diff --git a/Untitled3.ipynb b/Untitled3.ipynb new file mode 100644 index 0000000..292a5f6 --- /dev/null +++ b/Untitled3.ipynb @@ -0,0 +1,802 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Untitled3.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "[View in Colaboratory](https://colab.research.google.com/github/sharad16j/Assignment-3/blob/Sharad16j/Untitled3.ipynb)" + ] + }, + { + "metadata": { + "id": "o2loOKwzYWKu", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "import pandas as pd" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "0uXrVQm6c8ZW", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "wine_df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jKAg5w-ec8oV", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "outputId": "44507123-6a05-46d3-bc97-e57069f908f3" + }, + "cell_type": "code", + "source": [ + "wine_df.head(5)" + ], + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
114.231.712.4315.61272.83.06.282.295.641.043.921065
0113.201.782.1411.21002.652.760.261.284.381.053.401050
1113.162.362.6718.61012.803.240.302.815.681.033.171185
2114.371.952.5016.81133.853.490.242.187.800.863.451480
3113.242.592.8721.01182.802.690.391.824.321.042.93735
4114.201.762.4515.21123.273.390.341.976.751.052.851450
\n", + "
" + ], + "text/plain": [ + " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 \\\n", + "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n", + "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n", + "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n", + "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n", + "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n", + "\n", + " 1065 \n", + "0 1050 \n", + "1 1185 \n", + "2 1480 \n", + "3 735 \n", + "4 1450 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 32 + } + ] + }, + { + "metadata": { + "id": "GhWPuXKrddSS", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 2223 + }, + "outputId": "a7f4ce19-f311-405f-d70f-5dde1fbadb51" + }, + "cell_type": "code", + "source": [ + "wine_df_copy=wine_df.iloc[::2]\n", + "print(wine_df_copy)" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "text": [ + " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n", + "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 1.05 \n", + "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 0.86 \n", + "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 1.05 \n", + "6 1 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 1.06 \n", + "8 1 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 1.01 \n", + "10 1 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 1.17 \n", + "12 1 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 1.25 \n", + "14 1 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 1.28 \n", + "16 1 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 1.13 \n", + "18 1 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 0.96 \n", + "20 1 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 1.03 \n", + "22 1 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 1.09 \n", + "24 1 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 1.13 \n", + "26 1 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 1.02 \n", + "28 1 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 1.04 \n", + "30 1 13.58 1.66 2.36 19.1 106 2.86 3.19 0.22 1.95 6.900000 1.09 \n", + "32 1 13.76 1.53 2.70 19.5 132 2.95 2.74 0.50 1.35 5.400000 1.25 \n", + "34 1 13.48 1.81 2.41 20.5 100 2.70 2.98 0.26 1.86 5.100000 1.04 \n", + "36 1 13.05 1.65 2.55 18.0 98 2.45 2.43 0.29 1.44 4.250000 1.12 \n", + "38 1 14.22 3.99 2.51 13.2 128 3.00 3.04 0.20 2.08 5.100000 0.89 \n", + "40 1 13.41 3.84 2.12 18.8 90 2.45 2.68 0.27 1.48 4.280000 0.91 \n", + "42 1 13.24 3.98 2.29 17.5 103 2.64 2.63 0.32 1.66 4.360000 0.82 \n", + "44 1 14.21 4.04 2.44 18.9 111 2.85 2.65 0.30 1.25 5.240000 0.87 \n", + "46 1 13.90 1.68 2.12 16.0 101 3.10 3.39 0.21 2.14 6.100000 0.91 \n", + "48 1 13.94 1.73 2.27 17.4 108 2.88 3.54 0.32 2.08 8.900000 1.12 \n", + "50 1 13.83 1.65 2.60 17.2 94 2.45 2.99 0.22 2.29 5.600000 1.24 \n", + "52 1 13.77 1.90 2.68 17.1 115 3.00 2.79 0.39 1.68 6.300000 1.13 \n", + "54 1 13.56 1.73 2.46 20.5 116 2.96 2.78 0.20 2.45 6.250000 0.98 \n", + "56 1 13.29 1.97 2.68 16.8 102 3.00 3.23 0.31 1.66 6.000000 1.07 \n", + "58 2 12.37 0.94 1.36 10.6 88 1.98 0.57 0.28 0.42 1.950000 1.05 \n", + ".. .. ... ... ... ... ... ... ... ... ... ... ... \n", + "118 2 12.00 3.43 2.00 19.0 87 2.00 1.64 0.37 1.87 1.280000 0.93 \n", + "120 2 11.56 2.05 3.23 28.5 119 3.18 5.08 0.47 1.87 6.000000 0.93 \n", + "122 2 13.05 5.80 2.13 21.5 86 2.62 2.65 0.30 2.01 2.600000 0.73 \n", + "124 2 12.07 2.16 2.17 21.0 85 2.60 2.65 0.37 1.35 2.760000 0.86 \n", + "126 2 11.79 2.13 2.78 28.5 92 2.13 2.24 0.58 1.76 3.000000 0.97 \n", + "128 2 12.04 4.30 2.38 22.0 80 2.10 1.75 0.42 1.35 2.600000 0.79 \n", + "130 3 12.88 2.99 2.40 20.0 104 1.30 1.22 0.24 0.83 5.400000 0.74 \n", + "132 3 12.70 3.55 2.36 21.5 106 1.70 1.20 0.17 0.84 5.000000 0.78 \n", + "134 3 12.60 2.46 2.20 18.5 94 1.62 0.66 0.63 0.94 7.100000 0.73 \n", + "136 3 12.53 5.51 2.64 25.0 96 1.79 0.60 0.63 1.10 5.000000 0.82 \n", + "138 3 12.84 2.96 2.61 24.0 101 2.32 0.60 0.53 0.81 4.920000 0.89 \n", + "140 3 13.36 2.56 2.35 20.0 89 1.40 0.50 0.37 0.64 5.600000 0.70 \n", + "142 3 13.62 4.95 2.35 20.0 92 2.00 0.80 0.47 1.02 4.400000 0.91 \n", + "144 3 13.16 3.57 2.15 21.0 102 1.50 0.55 0.43 1.30 4.000000 0.60 \n", + "146 3 12.87 4.61 2.48 21.5 86 1.70 0.65 0.47 0.86 7.650000 0.54 \n", + "148 3 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 0.57 \n", + "150 3 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 0.48 \n", + "152 3 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 0.56 \n", + "154 3 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 0.60 \n", + "156 3 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 0.67 \n", + "158 3 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 0.57 \n", + "160 3 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 0.96 \n", + "162 3 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 0.68 \n", + "164 3 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 0.78 \n", + "166 3 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 0.72 \n", + "168 3 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 0.67 \n", + "170 3 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 0.57 \n", + "172 3 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 0.64 \n", + "174 3 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 0.59 \n", + "176 3 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 0.61 \n", + "\n", + " 3.92 1065 \n", + "0 3.40 1050 \n", + "2 3.45 1480 \n", + "4 2.85 1450 \n", + "6 3.58 1295 \n", + "8 3.55 1045 \n", + "10 2.82 1280 \n", + "12 2.73 1150 \n", + "14 2.88 1310 \n", + "16 2.57 1130 \n", + "18 3.36 845 \n", + "20 3.52 770 \n", + "22 3.63 1015 \n", + "24 3.20 830 \n", + "26 2.77 1285 \n", + "28 3.59 1035 \n", + "30 2.88 1515 \n", + "32 3.00 1235 \n", + "34 3.47 920 \n", + "36 2.51 1105 \n", + "38 3.53 760 \n", + "40 3.00 1035 \n", + "42 3.00 680 \n", + "44 3.33 1080 \n", + "46 3.33 985 \n", + "48 3.10 1260 \n", + "50 3.37 1265 \n", + "52 2.93 1375 \n", + "54 3.03 1120 \n", + "56 2.84 1270 \n", + "58 1.82 520 \n", + ".. ... ... \n", + "118 3.05 564 \n", + "120 3.69 465 \n", + "122 3.10 380 \n", + "124 3.28 378 \n", + "126 2.44 466 \n", + "128 2.57 580 \n", + "130 1.42 530 \n", + "132 1.29 600 \n", + "134 1.58 695 \n", + "136 1.69 515 \n", + "138 2.15 590 \n", + "140 2.47 780 \n", + "142 2.05 550 \n", + "144 1.68 830 \n", + "146 1.86 625 \n", + "148 1.33 550 \n", + "150 1.47 480 \n", + "152 1.51 675 \n", + "154 1.48 725 \n", + "156 1.73 880 \n", + "158 1.78 620 \n", + "160 1.82 680 \n", + "162 1.75 675 \n", + "164 1.75 520 \n", + "166 1.75 685 \n", + "168 1.92 630 \n", + "170 1.63 470 \n", + "172 1.74 740 \n", + "174 1.56 835 \n", + "176 1.60 560 \n", + "\n", + "[89 rows x 14 columns]\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "yefNlVqZiLRR", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 224 + }, + "outputId": "ac533d45-f834-4683-d454-d4e56fbde734" + }, + "cell_type": "code", + "source": [ + "wine_df_copy.columns=['','Alcohol', 'Malic acid','Ash','Alcalinity of ash','Magnesium',' Total phenols',' Flavanoids',' Nonflavanoid phenols',' Proanthocyanins','Color intensity','Hue','OD280/OD315 of diluted wines','Proline' ]\n", + "wine_df_copy.head(5)" + ], + "execution_count": 79, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AlcoholMalic acidAshAlcalinity of ashMagnesiumTotal phenolsFlavanoidsNonflavanoid phenolsProanthocyaninsColor intensityHueOD280/OD315 of diluted winesProline
0113.201.782.1411.21002.652.760.261.284.381.053.401050
2114.371.952.5016.81133.853.490.242.187.800.863.451480
4114.201.762.4515.21123.273.390.341.976.751.052.851450
6114.062.152.6117.61212.602.510.311.255.051.063.581295
8113.861.352.2716.0982.983.150.221.857.221.013.551045
\n", + "
" + ], + "text/plain": [ + " Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols \\\n", + "0 1 13.20 1.78 2.14 11.2 100 2.65 \n", + "2 1 14.37 1.95 2.50 16.8 113 3.85 \n", + "4 1 14.20 1.76 2.45 15.2 112 3.27 \n", + "6 1 14.06 2.15 2.61 17.6 121 2.60 \n", + "8 1 13.86 1.35 2.27 16.0 98 2.98 \n", + "\n", + " Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity \\\n", + "0 2.76 0.26 1.28 4.38 \n", + "2 3.49 0.24 2.18 7.80 \n", + "4 3.39 0.34 1.97 6.75 \n", + "6 2.51 0.31 1.25 5.05 \n", + "8 3.15 0.22 1.85 7.22 \n", + "\n", + " Hue OD280/OD315 of diluted wines Proline \n", + "0 1.05 3.40 1050 \n", + "2 0.86 3.45 1480 \n", + "4 1.05 2.85 1450 \n", + "6 1.06 3.58 1295 \n", + "8 1.01 3.55 1045 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 79 + } + ] + }, + { + "metadata": { + "id": "-yKgOgf0iLeE", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "outputId": "de111e03-1090-42fb-aa6e-279584e5000d" + }, + "cell_type": "code", + "source": [ + "for i in range(3):\n", + " wine_df.iloc[i,0]='nan'\n", + "wine_df.head(5)" + ], + "execution_count": 81, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
114.231.712.4315.61272.83.06.282.295.641.043.921065
0nan13.201.782.1411.21002.652.760.261.284.381.053.401050
1nan13.162.362.6718.61012.803.240.302.815.681.033.171185
2nan14.371.952.5016.81133.853.490.242.187.800.863.451480
3113.242.592.8721.01182.802.690.391.824.321.042.93735
4114.201.762.4515.21123.273.390.341.976.751.052.851450
\n", + "
" + ], + "text/plain": [ + " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n", + "0 nan 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 \n", + "1 nan 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 \n", + "2 nan 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 \n", + "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 \n", + "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 \n", + "\n", + " 3.92 1065 \n", + "0 3.40 1050 \n", + "1 3.17 1185 \n", + "2 3.45 1480 \n", + "3 2.93 735 \n", + "4 2.85 1450 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 81 + } + ] + }, + { + "metadata": { + "id": "aogc4nFqiLkW", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "59882f0b-c8bb-4954-cfc2-a906d47d7dff" + }, + "cell_type": "code", + "source": [ + "import random\n", + "number =[]\n", + "for i in range(10):\n", + " number.append(random.randrange(1,160))\n", + "random=number\n", + "print(random)" + ], + "execution_count": 63, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[27, 159, 81, 72, 47, 54, 99, 90, 150, 95]\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "Ao_WMe0IiLpr", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "for i in range(10):\n", + " wine_df.iloc[random[i],0]= 'nan'" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4hbY81PMiLw1", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "6edf3b36-66fe-4988-8973-d448cf5397ea" + }, + "cell_type": "code", + "source": [ + "null=wine_df.isnull().sum()\n", + "print(null)" + ], + "execution_count": 86, + "outputs": [ + { + "output_type": "stream", + "text": [ + "0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "U7L6mFRLiL31", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "wine_df =wine_df.notnull()" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file