From 465ff7ef9c585ecfc81bbb17278e1848cd18082f Mon Sep 17 00:00:00 2001
From: alishashaw439 <43449528+alishashaw439@users.noreply.github.com>
Date: Fri, 25 Jan 2019 21:58:10 +0530
Subject: [PATCH 1/3] assignment 3
---
Get_to_know_your_Data.ipynb | 2363 +++++++++++++++++++++++++++++++++++
1 file changed, 2363 insertions(+)
create mode 100644 Get_to_know_your_Data.ipynb
diff --git a/Get_to_know_your_Data.ipynb b/Get_to_know_your_Data.ipynb
new file mode 100644
index 0000000..9e4b51f
--- /dev/null
+++ b/Get_to_know_your_Data.ipynb
@@ -0,0 +1,2363 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "Get to know your Data.ipynb",
+ "version": "0.3.2",
+ "provenance": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "J82LU53m_OU0",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Get to know your Data\n",
+ "\n",
+ "\n",
+ "#### Import necessary modules\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ZyO1UXL8mtSj",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "yXTzTowtnwGI",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Loading CSV Data to a DataFrame"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "H1Bjlb5wm9f-",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df = pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv')\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "KE-k7b_Mn5iN",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### See the top 10 rows\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "HY2Ps7xMn4ao",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "017b51e1-2440-46d8-a300-5a464d400d19"
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df.head()"
+ ],
+ "execution_count": 4,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 4.9 | \n",
+ " 3.0 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 4.7 | \n",
+ " 3.2 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4.6 | \n",
+ " 3.1 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "1 4.9 3.0 1.4 0.2 setosa\n",
+ "2 4.7 3.2 1.3 0.2 setosa\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 4
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ZQXekIodqOZu",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Find number of rows and columns\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "6Y-A-lbFqR82",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 51
+ },
+ "outputId": "6c74195a-35dc-4b63-8729-d606bc9c714f"
+ },
+ "cell_type": "code",
+ "source": [
+ "print(iris_df.shape)\n",
+ "\n",
+ "#first is row and second is column\n",
+ "#select row by simple indexing\n",
+ "\n",
+ "#print(iris_df.shape[0])\n",
+ "print(iris_df.shape[1])"
+ ],
+ "execution_count": 6,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "(150, 5)\n",
+ "5\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "4ckCiGPhrC_t",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Print all columns"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "S6jgMyRDrF2a",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 68
+ },
+ "outputId": "9e408c17-5b06-4b79-d8fb-8a3a52614066"
+ },
+ "cell_type": "code",
+ "source": [
+ "print(iris_df.columns)"
+ ],
+ "execution_count": 7,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',\n",
+ " 'species'],\n",
+ " dtype='object')\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "kVav5-ACtIqS",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Check Index\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "iu3I9zIGtLDX",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "94120348-bd55-4d90-e6e0-950d1b95d96b"
+ },
+ "cell_type": "code",
+ "source": [
+ "print(iris_df.index)"
+ ],
+ "execution_count": 8,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "RangeIndex(start=0, stop=150, step=1)\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "psCc7PborOCQ",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Right now the iris_data set has all the species grouped together let's shuffle it"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Bxc8i6avrZPw",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 221
+ },
+ "outputId": "406b3928-ea2e-4a52-c0ff-163932876154"
+ },
+ "cell_type": "code",
+ "source": [
+ "#generate a random permutaion on index\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "new_index = np.random.permutation(iris_df.index)\n",
+ "iris_df = iris_df.reindex(index = new_index)\n",
+ "\n",
+ "print(iris_df.head())"
+ ],
+ "execution_count": 9,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "1 4.9 3.0 1.4 0.2 setosa\n",
+ "2 4.7 3.2 1.3 0.2 setosa\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "142 5.8 2.7 5.1 1.9 virginica\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "13 4.3 3.0 1.1 0.1 setosa\n",
+ "11 4.8 3.4 1.6 0.2 setosa\n",
+ "137 6.4 3.1 5.5 1.8 virginica\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "j32h8022sRT8",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### We can also apply an operation on whole column of iris_df"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "seYXHXsYsYJI",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 323
+ },
+ "outputId": "77750f2e-af1d-4d81-bf5d-e17537b82ed7"
+ },
+ "cell_type": "code",
+ "source": [
+ "#original\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "iris_df['sepal_width'] *= 10\n",
+ "\n",
+ "#changed\n",
+ "\n",
+ "print(iris_df.head())\n",
+ "\n",
+ "#lets undo the operation\n",
+ "\n",
+ "iris_df['sepal_width'] /= 10\n",
+ "\n",
+ "print(iris_df.head())"
+ ],
+ "execution_count": 10,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "142 5.8 2.7 5.1 1.9 virginica\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "13 4.3 3.0 1.1 0.1 setosa\n",
+ "11 4.8 3.4 1.6 0.2 setosa\n",
+ "137 6.4 3.1 5.5 1.8 virginica\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "142 5.8 27.0 5.1 1.9 virginica\n",
+ "17 5.1 35.0 1.4 0.3 setosa\n",
+ "13 4.3 30.0 1.1 0.1 setosa\n",
+ "11 4.8 34.0 1.6 0.2 setosa\n",
+ "137 6.4 31.0 5.5 1.8 virginica\n",
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "142 5.8 2.7 5.1 1.9 virginica\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "13 4.3 3.0 1.1 0.1 setosa\n",
+ "11 4.8 3.4 1.6 0.2 setosa\n",
+ "137 6.4 3.1 5.5 1.8 virginica\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "R-Ca-LBLzjiF",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Show all the rows where sepal_width > 3.3"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "WJ7W-F-d0AoZ",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1165
+ },
+ "outputId": "29cffb2e-8a0c-4559-bf62-a59341e05c31"
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df[iris_df['sepal_width']>3.3]"
+ ],
+ "execution_count": 11,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 17 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.7 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 31 | \n",
+ " 5.4 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 109 | \n",
+ " 7.2 | \n",
+ " 3.6 | \n",
+ " 6.1 | \n",
+ " 2.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.3 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 6.2 | \n",
+ " 3.4 | \n",
+ " 5.4 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 39 | \n",
+ " 5.1 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 136 | \n",
+ " 6.3 | \n",
+ " 3.4 | \n",
+ " 5.6 | \n",
+ " 2.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 4.6 | \n",
+ " 3.4 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 5.5 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 5.3 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 4.6 | \n",
+ " 3.6 | \n",
+ " 1.0 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 117 | \n",
+ " 7.7 | \n",
+ " 3.8 | \n",
+ " 6.7 | \n",
+ " 2.2 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 43 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.6 | \n",
+ " 0.6 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 131 | \n",
+ " 7.9 | \n",
+ " 3.8 | \n",
+ " 6.4 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 5.2 | \n",
+ " 3.5 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 5.4 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.9 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 5.2 | \n",
+ " 4.1 | \n",
+ " 1.5 | \n",
+ " 0.1 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.5 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 5.7 | \n",
+ " 4.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 5.2 | \n",
+ " 3.4 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.7 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.9 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 5.1 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 5.8 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 5.5 | \n",
+ " 4.2 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "11 4.8 3.4 1.6 0.2 setosa\n",
+ "46 5.1 3.8 1.6 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ "85 6.0 3.4 4.5 1.6 versicolor\n",
+ "18 5.7 3.8 1.7 0.3 setosa\n",
+ "26 5.0 3.4 1.6 0.4 setosa\n",
+ "20 5.4 3.4 1.7 0.2 setosa\n",
+ "31 5.4 3.4 1.5 0.4 setosa\n",
+ "109 7.2 3.6 6.1 2.5 virginica\n",
+ "16 5.4 3.9 1.3 0.4 setosa\n",
+ "148 6.2 3.4 5.4 2.3 virginica\n",
+ "39 5.1 3.4 1.5 0.2 setosa\n",
+ "136 6.3 3.4 5.6 2.4 virginica\n",
+ "6 4.6 3.4 1.4 0.3 setosa\n",
+ "36 5.5 3.5 1.3 0.2 setosa\n",
+ "48 5.3 3.7 1.5 0.2 setosa\n",
+ "22 4.6 3.6 1.0 0.2 setosa\n",
+ "117 7.7 3.8 6.7 2.2 virginica\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "131 7.9 3.8 6.4 2.0 virginica\n",
+ "7 5.0 3.4 1.5 0.2 setosa\n",
+ "27 5.2 3.5 1.5 0.2 setosa\n",
+ "10 5.4 3.7 1.5 0.2 setosa\n",
+ "24 4.8 3.4 1.9 0.2 setosa\n",
+ "32 5.2 4.1 1.5 0.1 setosa\n",
+ "19 5.1 3.8 1.5 0.3 setosa\n",
+ "15 5.7 4.4 1.5 0.4 setosa\n",
+ "40 5.0 3.5 1.3 0.3 setosa\n",
+ "28 5.2 3.4 1.4 0.2 setosa\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "5 5.4 3.9 1.7 0.4 setosa\n",
+ "44 5.1 3.8 1.9 0.4 setosa\n",
+ "21 5.1 3.7 1.5 0.4 setosa\n",
+ "14 5.8 4.0 1.2 0.2 setosa\n",
+ "33 5.5 4.2 1.4 0.2 setosa"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 11
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "gH3DnhCq2Cbl",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Club two filters together - Find all samples where sepal_width > 3.3 and species is versicolor"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "4U7ksr_R2H7M",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 80
+ },
+ "outputId": "b5b86638-724e-426c-f14e-f23c4f1a2170"
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df[(iris_df['sepal_width']>3.3) & (iris_df['species'] == 'versicolor')] "
+ ],
+ "execution_count": 12,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "85 6.0 3.4 4.5 1.6 versicolor"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 12
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "1lmnB3ot2u7I",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Sorting a column by value"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "K7KIj6fv2zWP",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1969
+ },
+ "outputId": "2457ff15-7d26-4c45-9826-0a68fbdeb3a0"
+ },
+ "cell_type": "code",
+ "source": [
+ "iris_df.sort_values(by='sepal_width')#, ascending = False)\n",
+ "#pass ascending = False for descending order"
+ ],
+ "execution_count": 13,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 60 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 68 | \n",
+ " 6.2 | \n",
+ " 2.2 | \n",
+ " 4.5 | \n",
+ " 1.5 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 119 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 5.0 | \n",
+ " 1.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 62 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 4.0 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 87 | \n",
+ " 6.3 | \n",
+ " 2.3 | \n",
+ " 4.4 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 93 | \n",
+ " 5.0 | \n",
+ " 2.3 | \n",
+ " 3.3 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 53 | \n",
+ " 5.5 | \n",
+ " 2.3 | \n",
+ " 4.0 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 41 | \n",
+ " 4.5 | \n",
+ " 2.3 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 57 | \n",
+ " 4.9 | \n",
+ " 2.4 | \n",
+ " 3.3 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 81 | \n",
+ " 5.5 | \n",
+ " 2.4 | \n",
+ " 3.7 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 80 | \n",
+ " 5.5 | \n",
+ " 2.4 | \n",
+ " 3.8 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 113 | \n",
+ " 5.7 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 89 | \n",
+ " 5.5 | \n",
+ " 2.5 | \n",
+ " 4.0 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 69 | \n",
+ " 5.6 | \n",
+ " 2.5 | \n",
+ " 3.9 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 98 | \n",
+ " 5.1 | \n",
+ " 2.5 | \n",
+ " 3.0 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 72 | \n",
+ " 6.3 | \n",
+ " 2.5 | \n",
+ " 4.9 | \n",
+ " 1.5 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 146 | \n",
+ " 6.3 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 106 | \n",
+ " 4.9 | \n",
+ " 2.5 | \n",
+ " 4.5 | \n",
+ " 1.7 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 108 | \n",
+ " 6.7 | \n",
+ " 2.5 | \n",
+ " 5.8 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 92 | \n",
+ " 5.8 | \n",
+ " 2.6 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 90 | \n",
+ " 5.5 | \n",
+ " 2.6 | \n",
+ " 4.4 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 134 | \n",
+ " 6.1 | \n",
+ " 2.6 | \n",
+ " 5.6 | \n",
+ " 1.4 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 79 | \n",
+ " 5.7 | \n",
+ " 2.6 | \n",
+ " 3.5 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 118 | \n",
+ " 7.7 | \n",
+ " 2.6 | \n",
+ " 6.9 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 59 | \n",
+ " 5.2 | \n",
+ " 2.7 | \n",
+ " 3.9 | \n",
+ " 1.4 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 94 | \n",
+ " 5.6 | \n",
+ " 2.7 | \n",
+ " 4.2 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 111 | \n",
+ " 6.4 | \n",
+ " 2.7 | \n",
+ " 5.3 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 67 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 4.1 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 142 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 82 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 3.9 | \n",
+ " 1.2 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 6.2 | \n",
+ " 3.4 | \n",
+ " 5.4 | \n",
+ " 2.3 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 5.0 | \n",
+ " 3.4 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.9 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 5.2 | \n",
+ " 3.5 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 43 | \n",
+ " 5.0 | \n",
+ " 3.5 | \n",
+ " 1.6 | \n",
+ " 0.6 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 5.5 | \n",
+ " 3.5 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 4.6 | \n",
+ " 3.6 | \n",
+ " 1.0 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 109 | \n",
+ " 7.2 | \n",
+ " 3.6 | \n",
+ " 6.1 | \n",
+ " 2.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 5.1 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 5.4 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 5.3 | \n",
+ " 3.7 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 5.7 | \n",
+ " 3.8 | \n",
+ " 1.7 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.9 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.5 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 131 | \n",
+ " 7.9 | \n",
+ " 3.8 | \n",
+ " 6.4 | \n",
+ " 2.0 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 117 | \n",
+ " 7.7 | \n",
+ " 3.8 | \n",
+ " 6.7 | \n",
+ " 2.2 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.7 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.3 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 5.8 | \n",
+ " 4.0 | \n",
+ " 1.2 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 5.2 | \n",
+ " 4.1 | \n",
+ " 1.5 | \n",
+ " 0.1 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 33 | \n",
+ " 5.5 | \n",
+ " 4.2 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 5.7 | \n",
+ " 4.4 | \n",
+ " 1.5 | \n",
+ " 0.4 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
150 rows × 5 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "60 5.0 2.0 3.5 1.0 versicolor\n",
+ "68 6.2 2.2 4.5 1.5 versicolor\n",
+ "119 6.0 2.2 5.0 1.5 virginica\n",
+ "62 6.0 2.2 4.0 1.0 versicolor\n",
+ "87 6.3 2.3 4.4 1.3 versicolor\n",
+ "93 5.0 2.3 3.3 1.0 versicolor\n",
+ "53 5.5 2.3 4.0 1.3 versicolor\n",
+ "41 4.5 2.3 1.3 0.3 setosa\n",
+ "57 4.9 2.4 3.3 1.0 versicolor\n",
+ "81 5.5 2.4 3.7 1.0 versicolor\n",
+ "80 5.5 2.4 3.8 1.1 versicolor\n",
+ "113 5.7 2.5 5.0 2.0 virginica\n",
+ "89 5.5 2.5 4.0 1.3 versicolor\n",
+ "69 5.6 2.5 3.9 1.1 versicolor\n",
+ "98 5.1 2.5 3.0 1.1 versicolor\n",
+ "72 6.3 2.5 4.9 1.5 versicolor\n",
+ "146 6.3 2.5 5.0 1.9 virginica\n",
+ "106 4.9 2.5 4.5 1.7 virginica\n",
+ "108 6.7 2.5 5.8 1.8 virginica\n",
+ "92 5.8 2.6 4.0 1.2 versicolor\n",
+ "90 5.5 2.6 4.4 1.2 versicolor\n",
+ "134 6.1 2.6 5.6 1.4 virginica\n",
+ "79 5.7 2.6 3.5 1.0 versicolor\n",
+ "118 7.7 2.6 6.9 2.3 virginica\n",
+ "59 5.2 2.7 3.9 1.4 versicolor\n",
+ "94 5.6 2.7 4.2 1.3 versicolor\n",
+ "111 6.4 2.7 5.3 1.9 virginica\n",
+ "67 5.8 2.7 4.1 1.0 versicolor\n",
+ "142 5.8 2.7 5.1 1.9 virginica\n",
+ "82 5.8 2.7 3.9 1.2 versicolor\n",
+ ".. ... ... ... ... ...\n",
+ "11 4.8 3.4 1.6 0.2 setosa\n",
+ "148 6.2 3.4 5.4 2.3 virginica\n",
+ "26 5.0 3.4 1.6 0.4 setosa\n",
+ "85 6.0 3.4 4.5 1.6 versicolor\n",
+ "7 5.0 3.4 1.5 0.2 setosa\n",
+ "24 4.8 3.4 1.9 0.2 setosa\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "40 5.0 3.5 1.3 0.3 setosa\n",
+ "27 5.2 3.5 1.5 0.2 setosa\n",
+ "43 5.0 3.5 1.6 0.6 setosa\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "36 5.5 3.5 1.3 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa\n",
+ "22 4.6 3.6 1.0 0.2 setosa\n",
+ "109 7.2 3.6 6.1 2.5 virginica\n",
+ "21 5.1 3.7 1.5 0.4 setosa\n",
+ "10 5.4 3.7 1.5 0.2 setosa\n",
+ "48 5.3 3.7 1.5 0.2 setosa\n",
+ "18 5.7 3.8 1.7 0.3 setosa\n",
+ "44 5.1 3.8 1.9 0.4 setosa\n",
+ "46 5.1 3.8 1.6 0.2 setosa\n",
+ "19 5.1 3.8 1.5 0.3 setosa\n",
+ "131 7.9 3.8 6.4 2.0 virginica\n",
+ "117 7.7 3.8 6.7 2.2 virginica\n",
+ "5 5.4 3.9 1.7 0.4 setosa\n",
+ "16 5.4 3.9 1.3 0.4 setosa\n",
+ "14 5.8 4.0 1.2 0.2 setosa\n",
+ "32 5.2 4.1 1.5 0.1 setosa\n",
+ "33 5.5 4.2 1.4 0.2 setosa\n",
+ "15 5.7 4.4 1.5 0.4 setosa\n",
+ "\n",
+ "[150 rows x 5 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 13
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "9jg_Z4YCoMSV",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### List all the unique species"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "M6EN78ufoJY7",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "65fcd518-b68c-4637-e428-4bde5ca2d0bd"
+ },
+ "cell_type": "code",
+ "source": [
+ "species = iris_df['species'].unique()\n",
+ "\n",
+ "print(species)"
+ ],
+ "execution_count": 14,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "['virginica' 'setosa' 'versicolor']\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "wG1i5nxBodmB",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Selecting a particular species using boolean mask (learnt in previous exercise)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "gZvpbKBwoVUe",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "4ecc510a-1bcb-46ec-fd70-488c0e2c690a"
+ },
+ "cell_type": "code",
+ "source": [
+ "setosa = iris_df[iris_df['species'] == species[0]]\n",
+ "\n",
+ "setosa.head()"
+ ],
+ "execution_count": 15,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 142 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 137 | \n",
+ " 6.4 | \n",
+ " 3.1 | \n",
+ " 5.5 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 101 | \n",
+ " 5.8 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.9 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 100 | \n",
+ " 6.3 | \n",
+ " 3.3 | \n",
+ " 6.0 | \n",
+ " 2.5 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ " | 138 | \n",
+ " 6.0 | \n",
+ " 3.0 | \n",
+ " 4.8 | \n",
+ " 1.8 | \n",
+ " virginica | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "142 5.8 2.7 5.1 1.9 virginica\n",
+ "137 6.4 3.1 5.5 1.8 virginica\n",
+ "101 5.8 2.7 5.1 1.9 virginica\n",
+ "100 6.3 3.3 6.0 2.5 virginica\n",
+ "138 6.0 3.0 4.8 1.8 virginica"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 15
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "7tumfZ3DotPG",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "1ad1d582-a6c2-417f-b4ec-466a65b8fe9e"
+ },
+ "cell_type": "code",
+ "source": [
+ "# do the same for other 2 species \n",
+ "versicolor = iris_df[iris_df['species'] == species[1]]\n",
+ "\n",
+ "versicolor.head()"
+ ],
+ "execution_count": 16,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 17 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.3 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 4.3 | \n",
+ " 3.0 | \n",
+ " 1.1 | \n",
+ " 0.1 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 4.8 | \n",
+ " 3.4 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 5.1 | \n",
+ " 3.8 | \n",
+ " 1.6 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "17 5.1 3.5 1.4 0.3 setosa\n",
+ "13 4.3 3.0 1.1 0.1 setosa\n",
+ "11 4.8 3.4 1.6 0.2 setosa\n",
+ "46 5.1 3.8 1.6 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 16
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "cUYm5UqVpDPy",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "e61a0167-36c7-43af-83ec-be5b50b3c3d8"
+ },
+ "cell_type": "code",
+ "source": [
+ "\n",
+ "\n",
+ "virginica = iris_df[iris_df['species'] == species[2]]\n",
+ "\n",
+ "virginica.head()"
+ ],
+ "execution_count": 17,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 62 | \n",
+ " 6.0 | \n",
+ " 2.2 | \n",
+ " 4.0 | \n",
+ " 1.0 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 53 | \n",
+ " 5.5 | \n",
+ " 2.3 | \n",
+ " 4.0 | \n",
+ " 1.3 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 85 | \n",
+ " 6.0 | \n",
+ " 3.4 | \n",
+ " 4.5 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 83 | \n",
+ " 6.0 | \n",
+ " 2.7 | \n",
+ " 5.1 | \n",
+ " 1.6 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ " | 69 | \n",
+ " 5.6 | \n",
+ " 2.5 | \n",
+ " 3.9 | \n",
+ " 1.1 | \n",
+ " versicolor | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "62 6.0 2.2 4.0 1.0 versicolor\n",
+ "53 5.5 2.3 4.0 1.3 versicolor\n",
+ "85 6.0 3.4 4.5 1.6 versicolor\n",
+ "83 6.0 2.7 5.1 1.6 versicolor\n",
+ "69 5.6 2.5 3.9 1.1 versicolor"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 17
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "-y1wDc8SpdQs",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Describe each created species to see the difference\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "eHrn3ZVRpOk5",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 297
+ },
+ "outputId": "084d2d93-f45d-4e11-a812-6d5e2b7abe81"
+ },
+ "cell_type": "code",
+ "source": [
+ "setosa.describe()"
+ ],
+ "execution_count": 18,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 50.00000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.00000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 6.58800 | \n",
+ " 2.974000 | \n",
+ " 5.552000 | \n",
+ " 2.02600 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 0.63588 | \n",
+ " 0.322497 | \n",
+ " 0.551895 | \n",
+ " 0.27465 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 4.90000 | \n",
+ " 2.200000 | \n",
+ " 4.500000 | \n",
+ " 1.40000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 6.22500 | \n",
+ " 2.800000 | \n",
+ " 5.100000 | \n",
+ " 1.80000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 6.50000 | \n",
+ " 3.000000 | \n",
+ " 5.550000 | \n",
+ " 2.00000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 6.90000 | \n",
+ " 3.175000 | \n",
+ " 5.875000 | \n",
+ " 2.30000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 7.90000 | \n",
+ " 3.800000 | \n",
+ " 6.900000 | \n",
+ " 2.50000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.00000 50.000000 50.000000 50.00000\n",
+ "mean 6.58800 2.974000 5.552000 2.02600\n",
+ "std 0.63588 0.322497 0.551895 0.27465\n",
+ "min 4.90000 2.200000 4.500000 1.40000\n",
+ "25% 6.22500 2.800000 5.100000 1.80000\n",
+ "50% 6.50000 3.000000 5.550000 2.00000\n",
+ "75% 6.90000 3.175000 5.875000 2.30000\n",
+ "max 7.90000 3.800000 6.900000 2.50000"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 18
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ih8Jeh8406OB",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ ""
+ ]
+ },
+ {
+ "metadata": {
+ "id": "GwJFT2GlpwUv",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 297
+ },
+ "outputId": "72cd1224-794f-4013-bd4c-bc459a4d5f78"
+ },
+ "cell_type": "code",
+ "source": [
+ "versicolor.describe()"
+ ],
+ "execution_count": 19,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 50.00000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.00000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 5.00600 | \n",
+ " 3.418000 | \n",
+ " 1.464000 | \n",
+ " 0.24400 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 0.35249 | \n",
+ " 0.381024 | \n",
+ " 0.173511 | \n",
+ " 0.10721 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 4.30000 | \n",
+ " 2.300000 | \n",
+ " 1.000000 | \n",
+ " 0.10000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 4.80000 | \n",
+ " 3.125000 | \n",
+ " 1.400000 | \n",
+ " 0.20000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 5.00000 | \n",
+ " 3.400000 | \n",
+ " 1.500000 | \n",
+ " 0.20000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 5.20000 | \n",
+ " 3.675000 | \n",
+ " 1.575000 | \n",
+ " 0.30000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 5.80000 | \n",
+ " 4.400000 | \n",
+ " 1.900000 | \n",
+ " 0.60000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.00000 50.000000 50.000000 50.00000\n",
+ "mean 5.00600 3.418000 1.464000 0.24400\n",
+ "std 0.35249 0.381024 0.173511 0.10721\n",
+ "min 4.30000 2.300000 1.000000 0.10000\n",
+ "25% 4.80000 3.125000 1.400000 0.20000\n",
+ "50% 5.00000 3.400000 1.500000 0.20000\n",
+ "75% 5.20000 3.675000 1.575000 0.30000\n",
+ "max 5.80000 4.400000 1.900000 0.60000"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 19
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Ad4qhSZLpztf",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 297
+ },
+ "outputId": "eba6f79e-d1f1-4a86-c305-4ca45fd2443c"
+ },
+ "cell_type": "code",
+ "source": [
+ "virginica.describe()"
+ ],
+ "execution_count": 20,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 5.936000 | \n",
+ " 2.770000 | \n",
+ " 4.260000 | \n",
+ " 1.326000 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 0.516171 | \n",
+ " 0.313798 | \n",
+ " 0.469911 | \n",
+ " 0.197753 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 4.900000 | \n",
+ " 2.000000 | \n",
+ " 3.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 5.600000 | \n",
+ " 2.525000 | \n",
+ " 4.000000 | \n",
+ " 1.200000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 5.900000 | \n",
+ " 2.800000 | \n",
+ " 4.350000 | \n",
+ " 1.300000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 6.300000 | \n",
+ " 3.000000 | \n",
+ " 4.600000 | \n",
+ " 1.500000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 7.000000 | \n",
+ " 3.400000 | \n",
+ " 5.100000 | \n",
+ " 1.800000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width\n",
+ "count 50.000000 50.000000 50.000000 50.000000\n",
+ "mean 5.936000 2.770000 4.260000 1.326000\n",
+ "std 0.516171 0.313798 0.469911 0.197753\n",
+ "min 4.900000 2.000000 3.000000 1.000000\n",
+ "25% 5.600000 2.525000 4.000000 1.200000\n",
+ "50% 5.900000 2.800000 4.350000 1.300000\n",
+ "75% 6.300000 3.000000 4.600000 1.500000\n",
+ "max 7.000000 3.400000 5.100000 1.800000"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 20
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Vdu0ulZWtr09",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Let's plot and see the difference"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "PEVMzRvpttmD",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "##### import matplotlib.pyplot "
+ ]
+ },
+ {
+ "metadata": {
+ "id": "rqDXuuAtt7C3",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 398
+ },
+ "outputId": "774f1a34-8ca5-481d-edce-2a9023591e07"
+ },
+ "cell_type": "code",
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#hist creates a histogram there are many more plots(see the documentation) you can play with it.\n",
+ "\n",
+ "plt.hist(setosa['sepal_length'])\n",
+ "plt.hist(versicolor['sepal_length'])\n",
+ "plt.hist(virginica['sepal_length'])"
+ ],
+ "execution_count": 21,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(array([ 4., 1., 6., 10., 5., 8., 5., 3., 5., 3.]),\n",
+ " array([4.9 , 5.11, 5.32, 5.53, 5.74, 5.95, 6.16, 6.37, 6.58, 6.79, 7. ]),\n",
+ " )"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 21
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFKCAYAAABcq1WoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFHRJREFUeJzt3Xts1Xf9+PFX6ZGRljo7bGHowGVq\nFrfhIJsZDHBDLm64GzoKhOHy3S8R6QATDCDB0ITEjIXvgrq56YbML4SEjSFUY2SRQWI2QCMGxWRh\nYGK4bFBGoVzDZef3h6ERBy2cnr4P5/Tx+IvzOaef83rzJufZcw49Lctms9kAAJLpVugBAKCrEV8A\nSEx8ASAx8QWAxMQXABITXwBILJPiTpqajqW4m7yorq6I5uaThR6jU5X6Gq2v+JX6Gq2v+F3JGmtq\nqi57nWe+/yWTKS/0CJ2u1NdofcWv1NdofcWvo2sUXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEF\ngMTEFwASu6L47ty5M0aOHBkrVqyIiIj3338/nnzyyZg8eXI8+eST0dTU1KlDAkApaTe+J0+ejIUL\nF8bgwYNbjy1ZsiTGjx8fK1asiFGjRsWyZcs6dUgAKCXtxrd79+7x8ssvR21tbeuxBQsWxJgxYyIi\norq6Oo4cOdJ5EwJAiWk3vplMJnr06HHRsYqKiigvL4/z58/HypUr46GHHuq0AQGg1OT8W43Onz8f\ns2fPjnvuueeil6Qvpbq6oqg+aLut30RxLRq/6rsdPsdrdS/mYZJrR7Ht4dUq9fVFlP4ara/4dWSN\nOcf3Bz/4QfTv3z+efvrpdm9bTL9aqqamqqh+BWK+lNKaS30PS319EaW/Rusrfleyxrz/SsHGxsb4\nxCc+ETNmzMjlywGgS2v3me+OHTti0aJFsW/fvshkMrF+/fr48MMP47rrrosnnngiIiJuueWWaGho\n6OxZAaAktBvf22+/PZYvX55iFgDoEnzCFQAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJ\niS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAkJr4AkJj4AkBiVxTfnTt3xsiRI2PFihUREfH+++/HE088EZMmTYqZM2fGmTNnOnVI\nACgl7cb35MmTsXDhwhg8eHDrsZ/85CcxadKkWLlyZfTv3z9Wr17dqUMCQClpN77du3ePl19+OWpr\na1uPbd26Nb72ta9FRMT9998fmzdv7rwJAaDEZNq9QSYTmczFNzt16lR07949IiJ69eoVTU1NnTMd\nAJSgduPbnmw22+5tqqsrIpMp7+hdJVNTU1XoEZIrtTVfWM/bj3yzU+/n3nVvdOr5L6fU9utSOmON\nD81al/dz5uI3//tIye9hqa8vomNrzCm+FRUVcfr06ejRo0ccOHDgopekL6W5+WROwxVCTU1VNDUd\nK/QYyZXSmlPuYSH+3rrCv9GusMZSXl9X2L8rWWNbcc7pR42GDBkS69evj4iIN998M4YNG5bLaQCg\nS2r3me+OHTti0aJFsW/fvshkMrF+/fpYvHhxzJ07N1atWhV9+/aNRx99NMWsAFAS2o3v7bffHsuX\nL//Y8WXLlnXKQABQ6nzCFQAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY\n+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQWKbQAwCl73+eeavQI8A1xTNfAEhMfAEg\nMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTE\nFwASE18ASEx8ASAx8QWAxDK5fNGJEydizpw5cfTo0Th79mzU19fHsGHD8j0bAJSknOL761//Om6+\n+eaYNWtWHDhwIL797W/H73//+3zPBgAlKaeXnaurq+PIkSMREdHS0hLV1dV5HQoASllOz3zHjh0b\na9asiVGjRkVLS0v8/Oc/z/dcAFCycorvunXrom/fvrF06dJ49913Y968ebFmzZrL3r66uiIymfKc\nh0ytpqaq0CMkV//W7A6f47W6F/MwSX5c2MOdie6ns7z9yDc/dixfa3rm81PydCZyUeqPM6W+voiO\nrTGn+G7bti2GDh0aERG33nprHDx4MM6fPx/l5ZcObHPzyZwHTK2mpiqamo4VeoyidK38vaXcw2tl\nzRSfUv630xUeR69kjW3FOaf3fPv37x/bt2+PiIh9+/ZFZWXlZcMLAFwsp2e+dXV1MW/evJg8eXKc\nO3cuGhoa8jwWAJSunOJbWVkZP/7xj/M9CwB0CT7hCgASE18ASEx8ASAx8QWAxMQXABITXwBITHwB\nIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDE\nxBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNf\nAEhMfAEgMfEFgMTEFwASE18ASEx8ASCxnOPb2NgYDz/8cIwbNy42bdqUx5EAoLTlFN/m5uZ44YUX\nYuXKlfHSSy/Fhg0b8j0XAJSsTC5ftHnz5hg8eHD07NkzevbsGQsXLsz3XABQsnKK7969e+P06dMx\nderUaGlpienTp8fgwYMve/vq6orIZMpzHjK1mpqqK77t+FXf7dB9vVb3Yoe+/lpyNX9v/+ntR76Z\n1zl25vVsbct1zVcq5VpIq7P/7RTa1azvoVnrOnGSK/eb/33kqm7fkT3MKb4REUeOHInnn38+9u/f\nH1OmTImNGzdGWVnZJW/b3Hwy5wFTq6mpiqamY8nuL+V9dbZSWsuV6oprJj9K+d9O6sfRfLmama9k\njW3FOaf3fHv16hUDBw6MTCYT/fr1i8rKyjh8+HAupwKALien+A4dOjS2bNkSH330UTQ3N8fJkyej\nuro637MBQEnK6WXn3r17x5gxY2L8+PERETF//vzo1s2PDAPAlcj5Pd8JEybEhAkT8jkLAHQJnq4C\nQGLiCwCJiS8AJCa+AJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJ\niS8AJCa+AJCY+AJAYuILAIllCj1AV1f/1uxCj0AH7Px/TxZ6hJzN3fV/nXr+Zz4/pVPP35nzd/bs\nD81a16nnv1K/nDui0CN0WZ75AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJAYuIL\nAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJNah+J4+fTpGjhwZa9asydc8\nAFDyOhTfF198Ma6//vp8zQIAXULO8d29e3fs2rUr7rvvvjyOAwClL+f4Llq0KObOnZvPWQCgS8jk\n8kVr166NO++8M2666aYrun11dUVkMuW53NVljV/13Q6f47W6Fy95vKamqsPnTmnmyoOdev4fT6q9\notvVvzU7p/PPzOmrgI7qzMe6Ynscjbj6mTuyxpziu2nTptizZ09s2rQpPvjgg+jevXv06dMnhgwZ\ncsnbNzefzHnAztTUdOxjx2pqqi55HKDUdNZjXbE+jl7NzFeyxrbinFN8lyxZ0vrnn/70p/GZz3zm\nsuEFAC7m53wBILGcnvn+p+nTp+djDgDoMjzzBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASEx8\nASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEFgMTEFwASE18ASCxT6AGA0jR3\n1/8VeoScdfbsz3x+Sqeen2ufZ74AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY\n+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJZXL9wmeffTb+8pe/xLlz\n5+I73/lOjB49Op9zAUDJyim+W7Zsiffeey9WrVoVzc3N8dhjj4kvAFyhnOJ79913x4ABAyIi4pOf\n/GScOnUqzp8/H+Xl5XkdDgBKUU7xLS8vj4qKioiIWL16dQwfPrzN8FZXV0Qmc+2Fuaam6qqOA5SS\nznysK8bH0auduSNrzPk934iIP/zhD7F69er45S9/2ebtmptPduRuOk1T07GPHaupqbrkcYBS01mP\ndcX6OHo1M1/JGtuKc87x/eMf/xgvvfRSvPLKK1FVVXzf4QBAoeQU32PHjsWzzz4br776anzqU5/K\n90wAUNJyiu/vfve7aG5uju9973utxxYtWhR9+/bN22AAUKpyim9dXV3U1dXlexYA6BJ8whUAJCa+\nAJCY+AJAYuILAImJLwAkJr4AkJj4AkBi4gsAiYkvACQmvgCQmPgCQGLiCwCJiS8AJCa+AJCY+AJA\nYuILAImJLwAkJr4AkFim0AMUUv1bsws9QlGYufJgoUcAOsH/PPNWoUfosjzzBYDExBcAEhNfAEhM\nfAEgMfEFgMTEFwASE18ASEx8ASAx8QWAxMQXABITXwBITHwBIDHxBYDExBcAEhNfAEhMfAEgMfEF\ngMTEFwASE18ASCyT6xf+6Ec/iu3bt0dZWVnMmzcvBgwYkM+5AKBk5RTfP/3pT/Gvf/0rVq1aFbt3\n74558+bFqlWr8j0bAJSknF523rx5c4wcOTIiIm655ZY4evRoHD9+PK+DAUCpyim+hw4diurq6tbL\nN9xwQzQ1NeVtKAAoZTm/5/ufstlsm9fX1FTl424u8lrdi3k/Z9GqK/QAwNX4TaEHIC860racnvnW\n1tbGoUOHWi8fPHgwampqch4CALqSnOJ77733xvr16yMi4h//+EfU1tZGz5498zoYAJSqnF52HjRo\nUNx2220xYcKEKCsriwULFuR7LgAoWWXZ9t6wBQDyyidcAUBi4gsAieXlR42K2enTp+Mb3/hGTJs2\nLcaNG9d6fMSIEdGnT58oLy+PiIjFixdH7969CzXmVdu6dWvMnDkzvvCFL0RExBe/+MX44Q9/2Hr9\nO++8E88991yUl5fH8OHDo76+vlCj5qS99RX7/l3Q2NgYr7zySmQymZgxY0bcd999rdcV+x5GtL2+\nUtjD119/PRobG1sv79ixI/7617+2Xm5sbIxf/epX0a1btxg/fnw8/vjjhRgzZ+2t77bbbotBgwa1\nXn711Vdb97MYnDhxIubMmRNHjx6Ns2fPRn19fQwbNqz1+g7tX7aLe+6557Ljxo3LvvHGGxcdv//+\n+7PHjx8v0FQdt2XLluz06dMve/0DDzyQ3b9/f/b8+fPZiRMnZt97772E03Vce+sr9v3LZrPZw4cP\nZ0ePHp09duxY9sCBA9n58+dfdH2x72F76yuFPfxPW7duzTY0NLRePnHiRHb06NHZlpaW7KlTp7Jj\nx47NNjc3F3DCjvnv9WWz2exXvvKVAk2TH8uXL88uXrw4m81msx988EF2zJgxrdd1dP+69MvOu3fv\njl27dl303XZXsGfPnrj++uvjxhtvjG7dusVXv/rV2Lx5c6HH4r9s3rw5Bg8eHD179oza2tpYuHBh\n63WlsIdtra8UvfDCCzFt2rTWy9u3b4877rgjqqqqokePHjFo0KDYtm1bASfsmP9eXymorq6OI0eO\nRERES0vLRZ/s2NH969LxXbRoUcydO/ey1y9YsCAmTpwYixcvbvdTvK5Fu3btiqlTp8bEiRPj7bff\nbj3e1NQUN9xwQ+vlYv140Mut74Ji37+9e/fG6dOnY+rUqTFp0qSL4loKe9jW+i4o9j284G9/+1vc\neOONF30Y0aFDh4p+Dy+41PoiIs6cOROzZs2KCRMmxLJlywo0Xe7Gjh0b+/fvj1GjRsXkyZNjzpw5\nrdd1dP+67Hu+a9eujTvvvDNuuummS14/Y8aMGDZsWFx//fVRX18f69evj69//euJp8zd5z73uXj6\n6afjgQceiD179sSUKVPizTffjO7duxd6tLxob33Fvn8XHDlyJJ5//vnYv39/TJkyJTZu3BhlZWWF\nHitv2lpfqexhRMTq1avjsccea/M2xfzNxeXWN3v27Hj44YejrKwsJk+eHHfddVfccccdBZgwN+vW\nrYu+ffvG0qVL491334158+bFmjVrLnnbq92/LvvMd9OmTbFhw4YYP358vP766/Gzn/0s3nnnndbr\nH3300ejVq1dkMpkYPnx47Ny5s4DTXr3evXvHgw8+GGVlZdGvX7/49Kc/HQcOHIiIj3886IEDB6K2\ntrZQo+akrfVFFP/+RUT06tUrBg4cGJlMJvr16xeVlZVx+PDhiCiNPWxrfRGlsYcXbN26NQYOHHjR\nsUt9TG+x7eEFl1pfRMTEiROjsrIyKioq4p577im6Pdy2bVsMHTo0IiJuvfXWOHjwYJw/fz4iOr5/\nXTa+S5YsiTfeeCNee+21ePzxx2PatGkxZMiQiIg4duxYPPXUU3HmzJmIiPjzn//c+r9qi0VjY2Ms\nXbo0Iv79EuWHH37Y+j9FP/vZz8bx48dj7969ce7cudi4cWPce++9hRz3qrW1vlLYv4iIoUOHxpYt\nW+Kjjz6K5ubmOHnyZOt7TqWwh22tr1T2MOLf3xhVVlZ+7FWnL3/5y/H3v/89Wlpa4sSJE7Ft27a4\n6667CjRl7i63vn/+858xa9asyGazce7cudi2bVvR7WH//v1j+/btERGxb9++qKysbP3f2h3dvy77\nsvOlrFmzJqqqqmLUqFExfPjwqKuri+uuuy6+9KUvFd3LXSNGjIjvf//7sWHDhjh79mw0NDTEb3/7\n29b1NTQ0xKxZsyIi4sEHH4ybb765wBNfnfbWV+z7F/HvZ/djxoyJ8ePHR0TE/PnzY+3atSWzh+2t\nrxT2MOLj78//4he/iLvvvjsGDhwYs2bNiqeeeirKysqivr4+qqry/xvgOltb6+vTp09861vfim7d\nusWIESNiwIABBZz06tXV1cW8efNi8uTJce7cuWhoaMjb/vl4SQBIrMu+7AwAhSK+AJCY+AJAYuIL\nAImJLwAkJr4AkJj4AkBi4gsAif1/UFKJ1QILF/YAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ }
+ ]
+}
\ No newline at end of file
From 22c337a7167b945fbfeb7df696155ee7d2d56763 Mon Sep 17 00:00:00 2001
From: alishashaw439 <43449528+alishashaw439@users.noreply.github.com>
Date: Fri, 25 Jan 2019 22:04:18 +0530
Subject: [PATCH 2/3] assignment 3
---
Basic_Pandas.ipynb | 1037 ++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 1037 insertions(+)
create mode 100644 Basic_Pandas.ipynb
diff --git a/Basic_Pandas.ipynb b/Basic_Pandas.ipynb
new file mode 100644
index 0000000..fd0f917
--- /dev/null
+++ b/Basic_Pandas.ipynb
@@ -0,0 +1,1037 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "Basic Pandas.ipynb",
+ "version": "0.3.2",
+ "provenance": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "cGbE814_Xaf9",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Pandas\n",
+ "\n",
+ "Pandas is an open-source, BSD-licensed Python library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. Python with Pandas is used in a wide range of fields including academic and commercial domains including finance, economics, Statistics, analytics, etc.In this tutorial, we will learn the various features of Python Pandas and how to use them in practice.\n",
+ "\n",
+ "\n",
+ "## Import pandas and numpy"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "irlVYeeAXPDL",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "BI2J-zdMbGwE",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### This is your playground feel free to explore other functions on pandas\n",
+ "\n",
+ "#### Create Series from numpy array, list and dict\n",
+ "\n",
+ "Don't know what a series is?\n",
+ "\n",
+ "[Series Doc](https://pandas.pydata.org/pandas-docs/version/0.22/generated/pandas.Series.html)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "GeEct691YGE3",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 139
+ },
+ "outputId": "173f8e09-2fee-447a-ef53-2b09e89a8a2a"
+ },
+ "cell_type": "code",
+ "source": [
+ "a_ascii = ord('A')\n",
+ "z_ascii = ord('Z')\n",
+ "alphabets = [chr(i) for i in range(a_ascii, z_ascii+1)]\n",
+ "\n",
+ "print(alphabets)\n",
+ "\n",
+ "numbers = np.arange(26)\n",
+ "\n",
+ "print(numbers)\n",
+ "\n",
+ "print(type(alphabets), type(numbers))\n",
+ "\n",
+ "alpha_numbers = dict(zip(alphabets, numbers))\n",
+ "\n",
+ "print(alpha_numbers)\n",
+ "\n",
+ "print(type(alpha_numbers))"
+ ],
+ "execution_count": 2,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']\n",
+ "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23\n",
+ " 24 25]\n",
+ " \n",
+ "{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9, 'K': 10, 'L': 11, 'M': 12, 'N': 13, 'O': 14, 'P': 15, 'Q': 16, 'R': 17, 'S': 18, 'T': 19, 'U': 20, 'V': 21, 'W': 22, 'X': 23, 'Y': 24, 'Z': 25}\n",
+ "\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "6ouDfjWab_Mc",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 476
+ },
+ "outputId": "f8bb3250-2884-41c2-8840-b67ef585937d"
+ },
+ "cell_type": "code",
+ "source": [
+ "series1 = pd.Series(alphabets)\n",
+ "print(series1)"
+ ],
+ "execution_count": 3,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "0 A\n",
+ "1 B\n",
+ "2 C\n",
+ "3 D\n",
+ "4 E\n",
+ "5 F\n",
+ "6 G\n",
+ "7 H\n",
+ "8 I\n",
+ "9 J\n",
+ "10 K\n",
+ "11 L\n",
+ "12 M\n",
+ "13 N\n",
+ "14 O\n",
+ "15 P\n",
+ "16 Q\n",
+ "17 R\n",
+ "18 S\n",
+ "19 T\n",
+ "20 U\n",
+ "21 V\n",
+ "22 W\n",
+ "23 X\n",
+ "24 Y\n",
+ "25 Z\n",
+ "dtype: object\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "At7nY7vVcBZ3",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 476
+ },
+ "outputId": "a7d1bd3e-9739-4d69-e13b-290e54c56f23"
+ },
+ "cell_type": "code",
+ "source": [
+ "series2 = pd.Series(numbers)\n",
+ "print(series2)"
+ ],
+ "execution_count": 4,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "0 0\n",
+ "1 1\n",
+ "2 2\n",
+ "3 3\n",
+ "4 4\n",
+ "5 5\n",
+ "6 6\n",
+ "7 7\n",
+ "8 8\n",
+ "9 9\n",
+ "10 10\n",
+ "11 11\n",
+ "12 12\n",
+ "13 13\n",
+ "14 14\n",
+ "15 15\n",
+ "16 16\n",
+ "17 17\n",
+ "18 18\n",
+ "19 19\n",
+ "20 20\n",
+ "21 21\n",
+ "22 22\n",
+ "23 23\n",
+ "24 24\n",
+ "25 25\n",
+ "dtype: int64\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "J5z-2CWAdH6N",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 476
+ },
+ "outputId": "7223ac0f-0691-4c4c-e852-f4c05165b3f2"
+ },
+ "cell_type": "code",
+ "source": [
+ "series3 = pd.Series(alpha_numbers)\n",
+ "print(series3)"
+ ],
+ "execution_count": 5,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "A 0\n",
+ "B 1\n",
+ "C 2\n",
+ "D 3\n",
+ "E 4\n",
+ "F 5\n",
+ "G 6\n",
+ "H 7\n",
+ "I 8\n",
+ "J 9\n",
+ "K 10\n",
+ "L 11\n",
+ "M 12\n",
+ "N 13\n",
+ "O 14\n",
+ "P 15\n",
+ "Q 16\n",
+ "R 17\n",
+ "S 18\n",
+ "T 19\n",
+ "U 20\n",
+ "V 21\n",
+ "W 22\n",
+ "X 23\n",
+ "Y 24\n",
+ "Z 25\n",
+ "dtype: int64\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "fYzblGGudKjO",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 289
+ },
+ "outputId": "9a067902-e839-49fa-b8f4-a8802fba11b3"
+ },
+ "cell_type": "code",
+ "source": [
+ "#replace head() with head(n) where n can be any number between [0-25] and observe the output in deach case \n",
+ "n=15\n",
+ "series3.head(n)"
+ ],
+ "execution_count": 6,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "A 0\n",
+ "B 1\n",
+ "C 2\n",
+ "D 3\n",
+ "E 4\n",
+ "F 5\n",
+ "G 6\n",
+ "H 7\n",
+ "I 8\n",
+ "J 9\n",
+ "K 10\n",
+ "L 11\n",
+ "M 12\n",
+ "N 13\n",
+ "O 14\n",
+ "dtype: int64"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 6
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "OwsJIf5feTtg",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Create DataFrame from lists\n",
+ "\n",
+ "[DataFrame Doc](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "73UTZ07EdWki",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 855
+ },
+ "outputId": "5a564994-6b8f-491f-ac14-5155b1b10be1"
+ },
+ "cell_type": "code",
+ "source": [
+ "data = {'alphabets': alphabets, 'alpha_numbers': numbers}\n",
+ "\n",
+ "df = pd.DataFrame(data)\n",
+ "\n",
+ "#Lets Change the column `values` to `alpha_numbers`\n",
+ "\n",
+ "df.columns = ['alphabets', 'alpha_numbers']\n",
+ "\n",
+ "df"
+ ],
+ "execution_count": 8,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " alphabets | \n",
+ " alpha_numbers | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 0 | \n",
+ " A | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1 | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 2 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 3 | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 4 | \n",
+ " E | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5 | \n",
+ " F | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 6 | \n",
+ " G | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 7 | \n",
+ " H | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 8 | \n",
+ " I | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 9 | \n",
+ " J | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 10 | \n",
+ " K | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 11 | \n",
+ " L | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 12 | \n",
+ " M | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 13 | \n",
+ " N | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 14 | \n",
+ " O | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 15 | \n",
+ " P | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 16 | \n",
+ " Q | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 17 | \n",
+ " R | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 18 | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 19 | \n",
+ " T | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 20 | \n",
+ " U | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 21 | \n",
+ " V | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 22 | \n",
+ " W | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 23 | \n",
+ " X | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 24 | \n",
+ " Y | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " 25 | \n",
+ " Z | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alphabets alpha_numbers\n",
+ "0 0 A\n",
+ "1 1 B\n",
+ "2 2 C\n",
+ "3 3 D\n",
+ "4 4 E\n",
+ "5 5 F\n",
+ "6 6 G\n",
+ "7 7 H\n",
+ "8 8 I\n",
+ "9 9 J\n",
+ "10 10 K\n",
+ "11 11 L\n",
+ "12 12 M\n",
+ "13 13 N\n",
+ "14 14 O\n",
+ "15 15 P\n",
+ "16 16 Q\n",
+ "17 17 R\n",
+ "18 18 S\n",
+ "19 19 T\n",
+ "20 20 U\n",
+ "21 21 V\n",
+ "22 22 W\n",
+ "23 23 X\n",
+ "24 24 Y\n",
+ "25 25 Z"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 8
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "uaK_1EO9etGS",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 140
+ },
+ "outputId": "46c72a77-a21f-4ec0-ab82-43159cc95daf"
+ },
+ "cell_type": "code",
+ "source": [
+ "# transpose\n",
+ "\n",
+ "df.T\n",
+ "\n",
+ "# there are many more operations which we can perform look at the documentation with the subsequent exercises we will learn more"
+ ],
+ "execution_count": 9,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 16 | \n",
+ " 17 | \n",
+ " 18 | \n",
+ " 19 | \n",
+ " 20 | \n",
+ " 21 | \n",
+ " 22 | \n",
+ " 23 | \n",
+ " 24 | \n",
+ " 25 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | alphabets | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " ... | \n",
+ " 16 | \n",
+ " 17 | \n",
+ " 18 | \n",
+ " 19 | \n",
+ " 20 | \n",
+ " 21 | \n",
+ " 22 | \n",
+ " 23 | \n",
+ " 24 | \n",
+ " 25 | \n",
+ "
\n",
+ " \n",
+ " | alpha_numbers | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ " E | \n",
+ " F | \n",
+ " G | \n",
+ " H | \n",
+ " I | \n",
+ " J | \n",
+ " ... | \n",
+ " Q | \n",
+ " R | \n",
+ " S | \n",
+ " T | \n",
+ " U | \n",
+ " V | \n",
+ " W | \n",
+ " X | \n",
+ " Y | \n",
+ " Z | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2 rows × 26 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 \\\n",
+ "alphabets 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 \n",
+ "alpha_numbers A B C D E F G H I J ... Q R S T U V W \n",
+ "\n",
+ " 23 24 25 \n",
+ "alphabets 23 24 25 \n",
+ "alpha_numbers X Y Z \n",
+ "\n",
+ "[2 rows x 26 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 9
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ZYonoaW8gEAJ",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Extract Items from a series"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "tc1-KX_Bfe7U",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "272ea89a-f5ae-42df-def5-3e94808c6c8a"
+ },
+ "cell_type": "code",
+ "source": [
+ "ser = pd.Series(list('abcdefghijklmnopqrstuvwxyz'))\n",
+ "pos = [0, 4, 8, 14, 20]\n",
+ "\n",
+ "vowels = ser.take(pos)\n",
+ "\n",
+ "df = pd.DataFrame(vowels)#, columns=['vowels'])\n",
+ "\n",
+ "df.columns = ['vowels']\n",
+ "\n",
+ "df.index = [0, 1, 2, 3, 4]\n",
+ "\n",
+ "df"
+ ],
+ "execution_count": 10,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " vowels | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " a | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " e | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " i | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " o | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " u | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " vowels\n",
+ "0 a\n",
+ "1 e\n",
+ "2 i\n",
+ "3 o\n",
+ "4 u"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 10
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "cmDxwtDNjWpO",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Change the first character of each word to upper case in each word of ser"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "5KagP9PpgV2F",
+ "colab_type": "code",
+ "outputId": "e060304c-2815-4818-a398-754afc1b543b",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "ser = pd.Series(['we', 'are', 'learning', 'pandas'])\n",
+ "\n",
+ "ser.map(lambda x : x.title())\n",
+ "\n",
+ "titles = [i.title() for i in ser]\n",
+ "\n",
+ "titles"
+ ],
+ "execution_count": 11,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "['We', 'Are', 'Learning', 'Pandas']"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 11
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "qn47ee-MkZN8",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Reindexing"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "h5R0JL2NjuFS",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "b778bf49-6013-4e15-d872-5dcb80235c12"
+ },
+ "cell_type": "code",
+ "source": [
+ "my_index = [1, 2, 3, 4, 5]\n",
+ "\n",
+ "df1 = pd.DataFrame({'upper values': ['A', 'B', 'C', 'D', 'E'],\n",
+ " 'lower values': ['a', 'b', 'c', 'd', 'e']},\n",
+ " index = my_index)\n",
+ "\n",
+ "df1"
+ ],
+ "execution_count": 12,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " lower values | \n",
+ " upper values | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " a | \n",
+ " A | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " b | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " c | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " d | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " e | \n",
+ " E | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " lower values upper values\n",
+ "1 a A\n",
+ "2 b B\n",
+ "3 c C\n",
+ "4 d D\n",
+ "5 e E"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 12
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "G_Frvc3mk93k",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "85230daa-18d3-401c-b1fa-bedc68e20e6b"
+ },
+ "cell_type": "code",
+ "source": [
+ "new_index = [2, 5, 4, 3, 1]\n",
+ "\n",
+ "df1.reindex(index = new_index)"
+ ],
+ "execution_count": 13,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " lower values | \n",
+ " upper values | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 2 | \n",
+ " b | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " e | \n",
+ " E | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " d | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " c | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " a | \n",
+ " A | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " lower values upper values\n",
+ "2 b B\n",
+ "5 e E\n",
+ "4 d D\n",
+ "3 c C\n",
+ "1 a A"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 13
+ }
+ ]
+ }
+ ]
+}
\ No newline at end of file
From 53ac184b6a8c4f0f86c9a0d872e599d975dd51cf Mon Sep 17 00:00:00 2001
From: alishashaw439 <43449528+alishashaw439@users.noreply.github.com>
Date: Fri, 25 Jan 2019 22:33:29 +0530
Subject: [PATCH 3/3] assignment 3
---
Exercise.ipynb | 2925 ++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 2925 insertions(+)
create mode 100644 Exercise.ipynb
diff --git a/Exercise.ipynb b/Exercise.ipynb
new file mode 100644
index 0000000..7f94369
--- /dev/null
+++ b/Exercise.ipynb
@@ -0,0 +1,2925 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "Exercise.ipynb",
+ "version": "0.3.2",
+ "provenance": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "2LTtpUJEibjg",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Pandas Exercise :\n",
+ "\n",
+ "\n",
+ "#### import necessary modules"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "c3_UBbMRhiKx",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "tp-cTCyWi8mR",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Load url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\" to a dataframe named wine_df\n",
+ "\n",
+ "This is a wine dataset\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "DMojQY3thrRi",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df = pd.read_csv(\"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\")"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "BF9MMjoZjSlg",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### print first five rows"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "1vSMQdnHjYNU",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "c384b16a-dcca-4d92-a14d-284813c322ad"
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df.head()"
+ ],
+ "execution_count": 6,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 13.20 | \n",
+ " 1.78 | \n",
+ " 2.14 | \n",
+ " 11.2 | \n",
+ " 100 | \n",
+ " 2.65 | \n",
+ " 2.76 | \n",
+ " 0.26 | \n",
+ " 1.28 | \n",
+ " 4.38 | \n",
+ " 1.05 | \n",
+ " 3.40 | \n",
+ " 1050 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1 | \n",
+ " 13.16 | \n",
+ " 2.36 | \n",
+ " 2.67 | \n",
+ " 18.6 | \n",
+ " 101 | \n",
+ " 2.80 | \n",
+ " 3.24 | \n",
+ " 0.30 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ " 1.03 | \n",
+ " 3.17 | \n",
+ " 1185 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " 14.37 | \n",
+ " 1.95 | \n",
+ " 2.50 | \n",
+ " 16.8 | \n",
+ " 113 | \n",
+ " 3.85 | \n",
+ " 3.49 | \n",
+ " 0.24 | \n",
+ " 2.18 | \n",
+ " 7.80 | \n",
+ " 0.86 | \n",
+ " 3.45 | \n",
+ " 1480 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.32 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.75 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 \\\n",
+ "0 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 \n",
+ "1 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 \n",
+ "2 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 \n",
+ "3 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93 \n",
+ "4 1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 \n",
+ "\n",
+ " 1065 \n",
+ "0 1050 \n",
+ "1 1185 \n",
+ "2 1480 \n",
+ "3 735 \n",
+ "4 1450 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 6
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Tet6P2DvjY3T",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### assign wine_df to a different variable wine_df_copy and then delete all odd rows of wine_df_copy\n",
+ "\n",
+ "[Hint](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop.html)"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "CMj3qSdJjx0u",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1969
+ },
+ "outputId": "0f49fc04-4337-41a4-a1d8-741cbbc12837"
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df_copy = pd.DataFrame(np.arange(2478).reshape(177,14))\n",
+ "wine_df = pd.DataFrame.assign(wine_df_copy)\n",
+ "wine_df_copy.iloc[::2]"
+ ],
+ "execution_count": 9,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " 10 | \n",
+ " 11 | \n",
+ " 12 | \n",
+ " 13 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 9 | \n",
+ " 10 | \n",
+ " 11 | \n",
+ " 12 | \n",
+ " 13 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 28 | \n",
+ " 29 | \n",
+ " 30 | \n",
+ " 31 | \n",
+ " 32 | \n",
+ " 33 | \n",
+ " 34 | \n",
+ " 35 | \n",
+ " 36 | \n",
+ " 37 | \n",
+ " 38 | \n",
+ " 39 | \n",
+ " 40 | \n",
+ " 41 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 56 | \n",
+ " 57 | \n",
+ " 58 | \n",
+ " 59 | \n",
+ " 60 | \n",
+ " 61 | \n",
+ " 62 | \n",
+ " 63 | \n",
+ " 64 | \n",
+ " 65 | \n",
+ " 66 | \n",
+ " 67 | \n",
+ " 68 | \n",
+ " 69 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 84 | \n",
+ " 85 | \n",
+ " 86 | \n",
+ " 87 | \n",
+ " 88 | \n",
+ " 89 | \n",
+ " 90 | \n",
+ " 91 | \n",
+ " 92 | \n",
+ " 93 | \n",
+ " 94 | \n",
+ " 95 | \n",
+ " 96 | \n",
+ " 97 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 112 | \n",
+ " 113 | \n",
+ " 114 | \n",
+ " 115 | \n",
+ " 116 | \n",
+ " 117 | \n",
+ " 118 | \n",
+ " 119 | \n",
+ " 120 | \n",
+ " 121 | \n",
+ " 122 | \n",
+ " 123 | \n",
+ " 124 | \n",
+ " 125 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 140 | \n",
+ " 141 | \n",
+ " 142 | \n",
+ " 143 | \n",
+ " 144 | \n",
+ " 145 | \n",
+ " 146 | \n",
+ " 147 | \n",
+ " 148 | \n",
+ " 149 | \n",
+ " 150 | \n",
+ " 151 | \n",
+ " 152 | \n",
+ " 153 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 168 | \n",
+ " 169 | \n",
+ " 170 | \n",
+ " 171 | \n",
+ " 172 | \n",
+ " 173 | \n",
+ " 174 | \n",
+ " 175 | \n",
+ " 176 | \n",
+ " 177 | \n",
+ " 178 | \n",
+ " 179 | \n",
+ " 180 | \n",
+ " 181 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 196 | \n",
+ " 197 | \n",
+ " 198 | \n",
+ " 199 | \n",
+ " 200 | \n",
+ " 201 | \n",
+ " 202 | \n",
+ " 203 | \n",
+ " 204 | \n",
+ " 205 | \n",
+ " 206 | \n",
+ " 207 | \n",
+ " 208 | \n",
+ " 209 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 224 | \n",
+ " 225 | \n",
+ " 226 | \n",
+ " 227 | \n",
+ " 228 | \n",
+ " 229 | \n",
+ " 230 | \n",
+ " 231 | \n",
+ " 232 | \n",
+ " 233 | \n",
+ " 234 | \n",
+ " 235 | \n",
+ " 236 | \n",
+ " 237 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 252 | \n",
+ " 253 | \n",
+ " 254 | \n",
+ " 255 | \n",
+ " 256 | \n",
+ " 257 | \n",
+ " 258 | \n",
+ " 259 | \n",
+ " 260 | \n",
+ " 261 | \n",
+ " 262 | \n",
+ " 263 | \n",
+ " 264 | \n",
+ " 265 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 280 | \n",
+ " 281 | \n",
+ " 282 | \n",
+ " 283 | \n",
+ " 284 | \n",
+ " 285 | \n",
+ " 286 | \n",
+ " 287 | \n",
+ " 288 | \n",
+ " 289 | \n",
+ " 290 | \n",
+ " 291 | \n",
+ " 292 | \n",
+ " 293 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 308 | \n",
+ " 309 | \n",
+ " 310 | \n",
+ " 311 | \n",
+ " 312 | \n",
+ " 313 | \n",
+ " 314 | \n",
+ " 315 | \n",
+ " 316 | \n",
+ " 317 | \n",
+ " 318 | \n",
+ " 319 | \n",
+ " 320 | \n",
+ " 321 | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 336 | \n",
+ " 337 | \n",
+ " 338 | \n",
+ " 339 | \n",
+ " 340 | \n",
+ " 341 | \n",
+ " 342 | \n",
+ " 343 | \n",
+ " 344 | \n",
+ " 345 | \n",
+ " 346 | \n",
+ " 347 | \n",
+ " 348 | \n",
+ " 349 | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 364 | \n",
+ " 365 | \n",
+ " 366 | \n",
+ " 367 | \n",
+ " 368 | \n",
+ " 369 | \n",
+ " 370 | \n",
+ " 371 | \n",
+ " 372 | \n",
+ " 373 | \n",
+ " 374 | \n",
+ " 375 | \n",
+ " 376 | \n",
+ " 377 | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 392 | \n",
+ " 393 | \n",
+ " 394 | \n",
+ " 395 | \n",
+ " 396 | \n",
+ " 397 | \n",
+ " 398 | \n",
+ " 399 | \n",
+ " 400 | \n",
+ " 401 | \n",
+ " 402 | \n",
+ " 403 | \n",
+ " 404 | \n",
+ " 405 | \n",
+ "
\n",
+ " \n",
+ " | 30 | \n",
+ " 420 | \n",
+ " 421 | \n",
+ " 422 | \n",
+ " 423 | \n",
+ " 424 | \n",
+ " 425 | \n",
+ " 426 | \n",
+ " 427 | \n",
+ " 428 | \n",
+ " 429 | \n",
+ " 430 | \n",
+ " 431 | \n",
+ " 432 | \n",
+ " 433 | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 448 | \n",
+ " 449 | \n",
+ " 450 | \n",
+ " 451 | \n",
+ " 452 | \n",
+ " 453 | \n",
+ " 454 | \n",
+ " 455 | \n",
+ " 456 | \n",
+ " 457 | \n",
+ " 458 | \n",
+ " 459 | \n",
+ " 460 | \n",
+ " 461 | \n",
+ "
\n",
+ " \n",
+ " | 34 | \n",
+ " 476 | \n",
+ " 477 | \n",
+ " 478 | \n",
+ " 479 | \n",
+ " 480 | \n",
+ " 481 | \n",
+ " 482 | \n",
+ " 483 | \n",
+ " 484 | \n",
+ " 485 | \n",
+ " 486 | \n",
+ " 487 | \n",
+ " 488 | \n",
+ " 489 | \n",
+ "
\n",
+ " \n",
+ " | 36 | \n",
+ " 504 | \n",
+ " 505 | \n",
+ " 506 | \n",
+ " 507 | \n",
+ " 508 | \n",
+ " 509 | \n",
+ " 510 | \n",
+ " 511 | \n",
+ " 512 | \n",
+ " 513 | \n",
+ " 514 | \n",
+ " 515 | \n",
+ " 516 | \n",
+ " 517 | \n",
+ "
\n",
+ " \n",
+ " | 38 | \n",
+ " 532 | \n",
+ " 533 | \n",
+ " 534 | \n",
+ " 535 | \n",
+ " 536 | \n",
+ " 537 | \n",
+ " 538 | \n",
+ " 539 | \n",
+ " 540 | \n",
+ " 541 | \n",
+ " 542 | \n",
+ " 543 | \n",
+ " 544 | \n",
+ " 545 | \n",
+ "
\n",
+ " \n",
+ " | 40 | \n",
+ " 560 | \n",
+ " 561 | \n",
+ " 562 | \n",
+ " 563 | \n",
+ " 564 | \n",
+ " 565 | \n",
+ " 566 | \n",
+ " 567 | \n",
+ " 568 | \n",
+ " 569 | \n",
+ " 570 | \n",
+ " 571 | \n",
+ " 572 | \n",
+ " 573 | \n",
+ "
\n",
+ " \n",
+ " | 42 | \n",
+ " 588 | \n",
+ " 589 | \n",
+ " 590 | \n",
+ " 591 | \n",
+ " 592 | \n",
+ " 593 | \n",
+ " 594 | \n",
+ " 595 | \n",
+ " 596 | \n",
+ " 597 | \n",
+ " 598 | \n",
+ " 599 | \n",
+ " 600 | \n",
+ " 601 | \n",
+ "
\n",
+ " \n",
+ " | 44 | \n",
+ " 616 | \n",
+ " 617 | \n",
+ " 618 | \n",
+ " 619 | \n",
+ " 620 | \n",
+ " 621 | \n",
+ " 622 | \n",
+ " 623 | \n",
+ " 624 | \n",
+ " 625 | \n",
+ " 626 | \n",
+ " 627 | \n",
+ " 628 | \n",
+ " 629 | \n",
+ "
\n",
+ " \n",
+ " | 46 | \n",
+ " 644 | \n",
+ " 645 | \n",
+ " 646 | \n",
+ " 647 | \n",
+ " 648 | \n",
+ " 649 | \n",
+ " 650 | \n",
+ " 651 | \n",
+ " 652 | \n",
+ " 653 | \n",
+ " 654 | \n",
+ " 655 | \n",
+ " 656 | \n",
+ " 657 | \n",
+ "
\n",
+ " \n",
+ " | 48 | \n",
+ " 672 | \n",
+ " 673 | \n",
+ " 674 | \n",
+ " 675 | \n",
+ " 676 | \n",
+ " 677 | \n",
+ " 678 | \n",
+ " 679 | \n",
+ " 680 | \n",
+ " 681 | \n",
+ " 682 | \n",
+ " 683 | \n",
+ " 684 | \n",
+ " 685 | \n",
+ "
\n",
+ " \n",
+ " | 50 | \n",
+ " 700 | \n",
+ " 701 | \n",
+ " 702 | \n",
+ " 703 | \n",
+ " 704 | \n",
+ " 705 | \n",
+ " 706 | \n",
+ " 707 | \n",
+ " 708 | \n",
+ " 709 | \n",
+ " 710 | \n",
+ " 711 | \n",
+ " 712 | \n",
+ " 713 | \n",
+ "
\n",
+ " \n",
+ " | 52 | \n",
+ " 728 | \n",
+ " 729 | \n",
+ " 730 | \n",
+ " 731 | \n",
+ " 732 | \n",
+ " 733 | \n",
+ " 734 | \n",
+ " 735 | \n",
+ " 736 | \n",
+ " 737 | \n",
+ " 738 | \n",
+ " 739 | \n",
+ " 740 | \n",
+ " 741 | \n",
+ "
\n",
+ " \n",
+ " | 54 | \n",
+ " 756 | \n",
+ " 757 | \n",
+ " 758 | \n",
+ " 759 | \n",
+ " 760 | \n",
+ " 761 | \n",
+ " 762 | \n",
+ " 763 | \n",
+ " 764 | \n",
+ " 765 | \n",
+ " 766 | \n",
+ " 767 | \n",
+ " 768 | \n",
+ " 769 | \n",
+ "
\n",
+ " \n",
+ " | 56 | \n",
+ " 784 | \n",
+ " 785 | \n",
+ " 786 | \n",
+ " 787 | \n",
+ " 788 | \n",
+ " 789 | \n",
+ " 790 | \n",
+ " 791 | \n",
+ " 792 | \n",
+ " 793 | \n",
+ " 794 | \n",
+ " 795 | \n",
+ " 796 | \n",
+ " 797 | \n",
+ "
\n",
+ " \n",
+ " | 58 | \n",
+ " 812 | \n",
+ " 813 | \n",
+ " 814 | \n",
+ " 815 | \n",
+ " 816 | \n",
+ " 817 | \n",
+ " 818 | \n",
+ " 819 | \n",
+ " 820 | \n",
+ " 821 | \n",
+ " 822 | \n",
+ " 823 | \n",
+ " 824 | \n",
+ " 825 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 118 | \n",
+ " 1652 | \n",
+ " 1653 | \n",
+ " 1654 | \n",
+ " 1655 | \n",
+ " 1656 | \n",
+ " 1657 | \n",
+ " 1658 | \n",
+ " 1659 | \n",
+ " 1660 | \n",
+ " 1661 | \n",
+ " 1662 | \n",
+ " 1663 | \n",
+ " 1664 | \n",
+ " 1665 | \n",
+ "
\n",
+ " \n",
+ " | 120 | \n",
+ " 1680 | \n",
+ " 1681 | \n",
+ " 1682 | \n",
+ " 1683 | \n",
+ " 1684 | \n",
+ " 1685 | \n",
+ " 1686 | \n",
+ " 1687 | \n",
+ " 1688 | \n",
+ " 1689 | \n",
+ " 1690 | \n",
+ " 1691 | \n",
+ " 1692 | \n",
+ " 1693 | \n",
+ "
\n",
+ " \n",
+ " | 122 | \n",
+ " 1708 | \n",
+ " 1709 | \n",
+ " 1710 | \n",
+ " 1711 | \n",
+ " 1712 | \n",
+ " 1713 | \n",
+ " 1714 | \n",
+ " 1715 | \n",
+ " 1716 | \n",
+ " 1717 | \n",
+ " 1718 | \n",
+ " 1719 | \n",
+ " 1720 | \n",
+ " 1721 | \n",
+ "
\n",
+ " \n",
+ " | 124 | \n",
+ " 1736 | \n",
+ " 1737 | \n",
+ " 1738 | \n",
+ " 1739 | \n",
+ " 1740 | \n",
+ " 1741 | \n",
+ " 1742 | \n",
+ " 1743 | \n",
+ " 1744 | \n",
+ " 1745 | \n",
+ " 1746 | \n",
+ " 1747 | \n",
+ " 1748 | \n",
+ " 1749 | \n",
+ "
\n",
+ " \n",
+ " | 126 | \n",
+ " 1764 | \n",
+ " 1765 | \n",
+ " 1766 | \n",
+ " 1767 | \n",
+ " 1768 | \n",
+ " 1769 | \n",
+ " 1770 | \n",
+ " 1771 | \n",
+ " 1772 | \n",
+ " 1773 | \n",
+ " 1774 | \n",
+ " 1775 | \n",
+ " 1776 | \n",
+ " 1777 | \n",
+ "
\n",
+ " \n",
+ " | 128 | \n",
+ " 1792 | \n",
+ " 1793 | \n",
+ " 1794 | \n",
+ " 1795 | \n",
+ " 1796 | \n",
+ " 1797 | \n",
+ " 1798 | \n",
+ " 1799 | \n",
+ " 1800 | \n",
+ " 1801 | \n",
+ " 1802 | \n",
+ " 1803 | \n",
+ " 1804 | \n",
+ " 1805 | \n",
+ "
\n",
+ " \n",
+ " | 130 | \n",
+ " 1820 | \n",
+ " 1821 | \n",
+ " 1822 | \n",
+ " 1823 | \n",
+ " 1824 | \n",
+ " 1825 | \n",
+ " 1826 | \n",
+ " 1827 | \n",
+ " 1828 | \n",
+ " 1829 | \n",
+ " 1830 | \n",
+ " 1831 | \n",
+ " 1832 | \n",
+ " 1833 | \n",
+ "
\n",
+ " \n",
+ " | 132 | \n",
+ " 1848 | \n",
+ " 1849 | \n",
+ " 1850 | \n",
+ " 1851 | \n",
+ " 1852 | \n",
+ " 1853 | \n",
+ " 1854 | \n",
+ " 1855 | \n",
+ " 1856 | \n",
+ " 1857 | \n",
+ " 1858 | \n",
+ " 1859 | \n",
+ " 1860 | \n",
+ " 1861 | \n",
+ "
\n",
+ " \n",
+ " | 134 | \n",
+ " 1876 | \n",
+ " 1877 | \n",
+ " 1878 | \n",
+ " 1879 | \n",
+ " 1880 | \n",
+ " 1881 | \n",
+ " 1882 | \n",
+ " 1883 | \n",
+ " 1884 | \n",
+ " 1885 | \n",
+ " 1886 | \n",
+ " 1887 | \n",
+ " 1888 | \n",
+ " 1889 | \n",
+ "
\n",
+ " \n",
+ " | 136 | \n",
+ " 1904 | \n",
+ " 1905 | \n",
+ " 1906 | \n",
+ " 1907 | \n",
+ " 1908 | \n",
+ " 1909 | \n",
+ " 1910 | \n",
+ " 1911 | \n",
+ " 1912 | \n",
+ " 1913 | \n",
+ " 1914 | \n",
+ " 1915 | \n",
+ " 1916 | \n",
+ " 1917 | \n",
+ "
\n",
+ " \n",
+ " | 138 | \n",
+ " 1932 | \n",
+ " 1933 | \n",
+ " 1934 | \n",
+ " 1935 | \n",
+ " 1936 | \n",
+ " 1937 | \n",
+ " 1938 | \n",
+ " 1939 | \n",
+ " 1940 | \n",
+ " 1941 | \n",
+ " 1942 | \n",
+ " 1943 | \n",
+ " 1944 | \n",
+ " 1945 | \n",
+ "
\n",
+ " \n",
+ " | 140 | \n",
+ " 1960 | \n",
+ " 1961 | \n",
+ " 1962 | \n",
+ " 1963 | \n",
+ " 1964 | \n",
+ " 1965 | \n",
+ " 1966 | \n",
+ " 1967 | \n",
+ " 1968 | \n",
+ " 1969 | \n",
+ " 1970 | \n",
+ " 1971 | \n",
+ " 1972 | \n",
+ " 1973 | \n",
+ "
\n",
+ " \n",
+ " | 142 | \n",
+ " 1988 | \n",
+ " 1989 | \n",
+ " 1990 | \n",
+ " 1991 | \n",
+ " 1992 | \n",
+ " 1993 | \n",
+ " 1994 | \n",
+ " 1995 | \n",
+ " 1996 | \n",
+ " 1997 | \n",
+ " 1998 | \n",
+ " 1999 | \n",
+ " 2000 | \n",
+ " 2001 | \n",
+ "
\n",
+ " \n",
+ " | 144 | \n",
+ " 2016 | \n",
+ " 2017 | \n",
+ " 2018 | \n",
+ " 2019 | \n",
+ " 2020 | \n",
+ " 2021 | \n",
+ " 2022 | \n",
+ " 2023 | \n",
+ " 2024 | \n",
+ " 2025 | \n",
+ " 2026 | \n",
+ " 2027 | \n",
+ " 2028 | \n",
+ " 2029 | \n",
+ "
\n",
+ " \n",
+ " | 146 | \n",
+ " 2044 | \n",
+ " 2045 | \n",
+ " 2046 | \n",
+ " 2047 | \n",
+ " 2048 | \n",
+ " 2049 | \n",
+ " 2050 | \n",
+ " 2051 | \n",
+ " 2052 | \n",
+ " 2053 | \n",
+ " 2054 | \n",
+ " 2055 | \n",
+ " 2056 | \n",
+ " 2057 | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 2072 | \n",
+ " 2073 | \n",
+ " 2074 | \n",
+ " 2075 | \n",
+ " 2076 | \n",
+ " 2077 | \n",
+ " 2078 | \n",
+ " 2079 | \n",
+ " 2080 | \n",
+ " 2081 | \n",
+ " 2082 | \n",
+ " 2083 | \n",
+ " 2084 | \n",
+ " 2085 | \n",
+ "
\n",
+ " \n",
+ " | 150 | \n",
+ " 2100 | \n",
+ " 2101 | \n",
+ " 2102 | \n",
+ " 2103 | \n",
+ " 2104 | \n",
+ " 2105 | \n",
+ " 2106 | \n",
+ " 2107 | \n",
+ " 2108 | \n",
+ " 2109 | \n",
+ " 2110 | \n",
+ " 2111 | \n",
+ " 2112 | \n",
+ " 2113 | \n",
+ "
\n",
+ " \n",
+ " | 152 | \n",
+ " 2128 | \n",
+ " 2129 | \n",
+ " 2130 | \n",
+ " 2131 | \n",
+ " 2132 | \n",
+ " 2133 | \n",
+ " 2134 | \n",
+ " 2135 | \n",
+ " 2136 | \n",
+ " 2137 | \n",
+ " 2138 | \n",
+ " 2139 | \n",
+ " 2140 | \n",
+ " 2141 | \n",
+ "
\n",
+ " \n",
+ " | 154 | \n",
+ " 2156 | \n",
+ " 2157 | \n",
+ " 2158 | \n",
+ " 2159 | \n",
+ " 2160 | \n",
+ " 2161 | \n",
+ " 2162 | \n",
+ " 2163 | \n",
+ " 2164 | \n",
+ " 2165 | \n",
+ " 2166 | \n",
+ " 2167 | \n",
+ " 2168 | \n",
+ " 2169 | \n",
+ "
\n",
+ " \n",
+ " | 156 | \n",
+ " 2184 | \n",
+ " 2185 | \n",
+ " 2186 | \n",
+ " 2187 | \n",
+ " 2188 | \n",
+ " 2189 | \n",
+ " 2190 | \n",
+ " 2191 | \n",
+ " 2192 | \n",
+ " 2193 | \n",
+ " 2194 | \n",
+ " 2195 | \n",
+ " 2196 | \n",
+ " 2197 | \n",
+ "
\n",
+ " \n",
+ " | 158 | \n",
+ " 2212 | \n",
+ " 2213 | \n",
+ " 2214 | \n",
+ " 2215 | \n",
+ " 2216 | \n",
+ " 2217 | \n",
+ " 2218 | \n",
+ " 2219 | \n",
+ " 2220 | \n",
+ " 2221 | \n",
+ " 2222 | \n",
+ " 2223 | \n",
+ " 2224 | \n",
+ " 2225 | \n",
+ "
\n",
+ " \n",
+ " | 160 | \n",
+ " 2240 | \n",
+ " 2241 | \n",
+ " 2242 | \n",
+ " 2243 | \n",
+ " 2244 | \n",
+ " 2245 | \n",
+ " 2246 | \n",
+ " 2247 | \n",
+ " 2248 | \n",
+ " 2249 | \n",
+ " 2250 | \n",
+ " 2251 | \n",
+ " 2252 | \n",
+ " 2253 | \n",
+ "
\n",
+ " \n",
+ " | 162 | \n",
+ " 2268 | \n",
+ " 2269 | \n",
+ " 2270 | \n",
+ " 2271 | \n",
+ " 2272 | \n",
+ " 2273 | \n",
+ " 2274 | \n",
+ " 2275 | \n",
+ " 2276 | \n",
+ " 2277 | \n",
+ " 2278 | \n",
+ " 2279 | \n",
+ " 2280 | \n",
+ " 2281 | \n",
+ "
\n",
+ " \n",
+ " | 164 | \n",
+ " 2296 | \n",
+ " 2297 | \n",
+ " 2298 | \n",
+ " 2299 | \n",
+ " 2300 | \n",
+ " 2301 | \n",
+ " 2302 | \n",
+ " 2303 | \n",
+ " 2304 | \n",
+ " 2305 | \n",
+ " 2306 | \n",
+ " 2307 | \n",
+ " 2308 | \n",
+ " 2309 | \n",
+ "
\n",
+ " \n",
+ " | 166 | \n",
+ " 2324 | \n",
+ " 2325 | \n",
+ " 2326 | \n",
+ " 2327 | \n",
+ " 2328 | \n",
+ " 2329 | \n",
+ " 2330 | \n",
+ " 2331 | \n",
+ " 2332 | \n",
+ " 2333 | \n",
+ " 2334 | \n",
+ " 2335 | \n",
+ " 2336 | \n",
+ " 2337 | \n",
+ "
\n",
+ " \n",
+ " | 168 | \n",
+ " 2352 | \n",
+ " 2353 | \n",
+ " 2354 | \n",
+ " 2355 | \n",
+ " 2356 | \n",
+ " 2357 | \n",
+ " 2358 | \n",
+ " 2359 | \n",
+ " 2360 | \n",
+ " 2361 | \n",
+ " 2362 | \n",
+ " 2363 | \n",
+ " 2364 | \n",
+ " 2365 | \n",
+ "
\n",
+ " \n",
+ " | 170 | \n",
+ " 2380 | \n",
+ " 2381 | \n",
+ " 2382 | \n",
+ " 2383 | \n",
+ " 2384 | \n",
+ " 2385 | \n",
+ " 2386 | \n",
+ " 2387 | \n",
+ " 2388 | \n",
+ " 2389 | \n",
+ " 2390 | \n",
+ " 2391 | \n",
+ " 2392 | \n",
+ " 2393 | \n",
+ "
\n",
+ " \n",
+ " | 172 | \n",
+ " 2408 | \n",
+ " 2409 | \n",
+ " 2410 | \n",
+ " 2411 | \n",
+ " 2412 | \n",
+ " 2413 | \n",
+ " 2414 | \n",
+ " 2415 | \n",
+ " 2416 | \n",
+ " 2417 | \n",
+ " 2418 | \n",
+ " 2419 | \n",
+ " 2420 | \n",
+ " 2421 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 2436 | \n",
+ " 2437 | \n",
+ " 2438 | \n",
+ " 2439 | \n",
+ " 2440 | \n",
+ " 2441 | \n",
+ " 2442 | \n",
+ " 2443 | \n",
+ " 2444 | \n",
+ " 2445 | \n",
+ " 2446 | \n",
+ " 2447 | \n",
+ " 2448 | \n",
+ " 2449 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 2464 | \n",
+ " 2465 | \n",
+ " 2466 | \n",
+ " 2467 | \n",
+ " 2468 | \n",
+ " 2469 | \n",
+ " 2470 | \n",
+ " 2471 | \n",
+ " 2472 | \n",
+ " 2473 | \n",
+ " 2474 | \n",
+ " 2475 | \n",
+ " 2476 | \n",
+ " 2477 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
89 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 6 7 8 9 10 11 \\\n",
+ "0 0 1 2 3 4 5 6 7 8 9 10 11 \n",
+ "2 28 29 30 31 32 33 34 35 36 37 38 39 \n",
+ "4 56 57 58 59 60 61 62 63 64 65 66 67 \n",
+ "6 84 85 86 87 88 89 90 91 92 93 94 95 \n",
+ "8 112 113 114 115 116 117 118 119 120 121 122 123 \n",
+ "10 140 141 142 143 144 145 146 147 148 149 150 151 \n",
+ "12 168 169 170 171 172 173 174 175 176 177 178 179 \n",
+ "14 196 197 198 199 200 201 202 203 204 205 206 207 \n",
+ "16 224 225 226 227 228 229 230 231 232 233 234 235 \n",
+ "18 252 253 254 255 256 257 258 259 260 261 262 263 \n",
+ "20 280 281 282 283 284 285 286 287 288 289 290 291 \n",
+ "22 308 309 310 311 312 313 314 315 316 317 318 319 \n",
+ "24 336 337 338 339 340 341 342 343 344 345 346 347 \n",
+ "26 364 365 366 367 368 369 370 371 372 373 374 375 \n",
+ "28 392 393 394 395 396 397 398 399 400 401 402 403 \n",
+ "30 420 421 422 423 424 425 426 427 428 429 430 431 \n",
+ "32 448 449 450 451 452 453 454 455 456 457 458 459 \n",
+ "34 476 477 478 479 480 481 482 483 484 485 486 487 \n",
+ "36 504 505 506 507 508 509 510 511 512 513 514 515 \n",
+ "38 532 533 534 535 536 537 538 539 540 541 542 543 \n",
+ "40 560 561 562 563 564 565 566 567 568 569 570 571 \n",
+ "42 588 589 590 591 592 593 594 595 596 597 598 599 \n",
+ "44 616 617 618 619 620 621 622 623 624 625 626 627 \n",
+ "46 644 645 646 647 648 649 650 651 652 653 654 655 \n",
+ "48 672 673 674 675 676 677 678 679 680 681 682 683 \n",
+ "50 700 701 702 703 704 705 706 707 708 709 710 711 \n",
+ "52 728 729 730 731 732 733 734 735 736 737 738 739 \n",
+ "54 756 757 758 759 760 761 762 763 764 765 766 767 \n",
+ "56 784 785 786 787 788 789 790 791 792 793 794 795 \n",
+ "58 812 813 814 815 816 817 818 819 820 821 822 823 \n",
+ ".. ... ... ... ... ... ... ... ... ... ... ... ... \n",
+ "118 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 \n",
+ "120 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 \n",
+ "122 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 \n",
+ "124 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 \n",
+ "126 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 \n",
+ "128 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 \n",
+ "130 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 \n",
+ "132 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 \n",
+ "134 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 \n",
+ "136 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 \n",
+ "138 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 \n",
+ "140 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 \n",
+ "142 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 \n",
+ "144 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 \n",
+ "146 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 \n",
+ "148 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 \n",
+ "150 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 \n",
+ "152 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 \n",
+ "154 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 \n",
+ "156 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 \n",
+ "158 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 \n",
+ "160 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 \n",
+ "162 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 \n",
+ "164 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 \n",
+ "166 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 \n",
+ "168 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 \n",
+ "170 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 \n",
+ "172 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 \n",
+ "174 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 \n",
+ "176 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 \n",
+ "\n",
+ " 12 13 \n",
+ "0 12 13 \n",
+ "2 40 41 \n",
+ "4 68 69 \n",
+ "6 96 97 \n",
+ "8 124 125 \n",
+ "10 152 153 \n",
+ "12 180 181 \n",
+ "14 208 209 \n",
+ "16 236 237 \n",
+ "18 264 265 \n",
+ "20 292 293 \n",
+ "22 320 321 \n",
+ "24 348 349 \n",
+ "26 376 377 \n",
+ "28 404 405 \n",
+ "30 432 433 \n",
+ "32 460 461 \n",
+ "34 488 489 \n",
+ "36 516 517 \n",
+ "38 544 545 \n",
+ "40 572 573 \n",
+ "42 600 601 \n",
+ "44 628 629 \n",
+ "46 656 657 \n",
+ "48 684 685 \n",
+ "50 712 713 \n",
+ "52 740 741 \n",
+ "54 768 769 \n",
+ "56 796 797 \n",
+ "58 824 825 \n",
+ ".. ... ... \n",
+ "118 1664 1665 \n",
+ "120 1692 1693 \n",
+ "122 1720 1721 \n",
+ "124 1748 1749 \n",
+ "126 1776 1777 \n",
+ "128 1804 1805 \n",
+ "130 1832 1833 \n",
+ "132 1860 1861 \n",
+ "134 1888 1889 \n",
+ "136 1916 1917 \n",
+ "138 1944 1945 \n",
+ "140 1972 1973 \n",
+ "142 2000 2001 \n",
+ "144 2028 2029 \n",
+ "146 2056 2057 \n",
+ "148 2084 2085 \n",
+ "150 2112 2113 \n",
+ "152 2140 2141 \n",
+ "154 2168 2169 \n",
+ "156 2196 2197 \n",
+ "158 2224 2225 \n",
+ "160 2252 2253 \n",
+ "162 2280 2281 \n",
+ "164 2308 2309 \n",
+ "166 2336 2337 \n",
+ "168 2364 2365 \n",
+ "170 2392 2393 \n",
+ "172 2420 2421 \n",
+ "174 2448 2449 \n",
+ "176 2476 2477 \n",
+ "\n",
+ "[89 rows x 14 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 9
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "o6Cs6T1Rjz71",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Assign the columns as below:\n",
+ "\n",
+ "The attributes are (dontated by Riccardo Leardi, riclea '@' anchem.unige.it): \n",
+ "1) Alcohol \n",
+ "2) Malic acid \n",
+ "3) Ash \n",
+ "4) Alcalinity of ash \n",
+ "5) Magnesium \n",
+ "6) Total phenols \n",
+ "7) Flavanoids \n",
+ "8) Nonflavanoid phenols \n",
+ "9) Proanthocyanins \n",
+ "10)Color intensity \n",
+ "11)Hue \n",
+ "12)OD280/OD315 of diluted wines \n",
+ "13)Proline "
+ ]
+ },
+ {
+ "metadata": {
+ "id": "my8HB4V4j779",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df = pd.DataFrame(np.arange(2301).reshape(177,13),columns=[\"Alcohol\",\"Malic acid\",\"Ash\",\"Alcalinity of ash\",\"Magnesium\",\"Total phenols\",\"Flavanoids\",\"Nonflavanoid phenols\",\"Proanthocyanins\",\"Color intensity\",\"hue\",\"OD280/OD315 of diluted wines\",\"Proline\"])"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "Zqi7hwWpkNbH",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Set the values of the first 3 rows from alcohol as NaN\n",
+ "\n",
+ "Hint- Use iloc to select 3 rows of wine_df"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "buyT4vX4kPMl",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df.iloc[0:5,0] = np.nan"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "RQMNI2UHkP3o",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Create an array of 10 random numbers uptill 10 and assign it to a variable named `random`"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "xunmCjaEmDwZ",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "30f05af5-03a9-4a57-d421-4ac3acc65da3"
+ },
+ "cell_type": "code",
+ "source": [
+ "random = np.random.randint(0,10,10)\n",
+ "print(random)"
+ ],
+ "execution_count": 13,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[0 0 4 7 0 6 5 3 7 1]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "hELUakyXmFSu",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Use random numbers you generated as an index and assign NaN value to each of cell of the column alcohol"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "zMgaNnNHmP01",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df.columns = [\"Alcohol\",\"Malic acid\",\"Ash\",\"Alcalinity of ash\",\"Magnesium\",\"Total phenols\",\"Flavanoids\",\"Nonflavanoid phenols\",\"Proanthocyanins\",\"Color intensity\",\"hue\",\"OD280/OD315 of diluted wines\",\"Proline\"]\n",
+ "wine_df.iloc[:,0:1] = np.nan"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "PHyK_vRsmRwV",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### How many missing values do we have? \n",
+ "\n",
+ "Hint: you can use isnull() and sum()"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "EnOYhmEqmfKp",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "null_data = wine_df[wine_df.isnull().any(axis=1)]"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "-Fd4WBklmf1_",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "#### Delete the rows that contain missing values "
+ ]
+ },
+ {
+ "metadata": {
+ "id": "As7IC6Ktms8-",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "wine_df = wine_df.dropna(how='any',axis = 0)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "DlpG8drhmz7W",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### BONUS: Play with the data set below"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "mD40T0Cnm5SA",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1969
+ },
+ "outputId": "09722c06-f33c-4ab2-f1cc-8bd93b54e308"
+ },
+ "cell_type": "code",
+ "source": [
+ "wine=pd.read_csv(\"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data\")\n",
+ "wine_df=pd.DataFrame(wine)\n",
+ "wine_df.iloc[:3,0:1]=np.nan\n",
+ "wine_df=wine_df.dropna(how=\"any\",axis=0)\n",
+ "wine_df"
+ ],
+ "execution_count": 17,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1 | \n",
+ " 14.23 | \n",
+ " 1.71 | \n",
+ " 2.43 | \n",
+ " 15.6 | \n",
+ " 127 | \n",
+ " 2.8 | \n",
+ " 3.06 | \n",
+ " .28 | \n",
+ " 2.29 | \n",
+ " 5.64 | \n",
+ " 1.04 | \n",
+ " 3.92 | \n",
+ " 1065 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 3 | \n",
+ " 1.0 | \n",
+ " 13.24 | \n",
+ " 2.59 | \n",
+ " 2.87 | \n",
+ " 21.0 | \n",
+ " 118 | \n",
+ " 2.80 | \n",
+ " 2.69 | \n",
+ " 0.39 | \n",
+ " 1.82 | \n",
+ " 4.320000 | \n",
+ " 1.04 | \n",
+ " 2.93 | \n",
+ " 735 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1.0 | \n",
+ " 14.20 | \n",
+ " 1.76 | \n",
+ " 2.45 | \n",
+ " 15.2 | \n",
+ " 112 | \n",
+ " 3.27 | \n",
+ " 3.39 | \n",
+ " 0.34 | \n",
+ " 1.97 | \n",
+ " 6.750000 | \n",
+ " 1.05 | \n",
+ " 2.85 | \n",
+ " 1450 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 1.0 | \n",
+ " 14.39 | \n",
+ " 1.87 | \n",
+ " 2.45 | \n",
+ " 14.6 | \n",
+ " 96 | \n",
+ " 2.50 | \n",
+ " 2.52 | \n",
+ " 0.30 | \n",
+ " 1.98 | \n",
+ " 5.250000 | \n",
+ " 1.02 | \n",
+ " 3.58 | \n",
+ " 1290 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 2.61 | \n",
+ " 17.6 | \n",
+ " 121 | \n",
+ " 2.60 | \n",
+ " 2.51 | \n",
+ " 0.31 | \n",
+ " 1.25 | \n",
+ " 5.050000 | \n",
+ " 1.06 | \n",
+ " 3.58 | \n",
+ " 1295 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 1.0 | \n",
+ " 14.83 | \n",
+ " 1.64 | \n",
+ " 2.17 | \n",
+ " 14.0 | \n",
+ " 97 | \n",
+ " 2.80 | \n",
+ " 2.98 | \n",
+ " 0.29 | \n",
+ " 1.98 | \n",
+ " 5.200000 | \n",
+ " 1.08 | \n",
+ " 2.85 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 1.0 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 2.27 | \n",
+ " 16.0 | \n",
+ " 98 | \n",
+ " 2.98 | \n",
+ " 3.15 | \n",
+ " 0.22 | \n",
+ " 1.85 | \n",
+ " 7.220000 | \n",
+ " 1.01 | \n",
+ " 3.55 | \n",
+ " 1045 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 1.0 | \n",
+ " 14.10 | \n",
+ " 2.16 | \n",
+ " 2.30 | \n",
+ " 18.0 | \n",
+ " 105 | \n",
+ " 2.95 | \n",
+ " 3.32 | \n",
+ " 0.22 | \n",
+ " 2.38 | \n",
+ " 5.750000 | \n",
+ " 1.25 | \n",
+ " 3.17 | \n",
+ " 1510 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 1.0 | \n",
+ " 14.12 | \n",
+ " 1.48 | \n",
+ " 2.32 | \n",
+ " 16.8 | \n",
+ " 95 | \n",
+ " 2.20 | \n",
+ " 2.43 | \n",
+ " 0.26 | \n",
+ " 1.57 | \n",
+ " 5.000000 | \n",
+ " 1.17 | \n",
+ " 2.82 | \n",
+ " 1280 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 1.0 | \n",
+ " 13.75 | \n",
+ " 1.73 | \n",
+ " 2.41 | \n",
+ " 16.0 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 2.76 | \n",
+ " 0.29 | \n",
+ " 1.81 | \n",
+ " 5.600000 | \n",
+ " 1.15 | \n",
+ " 2.90 | \n",
+ " 1320 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 1.0 | \n",
+ " 14.75 | \n",
+ " 1.73 | \n",
+ " 2.39 | \n",
+ " 11.4 | \n",
+ " 91 | \n",
+ " 3.10 | \n",
+ " 3.69 | \n",
+ " 0.43 | \n",
+ " 2.81 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 2.73 | \n",
+ " 1150 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 1.0 | \n",
+ " 14.38 | \n",
+ " 1.87 | \n",
+ " 2.38 | \n",
+ " 12.0 | \n",
+ " 102 | \n",
+ " 3.30 | \n",
+ " 3.64 | \n",
+ " 0.29 | \n",
+ " 2.96 | \n",
+ " 7.500000 | \n",
+ " 1.20 | \n",
+ " 3.00 | \n",
+ " 1547 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 1.0 | \n",
+ " 13.63 | \n",
+ " 1.81 | \n",
+ " 2.70 | \n",
+ " 17.2 | \n",
+ " 112 | \n",
+ " 2.85 | \n",
+ " 2.91 | \n",
+ " 0.30 | \n",
+ " 1.46 | \n",
+ " 7.300000 | \n",
+ " 1.28 | \n",
+ " 2.88 | \n",
+ " 1310 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 1.0 | \n",
+ " 14.30 | \n",
+ " 1.92 | \n",
+ " 2.72 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 2.80 | \n",
+ " 3.14 | \n",
+ " 0.33 | \n",
+ " 1.97 | \n",
+ " 6.200000 | \n",
+ " 1.07 | \n",
+ " 2.65 | \n",
+ " 1280 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 1.0 | \n",
+ " 13.83 | \n",
+ " 1.57 | \n",
+ " 2.62 | \n",
+ " 20.0 | \n",
+ " 115 | \n",
+ " 2.95 | \n",
+ " 3.40 | \n",
+ " 0.40 | \n",
+ " 1.72 | \n",
+ " 6.600000 | \n",
+ " 1.13 | \n",
+ " 2.57 | \n",
+ " 1130 | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 1.0 | \n",
+ " 14.19 | \n",
+ " 1.59 | \n",
+ " 2.48 | \n",
+ " 16.5 | \n",
+ " 108 | \n",
+ " 3.30 | \n",
+ " 3.93 | \n",
+ " 0.32 | \n",
+ " 1.86 | \n",
+ " 8.700000 | \n",
+ " 1.23 | \n",
+ " 2.82 | \n",
+ " 1680 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 1.0 | \n",
+ " 13.64 | \n",
+ " 3.10 | \n",
+ " 2.56 | \n",
+ " 15.2 | \n",
+ " 116 | \n",
+ " 2.70 | \n",
+ " 3.03 | \n",
+ " 0.17 | \n",
+ " 1.66 | \n",
+ " 5.100000 | \n",
+ " 0.96 | \n",
+ " 3.36 | \n",
+ " 845 | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 1.0 | \n",
+ " 14.06 | \n",
+ " 1.63 | \n",
+ " 2.28 | \n",
+ " 16.0 | \n",
+ " 126 | \n",
+ " 3.00 | \n",
+ " 3.17 | \n",
+ " 0.24 | \n",
+ " 2.10 | \n",
+ " 5.650000 | \n",
+ " 1.09 | \n",
+ " 3.71 | \n",
+ " 780 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 1.0 | \n",
+ " 12.93 | \n",
+ " 3.80 | \n",
+ " 2.65 | \n",
+ " 18.6 | \n",
+ " 102 | \n",
+ " 2.41 | \n",
+ " 2.41 | \n",
+ " 0.25 | \n",
+ " 1.98 | \n",
+ " 4.500000 | \n",
+ " 1.03 | \n",
+ " 3.52 | \n",
+ " 770 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 1.0 | \n",
+ " 13.71 | \n",
+ " 1.86 | \n",
+ " 2.36 | \n",
+ " 16.6 | \n",
+ " 101 | \n",
+ " 2.61 | \n",
+ " 2.88 | \n",
+ " 0.27 | \n",
+ " 1.69 | \n",
+ " 3.800000 | \n",
+ " 1.11 | \n",
+ " 4.00 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 1.0 | \n",
+ " 12.85 | \n",
+ " 1.60 | \n",
+ " 2.52 | \n",
+ " 17.8 | \n",
+ " 95 | \n",
+ " 2.48 | \n",
+ " 2.37 | \n",
+ " 0.26 | \n",
+ " 1.46 | \n",
+ " 3.930000 | \n",
+ " 1.09 | \n",
+ " 3.63 | \n",
+ " 1015 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 1.0 | \n",
+ " 13.50 | \n",
+ " 1.81 | \n",
+ " 2.61 | \n",
+ " 20.0 | \n",
+ " 96 | \n",
+ " 2.53 | \n",
+ " 2.61 | \n",
+ " 0.28 | \n",
+ " 1.66 | \n",
+ " 3.520000 | \n",
+ " 1.12 | \n",
+ " 3.82 | \n",
+ " 845 | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 1.0 | \n",
+ " 13.05 | \n",
+ " 2.05 | \n",
+ " 3.22 | \n",
+ " 25.0 | \n",
+ " 124 | \n",
+ " 2.63 | \n",
+ " 2.68 | \n",
+ " 0.47 | \n",
+ " 1.92 | \n",
+ " 3.580000 | \n",
+ " 1.13 | \n",
+ " 3.20 | \n",
+ " 830 | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " 1.0 | \n",
+ " 13.39 | \n",
+ " 1.77 | \n",
+ " 2.62 | \n",
+ " 16.1 | \n",
+ " 93 | \n",
+ " 2.85 | \n",
+ " 2.94 | \n",
+ " 0.34 | \n",
+ " 1.45 | \n",
+ " 4.800000 | \n",
+ " 0.92 | \n",
+ " 3.22 | \n",
+ " 1195 | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 1.0 | \n",
+ " 13.30 | \n",
+ " 1.72 | \n",
+ " 2.14 | \n",
+ " 17.0 | \n",
+ " 94 | \n",
+ " 2.40 | \n",
+ " 2.19 | \n",
+ " 0.27 | \n",
+ " 1.35 | \n",
+ " 3.950000 | \n",
+ " 1.02 | \n",
+ " 2.77 | \n",
+ " 1285 | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 1.0 | \n",
+ " 13.87 | \n",
+ " 1.90 | \n",
+ " 2.80 | \n",
+ " 19.4 | \n",
+ " 107 | \n",
+ " 2.95 | \n",
+ " 2.97 | \n",
+ " 0.37 | \n",
+ " 1.76 | \n",
+ " 4.500000 | \n",
+ " 1.25 | \n",
+ " 3.40 | \n",
+ " 915 | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 1.0 | \n",
+ " 14.02 | \n",
+ " 1.68 | \n",
+ " 2.21 | \n",
+ " 16.0 | \n",
+ " 96 | \n",
+ " 2.65 | \n",
+ " 2.33 | \n",
+ " 0.26 | \n",
+ " 1.98 | \n",
+ " 4.700000 | \n",
+ " 1.04 | \n",
+ " 3.59 | \n",
+ " 1035 | \n",
+ "
\n",
+ " \n",
+ " | 29 | \n",
+ " 1.0 | \n",
+ " 13.73 | \n",
+ " 1.50 | \n",
+ " 2.70 | \n",
+ " 22.5 | \n",
+ " 101 | \n",
+ " 3.00 | \n",
+ " 3.25 | \n",
+ " 0.29 | \n",
+ " 2.38 | \n",
+ " 5.700000 | \n",
+ " 1.19 | \n",
+ " 2.71 | \n",
+ " 1285 | \n",
+ "
\n",
+ " \n",
+ " | 30 | \n",
+ " 1.0 | \n",
+ " 13.58 | \n",
+ " 1.66 | \n",
+ " 2.36 | \n",
+ " 19.1 | \n",
+ " 106 | \n",
+ " 2.86 | \n",
+ " 3.19 | \n",
+ " 0.22 | \n",
+ " 1.95 | \n",
+ " 6.900000 | \n",
+ " 1.09 | \n",
+ " 2.88 | \n",
+ " 1515 | \n",
+ "
\n",
+ " \n",
+ " | 31 | \n",
+ " 1.0 | \n",
+ " 13.68 | \n",
+ " 1.83 | \n",
+ " 2.36 | \n",
+ " 17.2 | \n",
+ " 104 | \n",
+ " 2.42 | \n",
+ " 2.69 | \n",
+ " 0.42 | \n",
+ " 1.97 | \n",
+ " 3.840000 | \n",
+ " 1.23 | \n",
+ " 2.87 | \n",
+ " 990 | \n",
+ "
\n",
+ " \n",
+ " | 32 | \n",
+ " 1.0 | \n",
+ " 13.76 | \n",
+ " 1.53 | \n",
+ " 2.70 | \n",
+ " 19.5 | \n",
+ " 132 | \n",
+ " 2.95 | \n",
+ " 2.74 | \n",
+ " 0.50 | \n",
+ " 1.35 | \n",
+ " 5.400000 | \n",
+ " 1.25 | \n",
+ " 3.00 | \n",
+ " 1235 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 147 | \n",
+ " 3.0 | \n",
+ " 13.32 | \n",
+ " 3.24 | \n",
+ " 2.38 | \n",
+ " 21.5 | \n",
+ " 92 | \n",
+ " 1.93 | \n",
+ " 0.76 | \n",
+ " 0.45 | \n",
+ " 1.25 | \n",
+ " 8.420000 | \n",
+ " 0.55 | \n",
+ " 1.62 | \n",
+ " 650 | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " 3.0 | \n",
+ " 13.08 | \n",
+ " 3.90 | \n",
+ " 2.36 | \n",
+ " 21.5 | \n",
+ " 113 | \n",
+ " 1.41 | \n",
+ " 1.39 | \n",
+ " 0.34 | \n",
+ " 1.14 | \n",
+ " 9.400000 | \n",
+ " 0.57 | \n",
+ " 1.33 | \n",
+ " 550 | \n",
+ "
\n",
+ " \n",
+ " | 149 | \n",
+ " 3.0 | \n",
+ " 13.50 | \n",
+ " 3.12 | \n",
+ " 2.62 | \n",
+ " 24.0 | \n",
+ " 123 | \n",
+ " 1.40 | \n",
+ " 1.57 | \n",
+ " 0.22 | \n",
+ " 1.25 | \n",
+ " 8.600000 | \n",
+ " 0.59 | \n",
+ " 1.30 | \n",
+ " 500 | \n",
+ "
\n",
+ " \n",
+ " | 150 | \n",
+ " 3.0 | \n",
+ " 12.79 | \n",
+ " 2.67 | \n",
+ " 2.48 | \n",
+ " 22.0 | \n",
+ " 112 | \n",
+ " 1.48 | \n",
+ " 1.36 | \n",
+ " 0.24 | \n",
+ " 1.26 | \n",
+ " 10.800000 | \n",
+ " 0.48 | \n",
+ " 1.47 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 151 | \n",
+ " 3.0 | \n",
+ " 13.11 | \n",
+ " 1.90 | \n",
+ " 2.75 | \n",
+ " 25.5 | \n",
+ " 116 | \n",
+ " 2.20 | \n",
+ " 1.28 | \n",
+ " 0.26 | \n",
+ " 1.56 | \n",
+ " 7.100000 | \n",
+ " 0.61 | \n",
+ " 1.33 | \n",
+ " 425 | \n",
+ "
\n",
+ " \n",
+ " | 152 | \n",
+ " 3.0 | \n",
+ " 13.23 | \n",
+ " 3.30 | \n",
+ " 2.28 | \n",
+ " 18.5 | \n",
+ " 98 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.61 | \n",
+ " 1.87 | \n",
+ " 10.520000 | \n",
+ " 0.56 | \n",
+ " 1.51 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 153 | \n",
+ " 3.0 | \n",
+ " 12.58 | \n",
+ " 1.29 | \n",
+ " 2.10 | \n",
+ " 20.0 | \n",
+ " 103 | \n",
+ " 1.48 | \n",
+ " 0.58 | \n",
+ " 0.53 | \n",
+ " 1.40 | \n",
+ " 7.600000 | \n",
+ " 0.58 | \n",
+ " 1.55 | \n",
+ " 640 | \n",
+ "
\n",
+ " \n",
+ " | 154 | \n",
+ " 3.0 | \n",
+ " 13.17 | \n",
+ " 5.19 | \n",
+ " 2.32 | \n",
+ " 22.0 | \n",
+ " 93 | \n",
+ " 1.74 | \n",
+ " 0.63 | \n",
+ " 0.61 | \n",
+ " 1.55 | \n",
+ " 7.900000 | \n",
+ " 0.60 | \n",
+ " 1.48 | \n",
+ " 725 | \n",
+ "
\n",
+ " \n",
+ " | 155 | \n",
+ " 3.0 | \n",
+ " 13.84 | \n",
+ " 4.12 | \n",
+ " 2.38 | \n",
+ " 19.5 | \n",
+ " 89 | \n",
+ " 1.80 | \n",
+ " 0.83 | \n",
+ " 0.48 | \n",
+ " 1.56 | \n",
+ " 9.010000 | \n",
+ " 0.57 | \n",
+ " 1.64 | \n",
+ " 480 | \n",
+ "
\n",
+ " \n",
+ " | 156 | \n",
+ " 3.0 | \n",
+ " 12.45 | \n",
+ " 3.03 | \n",
+ " 2.64 | \n",
+ " 27.0 | \n",
+ " 97 | \n",
+ " 1.90 | \n",
+ " 0.58 | \n",
+ " 0.63 | \n",
+ " 1.14 | \n",
+ " 7.500000 | \n",
+ " 0.67 | \n",
+ " 1.73 | \n",
+ " 880 | \n",
+ "
\n",
+ " \n",
+ " | 157 | \n",
+ " 3.0 | \n",
+ " 14.34 | \n",
+ " 1.68 | \n",
+ " 2.70 | \n",
+ " 25.0 | \n",
+ " 98 | \n",
+ " 2.80 | \n",
+ " 1.31 | \n",
+ " 0.53 | \n",
+ " 2.70 | \n",
+ " 13.000000 | \n",
+ " 0.57 | \n",
+ " 1.96 | \n",
+ " 660 | \n",
+ "
\n",
+ " \n",
+ " | 158 | \n",
+ " 3.0 | \n",
+ " 13.48 | \n",
+ " 1.67 | \n",
+ " 2.64 | \n",
+ " 22.5 | \n",
+ " 89 | \n",
+ " 2.60 | \n",
+ " 1.10 | \n",
+ " 0.52 | \n",
+ " 2.29 | \n",
+ " 11.750000 | \n",
+ " 0.57 | \n",
+ " 1.78 | \n",
+ " 620 | \n",
+ "
\n",
+ " \n",
+ " | 159 | \n",
+ " 3.0 | \n",
+ " 12.36 | \n",
+ " 3.83 | \n",
+ " 2.38 | \n",
+ " 21.0 | \n",
+ " 88 | \n",
+ " 2.30 | \n",
+ " 0.92 | \n",
+ " 0.50 | \n",
+ " 1.04 | \n",
+ " 7.650000 | \n",
+ " 0.56 | \n",
+ " 1.58 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 160 | \n",
+ " 3.0 | \n",
+ " 13.69 | \n",
+ " 3.26 | \n",
+ " 2.54 | \n",
+ " 20.0 | \n",
+ " 107 | \n",
+ " 1.83 | \n",
+ " 0.56 | \n",
+ " 0.50 | \n",
+ " 0.80 | \n",
+ " 5.880000 | \n",
+ " 0.96 | \n",
+ " 1.82 | \n",
+ " 680 | \n",
+ "
\n",
+ " \n",
+ " | 161 | \n",
+ " 3.0 | \n",
+ " 12.85 | \n",
+ " 3.27 | \n",
+ " 2.58 | \n",
+ " 22.0 | \n",
+ " 106 | \n",
+ " 1.65 | \n",
+ " 0.60 | \n",
+ " 0.60 | \n",
+ " 0.96 | \n",
+ " 5.580000 | \n",
+ " 0.87 | \n",
+ " 2.11 | \n",
+ " 570 | \n",
+ "
\n",
+ " \n",
+ " | 162 | \n",
+ " 3.0 | \n",
+ " 12.96 | \n",
+ " 3.45 | \n",
+ " 2.35 | \n",
+ " 18.5 | \n",
+ " 106 | \n",
+ " 1.39 | \n",
+ " 0.70 | \n",
+ " 0.40 | \n",
+ " 0.94 | \n",
+ " 5.280000 | \n",
+ " 0.68 | \n",
+ " 1.75 | \n",
+ " 675 | \n",
+ "
\n",
+ " \n",
+ " | 163 | \n",
+ " 3.0 | \n",
+ " 13.78 | \n",
+ " 2.76 | \n",
+ " 2.30 | \n",
+ " 22.0 | \n",
+ " 90 | \n",
+ " 1.35 | \n",
+ " 0.68 | \n",
+ " 0.41 | \n",
+ " 1.03 | \n",
+ " 9.580000 | \n",
+ " 0.70 | \n",
+ " 1.68 | \n",
+ " 615 | \n",
+ "
\n",
+ " \n",
+ " | 164 | \n",
+ " 3.0 | \n",
+ " 13.73 | \n",
+ " 4.36 | \n",
+ " 2.26 | \n",
+ " 22.5 | \n",
+ " 88 | \n",
+ " 1.28 | \n",
+ " 0.47 | \n",
+ " 0.52 | \n",
+ " 1.15 | \n",
+ " 6.620000 | \n",
+ " 0.78 | \n",
+ " 1.75 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " | 165 | \n",
+ " 3.0 | \n",
+ " 13.45 | \n",
+ " 3.70 | \n",
+ " 2.60 | \n",
+ " 23.0 | \n",
+ " 111 | \n",
+ " 1.70 | \n",
+ " 0.92 | \n",
+ " 0.43 | \n",
+ " 1.46 | \n",
+ " 10.680000 | \n",
+ " 0.85 | \n",
+ " 1.56 | \n",
+ " 695 | \n",
+ "
\n",
+ " \n",
+ " | 166 | \n",
+ " 3.0 | \n",
+ " 12.82 | \n",
+ " 3.37 | \n",
+ " 2.30 | \n",
+ " 19.5 | \n",
+ " 88 | \n",
+ " 1.48 | \n",
+ " 0.66 | \n",
+ " 0.40 | \n",
+ " 0.97 | \n",
+ " 10.260000 | \n",
+ " 0.72 | \n",
+ " 1.75 | \n",
+ " 685 | \n",
+ "
\n",
+ " \n",
+ " | 167 | \n",
+ " 3.0 | \n",
+ " 13.58 | \n",
+ " 2.58 | \n",
+ " 2.69 | \n",
+ " 24.5 | \n",
+ " 105 | \n",
+ " 1.55 | \n",
+ " 0.84 | \n",
+ " 0.39 | \n",
+ " 1.54 | \n",
+ " 8.660000 | \n",
+ " 0.74 | \n",
+ " 1.80 | \n",
+ " 750 | \n",
+ "
\n",
+ " \n",
+ " | 168 | \n",
+ " 3.0 | \n",
+ " 13.40 | \n",
+ " 4.60 | \n",
+ " 2.86 | \n",
+ " 25.0 | \n",
+ " 112 | \n",
+ " 1.98 | \n",
+ " 0.96 | \n",
+ " 0.27 | \n",
+ " 1.11 | \n",
+ " 8.500000 | \n",
+ " 0.67 | \n",
+ " 1.92 | \n",
+ " 630 | \n",
+ "
\n",
+ " \n",
+ " | 169 | \n",
+ " 3.0 | \n",
+ " 12.20 | \n",
+ " 3.03 | \n",
+ " 2.32 | \n",
+ " 19.0 | \n",
+ " 96 | \n",
+ " 1.25 | \n",
+ " 0.49 | \n",
+ " 0.40 | \n",
+ " 0.73 | \n",
+ " 5.500000 | \n",
+ " 0.66 | \n",
+ " 1.83 | \n",
+ " 510 | \n",
+ "
\n",
+ " \n",
+ " | 170 | \n",
+ " 3.0 | \n",
+ " 12.77 | \n",
+ " 2.39 | \n",
+ " 2.28 | \n",
+ " 19.5 | \n",
+ " 86 | \n",
+ " 1.39 | \n",
+ " 0.51 | \n",
+ " 0.48 | \n",
+ " 0.64 | \n",
+ " 9.899999 | \n",
+ " 0.57 | \n",
+ " 1.63 | \n",
+ " 470 | \n",
+ "
\n",
+ " \n",
+ " | 171 | \n",
+ " 3.0 | \n",
+ " 14.16 | \n",
+ " 2.51 | \n",
+ " 2.48 | \n",
+ " 20.0 | \n",
+ " 91 | \n",
+ " 1.68 | \n",
+ " 0.70 | \n",
+ " 0.44 | \n",
+ " 1.24 | \n",
+ " 9.700000 | \n",
+ " 0.62 | \n",
+ " 1.71 | \n",
+ " 660 | \n",
+ "
\n",
+ " \n",
+ " | 172 | \n",
+ " 3.0 | \n",
+ " 13.71 | \n",
+ " 5.65 | \n",
+ " 2.45 | \n",
+ " 20.5 | \n",
+ " 95 | \n",
+ " 1.68 | \n",
+ " 0.61 | \n",
+ " 0.52 | \n",
+ " 1.06 | \n",
+ " 7.700000 | \n",
+ " 0.64 | \n",
+ " 1.74 | \n",
+ " 740 | \n",
+ "
\n",
+ " \n",
+ " | 173 | \n",
+ " 3.0 | \n",
+ " 13.40 | \n",
+ " 3.91 | \n",
+ " 2.48 | \n",
+ " 23.0 | \n",
+ " 102 | \n",
+ " 1.80 | \n",
+ " 0.75 | \n",
+ " 0.43 | \n",
+ " 1.41 | \n",
+ " 7.300000 | \n",
+ " 0.70 | \n",
+ " 1.56 | \n",
+ " 750 | \n",
+ "
\n",
+ " \n",
+ " | 174 | \n",
+ " 3.0 | \n",
+ " 13.27 | \n",
+ " 4.28 | \n",
+ " 2.26 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.59 | \n",
+ " 0.69 | \n",
+ " 0.43 | \n",
+ " 1.35 | \n",
+ " 10.200000 | \n",
+ " 0.59 | \n",
+ " 1.56 | \n",
+ " 835 | \n",
+ "
\n",
+ " \n",
+ " | 175 | \n",
+ " 3.0 | \n",
+ " 13.17 | \n",
+ " 2.59 | \n",
+ " 2.37 | \n",
+ " 20.0 | \n",
+ " 120 | \n",
+ " 1.65 | \n",
+ " 0.68 | \n",
+ " 0.53 | \n",
+ " 1.46 | \n",
+ " 9.300000 | \n",
+ " 0.60 | \n",
+ " 1.62 | \n",
+ " 840 | \n",
+ "
\n",
+ " \n",
+ " | 176 | \n",
+ " 3.0 | \n",
+ " 14.13 | \n",
+ " 4.10 | \n",
+ " 2.74 | \n",
+ " 24.5 | \n",
+ " 96 | \n",
+ " 2.05 | \n",
+ " 0.76 | \n",
+ " 0.56 | \n",
+ " 1.35 | \n",
+ " 9.200000 | \n",
+ " 0.61 | \n",
+ " 1.60 | \n",
+ " 560 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
174 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 \\\n",
+ "3 1.0 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.320000 \n",
+ "4 1.0 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.750000 \n",
+ "5 1.0 14.39 1.87 2.45 14.6 96 2.50 2.52 0.30 1.98 5.250000 \n",
+ "6 1.0 14.06 2.15 2.61 17.6 121 2.60 2.51 0.31 1.25 5.050000 \n",
+ "7 1.0 14.83 1.64 2.17 14.0 97 2.80 2.98 0.29 1.98 5.200000 \n",
+ "8 1.0 13.86 1.35 2.27 16.0 98 2.98 3.15 0.22 1.85 7.220000 \n",
+ "9 1.0 14.10 2.16 2.30 18.0 105 2.95 3.32 0.22 2.38 5.750000 \n",
+ "10 1.0 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.000000 \n",
+ "11 1.0 13.75 1.73 2.41 16.0 89 2.60 2.76 0.29 1.81 5.600000 \n",
+ "12 1.0 14.75 1.73 2.39 11.4 91 3.10 3.69 0.43 2.81 5.400000 \n",
+ "13 1.0 14.38 1.87 2.38 12.0 102 3.30 3.64 0.29 2.96 7.500000 \n",
+ "14 1.0 13.63 1.81 2.70 17.2 112 2.85 2.91 0.30 1.46 7.300000 \n",
+ "15 1.0 14.30 1.92 2.72 20.0 120 2.80 3.14 0.33 1.97 6.200000 \n",
+ "16 1.0 13.83 1.57 2.62 20.0 115 2.95 3.40 0.40 1.72 6.600000 \n",
+ "17 1.0 14.19 1.59 2.48 16.5 108 3.30 3.93 0.32 1.86 8.700000 \n",
+ "18 1.0 13.64 3.10 2.56 15.2 116 2.70 3.03 0.17 1.66 5.100000 \n",
+ "19 1.0 14.06 1.63 2.28 16.0 126 3.00 3.17 0.24 2.10 5.650000 \n",
+ "20 1.0 12.93 3.80 2.65 18.6 102 2.41 2.41 0.25 1.98 4.500000 \n",
+ "21 1.0 13.71 1.86 2.36 16.6 101 2.61 2.88 0.27 1.69 3.800000 \n",
+ "22 1.0 12.85 1.60 2.52 17.8 95 2.48 2.37 0.26 1.46 3.930000 \n",
+ "23 1.0 13.50 1.81 2.61 20.0 96 2.53 2.61 0.28 1.66 3.520000 \n",
+ "24 1.0 13.05 2.05 3.22 25.0 124 2.63 2.68 0.47 1.92 3.580000 \n",
+ "25 1.0 13.39 1.77 2.62 16.1 93 2.85 2.94 0.34 1.45 4.800000 \n",
+ "26 1.0 13.30 1.72 2.14 17.0 94 2.40 2.19 0.27 1.35 3.950000 \n",
+ "27 1.0 13.87 1.90 2.80 19.4 107 2.95 2.97 0.37 1.76 4.500000 \n",
+ "28 1.0 14.02 1.68 2.21 16.0 96 2.65 2.33 0.26 1.98 4.700000 \n",
+ "29 1.0 13.73 1.50 2.70 22.5 101 3.00 3.25 0.29 2.38 5.700000 \n",
+ "30 1.0 13.58 1.66 2.36 19.1 106 2.86 3.19 0.22 1.95 6.900000 \n",
+ "31 1.0 13.68 1.83 2.36 17.2 104 2.42 2.69 0.42 1.97 3.840000 \n",
+ "32 1.0 13.76 1.53 2.70 19.5 132 2.95 2.74 0.50 1.35 5.400000 \n",
+ ".. ... ... ... ... ... ... ... ... ... ... ... \n",
+ "147 3.0 13.32 3.24 2.38 21.5 92 1.93 0.76 0.45 1.25 8.420000 \n",
+ "148 3.0 13.08 3.90 2.36 21.5 113 1.41 1.39 0.34 1.14 9.400000 \n",
+ "149 3.0 13.50 3.12 2.62 24.0 123 1.40 1.57 0.22 1.25 8.600000 \n",
+ "150 3.0 12.79 2.67 2.48 22.0 112 1.48 1.36 0.24 1.26 10.800000 \n",
+ "151 3.0 13.11 1.90 2.75 25.5 116 2.20 1.28 0.26 1.56 7.100000 \n",
+ "152 3.0 13.23 3.30 2.28 18.5 98 1.80 0.83 0.61 1.87 10.520000 \n",
+ "153 3.0 12.58 1.29 2.10 20.0 103 1.48 0.58 0.53 1.40 7.600000 \n",
+ "154 3.0 13.17 5.19 2.32 22.0 93 1.74 0.63 0.61 1.55 7.900000 \n",
+ "155 3.0 13.84 4.12 2.38 19.5 89 1.80 0.83 0.48 1.56 9.010000 \n",
+ "156 3.0 12.45 3.03 2.64 27.0 97 1.90 0.58 0.63 1.14 7.500000 \n",
+ "157 3.0 14.34 1.68 2.70 25.0 98 2.80 1.31 0.53 2.70 13.000000 \n",
+ "158 3.0 13.48 1.67 2.64 22.5 89 2.60 1.10 0.52 2.29 11.750000 \n",
+ "159 3.0 12.36 3.83 2.38 21.0 88 2.30 0.92 0.50 1.04 7.650000 \n",
+ "160 3.0 13.69 3.26 2.54 20.0 107 1.83 0.56 0.50 0.80 5.880000 \n",
+ "161 3.0 12.85 3.27 2.58 22.0 106 1.65 0.60 0.60 0.96 5.580000 \n",
+ "162 3.0 12.96 3.45 2.35 18.5 106 1.39 0.70 0.40 0.94 5.280000 \n",
+ "163 3.0 13.78 2.76 2.30 22.0 90 1.35 0.68 0.41 1.03 9.580000 \n",
+ "164 3.0 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.620000 \n",
+ "165 3.0 13.45 3.70 2.60 23.0 111 1.70 0.92 0.43 1.46 10.680000 \n",
+ "166 3.0 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 10.260000 \n",
+ "167 3.0 13.58 2.58 2.69 24.5 105 1.55 0.84 0.39 1.54 8.660000 \n",
+ "168 3.0 13.40 4.60 2.86 25.0 112 1.98 0.96 0.27 1.11 8.500000 \n",
+ "169 3.0 12.20 3.03 2.32 19.0 96 1.25 0.49 0.40 0.73 5.500000 \n",
+ "170 3.0 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 \n",
+ "171 3.0 14.16 2.51 2.48 20.0 91 1.68 0.70 0.44 1.24 9.700000 \n",
+ "172 3.0 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.700000 \n",
+ "173 3.0 13.40 3.91 2.48 23.0 102 1.80 0.75 0.43 1.41 7.300000 \n",
+ "174 3.0 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 \n",
+ "175 3.0 13.17 2.59 2.37 20.0 120 1.65 0.68 0.53 1.46 9.300000 \n",
+ "176 3.0 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 \n",
+ "\n",
+ " 1.04 3.92 1065 \n",
+ "3 1.04 2.93 735 \n",
+ "4 1.05 2.85 1450 \n",
+ "5 1.02 3.58 1290 \n",
+ "6 1.06 3.58 1295 \n",
+ "7 1.08 2.85 1045 \n",
+ "8 1.01 3.55 1045 \n",
+ "9 1.25 3.17 1510 \n",
+ "10 1.17 2.82 1280 \n",
+ "11 1.15 2.90 1320 \n",
+ "12 1.25 2.73 1150 \n",
+ "13 1.20 3.00 1547 \n",
+ "14 1.28 2.88 1310 \n",
+ "15 1.07 2.65 1280 \n",
+ "16 1.13 2.57 1130 \n",
+ "17 1.23 2.82 1680 \n",
+ "18 0.96 3.36 845 \n",
+ "19 1.09 3.71 780 \n",
+ "20 1.03 3.52 770 \n",
+ "21 1.11 4.00 1035 \n",
+ "22 1.09 3.63 1015 \n",
+ "23 1.12 3.82 845 \n",
+ "24 1.13 3.20 830 \n",
+ "25 0.92 3.22 1195 \n",
+ "26 1.02 2.77 1285 \n",
+ "27 1.25 3.40 915 \n",
+ "28 1.04 3.59 1035 \n",
+ "29 1.19 2.71 1285 \n",
+ "30 1.09 2.88 1515 \n",
+ "31 1.23 2.87 990 \n",
+ "32 1.25 3.00 1235 \n",
+ ".. ... ... ... \n",
+ "147 0.55 1.62 650 \n",
+ "148 0.57 1.33 550 \n",
+ "149 0.59 1.30 500 \n",
+ "150 0.48 1.47 480 \n",
+ "151 0.61 1.33 425 \n",
+ "152 0.56 1.51 675 \n",
+ "153 0.58 1.55 640 \n",
+ "154 0.60 1.48 725 \n",
+ "155 0.57 1.64 480 \n",
+ "156 0.67 1.73 880 \n",
+ "157 0.57 1.96 660 \n",
+ "158 0.57 1.78 620 \n",
+ "159 0.56 1.58 520 \n",
+ "160 0.96 1.82 680 \n",
+ "161 0.87 2.11 570 \n",
+ "162 0.68 1.75 675 \n",
+ "163 0.70 1.68 615 \n",
+ "164 0.78 1.75 520 \n",
+ "165 0.85 1.56 695 \n",
+ "166 0.72 1.75 685 \n",
+ "167 0.74 1.80 750 \n",
+ "168 0.67 1.92 630 \n",
+ "169 0.66 1.83 510 \n",
+ "170 0.57 1.63 470 \n",
+ "171 0.62 1.71 660 \n",
+ "172 0.64 1.74 740 \n",
+ "173 0.70 1.56 750 \n",
+ "174 0.59 1.56 835 \n",
+ "175 0.60 1.62 840 \n",
+ "176 0.61 1.60 560 \n",
+ "\n",
+ "[174 rows x 14 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 17
+ }
+ ]
+ }
+ ]
+}
\ No newline at end of file