.06 3.58 1295 \n", + "9 7.220000 1.01 3.55 1045 \n", + "10 5.750000 1.25 3.17 1510 \n", + "11 5.000000 1.17 2.82 1280 \n", + "12 5.600000 1.15 2.90 1320 \n", + "13 5.400000 1.25 2.73 1150 \n", + "14 7.500000 1.20 3.00 1547 \n", + "15 7.300000 1.28 2.88 1310 \n", + "16 6.200000 1.07 2.65 1280 \n", + "17 6.600000 1.13 2.57 1130 \n", + "18 8.700000 1.23 2.82 1680 \n", + "19 5.100000 0.96 3.36 845 \n", + "20 5.650000 1.09 3.71 780 \n", + "21 4.500000 1.03 3.52 770 \n", + "22 3.800000 1.11 4.00 1035 \n", + "23 3.930000 1.09 3.63 1015 \n", + "24 3.520000 1.12 3.82 845 \n", + "25 3.580000 1.13 3.20 830 \n", + "26 4.800000 0.92 3.22 1195 \n", + "27 3.950000 1.02 2.77 1285 \n", + "28 4.500000 1.25 3.40 915 \n", + "29 4.700000 1.04 3.59 1035 \n", + "30 5.700000 1.19 2.71 1285 \n", + "31 6.900000 1.09 2.88 1515 \n", + "32 3.840000 1.23 2.87 990 \n", + "33 5.400000 1.25 3.00 1235 \n", + "34 4.200000 1.10 2.87 1095 \n", + "35 5.100000 1.04 3.47 920 \n", + "36 4.600000 1.09 2.78 880 \n", + ".. ... ... ... ... \n", + "148 8.420000 0.55 1.62 650 \n", + "149 9.400000 0.57 1.33 550 \n", + "150 8.600000 0.59 1.30 500 \n", + "151 10.800000 0.48 1.47 480 \n", + "152 7.100000 0.61 1.33 425 \n", + "153 10.520000 0.56 1.51 675 \n", + "154 7.600000 0.58 1.55 640 \n", + "155 7.900000 0.60 1.48 725 \n", + "156 9.010000 0.57 1.64 480 \n", + "157 7.500000 0.67 1.73 880 \n", + "158 13.000000 0.57 1.96 660 \n", + "159 11.750000 0.57 1.78 620 \n", + "160 7.650000 0.56 1.58 520 \n", + "161 5.880000 0.96 1.82 680 \n", + "162 5.580000 0.87 2.11 570 \n", + "163 5.280000 0.68 1.75 675 \n", + "164 9.580000 0.70 1.68 615 \n", + "165 6.620000 0.78 1.75 520 \n", + "166 10.680000 0.85 1.56 695 \n", + "167 10.260000 0.72 1.75 685 \n", + "168 8.660000 0.74 1.80 750 \n", + "169 8.500000 0.67 1.92 630 \n", + "170 5.500000 0.66 1.83 510 \n", + "171 9.899999 0.57 1.63 470 \n", + "172 9.700000 0.62 1.71 660 \n", + "173 7.700000 0.64 1.74 740 \n", + "174 7.300000 0.70 1.56 750 \n", + "175 10.200000 0.59 1.56 835 \n", + "176 9.300000 0.60 1.62 840 \n", + "177 9.200000 0.61 1.60 560 \n", + "\n", + "[171 rows x 14 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 49 + } + ] + }, + { + "metadata": { + "id": "Kq5mbLlr0-Ge", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "WtT0HFp7095Y", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zWPnZuKV094L", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 221 + }, + "outputId": "e87e0101-d534-4621-9faf-424c398ec698" + }, + "cell_type": "code", + "source": [ + "df.columns = ['target'] + features_lst\n", + "df.head()" + ], + "execution_count": 51, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
targetAlcoholMalic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 of diluted winesProline
0114.231.712.4315.61272.803.060.282.295.641.043.921065
1113.201.782.1411.21002.652.760.261.284.381.053.401050
2113.162.362.6718.61012.803.240.302.815.681.033.171185
3114.371.952.5016.81133.853.490.242.187.800.863.451480
4113.242.592.8721.01182.802.690.391.824.321.042.93735
\n", + "
" + ], + "text/plain": [ + " target Alcohol Malic acid Ash Alcalinity of ash Magnesium \\\n", + "0 1 14.23 1.71 2.43 15.6 127 \n", + "1 1 13.20 1.78 2.14 11.2 100 \n", + "2 1 13.16 2.36 2.67 18.6 101 \n", + "3 1 14.37 1.95 2.50 16.8 113 \n", + "4 1 13.24 2.59 2.87 21.0 118 \n", + "\n", + " Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins \\\n", + "0 2.80 3.06 0.28 2.29 \n", + "1 2.65 2.76 0.26 1.28 \n", + "2 2.80 3.24 0.30 2.81 \n", + "3 3.85 3.49 0.24 2.18 \n", + "4 2.80 2.69 0.39 1.82 \n", + "\n", + " Color intensity Hue OD280/OD315 of diluted wines Proline \n", + "0 5.64 1.04 3.92 1065 \n", + "1 4.38 1.05 3.40 1050 \n", + "2 5.68 1.03 3.17 1185 \n", + "3 7.80 0.86 3.45 1480 \n", + "4 4.32 1.04 2.93 735 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 51 + } + ] + }, + { + "metadata": { + "id": "Jf36qMZE09zi", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "854cdebd-2670-4fd1-d1cc-c498ddd1b0c9" + }, + "cell_type": "code", + "source": [ + "\n", + "df.shape #178 examples, 13 attributes" + ], + "execution_count": 52, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(178, 14)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 52 + } + ] + }, + { + "metadata": { + "id": "on5PyeEN1m8U", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 351 + }, + "outputId": "01de9515-58b8-41ff-9f31-214768c96a31" + }, + "cell_type": "code", + "source": [ + "df.describe()\n" + ], + "execution_count": 53, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
targetAlcoholMalic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 of diluted winesProline
count178.000000178.000000178.000000178.000000178.000000178.000000178.000000178.000000178.000000178.000000178.000000178.000000178.000000178.000000
mean1.93820213.0006182.3363482.36651719.49494499.7415732.2951122.0292700.3618541.5908995.0580900.9574492.611685746.893258
std0.7750350.8118271.1171460.2743443.33956414.2824840.6258510.9988590.1244530.5723592.3182860.2285720.709990314.907474
min1.00000011.0300000.7400001.36000010.60000070.0000000.9800000.3400000.1300000.4100001.2800000.4800001.270000278.000000
25%1.00000012.3625001.6025002.21000017.20000088.0000001.7425001.2050000.2700001.2500003.2200000.7825001.937500500.500000
50%2.00000013.0500001.8650002.36000019.50000098.0000002.3550002.1350000.3400001.5550004.6900000.9650002.780000673.500000
75%3.00000013.6775003.0825002.55750021.500000107.0000002.8000002.8750000.4375001.9500006.2000001.1200003.170000985.000000
max3.00000014.8300005.8000003.23000030.000000162.0000003.8800005.0800000.6600003.58000013.0000001.7100004.0000001680.000000
\n", + "
" + ], + "text/plain": [ + " target Alcohol Malic acid Ash Alcalinity of ash \\\n", + "count 178.000000 178.000000 178.000000 178.000000 178.000000 \n", + "mean 1.938202 13.000618 2.336348 2.366517 19.494944 \n", + "std 0.775035 0.811827 1.117146 0.274344 3.339564 \n", + "min 1.000000 11.030000 0.740000 1.360000 10.600000 \n", + "25% 1.000000 12.362500 1.602500 2.210000 17.200000 \n", + "50% 2.000000 13.050000 1.865000 2.360000 19.500000 \n", + "75% 3.000000 13.677500 3.082500 2.557500 21.500000 \n", + "max 3.000000 14.830000 5.800000 3.230000 30.000000 \n", + "\n", + " Magnesium Total phenols Flavanoids Nonflavanoid phenols \\\n", + "count 178.000000 178.000000 178.000000 178.000000 \n", + "mean 99.741573 2.295112 2.029270 0.361854 \n", + "std 14.282484 0.625851 0.998859 0.124453 \n", + "min 70.000000 0.980000 0.340000 0.130000 \n", + "25% 88.000000 1.742500 1.205000 0.270000 \n", + "50% 98.000000 2.355000 2.135000 0.340000 \n", + "75% 107.000000 2.800000 2.875000 0.437500 \n", + "max 162.000000 3.880000 5.080000 0.660000 \n", + "\n", + " Proanthocyanins Color intensity Hue \\\n", + "count 178.000000 178.000000 178.000000 \n", + "mean 1.590899 5.058090 0.957449 \n", + "std 0.572359 2.318286 0.228572 \n", + "min 0.410000 1.280000 0.480000 \n", + "25% 1.250000 3.220000 0.782500 \n", + "50% 1.555000 4.690000 0.965000 \n", + "75% 1.950000 6.200000 1.120000 \n", + "max 3.580000 13.000000 1.710000 \n", + "\n", + " OD280/OD315 of diluted wines Proline \n", + "count 178.000000 178.000000 \n", + "mean 2.611685 746.893258 \n", + "std 0.709990 314.907474 \n", + "min 1.270000 278.000000 \n", + "25% 1.937500 500.500000 \n", + "50% 2.780000 673.500000 \n", + "75% 3.170000 985.000000 \n", + "max 4.000000 1680.000000 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 53 + } + ] + }, + { + "metadata": { + "id": "WVIbctv31ozd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "cultivar1 = df[df['target']==1]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "YQDtWqWt1uYT", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 351 + }, + "outputId": "e2d2c192-d427-4745-d5d0-d2a3fb0af990" + }, + "cell_type": "code", + "source": [ + "cultivar1.describe()" + ], + "execution_count": 55, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
targetAlcoholMalic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 of diluted winesProline
count59.059.00000059.00000059.00000059.00000059.00000059.00000059.00000059.00000059.00000059.00000059.00000059.00000059.000000
mean1.013.7447462.0106782.45559317.037288106.3389832.8401692.9823730.2900001.8993225.5283051.0620343.1577971115.711864
std0.00.4621250.6885490.2271662.54632210.4989490.3389610.3974940.0700490.4121091.2385730.1164830.357077221.520767
min1.012.8500001.3500002.04000011.20000089.0000002.2000002.1900000.1700001.2500003.5200000.8200002.510000680.000000
25%1.013.4000001.6650002.29500016.00000098.0000002.6000002.6800000.2550001.6400004.5500000.9950002.870000987.500000
50%1.013.7500001.7700002.44000016.800000104.0000002.8000002.9800000.2900001.8700005.4000001.0700003.1700001095.000000
75%1.014.1000001.9350002.61500018.700000114.0000003.0000003.2450000.3200002.0900006.2250001.1300003.4200001280.000000
max1.014.8300004.0400003.22000025.000000132.0000003.8800003.9300000.5000002.9600008.9000001.2800004.0000001680.000000
\n", + "
" + ], + "text/plain": [ + " target Alcohol Malic acid Ash Alcalinity of ash \\\n", + "count 59.0 59.000000 59.000000 59.000000 59.000000 \n", + "mean 1.0 13.744746 2.010678 2.455593 17.037288 \n", + "std 0.0 0.462125 0.688549 0.227166 2.546322 \n", + "min 1.0 12.850000 1.350000 2.040000 11.200000 \n", + "25% 1.0 13.400000 1.665000 2.295000 16.000000 \n", + "50% 1.0 13.750000 1.770000 2.440000 16.800000 \n", + "75% 1.0 14.100000 1.935000 2.615000 18.700000 \n", + "max 1.0 14.830000 4.040000 3.220000 25.000000 \n", + "\n", + " Magnesium Total phenols Flavanoids Nonflavanoid phenols \\\n", + "count 59.000000 59.000000 59.000000 59.000000 \n", + "mean 106.338983 2.840169 2.982373 0.290000 \n", + "std 10.498949 0.338961 0.397494 0.070049 \n", + "min 89.000000 2.200000 2.190000 0.170000 \n", + "25% 98.000000 2.600000 2.680000 0.255000 \n", + "50% 104.000000 2.800000 2.980000 0.290000 \n", + "75% 114.000000 3.000000 3.245000 0.320000 \n", + "max 132.000000 3.880000 3.930000 0.500000 \n", + "\n", + " Proanthocyanins Color intensity Hue \\\n", + "count 59.000000 59.000000 59.000000 \n", + "mean 1.899322 5.528305 1.062034 \n", + "std 0.412109 1.238573 0.116483 \n", + "min 1.250000 3.520000 0.820000 \n", + "25% 1.640000 4.550000 0.995000 \n", + "50% 1.870000 5.400000 1.070000 \n", + "75% 2.090000 6.225000 1.130000 \n", + "max 2.960000 8.900000 1.280000 \n", + "\n", + " OD280/OD315 of diluted wines Proline \n", + "count 59.000000 59.000000 \n", + "mean 3.157797 1115.711864 \n", + "std 0.357077 221.520767 \n", + "min 2.510000 680.000000 \n", + "25% 2.870000 987.500000 \n", + "50% 3.170000 1095.000000 \n", + "75% 3.420000 1280.000000 \n", + "max 4.000000 1680.000000 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 55 + } + ] + }, + { + "metadata": { + "id": "E3Eg55nG1ueI", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "cultivar2 = df[df['target']==2]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "gxz1faMt1ubs", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 351 + }, + "outputId": "dd68ee00-6941-4407-c14f-58fb8935bac3" + }, + "cell_type": "code", + "source": [ + "cultivar2.describe()" + ], + "execution_count": 57, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
targetAlcoholMalic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 of diluted winesProline
count71.071.00000071.00000071.00000071.00000071.00000071.00000071.00000071.00000071.00000071.00000071.00000071.00000071.000000
mean2.012.2787321.9326762.24478920.23802894.5492962.2588732.0808450.3636621.6302823.0866201.0562822.785352519.507042
std0.00.5379641.0155690.3154673.34977016.7534970.5453610.7057010.1239610.6020680.9249290.2029370.496573157.211220
min2.011.0300000.7400001.36000010.60000070.0000001.1000000.5700000.1300000.4100001.2800000.6900001.590000278.000000
25%2.011.9150001.2700002.00000018.00000085.5000001.8950001.6050000.2700001.3500002.5350000.9250002.440000406.500000
50%2.012.2900001.6100002.24000020.00000088.0000002.2000002.0300000.3700001.6100002.9000001.0400002.830000495.000000
75%2.012.5150002.1450002.42000022.00000099.5000002.5600002.4750000.4300001.8850003.4000001.2050003.160000625.000000
max2.013.8600005.8000003.23000030.000000162.0000003.5200005.0800000.6600003.5800006.0000001.7100003.690000985.000000
\n", + "
" + ], + "text/plain": [ + " target Alcohol Malic acid Ash Alcalinity of ash \\\n", + "count 71.0 71.000000 71.000000 71.000000 71.000000 \n", + "mean 2.0 12.278732 1.932676 2.244789 20.238028 \n", + "std 0.0 0.537964 1.015569 0.315467 3.349770 \n", + "min 2.0 11.030000 0.740000 1.360000 10.600000 \n", + "25% 2.0 11.915000 1.270000 2.000000 18.000000 \n", + "50% 2.0 12.290000 1.610000 2.240000 20.000000 \n", + "75% 2.0 12.515000 2.145000 2.420000 22.000000 \n", + "max 2.0 13.860000 5.800000 3.230000 30.000000 \n", + "\n", + " Magnesium Total phenols Flavanoids Nonflavanoid phenols \\\n", + "count 71.000000 71.000000 71.000000 71.000000 \n", + "mean 94.549296 2.258873 2.080845 0.363662 \n", + "std 16.753497 0.545361 0.705701 0.123961 \n", + "min 70.000000 1.100000 0.570000 0.130000 \n", + "25% 85.500000 1.895000 1.605000 0.270000 \n", + "50% 88.000000 2.200000 2.030000 0.370000 \n", + "75% 99.500000 2.560000 2.475000 0.430000 \n", + "max 162.000000 3.520000 5.080000 0.660000 \n", + "\n", + " Proanthocyanins Color intensity Hue \\\n", + "count 71.000000 71.000000 71.000000 \n", + "mean 1.630282 3.086620 1.056282 \n", + "std 0.602068 0.924929 0.202937 \n", + "min 0.410000 1.280000 0.690000 \n", + "25% 1.350000 2.535000 0.925000 \n", + "50% 1.610000 2.900000 1.040000 \n", + "75% 1.885000 3.400000 1.205000 \n", + "max 3.580000 6.000000 1.710000 \n", + "\n", + " OD280/OD315 of diluted wines Proline \n", + "count 71.000000 71.000000 \n", + "mean 2.785352 519.507042 \n", + "std 0.496573 157.211220 \n", + "min 1.590000 278.000000 \n", + "25% 2.440000 406.500000 \n", + "50% 2.830000 495.000000 \n", + "75% 3.160000 625.000000 \n", + "max 3.690000 985.000000 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 57 + } + ] + }, + { + "metadata": { + "id": "RR1f0VIa1uWD", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "cultivar3 = df[df['target']==3]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Z0TMbK942BLr", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 351 + }, + "outputId": "6e0d1443-b4b4-4e3b-bf10-81fc38513d09" + }, + "cell_type": "code", + "source": [ + "\n", + "cultivar3.describe()" + ], + "execution_count": 59, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
targetAlcoholMalic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 of diluted winesProline
count48.048.00000048.00000048.00000048.00000048.00000048.00000048.00000048.0000048.00000048.00000048.00000048.00000048.000000
mean3.013.1537503.3337502.43708321.41666799.3125001.6787500.7814580.447501.1535427.3962500.6827081.683542629.895833
std0.00.5302411.0879060.1846902.25816110.8904730.3569710.2935040.124140.4088362.3109420.1144410.272111115.097043
min3.012.2000001.2400002.10000017.50000080.0000000.9800000.3400000.170000.5500003.8500000.4800001.270000415.000000
25%3.012.8050002.5875002.30000020.00000089.7500001.4075000.5800000.397500.8550005.4375000.5875001.510000545.000000
50%3.013.1650003.2650002.38000021.00000097.0000001.6350000.6850000.470001.1050007.5500000.6650001.660000627.500000
75%3.013.5050003.9575002.60250023.000000106.0000001.8075000.9200000.530001.3500009.2250000.7525001.820000695.000000
max3.014.3400005.6500002.86000027.000000123.0000002.8000001.5700000.630002.70000013.0000000.9600002.470000880.000000
\n", + "
" + ], + "text/plain": [ + " target Alcohol Malic acid Ash Alcalinity of ash \\\n", + "count 48.0 48.000000 48.000000 48.000000 48.000000 \n", + "mean 3.0 13.153750 3.333750 2.437083 21.416667 \n", + "std 0.0 0.530241 1.087906 0.184690 2.258161 \n", + "min 3.0 12.200000 1.240000 2.100000 17.500000 \n", + "25% 3.0 12.805000 2.587500 2.300000 20.000000 \n", + "50% 3.0 13.165000 3.265000 2.380000 21.000000 \n", + "75% 3.0 13.505000 3.957500 2.602500 23.000000 \n", + "max 3.0 14.340000 5.650000 2.860000 27.000000 \n", + "\n", + " Magnesium Total phenols Flavanoids Nonflavanoid phenols \\\n", + "count 48.000000 48.000000 48.000000 48.00000 \n", + "mean 99.312500 1.678750 0.781458 0.44750 \n", + "std 10.890473 0.356971 0.293504 0.12414 \n", + "min 80.000000 0.980000 0.340000 0.17000 \n", + "25% 89.750000 1.407500 0.580000 0.39750 \n", + "50% 97.000000 1.635000 0.685000 0.47000 \n", + "75% 106.000000 1.807500 0.920000 0.53000 \n", + "max 123.000000 2.800000 1.570000 0.63000 \n", + "\n", + " Proanthocyanins Color intensity Hue \\\n", + "count 48.000000 48.000000 48.000000 \n", + "mean 1.153542 7.396250 0.682708 \n", + "std 0.408836 2.310942 0.114441 \n", + "min 0.550000 3.850000 0.480000 \n", + "25% 0.855000 5.437500 0.587500 \n", + "50% 1.105000 7.550000 0.665000 \n", + "75% 1.350000 9.225000 0.752500 \n", + "max 2.700000 13.000000 0.960000 \n", + "\n", + " OD280/OD315 of diluted wines Proline \n", + "count 48.000000 48.000000 \n", + "mean 1.683542 629.895833 \n", + "std 0.272111 115.097043 \n", + "min 1.270000 415.000000 \n", + "25% 1.510000 545.000000 \n", + "50% 1.660000 627.500000 \n", + "75% 1.820000 695.000000 \n", + "max 2.470000 880.000000 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 59 + } + ] + }, + { + "metadata": { + "id": "yJDJ5zYp2BPG", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 415 + }, + "outputId": "b8603236-68a7-4817-ad3a-7fcf406732e1" + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.hist(cultivar1['Alcohol'])\n", + "plt.hist(cultivar2['Alcohol'])\n", + "plt.hist(cultivar3['Alcohol'])" + ], + "execution_count": 60, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([4., 5., 6., 6., 6., 7., 6., 5., 0., 3.]),\n", + " array([12.2 , 12.414, 12.628, 12.842, 13.056, 13.27 , 13.484, 13.698,\n", + " 13.912, 14.126, 14.34 ]),\n", + "
)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 60 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAFKCAYAAAA0WNeQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAG7RJREFUeJzt3X9sVfX9x/FX6bVgpUoL9xaMoq4y\nZQWmbDBKQxm1iDRBJRFaSAtkfDNRKlopFZiuTSpUOr6ioAGp0AWQraxZFjRuZYhmBGrrmJOBWyqw\nkEpMucXCYMVhm37/MFy/d/1xy7m39L5vn4+/es/nns99v/lc7ivntPecqPb29nYBAAAzBvR1AQAA\n4NoQ3gAAGEN4AwBgDOENAIAxhDcAAMYQ3gAAGOPq6wKu8novBj1HfHysmptbQlBN+IjEnqTI7CsS\ne5Iisy96siMS+7rak9sd53iOiDrydrmi+7qEkIvEnqTI7CsSe5Iisy96siMS+wpFTxEV3gAA9AeE\nNwAAxhDeAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAYQ3gDAGBM\n2NxVDLhWSw8U9snrvp5e1ievCwBXceQNAIAxhDcAAMYQ3gAAGEN4AwBgDOENAIAxhDcAAMYQ3gAA\nGEN4AwBgDOENAIAxPbrCWllZmY4cOaLW1lY9/vjjGjt2rAoLC9XW1ia3261f/OIXiomJ8dtn7dq1\n+uSTTxQVFaXVq1dr3LhxvdIAAAD9TcDw/vDDD/XZZ5+psrJSzc3Nmj17tlJSUjR//nzNnDlTL7/8\nsqqqqjR//nzfPnV1dTp9+rQqKyt18uRJrV69WpWVlb3aCAAA/UXA0+YTJkzQq6++Kkm6+eabdfny\nZdXW1uqBBx6QJE2bNk01NTV++9TU1CgjI0OSlJSUpAsXLujSpUuhrh0AgH4pYHhHR0crNjZWklRV\nVaW0tDRdvnzZd5p86NCh8nq9fvs0NTUpPj7e9zghIaHDcwAAgDM9vqvY/v37VVVVpe3bt+vBBx/0\nbW9vbw+4b0+eEx8fK5cruqfldMntjgt6jnATiT1Jdvvqrm6rPQUSiX3Rkx2R2FewPfUovA8ePKgt\nW7bozTffVFxcnGJjY/XVV19p0KBBamxslMfj8Xu+x+NRU1OT7/HZs2fldru7fY3m5hYH5ftzu+Pk\n9V4Mep5wEok9Sbb76qpuyz11JxL7oic7IrGvqz0FE+ABT5tfvHhRZWVleuONNzRkyBBJ0uTJk1Vd\nXS1J2rdvn6ZMmeK3T2pqqm/8+PHj8ng8Gjx4sOMiAQDAtwIeeb/77rtqbm7WM88849v20ksv6fnn\nn1dlZaVuvfVWPfroo5Kk/Px8lZaWavz48UpOTlZ2draioqJUVFTUex0AANDPBAzvrKwsZWVlddhe\nUVHRYduGDRt8PxcUFARZGgAA6AxXWAMAwBjCGwAAYwhvAACMIbwBADCG8AYAwBjCGwAAYwhvAACM\nIbwBADCG8AYAwBjCGwAAYwhvAACMIbwBADCG8AYAwBjCGwAAYwhvAACMIbwBADCG8AYAwBjCGwAA\nYwhvAACMIbwBADCG8AYAwBjCGwAAYwhvAACMIbwBADCG8AYAwBhXT55UX1+vJ598UosWLVJOTo6W\nLVum5uZmSdL58+d13333qaSkxPf83/72t3r11Vc1cuRISdLkyZP1xBNP9EL5AAD0PwHDu6WlRSUl\nJUpJSfFt27hxo+/nVatWac6cOR32y8zM1HPPPReiMgEAwFUBT5vHxMSovLxcHo+nw9ipU6d08eJF\njRs3rleKAwAAHQUMb5fLpUGDBnU6tmPHDuXk5HQ6VldXp8WLF2vhwoX69NNPg6sSAAD49Oh33p25\ncuWKjhw5ouLi4g5j3//+95WQkKAf//jH+vjjj/Xcc8/p7bff7na++PhYuVzRTsvxcbvjgp4j3ERi\nT5Ldvrqr22pPgURiX/RkRyT2FWxPjsP7o48+6vJ0eVJSkpKSkiRJ999/v7788ku1tbUpOrrrcG5u\nbnFaio/bHSev92LQ84STSOxJst1XV3Vb7qk7kdgXPdkRiX1d7SmYAHf8VbG//e1vuvfeezsdKy8v\n1zvvvCPpm79UT0hI6Da4AQBAzwU88j527JjWrVunM2fOyOVyqbq6Wps2bZLX6/V9FeyqJ554Qps3\nb9asWbO0YsUK/frXv1Zra6vWrFnTaw0AANDfBAzvMWPGaOfOnR22v/DCCx22bd68WZI0fPjwTvcB\nAADB4wprAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAYQ3gDAGAM\n4Q0AgDGENwAAxhDeAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAY\nQ3gDAGAM4Q0AgDGENwAAxhDeAAAY06Pwrq+vV0ZGhnbt2iVJWrlypWbNmqXc3Fzl5ubqgw8+6LDP\n2rVrlZWVpezsbB09ejSkRQMA0J+5Aj2hpaVFJSUlSklJ8dv+7LPPatq0aZ3uU1dXp9OnT6uyslIn\nT57U6tWrVVlZGZqKAQDo5wIeecfExKi8vFwej6fHk9bU1CgjI0OSlJSUpAsXLujSpUvOqwQAAD4B\nj7xdLpdcro5P27VrlyoqKjR06FC98MILSkhI8I01NTUpOTnZ9zghIUFer1eDBw/u8nXi42PlckVf\na/0duN1xQc8RbiKxJ8luX93VbbWnQCKxL3qyIxL7CrangOHdmUceeURDhgzR6NGjtXXrVr322mv6\n+c9/3uXz29vbA87Z3NzipBQ/bnecvN6LQc8TTiKxJ8l2X13Vbbmn7kRiX/RkRyT2dbWnYALc0V+b\np6SkaPTo0ZKk9PR01dfX+417PB41NTX5Hp89e1Zut9txkQAA4FuOwvupp55SQ0ODJKm2tlajRo3y\nG09NTVV1dbUk6fjx4/J4PN2eMgcAAD0X8LT5sWPHtG7dOp05c0Yul0vV1dXKycnRM888oxtvvFGx\nsbEqLS2VJOXn56u0tFTjx49XcnKysrOzFRUVpaKiol5vBACA/iJgeI8ZM0Y7d+7ssH3GjBkdtm3Y\nsMH3c0FBQZClAQCAznCFNQAAjCG8AQAwhvAGAMAYwhsAAGMIbwAAjCG8AQAwhvAGAMAYwhsAAGMI\nbwAAjCG8AQAwhvAGAMAYwhsAAGMIbwAAjCG8AQAwhvAGAMAYwhsAAGMIbwAAjCG8AQAwhvAGAMAY\nwhsAAGMIbwAAjCG8AQAwxtXXBSB0lh4o7JPXfT29rE9eFwD6K468AQAwhvAGAMCYHoV3fX29MjIy\ntGvXLknSF198oUWLFiknJ0eLFi2S1+v1e35tba0mTZqk3Nxc5ebmqqSkJPSVAwDQTwX8nXdLS4tK\nSkqUkpLi2/bKK69o7ty5yszM1FtvvaWKigoVFvr/vnXixInauHFj6CsGAKCfC3jkHRMTo/Lycnk8\nHt+2oqIizZgxQ5IUHx+v8+fP916FAADAT8Ajb5fLJZfL/2mxsbGSpLa2Nu3evVtLly7tsN+JEye0\nZMkSXbhwQXl5eUpNTe32deLjY+VyRV9L7Z1yu+OCniPchHtPTusL97660l3dVnsKJBL7oic7IrGv\nYHty/FWxtrY2FRYWatKkSX6n1CXpzjvvVF5enmbOnKmGhgYtWLBA+/btU0xMTJfzNTe3OC3Fx+2O\nk9d7Meh5womFnpzUZ6GvrnRVt+WeuhOJfdGTHZHY19Wegglwx39tvmrVKt1xxx3Ky8vrMJaYmKjM\nzExFRUVp5MiRGjZsmBobGx0XCQAAvuUovPfu3asbbrhBy5Yt63J827ZtkiSv16tz584pMTHReZUA\nAMAn4GnzY8eOad26dTpz5oxcLpeqq6t17tw5DRw4ULm5uZKkpKQkFRcXKz8/X6WlpUpPT1dBQYHe\ne+89ff311youLu72lDkAAOi5gOE9ZswY7dy5s0eTbdiwwffzli1bnFcFAAC6xBXWAAAwhhuTIGh9\ndUMUAOivOPIGAMAYwhsAAGMIbwAAjCG8AQAwhvAGAMAYwhsAAGMIbwAAjCG8AQAwhvAGAMAYwhsA\nAGMIbwAAjCG8AQAwhvAGAMAY7ioGANfgJy8dCPmc21emh3xOK3XCGY68AQAwhvAGAMAYwhsAAGMI\nbwAAjCG8AQAwhvAGAMAYwhsAAGMIbwAAjCG8AQAwpkfhXV9fr4yMDO3atUuS9MUXXyg3N1fz58/X\n008/rStXrnTYZ+3atcrKylJ2draOHj0a2qoBAOjHAoZ3S0uLSkpKlJKS4tu2ceNGzZ8/X7t379Yd\nd9yhqqoqv33q6up0+vRpVVZWas2aNVqzZk3oKwcAoJ8KGN4xMTEqLy+Xx+PxbautrdUDDzwgSZo2\nbZpqamr89qmpqVFGRoYkKSkpSRcuXNClS5dCWTcAAP1WwBuTuFwuuVz+T7t8+bJiYmIkSUOHDpXX\n6/Ubb2pqUnJysu9xQkKCvF6vBg8e3OXrxMfHyuWKvqbiO+N2xwU9R7iJxJ4sW3qgsE9ed0/W5j55\nXSky34Ph1FOoauntnvrq3yyc1ipUgu0p6LuKtbe3h+Q5zc0twZYitztOXu/FoOcJJ5HYE5zpq/dB\nJL4Hw62nUNRyPXrqi3+zcFurULjaUzAB7uivzWNjY/XVV19JkhobG/1OqUuSx+NRU1OT7/HZs2fl\ndrsdFwkAAL7lKLwnT56s6upqSdK+ffs0ZcoUv/HU1FTf+PHjx+XxeLo9ZQ4AAHou4GnzY8eOad26\ndTpz5oxcLpeqq6u1fv16rVy5UpWVlbr11lv16KOPSpLy8/NVWlqq8ePHKzk5WdnZ2YqKilJRUVGv\nNwIAQH8RMLzHjBmjnTt3dtheUVHRYduGDRt8PxcUFARZGgAA6AxXWAMAwBjCGwAAYwhvAACMIbwB\nADCG8AYAwBjCGwAAYwhvAACMIbwBADAm6BuTAOh/fvLSgZDPuX1lesjnBCIVR94AABhDeAMAYAzh\nDQCAMYQ3AADGEN4AABhDeAMAYAzhDQCAMYQ3AADGEN4AABhDeAMAYAzhDQCAMYQ3AADGcGMSABGr\nN26gAoQDjrwBADCG8AYAwBhHp81/85vfaO/evb7Hx44d08cff+x7nJycrPHjx/se//KXv1R0dHQQ\nZQIAgKschfecOXM0Z84cSVJdXZ1+//vf+40PHjxYO3fuDL46AADQQdCnzV9//XU9+eSToagFAAD0\nQFDhffToUY0YMUJut9tv+5UrV7R8+XJlZ2eroqIiqAIBAIC/oL4qVlVVpdmzZ3fYXlhYqIcfflhR\nUVHKycnRD3/4Q40dO7bbueLjY+VyBf97cbc7Lug5wk0k9oRr15fvg+vx2v35fR6q3nv737Cv1igS\n3xvB9hRUeNfW1ur555/vsH3evHm+nydNmqT6+vqA4d3c3BJMKZK++cfwei8GPU84icSe4ExfvQ+u\n13uwP7/PQ9H79VinvlijSPwMvNpTMAHu+LR5Y2OjbrrpJsXExPhtP3XqlJYvX6729na1trbqL3/5\ni0aNGuW4QAAA4M/xkbfX61VCQoLv8datWzVhwgTdf//9Gj58uB577DENGDBA6enpGjduXEiKBQAA\nQYT3mDFj9Oabb/oe//SnP/X9vGLFiuCqAgAAXeIKawAAGEN4AwBgDHcVAxBW6v9nUcjmWvlfj1+6\ne0HI5gb6EkfeAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAYQ3gD\nAGAM4Q0AgDGENwAAxkS1t7e393URkuT1Xgx6Drc7LiTzhJNr6WnpgcJerga94endZ/u6BIRAf7jp\nyfaV6df9NSP5c93tjnM8B0feAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAYQ3gDAGAM4Q0AgDGENwAA\nxhDeAAAY43KyU21trZ5++mmNGjVKkvTd735XL7zwgm/88OHDevnllxUdHa20tDQtXbo0NNUCAABn\n4S1JEydO1MaNGzsde/HFF7Vt2zYlJiYqJydHM2bM0N133+24SAAA8K2QnzZvaGjQLbfcohEjRmjA\ngAGaOnWqampqQv0yAAD0W47D+8SJE1qyZInmzZunQ4cO+bZ7vV4lJCT4HickJMjr9QZXJQAA8HF0\n2vzOO+9UXl6eZs6cqYaGBi1YsED79u1TTEyM40Li42PlckU73v+qYO7SEq4isSdruPMXAll5Ykev\nzR0udyz7yUsHemXet//3kW7HI/EzMNieHIV3YmKiMjMzJUkjR47UsGHD1NjYqNtvv10ej0dNTU2+\n5zY2Nsrj8QScs7m5xUkpfiL51nEAEKm6+4yLxM/APrsl6N69e7Vt2zZJ35wmP3funBITEyVJt912\nmy5duqTPP/9cra2tev/995Wamuq4QAAA4M/RkXd6eroKCgr03nvv6euvv1ZxcbHeeecdxcXFafr0\n6SouLtby5cslSZmZmbrrrrtCWjQAAP2Zo/AePHiwtmzZ0uX4hAkTVFlZ6bgoAADQNa6wBgCAMYQ3\nAADGEN4AABhDeAMAYAzhDQCAMYQ3AADGEN4AABhDeAMAYAzhDQCAMY6usIauLT1Q2Ncl9Fvc+QtA\nf8GRNwAAxhDeAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAYQ3gDAGAM4Q0AgDGENwAAxhDeAAAYQ3gD\nAGAM4Q0AgDHcmAQA+rGVJ3b02twv3b2g1+bu7zjyBgDAGMIbAABjHJ82Lysr05EjR9Ta2qrHH39c\nDz74oG8sPT1dw4cPV3R0tCRp/fr1SkxMDL5aAADgLLw//PBDffbZZ6qsrFRzc7Nmz57tF96SVF5e\nrptuuikkRQIAgG85Cu8JEyZo3LhxkqSbb75Zly9fVltbm+9IGwAA9B5H4R0dHa3Y2FhJUlVVldLS\n0joEd1FRkc6cOaMf/OAHWr58uaKiooKvFgAABPdVsf3796uqqkrbt2/3275s2TJNmTJFt9xyi5Yu\nXarq6mo99NBD3c4VHx8rlyv4I3e3Oy7oOQAA10+gz+1I/FwPtifH4X3w4EFt2bJFb775puLi/It4\n9NFHfT+npaWpvr4+YHg3N7c4LcXH7Y6T13sx6HkAANdPd5/bkfi5frWnYALc0VfFLl68qLKyMr3x\nxhsaMmRIh7HFixfrypUrkqSPPvpIo0aNclwgAADw5+jI+91331Vzc7OeeeYZ37Yf/ehHuueeezR9\n+nSlpaUpKytLAwcO1Pe+972AR90AAKDnHIV3VlaWsrKyuhxfuHChFi5c6LgoAADQNa6wBgCAMYQ3\nAADGcFcxAEDE+clLB0I+5/aV6SGf0ymOvAEAMIbwBgDAGMIbAABjCG8AAIwhvAEAMIbwBgDAGMIb\nAABjCG8AAIwhvAEAMIbwBgDAGMIbAABjCG8AAIyJ2BuTLD1Q2NclAADQKzjyBgDAGMIbAABjCG8A\nAIwhvAEAMIbwBgDAGMIbAABjCG8AAIwhvAEAMIbwBgDAGMfhvXbtWmVlZSk7O1tHjx71Gzt8+LAe\ne+wxZWVl6fXXXw+6SAAA8C1H4V1XV6fTp0+rsrJSa9as0Zo1a/zGX3zxRW3atEm/+tWvdOjQIZ04\ncSIkxQIAAIfhXVNTo4yMDElSUlKSLly4oEuXLkmSGhoadMstt2jEiBEaMGCApk6dqpqamtBVDABA\nP+covJuamhQfH+97nJCQIK/XK0nyer1KSEjodAwAAAQvJHcVa29vD3oOtzsuBJV8O8+erM0hmQ+G\nZPV1AUDveLtXZ3+k12YOVd1O8uHt/+29vkIh2MxzdOTt8XjU1NTke3z27Fm53e5OxxobG+XxeIIq\nEgAAfMtReKempqq6ulqSdPz4cXk8Hg0ePFiSdNttt+nSpUv6/PPP1draqvfff1+pqamhqxgAgH4u\nqt3hOe/169frz3/+s6KiolRUVKRPP/1UcXFxmj59uj766COtX79ekvTggw9q8eLFIS0aAID+zHF4\nAwCAvsEV1gAAMIbwBgDAGFPhXV9fr4yMDO3atcu3bceOHUpOTta///3vTvfp7jKu4eBae6qtrdWk\nSZOUm5ur3NxclZSUXM9ye+y/+/riiy+0aNEi5eTkaNGiRZ1+99/aWgXqycJa/XdPH3/8sebNm6fc\n3FwtXrxYX375ZYd9wn2dpGvvy+JaXXXw4EHdc889ne5jca2u6qovi2u1cuVKzZo1y1fzBx980GGf\na12rkHzP+3poaWlRSUmJUlJSfNt+97vf6dy5c11+Fe3/X8b15MmTWr16tSorK69XyQE56UmSJk6c\nqI0bN16PEh3prK9XXnlFc+fOVWZmpt566y1VVFSosLDQN25xrQL1JIX3WnXWU0VFhcrKynT77bfr\ntdde0549e7RkyRLfeLivk+SsL8neWknSf/7zH23dutX3Vd3/z+paSd33Jdlcq2effVbTpk3rdB8n\na2XmyDsmJkbl5eV+oZaRkaH8/HxFRUV1uk93l3ENB056sqCzvoqKijRjxgxJUnx8vM6fP++3j8W1\nCtRTuOusp40bN+r2229Xe3u7GhsbNXz4cL99wn2dJGd9hbvOepKkLVu2aP78+YqJiemwj9W1krrv\nK9x11VN3nKyVmfB2uVwaNGiQ37ar3y3vSneXcQ0HTnqSpBMnTmjJkiWaN2+eDh061FvlOdZZX7Gx\nsYqOjlZbW5t2796tWbNm+Y1bXKtAPUnhvVad9SRJf/rTn/TQQw+pqalJDz/8sN9YuK+T5Kwvyd5a\n/fOf/9Q//vEPzZw5s9N9rK5VoL4ke2slSbt27dKCBQuUn5/f4dc2TtbKTHiHQiR8K+7OO+9UXl6e\nNm/erHXr1ulnP/uZrly50tdl9UhbW5sKCws1adKkDqeU/puVtequJ6trlZaWpj/84Q/6zne+o61b\nt3b7XCvrJHXfl8W1Ki0t1apVq3r8fCtrFagvi2v1yCOPqKCgQDt27NDo0aP12muvdfv8nqxVRId3\nd5dxtSoxMVGZmZmKiorSyJEjNWzYMDU2NvZ1WT2yatUq3XHHHcrLy+swZnWtuuvJ4lr98Y9/lCRF\nRUVpxowZOnLkiN+41XUK1Je1tWpsbNSpU6dUUFCguXPn6uzZs8rJyfF7jsW16klf1tZKklJSUjR6\n9GhJUnp6uurr6/3GnaxVRId3d5dxtWrv3r3atm2bpG/u4Hbu3DklJib2cVWB7d27VzfccIOWLVvW\n6bjFtQrUk8W12rRpk/7+979Lkj755BPdddddfuMW10kK3Je1tUpMTNT+/fu1Z88e7dmzRx6Pp8Nf\na1tcq570ZW2tJOmpp55SQ0ODpG/+Wn7UqFF+407WyswV1o4dO6Z169bpzJkzcrlcSkxM1OTJk3X4\n8GH99a9/1dixY3XfffepsLBQ+fn5Ki0t1aBBgzpcxvXee+/t61Z8nPTU2tqqgoIC/etf/9LXX3+t\nvLw8TZ06ta9b8dNZX+fOndPAgQN9b8ikpCQVFxebXqtAPYX7WnXW04oVK7R27VpFR0dr0KBBKisr\n09ChQ82sk+SsL4trtWnTJg0ZMkTSN0dzBw4ckCTzaxWoL4trlZOTo61bt+rGG29UbGysSktLg/5/\nZSa8AQDANyL6tDkAAJGI8AYAwBjCGwAAYwhvAACMIbwBADCG8AYAwBjCGwAAYwhvAACM+T/wBqym\nmHVydwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "79Xe2mAb2BJ6", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file