diff --git a/assignment3.ipynb b/assignment3.ipynb
new file mode 100644
index 0000000..f9890bd
--- /dev/null
+++ b/assignment3.ipynb
@@ -0,0 +1,855 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "Untitled7.ipynb",
+ "version": "0.3.2",
+ "provenance": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ "[View in Colaboratory](https://colab.research.google.com/github/devjeetroy98/Assignment-3/blob/devjeetroy98/assignment3.ipynb)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "LWcsm3L8H4dr",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ ""
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "LwZaCApSH-jp",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "Assignment 3 Exercise"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "QVk2S0KmIBJf",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "x8Meb7A1IGYV",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "zSyjiE3lIfQ-",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 198
+ },
+ "outputId": "78e9d912-a168-4613-d6ad-60cf502743bc"
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df.head(5)"
+ ],
+ "execution_count": 105,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n",
+ "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n",
+ "\n",
+ " 1065 \n",
+ "0 1050 \n",
+ "1 1185 \n",
+ "2 1480 \n",
+ "3 735 \n",
+ "4 1450 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 105
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "oWTlLp4sInOG",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 198
+ },
+ "outputId": "6266a206-2a4f-43ec-edc8-94c6491f0af6"
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df_copy=wine_df.copy()\n",
+ "wine_df_copy=wine_df_copy.drop(wine_df_copy.index[1::2])\n",
+ "wine_df_copy.head(5)"
+ ],
+ "execution_count": 109,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 1 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.05 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.22 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n",
+ "6 1 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.05 1.06 3.58 \n",
+ "8 1 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.22 1.01 3.55 \n",
+ "\n",
+ " 1065 \n",
+ "0 1050 \n",
+ "2 1480 \n",
+ "4 1450 \n",
+ "6 1295 \n",
+ "8 1045 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 109
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Um9yuR6TJN00",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 233
+ },
+ "outputId": "b70e3bf4-feb1-4122-f9ac-03c10a753e1d"
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df_copy.columns=['','Alcohol','Malic Acid','Ash','Alcalinity of ash','Magnesium','Total phenols','Flavanoids','Nonflavanoid phenols','Proanthocyanins','Color Intensity','Hue','OD280/OD315 of diluted wines','Proline']\n",
+ "wine_df_copy.head(5)"
+ ],
+ "execution_count": 111,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " | \n",
+ " Alcohol | \n",
+ " Malic Acid | \n",
+ " Ash | \n",
+ " Alcalinity of ash | \n",
+ " Magnesium | \n",
+ " Total phenols | \n",
+ " Flavanoids | \n",
+ " Nonflavanoid phenols | \n",
+ " Proanthocyanins | \n",
+ " Color Intensity | \n",
+ " Hue | \n",
+ " OD280/OD315 of diluted wines | \n",
+ " Proline | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 1 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.05 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.22 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Alcohol Malic Acid Ash Alcalinity of ash Magnesium Total phenols \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 \n",
+ "6 1 14.06 2.15 2.61 17.6 121 2.60 \n",
+ "8 1 13.86 1.35 2.27 16.0 98 2.98 \n",
+ "\n",
+ " Flavanoids Nonflavanoid phenols Proanthocyanins Color Intensity Hue \\\n",
+ "0 2.76 0.26 1.28 4.38 1.05 \n",
+ "2 3.49 0.24 2.18 7.80 0.86 \n",
+ "4 3.39 0.34 1.97 6.75 1.05 \n",
+ "6 2.51 0.31 1.25 5.05 1.06 \n",
+ "8 3.15 0.22 1.85 7.22 1.01 \n",
+ "\n",
+ " OD280/OD315 of diluted wines Proline \n",
+ "0 3.40 1050 \n",
+ "2 3.45 1480 \n",
+ "4 2.85 1450 \n",
+ "6 3.58 1295 \n",
+ "8 3.55 1045 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 111
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "iEg-rjhvK2qU",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 198
+ },
+ "outputId": "bb4993d7-43c5-4a39-adf4-c021f6309be7"
+ },
+ "cell_type": "code",
+ "source": [
+ "for i in range(3):\n",
+ " wine_df.iloc[i,0]='NaN'\n",
+ "wine_df.head(5)"
+ ],
+ "execution_count": 112,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " NaN | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " NaN | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " NaN | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n",
+ "0 NaN 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 \n",
+ "1 NaN 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 \n",
+ "2 NaN 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 \n",
+ "\n",
+ " 3.92 1065 \n",
+ "0 3.40 1050 \n",
+ "1 3.17 1185 \n",
+ "2 3.45 1480 \n",
+ "3 2.93 735 \n",
+ "4 2.85 1450 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 112
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "1--qiJgyLqs1",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "outputId": "3d62e208-3024-4efc-daaf-7fe1b7cb396d"
+ },
+ "cell_type": "code",
+ "source": [
+ "import random\n",
+ "num=[]\n",
+ "for i in range(10):\n",
+ " num.append(random.randrange(1,160))\n",
+ "random=num\n",
+ "print(random)"
+ ],
+ "execution_count": 113,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[11, 75, 124, 7, 159, 90, 147, 56, 12, 104]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "GB84HdtVMJ5w",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "for i in range(10):\n",
+ " wine_df.iloc[random[i],0]='nan'"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "iaUiKgLOLqr8",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 290
+ },
+ "outputId": "9fa0064d-d064-4df6-8ad1-b2e9cfe16039"
+ },
+ "cell_type": "code",
+ "source": [
+ "null=wine_df.isnull().sum()\n",
+ "print(null)"
+ ],
+ "execution_count": 116,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "1 0\n",
+ "14.23 0\n",
+ "1.71 0\n",
+ "2.43 0\n",
+ "15.6 0\n",
+ "127 0\n",
+ "2.8 0\n",
+ "3.06 0\n",
+ ".28 0\n",
+ "2.29 0\n",
+ "5.64 0\n",
+ "1.04 0\n",
+ "3.92 0\n",
+ "1065 0\n",
+ "dtype: int64\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "eg2hevEdLqq3",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df=wine_df.notnull()"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file