From 8e8c49649dc0cc9fc1f9488ce4b43db7869d31d8 Mon Sep 17 00:00:00 2001
From: shreyasi das <43550173+shreyasi17@users.noreply.github.com>
Date: Wed, 2 Jan 2019 12:13:50 +0530
Subject: [PATCH 1/3] Basic Pandas
---
shreyasi17.ipynb | 1073 ++++++++++++++++++++++++++++++++++++++++++++--
1 file changed, 1043 insertions(+), 30 deletions(-)
diff --git a/shreyasi17.ipynb b/shreyasi17.ipynb
index 9e2543a..6a95081 100644
--- a/shreyasi17.ipynb
+++ b/shreyasi17.ipynb
@@ -1,32 +1,1045 @@
{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "shreyasi17.ipynb",
+ "version": "0.3.2",
+ "provenance": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ }
},
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.5.2"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "cGbE814_Xaf9",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Pandas\n",
+ "\n",
+ "Pandas is an open-source, BSD-licensed Python library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. Python with Pandas is used in a wide range of fields including academic and commercial domains including finance, economics, Statistics, analytics, etc.In this tutorial, we will learn the various features of Python Pandas and how to use them in practice.\n",
+ "\n",
+ "\n",
+ "## Import pandas and numpy"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "irlVYeeAXPDL",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "BI2J-zdMbGwE",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### This is your playground feel free to explore other functions on pandas\n",
+ "\n",
+ "#### Create Series from numpy array, list and dict\n",
+ "\n",
+ "Don't know what a series is?\n",
+ "\n",
+ "[Series Doc](https://pandas.pydata.org/pandas-docs/version/0.22/generated/pandas.Series.html)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "GeEct691YGE3",
+ "colab_type": "code",
+ "outputId": "f42f4c26-28fe-4859-fdd2-5c0bfff23b28",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 147
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "a_ascii = ord('A')\n",
+ "z_ascii = ord('Z')\n",
+ "alphabets = [chr(i) for i in range(a_ascii, z_ascii+1)]\n",
+ "\n",
+ "print(alphabets)\n",
+ "\n",
+ "numbers = np.arange(26)\n",
+ "\n",
+ "print(numbers)\n",
+ "\n",
+ "print(type(alphabets), type(numbers))\n",
+ "\n",
+ "alpha_numbers = dict(zip(alphabets, numbers))\n",
+ "\n",
+ "print(alpha_numbers)\n",
+ "\n",
+ "print(type(alpha_numbers))"
+ ],
+ "execution_count": 4,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']\n",
+ "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23\n",
+ " 24 25]\n",
+ " \n",
+ "{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9, 'K': 10, 'L': 11, 'M': 12, 'N': 13, 'O': 14, 'P': 15, 'Q': 16, 'R': 17, 'S': 18, 'T': 19, 'U': 20, 'V': 21, 'W': 22, 'X': 23, 'Y': 24, 'Z': 25}\n",
+ "\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "6ouDfjWab_Mc",
+ "colab_type": "code",
+ "outputId": "733e48b9-b2df-4975-9efc-01372c4ebbed",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 513
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "series1 = pd.Series(alphabets)\n",
+ "print(series1)"
+ ],
+ "execution_count": 5,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "0 A\n",
+ "1 B\n",
+ "2 C\n",
+ "3 D\n",
+ "4 E\n",
+ "5 F\n",
+ "6 G\n",
+ "7 H\n",
+ "8 I\n",
+ "9 J\n",
+ "10 K\n",
+ "11 L\n",
+ "12 M\n",
+ "13 N\n",
+ "14 O\n",
+ "15 P\n",
+ "16 Q\n",
+ "17 R\n",
+ "18 S\n",
+ "19 T\n",
+ "20 U\n",
+ "21 V\n",
+ "22 W\n",
+ "23 X\n",
+ "24 Y\n",
+ "25 Z\n",
+ "dtype: object\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "At7nY7vVcBZ3",
+ "colab_type": "code",
+ "outputId": "bef2690e-353e-4819-d794-4b5537206b22",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 513
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "series2 = pd.Series(numbers)\n",
+ "print(series2)"
+ ],
+ "execution_count": 6,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "0 0\n",
+ "1 1\n",
+ "2 2\n",
+ "3 3\n",
+ "4 4\n",
+ "5 5\n",
+ "6 6\n",
+ "7 7\n",
+ "8 8\n",
+ "9 9\n",
+ "10 10\n",
+ "11 11\n",
+ "12 12\n",
+ "13 13\n",
+ "14 14\n",
+ "15 15\n",
+ "16 16\n",
+ "17 17\n",
+ "18 18\n",
+ "19 19\n",
+ "20 20\n",
+ "21 21\n",
+ "22 22\n",
+ "23 23\n",
+ "24 24\n",
+ "25 25\n",
+ "dtype: int64\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "J5z-2CWAdH6N",
+ "colab_type": "code",
+ "outputId": "e7d917cb-018e-4662-cbc0-8a79833efc58",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 513
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "series3 = pd.Series(alpha_numbers)\n",
+ "print(series3)"
+ ],
+ "execution_count": 7,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "A 0\n",
+ "B 1\n",
+ "C 2\n",
+ "D 3\n",
+ "E 4\n",
+ "F 5\n",
+ "G 6\n",
+ "H 7\n",
+ "I 8\n",
+ "J 9\n",
+ "K 10\n",
+ "L 11\n",
+ "M 12\n",
+ "N 13\n",
+ "O 14\n",
+ "P 15\n",
+ "Q 16\n",
+ "R 17\n",
+ "S 18\n",
+ "T 19\n",
+ "U 20\n",
+ "V 21\n",
+ "W 22\n",
+ "X 23\n",
+ "Y 24\n",
+ "Z 25\n",
+ "dtype: int64\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "fYzblGGudKjO",
+ "colab_type": "code",
+ "outputId": "f6282396-07e6-4bfe-879f-8b3a6999dfdd",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 458
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "#replace head() with head(n) where n can be any number between [0-25] and observe the output in deach case \n",
+ "series3.head(23)"
+ ],
+ "execution_count": 8,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "A 0\n",
+ "B 1\n",
+ "C 2\n",
+ "D 3\n",
+ "E 4\n",
+ "F 5\n",
+ "G 6\n",
+ "H 7\n",
+ "I 8\n",
+ "J 9\n",
+ "K 10\n",
+ "L 11\n",
+ "M 12\n",
+ "N 13\n",
+ "O 14\n",
+ "P 15\n",
+ "Q 16\n",
+ "R 17\n",
+ "S 18\n",
+ "T 19\n",
+ "U 20\n",
+ "V 21\n",
+ "W 22\n",
+ "dtype: int64"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 8
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "OwsJIf5feTtg",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Create DataFrame from lists\n",
+ "\n",
+ "[DataFrame Doc](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "73UTZ07EdWki",
+ "colab_type": "code",
+ "outputId": "0285d7f9-dfa8-49a2-a095-a22b4cb0de6d",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 865
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "data = {'alphabets': alphabets, 'values': numbers}\n",
+ "\n",
+ "df = pd.DataFrame(data)\n",
+ "\n",
+ "#Lets Change the column `values` to `alpha_numbers`\n",
+ "\n",
+ "df.columns = ['alphabets', 'alpha_numbers']\n",
+ "\n",
+ "df"
+ ],
+ "execution_count": 9,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " alphabets | \n",
+ " alpha_numbers | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " A | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " B | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " C | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " D | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " E | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " F | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " G | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " H | \n",
+ " 7 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " I | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " J | \n",
+ " 9 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " K | \n",
+ " 10 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " L | \n",
+ " 11 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " M | \n",
+ " 12 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " N | \n",
+ " 13 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " O | \n",
+ " 14 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " P | \n",
+ " 15 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " Q | \n",
+ " 16 | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " R | \n",
+ " 17 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " S | \n",
+ " 18 | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " T | \n",
+ " 19 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " U | \n",
+ " 20 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " V | \n",
+ " 21 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " W | \n",
+ " 22 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " X | \n",
+ " 23 | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " Y | \n",
+ " 24 | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " Z | \n",
+ " 25 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alphabets alpha_numbers\n",
+ "0 A 0\n",
+ "1 B 1\n",
+ "2 C 2\n",
+ "3 D 3\n",
+ "4 E 4\n",
+ "5 F 5\n",
+ "6 G 6\n",
+ "7 H 7\n",
+ "8 I 8\n",
+ "9 J 9\n",
+ "10 K 10\n",
+ "11 L 11\n",
+ "12 M 12\n",
+ "13 N 13\n",
+ "14 O 14\n",
+ "15 P 15\n",
+ "16 Q 16\n",
+ "17 R 17\n",
+ "18 S 18\n",
+ "19 T 19\n",
+ "20 U 20\n",
+ "21 V 21\n",
+ "22 W 22\n",
+ "23 X 23\n",
+ "24 Y 24\n",
+ "25 Z 25"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 9
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "uaK_1EO9etGS",
+ "colab_type": "code",
+ "outputId": "758805b4-2b4a-4f12-9c92-1246a57cac33",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 141
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "# transpose\n",
+ "\n",
+ "df.T\n",
+ "\n",
+ "# there are many more operations which we can perform look at the documentation with the subsequent exercises we will learn more"
+ ],
+ "execution_count": 10,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 16 | \n",
+ " 17 | \n",
+ " 18 | \n",
+ " 19 | \n",
+ " 20 | \n",
+ " 21 | \n",
+ " 22 | \n",
+ " 23 | \n",
+ " 24 | \n",
+ " 25 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | alphabets | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ " E | \n",
+ " F | \n",
+ " G | \n",
+ " H | \n",
+ " I | \n",
+ " J | \n",
+ " ... | \n",
+ " Q | \n",
+ " R | \n",
+ " S | \n",
+ " T | \n",
+ " U | \n",
+ " V | \n",
+ " W | \n",
+ " X | \n",
+ " Y | \n",
+ " Z | \n",
+ "
\n",
+ " \n",
+ " | alpha_numbers | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 16 | \n",
+ " 17 | \n",
+ " 18 | \n",
+ " 19 | \n",
+ " 20 | \n",
+ " 21 | \n",
+ " 22 | \n",
+ " 23 | \n",
+ " 24 | \n",
+ " 25 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2 rows × 26 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 \\\n",
+ "alphabets A B C D E F G H I J ... Q R S T U V W \n",
+ "alpha_numbers 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 \n",
+ "\n",
+ " 23 24 25 \n",
+ "alphabets X Y Z \n",
+ "alpha_numbers 23 24 25 \n",
+ "\n",
+ "[2 rows x 26 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 10
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ZYonoaW8gEAJ",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Extract Items from a series"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "tc1-KX_Bfe7U",
+ "colab_type": "code",
+ "outputId": "ebcf04cc-b546-4cfd-ad09-ae886d189d45",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "ser = pd.Series(list('abcdefghijklmnopqrstuvwxyz'))\n",
+ "pos = [0, 4, 8, 14, 20]\n",
+ "\n",
+ "vowels = ser.take(pos)\n",
+ "\n",
+ "df = pd.DataFrame(vowels)#, columns=['vowels'])\n",
+ "\n",
+ "df.columns = ['vowels']\n",
+ "\n",
+ "df.index = [0, 1, 2, 3, 4]\n",
+ "\n",
+ "df"
+ ],
+ "execution_count": 11,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " vowels | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " a | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " e | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " i | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " o | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " u | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " vowels\n",
+ "0 a\n",
+ "1 e\n",
+ "2 i\n",
+ "3 o\n",
+ "4 u"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 11
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "cmDxwtDNjWpO",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Change the first character of each word to upper case in each word of ser"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "5KagP9PpgV2F",
+ "colab_type": "code",
+ "outputId": "497037a2-7d45-489a-adb5-1c1e1290497a",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "ser = pd.Series(['we', 'are', 'learning', 'pandas'])\n",
+ "\n",
+ "ser.map(lambda x : x.title())\n",
+ "\n",
+ "titles = [i.title() for i in ser]\n",
+ "\n",
+ "titles"
+ ],
+ "execution_count": 12,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "['We', 'Are', 'Learning', 'Pandas']"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 12
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "qn47ee-MkZN8",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Reindexing"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "h5R0JL2NjuFS",
+ "colab_type": "code",
+ "outputId": "393e7fb4-c511-426d-f1e1-36ea4d4a626a",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "my_index = [1, 2, 3, 4, 5]\n",
+ "\n",
+ "df1 = pd.DataFrame({'upper values': ['A', 'B', 'C', 'D', 'E'],\n",
+ " 'lower values': ['a', 'b', 'c', 'd', 'e']},\n",
+ " index = my_index)\n",
+ "\n",
+ "df1"
+ ],
+ "execution_count": 13,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " lower values | \n",
+ " upper values | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " a | \n",
+ " A | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " b | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " c | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " d | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " e | \n",
+ " E | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " lower values upper values\n",
+ "1 a A\n",
+ "2 b B\n",
+ "3 c C\n",
+ "4 d D\n",
+ "5 e E"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 13
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "G_Frvc3mk93k",
+ "colab_type": "code",
+ "outputId": "2c602f98-6619-4cc4-d26c-868ea981f890",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "new_index = [2, 5, 4, 3, 1]\n",
+ "\n",
+ "df1.reindex(index = new_index)"
+ ],
+ "execution_count": 14,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " lower values | \n",
+ " upper values | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 2 | \n",
+ " b | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " e | \n",
+ " E | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " d | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " c | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " a | \n",
+ " A | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " lower values upper values\n",
+ "2 b B\n",
+ "5 e E\n",
+ "4 d D\n",
+ "3 c C\n",
+ "1 a A"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 14
+ }
+ ]
+ }
+ ]
+}
\ No newline at end of file
From 6f664216262d393a3fc048fe762b5489a977f7a0 Mon Sep 17 00:00:00 2001
From: shreyasi das <43550173+shreyasi17@users.noreply.github.com>
Date: Wed, 2 Jan 2019 12:18:16 +0530
Subject: [PATCH 2/3] Get to know your Data
---
shreyasi17.ipynb | 2430 +++++++++++++++++++++++++++++++++++-----------
1 file changed, 1870 insertions(+), 560 deletions(-)
diff --git a/shreyasi17.ipynb b/shreyasi17.ipynb
index 6a95081..9f7cd08 100644
--- a/shreyasi17.ipynb
+++ b/shreyasi17.ipynb
@@ -27,22 +27,20 @@
},
{
"metadata": {
- "id": "cGbE814_Xaf9",
+ "id": "J82LU53m_OU0",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "# Pandas\n",
+ "# Get to know your Data\n",
"\n",
- "Pandas is an open-source, BSD-licensed Python library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. Python with Pandas is used in a wide range of fields including academic and commercial domains including finance, economics, Statistics, analytics, etc.In this tutorial, we will learn the various features of Python Pandas and how to use them in practice.\n",
"\n",
- "\n",
- "## Import pandas and numpy"
+ "#### Import necessary modules\n"
]
},
{
"metadata": {
- "id": "irlVYeeAXPDL",
+ "id": "ZyO1UXL8mtSj",
"colab_type": "code",
"colab": {}
},
@@ -56,61 +54,218 @@
},
{
"metadata": {
- "id": "BI2J-zdMbGwE",
+ "id": "yXTzTowtnwGI",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "### This is your playground feel free to explore other functions on pandas\n",
- "\n",
- "#### Create Series from numpy array, list and dict\n",
- "\n",
- "Don't know what a series is?\n",
- "\n",
- "[Series Doc](https://pandas.pydata.org/pandas-docs/version/0.22/generated/pandas.Series.html)"
+ "#### Loading CSV Data to a DataFrame"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "H1Bjlb5wm9f-",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "KE-k7b_Mn5iN",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### See the top 10 rows\n"
]
},
{
"metadata": {
- "id": "GeEct691YGE3",
+ "id": "HY2Ps7xMn4ao",
"colab_type": "code",
- "outputId": "f42f4c26-28fe-4859-fdd2-5c0bfff23b28",
+ "outputId": "7cd4dc70-c448-44da-e8ba-2b43e0bf6736",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 147
+ "height": 206
}
},
"cell_type": "code",
"source": [
- "a_ascii = ord('A')\n",
- "z_ascii = ord('Z')\n",
- "alphabets = [chr(i) for i in range(a_ascii, z_ascii+1)]\n",
- "\n",
- "print(alphabets)\n",
- "\n",
- "numbers = np.arange(26)\n",
- "\n",
- "print(numbers)\n",
- "\n",
- "print(type(alphabets), type(numbers))\n",
- "\n",
- "alpha_numbers = dict(zip(alphabets, numbers))\n",
+ "iris_df.head()"
+ ],
+ "execution_count": 42,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 4.9 | \n",
+ " 3.0 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 4.7 | \n",
+ " 3.2 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4.6 | \n",
+ " 3.1 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "1 4.9 3.0 1.4 0.2 setosa\n",
+ "2 4.7 3.2 1.3 0.2 setosa\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 42
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ZQXekIodqOZu",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Find number of rows and columns\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "6Y-A-lbFqR82",
+ "colab_type": "code",
+ "outputId": "5086cdb6-0854-4f26-c3b1-c2a0e0e48ef5",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 72
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "print(iris_df.shape)\n",
"\n",
- "print(alpha_numbers)\n",
+ "#first is row and second is column\n",
+ "#select row by simple indexing\n",
"\n",
- "print(type(alpha_numbers))"
+ "print(iris_df.shape[0])\n",
+ "print(iris_df.shape[1])"
+ ],
+ "execution_count": 43,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "(150, 5)\n",
+ "150\n",
+ "5\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "4ckCiGPhrC_t",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Print all columns"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "S6jgMyRDrF2a",
+ "colab_type": "code",
+ "outputId": "febc8804-c116-4069-fd9b-5af5b1bc3c00",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 72
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "print(iris_df.columns)"
],
- "execution_count": 4,
+ "execution_count": 44,
"outputs": [
{
"output_type": "stream",
"text": [
- "['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']\n",
- "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23\n",
- " 24 25]\n",
- " \n",
- "{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9, 'K': 10, 'L': 11, 'M': 12, 'N': 13, 'O': 14, 'P': 15, 'Q': 16, 'R': 17, 'S': 18, 'T': 19, 'U': 20, 'V': 21, 'W': 22, 'X': 23, 'Y': 24, 'Z': 25}\n",
- "\n"
+ "Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',\n",
+ " 'species'],\n",
+ " dtype='object')\n"
],
"name": "stdout"
}
@@ -118,51 +273,34 @@
},
{
"metadata": {
- "id": "6ouDfjWab_Mc",
+ "id": "kVav5-ACtIqS",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Check Index\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "iu3I9zIGtLDX",
"colab_type": "code",
- "outputId": "733e48b9-b2df-4975-9efc-01372c4ebbed",
+ "outputId": "7ee018bf-a911-4de2-8c46-da228dfb42cb",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 513
+ "height": 35
}
},
"cell_type": "code",
"source": [
- "series1 = pd.Series(alphabets)\n",
- "print(series1)"
+ "print(iris_df.index)"
],
- "execution_count": 5,
+ "execution_count": 45,
"outputs": [
{
"output_type": "stream",
"text": [
- "0 A\n",
- "1 B\n",
- "2 C\n",
- "3 D\n",
- "4 E\n",
- "5 F\n",
- "6 G\n",
- "7 H\n",
- "8 I\n",
- "9 J\n",
- "10 K\n",
- "11 L\n",
- "12 M\n",
- "13 N\n",
- "14 O\n",
- "15 P\n",
- "16 Q\n",
- "17 R\n",
- "18 S\n",
- "19 T\n",
- "20 U\n",
- "21 V\n",
- "22 W\n",
- "23 X\n",
- "24 Y\n",
- "25 Z\n",
- "dtype: object\n"
+ "RangeIndex(start=0, stop=150, step=1)\n"
],
"name": "stdout"
}
@@ -170,51 +308,52 @@
},
{
"metadata": {
- "id": "At7nY7vVcBZ3",
+ "id": "psCc7PborOCQ",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Right now the iris_data set has all the species grouped together let's shuffle it"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Bxc8i6avrZPw",
"colab_type": "code",
- "outputId": "bef2690e-353e-4819-d794-4b5537206b22",
+ "outputId": "8734c31f-6e5c-459c-80c4-8fb8a8832144",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 513
+ "height": 237
}
},
"cell_type": "code",
"source": [
- "series2 = pd.Series(numbers)\n",
- "print(series2)"
+ "#generate a random permutaion on index\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "new_index = np.random.permutation(iris_df.index)\n",
+ "iris_df = iris_df.reindex(index = new_index)\n",
+ "\n",
+ "print(iris_df.head())"
],
- "execution_count": 6,
+ "execution_count": 46,
"outputs": [
{
"output_type": "stream",
"text": [
- "0 0\n",
- "1 1\n",
- "2 2\n",
- "3 3\n",
- "4 4\n",
- "5 5\n",
- "6 6\n",
- "7 7\n",
- "8 8\n",
- "9 9\n",
- "10 10\n",
- "11 11\n",
- "12 12\n",
- "13 13\n",
- "14 14\n",
- "15 15\n",
- "16 16\n",
- "17 17\n",
- "18 18\n",
- "19 19\n",
- "20 20\n",
- "21 21\n",
- "22 22\n",
- "23 23\n",
- "24 24\n",
- "25 25\n",
- "dtype: int64\n"
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "1 4.9 3.0 1.4 0.2 setosa\n",
+ "2 4.7 3.2 1.3 0.2 setosa\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n",
+ "135 7.7 3.0 6.1 2.3 virginica\n",
+ "128 6.4 2.8 5.6 2.1 virginica\n",
+ "60 5.0 2.0 3.5 1.0 versicolor\n",
+ "56 6.3 3.3 4.7 1.6 versicolor\n"
],
"name": "stdout"
}
@@ -222,51 +361,65 @@
},
{
"metadata": {
- "id": "J5z-2CWAdH6N",
+ "id": "j32h8022sRT8",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### We can also apply an operation on whole column of iris_df"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "seYXHXsYsYJI",
"colab_type": "code",
- "outputId": "e7d917cb-018e-4662-cbc0-8a79833efc58",
+ "outputId": "18305166-b616-4a75-b0ca-a52d1b6a286b",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 513
+ "height": 348
}
},
"cell_type": "code",
"source": [
- "series3 = pd.Series(alpha_numbers)\n",
- "print(series3)"
+ "#original\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "iris_df['sepal_width'] *= 10\n",
+ "\n",
+ "#changed\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "#lets undo the operation\n",
+ "\n",
+ "iris_df['sepal_width'] /= 10\n",
+ "\n",
+ "print(iris_df.head())"
],
- "execution_count": 7,
+ "execution_count": 47,
"outputs": [
{
"output_type": "stream",
"text": [
- "A 0\n",
- "B 1\n",
- "C 2\n",
- "D 3\n",
- "E 4\n",
- "F 5\n",
- "G 6\n",
- "H 7\n",
- "I 8\n",
- "J 9\n",
- "K 10\n",
- "L 11\n",
- "M 12\n",
- "N 13\n",
- "O 14\n",
- "P 15\n",
- "Q 16\n",
- "R 17\n",
- "S 18\n",
- "T 19\n",
- "U 20\n",
- "V 21\n",
- "W 22\n",
- "X 23\n",
- "Y 24\n",
- "Z 25\n",
- "dtype: int64\n"
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n",
+ "135 7.7 3.0 6.1 2.3 virginica\n",
+ "128 6.4 2.8 5.6 2.1 virginica\n",
+ "60 5.0 2.0 3.5 1.0 versicolor\n",
+ "56 6.3 3.3 4.7 1.6 versicolor\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "126 6.2 28.0 4.8 1.8 virginica\n",
+ "135 7.7 30.0 6.1 2.3 virginica\n",
+ "128 6.4 28.0 5.6 2.1 virginica\n",
+ "60 5.0 20.0 3.5 1.0 versicolor\n",
+ "56 6.3 33.0 4.7 1.6 versicolor\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n",
+ "135 7.7 3.0 6.1 2.3 virginica\n",
+ "128 6.4 2.8 5.6 2.1 virginica\n",
+ "60 5.0 2.0 3.5 1.0 versicolor\n",
+ "56 6.3 3.3 4.7 1.6 versicolor\n"
],
"name": "stdout"
}
@@ -274,93 +427,1167 @@
},
{
"metadata": {
- "id": "fYzblGGudKjO",
+ "id": "R-Ca-LBLzjiF",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Show all the rows where sepal_width > 3.3"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "WJ7W-F-d0AoZ",
"colab_type": "code",
- "outputId": "f6282396-07e6-4bfe-879f-8b3a6999dfdd",
+ "outputId": "d9caac74-c750-4e50-80e0-7e5cd0bda7db",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 458
+ "height": 1179
}
},
"cell_type": "code",
"source": [
- "#replace head() with head(n) where n can be any number between [0-25] and observe the output in deach case \n",
- "series3.head(23)"
+ "iris_df[iris_df['sepal_width']>3.3]"
+ ],
+ "execution_count": 48,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 40 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.9 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 6.2 | \n",
+ " 3.4 | \n",
+ " 5.4 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.7 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.5 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.3 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 4.6 | \n",
+ " 3.4 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 39 | \n",
+ " 5.1 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 136 | \n",
+ " 6.3 | \n",
+ " 3.4 | \n",
+ " 5.6 | \n",
+ " 2.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 5.5 | \n",
+ " 4.2 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 117 | \n",
+ " 7.7 | \n",
+ " 3.8 | \n",
+ " 6.7 | \n",
+ " 2.2 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 4.6 | \n",
+ " 3.6 | \n",
+ " 1.0 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 5.3 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 109 | \n",
+ " 7.2 | \n",
+ " 3.6 | \n",
+ " 6.1 | \n",
+ " 2.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 5.8 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.9 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 43 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.6 | \n",
+ " 0.6 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 5.2 | \n",
+ " 3.5 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.7 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 31 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 5.2 | \n",
+ " 4.1 | \n",
+ " 1.5 | \n",
+ " 0.1 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 5.5 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 131 | \n",
+ " 7.9 | \n",
+ " 3.8 | \n",
+ " 6.4 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 5.7 | \n",
+ " 4.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 5.2 | \n",
+ " 3.4 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 5.4 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 5.1 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "40 5.0 3.5 1.3 0.3 setosa\n",
+ "46 5.1 3.8 1.6 0.2 setosa\n",
+ "24 4.8 3.4 1.9 0.2 setosa\n",
+ "18 5.7 3.8 1.7 0.3 setosa\n",
+ "148 6.2 3.4 5.4 2.3 virginica\n",
+ "20 5.4 3.4 1.7 0.2 setosa\n",
+ "19 5.1 3.8 1.5 0.3 setosa\n",
+ "16 5.4 3.9 1.3 0.4 setosa\n",
+ "11 4.8 3.4 1.6 0.2 setosa\n",
+ "6 4.6 3.4 1.4 0.3 setosa\n",
+ "39 5.1 3.4 1.5 0.2 setosa\n",
+ "136 6.3 3.4 5.6 2.4 virginica\n",
+ "33 5.5 4.2 1.4 0.2 setosa\n",
+ "117 7.7 3.8 6.7 2.2 virginica\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ "85 6.0 3.4 4.5 1.6 versicolor\n",
+ "7 5.0 3.4 1.5 0.2 setosa\n",
+ "22 4.6 3.6 1.0 0.2 setosa\n",
+ "48 5.3 3.7 1.5 0.2 setosa\n",
+ "109 7.2 3.6 6.1 2.5 virginica\n",
+ "14 5.8 4.0 1.2 0.2 setosa\n",
+ "44 5.1 3.8 1.9 0.4 setosa\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "27 5.2 3.5 1.5 0.2 setosa\n",
+ "5 5.4 3.9 1.7 0.4 setosa\n",
+ "31 5.4 3.4 1.5 0.4 setosa\n",
+ "32 5.2 4.1 1.5 0.1 setosa\n",
+ "36 5.5 3.5 1.3 0.2 setosa\n",
+ "131 7.9 3.8 6.4 2.0 virginica\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "15 5.7 4.4 1.5 0.4 setosa\n",
+ "28 5.2 3.4 1.4 0.2 setosa\n",
+ "10 5.4 3.7 1.5 0.2 setosa\n",
+ "26 5.0 3.4 1.6 0.4 setosa\n",
+ "21 5.1 3.7 1.5 0.4 setosa"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 48
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "gH3DnhCq2Cbl",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Club two filters together - Find all samples where sepal_width > 3.3 and species is versicolor"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "4U7ksr_R2H7M",
+ "colab_type": "code",
+ "outputId": "d2b29aeb-6c2d-46a2-9e6e-da1eb111df7d",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df[(iris_df['sepal_width']>3.3) & (iris_df['species'] == 'versicolor')] "
+ ],
+ "execution_count": 49,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "85 6.0 3.4 4.5 1.6 versicolor"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 49
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "1lmnB3ot2u7I",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Sorting a column by value"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "K7KIj6fv2zWP",
+ "colab_type": "code",
+ "outputId": "79c7241d-bafd-4130-a4b3-9129aca11ac8",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1992
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df.sort_values(by='sepal_width')#, ascending = False)\n",
+ "#pass ascending = False for descending order"
+ ],
+ "execution_count": 50,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 60 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 68 | \n",
+ " 6.2 | \n",
+ " 2.2 | \n",
+ " 4.5 | \n",
+ " 1.5 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 62 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 4.0 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 119 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 5.0 | \n",
+ " 1.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 53 | \n",
+ " 5.5 | \n",
+ " 2.3 | \n",
+ " 4.0 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 41 | \n",
+ " 4.5 | \n",
+ " 2.3 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 93 | \n",
+ " 5.0 | \n",
+ " 2.3 | \n",
+ " 3.3 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 87 | \n",
+ " 6.3 | \n",
+ " 2.3 | \n",
+ " 4.4 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 81 | \n",
+ " 5.5 | \n",
+ " 2.4 | \n",
+ " 3.7 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 57 | \n",
+ " 4.9 | \n",
+ " 2.4 | \n",
+ " 3.3 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 80 | \n",
+ " 5.5 | \n",
+ " 2.4 | \n",
+ " 3.8 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 98 | \n",
+ " 5.1 | \n",
+ " 2.5 | \n",
+ " 3.0 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 146 | \n",
+ " 6.3 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 113 | \n",
+ " 5.7 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 89 | \n",
+ " 5.5 | \n",
+ " 2.5 | \n",
+ " 4.0 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 108 | \n",
+ " 6.7 | \n",
+ " 2.5 | \n",
+ " 5.8 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 106 | \n",
+ " 4.9 | \n",
+ " 2.5 | \n",
+ " 4.5 | \n",
+ " 1.7 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 69 | \n",
+ " 5.6 | \n",
+ " 2.5 | \n",
+ " 3.9 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 72 | \n",
+ " 6.3 | \n",
+ " 2.5 | \n",
+ " 4.9 | \n",
+ " 1.5 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 90 | \n",
+ " 5.5 | \n",
+ " 2.6 | \n",
+ " 4.4 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 92 | \n",
+ " 5.8 | \n",
+ " 2.6 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 118 | \n",
+ " 7.7 | \n",
+ " 2.6 | \n",
+ " 6.9 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 79 | \n",
+ " 5.7 | \n",
+ " 2.6 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 134 | \n",
+ " 6.1 | \n",
+ " 2.6 | \n",
+ " 5.6 | \n",
+ " 1.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 101 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 123 | \n",
+ " 6.3 | \n",
+ " 2.7 | \n",
+ " 4.9 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 142 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 94 | \n",
+ " 5.6 | \n",
+ " 2.7 | \n",
+ " 4.2 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 67 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 4.1 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 83 | \n",
+ " 6.0 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 5.2 | \n",
+ " 3.4 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 136 | \n",
+ " 6.3 | \n",
+ " 3.4 | \n",
+ " 5.6 | \n",
+ " 2.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 31 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 39 | \n",
+ " 5.1 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 5.5 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 43 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.6 | \n",
+ " 0.6 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 5.2 | \n",
+ " 3.5 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 109 | \n",
+ " 7.2 | \n",
+ " 3.6 | \n",
+ " 6.1 | \n",
+ " 2.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 4.6 | \n",
+ " 3.6 | \n",
+ " 1.0 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 5.4 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 5.3 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 5.1 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.5 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 117 | \n",
+ " 7.7 | \n",
+ " 3.8 | \n",
+ " 6.7 | \n",
+ " 2.2 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.9 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 131 | \n",
+ " 7.9 | \n",
+ " 3.8 | \n",
+ " 6.4 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.3 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.7 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 5.8 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 5.2 | \n",
+ " 4.1 | \n",
+ " 1.5 | \n",
+ " 0.1 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 5.5 | \n",
+ " 4.2 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 5.7 | \n",
+ " 4.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
150 rows × 5 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "60 5.0 2.0 3.5 1.0 versicolor\n",
+ "68 6.2 2.2 4.5 1.5 versicolor\n",
+ "62 6.0 2.2 4.0 1.0 versicolor\n",
+ "119 6.0 2.2 5.0 1.5 virginica\n",
+ "53 5.5 2.3 4.0 1.3 versicolor\n",
+ "41 4.5 2.3 1.3 0.3 setosa\n",
+ "93 5.0 2.3 3.3 1.0 versicolor\n",
+ "87 6.3 2.3 4.4 1.3 versicolor\n",
+ "81 5.5 2.4 3.7 1.0 versicolor\n",
+ "57 4.9 2.4 3.3 1.0 versicolor\n",
+ "80 5.5 2.4 3.8 1.1 versicolor\n",
+ "98 5.1 2.5 3.0 1.1 versicolor\n",
+ "146 6.3 2.5 5.0 1.9 virginica\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "89 5.5 2.5 4.0 1.3 versicolor\n",
+ "108 6.7 2.5 5.8 1.8 virginica\n",
+ "106 4.9 2.5 4.5 1.7 virginica\n",
+ "69 5.6 2.5 3.9 1.1 versicolor\n",
+ "72 6.3 2.5 4.9 1.5 versicolor\n",
+ "90 5.5 2.6 4.4 1.2 versicolor\n",
+ "92 5.8 2.6 4.0 1.2 versicolor\n",
+ "118 7.7 2.6 6.9 2.3 virginica\n",
+ "79 5.7 2.6 3.5 1.0 versicolor\n",
+ "134 6.1 2.6 5.6 1.4 virginica\n",
+ "101 5.8 2.7 5.1 1.9 virginica\n",
+ "123 6.3 2.7 4.9 1.8 virginica\n",
+ "142 5.8 2.7 5.1 1.9 virginica\n",
+ "94 5.6 2.7 4.2 1.3 versicolor\n",
+ "67 5.8 2.7 4.1 1.0 versicolor\n",
+ "83 6.0 2.7 5.1 1.6 versicolor\n",
+ ".. ... ... ... ... ...\n",
+ "28 5.2 3.4 1.4 0.2 setosa\n",
+ "136 6.3 3.4 5.6 2.4 virginica\n",
+ "7 5.0 3.4 1.5 0.2 setosa\n",
+ "85 6.0 3.4 4.5 1.6 versicolor\n",
+ "31 5.4 3.4 1.5 0.4 setosa\n",
+ "39 5.1 3.4 1.5 0.2 setosa\n",
+ "36 5.5 3.5 1.3 0.2 setosa\n",
+ "40 5.0 3.5 1.3 0.3 setosa\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "27 5.2 3.5 1.5 0.2 setosa\n",
+ "109 7.2 3.6 6.1 2.5 virginica\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ "22 4.6 3.6 1.0 0.2 setosa\n",
+ "10 5.4 3.7 1.5 0.2 setosa\n",
+ "48 5.3 3.7 1.5 0.2 setosa\n",
+ "21 5.1 3.7 1.5 0.4 setosa\n",
+ "18 5.7 3.8 1.7 0.3 setosa\n",
+ "19 5.1 3.8 1.5 0.3 setosa\n",
+ "117 7.7 3.8 6.7 2.2 virginica\n",
+ "46 5.1 3.8 1.6 0.2 setosa\n",
+ "44 5.1 3.8 1.9 0.4 setosa\n",
+ "131 7.9 3.8 6.4 2.0 virginica\n",
+ "16 5.4 3.9 1.3 0.4 setosa\n",
+ "5 5.4 3.9 1.7 0.4 setosa\n",
+ "14 5.8 4.0 1.2 0.2 setosa\n",
+ "32 5.2 4.1 1.5 0.1 setosa\n",
+ "33 5.5 4.2 1.4 0.2 setosa\n",
+ "15 5.7 4.4 1.5 0.4 setosa\n",
+ "\n",
+ "[150 rows x 5 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 50
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "9jg_Z4YCoMSV",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### List all the unique species"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "M6EN78ufoJY7",
+ "colab_type": "code",
+ "outputId": "39ad4226-53df-42cd-8d9f-32ffe1e1cd41",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "species = iris_df['species'].unique()\n",
+ "\n",
+ "print(species)"
],
- "execution_count": 8,
+ "execution_count": 51,
"outputs": [
{
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "A 0\n",
- "B 1\n",
- "C 2\n",
- "D 3\n",
- "E 4\n",
- "F 5\n",
- "G 6\n",
- "H 7\n",
- "I 8\n",
- "J 9\n",
- "K 10\n",
- "L 11\n",
- "M 12\n",
- "N 13\n",
- "O 14\n",
- "P 15\n",
- "Q 16\n",
- "R 17\n",
- "S 18\n",
- "T 19\n",
- "U 20\n",
- "V 21\n",
- "W 22\n",
- "dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 8
+ "output_type": "stream",
+ "text": [
+ "['virginica' 'versicolor' 'setosa']\n"
+ ],
+ "name": "stdout"
}
]
},
{
"metadata": {
- "id": "OwsJIf5feTtg",
+ "id": "wG1i5nxBodmB",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "#### Create DataFrame from lists\n",
- "\n",
- "[DataFrame Doc](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html)"
+ "#### Selecting a particular species using boolean mask (learnt in previous exercise)"
]
},
{
"metadata": {
- "id": "73UTZ07EdWki",
+ "id": "gZvpbKBwoVUe",
"colab_type": "code",
- "outputId": "0285d7f9-dfa8-49a2-a095-a22b4cb0de6d",
+ "outputId": "d56f2768-8b3b-4af1-ba70-6933f8e8dd78",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 865
+ "height": 206
}
},
"cell_type": "code",
"source": [
- "data = {'alphabets': alphabets, 'values': numbers}\n",
- "\n",
- "df = pd.DataFrame(data)\n",
- "\n",
- "#Lets Change the column `values` to `alpha_numbers`\n",
+ "setosa = iris_df[iris_df['species'] == species[0]]\n",
"\n",
- "df.columns = ['alphabets', 'alpha_numbers']\n",
- "\n",
- "df"
+ "setosa.head()"
],
- "execution_count": 9,
+ "execution_count": 52,
"outputs": [
{
"output_type": "execute_result",
@@ -384,201 +1611,92 @@
" \n",
" \n",
" | \n",
- " alphabets | \n",
- " alpha_numbers | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
"
\n",
" \n",
" \n",
" \n",
- " | 0 | \n",
- " A | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " B | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " C | \n",
- " 2 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " D | \n",
- " 3 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " E | \n",
- " 4 | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " F | \n",
- " 5 | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " G | \n",
- " 6 | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " H | \n",
- " 7 | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " I | \n",
- " 8 | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " J | \n",
- " 9 | \n",
- "
\n",
- " \n",
- " | 10 | \n",
- " K | \n",
- " 10 | \n",
- "
\n",
- " \n",
- " | 11 | \n",
- " L | \n",
- " 11 | \n",
- "
\n",
- " \n",
- " | 12 | \n",
- " M | \n",
- " 12 | \n",
- "
\n",
- " \n",
- " | 13 | \n",
- " N | \n",
- " 13 | \n",
- "
\n",
- " \n",
- " | 14 | \n",
- " O | \n",
- " 14 | \n",
- "
\n",
- " \n",
- " | 15 | \n",
- " P | \n",
- " 15 | \n",
- "
\n",
- " \n",
- " | 16 | \n",
- " Q | \n",
- " 16 | \n",
- "
\n",
- " \n",
- " | 17 | \n",
- " R | \n",
- " 17 | \n",
- "
\n",
- " \n",
- " | 18 | \n",
- " S | \n",
- " 18 | \n",
- "
\n",
- " \n",
- " | 19 | \n",
- " T | \n",
- " 19 | \n",
- "
\n",
- " \n",
- " | 20 | \n",
- " U | \n",
- " 20 | \n",
- "
\n",
- " \n",
- " | 21 | \n",
- " V | \n",
- " 21 | \n",
+ " 126 | \n",
+ " 6.2 | \n",
+ " 2.8 | \n",
+ " 4.8 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
"
\n",
" \n",
- " | 22 | \n",
- " W | \n",
- " 22 | \n",
+ " 135 | \n",
+ " 7.7 | \n",
+ " 3.0 | \n",
+ " 6.1 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
"
\n",
" \n",
- " | 23 | \n",
- " X | \n",
- " 23 | \n",
+ " 128 | \n",
+ " 6.4 | \n",
+ " 2.8 | \n",
+ " 5.6 | \n",
+ " 2.1 | \n",
+ " virginica | \n",
"
\n",
" \n",
- " | 24 | \n",
- " Y | \n",
- " 24 | \n",
+ " 108 | \n",
+ " 6.7 | \n",
+ " 2.5 | \n",
+ " 5.8 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
"
\n",
" \n",
- " | 25 | \n",
- " Z | \n",
- " 25 | \n",
+ " 102 | \n",
+ " 7.1 | \n",
+ " 3.0 | \n",
+ " 5.9 | \n",
+ " 2.1 | \n",
+ " virginica | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " alphabets alpha_numbers\n",
- "0 A 0\n",
- "1 B 1\n",
- "2 C 2\n",
- "3 D 3\n",
- "4 E 4\n",
- "5 F 5\n",
- "6 G 6\n",
- "7 H 7\n",
- "8 I 8\n",
- "9 J 9\n",
- "10 K 10\n",
- "11 L 11\n",
- "12 M 12\n",
- "13 N 13\n",
- "14 O 14\n",
- "15 P 15\n",
- "16 Q 16\n",
- "17 R 17\n",
- "18 S 18\n",
- "19 T 19\n",
- "20 U 20\n",
- "21 V 21\n",
- "22 W 22\n",
- "23 X 23\n",
- "24 Y 24\n",
- "25 Z 25"
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "126 6.2 2.8 4.8 1.8 virginica\n",
+ "135 7.7 3.0 6.1 2.3 virginica\n",
+ "128 6.4 2.8 5.6 2.1 virginica\n",
+ "108 6.7 2.5 5.8 1.8 virginica\n",
+ "102 7.1 3.0 5.9 2.1 virginica"
]
},
"metadata": {
"tags": []
},
- "execution_count": 9
+ "execution_count": 52
}
]
},
{
"metadata": {
- "id": "uaK_1EO9etGS",
+ "id": "7tumfZ3DotPG",
"colab_type": "code",
- "outputId": "758805b4-2b4a-4f12-9c92-1246a57cac33",
+ "outputId": "896719b6-2850-43e4-b316-f57dc9ebcc75",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 141
+ "height": 206
}
},
"cell_type": "code",
"source": [
- "# transpose\n",
+ "# do the same for other 2 species \n",
+ "versicolor = iris_df[iris_df['species'] == species[1]]\n",
"\n",
- "df.T\n",
- "\n",
- "# there are many more operations which we can perform look at the documentation with the subsequent exercises we will learn more"
+ "versicolor.head()"
],
- "execution_count": 10,
+ "execution_count": 53,
"outputs": [
{
"output_type": "execute_result",
@@ -602,117 +1720,79 @@
" \n",
" \n",
" | \n",
- " 0 | \n",
- " 1 | \n",
- " 2 | \n",
- " 3 | \n",
- " 4 | \n",
- " 5 | \n",
- " 6 | \n",
- " 7 | \n",
- " 8 | \n",
- " 9 | \n",
- " ... | \n",
- " 16 | \n",
- " 17 | \n",
- " 18 | \n",
- " 19 | \n",
- " 20 | \n",
- " 21 | \n",
- " 22 | \n",
- " 23 | \n",
- " 24 | \n",
- " 25 | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
"
\n",
" \n",
" \n",
" \n",
- " | alphabets | \n",
- " A | \n",
- " B | \n",
- " C | \n",
- " D | \n",
- " E | \n",
- " F | \n",
- " G | \n",
- " H | \n",
- " I | \n",
- " J | \n",
- " ... | \n",
- " Q | \n",
- " R | \n",
- " S | \n",
- " T | \n",
- " U | \n",
- " V | \n",
- " W | \n",
- " X | \n",
- " Y | \n",
- " Z | \n",
- "
\n",
- " \n",
- " | alpha_numbers | \n",
- " 0 | \n",
- " 1 | \n",
- " 2 | \n",
- " 3 | \n",
- " 4 | \n",
- " 5 | \n",
- " 6 | \n",
- " 7 | \n",
- " 8 | \n",
- " 9 | \n",
- " ... | \n",
- " 16 | \n",
- " 17 | \n",
- " 18 | \n",
- " 19 | \n",
- " 20 | \n",
- " 21 | \n",
- " 22 | \n",
- " 23 | \n",
- " 24 | \n",
- " 25 | \n",
+ " 60 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 56 | \n",
+ " 6.3 | \n",
+ " 3.3 | \n",
+ " 4.7 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 95 | \n",
+ " 5.7 | \n",
+ " 3.0 | \n",
+ " 4.2 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 76 | \n",
+ " 6.8 | \n",
+ " 2.8 | \n",
+ " 4.8 | \n",
+ " 1.4 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 78 | \n",
+ " 6.0 | \n",
+ " 2.9 | \n",
+ " 4.5 | \n",
+ " 1.5 | \n",
+ " versicolor | \n",
"
\n",
" \n",
"\n",
- "2 rows × 26 columns
\n",
""
],
"text/plain": [
- " 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 \\\n",
- "alphabets A B C D E F G H I J ... Q R S T U V W \n",
- "alpha_numbers 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 \n",
- "\n",
- " 23 24 25 \n",
- "alphabets X Y Z \n",
- "alpha_numbers 23 24 25 \n",
- "\n",
- "[2 rows x 26 columns]"
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "60 5.0 2.0 3.5 1.0 versicolor\n",
+ "56 6.3 3.3 4.7 1.6 versicolor\n",
+ "95 5.7 3.0 4.2 1.2 versicolor\n",
+ "76 6.8 2.8 4.8 1.4 versicolor\n",
+ "78 6.0 2.9 4.5 1.5 versicolor"
]
},
"metadata": {
"tags": []
},
- "execution_count": 10
+ "execution_count": 53
}
]
},
{
"metadata": {
- "id": "ZYonoaW8gEAJ",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "#### Extract Items from a series"
- ]
- },
- {
- "metadata": {
- "id": "tc1-KX_Bfe7U",
+ "id": "cUYm5UqVpDPy",
"colab_type": "code",
- "outputId": "ebcf04cc-b546-4cfd-ad09-ae886d189d45",
+ "outputId": "09f9a382-f213-4982-c8c0-fac805f4f6f6",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
@@ -720,20 +1800,13 @@
},
"cell_type": "code",
"source": [
- "ser = pd.Series(list('abcdefghijklmnopqrstuvwxyz'))\n",
- "pos = [0, 4, 8, 14, 20]\n",
- "\n",
- "vowels = ser.take(pos)\n",
- "\n",
- "df = pd.DataFrame(vowels)#, columns=['vowels'])\n",
"\n",
- "df.columns = ['vowels']\n",
"\n",
- "df.index = [0, 1, 2, 3, 4]\n",
+ "virginica = iris_df[iris_df['species'] == species[2]]\n",
"\n",
- "df"
+ "virginica.head()"
],
- "execution_count": 11,
+ "execution_count": 54,
"outputs": [
{
"output_type": "execute_result",
@@ -757,127 +1830,224 @@
" \n",
" \n",
" | \n",
- " vowels | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
"
\n",
" \n",
" \n",
" \n",
- " | 0 | \n",
- " a | \n",
+ " 40 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
"
\n",
" \n",
- " | 1 | \n",
- " e | \n",
+ " 46 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
"
\n",
" \n",
- " | 2 | \n",
- " i | \n",
+ " 38 | \n",
+ " 4.4 | \n",
+ " 3.0 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
"
\n",
" \n",
- " | 3 | \n",
- " o | \n",
+ " 24 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.9 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
"
\n",
" \n",
- " | 4 | \n",
- " u | \n",
+ " 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " vowels\n",
- "0 a\n",
- "1 e\n",
- "2 i\n",
- "3 o\n",
- "4 u"
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "40 5.0 3.5 1.3 0.3 setosa\n",
+ "46 5.1 3.8 1.6 0.2 setosa\n",
+ "38 4.4 3.0 1.3 0.2 setosa\n",
+ "24 4.8 3.4 1.9 0.2 setosa\n",
+ "18 5.7 3.8 1.7 0.3 setosa"
]
},
"metadata": {
"tags": []
},
- "execution_count": 11
+ "execution_count": 54
}
]
},
{
"metadata": {
- "id": "cmDxwtDNjWpO",
+ "id": "-y1wDc8SpdQs",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "#### Change the first character of each word to upper case in each word of ser"
+ "#### Describe each created species to see the difference\n",
+ "\n"
]
},
{
"metadata": {
- "id": "5KagP9PpgV2F",
+ "id": "eHrn3ZVRpOk5",
"colab_type": "code",
- "outputId": "497037a2-7d45-489a-adb5-1c1e1290497a",
+ "outputId": "fc5247a4-25cf-4cc3-c514-9651ad6c1f05",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 35
+ "height": 300
}
},
"cell_type": "code",
"source": [
- "ser = pd.Series(['we', 'are', 'learning', 'pandas'])\n",
- "\n",
- "ser.map(lambda x : x.title())\n",
- "\n",
- "titles = [i.title() for i in ser]\n",
- "\n",
- "titles"
+ "setosa.describe()"
],
- "execution_count": 12,
+ "execution_count": 55,
"outputs": [
{
"output_type": "execute_result",
"data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 50.00000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.00000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 6.58800 | \n",
+ " 2.974000 | \n",
+ " 5.552000 | \n",
+ " 2.02600 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 0.63588 | \n",
+ " 0.322497 | \n",
+ " 0.551895 | \n",
+ " 0.27465 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 4.90000 | \n",
+ " 2.200000 | \n",
+ " 4.500000 | \n",
+ " 1.40000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 6.22500 | \n",
+ " 2.800000 | \n",
+ " 5.100000 | \n",
+ " 1.80000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 6.50000 | \n",
+ " 3.000000 | \n",
+ " 5.550000 | \n",
+ " 2.00000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 6.90000 | \n",
+ " 3.175000 | \n",
+ " 5.875000 | \n",
+ " 2.30000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 7.90000 | \n",
+ " 3.800000 | \n",
+ " 6.900000 | \n",
+ " 2.50000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
"text/plain": [
- "['We', 'Are', 'Learning', 'Pandas']"
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.00000 50.000000 50.000000 50.00000\n",
+ "mean 6.58800 2.974000 5.552000 2.02600\n",
+ "std 0.63588 0.322497 0.551895 0.27465\n",
+ "min 4.90000 2.200000 4.500000 1.40000\n",
+ "25% 6.22500 2.800000 5.100000 1.80000\n",
+ "50% 6.50000 3.000000 5.550000 2.00000\n",
+ "75% 6.90000 3.175000 5.875000 2.30000\n",
+ "max 7.90000 3.800000 6.900000 2.50000"
]
},
"metadata": {
"tags": []
},
- "execution_count": 12
+ "execution_count": 55
}
]
},
{
"metadata": {
- "id": "qn47ee-MkZN8",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "#### Reindexing"
- ]
- },
- {
- "metadata": {
- "id": "h5R0JL2NjuFS",
+ "id": "GwJFT2GlpwUv",
"colab_type": "code",
- "outputId": "393e7fb4-c511-426d-f1e1-36ea4d4a626a",
+ "outputId": "feb2e1b2-57ae-42a8-dbf0-82fa18197ad7",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 206
+ "height": 300
}
},
"cell_type": "code",
"source": [
- "my_index = [1, 2, 3, 4, 5]\n",
- "\n",
- "df1 = pd.DataFrame({'upper values': ['A', 'B', 'C', 'D', 'E'],\n",
- " 'lower values': ['a', 'b', 'c', 'd', 'e']},\n",
- " index = my_index)\n",
- "\n",
- "df1"
+ "versicolor.describe()"
],
- "execution_count": 13,
+ "execution_count": 56,
"outputs": [
{
"output_type": "execute_result",
@@ -901,73 +2071,107 @@
" \n",
" \n",
" | \n",
- " lower values | \n",
- " upper values | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
"
\n",
" \n",
" \n",
" \n",
- " | 1 | \n",
- " a | \n",
- " A | \n",
+ " count | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
"
\n",
" \n",
- " | 2 | \n",
- " b | \n",
- " B | \n",
+ " mean | \n",
+ " 5.936000 | \n",
+ " 2.770000 | \n",
+ " 4.260000 | \n",
+ " 1.326000 | \n",
"
\n",
" \n",
- " | 3 | \n",
- " c | \n",
- " C | \n",
+ " std | \n",
+ " 0.516171 | \n",
+ " 0.313798 | \n",
+ " 0.469911 | \n",
+ " 0.197753 | \n",
"
\n",
" \n",
- " | 4 | \n",
- " d | \n",
- " D | \n",
+ " min | \n",
+ " 4.900000 | \n",
+ " 2.000000 | \n",
+ " 3.000000 | \n",
+ " 1.000000 | \n",
"
\n",
" \n",
- " | 5 | \n",
- " e | \n",
- " E | \n",
+ " 25% | \n",
+ " 5.600000 | \n",
+ " 2.525000 | \n",
+ " 4.000000 | \n",
+ " 1.200000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 5.900000 | \n",
+ " 2.800000 | \n",
+ " 4.350000 | \n",
+ " 1.300000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 6.300000 | \n",
+ " 3.000000 | \n",
+ " 4.600000 | \n",
+ " 1.500000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 7.000000 | \n",
+ " 3.400000 | \n",
+ " 5.100000 | \n",
+ " 1.800000 | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " lower values upper values\n",
- "1 a A\n",
- "2 b B\n",
- "3 c C\n",
- "4 d D\n",
- "5 e E"
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.000000 50.000000 50.000000 50.000000\n",
+ "mean 5.936000 2.770000 4.260000 1.326000\n",
+ "std 0.516171 0.313798 0.469911 0.197753\n",
+ "min 4.900000 2.000000 3.000000 1.000000\n",
+ "25% 5.600000 2.525000 4.000000 1.200000\n",
+ "50% 5.900000 2.800000 4.350000 1.300000\n",
+ "75% 6.300000 3.000000 4.600000 1.500000\n",
+ "max 7.000000 3.400000 5.100000 1.800000"
]
},
"metadata": {
"tags": []
},
- "execution_count": 13
+ "execution_count": 56
}
]
},
{
"metadata": {
- "id": "G_Frvc3mk93k",
+ "id": "Ad4qhSZLpztf",
"colab_type": "code",
- "outputId": "2c602f98-6619-4cc4-d26c-868ea981f890",
+ "outputId": "5a28a668-fe2e-4e09-d5b5-06a8defc6b41",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 206
+ "height": 300
}
},
"cell_type": "code",
"source": [
- "new_index = [2, 5, 4, 3, 1]\n",
- "\n",
- "df1.reindex(index = new_index)"
+ "virginica.describe()"
],
- "execution_count": 14,
+ "execution_count": 57,
"outputs": [
{
"output_type": "execute_result",
@@ -991,53 +2195,159 @@
" \n",
" \n",
" | \n",
- " lower values | \n",
- " upper values | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
"
\n",
" \n",
" \n",
" \n",
- " | 2 | \n",
- " b | \n",
- " B | \n",
+ " count | \n",
+ " 50.00000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.00000 | \n",
"
\n",
" \n",
- " | 5 | \n",
- " e | \n",
- " E | \n",
+ " mean | \n",
+ " 5.00600 | \n",
+ " 3.418000 | \n",
+ " 1.464000 | \n",
+ " 0.24400 | \n",
"
\n",
" \n",
- " | 4 | \n",
- " d | \n",
- " D | \n",
+ " std | \n",
+ " 0.35249 | \n",
+ " 0.381024 | \n",
+ " 0.173511 | \n",
+ " 0.10721 | \n",
"
\n",
" \n",
- " | 3 | \n",
- " c | \n",
- " C | \n",
+ " min | \n",
+ " 4.30000 | \n",
+ " 2.300000 | \n",
+ " 1.000000 | \n",
+ " 0.10000 | \n",
"
\n",
" \n",
- " | 1 | \n",
- " a | \n",
- " A | \n",
+ " 25% | \n",
+ " 4.80000 | \n",
+ " 3.125000 | \n",
+ " 1.400000 | \n",
+ " 0.20000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 5.00000 | \n",
+ " 3.400000 | \n",
+ " 1.500000 | \n",
+ " 0.20000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 5.20000 | \n",
+ " 3.675000 | \n",
+ " 1.575000 | \n",
+ " 0.30000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 5.80000 | \n",
+ " 4.400000 | \n",
+ " 1.900000 | \n",
+ " 0.60000 | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " lower values upper values\n",
- "2 b B\n",
- "5 e E\n",
- "4 d D\n",
- "3 c C\n",
- "1 a A"
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.00000 50.000000 50.000000 50.00000\n",
+ "mean 5.00600 3.418000 1.464000 0.24400\n",
+ "std 0.35249 0.381024 0.173511 0.10721\n",
+ "min 4.30000 2.300000 1.000000 0.10000\n",
+ "25% 4.80000 3.125000 1.400000 0.20000\n",
+ "50% 5.00000 3.400000 1.500000 0.20000\n",
+ "75% 5.20000 3.675000 1.575000 0.30000\n",
+ "max 5.80000 4.400000 1.900000 0.60000"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 57
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Vdu0ulZWtr09",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Let's plot and see the difference"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "PEVMzRvpttmD",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "##### import matplotlib.pyplot "
+ ]
+ },
+ {
+ "metadata": {
+ "id": "rqDXuuAtt7C3",
+ "colab_type": "code",
+ "outputId": "c3577877-0f14-47aa-dd6c-f9ad73a0603f",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 402
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#hist creates a histogram there are many more plots(see the documentation) you can play with it.\n",
+ "\n",
+ "plt.hist(setosa['sepal_length'])\n",
+ "plt.hist(versicolor['sepal_length'])\n",
+ "plt.hist(virginica['sepal_length'])"
+ ],
+ "execution_count": 58,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(array([ 4., 1., 6., 5., 12., 8., 4., 5., 2., 3.]),\n",
+ " array([4.3 , 4.45, 4.6 , 4.75, 4.9 , 5.05, 5.2 , 5.35, 5.5 , 5.65, 5.8 ]),\n",
+ " )"
]
},
"metadata": {
"tags": []
},
- "execution_count": 14
+ "execution_count": 58
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFJNJREFUeJzt3XuM1Ge5wPFn2ZFydllxi7tQtGDT\naBrbYiFtU662yKUt9oaWWyiSUxMRCphgWtxgICExh4bTUG212iI1EBIsIHCMKY0IiWmBGjEoJg0F\nE8OlhaUsLNdw6Zw/DBuxsJfZ2XeY2c/nL+Y3s795Xl4y350ZdrYsm81mAwBIpkuhBwCAzkZ8ASAx\n8QWAxMQXABITXwBITHwBILFMijuprz+Z4m7yorq6IhoazhR6jA5V6mu0vuJX6mu0vuLXmjXW1FRd\n8zrPfP9DJlNe6BE6XKmv0fqKX6mv0fqKX3vXKL4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJ\niS8AJNaq+O7ZsydGjhwZK1eujIiIDz74IKZNmxZTpkyJadOmRX19fYcOCQClpMX4njlzJhYtWhSD\nBg1qOrZ06dIYP358rFy5MkaNGhXLly/v0CEBoJS0GN+uXbvGq6++GrW1tU3HFixYEGPGjImIiOrq\n6jh+/HjHTQgAJabF+GYymejWrdsVxyoqKqK8vDwuXboUq1atikceeaTDBgSAUpPzbzW6dOlSPPvs\ns3Hfffdd8ZL01VRXVxTVB20395sorkdvP/aNNt1+z1WODdmwNj/DXCeKbQ/bqtTXF1H6a7S+4tee\nNeYc3x/84AfRr1+/eOaZZ1q8bTH9aqmamqqi+hWI+VJKay71PSz19UWU/hqtr/i1Zo15/5WCGzdu\njE996lMxe/bsXL4cADq1Fp/57t69OxYvXhwHDx6MTCYTmzZtio8++ihuuOGGeOqppyIi4tZbb42F\nCxd29KwAUBJajO8dd9wRK1asSDELAHQKPuEKABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEF\ngMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwAS\nE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8\nASAx8QWAxMQXABITXwBITHwBILFWxXfPnj0xcuTIWLlyZUREfPDBB/HUU0/F5MmTY86cOXH+/PkO\nHRIASkmL8T1z5kwsWrQoBg0a1HTsxz/+cUyePDlWrVoV/fr1izVr1nTokABQSlqMb9euXePVV1+N\n2trapmM7duyIr33taxER8cADD8S2bds6bkIAKDGZFm+QyUQmc+XNzp49G127do2IiJ49e0Z9fX3H\nTAcAJajF+LYkm822eJvq6orIZMrbe1fJ1NRUFXqENtmTh3MU25pbcnk941d/t0Pv59cTftah57+W\nUtuvq+mINT4yd0Pez5mL//vfx0p+D0t9fRHtW2NO8a2oqIhz585Ft27d4vDhw1e8JH01DQ1nchqu\nEGpqqqK+/mShx0iulNaccg8L8ffWGf6NdoY1lvL6OsP+tWaNzcU5px81Gjx4cGzatCkiIt56660Y\nNmxYLqcBgE6pxWe+u3fvjsWLF8fBgwcjk8nEpk2bYsmSJTFv3rxYvXp19OnTJx5//PEUswJASWgx\nvnfccUesWLHiE8eXL1/eIQMBQKnzCVcAkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGKZQg8AlL7//p8/FHoEuK54\n5gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkv\nACQmvgCQmPgCQGLiCwCJiS8AJCa+AJBYJpcvOn36dDz33HNx4sSJuHDhQsycOTOGDRuW79kAoCTl\nFN/f/OY3ccstt8TcuXPj8OHD8a1vfSvefPPNfM8GACUpp5edq6ur4/jx4xER0djYGNXV1XkdCgBK\nWU7PfMeOHRvr1q2LUaNGRWNjY/z85z/P91wAULJyiu+GDRuiT58+sWzZsnjvvfeirq4u1q1bd83b\nV1dXRCZTnvOQqdXUVBV6hDbZk49zfHtau88xZMPa9g+SJ6n2sKPvZ/zq73bYuc+++2CHnZuWFdvj\nTFuV+voi2rfGnOK7c+fOGDp0aERE3HbbbXHkyJG4dOlSlJdfPbANDWdyHjC1mpqqqK8/WegxitL1\n8veWcg+vlzVTfEr5305neBxtzRqbi3NO7/n269cvdu3aFRERBw8ejMrKymuGFwC4Uk7PfCdMmBB1\ndXUxZcqUuHjxYixcuDDPYwFA6copvpWVlfHiiy/mexYA6BR8whUAJCa+AJCY+AJAYuILAImJLwAk\nJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4\nAkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsA\niYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYjnHd+PGjfHoo4/GuHHjYuvWrXkcCQBKW07x\nbWhoiJdffjlWrVoVr7zySmzevDnfcwFAycrk8kXbtm2LQYMGRffu3aN79+6xaNGifM8FACUrp/ge\nOHAgzp07F9OnT4/GxsaYNWtWDBo06Jq3r66uiEymPOchU6upqWr1bd9+7Bvtuq8hG9a26+sjIva0\n+wz50Za/t383fvV38zxJOrmuGUr9305b1vfI3A0dOEnr/d//Ptam27dnD3OKb0TE8ePH46WXXopD\nhw7F1KlTY8uWLVFWVnbV2zY0nMl5wNRqaqqivv5ksvtLeV8drZTW0lqdcc3kRyn/20n9OJovbZm5\nNWtsLs45vefbs2fPGDBgQGQymejbt29UVlbGsWPHcjkVAHQ6OcV36NChsX379vj444+joaEhzpw5\nE9XV1fmeDQBKUk4vO/fq1SvGjBkT48ePj4iI+fPnR5cufmQYAFoj5/d8J06cGBMnTsznLADQKXi6\nCgCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAImJLwAklin0AJ3dnm9PK/QI15U5q460+xwvTq7NwyStM/MPzya7r3z7r3vf\n7NDzn333wQ49f0fO39GzPzJ3Q4eev7V+OW9EoUfotDzzBYDExBcAEhNfAEhMfAEgMfEFgMTEFwAS\nE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASKxd\n8T137lyMHDky1q1bl695AKDktSu+P/vZz6JHjx75mgUAOoWc47tv377Yu3dv3H///XkcBwBKX87x\nXbx4ccybNy+fswBAp5DJ5YvWr18fd911V9x8882tun11dUVkMuW53NU1vf3YN9p9jiEb1l71eE1N\nVavPsafdU5SOPd+eltPXzcnvGEArteWx7no6d0dp68ztWWNO8d26dWvs378/tm7dGh9++GF07do1\nevfuHYMHD77q7RsazuQ8YEeqrz/5iWM1NVVXPQ5Qajrqsa5YH0fbMnNr1thcnHOK79KlS5v+/JOf\n/CQ+97nPXTO8AMCV/JwvACSW0zPffzdr1qx8zAEAnYZnvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAIll\nCj0AXI/mrDrS7nO8OLk2D5MUr/+6981Cj5Czjp797LsPduj5uf555gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJBYJtcvfP755+PPf/5zXLx4Mb7zne/E6NGj8zkXAJSsnOK7ffv2eP/992P16tXR0NAQTzzx\nhPgCQCvlFN977rkn+vfvHxERn/70p+Ps2bNx6dKlKC8vz+twAFCKcopveXl5VFRURETEmjVrYvjw\n4c2Gt7q6IjKZ/IZ5Tx7OUVNT1abjHTUH+TVn1ZFCjwBFoS2PddfTuTtKW2duzxpzfs83IuL3v/99\nrFmzJn75y182e7uGhjPtuZsOU19/8hPHamqqrnocoNR01GNdsT6OtmXm1qyxuTjnHN8//vGP8cor\nr8Rrr70WVVXF9x0OABRKTvE9efJkPP/88/H666/HZz7zmXzPBAAlLaf4/u53v4uGhob43ve+13Rs\n8eLF0adPn7wNBgClKqf4TpgwISZMmJDvWQCgU/AJVwCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuIL\nAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYplCD1BIe749\n7ZPH0o8BUBD//T9/KPQInZZnvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4\nAkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAIllcv3CH/3oR7Fr164oKyuL\nurq66N+/fz7nAoCSlVN833333fjnP/8Zq1evjn379kVdXV2sXr0637MBQEnK6WXnbdu2xciRIyMi\n4tZbb40TJ07EqVOn8joYAJSqnOJ79OjRqK6ubrp84403Rn19fd6GAoBSlvN7vv8um802e31NTVU+\n7ubKc25Ym/dzQj4NKfQAXL8mFHoA8qE9bcvpmW9tbW0cPXq06fKRI0eipqYm5yEAoDPJKb5DhgyJ\nTZs2RUTE3//+96itrY3u3bvndTAAKFU5vew8cODAuP3222PixIlRVlYWCxYsyPdcAFCyyrItvWEL\nAOSVT7gCgMTEFwASy8uPGhWzc+fOxde//vWYMWNGjBs3run4iBEjonfv3lFeXh4REUuWLIlevXoV\nasw227FjR8yZMye++MUvRkTEl770pfjhD3/YdP0777wTL7zwQpSXl8fw4cNj5syZhRo1Jy2tr9j3\n77KNGzfGa6+9FplMJmbPnh33339/03XFvocRza+vFPbwjTfeiI0bNzZd3r17d/zlL39purxx48b4\n1a9+FV26dInx48fHk08+WYgxc9bS+m6//fYYOHBg0+XXX3+9aT+LwenTp+O5556LEydOxIULF2Lm\nzJkxbNiwpuvbtX/ZTu6FF17Ijhs3Lrt27dorjj/wwAPZU6dOFWiq9tu+fXt21qxZ17z+oYceyh46\ndCh76dKl7KRJk7Lvv/9+wunar6X1Ffv+ZbPZ7LFjx7KjR4/Onjx5Mnv48OHs/Pnzr7i+2PewpfWV\nwh7+ux07dmQXLlzYdPn06dPZ0aNHZxsbG7Nnz57Njh07NtvQ0FDACdvnP9eXzWaz9957b4GmyY8V\nK1ZklyxZks1ms9kPP/wwO2bMmKbr2rt/nfpl53379sXevXuv+G67M9i/f3/06NEjbrrppujSpUt8\n9atfjW3bthV6LP7Dtm3bYtCgQdG9e/eora2NRYsWNV1XCnvY3PpK0csvvxwzZsxourxr16648847\no6qqKrp16xYDBw6MnTt3FnDC9vnP9ZWC6urqOH78eERENDY2XvHJju3dv04d38WLF8e8efOuef2C\nBQti0qRJsWTJkhY/xet6tHfv3pg+fXpMmjQp3n777abj9fX1ceONNzZdLtaPB73W+i4r9v07cOBA\nnDt3LqZPnx6TJ0++Iq6lsIfNre+yYt/Dy/7617/GTTfddMWHER09erTo9/Cyq60vIuL8+fMxd+7c\nmDhxYixfvrxA0+Vu7NixcejQoRg1alRMmTIlnnvuuabr2rt/nfY93/Xr18ddd90VN99881Wvnz17\ndgwbNix69OgRM2fOjE2bNsWDDz6YeMrcfeELX4hnnnkmHnroodi/f39MnTo13nrrrejatWuhR8uL\nltZX7Pt32fHjx+Oll16KQ4cOxdSpU2PLli1RVlZW6LHyprn1lcoeRkSsWbMmnnjiiWZvU8zfXFxr\nfc8++2w8+uijUVZWFlOmTIm777477rzzzgJMmJsNGzZEnz59YtmyZfHee+9FXV1drFu37qq3bev+\nddpnvlu3bo3NmzfH+PHj44033oif/vSn8c477zRd//jjj0fPnj0jk8nE8OHDY8+ePQWctu169eoV\nDz/8cJSVlUXfvn3js5/9bBw+fDgiPvnxoIcPH47a2tpCjZqT5tYXUfz7FxHRs2fPGDBgQGQymejb\nt29UVlbGsWPHIqI09rC59UWUxh5etmPHjhgwYMAVx672Mb3FtoeXXW19ERGTJk2KysrKqKioiPvu\nu6/o9nDnzp0xdOjQiIi47bbb4siRI3Hp0qWIaP/+ddr4Ll26NNauXRu//vWv48knn4wZM2bE4MGD\nIyLi5MmT8fTTT8f58+cjIuJPf/pT0/+qLRYbN26MZcuWRcS/XqL86KOPmv6n6Oc///k4depUHDhw\nIC5evBhbtmyJIUOK69cANLe+Uti/iIihQ4fG9u3b4+OPP46GhoY4c+ZM03tOpbCHza2vVPYw4l/f\nGFVWVn7iVaevfOUr8be//S0aGxvj9OnTsXPnzrj77rsLNGXurrW+f/zjHzF37tzIZrNx8eLF2Llz\nZ9HtYb9+/WLXrl0REXHw4MGorKxs+t/a7d2/Tvuy89WsW7cuqqqqYtSoUTF8+PCYMGFC3HDDDfHl\nL3+56F7uGjFiRHz/+9+PzZs3x4ULF2LhwoXx29/+tml9CxcujLlz50ZExMMPPxy33HJLgSdum5bW\nV+z7F/GvZ/djxoyJ8ePHR0TE/PnzY/369SWzhy2trxT2MOKT78//4he/iHvuuScGDBgQc+fOjaef\nfjrKyspi5syZUVWV/98A19GaW1/v3r3jm9/8ZnTp0iVGjBgR/fv3L+CkbTdhwoSoq6uLKVOmxMWL\nF2PhwoV52z8fLwkAiXXal50BoFDEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBILH/By91j6Ca\n07jKAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
}
]
}
From a9eb52de5c3d8f3fc6f42718ca0ad3e1444aa43f Mon Sep 17 00:00:00 2001
From: shreyasi das <43550173+shreyasi17@users.noreply.github.com>
Date: Wed, 2 Jan 2019 12:30:16 +0530
Subject: [PATCH 3/3] Exercise 3
---
shreyasi17.ipynb | 6847 ++++++++++++++++++++++++++++++++++------------
1 file changed, 5077 insertions(+), 1770 deletions(-)
diff --git a/shreyasi17.ipynb b/shreyasi17.ipynb
index 9f7cd08..2e62311 100644
--- a/shreyasi17.ipynb
+++ b/shreyasi17.ipynb
@@ -27,69 +27,212 @@
},
{
"metadata": {
- "id": "J82LU53m_OU0",
+ "id": "2LTtpUJEibjg",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "# Get to know your Data\n",
+ "# Pandas Exercise :\n",
"\n",
"\n",
- "#### Import necessary modules\n"
+ "#### import necessary modules"
]
},
{
"metadata": {
- "id": "ZyO1UXL8mtSj",
+ "id": "c3_UBbMRhiKx",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
- "import pandas as pd\n",
- "import numpy as np"
+ "import numpy as np\n",
+ "import pandas as pd"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
- "id": "yXTzTowtnwGI",
+ "id": "tp-cTCyWi8mR",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "#### Loading CSV Data to a DataFrame"
+ "#### Load url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\" to a dataframe named wine_df\n",
+ "\n",
+ "This is a wine dataset\n",
+ "\n"
]
},
{
"metadata": {
- "id": "H1Bjlb5wm9f-",
+ "id": "DMojQY3thrRi",
"colab_type": "code",
- "colab": {}
+ "outputId": "c3c029f6-ce24-4252-f737-e3328dd7aca5",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 2350
+ }
},
"cell_type": "code",
"source": [
- "iris_df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')\n"
+ "wine_df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data')\n",
+ "print(wine_df)\n",
+ "wine_df = pd.DataFrame(wine_df)"
],
- "execution_count": 0,
- "outputs": []
+ "execution_count": 2,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 1.05 \n",
+ "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.680000 1.03 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 0.86 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.320000 1.04 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 1.05 \n",
+ "5 1 14.39 1.87 2.45 14.6 96 2.50 2.52 0.30 1.98 5.250000 1.02 \n",
+ "6 1 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 1.06 \n",
+ "7 1 14.83 1.64 2.17 14.0 97 2.80 2.98 0.29 1.98 5.200000 1.08 \n",
+ "8 1 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 1.01 \n",
+ "9 1 14.10 2.16 2.30 18.0 105 2.95 3.32 0.22 2.38 5.750000 1.25 \n",
+ "10 1 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 1.17 \n",
+ "11 1 13.75 1.73 2.41 16.0 89 2.60 2.76 0.29 1.81 5.600000 1.15 \n",
+ "12 1 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 1.25 \n",
+ "13 1 14.38 1.87 2.38 12.0 102 3.30 3.64 0.29 2.96 7.500000 1.20 \n",
+ "14 1 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 1.28 \n",
+ "15 1 14.30 1.92 2.72 20.0 120 2.80 3.14 0.33 1.97 6.200000 1.07 \n",
+ "16 1 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 1.13 \n",
+ "17 1 14.19 1.59 2.48 16.5 108 3.30 3.93 0.32 1.86 8.700000 1.23 \n",
+ "18 1 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 0.96 \n",
+ "19 1 14.06 1.63 2.28 16.0 126 3.00 3.17 0.24 2.10 5.650000 1.09 \n",
+ "20 1 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 1.03 \n",
+ "21 1 13.71 1.86 2.36 16.6 101 2.61 2.88 0.27 1.69 3.800000 1.11 \n",
+ "22 1 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 1.09 \n",
+ "23 1 13.50 1.81 2.61 20.0 96 2.53 2.61 0.28 1.66 3.520000 1.12 \n",
+ "24 1 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 1.13 \n",
+ "25 1 13.39 1.77 2.62 16.1 93 2.85 2.94 0.34 1.45 4.800000 0.92 \n",
+ "26 1 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 1.02 \n",
+ "27 1 13.87 1.90 2.80 19.4 107 2.95 2.97 0.37 1.76 4.500000 1.25 \n",
+ "28 1 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 1.04 \n",
+ "29 1 13.73 1.50 2.70 22.5 101 3.00 3.25 0.29 2.38 5.700000 1.19 \n",
+ ".. .. ... ... ... ... ... ... ... ... ... ... ... \n",
+ "147 3 13.32 3.24 2.38 21.5 92 1.93 0.76 0.45 1.25 8.420000 0.55 \n",
+ "148 3 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 0.57 \n",
+ "149 3 13.50 3.12 2.62 24.0 123 1.40 1.57 0.22 1.25 8.600000 0.59 \n",
+ "150 3 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 0.48 \n",
+ "151 3 13.11 1.90 2.75 25.5 116 2.20 1.28 0.26 1.56 7.100000 0.61 \n",
+ "152 3 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 0.56 \n",
+ "153 3 12.58 1.29 2.10 20.0 103 1.48 0.58 0.53 1.40 7.600000 0.58 \n",
+ "154 3 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 0.60 \n",
+ "155 3 13.84 4.12 2.38 19.5 89 1.80 0.83 0.48 1.56 9.010000 0.57 \n",
+ "156 3 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 0.67 \n",
+ "157 3 14.34 1.68 2.70 25.0 98 2.80 1.31 0.53 2.70 13.000000 0.57 \n",
+ "158 3 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 0.57 \n",
+ "159 3 12.36 3.83 2.38 21.0 88 2.30 0.92 0.50 1.04 7.650000 0.56 \n",
+ "160 3 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 0.96 \n",
+ "161 3 12.85 3.27 2.58 22.0 106 1.65 0.60 0.60 0.96 5.580000 0.87 \n",
+ "162 3 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 0.68 \n",
+ "163 3 13.78 2.76 2.30 22.0 90 1.35 0.68 0.41 1.03 9.580000 0.70 \n",
+ "164 3 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 0.78 \n",
+ "165 3 13.45 3.70 2.60 23.0 111 1.70 0.92 0.43 1.46 10.680000 0.85 \n",
+ "166 3 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 0.72 \n",
+ "167 3 13.58 2.58 2.69 24.5 105 1.55 0.84 0.39 1.54 8.660000 0.74 \n",
+ "168 3 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 0.67 \n",
+ "169 3 12.20 3.03 2.32 19.0 96 1.25 0.49 0.40 0.73 5.500000 0.66 \n",
+ "170 3 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 0.57 \n",
+ "171 3 14.16 2.51 2.48 20.0 91 1.68 0.70 0.44 1.24 9.700000 0.62 \n",
+ "172 3 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 0.64 \n",
+ "173 3 13.40 3.91 2.48 23.0 102 1.80 0.75 0.43 1.41 7.300000 0.70 \n",
+ "174 3 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 0.59 \n",
+ "175 3 13.17 2.59 2.37 20.0 120 1.65 0.68 0.53 1.46 9.300000 0.60 \n",
+ "176 3 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 0.61 \n",
+ "\n",
+ " 3.92 1065 \n",
+ "0 3.40 1050 \n",
+ "1 3.17 1185 \n",
+ "2 3.45 1480 \n",
+ "3 2.93 735 \n",
+ "4 2.85 1450 \n",
+ "5 3.58 1290 \n",
+ "6 3.58 1295 \n",
+ "7 2.85 1045 \n",
+ "8 3.55 1045 \n",
+ "9 3.17 1510 \n",
+ "10 2.82 1280 \n",
+ "11 2.90 1320 \n",
+ "12 2.73 1150 \n",
+ "13 3.00 1547 \n",
+ "14 2.88 1310 \n",
+ "15 2.65 1280 \n",
+ "16 2.57 1130 \n",
+ "17 2.82 1680 \n",
+ "18 3.36 845 \n",
+ "19 3.71 780 \n",
+ "20 3.52 770 \n",
+ "21 4.00 1035 \n",
+ "22 3.63 1015 \n",
+ "23 3.82 845 \n",
+ "24 3.20 830 \n",
+ "25 3.22 1195 \n",
+ "26 2.77 1285 \n",
+ "27 3.40 915 \n",
+ "28 3.59 1035 \n",
+ "29 2.71 1285 \n",
+ ".. ... ... \n",
+ "147 1.62 650 \n",
+ "148 1.33 550 \n",
+ "149 1.30 500 \n",
+ "150 1.47 480 \n",
+ "151 1.33 425 \n",
+ "152 1.51 675 \n",
+ "153 1.55 640 \n",
+ "154 1.48 725 \n",
+ "155 1.64 480 \n",
+ "156 1.73 880 \n",
+ "157 1.96 660 \n",
+ "158 1.78 620 \n",
+ "159 1.58 520 \n",
+ "160 1.82 680 \n",
+ "161 2.11 570 \n",
+ "162 1.75 675 \n",
+ "163 1.68 615 \n",
+ "164 1.75 520 \n",
+ "165 1.56 695 \n",
+ "166 1.75 685 \n",
+ "167 1.80 750 \n",
+ "168 1.92 630 \n",
+ "169 1.83 510 \n",
+ "170 1.63 470 \n",
+ "171 1.71 660 \n",
+ "172 1.74 740 \n",
+ "173 1.56 750 \n",
+ "174 1.56 835 \n",
+ "175 1.62 840 \n",
+ "176 1.60 560 \n",
+ "\n",
+ "[177 rows x 14 columns]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
},
{
"metadata": {
- "id": "KE-k7b_Mn5iN",
+ "id": "BF9MMjoZjSlg",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "#### See the top 10 rows\n"
+ "#### print first five rows"
]
},
{
"metadata": {
- "id": "HY2Ps7xMn4ao",
+ "id": "1vSMQdnHjYNU",
"colab_type": "code",
- "outputId": "7cd4dc70-c448-44da-e8ba-2b43e0bf6736",
+ "outputId": "fdd1cf57-e394-46b1-8420-677c7f919472",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
@@ -97,9 +240,9 @@
},
"cell_type": "code",
"source": [
- "iris_df.head()"
+ "wine_df.head(5)"
],
- "execution_count": 42,
+ "execution_count": 3,
"outputs": [
{
"output_type": "execute_result",
@@ -123,333 +266,164 @@
" \n",
" \n",
" | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
- " species | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
- " 5.1 | \n",
- " 3.5 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
"
\n",
" \n",
" | 1 | \n",
- " 4.9 | \n",
- " 3.0 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 1 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
"
\n",
" \n",
" | 2 | \n",
- " 4.7 | \n",
- " 3.2 | \n",
- " 1.3 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
"
\n",
" \n",
" | 3 | \n",
- " 4.6 | \n",
- " 3.1 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
"
\n",
" \n",
" | 4 | \n",
- " 5.0 | \n",
- " 3.6 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " sepal_length sepal_width petal_length petal_width species\n",
- "0 5.1 3.5 1.4 0.2 setosa\n",
- "1 4.9 3.0 1.4 0.2 setosa\n",
- "2 4.7 3.2 1.3 0.2 setosa\n",
- "3 4.6 3.1 1.5 0.2 setosa\n",
- "4 5.0 3.6 1.4 0.2 setosa"
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n",
+ "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n",
+ "\n",
+ " 1065 \n",
+ "0 1050 \n",
+ "1 1185 \n",
+ "2 1480 \n",
+ "3 735 \n",
+ "4 1450 "
]
},
"metadata": {
"tags": []
},
- "execution_count": 42
- }
- ]
- },
- {
- "metadata": {
- "id": "ZQXekIodqOZu",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "#### Find number of rows and columns\n"
- ]
- },
- {
- "metadata": {
- "id": "6Y-A-lbFqR82",
- "colab_type": "code",
- "outputId": "5086cdb6-0854-4f26-c3b1-c2a0e0e48ef5",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 72
- }
- },
- "cell_type": "code",
- "source": [
- "print(iris_df.shape)\n",
- "\n",
- "#first is row and second is column\n",
- "#select row by simple indexing\n",
- "\n",
- "print(iris_df.shape[0])\n",
- "print(iris_df.shape[1])"
- ],
- "execution_count": 43,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "(150, 5)\n",
- "150\n",
- "5\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "metadata": {
- "id": "4ckCiGPhrC_t",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "#### Print all columns"
- ]
- },
- {
- "metadata": {
- "id": "S6jgMyRDrF2a",
- "colab_type": "code",
- "outputId": "febc8804-c116-4069-fd9b-5af5b1bc3c00",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 72
- }
- },
- "cell_type": "code",
- "source": [
- "print(iris_df.columns)"
- ],
- "execution_count": 44,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',\n",
- " 'species'],\n",
- " dtype='object')\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "metadata": {
- "id": "kVav5-ACtIqS",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "#### Check Index\n"
- ]
- },
- {
- "metadata": {
- "id": "iu3I9zIGtLDX",
- "colab_type": "code",
- "outputId": "7ee018bf-a911-4de2-8c46-da228dfb42cb",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- }
- },
- "cell_type": "code",
- "source": [
- "print(iris_df.index)"
- ],
- "execution_count": 45,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "RangeIndex(start=0, stop=150, step=1)\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "metadata": {
- "id": "psCc7PborOCQ",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "#### Right now the iris_data set has all the species grouped together let's shuffle it"
- ]
- },
- {
- "metadata": {
- "id": "Bxc8i6avrZPw",
- "colab_type": "code",
- "outputId": "8734c31f-6e5c-459c-80c4-8fb8a8832144",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 237
- }
- },
- "cell_type": "code",
- "source": [
- "#generate a random permutaion on index\n",
- "\n",
- "print(iris_df.head())\n",
- "\n",
- "new_index = np.random.permutation(iris_df.index)\n",
- "iris_df = iris_df.reindex(index = new_index)\n",
- "\n",
- "print(iris_df.head())"
- ],
- "execution_count": 46,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- " sepal_length sepal_width petal_length petal_width species\n",
- "0 5.1 3.5 1.4 0.2 setosa\n",
- "1 4.9 3.0 1.4 0.2 setosa\n",
- "2 4.7 3.2 1.3 0.2 setosa\n",
- "3 4.6 3.1 1.5 0.2 setosa\n",
- "4 5.0 3.6 1.4 0.2 setosa\n",
- " sepal_length sepal_width petal_length petal_width species\n",
- "126 6.2 2.8 4.8 1.8 virginica\n",
- "135 7.7 3.0 6.1 2.3 virginica\n",
- "128 6.4 2.8 5.6 2.1 virginica\n",
- "60 5.0 2.0 3.5 1.0 versicolor\n",
- "56 6.3 3.3 4.7 1.6 versicolor\n"
- ],
- "name": "stdout"
+ "execution_count": 3
}
]
},
{
"metadata": {
- "id": "j32h8022sRT8",
+ "id": "Tet6P2DvjY3T",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "#### We can also apply an operation on whole column of iris_df"
- ]
- },
- {
- "metadata": {
- "id": "seYXHXsYsYJI",
- "colab_type": "code",
- "outputId": "18305166-b616-4a75-b0ca-a52d1b6a286b",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 348
- }
- },
- "cell_type": "code",
- "source": [
- "#original\n",
+ "#### assign wine_df to a different variable wine_df_copy and then delete all odd rows of wine_df_copy\n",
"\n",
- "print(iris_df.head())\n",
- "\n",
- "iris_df['sepal_width'] *= 10\n",
- "\n",
- "#changed\n",
- "\n",
- "print(iris_df.head())\n",
- "\n",
- "#lets undo the operation\n",
- "\n",
- "iris_df['sepal_width'] /= 10\n",
- "\n",
- "print(iris_df.head())"
- ],
- "execution_count": 47,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- " sepal_length sepal_width petal_length petal_width species\n",
- "126 6.2 2.8 4.8 1.8 virginica\n",
- "135 7.7 3.0 6.1 2.3 virginica\n",
- "128 6.4 2.8 5.6 2.1 virginica\n",
- "60 5.0 2.0 3.5 1.0 versicolor\n",
- "56 6.3 3.3 4.7 1.6 versicolor\n",
- " sepal_length sepal_width petal_length petal_width species\n",
- "126 6.2 28.0 4.8 1.8 virginica\n",
- "135 7.7 30.0 6.1 2.3 virginica\n",
- "128 6.4 28.0 5.6 2.1 virginica\n",
- "60 5.0 20.0 3.5 1.0 versicolor\n",
- "56 6.3 33.0 4.7 1.6 versicolor\n",
- " sepal_length sepal_width petal_length petal_width species\n",
- "126 6.2 2.8 4.8 1.8 virginica\n",
- "135 7.7 3.0 6.1 2.3 virginica\n",
- "128 6.4 2.8 5.6 2.1 virginica\n",
- "60 5.0 2.0 3.5 1.0 versicolor\n",
- "56 6.3 3.3 4.7 1.6 versicolor\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "metadata": {
- "id": "R-Ca-LBLzjiF",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "#### Show all the rows where sepal_width > 3.3"
+ "[Hint](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html)"
]
},
{
"metadata": {
- "id": "WJ7W-F-d0AoZ",
+ "id": "CMj3qSdJjx0u",
"colab_type": "code",
- "outputId": "d9caac74-c750-4e50-80e0-7e5cd0bda7db",
+ "outputId": "8dd723aa-75f0-4873-aa96-280f8de4b409",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 1179
+ "height": 1992
}
},
"cell_type": "code",
"source": [
- "iris_df[iris_df['sepal_width']>3.3]"
+ "wine_df_copy = wine_df\n",
+ "wine_df_copy\n",
+ "wine_df_copy.iloc[::2]"
],
- "execution_count": 48,
+ "execution_count": 4,
"outputs": [
{
"output_type": "execute_result",
@@ -473,460 +447,1246 @@
" \n",
" \n",
" | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
- " species | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
"
\n",
" \n",
" \n",
" \n",
- " | 40 | \n",
- " 5.0 | \n",
- " 3.5 | \n",
- " 1.3 | \n",
- " 0.3 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 46 | \n",
- " 5.1 | \n",
- " 3.8 | \n",
- " 1.6 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.380000 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
"
\n",
" \n",
- " | 24 | \n",
- " 4.8 | \n",
- " 3.4 | \n",
- " 1.9 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.800000 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
"
\n",
" \n",
- " | 18 | \n",
- " 5.7 | \n",
- " 3.8 | \n",
- " 1.7 | \n",
- " 0.3 | \n",
- " setosa | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.750000 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
"
\n",
" \n",
- " | 148 | \n",
- " 6.2 | \n",
- " 3.4 | \n",
- " 5.4 | \n",
- " 2.3 | \n",
- " virginica | \n",
+ " 6 | \n",
+ " 1 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.050000 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.220000 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045 | \n",
"
\n",
" \n",
- " | 20 | \n",
- " 5.4 | \n",
- " 3.4 | \n",
- " 1.7 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 10 | \n",
+ " 1 | \n",
+ " 14.12 | \n",
+ " 1.48 | \n",
+ " 2.32 | \n",
+ " 16.8 | \n",
+ " 95 | \n",
+ " 2.20 | \n",
+ " 2.43 | \n",
+ " 0.26 | \n",
+ " 1.57 | \n",
+ " 5.000000 | \n",
+ " 1.17 | \n",
+ " 2.82 | \n",
+ " 1280 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 1 | \n",
+ " 14.75 | \n",
+ " 1.73 | \n",
+ " 2.39 | \n",
+ " 11.4 | \n",
+ " 91 | \n",
+ " 3.10 | \n",
+ " 3.69 | \n",
+ " 0.43 | \n",
+ " 2.81 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 2.73 | \n",
+ " 1150 | \n",
"
\n",
" \n",
- " | 19 | \n",
- " 5.1 | \n",
- " 3.8 | \n",
- " 1.5 | \n",
- " 0.3 | \n",
- " setosa | \n",
+ " 14 | \n",
+ " 1 | \n",
+ " 13.63 | \n",
+ " 1.81 | \n",
+ " 2.70 | \n",
+ " 17.2 | \n",
+ " 112 | \n",
+ " 2.85 | \n",
+ " 2.91 | \n",
+ " 0.30 | \n",
+ " 1.46 | \n",
+ " 7.300000 | \n",
+ " 1.28 | \n",
+ " 2.88 | \n",
+ " 1310 | \n",
"
\n",
" \n",
" | 16 | \n",
- " 5.4 | \n",
- " 3.9 | \n",
- " 1.3 | \n",
- " 0.4 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 11 | \n",
- " 4.8 | \n",
- " 3.4 | \n",
- " 1.6 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " 4.6 | \n",
- " 3.4 | \n",
- " 1.4 | \n",
- " 0.3 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 39 | \n",
- " 5.1 | \n",
- " 3.4 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 1 | \n",
+ " 13.83 | \n",
+ " 1.57 | \n",
+ " 2.62 | \n",
+ " 20.0 | \n",
+ " 115 | \n",
+ " 2.95 | \n",
+ " 3.40 | \n",
+ " 0.40 | \n",
+ " 1.72 | \n",
+ " 6.600000 | \n",
+ " 1.13 | \n",
+ " 2.57 | \n",
+ " 1130 | \n",
"
\n",
" \n",
- " | 136 | \n",
- " 6.3 | \n",
- " 3.4 | \n",
- " 5.6 | \n",
- " 2.4 | \n",
- " virginica | \n",
+ " 18 | \n",
+ " 1 | \n",
+ " 13.64 | \n",
+ " 3.10 | \n",
+ " 2.56 | \n",
+ " 15.2 | \n",
+ " 116 | \n",
+ " 2.70 | \n",
+ " 3.03 | \n",
+ " 0.17 | \n",
+ " 1.66 | \n",
+ " 5.100000 | \n",
+ " 0.96 | \n",
+ " 3.36 | \n",
+ " 845 | \n",
"
\n",
" \n",
- " | 33 | \n",
- " 5.5 | \n",
- " 4.2 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 20 | \n",
+ " 1 | \n",
+ " 12.93 | \n",
+ " 3.80 | \n",
+ " 2.65 | \n",
+ " 18.6 | \n",
+ " 102 | \n",
+ " 2.41 | \n",
+ " 2.41 | \n",
+ " 0.25 | \n",
+ " 1.98 | \n",
+ " 4.500000 | \n",
+ " 1.03 | \n",
+ " 3.52 | \n",
+ " 770 | \n",
"
\n",
" \n",
- " | 117 | \n",
- " 7.7 | \n",
- " 3.8 | \n",
- " 6.7 | \n",
- " 2.2 | \n",
- " virginica | \n",
+ " 22 | \n",
+ " 1 | \n",
+ " 12.85 | \n",
+ " 1.60 | \n",
+ " 2.52 | \n",
+ " 17.8 | \n",
+ " 95 | \n",
+ " 2.48 | \n",
+ " 2.37 | \n",
+ " 0.26 | \n",
+ " 1.46 | \n",
+ " 3.930000 | \n",
+ " 1.09 | \n",
+ " 3.63 | \n",
+ " 1015 | \n",
"
\n",
" \n",
- " | 4 | \n",
- " 5.0 | \n",
- " 3.6 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 24 | \n",
+ " 1 | \n",
+ " 13.05 | \n",
+ " 2.05 | \n",
+ " 3.22 | \n",
+ " 25.0 | \n",
+ " 124 | \n",
+ " 2.63 | \n",
+ " 2.68 | \n",
+ " 0.47 | \n",
+ " 1.92 | \n",
+ " 3.580000 | \n",
+ " 1.13 | \n",
+ " 3.20 | \n",
+ " 830 | \n",
"
\n",
" \n",
- " | 85 | \n",
- " 6.0 | \n",
- " 3.4 | \n",
- " 4.5 | \n",
- " 1.6 | \n",
- " versicolor | \n",
+ " 26 | \n",
+ " 1 | \n",
+ " 13.30 | \n",
+ " 1.72 | \n",
+ " 2.14 | \n",
+ " 17.0 | \n",
+ " 94 | \n",
+ " 2.40 | \n",
+ " 2.19 | \n",
+ " 0.27 | \n",
+ " 1.35 | \n",
+ " 3.950000 | \n",
+ " 1.02 | \n",
+ " 2.77 | \n",
+ " 1285 | \n",
"
\n",
" \n",
- " | 7 | \n",
- " 5.0 | \n",
- " 3.4 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 28 | \n",
+ " 1 | \n",
+ " 14.02 | \n",
+ " 1.68 | \n",
+ " 2.21 | \n",
+ " 16.0 | \n",
+ " 96 | \n",
+ " 2.65 | \n",
+ " 2.33 | \n",
+ " 0.26 | \n",
+ " 1.98 | \n",
+ " 4.700000 | \n",
+ " 1.04 | \n",
+ " 3.59 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 30 | \n",
+ " 1 | \n",
+ " 13.58 | \n",
+ " 1.66 | \n",
+ " 2.36 | \n",
+ " 19.1 | \n",
+ " 106 | \n",
+ " 2.86 | \n",
+ " 3.19 | \n",
+ " 0.22 | \n",
+ " 1.95 | \n",
+ " 6.900000 | \n",
+ " 1.09 | \n",
+ " 2.88 | \n",
+ " 1515 | \n",
"
\n",
" \n",
- " | 22 | \n",
- " 4.6 | \n",
- " 3.6 | \n",
- " 1.0 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 32 | \n",
+ " 1 | \n",
+ " 13.76 | \n",
+ " 1.53 | \n",
+ " 2.70 | \n",
+ " 19.5 | \n",
+ " 132 | \n",
+ " 2.95 | \n",
+ " 2.74 | \n",
+ " 0.50 | \n",
+ " 1.35 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 3.00 | \n",
+ " 1235 | \n",
+ "
\n",
+ " \n",
+ " | 34 | \n",
+ " 1 | \n",
+ " 13.48 | \n",
+ " 1.81 | \n",
+ " 2.41 | \n",
+ " 20.5 | \n",
+ " 100 | \n",
+ " 2.70 | \n",
+ " 2.98 | \n",
+ " 0.26 | \n",
+ " 1.86 | \n",
+ " 5.100000 | \n",
+ " 1.04 | \n",
+ " 3.47 | \n",
+ " 920 | \n",
"
\n",
" \n",
- " | 48 | \n",
- " 5.3 | \n",
- " 3.7 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 36 | \n",
+ " 1 | \n",
+ " 13.05 | \n",
+ " 1.65 | \n",
+ " 2.55 | \n",
+ " 18.0 | \n",
+ " 98 | \n",
+ " 2.45 | \n",
+ " 2.43 | \n",
+ " 0.29 | \n",
+ " 1.44 | \n",
+ " 4.250000 | \n",
+ " 1.12 | \n",
+ " 2.51 | \n",
+ " 1105 | \n",
"
\n",
" \n",
- " | 109 | \n",
- " 7.2 | \n",
- " 3.6 | \n",
- " 6.1 | \n",
- " 2.5 | \n",
- " virginica | \n",
+ " 38 | \n",
+ " 1 | \n",
+ " 14.22 | \n",
+ " 3.99 | \n",
+ " 2.51 | \n",
+ " 13.2 | \n",
+ " 128 | \n",
+ " 3.00 | \n",
+ " 3.04 | \n",
+ " 0.20 | \n",
+ " 2.08 | \n",
+ " 5.100000 | \n",
+ " 0.89 | \n",
+ " 3.53 | \n",
+ " 760 | \n",
"
\n",
" \n",
- " | 14 | \n",
- " 5.8 | \n",
- " 4.0 | \n",
- " 1.2 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 40 | \n",
+ " 1 | \n",
+ " 13.41 | \n",
+ " 3.84 | \n",
+ " 2.12 | \n",
+ " 18.8 | \n",
+ " 90 | \n",
+ " 2.45 | \n",
+ " 2.68 | \n",
+ " 0.27 | \n",
+ " 1.48 | \n",
+ " 4.280000 | \n",
+ " 0.91 | \n",
+ " 3.00 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 42 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 3.98 | \n",
+ " 2.29 | \n",
+ " 17.5 | \n",
+ " 103 | \n",
+ " 2.64 | \n",
+ " 2.63 | \n",
+ " 0.32 | \n",
+ " 1.66 | \n",
+ " 4.360000 | \n",
+ " 0.82 | \n",
+ " 3.00 | \n",
+ " 680 | \n",
"
\n",
" \n",
" | 44 | \n",
- " 5.1 | \n",
- " 3.8 | \n",
- " 1.9 | \n",
- " 0.4 | \n",
- " setosa | \n",
+ " 1 | \n",
+ " 14.21 | \n",
+ " 4.04 | \n",
+ " 2.44 | \n",
+ " 18.9 | \n",
+ " 111 | \n",
+ " 2.85 | \n",
+ " 2.65 | \n",
+ " 0.30 | \n",
+ " 1.25 | \n",
+ " 5.240000 | \n",
+ " 0.87 | \n",
+ " 3.33 | \n",
+ " 1080 | \n",
"
\n",
" \n",
- " | 43 | \n",
- " 5.0 | \n",
- " 3.5 | \n",
- " 1.6 | \n",
- " 0.6 | \n",
- " setosa | \n",
+ " 46 | \n",
+ " 1 | \n",
+ " 13.90 | \n",
+ " 1.68 | \n",
+ " 2.12 | \n",
+ " 16.0 | \n",
+ " 101 | \n",
+ " 3.10 | \n",
+ " 3.39 | \n",
+ " 0.21 | \n",
+ " 2.14 | \n",
+ " 6.100000 | \n",
+ " 0.91 | \n",
+ " 3.33 | \n",
+ " 985 | \n",
"
\n",
" \n",
- " | 17 | \n",
- " 5.1 | \n",
- " 3.5 | \n",
- " 1.4 | \n",
- " 0.3 | \n",
- " setosa | \n",
+ " 48 | \n",
+ " 1 | \n",
+ " 13.94 | \n",
+ " 1.73 | \n",
+ " 2.27 | \n",
+ " 17.4 | \n",
+ " 108 | \n",
+ " 2.88 | \n",
+ " 3.54 | \n",
+ " 0.32 | \n",
+ " 2.08 | \n",
+ " 8.900000 | \n",
+ " 1.12 | \n",
+ " 3.10 | \n",
+ " 1260 | \n",
+ "
\n",
+ " \n",
+ " | 50 | \n",
+ " 1 | \n",
+ " 13.83 | \n",
+ " 1.65 | \n",
+ " 2.60 | \n",
+ " 17.2 | \n",
+ " 94 | \n",
+ " 2.45 | \n",
+ " 2.99 | \n",
+ " 0.22 | \n",
+ " 2.29 | \n",
+ " 5.600000 | \n",
+ " 1.24 | \n",
+ " 3.37 | \n",
+ " 1265 | \n",
+ "
\n",
+ " \n",
+ " | 52 | \n",
+ " 1 | \n",
+ " 13.77 | \n",
+ " 1.90 | \n",
+ " 2.68 | \n",
+ " 17.1 | \n",
+ " 115 | \n",
+ " 3.00 | \n",
+ " 2.79 | \n",
+ " 0.39 | \n",
+ " 1.68 | \n",
+ " 6.300000 | \n",
+ " 1.13 | \n",
+ " 2.93 | \n",
+ " 1375 | \n",
+ "
\n",
+ " \n",
+ " | 54 | \n",
+ " 1 | \n",
+ " 13.56 | \n",
+ " 1.73 | \n",
+ " 2.46 | \n",
+ " 20.5 | \n",
+ " 116 | \n",
+ " 2.96 | \n",
+ " 2.78 | \n",
+ " 0.20 | \n",
+ " 2.45 | \n",
+ " 6.250000 | \n",
+ " 0.98 | \n",
+ " 3.03 | \n",
+ " 1120 | \n",
"
\n",
" \n",
- " | 27 | \n",
- " 5.2 | \n",
- " 3.5 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 56 | \n",
+ " 1 | \n",
+ " 13.29 | \n",
+ " 1.97 | \n",
+ " 2.68 | \n",
+ " 16.8 | \n",
+ " 102 | \n",
+ " 3.00 | \n",
+ " 3.23 | \n",
+ " 0.31 | \n",
+ " 1.66 | \n",
+ " 6.000000 | \n",
+ " 1.07 | \n",
+ " 2.84 | \n",
+ " 1270 | \n",
+ "
\n",
+ " \n",
+ " | 58 | \n",
+ " 2 | \n",
+ " 12.37 | \n",
+ " 0.94 | \n",
+ " 1.36 | \n",
+ " 10.6 | \n",
+ " 88 | \n",
+ " 1.98 | \n",
+ " 0.57 | \n",
+ " 0.28 | \n",
+ " 0.42 | \n",
+ " 1.950000 | \n",
+ " 1.05 | \n",
+ " 1.82 | \n",
+ " 520 | \n",
"
\n",
" \n",
- " | 5 | \n",
- " 5.4 | \n",
- " 3.9 | \n",
- " 1.7 | \n",
- " 0.4 | \n",
- " setosa | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
"
\n",
" \n",
- " | 31 | \n",
- " 5.4 | \n",
- " 3.4 | \n",
- " 1.5 | \n",
- " 0.4 | \n",
- " setosa | \n",
+ " 118 | \n",
+ " 2 | \n",
+ " 12.00 | \n",
+ " 3.43 | \n",
+ " 2.00 | \n",
+ " 19.0 | \n",
+ " 87 | \n",
+ " 2.00 | \n",
+ " 1.64 | \n",
+ " 0.37 | \n",
+ " 1.87 | \n",
+ " 1.280000 | \n",
+ " 0.93 | \n",
+ " 3.05 | \n",
+ " 564 | \n",
+ "
\n",
+ " \n",
+ " | 120 | \n",
+ " 2 | \n",
+ " 11.56 | \n",
+ " 2.05 | \n",
+ " 3.23 | \n",
+ " 28.5 | \n",
+ " 119 | \n",
+ " 3.18 | \n",
+ " 5.08 | \n",
+ " 0.47 | \n",
+ " 1.87 | \n",
+ " 6.000000 | \n",
+ " 0.93 | \n",
+ " 3.69 | \n",
+ " 465 | \n",
+ "
\n",
+ " \n",
+ " | 122 | \n",
+ " 2 | \n",
+ " 13.05 | \n",
+ " 5.80 | \n",
+ " 2.13 | \n",
+ " 21.5 | \n",
+ " 86 | \n",
+ " 2.62 | \n",
+ " 2.65 | \n",
+ " 0.30 | \n",
+ " 2.01 | \n",
+ " 2.600000 | \n",
+ " 0.73 | \n",
+ " 3.10 | \n",
+ " 380 | \n",
+ "
\n",
+ " \n",
+ " | 124 | \n",
+ " 2 | \n",
+ " 12.07 | \n",
+ " 2.16 | \n",
+ " 2.17 | \n",
+ " 21.0 | \n",
+ " 85 | \n",
+ " 2.60 | \n",
+ " 2.65 | \n",
+ " 0.37 | \n",
+ " 1.35 | \n",
+ " 2.760000 | \n",
+ " 0.86 | \n",
+ " 3.28 | \n",
+ " 378 | \n",
"
\n",
" \n",
- " | 32 | \n",
- " 5.2 | \n",
- " 4.1 | \n",
- " 1.5 | \n",
- " 0.1 | \n",
- " setosa | \n",
+ " 126 | \n",
+ " 2 | \n",
+ " 11.79 | \n",
+ " 2.13 | \n",
+ " 2.78 | \n",
+ " 28.5 | \n",
+ " 92 | \n",
+ " 2.13 | \n",
+ " 2.24 | \n",
+ " 0.58 | \n",
+ " 1.76 | \n",
+ " 3.000000 | \n",
+ " 0.97 | \n",
+ " 2.44 | \n",
+ " 466 | \n",
"
\n",
" \n",
- " | 36 | \n",
- " 5.5 | \n",
- " 3.5 | \n",
- " 1.3 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 128 | \n",
+ " 2 | \n",
+ " 12.04 | \n",
+ " 4.30 | \n",
+ " 2.38 | \n",
+ " 22.0 | \n",
+ " 80 | \n",
+ " 2.10 | \n",
+ " 1.75 | \n",
+ " 0.42 | \n",
+ " 1.35 | \n",
+ " 2.600000 | \n",
+ " 0.79 | \n",
+ " 2.57 | \n",
+ " 580 | \n",
+ "
\n",
+ " \n",
+ " | 130 | \n",
+ " 3 | \n",
+ " 12.88 | \n",
+ " 2.99 | \n",
+ " 2.40 | \n",
+ " 20.0 | \n",
+ " 104 | \n",
+ " 1.30 | \n",
+ " 1.22 | \n",
+ " 0.24 | \n",
+ " 0.83 | \n",
+ " 5.400000 | \n",
+ " 0.74 | \n",
+ " 1.42 | \n",
+ " 530 | \n",
+ "
\n",
+ " \n",
+ " | 132 | \n",
+ " 3 | \n",
+ " 12.70 | \n",
+ " 3.55 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 106 | \n",
+ " 1.70 | \n",
+ " 1.20 | \n",
+ " 0.17 | \n",
+ " 0.84 | \n",
+ " 5.000000 | \n",
+ " 0.78 | \n",
+ " 1.29 | \n",
+ " 600 | \n",
"
\n",
" \n",
- " | 131 | \n",
- " 7.9 | \n",
- " 3.8 | \n",
- " 6.4 | \n",
- " 2.0 | \n",
- " virginica | \n",
+ " 134 | \n",
+ " 3 | \n",
+ " 12.60 | \n",
+ " 2.46 | \n",
+ " 2.20 | \n",
+ " 18.5 | \n",
+ " 94 | \n",
+ " 1.62 | \n",
+ " 0.66 | \n",
+ " 0.63 | \n",
+ " 0.94 | \n",
+ " 7.100000 | \n",
+ " 0.73 | \n",
+ " 1.58 | \n",
+ " 695 | \n",
"
\n",
" \n",
- " | 0 | \n",
- " 5.1 | \n",
- " 3.5 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 136 | \n",
+ " 3 | \n",
+ " 12.53 | \n",
+ " 5.51 | \n",
+ " 2.64 | \n",
+ " 25.0 | \n",
+ " 96 | \n",
+ " 1.79 | \n",
+ " 0.60 | \n",
+ " 0.63 | \n",
+ " 1.10 | \n",
+ " 5.000000 | \n",
+ " 0.82 | \n",
+ " 1.69 | \n",
+ " 515 | \n",
+ "
\n",
+ " \n",
+ " | 138 | \n",
+ " 3 | \n",
+ " 12.84 | \n",
+ " 2.96 | \n",
+ " 2.61 | \n",
+ " 24.0 | \n",
+ " 101 | \n",
+ " 2.32 | \n",
+ " 0.60 | \n",
+ " 0.53 | \n",
+ " 0.81 | \n",
+ " 4.920000 | \n",
+ " 0.89 | \n",
+ " 2.15 | \n",
+ " 590 | \n",
+ "
\n",
+ " \n",
+ " | 140 | \n",
+ " 3 | \n",
+ " 13.36 | \n",
+ " 2.56 | \n",
+ " 2.35 | \n",
+ " 20.0 | \n",
+ " 89 | \n",
+ " 1.40 | \n",
+ " 0.50 | \n",
+ " 0.37 | \n",
+ " 0.64 | \n",
+ " 5.600000 | \n",
+ " 0.70 | \n",
+ " 2.47 | \n",
+ " 780 | \n",
"
\n",
" \n",
- " | 15 | \n",
- " 5.7 | \n",
- " 4.4 | \n",
- " 1.5 | \n",
- " 0.4 | \n",
- " setosa | \n",
+ " 142 | \n",
+ " 3 | \n",
+ " 13.62 | \n",
+ " 4.95 | \n",
+ " 2.35 | \n",
+ " 20.0 | \n",
+ " 92 | \n",
+ " 2.00 | \n",
+ " 0.80 | \n",
+ " 0.47 | \n",
+ " 1.02 | \n",
+ " 4.400000 | \n",
+ " 0.91 | \n",
+ " 2.05 | \n",
+ " 550 | \n",
+ "
\n",
+ " \n",
+ " | 144 | \n",
+ " 3 | \n",
+ " 13.16 | \n",
+ " 3.57 | \n",
+ " 2.15 | \n",
+ " 21.0 | \n",
+ " 102 | \n",
+ " 1.50 | \n",
+ " 0.55 | \n",
+ " 0.43 | \n",
+ " 1.30 | \n",
+ " 4.000000 | \n",
+ " 0.60 | \n",
+ " 1.68 | \n",
+ " 830 | \n",
"
\n",
" \n",
- " | 28 | \n",
- " 5.2 | \n",
- " 3.4 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 146 | \n",
+ " 3 | \n",
+ " 12.87 | \n",
+ " 4.61 | \n",
+ " 2.48 | \n",
+ " 21.5 | \n",
+ " 86 | \n",
+ " 1.70 | \n",
+ " 0.65 | \n",
+ " 0.47 | \n",
+ " 0.86 | \n",
+ " 7.650000 | \n",
+ " 0.54 | \n",
+ " 1.86 | \n",
+ " 625 | \n",
"
\n",
" \n",
- " | 10 | \n",
- " 5.4 | \n",
- " 3.7 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 26 | \n",
- " 5.0 | \n",
- " 3.4 | \n",
- " 1.6 | \n",
- " 0.4 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 21 | \n",
- " 5.1 | \n",
- " 3.7 | \n",
- " 1.5 | \n",
- " 0.4 | \n",
- " setosa | \n",
+ " 148 | \n",
+ " 3 | \n",
+ " 13.08 | \n",
+ " 3.90 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 113 | \n",
+ " 1.41 | \n",
+ " 1.39 | \n",
+ " 0.34 | \n",
+ " 1.14 | \n",
+ " 9.400000 | \n",
+ " 0.57 | \n",
+ " 1.33 | \n",
+ " 550 | \n",
+ "
\n",
+ " \n",
+ " | 150 | \n",
+ " 3 | \n",
+ " 12.79 | \n",
+ " 2.67 | \n",
+ " 2.48 | \n",
+ " 22.0 | \n",
+ " 112 | \n",
+ " 1.48 | \n",
+ " 1.36 | \n",
+ " 0.24 | \n",
+ " 1.26 | \n",
+ " 10.800000 | \n",
+ " 0.48 | \n",
+ " 1.47 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 152 | \n",
+ " 3 | \n",
+ " 13.23 | \n",
+ " 3.30 | \n",
+ " 2.28 | \n",
+ " 18.5 | \n",
+ " 98 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.61 | \n",
+ " 1.87 | \n",
+ " 10.520000 | \n",
+ " 0.56 | \n",
+ " 1.51 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 154 | \n",
+ " 3 | \n",
+ " 13.17 | \n",
+ " 5.19 | \n",
+ " 2.32 | \n",
+ " 22.0 | \n",
+ " 93 | \n",
+ " 1.74 | \n",
+ " 0.63 | \n",
+ " 0.61 | \n",
+ " 1.55 | \n",
+ " 7.900000 | \n",
+ " 0.60 | \n",
+ " 1.48 | \n",
+ " 725 | \n",
+ "
\n",
+ " \n",
+ " | 156 | \n",
+ " 3 | \n",
+ " 12.45 | \n",
+ " 3.03 | \n",
+ " 2.64 | \n",
+ " 27.0 | \n",
+ " 97 | \n",
+ " 1.90 | \n",
+ " 0.58 | \n",
+ " 0.63 | \n",
+ " 1.14 | \n",
+ " 7.500000 | \n",
+ " 0.67 | \n",
+ " 1.73 | \n",
+ " 880 | \n",
+ "
\n",
+ " \n",
+ " | 158 | \n",
+ " 3 | \n",
+ " 13.48 | \n",
+ " 1.67 | \n",
+ " 2.64 | \n",
+ " 22.5 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 1.10 | \n",
+ " 0.52 | \n",
+ " 2.29 | \n",
+ " 11.750000 | \n",
+ " 0.57 | \n",
+ " 1.78 | \n",
+ " 620 | \n",
+ "
\n",
+ " \n",
+ " | 160 | \n",
+ " 3 | \n",
+ " 13.69 | \n",
+ " 3.26 | \n",
+ " 2.54 | \n",
+ " 20.0 | \n",
+ " 107 | \n",
+ " 1.83 | \n",
+ " 0.56 | \n",
+ " 0.50 | \n",
+ " 0.80 | \n",
+ " 5.880000 | \n",
+ " 0.96 | \n",
+ " 1.82 | \n",
+ " 680 | \n",
+ "
\n",
+ " \n",
+ " | 162 | \n",
+ " 3 | \n",
+ " 12.96 | \n",
+ " 3.45 | \n",
+ " 2.35 | \n",
+ " 18.5 | \n",
+ " 106 | \n",
+ " 1.39 | \n",
+ " 0.70 | \n",
+ " 0.40 | \n",
+ " 0.94 | \n",
+ " 5.280000 | \n",
+ " 0.68 | \n",
+ " 1.75 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 164 | \n",
+ " 3 | \n",
+ " 13.73 | \n",
+ " 4.36 | \n",
+ " 2.26 | \n",
+ " 22.5 | \n",
+ " 88 | \n",
+ " 1.28 | \n",
+ " 0.47 | \n",
+ " 0.52 | \n",
+ " 1.15 | \n",
+ " 6.620000 | \n",
+ " 0.78 | \n",
+ " 1.75 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 166 | \n",
+ " 3 | \n",
+ " 12.82 | \n",
+ " 3.37 | \n",
+ " 2.30 | \n",
+ " 19.5 | \n",
+ " 88 | \n",
+ " 1.48 | \n",
+ " 0.66 | \n",
+ " 0.40 | \n",
+ " 0.97 | \n",
+ " 10.260000 | \n",
+ " 0.72 | \n",
+ " 1.75 | \n",
+ " 685 | \n",
+ "
\n",
+ " \n",
+ " | 168 | \n",
+ " 3 | \n",
+ " 13.40 | \n",
+ " 4.60 | \n",
+ " 2.86 | \n",
+ " 25.0 | \n",
+ " 112 | \n",
+ " 1.98 | \n",
+ " 0.96 | \n",
+ " 0.27 | \n",
+ " 1.11 | \n",
+ " 8.500000 | \n",
+ " 0.67 | \n",
+ " 1.92 | \n",
+ " 630 | \n",
+ "
\n",
+ " \n",
+ " | 170 | \n",
+ " 3 | \n",
+ " 12.77 | \n",
+ " 2.39 | \n",
+ " 2.28 | \n",
+ " 19.5 | \n",
+ " 86 | \n",
+ " 1.39 | \n",
+ " 0.51 | \n",
+ " 0.48 | \n",
+ " 0.64 | \n",
+ " 9.899999 | \n",
+ " 0.57 | \n",
+ " 1.63 | \n",
+ " 470 | \n",
+ "
\n",
+ " \n",
+ " | 172 | \n",
+ " 3 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.700000 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 3 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.200000 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 3 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.200000 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560 | \n",
"
\n",
" \n",
"\n",
+ "89 rows × 14 columns
\n",
""
],
"text/plain": [
- " sepal_length sepal_width petal_length petal_width species\n",
- "40 5.0 3.5 1.3 0.3 setosa\n",
- "46 5.1 3.8 1.6 0.2 setosa\n",
- "24 4.8 3.4 1.9 0.2 setosa\n",
- "18 5.7 3.8 1.7 0.3 setosa\n",
- "148 6.2 3.4 5.4 2.3 virginica\n",
- "20 5.4 3.4 1.7 0.2 setosa\n",
- "19 5.1 3.8 1.5 0.3 setosa\n",
- "16 5.4 3.9 1.3 0.4 setosa\n",
- "11 4.8 3.4 1.6 0.2 setosa\n",
- "6 4.6 3.4 1.4 0.3 setosa\n",
- "39 5.1 3.4 1.5 0.2 setosa\n",
- "136 6.3 3.4 5.6 2.4 virginica\n",
- "33 5.5 4.2 1.4 0.2 setosa\n",
- "117 7.7 3.8 6.7 2.2 virginica\n",
- "4 5.0 3.6 1.4 0.2 setosa\n",
- "85 6.0 3.4 4.5 1.6 versicolor\n",
- "7 5.0 3.4 1.5 0.2 setosa\n",
- "22 4.6 3.6 1.0 0.2 setosa\n",
- "48 5.3 3.7 1.5 0.2 setosa\n",
- "109 7.2 3.6 6.1 2.5 virginica\n",
- "14 5.8 4.0 1.2 0.2 setosa\n",
- "44 5.1 3.8 1.9 0.4 setosa\n",
- "43 5.0 3.5 1.6 0.6 setosa\n",
- "17 5.1 3.5 1.4 0.3 setosa\n",
- "27 5.2 3.5 1.5 0.2 setosa\n",
- "5 5.4 3.9 1.7 0.4 setosa\n",
- "31 5.4 3.4 1.5 0.4 setosa\n",
- "32 5.2 4.1 1.5 0.1 setosa\n",
- "36 5.5 3.5 1.3 0.2 setosa\n",
- "131 7.9 3.8 6.4 2.0 virginica\n",
- "0 5.1 3.5 1.4 0.2 setosa\n",
- "15 5.7 4.4 1.5 0.4 setosa\n",
- "28 5.2 3.4 1.4 0.2 setosa\n",
- "10 5.4 3.7 1.5 0.2 setosa\n",
- "26 5.0 3.4 1.6 0.4 setosa\n",
- "21 5.1 3.7 1.5 0.4 setosa"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 48
- }
- ]
- },
- {
- "metadata": {
- "id": "gH3DnhCq2Cbl",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "#### Club two filters together - Find all samples where sepal_width > 3.3 and species is versicolor"
- ]
- },
- {
- "metadata": {
- "id": "4U7ksr_R2H7M",
- "colab_type": "code",
- "outputId": "d2b29aeb-6c2d-46a2-9e6e-da1eb111df7d",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- }
- },
- "cell_type": "code",
- "source": [
- "iris_df[(iris_df['sepal_width']>3.3) & (iris_df['species'] == 'versicolor')] "
- ],
- "execution_count": 49,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
- " species | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 85 | \n",
- " 6.0 | \n",
- " 3.4 | \n",
- " 4.5 | \n",
- " 1.6 | \n",
- " versicolor | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " sepal_length sepal_width petal_length petal_width species\n",
- "85 6.0 3.4 4.5 1.6 versicolor"
+ "[89 rows x 14 columns]"
]
},
"metadata": {
"tags": []
},
- "execution_count": 49
+ "execution_count": 4
}
]
},
{
"metadata": {
- "id": "1lmnB3ot2u7I",
+ "id": "o6Cs6T1Rjz71",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "#### Sorting a column by value"
+ "#### Assign the columns as below:\n",
+ "\n",
+ "The attributes are (dontated by Riccardo Leardi, riclea '@' anchem.unige.it): \n",
+ "1) alcohol \n",
+ "2) malic_acid \n",
+ "3) alcalinity_of_ash \n",
+ "4) magnesium \n",
+ "5) flavanoids \n",
+ "6) proanthocyanins \n",
+ "7) hue "
]
},
{
"metadata": {
- "id": "K7KIj6fv2zWP",
+ "id": "my8HB4V4j779",
"colab_type": "code",
- "outputId": "79c7241d-bafd-4130-a4b3-9129aca11ac8",
+ "outputId": "bcd8472c-3660-4d5a-898c-8610d87f3983",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 1992
+ "height": 2010
}
},
"cell_type": "code",
"source": [
- "iris_df.sort_values(by='sepal_width')#, ascending = False)\n",
- "#pass ascending = False for descending order"
+ "#wine_df.columns = ['alcohol','malic_acid','alcalinity_of_ash','magnesium','flavanoids','proanthocyanins','hue']\n",
+ "print(wine_df.iloc[0][1])\n",
+ "wine_df"
],
- "execution_count": 50,
+ "execution_count": 5,
"outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "13.2\n"
+ ],
+ "name": "stdout"
+ },
{
"output_type": "execute_result",
"data": {
@@ -949,253 +1709,532 @@
" \n",
" \n",
" | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
- " species | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
"
\n",
" \n",
" \n",
" \n",
- " | 60 | \n",
- " 5.0 | \n",
- " 2.0 | \n",
- " 3.5 | \n",
- " 1.0 | \n",
- " versicolor | \n",
- "
\n",
- " \n",
- " | 68 | \n",
- " 6.2 | \n",
- " 2.2 | \n",
- " 4.5 | \n",
- " 1.5 | \n",
- " versicolor | \n",
- "
\n",
- " \n",
- " | 62 | \n",
- " 6.0 | \n",
- " 2.2 | \n",
- " 4.0 | \n",
- " 1.0 | \n",
- " versicolor | \n",
- "
\n",
- " \n",
- " | 119 | \n",
- " 6.0 | \n",
- " 2.2 | \n",
- " 5.0 | \n",
- " 1.5 | \n",
- " virginica | \n",
- "
\n",
- " \n",
- " | 53 | \n",
- " 5.5 | \n",
- " 2.3 | \n",
- " 4.0 | \n",
- " 1.3 | \n",
- " versicolor | \n",
- "
\n",
- " \n",
- " | 41 | \n",
- " 4.5 | \n",
- " 2.3 | \n",
- " 1.3 | \n",
- " 0.3 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 93 | \n",
- " 5.0 | \n",
- " 2.3 | \n",
- " 3.3 | \n",
- " 1.0 | \n",
- " versicolor | \n",
- "
\n",
- " \n",
- " | 87 | \n",
- " 6.3 | \n",
- " 2.3 | \n",
- " 4.4 | \n",
- " 1.3 | \n",
- " versicolor | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.380000 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
"
\n",
" \n",
- " | 81 | \n",
- " 5.5 | \n",
- " 2.4 | \n",
- " 3.7 | \n",
- " 1.0 | \n",
- " versicolor | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.680000 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
"
\n",
" \n",
- " | 57 | \n",
- " 4.9 | \n",
- " 2.4 | \n",
- " 3.3 | \n",
- " 1.0 | \n",
- " versicolor | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.800000 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
"
\n",
" \n",
- " | 80 | \n",
- " 5.5 | \n",
- " 2.4 | \n",
- " 3.8 | \n",
- " 1.1 | \n",
- " versicolor | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.320000 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
"
\n",
" \n",
- " | 98 | \n",
- " 5.1 | \n",
- " 2.5 | \n",
- " 3.0 | \n",
- " 1.1 | \n",
- " versicolor | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.750000 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
"
\n",
" \n",
- " | 146 | \n",
- " 6.3 | \n",
- " 2.5 | \n",
- " 5.0 | \n",
- " 1.9 | \n",
- " virginica | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 14.39 | \n",
+ " 1.87 | \n",
+ " 2.45 | \n",
+ " 14.6 | \n",
+ " 96 | \n",
+ " 2.50 | \n",
+ " 2.52 | \n",
+ " 0.30 | \n",
+ " 1.98 | \n",
+ " 5.250000 | \n",
+ " 1.02 | \n",
+ " 3.58 | \n",
+ " 1290 | \n",
"
\n",
" \n",
- " | 113 | \n",
- " 5.7 | \n",
- " 2.5 | \n",
- " 5.0 | \n",
- " 2.0 | \n",
- " virginica | \n",
+ " 6 | \n",
+ " 1 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.050000 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295 | \n",
"
\n",
" \n",
- " | 89 | \n",
- " 5.5 | \n",
- " 2.5 | \n",
- " 4.0 | \n",
- " 1.3 | \n",
- " versicolor | \n",
+ " 7 | \n",
+ " 1 | \n",
+ " 14.83 | \n",
+ " 1.64 | \n",
+ " 2.17 | \n",
+ " 14.0 | \n",
+ " 97 | \n",
+ " 2.80 | \n",
+ " 2.98 | \n",
+ " 0.29 | \n",
+ " 1.98 | \n",
+ " 5.200000 | \n",
+ " 1.08 | \n",
+ " 2.85 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.220000 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 1 | \n",
+ " 14.10 | \n",
+ " 2.16 | \n",
+ " 2.30 | \n",
+ " 18.0 | \n",
+ " 105 | \n",
+ " 2.95 | \n",
+ " 3.32 | \n",
+ " 0.22 | \n",
+ " 2.38 | \n",
+ " 5.750000 | \n",
+ " 1.25 | \n",
+ " 3.17 | \n",
+ " 1510 | \n",
"
\n",
" \n",
- " | 108 | \n",
- " 6.7 | \n",
- " 2.5 | \n",
- " 5.8 | \n",
- " 1.8 | \n",
- " virginica | \n",
+ " 10 | \n",
+ " 1 | \n",
+ " 14.12 | \n",
+ " 1.48 | \n",
+ " 2.32 | \n",
+ " 16.8 | \n",
+ " 95 | \n",
+ " 2.20 | \n",
+ " 2.43 | \n",
+ " 0.26 | \n",
+ " 1.57 | \n",
+ " 5.000000 | \n",
+ " 1.17 | \n",
+ " 2.82 | \n",
+ " 1280 | \n",
"
\n",
" \n",
- " | 106 | \n",
- " 4.9 | \n",
- " 2.5 | \n",
- " 4.5 | \n",
- " 1.7 | \n",
- " virginica | \n",
+ " 11 | \n",
+ " 1 | \n",
+ " 13.75 | \n",
+ " 1.73 | \n",
+ " 2.41 | \n",
+ " 16.0 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 2.76 | \n",
+ " 0.29 | \n",
+ " 1.81 | \n",
+ " 5.600000 | \n",
+ " 1.15 | \n",
+ " 2.90 | \n",
+ " 1320 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 1 | \n",
+ " 14.75 | \n",
+ " 1.73 | \n",
+ " 2.39 | \n",
+ " 11.4 | \n",
+ " 91 | \n",
+ " 3.10 | \n",
+ " 3.69 | \n",
+ " 0.43 | \n",
+ " 2.81 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 2.73 | \n",
+ " 1150 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 1 | \n",
+ " 14.38 | \n",
+ " 1.87 | \n",
+ " 2.38 | \n",
+ " 12.0 | \n",
+ " 102 | \n",
+ " 3.30 | \n",
+ " 3.64 | \n",
+ " 0.29 | \n",
+ " 2.96 | \n",
+ " 7.500000 | \n",
+ " 1.20 | \n",
+ " 3.00 | \n",
+ " 1547 | \n",
"
\n",
" \n",
- " | 69 | \n",
- " 5.6 | \n",
- " 2.5 | \n",
- " 3.9 | \n",
- " 1.1 | \n",
- " versicolor | \n",
+ " 14 | \n",
+ " 1 | \n",
+ " 13.63 | \n",
+ " 1.81 | \n",
+ " 2.70 | \n",
+ " 17.2 | \n",
+ " 112 | \n",
+ " 2.85 | \n",
+ " 2.91 | \n",
+ " 0.30 | \n",
+ " 1.46 | \n",
+ " 7.300000 | \n",
+ " 1.28 | \n",
+ " 2.88 | \n",
+ " 1310 | \n",
"
\n",
" \n",
- " | 72 | \n",
- " 6.3 | \n",
- " 2.5 | \n",
- " 4.9 | \n",
- " 1.5 | \n",
- " versicolor | \n",
+ " 15 | \n",
+ " 1 | \n",
+ " 14.30 | \n",
+ " 1.92 | \n",
+ " 2.72 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 2.80 | \n",
+ " 3.14 | \n",
+ " 0.33 | \n",
+ " 1.97 | \n",
+ " 6.200000 | \n",
+ " 1.07 | \n",
+ " 2.65 | \n",
+ " 1280 | \n",
"
\n",
" \n",
- " | 90 | \n",
- " 5.5 | \n",
- " 2.6 | \n",
- " 4.4 | \n",
- " 1.2 | \n",
- " versicolor | \n",
+ " 16 | \n",
+ " 1 | \n",
+ " 13.83 | \n",
+ " 1.57 | \n",
+ " 2.62 | \n",
+ " 20.0 | \n",
+ " 115 | \n",
+ " 2.95 | \n",
+ " 3.40 | \n",
+ " 0.40 | \n",
+ " 1.72 | \n",
+ " 6.600000 | \n",
+ " 1.13 | \n",
+ " 2.57 | \n",
+ " 1130 | \n",
"
\n",
" \n",
- " | 92 | \n",
- " 5.8 | \n",
- " 2.6 | \n",
- " 4.0 | \n",
- " 1.2 | \n",
- " versicolor | \n",
+ " 17 | \n",
+ " 1 | \n",
+ " 14.19 | \n",
+ " 1.59 | \n",
+ " 2.48 | \n",
+ " 16.5 | \n",
+ " 108 | \n",
+ " 3.30 | \n",
+ " 3.93 | \n",
+ " 0.32 | \n",
+ " 1.86 | \n",
+ " 8.700000 | \n",
+ " 1.23 | \n",
+ " 2.82 | \n",
+ " 1680 | \n",
"
\n",
" \n",
- " | 118 | \n",
- " 7.7 | \n",
- " 2.6 | \n",
- " 6.9 | \n",
- " 2.3 | \n",
- " virginica | \n",
+ " 18 | \n",
+ " 1 | \n",
+ " 13.64 | \n",
+ " 3.10 | \n",
+ " 2.56 | \n",
+ " 15.2 | \n",
+ " 116 | \n",
+ " 2.70 | \n",
+ " 3.03 | \n",
+ " 0.17 | \n",
+ " 1.66 | \n",
+ " 5.100000 | \n",
+ " 0.96 | \n",
+ " 3.36 | \n",
+ " 845 | \n",
"
\n",
" \n",
- " | 79 | \n",
- " 5.7 | \n",
- " 2.6 | \n",
- " 3.5 | \n",
- " 1.0 | \n",
- " versicolor | \n",
+ " 19 | \n",
+ " 1 | \n",
+ " 14.06 | \n",
+ " 1.63 | \n",
+ " 2.28 | \n",
+ " 16.0 | \n",
+ " 126 | \n",
+ " 3.00 | \n",
+ " 3.17 | \n",
+ " 0.24 | \n",
+ " 2.10 | \n",
+ " 5.650000 | \n",
+ " 1.09 | \n",
+ " 3.71 | \n",
+ " 780 | \n",
"
\n",
" \n",
- " | 134 | \n",
- " 6.1 | \n",
- " 2.6 | \n",
- " 5.6 | \n",
- " 1.4 | \n",
- " virginica | \n",
+ " 20 | \n",
+ " 1 | \n",
+ " 12.93 | \n",
+ " 3.80 | \n",
+ " 2.65 | \n",
+ " 18.6 | \n",
+ " 102 | \n",
+ " 2.41 | \n",
+ " 2.41 | \n",
+ " 0.25 | \n",
+ " 1.98 | \n",
+ " 4.500000 | \n",
+ " 1.03 | \n",
+ " 3.52 | \n",
+ " 770 | \n",
"
\n",
" \n",
- " | 101 | \n",
- " 5.8 | \n",
- " 2.7 | \n",
- " 5.1 | \n",
- " 1.9 | \n",
- " virginica | \n",
+ " 21 | \n",
+ " 1 | \n",
+ " 13.71 | \n",
+ " 1.86 | \n",
+ " 2.36 | \n",
+ " 16.6 | \n",
+ " 101 | \n",
+ " 2.61 | \n",
+ " 2.88 | \n",
+ " 0.27 | \n",
+ " 1.69 | \n",
+ " 3.800000 | \n",
+ " 1.11 | \n",
+ " 4.00 | \n",
+ " 1035 | \n",
"
\n",
" \n",
- " | 123 | \n",
- " 6.3 | \n",
- " 2.7 | \n",
- " 4.9 | \n",
- " 1.8 | \n",
- " virginica | \n",
+ " 22 | \n",
+ " 1 | \n",
+ " 12.85 | \n",
+ " 1.60 | \n",
+ " 2.52 | \n",
+ " 17.8 | \n",
+ " 95 | \n",
+ " 2.48 | \n",
+ " 2.37 | \n",
+ " 0.26 | \n",
+ " 1.46 | \n",
+ " 3.930000 | \n",
+ " 1.09 | \n",
+ " 3.63 | \n",
+ " 1015 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 1 | \n",
+ " 13.50 | \n",
+ " 1.81 | \n",
+ " 2.61 | \n",
+ " 20.0 | \n",
+ " 96 | \n",
+ " 2.53 | \n",
+ " 2.61 | \n",
+ " 0.28 | \n",
+ " 1.66 | \n",
+ " 3.520000 | \n",
+ " 1.12 | \n",
+ " 3.82 | \n",
+ " 845 | \n",
"
\n",
" \n",
- " | 142 | \n",
- " 5.8 | \n",
- " 2.7 | \n",
- " 5.1 | \n",
- " 1.9 | \n",
- " virginica | \n",
+ " 24 | \n",
+ " 1 | \n",
+ " 13.05 | \n",
+ " 2.05 | \n",
+ " 3.22 | \n",
+ " 25.0 | \n",
+ " 124 | \n",
+ " 2.63 | \n",
+ " 2.68 | \n",
+ " 0.47 | \n",
+ " 1.92 | \n",
+ " 3.580000 | \n",
+ " 1.13 | \n",
+ " 3.20 | \n",
+ " 830 | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " 1 | \n",
+ " 13.39 | \n",
+ " 1.77 | \n",
+ " 2.62 | \n",
+ " 16.1 | \n",
+ " 93 | \n",
+ " 2.85 | \n",
+ " 2.94 | \n",
+ " 0.34 | \n",
+ " 1.45 | \n",
+ " 4.800000 | \n",
+ " 0.92 | \n",
+ " 3.22 | \n",
+ " 1195 | \n",
"
\n",
" \n",
- " | 94 | \n",
- " 5.6 | \n",
- " 2.7 | \n",
- " 4.2 | \n",
- " 1.3 | \n",
- " versicolor | \n",
+ " 26 | \n",
+ " 1 | \n",
+ " 13.30 | \n",
+ " 1.72 | \n",
+ " 2.14 | \n",
+ " 17.0 | \n",
+ " 94 | \n",
+ " 2.40 | \n",
+ " 2.19 | \n",
+ " 0.27 | \n",
+ " 1.35 | \n",
+ " 3.950000 | \n",
+ " 1.02 | \n",
+ " 2.77 | \n",
+ " 1285 | \n",
"
\n",
" \n",
- " | 67 | \n",
- " 5.8 | \n",
- " 2.7 | \n",
- " 4.1 | \n",
- " 1.0 | \n",
- " versicolor | \n",
+ " 27 | \n",
+ " 1 | \n",
+ " 13.87 | \n",
+ " 1.90 | \n",
+ " 2.80 | \n",
+ " 19.4 | \n",
+ " 107 | \n",
+ " 2.95 | \n",
+ " 2.97 | \n",
+ " 0.37 | \n",
+ " 1.76 | \n",
+ " 4.500000 | \n",
+ " 1.25 | \n",
+ " 3.40 | \n",
+ " 915 | \n",
"
\n",
" \n",
- " | 83 | \n",
- " 6.0 | \n",
- " 2.7 | \n",
- " 5.1 | \n",
- " 1.6 | \n",
- " versicolor | \n",
+ " 28 | \n",
+ " 1 | \n",
+ " 14.02 | \n",
+ " 1.68 | \n",
+ " 2.21 | \n",
+ " 16.0 | \n",
+ " 96 | \n",
+ " 2.65 | \n",
+ " 2.33 | \n",
+ " 0.26 | \n",
+ " 1.98 | \n",
+ " 4.700000 | \n",
+ " 1.04 | \n",
+ " 3.59 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 29 | \n",
+ " 1 | \n",
+ " 13.73 | \n",
+ " 1.50 | \n",
+ " 2.70 | \n",
+ " 22.5 | \n",
+ " 101 | \n",
+ " 3.00 | \n",
+ " 3.25 | \n",
+ " 0.29 | \n",
+ " 2.38 | \n",
+ " 5.700000 | \n",
+ " 1.19 | \n",
+ " 2.71 | \n",
+ " 1285 | \n",
"
\n",
" \n",
" | ... | \n",
@@ -1204,390 +2243,696 @@
" ... | \n",
" ... | \n",
" ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
"
\n",
" \n",
- " | 28 | \n",
- " 5.2 | \n",
- " 3.4 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 136 | \n",
- " 6.3 | \n",
- " 3.4 | \n",
- " 5.6 | \n",
- " 2.4 | \n",
- " virginica | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " 5.0 | \n",
- " 3.4 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 85 | \n",
- " 6.0 | \n",
- " 3.4 | \n",
- " 4.5 | \n",
- " 1.6 | \n",
- " versicolor | \n",
- "
\n",
- " \n",
- " | 31 | \n",
- " 5.4 | \n",
- " 3.4 | \n",
- " 1.5 | \n",
- " 0.4 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 39 | \n",
- " 5.1 | \n",
- " 3.4 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 36 | \n",
- " 5.5 | \n",
- " 3.5 | \n",
- " 1.3 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 40 | \n",
- " 5.0 | \n",
- " 3.5 | \n",
- " 1.3 | \n",
- " 0.3 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 43 | \n",
- " 5.0 | \n",
- " 3.5 | \n",
- " 1.6 | \n",
- " 0.6 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 0 | \n",
- " 5.1 | \n",
- " 3.5 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 17 | \n",
- " 5.1 | \n",
- " 3.5 | \n",
- " 1.4 | \n",
- " 0.3 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 27 | \n",
- " 5.2 | \n",
- " 3.5 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 109 | \n",
- " 7.2 | \n",
- " 3.6 | \n",
- " 6.1 | \n",
- " 2.5 | \n",
- " virginica | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 5.0 | \n",
- " 3.6 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 22 | \n",
- " 4.6 | \n",
- " 3.6 | \n",
- " 1.0 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 10 | \n",
- " 5.4 | \n",
- " 3.7 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 48 | \n",
- " 5.3 | \n",
- " 3.7 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 21 | \n",
- " 5.1 | \n",
- " 3.7 | \n",
- " 1.5 | \n",
- " 0.4 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 18 | \n",
- " 5.7 | \n",
- " 3.8 | \n",
- " 1.7 | \n",
- " 0.3 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 19 | \n",
- " 5.1 | \n",
- " 3.8 | \n",
- " 1.5 | \n",
- " 0.3 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 117 | \n",
- " 7.7 | \n",
- " 3.8 | \n",
- " 6.7 | \n",
- " 2.2 | \n",
- " virginica | \n",
- "
\n",
- " \n",
- " | 46 | \n",
- " 5.1 | \n",
- " 3.8 | \n",
- " 1.6 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 44 | \n",
- " 5.1 | \n",
- " 3.8 | \n",
- " 1.9 | \n",
- " 0.4 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 131 | \n",
- " 7.9 | \n",
- " 3.8 | \n",
- " 6.4 | \n",
- " 2.0 | \n",
- " virginica | \n",
- "
\n",
- " \n",
- " | 16 | \n",
- " 5.4 | \n",
- " 3.9 | \n",
- " 1.3 | \n",
- " 0.4 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 5.4 | \n",
- " 3.9 | \n",
- " 1.7 | \n",
- " 0.4 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 14 | \n",
- " 5.8 | \n",
- " 4.0 | \n",
- " 1.2 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 32 | \n",
- " 5.2 | \n",
- " 4.1 | \n",
- " 1.5 | \n",
- " 0.1 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 33 | \n",
- " 5.5 | \n",
- " 4.2 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
+ " 147 | \n",
+ " 3 | \n",
+ " 13.32 | \n",
+ " 3.24 | \n",
+ " 2.38 | \n",
+ " 21.5 | \n",
+ " 92 | \n",
+ " 1.93 | \n",
+ " 0.76 | \n",
+ " 0.45 | \n",
+ " 1.25 | \n",
+ " 8.420000 | \n",
+ " 0.55 | \n",
+ " 1.62 | \n",
+ " 650 | \n",
"
\n",
" \n",
- " | 15 | \n",
- " 5.7 | \n",
- " 4.4 | \n",
- " 1.5 | \n",
- " 0.4 | \n",
- " setosa | \n",
+ " 148 | \n",
+ " 3 | \n",
+ " 13.08 | \n",
+ " 3.90 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 113 | \n",
+ " 1.41 | \n",
+ " 1.39 | \n",
+ " 0.34 | \n",
+ " 1.14 | \n",
+ " 9.400000 | \n",
+ " 0.57 | \n",
+ " 1.33 | \n",
+ " 550 | \n",
+ "
\n",
+ " \n",
+ " | 149 | \n",
+ " 3 | \n",
+ " 13.50 | \n",
+ " 3.12 | \n",
+ " 2.62 | \n",
+ " 24.0 | \n",
+ " 123 | \n",
+ " 1.40 | \n",
+ " 1.57 | \n",
+ " 0.22 | \n",
+ " 1.25 | \n",
+ " 8.600000 | \n",
+ " 0.59 | \n",
+ " 1.30 | \n",
+ " 500 | \n",
+ "
\n",
+ " \n",
+ " | 150 | \n",
+ " 3 | \n",
+ " 12.79 | \n",
+ " 2.67 | \n",
+ " 2.48 | \n",
+ " 22.0 | \n",
+ " 112 | \n",
+ " 1.48 | \n",
+ " 1.36 | \n",
+ " 0.24 | \n",
+ " 1.26 | \n",
+ " 10.800000 | \n",
+ " 0.48 | \n",
+ " 1.47 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 151 | \n",
+ " 3 | \n",
+ " 13.11 | \n",
+ " 1.90 | \n",
+ " 2.75 | \n",
+ " 25.5 | \n",
+ " 116 | \n",
+ " 2.20 | \n",
+ " 1.28 | \n",
+ " 0.26 | \n",
+ " 1.56 | \n",
+ " 7.100000 | \n",
+ " 0.61 | \n",
+ " 1.33 | \n",
+ " 425 | \n",
+ "
\n",
+ " \n",
+ " | 152 | \n",
+ " 3 | \n",
+ " 13.23 | \n",
+ " 3.30 | \n",
+ " 2.28 | \n",
+ " 18.5 | \n",
+ " 98 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.61 | \n",
+ " 1.87 | \n",
+ " 10.520000 | \n",
+ " 0.56 | \n",
+ " 1.51 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 153 | \n",
+ " 3 | \n",
+ " 12.58 | \n",
+ " 1.29 | \n",
+ " 2.10 | \n",
+ " 20.0 | \n",
+ " 103 | \n",
+ " 1.48 | \n",
+ " 0.58 | \n",
+ " 0.53 | \n",
+ " 1.40 | \n",
+ " 7.600000 | \n",
+ " 0.58 | \n",
+ " 1.55 | \n",
+ " 640 | \n",
+ "
\n",
+ " \n",
+ " | 154 | \n",
+ " 3 | \n",
+ " 13.17 | \n",
+ " 5.19 | \n",
+ " 2.32 | \n",
+ " 22.0 | \n",
+ " 93 | \n",
+ " 1.74 | \n",
+ " 0.63 | \n",
+ " 0.61 | \n",
+ " 1.55 | \n",
+ " 7.900000 | \n",
+ " 0.60 | \n",
+ " 1.48 | \n",
+ " 725 | \n",
+ "
\n",
+ " \n",
+ " | 155 | \n",
+ " 3 | \n",
+ " 13.84 | \n",
+ " 4.12 | \n",
+ " 2.38 | \n",
+ " 19.5 | \n",
+ " 89 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.48 | \n",
+ " 1.56 | \n",
+ " 9.010000 | \n",
+ " 0.57 | \n",
+ " 1.64 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 156 | \n",
+ " 3 | \n",
+ " 12.45 | \n",
+ " 3.03 | \n",
+ " 2.64 | \n",
+ " 27.0 | \n",
+ " 97 | \n",
+ " 1.90 | \n",
+ " 0.58 | \n",
+ " 0.63 | \n",
+ " 1.14 | \n",
+ " 7.500000 | \n",
+ " 0.67 | \n",
+ " 1.73 | \n",
+ " 880 | \n",
+ "
\n",
+ " \n",
+ " | 157 | \n",
+ " 3 | \n",
+ " 14.34 | \n",
+ " 1.68 | \n",
+ " 2.70 | \n",
+ " 25.0 | \n",
+ " 98 | \n",
+ " 2.80 | \n",
+ " 1.31 | \n",
+ " 0.53 | \n",
+ " 2.70 | \n",
+ " 13.000000 | \n",
+ " 0.57 | \n",
+ " 1.96 | \n",
+ " 660 | \n",
+ "
\n",
+ " \n",
+ " | 158 | \n",
+ " 3 | \n",
+ " 13.48 | \n",
+ " 1.67 | \n",
+ " 2.64 | \n",
+ " 22.5 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 1.10 | \n",
+ " 0.52 | \n",
+ " 2.29 | \n",
+ " 11.750000 | \n",
+ " 0.57 | \n",
+ " 1.78 | \n",
+ " 620 | \n",
+ "
\n",
+ " \n",
+ " | 159 | \n",
+ " 3 | \n",
+ " 12.36 | \n",
+ " 3.83 | \n",
+ " 2.38 | \n",
+ " 21.0 | \n",
+ " 88 | \n",
+ " 2.30 | \n",
+ " 0.92 | \n",
+ " 0.50 | \n",
+ " 1.04 | \n",
+ " 7.650000 | \n",
+ " 0.56 | \n",
+ " 1.58 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 160 | \n",
+ " 3 | \n",
+ " 13.69 | \n",
+ " 3.26 | \n",
+ " 2.54 | \n",
+ " 20.0 | \n",
+ " 107 | \n",
+ " 1.83 | \n",
+ " 0.56 | \n",
+ " 0.50 | \n",
+ " 0.80 | \n",
+ " 5.880000 | \n",
+ " 0.96 | \n",
+ " 1.82 | \n",
+ " 680 | \n",
+ "
\n",
+ " \n",
+ " | 161 | \n",
+ " 3 | \n",
+ " 12.85 | \n",
+ " 3.27 | \n",
+ " 2.58 | \n",
+ " 22.0 | \n",
+ " 106 | \n",
+ " 1.65 | \n",
+ " 0.60 | \n",
+ " 0.60 | \n",
+ " 0.96 | \n",
+ " 5.580000 | \n",
+ " 0.87 | \n",
+ " 2.11 | \n",
+ " 570 | \n",
+ "
\n",
+ " \n",
+ " | 162 | \n",
+ " 3 | \n",
+ " 12.96 | \n",
+ " 3.45 | \n",
+ " 2.35 | \n",
+ " 18.5 | \n",
+ " 106 | \n",
+ " 1.39 | \n",
+ " 0.70 | \n",
+ " 0.40 | \n",
+ " 0.94 | \n",
+ " 5.280000 | \n",
+ " 0.68 | \n",
+ " 1.75 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 163 | \n",
+ " 3 | \n",
+ " 13.78 | \n",
+ " 2.76 | \n",
+ " 2.30 | \n",
+ " 22.0 | \n",
+ " 90 | \n",
+ " 1.35 | \n",
+ " 0.68 | \n",
+ " 0.41 | \n",
+ " 1.03 | \n",
+ " 9.580000 | \n",
+ " 0.70 | \n",
+ " 1.68 | \n",
+ " 615 | \n",
+ "
\n",
+ " \n",
+ " | 164 | \n",
+ " 3 | \n",
+ " 13.73 | \n",
+ " 4.36 | \n",
+ " 2.26 | \n",
+ " 22.5 | \n",
+ " 88 | \n",
+ " 1.28 | \n",
+ " 0.47 | \n",
+ " 0.52 | \n",
+ " 1.15 | \n",
+ " 6.620000 | \n",
+ " 0.78 | \n",
+ " 1.75 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 165 | \n",
+ " 3 | \n",
+ " 13.45 | \n",
+ " 3.70 | \n",
+ " 2.60 | \n",
+ " 23.0 | \n",
+ " 111 | \n",
+ " 1.70 | \n",
+ " 0.92 | \n",
+ " 0.43 | \n",
+ " 1.46 | \n",
+ " 10.680000 | \n",
+ " 0.85 | \n",
+ " 1.56 | \n",
+ " 695 | \n",
+ "
\n",
+ " \n",
+ " | 166 | \n",
+ " 3 | \n",
+ " 12.82 | \n",
+ " 3.37 | \n",
+ " 2.30 | \n",
+ " 19.5 | \n",
+ " 88 | \n",
+ " 1.48 | \n",
+ " 0.66 | \n",
+ " 0.40 | \n",
+ " 0.97 | \n",
+ " 10.260000 | \n",
+ " 0.72 | \n",
+ " 1.75 | \n",
+ " 685 | \n",
+ "
\n",
+ " \n",
+ " | 167 | \n",
+ " 3 | \n",
+ " 13.58 | \n",
+ " 2.58 | \n",
+ " 2.69 | \n",
+ " 24.5 | \n",
+ " 105 | \n",
+ " 1.55 | \n",
+ " 0.84 | \n",
+ " 0.39 | \n",
+ " 1.54 | \n",
+ " 8.660000 | \n",
+ " 0.74 | \n",
+ " 1.80 | \n",
+ " 750 | \n",
+ "
\n",
+ " \n",
+ " | 168 | \n",
+ " 3 | \n",
+ " 13.40 | \n",
+ " 4.60 | \n",
+ " 2.86 | \n",
+ " 25.0 | \n",
+ " 112 | \n",
+ " 1.98 | \n",
+ " 0.96 | \n",
+ " 0.27 | \n",
+ " 1.11 | \n",
+ " 8.500000 | \n",
+ " 0.67 | \n",
+ " 1.92 | \n",
+ " 630 | \n",
+ "
\n",
+ " \n",
+ " | 169 | \n",
+ " 3 | \n",
+ " 12.20 | \n",
+ " 3.03 | \n",
+ " 2.32 | \n",
+ " 19.0 | \n",
+ " 96 | \n",
+ " 1.25 | \n",
+ " 0.49 | \n",
+ " 0.40 | \n",
+ " 0.73 | \n",
+ " 5.500000 | \n",
+ " 0.66 | \n",
+ " 1.83 | \n",
+ " 510 | \n",
+ "
\n",
+ " \n",
+ " | 170 | \n",
+ " 3 | \n",
+ " 12.77 | \n",
+ " 2.39 | \n",
+ " 2.28 | \n",
+ " 19.5 | \n",
+ " 86 | \n",
+ " 1.39 | \n",
+ " 0.51 | \n",
+ " 0.48 | \n",
+ " 0.64 | \n",
+ " 9.899999 | \n",
+ " 0.57 | \n",
+ " 1.63 | \n",
+ " 470 | \n",
+ "
\n",
+ " \n",
+ " | 171 | \n",
+ " 3 | \n",
+ " 14.16 | \n",
+ " 2.51 | \n",
+ " 2.48 | \n",
+ " 20.0 | \n",
+ " 91 | \n",
+ " 1.68 | \n",
+ " 0.70 | \n",
+ " 0.44 | \n",
+ " 1.24 | \n",
+ " 9.700000 | \n",
+ " 0.62 | \n",
+ " 1.71 | \n",
+ " 660 | \n",
+ "
\n",
+ " \n",
+ " | 172 | \n",
+ " 3 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.700000 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740 | \n",
+ "
\n",
+ " \n",
+ " | 173 | \n",
+ " 3 | \n",
+ " 13.40 | \n",
+ " 3.91 | \n",
+ " 2.48 | \n",
+ " 23.0 | \n",
+ " 102 | \n",
+ " 1.80 | \n",
+ " 0.75 | \n",
+ " 0.43 | \n",
+ " 1.41 | \n",
+ " 7.300000 | \n",
+ " 0.70 | \n",
+ " 1.56 | \n",
+ " 750 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 3 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.200000 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835 | \n",
+ "
\n",
+ " \n",
+ " | 175 | \n",
+ " 3 | \n",
+ " 13.17 | \n",
+ " 2.59 | \n",
+ " 2.37 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.65 | \n",
+ " 0.68 | \n",
+ " 0.53 | \n",
+ " 1.46 | \n",
+ " 9.300000 | \n",
+ " 0.60 | \n",
+ " 1.62 | \n",
+ " 840 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 3 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.200000 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560 | \n",
"
\n",
" \n",
"\n",
- "150 rows × 5 columns
\n",
+ "177 rows × 14 columns
\n",
""
],
"text/plain": [
- " sepal_length sepal_width petal_length petal_width species\n",
- "60 5.0 2.0 3.5 1.0 versicolor\n",
- "68 6.2 2.2 4.5 1.5 versicolor\n",
- "62 6.0 2.2 4.0 1.0 versicolor\n",
- "119 6.0 2.2 5.0 1.5 virginica\n",
- "53 5.5 2.3 4.0 1.3 versicolor\n",
- "41 4.5 2.3 1.3 0.3 setosa\n",
- "93 5.0 2.3 3.3 1.0 versicolor\n",
- "87 6.3 2.3 4.4 1.3 versicolor\n",
- "81 5.5 2.4 3.7 1.0 versicolor\n",
- "57 4.9 2.4 3.3 1.0 versicolor\n",
- "80 5.5 2.4 3.8 1.1 versicolor\n",
- "98 5.1 2.5 3.0 1.1 versicolor\n",
- "146 6.3 2.5 5.0 1.9 virginica\n",
- "113 5.7 2.5 5.0 2.0 virginica\n",
- "89 5.5 2.5 4.0 1.3 versicolor\n",
- "108 6.7 2.5 5.8 1.8 virginica\n",
- "106 4.9 2.5 4.5 1.7 virginica\n",
- "69 5.6 2.5 3.9 1.1 versicolor\n",
- "72 6.3 2.5 4.9 1.5 versicolor\n",
- "90 5.5 2.6 4.4 1.2 versicolor\n",
- "92 5.8 2.6 4.0 1.2 versicolor\n",
- "118 7.7 2.6 6.9 2.3 virginica\n",
- "79 5.7 2.6 3.5 1.0 versicolor\n",
- "134 6.1 2.6 5.6 1.4 virginica\n",
- "101 5.8 2.7 5.1 1.9 virginica\n",
- "123 6.3 2.7 4.9 1.8 virginica\n",
- "142 5.8 2.7 5.1 1.9 virginica\n",
- "94 5.6 2.7 4.2 1.3 versicolor\n",
- "67 5.8 2.7 4.1 1.0 versicolor\n",
- "83 6.0 2.7 5.1 1.6 versicolor\n",
- ".. ... ... ... ... ...\n",
- "28 5.2 3.4 1.4 0.2 setosa\n",
- "136 6.3 3.4 5.6 2.4 virginica\n",
- "7 5.0 3.4 1.5 0.2 setosa\n",
- "85 6.0 3.4 4.5 1.6 versicolor\n",
- "31 5.4 3.4 1.5 0.4 setosa\n",
- "39 5.1 3.4 1.5 0.2 setosa\n",
- "36 5.5 3.5 1.3 0.2 setosa\n",
- "40 5.0 3.5 1.3 0.3 setosa\n",
- "43 5.0 3.5 1.6 0.6 setosa\n",
- "0 5.1 3.5 1.4 0.2 setosa\n",
- "17 5.1 3.5 1.4 0.3 setosa\n",
- "27 5.2 3.5 1.5 0.2 setosa\n",
- "109 7.2 3.6 6.1 2.5 virginica\n",
- "4 5.0 3.6 1.4 0.2 setosa\n",
- "22 4.6 3.6 1.0 0.2 setosa\n",
- "10 5.4 3.7 1.5 0.2 setosa\n",
- "48 5.3 3.7 1.5 0.2 setosa\n",
- "21 5.1 3.7 1.5 0.4 setosa\n",
- "18 5.7 3.8 1.7 0.3 setosa\n",
- "19 5.1 3.8 1.5 0.3 setosa\n",
- "117 7.7 3.8 6.7 2.2 virginica\n",
- "46 5.1 3.8 1.6 0.2 setosa\n",
- "44 5.1 3.8 1.9 0.4 setosa\n",
- "131 7.9 3.8 6.4 2.0 virginica\n",
- "16 5.4 3.9 1.3 0.4 setosa\n",
- "5 5.4 3.9 1.7 0.4 setosa\n",
- "14 5.8 4.0 1.2 0.2 setosa\n",
- "32 5.2 4.1 1.5 0.1 setosa\n",
- "33 5.5 4.2 1.4 0.2 setosa\n",
- "15 5.7 4.4 1.5 0.4 setosa\n",
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 1.05 \n",
+ "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.680000 1.03 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 0.86 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.320000 1.04 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 1.05 \n",
+ "5 1 14.39 1.87 2.45 14.6 96 2.50 2.52 0.30 1.98 5.250000 1.02 \n",
+ "6 1 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 1.06 \n",
+ "7 1 14.83 1.64 2.17 14.0 97 2.80 2.98 0.29 1.98 5.200000 1.08 \n",
+ "8 1 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 1.01 \n",
+ "9 1 14.10 2.16 2.30 18.0 105 2.95 3.32 0.22 2.38 5.750000 1.25 \n",
+ "10 1 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 1.17 \n",
+ "11 1 13.75 1.73 2.41 16.0 89 2.60 2.76 0.29 1.81 5.600000 1.15 \n",
+ "12 1 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 1.25 \n",
+ "13 1 14.38 1.87 2.38 12.0 102 3.30 3.64 0.29 2.96 7.500000 1.20 \n",
+ "14 1 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 1.28 \n",
+ "15 1 14.30 1.92 2.72 20.0 120 2.80 3.14 0.33 1.97 6.200000 1.07 \n",
+ "16 1 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 1.13 \n",
+ "17 1 14.19 1.59 2.48 16.5 108 3.30 3.93 0.32 1.86 8.700000 1.23 \n",
+ "18 1 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 0.96 \n",
+ "19 1 14.06 1.63 2.28 16.0 126 3.00 3.17 0.24 2.10 5.650000 1.09 \n",
+ "20 1 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 1.03 \n",
+ "21 1 13.71 1.86 2.36 16.6 101 2.61 2.88 0.27 1.69 3.800000 1.11 \n",
+ "22 1 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 1.09 \n",
+ "23 1 13.50 1.81 2.61 20.0 96 2.53 2.61 0.28 1.66 3.520000 1.12 \n",
+ "24 1 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 1.13 \n",
+ "25 1 13.39 1.77 2.62 16.1 93 2.85 2.94 0.34 1.45 4.800000 0.92 \n",
+ "26 1 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 1.02 \n",
+ "27 1 13.87 1.90 2.80 19.4 107 2.95 2.97 0.37 1.76 4.500000 1.25 \n",
+ "28 1 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 1.04 \n",
+ "29 1 13.73 1.50 2.70 22.5 101 3.00 3.25 0.29 2.38 5.700000 1.19 \n",
+ ".. .. ... ... ... ... ... ... ... ... ... ... ... \n",
+ "147 3 13.32 3.24 2.38 21.5 92 1.93 0.76 0.45 1.25 8.420000 0.55 \n",
+ "148 3 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 0.57 \n",
+ "149 3 13.50 3.12 2.62 24.0 123 1.40 1.57 0.22 1.25 8.600000 0.59 \n",
+ "150 3 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 0.48 \n",
+ "151 3 13.11 1.90 2.75 25.5 116 2.20 1.28 0.26 1.56 7.100000 0.61 \n",
+ "152 3 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 0.56 \n",
+ "153 3 12.58 1.29 2.10 20.0 103 1.48 0.58 0.53 1.40 7.600000 0.58 \n",
+ "154 3 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 0.60 \n",
+ "155 3 13.84 4.12 2.38 19.5 89 1.80 0.83 0.48 1.56 9.010000 0.57 \n",
+ "156 3 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 0.67 \n",
+ "157 3 14.34 1.68 2.70 25.0 98 2.80 1.31 0.53 2.70 13.000000 0.57 \n",
+ "158 3 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 0.57 \n",
+ "159 3 12.36 3.83 2.38 21.0 88 2.30 0.92 0.50 1.04 7.650000 0.56 \n",
+ "160 3 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 0.96 \n",
+ "161 3 12.85 3.27 2.58 22.0 106 1.65 0.60 0.60 0.96 5.580000 0.87 \n",
+ "162 3 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 0.68 \n",
+ "163 3 13.78 2.76 2.30 22.0 90 1.35 0.68 0.41 1.03 9.580000 0.70 \n",
+ "164 3 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 0.78 \n",
+ "165 3 13.45 3.70 2.60 23.0 111 1.70 0.92 0.43 1.46 10.680000 0.85 \n",
+ "166 3 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 0.72 \n",
+ "167 3 13.58 2.58 2.69 24.5 105 1.55 0.84 0.39 1.54 8.660000 0.74 \n",
+ "168 3 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 0.67 \n",
+ "169 3 12.20 3.03 2.32 19.0 96 1.25 0.49 0.40 0.73 5.500000 0.66 \n",
+ "170 3 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 0.57 \n",
+ "171 3 14.16 2.51 2.48 20.0 91 1.68 0.70 0.44 1.24 9.700000 0.62 \n",
+ "172 3 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 0.64 \n",
+ "173 3 13.40 3.91 2.48 23.0 102 1.80 0.75 0.43 1.41 7.300000 0.70 \n",
+ "174 3 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 0.59 \n",
+ "175 3 13.17 2.59 2.37 20.0 120 1.65 0.68 0.53 1.46 9.300000 0.60 \n",
+ "176 3 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 0.61 \n",
+ "\n",
+ " 3.92 1065 \n",
+ "0 3.40 1050 \n",
+ "1 3.17 1185 \n",
+ "2 3.45 1480 \n",
+ "3 2.93 735 \n",
+ "4 2.85 1450 \n",
+ "5 3.58 1290 \n",
+ "6 3.58 1295 \n",
+ "7 2.85 1045 \n",
+ "8 3.55 1045 \n",
+ "9 3.17 1510 \n",
+ "10 2.82 1280 \n",
+ "11 2.90 1320 \n",
+ "12 2.73 1150 \n",
+ "13 3.00 1547 \n",
+ "14 2.88 1310 \n",
+ "15 2.65 1280 \n",
+ "16 2.57 1130 \n",
+ "17 2.82 1680 \n",
+ "18 3.36 845 \n",
+ "19 3.71 780 \n",
+ "20 3.52 770 \n",
+ "21 4.00 1035 \n",
+ "22 3.63 1015 \n",
+ "23 3.82 845 \n",
+ "24 3.20 830 \n",
+ "25 3.22 1195 \n",
+ "26 2.77 1285 \n",
+ "27 3.40 915 \n",
+ "28 3.59 1035 \n",
+ "29 2.71 1285 \n",
+ ".. ... ... \n",
+ "147 1.62 650 \n",
+ "148 1.33 550 \n",
+ "149 1.30 500 \n",
+ "150 1.47 480 \n",
+ "151 1.33 425 \n",
+ "152 1.51 675 \n",
+ "153 1.55 640 \n",
+ "154 1.48 725 \n",
+ "155 1.64 480 \n",
+ "156 1.73 880 \n",
+ "157 1.96 660 \n",
+ "158 1.78 620 \n",
+ "159 1.58 520 \n",
+ "160 1.82 680 \n",
+ "161 2.11 570 \n",
+ "162 1.75 675 \n",
+ "163 1.68 615 \n",
+ "164 1.75 520 \n",
+ "165 1.56 695 \n",
+ "166 1.75 685 \n",
+ "167 1.80 750 \n",
+ "168 1.92 630 \n",
+ "169 1.83 510 \n",
+ "170 1.63 470 \n",
+ "171 1.71 660 \n",
+ "172 1.74 740 \n",
+ "173 1.56 750 \n",
+ "174 1.56 835 \n",
+ "175 1.62 840 \n",
+ "176 1.60 560 \n",
"\n",
- "[150 rows x 5 columns]"
+ "[177 rows x 14 columns]"
]
},
"metadata": {
"tags": []
},
- "execution_count": 50
+ "execution_count": 5
}
]
},
{
"metadata": {
- "id": "9jg_Z4YCoMSV",
+ "id": "Zqi7hwWpkNbH",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "#### List all the unique species"
- ]
- },
- {
- "metadata": {
- "id": "M6EN78ufoJY7",
- "colab_type": "code",
- "outputId": "39ad4226-53df-42cd-8d9f-32ffe1e1cd41",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- }
- },
- "cell_type": "code",
- "source": [
- "species = iris_df['species'].unique()\n",
+ "#### Set the values of the first 3 rows from alcohol as NaN\n",
"\n",
- "print(species)"
- ],
- "execution_count": 51,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "['virginica' 'versicolor' 'setosa']\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "metadata": {
- "id": "wG1i5nxBodmB",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "#### Selecting a particular species using boolean mask (learnt in previous exercise)"
+ "Hint- Use iloc to select 3 rows of wine_df"
]
},
{
"metadata": {
- "id": "gZvpbKBwoVUe",
+ "id": "buyT4vX4kPMl",
"colab_type": "code",
- "outputId": "d56f2768-8b3b-4af1-ba70-6933f8e8dd78",
+ "outputId": "04c526c8-9bf9-44e9-ca1d-baaf406c1ab2",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 206
+ "height": 1992
}
},
"cell_type": "code",
"source": [
- "setosa = iris_df[iris_df['species'] == species[0]]\n",
- "\n",
- "setosa.head()"
+ "wine_df.iloc[0:3,0] = np.nan\n",
+ "wine_df"
],
- "execution_count": 52,
+ "execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
@@ -1611,443 +2956,1489 @@
" \n",
" \n",
" | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
- " species | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
"
\n",
" \n",
" \n",
" \n",
- " | 126 | \n",
- " 6.2 | \n",
- " 2.8 | \n",
- " 4.8 | \n",
- " 1.8 | \n",
- " virginica | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.380000 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
"
\n",
" \n",
- " | 135 | \n",
- " 7.7 | \n",
- " 3.0 | \n",
- " 6.1 | \n",
- " 2.3 | \n",
- " virginica | \n",
+ " 1 | \n",
+ " NaN | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.680000 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
"
\n",
" \n",
- " | 128 | \n",
- " 6.4 | \n",
- " 2.8 | \n",
- " 5.6 | \n",
- " 2.1 | \n",
- " virginica | \n",
+ " 2 | \n",
+ " NaN | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.800000 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
"
\n",
" \n",
- " | 108 | \n",
- " 6.7 | \n",
- " 2.5 | \n",
- " 5.8 | \n",
- " 1.8 | \n",
- " virginica | \n",
+ " 3 | \n",
+ " 1.0 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.320000 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
"
\n",
" \n",
- " | 102 | \n",
- " 7.1 | \n",
- " 3.0 | \n",
- " 5.9 | \n",
- " 2.1 | \n",
- " virginica | \n",
+ " 4 | \n",
+ " 1.0 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.750000 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
"
\n",
- " \n",
- "\n",
- ""
- ],
- "text/plain": [
- " sepal_length sepal_width petal_length petal_width species\n",
- "126 6.2 2.8 4.8 1.8 virginica\n",
- "135 7.7 3.0 6.1 2.3 virginica\n",
- "128 6.4 2.8 5.6 2.1 virginica\n",
- "108 6.7 2.5 5.8 1.8 virginica\n",
- "102 7.1 3.0 5.9 2.1 virginica"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 52
- }
- ]
- },
- {
- "metadata": {
- "id": "7tumfZ3DotPG",
- "colab_type": "code",
- "outputId": "896719b6-2850-43e4-b316-f57dc9ebcc75",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 206
- }
- },
- "cell_type": "code",
- "source": [
- "# do the same for other 2 species \n",
- "versicolor = iris_df[iris_df['species'] == species[1]]\n",
- "\n",
- "versicolor.head()"
- ],
- "execution_count": 53,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
- " species | \n",
+ "
\n",
+ " | 5 | \n",
+ " 1.0 | \n",
+ " 14.39 | \n",
+ " 1.87 | \n",
+ " 2.45 | \n",
+ " 14.6 | \n",
+ " 96 | \n",
+ " 2.50 | \n",
+ " 2.52 | \n",
+ " 0.30 | \n",
+ " 1.98 | \n",
+ " 5.250000 | \n",
+ " 1.02 | \n",
+ " 3.58 | \n",
+ " 1290 | \n",
"
\n",
- " \n",
- " \n",
" \n",
- " | 60 | \n",
- " 5.0 | \n",
- " 2.0 | \n",
- " 3.5 | \n",
+ " 6 | \n",
" 1.0 | \n",
- " versicolor | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.050000 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295 | \n",
"
\n",
" \n",
- " | 56 | \n",
- " 6.3 | \n",
- " 3.3 | \n",
- " 4.7 | \n",
- " 1.6 | \n",
- " versicolor | \n",
+ " 7 | \n",
+ " 1.0 | \n",
+ " 14.83 | \n",
+ " 1.64 | \n",
+ " 2.17 | \n",
+ " 14.0 | \n",
+ " 97 | \n",
+ " 2.80 | \n",
+ " 2.98 | \n",
+ " 0.29 | \n",
+ " 1.98 | \n",
+ " 5.200000 | \n",
+ " 1.08 | \n",
+ " 2.85 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1.0 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.220000 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 1.0 | \n",
+ " 14.10 | \n",
+ " 2.16 | \n",
+ " 2.30 | \n",
+ " 18.0 | \n",
+ " 105 | \n",
+ " 2.95 | \n",
+ " 3.32 | \n",
+ " 0.22 | \n",
+ " 2.38 | \n",
+ " 5.750000 | \n",
+ " 1.25 | \n",
+ " 3.17 | \n",
+ " 1510 | \n",
"
\n",
" \n",
- " | 95 | \n",
- " 5.7 | \n",
- " 3.0 | \n",
- " 4.2 | \n",
- " 1.2 | \n",
- " versicolor | \n",
+ " 10 | \n",
+ " 1.0 | \n",
+ " 14.12 | \n",
+ " 1.48 | \n",
+ " 2.32 | \n",
+ " 16.8 | \n",
+ " 95 | \n",
+ " 2.20 | \n",
+ " 2.43 | \n",
+ " 0.26 | \n",
+ " 1.57 | \n",
+ " 5.000000 | \n",
+ " 1.17 | \n",
+ " 2.82 | \n",
+ " 1280 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 1.0 | \n",
+ " 13.75 | \n",
+ " 1.73 | \n",
+ " 2.41 | \n",
+ " 16.0 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 2.76 | \n",
+ " 0.29 | \n",
+ " 1.81 | \n",
+ " 5.600000 | \n",
+ " 1.15 | \n",
+ " 2.90 | \n",
+ " 1320 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 1.0 | \n",
+ " 14.75 | \n",
+ " 1.73 | \n",
+ " 2.39 | \n",
+ " 11.4 | \n",
+ " 91 | \n",
+ " 3.10 | \n",
+ " 3.69 | \n",
+ " 0.43 | \n",
+ " 2.81 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 2.73 | \n",
+ " 1150 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 1.0 | \n",
+ " 14.38 | \n",
+ " 1.87 | \n",
+ " 2.38 | \n",
+ " 12.0 | \n",
+ " 102 | \n",
+ " 3.30 | \n",
+ " 3.64 | \n",
+ " 0.29 | \n",
+ " 2.96 | \n",
+ " 7.500000 | \n",
+ " 1.20 | \n",
+ " 3.00 | \n",
+ " 1547 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 1.0 | \n",
+ " 13.63 | \n",
+ " 1.81 | \n",
+ " 2.70 | \n",
+ " 17.2 | \n",
+ " 112 | \n",
+ " 2.85 | \n",
+ " 2.91 | \n",
+ " 0.30 | \n",
+ " 1.46 | \n",
+ " 7.300000 | \n",
+ " 1.28 | \n",
+ " 2.88 | \n",
+ " 1310 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 1.0 | \n",
+ " 14.30 | \n",
+ " 1.92 | \n",
+ " 2.72 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 2.80 | \n",
+ " 3.14 | \n",
+ " 0.33 | \n",
+ " 1.97 | \n",
+ " 6.200000 | \n",
+ " 1.07 | \n",
+ " 2.65 | \n",
+ " 1280 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 1.0 | \n",
+ " 13.83 | \n",
+ " 1.57 | \n",
+ " 2.62 | \n",
+ " 20.0 | \n",
+ " 115 | \n",
+ " 2.95 | \n",
+ " 3.40 | \n",
+ " 0.40 | \n",
+ " 1.72 | \n",
+ " 6.600000 | \n",
+ " 1.13 | \n",
+ " 2.57 | \n",
+ " 1130 | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 1.0 | \n",
+ " 14.19 | \n",
+ " 1.59 | \n",
+ " 2.48 | \n",
+ " 16.5 | \n",
+ " 108 | \n",
+ " 3.30 | \n",
+ " 3.93 | \n",
+ " 0.32 | \n",
+ " 1.86 | \n",
+ " 8.700000 | \n",
+ " 1.23 | \n",
+ " 2.82 | \n",
+ " 1680 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 1.0 | \n",
+ " 13.64 | \n",
+ " 3.10 | \n",
+ " 2.56 | \n",
+ " 15.2 | \n",
+ " 116 | \n",
+ " 2.70 | \n",
+ " 3.03 | \n",
+ " 0.17 | \n",
+ " 1.66 | \n",
+ " 5.100000 | \n",
+ " 0.96 | \n",
+ " 3.36 | \n",
+ " 845 | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 1.63 | \n",
+ " 2.28 | \n",
+ " 16.0 | \n",
+ " 126 | \n",
+ " 3.00 | \n",
+ " 3.17 | \n",
+ " 0.24 | \n",
+ " 2.10 | \n",
+ " 5.650000 | \n",
+ " 1.09 | \n",
+ " 3.71 | \n",
+ " 780 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 1.0 | \n",
+ " 12.93 | \n",
+ " 3.80 | \n",
+ " 2.65 | \n",
+ " 18.6 | \n",
+ " 102 | \n",
+ " 2.41 | \n",
+ " 2.41 | \n",
+ " 0.25 | \n",
+ " 1.98 | \n",
+ " 4.500000 | \n",
+ " 1.03 | \n",
+ " 3.52 | \n",
+ " 770 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 1.0 | \n",
+ " 13.71 | \n",
+ " 1.86 | \n",
+ " 2.36 | \n",
+ " 16.6 | \n",
+ " 101 | \n",
+ " 2.61 | \n",
+ " 2.88 | \n",
+ " 0.27 | \n",
+ " 1.69 | \n",
+ " 3.800000 | \n",
+ " 1.11 | \n",
+ " 4.00 | \n",
+ " 1035 | \n",
"
\n",
" \n",
- " | 76 | \n",
- " 6.8 | \n",
- " 2.8 | \n",
- " 4.8 | \n",
- " 1.4 | \n",
- " versicolor | \n",
+ " 22 | \n",
+ " 1.0 | \n",
+ " 12.85 | \n",
+ " 1.60 | \n",
+ " 2.52 | \n",
+ " 17.8 | \n",
+ " 95 | \n",
+ " 2.48 | \n",
+ " 2.37 | \n",
+ " 0.26 | \n",
+ " 1.46 | \n",
+ " 3.930000 | \n",
+ " 1.09 | \n",
+ " 3.63 | \n",
+ " 1015 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 1.0 | \n",
+ " 13.50 | \n",
+ " 1.81 | \n",
+ " 2.61 | \n",
+ " 20.0 | \n",
+ " 96 | \n",
+ " 2.53 | \n",
+ " 2.61 | \n",
+ " 0.28 | \n",
+ " 1.66 | \n",
+ " 3.520000 | \n",
+ " 1.12 | \n",
+ " 3.82 | \n",
+ " 845 | \n",
"
\n",
" \n",
- " | 78 | \n",
- " 6.0 | \n",
- " 2.9 | \n",
- " 4.5 | \n",
- " 1.5 | \n",
- " versicolor | \n",
+ " 24 | \n",
+ " 1.0 | \n",
+ " 13.05 | \n",
+ " 2.05 | \n",
+ " 3.22 | \n",
+ " 25.0 | \n",
+ " 124 | \n",
+ " 2.63 | \n",
+ " 2.68 | \n",
+ " 0.47 | \n",
+ " 1.92 | \n",
+ " 3.580000 | \n",
+ " 1.13 | \n",
+ " 3.20 | \n",
+ " 830 | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " 1.0 | \n",
+ " 13.39 | \n",
+ " 1.77 | \n",
+ " 2.62 | \n",
+ " 16.1 | \n",
+ " 93 | \n",
+ " 2.85 | \n",
+ " 2.94 | \n",
+ " 0.34 | \n",
+ " 1.45 | \n",
+ " 4.800000 | \n",
+ " 0.92 | \n",
+ " 3.22 | \n",
+ " 1195 | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 1.0 | \n",
+ " 13.30 | \n",
+ " 1.72 | \n",
+ " 2.14 | \n",
+ " 17.0 | \n",
+ " 94 | \n",
+ " 2.40 | \n",
+ " 2.19 | \n",
+ " 0.27 | \n",
+ " 1.35 | \n",
+ " 3.950000 | \n",
+ " 1.02 | \n",
+ " 2.77 | \n",
+ " 1285 | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 1.0 | \n",
+ " 13.87 | \n",
+ " 1.90 | \n",
+ " 2.80 | \n",
+ " 19.4 | \n",
+ " 107 | \n",
+ " 2.95 | \n",
+ " 2.97 | \n",
+ " 0.37 | \n",
+ " 1.76 | \n",
+ " 4.500000 | \n",
+ " 1.25 | \n",
+ " 3.40 | \n",
+ " 915 | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 1.0 | \n",
+ " 14.02 | \n",
+ " 1.68 | \n",
+ " 2.21 | \n",
+ " 16.0 | \n",
+ " 96 | \n",
+ " 2.65 | \n",
+ " 2.33 | \n",
+ " 0.26 | \n",
+ " 1.98 | \n",
+ " 4.700000 | \n",
+ " 1.04 | \n",
+ " 3.59 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 29 | \n",
+ " 1.0 | \n",
+ " 13.73 | \n",
+ " 1.50 | \n",
+ " 2.70 | \n",
+ " 22.5 | \n",
+ " 101 | \n",
+ " 3.00 | \n",
+ " 3.25 | \n",
+ " 0.29 | \n",
+ " 2.38 | \n",
+ " 5.700000 | \n",
+ " 1.19 | \n",
+ " 2.71 | \n",
+ " 1285 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 147 | \n",
+ " 3.0 | \n",
+ " 13.32 | \n",
+ " 3.24 | \n",
+ " 2.38 | \n",
+ " 21.5 | \n",
+ " 92 | \n",
+ " 1.93 | \n",
+ " 0.76 | \n",
+ " 0.45 | \n",
+ " 1.25 | \n",
+ " 8.420000 | \n",
+ " 0.55 | \n",
+ " 1.62 | \n",
+ " 650 | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 3.0 | \n",
+ " 13.08 | \n",
+ " 3.90 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 113 | \n",
+ " 1.41 | \n",
+ " 1.39 | \n",
+ " 0.34 | \n",
+ " 1.14 | \n",
+ " 9.400000 | \n",
+ " 0.57 | \n",
+ " 1.33 | \n",
+ " 550 | \n",
+ "
\n",
+ " \n",
+ " | 149 | \n",
+ " 3.0 | \n",
+ " 13.50 | \n",
+ " 3.12 | \n",
+ " 2.62 | \n",
+ " 24.0 | \n",
+ " 123 | \n",
+ " 1.40 | \n",
+ " 1.57 | \n",
+ " 0.22 | \n",
+ " 1.25 | \n",
+ " 8.600000 | \n",
+ " 0.59 | \n",
+ " 1.30 | \n",
+ " 500 | \n",
+ "
\n",
+ " \n",
+ " | 150 | \n",
+ " 3.0 | \n",
+ " 12.79 | \n",
+ " 2.67 | \n",
+ " 2.48 | \n",
+ " 22.0 | \n",
+ " 112 | \n",
+ " 1.48 | \n",
+ " 1.36 | \n",
+ " 0.24 | \n",
+ " 1.26 | \n",
+ " 10.800000 | \n",
+ " 0.48 | \n",
+ " 1.47 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 151 | \n",
+ " 3.0 | \n",
+ " 13.11 | \n",
+ " 1.90 | \n",
+ " 2.75 | \n",
+ " 25.5 | \n",
+ " 116 | \n",
+ " 2.20 | \n",
+ " 1.28 | \n",
+ " 0.26 | \n",
+ " 1.56 | \n",
+ " 7.100000 | \n",
+ " 0.61 | \n",
+ " 1.33 | \n",
+ " 425 | \n",
+ "
\n",
+ " \n",
+ " | 152 | \n",
+ " 3.0 | \n",
+ " 13.23 | \n",
+ " 3.30 | \n",
+ " 2.28 | \n",
+ " 18.5 | \n",
+ " 98 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.61 | \n",
+ " 1.87 | \n",
+ " 10.520000 | \n",
+ " 0.56 | \n",
+ " 1.51 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 153 | \n",
+ " 3.0 | \n",
+ " 12.58 | \n",
+ " 1.29 | \n",
+ " 2.10 | \n",
+ " 20.0 | \n",
+ " 103 | \n",
+ " 1.48 | \n",
+ " 0.58 | \n",
+ " 0.53 | \n",
+ " 1.40 | \n",
+ " 7.600000 | \n",
+ " 0.58 | \n",
+ " 1.55 | \n",
+ " 640 | \n",
+ "
\n",
+ " \n",
+ " | 154 | \n",
+ " 3.0 | \n",
+ " 13.17 | \n",
+ " 5.19 | \n",
+ " 2.32 | \n",
+ " 22.0 | \n",
+ " 93 | \n",
+ " 1.74 | \n",
+ " 0.63 | \n",
+ " 0.61 | \n",
+ " 1.55 | \n",
+ " 7.900000 | \n",
+ " 0.60 | \n",
+ " 1.48 | \n",
+ " 725 | \n",
+ "
\n",
+ " \n",
+ " | 155 | \n",
+ " 3.0 | \n",
+ " 13.84 | \n",
+ " 4.12 | \n",
+ " 2.38 | \n",
+ " 19.5 | \n",
+ " 89 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.48 | \n",
+ " 1.56 | \n",
+ " 9.010000 | \n",
+ " 0.57 | \n",
+ " 1.64 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 156 | \n",
+ " 3.0 | \n",
+ " 12.45 | \n",
+ " 3.03 | \n",
+ " 2.64 | \n",
+ " 27.0 | \n",
+ " 97 | \n",
+ " 1.90 | \n",
+ " 0.58 | \n",
+ " 0.63 | \n",
+ " 1.14 | \n",
+ " 7.500000 | \n",
+ " 0.67 | \n",
+ " 1.73 | \n",
+ " 880 | \n",
+ "
\n",
+ " \n",
+ " | 157 | \n",
+ " 3.0 | \n",
+ " 14.34 | \n",
+ " 1.68 | \n",
+ " 2.70 | \n",
+ " 25.0 | \n",
+ " 98 | \n",
+ " 2.80 | \n",
+ " 1.31 | \n",
+ " 0.53 | \n",
+ " 2.70 | \n",
+ " 13.000000 | \n",
+ " 0.57 | \n",
+ " 1.96 | \n",
+ " 660 | \n",
+ "
\n",
+ " \n",
+ " | 158 | \n",
+ " 3.0 | \n",
+ " 13.48 | \n",
+ " 1.67 | \n",
+ " 2.64 | \n",
+ " 22.5 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 1.10 | \n",
+ " 0.52 | \n",
+ " 2.29 | \n",
+ " 11.750000 | \n",
+ " 0.57 | \n",
+ " 1.78 | \n",
+ " 620 | \n",
+ "
\n",
+ " \n",
+ " | 159 | \n",
+ " 3.0 | \n",
+ " 12.36 | \n",
+ " 3.83 | \n",
+ " 2.38 | \n",
+ " 21.0 | \n",
+ " 88 | \n",
+ " 2.30 | \n",
+ " 0.92 | \n",
+ " 0.50 | \n",
+ " 1.04 | \n",
+ " 7.650000 | \n",
+ " 0.56 | \n",
+ " 1.58 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 160 | \n",
+ " 3.0 | \n",
+ " 13.69 | \n",
+ " 3.26 | \n",
+ " 2.54 | \n",
+ " 20.0 | \n",
+ " 107 | \n",
+ " 1.83 | \n",
+ " 0.56 | \n",
+ " 0.50 | \n",
+ " 0.80 | \n",
+ " 5.880000 | \n",
+ " 0.96 | \n",
+ " 1.82 | \n",
+ " 680 | \n",
+ "
\n",
+ " \n",
+ " | 161 | \n",
+ " 3.0 | \n",
+ " 12.85 | \n",
+ " 3.27 | \n",
+ " 2.58 | \n",
+ " 22.0 | \n",
+ " 106 | \n",
+ " 1.65 | \n",
+ " 0.60 | \n",
+ " 0.60 | \n",
+ " 0.96 | \n",
+ " 5.580000 | \n",
+ " 0.87 | \n",
+ " 2.11 | \n",
+ " 570 | \n",
+ "
\n",
+ " \n",
+ " | 162 | \n",
+ " 3.0 | \n",
+ " 12.96 | \n",
+ " 3.45 | \n",
+ " 2.35 | \n",
+ " 18.5 | \n",
+ " 106 | \n",
+ " 1.39 | \n",
+ " 0.70 | \n",
+ " 0.40 | \n",
+ " 0.94 | \n",
+ " 5.280000 | \n",
+ " 0.68 | \n",
+ " 1.75 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 163 | \n",
+ " 3.0 | \n",
+ " 13.78 | \n",
+ " 2.76 | \n",
+ " 2.30 | \n",
+ " 22.0 | \n",
+ " 90 | \n",
+ " 1.35 | \n",
+ " 0.68 | \n",
+ " 0.41 | \n",
+ " 1.03 | \n",
+ " 9.580000 | \n",
+ " 0.70 | \n",
+ " 1.68 | \n",
+ " 615 | \n",
+ "
\n",
+ " \n",
+ " | 164 | \n",
+ " 3.0 | \n",
+ " 13.73 | \n",
+ " 4.36 | \n",
+ " 2.26 | \n",
+ " 22.5 | \n",
+ " 88 | \n",
+ " 1.28 | \n",
+ " 0.47 | \n",
+ " 0.52 | \n",
+ " 1.15 | \n",
+ " 6.620000 | \n",
+ " 0.78 | \n",
+ " 1.75 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 165 | \n",
+ " 3.0 | \n",
+ " 13.45 | \n",
+ " 3.70 | \n",
+ " 2.60 | \n",
+ " 23.0 | \n",
+ " 111 | \n",
+ " 1.70 | \n",
+ " 0.92 | \n",
+ " 0.43 | \n",
+ " 1.46 | \n",
+ " 10.680000 | \n",
+ " 0.85 | \n",
+ " 1.56 | \n",
+ " 695 | \n",
+ "
\n",
+ " \n",
+ " | 166 | \n",
+ " 3.0 | \n",
+ " 12.82 | \n",
+ " 3.37 | \n",
+ " 2.30 | \n",
+ " 19.5 | \n",
+ " 88 | \n",
+ " 1.48 | \n",
+ " 0.66 | \n",
+ " 0.40 | \n",
+ " 0.97 | \n",
+ " 10.260000 | \n",
+ " 0.72 | \n",
+ " 1.75 | \n",
+ " 685 | \n",
+ "
\n",
+ " \n",
+ " | 167 | \n",
+ " 3.0 | \n",
+ " 13.58 | \n",
+ " 2.58 | \n",
+ " 2.69 | \n",
+ " 24.5 | \n",
+ " 105 | \n",
+ " 1.55 | \n",
+ " 0.84 | \n",
+ " 0.39 | \n",
+ " 1.54 | \n",
+ " 8.660000 | \n",
+ " 0.74 | \n",
+ " 1.80 | \n",
+ " 750 | \n",
+ "
\n",
+ " \n",
+ " | 168 | \n",
+ " 3.0 | \n",
+ " 13.40 | \n",
+ " 4.60 | \n",
+ " 2.86 | \n",
+ " 25.0 | \n",
+ " 112 | \n",
+ " 1.98 | \n",
+ " 0.96 | \n",
+ " 0.27 | \n",
+ " 1.11 | \n",
+ " 8.500000 | \n",
+ " 0.67 | \n",
+ " 1.92 | \n",
+ " 630 | \n",
+ "
\n",
+ " \n",
+ " | 169 | \n",
+ " 3.0 | \n",
+ " 12.20 | \n",
+ " 3.03 | \n",
+ " 2.32 | \n",
+ " 19.0 | \n",
+ " 96 | \n",
+ " 1.25 | \n",
+ " 0.49 | \n",
+ " 0.40 | \n",
+ " 0.73 | \n",
+ " 5.500000 | \n",
+ " 0.66 | \n",
+ " 1.83 | \n",
+ " 510 | \n",
+ "
\n",
+ " \n",
+ " | 170 | \n",
+ " 3.0 | \n",
+ " 12.77 | \n",
+ " 2.39 | \n",
+ " 2.28 | \n",
+ " 19.5 | \n",
+ " 86 | \n",
+ " 1.39 | \n",
+ " 0.51 | \n",
+ " 0.48 | \n",
+ " 0.64 | \n",
+ " 9.899999 | \n",
+ " 0.57 | \n",
+ " 1.63 | \n",
+ " 470 | \n",
+ "
\n",
+ " \n",
+ " | 171 | \n",
+ " 3.0 | \n",
+ " 14.16 | \n",
+ " 2.51 | \n",
+ " 2.48 | \n",
+ " 20.0 | \n",
+ " 91 | \n",
+ " 1.68 | \n",
+ " 0.70 | \n",
+ " 0.44 | \n",
+ " 1.24 | \n",
+ " 9.700000 | \n",
+ " 0.62 | \n",
+ " 1.71 | \n",
+ " 660 | \n",
+ "
\n",
+ " \n",
+ " | 172 | \n",
+ " 3.0 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.700000 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740 | \n",
+ "
\n",
+ " \n",
+ " | 173 | \n",
+ " 3.0 | \n",
+ " 13.40 | \n",
+ " 3.91 | \n",
+ " 2.48 | \n",
+ " 23.0 | \n",
+ " 102 | \n",
+ " 1.80 | \n",
+ " 0.75 | \n",
+ " 0.43 | \n",
+ " 1.41 | \n",
+ " 7.300000 | \n",
+ " 0.70 | \n",
+ " 1.56 | \n",
+ " 750 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 3.0 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.200000 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835 | \n",
+ "
\n",
+ " \n",
+ " | 175 | \n",
+ " 3.0 | \n",
+ " 13.17 | \n",
+ " 2.59 | \n",
+ " 2.37 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.65 | \n",
+ " 0.68 | \n",
+ " 0.53 | \n",
+ " 1.46 | \n",
+ " 9.300000 | \n",
+ " 0.60 | \n",
+ " 1.62 | \n",
+ " 840 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 3.0 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.200000 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560 | \n",
"
\n",
" \n",
"
\n",
+ "
177 rows × 14 columns
\n",
"
"
],
"text/plain": [
- " sepal_length sepal_width petal_length petal_width species\n",
- "60 5.0 2.0 3.5 1.0 versicolor\n",
- "56 6.3 3.3 4.7 1.6 versicolor\n",
- "95 5.7 3.0 4.2 1.2 versicolor\n",
- "76 6.8 2.8 4.8 1.4 versicolor\n",
- "78 6.0 2.9 4.5 1.5 versicolor"
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 \\\n",
+ "0 NaN 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 \n",
+ "1 NaN 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.680000 \n",
+ "2 NaN 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 \n",
+ "3 1.0 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.320000 \n",
+ "4 1.0 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 \n",
+ "5 1.0 14.39 1.87 2.45 14.6 96 2.50 2.52 0.30 1.98 5.250000 \n",
+ "6 1.0 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 \n",
+ "7 1.0 14.83 1.64 2.17 14.0 97 2.80 2.98 0.29 1.98 5.200000 \n",
+ "8 1.0 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 \n",
+ "9 1.0 14.10 2.16 2.30 18.0 105 2.95 3.32 0.22 2.38 5.750000 \n",
+ "10 1.0 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 \n",
+ "11 1.0 13.75 1.73 2.41 16.0 89 2.60 2.76 0.29 1.81 5.600000 \n",
+ "12 1.0 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 \n",
+ "13 1.0 14.38 1.87 2.38 12.0 102 3.30 3.64 0.29 2.96 7.500000 \n",
+ "14 1.0 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 \n",
+ "15 1.0 14.30 1.92 2.72 20.0 120 2.80 3.14 0.33 1.97 6.200000 \n",
+ "16 1.0 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 \n",
+ "17 1.0 14.19 1.59 2.48 16.5 108 3.30 3.93 0.32 1.86 8.700000 \n",
+ "18 1.0 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 \n",
+ "19 1.0 14.06 1.63 2.28 16.0 126 3.00 3.17 0.24 2.10 5.650000 \n",
+ "20 1.0 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 \n",
+ "21 1.0 13.71 1.86 2.36 16.6 101 2.61 2.88 0.27 1.69 3.800000 \n",
+ "22 1.0 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 \n",
+ "23 1.0 13.50 1.81 2.61 20.0 96 2.53 2.61 0.28 1.66 3.520000 \n",
+ "24 1.0 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 \n",
+ "25 1.0 13.39 1.77 2.62 16.1 93 2.85 2.94 0.34 1.45 4.800000 \n",
+ "26 1.0 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 \n",
+ "27 1.0 13.87 1.90 2.80 19.4 107 2.95 2.97 0.37 1.76 4.500000 \n",
+ "28 1.0 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 \n",
+ "29 1.0 13.73 1.50 2.70 22.5 101 3.00 3.25 0.29 2.38 5.700000 \n",
+ ".. ... ... ... ... ... ... ... ... ... ... ... \n",
+ "147 3.0 13.32 3.24 2.38 21.5 92 1.93 0.76 0.45 1.25 8.420000 \n",
+ "148 3.0 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 \n",
+ "149 3.0 13.50 3.12 2.62 24.0 123 1.40 1.57 0.22 1.25 8.600000 \n",
+ "150 3.0 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 \n",
+ "151 3.0 13.11 1.90 2.75 25.5 116 2.20 1.28 0.26 1.56 7.100000 \n",
+ "152 3.0 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 \n",
+ "153 3.0 12.58 1.29 2.10 20.0 103 1.48 0.58 0.53 1.40 7.600000 \n",
+ "154 3.0 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 \n",
+ "155 3.0 13.84 4.12 2.38 19.5 89 1.80 0.83 0.48 1.56 9.010000 \n",
+ "156 3.0 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 \n",
+ "157 3.0 14.34 1.68 2.70 25.0 98 2.80 1.31 0.53 2.70 13.000000 \n",
+ "158 3.0 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 \n",
+ "159 3.0 12.36 3.83 2.38 21.0 88 2.30 0.92 0.50 1.04 7.650000 \n",
+ "160 3.0 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 \n",
+ "161 3.0 12.85 3.27 2.58 22.0 106 1.65 0.60 0.60 0.96 5.580000 \n",
+ "162 3.0 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 \n",
+ "163 3.0 13.78 2.76 2.30 22.0 90 1.35 0.68 0.41 1.03 9.580000 \n",
+ "164 3.0 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 \n",
+ "165 3.0 13.45 3.70 2.60 23.0 111 1.70 0.92 0.43 1.46 10.680000 \n",
+ "166 3.0 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 \n",
+ "167 3.0 13.58 2.58 2.69 24.5 105 1.55 0.84 0.39 1.54 8.660000 \n",
+ "168 3.0 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 \n",
+ "169 3.0 12.20 3.03 2.32 19.0 96 1.25 0.49 0.40 0.73 5.500000 \n",
+ "170 3.0 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 \n",
+ "171 3.0 14.16 2.51 2.48 20.0 91 1.68 0.70 0.44 1.24 9.700000 \n",
+ "172 3.0 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 \n",
+ "173 3.0 13.40 3.91 2.48 23.0 102 1.80 0.75 0.43 1.41 7.300000 \n",
+ "174 3.0 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 \n",
+ "175 3.0 13.17 2.59 2.37 20.0 120 1.65 0.68 0.53 1.46 9.300000 \n",
+ "176 3.0 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 \n",
+ "\n",
+ " 1.04 3.92 1065 \n",
+ "0 1.05 3.40 1050 \n",
+ "1 1.03 3.17 1185 \n",
+ "2 0.86 3.45 1480 \n",
+ "3 1.04 2.93 735 \n",
+ "4 1.05 2.85 1450 \n",
+ "5 1.02 3.58 1290 \n",
+ "6 1.06 3.58 1295 \n",
+ "7 1.08 2.85 1045 \n",
+ "8 1.01 3.55 1045 \n",
+ "9 1.25 3.17 1510 \n",
+ "10 1.17 2.82 1280 \n",
+ "11 1.15 2.90 1320 \n",
+ "12 1.25 2.73 1150 \n",
+ "13 1.20 3.00 1547 \n",
+ "14 1.28 2.88 1310 \n",
+ "15 1.07 2.65 1280 \n",
+ "16 1.13 2.57 1130 \n",
+ "17 1.23 2.82 1680 \n",
+ "18 0.96 3.36 845 \n",
+ "19 1.09 3.71 780 \n",
+ "20 1.03 3.52 770 \n",
+ "21 1.11 4.00 1035 \n",
+ "22 1.09 3.63 1015 \n",
+ "23 1.12 3.82 845 \n",
+ "24 1.13 3.20 830 \n",
+ "25 0.92 3.22 1195 \n",
+ "26 1.02 2.77 1285 \n",
+ "27 1.25 3.40 915 \n",
+ "28 1.04 3.59 1035 \n",
+ "29 1.19 2.71 1285 \n",
+ ".. ... ... ... \n",
+ "147 0.55 1.62 650 \n",
+ "148 0.57 1.33 550 \n",
+ "149 0.59 1.30 500 \n",
+ "150 0.48 1.47 480 \n",
+ "151 0.61 1.33 425 \n",
+ "152 0.56 1.51 675 \n",
+ "153 0.58 1.55 640 \n",
+ "154 0.60 1.48 725 \n",
+ "155 0.57 1.64 480 \n",
+ "156 0.67 1.73 880 \n",
+ "157 0.57 1.96 660 \n",
+ "158 0.57 1.78 620 \n",
+ "159 0.56 1.58 520 \n",
+ "160 0.96 1.82 680 \n",
+ "161 0.87 2.11 570 \n",
+ "162 0.68 1.75 675 \n",
+ "163 0.70 1.68 615 \n",
+ "164 0.78 1.75 520 \n",
+ "165 0.85 1.56 695 \n",
+ "166 0.72 1.75 685 \n",
+ "167 0.74 1.80 750 \n",
+ "168 0.67 1.92 630 \n",
+ "169 0.66 1.83 510 \n",
+ "170 0.57 1.63 470 \n",
+ "171 0.62 1.71 660 \n",
+ "172 0.64 1.74 740 \n",
+ "173 0.70 1.56 750 \n",
+ "174 0.59 1.56 835 \n",
+ "175 0.60 1.62 840 \n",
+ "176 0.61 1.60 560 \n",
+ "\n",
+ "[177 rows x 14 columns]"
]
},
"metadata": {
"tags": []
},
- "execution_count": 53
+ "execution_count": 6
}
]
},
{
"metadata": {
- "id": "cUYm5UqVpDPy",
+ "id": "RQMNI2UHkP3o",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Create an array of 10 random numbers uptill 10 and assign it to a variable named `random`"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "xunmCjaEmDwZ",
"colab_type": "code",
- "outputId": "09f9a382-f213-4982-c8c0-fac805f4f6f6",
+ "outputId": "22415fa2-1aed-4c4a-978b-8b0db8578b84",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 206
+ "height": 35
}
},
"cell_type": "code",
"source": [
+ "arr = np.array([])\n",
+ "import random\n",
+ "for i in range(10):\n",
+ " a = random.randint(0,10)\n",
+ " arr = np.append(arr,a)\n",
"\n",
- "\n",
- "virginica = iris_df[iris_df['species'] == species[2]]\n",
- "\n",
- "virginica.head()"
+ "print(arr)"
],
- "execution_count": 54,
+ "execution_count": 7,
"outputs": [
{
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
- " species | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 40 | \n",
- " 5.0 | \n",
- " 3.5 | \n",
- " 1.3 | \n",
- " 0.3 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 46 | \n",
- " 5.1 | \n",
- " 3.8 | \n",
- " 1.6 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 38 | \n",
- " 4.4 | \n",
- " 3.0 | \n",
- " 1.3 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 24 | \n",
- " 4.8 | \n",
- " 3.4 | \n",
- " 1.9 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 18 | \n",
- " 5.7 | \n",
- " 3.8 | \n",
- " 1.7 | \n",
- " 0.3 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " sepal_length sepal_width petal_length petal_width species\n",
- "40 5.0 3.5 1.3 0.3 setosa\n",
- "46 5.1 3.8 1.6 0.2 setosa\n",
- "38 4.4 3.0 1.3 0.2 setosa\n",
- "24 4.8 3.4 1.9 0.2 setosa\n",
- "18 5.7 3.8 1.7 0.3 setosa"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 54
+ "output_type": "stream",
+ "text": [
+ "[ 0. 4. 1. 9. 8. 9. 9. 3. 5. 10.]\n"
+ ],
+ "name": "stdout"
}
]
},
{
"metadata": {
- "id": "-y1wDc8SpdQs",
+ "id": "hELUakyXmFSu",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
- "#### Describe each created species to see the difference\n",
- "\n"
+ "#### Use random numbers you generated as an index and assign NaN value to each of cell of the column alcohol"
]
},
{
"metadata": {
- "id": "eHrn3ZVRpOk5",
+ "id": "zMgaNnNHmP01",
"colab_type": "code",
- "outputId": "fc5247a4-25cf-4cc3-c514-9651ad6c1f05",
+ "outputId": "d123c184-59be-4a7f-ea9d-0f4067eacae8",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 300
+ "height": 2350
}
},
"cell_type": "code",
"source": [
- "setosa.describe()"
+ "for i in arr:\n",
+ " i = int(i)\n",
+ " wine_df.iat[i,0] = np.nan\n",
+ " \n",
+ "print(wine_df)"
],
- "execution_count": 55,
+ "execution_count": 8,
"outputs": [
{
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | count | \n",
- " 50.00000 | \n",
- " 50.000000 | \n",
- " 50.000000 | \n",
- " 50.00000 | \n",
- "
\n",
- " \n",
- " | mean | \n",
- " 6.58800 | \n",
- " 2.974000 | \n",
- " 5.552000 | \n",
- " 2.02600 | \n",
- "
\n",
- " \n",
- " | std | \n",
- " 0.63588 | \n",
- " 0.322497 | \n",
- " 0.551895 | \n",
- " 0.27465 | \n",
- "
\n",
- " \n",
- " | min | \n",
- " 4.90000 | \n",
- " 2.200000 | \n",
- " 4.500000 | \n",
- " 1.40000 | \n",
- "
\n",
- " \n",
- " | 25% | \n",
- " 6.22500 | \n",
- " 2.800000 | \n",
- " 5.100000 | \n",
- " 1.80000 | \n",
- "
\n",
- " \n",
- " | 50% | \n",
- " 6.50000 | \n",
- " 3.000000 | \n",
- " 5.550000 | \n",
- " 2.00000 | \n",
- "
\n",
- " \n",
- " | 75% | \n",
- " 6.90000 | \n",
- " 3.175000 | \n",
- " 5.875000 | \n",
- " 2.30000 | \n",
- "
\n",
- " \n",
- " | max | \n",
- " 7.90000 | \n",
- " 3.800000 | \n",
- " 6.900000 | \n",
- " 2.50000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
+ "output_type": "stream",
+ "text": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 \\\n",
+ "0 NaN 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 \n",
+ "1 NaN 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.680000 \n",
+ "2 NaN 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 \n",
+ "3 NaN 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.320000 \n",
+ "4 NaN 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 \n",
+ "5 NaN 14.39 1.87 2.45 14.6 96 2.50 2.52 0.30 1.98 5.250000 \n",
+ "6 1.0 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 \n",
+ "7 1.0 14.83 1.64 2.17 14.0 97 2.80 2.98 0.29 1.98 5.200000 \n",
+ "8 NaN 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 \n",
+ "9 NaN 14.10 2.16 2.30 18.0 105 2.95 3.32 0.22 2.38 5.750000 \n",
+ "10 NaN 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 \n",
+ "11 1.0 13.75 1.73 2.41 16.0 89 2.60 2.76 0.29 1.81 5.600000 \n",
+ "12 1.0 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 \n",
+ "13 1.0 14.38 1.87 2.38 12.0 102 3.30 3.64 0.29 2.96 7.500000 \n",
+ "14 1.0 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 \n",
+ "15 1.0 14.30 1.92 2.72 20.0 120 2.80 3.14 0.33 1.97 6.200000 \n",
+ "16 1.0 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 \n",
+ "17 1.0 14.19 1.59 2.48 16.5 108 3.30 3.93 0.32 1.86 8.700000 \n",
+ "18 1.0 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 \n",
+ "19 1.0 14.06 1.63 2.28 16.0 126 3.00 3.17 0.24 2.10 5.650000 \n",
+ "20 1.0 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 \n",
+ "21 1.0 13.71 1.86 2.36 16.6 101 2.61 2.88 0.27 1.69 3.800000 \n",
+ "22 1.0 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 \n",
+ "23 1.0 13.50 1.81 2.61 20.0 96 2.53 2.61 0.28 1.66 3.520000 \n",
+ "24 1.0 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 \n",
+ "25 1.0 13.39 1.77 2.62 16.1 93 2.85 2.94 0.34 1.45 4.800000 \n",
+ "26 1.0 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 \n",
+ "27 1.0 13.87 1.90 2.80 19.4 107 2.95 2.97 0.37 1.76 4.500000 \n",
+ "28 1.0 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 \n",
+ "29 1.0 13.73 1.50 2.70 22.5 101 3.00 3.25 0.29 2.38 5.700000 \n",
+ ".. ... ... ... ... ... ... ... ... ... ... ... \n",
+ "147 3.0 13.32 3.24 2.38 21.5 92 1.93 0.76 0.45 1.25 8.420000 \n",
+ "148 3.0 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 \n",
+ "149 3.0 13.50 3.12 2.62 24.0 123 1.40 1.57 0.22 1.25 8.600000 \n",
+ "150 3.0 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 \n",
+ "151 3.0 13.11 1.90 2.75 25.5 116 2.20 1.28 0.26 1.56 7.100000 \n",
+ "152 3.0 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 \n",
+ "153 3.0 12.58 1.29 2.10 20.0 103 1.48 0.58 0.53 1.40 7.600000 \n",
+ "154 3.0 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 \n",
+ "155 3.0 13.84 4.12 2.38 19.5 89 1.80 0.83 0.48 1.56 9.010000 \n",
+ "156 3.0 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 \n",
+ "157 3.0 14.34 1.68 2.70 25.0 98 2.80 1.31 0.53 2.70 13.000000 \n",
+ "158 3.0 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 \n",
+ "159 3.0 12.36 3.83 2.38 21.0 88 2.30 0.92 0.50 1.04 7.650000 \n",
+ "160 3.0 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 \n",
+ "161 3.0 12.85 3.27 2.58 22.0 106 1.65 0.60 0.60 0.96 5.580000 \n",
+ "162 3.0 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 \n",
+ "163 3.0 13.78 2.76 2.30 22.0 90 1.35 0.68 0.41 1.03 9.580000 \n",
+ "164 3.0 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 \n",
+ "165 3.0 13.45 3.70 2.60 23.0 111 1.70 0.92 0.43 1.46 10.680000 \n",
+ "166 3.0 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 \n",
+ "167 3.0 13.58 2.58 2.69 24.5 105 1.55 0.84 0.39 1.54 8.660000 \n",
+ "168 3.0 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 \n",
+ "169 3.0 12.20 3.03 2.32 19.0 96 1.25 0.49 0.40 0.73 5.500000 \n",
+ "170 3.0 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 \n",
+ "171 3.0 14.16 2.51 2.48 20.0 91 1.68 0.70 0.44 1.24 9.700000 \n",
+ "172 3.0 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 \n",
+ "173 3.0 13.40 3.91 2.48 23.0 102 1.80 0.75 0.43 1.41 7.300000 \n",
+ "174 3.0 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 \n",
+ "175 3.0 13.17 2.59 2.37 20.0 120 1.65 0.68 0.53 1.46 9.300000 \n",
+ "176 3.0 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 \n",
+ "\n",
+ " 1.04 3.92 1065 \n",
+ "0 1.05 3.40 1050 \n",
+ "1 1.03 3.17 1185 \n",
+ "2 0.86 3.45 1480 \n",
+ "3 1.04 2.93 735 \n",
+ "4 1.05 2.85 1450 \n",
+ "5 1.02 3.58 1290 \n",
+ "6 1.06 3.58 1295 \n",
+ "7 1.08 2.85 1045 \n",
+ "8 1.01 3.55 1045 \n",
+ "9 1.25 3.17 1510 \n",
+ "10 1.17 2.82 1280 \n",
+ "11 1.15 2.90 1320 \n",
+ "12 1.25 2.73 1150 \n",
+ "13 1.20 3.00 1547 \n",
+ "14 1.28 2.88 1310 \n",
+ "15 1.07 2.65 1280 \n",
+ "16 1.13 2.57 1130 \n",
+ "17 1.23 2.82 1680 \n",
+ "18 0.96 3.36 845 \n",
+ "19 1.09 3.71 780 \n",
+ "20 1.03 3.52 770 \n",
+ "21 1.11 4.00 1035 \n",
+ "22 1.09 3.63 1015 \n",
+ "23 1.12 3.82 845 \n",
+ "24 1.13 3.20 830 \n",
+ "25 0.92 3.22 1195 \n",
+ "26 1.02 2.77 1285 \n",
+ "27 1.25 3.40 915 \n",
+ "28 1.04 3.59 1035 \n",
+ "29 1.19 2.71 1285 \n",
+ ".. ... ... ... \n",
+ "147 0.55 1.62 650 \n",
+ "148 0.57 1.33 550 \n",
+ "149 0.59 1.30 500 \n",
+ "150 0.48 1.47 480 \n",
+ "151 0.61 1.33 425 \n",
+ "152 0.56 1.51 675 \n",
+ "153 0.58 1.55 640 \n",
+ "154 0.60 1.48 725 \n",
+ "155 0.57 1.64 480 \n",
+ "156 0.67 1.73 880 \n",
+ "157 0.57 1.96 660 \n",
+ "158 0.57 1.78 620 \n",
+ "159 0.56 1.58 520 \n",
+ "160 0.96 1.82 680 \n",
+ "161 0.87 2.11 570 \n",
+ "162 0.68 1.75 675 \n",
+ "163 0.70 1.68 615 \n",
+ "164 0.78 1.75 520 \n",
+ "165 0.85 1.56 695 \n",
+ "166 0.72 1.75 685 \n",
+ "167 0.74 1.80 750 \n",
+ "168 0.67 1.92 630 \n",
+ "169 0.66 1.83 510 \n",
+ "170 0.57 1.63 470 \n",
+ "171 0.62 1.71 660 \n",
+ "172 0.64 1.74 740 \n",
+ "173 0.70 1.56 750 \n",
+ "174 0.59 1.56 835 \n",
+ "175 0.60 1.62 840 \n",
+ "176 0.61 1.60 560 \n",
+ "\n",
+ "[177 rows x 14 columns]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "PHyK_vRsmRwV",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### How many missing values do we have? \n",
+ "\n",
+ "Hint: you can use isnull() and sum()"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "EnOYhmEqmfKp",
+ "colab_type": "code",
+ "outputId": "f61cfd32-0447-4c74-d062-f163ead5f626",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 293
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df.isnull().sum()"
+ ],
+ "execution_count": 9,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
"text/plain": [
- " sepal_length sepal_width petal_length petal_width\n",
- "count 50.00000 50.000000 50.000000 50.00000\n",
- "mean 6.58800 2.974000 5.552000 2.02600\n",
- "std 0.63588 0.322497 0.551895 0.27465\n",
- "min 4.90000 2.200000 4.500000 1.40000\n",
- "25% 6.22500 2.800000 5.100000 1.80000\n",
- "50% 6.50000 3.000000 5.550000 2.00000\n",
- "75% 6.90000 3.175000 5.875000 2.30000\n",
- "max 7.90000 3.800000 6.900000 2.50000"
+ "1 9\n",
+ "14.23 0\n",
+ "1.71 0\n",
+ "2.43 0\n",
+ "15.6 0\n",
+ "127 0\n",
+ "2.8 0\n",
+ "3.06 0\n",
+ ".28 0\n",
+ "2.29 0\n",
+ "5.64 0\n",
+ "1.04 0\n",
+ "3.92 0\n",
+ "1065 0\n",
+ "dtype: int64"
]
},
"metadata": {
"tags": []
},
- "execution_count": 55
+ "execution_count": 9
}
]
},
{
"metadata": {
- "id": "GwJFT2GlpwUv",
+ "id": "-Fd4WBklmf1_",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Delete the rows that contain missing values "
+ ]
+ },
+ {
+ "metadata": {
+ "id": "As7IC6Ktms8-",
"colab_type": "code",
- "outputId": "feb2e1b2-57ae-42a8-dbf0-82fa18197ad7",
+ "outputId": "974d849a-cdd2-45c9-9e14-56a7bf30780b",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 300
+ "height": 1992
}
},
"cell_type": "code",
"source": [
- "versicolor.describe()"
+ "wine_df.dropna()"
],
- "execution_count": 56,
+ "execution_count": 10,
"outputs": [
{
"output_type": "execute_result",
@@ -2071,283 +4462,1199 @@
" \n",
" \n",
" | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
"
\n",
" \n",
" \n",
" \n",
- " | count | \n",
- " 50.000000 | \n",
- " 50.000000 | \n",
- " 50.000000 | \n",
- " 50.000000 | \n",
+ " 6 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.050000 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 1.0 | \n",
+ " 14.83 | \n",
+ " 1.64 | \n",
+ " 2.17 | \n",
+ " 14.0 | \n",
+ " 97 | \n",
+ " 2.80 | \n",
+ " 2.98 | \n",
+ " 0.29 | \n",
+ " 1.98 | \n",
+ " 5.200000 | \n",
+ " 1.08 | \n",
+ " 2.85 | \n",
+ " 1045 | \n",
"
\n",
" \n",
- " | mean | \n",
- " 5.936000 | \n",
- " 2.770000 | \n",
- " 4.260000 | \n",
- " 1.326000 | \n",
+ " 11 | \n",
+ " 1.0 | \n",
+ " 13.75 | \n",
+ " 1.73 | \n",
+ " 2.41 | \n",
+ " 16.0 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 2.76 | \n",
+ " 0.29 | \n",
+ " 1.81 | \n",
+ " 5.600000 | \n",
+ " 1.15 | \n",
+ " 2.90 | \n",
+ " 1320 | \n",
"
\n",
" \n",
- " | std | \n",
- " 0.516171 | \n",
- " 0.313798 | \n",
- " 0.469911 | \n",
- " 0.197753 | \n",
+ " 12 | \n",
+ " 1.0 | \n",
+ " 14.75 | \n",
+ " 1.73 | \n",
+ " 2.39 | \n",
+ " 11.4 | \n",
+ " 91 | \n",
+ " 3.10 | \n",
+ " 3.69 | \n",
+ " 0.43 | \n",
+ " 2.81 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 2.73 | \n",
+ " 1150 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 1.0 | \n",
+ " 14.38 | \n",
+ " 1.87 | \n",
+ " 2.38 | \n",
+ " 12.0 | \n",
+ " 102 | \n",
+ " 3.30 | \n",
+ " 3.64 | \n",
+ " 0.29 | \n",
+ " 2.96 | \n",
+ " 7.500000 | \n",
+ " 1.20 | \n",
+ " 3.00 | \n",
+ " 1547 | \n",
"
\n",
" \n",
- " | min | \n",
- " 4.900000 | \n",
- " 2.000000 | \n",
- " 3.000000 | \n",
- " 1.000000 | \n",
+ " 14 | \n",
+ " 1.0 | \n",
+ " 13.63 | \n",
+ " 1.81 | \n",
+ " 2.70 | \n",
+ " 17.2 | \n",
+ " 112 | \n",
+ " 2.85 | \n",
+ " 2.91 | \n",
+ " 0.30 | \n",
+ " 1.46 | \n",
+ " 7.300000 | \n",
+ " 1.28 | \n",
+ " 2.88 | \n",
+ " 1310 | \n",
"
\n",
" \n",
- " | 25% | \n",
- " 5.600000 | \n",
- " 2.525000 | \n",
- " 4.000000 | \n",
- " 1.200000 | \n",
+ " 15 | \n",
+ " 1.0 | \n",
+ " 14.30 | \n",
+ " 1.92 | \n",
+ " 2.72 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 2.80 | \n",
+ " 3.14 | \n",
+ " 0.33 | \n",
+ " 1.97 | \n",
+ " 6.200000 | \n",
+ " 1.07 | \n",
+ " 2.65 | \n",
+ " 1280 | \n",
"
\n",
" \n",
- " | 50% | \n",
- " 5.900000 | \n",
- " 2.800000 | \n",
- " 4.350000 | \n",
- " 1.300000 | \n",
+ " 16 | \n",
+ " 1.0 | \n",
+ " 13.83 | \n",
+ " 1.57 | \n",
+ " 2.62 | \n",
+ " 20.0 | \n",
+ " 115 | \n",
+ " 2.95 | \n",
+ " 3.40 | \n",
+ " 0.40 | \n",
+ " 1.72 | \n",
+ " 6.600000 | \n",
+ " 1.13 | \n",
+ " 2.57 | \n",
+ " 1130 | \n",
"
\n",
" \n",
- " | 75% | \n",
- " 6.300000 | \n",
- " 3.000000 | \n",
- " 4.600000 | \n",
- " 1.500000 | \n",
+ " 17 | \n",
+ " 1.0 | \n",
+ " 14.19 | \n",
+ " 1.59 | \n",
+ " 2.48 | \n",
+ " 16.5 | \n",
+ " 108 | \n",
+ " 3.30 | \n",
+ " 3.93 | \n",
+ " 0.32 | \n",
+ " 1.86 | \n",
+ " 8.700000 | \n",
+ " 1.23 | \n",
+ " 2.82 | \n",
+ " 1680 | \n",
"
\n",
" \n",
- " | max | \n",
- " 7.000000 | \n",
- " 3.400000 | \n",
+ " 18 | \n",
+ " 1.0 | \n",
+ " 13.64 | \n",
+ " 3.10 | \n",
+ " 2.56 | \n",
+ " 15.2 | \n",
+ " 116 | \n",
+ " 2.70 | \n",
+ " 3.03 | \n",
+ " 0.17 | \n",
+ " 1.66 | \n",
" 5.100000 | \n",
- " 1.800000 | \n",
+ " 0.96 | \n",
+ " 3.36 | \n",
+ " 845 | \n",
"
\n",
- " \n",
- "\n",
- ""
- ],
- "text/plain": [
- " sepal_length sepal_width petal_length petal_width\n",
- "count 50.000000 50.000000 50.000000 50.000000\n",
- "mean 5.936000 2.770000 4.260000 1.326000\n",
- "std 0.516171 0.313798 0.469911 0.197753\n",
- "min 4.900000 2.000000 3.000000 1.000000\n",
- "25% 5.600000 2.525000 4.000000 1.200000\n",
- "50% 5.900000 2.800000 4.350000 1.300000\n",
- "75% 6.300000 3.000000 4.600000 1.500000\n",
- "max 7.000000 3.400000 5.100000 1.800000"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 56
- }
- ]
- },
- {
- "metadata": {
- "id": "Ad4qhSZLpztf",
- "colab_type": "code",
- "outputId": "5a28a668-fe2e-4e09-d5b5-06a8defc6b41",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 300
- }
- },
- "cell_type": "code",
- "source": [
- "virginica.describe()"
- ],
- "execution_count": 57,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
+ "
\n",
+ " | 19 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 1.63 | \n",
+ " 2.28 | \n",
+ " 16.0 | \n",
+ " 126 | \n",
+ " 3.00 | \n",
+ " 3.17 | \n",
+ " 0.24 | \n",
+ " 2.10 | \n",
+ " 5.650000 | \n",
+ " 1.09 | \n",
+ " 3.71 | \n",
+ " 780 | \n",
"
\n",
- " \n",
- " \n",
" \n",
- " | count | \n",
- " 50.00000 | \n",
- " 50.000000 | \n",
- " 50.000000 | \n",
- " 50.00000 | \n",
+ " 20 | \n",
+ " 1.0 | \n",
+ " 12.93 | \n",
+ " 3.80 | \n",
+ " 2.65 | \n",
+ " 18.6 | \n",
+ " 102 | \n",
+ " 2.41 | \n",
+ " 2.41 | \n",
+ " 0.25 | \n",
+ " 1.98 | \n",
+ " 4.500000 | \n",
+ " 1.03 | \n",
+ " 3.52 | \n",
+ " 770 | \n",
"
\n",
" \n",
- " | mean | \n",
- " 5.00600 | \n",
- " 3.418000 | \n",
- " 1.464000 | \n",
- " 0.24400 | \n",
+ " 21 | \n",
+ " 1.0 | \n",
+ " 13.71 | \n",
+ " 1.86 | \n",
+ " 2.36 | \n",
+ " 16.6 | \n",
+ " 101 | \n",
+ " 2.61 | \n",
+ " 2.88 | \n",
+ " 0.27 | \n",
+ " 1.69 | \n",
+ " 3.800000 | \n",
+ " 1.11 | \n",
+ " 4.00 | \n",
+ " 1035 | \n",
"
\n",
" \n",
- " | std | \n",
- " 0.35249 | \n",
- " 0.381024 | \n",
- " 0.173511 | \n",
- " 0.10721 | \n",
+ " 22 | \n",
+ " 1.0 | \n",
+ " 12.85 | \n",
+ " 1.60 | \n",
+ " 2.52 | \n",
+ " 17.8 | \n",
+ " 95 | \n",
+ " 2.48 | \n",
+ " 2.37 | \n",
+ " 0.26 | \n",
+ " 1.46 | \n",
+ " 3.930000 | \n",
+ " 1.09 | \n",
+ " 3.63 | \n",
+ " 1015 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 1.0 | \n",
+ " 13.50 | \n",
+ " 1.81 | \n",
+ " 2.61 | \n",
+ " 20.0 | \n",
+ " 96 | \n",
+ " 2.53 | \n",
+ " 2.61 | \n",
+ " 0.28 | \n",
+ " 1.66 | \n",
+ " 3.520000 | \n",
+ " 1.12 | \n",
+ " 3.82 | \n",
+ " 845 | \n",
"
\n",
" \n",
- " | min | \n",
- " 4.30000 | \n",
- " 2.300000 | \n",
- " 1.000000 | \n",
- " 0.10000 | \n",
+ " 24 | \n",
+ " 1.0 | \n",
+ " 13.05 | \n",
+ " 2.05 | \n",
+ " 3.22 | \n",
+ " 25.0 | \n",
+ " 124 | \n",
+ " 2.63 | \n",
+ " 2.68 | \n",
+ " 0.47 | \n",
+ " 1.92 | \n",
+ " 3.580000 | \n",
+ " 1.13 | \n",
+ " 3.20 | \n",
+ " 830 | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " 1.0 | \n",
+ " 13.39 | \n",
+ " 1.77 | \n",
+ " 2.62 | \n",
+ " 16.1 | \n",
+ " 93 | \n",
+ " 2.85 | \n",
+ " 2.94 | \n",
+ " 0.34 | \n",
+ " 1.45 | \n",
+ " 4.800000 | \n",
+ " 0.92 | \n",
+ " 3.22 | \n",
+ " 1195 | \n",
"
\n",
" \n",
- " | 25% | \n",
- " 4.80000 | \n",
- " 3.125000 | \n",
- " 1.400000 | \n",
- " 0.20000 | \n",
+ " 26 | \n",
+ " 1.0 | \n",
+ " 13.30 | \n",
+ " 1.72 | \n",
+ " 2.14 | \n",
+ " 17.0 | \n",
+ " 94 | \n",
+ " 2.40 | \n",
+ " 2.19 | \n",
+ " 0.27 | \n",
+ " 1.35 | \n",
+ " 3.950000 | \n",
+ " 1.02 | \n",
+ " 2.77 | \n",
+ " 1285 | \n",
"
\n",
" \n",
- " | 50% | \n",
- " 5.00000 | \n",
- " 3.400000 | \n",
- " 1.500000 | \n",
- " 0.20000 | \n",
+ " 27 | \n",
+ " 1.0 | \n",
+ " 13.87 | \n",
+ " 1.90 | \n",
+ " 2.80 | \n",
+ " 19.4 | \n",
+ " 107 | \n",
+ " 2.95 | \n",
+ " 2.97 | \n",
+ " 0.37 | \n",
+ " 1.76 | \n",
+ " 4.500000 | \n",
+ " 1.25 | \n",
+ " 3.40 | \n",
+ " 915 | \n",
"
\n",
" \n",
- " | 75% | \n",
- " 5.20000 | \n",
- " 3.675000 | \n",
- " 1.575000 | \n",
- " 0.30000 | \n",
+ " 28 | \n",
+ " 1.0 | \n",
+ " 14.02 | \n",
+ " 1.68 | \n",
+ " 2.21 | \n",
+ " 16.0 | \n",
+ " 96 | \n",
+ " 2.65 | \n",
+ " 2.33 | \n",
+ " 0.26 | \n",
+ " 1.98 | \n",
+ " 4.700000 | \n",
+ " 1.04 | \n",
+ " 3.59 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 29 | \n",
+ " 1.0 | \n",
+ " 13.73 | \n",
+ " 1.50 | \n",
+ " 2.70 | \n",
+ " 22.5 | \n",
+ " 101 | \n",
+ " 3.00 | \n",
+ " 3.25 | \n",
+ " 0.29 | \n",
+ " 2.38 | \n",
+ " 5.700000 | \n",
+ " 1.19 | \n",
+ " 2.71 | \n",
+ " 1285 | \n",
+ "
\n",
+ " \n",
+ " | 30 | \n",
+ " 1.0 | \n",
+ " 13.58 | \n",
+ " 1.66 | \n",
+ " 2.36 | \n",
+ " 19.1 | \n",
+ " 106 | \n",
+ " 2.86 | \n",
+ " 3.19 | \n",
+ " 0.22 | \n",
+ " 1.95 | \n",
+ " 6.900000 | \n",
+ " 1.09 | \n",
+ " 2.88 | \n",
+ " 1515 | \n",
"
\n",
" \n",
- " | max | \n",
- " 5.80000 | \n",
- " 4.400000 | \n",
- " 1.900000 | \n",
- " 0.60000 | \n",
+ " 31 | \n",
+ " 1.0 | \n",
+ " 13.68 | \n",
+ " 1.83 | \n",
+ " 2.36 | \n",
+ " 17.2 | \n",
+ " 104 | \n",
+ " 2.42 | \n",
+ " 2.69 | \n",
+ " 0.42 | \n",
+ " 1.97 | \n",
+ " 3.840000 | \n",
+ " 1.23 | \n",
+ " 2.87 | \n",
+ " 990 | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 1.0 | \n",
+ " 13.76 | \n",
+ " 1.53 | \n",
+ " 2.70 | \n",
+ " 19.5 | \n",
+ " 132 | \n",
+ " 2.95 | \n",
+ " 2.74 | \n",
+ " 0.50 | \n",
+ " 1.35 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 3.00 | \n",
+ " 1235 | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 1.0 | \n",
+ " 13.51 | \n",
+ " 1.80 | \n",
+ " 2.65 | \n",
+ " 19.0 | \n",
+ " 110 | \n",
+ " 2.35 | \n",
+ " 2.53 | \n",
+ " 0.29 | \n",
+ " 1.54 | \n",
+ " 4.200000 | \n",
+ " 1.10 | \n",
+ " 2.87 | \n",
+ " 1095 | \n",
+ "
\n",
+ " \n",
+ " | 34 | \n",
+ " 1.0 | \n",
+ " 13.48 | \n",
+ " 1.81 | \n",
+ " 2.41 | \n",
+ " 20.5 | \n",
+ " 100 | \n",
+ " 2.70 | \n",
+ " 2.98 | \n",
+ " 0.26 | \n",
+ " 1.86 | \n",
+ " 5.100000 | \n",
+ " 1.04 | \n",
+ " 3.47 | \n",
+ " 920 | \n",
+ "
\n",
+ " \n",
+ " | 35 | \n",
+ " 1.0 | \n",
+ " 13.28 | \n",
+ " 1.64 | \n",
+ " 2.84 | \n",
+ " 15.5 | \n",
+ " 110 | \n",
+ " 2.60 | \n",
+ " 2.68 | \n",
+ " 0.34 | \n",
+ " 1.36 | \n",
+ " 4.600000 | \n",
+ " 1.09 | \n",
+ " 2.78 | \n",
+ " 880 | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 1.0 | \n",
+ " 13.05 | \n",
+ " 1.65 | \n",
+ " 2.55 | \n",
+ " 18.0 | \n",
+ " 98 | \n",
+ " 2.45 | \n",
+ " 2.43 | \n",
+ " 0.29 | \n",
+ " 1.44 | \n",
+ " 4.250000 | \n",
+ " 1.12 | \n",
+ " 2.51 | \n",
+ " 1105 | \n",
+ "
\n",
+ " \n",
+ " | 37 | \n",
+ " 1.0 | \n",
+ " 13.07 | \n",
+ " 1.50 | \n",
+ " 2.10 | \n",
+ " 15.5 | \n",
+ " 98 | \n",
+ " 2.40 | \n",
+ " 2.64 | \n",
+ " 0.28 | \n",
+ " 1.37 | \n",
+ " 3.700000 | \n",
+ " 1.18 | \n",
+ " 2.69 | \n",
+ " 1020 | \n",
+ "
\n",
+ " \n",
+ " | 38 | \n",
+ " 1.0 | \n",
+ " 14.22 | \n",
+ " 3.99 | \n",
+ " 2.51 | \n",
+ " 13.2 | \n",
+ " 128 | \n",
+ " 3.00 | \n",
+ " 3.04 | \n",
+ " 0.20 | \n",
+ " 2.08 | \n",
+ " 5.100000 | \n",
+ " 0.89 | \n",
+ " 3.53 | \n",
+ " 760 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 147 | \n",
+ " 3.0 | \n",
+ " 13.32 | \n",
+ " 3.24 | \n",
+ " 2.38 | \n",
+ " 21.5 | \n",
+ " 92 | \n",
+ " 1.93 | \n",
+ " 0.76 | \n",
+ " 0.45 | \n",
+ " 1.25 | \n",
+ " 8.420000 | \n",
+ " 0.55 | \n",
+ " 1.62 | \n",
+ " 650 | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 3.0 | \n",
+ " 13.08 | \n",
+ " 3.90 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 113 | \n",
+ " 1.41 | \n",
+ " 1.39 | \n",
+ " 0.34 | \n",
+ " 1.14 | \n",
+ " 9.400000 | \n",
+ " 0.57 | \n",
+ " 1.33 | \n",
+ " 550 | \n",
+ "
\n",
+ " \n",
+ " | 149 | \n",
+ " 3.0 | \n",
+ " 13.50 | \n",
+ " 3.12 | \n",
+ " 2.62 | \n",
+ " 24.0 | \n",
+ " 123 | \n",
+ " 1.40 | \n",
+ " 1.57 | \n",
+ " 0.22 | \n",
+ " 1.25 | \n",
+ " 8.600000 | \n",
+ " 0.59 | \n",
+ " 1.30 | \n",
+ " 500 | \n",
+ "
\n",
+ " \n",
+ " | 150 | \n",
+ " 3.0 | \n",
+ " 12.79 | \n",
+ " 2.67 | \n",
+ " 2.48 | \n",
+ " 22.0 | \n",
+ " 112 | \n",
+ " 1.48 | \n",
+ " 1.36 | \n",
+ " 0.24 | \n",
+ " 1.26 | \n",
+ " 10.800000 | \n",
+ " 0.48 | \n",
+ " 1.47 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 151 | \n",
+ " 3.0 | \n",
+ " 13.11 | \n",
+ " 1.90 | \n",
+ " 2.75 | \n",
+ " 25.5 | \n",
+ " 116 | \n",
+ " 2.20 | \n",
+ " 1.28 | \n",
+ " 0.26 | \n",
+ " 1.56 | \n",
+ " 7.100000 | \n",
+ " 0.61 | \n",
+ " 1.33 | \n",
+ " 425 | \n",
+ "
\n",
+ " \n",
+ " | 152 | \n",
+ " 3.0 | \n",
+ " 13.23 | \n",
+ " 3.30 | \n",
+ " 2.28 | \n",
+ " 18.5 | \n",
+ " 98 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.61 | \n",
+ " 1.87 | \n",
+ " 10.520000 | \n",
+ " 0.56 | \n",
+ " 1.51 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 153 | \n",
+ " 3.0 | \n",
+ " 12.58 | \n",
+ " 1.29 | \n",
+ " 2.10 | \n",
+ " 20.0 | \n",
+ " 103 | \n",
+ " 1.48 | \n",
+ " 0.58 | \n",
+ " 0.53 | \n",
+ " 1.40 | \n",
+ " 7.600000 | \n",
+ " 0.58 | \n",
+ " 1.55 | \n",
+ " 640 | \n",
+ "
\n",
+ " \n",
+ " | 154 | \n",
+ " 3.0 | \n",
+ " 13.17 | \n",
+ " 5.19 | \n",
+ " 2.32 | \n",
+ " 22.0 | \n",
+ " 93 | \n",
+ " 1.74 | \n",
+ " 0.63 | \n",
+ " 0.61 | \n",
+ " 1.55 | \n",
+ " 7.900000 | \n",
+ " 0.60 | \n",
+ " 1.48 | \n",
+ " 725 | \n",
+ "
\n",
+ " \n",
+ " | 155 | \n",
+ " 3.0 | \n",
+ " 13.84 | \n",
+ " 4.12 | \n",
+ " 2.38 | \n",
+ " 19.5 | \n",
+ " 89 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.48 | \n",
+ " 1.56 | \n",
+ " 9.010000 | \n",
+ " 0.57 | \n",
+ " 1.64 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 156 | \n",
+ " 3.0 | \n",
+ " 12.45 | \n",
+ " 3.03 | \n",
+ " 2.64 | \n",
+ " 27.0 | \n",
+ " 97 | \n",
+ " 1.90 | \n",
+ " 0.58 | \n",
+ " 0.63 | \n",
+ " 1.14 | \n",
+ " 7.500000 | \n",
+ " 0.67 | \n",
+ " 1.73 | \n",
+ " 880 | \n",
+ "
\n",
+ " \n",
+ " | 157 | \n",
+ " 3.0 | \n",
+ " 14.34 | \n",
+ " 1.68 | \n",
+ " 2.70 | \n",
+ " 25.0 | \n",
+ " 98 | \n",
+ " 2.80 | \n",
+ " 1.31 | \n",
+ " 0.53 | \n",
+ " 2.70 | \n",
+ " 13.000000 | \n",
+ " 0.57 | \n",
+ " 1.96 | \n",
+ " 660 | \n",
+ "
\n",
+ " \n",
+ " | 158 | \n",
+ " 3.0 | \n",
+ " 13.48 | \n",
+ " 1.67 | \n",
+ " 2.64 | \n",
+ " 22.5 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 1.10 | \n",
+ " 0.52 | \n",
+ " 2.29 | \n",
+ " 11.750000 | \n",
+ " 0.57 | \n",
+ " 1.78 | \n",
+ " 620 | \n",
+ "
\n",
+ " \n",
+ " | 159 | \n",
+ " 3.0 | \n",
+ " 12.36 | \n",
+ " 3.83 | \n",
+ " 2.38 | \n",
+ " 21.0 | \n",
+ " 88 | \n",
+ " 2.30 | \n",
+ " 0.92 | \n",
+ " 0.50 | \n",
+ " 1.04 | \n",
+ " 7.650000 | \n",
+ " 0.56 | \n",
+ " 1.58 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 160 | \n",
+ " 3.0 | \n",
+ " 13.69 | \n",
+ " 3.26 | \n",
+ " 2.54 | \n",
+ " 20.0 | \n",
+ " 107 | \n",
+ " 1.83 | \n",
+ " 0.56 | \n",
+ " 0.50 | \n",
+ " 0.80 | \n",
+ " 5.880000 | \n",
+ " 0.96 | \n",
+ " 1.82 | \n",
+ " 680 | \n",
+ "
\n",
+ " \n",
+ " | 161 | \n",
+ " 3.0 | \n",
+ " 12.85 | \n",
+ " 3.27 | \n",
+ " 2.58 | \n",
+ " 22.0 | \n",
+ " 106 | \n",
+ " 1.65 | \n",
+ " 0.60 | \n",
+ " 0.60 | \n",
+ " 0.96 | \n",
+ " 5.580000 | \n",
+ " 0.87 | \n",
+ " 2.11 | \n",
+ " 570 | \n",
+ "
\n",
+ " \n",
+ " | 162 | \n",
+ " 3.0 | \n",
+ " 12.96 | \n",
+ " 3.45 | \n",
+ " 2.35 | \n",
+ " 18.5 | \n",
+ " 106 | \n",
+ " 1.39 | \n",
+ " 0.70 | \n",
+ " 0.40 | \n",
+ " 0.94 | \n",
+ " 5.280000 | \n",
+ " 0.68 | \n",
+ " 1.75 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 163 | \n",
+ " 3.0 | \n",
+ " 13.78 | \n",
+ " 2.76 | \n",
+ " 2.30 | \n",
+ " 22.0 | \n",
+ " 90 | \n",
+ " 1.35 | \n",
+ " 0.68 | \n",
+ " 0.41 | \n",
+ " 1.03 | \n",
+ " 9.580000 | \n",
+ " 0.70 | \n",
+ " 1.68 | \n",
+ " 615 | \n",
+ "
\n",
+ " \n",
+ " | 164 | \n",
+ " 3.0 | \n",
+ " 13.73 | \n",
+ " 4.36 | \n",
+ " 2.26 | \n",
+ " 22.5 | \n",
+ " 88 | \n",
+ " 1.28 | \n",
+ " 0.47 | \n",
+ " 0.52 | \n",
+ " 1.15 | \n",
+ " 6.620000 | \n",
+ " 0.78 | \n",
+ " 1.75 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 165 | \n",
+ " 3.0 | \n",
+ " 13.45 | \n",
+ " 3.70 | \n",
+ " 2.60 | \n",
+ " 23.0 | \n",
+ " 111 | \n",
+ " 1.70 | \n",
+ " 0.92 | \n",
+ " 0.43 | \n",
+ " 1.46 | \n",
+ " 10.680000 | \n",
+ " 0.85 | \n",
+ " 1.56 | \n",
+ " 695 | \n",
+ "
\n",
+ " \n",
+ " | 166 | \n",
+ " 3.0 | \n",
+ " 12.82 | \n",
+ " 3.37 | \n",
+ " 2.30 | \n",
+ " 19.5 | \n",
+ " 88 | \n",
+ " 1.48 | \n",
+ " 0.66 | \n",
+ " 0.40 | \n",
+ " 0.97 | \n",
+ " 10.260000 | \n",
+ " 0.72 | \n",
+ " 1.75 | \n",
+ " 685 | \n",
+ "
\n",
+ " \n",
+ " | 167 | \n",
+ " 3.0 | \n",
+ " 13.58 | \n",
+ " 2.58 | \n",
+ " 2.69 | \n",
+ " 24.5 | \n",
+ " 105 | \n",
+ " 1.55 | \n",
+ " 0.84 | \n",
+ " 0.39 | \n",
+ " 1.54 | \n",
+ " 8.660000 | \n",
+ " 0.74 | \n",
+ " 1.80 | \n",
+ " 750 | \n",
+ "
\n",
+ " \n",
+ " | 168 | \n",
+ " 3.0 | \n",
+ " 13.40 | \n",
+ " 4.60 | \n",
+ " 2.86 | \n",
+ " 25.0 | \n",
+ " 112 | \n",
+ " 1.98 | \n",
+ " 0.96 | \n",
+ " 0.27 | \n",
+ " 1.11 | \n",
+ " 8.500000 | \n",
+ " 0.67 | \n",
+ " 1.92 | \n",
+ " 630 | \n",
+ "
\n",
+ " \n",
+ " | 169 | \n",
+ " 3.0 | \n",
+ " 12.20 | \n",
+ " 3.03 | \n",
+ " 2.32 | \n",
+ " 19.0 | \n",
+ " 96 | \n",
+ " 1.25 | \n",
+ " 0.49 | \n",
+ " 0.40 | \n",
+ " 0.73 | \n",
+ " 5.500000 | \n",
+ " 0.66 | \n",
+ " 1.83 | \n",
+ " 510 | \n",
+ "
\n",
+ " \n",
+ " | 170 | \n",
+ " 3.0 | \n",
+ " 12.77 | \n",
+ " 2.39 | \n",
+ " 2.28 | \n",
+ " 19.5 | \n",
+ " 86 | \n",
+ " 1.39 | \n",
+ " 0.51 | \n",
+ " 0.48 | \n",
+ " 0.64 | \n",
+ " 9.899999 | \n",
+ " 0.57 | \n",
+ " 1.63 | \n",
+ " 470 | \n",
+ "
\n",
+ " \n",
+ " | 171 | \n",
+ " 3.0 | \n",
+ " 14.16 | \n",
+ " 2.51 | \n",
+ " 2.48 | \n",
+ " 20.0 | \n",
+ " 91 | \n",
+ " 1.68 | \n",
+ " 0.70 | \n",
+ " 0.44 | \n",
+ " 1.24 | \n",
+ " 9.700000 | \n",
+ " 0.62 | \n",
+ " 1.71 | \n",
+ " 660 | \n",
+ "
\n",
+ " \n",
+ " | 172 | \n",
+ " 3.0 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.700000 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740 | \n",
+ "
\n",
+ " \n",
+ " | 173 | \n",
+ " 3.0 | \n",
+ " 13.40 | \n",
+ " 3.91 | \n",
+ " 2.48 | \n",
+ " 23.0 | \n",
+ " 102 | \n",
+ " 1.80 | \n",
+ " 0.75 | \n",
+ " 0.43 | \n",
+ " 1.41 | \n",
+ " 7.300000 | \n",
+ " 0.70 | \n",
+ " 1.56 | \n",
+ " 750 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 3.0 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.200000 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835 | \n",
+ "
\n",
+ " \n",
+ " | 175 | \n",
+ " 3.0 | \n",
+ " 13.17 | \n",
+ " 2.59 | \n",
+ " 2.37 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.65 | \n",
+ " 0.68 | \n",
+ " 0.53 | \n",
+ " 1.46 | \n",
+ " 9.300000 | \n",
+ " 0.60 | \n",
+ " 1.62 | \n",
+ " 840 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 3.0 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.200000 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560 | \n",
"
\n",
" \n",
"
\n",
+ "
168 rows × 14 columns
\n",
"
"
],
"text/plain": [
- " sepal_length sepal_width petal_length petal_width\n",
- "count 50.00000 50.000000 50.000000 50.00000\n",
- "mean 5.00600 3.418000 1.464000 0.24400\n",
- "std 0.35249 0.381024 0.173511 0.10721\n",
- "min 4.30000 2.300000 1.000000 0.10000\n",
- "25% 4.80000 3.125000 1.400000 0.20000\n",
- "50% 5.00000 3.400000 1.500000 0.20000\n",
- "75% 5.20000 3.675000 1.575000 0.30000\n",
- "max 5.80000 4.400000 1.900000 0.60000"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 57
- }
- ]
- },
- {
- "metadata": {
- "id": "Vdu0ulZWtr09",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "#### Let's plot and see the difference"
- ]
- },
- {
- "metadata": {
- "id": "PEVMzRvpttmD",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "##### import matplotlib.pyplot "
- ]
- },
- {
- "metadata": {
- "id": "rqDXuuAtt7C3",
- "colab_type": "code",
- "outputId": "c3577877-0f14-47aa-dd6c-f9ad73a0603f",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 402
- }
- },
- "cell_type": "code",
- "source": [
- "import matplotlib.pyplot as plt\n",
- "\n",
- "#hist creates a histogram there are many more plots(see the documentation) you can play with it.\n",
- "\n",
- "plt.hist(setosa['sepal_length'])\n",
- "plt.hist(versicolor['sepal_length'])\n",
- "plt.hist(virginica['sepal_length'])"
- ],
- "execution_count": 58,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "(array([ 4., 1., 6., 5., 12., 8., 4., 5., 2., 3.]),\n",
- " array([4.3 , 4.45, 4.6 , 4.75, 4.9 , 5.05, 5.2 , 5.35, 5.5 , 5.65, 5.8 ]),\n",
- " )"
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 \\\n",
+ "6 1.0 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 \n",
+ "7 1.0 14.83 1.64 2.17 14.0 97 2.80 2.98 0.29 1.98 5.200000 \n",
+ "11 1.0 13.75 1.73 2.41 16.0 89 2.60 2.76 0.29 1.81 5.600000 \n",
+ "12 1.0 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 \n",
+ "13 1.0 14.38 1.87 2.38 12.0 102 3.30 3.64 0.29 2.96 7.500000 \n",
+ "14 1.0 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 \n",
+ "15 1.0 14.30 1.92 2.72 20.0 120 2.80 3.14 0.33 1.97 6.200000 \n",
+ "16 1.0 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 \n",
+ "17 1.0 14.19 1.59 2.48 16.5 108 3.30 3.93 0.32 1.86 8.700000 \n",
+ "18 1.0 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 \n",
+ "19 1.0 14.06 1.63 2.28 16.0 126 3.00 3.17 0.24 2.10 5.650000 \n",
+ "20 1.0 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 \n",
+ "21 1.0 13.71 1.86 2.36 16.6 101 2.61 2.88 0.27 1.69 3.800000 \n",
+ "22 1.0 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 \n",
+ "23 1.0 13.50 1.81 2.61 20.0 96 2.53 2.61 0.28 1.66 3.520000 \n",
+ "24 1.0 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 \n",
+ "25 1.0 13.39 1.77 2.62 16.1 93 2.85 2.94 0.34 1.45 4.800000 \n",
+ "26 1.0 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 \n",
+ "27 1.0 13.87 1.90 2.80 19.4 107 2.95 2.97 0.37 1.76 4.500000 \n",
+ "28 1.0 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 \n",
+ "29 1.0 13.73 1.50 2.70 22.5 101 3.00 3.25 0.29 2.38 5.700000 \n",
+ "30 1.0 13.58 1.66 2.36 19.1 106 2.86 3.19 0.22 1.95 6.900000 \n",
+ "31 1.0 13.68 1.83 2.36 17.2 104 2.42 2.69 0.42 1.97 3.840000 \n",
+ "32 1.0 13.76 1.53 2.70 19.5 132 2.95 2.74 0.50 1.35 5.400000 \n",
+ "33 1.0 13.51 1.80 2.65 19.0 110 2.35 2.53 0.29 1.54 4.200000 \n",
+ "34 1.0 13.48 1.81 2.41 20.5 100 2.70 2.98 0.26 1.86 5.100000 \n",
+ "35 1.0 13.28 1.64 2.84 15.5 110 2.60 2.68 0.34 1.36 4.600000 \n",
+ "36 1.0 13.05 1.65 2.55 18.0 98 2.45 2.43 0.29 1.44 4.250000 \n",
+ "37 1.0 13.07 1.50 2.10 15.5 98 2.40 2.64 0.28 1.37 3.700000 \n",
+ "38 1.0 14.22 3.99 2.51 13.2 128 3.00 3.04 0.20 2.08 5.100000 \n",
+ ".. ... ... ... ... ... ... ... ... ... ... ... \n",
+ "147 3.0 13.32 3.24 2.38 21.5 92 1.93 0.76 0.45 1.25 8.420000 \n",
+ "148 3.0 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 \n",
+ "149 3.0 13.50 3.12 2.62 24.0 123 1.40 1.57 0.22 1.25 8.600000 \n",
+ "150 3.0 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 \n",
+ "151 3.0 13.11 1.90 2.75 25.5 116 2.20 1.28 0.26 1.56 7.100000 \n",
+ "152 3.0 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 \n",
+ "153 3.0 12.58 1.29 2.10 20.0 103 1.48 0.58 0.53 1.40 7.600000 \n",
+ "154 3.0 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 \n",
+ "155 3.0 13.84 4.12 2.38 19.5 89 1.80 0.83 0.48 1.56 9.010000 \n",
+ "156 3.0 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 \n",
+ "157 3.0 14.34 1.68 2.70 25.0 98 2.80 1.31 0.53 2.70 13.000000 \n",
+ "158 3.0 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 \n",
+ "159 3.0 12.36 3.83 2.38 21.0 88 2.30 0.92 0.50 1.04 7.650000 \n",
+ "160 3.0 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 \n",
+ "161 3.0 12.85 3.27 2.58 22.0 106 1.65 0.60 0.60 0.96 5.580000 \n",
+ "162 3.0 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 \n",
+ "163 3.0 13.78 2.76 2.30 22.0 90 1.35 0.68 0.41 1.03 9.580000 \n",
+ "164 3.0 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 \n",
+ "165 3.0 13.45 3.70 2.60 23.0 111 1.70 0.92 0.43 1.46 10.680000 \n",
+ "166 3.0 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 \n",
+ "167 3.0 13.58 2.58 2.69 24.5 105 1.55 0.84 0.39 1.54 8.660000 \n",
+ "168 3.0 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 \n",
+ "169 3.0 12.20 3.03 2.32 19.0 96 1.25 0.49 0.40 0.73 5.500000 \n",
+ "170 3.0 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 \n",
+ "171 3.0 14.16 2.51 2.48 20.0 91 1.68 0.70 0.44 1.24 9.700000 \n",
+ "172 3.0 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 \n",
+ "173 3.0 13.40 3.91 2.48 23.0 102 1.80 0.75 0.43 1.41 7.300000 \n",
+ "174 3.0 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 \n",
+ "175 3.0 13.17 2.59 2.37 20.0 120 1.65 0.68 0.53 1.46 9.300000 \n",
+ "176 3.0 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 \n",
+ "\n",
+ " 1.04 3.92 1065 \n",
+ "6 1.06 3.58 1295 \n",
+ "7 1.08 2.85 1045 \n",
+ "11 1.15 2.90 1320 \n",
+ "12 1.25 2.73 1150 \n",
+ "13 1.20 3.00 1547 \n",
+ "14 1.28 2.88 1310 \n",
+ "15 1.07 2.65 1280 \n",
+ "16 1.13 2.57 1130 \n",
+ "17 1.23 2.82 1680 \n",
+ "18 0.96 3.36 845 \n",
+ "19 1.09 3.71 780 \n",
+ "20 1.03 3.52 770 \n",
+ "21 1.11 4.00 1035 \n",
+ "22 1.09 3.63 1015 \n",
+ "23 1.12 3.82 845 \n",
+ "24 1.13 3.20 830 \n",
+ "25 0.92 3.22 1195 \n",
+ "26 1.02 2.77 1285 \n",
+ "27 1.25 3.40 915 \n",
+ "28 1.04 3.59 1035 \n",
+ "29 1.19 2.71 1285 \n",
+ "30 1.09 2.88 1515 \n",
+ "31 1.23 2.87 990 \n",
+ "32 1.25 3.00 1235 \n",
+ "33 1.10 2.87 1095 \n",
+ "34 1.04 3.47 920 \n",
+ "35 1.09 2.78 880 \n",
+ "36 1.12 2.51 1105 \n",
+ "37 1.18 2.69 1020 \n",
+ "38 0.89 3.53 760 \n",
+ ".. ... ... ... \n",
+ "147 0.55 1.62 650 \n",
+ "148 0.57 1.33 550 \n",
+ "149 0.59 1.30 500 \n",
+ "150 0.48 1.47 480 \n",
+ "151 0.61 1.33 425 \n",
+ "152 0.56 1.51 675 \n",
+ "153 0.58 1.55 640 \n",
+ "154 0.60 1.48 725 \n",
+ "155 0.57 1.64 480 \n",
+ "156 0.67 1.73 880 \n",
+ "157 0.57 1.96 660 \n",
+ "158 0.57 1.78 620 \n",
+ "159 0.56 1.58 520 \n",
+ "160 0.96 1.82 680 \n",
+ "161 0.87 2.11 570 \n",
+ "162 0.68 1.75 675 \n",
+ "163 0.70 1.68 615 \n",
+ "164 0.78 1.75 520 \n",
+ "165 0.85 1.56 695 \n",
+ "166 0.72 1.75 685 \n",
+ "167 0.74 1.80 750 \n",
+ "168 0.67 1.92 630 \n",
+ "169 0.66 1.83 510 \n",
+ "170 0.57 1.63 470 \n",
+ "171 0.62 1.71 660 \n",
+ "172 0.64 1.74 740 \n",
+ "173 0.70 1.56 750 \n",
+ "174 0.59 1.56 835 \n",
+ "175 0.60 1.62 840 \n",
+ "176 0.61 1.60 560 \n",
+ "\n",
+ "[168 rows x 14 columns]"
]
},
"metadata": {
"tags": []
},
- "execution_count": 58
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFJNJREFUeJzt3XuM1Ge5wPFn2ZFydllxi7tQtGDT\naBrbYiFtU662yKUt9oaWWyiSUxMRCphgWtxgICExh4bTUG212iI1EBIsIHCMKY0IiWmBGjEoJg0F\nE8OlhaUsLNdw6Zw/DBuxsJfZ2XeY2c/nL+Y3s795Xl4y350ZdrYsm81mAwBIpkuhBwCAzkZ8ASAx\n8QWAxMQXABITXwBITHwBILFMijuprz+Z4m7yorq6IhoazhR6jA5V6mu0vuJX6mu0vuLXmjXW1FRd\n8zrPfP9DJlNe6BE6XKmv0fqKX6mv0fqKX3vXKL4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJ\niS8AJNaq+O7ZsydGjhwZK1eujIiIDz74IKZNmxZTpkyJadOmRX19fYcOCQClpMX4njlzJhYtWhSD\nBg1qOrZ06dIYP358rFy5MkaNGhXLly/v0CEBoJS0GN+uXbvGq6++GrW1tU3HFixYEGPGjImIiOrq\n6jh+/HjHTQgAJabF+GYymejWrdsVxyoqKqK8vDwuXboUq1atikceeaTDBgSAUpPzbzW6dOlSPPvs\ns3Hfffdd8ZL01VRXVxTVB20395sorkdvP/aNNt1+z1WODdmwNj/DXCeKbQ/bqtTXF1H6a7S+4tee\nNeYc3x/84AfRr1+/eOaZZ1q8bTH9aqmamqqi+hWI+VJKay71PSz19UWU/hqtr/i1Zo15/5WCGzdu\njE996lMxe/bsXL4cADq1Fp/57t69OxYvXhwHDx6MTCYTmzZtio8++ihuuOGGeOqppyIi4tZbb42F\nCxd29KwAUBJajO8dd9wRK1asSDELAHQKPuEKABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEF\ngMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwAS\nE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8\nASAx8QWAxMQXABITXwBITHwBILFWxXfPnj0xcuTIWLlyZUREfPDBB/HUU0/F5MmTY86cOXH+/PkO\nHRIASkmL8T1z5kwsWrQoBg0a1HTsxz/+cUyePDlWrVoV/fr1izVr1nTokABQSlqMb9euXePVV1+N\n2trapmM7duyIr33taxER8cADD8S2bds6bkIAKDGZFm+QyUQmc+XNzp49G127do2IiJ49e0Z9fX3H\nTAcAJajF+LYkm822eJvq6orIZMrbe1fJ1NRUFXqENtmTh3MU25pbcnk941d/t0Pv59cTftah57+W\nUtuvq+mINT4yd0Pez5mL//vfx0p+D0t9fRHtW2NO8a2oqIhz585Ft27d4vDhw1e8JH01DQ1nchqu\nEGpqqqK+/mShx0iulNaccg8L8ffWGf6NdoY1lvL6OsP+tWaNzcU5px81Gjx4cGzatCkiIt56660Y\nNmxYLqcBgE6pxWe+u3fvjsWLF8fBgwcjk8nEpk2bYsmSJTFv3rxYvXp19OnTJx5//PEUswJASWgx\nvnfccUesWLHiE8eXL1/eIQMBQKnzCVcAkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGKZQg8AlL7//p8/FHoEuK54\n5gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkv\nACQmvgCQmPgCQGLiCwCJiS8AJCa+AJBYJpcvOn36dDz33HNx4sSJuHDhQsycOTOGDRuW79kAoCTl\nFN/f/OY3ccstt8TcuXPj8OHD8a1vfSvefPPNfM8GACUpp5edq6ur4/jx4xER0djYGNXV1XkdCgBK\nWU7PfMeOHRvr1q2LUaNGRWNjY/z85z/P91wAULJyiu+GDRuiT58+sWzZsnjvvfeirq4u1q1bd83b\nV1dXRCZTnvOQqdXUVBV6hDbZk49zfHtau88xZMPa9g+SJ6n2sKPvZ/zq73bYuc+++2CHnZuWFdvj\nTFuV+voi2rfGnOK7c+fOGDp0aERE3HbbbXHkyJG4dOlSlJdfPbANDWdyHjC1mpqqqK8/WegxitL1\n8veWcg+vlzVTfEr5305neBxtzRqbi3NO7/n269cvdu3aFRERBw8ejMrKymuGFwC4Uk7PfCdMmBB1\ndXUxZcqUuHjxYixcuDDPYwFA6copvpWVlfHiiy/mexYA6BR8whUAJCa+AJCY+AJAYuILAImJLwAk\nJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4\nAkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsA\niYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYjnHd+PGjfHoo4/GuHHjYuvWrXkcCQBKW07x\nbWhoiJdffjlWrVoVr7zySmzevDnfcwFAycrk8kXbtm2LQYMGRffu3aN79+6xaNGifM8FACUrp/ge\nOHAgzp07F9OnT4/GxsaYNWtWDBo06Jq3r66uiEymPOchU6upqWr1bd9+7Bvtuq8hG9a26+sjIva0\n+wz50Za/t383fvV38zxJOrmuGUr9305b1vfI3A0dOEnr/d//Ptam27dnD3OKb0TE8ePH46WXXopD\nhw7F1KlTY8uWLVFWVnbV2zY0nMl5wNRqaqqivv5ksvtLeV8drZTW0lqdcc3kRyn/20n9OJovbZm5\nNWtsLs45vefbs2fPGDBgQGQymejbt29UVlbGsWPHcjkVAHQ6OcV36NChsX379vj444+joaEhzpw5\nE9XV1fmeDQBKUk4vO/fq1SvGjBkT48ePj4iI+fPnR5cufmQYAFoj5/d8J06cGBMnTsznLADQKXi6\nCgCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJCY+AJAYuILAImJLwAklin0AJ3dnm9PK/QI15U5q460+xwvTq7NwyStM/MPzya7r3z7r3vf\n7NDzn333wQ49f0fO39GzPzJ3Q4eev7V+OW9EoUfotDzzBYDExBcAEhNfAEhMfAEgMfEFgMTEFwAS\nE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASKxd\n8T137lyMHDky1q1bl695AKDktSu+P/vZz6JHjx75mgUAOoWc47tv377Yu3dv3H///XkcBwBKX87x\nXbx4ccybNy+fswBAp5DJ5YvWr18fd911V9x8882tun11dUVkMuW53NU1vf3YN9p9jiEb1l71eE1N\nVavPsafdU5SOPd+eltPXzcnvGEArteWx7no6d0dp68ztWWNO8d26dWvs378/tm7dGh9++GF07do1\nevfuHYMHD77q7RsazuQ8YEeqrz/5iWM1NVVXPQ5Qajrqsa5YH0fbMnNr1thcnHOK79KlS5v+/JOf\n/CQ+97nPXTO8AMCV/JwvACSW0zPffzdr1qx8zAEAnYZnvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAIll\nCj0AXI/mrDrS7nO8OLk2D5MUr/+6981Cj5Czjp797LsPduj5uf555gsAiYkvACQmvgCQmPgCQGLi\nCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8A\nJCa+AJBYJtcvfP755+PPf/5zXLx4Mb7zne/E6NGj8zkXAJSsnOK7ffv2eP/992P16tXR0NAQTzzx\nhPgCQCvlFN977rkn+vfvHxERn/70p+Ps2bNx6dKlKC8vz+twAFCKcopveXl5VFRURETEmjVrYvjw\n4c2Gt7q6IjKZ/IZ5Tx7OUVNT1abjHTUH+TVn1ZFCjwBFoS2PddfTuTtKW2duzxpzfs83IuL3v/99\nrFmzJn75y182e7uGhjPtuZsOU19/8hPHamqqrnocoNR01GNdsT6OtmXm1qyxuTjnHN8//vGP8cor\nr8Rrr70WVVXF9x0OABRKTvE9efJkPP/88/H666/HZz7zmXzPBAAlLaf4/u53v4uGhob43ve+13Rs\n8eLF0adPn7wNBgClKqf4TpgwISZMmJDvWQCgU/AJVwCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuIL\nAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYplCD1BIe749\n7ZPH0o8BUBD//T9/KPQInZZnvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4\nAkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuILAIllcv3CH/3oR7Fr164oKyuL\nurq66N+/fz7nAoCSlVN833333fjnP/8Zq1evjn379kVdXV2sXr0637MBQEnK6WXnbdu2xciRIyMi\n4tZbb40TJ07EqVOn8joYAJSqnOJ79OjRqK6ubrp84403Rn19fd6GAoBSlvN7vv8um802e31NTVU+\n7ubKc25Ym/dzQj4NKfQAXL8mFHoA8qE9bcvpmW9tbW0cPXq06fKRI0eipqYm5yEAoDPJKb5DhgyJ\nTZs2RUTE3//+96itrY3u3bvndTAAKFU5vew8cODAuP3222PixIlRVlYWCxYsyPdcAFCyyrItvWEL\nAOSVT7gCgMTEFwASy8uPGhWzc+fOxde//vWYMWNGjBs3run4iBEjonfv3lFeXh4REUuWLIlevXoV\nasw227FjR8yZMye++MUvRkTEl770pfjhD3/YdP0777wTL7zwQpSXl8fw4cNj5syZhRo1Jy2tr9j3\n77KNGzfGa6+9FplMJmbPnh33339/03XFvocRza+vFPbwjTfeiI0bNzZd3r17d/zlL39purxx48b4\n1a9+FV26dInx48fHk08+WYgxc9bS+m6//fYYOHBg0+XXX3+9aT+LwenTp+O5556LEydOxIULF2Lm\nzJkxbNiwpuvbtX/ZTu6FF17Ijhs3Lrt27dorjj/wwAPZU6dOFWiq9tu+fXt21qxZ17z+oYceyh46\ndCh76dKl7KRJk7Lvv/9+wunar6X1Ffv+ZbPZ7LFjx7KjR4/Onjx5Mnv48OHs/Pnzr7i+2PewpfWV\nwh7+ux07dmQXLlzYdPn06dPZ0aNHZxsbG7Nnz57Njh07NtvQ0FDACdvnP9eXzWaz9957b4GmyY8V\nK1ZklyxZks1ms9kPP/wwO2bMmKbr2rt/nfpl53379sXevXuv+G67M9i/f3/06NEjbrrppujSpUt8\n9atfjW3bthV6LP7Dtm3bYtCgQdG9e/eora2NRYsWNV1XCnvY3PpK0csvvxwzZsxourxr16648847\no6qqKrp16xYDBw6MnTt3FnDC9vnP9ZWC6urqOH78eERENDY2XvHJju3dv04d38WLF8e8efOuef2C\nBQti0qRJsWTJkhY/xet6tHfv3pg+fXpMmjQp3n777abj9fX1ceONNzZdLtaPB73W+i4r9v07cOBA\nnDt3LqZPnx6TJ0++Iq6lsIfNre+yYt/Dy/7617/GTTfddMWHER09erTo9/Cyq60vIuL8+fMxd+7c\nmDhxYixfvrxA0+Vu7NixcejQoRg1alRMmTIlnnvuuabr2rt/nfY93/Xr18ddd90VN99881Wvnz17\ndgwbNix69OgRM2fOjE2bNsWDDz6YeMrcfeELX4hnnnkmHnroodi/f39MnTo13nrrrejatWuhR8uL\nltZX7Pt32fHjx+Oll16KQ4cOxdSpU2PLli1RVlZW6LHyprn1lcoeRkSsWbMmnnjiiWZvU8zfXFxr\nfc8++2w8+uijUVZWFlOmTIm777477rzzzgJMmJsNGzZEnz59YtmyZfHee+9FXV1drFu37qq3bev+\nddpnvlu3bo3NmzfH+PHj44033oif/vSn8c477zRd//jjj0fPnj0jk8nE8OHDY8+ePQWctu169eoV\nDz/8cJSVlUXfvn3js5/9bBw+fDgiPvnxoIcPH47a2tpCjZqT5tYXUfz7FxHRs2fPGDBgQGQymejb\nt29UVlbGsWPHIqI09rC59UWUxh5etmPHjhgwYMAVx672Mb3FtoeXXW19ERGTJk2KysrKqKioiPvu\nu6/o9nDnzp0xdOjQiIi47bbb4siRI3Hp0qWIaP/+ddr4Ll26NNauXRu//vWv48knn4wZM2bE4MGD\nIyLi5MmT8fTTT8f58+cjIuJPf/pT0/+qLRYbN26MZcuWRcS/XqL86KOPmv6n6Oc///k4depUHDhw\nIC5evBhbtmyJIUOK69cANLe+Uti/iIihQ4fG9u3b4+OPP46GhoY4c+ZM03tOpbCHza2vVPYw4l/f\nGFVWVn7iVaevfOUr8be//S0aGxvj9OnTsXPnzrj77rsLNGXurrW+f/zjHzF37tzIZrNx8eLF2Llz\nZ9HtYb9+/WLXrl0REXHw4MGorKxs+t/a7d2/Tvuy89WsW7cuqqqqYtSoUTF8+PCYMGFC3HDDDfHl\nL3+56F7uGjFiRHz/+9+PzZs3x4ULF2LhwoXx29/+tml9CxcujLlz50ZExMMPPxy33HJLgSdum5bW\nV+z7F/GvZ/djxoyJ8ePHR0TE/PnzY/369SWzhy2trxT2MOKT78//4he/iHvuuScGDBgQc+fOjaef\nfjrKyspi5syZUVWV/98A19GaW1/v3r3jm9/8ZnTp0iVGjBgR/fv3L+CkbTdhwoSoq6uLKVOmxMWL\nF2PhwoV52z8fLwkAiXXal50BoFDEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBILH/By91j6Ca\n07jKAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
+ "execution_count": 10
}
]
}