diff --git a/Untitled3.ipynb b/Untitled3.ipynb
new file mode 100644
index 0000000..292a5f6
--- /dev/null
+++ b/Untitled3.ipynb
@@ -0,0 +1,802 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "Untitled3.ipynb",
+ "version": "0.3.2",
+ "provenance": [],
+ "collapsed_sections": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ "[View in Colaboratory](https://colab.research.google.com/github/sharad16j/Assignment-3/blob/Sharad16j/Untitled3.ipynb)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "o2loOKwzYWKu",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "0uXrVQm6c8ZW",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "jKAg5w-ec8oV",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "outputId": "44507123-6a05-46d3-bc97-e57069f908f3"
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df.head(5)"
+ ],
+ "execution_count": 32,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n",
+ "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n",
+ "\n",
+ " 1065 \n",
+ "0 1050 \n",
+ "1 1185 \n",
+ "2 1480 \n",
+ "3 735 \n",
+ "4 1450 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 32
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "GhWPuXKrddSS",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 2223
+ },
+ "outputId": "a7f4ce19-f311-405f-d70f-5dde1fbadb51"
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df_copy=wine_df.iloc[::2]\n",
+ "print(wine_df_copy)"
+ ],
+ "execution_count": 20,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 1.05 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 0.86 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 1.05 \n",
+ "6 1 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 1.06 \n",
+ "8 1 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 1.01 \n",
+ "10 1 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 1.17 \n",
+ "12 1 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 1.25 \n",
+ "14 1 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 1.28 \n",
+ "16 1 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 1.13 \n",
+ "18 1 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 0.96 \n",
+ "20 1 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 1.03 \n",
+ "22 1 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 1.09 \n",
+ "24 1 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 1.13 \n",
+ "26 1 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 1.02 \n",
+ "28 1 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 1.04 \n",
+ "30 1 13.58 1.66 2.36 19.1 106 2.86 3.19 0.22 1.95 6.900000 1.09 \n",
+ "32 1 13.76 1.53 2.70 19.5 132 2.95 2.74 0.50 1.35 5.400000 1.25 \n",
+ "34 1 13.48 1.81 2.41 20.5 100 2.70 2.98 0.26 1.86 5.100000 1.04 \n",
+ "36 1 13.05 1.65 2.55 18.0 98 2.45 2.43 0.29 1.44 4.250000 1.12 \n",
+ "38 1 14.22 3.99 2.51 13.2 128 3.00 3.04 0.20 2.08 5.100000 0.89 \n",
+ "40 1 13.41 3.84 2.12 18.8 90 2.45 2.68 0.27 1.48 4.280000 0.91 \n",
+ "42 1 13.24 3.98 2.29 17.5 103 2.64 2.63 0.32 1.66 4.360000 0.82 \n",
+ "44 1 14.21 4.04 2.44 18.9 111 2.85 2.65 0.30 1.25 5.240000 0.87 \n",
+ "46 1 13.90 1.68 2.12 16.0 101 3.10 3.39 0.21 2.14 6.100000 0.91 \n",
+ "48 1 13.94 1.73 2.27 17.4 108 2.88 3.54 0.32 2.08 8.900000 1.12 \n",
+ "50 1 13.83 1.65 2.60 17.2 94 2.45 2.99 0.22 2.29 5.600000 1.24 \n",
+ "52 1 13.77 1.90 2.68 17.1 115 3.00 2.79 0.39 1.68 6.300000 1.13 \n",
+ "54 1 13.56 1.73 2.46 20.5 116 2.96 2.78 0.20 2.45 6.250000 0.98 \n",
+ "56 1 13.29 1.97 2.68 16.8 102 3.00 3.23 0.31 1.66 6.000000 1.07 \n",
+ "58 2 12.37 0.94 1.36 10.6 88 1.98 0.57 0.28 0.42 1.950000 1.05 \n",
+ ".. .. ... ... ... ... ... ... ... ... ... ... ... \n",
+ "118 2 12.00 3.43 2.00 19.0 87 2.00 1.64 0.37 1.87 1.280000 0.93 \n",
+ "120 2 11.56 2.05 3.23 28.5 119 3.18 5.08 0.47 1.87 6.000000 0.93 \n",
+ "122 2 13.05 5.80 2.13 21.5 86 2.62 2.65 0.30 2.01 2.600000 0.73 \n",
+ "124 2 12.07 2.16 2.17 21.0 85 2.60 2.65 0.37 1.35 2.760000 0.86 \n",
+ "126 2 11.79 2.13 2.78 28.5 92 2.13 2.24 0.58 1.76 3.000000 0.97 \n",
+ "128 2 12.04 4.30 2.38 22.0 80 2.10 1.75 0.42 1.35 2.600000 0.79 \n",
+ "130 3 12.88 2.99 2.40 20.0 104 1.30 1.22 0.24 0.83 5.400000 0.74 \n",
+ "132 3 12.70 3.55 2.36 21.5 106 1.70 1.20 0.17 0.84 5.000000 0.78 \n",
+ "134 3 12.60 2.46 2.20 18.5 94 1.62 0.66 0.63 0.94 7.100000 0.73 \n",
+ "136 3 12.53 5.51 2.64 25.0 96 1.79 0.60 0.63 1.10 5.000000 0.82 \n",
+ "138 3 12.84 2.96 2.61 24.0 101 2.32 0.60 0.53 0.81 4.920000 0.89 \n",
+ "140 3 13.36 2.56 2.35 20.0 89 1.40 0.50 0.37 0.64 5.600000 0.70 \n",
+ "142 3 13.62 4.95 2.35 20.0 92 2.00 0.80 0.47 1.02 4.400000 0.91 \n",
+ "144 3 13.16 3.57 2.15 21.0 102 1.50 0.55 0.43 1.30 4.000000 0.60 \n",
+ "146 3 12.87 4.61 2.48 21.5 86 1.70 0.65 0.47 0.86 7.650000 0.54 \n",
+ "148 3 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 0.57 \n",
+ "150 3 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 0.48 \n",
+ "152 3 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 0.56 \n",
+ "154 3 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 0.60 \n",
+ "156 3 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 0.67 \n",
+ "158 3 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 0.57 \n",
+ "160 3 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 0.96 \n",
+ "162 3 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 0.68 \n",
+ "164 3 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 0.78 \n",
+ "166 3 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 0.72 \n",
+ "168 3 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 0.67 \n",
+ "170 3 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 0.57 \n",
+ "172 3 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 0.64 \n",
+ "174 3 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 0.59 \n",
+ "176 3 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 0.61 \n",
+ "\n",
+ " 3.92 1065 \n",
+ "0 3.40 1050 \n",
+ "2 3.45 1480 \n",
+ "4 2.85 1450 \n",
+ "6 3.58 1295 \n",
+ "8 3.55 1045 \n",
+ "10 2.82 1280 \n",
+ "12 2.73 1150 \n",
+ "14 2.88 1310 \n",
+ "16 2.57 1130 \n",
+ "18 3.36 845 \n",
+ "20 3.52 770 \n",
+ "22 3.63 1015 \n",
+ "24 3.20 830 \n",
+ "26 2.77 1285 \n",
+ "28 3.59 1035 \n",
+ "30 2.88 1515 \n",
+ "32 3.00 1235 \n",
+ "34 3.47 920 \n",
+ "36 2.51 1105 \n",
+ "38 3.53 760 \n",
+ "40 3.00 1035 \n",
+ "42 3.00 680 \n",
+ "44 3.33 1080 \n",
+ "46 3.33 985 \n",
+ "48 3.10 1260 \n",
+ "50 3.37 1265 \n",
+ "52 2.93 1375 \n",
+ "54 3.03 1120 \n",
+ "56 2.84 1270 \n",
+ "58 1.82 520 \n",
+ ".. ... ... \n",
+ "118 3.05 564 \n",
+ "120 3.69 465 \n",
+ "122 3.10 380 \n",
+ "124 3.28 378 \n",
+ "126 2.44 466 \n",
+ "128 2.57 580 \n",
+ "130 1.42 530 \n",
+ "132 1.29 600 \n",
+ "134 1.58 695 \n",
+ "136 1.69 515 \n",
+ "138 2.15 590 \n",
+ "140 2.47 780 \n",
+ "142 2.05 550 \n",
+ "144 1.68 830 \n",
+ "146 1.86 625 \n",
+ "148 1.33 550 \n",
+ "150 1.47 480 \n",
+ "152 1.51 675 \n",
+ "154 1.48 725 \n",
+ "156 1.73 880 \n",
+ "158 1.78 620 \n",
+ "160 1.82 680 \n",
+ "162 1.75 675 \n",
+ "164 1.75 520 \n",
+ "166 1.75 685 \n",
+ "168 1.92 630 \n",
+ "170 1.63 470 \n",
+ "172 1.74 740 \n",
+ "174 1.56 835 \n",
+ "176 1.60 560 \n",
+ "\n",
+ "[89 rows x 14 columns]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "yefNlVqZiLRR",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 224
+ },
+ "outputId": "ac533d45-f834-4683-d454-d4e56fbde734"
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df_copy.columns=['','Alcohol', 'Malic acid','Ash','Alcalinity of ash','Magnesium',' Total phenols',' Flavanoids',' Nonflavanoid phenols',' Proanthocyanins','Color intensity','Hue','OD280/OD315 of diluted wines','Proline' ]\n",
+ "wine_df_copy.head(5)"
+ ],
+ "execution_count": 79,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " | \n",
+ " Alcohol | \n",
+ " Malic acid | \n",
+ " Ash | \n",
+ " Alcalinity of ash | \n",
+ " Magnesium | \n",
+ " Total phenols | \n",
+ " Flavanoids | \n",
+ " Nonflavanoid phenols | \n",
+ " Proanthocyanins | \n",
+ " Color intensity | \n",
+ " Hue | \n",
+ " OD280/OD315 of diluted wines | \n",
+ " Proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 1 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.05 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.22 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 \n",
+ "6 1 14.06 2.15 2.61 17.6 121 2.60 \n",
+ "8 1 13.86 1.35 2.27 16.0 98 2.98 \n",
+ "\n",
+ " Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity \\\n",
+ "0 2.76 0.26 1.28 4.38 \n",
+ "2 3.49 0.24 2.18 7.80 \n",
+ "4 3.39 0.34 1.97 6.75 \n",
+ "6 2.51 0.31 1.25 5.05 \n",
+ "8 3.15 0.22 1.85 7.22 \n",
+ "\n",
+ " Hue OD280/OD315 of diluted wines Proline \n",
+ "0 1.05 3.40 1050 \n",
+ "2 0.86 3.45 1480 \n",
+ "4 1.05 2.85 1450 \n",
+ "6 1.06 3.58 1295 \n",
+ "8 1.01 3.55 1045 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 79
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "-yKgOgf0iLeE",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "outputId": "de111e03-1090-42fb-aa6e-279584e5000d"
+ },
+ "cell_type": "code",
+ "source": [
+ "for i in range(3):\n",
+ " wine_df.iloc[i,0]='nan'\n",
+ "wine_df.head(5)"
+ ],
+ "execution_count": 81,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " nan | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " nan | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " nan | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n",
+ "0 nan 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 \n",
+ "1 nan 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 \n",
+ "2 nan 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 \n",
+ "\n",
+ " 3.92 1065 \n",
+ "0 3.40 1050 \n",
+ "1 3.17 1185 \n",
+ "2 3.45 1480 \n",
+ "3 2.93 735 \n",
+ "4 2.85 1450 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 81
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "aogc4nFqiLkW",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "59882f0b-c8bb-4954-cfc2-a906d47d7dff"
+ },
+ "cell_type": "code",
+ "source": [
+ "import random\n",
+ "number =[]\n",
+ "for i in range(10):\n",
+ " number.append(random.randrange(1,160))\n",
+ "random=number\n",
+ "print(random)"
+ ],
+ "execution_count": 63,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[27, 159, 81, 72, 47, 54, 99, 90, 150, 95]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Ao_WMe0IiLpr",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "for i in range(10):\n",
+ " wine_df.iloc[random[i],0]= 'nan'"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "4hbY81PMiLw1",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "6edf3b36-66fe-4988-8973-d448cf5397ea"
+ },
+ "cell_type": "code",
+ "source": [
+ "null=wine_df.isnull().sum()\n",
+ "print(null)"
+ ],
+ "execution_count": 86,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "0\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "U7L6mFRLiL31",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df =wine_df.notnull()"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file