diff --git a/feature_crosses.ipynb b/feature_crosses.ipynb new file mode 100644 index 0000000..24cec59 --- /dev/null +++ b/feature_crosses.ipynb @@ -0,0 +1,1581 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "feature_crosses.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "ZTDHHM61NPTw", + "0i7vGo9PTaZl" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Feature Crosses" + ] + }, + { + "metadata": { + "id": "F7dke6skIK-k", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Improve a linear regression model with the addition of additional synthetic features (this is a continuation of the previous exercise)\n", + " * Use an input function to convert pandas `DataFrame` objects to `Tensors` and invoke the input function in `fit()` and `predict()` operations\n", + " * Use the FTRL optimization algorithm for model training\n", + " * Create new synthetic features through one-hot encoding, binning, and feature crosses" + ] + }, + { + "metadata": { + "id": "NS_fcQRd8B97", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "4IdzD8IdIK-l", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "First, as we've done in previous exercises, let's define the input and create the data-loading code." + ] + }, + { + "metadata": { + "id": "CsfdiLiDIK-n", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "10rhoflKIK-s", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ufplEkjN8KUp", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1160 + }, + "outputId": "c4825a77-730d-4f80-d865-a88091aeb0c0" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.5 28.6 2656.8 544.0 \n", + "std 2.1 2.0 12.6 2169.7 426.4 \n", + "min 32.5 -124.3 2.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1463.0 296.0 \n", + "50% 34.2 -118.5 29.0 2139.5 437.0 \n", + "75% 37.7 -118.0 37.0 3166.0 656.0 \n", + "max 42.0 -114.3 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1437.3 504.9 3.9 2.0 \n", + "std 1155.2 388.5 1.9 1.2 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 790.8 281.0 2.6 1.5 \n", + "50% 1172.0 411.0 3.5 1.9 \n", + "75% 1742.2 609.0 4.8 2.3 \n", + "max 35682.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.528.62656.8544.01437.3504.93.92.0
std2.12.012.62169.7426.41155.2388.51.91.2
min32.5-124.32.02.01.03.01.00.50.0
25%33.9-121.818.01463.0296.0790.8281.02.61.5
50%34.2-118.529.02139.5437.01172.0411.03.51.9
75%37.7-118.037.03166.0656.01742.2609.04.82.3
max42.0-114.352.032627.06445.035682.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.7 -119.6 28.6 2612.2 528.4 \n", + "std 2.1 2.0 12.6 2204.2 409.4 \n", + "min 32.6 -124.3 1.0 18.0 3.0 \n", + "25% 33.9 -121.8 18.0 1460.0 297.0 \n", + "50% 34.3 -118.6 29.0 2103.0 429.0 \n", + "75% 37.7 -118.0 37.0 3114.0 632.0 \n", + "max 41.8 -114.6 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1411.0 492.4 3.9 2.0 \n", + "std 1129.9 374.7 1.9 1.0 \n", + "min 8.0 3.0 0.5 0.1 \n", + "25% 788.0 282.0 2.6 1.5 \n", + "50% 1155.0 405.0 3.5 1.9 \n", + "75% 1683.2 595.0 4.8 2.3 \n", + "max 16122.0 5189.0 15.0 34.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.7-119.628.62612.2528.41411.0492.43.92.0
std2.12.012.62204.2409.41129.9374.71.91.0
min32.6-124.31.018.03.08.03.00.50.1
25%33.9-121.818.01460.0297.0788.0282.02.61.5
50%34.3-118.629.02103.0429.01155.0405.03.51.9
75%37.7-118.037.03114.0632.01683.2595.04.82.3
max41.8-114.652.037937.05471.016122.05189.015.034.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 208.2\n", + "std 116.9\n", + "min 15.0\n", + "25% 119.4\n", + "50% 180.1\n", + "75% 266.1\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean208.2
std116.9
min15.0
25%119.4
50%180.1
75%266.1
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 205.2\n", + "std 113.6\n", + "min 17.5\n", + "25% 119.4\n", + "50% 180.9\n", + "75% 262.4\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean205.2
std113.6
min17.5
25%119.4
50%180.9
75%262.4
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "oJlrB4rJ_2Ma", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "NBxoAfp2AcB6", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "hweDyy31LBsV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## FTRL Optimization Algorithm\n", + "\n", + "High dimensional linear models benefit from using a variant of gradient-based optimization called FTRL. This algorithm has the benefit of scaling the learning rate differently for different coefficients, which can be useful if some features rarely take non-zero values (it also is well suited to support L1 regularization). We can apply FTRL using the [FtrlOptimizer](https://www.tensorflow.org/api_docs/python/tf/train/FtrlOptimizer)." + ] + }, + { + "metadata": { + "id": "S0SBf1X1IK_O", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " feature_columns,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " feature_columns: A `set` specifying the input feature columns to use.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.FtrlOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "1Cdr02tLIK_Q", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "outputId": "04a191de-a23b-4281-971d-4d3c40e0e225" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 175.11\n", + " period 01 : 353.61\n", + " period 02 : 378.61\n", + " period 03 : 319.12\n", + " period 04 : 255.44\n", + " period 05 : 249.45\n", + " period 06 : 233.74\n", + " period 07 : 222.27\n", + " period 08 : 213.10\n", + " period 09 : 192.20\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VNXWx/HvzKRMKumNXhSQFkqk\nSUkQEpp0jAj4KmJFUVHsXL16rdeGiB1QvAqKiKAgioACChKCGEoAaemk9zoz+/0jMIpACJDJmUnW\n53l8zJRzzm9mJ2Rln3X26JRSCiGEEEIIB6LXOoAQQgghxMWSAkYIIYQQDkcKGCGEEEI4HClghBBC\nCOFwpIARQgghhMORAkYIIYQQDsdJ6wBC2LP27dvTokULDAYDAGazmYiICJ544gnc3d0veb+ff/45\nkydPPuv+lStX8uijj/LOO+8QGRlpvb+8vJx+/foxbNgwXnjhhUs+bm0lJSXx3HPPcezYMQDc3NyY\nNWsW1157rc2PfTEWLlxIUlLSWe/Jjh07mDFjBs2aNTtrm++++66+4l2WlJQUhgwZQuvWrQFQShEQ\nEMDjjz/OVVdddVH7euWVVwgLC+OGG26o9TZff/01K1asYOnSpRd1LCHqixQwQlzA0qVLCQkJAaCy\nspL777+fd999l/vvv/+S9peVlcUHH3xwzgIGIDQ0lG+++eaMAmbTpk14e3tf0vEuxYMPPsiYMWN4\n5513ANizZw833XQT69atIzQ0tN5yXI7Q0FCHKVbOx2AwnPEa1q5dy91338369etxcXGp9X7mzJlj\ni3hCaEpOIQlxEVxcXBgwYAAHDhwAoKKignnz5hEdHc3w4cN54YUXMJvNACQmJhIbG0tMTAxjxoxh\ny5YtAMTGxpKWlkZMTAyVlZVnHaNHjx7s2LGDsrIy631r166lf//+1tuVlZU8++yzREdHExUVZS00\nAHbv3s348eOJiYlhxIgR/PLLL0D1X/TXXHMNH3/8MaNHj2bAgAGsXbv2nK/z0KFDdOvWzXq7W7du\nrF+/3lrILViwgEGDBjF27Fjee+89oqKiAHjkkUdYuHChdbu/375Qrueee46pU6cCsGvXLiZMmMDQ\noUOZPHkyycnJQPVM1H333UdkZCRTp04lIyPjAiN2bitXrmTWrFncdNNNvPTSS+zYsYPY2Fhmz55t\n/WW/bt06Ro0aRUxMDNOnTycpKQmAN998kyeeeIKJEyeyZMmSM/Y7e/ZsFi1aZL194MABrrnmGiwW\nC6+99hrR0dFER0czffp0Tp48edG5R4wYQXl5OUePHgVg+fLlxMTEEBUVxQMPPEB5eTlQ/b4///zz\njB49mnXr1p0xDuf7vrRYLPz73/9m8ODBTJw4kcTEROtxf/vtN8aNG8eIESMYPnw469atu+jsQtQ5\nJYQ4ryuvvFKlp6dbb+fn56sbb7xRLVy4UCml1LvvvqtmzpypqqqqVFlZmZowYYJatWqVMpvNavjw\n4WrNmjVKKaX++OMPFRERoYqKitT27dvVtddee87jffnll+rhhx9WDz74oHXboqIiNWTIEPXFF1+o\nhx9+WCml1IIFC9RNN92kKioqVElJiRo7dqzauHGjUkqpUaNGqW+++UYppdRXX31lPVZycrK66qqr\n1NKlS5VSSq1du1YNHTr0nDnuueceFRkZqT766CP1559/nvHYwYMHVa9evVRmZqaqqqpSd955p4qM\njFRKKfXwww+rt956y/rcv9+uKVenTp3UypUrra83IiJCbd26VSml1Jo1a9S4ceOUUkp98skn6sYb\nb1RVVVUqNzdXRUZGWt+Tv6vpPT79PoeHh6tjx45Zn9+lSxf1yy+/KKWUSk1NVT179lTHjx9XSin1\n4YcfqptuukkppdT8+fPVNddco3Jycs7a77fffqtuvPFG6+033nhDPfPMM+rQoUNq2LBhqrKyUiml\n1Mcff6y++uqr8+Y7/b507NjxrPsjIiLUkSNH1M6dO1Xfvn1VRkaGUkqpJ598Ur3wwgtKqer3ffTo\n0aq8vNx6+6233qrx+3Lz5s1q2LBhqri4WJWVlamJEyeqqVOnKqWUGj9+vNqxY4dSSqljx46pBx54\noMbsQtQHmYER4gKmTZtGTEwMQ4YMYciQIfTp04eZM2cCsHnzZiZPnoyTkxNGo5HRo0ezbds2UlJS\nyM7OZuTIkQB06dKFsLAwEhISanXMkSNH8s033wCwYcMGIiMj0ev/+nHdtGkTU6ZMwcXFBXd3d8aM\nGcP3338PwKpVqxg+fDgAPXv2tM5eAJhMJsaPHw9Ap06dSEtLO+fxX375ZW688UbWrFnDqFGjiIqK\n4rPPPgOqZ0ciIiIIDAzEycmJUaNG1eo11ZSrqqqKoUOHWvcfHBxsnXEaNWoUSUlJpKWlERcXx9Ch\nQ3FycsLX1/eM02z/lJ6eTkxMzBn//b1XplWrVrRq1cp622g00rdvXwC2bdtG7969admyJQCTJk1i\nx44dmEwmoHpGys/P76xjDh48mP3795Ofnw/ADz/8QExMDN7e3uTm5rJmzRoKCgqYNm0aY8eOrdX7\ndppSiuXLlxMcHEyrVq3YuHEjI0aMIDg4GIAbbrjB+j0A0LdvX1xdXc/YR03flzt37mTQoEF4eHhg\nNBqtYwXg7+/PqlWrOHLkCK1ateKVV165qOxC2IL0wAhxAad7YHJzc62nP5ycqn90cnNzadKkifW5\nTZo0IScnh9zcXLy8vNDpdNbHTv8SCwgIuOAx+/fvzxNPPEF+fj7ffvstd911l7WhFqCoqIjnn3+e\nV199Fag+pdS1a1cA1qxZw8cff0xJSQkWiwX1t487MxgM1uZjvV6PxWI55/FdXV2ZMWMGM2bMoLCw\nkO+++47nnnuOZs2aUVBQcEY/jr+//wVfT21yeXp6AlBYWEhycjIxMTHWx11cXMjNzaWgoAAvLy/r\n/d7e3pSUlJzzeBfqgfn7uP3zdl5e3hmv0cvLC6UUeXl559z2NHd3d/r168fmzZvp2bMnhYWF9OzZ\nE51Ox5tvvsmiRYt45plniIiI4Omnn75gP5HZbLa+D0op2rVrx8KFC9Hr9RQVFfHDDz+wdetW6+NV\nVVXnfX1Ajd+XBQUFBAUFnXH/ac899xxvv/02N998M0ajkQceeOCM8RFCC1LACFFLfn5+TJs2jZdf\nfpm3334bgICAAOtf2wD5+fkEBATg7+9PQUEBSinrL4v8/Pxa/7J3dnYmMjKSVatWceLECbp3735G\nARMUFMQtt9xy1gzEyZMneeKJJ/jiiy/o2LEjx48fJzo6+qJeZ25uLgcOHLDOgHh7ezN58mS2bNnC\noUOH8PLyoqio6Iznn/bPoqigoOCicwUFBdGmTRtWrlx51mPe3t7nPXZd8vf3Z/fu3dbbBQUF6PV6\nfH19L7htdHQ0P/zwA3l5eURHR1vHv0+fPvTp04fS0lJefPFF/vvf/15wJuOfTbx/FxQUxLhx43j4\n4Ycv6nWd7/uypvc2ICCAJ598kieffJKtW7dyzz33MGDAADw8PGp9bCHqmpxCEuIi3HzzzezevZvf\nfvsNqD5lsGLFCsxmM6WlpXz99dcMGjSIZs2aERISYm2SjY+PJzs7m65du+Lk5ERpaan1dMT5jBw5\nkvfff/+cly4PGTKEL774ArPZjFKKhQsX8vPPP5Obm4u7uztt2rTBZDKxfPlygPPOUpxLeXk59957\nr7W5E+DEiRPs2bOHXr160b17d+Li4sjNzcVkMrFq1Srr8wIDA63Nn8nJycTHxwNcVK5u3bqRlZXF\nnj17rPt56KGHUEoRHh7Oxo0bMZvN5Obm8vPPP9f6dV2M/v37ExcXZz3NtWzZMvr372+deatJZGQk\nu3fvZsOGDdbTMFu3buXpp5/GYrHg7u5Ohw4dzpgFuRRRUVF8//331kJjw4YNvPfeezVuU9P3Zffu\n3dm6dStlZWWUlZVZC6eqqiqmTZtGZmYmUH3q0cnJ6YxTmkJoQWZghLgInp6e3Hbbbbz44ousWLGC\nadOmkZyczMiRI9HpdMTExDB8+HB0Oh2vvvoq//rXv1iwYAFubm688cYbuLu70759e5o0aUL//v35\n6quvCAsLO+exrr76anQ6HSNGjDjrsSlTppCSksLIkSNRStG5c2duuukm3N3dGThwINHR0fj7+/PI\nI48QHx/PtGnTmD9/fq1eY1hYGG+//Tbz58/n2WefRSmFp6cnjz76qPXKpOuvv55x48bh6+vLsGHD\nOHz4MACTJ09m1qxZDBs2jKuuuso6y9KhQ4da5zIajcyfP59nnnmGkpISnJ2dmT17NjqdjsmTJxMX\nF8e1115LWFgY11577RmzBn93ugfmn1566aULvgchISE8++yz3HXXXVRVVdGsWTOeeeaZWr1/np6e\ndOrUiYMHDxIeHg5AREQE3377LdHR0bi4uODn58dzzz0HwNy5c61XEl2MTp06cccddzBt2jQsFgv+\n/v48/fTTNW5T0/dlZGQkmzdvJiYmhoCAAAYNGkRcXBzOzs5MnDiR//u//wOqZ9meeOIJ3NzcLiqv\nEHVNp/5+IloIIS5SXFwcc+fOZePGjVpHEUI0IjIHKIQQQgiHIwWMEEIIIRyOnEISQgghhMORGRgh\nhBBCOBwpYIQQQgjhcBzyMuqsrHNfNlkXfH3dycsrtdn+xaWTsbFPMi72S8bGfsnY1E5goNd5H5MZ\nmH9wcjJoHUGch4yNfZJxsV8yNvZLxubySQEjhBBCCIcjBYwQQgghHI4UMEIIIYRwOFLACCGEEMLh\nSAEjhBBCCIcjBYwQQgghHI4UMEIIIYRwOFLACCGEEA3M5s0/1up5b7zxCmlpqed9/JFHHqirSHVO\nChghhBCiAUlPT2PDhvW1eu7s2XMIC2t63sdfeOHVuopV5xzyowSEEEIIcW6vvvoiBw7sY8CACIYN\nG056ehqvv76Q55//N1lZmZSVlXHLLbfRv/8AZs26jQcemMumTT9SUlJMUtIJUlNTuPfeOfTt25+R\nI4fw7bc/MmvWbURE9CY+Po78/HxefPE1AgIC+Pe/nyQjI50uXbqyceMGvvpqbb29TilghBBCCBv5\nfOOf7EzMPOt+g0GH2awuaZ8RHYKYHNXuvI/fcMM0Vq78nNat25KUdJyFCz8gLy+Xq6/uw/Dho0hN\nTeHJJx+hf/8BZ2yXmXmS//53Ptu3/8LXX39J3779z3jcw8ODN954m7fffpOff95IWFgzKisreO+9\nJWzbtoXPP//skl7PpZICRtg9pRQ/JR6kt2qLm85Z6zhCCOEwOnbsBICXlzcHDuxj9eqV6HR6CgsL\nznpu167hAAQFBVFcXHzW4926dbc+XlBQwIkTx+jSpRsAffv2x2Co3893kgJG2LXMgkJe2/YZhcYj\nrDzmx3+HPYiLk3zbCiEcw+SoduecLQkM9CIrq8jmx3d2rv6j74cfvqOwsJC33vqAwsJCbr112lnP\n/XsBotTZs0P/fFwphV5ffZ9Op0On09V1/BpJE6+wW2v37uLpX1+h0HgELHrMxlwWb/9B61hCCGHX\n9Ho9ZrP5jPvy8/MJDQ1Dr9fz008bqaqquuzjNG3ajIMH9wPw22/bzzqmrdnsT9mysjIeeeQRcnJy\nqKio4K677uKrr74iLy8PqH4zw8PDuf322xk9ejSdO3cGwNfXl/nz59sqlnAARWVlvLZ1OScN+1HO\nOtq7RDCu00BejHudPSXbSMntTTM/P61jCiGEXWrZsjUHDyYSGhqGj48PAIMHR/HIIw+wf/9eRo68\njqCgIBYvfv+yjtOv3wC+/XY1d945g+7de+Lt3aQu4teaTp1rnqgOrF27ltTUVGbOnElqaiq33HIL\n69f/dVnXo48+yg033ICfnx/33nsvK1eurPW+bTntVl/TeuLcth3Zz7LDX2BxKcFQ6cXUDpO5ulV7\nAJbEr2Vn/mb8KtvzTMwMjZOK0+Rnxn7J2NivhjA2hYUFxMfHMXjwELKyMpk9+04+/fTLOj1GYKDX\neR+z2QzMiBEjrF+np6cTHBxsvX306FGKioro2rUrKSkptoogHEi5qZIF277kqGk3OENzunJv5CQ8\nXF2tz5k9ZDw3LdtFjvNBfj50gIFXdtQwsRBCNG7u7h5s3LiBTz9dilIW7rmnfhe9s3k3ZGxsLBkZ\nGbzzzjvW+z7++GOmTp1qvZ2dnc29995LZmYmU6ZM4brrrrN1LGFH9qQdYVHCMkzOBeir3BnXchxD\nOnY763kuTs6MbzuaL5I+ZcWfX9OnzRXS0CuEEBpxcnLi3/9+XrPj2+wU0t8dOHCAuXPnsnr1aqqq\nqpgwYQJr1qwBoLi4mPXr13PddddRVFTEpEmT+OyzzwgKCjrv/kwmM05O9Xu5lqh7VWYTr25Yzq68\nbaBTBJo78PSoWwjwPv+UIcDdn79MljpKb+9o5gwfW09phRBC2BOb/fm6d+9e/P39CQ0NpWPHjpjN\nZnJzc0lMTKRr167W53l6ejJhwgQA/Pz86Ny5M0ePHq2xgMnLK7VV7AZxXtIR/JmTwtvxn1BuyIUq\nI0OCRjKu+9WoivP3OJ0em1u7T+D5uFfZnrOJPYd6EubrU8/pxd/Jz4z9krGxXzI2tVNTD4zNLqOO\ni4tj0aJFQPUpotLSUnx9fUlISKBDhw7W523fvp3nn6+egiotLSUxMZHWrVvbKpbQmEVZWLp7La/t\nXkC5IRf30lY80us+xvfoXes1BJr5BNLFozc650re2VH75m8hhBANh80KmNjYWHJzc5kyZQq33XYb\n8+bNQ6/Xk5WVhb+/v/V5vXr1oqCggOuvv57p06dz2223ndHwKxqO1MKTPLbxVbbnbUaZnejpMpwX\nR9xJ84CLvyT6loiRGKo8yXZOZOvhRBukFUIIYc/qpQemrsll1I7Foix8fWAzG9J+AL0Z56Jm3NHz\nejo0u7hC9Z9js/Hwbr5M/gyncn/+O+xBnKUvShPyM2O/ZGzslz2MzcSJo/n44+V8+eXndO/eg86d\n/2rvKC0tZfr061mxYs15t9+8+UcGDx7C2rVr8PDwZNCgyDrPqMll1EIAZJfl8uaOT8i2pKAszrRX\nA7ljxDBcnS+/2Ii6ojsbj/9CnvEEH/32I7f2G1YHiYUQonGZNu3/Lnqb9PQ0NmxYz+DBQxgxYnTd\nh6oFKWCETSil2HD0F74+9i1Kb0JXGMy0qybS58qWdXqc23tN4oVdr7K7aAsn83sT7FO/K0EKIYS9\nueWWG3nuuVcICQkhIyOdRx+dQ2BgEGVlZZSXl3P//Q9x1VWdrc//z3+eYvDgIYSHd+fxx+dSWVlp\n/WBHgO+/X8eKFcsxGPS0atWWhx9+nFdffZEDB/axePH7WCwWfHx8mDDhehYufIOEhD2YTGYmTJhM\nTMxIZs26jYiI3sTHx5Gfn8+LL75GSEjIZb9OKWBEncuvKGBh3KekVhxDWZwIK+vLPUNH0MTD9cIb\nX6TmvkF0cu/NvvJfWbhjJU9H31znxxBCiEu18s9v2J2ZcNb9Br0Os+XSOji6B3VhfLtR53184MBI\ntm37mQkTJrNly08MHBhJ27ZXMHDgYHbt2sn//vcR//nPy2dtt379Otq0acu9987hxx+/Z8OG6tXz\ny8rKeOWVN/Hy8uLuu2dy5Mif3HDDNFau/Jybb57Jhx++C8Dvv8dz9OgR3n57EWVlZdx0UywDBw4G\nwMPDgzfeeJu3336Tn3/eyOTJUy7ptf+dFDCiziil+CVlF8sPrcKsq0QVBnBdizFEd7/Spp9SOuPq\nUTz0YwJZTon88uch+rW70mbHEkIIezdwYCQLFrzOhAmT2br1J2bNup9ly5by2WdLqaqqwmg0nnO7\n48ePEh7eE4Du3Xta7/f29ubRR+cAcOLEMQoK8s+5fWLifsLDewDg5uZGq1ZtSE5OBqBbt+4ABAUF\nUVBQUCevUwoYUSeKKot5f/dyjpQcRFkMNCnswezI0YT4edj82K5OzoxuNZJVqctZfmgVV7eeg5NB\nGnqFENob327UOWdLbNnE26ZNW3Jysjh5MoOioiK2bNlMQEAQTz75DImJ+1mw4PVzbqcU6PXVf2xa\nTs0OVVVV8eqrL7Fkyaf4+wcwd+595z2uTqfj75cFmUxV1v0Z/vZvcl1dO2Szy6hF47Er4w+e3PoS\nR0oOYinyZYDxep4dN7leipfThrbvSRNzC0zGbJb+tqnejiuEEPaob99reO+9hQwYMIiCgnyaNm0G\nwE8/bcJkMp1zmxYtWpKYeACA+Pg4AEpLSzAYDPj7B3DyZAaJiQcwmUzo9XrMZvMZ23fo0Indu3ed\n2q6U1NQUmjVrYauXKAWMuHSlVaW8Hf8Ji/Z/QqWlEtfMzjzQ8w5uGBCOQV//31q395wEFj1xhT9x\nsqCw3o8vhBD2YtCgSOtVQjExI1m+/H/cf//ddOrUmZycHL79dvVZ28TEjGTfvgRmz76T5OQT6HQ6\nmjTxISKiN7feOp3Fi99nypRpzJ//Ki1btubgwUTmz3/Fun23buG0b9+Bu++eyf33380dd8zCzc3N\nZq9R1oH5B3u4Nt8R7MtOZFHCcspVCZbiJnR1ieLmqAiMLrY7K1mbsVmw7UsOVOwgqKoT/4q+yWZZ\nxF/kZ8Z+ydjYLxmb2tHkowREw1RuKmdJwucs/GMRZeZSdBntmdH+Vu6M6WvT4qW2br16FPoqD046\n7Wf7kT+1jiOEEMJGpIARtXYo7wj/2vYKO7PisJR60bwghmevm0qv9vbz0Q9GZ1dGtRyBTqdYlvgV\nZrNF60hCCCFsQAoYcUGV5kqWHVjFG7vfpchUgCWjLeNCpvHI+MH4eNb92i6XK7pDBN7mZlS5ZbH0\nt81axxFCCGEDUsCIGh0rOMG/f3mVLem/YCnzwC8jiieHTWVYr1Y2Xdvlct3WYzJY9Ows3ERWkZxn\nFkKIhkYKGHFOVRYTXx1ey393LSS3MhdTRksGu8fyVOwwwgLq7/LoS9XaP4T2xl7gXMHbv36ldRwh\nhBB1TAoYcZbkolSe2/46G5I3Yyk3YkzqzwPXTOH6yPY4GRznW2Zm79HoqzzI0O/jt6PS0CuEEA2J\n4/w2EjZntphZe/QHXtz5JpnlmZhONqebeRzP3jCS9i18tY530dycXRnZYjg6veLTA6ukoVcIIRoQ\nKWAEAOklJ3lx55t8e/wHLJXOcPRqZoRP5o7R4bgbtb88+lJFd4jA29SUKrdM/hf3k9ZxhBBC1BEp\nYBo5i7Lww4nNPL/jdVJL0jBlhdEifxTPTB7F1R3t5/LoS6XT6bi1xySURc+OvE1kS0OvEEI0CFLA\nNGKZpdm8suttVh1Zi6nKgOnPHoxvPZ6511+Nn/e5P63UEbUNCKO9aw9wKeftX1dpHUcIIUQdcNxz\nA+KSWZSFLanb+erwt1SpKkw5IQQU9+KOsT1oHuSpdTybmNn7Oh7etJ90w152HT9Gz1attY4khBDi\nMsgMTCOTW57Hm7s/4PNDq6isgso/uxHpN5qnpvVvsMULgLuLkeHNY9DpFZ/sX4nZIg29QgjhyGQG\nppFQSvFrehwrDq2mwlKBOS8Qt6zu3B3Tg06t/LSOVy+Gd+zNTynbKTamsSzuZ268erDWkYQQQlwi\nmYFpBAoqCnn7j8X8L/ELyqvMVB7tTBd9NM/cNKjRFC9wqqG3+ySURccvuRvJLS7ROpIQQohLJAVM\nA6aUIi5jN89sf4V9OYmYC/whcSD/13sod43tgqebs9YR690VgU25Qhp6hRDC4UkB00BVmqv4cO8n\nLN7/GWVVlVQev4rmJUN4etog+ncJtevPMbK123qPQVflRqruD3afOK51HCGEEJdACpgG6pe0nezO\nSsBc5EPlvv6M6TCYR6f0JNDHTetomvNwMRLdNBqdXrF0nzT0CiGEI5ICpoHalXQIAO+8Xjw2eSCj\n+rVCr2+8sy7/NKpTXzxMoVQYM/h811at4wghhLhIUsA0UOll6SizgTuje9M61FvrOHZHp9Mxo9tE\nlEXH1pwfpaFXCCEcjM0uoy4rK+ORRx4hJyeHiooK7rrrLtavX8++ffvw8fEBYMaMGQwePJjVq1fz\n0UcfodfrmTx5MpMmTbJVrEah0lxFmS4fVepD8yAvrePYrfbBzWl3MJwj+t28s/1rHrt2itaRhBBC\n1JLNCphNmzbRuXNnZs6cSWpqKrfccgvdu3fngQceIDIy0vq80tJS3nrrLVasWIGzszMTJ05k6NCh\n1iJHXLwTBamgU3gqf5wMMslWk9v7jOXhzQdI0e/h96T+hLdoqXUkIYQQtWCz324jRoxg5syZAKSn\npxMcfO4PBtyzZw9dunTBy8sLo9FIjx49iI+Pt1WsRmFvxjEAQtxCNU5i/zxc3BgaVt3Q+/FeaegV\nQghHYfM/z2NjY3nwwQd57LHHAPjkk0+YPn06999/P7m5uWRnZ+Pn99dian5+fmRlZdk6VoN2JC8J\ngCv8W2icxDFc16kfHqYQKozpfLHrF63jCCGEqAWbf5TAsmXLOHDgAA899BCPPfYYPj4+dOzYkffe\ne48FCxbQvXv3M56vlLrgPn193XFyMtgqMoGBjt03klmRgbLoGdCpo8O/ln+y1et5YOBN/HvbS2zJ\n2cCNbgPx8/SwyXEaqob2fdaQyNjYLxmby2OzAmbv3r34+/sTGhpKx44dMZvNXHnllfj7+wMQFRXF\nU089RXR0NNnZ2dbtMjMzCQ8Pr3HfeXmltopNYKAXWVlFNtu/rVVZTJSoXFSpN17OTg79Wv7JlmMT\nYvSnjXM3jul+59k1/+PRa2+wyXEaIkf/mWnIZGzsl4xN7dRU5NnsFFJcXByLFi0CIDs7m9LSUubN\nm0dycjIAO3bs4IorrqBbt24kJCRQWFhISUkJ8fHx9OrVy1axGrzkwjTQKTxUgDTwXqTbrx6HzmQk\nmT38kZykdRwhhBA1sNkMTGxsLI8//jhTpkyhvLycefPm4e7uzn333Yebmxvu7u48//zzGI1G5syZ\nw4wZM9DpdNx99914ecm02qVKSJcG3kvlZXRjSMhQNmSv4aOElfy32exG/ZELQghhz2xWwBiNRl55\n5ZWz7v/yyy/Pui8mJoaYmBhbRWlU/sw9AUA7v+YaJ3FMY7tcwy8//EapMY0V8b8wqWd/rSMJIYQ4\nBznH0MCcLEtHWXR0bdpa6yh77/VwAAAgAElEQVQOSafT8X9dJ6CUjs1ZP1BQWqZ1JCGEEOcgBUwD\nYrKYKNHlocq8aREkHx9wqTqFtKKVUxdwKeWdX1ZrHUcIIcQ5SAHTgKQUpoPOgrtFVuC9XHf2HofO\n5MoJdrM3JUXrOEIIIf5Bfss1IH818IZonMTxeRk9GBx8LTq9hSV/fFmr9YmEEELUHylgGpDDudWX\n/rb1kxV468KErgNxqwqizJjKyt3btY4jhBDib6SAaUAyTjfwhrXSOkqDoNPpuKlLdUPvxpPfU1RW\nrnUkIYQQp0gB00CYLWZKdDmoMi9aBsknedeVLmGtaWnoDK4lvPOrNPQKIYS9kAKmgUgpyrA28Do7\nybDWpTt6jwOTK8fM8exPlYZeIYSwB/KbroHYe6qBN9goDbx1rYmbJ4OChqAzWFi8Z6U09AohhB2Q\nAqaBOHRqBV5p4LWNSd0GYawKpNSYwqrff9M6jhBCNHpSwDQQGaXpKKWjizTw2kR1Q+9ElIIfM76T\nhl4hhNCYFDANgEVZKCYHVeZJ62BfreM0WF3DWtPC0BnlWsK7v36jdRwhhGjUpIBpAFKLToLejJvF\nTxp4bezO3uPB5MJR8y4S09K0jiOEEI2W/LZrABLSjwIQ7CoNvLbWxM2TgYFR6AxmPvxdVugVQgit\nSAHTABzOqW7gbSMNvPViYrdBuFYFUGpMZvUfcVrHEUKIRkkKmAYgvSwdpaBbWButozQKBr2B6Z3H\noxT8kLaO4nJp6BVCiPomBYyDsygLxSoHVe5J62BZgbe+hDdtRzP9VSjXYt779Vut4wghRKMjBYyD\nyyjOROlNuJn9cHYyaB2nUbmj9wQwufCnKY6DGelaxxFCiEZFChgH98epFXiDpIG33vm5e9E/YHB1\nQ2+8rNArhBD1SQoYB3co+1QDr29zjZM0TteHR+Ja5U+J8QTfJuzSOo4QQjQaUsA4uPTS6gbermFt\ntY7SKBn0BqZ2qm7o/S51HaUVlVpHEkKIRkEKGAdmURaKyIZyD9qGyAq8WunR7Aqa6jqiXItkhV4h\nhKgnUsA4sJMl2Sh9FUZp4NXcnb0ngMmZw1U7+fNkhtZxhBCiwZMCxoElnGrgDZQGXs35eXjT17+6\noff9XdLQK4QQtiYFjAM7mH0cgDY+0sBrD27oHoVLlR/FxuOs27tb6zhCCNGgSQHjwNJLqtce6RLW\nWuMkAqobem+8qrqhd23yWmnoFUIIG5ICxkEppSgkG0u5O+1CArSOI07p1fxKwnQdUMZC3v91rdZx\nhBCiwXKy1Y7Lysp45JFHyMnJoaKigrvuuosOHTrw6KOPYjKZcHJy4uWXXyYwMJBOnTrRo0cP67ZL\nlizBYJCm1Jpklmaj9JUYTUG4OMt7ZU/u6D2Bf/3yEgfNv3E0sy9tgoK1jiSEEA2OzQqYTZs20blz\nZ2bOnElqaiq33HIL4eHhTJ48mREjRvC///2PxYsXM3fuXDw9PVm6dKmtojRI0sBrvwI8mtDbdyA7\nCn/kvV0reWH4nVpHEkKIBsdmBcyIESOsX6enpxMcHMy//vUvXF1dAfD19WXfvn22OnyDdzCregXe\n1tLAa5du7HEtu3+Ip8j1GN/t/Z2YzuFaRxJCiAbF5j0wsbGxPPjggzz22GO4u7tjMBgwm818+umn\njB49GoDKykrmzJlDbGwsixcvtnWkBiGtNA2ArqHSwGuPDHoDsR3GAfBt0jeUVUpDrxBC1CWdqocF\nKw4cOMDcuXNZvXo1FouFuXPn0rp1a2bNmgXAZ599xnXXXYdOp2Pq1Kk8/fTTdOnS5bz7M5nMODXi\nhduUUtyw7H7MlXo+mfIyrtIDY7fuX/EGqeZEuroN4onrYrWOI4QQDYbNTiHt3bsXf39/QkND6dix\nI2azmdzcXF588UVatmxpLV4AbrjhBuvXffr04dChQzUWMHl5pbaKTWCgF1lZRTbbf13ILs3Foq/A\n1dyUwnzbvRf2xhHG5p9u7TGep7e/zJ6ibfy2/2paBwZqHanOOeK4NBYyNvZLxqZ2AgO9zvuYzU4h\nxcXFsWjRIgCys7MpLS1l27ZtODs7c++991qfd/ToUebMmYNSCpPJRHx8PFdccYWtYjUIf6QdBSDA\nRa5usXdBXj5E+FyDzsnEe3Ffah1HCCEaDJvNwMTGxvL4448zZcoUysvLmTdvHu+99x4VFRVMmzYN\ngLZt2/LUU08REhLCxIkT0ev1REVF0bVrV1vFahAST63A27qJNPA6gqk9hvL7ht0Uuh7l+317GNap\nm9aRhBDC4dmsgDEajbzyyitn3BcVFXXO5z700EO2itEgpZWkgQ66hLXROoqoBSeDE7Htx7L06BLW\nnPiGQVdehauzs9axhBDCoclKvA5GKUWBJQtVYeTK0CCt44ha6tPqKoLUFViMBbz/63daxxFCCIcn\nBYyDyS3Lx2KowMXkJ1cfOZg7IiaC2Yn95b9yIjtb6zhCCOHQpIBxMH+cWoE3wFkaeB1NsLcvPZv0\nR+dk4t2d0tArhBCXQwoYB3Mwq7qAadWkmcZJxKWY3jMa56omFLgeYfPB/VrHEUIIhyUFjINJKTm9\nAm9bjZOIS+FkcGJs21EArDryDWaLReNEQgjhmKSAcTAFlixUpZH2TeUUkqMa3K4b3qZmVBmz+SJ+\nm9ZxhBDCIUkB40DyygqwGMpxqfKVBl4H93/h41FKx9bsjZRUVGgdRwghHI4UMA7kj/TqFXj9pYHX\n4bUPakZzfSeUSwkfbl+ndRwhhHA4UsA4kMSs44A08DYUMyPGgtmZxIrfSMvL0zqOEEI4FClgHEhK\ncXUDb5dQWYG3IQjw9KabZx90Tibe37lK6zhCCOFQpIBxIAWWTFSlKx3DQrWOIurI9Iho9FUenNQn\nsif5uNZxhBDCYUgB4yAKKoowG8qqG3hdpIG3oTA6uXBt2DB0esUne7/WOo4QQjgMKWAcRELaqQZe\nF2ngbWhGd+qNsTKQUtdUvtsXr3UcIYRwCFLAOIj9mccBaOktDbwNjV6vJ7bjGADWJq2jymzSOJEQ\nQtg/KWAcREpxKgCdQ1prnETYQkTLK/E3t8XsWsAncRu1jiOEEHZPChgHkW/ORFW5cFVYmNZRhI3M\n6DkOZdETl7+F/NISreMIIYRdkwLGARRVFmN2KsW5yhejq5PWcYSNtPQLop1Td3Cu4P0da7SOI4QQ\ndk0KGAfwx+kGXidp4G3obu09GqpcOWb+nWPZJ7WOI4QQdksKGAfwVwNvU22DCJvzdnOnt+8gdHoL\nH+6Sxe2EEOJ8pIBxAClF1Q28nUJkBd7GYEqvSJwqfMhzPsL2Y4laxxFCCLskBYwDyDNnoqqc6dRU\nGngbAye9gVGtYgD4PHENFotF40RCCGF/pICxc8WVJZidSnCu8sXN1VnrOKKeDO3YA4/KZlS4ZrEq\n4Vet4wghhN2RAsbO/ZF2DAA/pyCNk4j6Nr3LGJRFx8b0DZRXVWodRwgh7IoUMHbuQGZ1AdNCVuBt\ndDo3bUkoHVEuJSz+7Tut4wghhF2RAsbOJRelAbICb2M18+qxYHJmb+l2sorytY4jhBB2QwoYO5dn\nzkSZnOjcVGZgGqMQbx+ucusNBhPv75RPqxZCiNOkgLFjJVVlmJyKcK6UBt7G7Jbe0egqPUhR+9mf\nkaR1HCGEsAs2K2DKysqYPXs2U6dOZdKkSWzatIn09HSmTZvGlClTmD17NpWV1Y2Jq1evZsKECUya\nNIkvvvjCVpEczt706v4XX2ngbdTcXFwZGDQEnU7x8R5Z3E4IIcCGBcymTZvo3Lkzn3zyCa+//jov\nvPAC8+fPZ8qUKXz66ae0bNmSFStWUFpayltvvcWSJUtYunQpH330Efn5cq4fYN/JUw28XrICb2M3\nMbwfzuWBFDmnsPHQ71rHEUIIzdmsgBkxYgQzZ84EID09neDgYHbs2MGQIUMAiIyM5Ndff2XPnj10\n6dIFLy8vjEYjPXr0ID4+3laxHEry6RV4g6WBt7HT6/VMunI0SsHXR9ditpi1jiSEEJqyeQ9MbGws\nDz74II899hhlZWW4uLgA4O/vT1ZWFtnZ2fj5+Vmf7+fnR1ZWlq1jOYRc06kG3mbNtY4i7ED/dh3w\nqWqDySWfZbs3aR1HCCE05WTrAyxbtowDBw7w0EMPoZSy3v/3r//ufPf/na+vO05OhjrL+E+BgV42\n23dtlVaWYTIU4lweQKvm/lrHsRv2MDZaeiDyRuZt+Q+/5vzELZ7D8Hbz0DoSIONiz2Rs7JeMzeWx\nWQGzd+9e/P39CQ0NpWPHjpjNZjw8PCgvL8doNHLy5EmCgoIICgoiOzvbul1mZibh4eE17jsvr9RW\nsQkM9CIrq8hm+6+tnUkHQAe+hiC7yGMP7GVstBTg6kVLXThJTvG8uG4Z9w2YrHUkGRc7JmNjv2Rs\naqemIs9mp5Di4uJYtGgRANnZ2ZSWltKvXz/Wr18PwPfff8+AAQPo1q0bCQkJFBYWUlJSQnx8PL16\n9bJVLIex7+RxAJpLA6/4h5m9R0OVK4cr4knOy9Q6jhBCaMJmBUxsbCy5ublMmTKF2267jXnz5nHP\nPfewatUqpkyZQn5+PmPHjsVoNDJnzhxmzJjBzTffzN13342Xl0yrJRWlAHCVNPCKf/Dz9KC71wDQ\nW/hwl1xWLYRonGx2CsloNPLKK6+cdf/ixYvPui8mJoaYmBhbRXFIuVWZKL2Brs1aaB1F2KHpV0ex\n5/udZBn/JD7lMD2aXaF1JCGEqFeyEq8dqjBVUOVUgFOlDx5GF63jCDvk4uREdLNoAD7dt6pWze9C\nCNGQSAFjhxIyjlsbeIU4n5FdeuJW1pQy5yzWHtiudRwhhKhXUsDYoX0Z1SvwNvOUBl5xfjqdjimd\nx6AsOr5L/p4Kc5XWkYQQot5IAWOHkgpPN/C20jaIsHs9WrYi0NQBi3MJn+xar3UcIYSoN1LA2KGc\nqkyUWU+3Zq20jiIcwIyI61AmZ+ILfiGntFDrOEIIUS+kgLEzlaZKawOvp5s08IoLa+HvzxXOEWAw\n8cHOr7WOI4QQ9UIKGDuzL+M46BQ+hkCtowgHcmufGKjw4IRpL4ezUrSOI4QQNicFjJ1JkAZecQm8\n3Iz08xuMTqdYsucrreMIIYTNSQFjZ5IKUwHoGCQr8IqLc32va3AqCyBfn8yWY39oHUcIIWxKChg7\nk1N1EmXRE968ldZRhINxMhi4rvUIlIKVh7/BoixaRxJCCJuRAsaOVJqrqDTkY6hsgpebq9ZxhAOK\n6tgJr/LWVDrlsyJhs9ZxhBDCZqSAsSP7TyaBXuGjlwZecWl0Oh3Tu12HMhv4OWMTpZXlWkcSQgib\nkALGjuxNPwpIA6+4PJ2aNSXM0gXlVMHiXd9oHUcIIWxCChg7cryg+vLXjoEtNU4iHN3M3qNRlUb2\nl8SRXpitdRwhhKhzUsDYkeoGXh3hzeUKJHF5gn286OzWF/QWPtgll1ULIRqeSy5gjh8/XocxhMls\nsjbweru7aR1HNAA397kWXVkTMtRh/kj7U+s4QghRp2osYG6++eYzbi9cuND69bx582yTqJGqbuC1\n0EQaeEUdcXN1JjJ4KACf7FuFUkrjREIIUXdqLGBMJtMZt7dv3279Wv4xrFt700+twOsRpnES0ZCM\n6xGBS0kYJYZMfjj8m9ZxhBCiztRYwOh0ujNu/71o+edj4vIcL0gGoENQK22DiAZFr9cxscMolEXH\nt8e/o9JcpXUkIYSoExfVAyNFi+1kSwOvsJH+V7TDt6I9JqcSlv3+g9ZxhBCiTjjV9GBBQQG//vqr\n9XZhYSHbt29HKUVhYaHNwzUWJrOJCkMehkpvfNzdtY4jGqCbe17Hq38cYUfuVq4ruwYfN2+tIwkh\nxGWpsYDx9vY+o3HXy8uLt956y/q1qBsHM1NAb8FbGniFjbQLCaBVQk9OGLbz4a7VzLlmqtaRhBDi\nstRYwCxdurS+cjRqf5xagbepNPAKG5rZZziPb0ngqErgWG4arf3k+00I4bhq7IEpLi5myZIl1tvL\nli1jzJgx3HvvvWRny+qedeX0CrwdAltpG0Q0aL5ebvTyHgg6xaLfV2odRwghLkuNBcy8efPIyckB\n4NixY7z66qs8/PDD9OvXj//85z/1ErAxyKrMQCkd3Zu10TqKaOBuvHoA+pIAckliR9JereMIIcQl\nq7GASU5OZs6cOQCsX7+emJgY+vXrR2xsrMzA1BGzxUyFIQ99pRe+ntLAK2zL1cWJmOYxKAXLD67G\noixaRxJCiEtSYwHj/rcrYn777Tf69OljvS2XVNeN6gZeM0100sAr6sfwbl1wK2lFhSGfrw/8rHUc\nIYS4JDU28ZrNZnJycigpKWH37t289tprAJSUlFBWVnbBnb/00kvs2rULk8nE7bffzjfffENeXh4A\n+fn5hIeHc/vttzN69Gg6d+4MgK+vL/Pnz7/c1+UwEk418IZ5hGqcRDQWep2OG7uM5oM/F7Ix9Udi\nruiDm7NR61hCCHFRaixgZs6cyYgRIygvL2fWrFk0adKE8vJypkyZwuTJk2vc8fbt2zl8+DDLly8n\nLy+PcePGsXnzZuvjjz76KJMmTQKgdevWjfaKp2P51Q287QNaaRtENCo9WjcncH9nst328PHub7n9\n6glaRxJCiItSYwEzaNAgtm7dSkVFBZ6engAYjUYeeughrrnmmhp3HBERQdeuXYHq9WTKysowm80Y\nDAaOHj1KUVERXbt2JSUlpY5eimPKqshAOUOP5m21jiIamZm9R/JcXCJ/FO7kZPFggj39tY4khBC1\nVmMPTFpaGllZWRQWFpKWlmb9r02bNqSlpdW4Y4PBYO2hWbFiBQMHDsRgMADw8ccfM3XqXwtpZWdn\nc++99xIbG8vq1asv9zU5DLPFTLkhF32lF36eHlrHEY1MswAfrnTqA3oLH8Z/pXUcIYS4KDXOwERF\nRdG6dWsCA6sbTP/5YY4ff/zxBQ+wYcMGVqxYwaJFiwCorKxk165dPPXUUwD4+Pgwe/ZsrrvuOoqK\nipg0aRJ9+vQhKCjovPv09XXHyclwwWNfqsDA+lllOCHlOBjM+BBUb8d0dPI+1a25141l5ue/k+p+\niNSKdMKbXXlJ+5FxsV8yNvZLxuby1FjAvPjii3z99deUlJQwcuRIRo0ahZ+fX613vmXLFt555x0+\n+OAD60cP7Ny503pqCcDT05MJE6rPv/v5+dG5c2eOHj1aYwGTl1da6wwXKzDQi6ysIpvt/+9+3r8P\ngBBjSL0d05HV59g0Jv39o9hW9hVvbv0fz0fNuegrDGVc7JeMjf2Ssamdmoq8Gk8hjRkzhkWLFvH6\n669TXFzMjTfeyK233sqaNWsoLy+v8aBFRUW89NJLvPvuu/j4+FjvT0hIoEOHDtbb27dv5/nnnweg\ntLSUxMREWrduHJ/IfCw/CZAGXqGtSRG9MRSFUqTLZPOxOK3jCCFErdRYwJwWGhrKXXfdxbp164iO\njubZZ5+9YBPv2rVrycvL47777mPatGlMmzbN2lPj7/9Xs2CvXr0oKCjg+uuvZ/r06dx2220EBwdf\n3qtyEJkVGSglDbxCW85Oesa2HYGy6Pj6yDqqzFVaRxJCiAvSqb83tpxHYWEhq1evZuXKlZjNZsaM\nGcOoUaNqPM1jS7acdquvaT2zxcy9Pz6JzmRkwfB5Nj9eQyBTrrajlOKRNR9S7HmI/v6RTOk2vNbb\nyrjYLxkb+yVjUzs1nUKqsQdm69atfPnll+zdu5dhw4bxwgsvcOWVl9bkJ850NDsDDCa8zAFaRxEC\nnU7H9O6jeOvAm/yStYWRFdfQxFUaDIUQ9qvGAubWW2+lVatW9OjRg9zcXBYvXnzG46d7V8TF25N2\nagVe9zCNkwhRrVPzEMISwkk37mRJ/Gpm971R60hCCHFeNRYwpy+TzsvLw9fX94zHGvsCdJfraF4y\nAFcGtNQ4iRB/mdl3OE//up9D6g+S8iNp4SMFthDCPtXYxKvX65kzZw5PPvkk8+bNIzg4mKuvvppD\nhw7x+uuv11fGBimzIgOAHs3baZxEiL8E+3rSxXgN6BSLfl+pdRwhhDivGmdgXnvtNZYsWULbtm35\n8ccfmTdvHhaLhSZNmvDFF1/UV8YGx2KxUKbPQVfpQaCX9BkI+zK970Dm/rCLLM8k4lL30atpJ60j\nCSHEWS44A9O2bfUlvkOGDCE1NZXp06ezYMGCRnOpsy0cyzkJTlV4IQ28wv54uDkTFTIUpWBZ4teY\nLWatIwkhxFlqLGD+uSJnaGgoQ4cOtWmgxmBP6hEAQqWBV9ipMT274VLYkjJdPusOb9M6jhBCnKVW\nC9mddrFLjItzO3K6gde/hcZJhDg3J4OeyR1HoswGvk/eQJmp5pW3hRCivtXYA7N7924GDx5svZ2T\nk8PgwYNRSqHT6di8ebON4zVMmRUZ4ALdZQVeYcf6tm/JNwevosArgU//WMeMHuO0jiSEEFY1FjDf\nffddfeVoNCwWC6X6HHSV7gR7+1x4AyE0otPpuCViJK/uOUx83g7GlA4iwL32H+YqhBC2VGMB07Rp\n0/rK0WicyM0Cp0o8K0O0jiLEBbUL86PVnghO6Lbw4e6veLj/DK0jCSEEcJE9MOLy/X6qgTfEPVTj\nJELUzoz+16JKmpBUcZCD2ce0jiOEEIAUMPXuSF4SAFf6ywq8wjH4e7vRy3swAB8lrKQWn/8qhBA2\nJwVMPTtZXr0Cb/dm0sArHMeUvr3RFYRSoE6yJWmX1nGEEEIKmPqklKJUn42uyo3QJr4X3kAIO2F0\ncWJEy2iURcdXh9dSZa7SOpIQopGTAqYeJeVmg1MlHkpW4BWOJya8I25F7ajUF7MqcaPWcYQQjZwU\nMPVod+qfAIS6SQOvcDx6vY4pXUagqpz5Kf1nCiuKtI4khGjEpICpR0dyqxt428kKvMJB9WzXlMCK\nbih9FUv3rNE6jhCiEZMCph791cDbTuMkQly6GX2isZR5sL/od1KK0rWOI4RopKSAqUcluhyoMtLU\nR1YzFY6rRVATOjj1Ax0s2r1S6zhCiEZKCph6kpSbDc7leEoDr2gAbuo/EFUUwEnTCbaf2KN1HCFE\nIyQFTD35PaV6Bd5gN/kIAeH4fDxducY/CqXg/d8+J7ssF4uyaB1LCNGI1PhZSKLu/HmqgfcKP2ng\nFQ3DhN7d2b56B0W+J/jXry9gwICfqz9NvUII8womxD2IEI8ggtwCcDY4ax1XCNHASAFTTzLK08EF\nwqWBVzQQrs4Gplw1liU7v0MZC7G4lZBpziGrIpPfs898bhNnH5p6BhPqGUyIRxDBp4obD2d3bcIL\nIRyeFDD1pESXAyZXmvtKD4xoOPp0bEpkxN0kJJ4kNbuYlKxikrKyyCjJpFSXj96tBJ2xmHy3Egqq\nDrI/7+AZ27sb3An1CCbEM+ivwsY9CF9jE/Q6OcMthDg/KWDqQWpeLjiX4VHZVOsoQtQ5Tzdn2jVr\nQrtmTU7d0x6A4rIq0rJLSM0uIS2rhKSTOaQXZ1KmK0DnVozerYRiYwl/mo5xpPDMT7l21jkT7BFI\niEd1QRN86v+B7gE46+WfLSGEFDD1Iv50A69RGnhF4+Hp5syVzX24srnPGfcXllaSlnWqsMkuISWj\nkLSiTMr1+eiMJejcirEYS0g2ZZBSnHbGtjp0+Lv5WftrTp+KCnEPxF1ORwnRqNi0gHnppZfYtWsX\nJpOJ22+/nY0bN7Jv3z58fKr/QZsxYwaDBw9m9erVfPTRR+j1eiZPnsykSZNsGave/Zl7AoB20sAr\nBN7uLni3dKFDy78+0FQpRWFpFWlZxaScLmxOFpOWn02FoQCdsQS9WzE6YwlZVYVkl+WwN+fAGfv1\ncvasLmpOzdZUz9wE4uvqg06nq++XKYSwMZsVMNu3b+fw4cMsX76cvLw8xo0bR58+fXjggQeIjIy0\nPq+0tJS33nqLFStW4OzszMSJExk6dKi1yGkIMspONfA2bat1FCHskk6no4mHC008/OjY6q+FHpVS\n5BdX/nUqKruY1MwS0vLyqNAXojtV1Ojdiil0K6Go8iiH84+esW8XvUv16Sj3v2Zsgt0DCXIPwElO\nRwnhsGz20xsREUHXrl0B8Pb2pqysDLPZfNbz9uzZQ5cuXfDy8gKgR48exMfHExUVZato9a6YHDC5\n0MIvUOsoQjgUnU6Hr5crvl6udGp9ZmGTV1RBanYJqVnVMzapmSWk5RZSqS+sbh4+VdwotxKSzekk\nF6WesW89egLc/KwzNsGnTkU192oqhY0QDsBmP6UGgwF39+pz0itWrGDgwIEYDAY++eQTFi9ejL+/\nP08++STZ2dn4+f31D5Ofnx9ZWVm2ilXv0vPywKUUj8owmcYWoo7odDr8vI34eRvp0sbfer9FKXIL\ny6sLmlN9NqnZJaTnFFOlr74iqvrKqBIM7iVkmQvJLMsmgf3WfTRx8WZw8/5cE9YHd2c3LV6eEKIW\nbP5nxoYNG1ixYgWLFi1i7969+Pj40LFjR9577z0WLFhA9+7dz3i+UuqC+/T1dcfJyWCryAQGetXZ\nvjYfSwCgqVfTOt1vYyXvoX2yp3EJDvKm4z+WW7JYFJl5pSRlFHEio5Ckk0UkZRSRcqiQSiqs/TV6\nj0IKA9L5+sg61p/YSFTrfoxoP4QgD/9zH8wB2NPYiDPJ2FwemxYwW7Zs4Z133uGDDz7Ay8uLvn37\nWh+LioriqaeeIjo6muzsv1a9yszMJDw8vMb95uWV2ixzYKAXWVlFdba/35MOA9DCq2md7rcxquux\nEXXDUcbFALQO8qB1kAcQClQXNln5ZdaZmhMZRezZk47OPxlCT7D28CbWHd5Mj6CuDGkxkJbezTV9\nDRfLUcamMZKxqZ2aijybrRRVVFTESy+9xLvvvmttyL3nnntITk4GYMeOHVxxxRV069aNhIQECgsL\nKSkpIT4+nl69etkqVr3LKK2+DDS8aRuNkwgh/kmv1xHs506PKwMZ3a8Vs8Z34aXbBjGs1WB0iVFU\nHumKudSTXZl7eCnuTTxhgHQAACAASURBVF6Pf4eE7P3yuU9C2AGbzcCsXbuWvLw87rvvPut948eP\n57777sPNzQ13d3eef/55jEYjc+bMYcaMGeh0Ou6++25rQ29DUKzLAZMzrfyCtY4ihKgFXy9XJg5u\ny+h+rfhlbzrr49qSbUrGKeQ4h6m+yinYPZAhLQZydXAP+ZwnITSiU7VpOrEztpx2q8tpvYyCAp7Z\n9R/cK0N4OeaBOtlnYyZTrvapoY+LRSkSjuTw/c5kEjOTcAo5hlNAOugUns4eDG7WnwFN++Lp4qF1\n1LM09LFxZDI2tVPTKSS5VtCGdqf8CUCQrMArhMPS63R0axdAt3YBJGdewQ87k9mecBwCjlMcnMw3\nx75n/YlN9A3tRWTzAQS5y+edCVEfpICxoUPZSQC09ZUVeIVoCJoHeXLLyI5MKGnLpvgUNu45QZnH\nMVTICX5O/ZWfU38lPLAzQ1oMok2TllrHFaJBkwLGhtLL0sAFuobJCrxCNCRNPFwYO6ANI/u2ZPu+\n9qz///buPDzK+t77+HvWhCQTMkkmGyGBhD0bq4KyqIgLVhBRUYS2Z2ntZftYz+U5Vj212Eu7gF1d\nHrVaW8upj2lja7Wi4FIUZQ97ICQh+75NyJ6QyTx/BHNQgbJkuGfg8/qLDDPJZ/LjIp/c9/f+3TvL\nqPMUY40vYQ8H2NNwgNHhyVybPI/M6Em6s7aID6jA+FC7txE8NlKjdQpJ5GJks1qYk5XA7Mx4DpaN\nZ8OOcvLKi7DGlVBCGS/u/wPRwVHMT5rDzPjp2C12oyOLXDRUYHyk/mgr3qAOhh2L1Q68Ihc5k8lE\n2qhI0kZFUtM0lvd2VrL5YCHe6GIaoqvJLniDN49s4KqRs5ibeAXh9ovnSksRo6jA+MiuyoEbysUE\n6eiLyKUkPiqUr14/nlvnpvDRnire31NER9gRvLHlvFP6ARvKNnJ53DTmJ80lLjTG6LgiAUsFxkcK\nG0sBSHEG1s6dIjI0wobZuGnWKK6/LIkd+ems31lClecw1rhSNtdsZ3PNdtKjJnJt0lzGRKToSK3I\nWVKB8ZHqzhoIgiwN8Ipc0qwWM7PS4pg5KZbCyoms31HGvoo8LHGlHOAQB5oOkRg6gutGzWOyKwOL\n2Xf3eRO5mKjA+EgbDeCxkhKlU0giMjAnM25kBONGRlDfMo73d1awqSAPb3QxFd4qXs57leG24SwY\nNY9Z8dMJtgYbHVnEr6nA+EBDWxv99nZC+mL025SIfElMxDCWXzuOW2ansGlfNRv25tMeVkBLdCU5\nhW/y1pH1zE2cxVUjryQiaLjRcUX8kgqMD+yuKMZkApddR19E5NRCgq1cf1kS105PZHfBZN7JLaLC\ncwBvbDnvlW/kg/KPmR47hQXJ80gI0/8nIidSgfGBw41lgAZ4ReTMWMxmpk+IYfqEGIqr03l3Rwl7\nKvdiiSthe10u2+tyGTt8LDeMvorxzjEa+BVBBcYnajoHduDNiE8xOoqIBJiUhHDuXZxFc+t43t9Z\nwUfFe/BEF1FIIYV7CokJjuXGlKuZFpOlU9RySVOB8YHW/gbwWBjrSjA6iogEqMjwYO64ZiyLZo/m\n0/21vLt/H62h+dRF1vLKwdfIOfw2C0bNYfaIyxlmHWZ0XJELTgVmiDW1tdMf1MawPpd+OxKR8xZs\ntzJ/WiJXTx3B3qIZrNt1iHLPftpdlbxxZB1/P/Ies0fM5NrkOTiDI4yOK3LBqMAMsc8GeKPtsUZH\nEZGLiNlkYspYF1PGuiivm8K6HUXsbs7FG1PGxqpNfFT1CRmRGSxMvZqRjhFGxxXxORWYITY4wBuh\nAV4R8Y2kWAff+soUWton8X5uORtLd+CJKmIf+9jXvI+kkFF8Zew1zIuebnRUEZ9RgRli1R3VEASZ\nCRrgFRHfiggL4rZ5Y1l0RQqbD9TwzsFcjobkU04p/3fvy7x68A2mxmYwLS6DZMdIXb0kFxUVmCF2\n1NsA/WbGRusQrohcGHabhaumJDJv8gjySmbz1q59lPbvxe2s48PKj/iw8iNCzGFMiUlnenwmqcNH\na0ZPAp4KzBByd3TSb29jmCcKq0XfWhG5sEwmE+kpUaSnXE1V42XsKalnY8FuWm3ldETU82ntVj6t\n3YrdFExG9CRmxGcywTkWm8VmdHSRs6afskNod0UxJrOXaIsGeEXEWCOiQ5k8MZObZoymurGDHYdr\n2VZ+kCZK8TrryW3YRW7DLqzYGO8cx2XxmaRFT2SY7sEkAUIFZgjlN5QCMFoDvCLiRxKiQ1kcncri\nK1NpaOliZ34920rzqfYU0++sI8+dR547DzNmUsJTuSwhk8zoNBz2MKOji5ySCswQqurQDrwi4t9c\nEcO4cWYyN85Mxt3Ww66CerYWF1HeXYg5oo4iCilqLeRV/sLIkJFclpBJliuDqGFOo6OLfI4KzBBq\n7R8Y4B3vSjQ6iojIP+V0BDF/2kjmTxtJW+eV7ClsZGtRMUXtBZgiain3llNRVM7rRX8nNjiOGfGZ\nTI7JIC4kRlc0ieFUYIZIS0cXHnsrwZ5IDfCKSMBxhNiZk5XAnKwEOrtnsu9II9sKysk/mo83vJba\n8Dr+XrKBv5dswGmLZHp8JpNj0nV5thhGP2mHyJ6KEg3wishFISTYysy0OGamxdFzbBoHipvYXlDF\ngcZDeBw1NA9v5L3yjbxXvpEwi4OpcelMdmUwJkKXZ8uFowIzRA4dH+AdNVwDvCJy8QiyWZg2PoZp\n42M41pfFoTI3Ow5Xs6cin96wKtoiGvi4agsfV20hyDyMLNckpsZm6PJs8TkVmCFS1T6wA29G/Gij\no4iI+ITNaiYzNYrM1Cg8/WkUVBxlx+FadpXl0xVchddZx/a6XLbX5WI12UiLHM/U2AzSoifojtky\n5HxaYNasWUNubi59fX3cc889ZGRk8PDDD9PX14fVauXJJ5/E5XKRlpbG1KlTB1/3+9//HoslsA5D\nHu2vh34zE2J0BEZELn4Ws5mJyU4mJjtZ4Z1AcXUrOw/XsaOsgDZbBf2RdextOsDepgOYMTMuYgxT\nYzPIdOnybBkaPiswW7dupbCwkOzsbNxuN0uWLOHyyy/njjvuYOHChfzxj3/kd7/7HQ8++CBhYWGs\nXbvWV1F87mhHN56gVoI9ETpkKiKXHLPJxJgRwxkzYjjLvGMpr2tn5+F6dpQW0Wwqw+KsI58C8lsK\n+H+H/0KyI4lpcZlkRafr8mw5Zz4rMDNmzCAzMxOA8PBwurq6WLVqFUFBQQA4nU7y8vJ89eUvqD2V\nJZjM/URZYoyOIiJiKJPJRHKcg+Q4B0vnpVLd2EFuQQM7jpRS6zmC2VlPibeM0rYyXi98i/iQeKbF\nZpLlSiM+NFZXNMkZ81mBsVgshISEAJCTk8PcuXMHP/Z4PLz66qt8+9vfBqC3t5cHHniAqqoqrr/+\nev7lX/7ltJ/b6QzBavXdKSaXy3FWzy/eXgXAhNiUs36tnB19f/2T1sV/Gb02LpeDrIlx/CsZ1DZ1\nsGV/DZ8cKOZIewEWZx3V/bXUdNbw95L1xIS4mJU0hcsSJ5MamYzZZDY0u68ZvTaBzudDvO+//z45\nOTm8/PLLwEB5efDBB5k5cyazZs0C4MEHH2TRokWYTCZWrFjB9OnTycjIOOXndLs7fZbX5XLQ0NB2\nVq8pbi4DO4yJSDzr18qZO5e1Ed/Tuvgvf1sbCzA7LZbZabG426ayu7CBHQVVHGkrwuyspc7TyN/y\nN/C3/A04bA6mxGQw2ZV+UV6e7W9r469OV/J8WmA2bdrE888/z0svvYTDMRDi4YcfJjk5me985zuD\nz7vrrrsG/zxz5kwKCgpOW2D8TYunHrwmJsYkGR1FRCQgOB1BXDM1kWumJtLWOYU9hY3sKKghv7kQ\nU0Qtrc4GPq7azMdVmwm2DFyePSFyLOOcqUQEDTc6vvgBnxWYtrY21qxZw+9//3siIiIAePPNN7HZ\nbNx3332DzysuLubZZ5/lZz/7GR6Ph127dnHDDTf4KtaQa+3qxmM/SlBfBHar3eg4IiIB5/O7AGex\n70gjOw/XcaChEG94LV3OOrbV5rKtNheAqKBIJkSNYVxEKmOdqQwPCjf4HYgRfFZg1q1bh9vt5v77\n7x98rLq6mvDwcFauXAlAamoqjz32GHFxcdx2222YzWauueaaweHfQLC3ogyTpZ8oqwZ4RUTO1+d3\nAU7nQHETOwvq2VdawrHgesyOZhodbj7t2c6n1dsBcAVHM/54oRnnTNVl2pcIk9fr9Rod4mz58rzh\n2Z6X/M0n69nb+wEzh89n5bTrfZZLdM7YX2ld/NfFtDb9/V7K69s4VObmYFkTRU0VeIY1YA5vxuxw\nY7J4Bp8bOyyG8ZFjGOdMZWxECmH2UAOTn9zFtDa+ZNgMzKWgsq0KgiA9Tjvwioj4itlsYlRcOKPi\nwrnx8mT6PJMpqWnlUJmbQ2VNFLeU4w1twhzeTK2nibquej6u2gxAfEgc4yNTBwtNiC3E4HcjQ0EF\n5jy19A8M8E6KHWV0FBGRS4bVYmZsYgRjEyNYdOVoeo9Noajq6PFC00hZWxUmRxNmRxPV/fXUdNay\nsfJTAEaExTPeOXCEZkzEaN3mIECpwJyH9q4e+uxHCfKEE6QBXhERw9htFiaNimTSqEggla6ePgoq\nWgYLTVVXFWZHM+bwJir766hqr+HDik2YMJEYlsC4yFTGRQwUmmBrsNFvR86ACsx5GBjg9RBJrNFR\nRETkBMOCrGSNiSZrTDQwlvauYxwudw/M0JQ2Ut9TPTA/E95MRX81Fe1VfFD+MSZMJIcnMvb4QHBq\nxGiCLPoF1R+pwJyHgw2lACSHJxobRERETitsmI1p42OYNj4GGE9Lew/5ZccLTVED7v7a4wPBzZR6\nKyltreC98o2YMTMqfOTA/IwzlZThydhVaPyCCsx5qGirAjukaYBXRCSgRIQFDV6uDRNpaOkaKDTl\nbg7mN9BursPsaMYS3kyxt4zi1jLeLfsQi8nCqPAkxjlTGedMYXR4sm7iaxAVmPPQ0lcPNkiLG2V0\nFBEROQ+uiGG4IoYxJysBr9dLbXPn8fkZN4fy6um2DVyy3R/ezJH+Eo4cLeGdUrCarIwennT8CqdU\nRg1PwmbWj9YLQd/lc9Te1UtfUAt2TzjB1iCj44iIyBAxmUzER4USHxXKNVMT6fd6qaxvHyw0h4sb\nOBbUiCW8iX5HM4X9xRS2FAPvYTPbSBmePFhoksMTsarQ+IS+q+doX2X58QFe7cArInIxM5tMJMU6\nSIp1cP1lSfR5+imrbRssNEVFDXhCmrA4mugPb+ZwfxGH3UUA2M02UiNGH7/tQQpJjsSL7saURlGB\nOUeH6ksBSAofaWwQERG5oKwWM6kjhpM6YjhfuWIUx/o8FFe3Dhaa4oIGvKED8zP94c0c6i/gUHMB\nAEEWO6kRo7lp4tUk20ZjMpkMfjeBSwXmHJW3VQ4M8GoDOxGRS5rNamF8kpPxSU5umQPdvX0UVR4d\nLDRljY2Dl2x7w5s56DnMwU8OMylyHLeNW0xsiMvotxCQVGDOkfv4AK9uISAiIicKtltJT4kiPSUK\ngI7uYxSUH99Ur9xNdVsdtuRDHKSAJ7b9nGuT5nHDqPnab+YsqcCcg46uY/TZW7B5HAyzacdGERE5\ntdBgG1PGuZgybuBIS21zJ69vSmF34T7sSflsKPsH22p2sXTsV5gak6nTSmfIbHSAQLS/qgKTtY9I\nqwZ4RUTk7MRFhvDYv8/i/8y/DkfFAo5VpXK0u42X8/7IU7t/Q01HndERA4IKzDk4WFcCQJJDO/CK\niMi5yRoTzRP/eiW3jL2B/kNz8bS4KGg5wo+3/ZLXC9+iq6/b6Ih+TQXmHJS3VgLoDtQiInJebFYz\nC2cm8+Ovz2eqbSE9BVPp6w7iw4pNPLZlDdtrd+H1eo2O6ZdUYM5Bs6cegIx4DfCKiMj5czqC+ObN\naTx40w3E1N3AscoxtPV08srB1/hF7nNUtlUbHdHvqMCcpc8GeK19YYTYQoyOIyIiF5FxIyNY9bWZ\nLM+4CfPhq/A0x1LcWspPd/yaPxW8QeexTqMj+g1dhXSW8qoqMVmP4UQb2ImIyNAzm01cNWUE0yfE\n8Mam0Xx0eA/WpEN8VLmZHbV7WDLmJmbGT8NsurSPQVza7/4cHBgc4B1hcBIREbmYhQ2zseK68Tx6\n60KSWm7iWMU4Onp6+GP+n3lyxzOUtVYYHdFQKjBnqaKtCoCJMaOMDSIiIpeEpFgHDy2fzr9fdjPB\nxfPpa4qjvL2SNTuf5tX8HNp7O4yOaAidQjpLTcfqwA4Z8SlGRxERkUuEyWTisomxZKVG8/bW0azP\n24155EE+rd5Obt0+FqfeyOwRl19Sp5UunXc6BDq7PxvgDSXMHmp0HBERucQE2S3cOjeVx+9cyITu\nRfSWTaCrp4/sgr/yk+2/pvhomdERLxgVmLNwsKoak62XCO3AKyIiBopxhvDd2yZz37zFOCquo68x\ngeqOGn6e+yyv5GXT2ttmdESfU4E5C58N8I4M0wCviIgYLyMlih99fS5Lkm+lv3AW/R0Ottflsmrz\nGv5R8Qmefo/REX1GBeYsfLYDrwZ4RUTEX1gtZm64PImf3L2QqaYl9JZOoqfXQ07hm/xo2y8pdB8x\nOqJPqMCchaZjAzfY0gCviIj4m4iwIL7xlXS+d/0SXLUL6atPpLaznl/tfoHf7v8jLT1HjY44pHx6\nFdKaNWvIzc2lr6+Pe+65h4yMDB588EE8Hg8ul4snn3wSu93Om2++ySuvvILZbOaOO+7g9ttv92Ws\nc9LV08cxWwtWTwjhQWFGxxERETmpMSOGs2rFlXyyP4U/b9tJX9w+drGX/Y0HuSllAVePnI3VHPgX\nIfvsHWzdupXCwkKys7Nxu90sWbKEWbNmsXz5cm688UZ+8YtfkJOTwy233MKzzz5LTk4ONpuN2267\njQULFhAREeGraOfkYFU1JnsPESQbHUVEROS0zGYTc7MSmDb+Rt7YNJ6PSrbhTTzMG0fWsalyG3dN\nXMLEyHFGxzwvPjuFNGPGDH79618DEB4eTldXF9u2bWP+/PkAXH311WzZsoW9e/eSkZGBw+EgODiY\nqVOnsmvXLl/FOmd5tQMDvIka4BURkQARGmzj7gXj+cHNtzKy+Sv01SXR2N3EM3te4oW9r9Dc7TY6\n4jnz2REYi8VCSMjAzQ5zcnKYO3cun3zyCXa7HYCoqCgaGhpobGwkMjJy8HWRkZE0NDSc9nM7nSFY\nrRZfRcflcnzpscqOGrDAZSkTTvr3cmHoe++ftC7+S2vjvy7k2rhcDiZPimPzvnR+s+ET2p272Uce\nB7ccZmnajdw8YQF2i+2C5RkKPj8J9v7775OTk8PLL7/MddddN/i41+s96fNP9fiJ3G7f3Y3T5XLQ\n0PDl6+fruqshFEY5Ek769+J7p1obMZbWxX9pbfyXUWszLsHBj+6+jnVbxvFu4Ra8I/LJPvAW6ws+\n4a4Jt5AePfGCZzqd05U8n16FtGnTJp5//nlefPFFHA4HISEhdHd3A1BXV0dMTAwxMTE0NjYOvqa+\nvp6YGP/aKG5ggNeNxTOMiKBwo+OIiIicsyCbhSVzU3li6VLGdy6hrzYZd08Lz+37Hc/sfpnGriaj\nI54RnxWYtrY21qxZwwsvvDA4kHvFFVewfv16ADZs2MCcOXPIyspi//79tLa20tHRwa5du5g+fbqv\nYp2T/OpaTPYehptdRkcREREZEq6IYXz31mncN+suwiuvwdPq5JA7nx9u+RlvHVlPr6fX6Iin5bNT\nSOvWrcPtdnP//fcPPvbTn/6U73//+2RnZ5OQkMAtt9yCzWbjgQce4N/+7d8wmUx8+9vfxuHwr3O2\nBzTAKyIiF6m00ZE8kbSAD3ZO4M2Dm/HEH+Tdsg/4tGond05cTFZ0GiaTyeiYX2LynsnQiZ/x5XnD\nk52XfPzdV6m17+GOUXcyL2Wqz762nJ7O5/snrYv/0tr4L39dm6MdvfxpYz473J9ijSvFZPYyJjyV\n5ROXEBt64cc7DJuBuVg09Q7swJuZkGpwEhEREd8ZHmrnGzdl8r1rluOqux7P0SiKWo/w+LZf8JfC\nt+nu6zE64iAVmH+iu7ePXpsbsydYA7wiInJJSE0YzqrlV7M8ZQWWsul4eux8UPERP/h0NTtr95zR\nFcO+pgLzTxyurscU1M1ws8svzwGKiIj4gtlkYm7WCH56163Mtt+FpzqV9mOd/O7gqzy54zmq22uN\nzWfoVw8A+2uKAUgMSzA4iYiIyIUXEmzl7vkTefSGFYx0L8TjdlHWXsqPtv+S7Py/0dXXbUguFZh/\novRoJQATXKOMDSIiImKgEdGhPHTbHL6R/nWCKmfS3z2Mj6s/Zc3W5w3JE/i3o/Sxxt46sENGfIrR\nUURERAxlMpmYNt5FRspi3t6awfqSTbQFBRmSRQXmNHp6PfRYm7F6gogM9q+7Y4uIiBjFbrOwZM5Y\n5k9NxtNvzECvCsxpFNTUYw7uYrg3UQO8IiIiXxAeajfsa2sG5jT2HR/gHaEBXhEREb+iAnMapS0D\nA7zjo5MNTiIiIiInUoE5jcbjO/BqgFdERMS/qMCcQk+vh25rM+Z+O9HDIo2OIyIiIidQgTmFoppG\nzMGdhJu0A6+IiIi/UYE5hcEB3lAN8IqIiPgbFZhTKGmpAGCcBnhFRET8jgrMKTRogFdERMRvqcCc\nRM8xD92WZkz9NmJCooyOIyIiIl+gAnMSR2qbMAV3EG6K1gCviIiIH9KtBE5if3UJJhMkhGiAV0RE\nxB/pCMxJFLvLARgXpQFeERERf6QCcxL1xwd4MzXAKyIi4pdUYL7gfwd4rcSERhsdR0RERE5CBeYL\nDlc0YApux2GKxmzSt0dERMQfaYj3C3JLCjGZIH6YBnhFRET8lQ4xfEF+QykA46OSjA0iIiIip6QC\n8wU1ndWAduAVERHxZyowJ+g95qHT1ISp30pcWIzRcUREROQUfDoDU1BQwL333svXv/51VqxYwX33\n3Yfb7QagpaWFyZMnc88993DzzTeTnp4OgNPp5KmnnvJlrFMqrnNjGtZOGDEa4BUREfFjPiswnZ2d\nPP7448yaNWvwsROLycMPP8ztt98OwOjRo1m7dq2vopyxA9WlmExe4ofFGx1FRERETsNnhxnsdjsv\nvvgiMTFfPhVTXFxMW1sbmZmZvvry5+TI8R14x2oHXhEREb/msyMwVqsVq/Xkn/4Pf/gDK1asGPy4\nsbGR++67j/r6epYvX86iRYtO+7mdzhCsVsuQ5gWwhXdAF8yblIHL6Rjyzy/nz+XSuvgjrYv/0tr4\nL63N+bng+8D09vaSm5vLY489BkBERATf/e53WbRoEW1tbdx+++3MnDnzpEduPuN2d/okW9aIZIKO\ndhPcG0pDQ5tPvoacO5fLoXXxQ1oX/6W18V9amzNzupJ3wQvMjh07PnfqKCwsjKVLlwIQGRlJeno6\nxcXFpy0wvjI/aS53um7SPyoRERE/d8Evtdm/fz8TJkwY/Hjr1q385Cc/AQYGf/Pz8xk9evSFjiUi\nIiIBxGdHYA4cOMDq1aupqqrCarWyfv16nn76aRoaGkhK+t9dbqdPn84bb7zBsmXL8Hg8fPOb3yQ2\nNtZXsUREROQiYPJ6vV6jQ5wtX57i0XlJ/6W18U9aF/+ltfFfWpszc7oZGO3WJiIiIgFHBUZEREQC\njgqMiIiIBBwVGBEREQk4KjAiIiIScFRgREREJOCowIiIiEjAUYERERGRgKMCIyIiIgFHBUZEREQC\nTkDeSkBEREQubToCIyIiIgFHBUZEREQCjgqMiIiIBBwVGBEREQk4KjAiIiIScFRgREREJOCowJzg\nxz/+McuWLePOO+9k3759RseRE6xZs4Zly5axdOlSNmzYYHQcOUF3dzfXXnstf/nLX4yOIid48803\nWbRoEbfeeisbN240Oo4AHR0dfOc732HlypXceeedbNq0yehIAc1qdAB/sX37dsrKysjOzubIkSM8\n8sgjZGdnGx1LgK1bt1JYWEh2djZut5slS5Zw3XXXGR1LjnvuuecYPny40THkBG63m2effZbXX3+d\nzs5Onn76aa666iqjY13y/vrXvzJ69GgeeOAB6urq+NrXvsa7775rdKyApQJz3JYtW7j22msBSE1N\n5ejRo7S3txMWFmZwMpkxYwaZmZkAhIeH09XVhcfjwWKxGJxMjhw5QlFRkX44+pktW7Ywa9YswsLC\nCAsL4/HHHzc6kgBOp5PDhw8D0NraitPpNDhRYNMppOMaGxs/948pMjKShoYGAxPJZywWCyEhIQDk\n5OQwd+5clRc/sXr1ah566CGjY8gXVFZW0t3dzbe+9S2WL1/Oli1bjI4kwE033UR1dTULFixgxYoV\nfO973zM6UkDTEZhT0B0W/M/7779PTk4OL7/8stFRBHjjjTeYPHkyI0eONDqKnERLSwvPPPMM1dXV\nfPWrX+Uf//gHJpPJ6FiXtL/97W8kJCTw29/+lvz8fB555BHNjp0HFZjjYmJiaGxsHPy4vr4el8tl\nYCI50aZNm3j++ed56aWXcDgcRscRYOPGjVRUVLBx40Zqa2ux2+3ExcVxxRVXGB3tkhcVFcWUKVOw\nWq0kJSURGhpKc3MzUVFRRke7pO3atYvZs2cDMGHCBOrr63U6/DzoFNJxV155JevXrwcgLy+PmJgY\nzb/4iba2NtasWcMLL7xARESE0XHkuF/96le8/vrr/OlPf+L222/n3nvvVXnxE7Nnz2br1q309/fj\ndrvp7OzUvIUfSE5OZu/evQBUVVURGhqq8nIedATmuKlTp5KWlsadd96JyWRi1apVRkeS49atW4fb\n7eb+++8ffGz16tUkJCQYmErEf8XGxnL99ddzxx13APD9738fs1m/rxpt2bJlPPLII6xYsYK+vj4e\ne+wxoyMFNJNXwx4iIiISYFTJRUREJOCowIiIiEjAUYERERGRgKMCIyIiIgFHBUZEREQCjgqMiPhU\nZWUl6enprFy5VojphgAAAtxJREFUcvAuvA888ACtra1n/DlWrlyJx+M54+ffddddbNu27VziikiA\nUIEREZ+LjIxk7dq1rF27ltdee42YmBiee+65M3792rVrteGXiHyONrITkQtuxowZZGdnk5+fz+rV\nq+nr6+PYsWP84Ac/YNKkSaxcuZIJEyZw6NAhXnnlFSZNmkReXh69vb08+uij1NbW0tfXx+LFi1m+\nfDldXV38x3/8B263m+TkZHp6egCoq6vjP//zPwHo7u5m2bJl3HbbbUa+dREZIiowInJBeTwe3nvv\nPaZNm8Z//dd/8eyzz5KUlPSlm9uFhITwP//zP5977dq1awkPD+fnP/853d3dLFy4kDlz5rB582aC\ng4PJzs6mvr6e+fPnA/DOO++QkpLCD3/4Q3p6evjzn/98wd+viPiGCoyI+FxzczMrV64EoL+/n+nT\np7N06VKeeuop/vu//3vwee3t7fT39wMDt/f4or1793LrrbcCEBwcTHp6Onl5eRQUFDBt2jRg4Mas\nKSkpAMyZM4dXX32Vhx56iHnz5rFs2TKfvk8RuXBUYETE5z6bgTlRW1sbNpvtS49/xmazfekxk8n0\nuY+9Xi8mkwmv1/u5e/18VoJSU1N5++232bFjB++++y6vvPIKr7322vm+HRHxAxriFRFDOBwOEhMT\n+eijjwAoKSnhmWeeOe1rsrKy2LRpEwCdnZ3k5eWRlpZGamoqu3fvBqCmpoaSkhIA3nrrLfbv388V\nV1zBqlWrqKmpoa+vz4fvSkQuFB2BERHDrF69mieeeILf/OY39PX18dBDD532+StXruTRRx/l7rvv\npre3l3vvvZfExEQWL17Mhx9+yPLly0lMTCQjIwOAMWPGsGrVKux2O16vl2984xtYrfpvT+RioLtR\ni4iISMDRKSQREREJOCowIiIiEnBUYERERCTgqMCIiIhIwFGBERERkYCjAiMiIiIBRwVGREREAo4K\njIiIiASc/w/lwk6bbekW6gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i4lGvqajDWlw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## One-Hot Encoding for Discrete Features\n", + "\n", + "Discrete (i.e. strings, enumerations, integers) features are usually converted into families of binary features before training a logistic regression model.\n", + "\n", + "For example, suppose we created a synthetic feature that can take any of the values `0`, `1` or `2`, and that we have a few training points:\n", + "\n", + "| # | feature_value |\n", + "|---|---------------|\n", + "| 0 | 2 |\n", + "| 1 | 0 |\n", + "| 2 | 1 |\n", + "\n", + "For each possible categorical value, we make a new **binary** feature of **real values** that can take one of just two possible values: 1.0 if the example has that value, and 0.0 if not. In the example above, the categorical feature would be converted into three features, and the training points now look like:\n", + "\n", + "| # | feature_value_0 | feature_value_1 | feature_value_2 |\n", + "|---|-----------------|-----------------|-----------------|\n", + "| 0 | 0.0 | 0.0 | 1.0 |\n", + "| 1 | 1.0 | 0.0 | 0.0 |\n", + "| 2 | 0.0 | 1.0 | 0.0 |" + ] + }, + { + "metadata": { + "id": "KnssXowblKm7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Bucketized (Binned) Features\n", + "\n", + "Bucketization is also known as binning.\n", + "\n", + "We can bucketize `population` into the following 3 buckets (for instance):\n", + "- `bucket_0` (`< 5000`): corresponding to less populated blocks\n", + "- `bucket_1` (`5000 - 25000`): corresponding to mid populated blocks\n", + "- `bucket_2` (`> 25000`): corresponding to highly populated blocks\n", + "\n", + "Given the preceding bucket definitions, the following `population` vector:\n", + "\n", + " [[10001], [42004], [2500], [18000]]\n", + "\n", + "becomes the following bucketized feature vector:\n", + "\n", + " [[1], [2], [0], [1]]\n", + "\n", + "The feature values are now the bucket indices. Note that these indices are considered to be discrete features. Typically, these will be further converted in one-hot representations as above, but this is done transparently.\n", + "\n", + "To define feature columns for bucketized features, instead of using `numeric_column`, we can use [`bucketized_column`](https://www.tensorflow.org/api_docs/python/tf/feature_column/bucketized_column), which takes a numeric column as input and transforms it to a bucketized feature using the bucket boundaries specified in the `boundaries` argument. The following code defines bucketized feature columns for `households` and `longitude`; the `get_quantile_based_boundaries` function calculates boundaries based on quantiles, so that each bucket contains an equal number of elements." + ] + }, + { + "metadata": { + "id": "cc9qZrtRy-ED", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def get_quantile_based_boundaries(feature_values, num_buckets):\n", + " boundaries = np.arange(1.0, num_buckets) / num_buckets\n", + " quantiles = feature_values.quantile(boundaries)\n", + " return [quantiles[q] for q in quantiles.keys()]\n", + "\n", + "# Divide households into 7 buckets.\n", + "households = tf.feature_column.numeric_column(\"households\")\n", + "bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " california_housing_dataframe[\"households\"], 7))\n", + "\n", + "# Divide longitude into 10 buckets.\n", + "longitude = tf.feature_column.numeric_column(\"longitude\")\n", + "bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " california_housing_dataframe[\"longitude\"], 10))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U-pQDAa0MeN3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Train the Model on Bucketized Feature Columns\n", + "**Bucketize all the real valued features in our example, train the model and see if the results improve.**\n", + "\n", + "In the preceding code block, two real valued columns (namely `households` and `longitude`) have been transformed into bucketized feature columns. Your task is to bucketize the rest of the columns, then run the code to train the model. There are various heuristics to find the range of the buckets. This exercise uses a quantile-based technique, which chooses the bucket boundaries in such a way that each bucket has the same number of examples." + ] + }, + { + "metadata": { + "id": "YFXV9lyMLedy", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "0FfUytOTNJhL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 618 + }, + "outputId": "4ec041f8-c102-497f-fbfe-5ec6bbcabdec" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 170.88\n", + " period 01 : 144.58\n", + " period 02 : 128.05\n", + " period 03 : 116.90\n", + " period 04 : 108.93\n", + " period 05 : 102.95\n", + " period 06 : 98.38\n", + " period 07 : 94.82\n", + " period 08 : 91.91\n", + " period 09 : 89.52\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYVGfaP/DvmRlg6H2oSlVRQLAQ\nCzawYe+YRIkxJtlNNHETsym/N8km627KbmKqmrJJbMnGEnuPvcWCKIICSpPee4eZ8/vDN7waRhyQ\nGWbg+7muXJcz53nOuWfuOcu9zznneQRRFEUQERERGRBJZwdARERE1FYsYIiIiMjgsIAhIiIig8MC\nhoiIiAwOCxgiIiIyOCxgiIiIyODIOjsAIn3Wp08f9OzZE1KpFACgVCoREhKCN998E2ZmZu3e75Yt\nWxAZGdni/e3bt+ONN97AV199hbCwsOb36+rqMHz4cEyYMAEffPBBu4+rqYyMDLz33ntIS0sDAJia\nmmLZsmUYN26c1o/dFmvWrEFGRkaL7+TChQtYsmQJ3N3dW/Q5ePCgrsJ7KFlZWRg7diy8vLwAAKIo\nwsHBAf/zP/+Dfv36tWlfH3/8MVxdXfHYY49p3GfXrl3Ytm0bNm7c2KZjEekKCxiiB9i4cSOcnZ0B\nAA0NDXjppZfw9ddf46WXXmrX/goLC/Gf//xHbQEDAC4uLti7d+89Bczx48dhZWXVruO1xyuvvIIZ\nM2bgq6++AgDExsZi0aJFOHDgAFxcXHQWx8NwcXExmGLlfqRS6T2fYf/+/Vi6dCkOHToEY2Njjfez\nYsUKbYRH1Kl4CYmoDYyNjTFy5EgkJCQAAOrr6/H2229j4sSJmDRpEj744AMolUoAQGJiIh599FFE\nRERgxowZOH36NADg0UcfRU5ODiIiItDQ0NDiGAMHDsSFCxdQW1vb/N7+/fsRGhra/LqhoQH/+Mc/\nMHHiRISHhzcXGgBw5coVzJ49GxEREZg8eTLOnTsH4M7/ox8xYgQ2bNiAadOmYeTIkdi/f7/az3nz\n5k0EBQU1vw4KCsKhQ4eaC7kvv/wSo0ePxsyZM/HNN98gPDwcAPD6669jzZo1zf3ufv2guN577z0s\nXLgQAHD58mXMmTMH48ePR2RkJDIzMwHcGYn6y1/+grCwMCxcuBB5eXkPyJh627dvx7Jly7Bo0SL8\n61//woULF/Doo49i+fLlzX/sDxw4gKlTpyIiIgJPPPEEMjIyAABffPEF3nzzTcydOxfr1q27Z7/L\nly/H999/3/w6ISEBI0aMgEqlwieffIKJEydi4sSJeOKJJ5Cfn9/muCdPnoy6ujqkpqYCADZv3oyI\niAiEh4fj5ZdfRl1dHYA73/v777+PadOm4cCBA/fk4X6/S5VKhb///e8YM2YM5s6di8TExObjXrx4\nEbNmzcLkyZMxadIkHDhwoM2xE3U4kYjuq3fv3mJubm7z67KyMnHBggXimjVrRFEUxa+//lp85pln\nxMbGRrG2tlacM2eOuHPnTlGpVIqTJk0S9+zZI4qiKF67dk0MCQkRKysrxfPnz4vjxo1Te7xffvlF\nfO2118RXXnmluW9lZaU4duxYcevWreJrr70miqIofvnll+KiRYvE+vp6sbq6Wpw5c6Z47NgxURRF\ncerUqeLevXtFURTFHTt2NB8rMzNT7Nevn7hx40ZRFEVx//794vjx49XG8cILL4hhYWHi+vXrxeTk\n5Hu2JSUliYMHDxYLCgrExsZG8bnnnhPDwsJEURTF1157TVy9enVz27tftxaXv7+/uH379ubPGxIS\nIp45c0YURVHcs2ePOGvWLFEURXHTpk3iggULxMbGRrGkpEQMCwtr/k7u1tp3/Pv3HBwcLKalpTW3\nDwwMFM+dOyeKoihmZ2eLgwYNEtPT00VRFMXvvvtOXLRokSiKovj555+LI0aMEIuLi1vsd9++feKC\nBQuaX3/22WfiypUrxZs3b4oTJkwQGxoaRFEUxQ0bNog7duy4b3y/fy99+/Zt8X5ISIiYkpIiXrp0\nSRw2bJiYl5cniqIovvXWW+IHH3wgiuKd733atGliXV1d8+vVq1e3+rs8ceKEOGHCBLGqqkqsra0V\n586dKy5cuFAURVGcPXu2eOHCBVEURTEtLU18+eWXW42dSBc4AkP0AFFRUYiIiMDYsWMxduxYDB06\nFM888wwA4MSJE4iMjIRMJoNcLse0adNw9uxZZGVloaioCFOmTAEABAYGwtXVFXFxcRodc8qUKdi7\ndy8A4MiRIwgLC4NE8n+n6/Hjx/H444/D2NgYZmZmmDFjBg4fPgwA2LlzJyZNmgQAGDRoUPPoBQA0\nNTVh9uzZAAB/f3/k5OSoPf6///1vLFiwAHv27MHUqVMRHh6O//73vwDujI6EhITA0dERMpkMU6dO\n1egztRZXY2Mjxo8f37x/Jyen5hGnqVOnIiMjAzk5OYiOjsb48eMhk8lga2t7z2W2P8rNzUVERMQ9\n/919r4ynpyc8PT2bX8vlcgwbNgwAcPbsWQwZMgQeHh4AgHnz5uHChQtoamoCcGdEys7OrsUxx4wZ\ngxs3bqCsrAwA8OuvvyIiIgJWVlYoKSnBnj17UF5ejqioKMycOVOj7+13oihi8+bNcHJygqenJ44d\nO4bJkyfDyckJAPDYY481/wYAYNiwYTAxMblnH639Li9duoTRo0fD3Nwccrm8OVcAYG9vj507dyIl\nJQWenp74+OOP2xQ7kTbwHhiiB/j9HpiSkpLmyx8y2Z1Tp6SkBNbW1s1tra2tUVxcjJKSElhaWkIQ\nhOZtv/8Rc3BweOAxQ0ND8eabb6KsrAz79u3D888/33xDLQBUVlbi/fffx6pVqwDcuaTUv39/AMCe\nPXuwYcMGVFdXQ6VSQbxruTOpVNp887FEIoFKpVJ7fBMTEyxZsgRLlixBRUUFDh48iPfeew/u7u4o\nLy+/534ce3v7B34eTeKysLAAAFRUVCAzMxMRERHN242NjVFSUoLy8nJYWlo2v29lZYXq6mq1x3vQ\nPTB35+2Pr0tLS+/5jJaWlhBFEaWlpWr7/s7MzAzDhw/HiRMnMGjQIFRUVGDQoEEQBAFffPEFvv/+\ne6xcuRIhISF49913H3g/kVKpbP4eRFGEr68v1qxZA4lEgsrKSvz66684c+ZM8/bGxsb7fj4Arf4u\ny8vLoVAo7nn/d++99x7Wrl2LxYsXQy6X4+WXX74nP0SdgQUMkYbs7OwQFRWFf//731i7di0AwMHB\nofn/bQNAWVkZHBwcYG9vj/Lycoii2PzHoqysTOM/9kZGRggLC8POnTtx+/ZtDBgw4J4CRqFQ4Kmn\nnmoxApGfn48333wTW7duRd++fZGeno6JEye26XOWlJQgISGheQTEysoKkZGROH36NG7evAlLS0tU\nVlbe0/53fyyKysvL2xyXQqGAt7c3tm/f3mKblZXVfY/dkezt7XHlypXm1+Xl5ZBIJLC1tX1g34kT\nJ+LXX39FaWkpJk6c2Jz/oUOHYujQoaipqcGHH36Ijz766IEjGX+8ifduCoUCs2bNwmuvvdamz3W/\n32Vr362DgwPeeustvPXWWzhz5gxeeOEFjBw5Eubm5hofm6ij8RISURssXrwYV65cwcWLFwHcuWSw\nbds2KJVK1NTUYNeuXRg9ejTc3d3h7OzcfJNsTEwMioqK0L9/f8hkMtTU1DRfjrifKVOm4Ntvv1X7\n6PLYsWOxdetWKJVKiKKINWvW4NSpUygpKYGZmRm8vb3R1NSEzZs3A8B9RynUqaurw4svvth8cycA\n3L59G7GxsRg8eDAGDBiA6OholJSUoKmpCTt37mxu5+jo2HzzZ2ZmJmJiYgCgTXEFBQWhsLAQsbGx\nzfv561//ClEUERwcjGPHjkGpVKKkpASnTp3S+HO1RWhoKKKjo5svc/38888IDQ1tHnlrTVhYGK5c\nuYIjR440X4Y5c+YM3n33XahUKpiZmcHPz++eUZD2CA8Px+HDh5sLjSNHjuCbb75ptU9rv8sBAwbg\nzJkzqK2tRW1tbXPh1NjYiKioKBQUFAC4c+lRJpPdc0mTqDNwBIaoDSwsLPDss8/iww8/xLZt2xAV\nFYXMzExMmTIFgiAgIiICkyZNgiAIWLVqFf72t7/hyy+/hKmpKT777DOYmZmhT58+sLa2RmhoKHbs\n2AFXV1e1x3rkkUcgCAImT57cYtvjjz+OrKwsTJkyBaIoIiAgAIsWLYKZmRlGjRqFiRMnwt7eHq+/\n/jpiYmIQFRWFzz//XKPP6OrqirVr1+Lzzz/HP/7xD4iiCAsLC7zxxhvNTybNnz8fs2bNgq2tLSZM\nmIBbt24BACIjI7Fs2TJMmDAB/fr1ax5l8fPz0zguuVyOzz//HCtXrkR1dTWMjIywfPlyCIKAyMhI\nREdHY9y4cXB1dcW4cePuGTW42+/3wPzRv/71rwd+B87OzvjHP/6B559/Ho2NjXB3d8fKlSs1+v4s\nLCzg7++PpKQkBAcHAwBCQkKwb98+TJw4EcbGxrCzs8N7770HAHj11VebnyRqC39/f/z5z39GVFQU\nVCoV7O3t8e6777bap7XfZVhYGE6cOIGIiAg4ODhg9OjRiI6OhpGREebOnYsnn3wSwJ1RtjfffBOm\npqZtipeoowni3ReiiYjaKDo6Gq+++iqOHTvW2aEQUTfCMUAiIiIyOCxgiIiIyODwEhIREREZHI7A\nEBERkcFhAUNEREQGxyAfoy4sVP/YZEewtTVDaWmN1vZP7cfc6CfmRX8xN/qLudGMo6PlfbdxBOYP\nZDJpZ4dA98Hc6CfmRX8xN/qLuXl4LGCIiIjI4LCAISIiIoPDAoaIiIgMDgsYIiIiMjgsYIiIiMjg\nsIAhIiIig8MChoiIiAwOCxgiIqIu5sSJoxq1++yzj5GTk33f7a+//nJHhdThWMAQERF1Ibm5OThy\n5JBGbZcvXwFXV7f7bv/gg1UdFVaHM8ilBIiIiEi9Vas+RELCdYwcGYIJEyYhNzcHn366Bu+//3cU\nFhagtrYWTz31LEJDR2LZsmfx8suv4vjxo6iurkJGxm1kZ2fhxRdXYNiwUEyZMhb79h3FsmXPIiRk\nCGJiolFWVoYPP/wEDg4O+Pvf30JeXi4CA/vj2LEj2LFjv84+JwsYIiIiLdlyLBmXEgtavC+VClAq\nxXbtM8RPgchw3/tuf+yxKGzfvgVeXj7IyEjHmjX/QWlpCR55ZCgmTZqK7OwsvPXW6wgNHXlPv4KC\nfHz00ec4f/4cdu36BcOGhd6z3dzcHJ99thZr136BU6eOwdXVHQ0N9fjmm3U4e/Y0tmz5b7s+T3ux\ngLlLUVkt8irq4Wxl0tmhEBERPbS+ff0BAJaWVkhIuI7du7dDECSoqChv0bZ//2AAgEKhQFVVVYvt\nQUEDmreXl5fj9u00BAYGAQCGDQuFVKrb9Z1YwNxl99l0nInLxVuLBsPLxaqzwyEiIgMXGe6rdrTE\n0dEShYWVWj++kZERAODXXw+ioqICq1f/BxUVFXj66agWbe8uQESx5ejQH7eLogiJ5M57giBAEISO\nDr9VvIn3LsMDnAEAPx+9pTZ5RERE+k4ikUCpVN7zXllZGVxcXCGRSHDy5DE0NjY+9HHc3NyRlHQD\nAHDx4vkWx9Q2FjB38fOwxRB/Z9zKKsflpMLODoeIiKjNPDy8kJSUiOrq/7sMNGZMOM6dO43ly5+D\nqakpFAoFfvjh24c6zvDhI1FdXY3nnluC2NgrsLKyftjQ20QQDXCoQZvDbg0QsPRfx2BnZYJ/PD0U\nRjLWePpCV0Ou1DbMi/5ibvRXV8hNRUU5YmKiMWbMWBQWFmD58ufw00+/dOgxHB0t77uN98D8gZuj\nBcIGuuFIdBaOxWRh4iM9OzskIiIivWNmZo5jx47gp582QhRVeOEF3U56xwJGjemhXvgtPg+7z6Zj\neIAzLM2MOzskIiIivSKTyfD3v7/facfn9RE1LEyNMC3UC7X1Tdh9Nr2zwyEiIqI/YAFzH+ED3aCw\nNcWJK9nILa7u7HCIiIjoLixg7kMmlWDeGF8oVSK2Hk/p7HCIiIjoLixgWjGwtwN697DB1eQiJKSX\ndHY4RERE9L9YwLRCEAQ8OvbODIqbjyVDpTK4J86JiIjUmjt3GmpqarBx4zrEx1+7Z1tNTQ3mzp3W\nav8TJ44CAPbv34OTJ49rLc77YQHzAJ7OVhge4IyMgiqcjc/t7HCIiIg6VFTUkwgI6N+mPrm5OThy\n5BAAYPLkaRg9OkwbobWKj1FrYPYob0QnFmD7qVSE+CkgN+bXRkRE+umppxbgvfc+hrOzM/LycvHG\nGyvg6KhAbW0t6urq8NJLf0W/fgHN7f/5z3cwZsxYBAcPwP/8z6toaGhoXtgRAA4fPoBt2zZDKpXA\n09MHr732P1i16kMkJFzHDz98C5VKBRsbG8yZMx9r1nyGuLhYNDUpMWdOJCIipmDZsmcREjIEMTHR\nKCsrw4cffgJnZ+eH/pz8S6wBOys5Jj7SE3vOpePghQzMHOnd2SEREZEB2J68F1cK4lq8L5UIULbz\ntoQBikDM9p163+2jRoXh7NlTmDMnEqdPn8SoUWHw8emFUaPG4PLlS/jxx/X45z//3aLfoUMH4O3t\ngxdfXIGjRw83j7DU1tbi44+/gKWlJZYufQYpKcl47LEobN++BYsXP4PvvvsaAHD1agxSU1Owdu33\nqK2txaJFj2LUqDEAAHNzc3z22VqsXfsFTp06hsjIx9v12e/GS0gamjS0J6zNjXHwQgZKK+s7Oxwi\nIiK17hQwpwEAZ86cxIgRo3Hy5FE899wSrF37BcrLy9X2S09PRUBAEABgwIBBze9bWVnhjTdWYNmy\nZ3H7dhrKy8vU9k9MvIHg4IEAAFNTU3h6eiMzMxMAEBQ0AACgUChQVVWltn9bcQTmLudzo5GWko5I\nr1mQSqT3bJMbyzB7lDd+OJCI7SdTsGRqv06KkoiIDMVs36lqR0u0uRaSt7cPiosLkZ+fh8rKSpw+\nfQIODgq89dZKJCbewJdffqq2nygCEokAAM0PrTQ2NmLVqn9h3bqfYG/vgFdf/ct9jysIAu5eXbGp\nqbF5f1Lp//1N7aglGDkCc5e86gKcuX0Rp3POq90eGuiCHgoLnI3PQ3pehY6jIyIi0sywYSPwzTdr\nMHLkaJSXl8HNzR0AcPLkcTQ1Nant07OnBxITEwAAMTHRAICammpIpVLY2zsgPz8PiYkJaGpqgkQi\ngVKpvKe/n58/rly5/L/9apCdnQV3d+2tJ8gC5i5je46CqZEc+9N+RU1jTYvtEomA+eH/+1j10eQO\nqyKJiIg60ujRYThy5BDGjBmLiIgp2Lz5R7z00lL4+weguLgY+/btbtEnImIKrl+Pw/LlzyEz8zYE\nQYC1tQ1CQobg6aefwA8/fIvHH4/C55+vgoeHF5KSEvH55x839w8KCkafPn5YuvQZvPTSUvz5z8tg\namqqtc8oiAb4V1ibS5CfLTqHn67txNgeozC7l/qbpD7bGovYlGK8MDsQA3o7ai0WuldXWH6+K2Je\n9Bdzo7+YG804OlredxtHYP5gcu9w2MltcTLrLApritW2iQz3hUQQsOV4MpqUKh1HSERERCxg/sBY\naoSZPpPQJCqxK2W/2jYu9uYIG+CG/NJaHI/J1nGERERExAJGjYGKIHhZ9cSVwjgkl6WpbTN9hCdM\nTWTYfTYNVbWNOo6QiIioe2MBo4YgCJjd684aENuT90IltrxMZGlmjGnDPVFd14Q9Z9N1HCEREVH3\nxgLmPrytPTBIEYTbFZm4nB+rts3YQe5wsJbjWEwW8ktaPrVERERE2sECphXTfSZBJkixK+UAGpQt\nLxMZySSIDPOFUiVi64mUToiQiIioe2IB0woHUzuE9RiJ0voyHM88rbbNoD6O8HW3RszNQiRllOo4\nQiIiou6JBcwDTPQMg4WROQ7dPoaKhpbP7AuCgEfDewEAfj6aDJXhTatDRERkcFjAPICpzBRTvMaj\nXtmAvamH1bbxdrXC0H5OuJ1fifPX83QcIRERUffDAkYDoa5D4GymwLmci8ipUl+gzBntAyOZBL+c\nTEV9o1JtGyIiIuoYLGA0IJVIMct3CkSI2J68V20be2s5JoT0QGllPQ5dzNBxhERERN0LCxgN+dv7\nwc+2FxJKbuJ6cZLaNpOHesDKzAj7z99GaWW9jiMkIiLqPljAaOjO5HZTIUDAjuS9UKpaXiYyNZFh\n1ihvNDSqsON0aidESURE1D2wgGkDNwsXDHMJQW51Ps7lXlLbZmR/V7g5muPstVxk5HOlUSIiIm1g\nAdNGU70nwlhqjL2ph1DbVNdiu0QiYH64L0QAm48lQ+Rj1URERB2OBUwbWZtYYkLPMFQ1VuPw7eNq\n2wR42SPQ2x4Jt0sRm1Ks4wiJiIi6Pq0WMDdv3sS4ceOwadMmAEBjYyNWrFiBuXPnYtGiRSgvLwcA\n7N69G3PmzMG8efOwdetWbYbUIcb2HAkbE2scyzyN4lr1s+9GhvtCIgjYciwZTcqWi0ESERFR+2mt\ngKmpqcHKlSsxbNiw5ve2bNkCW1tbbNu2DZMnT0Z0dDRqamqwevVqrFu3Dhs3bsT69etRVlamrbA6\nhLHUGNO9I9CkasLu1ANq27g5mGNUsCvySmpw8mqOjiMkIiLq2rRWwBgbG+Pbb7+FQqFofu/48eOY\nPn06AGD+/PkYO3YsYmNjERgYCEtLS8jlcgwcOBAxMTHaCqvDhDgPQE9LN0TnX0Vaufp5X2aO8ILc\nWIpdZ9JQU9dyMUgiIiJqH5nWdiyTQSa7d/fZ2dk4deoU/v3vf8PBwQF/+9vfUFRUBDs7u+Y2dnZ2\nKCwsbHXftrZmkMmkWokbABwdLTVq99Tg+Xjn+CrsSd+Pv499BYIg/GE/wPzxfbB+3w0cvZqLp6b5\nayPcbkXT3JBuMS/6i7nRX8zNw9FaAaOOKIrw8vLCsmXLsGbNGnz99dfo169fizYPUlpao60Q4eho\nicJCzR5/dhScEeQYgNjCeBy+cQ4DFf1btBne1xF7T8ux53QKhvRxgMLWrKND7jbakhvSHeZFfzE3\n+ou50UxrRZ5On0JycHBASEgIAGDEiBFITk6GQqFAUVFRc5uCgoJ7Ljvpu5k+kyAVpNiZvB+NqqYW\n241kUswL80GTUsS2EymdECEREVHXo9MCZtSoUTh9+jQA4Pr16/Dy8kJQUBDi4uJQUVGB6upqxMTE\nYPDgwboM66EozBwx2n04iutKcDLrrNo2IX4K+LhaITqpEDcz9fsGZSIiIkOgtQImPj4eUVFR2LFj\nBzZs2ICoqCjMmDEDJ0+exGOPPYYjR47g2WefhVwux4oVK7BkyRIsXrwYS5cuhaWlYV0XjPAcCzOZ\nKQ6mH0VVQ3WL7YIgYP7YXgDuTG6n4uR2RERED0UQDXCqWG1eN2zvdcnjmWew7dZujHYfjsjeM9W2\n+WpXPC4mFODZaf0w1N/5YUPtdnjNWD8xL/qLudFfzI1m9OYemK5spNtQKEwdcDr7PPKqC9S2mTva\nBzKpBNtOpqChseVikERERKQZFjAdRCaRYabvZKhEFXYk71PbxsHGFOND3FFSUY/DlzJ1HCEREVHX\nwQKmA/V38EcvG2/EFycgseSW2jZThnrCwtQI+87fRnlVvY4jJCIi6hpYwHQgQRAwu9dUCBCwPXkv\nVGLLNZDM5DLMGumF+gYldp5J64QoiYiIDB8LmA7W09IdjzgPRHZVLs7nXlbbZlSwK1zszXAqNgdZ\nBVU6jpCIiMjwsYDRgmneE2EkMcLe1IOoa2p5mUgqkWB+eC+IIrD52C2NZh8mIiKi/8MCRgts5TYY\n13M0yhsqcSTjpNo2gd528Peyw/X0UsSllug4QiIiIsPGAkZLxvUcDStjSxzJOInSupaz7wqCgPlh\nvhAEYMvxZChVLe+XISIiIvVYwGiJXGaCad4RaFQ1Yk/qIbVt3BUWGNnfFTlF1TgVm6vjCImIiAwX\nCxgtGuoyCG4WLriQdxkZFVlq28wa6QUTYyl2nk5FTV3LxSCJiIioJRYwWiQRJJjtOxUAsD15r9qb\nda0tTDBlqAcqaxqx73y6jiMkIiIyTCxgtMzPrhcC7PviVlkqrhXdUNtmQkgP2FmZ4NdLmSgqq9Vx\nhERERIaHBYwOzPKdAokgwc7kfWhStbxMZGwkxZzRPmhSith2MqUTIiQiIjIsLGB0wNlcgRGuQ1FQ\nW4TT2efVthnSzwleLpa4mFCA5OxyHUdIRERkWFjA6Mhkr3EwlcmxP+1XVDfWtNguEQTMD+8FANh8\nlJPbERERtYYFjI5YGltgokc4appqcTD9qNo2vXvYYHAfR6TkVOBSYoGOIyQiIjIcLGB0aIx7KOzl\ndjiZdQ4FNUVq28wd4wOZVMDW4ylobFLqOEIiIiLDwAJGh4ykRpjpOxlKUYldKfvVtlHYmmHsIHcU\nV9ThSLT6uWOIiIi6OxYwOjbAMRDe1h64WhiPW6WpattMG+4JC1Mj7P0tHRXVDboNkIiIyACwgNEx\nQRDumdxOJbZcA8lMboQZI7xQW6/ErjNpug6RiIhI77GA6QRe1h4Y7BSMjMosROdfVdtmdLArnO3M\ncOJqNrILq3QcIRERkX5jAdNJpntPgkwiw66UA2hQtrxMJJNKEBnmC1EEthzn5HZERER3YwHTSexN\nbRHeYyTK6stxLPO02jZBvvbo62GLuNRixKcV6zhCIiIi/cUCphNN8AiDhZE5Dt0+jvL6yhbbBUHA\n/HBfCAA2H0uGSsXJ7YiIiAAWMJ3KVCbHVO8JaFA2YG/qIbVtejpZIrS/C7ILq3H6Wo6OIyQiItJP\nLGA62XCXR+Bs7oTfci8huypXbZtZI71hYiTFjlOpqK1vuRgkERFRd8MCppNJJVLM9p0KESK239qr\ndg0kW0sTTBrSExU1jdh//nYnRElERKRfWMDoAX/7Puhr1xuJpbdwvThRbZuJj/SEraUJDl/KRHF5\nnY4jJCIi0i8sYPTELN8pECBgR/I+KFUt10AyMZZi9ihvNDap8MspPlZNRETdGwsYPeFm4YLhro8g\nr6YAZ3Muqm0zLMAZHk6WOH89H6k5FTqOkIiISH+wgNEjU70nwERqjH1ph1HbVNtiu0QQ8OhYXwDA\nz8duqb1fhoiIqDtgAaNHrIzIqfsHAAAgAElEQVQtMcEjHFWN1TiUflxtmz49bTGglwOSs8pxOalQ\nxxESERHpBxYweia8x0jYmtjgeOZpFNWWqG0TGeYLqUTA1hPJaGxquRgkERFRV8cCRs8YS40w3ScC\nTaISu1MOqG3jZGeG8IHuKCyrw9HLWTqOkIiIqPOxgNFDg52C4WHZA5cLYpFarn7el2mhnjCXy7Dn\nXDoqa1ouBklERNSVsYDRQxJBgtm9pgIAtt/ao/ZmXQtTI0wP9UJtfRN2n0nXcYRERESdiwWMnvK1\n8UKwYyDSKjIQUxCrtk3YQDcobE1x/Eo2courdRwhERFR52EBo8dm+kyGVJBiV8oBNCobW2yXSSWI\nDPOFShSx9TgntyMiou6DBYweczSzxxj3UBTXleJE1lm1bQb0ckCfHja4mlyEG+nqn1oiIiLqaljA\n6LkIz3CYy8xwMP0YKhuqWmwXBAGPju0FAcDmY8lQqTi5HRERdX0sYPScmZEZJnuNR52yDvvTflXb\nxsPZEsMDnJFZUIWzcbk6jpCIiEj3WMAYgJFuQ6Ewc8CZnAvIrc5X22b2aB8YyyTYfjoVdQ1NOo6Q\niIhIt1jAGACpRIpZPlOgElXYkbxPbRtbSxNEDOmJ8qoGHLyQoeMIiYiIdIsFjIEIdOiH3jY+uF6c\niISSm2rbRAzpCWsLYxy8kIGSijodR0hERKQ7LGAMhCAImN1rKgQI2H5rL1RiyzWQ5MYyzB7ljYYm\nFbafSu2EKImIiHSDBYwB6WHphiHOg5BTnYffci+pbRMa4IKeCguci89Del6FjiMkIiLSDRYwBmaa\nz0QYS4ywN/Uw6ppaXiaSSATMD/cFAGw+mqx2GQIiIiJDxwLGwNiYWGOcxxhUNFTi14yTatv09bRD\nsK8DkjLLcCo2R8cREhERaR8LGAM0rudoWBtb4WjGSZTWlalt8+hYX5jLZdh46CaupRTpOEIiIiLt\nYgFjgEykxpjmE4FGVRN2px5U20Zha4bl84IgkwpYszMeqTm8H4aIiLoOFjAGaojzQLhbuOJiXgxu\nV2SqbePrZo0/zfBHY5MKn26NRX5JjY6jJCIi0g4WMAZKIkgw23cqAOCXW3vve7PugF6OiJrYB1W1\njVi15SrKqxt0GSYREZFWsIAxYH3sfBHo0A8p5WmILbp+33Zjgt0wPdQThWV1+HRrLJcaICIig8cC\nxsDN8pkMiSDBjuR9aFLdvzCZMcILo4JccDuvEmt2xKNJ2XIiPCIiIkPBAsbAOZkrMNJtGIpqi3Eq\n69x92wmCgKiJfdDfxx7xaSVYdyCRc8QQEZHBYgHTBUz2GgdTmSkOpB9FdeP9b9SVSiR4bkYAvFys\ncC4+j8sNEBGRwWIB0wVYGJkjwjMcNU21OJB2pNW2JsZSLJ/XH062ptj3220cvZyloyiJiIg6DguY\nLmK0eygc5HY4mX0O+TWFrba1MjPGS/ODYWVujJ9+vYnLSQU6ipKIiKhjsIDpIowkMsz0nQKVqMKu\n5P0PbK+wMcVL84JgbCzF17tv4Gam+hl9iYiI9BELmC4k2DEAPtaeiC26jpulKQ9s7+FsiWWzAiGK\nIj7fdg3ZhVU6iJKIiOjhabWAuXnzJsaNG4dNmzbd8/7p06fRp0+f5te7d+/GnDlzMG/ePGzdulWb\nIXVpgiBgdq87k9ttT94LlfjgR6X9veyweLIfauqbsGpLLEoqWq5wTUREpG+0VsDU1NRg5cqVGDZs\n2D3v19fX45tvvoGjo2Nzu9WrV2PdunXYuHEj1q9fj7IyXs5oL0+rnghxGoDMymxcyruiUZ/hAS6Y\nO8YHpZX1+GRrLGrqGrUcJRER0cPRWgFjbGyMb7/9FgqF4p73v/rqKzz++OMwNjYGAMTGxiIwMBCW\nlpaQy+UYOHAgYmJitBVWtzDdJwJGEhl2pRxAvVKzpQMmDemJsYPckV1YjS9+iUNjk1LLURIREbWf\n1goYmUwGuVx+z3tpaWlITEzEpEmTmt8rKiqCnZ1d82s7OzsUFrb+FA21zk5ui/Aeo1DeUIEfE7Zq\ndClJEAQ8NrYXBvdxRFJmGb7dmwAVJ7ojIiI9JdPlwd5//328+eabrbbRZHZYW1szyGTSjgqrBUdH\nS63tW1eibGfgdvVtXC6IhZO1HRYNmAdBEB7Y743FQ/D2N78hOrEAux0t8PSMAI366UpXyE1XxLzo\nL+ZGfzE3D0dnBUx+fj5SU1PxyiuvAAAKCgqwcOFCvPDCCygqKmpuV1BQgODg4Fb3VVp6/9lmH5aj\noyUKCyu1tn9dWtI3Cqti1mL/reMwVplivMcYjfr9eXo/fLApBrtPp8JEJmDSEA/tBqqhrpSbroR5\n0V/Mjf5ibjTTWpGns8eonZyccOTIEWzZsgVbtmyBQqHApk2bEBQUhLi4OFRUVKC6uhoxMTEYPHiw\nrsLq0syMzLA0aAlsTKyxM2U/LuRe1qifudwIL0UGwdbSBFuPp+C363lajpSIiKhttFbAxMfHIyoq\nCjt27MCGDRsQFRWl9ukiuVyOFStWYMmSJVi8eDGWLl0KS0sOq3UUW7kNlgYtganMFJsSt+J6cZJG\n/eys5HgpMghmJjJ8vy8B19NLtBwpERGR5gTRAJck1uawW1cd1ksuS8OXV7+FIEjwlwF/godVD436\nJWWU4uPNsZBKBbz++EB4OHdecdlVc2PomBf9xdzoL+ZGM3pxCYk6l6+NFxb7P45GZSPWxH6Pgges\nl/S7Pj1t8ey0fmhoUOLTrbEoLKvVcqREREQPxgKmGwlyDMD8PjNR1ViNL69+h/J6zar/wX4KPDau\nF8qrG7BqSywqazSbW4aIiEhbWMB0MyPdhmGS5zgU15Vgbex3qGvSbOmAcYN7YNLQnsgvqcHn266h\nvpET3RERUedhAdMNTfEaj1DXR5BZlYNv4zaiSdWkUb+5o30wzN8ZKTkV+HrXdShVD54gj4iISBtY\nwHRDgiBgfu9ZCHToh8TSW9iYsEXj2XoXT/aDv5cdriYXYeOhmxpNPEhERNTRWMB0U1KJFE/5Pw5v\naw9E51/FzuT9GvWTSSV4fmYAPJwscSo2B3vOpms3UCIiIjVYwHRjxlJj/Ln/YjibKXA08xSOZJzU\nqJ+piQx/mdcfDtZy7DyThlOxOVqOlIiI6F4sYLo5cyMzLA1eAmtjK+xI3odLeVc06mdtYYKX5wfD\nwtQIGw4m4Wpy0YM7ERERdRAWMAQ7uS2WBi+BqUyOjQlbkFByU6N+znZmWD6vP2QyAV/tjEdKTrmW\nIyUiIrqDBQwBANwsXPCnwEUQBAHfxm1ARmWWRv18XK3x3IwANClFfLb1GvJKtLfQJhER0e9YwFCz\nXrY+eLLfY2hQNmLN1e9RWFOsUb8gXwc8EdEHVbWNWLX5Ksqr6rUcKRERdXcsYOgeAxSBiOw9A5WN\nVfgy9j+obKjSqN+oIFfMHOGFovI6fLI1FrX1ms0tQ0RE1B4sYKiFUe7DEeERjqLaYqyJ/Q51TZqN\nqEwL9cToYFdk5FdhzY44NCk50R0REWkHCxhSa6r3RAxzCUFGZTb+E6/ZbL2CIGDhhN4I9nXA9fRS\n/LA/ASpOdEdERFrAAobUEgQBj/WZjQB7PySU3MSmhG0azdYrlUjwpxn+8HGzwm/X8/HLyRQdREtE\nRN0NCxi6L6lEiqcCFsLTqicu5cdgd8pBjfqZGEmxfG4QnO3McOB8Bo5EZ2o5UiIi6m5YwFCrTKTG\neK7/YjiZOeLXjBM4lnlao34WpkZ4OTII1ubG+O+RW7iUWKDlSImIqDthAUMPZGFsjqVBS2BtbIlf\nbu1BdP5Vjfo52JjipcggmBhL8e2e60jKKNVypERE1F2wgCGN2Jva4fmgJZBL5dhwYzOSSpI16tfT\nyRLLZgdCFIHPf4lDVqFmj2UTERG1hgUMaczd0hV/6v8EBADfxK1HZqVmizj287TDkil9UVvfhE+2\nxKKkok67gRIRUZfHAobapLetL57o9yjqlQ1YE/sdimpLNOo31N8ZkWG+KK2sxydbYlFd16jlSImI\nqCtrdwGTnp7egWGQIRnkFIS5vaajoqESq69qPlvvxEd6YPzgHsguqsYXv8ShsUmp5UiJiKirarWA\nWbx48T2v16xZ0/zvt99+WzsRkUEY0yMUEzzCUFBbhLXXfkC9suGBfQRBwPyxvgjxU+BmZhm+2XMD\nKhUnuiMiorZrtYBparp39tXz5883/1vkDKvd3nTvCAxxHoTbFZn4Ln4TlKoHj6hIBAFPT+0Hv542\nuJxUiP8eucXfEhERtVmrBYwgCPe8vvsPzR+3UfcjCAIW+M1FP7s+uF6ciB8Tt2lUjBjJJFg2OxDu\njuY4GpOFAxcydBAtERF1JW26B4ZFC/2RVCLFkoCF8LDsgQt5l7E7VbPZes3kRngpMhh2VibYdiIF\n5+JztRwpERF1Ja0WMOXl5fjtt9+a/6uoqMD58+eb/00EAHKZCZ4LWgxHU3scvn0cJzLPatTP1tIE\nL0UGw1wuww/7ExGfVqzlSImIqKsQxFbG/KOiolrtvHHjxg4PSBOFhZVa27ejo6VW99+VFdUW46PL\nq1HVUI2nAhZgoKK/Rv1uZpbho5+vQioV8PrjA+HhbKm2HXOjn5gX/cXc6C/mRjOOjur/HgAPKGD0\nFQsY/ZVZmY1PY75Ck6oJS4OfRm9bH436XU4qwJod8bA0M8L/e2IwFDamLdowN/qJedFfzI3+Ym40\n01oB0+olpKqqKqxbt6759c8//4wZM2bgxRdfRFFRUYcFSF1HD0s3PBP4BEQAX19bj+wqze5tGdRH\ngQUTeqOiphGfbL6KipoHP5ZNRETdV6sFzNtvv43i4jv3JaSlpWHVqlV47bXXMHz4cPzzn//USYBk\nePzseuGJfvNRp6zD6qv/QXGtZos4hg90x5RhHsgvrcVnW6+hvoET3RERkXqtFjCZmZlYsWIFAODQ\noUOIiIjA8OHD8eijj3IEhlo12CkYc3pNQ3lDJVbH/gdVjdUa9Zs9yhuhAc5Iy63A2l3xUKpUWo6U\niIgMUasFjJmZWfO/L168iKFDhza/5iPV9CDhPUZiXM/RyK8pxFexP6BBw9l6F03yQ4C3Ha6lFGPD\nwSROdEdERC20WsAolUoUFxcjIyMDV65cQWhoKACguroatbW1OgmQDNsMn0kIcRqItIoMfBf/o0az\n9cqkEjw/MwCezpY4fS0Xu86k6SBSIiIyJK0WMM888wwmT56MadOm4fnnn4e1tTXq6urw+OOPY+bM\nmbqKkQyYRJBgYd+56GvXG/HFCfg5abtGIypyYxn+Mi8IChtT7D6bjhNXsnUQLRERGYoHPkbd2NiI\n+vp6WFhYNL935swZjBgxQuvB3Q8fozY8dU11+OzK18iozMYkz7GY6j1Ro375pTV4b+NlVNU24q8L\nB8PPzUrLkVJb8ZzRX8yN/mJuNNPux6hzcnJQWFiIiooK5OTkNP/n7e2NnJycDg+Uui65TI7ngp6C\ng6k9DqQfxams3zTq52Rrhr/MC4KxTIp/bYzG5mO30KTkjb1ERN1dqyMwfn5+8PLygqOjI4CWizlu\n2LBB+xGqwREYw1VYU4yPL69GVWM1ng5YiGBFoEb9sgqq8PWeG8gurIKPmxWemxEAOyu5lqMlTfCc\n0V/Mjf5ibjTT7pl4d+3ahV27dqG6uhpTpkzB1KlTYWdnp5Ug24IFjGHLqMjCJ1e+gkpUYVnQ0+hl\n661RP3NLOT758TLO38iHuVyGZ6b1Q38fBy1HSw/Cc0Z/MTf6i7nRTGsFjPSdd955534b/fz8MGPG\nDIwYMQLXrl3D+++/jxMnTkAQBHh4eEAmk2kj3geq0eIsrebmJlrdPwHWJlbwsHTHxfwYXC2Mg7+9\nH6yM7/8j/Z2NtSn83K1gY2mCq7eKcS4+Dw1NSvj1tIGEj/V3Gp4z+ou50V/MjWbMzU3uu63NayFt\n3boVH330EZRKJaKjox86uPbgCEzXcDEvButv/AwbE2usGPQ87OS2rba/OzcZ+ZVYszMeBaW16OVu\njT/PCICt5f1/6KQ9PGf0F3Ojv5gbzbT7Jt7fVVRUYNOmTZg9ezY2bdqEP/3pT9i/f3+HBUjd0yPO\nAzHLdwrK6sux+up3qG6s0bhvTydL/O3JEAz2U+BWVjn+9v1FxKcVazFaIiLSJ62OwJw5cwa//PIL\n4uPjMWHCBMyYMQO9e/fWZXxqcQSma/nl1h4cyzwNb2sPvBD8LIylRmrbqcuNKIo4fiUbPx+9BaVS\nxJThnpg5wgsSCS8p6QrPGf3F3Ogv5kYz7b6J18/PD56enggKCoJE0nKw5v333++YCNuIBUzXohJV\nWH/jZ0TnX0WgQz88ExAFqUTaol1ruUnPq8CaHfEoKq+DX08bPDvdHzYWvKSkCzxn9Bdzo7+YG820\nVsC0ehfu749Jl5aWwtb23vsTsrKyOiA0ojuz9Ub1jURVQzXiim5g882deKzP7Datt+XpbIV3Fofg\n+/2JiLlZiHd+uIQ/TeuHvp6d/9QcERF1vFbvgZFIJFixYgXeeustvP3223BycsIjjzyCmzdv4tNP\nP9VVjNQNyCQyPB0YhR4WrjibcwH704+0eR9mciMsnRWAx8b2QnVtIz76+Sp2nUmDSsXFIImIuppW\nR2A++eQTrFu3Dj4+Pjh69CjefvttqFQqWFtbY+vWrbqKkboJU5kczwUtwceXV2N/2q+wNrbECLeh\nD+54F0EQMD6kB3zcrLF2Zzx2nUnDrawyPDPNH9bmxlqKnIiIdO2BIzA+Pj4AgLFjxyI7OxtPPPEE\nvvzySzg5OekkQOperE0ssSx4CSyMzPFz0g7EFl5v1368Xa3wt8UhCPZ1wI30Urzzw0UkZZR2cLRE\nRNRZWi1g/ngPgouLC8aPH6/VgIgUZo54PugpGElk+OH6j0gpS2/XfixMjfDCnEBEhvmisroR//rv\nFew9lw5V26Y+IiIiPaTRPDC/a8tNlUQPw8OqB54OfAJKUYWvrv2A3Or8du1HEAREDOmJ1xcMhI2F\nCbafSsWnW2NRyRkwiYgMWquPUQcGBsLe3r75dXFxMezt7SGKIgRBwIkTJ3QRYwt8jLr7uJB7GRsS\nNsPGxBrvT3gNqur2L19RWdOA/+xNQFxqMWwtTfDnGf7o5W7TgdF2Tzxn9Bdzo7+YG820ex6Y7Ozs\nVnfs5ubW/qgeAguY7uXw7ePYlXIAtqbWWOT3KHrZ+rR7XypRxIHzt7HjVBoAYM5ob0wc0pNrKT0E\nnjP6i7nRX8yNZtpdwOgrFjDdiyiKOJJxErtTD0IURUzxGo+JnuGQCG26AnqPpIxSfLX7OsqrGtDf\nxx5PT+0HC1P1MwBT63jO6C/mRn8xN5p56LWQiDqTIAgY7zEG74a/DBsTa+xNO4wvrv4H5fUV7d5n\nn562eHfxI/D3tMW1lGK8+8NFpGSXd2DURESkTdJ33nnnnc4Ooq20uQQ5lzjXXz0dnRFoFYi8mgIk\nlCThYl4M3Cxd4Ghq/+DOapgYSzHU3xlSiYAryUU4G5cHuZEU3q5WvGG9DXjO6C/mRn8xN5oxN7//\nkjAcgSGDYm5khj8FLsLcXtNR01SL1Ve/w66UA1CqlO3an0QQMC3UC688OgDmpkb4+Vgyvtweh+q6\nxg6OnIiIOhILGDI4giAgrMcIrBj0POzltjh8+zg+vfI1SuvK2r3Pvh62eHdxCPx62uDKrSK8+8Ml\npOW2/xIVERFpFwsYMlgeVj3w+iPLMUgRhNTydLx/8VPEFd1o9/6sLUzwyqMDMD3UE8XldXhv42Uc\nic6EAd7nTkTU5bGAIYNmKjPFYv/H8XifOWhQNeCra+uw7dZuNKma2rU/iUTAzJHeeHl+MMzkMvx0\n5BbW7oxHTV379kdERNrBAoYMniAICHUbgr8OfgFOZgoczzyDjy+vQWFNcbv36e9lh3cWP4LePWwQ\nnVSIv6+7hNt5fOSRiEhfsIChLsPNwgWvhbyIoc6DkVGZhQ8ufYbL+bHt3p+tpQn++lgwpgzzQEFZ\nLf65MRrHr2TzkhIRkR7QagFz8+ZNjBs3Dps2bQIA5Obm4sknn8TChQvx5JNPorCwEACwe/duzJkz\nB/PmzcPWrVu1GRJ1cSZSY0T1i8QTfedDBRW+v/4j/pu0HQ3K9j1VJJVIMGe0D/4yLwhyYxk2HkrC\n17uvo7ael5SIiDqT1gqYmpoarFy5EsOGDWt+79NPP0VkZCQ2bdqE8ePH44cffkBNTQ1Wr16NdevW\nYePGjVi/fj3Kytr/NAkRAAxxGYTXB78INwsXnMk+j48uf4m86oJ276+/jz3eWRwCXzdrXEwowN/X\nRyOzoKoDIyYiorbQ2kR2giBg6tSpSEpKgqmpKfr374/Q0FD06dMHEokEWVlZuHnzJqytrVFcXIxp\n06ZBJpMhMTERJiYm8PLyuu++OZFd99TW3FgYm2OI82DUNNUivjgB53MvwdbEBu6Wru06vqmJDMMC\nnNGoVCE2uQhn43JhbW6Mnk4W3XriO54z+ou50V/MjWZam8iu/Uv7PoBMJoNMdu/uzczMAABKpRI/\n/fQTli5diqKiItjZ2TW3sbOza760dD+2tmaQyaQdH/T/am3tBepc7cnNC85PYHCmP766tAkbEjbj\ndu1tLBk4H3IjebtiWBo5ACH+LvjkvzFYdyARtwuq8PycIMhNtHY66T2eM/qLudFfzM3D0fn/4iqV\nSrz66qsYOnQohg0bhj179tyzXZMbJEtLa7QVHhfY0mMPkxtfeW+8Png5vov/ESfTzyOxIBVLAhbA\nzcKlXfvzUpjj7ScH46td13H8chYS00vw/MwAuDlatGt/hoznjP5ibvQXc6MZvVrM8Y033oCHhweW\nLVsGAFAoFCgqKmreXlBQAIVCoeuwqBtwMLXHikHPI7zHSOTXFODf0V/gdPb5dj9V5GBtitcXDMT4\nwT2QW1yDleujcTYut4OjJiIidXRawOzevRtGRkZ48cUXm98LCgpCXFwcKioqUF1djZiYGAwePFiX\nYVE3IpPIMKfXNPy5/5Mwlhjj56Tt+P76j6htqm3f/qQSPDauF5bOCoRUKsF3+xLw/b4E1De2b20m\nIiLSjCBqaVKL+Ph4fPjhh8jOzoZMJoOTkxOKi4thYmICC4s7w+w+Pj545513cPDgQXz33XcQBAEL\nFy7E9OnTW923NofdOKynvzo6N6V1Zfj++k9ILU+Hg9wOTwUsgIdVj3bvr6CsFmt3xuN2XiXcHM3x\n/MwAuNibd1i8+ornjP5ibvQXc6OZ1i4haa2A0SYWMN2TNnKjVCmxL+1XHL59HBJBgpm+kxHmPqLd\nTxU1Nqmw5VgyjsZkwcRIiici+mCYv3OHxqxveM7oL+ZGfzE3mtGre2CI9IlUIsV0nwgsDV4CM5kp\nfrm1B1/HrUd1Y/tuFDeSSbBgQm88NzMAggB8u+cG1h9MRAMvKRERdSgWMEQA+tr1xhuPvITetr6I\nK7qB9y9+ipSy9HbvL8RPgb8tDkFPhQVOXs3BPzdeRn6J9p6eIyLqbrQ2kZ02cSK77knbuZHLTPCI\n8wBIBSniim7gQt5lyAQpvKw92nVJycLUCKGBzqiqacS1lGKcjcuFo41pl3vUmueM/mJu9Bdzo5nW\nJrLjCAzRXSSCBJO8xmL5gD/BytgSu1IPYE3s96hoaN+1aiOZFE9E+OHZ6f0gAvhq13VsPJyExiZV\nxwZORNTNsIAhUqOXrTfeCPkL/O39kFByE+9f/BRJJcnt3t/Qfs54e9FguDua43hMNlauj8b19JIO\njJiIqHvhJaQ/4LCe/tJ1boylxhjkFAS5zKT5kpJKFOFr49WuS0qWZsYYHuiCqtpGxKUW47f4PCRn\nlcHNwQI2FvcfJtV3PGf0F3Ojv5gbzbR2CYkFzB/wR6W/OiM3giDA29oTfe16I6n0Fq4V3UByWSr8\n7HpBLmv7WkoyqQTBvg4I9nVAUXkdrqeX4uTVHOSX1KCHkyXM5UZa+BTaxXNGfzE3+ou50QwLmDbg\nj0p/dWZubOXWGOI8GIW1RbhRkoSLeTFwMXeCwsyxXfuzsTDB8ABn+LpbI6ewGtfTS3A8JhtVNY3w\ncLGEiZH2FivtaDxn9Bdzo7+YG82wgGkD/qj0V2fnxkhqhIGK/rA0tkBc0Q1czI9Bg7IBvW18IBHa\ndzuZwsYUo4Jd4epgjvS8CsSnleDElWwoVSI8nC0hk+r/bWqdnRe6P+ZGfzE3mmEB0wb8UekvfciN\nIAjwsOqBAIe+uFmagrjiBCSW3EIfW1+YGZm2e59ujhYIG+AGK3NjJGeX41pKMU5fy4WJkQQ9FBaQ\nSNo3M7Au6ENeSD3mRn8xN5phAdMG/FHpL33KjbWJFYa6DEJpXRmulyThfN5lKMwc4Wze/pXUJRIB\n3q5WGBPsBplUQFJGGWJuFeFiQj5sLEzgYm/W7iUOtEmf8kL3Ym70F3OjGRYwbcAflf7St9zIJDIE\nOQbATm6LuKIbuJR/BdWN1eht4wOppP33sBjJJPDzsMXIIFc0NimRcLsUFxMKEJdaAidbUzjYtG+k\nR1v0LS/0f5gb/cXcaKa1AoaLOf4BF9jSX/qcm5yqPHx//UfkVuejh4UrngpY0O4bfP8ov7QGO06l\n4mJCAQAg0Nsec8f4oIdCP2b01ee8dHfMjf5ibjTT2mKOHIH5A1bF+kufc2NpbIGhLoNR2VCF6yWJ\nOJ8bDXu5LVwtXB563xamRhjsp0B/H3sUltXienoJTl7JRkFpLTycLGDWyY9e63NeujvmRn8xN5rh\nJaQ24I9Kf+l7bqQSKfo79oPC1AHxxQmILohFWV05/Ox8H+qS0u9sLf/30Ws3a2T9/uj1lWxU1zXB\n08UKxp306LW+56U7Y270F3OjmdYKGJkO4yDqFkKcB8DDyh3fx/+Ic7kXkVZxG0/5L4CrhfND71sQ\nBAR426Oflx0u3MjHjlOpOHwpE6ev5WDyUA+MG9zDoOaQISJqL47A/AGrYv1lSLkxNzLHEJfBqG2q\nQ3xxAs7nRsPK2AruFsqvtFcAACAASURBVK4d8iSRIAjoobDAmAFusDQ1wq2scsQmF+NMXC5MjaV3\nHr3W0RNLhpSX7oa50V/MjWZ4CakN+KPSX4aWG6kggb+9H9zMnRFfnIiYglgU1hbDz64XZJKOGfyU\nSgT4uFljdLAbJBIg6XYZYm4W4VJCgc4evTa0vHQnzI3+Ym40w6eQ2oB3husvQ85NcW0Jvr/+E9Ir\nMqAwdcBTAQvQw9Ktw49TVlWP3WfScCo2FypRhI+rFeaF+aJ3D5sOP9bvDDkvXR1zo7+YG83wKaQ2\nYFWsvww5N2ZGphjqPAiNqibEFSfgXO4llNaVooelG0zbsSjk/ciNZQjydUBIXwXKqxtwPb0UZ+Jy\ncTuvEm6O5rAyN+6wY/3OkPPS1TE3+ou50QxHYNqAVbH+6iq5SSi+iW23diOvpgAyiQyj3IZhokc4\nLIzNO/xYKdnl2HoiBTczyyAIQGiAC2aO9IKdVccVTV0lL10Rc6O/mBvNtDYCwwLmD/ij0l9dKTcq\nUYULeTHYl3oYpfVlkEtNEN5zFMb2GAl5B47IAIAoiohLLcbWEynILqyGTCrBuMHumDzUAxamDz+H\nTFfKS1fD3Ogv5kYzLGDagD8q/dUVc9OoasKZ7PM4mH4UVf+/vTsNbvO67z3+xUoSCwESC0FwJyVa\nC7VQsqRYsiyl3uI4keMtcl0pzdw7nXY8fdFOurhuEqfTTjpKl+m0yaTtNJ1xnemNGmez61heEsuL\nJFu2tUuUuFMkAS7gChAESQDPfQEIIixLASySeCD+PzMayQAIHPp3DvXXec5zztwUFoOZ+2t/i53e\nz2DQLewGdfG4wrHzA/zsnU5GJ2cwFeh58I4a7t5ceVN7yNyKudwqJBv1kmwyIwVMFqRTqdetnE0k\nGuHN3nd54/LbRGIRSgrsPFh3L1s9mxZkE7z55qIxfvVRPy8f62YqEqXEWsCX7qxjx7ryT3Xq9a2c\nS76TbNRLssmMFDBZkE6lXsshm9DcFK/1vMlbfUeJxqOUmdx8sf5+NrqaFvx26HBkjl++d5nXP+xl\nLhrH6zTz2K4GNqxwZPVZyyGXfCXZqJdkkxkpYLIgnUq9llM2Y5FxXul+g2P+D4krcWqsVexp+Byr\nSlcu+GeNTkb4xbtdvHvWj6LAykobj+9ewYpKW0Zfv5xyyTeSjXpJNpmRAiYL0qnUazlmMxge5n87\nX+XE0BkAGktW8FDD56gtrl7wz+oPTPHTtzo42RYAoHmlk0d3NeB13vjuqOWYS76QbNRLssmMFDBZ\nkE6lXss5m8vBPl7sOETLaCsAG1xNfLH+fsrNZQv+WW194/z4zQ7a+yfQaGDn+nIeurOeEusn78ew\nnHNRO8lGvSSbzEgBkwXpVOol2UDbWAe/6DhE12QPGjRs82zm83X34igqWdDPURSFU+0BXjjcgX8k\njFGv5d4tVTywrRpTYfrdUZKLekk26iXZZEYKmCxIp1IvySZBURTOBi7wUuer+KYG0Gt03FnxGT5X\nezdWo2VBPysWj3P07AA/f7eLseAM5kI9X9hey29tqsCgT9wdJbmol2SjXpJNZqSAyYJ0KvWSbNLF\nlTgfDp7ifztfZSQyhlFn5O6qndxdfRdF+qIF/ayZuRi/+qiPl4/1MD0TxVFcwJd21nPHWg9lZcWS\ni0rJmFEvySYzUsBkQTqVekk2nywaj3LEd5xXut8gOBvCbDBxX81nuatiO8YF3gwvND3HL4/18MZH\nfURjcSpdZv7PniZqnIt/6rXInowZ9ZJsMiMFTBakU6mXZHNjM7FZDve+y+uXDzMdjWAvsPH5unv4\njOf2Bd8Mb2Qiws/f7eTo2QEUoNxhYtfGCrY3eRbkeAKxMGTMqJdkkxkpYLIgnUq9JJvMTM2Feb3n\nMIf73mUuHsVtcvKFuvtpdq9Dq9Eu6Gf1DYV442Q/R8/4iMYUDHotW1e52dVcQYO3WGZlckzGjHpJ\nNpmRAiYL0qnUS7LJzvjMBK90/4qjvuPElThVFi97Gh5gdWnjghYWLpeVjp4Rjpz189ZJH0Pj0wBU\nuizsbvZyx1oPRQX6Bfs8kTkZM+ol2WRGCpgsSKdSL8nm0xkKB3i56zU+HDwFwEp7PXsaHqDeVrMg\n7z8/l7ii0NIzxuGT/ZxqCxCLKxQYdGxbU8buZi+1nuIF+UyRGRkz6iXZZEYKmCxIp1Ivyebm9AV9\nvNR5iHMjFwFY51zDnvrP4bV4bup9r5fLeGiGd874efuUj5HJCAC1Hiu7myvYtrqMAuPCrssR15Ix\no16STWakgMmCdCr1kmwWRvt4Fy92vELHRDcaNGzxNPNg3X04i0o/1fv9plzicYVzXSMcPunjdEcA\nRYGiAh2fWeth98YKqtwLu3eNuErGjHpJNpmRAiYL0qnUS7JZOIqicH7kIi92HqI/5Een0bHDu43P\n1d6NreD6PzA+STa5jE5GePu0j7dP+xgPzQLQUFHM7o0VbFnlxmiQWZmFJGNGvSSbzEgBkwXpVOol\n2Sy8uBLnxOBpXup6jcD0CEatgc9W7eSe6l2YDJlthvdpconF45xpH+HNU/2c7xxFAcyFerY3lbO7\n2Uu548YHSIrMyJhRL8kmM1LAZEE6lXpJNosnFo9x1H+cV7reYGI2iElfxH01n2VX5XaMOuMNv/Zm\ncxken+bt0z7eOe1jMjwHwG1VdnY3V7Cp0YVBv7C3fi8nMmbUS7LJjBQwWZBOpV6SzeKbjc3yVt9R\nXut5k3B0GpvRygN197K9fMt1N8NbqFyisTgn2wIcPtlPS88YAJYiAzvXl7Nroxd3iemmP2O5kTGj\nXpJNZqSAyYJ0KvWSbJZOeG6aNy6/xZu97zAbn8NV5OALdfexqWzDNZvhLUYuA6Nh3jrVz7tn/ExF\nogCsrS1h18YKNq50otfJrEwmZMyol2STGSlgsiCdSr0km6U3MRPkUPevOOJ7n5gSo8JSzp76z7HW\nsSq1Gd5i5jIXjfHhpWEOn+ynrW8CAJvZyM4N5dy1wYvTtrCHVt5qZMyol2STGSlgsiCdSr0km9wJ\nTI/wv52v8+HgSRQUGmy17Gl4gBX2uiXLpX84xOFTPo6eG2B6JooGWNfgYPfGCtY3ONBq5diCj5Mx\no16STWakgMmCdCr1kmxyrz/k56XOVzkbuABAk2MVX9n8KOaobcnaMDMX43jLIG+d8tHpmwSgxFrA\nrg1edm7wUmItWLK2qJ2MGfWSbDIjBUwWpFOpl2SjHp0TPbzY8Qpt450ANJasYId3KxtcTRi0S3fu\n0eXBIIdP+Th2foCZ2RhajYYNKxx8trmCNXWlaJf5YZIyZtRLssmMFDBZkE6lXpKNuiiKQstoK7/2\nvU3LcBsAZr2JreWb2OHdRrm5bMnaMj0T5f2WQQ6f7OfyYAgAp62QXRu93Lnei81841vBb1UyZtRL\nssmMFDBZkE6lXpKNOrlcVs51d3DEf5z3/R8RmpsCoN5Ww3bvNja71//GvWQWiqIodPmDHD7Vz/EL\ng8xG4+i0GjY1utjdXMGqavuCnsStdjJm1EuyyYwUMFmQTqVeko06zc8lGo9yJnCBI/3vc3EsMStT\nqCtki6eZHd6tVFkrlqxd4cgcx84nZmX6A4miqqzUxO6NXnasK8dSZFiytuSKjBn1kmwyIwVMFqRT\nqZdko07XyyUwPcox/wcc833AxGxisW21tYLt3m3cXraRIn3hkrRPURTa+iZ461Q/H1wcJhqLo9dp\n2bLKxa6NFaystN2yszIyZtRLssmMFDBZkE6lXpKNOv2mXGLxGBdGL3HE9z7nAhdRUDBqDWwq28AO\n7zbqiquXrIAITc9x5Kyfw6d8DI6GAahwmtm10cv2Jg+mwltrVkbGjHpJNpmRAiYL0qnUS7JRp2xy\nGZ+Z4JjvQ475jzMSSRwX4DV72O7dylbPJsyGpTkuQFEULl4e5/DJfk60DhOLKxj1WrauLuOOJg+N\nVTZ02vzf7VfGjHpJNpmRAiYL0qnUS7JRp0+TS1yJc2m0nSP+45wZPk9MiaHX6tnoamKHdxsr7fVL\nNiszMTXLu2d8vHXKR2AiAiROxl7f4KR5pZOm+lIKjUt3a/hCkjGjXpJNZqSAyYJ0KvWSbNTpZnMJ\nzoZ4f+AjjvjeZygcAMBd5GS7dyvbyjdTbLz+D7CFFFcUWnrGOHFpmFPtAcaCMwDodVrW1JbQvNLJ\nxhVObJb82ShPxox6STaZkQImC9Kp1EuyUaeFykVRFNrHuzjiO86p4TPMxaNoNVrWO9ew3buN1aUr\nrzlIcrHEFYWegSAn24Y52RagfzhxF5MGqK8opnmli+aVTsod5iVpz6clY0a9JJvMSAGTBelU6iXZ\nqNNi5BKeC3N84CRHfO/jmxoAoKTAznbvFu4o30JJoX1BP+83GRoLc7ItwMm2AG1941z5qekpNdG8\n0klzo4t6b7Hqdv6VMaNekk1mpIDJgnQq9ZJs1Gkxc1EUhZ5gL0f6j/Ph0ClmY7No0LDWcRvbvdto\ncqxCp9UtymdfTzA8y+n2EU62DXO+a5TZaByAYrORjSscNK90saa2BIN+adv1SWTMqJdkkxkpYLIg\nnUq9JBt1WqpcItEIHw2e5ojvOD3BXgBsRivbym9nh3crziLHorfh42bmYlzoHuVkW4DT7QGC4TkA\nCgw6mupKaW50sr7BmbNN82TMqJdkkxkpYLIgnUq9JBt1ykUufUEfR3zH+WDwBNPRxJ1DtyUPlFy/\nxAdKXhGPK7T3T3CqLcCJtmGGxqYB0Go0NFbZUutmnPaiJWuTjBn1kmwyk7MCprW1laeeeoqvfvWr\n7Nu3D7/fz5/92Z8Ri8VwuVz83d/9HUajkRdffJHnnnsOrVbLl7/8ZR5//PEbvq8UMMuTZKNOucxl\nNjbHyaEzHPEdp2OiCwCLwcxWT+JASY/ZnZN2KYqCbyTMqeQi4E7fZOq5KrclsW5mpYvqMsui3i4u\nY0a9JJvM5KSACYfD/P7v/z61tbXcdttt7Nu3j7/4i7/grrvu4oEHHuAf//Ef8Xg8fOlLX+Lhhx/m\nhRdewGAw8Nhjj/HDH/4Qu/36i/SkgFmeJBt1UksuA1NDHPUd5/2BqwdKNthq2eHdRrN73ZIdKPlJ\nxoIznG5PLAJu6RklGkv82HUUF7BxhYvmRieNVXb0uoW9y0ot2YhrSTaZuVEBo/vWt771rcX4UI1G\nwxe+8AUuXbpEUVER69ev59vf/jbf/OY30el0FBYW8tJLL+F2uxkZGeGLX/wier2eixcvUlBQQF1d\n3XXfOxyeXYwmA2A2Fyzq+4tPT7JRJ7XkYjGaWe1oZHfVnXjNHqajEdrGOzkdOM/b/UcZi4xjK7Bh\nK1iafWXmKyrQU1tezB1rPdxzexU1Hit6nYa+4Sla+8Y5em6AX33UR99wiLgCpdYCDPqbL2bUko24\nlmSTGbP5+vsuLdqFYr1ej16f/vbT09MYjYl/BTkcDoaHhwkEApSWlqZeU1payvDw8GI1SwhxizNo\n9Wwu28Dmsg0Epkc46vuA9/wf8Hb/Md7uP0a1tZId3q3cXraRwiU6UHK+ogI9W1a52bLKTTQWp7V3\nPHmL9jDvXRjkvQuD6HUaVtWUsGmli40rndjzaPM8IZZKzvbHvt6Vq0yuaJWUmNAv4i2KN5qyErkl\n2aiTWnNxYWV1dS1fjT/CSf853ug8wkn/Of7fpZ/y046X2VG1mbsb7mRFaW3OTqQu99jYtaUGRVHo\n7J/g/fMDvHfOz7nOUc51jvJfr16isdrOZ5rK2bbWQ1WZNau2qjUbIdncrCUtYEwmE5FIhMLCQgYH\nB3G73bjdbgKBQOo1Q0NDbNy48YbvMzYWXrQ2ynVJ9ZJs1Clfcqkx1vN/V9UzVjvOe/4POer/gF93\nHeXXXUfxmj3s8G5jq6cZ0xIdKPlJigt03Lupgns3VRAYn+Zke4CTrcO09k7Qenmc//plC+6SotTM\nzIoKG1rt9YuZfMlmOZJsMnOjIm9JC5jt27fz6quv8tBDD/Haa6+xc+dONmzYwNe//nUmJyfR6XSc\nOHGCZ555ZimbJYRYRkoK7TxQdw/31/4WF0fbOOI7zpnAeX7c9gt+1vEyax2raHKspsm5asnOYfok\nTnsR995exb23VxGanuNsxwgn2oY51znKoeOXOXT8MlaTgQ0rEodOrq0txWjI/eZ5QiyVRbsL6dy5\ncxw4cID+/n70ej1lZWX8/d//PU8//TQzMzN4vV7+9m//FoPBwKFDh/jBD36ARqNh37597Nmz54bv\nLXchLU+SjTrdCrkEZ0O85/+QY/4PGQwPAaBBQ01xFU2O1axzrqbCUp6zy0zzzUVjiUMnWwOcag8w\nOZVYCGrUa1lbV0rzShcbVjiwmoy3RDa3KskmM7KRXRakU6mXZKNOt1oug+FhzgYucC7QQsdEN3El\ncVRASYGdJmeimGm0N2DQ5WZ33fniikKXb5ITbcOcagvgH0lcXtdoYGWlne3rvVQ4iqgpsy74Ldri\n5txq42axSAGTBelU6iXZqNOtnEt4LsyFkUucHWnhwsglwtHE7rpGrYFVpY00OROXm2wFxTluaYJ/\nZIpTyUMnO/onuPLD3WjQ0uC10Vhlp7HKTr23mAK53JRTt/K4WUhSwGRBOpV6STbqtFxyicVjdE50\nc3akhXOBFgbDV7d7qLZWss65mnXONVRavKq41DQxNYtvbJoPzw/Q2jdO//BU6jmdVkNtuZXGKju3\nVdlZUWHHVJizm1KXpeUybm6WFDBZkE6lXpKNOi3XXIbCw5wLtHB25CLt452pS032AhtNjlU0OVdz\nW8lKjDm81DQ/m9D0HG2947T2jdPaO07PQIh48se/hsQRB1dmaFZW2bGZc7dz8XKwXMdNtqSAyYJ0\nKvWSbNRJcoHw3DQto5c4G7jIhZGLTEUTa1EMWgOrSlck72pajb3AtqTtulE2kdkoHf2TXOodp613\nnA7fJNFYPPV8WamJ26qSl50q7ThshaqYWbpVyLjJjBQwWZBOpV6SjTpJLuli8Rhdk5cTszOBCwwk\n72oCqLJWsM6RvNRk9aLVLO7C2myymYvG6fJP0tY3zqXecdr7JojMxlLPlxYXpIqZxio75Q6TFDQ3\nQcZNZqSAyYJ0KvWSbNRJcrmx4fAI55LrZtrGO4kpiaLAZrTS5FxNk2M1q0pXLsphkzeTTSwep29o\niku9iUtOrb3jhKbnUs9bigypS06NVTaq3BZ0WrnTKVMybjIjBUwWpFOpl2SjTpJL5qajEVpGWzkX\naOH8yMXUqdkGrZ7GkhWsSxY0JYX2Bfm8hcxGURT8I+HUGprW3nFGJ2dSzxcadayotKVmaOrKixfk\nQMpblYybzEgBkwXpVOol2aiT5PLpxJU43ZOXORtIzM74pgZSz1VavIlixrmaamvlp77UtNjZBCam\nU8VMa+8EA6NXj3nR67TUe4tTMzQNXhtFBXKn0xUybjIjBUwWpFOpl2SjTpLLwghMj3Iu0MK5kRZa\nxzpSl5qKjdbUXU2rShspyOJS01JnMzE1m7jTKfmrdyiU2otGq9FQ47GwsjJx6/bKKjuWotxvBpgr\nMm4yIwVMFqRTqZdko06Sy8KLRCNcHG1LzM6MtKQuNem1ehrtDanZmdLCkhu+T66zCUfmaO+fSN7p\nNEGXf5JY/OpfORVOc/K2bRu3VZVQYi3IWVuXWq6zyRdSwGRBOpV6STbqJLksrrgSp2eyN1XM9If8\nqecqLOWsS96iXVNcdc2lJrVlMzMXo8s3SWtv4k6nDt8Es3NXb9122gq5LbUw2I67pOiWvdNJbdmo\nlRQwWZBOpV6SjTpJLktrZHqM8yMtnA200DrWTjR5qclqsLDWsYp1zsRdTYX6QtVnE43F6RkM0pqc\noWntHSc8E009bzMbr26uV2mjwmW+Ze50Uns2aiEFTBakU6mXZKNOkkvuRKIzXBprS+4I3EJwNgSA\nXqNjZUkDW6vX49F7qbCUo9Oq/+yjuKLQPzw1b2HwOBPJ07YBDHotVW4LNR4rNWVWaj1WvE5zXh5U\nKeMmM1LAZEE6lXpJNuokuahDXIlzOdiX3ECvhb6QL/Vcgc5IXXENDfZaGmx11Nqqs1oMnCuKojA0\nPk3r5XHa+yfoGQjSH5hKW0ej12modCWLmmRhU+myqP4Wbhk3mZECJgvSqdRLslEnyUWdxiLj+KP9\nnOproWO8O21HYK1GS5WlIlHQ2OtosNViNVpy2NrMzUVj9A1P0TMQpGcwSM9AkL7hENHY1b/KdFoN\nFU7z1aLGY6XKZcGoohO4ZdxkRgqYLEinUi/JRp0kF/VKO8xxdorOiW7aJ7roHO/mcrA/das2gNvk\npMGWKGYa7HW4ihx5s4A2GovTPzyVKmh6BoP0DoWYi15dIKzVaPA6TdSUXS1qqt1WCoy5KWpk3GRG\nCpgsSKdSL8lGnSQX9bpRNrOxWXome+mY6KZjvJvOiR4isUjqeavRkiho7LU02GqptHjzYh3NFbF4\nHH8gTPe8mZrLQ8G0u540GvCUmqhNXnqq8VipLrMuyYZ7Mm4yIwVMFqRTqZdko06Si3plk01cidMf\nGqAjOUPTPt7FxOxk6nmjzkh9cQ31yYKmtriaQn1+7dsSjyv4R8NcHgimCpvLg8G0QyshcRJ3TZmF\nWk8xNWWJ9TWmwoXddE/GTWakgMmCdCr1kmzUSXJRr5vJRlEURiNjdEwkipmOiW4GpgZTz6eto7HV\nUm+vpdh4/b9s1CquKAyNTdM9MMnlgRDdA5P0DIaYnnc7N4DbXkS1x5o2W3MzOwnLuMmMFDBZkE6l\nXpKNOkku6rXQ2YTmpuia6KEjOUNzOdiXvo6myJlaFNxgr8VV5MybdTTzKYrC8Pg0PYOhZGGTmLGZ\niqQXNY7iQmo91rTCptic2d1dMm4yIwVMFqRTqZdko06Si3otdjazsbmr62gmuugc/9g6GoMl7U6n\nfFtHM5+iKIxMRlKLhLsHEutqguG5tNeVWAtSe9RcKWzslmsvtcm4yYwUMFmQTqVeko06SS7qtdTZ\nxJU4vtBAcmFw4rLT+MxE6nmjzkhdcXXqTqd8XEczn6IojAVnrt79NBCkezDIRGg27XU2szFt870a\nj5XGeieBQChHLc8fUsBkQX4Yq5dko06Si3rlOpvEOppxOia6UgWN/2PraCot3tQGew15uo7m48ZD\nM2n71HQPBBkLzqS9xlyox+MwUe4w43WY8ToTf3bYCtHm4WW3xSIFTBZyPeDF9Uk26iS5qJcas5ma\nC9OZvHW7Y6KLnsn0dTSuIkfyklOioHHn6Tqaj5ucmuXy4NW7nwbHpvF/bFdhAKNei8dhwus0J4ub\nxJ9d9qK8PDLhZkkBkwU1DniRINmok+SiXvmQzWxsjsvBvtQMTedEN9PRq+toLAZzag1NlbWCSks5\nJoMphy1eGC6XFf/ARKqQ8Y9M4RsJJ/48Gk7bhA8SuwuXlZoovzJr4zThdZjxlJpUtcPwQrtRAbP4\nu/UIIYQQ12HUGVhhr2OFvQ5IrKPxTw2mCpr28S5OD5/j9PC51Nc4CkuotHipsHqpsniptHopKbDn\n3UyNXqelwmmmwmlOezweVwhMRvAHpvCNTOEPhJMFzhS+wBQwnHqtBnDaC5NFjZny5IyN12Fekg35\ncklmYD4mH/7FslxJNuokuajXrZLNaGSMrokeeoM++kI++oI+gnPpC2DNehMVVi+VlvLkTI2XMpNL\ntXc9fZpsFEVhPDSbLGqm8I+E8SVnbyY/djcUgN1ivHopypm4HFXuMGM1GfKm2JMZGCGEEHmrtLCE\n0sISNpdtBBJ/kU/OBukL+VJFTX/QR+tYO61j7amv02v1eM0eKpOzNFVWL15zed7e+aTRaCixFlBi\nLWBtbWnac6HpuVQx45s3Y3Ohe4wL3WNpr7UUGVIzNfPX2ZRYC/KmsAEpYIQQQuQZjUaDraAYW0Ex\nax2rUo9HohH6QwP0hvrpTxY2vpCfy8E+8Ce/Fg2uIgeVVm+ysEnM1tgK8vvuJ0uRgcYqO41V9rTH\nI7PReTM1V2ds2vsnaOubSHttgVGXmqWZfynKZS9Cq1VfYSMFjBBCiFtCob4wuXFebeqxWDzGQHiI\nvnmXn3pDPk4MneHE0JnU66xGC1WWimRhU06ltQJXkQOtJr/v/Ck06qkrL6auvDjt8blojMHR6dS6\nGv9IYtamdyhElz/90pZep8VTWnTNOpuyEhMGfe7+/0gBI4QQ4pal0+qosJRTYSlnG5uBq/vTJAqa\nfvpCfvpCPi6MXuLC6KXU1xp1RirM5VSlZmu8lJs9GHULe7BjLhj0OirdFirdlrTHY/E4gfEIvisL\niOfN3vQNT6W9VqvR4LIXckeThz076pay+YAUMEIIIZYZjUaDo6gER1EJG1xrU49PzYXpnzdL0xf0\n0RPspWuyJ/UarUZLmcmVKmiu/G4xmD/po/KOTqulrNREWamJZlypx6/sOpwobK5eivKPhOn0Td7g\nHRePFDBCCCEEYDaYaCxZQWPJitRjc7E5/FOD6QuGQz78U4N8MHgy9bqSAjuV1nIqU5ehvDgKS/Jq\nUeyNaDQaSosLKS0upKnekevmAFLACCGEENdl0BmoLq6kurgy9VhciROYHqEv5Kc32J+6C+psoIWz\ngZbU64r0hYkZmnmzNR6zG71W/updCPJ/UQghhMiCVqPFbXLhNrnY5F6fenxyNpi2WLgv5KN9vIu2\n8c7Ua/QaHeXmMmodldi0JZSZXZSZXLiLnBhugbU1S0kKGCGEEGIBFButrHHcxhrHbanHItEZfFMD\nyYKmn76gH9+Un96QL+1rNWhwFJbgNrvwmNy4TS48JhdlZjdWg+WWuRS1kKSAEUIIIRZJob6AelsN\n9baa1GNxJY5imqWlt4vB8DCD4aHE71PDXBi5xIWRS2nvUaQvpMzkpszkuvrL7MZV5FjWl6OW73cu\nhBBC5IBWo8VlcaFzFtLE6rTnwnPhZFGT/DWVKG56g/10T16+5n0chSVXixuzK/Vni8F8y8/aSAEj\nhBBCqITJYKLOxa5AkgAACGpJREFUVkPdvBkbSGzINxIZZTA8zMDUEEPhYQbCwwyFhzk30sK5kZa0\n15v1JtypoiZR2HhMLpxFDtWeD5UtKWCEEEIIldNpdamFw+uca9KeC81NJQqaqXmXo8JD1+xhA8nZ\nnyJHco1N+syN2WBaym/ppkkBI4QQQuQxi8GMxWam3lab9ng0HiUwPZq2xmb+mpuzXLjmfeavsbny\nZ0dhqSpnbaSAEUIIIW5Beq0ej9mNx+xOe1xRFEJzU2lrbK4UNZ0TPXRMdKe9XqfR4SpypBU1V9ba\nmAxFS/gdpZMCRgghhFhGNBoNVqMFq9HCCnv6GUZz8SjD4UDaGpuB8BCDU4nfP85qtLDNs5mHVzy4\nVM1PkQJGCCGEEAAYtHq8Fg9eiyftcUVRmJwNpa2xuXJZaiwynpO2SgEjhBBCiBvSaDTYCqzYCqw0\nljTkujkAaHPdACGEEEKIbEkBI4QQQoi8IwWMEEIIIfKOFDBCCCGEyDtSwAghhBAi70gBI4QQQoi8\nIwWMEEIIIfKOFDBCCCGEyDtSwAghhBAi70gBI4QQQoi8IwWMEEIIIfKOFDBCCCGEyDtSwAghhBAi\n72gURVFy3QghhBBCiGzIDIwQQggh8o4UMEIIIYTIO1LACCGEECLvSAEjhBBCiLwjBYwQQggh8o4U\nMEIIIYTIO1LAzPPtb3+bvXv38sQTT3DmzJlcN0fM853vfIe9e/fy6KOP8tprr+W6OWKeSCTCPffc\nw09/+tNcN0XM8+KLL7Jnzx4eeeQRDh8+nOvmCGBqaoo//MM/ZP/+/TzxxBO88847uW5SXtPnugFq\ncfz4cXp6ejh48CAdHR0888wzHDx4MNfNEsB7771HW1sbBw8eZGxsjIcffpj77rsv180SSd///vex\n2Wy5boaYZ2xsjO9973v85Cc/IRwO8y//8i/s3r07181a9n72s59RV1fH1772NQYHB/nd3/1dDh06\nlOtm5S0pYJKOHTvGPffcA0BDQwMTExOEQiEsFkuOWya2bNnC+vXrASguLmZ6eppYLIZOp8txy0RH\nRwft7e3yl6PKHDt2jDvuuAOLxYLFYuGv//qvc90kAZSUlHDp0iUAJicnKSkpyXGL8ptcQkoKBAJp\nnam0tJTh4eEctkhcodPpMJlMALzwwgvcddddUryoxIEDB3j66adz3QzxMX19fUQiEf7gD/6AJ598\nkmPHjuW6SQJ48MEH8fl83Hvvvezbt48///M/z3WT8prMwFyHnLCgPm+88QYvvPAC//mf/5nrpgjg\n5z//ORs3bqSqqirXTRGfYHx8nO9+97v4fD6+8pWv8Oabb6LRaHLdrGXtF7/4BV6vlx/84AdcvHiR\nZ555RtaO3QQpYJLcbjeBQCD130NDQ7hcrhy2SMz3zjvv8K//+q/8x3/8B1arNdfNEcDhw4fp7e3l\n8OHDDAwMYDQa8Xg8bN++PddNW/YcDgfNzc3o9Xqqq6sxm82Mjo7icDhy3bRl7cSJE9x5550ArFq1\niqGhIbkcfhPkElLSjh07ePXVVwE4f/48brdb1r+oRDAY5Dvf+Q7/9m//ht1uz3VzRNI//dM/8ZOf\n/IT/+Z//4fHHH+epp56S4kUl7rzzTt577z3i8ThjY2OEw2FZb6ECNTU1nD59GoD+/n7MZrMULzdB\nZmCSNm3axNq1a3niiSfQaDQ8++yzuW6SSPrlL3/J2NgYf/RHf5R67MCBA3i93hy2Sgj1Kisr4/77\n7+fLX/4yAF//+tfRauXfq7m2d+9ennnmGfbt20c0GuVb3/pWrpuU1zSKLPYQQgghRJ6RklwIIYQQ\neUcKGCGEEELkHSlghBBCCJF3pIARQgghRN6RAkYIIYQQeUcKGCHEourr66OpqYn9+/enTuH92te+\nxuTkZMbvsX//fmKxWMav/+3f/m3ef//9T9NcIUSekAJGCLHoSktLef7553n++ef50Y9+hNvt5vvf\n/37GX//888/Lhl9CiDSykZ0QYslt2bKFgwcPcvHiRQ4cOEA0GmVubo5vfvObrFmzhv3797Nq1Spa\nWlp47rnnWLNmDefPn2d2dpZvfOMbDAwMEI1Geeihh3jyySeZnp7mj//4jxkbG6OmpoaZmRkABgcH\n+ZM/+RMAIpEIe/fu5bHHHsvlty6EWCBSwAghllQsFuP1119n8+bN/Omf/inf+973qK6uvuZwO5PJ\nxA9/+MO0r33++ecpLi7mH/7hH4hEInz+859n586dHD16lMLCQg4ePMjQ0BB33303AK+88gr19fX8\n1V/9FTMzM/z4xz9e8u9XCLE4pIARQiy60dFR9u/fD0A8Huf222/n0Ucf5Z//+Z/5y7/8y9TrQqEQ\n8XgcSBzv8XGnT5/mkUceAaCwsJCmpibOnz9Pa2srmzdvBhIHs9bX1wOwc+dO/vu//5unn36aXbt2\nsXfv3kX9PoUQS0cKGCHEoruyBma+YDCIwWC45vErDAbDNY9pNJq0/1YUBY1Gg6IoaWf9XCmCGhoa\nePnll/nggw84dOgQzz33HD/60Y9u9tsRQqiALOIVQuSE1WqlsrKSt956C4Curi6++93v3vBrNmzY\nwDvvvANAOBzm/PnzrF27loaGBk6ePAmA3++nq6sLgJdeeomzZ8+yfft2nn32Wfx+P9FodBG/KyHE\nUpEZGCFEzhw4cIC/+Zu/4d///d+JRqM8/fTTN3z9/v37+cY3vsHv/M7vMDs7y1NPPUVlZSUPPfQQ\nv/71r3nyySeprKxk3bp1AKxYsYJnn30Wo9GIoij83u/9Hnq9/NgT4lYgp1ELIYQQIu/IJSQhhBBC\n5B0pYIQQQgiRd6SAEUIIIUTekQJGCCGEEHlHChghhBBC5B0pYIQQQgiRd6SAEUIIIUTekQJGCCGE\nEHnn/wPnKWzvZI1D4wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ZTDHHM61NPTw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "JQHnUhL_NRwA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "You may be wondering how to determine how many buckets to use. That is of course data-dependent. Here, we just selected arbitrary values so as to obtain a not-too-large model." + ] + }, + { + "metadata": { + "id": "Ro5civQ3Ngh_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "RNgfYk6OO8Sy", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "AFJ1qoZPlQcs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Feature Crosses\n", + "\n", + "Crossing two (or more) features is a clever way to learn non-linear relations using a linear model. In our problem, if we just use the feature `latitude` for learning, the model might learn that city blocks at a particular latitude (or within a particular range of latitudes since we have bucketized it) are more likely to be expensive than others. Similarly for the feature `longitude`. However, if we cross `longitude` by `latitude`, the crossed feature represents a well defined city block. If the model learns that certain city blocks (within range of latitudes and longitudes) are more likely to be more expensive than others, it is a stronger signal than two features considered individually.\n", + "\n", + "Currently, the feature columns API only supports discrete features for crosses. To cross two continuous values, like `latitude` or `longitude`, we can bucketize them.\n", + "\n", + "If we cross the `latitude` and `longitude` features (supposing, for example, that `longitude` was bucketized into `2` buckets, while `latitude` has `3` buckets), we actually get six crossed binary features. Each of these features will get its own separate weight when we train the model." + ] + }, + { + "metadata": { + "id": "-Rk0c1oTYaVH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Train the Model Using Feature Crosses\n", + "\n", + "**Add a feature cross of `longitude` and `latitude` to your model, train it, and determine whether the results improve.**\n", + "\n", + "Refer to the TensorFlow API docs for [`crossed_column()`](https://www.tensorflow.org/api_docs/python/tf/feature_column/crossed_column) to build the feature column for your cross. Use a `hash_bucket_size` of `1000`." + ] + }, + { + "metadata": { + "id": "-eYiVEGeYhUi", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " # YOUR CODE HERE: Make a feature column for the long_x_lat feature cross\n", + " \n", + " long_x_lat = tf.feature_column.crossed_column(\n", + " set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000) \n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person,\n", + " long_x_lat])\n", + " \n", + " return feature_columns\n", + " \n", + " " + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "xZuZMp3EShkM", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 618 + }, + "outputId": "4eed226d-e1a3-4e53-c543-65d8f39d0416" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 164.76\n", + " period 01 : 136.63\n", + " period 02 : 119.53\n", + " period 03 : 108.14\n", + " period 04 : 100.12\n", + " period 05 : 94.17\n", + " period 06 : 89.59\n", + " period 07 : 86.11\n", + " period 08 : 83.21\n", + " period 09 : 80.76\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdUVNfaBvDnTGPovQrSrCCCBRs2\nbGALVmKNGpPcJJpqbsp3U6+5SUxuNLEmMcWoKfbeYsPeEEVAsVCk997LnO8PE65mKANSBnh+a2Ut\nZ/Y5+7zDC+Fl73P2FkRRFEFERETUikhaOgAiIiKi+mIBQ0RERK0OCxgiIiJqdVjAEBERUavDAoaI\niIhaHRYwRERE1OrIWjoAIm3WtWtXdOzYEVKpFABQWVkJb29vvPvuu9DT02twv1u3bkVgYKDa+zt3\n7sQ777yDb775Br6+vlXvl5SUYNCgQRgzZgw+++yzBl9XU3Fxcfjkk08QExMDANDV1cXixYsxatSo\nJr92faxduxZxcXFqX5NLly5h4cKFsLe3Vzvn8OHDzRXeY0lISMDIkSPh7OwMABBFERYWFvjXv/4F\nNze3evX15Zdfws7ODjNnztT4nD179mD79u3YtGlTva5F1FxYwBDVYdOmTbCxsQEAlJWV4bXXXsO3\n336L1157rUH9paen4/vvv6+2gAEAW1tb7N+//5EC5uTJkzAyMmrQ9RrijTfeQEBAAL755hsAQGho\nKObNm4dDhw7B1ta22eJ4HLa2tq2mWKmJVCp95DMcPHgQixYtwpEjR6BQKDTuZ8mSJU0RHlGL4hQS\nUT0oFAoMGTIEt27dAgCUlpbi/fffh5+fH8aOHYvPPvsMlZWVAIDIyEjMmDED/v7+CAgIwJkzZwAA\nM2bMQFJSEvz9/VFWVqZ2jd69e+PSpUsoLi6ueu/gwYPw8fGpel1WVoaPP/4Yfn5+GDFiRFWhAQDX\nrl3DlClT4O/vj3HjxuH8+fMAHvxFP3jwYGzcuBETJ07EkCFDcPDgwWo/5507d+Dp6Vn12tPTE0eO\nHKkq5FavXo1hw4Zh0qRJ+O677zBixAgAwNtvv421a9dWnffw67ri+uSTTzBnzhwAwNWrVzF16lSM\nHj0agYGBiI+PB/BgJOrVV1+Fr68v5syZg5SUlDoyVr2dO3di8eLFmDdvHj7//HNcunQJM2bMwCuv\nvFL1y/7QoUOYMGEC/P398dRTTyEuLg4AsGrVKrz77ruYNm0aNmzY8Ei/r7zyCn788ceq17du3cLg\nwYOhUqmwYsUK+Pn5wc/PD0899RRSU1PrHfe4ceNQUlKC6OhoAMCWLVvg7++PESNG4PXXX0dJSQmA\nB1/3Tz/9FBMnTsShQ4ceyUNN35cqlQr//ve/MXz4cEybNg2RkZFV1718+TImT56McePGYezYsTh0\n6FC9YydqdCIR1ahLly5icnJy1eucnBxx9uzZ4tq1a0VRFMVvv/1WfPbZZ8Xy8nKxuLhYnDp1qrh7\n926xsrJSHDt2rLhv3z5RFEXxxo0bore3t5ifny9evHhRHDVqVLXX27Fjh/jWW2+Jb7zxRtW5+fn5\n4siRI8Vt27aJb731liiKorh69Wpx3rx5YmlpqVhYWChOmjRJPHHihCiKojhhwgRx//79oiiK4q5d\nu6quFR8fL7q5uYmbNm0SRVEUDx48KI4ePbraOF566SXR19dX/Pnnn8V79+490nb79m2xb9++Ylpa\nmlheXi6+8MILoq+vryiKovjWW2+Ja9asqTr24de1xeXu7i7u3Lmz6vN6e3uLZ8+eFUVRFPft2ydO\nnjxZFEVR3Lx5szh79myxvLxczMrKEn19fau+Jg+r7Wv819fZy8tLjImJqTrew8NDPH/+vCiKopiY\nmCj26dNHjI2NFUVRFH/44Qdx3rx5oiiK4sqVK8XBgweLmZmZav0eOHBAnD17dtXrr7/+Wly6dKl4\n584dccyYMWJZWZkoiqK4ceNGcdeuXTXG99fXpXv37mrve3t7i1FRUeKVK1fEgQMHiikpKaIoiuJ7\n770nfvbZZ6IoPvi6T5w4USwpKal6vWbNmlq/L4OCgsQxY8aIBQUFYnFxsTht2jRxzpw5oiiK4pQp\nU8RLly6JoiiKMTEx4uuvv15r7ETNgSMwRHWYO3cu/P39MXLkSIwcORIDBgzAs88+CwAICgpCYGAg\nZDIZlEolJk6ciHPnziEhIQEZGRkYP348AMDDwwN2dnYICwvT6Jrjx4/H/v37AQDHjh2Dr68vJJL/\n/biePHkSs2bNgkKhgJ6eHgICAvDHH38AAHbv3o2xY8cCAPr06VM1egEAFRUVmDJlCgDA3d0dSUlJ\n1V7/iy++wOzZs7Fv3z5MmDABI0aMwG+//QbgweiIt7c3LC0tIZPJMGHCBI0+U21xlZeXY/To0VX9\nW1tbV404TZgwAXFxcUhKSkJwcDBGjx4NmUwGU1PTR6bZ/i45ORn+/v6P/PfwvTJOTk5wcnKqeq1U\nKjFw4EAAwLlz59C/f384OjoCAKZPn45Lly6hoqICwIMRKTMzM7VrDh8+HDdv3kROTg4A4OjRo/D3\n94eRkRGysrKwb98+5ObmYu7cuZg0aZJGX7e/iKKILVu2wNraGk5OTjhx4gTGjRsHa2trAMDMmTOr\nvgcAYODAgdDR0Xmkj9q+L69cuYJhw4ZBX18fSqWyKlcAYG5ujt27dyMqKgpOTk748ssv6xU7UVPg\nPTBEdfjrHpisrKyq6Q+Z7MGPTlZWFoyNjauONTY2RmZmJrKysmBoaAhBEKra/volZmFhUec1fXx8\n8O677yInJwcHDhzAiy++WHVDLQDk5+fj008/xfLlywE8mFLq2bMnAGDfvn3YuHEjCgsLoVKpID60\n3ZlUKq26+VgikUClUlV7fR0dHSxcuBALFy5EXl4eDh8+jE8++QT29vbIzc195H4cc3PzOj+PJnEZ\nGBgAAPLy8hAfHw9/f/+qdoVCgaysLOTm5sLQ0LDqfSMjIxQWFlZ7vbrugXk4b39/nZ2d/chnNDQ0\nhCiKyM7Orvbcv+jp6WHQoEEICgpCnz59kJeXhz59+kAQBKxatQo//vgjli5dCm9vb3z00Ud13k9U\nWVlZ9XUQRRGdOnXC2rVrIZFIkJ+fj6NHj+Ls2bNV7eXl5TV+PgC1fl/m5ubCysrqkff/8sknn2Dd\nunVYsGABlEolXn/99UfyQ9QSWMAQacjMzAxz587FF198gXXr1gEALCwsqv7aBoCcnBxYWFjA3Nwc\nubm5EEWx6pdFTk6Oxr/s5XI5fH19sXv3bty/fx+9evV6pICxsrLC008/rTYCkZqainfffRfbtm1D\n9+7dERsbCz8/v3p9zqysLNy6datqBMTIyAiBgYE4c+YM7ty5A0NDQ+Tn5z9y/F/+XhTl5ubWOy4r\nKyu4uLhg586dam1GRkY1XrsxmZub49q1a1Wvc3NzIZFIYGpqWue5fn5+OHr0KLKzs+Hn51eV/wED\nBmDAgAEoKirCsmXL8N///rfOkYy/38T7MCsrK0yePBlvvfVWvT5XTd+XtX1tLSws8N577+G9997D\n2bNn8dJLL2HIkCHQ19fX+NpEjY1TSET1sGDBAly7dg2XL18G8GDKYPv27aisrERRURH27NmDYcOG\nwd7eHjY2NlU3yYaEhCAjIwM9e/aETCZDUVFR1XRETcaPH4/169dX++jyyJEjsW3bNlRWVkIURaxd\nuxanT59GVlYW9PT04OLigoqKCmzZsgUAahylqE5JSQlefvnlqps7AeD+/fsIDQ1F37590atXLwQH\nByMrKwsVFRXYvXt31XGWlpZVN3/Gx8cjJCQEAOoVl6enJ9LT0xEaGlrVzz//+U+IoggvLy+cOHEC\nlZWVyMrKwunTpzX+XPXh4+OD4ODgqmmu33//HT4+PlUjb7Xx9fXFtWvXcOzYsappmLNnz+Kjjz6C\nSqWCnp4eunXr9sgoSEOMGDECf/zxR1WhcezYMXz33Xe1nlPb92WvXr1w9uxZFBcXo7i4uKpwKi8v\nx9y5c5GWlgbgwdSjTCZ7ZEqTqCVwBIaoHgwMDPDcc89h2bJl2L59O+bOnYv4+HiMHz8egiDA398f\nY8eOhSAIWL58OT744AOsXr0aurq6+Prrr6Gnp4euXbvC2NgYPj4+2LVrF+zs7Kq9Vr9+/SAIAsaN\nG6fWNmvWLCQkJGD8+PEQRRE9evTAvHnzoKenh6FDh8LPzw/m5uZ4++23ERISgrlz52LlypUafUY7\nOzusW7cOK1euxMcffwxRFGFgYIB33nmn6smkJ598EpMnT4apqSnGjBmDu3fvAgACAwOxePFijBkz\nBm5ublWjLN26ddM4LqVSiZUrV2Lp0qUoLCyEXC7HK6+8AkEQEBgYiODgYIwaNQp2dnYYNWrUI6MG\nD/vrHpi/+/zzz+v8GtjY2ODjjz/Giy++iPLyctjb22Pp0qUaff0MDAzg7u6O27dvw8vLCwDg7e2N\nAwcOwM/PDwqFAmZmZvjkk08AAG+++WbVk0T14e7ujueffx5z586FSqWCubk5Pvroo1rPqe370tfX\nF0FBQfD394eFhQWGDRuG4OBgyOVyTJs2DfPnzwfwYJTt3Xffha6ubr3iJWpsgvjwRDQRUT0FBwfj\nzTffxIkTJ1o6FCJqRzgGSERERK0OCxgiIiJqdTiFRERERK0OR2CIiIio1WEBQ0RERK1Oq3yMOj29\n+scmG4OpqR6ys4uarH9qOOZGOzEv2ou50V7MjWYsLQ1rbOMIzN/IZNKWDoFqwNxoJ+ZFezE32ou5\neXwsYIiIiKjVYQFDRERErQ4LGCIiImp1WMAQERFRq8MChoiIiFodFjBERETU6rCAISIiolaHBQwR\nEVEbExR0XKPjvv76SyQlJdbY/vbbrzdWSI2OBQwREVEbkpychGPHjmh07CuvLIGdXYca2z/7bHlj\nhdXoWuVWAkRERFS95cuX4datCAwZ4o0xY8YiOTkJX321Fp9++m+kp6ehuLgYTz/9HHx8hmDx4ufw\n+utv4uTJ4ygsLEBc3H0kJibg5ZeXYOBAH4wfPxIHDhzH4sXPwdu7P0JCgpGTk4Nly1bAwsIC//73\ne0hJSYaHR0+cOHEMu3YdbLbPyQKGiIioiWw9cQ9XItPU3pdKBVRWig3q07ubFQJHdKqxfebMudi5\ncyucnV0RFxeLtWu/R3Z2Fvr1G4CxYycgMTEB7733Nnx8hjxyXlpaKv7735W4ePE89uzZgYEDfR5p\n19fXx9dfr8O6datw+vQJ2NnZo6ysFN99twHnzp3B1q2/NejzNBQLmIdk5BQjJa8UNkY6LR0KERHR\nY+ve3R0AYGhohFu3IrB3704IggR5eblqx/bs6QUAsLKyQkFBgVq7p2evqvbc3Fzcvx8DDw9PAMDA\ngT6QSpt3fycWMA/Zey4WZ8OS8cF8bzja1LwDJhERkSYCR3SqdrTE0tIQ6en5TX59uVwOADh69DDy\n8vKwZs33yMvLwzPPzFU79uECRBTVR4f+3i6KIiSSB+8JggBBEBo7/FrxJt6HDHC3BgBsC7rXwpEQ\nERE1jEQiQWVl5SPv5eTkwNbWDhKJBKdOnUB5efljX6dDB3vcvn0TAHD58kW1azY1FjAPcXMyQ68u\nlrgZm42ImKyWDoeIiKjeHB2dcft2JAoL/zcNNHz4CJw/fwavvPICdHV1YWVlhZ9+Wv9Y1xk0aAgK\nCwvxwgsLERp6DUZGxo8ber0IYnXjRFquKYfd8stUeHV5EBysDfD+fG9ImnlIjGrWXEOuVD/Mi/Zi\nbrRXW8hNXl4uQkKCMXz4SKSnp+GVV17Ar7/uaNRrWFrWfDsH74H5G5cOxhjgbo0LEam4fDMVA9xt\nWjokIiIiraOnp48TJ47h1183QRRVeOml5l30jgVMNSYPccGVyDTsPB2NPl2tIJdxpo2IiOhhMpkM\n//73py12ff5mroaFiS5G9LZHRm4JTl6reYllIiIiahksYGowfqAjdHWk2H8+FkUlFS0dDhERET2E\nBUwNDPUUGDfAEQXF5Th06X5Lh0NEREQPYQFTi1F9HWBioMDRK/HIzi9t6XCIiIjoTyxgaqEjl2LS\nEBeUVaiw52xMS4dDRETUaKZNm4iioiJs2rQB4eE3HmkrKirCtGkTaz0/KOg4AODgwX04depkk8VZ\nExYwdfDxsIGtuR7O3EhCcmZhS4dDRETUqObOnY8ePXrW65zk5CQcO3YEADBu3EQMG+bbFKHVio9R\n10EqkWDaMFes2hmG7UFReGlq/ZJMRETUnJ5+ejY++eRL2NjYICUlGe+8swSWllYoLi5GSUkJXnvt\nn3Bz61F1/H/+8yGGDx8JL69e+Ne/3kRZWVnVxo4A8Mcfh7B9+xZIpRI4Obnirbf+heXLl+HWrQj8\n9NN6qFQqmJiYYOrUJ7F27dcICwtFRUUlpk4NhL//eCxe/By8vfsjJCQYOTk5WLZsBWxsHn+NtSYt\nYO7cuYMXX3wR8+fPx5w5c1BeXo63334b9+/fh76+PlauXAljY2Ps3bsXP//8MyQSCQIDAzF9+vSm\nDKvevDpboJO9Ma7dzcC9hFx0sm/e5ZKJiKh12nlvP66lham9L5UIqFQ1bCH8XlYemNJpQo3tQ4f6\n4ty505g6NRBnzpzC0KG+cHXtjKFDh+Pq1Sv45Zef8Z//fKF23pEjh+Di4oqXX16C48f/qBphKS4u\nxpdfroKhoSEWLXoWUVH3MHPmXOzcuRULFjyLH374FgBw/XoIoqOjsG7djyguLsa8eTMwdOhwAIC+\nvj6+/nod1q1bhdOnTyAwcFaDPvvDmmwKqaioCEuXLsXAgQOr3tu6dStMTU2xfft2jBs3DsHBwSgq\nKsKaNWuwYcMGbNq0CT///DNycnKaKqw6VbezgiAICBz+YDfRrUH3qj2GiIhIGzwoYM4AAM6ePYXB\ng4fh1KnjeOGFhVi3bhVyc3OrPS82Nho9engCAHr16lP1vpGREd55ZwkWL34O9+/HIDe3+t/RkZE3\n4eXVGwCgq6sLJycXxMfHAwA8PXsBAKysrFBQUFDt+fXVZCMwCoUC69evx/r1/9ss6uTJk3j55ZcB\nAE8++SQA4MKFC/Dw8ICh4YP9Dnr37o2QkBCMGDGiqUKr0d6owwi5FIo3e78MPbnuI22d7I3Rq7MF\nrt3NwPW7GejVxbLZ4yMiotZlSqcJ1Y6WNOVeSC4ursjMTEdqagry8/Nx5kwQLCys8N57SxEZeROr\nV39V7XmiCEgkD/b/U/05OlReXo7lyz/Hhg2/wtzcAm+++WqN1xUEAQ//fV9RUV7Vn1Qqfeg6jTMI\n0GQFjEwmg0z2aPeJiYk4ffo0vvjiC1hYWOCDDz5ARkYGzMzMqo4xMzNDenp6rX2bmupBJpPWekxD\nWGWaIv1+Js5lnMesnpPU2p+d3BOLvziB3ediMHKAE6RS3gPd3Grb2ItaDvOivZgb7dWUuRk5cgQ2\nblwPP7/RyM7ORrduXWFpaYjNm89DEERYWhpCKpXAwsIASqUcxsa6cHPrgri4KFhaTsLFi0GQSiXQ\n1RUgl8vQrZszkpOTcedOJPT15dDR0YFUKsDS0hD6+jowMFCiW7duWLduHSwtDVFYWIiUlCR4eblB\noZDB1FQflpaGMDBQorxcp1E+e7PexCuKIpydnbF48WKsXbsW3377Ldzc3NSOqUt2dlGTxNfbpDcO\n6p7AgdvH0de0D0yVJo+0KyXA4J52OB2ahN0n72Kop12TxEHVawu7t7ZFzIv2Ym60V1PnxtvbB88/\n/zQ2bPgNJSXF+PjjD7B3735MnRqIPXv2YcOGX1BZqUJGRgFKSsqRm1uMwYNH4f/+7w3MmjUHPXt6\nQaUSUVEhQ58+/RAQMBmdOnXGjBlzsHTpf7Bq1bcICwvHe+99CH19A8jlJXB07Apn584IDJyBiooK\nPPvsiygsrERZWQWyswuRnp6PgoISFBaWavzZayt0BLGJb+hYtWoVTE1NMWfOHMyZMwfLly+HlZUV\nbty4gVWrVuGZZ57Bli1bsHz5cgDAO++8gzFjxsDXt+ZHspoy6eH5YVh3ZRMG2Xpjdnf1m4mz80vx\nzrcXoKeU4dN/DISOvPFHgqh6/J+xdmJetBdzo72YG83UVsA06xzI0KFDcebMgxuLIiIi4OzsDE9P\nT4SFhSEvLw+FhYUICQlB3759mzOsRwxzGgBbfWtcSA5GcmGqWrupoQ5Gezsgp6AMx4LjWyBCIiIi\narICJjw8HHPnzsWuXbuwceNGzJ07FwEBATh16hRmzpyJY8eO4bnnnoNSqcSSJUuwcOFCLFiwAIsW\nLaq6obclSCQSBLiOhQgRe6IOVXvM2P6OMNCV4+DF+ygoLm/mCImIiKjJp5CaQlMOu1laGiItLQ8r\nQr5BVG4MXuv9AjqZOKsd98eVePx+/C7GeDtgxsjOTRYP/Q+HXLUT86K9mBvtxdxoRmumkFoLQRAw\nqdM4AMCeqIPV3ljs26sDLIyVOBGSgIyc4uYOkYiIqF1jAVMDF2NHeFr2QHTufdzIiFBrl8skmDzU\nBRWVInadiW6BCImIiNovFjC1CHDxh0SQYE/UYVSqKtXa+7tZo6O1AS5GpCIulUOBREREzYUFTC2s\n9a0w0NYbqUVpuJgSrNYuEQRMH94JIoDtQVHNHyAREVE7xQKmDuOcR0EukeNA9FGUVZaptbs7m8HN\nyRThMVm4GZvVAhESERG1Pyxg6mCiY4wRDkOQW5aHk/Fnqz1m+p8bPW4LioKq9T3URURE1OqwgNHA\naMdh0Jfr4Y/7QSgoL1Rrd7QxRH83a9xPyceVW2ktECEREVH7wgJGA7oyXfg7jURJZQmOxJ6o9pjJ\nQ10glQjYeToKFZWqZo6QiIiofWEBo6EhHQbCXGmK0wnnkVmsfq+LlYkufHt1QHpOCYKuJbZAhERE\nRO0HCxgNySUyTHDxQ4VYif0xf1R7zAQfJygVUuw9F4vi0opmjpCIiKj9YAFTD32tvdDBwBZXUq4h\nIT9Jrd1IT4Gx/TuioLgchy/FtUCERERE7QMLmHqQCBJMch1X60aPY7w7wthAgSNX4pBTUNrMERIR\nEbUPLGDqqbtZF3Q17YSbWbdxO+ueWruOQoqAwc4oK1dh77nY5g+QiIioHWABU0+CICDAdSwAYHcN\nGz0O6WkLGzM9nL6ehORM9ceuiYiI6PGwgGkARyMH9LHyRFx+Aq6lh6m1SyUSTB3mCpUoYudpbvRI\nRETU2FjANNAEFz9IBAn2Rh2qdqPH3l0s4NrBCFdvpyMqMbcFIiQiImq7WMA0kJWeBYZ0GID04kyc\nS7qk1i78udEjAGw7ea/aqSYiIiJqGBYwj2Gs0yjoSBU4GHMMJRXqTxx1cTCBVycL3EnIRWhUZgtE\nSERE1DaxgHkMhgoDjOw4DPnlBTgef7raY6YOd4UgADuCoqBScRSGiIioMbCAeUwjHYbCUG6A43Gn\nkFeWr9bewUIfgz1skZhRiHPhyS0QIRERUdvDAuYxKWU6GOc8CqWVZTgce7zaYwIGO0Muk2D3mRiU\nlavf8EtERET1wwKmEfjY9YelrjnOJF5EWlGGWruZkRKj+zogO78Ux68mtECEREREbQsLmEYglUjx\nhOtYqEQV9kcfqfaYcQM6Ql8pw4EL91FQXN7MERIREbUtLGAaSS9LDzgaOuBqWiju58Wrtesp5Zgw\nyAlFpRU4eOF+C0RIRETUdrCAaSSCIGBSp7+2GDhU7bovI3p3gLmRDo5dTUBmbklzh0hERNRmsIBp\nRF1MO8HNvCvuZN/Draw7au1ymRSTh7qgolKFXWe4xQAREVFDsYBpZAEuYyFAwO6og1CJKrX2Ae42\ncLAywIXwFMSnFbRAhERERK0fC5hGZm9oB2+bXkgsSEZw6nW1dokgYNpwV4gAtgdFNX+AREREbQAL\nmCYwwXkMZIIU+6OPoFxVodbew9kM3R1NERadiVv3s1sgQiIiotaNBUwTMNc1w1D7QcgsycaZxAtq\n7cKfozAAsD2IGz0SERHVFwuYJuLnNAJKqRKHY4+juKJYrd3Z1gj9ulshJjkfwbfTWyBCIiKi1osF\nTBMxkOtjjONwFJYX4ej9U9UeM3moC6QSATtORaGiUv2GXyIiIqoeC5gm5OswGMYKI5yIP4Oc0ly1\ndmtTPQz36oC07GKcup7UAhESERG1TixgmpBCqsB4l9EoV5XjYMyxao+Z6OMEHYUU+87FoLhU/YZf\nIiIiUscCpokNsOkLaz0rXEi+gpTCNLV2I30FxvbriLyichy5HNcCERIREbU+LGCamFQiRcCfGz3u\njT5c7TFj+jnASF+BI5fjkVtY1swREhERtT4sYJpBTws3uBg7IjQ9HNG56hs5KhUyBPg4obS8EnvP\nxbRAhERERK0LC5hmIAgCJrmOBwDsvnew2nVfhnjawdpUF6evJyE1q6i5QyQiImpVWMA0E1cTJ/S0\ncEdUbgzCM2+ptcukEkwd5opKlYgdp7nRIxERUW1YwDSjJ1z9/9zo8VC1Gz326WoJFzsjBEemITop\nrwUiJCIiah1YwDQjW31rDLTti5TCVFxKvqrWLggCpnOLASIiojqxgGlm45xHQy6RYX/MHyirLFdr\n79rRFD1dzREZl4Ow6MwWiJCIiEj7sYBpZqZKE/g6DEFOaS5OJZyr9phpw10hANgeFAWViqMwRERE\nf8cCpgWM7jgcejJdHLl/EoXl6k8c2VsaYJCHDRLSC3EhIqUFIiQiItJuLGBagJ5cF35OI1BcUYw/\n7p+s9pjJQ1wgk0qw60w0yisqmzlCIiIi7cYCpoUM6zAIpjomCEo4h6ySbLV2MyMlRvW1R1ZeKY5f\nTWyBCImIiLQXC5gWIpfKMdHFDxWqChyIPlrtMeMHOkJPR4YDF2JRWKJ+wy8REVF7xQKmBXnb9IKd\nvg0upVxFYkGyWru+Uo7xgxxRWFKBgxfUtyAgIiJqr1jAtCCJIMGkTuMgQsTeqEPVHjOqjz3MjHRw\nNDgBWXklzRwhERGRdmIB08LczLqis4kLwjMjcTc7Sq1dLpNi8hAXVFSqsPsMN3okIiICWMC0OEEQ\nMKnTOADA7qhD1a6+O9DdBvaW+jgXnoyE9ILmDpGIiEjrsIDRAk5GHdHL0gOxeXG4nh6u1i6RCJg2\n3BWiCOwIUh+lISIiam9YwGjrEEsjAAAgAElEQVSJJ1z9IREk2Bt9CJUq9XVfPFzM0dXBBKFRmbgd\np/7YNRERUXvCAkZLWOlZwseuP9KKMnA++YpauyAImO7bCQCwLSiKGz0SEVG7xgJGi4x1GgWFVIGD\nMUdRWlmm1u5iZ4S+XS0RnZSHq7fTWyBCIiIi7cACRosY6xhipMNQ5JXl40TcmWqPmTrMFVKJgB2n\no1FRqWrmCImIiLQDCxgtM7LjUBjI9XEsLgj5ZepPHFmb6WGolx1Ss4pw5ob64ndERETtAQsYLaMr\nU2Ks0yiUVJbiSOyJao95wscZOnIp9pyNQUlZRTNHSERE1PKatIC5c+cORo0ahc2bNz/y/pkzZ9C1\na9eq13v37sXUqVMxffp0bNu2rSlDahUGd+gPC6UZTideQEZxplq7sb4Cfv0ckFdYhj+uxLdAhERE\nRC2ryQqYoqIiLF26FAMHDnzk/dLSUnz33XewtLSsOm7NmjXYsGEDNm3ahJ9//hk5OTlNFVarIJPI\nMNHVH5ViJfZFH6n2GL9+HWGkJ8ehS3HIK1S/4ZeIiKgta7ICRqFQYP369bCysnrk/W+++QazZs2C\nQqEAAISGhsLDwwOGhoZQKpXo3bs3QkJCmiqsVqO3VU90NOyA4NTriM9PVGvX1ZFhoo8zSssqse98\nbPMHSERE1IKarICRyWRQKpWPvBcTE4PIyEiMHTu26r2MjAyYmZlVvTYzM0N6Oh8RlggSBLj+ucXA\nvYPVHjPMyw5WJroIupaItOyi5gyPiIioRcma82Kffvop3n333VqP0WSBNlNTPchk0sYKS42lpWGT\n9V0flpa9cTqlO0JTbiG5MgE9bbqrHTN/ojs+3xSMg5fi8c+5fVsgyualLbmhRzEv2ou50V7MzeNp\ntgImNTUV0dHReOONNwAAaWlpmDNnDl566SVkZGRUHZeWlgYvL69a+8puwtEGS0tDpKfnN1n/9TXW\nYQxCU27h55AdeLPvS5AIjw6adbUzhLOtIU5fT8QwT1s42xq1UKRNT9tyQw8wL9qLudFezI1maivy\nmu0xamtraxw7dgxbt27F1q1bYWVlhc2bN8PT0xNhYWHIy8tDYWEhQkJC0Ldv2x9J0JSDYQf0tfZC\nfH4iQtJuqLULgoBpwx9sMbCdWwwQEVE70WQjMOHh4Vi2bBkSExMhk8lw5MgRrFq1CiYmJo8cp1Qq\nsWTJEixcuBCCIGDRokUwNOSw2sMmuvjjWloY9kUdhpdlD8gkj6atu6MpPFzMERadiYiYLPRwMW+h\nSImIiJqHILbCP9mbcthNW4f1tt/Zi5MJZzG9cwCGO/iotcenFeDDHy/D3soAHyzwhkQQWiDKpqWt\nuWnvmBftxdxoL+ZGM1oxhUSPx89pBJRSHRyKPYbiihK1dgcrAwzsYYP4tAJcikhtgQiJiIiaDwuY\nVsJQYYDRjsNRUF6I43Gnqj1m0hBnyKQCdp6ORnlFZTNHSERE1HxYwLQivg5DYKQwxPG408gtVR96\ntDDWxcg+9sjMK8HJEPXF74iIiNoKFjCtiI5UgXHOo1GmKseh2GPVHjN+oBN0dWTYdz4WRSXlzRwh\nERFR82AB08oMsvWGlZ4FziVdQmqR+orFBrpyjB/oiMKSChy6FNcCERIRETU9FjCtjFQiRYDLWKhE\nFfZFHa72mFF97GFqqIOjV+KRmat+wy8REVFrxwKmFfK07AFno464lh6GmFz1URaFXIrJQ1xQVqHC\nyh03UFxa0QJREhERNR0WMK2QIAhVGz3uiTpY7eq7Ph42GO5lh/i0AqzeGYaKSlVzh0lERNRkWMC0\nUp1NXdDDvDvu5kQjIjNSrV0QBMwe0wVenSxw6342fjx4C6rWt2YhERFRtVjAtGIBrmMhQMCeqENQ\nieojLFKJBP8IcIernREuRqRiR1BUC0RJRETU+FjAtGJ2Bjbob9MHSYUpuJJyrdpjdORSvDytJ6zN\n9HDoUhyOBcc3c5RERESNjwVMKzfBZQxkEhn2RR9BeWX1674Y6inweqAnjPQV+O3YXQRHpjVzlERE\nRI2LBUwrZ6o0wXB7H2SX5uBU4vkaj7M00cVr0z2hUEjx3b6buBOf04xREhERNS4WMG3AGEdf6Mp0\ncST2BIrKi2s8ztHGEIsm94Aoili5/QYSMwqbMUoiIqLGwwKmDdCX68HP0RdFFcU4GhdU67E9nM2x\nYFw3FJVWYMXW68jOL22eIImIiBoRC5g2Ypi9D0x0jHEy/gyyS2qfHhrUwxZTh7kgK68UK7ZeR1EJ\nF7ojIqLWhQVMG6GQyjHBeQzKVRU4GHO0zuPHDXCEb+8OSEgvxOqdN1BewYXuiIio9WAB04b0t+0D\nW31rXEgORnJhaq3HCoKA2aO6oFdnC0TG5XChOyIialVYwLQhEkGCANexECFiT9Shuo+XCPjHE+7o\n1MEYl26mYvtJLnRHREStAwuYNqaHeXe4GjsjLOMm7uXE1Hm84s+F7mzN9XD4chz+uMKF7oiISPux\ngGljBEHApE61b/T4dwa6crwW6AljAwW2HL+Ly7dqn34iIiJqaSxg2iAXY0d4WfZAdO59nEu6pNE5\nFsYPFrrTUUjx/f6buB2X3cRREhERNRwLmDZqcqfx0JfrYcud3QjLuKnROR2tDbF4igdEEVi5IwwJ\n6QVNHCUREVHDsIBpoyx0zfFCzwWQClL8EP4LYnLva3Sem5MZnh7fHcWlFVixNRRZeSVNHCkREVH9\nsYBpw5yNHbGwx2xUipVYd+MnpBZqtonjQHcbTB/uiuz8UqzYGoqikuo3iSQiImopLGDaOA8LN8zs\nOhWF5UVYHfoDckpzNTrPv39HjOxjj8SMQqzaEcaF7oiISKuwgGkHBtl5Y6KLH7JKsrE29EcUV9S8\n4eNfBEHAzJGd0aerJW7H5+D7/Te50B0REWkNFjDthJ/jCAztMBCJBcn47sZGlKvq3v9IIhHw3EQ3\ndLE3xpXINGw9ca8ZIiUiIqobC5h2QhAETO8SAC/LHriTE4WNN3+HSqx7Wkguk+KlaT1hZ6GPP67E\n48jluGaIloiIqHYsYNoRiSDBfLeZcDV2RkjaDey4u0+jhe70lXK8Nt0TJgYKbDlxD5ducqE7IiJq\nWSxg2hm5VI7ne86Drb41ghLO4VjcKY3OMzdW4rVAL+jqPFjo7lZsVhNHSkREVDMWMO2QnlwPizwX\nwkTHGLujDuJS8lWNznOwMsDiKT0BAKt3hSE+jQvdERFRy2AB006ZKk2w2OsZ6Ml0sTlyGyIyb2t0\nXndHUzwzwQ3FpZVYsfU6MnO50B0RETU/FjDtmK2+NZ7vuQBSQYLvwzfhfp5mO1H3d7NGoG8n5BSU\nYcW2UBRyoTsiImpmLGDaOVcTJyxwn4XyynKsDf0RaUXpGp3n188Bo/s6ICmjEKu230B5RWUTR0pE\nRPQ/LGAInpY98GTXySgoL8Tq6z8gtzS/znMEQcCTIzvBu5sV7iTkYv2+m1CpuNAdERE1DxYwBAAY\n0mEAxjmNQmZJFtbd+BElFXXf2yIRBDwzoTu6Opgg+HY6fjt+V6PHsomIiB4XCxiqMs55NHzs+iE+\nPxHrwzahQoPVeuUyKV6a6oEOFvo4fjUBh7nQHRERNQMWMFRFEAQ82WUyPCzcEJl9F5tvbdNotV49\npRyvBXrC1FAH205G4UJESjNES0RE7RkLGHqEVCLF0+6z4GzkiCup17A76qBG55kZKfFaoCd0dWT4\n8cAt3ORCd0RE1IRYwJAahVSB5z3nw1rPCsfjTuN43GmNzrO3NMDLUz0gCMDqnWGIS637ZmAiIqKG\nYAFD1TKQ62OR50IYK4yw895+BKdc0+i8rh0fLHRXUlaJFdtCkZFb3MSREhFRe8QChmpkrmuKRV4L\noStTYuOtrYjMuqvRef26W2PGyM7ILSjDiq2hKCjmQndERNS4WMBQrToY2OIfHvMgAPgu7GfE5ydq\ndN4Ybwf49XNAcmYRVu64gbJyLnRHRESNhwUM1amzqSvmuc9EWWU51oT+gIziTI3Om+7bCf26W+Fe\nQi6+40J3RETUiBpcwMTGxjZiGKTtelv1xLQuTyC/rACrr3+P/LK6d6KWCAIWjndDt44mCLmTjl+O\n3eFCd0RE1ChqLWAWLFjwyOu1a9dW/fv9999vmohIaw2394Gf4wikF2diXehPKKkorfMcuUyCxVN6\nwt5SHydDEnHw4v1miJSIiNq6WguYiopHV2K9ePFi1b/5l3T7NNHFDwNs+uJ+fjx+CN+MSlXd97bo\nKWV4LdALZkY62HEqGufDk5shUiIiastqLWAEQXjk9cNFy9/bqH0QBAGzuk2Fu3k33My6jV8it2tU\nzJoa6uC1QC/o6cjw08FIRMRwoTsiImq4et0Dw6KFgAer9S7sMQeORg64lHIVe6MPa3ReBwt9vDyt\nJwRBwOpdYbifwoXuiIioYWotYHJzc3HhwoWq//Ly8nDx4sWqf1P7pSNV4IWeC2Cla4E/7p9EUPw5\njc7r4mCC5ya6oaysEl9tC0V6Dhe6IyKi+hPEWsb/586dW+vJmzZtavSANJGe3nR/uVtaGjZp/21N\nRnEWvry6BvllBXi6x2z0tuqp0XnHguPx67G7sDbTw//N6Q1DPUWd5zA32ol50V7MjfZibjRjaWlY\nY5usthNbqkCh1sNC1wwvej6Nr0K+wc8Rv8FAro8upq51njeqrwOy80tx6FIcVu64gTdm9IKOXNoM\nERMRUVtQ6xRSQUEBNmzYUPX6999/R0BAAF5++WVkZGQ0dWzUSjgYdsCzHk9BBPDtjZ+RWKDZU0ZT\nh7tigLs1ohLz8O2eCFSqVE0bKBERtRm1FjDvv/8+MjMfrLoaExOD5cuX46233sKgQYPwn//8p1kC\npNahm1lnPOX2JEoqS7Dm+vfILM6u8xyJIODpcd3R3dEU1+9l4Jejd/l4PhERaaTWAiY+Ph5LliwB\nABw5cgT+/v4YNGgQZsyYwREYUtPX2gtTO09Eblk+1oR+j4LywjrPkUklWDzFAw5WBgi6logDF7jQ\nHRER1a3WAkZPT6/q35cvX8aAAQOqXvORaqrOCIchGNVxGFKL0vFN6E8oqyyr8xxdHRlene4JcyMl\ndp6OxtkbXOiOiIhqV2sBU1lZiczMTMTFxeHatWvw8fEBABQWFqK4mI+/UvUCXMfC27o3YvLi8EP4\nLxqt1mtqqIPXn/SEvlKGDYciERat2YaRRETUPtVawDz77LMYN24cJk6ciBdffBHGxsYoKSnBrFmz\nMGnSpOaKkVoZiSDBnO7T0N2sC8Izb+H32zs1urfF1vzBQndSqYC1u8IRm8K1hoiIqHq1FjDDhg3D\n2bNnce7cOTz77LMAAKVSiX/+85+YPXt2nZ3fuXMHo0aNwubNmwEAycnJmD9/PubMmYP58+cjPT0d\nALB3715MnToV06dPx7Zt2x73M5EWkElkeKbHHHQ07IDzyVdwIOYPjc7rbG+C5ya6o6y8El9tDUUa\nF7ojIqJq1FrAJCUlIT09HXl5eUhKSqr6z8XFBUlJSbV2XFRUhKVLl2LgwIFV73311VcIDAzE5s2b\nMXr0aPz0008oKirCmjVrsGHDBmzatAk///wzcnJyGufTUYtSypR4wfNpWOia41DscZxOuKDReX26\nWmLW6C7IKyrHii3XkVdU9300RETUvtS6kN2IESPg7OwMS0tLAOqbOW7cuLHGcxUKBdavX4/169dX\nvffBBx9AR0cHAGBqaoqIiAiEhobCw8MDhoYPVtvr3bs3QkJCMGLEiIZ/KtIaRgpDLPJciC+vrsHW\nO7thpDCAl5VHneeN7GOPnIJSHLhwH19vu4E3Z/ZqhmiJiKi1qLWAWbZsGfbs2YPCwkKMHz8eEyZM\ngJmZmWYdy2SQyR7t/q+nmiorK/Hrr79i0aJFyMjIeKRPMzOzqqmlmpia6kEma7pVW2tbupjqzxKG\n+JfhS/jw5ApsuPkb3rWyRHfLznWe94+pniguV+FEcDx+PByJf83vx9xoKeZFezE32ou5eTy1FjAB\nAQEICAhAcnIydu3ahdmzZ6NDhw4ICAjA6NGjoVQq633ByspKvPnmmxgwYAAGDhyIffv2PdKuyc2e\n2dlF9b6uprg/RdMwghmecZ+DdTd+wmen1+H13i/AzsCmzvNm+LoiNbMQV26m4ovNVzFrZCfo6tT6\nbUvNjD8z2ou50V7MjWZqK/JqvQfmL7a2tnjxxRdx6NAh+Pn54eOPP8bgwYMbFMw777wDR0dHLF68\nGABgZWX1yKJ4aWlpsLKyalDfpN3czLtiTrfpKK4oxprQH5BdUve9TjKpBC9O6oFO9sY4dyMJ/95w\nBXGp/KEnImrvNCpg8vLysHnzZkyZMgWbN2/GP/7xDxw8eLDeF9u7dy/kcjlefvnlqvc8PT0RFhaG\nvLw8FBYWIiQkBH379q1339Q69Lftg0mu45BTmovVoT+gqLzu0TRdHRnenNkLU4Z3Qmp2MT7eeBUn\nryVy2wEionZMEGv5LXD27Fns2LED4eHhGDNmDAICAtClSxeNOg4PD8eyZcuQmJgImUwGa2trZGZm\nQkdHBwYGBgAAV1dXfPjhhzh8+DB++OEHCIKAOXPm4Iknnqi176YcduOwXtMTRRE77u3DyfizcDV2\nwmKvZ6GQyus8z9LSEMcuxOD7/TdRWFIB725WmD+2G6eUWhh/ZrQXc6O9mBvN1DaFVGsB061bNzg5\nOcHT0xMSifpgzaeffto4EdYTC5jWTyWqsCHiN1xNC4WnhTue8ZgLiVD7gOBfucnKK8E3eyJwLzEX\nVia6eGFSDzja8Ga4lsKfGe3F3Ggv5kYztRUwtf7p+tdj0tnZ2TA1NX2kLSEhoRFCo/ZKIkgw1+1J\n5JcXIjQjAltu78KMrlM02mPLzEiJN2f1wq4z0Th0MQ7/2RSMJ0d0xojeHbhHFxFRO1Hrn7wSiQRL\nlizBe++9h/fffx/W1tbo168f7ty5g6+++qq5YqQ2Si6R4TmPp9DBwBZnky7hcOxxjc+VSSWYPrwT\nXp3uCaVChl+O3sG63eEoKqlowoiJiEhb1DoCs2LFCmzYsAGurq44fvw43n//fahUKhgbG3PJf2oU\nujJl1UJ3+2P+gJGOIXzs+mt8fk9Xc3y4wBvf7o1A8O103E/NxwuTesDJxqgJoyYiopZW5wiMq6sr\nAGDkyJFITEzEU089hdWrV8Pa2rpZAqS2z1jHCIu8noG+XA+/Re7EjfSIep3/15TS+IGOSM8pwSeb\nruJYcDyfUiIiasNqLWD+fj+Bra0tRo8e3aQBUftkrWeJF3o+DblEhh8jfkF0bmy9zpdKJJg6zBWv\nBz6YUvr12F2s3RWOopLypgmYiIhalEbrwPyFN0hSU3I27oiFPeagUlThm9ANSClMrXcfPVzM8dHT\n/dDFwQRX76Tjw5+uICY5rwmiJSKillTrY9QeHh4wNzevep2ZmQlzc3OIoghBEBAUFNQcMarhY9Rt\n24WkK9gcuQ2mOiZ4o+8imOgYA6hfbipVKuw5G4sD52MhkQgI9O2EUX3tWYQ3Af7MaC/mRnsxN5pp\n8GPUhw8fbvRgiOoy0M4buWX52Bd9GGuu/4DXer8APbluvfqQSiSYMtQFXR1MsH5fBH47fheRcdl4\nenx36CvrXjSPiIi0W60jMNqKIzBtnyiK2HpnD04nnkdnExcs8lwIOxuzBuUmp6AU3+2NQGRcDsyN\nlHh+kjtc7YybIOr2iT8z2ou50V7MjWYeezNHouYmCAKmd3kCXpYeuJsTjZ9v/g6VStWgvkwMdPDG\njF54wscJWXkl+GxzCI5cjuNTSkRErRgLGNJaEkGC+W4z0MnEGdfSw7D60gaUVJQ2rC+JgElDXLBk\nhhf0deXYcuIeVu0IQ0Exn1IiImqNWMCQVpNL5fiHx3w4GjrgbNwVfB68Egn5SQ3uz83JDB8t8EZ3\nR1Ncv5eBj366jHuJuY0YMRERNQfphx9++GFLB1FfRUVlTda3vr5Ok/ZP9SeXytHPtg+kCuBaSjgu\npgRDT6YLR8OGPVWkVMgw0N0GEkHA9XsZOB+WAoVMCpcORnxKqQH4M6O9mBvtxdxoRl9fp8Y2jsBQ\nqyCXyDCv1zS80HMBdKQKbL2zG+vDNqKwvKhB/UkkAp4Y7Iw3ZvSCga4cW0/ew8rtNzilRETUSrCA\noValh0V3/F+/19DZxAWhGRH49PJXuJcT0+D+ujua4sOn+8HNyRQ3ojLxwY+XcS+BU0pERNqOU0h/\nw2E97fVXbpQyJfrZ9IZUkCAs4yYuJgdDgASuJk4NnFKSYoCbDaSSB1NK58JSIJNJ4NrBmFNKGuDP\njPZibrQXc6MZTiFRmyMRJBjrPAqv9n4exjpG2B9zBKuurUdOacNGTyQSARN9nPHmzF4w1Jdje1AU\nvt52A/n8HwwRkVZiAUOtWicTZ7zT71V4WLjhTk4UPr38FSIyIxvcX9eOpvhoQT+4O5shLDoTH/50\nBXficxoxYiIiagycQvobDutpr5pyo5Aq0MfKE/pyfYRn3MSllBCUVpSis6kLJEL9a3QdhRQD3K0h\nk0qqnlKSSgV0sueUUnX4M6O9mBvtxdxohlNI1OYJgoDhDj54o+9iWOlZ4Hj8aXx5dS3SizIb1J9E\nEDBhkBPemtUbxgYK7DgVja+2hiKP/8MhItIKLGCoTXEw7IC3+r6C/jZ9EJefgM+ufIXglGsN7q+L\ngwk+WOCNHi5mCI/Jwoc/XsbtuOxGjJiIiBqCBQy1OUqZDp5yexJPdX8SKoj46eZv2HxrG0orGzZ6\nYqSnwKvTPTFtuCvyCsvx+W/XsO98LFTcS4mIqMWwgKE2q79tH7zt/QocDOxwIfkKPr+yEokFyQ3q\nSyIIGDfAEW/N7gUTAx3sOh2NFVuuI6+QU0pERC2BBQy1adZ6lljSdzF87QcjpSgNnwevwumECw3e\nibqzvQk+XOCNnq7miIjNxgc/XUbkfU4pERE1NxYw1ObJJTJM6/IE/uExDzoSBbbc2YXvwzehqIHb\nEBjqKfDytJ4I9O2E/MJyfPH7New9GwOVilNKRETNhQUMtRs9Ld3xTr9X0cnEGdfTw/HJ5a8QnRvb\noL4kggD//h3x9pzeMDXUwe6zMfhyy3XkckqJiKhZcB2Yv+Gz+dqrMXKjK1Oiv00fCIKA8IxbuJhy\nFRJBAhdjxwat8WJmpMSgHrZIzixCeEwWLkSkwNHaAJYmuo8VZ2vCnxntxdxoL+ZGM1wHhughEkGC\n8c6j8Uqv52CkMMS+6MNYff175JbmN6g/A105XprqgSdHdEJhcTn++/t17D4TzSklIqImxAKG2q3O\npq54x/tV9DDvjtvZ9/Dp5RW4mXm7QX0JggC/fh3x9uzeMDNSYu+5WPz392vIKSht5KiJiAhgAUPt\nnIFCH8/3nI9pnZ9AcUUx1oT+gF33DqBCVdGg/lw7GOPDp73Rq7MFIuNy8OGPlxERm9XIURMREQsY\navcEQYCvw2As6bsIlrrmOBZ3CstD1iGjuGHbEOgr5Vg8xQMzRnZGYUkFlv9+HbtOc0qJiKgxsYAh\n+lNHQ3u87f0KvK17435ePD69/DWupl5vUF+CIGCMtwP+b24fmBsrse98LL747Rqy8zmlRETUGFjA\nED1EKVNivvuMP7chUOHHiF/xa+R2lDVwGwJnWyN8uMAbvbtY4nZ8Dj786TLCYxo2skNERP/DAoao\nGv1t++Dtvi/D3sAO55IuY1nwKiQVpDSoLz2lHIsm98DMUZ1RVFKBFVtCsfXkPRSXNuw+GyIi4jow\navhsvvZq7twYKPQxwKYPiitLEZF5CxeTr0Bfro+Ohh3qvWaMIAhwtTOGh4s5ImKzcCMqE6dDkyCV\nCOhobQCppPX+LcGfGe3F3Ggv5kYzta0DwwLmb/hNpb1aIjdSiRTu5t1gb2CHm5m3cS39BpILU9HN\nrAvkUnm9+zM11MEQT1so5FLcTcjB9XuZOB+eAqVCBnsrfUgasJheS+PPjPZibrQXc6OZ2goYQWzo\nrnYtKD29YQuOacLS0rBJ+6eGa+ncZJfk4KeI3xCVGwMzpSmedp8FZ2PHBvdXUFyOQxfv49jVBJRX\nqGBtpofJQ5zRt5tVqypkWjovVDPmRnsxN5qxtDSssY0jMH/Dqlh7tXRudGVK9LPpDeCvbQiCIZNI\n4dzAbQgUcincnc0w2MMWZRUqRN7PxpXINFy/lwFzYyWsTHQb1G9za+m8UM2YG+3F3GiGIzD1wKpY\ne2lTbu5k38OGiN+RW5aHbqadMc99BowUNf+loInU7CLsORODSzdTIQLo4mCCacNc0cneuHGCbiLa\nlBd6FHOjvZgbzdQ2AsMC5m/4TaW9tC03+WUF2HRrKyIyI2GoMMA8txnobtblsfuNTyvAzlNRCI16\n8Li1p6s5pgxzhYOVwWP33RS0LS/0P8yN9mJuNMMppHrgsJ720rbc6EgV6GvtBV2ZEmEZt3Ap5SrK\nK8vR2cQFEqHhTxUZ6yswwN0Gbk6mSMsuxs3YbJy6lojUrCI4WBlAX7f+Nw83JW3LC/0Pc6O9mBvN\ncAqpHlgVay9tzk1cXgJ+iPgFGcWZcDbqiPnus2Cha/bY/YqiiPCYLOw4FYW41AJIJQKGeNph4iAn\nmBrW/IPdnLQ5L+0dc6O9mBvNcASmHlgVay9tzo2xjhEG2PZFVkk2bmbdxqWUYFjomsNW3/qx+hUE\nAdamehjqZQc7C33EpRUgIiYLQdcSUVxaAUcbQyjk0kb6FA2jzXlp75gb7cXcaIbrwNQDv6m0l7bn\nRi6RwcuyB8x0zRCecRPBqdeRV5qHrqadIZU8XpEhCAI6WBrAt5cdzI2UiE7OQ1h0FoKuJ0ElinC0\nNoBM2jKL4Wl7Xtoz5kZ7MTea4RRSPXBYT3u1ptykFKbhx4hfkFiQDDt9GyxwnwU7A5tG67+8ohIn\nQhJx4MJ9FBSXw0hPjgmDnDDMqwPksuYtZFpTXtob5kZ7MTea4RRSPbAq1l6tKTcPtiHoi6KKEoRn\n3sLF5GAYKgzgYFD/bQ0ILqIAACAASURBVAiqI5VI0KmDMYb36gCZVMDthFxcv5uBC+Ep0FfKYG9p\n0GxryLSmvLQ3zI32Ym40wymkeuA3lfZqbbmRSqToYdENHQxsEZEZiZC0G0gpSkN3s86QSxrnSSK5\nTIJujqYY6mkHlUpEZFwOrt5OR/DtdBjr68DWXK/JC5nWlpf2hLnRXsyNZjiFVA8c1tNerTk3WSXZ\n+CniN0TnxsJcaYYF7jMfaxuCGq+TV4I9Z2NwNiwZogg42xph6jAXuDk9/hNRNWnNeWnrmBvtxdxo\nhlNI9cCqWHu15tzoynTR36Y3RADhGbdwIfkKUgrTYGdgCwO5fuNdR0eGXp0t0a+7FfKKynEzNgvn\nw1NwJz4Htub6TfLodWvOS1vH3Ggv5kYzHIGpB1bF2qut5OZudhR23NuP+PxESAQJBtj0wVjnUTBT\nmjb6tWJT8rDzVDTCY7IAAL27WGLyUBd0sGi8oqmt5KUtYm60F3OjGW4lUA/8ptJebSk3oijieno4\n9kcfQUpRGmSCFD4dBsDPcQSMdR5vT6Xq3I7LxvZTUYhKzIPw/+3df1Tb133/8aeQBEISEiAQksD8\ndiDGBicmiePETrv86ppfzY/NWRa3/3x71pP2nK3H22nqrkm77dvNPdvOztacdDvLzulJz77x5qZN\n0rWO0y6OncaO7djBNjYYbMxPIUCAhBC/9OP7h2Rh4sSRYkBX8H6ck4MjCXGV1/3gd+69n3s1sKXB\nwSN3VlGUn3vd772ScllpJBt1STbJkQImBdKp1LUSs4lEIxwbPMmvut5iZHqU7Cw9d5Xdwb0Vn8Ok\nNy7qz4pGo7R0enn14AX6hifRZmn43E2lPLilEqsp+zO/70rMZaWQbNQl2SRHCpgUSKdS10rOJhwJ\n8577GPsu/ZbxGR8GrYG7y7fye2u2YtAZFvVnRaJR3j/r4ReHLjI8Pk2OXsu9t5TxhVvLMRpSvztq\nJeeS6SQbdUk2yZECJgXSqdS1GrKZDc/xbv9h3ux+m8DcJCa9kfsqPs+20i1kaxf3EMdQOMKhlgFe\nf+8SvsAsJoOOL26u4Pc2lZGTwvEEqyGXTCXZqEuySY4UMCmQTqWu1ZTNdGiat3t/x29732EqNI01\n28IXKu9mi+sWdFm6Rf1ZM3NhfvtBH78+0s3kdAirOZuHt1SytcmV1PEEqymXTCPZqEuySY4UMCmQ\nTqWu1ZhNcC7IWz3vcKD3XWYjc9gMBXyx6l5uddxMlmZxjwwITs/x6/d7eOt4L7NzEYrzDXxpazW3\nrSsh6xqb4a3GXDKFZKMuySY5UsCkQDqVulZzNv7ZCfZfeptD/YcJRcOUGO08WH0fG4vXL3oh4wvM\n8Mv3ujnwYT/hSJSyYhOPbauhqdb2sbv6ruZcVCfZqEuySY4UMCmQTqUuyQbGpsf59aXfcNh9nEg0\nwhqziwer76fBVr/oRwYMj0/x2rtdHD4zSBSoLbXy+F3V1JUv3K9GclGXZKMuySY5aduJ9/z582zf\nvp2srCwaGxtxu90888wz7N27l4MHD3L33Xej1Wp5/fXX2bVrF3v37kWj0dDQ0HDN95WdeFcnyQZy\ndQY2FK2juWQjwbkgbWOdHPOcpG2sg6JcG7bcxTsywGTQc/MNxTTXFTMemOHspTF+d3qQC/0+XEUm\n8s2xHTIlF3VJNuqSbJKTlp14g8Egf/Inf0JlZSV1dXU8/fTTfPvb32bbtm38/u//Pv/4j/+Iw+Hg\nS1/6Eo8++ih79+5Fr9fzxBNP8NOf/pT8/PxPfG8ZgVmdJJurDQQG+eXFN2kZaQWgvmAtD1bfT5W1\nfNF/1oUBH6++c5Fz3WMANNfbeXRrFY31DslFUXLNqEuySU5aRmA0Gg0PPvgg7e3t5Obm0tjYyA9+\n8AOee+45tFotBoOBN954A7vdjtfr5aGHHkKn09HW1kZOTg5VVVWf+N4yArM6STZXy8s2s6lkI+tt\n9YxOj9M21sF77qP0TvTjNJVgyV68XX0L8wzcscFJbZmVQe8kZy+NceDkAMNjQQpM2ViuYzM8sTTk\nmlGXZJOca43ALO79mFe+sU6HTrfw7aempsjOjv2Ss9lsDA8PMzIyQmHh/LB3YWEhw8PDS9UsIVak\nCssavrHx/9AxdpE3Lu7j9MhZzoyc42Z7Iw9U30eJsXjRflZDZSHrKgo4cX6YVw9e5K2jPbx1tIdq\nl4VtTS5uqbeTm7Nkv1qEEAJYwgLm03zSzFUyM1oFBUZ0uuQ32krVtYasRHpJNtdWXNzE7WsbaRk8\ny/87/RofDLVwcvg0d1Vu5omGL1Jssi3az/qC3cK9W6o52upm//s9nGjzcHHAzyu/7WDrxlLu21xB\nXXnBoi8uFqmRa0Zdks31WdYCxmg0Mj09jcFgwOPxYLfbsdvtjIyMJF4zNDTExo0br/k+Y2PBJWuj\nzEuqS7JJXqmunJ0bvxE7MLJrP293vcehS+9zR+lt3F9x96IeGHn7Bhe1jjxGP1/D7067OXTKnRiV\nKS0ysbXJxe0NJeQZZYppuck1oy7JJjnXKvIWdwOJT7FlyxbefPNNAPbv38/WrVtpamri9OnT+P1+\nJicnOXHiBM3NzcvZLCFWJI1Gw032DXzn1m/y5Ru3k59j5Z2+93j+8N/xi85fMTm3uP8jUGgx8NAd\nVfzd125n55MbufVGO56xIK/8toOdL/yOH792htZLo0Qyb+cGIYSCluwupDNnzrB79276+/vR6XSU\nlJTw93//9zz77LPMzMzgcrn427/9W/R6Pfv27eOll15Co9Hw9NNP8/DDD1/zveUupNVJsrk+n3Rg\n5OfXbCX3Og6MvFYuE8FZDrd6ONgywMDIJABFVgNbG53cscFJoWVxD6oUC8k1oy7JJjmykV0KpFOp\nS7JZHHPhOQ4t4oGRyeQSjUa5MODnYMsAR895mJ2LoNHAhmob25pcNNbYkjp3SaRGrhl1STbJkQIm\nBdKp1CXZLK7p0AwH+t7lNz2XD4zM4wuV96R8YGSquUzNhDh6zsPBFjddbj8AFlM2d2xwsK3RRUmh\nMeXPIj6eXDPqkmySIwVMCqRTqUuyWRrBuSC/6TnI233vMhueTRwYeUvJTWizPv1uv+vJpXcowKGW\nAQ63DjI5HQKgbk0+25pcbKorJlu/dHcbrgZyzahLskmOFDApkE6lLslmaX3WAyMXI5e5UJgPzg9z\nqMWd2OnXmKPj9gYHW5uclJfI7aafhVwz6pJskiMFTAqkU6lLslkeHz0wsszs4qFrHBi52LkMjQU5\ndMrNu6fd+AKxnUorHXlsa3Jx27oS2SQvBXLNqEuySY4UMCmQTqUuyWZ5DQVH+FXXWxz3fEiUKNXW\nCh6qvp8bCmoXvG6pcglHIpy+MMrBlgFOXfASiUbJ1mdxS72dbU0uakutsknep5BrRl2STXKkgEmB\ndCp1STbpMRAY5Jdd+2kZPgNAXUEtD1V/IXFg5HLkMjYxw3tn3BxsGWB4fBoAp83I1kYXW9Y75Bym\nTyDXjLokm+RIAZMC6VTqkmzSq9vfyxsX3+Tc6HkANhTdyEPVX2Bj1Q3LlkskGqW9e4yDp9x80D5E\nKBxFm6XhprVFbGtysa6ykKwsGZW5TK4ZdUk2yZECJgXSqdQl2ajh8oGRF3yXANiyZhObi2+j2lqx\nrFM6gak5DrcOcrBlgP7h2CZ5NksOdza6uHODE5tVNsmTa0Zdkk1ypIBJgXQqdUk26ohGo5wdPc8v\nL+6jZ6IfAHtuEbc5m7nNcTMFhvxlbUuXe4KDLQO8f87DzGwYDdBQXci2Rhcb1xat2k3y5JpRl2ST\nHClgUiCdSl2SjXqi0Sie6AD7zh3kw+HTzEVCaNBQX7iWzc5mGosaPtPuvp/V9GyIY+eGOHhqgAv9\nsU3y8ox67ljvZGuTE6fNtGxtUYFcM+qSbJIjBUwKpFOpS7JR0+VcpkJTnPCc4rD7OF3+bgBydQY2\nlWxks6OZSsuaZZ1i6h8OcOiUm/fODBKYmgNgbZmVbU0umuvt5KyCTfLkmlGXZJMcKWBSIJ1KXZKN\nmj4uF8/kEEcGP+B99wf4ZmMjIQ6jnc3OZm513Iw1x7Js7ZsLRTjZMcyhlgFaL8U2ycvN0XLbOgfb\nmpxUlOSt2Nux5ZpRl2STHClgUiCdSl2SjZqulUskGuHcaAdH3Mc4NdxKKBomS5PFusIbuM3ZzIai\ndehTOHfpeg2PT/FufJO8sYkZAMrtZrY2udjcUILJsHzTXctBrhl1STbJkQImBdKp1CXZqCnZXCbn\ngnzg+ZAj7g/onugFwKQz0uzYyGZnM2vMpcs2EhKORDhzMbZJXktnbJM8vS6L5rpiblvn4MaKfPS6\nzJ9ikmtGXZJNcqSASYF0KnVJNmr6LLkMBAY54j7O0cETTMwFAHCZHNzubOYWx83kZZuXoqkfyxeY\n4XdnYrdjD41NAZCj17KusoCNtUU01hZhzdCN8uSaUZdkkxwpYFIgnUpdko2arieXcCTM2dF2jriP\nc3rkHOH4FNN6241sdjaz3laf1InYiyEajdLR5+NkxzAfdnrxjAYB0ABVLgtNNTaaaotYYzdnzJoZ\nuWbUJdkkRwqYFEinUpdko6bFyiUwO8kxz0mOuI/TFxgAwKw3cavjZjY7myk1O6/7Z6RicDTIhx0j\ntHSO0NHnIxL/VWmz5NBYW8TG2iLqywvQ69TdY0auGXVJNsmRAiYF0qnUJdmoaSly6Z0Y4H33cY55\nThKYi+2yuyavlM3OZppLNmLWL+9+LpPTc5y+6KWl08vpC16CMyEgNtXUUFVIU62Nppoi5c5kkmtG\nXZJNcqSASYF0KnVJNmpaylxCkRBnvG0ccR+j1dtOJBpBp9GyoWgdm53N3Fh4w7JNMSXaFI7Q2efj\nw87Y6Iwnvm5GA1S7LDTFR2dKi01pn2qSa0Zdkk1ypIBJgXQqdUk2alquXPyzExwdPMER93Hckx4A\nLNl53Oq4mdudzThMJUveho/j9k7S0unlw84ROhdMNRloqrWxsbaIujRNNck1oy7JJjlSwKRAOpW6\nJBs1LXcu0WiUnok+jriPc8zzIVOh2AhIhWUNtzub2WTfiFGfu2ztuVJgao4zF2PFzOmLo0xdnmrK\n1rK+spCm2iIaa21YjMsz1STXjLokm+RIAZMC6VTqkmzUlM5c5sJznBo5yxH3cc6NnidKFF2Wjqai\nBm533kJdYS1ZmvQssg2FI3T0+WjpHOHDzpHELdoaoLrUwsbaIppqiygtWrqpJrlm1CXZJEcKmBRI\np1KXZKMmVXIZn/Fx1H2CI4PH8QSHAcjPsXKbYxO3OTdRYixOW9ui0WjsrqbOEVo6Rujo93H5N2+R\n1ZBYN3PDmvxFnWpSJRtxNckmOVLApEA6lbokGzWplks0GqXL38MR9zE+8JxiOjwNQLW1ktudzdxk\nbyRXZ0hrGwNTc5y+EJtqOtPlZWomDIAhO3ZX08baIjbUXP9Uk2rZiHmSTXKkgEmBdCp1STZqUjmX\n2fAsHw6f4X33B7SPdRIlSnaWno32DWx2NLO2oDptU0yXhcIROnrH+bDTS0vnCEPj81NNNaXWxEJg\n12eYalI5m9VOskmOFDApkE6lLslGTZmSy+j0GO/Hp5hGprwAFBoKuM2xic3OZopyC9Pcwtjokdsb\nTKyb6fzIVNPG2iKa1hZRtyYfnfbTC69MyWY1kmySIwVMCqRTqUuyUVOm5RKNRukc7+LI4HFODJ1i\nNjwLwNr8ajY7m2kqXp/2KabLAlNznLowQkund8FUU26OloYqG001NhprbOR9wlRTpmWzmkg2yZEC\nJgXSqdQl2agpk3OZDs3w4fBpjriP0zF+EYAsTRY11koabPWss9XhMjnSviEdxKaazveOJzbQGx6P\nre3RaGJTTZfvanLZjIn2ZnI2K51kkxwpYFIgnUpdko2aVkouI1Nejg6e4MxIG90TvYnH83OsNNjq\nWGerp66gVonRmWg0ysAVU00XrphqKs6fv6tpy01rGB+bTG9jxcdaKdfNUpMCJgXSqdQl2ahpJeYy\nMRvgrLeds6PtnPOeZzIUO5k6S5NFrbWKdbY6Gmz1OE0lSozOTARnOXUhtgj4TNco07OxqaacbC1V\njjxqy6zUllqpKbViMujT3FoBK/O6WQpSwKRAOpW6JBs1rfRcItEIl/y9nPW20eptp2eiL/FcQU5+\nvJipo66gFoMCozOhcIT23nFaOkboHPDT7fZz5S/50iITNaVW1saLGntBrhJF2Gqz0q+bxSIFTAqk\nU6lLslHTasvFPzvBOe95Wr1tnBs9TzB+lIFWo6Umv4qG+OiMw2hPe2FQXJxHd+8oFwb8dPb56Oz3\ncXHAz8xcOPGaPKOe2lJrYpSm0pGHXre8B2SuRqvtuvmspIBJgXQqdUk2alrNuYQjYbonemn1tnPW\n20bPRH/iuYKc/EQxc0NBLQZdzrK37+OyCUci9A1N0tnvo6NvnAv9Prz+mcTzOq2GCkcea0vzqYkX\nNlbT8pzdtJqs5usmFVLApEA6lbokGzVJLvN8MxOcG22Pr585nzhoUhcfnVlnq2O9rZ6SZRqdSTab\nUf80nf2+xChNjyeQOFUbwJ6fmxihqS2z4ioykSXTTtdFrpvkSAGTAulU6pJs1CS5fLxwJDy/dma0\nnd4rRmcKDQWJYuaGglpytEszwvFZs5mZDdPl9tPR7+NCvLAJxk/WBsjN0VFTaqG21MraUitVLguG\nbN1iNn3Fk+smOVLApEA6lbokGzVJLsnxzUxwdjQ21XRu9DxTodg+LjqNltr86sSt2iXG4kUbnVms\nbCLRKO6RyQWjNJ746doAWRoNa+zmxCjN2jIrhZb0L2hWmVw3yZECJgXSqdQl2ahJckldOBKmy9/D\nWW87rd42+gIDiedshoLEJnrXOzqzlNn4J2e50O+joz9W0FxyTxAKRxLPF+TlsLbMmrjjaY3djDYr\nvedOqUSum+RIAZMC6VTqkmzUJLlcP9+MP1bMjLbTduXoTJaOWmsVDUX1NBTWYU9xdGY5s5kLRej2\nTCRGaDr7xvEH5xLPZ+uzqHZa4qM0+dSUWlb1njRy3SRHCpgUSKdSl2SjJsllcV0enWn1tnHW2/6R\n0ZlCGmz1NNjquKGghuxPGZ1JZzbRaJTh8Sk6+nyJkZqB4UnZkyZOrpvkSAGTAulU6pJs1CS5LK3x\nGR9nvefja2c6mA7Pj86sza9OTDfZc4uu+stftWyC03NJ70mztjSfCod5xe5Jo1o2qpICJgXSqdQl\n2ahJclk+4UiYi75uzo7G1s70B9yJ54pybbGFwIXzozOqZ3N5T5qOvvHYtFO/j9GP7ElT6bAkjkGo\ncJixWQwrYpRG9WxUIQVMCqRTqUuyUZPkkj6x0ZlYMdM22sF0OPaXvz5Lx9r8GprL11OsdbDG7EKv\nzYz1JlfuSdPR76P3I3vSmAw6ykvyKC8xU26PfXXYjBm3QFium+RIAZMC6VTqkmzUJLmoITY6c4nW\neEEzMDmYeE6n0VKWV0qVpZxKazlVlnIKDQUZMZIxMxvmotvPxQEf3Z4AvZ6JBbdwA+h1WZQVm2NF\nTby4KSs2k6NXd/pJrpvkSAGTAulU6pJs1CS5qGlsepyhyCAtfe1c8vXQG+gnEp2/zdmSnbegoCm3\nrFmyDfUW29RMiN6hAD2eCXriX/uHJwlH5v8602jAUWikoiRvfsSmJA9zrhojUXLdJEcKmBRIp1KX\nZKMmyUVdV2YzG56jL9BPl6+HLn8PXb5uxmd8iddmabJwmRxUWsuptlRQaS3/2IXBqgqFIwyMTNLj\niRc28eJmeja84HWFlpzE1NPlwiYd62rkukmOFDApkE6lLslGTZKLuj4tm7HpcS75e+nyd3PJ10PP\nRB9zkfkjA0w6IxXWNVRZyqmyVlBpWUOuLnc5mr4oIvFbuXs9Abo9E4nixjc5u+B16VhXI9dNcqSA\nSYF0KnVJNmqSXNSVajahSIj+gJsufw+X4iM1I1PexPMaNJSY7LGCJj795DSVkKXJrAW0vsBMYuop\nXetq5LpJjhQwKZBOpS7JRk2Si7oWI5uJ2QCX/D2Jqadufw8z4fkRDIM2hwrLmkRBU2kpJy/bfL1N\nX3bLva5GrpvkSAGTAulU6pJs1CS5qGspsolEI7gnPXT5uhMjNYPBoYU/N9dGpaWCqvgC4VKzE22W\nuncEfZKlXFcj101ypIBJgXQqdUk2apJc1LVc2QTnpuj293Ixvpamy9/DVGh+Skafpac8ryxR0FRa\ny8nPsS55u5ZCqutq1tjN8RGbhetq5LpJjhQwKZBOpS7JRk2Si7rSlU0kGmE4OJK426nL38NAYJDo\nFSchFeTkX1HQVGTUZnsfJ/l1NSbKS/Koq7RhMWhx2kzkm7Mz5m6v5SYFTArkl7G6JBs1SS7qUimb\n6dAMPRN9XPL1JEZqJuYCiee1Gi1lea7EHU+ZtNneJ0lmXQ1Abk6skHHZTDiLjPE/Gymy5pKVlbmf\nfzFIAZMClS54sZBkoybJRV0qZxONRvFOj3EpPkLT5e+hb2KAcPSKwx2zzVRZKuKjNGsoM5di1GfO\nbdwf5/K6monZCO1dXtzeSdzeIJ7R4FWFjV6XhaPQiNNmxGUz4Soy4bQZKSk0otNm1p1fn5UUMClQ\n+YJf7SQbNUku6sq0bD662d4lXw9jM+MLXlNoKKDU7KTM7KLM7KTU7MKWW5Bxt3J/NJtQOMLw+BQD\nI0Hc3kkGvJO4R4K4RyeZnYss+N4sjYbiglxcNmOiqHHaYl8N2brl/ihL6loFzMr6pEIIITJWtlZP\ntbWSamtl4rHxGR9dvh66/b30BQboCwxweuQsp0fOJl5j0ObgMjspixc2pXlOXCYH2RlyNAKATpsV\nL0JMQHHi8Ug0yqh/OlHYuL2TiT+fHA1ysmNkwfvYLDmJ93EWzY/cqHKEwmKSEZiPyLT/Y1lNJBs1\nSS7qWqnZ+GYm6A8M0B9wx4saN0PB4QVnPWnQYDcWLyhqSs1OrNkWJdbVXG820WgUf3AO98j8aM1A\nvMAZD8xe9fo8oz6xtsZZFF9vYzNSkJejxH+PTyIjMEIIIVYMa04e1pw61tnqEo/NhedwT3oSBU3f\nRKzA8QSH+GCoJfE6s94UK2jMTsryYl8dRnvG7VOj0WiwmrKxmrKpryhY8FxwOjQ/DeUNMjASK2w6\nesc537twSs6QrV1Q2Djj01LFGbCAWAoYIYQQGU+v1VNuKaPcUpZ4LBqNMjo9lihq+uOFTdtYB21j\nHYnX6TRanKYSSs2uRFFTZnZi1BvT8VGum9Ggo6bUSk3pwr12ZufCDI4G59fXxAucHs8EXW7/gtfq\ntFk4CnNjxc3lwsZmoqTQiF6nxnojKWCEEEKsSBqNBltuIbbcQpqK1ycenwpN0R8YpC8wQP9EbBrK\nPTlIb2AABue/vyAnn7K8+BRUfNSmKLcw4xYMX5at18Z3Cl44LXN5AbHbG19APDLJgDfIoDdI3/Dk\ngtdqNGDPz12wxubGigIKLYbl/CixtiznGpjJyUm+9a1v4fP5mJub4+tf/zrFxcV873vfA6Curo7v\nf//7n/o+sgZmdZJs1CS5qEuySV44EmZ4aoS+ifgUVHyNjX924X+/HG02pfG7ny7fBVVqTn3BcCZk\nE4lGGfPPxEdsYkXN5QJncnr+1HKnzcj//ermJWmDMmtgfv7zn1NVVcXOnTvxeDx85Stfobi4mF27\ndtHY2MjOnTt55513uOuuu5azWUIIIVY5bZYWh6kEh6mEZm5KPO6fnUiM0lwuai75e7no6068JrZg\nuChxe/fl9TWqLBj+rLI0GmxWAzargQ3VtsTj0WiUieBcfJ1NEEdBevbmWdYCpqCggPb2dgD8fj/5\n+fn09/fT2NgIwOc//3kOHz4sBYwQQgglWLLzsNjyuNF2Q+Kx+QXDbvqvKGw8Q8OcGDqVeJ1Zb4qP\n1sT3rclzZeSC4Y/SaDRYTNlYTNnUlRd8+jcskWUtYB544AFeffVV7r33Xvx+Py+++CJ/9Vd/lXje\nZrMxPDz8qe9TUGBEp1u6DnCtISuRXpKNmiQXdUk2S8NFIZu4MfHv0WiU4eAo3eN9dI/3cWks9rV9\nrJP2sc7E63RZOsosDsqsLlx5JZRaSnDlleA028nWZc6+NSpY1gLmtddew+Vy8dJLL9HW1sbXv/51\n8vLmL65kl+OMjQWXqokZMS+5Wkk2apJc1CXZLC8N2VRmV1Npr+Yue+yxqdA0/VfcAdUfcNPvd3Np\nvO8j36uh0FBAibGYElNx7KvRTonRjiXbnNFTUddDmTUwJ06c4M477wSgvr6emZkZQqH5hUAejwe7\n3b6cTRJCCCGWTK7OQG1+FbX5VYnHItEIGGc513cJz+QQg8FhhoLDDAaHODvaztnR9gXvYdAaFhQ1\nDmMxdmMxxcYi9Fmr92biZf3kFRUVtLS0cP/999Pf34/JZKK0tJTjx4/T3NzM/v372bFjx3I2SQgh\nhFhWWZosis3FZNkMNNjqFzwXnJvCExzGExyKf4390zcxQLe/d8FrNWgoyi28YrSmmBJT7KtZb1rx\nozbLfhv1rl278Hq9hEIh/vRP/5Ti4mKee+45IpEITU1NfPvb3/7U95HbqFcnyUZNkou6JBt1pZpN\nOBLGOz06X9RMzhc5gbnJq15v1OVeUdTMFzjFubaMWkQsp1GnQC54dUk2apJc1CXZqGsxswnMTTKU\nKGpiU1FDwWGGp7wLzoeC2OhPbNTGjsNox24sxmGKTUmZ9aZFac9iUmYNjBBCCCEWl1lvwmw1LTjF\nG2KjNiNTXgavnJKKj9wMBc9ymrNXvU9sOmp+KqrEWIzNUKjkqI0UMEIIIcQKpM3SxgoRkx1oSDwe\njUYJzE3Or7WZHE78+aKvmwu+SwvfR6OlONe2oKi5PCVl1KdnEzuQAkYIIYRYVTQaDXnZZvKyzQvu\njgKYi4QYmfLimZxfRHx5SmowOHTVe+Vlm7nNsYlHax9YruYnSAEjhBBCCAD0WTqcphKcppIFj0ej\nUfyzAYaCQ1dNbYZJgAAABz1JREFUSY1Nj6elrVLACCGEEOKaNBoN1pw8rDl5rC2oSXdzAMjMM8GF\nEEIIsapJASOEEEKIjCMFjBBCCCEyjhQwQgghhMg4UsAIIYQQIuNIASOEEEKIjCMFjBBCCCEyjhQw\nQgghhMg4UsAIIYQQIuNIASOEEEKIjCMFjBBCCCEyjhQwQgghhMg4UsAIIYQQIuNootFoNN2NEEII\nIYRIhYzACCGEECLjSAEjhBBCiIwjBYwQQgghMo4UMEIIIYTIOFLACCGEECLjSAEjhBBCiIwjBcwV\nfvCDH7B9+3aefPJJTp06le7miCv88Ic/ZPv27Tz++OPs378/3c0RV5ienuaee+7h1VdfTXdTxBVe\nf/11Hn74YR577DEOHDiQ7uYIYHJykm984xvs2LGDJ598kkOHDqW7SRlNl+4GqOLo0aN0d3ezZ88e\nLly4wK5du9izZ0+6myWAI0eO0NHRwZ49exgbG+PRRx/lvvvuS3ezRNyLL76I1WpNdzPEFcbGxnjh\nhRf42c9+RjAY5F/+5V/43Oc+l+5mrXo///nPqaqqYufOnXg8Hr7yla+wb9++dDcrY0kBE3f48GHu\nueceAGpqavD5fAQCAcxmc5pbJm655RYaGxsBsFgsTE1NEQ6H0Wq1aW6ZuHDhAp2dnfKXo2IOHz7M\n7bffjtlsxmw289d//dfpbpIACgoKaG9vB8Dv91NQUJDmFmU2mUKKGxkZWdCZCgsLGR4eTmOLxGVa\nrRaj0QjA3r172bZtmxQviti9ezfPPvtsupshPqKvr4/p6Wm+9rWv8dRTT3H48OF0N0kADzzwAAMD\nA9x77708/fTTfOtb30p3kzKajMB8AjlhQT2/+c1v2Lt3L//xH/+R7qYI4Be/+AUbN25kzZo16W6K\n+Bjj4+P86Ec/YmBggC9/+cu8/fbbaDSadDdrVXvttddwuVy89NJLtLW1sWvXLlk7dh2kgImz2+2M\njIwk/n1oaIji4uI0tkhc6dChQ/z4xz/m3//938nLy0t3cwRw4MABent7OXDgAIODg2RnZ+NwONiy\nZUu6m7bq2Ww2brrpJnQ6HeXl5ZhMJkZHR7HZbOlu2qp24sQJ7rzzTgDq6+sZGhqS6fDrIFNIcXfc\ncQdvvvkmAK2trdjtdln/ooiJiQl++MMf8q//+q/k5+enuzki7p/+6Z/42c9+xn/913/xB3/wBzzz\nzDNSvCjizjvv5MiRI0QiEcbGxggGg7LeQgEVFRW0tLQA0N/fj8lkkuLlOsgITNzNN99MQ0MDTz75\nJBqNhueffz7dTRJxv/rVrxgbG+PP/uzPEo/t3r0bl8uVxlYJoa6SkhLuv/9+/vAP/xCAv/zLvyQr\nS/5/Nd22b9/Orl27ePrppwmFQnzve99Ld5MymiYqiz2EEEIIkWGkJBdCCCFExpECRgghhBAZRwoY\nIYQQQmQcKWCEEEIIkXGkgBFCCCFExpECRgixpPr6+li/fj07duxInMK7c+dO/H5/0u+xY8cOwuFw\n0q//oz/6I95///3P0lwhRIaQAkYIseQKCwt5+eWXefnll3nllVew2+28+OKLSX//yy+/LBt+CSEW\nkI3shBDL7pZbbmHPnj20tbWxe/duQqEQc3NzPPfcc6xbt44dO3ZQX1/PuXPn+MlPfsK6detobW1l\ndnaW7373uwwODhIKhXjkkUd46qmnmJqa4pvf/CZjY2NUVFQwMzMDgMfj4c///M8BmJ6eZvv27Tzx\nxBPp/OhCiEUiBYwQYlmFw2HeeustNm3axF/8xV/wwgsvUF5eftXhdkajkZ/+9KcLvvfll1/GYrHw\nD//wD0xPT/PFL36RrVu38t5772EwGNizZw9DQ0PcfffdAPz617+murqa73//+8zMzPDf//3fy/55\nhRBLQwoYIcSSGx0dZceOHQBEIhGam5t5/PHH+ed//me+853vJF4XCASIRCJA7HiPj2ppaeGxxx4D\nwGAwsH79elpbWzl//jybNm0CYgezVldXA7B161b+8z//k2effZa77rqL7du3L+nnFEIsHylghBBL\n7vIamCtNTEyg1+uvevwyvV5/1WMajWbBv0ejUTQaDdFodMFZP5eLoJqaGv7nf/6HY8eOsW/fPn7y\nk5/wyiuvXO/HEUIoQBbxCiHSIi8vj7KyMt555x0Aurq6+NGPfnTN72lqauLQoUMABINBWltbaWho\noKamhpMnTwLgdrvp6uoC4I033uD06dNs2bKF559/HrfbTSgUWsJPJYRYLjICI4RIm927d/M3f/M3\n/Nu//RuhUIhnn332mq/fsWMH3/3ud/njP/5jZmdneeaZZygrK+ORRx7hf//3f3nqqacoKytjw4YN\nANTW1vL888+TnZ1NNBrlq1/9Kjqd/NoTYiWQ06iFEEIIkXFkCkkIIYQQGUcKGCGEEEJkHClghBBC\nCJFxpIARQgghRMaRAkYIIYQQGUcKGCGEEEJkHClghBBCCJFxpIARQgghRMb5/7l+bzFN+JktAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "0i7vGo9PTaZl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "3tAWu8qSTe2v", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " # YOUR CODE HERE: Make a feature column for the long_x_lat feature cross\n", + " long_x_lat = tf.feature_column.crossed_column(\n", + " set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000) \n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person,\n", + " long_x_lat])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "-_vvNYIyTtPC", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ymlHJ-vrhLZw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Optional Challenge: Try Out More Synthetic Features\n", + "\n", + "So far, we've tried simple bucketized columns and feature crosses, but there are many more combinations that could potentially improve the results. For example, you could cross multiple columns. What happens if you vary the number of buckets? What other synthetic features can you think of? Do they improve the model?" + ] + } + ] +} \ No newline at end of file diff --git a/feature_sets.ipynb b/feature_sets.ipynb new file mode 100644 index 0000000..5a4d675 --- /dev/null +++ b/feature_sets.ipynb @@ -0,0 +1,1542 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "feature_sets.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "IGINhMIJ5Wyt", + "pZa8miwu6_tQ" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zbIgBK-oXHO7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Feature Sets" + ] + }, + { + "metadata": { + "id": "bL04rAQwH3pH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objective:** Create a minimal set of features that performs just as well as a more complex feature set" + ] + }, + { + "metadata": { + "id": "F8Hci6tAH3pH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "So far, we've thrown all of our features into the model. Models with fewer features use fewer resources and are easier to maintain. Let's see if we can build a model on a minimal set of housing features that will perform equally as well as one that uses all the features in the data set." + ] + }, + { + "metadata": { + "id": "F5ZjVwK_qOyR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "As before, let's load and prepare the California housing data." + ] + }, + { + "metadata": { + "id": "SrOYRILAH3pJ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "dGnXo7flH3pM", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jLXC8y4AqsIy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1160 + }, + "outputId": "920a67bf-2eb4-4b7e-fe3c-5e46c87aa9cb" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.5 2655.9 541.8 \n", + "std 2.1 2.0 12.6 2197.2 423.5 \n", + "min 32.5 -124.3 1.0 8.0 1.0 \n", + "25% 33.9 -121.8 18.0 1469.0 298.0 \n", + "50% 34.2 -118.5 28.0 2140.5 436.0 \n", + "75% 37.7 -118.0 37.0 3148.0 650.0 \n", + "max 42.0 -114.3 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1433.5 503.5 3.9 2.0 \n", + "std 1174.3 388.0 1.9 1.2 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 793.0 282.0 2.6 1.5 \n", + "50% 1168.0 410.0 3.6 1.9 \n", + "75% 1715.0 606.0 4.8 2.3 \n", + "max 35682.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.52655.9541.81433.5503.53.92.0
std2.12.012.62197.2423.51174.3388.01.91.2
min32.5-124.31.08.01.03.01.00.50.0
25%33.9-121.818.01469.0298.0793.0282.02.61.5
50%34.2-118.528.02140.5436.01168.0410.03.61.9
75%37.7-118.037.03148.0650.01715.0606.04.82.3
max42.0-114.352.032627.06445.035682.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.5 28.9 2614.4 533.7 \n", + "std 2.1 2.0 12.6 2137.9 416.5 \n", + "min 32.5 -124.3 1.0 2.0 2.0 \n", + "25% 33.9 -121.8 18.0 1439.8 293.0 \n", + "50% 34.2 -118.5 29.0 2107.0 427.0 \n", + "75% 37.7 -118.0 37.0 3157.2 648.0 \n", + "max 42.0 -114.6 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1420.1 495.8 3.9 2.0 \n", + "std 1081.9 376.0 1.9 1.1 \n", + "min 6.0 2.0 0.5 0.2 \n", + "25% 780.8 278.8 2.5 1.5 \n", + "50% 1162.0 405.0 3.5 1.9 \n", + "75% 1742.8 603.0 4.7 2.3 \n", + "max 16122.0 5189.0 15.0 41.3 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.528.92614.4533.71420.1495.83.92.0
std2.12.012.62137.9416.51081.9376.01.91.1
min32.5-124.31.02.02.06.02.00.50.2
25%33.9-121.818.01439.8293.0780.8278.82.51.5
50%34.2-118.529.02107.0427.01162.0405.03.51.9
75%37.7-118.037.03157.2648.01742.8603.04.72.3
max42.0-114.652.037937.05471.016122.05189.015.041.3
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 208.3\n", + "std 116.1\n", + "min 15.0\n", + "25% 120.8\n", + "50% 181.3\n", + "75% 265.6\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean208.3
std116.1
min15.0
25%120.8
50%181.3
75%265.6
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 204.9\n", + "std 115.7\n", + "min 15.0\n", + "25% 117.2\n", + "50% 177.4\n", + "75% 263.9\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean204.9
std115.7
min15.0
25%117.2
50%177.4
75%263.9
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "hLvmkugKLany", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Develop a Good Feature Set\n", + "\n", + "**What's the best performance you can get with just 2 or 3 features?**\n", + "\n", + "A **correlation matrix** shows pairwise correlations, both for each feature compared to the target and for each feature compared to other features.\n", + "\n", + "Here, correlation is defined as the [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient). You don't have to understand the mathematical details for this exercise.\n", + "\n", + "Correlation values have the following meanings:\n", + "\n", + " * `-1.0`: perfect negative correlation\n", + " * `0.0`: no correlation\n", + " * `1.0`: perfect positive correlation" + ] + }, + { + "metadata": { + "id": "UzoZUSdLIolF", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 345 + }, + "outputId": "5e902346-8973-42ca-88e6-660f6cdfc9ca" + }, + "cell_type": "code", + "source": [ + "correlation_dataframe = training_examples.copy()\n", + "correlation_dataframe[\"target\"] = training_targets[\"median_house_value\"]\n", + "\n", + "correlation_dataframe.corr()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_persontarget
latitude1.0-0.90.0-0.0-0.1-0.1-0.1-0.10.1-0.1
longitude-0.91.0-0.10.00.10.10.1-0.0-0.1-0.0
housing_median_age0.0-0.11.0-0.4-0.3-0.3-0.3-0.1-0.10.1
total_rooms-0.00.0-0.41.00.90.90.90.20.10.1
total_bedrooms-0.10.1-0.30.91.00.91.0-0.00.00.1
population-0.10.1-0.30.90.91.00.90.0-0.1-0.0
households-0.10.1-0.30.91.00.91.00.0-0.00.1
median_income-0.1-0.0-0.10.2-0.00.00.01.00.20.7
rooms_per_person0.1-0.1-0.10.10.0-0.1-0.00.21.00.2
target-0.1-0.00.10.10.1-0.00.10.70.21.0
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms \\\n", + "latitude 1.0 -0.9 0.0 -0.0 \n", + "longitude -0.9 1.0 -0.1 0.0 \n", + "housing_median_age 0.0 -0.1 1.0 -0.4 \n", + "total_rooms -0.0 0.0 -0.4 1.0 \n", + "total_bedrooms -0.1 0.1 -0.3 0.9 \n", + "population -0.1 0.1 -0.3 0.9 \n", + "households -0.1 0.1 -0.3 0.9 \n", + "median_income -0.1 -0.0 -0.1 0.2 \n", + "rooms_per_person 0.1 -0.1 -0.1 0.1 \n", + "target -0.1 -0.0 0.1 0.1 \n", + "\n", + " total_bedrooms population households median_income \\\n", + "latitude -0.1 -0.1 -0.1 -0.1 \n", + "longitude 0.1 0.1 0.1 -0.0 \n", + "housing_median_age -0.3 -0.3 -0.3 -0.1 \n", + "total_rooms 0.9 0.9 0.9 0.2 \n", + "total_bedrooms 1.0 0.9 1.0 -0.0 \n", + "population 0.9 1.0 0.9 0.0 \n", + "households 1.0 0.9 1.0 0.0 \n", + "median_income -0.0 0.0 0.0 1.0 \n", + "rooms_per_person 0.0 -0.1 -0.0 0.2 \n", + "target 0.1 -0.0 0.1 0.7 \n", + "\n", + " rooms_per_person target \n", + "latitude 0.1 -0.1 \n", + "longitude -0.1 -0.0 \n", + "housing_median_age -0.1 0.1 \n", + "total_rooms 0.1 0.1 \n", + "total_bedrooms 0.0 0.1 \n", + "population -0.1 -0.0 \n", + "households -0.0 0.1 \n", + "median_income 0.2 0.7 \n", + "rooms_per_person 1.0 0.2 \n", + "target 0.2 1.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "RQpktkNpia2P", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Features that have strong positive or negative correlations with the target will add information to our model. We can use the correlation matrix to find such strongly correlated features.\n", + "\n", + "We'd also like to have features that aren't so strongly correlated with each other, so that they add independent information.\n", + "\n", + "Use this information to try removing features. You can also try developing additional synthetic features, such as ratios of two raw features.\n", + "\n", + "For convenience, we've included the training code from the previous exercise." + ] + }, + { + "metadata": { + "id": "bjR5jWpFr2xs", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jsvKHzRciH9T", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + "\n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g3kjQV9WH3pb", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "varLu7RNH3pf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Spend 5 minutes searching for a good set of features and training parameters. Then check the solution to see what we chose. Don't forget that different features may require different learning parameters." + ] + }, + { + "metadata": { + "id": "DSgUxRIlH3pg", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 752 + }, + "outputId": "fabcf21f-c7f0-4880-cf92-f5f5892a3749" + }, + "cell_type": "code", + "source": [ + "#\n", + "# Your code here: add your features of choice as a list of quoted strings.\n", + "#\n", + "minimal_features = [\n", + " \"median_income\",\n", + " \"latitude\",\n", + "]\n", + "\n", + "assert minimal_features, \"You must select at least one feature!\"\n", + "\n", + "minimal_training_examples = training_examples[minimal_features]\n", + "minimal_validation_examples = validation_examples[minimal_features]\n", + "\n", + "#\n", + "# Don't forget to adjust these parameters.\n", + "#\n", + "train_model(\n", + " learning_rate=0.001,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=minimal_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=minimal_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 230.68\n", + " period 01 : 223.01\n", + " period 02 : 215.44\n", + " period 03 : 207.97\n", + " period 04 : 200.64\n", + " period 05 : 193.44\n", + " period 06 : 186.39\n", + " period 07 : 179.52\n", + " period 08 : 172.83\n", + " period 09 : 166.37\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8VFXex/HP1NQp6ZkkkEonhBZ6\nFYHQVhHEimXdqqyuuo/lWfVZV9dVXN21odgVd100iy4oIiIqTUoSCAmkUAIJpGfSC2n3+SMaQUic\nGRK4Ib/367Wv105m5syZfM+NP8499x6NoigKQgghhBA9iPZid0AIIYQQwllSwAghhBCix5ECRggh\nhBA9jhQwQgghhOhxpIARQgghRI8jBYwQQgghehz9xe6AEGo2YMAA+vbti06nA6ClpYX4+Hgeeugh\nPD09XW73gw8+YMmSJWf9fM2aNTz44IO88sorTJ8+vf3nDQ0NTJgwgVmzZvHkk0+6/LmOys3N5Ykn\nniAnJwcADw8Pli1bxuWXX97tn+2MFStWkJube9bvZNeuXdx2222EhYWd9Z4NGzZcqO6dlxMnTjBj\nxgwiIyMBUBQFf39//vjHPzJ48GCn2nrmmWcICQnhuuuuc/g9//3vf0lMTGTVqlVOfZYQF4oUMEL8\nhFWrVhEcHAxAY2Mjd999NytXruTuu+92qb2SkhJef/31cxYwADabjU8++eSMAuarr77CbDa79Hmu\n+MMf/sAVV1zBK6+8AkBqaio333wzn332GTab7YL143zYbLYeU6x0RKfTnfEd1q9fzx133MHnn3+O\n0Wh0uJ177723O7onxEUlp5CEcILRaGTy5MlkZGQAcOrUKR555BFmz57NnDlzePLJJ2lpaQEgMzOT\na6+9loSEBK644gq2bt0KwLXXXkt+fj4JCQk0Njae9RkjR45k165d1NfXt/9s/fr1TJw4sf1xY2Mj\njz/+OLNnz+ayyy5rLzQA9u7dy1VXXUVCQgJz585lx44dQNu/6CdNmsS7777LggULmDx5MuvXrz/n\n98zOziYuLq79cVxcHJ9//nl7Iffiiy8ydepUrrzySl599VUuu+wyAB544AFWrFjR/r7TH/9Uv554\n4gluvPFGAJKTk1m0aBEzZ85kyZIl5OXlAW0zUb///e+ZPn06N954I4WFhT+R2LmtWbOGZcuWcfPN\nN7N8+XJ27drFtddey1133dX+H/vPPvuM+fPnk5CQwE033URubi4AL7zwAg899BCLFy/m7bffPqPd\nu+66izfffLP9cUZGBpMmTaK1tZW///3vzJ49m9mzZ3PTTTdRVFTkdL/nzp1LQ0MDR48eBWD16tUk\nJCRw2WWXcc8999DQ0AC0/d7/+te/smDBAj777LMzcuhoXLa2tvLnP/+ZadOmsXjxYjIzM9s/d/fu\n3SxcuJC5c+cyZ84cPvvsM6f7LkSXU4QQHerfv79SUFDQ/riiokK54YYblBUrViiKoigrV65UfvnL\nXypNTU1KfX29smjRIuXjjz9WWlpalDlz5ijr1q1TFEVR9u/fr8THxyvV1dXKzp07lcsvv/ycn/ef\n//xHuf/++5U//OEP7e+trq5WZsyYoXz44YfK/fffryiKorz44ovKzTffrJw6dUqpra1VrrzySmXz\n5s2KoijK/PnzlU8++URRFEX56KOP2j8rLy9PGTx4sLJq1SpFURRl/fr1ysyZM8/Zj9/97nfK9OnT\nlXfeeUc5fPjwGc9lZWUpo0ePVoqLi5Wmpiblt7/9rTJ9+nRFURTl/vvvV1566aX2157+uLN+DRky\nRFmzZk37942Pj1e2bdumKIqirFu3Tlm4cKGiKIry3nvvKTfccIPS1NSk2O12Zfr06e2/k9N19jv+\n/vc8fPhwJScnp/31sbGxyo4dOxRFUZSTJ08qo0aNUo4dO6YoiqK88cYbys0336woiqI8//zzyqRJ\nk5SysrKz2v3000+VG264of3xc889pzz22GNKdna2MmvWLKWxsVFRFEV59913lY8++qjD/n3/exk0\naNBZP4+Pj1eOHDmi7NmzRxk/frxSWFioKIqiPPzww8qTTz6pKErb733BggVKQ0ND++OXXnqp03H5\n9ddfK7NmzVJqamqU+vp6ZfHixcqNN96oKIqiXHXVVcquXbsURVGUnJwc5Z577um070JcCDIDI8RP\nWLp0KQkJCcyYMYMZM2Ywbtw4fvnLXwLw9ddfs2TJEvR6Pe7u7ixYsIDt27dz4sQJSktLmTdvHgCx\nsbGEhISQlpbm0GfOmzePTz75BIBNmzYxffp0tNofDtevvvqK66+/HqPRiKenJ1dccQUbN24E4OOP\nP2bOnDkAjBo1qn32AqC5uZmrrroKgCFDhpCfn3/Oz3/66ae54YYbWLduHfPnz+eyyy7j/fffB9pm\nR+Lj4wkICECv1zN//nyHvlNn/WpqamLmzJnt7QcFBbXPOM2fP5/c3Fzy8/NJSkpi5syZ6PV6fHx8\nzjjN9mMFBQUkJCSc8b/T18pEREQQERHR/tjd3Z3x48cDsH37dsaOHUt4eDgAV199Nbt27aK5uRlo\nm5Hy9fU96zOnTZvGwYMHqaioAOCLL74gISEBs9mM3W5n3bp1VFZWsnTpUq688kqHfm/fUxSF1atX\nExQUREREBJs3b2bu3LkEBQUBcN1117WPAYDx48fj5uZ2Rhudjcs9e/YwdepUvLy8cHd3b88KwM/P\nj48//pgjR44QERHBM88841TfhegOsgZGiJ/w/RoYu93efvpDr287dOx2OxaLpf21FouFsrIy7HY7\nJpMJjUbT/tz3/xHz9/f/yc+cOHEiDz30EBUVFXz66afcfvvt7QtqAaqrq/nrX//Ks88+C7SdUho2\nbBgA69at491336W2tpbW1laU07Y70+l07YuPtVotra2t5/x8Nzc3brvtNm677TaqqqrYsGEDTzzx\nBGFhYVRWVp6xHsfPz+8nv48j/fL29gagqqqKvLw8EhIS2p83Go3Y7XYqKysxmUztPzebzdTW1p7z\n835qDczpuf34cXl5+Rnf0WQyoSgK5eXl53zv9zw9PZkwYQJff/01o0aNoqqqilGjRqHRaHjhhRd4\n8803eeyxx4iPj+fRRx/9yfVELS0t7b8HRVGIiYlhxYoVaLVaqqur+eKLL9i2bVv7801NTR1+P6DT\ncVlZWUlgYOAZP//eE088wcsvv8ytt96Ku7s799xzzxn5CHExSAEjhIN8fX1ZunQpTz/9NC+//DIA\n/v7+7f/aBqioqMDf3x8/Pz8qKytRFKX9PxYVFRUO/8feYDAwffp0Pv74Y44fP86IESPOKGACAwP5\n+c9/ftYMRFFREQ899BAffvghgwYN4tixY8yePdup72m328nIyGifATGbzSxZsoStW7eSnZ2NyWSi\nurr6jNd/78dFUWVlpdP9CgwMJCoqijVr1pz1nNls7vCzu5Kfnx979+5tf1xZWYlWq8XHx+cn3zt7\n9my++OILysvLmT17dnv+48aNY9y4cdTV1fHUU0/xt7/97SdnMn68iPd0gYGBLFy4kPvvv9+p79XR\nuOzsd+vv78/DDz/Mww8/zLZt2/jd737H5MmT8fLycvizhehqcgpJCCfceuut7N27l927dwNtpwwS\nExNpaWmhrq6O//73v0ydOpWwsDCCg4PbF8mmpKRQWlrKsGHD0Ov11NXVtZ+O6Mi8efN47bXXznnp\n8owZM/jwww9paWlBURRWrFjBli1bsNvteHp6EhUVRXNzM6tXrwbocJbiXBoaGrjzzjvbF3cCHD9+\nnNTUVEaPHs2IESNISkrCbrfT3NzMxx9/3P66gICA9sWfeXl5pKSkADjVr7i4OEpKSkhNTW1v53/+\n539QFIXhw4ezefNmWlpasNvtbNmyxeHv5YyJEyeSlJTUfprr3//+NxMnTmyfeevM9OnT2bt3L5s2\nbWo/DbNt2zYeffRRWltb8fT0ZODAgWfMgrjisssuY+PGje2FxqZNm3j11Vc7fU9n43LEiBFs27aN\n+vp66uvr2wunpqYmli5dSnFxMdB26lGv159xSlOIi0FmYIRwgre3N7/61a946qmnSExMZOnSpeTl\n5TFv3jw0Gg0JCQnMmTMHjUbDs88+y//93//x4osv4uHhwXPPPYenpycDBgzAYrEwceJEPvroI0JC\nQs75WWPGjEGj0TB37tyznrv++us5ceIE8+bNQ1EUhg4dys0334ynpydTpkxh9uzZ+Pn58cADD5CS\nksLSpUt5/vnnHfqOISEhvPzyyzz//PM8/vjjKIqCt7c3Dz74YPuVSddccw0LFy7Ex8eHWbNmcejQ\nIQCWLFnCsmXLmDVrFoMHD26fZRk4cKDD/XJ3d+f555/nscceo7a2FoPBwF133YVGo2HJkiUkJSVx\n+eWXExISwuWXX37GrMHpvl8D82PLly//yd9BcHAwjz/+OLfffjtNTU2EhYXx2GOPOfT78/b2ZsiQ\nIWRlZTF8+HAA4uPj+fTTT5k9ezZGoxFfX1+eeOIJAO677772K4mcMWTIEH7zm9+wdOlSWltb8fPz\n49FHH+30PZ2Ny+nTp/P111+TkJCAv78/U6dOJSkpCYPBwOLFi7nllluAtlm2hx56CA8PD6f6K0RX\n0yinn4gWQggnJSUlcd9997F58+aL3RUhRC8ic4BCCCGE6HGkgBFCCCFEjyOnkIQQQgjR48gMjBBC\nCCF6HClghBBCCNHj9MjLqEtKzn3ZZFfw8fGkvLyu29oXrpNs1ElyUS/JRr0kG8cEBJg6fE5mYH5E\nr9dd7C6IDkg26iS5qJdko16SzfmTAkYIIYQQPY4UMEIIIYTocaSAEUIIIUSPIwWMEEIIIXocKWCE\nEEII0eNIASOEEEKIHkcKGCGEEEL0OFLACCGEEJeYr7/+0qHXPffcM+Tnn+zw+QceuKerutTlpIAR\nQgghLiEFBfls2vS5Q6+96657CQkJ7fD5J598tqu61eV65FYCQgghhDi3Z599ioyMA0yeHM+sWXMo\nKMjnH/9YwV//+mdKSoqpr6/n5z//FRMnTmbZsl9xzz338dVXX1JbW0Nu7nFOnjzBnXfey/jxE5k3\nbwaffvoly5b9ivj4saSkJFFRUcFTT/0df39//vznhyksLCA2dhibN2/io4/WX7DvKQWMEEII0U0+\n2HyYPZnFZ/1cp9PQ0qK41Gb8wECWXBbT4fPXXbeUNWs+IDIymtzcY6xY8Trl5XbGjBnHnDnzOXny\nBA8//AATJ04+433FxUX87W/Ps3PnDv773/8wfvzEM5738vLiuede5uWXX2DLls2EhITR2HiKV199\nm+3bt/LBB++79H1cJQXMaUor6jleWkdfPw80Gs3F7o4QQghxXgYNGgKAyWQmI+MAa9euQaPRUlVV\nedZrhw0bDkBgYCA1NTVnPR8XN6L9+crKSo4fzyE2Ng6A8eMnotNd2P2durWAWb58OcnJyTQ3N/Pr\nX/+agIAAli9fjl6vx2g08vTTT+Pr68vatWt555130Gq1LFmyhKuvvro7u9WhT749xpbUAoZE+nJz\nwgD8LR4XpR9CCCEuDUsuiznnbElAgImSkupu/3yDwQDAF19soKqqipdeep2qqip+8YulZ7329AJE\nUc6eHfrx84qioNW2/Uyj0Vzwf/h3WwGzc+dODh06xOrVqykvL2fhwoUMGzaM5cuX06dPH1588UU+\n+OADbrrpJl566SUSExMxGAwsXryYmTNnYrVau6trHbpiUhQ1DS2kZBXz8Bu7WTItmqkjQtHKbIwQ\nQogeQqvV0tLScsbPKioqsNlC0Gq1fPPNZpqams77c0JDw9qvdtq9e+dZn9nduu0qpPj4eJ577jkA\nzGYz9fX1/P3vf6dPnz4oikJRURHBwcGkpqYSGxuLyWTC3d2dkSNHkpKS0l3d6pSPyY0//XIcP587\nCK1Gw6qN2fzt/b0Ul9ddlP4IIYQQzgoPjyQrK5Pa2h9OA02bdhk7dmzlrrt+i4eHB4GBgbz11mvn\n9TkTJkymtraW3/72NlJT92I2W863607RKOeaJ+piq1evJikpiaeffpotW7bwl7/8haioKF566SU+\n/fRT0tLS+N///V8A/vGPf2Cz2bjmmms6bK+5uQW9vnvPtZVV1rMicT+7DxbiZtRx05xBzJ8UhVYr\nszFCCCFERUUFu3btYvbs2RQVFXHzzTezYcOGC/b53b6Id9OmTSQmJvLmm28CMGXKFCZPnszf/vY3\nXn31VUJDz7z+3JF6qrwbZ0ROPy/56wWDGB7tyz+/yOa1/6bzVXIet84ZiM3Pq9s+X3TsQp0zFs6R\nXNRLslGvSyGb5maFjz9exyuvvIqitHL77b/v8u8UEGDq8LluLWC2bt3KK6+8wuuvv47JZOKLL75g\n5syZaDQaZs+ezQsvvMCIESMoLS1tf09xcTHDhw/vzm45TKPRMG5IMIMifPnnxiySskr401t7uHJy\nJLPi+6DTyn0AhRBC9E56vZ4///mvF+3zu+2/wNXV1SxfvpyVK1e2L8h94YUXyMjIACA1NZXIyEji\n4uJIS0ujqqqK2tpaUlJSGD16dHd1yyUWLyO3L4zl9iuH4mHU8eFXR3hiVTInS86+zEwIIYQQ3a/b\nZmDWr19PeXk5v//979t/9vDDD/Poo4+i0+lwd3dn+fLluLu7c++993Lbbbeh0Wi44447MJk6njK6\nmEYPDGRAXyvvf3mInQeK+NNbe/jZxAjmjAtHr5PZGCGEEOJCuSCLeLtad543dPS85N5DJbz7eRaV\nNY30DfTm5/MG0TdInYXXpeJSOGd8KZJc1EuyUS/JxjGdrYGRaQMXjegXwF9+MZZJsTZyi2t47J0k\nPtpylKbm1ovdNSGEEOKSJwXMefB0N/DzeYO4Z0kcFm8j63Yc489v7yGnoOpid00IIYTo1OLFC6ir\nq2PVqrdJT99/xnN1dXUsXryg0/d/fxO79evX8c03X3VbPzsiBUwXGBrlx2O3jWXaiFBOltby+LtJ\nfPjVYZqaL+xdCYUQQghnLV16C0OHDnPqPQUF+Wza9DkAc+cuYOrU6d3RtU7JZo5dxMNNz02zBxA/\nIIC3Psvks1257D1Uys/nDiIm7MLenVAIIUTv9fOf38ATTzxDcHAwhYUFPPjgvQQEBFJfX09DQwN3\n3/0/DB48tP31f/nLn5g2bQbDh4/gj3+8j8bGxvaNHQE2bvyMxMTV6HRaIiKiuf/+P/Lss0+RkXGA\nt956jdbWVqxWK4sWXcOKFc+RlpZKc3MLixYtISFhHsuW/Yr4+LGkpCRRUVHBU0/9neDg4PP+nlLA\nnOabEzvYvz+N+eFziLT0damNQRG+PHbbWP7zzRG+TD7BX99L5vLRfbhqahRuhgu7U6cQQoiLa83h\nT9hbnHbWz3VaDS2trl1DMyIwlqti5nf4/JQp09m+fQuLFi1h69ZvmDJlOtHR/ZgyZRrJyXv45z/f\n4S9/efqs933++WdERUVz55338uWXG9tnWOrr63nmmRcwmUzccccvOXLkMNddt5Q1az7g1lt/yRtv\nrARg374Ujh49wssvv0l9fT0333wtU6ZMA8DLy4vnnnuZl19+gS1bNrNkyfUufffTySmk02jQkFl6\nhGeSX2LN4U9obGl0qR03o47rZ/bn/htGEujryRdJefzfG7vJPF7exT0WQgghztRWwGwFYNu2b5g0\naSrffPMlv/3tbbz88gtUVlae833Hjh1l6NA4AEaMGNX+c7PZzIMP3suyZb/i+PEcKisrzvn+zMyD\nDB8+EgAPDw8iIqLIy8sDIC5uBACBgYHU1HTNPdRkBuY0U8LGMyg0ghd3vsuXuVvYX3KAGwZeTT+f\nKJfa69/HyqO3xvPxthw+353L8vf3Mn1kKIunRuPhJr96IYS41F0VM/+csyXdeRl1VFQ0ZWUlFBUV\nUl1dzdatX+PvH8jDDz9GZuZBXnzxH+d8n6LQvt9f63ezQ01NTTz77HLefvtf+Pn5c999vz/ne6Ht\n7vWn35ilubmpvT2d7oczEF119xaZgfmRwYH9+eOYu5nRZwql9Xb+sfcVVmd9TENzg0vtGQ06lkyP\n4Y9LRxPi78VXKSd55I1dpOeUdXHPhRBCiDbjx0/i1VdXMHnyVCorKwgNDQPgm2++orm5+Zzv6ds3\nnMzMtrvlp6QkAVBXV4tOp8PPz5+iokIyMzNobm5Gq9XS0nLmhSoDBw5h797k795Xx8mTJwgLc205\nhiOkgDkHo87IVf3mc++o2wn2DGTLyR38ZfffybBnu9xmVIiZ/7slnvkTIiivbuTZ1am8tT6Duoam\nLuy5EEIIAVOnTmfTps+ZNm0GCQnzWL36n9x99x0MGTKUsrIyPv107VnvSUiYx4EDadx112/JyzuO\nRqPBYrESHz+WX/ziJt566zWuv34pzz//LOHhkWRlZfL888+0vz8ubjgDBgzkjjt+yd1338FvfrMM\nDw+PbvuOcifeH/nxtF5TazMbjn3JxuNf0aq0Mt4Wz1Ux8/E0uB7K8cJq3lyfQV5xDT4mN26aPYC4\nGP+u6P4lTe5cqU6Si3pJNuol2Timszvx6v70pz/96cJ1pWvU1bm2uNYRXl5uZ7Sv02gZ4BNDrP8g\njlXlcdCexe7CFAI8/AjyCnTpM6zebkweZkOn05B2pIxvDxRRXF7HgL4+GOVKpQ79OBuhDpKLekk2\n6iXZOMbLy63D56SA+ZGOBpXFzcwEWzx6rZ6DZVnsKdpLcV0J/axRGHVGpz9Hq9UwoK8PI/sHkFNQ\nRXqOne3phQRYPQjx9+qKr3LJkQNenSQX9ZJs1EuycYwUME7obFBpNVpirFHEBQwlt/oEGfZsdhYk\n4evug80rCI1G4/Tnmb2MTBpmw92gI+2onV0Hi8gvrWVAX6vcN+ZH5IBXJ8lFvSQb9ZJsHCMFjBMc\nGVQmozfjbfF46N05aM8iuTiVk7WFxFgjcdd3/MvuiFajoV+YldEDAzheVE16jp1t+wvwNbsT6u/l\nUmF0KZIDXp0kF/WSbNRLsnGMFDBOcHRQaTQaoizhjAwcxsmaAjLs2XxbsAeL0Uyot82losPkaWRS\nrA1PdwPpR8vYnVFMXnENA/pacTfKfWPkgFcnyUW9JBv1kmwcIwWME5wdVF4GL8YGj8Js9OagPZuU\n4v0cq8ojxhqJh975K5U0Gg3RoRbGDAokr7imfTbG4mWkT6B3r56NkQNenSQX9ZJs1EuycYwUME5w\nZVBpNBrCzX2IDxpOQW0RGeXZfJu/B0+DJ31MIS4VHV4eBibEBmPxMpKWY2dPZjHHCqvp38faa+/i\nKwe8Okku6iXZqJdk4xgpYJxwPoPK0+DBmOCR+Lr7kFGezb6SNI5U5BBticTL4Ol0exqNhkibmXGD\ng8gvrSU9x87W/fl4exgIDzL1utkYOeDVSXJRL8lGvSQbx0gB44TzHVQajYY+plDGBI+kpL6UDHs2\n2/N3Y9QZCTf3cano8HQ3MH5IMH5md9JzyknKKuHQiUoG9LHi6W5wua89jRzw6iS5qJdko16SjWOk\ngHFCVw0qd707owKHE+QZQGb5IVJLDpBpP0SUJQJvo/P3edFoNIQHm5gwNJhCex0HcuxsSS3Aw01P\nhK13zMbIAa9Okot6STbqJdk4RgoYJ3TloNJoNIR42xhnG429oZwMezY7CnajRUOkuS9ajfNbUXm4\n6Rk7OIggH08OHLOTnF1CZm4F/fpY8Pa4tGdj5IBXJ8lFvSQb9ZJsHCMFjBO6Y1C56YyMDBxGqLeN\n7PLD7C89SHpZJhHmvpjdOt7noSMajYY+gd5MHBpMaUVD29qY1HyMei2RNvMlOxsjB7w6SS7qJdmo\nl2TjGClgnNCdgyrYK5DxtniqGqs5aM9iR8FuWpVWoizhLs3GuBv1xA8MJDTAm4PH7KRkl3LgmJ1+\nYRZMns5vb6B2csCrk+SiXpKNekk2jpECxgndPaiMOgNxAUOJMPfhUPlR0soOsr/kAOHmMKxuFqfb\n02g0hPp7MTHWRnn1KdKOtq2N0WohOtSM9hKajZEDXp0kF/WSbNRLsnGMFDBOuFCDKtDTn/Eh8dQ1\n13OgLJMd+Xs41dJItCUSndb5PZDcDDpGDwikb6A3GcfL2XuolP1HyogOsWDxujRmY+SAVyfJRb0k\nG/WSbBwjBYwTLuSgMmj1xPoPop81ksMVOaSXZbK3eD9hphB83X1catPm58XkOBtVNY2kHW1bG9PS\nohATakGn7dmzMXLAq5Pkol6SjXpJNo6RAsYJF2NQ+Xn4MiFkDI2tjRwsy2JnQRI1TXVEWyLRa52/\n665Rr2Nk/wCiQsxk5Zaz73AZKdklhAeZ8DW7d8M3uDDkgFcnyUW9JBv1kmwcIwWMEy7WoNJrdQz2\nG8BA334cqTzOgbJMkov2YfMKxt/Dz6U2g3w8mTwshIbGZvYfKWPb/gLqGprpH2ZFr3N+0fDFJge8\nOkku6iXZqJdk4xgpYJxwsQeVj7uVCbZ4WlE4aM9iV2EyFQ2V9POJxKB1/j4vBr2WYdH+DAr34dDJ\nSvYfKWPXwSJCA7wIsDq/2eTFdLGzEecmuaiXZKNeko1jpIBxghoGlU6rY6BvP4b6DeRYVS4H7Vns\nLtxLoKc/QZ4BLrXpZ3FnapyN1lZIO2pne3oh9qoGBvSxYtA7v2j4YlBDNuJskot6STbqJdk4RgoY\nJ6hpUFnczIy3xaPTaDlYlsWeor2U1JUS4xOFUef8lUU6rZbBEb7ExfiTk1/VXsgEWT2w+Tm/vcGF\npqZsxA8kF/WSbNRLsnGMFDBOUNug0mq09POJJi5gKLlVJ9pOKxUk4+vhg80ryKU2rd5uTBpmw6DX\nkn60jJ0Hi8gvraV/HyvuRvXOxqgtG9FGclEvyUa9JBvHSAHjBLUOKpPRm3G20bjp3DhozyK5aB/5\nNYXEWKNw13cccEe0Wg39+1gZPTCQ3KIa0nPsbNufj4+3G2EBXqrcjkCt2fR2kot6STbqJdk4RgoY\nJ6h5UGk1WqKtEYwMiCWvJp8MezY7C5KwuJkJ8Qp2qegweRqZOMyGt4eBAznl7M4sJqegmv5hVjzd\nnb+EuzupOZveTHJRL8lGvSQbx0gB44SeMKi8jV6Ms43C2+jFQXs2KcWpHK8+QYw1Eg+98/d50Wg0\nRIVYGDc4iPzSWtJz7GzZn49mrqPFAAAgAElEQVSXm57wYJNqZmN6Qja9keSiXpKNekk2jumsgNEo\niqJ01wcvX76c5ORkmpub+fWvf01sbCwPPvggzc3N6PV6nn76aQICAli7di3vvPMOWq2WJUuWcPXV\nV3fabklJdXd1mYAAU7e239VK6+38KzORrPLDuOvcWRgzl4khY10uOhRFYXtaIf/+8hB1p5rpH2bh\nlrmDCPb17OKeO6+nZdNbSC7qJdmol2TjmIAAU4fPdVsBs3PnTt544w1ee+01ysvLWbhwIWPHjmXq\n1KnMnTuXf/7zn5w8eZJly5axcOFCEhMTMRgMLF68mPfeew+r1dph21LAnElRFHYU7GbNoU9paGmg\nv08MNwxc5PIN8AAqa07x3sZskrNLMOi1XDkpkllj+qDTXrwb4PXEbHoDyUW9JBv1kmwc01kB022n\nkGw2GzNnzsRgMGA0Glm5ciVvvfUWAwYMQKvVcuLECbKzs7FYLJSVlbFgwQL0ej2ZmZm4ubkRGRnZ\nYdu9/RTSj2k0GvqawhgTPILiuhIy7NnsyN+Nm86NcHOYS7Mx7kY9YwYFEerv9cPmkIfLiAoxY/F2\nftFwV+iJ2fQGkot6STbqJdk4prNTSN22SlOn0+Hp2XbaITExkSlTprQ/bmlp4V//+hd33HEHpaWl\n+Pr6tr/P19eXkpKSTtv28fFE3403X+us4lOzAEw8HHYn247v4a29H5B4aC1p9nR+PeZGwsw2l9qc\nE2Bi0qg+vLE2nS/35PHYO0ksuqwf11zeH6Phwl9y3VOzudRJLuol2aiXZHN+uv0yk02bNpGYmMib\nb74JtBUv9913H+PGjWP8+PGsW7fujNc7ckarvLyuW/oKl8a03kCvQfxxzD18kP1f9hbv574NfyEh\n4nJmhk91aXNIgBtm9CMuypd3Psvig03ZbN17glvnDCImzNLFve/YpZDNpUhyUS/JRr0kG8d0VuR1\n64KGrVu38sorr/Daa69hMrV14sEHHyQ8PJxly5YBEBgYSGlpaft7iouLCQwM7M5u9Qpmo4lfDL2R\nX8XehJfBk09yPuepPc9zvCrP5TaHRvrx2C/GMGNUGIVldfz1vWT+9UU2DY3NXdhzIYQQ4qd1WwFT\nXV3N8uXLWblyZfuC3LVr12IwGLjzzjvbXxcXF0daWhpVVVXU1taSkpLC6NGju6tbvU5cwFAeGvsH\nJoaMIb+2kKeTXmTNoU9obHHt3Ku7Uc8NM/vzwI0jCfL1ZFPyCR55YzcHcuxd3HMhhBCiY912FdLq\n1at54YUXzliMm5+fj9lsxtvbG4Do6Gj+9Kc/sWHDBt544w00Gg033ngjP/vZzzptW65Cck12+WH+\nmfkfSuvL8Hf35fqBixngG+Nye03NLazdfozPdubSqihMirVxzYwYvNyd3zXbEZdyNj2Z5KJeko16\nSTaOuSiXUXcnKWBc19jSyCc5G9mcuxUFhQm2MSyMmYenwcPlNnOLqnlzfQa5RTVYvIzcOGsAowa4\ntmt2Zy71bHoqyUW9JBv1kmwcc1Euo+5Ochm163RaHYN8+zPEbyA5lbkctGexuzAZfw8/gr1cW3tk\n+W5zSKNBS9pRO7sOFnGypOa7zSG7bp34pZ5NTyW5qJdko16SjWNkKwEn9JZBZXWzMCEkHr1GT4Y9\niz1F+yioKST6vDeHDCCv+PvNIQuweBnpE+jdJdsR9JZsehrJRb0kG/WSbBwjBYwTetOg0mq09POJ\nYkRgLCe+2xzy24I9mI0mQr1trm8OGWvD5Gkk/ZidPZnFHM2vol8fC57nuTamN2XTk0gu6iXZqJdk\n4xgpYJzQGweVt9GbcbbReBu9yLBns7d4PzlVuURbIlxaG9O2OaSZcYODKCir+25zyAI8jHoibK5v\nDtkbs+kJJBf1kmzUS7JxjBQwTuitg0qj0RBh7kt80AiKvtuOYHvBbtx0Rpe3I/B0NzBuSBABVg8O\nHrOTnF1CxvFyYkItmDyNTrfXW7NRO8lFvSQb9ZJsHCMFjBN6+6DyNHgQHzQCfw8/suyHSS1NJ9Oe\nTaQlHJPR2+n2NBoNfYNMTIy1UVZZ3zYbk1qAVgtRIWa0WscLo96ejVpJLuol2aiXZOMYKWCcIIOq\nregIM4Uwzjaa8oYKDtqz2Z6/GwWFSEs4Wo3z9z90N+qIHxREWIAXmd9tDpl6pJRImxmrg5tDSjbq\nJLmol2SjXpKNY6SAcYIMqh+46YyMCBxGH+8QssuPkFaWwf6SA/Q1h2J1c20PpBB/LybH2aiubSLt\nqJ2tqQU0tbTSL8yCTtt5YSTZqJPkol6SjXpJNo6RAsYJMqjOFuQVyISQeOqa6jlgz+Lb/D3UNzcQ\nbY1Er3V+R2qjXseI/gHEhFrIzqsg9XAZSZkl9A3yxs/s3uH7JBt1klzUS7JRL8nGMVLAOEEG1bkZ\ntAZi/QfT3xrFkcocDpRlklS0D5tXEP4efi61GejjweQ4G6caW0g7Wsa2/QXU1DXRL8yCQX/2bIxk\no06Si3pJNuol2ThGChgnyKDqnJ+HLxNCxtKqtHLQnsWuwmTKGyqIsUZi0Dl/nxe9TktstB9DInw5\nfLKS/UfL2HWwkBA/LwJ9PM94rWSjTpKLekk26iXZOEYKGCfIoPppOq2Ogb79GOo3kGNVue2FjL+7\nL8FeQS616Wt2Z0qcDYD0o3Z2pBdSWlFP/z5WjIa201SSjTpJLuol2aiXZOMYKWCcIIPKcRY3MxNs\nYzBoDRy0Z5NUtI/8mkJiXNyOQKfVMijcl+Ex/uQUVJOWY2d7eiH+FndC/L0kG5WSXNRLslEvycYx\nUsA4QQaVc7QaLTHWSEYG/LAdwY6CPZgM3oR5h7h0AzyLtxuT42y4GXRtm0NmFHGiuIZh/QNQWlq7\n4VuI8yHHjHpJNuol2TimswJGoyiKcgH70iW6cwty2eLcda1KK9tO7uTjI+s51dLIQJ9+XDfwKpcX\n+QIU2ut4e30G2Scq8fIwcPW0aCYPc22fJtE95JhRL8lGvSQbxwQEmDp8TgqYH5FBdf7sDeW8n7WG\ng2VZGLUGFkTNZlqfSS7dAA+gVVH4Zu9JEr85Sv2pZgb2tXJzwkCCfD1/+s2i28kxo16SjXpJNo6R\nAsYJMqi6hqIo7CnaS+KhtdQ21RFh7ssNAxcT4h3scpsag57n3k9h3+FSDHotP5sYwewxfdHrXCuM\nRNeQY0a9JBv1kmwc01kBI2tgfkTOS3YNjUZDqLeNcbbRVJyq5KA9ix35u2lVWom0hKNzYTYmwM+L\noeFWwgK8yThezr5Dpew7XEpEsAkfk/OLhkXXkGNGvSQb9ZJsHCOLeJ0gg6prtW1HEEtfUyiHKo6S\nVpbBvpJ0+ppC8XG3OtXW99l8vx1BTd132xHsz6ehsZl+oVaZjbkI5JhRL8lGvSQbx0gB4wQZVN0j\nyDOACSFjqG9u4GBZJt8WJFHXVE+UJQK9Vu9QG6dnY9TrGNEvgP59rBw6Ucn+I2XsOlhEiL8XgT4e\n3flVxI/IMaNeko16STaOkQLGCTKouo9Bq2eo/yD6W6M5WnmMA/ZMkov2EewVRIADVyqdK5sAqwdT\n4kJoVSDtuxvglfzoBniie8kxo16SjXpJNo6RAsYJMqi6n5+HDxNCxqCgtN/F195QTr+f2I6go2x0\nOi2DI3wZ3s+fnMJq0o/a2ZZWgI/JjVB/L7nkupvJMaNeko16STaOkQLGCTKoLozvtyOI9R/E8ao8\nDtqz2FmYhJ+7L7YOtiP4qWws3m5MHmbDw6jnQI6d3RnFHCuspl+YFU93x05TCefJMaNeko16STaO\nkQLGCTKoLiyLm5nxtniMOmP7dgQnawqIsUaetR2BI9loNRpiwiyMGRxEQWkt6Tl2tqTm427UERFs\nltmYbiDHjHpJNuol2ThGChgnyKC68LQaLdHWSEYGDuNkTcF32xHsxtvgdcZ2BM5k4+VuYPyQYAKs\nHhw8Ziclu5T0HDtRIWbMXsbu/Dq9jhwz6iXZqJdk4xgpYJwgg+ri8TZ4MTZ4FBY3E5n2Q+wtSeNw\n5TGiLRF4GTydzkaj0dA3yMSkWBvlNadIP9o2G9PSohATakanlUuuu4IcM+ol2aiXZOMYKWCcIIPq\n4tJoNISb+zAmeCTFdaVk2LPZnr8bvVbPkOAY6uubnG7Tzahj9IBAIoJNZOVVkHq4jKTMEvoEeuNn\nce+Gb9G7yDGjXpKNekk2jpHNHJ0gt3dWD0VRSC5O5cPs/1LTVEu0TzhLYhYSZgpxuc36U82s2XKU\nzcknUIBpI0JZPDVaFvmeBzlm1EuyUS/JxjGyF5ITZFCpT01jLYmH1rGnKAWtRsvlfacyJ+JyjJ1c\ncv1Tjpys5O3PMjlZWovV28jSWQMY0T+gC3vde8gxo16SjXpJNo6RAsYJMqjU62RzHit3v0dZQzn+\nHn5cN+AqBvr2c7m95pZW1u88zic7jtHcojB6QADXz+yP1Vv2VXKGHDPqJdmol2TjGNnM0QlyXlK9\nooPCGG4dTnNrMwfLvrsBXn050dYIjDrnryzSajUM6OvDqAGB5BbXfHfJdQEmTwN9g7zlkmsHyTGj\nXpKNekk2jpFFvE6QQaVeXl5unKpvYZBff4b6DSL3+xvgFSTh42bB5hXsUtFh8jQyMdaGxcvIgWN2\nkrJKyM6rICbUgreH66epegs5ZtRLslEvycYxUsA4QQaVep2ezfc3wHPTuZFhP0RycSrHqvOItkTi\naXB+M0eNRkOkzcz4IcEUl9eTnmPnm335aLUQFWJGq5XZmI7IMaNeko16STaOkQLGCTKo1OvH2bTd\nAC+CUYHDKawtbrvkumA3Rp2BcHMfl2ZjPNz0jBkUSFiANxm55ew7VMq+w6VEBJvwMcnamHORY0a9\nJBv1kmwcIwWME2RQqVdH2XgZPBkTPBJ/Dz+y7IdJLT3AwbIsws19MLt1vACsIxqNhhB/LybH2aip\nayLtqJ2t+/OpP9VMvzArep3cAO90csyol2SjXpKNYzorYLr1L/Hy5cu55pprWLRoERs3bgTg3Xff\nZciQIdTW1ra/bu3atSxatIirr76aDz/8sDu7JC5RGo2GsbZRPDzuD8QHjeB4dR5PJT3Pf498RmOL\n8ze/g7btCG6dO4j/uW4EAVYPNu7J4+E3dpGeU9bFvRdCCOGsbrt7186dOzl06BCrV6+mvLychQsX\nUldXR1lZGYGBge2vq6ur46WXXiIxMRGDwcDixYuZOXMmVqu1u7omLmEmoze3DLmO+OCR/DtrDRuP\nf8Xe4v1cN2ARA3xjXGpzULgPf/75GNZuP8aGXbk8uzqVCUODuXZGP1nkK4QQF0m3zcDEx8fz3HPP\nAWA2m6mvr2fGjBncfffdZ6xNSE1NJTY2FpPJhLu7OyNHjiQlJaW7uiV6iSF+A3ho7L1c1mcypfV2\nnt/3KqsyPqC2qc6l9owGHYunRfPILaMJDzaxI72QP762k50HCumBt1ISQoger9tmYHQ6HZ6engAk\nJiYyZcoUTKaz1yOUlpbi6+vb/tjX15eSkpJO2/bx8USv13Vth0/T2Y1zxMXlbDa/Cb6emfaJrNzz\nHjsLksiwZ3HLyKuZ0Ge0S4t8AwJMDB8UzNqtR3lvQyavrjtI8qFSbl8UR6Cvp9PtXSrkmFEvyUa9\nJJvz0+0bwGzatInExETefPNNh17vyL9my8td+1e0I+TuiOrlajZmfLln+B1sztvKpzkbee7bN/ky\newfXDFiIr7uPS32ZNCSI/qFmVm3IJDmzmNuXb+aqqVHMGBnW6y65lmNGvSQb9ZJsHNNZkdeti3i3\nbt3KK6+8wmuvvXbO2ReAwMBASktL2x8XFxefsUZGiK6g0+qYGT6NP465lwE+MaSXZfLYrmf4Km8b\nrUqrS20GWj2455rh3DZvEHqdhvc3HeKJ95I5UVLTxb0XQgjxY91WwFRXV7N8+XJWrlzZ6YLcuLg4\n0tLSqKqqora2lpSUFEaPHt1d3RK9XICnH78b/kuWDlqCQaMn8dBa/pb8EidrClxqT6PRMDHWxl9+\nOY6xg4M4ml/Fo2/t4aMtR2lqbuni3gshhPhet23muHr1al544QUiIyPbfzZ27Fh27drFvn37iI2N\nZfjw4dx3331s2LCBN954A41Gw4033sjPfvazTtuWzRx7p67OprqxhsRDa0kq2tdlu1ynHi5l1cYs\n7FWnCPb15JY5A+nf59K+ok6OGfWSbNRLsnGM7EbtBBlU6tVd2Rwoy+TfWR9hbygnwMOP6wcuor+P\na5dcA9SfambNlqNsTj6BAkwbEcriqdF4unf7krOLQo4Z9ZJs1EuycYzsRu0EuTuienVXNoGe/kyw\njWnf5XpnYTLlDRVEWyNdmo0x6LUMi/ZjaKQvR/OrSDtaxo70AgKtHtj8vLq8/xebHDPqJdmol2Tj\nGNlKwAkyqNSrO7PRa/UM9hvAEL+BHDt9l2t3CzavIJcuufY1uzMlLgSdTkN6jp2dB4s4WVJDvz5W\n3I2XzmyMHDPqJdmol2TjGClgnCCDSr0uRDZWNwsTbGMw6oxk2LNJLk4lt/oE0dYIPPTO73Kt1WoY\n0NeH0QMDySuuIT3HzpbUArw99PQNMrlUGKmNHDPqJdmol2TjGClgnCCDSr0uVDZtu1xHMjIwjoLa\nIjLs2ezI341RZyTcHOZS0WHyNDIx1obF240DOXaSs0rIPF5OVIgFk6exG77FhSPHjHpJNuol2ThG\nChgnyKBSrwudjZfBk7HBI/H18CXLfojU0gNk2LOJMPfBbHRtl+tIm5kJQ22UVjaQnmPnm335tLYq\nRIea0Wl75i7Xcsyol2SjXpKNY6SAcYIMKvW6GNloNBr6mEIYb4un4lQlB+1ZbM/fTXNrM1GWcHRa\n57e08HDTM2ZQEH0DvcnKqyD1cBlJmSWEBXjhb3H+NNXFJseMekk26iXZOEYKGCfIoFKvi5mNm87I\niMBYwk1hHK7IIb0sg5Ti/YR4B+Pn4fvTDZyDzc+LKXEhNDa1kHa0jG1phZRVNdAvzIrR0H17fXU1\nOWbUS7JRL8nGMVLAOEEGlXqpIZtAzwAmhIyhqbXpu0uuk6hoqCDGGonBxUuuY6P9iI3yI6egivSj\ndralFWD1diMswKtHLPJVQy7i3CQb9ZJsHCMFjBNkUKmXWrI55yXXhUn4uFldvuTax+TG5GE23N10\nHMixsyezmCP5VcSEmvHycP3OwBeCWnIRZ5Ns1EuycYwUME6QQaVeasum/ZJr7emXXJ8kxhqJh97d\n6fa0Wg39wqyMHRxEob2OAzl2vknNR6dtW/yr1l2u1ZaL+IFko16SjWOkgHGCDCr1UmM257rkenv+\nLtx0bvR18ZJrL3cD4wYHYfPzIvN4OXsPlbL3UCl9g73xNTlfGHU3NeYi2kg26iXZOEYKGCfIoFIv\nNWfTfsm1uw9Z5YdJLU0/70uuwwK8mTQshNqGJtKO2tmWWkB1XSP9wqwY9Oq55FrNufR2ko16STaO\nkQLGCTKo1Evt2bRdch3KONtoKhoqv5uN2U3LeVxybTToGN4vgEHhPhzJryTtqJ0d6QX4WzwI8VfH\nvkpqz6U3k2zUS7JxjBQwTpBBpV49JRs3nRsjAoedecl1yX5CvVy/5NrP0ravkl7btq/SroNF5BZV\n0y/Mgofbxd1Xqafk0htJNuol2ThGChgnyKBSr56WTfsl1y2nX3JdSYw1wqVLrnWn7at0sqS27U6+\nqfm4GXREBpsv2iXXPS2X3kSyUS/JxjGdFTAaRVGUC9iXLlFSUt1tbQcEmLq1feG6npzNsapc/pmR\nSH5tISajN0v6X8mIgFiXiw5FUdiWVsAHmw9T29BMpM3EzQkD6Rvk/Hqb89WTc7nUSTbqJdk4JiCg\n479pMgPzI1IVq1dPzsbqZmFiyBgMWkPbJddF+8itPkGUJRxPg/PbB2g0GsKDTEyKtVFRe4r0o227\nXDc0thATakGvu3CLfHtyLpc6yUa9JBvHyCkkJ8igUq+eno1WoyXGGsmowGEU1ha3X3Kt1+oJN/VB\nq3G+6HAz6hg1IJCYUAuHTlSw/0gZuw4WEeTrSZCvZzd8i7P19FwuZZKNekk2jpECxgkyqNTrUsnG\ny+DFmOCRBHj6k11+hP2lB9hfepA+plCsbhaX2gz08WBKXAiKAuk5dr49UEhBWS39wiy4G7t3ke+l\nksulSLJRL8nGMVLAOEEGlXpdStloNBpCvW2MD4mntqmOg/Ysvs3fQ01TLVGWcAxa5xf56nVaBkf4\nMrJfALlF1aTn2NmaWoCXh56+QaZuW+R7KeVyqZFs1EuycYwUME6QQaVel2I2Rp2RYQFD6G+NIqcq\nlwNlmewqSMHX3Ydgz0CXig6zl5FJsTbMXkYOHLOTnFVCxvFyokMsmDyNXf4dLsVcLhWSjXpJNo6R\nAsYJMqjU61LOxs/DlwkhY9BrdGTYs0gq3kdu9UmiLBEuL/KNtJmZMNRGWWVD2yXX+/JpaVGICTWj\n03bdIt9LOZeeTrJRL8nGMVLAOEEGlXpd6tnoNFr6+UQxMiiOgpoiMsrPf5Gvh5ueMYOC6BvkTVZe\nBalHytiTWUKovxcBVucLo3O51HPpySQb9ZJsHCMFjBNkUKlXb8nG2+DF2OBR+Hv4kVVxmP2lB0kr\nzaDveSzytfl5MSUuhMbmFtKPlrE9rZCyygb69bFiNDi/xcHpeksuPZFko16SjWOkgHGCDCr16k3Z\naDQawkwhjLfFU9NUy0F7Fjvy91DTVEeUJQKD1vkriwx6LbFRfgyL9uNYQRVpOXa27i/A6u1GWICX\ny4t8e1MuPY1ko16SjWOkgHGCDCr16o3ZGHVG4gKG0M8aRU7VcQ6UZbK7MAU/D1+CPANcKjp8TG5M\njrPhYdRz4JidPZnFHDlZSUyoBS8P569+6o259BSSjXpJNo6RAsYJMqjUqzdn07bIdyxajZaMsiyS\nivaRV5NPlCUcD73za1m0Gg0xYRbGDQ6i0F7fvq+SVgNRIWa0WscLo96ci9pJNuol2ThGChgnyKBS\nr96ejU6jpb9PNCMDh5FfW/jdnXx3Y9Tq6WsKc2mRr6e7gXGDgwjx9yIzt4J9h0rZe6iEvkEmfM3u\nDrXR23NRM8lGvSQbx0gB4wQZVOol2bTxNrYt8vXz8CW7/DCppQdIL8ukrykMi5vZ6fY0Gg2hAd5M\njrNR19BM2lE72/YXUFXXSL9QKwZ954WR5KJeko16STaOkQLGCTKo1Euy+cHpi3yrG2u+W+S7m7qm\neqIs4ehdWORr1OsYHuPPoHAfjuRXknbUzvb0AvzN7tj8PDtcbyO5qJdko16SjWOkgHGCDCr1kmzO\n1rbIdyj9rJEcPW2Rr7+HL8FegS616WdxZ0pcCHqdhgM55ezKKCK3qIZ+YRY83M4ujCQX9ZJs1Euy\ncYwUME6QQaVekk3H/Dx8mWgb07bI157NnqJ9nKjOJ9oSgYfesbUsp9NpNQzo60P8oEBOltS038nX\naNARaTOfMRsjuaiXZKNeko1jpIBxggwq9ZJsOqfT6ujvE82IwGEUtC/y3YVRZyTcHObSJdfeHgYm\nDA3G3+JBxnE7ew+VknqkjMhgM1bvtj8skot6STbqJdk4RgoYJ8igUi/JxjHfL/L1dfchu/wIqaXp\nHCjLOK9Fvn2DTEwaZqOyppH0HDtbUvNpaGymX6gVs9ldclEpOWbUS7JxTGcFjEZRFOUC9qVLlJRU\nd1vbAQGmbm1fuE6ycV51Yw0fHf6UXYXJaNAwrc9E5kfOxl3f8R+Fn3LgmJ1VG7IorqjHz+zOsiXD\nCff37MJei64ix4x6STaOCQgwdfhctxYwy5cvJzk5mebmZn79618TGxvLfffdR0tLCwEBATz99NMY\njUbWrl3LO++8g1arZcmSJVx99dWdtisFTO8k2bguy36Yf2etobi+FB83K0v6X8GwgCEut9fY1MK6\nHcfYsCuXllaF0QMDuW5GP3xMrhdGouvJMaNeko1jLkoBs3PnTt544w1ee+01ysvLWbhwIePHj2fK\nlCnMmTOHZ599luDgYK688koWLlxIYmIiBoOBxYsX895772G1WjtsWwqY3kmyOT9NLU18fvwrNh7/\nihalhbiAoVzd72f4uHd8rP2UE8U1vL/5MBnH7LgbdSycEsWMkWFO3clXdB85ZtRLsnFMZwWMy2tg\njh071mmRYbPZmDlzJgaDAaPRyMqVKykuLuaRRx5Bp9Ph7u7OunXrCAwMpKysjAULFqDX68nMzMTN\nzY3IyMgO25Y1ML2TZHN+fljkG3vanXzPb5Gv2cvIz6bG4K7XkHG8nJTsUlIPlxEebJLZGBWQY0a9\nJBvHdLYGptNbbN56661nPF6xYkX7/3/kkUc6/VCdToenZ9t58cTERKZMmUJ9fT1GoxEAPz8/SkpK\nKC0txdfXt/19vr6+lJSUdNq2EMJ1wV5B3DXi19ww8Gp0Gh2Jh9bydNKL5FWfdKk9rVbDlLgQ/vKr\ncUwcGszxomoefyeJ9zZmUdfQ3MW9F0KINp3errO5+cw/Pjt37uT2228HwNEzT5s2bSIxMZE333yT\nWbNmtf+8o/c70q6Pjyd6vc6hz3dFZ1NW4uKSbLrOFYGXMW3AaFbtW8OW47t4Kul55vW7jCVD5+Nu\ncO7eMQEBJgKAB271I+1wKSv+k8rmlJPsPVTKL64YyuThoS7N8IjzJ8eMekk256fTAubHf3BOLy4c\n+WO0detWXnnlFV5//XVMJhOenp40NDTg7u5OUVERgYGBBAYGUlpa2v6e4uJihg8f3mm75eV1P/nZ\nrpLzkuol2XQHDddELyLOZxj/zlrDJ9lfsv14MtcMuJJY/8EOtfDjXIItbjxy82g27Mpl3Y5jPP1e\nMuu3HeXG2QMI8pGrlS4kOWbUS7JxTGdFnlPb1zrzL6jq6mqWL1/OypUr29fKTJgwgc8//xyAjRs3\nMnnyZOLi4khLS6Oqqora2lpSUlIYPXq0M90SQpyngb79+N8x95AQMYOqxmpe2f82r6W9S8WpSpfa\n0+u0zJ8QwWO/GMvQKKzO+J0AACAASURBVF8OHCvn4dd3s3ZbDk3NrV3ceyFEb9TpDExlZSXffvtt\n++Oqqip27tyJoihUVVV12vD69espLy/n97//ffvPnnzySR566CFWr15NSEgIV155JQaDgXvvvZfb\nbrsNjUbDHXfcgckk02pCXGhGnYEFUbMZHTSc9zP/w76SdDLth1gQncCU0PFoNU79eweAQKsHd18d\nR1JWCf/alM3H23L49mARN83qz6AI359uQAghOtDpZdRLly7t9M2rVq3q8g45Qi6j7p0kmwunVWll\nZ0ESHx3+lLrmesJNfbhu4CL6mELOeq2judSfauajLUf5MuUEigLjhwSx5LJ+WLyM3fEVBHLMqJlk\n45iLdiO77iIFTO8k2Vx41Y01/OfQOvYU7UWr0TI9bBLzombhpvuh6HA2l2OFVby7IYtjhdV4uulZ\nPC2aKcND0Moi3y4nx4x6STaOcXkNTE1NDW+//Xb743//+99cccUV3HnnnWcsvBVCXJpMRm9uGXId\ny4b/Al93H77M28JjO/9GemmGy21GBJt56KbR3DCzPwoK736exV9XJZNbJH/MhRCO6/RGdg888AB6\nvZ4JEyaQk5PDvffey+OPP47ZbOb9998nISHhAnb1B3Iju95Jsrl4Ajz8mBgyFg1w0J7FnqK9FNQU\nEmWNwM9sdjoXjUZDVIiZibE2yqtPfbdBZAF1p5qJCbOg1zm/3kacTY4Z9ZJsHOPyjezy8vK49957\nAfj8889JSEhgwoQJXHvttTIDI0QvY9QZWBCdwIPxvyfKEsHekjQe2/kMGw59Tavi2pVFVm83fnPF\nUO65Jg5/izsb9+Txx9d2kZxV4vC9poQQvVOnBcz3d9IF2L17N+PGjWt/LDelEqJ3CvEO5u6Rv+H6\nAYvQaDS8mbKavyW9RG7VCZfbHBrpx59vG8OCCRFU1Tby0kdpPJ+4n9KK+i7suRDiUtJpAdPS0kJZ\nWRm5ubns3buXiRMnAlBbW0t9vfxhEaK30mq0TAwdyyPj/sCk8DEcr85jedILfJD9MfXNrv1tMBra\nNoP8821jGNjXSuqRMh56fRfrdx6nuUXuHSOEOFOna2D8/Py45ZZbWLVqFXfccQcTJkygoaGB6667\njkWLFjFs2LAL2NUfyBqY3kmyUR83nRuXDRiLzRDKsapcDpRlsbMgGavRjM0r2KWZWpOnkQlDgwny\n9SQrt5y9h0pJyS4hLMAbP4tzWxz0dnLMqJdk45jO1sD85GXUTU1NnDp1Cm9v7/afbdv2/+3deXzU\n1b3/8dcsmewJ2fd1koAsAWRfwr7IIgiKIIL297hXe3/e9tb+an+1tFZbe+0Pr/f++qv6aK3aW8Uq\nyCYgCMgS9n0nQPYFsu97MsnM/P6AUlGWmSHJnCGf539AcnLm8T4HPnzP+Z5zkPHjx3ddD+0kr1H3\nTpKNmv6eS4elk91F+9hesJsOSyf9ApJ5su9jhHmFONx2c1sH69NzST9bAkBaagSLJifh4+nWVd1/\noMmcUZdkYxuHz4EpKSm5a8ORkd891KonSAHTO0k2avp2LlWt1XyetYmM6ivoNTqmx01iRtwUDDrH\ni46c4no+3p7JtcomfDzdeHJyEuMGOfaEpzeROaMuycY2Dhcw/fr1IyEhgZCQ6/+D+vZljh9//HEX\ndtN2UsD0TpKNmm6Xi9Vq5VzlRdZmb6auvZ5gzyCeTHmMAUF9Hf45ZouFXSev8cWBfNo7zKTE9GH5\nzL5EBXvf70d4YMmcUZdkYxuHC5hNmzaxadMmmpubmTNnDnPnziUw0Pn3l0gB0ztJNmq6Wy5tnW1s\ny9/F3msHsVgtDA0ZxBMp8+jj7u/wz6tpaOPTXdmczqpEp9XwyKhY5o6Nx91N53CbDyqZM+qSbGxz\n31cJlJaWsnHjRrZs2UJUVBTz589n+vTpeHg4Z0OdFDC9k2SjJltyKW4qZXXmBvLqC3HXGZibMIOJ\n0ePQaR0vOs5mV/G3r7Oobmgj2N+DZTNSSDUGO9zeg0jmjLokG9t06V1Ia9eu5a233sJsNnPy5Mn7\n7pwjpIDpnSQbNdmay98viPwiZxvNnS1E+UTwVN+FJPjHOfyz201mNh/OZ+fxq5gtVob1DeGpqckE\n+snbSiBzRmWSjW3uu4BpaGhg8+bNbNiwAbPZzPz585k7dy6hoaFd2lFbSQHTO0k2arI3lyZTM1/k\nbuNI6Qk0aBgbOZL5xll4u3nd+5vv4FplEx/vyCTnWj3uBh0L0hKZOiwKnbZ3X0kgc0Zdko1tHC5g\nDh48yPr167l48SIzZsxg/vz5pKSkdEsn7SEFTO8k2ajJ0Vxy6vJZk7mRkuYyfNy8WZA0h1Hhwxx+\ns8hitXLofCmf782hua2T2FAfnnmkH4mRfg619yCQOaMuycY29/UWUnx8PIMHD0Z7m//J/O53v+ua\nHtpJCpjeSbJR0/3kYraY2XP1ANvyv8Zk6cDon8CSvguI9Al3uD+NLSY+35vDoQtlaIBJQ6N4fGIi\nXh697+wYmTPqkmxs43ABc/z4cQBqa2sJCAi45c+uXbvGwoULu6iL9pECpneSbNTUFbnUtNWyLnsL\n5yovotVomRozgVkJ03DXGRxuM7Oolo93ZFJa3YKft4ElU5MY9VBYrzo7RuaMuiQb2zhcwJw8eZIf\n//jHtLe3ExgYyHvvvUdcXByffPIJf/7zn9m/f3+3dPhepIDpnSQbNXVlLheqLrE2axPVbbUEuPfh\nyZT5pIYMcLi9TrOFHceL2HKoAFOnhf7xASyf0ZewQMf327gSmTPqkmxs43AB8/TTT/Ob3/wGo9HI\n7t27+fjjj7FYLPj7+/PKK68QFhbWLR2+FylgeifJRk1dnYvJbOKrgt3sLtqP2WpmUHB/FiXPJ8gz\n4N7ffAeVda18sjOLC3nV6HVa5oyJY/boWNz0D/bZMTJn1CXZ2OZuBcxdt+hrtVqMRiMAU6dOpbi4\nmGeeeYZ33nnHacWLEOLBZtAZmG+cxYqRL5LcJ5ELVZd4/dhb7CzcS6el06E2Q/p48uKiVF54bCA+\nnno2HcznVx8eJ6Ogpot7L4ToKXctYL69VhwREcH06dO7tUNCCAEQ7h3Gj4Z+n2ceWoy7zsCm3K/4\n3Yn/R3ZtrkPtaTQahvcL5d+fG8304TFU1LXyn6vP8ufNGdQ3tXdx74UQ3c2uQxJ60+Y3IYTzaTQa\nRkUM49XRP2V81GjKmyv4/Zn3+PjSGhpNTQ616emu56lpyfzq2REkRPhy9FI5K94/xt7T17BY7DrX\nUwjhRHfdAzNo0CCCgoJu/rq6upqgoCCsVisajYb09PSe6ON3yB6Y3kmyUVNP5lLQUMTqKxu42lSC\nl96TecZZjIsciVbj2IF1FouVfWeLWbcvj9b2ThIi/HhmZl/iwu+87u5KZM6oS7KxjcObeIuLi+/a\ncFRUlOO9ug9SwPROko2aejoXs8XM/uIjfJm3gzZzO/F+sSzpu5AY30iH26xvamfNnhyOXipHo4Ep\nQ6NZMCHB5c+OkTmjLsnGNl16F5IKpIDpnSQbNTkrl7r2ejZkf8mpinNo0DApZhxzE2bgoXf8HqSM\nghr+tjOLspoW/LzcWDQ5ibEDw112+VzmjLokG9tIAWMHGVTqkmzU5OxcLtdksSZzI5Wt1fgb/Hgi\nZR5DQwY5XHTcPDvmcAGmDgvJ0f4sn9GX6FCfLu5593N2NuLOJBvb3K2A0b322muv9VxXukZLi6nb\n2vb2du/W9oXjJBs1OTuXEM8gxkWOQqvVcaU2m1PlZ8lvKCLeL9ahCyK1Wg0pMX0YMyCc6oY2MvJr\n2He2hJb2ToxR/rjpXeeCSGdnI+5MsrGNt7f7Hf9MCphvkUGlLslGTSrkotPqSAkwMiw0lYqWKi7X\nZHGo5BhWq4V4v1h0WvsPrPPy0DPyoTASIvzILa7nfF41hy6WEuDjTlSwt0ssK6mQjbg9ycY2UsDY\nQQaVuiQbNamUi7ebNyPChhLuHUZOXR4Xqi9zuuI8Yd4hhHgG3buB2wgL9GLikEj0Oi2XCmo5frmC\n7Gv1JET44evl+F1NPUGlbMStJBvbSAFjBxlU6pJs1KRaLhqNhkifcMZGjqLD3MGlmkyOl52mvLmC\nRP94PPR3/gvxTnRaLX1jAxjVP4zK2lYu3lhWajeZMUb5odepuaykWjbiHyQb29ytgJFNvN8iG6vU\nJdmoSfVcrjYWszpzIwUNRXjoPHg0cSYTosc4fHYMwJnsSj79OpvqhjYCfN15amoyw/qGKLespHo2\nvZlkYxvZxGsHqYrVJdmoSfVc/N39GBMxHH93PzJrczhXdZGL1ZeJ8Y2ij7u/Q21GBHkzcUgkGo2G\nSwU1HLtcQV5JA4mRfvh4qnN2jOrZ9GaSjW1kCckOMqjUJdmoyRVy0Wg0xPlFMyZiBI2mJi7VZHK4\n5AQNpiYS/eNw09lfdOh1Wh6KC2DkQ2GU1bTceFupmA6zlcRINZaVXCGb3kqysY0sIdlBHuupS7JR\nkyvmkl2by+rMjZS1VODr5sPC5LmMCBvq8BKQ1WrlVGYln+3OpraxnWB/D56alszQ5JAu7rl9XDGb\n3kKysY0sIdlBqmJ1STZqcsVcgjwDGRc5Enetgcu12ZyuOE9OXT7xfrH4GLztbk+j0RAZfH1ZyWK1\nkpFfw9FL5RSUNmCM8sfbSVcSuGI2vYVkYxunLSFlZWWxePFitFotqamp5Obm8sMf/pCNGzdy+vRp\nJkyYgFarZfPmzaxYsYJ169ah0WgYMGDAXduVAqZ3kmzU5Kq5aDVajH0SGBE2lMrWai7XXj87xmTp\nIME/Dr0DZ8fodVoGxAcyvG8oJVXNZBTUsu9sCVbL9WUlnbZnl5VcNZveQLKxzd0KmG6bTS0tLbz+\n+uuMGTPm5u+99dZbPP/883zyySdERETw1Vdf0dLSwrvvvstf//pXVq1axUcffURdXV13dUsIIW4R\n5BnIv6R+j+cHPYufwZedhXt5/ehbnKm4gKMr7JHB3vz0qaE8P68/Xh56vjiYzysfHOd8bnUX916I\n3qvbChiDwcD7779PaGjozd8rLCwkNTUVgLS0NA4dOsS5c+cYNGgQvr6+eHh48PDDD3P69Onu6pYQ\nQnyHRqNhcMgAXhn9EjPjptBoauSDi6t499yHlLdUOtzm6P7hvPHcaGaMiKGqvo3frz3HOxsuUF3f\n1sWfQIjep9sKGL1ej4fHrbfCpqSksG/fPgAOHDhAVVUVVVVVBAYG3vyawMBAKisd+wtDCCHuh7vO\nwDzjI6wY9b94KDCFyzVZ/Pux/2JT7le0mx173O/prmfJ1GRe+x8jSIn253RWJb/44ChbjxTQabZ0\n7QcQohfR9+QP+9nPfsZrr73Ghg0bGDly5G0fz9ryyDYgwAu93v71aVvdbdezcC7JRk0PWi4h+DIg\n9kVOFJ/jr2fWsrNwL6cqz/LskCcYFe3Y20ohIb4M6R/O3lNX+e8tl1i/L4+jlyr4nwtTGZzSfW8r\nPWjZPEgkm/vTowVMREQE7733HnD9CUxFRQWhoaFUVVXd/JqKigqGDBly13Zqa1u6rY/yapu6JBs1\nPci5JLgb+cWI/8WOgj3sKtrHfx1+n34ByTyZMp8w79B7N3Abg+IC+O0/j2Tj/nz2nLnGL987zIh+\noSyZmkyAr/3XHNzNg5yNq5NsbHO3Iq9Ht8T/4Q9/ID09HYANGzYwZcoUBg8ezIULF2hoaKC5uZnT\np08zfPjwnuyWEELckUFn4FHjI/zixrLSldps/v34/72vZSUvDzeenpHCr54dgTHSjxNXKljx/lG2\nHyuSZSUhbNRtB9ldvHiRlStXUlxcjF6vJywsjJdeeonXX38dq9XK8OHD+fnPfw7A9u3b+fDDD9Fo\nNCxbtox58+bdtW05yK53kmzU1JtysVqtnKvKYF3WZmrb6+jj7s/jyY8yNGSQw4fgWaxWDp4vZV16\nLk2tHUQFe7NsRgp9YwPuu7+9KRtXI9nY5m5PYOQk3m+RQaUuyUZNvTEXk9l0c1mp02qmX0Ayi1Lm\nE+7gshJAU2sH6/flsv9sCVZgzIAwnpychL+P48tKvTEbVyHZ2EZO4rWDHC6kLslGTb0xF51WR9/A\nJIaFDaay5R+H4LWbTcT7xaLX2r+90OCmY0hSMIMSgygsb+Rifg37z5VgcNMRH+6L1oEnPL0xG1ch\n2dhG7kKyg1TF6pJs1NTbc7FarZyvymBtVy4rWazsO1fChn25NLd1Ehvqw7IZfUmKtu/27N6ejcok\nG9vIExg7SFWsLslGTb09F41GQ7h3KOOjRqHRaLhSk8WpinPk1RcS5xfj8N1KCRF+jE+NoKmlgwv5\nNRw4X0p1fRvGaH/c3Ww7RqK3Z6MyycY2TrsLqbtIAdM7STZqklyu02l19A24sazUWs3lmvtfVnJ3\n0zE0JYT+8QEUlt1YVjpbgqe7jrgw33s+4ZFs1CXZ2EaWkOwgj/XUJdmoSXL5ruvLSpdYl72Zmrba\nLllWMlss7DldzBcH8mhtNxMf7svymX1JiPC74/dINuqSbGwjS0h2kKpYXZKNmiSX77q5rBQ5Cu03\nlpVy6wscXlbSajQYI/0ZPyiChmYTF/NrOHCuhPqmdoxR/hhus6wk2ahLsrGNPIGxg1TF6pJs1CS5\n3FtFSxVrszdxqToTnUbHlJg0Homfiofe8VekM4tq+WRnFsVVzfh4uvHEJCPjUyNueVtJslGXZGMb\nOQfGDjKo1CXZqElysc3tlpUWJs3l4dBUh5eVOs0Wdp28xqZD+bSbzBgj/Vg2oy9x4df/0pds1CXZ\n2EaWkOwgj/XUJdmoSXKxzXeWlWqzv7GsFI2PwcfuNrVaDUnR/owbGEFdU/vNs2OaWjpIivKjj7+n\nZKMomTe2kSUkO0hVrC7JRk2Si2MqWqpYl72ZjOoraDVapsZMuO9lpYyCGv62M4uymhb8vNz4p/kD\nGRDbx6FD8ET3knljG1lCsoMMKnVJNmqSXBxntVq5cGNZqbqLlpU6Oi3sPFHElkMFmDotGKP8WDb9\nH8tKQg0yb2wjBYwdZFCpS7JRk+Ry/0zmDnYW7uXronQ6LZ2kBCSxOGU+4d5hDrdZXd/GF4cKOHS+\nBA0wYUgkCyck4utl6LqOC4fJvLGN7IGxg6xLqkuyUZPkcv90Wh0pAUaGhw6hsrWaKzVZHCw5Rru5\nnQQHD8Hz8tAzc2wCUYGeFJQ1cjHv+mvX7m464sJ9ZFnJyWTe2EZO4rWDDCp1STZqkly6jrebF8PD\nhhDjG0V+fSEZ1Vc4VnqKPu5+RHiH2b2s5O3tjrdBx4TBkfh4unG5qJbTWVWcyaoiMtiLYH/Pbvok\n4l5k3thGChg7yKBSl2SjJsmla2k0GsK8QxkXORqtRnvzbaWcG28r+drxttLfs9FqNRij/ElLjaSp\nrYOL+TUculBGWU0LiRF+eLrb/4RH3B+ZN7aRAsYOMqjUJdmoSXLpHt9cVqq6cbfSwZJjtJnbbF5W\n+nY27gYdQ5NDGJgYyLWKJi7m17DvbAkaDSRE+KHTyrJST5F5Yxt5jdoOsrFKXZKNmiSXnnGh6hJr\nszZR3VaLv8GPhclzGRY6+K7LSnfLxmK1cuh8Kev25dLY0kFogCdPTU1mcFJwd30E8Q0yb2wjm3jt\nIFWxuiQbNUkuPSPMK4RxkaPR3VhWOl1xjpy6fOL8Yu64rHS3bDQaDXHhvkwcHImp00JGfi1HL5WT\nX9pAQqQfPp5u3flxej2ZN7aRJSQ7yKBSl2SjJsml59y6rFTD5dq7LyvZko2bXsegxCAe7htCaXUz\nGQW17DtbjKnTQmKkH3qdtjs/Uq8l88Y2soRkB3mspy7JRk2Si/NcX1baTHVbzW2XlezNxmq1cjKz\nkjV7sqlpaCfA150nJycx8qFQhw/WE7cn88Y2soRkB6mK1SXZqElycZ7ry0qj0Gl1tywrxfpef1vJ\n3mw0Gg1Rwd5MHByFRqPhUkEtJ65UkFlUR1y4L/7ecgheV5F5Yxt5AmMHqYrVJdmoSXJRQ1VrNeuy\nN3Oh6jJajZbJMeN5ZvgCmuo6HG6zoq6VNbuzOZNdhUYDU4ZG89iEBLw9ZH/M/ZJ5Yxu5SsAOMqjU\nJdmoSXJRyzeXlQI8/JmXOIsRYUPvawnoQl41n+7KprymBR9PNx6fmEhaaiRaee3aYTJvbCMFjB1k\nUKlLslGT5KIek7mDr4vS+boonQ5zBwl+cSxKmUecX4zDbXaaLXx98iqbDxXQbjITF+7L09NTSIry\n78Ke9x4yb2wjBYwdZFCpS7JRk+SiMC8THxz/nDMV59GgYUzEcOYZZ9l1mu+31Ta2sy49hyMZ5QCM\nHRjOoklG/H3uvFdBfJfMG9vIJl47yMYqdUk2apJc1BXSpw/9fPqR3CeBosZiLtVkcajkGHqtnljf\naLQa+1+R9nTXM6xvKP3jAygqa7x5mq9OqyU+wleWlWwk88Y2sonXDlIVq0uyUZPkoq5vZmO2mDlY\ncowv83bQ0tlKuFcoT6TM46HAFIfbt1is7DtXwoZ9uTS3dRIR5MXSaSkMSAjsqo/wwJJ5YxtZQrKD\nDCp1STZqklzUdbtsmkzNfJm/k4PFR7FiZXDwABYmzyXYM8jhn9PU2sHG/Xmkny3GaoWHU0JYMiWJ\n4D5y2/WdyLyxjRQwdpBBpS7JRk2Si7ruls3VxhLWZm0itz4fvVbPtJgJzIifgrvO8bNeisob+dvX\nWWRfq8dNr2XWqFhmj47D4KZzuM0Hlcwb20gBYwcZVOqSbNQkuajrXtlYrVZOV5xjQ85W6trr6ePu\nzwLjbIaFDXH4tWur1crRS+V8vjeH+iYTQX4eLJmaxMMpIXKa7zfIvLGNbOK1g2ysUpdkoybJRV33\nykaj0RDpE874qNFoNJobp/meJ7M2h2jfSPzd/ez+mRqNhphQHyYOjsSKlYz8Go5driCnuJ64cD/8\nvOQ0X5B5YyvZxGsHqYrVJdmoSXJRl73ZVLXWsCHnS85VXkSDhnGRI3k08RF8DN4O96GspoXPdmVz\nIa8anVbD1GHRzBuXgJeH/t7f/ACTeWMbWUKygwwqdUk2apJc1OVoNldqslmbvZmy5nI89Z7MTZhB\nWtRodFrH9rJYrVbO5VTz2e4sKuva8PM28MREI2MHhaPtpctKMm9sIwWMHWRQqUuyUZPkoq77ycZs\nMbO/+Ahb83fS2tlGhHcYTyTPo19gssP96eg0s/34VbYeLsDUacEY6cfS6SkkRNi/VOXqZN7YRgoY\nO8igUpdkoybJRV1dkU2jqYkteds5XHICK1aGhAxkYdJcgjwdP+ulpqGNNXtyOHGlAg2QNjiChRON\nvWp/jMwb2zhtE29WVhaLFy9Gq9WSmprKiRMneOmll9i0aRM7duxgwoQJeHh48MEHH/DGG2+wdu1a\nwsLCiI+Pv2u7som3d5Js1CS5qKsrsnHXGRgU3J+BwQ9R2lzG5ZpsDpYcpdNiJt4vxqFlJU93PSP6\nhZIS04eC8kYu5l0/zdfgpiU+3LdXLCvJvLGNUzbxtrS08P3vf5/4+Hj69u3LsmXLWLhwIW+99RaJ\niYn86U9/QqvVMmvWLH70ox+xevVqmpqaWLp0KVu3bkWnu/OkkCcwvZNkoybJRV1dnY3VauVk+Vk2\n5myl3tRAgHsfFiTN4eHQVIdfkTZbLOw5XcwXB/Jpbe8kKsSbp6el0C8uoMv6rSKZN7a52xMY+y/C\nsJHBYOD9998nNDT05u8FBARQV1cHQH19PQEBARw7doy0tDQMBgOBgYFERUWRk5PTXd0SQgjhII1G\nw4jwofxq9E+ZETeZRlMjf8n4G//vzHsUN5U61KZOq2X68Bh+9/xo0lIjKKls5s3PzvDHLy5S09DW\nxZ9APEi6rYDR6/V4eHjc8nsrVqzgX//1X5k5cyanTp1iwYIFVFVVERj4j7XUwMBAKisru6tbQggh\n7pOH3p35xln8ctRLDAruT3ZdHr87/nvWZG6kqaPZoTb9vA38j9kP8ctnh5MQ4ceJKxWseP8oWw4X\n0NFp7uJPIB4EPfoi/uuvv84777zDsGHDWLlyJZ9++ul3vsaWFa2AAC/0+u47mvpuj6yEc0k2apJc\n1NWd2YTgS/+4H3K29BJ/PfM5+4uPcLryPIsHPso043iH9seEhPgyfGAke04W8dHWy2zcn8eRjDKe\nmz+IEf3DHqjTfGXe3J8eLWAyMzMZNmwYAGPHjmXLli2MHj2a/Pz8m19TXl5+y7LT7dTWtnRbH2Vd\nUl2SjZokF3X1VDZR+hh+NuxH7Lt2mG35u/jw9Gq2Z+1jUfI8kgOMDrU5OCGQ3/7zKDYfymfXyWu8\n/pdjDEgIZMnUZKKCHT9YTxUyb2zjlD0wtxMcHHxzf8uFCxeIi4tj9OjRpKenYzKZKC8vp6KigqSk\npJ7slhBCiPuk1+qZGjuBV8f8lDERIyhuKuX3Z97jw4ufUNNW61CbXh56lkxN5tf/NJIB8QFk5Nfw\n6ofH+dvOLJpaO7r4EwhX021vIV28eJGVK1dSXFyMXq8nLCyMH//4x7z55pu4ubnh7+/PG2+8gZ+f\nH6tWrWLLli1oNBpefPFFxowZc9e25S2k3kmyUZPkoi5nZlPYcJW1WZvIbyjCTevGjLhJTIudhEHn\n5lB7fz/Nd82ebMprW/H20DNvfAKTh0ah1/Xo/8W7hMwb28hBdnaQQaUuyUZNkou6nJ2NxWrhRNkZ\nvsjdRoOpkUCPABYmzWVIyECH97J0mi3sPnWNzYcKaG3vJCLIiyVTkxmUGNTFve9ezs7GVUgBYwcZ\nVOqSbNQkuahLlWzaOtvYXrCHPVcPYLaaSQlIYlHyPCJ9wh1us6HFxBf789h3rgSrFVKNQSyekkRE\nkGvsj1ElG9VJAWMHGVTqkmzUJLmoS7Vsylsq2ZC9hYvVV9BqtKRFjWFuwnS83LwcbvNqRROrd2dz\nubAWnVbD5IejmD8+AW8Px5aqeopq2ahKChg7yKBSl2SjJslFXapmc7HqMuuzt1DRWoW3mxePJj7C\nuMiRaDWO7WWxGxvO3AAAGQ1JREFUWq2cya7i8z05VNS14uPpxmNpCUwcEolOq+b+GFWzUY0UMHaQ\nQaUuyUZNkou6VM6m09LJ3qsH+apgF+1mE9E+kSxKmU9SnwSH2+zotLDr5FW2HC6gzWQmKtibJVOT\nGZDg+MWT3UXlbFQiBYwdZFCpS7JRk+SiLlfIpr69gU25X3Gs7BQAw8OG8JhxNgEefRxvs9nExv25\nHDhXihUYkhTM4ilJhAU6vlTV1VwhGxVIAWMHGVTqkmzUJLmoy5Wyya8v5POsTRQ1XsOgdWNm/BSm\nxkzAzcHXrgEKyxr5bHc2WVfr0Gk1TBsezaNj4/FSYH+MK2XjTFLA2EEGlbokGzVJLupytWwsVgvH\nSk+xKfcrGjuaCPII5PHkuaQGD3D4tWur1cqpzEo+35tDVX0bvl5uLEhLZMLgSLRa511L4GrZOIsU\nMHaQQaUuyUZNkou6XDWb1s5WtuXvIv3aISxWC/0CklmUMo9w7zCH2+zoNLPzxFW+PFJIu8lMdIgP\nT01N4qF45+yPcdVsepoUMHaQQaUuyUZNkou6XD2bsuYK1mVv5nJN1s3XrmcnTMPHzfGzXuqa2tmw\nL49DF67vjxmafH1/TGhAz+6PcfVseooUMHaQQaUuyUZNkou6HoRsrFYrF6uvv3Zd2VqNl96TWQnT\nmBA1Br3W8fuIC8oa+HRXNjnX6tHrNEwfHsPcsfF4uvfMHccPQjY9QQoYO8igUpdkoybJRV0PUjad\nlk72XTvMVwW7aO1sI9QrmIVJcxkY9NB97Y85caWCtXtzqG5ox8/LjYUTjYwfFNHt+2MepGy6kxQw\ndpBBpS7JRk2Si7oexGyaTM1szd/JwZJjWKwW+gYk8Xjyo0T5RDjcpqnDzI7jRWw9Woipw0JsmA9P\nTU2mb2xAF/b8Vg9iNt1BChg7yKBSl2SjJslFXQ9yNqXN5WzI/pJLNZlo0DA2ciSPJs7E1+DjcJu1\nje2s35fL4YtlAAzvG8KiyUmE9PHsqm7f9CBn05WkgLGDDCp1STZqklzU1RuyyajOZEP2FspaKvDQ\nufNI/FQmxYzH7T72x+SVNPDZ7ixyixvQ67TMHBnD7NFxXbo/pjdk0xWkgLGDDCp1STZqklzU1Vuy\nMVvMHCw5xtb8nTR3tBDkEchjSbMZGjLovvbHHLtUztr0XGob2/H3NvD4RCNjB4WjdbDNb+ot2dwv\nKWDsIINKXZKNmiQXdfW2bFo6WviqYDf7rh3GbDVj9E/gieRHifWLdrjN9g4z248V8dXRQkydFuLC\nfXlqajIpMY5fdQC9LxtHSQFjBxlU6pJs1CS5qKu3ZlPRUsnGnG2cr8pAg4aR4Q8zz/gIfdz9HW6z\npqGNdem5HL1UDsDIh0J5YpKRYH/H9sf01mzsJQWMHWRQqUuyUZPkoq7enk1mTQ7rc7ZQ3FSKQevG\n9LhJTIudiEFncLjNnOJ6PtuVTX5pA256LTNHxjJndBzuBp1d7fT2bGwlBYwdZFCpS7JRk+SiLsnm\n+v1KR0pPsCVvB42mJvq4+zPfOIvhYUPQarQOtmnlaEYZ69JzqWsy0cfHwBOTjIweYPv+GMnGNlLA\n2EEGlbokGzVJLuqSbP6hrbONHYV72XP1AJ2WTuL8YngieR6J/nGOt2nq5KujRWw/XkRHp4WECD+W\nTkvGGHXvpSrJxjZSwNhBBpW6JBs1SS7qkmy+q7q1hi9yt3G64jwAw0IHM984myBPxw+tq6pvZV16\nLscvVwAwun8YT0wyEujnccfvkWxsIwWMHWRQqUuyUZPkoi7J5s5y6wpYn72FwsaruGn1TImZwIy4\nSXjo71x03EvW1To+251NYVkjBr2WWaPjeGRULO5u390fI9nYRgoYO8igUpdkoybJRV2Szd1ZrBZO\nlp9lU+5X1LXX42fw5dHERxgdMey+9sccvlDG+n251DebCPB1Z9EkI6P6h91yJo1kYxspYOwgg0pd\nko2aJBd1STa2aTeb2FW0j12F6ZgsHUT7RPJ48qOkBBgdbrO1vZNtRwvZcfwqnWYLxig/lk5LISHC\nD5BsbCUFjB1kUKlLslGT5KIuycY+tW11bM7bzvGy0wAMDhnIAuMcQryCHG6zsq6VtXtzOJlZCcDY\ngeE8PtFISmKwZGMDKWDsIBNeXZKNmiQXdUk2jilsuMq67C3k1Reg0+iYFDOOWfFT8dQ7fqljZlEt\nn+3KpqiiCYObliempJA2IMzu82N6Gylg7CATXl2SjZokF3VJNo6zWq2crjjPF7nbqGmrxcfNmzkJ\nMxgXORKd1rGiw2KxcvBCKRv25dLQ0kEfHwMLJiQybmAEWu3936/0IJICxg4y4dUl2ahJclGXZHP/\nOswd7L16kO2Fu2k3m4jwDmNh0lz6B/V1uM3W9k72XyhjY3oOpk4L0SE+LJ6SxICEwC7s+YNBChg7\nyIRXl2SjJslFXZJN16lvb+TLvB0cKT2BFSsDgvqxMGkO4d5hDrUXEuJLZm4lGw/kcfhCGVZgYGIg\nT05KIjrUp2s778KkgLGDTHh1STZqklzUJdl0vWuNJazP+ZKs2hy0Gi1pUaOZnTAdHzdvu9r5ZjZF\n5Y2s2ZPD5cJaNBoYPyiCx9ISCfB1746P4FKkgLGDTHh1STZqklzUJdl0D6vVyoWqS2zM2UpFaxWe\nek9mJ0xjQtQY9Fq9TW18Oxur1cqFvBrW7s2huKoZg5uWR0bG8sioWDwMtrX5IJICxg4y4dUl2ahJ\nclGXZNO9Oi2d7L92mG0Fu2ntbCXUM5iFyXMZGPTQLYfW3c6dsjFbLBy6UMbG/XnUN5vw976+0Xf8\noN650VcKGDvIhFeXZKMmyUVdkk3PaDI1s63gaw4UH8VitdA3IInHkx8lyifijt9zr2zaTJ1sP3b9\nokhTh4WoEG+enJzEwITAexZHDxIpYOwgE15dko2aJBd1STY9q7S5nA05X3KpOhMNGsZGjmBu4kz8\nDN/9R9jWbGob2/niQB4Hz5diBQbEB7BochKxYXf+h/1BIgWMHWTCq0uyUZPkoi7JxjkyqjPZkPMl\nZc3leOjcmRk/hcnR43HTud38GnuzuVrRxNq9OVzMr0EDjBsUwYIJD/5GX6cVMFlZWbzwwgt873vf\nY9myZfzbv/0btbW1ANTV1TFkyBBef/11PvjgA7Zv345Go+EHP/gBEydOvGu7UsD0TpKNmiQXdUk2\nzmO2mDlUcowv83fS3NFCkEcgjyXNZmjIIDQajcPZXMyr5vO9OVyrbMag1zLzxkZfT/cHc6OvUwqY\nlpYWvv/97xMfH0/fvn1ZtmzZLX/+85//nKeeeoqAgAB+9KMfsXr1apqamli6dClbt25Fp7vzSYdS\nwPROko2aJBd1STbO19LRyvaC3aRfO4TZasboH8/jyY8y3Njf4WwsFiuHLpSy4UAe9U0m/LwNPJaW\nQFpqBDqtY7doq+puBUy3fVKDwcD7779PaGjod/4sLy+PxsZGUlNTOXbsGGlpaRgMBgIDA4mKiiIn\nJ6e7uiWEEEL0GC83TxYmz+WXo37C4OAB5NYX8ObJt3n76H9T3VrrUJtarYa0wZH8n+fH8Nj4BNpN\nZj7ensmrfznB+dwqXHBniEO6rYDR6/V4eHjc9s8+/vjjm09kqqqqCAz8x/HJgYGBVFZWdle3hBBC\niB4X6hXM86nP8qOhzxPtE8mBwuP85th/sDFnKy0drQ616W7QMW98Ar/7/mgmDI6ktLqZ3689z1ur\nz1JY9uA/eevxRTOTycSpU6d47bXXbvvntlSOAQFe6PXdd4Pn3R5ZCeeSbNQkuahLslFLSMhQxiQP\n5mDhCVZf2Myuon0cLTvJwv6zmJk04ZaNvra36ctPE4J5sqyBv355iZOXy/nNRyeYPCyGZY88REiA\n47doq6zHC5gTJ06Qmpp689ehoaHk5+ff/HV5efltl52+qba2pdv6J2vG6pJs1CS5qEuyUdeE+FEk\neSSTfu0QOwr38PHZdWy9spt5iY/wcNhgtBr7F0i8dBpemD+AjMERfL4nhz0nr3LgbDEzRsQwe3Sc\nS270dcoemDu5cOEC/fr1u/nr0aNHk56ejslkory8nIqKCpKSknq6W0IIIUSPctO5MT1uEq+N+RlT\nYtKoa2/gvy99xn+cfIes2lyH2x0QH8ir3xvBP815CB9PN7YeKeTl946w9/Q1zBZLF34C5+q2t5Au\nXrzIypUrKS4uRq/XExYWxttvv83bb7/NsGHDmD179s2vXbVqFVu2bEGj0fDiiy8yZsyYu7YtbyH1\nTpKNmiQXdUk26rpdNlWtNWzJ287J8rMADAzqx3zjbCJ9wh3+Oe0dZnaeuMq2o4W0m8xEBHmxaFIS\ng5OCXOJEXznIzg4y4dUl2ahJclGXZKOuu2VT2HCVjTlbya7LQ4OGMREjmJM4nT7u/g7/vPpmE5sO\n5rP/bAkWq5V+sX14ckoS8eF+DrfZE6SAsYNMeHVJNmqSXNQl2ajrXtlYrVYyqq+wMXcbZc3luGnd\nmBo7gWmxE/HU3/4NX1sUVzWzbm8O53KrARgzIIyFE4wE+TveZneSAsYOMuHVJdmoSXJRl2SjLluz\nMVvMHCs7xZd5O6g3NeLj5s2chOmMixyFTuv427iXC2pYszeHovIm9DrtzY2+Xh5qbfSVAsYOMuHV\nJdmoSXJRl2SjLnuzaTeb2FN0gK+L9tJuNhHqGcx84ywGhwx0eC+LxWrlaEYZ6/flUdvYjo+nG/PH\nJzBxSCR6nRon+koBYweZ8OqSbNQkuahLslGXo9k0mprYlv81B0uOYbFaSPSPY0HSHBL94x3ui6nD\nzNcnr7L1SCFtJjNhgV48OcnIkORgp2/0lQLGDjLh1SXZqElyUZdko677zaa8uYLNeds5W3kRgCEh\nA5lnnEWYV4jDbTY0m9h8KJ/0M9c3+qbE9GHxlCQSIpy30VcKGDvIhFeXZKMmyUVdko26uiqbvPoC\nNmRvJb+hEK1Gy/jI0cxOmIavwcfhNkurm1mXnsuZ7CoARvUP4/EJiQT36fkTfaWAsYNMeHVJNmqS\nXNQl2airK7OxWq2cq7zIptyvqGitwl1nYHrsZKbEpuGuMzjcbmZRLWv25FBQ1ohep2Ha8BjmjonD\ny8P+6w4cJQWMHWTCq0uyUZPkoi7JRl3dkY3ZYuZgyTG25X9NU0cz/gY/5ibOYHTEcIeuJoDrG32P\nXypn/b5cqhuub/R9dFw8k4dG9chGXylg7CATXl2SjZokF3VJNurqzmxaO9vYVbSP3UX76bB0EOEd\nxmPG2QwI6ufwptyOTjO7Tl7jyyOFtLZ3EhrgyaJJRh5OCenWjb5SwNhBJry6JBs1SS7qkmzU1RPZ\n1LXXszXva46UnsCKlZQ+Rh5Lmk2cX4zDbTa2mNh8qID0M8WYLVaSov15eloKceHdc+u5FDB2kAmv\nLslGTZKLuiQbdfVkNiVNZWzK3cbF6isADA8bwqOJjxDsGehwm2U1LaxLz+V0ViURQV78+3Oju6q7\nt5ACxg4y4dUl2ahJclGXZKMuZ2STVZvDxpytFDUWo9fomBA9lkfip+Lt5uVwm/mlDQDd9qr13QoY\ntc4MFkIIIUS3SAlI4qfDf8jp8nNsztvOnqsHOFJ6kplxk5kUPQ43nf1vFznzjBgpYIQQQoheQqvR\nMjx8KINDB7H/2mG2F+zmi9xt7Lt2mHnGRxgeNsThN5Z6mmv0UgghhBBdxk2rZ2rsBH495mdMi51I\nY0cTH11azZsn/sCVmmxnd88m8gRGCCGE6KW83LxYkDSHCVFj+TJ/B8fLTvP22fd5KDCFBUlziPKJ\ncHYX70gKGCGEEKKXC/IM4Nn+S5gSk8bGnK1crsniyvFsRoUPY27iDAI8+ji7i98hBYwQQgghAIjx\njeKHQ57jck0WG3O2crTsJKcqzjI5Jo0ZcZPw1Pf8fUh3IgWMEEIIIW7SaDT0D+pLv8BkjpWd5su8\nHews3MuhkmPMip9GWtRo9Frnlw/O74EQQgghlKPVaBkTMZxhoamkXz3EjsK9rMveTPrVg8wzzuLh\n0NRuvUbgnv1z2k8WQgghhPIMOgMz4ifz2pj/zaTocdS01/GXjL/xH6feIacu32n9kgJGCCGEEPfk\na/BhUcp8Xhn1EkNDUylsuMr/Pf1H1mRudEp/ZAlJCCGEEDYL9QrmnwcuI7++iC/zdtDc0eKUfkgB\nI4QQQgi7JfjH8sOhzznt58sSkhBCCCFcjhQwQgghhHA5UsAIIYQQwuVIASOEEEIIlyMFjBBCCCFc\njhQwQgghhHA5UsAIIYQQwuVIASOEEEIIlyMFjBBCCCFcjhQwQgghhHA5UsAIIYQQwuVIASOEEEII\nlyMFjBBCCCFcjsZqtVqd3QkhhBBCCHvIExghhBBCuBwpYIQQQgjhcqSAEUIIIYTLkQJGCCGEEC5H\nChghhBBCuBwpYIQQQgjhcqSA+YY33niDxYsXs2TJEs6fP+/s7ohvePPNN1m8eDGPP/44O3fudHZ3\nxDe0tbUxbdo0NmzY4OyuiG/YvHkz8+bNY+HChaSnpzu7OwJobm7mBz/4AcuXL2fJkiUcOHDA2V1y\naXpnd0AVx48fp7CwkDVr1pCbm8uKFStYs2aNs7slgKNHj5Kdnc2aNWuora1lwYIFzJgxw9ndEjf8\n8Y9/xN/f39ndEN9QW1vLu+++y/r162lpaeHtt99m0qRJzu5Wr7dx40YSEhL4yU9+Qnl5Oc8++yzb\nt293drdclhQwNxw5coRp06YBYDQaqa+vp6mpCR8fHyf3TIwYMYLU1FQA/Pz8aG1txWw2o9PpnNwz\nkZubS05OjvzjqJgjR44wZswYfHx88PHx4fXXX3d2lwQQEBBAZmYmAA0NDQQEBDi5R65NlpBuqKqq\numUwBQYGUllZ6cQeib/T6XR4eXkBsG7dOiZMmCDFiyJWrlzJyy+/7OxuiG+5du0abW1t/Mu//AtL\nly7lyJEjzu6SAObMmUNJSQnTp09n2bJl/OxnP3N2l1yaPIG5A7lhQT27du1i3bp1/OUvf3F2VwTw\nxRdfMGTIEGJiYpzdFXEbdXV1vPPOO5SUlPDMM8+wd+9eNBqNs7vVq23atInIyEg+/PBDrly5wooV\nK2Tv2H2QAuaG0NBQqqqqbv66oqKCkJAQJ/ZIfNOBAwf405/+xAcffICvr6+zuyOA9PR0rl69Snp6\nOmVlZRgMBsLDwxk7dqyzu9brBQUFMXToUPR6PbGxsXh7e1NTU0NQUJCzu9arnT59mvHjxwPQr18/\nKioqZDn8PsgS0g3jxo1jx44dAGRkZBAaGir7XxTR2NjIm2++yXvvvUefPn2c3R1xw+9//3vWr1/P\n559/zqJFi3jhhRekeFHE+PHjOXr0KBaLhdraWlpaWmS/hQLi4uI4d+4cAMXFxXh7e0vxch/kCcwN\nDz/8MAMGDGDJkiVoNBpeffVVZ3dJ3LBt2zZqa2t58cUXb/7eypUriYyMdGKvhFBXWFgYM2fO5Mkn\nnwTgl7/8JVqt/H/V2RYvXsyKFStYtmwZnZ2dvPbaa87ukkvTWGWzhxBCCCFcjJTkQgghhHA5UsAI\nIYQQwuVIASOEEEIIlyMFjBBCCCFcjhQwQgghhHA5UsAIIbrVtWvXGDhwIMuXL795C+9PfvITGhoa\nbG5j+fLlmM1mm7/+qaee4tixY450VwjhIqSAEUJ0u8DAQFatWsWqVatYvXo1oaGh/PGPf7T5+1et\nWiUHfgkhbiEH2QkhetyIESNYs2YNV65cYeXKlXR2dtLR0cGvfvUr+vfvz/Lly+nXrx+XL1/mo48+\non///mRkZGAymXjllVcoKyujs7OT+fPns3TpUlpbW/nxj39MbW0tcXFxtLe3A1BeXs5LL70EQFtb\nG4sXL+aJJ55w5kcXQnQRKWCEED3KbDbz9ddfM2zYMH7605/y7rvvEhsb+53L7by8vPjkk09u+d5V\nq1bh5+fHf/7nf9LW1sbs2bNJS0vj8OHDeHh4sGbNGioqKpg6dSoAX331FYmJifz617+mvb2dtWvX\n9vjnFUJ0DylghBDdrqamhuXLlwNgsVgYPnw4jz/+OH/4wx/4xS9+cfPrmpqasFgswPXrPb7t3Llz\nLFy4EAAPDw8GDhxIRkYGWVlZDBs2DLh+MWtiYiIAaWlpfPrpp7z88stMnDiRxYsXd+vnFEL0HClg\nhBDd7u97YL6psbERNze37/z+37m5uX3n9zQazS2/tlqtaDQarFbrLXf9/L0IMhqNbN26lRMnTrB9\n+3Y++ugjVq9efb8fRwihANnEK4RwCl9fX6Kjo9m3bx8A+fn5vPPOO3f9nsGDB3PgwAEAWlpayMjI\nYMCAARiNRs6cOQNAaWkp+fn5AGzZsoULFy4wduxYXn31VUpLS+ns7OzGTyWE6CnyBEYI4TQrV67k\nt7/9LX/+85/p7Ozk5ZdfvuvXL1++nFdeeYWnn34ak8nECy+8QHR0NPPnz2fPnj0sXbqU6OhoBg0a\nBEBSUhKvvvoqBoMBq9XKc889h14vf+0J8SCQ26iFEEII4XJkCUkIIYQQLkcKGCGEEEK4HClghBBC\nCOFypIARQgghhMuRAkYIIYQQLkcKGCGEEEK4HClghBBCCOFypIARQgghhMv5/03rCTvM6bzxAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "IGINhMIJ5Wyt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "BAGoXFPZ5ZE3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "minimal_features = [\n", + " \"median_income\",\n", + " \"latitude\",\n", + "]\n", + "\n", + "minimal_training_examples = training_examples[minimal_features]\n", + "minimal_validation_examples = validation_examples[minimal_features]\n", + "\n", + "_ = train_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=minimal_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=minimal_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "RidI9YhKOiY2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Make Better Use of Latitude\n", + "\n", + "Plotting `latitude` vs. `median_house_value` shows that there really isn't a linear relationship there.\n", + "\n", + "Instead, there are a couple of peaks, which roughly correspond to Los Angeles and San Francisco." + ] + }, + { + "metadata": { + "id": "hfGUKj2IR_F1", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 364 + }, + "outputId": "1d080345-fa37-472c-a1d1-878df698fe50" + }, + "cell_type": "code", + "source": [ + "plt.scatter(training_examples[\"latitude\"], training_targets[\"median_house_value\"])" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt8G/Wd7/2ZGWlGliXbki3HiZMQ\nEtsJkDhXboEQEkKBPttuWihpU2i77bK7T0tfPftql95YSrvd7e7TZ7tt9/R0u5xSKG1KuuEph3NO\nzwZCLlxygcROnACJ7QRyceJYtmVbsqSRNDPPH4oUWZ6rNJJG49/7L7BGc8tPv+/v9718vpQkSRII\nBAKBQCBUFLrSN0AgEAgEAoEYZAKBQCAQLAExyAQCgUAgWABikAkEAoFAsADEIBMIBAKBYAGIQSYQ\nCAQCwQI4KnnxYDBcycvbDp/PjVAoWunbsB3kvZYG8l5LA3mvpcGs9xoIeBU/IztkG+FwMJW+BVtC\n3mtpIO+1NJD3WhrK8V6JQSYQCAQCwQIQg0wgEAgEggUgBplAIBAIBAtADDKBQCAQCBaAGGQCgUAg\nECwAMcgEAoFAIFgAYpAJBAKBQLAAFRUGKRfhaAK958YACpjT6MZYJIG5zR5EognsP3EZLo7GLde3\nwONm8cGlcZwdjKDO7cQ1LV4Ex2Lw1LII1NcgxqdQ7+HAORnwSQHjET77/3JkjhEEEe9fCqM14Ebf\nhTH0nR9D+zwfVrYHcHpgHH94vQ9DoSQavAw+sb4DoCm89/4w3js7hmQygZoaDilJQqu/Fk1eDkf6\nRuB0UPjYukUQRAkH3xlEQhDQfyEMpebWfq8D81saMBnl0Vhfg/nNHtA0hWta6rBgdh0A4INLEzh1\nNoTLoSj4pIibrmvG8vbAlOeTe24976JYynGNcpF5lhrOgfEIj4QggnUwCDTUlPzZzg6O43+88QEu\nDI1DFCQ4nDTm+D2IpwScvTgBEQAFwEEDCQGodTmwZIEPy65twsF3BxGaiMPNOfHRddfiugWN2fOO\njMdw5NQQBoIRvH78cvbvS6/1ob6WhSiJSKUo1Llp0AyDeQEvNt6yoKTPWih2GmuE6oKSJElpDgcA\nHDp0CF/5ylfQ3t4OAOjo6MCf//mf47HHHoMgCAgEAvjhD38IlmXx0ksv4dlnnwVN03jwwQfxiU98\nQvXipVbqSqRS+LtnDmNg2DzVGr+XRW0Ni2g8idEJHv46Dis7AtiysQ0MnXY4CKKI7bv7cfi9QYxN\npky7dqVYt7wFn767Azv2nkF3bzD73Mvbm0ABONo3rPguiiXzLnOva/Y1tAgEvKaM1dxnGZngp33u\nYmnctmw2PnlXu+nPNh7l8dc/fdPUcwLAk39+E/6f544gygsFfX92owvf+bObwDoqvzewwlgzA7PG\nK2EqZr1XNaUuXQb5t7/9LX76059m//bNb34Td9xxB+677z786Ec/QktLCzZv3oyPfexj2LFjB5xO\nJx544AH85je/QUNDg+K5Sz1ovvP0Wzg/FCnpNTJsWjMXWzd1AAC27erFrsMXynLdcjGv2aP7Xea+\ni2JRepdmXkMLs36IesdFKZ7tC/+4W9F7UmnmNXvw3c/fVOnbsMRYMwNikEtDOQxyQcu+Q4cO4a67\n7gIAbNiwAQcOHMCxY8ewbNkyeL1euFwurFq1Cl1dXYXdsQmEo4myGWMA6O4dBp8UwCcFdPcGy3bd\ncmHkXWbeRbGovUuzrlEujIyL7t6gqc92dnDcssYYSI+tcDRR0Xuw01gjVC+6/ET9/f34q7/6K4yP\nj+PRRx9FLBYDy7IAgMbGRgSDQQwPD8Pv92e/4/f7EQyqT0A+n7tk+qAX+8prFEPhOBjWCQAYDU93\nR84kMu8i0FRb1HkuDU8qvkuzrqEXtVWtHtSeJZ/RMG/qs/3vQ+dNOU8pCSdELLymuHdcDFYaa2ZQ\n7HglyFPq96ppkBcsWIBHH30U9913H86fP4/PfOYzEISrq0Ulj7eGJxwAStqRxMuWN+bj87ogJJIA\nAL+Xk40RzhQy76JY946QFBTfpVnX0IMZriq1Z8nH7+VMfbal19ThBVPOVDq8LF1RN6tVxpoZEJd1\nabCEy3rWrFn48Ic/DIqiMH/+fDQ1NWF8fBzxeBwAcPnyZTQ3N6O5uRnDw8PZ7w0NDaG5ubnomy8U\nr5vFbL+7bNdb2dEEzsmAczJY2REo23XLxbxmj+5jM++iWNTepVnXKBdGxsXKjoCpz3ZNSz0o085m\nPvOaPfC62Yreg53GGqF60TTIL730En75y18CAILBIEZGRvDxj38cO3fuBAC8/PLLWLduHZYvX47j\nx49jYmICk5OT6Orqwpo1a0p79xp88+GVMDs50u9lMa/Zg8Y6DjQFNNa5sGnNXGzZ2JY9ZsvGNmxa\nMxcNtU5zL14h1i1vwbc/swqb1sxFY50r+9wbV7firtWtU/6W/y6KJfMuS3mNcnH1WTjZz10sjbtW\nt5bk2f7x/77F9HMC6SzrGrZwcz+70YVvf2aViXdUOHYaa4TqRDPLOhKJ4Gtf+xomJiaQTCbx6KOP\n4rrrrsPXv/518DyPOXPm4Ac/+AGcTif+8z//E7/85S9BURQeeughfPSjH1W9eDncKkqZk3csb8E9\nN86fVofcdz6En7/4DmKJ6UkcDR4W3/38TfC6Wd11yGcGxvHD548WdO8NtQ4kkyl43SxSFK7WIfcO\nI5pMgQYQTxo/7y3XNWP+LFKHrBezXYCVqkM2I/ufoYGFs7zYvH5htg75vQ9GCxrjTQ0urGhrslxZ\nUbXXIROXdWmwRNlTKSnHoLlaWziMUDgOn9eFlR3Kk8BQKIpv/uKgbFYqTQH/8Be3oNmn3xXOJwU8\n/tTBgmLK9bVOTEwmFeshw9EEnvjlIYxP6rfKPg+Lf/jLW6tyoqkUdpngBFHEtld60d03jPFIAv46\nFzoX+XHHijlgKAoBnxsv7DutarTlfgPhaAJf+ekbBd9XtZUVWR27jFerUQ6DXPlq/BLD0DTuX78I\nd3TOBihKcxdS7+Hg87IYDU8vw2jwcKj3yLsblcjEpgrZmWQM7cgEj12HLyCREvC5e6/Lfu51s6ir\n5QwZ5FAkgTMD41jYWk+M8gwiszDtOT2C8UgC9bUsajgGPadHsLf7YnbR98CdCyEIIvYdvQhRZlXq\n8079DQiiiBdfP1PUvXX3DuP+9YvIeCTMeGxtkAtR3uGcDGpr5A1ybY2zoElj87pr8UbPJcRl3OBG\neO3oJZwZmMBjW1cgGhdQwzkQLcBn/cPnj6KxSlWICIWxfXf/lEXh2GQCY5NXx3hm0QcAD9+zBKAo\n7OkamHaeyXgSL+w7nR0323f3Y0/3xaLuLRSOYzzCG/I8EQh2xNYGeduuvimTSu6ko+Qi45OCopGL\nxpPgk4JhoxyJJsEXaYwzXAhO4r/89E2IEuDzcAhFCiuv0vMuCPbAmChJere6dVM7aArY230RQs5W\nOZ4Qs+Pm/vWLNM9LUYBWUMzndRn2PBEIdsSWWyNBFPHczpPY1z19hQ8oK+9kkrBGFeK9oTCP8QIM\nYL2HA8ea547LzI+FGuNciAqR/RmP8IpjOp/MbpWhaYiiNMUY59LdO4xgKKp53rkB7XI5UlZEIKSx\n5Q5Zy42W7yLLF/2nFVb1xa3krSleSNyF9qfew8Ffp0+UxOflEIknEbk4hu6+YcXjRibiGA3zivkW\nADCnyY1vPLQSf3jt/WxSJZvJzE8ICPhq0LmokZQVEQhXsJ1B1uOeyzes+fE1hU1BwSv58QiPeEI0\n/L1yQNyF9odzMuhc1Kgr1hsK8/j+s0c0j6Mp4Cf/0aPq+bk4HMUPftOFb3x69ZSkSiD9m1i0oBHh\n8Zj+ByEQbI7tDLIe91yuYVUz4DSV3tf6c0qlCqHew6FR5w6l3BB3ob3Jza4G0mM6nX/AotbtxPBY\nbMpiUWkxmk/mOK1ExQtDk/jaz94AnxCnJFU2+9xwsQ6Q4hwC4Sq2M8hq7jmaAtavnKqEpGbAJQn4\n2idXFF0iVEzpU6nIzbIm2Bcl78+KjgAYmsKuocmS30PG4GcSCaPxFB6+Z3HJr0sgVBu2M8hqxm/9\nijl4+ENTJwI1A+6vc5lWr5sxfLkCJdctaMAbPYOyx9MUcFtnC95+L1h0uVQ+t1zfjM/edx3ZGVeY\nUitCqXl/evqHdTWAycXrdiIcLUAaLo/9Jwbx3tkQ1q1oxUdunU/K7giEK9jOIAPyxi+tSNSKC0Nh\nBHzu7ASoZsA7F/lNmygZmsbWTR24f/2i7CT8wr7Tise3Bjz4s/uux9ZNAk6cHsHPXjxhyn0AQN+F\nCdPORTBOIfXxhaDm/RkN85rlSBl8HhZ/vWUF6mtZfO+Zt00JvYTCPF56/Qwmozw+fTfZLRMIgE0N\ncq7xG52I45XD53HgncvZpBYXS2Ptstn41F3tYGg6a8C7TgUxGuazcbae0yPYtqvX1ImSczJo9rnV\nY9c08Ln7Fmdrnj1uc5tUjJLM6oqS70YuVU24qvfHy0GSJMUM6VxWL2nG3IAHgijC7XKamgvx5vFB\nPHBnG/HWEAiwaR1yBs7JYE/3APZ2X5zi9o0nROw+MoDtu/sBXDXgy9ubAFyNs2UmysxxZqK2exFF\n4O+ePYLHnzqIbbt6EeVTpl67oda4BCjBHPikgK5TQ7KfdZ0KmloTrt5SMIBVi7Xbo669YVZ2wbp9\ndz/OD0WmHTM3UAufp7BFYzwhIDhGMq0JBMDmBlmrBCp3AuSTAnr65esuSyGekdm9qJFZEHT16VNZ\n0ssNC31kR1IhxiO84q50tEDhGTXUWgpu2diGDSvnKH6Xc9B4+N4lYGha9bcU4wW0zWso/CYr19+G\nQLAUtnRZZ9AqgcoobzX73KrHlkI8w0jm9f6eQdSwjGxLyEI4fmbUdFc8QR81nCMbEsmHptKfm0l+\n7kIN50CMTyElSOCcDB7c2I79JwbBJ6fXySdFETE+Bc7JqMejJ+KYFyjst+FiGQRI6IRAAGBzg6yl\nUMQ6aXjcrOaxpRLPyI9dKyEBphljABiPJIiOdYWI8SnFWl9RSn/uvTImzcTBUNh15MK0RLINK1uR\nkDHGQDp08o1f7MeNi2dh8x3XgmMZ2Yx/jmVw9PRoQfe1dlkL8dYQCFew9fZILYYGAHzyaus49Xhb\nacUzKKpkp1aF6FiXn4xIjByNdaWL7WcSyUYmeEi4Gg7ZdeQCfCqhk0RSwpsnBvGNfztgavldQy2L\nj65biE/d1W7aOQmEasfWBhlI70LvXDlb8fNco6QWbysWPilgKBSdErN+5o8ns5NkJci44gnlQyvR\nqvz1yCNgGe1pQFBQfmWdtOFOZqyTxne/cBMe2byMhEwIhBxs7bIG0jG0e2+6Bvu6L8m2d8iND8vV\nChc7QcrVnLpdToQn4xibNDd72ihEx7oyXK2TT4cq/N7Sqqap1yPH4XEVPsaTSRENBtuAUgDGJxOI\nJyo7/gkEq2F7gwwYjw/n1goPhaIFGeaMCtPOt89P68lsFU1rOVc8n7xShiJJUwRUCFMxQ2VLkiRI\nEgwrZhlFbfyzDhrhWOGuaH+dC0sX+rHvqHbjigx8UsR3fvnWlG5PZKdMIMwQg6yW0SxnlIpRUpJr\n5Wg1aCqtBPbAnQuzfxNEEc+/2oc3jw9mY4X5AioEc1S28oVBRsOlTbJTG/9y2dVGqHExOH5auU2j\nEhKAoVCspM9damlSAsFsmCeffPLJSl08GtVWCTKL6xf4EONTGI8kwCdS8Ne5cNuyFmzZ2AY6L6vq\n+Vf7sOvwBcT4tGGK8QLOXJxAjE9h2cJG1evkf9eKFZYSgInJBOIJIfs8z7/ah1ePDCAlXL3jlCDh\n/UthXc9tZ2pruexYLWZsAGkjse2V3uz3cxmPJLB+xRw4dMR0jTJ9/HNIJIWiS4AnJpNFVwCY/dyZ\nxeW2V3rxv/afxYF3BjE8Hsf1C3zTfut2JHe8EszDrPdaW6scJpwRO2RAXktabtWslgDT3TuM+9cv\nUlxt6+nFbCW6TgVx//pFAKApoKL23DOFYsZGhnLXu2fIHf/BsRguj0bxsz+Yp49eDGY/d7mkSQkE\ns5lxfshMfFhp4tQSQAiGoorn1tOL2UqMhnn8ZucpjE7EdQmozHT0GFMt1BTaSp1kJ4giXth3Gj/5\nj2OWMcaAuc+ttWgiZX4EKzPjDLIWahOmBOAnO3qwbVcvBHF67E3tu2bHkikArAn+jTdPDGLX4fOq\nMp4+L0uysWGOMa1kvXtuLbKVMPO5zVg0EQiVghjkPLTERNQaTqh9d/Vi5XMWgtNBY9XiWaacq+f0\nKDrbmhQ/r61hsxNmfj31TMIsY1qqene1fxsrhVNYBwUKQLOvxrQ6/wyV9EAQCMUyY2LIehFEEZIk\nwaUgE5hBKWYo14t5ZUcTblvWgrdPmjchJlIiDr5z2ZRzhcJx3LF8DvYfvySbdTsZSyLKp/Di62dK\n3sPX6ij9+xoxKmbXu+vJ/C5FOIV1UFi7bDaO9Q8jpKONY4ZESsJtS1vwXz69GuFxczs9Ga2o0APJ\n1iaUC2KQr6BUN6yEUiKK0mTLJwW4WBrxRHFlJqXA53WBoaCoaTwW4fG7V3rx5onB7N9maqKMmcY0\nk89QLHqSmOo9HHxeVlf/Y72kBAl3r5mHUJhHKDxi6Lsnz41l/9tsg2fGogkwp8SNQDDCjDfIhdYN\na7m/8idbzslg7bLZ2H1E29iXm5UdTQj43IriEQ0eDifPhWS/qze72G6YZUyLRW/mN+dksOQaP/bn\nLKqKxed1Ydfh8zjWb8wYA+kF7fBYDC+82mu6wTNr0USytQnlZkYs89Ria/mJLkqdePIx6v7KJIG5\nWOu8chdLZ2N4nJPB8nb5OPLi+Q0kUcaiGEli2np3O1yseQsnp5PCMYUe4lrU13J4cd9p2YYXcvkZ\nhaBVUaEGydYmVAJb75C1XE5GEl1oKt1H3V9XmPtr++5+S+2OVy9uwp+sXYAWf212N6LkHOBYpuyt\nKQn6MCIL6+acuL1ztq4e3HoYHCk8/huK8HjlrbOyn1nB61KpenHCzMbWBlnL5WQk0WX9ylbcc+O8\ngnWtrZLhCgA0Dbzz/iiOnBpG45VFyuZ11+Jon/xu5/jpUXQuasSe7ul6xaUu1SGoYzSJKbOQPHIy\naKghRCmQqRwEYA2DV4n+6ASCdfynJqPH5aRWIpGLi6VBUUBjvasg42M1wRBRRDa5LLNI+e0rvao7\ngk1r5pWsNSWhOIyUUWXiq996eFUF7lQfPm/p+kLrpZL14oSZi213yHpdTkq7i1ziCRG7jwyApqiC\nkjnUVttWoetUEL46Tvad+bwc/HUu01tTEszBaBJTRrHLqrhdTkuMLbOytQkEvdjWIOt1OWV+XF2n\n0r1paUo5savQ2JaaW9Eq8EkRPq/8c+VOkFbJLiZMR++/zfbd/Tj47lAZ7qgwJmNJ8Emh4ka5FP3R\nCQQ1bOuy1nI5AcBQKIqUIGHrpo5shrFalnUxGcVbNrZhtt/ahizGJ2X/npkgCdbEiHqa1fIZ5BiL\nWEs7vZhsbQLBCLbdIQPAA3cuxKlzYxgIRiBK6UzpOU21EEURjz91MJt53dnWhGN92pNUMckcKUFC\nImVdo8Y6aUxMyhvkzARJdsbWICOk4XE78eLr7xuq4x2P8BUPnXBOGomkCIqWT+wiSVOEmYqtDfKO\nvWdwfiiS/X9RAi4EJ3EhOJn928gEr0uZC9BO5lBTHLLCRKjGrUtn4cTpUZJVamHyy/i4PHlXPcIV\nNZxDNSxjhMY6DpFoEnxKW32OArILhs3rFiISTeC144P44/4Pph1LkqYIMxXbGmSjrjm1Scrv5bBq\ncUAxmUOPxF69h1OUzqRp4I7lc3D89EjZjTbnoLFuxRw8cOdC/P1Al+z1yQRZWvRKR+aX8Slpravl\nOsT4lCnG+JYbZuGz9y7B7/f0ay5oWQeFxz97IwINNdl7cnMO/MXmZUgkUiRpikC4gm0NstFSI6VJ\n6ralLXjonsWGJsrMTkUQRDx8z5KcI+WlN1gHgy0b23H7shZ8/9dduu/ZFGjg/vWLsGPv6SnehAzz\nmj1kgiwRRrSSjSww1ep46z0c/CZoWvedT2tRb93UjrffvYxIPKV4bEqUIMj8wBiGJE0RCLnY1iAb\nLTVqrOPQuagRPadHp63W1XR11SbKfUcvAhSFrZvaMR7hwSvsaPikgOd2nsIpBb3oUsInRFwMRhSf\nIRpPISVIYGyb/lc5jGglG1lgqoUYHAyFGpcTKNIgj0zwGJ2Iw1/nAsOoC8CLIvDdX70Nv5fFqsXN\n035TJHOfQEhjW4NstNRoZUcAWzd1KLoPlf6uNlGKErCnawAMTeH+9YsUFwickzFV9N8o4WhSceEy\nOlF51SQ7orcpRAYjC0ylEIMgivjeM4cxkJNDUQwvv30e9908H+MKyYD5jIYT2HX4AkRJwkN3Lzbl\nHggEO2HrfU+ughGQziRmnenVfKarU0Mtiw2rWrNu2fwSB0EUsW1XLx5/6iC++YuDePypg9i2qzfb\nLEKP2ld3b1qSUqkMCzAhqFcgnINGa6BWsekFxzIkoasEGGkKAaiX8blYRpd62rZdfbJhiUI5+M4g\nWCeNOrexdf3+44OkjI5AkMG2O2QgXdi/ZWMbBFHC/p5L4HP6/WZCWmOTCfT0D4OhKVn3tJZbUc9O\nPDPByin/LJ7fUNHdMZ8S8YPfHEEyVblFwUykEK1kJeWoTNayWgyWTwo42ltYZyYl+KSIHXvPYNHc\nenT36m/BGE8IGBydxNw5DabeD4FQ7djaIANpg6qVBaoUu9PrVtyysQ2CIGLf0YuyyWGZCVZO+ef5\n3X2FP5xJqCX4JK646onLujCUQh1qCzm3ywGHTFxWTTnKzan/lMcjPMZKILZx8mwIcwK1hr+389A5\nrFnaavr9EAjVjK0NstHSp/zYnV49bIam09nUFCVr/PNjehm3OJ8UcOidyu2O9UBqkAtDTwb1lo1t\nOHVubJob+fxQBNt39yvWEheSBOVxO8EplN0VQyjMIykYdz/3nh9HPKGcmU0gzERsHUM2WvqUH7vz\nuFlwCrFVOUO1dVP7tK47G1a1YsPKVvBJYZrEYTAUNX2CNBtSg1wYmVDHyAQPCVe9MNt392ePSQkS\nonH5hKhMR7JiyB1vL77+fknGWl2tE+GoccM6FuERsrBQDoFQCWy9QzZa+uR00FOM7Iuvn1GcxOQM\nVa5LcXQijl2Hz6Onfxh7uwbAsQwACfGEmO1BfNuyloKfLUOg3oXgeLzo8wBpSUOKutqa0cUykCQJ\ngiiqln4B+sUtZgJ6Qx16PTBa18p/7/m783oPixhfmt2o2+XUnWWdS4OHg6+OQ3g8VoK7IhCqE10G\nOR6P40/+5E/wxS9+Ebfeeisee+wxCIKAQCCAH/7wh2BZFi+99BKeffZZ0DSNBx98EJ/4xCdKfe+a\nGC19yg3/Rvkk3ui5JHuci2Wwed21qtfd0z2APd0Xs3+TkzgUBBGuPPlDo5hljAEg0FAzRVY0nhDw\n6pEBUCptJ42IW8wU9BraQhK7Mqi99/xExLFIcTXHSrAOCpGocWMMpOPkLtaBcAHfJYs/gl3RNWP+\n/Oc/R319PQDgpz/9KbZu3Ypt27bhmmuuwY4dOxCNRvGzn/0MzzzzDJ577jk8++yzGBsbK+mN6yVT\n+sQ5tR81kRSzLuttr/QpGspEUlCdiPTGrntOj+KWG2ZpHlcuIjHj7lM9rtmZhlopXK6h1epIpkcd\nLv+9b3ult2zdnJIpCWGFMaPFxeFJ/PyFY9nyQT1olSASCNWOppU6ffo0+vv7ceeddwIADh06hLvu\nugsAsGHDBhw4cADHjh3DsmXL4PV64XK5sGrVKnR1lVkCUoNal7YzoLEuPVnySQEnz44qHufzcqq7\nF72x65GJODaumou7VrfqWjCUEk+NA+MKO6n82HomNhmOJlRdszO11tSIoc2tlddTSwxouMT7hg3l\nTRSDz8vBV2DCnygBf9z/gaGFG1n8EeyOppX6p3/6J/zt3/4tXnzxRQBALBYDy7IAgMbGRgSDQQwP\nD8Pv92e/4/f7EQzqaGfoc8PhKK3L6akXj+t2Wd+2fA7mzmnAhaGwainQ8o5m1RpKb30NAr4aDIW0\n42MH3xtCrZubUiNdCfz1Lrhdguw9NzXUYNGCRjgZGk//z3dw8MQlBMdi8HtdivH5UDgOhnUi0GS8\nJMaKBAJeQ8c/+uBKuGtYHDxxCcNjMTQ11OCWpbPx+Y/cACZPh/Qrn1qNeCKF0AQPXx0HF6v+s7w0\nPInRsPx7H48kwDpoXR2YiuX2Fa0IjsVw4Lh8aEcPPadH8Jf312g+83iER5fCIkTvOfIx8s6rDaPj\nlaCPUr9X1VH44osvYsWKFZg3b57s55IkLyah9Pd8QqGoruMKhU8KePOYdmtFF8tg7bIWfOTW+QgG\nw/jdzndVj/34umsRDKpHvzoXNepaCBw6cUn3+yolk9GkooueczIIj8ewbVdvnkiKcvza53VBSCQ1\n31M1EAh4C3qOzbctwH03zZsS7xwdVZatdAAIj8c046pCUoDfKx97bvCwGJ9UXkxSABwMYIbzYt2y\nWUgkxaIM8vBYDKc/GFFMXsvEyo+cDCKkUEetdQ6lc9o176HQ8UpQx6z3qmbUVQ3y3r17cf78eezd\nuxeDg4NgWRZutxvxeBwulwuXL19Gc3MzmpubMTx8VQVoaGgIK1asKPrGi0Wv6zieEEBTFBiaThvx\nHuXa4FuXtmiKMABTVZVGJ+KK4phW6ZGsdh+TsaSqe1oOUi6VRqlmuJjEJLVkRRfrQEgliUuCOcYY\nAH73Sh/YIv+NtZLX8hPUCjlHLplGLrnqeHr6SBMI5UDVsvz4xz/O/ve//uu/orW1Fd3d3di5cyf+\n9E//FC+//DLWrVuH5cuX4/HHH8fExAQYhkFXVxe+9a1vlfzmtTBS9pQpRxkYjkBQ8fbdqjMJK7cE\nKjgWw49/f1TRDc456Yq7rCkoK2qHwjye/T8nVd9jg4fFxGSC9LTVwKzdWUYdrrtvGOORBPx1Lixb\n5CurDOvxM8OqvxU9LJmvHPrRmxypZ/GX+96VxrFaH2kCoRwYDpx8+ctfxte//nVs374dc+bMwebN\nm+F0OvHVr34VX/jCF0BRFL56q/wYAAAgAElEQVT0pS/B6618DMNI2dPolcSliIq7DwCiBrNKOSeD\nuQEPlrcHNCU8K4ma09zppNHVp6yD3FjnwhOfW4MYnyKlKBooaaPH4inNvtsZMsal5/QIxiMJNHg4\ndLY1Is6nkEiWL/xRzE6bptO/jTdPDOLkuZDsokTLw9XgYbFmSbOuxZ+enbbe2m8CoVToNshf/vKX\ns//9q1/9atrn9957L+69915z7spElOQJ82moTWdO12i4o6+dU1/QfWxaPVfRIFd6d9zir0EozCve\nB6XRjWplRxO8bhZeN1uK27MNaju+N08M4r2zo7L9gvPJNy6hCI89XQPZDmbVgCgCMT5t0ZVcxqp1\n2h4OT37+Rl1jTu9Om8jEEipN9WcwaKAmT5jLiituL9bJQGkupGkUHDPz17ng91rTYC2aWwdKZTLn\nVXZdty1tIe5pnWjt+DL9gtXKeNSMi1xjk2oiv1ROrXxs9ZKA7gWg3lwSkvdAqDS2N8jjEV4zhuzm\nHLh//SIAwOhEHEo6A6KIaX1q9cI5GbhdzoK+W2re7LmsqnOsZKv9Xg4P3bPYFpmp5UBP72xAvYbb\nqD57NSHXB7qQOu181DTpgfQ4NnpOAqEU2Kv4ToZ6DweXRpebKJ/CE//9IFYtbkZKJUslIxxiFEEU\nse2VXgwElUteKo1aUpfS31ctDpRkR2FXaUS9OQ1qsUyj+uzVhJzLWK3lpBaZcbTz7fOKv//blrbo\njt0TCKXG9gY5jXZwLeMudLHKP8zORf6Cfrjbd/dP0bW2IlrezhWLGnE+OIlQOF6yTGq714cC6R1f\nUhBx4PggEgriHWqxTKP67ABAU+a7s1kHhduWzUZ3bxBjBTSXkEPNZWyk5WR+RrVSbN3FMvjU3e3E\nGBMsg+0N8niEB2+geYNao4dNa+QFUtQw2pO5UqjtkAHgI7ctwJyAB+MRHjWcAzE+hZQggTHRTipl\nIAP2qA/NGIpD7ygbY0A7lplb455ZILldDsXExdaAR/YzmoZieEaLlCCBYWh88ePL8A/PFSeT6/Nw\nWL0kYNoCL38cKS1GMpr0bs6aoSTCzMP2BtksF19jnQv+Opfh71VLzE9rA/XG8UvYclcbdh25UJId\nrN6WhdWMVukNTQHrV8zRNEwMTeP+9Ytwx/I5gCQh4HPDwVD43at9eLPnUjZbnnXSWLt0Fj55Vzt2\n7D2TFamp97DgWAaXRwtvfShKwK7DFxCJFtdJqsHD6s6W1oORBTDJqiZYDdsbZKMuPqV2iIVmYNol\n5ren+yL6Byam7LTM3MGa0RvYyugxFBKAe26ar7q4UXLrP3DnQkiiBBfLgE+KoKh097Ljp0fhYM5g\ny8a2bBz2j4fO4rWjhctd5nLq3BgYGgULhKxZ0mxquZyRBTDJqiZYDdsbZOCKqpEoYV/3gGYsbe2y\nFtAUld5NhONoqOWwosh46eL55VVQKhUDQXmXqBk72GJ6A1cDegyFX8dzKrn1D74ziEgslf17Rh49\nd9G0ZWMbdr51Dm8cM8cYA0AokgDroCAUEKSu4RiIkgRBFE3LEVAbRzSVXvT4iZocwaLMCIPM0DQe\n/tBiQJIUk6sa66b+SDOyhKEIj57+YUCSsGnNPPjrXIbUlDI7GRfLQBRFJFLVWyyqNOeasYNV82TY\nYSejx1Oi9Zxqu+xcYyxHd+8wBEEsSXJhoWM6xgvYfWQANEWZliOgNo7Wr5iDe26ab7vsfYJ9mBEG\nOcPWuzvAMPSUZJjOtkZsWj13iqH97SunpkxcIxM89nRfxJ7ui2jUGTfN38moJYtVC0rZumbtYOWS\nleyyk9EKnbhYBpLGbrGYfITRcFyxfWGlMTtHQG0c2SVbn2BPZpRB1lPTyCcFvHlc2b2sJ25aLZnV\nRnG7HLI7MbN2sMXUnFYDuYYiv3VlPCHg1SMDoFR2i8XkIzTUcortCyuN2TkCdh9HBPsyY5eLk7Ek\nTp0NYWQ8hqFQNKuMFByL6drN2kFNqYZlwDrlizRdLA0Xy4BC2p0/r9kja4znNXtM38Fmak6raRLl\nk8KUcSRHxlA88bk18Cl4FNTGlZqUpBadbY2W1bouVY5ANY4jwsxmRu2Qo3wKv9l5Cm+fvDwtK9Tn\ncWL1klm4bWmLrnON2kBNye1y4oaFPtmM21tvaMGDG9uzdcffe+Zt2XNE4+bXI1cThYiZxPgUxhR2\nq1q7xczi58jJoK4dbybEsmFlK/YdtaY4TaGCO+VWdLOrghzBOswIg5yZNN/ouagooReKJLHr8AUI\noqQptQlc7Q6VS+4P1qiaUiUYmYjjeP+o7Gc9p0fx4Eag2efGUChq65KkYihEzKSYjPLMLvsjaxfg\nO0+/hbGIeh1w56JGbN3UgSifLIliVzFQVDobvOf0CLbt6tUd4y23opvW9YihJpjFjDDIenqhZjjW\nN4ybb5iFfd3qpSErcuKmcj/YFe1N2Li6Fcf6RqbFC62E0i5rNBxHcCyGuQGP7UuSCqVQMRMzMsq9\n7nQvYK1x3XN6FHxSwAt7T1vKGAPypVl6sq3LreimdD1Rkq6USNpX6pVQXmw/avikgK5TQ7qPHw3z\nuHNFq6qm9ZwmN7Zuas/+f+YHOzLBQ0L6B/vqkXTv4862RtS5q0+aT5KAH//+KLbt6oWDoRRjl3Yo\nSSoUPWImSpjRxShzDqV4dOY+gqFoyTKsW3w1pp1LLX6eQWsRpPV9o6hdb//xwWm/e632mQSCGrbf\nIY9HeIyG9cv70RQgiJKq/vUsvzsbN9X6wVZzuVOm4QZg75KkQjHD9VxMJrAe97XP6wIoCuMmNYDI\nJ1ykdGYuesIf5VZ0U7ue0m/bLlKvhPJje4NcwzkMxc5ECWAdDHxeVtGQd/cO49v/fgCrFjdjw8pW\nwz/YXDwuByJxdVGHcqDWXCIzwZBSkqmY4Xo20sVICTX39cqOJgQaauBXGc/FMMmbt+DUE/4od/ik\nkATNmZ5XQSgc27usY3zKUOyssY5DoKEGS67xqx6X2T3uOnJBV9N5JZKCNXbQaq9oZOKq+7VSpSR6\nyooqgRmu52IRRBGiJIFzTv05c04KkXgSgihieVtT2e6nUPQsYtRKv0oRPlG7nlJYaybnVRCKw/Y7\n5HoPh0YDK9yVHQFwTgZb725HV29Qc5fb0z+CzkWNspKESo0qcuGT1si08XtZjE0mZNvxMTQqNsFY\nvUeyFUQotu3qw56ugWl/55MSDp64jKO9w1jZYV2DnC9bq4Vc+KRzkR8bVraCTwqmv3+lcI0kSdlc\nkVxmcl4FoThsb5D1dnvKnxTcnBO3d87W/F4oHMemNfOmSXKq/WCtyA0L/Xj9mLxCmSCme8dWYpKp\nlh7JZriejSKIIra90qtZXxxPCDhw4jIYurAmEKXE5+HwxOfWGOr4lLsIGp2IY9eRC+jpH8be7osl\nWbApLboEUQR1pRENyasgmIHtDTKg3e2pwcPKTgpbNrZBkiS8kdNjNh+fN90nWe4Hm0ilcOrcGC4E\nJ0vxWKYyrlHPemEogusWqLvxzSC3phOA7XskGyX3/byw77ShZhFWM8YAMBbhMR7hEeNThr0LnJPB\nnu6BKd6BUi7Y8hddVvCOEOzFjDDIAMAnBMVY8sRkAjE+Nc0gMzQNiqIUjTEw1T2V/4PdsfdMVRhj\nIF2vqkazieUtcsi5ppfM9ymGGmZa4ozc+5mMlyZzupxQNPDjHT0IFRCOGIvweF3BO1DOBVslvCME\nezIjDPL23f2q/YiVkjDUSppoCli/slXRPWW3BhOF7K6MKBjJuabfPDGoqJo20xJn5N6PHRBFZKsU\n9O5uM4uT145eRCKloLw3wxZsBHtge4OsxzAub2+UNRjjEV5x4hMl4J4b55WkVZ7V8NdNlwlVw2gi\nlvq/kXxHhJmUOGO3xZ0WWrtbPcp7DR52Ri3YCPag8mmqJUaXYZTkd381nPp6Re3zTP2iHYjGk3hh\n32kIcinYMsgpl6kpGKn9GyWSAtYubaloWVGlMbq4Yx0WbeukEzWVM72LE6eTwXiEt1yZHIGghu13\nyHoK+/efuIxPbGifsiLnkwJOXxhTPfd4hFfMDtWb3V0NxBOi7kSZQvSdtcQeHr5nMRJJAReGIpjb\n7DGUkVvt8EkBiZSoKFTjYhm4OQfGIjxYZ7rMLpGyXvKWEdTCEXoXJ5dHY/jmLw5arkyOQFDD9gaZ\nczLobGuSrdPMEE8I2UYKue5WzTgdpb4TyeziXj92UTUxrFrQkyhTiLSh2uKlxsXgP/b241jfsCXr\nkEtFvtufUxChuL1zNu5fvwjBUBQ/2dFT1VKtGZbMb1D8zIhyVq53Bri6mCTdmQhWxdYGOTOpHe3V\n0Vziittab2co1kEh0KCeeZwpi0gJIvYaKE+xKnoSZQqVNtyysQ2nzo3h/FBkyt8vDE3iwtDVTHWr\n1iGbTf44zBhaF8sgkRSm1LwyNA3WyVR9zgLH0qAAvHliECfPhaYtvPikgGAoiva5DRh597Khc3f3\nDmPzuoV48fUzlhWZIRBsbZD1GleGBvz1LkPJM/46l67VNZ8UcPz0iK5zWh3WycCj4S4uVN85JUiI\nGijjsXMdsto4rHU58K2HViGQI1/KJwUkkoLmztFq/ZBzafHXYHA0lv3/3IXXlo1t+N2rfdh//FI2\n456hAQdD6Va6Gw3H8btXevFmTrXFTFncEaoH2xpkI8ZVEIEXX38fm1bP1V1OkkgKumT67JRtHU8I\nePH1M5qTl97OULmuQ6PvyW5lLXrfRSicjhVnlKJy3dqsUz2EYlVjDKh3ThIEcZoAiiBeLcXjWBrJ\nlCgr+5qh3s3i5LmQ4jXsurgjVBe2NchGJ/iuU0HE+RQoSjHpegpjkYQug1BItxgro2fyylUwCo7F\nAElCwOfOugXlyqI6FzUaek96duvVgOy7aGtSTOLKdfvne4CsootulAYPq6gUNxqOa/Zy5mXq1PNZ\nssCHQ+/Iu7nttrgjVC+2DZwYLTsaDfN44/igLmMMAD6vvtpctW4x1YhaSUougijihX2n8ZP/OIbv\nPP02Hn/qILbt6s0aoPyyqD3dF+F2OXXfR2a3Xu3IvouuAdTWyC82Mm5/O9Umd7Y1Kv5WG2q5ons5\nuzkGD6y/VvEaM01khmBdbGuQS20Il8z36XZx5bboq3b0Tl5KtcjbXulVNCSTsSQ2rGqdUnN858rZ\n4Fj5YdrdO1zVdaZqRjUaT2LDyjmK9dd2CoVsWNGq+Ftd0dEEv7c4T0iUF/D4f39bccE3k0RmCNbG\nti5rQDlzt1g4J41P3a0/CYSh6XSDC0HE4VNBhKPVq0GsZ/JSrUXuG1Z0T45FeNxz4zw8uKFtSjx1\nX/cl2eOr3dWoFSu+56b5eHBju2yJjloohHXQoChkS+04J41bls7CwXcu63Lvlh2KUs07YGiq6Hr+\neELA+aEI5jV7EI2nSHcmgiWxtUE2mrmrl9WLm+HWUPHKZ/vufkOdeawC56CRFERDk5eaoRmPJNDg\n4RCScXtndt+5Yv2FllFVQ62pnmdTalygls2eSIlgnRRYJ4VEUoKnxgknw+C2pS3Y3WW9MfjasYt4\n+EOLFTsnbV53LV7vuWjKYiIaT+GJz60pqLsUgVBqbG2QRyfiJUmm+tgd1xo6Pson8UaP/C7P6nz1\nU8tR5+YMTV5qhsZf50JnW6OsUIvc7ttoGZVRHe1KUmiJWIYH7lyIg+8MIhJLTfsskZPglQkXbFzd\nig2rWrG3awBWSv862hvEgxvawF3JHs9fgESiSSRM2tmHwnHE+FTVelUI9sZaM5TJ7Dp8viTnffG1\n9w0dv+2VvqpVUHr2P0+hsV5fzXUGtfj9yo4mbN3Uno2p69Gn3rKxDRtWtcLn4UBpHG9UR7vS5OYX\nGNXq3v5qv6wxVuJo7zAAWMoYA0DoSsWCEjWcAw0mJV2RBC6ClbHtDplPCugpUJCjwcNiMpaAUr7Q\nyXMh1RrkXHcpAJw8q95r2MoMBKPY9kovHr5niaHvqccElRu757uaMzvenv5hhCI8GjwsOhf5ZXe8\nhehoV5pCm9zzSQHdfcOGrjUa5lUlZCsJQ0+voc71dsiFOPJxsYzmwrezTb6zG4FgBWxrkI1moTbW\nudC5yI+Nq1ux+8gA3uy5BKW9xOgEjzMD41jYWj/lxy3nLl0834eQTD1pNdHVO4wHN2qLoOSix9Dk\nuieVXM2iJGH3katGZCySwJ7ui2AYeppASSE62laBczLZJDY9Rnk8wmNMITmuGhkKxdBYP1WKVq/S\nXoa1y1oQjaVwUEVWc9PqubrOVQ05CAT7YVuDbESQw+fh8MTn1sDrZrFtV69m8hVFAf/v80enxSfl\nmsjvPzEIhk4rC1Ur45P6RFDkUEpKykfu3e06fAEulZKn/B1voQlglaaQuHe9h0OjjQRn3jo5hI75\nDVN0q5W8HRkvyTvvj2W9L8vbG0EB6D0vr8YFpBfdfo3Sw2rKQSDYD9uOMCN1yOOTPGJ8CuFoAkdO\naostiBKmxSfVJpBqNsYA4NcpglIoau8urpDMIydQohW7tupOp5C4t5Hx3Vjnws3XzzLpbkvDvqMX\npzyvmrdjYjKBD9+yAN9/5Gb8w1/cgu8/cjNoisKrRwZk1c0y6BkD1ZaDQLAXtt0hA1PjmKMTcVAK\n4vo+L4edb51DV2+wIFWgrlNBLF3gs81uJZ/lJY67FSJyobTj1aujbRWKiXtv2diGaDyF/TkNE3Kh\nKOBrW1ZgYWs9AOBYf1BxgWMFunuD2ec1UhKmpVrWmLPLVaMacxAI9sLWBjk/jrnz7fOySS2hCF9U\njfBomMdPdhy3dDedYti0Zl5Jz682+Sol6ijtdgpNkqoUxcS9BVHEucthxXNTAA6fuuoKvvn6Wdh3\n1LrldyMTfLYvOedksLy9aUr+QIbl7VMXiGrvkALwlQc6MbfZq3n9as5BINgD27qsM+QmZ2zZuAjz\nmj3TjlHrEqMXCfY0xj4Ppxl3KxY19+tty1oKKgvK7J6sbIwBdc11rbj39399BBeCk4qfixKwp/uq\nK/hDN84v7mbLwL9s785qnisKy0sS+KSAoVAUfFJQfYf+OhcCOo1oMf8WBIIZ2HaHLJec4XY5Dcto\nUkgb20YD3898p1rgHDT4lPyqZEWZYq9aZVLVsuM1SqHiIOFoAheGlI1xLhl3q7/OBb9CFymrEIok\nsevwBQiCiAMK3Zn2Hb2Eo33DCIUT2aQrpd105yK/7nFTrFALgVAstjXIclm7hcR4H9u6MtvZycFQ\nV4x8OiatZHQlAB6XA5G4ftGGSqJkjOc1e7B1U3tZ7qHaXM1msnndQsTiKZw8F0IozKvGvTMen3ND\nyq7qfHLdrUuu8SvGnK1EV++wYk2xIErZRUUm6equ1a3YtGZudkHX4OFQW+NEz+kR7O2+mG1ruWn1\nXPjrlIVuqi0HgWAvKElSbzgYi8XwjW98AyMjI+B5Hl/84hexZMkSPPbYYxAEAYFAAD/84Q/Bsixe\neuklPPvss6BpGg8++CA+8YlPqF48GNQ/qRiBTwp4/KmDRSdZuVgG//Ll27Pt7nLFPoKhKH6yo0f2\nGtUeS2adNNYunYVP37244qUeVihDCQS8JRmr+c/m87JYco0fW+9uh5tzqh5bV+vUnYDYWOfC9x+5\nGZyTwVgkjq/9bH9Vj085Ms8IQDVfJH2s9hiq5jrkUo3XmY5Z7zUQUM5n0Nwh79mzB0uXLsUjjzyC\ngYEBfP7zn8eqVauwdetW3HffffjRj36EHTt2YPPmzfjZz36GHTt2wOl04oEHHsDdd9+NhoaGoh/A\nKGa1prttWQscDIVtu3plDYKSe6vaJ7tEUkQiKSElSGAqnGWgVJ8MYJowSLWR/2yj4QT2nxiE2+WY\n9mz5xxqpBljZ0TRlHFfL+KRp/fkdIxNxjE7EMbuxFvUeDj39yipmesaQ3vp5AsFMNKfbD3/4w3jk\nkUcAAJcuXcKsWbNw6NAh3HXXXQCADRs24MCBAzh27BiWLVsGr9cLl8uFVatWoaurq7R3r4BacoYa\nDR72ilYyh01r5uKTd7Vj264+2brE51/tgyhJisIV1c7+E4P41r8fvJpgUwG0ylDs2gs5/9m0ynrU\nmNfswZaNbVPqa61Ec4Py79RpcDX48uHzEEQRz+08pes5q30MEeyH7hjyJz/5SQwODuLf/u3f8Gd/\n9mdg2XTT8MbGRgSDQQwPD8Pv92eP9/v9CAbVJxGfzw2HozTuoNuWt+Kl18/oPr6u1on/+jcbEY2n\n4Kvj4GRo/OIPPYpur/0nLiPGV0eMuFBC4StqWS4n/vJjnWW//qXhSYyGlctQGNaJQFNtWe5Fzc1U\nCEaeTe1YLfikgJpaV8G67qVmaEz5uRJJEXObPbigMxHzrXcvo7aG1R0jH5mIAw7G9H9bK2DHZ7IC\npX6vug3y888/j/feew9/8zd/g9yws1IIWiM0DQAIhaJ6L2+Ye25sxe7D53R3w/HUOJGIJeAAEB6P\nYduuXlUdXbsb41xeOfQB/q+b50+LpZc6tiYkBfi9yuIQQiJZllhZKWJyRp5N7VgthsdiOPbeIIKh\nWNH3XCqUqhIaPCwiUf0Z4TFewP5jxvQEtr98Ep8x2DjF6pAYcmkoRwxZ0yd04sQJXLqUFhO47rrr\nIAgCamtrEY/HAQCXL19Gc3MzmpubMTx8NW4zNDSE5ubmYu+9YP7xN92GWtPFeCHrvuKTArpODZXq\n1qoOPilhcHQSz+08iW/+4gC+8YuDePypg3hu50lcGpksmduvWqUw9ZARvpAjX/jCiExmPj6vC3Ob\nPQWFcMqF0tI9Gk8ZbqAxNmns+IPvXCZua4Jl0DTIhw8fxtNPPw0AGB4eRjQaxdq1a7Fz504AwMsv\nv4x169Zh+fLlOH78OCYmJjA5OYmuri6sWbOmtHevwFgkbrjeeCzMZ7WRxyN8wbWanJNGg4ct6LtW\n5r/94QT2dF/MTpAjE2l1s28/dQiPP1W6WHMx/YKtSK6gxfSGg2l6z49NeZeCKCIpFGY0VnY0gXUy\nWDLfV9D3y0Wty4H8DoxK5XhqNNQa++3FEwKCY9b1HhBmFpou609+8pP49re/ja1btyIej+OJJ57A\n0qVL8fWvfx3bt2/HnDlzsHnzZjidTnz1q1/FF77wBVAUhS996UvweisTx/jNzl7D36FoZEua6j1c\nwQIKqxc3Y8vGNnzn6beqpj1eoMGF4Fhc9Ri1z0uZ+WyX+mS58q3JuHym9IWhSWzb1YeHP7QYQDrD\nel+3ccnLuYFaiKJoSglgqZk0oWafc9JYuThgvOezjvAagVAONA2yy+XCP//zP0/7+69+9atpf7v3\n3ntx7733mnNnBcInBbx/adzw90QRiEQT4Opr4GAouGuchg2yi2WyNaRrljQb6uVaSb788WX4/q8P\nI5EqbmIqpQB/tZehyJVvqXG0dxgPbkh7AQoNn1wITqpKa9qN2zpn41N3tYOhqSnCHp1tjdh//BL4\n5PQdt4tldEtrEgilxnZKXenG7cY7NgHA3z17GDddPwuiJKnKEnpqHLLx6ds7Z2cFHTavW4jXjw2A\nT1p/9f0vv+9BvYfT3CVrUQkB/moQcCikbGls8moIxcpSl1bBxTL4+B0LFT0qFAVZac21y1qKHjfV\nMAYJ1YHtDLJa5yAtJqJpHV2t2uJILIV5zR5E4ylFeb1INFEVxhhId7syg3IK8FtBwUsvhQjV+K+8\ny0RSqHrlt3LAJwWMTvBwB9IL4kwLx4yh/NRd7aApCl2nglfkSTmsWqzdklGNahqDhOrAdgZZrW2b\nXvT0jI3GU3jic2sQ41OyK+N6D4eGWgfGJqu/PErJI5BPIZnPhe4utu3qmxIrtLKCl9oikaEpCDLW\nNvMuxyO8qjG+cUkAb58sTDTETkgS8OPfH8Wqxc144M6F2LH3jKyhNDMXwc4qcoTKYDuDDEAxe9VM\nQuE4YnxK0T3LORnUcKwtDPI3H16DPV0X0k01wnHUu1l43E7E+JRmMwQlonwS217pw8mzo1O69mjt\nLgRRxLZXerHvqHy9qRUbyastEtctb0Hf+XEMDF+tyWfo9HMKooh6D4dGBWPeWMfh4Xs6MDgaM1xV\nYHX0JBrmMxpOYNfhCzh1bmzK+8g3lGaEVLSU1qw2BgnVge0MMp8UcLRPWcfWLLTcs3xSAJ+yR33j\nC3v68Oj9y6ftLgrZ3WbcfG/0XJrSzUfv7mL77n7s6VYWf7BqI3mlRWL/wMQUYwwAggjs6bqYjYcq\ntwQM4KU3z8oaYxfLYO2yFrz17mVD9fj5MBQgVMBdHhyLg3PSsolYWgwE5Rcn3b1B3NE5O5vEVcxO\nWS0MYdUxSLA+tjPIZjWW0GLpwrRM6FAoKvujHo/wCFm81EQv73wwCj4pTMt0LiTzOd/Nl8/hk0P4\nyNoFYK+4a3PfrZ7kKCs2kldbJF5UyYLu7g3i/vWLFFsCbl63EN/55SHZ79a6HPjT267Fsb7hogxy\nJYxxsSi5+EcmeDzx9NvgnDQoigKfELKemc3rFiISTeg20GphCCuOQUJ1YDuDrPZDUZLoy4V1UKjh\nHJrddA6cGMShdy8jnhDQ4GGxsr0JW+/uyLpbi0kusxp8UkIwFMXcZm9RGaV6DOpYJIHH/tt+UPTU\nCXPLxjZdiy0rKnip3bdafHj0ilhNs88tmzk8FIoqjq/RCR5nL4erevwVsjs2et6MZ+aNnovgE6Lu\n0ElGPU3ec2G9MUioDmxnkNV+KLUuByIaAgSJlIT2uR6MT4Y0jrv6ox6LJLCn+yL6BybwxOfWgKFp\ncFfUkd6sgmbwehAkKLah1NtTVq/3IlehKdeVff/6RYqLHJoC1q9sxeZ1CxW9FpWi0MWZ38tN2Wnl\neyTqPRxcLC2bhEjRwGsGdZ1nMpl3aCQxS8lzUa0qcoTKwzz55JNPVuriUQPC8Ua4foEPMT6F8UgC\nfCIFf50Lazqa0H9xQtf3v/zxZapxSiUmJhOIxJJYviitUbxwTh12vnXe8HmsiCSJ2NN9ETE+HfeN\n8QLOXJxAjE9h2cLGKVafKrIAACAASURBVMcKoojnX+3Dtld68b/2n8WBdwYxPB5HZ1sjDr17OXsO\nI4xHEti4ei5CER5nZP4d71g5Gw6Gxu92Tb3m9Qt8oKni0vxqa7mixqqDoXE5FMMHl4wJ09+2bDZW\ntitrWAuihJ1vnUdKxq8sScDF4dI1b7E745EE1q+YA4dKC0iaorBsYSPWr5iD25fNxodvvQYr2wNF\nj7diKXa8EuQx673W1iqHM2y3Qwamyi0Gx2KAJOGn/99xQ+eY21yrKg6ixJFTQ9h8+7XwulkkbCRa\nf6xfvn2fXEapWjlIZ1uTcWlDXE2UUdqVSJJk6RKUTavn6n5uhqawfsVszZ3WeIQHn7DPGLMSRhKz\nql1FjmAdbGmQgfQu7YV9p9HdGzQeR6MotM+tL8ggT0wm8Z2n38KaJc3YvO5axZKVakMppp4/cWmV\ngzz68aUFGeRMooycEhMAPP7UQcVrWqEExV/n0j0WBFECTdOa4hI1nANetxMT0cKU6QjKkMQsQiWw\nrZxMZpdm1BjSNIVEMoUehR2hHsYi6XrIF19/v+C2eVajzi2/dmvwTI1zapWDMAyNxgJaAeYnymR2\nJVqx6cyCodIYbaHY3Tus2BZQEEVs29WL7z3zNjHGJYIkZhEqgS0NcjH9jEVRwvd/3WXKrra7dxib\n1y3E2qUtRZ+rkrBOCl6FuEdtjXPKxJVJYJKjrpZFfS2r2zBROtstql3TSjudLRvbsGFV67Q2g3Ko\nLSQKXWxWC3rej9m4WMYW7T0J1Y0tXdbF9DM2itNBI6nQtzUUjiMSTeDhexbj5NnRqm0S0ODhEOfl\ns9Oj8WS2RhlQz3IfiyTwvWfexor2JqxfOVuzpeDXtqzAwtZ6zZ1KtZSgMDSdbqkoSZpJg0oLiUIa\nVQDAzdc349C7hS1Sy00ldLvdnAPfeng1Ag01lhkvhJmH7XbIfFLAZCxZFvlMAEimRLBO+atl3Lmc\nk8Gqxc1luiPzGR6LK+7GRib4aTu5LRvbsGnNXDTWuWSPf/XIAJwMgzs6Zytes7HOhYWt9QDS4itK\n7lu5a1p9p7P17g7F95NBaSFRsPAN6fmrSijMA5JEjDGholCSVLlfajBorAxEjfzOK+V8KBfLTJGB\nzP377Z1Xs2XT95fWg6Zgjw4+NAX8y5dvh9fNTvssHE3gyafflu0m1Vjnwne/cBP+6bddstKPd61u\nBUVRhjvp5Nc+m9EaLxDwmjpWM6Q7FMWx68gF9PSPTKtllXtOPing8acOGnZX19U6MaEhdmN3OAcN\nUMqCI4026dZUqvE60zHrvQYCXsXPbFOH/Pyrfdh1+EJBNa7FIogS1i5tQXAsNqUmNCVI2Vrd5Yua\nptQsJgQBZwervyGABODOFXNQW+Oc9tl4hMf/PnBW9nt8IoV1nbNx3y3zEYkmMHalhKexzoXblrVA\nAvDqkQFddc+5OBgatTVOUBRka6ELqUsuVV2ng6HhdbNYvqgJqzuaML/Zi83rrsXN17co3qODoTE8\nHpetxVajVKpXpaTBky4dpGhzNviCKMl21sqgd4xZHVKHXBpIHbJOCo2rmQUFwMEAbpdDdqecW3qT\nyQ52VPEKPJf6Wqdi0pQevV+GpvHwPUvw4EZBVxnTGz2XsHndQrg59aFbLa3xEqkU/v7XXRgIRiBK\naY/DnKZa/MVHb1CMZ27Z2AZBlAyVj+ltoWkVXCyNRz++FLG4gB/9/pjJ52ZQwzIIReQnV6uUyhFm\nHrawCuVqKKGEKAGvHRvUXXoTjiZw5JQ9etiu6ggoTlxqpT6FljHFEwJ+90qv7Gd8UsBQKIpwNKFa\nC60Vjy4nf//rtMs+s3ETJeBCcBJP/PItPP7UQWzb1QtBnLq7zSSH3Xx9k+7rrFpcXeV38YSI7/+6\nCz/6/THTw0+JpIDP3rdEMc/EKqVyhJmHLXbIajsxzkFP0UYuJTQlHxf2eTkkkgKifAr/sacfR04N\nVdVuRYl5zR5svdt8vd96Dwefl1XMSj95LjQlszs/f6DBw8nGrQFrtcYLRxOKrQIB7V19QscQaqzL\ndIa6Fm/0XIJYZZ7rUqRZsE4G82d5SbcmguWwhUFWK3u5ZWkLXu+5WJaJSCk8FYkl8cTTb5f+BsqE\nz8NhRUcTtm5q10x+kVPW0lPGxDkdAOQNciinCxIw3T2tZIwBa022F3J2xmrIuVD5pID3NeLIqzsC\n+My9ixHjUxid4KvOGJeKeELA/3zzfSye78N+meYvViqVI8wsbGGQAeWdmChJZZuI/F4Oy9ubshmz\nrDPdiacaE2qU8Hk4PPn5G2WzqtUwovfLJwXEE8oZwQ6GyhpVo/kDVpps5zZ7dB0XCscRDEXBOhnU\ncA7E+BQSKRFjCjHQDMffH8F3f/UWQuEEfF5j/152Z9/Ri5CkdDwZwJVWn6RbE6Gy2MYgG9U4LgWr\nFgdw//pF2LBiDviEgB9s6yrbtcvF+CSPGJ8ybJANXSPCYyyibJATKQm/39OPrZvaNfMHGjwsJiYT\nlmyNx+pcGLBOBj/e0YPRCT4bFvF5nGAdFBIp5S12IiliNJk22tUqSlMqMp6JTBLmbUtb8NA9iy2z\nWCPMTGxjkDPk7sSGQtGyJHs1eFisXhyAKEl4/KmDGJ3g4XTQtnQRlsPlW+/hUF/LYmxS2Yjs6RoA\nQ1OqPZIb61x44nNrEONTluqPnCE4FtN1XDwhZA1HxpCEVBYsBOOcPDdW6VsgEOyRZa1EvYdDQ4mN\nh8/D4bufvwkURWH3kQGMXBElSZQpkazclMPlyzkZLFng0zyuu3f4yj0pZ3J73Ww2e9tyEPUsy0Ay\nqwlWwNYGmXMy6GwrbYH/6iUBsE6monXQ5cDv5coqRfnQhzo0mwzk9kiuFtnMXKySXEawVrIfYeZi\nO5d1Ph+6cR72HVUX8i+ExpwEkJHxeEXroMuBQXErw+RLXLo5J+YEalV7Ujd4OCRSIlKCZDiT2wqQ\nHZl1cLsccDAVaDNFIORge4PMOmhQlLneQZoCvvHplWisrwGfFJBIiap1s3agVEpX+TXEGc3qzesW\nIhZXL7SN8il855dvTdG5tkJ9sW40Vjmsg7Zt6CMfzklXtBrh/FAE23f3W0rFjTDzsK1BTjdx78OR\nk0HTQ3WiBFwajWLn2+ezhoRjrb8jMwOzZQWVJC5j8ZRmA4VMopNVZTG1CDTUqC4Wldp62pEa1gE+\nWdkFbXdvkEhmEiqKLWPIgijie88cxp6uAUyUQGSdpoDDp4ayTeIlXDUOmUbnfi+XrXGUw1Glb14u\n+SUjWWlUklKthvhI75BiDFnp71aTxcxF6R2pLRZnUu3weDSBBk9ln3dkgsdzO09NkyolEMqFLXfI\n217plW3pZxZzmmrxzplR2c9qXQ5866FVCPjceGHfaVn1sHLKeZpNbvKLkrtZb/s6dc1q5fejpG5l\nJVnMDGrv6OwldaWta+fUY9Qmmuda1LmdaJ9bh7dPDlf0PvafGITb5agqTwvBPlTpPk0ZPimgu6/w\nH7WbU3dXtQbSnXiUG0nwYK90ddqysQ0bVs4Bm7cdrlZjDKRLiYB0jfe2XX1TvAQZ1/H23f26zpXR\nINcLTQF3LG+Bzyv/HStmymZc8nLvaHA0qvrdG67xYdOaueCchf9MKaQTEDvm1Rd8jnIwPpnE2yeH\nwdAUStUIraE23SJU6/xW9rQQ7I3tDHJa5alwN3VUo5/yyHgMe7ouwKdgSDJGIbMzOtY/bIvEHJ+H\nxcbVrZCuiJ984xcHsa9bvv1f/oSm5K5V6wYlhygBvefHEQrLL4asJIsJqLvku3uH0T5X3Uhef60f\nACDpEbyWwcXSeOJza/D9R27Gx9ctLOgc5UYQSyd1m7ryHrXOT2qSCZXCdi7reg8HfwkznuMJEXu6\nL4JRWMpkjMK2Xb2y7upq5a+3rMBrxy5OeSYt13FjvUvTpZ2vQd7g4RDlU7J9pQFgcHS6uhVDU9iw\nqtVydcdqLvnRcBwMQ8PjciAik03ucTmw861z2NNdeMlePCHizROD2LqpA9fMriv4PHZBb4c1PZ6W\n/DK9/L8BqKoSPII1sJ1B5pwMamtKX4Ik5K2yGZrCnSvnYMvGNsMND6qBGla/+ElmQlPKoAauZkPL\naZD/fk8/9nTJ777lEEUJH1m7QFfcupyotQWlAOx86xz+4a9uwbd+cXCKsah1OXDdggZT6udzs+Jn\n+V24PBov+px2R83TIpcTsLy9CRSAo33DORUXEuIJEY0G8yoIMxvbGWQ+KSAaL7/OryBKEK5sGZ/b\neUqzZKfaGArFdIufrGhPq6OpuWvzy0tyNcjvWD7HkEGWkG5leN0Cv+7vlAO1tqCihLSnhaHx06/c\ngZHxGE6eDeHdsyF0nQqaltyU8VbUezgkFLwOdoBC8b2T/V4OqxYHpnlacne++YmaIxM8dh+ZOlZz\nvTvVWpJHqAy2M8ha3X9KyYETg6AoSrbHajXjrXFgbrMHHMsoupJzkaD+76CVDW1UMImm9LcyLDdb\nNrZBECXs6x6QdfFnFic1Lgf+ePAcLmkkehmlwcOh3sNhPMLbuiFFscZYrttT/m7Y52U1c0yUMLt+\nn2BPbOdDMZq5ayZ8UtR067LO6pPn89ayV1oF6pv2jvWNoIZzKP47sE4GHrdzyt9yE78CPrehzOI5\nTbWI8SlLZsYyNI17bpynGG8fnYjjNztP4av/9U3TjTEA1NY4wTkZ1Hs4eGqqY/1dq1HpYDY0BaQE\nYVr9cX6G/Gg4oWtBKgdJFCPooTp+oQZQcxOWg3GVDO9VHU3o6q1snWUhROMpBMdiqrXBuYTCccT4\nlOK/Qzwh4MXX38fWTR2Kdbor25tw8N0h1evQVFqDeDKWwDd/cdBwHXS5qPdwaFSIJXMsgzdL6FGJ\nxpPgkwIcDAW3y6k7samSxK4YvUzv51IjSsCh94I4fGoYd66cg0/e1Y6UIJmaB2LFkjyC9bDOrGUi\nud1/ygkFKO4K/V4WnhqHZgcjKzIeSQCSBL9O5ajM5LN53UK4WPkhlimNUqrTZR3qu6QvfWwpbu9s\nQSSWQiiSLKgOulwYLe8yk9Ewj/EIj+27+zEU0td/udJkjHA5jHEugijh1SMD2L673/TQl9VK8gjW\nxJYGOZO5+/1HbsbffnZ12a5L0UBnW5PsZ7U1LF47Nlj2ScYM/HUcAj43llyjL2kqM/lEognwCrvq\nUDiOYCiquAs5rqCElmGW34133g/JfmZFYQe5FpFrl7aAL3GiFQXgjwc/sF3WfynpOjWE8GQCTof8\n6tnFMmhUCYsxNDWlLNLFMpAkiUhyEjSxncs6F87JYE6Tp2xSlaII3LF8NhiaytbV+rwudLY14lhf\n9U6IKzsC4JwMtt7djq7eoGIcLT9LVa3sx+d1ARSluAsZm+RRX+vE+OT0RCS/lwMkqeCksUqQW94V\nDEUBikJ9LYv3PgghpBJbdLEMbro+gNeOFubWFiXgtWP2SjIsNaPhBP7+N12Kn9/eORsfWbsA33n6\nLVkRIgdDgU9eXXnHEwJePTIAiqJIpjVBFVsbZCCd7VtOqcopE+9YLNs9YK+BMh4r4WJpbF53LQDA\nzTlxe+ds2bjwLdc347P3XTetlEkpjryyowmBhhpFg+33urB0oQ/7jl6a9tmKjiYEfG5VY2/FeJ0g\ninhh3+kp8fLaGoeqQa51OUzxqpQrHjsTSAkCIrGkYr6IUhtJkmlN0MK2BjlTO1jDOdDgYYuS09QL\n66ARaKiRnXg5ltadFGUlEkkRkWgSbi6dFX1VWSuIkQk+O9H3nh/DC/tOT0uoylfi8nldWNnRlD1O\nyWCvaG/EqfNjsvdEQdvYA2m9bSspJckJpQA83ByjWE4zGuZxrG+k6GsTY2wee7svgaJoxQWhElb0\n3BCshe0Mcn7WboOHQ63LWRaD7K/jZGUzq1kkxOflsrvNzCLn/vWLIAhpCdHMRD8aTsgKIMgpceUa\nSCWDnRQEXBialL2no33DeODOtmyN79HeYYxN8vB7XVje3ghJkvDtfz+A0XACfi+LVYubK555rabe\nxjkZCKIku7NqqOVUd9B6oQC0NLpxacT80qpqZLbfjYVzvTj8brAgD9qBE4O4+YZm7Oue7sFxKdTr\nW9VzQ7AOtjPI+buQUIQ3ZULTw+BoDM/853uKrRmrkcXzfXAwFLbt6tUlkKDklstV4spFzmADwDd/\ncUDxnkYmeIxOxLGnewA9/cMIRXg0eFh0LvJDkiTs7roqOZlZKIiShIfuXlzIKzAFtazd8ckEbr2h\nRbb8aUVHE3r6h4te1ElA1Rjjhlonrlvgx9nLYVwcLs09XxqNIpESsLZzNu7onA1BkvDzP5zQ/Z7j\nCQGJpIhNa+ZOW0xKUjpbOx+SaU3QwlYG2QwNaW+NA4mUMCUpwwivycQ8qxmnk562yFHTCS/ULZdr\nsIdCUVWPxv/f3pvHt1Hf+f8vzUgzsizZlmw5cezESXwFkjixE45cBBsHKFu22Q1NwEsoW3o8Fvi2\nu4+20AJLoFtoC/12Kd1uD1pajk0JG7b5dftlNyQkISHkILET5yC+AjkcO77kQ5Y0On9/yKNI8pzS\n6PQ8/yHY8uij0Wc+78/nfbzehAbYefRCRLLSiN0t2PTjo1N9+OKtlSlbEMUS3O5bV40cvTZscaex\nYI4Z69fMQ9fl0Yz2sshlwVwLcnN0CTPGLENjDPa29IAkgslWcvUL2i+M4Lmv3TzF++Pz+6HRaDjD\nNCoqQkgyyC+88AKOHz8Or9eLr3/961i8eDEee+wx+Hw+WK1WvPjii6AoCn/+85/x2muvgSAIbNy4\nEV/84hcTPf4IlKgdNOVSIDQaXB7gdpdKgS+BpjCPRm1FIdq6h0MPqsvtwYQrvUp0wjndPYRAQPrm\nRAm3XL6RFoz7+wNAK09cNbrpB4vL7cOAzYGyYpOkMUR37okXsZi3gdaiuaka69fMw9ZdnTh3YRgf\nne7DcYGs9myl/cJwsIYwSbBeHdZgtrQPYHicgUYTysnkZHg86KkpKcyN2ICKhWnkwNVVKl1I57Fl\nKqIG+fDhw+js7MS2bdtgs9nwN3/zN1ixYgWam5vxuc99Dj/96U+xfft2rF+/Hr/4xS+wfft26HQ6\n3HPPPVi3bh0KCgqS8TkAsAt5fDG3QZsTbt/Up1Ds4QyHL4GmrtqK5qbqiISzZ39/NK0NstyTWSxu\nuegHm9aRqKsqEmw9OO6IQZdZI67KwqUctmpJKe5eMSfuGLRQghvLjgOfRmihTzdjDCDpmtvDY9e8\nOuF5CTY7g3wjhfEJN+8zvfv4ZWxsqOQ0THxhGinwKdilOhci3ceW6Yga5BtuuAG1tbUAgLy8PDid\nThw5cgTPPvssAKChoQGvvvoq5s2bh8WLF8NkCp5A6uvr0dLSgsbGxgQOPxJaR6K2sjCutnVcxhiQ\nboyBYJ3skqoitHUNcS687IPaOzSR8DaRSkDrCM6EIz1FIlevhW2cicktx5WAt7S6CM1NVWheV42u\nnjFc6rcr8hn0FAlrQY7o67gyof984DwcTnfcNaRiJ6dktO3kSzhKJ9htU7ISw3VaTcgTsm1PZOtP\nISlcIJjcdbJzALZxt6KGSUrr0lSRzmPLdEQNMkmSMBiCu7zt27fjlltuwYcffgiKCsooFhYWYmBg\nAIODg7BYrik5WSwWDAwkTwyDXdxPdadeK3pJVRE2314DpkHYpbPz44spGJ18NDwny9W1JYJuuaFR\nJ9ovjqBmTgEK86caQ64EvL0tPei6PIqnH1yOpx9cjq27O0NZ1BqIl+/MshpwZWBq7HHV4pmiJ3ch\ng6hkDSnfyUlOyIUiNbybRy70FImVi2dCA3AmHKUTya7QcnsDeHtPJzbcWil7Q+Ry+0IbHKUMU7Lm\nYSyk89iyAclJXbt378b27dvx6quv4vbbbw/9nC++KCXuaDYboBXRLJbKKztOpayhRDRfuLUCVmvQ\nU1DG8xqX24vTGZKN7fb4cNvy2TjVPYjBESeKCnJw86ISfPnuhSBJYspndDrd+MoP38fYxLXTRV4u\nhd9+7zbk5AQ3ci63F23d3HHgS/12/OnDz/APG5bg4S8uRd+QAwMjDnz/t0dEx/rkl27EziMXcfh0\nLwZGnLBGjVWI3sEJDI/zq3+RlA7WolzRMcSCy+3FuNsHPU3CKaHFnxxjHLy+D0YDjS/fvRC5BhoH\nTvTAxvNZU01Rvh4j4y4kUc8nWMIHjSLJc23dQ/j6hhzoqdhyZpWYh+z6ozSpfEbSgUTdVxZJM+bA\ngQP41a9+hd/+9rcwmUwwGAxwuVzQ6/W4evUqiouLUVxcjMHBa6fT/v5+LF26VPC6NpsyWZSMx4eD\nJ9Nn1z84aEeeyMPYb3OkrG+zXMwmPe5ZOx/3rJ0fcRoeHuZOfPvGz/ZP6So0NuHGl3+wC099aXmo\nP++AQLODgyevwOnyhEp+pLRjLMzTgwgEsH7VXHzuxtmSxhqOz+ODxcSfCe1zezAwMC56HTmEu+2F\njIESSlsHT17BbXWzsPL6YtxUU4Qnf3s0vgsmiIXzLHGFnWLlwAll1pB+mxP/+h/H8fd3LYjJdR3v\nPLRaTYrPU6XGlskodV+FjLrobBkfH8cLL7yAX//616EErZUrV2Lnzp0AgPfeew9r1qzBkiVLcOrU\nKYyNjWFiYgItLS1Yvnx53IOXgtKdWeKF0onvc9iWfJlAbWVhKNmq2GwQdEkNjTp5W/zZXV5899eH\n8dQrh7Hz6EXkG/m7R41OuLG3pSf04PPJEYYTnlAmZazRCHVlSlQNaXi3KyGUUNoaGnPhmVc/xvd+\nfRj/8vrx+C+YIGpm56fkfZVUM/vodF/MXcdSMQ+lks5jywZELce7774Lm82Gf/zHfwz97Ec/+hGe\neuopbNu2DbNmzcL69euh0+nwrW99Cw899BA0Gg0eeeSRUIJXohGq8UwFYslDbFbxgvICHDx1NUmj\nip2mZUGntJQyh/aL3HKX4QyNMdjbegVl1lxFFNQKw5Jp4oUrE3rVklm4e8WcuK8dTTKSuKJhKxDS\nObHr4KnsaIbxYVsv7rq5HG6PT3ZpkJSM/FSRzmPLdDQBOUWmCqOkayNarjKV/Owbq2EyTD39se7J\nlvb+jMiuBoIZ49//yo3YceDTKWUO69fMg93hiVhshkad+M4v+VW2Iq9NYWTCjXi70t2yZCbuunmu\novWQ4ZuPslkFCXHD9Q5N4MlXxOPiKulJicWA8plGHD7bz/saitTA4wvEnIEdS61vIl3W4Uy3OuRk\nuKyzRqkrfNc2NOZK6Vgu99tx3dypvYOjs4ozAVpH4r/2n8eesMxcNpv0w7ZeuNw+FBgp1FUVoXld\nNQrzc2DM0fK6rcOx2d2yysn4+LCtDwdO9iladhJPDalUdh+7lNDrqyQWVn6T0gJununOJt/FmoGd\njHkYK+k8tkwla6q42RrPpx9cjgKB2GQyKCs2gvH40G9zgPEEXYMOxosP25KfqBIvvcMOfHSKWw6U\ndXuyspXf/8Mx+Px+/PgfVsCYI77XMxspWEzc35Wekr7j9geCpTLsord1d6fkv00VjMfHm2WuNGYj\nlTH5CpnG0BjDa4y5aO0YDK0JKirRZM0JmcXJeEWL+eUiJ8OVIIAdB86jrXsowr3rcHkzsv0iAMnj\nvtRvx9bdndh8ew1e/uYt6Lhow4+2tvK+fkG5BQa9ltNrsHLxTBAaTegULocPWnuAQADN66rTVjlo\n1M4kLedh2YJiAMg470w2Eq4KpqISTdYZ5HwjDVphNSI52Zd+PyIkH9lTm5SynWzgRMcgNjYEmziU\nl+RBz9MHmiSA5nVVodhTS/vApOIXjfqaoNvZ6wugpb1f9nfpDwS/A5IkUqIcJCW2lm+kkZ+rw+gE\nv0wkqQFklhsDAApyKYw53BHJNozHjw9OXIEnmcW9KlOgKVJtwajCS9YZ5CCp68au4Xl3KWU76Yoc\nucWRCSbqBMCt8qXTkhGnV1YMLFwUbNTOwCaQ/CamL55s5SA5Gr+0joTRQPEaZGLSGMutP6Z1BJ59\n6EY4GW/EhsDucKnGWEUlzcm6Y9uAzZFS13DqtgKJY9Ximbj5+hmSXmsJ6/Y0amfA8Bhy9+QpMrwO\nNzwOvG1PF/KNNMw8MWazkcaa2hLBsbCtIJOF0GeJhvH44GL4g4+sEZZbG7uqtgQmAzWlBpvtoKWS\nWth5r6LCRdYYZJ/fj627O/Cz7W0pHQch3lAoo2ioL8W9t1XhrhXlkl4fLg7A1odzYTbpkUNreetw\nW9oH8PbeLjh4ZCSXLbBCpxWevkq0gpSKmMZvdCJPIsRsaB2Bv71lPs/vgh20VIRhQ0vsc6z082w2\n0arLWoWXrDHIUhWPEo2Saj+phtAAGxuC7lZrQQ5oHf/qRGiCxjtcHEBM1cfJeHmN0vB4sNFEtKuc\n1hJoqC/F+jXzcKJTuJGIQa+FlkzODknIwHKd1NlWoUrCePywC7SlbF5XjZkWNZlICrF6KMQw6HXT\nomZXJTaywiCnQvGID0IDlBSJt/nLBPwBYGAkqDdN60hYBTJDS4pysfn2GpAEEVHytamxEk3Ly4I6\n05qg3nTT8jJsaqwUPEHznUwYrx8nOwewdVen6AnzUr89ZvlCuYh5A6JPRbSOxNJqZU+shAbIofnT\nQkiCwNf/+npF3zPbSHSux4TTo5Y9qfCSFUld6aRl7Q8AvYP8TRMyDZfbi36bAyShweg4v+CK0+WB\ng/Fix4HznElNXG0aSQKoq7ZyluMInUyGx9346HQfaC0BRiRRKVmJXaw3gOuz8Gn8NjdVofPyCC73\nize+kII/ECz741KJY5lZmMub+a6SeEbs0UmPKirXyAqDnG5a1tnE//3jCVGjBwC2cTf+uKsDB09f\n0yFmk5p8Pj8237GAcxHi0sWtrbCgrXtI/PuU4I1m3cXJWADDP8vwuAsFuTSWCmj8kgSB6tkFihlk\nWkcg30gLll3ROhIrF5dEKK+pJI8CIw231w/G45uWruvpJrcpl6wwyEKnE5X4kGKMAUCn0+DcRRvn\n7z44cQXQaLBhxPvukQAAIABJREFU7fwp2teswlr4CRoA3B5/hHHnwu3xo8RiQO8wfxvPaHex0gtC\n9PU2NVbC5/OjtXMQNjuDtq5BkISGs/SJ8fhwUiQOLo8A3t7bhbauQcGyq40NFTj76RD6hlMrMZuO\niJXSxYuD8WLL744qKvOaCcgpCZzOZIVBBoKnE58/gA9aezIyscpiopCfS+HTPnuqhxITXl+A90Tr\nDwB7W3pw6HQfGLeP82GkdSQK8/URvYFJAvAJ7AcseXo8+aXleGdfFw6e7oObI/5XMyfYMlTpBYHv\neoFAgFMYBojUMGY8PpzvGVXUq8N4AtjbMlVzPPq9t+87rxpjHhJljNlafjZJMVZt60wlWsd/un1+\nqZDPPPPMM6l6c4dDOYlLQqNBicWAXWl8Sp5hyYHX54ePQ37J6fYp0oowVQQCwQxon8BuyDv5uZ2M\nD+evjMHJeLF4fmHo92+934ndxy7DOVnqJLY4rlo8E/XVViypLELjslKM2N2YcHrgcvugp0hoSQKf\n9Y7j0Jk+fHT6Kk50DoauzTcGLnJz6SlzNXqs7PV6hxyhzxnOqN2NtUtnQaMJ/u3WXR14/3iPFK97\n3LDvrSWDCXf/8V47nGncfjHbyM/VBZ97jmcj/LuRAuPxYXjMBa2W4P0brvmaShiPD1t3dYSelXDk\nfv5UotR9zc3lr67ImhOy2+vFz//rVKqHwcvsYiOefnD55OTsxLkLwxnTglEyMp+p1o4BbFhbASCY\nzd3Szt/GLpr6qiKsXzMv9P8GWoevfP56MB4f3tzZPiWWzXcSjSXpSyirn0/RjI1l7z5+OemhlfA4\n+qidyb55l+YIyaNy5ThwhVUy2eUrpSRQTXILkjUG+bnXW9AzoExyTLxQWg3c3sDkvwmsWDQD90+W\nBBloAl/5/PV4Y+e5CNdmNuDx+HHTdVYc+URaCdrQGIM3drbL3pwQGqC1cxBbfneUc1Hii2VzEcuC\nEEtWv5gQSiIJj6PnG2lYTJRqlNOE8O9GyOhmsstXKOk2meI9mUB6b60kMu5wo2cgfWKvrDEO/ts/\nRbc5ma33konZpIchR54840en+2Qbh+h2i+G1xnKNJTWpKS0HoZpjvraRYkIoiSS87IrWkaivKU76\nGFS4Cf9u+KRXt+7qkKUCl26ICQSp2dbXyAqDfLnfntaJXNEPTTrVTStJbYVFVD0rFvQUCQ34xULC\n76+QseTC5fZhx4HzssYjtMCsXDwTjctKIwyzniIRCARgNOhkjS1W9BQ5RYQlnE2NlbjpOtUoJxuS\nAArzaM7vRigM0tIxKEsFLt1gPD401JWiob6UUyAo2WMJ71OfbmSFy7rYnN7KWNFu0Uyvm+ZqG6in\nCDg9PtjGlftMhXnB9oHr18zDhd5x/OStE5yvC7+/QiVwfFnbscSRueqn2VaH2/Z0RcSSXW5fMIFL\no0lKeZ6B1uKJzcsm5U6nfiaSILD5zhoc+UR6zF4lfgIAnnxgOexODxAIwGo2hDxnQpv00Ql+D1Iq\nXb5iJYRcLvjaikI0LZ8NS54+qSfjTInBZ4VBFsrsTQeiH5pMrpsuzKOxoLwAR872R2QTu9x+HD59\nFbSOUER+8ME7a3DTwpmhh3Z+ab7kOBSXsVwwp4C3rjmWODJX/TStI+FgPPiwrZfzb1o7BvHsQzeG\n/j087kpImc2InQE12Xij3+bgXDB3HPhU+TdWEcTvB574zWEY9FrYooxCrJv0ZLt82Szv3ccuoa17\nSNC4ccW9U9WnPFNi8FlhkMkktFjKoQg4Y5QbrK2wTHlo1q+Zh3GHBx9/cjWt3e3RMB4fDp66yvt7\nr1DhsAwWzou8Z0KbmOgmEnxiI+cu2hRPLKF1ZIQh37qrUzDT2u5wh8bWNzyBH73Zorh+coGRxs6P\nL/EKhKST9vt0Q6gWWc4mvTDsO00G4SfM6GeIy7iJdT9LZp/ydBqLGOlzVo+DflvitaNjNcYA8NGZ\nPvzHrnb4/P5Qm8gtvzuKI2czxxgTGqDYrIfdyd/DFwi6hJfVWOPeJHF5PTY1VmJ2sXHKz/maSIQb\ny1E7g9oK7npjpU4ZDsaL4+38mxWdjoDRoAuN7eCpvoQ0MzDotdjb0sPblzlbcxgyFTYHIrwRi9jT\ns/n2GmxYWxGXu1VOPFVKN73wXA653c8SSTqNRYysOCGXcSzS6QTj9odiiAAy0lVNEkC/TZq6U9fl\nEaxaPAMnuoYxJhD/4sNiojhPrIzHj4ERbplMrp0uV9xodrERE04PRuxMRNxXCf64qwOMh3+Hxbj9\n+K/953H/upqEnlLtTu66V7buO9NzGLKN8JAJ6z0ZsDnws+1tnN8RoQFe2t4WcUqWY5h9fn8wc7tz\nECN2t+h1pM7V8M+RTqVO6TQWMbLCIDsZ4VNbutDSMZBYodwEIicpcXTCg/0nhXWohVhabeU8sb65\ns523SxG7GOQb6dB/3/mge0rcaGiMQUN9Ke64YbaiAveMxyep/vmjU3344q2VCTul5ufqeBXfhsaY\n0L2pLCvA0Fn+03y6UGLJQe9w9nRP44Irx6Ss2CTaCS2WOKjP78f3/3AMl/qvlYmKXUfqXA3/HFpS\nA4Nex2kEkx33jqUTW6rICoP8xv+2p3oIkrBNuhBVhAlEbVqCbv5OHP2E34Dk51IRcVOziYKDQ6oP\nANq6hrCxoVLRB1HqouVy+zBgc8BqNiTklLqkslBwM/TukQs4c344Y07H/iTHdJRKSpQDn1GI7h7G\nt5eXEwfdurszwhhLuY5Uj0p0TTXX+5RZc5Ne6gQIV0WkExkfQ2Y8PlwZSh9RECHMeUGVpHRl0TxL\nqocAADh0+mpEXGvbni7sbRFuGqKnIuOmw+NuURlLpWA8PtidbuQbpX23voBwLXMs6LQEGupnwSli\nTPaf6M0YYwwAV0eS2wQjejPIMqtIeWlHPUUK1uJ6fQE0LSvD0w8uR11lEe91pM5nxuPDiQ5+nYDh\nMe7riM1VOTXVVwYnsHV3J3z+5G562ETPH3z1Jjz/tZvxg6/ehOam6rQqeQKy4IQ8amdgs/NrxaYT\nSyqLJrWElRfPUAJzXnpsFlxuH3oG7Zhfki8pfhU81UgPWygVN/L5/XhzVwcOn+qT3KYSAPaf6MHm\nOxZg/Zp52NvSo0jZ3vNfvQnvHr6Aj8+qtcXxEK6yFw5fXF4OJBEsfTKbaCwoN6N5XRUMtG7K66Iz\nmvNzdYJhuQIjLWk+j9oZjAgY7nwjd+4GwNO3vLIQTcvKptQUC3mL2M5vJKFJSblRdFVEupHxBjnf\nSCNXT2LClT7KKzoymG0cvs4ac7Q42TmQthrCM805OPupdA3oRPPz7W244boZaKgrFXUFW0x69An0\nRI5GibiRg/HgudeOC/Zi5qOte3iynpNRxBjn6rX4y+ELOHAiu7TR04lxR/wG2ecHVi2aifvvqBGc\nf9E1s0LNKQBgQbl5yvWiRTt8fj92Hr0o2O+5ror/ueCru+dCios73cqN0oWMN8i0jsSsQgM6e8ZT\nPZQQWpKExxe5QRArF0o1BUYK7ZdGFbkWoUHc5VyjEx7sPnYZPp9f9OF2ub28r9FTJHL1WtjGlcmq\nZk8vB05eEYw1GvVa2F3c33nIxahQgt+Ey4sPJDQq0VMEb1KcijAaQJH8j3MXRwR/Lzf7Xk+RaF5X\nFfp/n9+PV3acwsGTPYJ9uqOZXWxE8zrxE6uUEyatI1FbUSj4fmqXJ24y3iADwF+tmIuXtqdP68VM\n7DV7edCuWJJRXbUVx9uVKelp6x5GDq0FwD+uEbsbKxfN5FTiWl1bImlXL5Xo0wsfdpeXdxEPd5kn\nI4mI0ABr60rh9/vxwQluFTEVYZTKLRsWMUSjdv5WoVysri2JcHvzKVLxNT3RaIBblszC/bfLj6cK\ntYkUa56TbuVG6UJWGGSazoqPkVLsTh+qZ5sVMcirFs6A2UTj2Cf9GImhDjmc4TEX8nOFY9saTVB0\no3FZKU52Dk3JoiQJQpGduNzTC98aXlthCckPupOQ0btmaQlIQoO2ruGEv5eKMAW5wvHefCONAiPF\nW7oGBE/rlryp3p5Y+nQjAHzupjmSjDFrgI0GCjsOnJfUJpKPdCs3SheywpIpEd+Jhq8RQTbT0jEI\nPUUgEEBcp7ZZViOOC2RzyiHfSGFUYHECgqeXfa1X0LS8DD/46k2KnYajibd2WAMgN0eLtu6hpPXC\nbqibBYLQZKQYTTayVMQQ0ToSdVVFvPODJDR46kvLMNOSO+U6scxPmhJvPxotsENHhT7YU7jP5+c9\nGROTsWuujYTKNdIr5ztGSI2yWtYNdbNwy9JZil4zU3C5/WA8fuhi3Krl6rV45vdHcfB0X9ynYyCY\naELppE3T1slNANv1SWnktnaMJoBgLkGyyo5oisD6NfMT0hJzuqIlgFgrZWYXG9HcVCX6ug23VoDk\neQ+fP4CdRy5y/i6WPt1S2o9G92nmy0No7eRvExkA8O17l6ZtuVG6kBV3ZdyhXOYyrSOwsbEKzU3V\naFpepmjdMN9Dlo7IqCKKYMLllZU4pCU1k/1Rg7KWFlNkv9gNt1YgIDGdxjbuwsCIM2H9ToXqMXUk\nIHHfkDQ8Hj8+7R1TdasVxOsPli7JIT9Xh5uvL8bjf1c3xRBx6UnbHR5B79zhs/148jeHsHV3R0Q9\nr9D8vGlhMa9Rju7XHj0+qWGaUbsbBTzueItJj/ml+aqbWoSscFlXleUrdi23xx+hK3v3yrn49i8O\nwuOTntVB6TQgNJqQYaIpAtaCHFzun1BsnNmCjgC+9+CNod690Yki/TYH3AL60OFQOhIvvX0CtnF3\nwvqdTq3HpLFgjhn3ravGOx90Y29Lj2LvJRW+rHZKR+IP755V1eFSAKXTIOAPwOMLhtQOn+1H5+XR\niA5NfP15pcSRh8fdnHKXmxorYcihcPDklYhcioa6Uuxv5U7oE8p4luMGt+QFa5O5ngE1ZiyNrDDI\npIJHT0vetew/xuPD5X67LGMMANeXF+LrX1iIAZsD0GiQn0vh+3/4WLExpgIlSpm4cHoCoLRE6GGN\nLqvIN9IolJj9LdTaTimE6jE3rJ2P/SeuJL0/N9/bBe9HUoeiMkn4JpJLexqAYH/eBXPNOHxaXGs8\nup6XJAh8df1ifO7G2RHzk/H4YmqwIKcRCSsUAgTladNZojJdyQqDnKNglnXNnIJJ7eTukFKOXGP0\nVzfPCQnEA8Em8ZnuNvQHgFyawASjbKabxSScdUrrSNRWFsV88kyUAAFXPaZt3JV0YwwAeQYtli2Y\nEbYI0phwedSa4zSltWOAV6KTna/Xl0szyHxlVNHzM9YGC0J/R7DKY0YauZPCR/taemDJo1FbUYhb\nls4CqdHAajbI8lJxlVNNF7LCICvZ7enQ6T60dAxElAnIXWM1RHBSsZMpW9rdKW2MASA3Ryf60DXU\nlcZskJMpQPCr/++srNcTGmBmoQF+vx99w7FrNs+flY/Nt9eAaQguZG6PD1tezWyPTDYzLNBkhp2v\n180xS7qWBsDOoxfRvE48USqWBgs+vx/+QICz6sTvD85hm52BLUySc2iMwd7WKzh05ioYt09y+Iir\nXWoiwk5ipHJDkBUGOYfWCkrCySGYRRhfQtAPXm+J6DEqtMuc7kw43RGbFy72toobYz1Fcn5vZhMN\nt8cn+h7hxPJAjjvc6B2UlyPgDwBXBuVLb0bzwJ0LAFw7FQm5J1VSTwD8yl9mkx5GA4X/2t8t6Vr+\nALC39QpIkhANzciRv2R56/1O7DnO//wJHVbkho/4RE3E/k4p0mFDkGZ5obHhZLxp12aYnUzb9nQB\nCO5Om5aXoUBiR6Dpgm3cLdiphvH40NYlXLZD6zS4eeEMzt/ZnW5sefVjPPXK4SlZqdEEQxUdeOqV\nw/jerw9f+5uoo0F4Ziz77097xxISYxeDwNSQjdKdpFSUh2+q1FUXYceB84JGkAuhTOlo2I0ba4y5\nMr3Znx88FXtfczljFMrmlvPZ4iG6vCt6DU8GWXFClpP4k2zYmJCWDNZKa9Sc1wjMJv4OM4C0LE/G\nE0BjfRm0JIGW9gEMjzMRvwOk7bb5dugUpcUti2fCaNDhnX3daO0cxIjdPVlGEoDL7YfZOLVrTzh5\nBi3GHMrrmQcATpc864aMvh8q6QWhCX6Hlkn38fo18/D0b4/Ivk4soRmxE+HAiDNub6HUMQo958kI\nO4ltCDasrUjYe4eTFQY5nV3C7GTaffxyWo4PAAw0CQeTGv3t68otgm4zqfH33ccu4q6b58Lj9eMD\nga5HfEleQg/k/x7+DP/z0WcgCE1E0lb4YiXWAvQ79y3FT7edioi1KUF4VUA40e7JHFqL0Qk3xicY\nvPjWSUXHoBI7gUBQMIOt0e0dmoipI1ws2tCiLmKF3Y6xZnPz/Z2SsV4pG4KyuN5BGllhkIHgicDt\n9WG/guL5eoqE2+ML9f6MpX2i2aRHDq2VpYGcTGgdAVpHpMwg371qruDvpW62Pmzrw/6TfSBERNvY\nJuzRu23BHq6THut4Mqh/+OYJrFg0A+/LdEWKcV15gagUI/tZTQYKnyignqaiHDRForzEFPoOdx+7\nFNN15Nb5SjkRWs0GRTuExZrNHf13iYj1xrIhSARZYZB9fj/eer8TRySUCQhBUwQ8Hn8o+3D9mvmw\nO9zXdmAiLcy4qKsugpPxpm3ZE+PxJ7zbkBBDoy5RV9Smxkp88tkwegQSoFhbKWYzKR3B+XAlOhPe\nwXgx5lTeGBYX8C8UXCeIsmKj4mNQiZ2gdOWnaG6qDuZLiHRJisZiolFfY5Vd5yu0AQ0vpVq5uER2\nPJsLWkfA4fLCwXhh4ClTlZoFrmTyV/gzEktZmNJkhUHetqdLkZPHd+5dCmMOFbGAhU+epuWzJRnk\n6G4sXl9AzXrl4aMzvaieUwCvL8DpfgomWnWidyj+bGQA8PKIvCQj7NH6ifJeEgfH6cXBeLB1VyfO\nXRieolpmMlCw5usxMBp7mZWKsrAnUrnNISwmHZ772s0xGQuhDWh4KdV9t1XB5/fjAx6VL6kwHj8+\nOt2Hlo5+rK6dxXmalZIFLuVkL+V+cJ2yl1QV4bZlpTjB0TEuWWS8QZbbEk8QjUbwtGbJ04smjxEa\n4InN9Si1XnNDkQTSNsYtBJtwksgM9oOnruLi1Qk4XB5O99O2PV2KylH6/AEMjDhRZp16UgzfoQ+P\nuaBRWJ3Mm4D7OHeGKawtng47DnyKD9t6I+Lb0SeIx/6uHt/594+UH4xKTLBhFLleGj5JWZfbi36b\ngze26vP78c4H3Zhwcec9RJdS6UjlTocut1/0NMslusOiVPIX1yl7z/EerFo0E08/uBxOxqvWIcdC\nvC3xwvnln04LxiKknKL8ASCHnip2Ee2OKTBSMSVvJJNYjZGeIuD2+FFgpDBnhhFnPh2GUNXCpX57\n6N/hxmPD2oqExN7dXu7BRO/Qd358KSXa1HI4fLYP/7mve7ItHnctNktrxwA2rK1AYZ4+pYl8KpGw\nYRS5Xhq7yxthgNhTX1v3EAZsThQYaSytLsKGtRURoTepPYtbOwZx98q5CXkGY1XQUyLWK3SIO3i6\nD59cGEZ9TXFK5D7JZ5555hmxF3V0dGDTpk0gCAK1tbXo7e3Fww8/jO3bt2P//v247bbbQJIk/vzn\nP+OJJ57A9u3bodFosHDhQsHrOhTo0qTVEjh0pg9OBRYXJ+PD+StjcDJeLJ5fyPmaitJ8DI+5cGVw\ngreAKRAIYEllUcTPCI0Gi+cXYu3SWVi9uAQ3XDdDkuBFJpKr12JJpRXDYy582mePybCP2t1YPN+C\ndw9zt5oTQyi36/T5IQyOuXD9XDMIjtadWpJAbo4Oi+ZZ4GS8sDs9cDJe0BQJMirTOtX0DTtDc5/P\nHc/iZHxYU1sCDQG8e+hCSuqmVaaiJTW486ZyaEkC1881w+70YHTcLVpyRGk1WH9LBbSTWv5vvd+J\n3ccuY8IVLK9zuX34rHccO49ewO5jl3HoTB+u2pw40TEAp4RyJifjxYI5BdiXgN7dLrcXqxeXIDdH\nuFwwGi1JYHDUhfNXxqb8btXimairEq+/Hx5z4S8fXeD9vdPNbQdyc2lFbFZuLv+mQTQlzeFw4F/+\n5V+wYsWK0M9efvllNDc3Y+vWrSgvL8f27dvhcDjwi1/8An/4wx/wxhtv4LXXXsPIyEjcgxcjESII\nXIXorGjElt8dwZGzVwUXs7buYd5CdtYdYy3IQWEcvXXTmdEJD46cvRqXB8A27gI0GtlCKmzbxlJr\nLu9r2E45YgX/7In5F4814tmHbkBhvj6lCXDxQmiCDe5/+99nZDdMUUkcbm+ww1zohNs1CJudgVZk\ndQ7Xwx53uHH8HPepz+dHSOhib0uPrOfyl386DYXbzQO4Fqf2+f28wiRcMB4fGupK0VBfisI8fUSr\nVqknWql9zZMlSBKOqMuaoii88soreOWVV0I/O3LkCJ599lkAQENDA1599VXMmzcPixcvhskUbKhQ\nX1+PlpYWNDY2Jmjo19jUWIlAIIAP23oVWTC5YhFS3Tx8fx9NOtdOpwNmkx7WghzUVRVJzmx/YnM9\nZk829HjqlcOir29pH5DkNtNTWvzmz5+gZyCz22f6A8ATvzmsGuM0wzJZGvn7d8/ho9PXlLG8IkuZ\nxwe0X7ThZNdgSKxGCnKa5TBig+DBYqKhp0leaVg2Tt3VM8abPxIOVxJWbUUhmpbPhiVPL8v1LXXt\nTaYOPovoCVmr1UKv10f8zOl0gqKCJ5fCwkIMDAxgcHAQFosl9BqLxYKBgeTU3pIEgb9bV4PCfL34\niyUQHYuQmzim03KX1oTDirbrqaxQL40JPUWirJj7JLu0qhC0jkTzumrMllCqY8zRorI0WJM7amck\nJcYMjzN4c2e7oJwmEMxT6BmwC74mU1CNcfIgNIBGE5zntI7/OacpAv/8u6MRxlgqL/1nG/a2XpFs\njIHEtFGNhtISknTaL/XbJUlVcsla7m29gr2tPTElXrFSxkIn5WTWH7PEndTF10aM7+fhmM0GaLXK\nZLGN2hlFhPoBYNWSWSibVRD6/97BCVnygwEEUFRkhJ7iv72v7DilSH1fvHB1cUkUBAEgABQV5GBR\nRRG+tn4R3vzfc7jc/+mU1+bkULBag6fdn3+7Af/4r/vwWe8477VzaC1M+TnQU1pQOVSoNZwYB0/3\nodBswFfXL+Z9zcnOATXeqiKbQAC4eVEJDp3mLhliG+IotW5Jpdicg+XXzcDHZ/swMOKS/KxIgSSC\nn6nP5oz5Gm3dQ/j6hpzQ+ulye3nrs6NfKxWfzw9DDgVSQEko2g4ACK1JiSImg2wwGOByuaDX63H1\n6lUUFxejuLgYg4PXmgD09/dj6dKlgtex2ZSbiGINCKRC6zSwOxj0XR0NuU18Hh8sJnnlCN2fDfG6\nOhiPDwdPpt4YA8EkCbETolLcsGAG/mpFOawFOaB1JGw2Bw61cbujD7X14q9umhNqrj4uojA1OOJC\n92dDKMzX4/fvnpO1wBw8eQWfu3E27057bkme7J7YKiqWPBrtF/iFPlLVEKe2ohD33DIfTpcHe1t6\nFDPGgDKb+wGbE0dP9oTkRPttDgzwGPjBEafgWsvH1t0dvC7rwkkNibtXzMHAwLVDgNVqivj/WBEy\n6jH5S1euXImdO3cCAN577z2sWbMGS5YswalTpzA2NoaJiQm0tLRg+fLlsY04BmhKmZM24wlgz/Ge\nCLeJ3MQxi4mOu2FCsnB7/Vi5aCYK85Rx97PMLjaGktb0VFCe88jZq3jp7RN454Nu+Px+YbWgydpM\nAJJc0PnGoKDLtj1dsl1/bKyI/9o0SjnqllVUhFgwxwxbmpU20loCd91cDgfj5T25pxqNBvjJWydC\n3daMBorXtRyLW1koBGk20nj6weVobhLvL50IRN/x9OnT2Lx5M/70pz/h9ddfx+bNm/Hoo49ix44d\naG5uxsjICNavXw+9Xo9vfetbeOihh/D3f//3eOSRR0IJXslATytbwB2dYbd+zXysWjQThXm0aNbh\nkspC0YYJBUmOTfBRkEtj8x01ePrB5TDJLEHgY+WimaianR8KW7jc1+Q52QznP77fiRxay3sfNBpg\n58eX4PZ6sfPjS6Ia1bWVwfKEWGompcT8v3PfEpRYDILlVCoqLPXVRdh4WxXoNMsRYbx+fP8PH+O5\n145J0qimxVK948CYw+2g9QcQEVPeceA874EoFllLoYPA6AQDJ6N8VzapiLqsFy1ahDfeeGPKz3//\n+99P+dmdd96JO++8U5mRyWT/SWV3e8NjLgzYHCgpyo3I7jObKCycZ8Hp88O8f7tiEXdvXhZaR2Jp\ndVFaiE4snZzQo3YG407hjkVSsJho0DpCND6+53gPTnQMwMaTjOIPAHtbetB1eTRCOISPhrrSmD0P\nAYGWmD6/H6/sOIWDJ3swPMagwERjXokJGxsq8aM3j2FkInUPr0p6ogHwpTsXYMeB84o1ZpCDMUcL\nj8fPmyE9YndjBOIn9/+zYTFOdPbjQFt8PQL4oHUkblhQjLbuYUFlvNaOQTz70A2hf8cra5kujSS4\nyHilLkBaE3u5BAD8bHsbDHpdhEEYHndjeJzfGAOAwyVeu9bcVIWPP7kKuzOFuzFSg02NwT6fSvWU\nXlJVJPm7kFIPKTW7+eXtp7C0qghmk3wFNLcnwFveEF3uZhtnYBtn0DvoUI2xCiezigzYceC8YBvQ\nRKLEmlKYp8fp80MJM8ZA8Fm648Y52NhYhfM9o/jJWyd4XueC3eER1bmWipzOUskmvfwpMZKomOzQ\nGCPpdBZNaVGuaKG71xcAlUB3kBS8vgC2vR+MlSshsFJmzUXTsjJFm2hITaSyjQdFD3L08veYlE4D\niuMhFIo19Q7LT0icFFRCCkJTAIIJiyqJZ3axCXtbr2R0EuCiCgtOKHzIicY8mWtD60jML82XFCem\ndSTyjTRG7Yzg+iomNrKpsRINdbNQYKSggXxxkUSRFSfkRLfOk8uP/qNFtNB91M6khZZ1a+cgNjb6\nQOtIrF9uiHKnAAAgAElEQVQzH06XF59cGI5pbHanB8YcnaI9VOUyaJPfxcjtCeCJ3xzG6tqSiO9K\n6Y1eXi6N8mIjTshssacYAQ0g4J5XUYb2i8IetEyg/YIt4QlpdqcHb+/pDIl7iJ1apfRBFup0Fqqa\nCdP8HrW7UWCkUVtZGFc/ZaXICoOcbqpX7MZAqE9nDk9P0GQzandjeMyFva09oYleYNRBq5HfnWjU\n7sbohBvCStKJJVZlIZfbN+W7Unqjx7q7U0Ws90ZFHjZ7/LkYyUColK9vOPY6YqkwHv+kuMcVmI00\nllQVonFZKU7ytD8U6oO8qbES2/Z0iXY647qOzR70rpGERnY/ZaVJD6ugAOHdlIbGYuv1mqhaU67O\nJkJlNsnEkqfHrmMXsS+s32msC4oljwYCATAShOvFiEesQEdqYlakCv+uaB2J2sr0SL5TUVGadHKp\n2+wM9rVewexiI5596AbYHZ6IOLFYH2SfPyD4nLLPtc/vx4dt3AnAsXagUpKsiCED1xoB/OCrN+H7\nX75BUKqOj0RNUK46V0+anFYWzbfg8Jl+Ra5VV22F1WyQJNwuShzfhdWcE/PfRn9XTcvKYh+IikqM\nxOs5Xb7AKloqmI5c6rfjnX3dKDYbphxghDQLTnQIx7vZ53rrrk7eLlpiegTJIGsMMgutI1FWbMLq\n2hLZf1uYR6OhblZEFxEpOsoaTIqp84iTcKXSE2Rqnxa2lvpE54BomzcxSEKD25aVYlNjpWLdt+LZ\nHA2NxuYhAaZ+V6lOvJvOZKJBUYICIwWTPr5TWvflkaQ2RVCS1s6pXZaEOjTlGymMiBhS82QDj3MX\n+OP7ZhFBp2SQNS7raO69rQp9Qw6c+cwm+W/qqq1obqrG0KgT7RdHUDOnAAUmGlt3d+KD1h5OI1GY\nR+Ob99TCajbgnQ+6JafSK103LRdWtm90IvZ4F6XVoL6mGPffXg0DfU1UZP2aeTh9fhh9IpnIhXk0\nAoEAZwJZPOlH8XT8qirLj/j/nsHM7vCUycwqysXlDO+wFQsL51pwMIZGE+EEw04eRXWqhdCRwe5T\nSjBid08pQxQsVaoqQlv3kGCuR111EZyMVzBRrWaOOaXuaiCLDTIQ1DmVCqEB7rxpNra8ehQ9A3b4\nA0GjMMuai3/+0jIgEOBsA1hXbUXZZMu/8Dg2X/E64/FhwObAic7ElhQkA2MOhS/duSA0idnsxZb2\nfklZ2rUVhWA8fk6py1SFtw6fvYoTXYNYtXgm7r2tildNKFPRaQFPhpRPOxkvGupmoa17OOa8kEyC\nIIICN39zSwXOfDqoSJ17kmTqFW1QUzApgxuN0PpKktztcfUUGaqeYDx+0AIVIDpt6l0ymoCUtkwJ\nQgmh7nAYjw+jdgY5tBZ/3N2Jw2flFbUbaC0cHLJpxhwtfvLISmzfd557MkQFfFijC40m1EghPGU/\nXcqz4oXQAM9/7ebQTlZIsD2amZYceLx+DI8xoCkSgUBAkV7WStK0vAx3r5yLb778YaqHogh6isTy\n66z48GR8p69kwc6vHFqLLa8eldViMFNpXFYKQqPBnpbLSTOm6UZD3SxsvmMB7+/ZdT486eva+squ\nzzQWzDHjvnXVMExWtIitT3qKxE8eWRV6fTTJaC6RFdv/aGMXq7uTyxgDQeWbP+7uwpfuXCCqFOPz\n+/HOB91TauX8gUBatFtUEmqySB+Q3zM6vKwi3hh2OEpmyrd0DOCWJbOUuVgasLq2BA11pRljkKkw\nEYjRaWCMAeBgW2/abUyTSZk1F83rhEuPaB05JT7OJvVyrc/sAUlsfXK5fXhzZzvWr5kXlxJYPGSF\nQY6uK0vEkb+1cwD33lbFORmExsLWwenTTGReCcKdK1I6MiUDJTPlh8cY/OXQZ9DTJFyMcpuGZMO2\nk9vUWAmvLwCzUZcxtbKAcD24lgS8mfvVTGG6GmO2N7TD5cG2PV1TPI/h3s/RCTfcXh8okoA1Khs7\nfH2OxSt59JOrOHL2qqCoUyLJeIMs92QWK+MTHl69YxYH48WHPP19U6VcJZVY1LUYjz90T3JobVyJ\nWOnK0bPKlIQBwZKGZM8Ctp2cyUABCMp3Lii34NCZxGkUKwXj9oXmF19CD0kQ8CoUwMzG+csi5jky\nmygsrijE/hOpSTZl9/ZsNzggKOQhlpdC6zRYVTsL991WBa8vEHE6jj4cSYG9R0KiTokk4w1ysnoL\nBwDsPHoRG26thN3h5nRp/HFXR9obXj5WLS6B3x/AByeka/CyfZ99fj/e3tOVtYuZUuToSUxIaDyi\nJGw7OdYgA4A2DZJXpGDJu1aCxpXQUzOnAIfizEYOJ5vnr9gz/Y17luDgqcQZ44JcHR64cwFOdg/h\n9PnhUJx3wuXhXDNbOwawYW0Fb+UKC9u/vvPSKBwuTyhMWFtZhJOd8R/Uki0WkvEGOZk61ntbr+DQ\nmT4wbv8Ulwbj8eHcRf4SK1pHpJ07SqMBLGHJaUOjLuzjyCTno77GClpHYuvujrjLNJIFrSNAEho4\nUuCCTrYxBiLrqn1+P7bu7sTBtsR8V/EopHERXi7IFSMEgPaLNsWefYuJRgBIqbypGDoiaDyPdfTj\nw7Y++CTunvNzdQgAGOMocyzMo7H/5JWEKtLNK8kHrSPxt7fMx723VWHUzsDt8WHLqx9zvn5ojMFr\n/3sO7QJ1w+GENwEaGmMU+yysWEiyaroz3iAnW8ea3c1FuzTETur1NVbk0Nq0Sdootebi//zt4oiT\nvpzNTZk1F3+9qhyXB+xoaZfv1i215mJswo1xR3Jjmelw75NJbYUlZMDe+aA7YYuugSbww6+vxGv/\new4tIqpJYoTHvKOJzuFQ8tmvr7HC4fJyluGlCx4/8H/fPgmSkFdqJKQ3UFtRqHj72mhauwbR2jUI\nQgOUWo148oF6BAIawfXmcJxhFSUSPJPdH5l85plnnknau0XhcCiTOXn9XDOcjBejdgbOJJ98Ru1u\nrF06C3pKi0Nn+jjfX0+R+Pa9S9F+cQSdl0djfi92B++N8xQyq8iAf1i/EJa8nAhXjJYkMDjqwvkr\nY6LXGHN4sKelB7uPXYZTZpa0tUAPt9ePUbs7hW0osp+SIgOuDE7gLx9dwEene9F9ZSzuucOHLxDA\n0bNXcf7KOGidBiRJSD69AUEjfPP1xfjq3dfjr1bORV2VFYRGfHawz/7giEPWZmtpZSE83gAYtxeW\nPD1WLZ6JTY2VONU9gItX01+MRIliVbORxopFM9G0fDb+36EL8V9QAsFTuhsnu4bQtHy25PUm1veK\nl1WLZ6KuKqg8mJtLK2KzcnP5DXxWGGRCo8Hi+YVYu7QU9VVFOJBEFSzG7cXqxSXIz6V5J9etdaVY\nOK8QW3d1xLxhoLQEvv+Vm8B4fDFPYAOlwdJKKwZGnPifw5dw6EwfBkdduH6uObT4XdvcuOHkKQNj\nkbPghuNweUXvQ66ehEduuymVCOwOT+g+O90+yca4uEAPSquRlQ8RCCD0Xj5/cG4QGmmLYp5Bix9+\nfQXqq4thMlDQklPr+ofHXNBqiSm/Y5/9GxYUY5eMk/KXPrcAf7u2AqsXl+CuFeWoq7LC4/Xjzffa\nU+pFSeYG1eX2YXzCjQmXB2MOd1IPM3aHG4vmm7F8QTFG7e6Y+s6LUZhH4+brZ2Dc4YHL7ZU8H4Hg\n4WdVbQnWr5kH2zgDrZZAnkmfcIOc8S7rcGgdidwcXcw7I0qrgVumEcjPpUOtFIWUZIZGXXEln7m9\nfryzrxsP3rUA7RdHYprADncAH7dfS3TgyiQkCQIb1lZgxfUz8PI7bXFJa8aDx+vHTEtOUtrAZSPx\nuOv6R1yYXWyMuzRK6vuPObxwe3xTEmek9L9l6R2Sd6rN1eumuL9H7QzGHKmVMUv2FnRojMHeyS5L\nySxb9AeAH7zegsLJBKxElOKxUshsydTOoxc51Ra5uH6+GQCw5XdHQ3Nv1ZJS3L1iTkLLoLLKIAOT\ncVATJUm6MZw1S2ZCSxCSvzAWm53B9//wcWihYBNPBkacQCAAq9kAkiAUST47d9EGh8sLh0vZictm\nEmpJTcQCmMrzqdsbUI1xHMQbO3O4PCHZStu4C/m5FGwJFOf4tHcMtRVFET8T6n8bXYrS3SM9FETp\nggp60eTQ2oS1YJWKKUeL+ppiHDgpvdpBCSacHtx8fTEOK1jmJwU2AUuJDSBLuFwmcC3voHldNa9U\nbzRHzlyN8NANjTH484HzcDjdCS2Dyjq1ClpHor6mWPbfNdaXoXldNW93J0pg68IuFNv2dIWUun72\nnyex5dWP8dQrh7F1dwe0pAa1lUX8F5GAbZzB5X674jtZNpOQXQCH4jDGiyZ3liqpxZTDXaYhtS2p\nbZzBHTfOwQ++ehOe/9rNeP7rKyR1PouVaM1wsf630d2A5szMk/xelJaElqPbmpPxprxH8PIFxfjc\nTXOSPo4RO4O7VsyF2agTf3EYZcW5vF3u5DAw4oiYm2QclimHIrFhbUXoJMt4fOi3OeD1BbD5jhoU\nSmgPyxcu45p7SpJ1J2SA23VcWZaPIwLa1qRGA5Ig8PSDy7F1dydOdAxiZIKBxaTHgjkFksp6uBpl\nh+/qm5aVCWa5ihfv0ygrNsYk4iEE25osXoEVggBOn5feXUslcei0WgBTF441S2bhkws29Ih0UWKz\nS8Pduk8+UI8fvH4cl/uv/S1BACUWA3oGhTt7iVEape8rVLXAVYpizddLfi+704utuzqm6CXnG+m4\nny2LicKI3Q1KR8qWhC0pykHzump4fQEUSvCmlRXnYl6JCSc6hzDu8MBiomDQ63BlaEK2DjalI2HJ\no7FswQxJWevhp1CvL4C+YQd2HrmAjsujMYXmou+5zw/MLjbC4fKGapYNeh0mnB7YxoUPDGy3qMJ8\nPWfIY0lVUcwyxokug8pKg8xVs+jzB/DxuaucE1VPkbBO3mCSILD59hpsbKiMqHc83tEv+qAOCTTK\nbu0YxN0r5wq608V2xQa9DpSOhNKpH2xrMqEHSQPAkhcUbCe1Gm5FHwm7+tKi+BdvKRTm0agsKxDc\nhGUzHq8vwuUcns/g8/vx3Ostoa5mXHC1DKW0Wnz/yzdh3OHGp71jMOZoUWo1hUIdH7b1xqRLPtOi\nn/JeQiEerlIUq9kAUgNITSJv7RzExsapcet4mF1sxBObl2HUzsBooPBf+7vx0ak+SfdkVpEBz375\nRpAEAZIQLucqMFKoqypC87rqoAZCU2Szhe37z+Pdjz6TNXaX24cdBz7FpsZKSTkquXpt6BRKEkD5\nDBO+9teLcLl/HE/z1BYDQL5Bh1GJpY4OlxdPP7gcTsYb+mysLvW//mcbb7042y2KL+Rx27JSNC0v\nw4dtV3jXdL6yskSXQWWlQWZhd/c+vx/Pv3Gcd9e4cvHMKQ9m+Mkg6KIQN4IaTTCmzMXwuAuv/c85\nTLhiTxqZcHowMOIEI/CAaxA8SRtytBgccYpuIhrqZoV2uXwLYHjPZ7ZzFaUl0dI+ANs4A7OJRvXs\nAtHuWqsWzcTmO6vx3OstCcmqDIeN6efQBD46fRXuycxZWkuA8WZ/LbLd5cUdN87BxsaqKWL7JEHg\n2S/fiHGHGxf7xnGsYyBMPYm/BpjFZKCmxHubm6qxfs18/HFXB85dtE3OCz0WzbfggxPCeRmMOwAm\nKqlLsP8tx2aB1pFYW18q+eQzytFzd9TOxHw6LrPm4skH6kFpr60b96+rwRdvrUT7BRte2t4m+PfX\nlZsjkoW4vHy1lYVoWlYGS55+yr0K/xxfW78Ybrc3ovMR4/FhwukV3DOzhwYpOSq2cYbzpGg1G3hP\n94V5wc8gtRbeNu6Ck/FO6YtcVmzCshr+DYtxUpWOz+N3onMIP/jqTbjjxtl4/JeHODelOi0BH8dc\n4Jp7SpLVBpll664OXgOgp4LqMUKM2hlBI8giVBsYCAAtHD2QKR0RMhZijNgZIMBvOIvNOXj0bxbB\najZAS2qwdVcHjrUP8IpvaDTAHTfOEd2Vh/d8Brg9EAMjTkGDbNRrsbGxEpRWGwwL7OpAa+cgRu1u\nWPL0WFRhQceFEfQOx3Z61hIa+AOBUNu1u1fNw7Y9XTjVPQyPx48CI4UFcwqwsbEKz71+LC0aYSSS\nglx6iss5GpOBwsL5hVg4v5CzpZ1cDLQWD33++ohrDYw4RQ3yyAT34i6lv3g4991WBUBax6RwWU6W\nfCMtyVXMxdfuvh6UdupySutI1JSbRa97onMQ99xaKahMJvV7IUnuvx13uHGqewi//X+fcP6dbdyF\ny/12SS5nvpOi2EYqmCGvCbqRxxmYjRQcjI/TiyB0Gl2/Zj7vCdfh8mDA5hANefz54Ge8HiK3x4+V\ni2ai/eJIaO6tWjILd6+Yw/0HCpH1Bpnx+NDKYQjDf293eGCg+ZMZEinPadRrocnRSLq22aSHVUBo\nf1FFUegUu3V3h2jGOB3WPhGQvwCGL/b5uRTna1jsLm9ENvrmOxZgY2OkEWClHcPj9zk0icsi8U4A\nePJLy7Dr48s4d2EYH53umxJiGLG7cfhsP4wGKqnKblLRTHY2kFMnaXe54fZw/8VSmTt5sS5mcoi4\nlgQFCwvPwivXKJEEETqVDtgc8AWA3/3lLOf84Ttl880NHQkI5vIIiJhIURMcGuPelMTzvUT/rclA\nYdmCYvzpwHneUEBZsVHSWid0UpSyjgQCgdDUsBbkcB6YhN7D7nCD4fFm2MYZQMOvAsbmzJwTkOU0\nm2hsvqMGAEJzr2xWgSL9kIXIeoM8amcEG5uzJwkhYpHnLDBSGJ0IKlEJxYZH7G6sWDhTUtIYO0Gj\nJ3wwrhzAnmOXcLKjPyiF1z0keawsXl8ATcvKcPfKuRFxGymIiYgAU8tWohcMrvi9ltTgqVcO46rN\nJXjt/SeuRJQz8LkeWzsG8exDN4T+PTQmfN1kYTbSuK+pCr/402nR196/rgqramfxCu/PLjaiuakq\nEcOUTXCDKKzjvmi+RXCeyTVKrFsTALb8/Q1TvDFCm0w+Y+L1+bCvlVtwSE+RnGVU0dd1e3283ZQI\nDUJ6BolE7ARrEtmwCsmasghtpLbu7oi49vC4G8Pj7qgELuH3YDw+uD0+QYNrLcgR/JxOxgubQGns\ngjnm0JiTpWMNTAODLOaGknqSiH5QC4w0HIyX09VSmKfH0w8ux+V+O15864Tgdc0mPe5bV40cvTYi\n5sNmFI7YmSkTNHzCv7GzPcIQsYX+UnBNtrfjy0aMfiCE3Jpy6r/FOqhE9zQlteI1EAdPSdMfto27\nYHd4QvdveMyF3ccvo61rKLQYLJpvSXod6IidwQxzjqQmJEsqp27MhsdcyI9K9kkHaB2J68vNaO3i\n3yAur7Ym7P1JguD0xgi9nsuY+Px+dPWMRWSYs6ziyEHhuu5dN5XzGmR/AFO6ciUKsROsnPi1ENEb\nKaFSNq4ErmiihWJonh7zC+YUwO3xoaGuFD5/IOLZDu8LzmfQ9RSJ+9Ylr+ViOFlvkIV2hNEnCSGD\nw/Wg8p1Q2J3m/NJ80dhRXXURDLSWcxGQEtdr5+kwJUXgQCwbEYjsSSqkmMTWf0vxIsgpHdi6qwNX\nBoTjynIStcLjUrSORElhLjbfXgOmIfJe67SEYm5ts4mGBgHBzQobjlhdW4L3RRKTWMnSeOKMyWTz\nnQvQ+m8HOX9HaIA5M02cv4uH6GcnllN2tPdmy4M3YOvuTrR2DEyetrk3rnwI9QzXIDknZEB83iRq\nXomVskUncEUTvU6xXjA9RcLt8YU8hQdP9+HQmT74A8EytCWVRWhaPjtiMyGUM7O6tgSGJH0X0WS9\nQQYgepKQI9EX/qCK7TSFNgPRajLR1+b6/2iEJriU011dVdHk+PkFGLh6kvIpJkXc53EXr7teaumA\nWPw/hIwqML64VPS9vufW+ZIlSglNMFRKU9y1p8tqgidAIQPPjuve26rg8/t53aOFeVNDLErGfxNB\ngZHG7GIj570stRoVPRXKeZblwhVSkWOonAx/lnMAyTshs4jNG6XnldxStnCETtcGWoullYURKmPs\nujM87sbe1iuhRLdw5ObMJINpYZDFdnxyJPqkXpfdoa9fMw9ApKt7QbkZzeuqBBPJpCA0wS0mGkuq\ninDoNHcd5OxiI5rXVQtqbNvGXRgYcYoabL7MUD7t2HCjKOQFEIv/Exrghutm4KhAdjetI+Dx+mU/\nbNv3nZdcmrW2rhR33DAbRgOFHQfOCz7grR0DGBpjQh4Mi4lGfY01IhzxwB3XQaMhOMtD6qqtaXkK\nFuPJB+ojap8JDTC3JA+PNS9V9H1ifZblEKuhEgqfcW20sg25pWzhCJ6u7QzOXRwRfG+uMFk6epim\nhUFm4XqQxCT6hGKdXNfl26E/+9CNsDvcin3prCGrrSjkNHr1NdbQZGNrQ4fHGRTk0lhaXYTmpipR\njW2zSQ8EAqIGm9ISEZ8rXDuWJAlOAyXlJCMW/1+zZBbuva0KXZdHeGNBz3/tJrg9fln3XWhOUFoC\nRoMOI+ORsX12zEIPePjvcmitYLws+P1o0mr3Hg+UVhuqfb7cb0dZsRHzywsVzVpV4llOJMIGKTM3\nWnKJ9VQqtE4V5NK8+g8sQmGydPIwTSuDzIVciT4xEr1D5zJks4uNvAlgXLWhcgQYrGYD74NA6Ui8\n9PYJ2MbdnAZVTrYle598/gA2314jOrbZxUbcf3sw5CAUCyowSpdUZBGaE16fH/94Ty2oyZIxKe5v\nvt8JuSfTcfeuBCYDhevmWhJybaWf5USQjm7SZBLrvBZaC5ZWF6Gta1AwVyfRCltKMS0Ncrhxiieu\nwXXdRO/QuQz+0BiDhvpS3HfHdfC5PbKNhNAiIWTwXO5rBf1CGw852ZYftPYAgUAovi8lk1jpRU5s\nTrC13skgnXbv6Y6Sz3KiyNaNllximdfC65RGUo5GujOtDDKfm3RpVRFnZqvcLzHRO3QhQ9bWNYSH\nv0hjfFS+9J/YIjH1QaAx4fJw1vpK2XiIJaOFJ2FIWcCUXuTiiXWp8MN4fBFtSZUmk743daMlH6Hn\n/NoaJZyjke5MK4PM505unBQbj/eElegdupjBt40xcX2hfItE9IPg9viwhUdAXsrGQ4ryWbRhl7KA\nKbnITXfXopL4/H689X4nDoY1WtBTBJpuLMcXVpYrWjOtfm/ZD9dzHr1GieVopCvTxiALnS5PToqN\nx3vCSvQOXczgm/NojI8643oPIdgHgRFRyVFC+SzVMb/wB5ykdLyhABVxtu3pmuKBcrn9+MuHn8Ll\n8ija8F11CU9vpOZopCvpIeeTBKS4k9kvM54HeFNjJZqWl6EwTw9CE1TtalpepsgOnTVkXNRVF0FP\nJWd/JTYOqcpnDfWlIHhqiNMl5kfrSJQU5aqLeowIbYQBoKV9ICEN35V4llVUks20OSEnK+Ej0Tv0\neF1ySnT1UWIcrMgCAgHRWuVMR6l7nokIbYQB/jZ+KtN73kxXpo1BTnbCR6KSNmI1+EorGCm18RCq\nVc50EqkalSmI5QuYTdkviCEXdd5MX6aNQQayK+FDrsFPVH10vBuPbI75JUM1Kt0Ryxeor5keghhy\nUOfN9GVaGeRsXvyFSHcFIyD7ykAy4Z4ni02NlQgEAlFZ1iSabpyDL6wsT/Ho0gt13kxvppVBZsm2\nxV+MTFAwyjbUe34NkiDwd+tqcM+tlRF1yMlo+J5pqPNmeqMGJKYBbByPi3TJZs421Hs+FVpHosxq\nRFmxST3l8aDOm+mNapCnAUqUKanIQ73nKrGgzpvpzbR0WU9HsimhLVNQ77lKLKjzZvqiCQQCElrZ\nJwY1fqQsVqtJ9J6qtY3ykXJfhVDvOTfx3tdsJ9Z5o97XxKDUfbVaTby/U/yE/Pzzz+PkyZPQaDR4\n4oknUFtbq/RbqMTBdEtoSwfUe64SC+q8mX4oapCPHj2KCxcuYNu2beju7sYTTzyBbdu2KfkWKioq\nKioqWYmiSV2HDh1CU1MTAKCiogKjo6Ow2+1KvoWKioqKikpWoqhBHhwchNlsDv2/xWLBwAC/sLyK\nioqKiopKkIRmWYvli5nNBmi1apKLkgglDKjEjnpfE4N6XxODel8TQ6Lvq6IGubi4GIODg6H/7+/v\nh9XKXVMHADabQ8m3n/ao2ZWJQb2viUG9r4lBva+JIRlZ1oq6rFetWoWdO3cCAM6cOYPi4mIYjUYl\n30JFRUVFRSUrUfSEXF9fj4ULF+Lee++FRqPBli1blLy8ioqKiopK1qJ4DPnb3/620pdUUVFRUVHJ\nelKq1KWioqKioqISRG0uoaKioqKikgaoBllFRUVFRSUNUA2yioqKiopKGqAaZBUVFRUVlTRANcgq\nKioqKippgGqQVVRUVFRU0oCEalmrJAan04nvfve7GBoaAsMwePjhh9HQ0AAAOHDgAL7yla+gvb09\nxaPMPLju6+rVq/Hd734XFy5cQG5uLl5++WXk5+eneqgZB9e9NRqN+OlPfwqtVguDwYAXXnhBvbcx\n4nK58PnPfx4PP/wwVqxYgcceeww+nw9WqxUvvvgiKIpK9RAzkuj7+r3vfQ9erxdarRYvvviioDR0\nLKgn5Axk7969WLRoEd5880289NJL+NGPfgQAYBgGv/nNbxSfJNMFrvv69ttvw2w2Y/v27bjrrrtw\n7NixVA8zI+G6tz/84Q/x3HPP4Y033kBdXZ3aOz0OfvnLX4Y2My+//DKam5uxdetWlJeXY/v27Ske\nXeYSfl9feuklbNy4EW+++SbWrVuH3//+94q/n3pCzkDuuuuu0L97e3sxY8YMAMCvfvUrNDc348UX\nX0zV0DIarvu6d+9efOMb3wAAbNq0KVVDy3i47q1Op8PIyAgAYHR0FPPnz0/V8DKa7u5udHV14dZb\nbwUAHDlyBM8++ywAoKGhAa+++iqam5tTOMLMJPq+btmyBTRNAwDMZjPOnDmj+HuqBjmDuffee9HX\n14df/epX+PTTT3Hu3Dl885vfVA1ynITf13/6p3/C/v378eKLL6KoqAhbtmxBQUFBqoeYsYTfW51O\nh2tHJ60AAALcSURBVPvvvx95eXnIz8/Ht771rVQPLyP58Y9/jH/+53/Gjh07AATDA6yLurCwUO1J\nHyPR99VgMAAAfD4ftm7dikceeUTx91QNcgbz1ltv4ZNPPsF3vvMdlJSU4Kmnnkr1kLKC8Pvq9/sx\nb948PProo/j3f/93/PrXv8bjjz+e6iFmLOH31mKx4N/+7d+wbNky/PjHP8bWrVvxwAMPpHqIGcWO\nHTuwdOlSzJ49m/P3qjJybPDdV5/Ph8ceeww333wzVqxYofj7qgY5Azl9+jQKCwtRUlKC6667DhMT\nE+jq6go19ujv78f999+PN998M8UjzSyi76vP5wNBELjhhhsAAKtXr8bPf/7zFI8yM+G6t0eOHMGy\nZcsAACtXrsR///d/p3iUmce+fftw6dIl7Nu3D319faAoCgaDAS6XC3q9HlevXkVxcXGqh5lxcN3X\nmTNnYseOHSgvL8ejjz6akPdVDXIGcuzYMfT09ODJJ5/E4OAg/H4/9uzZA4II5ug1NjaqxjgGou+r\nw+HAvffeiwMHDmDDhg04c+YM5s2bl+phZiRc97aqqgpdXV2orKzEqVOnUF5enuphZhwvvfRS6N8/\n//nPUVpaitbWVuzcuRNf+MIX8N5772HNmjUpHGFmwnVfBwcHodPpQjkliUDt9pSBuFwuPPnkk+jt\n7YXL5cKjjz6KxsbG0O8bGxuxZ8+eFI4wM+G6rytWrMDjjz+OgYEBGAwG/PjHP0ZRUVGqh5pxcN3b\ngoICvPDCC9DpdMjPz8fzzz+PvLy8VA81Y2ENx+rVq/H444+DYRjMmjULP/zhD6HT6VI9vIyFva9v\nv/02GIaB0WgEAFRUVOCZZ55R9L1Ug6yioqKiopIGqHXIKioqKioqaYBqkFVUVFRUVNIA1SCrqKio\nqKikAapBVlFRUVFRSQNUg6yioqKiopIGqAZZRUVFRUUlDVANsoqKioqKShqgGmQVFRUVFZU04P8H\nsT4xNso3Y7kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "6N0p91k2iFCP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Try creating some synthetic features that do a better job with latitude.**\n", + "\n", + "For example, you could have a feature that maps `latitude` to a value of `|latitude - 38|`, and call this `distance_from_san_francisco`.\n", + "\n", + "Or you could break the space into 10 different buckets. `latitude_32_to_33`, `latitude_33_to_34`, etc., each showing a value of `1.0` if `latitude` is within that bucket range and a value of `0.0` otherwise.\n", + "\n", + "Use the correlation matrix to help guide development, and then add them to your model if you find something that looks good.\n", + "\n", + "What's the best validation performance you can get?" + ] + }, + { + "metadata": { + "id": "wduJ2B28yMFl", + "colab_type": "code", + "cellView": "form", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Train on a new data set that includes synthetic features based on latitude.\n", + "#\n", + "def select_and_transform_features(source_df):\n", + " LATITUDE_RANGES = zip(range(32, 44), range(33, 45))\n", + " selected_examples = pd.DataFrame()\n", + " selected_examples[\"median_income\"] = source_df[\"median_income\"]\n", + " for r in LATITUDE_RANGES:\n", + " selected_examples[\"latitude_%d_to_%d\" % r] = source_df[\"latitude\"].apply(\n", + " lambda l: 1.0 if l >= r[0] and l < r[1] else 0.0)\n", + " return selected_examples\n", + "\n", + "selected_training_examples = select_and_transform_features(training_examples)\n", + "selected_validation_examples = select_and_transform_features(validation_examples)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "QLAdwUIHe8CL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 618 + }, + "outputId": "c2c3d5ec-38d4-4811-87cb-6df212e217ad" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=selected_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=selected_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 228.20\n", + " period 01 : 218.01\n", + " period 02 : 207.90\n", + " period 03 : 197.89\n", + " period 04 : 188.01\n", + " period 05 : 178.25\n", + " period 06 : 168.66\n", + " period 07 : 159.25\n", + " period 08 : 150.04\n", + " period 09 : 141.10\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8VFX+//HXnZIySWbSk5kE0iB0\nQgtVQFQgNBFF1obo7rq7uqyuuj/Ld9Xv7upXXduuuou9VxSxYENZLBQhhFAS0oAEEkjPpBfS7u8P\nIAsCkztA4Cb5PB+PfTx2MnNmzuR9Ln5y7z3nKKqqqgghhBBCdCOG890BIYQQQgh3SQEjhBBCiG5H\nChghhBBCdDtSwAghhBCi25ECRgghhBDdjhQwQgghhOh2TOe7A0Lo2YABA+jbty9GoxGAtrY2EhMT\nue+++7BYLKf9vh988AGLFi064ecrV67k3nvv5fnnn2fatGkdP29qamLixInMmDGDRx999LQ/V6v8\n/Hwefvhh8vLyAPD29mbp0qVccsklXf7Z7li2bBn5+fkn/E42b97Mr371KyIjI09o8/XXX5+r7p2R\nAwcOcPHFFxMTEwOAqqoEBwfz5z//mcGDB7v1Xk8++SQOh4Orr75ac5tPP/2UFStW8NZbb7n1WUKc\nK1LACNGJt956i/DwcACam5u5/fbbeeGFF7j99ttP6/3Kysp4+eWXT1rAANjtdj7//PPjCpjvvvsO\nq9V6Wp93Ov70pz8xf/58nn/+eQB27NjBkiVL+Oqrr7Db7eesH2fCbrd3m2LlVIxG43Hf4csvv+T3\nv/89q1evxsPDQ/P73HnnnV3RPSHOK7mEJIQbPDw8mDx5MpmZmQAcOnSIBx54gJkzZzJr1iweffRR\n2traAMjKyuKqq64iKSmJ+fPns27dOgCuuuoqCgsLSUpKorm5+YTPGDVqFJs3b6axsbHjZ19++SWT\nJk3qeNzc3MxDDz3EzJkzueiiizoKDYBt27Zx+eWXk5SUxOzZs9m4cSNw+C/6Cy64gDfffJN58+Yx\nefJkvvzyy5N+z5ycHBISEjoeJyQksHr16o5C7l//+hdTp07lsssu48UXX+Siiy4C4J577mHZsmUd\n7Y593Fm/Hn74Ya677joAtm7dyhVXXMH06dNZtGgRBQUFwOEzUX/84x+ZNm0a1113HcXFxZ0kdnIr\nV65k6dKlLFmyhMcee4zNmzdz1VVXcdttt3X8x/6rr75i7ty5JCUlcf3115Ofnw/As88+y3333cfC\nhQt5/fXXj3vf2267jVdffbXjcWZmJhdccAHt7e384x//YObMmcycOZPrr7+ekpISt/s9e/Zsmpqa\nyM3NBWD58uUkJSVx0UUXcccdd9DU1AQc/r0/8sgjzJs3j6+++uq4HE41Ltvb2/nb3/7GhRdeyMKF\nC8nKyur43OTkZBYsWMDs2bOZNWsWX331ldt9F+KsU4UQpxQfH68WFRV1PK6qqlKvvfZaddmyZaqq\nquoLL7yg3nTTTWpLS4va2NioXnHFFeonn3yitrW1qbNmzVJXrVqlqqqq7ty5U01MTFRra2vVTZs2\nqZdccslJP++jjz5S7777bvVPf/pTR9va2lr14osvVj/88EP17rvvVlVVVf/1r3+pS5YsUQ8dOqTW\n19erl112mbp27VpVVVV17ty56ueff66qqqp+/PHHHZ9VUFCgDh48WH3rrbdUVVXVL7/8Up0+ffpJ\n+/GHP/xBnTZtmvrGG2+oe/bsOe657OxsdcyYMWppaana0tKi3nzzzeq0adNUVVXVu+++W/33v//d\n8dpjH7vq15AhQ9SVK1d2fN/ExER1/fr1qqqq6qpVq9QFCxaoqqqqb7/9tnrttdeqLS0tqtPpVKdN\nm9bxOzmWq9/x0d/ziBEj1Ly8vI7XDxs2TN24caOqqqp68OBBdfTo0eq+fftUVVXVV155RV2yZImq\nqqr6zDPPqBdccIFaUVFxwvt+8cUX6rXXXtvx+Omnn1YffPBBNScnR50xY4ba3Nysqqqqvvnmm+rH\nH398yv4d/b0MGjTohJ8nJiaqe/fuVbds2aJOmDBBLS4uVlVVVe+//3710UcfVVX18O993rx5alNT\nU8fjf//73y7H5ffff6/OmDFDraurUxsbG9WFCxeq1113naqqqnr55ZermzdvVlVVVfPy8tQ77rjD\nZd+FOBfkDIwQnVi8eDFJSUlcfPHFXHzxxYwfP56bbroJgO+//55FixZhMpnw8vJi3rx5bNiwgQMH\nDlBeXs6cOXMAGDZsGA6Hg7S0NE2fOWfOHD7//HMA1qxZw7Rp0zAY/nu4fvfdd1xzzTV4eHhgsViY\nP38+33zzDQCffPIJs2bNAmD06NEdZy8AWltbufzyywEYMmQIhYWFJ/38xx9/nGuvvZZVq1Yxd+5c\nLrroIt577z3g8NmRxMREQkJCMJlMzJ07V9N3ctWvlpYWpk+f3vH+YWFhHWec5s6dS35+PoWFhaSk\npDB9+nRMJhMBAQHHXWb7uaKiIpKSko7737H3ykRHRxMdHd3x2MvLiwkTJgCwYcMGxo0bR1RUFABX\nXnklmzdvprW1FTh8RiowMPCEz7zwwgvJyMigqqoKgG+//ZakpCSsVitOp5NVq1ZRXV3N4sWLueyy\nyzT93o5SVZXly5cTFhZGdHQ0a9euZfbs2YSFhQFw9dVXd4wBgAkTJuDp6Xnce7gal1u2bGHq1Kn4\n+Pjg5eXVkRVAUFAQn3zyCXv37iU6Oponn3zSrb4L0RXkHhghOnH0Hhin09lx+cNkOnzoOJ1ObDZb\nx2ttNhsVFRU4nU78/PxQFKXjuaP/EQsODu70MydNmsR9991HVVUVX3zxBbfcckvHDbUAtbW1PPLI\nIzz11FPA4UtKw4cPB2DVqlW8+eab1NfX097ejnrMdmdGo7Hj5mODwUB7e/tJP9/T05Nf/epX/OpX\nv6Kmpoavv/6ahx9+mMjISKqrq4+7HycoKKjT76OlX76+vgDU1NRQUFBAUlJSx/MeHh44nU6qq6vx\n8/Pr+LnVaqW+vv6kn9fZPTDH5vbzx5WVlcd9Rz8/P1RVpbKy8qRtj7JYLEycOJHvv/+e0aNHU1NT\nw+jRo1EUhWeffZZXX32VBx98kMTERP761792ej9RW1tbx+9BVVX69evHsmXLMBgM1NbW8u2337J+\n/fqO51taWk75/QCX47K6uprQ0NDjfn7Uww8/zHPPPceNN96Il5cXd9xxx3H5CHE+SAEjhEaBgYEs\nXryYxx9/nOeeew6A4ODgjr+2AaqqqggODiYoKIjq6mpUVe34j0VVVZXm/9ibzWamTZvGJ598wv79\n+xk5cuRxBUxoaCi//OUvTzgDUVJSwn333ceHH37IoEGD2LdvHzNnznTrezqdTjIzMzvOgFitVhYt\nWsS6devIycnBz8+P2tra415/1M+Lourqarf7FRoaSmxsLCtXrjzhOavVesrPPpuCgoLYtm1bx+Pq\n6moMBgMBAQGdtp05cybffvstlZWVzJw5syP/8ePHM378eBoaGvj73//OE0880emZjJ/fxHus0NBQ\nFixYwN133+3W9zrVuHT1uw0ODub+++/n/vvvZ/369fzhD39g8uTJ+Pj4aP5sIc42uYQkhBtuvPFG\ntm3bRnJyMnD4ksGKFStoa2ujoaGBTz/9lKlTpxIZGUl4eHjHTbKpqamUl5czfPhwTCYTDQ0NHZcj\nTmXOnDm89NJLJ526fPHFF/Phhx/S1taGqqosW7aMH3/8EafTicViITY2ltbWVpYvXw5wyrMUJ9PU\n1MStt97acXMnwP79+9mxYwdjxoxh5MiRpKSk4HQ6aW1t5ZNPPul4XUhISMfNnwUFBaSmpgK41a+E\nhATKysrYsWNHx/v8v//3/1BVlREjRrB27Vra2tpwOp38+OOPmr+XOyZNmkRKSkrHZa7333+fSZMm\ndZx5c2XatGls27aNNWvWdFyGWb9+PX/9619pb2/HYrEwcODA486CnI6LLrqIb775pqPQWLNmDS++\n+KLLNq7G5ciRI1m/fj2NjY00NjZ2FE4tLS0sXryY0tJS4PClR5PJdNwlTSHOBzkDI4QbfH19+c1v\nfsPf//53VqxYweLFiykoKGDOnDkoikJSUhKzZs1CURSeeuop/vd//5d//etfeHt78/TTT2OxWBgw\nYAA2m41Jkybx8ccf43A4TvpZY8eORVEUZs+efcJz11xzDQcOHGDOnDmoqsrQoUNZsmQJFouFKVOm\nMHPmTIKCgrjnnntITU1l8eLFPPPMM5q+o8Ph4LnnnuOZZ57hoYceQlVVfH19uffeeztmJv3iF79g\nwYIFBAQEMGPGDHbv3g3AokWLWLp0KTNmzGDw4MEdZ1kGDhyouV9eXl4888wzPPjgg9TX12M2m7nt\ntttQFIVFixaRkpLCJZdcgsPh4JJLLjnurMGxjt4D83OPPfZYp7+D8PBwHnroIW655RZaWlqIjIzk\nwQcf1PT78/X1ZciQIWRnZzNixAgAEhMT+eKLL5g5cyYeHh4EBgby8MMPA3DXXXd1zCRyx5AhQ/jd\n737H4sWLaW9vJygoiL/+9a8u27gal9OmTeP7778nKSmJ4OBgpk6dSkpKCmazmYULF3LDDTcAh8+y\n3XfffXh7e7vVXyHONkU99kK0EEK4KSUlhbvuuou1a9ee764IIXoROQcohBBCiG5HChghhBBCdDty\nCUkIIYQQ3Y6cgRFCCCFEtyMFjBBCCCG6nW45jbqs7OTTJs+GgAALlZUNXfb+4vRJNvokueiXZKNf\nko02ISF+p3xOzsD8jMlkPN9dEKcg2eiT5KJfko1+STZnTgoYIYQQQnQ7UsAIIYQQotuRAkYIIYQQ\n3Y4UMEIIIYTodqSAEUIIIUS3IwWMEEIIIbodKWCEEEII0e1IASOEEEL0MN9//x9Nr3v66ScpLDx4\nyufvueeOs9Wls04KGCGEEKIHKSoqZM2a1Zpee9ttd+JwRJzy+Ucffepsdeus65ZbCQghhBDi5J56\n6u9kZu5i8uREZsyYRVFRIf/85zIeeeRvlJWV0tjYyC9/+RsmTZrM0qW/4Y477uK77/5DfX0d+fn7\nOXjwALfeeicTJkxizpyL+eKL/7B06W9ITBxHamoKVVVV/P3v/yA4OJi//e1+iouLGDZsOGvXruHj\nj788Z99TChghhBCii3ywdg9bskpP+LnRqNDWpp7WeyYODGXRRf1O+fzVVy9m5coPiImJIz9/H8uW\nvUxlpZOxY8cza9ZcDh48wP3338OkSZOPa1daWsITTzzDpk0b+fTTj5gwYdJxz/v4+PD008/x3HPP\n8uOPa3E4ImluPsSLL77Ohg3r+OCD907r+5wuKWCOUV7VSH5FA30CvVEU5Xx3RwghhDgjgwYNAcDP\nz0pm5i4++2wlimKgpqb6hNcOHz4CgNDQUOrq6k54PiFhZMfz1dXV7N+fx7BhCQBMmDAJo/Hc7u8k\nBcwxPv9pHz/uKGJIdABLkgYS7O99vrskhBCiG1t0Ub+Tni0JCfGjrKy2yz/fbDYD8O23X1NTU8O/\n//0yNTU1/PrXi0947bEFiKqeeHbo58+rqorBcPhniqKc8z/85SbeY8y/IJbRA0PZta+S+19JZk1K\nAe0nCVEIIYTQK4PBQFtb23E/q6qqwm53YDAY+OGHtbS0tJzx50RERJKdnQFAcvKmEz6zq0kBc4wA\nP0/+99fjuWnuYExGhXfX7ObRt1MpLK8/310TQgghNImKiiE7O4v6+v9eBrrwwovYuHEdt912M97e\n3oSGhvLaay+d0edMnDiZ+vp6br75V+zYsQ2r1XamXXeLop7sPJHOdeVpt6On9Wrqm3nn2xy2ZJVi\nMipcOimGpHF9MRml5jtfztUpV+EeyUW/JBv96gnZ1NRUk5qawoUXXkxZWSm33XYz77770Vn9jJAQ\nv1M+J/fAnILVx4ObLxvKuJwy3vomm5U/5pKSVcqNswcRFX7qX6gQQgjRG1gsPqxdu4Z3330LVW3n\nD384t4veyRmYnzlZVdzQ1MLytXtYt7MIg6KQNK4vl06KxsN8bu+47u16wl8sPZHkol+SjX5JNtq4\nOgMj10M0sHiZuXH2IP501QgCrZ58uWk///vaFnIKqs5314QQQoheSQoYNwyODuTBX41j+pg+lDob\nePSdVN7+JpvGQ63nu2tCCCFEryIFjJs8PYxcfUl//mfxaOxBFtamHuSBVzaTlltxvrsmhBBC9BpS\nwByjoaWBgupCTa+Ni7DxlxvHMm9iNFV1zfzjgx28/HkGdY1nPrdeCCGEEK5JAXOMj/d8wZ1fP8g7\nmR/S0NLY6evNJgMLpsRy/5IxRIX7sTG9mPte2kTKSfa9EEIIIfRk4cJ5NDQ08NZbr5OevvO45xoa\nGli4cJ7L9t9//x8AvvxyFT/88F2X9fNUpIA5xsV9pxDlH8nGoi08tPkJdpSla2rXN8yP+64fzZXT\n4mhsbmPZJ+n8e2UaVXWHurjHQgghxJlZvPgGhg4d7laboqJC1qxZDcDs2fOYOnVaV3TNJVkH5hjh\nPmE8Mv0e3tv6OV/lfcuLaW8yMnQ4i+LnY/VwvfaL0WBg1rgoRvYP4fWvstiaU0bm/kp+cXE/Lhhm\nl80hhRBCnBO//OW1PPzwk4SHh1NcXMS9995JSEgojY2NNDU1cfvt/4/Bg4d2vP7//u8vXHjhxYwY\nMZI///kumpubOzZ2BPjmm69YsWI5RqOB6Og47r77zzz11N/JzNzFa6+9RHt7O/7+/lxxxS9Ytuxp\n0tJ20NraxhVXLCIpaQ5Ll/6GxMRxpKamUFVVxd///g/Cw8PP+HtKAfMzJoORpOiLGBEyhLczV7Ct\ndCc5zj1c0X8eY8NHdVqIhAdauOuakfywvZAPv9vDa19mkZxRIptDCiFEL7Ryz+dsK0074edGg0Jb\n++ktwzYydBiX95t7yuenTJnGhg0/csUVi1i37gemTJlGXFx/pky5kK1bt/DOO2/wf//3+AntVq/+\nitjYOG699U7+859vOs6wNDY28uSTz+Ln58fvf38Te/fu4eqrF7Ny5QfceONNvPLKCwBs355Kbu5e\nnnvuVRobG1my5CqmTLkQAB8fH55++jmee+5ZfvxxLYsWXXNa3/1YcgnpFMJ9wrhj9M1c2X8+LWor\nb2YuZ9mOV3E2VXba1qAoTBsZwUO/Hsew2KCOzSG/TSmg/TQHrBBCCKHF4QJmHQDr1//ABRdM5Ycf\n/sPNN/+K5557lurq6pO227cvl6FDEwAYOXJ0x8+tViv33nsnS5f+hv3786iuPvkaaFlZGYwYMQoA\nb29voqNjKSgoACAhYSQAoaGh1NXVnbS9u+QMjAsGxcCFfSYxLHgQ72Z9RIYzm4c2P8n8uNlMjhiP\nQXFd/wVavfjjlcPZlFHCe2t2896a3WzJLOWGWQNxBPuco28hhBDifLm839yTni3pypV4Y2PjqKgo\no6SkmNraWtat+57g4FDuv/9BsrIy+Ne//nnSdqoKBsPhqwxH/9huaWnhqace4/XX3yUoKJi77vrj\nKT9XURSOXdu/tbWl4/2Mxv+uXH+2NgCQMzAaBHkHsnTEr7lu0CIMipEPcj7hn6nPU1Lf+WwjRVGY\nMCSch349jrGDQtlzsJq/vJbMqo37aG1rPwe9F0II0dtMmHABL764jMmTp1JdXUVERCQAP/zwHa2t\nJ198tW/fKLKyMgFITU0BoKGhHqPRSFBQMCUlxWRlZdLa2orBYKCtre249gMHDmHbtq1H2jVw8OAB\nIiP7dtVXlAJGK0VRmGAfw/3j/sSIkGHsrd7Hw1v+yTf7vqOtva3T9lYfD343fyh/uHwYPt5mPv4x\nlwffSGF/seyFIYQQ4uyaOnUaa9as5sILLyYpaQ7Ll7/D7bf/niFDhlJRUcEXX3x2QpukpDns2pXG\nbbfdTEHBfhRFwWbzJzFxHL/+9fW89tpLXHPNYp555imiomLIzs7imWee7GifkDCCAQMG8vvf38Tt\nt/+e3/1uKd7eXXfvp2zm+DNaT+ttK01jec7H1DbX0cfXwbWDrqSPX4Smz2hoauGD7/bw447Dm0PO\nHNeH+ZNiZHPITsjmZ/okueiXZKNfko02rjZzNP7lL3/5y7nrytnR0NDcZe/t4+Op6f3tPmFMsCdS\n21xHhjObjUVbaG1vJdYWhdHguhAxm4yM6B9C/0gb2QVV7NxbwZbsMvqG+hJk8zpbX6XH0ZqNOLck\nF/2SbPRLstHGx8fzlM9JAfMz7gwqD6OZhJAhxFqj2F2VS3pFJtvK0oj0jSDQy7/T9iH+3kxJcNDc\n0k7a3grWpxVR09BMfKQ/ZpNc3fs5OeD1SXLRL8lGvyQbbaSAccPpDKoQSxAT7WNpbmsmoyKbTUUp\n1LU0EGeLwWRwPdHLZDQwLDaIoTGB7C2sIW1vBZsyigkP9CEs0HImX6XHkQNenyQX/ZJs9Euy0UYK\nGDec7qAyGUwMCRrIgID+5FbvZ1dFFluKtxHuE0qIJbjT9oFWLyYPd6AA6blOftpVTGllIwP6+su9\nMUfIAa9Pkot+STb6JdloIwWMG850UAV6+TPRnghAhjOb5OJUKhqd9POPxcNodtnWaFAYFBXAyP4h\n5BXVkJ7nZENaEUE2bxxBll6/HYEc8PokueiXZKNfko02rgqYLp2F9Nhjj7F161ZaW1v57W9/y7Bh\nw7j33ntpbW3FZDLx+OOPExISwmeffcYbb7yBwWBg0aJFXHnllS7fVw+zkLQoqC3knawPKag9iJ+H\nL7+IX8DI0GGa2ra1t/PNlgI+WZdHS2s7o+JDuG5GPP6+pw6zp5O79vVJctEvyUa/JBttXM1C6rIC\nZtOmTbzyyiu89NJLVFZWsmDBAsaNG8fUqVOZPXs277zzDgcPHmTp0qUsWLCAFStWYDabWbhwIW+/\n/Tb+/qe+Cba7FDAAbe1t/KfgR77I+5bW9lZGhAxlUfxl2DytmtqXOBt47asscgqqsHiaevXmkHLA\n65Pkol+SjX5JNtqcl2nUdrud6dOnYzab8fDw4IUXXuC1115jwIABGAwGDhw4QE5ODjabjYqKCubN\nm4fJZCIrKwtPT09iYmJO+d56voT0cwbFQJx/DKNCh3OgtohMZw4bi7bgZ/Yl0tfRaSHi621m4rBw\nbL6e7MpzkpJVxp6D1fSP9MfHy/UlqZ5GTrnqk+SiX5KNfkk22py3S0hHLV++nJSUFB5//PDul21t\nbSxZsoTf//73lJeXk5aWxv/8z/8A8M9//hO73c4vfvGLU75fa2sbJlP3u7G1XW1nzd51vL3jY5pa\nDzE8bBC/SbyWUJ8gTe3LKhtZ9tEOUjJL8PQwcv3sQcyZFIvR0PvOxgghhOjdunwzxzVr1rBixQpe\nffVV4HDxctdddzF+/HgmTJjAqlWrjnu9lnqqsrKhS/oKXX9ab6RtFFFjY3gveyU7SzK546u/cWls\nElMjJ3a6OSTAzZcOZlO/IN5bs5uXPkln7ZZ8bpw1qFdsDimnXPVJctEvyUa/JBttXF1C6tLV0tat\nW8fzzz/PSy+9hJ/f4U7ce++9REVFsXTpUuDw1trl5eUdbUpLSwkNDe3Kbp13gV4B3DL8lywZfBVm\ng4kVuz/jqa3PUVxf0mnbn28OufdgjWwOKYQQotfpsgKmtraWxx57jBdeeKHjhtzPPvsMs9nMrbfe\n2vG6hIQE0tLSqKmpob6+ntTUVMaMGdNV3dINRVEYGz6K+8f9idGhCeTV7OeR5H/y9b7/uLc55BX/\n3Rzyb6+nsK+45hz0XgghhDi/uuwemOXLl/Pss88edzNuYWEhVqsVX19fAOLi4vjLX/7C119/zSuv\nvIKiKFx33XVceumlLt+7O81C0mpH2S6WZ6+kurmWCF871w28kr7WSE1te8vmkHLKVZ8kF/2SbPRL\nstHmvEyj7ko9sYABaGhp5OM9X7CxKBkFhUv6TmV2zPROF8A7KmOfk9e/yqK8uomwAG9umDWQAX0D\nurjX544c8PokueiXZKNfko02shu1G87n1Daz0czwkMHE2aLZW5V3eHPI0p1E+NoJ8u68EDm6OWRL\n69HNIYupqW8mvk/P2BxSph3qk+SiX5KNfkk22shWAm7Qw6AK9g5iomMsLe0t7KrIZlNxCrXNdcT5\nx2DWsDnk0GM3h8yt4KddxYQFWgjv5ptD6iEbcSLJRb8kG/2SbLSRAsYNehlUJoORwUEDGBQ4gNya\n/WRUZJFcnEqYJYRQS0in7Y9uDmlQDm8OuWlXCUUV9cT38cfTo3veG6OXbMTxJBf9kmz0S7LRRgoY\nN+htUAV42ZjoGIsBhQxnDsklqZQ1lB/ZHNLDZVujQWFgVACj40PYX1JLep6T9WlF+Pt6Ehni0+22\nI9BbNuIwyUW/JBv9kmy0kQLGDXocVEbFQHxAHMNDhpBfc5AMZzabilII9PLH7hPWaSFi9fHggmF2\nfLzMpOdVsCWrlLyiWvpH2rB0o+0I9JiNkFz0TLLRL8lGGylg3KDnQWX18GOCIxEvkyeZzhy2lu6g\noK6Qfv4xeJm8XLZVFIW4CBvjBodRVF5Pep6TH3cU4eVhJNpu7RZnY/ScTW8mueiXZKNfko02UsC4\nQe+DSlEUYm3RjApNoLDuyOaQhVvwNVvo4xfRaSHi42VmwpBwQvy9ydjnJDWnnF37nMRF2LBaXF+S\nOt/0nk1vJbnol2SjX5KNNlLAuKG7DCofs4Vx4aPx97SR6dzNtrI09lTlEWeLwcfseraRoij0DfNj\n0jA7zpom0vOcrNtRiArERdgw6HRzyO6STW8jueiXZKNfko02UsC4oTsNKkVR6GuNZJx9FGWN5WQ6\nc9hQmIzZYCba2qfTszFeHkYSB4bSN8yXrP2VbN9TwbbdZUSFWwnwO/WgOV+6Uza9ieSiX5KNfkk2\n2kgB44buOKi8TF6MDh1BmE8o2ZV72FG+iwxnNjHWKPw8fDttbw/yYfJwB/VNLaTlOlm3s5DGQ630\nj/THZNTPAnjdMZveQHLRL8lGvyQbbaSAcUN3HVSKouDwDWeCPZHqQzVkOLPZWJhMm9pOjC0Ko+K6\nEDGbDIzoF8zAvv7kHKhm594KNmeUEBHiQ4i/9zn6Fq5112x6OslFvyQb/ZJstJECxg3dfVB5GD0Y\nETqMKL9Icqr2kl6RyfaydPqEtHzQAAAgAElEQVT4RRDg5d9p+2Db4e0I2lSV9FwnG9KLqahuIr6v\nPx6m87sAXnfPpqeSXPRLstEvyUYbKWDc0FMGVaglhImOsTS1NrGrIotNRSnUtzQQZ4vB1Ml2BEaj\ngSHRgST0CyavsIa0PCcb0ooJtnnhCPY5R9/gRD0lm55GctEvyUa/JBttpIBxQ08aVGaDiaHBgxgQ\n0I/c6n3sqsgipWQ74ZZQQizBnbb39/XkguF2PMwG0nOdbM4soaC0jv6R/nh7ui6CukJPyqYnkVz0\nS7LRL8lGGylg3NATB1WgVwAT7WMB2OXMJrk4lfLGCvrZYjrdjsBgUIjv40/ioFAKSusOT7neWYSf\nxUzfMN9zugBeT8ymJ5Bc9Euy0S/JRhspYNzQUweV0WBkQGA/hgcPJr/2QMd2BAGeNuw+4Z0WIr7e\nZiYOC8fm68muPCcp2WXkFFTRL9KGr/e52Y6gp2bT3Uku+iXZ6Jdko40UMG7o6YPK6unHBPsYvExe\nHdsR5NcepJ9/DN4atiOIsVuZMCSc0srGjgXwTEYDMQ4/DF18NqanZ9NdSS76Jdnol2SjjRQwbugN\ng8qgGIi1RTM6dASF9SVHtiNIxtvkrWk7Am9PE2MHheII9iFjfyXbdpezc28FsXYrNt+uWwCvN2TT\nHUku+iXZ6Jdko40UMG7oTYPq8HYEowjwCiCrcjfby9LIqdxLrC0KXw/Xs40URSEixJfJwx1U1TV3\n3BvT0tpO/0gbRsPZXwCvN2XTnUgu+iXZ6Jdko40UMG7obYNKURT6+EUwLnw0FU2VZDqz2VCUjIJC\njLUvhk4WwPMwGxk9IIRYh5Xs/Ep27K0gJauMPqG+BNlcX5JyV2/LpruQXPRLstEvyUYbKWDc0FsH\nlZfJk9FhCUT42smp3ENaeQY7yzPo6xeJv6et0/ZhARamJDg41NxGWm4F69OKqGloJj7SH7Pp7JyN\n6a3Z6J3kol+SjX5JNtpIAeOG3j6own1CmWgfS31Lw5HtCLbQ1HqIOP9ojAbXK/GajAaGxQUxJCaQ\nPQerSct18tOuYsIDLYQHut4hW4veno1eSS76Jdnol2SjjRQwbpBBBWajmeEhg+nvH8OeIwvgbS3Z\njsMnnGDvwE7bB1q9mJLgwKBAeq6Tn3aVUOJsoH8ffzzNp78dgWSjT5KLfkk2+iXZaCMFjBtkUP1X\nkHcgkxxjaVPb2FWRzebirVQ1VdHPPwaz0fXaL0aDwsCoAEbFh7CvuJb0PCfrdxbh7+dJZIjPaS2A\nJ9nok+SiX5KNfkk22kgB4wYZVMczGowMCoxnaNAg9tXkk+E8XMgEeQVi9wnrtL3Vx4PJw+1YvMyk\n51WwJbOUvKJa4iP9sXi5tx2BZKNPkot+STb6JdloIwWMG2RQnZzN08pE+1jMBjMZzhxSSrZzsK6I\nfv4xeJlcr/2iKApxETbGDQ6jsLyeXXlOftxZiLeHiWi7n+azMZKNPkku+iXZ6Jdko40UMG6QQXVq\nBsVAP/8YRoUM40Bd0eEF8IqS8TFb6OPb+QJ4Pl5mJgwJJ9jmTeY+J1tzysjYX0m/CBt+Ftd7MoFk\no1eSi35JNvol2WgjBYwbZFB1ztfDh3H20dg8/chy7mZbWRp7qvKItUXjY3Y920hRFPqG+TFpaDgV\nNYdIz3Xy445CAOIibBgMpy6CJBt9klz0S7LRL8lGGylg3CCDShtFUYiy9mFs+CjKGsuPbEewGaNi\nJNrap9MF8Lw8TCQODKVPqC+Z+ZVs31PBtt1lRNutBPidfMBKNvokueiXZKNfko02UsC4QQaVe7xN\nXowOHUG4TyjZlXvYWZ7Broosoqx9sXn6ddreHuTDlOF26hpbSct1sm5nIU3NrfSP9MdkPL4Ikmz0\nSXLRL8lGvyQbbaSAcYMMKvcpioLDN5wJjkRqm+sOL4BXlExLewtxts4XwDObjIzoH0x8H392H6hm\n594KkjNLiAj2IcTfu+N1ko0+SS76Jdnol2SjjRQwbpBBdfo8jB4khAwlxtqXPVV5pFdkklq2k0hf\nB4FeAZ22D/H3ZkqCg7Z2lZ25FWxML6aipon4Pv54mIySjU5JLvol2eiXZKONFDBukEF15kIswUy0\nj6WlrYWMimx+KtpCTXPt4QXwDK7XfjEaDQyJCSShXxC5hTWk5zrZmFZMiL8X/foGSjY6JMeMfkk2\n+iXZaOOqgFFUVVXPYV/OirKy2i5775AQvy59/94mr3o/72StoKi+BH9PG1cNWMCw4MGa2ra2tbM6\nOZ9P1++jta2dCcPsLJwSe8qbfMX5IceMfkk2+iXZaBMScup7KeUMzM9IVXx2BXj5M9ExFoNiIKMi\nmy0l2yipL6WffyyeRtdrvxgMCvF9/BkzMIQDpXXs2FPOup1F+Hib6BumfQE80bXkmNEvyUa/JBtt\n5AyMG6Qq7jqFdcW8m7WCvJp8fEwWrug/j7HhozQVIu2qSupeJ6+tSqfxUBvxkTaWzBqIPcjnHPRc\nuCLHjH5JNvol2WgjZ2DcIFVx1/Hz8GW8fQw+ZguZlTmklu4kryafOFs0FrO3y7aKopAwIIyEmEAq\nqptIz9O+AJ7oWnLM6Jdko1+SjTZyE68bZFB1LUVRiLH1JTFsJMUNpWQ6c9hQlIyn0YMoa6TLszE+\nPp60t7YxdlAYkSG+ZB1ZAC91dxlRYX4EWr3O4TcRR8kxo1+SjX5JNtpIAeMGGVTnhsXsTWLYSIK9\ng8h27mFHeTqZzhxirH3x8/A9aZtjs3EEH14Ar6Hp8AJ463cWUdfYQv9IG2aT61WAxdklx4x+STb6\nJdloIwWMG2RQnTuKohDp52C8fQyVTVVHtiNIpl1tJ8YWhVFxvRKv2WQkoV8wg6IC2HOwmrTcCjZl\nFBMaYCE80PWeTOLskWNGvyQb/ZJstJECxg0yqM49T6MHI0OH09cvgt1VuaRVZLK9LJ2+fhEEePl3\nvO5U2QTZvJiSYEdBIT3XyaZdJRRV1NO/jz9eHq5XARZnTo4Z/ZJs9Euy0UYKGDfIoDp/wiwhTHSM\npbG1iYyKLH4qSqG+pYE4Wwwmg8llNkaDgUFRAYyKDyG/pJb0PCfrdxbiZzHTN9RXplx3ITlm9Euy\n0S/JRhspYNwgg+r8MhtMDA0exICAfuytzmNXRTYpJdsJt4QSHezoNBurjwcXDLPjZ/EgfZ+TlKwy\ndh+opl+kDV9v8zn6Fr2LHDP6Jdnol2SjjRQwbpBBpQ+BXgFMso9FBTKc2SQXp1JcV0a0bxQenSyA\npygKsQ4rE4eEU+Js6JhybTQoxNitMuX6LJNjRr8kG/2SbLSRhezcIIsL6c+B2kLeyVpBfu0BfMwW\nFva/lMSwkZouC6mqypasUt79Noeahhb6hvpyw+yBRIdbz0HPewc5ZvRLstEvyUYbVwvZSQHzMzKo\n9KmtvY2Uqq28v/NTmttbGBQYz1UDLifYO1BT+7rGFj74bg/rdxahKDB9TB8WTI7FU27yPWNyzOiX\nZKNfko02shKvG+S0nj4ZFAMj+w5kkN9gSo4sgLexcDNmg5kov0gMiuu1XzzMRkb2DyE+0sbuA9Xs\nzK1gc0YJ9mALoQEy5fpMyDGjX5KNfkk22sg9MG6QQaVfPj6e0GwkMWwkIZZgcir3sqN8F7sqsoiy\n9sXmeepK/agQf2+mJDhoU1XSc51sTC+mtLKR+D42PM1yNuZ0yDGjX5KNfkk22kgB4wYZVPp1NBtF\nUYjwtTPBnkhtcx0Zzmw2FiXT3NZMrC0Ko8F1IWI0GhgSHciI/sHkFR+dcl2Ev58nkSE+MuXaTXLM\n6Jdko1+SjTZSwLhBBpV+/TwbD6MHCSFDibVGsacqj/SKTLaWbMfuE0awd1Cn72fz9WTycDsWTxO7\n9jnZkllKbmEN/SNtWLxkyrVWcszol2SjX5KNNlLAuEEGlX6dKpsQSxATHWNpVVvJqMhmc/FWKhqd\nxPnHdDrl2qAo9IuwMW5wGMUVh6dc/7CjEA+TgRi7Vc7GaCDHjH5JNvol2WgjBYwbZFDpl6tsTAYj\ngwLjGRo0iPyaAjKcOWwqSiHA04bdJ7zTQsTHy8z4IWGEBVjI3F9J6u5ydu6tIMZuxeZ76gNIyDGj\nZ5KNfkk22kgB4wYZVPqlJRubp5UJ9kQ8jZ5kOneztXQH+2oLiLPFYDF7u2yrKAp9Qn2ZNNxOdd2h\nIwvgFdHc2k6/CBtGo+xyfTJyzOiXZKNfko02UsC4QQaVfmnNxqAYiPOPZkzYCIrrD0+53lCUjIfR\nTJS1T6dnYzzNRkYPCCXOYSXnQBU79laQnFVKRIgvIf6ui6DeSI4Z/ZJs9Euy0UYKGDfIoNIvd7Ox\nmC2MDR9FsHcQ2c497CjfRUZFNtG2vlg9Op9yHRpgYUqCg5bWdtJyK9iQVkxFTRPxffzxMMmU66Pk\nmNEvyUa/JBttpIBxgwwq/TqdbBRFIdLPwXj7GKoP1ZDhzGZDYTIt7S3E2qI7nXJtMhoYGhvE8Lgg\n8opqSM91siGtmECrJ45gmXINcszomWSjX5KNNudtL6THHnuMrVu30traym9/+1uGDRvGXXfdRVtb\nGyEhITz++ON4eHjw2Wef8cYbb2AwGFi0aBFXXnmly/eVrQR6p7ORza6KbN7PXomzqZIQ7yCuGXgF\n8QH9NLVtbWvnmy0FfLo+j5bWdkb0C+a6GfEEWr3OqE/dnRwz+iXZ6Jdko8152Qtp06ZNvPLKK7z0\n0ktUVlayYMECJkyYwJQpU5g1axZPPfUU4eHhXHbZZSxYsIAVK1ZgNptZuHAhb7/9Nv7+/qd8bylg\neqezlU1T6yG+yPuG7wrWo6Iy0Z7Ign5zsJi1bSlQUtnAG19lkZVfhaeHkYVT45g2KgJDLz0bI8eM\nfkk2+iXZaHNe9kKy2+1Mnz4ds9mMh4cHL7zwAqWlpTzwwAMYjUa8vLxYtWoVoaGhVFRUMG/ePEwm\nE1lZWXh6ehITE3PK95ZLSL3T2crGZDAxOGgAQ4IGsq+mgAxnNpuKUwjw9MfuE9bpZSFfbzMTh4YT\nZPMic18lW3PK2LXPSZzDitXH9bozPZEcM/ol2eiXZKONq0tIXTYv1Gg0YrEc/ot2xYoVTJkyhcbG\nRjw8Dv8DHxQURFlZGeXl5QQG/ndH4cDAQMrKyrqqW0J0iLL24e4xtzI/dhZNrU28uusdnt/5OpVN\nVZ22VRSFycMdPHTTeMYOCmXvwRr+8toWPlmXS0tr+znovRBC9G6mrv6ANWvWsGLFCl599VVmzJjR\n8fNTXbnSckUrIMCCqQtngbg6ZSXOr67I5tqwS7l44HheTHmX9NJMHkrO5eph85nZbyoGg+saPyQE\n7v/1BJIzinluxQ4+27CP1N3lLL1yBENiO9/OoKeQY0a/JBv9kmzOTJcWMOvWreP555/n5Zdfxs/P\nD4vFQlNTE15eXpSUlBAaGkpoaCjl5eUdbUpLSxkxYoTL962sbOiyPst1Sf3qymyMePO7Ib9kU2AK\nK/d8zmvbPuD7vZu4ZuBCHL7hnbaPCfHhr78cy8ofclmbeoB7/r2eC0dGsHBqHBavLv874bySY0a/\nJBv9kmy0cVXkddklpNraWh577DFeeOGFjhtyJ06cyOrVqwH45ptvmDx5MgkJCaSlpVFTU0N9fT2p\nqamMGTOmq7olxCkpisIERyL3j/8To0MTyKvJ55Et/2RV7mpa2lo6be/taeLaGfHcu3g0EcE+fL/t\nIPe9vInUHLkkKoQQZ1uXzUJavnw5zz777HE34z766KPcd999HDp0CIfDwSOPPILZbObrr7/mlVde\nQVEUrrvuOi699FKX7y2zkHqnc51Nenkm72d/TOWhKsIsIVw94Ar6B8Rqatva1s6Xm/bz+cZ9tLap\njI4P4Zrp8QT49bx9leSY0S/JRr8kG23OyzTqriQFTO90PrJpam1iVe5qfjiwERWVSY5xXBY3u9N9\nlY4qqqjn9a+y2H2gGm9PE1dOi2NKgqNHTbmWY0a/JBv9kmy0OS/TqLuSTKPunc5HNiaDiSFBAxkU\nOIB9NflkOLNJLt5KoFcg4ZbQTqdc+1k8mDTMjr+vJxn7nGzNLiMrv4q4CCt+lp4x5VqOGf2SbPRL\nstFGthJwgwwq/Tqf2QR42ZjkGIvJYCbDmUNKyXYO1BXRzz8GL5PrlXgVRSHabmXiUDvl1U1Hdrku\nRFUh1mHDaOjeZ2PkmNEvyUa/JBttpIBxgwwq/Trf2RgUA/38YxgVOpzCumIynTlsLEzG2+RNH7+I\nTs/GeHuaGDsojMgQH7Lzq9i+p4Kt2aX0CfUlyNZ9tyM437mIU5Ns9Euy0UYKGDfIoNIvvWTja/Zh\nbPgoArxsZFXuYXtZGtmVe4ix9cXPw7fT9o5gHyYPd9DY3Ep6rpP1aUVU1R2if6StW+5yrZdcxIkk\nG/2SbLSRAsYNMqj0S0/ZKIpCX79IxoWPwXmoiswju1y3q+3E2KIwKq5XKDCbDCTEBTMkJpDcohrS\nuvEu13rKRRxPstEvyUYbKWDcIINKv/SYjZfJk1Ghw+nj62B3VS5pFZlsL00j0tdBoNepNyQ9KtDq\nxZQEBx5mA7vynCRnlrKvuJZ+kTYsXuZz8A3OnB5zEYdJNvol2WgjBYwbZFDpl56zCfMJZaJjLE2t\nh8hwZvNT0RZqmmvp5x+N2eC6EDEYFOL7+DN2UCiF5fXsynPyw45CzCYDMXY/3U+51nMuvZ1ko1+S\njTauChhZB+ZnZG6+fnWXbHKr9/NO1gqK60uweVj5xYDLSAgZqqmtqqr8tKuY9/+zh7rGFqLC/Fgy\nawDR4dYu7vXp6y659EaSjX5JNtrIOjBukKpYv7pLNgFe/oenXCtGMp3ZbCnZTmFdEXH+0ZqmXPcJ\n9eOC4XZq65tJOzLluvFQK/0ibZiMXbb7x2nrLrn0RpKNfkk22sglJDfIoNKv7pSNQTHQPyCWkaHD\nOVhXSKYzh5+KtmAxeRPp5+j0Jl1Ps5FR8SH0j7Sx52A1O/dWsGlXMWEBFsIDLefoW2jTnXLpbSQb\n/ZJstJECxg0yqPSrO2bj6+HDOPtobJ5Wspy72V6WRk7lXmJsUfh6+HTaPsTfmykJDlAgPdfJT7tK\nOFheT/9IG14e+tjlujvm0ltINvol2WgjBYwbZFDpV3fNRlEUoqyRjLOPwtlUeWQBvM20o2qacm00\nGhgUFcjo+BAKSuuOrORbhI+Xib7hfud9ynV3zaU3kGz0S7LRRgoYN8ig0q/uno2XyYvRYQlE+NrZ\nXZlLekUm20rTcPiEE+Qd0Gl7q48Hk4bbsR2zr1LG/kpi7VasPudvX6XunktPJtnol2SjjRQwbpBB\npV89JZvwI1OuD7UdIqMim03FKVQ1VR+ecm10PeVaURRijuyr5Kz5775KrW0q/SKsGA3n/ibfnpJL\nTyTZ6Jdko41Mo3aDTG3Tr56YTV51Pu9lf8TBuiL8zL4s7D+P0WEjNF8W2r67nLe/zcZZc4iwAG+u\nTxrIoKjOz+acTT0xl55CstEvyUYbmUbtBqmK9asnZhPgZWOifSyeRk8ynTlsLd1BXk0+sbZoLGbv\nTtuHB1mYkuCguaWdtLwKNqQVU17dSHwffzzM52ZfpZ6YS08h2eiXZKONXEJygwwq/eqp2RgUA3H+\n0YwJG0FJQxmZzhw2FG7GqBiJtvbB0MlNviajgWGxQQyPC2JfUQ3peU7W7SzC39eTyJCu31epp+bS\nE0g2+iXZaCMFjBtkUOlXT8/GYraQGDaSUEsIOZV72Fmewc7yDPr4ReDvaeu0fYCfJ5MT7Hh7mNi1\nz8mWrFL2HqymX4QNH++u21epp+fSnUk2+iXZaCMFjBtkUOlXb8hGURQifO1MdIylvqX+8L5KhVuo\na2kg1haN2eB67ReDotAv0sb4wWEUOxtJP7KvkkGBWIcVg+Hsn43pDbl0V5KNfkk22shNvG6QG6v0\nqzdms7tyL+9lr6SkoQx/TxuL4ue7ta/SlqxS3v02h5qGFiJDfFiSNJC4iM7P5rijN+bSXUg2+iXZ\naCM38bpBqmL96o3ZBHkHMtExDgMKmc4ctpRs52BtIbG2aLw17KsUEeLL5AQH9Y2tpOU6Wb+ziNqG\nZvpH+mM2nZ0p170xl+5CstEvyUYbuYTkBhlU+tVbszEqBuID4hgZOpzC+qIjK/km42n0pK81stOb\ndD1MRkb0D2ZQVAB7C6tJy3Xy065igm3eOII7386gM701l+5AstEvyUYbKWDcIINKv3p7Nr4ePowL\nH02glz/ZlXvYUZ5OhjObKL8+WD1PfZr1qCCbF1MSHBgNCul5FWzOKCG/pJb+kTa8PU9/X6Xenoue\nSTb6JdloIwWMG2RQ6Zdkc/iyUB+/CMbbx1B9qObw2ZiiZJrbmom1RWE0uF77xWhQGNg3gDEDQzlQ\nVs+uIyv5epqNRIdbT2vKteSiX5KNfkk22shNvG6QG6v0S7I5UUZFNu9nf0xFk5Mgr0CuGrCAwUED\nNLVtV1XW7yziw+/2UN/USozdyg2zBtIn1NetPkgu+iXZ6Jdko43cxOsGqYr1S7I5UYglmEmOsbSr\n7WQ4s0kuTqW0oYw4/2g8jaf+ywWO7JId7sekYXaq6g4d3ldpeyGHWtvoF2HDZNR2k6/kol+SjX5J\nNtrIGRg3SFWsX5KNawdqC3k3+yP21xRgMXlzWb/ZTLAndrqS71FpuRW8tTqb8uomgm1eXJ80gKEx\nQZ22k1z0S7LRL8lGGzkD4wapivVLsnHN6unHBHsivh4+ZDt3s60sjd1Ve4mxRuHr0flso7CAw/sq\ntbWrpOc62ZheTImzgf6R/nh6nPreGslFvyQb/ZJstJGbeN0gg0q/JJvOKYpCtLUvY8NHUdFUeWTK\n9Wba1XZibFEYNeyrNCQmkBH9g9lXXHtkX6VC/LzN9A3zPelNvpKLfkk2+iXZaCMFjBtkUOmXZKOd\nt8mL0WEJRPra2V2VR1pFJttKd+LwCSfIO7DT9jZfTyYPd+DjbWbXvkpSssvIKagi1mHFz+Jx3Gsl\nF/2SbPRLstFGChg3yKDSL8nGfeE+oUx0jOVQWzMZFdlsKk6hsqmKOP8YPIyuN3hUFIU4h42JQ8Ip\nrTy8r9KPOwpRVYh12DAe2VdJctEvyUa/JBtt5CZeN8iNVfol2ZyZfTX5vJv1EQfrivAz+3JF/3mM\nCRuhae0XVVVJzSnj7W9zqK5rxh5kYUnSQOL7+EsuOibZ6Jdko43cxOsGqYr1S7I5M/6eNibax+Jp\n9CTTmUNq6Q7yavKJtUVhMVtctlUUBUewD1OGO2hsbiU918n6tCKq6g4xvH8IrS1t5+hbCHfIMaNf\nko02cgbGDVIV65dkc/aUNzp5P3slmc4czAYzs2Mu4eI+UzpdyfeoPQereePrLA6W1ePv58kvpvVj\n7KDQ01rJV3QdOWb0S7LRxtUZGClgfkYGlX5JNmeXqqpsLdnOit2rqG2pI8LXztUDriDG1ldT+9a2\ndlYn57Nqwz6aW9sZEhPI4hnxhAa4Ppsjzh05ZvRLstFGChg3yKDSL8mma9S3NPDJni/ZWJSMgsLk\niAlcGpeEt8lLU/tWxcDT76eyK8+J2WRg3sRoksb11bySr+g6cszol2SjTZfcA7Nv3z78/f1Pt09n\nRO6B6Z0km67hYTQzPGQw8f5x5NXkk+HMYnPRVoK8Awn3Ce20fViIL8OjA7AH+ZCVX8X2PeVszSkj\nMsSXIJu2Ikh0DTlm9Euy0cbVPTAu/0S68cYbj3u8bNmyjv//wAMPnGG3hBB60j8glnvH/pE5MdOp\nb6nnpbQ3eWHnG1Q2VXXaVlEUxg0O4+GbxnHhyAgKy+t59J1UXv8qk7rGlnPQeyFEb+OygGltbT3u\n8aZNmzr+fze88iSE6ITZYGJ2zHT+Z+zt9PePZWf5Lh7c/ATfFaynXW3vtL3Fy8z1MwfwP4tHExni\nw487ivjzS5v4Kb1Y/s0QQpxVLguYn88oOPYfIJltIETPFeYTym0jf8u1A6/EqBhZsfsznkj5NwW1\nhZra94uw8cANiVw5LY5DzW289HkGT7y/nWJnQxf3XAjRW7h1l50ULUL0HoqiMNGRyAPj/x+JYSPZ\nX1vAYynPsHLP5xxq6/zavcloYNa4KB769TiGxwWRub+SB15J5rP1ebS0dn42RwghXDG5erK6upqf\nfvqp43FNTQ2bNm1CVVVqamq6vHNCiPPPz8OXG4Zczbjw0byfvZL/5P/I9tI0fjHgcoYEDei0fbC/\nN7ctHM7W7DLeWZPDJ+vz2JRRwvUzBzAwKuAcfAMhRE/kchr14sWLXTZ+6623znqHtJBp1L2TZHP+\nNbc189W+/7Am/wfa1XZGhybw2wnX0FKr7exsQ1MrH/+Yy9rUA6jApKHhLLqo3wkbRIqzQ44Z/ZJs\ntJF1YNwgg0q/JBv9OFhXxLtZH7GvJh8fszeXxs5iomMsBkXbVem8ohre+DqL/JI6fL3NXDktjguG\n2eUy9Vkmx4x+STbauCpgXP5rU1dXx+uvv97x+P3332f+/PnceuutlJeXn7UOCiG6lwhfO3eOvoVF\n8ZfRrqq8l72Sf6Q+x8G6Ik3tY+xW7l8yhqsu6kdLazuvfZnFY+9uo6iivot7LoToKVwuZHfPPfdg\nMpmYOHEieXl53HnnnTz00ENYrVbee+89kpKSzmFX/0sWsuudJBt9URSFaGsfZg2ZwsHKMjKdOWwo\nTKa5rZkYWxSmTvZVMigKcRE2Jg4Np6yqkfQ8Jz9sL6S1TSXOYcUoK/meMTlm9Euy0ea0F7IrKCjg\nzjvvBGD16tUkJSUxceJErrrqKjkDI4QAINDbn18PvY6bh99IgKeNb/O/5/82P0l6eaa29lYv/nDF\ncP5w+TCsPh58vnEfD7yazK59zi7uuRCiO3NZwFgs/92ULTk5mfHjx3c8lmvVQohjDQ0exH3j7mRG\n1DQqD1Xz3M7XeDntLaoOVWtqPzI+hId+PY4ZiX0oq2rkyfe38+Jnu6iul79ShRAnclnAtLW1UVFR\nQX5+Ptu2bWPSpEkA1PntAS8AACAASURBVNfX09jYeE46KIToPjyMHsyPm8W9iX8k1hbFtrI0Htz0\nBN8XbNC0kq+3p4mrLu7PA0sSiQ73Y1NGCX9+cRPfbz9Ie/ebbyCE6EIuC5ibbrqJ2bNnM2/ePG65\n5RZsNhtNTU1cc801XHbZZeeqj0KIbsbhG87to27mmgFXYFAMfLj7Ux5P+Rf5tQc0tY8K9+O+68dw\n7fR42lWVN7/O5tG3UzlQVtfFPRdCdBedTqNuaWnh0KFD+Pr6dvxs/fr1XHDBBV3euVORadS9k2Sj\nT53lUttcx0e7P2dLSSoKChdGTmJu7Ay8TNp2qq6sPcR7a3JIyS7DaFCYObYv8yZF42l2fZOwkGNG\nzyQbbU57HZjCQtf7njgcjtPv1RmQAqZ3kmz0SWsuWc7dLM/+mNLGcvw9bVzZ/1ISQoZqvp9ux55y\n3v4mh4qaJoJtXlw3YwDD44LOtPs9mhwz+iXZaHPaBczAgQOJiYkhJCQEOHEzxzfffPMsdlM7KWB6\nJ8lGn9zJpaWthdX7v+Pb/d/RqrYxNGgQi+IvI8hb25YCh5rb+GxDHquTC2hXVRIHhnL1Jf3x9z31\nVMveTI4Z/ZJstDntAubTTz/l008/pb6+njlz5jB37lwCAwO7pJPukAKmd5Js9Ol0cimpL+W97JXs\nrsrFw2Bmdsx0LuozGWMna8ccVVBax5tfZ7G3sAZvTyNXTI3jwhERGAwyO/JYcszol2SjzRlvJVBU\nVMTHH3/MqlWriIiIYP78+UyfPh0vL23XsM82KWB6J8lGn043F1VVSS5OZeWez6lrqSfC187VAy4n\nxhalqX27qvLj9kI+/H4vjYdaibFbWZI0gL5hp/4Hr7eRY0a/JBttzupeSB9++CFPPPEEbW1tpKSk\nnHHnTocUML2TZKNPZ5pLXUs9n+75ko1FW1BQmBQxjvmxs7CYvTW1r647xPtr97A5owSDojA9MZL5\nF8Tg5WE67T71FHLM6Jdko80ZFzA1NTV89tlnrFy5kra2NubPn8/cuXMJDQ09qx3VSgqY3kmy0aez\nlcueqjzey15JcX0Jfh6+LOw3j9FhIzTf5JueV8Fbq7Mpq2oiyOrJtdMHMKJ/8Bn3qzuTY0a/JBtt\nTruAWb9+PR999BHp6enMmDGD+fPnEx8fr/mDc3JyuOWWW7jhhhu47rrr2LJlC0899RQmkwmLxcJj\njz2GzWbj5Zdf5uuvv0ZRFJYuXfr/27vv+DirO+/7n2tmNOoz6t3qxdiWe++4UGzcjW2MDc+d3PvK\n3mzuJ8tN2PAiEGDZTV5Osq/dO8CGkuTZBNbY2IBtMO6494KLZKvLRb2Neh3NPH/YOIBj6RpjSWek\n3/s/K3NdOpPvOebn65zrHGbMmNHlfaWAGZgkGzXdz1zsDjv7rh9ix9W9dDjsPBCUysrUJYT66Hvb\nqL2jk8+PX2XHiet0OpyMTg1l9ZwUgix9M93d12TMqEuy0ed7vYUUHx/PiBEjMBju3PPuV7/61V1v\n3NzczI9+9CPi4+NJS0tjzZo1LF26lN/+9rckJiby9ttvYzAYePTRR/nJT37Chg0baGxsZPXq1Wzf\nvh2j8e6L+aSAGZgkGzX1RC5VLdVszN7C5ZpsPAwmHomfzZzYGZgM+qaFiqua+MvOLHKL6vA0G1k6\nLZHZY2IG3CJfGTPqkmz06aqA6fJvg69fk7bZbAQGfvs1x6KirnfUNJvNvPfee7z33nu3fxYYGEht\nbS0AdXV1JCYmcvLkSaZNm4bZbCYoKIjo6Gjy8vJIS0vr+lsJIfqtEO9gnhnxA85VXGRz7jY+K9jF\n6bKvWJW2lJTAxG6vjw7x5WdPjubIxVI27c/jw325HMso4+lH04iPsPTCNxBC9LQun8CcOXOGZ599\nlra2NoKCgnjnnXeIi4vjgw8+4N133+XQoUPd/oI33niDwMBA1qxZQ35+PmvWrMFisWC1Wlm/fj1/\n+MMf8Pb25umnnwbg+eefZ9GiRV3u9Gu3d2IyyS6cQgwEze0tfHhpK7vzDuHEycyESawZsRSLp1/3\nF3Nzke+fPsvkyzM3MGgwf2oiax4ZjI+XRw+3XAjRk7p8AvPv//7v/Nd//RdJSUns27ePX/ziFzgc\nDqxWK5s2bXL5l73++uu8+eabjBkzhnXr1rF+/fo7PqPnpSibrdnl362XPNZTl2Sjpt7IZWHsfIYH\npLM+62MOFB7ndNEFliQ/xsSIMboW+a6Zk8KY5GD+sjuHzw4XcOR8MavnpDA6NVT3ImF3JGNGXZKN\nPl1NIXV5mKPBYCApKQmA2bNnU1xczFNPPcWbb75JeHi4yw3Jzs5mzJgxAEyePJmMjAzCwsKoqqq6\n/Zny8vI+e7tJCKGueEssPxv7/7I0+TE6HHY+uPIR//erdyhrqtB1/QPxQfzzD8axaGoCDc3tvPVp\nBm98fImqupYebrkQoid0WcB8918mkZGRzJ07955/WUhICHl5eQBcunSJuLg4Jk6cyIEDB2hvb6e8\nvJyKigqSk5Pv+XcIIfovo8HI7NjpvDzhOYaHDCW3toBfnvp3Pi/YRUdnR7fXe5iMLJqawGs/GM/g\n2ADO51Xx0h9OsvPkdTodjl74BkKI+8WlnZ5cedSakZHBunXrKC4uxmQysWvXLl577TVeeuklPDw8\nsFqt/PKXv8RisbBixQrWrFmDpmm8+uqrf/ONJyGE+FqQVyA/Gv40Fyoz+ChnKzuu7uNM+XlWpS1l\ncFBKt9dHBvvy/BOjOJZRxsYv8/hofx7HM8t46pE0kqKsvfANhBDfV5eLeNPT0wkO/uv+C9XV1QQH\nB+N0OtE0jQMHDvRGG+8gr1EPTJKNmvo6l1Z7K9sL97D/xhGcOBkbPpJlKQuwmPUdKdDY0sFH+/M4\ncrEUDZg5KpqlMxLx7QeLfPs6G3F3ko0+97wPTHFxcZc3jo6OvvdWfQ9SwAxMko2aVMnlRkMxH2Z9\nwrWGG3ibvFmU9ChTosZj0PQ90c2+buMvu7IprW7G4uPBilnJTBoa4daLfFXJRtxJstHnvp6FpAIp\nYAYmyUZNKuXicDo4XHyCbfk7ae1sJcESxxODlxLtF6nrenung92nb7DtSCHtdgeDYwNY81AaUSG+\nPdzynqFSNuLbJBt9uipgjK+++uqrvdeU+6O5ub3H7u3r69mj9xf3TrJRk0q5aJpGvGUQEyJHU9tW\nx5WaHI6WnKKts41EazwmQ9f7RxkMGikxAUwcGk5lbSsZhTUcPF9Ch91BUrQVk9G91ueplI34NslG\nH19fz7v+b/IE5jukKlaXZKMmlXPJrM5mY/anVLfWEOQVyIrURaSHDNF9/Ve5lazfk0N1fRvBFi+e\nnJvqVgdEqpzNQCfZ6CNPYFwgVbG6JBs1qZxLmE8IU6LG48TJ5ZpsTpd/RUljGUkB8XiZuj/gMTLY\nlxkjonE6IbOwhhOXy7lW1kBStMUtdvJVOZuBTrLRp6snMFLAfId0KnVJNmpSPRejwcjgoBRGhg6j\nuLGUKzU5HCs5hdloJs4S0+0iXZPRwJD4IMakhVFS2UTm1RoOXijBYNBIiLQofUCk6tkMZJKNPjKF\n5AJ5rKcuyUZN7pSLw+ngeOlptuR9QbO9hVj/aJ5IW0asJUbX9U6nk+OZN/eOaWjuICrEl7UPpZIW\nG9j9xX3AnbIZaCQbfWQKyQVSFatLslGTO+WiaRqx/jFMihxHfXsDl289jWnuaCHRGofJ0PXenpqm\nMSjMn+kjomhp6ySjoJojl8qorG0hOdqKp1mtQ2bdKZuBRrLRR57AuECqYnVJNmpy51yya/LYkPMJ\nFc1VBHhaeTxlISNCh+ne+6WgpJ73d2VzrbwBH08Ty2YmMWNkFAZF9o5x52z6O8lGH3kC4wKpitUl\n2ajJnXMJ8Q5iSuR4DAYjV6qzOVNxnusNRSRY4/Dx8O72+kB/T6aPiMLP24Mr122cza7kUkEN8RH+\nBPjd/V+OvcWds+nvJBt9ZBGvC6RTqUuyUZO752I0GEkNTGJ0+AhKmypu7R1zAoA4SyzGbnby1TSN\nxCgrU9IjqW1sJ6OwhkMXSmhs6SA52oqHqe/2jnH3bPozyUYfmUJygTzWU5dko6b+lIvT6eRs+Xk+\nzvuc+vYGwnxCWJm6RNcBkV/LvFrDB7tzKK9pxuprZtXsFMY/ENYnRxL0p2z6G8lGH5lCcoFUxeqS\nbNTUn3LRNI0ov0imRI2nrbODK9U5nCw7S0VzJYnWOLxM3U8LhQV4M2NEFB5GjcyrNk5dqSCvuI7E\nKCt+3r27d0x/yqa/kWz0kSkkF0inUpdko6b+mIuHwYOhwYMZFvIARY0lt48kMBs9iPWP7vaASKNB\nIy02kAlDwimvaSGzsIaD54uxdzpJirJg7KUjCfpjNv2FZKOPTCG5QB7rqUuyUVN/z8XhdHCs5BRb\n83fQbG9hkF8UK9OWkmCN1XW90+nkXE4l6/fmYmtoIzTAiyfnpjE8KbiHW97/s3Fnko0+MoXkAqmK\n1SXZqKm/56JpGrGWm3vHNLY3cbkmm+Olp6ltqyfRGo/Z2PW0kKZpRIX4MmNkFPZOBxkFNo5nllFU\n2UhytBVvz673nvk++ns27kyy0UeewLhAqmJ1STZqGmi55NUWsiH7E0qbyvHz8GVx8nwmRozRvUi3\nqKKRv+zOJq+oDk8PI4umJjBnbEyPnHQ90LJxJ5KNPvIExgVSFatLslHTQMslyCuQKVET8DJ5kWXL\n5auKi2Tb8oi1xGAx3/0v269ZfM1MSY8k2OJF1vVavsqt4qvcSmLC/Ai2dH/ApCsGWjbuRLLRRxbx\nukA6lbokGzUNxFwMmoFEazwTIkZT02q7vci3tbOVBIu+IwniIvyZNiKKptYOLhXUcORiKdX1rTeP\nJPC4P0cSDMRs3IVko49MIblAHuupS7JRk+QCGVVX2JSzlarWGgI8rSxPWchIF44kyCuq4y+7simq\nbMTXy8TjDyYzdXjk9z6SQLJRl2Sjj0whuUCqYnVJNmqSXCDMJ5QpURMwaBpZNTmcqTjP1YYbJFji\n8PXw6fb6IIsX00dG4utp4vK1m0cSXL5qIz7SgtXXfM/tkmzUJdnoI1NILpBOpS7JRk2Sy003jyRI\nZnT4CMqbKrlSk8ORkpM4nQ7iLbEYDV1PCxk0jaRoK5OHRlBT33rzSILzJTS32Um6xyMJJBt1STb6\nyBSSC+SxnrokGzVJLndyOp2cq7jIx7nbqGtvIMw7hBVpi3kgKFX3PS4VVPPB7mwqa1sJ9Pfkidkp\njEkLdelIAslGXZKNPjKF5AKpitUl2ahJcrnTzSMJIpgcNYEORweXq7M5VXaOsqbyW0cSdP+2UXig\nDzNGRGEwaGQW1nDySgUFpfUkRll0H0kg2ahLstFHppBcIJ1KXZKNmiSXu/MwmBgSnEZ6yFCKG0u5\nUpPDsZJTeBg9iPWP6f5IAqOBwXGBjH8gnLLqJjILbRw8X4LT6SQxyoLR0PX1ko26JBt9ZArJBfJY\nT12SjZokF30cTgfHS0+zNW8HTfZmov0iWZW2hERrvK7rnU4np7Mq+HBfLnWN7YQHerPmoTSGJgTd\n9RrJRl2SjT4yheQCqYrVJdmoSXLRR9M0Yv1vHknQ1NH81yMJWutIDIjDbOz6bSNN04gO9WPGiCja\n7Z1kFNZwLKOM0uomku5yJIFkoy7JRh+ZQnKBdCp1STZqklxcYzaaGR46lMGBKVyrv3G7kPH18CHa\nL7LbRboeJgPpicGMTA7hRkXjzbeVLpRgNhmJj/T/1t4xko26JBt9pIBxgXQqdUk2apJc7k2QVwBT\nosbjbfIm25bLV5WXyLblEmcZpOtIggA/T6YOjyTA35OsazbO5VZxIbeKQWF+BN06kkCyUZdko48U\nMC6QTqUuyUZNksu9u3kkQRzjI0Zja6u7fSRBi72FRKu+IwniIyxMTY+kobmdjMKbRxLUNraRHG0l\n0Oot2ShKxo0+sojXBbKwSl2SjZokl/snszqbj3K2UNVSjdVsYXnqQkaFpuve+yX7uo33d+dQUtWE\nn7cHP1w4jPT4gO99JIG4/2Tc6NPVIl4pYL5DOpW6JBs1SS73V0dnB7uvH2D3tf3YHXYeCEplReoi\nwnxCdV1v73Sw5/QNth4tpL3DQXKMlTVzU4kN735aSvQeGTf6SAHjAulU6pJs1CS59IyK5ko+ytnK\nlZocTAYTD8XO5KG4B/Ew6tvErrqulU+PFnLsYimaBrNGx7BkWgI+XvquFz1Lxo0+8hq1C2ReUl2S\njZokl57h6+HLuPBRRPpFkF9byKXqK5ypuECYTyhhPiHdXu/jZeLhyYlEBnhRUFLPpYKb62P8fczE\nhPm5dCSBuP9k3Ogji3hdIJ1KXZKNmiSXnqNpGpG+4UyJGo/dYedKTQ6nys5R2lhGgjUO726OJPD1\n9cTP08iMkdF4ehi4fNXGmexKLl+zERfuj9Xv7v9xED1Lxo0+UsC4QDqVuiQbNUkuPc9060iCEaF/\nPZLgSMlJTAYjcf6D7nokwdfZGA0aqYMCmHTrpOvMwhoOXiihsaWD5GgLHqauT8oW95+MG33kLSQX\nyLykuiQbNUkuvcvhdHCy9Cyf5m+nqaOZKN8IVqUtJSkg/o7P3i2bjIJq/ntPDuW2Fiw+Hjz+YDKT\nh0XItFIvknGjj6yBcYFUxeqSbNQkufQuTdMY5B/NpKhxtNhbbu/kW9NqI8ka/60jCe6WTVigDzNG\nRmM2/XVa6YpMK/UqGTf6yBSSC6RTqUuyUZPk0jfMRjPpIUN4ICiV6w1FXKnJ4XjJaXxM3sT4R6Fp\nWpfZfD2tNHFoODX1bWTcmlZqaukgSaaVepyMG31kCskF8lhPXZKNmiSXvtfp6ORQ8XE+L9hFa2cb\n8ZZYVqUtYXTiYN3ZyLRS75Jxo4/sA+MC6VTqkmzUJLmoo7atjk9yP+dsxQU0NB5JmcnsyJl4m7x1\nXd9hd7Dr1HU+P3aVdruDlBgrT8omeD1Cxo0+UsC4QDqVuiQbNUku6rlSk8NH2VuoaKnC3+zHkqT5\njI8YrftpSlVdCxv35XE2pxJNg9mjY1g8LREfr67PZhL6ybjRRwoYF0inUpdkoybJRU0dDjsnqk/w\nceYOOhwdJFrjWZm6mBj/KN33uHRrWqnC1oLF18zjM5NkWuk+kXGjj7yF5AJZWKUuyUZNkouajJqB\nsfFDGeo/FFtb7a2Trk/S2NFMgiVO15EE4d96W6nm9ttK8REWrL7mbq8XdyfjRh95C8kF0qnUJdmo\nSXJRl6+vJ852A2PCR5BoieNqw3UuV2dzovQMvmZfov26f5ryzbeVquvbyCys4dD5EhpbO0iKsuJh\n+tub6ImuybjRR95CcoE81lOXZKMmyUVd382mw2Fn//XD7Li6l3ZHBwmWOFamLWaQf7Tue353WmnF\ng0lMGirTSq6ScaOPTCG5QKpidUk2apJc1PXdbIyagaSABCZEjMHWVndrWukUDe1NJFpjXZpW8jAZ\nuHK1htNZMq10L2Tc6CNPYFwgVbG6JBs1SS7q6i6brJpcPsrZQnlzJX4evixKmsfEyDF3PVvpu6rq\nWtiwL49zOZUYNI1ZY6JZPFXeVtJDxo0+8haSC6RTqUuyUZPkoi492dgddvbfOMIXV/fS3tlOgiWW\nFWmLifWP0f17ZFrJdTJu9JEpJBfIYz11STZqklzUpScbg2YgKSCeCRGjqb01rXSs5BT17Y0kWOMw\n3+O0UtY1G3EyrXRXMm70kSkkF0hVrC7JRk2Si7ruJZusmlw25WylrLkCXw8fFiU9yqTIcTKtdJ/J\nuNFHppBcIJ1KXZKNmiQXdd1rNnaHnQNFR/micA9tne3EWQaxMnUxcZZBuu9xMb+a9Xv/Oq208sFk\nJg4Nl2mlW2Tc6CNTSC6Qx3rqkmzUJLmo616zMWgGEq3xTIgcQ317w61ppdPUtdXfmlbqflooPMiH\nGSOj8DAZb00rVZB1620li0wrybjRSaaQXCBVsbokGzVJLuq6X9nk2PLYmLOVsqZyfE0+LEx6hMlR\n4+95Wmn2mBgWTU0Y0NNKMm70kSkkF0inUpdkoybJRV33M5tOR+ftaaXWzjZi/WNYmbaYeEus7nt8\nc1rJ6mtmxQCeVpJxo49MIblAHuupS7JRk+SirvuZzc1ppTgmRo69Pa10vOQ0ttY6Eu9hWunyAJ9W\nknGjT5+dhZSTk8PKlSsxGAwMHz6cjo4O/umf/on33nuP7du3M2vWLLy8vNi2bRsvvvgimzdvRtM0\nhg4d2uV9pYAZmCQbNUku6uqJbLxMnowMSyc1IJHrDUVcrsnmWMkpvE1eDPKP1nG2koG0QQFMHBJO\nVV0rmVdtHDxfQlOrfUCdrSTjRp8+KWCam5t5/vnnSU9PJyQkhOHDh7NhwwZaW1t58803aW9vp7a2\nloiICJ577jnWr1/P8uXL+fnPf868efPw8vLq4t5SwAxEko2aJBd19WQ2wd5BTIkaj4+HDzm2PM5X\nZpBZfYVovygCvazdXu/j5cGEIeEkRFrIL67jUkE1Ry+VYvUzExPq2++nlWTc6NMnBYymaTz22GNk\nZ2fj7e3N8OHD+d3vfsdTTz1FeHg4w4YNIzExkTNnzlBdXc2CBQswmUxkZWXh6elJQkLCXe8tBczA\nJNmoSXJRV09nY9AMJNyeVmq8+bZS6SlqW2tJsMbh6cq0ktHA5au2m9NK12uJj/Tv19NKMm706aqA\n6bFndSaT6Y6nKMXFxRw6dIi1a9fy7LPPUltbS1VVFUFBQbc/ExQURGVlZU81SwghxH1m9bTw/wxd\nxbOj/xdRvhEcKz3Nayd+w6GiYzicjm6v9zAZWTAlgX/5nxMYlRJCzo1aXv3TaTbsy6Wlzd4L30C4\no159h83pdJKQkMCPf/xj/vM//5N33nmHIUOG3PGZ7gQG+mAyGXuqmV2uehZ9S7JRk+Sirt7MJjR0\nOOOThrIr7yAbMz5jY84WTlWc5YdjVpEakqjjen/+OSWMM1fKeffTS+w+fYPTWRX8YMFQZoyO6XfT\nSjJuvp9eLWBCQkIYN24cAFOnTuWNN95g5syZVFVV3f5MRUUFI0eO7PI+Nltzj7VRXm1Tl2SjJslF\nXX2VzbjAcaRNGMyWvC84WXaWl/b9homRY1mcNA9/s1+318eF+PDq/xjLzpPX+fz4Nf5t/Tk+O1zA\nk3NTGRTW/fXuQMaNPl0Veb263Hv69OkcPnwYgMzMTBISEhgxYgSXLl2ivr6epqYmzp07x9ixY3uz\nWUIIIe4zi9mfp4as5P+MfoZov0hOlJ7htRO/4UDRUTodnd1e//W00r9+c1rp/zvFf+/OobGloxe+\ngVBdj21kl5GRwbp16yguLsZkMhEeHs5vf/tb/vVf/5XKykp8fHxYt24dISEh7Ny5kz/+8Y9omsaa\nNWtYuHBhl/eWjewGJslGTZKLulTJptPRyeGSE3xesIsWeyvRfpGsTF1CUkC87ntcKqhm/d5cymua\n8fP2YOmMRKYPj8JgcM9pJVWyUZ3sxOsC6VTqkmzUJLmoS7VsGtob2ZL/BSdKzwAwIWIMi5PnYTHr\nWwti73Sw90wRW48W0tbeSWy4H0/OTSUlJqAnm90jVMtGVVLAuEA6lbokGzVJLupSNZuCumt8lP0p\nNxpL8DJ68VjiQ0yPnoTRoO/ljNrGNjYfyOdYRhkAk4aGs3xmMoH+d3/lVjWqZqMaKWBcIJ1KXZKN\nmiQXdamcjcPp4EjxCbYV7KLF3kK0XyQrUheTHHD3PcC+K6+4jv/ek8O1sgY8zUYWTo5nzthBbrGb\nr8rZqEQKGBdIp1KXZKMmyUVd7pBNQ3sj2/J3cKz0NADjI0azOGk+Vk9900oOh5Mjl0rZfCCfxpYO\nwgO9eWJOKsOTgnuy2d+bO2SjAilgXCCdSl2SjZokF3W5UzaFddfYmLOFGw3FeBm9mJ84lxnRk3VP\nKzW1drD1cCFfnivG4XQyIimYVXNSCA/06eGW3xt3yqYvSQHjAulU6pJs1CS5qMvdsnE4HRwtOcm2\n/J0021uI8o1gRepiUgK73wTva0UVjazfm0PW9VpMRo2Hx8cyf1IcXuZe3fasW+6WTV+RAsYF0qnU\nJdmoSXJRl7tm09jexLaCHRwrOY0TJ+PCR7EkeT5WT4uu651OJ2eyK9n4ZS419W0E+nvy+INJTHgg\nXJndfN01m97WVQHTY4c59iQ5zHFgkmzUJLmoy12zMRvNpIcMYUhwGkUNJVypyeFoyUmMBiOx/jEY\ntK4X6WqaRnSILzNGRmM0aGQW3jok8pqN2HB/rH59/7aSu2bT27o6zFGewHyHVMXqkmzUJLmoqz9k\n43A6OFZyim0FO2nqaCbMJ4TlKYsYGpym+x6VtS1s2JfLV7lVaBrMHBnNkumJ+Hl79GDLu9YfsukN\nMoXkAulU6pJs1CS5qKs/ZdPU0cz2wt0cKjqOEyfpIQ+wNHkBYT4huu+RUVjNh3tzKa1uxtfLxNLp\nicwYGd0nu/n2p2x6khQwLpBOpS7JRk2Si7r6YzbFjaVsytlKbm0BJs3IrNjpPBw3Cy+Tvmkhe6eD\nfWeL2HqkkNb2TgaF3dzNN3VQ7+7m2x+z6QlSwLhAOpW6JBs1SS7q6q/ZOJ1Ovqq8xCe5n2Nrq8Vq\ntrA4eR7jwkfpXqRb19jG5oP5HL10czffCUPCWfFg7+3m21+zud9kEa8LZGGVuiQbNUku6uqv2Wia\nRqRvOFOjJ2DUDGTbcjlXcZEsWx4x/pG63lbyMpsYnRrKsMQgiioaySis4eD5EjQNEiItGHt4Wqm/\nZnO/ySJeF0hVrC7JRk2Si7oGSjbVLTV8kred85WX0NCYHDWeBYkP42/203W9w+nk6MVSNh/Mp6G5\ng7AAb1bNSWFksv71Na4aKNl8XzKF5ALpVOqSbNQkuahroGWTVZPL5txtlDaV423y5rGEh5gWPVH3\nbr7NrR1sPXKVfWeLcDidDE8KZtXsFCKC7v9uvgMtm3slBYwLpFOpS7JRk+SiroGYTaejk0PFx9le\nuJsWeyuRvuE8kFnF/QAAFhBJREFUnrKItKBk3fcormpi/Z4crlyzYTRoPDRuEI9Njsfb8/7t5jsQ\ns7kXUsC4QDqVuiQbNUku6hrI2TS0N/JZwS6OlZzCiZORoeksTZ5PsHeQruudTifncirZsC+P6vpW\nrH5mVsxMZuLQ+7Ob70DOxhVSwLhAOpW6JBs1SS7qkmzgekMRm3K2UlB3DQ+DibmxM5kbNxOz0azr\n+raOTnaevM4XJ67RYXeQHG3lybmpxEXoOy37biQbfaSAcYF0KnVJNmqSXNQl2dzkdDo5Xf4VW/K2\nU9feQKBnAEtTHmNUaLrupylVtS1s3J/H2exKNGD6yCiWTk/E30dfIfRdko0+UsC4QDqVuiQbNUku\n6pJsvq3V3squa/v58voh7M5OUgOSWJ66kGi/SN33yLxaw4d7cympasLH08SS6YnMHBWF0dD1+Uzf\nJdnoIwWMC6RTqUuyUZPkoi7J5m+raK7k49zPyai+gkEzMC16IvMTHsLXQ9/bRvZOB/vPFbPlSCEt\nbXZiQn1ZPSeVwXGButsg2egjBYwLpFOpS7JRk+SiLsmma5nVWWzO3UZFcxW+Hj4sSHyEKVHjuz3t\n+mv1Te18fDCfIxdLcQLjBoexclYyQRavbq+VbPSRAsYF0qnUJdmoSXJRl2TTPbvDzoGio3xRuIe2\nznZi/KJ4PHURyQEJuu9RWFrPf+/JoaCkHrOHgfmT4nlk/CA8THfff0ay0UcKGBdIp1KXZKMmyUVd\nko1+dW31bM3fwcmyswCMDR/J4qR5BHrpO+TR4XRyPKOMTQfyqW9qJ8TqxROzUxiZEvI3FwpLNvrI\nWUgukPMp1CXZqElyUZdko5+XyZMRocMYEpRKUWMpV2pyOFJ8AtCI84/pdjdfTdOIDfdn+ogoOh0O\nLl+1ceJyOQUl9cRH+t/xtpJko4+cheQCqYrVJdmoSXJRl2RzbxxOBydLz7I1fwcNHY2EeAWxLGUB\n6SFDdL92XVLVxId7c8i8enM337ljB7Fgyl9385Vs9JEpJBdIp1KXZKMmyUVdks3302Jv4YvCvRwo\nOorD6eCBoFSWpywkwjdM1/VOp5OvcqvYsC+XqrpWLL5mHp+ZxKRhEYSHWSQbHaSAcYEMeHVJNmqS\nXNQl2dwfZU3lbMrZRpYtF4NmYGbMFOYlzMHb5K3r+vaOTnaeus4Xx6/RbneQFGXhmcdHEuh9/85W\n6q+kgHGBDHh1STZqklzUJdncP06nk4tVl/k49zOqW2vw9/BjUdKjTIgco/u16+q6Vj7an8fprAoA\nJg+LYNmMJAL9777OY6CTAsYFMuDVJdmoSXJRl2Rz/3V0drDvxiF2Xf2SdkcHcZZBPJ6yiARrrO57\nZF2zsflgAQUldZg9DMybGMfD42Px9Oh6ofBAJAWMC2TAq0uyUZPkoi7JpufYWmvZkv8FZ8rPAzAx\nYiwLkx7F6qnvkMegYD+2fJnDJ4cKqG9qJ8jiyfKZSUx44P6cdt1fyGvULpBX29Ql2ahJclGXZNNz\nvE1ejApLJzUgiRuNxVypyeFoyUmMBiOx/jHdTiv5+XkS6u/JjJFRaBpcvmrjdFYFmYU1RIf46trN\ndyCQ16hdIP9iUZdkoybJRV2STe9wOB0cLTnJZ/m7aLI3E+4TyrKUhQwNTrvrNd/NprK2hU0H8jlz\na33MxKHhLJ+RNOALGZlCcoEMeHVJNmqSXNQl2fSupo5mPi/YzeHi4zhxkh7yAEuTFxDmE3LHZ++W\nTc6NWj7cm8u18gbMJgOPTIjl0QlxeJoH5voYKWBcIANeXZKNmiQXdUk2faO4sZRNOVvJrS3ApBmZ\nFTudh+Nm4WX663RIV9l8fSzB5oP51DW2E+jvybIZiUwcGoFhgK2PkQLGBTLg1SXZqElyUZdk03ec\nTifnKi7yad52bG21WM0WliTPZ2z4SDRN05VNa7udL05cZ9ep63TYHSRE+vPE7FSSY6y99C36nhQw\nLpABry7JRk2Si7okm77X3tnO7msH2HP9AHaHnURrPCtSFzE6cbDubKrqWth8IJ9TV26ujxn/QBjL\nZyYRYtW3kZ47kwLGBTLg1SXZqElyUZdko46qlho+zfuc85UZaGg8mDiZuVGzsJj1vXYNkFdUx4f7\ncigsbcDDZODh8YOYNzEOL3P/3dFXChgXyIBXl2SjJslFXZKNerJqctmUu42ypnK8jJ48HDeLBwdN\nxcPooet6h9PJycxyNh/Mx9bQhtXPzLLpSUxO75/rY6SAcYEMeHVJNmqSXNQl2aip09HJxYYLbLj4\nGY0dTQR7BbIoaR6jw4br3sSurb2THSevsfPkddrtDuIi/HlidgqpgwJ6uPW9Szayc4Fs/KQuyUZN\nkou6JBs1GTQDwwelMtI6EgcOsmryOFdxgSxbHtF+EQR4dr9I12Q0MDgukMnDIqhvbiezsIYjl0op\nrmoiPsIfXy99T3RUJxvZuUD+xaIuyUZNkou6JBt1fTObiuYqtuR/wYXKDADGhY9mUdIjBHrpf5qS\nX1zHh/tyKSipx2Q08NC4QcyfFIe3p3uvj5EpJBfIgFeXZKMmyUVdko26/lY2ObZ8Psn9jBuNJXgY\nPJgbO4M5cTPxNJp13dPpdHLy8s31MTX1bVh8zSydnsjU9EgMBvdcHyMFjAtkwKtLslGT5KIuyUZd\nd8vG4XRwsvQs2wp2Ut/egNVsYVHSo4yLGNXt+Upfa+voZNep63xx4hrtHQ5iw/x4Yk4KabGB9/tr\n9DgpYFwgA15dko2aJBd1STbq6i6bVnsbe67tZ9+NQ3Q47MT6x7AsZQHJAQm6f4etoY2PD+ZzLKMM\ngDGpoTz+YBJhgT7fu/29RQoYF8iAV5dkoybJRV2Sjbr0ZlPTamNr/g7OlJ8HYFRoOouT5xPiHaT7\ndxWW1vPh3lzyiuswGTXmjh3EY5Pj3WJ9jBQwLpABry7JRk2Si7okG3W5mk1h3TU2537G1frrmDQj\nDw6axsPxs/A26Tut2ul0cjqrgk3786mub8Xi48GS6YlMGx6l9PoYKWBcIANeXZKNmiQXdUk26rqX\nbJxOJ2fLz7Mlfwe2tlr8Pfx4LPEhJkeN170+pr2jk92nb7D9+DXaOjqJCfXjidnJPBCv/4lOb5IC\nxgUy4NUl2ahJclGXZKOu75NNe2cH+64fYvf1/bR3thPlG8GylAUMDkrRfY/axjY+OVjA0UulOIFR\nKSGseDCZ8CC11sdIAeMCGfDqkmzUJLmoS7JR1/3Ipratjs8KdnGy9CxOnAwLfoClyfMJ9w3TfY9r\nZQ18uDeHnKI6jAaNOWNjWDA5Hh9FNsKTAsYFMuDVJdmoSXJRl2SjrvuZzfWGIj7J/Zzc2gIMmoEZ\n0ZN5NGEOvh76nqY4nU7OZlfy0f48qupa8fP2YMm0BKaPjMJo0Dc11VOkgHGBDHh1STZqklzUJdmo\n635n43Q6uVCZwad526lqrcHH5M28hLlMj56E0WDUdY8Oeyd7zhTx+bGrtLZ3Eh3iy6rZKQxN6Lv1\nMVLAuEAGvLokGzVJLuqSbNTVU9l0OOwcLDrKjsJ9tHa2Eu4TypLk+QwLfkD3QZF1jW18eriAwxdu\nro8ZkRTMilnJRAb73vf2dkcKGBfIgFeXZKMmyUVdko26ejqbhvZGthfu4UjxCZw4GRyYwtKUx4j2\ni9R9j+vlDWzYl0vW9VqMBo1Zo2NYODW+Vw+KlALGBTLg1SXZqElyUZdko67eyqaksYxP8j7nSk0O\nGhpTosbzWOLD+Jv9dF3vdDr5KreKj77Mo6K2BV8vE4unJTJjZBQmY8+vj5ECxgUy4NUl2ahJclGX\nZKOu3s4mszqLT3I/p6y5Ai+jF4/Ez2LmoKl4GPTtxtthd7DvbBGfHSukpa2TyGAfVs1OIT0xuEfb\nLQWMC2TAq0uyUZPkoi7JRl19kU2no5PDJSf4omAPTfZmgr2CWJw8j1Gh6brXx9Q3tbPlcAEHL5Tg\ndEJ6YjCrZvfc+hgpYFwgA15dko2aJBd1STbq6stsmjua2XF1HweKjuJwOkiyJrA8ZQGxlhjd9yiq\naOTDfblcuWYjOtSX1384oUfa2lUB06MTWDk5OcyZM4cPPvjgWz8/fPgwaWlpt/+8bds2li1bxuOP\nP86mTZt6sklCCCHEgObj4cOylAW8POE5hocMJb+ukHVnfsdfLm+ktq1O1z1iwvz46aqR/J+VI3hi\ntv4dgO+nHjuKsrm5mddff51JkyZ96+dtbW28++67hIaG3v7cW2+9xebNm/Hw8GD58uXMnTuXgICA\nnmqaEEIIMeCF+YTyo+FPk12Tx8d5n3Gy7CxfVVxkbtxM5sTOwGw0d3m9pmkMS+jZNTBd6bEnMGaz\nmffee4+wsG9vafz222+zevVqzOab/8dcuHCB9PR0/P398fLyYvTo0Zw7d66nmiWEEEKIb0gLSuaF\ncT9h9eBleJo82V64h9dO/IZTZedwOB193by76rEnMCaTCZPp27cvLCwkKyuLn/zkJ/zmN78BoKqq\niqCgv+7yFxQURGVlZZf3Dgz0wWTSt7Pgvehqzk30LclGTZKLuiQbdamWzeKwOTw8ZCqfXtnJ9ux9\n/PnyBo6WneDpUctJC0nq6+bdoccKmL/lV7/6FS+99FKXn9Gzpthma75fTbqDLHpTl2SjJslFXZKN\nulTOZm7kbEYHjGJr/g7OVlzg5X2/ZXTYcBYnzSPYu3ePFeizRbzfVF5eTkFBAT/96U9ZsWIFFRUV\nrFmzhrCwMKqqqm5/rqKi4o5pJyGEEEL0nmDvIH4w7EmeG/MMcZZBnKu4yD+f/C1b83fQam/t6+YB\nvfgEJjw8nL17997+86xZs/jggw9obW3lpZdeor6+HqPRyLlz53jxxRd7q1lCCCGEuItEazw/HfMP\nnCk/z9b8Hey+tp/jpadZkPgwkyLHYdD67rTqHitgMjIyWLduHcXFxZhMJnbt2sUbb7xxx9tFXl5e\nPPfcc/zwhz9E0zT+4R/+AX9/teYFhRBCiIHKoBkYHzGakaHD2Hv9IHuuHWB91sccLDrGsuQFpAUl\n90m7ZCO771B5XnKgk2zUJLmoS7JRlztnU9tWx7b8nZwsOwvAtOhJrEpb0iO/q6s1ML26iFcIIYQQ\n7i3A08pTQ1YyM2YKW/N30NzRcy/WdEUKGCGEEEK4LNYSw/8e9Xd99vv7bvWNEEIIIcQ9kgJGCCGE\nEG5HChghhBBCuB0pYIQQQgjhdqSAEUIIIYTbkQJGCCGEEG5HChghhBBCuB0pYIQQQgjhdqSAEUII\nIYTbkQJGCCGEEG5HChghhBBCuB0pYIQQQgjhdqSAEUIIIYTb0ZxOp7OvGyGEEEII4Qp5AiOEEEII\ntyMFjBBCCCHcjhQwQgghhHA7UsAIIYQQwu1IASOEEEIItyMFjBBCCCHcjhQw3/DLX/6SlStXsmrV\nKi5evNjXzRHf8Otf/5qVK1eybNkydu/e3dfNEd/Q2trKnDlz+OSTT/q6KeIbtm3bxsKFC1m6dCkH\nDhzo6+YIoKmpiR//+MesXbuWVatWcfjw4b5uklsz9XUDVHHq1CmuXbvGxo0byc/P58UXX2Tjxo19\n3SwBnDhxgtzcXDZu3IjNZmPJkiU89NBDfd0sccvvf/97rFZrXzdDfIPNZuOtt97i448/prm5mTfe\neIOZM2f2dbMGvE8//ZSEhASee+45ysvLefrpp9m5c2dfN8ttSQFzy/Hjx5kzZw4ASUlJ1NXV0djY\niJ+fXx+3TIwbN47hw4cDYLFYaGlpobOzE6PR2MctE/n5+eTl5cl/HBVz/PhxJk2ahJ+fH35+frz+\n+ut93SQBBAYGkp2dDUB9fT2BgYF93CL3JlNIt1RVVX2rMwUFBVFZWdmHLRJfMxqN+Pj4ALB582am\nT58uxYsi1q1bxwsvvNDXzRDfUVRURGtrK3//93/P6tWrOX78eF83SQDz58+npKSEuXPnsmbNGn72\ns5/1dZPcmjyBuQs5YUE9e/fuZfPmzfzpT3/q66YIYMuWLYwcOZJBgwb1dVPE31BbW8ubb75JSUkJ\nTz31FPv370fTtL5u1oC2detWoqKi+OMf/0hWVhYvvviirB37HqSAuSUsLIyqqqrbf66oqCA0NLQP\nWyS+6fDhw7z99tv84Q9/wN/fv6+bI4ADBw5w48YNDhw4QFlZGWazmYiICCZPntzXTRvwgoODGTVq\nFCaTidjYWHx9fampqSE4OLivmzagnTt3jqlTpwIwePBgKioqZDr8e5AppFumTJnCrl27AMjMzCQs\nLEzWvyiioaGBX//617zzzjsEBAT0dXPELf/xH//Bxx9/zEcffcTjjz/OM888I8WLIqZOncqJEydw\nOBzYbDaam5tlvYUC4uLiuHDhAgDFxcX4+vpK8fI9yBOYW0aPHs3QoUNZtWoVmqbxyiuv9HWTxC1f\nfPEFNpuNf/zHf7z9s3Xr1hEVFdWHrRJCXeHh4Tz88MOsWLECgJdeegmDQf692tdWrlzJiy++yJo1\na7Db7bz66qt93SS3pjllsYcQQggh3IyU5EIIIYRwO1LACCGEEMLtSAEjhBBCCLcjBYwQQggh3I4U\nMEIIIYRwO1LACCF6VFFREcOGDWPt2rW3T+F97rnnqK+v132PtWvX0tnZqfvzTzzxBCdPnryX5goh\n3IQUMEKIHhcUFMT777/P+++/z4YNGwgLC+P3v/+97uvff/992fBLCPEtspGdEKLXjRs3jo0bN5KV\nlcW6deuw2+10dHTwi1/8giFDhrB27VoGDx7MlStX+POf/8yQIUPIzMykvb2dl19+mbKyMux2O4sW\nLWL16tW0tLTw7LPPYrPZiIuLo62tDYDy8nJ++tOfAtDa2srKlStZvnx5X351IcR9IgWMEKJXdXZ2\nsmfPHsaMGcPzzz/PW2+9RWxs7B2H2/n4+PDBBx9869r3338fi8XCv/3bv9Ha2sq8efOYNm0ax44d\nw8vLi40bN1JRUcHs2bMB2LFjB4mJibz22mu0tbWxadOmXv++QoieIQWMEKLH1dTUsHbtWgAcDgdj\nx45l2bJl/O53v+PnP//57c81NjbicDiAm8d7fNeFCxdYunQpAF5eXgwbNozMzExycnIYM2YMcPNg\n1sTERACmTZvG+vXreeGFF5gxYwYrV67s0e8phOg9UsAIIXrc12tgvqmhoQEPD487fv41Dw+PO36m\nadq3/ux0OtE0DafT+a2zfr4ugpKSkti+fTunT59m586d/PnPf2bDhg3f9+sIIRQgi3iFEH3C39+f\nmJgYDh48CEBhYSFvvvlml9eMGDGCw4cPA9Dc3ExmZiZDhw4lKSmJr776CoDS0lIKCwsB+Oyzz7h0\n6RKTJ0/mlVdeobS0FLvd3oPfSgjRW+QJjBCiz6xbt45/+Zd/4d1338Vut/PCCy90+fm1a9fy8ssv\n8+STT9Le3s4zzzxDTEwMixYt4ssvv2T16tXExMSQnp4OQHJyMq+88gpmsxmn08nf/d3fYTLJX3tC\n9AdyGrUQQggh3I5MIQkhhBDC7UgBI4QQQgi3IwWMEEIIIdyOFDBCCCGEcDtSwAghhBDC7UgBI4QQ\nQgi3IwWMEEIIIdyOFDBCCCGEcDv/Pz54Cg1veXN6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "pZa8miwu6_tQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "PzABdyjq7IZU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Aside from `latitude`, we'll also keep `median_income`, to compare with the previous results.\n", + "\n", + "We decided to bucketize the latitude. This is fairly straightforward in Pandas using `Series.apply`." + ] + }, + { + "metadata": { + "id": "xdVF8siZ7Lup", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def select_and_transform_features(source_df):\n", + " LATITUDE_RANGES = zip(range(32, 44), range(33, 45))\n", + " selected_examples = pd.DataFrame()\n", + " selected_examples[\"median_income\"] = source_df[\"median_income\"]\n", + " for r in LATITUDE_RANGES:\n", + " selected_examples[\"latitude_%d_to_%d\" % r] = source_df[\"latitude\"].apply(\n", + " lambda l: 1.0 if l >= r[0] and l < r[1] else 0.0)\n", + " return selected_examples\n", + "\n", + "selected_training_examples = select_and_transform_features(training_examples)\n", + "selected_validation_examples = select_and_transform_features(validation_examples)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U4iAdY6t7Pkh", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=selected_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=selected_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/first_steps_with_tensor_flow.ipynb b/first_steps_with_tensor_flow.ipynb new file mode 100644 index 0000000..fafc441 --- /dev/null +++ b/first_steps_with_tensor_flow.ipynb @@ -0,0 +1,1746 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "first_steps_with_tensor_flow.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "ajVM7rkoYXeL", + "ci1ISxxrZ7v0" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4f3CKqFUqL2-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# First Steps with TensorFlow" + ] + }, + { + "metadata": { + "id": "Bd2Zkk1LE2Zr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Learn fundamental TensorFlow concepts\n", + " * Use the `LinearRegressor` class in TensorFlow to predict median housing price, at the granularity of city blocks, based on one input feature\n", + " * Evaluate the accuracy of a model's predictions using Root Mean Squared Error (RMSE)\n", + " * Improve the accuracy of a model by tuning its hyperparameters" + ] + }, + { + "metadata": { + "id": "MxiIKhP4E2Zr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The [data](https://developers.google.com/machine-learning/crash-course/california-housing-data-description) is based on 1990 census data from California." + ] + }, + { + "metadata": { + "id": "6TjLjL9IU80G", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "In this first cell, we'll load the necessary libraries." + ] + }, + { + "metadata": { + "id": "rVFf5asKE2Zt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ipRyUHjhU80Q", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll load our data set." + ] + }, + { + "metadata": { + "id": "9ivCDWnwE2Zx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "vVk_qlG6U80j", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We'll randomize the data, just to be sure not to get any pathological ordering effects that might harm the performance of Stochastic Gradient Descent. Additionally, we'll scale `median_house_value` to be in units of thousands, so it can be learned a little more easily with learning rates in a range that we usually use." + ] + }, + { + "metadata": { + "id": "r0eVyguIU80m", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 404 + }, + "outputId": "48f3fb7f-f426-4396-b50c-eba11ac20b85" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))\n", + "california_housing_dataframe[\"median_house_value\"] /= 1000.0\n", + "california_housing_dataframe" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
14844-122.237.428.04518.0578.01489.0559.011.3500.0
11524-121.338.039.01841.0428.01368.0390.02.262.0
16728-122.938.436.01987.0387.01065.0347.04.0172.2
7823-118.434.040.01565.0269.0826.0268.05.2485.7
13342-121.938.013.01524.0286.0940.0308.05.1154.8
..............................
13955-122.038.316.08517.01910.04508.01837.03.2129.6
9703-119.636.742.01032.0215.0812.0225.02.058.1
9863-119.734.418.01170.0372.0681.0346.02.2255.0
11045-121.037.79.01114.0172.0529.0174.04.7163.7
1600-117.234.118.01439.0319.0699.0310.02.173.5
\n", + "

17000 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "14844 -122.2 37.4 28.0 4518.0 578.0 \n", + "11524 -121.3 38.0 39.0 1841.0 428.0 \n", + "16728 -122.9 38.4 36.0 1987.0 387.0 \n", + "7823 -118.4 34.0 40.0 1565.0 269.0 \n", + "13342 -121.9 38.0 13.0 1524.0 286.0 \n", + "... ... ... ... ... ... \n", + "13955 -122.0 38.3 16.0 8517.0 1910.0 \n", + "9703 -119.6 36.7 42.0 1032.0 215.0 \n", + "9863 -119.7 34.4 18.0 1170.0 372.0 \n", + "11045 -121.0 37.7 9.0 1114.0 172.0 \n", + "1600 -117.2 34.1 18.0 1439.0 319.0 \n", + "\n", + " population households median_income median_house_value \n", + "14844 1489.0 559.0 11.3 500.0 \n", + "11524 1368.0 390.0 2.2 62.0 \n", + "16728 1065.0 347.0 4.0 172.2 \n", + "7823 826.0 268.0 5.2 485.7 \n", + "13342 940.0 308.0 5.1 154.8 \n", + "... ... ... ... ... \n", + "13955 4508.0 1837.0 3.2 129.6 \n", + "9703 812.0 225.0 2.0 58.1 \n", + "9863 681.0 346.0 2.2 255.0 \n", + "11045 529.0 174.0 4.7 163.7 \n", + "1600 699.0 310.0 2.1 73.5 \n", + "\n", + "[17000 rows x 9 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "id": "HzzlSs3PtTmt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Examine the Data\n", + "\n", + "It's a good idea to get to know your data a little bit before you work with it.\n", + "\n", + "We'll print out a quick summary of a few useful statistics on each column: count of examples, mean, standard deviation, max, min, and various quantiles." + ] + }, + { + "metadata": { + "id": "gzb10yoVrydW", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "outputId": "3d71ecec-6de3-4031-d4bd-d975712de064" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
count17000.017000.017000.017000.017000.017000.017000.017000.017000.0
mean-119.635.628.62643.7539.41429.6501.23.9207.3
std2.02.112.62179.9421.51147.9384.51.9116.0
min-124.332.51.02.01.03.01.00.515.0
25%-121.833.918.01462.0297.0790.0282.02.6119.4
50%-118.534.229.02127.0434.01167.0409.03.5180.4
75%-118.037.737.03151.2648.21721.0605.24.8265.0
max-114.342.052.037937.06445.035682.06082.015.0500.0
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "count 17000.0 17000.0 17000.0 17000.0 17000.0 \n", + "mean -119.6 35.6 28.6 2643.7 539.4 \n", + "std 2.0 2.1 12.6 2179.9 421.5 \n", + "min -124.3 32.5 1.0 2.0 1.0 \n", + "25% -121.8 33.9 18.0 1462.0 297.0 \n", + "50% -118.5 34.2 29.0 2127.0 434.0 \n", + "75% -118.0 37.7 37.0 3151.2 648.2 \n", + "max -114.3 42.0 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income median_house_value \n", + "count 17000.0 17000.0 17000.0 17000.0 \n", + "mean 1429.6 501.2 3.9 207.3 \n", + "std 1147.9 384.5 1.9 116.0 \n", + "min 3.0 1.0 0.5 15.0 \n", + "25% 790.0 282.0 2.6 119.4 \n", + "50% 1167.0 409.0 3.5 180.4 \n", + "75% 1721.0 605.2 4.8 265.0 \n", + "max 35682.0 6082.0 15.0 500.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "Lr6wYl2bt2Ep", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Build the First Model\n", + "\n", + "In this exercise, we'll try to predict `median_house_value`, which will be our label (sometimes also called a target). We'll use `total_rooms` as our input feature.\n", + "\n", + "**NOTE:** Our data is at the city block level, so this feature represents the total number of rooms in that block.\n", + "\n", + "To train our model, we'll use the [LinearRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor) interface provided by the TensorFlow [Estimator](https://www.tensorflow.org/get_started/estimator) API. This API takes care of a lot of the low-level model plumbing, and exposes convenient methods for performing model training, evaluation, and inference." + ] + }, + { + "metadata": { + "id": "0cpcsieFhsNI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 1: Define Features and Configure Feature Columns" + ] + }, + { + "metadata": { + "id": "EL8-9d4ZJNR7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In order to import our training data into TensorFlow, we need to specify what type of data each feature contains. There are two main types of data we'll use in this and future exercises:\n", + "\n", + "* **Categorical Data**: Data that is textual. In this exercise, our housing data set does not contain any categorical features, but examples you might see would be the home style, the words in a real-estate ad.\n", + "\n", + "* **Numerical Data**: Data that is a number (integer or float) and that you want to treat as a number. As we will discuss more later sometimes you might want to treat numerical data (e.g., a postal code) as if it were categorical.\n", + "\n", + "In TensorFlow, we indicate a feature's data type using a construct called a **feature column**. Feature columns store only a description of the feature data; they do not contain the feature data itself.\n", + "\n", + "To start, we're going to use just one numeric input feature, `total_rooms`. The following code pulls the `total_rooms` data from our `california_housing_dataframe` and defines the feature column using `numeric_column`, which specifies its data is numeric:" + ] + }, + { + "metadata": { + "id": "rhEbFCZ86cDZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Define the input feature: total_rooms.\n", + "my_feature = california_housing_dataframe[[\"total_rooms\"]]\n", + "\n", + "# Configure a numeric feature column for total_rooms.\n", + "feature_columns = [tf.feature_column.numeric_column(\"total_rooms\")]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "K_3S8teX7Rd2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** The shape of our `total_rooms` data is a one-dimensional array (a list of the total number of rooms for each block). This is the default shape for `numeric_column`, so we don't have to pass it as an argument." + ] + }, + { + "metadata": { + "id": "UMl3qrU5MGV6", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 2: Define the Target" + ] + }, + { + "metadata": { + "id": "cw4nrfcB7kyk", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll define our target, which is `median_house_value`. Again, we can pull it from our `california_housing_dataframe`:" + ] + }, + { + "metadata": { + "id": "l1NvvNkH8Kbt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Define the label.\n", + "targets = california_housing_dataframe[\"median_house_value\"]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4M-rTFHL2UkA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 3: Configure the LinearRegressor" + ] + }, + { + "metadata": { + "id": "fUfGQUNp7jdL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll configure a linear regression model using LinearRegressor. We'll train this model using the `GradientDescentOptimizer`, which implements Mini-Batch Stochastic Gradient Descent (SGD). The `learning_rate` argument controls the size of the gradient step.\n", + "\n", + "**NOTE:** To be safe, we also apply [gradient clipping](https://developers.google.com/machine-learning/glossary/#gradient_clipping) to our optimizer via `clip_gradients_by_norm`. Gradient clipping ensures the magnitude of the gradients do not become too large during training, which can cause gradient descent to fail. " + ] + }, + { + "metadata": { + "id": "ubhtW-NGU802", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Use gradient descent as the optimizer for training the model.\n", + "my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0000001)\n", + "my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + "\n", + "# Configure the linear regression model with our feature columns and optimizer.\n", + "# Set a learning rate of 0.0000001 for Gradient Descent.\n", + "linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + ")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "-0IztwdK2f3F", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 4: Define the Input Function" + ] + }, + { + "metadata": { + "id": "S5M5j6xSCHxx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To import our California housing data into our `LinearRegressor`, we need to define an input function, which instructs TensorFlow how to preprocess\n", + "the data, as well as how to batch, shuffle, and repeat it during model training.\n", + "\n", + "First, we'll convert our *pandas* feature data into a dict of NumPy arrays. We can then use the TensorFlow [Dataset API](https://www.tensorflow.org/programmers_guide/datasets) to construct a dataset object from our data, and then break\n", + "our data into batches of `batch_size`, to be repeated for the specified number of epochs (num_epochs). \n", + "\n", + "**NOTE:** When the default value of `num_epochs=None` is passed to `repeat()`, the input data will be repeated indefinitely.\n", + "\n", + "Next, if `shuffle` is set to `True`, we'll shuffle the data so that it's passed to the model randomly during training. The `buffer_size` argument specifies\n", + "the size of the dataset from which `shuffle` will randomly sample.\n", + "\n", + "Finally, our input function constructs an iterator for the dataset and returns the next batch of data to the LinearRegressor." + ] + }, + { + "metadata": { + "id": "RKZ9zNcHJtwc", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(buffer_size=10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "wwa6UeA1V5F_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** We'll continue to use this same input function in later exercises. For more\n", + "detailed documentation of input functions and the `Dataset` API, see the [TensorFlow Programmer's Guide](https://www.tensorflow.org/programmers_guide/datasets)." + ] + }, + { + "metadata": { + "id": "4YS50CQb2ooO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 5: Train the Model" + ] + }, + { + "metadata": { + "id": "yP92XkzhU803", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We can now call `train()` on our `linear_regressor` to train the model. We'll wrap `my_input_fn` in a `lambda`\n", + "so we can pass in `my_feature` and `target` as arguments (see this [TensorFlow input function tutorial](https://www.tensorflow.org/get_started/input_fn#passing_input_fn_data_to_your_model) for more details), and to start, we'll\n", + "train for 100 steps." + ] + }, + { + "metadata": { + "id": "5M-Kt6w8U803", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = linear_regressor.train(\n", + " input_fn = lambda:my_input_fn(my_feature, targets),\n", + " steps=100\n", + ")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "7Nwxqxlx2sOv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 6: Evaluate the Model" + ] + }, + { + "metadata": { + "id": "KoDaF2dlJQG5", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's make predictions on that training data, to see how well our model fit it during training.\n", + "\n", + "**NOTE:** Training error measures how well your model fits the training data, but it **_does not_** measure how well your model **_generalizes to new data_**. In later exercises, you'll explore how to split your data to evaluate your model's ability to generalize.\n" + ] + }, + { + "metadata": { + "id": "pDIxp6vcU809", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 50 + }, + "outputId": "df332043-6240-4b8b-a808-822632dc518c" + }, + "cell_type": "code", + "source": [ + "# Create an input function for predictions.\n", + "# Note: Since we're making just one prediction for each example, we don't \n", + "# need to repeat or shuffle the data here.\n", + "prediction_input_fn =lambda: my_input_fn(my_feature, targets, num_epochs=1, shuffle=False)\n", + "\n", + "# Call predict() on the linear_regressor to make predictions.\n", + "predictions = linear_regressor.predict(input_fn=prediction_input_fn)\n", + "\n", + "# Format predictions as a NumPy array, so we can calculate error metrics.\n", + "predictions = np.array([item['predictions'][0] for item in predictions])\n", + "\n", + "# Print Mean Squared Error and Root Mean Squared Error.\n", + "mean_squared_error = metrics.mean_squared_error(predictions, targets)\n", + "root_mean_squared_error = math.sqrt(mean_squared_error)\n", + "print(\"Mean Squared Error (on training data): %0.3f\" % mean_squared_error)\n", + "print(\"Root Mean Squared Error (on training data): %0.3f\" % root_mean_squared_error)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Mean Squared Error (on training data): 56367.025\n", + "Root Mean Squared Error (on training data): 237.417\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "AKWstXXPzOVz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Is this a good model? How would you judge how large this error is?\n", + "\n", + "Mean Squared Error (MSE) can be hard to interpret, so we often look at Root Mean Squared Error (RMSE)\n", + "instead. A nice property of RMSE is that it can be interpreted on the same scale as the original targets.\n", + "\n", + "Let's compare the RMSE to the difference of the min and max of our targets:" + ] + }, + { + "metadata": { + "id": "7UwqGbbxP53O", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 84 + }, + "outputId": "1c7e7d82-1833-4d37-99b6-db6a2bc7b775" + }, + "cell_type": "code", + "source": [ + "min_house_value = california_housing_dataframe[\"median_house_value\"].min()\n", + "max_house_value = california_housing_dataframe[\"median_house_value\"].max()\n", + "min_max_difference = max_house_value - min_house_value\n", + "\n", + "print(\"Min. Median House Value: %0.3f\" % min_house_value)\n", + "print(\"Max. Median House Value: %0.3f\" % max_house_value)\n", + "print(\"Difference between Min. and Max.: %0.3f\" % min_max_difference)\n", + "print(\"Root Mean Squared Error: %0.3f\" % root_mean_squared_error)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Min. Median House Value: 14.999\n", + "Max. Median House Value: 500.001\n", + "Difference between Min. and Max.: 485.002\n", + "Root Mean Squared Error: 237.417\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "JigJr0C7Pzit", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Our error spans nearly half the range of the target values. Can we do better?\n", + "\n", + "This is the question that nags at every model developer. Let's develop some basic strategies to reduce model error.\n", + "\n", + "The first thing we can do is take a look at how well our predictions match our targets, in terms of overall summary statistics." + ] + }, + { + "metadata": { + "id": "941nclxbzqGH", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "outputId": "a46c1157-eb5f-4387-9f69-ad24fb1df8df" + }, + "cell_type": "code", + "source": [ + "calibration_data = pd.DataFrame()\n", + "calibration_data[\"predictions\"] = pd.Series(predictions)\n", + "calibration_data[\"targets\"] = pd.Series(targets)\n", + "calibration_data.describe()" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean0.1207.3
std0.1116.0
min0.015.0
25%0.1119.4
50%0.1180.4
75%0.2265.0
max1.9500.0
\n", + "
" + ], + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 0.1 207.3\n", + "std 0.1 116.0\n", + "min 0.0 15.0\n", + "25% 0.1 119.4\n", + "50% 0.1 180.4\n", + "75% 0.2 265.0\n", + "max 1.9 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "E2-bf8Hq36y8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Okay, maybe this information is helpful. How does the mean value compare to the model's RMSE? How about the various quantiles?\n", + "\n", + "We can also visualize the data and the line we've learned. Recall that linear regression on a single feature can be drawn as a line mapping input *x* to output *y*.\n", + "\n", + "First, we'll get a uniform random sample of the data so we can make a readable scatter plot." + ] + }, + { + "metadata": { + "id": "SGRIi3mAU81H", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "sample = california_housing_dataframe.sample(n=300)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "N-JwuJBKU81J", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll plot the line we've learned, drawing from the model's bias term and feature weight, together with the scatter plot. The line will show up red." + ] + }, + { + "metadata": { + "id": "7G12E76-339G", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 361 + }, + "outputId": "fa3f12b3-5170-40ca-e971-b7ad00118e2a" + }, + "cell_type": "code", + "source": [ + "# Get the min and max total_rooms values.\n", + "x_0 = sample[\"total_rooms\"].min()\n", + "x_1 = sample[\"total_rooms\"].max()\n", + "\n", + "# Retrieve the final weight and bias generated during training.\n", + "weight = linear_regressor.get_variable_value('linear/linear_model/total_rooms/weights')[0]\n", + "bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + "\n", + "# Get the predicted median_house_values for the min and max total_rooms values.\n", + "y_0 = weight * x_0 + bias \n", + "y_1 = weight * x_1 + bias\n", + "\n", + "# Plot our regression line from (x_0, y_0) to (x_1, y_1).\n", + "plt.plot([x_0, x_1], [y_0, y_1], c='r')\n", + "\n", + "# Label the graph axes.\n", + "plt.ylabel(\"median_house_value\")\n", + "plt.xlabel(\"total_rooms\")\n", + "\n", + "# Plot a scatter plot from our data sample.\n", + "plt.scatter(sample[\"total_rooms\"], sample[\"median_house_value\"])\n", + "\n", + "# Display graph.\n", + "plt.show()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFYCAYAAACoFn5YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VOW9P/DPzGSWhEzIwkT2gqyV\nPSAVKEUgqLQ/NJbVXGhdqvaq/dlbe9VaLW6tV229vfba2h+VWlFaNHp90V4tiIClbApBFlsIwYUQ\nlkySSSbbLJk5vz/CDJPJOWfOzJzJnDP5vP9pyZw5eZ4kzvc8z/N9vo9BEAQBREREpEvGdDeAiIiI\nEsdATkREpGMM5ERERDrGQE5ERKRjDOREREQ6xkBORESkY1npbkAinM4WVe9XUJADl6td1XumA/uh\nLZnSDyBz+sJ+aEum9ANIfV8cDrvkaxyRA8jKMqW7CapgP7QlU/oBZE5f2A9tyZR+AOntCwM5ERGR\njjGQExER6RgDORERkY4xkBMREekYAzkREZGOMZATERHpGAM5ERGRjumyIIweef0BNLd60T/XCqvZ\nJPp1AN2ukXuP09UOGAxw5GeHrz1X34aAPxC+Vuw6sXbV1reitc2HIY5cBIJCj+8XT38SvU6J6Hup\neW8iIr1KWSDfv38/7r33XowZMwYAMHbsWHznO9/B/fffj0AgAIfDgWeffRYWiwWbN2/GH/7wBxiN\nRqxYsQLLly9PVbN6XSAYxKbt1ThU5USj24vCPCumjXVg2dWXo2LnpzhU5USD2wubxQjAAK8vgMI8\nK3JsZrR1+OBq8XV7z+s7TmHP0XPw+IIAAKvZCEdBNjo8nWhs8aLQbsXUMQMQEATsO3Y+fJ3NYsKc\nSQOxauEYmIxGBIJBbNxWhb99fBaBYPc2F+SaMX38ZVi5YDRMRqOi/kRfq/S6RH6GBXYL+mVb0O7x\nJ31vIiK9S+mIfObMmXj++efD//7Rj36E8vJyLF68GM899xwqKipQVlaGF154ARUVFTCbzVi2bBkW\nLVqE/Pz8VDat12zaXo1tB86E/93g9mLbgTM4cboJNXWt4a+HAm7omga3N+Z7AMDrD+JMXVu3a98/\nWNujHR5fAO8frIXBYEB56Vhs2l6NHZVnRdvsavWH21xeOlZRf6KvVXqdEtH3amzxobHFp8q9iYj0\nrleHL/v378fChQsBAPPnz8fevXtx+PBhTJo0CXa7HTabDSUlJaisrOzNZqWM1x/AoSqn6Gu1zlbR\nr8s5Uxf/e6IdqnKipd2HyhN1Cq6th9cfCP9brj+R1yq9Tgm5eyV7byKiTJDSEXl1dTW++93vorm5\nGffccw86OjpgsVgAAEVFRXA6naivr0dhYWH4PYWFhXA65T+4CwpyVK9rK1eQPlHn6tvQ2OIVfS0o\nxH+/BN7SQ2OLFy2+YLcRrRRXiwcmixmOAf0AyPcn8lql18kJ/T7k7pXovXtTKv6u0iVT+sJ+aEum\n9ANIX19SFshHjBiBe+65B4sXL0ZNTQ2+9a1vIRC4NFoSBPGwJPX1SGqfMONw2FU/UQ0AAv4ACu3W\nbtPkIUZD/MHcgOSDeaHdCrvFiEK7JWYwL7DbEPD5wz8buf5EXqv0OimRvw+5eyVy796Uqr+rdMiU\nvrAf2pIp/QBS35e0nH522WWX4etf/zoMBgOGDx+OAQMGoLm5GR6PBwBw4cIFFBcXo7i4GPX19eH3\n1dXVobi4OFXN6lVWswnTxjpEXxviyI37fkOL439PtGljHbDnWFAyLvbPeNrYAd2yweX6E3mt0uuU\nkLtXsvcmIsoEKQvkmzdvxksvvQQAcDqdaGhowDe/+U1s2bIFALB161bMnTsXU6ZMwdGjR+F2u9HW\n1obKykrMmDEjVc3qdSsXjEbpjKEoyrPBaACK8mwonTEUP/5WSfjrBnRlldsspovXWDGsOBeFdmuP\n9yyYPgQ2S2RwNWJocT8U5V26duH0Ibi6ZHC362wWExZOH4KVC0aH2zW/ZDBMIn8BBbkWlM4YGr5W\nSX+ir1V6XSI/w0J7188nss+J3puISO8MgpK57AS0trbihz/8IdxuN/x+P+655x58+ctfxgMPPACv\n14vBgwfjqaeegtlsxl//+le89NJLMBgMWL16Na6//nrZe6s9fdEb0zu9sY/cZDEj4PPrfh+51O9D\nb/vIOW2oPeyHtmRKP4D0Tq2nLJCnUm8Fcq0HimiZ8h8F+6E9mdIX9kNbMqUfQHoDOSu7iVCzmIlW\n6O2hhIiIlGEgF6FmMZN0y8SHEiIiuoSf5FHULGaiBaGHkga3FwIuPZRs2l6d7qYREZEKGMijNLd6\n0SixZ9nV4kFzq7LiJFqQaQ8lRETUEwN5lP65VhTmWUVfK7DbwtnlvcXrD6DO1Z5Q0M2khxIiIhLH\nNfIooQIkkWvkIb1ZcESNte3QQ4lUhbXefighIiL1cUQuQs1iJolSY21bzQprRESkTRyRizAZjSgv\nHYul80alZctWrLXtpfNGKW5P6OHjUFU9XC0eFNhtmDZ2AKugERFlCAZyGVazCcUFOb3+fZWsbStt\nV7ofSoiIKLU4ta5BqUi4Cz2UMIgTEWUWBnIN4to2EREpxal1jeLaNhERKcFArlFc2yYiIiU4ta5x\nvbm2nUzxGSIiSg+OyIkHqxAR6RgDOWXUaW9ERH0Nh1t9HA9WISLSNwbyPk4LB6twbZ6IKHGcWtcJ\nrz+Qkuz1dB6sIrU2f8+KaSn7nkREmYaBXONSnYiWztPepNbmc7ItKJszImXfl4gokzCQa1xvJKKl\no/iM3Nr83qNnMWPsADjys7l3nogoBgZyDVPzFLTo+0ZO06ej+Izc2ryzyYO1L33IbXBERAowkGuY\nmqegAbGn6XvztDe5tXkA3c5gB7gNjohICoc5Gqb2KWihafoGt7dboNy0vVqF1sZH7mCYaNwGR0Qk\njYFcw9Q8BU2L+8VXLhiN0hlDUZRng0Hmut7aBkdEpEecWtc4tRLR1J6mV0Pk2rzT1Y7/qjiSlm1w\nRER6xkCucWoloqVzv3gsVrMJQ4vtadsGR0SkZ5xa14hY1c2SPQVNzWn6VAlNtRcXZMNoAIrybCid\nMZRnsBMRyeCIPM168+SxdOwXj0do9uHOpdk49XlDr53BnqqqeXptBxHpCwN5miVS8CXRD/x07BdP\nhM2S1Svr9Vo5vlUr7SAifWIgT6N4C76o9YHfm/vFtUwrx7dqpR1EpE983E+jeE8e09I+cL3TynY8\nrbSDiPSLgTyN4in4wg98dWnh+FYttYOI9IuBPI3iySTnB7661K6ap/d2EJF+MZCnWWR1M7ktV/zA\nV5dWtuNppR1EpF9MdkszpZnk6Tw3PFNpZTueVtpBRPrEQK4RSjLJ+YGvLq1sx9NKO4hInxjIdYQf\n+Kmhle14WmkHEekL18h1KNlyrZkmVnlbIqJMxhE56RYrohERMZCTjrEiGhERp9ZJp1ggh4ioCwM5\n6RIL5BARdWEgJ11igRwioi4M5KRLrIhGRNQlpYHc4/GgtLQUb731Fs6dO4c1a9agvLwc9957L3w+\nHwBg8+bNWLp0KZYvX4433ngjlc3RpUzfWpVM/5SWtyUiymQpzVr/zW9+g/79+wMAnn/+eZSXl2Px\n4sV47rnnUFFRgbKyMrzwwguoqKiA2WzGsmXLsGjRIuTn56eyWbqgxtYqrz+g2cIxcv1TigVyiIhS\nGMhPnTqF6upqXH311QCA/fv347HHHgMAzJ8/H+vXr8fIkSMxadIk2O12AEBJSQkqKyuxYMGCVDVL\nN5LZWqWH/dVy/bv3pulx3YsV0YioL0vZp/rTTz+NBx98MPzvjo4OWCwWAEBRURGcTifq6+tRWFgY\nvqawsBBOp/iWor4k2a1VoSDZ4PZCwKUguWl7dQpaG79Y/fP4Onu5RURE+pWSEfnbb7+NqVOnYtiw\nYaKvC4IQ19ejFRTkICtL3SlUh8Ou6v2Sca6+DY0t0lurTBYzHAP6ib5u75+NI6caRF87cqoBdy7N\nhs2S3jpAsfrncnsxSEO/j2Ro6e8qWZnSF/ZDWzKlH0D6+pKST/SdO3eipqYGO3fuxPnz52GxWJCT\nkwOPxwObzYYLFy6guLgYxcXFqK+vD7+vrq4OU6dOjXl/l6td1fY6HHY4nS2q3jMZAX8AhXYrGkT2\nSRfYbQj4/KLtdTjsOPV5A5yuDtH71jd14NTnDWmfho7Vv4I8q6Z+H4nS2t9VMjKlL+yHtmRKP4DU\n90XuISElU+u//OUv8eabb+L111/H8uXLcdddd2H27NnYsmULAGDr1q2YO3cupkyZgqNHj8LtdqOt\nrQ2VlZWYMWNGKpqkK8lsrdLD/upY/Uv3jAERkZ702ifm9773PTzwwAPYtGkTBg8ejLKyMpjNZtx3\n33247bbbYDAYcPfdd4cT3/q6RM8eDwXJyESykGT3V6uZBc+z1YmI1GEQlC5Ma4ja0xdant6JJ3iG\n+nEpa71nkEwkaz2VWfBi/dPy7yMemdIPIHP6wn5oS6b0A0jv1DrnMDUuka1Vau+vTuUpY9w6RkSU\nHG1sKqaUCAXJyCAebyU1njJGRKRtHJH3EYlOjys5ZYwjaiKi9OGIvI9ItEiMHrLgiYj6MgbyPiCZ\n6XGeMkZEpG2cWu8Dkp0e51YxIiLtYiDvBWqfQha6X7Y1Cx3ezpj3DU2PS1VSizU9zlPGiIi0i4E8\nhdTefx26X+WJOjS2+GA0AEEBKLp433tWTBN9n1pFYrhVjIhIexjIU0jt/dfR9wsK3e+bk21B2ZwR\nou/V+vR45KwFEREpx0CeIrESzJbOGxXX9LTc/UL2HTuHxTOHid5Xq9PjYrMWc6YMwZJZwzVzdjoR\nkZbxkzJFlCSYqXW/kPqmjpj3FSsSk05i2+I27/pUM2enExFpHQN5iqi9/1rufiED8rN1NTXNqnFE\nRMljIE8Rtfdfy90v5KqJgzQz0lZC7VkLIqK+iGvkKaR2glnofZUnnGhs8fbIWr91yQQ0Nrap1v5U\nS3ZbHBERMZCnlNoJZtH3i95HbjLpa4IllWenExH1FQzkvUDt/deR97PnWFS7bzqIzVrMmTIYS2YN\nT3PLiIj0gYGcRKldjU6K2KzF0MH5cDpbUvY9iYgyCQO5zqQ6wKpdjU4pVo0jIkoMA7lGxArQvRVg\n1a5GR0REqcVAnmZKA3RvBNhUVKPTUhU5IqJMxECeZkoCtNoBVkqyx52GpGt6noioL+KnahoprWzW\nW4VT1KpGJ1Z2dduBM5oqu+r1B1Dnamf1OCLSPY7I00jpCLi3Cqeosa+7t2YPEsXZAiLKNPzkSiO5\nEXBePwuyrV3PWWqXe5WzcsFolM4YiqI8G4wGoCjPhtIZQxVXo9N62VU9zBYQEcWDI/I0khsBN7X6\n8PjLH4VHi711nniy1ei0XHZV67MFRESJYCBPs8gA3eD2dHstOvGtN88TT3Rft5bLrqqVzAcwI5+I\ntCOuQF5VVYXTp0+jtLQUbrcbeXl5qWpXnxEaAS+ZPQKPrv8ILpGp58jRoh4Kp/TW7EG81Jgt4Bo7\nEWmN4kD+8ssv4y9/+Qt8Ph9KS0vx61//Gnl5ebjrrrtS2b4+o8PbiSaJ9eN4R4u9SWxkqvZhMWpR\nY7aABXOISGsUDyH+8pe/4PXXX0f//v0BAPfffz927tyZqnb1Of1zrSiwix+Akp9r1dyRnoFgEBu3\nVeHhdfvwo9/uw8Pr9mHjtioEgsHwNaHZAy0E8ZBkkvmUbhcUex+3uhFRqigekffr1w/GiKlDo9HY\n7d+UHKvZhH7ZFjS2+Hq81i/brKlgCOh3ZJrMbEG8a+yBQNfDDqfhiTKfx9eJOld7WmYgFQfy4cOH\n47//+7/hdruxdetWvPPOOxg1alQq29aneP0BtHv8oq+1e/zw+gOaCeaZkP2dSK5BvGvs6//8iS4f\ndohIuVDezJFTDXC6OtLywK74u/zkJz9BdnY2LrvsMmzevBlTpkzB2rVrU9m2PkV+tOdN+/7rSFrf\nK54q8ezn9/oD2HfsnOi1ctPwRKQvodnJOldH2mpTKB6Rm0wm3HLLLbjllltS2R7dUWsbkpb3X0fT\nU1vVpjQjv7nVC2dTh+g9tJy8SETKaWV2UnEgv+KKK2AwGML/NhgMsNvt2L9/f0oapnVqb0PS0v7r\nWA8nWmprb1O6xt4/1wpHfjbqXD2DeaY/7BD1FWrWpkiG4kB+/Pjx8P/3+XzYu3cvTpw4kZJG6UEq\nkr0ujfacaGzxotB+6eGgN8TzcKLVveK9JdYau9VswlUTB2Hzrk97vJbpDztEfYVWZicTquxmsVgw\nb948rF+/HnfccYfabdK8VE+nCIIAQej6394Uz8OJVveKa8mtSyagvcPXZx92iDKdVmYnFQfyioqK\nbv8+f/48Lly4oHqD9CBV0ynRgbSxxddrWc6JPpzoodJcuphMfNghynShB/MjpxpQ39SRlgd2xYH8\n4MGD3f6dm5uLX/7yl6o3SA+SnU4RW4NOd9KEVtZ6MhEfdogyV2h28s6l2Tj1eYO295E/9dRTqWyH\nriQ6nSK3Bp3uQKqVtR4iIj2yWbLS9sAeM5DPmzevW7Z6tL5apjWRZC+5Neil80alNZBqZa2HiIji\nEzOQb9y4UfI1t9utamP0JN5kLyVT50oCaSqPz0wmE53HehIRpUfMQD5kyJDw/6+urobL5QLQtQXt\nySefxLvvvpu61umA0vVPJVPncoG0N47PTCQTncd6EhGll+I18ieffBK7d+9GfX09hg8fjpqaGtx6\n662pbFtGUbIGLRdIN26r6rW63fEkZ+n18BQiokyheMh09OhRvPvuuxg/fjzefPNNrF+/Hh0d4iUo\nqad46nRHH/+Z6PGZqabVdhER9SWKA7nF0nVWtt/vhyAImDhxIiorK1PWsEyU6FnYWj2kRKvtIiLq\nSxRPrY8cORKvvfYaZsyYgVtuuQUjR45ES0tLKtuWcRKthqbVrWFabRelBxMeidJDcSB//PHH0dTU\nhLy8PPzlL39BY2Mj7rzzTsnrOzo68OCDD6KhoQFerxd33XUXxo8fj/vvvx+BQAAOhwPPPvssLBYL\nNm/ejD/84Q8wGo1YsWIFli9frkrntCreAiFa3Rqm1XZR72LCI1F6KQ7kK1aswA033IBvfOMbuP76\n62Nev2PHDkycOBG33347amtrceutt6KkpATl5eVYvHgxnnvuOVRUVKCsrAwvvPACKioqYDabsWzZ\nMixatAj5+flJdSzTaOWQkuhRl1baRenDhEei9FIcyB944AG8++67uPHGGzF+/HjccMMNWLBgQXjt\nPNrXv/718P8/d+4cLrvsMuzfvx+PPfYYAGD+/PlYv349Ro4ciUmTJsFutwMASkpKUFlZiQULFiTT\nr4wjNy0fCq72/tkp+/5yo67IdmVbs9Dh7URnQICJg7GE6GmKOt2lhYkojkA+ffp0TJ8+HT/+8Y/x\n4YcfYvPmzXj00Uexb98+2fetWrUK58+fx4svvohbbrklHPiLiorgdDpRX1+PwsLC8PWFhYVwOsU/\nGEIKCnKQlaXuh4PDYVf1fqk09OL/BgJBrP/zJ9h37BycTR1w5GfjqomDcOuSCTCpHEXXvX1UdNSV\nk23B7WWTEAgE8e6H6rVFT78POfH0ozd/n4kQ68u5+jY0tkgnPJosZjgG9Et10+LSF/+2tCxT+gGk\nry9xHWPqdruxbds2/PWvf0VNTQ1WrlwZ8z1/+tOf8M9//hP//u//3u1YTqkjOpUc3elytStvtAIO\nhx1Op/4S96L3lte5OrB516do7/CpNqXp9QfgdLVj9+Fa0dd3Hz6LxTOH4c0PTqnWFr3+PqLF24/e\n+H0mSqovAX8AhXbphMeAz6+p32Vf/dvSqkzpB5D6vsg9JCgO5LfddhtOnjyJRYsW4bvf/S5KSkpk\nrz927BiKioowaNAgfPnLX0YgEEC/fv3g8Xhgs9lw4cIFFBcXo7i4GPX19eH31dXVYerUqUqb1Wel\nekozcipd7EM6xNXigbOpg9OrSdLrFDUTHonST/F83be+9S3s2LEDjzzySI8gvm7duh7XHzhwAOvX\nrwcA1NfXo729HbNnz8aWLVsAAFu3bsXcuXMxZcoUHD16FG63G21tbaisrMSMGTOS6VOfkOo93KEE\nJrkgDnSNuiAI3E+eJD3vyU+0PgIRqUPxiHzevHmSr+3atQu33357t6+tWrUKP/7xj1FeXg6Px4Of\n/OQnmDhxIh544AFs2rQJgwcPRllZGcxmM+677z7cdtttMBgMuPvuu8OJbyQtlXu45UaH0aaNHQBH\nQQ4K7BY0tvh6vJ6fa+V+cgX0vCc/0foIRKSOuNbIpYita9tsNvziF7/o8fXf//73Pb523XXX4brr\nrlOjKX1GIlOaSrOh5UaHAGAwAIUR28xMRiP6ZYsH8n7ZZn6oK5AJU9Tx1kcgInWoEsjlziun1Ine\nwz0gPxuTRxX1mNKMt2CH3Oiw0G7F91dMgSM/u9v2t3aPX7SN7R4/vP6ALgJRunFPPhElQpVATukR\nPaU5akQRWpp7HmQTb8EOudFhyTgHhjpyu31Nfn3Xi+ZWL0dqCnCKmogSkf7NqRQ3rz+AOld7+HSx\nyCnNyK+Hrk3khLJ4EphCI3gxaqzvRvc300WffpesvvbzI+prVBmRjxgxQo3bUAzt3k788b0qHD/t\n6jZFvuzqy1Gx81McOdUAp6uj29R5o9sjmXkeyoYWGy3HMzpM1foua3gnhz8/or5BcSCvra3F008/\nDZfLhQ0bNuD111/HzJkzMWLECDz++OOpbKPm9HYJzUAwiI3vVWH30fPwdQbDXw9NkZ843YSautYe\nX2/3dCIrSzp/QcloWWkCUyrWd1nDOzn8+RH1DYoD+SOPPIJ/+Zd/CWedjxw5Eo888gg2bNiQssZp\nTTpGOIFgEI+/fKBboI5W6xR/bc+x8zDK5CFOHlWo2oOI2uu7ei2QohX8+RH1HYqjj9/vx8KFC8MZ\n6ldeeWXKGqVVkUVSBFwa4WzaXp2y77lx20nZIA4AQZmqtnKvlc4YBkDdNVS11ndTUSClL60V67nA\nDBHFJ+5a66FAfvLkSXi9fefDIB0jHK8/gI+r6mNeZzTIB2wx+bkWZFuzsHFblaozDGotO6hZIKUv\nrhXrucAMEcVHcSC/++67sWLFCjidTixZsgQulwvPPvtsKtumKUpGOGpvsWpu9aJJwchpiCM35qg9\nWlOrDw/9v73w+Hquubd7OrHm2nFxBWK1g6WaCXR9ca04EwrMEJEyigP5VVddhbfffhtVVVWwWCwY\nOXIkrNa+81SfjhFOtjUL+blWuGSC+bDiXDy4ehr+52+f4XB1PZxNHtHrxEbtkUE80p5j53HitCuu\nQJyKYKlGAl1fXitmgRmivkFxID927BicTifmz5+P//zP/8THH3+M733ve33mgJPeHOFEjm7lgjgA\n1NS14n/+9hnKS8fi9rJJ+P5zH+BcY89jXudOGYwj1Q0x7xcSTyBOVbBUI4EuHTMpWsECM0R9g+I5\nzyeffBIjR47EgQMHcPToUTzyyCN4/vnnU9k2zVH7lCep5CulJ4+FhAq7vLblhGgQH1aci2uuHKZo\nml7q3nJSnViVTAJdqovV6IHaBWaISFsUj8itVitGjBiBTZs2YcWKFRg9ejSMGZooJEWtEY7cenJn\nQFB88lhI6EzwfcfOib7e7ulEbrZZcmkg1r1jjVq1nFjFtWIiynSKI3FHRwfeffddbNu2DV/96lfR\n1NQEt9udyrZpltwIR8kWJ7ltbLFOHhMTOhPc2dSzzjrQFYw7vJ2YNtYh0R/pPwOlRWOk7q2FYMnz\nsokokykekf/gBz/AK6+8gn/7t39Dbm4ufvWrX+Hmm29OYdP0RWnWdqz15CWzR8Q9cg6dCe7Iz0ad\nq2cwDwVjqeSnsrkj8cf3TmL3sfOi91YSiLWcWCU1k+L1B9DQ3M61YyLSNcWBfObMmZg5cyYAIBgM\n4u67705Zo/RIadZ2rPXk0MhZbCo4WqHdgi9/qRBlcy+H1WzCVRMHYfOuT3tcN3lUYTiASS0N3LSo\nq43HT7vgavHGHYj1kFgVmkkJBIOq758nIkoXxYH8iiuu6HbuuMFggN1ux/79+1PSMD2JJ2tbyXpy\nKHgeOF6Hplaf5PcNBAXsOXYexy9uFfvXpVPQ2u7FnqPn4fF1Te2bjAbs/eQ8dhw6i6KIgBVa846e\nSSiwW3DVhIEoXzQGOVZz3D8LpbXZ46F2bfu+uK+ciDKX4kB+/Pjx8P/3+/3Ys2cPTpw4kZJG6U08\nW5yUJl+Vl47Fktkj8Oj6jyS3jDW3+QFcCkQ52RYYDYZwEAe6gn3AJ3S7LnR/oGdQa2zxYc+x88ix\nZaU9qKWiIltf3ldORJkpoU9Ds9mMefPmYffu3Wq3R5fi3eKkNPnKnmPB9PHiSWRi9h49qyjjPbSl\nLNGzyntLKmrbswY5EWUaxSPyioqKbv8+f/48Lly4oHqD9CjeLU7xrCeXzb0cfz9yVrIKW6R6iapu\n0SIDllaLpaRq5JzKrXK9fbwtEREQRyA/ePBgt3/n5ubil7/8peoN0qtEsraVrCe3tvvgVRDEAWBA\nvg3BoBAz4z0yYGl1/3eqKrKlYl+51BLAPSumxX0vIqJ4KQ7kTz31FACgqakJBoMB/fv3T1mj9ChV\nWdtyI8hosyYNRnuHL2bGe2TA0mqxlFSOnNXeKieVPJeTbUHZnBEJt5OISAnFgbyyshL3338/2tra\nIAgC8vPz8eyzz2LSpEmpbJ/uqJ21LTeCtFlM8PkD4UB065IJcNa3ALgUpCwXg7HXF0BhXs+ApdX9\n36msyKbmQ5fcEsC+Y+eweOYwTrMTUUopDuS/+MUv8Otf/xpjx3ZlMv/jH//AT3/6U7z22mspaxx1\nKZs7Eu2eThz/woWmVm9EIZfL0druCwcik8koGqR8/gDO1LViaHEu7DmWbveOvj7bmoUObyc6AwJM\nad5SneqHDDUeuuSWAOqbOjL6UBYi0gbFgdxoNIaDONC1r9xk4kgjlcTWXmdNGIibFo1FjrXrVxf6\nX68/gHP1bQj4A7CaTbCaTSjqb1O8fSvLZMC2g2c0VSRFD0Vm5JYABuRn94lDWYgoveIK5Fu3bsXs\n2bMBAH/7298YyFNMbO1197FEOSDaAAAgAElEQVTzyI7Y490t2Ld4UWi/FICVFD4JZVpv+fA0dhw6\nK3utUmpnb6eiyIxa5JYArpo4SHMPHkSUeRQH8sceewxPPPEEfvzjH8NgMGDq1Kl47LHHUtm2Pk3p\n9iupYB0IBHHkVIPo+w8ed+LrV30J7+z7IjwCjyjaJ/m9YgXoVBRw0QOpJYBbl0xAY2NbmltHRJlO\ncSAfMWIEXnrppVS2JWMlMkJVsv2qf65VMtjvPnoevk7xbWuuVi8efHFvt9cFQbwdrhYPGt0e7DhU\nGzNA99XSp1JLAKZ0JxkQUZ+gOJDv3bsXr7zyClpaWiBEfOoz2U1aMiNUJduv5IK9rzMIa5YRXolg\nLhXkxb7XtoNnsKOyNvw1qSn6vl76VMtLAESUueKaWr/rrrswcODAVLYnoyQzQlWy/ap/rhUFdgsa\nWyQOVlFhQDh5VCGOVNeLvvb3I+dQNvdy5FizUlbAhYiI5CkO5EOGDMH111+fyrZkFDVGqLG2X1nN\nJoz/UiH2iJwjDgB+fxCzJw7EPz93SR68Es1o6JpmD+05nz9tCHZGJMFF8vgC+ON7Vbjt/1yR0gIu\nREQkLWYgr6mpAQDMmDEDmzZtwsyZM5GVdeltw4YNS13rdMrrD+DT2uakR6ixtl95/QEsunIoDp6o\ng9ffc6q8wG7DmmvHwecPYO36D2WPRA2ZN20Irr1yWPh7ef0B2VH/8dMueC9uedNqlTgiokwWM5B/\n+9vfhsFgCK+L//a3vw2/ZjAY8P7776eudToTuSbe4PZCIhEc+bnWuEaokWuvXn8AjW4Pth2owZFT\nDWh0e2G1iM+hhwKo1WxCyTgHth+s7XGNzWKEzx/sNtqPXL+PNep3tXjDDyVarRJHRJTJYgby7du3\nx7zJ22+/jbKyMlUapGfRa+ISieDol22Oe4Qa/ZAQKXQyWrY1C15fp2gAlXqouGrCZbhu5pdkM+rL\nF41BZZWz2znnIZHT5okUcOGJYUREyVG8Ri7nrbfe6vOBXG5NPFq7xx+ejlbqT++fxPsiI+pIudlZ\n+NHqEjjys7vdu93bid1Hz4m+5+gpF1YuGCvblhyrGV+dPEjxtLmS7G25jH4iIlJOlY2ugtQm5D5E\nLms7Wmg6WimvP4DdR8WntiM1NHtgyTL2CKx/fK9K8jzzyLPJ5axcMBqlM4aiKM8GowEoyrOhdMbQ\npE8Ma3B7IeBSRv+m7dUJ3U9NXn8Ada52eP09ZyCIiLRGlRG5QaosWB8Sz3Gj8WZxO5s6RKe1o4nV\n9vb6Azh+2iX5HqXr9b11Ytihqnp4fJ0J3TdZfbUyHRHpGz+dVBLK2lYi7ixuhTMeYrW9Y80UjP9S\nQVxtCU2bJ7OeHWvPucvtTcuoeOO2kwnPEnAUT0TposqInLpEZ23n51rRL9uMdo8frhZvwlncjoIc\n2CxGyenxoosjR7Ha3nIzBTaLCeWLxsTVFjXItSk/14q3P6jG/mPnem1UHAgGsfG9Knzwsfh+ebl9\n/1zrJ6J0UyWQ5+bmqnEb3ZOafk42M9tqNmH2pEGi28dmTbgM37puvGRtb7n93dFJcb1Frk39ss14\nZ8/n4X/3Rr32Tduru538Fk1u379c9b57b5qufmOJiKIoDuROpxPvvPMOmpubuyW33Xvvvfj1r3+d\nksbpVXTWtho1uG9aOAZGgwGVJ5wXR/dWlIyTH6mGHiDK5l6OE6ebUFPX2u31mrpWbNperXqAVPLg\nIrbnfPKoQskT21JVr13JbgOpnAatrvUTUd+iOJDfeeedGDduHIYMGZLK9pAEk9GIpfNG4WtTBgOC\nAIfMOnW7txN/fK8Kx0+7wtO9bR6/6LVqBsh4ksXEZi+aW72S5WBTVa9dyW4DqZwGJWv9XLsiolRT\n/DmTk5ODp556KpVtIQlKA2QgEMTGbVX4+5Gz3dbT5TLp1QyQiRwSEzlbkY567XLf02joKllbNvdy\n1Lnae8wwxGpvQZ4VLc0dqreZiCiS4uyhKVOm4NSpU6lsC0lQuud6/Z8/wbYDZyST4sSoFSBjTTMr\nyeaWy/xPVb12ue/5tamDYDIasPal/fjRb/fh4XX7sHFbFQLBoKL22iwcjxNR6in+pNm1axdefvll\nFBQUICsrC4IgwGAwYOfOnSlsHik9Rc3rD2DfMfHqbXLUCpDOpg7JkX88o/6VC0YjJ9uC3YfP9lq9\ndqka8UFBiDnDwPryRJRuigP5b37zmx5fc7vdsu955plncPDgQXR2duLOO+/EpEmTcP/99yMQCMDh\ncODZZ5+FxWLB5s2b8Yc//AFGoxErVqzA8uXL4+9JhlJ6zndzqxfOJuXTuDaLCXMmDUw64ASCQfzx\n/ZPYfUT6ISKeUb/JaMTtZZOweOawXqvBLrZeDwAPr9snen3kA5SahXKIiBIR13nk1dXVcLm6qoT5\nfD48+eSTePfdd0Wv37dvH06ePIlNmzbB5XLhxhtvxKxZs1BeXo7FixfjueeeQ0VFBcrKyvDCCy+g\noqICZrMZy5Ytw6JFi5Cfn69OD3VO6bpx/1wrHPnZqHMpC+YeXwAGgyHpvdmbtleLbouLlMioX41M\n/3hFfs86V3tcx9Cmo71EREAcgfzJJ5/E7t27UV9fj+HDh6Ompga33nqr5PVXXnklJk+eDADIy8tD\nR0cH9u/fj8ceewwAMH/+fKxfvx4jR47EpEmTYLfbAQAlJSWorKzEggULkulXxpDbcz15dFG3UeC0\nsQ5s2X9a8b2TyVj3+gNwNnXg4PELktcYDcC8qYN1Oc2cjsQ7IqJEKA7kR48exbvvvos1a9Zgw4YN\nOHbsGN577z3J600mE3JyukYoFRUV+NrXvoa///3vsFgsAICioiI4nU7U19ejsLAw/L7CwkI4nTH2\n9RbkICtL3elLh8Ou6v3UdM+KacjJtmDfsXOob+rAgPxs5GabcezTBuw8VIsB+dmYNGoAZk24LK5A\n7mrxwGQxwzGgn+L3BAJBrP/zJ9h37Bycrg7Jo1qBrmNcb7ruCgyM4/4hWvh9zJkyBJt3fSry9cEY\nOljZjJEW+qGWTOkL+6EtmdIPIH19URzIQwHY7/dDEARMnDgRTz/9dMz3bdu2DRUVFVi/fj2uueaa\n8NelTkxTcpKay9WusNXKOBx2OJ0tqt5TbWVzRoTXjbd8eLpbJTKnqwPbD9Rg9+Geo3Y5BXYbAj5/\nXH3fuK1KdHZATKHdGvf9Ae38PpbMGo72Dl+PRLYls4Yrap9W+qGGTOkL+6EtmdIPIPV9kXtIUBzI\nR44ciddeew0zZszALbfcgpEjR6KlRb7Ru3btwosvvojf/e53sNvtyMnJgcfjgc1mw4ULF1BcXIzi\n4mLU19eH31NXV4epU6cqbVafYjWb0D/XKln9zOuP7zjZeNeu4zlzvev+Dl0nfjGRjYj0QHGm02OP\nPYZvfOMb+MEPfoClS5fiS1/6El588UXJ61taWvDMM8/gt7/9bThxbfbs2diyZQsAYOvWrZg7dy6m\nTJmCo0ePwu12o62tDZWVlZgxY0aS3dKmRE7Iin6PkkpkJmPX+jTQ9b9Di/vh6pLBSZ8lrvTMdZvF\nhIXTh+hybVyMGie+6VXo74/lZom0K+aI/B//+AeuuOIK7Nt3aSvOgAEDMGDAAHz22WcYOHCg6Pve\neecduFwufP/73w9/7T/+4z/w8MMPY9OmTRg8eDDKyspgNptx33334bbbboPBYMDdd98dTnzTsngO\nQknknGup95TNHRnz3HNBAB5aUwKvL4ihxbmw53Qti3jnJ3d4i5Iz16/8cjFu/fqXw/dP9sAYSo/o\nvz9HQTYmjyri2exEGhQzkL/99tu44oorRA9GMRgMmDVrluj7Vq5ciZUrV/b4+u9///seX7vuuutw\n3XXXKWlv2iUSlBMpXSr3Hqks9pACuxWWLBOGOOzdgmeyW6SsZhPGDy/A7mPnJa85WdMEILGfE2lH\n9N9fnasj5afQEVFiYgbyhx56CACwYcOGlDdGD+INyvFUZguNXH3+AA4eF39P5QknvrdsMgJBAXuP\nnYfH13Oavs3jx9r1H8UMnomMlm9aNBYHjtfB2yleBrap1YdGtwc7DtXG/fBC2qD0b5aItCFmIF+z\nZg0MBoPk66+88oqqDdKyRD7gYlVmCwW9Q1VONLi9sFmMCAqAzy8eKBtbvHj89x+hwG7BlNGFCMKA\nUzXNaGr1wmrJQoe3M1xrXSp4JjNazrFmYfbkQdhRKV0EZsuHX+CTz1yirzEQaJ/SaoJEpA0xA/ld\nd90FoGsbmcFgwFVXXYVgMIg9e/YgOzs75Q3UkkQ+4GIVFtl2oKbbVjIlB54IABpbfNj/DydsFhNm\nTRyIr00ZjF//z1F0eHsmJUUHz0Sm+iOVl47ByZomnHG2ib5+5FQjmlt9oq81uhkItI7FcIj0JeZi\n5axZszBr1ix88cUXePjhh1FaWoprrrkGjz76KD7//PNeaKJ2hD7gxEh9wMmdkDV5dJHkVjKlPL4A\ndlTWYttHNXA2eUSvCQVPIPasQku7r1uWvNcfwJm6Fpxxtoa/ZjIa8a9lEyXb1NzqQ77Eh73BAGz5\nqCZ8ghhpTzpOoSOixCneR37+/Hl89tlnGDlyJADg9OnTqKmpSVnDtEiuXGroA05s3VnqhKz504Zg\np8wUdTyOn3bBaACCIlvJrRZT+CFDblahwe3B2vUfornVhwK7BTk2M+qbO8KzBKGDVlYtHIPCPBuK\nJEZthXk2TB5dJDr9HhSAHZW1MBkNXCvXsOi/2QH5l7LWiUhbFAfy73//+7j55pvh9XphNBphNBrD\niXB9iVRQXnb15di4rUpy3VmssIjXH4i5nUspuXv4O4MXR8CmmFvImi5OiTe2+NDY0n163OML4P2D\ntTAYuoKw3EPNygWjAUHABx+fFX244Fq5tkX/zY4aUYSWZuWn6xFR71EcyEtLS1FaWoqmpiYIgoCC\ngoJUtkuzpIJydOlSsXXn6O1fVrMJU8YMiHl6mBIGQ9f+cTGBoICN753Ed/7PFbKzCkodqnJi6bxR\nsmdxm4xGXDtzOHZGrP9H0lvSVF/dDx/6m7VZspAZhTSJMo/iQF5bW4unn34aLpcLGzZswBtvvIEr\nr7wSI0aMSGHztCsyKCezXUd6P4A4kxEIiCwvxypRf/wLF7z+AKxmU48A3L+fFa5W5bMCjS3ecBCW\nK2HaP9eKArulx8ge0E/SFPfDE5HWKf4keuSRR3DDDTeEDzUZMWIEHnnkkZQ1TE9iZbM7mzp6JIwB\nXQ8AH5+sF31ffj8L5k3tWVb1ue/NxZyJA1GUZw1/fX7JEBTaLbJtbGr1hhPeQrMKT97+Ffzsjqvw\n6K1XokgiiU9Mod3aLQiLlTANBIN484NTaPeKl6PVS9JUKMO/we2FgEszLZu2V6e7aaQziZRoJlJC\n8Yjc7/dj4cKFePnllwF0nTdOXeTWnS1mI376ykfhA00iE8bkHgDc7T4s/srw8HWRyWqrrx0X/v+h\nr/t8AdmKa2Ij4MhZhXim25UchhK9xS3EZjHhq5MH6SJpioVRSA2c1aFUUxzIAcDtdoeLw5w8eRJe\nb/JJWplAbt05el94ZMLY0nmjYu7XtZpNyM2x4A/vHsfx0y40t/rCHwTLrr4cFTtPhYvJZFtN8PmD\nCIhkl8UaAUdPt+fnWpFjyxLNWg9dK7VuLBcAc2xZ+NrkQegMCDBp/DOMhVFIDcnWbSCKRXEgv/vu\nu7FixQo4nU4sWbIELpcLzz77bCrbphuBYBBBQYDNYgwHPau5K0p5JSq0hRLGpB4AJo8uQqPbg/cO\n1GDX4bPd1sVDHwTHv3B1K8rScXEae2BBNnydQTS1ersloEWKDsJymfVOVztgMMCRnw2r2YRAMCib\noS8XABvdXvxk/Uco0sGohIVRKFmZOqvTV5M/tSqu88hvvPFG+P1+HD9+HPPmzcPBgwclD03pSzZt\nr+6ReS4VwENCCWM9M7+tyLGZcfikU7YMKgDJymp1TR2YO2UwrrlyGArzbD3WruWm+cQy64cWdz+N\nLtYIQ8kpaXoYlSipG0AkJ9NmdbhMoE2Kf/K33347Pv/8c3R2dmL06NHIyspCZyfPKJZ74pbLSA8l\njEUnnk0eVYSaulbRTG+lggLwwcdnseNQbY9gk2zyVqwRRigzXqoymNR7tGrlgtEonTE06bPcqW9K\npBqkljH5U5sUj8jz8/Px1FNPpbItuiT3xC23Iyw6Ycxq7irWkmzJ1kgHjzuxZPaIS+eRywZhJ742\neRAcUdnnIaGpNJ8/oGiEETnT0Njikdwep/VRidSSA5ESmTSrk6nLBJlAcSBftGgRNm/ejGnTpsFk\nuvTLGjx4cEoaphdy08iFdismjS7C/k8uhI8bjUwYa2n34UxdK4YW58KeY5F9KEiEq9WLtes/xIzx\nxVi5YHSM8qxda9cFuVZMHTsA5aVjYDIaRafSrBG5AJEiRxiRAdDZ1IFfvv6xrveTJ3uWO/VdcoWT\n9CTTlgkyieJAfuLECfz5z39Gfn5++GsGgwE7d+5MRbt0Q+6Ju2ScA+WlY7FqwZhuCWMGg4DHXz6A\nWmcrggJgNABDHLn44U3TVCvZGtLU6gu3TS5LPsTV6sWOylpUn2nGT26eIboeLkVshGE1mzDUkYuS\nccUZMSohilemzOow+VO7FAfyw4cP46OPPoLFIl94pC9S8sRtuTh1bjWbsHb9h6ipaw2/FhSAmrpW\n/PyPh5IunyolNPWl9P41da3YsOW45LniJiOQl2NBc5tP0QgjU0YlRInS+6xOJi0TZBrFgXzixInw\ner0M5CKknrjFtmlNGFmAWmer6H1qna24+8YJ+PuRc+GpeLWEpr5WLhiNE6ebuj1ISDl0sgGt7X7R\n1wJBYNzwApTNHalohJEpoxKivowP5NqkOJBfuHABCxYswKhRo7qtkb/22mspaZgeRT9xi01L/+2w\ndPW1oABUn3HDq3IQBy5NfXUGBLR7xINztJZ2P/L7WdDUJp5Bf/JMU9wBWe+jEqK+jA/k2qQ4kH/3\nu99NZTsyjlyGp5yRg+zIz43vEBMlQlNfda52xQl1RXk2jBnWH/s+uSD6uivi8JRUYwEKIu3gA7m2\nKA7kM2fOTGU7Mk6iGei/2PQxXK2J7yEPyc+1wC2yfq2kWEvItLEDUDZ3JD4+WS861a9GgovXH4Cz\nqQMQBNGtbyxAQUQkL65a66RcPAEzktgWLaOha9pdqaI8G35y8wx0eDt7jGDlElYsZiP8/iAK87qf\nK/7VyYNUT3AJBIP40/snsfvo+YiteUbMnjQI/3dlSfg61qkmIpLHQK4CsWlfuYAZj/xcCyaPLsLf\nPj6n+D2TRxWKBvEQqYSVsrmXo7Xd1+N9ZXMvR4enE8dPu+Bqka7fHo9N26vxflRZW48viO0Ha5Gb\nY0XZnBEsQEFEpAADeRJiTfuGAl0yWejuNh+uvXI4LFmmbieTtXs7Re9pMhrw8Ukndhw6i0K7BSXj\nintMQ8slrORYL/1JRPevwG7BVRMGonzRGORYzQn1B+h68Kk8USf5+t6jZ7F45jAWoCAiUoCBPAmx\npn1NRiOWzhuFQ1VO0aBrNHSVcS2wW9Ha7oevU7xaWmGerVvg9XUGsfalD0XbFAgKcLV2ZaU3tnQV\ngwkKAlYvGtfj2lgJK9H9a2zxYc+x88ixZSU8rR0IBvHqlhOyteTrmzzhBwzpAhRW+PyBcG13IqK+\nitlCCVJyeAggn/QWFIBpowcAgiAaxIHu69ChwOvIz5Y8iEHMnqPn4z6YRGn/4rVx20nsPia9BQ8A\nBuRfOotd6vCVNo8fa9d/hIfX7cPGbVUIBOVPmyMiylQM5AlSMu0LyJ9+ZLOYUHmyXnJ0arMYERSE\nHkEqntPFAMDju3imeByU9i+S1x9AnatdNMgHgkFs2HIcHxySP5oVAGZNGhx+eIk+fcxm6fq6xxfk\n6UtERODUesKU1h1OJuktlPwlBAWsuXZ8t9eiE9by+lnQJLdtzSB3qGpPSvoXSvLLzTHj7V2fyW4R\n27S9GjsOnZX9nhZzV4b8rUsmoLGx66x1scNXxJYpmPxGRH0VA3mC4qk7LJYlPm54PvbGmGIO+eDj\ns4DBED6RDOiZsJZtzcKDv92HDm/PM+JtFhMc+dmq9W/KmCK8+cGpcOC2Wkzdgmt0roCS4jj5uRY8\ndutM2HMsMJl6ThRZzSZYsoxwScxeMPmNiPoqBnKFxLaYKa07LJYlDgAnTrsU7TMPCsCOylqYjIYe\nSWaRCWsLrxyGv/z9sx7vv2rCZT3arqRSmlT/BEHoFuClMvJDo2QlxXFmjC8On5suhacvERH1xEAe\nQ6wtZvHUHY7OEo93yr3yhFN2+vg710+Ex+PvamuLF4V2K3JsZhyprscHh86iMM+KqWMGQADwcZUT\njS0+yS1qAMJZ91+bMjhceQ0AHl63T1F7Q6NkuQBsNADzpg1RtCedpy8REfXEQB6DkspiidYdjhzx\nNrg9Ma9vbPHi1S0ncPPXx4uWJzWZuj9YbPnwdLd16Qa3t0cRltAWtfYOP9ZcNz4cDAPBIDa+V4VD\nJ+vR1OpD0cUHmPnThiguPRsaJcsF4HlTB2PNNT23xkm59DO79LASerAiIuqLGMhlpLqyWGhEv2T2\nCKxd/6F8stpFu4+dR/bFfdxS0+PWi2efHznVoLgtez65gOOnXSgZV4xlV1+On75S2e2o09ADTCAQ\njKtWe7zLEEoJggBB6PpfIqK+jIFchrOpo1cqi3V4O9Ecx0Eph6qcCASCOHKqodt0/z0rpoWvSeTQ\nltDo/PgXLpxxtolec+RUIyaPHoAdlT23kdksJvj8AdEgrdbxh2JFalh7nYj6MgZyEaF18coTdZAa\n76mZXBXvASsNbm+PKfNtB85AgAHL5l0eHpEncmgLAJytFw/iANDo9qB0+lCYjAbFtdojJXP8IWuv\nExH1xEAuInrUJ2ba2AEAgDpXe9JnZMe711zqNLT3D9TgUFUdSi6uGSe6f13upDWz2Yj+uVZFtdqV\nkFoeEPs6a68TEfXEQB4l1p7noouZ30FBwMPr9smeka1ki1dI5Bpyo9sjORMAyAfaxohkPLF16Wyb\nCWfqpEfcgPyxqT5/EG/v+hTlpWOTGl1L7QZYdvXlWPf2Uew+XNvjZ8vtZ0REPTGQR4m1trzmmnE4\n/GlDtzXi6Ex2uS1rnQEhXMAl8qjRbhXMXO34r4ojogHLZjHCZjaiqa1n4ZdIoanm6JFzlskQbpvU\ntPsQR263RDepeyczCyG1G+DE6SbRJDug62fL7WdERN0xkEfJtmahf654uVOjAfhlxREYJaqdhgLc\n6zuqRQP9idNNaPf40eD2hke90fu4rWYThhbbJQPWVycPRrunE3tiVIWLnGqOHjmHgnuj24NtB2pw\n5FRjt7XuZVdfjg1/rZI83CTZaWy5WY9ap/gDROhnq3b2OxGR3jGQXxQ5ipbaBhaabpaadm50e/CH\nd4/jw39eEH09cqQZuodU1rVcwPL6A6iUOBo1JNZUs9VswqCiflixYAzmT2sHDAY48rPDo9rV147D\nP79oFD3QJbrWerw5ArFOhBMT+fCgRvY7EVGmYCC/SC7BTW7NOJLVYsK+f4gH8Viip6vltmvlWLsO\nF5FLZIs11RyrYp3VbELJuGLR7zE1qta6VI6AlFiV3sR+1tEPJsmszxMRZRIeYwrA4+uUnOrN62dW\nFMST1eD2oFGkulsoYEUH5dDxnoX2ruAWmu4vyrOidMbQmFPNoQeXBrdX8jjQ6CNEi/JsKJ0xFAIQ\n871y5I5hHeLIFf0618CJiMRxRA7A5Zae6m1p9yNfZs1cAFAY52lmUrYdPIMV80crmjIWO/0su58N\nAZ8/ZsBTuh9bbFYgEAzihy/sifneWKSWDpZdfTne2X8Guw+f7RNr4IkuTxARhTCQAyjIk57qLbTb\nMHlUoehZ2vOmDsa1M4fHPM3MaOhKomvzyGea7z12HodPOuFq8Smero6cYnYM6Aens0X2ewDya9Sh\nmYFBRf1Ev8fv/nJCcm0+niQ4uaWD28smYfHMYRkd4GItbRARKZXST4yqqiqUlpbi1VdfBQCcO3cO\na9asQXl5Oe699174fF2j3M2bN2Pp0qVYvnw53njjjVQ2SZTNkiU51Ttt7ACULxorOsVcvmhseNpb\nbrq4OD87ZhAHuo4DbWzxJTRdHY/+uVZYLdLBcduBGtGve/0BHP+iUfJ9BXZr3Hu5pZYOpL6eKZQs\nbRARKZGyEXl7ezueeOIJzJo1K/y1559/HuXl5Vi8eDGee+45VFRUoKysDC+88AIqKipgNpuxbNky\nLFq0CPn5+alqmii5LHGldcKj72ExmyAIAs67OhJu16EqJ742eRAcKgc1ucNGjpxqgNcf6PH9mlu9\ncIlksYeMH16QsYFXTSw1S0RqSlkgt1gsWLduHdatWxf+2v79+/HYY48BAObPn4/169dj5MiRmDRp\nEux2OwCgpKQElZWVWLBgQaqaJkpJsI6VKR15jw1bTsTc661Eg9uLn6z/KHyMqNKpV68/AKer57Yy\noCsge/1Byfc2tnhFp8jlss1tFhOWXj1KlZK1Yn3JpGl2lpolIjWlLJBnZWUhK6v77Ts6OmCxWAAA\nRUVFcDqdqK+vR2FhYfiawsJCOJ3SJVJTTa1tTSdOu1RozSVi56CLCQSD+OP7J7Hn6Dl4fF3B2mYx\nYc6kgVi1cAxMxq5a6YV2i+gecQAolJgil6sJ78jPxk9fOaDqem+mriOz1CwRqSltyW5SU7tKzpcu\nKMhBVpa6IzOHw67avc7Vt6GxJf5Tx5Q4cqoBdy7Nhs0i/qv7897T2H6w+xGjHl8A7x+shWAw4l+X\nTobDkoWvTh2Kzbs+Fb3HnClDMHSw+NLGPSumISfbgn3HzqG+qQMD8rORm23Gp2fd4WtCDx052Rbc\nXjYpoX46HHase/uoaBnXZO7b26T+ruZMGSL6858zZbDkzz7d1PxvJJ3YD23JlH4A6etLrwbynJwc\neDwe2Gw2XLhwAcXFxV1itbMAABofSURBVCguLkZ9fX34mrq6OkydOlX2Pi5Xu6rtcjjsirK9AWXT\nvAF/AIX2xI4QjaW+qQOnPm8QnTWw98/G3z+WLhKz/UANPj5xASXjirHs6svR2u7FnqPnw1nooZH7\nklnDZX8eZXNGhLPKs61ZePzlj0Sv2334LBbPHBb3dLjDYceZs03YfbjnmefJ3Le3yf1dLZk1HO0d\nvh45GbF+9ukSz38jWsZ+aEum9ANIfV/kHhJ6NZDPnj0bW7ZswQ033ICtW7di7ty5mDJlCh5++GG4\n3W6YTCZUVlbioYce6s1mKRLPNK/VbMLkUUWiW9YA5ZXixMhNvbrcXsnp8pDIkrCrF43D8qtHi66l\nx3pgCS1B1LnaU7Lem+nryEoTKImIYklZID927Biefvpp1NbWIisrC1u2bMHPf/5zPPjgg9i0aRMG\nDx6MsrIymM1m3HfffbjttttgMBhw9913hxPftETqtK5AUMD8aUMAQeiWWb5g+hDJQJ5MpTi5CmcF\nefJr35EqTzjD2dFDiy/9vONdl07Vem9fWUdmqVkiSlbKAvnEiROxYcOGHl///e9/3+Nr1113Ha67\n7rpUNSVpctuFdlTWhk86s1mMmD1pEG5aOKbHOnWkojwrLh/cHyfPNKGp1Sc5QrdZTMixZqGp1Ruz\nwlkgGMSGd/6Jdm/s/eqAdGa61AMLIJ5kZzWbMHXMALwv0t+pY4oSHmXKJdalslxrpmXIE1HmY2U3\nBWKdUR7i8QWx/WAthKCAI6caJK9ztXrx0fE6AIDFbEBRfxvO1ffcaz5r4kDFJVvlDn0RE6o2FynR\n/c1SEwzJlqjvzSNLMzVDnogyHwO5AnLTvGIqq+rhbpOe3g5GbOH2+YVwEA+NzA3oCoKHTzphMhpi\nBhO5ACzZBgHo8HbCnmMJfy2RdWmvP4DDJ+tF33P4ZAOWX92zsIxSvbmOHO9MBBGRVnCooYBc+VUx\nzW0+5CewhhuaXg+NZEOJaXJlOwPBIDZsORF3hrzRAGz58DQCEU8VoQcWMWLr0l5/AJ/WNscM/slK\ndbnWWDMRXr/0ue9EROnGQK7QygWjMX/aYOTndo1gQ8eGiim0WzF17ADVvrdcMNm0vVq2gpxNoqZ6\nUAB2HDrb7SFB7oElcl06EAxi47YqPLxuH57908cwSPws9JKUpmQmgohIqxjIFQitnx451YDmVh8K\ncq0YPKCf5PUl4xwoLx2D+SVDZAO+Uo1u8WCiZEp99qSBsu2Ifkgom3s55kwciKI8KwwGoCDXivkl\nQ7qtS0ce+AFIZ+Hn2LKQZVLhB5Bi8c5EEBFpCQO5AtEnVblavTjjbMPQ4n7dRrw2iwkLpg8Jr2lf\ne+WwpLaahRgMwJaParpNgwNdI0m5KfU5EwfipoVjZNsRGnGGRtlrX9qP3cfOo7XDB3OWEa5WL45U\n12PT9moEgsG41uNr6lp7/TQvrz+AOld7XNPhSmciiIi0iMluMcgFrvomD352x1Vo7fD32EcOdI30\niuJIkpMSFLq2uZmMhm6JV9nWLMmtawYAKy4+UMi1IzTijE728voFhFbrIxO/SqcPVZTBH9Jbp3kl\nm3XemxnyRERq4og8Brn1U48vgIqdpzDUkYuhxXbR09Imj5ZeK8/LycK8qYPD55zbLEbIxZzIafBA\nMIjXt1dLjrQFdGWlh9ohN+LsunfsUfahqnpYzCZYLcr/bHprjTnZ871DGfJP3v4V/OyOq/Dk7V9B\neelYbj0jIs3jp1QMcuunAHD8C5fsNG7p9KGSr7V2dGLxV4bjydu/gqsmDITHF0RQ+nTRbkFx0/Zq\n7JZJcos+wWzlgtEonTE0/NBQlGdD6YyhWLlgtOJ98q4WDyp2ngqfqqZEb6wxq5l1nuoMeSIitXFq\nPQar2YTxwwskg2ZTq3iFtJDCPFvMaW1A2bGnoeuVrFOXjHN0C0Zye7KV7pMvsFtx/ItG0ddMRgMC\nItMDvbHGnOl12YmI5HBErsBNi8bCJjGdHGvEqSSRSumIOHR9o9sjG3RnTxwoubYrNuJUuk9+/PAC\nuCTquAuCgNkTB4qO+FONWedE1JdxRK5AjjULX508OOG632KJVJNHFWL+tCHw+gOKRsQ2ixFBQUAg\nGMS2g9KlWIvyrFhz7bi41na9/gDmTxuCQFDAkeoGNLo9sF7Mxvf5A+HEr7K5l+P4aZfk7MKaa8cB\nQK/XKk9XXXYiIi1gIFdo5YLREAQBu7ud330puMoFzshp7Ua3B9sOnsGR6nrsPHQ2nF09ZcwA2YNW\nlNZxnzxK+UElYpnek0cVoXTGMBTm2QD0DMpKAmY6prGZdU5EfRUDuUImoxEGgyEcxIFLwdVoMCiq\nx201m7Dj0KXT0oBL2dULpw/BgulDsCfiQUHMoZP1aG6VruNeOmOYwh6J1xffcegsTKauBw+xJLFE\nA2aqTxXj+d5E1FcxkCskl2D29yPnUDZ3JHKs5oTv8fHJBkweVSgbxAGgubWrjrtLZEtXcUF2eCQd\ni1xbKk84L06z14vuyY4nYPb2qWI835uI+homuykUaz/5xvdOJnWPxhYPDkmcIhapMM8mWcf9qomD\nFI9C5dvixY7KWtk92Uq3aSW7v5uIiOQxkCvUP9eKArtF8vVY+8lD95DKrs7vZ0WTzJR5yLSxA1Be\nOkZ0T/itSybEfL+Stiityx4LTxUjIko9Tq0rZDWbYDVnARAPtrH2k4fuIZUsNnXsAByprpfMXC+0\nW1EyTn5622S69FwWa01ari2x6rIrnbrm/m4iotRjIFfI6w/A2yk9gszPtcbcrxwIBhEUBNgsxnB1\nNKvZiOnjirF03iiYjAbRwDpn4kCsvnacaAnY6EAotybdGRC6BXepbXFHTjXELGCjhNy2Ou7vJiJS\nBwO5Qs2tXrhk9nmP/1KBovXi6C1mXn8Qe46dx/EvGjF1rAMLpw/BxycbemSEK00ME8tE33bgDE6c\nbkK7x98juIuN7Dduq1JlTzb3dxMRpR4DuUJyo0ubxYTyRWNk3x+rrGpjiw/bD9ZiwfQhePL2ryS0\nhcrj65T8HjV1reH/H3maWXnpWFjNJvTPtYa/p5p7srm/m4gotRjIFQitN08eVYQdh872eP2rkwfF\n3HqmtAzrnqPnsfzq0QmtHdc3dcR1ZOqhqnqUzR2Jt3d9JjoVr8aebO7vJiJKLQbyKJFJYlkmQ4/1\n5mHFuWjr8KOp1RvX6FLpwSQeXwDnG9vwpcvyerQnVgD8865PlXcUXQlnG987iT0RB8JEj9bVSkbj\n/m4iotRgIL9ILEksx2buMSXd4PZifskQXHvlsLhGl1azCVPHDMD7MmVYQ7Z8WIPbvvHluAqpeP0B\nHPjnBeUdhvxpZoeq6rF03iiOnomINI77yC8SK1wSGcQjHaluSGiKWGJXVw9Vp5uw8b2quAqpNLd6\n4WzqiKs9cqeZRZ59TkRE2sVADvkkMTGJBDmvP4DDCiq3AYCr1StZ5U2qkEr/XCsc+dmi7ym0WzG/\nZEiPAjI3LRrL4z+JiHSOU+sAXG5liWghiQQ5pcluQFeVN7Fa6oB0IRWr2YSrJg7CZpF18pJxjq5D\nUOb3XG/n9jAiIn3jiBxAQZ50uVIxiQQ5uZKo0aaOHYCiBEbKty6ZIFq6NZSMJ1YffeWC0bLvISIi\nbeOIHIDNkiU5Mh1WnIt2T2fSe6DliqPYLCb4/IGoAjDiVd7kHiJCx4/Gs9WL28OIiPSNgfwiucIl\n0aVN1f4eZXNHorXd3+3+yRRSSWSrF7eHERHpk0EQBKXJ1JrhdLaoej+Hwx6+Zzz7thMVz/eI59rI\nfugZ+6E9mdIX9kNbMqUfQOr74nDYJV/jiDxKb4xM4/keHCkTEZEcJrsRERHpGAM5ERGRjjGQExER\n6RgDORERkY4xkBMREekYAzkREZGOMZATERHpGAM5ERGRjjGQExER6RgDORERkY4xkBMREekYAzkR\nEZGOMZATERHpGAM5ERGRjmnmGNOf/exnOHz4MAwGAx566CFMnjw53U0iIiLSPE0E8g8//BBffPEF\nNm3ahFOnTuGhhx7Cpk2b0t0sIiL9EwTl/070tUTvk2MEWlu7XWqACu2J2Va515Tfp3tbOwBDNtJB\nE4F87969KC0tBQCMGjUKzc3NaG1tRW5ubq+3JefZp5B1/J+XvqDWH7LSP844vqch+jWzCf19nQrv\nI/P9kZr/eAxKr80yIt8fUNa+uNoTfZsEf85Kf88mIwo6ZfqRgg9J2bZGNS+u37MBKAxKvJ6qvwnV\n/pvp/o8iqb/9eNqa6H8j8Vwb4z4D5H7vOuJIdwNUlP3I4+j43vd7/ftqIpDX19djwoQJ4X8XFhbC\n6XRKBvKCghxkZZlUbYPDYQc6O4GNrwC1tareuzdZ0t2AaAaD9L9lXjPLvS+O+8i+ptZ9ZF7L0lpb\n5a41RP7b0ON9piwN/w7iuNaoo7bKvWbQWHs0d5/ebqvJhNwl1yHXYUdv00QgjybEeLp0udpV/X4O\nhx1OZ0vXP/Z9DENLS/cLoj/spF7rcW3ifxwC4r+Pw2GHs75V0bXxtieua5PU7fehY5nSDyBz+sJ+\naEum9AOI6EuK+uOQeUDQRCAvLi5GfX19+N91dXVwONI04WK1QrBa0/O9k5WdDdg6Y19HREQZQxPb\nz+bMmYMtW7YAAD755BMUFxenZX2ciIhIbzQxIi8pKcGECROwatUqGAwGrF27Nt1NIiIi0gVNBHIA\n+OEPf5juJhAREemOJqbWiYiIKDEM5ERERDrGQE5ERKRjDOREREQ6xkBORESkYwzkREREOsZATkRE\npGMM5ERERDpmEGKdUEJERESaxRE5ERGRjjGQExER6RgDORERkY4xkBMREekYAzkREZGOMZATERHp\nWJ8O5D/72c+wcuVKrFq1CkeOHEl3cyQ988wzWLlyJZYuXYqtW7fi3LlzWLNmDcrLy3HvvffC5/MB\nADZv3oylS5di+fLleOONNwAAfr8f9913H2666SasXr0aNTU16ewKPB4PSktL8dZbb+m6H5s3b8b1\n11+Pb37zm9i5c6cu+9LW1oZ77rkHa9aswapVq7Br1y4cP34cq1atwqpVq7B27drwtb/73e+wbNky\nLF++HB988AEAoKWlBXfccQduuukm3HbbbWhqaur1PlRVVaG0tBSvvvoqAKjye5D6GfR2P26++Was\nXr0aN998M5xOpy77EbJr1y6MGzcu/G+99SPUtmXLluHb3/42mpubtdUPoY/av3+/cMcddwiCIAjV\n1dXCihUr0twicXv37hW+853vCIIgCI2NjcK8efOEBx98UHjnnXcEQRCEX/ziF8Jrr70mtLW1Cddc\nc43gdruFjo4O4Rvf+IbgcrmEt956S3j00UcFQRCEXbt2Cffee2/a+iIIgvDcc88J3/zmN4U333xT\nt/1obGwUrrnmGqGlpUW4cOGC8PDDD+uyLxs2bBB+/vOfC4IgCOfPnxeuvfZaYfXq1cLhw4cFQRCE\nH/zgB8LOnTuF06dPCzfeeKPg9XqFhoYG4dprrxU6OzuFX/3qV8K6desEQRCEP/3pT8IzzzzTq+1v\na2sTVq9eLTz88MPChg0bBEEQVPk9iP0Mersf999/v/C///u/giAIwquvvio8/fTTuuyHIAiCx+MR\nVq9eLcyZMyd8nd768eqrrwpPPPGEIAhdf+vbtm3TVD/67Ih87969KC0tBQCMGjUKzc3NaG1tTXOr\nerryyivxX//1XwCAvLw8dHR0YP/+/Vi4cCEAYP78+di7dy8OHz6MSZMmwW63w2azoaSkBJWVldi7\ndy8WLVoEAJg9ezYqKyvT1pdTp06huroaV199NQDoth979+7FrFmzkJubi+LiYjzxxBO67EtBQUF4\nFO12u5Gfn4/a2lpMnjy5Wz/279+PuXPnwmKxoLCwEEOGDEF1dXW3foSu7U0WiwXr1q1DcXFx+GvJ\n/h58Pp/oz6C3+7F27Vpce+21AC79nvTYDwB48cUXUV5ejv/f3p2FRBW3cRz/jjNOpZWZOmO2YWYY\nFdpiKS7QIrTajRXVeFHRSotFWYpUkOVMeVEZUlRQFGFmkUW0lxXZgghhVhdtUCO4RFJZqTP+3wtf\nh3yzvVc9+Xzuzv+cmfP8znF85pwZ5m80GgE0meP69evEx8cDMGvWLMaPH9+ucnTYRl5VVYW3t7dr\nuWfPnq7bV+2JXq/Hw8MDgLy8PGJjY/n06ZPrReHj40NlZSVVVVX07NnT9bimPF+Ou7m5odPpXLcb\nW5vNZmPDhg2uZa3meP36NZ8/f2bJkiXMmTOHO3fuaDLLlClTKCsrIy4uDovFQnJyMt27d3et/5Uc\nPj4+VFRUtGr9BoOBzp07Nxv70/NQVVXV4jFo7RweHh7o9XqcTifHjh1j2rRpmszx4sULnjx5wqRJ\nk1xjWsxht9u5efMmiYmJrF69murq6naVo8M28v+l2vkv1V65coW8vDw2btzYbPxbdf/q+P/b6dOn\nCQsLo2/fvi2u10qOJtXV1ezZswer1UpKSkqzerSSJT8/n4CAAC5fvszhw4dZt27dT9XV0nhbn4+W\n/I3z0Ja5nE4nycnJREREEBkZ+dV6LeTIyMggJSXlu9toIYdSisDAQI4cOUJwcDD79u1rcZtvPfZn\nt/1dHbaRm0wmqqqqXMsVFRX4+fm1YUXfduvWLfbu3cv+/fvp1q0bHh4efP78GYDy8nJMJlOLeZrG\nm9751dfXo5RyXbG0poKCAq5evcrMmTM5ceIE2dnZmswBje+mhw8fjsFgoF+/fnh6euLp6am5LMXF\nxURHRwMQEhJCbW0tb9++da3/Vo4vx5tyNI21tT/9m/Lz82v2pb22zJWSkkL//v1Zvnw50PL/rPac\no7y8nOfPn7N27VpmzpxJRUUFFotFczkAfH19CQ8PByA6OpqnT5+2qxwdtpFHRUVx8eJFAEpLSzGZ\nTHTt2rWNq/ra+/fv2b59O/v27aNHjx5A4+cuTbVfunSJmJgYQkNDKSkp4d27d9TU1FBcXMyoUaOI\nioriwoULQOPnPGPGjGmTHDt37uTkyZPk5uYyY8YMli1bpskc0PhCvnv3Lg0NDbx9+5aPHz9qMkv/\n/v158OAB0Hjr0NPTk6CgIIqKiprliIiIoKCggLq6OsrLy6moqGDgwIHNcjRt29b+9Dy4u7szYMCA\nr45Baztz5gzu7u6sXLnSNaa1HGazmStXrpCbm0tubi4mk4mjR49qLgdAbGwst27dAhr7RWBgYLvK\n0aFnP8vMzKSoqAidTsemTZsICQlp65K+cvz4cbKysggMDHSNWa1W0tLSqK2tJSAggIyMDNzd3blw\n4QIHDx5Ep9NhsViIj4/H6XSSlpbGy5cvMRqNWK1WevXq1YaJICsri969exMdHc369es1mSMnJ4e8\nvDwAli5dyrBhwzSXpaamhtTUVN68eYPD4WDVqlX4+fmxceNGGhoaCA0Ndd0WPXLkCGfPnkWn05GU\nlERkZCQ1NTWsW7eO6upqunfvzo4dO+jWrVur1f/w4UNsNht2ux2DwYDZbCYzM5MNGzb80Xl4+vRp\ni8egNXO8efOGTp06uS4ugoKC2Lx5s+ZyZGVluS5Axo0bx7Vr1wA0lyMzM5OtW7dSWVmJh4cHNpsN\nX1/fdpOjQzdyIYQQQus67K11IYQQ4l8gjVwIIYTQMGnkQgghhIZJIxdCCCE0TBq5EEIIoWHSyIUQ\nQggNk0YuhMbl5+d/d/2NGzd+OMVoYmIihYWFf7MsIUQrkUYuhIY5nU6ys7O/u82hQ4dc8ycLIf49\nhrYuQAjx+1JTU7Hb7cyfP5/JkyeTk5NDly5d8PHxIT09nTNnzlBUVMTatWvJyMjgxYsXHDhwAKPR\niNPpZPv27fTp0+eH+3n9+jVLly5l0KBBBAcHs3DhQrZt20ZpaSkAERERJCUlAZCdnU1BQQEGg4Hg\n4GDS0tIoLy9n8eLFREVFUVRUhLe3N/Hx8eTn52O329m1axchISFkZmZy9+5djEYjZrMZm83WZr+p\nL4Rm/LWZzYUQre7Vq1cqJiZG2e12FRsbq96/f6+UUspqtaqsrCyllFJjx45VL1++VEoplZeXp+x2\nu1JKqb179yqr1aqUUspisajbt29/dz+DBw9Wz549U0opdfbsWbVo0SLV0NCgHA6HSkhIUPfu3VPF\nxcVq+vTpqq6uTiml1IoVK9SpU6dcj3/+/Lmrpqb6du/erdLT01V1dbUKCwtTDodDKaXUuXPnXLUK\nIb5NrsiF+Ac8evSIIUOGuH6be/To0eTk5Hy1na+vL+vXr0cpRWVlJcOHD//pfXh5eTFgwAAAHjx4\nQGRkJDqdDr1ez6hRoygpKUGv1xMeHo67u7urjpKSEsLDw/H29nbNGWA2mxkxYgQA/v7+lJWV4eXl\nRUxMDBaLhbi4OCZPnoy/v/8fHRchOgL5jFyIf5BSCp1O12ysvr6epKQktmzZwtGjR0lMTPyl52xq\nzsBXz920v2+NA+j1+mbrvlxW/53yYffu3aSnpwNgsVh4/PjxL9UoREckjVwIDXNzc8PhcDB06FBK\nS0v58OEDAIWFhYSGhgKNTdfhcFBTU4Obmxu9e/emtraWq1evUldX91v7DQsLo7CwEKUUDoeD+/fv\nExoaSlhYGPfu3aO+vh6AO3fuuOr4kVevXnHo0CGCgoKYP38+cXFxPHny5LfqE6IjkVvrQmiYyWTC\n19eXZcuWsWjRIubNm4fRaMTf3581a9YAjfOnL1myBJvNxtSpU0lISCAgIIAFCxaQnJzM+fPnf3m/\nEydOpLi4mNmzZ9PQ0MCECRMYOXIkAFOmTGHu3Lm4ubkxZMgQpk6dSllZ2Q+f02w28+jRIxISEvD0\n9MTLy4vly5f/cm1CdDQyjakQQgihYXJFLoQAGm9tp6amtrguNTWVwYMHt3JFQoifIVfkQgghhIbJ\nl92EEEIIDZNGLoQQQmiYNHIhhBBCw6SRCyGEEBomjVwIIYTQsP8ATraK8eIsh+sAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "t0lRt4USU81L", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This initial line looks way off. See if you can look back at the summary stats and see the same information encoded there.\n", + "\n", + "Together, these initial sanity checks suggest we may be able to find a much better line." + ] + }, + { + "metadata": { + "id": "AZWF67uv0HTG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Tweak the Model Hyperparameters\n", + "For this exercise, we've put all the above code in a single function for convenience. You can call the function with different parameters to see the effect.\n", + "\n", + "In this function, we'll proceed in 10 evenly divided periods so that we can observe the model improvement at each period.\n", + "\n", + "For each period, we'll compute and graph training loss. This may help you judge when a model is converged, or if it needs more iterations.\n", + "\n", + "We'll also plot the feature weight and bias term values learned by the model over time. This is another way to see how things converge." + ] + }, + { + "metadata": { + "id": "wgSMeD5UU81N", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(learning_rate, steps, batch_size, input_feature=\"total_rooms\"):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " input_feature: A `string` specifying a column from `california_housing_dataframe`\n", + " to use as input feature.\n", + " \"\"\"\n", + " \n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " my_feature = input_feature\n", + " my_feature_data = california_housing_dataframe[[my_feature]]\n", + " my_label = \"median_house_value\"\n", + " targets = california_housing_dataframe[my_label]\n", + "\n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column(my_feature)]\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda:my_input_fn(my_feature_data, targets, batch_size=batch_size)\n", + " prediction_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False)\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + "\n", + " # Set up to plot the state of our model's line each period.\n", + " plt.figure(figsize=(15, 6))\n", + " plt.subplot(1, 2, 1)\n", + " plt.title(\"Learned Line by Period\")\n", + " plt.ylabel(my_label)\n", + " plt.xlabel(my_feature)\n", + " sample = california_housing_dataframe.sample(n=300)\n", + " plt.scatter(sample[my_feature], sample[my_label])\n", + " colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)]\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " root_mean_squared_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " predictions = linear_regressor.predict(input_fn=prediction_input_fn)\n", + " predictions = np.array([item['predictions'][0] for item in predictions])\n", + " \n", + " # Compute loss.\n", + " root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(predictions, targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " root_mean_squared_errors.append(root_mean_squared_error)\n", + " # Finally, track the weights and biases over time.\n", + " # Apply some math to ensure that the data and line are plotted neatly.\n", + " y_extents = np.array([0, sample[my_label].max()])\n", + " \n", + " weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0]\n", + " bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + "\n", + " x_extents = (y_extents - bias) / weight\n", + " x_extents = np.maximum(np.minimum(x_extents,\n", + " sample[my_feature].max()),\n", + " sample[my_feature].min())\n", + " y_extents = weight * x_extents + bias\n", + " plt.plot(x_extents, y_extents, color=colors[period]) \n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.subplot(1, 2, 2)\n", + " plt.ylabel('RMSE')\n", + " plt.xlabel('Periods')\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(root_mean_squared_errors)\n", + "\n", + " # Output a table with calibration data.\n", + " calibration_data = pd.DataFrame()\n", + " calibration_data[\"predictions\"] = pd.Series(predictions)\n", + " calibration_data[\"targets\"] = pd.Series(targets)\n", + " display.display(calibration_data.describe())\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kg8A4ArBU81Q", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Achieve an RMSE of 180 or Below\n", + "\n", + "Tweak the model hyperparameters to improve loss and better match the target distribution.\n", + "If, after 5 minutes or so, you're having trouble beating a RMSE of 180, check the solution for a possible combination." + ] + }, + { + "metadata": { + "id": "UzoZUSdLIolF", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 940 + }, + "outputId": "a846f00a-c9d9-447e-c383-59bd87914702" + }, + "cell_type": "code", + "source": [ + "train_model(\n", + " learning_rate=0.00001,\n", + " steps=100,\n", + " batch_size=1\n", + ")" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 236.32\n", + " period 01 : 235.11\n", + " period 02 : 233.90\n", + " period 03 : 232.70\n", + " period 04 : 231.50\n", + " period 05 : 230.31\n", + " period 06 : 229.13\n", + " period 07 : 227.96\n", + " period 08 : 226.79\n", + " period 09 : 225.63\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 13.2 207.3\n", + "std 10.9 116.0\n", + "min 0.0 15.0\n", + "25% 7.3 119.4\n", + "50% 10.6 180.4\n", + "75% 15.8 265.0\n", + "max 189.7 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean13.2207.3
std10.9116.0
min0.015.0
25%7.3119.4
50%10.6180.4
75%15.8265.0
max189.7500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 225.63\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlcVOX+B/DPzMAwIDPsuOGu4IIL\nguaSooiBu6apUWjatdXK6ta10pSbWWG7uWW5ZNdEqXDfSL0uNxcQzQVFsBRc2ReBAWbm94e/mUSG\nYYAZzszweb9evWLOmXPO95mDzDnf8zzfR6TRaDQgIiIiIiIiImpgYqEDICIiIiIiIqLGiUkJIiIi\nIiIiIhIEkxJEREREREREJAgmJYiIiIiIiIhIEExKEBEREREREZEgmJQgIiIiIiIiIkEwKUEkID8/\nP9y+fVvoMAx65pln8Msvv1RZvnTpUrz33ntVlt+5cwejR4822fEjIyOxdevWOm+/dOlSBAUFITw8\nHOHh4QgLC8OCBQtQUlJS632Fh4cjKyurVttU9/kREZF18PPzw/Dhw3XfI8OHD8e7776L4uLieu13\n8+bNepf/8ssv8PPzw8GDBystLy0tRe/evTF37tx6HddY169fxwsvvICwsDCEhYVh/PjxiI+Pb5Bj\n18by5cv1fiYnTpyAv7+/7rw9+J+1yMjIgJ+fX6VrmKeeegoXL16s9b4+++wz/PTTT7XaZuvWrYiM\njKz1sYhqy07oAIjItjRt2hQ7duwQOoxKwsLC8OGHHwIAysrKMGfOHCxbtgz//Oc/a7WfPXv2mCM8\nIiKycBs2bECzZs0A3P8eef3117Fq1Sq8/vrrddpfZmYmvvvuO0yePFnv+ubNm2PHjh0YOnSobtnB\ngwehUCjqdLy6+Oc//4lx48Zh5cqVAICzZ89i+vTp2L17N5o3b95gcdRH8+bNrf67WyKRVGrDrl27\n8PLLL2Pv3r2QSqVG7+fNN980R3hEJsGeEkQWqKysDIsWLUJYWBhCQkJ0FwQAkJSUhMcffxzh4eEY\nOXIk/ve//wG4n01/9NFHsXjxYjz99NMA7j/diYuLw/jx4/Hoo49i3bp1uv3ExMQgPDwcISEheOON\nN1BaWgoASE9PxxNPPIHQ0FC8+eabUKlUtYo9IyMDXbt2BXD/ac+rr76Kd999F2FhYRg5ciSuXLkC\nACgoKMBbb72FsLAwDBs2DD///HO1+0xJScGkSZMQHByMefPmQaVS4dVXX8X3339f6T39+vVDRUWF\nwfikUimmTJmCY8eO1RiHn58fVq1ahbCwMKhUqko9W3744QeMHDkS4eHhePHFF5GTk2OSz4+IiCyb\nVCrFoEGDkJycDABQKpV4//33ERYWhhEjRuDjjz/W/e2/dOkSpk6divDwcIwbNw5HjhwBAEydOhU3\nb95EeHg4ysrKqhyjd+/eOHHiRKVefbt27cLAgQN1r+tzrfDDDz9gzJgxGDRoEHbt2qW3nSkpKejZ\ns6fudc+ePbF3715dcuabb75BcHAwxo8fj2+//RYhISEAgLlz52L58uW67R58XZtrmMTEREycOBHD\nhw/H5MmTkZ6eDuB+j5E5c+Zg6NChePrpp+vc4/SXX37B7NmzMX36dERHR+PEiROYOnUqXnvtNd0N\n/O7duzF69GiEh4dj2rRpuH79OoD7vTDnzZuHSZMmVbq2AoDXXnsNa9as0b1OTk7Go48+CrVajS++\n+ELX82TatGm4c+dOreMeOXIkSktLcfXqVQDVX8/NnTsXH330EcaMGYPdu3dXOg/V/V6q1Wr8+9//\nxpAhQzBp0iRcunRJd9yTJ09iwoQJGDlyJEaMGIHdu3fXOnai6jApQWSBVq9ejdTUVGzfvh07duzA\n3r17dd0433//fTz77LPYs2cPnnvuOSxYsEC3XV5eHrp06YIff/xRtyw1NRVxcXFYvnw5Pv/8c6hU\nKiQkJOCrr77C+vXrceDAATg7O+Orr74CAHz66afo378/4uPjMX36dJw+fbpebTl8+DAiIiKwd+9e\nPPLII1i/fj0A4OOPP4ZYLMbu3buxZcsWLF26FCkpKXr3ceLECWzYsAF79uzBqVOncPDgQYwePbpS\nj4z9+/fjscceg51dzR3AysvLdU8XaopDo9Fg7969kEgkumVnzpzB999/r4upRYsW+OyzzwCY/vMj\nIiLLkp+fjx07diAgIAAAsH79ety+fRs7d+7Er7/+ioSEBOzYsQNqtRpvvPEGnn76aezZsweLFi3C\nm2++iaKiIixevFj3FF/f026pVIr+/fvjt99+AwAUFRUhOTlZd0yg7tcKubm5EIvF2L59O9599118\n+eWXets5ePBgvPrqq/jhhx+QlpYG4H5vSJFIhJSUFKxfvx6xsbGIjY3FmTNnjPrsjL2GKSoqwosv\nvog33ngD+/fvx7Rp0/Daa68BAH7++WdkZWVh//79WLp0KY4ePWrUsfU5duwYoqKi8PbbbwMALl68\niKlTp+Kzzz7DzZs3MX/+fCxbtgx79uzBkCFD8P777+u2/e9//4tvv/0WzzzzTKV9hoWF4cCBA7rX\n+/fvR3h4ONLS0rBnzx7duRo+fDh+//33OsWtUqkglUoNXs8BwO+//47Y2FiMGDFCt8zQ7+WRI0dw\n7Ngx7Ny5Ez/++CMSEhJ0233yySd45513sGvXLqxYscIih/KQ9WJSgsgCHTx4EBEREZBKpXBycsK4\nceOwb98+AEBcXJzuyyUwMFD35AC4f7M9fPjwSvsaN24cAKBbt25QKpXIzs7GgQMHMHLkSDRt2hQA\n8OSTT+r2n5CQgJEjRwIAevTogfbt29erLR06dIC/vz8AoGvXrrh165aujdOmTYNYLIa7uzuGDx+u\ni+FhYWFhcHR0hKOjI4KDg3HmzBkEBwfj+vXruicF8fHxurgNKSoqwsaNG3WfU01xDBkypMo+Dh06\nhLCwMHh4eAAAnnjiCV3PC1N/fkREJLzIyEiEh4dj2LBhGDZsGPr164dZs2YBuP+dMHnyZNjZ2UEm\nk2HMmDE4duwYMjIykJWVhVGjRgEAunfvjhYtWuDcuXNGHXPUqFG65Ht8fDyGDh0KsfjvS/e6XitU\nVFTg8ccfB3D/2uDmzZt6j79kyRI89dRT2L59O0aPHo2QkBBdTYLExET06dMHXl5esLOzM7qWlLHX\nMImJiWjatKmuZ8jo0aNx/fp13Lx5EwkJCRg+fDjs7Ozg5uZWaYjLw27dulWlnsTHH3+sW9+2bVu0\nbdtW91omk6F///4A7icsHnnkEbRp0wbA/e/6EydO6Hpk9uzZE+7u7lWOOWTIEFy8eBF5eXkA/k5K\nKBQK5OTkYPv27cjPz0dkZCTGjx9v1OempdFoEBMTg6ZNm6Jt27YGr+cAoH///nBwcKi0D0O/l6dO\nnUJwcDCaNGkCmUxWKZnh4eGBuLg4pKWloW3btrqHMUSmwJoSRBaosLAQH330ET7//HMA97to9ujR\nAwCwfft2/PDDD7h37x7UajU0Go1uO4lEAmdn50r7ksvlunXA/Qx5YWEh9u/fr3u6oNFoUF5eDuD+\nE6AH91Hf8ava42tj0HZpLSwsxJw5c3RxKZXKaotPPfilL5fLkZmZCQcHBwwfPhw7duzApEmTkJmZ\nib59++rdfu/evUhMTAQA2NvbY/jw4bonGzXF4erqWmV/OTk58Pb21r1WKBTIzs4GYPrPj4iIhKet\nKZGTk6MbeqDtmZeTkwMXFxfde11cXJCdnY2cnBzI5XKIRCLdOu2NqaenZ43HHDhwIObNm4e8vDzs\n3LkTL730Ev7880/d+vpcKzg5OQEAxGIx1Gq13uM7ODjg2WefxbPPPouCggLs2bMHixcvho+PD/Lz\n8yt9v2mT9DUx9hqmoKAA6enplb6PpVIpcnJykJ+fX+naQqFQ4N69e3qPV1NNiQfP28Ovc3NzK7VR\nLpdDo9EgNzdX77ZaTk5OGDBgAA4dOoTAwEAUFBQgMDAQIpEIS5cuxZo1a/DBBx+gT58+iIqKqrE+\nh0ql0n0OGo0GHTt2xPLlyyEWiw1ez1UXo6Hfy/z8/CrXN1qLFy/GihUrMGPGDMhkMrzxxhtWVTSU\nLBuTEkQWyNvbGzNnzqyS/b9z5w7mzZuHLVu2oEuXLvjrr78QFhZWp/1PmDAB//rXv6qsUygUKCoq\n0r3W1kowNW9vbyxbtgy+vr41vjc/P7/Sz9ov2VGjRuGjjz6CXC5HWFhYpSdID3qw0GV94tDy9PTU\nPQEB7nc51V5gNtTnR0REDc/d3R2RkZFYsmQJVqxYAaD67wQPDw/k5+dDo9HobgDz8vKMvoG3t7fH\n0KFDERcXh2vXriEgIKBSUsKc1wo5OTlITk7W9VRQKBSYPHkyjhw5gpSUFMjlchQWFlZ6v9bDiQ7t\nd3ht4vL29kb79u31zl6lUCiqPbYpeXh4ICkpSfc6Pz8fYrEYbm5uNW4bFhaG/fv3Izc3F2FhYbrz\n369fP/Tr1w/FxcX45JNP8Omnn9bY4+DhQpcPMnQ9Z6hd1f1eGvpsPT09MX/+fMyfPx9Hjx7FK6+8\ngkGDBqFJkyZGH5uoOhy+QWSBhg0bhi1btkClUkGj0WD58uU4fPgwcnJy4OTkhPbt26OiogIxMTEA\nUO0TguqEhIRg3759ui+b+Ph4fPvttwCAXr16Yf/+/QCA06dP64o6mVpISAg2bdoE4H5X0sWLF+PC\nhQt637tv3z4olUoUFxfjyJEjCAoKAgAMGDAAeXl52LBhQ6UuhuaKQ2vIkCG6iw0A2LRpE4KDgwE0\n3OdHRETCmDFjBpKSknDy5EkA978TYmNjoVKpUFxcjK1btyI4OBg+Pj5o1qyZrpDk6dOnkZWVhR49\nesDOzg7FxcU1FmceNWoUVq9ejdDQ0CrrzHmtUFpaildffVVXABEArl27hrNnzyIoKAgBAQFISEhA\nTk4OKioqEBcXp3ufl5eXrkBienq6rrZSbeLq2bMnMjMzcfbsWd1+3nrrLWg0GvTq1QsHDhyASqVC\nTk4ODh8+bHS7amPgwIFISEjQDTHZtGkTBg4caFTtqqFDhyIpKQnx8fG665OjR48iKioKarUaTk5O\n6Ny5c6XeCnVh6HquOoZ+LwMCAnD06FGUlJSgpKRElwwpLy9HZGQk7t69C+D+sB87O7tqHwYR1RZ7\nShAJLDIyslIRxUWLFiEiIgIZGRkYNWoUNBoN/P39MX36dDg5OWHw4MG6egZz587F6dOnERkZia+/\n/troY3br1g0vvPACIiMjoVar4eHhgaioKADAW2+9hTfffBNbt25Fz549MWDAgGr38+CwCADo0qWL\n0VNOzZkzB1FRUbqnJIMGDYKfn5/e9w4YMEBXpXrIkCEYNGgQgPtPD8LDw/Hbb78hMDDQqOPWJw6t\nHj164LnnnsNTTz0FtVqNLl26YOHChQBq9/kREZH1cXZ2xnPPPYdPPvkEsbGxiIyMRHp6OkaNGgWR\nSITw8HCMGDECIpEIn3/+ORYsWIBvvvkGjo6O+Oqrr+Dk5AQ/Pz+4uLhg4MCB+PXXX9GiRQu9x+rb\nty9EIpHemknmvFZo0aIFVqxYga+//hqLFi2CRqOBs7Mz3nnnHd2MHFOmTMGECRPg5uaGxx57TDe7\n1uTJkzF79mw89thj6Nq1q+77tXPnzkbHJZPJ8PXXX+ODDz7AvXv3YG9vj9deew0ikQiTJ09GQkIC\nQkND0aJFC4SGhlZ6uv8gbU2Jh0VHR9f4GTRr1gyLFi3CSy+9hPLycvj4+OCDDz4w6vNzdnZGt27d\ncPnyZfTq1QsA0KdPH+zcuRNhYWGQSqVwd3fH4sWLAQBvv/22bgaN2jB0PVcdQ7+XQ4cOxaFDhxAe\nHg5PT08EBwcjISEB9vb2mDRpkm7oq1gsxrx58+Do6FireImqI9I8OJiLiMjKrF69Grm5ubrK2URE\nRNSwEhIS8Pbbb1eadYKIyFjsc0NEVisnJwebN2/Gk08+KXQoRERERERUB0xKEJFV2rRpEyZOnIhZ\ns2ahVatWQodDRERERER1wOEbRERERERERCQI9pQgIiIiIiIiIkEwKUFEREREREREgrDKKUEzM/VP\n+1NXbm5OyM0tNuk+LQHbZX1stW1sl/Wx1baxXfXn5SVvkOOYi6mvIbRs9XfLmvAcCI/nQHg8B8Lj\nOdDP0PUDe0oAsLOTCB2CWbBd1sdW28Z2WR9bbRvbRebCcyA8ngPh8RwIj+dAeDwHtcekBBERERER\nEREJgkkJIiIiIiIiIhIEkxJEREREREREJAgmJYiIiIiIiIhIEExKEBEREREREZEgmJQgIiIiIiIi\nIkEwKUFEREREREREgmBSgoiIiIiIiIgEwaQEEREREREREQmCSQkiIiIiIiIiEgSTEv9PWa7C3dxi\nKMtVNnEcQ8csLC7DH2lZuHozz6g49MX88LIHX5uijUJ8TpYYAxERERERkS2zM9eOT5w4gddeew2d\nOnUCAPj6+uIf//gH3n77bahUKnh5eWHJkiWQSqXYtm0b1q9fD7FYjMmTJ+OJJ54wV1hVqNRqrI47\nh2NnbyCnQAl3hQMCfL0wJaQjJGLT5WxUajViDqQiKSXTrMepdEyVGhvjU3THdHW2R7lKg6KSCt17\nJGJgUK8WeCrUt0oc+mLu1ckTGgBnr2TpljnJ7HGvpAw5hWWQScUARFCWqerURiE+J0uMgYiIiIiI\nqDEwW1ICAPr27Yuvv/5a9/qdd95BREQERowYgc8//xyxsbEYP348li1bhtjYWNjb22PSpEkYPnw4\nXF1dzRmaTsyBVMQnZOheZxcoda8jQn2t7jgPWrP9QqVj5haVV3mPSg0cOn0TdmJxlTj0xfxb4o1K\n78kuUCK7QKl7XVqmrrSutm0U4nOyxBiIiIiIiIgagwZ97HvixAkMGzYMADB06FD8/vvvOHv2LLp3\n7w65XA6ZTIbevXvj9OnTDRKPslyFpJRMveuSUrJM1m2/oY7z8DGPn79l9PsTL92tMjyjuphry9g2\nCvE5WWIMRERkPbLySvB17B84k3JX6FCIiIiskll7SqSmpuKFF15Afn4+Zs+ejZKSEkilUgCAh4cH\nMjMzkZWVBXd3d9027u7uyMw0fDPs5uYEOztJveO7lXUPOYVKvetyC0shkdrDy7OJ1Rzn4WNm5pUY\n/f7corJKcRiKubaMbWNtPicvL7lJYqtPDOZirrYJje2yPrbaNraLTKlYWYFzV7NxNi0L4x5th9ED\n2kIsEgkdFhERkdUwW1Kibdu2mD17NkaMGIH09HRMmzYNKtXfT5k1Go3e7apb/qDc3GKTxKgqV8Fd\n7lBp+IGWm1wGVVk5MjMLreY4Dx/Ty9URd3ONS0y4OUsrxWEo5toyto3Gfk5eXnKTf161jcFczNk2\nIbFd1sdW28Z2meZY9LfWTeV45+lArNp+AXFH/kRqRj5mjekKuZNU6NCIiIisgtmGbzRt2hQjR46E\nSCRC69at4enpifz8fJSWlgIA7ty5A29vb3h7eyMrK0u33d27d+Ht7W2usCpxsJcgwNdL77oAX084\n2Ne/N0ZDHufhY/bzb270+wM7e1eKw1DMtWVsG4X4nCwxBiIisi7tWyjw5etD0L29B87/mYOodaeQ\ndjNf6LCIiIisgtmSEtu2bcP3338PAMjMzER2djYef/xx7N27FwCwb98+DBo0CD179sS5c+dQUFCA\ne/fu4fTp0wgKCjJXWFVMCemIsYPaw0Mhg1gEeChkCA3ywZSQjiY/TmiQj9mP86CZY7pVOqabsxTO\njpU7x0jEwJDeLfTGoS/mYYEtERLY8oFlDmjl7Qx3uQNEAGRSCWRSSZ3bKMTnZIkxEBGRdVE0keK1\nJ3pgwuD2yC1U4uMfTyM+Id2oHqBERESNmUhjpm/LoqIi/POf/0RBQQHKy8sxe/ZsdOnSBf/617+g\nVCrRokULfPTRR7C3t8eePXvw/fffQyQS4emnn8bYsWMN7tvUXVS9vOTIuJmH/CIlXJwdzPo0XFmu\napDjAH935334mIXFZfjzVgGcHe3Q0kteYxz6Yn542YOvAdS7jYY+p4bqptyQ50qLXcuti622C7Dd\ntrFdpjmWNTPX5/TgObj4Vw5WbbuAwuJy9OnsjWdGdIajg1nLeBFs99+3NeE5EB7PgfB4DvQzdP1g\ntqSEOZkjKWGLvzhsl/Wx1baxXdbHVtvGdpnmWNasIZISAJBbqMTKredxJSMfzdyd8NIEf/h4OZvl\n2HSfrf77tiY8B8LjORAez4F+hq4fmLYnIiIiixIdHY3ExERUVFTg+eefh5eXF6Kjo2FnZwepVIol\nS5bA3d0dly5dwrvvvgsAGDZsGF5++WWBI/+bm9wBbz0ZgF/+exV7Tl7HovUJmBbuhwG1qPdERETU\nGJitpgQRERFRbR0/fhxXrlxBTEwMvvvuOyxevBhr165FdHQ0NmzYgICAAGzevBkAMH/+fHzwwQeI\njY1FWloaSkqMnwq7IdhJxJgc0hEvT+gOiUSE73YkY/2eSyivUNW8MRERUSPBnhJERERkMfr06YMe\nPXoAABQKBUpKSvDFF19AIpFAo9Hgzp07CAwMRFZWFoqLi9GtWzcAwOeffy5k2AYF+nnBx7sPVvx6\nHv89cxN/3irASxO6w9vVUejQiIiIBMeeEkRERGQxJBIJnJycAACxsbEYPHgwJBIJDh8+jPDwcGRl\nZWHs2LG4ceMGXFxcMHfuXEydOhXr1q0TNvAaNHVzwruRgRjcszmu3ylC1NpTSLqSKXRYREREgmNP\nCSIiIrI48fHxiI2NxZo1awAAgwcPxqBBg/Dpp5/i22+/Rb9+/ZCRkYFly5ZBJpNhypQpGDhwIDp1\n6mRwv25uTrCzM8+MSsYUAX1rWl8EnLyOFT+fxdKfz2Hi0I6IHNEFEgmfE5mCtRditQU8B8LjORAe\nz0HtMClBZEZCTCtKRGTtjhw5gpUrV+K7776DXC7H/v37MXz4cIhEIoSFhWHp0qUYNWoUOnXqBDc3\nNwBAYGAgrly5UmNSIje32Cwx16baes92bnhvWhCW/3oOPx9MxbnULLwwrhtc/39abaobVrwXHs+B\n8HgOhMdzoJ+hRA3T8jastKwCd3OLoSzXX1BLWa4yuJ7qTqVWY2N8CuatPo53Vh3HvNXHsTE+BSq1\nWujQiIgsWmFhIaKjo7Fq1Sq4uroCAJYuXYrk5GQAwNmzZ9GuXTu0atUK9+7dQ15eHtRqNZKTk9G+\nfXshQ6+VVt7OeP+ZPgjy80JKeh4Wrj2F5Gu5QodFRETU4NhTwgap1GrEHEjFH2nZyMwtgbvCAQG+\nXpgS0hESsVi3PiklEzkFyirrqf5iDqQiPiFD9zq7QKl7HRHqK1RYREQWb9euXcjNzcWcOXN0y+bP\nn4+oqChIJBLIZDJER0cDAN555x3MmjULIpEIgwYNQufOnYUKu04cHezw4nh/xCdkYPPBVHy6KQmP\nD26PEf3aQCwSCR0eERFRg2BSwgbVdEPMG2bzUparkJSiv3hZUkoWJgZ34FAOIqJqTJkyBVOmTKmy\nfNOmTVWW9ezZE1u2bGmIsMxGJBJheJ9WaNdCgRVx5/Hzf6/iSkY+/jG6K5wd7YUOj4iIyOz4WNzG\n1HRDXFhcZnA9h3LUX36REjkFSr3rcgtLkV+kfx0RETVeHVu6YMGMPujW1g1/pGUjau0p/HmrQOiw\niIiIzI5JCRtT0w1xxt0i3jCbmYuzA9wV+ouVucllcGEhMyIi0kPhJMXrk3th3KPtkFNQio9+TMTB\n0xnQaDRCh0ZERGQ2TErYmJpuiH28nXnDbGYO9hIE+HrpXRfg68mhG0REVC2xWIRxj7bD61N6Qia1\nw4Z9KVi9/SJKyyqEDo2IiMgsmJSwMTXdEMudpLxhbgBTQjoiNMgHHgoZxCLAQyFDaJAPpoR0FDo0\nIiKyAv7tPLBwRh90aKHA8Yt38MH6BNzMuid0WERERCbHQpc2SHvj+0daNrLySuAmlyHA11O3XPv/\npJQs5BaWVllP9ScRixER6ouJwR2QX6SEi7MDEz5ERFQr7goZ/vVUb2w5mIb9Cen4YH0Cpof7oV+3\nZkKHRkREZDJMStgg7Q3x8xMdkfZXdpUbYt4wNxwHewm83ZyEDoOIiKyUnUSMJ0M7oZOPC9bsSsa3\n2y/iyo18TA3pBHs7dnglIiLrx6SEDZNJ7QzeEPOGmYiIyDoEdfaGj7czlv96DgdP38CfNwvw0nh/\neLo6Ch0aERFRvTDFTkRERGQFmrk74b1pQRjo3wx/3S5E1LpTOJuaJXRYRERE9cKkBBEREZGVcLCX\nYOaoLnhmRGcoy9X4KvYP/PzfNKjUaqFDIyIiqhMmJYiIiIisiEgkwuCeLfBeZCC8XR2x8/dr+GzT\nGeQXKYUOjYiIqNaYlCAiIiKyQm2ayfH+M0EI6OSJS9fzsHDdKVy+nit0WERERLXCpAQRERGRlXKS\n2WP2490xeWhHFN4rx5KfzmD3iWvQaDRCh0ZERGQUJiWIiIiIrJhIJEL4I63xdkQA5E3sseVgGr75\n5RyKS8uFDo2IiKhGTEoQERER2QDfVq5YOKMvurRxQ9KVLCxcewrXbhcKHRYREZFBTEoQERER2QiX\nJlK8OaUXRg9oi6z8Uny4IRH/PXODwzmIiMhiMSlBREREZEPEYhEeH9wec57oAQd7MdbvuYzvdyZD\nWaYSOjQiIqIqmJRoxJTlKtzNLYaynBcpREREtqZHB08smNEH7ZrL8b/zt7FoQwJuZd8TOiwiIqJK\n7IQOgBqeSq1GzIFUJKVkIqdACXeFAwJ8vTAlpCMkYuapiIiIbIWniyPmPhWIzQdS8dvpDPx7fQJm\njOiMvl2aCh0aERERAPaUaJRiDqQiPiED2QVKaABkFygRn5CBmAOpQodGREREJmZvJ8ZTj/ni+bHd\nAA2wcusFbNyfggqVWujQiIiImJRobJTlKiSlZOpdl3DpLgqLyxo4IiIiImoIj3RtivnTg9DCswni\nEzPw8X9OIzu/VOiwiIiokWNSopHJL1Iip0Cpd11eURkWrjmFjfEpUKn59ISIiMjWtPBsgvnTgtCv\nW1NcvVmAqHWncO5qttBhERFRI8akRCPj4uwAd4VDtetziziUg4iIyJY5SCWYNborpoX5obSsAl9u\nPotfD1+FWs1pQ4mIqOExKdGgLSB9AAAgAElEQVTIONhLEODrVeP7klKyOCsHERGRjRKJRBgS0BLv\nRgbCw0WG7f/7C5/FnEHBPQ7jJCKihsWkRCM0JaQjQoN84OosrfY9uYWlyC/SP8zDUnBKUyIiovpp\n20yBBTP6oFdHTyRfy8WCtSeRkp4ndFhERNSIcEpQG6IsVyG/SAkXZwc42EuqfZ9ELEZEqC/GDGiL\nhWtOIVdP8sFNLoOLc/XDPISkUqmxMT6FU5oSERGZQBOZPV6Z2B17Tl7Hz4euInpjEiYGt0f4I60h\nEomEDo+IiGwckxI2QKVWI+ZAapWb9NmTAwxuJ3eSIrCzF+ITMqqsC/D1NJjYENKa7Rcqxayd0hQA\nIkJ9hQqLiIjIaolEIox4pA06tHDBiq3nseVQGq5k5OPZ0V3QRGYvdHhERGTD+FjZBsQcSEV8Qgay\nC5TQ4O+b9DXbL9S4rXYoh4dCBrEI8FDIEBrkgykhHc0feB0oy1U4fv6W3nWsg0FERFQ/vq1cETWj\nL7q0ccOZ1CxErT2FP28VCB0WERHZMPaUsEIPDtMAgKSUTL3vO37+Fkb0bWXUUI6JwR2MGvohtPwi\nJTLzSvSu09bB8HZzauCoiIiIbIeiiRRvTumFrUf/xI7//YWPfkzE1GGdMDSgJYdzEBGRyTEpYUX0\nDdPo3NoN2QX6C1Jm5ZUYfZPuYC+xipt5F2cHeLk64m5u1cSEJdfBICIisiZisQgTBrdHJx8XfLv9\nIn7cl4KU9DxMD+8MRwdePhIRkelw+IYV0TdM49j525BJ9Z9GT1dHm7tJd7CXoJ9/c73rLLkOBhER\nkTXyb++BhTP6oENLBU4m38UH6xOQkVkkdFhERGRDmJSwEspyVbXDNAD9XSn7+Te3yZv0mWO6WVUd\nDCIiImvmrpDhXxG98VifVridU4xF6xNw7Jz++k5ERES1xf53ViK/SImcaoZplJWrMMC/GS5fz0Nu\nYSnc5DIE+Hpi5phuyMm518CRmp9EYl11MIiIiKydnUSMqcM6oZOPK9bsuojvdybjSkYeIkJ9IeV3\nMBER1QOTElbCxdkB7goHvfUj3OQyRIb5AUClm3SJxLY7wlhLHQwiIiJbEejnhVbefbA87jwOn72F\nv24V4sUJ/mjK72MiIqoj275rtSEO9hIE+HrpXaetpaC9SWevAdNTlqtwN7eYU44SEVGj5+3mhPci\nAxHcqwWu3y3Cv9edQsKlu0KHRUREVoo9JayItmZCUkpWpWEarKVgPvpmPAnw9cKUkI6QiJnTIyKi\nxsneToLp4Z3h6+OK9XsvYXnceQwPaoUnhnaAnY331CQiItNiUsKKSMSspVAXynJVnT8v7YwnWtkF\nSt3riFBfk8ZJRERkbfr7N0Prps5YHnce+xPScfVmPl4c7w93hUzo0IiIyEowKWGFWEvBOPXt5WBo\nxpOklCxMDO7ApBARETV6Lb2cMX96EH7YcxnHL97BwrWnMGtMV3Rv7yF0aEREZAXYv45slraXQ3aB\nEhr83csh5kCqUdsbmvEkt7AU+UX61xERETU2MqkdZo3pisgwP5SWVeDLzWfxy+GrUKs1QodGREQW\njkkJskk19XIwpmCldsYTfdzkMrg4619HRETUGIlEIgwNaIl3IwPh4SLDjv/9hc9iziD/XpnQoRER\nkQVjUoJskil6ORgz4wkRERFV1raZAgtm9EFAJ08kX8vFwrUncfl6rtBhERGRhWJSgmySqXo5TAnp\niNAgH3goZBCLAA+FDKFBPpzxhIiIyIAmMnvMfrw7Jg/tiMJ75Vjy0xnsOn4Nag2HcxARUWUsdGmB\n6jNbBN2n7eXw4MwZWrXp5cAZT4iIiOpGJBIh/JHWaN9CgZVbzyP2UBqupOfh2dFd4exoL3R4RERk\nIZiUsCD1nS2CKtP2ZkhKyUJuYSnc5DIE+HrWqZcDZzwhIiKqG99Wrlg4oy++3X4BZ9OyEbX2FF6a\n4I92zRVCh0ZERBaASQkLop0tQks7WwQARIT6ChWW1WIvByIiIsugaCLFG5N7YduxP7H92F9YvCER\nU4d1QkjvlhCJREKHR0REAuLjdwthitkiSD9tLwcmJIiIiIQjFoswflB7vD6lJxwd7PCf/SlYte0C\nSpQVQodGREQCYlLCQphitggiIiIiS+ffzgMLZ/RBRx8XnEy+i3+vT0DG3SKhwyIiIoEwKWEhTDVb\nBBEREZGlc1fI8PaTAQjv2xp3coqx6IcEHDt3S+iwiIhIAGZNSpSWliI0NBS//PILbt26hcjISERE\nROC1115DWVkZAGDbtm2YOHEinnjiCWzZssWc4Vg07WwR+tRmtggiIiIia2AnEWNySEfMfrw7JBIx\nvt+ZjLW7klHGIatERI2KWZMSK1asgIuLCwDg66+/RkREBDZu3Ig2bdogNjYWxcXFWLZsGdatW4cN\nGzZg/fr1yMvLM2dIFm1KSEeEBvnAQyGDWAR4KGQIDfKpNFuEslyFu7nFUJarKv1MREREZI16+3ph\nwYw+aN3UGUf+uIVFPyTiTk6x0GEREVEDMdvsG2lpaUhNTcWQIUMAACdOnEBUVBQAYOjQoVizZg3a\ntWuH7t27Qy6XAwB69+6N06dPIyQkxFxhWTRDs0U8OF1odoESMqkYgAjKMhWnDiUiIiKr5u3qiPci\nA/FT/BUcOnMTUetOYebILgjq7C10aEREZGZmu4P95JNPMHfuXN3rkpISSKVSAICHhwcyMzORlZUF\nd3d33Xvc3d2Rmal/BorGRN9sEdrpQrP/vxhmaZkapWUqaPD31KExB1JNGgd7YhAREVFDsbeTYFp4\nZ8wa0xVqjQbL485j4/4UVKjUQodGRERmZJaeEnFxcejVqxdatWqld71Go6nV8oe5uTnBzs60NRa8\nvOQm3Z8plZZV4I+07Brf90daNp6f6AiZ9O/TWpd2qVRqrNl+AcfP30JmXgm8XB3Rz785Zo7pBonE\nMnpiWPL5qi9bbRvbZX1stW1sF5Fl69+tGVo3lWP5r+cQn5iBq7cK8OI4f3i4yIQOjYiIzMAsSYlD\nhw4hPT0dhw4dwu3btyGVSuHk5ITS0lLIZDLcuXMH3t7e8Pb2RlZWlm67u3fvolevXjXuPzfXtOMM\nvbzkyMwsNOk+TelubjEyc0tqfF9WXgnS/sqGt5sTAP3tUparqgwNedjG+BTEJ2Q8cPwSbDtyFcUl\nZYgI9a1HS0zD0s9Xfdhq29gu62OrbWO7THMsInNr6dkE86cH4Ye9l3H8wh0sXHsSs8Z0Q48OHkKH\nRkREJmaWpMSXX36p+3np0qVo2bIlkpKSsHfvXowbNw779u3DoEGD0LNnT8ybNw8FBQWQSCQ4ffo0\n3n33XXOEZNW004Vqh25Ux1XuUO3UoQ/WpMgpUFZbh0JZrkJSiv4hNEkpWZgY3IEzgRARkVlFR0cj\nMTERFRUVeP755+Hl5YXo6GjY2dlBKpViyZIllYZ/vvHGG5BKpfj4448FjJpMTSa1w6zRXeHbyhUb\n91/Bl1vOYlT/Nhg/qB1raBER2ZAG+4v+yiuvIC4uDhEREcjLy8P48eMhk8nw5ptv4tlnn8WMGTPw\n8ssv64pe0t8MTRf6oHvF5fj5v2koVpbjbm4xSssqdOserElhqA5FfpESOdUkP3ILS5FfZDgxQkRE\nVB/Hjx/HlStXEBMTg++++w6LFy/G2rVrER0djQ0bNiAgIACbN2/Wvf/YsWO4fv26gBGTOYlEIgzp\n1RLvRQbCy1WGnb9fw2ebzvB6hIjIhpht9g2tV155Rffz2rVrq6wPDw9HeHi4ucOwCMYMnajOlJCO\nUKk1+G/SDairKb2hrFAjPiEDR/+4BWWZCl5ujujRwQPjB7UzuveDoV4ZbnJZtT0xiIiITKFPnz7o\n0aMHAEChUKCkpARffPEFJBIJNBoN7ty5g8DAQABAWVkZVqxYgRdffBH79+8XMmwyszbN5FjwTB98\nvzMZSVeysHDtKTw/ths6t3ETOjQiIqonsyclyPihE4ZIxGJEPuYHaDQ4mHTT4HtLy+7PlnE3twTx\nCRkoLq2osfeDtg6FtlfGgzUltAJ8PTl0g4iIzEoikcDJ6f53UmxsLAYPHgyJRILDhw/jww8/RPv2\n7TF27FgAwKpVq/Dkk0/C2dnZ6P2bo1i2FuttmF/U8wOw9XAa1u24iE83JeHpEV0wcWgniMUiADwH\nloDnQHg8B8LjOagdJiUagHbohJZ26ASAWheOjBjuC4lEjIRLd5FXVGbUNpeu5daq98OUkI4A7vei\nyC0shZtchgBfT91yIiIic4uPj0dsbCzWrFkDABg8eDAGDRqETz/9FN9++y3Cw8Nx/vx5vPLKKzhx\n4oTR+zV1sWwtWy2iaokGdm0Kb4UDVm69gB92JePM5bv4x+iuaNfanedAYPx3IDyeA+HxHOhnKFHD\nKkFmZrhwZCaU5apa7U8iFiMi1BdRM/vCzcihFHlFSnRurb97o77eD9pjLJr1CBY/1w+LZj2CiFBf\nFpUiIqIGceTIEaxcuRKrV6+GXC7XDc0QiUQICwtDYmIiDh06hJs3b2Ly5MmIiorCoUOHsHr1aoEj\np4bSyccVC2b0Qbd27vgjLRtRa0/i8rUcocMiIqI64F2mmeUXKaudNSO7QIkNey9DpVbXer9yJykC\nO9dc/BK43xviyeG+CA3ygYdCBrEI8FDIEBrkY7D3g4O9BN5uThyyQUREDaawsBDR0dFYtWoVXF1d\nAdyfySs5ORkAcPbsWbRr1w7PPPMMtm/fjs2bN2PBggUYMmQIZs2aJWTo1MAUTlK8/kRPjH+0HXIK\nlJi77Cj2J6RDo6mm+BYREVkkDt8wI5Vajb2n0iEWodrilP87fxtOMrtaD+MAqg6zkNpLdPUkHhTg\n6wknh/vHmBjcoc7FNomIiMxt165dyM3NxZw5c3TL5s+fj6ioKEgkEshkMkRHRwsYIVkSsViEsY+2\nQ0cfF3y3Ixk/xV9BSnoeZozoAicZL3OJiKyBSGOF6WRTj9Ex17ifjfEpegtGPsxDIcOiWY/UOUmg\nndXD2UmKuCNXdUkKT9f7s2/UpqCmNbDlcVq22ja2y/rYatvYLtMcy5qZ63Oy1d8tayKW2mHx2pNI\nSc+Dt6sjXhzvjzbNrPv31drw34HweA6Ex3Ogn6HrB6aQzcRQLYmHPTwDRm1ph1kAqNQbokNbDxTm\nl9Rpn6ZWn+lQiYiIiGri4eKIt57shbgjf2Ln79fw4YZERIR2QnCvFhCJREKHR0RE1WBSwkzyi5TV\nTsP5MH0zYNSHNkkhk9pBm6MTKilgiulQiYiIiIwhEYsxMbgDOvm4YPX2i/hh72WkpOdhWrgfZFJe\n9hIRWSL+dTYTF2eHaqfhfJi+GTBMReikgCmnQyUiIiIyRo8Onlg4oy9Wbj2P4xfv4NqdQrw43h8+\nXs5Ch0ZERA/ho2ozcbCXIMBX/+wYMqnE6Bkw6kubFMguUEKDv5MCMQdSzXZMLcPToWbVejpUIiIi\nImN5uMjwr6d647E+rXAruxiL1ifg2LlbQodFREQPYU8JM3p4dgw3uQwBvp4YP6g9iorLzD6UorSs\nwmBSYGJwB7Me39AQlvrW0SAiIiKqiZ1EjKnDOqGTjyvW7ErG9zuTcTk9D08N92WNKyIiC8GkhBlJ\nxOJqp+F0cjD/R59bIGxSwNAQFlPX0SAiIiKqTqCfF1p5N8GKuAs4+sct/HWrAC+O90dzjyZCh0ZE\n1Ohx+EYD0BaebOiMvJviflJA77oGSAoYGsJizjoaRERERA/zdnPCu5G9MTSgJTIy7+Hf6xNwMvmO\n0GERETV6TErYMJnUTvCkwJSQjggN8oGHQtZgdTSIiIiI9LG3kyAyzA/Pj+0GAFi59QI27LuM8gq1\nwJERETVeHL5h46qra9FQSQFDQ1iIiIiIhPBI16Zo3dQZK+LO4+DpG7h68/5wDm9XR6FDIyJqdJiU\nsHGWkhTQDmEhIiIisgTNPZrgvWlB+M/+FBz94xai1p7Cs6O6oHc1vUyJiMg8OHyjkRCqrgURERGR\npXKwl2DmyC6YObILVCo1vvnlHDb9dgUVKg7nICJqKExKEBEREVGj9miP5pg3LQjN3J2w71Q6PvnP\naWTnlwodFhFRo8CkhI1TlqtwN7cYynKV0KEQERERWSwfb2fMnx6ER7o2RdrNAixcexJ/pGUJHRYR\nkc1jTQkLpCxX1bv+g0qtxuq4czh29gZyCpRwVzggwNcLU0I6QiJmLoqIiIjoYY4OdnhuTFf4tXLF\nxvgUfLnlD4zq3wbjB7Xj9RMRkZkwKWFBVGo1Yg6kIikls96JhJgDqYhPyNC9zi5Q6l5HhPqaNG4i\nIiIiWyESiTAkoCXaNVdgedw57Pz9Gq5k5OP5sd3gJncQOjwiIpvDlK8F0SYSsguU0ODvRELMgdRa\n7UdZrkJSSqbedUkpWRY/lKO6ISfa5aVlFQJFRkRERI1Fm2ZyLHimLwJ9vZCSnoeotSdx8a8cocMi\nIrI57ClhIWpKJEwM7mD0UI78IiVyCpR61+UWliK/SGmR03NW11Nk0pD2iD10Vbfcy80RPTp4cCgK\nERERmZWTzA4vTfBHfEIGNh9MxWebzmDco+0wekBbiMUiocMjIrIJTEpYCFMmElycHeCucEC2nv25\nyWVwcTbc9dAUNS3qorohJ5ev5yH9bpFu+d3cEg5FISIiogYhEokwvE8rtG+hwMqt5xF39E9cycjD\nrDHdoGgiFTo8IiKrx8fMFkKbSNBHai+Bs5O90ftysJcgwNdL77oAX89qEw0qtRob41Mwb/VxvLPq\nOOatPo6N8SlQqes2V3dtZv4w1FPkRmaR3uXWMBSFiIiIbEOHli5YMKMvenTwwIW/crFw7UmkpOcJ\nHRYRkdVjUsJCGEoklJapEHfkz1rtb0pIR4wd1B4eChnEIsBDIUNokA+mhHSsdhtT1bSoS3LDUE8R\ntUb/NtoeJEREREQNwdnRHq9O6oEnhnRAwb1yRG9Mwu7j16DWVHOxQkRENeLwDQsyflB7HP3jJkrL\nqt6817auhEQsxqzx3TGibyujhmKYsqZFXWb+MDTkRCzSn5gwZigKERERkSmJRSKM6NcGHVq6YOXW\n89hyKA0p6Xl4dnRXODsa37OViIjuY08JC1JUXAalnoQEUPdeAQ72Eni7OdWYUDCmpoUx6jrzh6Ge\nIi29nPUuNzQUhYiIiMicfFu5YuGMvuja1g1n07IRtfYk0m7mCx0WEZHVYVLCghiqK/Fgr4Da1Gow\n9bFrUp/kxpSQjggN8qky5OS9ab0rLfd2c6xxKAoRERGRuSmaSPHG5F4Y92g75BQo8fGPp7E/IR0a\nDucgIjIah280IO2sFo4OdihRVlQZUqHtLfDg0AetAF9P2ElE2BifUmXKTFNMjVnTsY3tkVCfmT8k\nYjEiQn0xMbhDlSEnDy7v0NYDhfklNcYi1CwiRERE1HiIxSKMe7QdOvq44NttF/BT/BWkpOdhxogu\ncJLxUpuIqCb8S9kAVGo1Yg6k4vTlu8gpLNPVSPDQk1TQPv1PSslCbmEp3OQyBPh6YkpIxzrVaqgN\nQ8c2limSG9ohJ9Utl0ntUGhge+3nbY7kDREREZE+3dq6Y+GMvli17QISL2ci/U4RXhzvjzbN5EKH\nRkRk0ZiUaAAPJxO0RRv1JRWq6y1gykKU1THUU6E2TJHcqA9zJ2+IiIiI9HGTO+CtJ3sh7sif2Pn7\nNXy4IRERoZ0Q3KsFRCKR0OEREVkkJiXMzFAyQUtfUuHh3gLG1GrQ17vAUFzVJR6q66lg7HAIUyU3\n6qIhkjdERERE1ZGIxZgY3AGdfFywevtF/LD3MlLS8zAt3A8yKS+9iYgexr+MZmYomaBlTFKhploN\njg52uJtbXGMCoC5DG+o6HKK65IY5mTp5Q0RERFQXPTp4YuGMvli59TyOX7yDa3cK8eJ4f/hUM6sY\nEVFjxQH2ZmZoVgstY2a3MDRlppPMDv9edwrvrDqOeauPY2N8ClRq/VOLaoc2ZBcoocHfQxtiDqRW\ne+y6bCMUU80iQkRERFRfHi4y/Oup3nisTyvcyi7GovUJOHbultBhERFZFCYlzMzBXoKenTwNvifA\n9/76mqb51DdlZitvZ6TfLTIqYVDT0AZ9x67LNkIylLypzSwiRERERKZgJxFj6rBOeHlCd0gkYny/\nMxlrdiVb3DUUEZFQOHyjFuo6xWR1ZY1kUjEGdG8OjUaDeauP1zg04uFaDY4O93tI6JOUkoXSsopK\ny+oytMEah0MIXWiTiIiI6GGBfl5o5d0EK+Iu4Ogft/DXrQK8ON4fzT2aCB0aEZGgmJQwQn2mmFSW\nq3DmSpbedU1k9tCoNTiQdFO3zJiZIhzsJfBwkWHtrkt6a0wA9xMGuQXKSifY0cEOrs4OyC3SX5dC\n39CGmmpZWOJwCCELbRIRERFVx9vNCe9G9sam31JxMOkG/r0+ATNGdEbfLk2FDo2ISDAcvmGE+tRU\nyC9SVps4yC5QIqmahEVNQyNiDqTif+dvV7veTS6D2//XVlCp1dgYn4J/rzulNyEBVD+0wZzDIZTl\nqhqHrNSHttAmExJERERkKeztJIgM88PzY7sBAFZuvYAN+y6jvEJ/PTAiIlvHnhI1qO8Uk44OdhCL\nALWm6jqRCMgrKtO7naGhEcZMMxrg6wmZ1A6F+Dupoo+HouahDaYeDlGfnidEREREtuCRrk3Ruqkz\nVsSdx8HTN3D1RgFenOAPb1dHoUMjImpQTErUoL41FUqUFXoTEgCg0QButRxOUVNMADDQv5kuYWAo\ngeHqLMX7zwRB7iStdl+A6YdDPJwkMWbIChEREZGtae7RBO9NC8J/9qXg6LlbiFp7CjNHdkagn7fQ\noRERNRg+lq5BfaeYdHF2gLtc/02/u9wBvXz1z8xhaGiEoZjc5Q54OsxP1+PAUAKj4F4ZSpQVetfp\nY4rhENY2mwcRERGROTnYSzBzVBc8O6oLVCo1lv16Hhv3p6BCxeEcRNQ4MClRg/rWVHCwl6B3Ndnu\n3n5eiAjtVGWaz9AgH71DI7Q1GO4fW39Mvf28KsVU36SKqRnT84SIiIiosRnYvTnmTw9Ccw8nxCdm\n4KMfE5GVVyJ0WEREZler4RspKSm4fv06QkNDUVBQAIVCYa64LEp9ayoY2t6YoRH6ajD07OSJYYEt\nceZKtsGYHOwl6NHREwdP36gSV30LVdaFNc7mQURERNQQWno5Y/70IGzYm4LfL9zGwrWn8OyoLtU+\njCIisgVGJyXWrVuHHTt2oKysDKGhoVi+fDkUCgVeeuklc8ZnEepbU8GY7bVDI/TRV4PhQOINhAb5\nYNGsR6pPZqjuz7px9sr94RLagpseDxSWbGjanif6Cm8KkSQhIiIisiQyqR3+MboL/Fq74j/7U7D0\nl3N4rE8rTBrSAXYSdnImIttj9F+2HTt2YPPmzXBxcQEAvP322zh06JC54rJI9a2pUJfta6rBAKDa\nfa7ZfgHxCRnIKbw/w4e24GaPDh6ICPUVbKaLKSEdjR6yQkRERNTYiEQiDO7ZAvOnBaGZuxP2nUrH\nJ/85jez8UqFDIyIyOaN7SjRp0gTiB25ixWJxpddkHnWd/UNZrsLx87f0bvdHWg6U5SrBeiWYejYP\nIiIiIlvk460dznEZxy/ewcK1J/GP0V3Rs6P+QulERNbI6KxC69at8c0336CgoAD79u3DnDlz0KFD\nB3PGRqh7ocr8IiUyqymOZCkFJU0xmwcRERGRLXN0sMOsMV0xLdwPynI1vor9A1sOpnJ2DiKyGUYn\nJd5//304OjqiadOm2LZtG3r27IkFCxaYMzZC3Wf/cHF2gJero951LChJREREZD1EIhGG9GqJedMC\n4e3miN0nriP6pyTkFHA4BxFZP6OHb0gkEsyYMQMzZswwZzykR11m/3Cwl6Cff3NsO3K1yjoWlCQi\nIiKyPq2byrHgmT5Yt/sSTl26i4VrT2HWmK7o3t5D6NCIiOrM6KRE165dIRKJdK9FIhHkcjlOnDhh\nlsDob3WtwTBzTDcUl5TVeSpTS6IsV+naTkRERNRYOTrY4YVx3eDX2hWbfruCLzafxaj+bTB+UDvB\nipgTEdWH0UmJS5cu6X4uKyvD77//jsuXL5slKNLP0LSh+kgk1l9QUqVWI+ZAKpJSMpFToIS7wgED\ne7bEmP6t+cVLREREjZJIJEJIbx+0b6HAirjz2Pn7NVzJyMfzY7vBTc4HOERkXep0VyeVShEcHIxj\nx46ZOp5GRVmuwt3cYijLVWbdxpoLSsYcSEV8QgayC5TQAMguUGLbkauIOZAqdGhEREREgmrbTIEF\nz/RFoJ8XUtLzsHDtSVz4M0fosIiIasXonhKxsbGVXt++fRt37twxeUCNgb6n/wG+XpgS0rHap/91\n2aYhPDiswtRJD2W5CkkpmXrXJaVkYWJwB6tMtBARERGZipPMDi+N98dviRmIOZCKz2POYPSAthj3\naDuIxaKad0BEJDCjkxKJiYmVXjs7O+PLL780eUCNgfbpv1Z2gVL3OiLU12TbmFNDJEnyi5TIKdA/\ndal2WtPaDGchIiIiskUikQihQa3QoaULVsSdx/b//YUrGXl4fmw31uMiIotndFLio48+MmccjUZd\nnv5bYo+BhkiSuDg7wF3hgGw9iQlOa0pERERUWbvmCiyY0QdrdiYj6UoWFqw9hefHdEWXtu5Ch0ZE\nVK0akxLBwcGVZt142KFDh0wZj00wNKTBmKf/Ls4Olba3tB4DDZUkcbCXIMDXq1LyQ4vTmhIRERFV\n1URmj9mPd8f+U+nYcigNn246g3GPtsPoAW05nIOILFKNSYmNGzdWu66goKDadSUlJZg7dy6ys7Oh\nVCrx0ksvoXPnznj77behUqng5eWFJUuWQCqVYtu2bVi/fj3EYjEmT56MJ554om6tEZgxQxoMP/13\nwN6T1/FHWnal7ccPamdRPQYaMkminb70wWlNB/ZsgTH9W5tk/0RERES2RiQS4bG+rdGhpQtWbj2P\nuKN/IiUjD8+N6QZFE/wlaJcAACAASURBVKnQ4RERVVJjUqJly5a6n1NTU5Gbmwvg/rSgixYtwu7d\nu/Vud/DgQfj7+2PWrFm4ceMGZs6cid69eyMiIgIjRozA559/jtjYWIwfPx7Lli1DbGws7O3tMWnS\nJAwfPhyurq4mamLDMWZIg6Gn/04yexxMuql3+16dPPFb4o0q2/Tq5NHgPQYacliFRFx1WlOfFq7I\nzCw02TGIiMiyREdHIzExERUVFXj++efh5eWF6Oho2NnZQSqVYsmSJXB3d8euXbuwZs0aiMVi9O/f\nH6+//rrQoRNZlA4tXbBgRl98v+MizqZlY8Hak3hhbDf4tXYTOjQiIh2ja0osWrQIx44dQ1ZWFlq3\nbo309HTMnDmz2vePHDlS9/OtW7fQtGlTnDhxAlFRUQCAoUOHYs2aNWjXrh26d+8OuVwOAOjduzdO\nnz6NkJCQurZJELUZ0qDv6X+Pjh44e6X67f076B8LqDFB7LXVUMMqHh4Gw6KWRES27/jx47hy5Qpi\nYmKQm5uLCRMmoEePHoiOjkarVq3wzTffYPPmzZg+fTo+/fRTbNu2DU2aNMHkyZMxZswYdOzYUegm\nEFkUZ0d7vDKpB/aevI6fD11F9E9JmDCoPUb2bwOxgSHaREQNxeikxLlz57B7925ERkZiw4YNOH/+\nPPbv31/jdlOnTsXt27excuVKzJgxA1Lp/S5jHh4eyMzMRFZWFtzd/77hdnd3R2am/ptzLTc3J9jZ\nmbZ3gJeXvF7b38q6h5zC6oc0SKT28PJsolv22pOBKC2rQG6BEm4KB+QWKHEoqWpPCADIKSjF+TT9\nc06fv5oDuYsjZFL9p7K+7arO7MkBcHKU4vj5W8jKK4GnqyP6+TfHzDHdIJHUb/YNlUqNNdsv4Pj5\nW8jMK4GXnn2bq12WwFbbxnZZH1ttG9tl2fr06YMePXoAABQKBUpKSvDFF19AIpFAo9Hgzp07CAwM\nhKOjI7Zt2wZnZ2cAgKurK/Ly8oQMnchiiUUijHikDTq1dMWKrefxy+GrSEnPwz/GdIXCicM5iEhY\nRicltMmE8vJyaDQa+Pv745NPPqlxu02bNiE5ORlvvfUWNJq/n+s/+PODqlv+oNzcYiOjNo6Xl7ze\nwwFU5Sq4y6sf0qAqK9d7DDsAhfklBrd3cZYip6BU73Gz8kqQ9le23l4EpmiXIeMHtsWIvq0q9WbI\nyblX7/1ujE+p1Avjbm4Jth25iuKSMkSE+pq9XUKy1baxXdbHVtvGdpnmWOYkkUjg5HT/Oy02NhaD\nBw+GRCLB4cOH8eGHH6J9+/YYO3YsAOgSEpcvX8aNGzfQs2fPGvdvjgcbWraSGLJmPAeGeXnJ0bWT\nF7746TQSL939P/buPS6qOv8f+GtmYGZA7re8gIIgeEEURUrLTMW01GTX0pbNSs3t4m5b2277ray0\nb33brM39bbutZalpulG2edkyjdRS01TAC15AvIF44TY4IMwAM/P7A2fkcubMGZhhhuH1fDz2kQ4z\n53zODLJ83ud9wf9+cgh/eigFQ/qHOvQc5Fr8DFyPn4F9JAclYmJisG7dOqSkpGDu3LmIiYlBdbX1\nX4Dy8vIQGhqKXr16YdCgQTAYDOjRowd0Oh3UajWuXr2KiIgIREREoLy83PK60tJSDB8+vGNX5QJi\nJQ0D+9rujyFaEjEgDEfPVLhNo8vmHF1WIaUMhoiIPF9WVhY2bNiAlStXAgDuvPNOjB07Fu+88w4+\n/PBDPPHEEwCA8+fP449//CP++te/wtvb2+ZxHX1jw8xTA15dCT8D6Z6cMQRbb/HDVz+ew4vv78Uv\nx/XHlFv7dricg5+B6/EzcD1+BsLEAjWS8+xfe+01TJ06FX/4wx/wy1/+Ev369cPy5cutPv/QoUOW\nXyTKy8tRW1uLMWPGYNu2bQCA7du3Y+zYsRg2bBiOHTsGrVaL69evIycnBykpKVKX1an0DQaUamqh\nbzAIfn32hDikpUQiNEANuQxQKxVQK+XYm3cFi1bsx/qsAhiMRqvHb/360AA10lIikTEpHsnx4YKv\ncXQPB7Hr6wxSJnsQEZFn2717N5YvX44VK1bA39/fUi4qk8kwefJkZGdnAwCuXLmChQsX4i9/+QsG\nDRrkyiUTdSlymQxTR0fj+YxkBPTwxoZdZ/D3DUdRU9fg6qURUTckOVNi1qxZmDFjBqZOnWpJmxTz\n4IMP4qWXXkJGRgZ0Oh1eeeUVJCYm4s9//jMyMzPRu3dvpKenw9vbG8899xzmz58PmUyGhQsXWppe\nugspoz6BlpMi1m7Lx095VyxfE5rE0ZrQpAmx5pjJ8WGWxzvj+jpDZ072ICIi91NdXY2lS5di9erV\nlklc7733HiIjIzFo0CAcOXIEMTExAICXXnoJixcvxpAhQ1y5ZKIuKz4qCIvnpmLFf0/g6JkKLF51\nAE/MSERcn0BXL42IuhGZSUoTBwDZ2dnYunUrvv/+ewwcOBAzZszAhAkTLL0mOpOj02Fspdi07nFg\nlpYSKRhg0DcYsGjFfsGNdWiAGq8vuLXd2Q2tJ1KIkZo6ZO/1OZut9XhySpSnXhuvq+vx1GvjdTnm\nXM6UmZmJ9957zxJ4AICnn34af/3rX6FQKKBWq7F06VJotVqkp6dbmmICwKOPPoqJEyeKHt9Z75On\nfm91JfwM2s9oMuHrn85j455zkMtkmDkuFpNToyCzs5yDn4Hr8TNwPX4GwsR+f5CcKTFy5EiMHDkS\nL730Eg4cOIDNmzdj8eLF2L9/v0MW6a7sGfVpJqUEob19GFzRw8FR5SFSOTMrhIiI3Nvs2bMxe/bs\nNo9/9tlnLf4eGhqKI0eOdNayiDyaXCbD9NtjEBcZhA83H8fnOwtRUFyF+dMGoYfadq8WIqKOkByU\nAACtVousrCx8++23KC4uFvylwdO0J8DQlUoQnBlAaS+xMhYiIiIico5B/YKxeF4qPtx8HIcLy7F4\n5UE8mZ6I/r0DXL00IvJgkhsGzJ8/H9OmTcPx48fxxBNPYOvWrXj22WeduTa3YA4wCLEWYDBP0hCS\nIGESh6OJNbBsz/V1FnNWCAMSRERERJ0jsIcSz80ejhl3xKBSq8Obn2Zj+8FiSKz4JiKym+RMiYcf\nfhh33HEHFIq2G8QVK1ZgwYIFDl2YuxAd1Sky+aJ5CUKlVgeVsul5+/KuIL9I0ymNJA0GI9ZnFYg2\nsGzv9RERERGRZ5LLZZhxRwziIgOxYvNxfPb9aRQUV2HevQPhy3IOInIwyTvicePGCQYkgKbRXZ7M\n2qhOsR4H5hKE1xfcijGJPaGrN0BXb4AJNydxZO4odOq6V245jqxDF1Gh1Yue13x9If4qyACE+Kts\nXp87coeRpkRERESeYkh0CBbPS8XAvkHIKSjD4lUHce6y1tXLIiIPY1dPCWs8PZ2roz0OThVpBB/v\naCNJsUkc+gYD9uddtuu85gbLdjZadjl3GmlKRERE5EmC/FR47sHh2LTnPL7+6Tze/DQbsycMwIQR\nfeyezkFEJMQhQQlP/oHUeuNvb9NHexpJSh33KWUTfq1Gj7KqOknnzdxR2KJ8w5xRAcAlI0Ht1dXX\nT0REROTOFHI5fnlnf8RHBeLDzSew7rsC5BdX4dEpA+Grdsh2goi6Mf4UscJRd9+lTOKQcq7mAYsv\nfzhjcxMe6KdCeJAPSjVtAxPNG1i640hQe3T19RMRERF1FYkxoVgyLxUfbMrDoVOlKLpSjSfTE9Gv\np7+rl0ZEXRhz260w33231Y/BFrFJHOZGkmLnMhiNWLs9Hy9+sB8vfLAfL324D3uOWi/LMPdTUHkr\ncFtiL9HzAtIyOdxZV1+/FOyVQURERO4i2F+FP2Uk497b+qG0qg5vrM3GztwSjy/nJiLncUimRHR0\ntCMO4zYcffe9+SQOTbUOwf5qJMeHYfaEONFz5eSX4dQFDS6WXbc8Vlldb/U8rcsy5k0fgtq6esHz\nmknJ5HBnXX39Ytgrg4iIiNyRQi7H/XfFIj4qCB/99wTWbstHfpEGzz2U4uqlEVEXJDkoUVJSgrfe\negsajQZr167F559/jtTUVERHR+O1115z5ho7nT19IKRoNJiQNjIS08dEo07f2KJnRMW1WqvnqqzW\no7Ja+p3+1ptwhUJag86BfYOxN+9Km8e7wkhQTx5pyl4ZRERE5M6SYkOxeO4oLN90HAdOluLZZT/g\nN9MHo+8tLOcgIukk3259+eWXMWPGDEtqVkxMDF5++WWnLcyVzHffhdhz991gNGJ9VgEWrWgqvXht\n9UFkZV+El+JmY1Cxc9nbPtTaJtzcoLP515qvbW/eFai85VB5yyGTOPLUnbRnZKu7s5Wtw1IOIiIi\ncgchAWo8n5GMKbf2xaXy63h9TTZ2sZyDiOwgOVOioaEBEydOxOrVqwEAo0aNctaaXM5Rd9+l3OkW\nO5fYj3KVlxx+vt7QVOsFyzLsXZu+wQgAUHrLkRQb0qVKBDo6stUdOTpbh4iIiMhZvBRyzBofh9TE\nXvjrumys2ZaPU0UaPDJlIHxU7KtPROLs+imh1Wot4z9Pnz4Nvb7rNxG0RqwPhBT29KUQOldSbAiO\nnqkQ7JUAAGOSemHW+Lh2bcLF1lbfYMTO3EuW0o+upD0jW92VJ/fKICI6f/68x/WjIiJg1OCeWDIv\n1VLOceHGdA6WcxCRGMlBiYULF2LWrFkoKyvD9OnTodFo8PbbbztzbS7V0bvv9tzptnau9VkFghkU\nURF+yEgbAIVc3q5NuNjazKw19Gw+mrSrZyO4M0/ulUFE3cPcuXOxatUqy9/ff/99PPXUUwCAV155\nBWvWrHHV0ojIiczlHF/9eBZbfy7C62uykZE2AOOG97bc3CQiak5yUOK2227Dxo0bUVBQAKVSiZiY\nGKhUnn+3tr1339tzp7v1uZpnUFRqdQj0UyJ5QBgyJsVLKq3Q1TeiVFPbJoAgtjaz1oETToLofB3N\n1iEicqXGxsYWf9+/f78lKMFacyLP5qWQ44HxcZbpHCznICIxkn8q5OXloaysDOPHj8eyZctw+PBh\n/O53v0NKCkf/CHHEne72ZmuYAwhHz1SgTFPXJoAgtjaz1oETToLofJ7YK4OIuo/Wd0SbByJ4t5So\nexgWF9ainOP8lWo8OSMR/XqynIOIbpJ8i/v1119HTEwMDh06hGPHjuHll1/G3//+d2eurctz1FQI\noekZ1ugbDFj1zSlkHbqIUk0dTLgZQMjcUdhmbWql8DGTYkMs5+MkCNey5/MnInJXDEQQdU/mco57\nbuuLUk0d3libjZ2czkFEzUjOlFCpVIiOjkZmZiZmzZqFuLg4yJm2L8oRd7ql9nBoXl5hrSyjeZ8I\n89rSx/bHv78rwMkLlaisrodcBhhNwNEzFVifVYDZE+JEe1BUaHWo1OrQK7SHXdflauyNQUTkXNeu\nXcO+ffssf9dqtdi/fz9MJhO0Wq0LV0ZEnc1LIccDd8UhISoIH/33JNZuy0c+yzmI6AbJPwXq6uqw\ndetWZGVlYeHChaiqquIvFRK1py+FvT0cWpdXCBEaJemr8sL8aYOxdns+duaUwHgjaN28PGPmuFjR\nHhRZ2Rcx5+4Eu67PVdgbg4iocwQEBOD999+3/N3f3x///Oc/LX8mou4nKTYMi+eOwvLNLOcgopsk\nByX+8Ic/YM2aNXj22Wfh5+eH9957D48++qgTl9a92dPDQay8ojlrDTb1DQYcLSwXfI05uyIpNhQ7\ncy8JPudoYQX04w1dIuOAvTGIiDrH2rVrXb0EInJDIQFqPP+rZGzcfQ7f7L+AN9Yewq8mDsBdyX1Y\n5kXUTUm+NZyamop//OMfmDJlCoxGIxYuXIhp06Y5c23dlr09HKSM+ASsN9iUMr40LSXK6nHNz3F3\n7I1BRNR5ampqsHr1asvfP/vsM8yYMQNPP/00ysuFA+FE1D14KeS4/65YPPNAEtRKL6zdXoDlm46j\nTt9o+8VE5HEkByUGDx6MIUOGWP6XmJiI0aNHO3Nt3ZaUIEFz5hGf1oT4q0QbbIq93pxdERKgRqiN\n57g7e99XIiJqv1deeQUVFRUAgHPnzuHdd9/Fn//8Z4wZMwZvvPGGi1dHRO7AXM4RFxmIg6dKsWTV\nQVy4Uu3qZRFRJ5NcvnHq1CnLnxsaGvDTTz8hPz/fKYvq7sxBAqEeDkIBALERn7cn9sRDkxNESyuk\nji/t6IhTV7P3fSUiovYrLi7Gu+++CwDYtm0bpkyZgjFjxmDMmDH4+uuvXbw6InIXIQFq/DkjGV/9\nyHIOou6qXZ39vL29MW7cOOzdu9fR6yHcDBIIsRYAEBo/et/Y/nj03oGSAgZSxpc6asSpq7TnfSUi\novbx9b3ZVPnAgQO47bbbLH/nRoOImlPIzeUcwyzlHP/adBy1OpZzEHUHkjMlNmzY0OLvV65cwdWr\nVx2+IE9mzxhK80Y/t6Acmmodgv3VSI4PsxoAEBo/Gtk7CGVl0lLgpIwvdcSIU1ez930lIqL2MRgM\nqKiowPXr15Gbm4tly5YBAK5fv466ujoXr46I3FFSbCgWzx2FDzYfx6FTpSi6Uo0n0zmdg8jTSQ5K\nZGdnt/i7n58f/va3vzl8QZ6oPWMozQGA6WOicbG0BpERfvD3Vdo8l9D4UXuCIVLGl7ZnxKm78ITA\nChFRV7BgwQLce++90Ol0+O1vf4vAwEDodDpkZGRg1qxZrl4eEbmpkAA1ns9oms7x9b6mco4HJw7A\neJZzEHksyUGJN998EwBQVVUFmUyGwMBApy3K07RnDGV7AhltjmEwYn1WgaRj2BO48ARdObBCRNQV\njBs3Dnv27IFer4efnx8AQK1W409/+hPuuOMOF6+OiNyZQi7HzHGxiI8KwootJ/Dp9gKcuqDBo/cM\ngq9a8vaFiLoIyf+qc3Jy8Pzzz+P69eswmUwICgrC22+/jaFDhzpzfV2erTGUM8fFCgYB2hPIaG3l\nluM2j+GI4AcREVFrly5dsvxZq9Va/ty/f39cunQJvXv3dsWyiKgLGdo/FEvmpeKDTXk4lF+GC1er\n8VT6UJZzEHkYyUGJv/71r3j//fcRH9+0mT1x4gTeeOMNrFu3zmmL8wRSxlA2v2OvbzCgrKoOOfml\ngq9pHsgQy27QNxiwP++y6DEAYO22fPyUd8XytfYEP4iIiFqbMGECYmJiEB7e1GDYZDJZviaTybBm\nzRpXLY2IupBgfxX+1KqcY/aEAZgwguUcRJ5CclBCLpdbAhIAMHjwYCgUnp/m31FSx1C2zlgwtXl2\nE021DpVaHXbmlohmN1yr0aOsSriRWKVWh0+35eNUkUZwXYB4FgcREZEtb731FjZt2oTr169j6tSp\nmDZtGkJCQly9LCLqglqXc6z7rgD5RSznIPIUkvPz5XI5tm/fjpqaGtTU1OCbb75hUEICqWMozeUa\nFSIBCaApkJF1qLjFc83ZDZk7Ci3PC/RTITzIR3hNSgX25l2xGpAAbmZxEBERtceMGTOwcuVK/O1v\nf0NNTQ1+/etf47HHHsOWLVug0+lcvTwi6oLM5RzxkYE4lF+GJasP4PwVre0XEpFbkxyUWLJkCTIz\nMzF+/HhMmDABGzduxJIlS5y5No8xe0Ic0lIiERqghlwGhAaokZYSaRlDKdZ3orWkuFAcPVMh+LXc\ngnLoGwwAmoIhtyX2aveam2dxdHf6BgNKNbWW95aIiKTr1asXnnrqKWzduhWTJ0/G66+/zkaXRNRu\n5nKOqaP7oaxKh/9bm43vsy+2KBEjoq5Fcr5TdHQ0Pv74Y2euxWPZGu8p1nfCTC4D+oT7YXxyH+zK\nKRF8TuseFfOmD0F1jQ65p8txraYeIQFqJPQNwr5mPSSs8VV7wUvhuDq9rjjdg01AiYg6TqvVYvPm\nzfjPf/4Dg8GAxx9/HNOmTXP1soioCzOXcyREBeHDG+Ucp4o0mMtyDqIuSfK/2n379mHNmjWorq5u\nEYlko8uWhDbftja3Yn0nzIwmoLi0BjtzSyT3qFi55TiOnqnAtZp6BPmpkBQXipnj+iNfpJeEWXFp\nDTJ3FHa42WVX3tg7YgIKEVF3tWfPHnz55ZfIy8vD3Xffjb/85S8telMREXVUonk6x+bjyM4vQ9HV\najyZnojongGuXhoR2UFyUGLJkiV46qmn0LNnT2eup8syGI1Yn3UahwvKUVXTcvNta3Nr7jvR/DnW\nHC2sQFJsKHbmXmrzNaEeFWaaGj125pRAIZdJPpcjml3aunZ3zaBo7yhX6lrc9fuPyBM89thjiI6O\nxogRI1BZWYlVq1a1+Pqbb77popURkScJ9lfhT78ajk17zuHrny7g/9ZmczoHURcjOSjRp08f3Hff\nfc5cS5dlMBrx2upDKC6tsTxm3nwbjCYcLSwXfF3zze39d/VHflEVSspqYBQpiavU6iyNM4+eqYSm\nWodgfzWS48Mk9ajILSjHkvmplj9XanWikz5ajyy1h9g6cvLLLO+NO2ZQ2DvKlbqWrpzBQ9RVmEd+\najQaBAcHt/jaxYu2A+NERFIp5HL88s6W0zlOXdBg7r0D4av2dvXyiMgGm0GJ4uJiAEBKSgoyMzOR\nmpoKL6+bL4uKinLe6rqI9d8VtAhINHe4oBwaK1Msmm9uN+w6a/UYzclkwLLMIwgJUCEpLgxpIyMR\nEqBucZfX1oa6prYeGWnxmDkuFmWaWvy/DUdtloO0h9g6KqubMjfM3K00QuooV+qaWJpD5HxyuRzP\nPvss9Ho9QkJC8MEHH6Bfv3749NNP8eGHH+KXv/ylq5dIRB4mMSYUi+feKOcoKMOFG+UcMb1YzkHk\nzmwGJR555BHIZDJLH4kPPvjA8jWZTIbvv//eeatzI9bSvPUNBuSeFs6EAICq63oE+SlRVVPf5mvm\nza090zfMWRQV2pvlGDPHxaJUU2tZm9QNtcpbgcgIf6vlHM3LQdpDbB1yGQQzQtylNEKspKaj7wu5\nFktziDrHsmXLsHr1asTGxuL777/HK6+8AqPRiMDAQHzxxReuXh4Reaib5Rzn8fVP52+Uc8Rh4shI\nlnMQuSmbQYkdO3bYPMjGjRuRnp7ukAW5E32DAZVaHbKyLwqWGTQaTDhbck0w4GAW1EOF4QPEe0CU\namolTd8Q2sTvOXoZOfml0FTXt1ibtQ11Ulxom+CKuewjt6BcsBykvcQ29tZKVNypNMJZ7wu5tpcD\nS3OIOodcLkdsbCwAYOLEiXjzzTfx5z//GZMmTXLxyojI0zWVc/RHfFQgVmw5gfVZp5FfVMVyDiI3\n5ZCZOf/5z388KijRvN689V1+c5p3flEVanUNqNDqrQYMAGB4fBgy0gZAoZBb3dyKZRSE+Kvw67vj\n8d6XxwSPr6s3QFdvaLE2g8GItJQoKJVe+Dnvyo1zquCr9saR02XYlVPSpobeXM7h6I2i0MY+KTYE\nR89UuH1phDPfl+7KHXo5sDSHqHO0viPZq1cvBiSIqFOZyzk+ZDkHkVtzSFCi+YhQT9C63lxI8/4P\n1gISURF+TQEJG5tbsYyCEQnhyDtbYdf6fzh8CbtyLyE82AdJcaFIGxmJrEPFLbI1hGroVd4Kh98h\ntnbt67MKukxphL3vCyc6WOcOvRxYmkPkGkybJiJXCPZX4Y+tyjlmTYhDGss5iNyGQ4ISnvQP2p7+\nDq2ZMyaC/JRIHhCGjEnxLe7+im1urZUKpI+NwasfH7BrHeYgSammDqWapmaSR88IBzY6q4a+9bV7\nYmmEO2QBuDN36uXgid9/RO4mNzcXd911l+XvFRUVuOuuu2AymSCTybBr1y6XrY2IuhdzOUdCVBA+\n3HIc/75RzjGP5RxEbsEhQQlPIlZvbovJBPzpweHo3yfQ7s2VtYwCKf0mbJE6AUSIrbv+7c0K8MTS\nCHfIAnBn7tTLwRO//4jczbfffuvqJRARtTAkJsRSzpFTUIYilnMQuQUGJVoRqze3JSRA3a6ARHOt\nMwo6sh4zKRNAWrN1199RWQHOKBlxBXfKAnBX7tjLwVO+/4jcUZ8+fVy9BCKiNszlHJv3nMd/zeUc\n4+OQlsJyDiJXcUhOuZ+fnyMO4xbM9ebWhAaoERUhfL226tH1DQaUamqhbzA4bD1ShPirkTwgTPBr\n1tZsvutfodXDhJt3/TN3FEr6encjJQuguxP7XmYvByIiIuosCrkcv7izP/7w4HD0UHvh39+fxj/+\ncwzXdQ2uXhpRtyQ5U6KsrAzffPMNrl271qKx5e9//3u8//77Tlmcq1ibGJGWEoWQADW8FLIbWQLS\n6tE7mlXQej3eXnLoG4ySr8e8NrEJIM2J3fXPyS/D9DHRzApoxR2zANwRezkQERGRuxgSHYLF85rK\nOXJPl2PJqoN4YkYi+vdmOQdRZ5IclHj88ceRkJDQLdIxpdSb21OP3tFeAwq5HDPHxeLOYb0BkwlZ\n2Rfx45HLgs9VKxXoofaCplqPsCAfJMWG2j32U+yuf2W1Hp98e8pqOUln9wZwF5zoIA17ORAREZE7\nCfJT4Y8PJmPz3nPYsvc83vw0G/ffFYu7R0WxnIOok0gOSvj6+uLNN9905lrcjq16cyn16O3pNdC8\neeTNrIybWRY1tdZTy/T1Brz40AgovRWIjQ5F9bU6u9dsq49FTkE51Eo5dPVtszW6c1YAswCkYy8H\nIiIichdyuQzpY/sjPioIH245gcwdhU3TOaYOgp8Pp3MQOZvkoMSwYcNw5swZxMbGOnM9HseeiQNC\nZR5KLwUuV9ZaXmOr4WWgnxLhwb5QeSugVnqh2o61Ng+GWLvrf5Nw5Lg7ZwUwC4CIiIio6xocHYIl\nc0fhwy0ncLiwHItXHcAT9yUiLjLQ1Usj8miSgxK7d+/G6tWrERwcDC8vL84Zl8ieXgNCZR72Sh5g\nf1BAKBgyfEAYbku8Bfvzrgq+pr7BgDGJPZFfVMWsgFaYBUBERETUNQX6qfDc7OH4777z2LTnHP6y\nLgczx/XH5Fv7Qs5yDiKnkByU+Ne//tXmMa1W69DFeCKpvQbEyjykiorwQ8Yk2z0qWhMKhnyfXYLx\nyb0RKhJQmTM5tGkjRwAAIABJREFUAQCYFUBEREREHkMul+G+22OQEBWEDzYfxxe7zuBUURXmTxuE\nAF+lq5dH5HEkjwTt06cP6urqcOnSJVy6dAnnz5/HH/7wB2euzWPMntA0+zg0QA25rGmsaFpKZIus\nArEyDyFqpQIh/irIZECwnwrjR/TBK4+mSJrm0ZxYMOTomUokxYmPEjVnBTAgQURERESeJKFvMBbP\nS0ViTAiOna3A4pUHkF+kcfWyiDyO5EyJ119/HXv37kV5eTn69u2L4uJizJs3z5lr8xhSeg3Yai7Z\n2h1JvdrVu6B53wiVt8Jmz4u0kZFQyGVs3khERJ1m6dKlyM7ORmNjIx5//HGEh4dj6dKl8PLyglKp\nxNtvv42QkBBs3rwZn3zyCeRyOWbNmoUHHnjA1UsnIg8T4KvEM7OGYev+C/jqx3NY+u9cpI/tj6mj\n+7Gcg8hBJAcljh07hq1bt2LOnDlYu3Yt8vLy8N133zlzbR5HrNeAWJlHc6EBTU0ozWM+pfYuEOob\nkRQXhjuH9RLteRESoO5Q80Z9gwFlmlpAJkN4kA8zKoiISNT+/ftx+vRpZGZmQqPR4Be/+AWSkpKw\ndOlSREVF4R//+Ac+//xzPPzww/jnP/+JDRs2wNvbG/fffz8mTZqEoKAgV18CEXkYuUyGqaOjER8V\nhOWbjuOrH8+ioEiDx6YPQWAPlnMQdZTkoIRS2fQPrqGhASaTCYmJiXjrrbectrDuyJx9sOfoZejq\nDW2+PiaxJ+ZMTmjXxl6ob8TOnBLszCmBWilc8tG854W9zRsNRiP+/f1p/HTssmV0qFqpwO1De+LB\niQPsLjMhIqLuYdSoUUhKSgIABAQEoK6uDsuWLYNCoYDJZMLVq1cxcuRIHDlyBEOHDoW/vz8AYMSI\nEcjJycGECRNcuXwi8mADIoOwZF4qPv7vCRw501TO8ZvpgzEoOsTVSyPq0iTvDGNiYrBu3TqkpKRg\n7ty5WLJkCaqrxQdOLl26FLNnz8bMmTOxfft2XL58GXPmzEFGRgZ+//vfo76+HgCwefNmzJw5Ew88\n8AC++OKLjl2RG9I3GFCqqYW+oW2goTlzmcc7C8dgTGJPhPirWvSgmHvvQLsDEvoGAy6W1SAnv9Tq\nc5oHDaz1vLBX5o5C7MgusRy76TwGfJ9dgswdhe0+LhEReTaFQgFf36Yg+IYNG3DnnXdCoVDgxx9/\nxJQpU1BeXo777rsP5eXlCAm5uREICQlBWVnHGkYTEdni5+ONp+9Pwqzxcaipa8A7nx3Gxt1nYTSa\nXL00oi5LcqbEkiVLcO3aNQQEBODrr79GRUUFHn/8cavPF0q/HD16NDIyMnDPPffg3XffxYYNG5Ce\nnu6x6ZdCJRPNSy+s8VV547Fpg9v0f7D33Cs2HsPeIyWo1Ooh5cekr8oLL84Z2eEyC32DQTQIkltQ\nhpnjYlnKQUREVmVlZWHDhg1YuXIlAODOO+/E2LFj8c477+DDDz9Enz59WjzfZJK2IQgO9oWXl3P+\n/yc83N8pxyXp+Bm4Xnf5DOZMG4JRQ3vh7bWHsHnveZy7UoM/PjQSIQFqVy+t23wG7oyfgX1sBiVO\nnDiBwYMHY//+/ZbHwsLCEBYWhnPnzqFnz56CrxNKv/z555+xZMkSAMD48eOxcuVKxMTEeGz6pVDJ\nhPnvGWlNozvFei7YWzIhdm4pqmr0UHrJOxwsuFajR2V1vdWvV1brca1G3+5rIyIiz7Z7924sX74c\nH330Efz9/fHdd99h0qRJkMlkmDx5Mt577z0kJyejvLzc8prS0lIMHz7c5rE1mlqnrDk83B9lZeIZ\npORc/Axcr7t9BqG+3nj5kRSs/Pokck+X47dv78CC6YORGBPqsjV1t8/AHfEzECYWqLEZlNi4cSMG\nDx6M999/v83XZDIZRo8eLfg6ofTLPXv2WHpThIaGoqyszGPTL8VGbeYWlCN9bH/858czTum5IHZu\nMcH+agT6qew6j1AmR6CfCiH+SquBiRB/lV3nac8a3PW4REQkrrq6GkuXLsXq1astWZPvvfceIiMj\nMWjQIBw5cgQxMTEYNmwYFi1aBK1WC4VCgZycHLz44osuXj0RdTc91N747S+HIiv7Ij7fUYhlmUdw\n7+h+SB8bwx5qRBLZDEqY/w9+7dq17TpB8/TLu+++2/K4tTRLKemXzki9dHSKzeXy66istj5q8z+7\nz2FHdkmLx809F3r4qrAgfahTzi3m9mG9EdnbdtmMwWDEyi3HsT/vMsqq6hAe5IPbEnth3vQhUCia\nfvjeMTwSm3eftXKePpLOIyYkpIfNNbSHlGtzNk9N9+J1dT2eem28Lvf2zTffQKPR4JlnnrE89vLL\nL2PJkiVQKBRQq9VYunQp1Go1nnvuOcyfPx8ymQwLFy60ZF0SEXUmmUyGSSlRiOsTiOWb8vD1vgs4\nXVyF39w3xC3KOYjcnc2gxJw5cyATmcG7Zs0aq19rnX7p6+sLnU4HtVqNq1evIiIiAhEREXanXzo6\n9dIZKTaGBgNC/IVHbQb5qXA4/6rV1+49UoJ7UqPafYde7NyhASr8duZQ7My5iKNnKnGtph4hAWok\nx4dh+ui+kt6H9VkFLUpDSjV12Lz7LGrr6i1lKdNH90VNrR4/HbtimSRizgSReh5rwsP98Y/Pc22u\noT2kXJszeWq6F6+r6/HUa+N1OeZczjR79mzMnj27zeOfffZZm8emTJmCKVOmOHU9RERSxfQKwKuP\npmL11pM4lF+GxasO4rFpg5AUG+bqpRG5NZu3fp966ik8+eSTGDBgAOLj4/Hwww/joYceQv/+/TFk\nyBCrrzOnX37wwQeW9MsxY8Zg27ZtAIDt27dj7NixGDZsGI4dOwatVovr168jJycHKSkpDro811F5\nK5AcHy74tYH9gm32XCirqpM0scPecw8bEIa9x67g+DkNrtXUI8hPhaS4UJvNN81slaWY16uQy/HQ\npAQs+90deG3eKLw2PxXLfncHfj0pocOpbLr6RklrsJfUayMiIiIiEuKr9sKT6YmYc3c8dPUG/O2L\no/h8ZyEaDUbbLybqpmxmSph7Rnz88cf46KOPLI/ffffdePLJJ62+Tij98i9/+QsWLVqEzMxM9O7d\nG+np6fD29vao9EtzLwIflRfGJ/eBwWjC0cIKaKp1CPZvykhIHxuDk+croKlpEDyGUiHHssxcVNU0\nSJ7Y0drsCXHw9VFi75FLLc5tMplaZAJoavTYmVMChVwmKRPgWo0elQIZGEBTWUrrBpYqbwUiI8Q/\nT3v7N2i09q1BKnuvjYiIiIioNZlMhvEjIhHbJxD/2piHb38uwumLVXjivkSEBrKcg6g1ySNBr1y5\ngnPnziEmJgYAUFRUhOLiYqvPt5Z+uWrVqjaPeUL6ZfPxnxVaPeQywGgCQvyVGBYXhrSUKIQEqOGl\nkCFzRyHq6q1HS/WNRuhrmr4uNLEDsL2RV8jlWJA+FPekRlmeBwCLVuxv81ygKRNAypjOQD8VQgKE\nS0PsbZTZ3pGpwQGOW0Nzjrw2IiIiIure+t7ij1ceHYU12/Lx84mrWLzqAOZNHYTkAcIZzUTdleSg\nxDPPPINHH30Uer0ecrkccrmcXa6baT2C03ijX2dldT125l6CQiFHRlp8m54FUpmDBuaghtSNfPOx\noqWa2g5nAphLQ4SuITk+zK4+GFJGpgpRK70ctobmxK4tKTaE0ziIiIiIyC4+Ki/8ZvpgDOoXjHXf\nFeC9L49hUkoUHhgfC69OaqJO5O4kByXS0tKQlpaGqqoqmEwmBAcHO3NdbsladoKUEZy5BeWYPiba\n6vNkAMTmjpiDBlnZF61u5GeOixXdOItnAkgf0zl7QpzlmpqXhpgfl1KOYat/w/Qx0ajTN1o9hq01\n2Mu85vSxMS2OG+SnQg8fbxw9U4FduZfaXU5DRERERN2TTCbDncN6o3+vAPxrUx6+O1SMwpIqPDEj\nEeFBPq5eHpHLSQ5KlJSU4K233oJGo8HatWvxxRdfYNSoUYiOjnbi8tyDrTIDsV4EZppqHYquVAsG\nBADxgATQVD7go/KyupHfc/Rym/X9dlZyi+eIZQLU1Dbg852FyEgbYHOzrZA3ZX20DoIYjEaszyqQ\nlMUh9p5VaHV4deWBG5NBhI9hbQ32svbZLpmfipraemw7WIydOTdHt0rN5iAiIiIiai4ywg8vP5KC\nT7cX4Ke8K1i86iDm3TsQIxMiXL00IpeSfKv35ZdfxowZM2AyNW2fo6Oj8fLLLzttYe7EXGZQodXD\nhJsb08wdhQBuZiCICfZX45BINoXc+tRVAE1lCXX6RqsbeV29oc36Vm453uZ5syfEIS0lEmplyw28\nvtGInTkleG31IRiM0roDm0tDzMEAW+9Tc7bes6qaepvHEFqDvayteePuswj0U+FoYbng6ziNg4iI\niIjspVZ64bFpgzHv3kEwGI3451d5WLe9AA2N/L2Sui/JQYmGhgZMnDgRMlnT7nnUqFFOW5Q7kTIm\nUmwEp1libDB+PnHV7vOrlQqkpURi9oQ4ScGP5vbnXW6zcVbI5Zg5Lha+KuFNfHFpDdZuz7d7nfaO\n01R5K5AUJ31mszOCALbWXFZVZ7MHBxERERGRve5I6oWXHxmFPmE98H3ORbyxNhtXNbWuXhaRS9hV\nFK/Vai1BidOnT0Ov9/xNmZQxkUBTBsLEkX2gVrZ8S5VeMtyWeAvq9Abo6q1vqo2t6jdUSjluT+yJ\ndxbejoy0eCjkcknBj+bKq+oEN87XavTQVNdbfd3uw5exdtspyRkT5mNK3cCbyzyOnG4KCJizRIJF\nelo4Iwhga80wmawGgTiNg4iIiIg6ok9YDyx6JAVjk3qh6GoNlqw6iAMn7b+JSdTVSQ5KLFy4ELNm\nzcLx48cxffp0zJ07F88++6wz1+YWxLITmm9MFXI5ZDIZdK1GfdY3mrA/7yoOnSy167w9VN54aHIC\nfFUt237cf1d/RIb3kHSMsCAfwY1zoJ8KAT28rb7OBGBn7iWs/64ApZpaSRkKUt8n4GbJROWNwIg5\nIDM0NhihnRgEsLXm8GBfq0Ggjkz5ICIiIiICmrKH5947CAumD4bJBCzfdBxrvj2FepYJUzciOSgR\nExODX/ziF5g7dy769euH9PR0ZGdnO3NtbsFLIYOvWngD33xjamsCR+tMCFuqavSCmQEbdp3FxbLr\nko5xW2KvNhtng9GIL384g5q6Bpuv/+HwJbzwwX4sWrEf67MKRDMnxLI4pL5Px89VWS3pcEYQQMqa\nzT04QgPUkMuA0AC1pZyGiIiIiMgRRg/piVfnjkJUhB92Hb6E19dk43KFtN/5ibo6ydM3FixYgCFD\nhuCWW25BXFzThqyxsdFpC3MXmTsKUVxa0+bxqAi/FhtTKRM47BHkp0J9o9HSswJo2tDn5FvPuJDL\nmrIcQm6Mx5w3fQgqK1v+MDNnKUhhDqRInTghZUynrZKJtJGRUMhlLY6RFBuC8cl9WrwXjmJrzY6a\n8kFEREREJKZniC9emjMSn+0oxK7cpgb0D09OwOjEnq5eGpFTSQ5KBAUF4c0333TmWtyO2F39Wl0j\nGg0mKG7kmphLAayN/LRXrb4Rr358oMVIzGs1ekvJgxCjCfjTg8PRv08gVN4KKBRy6BsMls00ANFs\nDltyC8oxc1ys1U25lA282PsU7K9GSIDacoxKrQ5Z2RdxtLAcu3IvWR112hFSgw7mKR9ERERERM6i\n9Fbg4ckJGNg3CKu3nsKK/57AySINfj0pnjfGyGNJDkpMmjQJmzdvRnJyMhSKm/8gevfu7ZSFuQMp\nzRvNG1VzKYDULARrFHLAYISlKaY5S8FgNGH88N4I6qFE1XXrgYmIYB+ovBUwGI1YsfEY9h4pQaVW\nj5AAFQb2De5Q0KT1NVsjtIFvHhyx9j41L9FQeSuwM7cEO3NKLF83vxe+Pkqk3x7d7uuQumYiIiIi\nIldIHXQL+vX0x/KNx7Hn6GWcvaTFk+mJ6BMmrbccUVciOSiRn5+PLVu2ICgoyPKYTCbDrl27nLEu\nt2Drrn7rxovmlP+c/DJUVgtv/u9K7g2dvhEHTpYK9pkwWek98cONDbrSS7wNSKmmDqGBPm3KNCq0\neuzNuwK1Ut6mGWdrcplwD4z2NJs0GI3I3FGI3IIyS3Bk2IAwTBzZB4dPV1gt8xDLUtmfdxn3pEYx\nWkxEZEXzQDB/VhIRdU23BPvixTkj8fnOQnyffRH/u/ogfn13PO4Y2ssyEZHIE0gOShw5cgQHDx6E\nUql05nrcilj2g1DjRXMpgMFoanGH3ywqwg+/nhSPims67D8h3BvCWkNM8+P1jdYDCjIAkRF+Nppu\nCv8AUysVGJ3YE2kjI5GVfVFw/e1pNikUHNmRXYK0lEi8vuBWq780i2WpmEedMrOBiKgloUCwuQRQ\nIbdrCjgREbkBby85fj0pHgP7BmHlN6ew6ptTOHWhCnMmx0OtlLyVI3Jrkr+TExMTodfru1VQApDW\nvLE5fYMBRwvLBb9m7kMR6KdCqAP7T5hFRvjB31eJUk2t1Q19fYMBYxJ7Ir+oCppqHYL8VBjYLxgZ\nkwbAV9U0ZSQjbUCbZpNi12yNWHDE3J/CWmBBLEvF2qhTIqLuTigQLKVRMRERubeRCRHoe4s/lm/K\nw77jV3DuclM5R1SEn6uXRtRhkoMSV69exYQJExAbG9uip8S6deucsjB3Ye/0Bal9KIYNCMOO7LbZ\nCO0hlwF9wv3w0sMjANguO5kzOcGyVqHrEbtme1KC7enJ0ZpYlorQqFMiou5OSiCYPzuJiLqu8CAf\nvPDQSGzYdQbbDxbj9TWH8Ku0ARg3rDfLOahLkxyUeOKJJ5y5DrcntRGi1D4UjvixEeynxIw7YjAk\nJgShgT4t1iql7MSehpXtSQm2tydHa9ayVIRGnVrDumoi6i46EggmIqKuwUshx4MTByChbxBWfn0S\na77Nx6kLGjwyZSB8VCznoK5J8nduamqqM9fhMaQEBPQNBhw+LVziYQ9NTT1Wf5uPUIEAwewJcfD1\nUWLvkUuiJRhSN+3tSQm2tydHa9YyNhQK23XRrKsmou6mo4FgIiLqOpIHhGPxXH8s35yHAydLcf5K\nNZ6ckYjwcH9XL43IbgynOYGtPhRid7PaQyhAoJDLsSB9KO5JjRIMOtizaW9vSrDBaITJZIJaqbCM\nOFUrFRgztKdd/SnaM66TddVE1N10NBBMRERdS2igGn/OGIGvfjyLrT8X4Y21h/DYfYkYFR/Gcg7q\nUhiUcAJbfSjE7mZ1hFCAwNqG3p5Ne3tTgjN3FOL7Vn0zdPUGyGUyp2YrsK6aiLore5szExFR1+al\nkOOB8XFI6BuMj/57Asu/OoaD8eGYe+9A+Kq9Xb08IkmYxy6BvsGAUk0t9A0GSY+bmQMCrTfA5rtZ\njmYOENhia9Pe+nrMQRQh1lKC7T2HI0kJonSUrc+eiMgVzEHx1xfciv/7zW14fcGtyEiLZ9kaEZGH\nS4oNxZJ5qRjSPxTZBWVYvOogzly65uplEUnCTAkR1koc7r+rPzbsOtvufgUGoxFGkwkKOWAwOm69\nUmuG7c18aE9KsCsbrjmzrpq9KoioK2hP2RsREXVtwf4qvPHEGKzcdAxb9p7HXz7Nwcxxsbg7NQpy\nlnOQG2NQQoS1Eof8oioUl9a0ebxO14iHJifYLA3I3FHosHGgzSXFhkgqS2jPpt3elGBXNlxzZl01\ne1UQERERkbtSKORIH9sfCVFB+HDLCXy+sxCnijSYP3UQ/H2Vrl4ekSDe2rVCrPygpKxG8PG9eVfw\n0of7sD6rAAajcAqE2HGb8/f1htLOkNHRMxWi5zYTKx+xtmm3NyW4PedwpNkT4pCWEonQADXkMiA0\nQI20lMgO1VW7siSFiIiIiEiqQdEhWDwvFUNiQnD0TAVeXXkA+UUaVy+LSBAzJawQKz8wmqy/rrK6\nXvTOuZTJG0F+SiyZl4otP50XvNuvVipQ32CATCaDodli7Llr395maPakBN88Rxkqq/UI8b9Z6uBs\ntpqNtocrS1KIiIiIiOwR2EOJZ2cNw9b9F/DVj+ew9N+5mHFHDKaNjoZcznIOch8MSlghVn4gl4kH\nJgDrUx78fL2hVMqhr7eezeDvq4Sv2stq4CB9bAw+3ZaP/SdKRc8txhmbdmtMJhNMpqb/djZH1lW7\nsiSFiIiIiMhecpkMU0dHIz4qCB9sPo6Nu88hv6gKC6YPRhB/dyU3wfINK8TKD/qE+9l8vbUpDxt3\nnxMNSABAcWkNMncUipZMnCqqsvr6Sq0OZVV1NtcIWJ8Q4gjm/guV1fVN67qRRZK5o9Dh5+oMri5J\nISIiIiJqjwGRQVg8NxXD48Jw8oIGr648gLxzFa5eFhEABiVEWetL8NLDI248bj26KHTnXN9gQE6+\ncHZDa3uOXkKtvhFA28BBmaYWVTX1Vl9rAvC3zw9jxcZjNvtLOIun9l9wRq8KIiIiIiJn8/Pxxu9m\nDsWvJg5Ara4R72YewZc/nHHZfoHIjOUbIsRKHMyPr92Wj5/yrrR5rdCd82s1ekvWgC26eiP+/V0B\n5k8bbHms+ThKWyqr67F591nU1tW7ZCqEWP+FSm3X7b/QmWUvRERERESOJJPJMGlUFOIiA7F8Ux6+\n3ncB+UVVePy+IQgNVLt6edRNMVNCAmslDipvBebeO1DynfNAPxVC/KWP4jlZpGmRUWAuhxDqaWCN\nOStB32BAqaa20zIUzP0XhMhkwLaDxZ0WlXXGtVv7nujs95mIiIiIyF4xvQLw6qOpSB0UgcKSa1i8\n6gByT9u+8UnkDMyU6CB77pyrvBUYkRAhOFFDiEart2QUSB0l2lqlVodPt+XjVJEGlVo9QgJuTsCw\nNs7TEcz9F4Su1WgCduaUQCGXOTWLo3lmibOvvTPPRURERETUUb5qLzx+3xAM6heM9Vmn8d6Xx5CW\nEokH7oqDtxd/f6XOw+82B2l959zaHfPZE+IwYWQfqJW2U/4D/ZSWvhRi5RAyAIE9vIXXpVRgb94V\nVGj1MOHm2NDOaDY5e0Icxif3hrWJQ87uLdE8s8TZ196Z5yIiIiIicgSZTIZxw/vg5YdT0CvUF1mH\nLuL/Ps1GqabW1UujboRBCQczGI1Yn1WARSv244UP9mPRiv1Yn1VgKVVQyOV4aFIClv3uDix6eARU\nIlHI5PhwS5BDrBwiJECNEVamQljTGc0mFXI5Jqf2hbVJoNYmlDhCZzba9NSmnkRERETUPURG+OGV\nR0bhjqG9cOFKNRavOogDJ6+6elnUTTAo4WBS75irvBXo3zsIdwzrJXicyIgeyEgb0OL5YuMoMybF\nt+ltMTElCvp64Q2xMwMCzfn5KqFSCn+bCU0ocRSxzBJHX3tnnouIiIiIyBlUSgXmTR2Ex6YNgskE\nLN90HJ98ewr1vMFGTsaeEg5k6475zHGxbfpNPDhxAGQyGXILylCh1SPIT4nkAU1Bhta9CMzNM3ML\nyqGp1iHYX43k+DBL34LWvS3CwvxwuKBUsDGmMwMCzX35wxno6oUbWgpNKHEUc2ZJZ1x7Z56LiIiI\niMiZxiT2QkyvACzfdBw/HL6EMyXX8MSMRPQO6+HqpZGHYlDCgWyNwcy/oEFIoBrhQT6Wzbg9jTKl\nPNfc2wIA1EovJMWGYmfupTbHcmZAALhRxvJdAX443PbcTWtTIH1sjEPPqW8wtHhfrDXadPS1d+a5\niIiIiIicrVdoDyx6eCQ+21GInTkleO2Tg5hzdwJuHyqc5U3UEQxKOJDYHXMTgL9tOAqgaUN++9Ce\neHDiAEs2RPNggi1SnmswGrFi4zEcPVMBAJDLmqZehPirMCIhXHBkqSNl7igUDIaY1TcYUFPbAF+V\ncINOe1ibfHH/Xf0BCGeW2KN1sEOIWBYLEREREVFX4+2lwJy7EzCobzBWbT2Jj78+iRPnNZgzOR5q\nJbeR5Dj8bnIgsTvmzenqDfg+uwQymfNGYpp7W5gZbzSbHDYgzKljOAHxMhYzR5Y1tL5Wcx8PAJKz\nUMyaByC8FDLJYz7tyXghIiIiIuoqUgZGoF9PfyzfdBz7jl/B2ctaPDljCPre4u/qpZGHYFDCwWZP\niIPRZMJPx65AZ6XJpFluQZmlz4TQ3Xh9gwFlmlpAJmtR8mGLWFDgaGEF9OMNDtkwW8sgECtjMXNU\nWYPUPh5SMktaByB81d4oLq2xPKd1sEOIPRkvRERERERdQXiQD154aAS+/OEMth0oxutrsvGriXG4\nK7kPZDKZq5dHXRyDEg6mkMshl8lsBiQAoLJaj0qtDjtzS1pshocNCIPJZMK+vCuWJpFCJR/WSJkG\n0ZGNs7VyidkT4tBoMKG+0YhgfyUqq+vbvFYuA8Yl93FYWYOjrlUo20KoDAew3rSUiIiIiMhTeSnk\nmD1hABL6BuPj/57A2u0FOHlBg0fvGQhfdcdLsqn7YlDCwaSULpiF+KuQdai4Re+FCq0eO7JL2jzX\nnpIPZ0+DsFYukV9UhVpdAyq1eqiUwhv2ccN7Y87dCR06f3OOuFZ7PjPAMYEdIiIiIqKuaHhcGJbM\nS8WHm4/jUH4Zzl+pxhMzEtG/d4Crl0ZdlPgtd7KblNIFs6S4MEsjSqlyC8qgF5gVrG8woFRTC32D\nwdLbQkhHyybENvDFpTWo0OphAiyZImqlAnIZEBqgRlpKJDImObafhSOu1Z7PDOCYTyIiIiLq3kIC\n1PhTRjKmjYlGxTUd3vw0G9sOFMFkMrl6adQFMVPCwcTu3JuZSzEmjIjErpy2WRFiKqv1Le7Si02e\n8PVRYu+RSw6dBmHvBr6H2gsvPjQC4cG+Tit36OjkCymfWXMc80lERERE3Z1CLscv7+yPhL5BWLHl\nBDJ3FOLkBQ3mTx0Ef1+lq5dHXQiDEg4mNoHj1sG3YOrofggP8oGXQob13xVAJgPsCSiG+Kta3KUX\nmzzx+1+NxD2pUQ6dBmHvBl5TrYfSW+HUTXxHJ1+IfWZREX6o1TVyzCcRERERkYAh0SFYMi8VK7Yc\nx9EzFViUqVGyAAAgAElEQVS86iAev28I4qOCXL006iIYlHAC86Y1J78Mmmo9gv1VGJHQcpTk+qyC\nFr0kpDKXKpRqauGj8hKdPKGrb3T4NAipY0/NOrPUoSPXKpZt0WgwccwnEREREZEVgT2U+MPs4fhm\n3wVs3H0Ob63PQfodMZg6OhpyOadzkDgGJTrA2khMM/N0nNZTcuxtrAgAKm85xgztCZPJhEUr9qNS\nq0eQnwqaGuuTJzRavVM+YKENvK/aq8X4TLOuUuoglm2hkINNLYmIiIiIRMhlMkwbE434qCB8sPk4\nvtp9DqeKqvCb6YPZj41EMSjRDmIjMRVyuWhJRUZavN19GXqG+GLRIynYuPtsi+NaC0gATRkKwQEq\nVF+ra8cVihPawHspZDfek/b1dXAXjs4sISIiIiLqTuKjgrBkXio+/u8JHDlTgVdXHsCC6UMwJCbE\n1UsjN8WgRDuszzqNnc0aVDYPOswcFytaUjFzXKxoXwaFHDAYWz52pbIWX+4qtGtSR3J8GNRKL1RL\nfoX9Wm/gO9LXgYiIiIiIPIOfjzeevj8J3x26iC92FuLdzMO4d3Q/pI+NsZSzE5nxO8IOBqMRa7ed\nwg+5whMzcgvKUaaptZoFoanW4VqNXnSMpbeX8EY+93S5aHZFkJ+yxehNqRkKzUeJ2sPa68yBCgYk\niIiIiIi6L5lMhrtHReHFOSMRGqjG1/suYOn6XFRqda5eGrkZZkq0ItYnInNHoWhzSk21DpDJrGZB\nNG/6KNSXIaFvEPblXRE89rWaeqs9JEID1Hjl0RTU6RslZyjYKkFxxOts9dwgIiIiIiLPFtMrAIvn\npmL1t6dw6FQpXl15APOnDsbwAWGuXhq5CQYlbrC12ZbSnDLYX43wIB+r0ymaN30U6ssAAPlFGsGA\nRkiAGklxoS3KRpof199Xadc8YFt9LzryuvYGPIiIiABg6dKlyM7ORmNjIx5//HEMHToUL7zwAhob\nG+Hl5YW3334b4eHhWLZsGX7++WeYTCakpaVhwYIFrl46EREJ8FV74ckZQ/BDv2CszzqNv395FHeP\nisL9d8XCS8H9QXfHoMQNjmhOaQ46iI2XbE3lrUCgn8oSmLAW0Bg+IBQmAGqlHLr6pqYTaqUCtw/t\n2eK4zbMThB5TeStEAyzmvhdCmQ1SX9fegAcREdH+/ftx+vRpZGZmQqPR4Be/+AVuvfVWzJo1C/fe\ney/WrVuHVatWIT09HT///DM+++wzGI1GTJ06Fenp6QgPFy6PJCIi15LJZLgruQ9i+wTiXxvzsP1g\nMQqKq/BEeiIignxcvTxyIQYlAOjqG61utvccvYz0sf1Fm1PKZcC45D6W4IDYeMnmhDIKhg0Iw8SR\nfW4ENPQI9ldhREI4jCYTdmS3zJLQ1Rsgk8mgkMsFjzU6qTfq6upx+EY/CnPGwvjkPjb7XghNoBAL\nzJhfF+inalfAg4iICABGjRqFpKQkAEBAQADq6urw6quvQqVqCrYHBwfj+PHj8Pf3h16vR319PQwG\nA+RyOXx8+EstEZG7i4rwwyuPpmDd9gLszbuCJasO4JEpA5E66BZXL41chLkyADRa65ttXb0B//6u\nQLQ55bjhvTHn7oQ2pQm2mj6aMwoqtHqY0JRRsCO7BAXF1yCTNT1HJgMMRhMOi2z09Q0GwWP9d885\nfJ9d0uKxrEMXkZV9ESEBwrOCm/e9aM0cmBF7nZTABRERkTUKhQK+vk2B8Q0bNuDOO++Er68vFAoF\nDAYD1q9fj+nTp6NXr16YMmUKxo8fj/Hjx+PBBx+En5+fi1dPRERSqJVemD9tMOZPHQSD0YTlm45j\nzbZ81NvZfJ88AzMlAAQHqBDsr0Rldb3g109eqIS+wWBXWYYt+gYDcvJLBb9WXFpj+XOFVi/YR8JM\nU61DmabWZr+L5o4WViApNlSwaWfzvhetmQMzYv0yxDJKxAIeREREzWVlZWHDhg1YuXIlAMBgMOD5\n55/HbbfdhtGjR6O4uBjfffcdsrKy0NjYiAcffBD33nsvQkNDRY8bHOwLLyuTrjoqPNzfKccl6fgZ\nuB4/A9frSp9B+gR/jBzSC0vXHsKu3BKcv1KN5+ekIOqWrnMNQrrSZ+AOGJRAU6RuYL8Q/GRl8kVl\ndb2lpEGsLEPqtAmD0YhPt+VbDYIIkcsAo6nt48H+akAms9nvojlNtQ5pKVFQKOR2B1hsBWakBC6I\niIjE7N69G8uXL8dHH30Ef/+mX+xeeOEF9OvXD7/97W8BAMeOHcOwYcMsJRsJCQkoKCjA6NGjRY+t\n0dQ6Zc3h4f4oK6t2yrFJGn4GrsfPwPW64meglgP/k5GMz3YUYlduCZ5ZtgsPTUrA7UN7QmZOH+9C\nuuJn0BnEAjUMStxw/139rQYl5DLAR3XzrTKXZZjZO20ic0ch9lo5lzVCAQmgaaMfHuRjNTtBSLC/\nGiEBakl9L1qT0i/DkRklRETUvVRXV2Pp0qVYvXo1goKCAACbN2+Gt7c3nn76acvz+vbti08++QRG\noxEGgwEFBQWIiopy1bKJiKgDlN4KPDw5AYP6BWP11pNY+c1JnLxQiYfuTmixDyPP5NRPuKCgAE89\n9RQeffRRPPTQQ7h8+TKef/55GAwGhIeH4+2334ZSqcTmzZvxySefQC6XY9asWXjggQecuSxB9Q1G\nq18zmoA6faPVkZv2TJuQMlpUSGiACkmxoTh6prLNRl8hl1vNThCSFBdqCSS0DrBIJfY6qY0+iYiI\nWvvmm2+g0WjwzDPPWB67dOkSAgICMGfOHABAbGwsFi9ejNtvvx0ZGRkAgPvvvx+RkZEuWTMRETnG\nqIERiO7pj+WbjmPf8as4e0mLJ2Ykol9PlkN4MqcFJWpra/G///u/LdIo//73vyMjIwP33HMP3n33\nXWzYsAHp6en45z//iQ0bNsDb2xv3338/Jk2aZLk70lkC/VQItZJtEBqgstoLwd7xmlJGiwpJig3F\nnMkDrZaINM9OqNTqYCWxAgCQNjJScqlJR7Q34EFERN3X7NmzMXv2bEnPffrpp1tkTxARUdcXHuSD\nFx4agf/8eBbf/lyEN9YewgPj45A2MrJLlnOQbU6bvqFUKrFixQpERERYHvv5558xceJEAMD48eOx\nb98+HDlyBEOHDoW/vz/UajVGjBiBnJwcZy3LKrHpGsnx4VY37vZOmxCbYCHm6JkKrM8qgJdCJjjR\nQyGXY+a4WPz+gSS89PAIhFo5R4i/ClnZF7FoxX688MF+LFqxH+uzCmAwWs8UISIi92YymVBfWg7t\n/hyUrvsKxf/3D1QfOurqZREREbWLl0KOWePj8OysYfBReeHfWafxj/8cQ01dg6uXRk7gtEwJLy8v\neHm1PHxdXR2UyqYSiNDQUJSVlaG8vBwhISGW54SEhKCszP7yBkdoTy8Ee6dNiDWCFCNWEiLU08JX\n7S24ph4+3i2meZiPazAYMTm1L0stiIjcmKG2DrqzRdCduXDzv2cuQH+uCI3amhbPbay6Bv+UJBet\nlIiIqOOG9g/F4rmpWLHlOHJPl+PCqgP4zfQhiI/q3Kx6ci6XdQ0xmYQLDKw93pwzxnmZu4H+/lcj\noatvhEarR3CACmql7bfo9mF9sHn3WYHHeyOyd1Cb4/12VjKUSi98u/887E1QOHqmAo/P9IFa6WU5\n7sY9Z9v0tKjQ6tG/dwCqa+tRXqVDWJAaowb3xKGTVwWP+8ORS9h1+BLCg3xwW2IvzJs+BArFzUQa\ne98TZ/PkMTueem28rq7HU6/N3a/LZDCg7sIl1BScxfWC86gpOIfrBedw/fR56C62bZIsV3rDN64f\nesTHwC8+Bj0GRKPHgGgEpSZB7u3tgisgIiJynGB/Ff74YDK+3nceG/ecw9L1uZgxNgZTb+sHuZzl\nHJ6gU3eXvr6+0Ol0UKvVuHr1KiIiIhAREYHy8nLLc0pLSzF8+HDR4zh6nJfQ2BYvANXX6iBlmMv0\n0X1RW1ffJsPi3lsj8f/+nS04lePOoT3xzU/n7V5reVUdCs6WY2duCXILylCh1cPav8XLFdctAQSj\n0YQqrQ5lmjrB55qDI6WaOmzefRa1dfXISIu3e7JIZ/DkMTueem28rq7HU6/NXa7LZDKhsfIadGfO\nt8h40J0tgu58MUz1bdNTlb1uQcAdqVDH9oM6tm/Tf/v3hSqyFyJ6BrW4LgOAiiodAJ3D1+7uQR0i\nIvI8crkM02+PQULfYHyw+Ti++vEsTl3QYMH0wQiy0vuPuo5ODUqMGTMG27Ztw4wZM7B9+3aMHTsW\nw4YNw6JFi6DVaqFQKJCTk4MXX3yxM5fVYdamTazPKrA6lWPmuFirjTXFBPurkXWoGDtzL1keszYu\ntE5vQJ3eYDn3T3lXoFYqoKs32DyPuUnnlz+ckTxZhIiIWjLq9NCdK4bu7M2gQ92NAIShStvm+Qr/\nHvAdPOBGwKGfJfCg7t8XCl8fF1wBERGR+4iPCsKSealY+fVJHC4sx6srD2DBtMFI7B/q6qVRBzgt\nKJGXl4e33noLJSUl8PLywrZt2/DOO+/gf/7nf5CZmYnevXsjPT0d3t7eeO655zB//nzIZDIsXLgQ\n/v5d8y5M82kTUqZytKe3RGL/EOSeLrf9xA7SVOtQVlVn12QRIqLuyGQ0ov7S1RbZDnU3/lt/8TLQ\nqixR5qWAql8k/FOH3ww8xPaFT2w/eIWFsLM4ERGRCD8fb/xu5lBkHbqIz3cW4t3Pj+CeW/viF3f2\nh5fCNZnc1DFOC0okJiZi7dq1bR5ftWpVm8emTJmCKVOmOGsp7daRsZlSpnK0bqwZ0EOJqpp6q8fs\nFeKLI6fLUXXd+nNs0dcbcHtiT5wqqkKlVgeZTDjTIthfDZhMNq+BIz+JqLtorNLeKLU43yLwoD9b\nBKOu7c9K71vC4H9b8o2gQ1Pmg09sPyijekPu7frePERERF2VTCbDpFFRGBAViOWbjmPrz0XIL67C\nE/cNQVgQMwu7Gv5WJMARfRSkTOVoXfbho/LCa6sPWi3puFwpvZeGUiFDvaFttCEkQI2HJicAaAqc\nbDtY3GIah1m/nn7wUXnZNVnEmo4Ed4iIOpNRXw99UQl0hRegO3vBEnjQnbmAxgpNm+fLfX2gjotu\nGXiI6wd1TBQU/n7OXazJCNRWQ1Zdifortf+fvTcPj6Q8z73vt/bqTWpJLY00I2lmNAyzwLBjHMCA\ngyE24DWGfPESjBdyjJecy/5sIMkHTk6c69jHPtdJrpzPjgnYSWwfPjuJTbzEMcF28MJiDNgMDLMx\nmn1Go7XX6lre74+q6q7qqm61ZiS1Zub5XZemu7pL3W+rR8tzv/dzPxCPHAbLT4EVpsEKM7A3XwH7\n/GuXdg0EQRAE0UHWrsrgvtsvwz/84GU88eIx3PfQ03jP6zfh0k39nV4asQBIlIjh4cd2n3KOQqvR\nnxdt7IMqi6Fi3XccbBvrDeVFnAwCQ6wgEXxuAOjPJvD7158DUWB4ducJTOUrEBiD7XD8aucJPLfr\nBBJa/H+R4OM0YyWGZBIEQXDOYR6d8FotwsKDsf8wImORBAHqyBCSF26BNjYKff0ItLG10NaPQF6V\nW9p2C8t0RYb8FFhhCiw/BdSOp8EcNyOogvovdC5I4Klu8GR26dZFEARBECsEXZXw/lu2YPPaLL76\nw5343996AddetBq/99oNUGhD9LSARIkG2smCaHe3v7E9w5/K8bvXrsfXHt0ZKtbPHe6Gooj4zZ7J\nU34Nce0YvRn3uf01+QTdGn/20NMhN4bDgULZQkqXoMpS6DU0Pk4ciyHuEARBnCx2voDy3v2o7Nlf\nEyB2jB9EYecrcErRSURSbxapS7dB98MlPfeDOroGgrJEozU5B4xSSHRg+en69XL8pBCu6ODZVXDS\nPeCpLFJDQ5hDAjzVAyTSACPhlyAIgjh7YIzh6m1DGBvqwhe+/QJ+/Owh7D44iz9801YM9SU7vTxi\nHkiUaKCdLIh2cxSCBf/EdAlgDLluHd/8cXSixc+3Hzup9aqygKQmYTpfbZ4PkVLx/9x+KdIJpenj\nVE0bx5qMWi1VLNx3+2WwHd52C8ZiijsEQRDNcEzLbbfYWxce/MBJ83hU5BU0Fao3zUIPtFxo60cg\ndWeWaJE2UJytOx6CAkRhGsyM/s7hjAGJLjir1oOnesDTWfB0T+06lHC/rJJLg6+AUacEQRAE0UmG\n+pL4k3dfiocf240fPXsIf/aVp/GO123EVecPUpD0CoZEiQbayYIIMl9egu04+Kef7Km5IrJpBSVj\n/pGc7XL1BUN42zVj2HtoFv/j/zwXe85s0UDZsFqKEgePF5qOFnU4cHy6jM1re9pe12KKOwRBnN1w\nzmFOTNaFhz1e2OSecRj7D4FbDT9TGYOyZhCZa64ICA9uy8XqC8ZwYrK4+Is0jbrI0CA6oDADxp3I\np3BRBk9n4aR6XMHBEx2Q7gFPdgEi/YomCIIgiIWiyCLedeO52DyaxUPf34GHvrcDL41P4103nAtd\npd+tKxF6VxpoJwsCaD8vobGFYSp/8pMzAEBTBBimg550+PnWr+46pVDKNf0pCE2cFgJz718ICxV3\nCIIg7FI54HjYHxixOQ47HxUSxO4MEhdsaRAeRqGNroGga7HPwU42z4ZzoFwIiA0NrRaVeKGDa0nw\nvtV14SGVrQkQ0FIA7doQBEEQxJJw6aZ+jK5K44uPbMcT249h7+E5/Jc3nYfRVelOL41ogESJGJpl\nQQRzFNrJS2jVwtAuAgM4gJ60ioQmo1AyUKk64A1z79sVU5qRTihYnUvhwPFC5L7VuVRLl0Ucp7oe\ngiDOTLhtwzh4pEF4cC+rR6JtbEyRoa0dhnZVg/CwfhRyb/fiLs62wIoz4TDJfKDNwjajr4cJQKob\nTnYw4HbI1i4hL6MAyznAbcA2AccCJJ3cFgRBEMRZTa5bx93vuBj/8p978f0n9+Mv/uGXePt1G3D9\nJWuonWMFQX+txNA4qrOxNaPdvIRWLQztcs2FQ7jx8hH84Kn9oakcU/lqRARpFFP6unVsG+uNDaWM\nazv543dfjL/4+1/h0ITbyiEwV5D443dffFJrb0fcIQjizMScnHFbLBqdD/sOgFejxb0yOIDMVZdD\nGxsJjNccgbpmEExcPBGTV0pgk4fCrRZ+m0VpFoxH7WJcVsEzvW6oZC3XwWu1SGYAYZlEVs5dscE2\nAccMXU7N2kC14p7jo3UBmdXLszaCIAiCWKFIooC3X7cBm0azeOA7L+Lrj+7CS/umccdNm5HSlyjI\nmlgQJEq0QJXF2NyDdvMSWrUwaIoIzjkMM9pnDISnZVg2x/O7T8SeFxRBGsWUsbW9yM+GE+ZbtZ0o\nkoRP3XE58qUqDh4vYE3/wh0SQeYTdwiCOL1xKgYqrxyoh0vu3V8br2lPz0bOF9NJJLac4wZLBlsu\n1o9ATOgxz3AScAco5eMDJfNTyFfLiPupxhMZ8NyIN80i7HiAmlieNgvuhAWHuOtNcEQREBVAkN1L\nUQZUsqcSBEEQhM/563vxqTsux5f+9UU8t/sE7nvwKdz5xq3YOLzIzktiwZAocRK0m5fQqoXhqm2D\nePPV6/C1H+7CjvFpzBQMZNMato314PpLh9GT0aDKImzHwT/+4OWmWRRxoZG+mKIpEhqz2Fu1nQTF\ng4WEWs5HM3GHIIiVD3ccVA8fC+Q71IWH6sEj4Z15AEwSoY6uQfrSbdDG1nrigzvpQurrWRyrpGWG\nAiURHKFZmAZzomHCXBDBU1nIq9ehomTcMMlgm4W0DDsljt1acHCs5p8rSF47hux+CHLoet9ANyZo\n+gZBEARBtKQ7peJjt12I7z4xjm89vhf//Wu/wpuvWoebXr0WgkDtHJ2CRImTYCF5Ca1aGERBwPtu\n3tJygsfDj+3Gz1442nQtCwmNbNV28tNfH5k3tJMgiDMXa2bOa7FwWy72HzyE2Zf2wti7H04lKsDK\nA31IX3FRwPEwCn1sFMrwEAT5FH+1cA4YpVinA8tPgZXji2+u6ODZVXACYZK+6wGJNMAEdOfSKC5F\n8c65JzpUo6KDfxkzgaOGKANyIiA4KIHrEsDoZzFBEARBLAaCwHDLb63FucPd+OIj2/Evj7+CHftn\n8P5btqCbwvg7AokSJ0m7eQmtWhiCYkSck6BkWPjprw9Hbg+ykNDIVm0nlaqNStXdXYwL7SQI4vTH\nMaow9h9CZbc70aIcyHqwJqcj5wsJHdqGtWHhYcMotHXDENMLm8gTXYwNFOcCUywaBAgz+rOKMwYk\nuuCsWh+aYlFrs1AWqQUkDs5buxxsE24scQxMiDgbQtcFiaZwEARBEMQys3G4G5+643I8+N2Xau0c\n77t5C85f39vppZ11kChxkiw0LyHYwtAs1+HNV69HoVStPdbXf7gTlWrznbXBngR+99r1ba+5VdtJ\nHMG8inZp5fogCGLp4ZzDPDpRG6UZFB6M/YcBp+FniiBAHRlC8sIt0MZGoa8fgTa2Fqsv24I5WT+1\ndgvTaAiTrI/QRGEGLMY5wEUZPJ2tj9D0AyXTWfBk99JNk3CcusshTnBo1VrBREBSm7gcZFeUINGB\nIAiCIFYcKV3Gh992Ph595iC+8aPd+J//3/N4/atG8JbXrIckkktxuSBR4iSZz+XQima5Dj/99WEY\nVQc9GRXbxnrx0v7ozmWQI1MlfPPHe9t2M7RqO4kjLq+iGa0CNKkFhCAWHztfQHnv/to4zWDYpFMq\nR86XerNIXboNenCs5tgo1NE1EJRonoKWSyM/X5sD50C5EHA4NLRaVIrxn6YlwftWe8JDNjzNQk8t\nfgEfGJVpzJlAaS4qOvBoDkUNobG1Qo6KDh2Ac8ByAMNisGc4js9JMCwGw2aoWgyr0hZyqRaviyAI\ngiAIMMbwukuHsXFNN/7fb7+A7z+5Hy8fmMGdb9yKXPcSujCJGiRKLJBTLb5b5Tr4rojJOSM0/rMV\nC3Uz+O0lP/31kVq7RjMWklfRKkCTWkAI4uRwTMttt9gbFR7MY9GJPExTa9Ms9EDLhbZ+BFJ35uQW\nYVtgxZlwmGTQ9WBHJ0JwJgCpbjjZwbDo4IdKyovcr1kblVlt3mLhtVbMRbRe5okMWkBwUOrXO9Ra\n4XCg6gkMhuV+uMdC/dhmcLi/Ng4g/HVNKg6JEgRBEATRJqOr0rjv9svwD//+Mp7Yfgz3P/Q03vP6\nTbh0U3+nl3bGQ6LEAjnV4rtVrkMjAnP/MG3FQtwMgNt28rZrxvDszol5RYl28ypaCS0n0wJCEGcT\nnHOYE5N14WFPPWzSGD8IbjV8nzIGZc0gMtdcERAe3JYLZagf7GScSdVyJEyyaMxBmZoASrNgPPqD\niMsqeKbXHaEZGqPZAyQzgLCI3/P+qMy48Mh5RmXWWis8kSGZSaFYdupuByYuq+gQdDdUAwKD724w\nPOHBtFutiUMWORKyA1XiUCWObEaBZVS8YweKyEE/dgmCIAhiYeiqhPffvAVbRnvwjz98Gf/7Wy/g\n2otW4/deuwEK/WJdMkiUWAALLb7j8hUWkuswnyABLMzN4DOfMNKdUnDppv5IaGczpuYqTV/PQkUT\ngjhTsUvlgOMh7Hyw89E2B7E7g8QFWxqEh1Foo2sg6NrCnpw7QCkfbrEIihDVaLuHDQB6Gjw34goP\ntfGZ3jQLNbE4xTznddHBMV23Q6Po0LK1QgJkPaatwnM7NIg0ib4lmr6BqLuhfl2oORsMK+huiHk5\nzBUZ6oKDA1XkUDzxwb/eOLUsl1MxMdEi94IgCIIgiLZgjOGqbYNYP5TBF779An787CHsPjiDP3zT\neRjqS3Z6eWckJEosgFbFfLD4LhkmvvbDXdgxPoXpfDXU4qHKIi44pw+PPXNo3ufrSau44Jw+/Hr3\nJCbnKrHnXLSxDwBwfLrUdrhkK2Ekm1Jx/x2XIZ1Q5n0cn0d/eaDpfScjmhDE6Qq3bRgHj4SFBy/z\noXrkWOR8psjQ1g5Duyqc86CtH4Xc272wJ7fMushQmAZCGQ8zYDFBjVwQwVNZOLnhepikJzr0rh3G\niZn2XF0t8VsrWk2uaDoq02utELTmkyuWweXguxuqAYEh5Gzwjl13Q/P1BN0Niicw+E4HRXRvlygT\nkyAIgiBWBEN9SfzJuy/Fw4/txo+ePYQ/+8rTeMf1G3HVtsFTCwInIpAosQBaFvNpDamEgq89ujOS\n19DY4tHuf+GLz83h96/fCOM6G1NzFTz6ywP49Z6p2gjSC8/phcM5/uRLT9TyLbaN9eL6S4fRk2m+\nk9oq8PKSTbkFCRKGaePXeyab3r9tQy+1bhBnHObkjNtiMXEcE8+9XBcg9h0Ar0ZbCZTBAWSuuhza\nWFB4GIG6ZhBMbPP7g3PAKEWmWNQcD6W5+E9TdPDsAJwGpwNP9wCJdNOQRiYrANoQJbgD2EHRISbX\noRlMaB4eKShuC8gS/9J3OGoOhmpAYDAsIeR6mM/doIgcCc1zN4hO3dnQwt1AEARBEMTKRpFFvOvG\nc7F5NIuHvr8DD31/B14an8a7bjwXukql9GJBX8kF0KqYv2hjH771+N6Wky2e3XkCb7hiFD/7zdF5\nn0tTRLz56vW15x3sTeLW156D6y4qAYwh163jn36yB//RkG/xo2cP40fPHkZvRsWVF6zGLa8eiQ3g\n9Fsznt15oiZyXLSxr+2WDZ/5WkGuv2TNgh6PIFYKTsVA5ZUDoXBJf7ymPT0bOV9MJ5HYco4bLBls\nuVg/AjHRZnKzYwPFueg0C194MKPfa5wxINEFZ2BdKEyyJjwop5ga7ditXQ6tRmUKEiDpzV0Oi5k7\n0QDngO0gEBQpoGozHCg4mMmrNadDdT53g+C6G4LtE3Wnw8p0NzgOR8kAkhpoJ4cgCIIgFoFLN/Vj\n7ao0vvjIdjzx4jHsPTKHP3zTVqxddZJB4kQIEiUWSLNi/s1Xr8N9f/dUy8+dzlfwjz94ed6ASQCo\nmjYKpSoSqhQ78WPbhj48vys+3wJwBYpHHt+LUrkaG8ApCgJ+//qNeNs1Y5Hci4XQyj3Sm9FaOjYI\nog/cY2sAACAASURBVNNwx0H18HHX9dAgPFQPHnEr2wBMEqGOrkH60m3QxtYid+G5MPv7oY+NQurr\naa8ANI1QoGS95WIKKMyAxbQycFF22yzSAZeDLzwkuwHxJH+UB0ZlhgWHKqbmHMCotGitQItRmYq7\npiUalem7G8LOBoZqoLWitbtBAmOuwNDluRsU0ctvCDgb1BXkbnAcjkKZo1DiyDd8FEochlXF5KyF\nQsk9j3Pgym0y3nottc8RBEEQxGLQ163jk++4GP/y+F58/4n9+Iu/fwa3XrcB11+6hjYBThESJRZI\ns2L++HRp3qka3SkVrxyJ7rDGEcxiiJv48aNfzZ9JAcw//UKVxVMKoWzlHkloEiSRvkGJzmPN5r18\nh30h4cHYux9OJfp9Kw/0IX3FRaGMB31sFMrwEAS5/mMzl0tjojE0kXOgUogVHVh+CqwSDbUEAK4l\nwXtXw0lno9Ms9NTJbcVz3trlEBiV2YgtCPFtFTWXw9KMyvQnU9REhuBITLt+OZ+7QZedGGcDx6qc\njlK+sCLcDbbDUSxzzBU9saFcFxkaRYdimTd5p+poCpBKMPR1C0jrDOePUescQRAEQSwmkijg7ddu\nwOaRLL70nRfx9f/YhZfGp3HHTZuR0uVOL++0hUSJk6SxmG9nqsam0Sx+/sL8rRsAsGnEDblrNfFj\nKUaGngy3vXYDXt4/gwPHC6HbDxwv4OHHdrc1KpUgThWnasIYP4jKbneqRTkQNmlNTkfOFxI6tA1r\nw8LDhlFo64YhplOtn8y2wIqzsAoHIRw6FBAgvKwHO5qjwJkApLrhZAfBA4GSfqsF5JPY0Y6Myqx6\n+Q7+BIsWrRX+qMzYTAcFff1dOHGi0PzzF7rUQHZD3AhMP9PBbpHdwOAKDF2aEwiKDDod5nc3dCcZ\nzNKivawItu06FRpFheixg1KlmSRUR1OAdIKhPysgnRCQSjCkvY/g9XUjGczOLN77RRAEQRBEc85b\n34tP3XE5vvSvL+K53Sdw34NP4c43bsXG4QUGlRMASJRYNFo5BjRFxFXbBvGGK0bwxPajLYUETREB\ncPzshaPYsX8am0ayTYWOpRoZulAsm6NUiQ+zm8+pQRALgXMO8+hEbZxmUHgw9h8GnIZWA0GAOjKE\n5IVboI2NQl8/Am1sLbT1I5BX5Vpb7arlcJhk4DpKs2CcowQgqIlzWQXP9HojNHtCGQ9Idi0sQyHY\nWtHM7dByVKbXWtHM7TBPa8VCbIi+u6EaEBiCzoZ23A2SwKHJ0faJutPBgdwhd4NlB5wMxYCwEHE2\nuELDfOiqKzSs6mVIJYS6yKAzZJJ1sSGlM8hSey9YkcmVRhAEQRDLSXdKxcduuxDffWIc3378Ffz3\nr/0Kb7pqHW5/4/mdXtppB4kSi0g0b0LFppEs/q/XbURClXB8utRSSLj4nD78ateJ2vHknIGfvXAU\nmiKgUo3v61ZlAYyxpjkVF23sW3JBoN1RqQTRLna+gPLe/bVxmsGwSadUjpwv9WaRunQbtPUj0Mfq\nQZPq6BoIShMrHXfCoZLBVov8FFg1+jwAwPU0eG4ETqoHiVWrUBCSNQECaqL9qtkflRkRHar123iz\nHxjeqExRC0yrWPxRmSF3Q2QEplA7bsfdkNGcwAhMJ+RsUEQOcWniJ5piWfHtEoUSx1yJo1ByareV\n2xhCktCAtM4w2OuJDEmGtM6izgadQWpTaCAIgiAIYmUjCAy3/NZanDvcjb/91+341uOvYO+RPP7g\nxnORTVOuU7uQKLGIzBce2ZVS0ds0FFLFvqPxI/1a7S4apitW/NZ5q6AqIn69e7IWwHnlBUO45dUj\np/Sa2mG+UalL7dQgTk8c04Kx/1B9nGZAeDCPnYiczzS1Ns1C9ydbeK4HqbtJ8rFlgs0cr4kNCGY7\nFGbAYtobuCC6oZK54XqYZK3VohuQ6iNz1Vwac42ZErUHclq7HOYdlam2cDmc+qhMy0Fs+4Sf4WAd\ncFCuJjC/u4FDFe3YEZjqMrsbTCu+XSLYMlGuljGTt9sWGjJJAatz8S0T/kdSZ5SfQxAEQRBnMRuH\nu3H/ey7HQ997Cc/uOoH7Ds3ivTdtxgUb+jq9tNMCEiWWgGbhka1aPDaNNM+bqJo2fuu8VdgxPo2p\nfPxf0i/vn8F/e/+rcOt1G2qCyJqh7mgI3xIw36hUat04e+Gcw5yYxOSOHTj+zEue88ENmzTGD4Jb\nDQ4fxqCsGUTmmisCwsMotLG1UIb6wRrH23IOGCWwEwejuQ6FKbBSvNDHFR08OwCnUXRI9wB6GogZ\noxvBsWFVioCRj0yucEdltmqtWLpRmUF3QzTDoT6dwnZauxt0BSF3gyIFnQ7L527whQa/bSJfDrdL\n1J0NHJVq68diAFJJAV0pAWv6686FOGdDSmcQTwOhwbQc5As28qUixvfnkS9YyBdsFEoWLtnWhdE1\npzgSliAIgiCItkjpMj701vPx9M4TeOCR7fhf3/w1brhsGG+7ZgyytMyW0NMMEiWWmeYjRddjx/7p\npm6Dd914LiZmyrjv756KDUYLtkl0olWi2evybyfObOxSOeB4CDsf7Hx02oTYnUHigi0NwsMotNE1\nEPSGMbKO7bZZHHslPMXCb7Uwo98zHAxIZuAMrAuFSdamWajzFGp+a0UrlwN3MB01dMBtrZDc4EpR\nWdTWCtufTGE3mU7hCRF8PneDxKGIdoyzgUMVHcgi0N+fxsRE/KSQU8Uwoy0TvsjQeJvRwlACuEJD\nUmfIpt0QyEwipmUi4GhYNZBZFrF2oXDOYVRdgWGuYHnigisw1K4XLczlvduK7m3lSvORrYeOVPDh\n965dvhdBEARBEGc5jDHcdNV6rOrW8IVvb8e/P30ALx+YwR++aSsGqJ29KSRKLDOtWjzmcxvkuvUV\n2yYxX+sKcfrDbRvGwSNh4cHLfKgeORY5nykytLXD0K4aRc95G+AMDtamXMi9DcnEpuGKDBN7Q7kO\nKHhtFjxaeHFRdtssgmGS/vVktysMNH0xJz8qE6w+KlNLJtzd+VMclck5YNpoGhJpWAKqNoM1j7tB\nkTjSqhMagVmbTuEdL5W7wag2OBmKnshQjrZTVOcTGhiQ0hl6u2KmTeieq8EXGjQGodW4jQ7AOUep\nbEcEhLmAyOALDwXv/rm8BdNqI70YgKoISKdErOpXkU5KyKQl5Pp0SKKDTEpCOiUhnRKxZeM8U2QI\ngiAIglgSRgbSuO/2y/DVH+7ET39zBPc/9DTefcO5ePV5qzq9tBUJiRIdIq7FYz63wenQJtGsdYU4\nfTAnZ+r5DkEBYt8B8JhqUhkcQOaqy6GNBRwP60egrhkEE93/k319KZw4cMQVG2b3gR1saLWoxI8y\n5FoSvHc1nHRjtkMPoKeaF/+OA1iVqNBQu2wxKlPwR2UqrsDQ6HYItFakc2lU5tl1tx00hEQKDeMw\n3evzuRsUkSOt2qH2CbXB3bCY2Q2cc1Sq8W6GuBGX1RZfUsAdYZxKMPR1CSGRIc7ZsJKEBtvmKBQD\ngkLRQj5veUKDJzwU666GuYKFQtGKDIJpRkIXkU6JGB3W64JCUkQ65YoN6aQrMKRrYoMEVYkqS7lc\nekU6QAiCIAjibEVVRNxx02ZsWZvF3//gZXzpOy/ixX1TeMcNG6EpVIYHoa/GCqIdtwG1SRCLgVMx\nUNl3ICQ8+OM17enZyPliOonElnOgrR8NCQ/a+hGICa8VwrbAirNemOQhsGd/UxMe8oUZqFa04Z8z\nAUh2wRkcC4gO2fo0CznG/eOPyvRFhziXQzujMuPaKtoYlRlcRsXkyBvRkEjX6eDe3q67ITwC0wk4\nHRbP3eAKDWgQFZzoBIoyR6FcmNfRIAiuoyGXFWLbJerXBSQ0QOjEPM8AVdPBxKSBfQdK0TaJoh0Q\nGyzMeY6GYqnF/6UAAgNSnoAwNKAGRAQxIDb4QoMrMqSSEk3iIAiCIIgznCu2rsL6oQy+8O3t+NkL\nR7H78Bz+y5u2YmQg3emlrRhIlFiBtHIbUJsE0S7ccVA9fNwNlmwQHqoHj0TGTTJJhDq6BulLt7lT\nLcZGoY25ky6kvh4wxoBqJeBwOAb2/I5axgNKs2AxIyy5pEDI9sHUuwNOB9f5gGRXNNSxNiqzClTK\n8S0WzVorQqMylajg0GZrhe2gZUikL0JwcADx+RSi4IoKbjtFeASm73RQRH7K7gZfaMi3aJkIXm/M\nFo2u23U0DOVk6IrTJAzSFSH0DgkNnHNUKk7drRDKYKgLCnVXg3tcMdqzL0gSQzopoa9HxroR3XMr\nhB0LwTaJdFJCMiGuGHcHQRAEQRAri/5sAve+6xL800/24AdPHcB/+/tf4u3XbcD1l6xx/8Y+yyFR\n4jSF2iQIH2s27zke9oWEB2PvfjiVaP6IPNCH9BUX1fIdtLFR6GOjUIaHIEgCUMrXwyTzU2A7dtev\nV8uxa+B6Gjw3Asd3OgRaLaAmkOsPhAv6ozJtEzDm4lssmsH81opmLofWPQy17AZLiDobAqMxW7kb\nAFdsSKkOMkkRsE0vKNIJOB1Ozd3AOUfZQFMnQ+OxPU+tLQpAOsEw2CtERloG3QzpBIOuuiFNy9UO\n4DgcxZIdG+KYj8lg8O+32sxf0FQB6ZSEoVWue6GvV4Mqo+ZWiAgMKQmaKtAfCARBEARBLCqSKOC2\n156DzaM9+LvvvoivP7oLL+2bxh03bUZKlzu9vI5CogRBnAY4VRPG+EFUdrtTLcqBrAdrcjpyvpDQ\noW1YGxYeNoxCWzcMMaF6YZLT9TDJfT8B+40XKhmTt8AF0Q2V7FtTD5OstVpkAUnxTuSe6OCNxbQr\nQCGPWeMoUCq30VohAbIeEByUsPjQorXCdhDIbfCDIoVQboMxT3ZD0N0QNwLTv/TrVbdwn2cOpf81\n5BylCjxBwamNsYyOuXSvzyc0SKIrNKzONQuDrLdUaAqWpci2rGD+Ql1AmAtkMOQLYcGhULTgtKcv\nIJlwWyFyvXooYyEug8EXGmQ5/H/mdMteMC0HpZKNUtlGqeygWLJQLNsoercVSzZKJRsOFzA5VUGx\n7B6XKw5ufl0Ob/jt/k6/BIIgCIIgAmwb68Wn7rgcX/rXF/Hc7hO478Gn8IFbtuDckWynl9YxSJQg\niBUC5xyVQ8cw9/SLqOzZFxIejP2HEUnOEwSoI0NIXrgF2nq3zUIbWwtt3TDknhSEwBQLVpgGO/Jz\nsF1TYKW5+OdXdPDsAJxUNiw6pHsAPeMGCMSNyixPRkZlNuIaLLzWCkGLOhxajMrkHDAdoFqNtk/U\nnQ7CvO4GxXM3xI3A9KdTLHSEtOO4+QuxuQyNzoYynzf8UJbqQkMzJ4N/21ILDYZh48RUNSQgzIVa\nJKKuhlK5vfYIQUBNRFg9qAacCg2hjoEMhlRSgiieXu4Fx+GoGE5IQAiJCWUbxZJVExtKZccTHCyU\nSg6KZQvVapuKTQBNFZDQqZ2EIAiCIFYq3SkVH7vtQnz/yXH8y3++gs98/Vnc8ltrccuVayEKSzQq\nbQVDogRBLDN2oei2Wez2QybrYZNOKdoeIfVmkbp0W0B4GIW2bg3UXAaikQ9PsZh5Cuw//w3MjLZt\ncDAgmYEzsC6U61CbZqHqnsvBApxqXWiwi8DsTButFUKM0ODmOvT2ZzE5VY6IDg6HKypUgyMwo9Mp\nOG/hbmCuuJBSnZrAEB6JubDsBsfhKFaiAsNco+jghUHOJzQokpvRMNzfKDQIkWBIVV58ocEdT+nU\nMxYaRlPmm7ga2i2GZYkhk5bQ36siHQhxrLdFhCdHZFIiErp4WrRHVE3XpVAs2TUHQrEcdigEbw/d\n5n3ExKy0RBSBpC4hkRDR060jkRCR0AUkExKSuohkwv36+ZeJhHt9eHUGlUoFCU2k8EyCIAiCOA0Q\nBIabXr0W5w5n8cVHXsAjP9uHHftn8IFbtqAno3V6ecsKiRIEsQQ4poXqgcOu26FBeDCPnYiczzQV\n2voRdG1eD2HNaneyxehq6P1pyELVa7dwxQfknwV7+kdgMY4ELspum0UwTNK/nsq6okDctIriUSA/\n36hMCZD05i6HQGAl54Dl+IKDgPyUhMlppcHpIMBsx92gOLEjMH2nQzvuhrqjwQ+DjG+Z8MWG+QpJ\nVXaFhrE1MjQ5GAYpIJ1koXBIVVm8AtF2OIrFeohjMIOhcTRlfaqEBbu9ARLQNTd/YXhQR2+vCk2B\n2w7RMJoymMGgKiszf8F2OMoBAcEXDUSpiKNHizXRoFFw8B0MpZINs83ciiC6JiCZENGblTGyWgsJ\nCMlEVFRIJiRXdPCuKwo7qa9nLqdjYmKeuawEQRAEQaw4Nqzpwv13XI4vf38Hnnl5Avc9+BTuuGkz\nLjon1+mlLRskShDEScI5h3Viqi487NlfC5s0xg+CN445YAzKmkFkrrnCdTysH4E23A+9PwM1ySAU\nZ6CbeRgnjoPlt4O9/CTwcszzqknw3tVwAqMzeboHPNkNaAlvcoXZ4HaYA6YmY1srajQdlakAolTL\nc/DdDVWLwTAZjLLrbqja4TwHJ+Ru4ACU2pHIXCdDMuBuCDobVIlDFjlauc9th6NYbt4uEbytWGlP\naEgnGHq7hNh2ieB1VXYXdir5BKblxLoV5gJiQmiShDeesp2dd8bc/IV0SsJATo2KCb7AUBMb3GM5\noPB0MnuBcw6j6kSEglaXjbeVK+21kgSRJeYKB7qIXK8SFhOC7gT/euD2ZEKEpokQqWWCIAiCIIgF\nktRkfPDN5+Enzx3G1/9jF/76n36D375kDW69bgyydOZPWiRRgiDmwS6Va9kO9UtXiLDzxcj5YncG\niQu2uMLD2jXQV/dBG8hA75YhVgsB18NOsKMvAEfrn2sCYEwAkl1wBscaAiV7wBMptyG/cUSmYwLF\nw0CxScXKhPhpFTWXgwQOVnc32AKqvuAQzHBo092QVMIjMPuyKoxSqXbczN1g265TYWIupmUi4Gwo\nlFxBYr76XFNcoaE/K0RbJnRvxKUnNsgnaXn3C+joaMqwW6HR1dDueEpRdN0K2W4ZI6v1UIhjPXdB\nrIsNaXc8ZSeLY8virkBQbmhxiMlRKAYCHOuXdtvuDh+BAbonEAzk1Lqg0OBUGOhPwnHMkLiQ9Nog\nFPns6+EkCIIgCGJlwBjDtRetxoY1XfjCt7fjP545iF0HZnDnm7ZisDfZ6eUtKSRKEAQAbtswDh4J\nCw973MvqkWOR85kiQ1s7DO2qUWijQ9CHeqEPpKH3qFAEszZSE6X9YJVxYBzuh/98kgKe7vHaLOpT\nLDKr+jFrcADcnWARFB+saWAuOmnDXVDcqEzFbbkQFTgQULWFejCkyVAt10dgxrsbwghedkPSb6do\nGIGpeC0WjbWwZXOoiox9x00caxEEmS85KFXmf6901W2d6M8KSCeiIy6DzoaFCg1u/oIdGU0ZzGDw\nhYdCwS22Z2bNtm3+isKQSUkYHFBD7RCxGQxeyKOuLW97BOcclYqDYxMVHDhYrrczNDoTAkKDf92/\nz6gu3KWgKm44Y1daxuCAFpufEHfpX9dUoa1gx9Nt+kY7mJaDubyJE1NVlCs2KoaDatXB+pEEdP3M\n310hCIIgiDOJNbkU/vQPLsXXH92F/3z+MP7sy7/EO163EVeev2pFtswuBiRKEGcV5uRMPd8hKEDs\nOwBejYY4KoMDyFx1GbSRQeire6D3Z6BnVWhJDqE447oejCkAU8AM3A8PrqfBcyNwUn6mQxd4IuO6\nHSQpOsWCm5g9cSh+4X5rRYPDgQsyLCbDsEVXdPBbKirBoEgBpj2/uyGhxI3ArAsPolDPqbSsunNh\notm0iZKDfJl7QkPUURJEV11Hw2BvfABk7brO2g7xs22OmTkzFOKYD4ymbMxgmCtY7njKNuvphC6i\nu0vG6LAemhLROJoyKDqoytLvxJum07zloUl+QlB4cMdLLuw5RRE158HqQbWh5cHNTHBbHSQkEvXQ\nRr/9IaGf+eGMnHOYljuNo1KxYRgOyoYDw3BQMWxUKg4qVce9NFxhofZRcYWeciVwfu3+5q6S117V\niw/fMbq8L5QgCIIgiFNGlUXc/vpN2LI2i6/82w48+L2X8OL4FN51w7nQ1TOvhD/zXhFx1uNUDFT2\nHQgJD/54TXt6NnK+mE4isXkDtJFVruOh33U86GkBkuW1W9gmgGOAcwyYBDAJcEEET3XD6V3thkkm\n66ID13SAISw6gAOoAsYUEBqO4Y3KFDVoyQQqVQCiDIfJqEKB4ShuO4UvMlSEmrPBsNp0N8h+MKQT\ncjaoAXeDLzTkSxz56XroY0hk8K6Xo8M9IiQ0IJ0QMNTH0JeVIYs20rorMGQCYZCpBIM0z6jHqulO\njzh4JDqastYm0ZDBUCy15/8XGJDyBIShATU0mrIxg8E/TiUlSBJb9F13x+EoV5qNjowPZiw1nHuy\n4YwJXURPt4w1gxqSCRE9WQ2i4ESnPTRmLCRWbtjlycA5R9XkrYWAioNK1RMSvNsMw0bZu8+oukJC\nSFgw7LYFr1aoigBNE6ApAvp6ZKiqBl0VkEkrYMyBponQvHOuvOzsnXdOEARBEGcCl28ewLrBDL74\nyHY8sf0Y9h6aw51v2op1g5lOL21RIVGCOC3hjoPq4eNusGSD8FA9eASNaYBMEqGOrEZ620ZPeEhB\n79WRyAhQhDJYuQAGDndHvwhU4QoPig7e1e+GSgZFBz0FqArg2DGjMg3ACFTtfmuF53LgggybyTCh\noMJVVCwJhuNmOPC8jHzRhmEzz93QrNBzgyATcvwITFVyMx14w9SJiYZ2iaC7oVJt/TVncIWGrqSA\n1bn4donasc4gBoQGv3j3WwN8t8Irx+viwlyjwJC3kPcmTbSbvyBJDOmkhN6sjHUjeijEMZzB4N2W\ndPMX2rH9zwfnHNUq9xwIbj5CLT+h5KBYtkJiQ5zgUCovvGqVvHDGhC6ir1eJOBBCokIikKHg3abr\n8fkTK73Nwf96lz2XgSsg2J6AUBcC6g4EVyQAEzE7a6BieOfX3Anu+YbhLNgpEoemCu6H5opZmiZA\n9W7TVdG97okLmibWz1e965rgCRD1+1SleYvKSn+/CIIgCII4OXLdOu5+x8X41uOv4HtPjOPT//AM\nfvfaMbzusmEIZ8imEIkSxIrGms2HgiXLe8bx0vhBFHftg1OJbtfL/T1IX7wZ+lAP9Fwaeq+GRJcA\nTbUgOsGq2xUfuMGAZAZ8YBROsssVHvQUuJ4E1xOAKLiCg9O46x4QHgQJkPVAO4WCKldgcAVlW0HF\nkWCYntOhLXeDAFUKCg6uu8F3Ngjc3bmtTZ6Y5ThSDLdM+O0U7QgNSZ2hOy3EiwyBMMikzkLFq+Nw\nFEuBcZQzNo4cCrdI+GJDucIxPVNFvmjBanMnX1Pd8ZRDq9SAW0FCJiAwBEdTppNu4XeyO/a2zZs7\nEJq0PFRNjrk5s3abZS+smmUM0DVXHOjvVcOiQeCyMZAx6FJY6eGMjuMGgdbbFey626DBgeCe44kM\n3nUj5E6oiwtG1WlrEkkrGENICOjucltsdE2sCQhBccF3IKhBYUH1zvcdDKoARW4v34IgCIIgCKId\nJFHA7147hs2jWXzpOy/i4cd248V903jvzZuRSSjzP8AKh0QJouM4VRPG+MFau0U5kPVgTUaDHcWE\n5rZarO6Fnksh0atB7xKgJznkSM9+BVyUwVPdsH3RIZEGPNGBKxrAnPhRmbwKWG5rBZe1Wn5DlSsw\nHBUVrqBoKTBMsZbhUG3pbkDI3RB0NghwYJkOVE3F4aNFFGY5jje0TPhCgxGNvgjBGJDSGbIZwRUV\nYpwM/m2+0GBZHIWi71YwkS/YmD5uYX8hLDAEXQ3FYvvZA6mkm7eQ69VDUyJaZTAspNjm3O3Vn5w2\n2x4Z2XjZrhsjiB/OmE6LWNWv1PITwpeim6OgS6FgxmSi/XDG5cBxeEg4mMkzHDlaqGUaNLYi+OdW\n4twJASHhZEIvGxGEunige20mWoMQUHMY1BwIYkBAcO9XVQGrhzIoFkrQNBGKzM6YthOCIAiCIM58\ntq7rwafuuBwPfOdF/GbvJO578Cl84OYt2Ly2p9NLOyVIlCCWBc45zKMTntiwLyQ8GPsPI9JsLQhQ\nB3uRumyT22rRoyPRJbjtFhk1UkhwNeEKD4kMeDLjOh20BLiuA5LcXCdgDrggwxFk2FDcDAeuoOwo\nKNsaipZcy3CYL7tBETm6NE9wEB2IjMOx3BT8imGjVHJQKDk40jiBosxRz9gsNHl819HQ2+VOm8g0\nC4JMMEiC52DwBAa/LWLikIW9wTaJQPBju20DguAKDF1pN3sgzq2QToczGFJJCatWZVpay03LqYkD\n0zMmDh6uhPITmrY8+K6G8sL79QUBNXFgKKOGnAm1y0aXQjBbISFiaLBr2S3zts1DGQZGoxjQxIFQ\nMewmQYnucbV66j0LooiaOJBKiOjNyq6QENOKUBMSai0MAlRVjLoTVAGytHjiQS6nYUKYR9kjOs5n\nPvMZPPPMM7AsC3feeSfOP/983HPPPbAsC5Ik4bOf/SxyuRx27NiBe++9FwDw27/927jrrrs6vHKC\nIAiCWFq6kgr+660X4AdP7cc//2Qv/sf/eQ43/dYo3nTVOojCynbQNoNECWJRsQtFN99h93io7aKy\ndz+cUjlyvtSdQnrTsCc8aEh0iUhkVWi9CQhS/ZuKMwYkusCTGbBMNyxFB9eS4LruhkpKcux6OBPh\nCAosJsPiCgyuouwoKNkqiraCkiXP724QXHeDInFIjIM7DmzLQdVwUK5YKJYc5ItOZAKFabX+WgnM\nHW2Z665PmxjoVSHCrIkMksABx4ZlWYEwR1dwOHwsPDnCv7/d4lKWGDJpCf29KlLBUMe4kMe02zah\na9H8BTec0fFyFNxchGLJwvFJo9YCwTGBE5Plpk6FqrnwglhTBSQTIrKBcMZmgYyNbRH+CMml3CW3\nLA6j2lwocF0ErlAQbF0IuQ4qdsSdcDJfq0YkidUK/3RKRH+vEmlFyGY1cMeqOQz0Ws6BJzLErjit\nNQAAIABJREFUZCDI0un5i7DTOI47mcM0ndpl1fSOTY6q5V7WjmPOk5UTmJ2tuMeWA8vkuO7KHmzb\ncvoFYT3xxBPYtWsXHn74YUxPT+Mtb3kLXvWqV+HWW2/FG97wBnz1q1/FQw89hE984hP40z/9U/z5\nn/85Nm/ejI9//OMol8vQdb3TL4EgCIIglhSBMbz+VaPYONyNL357O77z83HsGJ/BB964BX1dp9/v\nQRIliAXjmBaqBw67bocG4cE8diJyPlMk6IM90PuHkOjRoHWLSPQlofclISfqYgKX5FqYpJNIwdaT\n4JruZjtoSXdrOwAHwJmb4WDCzXEoOwpKjoqCpaJgqrC42PR1MOa2T6QVBwwOuO22UBhVG+Wyg0LR\nxkzeRqFYFxqseQY6CAKQ1hkGskLIvZDUGWSRQ4DtihqmBaNio1Dy8himLYwfsLDTACanjZrA0GzU\nXyO65uYvDA/qoRDHoMjQ6Grwx1NWTd50ZOT+Q5UGAcELcAw4GMoVe8G9/ZLIakJBb1aJD2RszE9o\nEBzEeSZ2tItpOS2FgGAbQtnPM/DudzjDXL4aEB7qn9tudkYrZIl57QkiujNyQ86BGBuU6OcdxGUf\n+Pe3Ix6cLcGJtsNh+YW+V+xXA8W/FTg2rboIUDU5LKtBPAicN99x7fMsvij/V+JIJMTTUpS47LLL\nsG3bNgBAJpNBuVzGfffdB1VVAQDZbBbbt2/HiRMnUCqVsHXrVgDA5z//+Y6tmSAIgiA6wdhQF+5/\nz+X4+x/swFMvHcf9Dz6N97xhEy45t7/TS1sQJEoQsXDOYZ2YqgsPe9y2i8re/TDGD4I3VueMQe3L\noHvratfx0KNC70tCzyWhdmlg3u4615LgibT7oSdhanp9moWiuoEI/hoguA4Hr6Wi4gkOJVtD3nRv\na+ZwkAQOUXAgcROO5cC03KKxVLJRKNiYKdiYnXPaEhpEwXU0rOp1HQ1JDVAkQBIcMO6AOzZs04Zh\nmCiXLBRKFvLHLRwN5DAUS+0V7owByYQrIPTn1HqoYzI+dyGpixAEwLR405GRxyYM7B1vcCcEri+0\nIAqHMyqe86Cen9DY8pBMiBgaSqNqGLX7FtrLz7lbuJW9gn9m1vRCD+McCNGJCnGjHP1zFhpOGYci\ns5pIkO2WoatNWhEaMhBC7oRGwUEVFk14WanYdvyuf5xboHZsxQsG4cfx76sfu/dx2Db3HCfuz4V2\nhb9TgTFAlhkU2RWEFJkhnRKgyDJk2W1PUWShdo4UOJYlBlkWAsfu58sNx7lcCsViOfQ4vdl4B9lK\nRxRFJBIJAMA3v/lNvOY1r6kd27aNr33ta7jrrrtw6NAhdHV14e6778a+ffvwO7/zO7j99ts7uHKC\nIAiCWH4SmoQ737gVW9b24Gs/3Im/+ZcXcN1Fq3HbazdAkZtv0K4kSJQ4y7FLZTfbwct3CDof7Hwx\ncr6UVJEazkLv1aD3JpDIucKD1puAKIvgTKiJDn6YpJVI1UQIiPX/cjbEuuDAVZQtBUVLRclRUXFU\nWBDRKDowcEgC4Dg2YJkwvTR+N0PBwfSchakZe97WCUl0hYaBHgZNARSRQxQ4GLfBbRuWaaNqmKiU\nTTeXYdLGIW/KRLuBiKIIpJMSsl0yRlbrEbdCKun3ywsQBYAJDOm0hmPHipEchelZE4eOVsKCQ+nk\nwhkV2R0hmU6KWJVTIjkJyQa3gh/amPCu61rzcEbOXRt6yDVQcd+jo8cq9XBEPyixJg5EMw7q7gTX\nvbIYxaOq1IMPU1kZqip6AkK0FSEoHNTPCbYuiFizOoN8vhQ7UnMlwzmHbaOhYA+LAuOHLUxMFOff\n9TcdVK3m4kErMWGhOSAng8AARakX8MGcCjlQwNeLfwZJFqAEjuUmgkH48/z7AiKCd58oYskDNV1n\ny5nVPvPoo4/im9/8Jh588EEAriDxiU98AldccQVe/epX47nnnsPBgwfxN3/zN9A0DbfddhuuvPJK\nnHPOOS0fN5tNQJKW5o+0XC69JI9LtA+9B52H3oPOQ+9B5+nEe/C26zO47LxBfPYfn8GPnj2EV47m\n8X+/8xKMrFr5rkkSJc4CuG3DOHgkLDx4zofqkeOR85kkQO9LQR8ZgJ5L1hwPiVwSclIBlxVPZEi5\nEywSadh6ClYiBWg6wARwABbcSRUVR0HZUVE0VRiGO7Wi4ihwEP6j0HUdOK4l2rBQrlRRLNqYy9uY\nnnOL81Z5CZIIJFQgm3KnXIjMAbgNx7ZhVS0YhoVyqYpSwcSJvIlXChbMNl0CisKQTkoYHFBrboVk\nUoKmCFAUt9jxCw8Ot+irVh2Uy05o+sPEiWpIcFhwOCNDTSwYHFAjbQ21yxbtELIkeOvj0cDDil1z\nIBiGg9k5AxWj7AkIrR0IhudAaHciRyuCrQb9vUqtFSEyZUGNb11Q4+5TFn/SRTIhoVRc2GP6ro+W\nbQKBQr5qOl57QV0wqLUamDx87LkB4loRzMDjmSY/5XGa7SCJLFzEKwKSSRGK5IkEwaK/UQQIuQUC\nIkDccUBECD2uFHWbnC1tKac7jz/+OL7whS/ggQceQDrt/mF3zz33YHR0FB/60IcAAL29vTjnnHOQ\nzWYBAJdccgl27do1rygxPV1akjXT/63OQ+9B56H3oPPQe9B5Ovke6CLD3b9/ER7+0W786FeH8F//\n50/w+6/biKu3DXZ84lgroYZEiTMIc3ImlO8wfvAQ5l7cjcorB8HNaNq80q2je0NvTXSotVtkdbBE\nymurSNbaK3giBSORBmQFDpg3GlOpORsqjoJK2R2XaXAZHN6uHedwHC+vwXCL9EKxhLm8e93fSY8r\n0EUB0GQOWeRIyQ4g2RAAlEsGjIqJUslEoVBFfq4K22qvwk/oXv7Cag265u58+7ucoui2FTAAtuPu\n5FZNB4bBPTHBwoHDFRTL7QdKBqmFM3a54YzBQMaELqI/lwC4VRMQdFWArAgQBQZBcAtao8qjrQgB\nh8Fc3vLuizoQDH8CQ9U55aKUMYTaDboyUpNWBAE9PTocy2qac1DLR1Dd92KpxmT6To5IkGDALRAX\nJGg1ZAn4u/6iKCKfr9bOD4oKrTIIlgN/117y7P2aJiAtiS3aBMKFfneXBtM0a7fHCwaesyBw7N8n\nyey0c5AQK4N8Po/PfOYz+PKXv4zu7m4AwCOPPAJZlvGRj3ykdt7w8DCKxSJmZmaQyWTw0ksv4bbb\nbuvUsgmCIAhiRaDIIt51w7nYMprFQ9/bgS9/fwde3DeFd9+4CQltZZb/K3NVRFOcioHKvgM14aGy\nZxzlXa/A2Lsf1mxUkRM1CckBz+ngiw+5JLT+NISuLq/Vwst08IQIU0/CYt5oTNt3Nqhum0VVQcVQ\nYXIJAINjuzuytbyGoo1yxUC5UqqJDY3FuyhwSAKHAAdwbNi2DW5YqHoiQ7FYhW3asC0LvMW2O2NA\nUheh6yKG+pVaMSWKDH4t5DhukF3VdGBWOcpeUX78RPXkwhk9AaGnWw85EHRdgCoLUBS30JNEBkFk\nEL3BHv5zGVUOI8adcHTCFRJ+/VIBhaIZCl48VQSGWliiprmCiNogBATdB9GgxPh8hIXkQuRyaRw7\nNhcb8meaDmbzFk5MxbgAagJBYwtBICugsaWgRT7BUgUKNtK465/QRXRn6sX9/K0AdTEhuOtf+zyZ\n1dwGSoM7QJLcxzlVYYd2Wk5fHIfDcVxh6nTke9/7Hqanp/FHf/RHtdsOHz6MTCaDd73rXQCAsbEx\n3H///bjnnnvw/ve/H4wxXH311di0aVOnlk0QBEEQK4pLzu3H6Ko0/vaRF/HUS8ex9/Ac7nzTVowN\ndXV6aREY58th4l1cFvsP5ZX2xzd3HFQPH68FS7rCw14Ye8ZhHJlAYzXNBAatNxFyPCRySWirs5By\nvUAyXXM6+AKEIWdQgQrDdzhw99LwBAiLC6h6Vv1iyXZ33Cv1fIByxYFRsWF7NTODKzJwx4ZjWahW\nLVTKJoyKBduyYZveZROhQRRQK3RlSYAo1YUFzgHL9orZKke1On9mRBx+LoLuWfpVtR4eVxMSBAaB\nMYC59nbuTuSE5TioVl3HhO9A8PMRDMN1HpwqogjomgRVYbX1hVoVtAZhoHFUY6Nw4AkLssTgcNQL\n84aCvVkLQaN7oN3JA1XLCUwz8ASDJZwwEMQPFGwWBriwNgG/2I9mB/gBhAMDaRTy5QYxYWEhniuV\nlfZzcT445zUR0nHczAzb4XBsDttxAy5tB+juTuDERMG9zXHDNh3vfv/z67eFH6PZ/f6x4z2e+9gc\njh1cj/t84fW4nxO8P3Y9tTUg8FwNz88B2w4Hd77tpgG8822rF/1rfbr3Ki/V/+vT7XvmTITeg85D\n70Hnofeg86y098B2HHz7p6/guz8fhyAwvPU163Hjq0bcmmcZofaNFYo1m68HS+7eh/LLu2HsHUdl\n/xE4Rky7RVpF17psXXzIJaGv6YOyZgAs3VUTHGw9jYqexbSQQoWrMBwlJDwUShJKFQSEhuBlGeVK\nEdWqA3DHDX20bJiGCbPqigqNIoNt2ghqW6LoFmySyMAEQIS7Wy8IHEwAzJj63Xbg5i40+VpJEqsV\n291dMgSGWruFwPwQOVdIcLj3R77FUbXcbIdq1RUOTkyZAKJf24UgiazmMEin3AkUzVoRasKH5O5g\niyIgiQIEARAFBsZcUclvF0kkdExOlkK9/8Fd/qrpTp6YbwpB4xjD5ZgwIDBEggN1T2jSdQmM8ahY\nMO/kgbBbQJKiwYPBdgFJXF5BIJdLYGJiGb64LfBDK1sXz40FbWPx3FAQOxzJZBkzM+V68WwDDq8X\n07YdLKbrjxl6Pu+xnYAAEBYK6o/pxNwfui24ZruxmOfLEpq5XPg/H0RPKBXF8LEkMYiCm5chCgyC\nCKiqBMd2vHPcn8PnrEt2+qUQBEEQBNFhREHAW18zhs0jWfztd17EN368By+OT+N9N29BV1Lp9PIA\nkCix5DhVE8b4QVd82LkHlZd3obJ3P8r7DsOaLUTOFxTRczr0Qe9LQhtIQx/uhzq6CmJvD3giBVvL\noKz1oKxmMQu9JjyUbAVzFQkzswIqx3iM4FBFqVT03AsN4oIZEBwCQoMgAIJXNDveTuR83hrbdgsF\nH8ZQK8p1TUBSBATmFuR+KKRfcFjezrzdUGBYFkfBcttD2hUVZIlB9QIO02kJvQ02eFGsOyTczAZX\nRPFt78z/h7uvnTt+AYVQwV81OUplG7NzVuzkgcUIfpwPUURklz+hi+Fdf6n1rn/LsYMNX7u4loJW\n4ysXWzHmnNfEJ383ulJxQgW2X1w3FrxxBW2twG66y17f8Q7er6knkC8YMbvswWI6/vmD98fuoNvB\n19C44+69Bm+H/EzBbXtyfz74BbcowivMmRdWCrc1Soje72ev1It5BjFwLAgMyaQCs2p6xXzgfsZC\nBX39/sbb6gKBf1/w+YOPIQje4wcey1+TELqtfk5dZF0YK21XhiAIgiCIlcXmtT341B2X48HvvoRf\n75nEfQ8+hffdvBnnrevt9NJIlFgMOOcwj0647RY7drrCw55xlMcPwzg6Ha3iGaD1JJDelHNdD4Pd\n0IZz0EZXQR5aBSvRhYrWg5LWi7zUhQmuoWjKmC1LmC6JmJtggVYKB8WiiWKhjFJxLiwumPVLy7Lh\nWGFHQzs4DgDO3T+WvT+wOQDuFWDtPBznQNXkqJrxO8qS6BbLksigawJSSbH2Bz4T6gKGLxKIogDT\ndLz2ikBh6QC2VW85sGwOs+gLGUuHv36/8PcdFLETAuIK+4BI0JPVYVSqTScNSJLntAgWNjWnRdgi\nXitoY3aw6/bw5rvsxbIDp2gtikVdliWUy2asRT34nJEd+zhLvbfmMwWBIVSc+gWuWyS7xaosNxSv\nDQW1f1vt84X4AltgiC2e4z6/q0tDuVR1RQIhWjzXHoO1EgEany98f7DIX6pw00aoeCcIgiAI4mwl\nk1Dwkd/dhkefPoBv/HgPPv/w83j9FSN4y9XrIYmdGy2+YkSJT3/603j++efBGMO9996Lbdu2dXpJ\nEexCEZVdr6CyfTsqO3ehsnsc5fEjqBw+AceIhhzISQWZ0W43WHKoB/qaHNS1gxBHR2Cmc67ooPTh\nsJ3AXEXCdFHCZEFEcZqjVLJQKlZRyFdRmMujalg1kcEKtU/Y81sXThGHA45Vd03UiijJLYYB1AQC\nhy9899ayOSz75F6DJHmtIpK3u6+ISCRYbRShKHpOiFqxJAR2MevFEGOB1+a3VTAA3iSOmmsCYQcF\n978+cXbzwC67ZXEYVavp/X6xDTDPKRIvApxJFnUxsCPezKKuKmGLevD+aMGLQHHtiTah3enGXe1w\nMR2xzEdEgIYdcpGhtyeBublyUxFAjOyiR3f1V2r+BBXvBEEQBEEQZx4CY7jh8hFsHOnGF761Hd9/\nYj9e3j+DO9+4FbluvSNrWhGixFNPPYXx8XE8/PDD2LNnD+699148/PDDHVmLUzVR3bMX5d/8BqUd\nu1Desx/GgSOoHpmCORudbS5Igis65FLQh3qgDfdDGl0NYd16VHrWYEbqxVGnG9MlBZN5ARPTHIXd\nFop5A4U5A4VCEZY5F2mfwAq0ZPuWdxdPpGB1N4MoMkgMYIpQL+pRL7qCpRdH3WXBObwWCVfY4L4t\n32+ZcJp/OaxQgOLpsX3uW9RrBXSgWFVkt90ktDt9EhZ1MaY4ns+iHtwlj1rUm4gAwfXEWdS9NQ30\npzE9XThli/pKwy3cxU4vgyAIgiAIgiAWxNpVGdz3nsvwD//+Mp7Yfgz3P/QU/uB3NuHyzQPLvpYV\nIUr84he/wPXXXw/AHfM1OzuLQqGAVCq1bGvY/oGPwX76WRgT+eh0CAao3Tq6N/VDG+qFsmYAwsga\nWGvWY7Z/PY7bfThc0HFsimNiykL+mIH8TgNGuQrbKsA2Z1xHwxmG4wAOuKcFtFZR2rGox/ZXNxbY\nghuaaFt2eIc7rgc85n7/OGhxb7SQx1nUg60S7e2yh9fcrkX9TN2dTiUllEtUvBMEQRAEQRDESkFX\nJbz/5i3YurYH//jvO/GFb2/Hi/um8e4bz1221lpghYgSJ06cwNatW2vHPT09mJiYaCpKZLMJSNLi\nFjjinl0w5spIjvRAHeqFODQAZ/UwCv3rcKRrA/YUsxg/zjE5WUVhrgLrOQv2L20AVQCHWz622xrg\nfbB6cetmA4QLZMlri5BFz7buXZe8yQP+VAtJEuqFb/AjWBjH3C61uC9YbEdub/w8IdAWEdqxZzFr\nOjN2xZeL033cXjPodZ1+nKmvjV4XQRAEQRCEC2MMV54/iPVDGXzx29vxn88fxmsuGML6ocyyrWFF\niBKNzBfGOD0dbaM4FXK5NF75ky/h2e0FJFQBfVkJXRkZqaQEXRcwoEoYUdxQQkUWmlrUFytFfTFf\n19Lsunv9Fg03ORbg4FQHbs7PmeomAM7c10av6/TjTH1t9LoW57kIgiAIgjizGOxN4o/ffSkOThSw\ndtXy/q5fEaJEf38/Tpw4UTs+fvw4crncsq7h9dcN4PXXLX//DEEQBEEQBEEQBEF0GlkSsG5w+RwS\nPp2b+xHgyiuvxA9+8AMAwPbt29Hf37+seRIEQRAEQRAEQRAEQSw/K8IpcfHFF2Pr1q34vd/7PTDG\ncN9993V6SQRBEARBEARBEARBLDErQpQAgI9//OOdXgJBEARBEARBEARBEMvIimjfIAiCIAiCIAiC\nIAji7INECYIgCIIgCIIgCIIgOgKJEgRBEARBEARBEARBdAQSJQiCIAiCIAiCIAiC6AgkShAEQRAE\nQRAEQRAE0RFIlCAIgiAIgiAIgiAIoiOQKEEQBEEQBEEQBEEQREcgUYIgCIIgCIIgCIIgiI5AogRB\nEARBEARBEARBEB2BRAmCIAiCIAiCIAiCIDoCiRIEQRAEQRAEQRAEQXQExjnnnV4EQRAEQRAEQRAE\nQRBnH+SUIAiCIAiCIAiCIAiiI5AoQRAEQRAEQRAEQRBERyBRgiAIgiAIgiAIgiCIjkCiBEEQBEEQ\nBEEQBEEQHYFECYIgCIIgCIIgCIIgOgKJEgRBEARBEARBEARBdASp0wvoJJ/+9Kfx/PPPgzGGe++9\nF9u2bev0ktriM5/5DJ555hlYloU777wTjz32GLZv347u7m4AwHvf+15ce+21eOSRR/CVr3wFgiDg\n1ltvxdvf/naYpom7774bhw8fhiiK+Mu//EsMDw93+BW5PPnkk/joRz+Kc845BwCwceNGvO9978Mn\nPvEJ2LaNXC6Hz372s1AU5bR6bd/4xjfwyCOP1I5feOEFnHfeeSiVSkgkEgCAT37ykzjvvPPwwAMP\n4N/+7d/AGMOHPvQhXHPNNcjn8/jYxz6GfD6PRCKBz33uc7X3ulPs3LkTH/zgB3H77bfjne98J44c\nOXLK79OOHTtw//33AwDOPfdcfOpTn1oRr+uee+6BZVmQJAmf/exnkcvlsHXrVlx88cW1z/vyl78M\nx3FOm9d19913n/LPjJXwuuJe20c+8hFMT08DAGZmZnDhhRfizjvvxC233ILzzjsPAJDNZvFXf/VX\nTb+3fv7zn+Pzn/88RFHEa17zGtx1113L/roaf86ff/75Z8T32JnI6fq3xJlE4/fLDTfc0OklnZVU\nKhXcfPPN+OAHP4i3vvWtnV7OWccjjzyCBx54AJIk4SMf+QiuvfbaTi/prKNYLOKTn/wkZmdnYZom\n7rrrLlx99dWdXtbpAT9LefLJJ/kHPvABzjnnu3fv5rfeemuHV9Qev/jFL/j73vc+zjnnU1NT/Jpr\nruGf/OQn+WOPPRY6r1gs8htuuIHPzc3xcrnMb7rpJj49Pc3/+Z//md9///2cc84ff/xx/tGPfnTZ\nX0MznnjiCf7hD384dNvdd9/Nv/e973HOOf/c5z7Hv/rVr56Wr83nySef5Pfffz9/5zvfyV9++eXQ\nffv37+dvectbuGEYfHJykt94443csiz+13/91/xLX/r/27vz6JjOP47j78kyJYktYWLJiRJa64m9\niUidH0KFcmwlTNKWo0Xta6QpekoJaS1Bay2dRGM9RZVqFXUktsZJI6SK9JwsJGLLQiQz7u8PJ1Nh\nolHkZpLv67+5c+/M93Ov5+aZ597nWqcoiqJER0crixcvVqN0s7y8PEWv1yuhoaGKwWBQFOXFHCe9\nXq/Ex8criqIoU6dOVY4cOaJ6rpkzZyr79u1TFEVRIiMjlbCwMEVRFKVTp05PbG9NuV7EOUPtXEU1\nP57tUcHBwUp8fLySkpKiDBgw4In3S2pbvXv3VtLT0xWTyaQEBAQof/3118sN8hhL5/mK0MYqImvt\nS1QkltqLUMeXX36pDBw4UNm5c6fapVQ6N2/eVHr27Knk5OQoGRkZSmhoqNolVUoGg0EJDw9XFEVR\nrl27pvTq1UvliqxHpZ2+ERsbS48ePQDw8PDgzp075ObmqlzVv+vYsSPLly8HoHr16ty7dw+TyfTE\nevHx8bRu3Zpq1apRpUoV2rVrR1xcHLGxsfj5+QHQuXNn4uLiyrT+Z3Xy5Em6d+8OwP/+9z9iY2Ot\nOtuqVasYN26cxfdOnjyJr68vWq0WZ2dnGjRowKVLl4rlKtoHatJqtaxbtw6dTmde9rzHqaCggLS0\nNPMVRjVyWso1d+5cevXqBTy8un779u0St7emXJZY2/GCp2e7cuUKOTk5T71qbaltpaSkUKNGDerV\nq4eNjQ1du3Yt82yWzvMVoY1VRNbal6hIStsvEi/X5cuXuXTpklydV0lsbCze3t44OTmh0+n47LPP\n1C6pUnq0r5idnU2tWrVUrsh6VNpBiaysrGL/UJydnbl+/bqKFZWOra2t+Zb/HTt28Oabb2Jra0tk\nZCRBQUFMmTKFmzdvkpWVhbOzs3m7onyPLrexsUGj0VBQUKBKFksuXbrEmDFjCAgI4Pjx49y7dw+t\nVguAi4vLExnAerL98ccf1KtXjzp16gCwYsUKRowYwZw5c8jPzy9VLhcXFzIzM1Wpv4idnR1VqlQp\ntux5j1NWVhbVq1c3r1v0GWXJUi4HBwdsbW0xmUxs2bKFt99+G4CCggKmTZvGsGHD+OabbwCsKhfw\nXOeM8pALSs4G8O2336LX682vs7KymDhxIsOGDTNPp7LUtq5fv25xP5QlS+f5itDGKiJr7UtUJCX1\ni0TZCgsLIzg4WO0yKq3U1FTy8/MZM2YMw4cPl0FnlfTp04f09HT8/PzQ6/XMmjVL7ZKsRqV+psSj\nFEVRu4Rn8ssvv7Bjxw42btzIuXPnqFmzJs2bN2ft2rWsXLmStm3bFlu/pHzlKferr77K+PHj6d27\nNykpKQQFBRW72vGsGcpTNnjYWRowYAAAQUFBvP7667i7uzN37lyioqKeWN9S/eUtkyUv4jiVp5wm\nk4mZM2fi5eWFt7c3ADNnzqRfv35oNBr0ej0dOnR4YrvynKt///4v9JxRXnIVKSgo4Pfffzc/P6Fm\nzZpMmjSJfv36kZOTw5AhQ/Dy8iq2TXnLAMXP84/Oka9obawikf2qnkfbiyhb33//PW3atCkXz/Gq\nzG7fvs3KlStJT08nKCiIw4cPo9Fo1C6rUtm9ezf169dnw4YNJCUlERISwq5du9QuyypU2jsldDod\nWVlZ5teZmZnmK9jl3bFjx/j6669Zt24d1apVw9vbm+bNmwPQrVs3Ll68aDGfTqdDp9OZr+IUFhai\nKIr56pvaXF1d8ff3R6PR4O7uTu3atblz5w75+fkAZGRkmDNYWzZ4OMWh6Iefn58f7u7uQMnH7NG8\nRbmKlpU3Dg4Oz3Wc6tSpU2xqRHnKOXv2bBo2bMj48ePNywICAnB0dMTBwQEvLy/z8bOWXM97ziiv\nuYqcPn262LQNJycnBg0ahL29Pc7OzrRq1YorV65YbFsltcOy9vh5viK3MWtmzX2JiuTx9iLK1pEj\nRzh06BDvvPMO27dvZ/Xq1cTExKhdVqXi4uJC27ZtsbOzw93dHUdHR27evKl2WZVOXFz77YW/AAAK\nWklEQVQcXbp0AaBZs2ZkZmbKdLJSqrSDEj4+Pvz0008AJCYmotPpcHJyUrmqf5eTk8PixYtZs2aN\n+cn5EyZMICUlBXj4w7dp06Z4enqSkJBAdnY2eXl5xMXF0aFDB3x8fDhw4AAAhw8f5o033lAty+P2\n7NnDhg0bALh+/To3btxg4MCB5uN08OBBfH19rTJbRkYGjo6OaLVaFEXhvffeIzs7G/jnmHl5eXHk\nyBEKCgrIyMggMzOTJk2aFMtVtA/Km86dOz/XcbK3t6dx48acOXOm2Geobc+ePdjb2zNx4kTzsitX\nrjBt2jQURcFoNBIXF0fTpk2tKtfznjPKa64iCQkJNGvWzPz6xIkTLFy4EIC7d++SlJREo0aNLLYt\nNzc3cnNzSU1NxWg0cvjwYXx8fMq0fkvn+YraxqydtfYlKhJL7UWUrWXLlrFz5062bdvGkCFDGDdu\nHJ07d1a7rEqlS5cunDhxggcPHnDr1i3u3r0rzzNQQcOGDYmPjwcgLS0NR0dHmU5WShqlEt9rGB4e\nzpkzZ9BoNMydO7dYJ7a82rp1KxERETRq1Mi8bODAgURGRlK1alUcHBxYuHAhLi4uHDhwgA0bNphv\nMe/Xrx8mk4nQ0FD+/vtvtFotixYtol69eiom+kdubi7Tp08nOzubwsJCxo8fT/PmzZk1axb379+n\nfv36LFy4EHt7e6vLdu7cOZYtW8b69esB+PHHH1m/fj1Vq1bF1dWVBQsWULVqVQwGA3v37kWj0TB5\n8mS8vb3Jy8tjxowZ3L59m+rVq7NkyRJVrwSdO3eOsLAw0tLSsLOzw9XVlfDwcIKDg5/rOF26dIk5\nc+bw4MEDPD09mT17tuq5bty4wSuvvGL+keHh4cG8efNYsmQJJ06cwMbGhm7dujF27FiryqXX61m7\ndu1znTPUzlVStoiICCIiImjfvj3+/v4AGI1GQkNDSU5OxmQyERAQwKBBg0psW6dPnyY8PByAnj17\nMmrUqDLNZek8v2jRIkJDQ626jVVU1tiXqEgstZewsDDq16+vYlWVV0REBA0aNJD/ElQF0dHR7Nix\nA4CxY8eaH44syk5eXh4hISHcuHEDo9HIpEmTzFN/xdNV6kEJIYQQQgghhBBCqKfSTt8QQgghhBBC\nCCGEumRQQgghhBBCCCGEEKqQQQkhhBBCCCGEEEKoQgYlhBBCCCGEEEIIoQoZlBBCCCGEEEIIIYQq\nZFBCCCGEEEII8dKkpqbSqlUrAgMDCQwMZNiwYUybNo3s7OxSf0ZgYCAmk6nU6wcEBHDy5Mn/Uq4Q\noozJoIQQgt27dz/1/aNHj3L79u2nrhMYGEhMTMyLLEsIIYQQFYSzszMGgwGDwUB0dDQ6nY6vvvqq\n1NsbDAZsbW1fYoVCCLXYqV2AEEJdJpOJ1atX079//xLX2bRpE/PmzaNmzZplWJkQQgghKqqOHTuy\ndetWkpKSCAsLw2g0UlhYyJw5c2jRogWBgYE0a9aMCxcusHnzZlq0aEFiYiIFBQV88sknXLt2DaPR\nSP/+/Rk+fDj37t1jypQp3Lp1i4YNG3L//n0AMjIymD59OgD5+fkMHTqUwYMHqxldCPEYGZQQopIL\nCQkhLS2NkSNH4u/vT3R0NFWrVsXFxYX58+ezZ88ezpw5w/Tp01m4cCHJycmsX78erVaLyWRi8eLF\nuLm5/ev3pKamMnbsWF577TWaNm3K6NGj+fzzz0lMTATAy8uLyZMnA7B69WqOHDmCnZ0dTZs2JTQ0\nlIyMDD788EN8fHw4c+YMtWrVol+/fuzevZu0tDSWL19Os2bNCA8P58SJE2i1WlxdXQkLC0Or1b7U\nfSiEEEKI0jOZTPz888+0b9+eGTNmsGrVKtzd3UlKSiIkJIRdu3YB4ODgQGRkZLFtDQYD1atX54sv\nviA/Px9/f398fX2JiYmhSpUqbN26lczMTLp37w7A/v37ady4MZ9++in3799n+/btZZ5XCPF0Mn1D\niEpuwoQJODs7M3/+fCIiIti0aRMGg4F69eqxadMmhg8fTp06dQgPD6dJkyZkZ2ezdOlSDAYDXbt2\nJSoqqtTfdfnyZT766CPGjBnD/v37SU1N5bvvviMqKorjx49z6tQpzp49y8GDB4mKimLLli3cunWL\nH374AYDk5GQCAgLYtWsXycnJpKSksHHjRvr27cvOnTu5c+cOUVFRbN26lS1btuDn50dWVtbL2nVC\nCCGEKKWbN2+anykRFBSETqdj0KBBJCcn8/HHHxMYGMiCBQvIzc3lwYMHALRr1+6Jz4mPj8fHxweA\nKlWq0KpVKxITE7l48SLt27cHQKfT0bhxYwB8fX2JjY0lODiYX3/9laFDh5ZRYiFEacmdEkIIAM6f\nP0/Lli1xcnICoFOnTkRHRz+xXu3atZk1axaKonD9+nXatm1b6u+oUaOGuZMQHx+Pt7c3Go0GW1tb\nOnToQEJCAra2tnTs2BF7e3tzHQkJCXTs2JFatWrRqFEjAFxdXc2dlbp165Kenk6NGjXw9fVFr9fj\n5+eHv78/devWfa79IoQQQojnV/RMiUfl5ORgb2//xPIiRX2BR2k0mmKvFUVBo9GgKAo2Nv9cby0a\n2PDw8GDfvn2cPn2aAwcOsHnzZov9GyGEeuROCSGERUV/5B9VWFjI5MmT+eyzz4iMjCQwMPCZPvPR\nzkVJnYqSlgNPPODq0deKogCwYsUK5s+fD4Ber+fChQvPVKMQQgghyka1atVwc3Pj6NGjwMM7Ileu\nXPnUbTw9PTl27BgAd+/eJTExkZYtW+Lh4cHZs2cBuHr1KsnJyQDs3buXhIQEOnfuzNy5c7l69SpG\no/ElphJCPCsZlBCikrOxscFoNJpvf8zNzQUgJiYGT09P4OEAgtFoJC8vDxsbGxo0aMD9+/c5dOgQ\nBQUF/+l727RpQ0xMDIqiYDQaOXXqFJ6enrRp04aTJ09SWFgIQGxsrLmOf5OSksKmTZvw8PBg5MiR\n+Pn5kZSU9J/qE0IIIcTLFxYWxpo1axgxYgTBwcHmqRklCQwMJC8vjxEjRvDuu+8ybtw43Nzc6N+/\nP7du3WL48OEsXbqU1q1bA9CkSRMWLVqEXq8nKCiI0aNHY2cnN4sLUZ5IixSiktPpdNSuXZtx48bx\nwQcf8P7776PVaqlbty5Tp04FoEuXLowZM4awsDD69u3L4MGDqV+/PqNGjWLmzJns37//mb/3rbfe\nIi4ujoCAAB48eECPHj3Mc0H79OnDiBEjsLGxoWXLlvTt25f09PR//UxXV1fOnz/P4MGDcXR0pEaN\nGowfP/6ZaxNCCCHEi+Pm5sZvv/1m8b0WLVqwZcuWJ5Y/PqXjzz//BMDOzo7w8PAn1ndycmLDhg0W\nv2Pbtm3PWrIQogxplKJ7noUQQgghhBBCCCHKkNwpIYR4YVJSUggJCbH4XkhICM2bNy/jioQQQggh\nhBDlmdwpIYQQQgghhBBCCFXIgy6FEEIIIYQQQgihChmUEEIIIYQQQgghhCpkUEIIIYQQQgghhBCq\nkEEJIYQQQgghhBBCqEIGJYQQQgghhBBCCKGK/wPEOtWzdG9NrAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ajVM7rkoYXeL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "id": "T3zmldDwYy5c", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "train_model(\n", + " learning_rate=0.00002,\n", + " steps=500,\n", + " batch_size=5\n", + ")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "M8H0_D4vYa49", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This is just one possible configuration; there may be other combinations of settings that also give good results. Note that in general, this exercise isn't about finding the *one best* setting, but to help build your intutions about how tweaking the model configuration affects prediction quality." + ] + }, + { + "metadata": { + "id": "QU5sLyYTqzqL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Is There a Standard Heuristic for Model Tuning?\n", + "\n", + "This is a commonly asked question. The short answer is that the effects of different hyperparameters are data dependent. So there are no hard-and-fast rules; you'll need to test on your data.\n", + "\n", + "That said, here are a few rules of thumb that may help guide you:\n", + "\n", + " * Training error should steadily decrease, steeply at first, and should eventually plateau as training converges.\n", + " * If the training has not converged, try running it for longer.\n", + " * If the training error decreases too slowly, increasing the learning rate may help it decrease faster.\n", + " * But sometimes the exact opposite may happen if the learning rate is too high.\n", + " * If the training error varies wildly, try decreasing the learning rate.\n", + " * Lower learning rate plus larger number of steps or larger batch size is often a good combination.\n", + " * Very small batch sizes can also cause instability. First try larger values like 100 or 1000, and decrease until you see degradation.\n", + "\n", + "Again, never go strictly by these rules of thumb, because the effects are data dependent. Always experiment and verify." + ] + }, + { + "metadata": { + "id": "GpV-uF_cBCBU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Try a Different Feature\n", + "\n", + "See if you can do any better by replacing the `total_rooms` feature with the `population` feature.\n", + "\n", + "Don't take more than 5 minutes on this portion." + ] + }, + { + "metadata": { + "id": "YMyOxzb0ZlAH", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 940 + }, + "outputId": "091b7d05-1052-4c62-bc45-66a64424ba93" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "train_model(\n", + " learning_rate=0.00002,\n", + " steps=1000,\n", + " batch_size=5,\n", + " input_feature=\"population\"\n", + ")" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 225.86\n", + " period 01 : 214.84\n", + " period 02 : 205.05\n", + " period 03 : 196.92\n", + " period 04 : 190.21\n", + " period 05 : 185.25\n", + " period 06 : 181.36\n", + " period 07 : 178.49\n", + " period 08 : 176.70\n", + " period 09 : 175.99\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 120.4 207.3\n", + "std 96.7 116.0\n", + "min 0.3 15.0\n", + "25% 66.5 119.4\n", + "50% 98.3 180.4\n", + "75% 144.9 265.0\n", + "max 3004.5 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean120.4207.3
std96.7116.0
min0.315.0
25%66.5119.4
50%98.3180.4
75%144.9265.0
max3004.5500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 175.99\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FOX2wPHv9vSQTqiBhARQSgAV\nRKSbAHpFQVAU7FyvohQrXgv8xIYVVLAr2EBR6UWqAioaCFgoIaGTkLbpyfb5/ZGbVSSkb3YTzud5\neB52d2bed3ayuzNnzntelaIoCkIIIYQQQgghhBCNTO3uDgghhBBCCCGEEOLCJEEJIYQQQgghhBBC\nuIUEJYQQQgghhBBCCOEWEpQQQgghhBBCCCGEW0hQQgghhBBCCCGEEG4hQQkhhBBCCCGEEEK4hQQl\nhHCjuLg4zpw54+5uVOm2227jm2++Oef5N954g//+97/nPJ+ZmcnVV1/dYO1PnDiRFStW1Hn9N954\ngz59+pCYmEhiYiIJCQk8/fTTlJWV1XpbiYmJ5OTk1Gqd871/Qgghmoa4uDiGDx/u/B0ZPnw4jz/+\nOKWlpfXa7pdfflnp89988w1xcXFs3br1rOdNJhO9evXiscceq1e7NXXixAnuueceEhISSEhIYPTo\n0WzatKlR2q6NBQsWVPqe7Nq1i4svvth53P7+r6k4deoUcXFxZ53D3Hzzzezfv7/W23rllVf44osv\narXOihUrmDhxYq3bEqK2tO7ugBCieYmIiGD16tXu7sZZEhISePbZZwGwWCxMmzaNt956i4ceeqhW\n21m/fr0ruieEEMLDffLJJ7Rs2RIo/x2ZPn0677zzDtOnT6/T9rKzs3n//fcZN25cpa9HRkayevVq\nBg8e7Hxu69atBAQE1Km9unjooYe49tprefvttwHYt28ft956K+vWrSMyMrLR+lEfkZGRTf63W6PR\nnLUPa9eu5b777mPDhg3o9foab+fBBx90RfeEaBCSKSGEB7JYLMyZM4eEhASGDBniPCEASE5O5vrr\nrycxMZGRI0fy448/AuXR9CuuuILnnnuOW265BSi/u7N8+XJGjx7NFVdcwccff+zcztKlS0lMTGTI\nkCHMmDEDk8kEwMmTJ7nhhhsYNmwYDz74IHa7vVZ9P3XqFF27dgXK7/Y88MADPP744yQkJDBy5EgO\nHz4MQGFhIQ8//DAJCQkMHTqUr7/++rzbTElJYezYsQwcOJAnnngCu93OAw88wAcffHDWMn379sVm\ns1XZP71ez/jx49m5c2e1/YiLi+Odd94hISEBu91+VmbL4sWLGTlyJImJifznP//BaDQ2yPsnhBDC\ns+n1egYMGMCBAwcAMJvNPPXUUyQkJDBixAheeOEF53f/wYMHufHGG0lMTOTaa69l+/btANx4442k\np6eTmJiIxWI5p41evXqxa9eus7L61q5dS//+/Z2P63OusHjxYq655hoGDBjA2rVrK93PlJQUevTo\n4Xzco0cPNmzY4AzOvPnmmwwcOJDRo0fz7rvvMmTIEAAee+wxFixY4Fzv749rcw6ze/duxowZw/Dh\nwxk3bhwnT54EyjNGpk2bxuDBg7nlllvqnHH6zTffMGXKFG699Vbmzp3Lrl27uPHGG5k6darzAn7d\nunVcffXVJCYmMmnSJE6cOAGUZ2E+8cQTjB079qxzK4CpU6fy4YcfOh8fOHCAK664AofDwWuvvebM\nPJk0aRKZmZm17vfIkSMxmUwcOXIEOP/53GOPPcbzzz/PNddcw7p16846Duf7u3Q4HPzf//0fgwYN\nYuzYsRw8eNDZ7i+//MJ1113HyJEjGTFiBOvWrat134U4HwlKCOGB3nvvPVJTU1m1ahWrV69mw4YN\nzjTOp556ijvvvJP169czefJknn76aed6+fn5dOnShU8//dT5XGpqKsuXL2fBggW8+uqr2O12kpKS\nmDdvHosWLWLLli34+fkxb948AF5++WX69evHpk2buPXWW9mzZ0+99uWHH35gwoQJbNiwgcsuu4xF\nixYB8MILL6BWq1m3bh1fffUVb7zxBikpKZVuY9euXXzyySesX7+eX3/9la1bt3L11VeflZGxceNG\nrrrqKrTa6hPArFar8+5Cdf1QFIUNGzag0Wicz+3du5cPPvjA2adWrVrxyiuvAA3//gkhhPAsBQUF\nrF69mvj4eAAWLVrEmTNnWLNmDd9++y1JSUmsXr0ah8PBjBkzuOWWW1i/fj1z5szhwQcfpLi4mOee\ne855F7+yu916vZ5+/fqxefNmAIqLizlw4ICzTaj7uUJeXh5qtZpVq1bx+OOP8/rrr1e6n1deeSUP\nPPAAixcvJi0tDSjPhlSpVKSkpLBo0SKWLVvGsmXL2Lt3b43eu5qewxQXF/Of//yHGTNmsHHjRiZN\nmsTUqVMB+Prrr8nJyWHjxo288cYb7Nixo0ZtV2bnzp3Mnj2bRx55BID9+/dz44038sorr5Cens6T\nTz7JW2+9xfr16xk0aBBPPfWUc93vv/+ed999l9tuu+2sbSYkJLBlyxbn440bN5KYmEhaWhrr1693\nHqvhw4fz008/1anfdrsdvV5f5fkcwE8//cSyZcsYMWKE87mq/i63b9/Ozp07WbNmDZ9++ilJSUnO\n9V588UVmzpzJ2rVrWbhwoUcO5RFNlwQlhPBAW7duZcKECej1enx8fLj22mv57rvvAFi+fLnzx6V3\n797OOwdQfrE9fPjws7Z17bXXAnDRRRdhNpvJzc1ly5YtjBw5koiICABuuukm5/aTkpIYOXIkAN27\nd6djx4712pfo6GguvvhiALp27UpGRoZzHydNmoRarSY4OJjhw4c7+/BPCQkJeHt74+3tzcCBA9m7\ndy8DBw7kxIkTzjsFmzZtcva7KsXFxXz++efO96m6fgwaNOicbWzbto2EhARCQkIAuOGGG5yZFw39\n/gkhhHC/iRMnkpiYyNChQxk6dCh9+/bl7rvvBsp/E8aNG4dWq8XLy4trrrmGnTt3curUKXJychg1\nahQA3bp1o1WrVvz+++81anPUqFHO4PumTZsYPHgwavVfp+51PVew2Wxcf/31QPm5QXp6eqXtv/TS\nS9x8882sWrWKq6++miFDhjhrEuzevZtLLrmEsLAwtFptjWtJ1fQcZvfu3URERDgzQ66++mpOnDhB\neno6SUlJDB8+HK1WS1BQ0FlDXP4pIyPjnHoSL7zwgvP1qKgooqKinI+9vLzo168fUB6wuOyyy2jf\nvj1Q/lu/a9cuZ0Zmjx49CA4OPqfNQYMGsX//fvLz84G/ghIBAQEYjUZWrVpFQUEBEydOZPTo0TV6\n3yooisLSpUuJiIggKiqqyvM5gH79+mEwGM7aRlV/l7/++isDBw7E19cXLy+vs4IZISEhLF++nLS0\nNKKiopw3Y4RoCFJTQggPVFRUxPPPP8+rr74KlKdodu/eHYBVq1axePFiSkpKcDgcKIriXE+j0eDn\n53fWtvz9/Z2vQXmEvKioiI0bNzrvLiiKgtVqBcrvAP19G/Udv1rRfkUfKlJai4qKmDZtmrNfZrP5\nvMWn/v6j7+/vT3Z2NgaDgeHDh7N69WrGjh1LdnY2l156aaXrb9iwgd27dwOg0+kYPny4885Gdf1o\n0aLFOdszGo2Eh4c7HwcEBJCbmws0/PsnhBDC/SpqShiNRufQg4rMPKPRSGBgoHPZwMBAcnNzMRqN\n+Pv7o1KpnK9VXJiGhoZW22b//v154oknyM/PZ82aNdx7770cPXrU+Xp9zhV8fHwAUKvVOByOSts3\nGAzceeed3HnnnRQWFrJ+/Xqee+452rRpQ0FBwVm/bxVB+urU9BymsLCQkydPnvV7rNfrMRqNFBQU\nnHVuERAQQElJSaXtVVdT4u/H7Z+P8/LyztpHf39/FEUhLy+v0nUr+Pj4cPnll7Nt2zZ69+5NYWEh\nvXv3RqVS8cYbb/Dhhx/yzDPPcMkllzB79uxq63PY7Xbn+6AoCjExMSxYsAC1Wl3l+dz5+ljV32VB\nQcE55zcVnnvuORYuXMjtt9+Ol5cXM2bMaFJFQ4Vnk6CEEB4oPDycO+6445zof2ZmJk888QRfffUV\nXbp04dixYyQkJNRp+9dddx2PPvroOa8FBARQXFzsfFxRK6GhhYeH89ZbbxEbG1vtsgUFBWf9v+JH\ndtSoUTz//PP4+/uTkJBw1h2kv/t7ocv69KNCaGio8w4IlKecVpxgNtb7J4QQovEFBwczceJEXnrp\nJRYuXAic/zchJCSEgoICFEVxXgDm5+fX+AJep9MxePBgli9fzvHjx4mPjz8rKOHKcwWj0ciBAwec\nmQoBAQGMGzeO7du3k5KSgr+/P0VFRWctX+GfgY6K3/Da9Cs8PJyOHTtWOntVQEDAedtuSCEhISQn\nJzsfFxQUoFarCQoKqnbdhIQENm7cSF5eHgkJCc7j37dvX/r27UtpaSkvvvgiL7/8crUZB/8sdPl3\nVZ3PVbVf5/u7rOq9DQ0N5cknn+TJJ59kx44d3H///QwYMABfX98aty3E+cjwDSE80NChQ/nqq6+w\n2+0oisKCBQv44YcfMBqN+Pj40LFjR2w2G0uXLgU47x2C8xkyZAjfffed88dm06ZNvPvuuwD07NmT\njRs3ArBnzx5nUaeGNmTIEJYsWQKUp5I+99xz/Pnnn5Uu+91332E2myktLWX79u306dMHgMsvv5z8\n/Hw++eSTs1IMXdWPCoMGDXKebAAsWbKEgQMHAo33/gkhhHCP22+/neTkZH755Reg/Ddh2bJl2O12\nSktLWbFiBQMHDqRNmza0bNnSWUhyz5495OTk0L17d7RaLaWlpdUWZx41ahTvvfcew4YNO+c1V54r\nmEwmHnjgAWcBRIDjx4+zb98++vTpQ3x8PElJSRiNRmw2G8uXL3cuFxYW5iyQePLkSWdtpdr0q0eP\nHmRnZ7Nv3z7ndh5++GEURaFnz55s2bIFu92O0Wjkhx9+qPF+1Ub//v1JSkpyDjFZsmQJ/fv3r1Ht\nqsGDB5OcnMymTZuc5yc7duxg9uzZOBwOfHx86Ny581nZCnVR1fnc+VT1dxkfH8+OHTsoKyujrKzM\nGQyxWq1MnDiRrKwsoHzYj1arPe/NICFqSzIlhHCziRMnnlVEcc6cOUyYMIFTp04xatQoFEXh4osv\n5tZbb8XHx4crr7zSWc/gscceY8+ePUycOJH58+fXuM2LLrqIe+65h4kTJ+JwOAgJCWH27NkAPPzw\nwzz44IOsWLGCHj16cPnll593O38fFgHQpUuXGk85NW3aNGbPnu28SzJgwADi4uIqXfbyyy93Vqke\nNGgQAwYMAMrvHiQmJrJ582Z69+5do3br048K3bt3Z/Lkydx88804HA66dOnCrFmzgNq9f0IIIZoe\nPz8/Jk+ezIsvvsiyZcuYOHEiJ0+eZNSoUahUKhITExkxYgQqlYpXX32Vp59+mjfffBNvb2/mzZuH\nj48PcXFxBAYG0r9/f7799ltatWpVaVuXXnopKpWq0ppJrjxXaNWqFQsXLmT+/PnMmTMHRVHw8/Nj\n5syZzhk5xo8fz3XXXUdQUBBXXXWVc3atcePGMWXKFK666iq6du3q/H3t3Llzjfvl5eXF/PnzeeaZ\nZygpKUGn0zF16lRUKhXjxo0jKSmJYcOG0apVK4YNG3bW3f2/q6gp8U9z586t9j1o2bIlc+bM4d57\n78VqtdKmTRueeeaZGr1/fn5+XHTRRRw6dIiePXsCcMkll7BmzRoSEhLQ6/UEBwfz3HPPAfDII484\nZ9CojarO586nqr/LwYMHs23bNhITEwkNDWXgwIEkJSWh0+kYO3asc+irWq3miSeewNvbu1b9FeJ8\nVMrfB3MJIUQT895775GXl+esnC2EEEKIxpWUlMQjjzxy1qwTQghRU5JzI4RosoxGI19++SU33XST\nu7sihBBCCCGEqAMJSgghmqQlS5YwZswY7r77btq2bevu7gghhBBCCCHqQIZvCCGEEEIIIYQQwi0k\nU0IIIYQQQgghhBBuIUEJIYQQQgghhBBCuEWTnBI0O7vyaX/qIyjIh7y80gbfridorvsm+9W0NNf9\ngua7b7JfTU9j7FtYmL9Lt+9qrjiHgOb9d9VUyDFwPzkG7ifHwP3kGFSuqvMHyZT4H61W4+4uuExz\n3TfZr6alue4XNN99k/1qeprzvnk6ee/dT46B+8kxcD85Bu4nx6D2JCghhBBCCCGEEEIIt5CghBBC\nCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQ\nQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHc\nQuvuDjQlZqudgmIzgX4GDDrNWc95G7SUmW3nvJadV4rV5kBRAYqCXqcl0Fd/zrIN2aeGWL622xVC\nCCGEEEIIIWrLZUGJXbt2MXXqVDp16gRAbGwsd911F4888gh2u52wsDBeeukl9Ho9K1euZNGiRajV\nasaNG8cNN9zgqm7Vid3hYOmWVJJTsjEWmgkOMNCzUygKsDclG2ORBbUKHAqEBBjo0SkURVH48fcz\nmK2O82432F9Pr7hwRg/oSHGppVYBgMr6FB8bxvghMWjU5ybA1HT52m5XCCGEEEIIIYSoK5dmSlx6\n6aXMnz/f+XjmzJlMmDCBESNG8Oqrr7Js2TJGjx7NW2+9xbJly9DpdIwdO5bhw4fTokULV3atVpZu\nSWVT0inn49xCM5t3nz5rGYfy12tb/vHa+RiLLGxKOsWO39IxWxy1CgBU1qeKxxOGxdZ5+dpuVwgh\nhBBCCCGEqKtGvfW9a9cuhg4dCsDgwYP56aef2LdvH926dcPf3x8vLy969erFnj17GrNbVTJb7SSn\nZLu0DZPFgcJfAYClW1Lr3KfklBzMVvs/tm+r0fK13a5oOKUHU0m5/UEsWTk1Xkd98gDancvAUc/j\nYjND/kmwW+q3nUpY7fBnpoH8ssbNsklOsfLFdyYcFdFCD/Pb/kJefOsIpWUX5mfK7lD47Jt0lq7M\ncHdXhKi3nPwy5i/7jRNnCt3dFSGEEKJJcmmmRGpqKvfccw8FBQVMmTKFsrIy9Ho9ACEhIWRnZ5OT\nk0NwcLBzneDgYLKzqw4CBAX5oNU2fJ2DsDD/c57LyCnBWGRu8Laq8ltaLv8e442XvvLDU1Wf8opM\naPQ6wkJ9a718bbfrCSo7Zk3Rronzyd/8IwEvPARUv1+KxUTxspUoNistrvZDpa3bR1lRFPKPncRm\nKaJFYDt03n512s757Ep1kF0M7cN1QOMcr2PpVpZsLMbbS01oqD8ajcrlbULN9y0lrYgX3jyC3QG+\nft6EBhtc3LP6aehjZrU6eObVg2zZkc1lvYLc9hluLt8dlWnO++aJik1W9qbm8PJnu5l5cy+0Ghnq\nKIQQQtSGy4ISUVFRTJkyhREjRnDy5EkmTZqE3f7XXUFFqfwO5vme/7u8vNIG62eFsDB/srOLznne\nbrUT7G8gt7DxAhM5+WWkHcslPMin0ter6lOQvxd2i/WsfQkK9K7R8rXdrrud75g1NUW/7iNn848E\nXHkZpohI/KHa/dL8thVtWTG27oPJySure+OmAigtAoM/+cUKFDfc+5lTouFEjhf+Bjs+mADXH68y\ns8K8JaXY7HDjUD1GY7FL26tQ07/F7FwLj845hMns4JF7O6LYLWRnN3yGSkNp6M+Y2exg7oIj7Pm9\nkK6xftx/Rzu3fIaby3dHZRpj3yTocbaolgFc2SOSH/ZlsPrHY4we0NHdXRJCCCGaFJeF8yMiIhg5\nciQqlYp27doRGhpKQUEBJpMJgMzMTMLDwwkPDycn56+U9aysLMLDw13VrVoz6DTEx4Y1aptB/l4E\n+p3/7mlVfYqPDT2nWKaXXluj5Wu7XdEw0l//AIDW0++u2QqmEjT7d6IYfLB37V/3hh0OKM4EVOAX\nUfftVMJqh5RsPSoUOoebUTdCsoKiKHy12UxugcLQPjo6R3nW5EIlpXbmvJ5KXoGV28e3oW9vz6mb\n0xhKSu3MfvUwe34vpFe3AJ6aHoOvj3yniOZh/JBOhLbwZs1Pxzl+pnkGvIQQQghXcVlQYuXKlXzw\nQfnFVnZ2Nrm5uVx//fVs2LABgO+++44BAwbQo0cPfv/9dwoLCykpKWHPnj306dPHVd2qk/FDYhjW\npw0hAV6oVRAS4MXQ3q0Z0rs1wf7lwYOKi66QAANDerdmcK9WGHRVv73ne70mAYDK+jSsTxvGD4mp\n1/K13a6on+LkPyjY+iP+/fvgf1nPGq2j+eMHVFYz9m6DQFeP1P/SbHDYwCcENPq6b6cSabl6LHY1\n7YOt+Oobp67DT7/b2Jdqo0MrNQl9G3Z/6stqczD3rSOcOG1i1LAwrrnKcwKvjaGg0MpTc1M4cLiE\nKy4N4rH7O2IwSIq7aD68DVqmju+J3aHwwZr9WG3nn3lLCCGEEGdz2a3EIUOG8NBDD7F582asViuz\nZs2iS5cuPProoyxdupRWrVoxevRodDodDz74IHfeeScqlYr77rsPf3/PSg3VqNVMGBbLmIHRFBSb\nz5q684ZBMRQUm/E2aCkz2856bdzgTmTnlWK1OVBUgKKg12kJ9NVTZrbh56Nj+fajJKfkkFdkIsjf\ni/jY0BoFAKrqU32Wr+12Rf2kv1aRJXFXzVYoyUdz6BcU30DssZfUvWGbBUqNoNaCb2jdt1MJY6mG\nM0U6/PR22rWwNui2z+dUlp3lP5jx8YJbErzQNEZqRg0pisLCRSf47UARl8UHcvuNbdzdpUaVY7Qw\n6+XDnD5jZviVIfx7UjuPOj5CNJSeseEMim/NtuTTrPrxKNdfGe3uLgkhhBBNgsuCEn5+frz99tvn\nPP/RRx+d81xiYiKJiYmu6kqDMeg059R5+Ptz/j76c15rE155gKVi2foGACrrU0MsX9vtitor+e0g\n+Zu2439ZPP79etdoHe2+ragcNqw9hoKmHh/f4jOAAn4tQdVwd6xtDjj0v2EbceGWRhm2YTIrfLLO\nhN0BE67yooW/Z92B/3LlGbbuNNKpgw/TJ3e4oC7I0zNNzHo5lexcC6MTw5l0Q2tUqgtn/8WF54ZB\n0fyelsvan04Q3ymMDpEB7u6SEEII4fE86+y9iTFb7WTlldZ7qsyKAIBkJFxY0l9/H4BW0++q0YWa\nqiAL9ZFkHIFhODr0qHvD5iKwFIPOBwwNm5V0JFeP2aamXZAVf4Pr05cVReGrLWZyChQG99bRxcPq\nSGzZmcuSFRlEhOp5fGr0BTVk4eiJUv77fArZuRZuGdNKAhLiguBt0HLHyM44FIUP1hyQYRxCCCFE\nDXjWGXwTYXc4WLolleSUbIyFZoIDDMTHhjF+SAwa9YVz0SHqrvTPFPLWb8Ovd3cCBlxao3U0ezej\nUhRs8cOhrn9nivK/4paAf0towIvEvDI16YU6fHQO2gc1zrCNn/+wsfewjahINSM8rI7Eb/sLWfDx\ncfx8NTw5PYYWATp3d6nRHEwtZs7raZSU2pl8S1tGDGncYsFCuFOXqGCG9GrNlj2nWbHjKGMHyTAO\nIYQQoipyBV0HS7eksinpFLmFZhQgt9DMpqRTLN2S6u6uiSbi9LzyWhKtZtQwSyLnFJoT+3GEtsXR\npnPdGy7NBbsFvINB61X37fyD3QGHsgzQiLNtnM7+Wx2JRC80Gs+5C3/idBkvvnUUlUrFY1M60jqy\n4d5rT7f3z0JmvZxKmcnO1LvbS0BCXJDGDoomrIUX63YdJy29wN3dEUIIITyaBCVqyWy1k5ySXelr\nySk59R7KIZq/0oOp5K3ejG/PrgQO6lf9CoqCds93ANh6Da97doPdCqU5oNKAb8NeKB416jHZ1LRt\nYSXAy/XpyiaLwuJ1Jmx2uGm4F0EeVEfCmG9lzutplJbZeeCO9lwU51mFe13pp915PDsvDYdD4dH7\nOjKoX4i7uySEW3jptdwxsguKAh+uOYBFzg2EEEKI8/KcM/kmoqDYjLHQXOlreUUmCoorf02ICunz\nPgSg1fS7a5YlkZGGOvMojladUCI61L3hkixQHOAXDuqGq19SYFJzqkCLt85BVCMM21AUhWVbzOTk\nKwzqpaNrB88ZhVZmsvPsvFRnHYUBfYPd3aVGs2VHLi8vOIpWo+LJ6TFcGt/C3V0Swq3i2gUxrHcb\nMnJLWb79qLu7I4QQQngsCUrUUqCfgeAAQ6WvBfl7EehX+WtCAJQdPoZx5UZ8Lo6jxbArql9BcaBN\n3giALX5Y3Ru2loKpoHzIhlfDXSzaHXAwq/xvvnOYGU0jfKPs+tNGcoqN9i3VjOznOXUk7HaFV94+\nypHjZQy/MoTrR0a4u0uNZtXGLN748Dg+PhpmP9yJbl0unOwQIaoyZmA04UHebPjlBKmnZBiHEEII\nURkJStSSQachPrby1Pf42FCZQUNUKX3+B6AotK5hloT6xH7UxnTsUd1QglvVrVFFgaIz5f/3a9ji\nlsfydJRZ1bQOtBHo7fphG+k5dr793oy3ASaO8Jw6Eoqi8N5nJ9n9WyHxFwfw74ntLoiZJhRFYemK\nDD784hRBgTqefSyW2I6+7u6WEB7DoNdwx8guAHywZr8M8RRCCCEqIUGJOhg/JIZhfdoQEuCFWgUh\nAV4M69OG8UNi3N014cFMR06Q++0GvLt2okXCldWv4LCjSd6EolJj6zG0Hg3ng80EhkDQ+9R9O/9Q\naFJzMl+Hl9ZBx2BLg233fEwWhcVrPbOOxOffnGTDthw6tPPm4f908JhgiSs5HAoffnHKOeXpczNj\nadfa293dEsLjxLZtwfBL2pKZV8a3Pxxxd3eEEEIIj+M5g7GbEI1azYRhsYwZGE1BsZlAP4NkSIhq\npc//CBwOWk+7E1UNpvRUpyWjLsrFHnsJBNSxYKDDDsVZ5dkRfuF120Zlm1XgULYBUBEXbnL5sA1F\nUfh6q5nsfIWB8Tou6ug5X107fjGy8ONjhATpeGJqNN7ezf+7wG5XWPDxcbbsNNK2lRezHowhOMhz\nhtJc6DIyTXy45BR9egSSMEhmP/EE113ZkX1puWz89SS9YsOIbSs1V4QQQogKnnOrsQky6DSEB/lI\nQEJUy3T8FDlfr8U7tiNBI4fZQye+AAAgAElEQVRUv4LNinbfFhSNDlu3QXVvuCQbFDv4hIFGV/ft\n/MPxPB0lFjWtAqwENcKwjV/229hzyEa7CDWjLveci9/9KcXMf/84Pt4anpx+YVyYW60OXn77KFt2\nGonp4MOcx2IviP1uChRFYc2mM8yYdZCkfYUUl8hQAU9h0Gm4c1QXUMGHaw9gtsixEUIIISpIUEKI\nRpDxxsdgt9OqhlkSmkO7UJUVYe/cF3wC6taozQRlRtDowafhZoEoNqs5kafDoHXQMcT1wzYycux8\ns83z6kicPmPi+TfScCgKz87sSvs2zX/ogsls59n5afy8O5+LO/vxfw91IsDPc7JWLmTFJTZeXniU\n5+cdQq2GGZOjGDOqpbu7Jf4mpnUgCZe2IyuvjK+/T3N3d4QQQgiPIWeTQriY+VQGOV+uwiu6PcHX\nVD+DhmIqRfPHDyh6L+wXDahbo2cVt4wAVcPEHx0KHMzSo6AiLsyM1sVhTbNFYfG68joSExO9CA7w\njDhqQaGVZ15LpbjEzpTb23NJfDDZ2UXu7pZLFZfYmPN6GofSSrikZyAP/acDep1nHI8L3R+Hipj3\n3jFyjFa6dQlgyu1tCQ+VmaA80XUDOrAvNYdNu0/ROy6MuHZB7u6SEEII4XZyRimEi2W8+TGK7X9Z\nEprqh/qYk7aispSVByQMdbz7bi4qnwZU7weGhpue8WS+jmKLhpb+VoJ9XJt+rCgKX28zk5WncGVP\nHRdHe0YM1Wxx8NwbR8jMtnDDNS0ZOqCO9T6akPwCK0++eJhDaSVc2TeIR+7tKAEJD2CzKXz69Wme\nmnsYY76Vm0ZH8sbzPSUg4cF0Wg13jOqCSgUfrDmAyWJzd5eEEEIIt5OzSiFcyHz6DNlfrMDQoS0h\n115V/QqlRVj2fI/i7V8+dKMuFAcUZwKq8iyJBlJiUXHMqEOvcRDdCMM2fj1gY/fB/9WR6O8ZNQvs\nDoXX3ztGSloJg/oFc9PoSHd3yeWycsw8/nwKx06VkTg4lKl3RaHVesYQmgtZRqaJmc8f4us1mYSH\n6Hn2sVjG/SsSrYcMbxLnF90qkBGXtSenwMSybTKMQwghhPCMW49CNFMZCxajWG20euAOVNrqP27a\n37eBzYKtdyJo63ghXpIDDiv4hIC2Ye6YKgoczDKgoCI2zIyra7ueyf2rjsQtiV4ec6G16MvTznoK\n997eDpXKM/rlKsdPlvL48ynk5lkZMyqCm69v1ez32dMpisKWHUbe//wkJrODQf2CufuWtvhcALO+\nNCfXXlE+jGPLntP0jg2jS1TD1f0RQgghmhrJlBDCRSxnssn+fDmGdq0JuX5E9SsUGVEfTkLdIhRH\nTK+6NWq3QGkuqLXlM240kFMFWorMGsL9bIT6unbYhtmqsHitCasNxg/zIiTQM76m1mzKYtV3WbRt\n5cVjUzqic3VBDTdLO17KfY/tJTfPyqQbWnPLmNYSkHCzimKWb3503FnMcurdURKQaIJ0WjV3jOqC\nWqXiw7UHKTPLMA4hhBAXruZ9Vi0ajNlqJyuvFLNVpjGrqYyFi1HMFiLvvx21rgZZEns3o1IcGPqP\nBHUdLzKKMwGlfNhGDWb5qIlSi4qjRj06jUJMqLlBtlmVb7eZycxTGNBTRzcPqSOxKzmfD744RVCg\nliemRePr4xn9cpX9KcU8NTeFgiIr/7m1HdeNaLhhQKJu/jhUxPSnD/BjUj6dY3x5bXYXBvSVu+tN\nWYfIAEb2a0duoYmvtqa6uztCCCGE2zTvM2tRb3aHg6VbUklOycZYaCY4wEB8bBjjh8SgaaCL3ubI\nkpVD1iffoG/dktAbRlW7vMqYgebYbziCI9HG9oSckjo0Wlxe4FLnDYY6TiP6D4oCh7INOBQVnUNN\n6F18Q/bXA1Z+PWCjbbiaqz2kjsThoyW8+s5R9Do1jz8Q3eyLCO7+rYC5C45gtyvMergL3Ts3/6lO\nPZnNprBkRTrfrM1EpYKbRkcyZlRLj5kaV9TPNZd3YO/hHLbtTad3XDgXdZBAkxBCiAuPXFWKKi3d\nksqmpFPkFppRgNxCM5uSTrF0i9zVqcqZtz9DMZlpdf9tqPW6apfX7N0EgC1+OKq6TN+pKFCUWf5/\nv5bQQGn2pwu1FJg0hPraCPdzbZbMmVwH32w146WHiSM8o45EZraZZ+elYbMqPHhPB2I6+Lq7Sy61\n85c8nn8jDRSYeX80QweEu7tLF7TzFbOUgETzodOquXNUVzRqFR+tOyDDOIQQQlyQJCghzststZOc\nkl3pa8kpOTKU4zysuXlkLfoKXWQ4oeP/Ve3yqsxjaE6n4IjogBIZU7dGy4xgN4NXUHmmRAMos6o4\nkqtHq1aIdfGwDYtV4ZN1JiweVEeiuMTGM6+nUlBo466b23JJz0B3d8mlvvs+h1f+lxHy1IwYendv\n3vvryRRFYfP2XGbMOkjq0VIG9Qvm1dld6Bzj5+6uCRdo39KfUf3aYyw0s3TLYXd3RwghhGh0MnzD\nxcxWOwXFZgL9DBhcPWVBAysoNmMsrPxiNK/IREGxmfAgn0bulec7885nOMpMtP3v/agN1QxBUBS0\nyRuB8iyJOmU4OGxQkg0qNfg1THHLvw/biAszoXfxN8W335s5Y3TQv7uO7jHu/1qyWh288OYRTmeY\nuTYxnBFDGq5oqCdavj6TRV+eJsBPy1MzYoiOks+1uxSX2Fi46AQ/JuXj461mxuQoqR1xAbj68iiS\nD+fww74MeseF061jiLu7JIQQQjQa95/9N1PNoRZDoJ+B4AADuZUEJoL8vQj0a95j6+vCaswn86Mv\n0UWEEjZhdLXLq08dQp19AnvbLihhbevWaHEWKI7yYRvqhvlIZxRpyS/TEOLj+mEbSQes/LLfRpsw\nNf+6wv11JBwOhTc/Os6fh4q5vE8LJo1t7e4uuYyiKHz+bQbLVp8hJEjHrIc60SbSy93dumD9caiI\nee8dI8dopXOML9MnRzX7GiainFaj5s5RXXhmURIfrzvIM3deio9X9UP/hBBCiOagaVwdN0ENVYvB\nnbNeGHQa4mMrv0McHxva5DI/GkPm+1/gKCkl8t5JqL2quZhwONDs3YiiUmHvObRuDVrLwJQPGgN4\nB9VtG/9gsqlIy9GjUSvEhlkaqjxFpTKNDr7+ex0JrfvHyn/+bTo//JxH5xhfpt4dhVrt/j65gsOh\n8N5np1i2+gyR4QaemxkrAQk3sdkUPv36NE/NPYwx38pNoyOZ82isBCQuMO0i/LmmfxR5RWaWbJa6\nTUIIIS4ckinhAtXVYhgzMLraC3pPybQYP6S8xkFySg55RSaC/L2Ijw11Pi/+YssvJPODJWhDgwm7\n+fpql1cf+w11fhb26HiUFnWYclFRoOhM+f/9G6a4paJASrYeu6IiLtSMQavUe5vnY7EqLP5fHYlJ\nI7wIbeH+GOl33+fw9ZpMIsMNzLw/Gr3O/X1yBZutPBvk+5+MRLXx5qkHYwgKlLuy7pCRaeLVd4+R\nerSUiFA90yZHSe2IC9jIvu1JTslhx+8Z9I4Lo0dMqLu7JIQQQricBCVcoCFqMVRkWlSoyLQAmDAs\ntuE6Ww2NWs2EYbGMGRjdZGtjNJbMD5ZgLyqh7bS70PhUc8fZbkO7dzOKWoOt+5C6NWgqAFtZ+fSf\n+oaZFSKzSIuxVEuQt42W/q6tAr/8BzNnch1c3k1Hj07u/ypK/qOQdz45gb+fhienRxPg7/4+uYLF\n6uDlhUf5dW8BsdG+PDktGj/f5rmvnkxRFLbsMPL+5ycxmR0M6hfM3be0xcdbvl8vZBXDOGZ//Csf\nrz/InLsuw1eGcQghhGjmmudtQDerqMVQmZrUYvDEWS8MOg3hQT4SkDgPW2ExZ97/Am1wC8Injal2\nefXhJFQl+dhjLwW/FrVv0GGHkkxABX51yLKohNmmIjVXj0alEOfiYRu7D1rZ9aeN1mFq/jXA/XUk\njp4oZe5bR9CoVTz+QDSREc1zGENZmZ1nXkvl170F9Ojqz6wHYyQg4QbFJTZeXniUNz86jloNMyZH\nMfXuKAlICADahPtx7RUdKCi28MUmmY1DCCFE8ydBCReoby2GmmRaCM+S9dFS7AVFtPz3LWh8q5m5\nwGpG+9s2FK0ee7eBdWuwNKc8MOEbCpr630WrGLZhc6joGGLBS+e6YRtZeQ6WbTVj0JUP29C5uY5E\njtHCs/PSMFsczTp1vqjYxtMvH+aPg8Vc1iuQ/06NxttLLoIb2x+Hipj+9AF+TMqnc4wvr83uIrNr\niHOM6NuOqJb+/PjHGZIPV36TQgghhGgu5BaZi9SnFoPMetG02ItLyHj3czRBgUTcfkO1y2sO/IjK\nXIKt+2DwqsOwC5sZSnNBrQOfhpk2LqtYQ26plhZedloFuG7YhtWmsHitCYsVbkk0uL2ORGmZnWdf\nTyM3z8pt41pzeZ+GKRbqaYx5Fma9msrJ0yYG9w/mvtvao9E0zwKenspmU1iyIp1v1maiUsFNoyMZ\nM6qlHAdRKY1azZ1Xd2X2R7+weP0hOrVpgZ+3DOMQQgjRPElQwkXqU4uhItPi7zUlKsisF54n8+Ov\nsOcV0PqRe9D4VRNkMJWg2b8TxeCDvWv/2jemKFBcUdwyAlT1v6i32CE1x4BapRAXbnbpsI3lP5jJ\nyHXQr5uW+Fj3nmDbbApzFxzh2KkyRgwJ418J4W7tj6tkZpt5+uXDZGZbGDUsjDtubNNsZxTxVFLM\nUtRF61BfRg/oyLJtaXy+MYXJ/7rI3V0SQgghXEKCEi5WUYuhtmTWi6bBXlrGmbc/RRPgR8QdN1a7\nvOaPH1BZzdj6jARdHTJeLMVgKSkvbKn3r0OPz3U4x4DVoSI6xIy3C4dt/PRbGT//YaNVqJprB7g3\n20dRFN5efIJ9fxZxSc9A7pzQBpUrozFucuJ0GbNeTiWvwMr4f7Vk/LWRzXI/PZUUs6y7uXPnsnv3\nbmw2G//+97/p1q0bM2fOxGazodVqeemllwgLC2PlypUsWrQItVrNuHHjuOGG6rPVmpKES9uyJyWb\nn/dn0jsunN5xlQ8NFUIIIZoyCUp4qIpMi2suj+JUVjFtwv3w93F/QUBxtqzFX2Mz5tNqxt1oA6q5\n81mSj+bQLyi+gdhjL6l9Y4rjrylA/RpmCtDsYg3ZxVoCvOy0CXTdsI3sPAcfrSgoryMx0v11JJat\nPsPmHblEt/dhxr+j0DTDzIHDR0v4v1dTKS6xc8eNbbjmquaZCeKpiktsLFx0gh+T8vHxVjNjcpTU\njqihn3/+mcOHD7N06VLy8vK47rrruOyyyxg3bhwjR47ks88+46OPPmLKlCm89dZbLFu2DJ1Ox9ix\nYxk+fDgtWtSheLCH0qjLZ+N4+sNf+WTDQWLbBsq5gBBCiGZHghIeyu5wsHRLKskp2RgLzQQHGIiP\nDWP8kBg0aqlP6gnspSbOLPwEtZ8vLe+6qdrltfu2onLYsPYYCpo6fPRKc8FhBe9g0NY/08Bqh5Qc\nPSqVQlyY64ZtWG0Ki9eZMFkUbk4wEObmOhLbfsrl828zCAvR899p0XgZmt9d6z8OFvHsvDQsFgdT\nbm/P0AENU3tE1Mwfh4qY994xcoxWOsf4Mn1yFOGhUguopi655BK6d+8OQEBAAGVlZTz99NMYDOXv\nYVBQEH/++Sf79u2jW7du+PuXZ4316tWLPXv2MGRIHadZ9lCRIb5cf2VHvtyaymcbU7jn2ovd3SUh\nhBCiQUlQwkMt3ZJ6Vk2J3EKz8/GEYbHu6pb4m+zPv8WanUurqXegbRFQ5bKqgizUR5JxBIbh6NCj\n9o3ZrVCSA2oN+DZM+m5qjh6rXU3HYAu+etcN21ix3Ux6joPBfXzoFefegMQfB4t468MT+HhreHJa\nNEGBza9w3K9783lpwVEUBR76Twf6NdPinZ5Iilk2DI1Gg49P+bDHZcuWceWVVzof2+12Pv/8c+67\n7z5ycnIIDv4r+yQ4OJjs7OY5U8VVl5QP4/jlQBa947K4pLNkPgkhhGg+JCjhgcxWO8kplZ9YJafk\nMGZgtBS7dDOHyUzGW4tQ+3gTcfeEapfX7N2MSlGwxQ+HumS6FGcCCvhGlAcm6im3RENmsQ5/g502\nLaz13t75JKdY+el3G5Gham4eGUBBfrHL2qrOyfQyXnjzCACPTelI29bebuuLq/zws5F57x9Dp1Xz\n2JSO9Ly46mCZaDhSzLLhbdq0iWXLlvHhhx8C5QGJRx55hL59+9KvXz9WrVp11vKKUrPgalCQD1qt\na35Dw8IaptZPZR6a2IcHXt7KZxtTuLxnG1r4S/ZNZVx5DETNyDFwPzkG7ifHoHYkKOGBCorNGCuZ\nDhQgr8hEQbG5TsUzRcPJ/mIF1swcIu+7FV1w1eOXVTmn0JzYjyO0LY42nWvfmKUEzIWg9QKvwDr2\n+C82OxzK1qOifNiGq8opZOc7+GqzGb0OJo3wQq9z393ivAIrz7yWRkmpnal3t6dbl+b3Q7F+azbv\nfnoSby8NT06PlgviRiLFLF1j+/btvP3227z//vvO4RkzZ86kffv2TJkyBYDw8HBycnKc62RlZdGz\nZ89qt52XV+qSPoeF+ZOdXeSSbQPogesHRrNk82Fe/2I3946+WArX/oOrj4GonhwD95Nj4H5yDCpX\nVaBGihN4oEA/A8EBld8BCfL3ItBP7o64k8NsIePNRai9vWj575urXlhR0O75DgBbr+G1L0551hSg\nkQ1S3DItV4/FrqZ9kBU/g2uGbVhtCovXmjBbYexgA+FB7vuqMZntPPt6Gtm5FiZcF8mgfs2vvsLX\na87wzicnCfDXMufRThKQaCTFJTZeXniUNz86jloNMyZHMfXuKAlI1FNRURFz587lnXfecRatXLly\nJTqdjgceeMC5XI8ePfj9998pLCykpKSEPXv20KdPH3d1u1EM69OG2DaB7D6Uza8Hs9zdHSGEEKJB\nSKZEIzNb7RQUmwn0M5x3CIZBpyE+NuysmhIV4mNDZeiGm+V8uQpLRiYt/30LutCqq+mrMtJQZx7F\n0aoTSkSH2jdWlgc2M3i1AF39hxsYS9VkFOnw1dtpF+S6YRsrt1tIz3Fw2UVaend2X90Gu0Ph1XeO\nkXa8lGEDQhh7dUu39cUVFEXhk2XpfLsuk9BgHbMe6kTrll7u7tYFQYpZus7atWvJy8tj2rRpzufS\n09MJCAhg4sSJAERHRzNr1iwefPBB7rzzTlQqFffdd58zq6K5UqtU3D6qC09/8AufbDhEXNsWcqNC\nCCFEkydBiUZS29k0xg+JAcprSOQVmQjy9yI+NtT5vHAPh8VK+vyPUHkZaPmfW6peWHGgTd4IgC1+\nWB0as0FJFqjU4Ff/omY2BxzKNgAKncMtLhu2sTfFyo+/W4kMUXPdQPedLCuKwgefn+LXvQX0vMif\nf09s16xSne0OhXc/Ocl33+fQuqWBWQ91IjRYpgp0NSlm6Xrjx49n/PjxNVo2MTGRxMREF/fIs0QE\n+TB2UDSfbzrM4g2HmHJ9t2b13SaEEOLCI0GJRlLb2TQ0ajUThsUyZmB0tZkVovHkLluD5fQZIu66\nCX14aJXLqk/sR21Mxx7VDSW4Ve0bK8kGxQF+EaCu/0f1SK4es01NuxYW/A2Oem+vMjn5Dr78Xx2J\niSO80Gndd6K88rss1m3Jpn0bLx6+tyNaN/alodlsCvPeP8aOX/Lo0M6bp2bE0CKg+c0k4mmkmKXw\nFEN6t2H3oWySD+ewa38mfS9qXllgQgghLixSU6IRVDebhtlqP++6Bp2G8CAfCUh4AIfVVp4lYdAT\nee+kaha2o0nehKJSY+sxtPaNWU3lQzc0evCueohITeSXqUkv1OGjcxAV7JphGzabwifr/qojERHs\nvq+Xn5LyWPTlaYJb6HhiWkyzGuNvNjt44c00dvySR5dOvjzzSCcJSLiYoihs3p7LjFkHST1ayqB+\nwbw6u4sEJITbVAzjMOg0fLYxhfziyotjCyGEEE2BBCUaQU1m0xCeL/fb9ZhPnCbspmvRtwyrcll1\nWjLqolwcnXpDQO0KKyqKAsUZ5Q/8W9a7uKXdAQezKoZtuG62jZU7LJzKdnBpV/fWkTiYWszr7x3D\noFfzxLToZjWkobTMzv+9lsru3wqJvziAp2d0wtdHEt5cSYpZCk8V3sKbGwZHU2KysXj9oRpPiSqE\nEEJ4GjmbbQQVs2nkVhKYkNk0mgbFZiN9/oeodFoi77u16oVtVrT7tqBodNi6Dap1W+bCXLCWgcEf\n9PW/E3vUqMdkU9M20EKAl2uGbew7bGPnb1ZaBru3jkRGponn5x/BZld44v5oOrRrPlPnFhRa+b/X\nUjlyvIzL+7Rg2uQodFqJK7uSFLMUnm5QfGt2H8pmb2oOP/5xhv7dIt3dJSGEEKLW5Iy2EVTMplGZ\nf86mYbbaycorrXJIh2h8uSs3Yj5ygtDx12BoXfXYXc2hXajKirB37gs+AbVryOGg5MwJQFVeS6Ke\nCkxqThVo8XbhsI3cAgdfbjah18KkkV7ode6p3VBYZOOZ19IoLLZxz6R2xF9cy/feg+UYLfz3xRSO\nHC9j2IAQZtzTQQISLmSzKXz69WmemnsYY76Vm0ZHMufRWAlICI+jVqm4fURnDHoNX2w6TF6RZF4K\nIYRoeiRTopFUN5tGbWfnEI1HsdtJf/0DVFoNre6/veqFLWVo/vgBRe+F/aIBtW+sNBuHzQo+oeX1\nJOrB7oBDWeUXUXFhZjQu+DOy2RQWrzNhssBNw91XR8JscfD8G2lkZJkZMyqC4VdWXYS0KcnINPH0\ny6lk51q4NiGcW8e1lkr7LiTFLEVTE9rCm/FDYli8/hCL1h9k6tju8h0hhBCiSZGgRCOpbjaN2s7O\nIRqPcfVmTKnHCL3xXxjaVj2LhubPHagsZdjih4PBu3YN2SxQakSt0+Pwrf9F9fE8HaVWNa0DrbTw\nds2wjdU7LZzKcnBJFy19urinjoTDoTD//WMcTC3hyr5B3Hx9HWY68VDHTpYy+5VU8gttTLgukrFX\nt5SLDRdRFIUtO4y8//lJTGYHg/oFc/ctbaV2hGgSBvZoxe6DWfyWlsuO3zMY0L35fA8KIYRo/uQW\nfCOrbDaN+szOIVxLcThIf/190Gho9cAdVS9cWoTmwE8o3v7lQzdqq/gMoOAX0Q5U9ftoFpnVnMjX\n4aV10CHYUq9tnc9vqTa277MSEazmukHuS2tfvOw0Pybl0zXWjym3t282F+2H0kp44sXD5BfauPvm\nttxwTWSz2TdPI8UsRVOnUqm4bUQXvPQalmw+jLHQ5O4uCSGEEDUmQQkPILNzeK68dVspO3SEkOsT\n8YpqU+Wy2t+3obJbsXUfDNpaDr0wF4GlGHQ+6APqNwWoQ6mYbUNFXJgZV5QeyC1wsHSTCZ0WJo0w\nYHBTHYl1W7JZsT6L1i0NPDalIzpd8/hK2/dnIbNePkyZyc7Uu9ozcmjVs72IuvvjUBHTnz7Aj0n5\ndI7x5bXZXRjQt/7T8ArR2EICvbhxaCfKzHY+XndQZuMQQgjRZMjwDQ8gs3N4JsXh4PRr74NaXX0t\niSIj6sNJOPyDccT0qmVDChRnlv/fv/7p+SfydJRY1EQGWAnyafhhGza7wifry+tIjB9moGWIe+4m\n/7q3gPc/O0lggJYnp8fg79c8vs5+3p3PK+8cBeCR+zpyWXwLN/eoebLZFJasSOebtZmoVHDT6EjG\njGqJRiPZKKLpGtA9kqRDWfxxxMj23zK4socM4xBCCOH5msdtxSauNrNziMaT/90PlO0/TMi1V+Ed\nE1Xlstq9m1EpDuw9h4G6lserNBfsFvAOBq1X3TsMFJtVHM/TYdA4iA5xzbCNNTstnMx00Kezlku7\nuqeORNqxUl55+yhanYr/To0mIqx5BO627szlpYVH0GpUPDktWgISLnIqvYyZzx/i6zWZhIfoefax\nWMb9K1ICEqLJU6lU3JbYGW+DliWbD5NTUObuLgkhhBDVkqCEhxg/JIZhfdoQEuCFWgUhAV4M69PG\nOTuHaFyKopRnSahUtJpadS0JlTEDzbHfcARH4mh/Ue0asluhNAdUGvCtX4p+xbANBRWxYRaXDNv4\nI83GD3utRASpuH6wewIBWTlmnp2XisXqYMa/O9Cpg69b+tHQ1mzKYv4Hx/Hx1jD7oU5079p8pjT1\nFIqisHl7LrdPTSL1aCmD+gXz6uwuMruGaFaCA7y4aWgnTBYZxiGEEKJpaB75zs1AdbNziMZVsHkn\npb8fJPia4XjHdqxyWc3eTQDlM27UtkBlSRYoDvCPrH2GxT+czNdRbNEQ4W8lxLfhi6MaCx0s+V8d\niYkjvdxSR6Kk1Mac19PIK7Bx14Q2zSKTQFEUvlp1hi+WZxAUqOXpBzvRvk0tZ24R1SousbFw0Ql+\nTMrH10fDjMlRUjtCNFv9u7Uk6VD5bBzf701nUHxrd3dJCCGEOC/JlPAwlc3OIRpXeZbEewC0mnZn\nlcuqMo+hOZ2CI6IDSmQts1qspWAqKB+y4VW/i+sSi4pjRh16jYMYFwzbsNkVPllnoswM1w00EOmG\nOhJWm4MX3jzCyXQT11wVzqhh4Y3eh4amKAofLT3NF8szCA/V8+zMOAlIuMA/i1l+PL+PBCREs6ZS\nqbg1sTM+Bi1Lt6SSnS/DOIQQQnguCUoI8Q8F3/9MSfKfBI0cjE+XKgINioI2eSNQkSVRi8wBRYGi\nM+X/92tZu3Ur2dShvw3bcEU8a+2PFk5kOugdp+XSro2fYKUoCgs+OsEfB4vp27sFt41r+nf97A6F\ntz46warvsmgT6cVzM2OJDG8etTE8hc2m8OnXp3lq7mGM+VZuGh3JnEdjiYyoX+0WIZqCIH8DE4Z3\nwmy189HaAzhkGIcQQggPJcM3hPgbRVFIf6UiS+KuKpdVnzqEOvsE9rZdUMLa1q4hUz7YTGAIBL1P\nXbsLwKkCLYVmDeF+NkJdMGzjjyM2vk+2EhakYsxgQ71nB6mLJSsy2PaTkdiOPky7Kwq1umkXJLRa\nHbz27jF+2p1PTJQPT9DtIsgAACAASURBVE6PIcBfvo4bUkamiVffPUbq0VIiQvVMmxwltSPEBaff\nRS1JOpjN3tQctu45zdDeVU9tLYQQQriDnAUL8TeFO36lePdvtLjqSnwvjjv/gg4Hmr0bUVQq7D2H\n1q4Rhx2Ks8qzI/zqNwSh1KLiqFGPTq0QE3rulLL1ZSx0sGSjCa0Gbh3hhUHf+MGAzdtz+XLlGSLC\n9Mx8IBqDoWkneJnMdl588wh7/yziojg/Hn8gGh9vGa7VUBRFYcsOI+9/fhKT2cGgfsHcfUtbeY/F\nBal8GEcch9/P56ttqXSLDiG8hQwRE0II4Vma9tm9EA0s/bX3AWg1vZosiWO/oc7PwtGxJ0qLiNo1\nUpINih18wkBT9yk1FQUOZRtwKCo6hZnRN/A1l92u8On6v9WRCG38i7p9fxaycPFx/Hw1PDk9hhYB\n7pmCtKGUlNqY/Uoqe/8sok+PAJ6cHiMXyw2ouMTGywuP8uZHx1GrYcbkKKbeHSXvsbigBfoZuPmq\nWCxWBx+ukWEcQgghPI9LgxImk4lhw4bxzTffkJGRwcSJE5kwYQJTp07FYikvxrdy5UrGjBnDDTfc\nwFdffeXK7jQqs9VOVl4pZmvDp9ML1yj8aTdFP+8hcGh//Hp0Pf+CdhvavZtR1Bps3YfUrhGbCcqM\noNGDT/0K7aUXaikwaQj1tRHmgmEba3+ycPyMg/g4LZdd1PhJVcdPlTF3wRHUKhUz74+mdcumXQcg\nv8DKk3MPczC1hCv7BvHofdEY9BIXbij/LGb52uwuUsxSiP+5rEsEvWLDSDmZz/+zd9+BUVVpH8e/\n0ye9V1oaIfSqCyrSBSyAC4qyuruIstYVdVdZ9VVcdV1dC1YsK65dXGwoIFUsSBEJaijpEErapE1m\nJlPvff+IYSmTZJJMMjPJ+fyVZO7ce6Ykmfvcc37Plh+P+Xo4giAIgnCaTj3TWLFiBREREQA899xz\nLFiwgJkzZ/L000+zevVq5syZw4svvsjq1avRaDTMmzePadOmERkZuG3+XJLEqq0FZOdVUm20ER2u\nY2RmHPMnZ6BSihMQf9Y0S6JXa1kS+XtQmGtxZo2D0Da8V08Lt0xoe/vQUzQ4FBRWaVErZfrH2juS\nk+nWgWIn2/Y6iItUMM8HORJVNXYefqYAS4PEXTemMCgzsLMAKqvsPPhkPqXlNqZPjGXxNX0CPhfD\nXzidMh98doKP15WjUMDVc5KYe0kiKpV4fgWhiUKh4NrpA8g7WstH2woZlhZDQnTH8owEQRAEwVs6\n7Sy5sLCQgoICJk6cCMCuXbuYMqVx7f2kSZPYsWMHP/30E0OHDiUsLAy9Xs+oUaPYu3dvZw2pS6za\nWsDmPceoMtqQgSqjjc17jrFqa4Gvhya0oH7XPozf/UD4hLGEjh7a/IYOG+qftyGrtbiGTmjbQWz1\njW1AtaGgC2v3WGUZ8n5dtpERa0en9u5U3Jp6ifd/zZH4/Uw9+i7OkWhocPHI8kKqahz8/opkLjg3\nsK92Hy+1cu9juZSW2/jtxQn86VpRkPCW0nIrf3ssl4/WlhMfo+XRpZlcOStJFCQEwY2IEC3XXJSJ\n3Snx+rqDSJJYxiEIgiD4h04rSjz++OMsXbr05PcNDQ1otVoAYmJiqKysxGAwEB39vxOO6OhoKisr\nO2tInc7mcJGd53782XkGsZTDjx1f/ussiVayJFQHv0dhM+MadD7oQzw/gCyBqRxQNM6S6IDSejU1\nDSqig50khDo7tK8zNeVIWKwwZ4KO5LiuXYvvdMr8a0Uxh482MH1iLHNmdOy58rWiIxbu/WcehmoH\n185L5tp5vXzSvaS7kWWZLd9WceeyQxQUW5g4LpqnHxooumsIQivOHZjAmKx4Co7VsXnPUV8PRxAE\nQRCATlq+8emnnzJixAj69HHfJlFuJmSpuZ+fKSoqGLXa+ydLcXHtv3oNUGowU13vvgNCldEKalWH\nj9FevjpuZ/PG46rZuQ/j1zuJmTSWtEvGN7ud1GDCdHA7iqAQoi6cjkLrecaBueIYFslBUGwSoQmx\nrW7f3OOy2GSKDsuoVTBugIZgndbjMXhi1QYjh0slxg7Vc9nESK+fQLf0esmyzBMv5pOdY2TcmGj+\ntmQQ6gC64n3mY/v5QB0PPpmP2eLiLzf3Z87MZB+NrGP87W+H0eTgXy/k89X2SkKCVTz4l4FMm9D2\nLjb+9ri8qTs/NqHjrrkok9ySGj76poih6TEkxbShwC4IgiAInaBTihLbtm3j6NGjbNu2jbKyMrRa\nLcHBwVitVvR6PeXl5cTHxxMfH4/BYDh5v4qKCkaMGNHq/mtqLF4fc1xcGJWV9R3ah8vhIjpMR5XR\nfWHiw42HuHZ6VoeO0R7eeGz+yFuPK3fZc437u3Vhi/tT7VmP2m7DMWYKhjoH4PDsAC47VJ0ApZoG\nImhoZczNPS5Zhl/KdDhdagbE2TAbnZg9G4FHDh52svY7K7ERCi47T4XBYPLi3lt/vT5aW8bnG0pJ\n6xvEbdf1oabau8fvTGc+tr2/1PH4i0W4XDJ33JDC+WMC83fQ3/525OTW8+xrhzFUO8jKCOGOxSnE\nx+raPEZ/e1ze1BWPTRQ9Alt4sJZrLxrAS5/msHLtQf52zWixpEwQBEHwqU5ZvrF8+XI++ugjPvzw\nQ6644gpuvvlmzjvvPDZs2ADAxo0bGT9+PMOHD+eXX37BaDRiNpvZu3cvY8aM6YwhdQmdRsWwjOav\ngv9UUMWxSpNYxtEB3u5qYvrpAHVbthM2dhTh40Y3v6G5FlXubuSQCFyZ57TxIOWA3LhsowNhp+Um\nNdUWNVFBLhLDvLtso7Ze4r2NjTkS187Uo9d17QfUb3dW885HJ4iN1nDf7ekE6QO3heP2H2p47Lki\nkGHpremiA4QXOJ0y73x0nAeeyKe61sHVc5J45J5M4mN1vh6aIASkMVnxnDswnsITRjb8UOLr4QiC\nIAg9XJf1+bvtttu45557WLVqFcnJycyZMweNRsNdd93FokWLUCgU3HLLLYSFBfYVmKmje/PV3uNu\nb6uut/HA67uJER052sxdV5Pzh/fisnF9O/QcNnXcSG4lS0L901coJCeO4VNA1YZfG7upMeBSEwS6\n8HaP0+ZUUGDQolTIZMbZvNptwyXJvP1rjsTciTp6x3dtQWB/bj3PrTxCcJCS+5dkEB3l3SUpXWnz\nNwZWvFmCTqfk3tvTGTIgsP+e+YPScitPv3qYgmILCbFalixOEdkRguAF11w0gEMltXzyTTHD02NJ\njhXLOARBEATf6PSixG233Xby6zfeeOOs22fMmMGMGTM6exhdwuZw4ZJkosO0VNfbm92uqSMHwIKp\nmV01vIDW1NWkSZXRxppvi7A02Nv9HJp/OUTtxm8IHTOM8Auan/2gqKtAWZSNFBGHlDrc8wPIMtSX\nN34dmkh7KwmyDPkGLU5JQf9YG0Ea7yamf7nDzuFSieH91Ywb2mV1SgCOlVr55wtFyLLMPbek0693\nUJce35s+21DOf1YdJyxUxQN3ZJCRKj7gd4Qsy2z9rpp/v3cUq01i4rhobrimD8FBgTuLRhD8SWiQ\nht9PH8ALH//C62sPcu+1o8SFEkEQBMEnuvYMpJs68yq+VuPZP/XsPANzJ6Sj07TtQ7bN4aLOZCMi\nVNfm+wai1rqatOc5BDjx7OsAJN95Q4uBjqp9W1DIMs6R09q2/KKhGlw20Ec1zpRop0qzCoNZTYTe\nRXK4d5dtHDrsZOuPDmIiFFw5WdelnSFq6xw88kwBJrOL2xb1Y9ig9s8k8SVZlvn3O8X8Z9VxoiM1\nLLsrgz69Are44g9MZicr3izh+z21BAcpuXNxilgGIwidYFRmHGMHJ7Bzfzlf7irhknEpvh6SIAiC\n0AOJooQXnHkV3+aQPLpfTb2VOpON+Khgj7Z3t4ShJywDqTPZqG4mPLStz2ETy8ECatZ9RcjIwURM\nGNvsdgrDMVQlB5Bi+yD1bkNIqeQEcyUolBAa16axncrugvxKHUqFzIB47y7bqDM15kiolPD7Ls6R\nsNkk/vFcIeUGO1fNTmLy+TFddmxvkiSZle8fY+2WShLjdSy7K4OEOJFz0BHNhVkKgtA5FkzN5OCR\nGj79tpiB/aJJSw7MArEgCIIQuLrvmWwXaekqfmuiwvREhHr+Ybup+FFltCHzv2Ugq7YWtOv4gSIi\nVEd0uPvnqa3PYZMTyxtnSfS6o4VZErKMeu9GAJyjprVt+YWpAmQJQuJB2f7aX4FBh0NSkBptJ9iL\nyzZcksw7X1oxW2HWeG2X5ki4JJmnXy0mv9jCpPOjuXJWYpcd25tcLpnnXz/C2i2VpPUL4dGlmaIg\n0QEizFIQfCM0SMMNlw5CkmRWfJqDqcHDzlKCIAiC4CWiKNFBLV3Fb83IzFiPlx20toShO3f00GlU\njMx0P9ugLc9hk4a8Iqq/2Ezw0Cwippzf7HaK0kKU5cVIyf2RE1I9P4CjAay1oNJBUFSbxnaqSrOK\nCpOacJ2L3hHeXbaxYaedohMSwzJUnD9M49V9t+Y/Hxxjd3YdQweGcdMf+nbpkhFvsTsk/vVSEdt2\nVJOZFswLjw0nOrJrn8fupLTcyt8ey+WjteXEx2h5dGkmV85KQqUKvPeGIASiQSnRzLoglSqjlZVr\nDyLL3s0uEgRBEISWiOUbHdR0Fb/KTWFCr1URrFNTa7Kh/fXE2WZ3ER2uZ2RmLPMnZ3h8nM5YwhBI\nmp6r7DwDNfVWosL0nD88mcvG9W3zvk48uxJkmV53XN/CLAkJdfYmAJwjp3q+c1mG+rLGr8PaH27p\ncEF+pRZFJyzbOHTEydY9DmLCFVw5Rd+lRYHPN1XwxeZK+vTSc88tqWjUgVcXbbC6eOz5In45WM+w\ngWEsvS2N8DANlVarr4cWcESYpSD4j8vOSyH/WC37Cgxs2H2UGb9p+/9XQRAEQWgPUZTooKar+Kdm\nSjS5YFgScyeknwylBNodUNlS8aO9SxgCiUqpZMHUzNOez97JkVRW1rdpPw0Fh6n6bCPBgzKJnD6h\n2e2UJQdQVp/AlTIUOTrZ8wNY68DZ0Nj+U9v+7gsFVVrsLiWp0XZCtN67YlVnknh/ow2lEq69WE9Q\nF+ZIfL3DwBsfHCMqQsP/LckgJDjw/vzUm5w8sryAvCIL546M4K4bUz0OthVOJ8IsBcG/KJUKbrhs\nMMve2M3qbYWk9wqnf+9IXw9LEARB6AHEp2kvmD85g6ljehMTrkepgJhwPVPH9Gb+5Ax0GhXxUcHo\nNKrTvm4rby9hCFQdeQ4BTjz/BkgSyXcsan6GgORClb0ZWaHEOXyK5zuXXGAuBxQQmtCu8QGU1siU\n12sI1bnoE+m9tb0uSebdDVZMDTKXjdfSpwtzJPIKzTz05EF0WiX3L0knLkbbZcf2lupaB/c/nkde\nkYWJ50Vz981poiDRTjm59dzx4EG+31NLVkYIzzw0UBQkBMEPRIRouXHWYGRkXv5sP0ZL8+3NBUEQ\nBMFbAu9SpR9ydxXf20UCm8PFpJG9cEkyPxdUnVzC0NZlID2ZtfgoVR9/SdCANKJmTmp2O2VhNsr6\nKlyZ50B4G7pCWAyNhYmQOFC1L1/A6YIfj8ookMmKs6H04kSGjbvsFB6XGJqu4oIuzJEorbDx6HOF\nuJwSd/85nbR+gbfMqMJg48EnCyirsHHJlDiuu7o3Sm++OD2E0ynzwWcn+HhdOQoFXD0nibmXJIrs\nCEHwIwP6RvHbC9P46Osi/v35AZZcORxlAGb/CIIgCIFDFCW8qOkqvje5awM6LD2GqWP6EB2u9/sZ\nEjaHq9MKNW114vk3wOUiecn1KJproep0oP5pK7JKg3PoRM937rSBpQqUGghuf3vLwmotDXZIiXIQ\nqvPeso3cEidbfnAQHa5g/tSuy5Ewmpw88kwBxnonf7m5P6OHhXXJcb3p6PEGlj1VQHWtgysuS+Tq\nOUkBGc7pa6XlVp5+9TAFxRYSYrUsWZxCVkaor4clCIIbM8f2I+9oHb8UVbFuxxEuPS/F10MSBEEQ\nujFRlPBzTW1Am1QZbXyVfQKVqnF2hr9yV0wZmRnH/MkZqJorCHQiW8lxqlavRZ+RQvSlzS/JUOXu\nQtFQj3PweAj2sFe7LIOpKdwyARTte3w1FiWlRg0RwdA3ynvLNoxmifc2/JojMbPrciTsDol/Pl/I\niXIbl89MYM7M5DZngPhaQbGZvz9TQL3JxR/n92L29PYvy+mpRJilIAQepULB9ZcOZNkbP/DJt0Vk\n9Iogq1/7u0kJgiAIQkvEgmg/FshtQJuKKVVGGzKNxZTNe46xamuBT8Zz4oX/IDtdJC9ZhELVzMmQ\nvQFVzjfIWj2uweM937ndBHZzY7Cltn0zAZwS5FbqAJlz0hReW7YhSTLvfGnD1CBz6QVa+iZ0zYmg\nJMk8//oRDuabueDcKK6Z24awUD+Rk1vPA//Kx2x2ccsf+4qCRDuYzE6eXFHMC28cQamEOxencPsN\nKaIgIQgBICxYy02zh6BUKHhlzX7qzCJfQhAEQegcoijhxzxpA+qP/K2YYjtWhmHV5+jS+hIza1qz\n26n2f4fC3tBYkNAFebZzWfpfC9DQ9rcALa7WYnUq6RvpICrUezMZNu62U3jcxZA0FeOHd12OxLsf\nn+C73TUM7B/CbYv6BVz+wp6f6nj46QIcDpm7bkpl6oWxvh5SwBFhloIQ+DJ6RzTmZZntvLpmP5Lk\nvWWFgiAIgtBELN/wY4HaBtSTYoq3szdaUvrim8gOJ8l/vg6Fupm3vKUe1cEdyEFhuLLGer5zSxVI\nDgiKBnX7Xo/aBiXH6zQEayT6RTkAfbv2c6a8o0427+76HImN2wx8vK6c5AQdS29LD7gOFd/urObZ\n1w+jUim49/Z0Rg7xcBmPAIgwS0Hobqaf24e8o7XsKzCwZnsxc8an+XpIgiAIQjcTWGcLPUygtgFt\nKqa409XFFHtpBZXvf4quXy9iLp/R7HbqX7ahcDlwDpsEag/bVbocYDaAUtXYcaMdXKcs2xgQb0Pl\npd/I03IkZugJ1nfNCeGPP9fxyjslhIepuf+ODMJDA6vuuWFbJc+8dhidVsWDd/YXBYk2Ki238rfH\ncvlobTnxMVoeXZrJlbOSREHCB2wOFxU1Fr9e5icEBoVCwaJLBxIboefz7YfZX1zt6yEJgiAI3Uxg\nnTF0I552pWhq95mdZwiYNqBNxZRTAzqbdHUxpfSlt5DtDpJvW4hS08zbvb4aZf4epLBopIxRnu/c\nVA7IEJLQWJhoh+JqLQ0OJb0jHETopXbt40ySJPPuBhv1FplZ47X0Teya57voiIUnVxSjVim498/p\nJMX750ye5ny8roy3V58gPEzNsrsySO0beK1LfUWEWfoPl0vivc15fhMyLHQPIXoNN80Zwj/e/pFX\nP9/PsoXnEhUWWH/jBUEQBP8lihJdrK1dKVTKxi4bcyek+01rTU/4QzHFXm6g4t1P0PZOImbeJc1u\np963BYUs4Rwx1fPigt0MNiOo9aCPaNf46qxKjtWpCdJIpEZ7L0Bs8w8OCo65GJyq4sIRXZMjUVll\n55HlhdjsEnffnMaA9JAuOa43yLLMOx81LjeIjdaw7K7+9EryzhKansBkdrLizRK+31NLcJCSOxen\niOwIH1r5+f6zOjY1fe/PHZsE/5eaFM78yRm8tzmfVz7L4a8LRopClyAIguAVoijRxdy1+Ny85xgN\nVifXTB/QbMFBp1F1aQ5DR/lDMaXs5beRrTaSb/sjSq37k3NFdSmqwz8jRSch9Rvs2Y5PawGa1K5w\nS0mG3AodoGBAnNVryzYKjjrZuMtOVJiCq6Z1TY6E2eLikeUF1NQ5uO6q3owdHdnpx/QWSZJ59Z2j\nbNhmIDlBx7K/9CcuxsPlOwI5ufU8+9phDNUOsjJCuGNxCvGx4uqpr9gcLnbmlLq9LTvPwNwJ6QFR\n1Bb815TRvck7Wsue3Eo+/baYuRPSfT0kQRAEoRsQRYku1FJXiu05ZRw4XMXorIRuNc3WV8UUh6Ga\nijdXo01KIPbKy5rdTrVvMwDOkdNA4eFz3lADThvoI0HjYZeOMxyu1mBxKOkV7iAyyDvLNuotEu9s\nsKHowhwJh1PiiReLKDlu5ZIpcVw6rX3ZGr7gdMo8v/Iw3+ysIaVPEA/emUFkRNd1KAlkZ4ZZXjUn\niXkizNLn6kw2Kmsb3N7mi5BhoftRKBT8ceZASspNrN1xhP69IxmWHuPrYQmCIAgBrnuc+QYAlyTx\n9oZct500mtSYHGzec4x3NuV14ci6p7KX30Gy2ki69Q8ode6vfCvKD6M6noeUkIqc5OGyEskJ5orG\nAkZofLvGVm9TUlKrQaeWSI3xzrKNU3MkLjlPS7+kzr8aKssyL79Zws8H6zl3ZAQLr+7dZR0+Ospm\nl3j8xUK+2VlDVkYIj9zTXxQkPOQuzHK+CLP0CxGhOuIi3RdK/bljkxBYgvVqbpozBLVKyWuf76fa\naPX1kARBEIQAJ4oSXnZq4vmpX6/aWsD3OWUe7ePr7BO8veEQLsk7V9B7GkdVLeX/+S+ahFjirp7t\nfiNZRp29CWiaJeHhCZW5EmSpsduGsu0TjSQZDlVoaVy2YUPtpd/ALXsc5B91MShVxYSRXXNy/eHn\nZWzdXk1GajB3Lk5FpQyMk1JLg4uHnylgz09GRgwO48G7MggJFpPGWiPLMlu+reLOZYcoKLYwcVw0\nTz80kKyMUF8PTfiVTqNi7JAkt7f5c8cmIfD0Swzj6qn9MVudrPgsB6dLfF4RBEEQ2k98EveSUwMs\nq4w29FoloMBmdxEdrsNsdbRpf19ln0ClUopgsnYoe+1dJEsDvZfejFLv/sqg8lguysoSXH0GIsf1\n8WzHDmvj0g2VFoLaF+RXUqPBbFeRFOYgOtg7H+IKj7nYsMtOZKiCq7soR+Kr7VV88GkpCbFa7vtz\nOjpdYNQ3jfVOHn6mgILDFsaNjuSOxSloNIExdl8SYZaB47rLBmNpsAdUxyYhME0ckUze0Vp2HSjn\no68LmT+5v6+HJAiCIAQoUZTwkjMDLK32/51wtrRkoyXtDSZrqd2op61IA5Wzpo7ylR+iiYshbsHl\n7jeSJFT7NiErFLhGTPFsx7IMpl8D5MIS2xVuabIpOFKjQaeSSPfSso3GHAkrCgVcO7NrciR+PljP\ni/85QmiIivvvCJwchqoaO8ueLOBYqZUpF8Rw0x/6iiUHHhBhloGlqZgdaB2bhMCjUCj4/fQBHC6r\nZ8Puo2T2jmRkZuDkCgmCIAj+QxQlvKClAMuOaGswWXPtRm+9cmSbW5EGqrJ/f4BkMtPrzhtQBbtv\n66g8/DPK2gpc6SORIxM827HNCI4G0IWBtu3T1SUZDlXqkFGQGWdD7YVzBEmWeW+jDaNZ5tLztaR0\nQY5EyfEGHn+hCIVCwdJb0+gdIK0zSytsLHsynwqDncsuimfh/F4Bk3/hK06nzCtvFfPO6hIRZhmA\nAq1jkxCYgnRqbpkzhIff2sPraw/yYHxos7kmgiAIgtAcUZTwgjqTjep2zoZoSVuDyZprNxocpMXS\nYO/2veudRhPlr7+POjqS+N/Pdb+Ry4l63xZkpQrnsMme7ViSwFQOKCDUwyLGGY7VajDZVCSEOogJ\ncbVrH2fausdBXomLgSkqJozq/NkK1bUOHlleiKXBxR2LUxg8IKzTj+kNR4418NBT+dTUObl6ThJX\nXJYoChKtKC238syrh8kvtpAQq2XJ4hSRHSEIglu940O5Zlomb6w/xMuf5bD0d6PReCswSRAEQegR\nxH8NL4gI1REd3nrxQK9VER2mQ6mAmHA9k0f3YsroXuiaWdPelmCylmZr7MwpZW9uhdvbsvMM2Bze\nOUn2tfKVH+Aymki88RpUwe6v1Cjz96Aw1+LKPBdCIz3bsaWysetGcExjnkQbme0Kims0aFUSGbHe\nWbZReNzFlzvtRPyaI6Hs5JPsBquLR58toLLKzu9+m8yFAZInkFdo5v7H86ipc3L9gt5cOStJFCRa\nIMsyW79rDLPML7YwfVKCCLMUBKFVFwxL4vwhiRSX1vPhVwW+Ho4gCIIQYMRMCS/QaVSMzIw7bSaC\nOxcMS3K7zvfyC9N4b1M+h47UUGuyERmqI6tfFHPGp552/5byIFqarVFZ24Asux+Tp0tE/D2LwmUy\nU/bqe6iiIkj44xXuN3LYUP+8DVmtxTV0gmc7dtrBUt3YaSMkts3jkmXIrdAhywr6x9nwxlNnssi8\n86UVBXDtDD0hQZ17ku1yyTz1cjFFRxqYemEMcy9p32yRrvbzASOPPV+E3S7x50X9mHR+jK+H5Nfc\nhVn+9rJ+VFbW+3pogiD4OYVCwTUXDaC4rJ4tPx5jQJ9IxmS1r222IAiC0POIooSXzJuYRm5JLUcr\nTG5v7xMfejK/4cwCQLBOw7XTB1BWbWHDrhLyj9WyI6eM3JIaRmbGMW9iGqu3FbWYB9E0W8NdqGZc\nZBBOp4vq+rOv0re2RCRQsijK3/gvrlojve+5CVVoiNttVAe/R2Ez4xw2CfTutzmLqQyQITQRFG1/\nvMfq1BhtKuJCncR5YdlGY46EFaNZ5pLztKQmd26BSJZl/v3eUX782cjIIeH86Zq+ATHTYFd2LU+u\nKAbgrzenMXa0h7NieigRZikIQkfptCpunjOEv7/5AyvXHaRPQigJItdEEARB8IAoSnjJ6m1FzRYk\nACxWJ06XjOqM89ozW4meqin34cxih7s8iJZma4wdknRWpkST1paINJdTceqxfc1ltlD2yjuoIsKI\nXzjf/UZWM6oD25F1wbgGne/Zjm31YDeBJrgx4LKNLA4FxdVaNEqZ/rHeyRz56kcHuSUusvqpmDi6\n83MkPv2ygi+/MpDSJ4i/3pSKWu3/BYlt31fx/MojaDVKlt6axvDB4b4ekt9yOmU++OwEH68rF2GW\ngiB0WHJsCH+YnsVrXxxgxSc53Pf70Wi8kewsCIIgdGv+c6k7gHnSfaNpmcSZmk76W2oberzSfbHj\nzDyI+ZMzmDqm6KYouQAAIABJREFUNzHh+pO5FVPH9Oa6ywY3e1tLvetbelz+lEVR8dZHOKtrSbz+\natTh7te+q3K+QeGw4Ro6ETQeXAGW5V/DLWlXC9CmZRvSr8s2tF74TFZ0wsWXO+xEhCi4+qLOz5HY\nvruGt/57nJgoDfcvSScoyP8/WK7bUsGz/z5CkF7Fsr/0FwWJFpSWW7n3sVw+WltOfIyWR5dmMn9W\nkihICILQIeOGJHLh8GRKKky8vznf18MRBEEQAoCYKeEFnnTfcLdMwtNWopKHeRAqpfv+9CqVstnb\n2vu42tqutLO4LFZKV7yNKiyEhEVXud/IXIsqdzdySASuzHM827GlClx2CIoGddvbXp4wqqmzqogN\n8c6yDVODzDvrrQBcM1NPaCfnSBzMN/Hsvw8TpFdy/5J0YqLaHvDZlWRZZvUXZbz3SSmR4WoevCuD\nlD5i2rA7sizz1fZqXnv3KFabxMRx0dxwTR+CA6DoJAhCYFgwtT/FpUa27TtBZp9Ixg5O9PWQBEEQ\nBD8mZkp4gSfdN9wtk/C0laiymfPP5vIgmvrTuys6tHTbmVp6XG1tV9pZKt/9GKehmoRFV6GOdH9V\nXP3TVygkJ87hU0DlQR3O5QCLARQqCIlr85isDgVFVVrUSpn+sfa2TrI4iyTLvL/RSp1ZZsZYLWmd\nnCNxvMzKP54rRJJl7r4lze9P7mVZ5s0Pj/PeJ6XExWj5x98y/X7MvmIyO3lyRTHPrzyCUgl3Lk7h\n9htSREFC8DtPPPEE8+fPZ+7cuWzcuBGAt956i8GDB2M2m09ut2bNGubOncsVV1zBf//7X18NVziD\nVqPipjlD0GtVvPllLqVV5tbvJAiCIPRYYqaEF7SU56DXqrhgWJLbZRIthVOeqldcqNu8ira0DG2P\nlh5XZx/bE64GK6UvvokyJJiE6692u42irgJlUTZSRBxS6nDPdmyuAFmCsCRQtu0xyjLkVupwyQqy\n4mzo1M1Mc2mDbXsdHDriYkBfFZPGdG6ORJ3RwcPPFGAyu7hlYV9G+PnyB5ck8/KbJWz+topeSTqW\n3dWf2Gj/ntXhKyLMUggUO3fuJD8/n1WrVlFTU8Pll1+OxWKhqqqK+Pj/dXSwWCy8+OKLrF69Go1G\nw7x585g2bRqRkSLY1h8kRgfzx5lZvPzZfl76NIf7fz/G558bBEEQBP8kihJe0lR0yM4zUFNvJSpM\nR1bfKK6elkmwzv3T3For0ZhwPSMzY0/pvtG078aft5QH4S1nP66uO3Zrjq5cjaOiiqRb/4gm2v2H\nUNW+LShkGefIaeBJtxCHBax1jUs29G3/YFtWr6amQUV0sJOEUGeb73+m4hMu1n9vJzxEwYJOzpGw\n2SX+8XwR5ZV2rrg0kanj294CtSs5nBLLXz3M93tqSesXxAN3ZBAR3vnhn4FGhFkKgeacc85h2LBh\nAISHh9PQ0MCUKVMICwvj888/P7ndTz/9xNChQwkLawwiHjVqFHv37mXy5Mk+GbdwtnMHJpB3tJat\ne4/z7sY8rrtkoK+HJAiCIPghUZTwkvZkNgDMGZ9Gg9XJoZIaqow2lIrGDInIEC3DMmJOtt5sz769\nwZfHbolks1P4r1dRBulJ/NPv3G6jMBxDVXIAKbYPUu+s1ncqy1Bf1vh1aNvDLW1OBQVVWlRKmcy4\nji/bMDfIvP2lFRm4Zoae0ODOO4mUJJlnXztMXqGZCeOiufrypE47ljfYbBKPv1hEdo6RQZmh3Pvn\ndEKCff++9Del5VaeefUw+cUWEmK1LFmcQlaG+zBYQfAXKpWK4ODGJVirV6/mwgsvPFl4OJXBYCA6\nOvrk99HR0VRWtp7TFBUVjLqTOkLExbW9U1N3d+v8kZRUmPjul1JGD0pk6rl9O/V44jXwPfEa+J54\nDXxPvAZtI4oSXtaU2dCaU1uBVhttaDWNV/GbQi1rzXa+2nsclVJxWttPXwVL+vLY7hhWrcF6vJzE\nG69FExN19gayjHpv4zpk56hpnhUYrLXgtIIuArRte6yyDHmVWlySgsw4G/oOLtuQZJn3N1mpM8nM\nHKclvVfnnnC/+eFxdvxYy5CsUG5Z2BdFJ3f26AizxcWjzxZwMN/M6GHh/PXmNHRaEY9zKhFmKXQH\nmzdvZvXq1axcudKj7WXZs7+7NTWWjgyrWXFxYVRW1nfKvgPd9ZcO4qE3fmDFRz8RE6qhd1znFEfF\na+B74jXwPfEa+J54DdxrqVAjPsn7yKmtQGXA5pDcbudPrTf9hWR3cOL5/6DU60i66Rq32yhKC1GW\nFyMl90dOSPVgpy4wVTQWL0LjW9/+DOUmFVUWNZFBLpLCOr5s4+tsBwcPu8jso2JyJ+dIrNtSwZqN\nFfRO0nPPLWlo1P77Z6HW6OCBJ/I4mG/mgnOjuOdWUZA4kwizFLqDb7/9lpdffpnXXnvN7SwJgPj4\neAwGw8nvKyoqTsucEPxHfGQQ1108ELtTYsWnOVjtHf8/KQiCIHQf4tO8D3jaChT+13pT+B/Df9di\nP15Gv8VXoYmLOXsDWUKdvQkA58ipnu3UXAmyC4LjQNW2IoDNqaDAoEOpkBkQZ+vwso38Ejvrtv+a\nIzFd16k5Eruza3n9vWNEhqv5vzvSCQ3x38lThmo79z2WR1FJAxdNjGXJ4hS/LqD4Qk5uPXc8eJDv\n99SSlRHCMw8NZPzY6NbvKAh+pL6+nieeeIJXXnmlxdDK4cOH88svv2A0GjGbzezdu5cxY8Z04UiF\nthg9II6LzulDaZWFtzbkejyzRRAEQej+/PcMpBvztBUo+E/rTX8hOZyUPv8GCp2WtLsW4W5ilLLk\nAMrqE7hShiJHJ7e+U6cVGqpBpYXgtp/A5Ru0OCUFGbE2gjQd+5Blscq8+GENMvC76TrCgjvvpDu/\n2MxTrxSj0Si57/Z0v+7EcLzMykNPFVBZZefymQlcOy/Zr5eYdDURZil0J+vWraOmpoYlS5ac/Nlv\nfvMbdu3aRWVlJTfccAMjRozg7rvv5q677mLRokUoFApuueWWZmdVCP5h3sR0Co7XsXN/OQP6RDJh\nRC9fD0kQBEHwA6Io4QOetgIF/2i96U+qPl6PreQ48QuvRJ+cQP2Z67UkF6rszcgKJc7hU1rf4Wnh\nlgmgaFsRoMKkwmBWE6F30Su8Y9NR5V9zJKrrJGaM1ZLRu/N+PcsrbTz6bCFOh8zS21LJSA3ptGN1\nVHGJhYeeLqDO6OSaucnMvSTR10PyKyLMUuhu5s+fz/z588/6+a233nrWz2bMmMGMGTO6YliCF6hV\nSm6aPYRlb+zm3U35pCaF0zdBFJIEQRB6OjH32QeaWoG6o9eqUCoa24FOHdPbL1pv+gvZ6eTEcytR\naDUk3/IHt9soC7NR1lch9R8N4W6WdpzJVt/YBlQbCrq2fTCyuyC/0nvLNr7JdnCg2MWgNC1TOjFH\nwmR28vDyxpP8RQv6cM6Itrc+7SqHCkzc/3g+xnonf7q2jyhInEKWZbZ+V8Wdyw6RX2xh4rhonn5o\noChICILg12Ii9Fx/6SCcLomXPs2hwSbyJQRBEHo6MVPCR5qKDdl5BmrqrUSF6RmZGcuc8WmYLHa/\nab3pT6o+24it+Cjxv5+LNjnh7A2cDtQ/bUVWaXAOndj6DmUJTOWAonGWRBsVGHQ4JAXpMTaCtR1b\ntnGk1MUX39sJC1Zw0xWR2Bs6Jx3e4ZD45wtFHC+1MXt6PBdPcV8c8wf7coz884UiHE6JJTekcKHI\nRjjJZHay4s0Svt9TS3CQkjsXp4jsCEEQAsbwjFhmju3L+p0lvLH+EDfNHiyW5AmCIPRgoijhIyql\nkgVTM5k7IZ06k+20IkSwzrOXxeZwnXXf7kp2uTix/HUUahVJt/7R7Taq3F0oGupxDh4PweGt79Rs\nAMkBwTGgbluegsGsosKkJkznondEx67yWKwyb39pRZYacyQiQlVUNnRol27JsswLbxxhf66JcWMi\n+f0V/ruWd8eeGp5+5TAKBSy9Nc2vZ3N0tf259Sx/7TCGagdZGSHcsTjFr/NABEEQ3PnthWkUHKtj\nz6EKtvaJZMro3r4ekiAIguAjoijhYzqNivioYGwOFxU1Fo8KDC5JYtXWArLzKqk22ogO1zEyM475\nkzNQKbvnipzqzzdjLTxC3II56Honnb2BvQFVzjfIWj2uweNb36HLDpYqUKobO260gcMFeZVaFMhk\nxXds2YYsy3ywyUpNvcxFv9HSv0/n/Uq+90kp3+ysYUB6CLdfn4JS6Z9XpbZ8W8VL/zmCVtsYwDkk\nS6w3BhFmKQhC96JSKrlx9hAeXLmbVVvzSUsOJzXJgwsKgiAIQrfTpjOgvLw8SkpKmDp1KkajkfBw\n8c+jo9pTYFi1tYDNe46d/L7KaDv5/YKpmV0y7q4kSxInlr8OKhVJt/3R7Taq/d+hsDfgHDkNdEGt\n79RUDsiNyzbaWMgprNJidylJjbYT0sFlG9/uc7C/2EVGbxXTzum8HIlN3xhY/UUZSfE67v1zOjqt\nfxavPt9YwcoPjhEaouKBOzPo78cBnF1JhFkKgtAdRYXpWDxrEM+s+okVn+awbOE5BOs773+hIAiC\n4J88PjP5z3/+w7333stzzz0HwEsvvcRLL73UaQPrKZoKDFVGGzL/KzCs2lrgdnubw0V2XqXb27Lz\nDNgcrk4crW/UrNtKQ14RsXMvRt/PzfROSz2qgzuQg8JwZY1tfYd2U2PApSYIdG0rrFVZVJTVawjV\nuugT6WjTfc9UUubii+2NORK/m67rtJkL2TlGXn6rhLBQFf93RzrhYf43QUqWZd7/9AQrPzhGVISG\nR5dmioIEIsxSEITub0hqDJeel4Khzsrraw8iyx0r9guCIAiBx+OixBdffMGHH35IREQEAHfffTfb\ntm3rrHH1CO0pMNSZbFQ300q0pt5Knan1NqOBRJYkji9/HZRKkv+80O026l+2oXA5cA6bBGptKzuU\nob688evQRNqy9sIpQV5F07INOx2pITTlSEgSLJiuIzykc2YuFJdYeOLFIlRKBff+OZ2kBH2nHKcj\nJEnm9feP8eGaMhLitPzjb5n07eXBbJduzmR28uSKYp5feQSlEu5cnMLtN6QQHNS982MEQeh5Zl+Q\nSlbfSLLzDWz64aivhyMIgiB0MY/PhEJCQlCeMs1dqVSe9r3Qdi0VGKqbKTBEhOqIDncfahcVpici\ntHsF3tVu+IaGA/nEXD4dfVrfszeor0aZvwcpLBopY1TrO2yoBpcN9FGNMyXaoLBKi82lpG+Ug1Cd\n1Kb7nkqWZVZttlJtlJl6robMTsqRMFTbefTZQqw2idtv8M/p/i5XY/jm2s2V9Oml5x9/G0BifPd6\nD7fH/tx67njwIN/vqSUrI4RnHhooumsIHpNlmf259VTV2H09FEHwiFKp4E+zBhMeouW/2wopPF7n\n6yEJgiAIXcjjqkLfvn154YUXMBqNbNy4kSVLlpCent6ZY+v2QoM16LTur3oqgA27S3BJp5/86jQq\nRma6D2YcmRnbrbpwyLLM8WdeA4WC5D8vcruNet8WFLKEa8RUULby2CUnmCtBoYTQtoVb1liUlBo1\nhGgl+kV1bNnGdz85yClykd5LxUXntjKzo50sDS4eXV5IVY2DP1zZi/PPieqU43SEwyHxrxVFfLW9\nmv6pwTxyTybRkT17LbHTKfPOR8f5vyfyqa51cNWcJB65J1N01xA84pJkNn1dwR0PHuT+x/N5Z/UJ\nXw9JEDwWEarjT7MGI8kyKz7LwdTQsf+1giAIQuDw+BLtAw88wFtvvUVCQgJr1qxh9OjR/O53v+vM\nsXV7n35bjNXuPgNCkuGr7BOoVMqzwivnT84AGpd41NRbiQrTMzIz9uTPu4vazd9hycklevZFBPVP\nOet2V8UxVId/RopOQuo3uPUdmipAlhqXbSg9n53glCC3UgfIDIizdWjZxtFyF59/Zyc0SME1Mzon\nR8LplPnXS0UcPtbAjEmxzJ4e7/VjdFSD1cXjLxTx04F6hmSFcu9t6QT18GUJIsxSaC+HQ2Lbjmo+\nWVdOaUXj36gLx0Zx9eVuOhUJgh8b2C+K2Rek8um3xfz7iwP8ed4wlB1pcSUIgiAEBI/PzFQqFQsX\nLmThQvfr+oW2sTlc7M2taHW77DwDcyeknzYDQqVsLFTMnZBOncnmURvRQCPLMieeeQ2A5CXuZ0nY\ntq8DaOy4oWhl0o+jAay1oNJBUNtmDRRXa7E6lfSNtBOub/+yjQabzFvrOzdHQpZlXnm7hH376xkz\nPJzrF/RB4Wcf6ExmJw8vLySv0Mw5IyL4y02paDU9dymYLMt8tb2a1949itUmMXFcNDdc00dkRwit\nstpcbPqmis++LKeqxoFarWDW9CRmTIomSSyDEgLUpeelkH+sjp8Lq/hyVwkXj+3n6yEJgiAInczj\nosSgQYNOO7lRKBSEhYWxa9euThlYd1dnslFd3/p636bwyvio4LNu02lUbn/eHdRt24F53wGiLp1C\n8ICzlwkpyg/jLD6AlJCKnNTKDBFZhvqyxq/D2hZuWdug5HidmmBNx5ZtyLLMh005EudoGNC3c3Ik\nVn9RxuZvq0jvF8xdN6aiUvlXQaKmzsFDT+Vz5JiVCeOiuXVhP9Rq/xpjVzKZnax4s4Tv99QSHKTk\nzsUpIjtCaJXZ4mTdlkq+2FSJ0eREp1Uy66J4Zk2PJyszhsrKel8PURDaTalQcMNlg1i2cjcff11E\nRq8IMvtE+npYgiAIQify+Mzo0KFDJ7+22+3s2LGD3NzcThlUTxCkU6NUNC7TaEl3DK9sjSzLHH+6\ncZZEr9vdzJKQZdTZm4CmWRKtnNRa68DZ0Nj+U+t5m0nXyWUbMCDehqoDF/O3/+zg50IXaclKLvpN\n5+RIfL2jmvc+KSUuRst9S9LR6/zrSntZhZX7HsujtMLGzMlxXL+gd6e1QQ0E+3PrWf7aYQzVDrIy\nQrhjcYrIjhBaVGt08MWmCtZvrcTSIBESrOKKyxK5dGq8X7b6FYT2Cg/WcuPsITzxXjYvf5bDsoXn\nEh7SOf87BUEQBN9r16cYrVbLhAkTWLlyJYsXL/b2mHqEBpuz1YIEdL/wSk8Yv92N+cdfiJoxkeDB\nmWfdrjyWi7KyBHX6UGxxfVremeQCczmggNCENo3jcI2GBoeS3hEOIjqwbONohYs13zblSOhRdcKJ\neM6hel5YeYTgIBX/tySdqAj/Cow8eqKBh5/JobLKzrxLE1lweZLfLSvpKk6nzAefneDjdeUoFHDV\nnCTmXZLod7NaBP9hqLbz6ZflbPrGgN0uExGu5tpLEpkxKU4s8xG6rcw+kfx2QhqrtxXy2hcHuOOK\n4T26kC0IgtCdeVyUWL169Wnfl5WVUV5e7vUB9RQRoTpiwnVUNdMSNDpMx6gBcd0uvLI1p86SSF5y\n/dkbSBKqfZuQFQp051+MubXCjsXQWJgIiQOV5yfqRquSo7Ua9GqJ1Oj2t9VrsMm8vc6KS4KrL9IR\nEer97ISjJxr45wtFACy9NY0+vdrW6rSzFR6x8PenCjCanPzhyl7MmdG24lB3IsIshbY4Xmblk3Xl\nfL2jGqdLJjZaw+UzE5gyPhadtufmsAg9x4zf9CXvaC0/F1bxxY7DzDo/1ddDEgRBEDqBx0WJH3/8\n8bTvQ0NDWb58udcH1FM0tfbcvOfYWbedPySRa6YP6HEzJADqd/yIafc+IqeOJ2RY1lm3Kw//jLK2\nAlf6SFSxSdDS2mmnDSxVoNRAcIzHY5BkOFShAxRkxVvbvWxDlmX+u8VGlVFmyhgNWf28P726ps7B\nw88UYra4uP36fgwdGOb1Y3TE/tx6/vFcIQ1WibtvzWTcqJ55Ai7CLIW2KC6x8PG6cr7/oQZJhuQE\nHXMvSWT82Cg0alGMEHoOpULB9ZcOYtkbu/nsu2L694pgYIrI3REEQehuPD5LeuyxxzpzHAHL5nC1\nuwNGS609Vcqe+cHz+DP/BiD5DjdZEi4n6n1bkJUqnMMmt7wjWQZTU7hlQuvdOU5xpEaDxaEkOdxB\nZFD7l218/4uTnwqcpCUrmT7W+2thrTYX/3i2kMoqO1fPSWLieZ4XXtzpyHvZnR9/ruOJF4uQJLjr\nT6nMmp7UIwP4RJil4KlDBSY+WlvGnp+MAKT2DWLuJYmMHR3ZKcu+BCEQhAZpuGn2EP757l5e+fwA\nDy08p8dlbQmCIHR3rRYlJkyY0OLa723btnlzPAHDJUms2lpAdl4l1UYbUWFasvpFM29iOnaHy6MT\nu57Q2rMt6ndlU799DxGTziN05JCzblfm70FhrsWZNQ5CW0nitpvAbm4MttR6Pnug3qbkSI0GnVoi\nLab9yzaOVbj47BsbIXr43XTv50i4JJmnXzlMwWELUy6I4YrLEjuwr9Pfy9HhOkZmxnWoOPbd7mqW\nv3YYlUrB0tvSGD0sot3jC2QizFJojSzL/HygntVry8g5ZAIgKyOEeZcmMmpoeI/NXhGEU6X3iuCK\niel8sLWAV9bs5y9XjRT5EoIgCN1Iq0WJ9957r9nbjEZjs7c1NDSwdOlSqqqqsNls3HzzzWRlZXH3\n3XfjcrmIi4vjX//6F1qtljVr1vDmm2+iVCq58sorueKKK9r3aLrQqq0Fpy29qK63831OGd/nNF6d\njw7TMmpAvEcndt25tWdb/G+WhJssCYcN9c/bkNVaXEMntLwjWfpfC9BQz1uANi7b0AIKBsRZae8s\naatN5q31jTkSCy7SExnm3Vkvsiyz8v1j/LCvjuGDw7jx9307dOJy5nu5ymg7+f2CqWcHjbZm49cG\nXn6rhCC9kvtuz2BQZs9bsiHCLIXWSJLMD/vqWL22jIJiCwAjh4Qz95IEBmWGimKEIJxh2jl9yD1a\nS3a+gU+/K+a3F6b5ekiCIAiCl7RalOjVq9fJrwsKCqipqQEa24I+8sgjrF+/3u39vvrqK4YMGcIN\nN9zA8ePHue666xg1ahQLFixg5syZPP3006xevZo5c+bw4osvsnr1ajQaDfPmzWPatGlERvpvT2qb\nw0V2XmWL21TX2zt0YtfT1O/5GeM3uwgffy5hY4addbvq4PcobGacwyaBvpW2npYqkBwQFA1qz69K\nl9RoMNtVJIY5iA5u37INWZb571YbVXUyk0dryErxfo7Emo0VrNtSSb/eeu6+OQ21uv0nLy29l7Pz\nDMydkN6m2TufrC/nrf8eJzxUzQN3ZZDer+cV20SYpdASl0vmu901fLSujKPHrQCMHR3J3IsTyEj1\nvGWxIPQ0CoWCRZcMZNkbP7D2+8Nk9olgSGrHli0KgiAI/sHjM6ZHHnmE7du3YzAY6Nu3L0ePHuW6\n665rdvuLL7745NelpaUkJCSwa9cuHnroIQAmTZrEypUrSU1NZejQoYSFNU6xHzVqFHv37mXy5FYy\nA3yozmSjupmuGWdqz4mdv/J25sCpTixvnCXR684bzr7RakZ1YDuyLhjXoPNb3pHLAWYDKFWNHTc8\nZLIpOFKjQauSyOjAso0dOU725TtJSVIyY5z3cyR27KnhzQ+PEx2p4f4lGR0OSmzpvVxTb6XOZPNo\nFo8sy7z78Qk+WltOTJSGZX/pT+8kfYfGFmhEmKXQEodDYuv2Kj5ZV065wY5SCRPHRfPbixP8rmOO\nIPirYL2Gm+YM4bF3fuTVNQd46LpziQoTS+IEQRACncdFiV9++YX169dz7bXX8vbbb5OTk8OmTZta\nvd9VV11FWVkZL7/8MgsXLkSrbTxRi4mJobKyEoPBQHT0/0LfoqOjqaxseRZCVFQwarX3P+jHxXmW\nPRAWEURcVBAVNQ2tbltTb0Wl1RAX274rYFa7kxqjjahwHXpt+6+6e/rY3HG5JFZ+vp+dOaVU1jYQ\nFxnE2CFJXHfZYFTtbU1xitoffqZu6/dETziXtEsvPOt269dbsDts6CZeTkRy7Gm3nfm4jEcLsCET\nltgPfZRns20kWeanHBkZOCdDSVJU+56rI6UO1nxrIjRYwe2/iyUmov3vUXevV86hOpb/+wh6vYqn\nHhpG/7SOX31v6b0cGxlEekpMq+87SZJ5+uUCPl1fTu+kIJY/MozEePcFiY68D/2Z0eTg+ZXH+Gp7\nJSHBKh78y0CmTYj39bC8oru+Zl31uCwNLtZsOMEHnxzDUG1Hq1EwZ2YyC37bm+TEzilGdNfXTBAA\nUpPCmT+5P+9uyuPlz3K4e8HIHhsOLgiC0F14fJbbVExwOBzIssyQIUN4/PHHW73fBx98wMGDB/nr\nX/+KLMsnf37q16dq7uenqqmxeDhqz8XFhbWpM8Cw9Bi37TzPFBWmx2V3tLnrgDfDB9v62M703ua8\n0x5rRU0Da74twtJg98rSlLwHnwMg/tbrzh6nuRZt9ncQEoExedhpLUDPelx2MxirQK2n3qGj3sPH\nXFKjocasJSHUicZpo5WamFtWu8yzH1hwOOEPF+uQ7JZ27Qfcv16l5VaWPpqH0ylxzy3pRIbJXutk\n0dx7eVh6DPV1DbR0FKdT5vmVh/lmZw0pvYN48K4MVAoHlZWOs7bt6PvQX+3Pree510uoMNhOC7Ps\nDo+1u75mXfG4TGYn67ZU8sXmCupNLvQ6JbNnxDProgSiIzWAs1PG0BWPTRQ9BF+bPKoXeUdr+eFQ\nBR9/U8QVEzN8PSRBEAShAzwuSqSmpvLuu+8yZswYFi5cSGpqKvX1zX/wycnJISYmhqSkJAYOHIjL\n5SIkJASr1Yper6e8vJz4+Hji4+MxGAwn71dRUcGIESM69qg6wZlLF5raeX73cylWu6vZ+43MjG3X\nUgdvhw+2l7czB85k/uUQtZu+JfTcEYSdN/qs29U/fYVCcuIYPgVULbxdT2sBmuRxuKXFrqC4RoNG\nJZER69mSnLMPLbN6qw1Drcyk0RoGejlHwljv5OFnCjGanNz0h76MGurdThYttaZtid0h8eSKYn7Y\nV8eA9BDuX5JOaIj3MzT81alhlkoRZin8qrbOwZqNFazfWonVJhEaomL+rEQunhpPeGjP+f0QhM6k\nUCj448w91/AeAAAgAElEQVQsSsrrWb+zhP69IxmREdv6HQVBEAS/5PEnpL///e/U1tYSHh7OF198\nQXV1NX/605+a3X7Pnj0cP36c++67D4PBgMViYfz48WzYsIHZs2ezceNGxo8fz/Dhw7n//vsxGo2o\nVCr27t3Lvffe65UH5w0tzVhYMDWTOePTeH9THodKaqgy2lAqGrs4RIfpGDUgrtUTO3c6uxDQFt7K\nHGjOieWvA9DrjuvPSptX1FWgLMpGiohDSh3e8o4aasBpA30kaDybEi3LcKhShywryIy10d6ndOd+\nJ9l5jTkSM8d6N0fC7pB47PlCSitszL0kgYsmeP9DV3ta0zY0uPjH84XkHDIxfHAYS29NQ6/rOdkJ\nZ4ZZPnTPIBJixPThnqzCYOPTLyvY8q0Bu0MmKkLN/NlJTJ8QS5DIFREErwvSqblpzhAeeetHXv/i\nAA8uPEfM4hEEQQhQHhclrrzySmbPns0ll1zCrFmzWt3+qquu4r777mPBggVYrVYeeOABhgwZwj33\n3MOqVatITk5mzpw5aDQa7rrrLhYtWoRCoeCWW245GXrpD1qbsRCsU7Po0kEnZ1IE6dQ02JwnT+xs\nDhdVdRa3J3rNBUd2ViGgPUGVEaE6osN1VLkZT1SYnojQ9gdMWQ7kU7P+K0JGDyX8wt+cdbtq3xYU\nsoxz5DRoacmK5ARzBSiUEOr5Ov7jdWqMVhVxIU7iQpuf7dKSE5UuPv3aRrAerpmh9+pVckmSefa1\nwxwqMDP+N1EsuDzZa/t2x9PWtEaTk4efKaCg2MLY0ZHcuTgFjaZnnJA3F2bZr29Et1zmILTuWKmV\nT9aV8fXOalwuiI/VcvnMBCZfEIO2h/xeCIKv9E0I43fT+vPml7m8/Nl+nrxdzJYQBEEIRB4XJe65\n5x7Wr1/P5ZdfTlZWFrNnz2by5MknsybOpNfreeqpp876+RtvvHHWz2bMmMGMGTPaMOyu0ZYZC6ee\n0IUFa3FJEu9tznM7wwJoMS/C24UAl6v5sbSWT6HTqBiZGec2c6C9S1OanHi2hVkShmOoSg4gxfZB\n6p3V8o7MlSBLEJoASs/e0g0OBUXVWtRKmf7tXLZhtcu8td6K0wV/uFhPVJh3T0DeXn2c7/fUMigz\nlNuu64dS6ftlAdU1dpY9VcDRE1Ymnx/NzX/s12OWK5jMTl5+q4TtP9QSHKTkzsUpjB8b3fodhW6p\n6IiF1WvL2PljLbIMvZJ0zL04kfG/ie5Qm15BENrmwuHJ5B2tZcf+clZ89BNXTUo/6zOFIAiC4N88\nLkqMHj2a0aNHc99997F7927WrFnDsmXL2LlzZ2eOz6c6MmOhpRkWQIuzL7xdCFj5+f4O5VO0N3Og\nJZbcQqq/2ELI8EFETDrv9BtlGfXejQA4R01rOR/CYW1cuqHSQpBnJ4iyDLkVOiRZwYA4K+1paiLL\nMqu/slFZKzNxlIZBqd5dK/7lV5V8+mUFvRJ1LL01zS9mIpRV2Fj2ZD7lBjuXTo1j4VW9/aJQ0hX2\n59az/LXDGKodp4VZCj3PgTwTH60tY+8vRgDS+gUx79JEfjMyssf8PgiCP1EoFFw7fQClVRY27S5B\nq1Iwd0K6r4clCIIgtEGbzqSMRiObN2/myy+/5OjRo8yfP7+zxuUX2jtjoeUZFpXNdhg5dfaFtwoB\nNoeLnTmlrR6vJe3JHGjNiWdXgiyT7G6WRGkhyvJipOT+yAmpze5DPi3cMtHjcMsTRjW1VhUxwU7i\n27lsY9d+J9m5TvolKrl4nHdzJLbvruK1d44SHqbm/iUZhPlBON6RYw089FQBNXUOrpqdxJWzEnvE\nlahTwywVIsyyx5JlmX3761n9RRkH8kwADMoMZd6liYwYHNYjfhcEwZ/ptWqWXDGcJ97PZu2OI4QH\na5l2Th9fD0sQBEHwkMdnO4sWLSI/P59p06Zx4403MmrUqM4cl19o74yFlmZYVNfbaK7r6amzL7xV\nCKgz2aisbWj1eJ7wNHOgNQ35h6n+bCPBgzOJnDb+9BtlCXX2JgCcI6e2uB+bsQocFtCFgTbUo2Nb\nHQqKqhqXbWTG2T2tY5ym1ODik69tBOm8nyNReNjCg0/kodYouO/2dBLjfX81Pq/IzMPPFGAyu7ju\n6t5cNs3z3I5AdmaY5ZLFKWRlePY+E7oHSZLZtbeW1WvLKDrS+Hd01NBw5l6SyKBM8V4QBH8SHqLl\nocXj+Muz3/D+lnzCQjSMHZTo62EJgiD8P3v3GRhVmfZh/DrTM+m9QIAQDEVaEFBQQRB4aQoIgorY\nXXdF17rFuurqiroiNtaKCFjQUCwUqUpRREOvIfSSNumTZNo55/0QE9JmMukhPL8vkilnnjGBzLnP\nc/9vwQteFyVuu+02rrrqKrTa6ifGH374Iffee2+jLqy1qM+OBU87LEL8jaiqSk6ho9p9Ne2+aGgh\nINDPSHiQD5m51QsTDQ2qrK9zb/+xS+LRe6tdYdScOoAm5xxyp16oIR6CHRWFovRTgFSaJeEFVYXD\nWQZkVaJbmB2jzk11yAO7Q+XTP3IkZowxERLQeG0VmRY7L72Zit2h8I8HOpPQ2bfRjl1few8W8p+3\njuJwKDx4V0eGXxXa0ktqcu7CLM1igsJFw+VS2fxrDktXZnAmzYYkwaD+QUwZF0Xnjg0vzAqC0DSi\nQn15dFpfZn22g4+/P4ifj56ecW3/95YgCMKFzuuixNChQ93et3nz5jZblKjPjgVPOyz6XBLGkdP5\nNRYlGhoc6W4tV/SM5tvNx5rl9WpjO36a7KWr8eneheD/q/Izpchod65DlTS4+lzr+UDFWSguJ5jD\nSvMkvJBeqCO3REeIj4tIf1ed166qKks22snKVRmaqKdn58ZrqygqdvHinKPk5rt46N54Lk8MbLRj\n19f2nXn893/HUYHH749j0GXBLb2kJifCLC9uDqfChi3ZLFuVQabFgVYLw68MYdLYKNpHm1p6eYIg\neCE2wo+/Tu7F64t38+7Sffzt5kQ6xwS09LIEQRAEDxrlrMpdRkJbUtcdC+52WKiqyulMa7XHx0b4\nNSg40pO7rruU4hJHowZV1te5t+aBotDu4XuQqkz+0BzdiaYwGzlhAAR4uLLhckBxDhq9AcXXu/Ff\ndpdEarYBraSSEFG/to3tB1wkH3bRIVLD2MGNlyPhdCnMeucYp8/ZuG5kBDde377Fx0v++Es2b398\nEr1Owz8f7EzfS9v+BzoRZnnxKimRWf2jhe/WZJCb70KvkxgzPJyJoyPEz4AgXIC6dgjmzxMu5d1l\ne5nz9W6euLUf0aEtv/tQEARBqFmjFCVEyFd1Ne2wAHj6w5qnlRTbXLhkFW0TDFnQahs/qLI+7KfO\nYklaiU9CZ4LHDa98p8uJbvcGVK0eV69rPB/Img6o+EV2oMBR+/8wVYWULAOyIpEQbsdUj7aNtOzz\nORIzxpjQNVKOhKqqzP3kFPsOWbm8XyC3T2vXKMdtiFUbsvhg0Wl8zVqefji+zecoiDDLi1eB1cXK\ndZmsWJ+FtUjGx6Rh0phIrhsVQXCgvqWXJwhCA/RLCOf20d2Yv+oQsxfv4skZ/Qn2F0VGQRCE1qjl\nY/3buIo7LDJzi+s9YrQmdqdcpyJDYwVV1te5t+eDLBPz0F3VdkloD/+KVFKI69Krwezhqry9EBxW\n0JsxBISApfquk6oyrVqyi3UE+chE16Ntw+5UWbjShtMF0/+vcXMkvvwmjR9/ySGhs5lH7o1D24Ij\nBVVVZenKDBYtOUdggI5/PdqFuA5tu39ehFlenCw5duZ/dYYfNlqw2RX8fLXcPDGasdeG4+crfi0K\nQlsxpE8M+UUOlm06xuyvdvHP6f3wNYmCoyAIQmsjPn01o/qOGK1KVhQWb0hlZ0oWOQV2QgKMJCaE\nM214F7SaJthq0QjsZ9KwfPUdps4dCLl+ZOU7HSVo921CNZiQL7265gNA6ZYHa0bpn/29G0npcMER\nixGNpNI13F6vto2lP9rJyFUZ0ldPr/jG+yuzfnM2X32bTmS4gSf+Go/R2HLfO1VVWfD1WZavziQ8\n1MBzj3chJrLt9tCLMMuLU0aWnWWrMti4NRuHUyU4UM9NE6MZNTQMH5P43gtCWzR+UEcKihysTz7D\nW0l7eGxaXwwtsFtUEARBcK9RzrA6derUGIdp8+o7YrSqxRtSKx0ju8Be/vUtIxIaZ7GNLO3dT1Gd\nLmIevhupygQX7f4tSI4SXIkjwejj/iDF2SA7wCcEdN6dMB+xGHEpEl3C7Pjo6962sf2Ak98PuoiN\n1DDuysbLkdi9v4D/LTiJn6+WZx7uQlBAy125kRWV9xecYu2mbNpFGXnu8UsIC2m899raiDDLi8/p\nsyUsXZnBpl9zUBSIiTIxYVQEw64MQa9vnYVcQRAahyRJ3DziEgqLHWw/mMl73+xn5g09W+1FHEEQ\nhIuR10WJs2fP8sorr5Cbm8vChQv56quvGDhwIJ06deKFF15oyjW2KfUZMVqR3SmzMyWrxvt2pliY\nPDS+RfIiPHGcyyDri28wdmpP6MT/q3xncSHag7+g+vgjd7vC/UFkJxRbQNKCb7hXr5tp1ZJVpCPQ\nJNMuoO5tG+nZMkt/tGMywIzRjZcjcfJMCa/OPYYkSTzxYDztWjDV3+lSeOujk2zZnkvnDj48+2gX\nAluwQNLURJjlxSX1eBFJK9L5dUc+ALHtTEweG8XEcR3Izam99UsQhLZBI0ncPa4H1hInu1ItfLr6\nMHeO6SYy0QRBEFoJr4sSzzzzDNOnT+eTTz4BIC4ujmeeeYaFCxc22eLaovqMGK0o32p3m0uRU2gj\nK6+E9uGtqyc+be4CVIeTmL/ehaSr/COn2/sjkuzE2XsM6DxcnS/KBFUB/2jQ1P7/yyE3rG3D7lRZ\nsMpemiMxzkRoYONcUcnJdfDinFSKSxQe+3MneiS03PfKbld4de4xduwtoPslvjz1UBd8za2roNVY\nRJjlxUNVVQ6kWEn6Pp1d+0un2HSJMzNlfBQD+gSi0UiNVmAUBOHCoddpmDmpF699sZMte9II9DUw\neWh8Sy9LEARBoA5FCafTybXXXsv8+fMBGDBgQFOt6aJQFjppd8pk5hZ7XZzwlEuhqjDnq1306xrR\navIlHBkWMj9bhiE2htDJYyvfWZiD5sjvKP4hKF36uT+Isxhs+aUtG6Ygr1431WLEKUt0DrVjNtS9\nbWPZT3YychSu7tN4ORIlJTIvvnkUS46TGVNiuGpgy7UMFBXL/OetoxxIsdKvVwB/v79zi2ZaNCUR\nZnlxUFWVHXsLSPo+nUOpRQD07ObHlHFR9O7hL66ICoKAj1HHw1P78PLCZFb8cpIAs4GRA2JbelmC\nIAgXvTqdbRUUFJR/sDty5Ah2e81X7IXa1TesUqeV8DHqAHe7JRytKl8i7X8LUO0OYv56Jxp9lV0S\nu9YjqQquviPc735QVShML/2zXxTebHmwFGnJtOrwN8rEBta9beP3g05+O+CifYSG8Y2UIyHLKq/9\n7zjHT5Uw6powJo2JbJTj1kd+gZMX3kjl2MkSrhwQxEP3dkKva3sFCRFmeXGQFZVtyXksWZHO8VMl\nAPTvE8DkcVGi+NSKnThxQuRRCS0iwGzgsWl9eWlRMl+sP4K/Wc8Vl0a19LIEQRAual4XJWbOnMnU\nqVPJysriuuuuIzc3l9dee60p19am1SesUlYUXpj/O2eyimo9fmvIl3BmZZO1YAmGmEjCbhxf6T4p\nJw3tiT0oIdEoHS91fxBbHrhsYAwEQ+3jKZ0ypGQZkFDpFlH3to2MHIUlG0tzJG4bY0Kna/jVVVVV\n+WDRaXbuK+Cy3gH8aXpsi121teQ4eO71I5xNszNySCj33dahRceQNhURZtn2uVwqP/2Sw9KV6ZzL\nKP27ftXAYG4YG9nmR9leKO68887ylk+AuXPncv/99wPw7LPPsmDBgpZamnCRCwvy4dGpfZn12Q4+\nXnEQP7OennGhLb0sQRCEi5bXRYkrrriC5cuXk5KSgsFgIC4uDqNRBMTVR33DKj9fd4TTmd6Fs+UW\n2si32okIbrkP52nvLUKx2Yl+4A40hsrhidpd6wBKJ25Ibq7SKzJYM0t3R/hFePWaR7MNOGQNcSEO\nfOvYtuFwqixYZcPhKi1INFaOxNKVGaz5yULnDj489ue4FssxOJdh47n/ppKV7WDC6Ahuv7Fdm9zS\nLsIs2za7Q2H9ZgvLV2eSle1Ap5UYcXUoE8dE0i6q7Y6xvRC5XJV3qm3btq28KKGqdW+rE4TGFBvh\nx18n9+L1xbt5d+k+/nZzIp1jAlp6WYIgCBclr4sS+/btIysri2HDhvHGG2+wa9cuHnzwQfr379+U\n62uTPIVVuism2J0yu1IsXr9GsL+JQL/6n4jZnXK9gjjLOLNzyZz/NfqocMJvur7SfVLGCbRnU1Ai\n41CjPUwdKcoCVQbfCNDWPhEip1hLeqEeP4NMbJCzzmte9pOd9GyFK3vr6XNJ4+RIbN6Ww6Il5wgL\n0fPUQ/H4mFpm58qJ08U8/3oqeQUupt8Qw+RxkW2uICHCLNu24hKZ1Ruz+HZNJvkFLgwGiXEjwpk4\nOrJNj7C9kFX9N6ZiIaKt/fsjXJi6dgjmLxMu5Z1le5nz9W6euLUf0aG+Lb0sQRCEi47XZ14vvvgi\ns2bN4vfff2fv3r0888wzvPDCC2L7ZT14Cqt0V0zIt9rJs3qf4ZGYEOa2mOCp4FDfrIuq0j/4HKXE\nRvsnHkBjqvB+VBXdzrVA2S4JNx9MXTYoyQGtAcy1b7t3KXD4j7aNrhEO6tqRkHzIyfYDLtqHa7ju\nqsY5wdl/uJC35p3E7KPh6Ye7EBLcMidOh1KtvDjnKEXFMn+6NZYxw70bqXohEWGWbVdBoYvv12ay\nckMWRcUyZh8Nk8dFMn5kBEFteHxtWyQKEUJrlJgQzu2juzF/1SFmL97FkzP6E+wvdtcJgiA0J6+L\nEkajkU6dOrF48WKmTp1Kly5d0LSC6Q7NpaE7Byoy6rUkJoRXypQo466Y4KmQUXpMDU6XQrC/icSE\nMKYNr74DwZuCQ32yLqpy5eaTMW8x+vBQIqZPrHSf5sxhNFmnkGO7o4a7SbyuFG4Z6b69o4Jj2Qbs\nLg0dgx34GxWv1lkmI0chaaMdox5mjDGhb4QcibNpNma9cwxVVfnHzHg6tvdp8DHrY9f+Ama9fQyn\nS+GheztyzaC21TMrwizbruxcB9/8kMmaHy3YHQoBfjqm3xDDmOFh+JobZyeT0LTy8/P55Zdfyr8u\nKChg27ZtqKpKQUFBC65MECob0ieG/CIHyzYdY/ZXu/jn9H74mkTRUxAEobl4/cmupKSEVatWsW7d\nOmbOnEleXt5F8aGisXYOVFVWNNiZYiG30OaxmACeCxmxEX78Y3oi1mKnx6JJbQWH+mZdVJX+4Rco\nRcW0e/xPaHwq9HgrCtpda1ElCbnvte4PYC8sHQNq8AOjf62vl1ui4VyBHl+DQsfgurVtOF0qC1fZ\ncDhhxmgjYUENL7TlFTj59xupWItkHry7I717tEyP6rbkPF5//zgS8I+ZnRmY6N041QuFCLNsm9Iy\n7SxflcGGrdm4XCqhwXqmT45h5JBQTEZRbLqQBAQEMHfu3PKv/f39effdd8v/LAityfhBHSkocrA+\n+QxvJe3hsWl9MbRgWLggCMLFxOuixKOPPsqCBQt45JFH8PPz4+233+aOO+5owqW1Du5O5GVF5f8G\nxNZ754RWo+GWEQlMHhrv9Q6MioWMnEIbQb5G+iaEccuIS9BqNJiN7qv63hQc6pN1UZUrv5CMj79A\nFxpMxIzJle7TnNiDJi8TOT4RNcjNSExVAWsGIJXukqiFrMDhTCOg0jXcXue2jeU/2UnLVhjcS0ff\nhIZfFbHbFf7z5lEyLA6mXR/F8CtbZmfChi3ZvPvJSQwGDU/8NZ7e3dvWCYAIs2x7Tp4pYenKdLb8\nmouiQnSEkRvGRjJ0UAh6/cWzK68tWbhwYUsvQRC8JkkSN4+4hMJiB9sPZvLeN/uZeUPPBl2AEgRB\nELzjdVFi4MCBDBw4EABFUZg5c2aTLaq18HQi/9POs2zccZbQBu6cMOq1Xk/IqE8ho4w3BYfasi58\njDoyc4s9vm7Gx18iFxYR+9RdaM0VWhZkF7pd61E1Wly9h7tfaJEFFCeYQ0FX+0nmsRwDNpeG2CAH\nAaa6tW3sOOxk234XMWEarr+64Se0sqLyxgfHOXK8mGFXhjBtQnSDj1kf363NZN4XZ/Dz1fLMI11I\n6Nx2QrtEmGXbk3KsiCUr0tm+Mx+Aju1NTB4XxeD+weL7eoGzWq0kJSWVX8D48ssv+eKLL+jYsSPP\nPvssYWFhLbtAQahCI0ncM74HRSVOdqVa+HT1Ye4c003koQiCIDQxr4sSPXr0qPSPsiRJ+Pv78+uv\nvzbJwloDTyfyyh8h4u4yF+qTQeHtc+pSyCjjTbimpxYRs0nHC/N/89jCIhdaSf/wc3TBgUTccWOl\n52uO/I5UlIer2yDwc9NGIDugOBs0OjDXHsZoKVQ5m6/DR6/QqY5tG1m5CkkbSnMkbhvbODkS8788\nw6878+nV3Z+/3N6h2T/EqKrKV9+m8+U3aQQH6vnXY11aLMuiKYgwy7ZDVVX2HbKyZEU6uw8UApDQ\n2cyU8VFc1jsQTV23PAmt0rPPPku7du0AOH78OLNnz2bOnDmcOnWKl156iTfeeKOFVygI1em0Gu6f\n1IvXvtjJlj1pBPoamDw0vqWXJQiC0KZ5XZQ4dOhQ+Z+dTic///wzhw8fbpJFtRa1hUtWVNYCodNK\ndc6gaKrcioq8DdesKevCbNJxOtNa/nh3hZiMT75Czi+k/T/vR+tboWjitKPb8yOqzoDca6j7RVoz\nALW0baOW9y0rsPNoaWWoW4QdbR3+NzldKgtW2bA74dbRRsIbIUfiu7WZfL8ui9h2Jv4xMw69rnm3\neyqKyvzFZ/lubSaRYQb+9fglREe0jXYGEWbZdqiqyu+780lakUHK0SIAenf3Z/L4KHp18xNXI9uY\n06dPM3v2bAB++OEHRo8ezeDBgxk8eDArVqxo4dUJgns+Rh0PT+3DywuTWfHLSQLMBkYOcBPOLQiC\nIDRYvSLM9Xo9Q4cOZd68efzpT39q7DW1Gp5O5Ksqa4FYl3ymztMrGmPihTe8Cdes2iLiYyzdIVGT\niuGXsrWItPc/QxvoT+SdUys9TnvwZyR7Ea7ew8DkppXAYS0NuNT7gLH2YMgTuXqsNmgf6CKwjm0b\n32yyc86iMKinjsRGyJHYlpzHJ1+eIThQx9MPxTf7ZABZVpn76Sk2bMkmNsbEc4+13PjRxibCLNsG\nWVH5+bdclq7I4MSZEgAGJgYyeWwUCfFtp71IqMxsPl+c3r59O1OmTCn/WhSghNYuwGzgsWl9eWlR\nMl+sP4K/Wc8Vl0a19LIEQRDaJK/PnpKSkip9nZ6eTkZGRqMvqLU5fyJfuotBks63blRUlrngLoPi\n90OZXDe4E/7myieLjTXxwht1yaQoaxHJzC32Kvwy89Mk5Nx82j1+H1r/ClvqbUVoD2xFNZqRe1xZ\n88JUFQr/+Fnyi4JaPqwW2DScztPja4S4EEet77uinSlOftlXmiMxYUjDdxKkHC3ijQ+PYzRoeOrh\nLs0etuh0Ksz+4ATbkvPoEmfmmUe6EODXNsYlijDLC5/TpfDTzzksXZlBWmZpEO2QK4K5YWxUm2ot\nEmomyzLZ2dkUFRWxc+fO8naNoqIiSkpKWnh1glC7sCAfHp3al1mf7eDjFQfx89HTs3PbGq0tCILQ\nGnh99pKcnFzpaz8/P+bMmdPoC2qtVFVFBQw6DXZn9SvziQlhlNhdbk/g86wOnvloO5d1DeOWkQnl\nbRmNMfGiruqSSeFNFoVcXELae4vQ+vsSefdNlR6j3bcJyWnH1X8s6N2cUJbkgGwHU3DpTgkPFBUO\nZRoBif6dJaQ61CSy8hS+Xv9HjsSYhudIpGfaeemto7icKk8+1Jn4jo37faqNzS4z651j7N5fSM9u\nfjz5YDw+baClQYRZXvjsdoW1mywsX51Bdq4TnVZi5JBQJo2JJDrSVPsBhDbh3nvvZezYsdhsNh54\n4AECAwOx2WzccsstTJ06tfYDCEIrEBvhx0NTevPfL3fx7rJ9/O3mRDrHtMyob0EQhLbK66LEyy+/\nDEBeXh6SJBEYGNhki2pNqrZWlBUkTAYtDqdcqQXCJaseMygKih1s3HmO1LMFPHtHf7QaDT5GHUF+\nRnKt7k/6S1+37sGZjcGbLIq0eUtwZecS8/A96AIrjJ4sykN7eDuqbyBywoCaX0BxQVEWSBrwqz3c\n8mSunmKnhpgAJxGBRrJq3mRSjdOlsmBlaY7E9P8zEh7csMyHQquLF+ekUlDo4r4ZsVzWu3n/PliL\nXLz05lEOpRYxoG8gj/05DqPhwh9bJsIsL2xFxS5WbbDw3ZpMCqwujAYN142K4PpREYSFtI2WIsF7\nQ4cOZcuWLdjtdvz8Sv8em0wm/va3v3HVVVe18OoEwXsJsUH8ZcKlvLNsL3O+3s0Tt/YjOlS0ngmC\nIDQWr4sSO3bs4O9//ztFRUWoqkpQUBCvvfYavXr1asr1tShPrRUmg5bHb+5LuzC/8iKBVoNXGRSn\nM618tjYFnVbDzpSsGgsSUHrSr9NKfL4uxW0IZnMUKzxlUSglNtLnLkTjaybq3psrPU+3eyOS4sLZ\n51rQuvlRs2aCqpS2bWg8/zgW2jWcytVj1Cl0DnUA3m/l/3ZzaY7EFZfq6Ne1YTkSDqfCrHeOcTbd\nzqQxkYweVnsxpTHl5Tt5/vVUTpwpYcgVwTx4Vyd0jTA9pCWJMMsLW16Bk+/XZrJqQxbFJQpmHy03\njo9i3IhwAgMantsiXJjOnTtX/ueCgoLyP3fu3Jlz584RExPTEssShHpJTAjn9tHdmL/qELMX7+LJ\nGf0J9hcthYIgCI3B66LE66+/zty5c0lIKA1ePHDgAC+99BKfffZZky2upXlqrcizOnhnyV76d4uo\nNDR/yeEAACAASURBVCWj7AT+90OZ5Fnd9xb8sjcdu6vmgMbQgPMn/e5CMBVVRSNJTTqxo4ynLIr0\nz5bjzMom+sE70QWf3y0g5WeiObYTJTAcJa5PzQd2loAtD7RG8An2uAZFhcOZBlQkuobbqctwi10p\nTn7e6yI6VMPEoQ37AKEoKm9/fJIDKVauHBDErZOb90N1psXOc6+nkpZhZ/SwMO6dHnvBj08UYZYX\nLkuOg+WrM1i7yYLDoRLgr+PWyVGMGR4uCkoCw4cPJy4ujvDw0sKtqp4PZJIkiQULFrh97quvvkpy\ncjIul4v77ruPXr168fe//x1ZlgkPD+e1117DYDDw7bff8umnn6LRaJg6dSo33nij22MKQkMN6RND\nQZGDpZuOMfurXfxzej98TaLwKgiC0FBeFyU0Gk15QQKgR48eaLVt+0NnbSNB86yOalMyyk7grxvc\niWc+2k5Bcc2FCXcFiSA/A8/e0R9/s8HjTo2f96Zjc8jlX9c2saMxdlRUzaJQbHbS5n6KxuxD1J+m\nV3qsdtd6JFXFlTiy5vGeqgqF6aV/9q893PJ0nh6rQ0uUv5MQs+zxsRVZ8hS+Wm/HoIfbxjY8R+Kz\npefYsj2Xbl18+es9nZq1IHAmzcZz/z1Cdq6TyeMimX5DzAWfYC/CLC9M5zJsLFuZwY8/5+CSVcJC\n9EwaE8m1V4VhNF74bURC43jllVf45ptvKCoqYty4cYwfP56QkNoLjtu2bePIkSMsXryY3NxcJk2a\nxKBBg7jlllsYM2YMs2fPJikpiYkTJ/Luu++SlJSEXq9nypQpjBw5kqCgoGZ4d8LFatygjhQUOViX\nfIY3k/bw+LS+GJqxrVYQBKEtqlNRYs2aNQwePBiATZs2tfmihLcjQatOybA7ZUrsLvomhLJpV1qd\nXrOgyEGJ3YW/2eBxp0bFgoSntciKwofL97J199lG31GR9eW3ONOziPrLDPSh5z8ESpYzaE8dQAmL\nRWnfreYn2/LBVVI6/tPguS+zyCFxIkePQasQH+p9sqXTpbJgVWmOxC2jjEQ0MEdizY8Wlq7MIDrS\nyBN/jcegb76Tr2Mni3l+dmmGxW03xjBpTOOOJWvuzBIRZnlhOnG6mCUrMvj5t1wUFWIijdwwNooh\ng4LR12X7knBRmDBhAhMmTCAtLY1ly5Yxffp02rVrx4QJExg5ciQmU82hpwMGDKB3794ABAQEUFJS\nwq+//srzzz8PwLBhw5g3bx5xcXH06tULf//SLKN+/fqxY8cOhg8f3jxvULgoSZLETSMuoaDYwfaD\nmbz3zX5m3tCz0XepCoIgXEy8Lko8//zz/Pvf/+app55CkiT69u1b/gGhLStrx0g+5D77oWxKRmig\nic/XprDziIU8q4MQfwN+PjqsJS6vX69iuGVtOzU8raVsR8Pna1PYuPN8X29tOyq8pdgdpL09H43J\nSPSfbz1/h6qi27EGAFe/kTXvgFBkKMoAJPCL9Pw6f0zbUJFICLdTl/Pl77Y4OJulMLCHjsu6NWx7\nZfKefN5fdIoAP12zj908kGLlpTdTKbEp/OW2Doy6JqzRji0rCos3pDZLG1AZEWZ54TmUamXJinR+\n312aC9Ap1ocp46K4on8Q2gu8fUhoetHR0dx///3cf//9fP3117z44os8//zz/P777zU+XqvVYjaX\n/g5LSkpiyJAhbNmyBYOhNCw1NDSUrKwsLBZLpZ0XISEhZHmbfiwIDaCRJO4Z34OiEie7Ui18uvow\nd47pdsHvXhQEQWgpXp9ZderUiY8//rgp19IqVWzH+Ne87TXmRAT7m/AzG3hh/u+czrSW355TWPrY\nqBAz6TnFXr1e2UQL8LxTw2TQ1rhbonxMp6Lw+boj/LTrXLXHQPUdFXVl+fp7HGkZRP7pFvTh52d2\nS2lH0WQcR4m5BDUyruYnF1tKCxO+4aD1XCw4k6+j0K4lws9FmK/3bRu7j7jYusdJVKiGSQ3MkTh+\nqpj//u84Oq3Ekw/FEx3RfO0FO/bm88q7x5BllUf+1ImrL2/crAV3mSXQsKJVTVRVZcOWbBFmeYFQ\nVZXfduXy8WfH2Heo9N+1bl18mTI+in69AsSHb8FrBQUFfPvttyxduhRZlrnvvvsYP358rc9bt24d\nSUlJzJs3j1GjRpXfXjGboiJ3t1cVHGxGp2uaf3fCw/1rf5DQpJrze/DsvYN46r2f2bInjagwP24f\n16PZXrs1E38PWp74HrQ88T2oG6+LEr/88gsLFiygsLCw0i/+thx0WZG/2UD/bhFuR2Mu+elopYJE\nRQ6njEEn4XDV/IFJAkIqhFvC+e30E68uPbGvOvlCVVXWJ5+tcS1GvZbP16WwcUf1+8tU3VFRF4rT\nxbm3PkEyGoj+y23n71AVdDvXAuBKHFHzk112KM4GjR7MoTU/5g/FDokTOQb0WpVLwrzfLVKaI2HD\noIPbxpgw6Ot/8mTJcfDinKPYHQp/uz+OrvHNNwJs62+5zPngBBoNPPFgfKOPHfWUWdLQolVV1iIX\nb887yIYtWSLMspVTFJXfduez5Pt0jhwvLab2vdSfyeOjuDTBTxQjBK9t2bKFJUuWsG/fPkaNGsWs\nWbMqZVN5snnzZt577z0++ugj/P39MZvN2Gw2TCYTGRkZREREEBERgcViKX9OZmYmffv2rfXYubne\nXSSoq/Bwf7KyCpvk2IJ3WuJ78MCknry8MJmkDUfQSTBqQGyzvn5rI/4etDzxPWh54ntQM0+Fmjq1\nb9x///1ERTVuL/uFpOpozCA/I906BjP2ig78e36y2+flFNox6DRA9aKEyaDhyVsvIzzYjFGv/WOH\nQ/URoM/fPRBrsaO8519WFCRJqnFMp6eTzTIV20TqKjtpBY4zaUTeNQ1D5PlWAs2pA2hyziF36oUa\nUsNUClUFa1m4ZSRI7tsDVBUOZRlRVInuYTav2zZcLpWFq23YHHDzSCORIfVvQSgqlvn3G6nk5Dm5\n86Z2DLrM84SQxrR2k4X3Pj2F0ajhqYfiubRr41dbPWWWNKRoVZUIs7wwyLLK1t9yWbIinVNnbQAM\nGRTG+BGhXBLXfMU4oe2455576NSpE/369SMnJ4dPPvmk0v0vv/xyjc8rLCzk1VdfZf78+eWhlYMH\nD+aHH35gwoQJrFmzhquvvpo+ffrw9NNPU1BQgFarZceOHTz55JNN/r4EoaIAs4HHpvXlpUXJfLn+\nCAFmPVdcevF+VhYEQagPr4sS7dq14/rrr2/KtbR6Za0cE6/uzBdrUzh0Kpdf9qVz4ESOx/GfAWaD\n+ykcDgWDXlt+RdrddvoSm4tb/69r+eM8jenMzi92e7JZpmKbSF2oLhfn3pqHZNATfX+FXRKKjHbn\nOlRJg6vPtTU/2WEFR1FpsKXB80n22QIdBTYt4b4uwv28b9v4bquDM5kKA3ro6N+9/jkSLpfKa3OP\nceqsjXHXhnPdyIh6H6uuvlh2mrnzS/Mrnn20C/GdGl4YqImnzJKGFK3KVA2zvPuWjowZFiLCLFsZ\np1Nh49Yclq5KJyPLgUYDQweFcMPYSC7rGyEq/UK9lY38zM3NJTi4clH3zBn3AdIrV64kNzeXhx9+\nuPy2WbNm8fTTT7N48WJiYmKYOHEier2exx57jLvvvhtJkpg5c2Z56KUgNKewIB8endqXWZ/t4OMV\nB/Hz0dOzs+fdoIIgCMJ5tRYlTp8+DUD//v1ZvHgxAwcORKc7/7TY2Itvm9ryzcfYui+9/GtPBQmA\nvgmh7D+WU+PJX0jA+ZM/Tzsctu5L5+DJHPp1jWDi1XFYi53lhYiqV7M9nWxqJBjaN6Z810ddZS9b\njf3kWSJun4Ih5nxIpeboTjSF2cgJAyCghl/EqnJ+BKif5xGgJU6JY9kGdJq6tW3sSXWxZbeTqBAN\nNzQgR0JVVf736Ul2HyhkQN9A7ry5fbNsWVdVlc+XpZH0fTqhwXr+9VgXYmN8muz1PGWW1LdoVaam\nMMurB0WLE9xWxGaXWfOThW9WZ5KT50Snk/i/a8KYODqSqGbMTRHaLo1GwyOPPILdbickJIT333+f\njh07smjRIj744ANuuOGGGp83bdo0pk2bVu32qjstAEaPHs3o0aMbfe2CUFexEX48NKU3ry/exbvL\n9vG3mxPpHBPQ0ssSBEG4INRalLj99tuRJKk8R+L9998vv0+SJNavX990q2uFvGmNqCg2wo8Zo7pW\n2wFRpuLJn6ft9FAanLnu9zNs2ZOG3SG7nZTg6WRzaGI7Zozq6vX6K1JlmbNvzkPS64ieecf5O1xO\ntLs3oGh0FHe/GkNNTy7OBsUJPiGgc3/Co6pwOLO0baNreGkuhDey8xUWryt9/IwG5kh89V06G7bm\n0KWTmUfv69Qs0wUUReWjz8+wakMW7aJNPPtIfLO0OFRtSaraBlTXMaGqqrJxa44Is2zFrEUuVq7P\n4vt1mRRaZUxGDRP+L4LrR0UQElzj315BqJc33niD+fPnEx8fz/r163n22WdRFIXAwEC+/vrrll6e\nIDS6hNgg/nz9pbyzbC9zvt7NE7f2IzpUtL8JgiDUptZTvg0bNtR6kOXLlzNx4sRGWVBrV1vhINjP\nSF6RnSBfI30TwrhlxCVoNRqmDe+CLCvsPGIh3+qoFmwJ3o8ALZu64WlSgqeTzfrK/mYt9mOnCJ8+\nCWP70n5JWVHY//33DCgp5NvCDqxbdKB6oUR2QpEFNNrSiRsepBXoyLNpCTW7iPCybcMln8+RuGmk\nkajQ+udIbNyazZfL04gIM/DUQ/GYjE1/Mu1yqbzzyUl++iWHju1NvPWfRBSX9ztEGqKmNiCdVqrX\nmFBrkYv3Fpxi6295IsyyFcrLd/LtmkxWb8yixKbga9Yy9fooxo2IaNYRt8LFQ6PREB8fD8C1117L\nyy+/zD/+8Q9GjhzZwisThKaTmBDO7aO7MX/VIWYv3sWTM/oT7C92nwmCIHjSKJ9Ely5detEUJfzM\nBowGDTaHUu2+0AATz97RnxK7q9LVZVlRWLwhlT1Hs8m3OgjyM9K7S2iddjh4UtOkhIonm1qDHtnh\nbNB2fFWWOffmx6DVEvPgHeW3L1t3gAn5eyhCx3eFHShWayiUWDMAFXwjSwsTbticEkezDWg1Kgnh\nDk8dHpV8v9XB6QyF/t11DGhAjsSeg4W8O/8kvmYtTz8cT1Bg/Y/lLYdT4b//O85vu/JJiPfl6Yfi\nCQ02kJXVPEWJMhXbgD5fl1LnMaEizLL1yrTY+eaHTNZtsuBwqgQF6LjxumhGXxOGj9jBIjShqm1v\n0dHRoiAhXBSG9ImhoMjB0k3HmP3VLv45vR++pqb/TCEIgnChapSihLezwduC5ZuP1ViQgNJWDH+z\nAX9z5S3QVVs3cq12Nu44i1YjVTrJsztlhiW2Q1ZU9qRaat0xUSan4PykhKpb7o16LeFhvg3u5c9Z\nsQHbkeOETbsOY4d25esNO/UbfkYXX+R3plg9/wu3vFCi2sBeADoTmNyPtFRVSMkyIKsSXcPsGHXe\n/UztPepi8y4nkcESN1xT/5PgU2dLeOWdY0iSxD8f7NykWQ5lSkpkXn7nGHsPFtK7uz//fLAzPqaW\nPUms65jQqmGWN02MZsq4KBFm2QqcTbOxdGU6P23LQZYhPNTApDGRDL8qFKOh/ruJBKG+xDhZ4WIy\nblBHCoocrEs+w5tJe3hsWt9GG7MtCILQ1jRKUeJi+aDh6YTNZNAy8eq4arcXFjv4/VBmjc8pO8mr\nabt87/hQSpwy2/Zl1Louo0GLQa/l4+8PcOhUbrUt9/VRsbhh0Eqcm/MRaDTE/PWu8+/Nks1Q/Qly\nZQNritpXen5uoY38QhsRlI0AjfYYbpleqCOnREewj4sof5dXa8zKdbF4nQ29Dm4ba8JYzxyJnDwn\nL845SnGJzCN/6kTPJhi/WVWh1cW/30jlyPFiLk8M5NE/x2HQt/yJYl3GhNYUZtmti19zLleowbGT\nxSxZkc4vyXmoKrSLNjJ5bBRXXx6CTndx/FsttA47d+7kmmuuKf86Ozuba665BlVVkSSJH3/8scXW\nJghNTZIkbhpxCYUlTn49kMH73+xn5g09PbZBCoIgXKxEI3EdeDphczhlrMVOzMbS3QJlLRvJh7Lc\nTucoO8lbl3ym2nb5jTvPce1l7RjRvz07UyzkFNhwt3fA6VJ44v2fsTvVSscoO+ZDN1/m9XssW3fF\nAslV+ceJPnSU0CljMcWdn7YSfmIbBo3CZ7mdcKiVq//B/iaC9SVQYgdTEOjd7zywu/5o25BUunrZ\ntuGSVd5fmkeJHaaNMBIVWr+rDyU2mZfeTCUr28H0G2IY0gwZCDl5Tp5//Qinztq4ZnAID9zZsdXs\nLPBmTKgIs2ydDh6xsmRFOsl7CgDo3MGHKeOjuLxfEJpmCGsVhKpWr17d0ksQhBalkSTuHtcda7GD\nXakWPl19mDvHdLtoLuYJgiB4SxQl6sDPrMdo0JYHTVZUdsJWxt20jYoM+tIdDu52X+w6ks2L917O\n5KHxHDubz3+/3FVjYUJWVOSaO0rYmWLB5vBu50FN687Ot6H/YjGqJFXaJUFhDvqjyRRo/fmpOLra\ncS7vHoreZgFJA34Rbl+vrG3DpUhcEmbHpPeubWPFVgfHzji5rJuOAd3r92Msyyqvv3ecYydLGDEk\nlMnjImt/UgNlZNn513+PkJHlYNy14dx1c/tWdcJY25hQp0Pl7Y+OizDLVkJVVXbvL+Tr79M5kGIF\noEeCH5PHRZLYM0B88BVaVLt27Vp6CYLQ4nRaDfdP6sVrX+xky540AswGplwT39LLEgRBaFUapSjh\n59c2tmzXNgJx+ebjNRYkoPJoT2/HhtocMkt+POp290XFrIjO7QK9msxRVW6hjdwCu1ff6GK7ky17\n0ird1vH4AcIsaZy69DL6djy/S0K3az2SqmC8YjTDIkzVpnzccJkf2PLALxI07l8906olu1hHkEkm\nJsC74sm+oy427XISHaZl8jXGep14qarKR5+fJnlPAYk9A7jv1g5NfgJ3+mwJz72eSk6ek6nXR3HT\nhOhWedLobnJLr/ZRPPKvgyLMshVQFJVfd+ax5PsMjp4sBiCxZwBTxkfRI6Ft/HssCILQVvgYdTw8\ntQ8vL9rBym0nCfA1MGpAbO1PFARBuEh4XZTIyspi5cqV5OfnVwq2fOihh5g7d26TLK65yIrCh8v3\nsnX3WbcjED3nSWi4smcUdmdpweLImTyviwe/p2QS5Kcn1+qsdp8kwQ+/neaWEZdg1Gvp3SWMjTvO\n1um9BfubCA4wUphfUutjP197pHLRRVW5bPs6VCR+TRzKkD8KJFJOGtoTe1BCoiGuJ7d01lQaKWnE\nCbnHQGsAH/dX0R0uOGIxopFUukbYvWrbyClQ+HKdDZ0WHpgWjFFr8+Z/QzXLV2eyeqOFTu19ePwv\ncU3ea596vIgX3kil0Cpz503tuH5U0+/KqK+qY0J9fQwsW5HBv75IFWGWLczlUtmyPYclKzI4k2ZD\nkmBQ/yAmj4sivqO5pZcnCIIguBFgNvDY1D68tCiZL9cfwd+sZ9ClUS29LEEQhFbB66LEfffdR9eu\nXdvkdsxqLQs1jED0lCdhcyg8P/93jHoJFQmH000vRQ3sDoUQPxNQvSihqLBxx1k0Umlg0u4jpUUR\njVR6X9l/PUlMCMNk0FHb7A27U+bQyZxKt3U4eYiIzLMc7dIbOnUsb0/R7loHgCtxZGl7BhVGSqoq\n5JWFW0Z5DLc8YjHiUiS6hNrx8aJtQ5ZVFq22UWKHqdcaiY3Sk5VV96LE1t9yWfD1WUKD9Tz1cHyT\nZyHsO1TIf946it2uMPPODoy4OqxJX6+xGPVaZIeG599JFWGWLczhVNiwJZtlqzLItDjQaGDYlSFM\nGhPZLJNiBEEQhIYLC/Lh0al9mfXZDuatOIi/j56enUNbelmCIAgtzuuihNls5uWXX27KtbQIb0cg\nBvoZ3eZJnD+WCm7jKD2twcWQPlFs2ZNeY5Fh6970Sq9b9hhPBQmjXsPVfWK8nr6Rb7WTW1ghkFNV\nuezX9QAkD7yW7h2CMeq1SBkn0J5NQYmMQ42u4dj2AnAWg9EfDO5PXrOsWrKKdASYZNoFete2sfIX\nByfTFfp11TGwR/06jw4esfLmhyfwMWl4+uF4wkIMtT+pAX7blc9rc4+hqvD4X+IY1D+4SV+vsYgw\ny9ahxCbzw48Wvv0hg9x8F3qdxOhhYUwaEylaZwRBEC5AsRF+PDSlN68v3sW7y/bxt5sT6RwT0NLL\nEgRBaFFen9n16dOHo0ePEh/ftsJ56jICsT4FB2/kWR1c3j2KzbvTa7zfXSHE3U4Jg17Dy/ddQZCf\nyes1BPoZCfY3kPNHYaL9qSNEZpziWHxPiqLbcfPIBFBVdDvXAmW7JKrsglAUsGYAUmmWhBtOGVIs\nBjSSSrdw79o2Dhx38eMOJ+HBElOG1S9H4lyGjZffPoqsqDx5fzydYpt2u/umbTm89fEJtFqJJx6I\nJ7HnhfGhw1rk4r0Fp0SYZQsqtLpYuT6L79dlYi2SMRk1TBoTyXWjIggO1Lf08gRBEIQGSIgN4s8T\nLuWdpXuZ8/Vunri1H9Ghvi29LEEQhBbjdVFi8+bNzJ8/n+DgYHQ6XZuZM+7NCEQoLV7YHN63ZdRF\nsL+J9hF+dQ6ydLdT4sqeUXUqSEDpVn1fnz+KEqpK/+2lxYfkAdcSEWzGbNShOX0ITdYp5NjuqOE1\nBDQVW0BxgTmsNE/CjVSLEaesoXOIA7Oh9kJPbqHCF2tLcyRuG2PCaKh7QSK/wMm/3zhKoVVm5p0d\n6NvEBYLVG7P4YNFpfExann44nu6XXBgtD/sPFzLnwxMizLKF5OQ5+XZNBj9stGCzK/j5arlpYjTj\nrg3Hz1cMSxIEQWgrEi8J5/bR3Zi/6hCzF+/iyRn9CfYXv28FQbg4ef0p93//+1+12woKChp1MS2h\nthGIZRM1Av2MhNZj+oU3encJxd9scLsOk0FTY0EkNMBI7/hQdqdmk1NoL985sedoNp+vS6kU1Fkb\nu1Om2FaaaxFz5ihRaSc5Eded7Ih2YHNitzvx27UWVZKQ+15b/pzycEtJhuLs0kkbvu4zEyxFWjKs\nOvyNMu2DqudoVCXLKgtX2Si2wY3DjcSE1b19wO5Q+M/bx0jPtHPj+Kgmz3RYsiKdRUvOERig41+P\ndiGuQ+sPIHS5VL785hxLV2aIMMsWkGmxs2xVBus3Z+N0qQQH6rlpYjSjhobhYxItM4IgCG3RkD4x\nFBY7WPLTMWZ/tYt/Tu+Hr0nshhME4eLjdVGiXbt2pKamkpubC4DD4eDFF19k1apVTba45jJteBfM\nPga27j5XaQRixTwGT8WLujAZtJiNWnIKHeVFhN1HstBqJKZc0xmoPopRUVU2JFefupGYEF4axCkd\nZuOOs+U7J2oK6qxNxTaW/ttLgyyTB44AILfQjjNlB5q8TOT4RFwB4Sxel8LOlKzyaSUPjQqhfYAK\nflHl4ZdVOWVIyTIgodI1vLSIUptV20pzJBITdFx+ad2vFCuKypsfniDlaBFDrgjm5knRdT6Gt1RV\nZWHSOZatyiAsRM9zj19Cu6i67VhpCWmZdt54/7gIs2wBp8+VsHRlBpu25aAoEBlmYNLYSIZdGYpB\n711BURAEQbhwjb2iI/lWB+uSzzDn6908cmMfzKIwIQjCRcbrs7wXX3yRrVu3YrFY6NChA6dPn+au\nu+5qyrU1G61Gw70TezFmYOz5K//6ylcn7U6ZYYntkGWFPUdz/igaGDGb9GTmFmP3cuKGwynTt0so\n2w5klhcRcgodlYoIlcZr6rXIioKqwq4UC3lFdkIqFE3sTpk9qZYaX6ssqNMbZW0shgMHiDl7jFMd\nu5IVWdqiEe6vJ/jIFlSNFlfv4dWmlcQEqLQPUMmwSkSG+7t9jaPZBhyyhk4hDvyMtbdtHDjuYmOy\nk7AgiSnD65cj8elXZ/klOY+e3fx44M6O9TqGN2RF5YNFp1nzo4WYSCPPPX4J4aFNG6LZUCLMsuUc\nPVFM0op0ft2Rh6pCbIyJG8ZFcvXAELE7RRAE4SIiSRI3jbgEq83Jtv0ZzPpsJ49O60OQn2jlEATh\n4uF1UWLv3r2sWrWKGTNmsHDhQvbt28fatWubcm3NrnysZQWyorB4Q2qlXQG9u4QxpE8MWgnCg83I\nisoXa1M4eCrXbWhmmWB/Iymn82q8r+K0j7J1lL3+nlQLuVY7QX4GeseHlLdmZOcX1xrU2d7L956Y\nEI7p07KJGyPK75vaLhdNQR6uboOwG/3ZmbK//D6tBm6+PABZUVn0cwEPxCrVCjoAOcUa0gv1+Blk\nOnjRtlExR+L2MSZM9ciRWLk+k2/XZNI+2sQ/ZnZG30RXnl0ulTc/OsGW7bnEdfDh2Ue7EBTQuq9y\niDDLlrH/cCFLVmSwc19p61uXTmamjI9iQN9ANN5sHRIEQRDaHI0kcc+4HvgYdWzccZb/LEzm0Wl9\niQpp/e2fgiAIjcHrooTBUHrV1+l0oqoqPXv25JVXXmmyhbUWVXcFZBfY2bjjLL/sS8PuUAgJMJKY\nEM4dY7uRZini2Xm/eTxetw7B/Lyv5ikb1ad9VH/9PKuDjTvPodVquGVEgtdBnd4Y51/E4dOppMd1\nJSumI6H+JgZ0CeTyvO2oOgNyr6HVppWM7GEmKlDHuv1FHDxbXG39AC4FDmcZS9s2Ihy1tm3Issqi\n1aU5EpOHGYkJr/uV++078/j48zMEBeh45pH4JgsJtDsUXpt7jOQ9BXTr4svTD8fja27dgYQizLJ5\nqarKjr0FLFmRzsEjRQD07ObH5HFR9Onh32S7dwRBEIQLh0YjcevIBAJ9DSzffJz/LEzmkal9iIu+\nMCZ3CYIgNITXZ09xcXF89tln9O/fnzvvvJO4uDgKCws9PufVV18lOTkZl8vFfffdR69evfj73/+O\nLMuEh4fz2muvYTAY+Pbbb/n000/RaDRMnTqVG2+8scFvrDHYnTI7U7JqvK8seLJifsPkofFuIkOC\nkwAAIABJREFUwzA1EgxNbMfkofEcOpXrVRHB0+tX3FXhLuuid3xIjbsW3El/cx4AV772KFd0706g\nnxHzwU1IGUW4eg8Dky+BWrm8CBLoo+H6RD8KbQrLd1rdFkGOZRuwuzR0DHbgb6y9zWX1Ngcn0hT6\nXqJjUM+6n+CnHi9i9vsn0Os1PPVQfJOdcBeXyLz05lEOpFhJ7BnAP2Z2xmhsvTkAIsyyecmKyq87\n8ljyfTrHTpUAcFnvAKaMjxKZHYIgCEI1kiRx/ZVxBPoaWPDDYV79fCczb+hJz7jQll6aIAhCk/L6\njO/5558nPz+fgIAAVqxYQXZ2Nvfdd5/bx2/bto0jR46wePFicnNzmTRpEoMGDeKWW25hzJgxzJ49\nm6SkJCZOnMi7775LUlISer2eKVOmMHLkSIKCghrlDTZE1V0BnpQVCdwVCIb2jWHGqK4AXk37qO31\nK+6qKAvk3HE4q8YpHA9MTax1/dYd+8j/8Rf8r+xP6ODLSm+0FaE9sBXVaEbucSVQOfBzSn9/THoN\ni7fnU+xQGdw7rFoRJK9Ew7kCPWa9Qsfg2ts2Dp5wsSHZSVigxI31yJHItNh56c2jOJ0K/3ywM13i\nmmbud0Ghixdmp3L0ZDGD+wfx8J86ode13oKECLNsPi6XyqZtOSxdmc7ZdDuSBFcOCGLyuKgLYhKL\nIAiC0LKG9m2Hn4+B97/dz5tf7+Hucd254tKoll6WIAhCk6m1KHHgwAF69OjBtm3bym8LCwsjLCyM\n48ePExVV8z+SAwYMoHfv3gAEBARQUlLCr7/+yvPPPw/AsGHDmDdvHnFxcfTq1Qt//9KAxH79+rFj\nxw6GDx/e4DfXUJ5aI6rKLbSRlVdSQxhm9UkeZX+uOGWjd5dQhiW2w+6UK40hdd+aYSzflaDVlLZy\nyIpa4xQOs4+BiVd28rj+s3M+AqDdI/eU36bdtwnJacfVfyzoz+82mDa8C2FmlSu7yJy0ONmfpjKi\nf/tK7xFAVuBQphFQ6RZR+7SNvEKFL9bY0GpgxhgTJmPdChLWIhf/fuMoeQUu7p0ey4C+TVPYys51\n8Nx/UzmTZmPE1aH8+fYOaFtpHoAIs2w+dofC+s3ZLF+dQVa2A60Wrr0qlEljIy+IKSyCIAhC63FZ\n13Aem9aHt5bs5YPvDlBY7GTkgNiWXpYgCEKTqLUosXz5cnr06MHcuXOr3SdJEoMGDarxeVqtFrO5\n9KpgUlISQ4YMYcuWLeXZFKGhoWRlZWGxWAgJOR+wFxISQlZWzS0Lza0uY0ANei1zvtpFbqGjPAxz\nxGXtCQkwVds9oNVomDw0niF9YpAVhY07zrAzJYuNO84S+kdGxbThXTDqtfiYdFBDUcLHpKt0XE9T\nOLbtS2PMwFi3rRxFew6Sv24L/pcn4j/oj10SRXloD29H9Q1EThhQef2SxKhuenDJBETG8u97A2s8\n9vEcAzaXhtggBwEmz20bsqKy6AcbRTa44Roj7SPqdtLsdCrMeucYZ9JsXD8qgrHXhtfp+d5Ky7Dx\n3OupZFocXD8qgjumtWu1mQAizLJ5FJfILEo6xRfLTpNf4MKglxh3bTgTRke2+gksgiAIQuvVtUMw\n/5zej9lf7eKL9UfIL3IweWjnVvu5QxAEob5qLUo8+eSTACxcuLBeL7Bu3TqSkpKYN28eo0aNKr9d\nVWseCenu9oqCg83odI1/pTe8hnGWD0xNxOxjYNu+NCx5JRgNOkrsrmqPszlkbA4ZOB+G6e9r5N6J\nvSo9TpYV5n23n2370sjMLUGrkZCV8++54u6GGWO7Y8krqXGtlrwS/AN9MBlKv4VpliJyCmve0WHJ\nK0Fr0BMeVnMrw8m58wHo8fxfCYsoDVQq2fE9TsWF6apxBEYFV3p8SW4mVpcNY2AoCe071vyahSpn\n8lX8TDAgwYhW4/lK8ddrCzh+TmHgpSYmDA/y+hdueLg/qqry79mH2H/YyjWDw3h8ZrcmmWRw9ISV\np185Qk6ek3tu7cTtUzs02QeDmn4W62LXvjxeeP0wmRY7vboH8Oxj3YmObPmr9Q19X61JfoGTr789\nQ9L357AWuTD7aLl1SizTJrQnOKjtFCPa0vesorb6vqBtvzdBuNjERvjx1K2X8fpXu1m57ST5RXbu\nGNMNrab1towKgiDUVa1FiRkzZng88VqwYIHb+zZv3sx7773HRx99hL+/P2azGZvNhslkIiMjg4iI\nCCIiIrBYzl/hz8zMpG/fvh7XlJtbXNuy6yw83J+srJqDOyde2YkxA2PJt9rxM+tZvvl4eeuFXqfB\n7qx5F8DW3eeq7VD4fF1KpZ0XFQsSVZ/bu3NweaBmVTaHwsEjmbSPKP3wKTtlQvxrbvUIC/JBdjhr\nfH/F+1PI+HY9fpf1RunVk6ysQqT8TPQHtqMGRpAf1hUqPk+RIfsUSBJ2XUiNx5QV+P2MDyBxSYiN\nnGzPuyQOnXTx3SYboQES11+lxWKxenx8mbLv2WdLz7Hmx0y6xvvy59vak53t3fPr4vDRIl6ck4q1\nSObe6e0ZOzzE63XWlaefxdq4DbPUOMnKqj3Toyk15H21Jjm5Dr75IZM1P1mw2RX8/bTce2snhl4R\ngK9Zh8tpJyvLuyya1q6tfM+qaqvvC5rnvYmihyA0r7AgH564tR9vfr2brXvTsRY7+fPEnnUKMxcE\nQWjNai1K3H///UDpjgdJkrjiiitQFIWff/4ZHx8ft88rLCzk1VdfZf78+eWhlYMHD+aHH35gwoQJ\nrFmzhquvvpo+ffrw9NNPU1BQgFarZceOHeW7M1oTo15bPurylhEJTB4az8IfDrsd7wnVR3x6mqZR\nVU6BDWuRw/ODKhSLPLWaXNEz2u0vrrNvfgxAzKP3lBeftLvWI6kqrsQRULUSX5QFqgy+EaDV13jM\nk7l6Spwa2gU6CfTxXJDItyp8/sMfORJjTfjUMUdi3SYLSd+nExVh5IkHO2M0NP6Vg937C5j1zjEc\nToW/3t2RYVe2zhRsEWbZtNIz7SxblcGGrdm4XCqhwXpumRTDyKGhxLYParMnuYIgCELLCzAb+NvN\nicxdto/dR7P575c7eWhKH/x8av4sJgiCcCGptShRlhnx8ccf89FHH5XfPmrUKP7yl7+4fd7KlSvJ\nzc3l4YcfLr9t1qxZPP300yxevJiYmBgmTpyIXq/nscce4+6770aSJGbOnFkeetnaHT6V6/H+qiMy\n6zLNI9DPQFxMIFpN6c6DqrQaCA+qXBSqKUAzMSGMu667lJycomrHKD6USu736/Ht24PAa0q/z5Ll\nDNpTB1DCY1Had6v8BJcNSnJAawBzzdkEBTYNp/L0mHQKnUMc2J0y+VY7gX7GaoURWVFZtLo0R2LS\nUAOxdcyR2L4jh/8tOIW/n5ZnHoknMKDxfzH/uiOP/753HIC/39+Zy/u1/FSYqkSYZdM6eaaEpSvT\n2fJrLooKURFGbhgbyTWDQtDrxfZZQRAEoXmYDDr+OqU381YeZNv+DF5elMxj0/oSEtDy7ZmCIAgN\n4fVI0PT0dI4fP05cXBwAp06d4vTp024fP23aNKZNm1bt9k8++aTabaNHj2b06NHeLqVV8KbA4GPU\notNKFb7WEeRnJNdae2Ei8ZIwDHotOq0GWalelahp/GTZFI7JQ+MrFQK02ppPnM69OQ+AmEfuLd0l\noarodqzh/9m77/gq67v/46/rOjNnJTnZCSMbwkgIYTtAQMA9QFGK1tZb29q7rdbe7V2rrffd2vHr\nsvOutVonSgW1CCjKUpYKJICMTEYG2fvscV2/Pw5ZZJAgGMb3+Xj0Ucw5OefKPtfn+nzeH4BA7oIe\nnRioKrSf6gqxxIHU+zEVFYrqDYBERrSblZuLKSiup6nNi71bgGfHHOT7n/g4elIhO03DFdlDKygc\nK3fx+K9K0MgSj307jcTzkJewZUcjf/7nCfQ6mR9+K5XscbZz/hyflwizPH9KjjlZvbaGTwpaARiV\nZGTJDfHMmhqJRiNCxgRBEIQvnlYj8x83jsNm0vP+7gqeenkv3106iaR+csMEQRAuBoMuSjz88MPc\nd999eL1eZFlGluULcsziizKYdaGV9U7+94U9/NfdOby+qYzCE000O84wkkEo1GjZtZlUN7r6zavw\n+JQeoyHddR816Y+75DhNaz7ANGEMEfOvBECqLkOuPUYwMQM1Lrlnl0PQCX4X6C1g6LuT5USzDqdP\nJsHmZ8Ouoh6jJB0BnhAafykqD7Bptx+7TeLO+cYhBUY2NPl46g9luNxBvveNlPMyorBuYx3/WFGJ\nxazhiYfTyUy78P7YHypq5+lnj9PQ5GdsuplHHkwmNtpw5ncU+qWqKoeKHKxaW8P+w6FxjIwUE0tu\njGdKTvh5CVAVBEEQhKGQJYmlc9MJt+h5Y0sZv3xlL99ZkkP6iPDhPjRBEISzMuiixPz585k/fz4t\nLS2oqkpkZOSZ3+kS1P1EfTDrQivqHDz8px300ezQi0ErM2NiPHfPS2fl5lLyi+r6va8shTovztbJ\nPz4HqkpSZ5eEgrbgAwB8OfN4fWNXl0NcpIEf3RCJSS8hWeL6fDyHV6a8WYdBqzDC5uYf/WRnFBQ3\ncO2UVFZs8CLLcO91Q8uRcLmDPPV0GY3Nfh76SipXTD234xSqqvLGOzW89nY1keFafvJoBqNH9J+d\nMhz6DbMUV+/Pmqqq7Nnfxup1NRSVhUadJmZZWXJDHBOzrGL9miAIgnBBkSSJ66aPxmbS88/1hfzm\n9QK+fusEJqVHD/ehCYIgDNmgz2qrqqr41a9+RXNzMy+//DJvvPEGU6dOJTk5+Twe3oUjqCis3Fza\nYxxhUkY0c/OSyC+qp2WADojBFCQAvAEFnUZm1dajZyx2KCq4vQGspqGvHvQcLafxrQ2EjcsgYuHV\nAMjlh5GbThJMnsjr+5w9nn96sg6zHg7VwfjY3lfiFRUK6/SoSIyJ8eJ09T/a0tzuYcUGDw433Hq1\nnpFxg889CARUfv3XoxyvdLPommjuvm3EOd2AoaoqL6ysYs37dcRG63ny0fQLYo1mdyLM8twKKiq7\n9jSzem0txytD63enTgpn8Q3xjLkAu2MEQRAEobsrJiZgCdPxf28f5M+rP+PL143hquzE4T4sQRCE\nIRl0StsTTzzBLbfcgqqGVlgmJyfzxBNPnLcDu9Cs3FzKxj2VNLZ5UQmNI2zaW4UsSfzPV6dhM52b\nkMWC4voBOyQ62K2GHiGaQ3Hyj/8ERSHp4fuRZBmUIJqCjaiSjGv8nB4bQqIsGq6baKbZGWTFjma8\n/mCvx6to0eHwaYi3+rGbgp2jLX0JN42mvBYmpmm4MmfwnzNVVXnm5XL2HWonL9vGfywbeU6vXgcV\nlb++UM6a9+sYkWDk5z/MvKAKEqqqsnl7I9/9yRFKjrmYM9PO7/4nSxQkzpI/oLDxowa+9aPD/PZv\nxymvcnPV9Eh+/z9jeezbaaIgIQiCIFw0ctKj+a+7cwkzaPjn+kLW7Tre+XpdEAThYjDoooTf72fe\nvHmdJ4JTp049bwd1oRlolWdBcQN6nYa8sbHn5Lma2r00tZ85d2LymJge2yy8/iB1za4+iwbdtZWV\n07B6PYaMFCKvnwuAXFaA3N6IkjGFFsnSo8th6VQreq3EG7vbqW0JrTjtzumTON6kQ69RSIsKHXfH\netLTaWUbqLHYbRJLh5gjsXpdLRu3NZI6OoxHv55yTkcV/H6F3/7tGBu3NZI22sRT/51JVOTQO1DO\nF4czwG//dow/PX8CWYbvPpjMdx5IxhSmGfTXXQjxehXWflDHN35wiL+8UE59g4/5V0fx55+P47tf\nSyF55MBZLIIgCIJwIUpLCueHy/Ow2wys/vAor28qRRGFCUEQLhJDCiVoa2vrPJEsKSnB6x3cesuL\n3UCbNprbQyfqi2en8dG+qj7Xdw6F3WpAVdV+CxN2q4HJY2I613/2NVaSmxnDrVel4nD5CLcY8PgC\nVDc62binAt0f/kJqMMiHE67m0OZSll49Gv3+zagaHYGJcwjXdQV4ZiXomZJipKTWx8dHPUTZeq44\nVVUorDOgIpEZ46X7xs/T15NGWCxoyEBVJe5ZNLQciY8+buLVN08SE6XnR99JJ8x47lZderxB/t9f\njlFwsI3xYyw89u20C2qVZn9hlv193btvNxG6OF1B3ttSz5r362hrD6DXS9x0bSw3L4wl2n7hFKAE\nQRAE4WwlRpt5bHkev/vXfj7YU0Gby8f9N2Sh7WcLmyAIwoVi0EWJb37zm9x5553U19dz00030dzc\nzK9//evzeWwXjIE2bURaQyfqrQ7voLMjADQyfRYwOjoM+sqUuGJCPMsXjunRIdExVtKhY8vF9gMn\n8fgUjHoZSZJxewNY2pq5+8AnNEfGsD8pC3VPJRMch5jqbicw4WowWTGcOoYteytZNsOKoqq8uqvt\n1LFF93juylYt7V4NsZYA0eaeV+o71pPeNCuZ8loHm/cYOF6tcstVekbFD/6k/2BRO396/gSmMA2P\nP5yGPeLcjMkAOF0BfvZ0GYWlTvKybfzXQ6kY9BfGH+4zhVn293WH0HYTIaS1zc/ajfWs31SPyx3E\nFKZhyY3x3Dg/hnDbufteEgRBEIQLgd1m5L+/NJk/rjrAJ4drcbh8PHTbxM8Vji4IgnC+Dfo3VEpK\nCrfddht+v5/CwkJmz57N3r17mTlz5vk8vgtCxzhCX4WCjhP1wawI7a6jIGHUa/D5g0RajeRmRnd2\nGEBXl0H327pfBR9orMTjU7r9f+jfuXu3oFEU8qfOQ5VlTJKfcW2foRqMBMdf2fm+S+emMyZKISlS\nYWuhC2dAy/wp8T2OzeWTONakRyerpEf3/pi7X8l3uqII048g3OpmVvbgN1lUnHTzyz8dBRV+8J+p\njEo6d1swWtr8/O/vSjlWHsoS+Pb9yWi1F8aGhapqN4//oqjfMMszjRMtnp3Wo3h0OWpo8vHv92p5\n/6MGfD4Vm1XL8sWJLLomBrPp8v7cCIIgCJc2S5iOR++axN/ePsj+skZ+/VoBD9+Rg80sOgMFQbgw\nDboo8cADDzB+/Hji4uJITw+dnAYCgfN2YBeKjhWgt16VAvRdKICBCxcDCdNreOyePGIiwnqcSC6b\nn8ni2Wmd60f7OskcaKzkdOb2FsYe2k1reBSlmTkA3GCtwCz5aUm9kjB91wm/BoW8EaAiM37CGGbO\nNPV4flWFonoDiioxNtaDvo9zvI4r+VrZisWQRFDxcqL2MP/akjCoK/ktrX5+9nQZTleQb98/muws\n66A+zsGob/Tx5G9KOFnrZeGcaB5YPhKNPPwFCVVV2bKjiX+8VonbHWTOTDsPLB/Za5xkMONEsZGX\nZzZCda2HN9+tZeuOJgJBlWi7jlsXxTH/qmgMhgujC0YQBEEQzjeDTsN/Lp7Ii+8Vsf1ANb94ZS/f\nXTqJmIgLa825IAgCDKEoERERwS9+8YvzeSwXlP5m9v/n/mmdWQ2nFwqWzk1HUVV2flaDxze44MFm\nhw+9Vu6z6GDQaQY8uRxKd8akvVvRKMFTXRIaImQvi8wVtCgG5Amndbs46kBVkCzxxJh6FwOq2rS0\nejREmwPEWnp/nB1X8iV0mA1pgIrTV4pKcFBX8j3eIE/9oYy6Bh933ZrANVdEnfHjG6yqGg9P/qaE\nhiY/t18fx/LFied0i8fZcjgD/O2lcnbsbsFs0vDdB5O5aoa9z/sOZpzocnOi0s2qtTXs3N2MokJC\nnIHbr49j9kw7Oq0oRgiCIAiXH40s85XrxhJu1rNu1wl+/vJeHrkzh1Fx5+5CjyAIwrkw6KLEtdde\ny5o1a8jNzUWj6TqhTEy8NHchn83MvkaWkSVp0AUJAEkKXd3urxtiIAadhkkZ0WzaWzXg/UyOVrIO\nfUqbzU7JmFwAbrWewCgr7A2fxJSwblVzvxs8LaAxQFhkr8dy+yWONurRyiqZfYxtQNeVfLNhDLKk\nx+UrJ6g4gTNfyQ8qKr975jilx13MvcLOnTfFD+ZTMSjHyl08+dtS2toDLF+cyOIbzt1jfx6nh1n+\n9L8noJX9/d5/MONEl4uiMier19Wwe18rAMkjwlh8Yxwzp0ReEN0vgiAIgjCcJEli8ew0bGY9r20s\n4Vcr8vn24mzGjOr9Gk8QBGG4DLooUVRUxDvvvENERETn2yRJYuvWrefjuIbV2c7se/1B8ovqhvRc\nqgq/WrEPo15m1sQE7p6XMaTtCYNZ9jQp/0O0wQD5U65B0WiI1biZaz5Jq8ZK7vULex5Me03o39b4\nUMXktGPtGNsYE+NB3+27p2PMJdxiINxiINIyElUJxxdoxhuo6bzfQFfyVVXl+dcq2b2vlZxxVr7x\n5dHnrIvhSImDnz1dhtsT5Gv3jGTRNb1Xln7RAgGVlWuqeXNdDXQLs4yPM1Jf339RAnpvN+krk+RS\npaoqnx1pZ9W6Wj470g7AmDQzS26MJy/bdkF0vgiCIAjCheTaKSOxmfT8Y+1hfrtyP1+7eRx5Y87N\nOntBEITPa9BFif3797N79270+ks/JOdsZvaDisIrG4r6XeV5Jh6fwua9VciSNOjtCV5/kP0lDX3e\nJkugqBDmbGfcZx/Tbo2gOCsPgK+PrEbjVzHNug5F220DgacVAm4w2EBv7vWY1e1aWtwaokxdYxt9\njbmkJyWhKvEEFS8u39EejzHQlfx3Pqhj/aZ6Ro8w8l8PpZ6z4MmCg2388s9lBIMqjzzQ/1jEF6m6\nzsvvnznWb5jlmXRsNzlT7silRFFU9uxvZdXaGkqOuQDIGW9lyQ3xjB9jEcUIQRAEQRjA9HFxWEw6\n/vzmZ/z1rYMsXziGa3KThvuwBEEQBl+UmDBhAl6v97IoSpzNzP7KzaXsOFjT6+1DlV9UP+jtCfXN\nrn7zJFTAatIxfnuoS6JgyjUoGi2jde2M8Z8gGJmAMnp81zsoQXDWAhJY4no9nicgUdagRyOrZMb4\n8AVCnREbdlewJb9rfKSpLUih34YswbjUNkoqdTS3971dpLtde5p5YWUV9ggdjz+cfs42JOzc08zv\nnzmOLMMPvpnG1Enh5+Rxz1ZHmOWzr1bg8Sr9hlkO1plyRy4FwaDKjt3NrF5XQ3mVB4DpueEsvjGe\njJTexTNBEARBEPo2PtnO9+/O5ek39vPyhiLanD5uviJZFPYFQRhWgy5K1NbWMnfuXNLS0npkSrz6\n6qvn5cCG01Bn9gca9xiqpnYvTW0eEqL6P9nq6E7YW9T/c0aYDbjrGhl/YBcOcziFWVMBuMMW6lxo\nzLyacKnbmIirIVSYMMeARtfjsVQViuv1BFWJjCg3q7cWUVBcT2Obl9PH9s2GNGRJjySf5MvXpQGj\nznglv7DUwdPPHsegl3n84TSi7eem8LVxWwP/90I5BoPMY99JY8KY4Q126h5maQqTBwyzFMDvV9iy\ns4m33q2lps6LLMPsmXZuvz7unK6HFQRBEITLSUqCjceW5/Hblfv49/ZjtDp9LL82E1lkMQmCMEwG\nXZT4+te/fj6PY9h5fAHqml2dXRDX5CYRCAb5+FBdZ3ClUS+jqCpBRemR+zCU1ZwAFpMOh6v/zICN\neyu5Z8GYfm9/fVPJGcMtJ2VGo2x9B13Az8dXzEHRahmrbyHX2ERxwE588tiuOwe84GoEWQem3psu\nah1amlxaIsMCfLi7sEexRukWamHUJqDThOMLNuN2V9LqGEFspGnAK/nVtR5+8cejBIIqj30zlZRR\n5+aq/5r3a/nn61VYLRp+/Eg66cN8Rf30MMtHHkwmNvry25IxGB5vkA8+bOTfG2ppbPaj1UosmBPN\nbYviiI8VnzNBEARB+Lzi7CYeuyeP3/9rP1sLqmh3+njw5nHotJf2KKggCBemQRclpk2bdj6PY9h0\ndB0cKGukrtmNUS8DEl5fEINe02OTRn+5D0NZzRllM5KdHtVj5OF0B0ob8V4T7DdMc8dn/Y+J2K0G\nctKjuCbNSmX+dpxmK4XjpwEqS21lABTFTWP0qZRKry8ArVUYAKxxIPUM2fQGJEob9GgklZRIN6/0\n0xGila0YdSNQFC8u7zEMeg0Wk67P+3Zoaw/w06fLaHME+Ma9o8jL/vyjFaqq8trb1bzxTg32CB1P\nPprOyGG8qt5fmKVGI65GnM7pCrB+Uz3vfFBHuyOIQS9z84JYblkYiz3y0h8bEwRBEIQvUoTFwA+W\nTebPbx5gb3E9v1u5n28tzsZkHPTpgSAIwjkx+DUPl6iO1Z91zW4gVHjw+IKo0O9qz4LiBrz+rts6\nxj0GIzczmmXzM5g5oXduQ4eOMM2+1Le4B1w5mj4inANljbzz3T8gezwcn70Qe7SVPGMjmYY2ThhG\nMm/RTIKKwoqNxaxYl49B9VBU42fFtmqCitL5WB1jGwFFIjXKh8fj6bMjREKLWZ8GgMNXhkoAjy/I\n29uO9XucPr/CL/5URnWtl9uvj2PBnOh+7ztYiqLy3IpK3ninhrgYPT//YeawFiSq67w89osiVq2t\nISZKz1P/ncnSmxNEQeI0La1+Xl5VxQPfO8iKt6pRFLjz5nj+/psJfOWuEaIgIQiCIAjnicmo5ZE7\nc8gbE0NRRQu/WpFPSz+vQQVBEM6Xy7oUerZZEH1t4OgIcNx+oLrPooFRr+HK7ASWzk1HI8vcu3As\nxeUtQwrTBEKVggF8eqQOvcfFhP07cIVZ2DV6EguzYlnSvAfVIZGw4FZUWWbFxmK2FlTys9uiCSgq\nL+1oobo1CIS6QLz+IOWN0OjSEmEMkmgL4Av03RFiNqQiy3pcvnKCiqPz7f2tT1UUlT88e5zCUidX\nTovkS7cnDvgxDUYwqPLnf55g684mRiUZ+cmjGdgjBu7UOF/OdZjlpaq+0cfb79Wy8aMGfH6VCJuW\nO26KZ+GcGPG5EgRBEIQviE6r4Ru3TODVD4rZUlDFz1/ey6NLJxFnv7SDtAVBuHBc1kWJoWZBdOir\naKCRZRbPTqOguL7PooTZqGXx7DQCQZXG1lB2xVDCNDvYw8PQyBBU+rwZgIn7d2Dwedg3rpsuAAAg\nAElEQVR15Q0EdHrUkn3oDfUE0yajRsTi8gbYfuAkC8ebibVp2XDQeaogEdr+EVRUCk+0ctUVs9Bp\ngxSVFDIxYVSfAaChHIkI/MEWvIGeYyX9rU99ZfVJdu5pIT01jK/dO+JzByv5/Aq/+9sxPiloJTPV\nxOMPp2O1DM+3tgizPLOqGg9vrq/lw12NBIMQE6Xn1kVxzLsqCoP+sm/eEgRBEIQvnCxLLF+QSbhZ\nz9vbj/HzV/by8B05pCTYhvvQBEG4DFzWRYmhZEF011/RYKAiR3O7l5c3FFFU3kxTmxe7zUBORjTz\n8pLYV9JIc7vnjGszAd7ednTAgoTe6yZ733bcRjOHJsxAi8ICTRGqrCGQcw0Ar31QTJgObswx0+oK\nsqagq7uhqd3Llvwqrpo+GaPBwO59BzlScoxgwMey+Zmdx1ZQ3ECbU0uYfgSq6sPpPdrrWPoq3qzf\nXMdb79aiMyo0SDX8zwtN5GbGdHaQDJXbE+SXfzrKgSPtTMyy8sNvpRJmHJ6r7CLMcmAlRx3845Wj\n7NzTgqpCUryB22+I5+rpdrRaMdIiCIIgCMNJkiRuvjIFm1nPy+8X8f9WFPCft09kfIq4uCIIwvl1\nWRclBlr92Z1Rr8HnD56xaDBQkUOv07DzYFcnQWObl817q5g/ZQQ/e2D6GddmwuDGTSYc2InB6+bj\nWdcR0BtYYK4kRuvBmzEDzBF4/UGOnGjizqlWDDqZV3a14vZ3jYTIEiQlxJMyKom6hiYKS0K5EN1H\nMZbNz2Tu5NH8ZZUPt1diTHIbHx8O9DqW04s3e/a38uyrlUgahbB4B5JGpbHN2/n57x4eOhht7X6e\n/G0pxWVOpuWG8+jXU9Drvvgr7SLMcmCFpQ5Wra1h74E2AFJHhbH4xnimT45AI9aPCcI54/UpFHzW\nwq7ddZQcc3HltEiuFp1agiAM0ZzcJKwmHc+sOczTb+zn/huzmDEufrgPSxCES9hlXZSAriyIA2WN\n1De7MehDJ9HdixC3XpWKw+Xrs2jg9Qd7FBT6L3L0nQWRX1TP4tlpA67N7HCmcROdz0N2wTY8RhOH\nsmdilALcaj2OX9JB9hyCisIrG4qINqlMTw3jaL2PnaXuHo+h1eqYkTeRYDDIzj37O4+6YxQjKtzI\n65tKyS+0gGpDkqsxhynMzUti/wAdH2XHXfzmb8eQJBVLohONvme7R3/5E/1pbvXz1P8WUXbcyZyZ\ndv7zq6OHpQhQXefl988co+SYi7hoPQ8/mMzYdMsXfhwXGlVV2X+onVXrajhUFOrEyR5n45aFMeRO\nsCFJohghCJ9XuyNAYamDIyVODhc7KDvuIhDs+luTnizmwQVBODt5Y2J5dKmOP64+wN/XHKbd6efa\nqSOH+7AEQbhEXfZFCY0ss2x+Jl9bHEbZ8cbOcYPTOxdMhp6fqo5VogXF9Z3jGLmZMSyZkwqETrI7\nTtDHjopgx8G+13g2tXt5ZUMRd1+b2W/ho8OZxk3GH9iF0ePi4OzrCRqM3BFVSbjGj276QhxGMys3\nFrPrUA0/uSUKgFd3tfcolRh0MrOmZhNmNLL3wGHa2rvGOjpGMVZuLmX7/iAmvQ1/sAWHq4JNexmw\n46OuwctTfyjF51MwJ7jQhvXO3Ogvf6IvdQ1efvKbUmrqvFw/L4b77/78uRRDdXqY5eyZdh4UYZYo\nisqnBa2sXldD6XEXALkTbCy5MZ7ZVyRQX98+zEcoCBev+kYfR0ocHC52cLjEQUWVp/M2WYbUUSby\nciIZPUJPVoaFCNvwhP0KgnBpGDMqkh8sm8zv/7Wf1zaV0Or0sXh2qriwIAjCOXfZFyU6GPXaHifE\nZzo57lgl2uH0MYTFs9M6T9CDisLefgIwAXYcrGFvcR1en9JZ3OgvY2HsqMg+Cxxav4+c/I8Imkzc\n9edHuTngJ3HzDlSNGeOUa2hs8FBQXM/sMWGMtOvYVuziWIO/x2PMnzGWqPhEGppaOFzcMyMiNzO0\nsjO/yEmYLh1F6Zkj0dHpcPrnzekK8LOny2huDXDvnYnsPFpGY1vvz8GAG0fo6khxtKv8/A9HaWz2\n8+Wlo7hlQdQX/sfx9DDLRx5MvuxbpINBlW2fNvHmuloqTnqQJJiZF8HiG+JJE1drBWHIFEWl4qSH\nIyWOU/9zUt/o67zdoJeZmGVlXIaZrAwLmWlmwowaYmKsovgnCMI5MyrOymP35PG7lftY//EJ2pw+\nvnzdmLPKARMEQeiPKEqchYGyHbqPIXScoK/YWNZvQaKDxxcaZ+gobgQVlYVTRxJuMaDVSJ1dGY1t\nXoynNhR4fAqyBIoKU4p3E+ZxkvDIf2CKCse6512kgI/ApPlIeiOtjla8Xh+35cXg8ims3uPo8fxX\nZieRkJSCP6iiuKqxWw29RjEq69wE/aOQJHD6SlHpypHoq9PBH1D45Z+PUnHSw43zY7htUTzujW1D\n2jjSvSOlri6A46QFJSBx7x2JPLA85Qt/8S3CLHvy+RU2b2/k7XdrqW3wIcswZ5ad26+PY2Ri2HAf\nniBcNPwBhbLjrs5OiMJSJw5n198Nm0XL9NxwsjItZGVYSB1lEgGxgiB8IWIiwvjhPXk8/a/9bP+s\nmnaXj6/fOmHQI7eCIAhnIooSZ2GgbIfGNg97C+uYmBaF1aQfVDhlXz4sqGJLfhVRNgMmo46Kuq4i\nQkcBY8b4OO6el4GzxcHJ636JYjGT8MAycLagKfoU1RxBMHMqEBr9uGtGOBaDzGuftNHm6cp0sNsM\nzJg8gTqnTHKkj9lpo7hlVlKPUQxFVdnwiYQsG3D7KggoPYsap3c6qKrKX18o52Chg+mTw7nvrhEA\nPbZ3DGbjSEdHit+lwXHSAgqY4ly4dX20W5xHIsyyJ7cnyPtbG/j3hjqaW/3otBKLronmtuviLusi\njSAMlssdpKgslAVxpMRByVEnvm6hw3HReqbkhJOVYWFcpoWkeINomRYEYdjYTHq+vyyXv7x1kP1l\njfz29X18e0k2ljAxJiYIwucnihJn4UzZDv9YdyS0xSLGwgM3jRswnLI/yqnXpo1t3n6f59PDtYTp\nNcw7kU+gvonE73wVbYQN7c63kJQA/py5oAl9iQ34mZFq5GRzgM2HXT0ex2oNp86px6wPMioyNNLR\nvdMD4MN8P0UnFGxmD82u6l7Hcnqnw8p/V7N1ZxOZqSYeeSClc8tCR4ZH9/GW/irtHQUdv0OLo9oM\nKpgTXOitfgqKG/D4em/8OB9EmGWXdkeA9ZvqWbuxDocziNEgc+uiWG5aEIc9QrwwEYT+NLX4Q2MY\np4oQxyvcnb/nJQlGjwhjXKaFrFPjGFGR+uE9YEEQhNMY9Vq+sySb59Yd4ZPDtfzy1Xy+e2cOdptx\nuA9NEISLnChKnIXBrBJVVKioc/DMvw8RbtHT4vD1e9+zpajw0e4TpK14Hr0pjLgHliG11iEfLUAJ\nj0VJyQFCXQs4apAlKGzWo9NpCJ4aJ9FqNOTlTERRFI4fK2HqyN7Jyseqg6zf6cNmlnh4aSTrPh4x\nYKfD5u2NrFxTQ1yMnh9+Ow2Doffc4elFj760OrxUVyo4a8wggSXJic4cKkQ0t3tobvOe129gVVX5\nYFsDz79WhfcyD7NsbvWzZkMt721pwONVsJg13HVLAtfPi8FqEb9GBKE7VVU5WeMNjWKcyoOoqesq\nLuu0EmMzugoQY9MtmE2X3+8VQRAuPlqNzAM3jcNm0vPBngqeenkvjy6dRGK0ebgPTRCEi5g4mzhL\n3ccQGts8/d6vqsE54OMYdDJevzLgfQYy9tButC0tRH3jXnT2CDQfvoakqgRy54fi2AFvWyP4XWCw\nckVeIuv3NnRmXEzOzsJiNnHgSAkV5RXcPDOxR+eC063yyrseVGD5QiPhFs2AnQ77D7Xx1xdPYDFr\neOLh9M+V/r4734GzxgQyWJMcPbZ2RFqNRNoMtLe6B3iEs9fa7uOJ3xZSUR5AklXiUvzEpvgwGC6v\n9um6Bi9vvVvLpm2N+AMqkeFa7rolgQWzowm7DIszgtCXYFDlWLmLw6fyII6UOGlr7+rkMps05GXb\nOkcx0pNN6HQiJE4QhIuTLEncNS+dcIueVVvL+MUre/nOHTmkJ4UP96EJgnCREkWJs9R9DGF3YS3P\nrysc9PtG2Yxkp9mZP2Uk7W4vv3xl31kdgxwIkLt3C36tDuPdi5EaKtGUH0aJGYkyYmzoToqCs6ac\nUKtBHK1tXprbQ10bsdF2xqan0NLWzoHDxaAqPcIqVVXl9Q88tDhUrsqRGBHX9dx9dTqcqHTz//56\nFEmS+OG30khKGHw7X8d2jY4ix1vv1vDSGycxGGT0cW1ojT2DQnMzozHqtZyPmMtDRe089adS3C4V\njTGAOcGFT6ewcU9o7GXZ/Mzz8KwXloqTbt5cX8tHHzehKBAbree26+KYe2UUenEyJVzmPN4gxUdd\nnaMYRWVOPN6u4nJUpI6rpkd2FiFGJhq/8LXFl4Li4mIeeugh7rvvPpYvX05ZWRk//vGPkSSJ5ORk\nnnzySbRaLWvWrOHFF19ElmXuvPNO7rjjjuE+dEG45EmSxPUzRmMz6Xnh3UJ+81oB37h1AvNjrMN9\naIIgXIREUeJzMug0lFS2DPr+kRYDP75vCiajlpWbS9m2/+Sg3m9EjJmTDc7OGWSAMUf2YHG0UjRj\nLlNGxaHd+hIAgdwFoSFlAFcDSsAPpmjQ6Am3aLDbDLQ4A8yakoOiquzcvQ9FUYiy9Qyr3JLv4/Dx\nIEjtvLPrCDsO9b+utKnZx8+eLsXlVvju15IZlzm4zIXu2zWa2rxEWg3o3DYKD/uJtut44rtpbD9c\nOehgzM+jI8xy9boaVFXFGOXBaPfSPVuu+3aVS1HZCRer19bwcX4LqgojEowsviGOq6bbL9tQT0Fo\naw90bsU4UuLgaLmLYLc66chEI1kZFrIyzYzLsBATpRehlJ+Ty+Xipz/9KTNnzux8229+8xsefPBB\nZs+ezV/+8hfeffdd5s2bx1/+8hdWrVqFTqdjyZIlXHvttURERAzj0QvC5ePK7AQsJh1/e/sgf1r9\nGQ6fwsysGGTxO1AQhCEQRYnPyesPsvvI4LdrtDq9uL0B1uw4xqa9VWe8f5St6yR8xQfFbCkIFTHk\nYIDJezYT0GjRL1uCseE4cu0xgokZqHHJoXcO+MDViKzTo5ijga48jGafDZvVwqGiUhqaQkWV7mGV\nJ6qDrNvhQ1H9tLlKUOlaVwo9uwXc7iA/+0MZDU1+li9O5Krp9kF/Pjq2awCoKlSUyvha/VisEj//\n4RhiovQsSxxcMObn0T3MMtquw2tu6jEu0qGv1aeXgsPFDlatraHgYGirSdpoE0tujGdabri4witc\nVlRVpa7B11mAOFzioKq6Kw9Co4G0ZDNZGaECxNh0Czar+FN6run1ep599lmeffbZzredOHGC7Oxs\nAK666ipWrFhBdHQ0EydOxGoNXZ2dPHky+fn5zJ07d1iOWxAuR5PSo/ne3bn8cdUBnltzkG0FEXz1\n+rGX3GslQRDOH/FKagCnjxT0pb7F3ZnPMBiRViNhBi07Pqs5430fvTOH9JERnc+97NpMNBqZguIG\nYnd9hLW9hZYFi1hy22S074VeuAVzr+16AEcNoGKJG0Wbr6uz4bpZmew7acLhdHLgUFGPwgeAy6Py\n0ruhnAyntwyVnlsuuncLBIMqv/6/Yxwrd7NgdjS3Xx/HYLm8frYfCG3yUFVw1ZjwtevRGIJEp/qx\n2bo+54MJxjwbqqqyZWcTz75SgedUmOWXlyby81d209jW++t6+urTi5mqqhQcbGPV2hqOlISyT8aP\nsbDkhnhyxlvFlV7hshBUVMor3aHNGCWhFZ1NLf7O240GmZzxVsadGsXISDH3Gd4rnFtarRattudL\nlMzMTD788ENuvfVWtm3bRkNDAw0NDdjtXYVwu91Off3AFwoiI01oteen2y1GtK4PO/E1GB4xMVbG\npkXzf6sPsOuzan7yz9185YZxXDcrRVzcGAbi52D4ia/B0IiiRB9OHymw2/ofW0BV+36QfuRmRtPq\n9J2xkBFlM/YoSEBXjsXts0Zz+IVfEDTomfPL76CrLERuOkkweSKqPSF0Z287+BygM6G32aHBcepj\ng5KGMCQJpqfAtP+Y1qPo0j1Hwu2rIqD0Tm3o6BaIiQjj769UUHCwjckTbTy4fOSQTmRXfFCCxxdE\nVcBZbcbv1KExBrAkOWn3qOe9I8HhDPDMyxVs/7QZU5jMIw8mc/WM0Ivb/rarnL769GKkKCof57ew\nem0NR8tDQaF52TYW3xBPVsbluepUuHz4/Ar7D7Wwa3c9h4sdFJY6cbm7fh9H2LTMzIsgK9PCuAwL\nySPDxOjSBeIHP/gBTz75JG+++SbTpk0LbZY6TV9vO11zs+uM9zkbMTFW6uvPR9KRMFjiazD8fvjl\nqaz9qJRX3y/mb299xta9FXz1+iyiI8KG+9AuG+LnYPiJr0HfBirUiKJEH7qPFEDvsYXuHRQxkSaM\nehmP78wbNAw6CX8gSH3LmTdGjBnV/zxs+9oPCFRWE3vfHehj7WjWvIoqyQRy5oXuoKrgqA392xrf\no1BwolmHyy+TFO4n9H3R86T/o31+Dh0Lkpokc6ymEU8fP08d3QJvvVvL+x82kDoqjO99PWVIL9y9\n/iCFJ5pQg+A4aSHg1qI1+bEkOpFkiLQazmtHwqGidp5+9jgNTX7Gppt55MFkYqO7nq/7dpXznWXx\nRXF6Amz8qJ73tzZxsiaUlTFrSgRLbownZZRosRQuTU5XgCMlzs5MiNLjLgKBrhPXhDgDM/IiGHcq\nEyIh1iC6hC5QCQkJPPPMMwBs27aNuro6YmNjaWho6LxPXV0dkyZNGq5DFITLniRJzBgXz9hRkbz0\nXhH7Sht44vlPWXpNOrMnJYrfr4Ig9EkUJU7j9QcpKO679bOguJ5gUOFAWWNnB4XJqENRBtct4fWr\nfLivmg/3VQ94P4NOZtfBGorKm3t1aKiBACf/+DySTkvCN7+MXFaA3N5IMHMa2KJCD+BqhKAPwuyg\n7dqA0e6VKW/RYdQqpNh9vZ63vCaUI2E1SdyzyMjaXf13C3ya38rLq04SFanjR99JG/J6yFaHl8YW\nP+2VFoJeLTqLD3O8C+lUI8rYUZHnpSOhI8zyzXU1IMFdtyaw5Ib4XgWV7ttVzmeWxRfB5Qnwm+eL\n+OyAm4BPBkklOVXHI19NZ1SiKEYIl5aGJh9HikNZEEdKHJRXeTob2mQJUkaZmJwTScoIPWMzLESG\nn/3aYuGL9cc//pHs7GzmzJnDm2++yS233EJOTg6PP/44bW1taDQa8vPzeeyxx4b7UAXhshdhMfCt\nxRPZdaiGFR+U8NKGIvYU1fGV67KICh/8djZBEC4PoihxmlaHl6Y2b5+3NbZ5O4MmO/67sZ/7fh5e\nv9L5+Bv3VOL2BFi+cAwGnYbGNR/gPVpOzD23Y4iLQvv2S6gaLTWjpmP1BzHICrgaQNKAOabzMRUV\nCusMgMSYGA/a06ZQOnIkFAWWLTRgM8v9dgtMHBHP//6uDFOYzBOPpGOP1A/x4wtS1+DFVWUl6JXR\n27yY4tydWy6Meg13X3vu1252D7OMi9bz8IPJjE0feFzhfGVZfBHc7iDvba1n5TvVeD0qSBKGCC/G\nSA+tWpXth40sS7z015sKly5VVak86QllQZwqQtQ1dBVc9XqJ8WMsodWcGRbGpJkJC9OItsqLwMGD\nB/nVr35FVVUVWq2WDRs28L3vfY+f/vSn/OlPf2LKlCnMmTMHgEcffZT7778fSZL45je/2Rl6KQjC\n8JIkiVkTEsgabefF9wo5UNbIE899wl3zMrgqO0F0TQiC0EkUJU4TbjFgtxn6LDbIEgyyKWLQJEAF\nIi163L5gn1kTOw7WcOREE5Mzopnw9HOg1aC/ZynBQzuR3O28703lpRcPYrcZ+MZcO6l2FawJIHdd\n2S9v1uH0ySTY/ESaeo6aqKrKyo0emttVFkzTkTky9G3RV7dAQ4Of//55Eaqq8v2H0hg9YvAzgh1Z\nHZ8eaKCiSIfi12CI8BAW4+mxdvPK7ARMhnP3rdlXmOWDy0diGmJ3x8WizRFg3cY61m2sx+kKIskq\nxkgvhkgvsrbrG/hSX28qXHr8AYWjJ9ydoxiFpQ7aHV2/My1mDVMnhTMuM1SISB0dhu70CqxwUZgw\nYQIvv/xyr7evWrWq19sWLVrEokWLvojDEgThLERaDXxnSTbbP6vm9U0lvPBuIXuK6rhv0VjsNtE1\nIQiCKEr00rEys6+xhXNdkOjwX3dNwqjX8LOX9vZ7n6Z2H8deX0966XGOTprBy+tK+X38xzjQ8kZj\nIioQYVBItas0uiCo1ROuDWLQaWhxqpxo1mHQKKT1Mbaxbb+fg0eDpI/QcO203l0PHd0CLW1+fvr7\nUhzOIN/66mhyxtuG9HGu3FzKhh0naa+0oAZljFFujHYvYQYNPn/wvOQ2DBRmealpavbx7w11vP9h\nAx6vgtWi4eZF0XxUUoak6f3Ne6muNxUuHW53kKKyri6I4qNOfL6u7+WYKD2TJ4aH8iAyzCQlGEXK\nuyAIwgVIkiSuyk5kfLKdf75byMGjTTzx3Kcsm5/BrAnxomtCEC5zoijRh77GFrLTo9hfUk9Te++T\n+s8j0mpgd1Eduw7WMGDNQ1XI+3QTiiTzcfZsrrdWYJYDvNaaikvVIUnwpZmhIsGzWxopqa3p3Boy\nbnwuKhKZMV5O34JWXhtk7XYfljCJLy009PuC3utV+Pkfyqht8HHnzfHMvTJqSB+n1x9kV34D7RUW\nVEUmLMaFMTL0uTQZtDx2Tx4xEWHn9Kr9mcIsLxU1dV7eeq+WzdsbCQRU7BE67r4tgWuvjkbWwOFn\nK/rs/LmU1psKl4aWVn9nF8SREifHyl2dxWBJglFJxs5RjKxMC9H2oY2OCYIgCMPLbjPy3Ttz2HYg\n1DXx3Loj7Cms495FY4m0itckgnC5EkWJPvQXcqiRpT47KPp+jND6zTMx6DRs7ZZT0Z+UskPYm2op\nyspDtltYZD5IU1DP+84RAFyZEUZytI6dpW6Ka/1AKJOipt1IogvirH6izD1HQ9xelZdP5Uh86VSO\nRF+Cisrvnw1lMcyZZeeuWxLO/IGd5pOCJiqLDKCCKc6JIdzfeVuLw4teK5+zgsRgwywvduVVbt5c\nX8u2T5pQFIiL0XP79fFcM8uOTtf1tbyU15sKFy9VVamu83KkuKsTorq2q3im1Upkppk7RzHGppux\nmMWfLEEQhIudJElcnZPIuORI/rm+kP1ljfz4uU9YNj+TGePjRNeEIFyGxCu8AZwecrhkTipF5S1U\n1TtQ1IEzJvorSHS8j1GvCb0obxrEvnRVIe/TjSiSRP6UudxmPYFRVnilOQWfqiFML7Ekz4rHr7Bq\nd1d4W7jVQs74TDxeLyOTvEDXCWhHjkRTm8q103Rkjur/W+HFlVV8kt/KxCwrD903ash/LD4paOHP\n/widFJsTXOit/h63n8sr9mcTZnmxKTnmZPW6Gj7JbwVgZJKRJTfEc8XUyD4LL5fielPh4hMMqhyv\ndIe6IIpDRYiWtkDn7aYwmckTbaFOiEwL6Skm9DqRByEIgnCpig4P43t3TWLrvpP8a3Mpz649zJ6i\nOu5dOEZ0cgrCZUYUJYZg1dajVNQ5Ov/7bDImVGByRjT5JQ1nvG+H5KNHiG6opnhMLoZoC9eYD1Ed\nCOMjVzwAt+ZasIbJvLG7nRZ3qBoiAbOm5qDRaNj28V4mJ6RgMXYVWLYf8PNZWZC0JJkFfeRIdFj7\nQR3vfFDHyEQjP/hmypBD47buauRPz51Ar5OZeXUYn1W29rrPubhif6mHWaqqyqEiB6vW1bD/UKjw\nlJFiYsmN8UzJCR9wjv5SWm8qXDy8XoWSY85ToxgOCkudeLxd1Vp7hI4rp0WSlWEmK8PCqBFhaEQe\nhCAIwmVFkiSuyU1iQoqdf64/QkFJA8UVLSxfMIZpWbGia0IQLhOiKDFIXn+QguL6z/04dquB4zVt\ng38HVSXv042oSORPncsy2zG0ksobbakEkUmK0DI3y0RNa4BNh52d7zY2I5WYKDvHyqvwuNt6VJwr\naoO8s60jR6L/YLhP8lt4/vVKIsO1PP5wGmbT0L5d1m+q59lXKzCbNDz+cBoZqSZWbtae8yv2l3KY\npaqq7D3Qxup1NRSWhr6+E8ZauOPGeCZmWYf0x/piXm8qXPjaHAEKSxynRjGcHD3uIhDsqtwmJRg6\n8yDGZVqIjdaLF5uCIAgCADERYXzv7ly25FfxxtZSnllziD1FddyzYAw2s8gPEoRLnShKDFKrw0tT\nH2GBQzV2VCQ7D9YM+v6jjhcSU19FaUYO4XEmrjAdpjxoY48nhiibkW9eG4lGVjHaE7kix8CW/Cqs\nZhO5E8bi9nj5tOAgC6eP6Lwy3j1HYtkCA+GWvjsfio86+d3fj6HXyfzoO+lDCohUVZVVa2tY8VY1\nETYtP3k0neSRoZPhc33F/lINswwqKh/vaWHVuhqOV7gBmDopnNuvj7vkxlGEi4+qqtQ3+kIFiGIn\nR0ocVJz0dN6u0UDqKFPnKMbYdDPhNt0wHrEgCIJwoZMliXl5I5iQauf5dUfYW1RPUXkL9y4cw5Sx\nscN9eIIgnEeiKDFI4RYDdpuhzy0GA+nIkLBbDeSkR3H1pCSOnGga3BaPU10SAHunzeN+29HQscy+\nkaciRhOp96FzngS9hYiIaJbOjaC0spVx47LRajXs3FNAbISeL1+fRWurG1VV+dcmD41tKvOn6hgz\nuu8vf02dl6f+UEbAr/Lf30olLbn31XWvP9hnYUFVVV58o4p/v1dHTJSeJ7+XTmJczx3U5+KKfSCg\n8veXj/HKG+WXVJilP6Cw9oNqXlx5gupaL7IEV06LZPENcZ2FHUH4oimKSsVJT+coxuFiB43NXdkw\nRoNMzjgrWae2YmSmmjAaxIiQIAiCMHRxkSZ+8KXJbNxTyeoPy/jr2weZlhXLl0p8g4sAACAASURB\nVK7NxGoSXROCcCkSRYlBMug0ZKdFsWUQmzK668idcLr97DpUw5aCkxj1g3uxPqK8mLjaCsrSJhKX\nYCTX2ES1Pg578liMqNBYBUhgiQNCmRcmazRxMVGcqKzmeEU1AC+uP8KtVySz44CfA6VBUhNlFkzv\n+5d6Y4uXJ39bQlt7gK/dM5Kpk8J73B5UFFZuLqWguJ6mNi8RFgOTMqNZNj8DkPjbS+Vs/KiRpAQD\nTz6acV5W9lXXeXn678coPnrphFl6vQobtzXw9nu1NDT50Wok5l8dxW3XxfUq6gjC+eb3K5Qed/He\n1mb27GuksNSJ09W1vcdm1TIjL4KsDDPjMiwkjzSh1V7cBUFBEAThwiFLEgumjiQ7LYrn1h3m0yN1\nFJ5o5p6FY8kbEzPchycIwjkmihIDOL0bYP6UkUMuSnQ+VqAr4M3jC724N+o1nf/uRVWZ8kmoSyJ/\n2lweth8DIPKam0GSwFEPih9MUaA14PUHKSxv56orZuH1+fgk/7POh/r4YDXZKUms2ebDbITli4y9\nAuWCisKKD0pYv64Nj0NDRJyfpmAzQSUKjdw14rFyc2mP9ZLNDi9b8qsoLm/F5otm554WUkeH8eNH\n0s95u/bpYZYL58Ry7x0JF3WYpdMV5L0t9ax5v4629gB6vcQdNyex4OrI81LQEYS+OF1BCktDXRBH\nSpyUHHXiD3TlQcTHGpiWG864jNB6zsR4g8iDEARBEM67eLuJH34pj/d3V/DmR0f5y1ufMWN8HMvm\nZ2IJE2OBgnCpEEWJPpzeDWC3GcjNjOHWq1KIOosRjv6YDBqMeg0tjt6jHEmVpcTXnKA9N48f3T+R\nuL2rCY7MwheZRHtTK1GBRiRZC6ZQtbil3UvW2Cx0Wi3bPynA4+06xoYWL69u8BJU4I55erx+D15/\nz7GL1zeV8M76ZvwOPTqLD2wuNu4JBSsum58J9B/2qSpQuE8l4GohPTWMx76dds4LEn2FWS6+aTT1\n9e1nfucLUFt7gHc+qGP9pnpc7iCmMJnFN8Rx47WxZKTZL9qPS7g4NDX7OgMpDxc7OFHpRj1Vg5Al\nSB4ZRlaGhelTYkiKlbFHigKZIAiCMDxkWWLR9FGnuiaO8PGhWo4cb+bLi8YyKSN6uA9PEIRzQBQl\n+nB6N0Bjm7fzv01G3TkrSjQPkCuRd6pLYsZT3yaibDOqJPFvdzpbn/2YpXlhRKcY2XlcYbodNIBX\nspAQF0blyVqOllf2eKwIczot7RAf1c5LG472KLQsnZtOIKiyaUsL/nY9GmMAc7yLjougBcUN3DQr\nGbc3gM8f7BX2qQbBcdJCwK1FZ/bTKLfw81eaOh+7e5fF2bqUwiwbmnys2VDH+x824PUp2Kxali9O\nZNE1MZhNF2/Hh3DhUlWVqhpvZx7EkWIHtQ1dv3t0WqkzkHJcpoXMVHPn92JMjFUUyARBEIQLQmK0\nmcfumcx7n5Tz7+3H+OPqA1wxIZ6752dgMoquCUG4mImixGkGWv2ZX1QPqH3edjYirQYkiV5FjoTK\nMhJPHsM69wqsNj9ySx3FYWms3u8gK0HPlBQjJbU+/rGxieMtMrfPGcOJFiOKEuTj/AM9HkuvjUFV\nIrCEeTlScaTz7d0LLXqfheYaHbIuiCXJidStjtDY5uHJ53fT4ggVMvRauXMURQlIOKrMBL1adFYf\n5ngXSD0fu6PL4mwEAior11Tz5rqaiz7MsrrWw1vv1rJlRxOBoEpUpI7lixO59upoDIbPX7gRhA6B\ngMrRcldnAeJIiZM2R6DzdotZw5QcG+MyQ6MYaaNN6HTie1AQBEG48GlkmRtmJpOTHs1z646w42AN\nh443cd91Y8lOE10TgnCxEkWJ0wy0+rO5/dx0SHSYfCqop3tXBkDep5sAGPnwV9Du24Qqa3i1fgQa\nCZbNsKKoKq/uagNCnQzjsiYQVCTGxPqZNT6aguIGmts9RFgiQEnGZJRw+sr6PIbtu5uoLXMga1Us\nSU5kTe+iS7Mj9HF3L54ofon2SguKX4M+3Isp1s3pI+YFxQ0snp12Vms/L5UwyxOVblavq2HHp80o\nKiTEGrj9+jhmz7Kj04oTQeHzc3uCFJeF1nIeLnFSXObE6+vKsIm267h6RmRoM0aGhZGJRmT54ivs\nCYIgCEKHETEWfnRPHu9+Us6a7cd4+o0DXJmdwF1zMzAZxemNIFxsxE/taQZa/dlfZ8NQGfUaZk6I\n55rcJMItoTGEjkJCenMlIypLsVw1HZvFg+RsoT1lKmXbZeaNM5EUqWNLoYvyptCVz4jIaFo8OiLD\ngiTagiybn8ni2WnUNXl4+T1obFW5c4GR37/m6HUcAY+G6godOo3EVdeEUXCidXAfQEBDe4UZJSBj\niPQQFu3pVZAAaG730OrwDmn95+lhlrNn2nlw+ciLLsyyuMzJqnU17N4X+pwmjwhj8Y1xzJwS2Stk\nVBCGoqXNT2GJM5QJUezgaLkLpasGwcgkY2cg5bhMCzFRIg9CEARBuPRoNTI3zUpmUno0z609zPYD\n1Rw61sRXrh/LhJSo4T48QRCGQBQlTmPQacjNjOnVvQD9dzacic2kp93lI9JqYMzoCPQ6mQOlDWzN\nr+rMdvjJV/J4fVMZsb98DoD3Uqcydu9GtFoD5MxhZNFBbs214PAqvLU3NONtNBiYmjsBWVLJjPF2\nFgb0WpmtBRoaWwNck6djZraFF9cZenU6OKrMoMJ/3j+KK6ZGsnKzprM4YjPr+wzgDHhlHJVm1KBM\nZKIPLB5kqWv1aXeRVmNn0WUw+gqzvHqGfQif6eGlqiqfFTpYtbaGz46EvkaZaWaW3BDPlByb2FYg\nDJmqqtTU+7qNYjioqun6OdZqJDJSzKdGMcyMTbdgtYhf64IgCMLlY2Sshce/PIV1u06wdudxfrdy\nP7MnJXLnNemEGcTfREG4GIif1D4snZsOdHUvRFqN5GZGd769+20RFj06rYa6ZnefaRNRNiM/vm8K\nbm+AcIuB1R+W9RmiWVTegnf/IbKPFlE5Ip30EQphipd8Uw7jrTaWXxGJyaDyyq42HN7QM02fPBG9\nTkeK3UOYruvZPz4UYF9xgOQEmetm6DHqtT0KLWoQ2qssqEGZnFw9V08PVZM7uixaHV7CDFr+94Xd\nPQoZAbcGR5UZVZG5984Erp8XS6vDy4bdFWzJr+r1sedmRg96dONiDrNUFJU9+1tZva6G4qMuAHLG\nWVl8QzwTxlpEMUIYtKCicqLCHRrFOJUH0dzq77w9zCiTO8FGVoaZrEwLGSlmDHoxBiQIgiBc3rQa\nmVuuTAl1Taw7zIf7TnLwaKhrYlzyxXOBSxAuV6Io0QeNLPc4QQ+39Fyf2f22/k7IO2Sn2bGa9FhN\n+gFDNKvqHSzcHcqSODxjNo9ZymkN6nitOpYfux2k2VVq2oJsLQyd9I4ekcDoEQnU1Ddy8lh5Z6Dk\nyfogb3/oxWSE5YuMnaGQHQWV/MIGygs1KD4N6Zk6Hn8oq8dxGHSaznGL7oUMv1OL42Sos8IU72Tn\n0aO4te0snZvOsvkZaGRpwCJOf3qEWQJ33ZLAkhsvjjDLYFBl5+5mVq+v4USlB4DpueHcfkM8manm\nYT464WLg9SmUHnN2FiCKyhy43F2zGJHhWmZNiegcxRg9Iuyi+NkQBEEQhOEwOt7Kj++bypodx1m/\n6wS/eX0f10xO4o45aRj14rRHEC5U5/Wns7i4mIceeoj77ruP5cuXU11dzfe//32CwSAxMTH8+te/\nRq/Xs2bNGl588UVkWebOO+/kjjvuOJ+HNWjdT9D7ui3cYuBAacOAj3GgrJEVG4tZOjd9wBDNqJoK\nRh8v5GRiCjPHagiTg7zRkkqtK4DkqEUC3ipwoahg0OuZljuRQCDIrt370GuCXJ2dgM0cxkvvegkE\n4cvXG4m0dl1B1cgyd8/LoP64jjJXM3k5Nn74rbQB8w06igrbPmmiuUr3/9m78/Aq6zvv4++zr8nJ\nvu8bJEDY900UFXBDQWtdWtte7TPT2qd27DPTcWxra5exo3bvtKO101oXWnEFBBdENtl3AmQP2fft\n7Nv9/HHCCYEkgAIJ8H1dlxea++TOfXISzP3J7/f5ggosKQ70Vj/tPQyYsDFciDOUK7XM0ucLsumT\nDl5f10xTiwe1ChbMiuauZUlkpplG+vLEKNZr93O8PFRKeazMTnmVE3+gf5VTSqKBOdNCfRCFBVaS\n4vWy0kYIIYS4AFqNmrsW5DA5PzSh46N99RyuaOcrtxQyJiN6pC9PCDGISxZKOJ1OnnzySWbPnh1+\n269//Wvuu+8+li5dyrPPPstrr73G8uXL+d3vfsdrr72GTqdj5cqV3HjjjURFRV2qS7tohgsZTjl9\nPOaKhblDlmhO6Zu4UTZ7Af9qrafVb+RDRwqLxlnRKR7cKjN7KkKrCWZMHo/JaGD3gaP0OkIrJ77/\nwm6iLfmgRLNwspai7LNf2n+808Sm7Z3kZZn5zj9ln7NwUaNWk2iIpbnSjkqtYElxoDP7Bzzm9Akb\nw4U4p7tSyyzdngDvf9zOWxuaae/0odWquGlhHMuXJpKccGVsNRGXV2u797StGHZO1rvDx9RqyMkw\n9wUQFgrzrETZZM66EEIIcTFkJ0fyg4em89bWKt7dWcNTL+/nhqlprFyYi0E/un/mFOJac8lCCb1e\nz3PPPcdzzz0XftvOnTv54Q9/CMCiRYt44YUXyM7OZsKECURERAAwZcoU9u3bx/XXX3+pLm1YHl/g\nvH/bP9ykjjOdunkvzo3lo/0NA47FttSTXVVCU3Im84rU6FVBXuvJRqvTcMsEE16/wtrjLmIiDZit\n0WRnpNLa3sHxssrwOfSaeFCi8Qd66XX3AgUDPsam7e288mYj8bF6HvtWLkbDuf8yfuf9Fl54pQ6L\nWY0mrhuNMXDWYy50wsaVWGbpcPpZ92Era95vpcfux6BXc/tNCdx+cwKx0TLZQIQEgwp1je5wAHGs\nzEFre39ZrEGvZkJhBIX5ForyrRTkWjAZ5YciIYQQ4lLRadWsvC6XyQVxvLD2GB/ureNwRTtfvqWQ\ngvTR/wtQIa4VlyyU0Gq1aLUDT+9yudDrQzdxsbGxtLa20tbWRkxM/01pTEwMra2D9y6cEh1tRqu9\nuD/MBwJB3txWzY4jjbR2uYiPMjGtMJHb5ucQF2Uach/a3ImpvL2lctBjp+vsdeNXqVk0PeOsUGJq\nX5dE1ex5rLA0UeuzsM2VyMrpVmxmDa/v7WXtQQcFGTEUF08gEAiwfffBcLGmRmXCrM8kqPixeys4\nXKkhwtZ/zXsPdvK7/z2J1aLlF08Wk5U+fN+Boii88EoNf36ljtgYPU99bxz/9eoOWjpdZz02LspE\nblbsee3TO3Ckix89c4KWNg8TCiP5/qOFJCcaz/l+w4mPj/hM7z+czi4vf3+7jtfXNuBwBrBatDz0\nuQxW3pZ2yX+jfSmf10i6mp6XzxfkREUvB492c6ikhsPHuunp7V9JFBWpY/6sWIqLbEwcZ6Mgx4pW\ne+WVUl5Nr9nprtbnBVf3cxNCiE8jN8XGDx6azptbqtiw6yRPvbSPG6enc9eCHPTnWcouhLh0Rqzx\nRVEGm1Ux9NtP19npvNiXw5vbqgeECy2dLtZtr2bd9mpi+8Z2fu76PDTqgTcVy2amsf9EC/Wt9kHH\nYp6i12l44n+209HjGTBCM6atkZyKIzQnprNwghq1Cv7ek0OiTcuN48y09vpZf8QBQGpaFmaTkeOl\nZfT02vvOrMZiyEOlUuPwlKMoXtq6oKK6nYRoMyfrXfzHf5aCAv/2cDYWY5DW1t4hrzMYVPjzq3Ws\n+aCVxHg9TzyaT6xNRXFu7KCjUItzY+ntdjH0GYcps1T7aG31DfOew4uPjxj2uXxare1e3lrfzPub\n2/D6FGyRWh5cmcKSRfGYTRp8Xjetre5zn+hTulTPa6Rd6c/L6QpwosIRXglRVunA6+v/pk+M0zNl\nfAyFBaFSytQkw4A+iM5Ox0hc9mdypb9mQ7lanxdcnucmoYcQ4kqk12m45/o8phTE86e1Jby3u5aD\nfV0Team2kb48Ia5plzWUMJvNuN1ujEYjzc3NJCQkkJCQQFtbf1lkS0sLkyZNupyXhccXYMeRxiGP\nn94LcWrKxSmvbaqktsU+2LsN4PYGcHtD2x9Oz12m9K2SqJ8zh5XmNko9kexzx/LtBZFo1Spe3dmL\nPwApSQmkp6ZiUPt46IZE1P5OdhxtxqzPQqM24fY14gt0ARAdYcRmNdDR5ePHv6zA7gjwyFezGD9m\n+B8kAwGF3/9vDRu3dZCeauSJf8kjpm97wvmMSR3MlVRmWd/k5o11zWz6pJ1AAOJidNy5NJEb5sfJ\n2MVrUEeXL1xIeazUTnWtKxwmqlSQmWbqm4phYd6sJAh6hz+hEEIIIUZcXpqNJ748g9c/ruSDPbX8\n7G97uXlGBnfOz0Z3kVdiCyHOz2UNJebMmcOGDRu44447eO+995g/fz4TJ07k8ccfp6enB41Gw759\n+3jssccu52XRbffQ2nX21oQz7S9tDZc6AsOO+FSrQuFDdIQBp8cfDiROF93eTG7ZYVrjU7lhUug3\nqqt6cpmUbmRCmoEjdR72n/Sg02qZPbWYQDDIe1t3UZ5kpKy2C70mDoM2Dn/AjsvXv4qhODeGYAB+\n8qtyWtu9fPWBLBbOHr63wecL8swfq9i5r5u8bDPf+3Yekdb+L49zjUk905VUZll10snqtU1s39OF\nooQmIKy4JYn5s6LRXYHL7cWFUxSFhmYPx/pWQZSUOWhq6e+K0WpVjMmzUFQQmowxNs+Cxdz//REf\na6C1VUIJIYQQ4kpg0Gn4/OJ8po6J54W1x1i/8yQHy9v4yi1F5KREjvTlCXHNuWShxJEjR3jqqaeo\nr69Hq9WyYcMGnn76ab773e+yatUqUlJSWL58OTqdjkcffZSvfOUrqFQqvvGNb4RLLy8Xm9VAfJRp\n0M6E07X3eHhxwwm+tGwsGrV62OkbCvCdeycRYdHzgz/tGvQxU/Z8iAqFjvmzGG/s5oA7hvJAFD+e\nGYE/qPDKzh4AphYXYTGbOHD0BDWNHdQ0glplItIY6pFweMv7PmLIoslpPPvHKiprXCxeEMsX7smg\nrW3o1RxuT4D//G0lB4/2Mn6slce+mYtpiPDgfCZsXClllsfL7by2pom9h0Kf5+wMEytuSWLW1Khz\nTiYRV7ZAQKHqpJOSvkLKY2V2unv6+yDMJg1TiyNDkzHyreRlm9HrJKASQgghriYF6VH88MszeO3j\nCj7cW8dP/rqHmUWJLJ+ffd4l7kKIz+6ShRLjx4/nxRdfPOvtf/7zn89625IlS1iyZMmlupRzMug0\nzBqffF6FlduPNGE2arlvccGw0zeirQYiLHpsFv2gj7F1tpBbepC2uGQWTQrd7Py9J4ebx1lIiNSy\nvcKLV9GSlBBNQW4mHV3dHDlW1vfeaqyGPFQqDQ5PKUGl/ze0MRFG3nm3nT0He5g0LoL/80DGgH3t\nZ7I7/Pz4lxWcqHAwfZKN7/xz9me6+Tp6opdfPldNW4ePsXkWvv21LBLiRs+4TEVROFjSy+q1TRw5\nHgpqxuZZWHlrElMmRA77uRJXLrcnQGmlM7wV40SFA7cnGD4eG61j3ozovpUQFjJSTaglmBJCCCGu\nega9hvtvLGBqQTyvfljGjpJmdh9vYX5xMrfNzSY6YvT8HCvE1WrEii5Hmy/fNg6ny8v+0jbae4Yv\nMTw13tOg0zC5IH7QAkinx88P/rSLmEgDJoMWGBhKTNn9EWpFoWfudHINdrY7E+jR2bh1ooVed5Cp\nU4tIy/FysDmCYDDI9t0HCfaVUfT3SDSFeyROsQQjee/jdrLSTPy/r+eg1Q59Y9XZ7eNHz5RTXedi\nwaxovvnlrGEfP5whyyw1n/3G7kLGtA4lGFTYfaCb19Y2UV4VKkqdPD6SFbckMu4cXRviytPT6w/3\nQZSU2qk86SRw2g6q9BRjaBVEQWg8Z3ysXgIpIYQQ4ho2NjOa739pOnuOt/DGlio2HWhg25EmbpiS\nxrLZmVhNl3bymhDXMgkl+mg0/Z0JHT1u3tlWzY6S5kEf297jpqPHTXKsZUABZEevG71GjccfDHdI\nhFZIDAwkIrvayD+xn46YRG6cpsGv+HmtJ5t75kdg0Kl5aUc3t17vx0kUERYDh4+V0dHVDRDukQAH\nM8YHOFJhDBdPxhmj2LHVTWy0jv94JHfY/oaWNg9PPF1OY4uHJYvi+Or96Z/6N8OXqswyEAyyamM5\n+0tb6ejxEDPMFJQhzxFQ2LKrg9fXNlPbEAqbZk2NYsWyRPKyhx+NKq4MiqLQ0uYNT8UoKbNT39j/\nPafRQG6mmcK+PojCPCuREfJXnxBCCCEGUqtUzChMZOqYeLYdbuLtbVWs33WSTQfqWTIjgxunp/f9\nslEIcTHJd9UZDDoNybEWvrh0LKW1nXT0Dl5e98GeWh68OdQt8bnr8wgEguw90UKP0z/o41Wq/qkb\nk/d8hFoJ4p4/hRS9m/ftKdjibMzMMVHZ6qWkMchtWjNNHQZ8XhcHS0qBUI+EWR/qkSjOt/PFm8eE\nVxE0Nfn58S8qMBnV/Me3comL0Q/5HOsa3TzxdBntnT5W3JLI/XelfKrfEl/qMstVG8sHrEIZbgrK\nmby+IB9ta+eNdc00t3lRq+G62THctSyR9FTTRbk+MTICQYWTda5wF8SxMjvtnf2jZY0GNRPHRVDU\n1wdRkGPBYJA+CCGEEEKcH41azYKJKcwel8im/Q2s+aSaN7dW8cHeOm6dncmiKakyqUOIi0hCiSEY\ndBom5sfz0b76QY8fqujA4wtg0Gl45cMyPtrfMOz5TgUSEd0dFBzfS1d0PIun6/AEA7xlz+KRRaGm\n35c+6SWgqKjoMAIK0zKDtE5JYd+Jdvy+XFQqDXlpHXxhSXb4Ov1eNU//dxWBoMK/fz2X7Iyhi3kq\napz86Jlyeux+vnB3KncuTbzwTw7gcPr5w18vXZnlcJNNTm2fGYzLHeC9j9t4a30Lnd0+dFoVSxbF\nsXxJIonxsifwSuT1BSmvcoa3Yhwvd+B09e/FsEVqmT01qm88p5WsdNNF2TYkhBBCiGubTqvhxunp\nzCtO5oM9tazfdZJXN5azYXctd8zLZu6EpPNevSuEGJqEEsNYPDVtyFDi1BaOmEgj2w83nvc5J+/9\nCE0wSGD+JGJ1Pt7qzWBifhTpMTq2lDqpavMxtbgQt19Dms1HtDm0KkAJuNh3IsCcCRpWLMoIn6+7\nx8eTv6ig1x7gGw9lMHn80GOMSkrt/ORX5bjcQf75ixnctDDu/D8Zpzl6opdfPV9Da7v3kpVZDjfZ\npLPXTbfdQ9ppb7M7/Kz9sJU177dgdwQwGtTcsSSB229KJCZK9gBeSRxOP8fLHZSUhkKI8monfn//\ndJnkBAOzpkZRmB8a0ZmcYJA+CCGEEEJcMiaDltvmZrNoShrv7qjhg711/O+7x3l3Rw3L5+cwvTAB\ntfwsIsSnJqHEMGxWA0a9Grc3OOjxD/bWsWhSypDHz2Tt7WRsyR7UaSncNMuAPahiozeT70+JwOkN\nsnqPnbiYKAoLcunptROf5AP07D7mY9+JAOkJau5YYAyfz+MN8rPfVNLU4mHlrUksXjB0yLD3UDc/\n/10lgaDCv/yfLObNuPBVDZeyzPJMw042iTBis4ZCkM5uH++818K7G1txe4JYLRo+d3sSyxYnEGmV\nL+8rQVuHt38VRJmDmnpXeGWRWgVZGabQVoy+Tohom4RMQgghhLj8rCYddy/KY/G0dNZsr2bzwQb+\n+PZR1u2o4a4FORTnxsovSoT4FOSubRhvbqkcNnA4VN7O3AlJ532+SXs2oQ4G0CwsxqwJ8Ep3Dksm\nx2A1qnllZw92L9y6cBJqlYrtew6SH5WByx3F6x95MOrhwaVGtH0BQDCo8KvnqjlR4WDBrGjuuzN5\nyI/74ZYWfvabCjRqFf/+zVymFtvO/5PQ51KVWQ5luMkmkwvi6O72s+qtMta814jPrxBt0/K5O5K5\neWEcpovUaSEuPkVRqGt0c6zUQUlfH0RLW39vi16nYtyYUBllUYGVMbkWeT2FEEIIMapERxh48OYx\n3Dwjnbe2VrHjaDO/eu0QeWk2VizIYUxG9EhfohBXFAklhjBcp8Epnb1u9FoNBp0aj2/41RIWezeF\nR3dht0VzXZGKjoCeEn0Wj40x0dDpZ2OJk+JxY4mKjOB4eRVt7R0kxBTywttuvH744jIjsbb+PWt/\n/Uc9n+ztYtwYKw9/KXPIVPa9j9v4w19P9hVg5lFUcGFBwqUusxzO6ZNNTk0YyU2MobVax9dXHSUQ\ngIQ4PXcuTeT6ebHodbKnb7Tx+YNU1bgoKbNTWVPDgaNd9Nr7+yCsFg3TJ9nCfRA5mSZ0WnkdhRBC\nCDH6JUSb+ept41g6K5M3Nleyv6yNp17ez/icGFYsyCUzScbOC3E+JJQYwnCdBqdERxj4aF8d57NK\na9LeTWiCAQzzx2PSwkud2dx9XTRqtYqXd/Zgs9kYPyYXu8PJvkPHSI238sEuhaaOIHOLdRTn9b9U\n6z5s5a0NLaQmG/juwznohrgZf3N9M3/5ez1RkToe/3YuuZlDF2AO5lKXWZ6LRt0/pvXw8W4++LiT\n99Z1oyhO0pKNPHRvFhMLTWi1skxutHC5ApyodITHc5ZWOvB6+/sg4mP1TB4fSVGBlaJ8K6nJxk89\nilYIIYQQYjRIi7fyzRXFVDR08/rHlRyp7OBIZQfTxsRz54IckmNlDL0Qw5FQYggmgxabVU+XffCR\noABmo+6cUzcAzI4eCo/sxBEZxfWzLDT6TbgTsxiTpGdvtZvjjT6WLZ6FWq3mkz0HUZQAMRFJ7Crx\nkxav5vZ5/eM9dx/o4k8v12KL1PK9R/KwWs5+CRVF4aXXG1i9tpnYaB2//skkzMbAWY8bzuUoszwf\nJaV2XlvTxP4jPQDkZJpYeWsSMydHkZgYSWtr72W/JtGvq9sX7oM4Vuagk9BbZAAAIABJREFUqtZJ\nsG/RkEoFGanG0CqIfCtzZyWixjf8CYUQQgghrlC5KTb+3+cnU1LdweqPK9lzopW9pa3MnZDM7XOz\niLPJWHohBiOhxBkCwSCrNpazv7R1yEDCqNcwe3wSB8uG395xysR9H6MN+NHNL0SvU/FmVw4rrrPh\n8yus2tXL+LF5xETZKK2sobGlDbXKSE2DDY0myINLzeGVAOVVDp75QzU6nZr/+FbuoCMug0GF516q\nZf1HbSQnGHjiO3lkppvP++b9cpZZDkVRFPYf6WH12mZKSu0A5OeEwojpE6OkQGiEKIpCU4uHklJH\nKIgos9PY3L+aSKtVUZBjCW/FGJtnGRCaxccbaW2VUEIIIYQQV7eirBgKM6PZX9bGG5sr2XqokR1H\nm7huUiq3zski0qI/90mEuIZIKHGGVRvLBy1XBIiJMDA2M5r7bszH7vSxaYhxoaczOu0UHd6ByxrJ\n4jkRVHmtJI7JJsai4f0SNwG1mQlFBTicLvYeLAHUWA15qFQaFGqIsIwFoKXNw09+VYHPF+TfHs4h\nP/vsZWB+v8Jv/1zDx590kJVm4vuP5l3QpILLXWZ5pmBQYee+Ll5b20RljQuApGQNmkgn7UoX/9je\nQXlbPJ+7Pk9mQl8GgYBCdZ0rvBXjeJmdzm5/+LjZpGbKhMhwCJGbZcagl9dFCCGEEEKlUjGlIJ5J\neXHsKGnizS1VfLC3ji2HGrlxehpLZmRgNspEMSFAQokBhiu3jLYa+MGXphNhDiWbGrV6yJGVRr0G\ni1FLe4+Hifs3o/P7sCyYiFqrYYMjnwcnWEGtZf7sCZjSzfhRs2PvIXx+P2Z9Fhq1GbevGY+/mW57\nNma9nid/UUFXj5+v3p/GjMlRZ31Mry/I0/9dxe4D3YzJtfD4I7mDbu0YzEiWWUIoTNmys4PV65qo\nb/SgUsGcaVGY4zzsrWyEvkqC9h5PODC6b3HBZbm2a4nHG6TstD6IExUOXO7+Atdom46506Mo6hvN\nmZFmQiN9EEIIIYQQQ1KrVcwZn8yMwkS2HGzg7W3VrNlew0f76lk6K5MbpqZh0MmkMXFtk1DiNMOV\nW3Y7PLg8/nAoMdzIynnFyaxYmEtzdSN1f3gcj8XK3DkxlHiimD07NzTW05pEi9OMHz119Q3UN7Wg\n18Ri0CbgDzpw+U4SG2nEbNDx1G8rqWt0c/tNCSy7IeGsj+dyBfjpbyo4ctzOxKII/u3hHEzG8/vL\nbSTLLL2+IB9uaeeNd5tpbfei0cD1c2O4c1kS8XE6Hn9ux6Dvt7+0jRULcy/LNV7Neux+jveN5Swp\nc1BZ7cQf6C+lTE02hPsgCvOtJMbrZeuMEEIIIcSnoNWoWTQljTkTktm4t451O2p4bVMF7++u5ba5\nWSyYmIJWIytOxbVJQonT2KyGIVc/REcYsVkHdjgsn5+N0+3neE0nXXYP0RFGJhfEhbcXqFa/hdbr\nJfeuqah1GtLmL8VgBnRmHKpIqjp16DRBNP5Qj4RZn4WiBHB4ygGFSfmxPP9SPUeO25k1NYov3pN6\n1nX12P08+YtyyquczJoaxb98LWvIaRxnGqkyS5crwPpNbby9oZmuHj86rYql18ezfElC+OO3dDqH\nDIg6e9102z2kXfIrvbq0tHkoKQsVUh4rtVPb4A4fU6shJ9NM0Wl9ELZIWVIohBBCCHExGXQals7K\nZOGkFNbvquX93bX87b1S1u88yfL52cwqSpLJZOKaI6HEaYZb/TC5IC68tOr0MsyOHg8xkQZmj0vi\n8zcWYDaEPqX+zm6aX/g72hgbqeMi8KWOxRChh4AXxZrEiWYjiqKiIM7D1JQsjpbF4PJocHrLiY5Q\nMbkgjWCPhY8/aaYg18IjX8066y+ojk4vTzxbTm29m+vnxvD1hzLPq5BypMose+x+1n7QwroPW7E7\nApiMau5cmshtNyWc1X1xoQGRGCgYVKhtcJ82GcNOW0d/yaRBr6a4MKJvK4aFglwLRoMsHRRCCCGE\nuBzMRh13LcjhhqlprP2kmk3763l+zTHe3XGSOxfkMDk/TlaoimuGhBJn+Nz1eUBoi0Bnr3vA6odT\nzizDbO/xsO1IEyajNtx10PjcKwTtDqKXFqPSafjIk8zCgJegMZp6h5Uej4Z4q594a4DXNvpweXTM\nKNKwaGoBNquBLTs6+d2akyQlGHjsmzlnFQg2tXh44pkymlu93Lo4ni/dm3ZeqepIlFl2dPl4e0Mz\nGza14fYEsVo0fH55MstuiB+y9+J8AyIR4vMFKa92hkOI4+UOHM7+MbCREVpmTrGF+yCy0/unuggh\nhBBCiJFhs+i5b3EBN0/P4K1tVWw73MhvXz9MdnIEdy3MZVzW5dlWLcRIklDiDBq1mvsWF7BiYS7d\ndg82q2HADfBwZZinug40Tid1//MyisnEmDmJ7PAmM7M4gV53kPePu4lL06NVB4nWdrGrRM0nR/yk\nxKm56zojOq2KA0d6+O+/nMRq0fD4I7lnLaM/We/iiafL6ez2ce8dydxze9I5k9SRKLNsbvXwxrvN\nfLi1Hb9fIdqm497lydy0MO68Oi/OJyC6VjmcAY6Xh1ZAHCtzUFbpwOfv74NIjNczY7It3AmRkmSQ\ntF0IIYQQYpSKtRn58rJCls7M4I0tVew53sIzrx6gMDOauxbmkJtiG+lLFOKSkVBiCAadhoRo81lv\nH64M81TXgftPr6BxOom7eRxBnQ4lcwJGnZpVu7qxpuUTVFTsOXCIv5Q1E2kaj1qt4v4loUCi6qST\nn/++Eo1axWP/N5fUJOOAj1FW5eBHz5ZjdwT48r1p3HbT2cWXZ+q1+3n2j9WXrcyytt7F6nXNbNnZ\nQTAYukG+a2kSi+bGnHffBZw7ILqWdHR6OVbmoKRvJURNnQulL4NQqSAr3RQupCzMtxATLfOvhRBC\nCCGuNMmxFr6+fDw1Tb2s3lzBkcoOfvLXvUzOj+POBTmkxV/aFc5CjAQJJS7QuboOrIqPk8+/QsBo\nJH9uCruCGUwrjKW6zUeTL56ZMTGcrG/kSGktEcYiQEOPq5yN+8zcPDWLn/yqApc7yHf+OZvC/IF/\n6Rw+1stPf12B1xvk4S9lcsP82HNe79ETvfzmhaM0t3rIzTLxra9mkZ5sulifjgHKqxy8traJnfu6\nAUhPNbJiWRLzZkR/pr6KoQKiq5WiKNQ1DuyDaG71ho/rtKpw+FBUYGVMrhWL+doMa4QQQgghrkaZ\nSRH8yz2TOHGyk9WbK9lf1saBsjZmjUvkjvk5JERdmp/nhRgJEkpcoHN1HXS99DrBnl5SbxqLT2cg\nYVIxAK8f8DBlygw8Xi879x3GpMtAq7bg8bXgC3Sw95iTXZv9tHf6+MLdqcydHj3g3LsPdPFfv69C\nUeA7X89m9tTosz7+6U4vs1SAmBQfHboufv1GB5ML4sMTQj4rRVE4Wmpn9ZomDhztBSAv28zKW5OY\nPtEm7cHnwe9XqDwZ6oM4VmrnRIWTrp7+UkqLWcO0iZGhrRgFVnIzzRe04kQIIYQQQlyZxmRE8+/3\nT+FwZTurP67kk6PN7DrWwoKJKdw6J4voCCl/F1c+CSU+haG6DlbOTOHIt/6Gxmoie04a+w05FCdb\n2V7uIilzPDqdlq279uP3WbAaEvEHnTh9NSgK1J7Q4HO6ufm6OJbeEEtLpzO8XeHjTzr49Z+q0WnV\nfPfhHCaNj8TjCwy5paGxxcOzf6yivMqJ2aJCE9ODYgqVHrb3eMKByqlSzk9DURT2He7htTVNHC93\nADB+rJWVtyRRXBQh/QXDcLkDlFU6+lZBODhR4cDjDYaPJ8QZWDArum81hJX0FKOEO0IIIYQQ1yiV\nSkVxbhzjc2LZc7yFNzZX8tH+erYdbuSGqWksnZWJ1SSj3MWVS0KJT2GoroPG3/8Vf2c3GTePRRNl\no2DWRDx+hb3NEUwojsfl6KaxsR2LvghFCeDwlKMoCs5mEz6njknjI7Amufje8zvDo0YjiOLAXg9m\nk4Z/fTib+HgNL244zqGK9vBjTq18UKtUbNzazh9ePInfD/oIL4ZEJwzyS/VTpZwX2tEQCCrs2NPF\na2ubqK51ATBtYiQrbkm65FM8rlRdPT6O9/VBHCuzU1njJNifQZCeagwXUhYVWCkaG0tra+/IXbAQ\nQgghhBh11CoVMwoTmTomnm2Hm3hraxXv7jzJpgP1LJmRweJp6SN9iUJ8KhJKDGO41QgwsOsg4HTT\n+N8vojEbSJmVRqBgCkajDrc+nokTM1ChMDNHxXuaHFQqDQ5PBUHFjbvDgLfHgNYYIKPAz8Z9jQAo\nCtRVg7vNg8EAcxbqeXHj4bO6LE6tfPB6FdpP6tm6qxPUCpYkJ/pI35mXHHaqlPN8uxp8/iCbP+nk\n9XVNNDR7UKlg3oxo7lqWSHbGtdP3cC6KotDc6g0FEH19EPVN/a+ZVqMiP9vS3weRZyXSKt+GQggh\nhBDi/GjUahZMTGH2uEQ+2t/Amu3VvLGlig/21nHHglwm5cQQE2k894mEGCXkbmgQgWCQVRvL2V/a\nSnuPhyirnsn5cdx3Y8GQPQytf1uNv72T9Bvy0cbH4U1KQdHoKXelEFTUFMR7eHebC7XKgsffgjfQ\njrdHh7vdhFobxJJi53B16OZVUcDVZsTTaUStDRKZ4WRPRdeQ1+tzalj7th2/V4XRGkAf70CjCw75\neAiVctqs596D5vEG+XBLG2+820xbhw+tRsXi+bEsX5p41mSQa1EgqHCyzhUupCwpddDZ3R8GmYxq\nJo+PpDDfQmGBlfwsCwaD9EEIIYQQQojPRqfVcNP0dOYXJ/P+nlo27DrJ39Yf5yUVTMiJZX5xChPz\nYtFq5GdPMbpJKDGIVRvLBxRZdtm9fLS/gfL6Hr7/0LSzgomgy03j7/+K2qgndW4G/vyJoNbQpUmm\nzaknyhSgpdnNvhMALpzeGnxODY5mMyq1gjXVTmyUnk67B0UBZ4sJb7cBtS5ARJodv0oZ9DoVBdzt\nRtwdoXDhhoVR7GuohvOoH5hcEDfs1g2nK8C7G1t55/0Wunv86PUqblkcz/IlicTFXLvjJr2+4Bl9\nEHacrv4AKCpSy+xpUeGtGJlpps80eUQIIYQQQojhmAxabp+bzY3T0jlW183arVUcqmjnUEU7kWYd\ncyYkM784meRYy0hfqhCDklDiDB5fgP2lrYMeq22x8/IHZTx405gBb295+U18Le2kLcpBk5yCLyGZ\ngM7K0c541CqFBIOL373tRq+D/IxePt6jwtFgAQUsqQ40hiCTCuI4WNrGyTINvl49GoMfa6oDtXbw\nQCLgVeNoMhNwa1HrAiTn+vni3WnU/G/joONK1SpCUzj6SjlPlXWeqafXz5r3W1j7YStOVwCzSc2K\nWxK59cYEoiKvvQIdu8PPsTJHaDJGmZ3yaid+f/9rkpJoYPbUUABRmG8hKcEgJZ9CCCGEEOKyMxm0\n3Dwriym5sdS12Nl8qIFPjjSxfudJ1u88SX6ajQUTU5g2JgGDXsbJi9FDQokzdNs9g97Un3KgtI17\nFuWFVxkE3R4af/cX1AYtqfOyCORNAJWGCk86/qCKnGgPqza4cHvhvpsMZCWm8uH6bpSggjXJQVKS\nlskFSSyfm8P2zW58vQG0Jj/WFDuqvr8rjHoNbm9oeoaigLdHh7PFDIoKfYQXc4KTOVPSiDDrhxxX\nunBSCjfPyBiyH6O908tbG1p4b1MbHm+QSKuW++9KYen1cVjM186XSVuH97StGHZO1rvDx9RqyMkw\nh6ZiFFgozLMSZbv2ghohhBBCCDG6pSVYuW9xAXdfl8v+sjY2H2ygpLqTsrpuXnq/lFlFicyfmEJW\nkkzNEyPv2rnbPE82q4Eoq54uu3fQ410Oz4CCyNZV7+BraiV1QTbajEx8cYk4tHE0dFqxGQPsPeyg\nrjXIjCIt47LVfO/nFTgdCnfflsji66KxWQ34ffCTX1XQ1BAgKVmDOclNt5PwqFFFUfhwbz3BgApn\niwlfrz5UZpnoIDlNw+SCtPDKh8HGlc6dmMJtszMG7cNobPHwxromPtrWgT+gEBut4/4VKdy4IBaj\n4epOUINBhbpGdziEOFbmoLW9/3XX61WMH3tqFYSVMTkWTKar+3MihBBCCCGuHjqthhmFicwoTKS1\ny8XWQ41sPdzIpgMNbDrQQFq8lQUTk5k1LknGiooRI6HEGQw6DZPz4/hof8Ogx2NOK4gMen00/ubP\nqHUa0hZk488dj6LWcag7DbVKAZeTrQd9JMWouX2+nmf/WEV5lZPr58bw+eUpqFQqunt8/OgX5VTW\nuJgzLYpHvpZFUFEGTP0IBIO0tQbZutkZKrO0BFm4yMIdC8cSE2kcsPJhsHGlaSlRZ42YrKlz8fq6\nJrbu7CSoQHKCgbuWJbJwdgw63dVZhuPzB6modg7YjmF3BMLHI6waZky2UZQfCiFyMs1otZIcCyGE\nEEKIK198lIk7F+Rwx7xsjlR1sOVgAwfK23j5gzL+/lEFU8fEs6A4mTGZ0ahl9YS4jCSUGMR9NxZQ\nXt9DbYv9rGOnF0S2/WMN3oZmUuZlocnNwx8TT30wFU9QS5LZzYtvOdFr4cGlBl56rZ7dB7opLozg\nn76YgUqloq3DyxPPlFHf6GHxglj+6QsZaNShvwBOrcTw+xVWvd3E5g9dKKi49aY4Pr88BbNx+Jfu\n9HGlpyutdLB6bRO79ncDkJlmZMUtScyZFn3VFTI6XQFOVDg4VmqnpMxOWaUDr6+/DyIhTs+0Ylt4\nO0ZaslGWrwkhxChRWlrK17/+dR566CEeeOABdu/ezbPPPotWq8VsNvPzn/8cm83G888/z/r161Gp\nVDz88MMsXLhwpC9dCCFGNbVaRXFuLMW5sXQ7vHxypInNBxvYWdLMzpJm4mxG5k9MYd6EZKIjzj2t\nT4jPSkKJQWjUar7/0DRe/qCMA6VtdDk8ZxVEBn1+Gn79AiqthrSF2QRyx+FTmynvjidCH2D9x724\nvfD5Gw3s2tvG2g9byUg18q/fyEGnVdPQ7OaJp8tpbfdyx5IEvnh36lk3xI0tHn75P1WUVjpJjNPz\nyNeyGJtnveDnoygKh471snpNE4eOhVZMFOSYWXlrEtMm2q6aG/HObl//VoxSO9W1LoJ9GYRKBZmp\nJgr7CikL863X9BQRIYQYzZxOJ08++SSzZ88Ov+1nP/sZTz/9NDk5OfzhD39g1apVLF26lHXr1vHq\nq69it9u57777mDdvHhqNbLUTQojzYbPoWTIzg5tnpFNe383mgw3sPt7CG5sreXNLJRNyYlkwMYXi\nXBktKi4dCSWGoFGrefCmMdyzKG/AVopT2levw1vbSPKcTLRjCvFFRlPiyEQF1Nf2UtsSZHqhFp/D\nzv+uqifapuN7387DYtZQXevkh8+U09Xj5/67UlhxS+KAYEBRFD7a3sFzf6vF7QmycHYMX3sgHfMF\n9hkoisKeg928taGMoydCYURxYQQrbk1iwljrFR1GKIrCyXon23a2caxvPGdjS39BqVarYkyeJdwH\nMTbPck0VdgohxJVMr9fz3HPP8dxzz4XfFh0dTVdXFwDd3d3k5OSwc+dO5s+fj16vJyYmhtTUVMrL\nyxkzZsxQpxZCCDEIlUpFfloU+WlR3Le4gJ3HmtlysKF/tKhFz9zxScyfmEJSzNmrsYX4LOQu7RwG\n2wah+E+tklCTdl0u/txxdBFLp9+KCTdv7/GQGKNmXLqfH/+iGoNezeOP5BIXo+d4uZ0f/7IChzPA\nV+9PZ9kN8QPO7XD6+cNfa9m6qxOzSc23v5bFglkxF3TNgaDC9t2drF7bRE1daHrEjMk2VixLoiD3\nypxPHAgoVJ0M9UGU9PVBdPf4w8fNJg1TiyNDWzHyreRlm9Ffpd0YQghxtdNqtWi1A39Eeeyxx3jg\ngQeIjIzEZrPx6KOP8vzzzxMT0///yJiYGFpbW4cNJaKjzWi1l2YlRXx8xCU5rzh/8hqMPHkNRt7F\neA0y0qK5+8axVDV08/6uk2zaW8u7O0/y7s6TjMuJ5aaZGcwpTsGol9vJwcj3wYWRr6JPof2t9/BU\n15E0Kx3d+PF4LVGU2NMxagKsea8bnRaWzlTz9G/K8QcUHvtGDjmZZg4e7eFnv6nE5w/yra9mct3s\n2AHnPXqil189X0Nru5exeRYe+WoWifHnv4/L5w/y8fYOXl/XTGOLB7UKFsyK5iv35xBpUc59glHE\n4wlyotIR3opxosKB2xMMH4+N1nHDgnhy0o0UFVhITzWF+ziEEEJcfZ588kl++9vfMnXqVJ566ile\nfvnlsx6jKOf+f11np/NSXB7x8RFnlUqLy0teg5Enr8HIu9ivgVWn5s65Wdw6M519paHRokcr2zla\n2c4fXj/EzKIk5hcny2jR08j3weCGC2oklLhASiBAwy+fR6VWkXZ9Af7ccVR7U/ArWg4f6sTphjvm\na/nvFyrosfv55y9kMLXYxo69XTzzxyoA/vUbOcycHBU+Z6jMspHX1zYBcO8dyay8Nem8iyfdngDv\nb27nrfXNtHf60GpU3LggljuXJZGcYCA+3jrqvzF6ev0cK7f3bcWwU1HjJNA/GIO0ZGPfVozQloz4\nWD0JCZGj/nkJIYS4OE6cOMHUqVMBmDNnDu+88w6zZs2iqqoq/Jjm5mYSEhJG6hKFEOKqpdNqmFmU\nyMyiRFr6RotuO9zIpv31bNpfT3qClQUTU5g1LhGLUUaLigsjocQF6njnA9wVJ0manoZu0iSchmhq\nexNx9bgpq/YxuUDDu+/W0Njs4c6lidx0XRwbt7Xzuxdq0OvV/Pv/zaW4sD8l+ixllg6nn3c3tvHO\ney302P0Y9GpuuymB229KGNUljoqi0NLm5ViZva+Y0kFdozt8XKOB3Exz31QMK4V5ViIj5EtVCCGu\nZXFxcZSXl5OXl8fhw4fJzMxk1qxZ/PnPf+ab3/wmnZ2dtLS0kJeXN9KXKoQQV7WEKBN3Lchh+bxs\njlS1s/lgIwfL23jp/VJWbSxn2ph45stoUXEB5E7vAijBIA2/eA7UKtJuGksgu5BjzkzUBPlgaw8J\n0SoaKhs5Xu5g3oxoHliRwpr3W/jTK3VYLRq+90heuNPhs5RZdvX4WPN+C+9ubMXpCmI2abj71iRu\nWRyPLXL0JZOBoEJtvYuS0r7tGGV22jt94eNGg5qJ4yIozLdSlG8lP8eM0SDN6UIIca06cuQITz31\nFPX19Wi1WjZs2MAPf/hDHn/8cXQ6HTabjZ/+9KdERkZyzz338MADD6BSqXjiiSdQq6VPSAghLofQ\naNE4inPj6HZ42X6kkS0HG9lR0syOkmbio4zMK5bRouLcJJS4AJ3rNuIqqyZxaiq6adNoUSXSFYhg\n584OtBqI0vSwfk8XhfkWHv5yBv9Y08SrbzYSbdPxg0fzyEwzAZ++zLKtw8ub65t5f3MbXq9CZISW\nB1YksfT6+AuezHEpeX1Byquc4QDiWJkDp6t/L4YtUsusqVEU5VspKrCSlW46760qQgghrn7jx4/n\nxRdfPOvtr7766llve/DBB3nwwQcvx2UJIYQYgs2iZ+nMTJbMyKCsrpstMlpUXAAJJc6TEgxS/+z/\ngArSlozDlzGGUlc6zY0uWtr8FKV6WbO2kZREA999OIeXXm/knfdaSIzT84Pv5JOcEEoHS0rt/PK5\n6gsqs2xodvPGumY2be/AH1CIi9Fx59JEbpgXh8Ew8t/UDqef4+WOvq0YdsqqnPj9/WVjyQkGZk2x\nhbZi5FtJSTRIEY4QQgghhBBXGZVKRUF6FAXpUXx+cQG7jjWz5ZCMFhXDk1DiPHVt2IzreCUJk1PQ\nzZpFhT8dp1fLngNdZCUEWbeumsgILf/xrVz+8o8GNm5tJz3FyA8ezSM2Wo/fr/D3txtZfQFlllUn\nnby+rpntuzsJKpCSaOCuZUksmB2NTjtyYUR7pzfcBXGs1E5NvYtThedqFWRlmEJbMQqsjM2zEhM1\n+raUCCGEEEIIIS4ds1HLdZNTuW5yKrUtdrYcbOCTo03h0aIFaTbmT0xh2tgEDLrRs+pbXH4SSpwH\nRVGof+YPoILUZcU4k8dS60rik93dRJrhk81VaHUq/u0b2fxtdQOf7O0iL8vM976dR2SE9oLLLI+X\n21m9tok9B3sAyEo3sfKWJGZNi7rsYy8VRaGu0c2xvj6IkjI7LW3e8HG9TsW4MaEyyqICKwW5llG1\nlUQIIYQQQggxstITrNx3YwF3L8oNjxY9VtNJaV03L39QysyiJBZMTCYzUUaLXosklDgPXR9sxVlS\nTvzEZAzz53HIl0VVjZveHh/tNbW4PQG+/bUs/vFOEweO9jJujJXH/m8uJqOajdvaz6vMUlEUDpX0\n8traJo4ctwMwNs/CyluTmDIh8rJ9c/r9CpU1TkrCfRB2eu39fRBWi4bpk2yhyRj5FnKzzCO6akMI\nIYQQQghxZTjXaNHUeAvjsmIoSI8iP81GhHn0ThQUF4+EEuegKAoN//V7ANJun0xb7DjquyI4WtKO\np7ud9jYXD6xIZt2HrRwvdzBtYiTf+ecc/P4gz/6x+pxllsGgwu6D3axe00RZlROASeMiWHFrEuMK\nrJc8jHC5A5yocITHc5ZWOvB6+/sg4mP1TB4fSVFfH0RashH1ZV6tIYQQQgghhLi6DDZa9FBFG/Wt\nDt7bXQtAapwl3FFRkB4lUzyuUhJKnEP3pk9wHCkjbkISugULKfdmsnd/D/hcnKxoZ/H8WLbu6qK6\n1sWCWdF888tZlFY6zllmGQgobN3Vyep1TdTWuwGYOcXGyluSyMu2XLLn09XtC0/EKCm1U1XrJBjs\nP56RagwHEIX5VuJjJZ0UQgghhBBCXBqnjxb1+gJUNfZworaL0touyuu7qW9z8NH+egDio4zhgGJM\nehTxUSbZ7nEVkFBiGIqi0PCfvwUg7c7p1EZO5GipQneni/KjdUwaF8GRE700tXi5+bo4vnxv2jnL\nLH2+IB9t6+D1d5tobvWiVsPC2THctSyRjFTTRb/+phYPuw862LkgniTJAAAZd0lEQVS3jZIyO43N\nnvBxrUZFQY4lHEAU5luwWuRLQgghhBBCCHH56XUaxmREMyYjGgB/IEhNcy+ltV2UnuyirK6bbYeb\n2HY4dL8VZdWHA4qC9CiS4yyoJaS44sgd6DB6Nu/EfriU2HGJqBct5nhPMsePd1J9rI6MFAO1DS7a\nO/2suCWR6+fF8r2flw5ZZun2BNiwqY23N7TQ0eVDq1Vx83VxLF+SSFLCxVmGFAgqVNe6OFYaKqQ8\nXmans9sfPm42qU/bimEhL9uCQS99EEIIIYQQQojRR6tRk5tiIzfFxtKZmQQVhfpWB6W1XeHVFLuO\ntbDrWAsAVpOO/DQbY9KjyE+PIiPRikYt9zujnYQSQwitkvg1AKkr51BunMKebQ4aq5uxGhXaO33Y\nHQEeWJFCdJSOR584PmiZpd3hZ92Hraz5oIVeewCjQc0dNydw+00JxER/tq0RHm+Qssr+PogTFQ5c\n7v69GNE2HXOnRzF9chwZKVoy0kyXfXqHEEIIIYQQQlwMapWK9AQr6QlWbpiahqIoNHe6QiHFyVBI\nsb+sjf1lbQAY9BryU23hLR/ZyZFS0j8KSSgxhN5te+g9WEp0YQKB629hZ6WZmvJ6/I5efIqCx6vw\npXtTKat08rfVDWeVWXZ1+3j7vRbWf9SKyx3EatHwuduTWLY4gUjrp/u099r9HC8PBRAlZQ4qq534\nA/2llKlJBgr7+iCK8q0kxutRqVTEx0fQ2tp7UT4vQgghhBBCCDEaqFQqkmLMJMWYWTAxBYC2bhdl\ntd2cqO2irK6LI1UdHKnqAE6tvIgMhRQZUeSl2DDoz56MKC4vCSWG0PCfvwQg7d757A9M4NDBDtrr\nW0AJoihwz21JrHm/9awyy5Y2D2+ub+HDLW14fQpRkVruvi2ZJdfFYRpkFOhwWto8oULKvtGcpwox\nAdRqyMk0hwOIwnwLtkjdRf0cCCGEEEIIIcSVJM5mIs5mYvb4JAC6HV7K+rZ6nPrnRG0XbAeNWkVm\nUgQFaaGVFPnpNixGuae63CSUGETv9j307DtB9Jh4eq+/hy27/NSVNRD0B9FoVcyabOMf7wwss2xs\n8fCbP1Xz8Y4OAoHQKM07l4a6Js6ntyEYVKhtcIe3Yhwrs9PW4QsfN+jVFBdGUJhvoajASn6OBZNR\nUj0hhBBCCCGEGIrNomfa2ASmjU0AwOn2UVbXHQ4oqpt6qWzoYf2uk6iA1HhrqDgzI4qCNBs2q4wh\nvdQklBhEw89+AUDK/dfzbmM2R/dV4XN5MBjUxMXo2Lq7K1xmqdepeeaPVezY24WiQGqygRXLkpg/\nMwatduj+Bp8vSEWNMxxAHC93YHcEwscjrVpmTrGFVkIUWMlONw97PiGEEEIIIYQQwzMbdUzMi2Ni\nXhwAHm+AyobucHFmRUMPda12PtxXB0BijJkx6f29FHG2izsxUUgocZbeHXvp3nuCqPw46uc/wMev\nt9Lb3o1BryIYVKhr9LBwdgwLZ0fzj3ea2He4B4CcTBMrb0li5pQo1IOUSTqcAU5UnFoF4aC8yoHX\n198HkRivZ/okW3g7RkqSQWbuCiGEEEIIIcQlZNBrKMyKoTAr1A3o8wepaerlRG0npbXdlNV1sflg\nI5sPNgIQE2kIBxRj0qNIijHLfdtnJKHEGRp/+gwACQ8u4X/22qivKEWnBY9XwWxSc8viBE5UOPjR\nsxUAFBVYWXFLIpPHRw74Yuzo9A7og6ipdRHsyyBUKshKNw3og/iskziEEEIIIYQQQnw2Oq2avDQb\neWk2bpndt82+xT6gj2LH0WZ2HG0GIMKsGxBSREVbRvgZXHkklDiNfeceuvaUYsuL40DxF9n7lypQ\ngvj8ockWGrWKN94NffFNHh/JyluTKCqwhsaHNnnCAURJqZ3mVm/4vDqtirF94UNRgZUxuVYsZumD\nEEIIIYQQQojRTN1XhpmZFMGN09NRFIXGdueAkGLviVb2nmgNv4/VpMNm1WOz9P1jNfT9qcdmCf17\nlFWPyaCVVRZIKDFAw09CqySiH7idZ9d043V5gFC/Q32TB5UKZk+LYvnNiajUUFJq5+33mjlW5qCn\n1x8+j8WsYWpxJEUFoT6I3EwzOp3MwxVCCCGEEEKIK5lKpSIlzkJKnIXrJqeiKApt3e5wSNHt9NHa\n6aSzx0N9q2PYc+m06nBwEWnRE3VmeGHtP6bVXL33k6MmlPjpT3/KwYMHUalUPPbYYxQXF1/Wj9+x\neRtde8qIzInl9ciVtNTVoVKBooDd6WfSuAiSEwzUN3n4wdNluD3B8PvGRuuYPzOaogIrhflW0lOM\ng/ZKCCGEEEIIIYS4eqhUKuKjTMRHmZg7IZn4+AhaW3sB8PkDdDu8dNu9fX96Qn+G3+ahy+6luqmX\nQFAZ9uMMXH0RCiyiLHoi+wKMqL5jV+Lqi1ERSuzatYuamhpWrVpFRUUFjz32GKtWrbqs11Dyrz8F\nQP/5lbz3QUP47bYILT12PweO9nLgaOiLKz3VOKAPIiFOxsQIIYQQQgghhOin02qIs5nOObEjqCg4\n3X66ToUW4T8HhhkXuvpi4LaR0bv6YlSEEp988gmLFy8GIDc3l+7ubux2O1ar9bJdg7+5DVtBIj+v\nm4sSdAP9qyTycywU5VsozLcyNt9KpHVUfNqEEEIIIYQQQlzh1CoVVpMOq0lHWvzwj/X6AvT0rbbo\nsnvp6Vtt0e3w0uPwhoON0OqLnmHPdWr1RZRFT2TfaovEGDNzxidd1sBiVNxdt7W1MW7cuPB/x8TE\n0NraellDiY8f+hVdLmgtcTN+rJXiwggK863kZ1swGEZHgiSEEEIIIYQQ4tql12mIizIRF3Xu1RcO\nl2/AVpFTKy+67J5wsNExyOqL9AQr2cmRl/JpDDAqQokzKcrw+2mio81otRd3esUDD43H7Q7wX3mR\naDVX1h6c8xEfHzHSl3BJyPO6slytzwuu3ucmz+vKczU/NyGEEEKcH7VKRYRZT4RZf16rL051XQSD\nCllJl/dniVERSiQkJNDW1hb+75aWFuLjh/7MdXY6L/o15GaGCkk6O+wX/dwj7fSylauJPK8ry9X6\nvODqfW7yvK48l+O5SeghhBBCXF30Ok24rHMkjIp9CXPnzmXDhg0AHD16lISEhMu6dUMIIYQQQggh\nhBCX36hYKTFlyhTGjRvHvffei0ql4gc/+MFIX5IQQgghhBBCCCEusVERSgB85zvfGelLEEIIIYQQ\nQgghxGU0KrZvCCGEEEIIIYQQ4tojoYQQQgghhBBCCCFGhIQSQgghhBBCCCGEGBESSgghhBBCCCGE\nEGJESCghhBBCCCGEEEKIESGhhBBCCCGEEEIIIUaEhBJCCCGEEEIIIYQYERJKCCGEEEIIIYQQYkRI\nKCGEEEIIIYQQQogRIaGEEEIIIYQQQgghRoSEEkIIIYQQQgghhBgRKkVRlJG+CCGEEEIIIf5/e/ce\nFGX1hwH8IWAlBFLQJdEkRMPBC4WaN9DyXk46gQrS7qRWjjmM5gVFRbG0ZA3NREszJ5lFRVCmdChS\nM4wZkDIc0k3GIUmTkOUOrsByOb8/HFYui+LP3Jddns9fcvbscp73Rfjy3fO+EBFR18OdEkRERERE\nREQkCTYliIiIiIiIiEgSbEoQERERERERkSTYlCAiIiIiIiIiSbApQURERERERESSYFOCiIiIiIiI\niCTBpgSATz75BEFBQQgODsYff/wh9XI6bPv27QgKCkJgYCBOnz6NgoICKJVKhISEYPny5dDr9QCA\nkydPIjAwEHPnzkViYiIAoK6uDqtWrcL8+fOhUCjwzz//SBmljZqaGkyZMgVJSUkWk+vkyZOYNWsW\nAgICkJqaajG5dDodQkNDoVQqERwcjLS0NOTk5CA4OBjBwcGIjIw0zP36668xZ84czJ07F+fPnwcA\nVFVVYfHixZg/fz7eeecdlJeXSxUFAHDt2jVMmTIFcXFxAPCfnKf2joepGcu2YMECKBQKLFiwAEVF\nRQDML1vrXE3S0tLg5eVl+NjcczWtdc6cOXj77bdRUVFhlrksjbnWEJakdT1E0mheu5Hpta4zyfSM\n1cTUQaKLy8zMFIsXLxZCCJGbmyvmzZsn8Yo6JiMjQ7z77rtCCCFKS0vFxIkTRXh4uPj++++FEELs\n2LFDHD58WOh0OjFt2jRRWVkpqqurxcyZM0VZWZlISkoSmzdvFkIIkZaWJpYvXy5ZFmN27twpAgIC\nxIkTJywiV2lpqZg2bZqoqqoShYWFIiIiwiJyCSGEWq0W0dHRQgghbt++LaZPny4UCoXIzs4WQgix\ncuVKkZqaKm7evCnefPNNUVtbK0pKSsT06dNFfX29iImJEQcOHBBCCBEfHy+2b98uWRadTicUCoWI\niIgQarVaCCH+k/Nk7Hh0hmxr1qwRycnJQggh4uLihEqlMrtsxnIJIURNTY1QKBRi/Pjxhnnmnisu\nLk5s2bJFCHHv/8rZs2fNLpelMdcawpIYq4dIGs1rNzItY3UmmZ6xmpg6psvvlMjIyMCUKVMAAJ6e\nnqioqMCdO3ckXtXDjRo1Cp9//jkAwMnJCdXV1cjMzMTkyZMBAK+++ioyMjKQnZ2NYcOGwdHREXZ2\ndvD19UVWVhYyMjIwdepUAMC4ceOQlZUlWZbW/vrrL+Tm5uKVV14BAIvIlZGRgbFjx8LBwQFyuRxb\ntmyxiFwA0LNnT8PuhsrKSvTo0QP5+fkYPnw4gPvZMjMz4e/vD5lMBmdnZ/Tt2xe5ubktsjXNlYpM\nJsOBAwcgl8sNY497nvR6vdHj0RmyRUZGYvr06QDun0dzy2YsFwDs27cPISEhkMlkAGARuX7++WfM\nmjULABAUFITJkyebXS5LY641hCUxVg81NDRIvKqup3XtRqZlrM4k02tdE/fs2VPiFZmPLt+UKC4u\nbvEF4+zsbNjC3JlZW1vD3t4eAHD8+HFMmDAB1dXVhgLcxcUFRUVFKC4uhrOzs+F5Tfmajz/11FOw\nsrIybEuXmkqlQnh4uOFjS8h169Yt1NTUYMmSJQgJCUFGRoZF5AKAmTNn4t9//8XUqVOhUCiwZs0a\nODk5GR5/lGwuLi7QarUmz9DExsYGdnZ2LcYe9zwVFxcbPR6mZiybvb09rK2t0dDQgCNHjuCNN94w\nu2zGcuXl5SEnJwevvfaaYcwScuXn5+OXX36BUqnEihUrUF5ebna5LI251hCWxFg9ZG1tLfGqup7W\ntRuZlrE6k0yvdU28du1aqZdkNrp8U6I1IYTUS3gkZ8+exfHjx7Fp06YW4+3leNRxU/v222/x4osv\n4rnnnjP6uLnmAoDy8nLs2bMHUVFRWLduXYu1mXOu7777Dm5ubjhz5gxiY2MRFhbW4vFHydCZchnz\nX5ynzpaxoaEBa9aswZgxYzB27Ng2j5tjtm3btmHdunUPnGOOuYQQ8PDwgFqtxqBBg7B//36jc9p7\nbkfn0v+Px1Q67dVD9OQ9rHYj03hQnUmm0bom/uijj6Rektno8k0JuVyO4uJiw8darRa9e/eWcEUd\nl5aWhn379uHAgQNwdHSEvb09ampqAACFhYWQy+VG8zWNN72bU1dXByGE4d1gKaWmpuKnn37CvHnz\nkJiYiC+++MIicrm4uOCll16CjY0N+vfvj+7du6N79+5mnwsAsrKy4OfnBwAYPHgwamtrUVZWZni8\nvWzNx5uyNY11Jo/79de7d+8WN+/sbBnXrVsHd3d3hIaGAjD+PdGcshUWFuL69etYvXo15s2bB61W\nC4VCYfa5AKBXr14YNWoUAMDPzw+5ubkWkcucmXMNYUla10NkWsZqt/T0dKmX1aUYqzNLS0ulXlaX\n07om1mq1vJysg7p8U2L8+PH48ccfAQAajQZyuRwODg4Sr+rhqqqqsH37duzfvx89evQAcO+64aYs\np0+fhr+/P3x8fHD58mVUVlZCp9MhKysLI0eOxPjx45GSkgLg3nXKo0ePlixLc7t27cKJEyeQkJCA\nuXPnYunSpRaRy8/PDxcuXEBjYyPKyspw9+5di8gFAO7u7sjOzgZwb3t59+7d4enpiYsXLwK4n23M\nmDFITU2FXq9HYWEhtFotBg4c2CJb09zO5HHPk62tLQYMGNDmeHQGJ0+ehK2tLZYtW2YYM/dsrq6u\nOHv2LBISEpCQkAC5XI64uDizzwUAEyZMMNzJW6PRwMPDwyJymTNzrSEsibF6iEyrvdqNTMdYncn7\nGZiesZqYl5N1jJXg3h5ER0fj4sWLsLKyQmRkJAYPHiz1kh7q2LFjiImJgYeHh2EsKioKERERqK2t\nhZubG7Zt2wZbW1ukpKTg4MGDsLKygkKhwKxZs9DQ0ICIiAj8/fffkMlkiIqKQp8+fSRM1FZMTAz6\n9u0LPz8/rF271uxzxcfH4/jx4wCA999/H8OGDbOIXDqdDuvXr0dJSQnq6+uxfPly9O7dG5s2bUJj\nYyN8fHwMW+nVajVOnToFKysrfPDBBxg7dix0Oh3CwsJQXl4OJycnfPrpp5K903XlyhWoVCrk5+fD\nxsYGrq6uiI6ORnh4+GOdp9zcXKPHQ+psJSUl6Natm+GXKE9PT2zevNmsshnLFRMTY/jlZNKkSTh3\n7hwAmH2u6OhofPzxxygqKoK9vT1UKhV69eplVrkskTnWEJbEWD2kUqng5uYm4aq6rqbaLSAgQOql\ndDmt68ymm3ST6RiriY1dGkttsSlBRERERERERJLo8pdvEBEREREREZE02JQgIiIiIiIiIkmwKUFE\nREREREREkmBTgoiIiIiIiIgkwaYEEREREREREUmCTQkiMimlUon09PQHzjl16hQaGxsN8xsaGkyx\nNCIiInoCbt26haFDh0KpVEKpVCI4OBirVq1CZWVlh1/jUeuB+fPnIzMz8/9ZLhGZGJsSRNTpxMTE\nGJoSarUa1tbWEq+IiIiIHoezszPUajXUajXi4+Mhl8vx5Zdfdvj5rAeILJeN1Asgos4lMzMTu3bt\ngpubG/Lz8+Ho6IjPPvsMKSkpiI+Px9NPPw0XFxds3boVDg4O8Pb2xtKlS5GZmQmdToeoqCi88MIL\nmDRpEr755hu4u7sbXvPo0aOGz9PY2IjIyEhcv34der0ePj4+iIiIwO7du3Hjxg0sWLAAe/bswejR\no6HRaKDX67Fx40bcvn0b9fX1mD17NkJCQpCUlIT09HQ0NjYiLy8Pffv2RUxMDKysrCQ8ikRERPQg\no0aNwrFjx5CTkwOVSoX6+nrU1dVh06ZN8Pb2hlKpxODBg3H16lXExsbC29v7gfVAdXU1VqxYgbKy\nMri7u6O2thYAUFhYiNWrVwMAampqEBQUhDlz5kgZnYhaYVOCiNrQaDTYtWsXXF1dERYWhkOHDiEx\nMRHJyclwcHCASqXCoUOHEBoaioaGBgwaNAihoaFITEzE7t27sWfPnod+joqKCnh5eWHLli0AgBkz\nZuDatWtYtmwZ9u7di0OHDsHG5v63KLVaDScnJ+zYsQM1NTV4/fXX4e/vDwC4dOkSkpOT0a1bN0yd\nOhVXr16Ft7f3kzk4RERE9FgaGhpw5swZjBgxAmFhYdi7dy/69++PnJwcrF+/HklJSQAAe3t7xMXF\ntXhue/VAeno67OzscOzYMWi1WkyePBkA8MMPP2DAgAH48MMPUVtbi8TERJPnJaIHY1OCiNoYOHAg\nXF1dAQC+vr6IjY3FkCFD4ODgAAB4+eWXER8fb5jv5+dnmHvw4MEOfQ4nJycUFBQgKCgIMpkMRUVF\nKCsra3d+dnY2AgICAAB2dnYYOnQoNBoNAGD48OGws7MDAPTp0wcVFRWPmJiIiIiepNLSUiiVSgD3\ndkuOHDkSgYGB2L17NzZs2GCYd+fOHcMlnL6+vm1ep7164Nq1axgxYgQAQC6XY8CAAQAAf39/HDly\nBOHh4Zg4cSKCgoKeaE4ienRsShBRG0KIFv/W6/VtHm9+eUTz+cYum6irq2szlpycjMuXL+Pw4cOw\nsbExFBjtaf26zdfQ+hrT5ushIiIi6TXdU6K5qqoq2NrathlvYmtr22asvXpACIGnnrp/u7ymxoan\npyeSk5Px22+/ISUlBbGxsS3eWCEi6fFGl0TUxvXr16HVagEAv//+OwIDA6HRaHDnzh0AQHp6Onx8\nfAzzL1y4YJjr5eUFAHBwcEBBQUGLx5srKSmBh4cHbGxscOXKFdy8edPQ/LCyskJ9fX2L+T4+PkhL\nSwMA3L17FxqNBkOGDPkvYxMREZEJOTo6ol+/fjh//jwAIC8v76GXgLZXD3h6euLSpUsAgIKCAuTl\n5QG49xe9Ll++jHHjxiEyMhIFBQVtagwikhZ3ShBRGwMHDsTOnTtx48YNPPPMM1i4cCH69OmDhQsX\nQiaT4dlnn8XKlSsN8//8808cPXoUFRUVUKlUAIBFixZhw4YNeP75541uv5wxYwaWLFkChUIBX19f\nLFq0CFu3bkVCQgL8/f0RGBjY4q7cSqUSGzduxFtvvQW9Xo+lS5eiX79++PXXX5/8ASEiIqInQqVS\nYevWrfjqq69QX1+P8PDwB85vrx6YPXs2zp07h5CQEPTr1w/Dhg0DcK+miYyMhEwmgxAC7733Xot7\nVhGR9KwE9zkTUTPG/lLGg3h5eUGj0fAHPBERERERPTJevkFEREREREREkuBOCSIiIiIiIiKSBHdK\nEBEREREREZEk2JQgIiIiIiIiIkmwKUFEREREREREkmBTgoiIiIiIiIgkwaYEEREREREREUmCTQki\nIiIiIiIiksT/AEswh8Va2ATYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ci1ISxxrZ7v0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "id": "SjdQQCduZ7BV", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "train_model(\n", + " learning_rate=0.00002,\n", + " steps=1000,\n", + " batch_size=5,\n", + " input_feature=\"population\"\n", + ")" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/improving_neural_net_performance.ipynb b/improving_neural_net_performance.ipynb new file mode 100644 index 0000000..a2a9ddd --- /dev/null +++ b/improving_neural_net_performance.ipynb @@ -0,0 +1,1818 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "improving_neural_net_performance.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "jFfc3saSxg6t", + "FSPZIiYgyh93", + "GhFtWjQRzD2l", + "P8BLQ7T71JWd" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "JndnmDMp66FL" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "cellView": "both", + "colab_type": "code", + "id": "hMqWDc_m6rUC", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "eV16J6oUY-HN" + }, + "cell_type": "markdown", + "source": [ + "# Improving Neural Net Performance" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "0Rwl1iXIKxkm" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objective:** Improve the performance of a neural network by normalizing features and applying various optimization algorithms\n", + "\n", + "**NOTE:** The optimization methods described in this exercise are not specific to neural networks; they are effective means to improve most types of models." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "lBPTONWzKxkn" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, we'll load the data." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "VtYVuONUKxko", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "B8qC-jTIKxkr", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "Ah6LjMIJ2spZ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1160 + }, + "outputId": "605a2f5b-3a22-4ceb-9342-4bb7c5be9187" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.5 2671.1 544.1 \n", + "std 2.1 2.0 12.6 2207.2 425.7 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1473.0 299.0 \n", + "50% 34.3 -118.5 29.0 2148.0 437.0 \n", + "75% 37.7 -118.0 37.0 3185.0 655.0 \n", + "max 42.0 -114.3 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1435.7 505.5 3.9 2.0 \n", + "std 1132.9 387.6 1.9 1.2 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 794.0 284.0 2.6 1.5 \n", + "50% 1173.0 413.0 3.6 2.0 \n", + "75% 1733.0 611.0 4.8 2.3 \n", + "max 28566.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.52671.1544.11435.7505.53.92.0
std2.12.012.62207.2425.71132.9387.61.91.2
min32.5-124.31.02.01.03.01.00.50.0
25%33.9-121.818.01473.0299.0794.0284.02.61.5
50%34.3-118.529.02148.0437.01173.0413.03.62.0
75%37.7-118.037.03185.0655.01733.0611.04.82.3
max42.0-114.352.037937.06445.028566.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.5 28.7 2577.8 528.3 \n", + "std 2.1 2.0 12.5 2111.9 411.1 \n", + "min 32.5 -124.3 1.0 11.0 3.0 \n", + "25% 33.9 -121.8 18.0 1431.0 291.0 \n", + "50% 34.2 -118.5 29.0 2081.5 427.0 \n", + "75% 37.7 -118.0 37.0 3057.2 633.2 \n", + "max 41.9 -114.5 52.0 30401.0 4957.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1414.9 491.1 3.8 2.0 \n", + "std 1182.9 376.9 1.9 1.1 \n", + "min 11.0 2.0 0.5 0.1 \n", + "25% 780.8 275.0 2.5 1.5 \n", + "50% 1153.0 400.0 3.5 1.9 \n", + "75% 1686.0 588.0 4.6 2.3 \n", + "max 35682.0 4769.0 15.0 41.3 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.528.72577.8528.31414.9491.13.82.0
std2.12.012.52111.9411.11182.9376.91.91.1
min32.5-124.31.011.03.011.02.00.50.1
25%33.9-121.818.01431.0291.0780.8275.02.51.5
50%34.2-118.529.02081.5427.01153.0400.03.51.9
75%37.7-118.037.03057.2633.21686.0588.04.62.3
max41.9-114.552.030401.04957.035682.04769.015.041.3
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 208.8\n", + "std 116.7\n", + "min 15.0\n", + "25% 120.3\n", + "50% 181.7\n", + "75% 267.7\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean208.8
std116.7
min15.0
25%120.3
50%181.7
75%267.7
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 203.7\n", + "std 114.2\n", + "min 25.0\n", + "25% 118.4\n", + "50% 176.3\n", + "75% 255.4\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean203.7
std114.2
min25.0
25%118.4
50%176.3
75%255.4
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "NqIbXxx222ea" + }, + "cell_type": "markdown", + "source": [ + "## Train the Neural Network\n", + "\n", + "Next, we'll train the neural network." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "6k3xYlSg27VB", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "De9jwyy4wTUT", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a neural network model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "W-51R3yIKxk4", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_regression_model(\n", + " my_optimizer,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " my_optimizer: An instance of `tf.train.Optimizer`, the optimizer to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A tuple `(estimator, training_losses, validation_losses)`:\n", + " estimator: the trained `DNNRegressor` object.\n", + " training_losses: a `list` containing the training loss values taken during training.\n", + " validation_losses: a `list` containing the validation loss values taken during training.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a DNNRegressor object.\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " dnn_regressor = tf.estimator.DNNRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " dnn_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = dnn_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = dnn_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % training_root_mean_squared_error)\n", + " print(\"Final RMSE (on validation data): %0.2f\" % validation_root_mean_squared_error)\n", + "\n", + " return dnn_regressor, training_rmse, validation_rmse" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "KueReMZ9Kxk7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 769 + }, + "outputId": "64472030-c8d7-4abd-9251-610174b33b2b" + }, + "cell_type": "code", + "source": [ + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0007),\n", + " steps=5000,\n", + " batch_size=70,\n", + " hidden_units=[10, 10],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 161.05\n", + " period 01 : 153.87\n", + " period 02 : 147.81\n", + " period 03 : 139.68\n", + " period 04 : 130.09\n", + " period 05 : 121.78\n", + " period 06 : 114.23\n", + " period 07 : 111.08\n", + " period 08 : 107.81\n", + " period 09 : 106.37\n", + "Model training finished.\n", + "Final RMSE (on training data): 106.37\n", + "Final RMSE (on validation data): 104.68\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd0VVX2wPHvK+m9VyDUBAKkkACh\nd0ITpAsERhmdn4oyiorOgKODitgBBYVRERClCCIioAwioFJCQkggEDohJKT3hLT7+wPNUMNL3nvh\nhezPWqzla+fsl32v2Tnn3HtUiqIoCCGEEEI0IOp7HYAQQgghRG1JASOEEEKIBkcKGCGEEEI0OFLA\nCCGEEKLBkQJGCCGEEA2OFDBCCCGEaHC09zoAIUyZv78/TZs2RaPRAFBZWUl4eDhz5szB2tq6zu2u\nW7eO8ePH3/L8xo0beemll/j444/p27dv9fOlpaV069aNQYMG8eabb9a5X11dvHiRN954g3PnzgFg\nZWXFjBkzGDBggNH7ro0lS5Zw8eLFW34mBw4cYPr06fj6+t7yme3bt9dXeHq5dOkS/fv3p3nz5gAo\nioKrqyv//Oc/adeuXa3aevfdd/H29uahhx7S+TObN29mw4YNrFq1qlZ9CVFfpIAR4i5WrVqFp6cn\nAGVlZTzzzDN88sknPPPMM3VqLyMjg//85z+3LWAAvLy8+P77728oYH7++Wfs7e3r1F9dPPfcc4wc\nOZKPP/4YgLi4OKZNm8a2bdvw8vKqtzj04eXl1WCKlTvRaDQ3fIcffviBJ598kh07dmBubq5zO7Nm\nzTJGeELcUzKFJEQtmJub07NnTxITEwG4evUqL7/8MoMHD2bIkCG8+eabVFZWAnDixAkmTpxIZGQk\nI0eOZO/evQBMnDiRy5cvExkZSVlZ2S19hIaGcuDAAUpKSqqf++GHH+jevXv147KyMl577TUGDx5M\nv379qgsNgNjYWEaPHk1kZCRDhw7lt99+A679Rd+jRw9WrlzJiBEj6NmzJz/88MNtv2dSUhJBQUHV\nj4OCgtixY0d1Iffhhx/Su3dvRo0axbJly+jXrx8AL774IkuWLKn+3PWP7xbXG2+8wZQpUwA4fPgw\nY8aMYeDAgYwfP57k5GTg2kjU3//+d/r27cuUKVNIS0u7S8Zub+PGjcyYMYNp06bx1ltvceDAASZO\nnMjMmTOrf9lv27aN4cOHExkZydSpU7l48SIAixcvZs6cOYwdO5YVK1bc0O7MmTP57LPPqh8nJibS\no0cPqqqqeP/99xk8eDCDBw9m6tSpXLlypdZxDx06lNLSUs6ePQvA2rVriYyMpF+/fjz77LOUlpYC\n137u8+fPZ8SIEWzbtu2GPNzpuKyqquLf//43ffr0YezYsZw4caK634MHD/Lggw8ydOhQhgwZwrZt\n22oduxAGpwgh7qhNmzZKampq9ePc3Fxl8uTJypIlSxRFUZRPPvlEefTRR5Xy8nKlpKREGTNmjPLt\nt98qlZWVypAhQ5QtW7YoiqIoR48eVcLDw5WCggJl//79yoABA27b3zfffKPMnj1bee6556o/W1BQ\noPTv319Zv369Mnv2bEVRFOXDDz9Upk2bply9elUpKipSRo0apezatUtRFEUZPny48v333yuKoiib\nNm2q7is5OVlp166dsmrVKkVRFOWHH35QBg4ceNs4nnrqKaVv377KF198oZw+ffqG106ePKmEhYUp\n6enpSnl5ufL4448rffv2VRRFUWbPnq189NFH1e+9/nFNcQUGBiobN26s/r7h4eHKvn37FEVRlC1b\ntigPPvigoiiKsnr1amXy5MlKeXm5kp2drfTt27f6Z3K9mn7Gf/6cg4ODlXPnzlW/v0OHDspvv/2m\nKIqipKSkKJ06dVLOnz+vKIqifPrpp8q0adMURVGURYsWKT169FCysrJuaXfr1q3K5MmTqx8vXLhQ\nmTdvnpKUlKQMGjRIKSsrUxRFUVauXKls2rTpjvH9+XNp27btLc+Hh4crZ86cUQ4dOqREREQoaWlp\niqIoyty5c5U333xTUZRrP/cRI0YopaWl1Y8/+uijGo/L3bt3K4MGDVIKCwuVkpISZezYscqUKVMU\nRVGU0aNHKwcOHFAURVHOnTunPPvsszXGLkR9kBEYIe4iKiqKyMhI+vfvT//+/enatSuPPvooALt3\n72b8+PFotVosLS0ZMWIEv/76K5cuXSIzM5Nhw4YB0KFDB7y9vYmPj9epz2HDhvH9998DsHPnTvr2\n7Yta/b/T9eeff2bSpEmYm5tjbW3NyJEj+fHHHwH49ttvGTJkCACdOnWqHr0AqKioYPTo0QAEBgZy\n+fLl2/b/9ttvM3nyZLZs2cLw4cPp168fX331FXBtdCQ8PBw3Nze0Wi3Dhw/X6TvVFFd5eTkDBw6s\nbt/Dw6N6xGn48OFcvHiRy5cvEx0dzcCBA9FqtTg5Od0wzXaz1NRUIiMjb/h3/VoZPz8//Pz8qh9b\nWloSEREBwK+//kqXLl1o1qwZAOPGjePAgQNUVFQA10aknJ2db+mzT58+HD9+nNzcXAB++uknIiMj\nsbe3Jzs7my1btpCXl0dUVBSjRo3S6ef2J0VRWLt2LR4eHvj5+bFr1y6GDh2Kh4cHAA899FD1MQAQ\nERGBhYXFDW3UdFweOnSI3r17Y2Njg6WlZXWuAFxcXPj22285c+YMfn5+vPvuu7WKXQhjkDUwQtzF\nn2tgsrOzq6c/tNprp052djYODg7V73VwcCArK4vs7Gzs7OxQqVTVr/35S8zV1fWufXbv3p05c+aQ\nm5vL1q1beeKJJ6oX1AIUFBQwf/583nvvPeDalFLHjh0B2LJlCytXrqSoqIiqqiqU67Y702g01YuP\n1Wo1VVVVt+3fwsKC6dOnM336dPLz89m+fTtvvPEGvr6+5OXl3bAex8XF5a7fR5e4bG1tAcjPzyc5\nOZnIyMjq183NzcnOziYvLw87O7vq5+3t7SkqKrptf3dbA3N93m5+nJOTc8N3tLOzQ1EUcnJybvvZ\nP1lbW9OtWzd2795Np06dyM/Pp1OnTqhUKhYvXsxnn33GvHnzCA8P59VXX73reqLKysrqn4OiKLRq\n1YolS5agVqspKCjgp59+Yt++fdWvl5eX3/H7ATUel3l5ebi7u9/w/J/eeOMNli5dysMPP4ylpSXP\nPvvsDfkR4l6QAkYIHTk7OxMVFcXbb7/N0qVLAXB1da3+axsgNzcXV1dXXFxcyMvLQ1GU6l8Wubm5\nOv+yNzMzo2/fvnz77bdcuHCBkJCQGwoYd3d3HnnkkVtGIK5cucKcOXNYv349bdu25fz58wwePLhW\n3zM7O5vExMTqERB7e3vGjx/P3r17SUpKws7OjoKCghve/6ebi6K8vLxax+Xu7k6LFi3YuHHjLa/Z\n29vfsW9DcnFxITY2tvpxXl4earUaJyenu3528ODB/PTTT+Tk5DB48ODq/Hft2pWuXbtSXFzMggUL\neOedd+46knHzIt7rubu78+CDDzJ79uxafa87HZc1/WxdXV2ZO3cuc+fOZd++fTz11FP07NkTGxsb\nnfsWwtBkCkmIWnj44YeJjY3l4MGDwLUpgw0bNlBZWUlxcTGbN2+md+/e+Pr64unpWb1INiYmhszM\nTDp27IhWq6W4uLh6OuJOhg0bxvLly2976XL//v1Zv349lZWVKIrCkiVL2LNnD9nZ2VhbW9OiRQsq\nKipYu3YtwB1HKW6ntLSUp59+unpxJ8CFCxeIi4sjLCyMkJAQoqOjyc7OpqKigm+//bb6fW5ubtWL\nP5OTk4mJiQGoVVxBQUFkZGQQFxdX3c7zzz+PoigEBweza9cuKisryc7OZs+ePTp/r9ro3r070dHR\n1dNcX3/9Nd27d68eeatJ3759iY2NZefOndXTMPv27ePVV1+lqqoKa2trAgICbhgFqYt+/frx448/\nVhcaO3fuZNmyZTV+pqbjMiQkhH379lFSUkJJSUl14VReXk5UVBTp6enAtalHrVZ7w5SmEPeCjMAI\nUQu2trY89thjLFiwgA0bNhAVFUVycjLDhg1DpVIRGRnJkCFDUKlUvPfee/zrX//iww8/xMrKioUL\nF2JtbY2/vz8ODg50796dTZs24e3tfdu+OnfujEqlYujQobe8NmnSJC5dusSwYcNQFIX27dszbdo0\nrK2t6dWrF4MHD8bFxYUXX3yRmJgYoqKiWLRokU7f0dvbm6VLl7Jo0SJee+01FEXB1taWl156qfrK\npAkTJvDggw/i5OTEoEGDOHXqFADjx49nxowZDBo0iHbt2lWPsgQEBOgcl6WlJYsWLWLevHkUFRVh\nZmbGzJkzUalUjB8/nujoaAYMGIC3tzcDBgy4YdTgen+ugbnZW2+9ddefgaenJ6+99hpPPPEE5eXl\n+Pr6Mm/ePJ1+fra2tgQGBnLy5EmCg4MBCA8PZ+vWrQwePBhzc3OcnZ154403AHjhhReqrySqjcDA\nQP7v//6PqKgoqqqqcHFx4dVXX63xMzUdl3379mX37t1ERkbi6upK7969iY6OxszMjLFjx/KXv/wF\nuDbKNmfOHKysrGoVrxCGplKun4gWQohaio6O5oUXXmDXrl33OhQhRCMiY4BCCCGEaHCkgBFCCCFE\ngyNTSEIIIYRocGQERgghhBANjhQwQgghhGhwGuRl1BkZt79s0hCcnKzJySk2Wvui7iQ3pknyYrok\nN6ZLcqMbNze7O74mIzA30Wo19zoEcQeSG9MkeTFdkhvTJbnRnxQwQgghhGhwpIARQgghRIMjBYwQ\nQgghGhwpYIQQQgjR4EgBI4QQQogGRwoYIYQQQjQ4UsAIIYQQosGRAkYIIYS4z+ze/V+d3rdw4btc\nvpxyx9dffPFZQ4VkcFLACCGEEPeR1NTL7Ny5Q6f3zpw5C29vnzu+/uab7xkqLINrkFsJCCGEEOL2\n3ntvAYmJx+jZM5xBg4aQmnqZDz5Ywvz5/yYjI52SkhIeeeQxunfvyYwZj/Hssy/w88//paiokIsX\nL5CScomnn55FRER3hg3rz9at/2XGjMcID+9CTEw0ubm5LFjwPq6urvz733NJS0ulQ4eO7Nq1k02b\nfqi37ykFjBBCCGEk63ad5tCJ9Fue12hUVFYqdWozPMCd8f1a3fH1hx6KYuPGdTRv3pKLF8+zZMl/\nyMnJpnPnrgwZMpyUlEvMnfsi3bv3vOFz6elXeOedRezf/xubN39DRET3G163sbFh4cKlLF26mD17\nduHt7UtZ2VWWLVvBr7/uZd26r+r0fepKCpjrZOaWkJxVgq+zJSqV6l6HI4QQQuilbdtAAOzs7ElM\nPMZ3321EpVKTn593y3s7dgwGwN3dncLCwlteDwoKqX49Ly+PCxfO0aFDEAAREd3RaOp3fycpYK7z\n/e/n2ROXSniAO9Mi/bG2NLvXIQkhhGjAxvdrddvREjc3OzIyCozev5nZtd9jP/20nfz8fD766D/k\n5+fz179G3fLe6wsQRbl1dOjm1xVFQa2+9pxKpar3P/xlEe91HujenLZ+zhw6kc4rnx/iTMqtFaoQ\nQghhytRqNZWVlTc8l5ubi5eXN2q1ml9+2UV5ebne/fj4+HLy5HEADh7cf0ufxmbUAiYpKYkBAwaw\nevVqAMrLy5k1axZjx45l2rRp5OVdKxC+++47xowZw7hx41i/fr0xQ6qRs70l85/ozohufmTllTJ/\ndQxbfz9P1W0qUSGEEMIUNWvWnJMnT1BU9L9poD59+vHbb3uZOfNxrKyscHd35/PPl+vVT7duPSkq\nKuLxx6cTFxeLvb2DvqHXikq53TiRARQXF/O3v/0NPz8//P39mTJlCl9++SXnzp1jzpw5rF27FldX\nVyIiInjwwQfZsGEDZmZmjB07ltWrV+Po6HjHto057PbnsF7ihRyWbzlGbmEZ7fyceHR4OxxsLYzW\nr7i7+hpyFbUjeTFdkhvTdT/kJj8/j5iYaPr06U9GRjozZz7OmjXfGLQPNze7O75mtBEYc3Nzli9f\njru7e/VzP//8Mw888AAAEyZMoH///sTFxdGhQwfs7OywtLQkNDSUmJgYY4Wls7bNnHj1kc4EtXTh\n+PkcXv7sIPFns+51WEIIIYRJsLa2YdeunTz22F/4xz+e46mn6vemd0ZbxKvVatFqb2w+JSWFPXv2\n8Pbbb+Pq6sq//vUvMjMzcXZ2rn6Ps7MzGRkZxgqrVuyszXl6bEd2Hr7E+p9P8/66OAZ3bsKY3i3R\namT5kBBCiMZLq9Xy73/Pv3f912dniqLQvHlzZsyYwZIlS/jkk09o167dLe+5Gycna7Ra412udfOQ\n1aQh7ejSwZu3VkWz42AyZ1ILeH5KJ7xdbY0Wg7i9moYTxb0jeTFdkhvTJbnRT70WMK6uroSHhwPQ\no0cPFi9eTJ8+fcjMzKx+T3p6OsHBwTW2k5NTbLQY7zQvaW+hYc7UTnz5YxK/JqQx893dTB3sT9dA\nT6PFIm50P8wZ348kL6ZLcmO6JDe6uSdrYG6nV69e7N27F4Bjx47RvHlzgoKCiI+PJz8/n6KiImJi\nYggLC6vPsHRmaa5l+vB2PDq8HQqwbMtxPt16nNKyinsdmhBCCNGoGG0EJiEhgQULFpCSkoJWq2XH\njh288847vP7662zYsAFra2sWLFiApaUls2bNYvr06ahUKp588kns7Ex7WC2ivSctfOz5ePMxfo1P\n43RKPo+PDKSph2nHLYQQQtwvjHYZtTHVx2XUuqiorOKbX86w42AyWo2KcX1bMaCTr2xDYCQy5Gqa\nJC+mS3JjukwhN2PHjmDlyrV88806QkJCad++Y/VrxcXFTJ06gQ0bttzx87t3/5c+ffrzww9bsLGx\npXfvvgaPsaYpJNlKQA9ajZoJ/VrTtpkzn249zlc7T5F4PoeHhwZgZ21+r8MTQggh7ioq6i+1/kxq\n6mV27txBnz79GTp0hOGD0oEUMAbQsaULrz7SmeVbjnPkdCavfH6Ix0a0w7+p070OTQghRCPzyCOT\neeONd/H09CQtLZWXXpqFm5s7JSUllJaW8swzz9OuXfvq97/++iv06dOf4OAQ/vnPFygrK6ve2BHg\nxx+3sWHDWjQaNX5+LZk9+5+8994CEhOP8fnny6mqqsLR0ZExYyawZMlC4uPjqKioZMyY8URGDmPG\njMcID+9CTEw0ubm5LFjwPp6e+l8AIwWMgTjaWjBrQjDbDlxg055zvPVVLCO6+TGiux8atdwzRggh\nGqONp78nNj3+luc1ahWVVXVbwRHi3oHRrYbf8fVevfry6697GDNmPHv3/kKvXn1p2bI1vXr14fDh\nQ3z55Re8/vrbt3xux45ttGjRkqefnsV///sjO3fuAKCkpIR3312MnZ0dTz75KGfOnOahh6LYuHEd\nDz/8KJ9++gkAR47EcPbsGZYu/YySkhKmTZtIr159ALCxsWHhwqUsXbqYPXt2MX78pDp99+vJb1YD\nUqtVDIvw48UpoTjbWfLdr+d5a00s2fml9zo0IYQQjcS1AubaFb/79v1Cjx69+eWX//L449NZunRx\n9T6ENzt//izt2wcBEBLSqfp5e3t7XnppFjNmPMaFC+fIy8u97edPnDhOcHAoAFZWVvj5tSA5ORmA\noKAQANzd3SksLLzt52tLRmCMoJWPA68+Es6K7SeJPpHOvz47yMND2xLaxu1ehyaEEKIejW41/Laj\nJcZcxNuiRUuysjK4ciWNgoIC9u7djaurO3PnzuPEieN8+OEHt/2colz7Qxyg6o/RofLyct577y1W\nrFiDi4srL7zw9zv2q1KpuP6yoIqK8ur2NJr/3XzWUNcOyQiMkVhbmvH4yECmRvpTVlHFhxvjWfXj\nScor6ne7cSGEEI1PREQPli1bQs+evcnLy8XHxxeAX375mYqK29+7rGnTZpw4kQhATEw0AMXFRWg0\nGlxcXLlyJY0TJxKpqKhArVZTWXnj77OAgEBiYw//8bliUlIu4evb1FhfUQqY6ymKQpVSZbD2VCoV\nfYJ9eHlaGD6uNvwck8K8L6K5nFlksD6EEEKIm/Xu3bf6KqHIyGGsXfslzzzzJIGB7cnKymLr1u9u\n+Uxk5DCOHYtn5szHSU6+gEqlwsHBkfDwLvz1r1P5/PPlTJoUxaJF79GsWXNOnjzBokXvVn8+KCgY\nf/8AnnzyUZ555kn+7/9mYGVlZbTvKPeBuc7mM9s4cOUwD7UZTQfXdnf/QC2UlVfy9a7T7I5NwVyr\nZtLANvTs6CX3jKkFU7hvgriV5MV0SW5Ml+RGNyazlYCp87NvSnFZMR8fXcE3p7ZQUWW4LQLMzTRM\nHezPE6Pao9WoWbHtBJ98d4ziUtmGQAghhKgtKWCuE+QWyBsDZ+Nh7c6u5L28e3gJGcVZBu0jLMCd\nVx4Jp5WPAwcT03nl84OcuXz7FeFCCCGEuD3NK6+88sq9DqK2iovLjNa2t4sbHR06knc1n2PZJ9if\nGo2rlTPetobbddra0oxuHTxRFIW401n8Gp+GVqOmpY+DTCnVwMbGwqi5F3UjeTFdkhvTJbnRjY2N\nxR1fkxGY27DQmBPVbjzT2k1EQeGzY2v4MnEDZZWGO9g0ajWje7XkuYnB2FqbsWH3Gd5fe4S8wqsG\n60MIIYS4X0kBU4POnqG8GD6TJrbe/JZ6kAXRi7lcmGbQPtr6OfPqI53p2NKFY+dz+NdnB0k4a9hp\nKyGEEOJ+I1NIN7l5WM/GzIYuXmGUVpSSkJXI/tRD2JnZ0sTOx2DTPRZmGrq088Da0owjpzP5LSGN\nq+WV+Dd1rL4JkJAhV1MleTFdkhvTJbnRjUwh6clMrWVcm5E81mEaZmoz1pz8hs+PraGkosRgfahU\nKgaFN2HO1DA8nKzYfuAi81cfJj3XcH0IIYQQ9wspYGohyC2Qf3R+hhYOfhxOj+PNgwu5kJ9s0D6a\nedrx8l/CiQj05FxqAa98dpD9xw07bSWEEEI0dDKFdJO7DetZaS3p4hmKoijEZyXye+ohzDVm+Nk3\nNdiUkplWTSd/N9wcLYk7ncXBxHSy8kpp5+eMVtN4a04ZcjVNkhfTJbkxXZIb3cgUkoFp1BpGtIxk\nRvBfsTWzYdPprXx8dAUFZYbZYfNP3dp78crD4TTzsGNffCqvrjjExSty50YhhBBCChg9BDi35qXO\nf6etcxuOZZ1g/sEPSMo5Y9A+PJyt+UdUJwaFNyEtu5jXVkbz38OXDLabpxBCCNEQSQGjJ3tzO54I\neoRRLYdSUF7IothlbD37o0E3hTTTqpnYvzV/H9cRS3MtX/6UxOJv4iksKTdYH0IIIURDIgWMAahV\nagY268OzoY/jZOnID+d3sjD2E3KvGnaLgI4tXXn1kc4ENHXkyOlM/vXZQU5ezDFoH0IIIURDIIt4\nb6LPwionS0e6enYioyST49lJHEg7jJeNB+7WbgaLz8pCS0SgJxqN+to2BAmpKIpC6yYOqO/zbQhk\n0ZtpkryYLsmN6ZLc6EYW8dYjazNr/to+igltHuRqZRlLj35u8J2t1WoVI7r58eLkUJztLPju1/O8\nvSaW7PxSg/UhhBBCmDIpYIxApVLRyzeC5zvNwMPazWg7W7fydeCVRzrTyd+NpEt5/Ouzg8QmZRi0\nDyGEEMIUSQFjRL523swOn0lXzzAuFlzizUMfcPjKEYP2YWNpxhOj2jN1sD9lFVUs3hjP6h9PUl5R\nadB+hBBCCFMiBYyRXb+zdZWRdrZWqVT0CfFh7rQwvF1t2BWTwrwvDnM5s8hgfQghhBCmRAqYelIf\nO1v7utkyd1oYvYO9uZRRyL+/OMSPBy9SWWW4S7qFEEIIUyBXId3EmCvDbethZ2utRk1wK1e8XW1I\nOJtF7KlMjpzKpKmHLc52lgbp416RVfumSfJiuiQ3pktyo5uarkKSAuYmxj6oNCo1gS4B+Np6cyzr\nBDEZR7lSnEGAc2vM1GYG68fH1YaeHb0oLC4n4Vw2++JSyS8qo7WvA2ZajcH6qU9ywpsmyYvpktyY\nLsmNbqSAqYX6Oqg8bdwJ8wjmQv4ljmefJObKUVo4NMPRwsFgfViYaQhp40ZAU0fOXM4n/mw2+46m\n4mhrgY+bjcFGfeqLnPCmSfJiuiQ3pktyoxspYGqhPg8qK62V0Xe2BnB1sKJ3sDfmZmqOnc/h0Il0\nTl3Ko6WPA7ZWhhv1MTY54U2T5MV0SW5Ml+RGN1LA1EJ9H1RqlRp/51a0cPDjePZJ4jKOcbHgEgHO\nrbHQmBuuH7WKNk0c6dLOgyvZJRw7n80vR1KorFJo6WOPRm3667nlhDdNkhfTJbkxXZIb3UgBUwv3\n6qBytXKhs2colwvTOJ59kkNpsTSx88HFytmg/dhYmtG1nQe+bracTM4l7kwWhxLT8XK1wd3RyqB9\nGZqc8KZJ8mK6JDemS3KjGylgauFeHlQWGgvCPIIx15gRn5XIgdTDKIpCK8fmBp1SUqlUeLva0CvI\nm7KKShLOZfNbQhpXsotp5eOApbnWYH0ZkpzwpknyYrokN6ZLcqMbKWBq4V4fVCqVipaOzQlwbs2J\nnFMczTzO6dyzBDi3xlJr2MugzbRqOrRwIbiVKxevFJBwLps9calYW2ho5mFncot873VuxO1JXkyX\n5MZ0SW50IwVMLZjKQXXjztYnjbKz9Z8cbS3o2dEbextzEi9kczgpk/iz2fh52uFoe+eDp76ZSm7E\njSQvpktyY7okN7qRAqYWTOmgMtOYEereETtzO+KzEjmYFkNpRSltnFqiVhl20a1KpaK5lz3dO3iR\nW1j2x2jMZUquVtDSxwEz7b1f5GtKuRH/I3kxXZIb0yW50Y0UMLVgageVSqWimX0TOri05VTuGRKy\nEjmedRJ/p1bYmFkbvD9Lcy1h/u608nHgdEoeR89k8fuxNFwdLPFysb6n00qmlhtxjeTFdEluTJfk\nRjdSwNSCqR5U9hZ2dPEMI/9qAceyT7A/NRpXK2e8bT2N0p+707V7x6hVKo6dy+bA8XTOpxXQyscB\na8t7c+8YU81NYyd5MV2SG9MludGNFDC1YMoHlVatJcgtEDcrF+KzEom+coTc0jwCnFuhURt+ewCN\nWk1AMyfCAtxJzSrm2LlsfjlyGZUKWnjbo1bX72iMKeemMZO8mC7JjemS3OhGCphaaAgHlY+tFyHu\nHTiTe55j2Sc4mnmMVo4tsDPkSH2YAAAgAElEQVS3NUp/dtbmdGvviYezNScv5nDkdBYxSRn4utni\n4lB/G0Q2hNw0RpIX0yW5MV2SG91IAVMLDeWgsjWzoatXGCXVO1tHG3xn6+upVCqauNvSM8ibktKK\na/sqxaeSlV9KKx8HLMyMv0FkQ8lNYyN5MV2SG9MludGNFDC10JAOqv/tbO1l1J2tr2eu1RDUypXA\n5s6cS71275h9R1OxtTajqbutURf5NqTcNCaSF9MluTFdkhvdSAFTCw3xoKqPna1v5mxvSa9gL6wt\ntBw/n0P0yQxOXMihuZc99jaG28Ppeg0xN42B5MV0SW5Ml+RGN/esgElKSmLChAmo1Wo6duzIiy++\nyMKFC9m2bRubNm3C2dkZPz8/vvvuO/7xj3+wYcMGVCoVgYGBNbYrBcyt/tzZukpRSDDiztbXU6tU\ntPJxoFt7TzJySzh2Poc9cZcpr6iipY8DWo1h7x3TUHNzv5O8mC7JjemS3OimpgLGaJveFBcXM2/e\nPCIiIm54/tlnn6Vv3743vO+jjz5iw4YNmJmZMXbsWAYOHIijo6OxQrtvadQaHmgZSRunlqw4/hWb\nTm/lSHoCE/xH0cTOx2j9Ottb8tSYjsSeymDNT0ls/f0CB45fYcqgNnRs6Wq0foUQQjReRru9qrm5\nOcuXL8fd3b3G98XFxdGhQwfs7OywtLQkNDSUmJgYY4XVKAQ4t+YfnZ8hxL0j5/IvsODQItYlfUtx\neYlR+w1p7cZrf+3KkC5NySm4ygfrj/LRpniy80uN2q8QQojGx2gjMFqtFq321uZXr17N559/jouL\nC3PnziUzMxNnZ+fq152dncnIyKixbScna7Ra41314uZmZ7S264sbdrzk8zhH0xL5NOZrfrn0G0cy\n4pkc9CC9/LoYfCuC6z0xPoShPVuyZEMch09mcPx8NlMi2zKse3M0ek4r3Q+5uR9JXkyX5MZ0SW70\nY7QC5nZGjhyJo6Mjbdu2ZdmyZXz44YeEhITc8B5FUe7aTk5OsbFCxM3NjoyMAqO1X9+8NL7M7vR3\nfr64l23nd7Lk4Eq2n9zDhDaj8LXzNlq/NloVsyYEse9oKut/Ps3yzQns2H+eqYMDaOFtX6c277fc\n3C8kL6ZLcmO6JDe6qanIq9cd+iIiImjbti0A/fr1IykpCXd3dzIzM6vfk56eftdpJ1E7Zmotg/z6\nMrfrcwS7deBs3nnePLSQ9UmbKakw3rSSWqWiV5A3rz/Wle7tPbl4pZDXV0az6seTFJeWG61fIYQQ\n9796LWCeeuopkpOTAThw4ACtW7cmKCiI+Ph48vPzKSoqIiYmhrCwsPoMq9FwtnTi0Q5RPBE0HVcr\nZ3Zf+pVX97/NwbQYnUa+6sre2pzpw9vxwkMheLpY83NMCv9cfoADx68YtV8hhBD3L5VipN8gCQkJ\nLFiwgJSUFLRaLR4eHkyZMoVly5ZhZWWFtbU18+fPx8XFhe3bt/Ppp5+iUqmYMmUKDzzwQI1tG3PY\nrbEM65VXVfDfi7+w/fwuyqvKaenQnAn+o/Cx9TJqvxWVVWw/cJEtv52nvKKKQD8npgzyx8P57jtr\nN5bcNDSSF9MluTFdkhvd1DSFZLQCxpikgDGcrJJsvjm1hbjMY6hVavr4dmdo84FYaY27x1F6bgmr\nfzxJwtlstBo1wyOaMaRrM8y0dx4UbGy5aSgkL6ZLcmO6JDe6kQKmFhrrQZWQmcj6pM1klmbjYG7H\n6FbD6eQRbNStARRFIfpkBmt2JpFXWIaHszVTB7WhrZ/zbd/fWHNj6iQvpktyY7okN7qpqYCRrQRu\n0ljvjuhu7UYP7y5o1BpO5JzicPpRTuWepZl9E6Ptcq1SqfBxtaF3kDdl5ZUknMvi14Q00nOKaeXr\niKX5jZfKN9bcmDrJi+mS3JguyY1uZC+kWmjMB5VGraG1U0vCPILJKs0mMfsU+y4foLSylOb2TdGq\njXPVvZlWTYeWLgS1cuFC2rUNIvfGXcbaUktTT7vqUaDGnBtTJnkxXZIb0yW50U1NBYxMId1EhvX+\nJz7zOOuTviOrNBtHCwdGtxpOqHtHo04rVVUp/BybwsY9Zyi5WklLb3uiBvvT1MNOcmOiJC+mS3Jj\nuiQ3upEppFqQqvh/PKzd6O597a6916aV4jiTd55m9k2wNbcxSp8qlYoW3vZ0a+9FbuFVEs5lsycu\nleKrFXRs7UbZ1Qqj9CvqTs4Z0yW5MV2SG93ICEwtSFV8e+nFmaw/tZnjWSfRqDT0a9KTIc0HYKEx\nN2q/CWezWPXjSTJyS/F1t+XJB9vj4XT3S65F/ZFzxnRJbkyX5EY3chVSLchBdWeKonA08zgbTn1H\ndmkOThaOjGk9gmC39kadViorr2TDL2fYGX0JG0stT4xqf8crlUT9k3PGdEluTJfkRjcyhVQLMqx3\nZyqVCk8bd3p4d0EFnMhOIjr9COfyL16bVjIzzrSSRqOmQwsXmnk78Ht8Kr8lXMHO2ozmXnXbU0kY\nlpwzpktyY7okN7qRq5BqQQ6qu9OoNfg7tyLUI4j04kwSs5P4NeUA5VUV+Dk0Ras2zk7hHdq408TV\nmiOnMzl0IoP84jIC/ZxRq403+iPuTs4Z0yW5MV2SG91IAVMLclDpztbMhnCPEHxsvTiTd56ErEQO\npsXgbOWEh7WbwaeVbGwssNKqCfd3J/FCDkfPZHE6JY+gVq6YmxmnaBJ3J+eM6ZLcmC7JjW6kgKkF\nOahq59q0kgfdfbqgoHAi+xTRV45wviAZP/um2JgZbsHtn7mxtjQjor0nlzOLiD+bzeGTGbTzc8bO\n2rgLisXtyTljuiQ3pktyoxspYGpBDqq60ao1BDi3JtS9I1eKM/6YVtpPpVKJn31TNAaYVro+N1qN\nmvC27lRWKRw5ncnvx9Jo4m6n06aQwrDknDFdkhvTJbnRjRQwtSAHlX5szW3o7BmKl61n9bRS9JVY\nXCyd8bBx16vtm3OjUqlo5+eMh5MVh09eK2IszTW09LY36lVR4kZyzpguyY3pktzoRgqYWpCDSn8q\nlQovGw+6e3dBURSOZycRfeUIF/Mv0dyhKdZ1nFa6U2583W0JbO5M3JlMDp/MIDv/Ku1buKCRxb31\nQs4Z0yW5MV2SG91IAVMLclAZjlat/WNaqQNpRekk5iSx7/IBqpSqOk0r1ZQbJzsLurT14GRyLvFn\nszhxMYeglq5YmMviXmOTc8Z0SW5Ml+RGNzUVMOp6jEM0Up42Hjwd8hgPB07CRmvFD+d+4vUD75KQ\nmWjQfpzsLHhxciid27pz+lIe8744RHJ6oUH7EEIIYRpkBOYmUhUbh0qlwtvWk+7eXaisqiQxJ4lD\nV2K5VHCZ5vZNsTazumsbuuRGq1HTyd8NjVpFzKlMfk9Iw9vVBi8X49xkT8g5Y8okN6ZLcqMbmUKq\nBTmojEur1tLWpQ3Bbu1JK7pCYnYS+y7vR1HAz75JjdNKuuZGpVLh39QJXzcbDidl8PuxK2jUKlr7\nOsjiXiOQc8Z0SW5Ml+RGNzKFJEyOt60nM0P+xl/aPYSV1orvz+3g9YPvcSzrpMH66OTvzj+mdMLZ\n3oKNe86ybMtxysorDda+EEKIe0dGYG4iVXH9UalU+Nh60d27CxVVFSRmJ3EwLYbLhak0d2iKlfbG\naaW65MbB1oIu7Tw5nZJL/Nlsjp3PpmNLV6wstIb8Ko2anDOmS3JjuiQ3upEppFqQg6r+mam1tHPx\nJ8gtkMuFademlVIOoEJFM/smaFTXBgrrmhtLcw0RgZ7k5Jdy9Gw2BxOv0KaJI052dz4xhO7knDFd\nkhvTJbnRjRQwtSAH1b1jb25HV68wXK1cOJ17lvis48Skx+Fh7YablYteudGoVYS0dsXSXEtMUga/\nHUvD3dEKXzdbA3+LxkfOGdMluTFdkhvdSAFTC3JQ3VsqlQpfO2+6eXemvKqc41nXppVSC9MI9GiN\nUl73ZVsqlYpWvg74edoRk5TBgeNXqKxS8G/qKIt79SDnjOmS3JguyY1uZBGvaHCszawY12Yks8Nn\n0sKhGbEZ8cz+8Q3O5V3Qu+2gVq78M6oTbo6WfP/beZZsSqC0rMIAUQshhKgvUsAIk9bEzptnQh9n\nbOsHyC8r5IPYT4i+ckTvdn3cbJkzNYyApo7EJGUwf3UMmXklBohYCCFEfZACRpg8tUpN3yY9eKnn\nk2hVWj4/toatZ39EURS92rWzNufZCcH0CfYmOb2Q176I5vSlPANFLYQQwpikgBENRrBXIM+FPYmL\npTM/nN/J58fWUFZZrlebWo2aqMH+TB7YhsKSCt76KoZ9R1MNFLEQQghjkQJGNCheNh48HzaDFg5+\nHE6P44PYj8m7WqBXmyqViv6dfHlmQhDmWg2f/ZDI2l2nqKrSb4RHCCGE8UgBIxocO3Nbng55jC6e\nnbiQn8zb0Yu5VHBZ73YD/ZyZMy0MT2drdhxMZtE3RykulcW9QghhiqSAEQ2SmVpLVNvxPNAikpyr\nubwbs4T4zON6t+vpbM2cqZ1o39yZo2eyeH1VNOk5xQaIWAghhCFJASMaLJVKxWC/fvy1fRSKovDJ\n0S/YefEXvRf3WluaMXNcRwaGNSE1q5h5X0STeCHHQFELIYQwBClgRIMX4t6BZ0Mfx97cjk2nt7Lm\nxAYqqvSb+tGo1Tw0oDV/GRJAaVkl7609ws+xKQaKWAghhL6kgBH3hab2vrwQ/hRN7Hz4LfUQHx75\nD4XlRXq32yvIm+cmBmNloWXVjpOs/vEkFZVVBohYCCGEPqSAEfcNRwsHngl9nGC39pzKPcs70R9y\npShd73b9mzrx8rQwfNxs2BWTwvvr4igs0e/ybSGEEPqRAkbcVyw05kxvP4VBzfqSUZLF24c/4kT2\nKb3bdXW04h9TOhHcypXECzm8tjKa1Cz9R3iEEELUjRQw4r6jVqkZ2XIIU9tOoKyyjI/iPmVvyn69\n27Wy0DJjTAeGdm1Gek4Jr608TPzZLANELIQQorakgBH3rS5enXg65DGstVZ8fXIjG5K+o0rRb/2K\nWqVibJ+WPDq8HeUVVXywPo4fDyXrfeWTEEKI2pECRtzXWjk25/mwGXjaePDzpX18fHQFJRWlercb\n0d6T2ZNDsLc25+v/nmLFthOyuFcIIeqRFDDivudq5cJznZ6grXMbjmWd4L3DS8gqyda73ZbeDsyd\nFkYzDzv2Hk3l7a9iyS8qM0DEQggh7kYKGNEoWGmteLzjw/T27c7lojTeil7M2bzzerfrbG/Ji1NC\nCQtw59SlPOZ9EU1yeqH+AQshhKiRFDCi0dCoNYxvM5IJbUZRXFHCwphPOJgWo3e7FmYaHh8ZyKge\nzcnKL+WNVYeJTcowQMRCCCHuRAoY0ej08u3GEx0fQas244vjX7Pl7A69F/eqVCoe6NGcJ0a1R1EU\nPtwYz9bfz8viXiGEMBIpYESj1NalDc+FPYmrpTPbz/+XzxK+pKxS//UrYQHuvDSlE452Fnzzy1mW\nbzlOWXmlASIWQghxPaMWMElJSQwYMIDVq1ff8PzevXvx9/evfvzdd98xZswYxo0bx/r1640ZkhDV\nvGw8eD7sKVo6NCc2I573Yz4m72q+3u0287Tj5WlhtPS2Z//xKyxYE0tu4VUDRCyEEOJPRitgiouL\nmTdvHhERETc8f/XqVZYtW4abm1v1+z766CNWrFjBqlWr+OKLL8jNzTVWWELcwNbchqdCHqWrZxgX\nCy7xVvRikgv037TRwdaCFyaFEBHoybnUfOZ9Ec35NP2LIyGEENcYrYAxNzdn+fLluLu73/D8xx9/\nzKRJkzA3NwcgLi6ODh06YGdnh6WlJaGhocTE6L+wUghdmam1TGk7jlEth5J3NZ/3Di8hLiNB/3a1\nGv46vC3j+rYkt+Aqb66O4WDiFQNELIQQQmu0hrVatNobmz937hwnTpxg5syZvP322wBkZmbi7Oxc\n/R5nZ2cyMmq+gsPJyRqtVmP4oP/g5mZntLaFfoyZm0nuI2jl2YTF+z9nefwqJnUcxQMBA1GpVHq1\nO3V4ewJauPLO6mg+3nyMnOJyJg0KQK3Wr11TIueM6ZLcmC7JjX6MVsDczvz585kzZ06N79Hlqo2c\nnGJDhXQLNzc7MjIKjNa+qLv6yE1zi5Y8E/o4Hx9dwZdHN3EmPZmHAkajVet3qjR3s+GlKZ1YtOEo\na39K4szFHB4dEYiZtuGvo5dzxnRJbkyX5EY3NRV59fZ/zytXrnD27Fmee+45xo8fT3p6OlOmTMHd\n3Z3MzMzq96Wnp98y7SREfWpi58PzYTNoaufD/rRoFh9ZTmGZ/jtP+7rZMndaGG2aOBJ9MoOPNsVT\nXiFXKAkhRF3UWwHj4eHBzp07WbduHevWrcPd3Z3Vq1cTFBREfHw8+fn5FBUVERMTQ1hYWH2FJcRt\nOVo48Ezo44S4deB07jnejl5MWpH+61fsrM15dnwQ7Vs4c/RMFos2HOWqXGYthBC1ZrQCJiEhgaio\nKDZt2sTKlSuJioq67dVFlpaWzJo1i+nTp/Pwww/z5JNPYmcn84Li3jPXmPNI+8lENutHZmk27xz+\niMTsJP3bNdPw1OiOBLdy5dj5HBauj6O0rMIAEQshROOhUhrgrUKNOW8o85Km617m5mBaDF8mrqcK\nhXGtH6CXbze926yorOLjzceIScqgta8Dfx8XhJVFvS5LMwg5Z0yX5MZ0SW50YxJrYIRoyDp7hvJ0\nyN+w1lqxNulb1iVtprJKv6kfrUbN/40MJPyPjSDfW3uE4lIZiRFCCF1IASOEjlo6+vFC2FN42Xjw\ny6VfWXr0c0oqSvRqU6tR89gD7ega6MGZy/m883UsRaXlBopYCCHuX1LACFELLlbOzOr0JO1c/EnM\nTuKdw0vILMnWq02NWs1fh7WjewdPzqcV8PaaWAqK9d+XSQgh7mdSwAhRS1ZaS/6vw1/o49udtKIr\nvB29mNO55/RqU61W8fDQtvQK8uZieiFvfxVLfpEUMUIIcSdSwAhRBxq1hnFtRjLR/0GKK0pYHLuM\nA6mH9WpTrVIxNdKffqE+XMooYsGaGNkEUggh7kAKGCH00NMngieDpmOmMWNl4lo2n9lGlVJV5/bU\nKhWTB7ZhYFgTUrOKWbAmlpwCKWKEEOJmUsAIoacA59Y812kGrlYu/HjhZz5NWM3VyrpP/6hUKib2\nb8WQLk25kl3Mgi9jyMorNWDEQgjR8EkBI4QBeNq483zYDFo5NudIRgLvxywl92pendtTqVSM7dOS\n4d38SM8tYcGaGDJy9bviSQgh7idSwAhhILZmNjwV/CgRXuEkF6Tw1qHFXCy4VOf2VCoVo3u1YFTP\n5mTmlbJgTQxXjLiRqRBCNCRSwAhhQFq1lskBYxnVcij5ZQW8d3gpR9Lj9Wrzge7NGdO7Bdn5V1nw\nZQypWfpvLCmEEA2dFDBCGJhKpWJgsz482mEqKpWK5Qmr2HF+F/rs2jEswo+J/VqRW1jGgjWxpGRK\nESOEaNykgBHCSILcAnk29AkcLRz47ux2ViWuo7yq7lsFDOrclMkD25BfVMZba2JITi80YLRCCNGw\nSAEjhBE1sfPmhbCnaGbXhANph1kcu4yCsroXHv07+TI10p+C4nLeWhPDhTTZDE4I0ThJASOEkTlY\n2PP30P8j1L0jZ/LO83b0h6QWXalze32CfXh4aADFpRW8/VUs51LzDRitEEI0DFLACFEPzDVmPBw4\niSF+A8gqzebdwx9xIT+5zu317OjNX4e3o6Ssgne+juV0St0v2RZCiIZIChgh6olapWZ4i0FMbTuB\n0oqrLD6yXK8iJqK9J397IJCrZVW8u/YIScm5BoxWCCFMmxQwQtSzLl6dmNrOMEVM57YePD4qkIqK\nKt5bd4TECzkGjFQIIUyXFDBC3AOdPUOvK2L+o1cR08nfnScf7EBVlcIH6+NIOJdlwEiFEMI01bmA\nOX/+vAHDEKLx+V8RU8riI//hYn7d79ob3NqVGaM7oiiwaEM8R89kGjBSIYQwPTUWMA8//PANj5cs\nWVL93y+//LJxIhKiEbm+iFl0ZLleRUzHli7MHNcRtQoWfxNPbFKGASMVQgjTUmMBU1Fx40239u/f\nX/3f+txVVAjxP4YsYgL9nPn7uCC0GjVLvk0g+kS6ASMVQgjTUWMBo1Kpbnh8fdFy82tCiLrr7BlK\nVNvxf0wnLddrE8iAZk48Mz4IrVbNx5uPsf94mgEjFUII01CrNTBStAhhPF28OhHVdjwlFaUsjtWv\niGnTxJHnJgRjYa5m+Zbj/BqfasBIhRDi3tPW9GJeXh6///579eP8/Hz279+Poijk58vdP4UwtC5e\nnQBYlbiOxbHLeSrkUZra+daprZY+Djw3MYR3vz7CZ1sTqaxS6BXkbchwhRDinlEpNSxmiYqKqvHD\nq1atMnhAusjIMN7+L25udkZtX9RdY8rNgdTDrEpch5XWUq8iBuBCWgHvrj1CYUk5UYP96RviY8BI\nG1deGhrJjemS3OjGzc3ujq/VWMCYKilgGqfGlhtDFjGX0gt55+tY8ovLeWhAawaGNTFYnI0tLw2J\n5MZ0SW50U1MBU+MamMLCQlasWFH9+Ouvv2bkyJE8/fTTZGbKfSaEMKYuXp2Y0nZc9ZqY5IKUOrfl\n627LC5NCcbAx56udp9h+4KIBIxVCiPpXYwHz8ssvk5V17a6e586d47333mP27Nl069aN119/vV4C\nFKIx6+oVVl3ELIpdplcR4+1qw+zJoTjZWbDu59Ns/f28weIUQoj6VmMBk5yczKxZswDYsWMHkZGR\ndOvWjYkTJ8oIjBD1pKtXGJMNNBLj6WzN7EkhuNhb8M0vZ9m875zc00kI0SDVWMBYW1tX//fBgwfp\n2rVr9WO5pFqI+hPxRxFTXFHyRxFzuc5tuTtZM3tSKK4Olmzed45Ne89KESOEaHBqLGAqKyvJysri\n4sWLxMbG0r17dwCKioooKSmplwCFENfcWMQs06uIcXW04sXJobg7WfH9bxdYv/uMFDFCiAalxgLm\n0UcfZejQoYwYMYInnngCBwcHSktLmTRpEqNGjaqvGIUQf4jwCmNywFiDFDHO9pbMnhSKp7M12w9c\n5Kv/npIiRgjRYNz1Mury8nKuXr2Kra1t9XP79u2jR48eRg/uTuQy6sZJcvM/v18+xJcnNmCtteLp\nkMfwtav7Deryisp456tYUjKL6Bviw+RBbVDXYopY8mK6JDemS3KjmzpfRn358mUyMjLIz8/n8uXL\n1f9atGjB5ct1/8tPCKGfCO9wJv0xErModhmX9BiJcbAx5/lJIfi62fJzbAort5+gSkZihBAmrsat\nBPr160fz5s1xc3MDbt3MceXKlcaNTghxR928wwFYc2IDi2KX6TUSY29tzguTrm07sCculcpKhYeH\ntkWtlsX6QgjTVGMBs2DBAjZv3kxRURHDhg1j+PDhODs711dsQoi7uKGIObKMp4PrXsTYWpnx/EPB\nvLs2jl8T0qisUpg+vC0ada32fBVCiHqheeWVV16504sBAQGMHDmSHj16cPToUebPn8/u3btRqVQ0\na9YMrbbG+sdoiovLjNa2jY2FUdsXdSe5ub0mdj44WjgSk36UmIyjtHVug73FneeNa2Km1RAe4E5S\nci5Hz2aRmlVMSGvXGkdiJC+mS3JjuiQ3urGxsbjjazr9aeXl5cUTTzzBtm3bGDx4MK+99to9XcQr\nhLhRtz/WxBSVF7PoyDJSClPr3Ja1pZZnxgfRpokj0SfSWfptAhWVVQaMVggh9KdTAZOfn8/q1asZ\nPXo0q1ev5m9/+xs//PCDsWMTQtRCN+9wJv9RxCyM/USvIsbKQssz44Jo28yJ2FOZfLgxnvKKSgNG\nK4QQ+qnxMup9+/bxzTffkJCQwKBBgxg5ciRt2rSpz/huSy6jbpwkN7r57fJBvjyxAVszG54OeQwf\nW686t1VWXsnijfEcO5dN++bOzBjdAXMzzQ3vkbyYLsmN6ZLc6Kamy6hrLGACAgLw8/MjKCgI9W0W\n8s2fP98wEdaSFDCNk+RGd79ePsCaE98YpIgpr6jko00JHD2TRdtmTjw9piMW5v8rYiQvpktyY7ok\nN7qpqYCpcRXun5dJ5+Tk4OTkdMNrly5dMkBoQghj6O7dBYA1J76pvsS6rkWMmVbDjNEdWPptArGn\nMnl/fRwzx3bEyuLeLOIXQgi4yxoYtVrNrFmzmDt3Li+//DIeHh507tyZpKQkPvjgg/qKUQhRB929\nuzApYAyF5UUsitVvYa9Wo+bxUe0J++MKpffXxVFcWmHAaIUQonZqLGDef/99VqxYwcGDB3n++ed5\n+eWXiYqKYv/+/axfv/6ujSclJTFgwABWr14NQGxsLA899BBRUVFMnz6d7OxsAL777jvGjBnDuHHj\ndGpXCKGb7t5dmORvuCLmbw+0o2s7D06n5PHu2iMUlZYbMFohhNDdXUdgWrZsCUD//v1JSUlh6tSp\nfPjhh3h4eNTYcHFxMfPmzSMiIqL6uc8//5y33nqLVatWERISwrp16yguLuajjz5ixYoVrFq1ii++\n+ILc3FwDfDUhBEB3nxuLmMuFaXVuS6NW89fh7eje3pNzqfm889UR8ovkXhZCiPpXYwGjumlDNy8v\nLwYOHKhTw+bm5ixfvhx3d/fq5xYtWkSTJk1QFIUrV67g6elJXFwcHTp0wM7ODktLS0JDQ4mJianD\nVxFC3El3ny485D+awvIiFsZ+olcRo1areHhYW3oFeXHhSgH/XPoreYVXDRitEELcXa3uEX5zQVMT\nrVaLpaXlLc/v2bOHyMhIMjMzeeCBB8jMzLxhewJnZ2cyMjJqE5YQQgc9fLoarohRqZgaGUDfUB/O\np+bz2spoktMLDRitEELUrMbLCGJjY+nTp0/146ysLPr06YOiKKhUKnbv3l3rDnv16kXPnj155513\nWLZsGT4+Pje8XsNV3dWcnKzRajV3fV9d1XTZlri3JDf6edBtIHZ2liyLXsPiuGW83OfvNHX0ufsH\n7+CZSZ3w9bBn1bZE3i5itfwAACAASURBVPzyMC9EhRPWtubpZVG/5JwxXZIb/dRYwGzfvt2gnf30\n008MHDgQlUrF4MGDWbx4MSEhIWRmZla/Jz09neDg4BrbyckpNmhc15Nr802X5MYwguyDmehfytcn\nN/LKrveZGfI3vG0969ze+AFtsLXQ8J/vj/PvT/czsX9rBnTyrdWIrTAOOWdMl+RGNzUVeTVOIfn4\n+NT4r7YWL15MYmIiAHFxcTRv3pygoCDi4+PJz8+nqKiImJgYwsLCat22EEJ3PX26MtFA00kA4QHu\nzJ4Uip21OV/tPMXqH5Nk/yQhhFHVeCdefSQkJLBgwQJSUlLQarV4eHjw/PPP88Ybb6DRaLC0tOSt\nt97CxcWF7du38+mnn6JSqZgyZQoPPPBAjW3LnXgbJ8mN4e1N+Z2vT27CzsyWp0Meq9NIzPV5ycor\nZeGGo1zKKCTQz4nHR7XH2tLM0GELHck5Y7okN7qp81YCpkoKmMZJcmMc+hYxN+el5GoFy747RtyZ\nLLxcrJk5Lgh3RytDhy10IOeM6ZLc6KbOU0hCiPtfT58IJvo/SEF5IYtil5FadEWv9qwstDw1piOD\nwpuQmlXMa19Ek5Qs93YSQhiWFDBCCHr6RDChzbUiZmHMJ3oXMWq1ion9WzN1sD/FpRW883Usvyfo\nt85GCCGuJwWMEAKAXr6GLWIA+oT48MyEIMy0GpZ/f5yNe85S1fBmrYUQJkgKGCFEtWtFzKhrRUys\nYYqYQD9n5kzthJujJd//dp5PNh+jrLzSANEKIRozKWCEEDfo5dvtWhFTdq2ISTNAEePlYsOcqWG0\n8XXg0Il0FqyJle0HhBB6kQJGCHGLXr7dGP9HEfOBgYoYO2tzZk0ModsfG0HOk+0HhBB6kAJGCHFb\nvY1QxJhp1Uwf1pYxvVuQnX+VN1YfJu505t0/KIQQN5ECRghxR7cWMel6t6lSqRgW4ccTo9pTVaXw\n/+3deXxU5dk+8OvMltmSySSZyUJISEIWCEvIpoBbFdRWBRVZRLbWtm9rXWtrgWqlr20R277iws+t\nqAhVUHDBDa0L1gVNIAkkgewrWSfrJJmsM/P7I4sJm5kkkzmTXN9/EmaSx2c+9zly8ZxznvvJAyfw\nn9TyYfVBIyLqxwBDRBc0NMQ8OyYhBgASY4zYeFs8vNQKvPZpPnaz/QAROYABhoh+kLNCTFigFx5a\nn4ipRi0Op1fgiTeOw9LRPSZjE9HExgBDRMNyefACLI9aOujppLEJMT5eSmxaE4+5Eb7ILmnEX3cf\nQ21T+5iMTUQTFwMMEQ3bFcELsTxqKcxdLWMaYpQKth8gIscwwBCRQ84MMZXmsWkRMNB+4NpotHf2\nth/4JqtqTMYmoomHAYaIHHZF8EIsj+wNMVs+fxxl5tNjN3bcFNy3orf9wL/eO4U3/1vI9gNEdBYG\nGCIakSum9oaYpg4z/nlsBw6Xfz1mj0LP7Gs/YPRW4b1vSvEs2w8Q0RkYYIhoxK6YuhCbL7sLSpkS\nb+S/g39l7Yale2xuwA301eCP6xIQFazDUbYfIKIzMMAQ0ajEBc7EpuR7EekdjgxTFh5N3Y4Sc9mY\njN3ffmDhoPYDZTUtYzI2Ebk36ZYtW7a4ehKOsli6nDa2RuPh1PFp5FgbcdJoPGDrFJDkPw8AkFl3\nCt9WHYOHVIFpXiEQBGFU40slAuZF+kEukyAtrw5HTtYg2KBFgI96LKY/ofGcES/WZng0Go/zvscV\nGCIaE1KJFNeHX4M7434OtVyFAwXv4bnMXWjrtox67MHtB+w2O546cAIfs/0A0aTGAENEYyrGJxKb\nku5DlH46MutOYmvKdhQ1l47J2IkxRvyhr/3A3k/zsfujXLYfIJqkGGCIaMzpPDxxV9zPcV3YYjR1\nNuPxtGfwn9LDsNlHHzb62w+EGLU4nFGJ7Ww/QDQpMcAQkVNIBAl+ErYYd8/7JbRyDd4u/ADPnXgZ\nrV1tox7bx0uJjWviETfdDyf72w80jv5SFRG5DwYYInKqKH0ENiffhxh9JLLqc7A1dTsKmopHPa5S\nIcOdN8/GNcl97QdeOcb2A0STCAMMETmdp0KL38TdjhvCr0VzpxlPpD+Hj0s+H/UlJYlEwMorI7G+\nr/3A319Lx9eZbD9ANBkwwBDRuJAIElw77UrcM+9/4CnX4p2iD/HM8ZfQ0tU66rEv72s/4CGXYuf7\nbD9ANBkwwBDRuIrUh2NT8r2Y6RONkw252JqyHfmNRaMed+Y0H/xxcPuBt7PQyfYDRBMWAwwRjTtP\nhRa/nvtTLI34MVq6W/FE+nP4sPjTUV9SCvTV4MH1iYia6o2juSY89moamth+gGhCYoAhIpeQCBJc\nHfoj3DvvV9B5eOG94o+wI2MnzF2jaxWgVclx/8q4vvYDLfgL2w8QTUgMMETkUhHe07Ap+V7M8p2B\nnMZ8bE3ZjtyGglGNKZdJ8LPrZmDZ5eFoMHdi6540ZOTXjdGMiUgMGGCIyOW0cg1+NWcDbpp+HVq7\n2/BUxgt4v+jjUV1SGtJ+wN7XfiCljO0HiCYIBhgiEgVBELAo5HL8Nv7X0Cu98UHJJ3gq/QU0d5pH\nNe5A+wGtAns/K8ArbD9ANCEwwBCRqITpQrEp6R7M8YtFXlMhtqZsx6mGvNGNGeiFh9b1th/4IqMS\nj79+HG1sP0Dk1hhgiEh01HI1fjl7HW6JXAJLTzt2ZOzEu0UfwWob+WPRg9sPnCptxN/YfoDIrTHA\nEJEoCYKAH029BPcn3AEfpR6HSj7FkxnPo6mzecRj9rcfuDY5ZKD9QG5Z4xjOmojGCwMMEYlaqNdU\nbEy6B3GG2ShoKsbWlO04WZ874vEkEgErrpyODT+OQXtnD/6xN4PtB4jcEAMMEYmeWq7Cz2etwYqo\nG9HR04Edx3fincIPR3VJ6bK5QfjtoPYDB75g+wEid8IAQ0RuQRAEXB68APcn/gZ+Kl98XPo5nkh/\nDo0dI+9APaO//YBehfePsP0AkTthgCEitxLiGYyNSfcg3jgHhc0l2Jq6HVl1p0Y8XqCvBg+u+779\nwFbe3EvkFhhgiMjtqGRK/Cz2NqyKvgmd1i48c+IlvFXw/ogvKWlVcvxuVRwujwtCWW0r/vzyUaTl\nmcZ41kQ0lhhgiMgtCYKAS6fMx+8S7oRR5YdPyr7A42nPoqFjZE8VyaQSrL82BrdfNwNWqw1Pv5mJ\nNz4vgNXGTe+IxIgBhojc2lTPIPwh6W4k+seh2FyKrSnbccKUPeLxFs4OxIPrEuGvV+HD78rwj9cy\n0MyO1kSiwwBDRG5PKVNiw8xbsTpmGbpt3XgucxcO5L+LHlvPiMYLNmrx0PokJEQZkFvehC0vpXK/\nGCKRYYAhoglBEAQsDLoIv0+8C/5qIz4r/xL/l/YM6tobRjSeWinDHTfNwsorp6PF0o2/v5aBD78t\nZTNIIpFwaoDJy8vDokWLsGfPHgBAVVUVNmzYgDVr1mDDhg0wmXpvkjt48CCWLVuG5cuX44033nDm\nlIhogpuiDcQDiXfhooAElJrL8WjqdmSYskY0liAIuCY5BA+sngcvjRxvHC7E029mwsI+SkQu57QA\nY7FY8Mgjj2D+/PkDr23fvh0rVqzAnj17sHjxYrz00kuwWCzYsWMHXn75ZezevRu7du1CU9PI93Ug\nIlLKPLBu5kqsmbECPTYrXsh8Ba/nvYPuEV5SiprqjYd/mowZoXqk59fhf18+irKaljGeNRE5Qrpl\ny5YtzhhYEARcf/31yM3NhUqlwpw5c7Bw4UJER0dDIpHg9OnTyMvLg06nQ319PW644QbIZDLk5OTA\nw8MDYWFh5x3bYulyxpQBABqNh1PHp5FjbcRJzHWZ6hmEOX6xyG8qQnb9KZysz0G0PhIaudrhsZQK\nKebHBsBqsyOjoA5fZVZDp1UgNMDTCTMfG2KuzWTH2gyPRuNx3vectgIjk8mgVCqHvKZWqyGVSmG1\nWvHqq6/ihhtuQF1dHXx8fAZ+xsfHZ+DSEhHRaAVpA/BA4l24ODARZS0VeDT1CaTVnhjRWBKJgGWX\nR+DuW+ZAIZPg5Q9z8OL7p9DF3XuJxp1svP+DVqsVDzzwAC6++GLMnz8f77777pD3h3ODnF6vhkwm\nddYUYTCI919Ukx1rI07uUJffBtyO/5bMwgtHX8XOrD0on34Z1sXdAoVU7vBYiw2emB1lxKOvpOKr\nzCpU1Ldh4/okBPlpnTDz0XGH2kxWrM3ojHuA2bRpE0JDQ3HnnXcCAIxGI+rq6gber62tRVxc3AXH\naHTiNt8GgydMJl7bFiPWRpzcqS4zNDPxQOLd2Jm1Bx8X/Bcnqwtw+6zbYFQbHB5LCuCBVXF47ZN8\nHM6oxL3/dxi3XzcT8VGOj+Us7lSbyYa1GZ4LhbxxfYz64MGDkMvluPvuuwdemzt3LjIzM2E2m9HW\n1oa0tDQkJiaO57SIaBIJ0Bjx+8S7sDAoGadbK/Fo6hM4WpMxorHkMinWXRuDn18/A1arHU+/mYnX\nuXsv0bgQ7E7a1CArKwvbtm1DRUUFZDIZ/P39UV9fDw8PD2i1vcusERER2LJlCw4dOoSdO3dCEASs\nWbMGS5YsueDYzkytTMXixdqIkzvXJbU6Ha/lHkCntQsLgy7CLZFLRnRJCQBO17Zix1uZqGlsR9RU\nb/xqaSy8tee/AXE8uHNtJjrWZngutALjtADjTAwwkxNrI07uXpcaiwk7s/agorUKU7SB+FnsbQjQ\nGEc0VntnD1784BSO5ZrgpVHg10tjER2iH+MZD5+712YiY22G50IBxmmPUTsTH6OenFgbcXL3umjl\nGlwckIjWHguy63PwbVUqvBSeCNYGQRAEh8aSyyRIijFC7SHre9S6CnKZBNOn6Bweayy4e20mMtZm\neFzyGDURkbuQS+W4Nfpm3D5rDaQSGf6dsx8vZv8blu52h8cSBAFX9+3eq9MosP9wIZ46wN17icYa\nAwwRUZ944xxsSroX4bppSKs9ga2p21HUXDKisSKDvbGlb/fejII6/PnlVJRW85IB0VjhJaQzcFlP\nvFgbcZpodVHLVbgoIB6AgKy6U/i2+hgECIjwnubwZSCPvt17bXY7MvLr8fU479470WozkbA2w8NL\nSEREDpBKpLg+/GrcM+9/4KXwxHvFH+HJ9OfR2OF4nzaJRMDNl0XgnlvmwEP+/e69ndy9l2hUGGCI\niM4jUh+Ozcn3Ya5hFvKbirA1ZTuOj7Cz9dzpfnh4QxJCAzzxVWYV/vrKMdQ4cVNOoomOAYaI6AI0\ncjV+MWstVkXfjC5bF57PfAX7ct9Cl9Xxm3L9vFXYvCYeV8ybgtOmVvzvy6k4lsveb0QjwQBDRPQD\nBEHApVMuxgOJdyNIE4D/VhzB348+hcrWaofHksukWHdN9MDuvTveysTrnxWgx8rde4kcwQBDRDRM\nQdoA/D7xLlw2ZQEq26rx2NEn8WXFkWE1oT3TglmBeHB9Ivx91DiUUoZ/vJaOptZOJ8yaaGJigCEi\ncoBCKsfK6Bvxy9nroZAosDf3LbyQ+Qrauh2/nyXYoMWf1iciMdqAvNPN2PJSKnJKG50wa6KJhwGG\niGgE5hpisSn5XkR6h+N4XTb+lvI48hsLHR5H5SHDr2+chVVXRaKtvRt/35uOD74thc39urwQjSsG\nGCKiEdIrvXH3vF/ihvBrYO5qwRPpz+O9oo9gtTn2iLQgCLg6aeqQ3XufPpCJNu7eS3ReDDBERKMg\nESS4dtpVuC/+19ArvfFhyafYnv4s6tsdvxR01u69L3H3XqLzYYAhIhoD4bpQbEq6FwnGuShqLsXW\n1MdxrOa4w+N4aRS4f2Ucrl8wDXXNHfjr7mP47/HKEd0oTDSRMcAQEY0RtVyFn8auxm0xy2G1WfFi\n9r/x71NvoNPq2Jbxvbv3huPe5YN27/2Au/cSDcYAQ0Q0hgRBwIKgJGxMugdTtUH4pioV21KfQHlL\npcNjzYno3b13WoAnvs6s7t29t4G79xIBbOZ4FjbYEi/WRpxYl3PTKjS4KDARXdYuZNWfwrdVqVDK\nlJjmNdWhppBqpRwLZgWitb0bJwrr8U1WFQJ81Ajy0/zg77I24sXaDA+bORIRuYBcIsOyyBtwx9yf\nQSlTYn/+QTx74iW0dLU6No5MgnXXROMX18+E1WbHjreysO+zfO7eS5MaAwwRkZPF+sZgc/JvEaOP\nRFZ9Dv6W8jhyGvIdHmf+rAA8uC4RAT5qfJRSjr+/lo7GFu7eS5MTAwwR0TjQeXjiN3G346bp16G1\nuw1PZ/wLbxd84PCeMcEGLR5an4jEGCPyTzfjzy+lcPdempQYYIiIxolEkGBRyOX4XcJv4KvywX/K\nDuOfx/4fTJZ6h8ZRecjw66WxuPWqSLR19ODve9Px/pES7t5LkwoDDBHROAv1mopNSffgooAElLaU\n49HU7UipTnNoDEEQsDhpKv6wOh7eWg8c+KKIu/fSpMIAQ0TkAkqZEutmrsT6matghx27Tu7FrpN7\n0dHT4dA404N1eHhDEnfvpUmHAYaIyIWSA+KxKek+hHpORUp1Gh5NfQKl5nKHxjjX7r1fZFRw916a\n0LgPzBn4bL54sTbixLqMnkauxkWBCbDarMisP4UjVUchl8gQpgsZ9p4xgiBgRqgeYYFeOF5Qh9Qc\nE0qqzJAKAnx1HpBK+O9VMeF5MzwX2gdGsLthRDeZnLc8ajB4OnV8GjnWRpxYl7GV05CPXSf3wtzV\nghh9JNbNXAWdh6dDY9Q1t+OZt7NRXGUGAHgopJgT7ouEaANmh/tC5SFzxtTJATxvhsdgOP+xzwBz\nBh5U4sXaiBPrMvZaulqx+9TryK7PgVauwdoZKzDLb4ZDY9jsdjS29+DT70qRlmtCbVM7AEAmlSB2\nmh7x0QbETfeDp1rhjI9AP4DnzfAwwDiAB5V4sTbixLo4h91ux+HTX+PtgvfRY7fiR1MvwdKIn0Au\nGf7qSX9t7HY7TpvacCy3Fml5Jpw2tQEAJIKA6BBvxEcZEB9lgN7z/Mv1NLZ43gwPA4wDeFCJF2sj\nTqyLc5W3VOKl7H+jxmJCsDYIP4tdDX+NcVi/e77a1DRYkJZnwrE8E4oqzQOvRwR5IT66N8z469Vj\n9hnobDxvhocBxgE8qMSLtREn1sX5Oq1d2J/3Dr6pSoVCIsfyqBsxPzDxB2/wHU5tGls6e8NMbi1y\ny5vQ/zdCsEGLhGgDEqIMmGLQONSAkn4Yz5vhYYBxAA8q8WJtxIl1GT/Hao7jtdwDaO/pQIJxLlZF\n3wy1XHXen3e0Ni2WLmTk1+FYngknSxrQY+3968GoVyEhyoD4aAPCAr0gYZgZNZ43w8MA4wAeVOLF\n2ogT6zK+6tsb8PLJ11DUXAofpR4/jb0V4bpp5/zZ0dSmvbMHJwrrkZZnwonCenR29/Zs0nt6ID6y\nN8xETdXx8ewR4nkzPAwwDuBBJV6sjTixLuPParPiw5JPcajkUwiCgOvCFuPq0B9BIgwNE2NVm65u\nK06WNOJYXi0y8uvQ1tEDANCq5Iib7oeEaANmTtNDLpOO+r81WfC8GR4GGAfwoBIv1kacWBfXyW8s\nxMsn96KpsxmR3uFYP3MV9ErvgfedUZseqw155U04lmdCWp4Jza29m7EpFVLMifBFfBT3mhkOnjfD\nwwDjAB5U4sXaiBPr4lpt3Rb8O2c/jpuyoJGpcduM5ZhriAXg/NrY7HYUVZqRlmvC0dxa1DX39nGS\nSSWYFeaD+CgD4iL9oFXJnTYHd8XzZngYYBzAg0q8WBtxYl1cz26346vKb3Eg/11023pw2ZT5uGn6\n9ZgS4DNutbHb7SivbR14PLvijL1mEqINmBfJvWb68bwZHgYYB/CgEi/WRpxYF/GobK3GS9mvorKt\nGkGaANx3ye1Qd+tcMpfq/r1mck0DLQ0AIGKKFxKijIiPNsDoff4nqCY6njfDwwDjAB5U4sXaiBPr\nIi5d1m68VfAe/ltxBAAQrpuG5IB4JBjnQC13zeZ0DeYOpPXdMzN4r5mpRu3A49lT/CbXXjM8b4aH\nAcYBPKjEi7URJ9ZFnLLqTuGrmm+QVZMHO+yQCVLE+s1AckA8Yn1jHGpJMJbMfXvNpOWZkF3cAKut\n968gf70K8dEGJEQZERboOeHDDM+b4WGAcQAPKvFibcSJdREvg8ETeeXlOFqTgZTqNFS2VQMA1DIV\n4v3n4qKAeIR5hbosLFg6enCiqA5puSacKKpHV7cNQN9eM1G9uwBHTtC9ZnjeDA8DjAN4UIkXayNO\nrIt4Da6N3W5HRWsVUqrTcLQmHc1dva/7KX2QFBCP5IB5MKoNLptrV7cV2cUNOJZnQkZ+HSyd3+81\nMy+yf68ZH8ikEyPM8LwZHgYYB/CgEi/WRpxYF/E6X21sdhtyGwrwXXUajpsy0WXrBgCEeYUgOSAe\n8ca50Co04z3dAT1WG3LLvt9rxtzWu9eM2kOGeZF+SIwxIjbMvcMMz5vhYYBxAA8q8WJtxIl1Ea/h\n1KajpxMn6rKRUp2GnIZ82GGHRJAg1jcGyQHxmO07A3Kp6/ZxsdnsKKxsxtGc3r1mGls6AXwfZpJm\nGN1yZYbnzfAwwDiAB5V4sTbixLqIl6O1aepsHrhfpqK1CgCgkikRb5yD5IAEhOtCz2pXMJ76N85L\nPVXr9mGG583wuCzA5OXl4Y477sCGDRuwZs0aAMArr7yCbdu2ISUlBRpN7xLlwYMHsWvXLkgkEqxY\nsQLLly+/4LgMMJMTayNOrIt4jaY2Fa1VSK1OR2pNOpo6mwEAvko9kvznITkgHv4a41hO1WE2ux1F\nFWak5pwjzET5ISlG3GGG583wXCjAOO05OovFgkceeQTz588feO3tt99GfX09jEbjkJ/bsWMH9u/f\nD7lcjltuuQWLFy+Gt7f3uYYlIqJxMEUbiCnTA7Ek4lrkNRYitTod6aYTOFT6GQ6VfoYQz2AkB8Qj\n0T8OngrtuM9PIgiYHqzD9GAdVl41fUiY+TqzGl9nVrtNmKGRcVqAUSgUeOGFF/DCCy8MvLZo0SJo\ntVq8++67A68dP34cs2fPhqdnb8qKj49HWloarrzySmdNjYiIhkkiSBDjE4kYn0istN6IE6ZsfFfT\ne79MWf5pvFnwHmb6RPXeL+MXC4UL7pdxLMz4Y+Y0PcPMBOC0ACOTySCTDR1eqz07pdfV1cHHx2fg\nzz4+PjCZTBccW69XQ+bEtu0XWrIi12JtxIl1Ea+xrs2UgMvw49mXoanDjK9LU/FlaQqy6nOQVZ8D\nlUyJi6bOw2WhF2GmMdJl98v4G70wf14wbDY7cksb8dXxCnx9onIgzGhUcsyfFYiFc4MwN9IAucw1\n8+R5Mzqi63c+nFtyGhstTvvv87qkeLE24sS6iJdzayMg2ScZyT7JqGqrQUp1GlKr03G4+AgOFx+B\n3sMbSQG998sEavydNIcf5qeV48aF07BkQSiKKsxIyanBsVwTPkktwyepZVB7yBAfZUBijHFcV2Z4\n3gyPS+6BGS6j0Yi6urqBP9fW1iIuLs6FMyIiIkcEavyxNOLHuCH8GhQ0FSOlOg3ptZn4uPRzfFz6\nOaZ6TkGy/zwk+M+DzsM1qw6DLzOtuioShRXNSM2pxbFcE77KrMJXmVXQKGWYFzn+YYZGxuUBZu7c\nuXjwwQdhNpshlUqRlpaGzZs3u3paRETkIIkgQZQ+AlH6CKyIuhGZdSeRUp2Gkw25ONBSgTcL3seM\nvvtl5hhi4SFVuGieAiKDvREZ7D0kzBzNqT0rzCTNMGJGKMOMGDntMeqsrCxs27YNFRUVkMlk8Pf3\nx4IFC/DNN98gIyMDs2fPRlxcHB544AEcOnQIO3fuhCAIWLNmDZYsWXLBsfkY9eTE2ogT6yJeYqlN\nS1crjtUeR0p1GkrN5QAAD6kCcYbZSA6IR5Q+wqX7y/Sz2e29YaZvn5mm1t4dgDVKGeZFGZAUM3Zh\nRiy1ETtuZOcAHlTixdqIE+siXmKsTU1bLVJq0pFanYb6jkYAgE7hNXC/zBRtoItn2MvZYUaMtREj\nBhgH8KASL9ZGnFgX8RJzbWx2G4qaS5FSnYa02hNo72kH0Lv/TP/+Mt4eOhfPspfNbkfB6WYczTl3\nmEmOMSLGwTAj5tqICQOMA3hQiRdrI06si3i5S226rd3Iqs9BSnUasutzYLVbIUBAtH46kgPiMdcw\nC0qZh6unCWDswoy71MbVGGAcwINKvFgbcWJdxMsda9Pa3Ya0mhNIqU5DsbkUAKCQyDHHEIso7whM\n04UgUOMvmntm+sNMam4tmgeFmfi+y0znCzPuWBtXYIBxAA8q8WJtxIl1ES93r02tpQ6p1WlIqUlH\nXXv9wOtKqQemeYUgTBfS9zUUGrnahTP9Psz07wD8Q2HG3WszXhhgHMCDSrxYG3FiXcRrotTGbrej\nsq0axc2lKG4uQ7G5FDWWoTu2+6sNCPMKxTRdCMJ1oS5dpRlOmLk4Lhit5naXzM+dMMA4YKKc8BMR\nayNOrIt4TeTatHVbUGIuGwg1JeZydFg7Bt5XSj0Q6jUVYX0rNNN0IdDKNeM+z/OFGQDQaRXw16sR\n4KOCv14Nfx81/PUqGPUqyJ3YLsedMMA4YCKf8O6OtREn1kW8JlNtbHYbqttqewNNX7CpttQO+Rmj\n2g9hXqEI04UgzCsUQdqAcV2l6Q8zaXkmmJo7UF7TgvrmDpz5l7AAwFenhL9e1Rdq+sKNjwp+OiWk\nEtff/zNeGGAcMJlOeHfD2ogT6yJek702lm4Lis3lKOkLNSXmMrT3fL9Ko5AqMM1zKsJ034carWJ8\nVmn6a9PdY0VtUwdqGyyobrSgpqEdNQ0W1DRaBp5wGkwqEeDnrUJAf7jpW7UJ8FHD29MDEkEYl/mP\nF1H3QiIiInIGtVyNWN9oxPpGA/h+lab/0lORuQx5TYXIayoc+B2Dyrc30PSt1ARpAiCVOO9yjlwm\nxRQ/Dab4nR2cOrp6UNvYjuoGC2oa+4JN3/fHGyxAYf2Qn1fIJDDqh16O6g85Xmo5hAkWbrgCc4bJ\n/i8WMWNtxIl1tffzdAAACvxJREFUES/W5odZuttRai5HkbkUxc2l51ylCfUM7gs1vffTeCq0o/7v\njrY2re3dqGnsCzQN7X3ft6O60YLOLutZP6/ykMKoVyNgULDp/16tlI/mozgVV2CIiIjOQS1XYYZv\nFGb4RgHoXaWptZhQ1Nx3g7C5FAVNxchvKhr4HT+V70CYCdOFYIom0KmrNOeiVcmhVekQETR0t2K7\n3Q5zW9fQVZu+rxWmNpRWnx2aPNXyvlUbVd9NxeqBlRwPhXhvJuYKzBn4LxbxYm3EiXURL9ZmbLT3\ntKPEXD7oMe6ygdYHQO9GeyFewX2XnUIRPoxVGlfUxma3o8HcMRBoqhssA5eo6po6YDtHHNB7epxx\nM3Hv/TYGb9W4dOjmCgwREdEIqWQqzPCJwgyfwas0dQMrNMXNZShsKkFBU/HA7/gqfXpvDNaFItwr\nFFO0479KcyaJIMBPp4KfToXYaT5D3uux2lDX3DHkPpvegGNBTlkTcsqahvy8IAB+OiX89WokxRhx\n6dyg8fwoABhgiIiIHCIRJAjQGBGgMWJ+UBIAoL2nA6X9qzTmMpQ0l+FoTQaO1mQAAOQSOUI8gxHe\nd9lpljICsClcHmr6yaQSBPTdF3Omrm4rapvahwabBguqG9uRVdyAto5uBhgiIiJ3pJIpEeMTiRif\nSAC996LUWkwoMpcNPMZd1FyCwua+VZrM3iDkp/KBUeUHg9pvyFe90lsU/Z4AQCGXItigRbDh7Mti\n7Z09kMtcM08GGCIiojEmCAL8NUb4a4yYH5gIAOjo6UCJuRwl5nI0WxtR3liF2vY6ZFlygKFPREMm\nSOGn8j0r2BjVftB5eIkm3Kg8XBcjGGCIiIjGgXLQKs3gm3gt3RbUtteh1lIHk6Xu++/b687aTRjo\nvRxlGBRujGo/GPq+eik8J9x+L+fDAENERORCarka0+S9nbUHs9vtaO1ug+mMcNP/tbKt+qyxPKQK\nGM5xScqo9oNWrplQ4YYBhoiISIQEQYCnQgtPhRbhumlD3rPb7TB3tX4fbgZ9rbGYcLq18qzxlFIl\njGrfgdUao9ow8L1GfvbNu2LHAENERORmBEGAzsMTOg9PTPcOG/Ke3W5Hc5cZtRYTagdWber7Vm1q\nUNZScdZ4GpkahoFLUb7fr96o/aCSqcbrYzmEAYaIiGgCEQQB3h46eHvoEKWfPuQ9m92Gxo7mc67c\nlLdUoMRcdtZ4WrlmyH02vV8NMKh8oZR5jNfHOgsDDBER0SQhESTwVenhq9IPPPLdz2qzorGzadCq\nTd3A9yXmchQ1l541nk7hiaSAeNw0/brx+ggDGGCIiIgIUknvo9t+Kl/MRPSQ96w2K+o6GobeSNy3\nctPY0XSeEZ2LAYaIiIguSCqRwl9tgL/a4OqpDBDHTjhEREREDmCAISIiIrfDAENERERuhwGGiIiI\n3A4DDBEREbkdBhgiIiJyOwwwRERE5HYYYIiIiMjtMMAQERGR22GAISIiIrfDAENERERuhwGGiIiI\n3A4DDBEREbkdwW632109CSIiIiJHcAWGiIiI3A4DDBEREbkdBhgiIiJyOwwwRERE5HYYYIiIiMjt\nMMAQERGR22GAGeRvf/sbVq5ciVWrVuHEiROung4N8thjj2HlypVYtmwZPv74Y1dPhwbp6OjAokWL\n8Oabb7p6KjTIwYMHsWTJEtx88804fPiwq6dDANra2nDnnXdi7dq1WLVqFb788ktXT8mtyVw9AbFI\nSUlBaWkp9u3bh8LCQmzevBn79u1z9bQIwLfffov8/Hzs27cPjY2NuOmmm3D11Ve7elrU55lnnoFO\np3P1NGiQxsZG7NixAwcOHIDFYsFTTz2FK664wtXTmvTeeusthIWF4f7770dNTQ3Wr1+PQ4cOuXpa\nbosBps+RI0ewaNEiAEBERASam5vR2toKrVbr4plRUlIS5syZAwDw8vJCe3s7rFYrpFKpi2dGhYWF\nKCgo4F+OInPkyBHMnz8fWq0WWq0WjzzyiKunRAD0ej1yc3MBAGazGXq93sUzcm+8hNSnrq5uyMHk\n4+MDk8nkwhlRP6lUCrVaDQDYv38/LrvsMoYXkdi2bRs2btzo6mnQGU6fPo2Ojg786le/wurVq3Hk\nyBFXT4kAXHfddaisrMTixYuxZs0a/OEPf3D1lNwaV2DOgx0WxOeTTz7B/v378eKLL7p6KgTg7bff\nRlxcHKZOnerqqdA5NDU14emnn0ZlZSXWrVuHzz//HIIguHpak9o777yDoKAg7Ny5Ezk5Odi8eTPv\nHRsFBpg+RqMRdXV1A3+ura2FwWBw4YxosC+//BLPPvss/vWvf8HT09PV0yEAhw8fRnl5OQ4fPozq\n6mooFAoEBARgwYIFrp7apOfr64t58+ZBJpMhJCQEGo0GDQ0N8PX1dfXUJrW0tDRccsklAICYmBjU\n1tbycvgo8BJSn4ULF+Kjjz4CAGRnZ8NoNPL+F5FoaWnBY489hueeew7e3t6ung712b59Ow4cOIDX\nX38dy5cvxx133MHwIhKXXHIJvv32W9hsNjQ2NsJisfB+CxEIDQ3F8ePHAQAVFRXQaDQML6PAFZg+\n8fHxiI2NxapVqyAIAh5++GFXT4n6fPDBB2hsbMS999478Nq2bdsQFBTkwlkRiZe/vz+uueYarFix\nAgDw4IMPQiLhv1ddbeXKldi8eTPWrFmDnp4ebNmyxdVTcmuCnTd7EBERkZthJCciIiK3wwBDRERE\nbocBhoiIiNwOAwwRERG5HQYYIiIicjsMMETkVKdPn8asWbOwdu3agS68999/P8xm87DHWLt2LaxW\n67B//tZbb8V33303kukSkZtggCEip/Px8cHu3buxe/du7N27F0ajEc8888ywf3/37t3c8IuIhuBG\ndkQ07pKSkrBv3z7k5ORg27Zt6OnpQXd3N/70pz9h5syZWLt2LWJiYnDq1Cns2rULM2fORHZ2Nrq6\nuvDQQw+huroaPT09WLp0KVavXo329nbcd999aGxsRGhoKDo7OwEANTU1+N3vfgcA6OjowMqVK3HL\nLbe48qMT0RhhgCGicWW1WvGf//wHCQkJ+P3vf48dO3YgJCTkrOZ2arUae/bsGfK7u3fvhpeXF/75\nz3+io6MDP/nJT3DppZfim2++gVKpxL59+1BbW4urrroKAPDhhx8iPDwcf/7zn9HZ2Yk33nhj3D8v\nETkHAwwROV1DQwPWrl0LALDZbEhMTMSyZcvw5JNP4o9//OPAz7W2tsJmswHobe9xpuPHj+Pmm28G\nACiVSsyaNQvZ2dnIy8tDQkICgN7GrOHh4QCASy+9FK+++io2btyIyy+/HCtXrnTq5ySi8cMAQ0RO\n138PzGAtLS2Qy+Vnvd5PLpef9ZogCEP+bLfbIQgC7Hb7kF4//SEoIiIC77//PlJTU3Ho0CHs2rUL\ne/fuHe3HISIR4E28ROQSnp6eCA4OxhdffAEAKC4uxtNPP33B35k7dy6+/PJLAIDFYkF2djZiY2MR\nERGB9PR0AEBVVRWKi4sBAO+++y4yMzOxYMECPPzww6iqqkJPT48TPxURjReuwBCRy2zbtg1/+ctf\n8Pzzz6OnpwcbN2684M+vXbsWDz30EG677TZ0dXXhjjvuQHBwMJYuXYrPPvsMq1evRnBwMGbPng0A\nmD59Oh5++GEoFArY7Xb84he/gEzG/+0RTQTsRk1ERERuh5eQiIiIyO0wwBAREZHbYYAhIiIit8MA\nQ0RERG6HAYaIiIjcDgMMERERuR0GGCIiInI7DDBERETkdv4/Osaev78bMtoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "flxmFt0KKxk9" + }, + "cell_type": "markdown", + "source": [ + "## Linear Scaling\n", + "It can be a good standard practice to normalize the inputs to fall within the range -1, 1. This helps SGD not get stuck taking steps that are too large in one dimension, or too small in another. Fans of numerical optimization may note that there's a connection to the idea of using a preconditioner here." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Dws5rIQjKxk-", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def linear_scale(series):\n", + " min_val = series.min()\n", + " max_val = series.max()\n", + " scale = (max_val - min_val) / 2.0\n", + " return series.apply(lambda x:((x - min_val) / scale) - 1.0)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "MVmuHI76N2Sz" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Normalize the Features Using Linear Scaling\n", + "\n", + "**Normalize the inputs to the scale -1, 1.**\n", + "\n", + "**Spend about 5 minutes training and evaluating on the newly normalized data. How well can you do?**\n", + "\n", + "As a rule of thumb, NN's train best when the input features are roughly on the same scale.\n", + "\n", + "Sanity check your normalized data. (What would happen if you forgot to normalize one feature?)\n" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "yD948ZgAM6Cx", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 652 + }, + "outputId": "28720e5b-8c95-4fa8-c6ec-9e32bba19840" + }, + "cell_type": "code", + "source": [ + "def normalize_linear_scale(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized linearly.\"\"\"\n", + " #\n", + " # Your code here: normalize the inputs.\n", + " #\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + " processed_features[\"total_rooms\"] = linear_scale(examples_dataframe[\"total_rooms\"])\n", + " processed_features[\"total_bedrooms\"] = linear_scale(examples_dataframe[\"total_bedrooms\"])\n", + " processed_features[\"population\"] = linear_scale(examples_dataframe[\"population\"])\n", + " processed_features[\"households\"] = linear_scale(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = linear_scale(examples_dataframe[\"median_income\"])\n", + " processed_features[\"rooms_per_person\"] = linear_scale(examples_dataframe[\"rooms_per_person\"])\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize_linear_scale(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.005),\n", + " steps=2000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 170.54\n", + " period 01 : 113.88\n", + " period 02 : 101.47\n", + " period 03 : 85.72\n", + " period 04 : 76.96\n", + " period 05 : 74.70\n", + " period 06 : 73.20\n", + " period 07 : 72.14\n", + " period 08 : 71.52\n", + " period 09 : 71.00\n", + "Model training finished.\n", + "Final RMSE (on training data): 71.00\n", + "Final RMSE (on validation data): 69.40\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd0VHX6x/H3nZn0XmYggPQOIQVQ\nEVQQkUhZOzYQXVZ3FVZ/imvZVXfXjm1tYGFVFNZdBSsqYkEUGwoJkNBCr4H0Qnom9/cHMhBSCJDJ\nTMLndY7nMHdueSbP5OTxWw3TNE1EREREWhCLpwMQEREROV4qYERERKTFUQEjIiIiLY4KGBEREWlx\nVMCIiIhIi6MCRkRERFocm6cDEPFmvXr1omPHjlitVgCcTieDBw/mvvvuIzAw8ITv++677zJhwoRa\nx99//33uvfdeXn75ZUaMGOE6XlZWxllnncUFF1zA448/fsLPbaydO3fy6KOPsm3bNgACAgKYNm0a\n559/vtuffTxmzZrFzp07a/1Mli9fzpQpU+jQoUOtaz7//PPmCu+k7N69m5EjR9KlSxcATNMkOjqa\nv/3tb/Tt2/e47vX000/Trl07rr766kZf89FHH7FgwQLmzp17XM8SaS4qYESOYe7cubRt2xaAiooK\nbr/9dl555RVuv/32E7pfVlYW//73v+ssYABiYmL45JNPahQw33zzDaGhoSf0vBNx5513ctFFF/Hy\nyy8DsHr1aiZPnsyiRYuIiYlptjhORkxMTIspVupjtVprfIbPPvuMqVOnsnjxYnx9fRt9n+nTp7sj\nPBGPUheSyHHw9fXl7LPPZv369QCUl5fzwAMPMHr0aC688EIef/xxnE4nABs2bOCqq64iKSmJiy66\niGXLlgFw1VVXsXfvXpKSkqioqKj1jMTERJYvX05paanr2GeffcbQoUNdrysqKnj44YcZPXo05513\nnqvQAEhJSeHSSy8lKSmJMWPG8OOPPwIH/49+2LBhvPXWW4wfP56zzz6bzz77rM7PmZ6eTlxcnOt1\nXFwcixcvdhVyL774Iueeey4XX3wxr776Kueddx4A99xzD7NmzXJdd+TrY8X16KOPMnHiRABWrlzJ\nZZddxqhRo5gwYQK7du0CDrZE/d///R8jRoxg4sSJ7Nu37xgZq9v777/PtGnTmDx5Mk888QTLly/n\nqquu4rbbbnP9sV+0aBHjxo0jKSmJ6667jp07dwLwwgsvcN9993H55ZczZ86cGve97bbbeP31112v\n169fz7Bhw6iuruZf//oXo0ePZvTo0Vx33XXs37//uOMeM2YMZWVlbN26FYB33nmHpKQkzjvvPO64\n4w7KysqAgz/3xx57jPHjx7No0aIaeajve1ldXc2DDz7I8OHDufzyy9mwYYPrub/88guXXHIJY8aM\n4cILL2TRokXHHbtIkzNFpF49e/Y0MzIyXK/z8/PNa6+91pw1a5Zpmqb5yiuvmDfeeKNZWVlplpaW\nmpdddpn54Ycfmk6n07zwwgvNhQsXmqZpmmvWrDEHDx5sFhUVmT///LN5/vnn1/m89957z7z77rvN\nO++803VtUVGROXLkSHP+/Pnm3XffbZqmab744ovm5MmTzfLycrO4uNi8+OKLzSVLlpimaZrjxo0z\nP/nkE9M0TfODDz5wPWvXrl1m3759zblz55qmaZqfffaZOWrUqDrj+POf/2yOGDHCfPPNN83NmzfX\neG/jxo3moEGDzMzMTLOystK8+eabzREjRpimaZp33323OXPmTNe5R75uKK5+/fqZ77//vuvzDh48\n2Pz+++9N0zTNhQsXmpdccolpmqY5b94889prrzUrKyvN3Nxcc8SIEa6fyZEa+hkf+jnHx8eb27Zt\nc50fGxtr/vjjj6ZpmuaePXvMgQMHmtu3bzdN0zRfe+01c/LkyaZpmubzzz9vDhs2zMzJyal1308/\n/dS89tprXa+fe+4586GHHjLT09PNCy64wKyoqDBN0zTfeust84MPPqg3vkM/lz59+tQ6PnjwYHPL\nli3mr7/+ag4ZMsTct2+faZqmef/995uPP/64aZoHf+7jx483y8rKXK9nzpzZ4Pdy6dKl5gUXXGAe\nOHDALC0tNS+//HJz4sSJpmma5qWXXmouX77cNE3T3LZtm3nHHXc0GLtIc1ALjMgxTJo0iaSkJEaO\nHMnIkSM588wzufHGGwFYunQpEyZMwGaz4e/vz/jx4/nhhx/YvXs32dnZjB07FoDY2FjatWtHampq\no545duxYPvnkEwC++uorRowYgcVy+Nf1m2++4ZprrsHX15fAwEAuuugivvjiCwA+/PBDLrzwQgAG\nDhzoar0AqKqq4tJLLwWgX79+7N27t87nP/nkk1x77bUsXLiQcePGcd555/Hf//4XONg6MnjwYOx2\nOzabjXHjxjXqMzUUV2VlJaNGjXLdv02bNq4Wp3HjxrFz50727t3LihUrGDVqFDabjYiIiBrdbEfL\nyMggKSmpxn9HjpXp3LkznTt3dr329/dnyJAhAPzwww+cccYZdOrUCYArrriC5cuXU1VVBRxskYqM\njKz1zOHDh7Nu3Try8/MB+PLLL0lKSiI0NJTc3FwWLlxIQUEBkyZN4uKLL27Uz+0Q0zR55513aNOm\nDZ07d2bJkiWMGTOGNm3aAHD11Ve7vgMAQ4YMwc/Pr8Y9Gvpe/vrrr5x77rkEBQXh7+/vyhVAVFQU\nH374IVu2bKFz5848/fTTxxW7iDtoDIzIMRwaA5Obm+vq/rDZDv7q5ObmEhYW5jo3LCyMnJwccnNz\nCQkJwTAM13uH/ohFR0cf85lDhw7lvvvuIz8/n08//ZRbbrnFNaAWoKioiMcee4xnnnkGONilNGDA\nAAAWLlzIW2+9RXFxMdXV1ZhHbHdmtVpdg48tFgvV1dV1Pt/Pz48pU6YwZcoUCgsL+fzzz3n00Ufp\n0KEDBQUFNcbjREVFHfPzNCau4OBgAAoLC9m1axdJSUmu9319fcnNzaWgoICQkBDX8dDQUIqLi+t8\n3rHGwByZt6Nf5+Xl1fiMISEhmKZJXl5endceEhgYyFlnncXSpUsZOHAghYWFDBw4EMMweOGFF3j9\n9dd56KGHGDx4MP/85z+POZ7I6XS6fg6madK9e3dmzZqFxWKhqKiIL7/8ku+//971fmVlZb2fD2jw\ne1lQUIDD4ahx/JBHH32Ul156iRtuuAF/f3/uuOOOGvkR8QQVMCKNFBkZyaRJk3jyySd56aWXAIiO\njnb93zZAfn4+0dHRREVFUVBQgGmarj8W+fn5jf5j7+Pjw4gRI/jwww/ZsWMHCQkJNQoYh8PB73//\n+1otEPv37+e+++5j/vz59OnTh+3btzN69Ojj+py5ubmsX7/e1QISGhrKhAkTWLZsGenp6YSEhFBU\nVFTj/EOOLooKCgqOOy6Hw0HXrl15//33a70XGhpa77ObUlRUFCkpKa7XBQUFWCwWIiIijnnt6NGj\n+fLLL8nLy2P06NGu/J955pmceeaZlJSUMGPGDJ566qljtmQcPYj3SA6Hg0suuYS77777uD5Xfd/L\nhn620dHR3H///dx///18//33/PnPf+bss88mKCio0c8WaWrqQhI5DjfccAMpKSn88ssvwMEugwUL\nFuB0OikpKeGjjz7i3HPPpUOHDrRt29Y1SDY5OZns7GwGDBiAzWajpKTE1R1Rn7FjxzJ79uw6py6P\nHDmS+fPn43Q6MU2TWbNm8d1335Gbm0tgYCBdu3alqqqKd955B6DeVoq6lJWVceutt7oGdwLs2LGD\n1atXM2jQIBISElixYgW5ublUVVXx4Ycfus6z2+2uwZ+7du0iOTkZ4LjiiouLIysri9WrV7vu85e/\n/AXTNImPj2fJkiU4nU5yc3P57rvvGv25jsfQoUNZsWKFq5vrf//7H0OHDnW1vDVkxIgRpKSk8NVX\nX7m6Yb7//nv++c9/Ul1dTWBgIL17967RCnIizjvvPL744gtXofHVV1/x6quvNnhNQ9/LhIQEvv/+\ne0pLSyktLXUVTpWVlUyaNInMzEzgYNejzWar0aUp4glqgRE5DsHBwdx0003MmDGDBQsWMGnSJHbt\n2sXYsWMxDIOkpCQuvPBCDMPgmWee4e9//zsvvvgiAQEBPPfccwQGBtKrVy/CwsIYOnQoH3zwAe3a\ntavzWaeffjqGYTBmzJha711zzTXs3r2bsWPHYpom/fv3Z/LkyQQGBnLOOecwevRooqKiuOeee0hO\nTmbSpEk8//zzjfqM7dq146WXXuL555/n4YcfxjRNgoODuffee10zk6688kouueQSIiIiuOCCC9i0\naRMAEyZMYNq0aVxwwQX07dvX1crSu3fvRsfl7+/P888/z0MPPURxcTE+Pj7cdtttGIbBhAkTWLFi\nBeeffz7t2rXj/PPPr9FqcKRDY2CO9sQTTxzzZ9C2bVsefvhhbrnlFiorK+nQoQMPPfRQo35+wcHB\n9OvXj40bNxIfHw/A4MGD+fTTTxk9ejS+vr5ERkby6KOPAnDXXXe5ZhIdj379+vGnP/2JSZMmUV1d\nTVRUFP/85z8bvKah7+WIESNYunQpSUlJREdHc+6557JixQp8fHy4/PLLuf7664GDrWz33XcfAQEB\nxxWvSFMzzCM7okVEjtOKFSu46667WLJkiadDEZFTiNoARUREpMVRASMiIiItjrqQREREpMVRC4yI\niIi0OCpgREREpMVpkdOos7LqnjbZFCIiAsnLK3Hb/eXEKTfeSXnxXsqN91JuGsduD6n3PbXAHMVm\ns3o6BKmHcuOdlBfvpdx4L+Xm5KmAERERkRZHBYyIiIi0OCpgREREpMVRASMiIiItjgoYERERaXFU\nwIiIiEiLowJGREREWhwVMCIiIq3M0qVfN+q85557mr1799T7/j333NFUITU5FTAiIiKtSEbGXr76\nanGjzr3ttum0a9e+3vcff/yZpgqrybXIrQRERESkbs88M4P169dy9tmDueCCC8nI2Muzz87iscce\nJCsrk9LSUn7/+5sYOvRspk27iTvuuItvvvma4uID7Ny5gz17dnPrrdMZMmQoY8eO5NNPv2batJsY\nPPgMkpNXkJ+fz4wZ/yI6OpoHH7yfffsyiI0dwJIlX/HBB5812+dUASMiIuIm7y7ZzK8bMmsdt1oN\nnE7zhO45uLeDCed1r/f9q6+exPvvv0uXLt3YuXM7s2b9m7y8XE4//UwuvHAce/bs5v7772Ho0LNr\nXJeZuZ+nnnqen3/+kY8+eo8hQ4bWeD8oKIjnnnuJl156ge++W0K7dh2oqCjn1Vfn8MMPy3j33f+e\n0Oc5USpgjpCdX8q+wnLahvp5OhQREZGT1qdPPwBCQkJZv34tH3/8PoZhobCwoNa5AwbEA+BwODhw\n4ECt9+PiElzvFxQUsGPHNmJj4wAYMmQoVmvz7u+kAuYIH36/jZ/X7uPJW4YSEaIiRkRETs6E87rX\n2Vpit4eQlVXk9uf7+PgA8OWXn1NYWMjMmf+msLCQP/xhUq1zjyxATLN269DR75umicVy8JhhGBiG\n0dThN0iDeI/QJSaUahNWbcrydCgiIiInxGKx4HQ6axzLz88nJqYdFouFb79dQmVl5Uk/p337Dmzc\nuA6AX375udYz3U0FzBESekQDkLIp28ORiIiInJhOnbqwceMGiosPdwMNH34eP/64jNtuu5mAgAAc\nDgdvvDH7pJ5z1llnU1xczM03T2H16hRCQ8NONvTjYph1tRN5OXc2uz0ybyXb9xby3K1nE+ivHjZv\n0lxNrnJ8lBfvpdx4r9aQm8LCApKTVzB8+EiysjK57babefvt95r0GXZ7SL3v6S/0Uc7sH8OW3QWk\nbs3hjL5tPB2OiIiIVwoMDGLJkq94++25mGY1f/5z8y56pwLmKGf2j+E/n28gZVOWChgREZF62Gw2\nHnzwMY89X2NgjtKpbQjRYf6s2ZJDZVW1p8MRERGROqiAOYphGCT2tFNW4WTjzjxPhyMiIiJ1UAFT\nB81GEhER8W4qYOrQvUMYwQE+pGzKorrlTdISERFp9VTA1MFqsRDXPYr8AxXs2Neyp7mJiIjU5fLL\nx1NSUsLcuXNIS1tT472SkhIuv3x8g9cvXfo1AJ99tpBvv/3GbXHWRwVMPRJ62AFITteqvCIi0npN\nmnQ9/fsPOK5rMjL28tVXiwEYM2Y85547wh2hNUjTqOvRr0skvjYLKZuyuezcbp4OR0REpFF+//tr\nefTRp2nbti379mVw773TsdsdlJaWUlZWxu23/4W+ffu7zn/kkX8wfPhI4uMT+Nvf7qKiosK1sSPA\nF18sYsGCd7BaLXTu3I277/4bzzwzg/Xr1/LGG7Oprq4mPDycyy67klmzniM1dTVVVU4uu2wCSUlj\nmTbtJgYPPoPk5BXk5+czY8a/aNu27Ul/ThUw9fDzsdK3cySrNmezP7eENpGBng5JRERamPc3f0JK\nZmqt41aLgbP6xMZYJjhiubT7uHrfP+ecEfzww3dcdtkEli37lnPOGUG3bj0455zhrFz5K//5z5s8\n8siTta5bvHgRXbt249Zbp/P111+4WlhKS0t5+ukXCAkJYerUG9myZTNXXz2J999/lxtuuJHXXnsF\ngFWrktm6dQsvvfQ6paWlTJ58FeecMxyAoKAgnnvuJV566QW++24JEyZcc0Kf/UjqQmpAQk/NRhIR\nkZblYAGzDIDvv/+WYcPO5dtvv+bmm6fw0ksvUFBQUOd127dvpX//OAASEga6joeGhnLvvdOZNu0m\nduzYRkFBfp3Xb9iwjvj4RAACAgLo3Lkru3btAiAuLgEAh8PBgQMH6rz+eKkFpgFx3aMxDEjZlEXS\nGR09HY6IiLQwl3YfV2driTv3QuratRs5OVns37+PoqIili1bSnS0g/vvf4gNG9bx4ovP1nmdaYLF\nYgBQ/VvrUGVlJc888wRz5rxNVFQ0d931f/U+1zAMjpy4W1VV6bqf1Wo94jlNM7tXLTBH2F64k2+2\n/uh6HRroS4/2YWzeXUBhcYUHIxMREWm8IUOG8eqrszj77HMpKMinffsOAHz77TdUVVXVeU3Hjp3Y\nsGE9AMnJKwAoKSnGarUSFRXN/v372LBhPVVVVVgsFpxOZ43re/fuR0rKyt+uK2HPnt106OC+//lX\nAXOE73b/xEu/zmV/cabrWEJPOyawarO6kUREpGU499wRfPXVYoYPH0lS0ljeeec/3H77VPr1609O\nTg6ffvpxrWuSksaydm0qt912M7t27cAwDMLCwhk8+Az+8IfreOON2VxzzSSef/4ZOnXqwsaNG3j+\n+add18fFxdOrV2+mTr2R22+fyp/+NI2AgAC3fUbDbKq2nGbkrma35RkreWv9O4zvmkRS5/MAyMwr\n4Z5Xfia+ezS3Xn5808ykabWG7edbI+XFeyk33ku5aRy7PaTe99QCc4TY6D5YDQursg6PGHdEBNLe\nHsTa7bmUVzgbuFpERESaiwqYIwT6BBLbpje7ivaQXZrjOp7Qw05lVTVp23I9GJ2IiIgcogLmKGd0\nODjVa1VWmuvY4c0dtSqviIiIN1ABc5TB7eMwMFh1xMJDnduGEBHix+rN2Tirqz0YnYiIiIAKmFpC\n/UPoEdGNbYU7ySs7uFiPYRjE94imuKyKTbvqXgBIREREmo8KmDok2A/uEXFkN1Lioc0d1Y0kIiLi\ncSpg6hBn73+wG+mI2Ui9OoYT4Gdj1absJltFUERERE6MCpg6hPmF0jWsE1vyt1NQfnCevs1qYUC3\nKLILytiV2TT7OIiIiMiJUQFTj3hHLCYma7Lrmo2kVXlFREQ8ya0FTHp6Oueffz7z5s0DDm4KNX36\ndC6//HImT57s2hHz448/5rLLLuOKK65g/vz57gyp0eIPjYPJPFzAxHaNwmoxNJ1aRETEw9xWwJSU\nlPDQQw8xZMgQ17F3332XiIgIFixYwJgxY1ixYgUlJSXMnDmTOXPmMHfuXN58803y8+veqrs5RfpH\n0Cn0NNLzt3CgshiAAD8bfTpHsHP/AbILSj0coYiIyKnLbQWMr68vs2fPxuFwuI598803/O53vwPg\nyiuvZOTIkaxevZrY2FhCQkLw9/cnMTGR5ORkd4V1XBLssVSb1azJWuc6dmg20ip1I4mIiHiMzW03\nttmw2Wrefs+ePXz33Xc8+eSTREdH8/e//53s7GwiIyNd50RGRpKV1XAXTUREIDab1S1xw+HNo84L\nOJMPt3zGuoL1XBR3cHPH887oxFuLN5K2PY+rL+zrthikbg1t7CWeo7x4L+XGeyk3J8dtBUxdTNOk\nS5cuTJs2jVmzZvHKK6/Qt2/fWuccS15eibtCrLFDqBV/OgS3Y82+9ezYm0mgz8Ftwbu2CyVtSw7b\nduYSHODjtlikJu3e6p2UF++l3Hgv5aZxvGY36ujoaAYPHgzAsGHD2Lx5Mw6Hg+zsw90xmZmZNbqd\nPC3eHovTdJKWs951LKFHNNWmSeqWnAauFBEREXdp1gLmnHPOYdmyZQCsXbuWLl26EBcXR2pqKoWF\nhRQXF5OcnMygQYOaM6wGJTgOzUY6vKhdglblFRER8Si3dSGlpaUxY8YM9uzZg81mY/HixTz11FM8\n8sgjLFiwgMDAQGbMmIG/vz/Tp09nypQpGIbB1KlTCQnxnn7BtkFtaBvUhnW5GymrKsff5kdMVCBt\nIgNJ25pLZZUTHzeOxxEREZHaDLMFrovvzn7DuvolP9m6mEXbv+b3/a5lYJs4AN79ZjOfL9/JbZcP\nIK57tNvikcPUZ+ydlBfvpdx4L+WmcbxmDExLFW+PBaixN9Kh6dRa1E5ERKT5qYBphPbBMdgDokjL\n2UCFsxI4OBMpNNCHVZuyqa5ucY1YIiIiLZoKmEYwDIN4eywVzgrW524EwGIxiO8RTWFJJVv3Fno4\nQhERkVOLCphGSnAc7EZKyTxyc0fNRhIREfEEFTCN1DGkAxF+4aRmr6OyugqAvp0j8POxkpKe1agF\n+ERERKRpqIBpJMMwSHDEUuYsY2PuJgB8bFb6d41kf14pGTnuWx1YREREalIBcxwOz0Y6shvp4BRq\nzUYSERFpPipgjkOXsI6E+YawJmstzmonAAO6RWMxDFK0O7WIiEizUQFzHCyGhTh7LMVVJWzK3wpA\ncIAPvTqGs3VvIXlF5R6OUERE5NSgAuY4HdobKeWIRe3if+tGWr1ZrTAiIiLNQQXMceoW1oVgnyBW\nZ6ZRbVYDh8fBaDq1iIhI81ABc5ysFitx9n4UVR5gS/52AKLDAujoCGbDjjxKy6s8G6CIiMgpQAXM\nCahrb6SEnnaqnCapW3M8FZaIiMgpQwXMCegV0Z1AWwCrsmp3I2k2koiIiPupgDkBVouV2Oi+5JcX\nsKNwFwCnOYKJCvVnzZYcqpzVHo5QRESkdVMBc4JceyP91o1kGAYJPaMpLa9i4858T4YmIiLS6qmA\nOUG9I3rgb/VjVWaqax+kQ5s7alVeERER91IBc4J8rD70j+5DTlkeuw7sAaDnaWEE+dtI2ZStzR1F\nRETcSAXMSXDNRso8uDeS1WIhrns0eUXlbN9X5MnQREREWjUVMCehX1QvfC0+pGStOaIbSbORRERE\n3E0FzEnwtfrSN6o3mSXZZBTvB6B/lyh8bBaNgxEREXEjFTAnKcFec28kP18r/TpHsiermMy8Ek+G\nJiIi0mqpgDlJ/aL7YLPYWJVZe3NHdSOJiIi4hwqYkxRg86dPZA/2Fu9jf8nBbqP47tEYQEq6upFE\nRETcQQVME0iwDwBwtcKEBvnSrUMYm/YUUFhS4cnQREREWiUVME0gNroPFsPiGgcDkNjDjmnC6s3q\nRhIREWlqKmCaQKBPIL0iurOraA/ZpbnAEdOp01XAiIiINDUVME3k0N5Iq35rhWkTGUi76CDWbc+l\nvNLpydBERERaHRUwTWRAdD8MDNeqvHCwFaaiqpq123I9GJmIiEjrowKmiYT4BtMjvCvbCneQV3Zw\nN2pt7igiIuIeKmCa0KFupNVZawHoHBNCeLAvqzfn4Kyu9mRoIiIirYoKmCYUZ+9/sBvpt3EwFsMg\noYedA6WVbN5d4OHoREREWg8VME0ozC+ULmGd2Jy/jcKKg7tRa3NHERGRpqcCpoklOGIxMV3dSL07\nRRDgZyU5Pcu1Y7WIiIicHBUwTSz+t80dD63Ka7NaiO0aRXZBGXuyij0ZmoiISKuhAqaJRfpH0Cnk\nNNLzt3Cg8mDBcmg2UrJmI4mIiDQJFTBukOCIpdqsJjVrHQCxXaOwWgytyisiItJEVMC4Qby95qq8\ngf42eneKYMf+InILyzwZmoiISKugAsYN7IFRtA+OYX3uJkqrSgFI1GwkERGRJqMCxk0S7ANwmk5S\ns9cDEK9VeUVERJqMChg3SXD8Nhsp6+DeSBEhfnSJCWHjznyKyyo9GZqIiEiLpwLGTdoGtaFtoIN1\nORsoqyoHDs5GclabrNmS4+HoREREWjYVMG6U4IilsrqKdbkbD77WOBgREZEmoQLGjVyzkX5b1K5d\ndBCOiABSt+ZQWaXNHUVERE6UChg3ah8cQ3RAFKk566lwVmIYBgk9oimvcLJ+R56nwxMREWmxVMC4\nkWEYJNhjqXBWsD43HTi8Kq9mI4mIiJw4FTBuluCouahd9/ZhhAT6sGpTNtXa3FFEROSEqIBxs44h\nHYjwCyc1ex1V1VVYLAZx3aMpKK5g295CT4cnIiLSIqmAcTPDMEhwxFJaVcbGvM0AJGpzRxERkZPi\n1gImPT2d888/n3nz5tU4vmzZMnr16uV6/fHHH3PZZZdxxRVXMH/+fHeG5BFHz0bq2zkCXx+LNncU\nERE5QW4rYEpKSnjooYcYMmRIjePl5eW8+uqr2O1213kzZ85kzpw5zJ07lzfffJP8/Hx3heURXcI6\nEuYbwurstTirnfj6WOnfJYp9uSVk5BR7OjwREZEWx20FjK+vL7Nnz8bhcNQ4/vLLL3PNNdfg6+sL\nwOrVq4mNjSUkJAR/f38SExNJTk52V1geYTEsxNljKa4sYVP+VkCL2omIiJwMm9tubLNhs9W8/bZt\n29iwYQO33XYbTz75JADZ2dlERka6zomMjCQrq+GxIRERgdhs1qYP+jd2e0iT33N49el8t+dHNhZt\n5OxeiZx3hh9vLNpA2rZcJo+KzNphAAAgAElEQVTv3+TPa63ckRs5ecqL91JuvJdyc3LcVsDU5bHH\nHuO+++5r8ByzEVOL8/JKmiqkWuz2ELKyipr8vtG0IdgniJ92JTO+4xgshoWeHcLYuCOPTduyCQ/2\na/Jntjbuyo2cHOXFeyk33ku5aZyGirxmm4W0f/9+tm7dyp133smECRPIzMxk4sSJOBwOsrMPd6Nk\nZmbW6nZqDawWK3H2fhRVHGBrwQ4A4nvYMYFVm9WNJCIicjyarYBp06YNX331Fe+++y7vvvsuDoeD\nefPmERcXR2pqKoWFhRQXF5OcnMygQYOaK6xmdfRspEPjYFZpHIyIiMhxcVsXUlpaGjNmzGDPnj3Y\nbDYWL17MCy+8QHh4eI3z/P39mT59OlOmTMEwDKZOnUpISOvsF+wZ0Y0AWwApWalc2mMc9vAATnME\ns257LqXlVQT4NWuPnoiISIvltr+Y/fv3Z+7cufW+v2TJEte/k5KSSEpKclcoXsNmsTEgui/L961k\nR+FuuoR1JKFHNLsyD7B2Wy6Dere+rjMRERF30Eq8zezovZEStCqviIjIcVMB08x6R/TAz+pLSmYq\npmnSsU0wUaF+rNmcQ5Wz2tPhiYiItAgqYJqZj9WH2Oi+5JTlsvvAXgzDIL6HnZLyKtJ3ta4ViEVE\nRNxFBYwHHD0bKfHQqrzaG0lERKRRVMB4QN+oXvhYfEjJOtiN1OO0cAL9bKRszmrUQn4iIiKnOhUw\nHuBn9aVfVG/2l2SRUbwfm9VCXPcocgvL2bn/gKfDExER8XoqYDwkwX5w/6Nas5HSNRtJRETkWFTA\neEi/6D7YDCspv42D6dclEpvVot2pRUREGkEFjIcE2PzpE9WTvcX7yCzJIsDPRt/OEezOOkBWfqmn\nwxMREfFqKmA86PBspDTg8N5IaoURERFpmAoYDxoQ3ReLYSElaw0A8d2jMYAUjYMRERFpkAoYDwr0\nCaRXRHd2Fu0hpzSXsGA/urYPJX13PkUlFZ4OT0RExGupgPGwhEPdSFkHu5ESe9gxTVizJceTYYmI\niHg1FTAeNsDeDwPDNRspoaemU4uIiByLChgPC/ENpkd4V7YV7iC/vIC2kYHERAWydlsu5ZVOT4cn\nIiLilVTAeIF4R81upIQediqqqlm3PdeTYYmIiHgtFTBeIM7eDzi8uWNCT23uKCIi0hAVMF4g3C+M\nrmGd2Zy/jaKKA3SJCSUs2JdVm7OprtbmjiIiIkdTAeMlEuz9MTFZnZWGxTBI6B7NgdJKNu8p8HRo\nIiIiXkcFjJeI+2069aHZSPHa3FFERKReKmC8RFRABJ1CTiM9fwvFlSX06RSBn6+VVZuyMU11I4mI\niBxJBYwXiXf0p9qsZk32OnxsFgZ0jSIzv5Q92cWeDk1ERMSrqIDxIoc3dzy4N5I2dxQREambChgv\n4giMpn1wDBtyN1FaVcaAblFYLYY2dxQRETmKChgvk2CPpcp0kpa9nkB/H3p1DGf7viJyC8s8HZqI\niIjXUAHjZQ6typuS9duidr/NRlq1Wd1IIiIih6iA8TIxQW1oG+hgXc5Gyp0Vh8fBqBtJRETERQWM\nF4p3xFJZXcnanA1EhvrTqW0IG3bmU1JW6enQREREvIIKGC90eDbSwW6kxB7ROKtN1mzN8WRYIiIi\nXkMFjBfqEBxDdEAUaTnrqXRWusbBaHNHERGRg1TAeCHDMEiwx1LurGB9bjrt7UHYw/1J3ZpDZVW1\np8MTERHxOBUwXire0R84OBvJMAwSetgpq3CyYWeehyMTERHxPBUwXqpTyGlE+IWTmr2Oquoqrcor\nIiJyBBUwXsowDOId/SmtKmNj3ha6dwgjOMCHlE1ZVGtzRxEROcWpgPFiR+6NZLVYiOseRcGBCrZl\nFHo4MhEREc9SAePFuoZ1Isw3hNXZa3FWO0k8tCqvupFEROQUpwLGi1kMC3H2/hRXlrA5fxt9u0Ti\na7OQrFV5RUTkFKcCxssd6kZKyUrFz8dKvy6RZOSUsC+3xMORiYiIeI4KGC/XPbwLwT5BrM5Ko9qs\nPryo3Sa1woiIyKnrhAuY7du3N2EYUh+rxcqA6H4UVhSxtWAHcd2jMAytyisiIqe2BguYG264ocbr\nWbNmuf79wAMPuCciqSXecXhvpJBAX3p0CGfLngIKiis8HJmIiIhnNFjAVFVV1Xj9888/u/5tai2S\nZtMrohsBtgBWZaVhmiaJPaIxgdWb1QojIiKnpgYLGMMwarw+smg5+j1xH5vFxoDovuSV57OjaBfx\nPQ+Og9FsJBEROVUd1xgYFS2eE2//bW+kzFQc4QF0sAexbnseZRVVx7hSRESk9bE19GZBQQE//fST\n63VhYSE///wzpmlSWKjVYJtTn8ie+Fl9WZWZysXdxhDfw84nP24nbWsug3o7PB2eiIhIs2qwgAkN\nDa0xcDckJISZM2e6/i3Nx8fqQ/+oPqzMXM3uAxkk9ozmkx+3k7IpWwWMiIicchosYObOndtccUgj\nJDgGsDJzNasy1zCu62giQvxYsyWbKmc1NquW9BERkVNHg3/1Dhw4wJw5c1yv//e//3HRRRdx6623\nkp2tGTDNrW9UL3wsPqRkpWEYBgk9oikuq2LTrnxPhyYiItKsGixgHnjgAXJycgDYtm0bzzzzDHff\nfTdnnXUWjzzySLMEKIf5WX3pF9WL/SWZZBTvJ6HnoVV5VUyKiMippcECZteuXUyfPh2AxYsXk5SU\nxFlnncVVV13VqBaY9PR0zj//fObNmwdARkYG119/PRMnTuT6668nK+vgNOCPP/6Yyy67jCuuuIL5\n8+ef7Gdq1RIO7Y2UuYZep4UT4GcjZVOW1uUREZFTSoMFTGBgoOvfv/zyC2eeeabr9bGmVJeUlPDQ\nQw8xZMgQ17Fnn32WCRMmMG/ePEaNGsUbb7xBSUkJM2fOZM6cOcydO5c333yT/Hx1idSnX3QfbIaV\nVVlp2KwW4rpFkVNYzq7MA54OTUREpNk0WMA4nU5ycnLYuXMnKSkpDB06FIDi4mJKS0sbvLGvry+z\nZ8/G4Tg8Q+bvf/87o0ePBiAiIoL8/HxWr15NbGwsISEh+Pv7k5iYSHJy8sl+rlYrwOZP78ie7DmQ\nQWZJlqsbSYvaiYjIqaTBAubGG29kzJgxjB8/nltuuYWwsDDKysq45ppruPjiixu8sc1mw9/fv8ax\nwMBArFYrTqeTt99+m/Hjx5OdnU1kZKTrnMjISFfXktQtwbU3Uhr9u0RisxoaByMiIqeUBqdRn3vu\nuXz//feUl5cTHBwMgL+/P3/5y18YNmzYCT3Q6XRy1113ceaZZzJkyBAWLlxY4/3GjOWIiAjEZrOe\n0PMbw2737jVuRoSdztsbFpCWt45rB/+OuB52Vm7IpNpqpU1k4LFv0IJ5e25OVcqL91JuvJdyc3Ia\nLGD27t3r+veRK+927dqVvXv30q5du+N+4L333kunTp2YNm0aAA6Ho8aA4MzMTOLj4xu8R15eyXE/\nt7Hs9hCysorcdv+m0jOiO+tz09mwcyf9OkWwckMmX/+8nVGDT/N0aG7TUnJzqlFevJdy472Um8Zp\nqMhrsIA577zz6NKlC3b7wXEWR2/m+NZbbx1XIB9//DE+Pj7ceuutrmNxcXHcd999FBYWYrVaSU5O\n5q9//etx3fdUlGCPZX1uOquyUhnY4wzeWryRlE1ZrbqAEREROaTBAmbGjBl89NFHFBcXM3bsWMaN\nG1djvEpD0tLSmDFjBnv27MFms7F48WJycnLw8/Nj0qRJAHTr1o1//OMfTJ8+nSlTpmAYBlOnTtU2\nBY0wwN6P/258n1VZqYzseA7d2oWSvquAA6WVBAf4eDo8ERERtzLMRgw6ycjI4IMPPmDhwoW0b9+e\niy66iFGjRtUapNtc3Nns1pKa9Z5NfplN+Vt5ZOjf+CE5j/e+3cqUsX0YGhvj6dDcoiXl5lSivHgv\n5cZ7KTeN01AXUqM20ImJieGWW25h0aJFjB49mocffviEB/FK00lwDABgVVYaib9Np16l2UgiInIK\naFQBU1hYyLx587j00kuZN28ef/zjH/nss8/cHZscQ5y9HwCrMlOJiQqiTWQgqdtyqKh0ejgyERER\n92pwDMz333/Pe++9R1paGhdccAGPP/44PXv2bK7Y5BjC/cLoGtaJzfnbKKo4QGKPaBYt38m6HXnE\nd4/2dHgiIiJu02AB84c//IHOnTuTmJhIbm4ub7zxRo33H3vsMbcGJ8eWYI9la8EOVmelkdCzD4uW\n7yQlPUsFjIiItGoNFjCHpknn5eURERFR473du3e7LypptDh7LO9t/oRVWWncEncGoUG+rNqcTXW1\nicXS8H5VIiIiLVWDY2AsFgvTp0/n/vvv54EHHqBNmzacfvrppKen8+yzzzZXjNKAqIAIOoZ0YGPe\nZkqrSonvHk1RSSVb9hZ4OjQRERG3abAF5l//+hdz5syhW7dufP311zzwwANUV1cTFhbG/PnzmytG\nOYYERyw7i3azJnsdCT06893qvaSkZ9OjQ7inQxMREXGLY7bAdOvWDYCRI0eyZ88errvuOl588UXa\ntGnTLAHKscXbD23umErfzhH4+VhJ3pTVqH2lREREWqIGCxjDqDmGIiYmhlGjRrk1IDl+jsBo2gfH\nsCE3nSoqie0aSWZeKXtz3LdnlIiIiCc1ah2YQ44uaMR7JNhjqTKdpGWvJ6HHwUXtUtKzPByViIiI\nezQ4BiYlJYXhw4e7Xufk5DB8+HBM08QwDJYuXerm8KSx4h2xfLLtC1ZlpXJNj/5YDIOUTdmMO6uz\np0MTERFpcg0WMJ9//nlzxSEnKSaoDW0CHazN2Yitr0mvjuGs35FHXlE5ESF+ng5PRESkSTVYwLRv\n37654pAmkOCI5fPtX7M2ZwMDe9lZvyOPp/6Xwk3j+9GprXb4FhGR1uO4xsCIdztyNtI5ce0YObAD\nGTklPPzWChb9vIPqas1KEhGR1kEFTCvSITiGaP9I0nLWY+Lk2lE9+b8r4ggO8GH+0i089b8UcgrK\nPB2miIjISVMB04oYhkGCYwDlzgrW56YDMKBbFP+ccjoJPaLZsDOfB17/hZ/X7fNwpCIiIidHBUwr\nE+/oD8CqrDTXsdBAX6ZdGsv1F/amutrk1Y/X8erCtZSUVXoqTBERkZPS4CBeaXk6hZxGhF84a7LX\nUVVdhc1yMMWGYXBOXDt6dQxn9sJ1/Lx2P5t25fOHcX3p1THiGHcVERHxLmqBaWUMwyDe0Z/SqlI2\n5m2p9X6biEDuuTaR3w3tTG5ROU+8ncL8pZupclZ7IFoREZETowKmFTpyNlJdbFYLF5/dlXsnDiQ6\n3J9FP+/k4bdWsDe7uDnDFBEROWEqYFqhrmGdCPUNYU32WpzVznrP694+jH/ccDrDBsSwc/8B/jnn\nV75euVubQIqIiNdTAdMKWQwL8fb+HKgsZunuHxosSAL8bPx+TB+mXtIfX5uF/3yZzrPz11BwoLwZ\nIxYRETk+KmBaqbPbDyHA5s/7mz/hldQ5FFYUNXj+wF4OHpxyBv26RJK6NYf7X/tFm0GKiIjXUgHT\nSrULbsvfTr+DnhHdSc1ezyPLnyE1e12D10SE+HH7hDiuPr8HZRVOXng/lTmLNlBWUdVMUYuIiDSO\n9R//+Mc/PB3E8SopqXDbvYOC/Nx6/+YUYPPn9LYJBNr8WZu7kV/2JVNQXkCP8G6u6dVHMwyDbu3C\nSOwZzeY9BaRuzeHXDZl0bRfm8U0hW1NuWhPlxXspN95LuWmcoKD6/+6ogDlKa/tSGYZBl7BOxEX3\nY2vBdtbmbCQ5cw2dQk8jwj+83utCg3wZFhtDVVU1a7bk8P2aDDCge4cwLIbRjJ/gsNaWm9ZCefFe\nyo33Um4aRwXMcWitX6oQ32DOjBmMs9rJ2pwN/JTxK9VmNd3CumAx6u5JtFoM+nWJpGeHMNbtyGPV\npmzWbc+ld8dwggJ8mvkTtN7ctHTKi/dSbryXctM4DRUwGgNzCvGx2Li4+xhuS7iJcL8wFm3/mqdW\nzmR/cWaD1/XpHMmDU07n9D4Otuwp5O9v/MqyNXs13VpERDxGLTBHORWq4qiASIa0G0R+eSHrcjfy\nY8avBNoC6BjSAaOe7iFfm5WBvey0iQj8bVxMFnuyi+nbORJfH2uzxH0q5KYlUl68l3LjvZSbxlEL\njNQSYAtgct+rmNJ/Ir4WH95J/5BZq1+noLyw3msMw2BI/7b884bT6dkhjJUbs7j/teWs3ZbbjJGL\niIioBaaWU60qjglqw+C2CWQU72d9bjo/71uBPSCKtkFt6r0m0N+Hs/rH4GOzsGZLDj+k7aOkrIre\nHcOxWtxXE59quWkplBfvpdx4L+WmcdQCIw0K9wtjatwUruh5ERXOCmanzWXuuncprSqr9xqLxWDs\nkM787bqBtI0M5MsVu3hwzgp27m94wTwREZGmoBaYo5yqVbFhGHQO7Ui8vT/bCneyLncjK/ev4rSQ\nDkT6R9R7XXiwH8MGxFBSXnVwunVqBj42K13bh9Y7nuZEnaq58XbKi/dSbryXctM4mkZ9HE71L1Ww\nbzBnxgwC0yQtZwM/Z6ygsrqK7uH1T7e2WS3EdYumc9sQ1m7LJXlTNpt2F9CnUwQBfnUvmHciTvXc\neCvlxXspN95LuWkcdSHJcbFZbIzvlsTtiTcT5R/BFzu+4ckVL7L3wL4Gr4vrHs2DU84gvns063fk\n8cBrv/DL+v3NFLWIiJxK1AJzFFXFh0X6hzMkZhAHKg6wNncjP2X8ir/Vj06h9U+39vO1cnofB+Eh\nfqzZmsPydZlk5pXSp1MEPraTq5eVG++kvHgv5cZ7KTeNoxYYOWH+Nn+u7XMFN8Veh7/VjwWbPmbm\nqtfIK8uv9xrDMBge355/3HA6XWJC+GntPv7++i+k76r/GhERkeOhFpijqCquW9sgB6e3Hcj+kkzW\n5abzU8YKovwjaBfctt5rggN8GBobgwms2ZLND6kZVDmr6XlaOBbL8Q/wVW68k/LivZQb76XcNI5a\nYKRJhPmF8KcBN3BVr0txVlfx+tq3mbP2v5RUltZ7jc1q4dJzunLPtYlEhfrz6U87eGTuSjJyipsx\nchERaW3UAnMUVcUNMwyDTqEdSHAMYHvhLtblbmTF/lV0CIkhKiCy3uuiQv0ZNiCGggPlpG7N5fs1\nGQQF+NC5bUijp1srN95JefFeyo33Um4aR9Ooj4O+VI0T7BPEmW0HYRgW1uZsYHnGSsqqyuke0RVr\nPdOtfWwWEnvaaRcdRNrWHFZszGL7viL6dI7E3/fY+ykpN95JefFeyo33Um4aR11I4hZWi5WxXUZx\nR+It2AOi+HrXdzzx6/PsOZDR4HWDezt4cMoZ9OkUwZotOTzw2nJWbc5upqhFRKQ1UAvMUVQVH78I\n/zCGtBtMcVUJa3M28NPeX/Gx+tA5tGO93UMBfjaG9G9LoJ+NNVty+GntfgqKK+jdMQKbte66Wrnx\nTsqL91JuvJdy0zhqgRG387P6cnWvS7l5wA0E2AL4YPOnPJ/yKjmlefVeYzEMLji9Iw9MHkwHexBL\nU/bwjzm/si2j/h2xRUREQC0wtagqPjmOQDtnxAwksySb9b9Nt47wD6NdUNt6W2NCg3wZNiCGisrq\ng7tbp2ZgMQy6tw+rcY1y452UF++l3Hgv5aZx1AIjzSrEN5ibYq/j2t5XYFLNm+v+x+tr/0NxZUm9\n1/jYrFw1sgfTr4onJNCH97/byuNvJ5OVX/8UbREROXWpBeYoqoqbhmEYnBbSnoFt4thZtJt1uen8\nsi+ZdsFtsQdE1XudIzyAobExZOWXkrbt4HTr8GA/TnMEKzdeSnnxXsqN91JuGkfTqI+DvlRNK9An\nkDPaDsRmsZGWs4Hl+1ZSUllCj/BuWC11T5329bEyqLcDe3gAqVtz+HVDJhk5JST2aUNVpbOZP4Ec\ni35nvJdy472Um8ZpqIAxTNM0mzGWJpGVVeS2e9vtIW69/6lsZ+Fu5qz7H/tLMmkb1Ibr+17FaSHt\nG7wmK7+U2QvXsXlPAe2ig7j18gE4wgOaKWJpDP3OeC/lxnspN41jt4fU+55bW2DS09O58sorsVgs\nDBgwgIyMDG655RYWLFjAd999x8iRI7FarXz88cf89a9/ZcGCBRiGQb9+/Rq8r1pgWqYwv1CGxAyi\nzFnO2pz1/JSxAothoWtYp3oH+Ab5+3BWbFuqqqpJ2ZTNL+sz6dMpgvDg+qtyaV76nfFeyo33Um4a\nxyODeEtKSnjooYcYMmSI69jzzz/PNddcw9tvv02nTp1YsGABJSUlzJw5kzlz5jB37lzefPNN8vO1\na3Fr5Wv1ZULPi5gaN4Vgn0A+3vo5/0p+mezS3HqvsVosXDGiO3+8JJai4goefzuZtdvqP19ERFo/\ntxUwvr6+zJ49G4fD4Tq2fPlyRo4cCcCIESP46aefWL16NbGxsYSEhODv709iYiLJycnuCku8RN+o\nXvz1jDtIsMeytWA7j/7yDD/t/ZWGejTHDevKzRf3x+k0eXb+an5K29eMEYuIiDdxWwFjs9nw9/ev\ncay0tBRfX18AoqKiyMrKIjs7m8jIw5sARkZGkpWV5a6wxIsE+wQxpf9ErutzJQYW5m2Yz+y0uRyo\nqH+n6kG9HUy/Mg5fHyuzP1nHop93NFj0iIhI62Tz1IPr+6PTmD9GERGB2GzH3vzvRDU0aEia3jjH\ncM7oFsuLy99kdVYa24t2cvPgSSS261/rXLs9BLs9hNPahfOP2T8xf+kWypwmf/hdfyyWxu1qLU1P\nvzPeS7nxXsrNyWnWAiYwMJCysjL8/f3Zv38/DocDh8NBdvbhjfwyMzOJj49v8D55efUviHayNDLc\nU3y5pf8Uvt75HQu3LubxZTM5u/0QLu0+Fl/rwVa7I3MTaDO459pE/vXuahYu20pG1gFuHNcHHzcW\ntlI3/c54L+XGeyk3jdNQkdesK/GeddZZLF68GIAvvviCs88+m7i4OFJTUyksLKS4uJjk5GQGDRrU\nnGGJl7AYFkZ1Gs5dg/5MTFAblu35icd+fZYdhbvqPD8y1J97JibSs0MYKzZk8sw7qykpq2zmqEVE\nxBPctg5MWloaM2bMYM+ePdhsNtq0acNTTz3FPffcQ3l5Oe3ateOxxx7Dx8eHzz//nNdeew3DMJg4\ncSK/+93vGry31oFp/SqdlXy89XOW7FqGxbBwYeeRTBx0Ebk5tVvfKqucvLpwHSs3ZtHeHsQdE+KJ\nCNE06+ai3xnvpdx4L+WmcRpqgdFCdkfRl8q7bMzdzFvr3yG/vIB+jp5c3+saAn0Ca51XXW3y3682\n8XXybiJD/bj9ijja24M9EPGpR78z3ku58V7KTeN4TReSyPHqFdmdv51+OwOi+7E2M52nV84ip441\nYywWg2tG9eDy4d3ILSznsXnJpO/SekIiIq2VChjxeoE+gdwYO4mxPUeyrySTJ1e+WOe4GMMwGHNm\nJ/4wrg/llU6e+t8qVm7M9EDEIiLibipgpEWwGBYmJ1zOFT0u4kBFMc8mv0xq9ro6zz2rfwy3XT4A\nq8Vg1gdpLEne3czRioiIu6mAkRZl+GlDuTH2OkzglTVvsnT3D3We179rFHdfm0BIoA/zvkjnvW+3\naME7EZFWRAWMtDhx9n7cnvgngn2DmJ/+Ee9tWki1WV3rvM5tQ/nrpIE4IgL49KcdvP7Zeqqctc8T\nEZGWRwWMtEidQk/jLwOn0TbQwZJdy3gtbR4Vzto7uzoiAvnrxIF0iQnhh9R9PP/eGsoqqjwQsYiI\nNCUVMNJiRQVEMn3gLfQI78qqrDSeS3mVoooDtc4LDfLlL1cnENs1irStuTzxdgqFxdrGXkSkJVMB\nIy1aoE8gU+P/wOA2iWwv3MlTK15kf3HtmUf+vjb+fFksw2Jj2L6viEfnriTTjVtSiIiIe6mAkRbP\nx2Jjct8rubDzSLLLcnl65Sw252+rdZ7NauGGMb0Zd1YnMvNLeWTuSrZlFHogYhEROVkqYKRVMAyD\ncV1HM7H3FZQ6y3gh5VVW7F9V53mXntONSRf05EBpJU+8nULq1hwPRCwiIidDBYy0KkPaDWZq3BRs\nFh/eWPs2X2z/ps7p0yMSOzD1kliqTZPnF6zhh9QMD0QrIiInSgWMtDq9I3twx8CbifAL56Oti/jv\nxvdwVjtrnZfY086dV8Xj72vltU/X8+lP27VWjIhIC6ECRlql9sEx3DloKh2C2/HD3l94ec0cyqrK\nap3Xo0M490wcSGSoH+99u5V5X6ZTXa0iRkTE26mAkVYr3C+M2xP/RL+o3qzL3cgzyS+RX15Q67z2\n0UH8bdIgOtiD+CZ5Dy99mEZFZe0WGxER8R4qYKRV87f588fYyQxrfyZ7DmTw5IoX2XOg9niXiBA/\n7rl2IL07hrMyPYun31lFcVmlByIWEZHGUAEjrZ7VYuWqnpdwcbcx5JcX8MzKWazL2VjrvEB/G7dP\niGdwbwebdhfw2LxkcgtrdzuJiIjnqYCRU4JhGIzqNJzf97uWKtPJS2ve4Me9v9Q6z8dm4Y8X9WPU\noNPYm13MI3NXsjuz9uq+IiLiWSpg5JQysE0ct8bfRIDNn/9sWMDCLZ/XmnlkMQyuGtmdCSO6k1dU\nzmP/SWbjzjwPRSwiInVRASOnnG7hnblz4FSiA6L4fMcS5qz7L5XVNTd4NAyDpDM6cuP4vlRUOnn6\nnVX8uqH2FgUiIuIZKmDklOQItHPnwKl0Ce3Eiv2reHHVbIora++NNKRfW/5vQhxWq4WXP0zjqxW7\nPBCtiIgcTQWMnLJCfIO5NeEmEuyxbM7fxtMrZ5JdWntbgX6dI7nnmkRCg3x5+6tNzP9mM9Va8E5E\nxKNUwMgpzdfqw+/7X8v5Hc9lf0kWT654ke2FO2ud16ltCH+dNJA2kYEsWr6T1z5ZR5Wz2gMRi4gI\nqIARwWJYuKT7WK7seTHFlSU8m/wKq7LSap1nDw/grxMT6doulJ/W7ue5BWsoLa+q444iIuJuKmBE\nfnNOh7P444DJGMC/U0uDYTEAAB35SURBVOeyZNeyWueEBPryl6sTiOsWxdptuTzxdgoFB8qbP1gR\nkVOcChiRI8RG9+X2xJsJ8Q3mvU0LmZ/+EdVmza4iPx8r0y6L5Zy4GHbsL+KRuSvZn1t7ALCIiLiP\nChiRo3QM7cBfBk0jJqgNS3f/wOzUuZQ7K2qcY7VYmJzUm4uGdSG7oIxH5q5k695CD0UsInLqUQEj\nUodI/wjuSLyFnhHdWZO9lueSX6GwoqjGOYZhcNGwLkxO6kVxWSVP/DeZ1ZuzPRSxiMipRQWMSD0C\nfQKYGvd7zmg7kB1Fu3hqxYvsK95f67xz49vz50sHgAkvvJfKstV7PRCtiMipRQWM/H979x4dVXn3\nC/y7b3PNJDNJJuEWEgElXAQRULkJKOJ7vJ5qK9Qa/cO3qy7tWa2HuqS03mpP34Pn9T1dVl/aLuv7\n+uLpkhZbtSpCraDUBLwgoIEIUggQyH1ym/uevc8fc8lMrhNIMnuS72ct196z59k7T/ztJF+e/cze\nNABZlFEx6y7cfMkNaAl48K+f/TuOeU70anfFpYX40bcXwGaR8R87avDmRyd7PaKAiIiGDwMM0SAE\nQcBNl9yAe2etQzASxPMHX8TH9Qd6tZsxOQ8/vudKFORa8Prek9i68ytoGkMMEdFIYIAhStPVExfi\n+/P/GSZJwctHXsWOk3/rNcoyscCOn9y7ECVFOdhz8Bxe+PMXCIUjGeoxEdHYxQBDNAQz82fgf175\nIFxmJ946uRP/r2Y7IlpqQHHmmLHxO1diVqkLnx9vxr++ehBd/nCGekxENDYxwBAN0aScCXhk0f/A\nVMdkVJ3/BP9+6CX4VX9KG6tZxsN3zcc1s4vxdV07/uWVz9Dc7u/niERENFQMMEQXIM/swA8WPIC5\nBbNQ4zmOf/tsCzyBtpQ2siTin2+djRuvKsH5Fh/+19bPcLqhs58jEhHRUDDAEF0gi2zG9+bdh2sn\nL8U5bz3+z6e/wpnOupQ2oiBg3XWXYv11M9DeFcLm3x/A0VOtGeoxEdHYwQBDdBFEQcRdl92OO2bc\ngo5QF/7vgS2obqnp1W7tVVPxwO1zEFY1/NsfDqHyy/P8mDUR0UVggCG6SIIg4Pqp1+L+ufdA0zX8\n+vB/Ym/dvl7trppVjIfvugImRcSLbx3Fz//rMxw+0cwgQ0R0AaQnn3zyyUx3Yqh8vtDgjS6Q3W4e\n0ePThTN6bSbai6OPHmiqxoHGwwhHwrjMNR2CICTauJ1WXHmZG+3eEI6c8mDfkQYcPtGCvBwzil3W\nlLbZwuh1Gc9YG+NibdJjt5v7fY8BpgeeVMaVDbVxWZy4wn05jrR8hS9ajqDB14jLC2ZBEqVEG4fN\nhKtmFePKy9zo8oVwpNaD/UcacOhEC5x2M4rzsyvIZENdxivWxrhYm/QMFGAEPQvHr5uaRu6THG63\nY0SPTxcum2rTFfbiN4dfxj/aT2FaXhm+N+8+5Cj2PtuebezCm5Wn8FlNI3QApcUO3LasDFdcWpgV\nQSab6jLesDbGxdqkx+129PseR2B6YCo2rmyqjUkyYXHxFWjyt+BI61c43FSN2QUzYVdsvdrm2k1Y\nXF6ERTPd8AbCOHrKg/1HG3Hw62bk2k2YkG8zdJDJprqMN6yNcbE26eElpCHgSWVc2VYbSZQw3z0X\nET2Cw81H8FnDQUx3XgKXxdln+1y7CYvKi7CovAhefzTIfHy0EZ8fb0auzYQJBcYMMtlWl/GEtTEu\n1iY9DDBDwJPKuLKxNoIgoDz/UuSZHDjY9CU+rj+AYpsbE+3F/e6Ta4sGmcXlRfAF1GiQqWnEgWPN\ncNgUwwWZbKzLeMHaGBdrkx4GmCHgSWVc2VybqblTUJo7BQebvsCnDQchCiJKHSUpk3t7cthMWDiz\nCFfNKoIvqOJorQef1DTiwLEmOAw0IpPNdRnrWBvjYm3Sw0m8Q8CJVcY1FmpzpvMcthx6Ce2hDuSa\nHLiuZAWWT74GVtky6L7nW7x4q7IW+47UQ9eByW47bl1ahkXlRRAzGGTGQl3GKtbGuFib9Aw0iZcB\npgeeVMY1VmrTGerC305/iL11VQhEgrDKVqycvASrSpbDYcoZdP/6Vh/eqjyFqupokJlUaMdty8qw\naGYRRHH0g8xYqctYxNoYF2uTHgaYIeBJZVxjrTa+sB8f1lVi95m/oyvshSIqWDrpKlxfci0KrK5B\n92/wxILMlw3QdB0TC2y4dVkZriovHtUgM9bqMpawNsbF2qSHAWYIeFIZ11itTSgSQuW5T/De6Q/g\nCbZBFEQsLl6AG0pXDTjZN67R48NblbWo/LK+O8gsLcNVs0YnyIzVuowFrI1xsTbpYYAZAp5UxjXW\naxPRIvi04SB21e5Gva8RADC/cA7Wlq1GWe7UQfdvbPPj7cpTqPyyHhFNx4T86IjM1SMcZMZ6XbIZ\na2NcrE16GGCGgCeVcY2X2mi6hi+aj2Bn7W7UdpwBAFzmmoEbS1djpmvGoJ88amrz4+2qU/joi2iQ\nKc634dalpbh6djEkcfif3zpe6pKNWBvjYm3SY5gA4/V68eijj6K9vR3hcBgPPfQQ3G434p/knjlz\nJp566qlBj8MAMz6Nt9rouo5jnhPYVbsbNZ7jAICpjilYW7oa891zIAoDh5HmNj/e3leLvx8+Hw0y\nLituWVqGa+YMb5AZb3XJJqyNcbE26TFMgHnllVfQ0NCADRs2oKGhAffddx/cbjceeeQRzJs3Dxs2\nbMBtt92GlStXDngcBpjxaTzXprbjDHbV7sGhpi+hQ0exzY0bpq7C4gkLIIvygPs2t/vxTlUt9saC\nTJHLiluWlGHJ3OEJMuO5LkbH2hgXa5OegQLM8I8nD8DlcqGtrQ0A0NHRAafTibq6OsybNw8AsHr1\nalRVVY1ml4iyQmluCb57eQV+evUGXDNxEZr8LXil5o94suoZ7D7zdwQj/d8QqzDPinv/qRz/+3tL\nsHrBZLS0B/DSO0ex6bf7sPfwOagRbRS/EyKi4THqc2Duv/9+nD59Gh0dHdiyZQt+9rOf4fXXXwcA\nVFVVYfv27Xj22WcHPIaqRiDL/d/BlGisa/a14q2a9/C3f3yEYCQEh8mO/3bZdfinS1cix9T3U6/j\nmjx+bH//GHbtPw01oqE434a71lyG6xaVQJZG9d80REQXbFQDzBtvvIFPP/0UTz/9NGpqavDQQw/B\n4XAkAkxlZSVee+21QQMMLyGNT6xNb10hL/ac/QgfnP0IPtUPs2TC8snX4LqSFXCa8wbct7UjgHf2\n1eLDQ+egRnQU5llwy9IyLJ07YUhBhnUxLtbGuFib9Ax0CWngi+fD7MCBA1i+fDkAoLy8HMFgEKqq\nJt5vaGhAUVHRaHaJKKvlmOy4ZdparJl6Lf5+bj/eP/0h/nb6Q3xw5iNcPXEh1kxdhSJbYZ/75uda\ncM/ambh5SRne2VeLDw6ew3/uqMFfPjqFm5eWYvnlEzkiQ0SGNaoPczx58iROnjyJZcuWoa6uDjt2\n7EBpaSkmT56MSZMm4bnnnsOtt96KkpKSAY/DhzmOT6xN/2RRxrS8Mlw7ZRnyzU6c89ajxvM1Pjxb\niXpvIwqthcgz9/0vGatZxrzpBVg+byI0TcdXZ9rw+fFmVH55HiZZwpSinAHvI8O6GBdrY1ysTXoM\n8zBHr9eLTZs2oaWlBaqq4gc/+AHcbjcef/xxaJqG+fPn48c//vGgx+ElpPGJtUmfpmv4vPEwdtbu\nRl3XeQDA7IKZuLH0OsxwXjLgvp7OIHbsj47IhFUN+blm3LykDMsvnwhF7j0iw7oYF2tjXKxNegzz\nMerhwgAzPrE2Q6frOo60foWdp3bjRPtJAMC0vDKsLV2FuQWzBrwpXltXEO/uP409n9chpGpwOcy4\neUkpVsyblBJkWBfjYm2Mi7VJDwPMEPCkMi7W5uKcaDuFXbW78WXLUQDAJPsErC1djSuL5kES+/9U\nX3tXEDt6BJmbrinFtfMnQpEl1sXAWBvjYm3SwwAzBDypjIu1GR51Xeexq3Y3Pms4BB06Ci35WFO6\nEtdMWARFUvrdr90bws79p/H+52cRCmtw5phw0zWluHPNTLS3+UbxO6B08WfGuFib9DDADAFPKuNi\nbYZXs78Ffz39Afad/xSqpiLX5MB1JSuwfPI1sMqWfvfr8Ibw7sen8f6BaJDJyzFhijsH7jwLCp1W\nFOZZUJhnRaHTAodVGfTZTTRy+DNjXKxNehhghoAnlXGxNiOjPdiJ3Wf2Ym9dFQKRIKyyFSsnL8Gq\nkuVwmHL63a/DF8LOj0+jqroBbZ3BPtuYFQmFTgvcefFg0x1y3E4rrOZRvZPDuMOfGeNibdLDADME\nPKmMi7UZWb6wHx/WVWH3mb3oCnuhiAqWTlqM60tWosDq6nc/t9uBM3UeNLcH0NwWQFO7Hy3tATS1\n+aPb2v3wByN97mu3yCh0WqOjN7FRm8I8K9zOaNhReMfti8KfGeNibdLDADMEPKmMi7UZHaFICJXn\nP8F7tR/AE2yDKIhYXLwAN5SuwkR7ca/2g9VF13V4Ayqa2/1obguguT0acqLr0ZATVvt+HlNejik6\nWpMcbmKjOC6HmTfaGwR/ZoyLtUkPA8wQ8KQyLtZmdEW0CD5tOIhdtbtR72sEAMwvnIO1ZatRljs1\n0e5i66LpOjq8oUSgaWoPoDk2etPU5kdrRxBaH7+mREGAy2GOjdZYE5eqCmKXp/JyTBDH+fwb/swY\nF2uTHsM8SoCIsockSrh64kIsnrAAXzQfwc7a3TjUXI1DzdW4zDUDN5auxkzXjIv+OqIgwJljhjPH\njBlTej+/KaJp8HQEe43cxINOzek2AG299pMlMRpmYiM27jxLItwU5lmQwwnGRFmNAYaIBiQKIua7\n52Je4RwcbzuBnad2o8ZzHMc8X2OqYwrumHsjnHohnJY8KOLw/0qRRDE68ddpRTl6z8UJqxG0dATR\n3NYdapJHcRpa+/6It9kkdc+9SQo5TocZDpuCXJsJJoVzcIiMipeQeuCwnnGxNsZR23EGu2r34FDT\nl9DR/Ssk1+SAy+KEy+xEvsUJl8WJfHN06bI44VByRn3Uwx9Uo5OKY6M3PUdxgqG+JxgD0ZCTa1Pg\nsJmQazNFg43dFHsd3R7flmNVDDcnhz8zxsXapIdzYIaAJ5VxsTbGU+9txNGuozjTUg9PoA2eYBs8\ngTaoet+hQBZluMx5cFlcsWCTFws5rkTIMUumUet/fIJx4hNTbX60e0Po9IXQ4Quj0xtChy+ETl8Y\nEW3wX5V2ixwNOFYFDntq6ImvO2wm5NpNsFnkEZ+jw58Z42Jt0sM5MEQ0IibYi3B52fSUX8SarqEr\n7IUn0IbWpFDTGogtgx4c83zd7zHtsi0RZvJjoznJ63nmXIjC8Ix0CIKAHKuCHKuCSybm9ttO13X4\ngyo6fGF0JAccXwid3nAs5HRvq2/xYbC4IwpCUqBJGs2JBZz4eryNxSRxzg5REgYYIhpWoiAi1+RA\nrsmB0tySPtuENRVtgXZ4gp5EsPEEu0NOo78ZZ7vO9Xt8pzkvNpLjRL7FFQs5eYl1q2wZ1j/2giDA\nZlFgsyiYkG8btL2m6ejyx4KNN4ROfzT4xANONARF11s6Ajjb1DXoMRVZ7L6cNegoj8J76NCYxwBD\nRKNOEWW4bQVw2wr6fF/XdfhUf69g0xrwwBNshyfQhn+010JvP9Xn/hbJnJiLkzx6E5+X4zTnQR6B\nCcdxoihEA4XdBLgHbx9WtehoTjzg+ELo8HavJ7Z7w6hr9uJU/eCXHqxmCbl2M8yKCJtZhtUsdy8t\n0WVimyW6jL9vNcspTxwnMiIGGCIyHEEQYFdssCs2THFM6rNNRIugPdSB1kAb2gJtaE2+VBVbP+9t\n6Pv4EJBryoHL4kodybE4kaPYYZOtsClW2GQbFFEe8Us3iiwiP9eC/Nz+n0EVp+s6guEIOn3xEZ6k\nS1jeMDr9odjcnTD8QRWNXUEEBpioPFCfUkKPWYLVokSXPcKOzSKnhiSLDKtJhijykheNHAYYIspK\nkigh3+JCvqX/xxwE1AA8wfbYCE736E1rwANPoA1nOutwquP0gF9HFiRYY2GmO9hEl1Y5tp6yPdrO\nKltglszDHn4EQYDFJMNikuF2WgdsG58oqmk6/CEV/oAKX1CFP6jCl7weW8a3R7dF4Iu919wegBrp\n+27JA7GYpJQRn56jPMnbe44GWc0SzArn/VD/GGCIaMyyyBZMlC19PgIBiE447gx5U+bidIW98KsB\n+MI++FQ/fKof/rAf3rAXTf5maHr6f8hFQUwEHKuSHHZssMqWlJGe5BBkla2wyOZhm6wsigLsFgV2\ni3LBxwirWkrY8QW7A1E89PQVhnxBFW2dQZxr9mKon3kVBQHWpBEfRRFhkiUosgiTLEKRJZgUMfZa\nim7rp01ivc82IoNSFmKAIaJxSxRE5JkdyDM7Uh6P0B9d1xGMhOCPBZtEyAn7u8NO8uvEdh9aA55+\nP17eFwFCr5ATDUGWROCxKtZewSe+PlzhJ06RRShybF7PBYhf+uoOOxH4guFY4InAFwjHtvU1GqSi\nsc2PsKql9XH2C5EcZkyyFAs5SaFHFmFSukNPIgAp6bZJfU0XjwGGiChNgiDAIpthkc1wwTmkfXVd\nR1hT4VN9iWCTGnZ80ZGfWOBJDkHnvY0Ia+EhfT2LZIHDbINJNMMqW2CNXdbqXkbDkSW2jG+Lvz/c\nk5yTL31djIimIRTWEFY1hNRIdJn0OqTG1sOx91QNYTWSXhtVQzgcbeMNhBPtRoIoCpAlAYoUDTdy\nbBl/nbyt57Kv9rIkxN6TutclEXLyMeOv4/tLYlbPU2KAISIaBYIgwCQpMEl5cJp7P/NpMGFN7RV4\nui9xBaKhJ3a5K749qAXRGvDArwaG/PUUUYFNtsAiW2PL5KDTO/D03GaWTCNyWUYSRVjNIqzmYT90\nnzRdh5oIObHQFE4NPdFwFOmzTWrI6m4DQYAvEIaqaghHotuC/jDCsfdHaqSpJ0kU+g45KcEoKRT1\n0ebSEifmlOWPSn+TMcAQEWUBRZShxO6vk67EJF5dQ0ANwq8G4I+N/ETXA4ltPtWPgBqAL9EmuvSG\nvWj2tyAyhMtfQPTynFWKBRrFGl1PLHsHH1uPMGSRzJDEzN/LRhQEmBRp2J+LNdideOPBSY2Fm3jI\nCasa1IiOsBqJLftr0/cynLRUE0s95bUvqCZepxOkJrvtePr+q4fzf09aGGCIiMY4URCjc2MUK9DH\nAzEHE738FU4KO4GkMBToEYhSw1BADaDB14RQJDTkr2uWTCkjO4qoxP6ToUixZa9tSduT2siiDFOP\nbcnvGW0S70gFp6HStFi4iQehPkJQkWvwmzuOBAYYIiIaUPTylwkmyYQ8c/+PXBhIRIvAHwnAH+4r\n+PgTYcfXRyhqD3ag3tuY8uDQ4dYr1EgKTKIMWVRgioUcRepeT97Wc99e4UrqEbREBSHVDE3Xhn2y\n9XATRQFmMfqRdqNhgCEiohEniRJyRDtyFPsF7a/rOjRdQ0gLI6yFEY6o0aUWXapaGKFIGKqmIqR1\nL8N9bFN77BvfLxw/tqbCHwogHImuj2RwEiBAFmXIogRJkCCLcmLZvU2CLMiQRCm2Te5jW2wfQYLU\n43jRbT2OndgWPU7ycaWUbRJEwZgfM2eAISIiwxMEAZIgwSpKsGLwOxYPF13XEdEjibATDzWJABQJ\np4Sh1HDVu208REky4AsEoeoRRLQIVF2FqkUQ0VSoegShcAiqHoGqqYjokSHdf2i4CRB6hRo5KRDN\nKSjHf59x06j3iwGGiIioH4IgxP5wy8ManAabxNuTpmupQUePpASeeNCJbusdiNTYMtLjfVVXY69j\n25Pa9TxGvJ2qRffxqX5EtAhaAq3D9v9lKBhgiIiIDE4URIiSCAUXfjflscbYs4eIiIiI+sAAQ0RE\nRFmHAYaIiIiyDgMMERERZR0GGCIiIso6DDBERESUdRhgiIiIKOswwBAREVHWYYAhIiKirMMAQ0RE\nRFmHAYaIiIiyDgMMERERZR0GGCIiIso6gq7reqY7QURERDQUHIEhIiKirMMAQ0RERFmHAYaIiIiy\nDgMMERERZR0GGCIiIso6DDBERESUdRhgkvziF7/AunXrsH79ehw+fDjT3aEkzzzzDNatW4c777wT\nu3btynR3KEkgEMCaNWvwpz/9KdNdoSRvvvkmbrvtNtxxxx3Ys2dPprtDALxeL77//e+joqIC69ev\nx969ezPdpawmZ7oDRvHxxx+jtrYW27Ztw4kTJ7Bp0yZs27Yt090iAPv27cPx48exbds2eDwefOMb\n38DatWsz3S2K2bJlC/Ly8jLdDUri8Xjwwgsv4LXXXoPP58OvfvUrrFq1KtPdGvf+/Oc/45JLLsGG\nDRvQ0NCA++67D++++26mu5W1GGBiqqqqsGbNGgDA9OnT0d7ejq6uLuTk5GS4Z7R48WLMmzcPAJCb\nmwu/349IJAJJkjLcMzpx4gS+/vpr/nE0mKqqKixZsgQ5OTnIycnB008/nekuEQCXy4WvvvoKANDR\n0QGXy5XhHmU3XkKKaW5uTjmZ8vPz0dTUlMEeUZwkSbDZbACA7du349prr2V4MYjNmzdj48aNme4G\n9XD27FkEAgE88MADuPvuu1FVVZXpLhGAm2++GefOncMNN9yAe+65B48++mimu5TVOALTDz5hwXje\ne+89bN++HS+99FKmu0IAXn/9dVxxxRUoKSnJdFeoD21tbXj++edx7tw53Hvvvdi9ezcEQch0t8a1\nN954A5MmTcLvfvc71NTUYNOmTZw7dhEYYGKKiorQ3NyceN3Y2Ai3253BHlGyvXv34te//jVefPFF\nOByOTHeHAOzZswdnzpzBnj17UF9fD5PJhAkTJmDp0qWZ7tq4V1BQgAULFkCWZUydOhV2ux2tra0o\nKCjIdNfGtQMHDmD58uUAgPLycjQ2NvJy+EXgJaSYZcuWYefOnQCA6upqFBUVcf6LQXR2duKZZ57B\nb37zGzidzkx3h2J++ctf4rXXXsMf/vAHfOtb38KDDz7I8GIQy5cvx759+6BpGjweD3w+H+dbGEBp\naSkOHToEAKirq4Pdbmd4uQgcgYm58sorMWfOHKxfvx6CIOCJJ57IdJco5p133oHH48EPf/jDxLbN\nmzdj0qRJGewVkXEVFxfjxhtvxF133QUA+OlPfwpR5L9XM23dunXYtGkT7rnnHqiqiieffDLTXcpq\ngs7JHkRERJRlGMmJiIgo6zDAEBERUdZhgCEiIqKswwBDREREWYcBhoiIiLIOAwwRjaizZ89i7ty5\nqKioSDyFd8OGDejo6Ej7GBUVFYhEImm3//a3v439+/dfSHeJKEswwBDRiMvPz8fWrVuxdetWvPrq\nqygqKsKWLVvS3n/r1q284RcRpeCN7Iho1C1evBjbtm1DTU0NNm/eDFVVEQ6H8fjjj2P27NmoqKhA\neXk5jh49ipdffhmzZ89GdXU1QqEQHnvsMdTX10NVVdx+++24++674ff78fDDD8Pj8aC0tBTBYBAA\n0NDQgB/96EcAgEAggHXr1uGb3/xmJr91IhomDDBENKoikQj++te/YuHChXjkkUfwwgsvYOrUqb0e\nbmez2fDKK6+k7Lt161bk5ubi2WefRSAQwE033YQVK1agsrISFosF27ZtQ2NjI66//noAwI4dOzBt\n2jQ89dRTCAaD+OMf/zjq3y8RjQwGGCIaca2traioqAAAaJqGRYsW4c4778Rzzz2Hn/zkJ4l2XV1d\n0DQNQPTxHj0dOnQId9xxBwDAYrFg7ty5qK6uxrFjx7Bw4UIA0QezTps2DQCwYsUK/P73v8fGjRux\ncuVKrFu3bkS/TyIaPQwwRDTi4nNgknV2dkJRlF7b4xRF6bVNEISU17quQxAE6Lqe8qyfeAiaPn06\n3n77bXzyySd499138fLLL+PVV1+92G+HiAyAk3iJKCMcDgemTJmCDz74AABw8uRJPP/88wPuM3/+\nfOzduxcA4PP5UF1djTlz5mD69On4/PPPAQDnz5/HyZMnAQB/+ctf8MUXX2Dp0qV44okncP78eaiq\nOoLfFRGNFo7AEFHGbN68GT//+c/x29/+FqqqYuPGjQO2r6iowGOPPYbvfOc7CIVCePDBBzFlyhTc\nfvvteP/993H33XdjypQpuPzyywEAM2bMwBNPPAGTyQRd1/Hd734Xssxfe0RjAZ9GTURERFmHl5CI\niIgo6zDAEBERUdZhgCEiIqKswwBDREREWYcBhoiIiLIOAwwRERFlHQYYIiIiyjoMMERERJR1/j8k\nYmHhx8iBgwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "jFfc3saSxg6t" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "Ax_IIQVRx4gr" + }, + "cell_type": "markdown", + "source": [ + "Since normalization uses min and max, we have to ensure it's done on the entire dataset at once. \n", + "\n", + "We can do that here because all our data is in a single DataFrame. If we had multiple data sets, a good practice would be to derive the normalization parameters from the training set and apply those identically to the test set." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "D-bJBXrJx-U_", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def normalize_linear_scale(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized linearly.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + " processed_features[\"total_rooms\"] = linear_scale(examples_dataframe[\"total_rooms\"])\n", + " processed_features[\"total_bedrooms\"] = linear_scale(examples_dataframe[\"total_bedrooms\"])\n", + " processed_features[\"population\"] = linear_scale(examples_dataframe[\"population\"])\n", + " processed_features[\"households\"] = linear_scale(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = linear_scale(examples_dataframe[\"median_income\"])\n", + " processed_features[\"rooms_per_person\"] = linear_scale(examples_dataframe[\"rooms_per_person\"])\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize_linear_scale(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.005),\n", + " steps=2000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "MrwtdStNJ6ZQ" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Try a Different Optimizer\n", + "\n", + "** Use the Adagrad and Adam optimizers and compare performance.**\n", + "\n", + "The Adagrad optimizer is one alternative. The key insight of Adagrad is that it modifies the learning rate adaptively for each coefficient in a model, monotonically lowering the effective learning rate. This works great for convex problems, but isn't always ideal for the non-convex problem Neural Net training. You can use Adagrad by specifying `AdagradOptimizer` instead of `GradientDescentOptimizer`. Note that you may need to use a larger learning rate with Adagrad.\n", + "\n", + "For non-convex optimization problems, Adam is sometimes more efficient than Adagrad. To use Adam, invoke the `tf.train.AdamOptimizer` method. This method takes several optional hyperparameters as arguments, but our solution only specifies one of these (`learning_rate`). In a production setting, you should specify and tune the optional hyperparameters carefully." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "61GSlDvF7-7q", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 652 + }, + "outputId": "3ded742c-7409-40cb-cba3-3d3c7150f02b" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Retrain the network using Adagrad and then Adam.\n", + "#\n", + "_, adagrad_training_losses, adagrad_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.5),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 91.06\n", + " period 01 : 79.40\n", + " period 02 : 74.04\n", + " period 03 : 73.09\n", + " period 04 : 71.43\n", + " period 05 : 72.72\n", + " period 06 : 71.23\n", + " period 07 : 70.80\n", + " period 08 : 70.74\n", + " period 09 : 70.01\n", + "Model training finished.\n", + "Final RMSE (on training data): 70.01\n", + "Final RMSE (on validation data): 68.03\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGACAYAAACDX0mmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VFX+BvB3SiZl0pOZVJKQkE6H\nBEiAJNRQXFERkSK4rLtrW1bZFXWVta1ldy2gwq7701VxsYAUUZAi0iEhJFLTQEgvkzrpmczc3x+B\nUSRlJmQyk8z7eR4enZl77v3OnAl5uefce0SCIAggIiIiskBicxdARERE1BkGFSIiIrJYDCpERERk\nsRhUiIiIyGIxqBAREZHFYlAhIiIiiyU1dwFEliA8PBwBAQGQSCQAAK1Wi5iYGDzzzDNwcHDo8X6/\n+OILLFiw4Kbnt27diqeeegr/+te/kJSUpH++ubkZcXFxmDFjBl599dUeH9dQ+fn5ePnll3HlyhUA\ngL29PR555BFMmzbN5Mc2xvr165Gfn3/TZ5KSkoIVK1bA39//pjbffvttX5V3SwoLCzF16lQMHjwY\nACAIAjw9PfGXv/wFUVFRRu3r9ddfh6+vL+69916D2+zYsQNbtmzBxo0bjToWUV9hUCG6ZuPGjfD2\n9gYAtLa24rHHHsO///1vPPbYYz3an0qlwv/93/91GFQAwMfHB19//fUNQeX777+Hs7Nzj47XE3/6\n059w++2341//+hcA4MyZM1i2bBl2794NHx+fPqvjVvj4+PSbUNIZiURyw3vYtWsXHn74YezZswcy\nmczg/axatcoU5RGZFYd+iDogk8kwadIkZGZmAgBaWlqwZs0azJw5E7NmzcKrr74KrVYLAMjKysLC\nhQuRnJyM22+/HUeOHAEALFy4EMXFxUhOTkZra+tNxxg9ejRSUlLQ1NSkf27Xrl2Ij4/XP25tbcVL\nL72EmTNnYsqUKfpAAQAZGRm48847kZycjNmzZ+P48eMA2v+FPnHiRHz88ce47bbbMGnSJOzatavD\n95mTk4MRI0boH48YMQJ79uzRB7Z33nkHCQkJmDdvHt577z1MmTIFAPDkk09i/fr1+nY/f9xdXS+/\n/DKWLFkCADh9+jTuuusuTJ8+HQsWLEBBQQGA9jNLf/zjH5GUlIQlS5agtLS0mx7r2NatW/HII49g\n2bJl+Pvf/46UlBQsXLgQK1eu1P9S3717N+bOnYvk5GTcd999yM/PBwC8/fbbeOaZZzB//nx8+OGH\nN+x35cqV+OCDD/SPMzMzMXHiROh0Orz55puYOXMmZs6cifvuuw9lZWVG1z179mw0Nzfjxx9/BAB8\n/vnnSE5OxpQpU/D444+jubkZQPvn/sorr+C2227D7t27b+iHzr6XOp0OL7zwAhITEzF//nxkZWXp\nj5uamoo77rgDs2fPxqxZs7B7926jayfqdQIRCWFhYUJJSYn+cU1NjbB48WJh/fr1giAIwr///W/h\ngQceEDQajdDU1CTcddddwvbt2wWtVivMmjVL2LlzpyAIgnD27FkhJiZGqKurE06ePClMmzatw+N9\n+eWXwurVq4U//elP+rZ1dXXC1KlThc2bNwurV68WBEEQ3nnnHWHZsmVCS0uL0NDQIMybN084cOCA\nIAiCMHfuXOHrr78WBEEQtm3bpj9WQUGBEBUVJWzcuFEQBEHYtWuXMH369A7rePTRR4WkpCTho48+\nEi5dunTDa9nZ2cLYsWOF8vJyQaPRCA8++KCQlJQkCIIgrF69Wnj33Xf12/78cVd1RUdHC1u3btW/\n35iYGOHo0aOCIAjCzp07hTvuuEMQBEH45JNPhMWLFwsajUaoqqoSkpKS9J/Jz3X1GV//nEeOHClc\nuXJFv/2wYcOE48ePC4IgCEVFRcKYMWOEq1evCoIgCO+//76wbNkyQRAEYd26dcLEiROFysrKm/b7\nzTffCIsXL9Y/Xrt2rfDiiy8KOTk5wowZM4TW1lZBEATh448/FrZt29Zpfdc/l8jIyJuej4mJES5f\nviycOnVKmDBhglBaWioIgiA8++yzwquvvioIQvvnfttttwnNzc36x++++26X38uDBw8KM2bMEOrr\n64WmpiZh/vz5wpIlSwRBEIQ777xTSElJEQRBEK5cuSI8/vjjXdZO1Bd4RoXomqVLlyI5ORlTp07F\n1KlTMX78eDzwwAMAgIMHD2LBggWQSqWws7PDbbfdhmPHjqGwsBAVFRWYM2cOAGDYsGHw9fXFuXPn\nDDrmnDlz8PXXXwMA9u/fj6SkJIjFP/1Yfv/991i0aBFkMhkcHBxw++23Y+/evQCA7du3Y9asWQCA\nMWPG6M9GAEBbWxvuvPNOAEB0dDSKi4s7PP4//vEPLF68GDt37sTcuXMxZcoUfPrppwDaz3bExMRA\noVBAKpVi7ty5Br2nrurSaDSYPn26fv9eXl76M0hz585Ffn4+iouLkZaWhunTp0MqlcLNze2G4bFf\nKikpQXJy8g1/fj6XJSgoCEFBQfrHdnZ2mDBhAgDg2LFjGDduHAIDAwEAd999N1JSUtDW1gag/QyT\nu7v7TcdMTEzExYsXUVNTAwDYt28fkpOT4ezsjKqqKuzcuRO1tbVYunQp5s2bZ9Dndp0gCPj888/h\n5eWFoKAgHDhwALNnz4aXlxcA4N5779V/BwBgwoQJsLW1vWEfXX0vT506hYSEBMjlctjZ2en7CgA8\nPDywfft2XL58GUFBQXj99deNqp3IFDhHheia63NUqqqq9MMWUmn7j0hVVRVcXFz027q4uKCyshJV\nVVVwcnKCSCTSv3b9l5Wnp2e3x4yPj8czzzyDmpoafPPNN3jooYf0E1sBoK6uDq+88greeOMNAO1D\nQcOHDwcA7Ny5Ex9//DEaGhqg0+kg/GzZLolEop8ELBaLodPpOjy+ra0tVqxYgRUrVkCtVuPbb7/F\nyy+/DH9/f9TW1t4wX8bDw6Pb92NIXY6OjgAAtVqNgoICJCcn61+XyWSoqqpCbW0tnJyc9M87Ozuj\noaGhw+N1N0fl5/32y8fV1dU3vEcnJycIgoDq6uoO217n4OCAuLg4HDx4EGPGjIFarcaYMWMgEonw\n9ttv44MPPsCLL76ImJgYPP/8893O99FqtfrPQRAEDBkyBOvXr4dYLEZdXR327duHo0eP6l/XaDSd\nvj8AXX4va2troVQqb3j+updffhkbNmzA/fffDzs7Ozz++OM39A+ROTCoEP2Cu7s7li5din/84x/Y\nsGEDAMDT01P/r2cAqKmpgaenJzw8PFBbWwtBEPS/FGpqagz+pW5jY4OkpCRs374deXl5GDVq1A1B\nRalU4te//vVNZxTKysrwzDPPYPPmzYiMjMTVq1cxc+ZMo95nVVUVMjMz9Wc0nJ2dsWDBAhw5cgQ5\nOTlwcnJCXV3dDdtf98vwU1tba3RdSqUSwcHB2Lp1602vOTs7d3rs3uTh4YGMjAz949raWojFYri5\nuXXbdubMmdi3bx+qq6sxc+ZMff+PHz8e48ePR2NjI1577TX885//7PbMxC8n0/6cUqnEHXfcgdWr\nVxv1vjr7Xnb12Xp6euLZZ5/Fs88+i6NHj+LRRx/FpEmTIJfLDT42UW/j0A9RB+6//35kZGQgNTUV\nQPup/i1btkCr1aKxsRE7duxAQkIC/P394e3trZ+smp6ejoqKCgwfPhxSqRSNjY36YYTOzJkzB//5\nz386vCR46tSp2Lx5M7RaLQRBwPr163H48GFUVVXBwcEBwcHBaGtrw+effw4AnZ516EhzczP+8Ic/\n6CdZAkBeXh7OnDmDsWPHYtSoUUhLS0NVVRXa2tqwfft2/XYKhUI/CbOgoADp6ekAYFRdI0aMgEql\nwpkzZ/T7+fOf/wxBEDBy5EgcOHAAWq0WVVVVOHz4sMHvyxjx8fFIS0vTD0999tlniI+P159J60pS\nUhIyMjKwf/9+/fDJ0aNH8fzzz0On08HBwQERERE3nNXoiSlTpmDv3r36QLF//3689957Xbbp6ns5\natQoHD16FE1NTWhqatIHJI1Gg6VLl6K8vBxA+5ChVCq9YSiSyBx4RoWoA46Ojvjtb3+L1157DVu2\nbMHSpUtRUFCAOXPmQCQSITk5GbNmzYJIJMIbb7yBv/71r3jnnXdgb2+PtWvXwsHBAeHh4XBxcUF8\nfDy2bdsGX1/fDo8VGxsLkUiE2bNn3/TaokWLUFhYiDlz5kAQBAwdOhTLli2Dg4MDJk+ejJkzZ8LD\nwwNPPvkk0tPTsXTpUqxbt86g9+jr64sNGzZg3bp1eOmllyAIAhwdHfHUU0/prwS65557cMcdd8DN\nzQ0zZsxAbm4uAGDBggV45JFHMGPGDERFRenPmkRERBhcl52dHdatW4cXX3wRDQ0NsLGxwcqVKyES\nibBgwQKkpaVh2rRp8PX1xbRp0244C/Bz1+eo/NLf//73bj8Db29vvPTSS3jooYeg0Wjg7++PF198\n0aDPz9HREdHR0cjOzsbIkSMBADExMfjmm28wc+ZMyGQyuLu74+WXXwYAPPHEE/ord4wRHR2N3//+\n91i6dCl0Oh08PDzw/PPPd9mmq+9lUlISDh48iOTkZHh6eiIhIQFpaWmwsbHB/PnzsXz5cgDtZ82e\neeYZ2NvbG1UvUW8TCT8fQCYi6kRaWhqeeOIJHDhwwNylEJEV4Tk9IiIislgMKkRERGSxOPRDRERE\nFotnVIiIiMhiMagQERGRxbLoy5NVqo4vR+wtbm4OqK5uNOkxyHjsF8vFvrFM7BfLxb4xnELh1OHz\nVn1GRSqVmLsE6gD7xXKxbywT+8VysW9unVUHFSIiIrJsDCpERERksRhUiIiIyGIxqBAREZHFYlAh\nIiIii8WgQkRERBaLQYWIiIgsFoMKERFRP3bw4HcGbbd27esoLi7q9PUnn3y8t0rqVQwqRERE/VRJ\nSTH2799j0LYrV66Cr69fp6+/+uobvVVWr7LoW+gTERFR59544zVkZl7ApEkxmDFjFkpKivHWW+vx\nyisvQKUqR1NTE379698iPn4SHnnkt3j88Sfw/fffoaGhHvn5eSgqKsQf/rAKEybEY86cqfjmm+/w\nyCO/RUzMOKSnp6GmpgavvfYmPD098cILz6K0tATDhg3HgQP7sW3brj55jwwqREREt+iLA5dwKqv8\npuclEhG0WqFH+4yJUGLBlCFdbnPvvUuxdesXGDw4BPn5V7F+/f+huroKsbHjMWvWXBQVFeLZZ59E\nfPykG9qVl5fhn/9ch5Mnj2PHji8xYUL8Da/L5XKsXbsBGza8jcOHD8DX1x+trS14770PcezYEXzx\nxac9ek89YZVBRavTISOnAlNdHcxdChERUa+IjIwGADg5OSMz8wK++morRCIx1Oram7YdPnwkAECp\nVKK+vv6m10eMGKV/vba2Fnl5VzBs2AgAwIQJ8ZBI+m4NI6sMKjkFtVi//TzULW2YMsLX3OUQEVE/\nt2DKkA7PfigUTlCp6vqkBhsbGwDAvn3fQq1W4913/w9qtRq/+c3Sm7b9edAQhJvP+PzydUEQIBa3\nPycSiSASiXq7/E5Z5WTaIG8nSCViHM7ofPYzERGRpROLxdBqtTc8V1NTAx8fX4jFYhw6dAAajeaW\nj+Pn54/s7IsAgNTUkzcd05SsMqjY20oxIsQD+aV1KFTdfMqLiIioPwgMHIzs7Cw0NPz0uywxcQqO\nHz+ClSsfhL29PZRKJf773//c0nHi4iahoaEBDz64AmfOZMDZ2eVWSzeYSOjonI+FMOXpslNZ5diw\n/TzmxgXizskhJjsOGa8vT5WScdg3lon9YrkGSt+o1bVIT09DYuJUqFTlWLnyQWza9GWvHkOhcOrw\neaucowIAw0M8YCeTIPViOe6YFNyn421ERET9iYODHAcO7MemTRshCDo8+mjf3RzOaoOKrY0E46J9\ncCijEFdL6zDYx9ncJREREVkkqVSKF154xSzHtso5KtdNHtV+h77UzDIzV0JEREQdseqgMipcCQdb\nKVIzy6Gz3Kk6REREVsuqg4qNVIwx4QpU17XgUuHNN8QhIiIi87LqoAIAsVFeAIAUDv8QERFZHJMF\nFZ1Oh2effRYLFy7E0qVLcfnyZZSUlGDp0qVYtGgRVq5cidbWVlMd3mARAa5wdrBBWlY5tDqducsh\nIiLqVfPn34bGxkZs3Pghzp8/e8NrjY2NmD//ti7bHzz4HQBg166dOHToe5PV2RmTBZXvvvsOdXV1\n+Oyzz/C3v/0Nf//737Fu3TosWrQImzZtQmBgILZs2WKqwxtMIhZjbIQSdY0aZOXVmLscIiIik1i6\ndDmGDh1uVJuSkmLs378HADB79m1ISEgyRWldMtnlyVevXsXw4e0fSEBAAIqLi5Gbm4vnn38eAJCU\nlIQPPvgAixYtMlUJBouN9MKB9CKkZJYherC7ucshIiLq1q9/vRgvv/w6vL29UVpagqeeWgWFQomm\npiY0Nzfjscf+jKioofrt//a355CYOBUjR47CX/7yBFpbW/WLEwLA3r27sWXL55BIxAgKCsHq1X/B\nG2+8hszMC/jvf/8DnU4HV1dX3HXXPVi/fi3OnTuDtjYt7rprAZKT5+CRR36LmJhxSE9PQ01NDV57\n7U14e3vf8vs0WVAJCwvDRx99hGXLliEvLw8FBQVoamqCTCYDAHh4eEClUpnq8EYZ4u8CNydbpGer\nsHRGOGykVj91h4iIjLD10tfIKD930/MSsQhaXc+uKh2lHIY7h8zt9PXJk5Nw7Nhh3HXXAhw5cgiT\nJychJCQUkycn4vTpU/jf/z7C3/72j5va7dmzG8HBIfjDH1bhu+/26s+YNDU14fXX34aTkxMefvgB\nXL58CffeuxRbt36B++9/AO+//28AwA8/pOPHHy9jw4YP0NTUhGXLFmLy5EQAgFwux9q1G7Bhw9s4\nfPgAFiy49ZMRJgsqCQkJSE9Px+LFixEeHo7g4GDk5OToXzfkzv1ubg6QSk27lPT1W/YmjPbH9kOX\nUVjVhNjoW0+AdGs6u5UymR/7xjKxX8zLoUgGibjjO5x39ny3+7SXddmv8+bNxauvvorf/34FUlKO\n4qmnnsL777+PLVs2obW1FQ4ODlAonCCRiOHp6Qg7Oxu4uNjj7NlCxMWNg0LhhGnTEvDee+9CoXCC\nv78X1qx5AgCQn38VIlErXF0dYGtrA4XCCXK5LRwd7VBY+CPi4ydcq80J4eFhqK+vhEwmRWLiRCgU\nTggODkBNTU2vfC9Nemfaxx57TP//06ZNg5eXF5qbm2FnZ4eysjIolcou21dXN5qyvBvWYBgW5Ibt\nh4B9J69isFJu0uNS1wbK2hgDEfvGMrFfzC/ZbwaS/Wbc9Pyt9k1XbV1dvVFSUorz53NRVVWDHTu+\ngZOTG9atW4OsrIt45523oFLVQavVoaKiHs3NGtTWNqGxsRX19S1QqepQUdH+enFxFZ577nl8+OEm\neHh44okn/oiamvbfwS0tGqhUdWhoaIGNTTPa2trQ2qrR19bQ0ITa2ia0trZBrW6GSlWH+vpm1Nc3\nG/XeOws1JhvjyMrKwlNPPQUAOHz4MKKiohAXF4c9e9pPMe3duxeTJk0y1eGNFuTtBKWrPTJyK9Ci\n6bvlq4mIiHpqwoSJeO+99Zg0KQG1tTXw8/MHABw69D3a2to6bBMQEIisrEwAQHp6GgCgsbEBEokE\nHh6eKCsrRVZWJtra2iAWi6HV3vg7MSIiGhkZp6+1a0RRUSH8/QNM9RZNF1TCwsIgCALmz5+Pf//7\n33jqqafw6KOPYvv27Vi0aBFqamowb948Ux3eaCKRCLFRXmjRaHHmUoW5yyEiIupWQkIS9u/fg8TE\nqUhOnoPPP/8fHnvsYURHD0VlZSW++earm9okJ8/BhQvnsHLlgygoyINIJIKLiytiYsbhN7+5D//9\n73+waNFSrFv3BgIDByM7Owvr1r2ubz9ixEiEh0fg4YcfwGOPPYzf//4R2Nvbm+w9igRDJouYialP\nZf7ylFyRqh7Pvp+K0WEKPHLnMJMemzrH09iWi31jmdgvlot9Y7g+H/rpj/wUjvBTyHH2ciUamzs+\nZUZERER9h0HlF2IjvdCm1SEj1zIunSYiIrJmDCq/EBvZfiVSama5mSshIiIiBpVf8HJzQJC3Ey5e\nrUJdo/nXIiIiIrJmDCodiI30glYn4HQOh3+IiIjMiUGlA/rhn4tlZq6EiIjIujGodMDd2Q6h/i7I\nzq9BTX2LucshIiKyWgwqnYiN9IIA4BQn1RIREZkNg0onYiKUEImA1EwO/xAREZkLg0onnOUyRAW6\n4XKxGqqaJnOXQ0REZJUYVLoQG+kFADiVxeEfIiIic2BQ6cLocAUkYhGv/iEiIjITBpUuyO1sMCzY\nA/nl9SipbDB3OURERFaHQaUbvKU+ERGR+TCodGNkqCdkUjFSM8sgCIK5yyEiIrIqDCrdsJNJMXyI\nJ0oqG1FQXm/ucoiIiKwKg4oBxnH4h4iIyCwYVAwwLNgDdjIJh3+IiIj6GIOKAWQ2EowOU6Cithk/\nFqvNXQ4REZHVYFAx0PWbv6XwlvpERER9hkHFQFFBbpDbSXEqqxw6HYd/iIiI+gKDioGkEjHGRihR\nW9+KnIIac5dDRERkFRhUjHB9+IcrKhMREfUNBhUjhA9yhYtchrRsFdq0OnOXQ0RENOAxqBhBLBYh\nJkKJ+iYNMvOqzV0OERHRgMegYqTYqGvDP1xRmYiIyOQYVIwU4usMD2c7pOeqoGnTmrscIiKiAY1B\nxUgikQixkUo0tWhx9nKVucshIiIa0BhUemBcFK/+ISIi6gtWGVQaNU34Mncnqhp7dj+UQUpHeLs7\n4MylCjS3tvVydURERHSdVQaV0sYyHCg4gi/O7+xR++vDP61tOvxwqaKXqyMiIqLrrDKoBDkHwNPO\nHUfyT6FB09ijfehv/naxvDdLIyIiop+xyqAiFokxyX8CNFoNTpSc6tE+fD3lGKR0xLkfK9HQrOnl\nComIiAiw0qACABN8YiCT2OBw4XHohJ7dZTY2UgmtTkB6jqqXqyMiIiLAioOK3MYBkwLHobK5Ghcq\ns3q0j5/W/uHwDxERkSlYbVABgJlDEgAABwuO9ai9wtUewb7OyLxaDXVDa2+WRkRERLDyoBLk5o8Q\nl8HIqs5FaUPPzorERnpBJwhIy+ZZFSIiot5m1UEFABIHxQMADhed6FH7mAglRODaP0RERKZg9UFl\nhGc0XG1dkFKShua2ZqPbuznZIjzAFTmFtahSG9+eiIiIOmf1QUUilmCi73g0a1uQUpreo31cn1R7\nKovDP0RERL3J6oMKAMT7xUIikuBQ4XEIgmB0+zHhCohFIq79Q0RE1MsYVAA4y5wwWjkcZY3lyK6+\nZHR7JwcZoga74UpJHcqre3anWyIiIroZg8o1Cf7tk2oPFR7vUftxvKcKERFRr2NQuSbIeRACnPxx\nruIiKpuqjG4/KlQBqYTDP0RERL2JQeUakUiEBP84CBBwpOik0e0d7KQYFuyBQlUDilT1JqiQiIjI\n+jCo/MwY5Qg42shxvDgVrVrjFxocF9U+/JPC4R8iIqJewaDyMzYSG8T5xqKhrRFpZT8Y3X5EiCdk\nNmKkZpb16OohIiIiuhGDyi9M9psAEUQ4VHjM6LBhK5Ng5BBPlFc3Ia+szkQVEhERWQ8GlV9ws3PF\nCEU0CuuLcUWdZ3T768M/qRc5/ENERHSrGFQ6kOAfB6BnqyoPHewBe1spUrPKoOPwDxER0S1hUOlA\nqGsIfOReyFCdQ22L2qi2NlIxxoQpUKVuweWiWhNVSEREZB0YVDpw/VJlnaDD0eIUo9vHRikBcPiH\niIjoVjGodCLGazTspXY4WnQSbbo2o9pGBrrB0d4Gp7LKoNXpTFQhERHRwMeg0gk7qS3G+4yFurUO\nP6jOG9VWIhYjJkIJdaMG2fk1JqqQiIho4GNQ6cJkvwkAerb+T2zkteEf3lKfiIiox6Sm2nFDQwNW\nr16N2tpaaDQaPPzww3jvvffQ2NgIBwcHAMDq1asxdOhQU5Vwy5QOCkS5h+NiVTYK6oowyMnP4Lah\ng1zh6ijD6WwVlswIh1TCTEhERGQskwWVbdu2YfDgwVi1ahXKysqwbNkyKBQKvPLKKwgLCzPVYXtd\ngn8cLlZl41DhcSyJvNvgdmKRCLGRXth7qgDnr1Rh5BBPE1ZJREQ0MJnsn/lubm6oqWmfn6FWq+Hm\n5maqQ5lUlEc4PO09kFaWgXpNg1FtYyOv3fyNwz9EREQ9YrKgMmfOHBQXF2P69OlYsmQJVq9eDQBY\nt24dFi9ejDVr1qC5udlUh+81YpEYCX4ToNG14UTxKaPaDvZxgsLVDhm5FWjRaE1UIRER0cAlEky0\net6OHTuQlpaGF198EVlZWXj66afx4IMPIjw8HAEBAfjrX/+KgIAArFixotN9tLVpIZVKTFGeUepb\nG/DgV0/D2dYRb895EWKx4fnu410Xsfm7XDx5XwziR/iasEoiIqKBx2RzVNLT0zFx4kQAQEREBMrL\nyzFlyhRIJO3BY8qUKdi1a1eX+6iubjRVeQAAhcIJKpVhiweO9RqFY8UpOJCVihGKaIOPMSzQDZsB\n7Eu5ijBfpx5Wal2M6RfqW+wby8R+sVzsG8MpFB3/jjTZ0E9gYCDOnDkDACgqKoKDgwNWrFgBtbr9\nlvQpKSkIDQ011eF73fX1fw4beamyn0IOX085zl6uRFOLcTeOIyIisnYmO6Nyzz334Omnn8aSJUvQ\n1taG559/HtXV1Vi+fDns7e3h5eWFRx991FSH73V+jj4IdQ1GVnUuShvK4C33MqidSCRCbKQS249c\nwQ+5FZgw1NvElRIREQ0cJgsqcrkca9euven52bNnm+qQJjfZPw65NT/iUOEJ3BM+z+B2sZFe2H7k\nClIyyxhUiIiIjMC7kBlhhGc0XG1dkFKahqY2w69Y8nZ3QKCXEy5cqUJ9k8aEFRIREQ0sDCpGkIgl\nmOQ3Hi3aVqSUnjaqbWyUElqdgNPZXFGZiIjIUAwqRor3HQepSILDhcehEwxfGTkm4vraPwwqRERE\nhmJQMZKTzBGjvUagrFGF7OpLBrfzdLHHED8XZOVVo6a+xYQVEhERDRwMKj1w/VLlQ4XHjGo3LsoL\nAoC0LJ5VISIiMgSDSg8EOQfKdjA5AAAgAElEQVQg0HkQzldkoaKpyuB2Y8MVEIk4/ENERGQoBpUe\nSvCLgwABR4pOGNzGxdEWEQFuuFRUi4raJhNWR0RENDAwqPTQaK8RcLSR43hxKlq1rQa3GxfVfqO4\nUxz+ISIi6haDSg/ZiKWY6DsOjW1NSCv7weB2o8MUkIhFSL3IoEJERNQdBpVbMNFvPMQiMQ4VHoeh\ni1A72tsgerA78srqUFpl2kUXiYiI+jsGlVvgZueK4Z7RKKwvxuXaqwa3GxfZPvyTerHMRJUREREN\nDAwqtyixB6sqjwz1hI1UjJTMMoPPxBAREVkjBpVbNMQ1GL5yb2SozqGmpdagNva2UgwP8UBJZSMK\nVQ0mrpCIiKj/YlC5RSKRCAn+cdAJOhwtSjG4nX74J5PDP0RERJ1hUOkFMd6jYS+1w9Hik2jTtRnU\nZniIB2xlEqRc5PAPERFRZxhUeoGtRIYJPjGoa63HD+XnDGojs5FgdKgnKmqbcaWkzsQVEhER9U8M\nKr1kkt8EiCDCQSMm1cZy+IeIiKhLDCq9ROngiSiPcFxR5yFfXWhQm+jB7pDbSZGaWQYdh3+IiIhu\nwqDSi35aVdmwsypSiRhjwhWoqW9FbkGNKUsjIiLqlxhUelGkexgU9h5IK/8B9a2GXXZ8ffgnhSsq\nExER3YRBpReJRWJM9o9Dm64Nx0tSDWoTEeAGZ7kMaVnlaNPqTFwhERFR/8Kg0svGe4+FTCLD4cIT\n0Oq03W4vFosQE65EfZMGWXnVfVAhERFR/8Gg0sscbOwR6z0a1S01OF+ZaVCb2CglACCFV/8QERHd\ngEHFBBL8jJtUG+LnAndnW6TnqKBp4/APERHRdQwqJuDr6I0w1xBkV19CSUP3Z0nEIhFiI73Q1KLF\n+R8r+6BCIiKi/oFBxUQSjFxVeZz+6h8O/xAREV3HoGIiwzyj4GbripOlp9HU1tTt9gFejvBys8cP\nlyrQ0tr9JFwiIiJrwKBiIhKxBJP8xqNV24qTJae73V50bfinVaPDmcsVfVAhERGR5WNQMaE431hI\nRRIcLjoOndD9JNnYqGvDPxc5/ENERAQwqJiUk8wRY7xGoryxAllVud1u7+cph79CjnM/VqKxWdMH\nFRIREVk2BhUTM3b9n9hIL7RpBaTncPiHiIiIQcXEAp0HIcg5ABcqs1DR1P2lx7GR7Td/S+XVP0RE\nRAwqfSHBPw4CBBwuPNHttko3Bwz2ccLFq9VQN7b2QXVERESWi0GlD4xSDoeTjSOOl5xCq7b78BEb\n6QWdIOB0tqoPqiMiIrJcDCp9wEYsRbzfODS1NeFUWUa328dGekEEIJVX/xARkZVjUOkjk/zGQywS\n41DhcQiC0OW2bk62CB3kipyCGlTXtfRRhURERJaHQaWPuNq6YIRiKIrqS3C59mq324+LVEIAcCqr\n3OS1ERERWSoGlT7006rKx7rddky4EmKRiFf/EBGRVWNQ6UNDXAfDz9EHP6jOo6altsttneUyRAa5\n4cdiNcprul8riIiIaCBiUOlDIpEICX5x0Ak6HC062e321++pcopnVYiIyEoxqPSxGO9RsJfa42hR\nCjS6ti63HROmgEQsQspFzlMhIiLrxKDSx2QSGeJ8YlCnqUdG+dkut3Wws8GwYA8UqupRVNHQRxUS\nERFZDgYVM5jsPwEiiHDYgPV/YqM4/ENERNaLQcUMPO09EO0RgSvqfOSpC7rcduQQT8ikYqRklnd7\n/xUiIqKBhkHFTAxdVdlOJsXIUE+UVTUiv6y+L0ojIiKyGAwqZhLhHgqlvSdOl59BXWvXASQ20gsA\nV1QmIiLrw6BiJmKRGJP949Cma8Px4tQutx0W7A57WwlSM8s4/ENERFaFQcWMxvuMgUwiw5Gik9Dq\ntJ1uZyOVYHSoApXqFlwuVvdhhURERObFoGJG9lJ7jPMeg+qWGpyrzOxy29io9uGfFK6oTEREVoRB\nxcz0k2oLul7/JzLQDY72NjiVVQ6djsM/RERkHRhUzMxH7oUwtyHIqbmM4vrSTreTSsQYG66AuqEV\n2fnVfVghERGR+fQ4qFy9erUXy7BuidfPqhR1fany9at/UjJ5S30iIrIOXQaV+++//4bH69ev1///\nmjVrTFORFRrqEQk3W1eklpxGo6bzlZLDBrnCxVGG09nlaNPq+rBCIiIi8+gyqLS13bho3smTP634\ny8tke49ELMFkvwlo1WmQUnq60+3EYhFiIpRoaG7DxatVfVghERGReXQZVEQi0Q2Pfx5Ofvka3Zo4\n31hIxVIcKjwGndD52ZJx+qt/OPxDREQDn9SYjY0JJw0NDVi9ejVqa2uh0Wjw8MMPQ6FQ4LnnngMA\nhIeH4/nnnzeq2IHMUSbHWOVInCxNQ2ZVLqI9wjvcLtjHGZ4udsjIVaFVo4XMRtLHlRIREfWdLoNK\nbW0tTpw4oX+sVqtx8uRJCIIAtbrrG49t27YNgwcPxqpVq1BWVoZly5ZBoVDg6aefxvDhw7Fq1Soc\nOnQICQkJvfNOBoAE/zicLE3D4cJjnQYVkUiE2Egv7DqZh3M/VmJMuLKPqyQiIuo7XQYVZ2fnGybQ\nOjk54d1339X/f1fc3NyQnZ0NoD3guLq6oqioCMOHDwcAJCUl4cSJEwwqPxPg7I/BzoG4UJkNVWMl\nFA4eHW4XG6nErpN5SLlYxqBCREQDWpdBZePGjT3e8Zw5c7B161ZMnz4darUaGzZswAsvvKB/3cPD\nAyqVqsf7H6gS/ONw5WIeDhcdx12ht3W4zSClI3w8HHDmciWaWtpgb2vUCB4REVG/0eVvuPr6emzZ\nsgXLly8HAHz22Wf49NNPERgYiDVr1sDT07PTtjt27ICvry/ef/99ZGVl4eGHH77hLIwhVw25uTlA\nKjXtHAyFouszQ31thnsctv34DVJK07A89i7YSW073C5pzCBs2puNH8vqkThmUB9XaXqW1i/0E/aN\nZWK/WC72za3pMqisWbMGfn5+AIArV67gjTfewFtvvYX8/Hz87W9/w5tvvtlp2/T0dEycOBEAEBER\ngZaWlhsudy4rK4NS2fWwRXV1o8FvpCcUCieoVHUmPUZPxHnHYvfV/dh9/jAm+o3vcJvoQFcAwP6U\nPEQHuPZleSZnqf1C7BtLxX6xXOwbw3UW6Lq8PLmgoACrVq0CAOzZswfJycmIi4vDwoULUVFR0eUB\nAwMDcebMGQBAUVER5HI5QkJCkJaWBgDYu3cvJk2aZPQbsQYT/cZBLBLjUOHxTs88+XjIEaB0xPkr\nVahv0vRxhURERH2jy6Di4OCg///U1FSMH//Tv+67u1T5nnvuQVFREZYsWYJVq1bhueeew9NPP403\n3ngDCxcuREBAAOLi4m6x/IHJ1dYFoxTDUNxQiks1P3a6XWyUF7Q6Aek5nOtDREQDU5dDP1qtFpWV\nlWhoaEBGRoZ+qKehoQFNTZ3f6h0A5HI51q5de9PzmzZtuoVyrcdk/zicLj+DQ4XHEeoW0uE2sRFK\nbDl4GamZZZg8wrePKyQiIjK9LoPKAw88gNmzZ6O5uRmPPPIIXFxc0NzcjEWLFmHBggV9VaNVCnEJ\ngp+jD85UXEB1cw3c7G6eh+Lpao8QP2dk5lWjtqEVLnKZGSolIiIynS6HfhISEnD06FEcO3YMDzzw\nAADAzs4Of/7zn7F48eI+KdBaiUQiJPrHQyfocLToZKfbxUZ6QRCAtCzeUp+IiAaeLoNKcXExVCoV\n1Go1iouL9X+Cg4NRXFzcVzVarbFeI+EgtcfR4hRodG0dbhMToYRIBOw7VYCmlo63ISIi6q+6HPqZ\nMmUKBg8eDIVCAeDmRQk//vhj01Zn5WQSGeJ8Y7E//xAyys8i1nv0Tdu4OtoiOTYAu1Py8dG3Wfjd\nr6K5YCQREQ0YXQaV1157DTt27EBDQwPmzJmDuXPnwt3dva9qIwCT/Cbgu/zDOFh4rMOgAgB3TA5G\nbmEtUjPLERHohsSRfn1cJRERkWl0OfRz++2344MPPsBbb72F+vp6LF68GL/5zW+wc+dONDc391WN\nVs3T3h1DPSOQpy7AVXV+h9tIJWL87lfRkNtJsWlfLvLLeHMhIiIaGLoMKtf5+PjgoYcewu7duzFz\n5ky89NJL+rvOkukl+McDAA4Xnuh0Gw8XO6yYG4U2rQ4btp/nfBUiIhoQDAoqarUan3zyCe688058\n8skn+N3vfoddu3aZuja6JtxtCLwcFDhd9gPqWus73W7kEE8kxwagrLoJH+/JNmg9JSIiIkvW5RyV\no0eP4ssvv8T58+cxY8YMvPrqqwgLC+ur2ugasUiMyX5x2Jy7A8eKU5EcNKXTbe9MCEZuYQ1SLpYh\nIsAVCZyvQkRE/ZhI6OKf3REREQgKCsKIESMgFt988uWVV14xaXGmXsipPy0W1dTWjL8cewn2Unu8\nMOFJSMSdrypdWduM5/6bihaNDs/cNwYBXv1r5c7+1C/Whn1jmdgvlot9Y7jOFiXs8ozK9cuPq6ur\n4ebmdsNrhYWFvVQaGcJeaodx3mNxuOg4zlZcxCjlsE639XCxw4o5UVj35Vls2HEBa5aNhb1tl11N\nRERkkbqcoyIWi7Fq1So8++yzWLNmDby8vBAbG4ucnBy89dZbfVUjXZPgPwEAcKjwWLfbjgz1xMzY\nQSirasRGzlchIqJ+qst/Zr/55pv48MMPERISgu+++w5r1qyBTqeDi4sLNm/e3Fc10jXeci9EuIUi\nqzoXRfUl8HP06XL7uxJCcKmwFicvliEi0I0LFxIRUb/T7RmVkJD2lXunTp2KoqIi3HfffXjnnXfg\n5eXVJwXSjSb7xwEADhce73ZbqUSM393efn+V/+3LQUF551cMERERWaIug8ovb8Xu4+OD6dOnm7Qg\n6towz0i427khtTQdjZqmbrf3dLHHijlR0LS131+luZX3VyEiov7DoPuoXMc1ZMyv/VLlCWjVaXCy\n5JRBbUaGemJGzCCUcr4KERH1M13OUcnIyEBiYqL+cWVlJRITEyEIAkQiEQ4ePGji8qgjE3xj8M2V\nvThUdAKJgyZCLOo+b85PDMGlolqcuFCG8ADOVyEiov6hy6Dy7bff9lUdZARHGznGeo3CiZJTyKzK\nQbRHRLdtpBIxfn97NJ774BT+ty8HwT7O8Fc69kG1REREPdflP8X9/Py6/EPmM/napcoHDbhU+TpP\nF3usmBsJTZsO6zlfhYiI+gGj5qiQ5Qhw8kewSyAuVmajvLHC4HajQhWcr0JERP0Gg0o/pl9Vuaj7\nS5V/bn5iCAb7OOPEhTIcPVtiitKIiIh6BYNKPzZSMRTOMiecLElDc1uLwe2kEjEevD0aDrZSfLIv\nB4W8vwoREVkoBpV+TCqWYqLfeDS1NeNUWYZRbT1d7bFiTvt8lQ07OF+FiIgsE4NKPzfRdxwkIgl2\nX9mPek2DUW1HhSkwfewglFQ2YuOeHM5XISIii8Og0s+52Dpj9uDpqG1VY1PWl0aHjbuTQjDYxwkn\nLpTi6DnOVyEiIsvCoDIAzAhMRKhrMM6ozuN4capRbdvvrzIUDrZS/G9vDgpVnK9CRESWg0FlABCL\nxFgWtRD2Untsyf0KZQ3lRrVXuNrj13Mi0XptPaCWVq2JKiUiIjIOg8oA4WbnikURd6FVp8F/L2yC\nRmfc5NjRYQpMG+uPkspGfLI320RVEhERGYdBZQAZrRyOCT4xKKgvxs4fjV/+YEHSEAz2ccKx86W8\nvwoREVkEBpUBZn7or6C098R3+YeRVZVrVNvr81XsbaX4ZG82ijhfhYiIzIxBZYCxk9piefS9EIvE\n+PjiZ6hvNe6SZYWrPX49u32+ynrOVyEiIjNjUBmAAp0H4bbgmahtrcMnWZuNvmR5TLgC08Zcm6+y\nj/NViIjIfBhUBqhpAQkIcw3BuYqLOFp80uj2dycNQZC3E46d43wVIiIyHwaVAUosEuO+qHsglzrg\ny9yvUdpQZlR7G6kYv593bb7KvmwUVRg3hERERNQbGFQGMDc7VyyKnA+NToMPenDJstLVHr+eHYFW\nDe+vQkRE5sGgMsCNVAxFvG8siupL8NXl3Ua3HxOuxNQx/iiuaMD/9uWYoEIiIqLOMahYgbtCfwUv\nBwUOFBxBZqXxYWNB0hAEejvh6LkSHON6QERE1IcYVKyArUSG5dH3QiKS4KPMz1DXatz9UWykYjw4\nbyjsbSXYuJfzVYiIqO8wqFiJACd//CokGXWt9fgk0/hLlpWu9rh/ViRaNTr8a/t5tGg4X4WIiEyP\nQcWKTBk0CRFuoThfmYnDRSeMbj82Qompo/1RxPkqRETURxhUrIhYJMbSqAWQ2zhg26WvUVxfavQ+\nFkwZgkAvJxw9y/kqRERkegwqVsbV1gVLIu6GRtfWvsqyVmNU+/b5KtH6+SrFnK9CREQmxKBihYYr\nojHRbzyKG0qx/fIuo9sr3Rz081U27OB8FSIiMh0GFSt115C58HZQ4mDhMVyozDK6/dgIJaaM9kOR\nqgGbOF+FiIhMhEHFSskkMiyPXgSpSIKNF7+AurXO6H3cc22+ypGzJTh+nvNViIio9zGoWLFBTr64\nPWQW6jT12Jj5hdGXLNtIJT/NV9mTg5JKzlchIqLexaBi5RIHTUSkexguVmbjYOExo9sr3RywfFYk\nWjRarOf9VYiIqJcxqFg5sUiMpZH3wNFGju2Xd6Go3vghnJgIJZKuzVf5dD/nqxARUe9hUCG42Dph\nSeTdaLt2yXKrkZcsA8DCKUMQ4OWIw2dKcOK88fdnISIi6giDCgEAhnlGYbJfHEoayrDt0jdGt2+f\nrzIUdjIJPt6TzfkqRETUKxhUSO+OIXPgI/fC4aLjOFdx0ej2Xm4OWD4rAi0aLTZsP49WzlchIqJb\nxKBCejKJDe6PXgSpWIpPMjejtkVt9D5iI72QNMoPhaoGbNqfa4IqiYjImjCo0A38HH0wL2Q26jUN\n2Jj5BXSCzuh9LJw6BAFKRxw+U4wTFzhfhYiIeo5BhW6S6B+PKI9wZFbl4GDBUaPb3zBf5VvOVyEi\nop5jUKGbiEQiLI1cACcbR+y4vBsFdcVG78PL/efzVS5wvgoREfWI1FQ73rx5M7766iv94/Pnz2Po\n0KFobGyEg4MDAGD16tUYOnSoqUqgW+Asc8LSqAVYf+YDfHhhE1bH/AEyicyofcRGeiErvwYHM4rw\n6Xe5WJYcYaJqiYhooDJZULn77rtx9913AwBSU1Oxe/duXLp0Ca+88grCwsJMdVjqRdEeEUj0j8fB\nwmP48tLXuDf8TqP3ce/UIbhcVItDPxQjPMAV46O8TVApERENVH0y9PPuu+/ioYce6otDUS+bFzIb\nvnJvHC06iTOqC0a3t5FK8NC8obCVSfDRt9korWo0QZVERDRQmTyonD17Fj4+PlAoFACAdevWYfHi\nxVizZg2am5tNfXi6RTbXLlm2EUvxv6zNqGmpNXofXu4OWJ4cgZZW3l+FiIiMIxKMXTLXSGvWrMGc\nOXMwbtw47Nu3D+Hh4QgICMBf//pXBAQEYMWKFZ22bWvTQiqVmLI8MtC3uQfxQfrnGOYVjr8k/AFi\nkfEZ990tZ/DtiatInhCEh+eP6P0iiYhowDHZHJXrUlJS8MwzzwAApk+frn9+ypQp2LVrV5dtq6tN\nO0ygUDhBpaoz6TEGitEuo5HqcRbnyjLxefouTAtIMHof8+ICceFyBb49cRWBCjnGRXl1uB37xXKx\nbywT+8VysW8Mp1A4dfi8SYd+ysrKIJfLIZPJIAgCli9fDrW6/W6nKSkpCA0NNeXhqReJRCIsibwb\nTjJHfHX5W+TXFRq9D5lN+/1VbGUSfPhtFso4X4WIiLph0qCiUqng7u4OoP0X3YIFC7B8+XIsXrwY\npaWlWLx4sSkPT73MSeaI+yLvgVbQ4sMLn6JF22r0PrzdHbAsORwtrVqs334emjbOVyEios6ZfI7K\nrTD16TKekuuZL3N34kDBEcT7xmJRxPwe7eOjb7Nw6IdiJI7yw30zw294jf1iudg3lon9YrnYN4Yz\ny9APDUy/CpkFP0cfHCtOxQ+q8z3ax71TQ+GvcMTBjCKkZpb1coVERDRQMKiQ0WzE0muXLNtgU+YW\nVDfXGL2P9vkq0e3zVXZzvgoREXWMQYV6xEfuhbtC56KhrREfX/y8R6ss+3jIsWxmOJqv3V+F81WI\niOiXGFSoxyb6jsdwz2jk1FzG/vxDPdrH+GhvTB7hi/zyenz23aVerpCIiPo7BhXqMZFIhMUR8+Ei\nc8LOH/cgT13Qo/0smhYKf4Uc33O+ChER/QKDCt0SR5kc90UthE7Q4cMLn6K5rcXofejvr2LTPl+l\nuKLeBJUSEVF/xKBCtyzCPRRTAyajvKkCW3K/6tE+fDzkuC+5fb7Kc/85ia+OXkFmXjVauC4QEZFV\nM/kt9Mk6/Co4GTlVl3Ci5BSiPMIxWjnc6H1MiPZGXmkd9p4qwPajVwAAErEIQd5OCB3kilB/F4T6\nu8LR3qa3yyciIgvFG77xRjy9pqyhHK+eWguJWIq/xD4GNzvXHu1HZi9Dypki5BTWIKegFnmlddD9\n7Gvq5ylH6CBXhPm7IGyQK9yd7XrrLVA3+DNjmdgvlot9Y7jObvjGoMIvUK86VpSCTdlfYojrYKwc\n9bserbL8y35padXicnEtcgpqkFtYi8vFtWjV/HQ5tIezHcIGtZ9tCR3kCl8PB4hEol55P3Qj/sxY\nJvaL5WLfGK6zoMKhH+pVcb6xuFCVjTOq89ibdxDJQVNueZ+2MgmigtwRFdS+blSbVof8svprwaU9\nvJy4UIYTF9qvGHK0t9EPE4UNckWAlyOkEk7HIiLqjxhUqFeJRCIsirgLeeoCfHNlLyLchyDIOaBX\njyGViBHs64xgX2ckjwuAThBQUtmI3IIa5BTWILegBhm5FcjIrQAAyGzECPFtHyYK9XdBiK8LbGWS\nXq2JiIhMg0M/PCVnEtlVl/D2D/+Bh707nopZCTup4fNIeqNfKmub9aElt7AWRRUN+tckYhECvJwQ\nNsgFYdeGizhB1zD8mbFM7BfLxb4xHId+qE+Fuw/BtIAE7Ms/iC9yduC+qHv69PgeLnaY4OKNCdHe\nAID6Jk37MFFBLXIKa5BXWocrJWrsSW2/SZ2vpxxh/i7XJum6wsOFE3SJiCwBgwqZzNzgGciuzkVK\n6WlEe4RjjNdIs9XiaG+DUaEKjApVAGifoPtjcS1yCmuRW1iDy0VqHKxowMEfigEA7s62+rMtYf4u\n8PGUQ8wJukREfY5BhUxGKpZiefQivHpqLT7N3oog50B42LuZuywA7RN0I4PcEfmzCboF5e0TdK9f\nXXTyYhlOXmyfoCu3k+on54YOckGglxMn6BIR9QHOUeHYockdLz6F/2VtRohLEFaO+h0k4q4nslpC\nvwjXJuhen+eSU1CLSnWz/nWZtH1Cb3twcUWIrzPsZAM/91tC39DN2C+Wi31jOM5RIbOZ4DMWFyuz\nkKE6h71532PW4GnmLqlbIpEIvp5y+HrKkTjSDwBQpb4+Qbd9nktWfvsfABCLRAj0dvzprIu/C5wc\nZOZ8C0REAwKDCpnc9UuWr6jzsevqfoS7hyLYJdDcZRnN3dkO46O8MT7qpwm6lwpr9WddrpbW4UpJ\n+xIAAODj4YDwQa4YH+2NUH8X3oSOiKgHOPTDU3J9Jrf6MtZmvAd3Ozc8FftH2HdyyXJ/7ZcWjRZX\nitX64HKpSK1fVNFfIUfSKD+Mj/aGvW3//fdBf+2bgY79YrnYN4bjLfQ7wC9Q3/vq8rfYk3cAMV6j\nsTx6YYfbDJR+0ep0yCmoxcGMIqTnqKDVCbCVSRA31BtJo/zgr3A0d4lGGyh9M9CwXywX+8ZwnKNC\nFmHO4OnIqs7FqbJ0RHuEI8Z7lLlLMhmJWIzIQDdEBrqhpr4FR84U4+APxfg+vQjfpxchzN8FSaP9\nMSZcwSuIiIg6waBCfUoilmB51L149dRb+Cx7Gwa7BMLT3t3cZZmcq6MtbosfjNkTAnHmUiW+zyjC\nhStVyCmshbODDSaN8EXCSF94utibu1QiIosiee65554zdxGdaWxsNen+5XJbkx+Dbia3cYCLrTPS\ny88gT12Acd5jblhleSD3i1gkgo+HHHFDvTE+ygsSsQh5ZXW4cLUa+08XIq+0Dg52Uihc7S1y8m1/\n75sqdTOOnivBlu8vY39aARqaNfB0sevX84aA/t8vAxn7xnByuW2Hz3OOCscOzUIQBPz3wiacLj+D\n2UHTMCd4hv41a+uXVo0WqZnl+D6jEFdK2t+3wtUOiaP8MHGYj0Vd5twf+6asuhGns1U4na3ClRK1\n/nmpRIQ2rQARgKggN8QN88HoMAVsbfrfgpX9sV+sBfvGcJxM2wF+gcyrUdOEl1PfRE1LLR4b/SBC\nXIMAWHe/XClR4/uMIqRcLIOmTQepRIzYSCWSRvkh2NfZ7GdZ+kPfCIKAIlUDTueocDq7HIWq9gUp\nxSIRwgNcMSa8fSkFWxsxUrPKcexcCS4XtQcYO5kEYyOUiB/qjbBBrmb/vA3VH/rFWrFvDMeg0gF+\ngczvUs0VvJX+L7jZueLp2D/CXmrPfgHQ0KzBsXOl+D69EGXVTQCAAC9HTBntj3GRXrCVmedf/Zba\nN4Ig4EpJHU7nlCM9W6X/zKQSEaKD3DE6XIGRQzw7PTtVWtWI4+dLcPx8KarULQDaz2rFDfVB3FBv\nKFwte+6QpfYLsW+MwaDSAX6BLMPXP+7B7qvfYazXSCyPuhdKpTP75RqdICAzrxoH04uQkVsBnSDA\n3laK+KHeSBrtBx8PeZ/WY0k/MzqdgNzCGpzOViE9V6UPGDIbMYYHe2BMuBLDQzyMmn+iEwRk51Xj\n6LlSnM4pR6tGBwAIG+SK+KHeGBuhtMj5LJbUL3Qj9o3hGFQ6wC+QZdDqtHgzfQOuqPNxX+Q9mDs8\nkf3SgSp1Mw6fKcahH4pR29A+OS8iwBVTRvtjZKhnn1zibO6fmTatDll51Tido0JGjgrqRg0AwN5W\nipFDPDEmXIGhg90h6/z0nAoAACAASURBVIV5Jk0tbTidrcLx8yX6pRJkUjFGhysQP9QHkYFuEIst\nY2jI3P1CnWPfGI5BpQP8AlmOiqZKvJL6FgDg78l/gaSp47vWUvsv6x9yK3AgvVD/C9TFUYaEEb6Y\nPMIX7s6m++zM8TPTqtHiwpUqpGWrcOZSBRpb2gAAzg42GBWmwJgwBSIC3Uwa1CpqmnD8QimOnytF\neU37sJKbky3ihnojbqh3n5/Z+iX+XWa52DeGY1DpAL9AliW1NB0fXfwMfs7eGOkxDIOc/ODv6AtX\nW66T05niigYczCjCsfMlaGrRQiwSYVSoJxJH+yEq0K3XP7e++plpamnD2cuVOJ2jwrnLlfqlCNyc\nbDEmTIEx4QqE+rv2+RkNQRBwqagWx86V4FRWOZpa2usK9nVG/FBvxEZ5QW5n06c1Afy7zJKxbwzH\noNIBfoEsz6asL3GsOOWG5+Q2DvB39G3/49T+Xy8HBSTi/ncZqam0tGqRklmGA6cLkV9eDwDwcndA\n0ig/xA/z7rVfnqb8malv0iAjV4X0bBUuXK1Cm7b9ryalmz3GhCswNlyJIG8niwmtrRot0nNVOH6u\nFBeuVkEQ2ifvjhziifhhPhga7A6JuG/uOMy/yywX+8ZwDCod4BfIMknkWpzJy0FhfTEK6opRWF+M\niqbKG7axEUvhK/eBv5PPtQDjB1+5N+ykHd8wyFoIgoAfi9U48P/t3XlsVNfd//H3rF5m8b7NeGxs\nEyDsa0zAlIRsTdMmT5O2pGloHulR1Sq//tEqjYJos6lVKyJVqtpEaau2UkTVhiZp1pasQIIxZt/M\nZsAG2zPe15mxx7Pc+/tjxgMGQxxie67t70uybA/XM2f43nv98Tnn3nPIzf7TbYQjCmajnlvm5rFu\nqZMZ+fYv9fxjfcz0+AY5XNvOgTPtnGnoQYmdjgpzrCybHR3WceZYNBNOrqXbO0j1iRZ217Tg6Yhe\nDm23mFk5N4/VCwpw5Y7vuk5yLtMuqc3oSVAZgexA2jRSXQbCA7h9LTTFgkuT143H30pEjcS30aEj\nJzULlzU6ZOS0OXDZHNjNI+/8U523P0jl8WZ2HnbT3hMAoKTAzu1LnNxyc+4NTTgdi2Omo2cgdo+T\nds67exk6AZUU2Fk+O4els3LIy0z9Uq+RKKqqcqHFy+7jzew92Yo/EJ1PU5RrZdWCAlbOzcNuGfsb\n+Mm5TLukNqMnQWUEsgNp02jrElbCtPa30+h1x8JLNMQMhAPDtrObbcOGjQptDnJSsobdtn8qU1SV\nE/Vd7Djk5uj5DlQVLMlGKhYWcNsSJ3kZow8FN3rMNHf6OXAmOqxzsTX68zodzCpMZ2ms52Q8JwEn\nQiiscOx8B7uPt3C8rpOIomLQ61hQmsXqBfksLMvGZBybfVDOZdoltRk9CSojkB1Im75MXVRVpSvQ\nPWzYqMnroXuwZ9h2ZoOZQmsBhVZnfPjIYcnHZJj4iZATqaN3gE+PeNh11BO/tHdeSSbrljhZODPr\nc+dUjLY2qqrS0OqL3x22ubMfAINex80zMlg2K3p32PHoXdCiPn+QvSdb2X28OT6HyJJspDw2NPRl\n597IuUy7pDajJ0FlBLIDadN41MUX8uP2NscDjNvnoaW/DUVV4tvodXryU3NxWqNDRkO9LxbT5ByG\nuJ5wROHgmXZ2HGqitqkXiF5Rc9vi6CXOadaR5/pcrzaKqlLn7uNgbRsHz7TT0Rvt2TIZ9cwvyWT5\n7FwWzcwiNQFXxWhJY5uP3cebqT7ZSl/sfjgFWamsXlDArfPyybB98XlWci7TLqnN6ElQGYHsQNo0\nUXUJRUJ4/C2xXpdmmnxumnzNBCPDVzrNSEqPDxsNBZjM5LG/9DdRmtp87DjipqqmhcFgBINex9JZ\nOaxb6rxqvZsraxNRFGobejhQ286h2nZ6fdH/u2SzgUUzs1k2K4cFpVkJu+W/lkUUhZq6LnbXtHDk\nbHt0gUQdzJuRyaoF+Sy9KWfU84jkXKZdUpvRk6AyAtmBtCmRdVFUhY6BzkvDRrGho77g8PakGFOi\nQ0c2R3Tyrs1BfmrupL5kemAwTPWJFnYcdscX8nNkW7h9iZNb5+WTmmwkJ8eGp7mXkxe6OFjbzpGz\nHfgGokNI1hQTi2+KhpO5MzLHbP7FdOAbCLH/VCu7a1qo80QXSExJMrBiTi6r5hdwU+H17yUk5zLt\nktqMngSVEcgOpE1arEvvoBf3ZRN2m3we2vo7ULl0+Bh1Bgqs+cPu+eK0FpBinFyTRFVV5WxTLzsO\nuzlwuo2IopJkMlA+Nw/0OvadaCEQjF5tlWY1R2/ANiuHWUXpE3bfkKmsudNPVU0LVTUtdHuj6xfl\npqewakE+q+blkz3CAolaPGZElNRm9CSojEB2IG2aLHUJhAejQ0deT3TYyNuMx99MSAnHt9Gho7xg\nGV8vuZuM5PQEtvbG9PqDVB7zsPOwm87Yon/Zacksn53L0tk5lDrs6KfIEJjWKIrKqYZuqo43c/BM\nO8FwdD7VnKJ0Vs0vYPmcHJLN0QUSJ8sxMx1JbUZPgsoIZAfSpslcl4gSoW2gI37J9InOM7T4WzHq\njawtXMU9xesm5eRcRVE509iDM9+OzayfMvNzJouBwTAHTrexu6aF2sbYAokmPctm5bJ6QT5rlhXR\n2elLcCvFSCbz+WyiSVAZgexA2jSV6qKoCvtaDvFe3Yd0D/aQYkzm7qLbuc21GrNh8l2aO5VqM1m1\n9Qywp6aFqprm+I38Mu3J5GWkkGlLIsOeRIYtmQxbUvR7WxLWFJOEywSRY2b0JKiMQHYgbZqKdQlF\nQnzm3sMHF7bjD/eTZrZzX8ldrCxYPqkm4E7F2kxWQ3OJdh9v5lhdZ/yKq5EYDXoybGYybMnx8BL9\nSCbTHv3anmqe8EUepwM5ZkZPgsoIZAfSpqlcl4HwAB9d/JTtjbsIKSHyUnO4v+xeFmXPmxR/8U6V\n2oSVMGElTPIkm+h8LTk5NtyeHrp9g3T3DUY/e6Nfd3kD0a+9g/T5g1zrhK/X6Ui3mS8FmGGBJvqR\nbk3CaJAJ01/EVDlmJoIElRHIDqRN06EuPYO9bKv/mKrm/SiqQom9iAfK7uWmjLJEN+26Jntt+oJe\nPmvawy73HvrDAyzMnkuFYyWzM2dO6iUVRr3sRESh1xek2zs8wHR5B+nxDtLtDdDjCxJRRv61oCO6\n2OJQcMm0JZNuM5MZG2rKsCeRYU26oXWkpqrJfsxMJAkqI5AdSJumU11a/W28W/cBh9uPAzAvaw4P\nlN2L01qQ4JaNbLLWxu1rZnvDLg60HiasRkg1ppCelIbH3wJAdnImqx3lrHQsn5SLWI5lXRRFpa8/\nFmb6BunxXRZq+i4Fm3BEueZzWFNMV/XGDAWboa9Tkoxj0l6tm6zHTCJIUBmB7EDaNB3rcqGvgbfO\n/ZezPXXo0LEifwlfL7mbrJTMRDdtmMlUG0VVONl5hu2NuzjTfQ6A3JRsbndVUF6wHLPexEVvI5Xu\nvRxoPUJICWHQGViYM48KRzmzMsomTS/LRNdFVVX8gTBdfcN7Zbqv6KUZDEau+RwpSQbSrUMTfof3\nyCSbDRj0evR6HQa9Dp0uuk7U0PfRz9F/14/wb3qdTjNDqZPpmEk0CSojkB1Im6ZrXVRV5WRXLW+f\n/y9uXzNGnYE1hbfy1eI7sJotiW4eMDlqMxgJsrf5IDubKmntbwdgVsZM1rkqmJc1Z8Tw0R8aYF/r\nIXa798Z7WXJSsqK9LAXLsZmtE/oeviit1mVgMHwpwMR6Y4bmz3T1RR/3B8Kf/0Q3QK/ToddzKcDo\ndMMCje6K74d91sUCzxXfGz7vsdjrXP54XraV9BQjhblWLNN8navPI0FlBFo9uKe76V4XRVU40HqE\n9+o+oDPQTbIhmbuK13K7aw1JCb6kWcu16Rns5dOmKird1fSHBzDqDCzLW8w61xoKbY5RPYeqqtT3\nXaTSvZdDbUcJKWGMOgOLcuZT4VzJTemlmvlL/XJarsvnGQxFYvNjBuNzZ4IhBUVViSgqinLp8+WP\nXevx+Gf10naXf/95zxWJ/dt4/GbMtCfhyrFSmGvFFfvIy0iVq61iJKiMYDIf3FOZ1CUqpISpdFfz\n/oVP8IX82M02vlZyJ6sKbknYJc1arE1DXxPbG3dxsO0oiqpgNVlY41zJGucq0pJufL6JP9TPvpZD\nVLqraelvAyAvNYfVjnLKC5ZhNWmjlwu0WZfJTlGvCDFXfn9FGIpcI/yoej0nz3fQ2Oajsd131WXk\nJqMeZ7blUniJBRlryvTrfZGgMgI5uLVJ6jLcQDjAJw2f8UnjZwQjQXJTsvlG2VdZkrNgwv+610pt\nFFXheMdJPmnYxfneegDyLXmsc1WwIm8pZsPYneRVVeV87wUq3dUcbj9OWAlj1BtZkrOACudKytJm\nJLyXRSt1EVe7sjZ9/UGa2nw0tfni4cXT4SccGf6rOMOWFO91KcyJ9b5kpkzp9bQkqIxADm5tkrqM\nrC/oZVv9J1R6qlFUhSJbIf9T9jVmZ86csDYkujaBcIA9zQfY2VhJR6ALgJszZ7HOtYabM2eNe2Dw\nhfzsbT5Ipaeatv4OIBqQKhzllOcvJTVByyMkui7i2kZTm3BEobWrn8b2aHhpavPT2Oal54reF6Mh\n2vviyh0+fDRVel8kqIxADm5tkrpcX1t/B+/VfcDBtqNA9Bf1A2X34rI5x/21E1WbrkA3O5t2U+XZ\nx0A4gFFv5Ja8pdzuqsBhzZ/w9qiqytmeOird1RxpryGiRjDpjSzNXUSFcyUl9qIJ7WWRY0a7vkxt\nvP1Bmtr9sfASDTHuDv9Vl4anW824cm0U5lriw0d5mamT7uZ8ElRGIAe3NkldRqehr4m3z2/jdPdZ\nAJbnLeYbpfeQnZI1bq850bWp773I9sZdHGmvQVEVbGYra52rqHCu1MyVON6gj+rmA1R69tIx0AmA\nw5JPhXMlt+QvIcWYMu5tkGNGu8a6NhFFobVrIBpeYj0wjW0+ur2Dw7YzGnQ4si24YsNGQz0wtlTt\nrjE24UHltdde45133ol/X1NTwz//+U+ee+45AGbPns3zzz9/3eeQoDI9SV2+mFNdtbx9fhuNXjcG\nnYEK50runXHHuPwin4jaRJQIRztOsL3hM+r7GgBwWgtY51rDsrzFmPTavFGYoirUdp+n0l3N0Y4T\nKKqCWW9iWd5iKpzlFNtc49bLIseMdk1UbXwDoWivS3z4KNr7EgoP731Js5qvCi/5Gul9SWiPyr59\n+9i2bRvnzp3jySefZOHChTzxxBPcf//9rF279po/J0FlepK6fHGKqnC47Rjv1H1Ax0AnSQYzdxSt\n5Q7XmjFdz2Y8azMQHmC3Zx+fNlXRFegGYH7WzaxzrWFWRlnCJ6x+Eb2DXqqb97Pbs5fO2HsptDqo\ncJazIm/JmK8xJMeMdiWyNhFFoa17IN7rMhRkuvqG974Y9LHel6GJu3nR4SO7ZWJ7XxIaVB577DF+\n85vf8Oijj7J9+3YA3nvvPWpqati4ceM1f06CyvQkdblxYSXMbs8+ttV/jDfkw2qycG/JnVQ4yjGO\nQU/EeNSmY6CTHY2V7Gnez2AkiFlvYmXBcm5zVZCXmjOmrzXRFFXhdNdZKj17Od5xMtrLYjCzIm8x\nFY6VFNkLx+R15JjRLi3Wxh8Ixee8DA0fudv9BK/ofbFbzPE5L65cKyUOO/mZ4zdh/FpBZdz7UI8d\nO0ZBQQEGgwG73R5/PCsri/b29vF+eSGmFaPeyNrCVZTnL2N742d83PApr9W+zY6GXXyj9B6W5i3S\nxG3hhy753d64i2PtJ1BRSU9K46vFd7DaWY4lQVfPjDW9Ts/crNnMzZpNz2AvezwH2O3Zy27PPnZ7\n9lFkc1LhXMmy3MUkG5MS3VwxTViSTcwuymB2UUb8MUVRae3uj03e9cauPPJxor6LE/XRK+x0wDP/\nu4Li/IldD2vce1SeeeYZ7rvvPmbMmMEPf/hD3nrrLQCqqqp44403+O1vf3vNnw2HIxiNsgqnEDeq\nN9DHv0++z4fnPyOiRChJd/HIov9hYd7NCRlKCSsRqhsP8t6ZT6jrjs4/Kcso5r7Z61jpWoYxQTey\nm0iKonCk5SQfn9/FwebjqKpKijGZNcW3cGfZGmZkjE0vixBjwTcQ4mJzHxc8vfT6gzy07iaSJnh1\n7HEPKvfccw/vvvsuOp2Ou+66i507dwLw5ptvUltby1NPPXXNn5Whn+lJ6jL2Oga6eK/uAw60HkFF\nZXbGTB4ou5diu+sLPc+N1sYf6me3ey+fuqvoGexFh46FOfNY51qjiRumJUp3oIcqzz6qmvfTM9gL\nwAx7ERWOcpblLcI8yiUT5JjRLqnN6CVk6Ke1tRWLxYLZHD3YSktLOXDgAMuXL+fDDz9kw4YN4/ny\nQoiY7JRM/nfed7mjaC3vnN/Gya4zvHDgDyzNXcg3Su8hd5zmgrT2t7OzsZLq5gMElRBJBjO3F1Zw\nm2v1uF5GPVlkJKdzX+ndfHXGHZzoPE2lZy8nO89woa+BN869yy35S6lwrEzIvWKE0IpxDSrt7e1k\nZl5apn7Tpk0888wzKIrCokWLWLVq1Xi+vBDiCi6bg/+3+P+o7T7HW+e2cajtGEfaa1jtKOfeGXd+\nqbVxhqiqSm33ebY37qKm8xQAGUnp3OdazWrHLRNyX5HJxqA3sDBnHgtz5tE50E1V8z72xK6A+rSp\nitK0YiocK1mSu3BMlwcQYjKQG75Jl5zmSF0mhqqqHG4/zrt179PW34FZb2Jd0Ve4s2gtKde4fPZ6\ntQkpYQ60HmFH4y7cvmYASuzFrCtaw6LseQlbSHGyiigRjneeotJdzemus6iopBpTKM9fRoWznHxL\nXnxbOWa0S2ozenJn2hHIDqRNUpeJFVEiVDXvZ1v9R/QGvVhNFu6ZsY41zluvurnaSLXxBn1Uuqv5\n1F2FN+hDr9OzOGc+61xrKEkrnsi3MmV1DHSx27OXPc378QZ9AJSllVDhLGdJzgIc+ZlyzGiUnM9G\nT4LKCGQH0iapS2IMRoLsaKzko4s7CUQCZCZn8PWSu1mRvyR+SfPltfH4WtjRWMn+1kOElDApxmRW\nOW7htsLVZCZnXO+lxA0KK2GOdZyk0l3Nme5zAFhMqawtWYkryYXL5iQ9KW3aTk7WIjmfjZ4ElRHI\nDqRNUpfE8oX8fHBhO581VRFWIzitBTxQdi9zM2eTk2PjszMH2d64i1NdtQBkJ2dym6uCWwuWj/kd\nV8W1tfV3sNuzl+rmA/hC/vjjNpMVl91JkdWJy15Ikc1JRlK6hJcEkfPZ6ElQGYHsQNokddGGzoFu\n/lP/IftaDqGiUpZWwqAaoKkvOv9kZnoJ61xrWJA9VxM3kZuuQkqYNsXDscazNPrcNPQ10T3YM2wb\nq8mCy+aMfxTZCslKzpDwMgHkfDZ6ElRGIDuQNkldtMXta+ad8+9T03kKg07P0tzFrHNVjNnt38WX\nd+Ux4w36aPJ6aPA20eB10+h10xnoGvYzqcaUeGhx2Ry4bIXkpGRJeBljcj4bPQkqI5AdSJukLtrU\n4m+jMC+bsE96T7RmNMeMP9RPYyy0NHibaPS6aR/oHLZNijGZQquDIlt0yMhlc5KTmi09Zl+CnM9G\nL2Fr/QghpoZ8Sy4ZKTbafXLSnYwsplTmZN7EnMyb4o/1hwZo8rnjvS6NXjfneuo521MX3ybJYKbQ\n6qTIPtT74iQvNUfCi5gwElSEEGKaSjWlMCtjJrMyZsYfGwgHaPJ6YvNd3DR6m6jrvcD53vr4NmaD\nmUKrIzZ0FA0weak50/peOaqqEogM4gv68YX8+EN+vCE/mf1WsnW5ZMqcoBsmQUUIIURcijGZmzJK\nuSmjNP5YIDyI29ccHzJq9Lqp771IXe+F+DYmvYlCawGuWK9Lkc1JgSVv0oaXsBKOBY5+vEEf/pAf\nX6gfX9AX/RyKfvaH/PHHImrkms9nN9soTSumJK2Y0rQZuGzOq+5TJEYm/0tCCCGuK9mYRFn6DMrS\nZ8QfC0aCsfByad7LRW8T9X0N8W2MeiNOS8Fll0s7cVjyMU7wL2hFVQiEA3iHejqC/ljw8F/VA+IP\nRgNJIBIY1XOnGJOxmCy4kjOwmixYTRYs5lRsJisWkwVDssJxdy11vRc50l7DkfYaAIw6A0X2wnhw\nKbEXj8kSFlORBBUhhBBfmNlgpiTWQzAkFAnh8bdErzbqc9Poc9Pk83DR2xjfxqAz4LDmxybrRift\nOiz5mL7AGkbBSCgWLHz4g/3RwHH5xxVBxB/uR1GVz31eo86AxWQhK+VS6LCaLVhMFmym6Oehx6wm\nCxZT6ueGrpwcG+WZ5aiqSlegh/q+i9T1XqS+9wIX+hqp673IJ3wGRO9JVJI2I97z4rTmy1wg5Kof\nmY2tQVIX7ZLaaJOW6xJSwjT7Wi672siD299MWAnHt9Hr9Dgs+fH7vBh0+kvDK8HY8EpsqMUX9BFU\nQqN6bYsxFYs5NRY6rFhNqVjNViym1GFBZOjrJEPSmM8juV5tBiNBLsbCSn3vBep6L9IfHoj/e5LB\nzAx7USy4zKDEXkSqaeou6imXJ49Aywf3dCZ10S6pjTZNtrpElAgef2tsvkv0Xi9un4fQZeHlSia9\nMRo2LgsW1qFejvhj0SBiNVlINaZoYn7MF6mNoiq09XdcCi59DbT4W4dtU2DJiweX0rRiclOyp8wk\nXbk8WQghhCYY9IbYTeYcwAogGl5a+tto8nrQ6XTDgojNbMFsMCe20RNAr9OTb8kl35LLKkf0/8Uf\n6udCXwN1vdEhowt9DTT7W9nt2QdELzsvsRdTmhb9KLa7ptz/lQQVIYQQCWfQG3BaC3BaCxLdFE2x\nmFKZlzWHeVlzgKHeqJZYcLlAfe9FajpPUdN5CoiGnUKrIx5cStNmkJGcnsi38KVJUBFCCCEmiWhv\nVHQuz9rCVQD0DPZS39sQCy4NseG0JnY27QYgPSktHlpK04optDo0MSw2WhJUhBBCiEksPSmNJbkL\nWJK7AIhefdXoc8eHi+p6L3Co7RiH2o4B0fk+RTZXvNelJK0Ym9mayLdwXRJUhBBCiCnEZDDFek9m\nANG75nYGuoYFlyvvNpybkh27p0u05yXfkquZS6MlqAghhBBTmE6nIzsli+yULG7JXwpEl0qIXhod\nHS6q77vI3paD7G05CECyIZmStKJ4eJlhLyLFmJyQ9ktQEUIIIaaZFGPysEUqFVWhxd8WWxrhInV9\nFzjVVcuprloAdOgoshfywwWPkZZkn9C2SlARQgghpjm9To/Dmo/Dms9qZzkA3qDvskujL9AT6L3u\nvW7GiwQVIYQQQlzFZrayIHsuC7LnJrQd2pgpI4QQQggxAgkqQgghhNAsCSpCCCGE0CwJKkIIIYTQ\nLAkqQgghhNAsCSpCCCGE0CwJKkIIIYTQLAkqQgghhNAsCSpCCCGE0CwJKkIIIYTQLAkqQgghhNAs\nCSpCCCGE0CwJKkIIIYTQLJ2qqmqiGyGEEEIIMRLpURFCCCGEZklQEUIIIYRmSVARQgghhGZJUBFC\nCCGEZklQEUIIIYRmSVARQgghhGZNy6Dy61//mvXr1/Pwww9z7NixRDdHXOaFF15g/fr1PPTQQ3z4\n4YeJbo64TCAQ4M477+Tf//53opsiLvPOO+9w//338+CDD7Jz585EN0fE+P1+fvzjH7NhwwYefvhh\ndu3alegmTVrGRDdgou3bt4+LFy+ydetWzp8/z6ZNm9i6dWuimyWA6upqzp49y9atW+nu7uab3/wm\nd999d6KbJWJefvll0tLSEt0McZnu7m5eeukl3njjDfr7+/nDH/7AbbfdluhmCeDNN9+kpKSEJ554\ngtbWVh577DHef//9RDdrUpp2QWXPnj3ceeedAJSVldHb24vP58NqtSa4ZWLFihUsXLgQALvdzsDA\nAJFIBIPBkOCWifPnz3Pu3Dn5Jagxe/bs4dZbb8VqtWK1WvnlL3+Z6CaJmIyMDM6cOQNAX18fGRkZ\nCW7R5DXthn46OjqG7TCZmZm0t7cnsEViiMFgIDU1FYDXX3+dr3zlKxJSNGLz5s1s3Lgx0c0QV2hq\naiIQCPCjH/2IRx55hD179iS6SSLmvvvuw+PxcNddd/Hoo4/y1FNPJbpJk9a061G5kqwgoD0ff/wx\nr7/+On/7298S3RQBvPXWWyxevBiXy5XopogR9PT08OKLL+LxePj+97/Pjh070Ol0iW7WtPf222/j\ncDj461//yunTp9m0aZPM77pB0y6o5Obm0tHREf++ra2NnJycBLZIXG7Xrl388Y9/5C9/+Qs2my3R\nzRHAzp07aWxsZOfOnbS0tGA2m8nPz2fVqlWJbtq0l5WVxZIlSzAajRQVFWGxWOjq6iIrKyvRTZv2\nDh06REVFBQBz5syhra1NhrJv0LQb+lm9ejUffPABACdOnCA3N1fmp2iE1+vlhRde4E9/+hPp6emJ\nbo6I+d3vfscbb7zBv/71L7797W/z+OOPS0jRiIqKCqqrq1EUhe7ubvr7+2UuhEYUFxdz9OhRANxu\nNxaLRULKDZp2PSpLly5l3rx5PPzww+h0Op599tlEN0nE/Pe//6W7u5uf/OQn8cc2b96Mw+FIYKuE\n0K68vDzuuecevvOd7wDwi1/8Ar1+2v39qUnr169n06ZNPProo4TDYZ577rlEN2nS0qkySUMIIYQQ\nGiXRWwghhBCaJUFFCCGEEJolQUUIIYQQmiVBRQghhBCaJUFFCCGEEJolQUUIMWaampqYP38+GzZs\niK8a+8QTT9DX1zfq59iwYQORSGTU23/3u99l7969N9JcIcQkIEFFCDGmMjMz2bJlC1u2bOHVV18l\nNzeXl19+edQ/v2XLFrkxlhAibtrd8E0IMbFWrFjB1q1bOX36NJs3byYcDhMKhXjmmWeYO3cuGzZs\nYM6cOZw6dYpXXnmFuXPncuLECYLBIE8//TQtLS2Ew2EeeOABHnnkEQYGBvjpT39Kd3c3xcXFDA4O\nAtDa2srPfvYzY6nagAAAAjFJREFUAAKBAOvXr+db3/pWIt+6EGIMSFARQoybSCTCRx99xLJly3jy\nySd56aWXKCoqumqRttTUVP7+978P+9ktW7Zgt9v57W9/SyAQ4Gtf+xpr1qyhqqqK5ORktm7dSltb\nG3fccQcA27Zto7S0lOeff57BwUFee+21CX+/QoixJ0FFCDGmurq62LBhAwCKorB8+XIeeughfv/7\n3/Pzn/88vp3P50NRFCC6tMWVjh49yoMPPghAcnIy8+fP58SJE9TW1rJs2TIgushoaWkpAGvWrOEf\n//gHGzduZO3ataxfv35c36cQYmJIUBFCjKmhOSqX83q9mEymqx4fYjKZrnpMp9MN+15VVXQ6Haqq\nDlvPZijslJWV8Z///If9+/fz/vvv88orr/Dqq69+2bcjhEgwmUwrhBh3NpuNwsJCPv30UwDq6+t5\n8cUXr/szixYtYteuXQD09/dz4sQJ5s2bR1lZGYcPHwagubmZ+vp6AN59912OHz/OqlWrePbZZ2lu\nbiYcDo/juxJCTATpURFCTIjNmzfzq1/9ij//+c+Ew2E2btx43e03bNjA008/zfe+9z2CwSCPP/44\nhYWFPPDAA2zfvp1HHnmEwsJCFixYAMDMmTN59tlnMZvNqKrKD37wA4xGOcUJMdnJ6slCCCGE0CwZ\n+hFCCCGEZklQEUIIIYRmSVARQgghhGZJUBFCCCGEZklQEUIIIYRmSVARQgghhGZJUBFCCCGEZklQ\nEUIIIYRm/X9E91DSX0uhaQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "u95jZp0ms7ZY", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 652 + }, + "outputId": "96e105fe-45ba-430e-d49f-590b8a79bad5" + }, + "cell_type": "code", + "source": [ + "_, adam_training_losses, adam_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdamOptimizer(learning_rate=0.009),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 220.63\n", + " period 01 : 122.10\n", + " period 02 : 113.57\n", + " period 03 : 102.53\n", + " period 04 : 83.07\n", + " period 05 : 73.96\n", + " period 06 : 71.36\n", + " period 07 : 70.83\n", + " period 08 : 70.27\n", + " period 09 : 69.76\n", + "Model training finished.\n", + "Final RMSE (on training data): 69.76\n", + "Final RMSE (on validation data): 67.88\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl0VPX9//HnLNn3yZ6whC0hQQir\nsqosAqLWDakbta1tbYVqLa3WftFqqQva2rqAdalLof6KUrVQUZQiCiooBBAIJCwJhASy73tm7u+P\nyJRIEhJgMpPwepzTc5zl3nlP3ncOr977+dyPyTAMAxEREZFuxOzuAkREREQ6SwFGREREuh0FGBER\nEel2FGBERESk21GAERERkW5HAUZERES6Hau7CxDxZElJSfTp0weLxQKA3W5nzJgxLFy4EH9//zPe\n75tvvsmcOXNOef7tt9/m/vvv569//SuTJ092Pl9XV8f48eOZPn06jz/++Bl/bkcdOXKERx99lKys\nLAD8/PyYP38+06ZNc/lnd8bSpUs5cuTIKX+TLVu2cPvtt9OrV69Ttvnggw+6qryzcvToUaZOnUq/\nfv0AMAyDiIgI/u///o+UlJRO7etPf/oTcXFx3HTTTR3e5t///jcrV65k2bJlnfoska6iACNyGsuW\nLSMmJgaAhoYG7rnnHl544QXuueeeM9pfYWEhL7/8cqsBBiA2Npb//Oc/LQLMxx9/THBw8Bl93pn4\n1a9+xdVXX81f//pXAHbu3Mltt93G+++/T2xsbJfVcTZiY2O7TVhpi8ViafEd1qxZw7x581i7di3e\n3t4d3s+CBQtcUZ6IW+kSkkgneHt7M2nSJPbu3QtAfX09Dz74IDNmzODyyy/n8ccfx263A7Bv3z5u\nvPFGZs6cydVXX83GjRsBuPHGG8nLy2PmzJk0NDSc8hkjR45ky5Yt1NbWOp9bs2YNEyZMcD5uaGjg\nD3/4AzNmzGDKlCnOoAGwfft2rrvuOmbOnMmsWbP4/PPPgeb/Rz9x4kT+/ve/c9VVVzFp0iTWrFnT\n6vfMzMwkNTXV+Tg1NZW1a9c6g9xzzz3HJZdcwjXXXMOLL77IlClTAPjNb37D0qVLndud/Ph0dT36\n6KPceuutAGzbto3rr7+eyy67jDlz5pCTkwM0n4n6xS9+weTJk7n11ls5fvz4aTrWurfffpv58+dz\n22238cQTT7BlyxZuvPFG7r77buc/9u+//z5XXnklM2fO5Hvf+x5HjhwB4Nlnn2XhwoXMnj2b1157\nrcV+7777bl555RXn47179zJx4kQcDgd//vOfmTFjBjNmzOB73/se+fn5na571qxZ1NXVcejQIQBW\nrFjBzJkzmTJlCr/85S+pq6sDmv/ujz32GFdddRXvv/9+iz60dVw6HA5+//vfc+mllzJ79mz27dvn\n/Nwvv/ySa6+9llmzZnH55Zfz/vvvd7p2kXPOEJE2JSYmGseOHXM+LisrM2655RZj6dKlhmEYxgsv\nvGD8+Mc/NhobG43a2lrj+uuvN959913Dbrcbl19+ubF69WrDMAzj66+/NsaMGWNUVlYamzdvNqZN\nm9bq5/3rX/8y7rvvPuNXv/qVc9vKykpj6tSpxltvvWXcd999hmEYxnPPPWfcdtttRn19vVFdXW1c\nc801xvr16w3DMIwrr7zS+M9//mMYhmG88847zs/KyckxUlJSjGXLlhmGYRhr1qwxLrvsslbr+PnP\nf25MnjzZeP31140DBw60eC0jI8MYPXq0UVBQYDQ2Nho/+9nPjMmTJxuGYRj33XefsWTJEud7T37c\nXl1Dhgwx3n77bef3HTNmjLFp0ybDMAxj9erVxrXXXmsYhmEsX77cuOWWW4zGxkajpKTEmDx5svNv\ncrL2/sYn/s7Dhw83srKynO8fOnSo8fnnnxuGYRi5ubnGqFGjjOzsbMMwDONvf/ubcdtttxmGYRjP\nPPOMMXHiRKO4uPiU/b733nvGLbfc4nz89NNPG4sWLTIyMzON6dOnGw0NDYZhGMbf//5345133mmz\nvhN/l+Tk5FOeHzNmjHHw4EHjq6++MsaNG2ccP37cMAzDeOCBB4zHH3/cMIzmv/tVV11l1NXVOR8v\nWbKk3eNyw4YNxvTp042qqiqjtrbWmD17tnHrrbcahmEY1113nbFlyxbDMAwjKyvL+OUvf9lu7SJd\nQWdgRE5j7ty5zJw5k6lTpzJ16lTGjh3Lj3/8YwA2bNjAnDlzsFqt+Pr6ctVVV/HZZ59x9OhRioqK\nuOKKKwAYOnQocXFx7Nq1q0OfecUVV/Cf//wHgHXr1jF58mTM5v/9XD/++GNuvvlmvL298ff35+qr\nr+bDDz8E4N133+Xyyy8HYNSoUc6zFwBNTU1cd911AAwZMoS8vLxWP//JJ5/klltuYfXq1Vx55ZVM\nmTKF//f//h/QfHZkzJgxREZGYrVaufLKKzv0ndqrq7Gxkcsuu8y5/+joaOcZpyuvvJIjR46Ql5fH\n1q1bueyyy7BarYSFhbW4zPZtx44dY+bMmS3+d/JYmYSEBBISEpyPfX19GTduHACfffYZF110EX37\n9gXghhtuYMuWLTQ1NQHNZ6RsNtspn3nppZeSnp5OWVkZAB999BEzZ84kODiYkpISVq9eTXl5OXPn\nzuWaa67p0N/tBMMwWLFiBdHR0SQkJLB+/XpmzZpFdHQ0ADfddJPzGAAYN24cPj4+LfbR3nH51Vdf\ncckllxAQEICvr6+zVwDh4eG8++67HDx4kISEBP70pz91qnYRV9AYGJHTODEGpqSkxHn5w2pt/umU\nlJQQEhLifG9ISAjFxcWUlJQQFBSEyWRyvnbiH7GIiIjTfuaECRNYuHAhZWVlvPfee9x5553OAbUA\nlZWVPPbYYzz11FNA8yWlYcOGAbB69Wr+/ve/U11djcPhwDhpuTOLxeIcfGw2m3E4HK1+vo+PD7ff\nfju33347FRUVfPDBBzz66KP06tWL8vLyFuNxwsPDT/t9OlJXYGAgABUVFeTk5DBz5kzn697e3pSU\nlFBeXk5QUJDz+eDgYKqrq1v9vNONgTm5b99+XFpa2uI7BgUFYRgGpaWlrW57gr+/P+PHj2fDhg2M\nGjWKiooKRo0ahclk4tlnn+WVV15h0aJFjBkzhocffvi044nsdrvz72AYBgMHDmTp0qWYzWYqKyv5\n6KOP2LRpk/P1xsbGNr8f0O5xWV5eTlRUVIvnT3j00Ud5/vnn+cEPfoCvry+//OUvW/RHxB0UYEQ6\nyGazMXfuXJ588kmef/55ACIiIpz/bxugrKyMiIgIwsPDKS8vxzAM5z8WZWVlHf7H3svLi8mTJ/Pu\nu+9y+PBhRowY0SLAREVF8cMf/vCUMxD5+fksXLiQt956i+TkZLKzs5kxY0anvmdJSQl79+51ngEJ\nDg5mzpw5bNy4kczMTIKCgqisrGzx/hO+HYrKy8s7XVdUVBT9+/fn7bffPuW14ODgNj/7XAoPD2f7\n9u3Ox+Xl5ZjNZsLCwk677YwZM/joo48oLS1lxowZzv6PHTuWsWPHUlNTw+LFi/njH/942jMZ3x7E\ne7KoqCiuvfZa7rvvvk59r7aOy/b+thERETzwwAM88MADbNq0iZ///OdMmjSJgICADn+2yLmmS0gi\nnfCDH/yA7du38+WXXwLNlwxWrlyJ3W6npqaGf//731xyySX06tWLmJgY5yDZtLQ0ioqKGDZsGFar\nlZqaGufliLZcccUVvPTSS61OXZ46dSpvvfUWdrsdwzBYunQpn376KSUlJfj7+9O/f3+amppYsWIF\nQJtnKVpTV1fHXXfd5RzcCXD48GF27tzJ6NGjGTFiBFu3bqWkpISmpibeffdd5/siIyOdgz9zcnJI\nS0sD6FRdqampFBYWsnPnTud+fv3rX2MYBsOHD2f9+vXY7XZKSkr49NNPO/y9OmPChAls3brVeZnr\nn//8JxMmTHCeeWvP5MmT2b59O+vWrXNehtm0aRMPP/wwDocDf39/Bg8e3OIsyJmYMmUKH374oTNo\nrFu3jhdffLHdbdo7LkeMGMGmTZuora2ltrbWGZwaGxuZO3cuBQUFQPOlR6vV2uKSpog76AyMSCcE\nBgbyk5/8hMWLF7Ny5Urmzp1LTk4OV1xxBSaTiZkzZ3L55ZdjMpl46qmn+N3vfsdzzz2Hn58fTz/9\nNP7+/iQlJRESEsKECRN45513iIuLa/WzLrzwQkwmE7NmzTrltZtvvpmjR49yxRVXYBgGF1xwAbfd\ndhv+/v5cfPHFzJgxg/DwcH7zm9+QlpbG3LlzeeaZZzr0HePi4nj++ed55pln+MMf/oBhGAQGBnL/\n/fc7ZyZ997vf5dprryUsLIzp06ezf/9+AObMmcP8+fOZPn06KSkpzrMsgwcP7nBdvr6+PPPMMyxa\ntIjq6mq8vLy4++67MZlMzJkzh61btzJt2jTi4uKYNm1ai7MGJzsxBubbnnjiidP+DWJiYvjDH/7A\nnXfeSWNjI7169WLRokUd+vsFBgYyZMgQMjIyGD58OABjxozhvffeY8aMGXh7e2Oz2Xj00UcBuPfe\ne50ziTpjyJAh/PSnP2Xu3Lk4HA7Cw8N5+OGH292mveNy8uTJbNiwgZkzZxIREcEll1zC1q1b8fLy\nYvbs2Xz/+98Hms+yLVy4ED8/v07VK3KumYyTL0SLiHTS1q1buffee1m/fr27SxGR84jOAYqIiEi3\nowAjIiIi3Y4uIYmIiEi3ozMwIiIi0u0owIiIiEi30y2nURcWtj5t8lwIC/OntLTGZfuXM6feeCb1\nxXOpN55LvemYyMigNl/TGZhvsVot7i5B2qDeeCb1xXOpN55LvTl7CjAiIiLS7SjAiIiISLejACMi\nIiLdjgKMiIiIdDsKMCIiItLtKMCIiIhIt6MAIyIiIt2OAoyIiEgPs2HDfzv0vqef/hN5ebltvv6b\n3/zyXJV0zinAiIiI9CDHjuWxbt3aDr337rsXEBcX3+brjz/+1Lkq65zrlksJiIiISOueemoxe/fu\nYdKkMUyffjnHjuXxl78s5bHHfk9hYQG1tbX88Ic/YcKEScyf/xN++ct7+fjj/1JdXcWRI4fJzT3K\nXXctYNy4CVxxxVTee++/zJ//E8aMuYi0tK2UlZWxePGfiYiI4Pe/f4Djx48xdOgw1q9fxzvvrOmy\n7+nSAPPEE0+wbds2mpqauOOOOxg6dCj3338/TU1NWK1WnnzySSIjI1m1ahWvv/46ZrOZOXPmcMMN\nN7iyLBERkS7x5voDfLWv4JTnLRYTdrtxRvscMziKOVMGtvn6TTfN5e2336RfvwEcOZLN0qUvU1pa\nwoUXjuXyy68kN/coDzzwGyZMmNRiu4KCfP74x2fYvPlz/v3vfzFu3IQWrwcEBPD008/z/PPP8umn\n64mL60VDQz0vvvgan322kTff/H9n9H3OlMsCzObNm9m/fz8rVqygtLSUa6+9losuuog5c+Ywa9Ys\n/vGPf/Dqq68yf/58lixZwsqVK/Hy8mL27NlcdtllhIaGuqq0NhWV1XK8vJ6YEJ8u/2wREZFzLTl5\nCABBQcHs3buHVavexmQyU1FRfsp7hw0bDkBUVBRVVVWnvJ6aOsL5enl5OYcPZzF0aCoA48ZNwGLp\n2vWdXBZgxowZw7BhwwAIDg6mtraW3/3ud/j4NIeDsLAw9uzZw86dOxk6dChBQc0rTo4cOZK0tDSm\nTJniqtLa9M7GLLbszedPd44nJFAhRkREzs6cKQNbPVsSGRlEYWGlyz/fy8sLgI8++oCKigqWLHmZ\niooKfvSjuae89+QAYhinnh369uuGYWA2Nz9nMpkwmUznuvx2uWwQr8Viwd/fH4CVK1dy8cUX4+/v\nj8ViwW6388Ybb3DVVVdRVFSEzWZzbmez2SgsLHRVWe3qFRWAw2GQnl3qls8XERE5W2azGbvd3uK5\nsrIyYmPjMJvNfPLJehobG8/6c+Lje5GRkQ7Al19uPuUzXc3lg3jXrVvHypUreeWVVwCw2+3ce++9\njB07lnHjxrF69eoW728t9X1bWJi/S5YinziiN299fJCDxyv5zuRB53z/cvYiI4PcXYK0Qn3xXOqN\n53JVb0aNGsojj2TSv38CgYG+REYGcd11V/Gzn/2M/fv3cv311xMXF8uKFa/j7W0lLCyAgAAf53tL\nSwPw9rYSGRmEyWQiMjLI+b7IyCACA31pbPTh6qtn8dFHa7jrrp9w4YUXEhoa2qXHm8noSGI4Qxs3\nbuTpp5/m5Zdfdo5puffee+nVqxd33XUXAFu2bGHFihU89VTzVK3777+f6dOnM3ny5Db366rTbg7D\nYMGSzwB4at6ELj8dJu3rqlOu0jnqi+dSbzxXT+hNRUU5aWlbufTSqRQWFnD33T/jjTf+dU4/o71A\n5LJLSJWVlTzxxBO88MILzvCyatUqvLy8nOEFIDU1lV27dlFRUUF1dTVpaWmMHj3aVWW1y2wykToo\nkvKqBnKLqt1Sg4iISHfg7x/A+vXr+MlPvs9vf/srfv7zrr3pncsuIa1Zs4bS0lJ+8YtfOJ/Ly8sj\nODiYuXObBw8NGDCAhx56iAULFnD77bdjMpmYN2+ec0CvO4xIjOTT7bmkZ5XQKzLQbXWIiIh4MqvV\nyu9//5jbPt+ll5BcxZWn3UxeVn6w6EOG9g/nnjmpLvsc6byecMq1J1JfPJd647nUm45xyyWk7ioi\n1I/YcH8yckppbHK4uxwRERFphQJMK4Yk2GhodHAw99Qb/YiIiIj7KcC0IqVf831p9mSXuLkSERER\naY0CzElqGms5XllAUu9QLGYT6QowIiLSQ82efRU1NTUsW/Yau3d/3eK1mpoaZs++qt3tN2z4LwBr\n1qzmk08+dlmdbVGAOcm/Dqzm12sfwTA3MCAumOxjlVTVnv3dCkVERDzV3Lnf54ILhnVqm2PH8li3\nbi0As2ZdxSWXtH3vNldx+Z14u5MI33Dq7Q3sKz1ASj8bmUfL2Xu4lDGDo9xdmoiISIf88Ie38Oij\nfyImJobjx49x//0LiIyMora2lrq6Ou6559ekpFzgfP8jjzzEpZdOZfjwEfzf/91LQ0ODc2FHgA8/\nfJ+VK1dgsZhJSBjAfff9H089tZi9e/fw6qsv4XA4CA0N5frrv8vSpU+za9dOmprsXH/9HGbOvIL5\n83/CmDEXkZa2lbKyMhYv/jMxMTFn/T0VYE6SEp7If7LWsrc4g7EJ03l3YxZ7skoUYERE5Iy8feA/\nbC/YdcrzFrMJu+PM7mIyImoo1w28ss3XL754Mp999inXXz+HjRs/4eKLJzNgwCAuvvhStm37in/8\n43UeeeTJU7Zbu/Z9+vcfwF13LeC///3QeYaltraWP/3pWYKCgpg378ccPHiAm26ay9tvv8kPfvBj\n/va3FwDYsSONQ4cO8vzzr1BbW8ttt93IxRdfCkBAQABPP/08zz//LJ9+up45c24+o+9+Ml1COknv\noHiCfAJJL8mkb0wg/j5W0rNLOrQ+k4iIiCdoDjAbAdi06RMmTryETz75Lz/72e08//yzlJe3PsM2\nO/sQF1zQfP+zESNGOZ8PDg7m/vsXMH/+Tzh8OIvy8rJWt9+3L53hw0cC4OfnR0JCf3JycgBITR0B\nQFRUFFVVVefke+oMzEnMJjOp0clsOvIVBbWFJPcNY1tmIQVltUSH+bu7PBER6WauG3hlq2dLXHkj\nu/79B1BcXEh+/nEqKyvZuHEDERFRPPDAIvbtS+e55/7S6naGAWZz8xqAjm/ODjU2NvLUU0/w2mtv\nEB4ewb33/qLVbQFMJhMn///9pqZG5/4slv8twHyuTgroDMy3pMakAJBekuGcTp2epdlIIiLSfYwb\nN5EXX1zKpEmXUF5eRnx8LwA++eRjmpqaWt2mT5++7Nu3F4C0tK0A1NRUY7FYCA+PID//OPv27aWp\nqQmz2Yzdbm+x/eDBQ9i+fds329WQm3uUXr36uOorKsB8W2pMMgB7izMZkhAGwJ7sUneWJCIi0imX\nXDKZdevWcumlU5k58wpWrPgH99wzjyFDLqC4uJj33lt1yjYzZ17Bnj27uPvun5GTcxiTyURISChj\nxlzEj370PV599SVuvnkuzzzzFH379iMjYx/PPPMn5/apqcNJShrMvHk/5p575vHTn87Hz8/PZd9R\nayF9S2RkEL98bxHHq/N54uKHeeDFrVTXNfHM3ROxmJX33Elrh3gm9cVzqTeeS73pGK2F1Ekp4Uk0\nGXb2lx5kSD8btfVNZB3TgSYiIuIpFGBakWxLBGBvSSZDEjQORkRExNMowLSif0hffCzepJdkMLhv\nGCa0LpKIiIgnUYBphdVsJTFsIAU1RdRRSUJsMIfyKqitb33ktoiIiHQtBZg2pNiSANhbksGQfmHY\nHQYZR1q/eY+IiIh0LQWYNqSEN4+DSS/+3zgYXUYSERHxDAowbYjwCyfKL4LM0gP0jQ3Ax8tCugKM\niIiIR1CAaUdyeBJ19npyqnJI6hPKseIaSirq3F2WiIjIeU8Bph0p30ynTi/JJOXEZSRNpxYREXE7\nBZh2DAobgNVkYW9xxknLCijAiIiIuJsCTDt8LN4MCO1HTlUegcEOQgO9Sc8uxdH9Vl8QERHpURRg\nTiMlvHk69b6S/QxJsFFV20hOfpWbqxIRETm/KcCcRrJzHEwGKf2+WVZAl5FERETcSgHmNOICYgjx\nDmZfyX4G9w0FNA5GRETE3RRgTsNkMpESnkRVYzUVjkJ6RQaSmVNOQ6Pd3aWJiIictxRgOqDF6tT9\nwmiyO8g8qmUFRERE3EUBpgMG2wZhwkR6cYZzWYH0rFI3VyUiInL+UoDpgAAvfxKCe5NVcYResb5Y\nLSaNgxEREXEjqyt3/sQTT7Bt2zaampq44447GDp0KPfeey92u53IyEiefPJJvL29WbVqFa+//jpm\ns5k5c+Zwww03uLKsM5IcnkRWxRGyKw8xqFcoew+XUl7dQEiAt7tLExEROe+47AzM5s2b2b9/PytW\nrODll1/m0Ucf5ZlnnuHmm2/mjTfeoG/fvqxcuZKamhqWLFnCa6+9xrJly3j99dcpK/O88SUnLysw\n5Jvp1Ht1FkZERMQtXBZgxowZw9NPPw1AcHAwtbW1bNmyhalTpwIwefJkvvjiC3bu3MnQoUMJCgrC\n19eXkSNHkpaW5qqyzljf4N74W/1IL84gpa+WFRAREXEnl11Cslgs+Pv7A7By5UouvvhiNm3ahLd3\n8yWX8PBwCgsLKSoqwmazObez2WwUFha2u++wMH+sVourSicyMqjV51NjU/giZxsxfUwEB3iz70gZ\nERGBmEwml9UiLbXVG3Ev9cVzqTeeS705Oy4dAwOwbt06Vq5cySuvvML06dOdzxttrCfU1vMnKy2t\nOWf1fVtkZBCFhZWtvjYgoD9fsI3PD+1gcJ8wvtxbwM59+cRHBLisHvmf9noj7qO+eC71xnOpNx3T\nXshz6SykjRs38te//pWXXnqJoKAg/P39qaurAyA/P5+oqCiioqIoKipyblNQUEBUVJQryzpjyeHf\njIMpziDFOZ1al5FERES6mssCTGVlJU888QQvvPACoaHNt+AfP348a9euBeDDDz9k0qRJpKamsmvX\nLioqKqiuriYtLY3Ro0e7qqyzEuoTQlxADAfKDpHYpzkVahyMiIhI13PZJaQ1a9ZQWlrKL37xC+dz\njz/+OAsXLmTFihXExcVxzTXX4OXlxYIFC7j99tsxmUzMmzePoCDPvS6YEp7EuiPHKXHkEWPzJ+NI\nGU12B1aLbqkjIiLSVUxGRwadeBhXXjc83XXJfSX7eXbHS0zpPYm6rCT+m3aU+24eQVKfMJfVJM10\nzdgzqS+eS73xXOpNx7htDExPNCC0H95mr+ZxMP1OTKfWsgIiIiJdSQGmk7zMVhLDBnC8poDoaBNm\nk4l0jYMRERHpUgowZyA5PAmArMqD9I8PJutYBdV1jW6uSkRE5PyhAHMG/resQPPq1IYBe3UZSURE\npMsowJyBSL8IInxt7Cs5wOC+IQC6jCQiItKFFGDOgMlkIiU8iTp7HaaAMvx8LLofjIiISBdSgDlD\nyd9cRsoo28/gPmEUltVRUFbr5qpERETODwowZygxbAAWk4X04gyG9NOyAiIiIl1JAeYM+Vp96R/S\nl5zKXBJ6+QBaVkBERKSrKMCchZTwJAwMihw5hAf7sje7FIej293YWEREpNtRgDkLybbm+8HsK9nP\nkH5h1NQ3kXW8ws1ViYiI9HwKMGehV2Aswd5BpJdkkNy3eVkBjYMRERFxPQWYs2AymUi2JVLZUEVo\nVD0mtC6SiIhIV1CAOUsn7sp7uOoQfWOCOJhbTl1Dk5urEhER6dkUYM7SYFsiJkzNywr0s2F3GGQc\nKXN3WSIiIj2aAsxZCvQOoE9QLw6WZzOwTwCg6dQiIiKupgBzDqSEJ+IwHNj9CvH2MpOucTAiIiIu\npQBzDpyYTp1ZfoDE3qHkFVVTWlnv5qpERER6LgWYcyAhuDd+Vl/Si/eR8s106j2aTi0iIuIyCjDn\ngMVsISlsEMV1pcTGNT+XrnEwIiIiLqMAc46khDdPpy4hh5AAb9KzS3AYWlZARETEFRRgzpGUb8bB\n7C3JJCXBRkVNI0cLqtxclYiISM+kAHOOhPmGEhMQzf7SgwxOCALQbCQREREXUYA5h1JsiTQ4GvGz\nVQK6H4yIiIirKMCcQycuIx2pPUR8ZACZOWU0NtndXJWIiEjPowBzDg0M7YeX2Yu9xZkMSbDR2OQg\n82i5u8sSERHpcRRgziEvixeDQvuTV32cvr28AEjX/WBERETOOQWYcywlvPkyUqNfPlaLSeNgRERE\nXEAB5hxLtjXfDyazYj8D40M4kl9FRU2Dm6sSERHpWVwaYDIzM5k2bRrLly8H4KuvvuKmm25i7ty5\n3HHHHZSXN48Pefnll5k9ezY33HADn3zyiStLcrlo/0hsvmFklOwnOSEUgL2aTi0iInJOuSzA1NTU\nsGjRIsaNG+d87rHHHuORRx5h2bJljBgxghUrVpCTk8OaNWt44403eOGFF3jsscew27vvzB2TyUSy\nLZGaplps0XWAplOLiIicay4LMN7e3rz00ktERUU5nwsLC6OsrAyA8vJywsLC2LJlC5MmTcLb2xub\nzUZ8fDwHDhxwVVld4sQ4mFKWzQJOAAAgAElEQVSOEuBrJT27BEPLCoiIiJwzLgswVqsVX1/fFs/9\n9re/Zd68ecyYMYNt27Zx7bXXUlRUhM1mc77HZrNRWFjoqrK6RFLYAMwmM3tLM0lOsFFSUc/xkhp3\nlyUiItJjWLvywxYtWsRzzz3HqFGjWLx4MW+88cYp7+nImYqwMH+sVosrSgQgMjLoLPcQRFJEf/YV\nHeTmlFC27ivgcGENwwbHnJP6zmdn3xtxBfXFc6k3nku9OTtdGmAyMjIYNWoUAOPHj2f16tWMHTuW\nrKws53vy8/NbXHZqTWmp685mREYGUVhYedb7GRg0kL2FB2iwHgPgy93HGDs48qz3ez47V72Rc0t9\n8VzqjedSbzqmvZDXpdOoIyIinONbdu3aRd++fRk7diwbNmygoaGB/Px8CgoKGDhwYFeW5RIp30yn\nzqnPIjrMj31HSmmyO9xclYiISM/gsjMwu3fvZvHixeTm5mK1Wlm7di0PP/wwCxcuxMvLi5CQEB59\n9FGCg4OZM2cOt956KyaTiYceegizufvfnqZXUByBXgHsLc4gud8wNqTlcSivgsTeoe4uTUREpNtz\nWYC54IILWLZs2SnP//Of/zzlublz5zJ37lxXleIWZpOZZFsiX+VvJy7ODmmQnl2iACMiInIOdP9T\nHR7sxHTqBr98zCYtKyAiInKuKMC40IllBfZXHKBfXBBZeZXU1DW5uSoREZHuTwHGhYK8A+kdFM+h\nsiyS+gbhMAz2HdGyAiIiImdLAcbFUmxJNBl2AiMrANiTpctIIiIiZ0sBxsVOXEYqMx3F19uicTAi\nIiLngAKMi/UP6YuvxYd9pZkM7hNGQWktRWW17i5LRESkW1OAcTGL2UJS2EAKa4vp26f5z62zMCIi\nImdHAaYLJH8zndocUgTAnmwN5BURETkbCjBd4MSyAkfrsrAF+7A3uwSH4/SLVoqIiEjrFGC6QLif\njWj/SDLLDjI4IYTquiYO52sRLxERkTOlANNFkm2JNNgbiIxtHsCr6dQiIiJnTgGmi5xYVqDe7zjQ\nvC6SiIiInBkFmC4yKLQ/VrOVAxUH6BsdxP6j5dQ32N1dloiISLekANNFvC3eDAzpR27VMQYk+GB3\nGGTklLm7LBERkW5JAaYLnbiM5B/RPI1al5FERETOjAJMFzqxrEAJOXhZzbqhnYiIyBlSgOlCsQHR\nhPqEkFl2gEG9g8ktrKasqt7dZYmIiHQ7CjBdyGQykWJLpLqxhvjezQN4dRlJRESk8xRgutiJZQUI\nKgB0PxgREZEzoQDTxQaHDcSEidz6bIIDvEnPLsUwtKyAiIhIZyjAdDF/L3/6hfQhu+IIiQn+lFc3\nkFtY7e6yREREuhUFGDdIsSVhYBAW27wekmYjiYiIdI4CjBskhzdPp671bl5WQAFGRESkcxRg3KBP\nUC8CvPw5WHmA2Ah/Mo+U0djkcHdZIiIi3YYCjBuYTWYGhw2irL6cfgkmGpocHMgtd3dZIiIi3YYC\njJucWFbAx9Z8+UjTqUVERDpOAcZNTl5WwGI2aRyMiIhIJyjAuEmITzDxgbEcqsimf3wAR45XUlXb\n6O6yREREugUFGDdKsSXR5Ggiuk8tBlpWQEREpKMUYNwo5Zvp1EZgIaAAIyIi0lEuDTCZmZlMmzaN\n5cuXA9DY2MiCBQuYPXs2t912G+XlzTNvVq1axfXXX88NN9zAW2+95cqSPEr/kAS8Ld4crcsiwNfK\nniwtKyAiItIRLgswNTU1LFq0iHHjxjmfe/PNNwkLC2PlypXMmjWLrVu3UlNTw5IlS3jttddYtmwZ\nr7/+OmVlZa4qy6NYzVaSwgZQUFtI/wQviivqKCitdXdZIiIiHs9lAcbb25uXXnqJqKgo53Mff/wx\n3/nOdwD47ne/y9SpU9m5cydDhw4lKCgIX19fRo4cSVpamqvK8jgptubp1MExzWejNBtJRETk9Kwu\n27HVitXacve5ubl8+umnPPnkk0RERPC73/2OoqIibDab8z02m43CwsJ29x0W5o/VanFJ3QCRkUEu\n2/e3TfAbyYrMd2kKKAB6sT+3gu/O6LrP7266sjfSceqL51JvPJd6c3ZcFmBaYxgG/fr1Y/78+Sxd\nupQXXniBlJSUU95zOqWlNa4qkcjIIAoLK122/2+z4EukXziZJfuJDB3A1wcKOZ5fjsWs8dXf1tW9\nkY5RXzyXeuO51JuOaS/kdem/khEREYwZMwaAiRMncuDAAaKioigqKnK+p6CgoMVlp/NBsi2JOns9\nvfs3UltvJytPB7WIiEh7ujTAXHzxxWzcuBGAPXv20K9fP1JTU9m1axcVFRVUV1eTlpbG6NGju7Is\ntzsxndortBjQOBgREZHTcdklpN27d7N48WJyc3OxWq2sXbuWP/7xjzzyyCOsXLkSf39/Fi9ejK+v\nLwsWLOD222/HZDIxb948goLOr+uCg0IHYDFZKDZyMJnC2JNdwtUT+7m7LBEREY9lMrrhjUdced3Q\nXdcln97+IpmlB4jK+w45uY08+4tJ+Pl06RAlj6drxp5JffFc6o3nUm86xmPGwEjbUr5Z3DGiVxUO\nw2DfkVI3VyQiIuK5FGA8REp48/1g7AH5AOzJ0jgYERGRtijAeIi4gBhCvIPIrcvGx8vMnmydgRER\nEWmLAoyHMJlMJNuSqGqsJqGfg/ySGorL69xdloiIiEdSgPEgJ6ZTB0Q3rwWl6dQiIiKtU4DxIEm2\nQZgwUWXNAyBdAUZERKRVCjAeJNArgL7BvcmtOUpoiJn07FIc3W+Wu4iIiMspwHiYZFsiDsNBfEIt\nVbWN5ORXubskERERj6MA42FOTKe2aFkBERGRNinAeJi+Qb3wt/pRaD8CGLofjIiISCsUYDyMxWwh\nyTaIsoYy4uIN9h8to77R7u6yREREPMoZB5js7OxzWIacLMXWfBnJFl9Jk91gf06ZmysSERHxLO0G\nmB/84ActHi9dutT53w8++KBrKhKSbYMAaPT7ZlkBjYMRERFpod0A09TU1OLx5s2bnf/dDRex7jbC\nfEOJC4jhWH0OVqvBniwtKyAiInKydgOMyWRq8fjk0PLt1+TcSrYl0uhopFf/eo4WVlFe3eDukkRE\nRDxGp8bAKLR0nRPTqQMims++6K68IiIi/2Nt78Xy8nK++OIL5+OKigo2b96MYRhUVFS4vLjz2YCQ\nBLzMXpRbcoFY9mSVMG5IjLvLEhER8QjtBpjg4OAWA3eDgoJYsmSJ87/FdbwsXiSGDWBP8T4CQ5rY\nk12CYRg6CyYiIsJpAsyyZcu6qg5pRYotiT3F+4jpW82Br63kFVUTHxno7rJERETcrt0xMFVVVbz2\n2mvOx//85z+5+uqrueuuuygqKnJ1bee95PBEAEzBhQDsydZsJBEREThNgHnwwQcpLm5ekycrK4un\nnnqK++67j/Hjx/PII490SYHnsyi/CMJ9bRTZjwIODeQVERH5RrsBJicnhwULFgCwdu1aZs6cyfjx\n47nxxht1BqYLmEwmksMTqbPXERlfT8aRMprsDneXJSIi4nbtBhh/f3/nf3/55ZeMHTvW+ViDSbvG\niWUFQmMrqG+0czC33M0ViYiIuF+7AcZut1NcXMyRI0fYvn07EyZMAKC6upra2touKfB8lxg2ALPJ\nTL3vMUDLCoiIiMBpAsyPf/xjZs2axVVXXcWdd95JSEgIdXV13HzzzVxzzTVdVeN5zc/qy4CQBIoa\n8rF4N7InSwFGRESk3WnUl1xyCZs2baK+vp7AwObpu76+vvz6179m4sSJXVKgNC8rsL/sEDF9q8ne\n70VVbSOBfl7uLktERMRt2j0Dk5eXR2FhIRUVFeTl5Tn/179/f/Ly8rqqxvPeiWUFfMNLMYB9hzWd\nWkREzm/tnoGZMmUK/fr1IzIyEjh1Mce///3vrq1OAIgPjCXIO5Ay+1EggT3ZJYweHOXuskRERNym\n3QCzePFi/v3vf1NdXc0VV1zBlVdeic1m66ra5Btmk5lkWyJfHk/DL6RG42BEROS81+4lpKuvvppX\nXnmFv/zlL1RVVXHLLbfwox/9iNWrV1NXV3fanWdmZjJt2jSWL1/e4vmNGzeSlJTkfLxq1Squv/56\nbrjhBt56660z/Co924np1JF9qigqr6OgtMbNFYmIiLhPuwHmhNjYWO68807ef/99ZsyYwR/+8IfT\nDuKtqalh0aJFjBs3rsXz9fX1vPjii87LUjU1NSxZsoTXXnuNZcuW8frrr1NWVnaGX6fnGmwbhAkT\nBBUAWlZARETObx0KMBUVFSxfvpzrrruO5cuXc8cdd7BmzZp2t/H29uall14iKqrlWI2//vWv3Hzz\nzXh7ewOwc+dOhg4dSlBQEL6+vowcOZK0tLQz/Do9V5B3IL2D4im2HwNzky4jiYjIea3dMTCbNm3i\nX//6F7t372b69Ok8/vjjJCYmdmzHVitWa8vdZ2VlsW/fPu6++26efPJJAIqKilqMq7HZbBQWFnb2\ne5wXUmyJHKk8SmhMJXsP+2J3OLCYO5RBRUREepR2A8yPfvQjEhISGDlyJCUlJbz66qstXn/sscc6\n9WGPPfYYCxcubPc9J890aktYmD9Wq6VTn90ZkZFBLtv32RjPCD44vB5br0oO5YVRVmdncN8Qd5fV\npTy1N+c79cVzqTeeS705O+0GmBPTpEtLSwkLC2vx2tGjRzv1Qfn5+Rw6dIhf/epXABQUFHDrrbfy\n85//vMXCkAUFBQwfPrzdfZW6cABrZGQQhYWVLtv/2Qh1ROBr8aWKXKAPn20/Srj/+XNDO0/uzflM\nffFc6o3nUm86pr2Q1+71B7PZzIIFC3jggQd48MEHiY6O5sILLyQzM5O//OUvnSoiOjqadevW8eab\nb/Lmm28SFRXF8uXLSU1NZdeuXVRUVFBdXU1aWhqjR4/u1L7PFxazhcG2gVTayzH7VJOucTAiInKe\navcMzJ///Gdee+01BgwYwH//+18efPBBHA4HISEhp53uvHv3bhYvXkxubi5Wq5W1a9fy7LPPEhoa\n2uJ9vr6+LFiwgNtvvx2TycS8efMICtJptbak2JLYUbibiD5VHDxYQW19E34+7bZRRESkx2n3Xz6z\n2cyAAQMAmDp1Ko899hj33Xcfl1122Wl3fMEFF7Bs2bI2X1+/fr3zv2fOnMnMmTM7WvN5LTm8eRC1\nd1gxdkc0GTllDB8Y4eaqREREula7l5BMJlOLx7GxsR0KL+I6Nt8wYvyjKDcdA5NDl5FEROS81Kk5\nuN8ONOIeyeGJNBmNeIeWsSdbAUZERM4/7V5C2r59O5deeqnzcXFxMZdeeimGYWAymdiwYYOLy5PW\npNiS+DhnExG9KsnbVUNJRR22YF93lyUiItJl2g0wH3zwQVfVIZ0wMLQ/XmYr9oACoC97skuYNCzO\n3WWJiIh0mXYDTHx8fFfVIZ3gbfFiYGh/9pZkglcd6dmlCjAiInJe0X3ou6kUW/NspKCoMtKzS3B0\n4A7GIiIiPYUCTDeVEp4EQGB0GZU1jRwtqHJzRSIiIl1HAaabivaPIswnlBqvY4Ch2UgiInJeUYDp\npkwmEynhiTQY9ZgCynU/GBEROa8owHRjKbbmy0hhcRVk5JTT0Gh3c0UiIiJdQwGmG0uyDcRsMmMN\nK6LJ7mD/0XJ3lyQiItIlFGC6MT+rH/2C+1BFIVgaNA5GRETOGwow3VyyLQkDA6+wEo2DERGR84YC\nTDeX8s3q1KGxFRwpqKKiusHNFYmIiLieAkw31zsonkCvABr98gGD9MM6CyMiIj2fAkw3ZzaZGWwb\nRD3VmPyqSM8qdXdJIiIiLqcA0wOcmE7tF1HKnuwSDC0rICIiPZwCTA+Q/M04GP/IEkor6zlWXOPm\nikRERFxLAaYHCPYOondgHLXWQjA3aTq1iIj0eAowPURyeBIO7JiDNJ1aRER6PgWYHiLF1nwZKSi6\nnH05ZTTZHW6uSERExHUUYHqIfiF98bF4Yw4ppL7BzqG8CneXJCIi4jIKMD2E1WwlKWwQdaYKTD41\n7NFlJBER6cEUYHqQ5G8uI1lCikjXQF4REenBFGB6kBPLCgRFl3HoWAXVdY1urkhERMQ1FGB6kAi/\ncKL8I2j0K8TAwb7DuiuviIj0TAowPUyyLQk7jZgDS9mTrQAjIiI9kwJMD3NiOrWPTfeDERGRnksB\npocZFDYAq8mCT3gJBWW1HMmvdHdJIiIi55zV3QXIueVj8WZgaH/2le4Hr3oeevUr+sUGMTIxklFJ\nUcTY/N1dooiIyFlz6RmYzMxMpk2bxvLlywE4duwY3//+97n11lv5/ve/T2FhIQCrVq3i+uuv54Yb\nbuCtt95yZUnnhROLO14yyYuUhDAOH6/iX58c4rcvbuaBv23h3Y2HOJJfqVWrRUSk23LZGZiamhoW\nLVrEuHHjnM/95S9/Yc6cOcyaNYt//OMfvPrqq8yfP58lS5awcuVKvLy8mD17NpdddhmhoaGuKq3H\nS7El8Q7v4Qgo4Fc3TqOqtpGdB4rYllHI7qwSVn2WzarPsokM9WVUYhQjkyLpHxeM2WRyd+kiIiId\n4rIA4+3tzUsvvcRLL73kfO53v/sdPj4+AISFhbFnzx527tzJ0KFDCQoKAmDkyJGkpaUxZcoUV5XW\n48UGRBPqE8LekkwchoNAPy8mDI1lwtBY6hqa2HWohG0ZBew8WMwHXx7hgy+PEBLo3XyZKTGSxN6h\nWC0aHiUiIp7LZQHGarVitbbcvb9/8/gLu93OG2+8wbx58ygqKsJmsznfY7PZnJeW5MyYTCaSbYl8\ncewr1udsZHzsGPy9mv/2vt5WxgyOYszgKBqb7KRnl7Its5Ad+4v4OC2Xj9NyCfC1MnxQBKMSoxjS\nLwwvq8XN30hERKSlLh/Ea7fbuffeexk7dizjxo1j9erVLV7vyLiMsDB/rC78RzUyMshl++4qM4xJ\nbDm+jXcOvMeqQx8wImYIE/qOZlTcMHytPs73xcWGMm1cP+x2B3uyivni62N8sfsYn+06zme7juPn\nY2HU4GjGD41jVHIU/r5ebvxWPaM3PZH64rnUG8+l3pydLg8w999/P3379mX+/PkAREVFUVRU5Hy9\noKCA4cOHt7uP0tIal9UXGRlEYWH3n3ocaYrhobH3si1/J1sLdrA172u25n2Nt8WbYREpjI4eTrIt\nEav5f4dAbIgv103qxzUTE8g6VkFaRiHbMgrZtDOPTTvzsFrMDEkIY2RSJCMGRRLo17Vhpqf0pqdR\nXzyXeuO51JuOaS/kdWmAWbVqFV5eXtx1113O51JTU1m4cCEVFRVYLBbS0tL47W9/25Vl9Vjhfjam\nJ0xmesJkjlXnszV/R4v/+Vv9GBE1lNHRwxkY2h+zqXnci9lkYkBcCAPiQph96QByC6vZltkcZnYe\nLGbnwWJeN2WQ1CeUkYmRjEyMJCzI5zTViIiInDsmw0VzaXfv3s3ixYvJzc3FarUSHR1NcXExPj4+\nBAYGAjBgwAAeeughPvjgA/72t79hMpm49dZb+c53vtPuvl2ZWnt6KjYMgyOVR9mav4Nt+Tspb6gA\nIMQ7iJHRqYyOHk7foN6Y2piRlF9aQ1pmIWkZhRzMq3A+PyAumFFJUYxMjCAqzDX3munpvemu1BfP\npd54LvWmY9o7A+OyAONKCjDnhsNwcKAsi63529lesIuaplqgeVHI0VGpjIoeTlxgTJvbl1bWk5ZZ\nyLaMAjJyyjhxJPWOCmRUYiQjkyKJjwhoMwx11vnUm+5EffFc6o3nUm86RgGmE87Xg6rJ0cTekky2\n5u/g66J0GuwNAMQFxDAmegSjolMJ97O1uX1lTQM79hexLbOQ9OwSmuzNh1V0mB8jkyIZlRhFQmzQ\nWd1r5nztjadTXzyXeuO51JuOUYDpBB1UUG9vYHdROlvzd5JevI8mww5Av+C+jI4ezsjoYQR7t31Q\n1dY38fXBYrZlFrLrYDH1jc3bhwX5OO81M6h3CBZz5+41o954JvXFc6k3nku96RgFmE7QQdVSTWMN\nOwr3sC1/BxmlBzAwMGEiKWwgo6KHMzzyAvy9/NrcvqHRzp7sEtIyCtlxoIjquiYAAv28GDEoglFJ\nkST3teFlPX2YUW88k/riudQbz6XedIwCTCfooGpbeX0laQU72Za/g6yKIwBYTRZSwgczOjqVoREp\neFu829y+ye4gI6eMtIxC0jILKa9uvkzl620hdWAEoxIjuaC/DV/v1ifHqTeeSX3xXOqN51JvOkYB\nphN0UHVMUW0J276Zjp1XfRwAb4s3qRFDnPeYsZjbvtmgwzA4lFvBtswCtmUUUlReB4CX1cwF/WyM\nTIxk+KAIAk66cZ5645nUF8+l3ngu9aZjFGA6QQdV5+VVHXeGmaK6EgACrP4Md95jpp/zHjOtMQyD\nnIIqtmUUsi2zkLyiagAsZhOD+4QyMimKkYMiGNgvQr3xQPrNeC71xnOpNx2jANMJOqjOnGEYZFfk\nsC1/B9sKdlLR0Px3DPEOZtQ395jpE9TrtNOqjxVXfzM9u5Ds4837MAGpiZFMvCCG1IHhnR4ALK6j\n34znUm88l3rTMQownaCD6txwGA72lx5ia/4OdhT+7x4zkX7hjI4ezujo4cQERJ92P8XldaRlFvJV\nRgEHjpYDYAv24ZLh8VycGkdIQNtjbqRr6DfjudQbz6XedIwCTCfooDr3WtxjpnAPDY5GAOIDYxkd\nPZxRUcMJ9ws77X5qmgz+tT6Tz3cfp77BjsVsYlRSJFNG9mJQr5BzdsM86Rz9ZjyXeuO51JuOUYDp\nBB1UrlVvb2BXUTpb87eTXpyJ/Zt7zPQP6cuo6OGMjGr7HjMnelNb38QXe47zcVouud+Ml+kVGcDk\nkb0YmxKNn0+Xr1F6XtNvxnOpN55LvekYBZhO0EHVdaoba9hRuIut+TvZX3qwxT1mRkcPZ3jUBfhZ\n/3ePmW/3xjAMMnPK+Hh7LtsyCrE7DHy9LUy4IJZLR8YTHxHgjq913tFvxnOpN55LvekYBZhO0EHl\nHuX1FaQVfM3W/B1kn3SPmSERyYyOHs4F4cnEx9ja7E1ZVT2f7szjkx15lFbWAzC4TyiTR/ZixKAI\nrBYN+nUV/WY8l3rjudSbjlGA6QQdVO5XVFvM1vzmG+aduMeMj8Wb8X1GMzp8ZLurZdsdDnbsL2J9\nWi57D5cCEBLozSWpcVwyPJ6wIJ8u+x7nC/1mPJd647nUm45RgOkEHVSeJbfqGFvzd7AtfwfFdc2B\npHdgHBPixzImeji+Vt82tz1WXM3H23P5bNdxauubMJtMjEiMYMrIXgzuE6pBv+eIfjOeS73xXOpN\nxyjAdIIOKs/kMBwcd+Tyn/SP2VWUjsNw4GPxZkzMSCbGjaV3UFyb29Y32Nmcfpz1abnkFFQBEBvu\nz+QR8Yy/IBZ/Xw36PRv6zXgu9cZzqTcdowDTCTqoPNeJ3pTVl/NF3ld8lvclpfVlACQE92Fi3EWM\nik5tcz0mwzA4mFvB+u1H2bqvgCa7gY+XhXFDopk8she9owK78uv0GPrNeC71xnOpNx2jANMJOqg8\n17d74zAc7Cnex6bczewpzsDAwM/qy4Uxo5gYdxFxgTFt7quiuoGNX+exYXsexRXN6zAN7BXClJHx\njEqM6tDq2NJMvxnPpd54LvWmYxRgOkEHledqrzfFtaV8fuxLPs/70rmEwYCQfkyMv4gRkUPxsni1\nup3DYfD1wWLWbz/K7kPN6zgF+3sxKTWOS4fHEx7S9hgbaabfjOdSbzyXetMxCjCdoIPKc3WkN3aH\nnV1F6WzM3cy+0v0ABHj5MzZ2NBPjLiLKP7LNbfNLa9iwPZdNXx+juq4JkwmGD4xg8sh4UhJsmDXo\nt1X6zXgu9cZzqTcdowDTCTqoPFdne1NQU8TneV/yxbGvqGpsvmNvUthAJsaPZVhEClZz64N3Gxrt\nfLm3gPVpR52LSUaH+TF5RDwThsUS4Nv62ZzzlX4znku98VzqTccowHSCDirPdaa9aXQ0sbNwN5ty\nN7O/7BAAQd6BjIsdw4S4i4jws7W5bdaxCtanHWVLegFNdgfeVjMXpkQzZWQ8CTHBZ/xdehL9ZjyX\neuO51JuOUYDpBB1Unutc9OZ4dT6b8raw5dg2appqMWEiOTyRiXFjuSB8MBazpdXtqmob2fT1MT7e\nfpTCsuZBv/3jgpk8Ip4Lk6Pwsra+3flAvxnPpd54LvWmYxRgOkEHlec6l71psDeyveBrNuZuJqvi\nMAChPiGMjx3D+LgLCfMNbXU7h2GwJ6uEj9Ny2XmgCAMI9PNi4rBYLh0RT1SoX6vb9WT6zXgu9cZz\nqTcdowDTCTqoPJerepNbdYxNuZv58ngadfZ6TJgYGpHCxPiLSLYlYja1PqW6qKyWDTvy+HRnHlW1\njZiAoQPCmTwinqH9wzGbz49Bv/rNeC71xnOpNx2jANMJOqg8l6t7U9dUz7aCHWzK3cyRylwAwn3D\nGB93EeNixxDi0/oPqbHJztZ9hazffpSDuRUARIT4MnlEPBOHxRLk3/qN9XoK/WY8l3rjudSbjlGA\n6QQdVJ6rK3tzuCKHTblb2Jq/nQZHI2aTmdSIIUyMH0ti2IA2z8ocPl7Jx9tz2Zx+nIZGB1aLmTGD\no5gyKp7+scE9cv0l/WY8l3rjudSbjlGA6QQdVJ7LHb2pbarlq+Pb2Zi72bkydpRfBBPiL2JszGgC\nvQNa3a6mrpHPdh1n/fZc8ktqAOgbHcTkkfFclBKNj1fPGfSr34znUm88l3rTMQownaCDynO5szeG\nYZBVcYRNuZvZVrCTJkcTVpOF4VFDmRQ/jgEhCa2eXTEMg/TDpXyclsv2/YUYBvj7WJk8Mp7vTEjo\nEbOX9JvxXOqN51JvOkYBphN0UHkuT+lNdWMNW45vY1PuZvJrCgGICYhmYtxFXBQzEn8v/1a3K6mo\n45MdeXyyM4+K6gZ6RwXy06uHEBve+lmc7sJT+iKnUm88l3rTMQownaCDynN5Wm8Mw+BA2SE25m5m\nR+Fu7IYdL7MXo6JSmWRzWosAACAASURBVBg/loTg3q2elalvtLPiv/vZsCMPby8zt1yWyMShsd12\nfIyn9UX+R73xXOpNx7QXYCwPPfTQQ6764MzMTL773e9iNpsZNmwYx44d484772TlypV8+umnTJ06\nFYvFwqpVq/jtb3/LypUrMZlMDBkypN391tQ0uKpkAgJ8XLp/OXOe1huTyUS4n40RUcOYGD+WQK8A\nCmoKySw7yOfHvmRn0R4Aov0jWyxbYLWYSR0YQXxEADsPFvPVvgLyS2sZkmDrlqtge1pf5H/UG8+l\n3nRMQIBPm6+57AxMTU0Nd9xxBwkJCSQlJXHrrbdy//33c/HFF3P55Zfz1FNPERMTwzXXXMO1117L\nypUr8fLyYvbs2SxfvpzQ0NZvJAY6A3O+6g69cRgOMkoPsCn3/7d37/FRlfe+xz9rrZnJJDO5MxMI\n4RqEBEgCIQRFqFptbW2Lu95ASrTu7u5aL9UeakVaRWuPFq2nPVar7VFPLdQDFVovx4p4w9JtMGAg\nQEiCAeUSSCb3yySZZGbN/mOSkAkBBjGZNeT3fr14zZp14xl+M+GbZ615nm3srtuH7teJ0izkpcxm\n4dgLGRc7Nmj/uqYO/vB6KQeqWnAkWLn16plMGhNZUxREQl1GKqmNcUltQhOWHhhFUfjmN79JRUUF\n0dHRZGdn88gjj/DAAw+gaRpWq5XXX38dp9NJfX093/rWtzCZTJSXlxMVFcWkSZNOeW7pgRmZIqE2\niqLgiE5mTkoO81PnEmOKodrtYn/TAf517CNK68pRFBVnjAOTqhFjNTN/5mh0v5+Synr+tec4ZpNK\n+tj4iLmkFAl1GamkNsYltQnN6XpgBp+O9wtgMpkwmYJP39HRgcUSGNQrOTmZ2tpa6urqSEo6MZle\nUlIStbW1pz13YmIMpiH89sbpEp8Ir0iqjYNYLkhLY5m+iF3VpWw+sJWdx/fyl/KX+f+fvcUP5xaQ\nmzoTgFuvm8VF2WN54qWPefn9Axw41srdN84mMdYa5lcRmkiqy0gjtTEuqc25GbIAcyanunIVyhWt\nxsb2L7o5faRbz7giuTbjzBP5XsZEGiY2srVqG+8d/ie/2vo0Xxp7Ed+e8g0smoXURCurvjuX598o\no7jCxR2Pv8/3vzmdGZNOPVu2EURyXc53UhvjktqE5nQhb1jvGIyJiaGzMzCTb01NDU6nE6fTSV1d\nXd8+LpcLp9M5nM0SYtgkWRO5Ov3r3JN3J6NtKfyzqpDV25/kSOsxAOJsFu66PpvFX56Cu6ObJ9bv\n4uUtlXh9ephbLoQQxjKsAWb+/Pm89dZbAGzevJmFCxeSk5PDnj17aGlpwe12U1xcTF5e3nA2S4hh\nlxabyr15P+KStIupbnfx+I7f8fahLeh+HVVRuDJ/PCsL5uBMiObNbYf51V+KqW3qCHezhRDCMIbs\nW0h79+5l9erVVFVVYTKZSElJ4de//jUrVqzA4/GQmprKo48+itlsZtOmTTz//PMoisKyZctYtGjR\nac8t30Iamc7X2pTWV7CmbD2tXW1MTZzCTZk3kGgNfAuvw+NlzeYKtpXWEB2lcfPXMsjPTAlzi4Od\nr3U5H0htjEtqExoZyO4syJvKuM7n2rR2tfGX8g3sqdtHjCmaGzOuJdeZDQTuC/twbzVrN+/H0+3j\nSzljuPGKqYaZT+l8rkukk9oYl9QmNIa5B0YIMbhYi50fZN3MkmnX0K17eX7vWv68bz0d3k4UReHi\nrDGsumUu41Ps/LPkOL/403aOutrC3WwhhAgbCTBCGISiKCwceyH3zb2L8bFj+aj6Yx4t+i0Hmw8B\nMDophp8V5HFFXhrH69v5xYs7eL/4aEjf3BNCiPPNkE4lMFRkILuRaaTUxm6xceGYPHS/Tml9Oduq\nd+D366THT8SkaWRNTmbC6Fj2HKxnR0UtR2vdTJ+YhCVMl5RGSl0ikdTGuKQ2oTndQHbSAyOEAZlU\nE1enf527Zv+AeEsc//jsHX5T/Ay17fUAzJoyiof+PZ9p4xIo3l/Lg/+3iP1HmsLcaiGEGD7SAzOA\npGLjGom1SY5O5MIxeTR6mtjXUEHh8e3ERcWRZh9DdJSJ+TNHo6oKuyrr+K89x1EVuCAtYVinIRiJ\ndYkUUhvjktqERnpghIhgMeZobpmxlJunL0FBZW3ZX3l+71rc3e2oqsKiiydx79JcEmOj+PvWT/n1\nup00tnrC3WwhhBhSEmCEiBD5o3NZmX836fET2Vm7h0eKfkNFQyUAU8cl8OAt+cy+YBTlh5tY9UIR\nuyrrznBGIYSIXHIJaQDp1jMuqU2gN2bemDmYVBN768vYVr0Dj9fDlMTJRFvM5Gc6ibNZ2FVZT2Fp\nNe7ObjLGJ6KpQ3dJSepiXFIb45LahEYuIQlxHlEVla9N/DI/mXM7zuhRvHvknzy+43ccd9egKApf\nzk3j/pvzGJMcwzs7jvI/1+ygumHoJkAVQohwkB6YASQVG5fUJlhCVDwXjsnD3e2mtD5wg6/VZGVC\n7Dji7VEsyBpDi7uLPQcb+Nfu4yTGRjE+5dSjWn5eUhfjktoYl9QmNNIDI8R5ymqKYmnGdfxn1k1Y\nNAsv73+V3+9+gWZPK1EWjVuuyuTWq2egqvD8G2X8n9dL6fB4w91sIYQ4ZxJghDgP5DhmsjL/x2Qm\nTWVffQWPFP0v9tTtAyA/M4VVt+QzaUwchaU1PPSn7XxW3RLmFgshxLmRS0gDSLeecUltTs9qspKX\nMgubOYa99eUUVRfT0tXKtMR04mKsXJw1Gq+uU1JZz792HyfKrDE5Ne6cx4yRuhiX1Ma4pDahkUtI\nQowQqqJy2bgF/DTvTlJto/lX1TZ+tf1/c7j1KCZN5fpLp7B88Sxs0WbWv1fJkxt20yI/RIUQEUh6\nYAaQVGxcUpvQxVliuWhMHh69i7315Ww7vgNN1ZgUP4GUxBgumjmao7Vt7D3YQGFpNROcdhwJ0Z/r\n75K6GJfUxrikNqGRHhghRiCzZua6CxZxR85/YDfH8OqBN3ly5x9p6Gwk3mbhxzfkcP1l6bS1d/Pr\ndbvY+MEBfLoe7mYLIURIJMAIcZ7LTJ7Kyvz/Qc6oGXzSdJBHin7DxzW7UBWFr8+bwH3L5jAqwcob\nhYdY/Zed1DV3hLvJQghxRhJghBgB7BYb38+6iaUZ1+LTfbxQ+hIv7ltHh7eTyalxrPpuPvmZTiqr\nmnnwhe3sKHeFu8lCCHFaEmCEGCEUReHi1Hncl383E2LHUVRdzKNFv+FA02fEWE38YNEMbvl6Bl5d\n5/ev7OXPm8rp6vaFu9lCCDEouYl3ALmxyrikNl8Mm9nGhWPy8Pv9fTf46n6dKQmTmDgmntypDvYf\naWb3wXp2VtYxbVwCcTbLqc8ndTEsqY1xSW1CIzfxCiGCaKrGt9K/xt25t5JoTeDNz97lieLf42qv\nI3WUjftvnsOXc8dSVevm4Rd3sGVXFX6/P9zNFkKIPhJghBjBpiRMYmX+3cxNyeVQyxEe3f5bPjxW\nhElTWfbVadxxTRZmk8qfN1XwzKultHd2h7vJQggBSIARYsSLNkXz3RlLuGXGUjRF5S/lG3hu7xra\nut3kTnXw0L/nMzUtnh3lLla9sJ3KquZwN1kIIeQemIHkuqRxSW2GVqp9NHkpszjaeox9DRVsr95J\nqn004xNSuGjmaBSg5EAd/7W7Gk1TmJIWj6IoUhcDk9oYl9QmNHIPjBAiJEnWRH40+z+5evLXae1u\n46ldz7Hxk9fR/T7+beFkfnrjbOLtFjZ+cJAn1u2iqc0T7iYLIUYo6YEZQFKxcUlthoeiKKQnTGJm\ncgaVTQfZW1/G7rp9TEmYxCSHg4uzxnC8vp29nzbw4d5qJoyJIyHGHO5mi0HIZ8a4pDahOV0PjASY\nAeRNZVxSm+EVHxXHhWPm4va2U1pfTuHx7Vi1KKYmTWTe9BTs0WZKKut4/+Oj7Kqso9PjIzE2ihir\nKdxNFz3kM2NcUpvQnC7AKP4I/G5kbW3rkJ3b4Ygd0vOLz09qEz576vaxtuxl2rrdZCZNpSDzBuKj\n4jhc08rrhYfYtb8Wnx74UTJlbDz5mU7yMpwk2E/9w0cMPfnMGJfUJjQOR+wpt0mAGUDeVMYltQmv\nZk8ra8v+yr6GCuxmG0szriPHMQOHI5aDh+r5eH8t28tclB9qxA8owLTxCeRnpjBnmoPYmFMPhieG\nhnxmjEtqExrDBBi32829995Lc3Mz3d3d3H777TgcDnqvYk2bNo2HHnrojOeRADMySW3Cz+/380HV\nh7xS+QbdupeLU+fxg4tupLXxRFd4U5uHHeUuispdVB4NfOVaVRSmT0okPyOF3KmjiLHKPTPDQT4z\nxiW1CY1hAszatWupqalh+fLl1NTUcPPNN+NwOLjnnnvIzs5m+fLlLFq0iEsuueS055EAMzJJbYzj\nWFs1f9r3/6hqO84Yu5MFqRcx25FNfFTwD5v65k62l7soKqvhs+pA7UyawsxJyeRPdzJryiisFrln\nZqjIZ8a4pDahOV2AGdafHImJiVRUVADQ0tJCQkICVVVVZGdnA3DZZZdRWFh4xgAjhAivVPto7sm7\nk9cPbOK9o1t5ef+rbNj/GlMSJjEnJYdZjixiLXaS4618bd54vjZvPDWN7WwvC4SZXZV17Kqsw2JS\nyZ4yinmZTrImJ2Mxa+F+aUKICDHs98B873vf4/Dhw7S0tPDMM8/wi1/8gldeeQWAwsJCNmzYwBNP\nPHHac0gPzMgktTEmze7jnbJCil27Odj8GQCqojI1IZ3clGxyHDOxm21Bx1TVudleVsNHZS5qGtoB\niLJo5F4wivzMFGZMSsKkyTBV50o+M8YltQmNYS4hvfrqq+zYsYOHH36Y8vJybr/9dmJjY/sCzIcf\nfsjGjRvPGGC8Xh8mk/ymJoTR1LU3sO3ITgoP7+CThs8A0BSVrJQM5o/PI29sNnbLiTDj9/v59FgL\n/9x5lK27qnA1dgBgjzZzUdYYvjR7LFnpo9AkzAghBhjWS0jFxcUsWLAAgIyMDDweD16vt297TU0N\nTqfzjOdpbGwfsjZKKjYuqY0xBdfFzLykfOYl5VPf0UCxazfFrhJ2Ve9jV/U+NEUjM2kquc5ssh0z\niDZZibWofGPeeK7KH8fB4y0U7XOxvbyGt4sO83bRYWJjzORlOMnPcHLBuARURQnr640k8pkxLqlN\naAxzD8yECRMoKSnhyiuvpKqqCpvNxtixY9mxYwd5eXls3ryZgoKC4WySEGKIJEcn8ZUJl/KVCZdS\n215PsauEYtdu9taXsbe+DFOFielJ05jjzGbmqOlYTVGkp8aTnhrP4sun8MmRJorKXOyocPF+cRXv\nF1eRGBtF3jQn+dOdTB4ThyJhRogRa9i/Rr1y5Urq6+vxer3cddddOBwOHnjgAXRdJycnh/vuu++M\n55F7YEYmqY0xnW1datyunp6Z3RxzVwNgVk3MSM5kTkoOM5IziNJOjBnj03XKDzVRVFbDxxW1tHsC\nvbaj4q3MzXQyLzOFcU67hJlByGfGuKQ2oTHMPTBfFAkwI5PUxpjOpS7H2qr7LjPVtNcCYFHNZI2a\nTq4zm+nJGVi0E2PGeH06ez9tYHtZDcWf1OHp8gGQkhTDvEwnczNTGDvKNujfNRLJZ8a4pDahkQBz\nFuRNZVxSG2P6Iuri9/s55q6muKaEj10l1HbUAxClWcgeNYNcZzaZydMwqyeuend1+9h9oJ6iche7\nK+vo8uoApDls5GemkJ/pxJkYc07tinTymTEuqU1oJMCcBXlTGZfUxpi+6Lr4/X6Oth3j45oSil0l\n1Hc2AmDVrOQ4AmEmI+kCTP3CTGeXl12VdRTtc7HnYH3fvEwTR8f2hZmkOOsX1sZIIZ8Z45LahEYC\nzFmQN5VxSW2MaSjr4vf7Odx6tCfM7KbR0wRAjCmaHMdM5jhzmJqYjqaeGFahvbOb4v11FJXVsO+z\nRvSeH3FT0uLJz3AyN8NJ/AiZZFI+M8YltQmNBJizIG8q45LaGNNw1UX363zWcoTinjDT3NUCgM0c\nwyxHFrnObC5ImBwUZlrauyiuqKWorIaKw02BSSYVmDYugfzpKcyZen5PMimfGeOS2oRGAsxZkDeV\ncUltjCkcddH9OgebD/V9Nbu1qw2AWLOdWc4s5jizSU+YhKqcGACvqc3D9nIX28tcVFYFJpnUVIXM\niYnMy0xh9gUOYqzn17xM8pkxLqlNaCTAnAV5UxmX1MaYwl0X3a9T2XSQj1272eXaQ1u3G4B4Syyz\nnNnMceYwKX58UJjpnWTyo7IaDvWbZDJrcjITx8SRYLMQb48iwW4hwR6FPcYckQPohbs24tSkNqGR\nAHMW5E1lXFIbYzJSXXy6j0+aDvJxTQkltXtxewOjdidExZPrzCbXmc3EuPFBY8bUNLZT1DPJZFWt\ne9DzaqpCnM1CvC0QaOLtwcsJ9ijibRbibBZDzeFkpNqIYFKb0EiAOQvypjIuqY0xGbUuPt1HeWMl\nxTUllNTtpcPbCUCSNbEvzIyPTQsOMw3t1DR20NzmocndRXObh+a2LprcPY9tXXh9+in/TgWwx5iJ\ntwV6b/qHm77gY48iwWYZlpm3jVobIbUJlQSYsyBvKuOS2hhTJNSlW/dS3rCfYtdudteW0unzADDK\nmkRuSg65zhzS7GPOOJqv3++n3eOlqW2wcNP7PLCts2eQvVOJjjIFQk5Qr05v8Ol5tEURHaV97lGG\nI6E2I5XUJjQSYM6CvKmMS2pjTJFWl25fN/saKgJhpm4fXb4uAJwxo8h15jAudix2s41Ysw27xU60\nyRp0/0yoPF2+QcJN4PFED08XbR3dpz2PxaQG9dz0Dze9YSfebsEeffJ9OpFWm5FEahMaw0zmKIQQ\n4WbWzOQ4ZpLjmEmXr4u99eWBSSbrytj02bsn7a8qKjZzDHazLfDHYg+Em55luzkGu9mO3WILPJpj\n0FSNKItGiiWGlDOMBuz16SeHm7Yumt09jz3bDlQ1c7pfN3vv0+kfbhzJNjyd3WiqgqapaKqCqecx\nsE5BU/ut15R+207sF7wtsGzqt6ypisxFJYadBBghxIhl0Sx998N0ej2UN+ynrrMBd3c7bV1ttHa7\naety09bdRpOnhePumpDOG2OK7gk4vaGmd3lACOrZnhxvJTn+9CMF67qf1vauAeHGQ7O7KygAHXG5\n+dQ3/L/ZDx6KgkNO/+XgIKX2HWs60/799jENDFm95+oNWAND24Dzm/ptV1UJYJFGAowQQgBWUxSz\nnFmn3cen+2jrdtPW7aa1q61vORBy3LQNWFfbUY+fM1+lt6jmnt6cQKiJNduxmWOI7evZsfVtdyTb\nGJ9y6tm3+9+nE2W1UN/Qhtfnx6fr+Hx+fLofb79ln0/Hq/t7nuuB7QP2790vsE3ved67LbCf9xT7\nd3l9+LpO3t9o9y4oEAg2mhoUfvr3QJ0q/AQFt1MEK5MWHKji46PpcHtQ+werAQFQ0xRUdeC2gaFw\n5PaESYARQogQaapGfFQc8VFxIe2v+3XavR0nAk7/kNPlprW7Lai355i7Gm+r98ztULTApave0BPU\nw2PvCUE2EhKSiVe6MKkmTKoZk2LCpGqYVBOa8vlvDj5Xfr8f3e8fPCD1Lg8MWwO394Qo78Bg1bs8\nMFT1BbWTj+1/vHeQ7V3d3UF/t9dntPh1gqooA8JNcBgLWj7ddk1BU04OVNogYSp9bBwXpCUM+2uV\nACOEEENEVdS+gBEKv9+Px+cJ6sVpHaRnpzcI1Xc0UNV2/HO3z6RoPeGm54+ioaknQo5JMWFWg0NP\n0P6qhlkxoan91isntvWec+Ax/YOUSTVhMpmwWALrPs8N08NtYAA7Xfjp7dnqH8y8up8YWxRNTe0n\nBbiTlgf0jgX1ZA3SE+bzD7Z/YLm7W8fX6Q3eXz/3MJY6ysYv/2PeF/Ave3YkwAghhEEoioLVZMVq\nsjIqOjmkY7p1L+5uN6099+r07+3B7KPV3YFX9+LVvfj8vp5lH926F6+/Z73es97vo7Pb07e/13/6\nr4IPBVVRTxl6NFVDUzQ0RQ089j5X+61TtEAvgWLqeex3jGrqeTzzeQJhqv/5tL71mtKzTVXRNA2r\nKRD8ziZ8GeVbSL1hTO+7dBgcovSBvV6DbEsdFVpA/6JJgBFCiAhmVk0kRMWTEBV/0rZz/U/S7/cH\nhZ7ewOPtCzz9lnsCT99y0DH99+n/vP85Txzj67dPt+6lw9vZs96Hrvvw+fWQ7i0abgoKmqKi9oQc\n04BQpKo96xQNq8WM7gsEtoEhSQ163nts/zAW2K6eFNqCg1jw9oGBrd929cQ5TJpGlKqhKWcXyMJB\nAowQQohBKYrSd0nIaHS/Hug58geCjU/X0fuWg9f7/D50v68vBPl6jj2x7A089hx70rp+5zlx3IDz\n9D9f/+c95+vWPfi8/da36ej+U4/qbAQDA9nJASjwOCM5g3+bctWwt89470ohhBDiDFRFRdVUzJjD\n3ZTPxeGIxeVqCQSxgSEpKHidansgGOkDg5c/uKeqd50+YLtP7z33IMf39nadZnuX3tV3/vrOhrD8\nG0qAEUIIIcJAUZRAjwZDPy/W+cjYF7iEEEIIIQYhAUYIIYQQEUcCjBBCCCEijgQYIYQQQkQcCTBC\nCCGEiDgSYIQQQggRcSTACCGEECLiSIARQgghRMSRACOEEEKIiCMBRgghhBARZ9inEnjttdd47rnn\nMJlM/OhHP2LatGn89Kc/xefz4XA4ePzxx7FYLMPdLCGEEEJEkGHtgWlsbOTpp5/mpZde4tlnn+Xd\nd9/lySefZOnSpbz00ktMmDCBDRs2DGeThBBCCBGBhjXAFBYWctFFF2G323E6nTz88MN89NFHXH75\n5QBcdtllFBYWDmeThBBCCBGBhvUS0tGjR+ns7OTWW2+lpaWFO++8k46Ojr5LRsnJydTW1p7xPA5H\n7JC2c6jPLz4/qY0xSV2MS2pjXFKbczPs98A0NTXx1FNPcezYMW666Sb8fn/ftv7LQgghhBCnMqyX\nkJKTk5k9ezYmk4nx48djs9mw2Wx0dnYCUFNTg9PpHM4mCSGEECICDWuAWbBgAdu2bUPXdRobG2lv\nb2f+/Pm89dZbAGzevJmFCxcOZ5OEEEIIEYEU/zBft1m3bl3fN41++MMfkpWVxb333ovH4yE1NZVH\nH30Us9k8nE0SQgghRIQZ9gAjhBBCCHGuZCReIYQQQkQcCTD9PPLIIyxevJglS5awe/fucDdH9PPY\nY4+xePFirr32WjZv3hzu5oh+Ojs7ueKKK/jb3/4W7qaIfl577TUWLVrENddcw5YtW8LdHAG43W7u\nuOMOCgoKWLJkCVu3bg13kyLasH+N2qiKioo4dOgQ69ev58CBA6xcuZL169eHu1kC2LZtG5988gnr\n16+nsbGRb3/723z1q18Nd7NEj2eeeYb4+PhwN0P00zvq+caNG2lvb+d3v/sdl156abibNeL9/e9/\nZ9KkSSxfvpyamhpuvvlmNm3aFO5mRSwJMD0KCwu54oorAEhPT6e5uZm2tjbsdnuYWybmzp1LdnY2\nAHFxcXR0dODz+dA0LcwtEwcOHKCyslL+czSY/qOe2+12Hn744XA3SQCJiYlUVFQA0NLSQmJiYphb\nFNnkElKPurq6oDdTUlJSSKMCi6GnaRoxMTEAbNiwgS996UsSXgxi9erVrFixItzNEAP0H/V86dKl\nMkWLQXzjG9/g2LFjfOUrX2HZsmXce++94W5SRJMemFOQL2cZzzvvvMOGDRt44YUXwt0UAbzyyivM\nmjWLcePGhbspYhADRz1///33URQl3M0a0V599VVSU1N5/vnnKS8vZ+XKlXLv2DmQANPD6XRSV1fX\n99zlcuFwOMLYItHf1q1befbZZ3nuueeIjZX5Q4xgy5YtHDlyhC1btlBdXY3FYmH06NHMnz8/3E0b\n8QYb9byhoYHk5ORwN21EKy4uZsGCBQBkZGTgcrnkcvg5kEtIPS6++OK+EYFLS0txOp1y/4tBtLa2\n8thjj/GHP/yBhISEcDdH9Pjtb3/Lxo0b+etf/8r111/PbbfdJuHFIAYb9Vzutwi/CRMmUFJSAkBV\nVRU2m03CyzmQHpgeubm5zJgxgyVLlqAoCqtWrQp3k0SPf/zjHzQ2NnL33Xf3rVu9ejWpqalhbJUQ\nxpWSksKVV17JDTfcAMDPf/5zVFV+Xw23xYsXs3LlSpYtW4bX6+XBBx8Md5MimozEK4QQQoiII5Fc\nCCGEEBFHAowQQgghIo4EGCGEEEJEHAkwQgghhIg4EmCEEEIIEXEkwAghhtTRo0eZOXMmBQUFfbPw\nLl++nJaWlpDPUVBQgM/nC3n/G2+8kY8++ujzNFcIESEkwAghhlxSUhJr1qxhzZo1rFu3DqfTyTPP\nPBPy8WvWrJEBv4QQQWQgOyHEsJs7dy7r16+nvLyc1atX4/V66e7u5oEHHmD69OkUFBSQkZFBWVkZ\nL774ItOnT6e0tJSuri7uv/9+qqur8Xq9XH311SxdupSOjg5+/OMf09jYyIQJE/B4PADU1NTwk5/8\nBIDOzk4WL17MddddF86XLoT4gkiAEUIMK5/Px9tvv82cOXO45557ePrppxk/fvxJk9vFxMSwdu3a\noGPXrFlDXFwcTzzxBJ2dnVx11VUsXLiQDz/8EKvVyvr163G5XFx++eUAvPnmm0yePJmHHnoIj8fD\nyy+/POyvVwgxNCTACCGGXENDAwUFBQDouk5eXh7XXnstTz75JD/72c/69mtra0PXdSAwvcdAJSUl\nXHPNNQBYrVZmzpxJaWkp+/fvZ86cOUBgYtbJkycDsHDhQl566SVWrFjBJZdcwuLFi4f0dQohho8E\nGCHEkOu9B6a/1tZWzGbzSet7mc3mk9YpihL03O/3oygKfr8/aK6f3hCUnp7OG2+8wfbt29m0aRMv\nvvgi69atO9eXI4QwALmJVwgRFrGxsaSlpfHBBx8A8Omnn/LUU0+d9picnBy2bt0KQHt7O6WlpcyY\nMYP09HR27twJzsm8RQAAANNJREFUwPHjx/n0008BeP3119mzZw/z589n1apVHD9+HK/XO4SvSggx\nXKQHRggRNqtXr+aXv/wlf/zjH/F6vaxYseK0+xcUFHD//ffzne98h66uLm677TbS0tK4+uqree+9\n91i6dClpaWlkZWUBMGXKFFatWoXFYsHv9/P9738fk0l+7AlxPpDZqIUQQggRceQSkhBCCCEijgQY\nIYQQQkQcCTBCCCGEiDgSYIQQQggRcSTACCGEECLiSIARQgghRMSRACOEEEKIiCMBRgghhBAR578B\n/0vDrk1xj80AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "FSPZIiYgyh93" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "X1QcIeiKyni4" + }, + "cell_type": "markdown", + "source": [ + "First, let's try Adagrad." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Ntn4jJxnypGZ", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_, adagrad_training_losses, adagrad_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.5),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "5JUsCdRRyso3" + }, + "cell_type": "markdown", + "source": [ + "Now let's try Adam." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "lZB8k0upyuY8", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_, adam_training_losses, adam_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdamOptimizer(learning_rate=0.009),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "twYgC8FGyxm6" + }, + "cell_type": "markdown", + "source": [ + "Let's print a graph of loss metrics side by side." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "8RHIUEfqyzW0", + "colab": {} + }, + "cell_type": "code", + "source": [ + "plt.ylabel(\"RMSE\")\n", + "plt.xlabel(\"Periods\")\n", + "plt.title(\"Root Mean Squared Error vs. Periods\")\n", + "plt.plot(adagrad_training_losses, label='Adagrad training')\n", + "plt.plot(adagrad_validation_losses, label='Adagrad validation')\n", + "plt.plot(adam_training_losses, label='Adam training')\n", + "plt.plot(adam_validation_losses, label='Adam validation')\n", + "_ = plt.legend()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "UySPl7CAQ28C" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Explore Alternate Normalization Methods\n", + "\n", + "**Try alternate normalizations for various features to further improve performance.**\n", + "\n", + "If you look closely at summary stats for your transformed data, you may notice that linear scaling some features leaves them clumped close to `-1`.\n", + "\n", + "For example, many features have a median of `-0.8` or so, rather than `0.0`." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "QWmm_6CGKxlH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 715 + }, + "outputId": "1d4159ed-2c2a-4a8f-90d4-2ff3a1564760" + }, + "cell_type": "code", + "source": [ + "_ = normalized_training_examples.hist(bins=20, figsize=(18, 12), xlabelsize=10)" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB0AAAK6CAYAAAB1zCTyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XtclGX+//H3MDBL6JCijJtldlbL\nU65l4qHESKQTmSdYtQPbZqJlSyqRpn1tg1R8eIjW1iOrm7FOVmQumIlbJrLZtK62bWX7bb+eHRRF\nBQJxfn/4cH6Sgsw4w83h9fzLuea+7891zTCfuf3Mdd23yeVyuQQAAAAAAOBjAUZ3AAAAAAAANE4U\nHQAAAAAAgF9QdAAAAAAAAH5B0QEAAAAAAPgFRQcAAAAAAOAXFB0AAAAAAIBfUHSAX+3du1e33nqr\nYfEXLlyol156yaN9CgoKFBUVddHnXnrpJS1cuNAXXQOAGtVF/vznP/+phIQEv8bwpVtvvVV79+7V\nxx9/rBdffNHo7gBAvVXT+ew5O3bs0L///W9J0qpVqzRv3rwL2j0RFRWlgoICzzuLRi/Q6A4AAABj\ndO3aVUuXLjW6Gx6Lioq65Mk0AKBm7777rn71q1+pY8eOGjVq1EXbAV+g6IA6YbfblZmZqeLiYk2a\nNEkxMTGaP3++cnNzJUndu3fXyy+/rJCQEEVGRmrWrFnq2bOnJLkfd+/eXdOnT9f27dt15swZdejQ\nQWlpaWrevLk2btyo+fPnq6SkRO3bt9ecOXMUFhYmSSovL9fvfvc7/eMf/1Dr1q21cOFCtWnTRvv3\n79e0adO0d+9eBQUF6Te/+Y1iY2Or9LuoqEhJSUn68ccfddNNNyk4OFi//OUvJZ2tCP/5z3+Wy+VS\n8+bNlZqaqptvvrkOX1UATYE/8+fXX3+tqVOn6uOPP9bChQtVVFSkQ4cO6d///rdatmypN998Uzab\nTV9//bWef/55SdJDDz2k3NxcTZ06Vb169aq23wsXLlRhYaEOHjyor7/+Wr1791ZMTIwWLlyow4cP\na+bMmRowYIDKy8s1a9YsffbZZ6qoqNDw4cM1duxYSdLf/vY3vfrqqwoMDNSjjz7qPvbatWuVnZ2t\nFStWqLCwUFOmTNG+fftUXl6u0aNH64knnnCP/7e//a3sdrsOHjyoBx54QMnJyTW+3qWlpXrxxRf1\nzTffqKKiQoMGDdKUKVMkqcbXoabvIQAwSnU5bfXq1frggw+0adMmHT16VCdPntTBgwfVuXPni7b/\n/ve/l3Q2t597vGvXLk2ZMkWnT5/W3XffXSUuORHnY3kF/O7MmTOqqKjQhx9+qBdffFHz5s3TX//6\nV3366adau3atPvroIxUXF2vFihU1HmfLli3au3evcnJytGHDBt1000366quvtGfPHk2ePFnp6en6\n5JNP1KtXL82YMcO9X35+vpKSkrRp0yaFhYXJbrdLkqZNm6Y777xTubm5euutt/Tqq69q7969VWIu\nXrxYLVu21KZNm/Tyyy9ry5YtkqSTJ09q/vz5WrNmjXJycpSQkKDNmzf78mUDAL/nz5/LyclRSkqK\nNm7cqFatWundd9+VdDZfPv7449qwYYOaN2+uH3/8sVb937x5s1577TV9+OGHysnJcfd77NixWrx4\nsaSzeXb37t368MMPtW7dOuXm5iovL0+VlZV66aWXNH36dP31r39VQECAKisrL4jxhz/8Qddcc41y\ncnKUmZmp9PR0HThwwP38F198oaysLL377rtatWqVDh48WGOfV69erVOnTiknJ0fvvfee1q5dq+3b\nt9f4OlzqewgAjFJdTouLi1PXrl01adIkd6FWUrXtFzNjxgyNGTNGubm5uv32293n0eRE/BxFB/id\ny+VyzyC49dZbdfDgQW3evFmxsbEKCQmR2WzWkCFD9Pnnn9d4nLCwMP3www/6+OOPVVpaqokTJ6pf\nv3769NNPdeedd+qWW26RJI0cOVKbNm1yn5z+6le/0tVXXy1J6tixow4dOqSKigpt3bpV8fHxkqSr\nr75avXr10rZt26rE3L59uwYPHixJuuaaa3TnnXdKkn7xi1/IZDLJbrersLBQgwcP1lNPPeWjVwwA\nzvJ3/vy5nj176uqrr5bJZFKnTp104MABlZWV6euvv9YDDzwgSfr1r38tl8tVq/7ffvvtatWqlVq2\nbKnw8HD1799fknTLLbfo8OHDkqS8vDzFx8fLYrEoJCREDz/8sDZs2KAff/xR5eXl6tu3ryTpkUce\nuWiMqVOnatq0aZKkdu3aKTw8vEoB+cEHH5TZbFabNm3UqlWrKgWJi3nyySf15ptvymQy6corr9TN\nN9+svXv31vg6XOp7CACMUl1Ou1w//fSTdu7cqZiYGElSdHS0rrjiCknkRFyI5RXwO7PZ7E5CAQEB\nOnPmjI4ePaorr7zSvc2VV16pI0eO1Hicrl27aurUqVq5cqWmTJmiyMhITZ8+XSdOnND27dsVHR3t\n3rZ58+Y6duyY+9/n96WyslLHjh2Ty+WS1Wp1PxcaGqqjR4+qXbt27rbjx49fsI0kBQUFacWKFVq0\naJEWLlyoDh06aPr06erQoYM3LxEAXJS/8+fPnZ/vzuXL48ePy2QyVcl/rVq1qlX/mzVrVuV4ISEh\nVcYiSSdOnFBqaqrmzp0r6eySuK5du+r48eNV8vf5Yz7fzp073bMbAgIC5HQ63ceWLv4dUJMff/xR\naWlp+s9//qOAgAAdPHhQQ4YMqfF1qOl7qLavFQD4Q3U57XL9/Dz7/PxITsTPUXSAIVq3bu1OVtLZ\nxNW6dWtJVU9GpbP/8T8nOjpa0dHROnbsmFJSUrR06VK1b99eERERWrBgQa3jt2zZUgEBATp+/Lj7\nRPZiiTA0NFQnTpxwPz6/KHHrrbdqwYIFKi8v15IlSzR9+nS98847HrwKAOA5X+bPiIiIS8Zr3ry5\nXC6XSktLdcUVV+j06dM6evSoz8Zjs9n05JNPasCAAVXaf/jhB508edL9uLqYkyZN0mOPPaa4uDiZ\nTKaLzuDwxP/8z//otttuU0ZGhsxms0aOHCmp5tfBZrN5/D0EAHWhupxWW9V9r5w7fz558qSsVqvO\nnDnjfo6ciJ9jeQUMcc899yg7O1ulpaU6ffq07Ha7+wI04eHh7tv0rF+/Xj/99JOks1fSzcjIkCS1\naNFCN9xwgySpb9++2r59u/bs2SPp7C3gXn311RrjBwYGqm/fvsrKypIk/d///Z+2b99+wQl49+7d\ntXHjRvc2X375pSTp22+/1bPPPqvy8nJZLBZ17txZJpPpsl8XALgUX+bP2mjWrJluvPFG/fWvf5Uk\nZWVl+TTfDRw4UGvWrFFlZaVcLpfefPNNffrpp7r22mtlNpvdt19bu3btReMeOXLEnYPfe+89lZaW\nqqSkxOv+HDlyRJ06dZLZbNbnn3+u//73vyopKanxdfDmewgA6kJ1OU06ez58/o9r55zfbrPZ9N13\n37ln2n366aeSpODgYHXs2FEff/yxJOmjjz5yf+eQE/FzzHSAIaKjo/Xtt99qyJAhcrlc6tWrl8aM\nGSNJGjdunKZPn66//OUvGjRokG666SZJZ09MU1JSdN9998lsNqt9+/ZKS0tTixYtNHPmTCUmJqqi\nokLNmjVTSkrKJfvwyiuvaOrUqVq7dq2CgoL06quv6qqrrtL//d//ubd5+umn9fzzzysyMlI33nij\n7rvvPkln1yNfc801euCBBxQUFKRmzZrp5Zdf9sMrBQBV+TJ/fvvtt7WKOX36dE2bNk1Lly5VbGys\n2rRp47PCQ3x8vPbu3av7779fLpdLnTt31mOPPaagoCDNnDlTKSkpslgsGjJkiHt5xvmee+45JSYm\nqkWLFho5cqRGjBihadOm6e233/aqP88884xSU1P15ptvauDAgRo/frwWLFigTp06Vfs62Gw2r76H\nAMDfaspp9957r2bPnq09e/ZUWYp2fvv48eOVnZ2te++9VzfccIOio6PdS/pmzJihlJQUvfXWW+rf\nv79uvPFGSSIn4gImV22vBgUAAJosl8vlLjTcddddWrFiRZO8hzuvAwAAnmF5BQAAqNGzzz7rvsVl\nfn6+XC6XrrvuOmM7ZQBeBwAAPMdMBwAAUKMffvhBL774oo4fP66goCBNmjRJ11xzjRITEy+6/Y03\n3ui+hkR988MPP3jd74u9DueupwEAAC6OogMAAAAAAPALllcAAAAAAAC/aDB3r3A6L7ydy6W0bBmi\noiLvb5t1uYyM35TH3tTjN+WxexM/PNzqx940PQ0tVze0v1fiN47YTT2+N7HJ1b7laa5uyn+vTT1+\nUx670fEb4tiry9WNeqZDYKC5ycZvymNv6vGb8tjrQ3x4js8L8Zta7KYe3+ixw3NGv2fEb7qf16Yc\nvzGNvVEXHQAAAAAAgHEoOgAAAAAAAL+g6AAAAAAAAPyCogMAAAAAAPALig4AAAAAAMAvKDoAAAAA\nAAC/oOgAAAAAAAD8ItDoDtQ3T6Zt8mj7ZcmRfuoJAAC4XJ5+r0t8twMNBZ9voGGg6AAAAAAYpLS0\nVMnJyTpy5Ih++uknjRs3Th07dtTkyZNVWVmp8PBwzZ49WxaLRdnZ2crMzFRAQICGDx+uYcOGqaKi\nQsnJydq/f7/MZrNSU1PVrl07o4cFAG4srwAAAAAMkpeXp86dO2vVqlWaN2+e0tLStGDBAsXHx+vt\nt99W+/btZbfbVVJSooyMDK1YsUIrV65UZmamjh07pnXr1ik0NFSrV6/W2LFjlZ6ebvSQAKAKig4A\nAACAQWJiYvTUU09Jkg4cOKA2bdqooKBAAwcOlCQNGDBA+fn52rFjh7p06SKr1arg4GD16NFDDodD\n+fn5ioqKkiRFRETI4XAYNhYAuBiWVwAAAAAGGzlypA4ePKhFixbpiSeekMVikSS1atVKTqdThYWF\nCgsLc28fFhZ2QXtAQIBMJpPKy8vd+wOA0Sg6AAAAAAZ755139M0332jSpElyuVzu9vP/fT5P28/X\nsmWIAgPNHvUvPNzq0fa+5qv43h6nsYy/ocVu6vEby9gpOgAAAAAG2bVrl1q1aqWrrrpKnTp1UmVl\npZo1a6aysjIFBwfr0KFDstlsstlsKiwsdO93+PBhde/eXTabTU6nUx07dlRFRYVcLtclZzkUFZV4\n1MfwcKuczhNejc8XfBnfm+M0pvE3pNhNPX5DHHt1RQqu6QAAAAAYZPv27Vq2bJkkqbCwUCUlJYqI\niFBubq4kacOGDerXr5+6deumnTt3qri4WKdOnZLD4VDPnj3Vp08f5eTkSDp7UcpevXoZNhYAuBhm\nOgAAAAAGGTlypF566SXFx8errKxML7/8sjp37qwpU6YoKytLbdu2VWxsrIKCgpSUlKSEhASZTCYl\nJibKarUqJiZGW7duVVxcnCwWi9LS0oweEgBUQdEBAAAAMEhwcPBFb3O5fPnyC9qio6MVHR1dpc1s\nNis1NdVv/QOAy8XyCgBoxL777jvde++9WrVqlaSzt2MbPXq04uPj9dxzz6m8vFySlJ2drUcffVTD\nhg3TmjVrJEkVFRVKSkpSXFycRo0apT179hg2DgAAADRMFB0AoJEqKSnRzJkz1bt3b3fbggULFB8f\nr7ffflvt27eX3W5XSUmJMjIytGLFCq1cuVKZmZk6duyY1q1bp9DQUK1evVpjx4696C9xAAAAQE28\nKjoUFBTorrvu0ujRozV69GjNnDmTX88AoJ6xWCxavHixbDabu62goEADBw6UJA0YMED5+fnasWOH\nunTpIqvVquDgYPXo0UMOh0P5+fmKioqSJEVERMjhcBgyDgAAADRcXl/T4c4779SCBQvcj1988UXF\nx8dr8ODBmjt3rux2u2JjY5WRkSG73a6goCANHTpUUVFRysvLU2hoqNLT07Vlyxalp6dr3rx5PhkQ\nAOCswMBABQZWTfOlpaXuW6m1atVKTqdThYWFCgsLc28TFhZ2QXtAQIBMJpPKy8sveSs2AAAA4Byf\nXUiyoKBAr7zyiqSzv54tW7ZM119/vfvXM0lVfj2LjY2VdPbXs5SUFF91AwBQSy6Xyyft52vZMkSB\ngWaP+1LdfZ3rgpGxiW98/Iupqz4ZPfam/LkDANQdr4sOu3fv1tixY3X8+HGNHz/e77+e1dcT2Usd\nvyl/oROf976pxq/PQkJCVFZWpuDgYB06dEg2m002m02FhYXubQ4fPqzu3bvLZrPJ6XSqY8eOqqio\nkMvluuQsh6KiEo/7FB5uldN5wuP9fMHI2JL0ZNomj/dZlhzps/hGj9/o+NWpiz4ZPfaG9rkjrwNA\nw+VV0eG6667T+PHjNXjwYO3Zs0djxoxRZWWl+3l//HpWX09kazp+Q/tCJ37jiN+Ux+5N/KZ2IhsR\nEaHc3Fw9/PDD2rBhg/r166du3bpp6tSpKi4ultlslsPhUEpKik6ePKmcnBz169dPeXl56tWrl9Hd\nBwAAQAPjVdGhTZs2iomJkSRde+21at26tXbu3OnXX88AAJ7ZtWuXXn/9de3bt0+BgYHKzc3VnDlz\nlJycrKysLLVt21axsbEKCgpSUlKSEhISZDKZlJiYKKvVqpiYGG3dulVxcXGyWCxKS0szekgAAABo\nYLwqOmRnZ8vpdCohIUFOp1NHjhzRkCFD+PUMAOqRzp07a+XKlRe0L1++/IK26OhoRUdHV2kzm81K\nTU31W/+A+srTZS++XPICAEBj41XRITIyUi+88II++eQTVVRUaMaMGerUqZOmTJnCr2cAAAAAAECS\nl0WH5s2ba9GiRRe08+sZAAAAAAA4J8DoDgAAAAAAgMbJ61tmAgAAnOPN7T8/TH/YDz0BAAD1CTMd\nAAAAAACAX1B0AAAAAAAAfkHRAQAAAAAA+AVFBwAAAAAA4BcUHQAAAAAAgF9QdAAAAAAAAH7BLTMB\nAAAAA82aNUtffvmlTp8+raefflqbNm3S119/rRYtWkiSEhISdM899yg7O1uZmZkKCAjQ8OHDNWzY\nMFVUVCg5OVn79++X2WxWamqq2rVrZ/CIAOD/o+gAAAAAGGTbtm36/vvvlZWVpaKiIj3yyCO66667\n9Lvf/U4DBgxwb1dSUqKMjAzZ7XYFBQVp6NChioqKUl5enkJDQ5Wenq4tW7YoPT1d8+bNM3BEAFAV\nyysAAAAAg9xxxx2aP3++JCk0NFSlpaWqrKy8YLsdO3aoS5cuslqtCg4OVo8ePeRwOJSfn6+oqChJ\nUkREhBwOR532HwAuhaIDAAAAYBCz2ayQkBBJkt1uV//+/WU2m7Vq1SqNGTNGzz//vI4eParCwkKF\nhYW59wsLC5PT6azSHhAQIJPJpPLyckPGAgAXw/IKAAAAwGAbN26U3W7XsmXLtGvXLrVo0UKdOnXS\nH//4R73xxhu6/fbbq2zvcrkuepzq2s/XsmWIAgPNHvUvPNzq0fa+5qv43h6nsYy/ocVu6vEby9gp\nOgAAAAAG+uyzz7Ro0SItWbJEVqtVvXv3dj8XGRmpGTNmaNCgQSosLHS3Hz58WN27d5fNZpPT6VTH\njh1VUVEhl8sli8VSY7yiohKP+hcebpXTecKzQfmQL+N7c5zGNP6GFLupx2+IY6+uSMHyCgAAAMAg\nJ06c0KxZs/TWW2+571YxYcIE7dmzR5JUUFCgm2++Wd26ddPOnTtVXFysU6dOyeFwqGfPnurTp49y\ncnIkSXl5eerVq5dhYwGAi2GmAwAAAGCQ9evXq6ioSBMnTnS3DRkyRBMnTtQVV1yhkJAQpaamKjg4\nWElJSUpISJDJZFJiYqKsVqtiYmK0detWxcXFyWKxKC0tzcDRAMCFKDoAAAAABhkxYoRGjBhxQfsj\njzxyQVt0dLSio6OrtJnNZqWmpvqtfwBwuVheAQAAAAAA/IKiAwAAAAAA8AuWVwAAAMBrT6Zt8mj7\nD9Mf9lNPAAD1EUUHAABgiAeTPvBo+2XJkX7qCQAA8BeKDgDQxJw6dUpTpkzR8ePHVVFRocTERIWH\nh2vGjBmSpA4dOuiVV16RJC1ZskQ5OTkymUwaP3687r77bgN7DgAAgIbmsooOZWVleuCBBzRu3Dj1\n7t1bkydPVmVlpcLDwzV79mxZLBZlZ2crMzNTAQEBGj58uIYNG6aKigolJydr//797ivutmvXzldj\nAgDU4L333tP111+vpKQkHTp0SI899pjCw8OVkpKirl27KikpSX/72990ww03aP369XrnnXd08uRJ\nxcfHq2/fvjKbzUYPAQAAAA3EZRUd/vCHP+jKK6+UJC1YsEDx8fEaPHiw5s6dK7vdrtjYWGVkZMhu\ntysoKEhDhw5VVFSU8vLyFBoaqvT0dG3ZskXp6emaN2+eTwYEAKhZy5Yt9e2330qSiouL1aJFC+3b\nt09du3aVJA0YMED5+flyOp3q16+fLBaLwsLCdPXVV2v37t3q0KGDkd2Hhzxdby+xjAEAAPiO13ev\n+OGHH7R7927dc889kqSCggINHDhQ0v8/Yd2xY4e6dOkiq9Wq4OBg9ejRQw6HQ/n5+YqKipIkRURE\nyOFwXP5IAAC1cv/992v//v2KiorSqFGjNHnyZIWGhrqfb9WqlZxOpwoLCxUWFuZuDwsLk9PpNKLL\nAAAAaKC8nunw+uuva9q0aXr//fclSaWlpbJYLJIufcJ6fntAQIBMJpPKy8vd+wMA/OeDDz5Q27Zt\ntXTpUv373/9WYmKirFar+3mXy3XR/aprP1/LliEKDPR8+UV4uPXSG/mJkbG9URf9ra+vSWPrl9Hj\n4XMHAKgLXhUd3n//fXXv3r3a6zB4esLakE9kL3X8pvyFTnze+6Yav75zOBzq27evJKljx4766aef\ndPr0affzhw4dks1mk81m0//+7/9e0F6ToqISj/sTHm6V03nC4/18wcjY3qqL/tbX16Qx9cvovz2j\n43sam7wOAA2XV0WHzZs3a8+ePdq8ebMOHjwoi8WikJAQlZWVKTg4uMoJa2FhoXu/w4cPq3v37rLZ\nbHI6nerYsaMqKirkcrkuOcuhvp7I1nT8pnwiTXze+4YSvymeyLZv3147duzQoEGDtG/fPjVr1kxX\nX321tm/frp49e2rDhg0aPXq0rrvuOi1fvlwTJkxQUVGRDh8+rJtuusno7gMAAKAB8arocP5FHxcu\nXKirr75aX331lXJzc/Xwww9rw4YN6tevn7p166apU6equLhYZrNZDodDKSkpOnnypHJyctSvXz/l\n5eWpV69ePhsQAKBmI0aMUEpKikaNGqXTp09rxowZCg8P18svv6wzZ86oW7duioiIkCQNHz5co0aN\nkslk0owZMxQQ4PWlgAAAANAEXdbdK843YcIETZkyRVlZWWrbtq1iY2MVFBSkpKQkJSQkyGQyudcN\nx8TEaOvWrYqLi5PFYlFaWpqvugEAuIRmzZpp/vz5F7S//fbbF7SNHj1ao0eProtuAQAAoBG67KLD\nhAkT3P9evnz5Bc9HR0crOjq6SpvZbFZqaurlhgYAAAAAAPUY82QBAAAAAIBf+Gx5BQAAAAB468m0\nTUZ3AYAfMNMBAAAAAAD4BTMdAABoQPglsP7x5j35MP1hP/QEAID6h5kOAAAAAADAL5jpAAAAABho\n1qxZ+vLLL3X69Gk9/fTT6tKliyZPnqzKykqFh4dr9uzZslgsys7OVmZmpgICAjR8+HANGzZMFRUV\nSk5O1v79+913iGvXrp3RQwIAN4oOAAAAgEG2bdum77//XllZWSoqKtIjjzyi3r17Kz4+XoMHD9bc\nuXNlt9sVGxurjIwM2e12BQUFaejQoYqKilJeXp5CQ0OVnp6uLVu2KD09XfPmzTN6WADgxvIKAAAA\nwCB33HGH5s+fL0kKDQ1VaWmpCgoKNHDgQEnSgAEDlJ+frx07dqhLly6yWq0KDg5Wjx495HA4lJ+f\nr6ioKElSRESEHA6HYWMBgIuh6AAAAAAYxGw2KyQkRJJkt9vVv39/lZaWymKxSJJatWolp9OpwsJC\nhYWFufcLCwu7oD0gIEAmk0nl5eV1PxAAqAbLKwAAAACDbdy4UXa7XcuWLdN9993nbne5XBfd3tP2\n87VsGaLAQLNH/QsPt3q0fX3l7TiMHr+R8Zvy2I2O31jG3qiLDg8mfWB0FwAAAIAaffbZZ1q0aJGW\nLFkiq9WqkJAQlZWVKTg4WIcOHZLNZpPNZlNhYaF7n8OHD6t79+6y2WxyOp3q2LGjKioq5HK53LMk\nqlNUVOJR/8LDrXI6T3g1tvrGm3EYPX4j4zflsRsdvyGOvboiBcsrAAAAAIOcOHFCs2bN0ltvvaUW\nLVpIOntthtzcXEnShg0b1K9fP3Xr1k07d+5UcXGxTp06JYfDoZ49e6pPnz7KycmRJOXl5alXr16G\njQUALqZRz3QAAAAA6rP169erqKhIEydOdLelpaVp6tSpysrKUtu2bRUbG6ugoCAlJSUpISFBJpNJ\niYmJslqtiomJ0datWxUXFyeLxaK0tDQDRwMAF6LoAAAAABhkxIgRGjFixAXty5cvv6AtOjpa0dHR\nVdrMZrNSU1P91j8AuFwsrwAAAAAAAH5B0QEAAAAAAPgFRQcAAAAAAOAXFB0AAAAAAIBfcCFJAACA\nBuDJtE0ebb8sOdJPPQEAoPaY6QAAAAAAAPyCogMAAAAAAPALig4AAAAAAMAvuKYDADRB2dnZWrJk\niQIDA/Xss8+qQ4cOmjx5siorKxUeHq7Zs2fLYrEoOztbmZmZCggI0PDhwzVs2DCjuw4AAIAGxKui\nQ2lpqZKTk3XkyBH99NNPGjdunDp27FjrE9aKigolJydr//79MpvNSk1NVbt27Xw9NgDARRQVFSkj\nI0PvvvuuSkpKtHDhQuXm5io+Pl6DBw/W3LlzZbfbFRsbq4yMDNntdgUFBWno0KGKiopSixYtjB4C\nAAAAGgivllfk5eWpc+fOWrVqlebNm6e0tDQtWLBA8fHxevvtt9W+fXvZ7XaVlJQoIyNDK1as0MqV\nK5WZmaljx45p3bp1Cg0N1erVqzV27Filp6f7elwAgGrk5+erd+/eat68uWw2m2bOnKmCggINHDhQ\nkjRgwADl5+drx44d6tKli6xWq4KDg9WjRw85HA6Dew8AAICGxKuZDjExMe5/HzhwQG3atFFBQYFe\neeUVSWdPWJctW6brr7/efcInKhXMAAAgAElEQVQqyX3Cmp+fr9jYWElSRESEUlJSLnccAIBa2rt3\nr8rKyjR27FgVFxdrwoQJKi0tlcVikSS1atVKTqdThYWFCgsLc+8XFhYmp9NZ47FbtgxRYKDZ4z6F\nh1s93sdXjIxdX9XX16S+9stb/h7PpY7P5w4AUBcu65oOI0eO1MGDB7Vo0SI98cQTtT5hPb89ICBA\nJpNJ5eXl7v0vxtsTWX/jC5349TF+Ux57fYjfEBw7dkxvvPGG9u/frzFjxsjlcrmfO//f56uu/XxF\nRSUe9yU83Cqn84TH+/mCkbHrs/r6mtTXfnnL3+Op6fhG/+17Gpu8DgAN12UVHd555x198803mjRp\n0mWdsPrrRLYu1NcvdKNPJojPe99Q4jfFE9lWrVrp9ttvV2BgoK699lo1a9ZMZrNZZWVlCg4O1qFD\nh2Sz2WSz2VRYWOje7/Dhw+revbuBPQcAAEBD49U1HXbt2qUDBw5Ikjp16qTKyko1a9ZMZWVlklTj\nCeu59nNTdCsqKuRyuWqc5QAA8J2+fftq27ZtOnPmjIqKilRSUqKIiAjl5uZKkjZs2KB+/fqpW7du\n2rlzp4qLi3Xq1Ck5HA717NnT4N4DAACgIfGq6LB9+3YtW7ZMklRYWOjxCWufPn2Uk5Mj6exFKXv1\n6uWj4QAALqVNmzYaNGiQhg8frqeeekpTp07VhAkT9P777ys+Pl7Hjh1TbGysgoODlZSUpISEBD3x\nxBNKTEx0X6MHAAAAqA2vlleMHDlSL730kuLj41VWVqaXX35ZnTt31pQpU5SVlaW2bdsqNjZWQUFB\n7hNWk8nkPmGNiYnR1q1bFRcXJ4vForS0NF+PCwBQg5EjR2rkyJFV2pYvX37BdtHR0YqOjq6rbgEA\nAKCR8aroEBwcfNHbXNb2hNVsNis1NdWb0AAAAAAAoIG4rAtJAgAA1JUn0zYZ3QUAAOAhr67pAAAA\nAMA3vvvuO917771atWqVJCk5OVkPPvigRo8erdGjR2vz5s2SpOzsbD366KMaNmyY1qxZI+nsRdmT\nkpIUFxenUaNGac+ePUYNAwAuipkOAAAAgEFKSko0c+ZM9e7du0r77373Ow0YMKDKdhkZGbLb7QoK\nCtLQoUMVFRWlvLw8hYaGKj09XVu2bFF6errmzZtX18MAgGox0wEAAAAwiMVi0eLFi2Wz2WrcbseO\nHerSpYusVquCg4PVo0cPORwO5efnKyoqSpIUEREhh8NRF90GgFqj6AAAAAAYJDAwUMHBwRe0r1q1\nSmPGjNHzzz+vo0ePqrCwUGFhYe7nw8LC5HQ6q7QHBATIZDKpvLy8zvoPAJfC8goAAACgHnn44YfV\nokULderUSX/84x/1xhtv6Pbbb6+yjcvluui+1bWfr2XLEAUGmj3qU3i41aPt6ytvx2H0+I2M72ns\nB5M+8DjGh+kP+yy+rzWk176+xqfoAAAAANQj51/fITIyUjNmzNCgQYNUWFjobj98+LC6d+8um80m\np9Opjh07qqKiQi6XSxaLpcbjFxWVeNSf8HCrnM4Tng2invJmHEaP38j4dRW7uhi89g1r7NUVKVhe\nAQAAANQjEyZMcN+FoqCgQDfffLO6deumnTt3qri4WKdOnZLD4VDPnj3Vp08f5eTkSJLy8vLUq1cv\nI7sOABdgpgMAAABgkF27dun111/Xvn37FBgYqNzcXI0aNUoTJ07UFVdcoZCQEKWmpio4OFhJSUlK\nSEiQyWRSYmKirFarYmJitHXrVsXFxclisSgtLc3oIQFAFRQdAAAAAIN07txZK1euvKB90KBBF7RF\nR0crOjq6SpvZbFZqaqrf+gcAl4uiAwAAqOLJtE1GdwEAADQSXNMBAAAAAAD4BUUHAAAAAADgFxQd\nAAAAAACAX1B0AAAAAAAAfkHRAQAAAAAA+AVFBwAAAAAA4BcUHQAAAAAAgF8EGt0BAAAAAED982DS\nB0Z3AY0ARQcAAC7iybRNHm2/LDnSTz0BAABouFheAQAAAAAA/IKiAwAAAAAA8Auvl1fMmjVLX375\npU6fPq2nn35aXbp00eTJk1VZWanw8HDNnj1bFotF2dnZyszMVEBAgIYPH65hw4apoqJCycnJ2r9/\nv8xms1JTU9WuXTtfjgsAUIOysjI98MADGjdunHr37l3r/A0AAAB4wquZDtu2bdP333+vrKwsLVmy\nRK+99poWLFig+Ph4vf3222rfvr3sdrtKSkqUkZGhFStWaOXKlcrMzNSxY8e0bt06hYaGavXq1Ro7\ndqzS09N9PS4AQA3+8Ic/6Morr5Qkj/I3AAAA4Amvig533HGH5s+fL0kKDQ1VaWmpCgoKNHDgQEnS\ngAEDlJ+frx07dqhLly6yWq0KDg5Wjx495HA4lJ+fr6ioKElSRESEHA6Hj4YDALiUH374Qbt379Y9\n99wjSR7lbwAAAMATXi2vMJvNCgkJkSTZ7Xb1799fW7ZskcVikSS1atVKTqdThYWFCgsLc+8XFhZ2\nQXtAQIBMJpPKy8vd+wMA/Of111/XtGnT9P7770uSSktLa52/L6VlyxAFBpo97lN4uNXjfXzFV7GN\nHAMaJn//zVzq+I3hcwcAqP8u65aZGzdulN1u17Jly3Tfffe5210u10W397T9fN6eyPobX+jEr4/x\nm/LY60P8+uz9999X9+7dq72OzuXkaUkqKirxuE/h4VY5nSc83s8XfBnbqDGg4fL330xNxzfycyd5\nPnbyOgA0XF4XHT777DMtWrRIS5YskdVqVUhIiMrKyhQcHKxDhw7JZrPJZrOpsLDQvc/hw4fVvXt3\n2Ww2OZ1OdezYURUVFXK5XJec5eDNiWxdqK9f6EafTBCf976hxG9qJ7KbN2/Wnj17tHnzZh08eFAW\ni8Wj/A0AAAB4wqtrOpw4cUKzZs3SW2+9pRYtWkg6e22G3NxcSdKGDRvUr18/devWTTt37lRxcbFO\nnTolh8Ohnj17qk+fPsrJyZEk5eXlqVevXj4aDgCgJvPmzdO7776rv/zlLxo2bJjGjRvnUf4GAAAA\nPOHVTIf169erqKhIEydOdLelpaVp6tSpysrKUtu2bRUbG6ugoCAlJSUpISFBJpNJiYmJslqtiomJ\n0datWxUXFyeLxaK0tDSfDQgA4JkJEyZoypQptcrfAADf++677zRu3Dg9/vjjGjVqlA4cOMCt6AE0\nGl4VHUaMGKERI0Zc0L58+fIL2qKjoxUdHV2l7VxCBAAYZ8KECe5/1zZ/AwB8q6SkRDNnzlTv3r3d\nbeduZTx48GDNnTtXdrtdsbGxysjIkN1uV1BQkIYOHaqoqCjl5eUpNDRU6enp2rJli9LT0zVv3jwD\nRwQAVV3WhSQhPZm2yeN9liVH+qEnAAAAaGgsFosWL16sxYsXu9sKCgr0yiuvSDp7K+Nly5bp+uuv\nd9/KWFKVW9HHxsZKOrvcOSUlpe4HAQA18OqaDgAAAAAuX2BgoIKDg6u0eXIr4+puRQ8A9QUzHQAA\nDQozzAA0JfXlVvSN5W5P3o7D6PEbHd/fahqf0WM3Mn5jGTtFBwAAAKAeqW+3ojf6dti+5M04jB6/\n0fHrQnXjM3rsRsZviGOvrkjB8goAAACgHuFW9AAaE2Y6AAAA1LEHkz4wuguoJ3bt2qXXX39d+/bt\nU2BgoHJzczVnzhwlJydzK3oAjQJFBwAAAMAgnTt31sqVKy9o51b0ABoLllcAAAAAAAC/YKYDAAA+\n4M1dNQAAABo7ZjoAAAAAAAC/YKYDAABAI8TsGwBAfcBMBwAAAAAA4BcUHQAAAAAAgF9QdAAAAAAA\nAH5B0QEAAAAAAPgFF5IEAAAAUK0Hkz7weJ9lyZF+6AmAhoiZDgAAAAAAwC8oOgAAAAAAAL+g6AAA\nAAAAAPyCogMAAAAAAPALLiQJAAAAADDMk2mbPNqeC5U2LBQdAACNnqcnMwAAAPANllcAAAAAAAC/\nuKyiw3fffad7771Xq1atkiQdOHBAo0ePVnx8vJ577jmVl5dLkrKzs/Xoo49q2LBhWrNmjSSpoqJC\nSUlJiouL06hRo7Rnz57LHAoAoLZmzZqlESNG6NFHH9WGDRs8yt8AAABAbXlddCgpKdHMmTPVu3dv\nd9uCBQsUHx+vt99+W+3bt5fdbldJSYkyMjK0YsUKrVy5UpmZmTp27JjWrVun0NBQrV69WmPHjlV6\nerpPBgQAqNm2bdv0/fffKysrS0uWLNFrr73mUf4GAAAAasvrooPFYtHixYtls9ncbQUFBRo4cKAk\nacCAAcrPz9eOHTvUpUsXWa1WBQcHq0ePHnI4HMrPz1dUVJQkKSIiQg6H4zKHAgCojTvuuEPz58+X\nJIWGhqq0tNSj/A0AAADUltcXkgwMDFRgYNXdS0tLZbFYJEmtWrWS0+lUYWGhwsLC3NuEhYVd0B4Q\nECCTyaTy8nL3/j/XsmWIAgPN3na3XgkPtzaqOMSvf/Gb8tjrQ/z6zmw2KyQkRJJkt9vVv39/bdmy\npdb5uybe5mreM6Bp4TNfs4KCAj333HO6+eabJUm33HKLfvOb32jy5MmqrKxUeHi4Zs+eLYvFouzs\nbGVmZiogIEDDhw/XsGHDDO49AFTlt7tXuFwun7SfU1RUctl9qi+czhN+jxEebq2TOMSvf/Gb8ti9\nid+UT3w3btwou92uZcuW6b777nO3e5unJe9ytdF/MwDqnqef+aaYq++8804tWLDA/fjFF19UfHy8\nBg8erLlz58putys2NlYZGRmy2+0KCgrS0KFDFRUVpRYtWhjYcwCoyqd3rwgJCVFZWZkk6dChQ7LZ\nbLLZbCosLHRvc/jwYXf7uV/MKioq5HK5qp3lAADwrc8++0yLFi3S4sWLZbVaPcrfAIC6xzI4AA2V\nT4sOERERys3NlSRt2LBB/fr1U7du3bRz504VFxfr1KlTcjgc6tmzp/r06aOcnBxJUl5ennr16uXL\nrgAAqnHixAnNmjVLb731lvvXME/yNwDA/3bv3q2xY8cqLi5On3/+uUfLmAGgPvF6ecWuXbv0+uuv\na9++fQoMDFRubq7mzJmj5ORkZWVlqW3btoqNjVVQUJCSkpKUkJAgk8mkxMREWa1WxcTEaOvWrYqL\ni5PFYlFaWpovxwUAqMb69etVVFSkiRMnutvS0tI0derUWuVvAIB/XXfddRo/frwGDx6sPXv2aMyY\nMaqsrHQ/fznL4KS6uVZafV0S422/jB6P0fHrm7p8PbhO2+XzuujQuXNnrVy58oL25cuXX9AWHR2t\n6OjoKm1ms1mpqanehgcAeGnEiBEaMWLEBe21zd8AAP9q06aNYmJiJEnXXnutWrdurZ07d6qsrEzB\nwcE1LoPr3r37JY9fF9dKq6/X6vGmX0Zfe8jo+PVRXb0eXKfNN9ff8enyCgAAAACXJzs7W0uXLpUk\nOZ1OHTlyREOGDGEZHIAGyW93rwAAAADgucjISL3wwgv65JNPVFFRoRkzZqhTp06aMmUKy+AANDgU\nHQAAAIB6pHnz5lq0aNEF7SyDA9AQsbwCAAAAAAD4BTMdAAAAAKAJeDJtk9FdQBPETAcAAAAAAOAX\nzHQwgDcVxmXJkX7oCQAAAICGqCnPWuD/Uw0LMx0AAAAAAIBfUHQAAAAAAAB+QdEBAAAAAAD4Bdd0\nAAAAAOBTTfl6AwCqYqYDAAAAAADwC2Y6AAAAAGgSvJmB8WH6w37oCdB0UHQAABjqwaQPjO4CAAAA\n/ITlFQAAAAAAwC+Y6QAAAAAA1fB0Rt6y5Eg/9QSXg6U1xmGmAwAAAAAA8AtmOjQQnlbmqMoBAAAA\ndc+bX9SZHYHGjJkOAAAAAADAL5jpAAAAAAAG8mZ2BBqHpjAzhpkOAAAAAADAL5jpAAAAAADAz3Dn\nEt8wtOjw2muvaceOHTKZTEpJSVHXrl2N7E6j4ukHROJDAuDiyNUAUL+Rp4H6gWUyF2dY0eHvf/+7\n/vvf/yorK0s//PCDUlJSlJWVZVR3AAAXQa4GgPqNPA2gvjOs6JCfn697771XknTjjTfq+PHjOnny\npJo3b25Ul5q8pnAREwCeIVcDQP1GngZwKd78P+/D9Id9Ft+wokNhYaFuu+029+OwsDA5nU4SZAPD\nFCLPUKRBQ0OuBoD6jTwNND0N7f9g9eZCki6Xq8bnw8OtHh/Tl9UZoCHx5vNCfNQGuRqAL5Cn/edS\neVry/PUnTwNNk69ytWG3zLTZbCosLHQ/Pnz4sMLDw43qDgDgIsjVAFC/kacB1HeGFR369Omj3Nxc\nSdLXX38tm83GNDAAqGfI1QBQv5GnAdR3hi2v6NGjh2677TaNHDlSJpNJ06dPN6orAIBqkKsBoH4j\nTwOo70yu2iz8AgAAAAAA8JBhyysAAAAAAEDjRtEBAAAAAAD4Rb25Zebl+Pvf/67nnntOr732mgYM\nGHDB89nZ2crMzFRAQICGDx+uYcOGqaKiQsnJydq/f7/MZrNSU1PVrl07j2Nf6ji7du3S66+/7n68\ne/duZWRk6PPPP9eHH36oNm3aSJIeeughDRs2zKexJem2225Tjx493I9XrFihM2fO1MnYJWn9+vVa\ntmyZAgIC1Lt3bz3//PNau3at5s+fr2uvvVaSFBERoWeeeabWcV977TXt2LFDJpNJKSkp6tq1q/u5\nrVu3au7cuTKbzerfv78SExMvuY+najrWtm3bNHfuXAUEBOj666/X73//e33xxRd67rnndPPNN0uS\nbrnlFk2bNs0v8SMjI/XLX/5SZrNZkjRnzhy1adOmTsZ/6NAhvfDCC+7t9uzZo6SkJFVUVFzW+/1z\n3333ncaNG6fHH39co0aNqvJcXbz/8E5TzdO1iS+RqxtbriZPk6cbKnK1MbnaqDwtGZurOaduQrna\n1cD997//dY0dO9Y1btw416ZNmy54/tSpU6777rvPVVxc7CotLXXdf//9rqKiItfatWtdM2bMcLlc\nLtdnn33meu6557yK78lxjh8/7vr1r3/tqqysdC1YsMC1cuVKr2J6EvvOO++8rD5fTvySkhLXgAED\nXCdOnHCdOXPGNXToUNf333/vevfdd11paWlexSwoKHD99re/dblcLtfu3btdw4cPr/L84MGDXfv3\n73dVVla64uLiXN9///0l9/Fl/KioKNeBAwdcLpfLNWHCBNfmzZtd27Ztc02YMMHrmJ7EHzBggOvk\nyZMe7ePL+OdUVFS4Ro4c6Tp58uRlvd8/d+rUKdeoUaNcU6dOvejnx9/vP7zTlPN0beOTqxtPriZP\nk6cbKnK1cbnaiDztchmbqzmnblq5usEvrwgPD9cbb7whq9V60ed37NihLl26yGq1Kjg4WD169JDD\n4VB+fr6ioqIkna0SORwOr+J7cpylS5fqscceU0CAb152b8dQV2O/4oorlJ2drebNm8tkMqlFixY6\nduyYV7HOj3nvvfdKkm688UYdP35cJ0+elHS2CnjllVfqqquuUkBAgO6++27l5+fXuI8v40vS2rVr\n9ctf/lKSFBYWpqKiIq/H6k18X+1zucd67733NGjQIDVr1syrONWxWCxavHixbDbbBc/VxfsP7zTl\nPO1pfF/s5+lxyNW+zdXkafJ0Q0WuNi5XG5Gnz8U1KldzTt20cnWDLzpcccUV7mkvF1NYWKiwsDD3\n47CwMDmdzirtAQEBMplMKi8v9zh+bY9TVlamLVu2aODAge62nJwcPfHEE3r66ae1Z88ev8QuLy9X\nUlKSRo4cqeXLl3vUZ1/EP3ef6G+//Vb79u1Tt27dJJ2dvpeQkKDHHntM//rXvzyK2bJlS/fjc++n\nJDmdzmrf6+r28dSljnVuvIcPH9bnn3+uu+++W9LZKYBjx45VXFycPv/8c69i1ya+JE2fPl1xcXGa\nM2eOXC5XnY7/nDVr1mjo0KHux96+3z8XGBio4ODgiz5XF+8/vNOU83Rt45OrG0+uJk+TpxsqcrVx\nudqIPH0urlG5mnPqppWrG9Q1HdasWaM1a9ZUaZswYYL69etX62O4qrlDaHXtl4q/Y8eOWh1n48aN\nuueee9wV2bvvvlt33XWX7rjjDn300Ud69dVX9dZbb/k89uTJk/XQQw/JZDJp1KhR6tmz5wXb+Hvs\nP/74o1544QWlp6crKChI3bp1U1hYmO655x599dVXmjJlij788MNL9uFiatN3X+zjybGOHDmisWPH\navr06WrZsqWuu+46jR8/XoMHD9aePXs0ZswYbdiwQRaLxefxn332WfXr109XXnmlEhMTlZubW6s+\n+yq+JH311Ve64YYb3F8Wvny/fcGX48eFmnKevpz45Grf7OPJseoqV5OnPUee9j9ytXG5ur7m6dr0\n3Vf71PY4nFM3nlzdoIoOw4YN8/jCMDabTYWFhe7Hhw8fVvfu3WWz2eR0OtWxY0dVVFTI5XJd8g/2\nYvGTk5NrdZy8vDzFxcW5H//8QiVz5szxS+zzY95111367rvv6nTsBw8eVGJiombNmqVOnTpJOjsd\n58Ybb5Qk3X777Tp69KgqKytrrK6fc7H3Mzw8/KLPHTp0SDabTUFBQdXu46ma4kvSyZMn9dRTT2ni\nxInq27evJKlNmzaKiYmRJF177bVq3bq1Dh065NVFli4VPzY21v3v/v37u9/vuhq/JG3evFm9e/d2\nP76c9/ty+uaP9x+X1pTz9OXEJ1c3nlxNnq5938jTxiFXG5er60uelozN1ZxTN61c3eCXV1xKt27d\ntHPnThUXF+vUqVNyOBzq2bOn+vTpo5ycHElnk1evXr28On5tj7Nr1y517NjR/fjVV1/V9u3bJZ2d\nJnPuKqy+jP2f//xHSUlJcrlcOn36tBwOh26++eY6HftLL72kGTNm6LbbbnO3LV68WOvWrZN09qqp\nYWFhtf6w9OnTx11p/Prrr2Wz2dzVv2uuuUYnT57U3r17dfr0aeXl5alPnz417uPNmGs6Vlpamh57\n7DH179/f3Zadna2lS5dKOjtd6ciRI+4rLPsy/okTJ5SQkOCejvfFF1+43++6Gr8k7dy5s8rf+uW8\n356oi/cf/tGY83Rt4pOrG1euJk9XjzzdsJGr/ZerjcjT5+Ialas5p25audrkauBz2DZv3qylS5fq\nP//5j8LCwhQeHq5ly5bpj3/8o+644w7dfvvtysnJ0dKlS91ToR566CFVVlZq6tSp+vHHH2WxWJSW\nlqarrrrK4/jVHef8+JLUu3dv5efnu/f79ttvNX36dAUGBspkMunVV19V+/btfR579uzZ2rZtmwIC\nAhQZGalnnnmmzsbeokULxcbGVqlAP/7447rttts0adIkd9L29HYzc+bM0fbt22UymTR9+nT961//\nktVqVVRUlL744gt3hfu+++5TQkLCRfc5/wPsqeri9+3bt8p7LkkPPPCA7r//fr3wwgsqLi5WRUWF\nxo8f716X5sv4UVFRyszM1Pvvv69f/OIXuvXWWzVt2jSZTKY6Gf+5CyA9+OCDWr58uVq3bi3pbGX+\nct7v8527Xda+ffsUGBioNm3aKDIyUtdcc02dvf/wXFPO07WNT65uXLmaPE2ebojI1cblaqPytGRs\nruacuunk6gZfdAAAAAAAAPVTo19eAQAAAAAAjEHRAQAAAAAA+AVFBwAAAAAA4BcUHQAAAAAAgF9Q\ndAAAAAAAAH5B0QEAAAAAAPgFRQcAAAAAAOAXFB0AAAAAAIBfUHQAAAAAAAB+QdEBAAAAAAD4BUUH\nAAAAAADgFxQdAAAAAACAX1B0AAAAAAAAfkHRAQAAAAAA+AVFBwAAAAAA4BcUHQAAAAAAgF9QdAAA\nAAAAAH5B0QEAAAAAAPgFRQcAAAAAAOAXFB0AAAAAAIBfUHQAAAAAAAB+QdEBAAAAAAD4BUUHAAAA\nAADgFxQdAAAAAACAX1B0gCEKCgoUFRXl8+Omp6dr9erVkqTPPvtM+/fv9/gYt956q/bu3evrrgEA\nAAANxujRo/XBBx9ccru//OUv7n9HR0ersLDQn91CA0TRAY1KUlKS4uLiJEkrVqzwqugAAKjqpZde\n0sKFCyX574Tyn//8pxISEnx+XACA/zidTi1ZssT9OCcnR61btzawR6iPKDrAUD/99JNefvllDRo0\nSIMHD1ZaWpoqKyslSZGRkXrnnXc0dOhQ9e3bV2lpae79Fi1apN69e+vRRx/Vn//8Z0VGRkqSkpOT\n9eabb2revHnatm2bJk2apPXr17vbzzn/8d/+9jdFRUVp8ODBVZKmJGVlZSk6OlqRkZH63e9+p7Ky\nMn+/JABQr/nrhLJr165aunSpz48LAI1NQUGBHnzwQaWlpWnQoEGKjIzUP/7xjxrPqzt06KA//elP\nevjhh9W7d2/3zOC1a9fq8ccfdx/754/P+eSTT/Tggw9q0KBBGjJkiL755htJ0siRI7V//35FR0er\nvLxcHTp00MGDByVJf/rTnxQTE6Po6Gg988wzOnr0qKSz5+ELFizQE088oQEDBuiJJ55QaWmpH18x\nGI2iAwyVmZmpgwcP6qOPPtJ7772n7du3a926de7nv/jiC2VlZendd9/VqlWrdPDgQX3//fdasmSJ\nPvjg/7F3/1FRlvn/x18DwyyhgwoxlmY/bE1df2B+TROlBEXQ1sRVUEirzTILTYtSYjVtbQUzXHNz\n+0GKHF2LlbWitgWydE8mstnsutruprVbKRoMiYKigTjfPzzORwIUxhmGH8/HOZ3jXPfc9/t6z+g1\nd+/7uq/7HW3evFm5ubl1jjt//nx17dpVK1eu1Pjx4xuMX1NTo1/96ldasmSJ/vKXv8jLy8sxOO/Z\ns0cvvviiMjMz9dFHH6ljx4568cUXXf8hAICLHT58WCNHjlR6eroiIyMVGRmpf/zjH5o1a5ZCQ0P1\n9NNPS5K2bdumCRMmaPTo0XrggQccJ4RlZWV64IEHFB4erlmzZqmiosJx7ItPKNeuXavIyEiNGTNG\nDz/8sMrLyyVJv/vd7/TrX/9aCQkJGj16tKZMmaKSkpJL9vni2+4utf+hQ4d0zz33KCIiQpMnT9bn\nn38uSTpy5IhmzpypyNcNntQAACAASURBVMhI/fznP9fbb7/dpM/iUp8HALQ0X331lQYOHKi8vDw9\n8sgjWrp06WXPq7/55hu98847+sMf/qDly5errKysUbHOnj2rpKQkLVu2THl5eQoPD9eKFSskScuX\nL9e1116r3NxcmUwmxz7/+Mc/tG7dOm3cuFG5ubnq1q2b0tLSHNtzc3P129/+Vh988IGOHTumDz74\nwEWfDFoiig7wqB07dig2NlZGo1G+vr6aMGGCPvnkE8f2CRMmyNvbW127dlVgYKCOHj2qTz/9VEOH\nDpXFYtFPfvITTZ482en4X3/9taqqqjRy5EhJ0qRJkxzbPvroI40fP15du3aVJMXFxSk/P9/pWADQ\nnMrKyhQUFKS8vDz17t1bjz/+uFJTU5WTk6P33ntP3377rRYsWKC0tDR9+OGHGjZsmJYuXSpJSk9P\nV5cuXfTRRx/pmWee0c6dO+scf//+/frDH/6gP/3pT8rPz1dVVZU2bdrk2J6bm6vk5GRt27ZNgYGB\n+tOf/tSk/je0/+LFi3XXXXfpgw8+0COPPKIFCxY42ocOHaq8vDy9+uqreu655xzr8zTmszh06FCD\nnwcAtDR+fn4aN26cJGns2LH697//rby8vEueV184Z+7Zs6duuukm/fOf/2xULKPRqF27dmnQoEGS\npCFDhujQoUOX3GfHjh2KjIxUYGCgJCkmJqZWX+6880517txZRqNRt9xyi44ePdr45NHqGD3dAbRv\nx44dU6dOnRyvO3XqpO+//97xumPHjo4/e3t7q6amRuXl5bX2uVAUcMaJEydqxbj4uBUVFfrggw8c\nJ9t2u13V1dVOxwKA5nT27FlFRUVJkm655RZJUkBAgCQpKChIOTk5Gjp0qGPbtGnTNGLECNXU1GjP\nnj2aNWuWJOm6667T0KFD6xy/f//+2rFjh+PK1q233lrrJHTIkCHq3r27JKlv375NPqGsb/8ffvhB\nhYWFWrNmjSRp9OjRGj58uKqrq7Vr1y6tXr1aktS9e3cNGzZMu3fv1u23337Zz6KkpERffPFFg5+H\nt7d3k/oOAO7m7+8vg8Hg+LMknTx58pLn1T/edmF2WmNs3LhRb731lqqqqlRVVeWI3ZBjx47JYrHU\n6u/FfTGbzY4/XzjHR9tF0QEedfXVV+v48eOO18ePH7/svcIdO3ZUZWWl4/XlpuxKkpeXl86dO+d4\nfeLECUnnB9yTJ0862i+eSmuxWDRp0iQtXLjw8okAQAvj7e0tX19fSefHQD8/v1rbjEaj9uzZ4/if\ncen8+Hr8+HGdOHGi1gnhhRPai50+fVopKSkqLCyUdH5cHTVqlGP7lZ5Q1rf/8ePHde7cOcc2g8Gg\nDh06yGazyW631+nzhTH9cp9FTU2NKioqGvw8LlypA4CW4uLz5wvntf7+/pc8ry4rK3MUc48fP65O\nnTrp2LFjtcbn+goRVqtV6enp2rJli6677jp98sknWrx48SX758w5Ptoubq+AR40aNUrZ2dmqqalR\nZWWl3nnnHd15552X3GfgwIEqLCzUsWPHVFVV5bhv98eMRqPjPuSgoCD95z//kXT+fmCr1SpJuv76\n6+Xt7e04ad66daujchseHq78/HzHSeu2bdv02muvXXnSANACWCwWhYSEKDc31/Hf7t27FRgYKH9/\n/1rrONS3tkFmZqa+/vprbd26VXl5eZo6darb+9ylSxcZDAbHfch2u13ffPONOnfuLC8vL8eJt6Qm\nFwsu9XkAQEtz5swZbdu2TZKUl5en/v37KzIy8pLn1X/+858lnV8P4ptvvlFwcLAsFov+97//6Ycf\nftDp06frXSvt2LFjCgwMVLdu3XT69Gm99dZbqqyslN1ul9FoVGVlpc6ePVtrn1GjRumDDz5wjNdv\nvvnmZc/x0XZRdIBHzZgxQ9dcc43uuusuTZ48WaNGjXLcn9aQgQMHatKkSZo0aZLuvfdehYWF1fu+\nyMhIPfHEE8rIyFBsbKyKioo0duxYpaWlKTIyUpLk4+OjZcuWKTk5WePGjZPBYHBcAevXr59mz56t\nGTNmaNy4cdqwYYNGjx7t2g8AADzEZDJpz549jlsi/vnPf+q5556TJA0aNMhxMvvtt9/qs88+q7P/\n999/r549e6pDhw4qKirSX//611qz0NzV5xEjRuitt96SJH388ceaNWuWfHx8NHLkSGVlZTn6vGfP\nHoWEhDT62CNHjmzw8wCAlqZ79+767LPPFBkZqVdffVVLliy57Hl1QECAJk6cqHvuuUeLFi1Sp06d\nNGzYMAUHBysyMlIPPfRQvee6oaGhslgsGjNmjB544AHdd999MpvNeuyxx9S7d2916tRJI0aMqPWo\n+oEDB2rWrFm65557FBUVpYqKCj3++OPN8tmg5THY7Xa7pzsBNJXdbnfMSNixY4dWr17d4IwHAGhv\nDh8+rLFjx+pf//qXJOn3v/+9vv32W8ejhyMiIvTcc8/p5MmTevHFF1VdXa0OHTooOTlZgwcPVmlp\nqR5//HEVFRXp5ptvVkBAgK677jrNnTtXvXv31l//+ledOnVKjz32mM6ePavevXsrPj5ec+fOVUJC\ngioqKvTdd9/pN7/5jaTzT6O4+HV9CgsLtWjRIn3wwQd13n/x6++++05PPvmkjh49qk6dOunZZ5/V\ngAEDdPToUS1atEhFRUXy8fHRnDlzFBkZ2ejPYtiwYfrwww/r/TwAoCW5eLxsrAtj9zXXXOPGngH1\no+iAVufYsWMaN26ctm7dqm7duikpKUlXXXUVq4wDAACgzaPogNaGhSTR6gQEBGj+/Pm6//77ZTAY\n1LNnT8cj0wAAAFqTU6dOaeHChTpx4oSqq6uVkJCgoKAgx8WU3r1769lnn5Ukvf7668rNzZXBYNCc\nOXN05513qqKiQomJiaqoqJCfn5/S0tLUuXNnD2YEALUx0wEAADSLhIQEffXVV/VuW7t2rW6++eZm\n7hHgeZs2bVJxcbESExNVXFys++67T0FBQXrqqac0cOBAJSYm6u6771bPnj01b948vfnmmzp58qTi\n4+P15z//WS+//LJ8fX314IMPKisrS99++62eeuopT6cFAA7MdAAAAM1i7dq1nu4C0OJ06dJFX3zx\nhaTzjyvs3LmzioqKNHDgQElSWFiYCgoKZLPZFBoaKpPJpICAAHXv3l1ffvmlCgoKtHz5csd7Z8+e\n7bFcAKA+raboYLNVXP5NP9Kli5/Kyty7knZLjd+ec2/v8dtz7s7EDwoyu7E37U9rG6tb299X4reN\n2O09vjOx2/JYfdddd2nr1q2KiIhQeXm5Xn75Zf361792bA8MDJTNZlPnzp0VEBDgaA8ICJDNZlNp\naamjPTAwUCUlJZeNefZsjYxGb9cnAwD1aDVFB2d4ejD1ZPz2nHt7j9+ec28J8dF0/HshfnuL3d7j\nezr3luadd95Rt27dtG7dOv3nP/9RQkKCzOb/K7I0dCd0fe2NvWvamaKPM0VlV2nP8dtz7u09fmvM\nvaECsZcrOgQAAACg6axWq0aOHClJ6tOnj3744QeVlZU5thcXF8tischisai0tLTedpvNVqsNAFoS\nig4AAACAh9xwww3au3evJKmoqEgdOnTQzTffrD179kiS8vPzFRoaqttvv107duxQVVWViouLVVJS\nop/+9KcaMWKEcnNza70XAFqSNn17BQAAANCSTZ06VcnJyZo+fbrOnj2rpUuXKigoSM8884zOnTun\n4OBghYSESJJiY2M1ffp0GQwGLV26VF5eXpoxY4aeeuopxcfHy9/fXytXrvRwRgBQG0UHAAAAwEM6\ndOigF198sU775s2b67TNmDFDM2bMqLP/73//e7f1DwCuFLdXAAAAAAAAt6DoAAAAAAAA3IKiAwAA\nAAAAcAvWdACc9EDqR03eZ31SuBt6AsAdmvpvnH/fANqqCYnvNHkfxkQAFzDTAQAAAAAAuAVFBwAA\nAAAA4BYUHQAAAAAAgFtQdAAAAAAAAG5B0QEAAAAAALgFRQcAAAAAAOAWFB0AAAAAAIBbUHQAAAAA\nAABuQdEBAAAAAAC4hdHTHQAAAADaqy1btignJ8fxev/+/XrjjTe0dOlSSVLv3r317LPPSpJef/11\n5ebmymAwaM6cObrzzjtVUVGhxMREVVRUyM/PT2lpaercubMnUgGAelF0AAAAADwkJiZGMTExkqS/\n/e1v+stf/qLf/OY3Sk5O1sCBA5WYmKi//vWv6tmzp95//329+eabOnnypOLj4zVy5EhlZmZq6NCh\nevDBB5WVlaX09HQ99dRTHs4KAP4Pt1cAAAAALcDatWv10EMPqaioSAMHDpQkhYWFqaCgQIWFhQoN\nDZXJZFJAQIC6d++uL7/8UgUFBYqIiKj1XgBoSZjpAABt2PPPP6/PPvtMZ8+e1cMPP6wBAwZowYIF\nqqmpUVBQkFauXCmTyaScnBxlZmbKy8tLsbGxiomJUXV1tZKSknTkyBF5e3srJSVFPXr08HRKTnkg\n9SNPdwEALumf//ynrr32Wnl7e8vf39/RHhgYKJvNps6dOysgIMDRHhAQIJvNptLSUkd7YGCgSkpK\nmr3vAHApFB0AoI3avXu3Dh48qKysLJWVlWnSpEkaPny44uPjNW7cOK1atUrZ2dmKjo7W2rVrlZ2d\nLR8fH02ZMkURERHavn27/P39lZaWpp07dyotLU2rV6/2dFoA0CZlZ2dr0qRJddrtdnu976+vvaH3\n/liXLn4yGr2b1sEmCgoyt+jjtab47Tn39h6/reTudNHhx1fPPvroI33++eeOhWtmzpypUaNGtfmr\nZwDQUt12222O6bn+/v46ffq0CgsLHQuShYWFaf369brppps0YMAAmc3nf1gGDx4sq9WqgoICRUdH\nS5JCQkKUnJzsmUQAoB0oLCzUokWLZDAYdPz4cUd7cXGxLBaLLBaL/ve//9XbbrPZZDabHW2XU1ZW\n6ZYcLmazVbjsWEFBZpcerzXFb8+5t/f4rTH3hooUThUd6rt6dvvtt+uJJ55QWFiY432VlZVcPQMA\nD/H29pafn5+k81fQ7rjjDu3cuVMmk0nS/03ZvXhqrlT/lF0vLy8ZDAZVVVU59q+Ps1fPPF3JdwVn\nbuF4N22ix3Nvz/Hbc+6eju/p3Fua4uJidejQwTG+9uzZU3v27NGQIUOUn5+vGTNm6MYbb1RGRobm\nzp2rsrIylZSU6Kc//alGjBih3NxcPfroo8rPz1doaKiHswGA2pwqOtR39aympqbO+/bu3cvVMwDw\nsG3btik7O1vr16/X2LFjHe1NmbJ7qfaLOXP1zNOVfE9rbVcx2kr89py7p+O78upZW2Gz2WoVf5OT\nk/XMM8/o3LlzCg4OVkhIiCQpNjZW06dPl8Fg0NKlS+Xl5aUZM2boqaeeUnx8vPz9/bVy5UpPpQEA\n9XKq6FDf1TNvb29t2rRJGRkZCgwM1OLFi7l65uH47Tn3lhC/Ps3VJ0/n3t7jtyQff/yxXnnlFb3+\n+usym83y8/PTmTNn5OvrW2tqbmlpqWOfkpISDRo0yDFlt0+fPqqurpbdbr/kOA0AcE7//v31+uuv\nO17/9Kc/1ebNm+u8b8aMGZoxY0attg4dOuj3v/+92/sIAM66ooUkL756tn//fnXu3Fl9+/bVa6+9\nppdeekm33nprrfe3t6tnre0qAvHdrzn65OncW1v8tlygqKio0PPPP68NGzY41tsJCQlRXl6eJk6c\n6JiGGxwcrEWLFqm8vFze3t6yWq1KTk7WyZMnlZubq9DQUG3fvl3Dhg3zcEYAAABobZwuOvz46tnw\n4cMd28LDw7V06VJFRkZy9QwAPOT9999XWVmZ5s+f72hLTU3VokWLlJWVpW7duik6Olo+Pj5KTEzU\nzJkzZTAYlJCQILPZrPHjx2vXrl2Ki4uTyWRSamqqB7MBAABAa+RU0aG+q2dz587VggUL1KNHDxUW\nFqpXr15cPQMAD5o6daqmTp1apz0jI6NOW1RUlKKiomq1XXi6EAAAAOAsp4oO9V09+8UvfqH58+fr\nqquukp+fn1JSUuTr68vVMwAAAAAA2imnig4NXT2bNGlSnTaungEAAAAA0D55eboDAAAAAACgbaLo\nAAAAAAAA3IKiAwAAAAAAcAuKDgAAAAAAwC0oOgAAAAAAALeg6AAAAAAAANyCogMAAAAAAHALig4A\nAAAAAMAtKDoAAAAAAAC3MHq6AwAAAEB7lpOTo9dff11Go1GPPfaYevfurQULFqimpkZBQUFauXKl\nTCaTcnJylJmZKS8vL8XGxiomJkbV1dVKSkrSkSNH5O3trZSUFPXo0cPTKQGAAzMdAAAAAA8pKyvT\n2rVrtXnzZr3yyiv68MMPtWbNGsXHx2vz5s264YYblJ2drcrKSq1du1YbNmzQxo0blZmZqePHj+u9\n996Tv7+/3njjDc2ePVtpaWmeTgkAaqHoAAAAAHhIQUGBhg8fro4dO8pisWjZsmUqLCzU6NGjJUlh\nYWEqKCjQ3r17NWDAAJnNZvn6+mrw4MGyWq0qKChQRESEJCkkJERWq9WT6QBAHdxeAQAAAHjI4cOH\ndebMGc2ePVvl5eWaO3euTp8+LZPJJEkKDAyUzWZTaWmpAgICHPsFBATUaffy8pLBYFBVVZVj//p0\n6eIno9HbrXkFBZlb9PFaU/z2nHt7j99WcqfoAAAAAHjQ8ePH9dJLL+nIkSO69957ZbfbHdsu/vPF\nmtp+sbKySuc62gQ2W4XLjhUUZHbp8VpT/Pace3uP3xpzb6hIwe0VAAAAgIcEBgbq1ltvldFo1PXX\nX68OHTqoQ4cOOnPmjCSpuLhYFotFFotFpaWljv1KSkoc7TabTZJUXV0tu91+yVkOANDcKDoAAAAA\nHjJy5Ejt3r1b586dU1lZmSorKxUSEqK8vDxJUn5+vkJDQxUcHKx9+/apvLxcp06dktVq1ZAhQzRi\nxAjl5uZKkrZv365hw4Z5Mh0AqIPbKwAAAAAP6dq1qyIjIxUbGytJWrRokQYMGKCFCxcqKytL3bp1\nU3R0tHx8fJSYmKiZM2fKYDAoISFBZrNZ48eP165duxQXFyeTyaTU1FQPZwQAtVF0AAAAADxo2rRp\nmjZtWq22jIyMOu+LiopSVFRUrTZvb2+lpKS4tX8AcCW4vQIAAAAAALgFRQcAAAAAAOAWFB0AAAAA\nAIBbUHQAAAAAAABu4fRCks8//7w+++wznT17Vg8//LAGDBigBQsWqKamRkFBQVq5cqVMJpNycnKU\nmZkpLy8vxcbGKiYmRtXV1UpKStKRI0cci9/06NHDlXkBAAAAAAAPc6rosHv3bh08eFBZWVkqKyvT\npEmTNHz4cMXHx2vcuHFatWqVsrOzFR0drbVr1yo7O1s+Pj6aMmWKIiIitH37dvn7+ystLU07d+5U\nWlqaVq9e7ercAAAAAACABzl1e8Vtt92mF198UZLk7++v06dPq7CwUKNHj5YkhYWFqaCgQHv37tWA\nAQNkNpvl6+urwYMHy2q1qqCgQBEREZKkkJAQWa1WF6UDAAAAAABaCqdmOnh7e8vPz0+SlJ2drTvu\nuEM7d+6UyWSSJAUGBspms6m0tFQBAQGO/QICAuq0e3l5yWAwqKqqyrF/fbp08ZPR6N3kvgYFmZu8\njyt5Mn57zr0lxK9Pc/XJ07m39/gAAAAAznN6TQdJ2rZtm7Kzs7V+/XqNHTvW0W632+t9f1PbL1ZW\nVtnk/gUFmWWzVTR5P1fxZPz2nHtLiN+Q5uiTp3NvbfEpUAAAAADu4/TTKz7++GO98sorSk9Pl9ls\nlp+fn86cOSNJKi4ulsVikcViUWlpqWOfkpISR7vNZpMkVVdXy263X3KWAwAAAAAAaH2cKjpUVFTo\n+eef16uvvqrOnTtLOr82Q15eniQpPz9foaGhCg4O1r59+1ReXq5Tp07JarVqyJAhGjFihHJzcyVJ\n27dv17Bhw1yUDgDgYgcOHNCYMWO0adMmSVJSUpImTJigGTNmaMaMGdqxY4ckKScnR5MnT1ZMTIy2\nbNki6XxRODExUXFxcZo+fboOHTrkqTQAAADQSjl1e8X777+vsrIyzZ8/39GWmpqqRYsWKSsrS926\ndVN0dLR8fHyUmJiomTNnymAwKCEhQWazWePHj9euXbsUFxcnk8mk1NRUlyUEADivsrJSy5Yt0/Dh\nw2u1P/HEEwoLC6v1Pp40BAAAAHdwqugwdepUTZ06tU57RkZGnbaoqChFRUXVavP29lZKSoozoQEA\njWQymZSenq709PRLvu/iJw1JqvWkoejoaEnnZ7MlJye7vc/tzYTEd5q8z/qkcDf0BAAAwD2uaCFJ\nAEDLZTQaZTTWHeY3bdqkjIwMBQYGavHixTxpqJVx9Wfl6c+epzy1z/iezh0A0HwoOgBAOzJx4kR1\n7txZffv21WuvvaaXXnpJt956a633tLcnDbU2rvysPP3Z85Sn9hnfmdhtuUhRWFioefPmqVevXpKk\nW265RQ8++KAWLFigmpoaBQUFaeXKlTKZTMrJyVFmZqa8vLwUGxurmJgYVVdXKykpSUeOHHHMJu7R\no4eHswKA/0PRoZV4IPWjJr3/3bSJbuoJgNbs4vUdwsPDtXTpUkVGRtZ50tCgQYMcTxrq06cPTxoC\nADcaOnSo1qxZ43j99NNPKz4+XuPGjdOqVauUnZ2t6Oho1t8B0Co5/chMAEDrM3fuXMdTKAoLC9Wr\nVy+eNAQALUxhYaFGjx4tSQoLC1NBQUGt9Xd8fX1rrb8TEREh6fz6O1ar1ZNdB4A6mOkAAG3U/v37\ntWLFChUVFcloNCovL0/Tp0/X/PnzddVVV8nPz08pKSny9fXlSUMA4EFffvmlZs+erRMnTmjOnDk6\nffq0Y2ZZYGBgnXV2JM+sv9MUrD/TNmITn+/eFSg6AEAb1b9/f23cuLFOe2RkZJ02njQEAJ5x4403\nas6cORo3bpwOHTqke++9VzU1NY7tTV1nx13r7zQV68+0/tjE57t31fo73F4BAAAAeEjXrl01fvx4\nGQwGXX/99br66qt14sQJnTlzRpJUXFwsi8Uii8VSZ/2dC+02m02SWH8HQItE0QEAAADwkJycHK1b\nt06SZLPZ9P333+sXv/iF8vLyJEn5+fkKDQ1l/R0ArRa3VwAAAAAeEh4erieffFIffvihqqurtXTp\nUvXt21cLFy5UVlaWunXrpujoaPn4+LD+DoBWiaIDAAAA4CEdO3bUK6+8Uqc9IyOjThvr7wBojbi9\nAgAAAAAAuAVFBwAAAAAA4BYUHQAAAAAAgFtQdAAAAAAAAG5B0QEAAAAAALgFRQcAAAAAAOAWFB0A\nAAAAAIBbUHQAAAAAAABuQdEBAAAAAAC4BUUHAAAAAADgFhQdAAAAAACAW1B0AAAAAAAAbnFFRYcD\nBw5ozJgx2rRpkyQpKSlJEyZM0IwZMzRjxgzt2LFDkpSTk6PJkycrJiZGW7ZskSRVV1crMTFRcXFx\nmj59ug4dOnRlmQAAAAAAgBbF6OyOlZWVWrZsmYYPH16r/YknnlBYWFit961du1bZ2dny8fHRlClT\nFBERoe3bt8vf319paWnauXOn0tLStHr1auczAQAAAFqhM2fO6Oc//7keffRRDR8+XAsWLFBNTY2C\ngoK0cuVKmUwm5eTkKDMzU15eXoqNjVVMTIyqq6uVlJSkI0eOyNvbWykpKerRo4en0wGAWpye6WAy\nmZSeni6LxXLJ9+3du1cDBgyQ2WyWr6+vBg8eLKvVqoKCAkVEREiSQkJCZLVane0KAAAA0Gq9/PLL\n6tSpkyRpzZo1io+P1+bNm3XDDTcoOzvbcRFvw4YN2rhxozIzM3X8+HG999578vf31xtvvKHZs2cr\nLS3Nw5kAQF1Oz3QwGo0yGuvuvmnTJmVkZCgwMFCLFy9WaWmpAgICHNsDAgJks9lqtXt5eclgMKiq\nqkomk6neeF26+Mlo9G5yP4OCzE3ex5U8Gb89594S4tenufrk6dzbe3wAABrrq6++0pdffqlRo0ZJ\nkgoLC/Xss89KksLCwrR+/XrddNNNjot4kmpdxIuOjpZ0/iJecnKyR3IAgEtxuuhQn4kTJ6pz587q\n27evXnvtNb300ku69dZba73HbrfXu29D7ReUlVU2uT9BQWbZbBVN3s9VPB2/Pefu6fgNaY4+eTr3\n1hafAgUAwJNWrFihxYsX6+2335YknT592nERLjAwsM7FOsn5i3gA4AkuLTpcvL5DeHi4li5dqsjI\nSJWWljraS0pKNGjQIFksFtlsNvXp00fV1dWy2+0MkAAAAGg33n77bQ0aNKjBdRiaerHuchfxLnB2\nBnFTuLqo7+mLBMxeJn57i+3K+C4tOsydO1cLFixQjx49VFhYqF69eik4OFiLFi1SeXm5vL29ZbVa\nlZycrJMnTyo3N1ehoaHavn27hg0b5squAAAAAC3ajh07dOjQIe3YsUPfffedTCaT/Pz8dObMGfn6\n+qq4uFgWi0UWi8WlF/GcmUHcVK6c9djaZlG2ldjE57tvavyGihROFx3279+vFStWqKioSEajUXl5\neZo+fbrmz5+vq666Sn5+fkpJSZGvr68SExM1c+ZMGQwGJSQkyGw2a/z48dq1a5fi4uJkMpmUmprq\nbFcAAACAVufiJ7f97ne/U/fu3fX3v/9deXl5mjhxovLz8xUaGspFPACtmtNFh/79+2vjxo112iMj\nI+u0RUVFKSoqqlbbhcf6AACAxnsg9aMmvX99UribegLAHebOnauFCxcqKytL3bp1U3R0tHx8fLiI\nB6DVcuntFQAAuFtT/6cbAFqDuXPnOv6ckZFRZzsX8QC0Vl6e7gAAAAAAAGibKDoAAAAAAAC3oOgA\nAAAAAADcgqIDAAAAAABwC4oOANCGHThwQGPGjNGmTZskSUePHtWMGTMUHx+vefPmqaqqSpKUk5Oj\nyZMnKyYmRlu2bJEkVVdXKzExUXFxcZo+fboOHTrksTwAAADQOlF0AIA2qrKyUsuWLdPw4cMdbWvW\nrFF8fLw2b96syZdphwAAIABJREFUG264QdnZ2aqsrNTatWu1YcMGbdy4UZmZmTp+/Ljee+89+fv7\n64033tDs2bOVlpbmwWwAAADQGlF0AIA2ymQyKT09XRaLxdFWWFio0aNHS5LCwsJUUFCgvXv3asCA\nATKbzfL19dXgwYNltVpVUFCgiIgISVJISIisVqtH8gAAAEDrZfR0B4CW4oHUjzzdBcCljEajjMba\nw/zp06dlMpkkSYGBgbLZbCotLVVAQIDjPQEBAXXavby8ZDAYVFVV5di/Pl26+Mlo9G5yX4OCzE3e\nB41zuc/W05+9J+O359w9Hd/TucP9nDmvWp8U7oaeAPA0ig4A0E7Z7XaXtF+srKyyyf0ICjLLZqto\n8n5onEt9tp7+7D0Zvz3n7un4zsSmSAEArRe3VwBAO+Ln56czZ85IkoqLi2WxWGSxWFRaWup4T0lJ\niaPdZrNJOr+opN1uv+QsBwAAAODHKDoAQDsSEhKivLw8SVJ+fr5CQ0MVHBysffv2qby8XKdOnZLV\natWQIUM0YsQI5ebmSpK2b9+uYcOGebLrAAAAaIW4vQJo4Zp6T+S7aRPd1BO0Nvv379eKFStUVFQk\no9GovLw8vfDCC0pKSlJWVpa6deum6Oho+fj4KDExUTNnzpTBYFBCQoLMZrPGjx+vXbt2KS4uTiaT\nSampqZ5OCQAAAK0MRQcAaKP69++vjRs31mnPyMio0xYVFaWoqKhabd7e3kpJSXFb/wAAAND2cXsF\nAAAAAABwC2Y6AAAAAB5y+vRpJSUl6fvvv9cPP/ygRx99VH369NGCBQtUU1OjoKAgrVy5UiaTSTk5\nOcrMzJSXl5diY2MVExOj6upqJSUl6ciRI44Zaj169PB0WgDgwEwHAAAAwEO2b9+u/v37a9OmTVq9\nerVSU1O1Zs0axcfHa/PmzbrhhhuUnZ2tyspKrV27Vhs2bNDGjRuVmZmp48eP67333pO/v7/eeOMN\nzZ49W2lpaZ5OCQBqoegAAAAAeMj48eP10EMPSZKOHj2qrl27qrCwUKNHj5YkhYWFqaCgQHv37tWA\nAQNkNpvl6+urwYMHy2q1qqCgQBEREZLOP6HIarV6LBcAqA+3VwAAAAAeNm3aNH333Xd65ZVX9Mtf\n/lImk0mSFBgYKJvNptLSUgUEBDjeHxAQUKfdy8tLBoNBVVVVjv3r06WLn4xGb/cm5ISgILNT25qD\nJ+O359zbe/y2kjtFBwAAAMDD3nzzTf373//WU089Jbvd7mi/+M8Xa2r7xcrKKp3rpJvZbBX1tgcF\nmRvc1hw8Gb89597e47fG3BsqUnB7BQAAAOAh+/fv19GjRyVJffv2VU1NjTp06KAzZ85IkoqLi2Wx\nWGSxWFRaWurYr6SkxNFus9kkSdXV1bLb7Zec5QAAze2Kig4HDhzQmDFjtGnTJknn70ObMWOG4uPj\nNW/ePFVVVUmScnJyNHnyZMXExGjLli2Szg+KiYmJiouL0/Tp03Xo0KErTAUAAABoXfbs2aP169dL\nkkpLS1VZWamQkBDl5eVJkvLz8xUaGqrg4GDt27dP5eXlOnXqlKxWq4YMGaIRI0YoNzdX0vlFKYcN\nG+axXACgPk4XHSorK7Vs2TINHz7c0cZKuwAAAEDjTZs2TceOHVN8fLxmzZqlZ555RnPnztXbb7+t\n+Ph4HT9+XNHR0fL19VViYqJmzpypX/7yl0pISJDZbNb48eN17tw5xcXF6Q9/+IMSExM9nRIA1OL0\nmg4mk0np6elKT093tBUWFurZZ5+VdH6l3fXr1+umm25yrLQrqdZKu9HR0ZLOr7SbnJx8JXkAAAAA\nrY6vr2+9F98yMjLqtEVFRSkqKqpWm7e3t1JSUtzWPwC4Uk7PdDAajfL19a3Vdvr06SteaRcAAAAA\nALQNbnt6hatX2nX20T5t5TEjrS028evXXH3ydO7tPT4AAACA81xadPDz89OZM2fk6+t7yZV2Bw0a\n5Fhpt0+fPo1aadeZR/u0xseMuFJ7zt3T8RvSXH1qz599U+NToAAAAADcx6WPzGSlXQAAAAAAcIHT\nMx3279+vFStWqKioSEajUXl5eXrhhReUlJSkrKwsdevWTdHR0fLx8XGstGswGGqttLtr1y7FxcXJ\nZDIpNTXVlXkBAAAAAAAPc7ro0L9/f23cuLFOOyvtAgAAAAAAycW3VwAAAAAAAFxA0QEAAAAAALiF\n2x6ZCQAAPO+B1I+avM/6pHA39AQAALRHzHQAAAAAAABuQdEBAAAAAAC4BUUHAAAAAADgFqzp4AHO\n3F8LAAAAAEBrw0wHAAAAAADgFsx0aKMmJL7T5H1YrRwAAKD5Pf/88/rss8909uxZPfzwwxowYIAW\nLFigmpoaBQUFaeXKlTKZTMrJyVFmZqa8vLwUGxurmJgYVVdXKykpSUeOHJG3t7dSUlLUo0cPT6cE\nAA4UHYBmxK01AADgYrt379bBgweVlZWlsrIyTZo0ScOHD1d8fLzGjRunVatWKTs7W9HR0Vq7dq2y\ns7Pl4+OjKVOmKCIiQtu3b5e/v7/S0tK0c+dOpaWlafXq1Z5OCwAcuL0CAAAA8JDbbrtNL774oiTJ\n399fp0+fVmFhoUaPHi1JCgsLU0FBgfbu3asBAwbIbDbL19dXgwcPltVqVUFBgSIiIiRJISEhslqt\nHssFAOrDTAcAAADAQ7y9veXn5ydJys7O1h133KGdO3fKZDJJkgIDA2Wz2VRaWqqAgADHfgEBAXXa\nvby8ZDAYVFVV5di/Pl26+Mlo9HZjVs4JCjI7ta05eDJ+e869vcdvK7lTdAAAAAA8bNu2bcrOztb6\n9es1duxYR7vdbq/3/U1tv1hZWaVznXQzm62i3vagIHOD25qDJ+O359zbe/zWmHtDRQpurwAAAAA8\n6OOPP9Yrr7yi9PR0mc1m+fn56cyZM5Kk4uJiWSwWWSwWlZaWOvYpKSlxtNtsNklSdXW17Hb7JWc5\nAEBzY6YDHJxZ5JAnXgCtT2FhoebNm6devXpJkm655RY9+OCDjV4pHQDgOhUVFXr++ee1YcMGde7c\nWdL5tRny8vI0ceJE5efnKzQ0VMHBwVq0aJHKy8vl7e0tq9Wq5ORknTx5Urm5uQoNDdX27ds1bNgw\nD2cEALVRdACAdmjo0KFas2aN4/XTTz/d6JXSL5wUAwCu3Pvvv6+ysjLNnz/f0ZaamqpFixYpKytL\n3bp1U3R0tHx8fJSYmKiZM2fKYDAoISFBZrNZ48eP165duxQXFyeTyaTU1FQPZgMAdVF0AACosLBQ\nzz77rKTzK6WvX79eN910k2OldEmOldLDw5nhBACuMnXqVE2dOrVOe0ZGRp22qKgoRUVF1Wrz9vZW\nSkqK2/oHAFeKogMAtENffvmlZs+erRMnTmjOnDk6ffp0o1dKvxRnV0T39OrMqK05vw9WBW+f8T2d\nOwCg+VB0AIB25sYbb9ScOXM0btw4HTp0SPfee69qamoc25t7RXRPr86Muprr+2BV8PYZ35UrogMA\nWj6eXgEA7UzXrl01fvx4GQwGXX/99br66qt14sSJRq+UDgAAADQWRQcAaGdycnK0bt06SZLNZtP3\n33+vX/ziF8rLy5OkWiul79u3T+Xl5Tp16pSsVquGDBniya4DAACgleH2CgBoZ8LDw/Xkk0/qww8/\nVHV1tZYuXaq+fftq4cKFjVopHQAAAGgslxYdePY7ALR8HTt21CuvvFKnvbErpQMAAACN5fKZDjz7\nHQCA1u2B1I+avM/6JB6lCgAA6nL7mg6FhYUaPXq0pPPPfi8oKNDevXsdz3739fV1PPsdAAAAAAC0\nHS6f6cCz31tWfHe7VH6ezt3T8T3J07m39/gAAAAAznNp0YFnv7es+M2hofw8nbszU4Pbkvb8976p\n8SlQAAAAAO7j0tsrePY7AAAAAAC4wKVFB579DgAAAAAALnDp7RU8+x0AAAAAAFzg0qIDz34HAAAA\nmubAgQN69NFHdf/992v69Ok6evSoFixYoJqaGgUFBWnlypUymUzKyclRZmamvLy8FBsbq5iYGFVX\nVyspKUlHjhyRt7e3UlJS1KNHD0+nBAAOLn96BeBq7X1RSAAA0HZVVlZq2bJlGj58uKNtzZo1io+P\n17hx47Rq1SplZ2crOjpaa9euVXZ2tnx8fDRlyhRFRERo+/bt8vf3V1pamnbu3Km0tDStXr3agxkB\nQG0uXdMBAAAAQOOZTCalp6fXWlS9sLBQo0ePliSFhYWpoKBAe/fu1YABA2Q2m+Xr66vBgwfLarWq\noKBAERERkqSQkBBZrVaP5AEADaHoAAAAAHiI0WiUr69vrbbTp0/LZDJJkgIDA2Wz2VRaWqqAgADH\newICAuq0e3l5yWAwqKqqqvkSAIDL4PYKAAAAoIWy2+0uab9Yly5+Mhq9r6hf7hAU1PDC8pfa1hw8\nGb89597e47eV3Ck6AAAAAC2In5+fzpw5I19fXxUXF8tischisai0tNTxnpKSEg0aNEgWi0U2m019\n+vRRdXW17Ha7Y5ZEQ8rKKt2dglNstop624OCzA1uaw6ejN+ec2/v8Vtj7g0VKbi9AgAAAGhBQkJC\nlJeXJ0nKz89XaGiogoODtW/fPpWXl+vUqVOyWq0aMmSIRowYodzcXEnS9u3bNWzYME92HQDqYKYD\nAAAA4CH79+/XihUrVFRUJKPRqLy8PL3wwgtKSkpSVlaWunXrpujoaPn4+CgxMVEzZ86UwWBQQkKC\nzGazxo8fr127dikuLk4mk0mpqameTgkAaqHogCvS1MdZrk8Kd1NPAACe5Mzjjd9Nm+iGngCtS//+\n/bVx48Y67RkZGXXaoqKiFBUVVavN29tbKSkpbusfAFwpbq8AAAAAAABuQdEBAAAAAAC4BUUHAAAA\nAADgFqzpAADwqAmJ73i6C/CQpn73rAsEtG2sFQa0TRQd0KycWWgMAAAAANA6cXsFAAAAAABwC4oO\nAAAAAADALSg6AAAAAAAAt6DoAAAAAAAA3IKiAwAAAAAAcAuKDgAAAAAAwC14ZCYAAGgVnHns8vqk\ncDf0BAAANFabLjpMSHynyfs09eTEmRMgwJ2a4+89ALRlTf1tZwwFAKBhbbroAAAAAKBtYvYT0Dp4\ntOiwfPly7d27VwaDQcnJyRo4cKAnuwO0W80xY4cf+daLsRqtWXOMb87EeDdtoht6gvaKcRpAS+ax\nosPf/vY3ffPNN8rKytJXX32l5ORkZWVleao7DtwuAQD/p6WO1QBajqaeO1FwcS3GaQAtnceKDgUF\nBRozZowk6eabb9aJEyd08uRJdezY0VNdAtDCcPXQ8xirAfdwZv2d5sCstNaHcbppmN0JND+PFR1K\nS0vVr18/x+uAgADZbLYGB8igIHOTY/A/H0Dr5uy/YWfGC9SPsRrA5Tjzb5hx2nWaOk5LTf/8Gac9\ny9P/XojvufhtJXcvlxzFBex2u6e7AAC4DMZqAGjZGKcBtDQeKzpYLBaVlpY6XpeUlCgoKMhT3QEA\n1IOxGgBaNsZpAC2dx4oOI0aMUF5eniTp888/l8Vi4d4zAGhhGKsBoGVjnAbQ0nlsTYfBgwerX79+\nmjZtmgwGg5YsWeKprgAAGsBYDQAtG+M0gJbOYOfGLwAAAAAA4AYtZiFJAAAAAADQtlB0AAAAAAAA\nbuGxNR1c6W9/+5vmzZun5cuXKywsrM72nJwcZWZmysvLS7GxsYqJiVF1dbWSkpJ05MgReXt7KyUl\nRT169Ghy7MsdZ//+/VqxYoXj9Zdffqm1a9fqk08+0bvvvquuXbtKku6++27FxMS4NLYk9evXT4MH\nD3a83rBhg86dO9csuUvS+++/r/Xr18vLy0vDhw/X448/rq1bt+rFF1/U9ddfL0kKCQnRI4880ui4\ny5cv1969e2UwGJScnKyBAwc6tu3atUurVq2St7e37rjjDiUkJFx2n6a61LF2796tVatWycvLSzfd\ndJN+85vf6NNPP9W8efPUq1cvSdItt9yixYsXuyV+eHi4rrnmGnl7e0uSXnjhBXXt2rVZ8i8uLtaT\nTz7peN+hQ4eUmJio6urqK/q+f+zAgQN69NFHdf/992v69Om1tjXH9w/ntNdxujHxJcbqtjZWM04z\nTrcFzozbrtKYceu3v/2tCgsLZbfbNWbMGD300EPNFvs///mPkpOTJUmjR492/D1urvgXPPHEEzKZ\nTEpNTW3W+PX9ZlwpZ34zXKmpvxleXq69dt+YMTAtLU3/+Mc/tHHjxmaLffToUT3xxBOqrq7Wz372\nM/361792Loi9lfvmm2/ss2fPtj/66KP2jz76qM72U6dO2ceOHWsvLy+3nz592n7XXXfZy8rK7Fu3\nbrUvXbrUbrfb7R9//LF93rx5TsVvynFOnDhhv+eee+w1NTX2NWvW2Ddu3OhUzKbEHjp06BX1+Uri\nV1ZW2sPCwuwVFRX2c+fO2adMmWI/ePCg/U9/+pM9NTXVqZiFhYX2WbNm2e12u/3LL7+0x8bG1to+\nbtw4+5EjR+w1NTX2uLg4+8GDBy+7jyvjR0RE2I8ePWq32+32uXPn2nfs2GHfvXu3fe7cuU7HbEr8\nsLAw+8mTJ5u0jyvjX1BdXW2fNm2a/eTJk1f0ff/YqVOn7NOnT7cvWrSo3n8/7v7+4Zz2PE43Nj5j\nddsZqxmnGafbAmfHbVe53Lj1xRdf2KdOnWq32+32mpoae1RUlL2kpKRZYtvtdvuUKVPs+/fvt9fU\n1Ngff/xxe2VlpUtiNza+3W6379y50z558mT7woULXRa7MfEb+s24Es78ZriSM78ZzRnfbrfbDx48\naJ86dap9+vTpzRr7scces+fn59vtdrt96dKl9qKiIqfitPrbK4KCgvTSSy/JbDbXu33v3r0aMGCA\nzGazfH19NXjwYFmtVhUUFCgiIkLS+Yq+1Wp1Kn5TjrNu3Trdd999LquMOZtDc+V+1VVXKScnRx07\ndpTBYFDnzp11/Phxp2JdHHPMmDGSpJtvvlknTpzQyZMnJZ2/YtOpUydde+218vLy0p133qmCgoJL\n7uPK+JK0detWXXPNNZKkgIAAlZWVOZ2rM/Fdtc+VHuutt95SZGSkOnTo4FSchphMJqWnp8tisdTZ\n1hzfP5zTnsfppsZ3xX5NPQ5jtWvHasZpxum2wNlx21UuN26ZzWb98MMPqqqq0g8//CAvLy9dddVV\nzRK7tLRUlZWV6tevn7y8vLRq1SqXxW5MfEmqqqrSyy+/fEUzkpyN31J+M1ypNZzfp6amumRGSVNi\nnzt3Tp999pnCw8MlSUuWLFG3bt2citPqiw5XXXWVY4pifUpLSxUQEOB4HRAQIJvNVqvdy8tLBoNB\nVVVVTY7f2OOcOXNGO3fu1OjRox1tubm5+uUvf6mHH35Yhw4dckvsqqoqJSYmatq0acrIyGhSn10R\n/8Jzor/44gsVFRUpODhY0vkpezNnztR9992nf/3rX02K2aVLF8frC9+nJNlstga/64b2aarLHetC\nviUlJfrkk0905513Sjo/XXv27NmKi4vTJ5984lTsxsSXzg8IcXFxeuGFF2S325s1/wu2bNmiKVOm\nOF47+33/mNFolK+vb73bmuP7h3Pa8zjd2PiM1W1nrGacZpxuC5wdt13lcuPWtddeq6ioKIWFhSks\nLEzTpk1z/Lt2d+yioiJ16tRJSUlJmjZtmjZs2OCSuI2NL0mvvvqq4uLiXJZzU+M39JtxJTGb+pvh\nSs7+ZjRX/K1bt2ro0KHq3r27S+NeLvaxY8fUoUMHpaSkKC4uTmlpaU7HaVVrOmzZskVbtmyp1TZ3\n7lyFhoY2+hj2Bp4Q2lD75eLv3bu3UcfZtm2bRo0a5bh6duedd+r222/Xbbfdpj//+c967rnn9Oqr\nr7o89oIFC3T33XfLYDBo+vTpGjJkSJ33uDv3r7/+Wk8++aTS0tLk4+Oj4OBgBQQEaNSoUfr73/+u\nhQsX6t13371sH+rTmL67Yp+mHOv777/X7NmztWTJEnXp0kU33nij5syZo3HjxunQoUO69957lZ+f\nL5PJ5PL4jz32mEJDQ9WpUyclJCQoLy+vUX12VXxJ+vvf/66ePXs6BmhXft+u4Mr8UVd7HqevJD5j\ntWv2acqxmmusZpxuOsbp5uXOcdvZ+Jcbtw4dOqQPPvhA27Zt09mzZzVt2jSNHz9egYGBbo9tt9t1\n+PBhrV27Vr6+vpo6dapGjBjhWA/G3fG//vpr7d+/X3PnzlVhYWGTY15p/Iv7cfFvhit5egxozG9G\nc8U/fvy4tm7dqoyMDBUXF7s17o9j2+12FRcX695771X37t01a9Ys7dixQ6NGjWrycVtV0SEmJqbJ\ni9RYLBaVlpY6XpeUlGjQoEGyWCyy2Wzq06ePqqurZbfbL3tiUV/8pKSkRh1n+/btiouLc7z+8aJS\nL7zwgltiXxzz9ttv14EDB5o19++++04JCQl6/vnn1bdvX0nnp+7cfPPNkqRbb71Vx44dU01NzSUr\n6hfU930GBQXVu624uFgWi0U+Pj4N7tNUl4ovSSdPntRDDz2k+fPna+TIkZKkrl27avz48ZKk66+/\nXldffbWKi4udWhDucvGjo6Mdf77jjjsc33dz5S9JO3bs0PDhwx2vr+T7vpK+ueP7x+W153H6SuIz\nVredsZpxuvF9Y5xuGVw5brsq/uXGrX379ik4ONhxW0Pv3r114MCBWn+v3RU7MDBQvXr1cvyP5//7\nf/9PBw8edKro4Ez8HTt26MiRI4qNjdXJkyd17NgxpaenO7WQpit/M66EM78ZruTMb0Zzxd+9e7eO\nHTume+65R1VVVfr222+1fPlyx0Km7ozdpUsXdevWzbHI8PDhw3Xw4EGnig6t/vaKywkODta+fftU\nXl6uU6dOyWq1asiQIRoxYoRyc3MlnT/RHDZsmFPHb+xx9u/frz59+jheP/fcc9qzZ4+k81ManRmo\nLhf7v//9rxITE2W323X27FlZrVb16tWrWXP/1a9+paVLl6pfv36OtvT0dL333nuSzq9wHRAQ0OgT\nmxEjRjiuCn3++eeyWCyOKzXXXXedTp48qcOHD+vs2bPavn27RowYccl9nMn5UsdKTU3Vfffdpzvu\nuMPRlpOTo3Xr1kk6P0Xs+++/d6yG78r4FRUVmjlzpmMK3Keffur4vpsrf+n8icDFf9ev5Ptuiub4\n/uEebXmcbkx8xuq2NVYzTjeMcbrtaGjcdpXLjVvXX3+99u/fr3Pnzqm6uloHDhxw6mKOM7F79Oih\nU6dO6fjx4zp37pz+/e9/q2fPni6J3Zj4999/v95991398Y9/1JIlSzRq1CiXPbmjMfGl+n8zrjRm\nU38zXMmZ34zmih8VFaX3339ff/zjH/XSSy+pX79+Lis4XC620WhUjx499PXXXzu233TTTU7FMdg9\nPX/lCu3YsUPr1q3Tf//7XwUEBCgoKEjr16/Xa6+9pttuu0233nqrcnNztW7dOse01bvvvls1NTVa\ntGiRvv76a8ejZq699tomx2/oOBfHl85Xhi5e9OSLL77QkiVLZDQaZTAY9Nxzz+mGG25weeyVK1dq\n9+7d8vLyUnh4uB555JFmy71z586Kjo6udbXw/vvvV79+/fTUU085TrCb+misF154QXv27JHBYNCS\nJUv0r3/9S2azWREREfr0008dVyPHjh2rmTNn1rvPxSdbTdVQ/JEjR9b6ziXp5z//ue666y49+eST\nKi8vV3V1tebMmXNF94JdKv/MzEy9/fbb+slPfqKf/exnWrx4sQwGQ7Pkf2HRoQkTJigjI0NXX321\npPPV8Cv5vi924dGGRUVFMhqN6tq1q8LDw3Xdddc12/ePpmvP43Rj4zNWt62xmnGacbq1c3bcdpXG\njJtr1qzRrl27JJ3/H7P777+/2WLv3btXzz33nAwGg0JDQzV37lyXxG5s/AsKCwv11ltvufSRmc7+\nZly8HpIznPnNcKWm/mZMnTq1WeJfGLcl6fDhw3r66add/sjMS8X+5ptvlJSUJLvdrltuuUVLly51\narHtVl90AAAAAAAALVObv70CAAAAAAB4BkUHAAAAAADgFhQdAAAAAACAW1B0AAAAAAAAbkHRAQAA\nAAAAuAVFBwAAAAAA4BYUHQAAAAAAgFtQdAAAAAAAAG5B0QEAAAAAALgFRQcAAAAAAOAWFB0AAAAA\nAIBbUHQAAAAAAABuQdEBAAAAAAC4BUUHAAAAAADgFhQdAAAAAACAW1B0AAAAAAAAbkHRAQAAAAAA\nuAVFBwAAAAAA4BYUHQAAAAAAgFtQdAAAAAAAAG5B0QEAAAAAALgFRQcAAAAAAOAWFB0AAAAAAIBb\nUHQAAAAAAABuQdEBAIA26I9//KNL3nP48GH97Gc/u+z7wsPDtWfPnkb1rSG/+tWv9Lvf/e6KjgEA\nbVFzj+mAK1F0QC2HDx/WyJEjtXz5ck2fPl2FhYWaNGmSoqKiFBMTo337/n97dx9XdX3/f/x5DnDG\n1EMKciyXuVY5++ZV5kWieBkJlMVKVEiztE3zYtYwY07TvlmSijPL0pkXzLKc5BxZgbVwy0TK6Ots\nbZW1LVITUBARiCO8f3/480wCVI4cDnAe99ttt5u8z/l8Xp8XJ1+evT7v9/tzQJJUVVWl3/72t4qM\njFRkZKQSExNVWloqSZowYYJ+97vfaezYsbr55pv18ssv6/nnn1dkZKSio6OVm5srSXrrrbd0++23\nKyoqSqNGjVJ2dvZ5ry07O1ujRo1SUlKSRo4cqeHDh+v//u//JEkVFRVatGiRa3z16tWu44YPH67n\nnntOI0eO1OHDhz1+/rryOnz4sCZPnqyRI0fq9ttv1/bt26v9zn//+99r1KhRCg8P15tvvlmvzw0A\nzlVZWaklS5Zc8nsAAN5HTUdzR9MBNRQVFen666/XmjVrNGvWLM2bN0/p6el64IEHNHv2bFVVVemt\nt97SX//6V23btk1vvPGGiouLtXHjRtc5PvzwQ7388stavHixli5dqssvv1zp6em69tpr9dprr0mS\nHn/8ca3EfPlzAAAgAElEQVRZs0ZvvfWWFixYoHffffeC1/bll1+qR48eysjI0IMPPqiFCxdKktau\nXauDBw/q9ddf144dO5SRkaHMzEzXcUePHlVGRoY6duzo8fPXldf8+fPVr18/ZWRkaM2aNVq0aJG+\n+eYbSVJhYaGsVqtef/11zZ07VytWrLjg7wIA6nL//ffr5MmTioyM1AcffFBrw/Pc9+Tm5uqrr75S\nXFycoqKiFBERoR07dtQ77t69exUTE6MhQ4bot7/9rWv8nXfe0ahRozRixAhNmjRJx48fl3Sm9k2a\nNEnDhw/XL37xC508edJ1zPcbunU1bqX/NrEjIyN177336uuvv5YkPfvss1qwYIGmTJmiQYMG6ZFH\nHlFmZqbuuusuDRo0yFXHP//8c40dO1a33Xabbr31Vr300kv1/6UDgId4o6ZPmDBBv/3tbxUVFaWc\nnBwVFRVp1qxZGjlypKKjo/W73/3O9d66blJu27ZNv/zlL5WQkKChQ4fq/vvv1759+zRu3DiFhYVp\ny5Ytks58j544caKio6N1yy23VPv3Ay2EAc6Rm5trunTpYk6ePGn27Nlj7rzzzmqv9+3b13z99ddm\n9uzZZuPGja7xt99+28THxxtjjBk/frx5+eWXjTHGfPPNN6ZLly6mpKTEGGPMs88+a379618bY4yJ\njo42y5YtM998881FXdvevXvNTTfdZKqqqowxxhQVFZkuXbqY0tJSc/fdd5uMjAzXezds2GASExON\nMcYMGzbMvPPOO412/tryqqioMF27djXFxcWusWnTppmtW7e6fuenTp0yxhjzn//8x9xwww0X9TsB\ngNrk5uaa66+/3hhjzKRJk8zq1auNMWdq8k033WRyc3OrvccYY6ZMmWLWrFljjDHmgw8+MD169DAV\nFRU13leXYcOGmalTp5rTp0+bgoIC07dvX/OPf/zDfP311+bGG280n332mTHGmNWrV5uZM2caY4x5\n+umnza9+9SvXNd94441m5cqVrvPNmzfPdf668jh06JC56aabzL///W9jjDHr1q0zEydONMYYs3Ll\nSjN48GBTUFBgjh8/brp162YWLlxojDFm06ZNJi4uzhhjzMyZM822bduMMcYcO3bMPPjgg+a7776r\n1+8cADzFGzV9/PjxZtKkSaaystIYY8z8+fPN/PnzjTHGFBYWmqFDh5oPP/zQlJSUmP79+5t9+/YZ\nY4xJT083t956q6msrDSvvfaa6dWrl/nqq6/Md999Z8LDw82UKVPM6dOnzbvvvmsGDx5sjDEmKSnJ\nPPvss8YYY0pLS83DDz9sjh492hC/OjQRzHRADX5+fmrTpo2OHz+uoKCgaq/Z7XYdO3ZMx48f12WX\nXeYav+yyy3Ts2DHXz61bt3ad69yfrVarqqqqJEkvvPCCCgoKdNdddykmJkYffPDBBa8tKChIFovF\n9WdJKi4u1smTJ7V48WLXco/f//73Kisrq3Z9F6Mhzl9bXkVFRTLGyG63V4t19m6fn5+fWrVqVeN3\nBACXwul0as+ePYqPj5ck/ehHP1L//v21d+/eGu99/vnnNXnyZEnSTTfdpO+++075+fn1ijdq1Cj5\n+fkpJCREffv21ccff6y//vWv6tevn7p06SJJGjdunN59911VVlZq3759ioqKkiRdeeWV6tevX7Xz\nDR069IJ5vP/+++rfv786d+4sSYqNjVV2drZOnz4tSbrxxhsVEhKidu3aKTQ0VIMHD5YkdenSRXl5\neZKkkJAQZWRk6O9//7vatWun559/XjabrV65A4CnNXZNHzJkiKzWM/938S9/+Ysrbtu2bRUREaH3\n339ff/vb33T55ZfrpptukiSNHDlShYWFOnTokCTp2muv1dVXXy2bzabOnTtr0KBB8vPzq1GDd+/e\nrX379slms2n58uVyOBxu/IbQVPl7+wLQdIWEhKioqMj1szFGJ06cUEhIiNq3b1/ttaKiIrVv375e\n57/qqqu0ePFiVVVVafv27UpISNB777133mPOjXnixAlJZwqfw+HQpEmTNGzYsHpdgyfOX1temZmZ\nslqtOnHihKtBUVRUpJCQkEu6XgA4nws1PM/13nvv6YUXXlBhYaEsFouMMfVugAYHB7v+bLfbVVxc\nLGOM9u3bp8jISNdrbdq0UVFRkU6cOFHj2s51br08Xx7nHme322WMUWFhoaT/Nr2luhu8s2fP1po1\na/TQQw/pu+++05QpU3TPPffUK3cA8LTGrunn3lT7/s3IoKAg5eXlnfcmpVR3Dfbz83Ndz3333aeq\nqio9/vjjysvL0z333KOZM2e6bgSi+WOmA+rUo0cPFRQU6OOPP5YkvfHGG7r88st15ZVXaujQoUpL\nS1NZWZlOnz6t1NRUDRky5KLPffz4cd1///0qKSmR1WpVz549L6qwlJeX65133pEkZWRkqFu3bvrB\nD36gESNGaOvWraqsrJQxRs8//7z++te/1jvnSz1/XXn5+/tr0KBBrrVrX3/9tfbt26ewsLB6XyMA\nXKx27dq5Gp5n1dbwdDqdeuihh/Tggw8qIyNDaWlpbn3ZOzfO2Sarw+FQWFiY0tPTXf/bu3evQkJC\nFBQUVG0fh9q+OF8oj+83yE+cOCGr1ap27dpd9HW3bt1av/rVr/T222/rueee08qVK/Wvf/2rPqkD\ngMc1dk0/V103HM93k/Ji+fv76xe/+IVef/11vfrqq0pLS9OePXsu6XrRtNB0QJ1atWqlFStW6Ikn\nnlBkZKQ2b96s5cuXy2KxKDIyUoMHD9Zdd92l22+/XZdffrnuvffeiz53cHCwwsPDdffddys6Olq/\n+tWv9OSTT17wuB/96Ef66KOPNHLkSK1Zs0YLFiyQJMXHx6tjx4667bbbFBkZqS+//NI1zas+LvX8\n58vr8ccfV3Z2tiIjIzV9+nQtWrRIV1xxRb2vEQAuJCAgQFVVVSovL6+z4Xn2PSUlJSorK1Npaam6\ndesmSUpJSVFAQIDrqUQX64033lBVVZWOHTumjz76SH369NGgQYO0b98+15OL/va3v2nRokWSpF69\nerkavV9//bU++uijWs97vsbtwIEDq53/1Vdf1cCBA+Xvf/GTOadOnaovvvhC0pllF23atOEOG4Am\nw1s1/VxDhw51xT1+/LjefvttDR069Lw3KS/WY489pvfff1/SmRnD7du3pwa3MBZjjPH2RQAXIzs7\nW/PmzdPbb7/dLM8PAI2lqqpKEyZM0Oeff65Vq1ZpzZo1OnTokAICAjRjxgyNHDmy2nvWrFmjP//5\nz0pLS1NISIgefPBBpaena//+/VqzZo3uvPNOffrpp+eNOXz4cMXFxemtt97S8ePHFRsbq+nTp0uS\n/vznP+uZZ56R0+lU69atNXfuXPXu3VsFBQV6+OGHdejQIV1zzTUKDg7WlVdeqZkzZ2r48OFasmSJ\n+vTpI0k6cuSI5s2bVyMP6czMtOeee05Op1NXXnmlnnjiCV1xxRV69tln9e2337qavxEREVq0aJH6\n9++vffv2ac6cOXr33Xe1e/duLVmyRE6nU5I0evRo11poAPA2b9T0CRMmaPTo0brzzjslnZlFtnDh\nQv3jH/+Q1WrVPffc41qG9sEHHygpKUmlpaUKDg7WwoUL1aVLF23btk1paWmuJ9zdd999uuOOO3TX\nXXfp22+/1ZAhQ/TZZ5/p008/1WOPPaaSkhIZYzR8+HDNmTOHxkMLQtMBzQZNBwAAAABoXthIEk3K\n9OnT9eWXX9b62sSJE5v8+QEAAAAA/8VMBwAAcEHbt2/X6tWra33tZz/7maZMmdLIVwQAcBc1HY2J\npgMAAAAAAPAInl4BAAAAAAA8otns6ZCff/LCb/qedu1aqbDQ/UfDXCpvxvfl3H09vi/n7k780FC7\nB6/G9zS3Wt3c/nslfsuI7evx3YlNrW5Y9a3Vvvzfq6/H9+XcvR2/OeZeV61u0TMd/P39fDa+L+fu\n6/F9OfemEB/1x98X4vtabF+P7+3cUX/e/syI77t/X305fkvKvUU3HQAAAAAAgPfQdAAAAAAAAB5B\n0wEAAAAAAHgETQcAAAAAAOARNB0AAAAAAIBHNJtHZgIAAAAtTXZ2tmbNmqXrrrtOktSlSxc98MAD\nmjNnjiorKxUaGqqlS5fKZrMpLS1NKSkpslqtGjNmjGJjY+V0OpWYmKjDhw/Lz89PixcvVqdOnbyc\nFQD8V4tuOoxK+FO9j1mfONwDVwIAaCiTkt6t9zHUdgBNWb9+/bRy5UrXz7/+9a8VHx+vqKgoLV++\nXKmpqYqJidGqVauUmpqqgIAAjR49WhEREcrMzFRQUJCSk5O1e/duJScna8WKFV7M5gxqNYCzWF4B\nAAAANCHZ2dkaMWKEJGnYsGHKysrS/v371b17d9ntdgUGBqp3797KyclRVlaWIiIiJElhYWHKycnx\n5qUDQA0teqYDAAAA0NQdPHhQU6dO1YkTJzRjxgyVlZXJZrNJkkJCQpSfn6+CggIFBwe7jgkODq4x\nbrVaZbFYVFFR4Tq+Nu3atZK/v1+9rjE01O5GZvVzvhiNEf98fDm+L+fu7fgtJXeaDgAAAICX/PjH\nP9aMGTMUFRWl3Nxc3XvvvaqsrHS9boyp9bj6jp+rsLC0XtcYGmpXfv7Jeh3jjrpiNFb8uvhyfF/O\n3dvxm2PudTUpaDoAAAAAXtKhQwdFR0dLkq666iq1b99eBw4cUHl5uQIDA3X06FE5HA45HA4VFBS4\njsvLy1OvXr3kcDiUn5+vrl27yul0yhhz3lkO7nBnnzQAOIs9HQAAAAAvSUtL07p16yRJ+fn5Onbs\nmO666y5lZGRIknbu3Knw8HD17NlTBw4cUHFxsU6dOqWcnBz16dNHAwcOVHp6uiQpMzNT/fv391ou\nAFAbZjoAAAAAXjJ8+HDNnj1bf/7zn+V0OrVw4UJdf/31evTRR7VlyxZ17NhRMTExCggIUEJCgiZP\nniyLxaLp06fLbrcrOjpae/bsUVxcnGw2m5KSkrydEgBUQ9MBAAAA8JI2bdpo9erVNcY3bNhQYywy\nMlKRkZHVxvz8/LR48WKPXR8AXCqWVwAAAAAAAI9gpgMAtFDZ2dmaNWuWrrvuOklSly5d9MADD2jO\nnDmqrKxUaGioli5dKpvNprS0NKWkpMhqtWrMmDGKjY2V0+lUYmKiDh8+7LqT1qlTJy9nBQAAgOaE\npgMAtGD9+vXTypUrXT//+te/Vnx8vKKiorR8+XKlpqYqJiZGq1atUmpqqgICAjR69GhFREQoMzNT\nQUFBSk5O1u7du5WcnKwVK1Z4MRsAAAA0NyyvAAAfkp2drREjRkiShg0bpqysLO3fv1/du3eX3W5X\nYGCgevfurZycHGVlZSkiIkKSFBYWppycHG9eOgAAAJohZjoAQAt28OBBTZ06VSdOnNCMGTNUVlbm\nen57SEiI8vPzVVBQoODgYNcxwcHBNcatVqssFosqKirO+/z3du1ayd/fr97XGRpqr/cxDXV+T8e+\nEOJ7L74v5+7t+N7OHQDQeGg6AEAL9eMf/1gzZsxQVFSUcnNzde+996qystL1ujGm1uPqO36uwsLS\nel9naKhd+fkn631cfdR1/saIfT7E9158X87d2/HdiU2TAgCar4taXvH555/rlltu0UsvvSRJOnLk\niCZMmKD4+HjNmjVLFRUVkqS0tDTdfffdio2N1datWyVJTqdTCQkJiouL0/jx45WbmytJ+uc//6lx\n48Zp3LhxWrBggSdyAwCf1qFDB0VHR8tiseiqq65S+/btdeLECZWXl0uSjh49KofDIYfDoYKCAtdx\neXl5rvH8/HxJZ2q5Mea8sxwAAACA77tg06G0tFRPPPGEBgwY4BpbuXKl4uPjtXnzZnXu3Fmpqakq\nLS3VqlWrtHHjRm3atEkpKSkqKirSjh07FBQUpFdeeUVTp05VcnKyJOnJJ5/U3Llz9eqrr6qkpER/\n+ctfPJclAPigtLQ0rVu3TpKUn5+vY8eO6a677lJGRoYkaefOnQoPD1fPnj114MABFRcX69SpU8rJ\nyVGfPn00cOBApaenS5IyMzPVv39/r+UCAACA5umCTQebzaa1a9fK4XC4xi51I7KKigodOnRIPXr0\nqHYOAEDDGT58uD788EPFx8dr2rRpWrhwoR5++GFt375d8fHxKioqUkxMjAIDA5WQkKDJkyfr/vvv\n1/Tp02W32xUdHa2qqirFxcXp5ZdfVkJCgrdTAgAAQDNzwT0d/P395e9f/W2XuhFZQUGBgoKCXO89\new4AQMNp06aNVq9eXWN8w4YNNcYiIyMVGRlZbczPz0+LFy/22PUBAACg5bvkjSQbYiOyi9mczN0d\n0euroTcq8uWdoYnPZ++r8QEAAACc4VbToVWrViovL1dgYOB5NyLr1auXayOyrl27ujYiCw0NVVFR\nkeu9Z89xPu7siO6OhtzJubntDE38lhHfl3N3Jz4NCgAAAMBzLurpFd8XFhZ2SRuRBQQE6Cc/+Yn2\n7dtX7RwAAAAAAKDluOBMh08++URPP/20Dh06JH9/f2VkZGjZsmVKTEzUli1b1LFjR8XExCggIMC1\nEZnFYqm2EdmePXsUFxcnm82mpKQkSdLcuXP12GOPqaqqSj179lRYWJjHkwUAAAAAAI3ngk2Hbt26\nadOmTTXGL3UjsmuvvVabN2+uz7UCAAAAAIBmxK3lFQAAAAAAABdC0wEAAAAAAHgETQcAAAAAAOAR\nNB0AAAAAAIBH0HQAAAAAAAAeQdMBAAAAAAB4BE0HAAAAAADgETQdAAAAAACAR9B0AAAAAAAAHkHT\nAQAAAAAAeARNBwAAAMCLysvLdcstt2jbtm06cuSIJkyYoPj4eM2aNUsVFRWSpLS0NN19992KjY3V\n1q1bJUlOp1MJCQmKi4vT+PHjlZub6800AKBWNB0AAAAAL3rhhRd02WWXSZJWrlyp+Ph4bd68WZ07\nd1ZqaqpKS0u1atUqbdy4UZs2bVJKSoqKioq0Y8cOBQUF6ZVXXtHUqVOVnJzs5UwAoCaaDgAAAICX\nfPnllzp48KCGDh0qScrOztaIESMkScOGDVNWVpb279+v7t27y263KzAwUL1791ZOTo6ysrIUEREh\nSQoLC1NOTo630gCAOvl7+wIAAAAAX/X0009r/vz52r59uySprKxMNptNkhQSEqL8/HwVFBQoODjY\ndUxwcHCNcavVKovFooqKCtfxdWnXrpX8/f08lJH7QkPtbr3WGHw5vi/n7u34LSV3mg4AAACAF2zf\nvl29evVSp06dan3dGNMg499XWFh6cRfYyPLzT9Y6Hhpqr/O1xuDL8X05d2/Hb46519WkoOkAAAAA\neMGuXbuUm5urXbt26dtvv5XNZlOrVq1UXl6uwMBAHT16VA6HQw6HQwUFBa7j8vLy1KtXLzkcDuXn\n56tr165yOp0yxlxwlgMANDb2dAAAAAC8YMWKFXrttdf0hz/8QbGxsZo2bZrCwsKUkZEhSdq5c6fC\nw8PVs2dPHThwQMXFxTp16pRycnLUp08fDRw4UOnp6ZKkzMxM9e/f35vpAECtmOkAAAAANBEzZ87U\no48+qi1btqhjx46KiYlRQECAEhISNHnyZFksFk2fPl12u13R0dHas2eP4uLiZLPZlJSU5O3LB4Aa\naDoAQAtXXl6u22+/XdOmTdOAAQM0Z84cVVZWKjQ0VEuXLpXNZlNaWppSUlJktVo1ZswYxcbGyul0\nKjExUYcPH5afn58WL15c57pjAMClmTlzpuvPGzZsqPF6ZGSkIiMjq42drc0A0JSxvAIAWjie/w4A\nAABvoekAAC0Yz38HAACAN7G8AgBasMZ+/ru7z3739HOoefY78ZtabF+P7+3cAQCNx62mw6lTp/To\no4/qxIkTcjqdmj59ukJDQ7Vw4UJJ0k9/+lM9/vjjkqQXX3xR6enpslgsmjFjhoYMGaKTJ08qISFB\nJ0+eVKtWrZScnKy2bds2WFIAAO88/92dZ783xnOoefY78ZtSbF+P35DPfgcANH1uNR3++Mc/6uqr\nr1ZCQoKOHj2qiRMnKjQ0VHPnzlWPHj2UkJCgv/zlL/rJT36iN998U6+++qpKSkoUHx+vQYMGKSUl\nRf369dMDDzygLVu2aO3atXrkkUcaOjcA8Gk8/x0AAADe5taeDu3atVNRUZEkqbi4WG3bttWhQ4fU\no0cPSf9dJ5ydna3w8HDZbDYFBwfrRz/6kQ4ePFhtnfDZ9wIAGhbPfwcAAIC3uTXT4bbbbtO2bdsU\nERGh4uJivfDCC/rf//1f1+tn1wm3bdv2guuEQ0JClJeXd4lpAAAuBs9/BwAAQGNyq+nwpz/9SR07\ndtS6dev0z3/+0/UF9az6rAe+mDXCkvubk9VXQ68Z9OVNmojPZ++r8Zsinv8OAAAAb3Cr6ZCTk6NB\ngwZJkrp27arvvvtOp0+fdr1+7jrhf/3rX7WO5+fny263u8YuxJ3NydzRkJsqNbdNmojfMuL7cu7u\nxKdBAQAAAHiOW3s6dO7cWfv375ckHTp0SK1bt9Y111yjffv2SfrvOuGbb75Zu3btUkVFhY4ePaq8\nvDxde+211dYJn30vAAAAAABoWdya6TB27FjNnTtX48eP1+nTp7Vw4UKFhobqscceU1VVlXr27Kmw\nsDBJ0pgxYzR+/HhZLBYtXLhQVqtVEyZM0COPPKL4+HgFBQVp6dKlDZoUAAAAAADwPreaDq1bt9Yz\nzzxTY3zz5s01xiZMmKAJEybUOP755593JzQAAAAAAGgm3FpeAQAAAAAAcCE0HQAAAAAAgEfQdAAA\nAAAAAB5B0wEAAAAAAHgETQcAAAAAAOARbj29AgCAhjIq4U/evgQAAAB4CDMdAAAAAACAR9B0AAAA\nAAAAHkHTAQAAAAAAeARNBwAAAAAA4BE0HQAAAAAAgEfQdAAAAAAAAB5B0wEAAAAAAHiEv7cvAAAA\nAPBVZWVlSkxM1LFjx/Tdd99p2rRp6tq1q+bMmaPKykqFhoZq6dKlstlsSktLU0pKiqxWq8aMGaPY\n2Fg5nU4lJibq8OHD8vPz0+LFi9WpUydvpwUALsx0AAAAALwkMzNT3bp100svvaQVK1YoKSlJK1eu\nVHx8vDZv3qzOnTsrNTVVpaWlWrVqlTZu3KhNmzYpJSVFRUVF2rFjh4KCgvTKK69o6tSpSk5O9nZK\nAFANTQcAAADAS6Kjo/Xzn/9cknTkyBF16NBB2dnZGjFihCRp2LBhysrK0v79+9W9e3fZ7XYFBgaq\nd+/eysnJUVZWliIiIiRJYWFhysnJ8VouAFAbllcAAAAAXjZu3Dh9++23Wr16te6//37ZbDZJUkhI\niPLz81VQUKDg4GDX+4ODg2uMW61WWSwWVVRUuI6vTbt2reTv7+fZhNwQGmp367XG4MvxfTl3b8dv\nKbnTdAAAAAC87NVXX9U//vEPPfLIIzLGuMbP/fO56jt+rsLCUvcu0sPy80/WOh4aaq/ztcbgy/F9\nOXdvx2+OudfVpGB5BQAAAOAln3zyiY4cOSJJuv7661VZWanWrVurvLxcknT06FE5HA45HA4VFBS4\njsvLy3ON5+fnS5KcTqeMMeed5QAAjY2mAwC0UGVlZZo1a5bGjx+v2NhYZWZm6siRI5owYYLi4+M1\na9YsVVRUSJLS0tJ09913KzY2Vlu3bpV05strQkKC4uLiNH78eOXm5nozHQBokfbt26f169dLkgoK\nClRaWqqwsDBlZGRIknbu3Knw8HD17NlTBw4cUHFxsU6dOqWcnBz16dNHAwcOVHp6uqQzm1L279/f\na7kAQG1YXgEALdTZHdF//vOf69ChQ5o0aZJ69+6t+Ph4RUVFafny5UpNTVVMTIxWrVql1NRUBQQE\naPTo0YqIiFBmZqaCgoKUnJys3bt3Kzk5WStWrPB2WgDQoowbN06/+c1vFB8fr/Lycj322GPq1q2b\nHn30UW3ZskUdO3ZUTEyMAgIClJCQoMmTJ8tisWj69Omy2+2Kjo7Wnj17FBcXJ5vNpqSkJG+nBADV\n0HQAgBYqOjra9edzd0R//PHHJZ3ZEX39+vW6+uqrXTuiS6q2I3pMTIykMzuiz507t/GTAIAWLjAw\nsNbHXG7YsKHGWGRkpCIjI6uN+fn5afHixR67PgC4VG43HdLS0vTiiy/K399fv/zlL/XTn/5Uc+bM\nUWVlpUJDQ7V06VLZbDalpaUpJSVFVqtVY8aMUWxsrJxOpxITE3X48GFXoezUqVND5gUA+P/YEZ0d\n0Ynf9GL7enxv5w4AaDxuNR0KCwu1atUqvfbaayotLdWzzz6rjIwMpuwCQBPEjujsiE78phXb1+M3\n5I7oAICmz62NJLOysjRgwAC1adNGDodDTzzxhLKzszVixAhJZ6bsZmVlaf/+/a4pu4GBgdWm7EZE\nREg6M2U3Jyen4TICAEhiR3QAAAB4n1tNh2+++Ubl5eWaOnWq4uPjlZWVpbKyskuesgsAaDjsiA4A\nAABvc3tPh6KiIj333HM6fPiw7r33Xo9P2W2sdcINPX3Pl9dLEp/P3lfjNxXsiA4AAABvc6vpEBIS\nohtvvFH+/v666qqr1Lp1a/n5+am8vFyBgYHnnbLbq1cv15Tdrl27XvSU3cZaJ9yQ6xub23pJ4reM\n+L6cuzvxW3KDgh3RAQAA4G1uLa8YNGiQ9u7dq6qqKhUWFjJlFwAAAAAA1ODWTIcOHTpo5MiRGjNm\njCRp3rx56t69O1N2AQAAAACAi9t7OowbN07jxo2rNsaUXQAAAAAAcJZbyysAAAAAAAAuhKYDAAAA\nAADwCJoOAAAAAADAI2g6AAAAAAAAj6DpAAAAAAAAPIKmAwAAAAAA8AiaDgAAAAAAwCNoOgAAAAAA\nAI+g6QAAAAAAADyCpgMAAAAAAPAImg4AAAAAAMAjaDoAAAAAAACPoOkAAAAAAAA8gqYDAAAAAADw\nCJoOAAAAAADAI2g6AAAAAAAAj/D39gUAAAAAvmzJkiX66KOPdPr0aU2ZMkXdu3fXnDlzVFlZqdDQ\nUEp4fsIAABV0SURBVC1dulQ2m01paWlKSUmR1WrVmDFjFBsbK6fTqcTERB0+fFh+fn5avHixOnXq\n5O2UAMCFpgMAAADgJXv37tUXX3yhLVu2qLCwUD/72c80YMAAxcfHKyoqSsuXL1dqaqpiYmK0atUq\npaamKiAgQKNHj1ZERIQyMzMVFBSk5ORk7d69W8nJyVqxYoW30wIAF5ZXAAAAAF7St29fPfPMM5Kk\noKAglZWVKTs7WyNGjJAkDRs2TFlZWdq/f7+6d+8uu92uwMBA9e7dWzk5OcrKylJERIQkKSwsTDk5\nOV7LBQBqw0wHAAAAwEv8/PzUqlUrSVJqaqoGDx6s3bt3y2azSZJCQkKUn5+vgoICBQcHu44LDg6u\nMW61WmWxWFRRUeE6vjbt2rWSv7+fB7NyT2io3a3XGoMvx/fl3L0dv6XkTtMBAFow1gkDQPPwzjvv\nKDU1VevXr9ett97qGjfG1Pr++o6fq7Cw1L2L9LD8/JO1joeG2ut8rTH4cnxfzt3b8Ztj7nU1KVhe\nAQAt1LnrhF988UU99dRTWrlypeLj47V582Z17txZqampKi0t1apVq7Rx40Zt2rRJKSkpKioq0o4d\nOxQUFKRXXnlFU6dOVXJysrdTAoAW6b333tPq1au1du1a2e12tWrVSuXl5ZKko0ePyuFwyOFwqKCg\nwHVMXl6eazw/P1+S5HQ6ZYw57ywHAGhsNB0AoIVinTAANH0nT57UkiVLtGbNGrVt21bSmZqbkZEh\nSdq5c6fCw8PVs2dPHThwQMXFxTp16pRycnLUp08fDRw4UOnp6ZKkzMxM9e/f32u5AEBtLml5RXl5\nuW6//XZNmzZNAwYMYMouADQhrBP+L9YJE7+pxfb1+N7OvSl58803VVhYqIceesg1lpSUpHnz5mnL\nli3q2LGjYmJiFBAQoISEBE2ePFkWi0XTp0+X3W5XdHS09uzZo7i4ONlsNiUlJXkxGwCo6ZKaDi+8\n8IIuu+wySXJN2eXRPgDQtLBOmHXCxG9asX09fkOuE24Jxo4dq7Fjx9YY37BhQ42xyMhIRUZGVhs7\newMPAJoqt5dXfPnllzp48KCGDh0qSUzZBYAmiHXCAAAA8Ca3Zzo8/fTTmj9/vrZv3y5JKisraxFT\ndhu6k+7LUxeJz2fvq/GbirPrhDdu3FhjnfCdd95ZbZ3wvHnzVFxcLD8/P+Xk5Gju3LkqKSlRenq6\nwsPDWScMAAAAt7jVdNi+fbt69epV5z4MzXnKbkNONWxuUxeJ3zLi+3Lu7sRvyQ0K1gkDAADA29xq\nOuzatUu5ubnatWuXvv32W9lsNteU3cDAwPNO2e3Vq5drym7Xrl2ZsgsAHsI64f+alPRuvY9Znzjc\nA1cCAADgW9za02HFihV67bXX9Ic//EGxsbGaNm0aj/YBAAAAAADVXNLTK841c+ZMPfroo0zZBQAA\nAAAAkhqg6TBz5kzXn31xyi4AAAAAAKid24/MBAAAAAAAOB+aDgAAAAAAwCNoOgAAAAAAAI+g6QAA\nAAAAADyCpgMAAAAAAPAImg4AAAAAAMAjaDoAAAAAAACPoOkAAAAAAAA8gqYDAAAAAADwCJoOAAAA\nAADAI2g6AAAAAAAAj6DpAAAAAAAAPIKmAwAAAAAA8AiaDgAAAAAAwCP8vX0BAAAAADAp6d16vX99\n4nAPXQmAhsRMBwAAAAAA4BE0HQAAAAAAgEfQdAAAAAAAAB5B0wEAAADwos8//1y33HKLXnrpJUnS\nkSNHNGHCBMXHx2vWrFmqqKiQJKWlpenuu+9WbGystm7dKklyOp1KSEhQXFycxo8fr9zcXK/lAQC1\noekAAAAAeElpaameeOIJDRgwwDW2cuVKxcfHa/PmzercubNSU1NVWlqqVatWaePGjdq0aZNSUlJU\nVFSkHTt2KCgoSK+88oqmTp2q5ORkL2YDADXRdACAFoy7ZwDQtNlsNq1du1YOh8M1lp2drREjRkiS\nhg0bpqysLO3fv1/du3eX3W5XYGCgevfurZycHGVlZSkiIkKSFBYWppycHK/kAQB1oekAAC0Ud88A\noOnz9/dXYGBgtbGysjLZbDZJUkhIiPLz81VQUKDg4GDXe4KDg2uMW61WWSwWV0MZAJoCf3cPXLJk\niT766COdPn1aU6ZMUffu3TVnzhxVVlYqNDRUS5culc1mU1pamlJSUmS1WjVmzBjFxsbK6XQqMTFR\nhw8flp+fnxYvXqxOnTo1ZF4A4PPO3j1bu3atayw7O1uPP/64pDN3z9avX6+rr77adfdMUrW7ZzEx\nMZLO3D2bO3du4ycBAD7OGNMg4+dq166V/P39Lum6moLQUHuLjNXU4vty7t6O31Jyd6vpsHfvXn3x\nxRfasmWLCgsL9bOf/UwDBgxQfHy8oqKitHz5cqWmpiomJkarVq1SamqqAgICNHr0aEVERCgzM1NB\nQUFKTk7W7t27lZycrBUrVjRIQgCAM/z9/eXvX73MN8Tds7PHAwA8o1WrViovL1dgYKCOHj0qh8Mh\nh8OhgoIC13vy8vLUq1cvORwO5efnq2vXrnI6nTLGXLBOFxaWejqFRpGff7JR4oSG2hstVlOL78u5\nezt+c8y9riaFW02Hvn37qkePHpKkoKAglZWVcfcMAJoZ7p6dX2PdXWgpdzGaY3xfzt3b8b2de1MX\nFhamjIwM3Xnnndq5c6fCw8PVs2dPzZs3T8XFxfLz81NOTo7mzp2rkpISpaenKzw8XJmZmerfv7+3\nLx8AqnGr6eDn56dWrVpJklJTUzV48GDt3r3bo3fPGuuLbEP/I+jL/6ATn8/eV+M3Zdw9u3iNcXeh\nOd7FaCnxfTl3b8dvyLtnLcEnn3yip59+WocOHZK/v78yMjK0bNkyJSYmasuWLerYsaNiYmIUEBCg\nhIQETZ48WRaLRdOnT5fdbld0dLT27NmjuLg42Ww2JSUleTslAKjG7T0dJOmdd95Ramqq1q9fr1tv\nvdU17om7Z431RbYh/wFubv+gE79lxPfl3N2J35K/yNaGu2cA0LR069ZNmzZtqjG+YcOGGmORkZGK\njIysNnZ2fzQAaKrcbjq89957Wr16tV588UXZ7XaP3z0DANQPd88AAADgbW41HU6ePKklS5Zo48aN\natu2rSTungFAU8PdMwAAAHibW02HN998U4WFhXrooYdcY0lJSZo3bx53zwAAAAAAgCQ3mw5jx47V\n2LFja4xz9wwAAAAAAJxl9fYFAAAAAACAlommAwAAAAAA8AiaDgAAAAAAwCNoOgAAAAAAAI+g6QAA\nAAAAADzCradXAADQ0k1Kerde71+fONxDVwIAANB8MdMBAAAAAAB4BE0HAAAAAADgETQdAAAAAACA\nR9B0AAAAAAAAHkHTAQAAAAAAeARPrwAAAADQ7NT3KUMSTxoCvIGmw/fwiDQAAAAAABoGyysAAAAA\nAIBH0HQAAAAAAAAeQdMBAAAAAAB4BHs6AADQANzZ0Oz15Ds9cCUAAABNBzMdAAAAAACAR9B0AAAA\nAAAAHsHyCgAAAAA+gaVwQONjpgMAAAAAAPAIZjoAAOAloxL+VO9j1icO98CVAAAAeIZXmw5PPfWU\n9u/fL4vForlz56pHjx7evBwAQC2o1QDQtFGnPau+DWKaw0B1Xms6fPDBB/rPf/6jLVu26Msvv9Tc\nuXO1ZcsWb10OAKAW1Oqmx531yPXFF2ag+aBONz3u1GnqLloyrzUdsrKydMstt0iSrrnmGp04cUIl\nJSVq06aNty7JLRQVAC1ZS6nVqJ/GaGy4g38/gZqo0y1DU627bKKJhuC1pkNBQYFuuOEG18/BwcHK\nz8+vs0CGhtrrHcPX/5K48zsjfsuI78u5N4X4LQm1Gi2Zt2uFL8f3du4tSX3rtFT/3z912rd5+++r\nL8dvKbk3madXGGO8fQkAgAugVgNA00adBtDUeK3p4HA4VFBQ4Po5Ly9PoaGh3rocAEAtqNUA0LRR\npwE0dV5rOgwcOFAZGRmSpL///e9yOBysPQOAJoZaDQBNG3UaQFPntT0devfurRtuuEHjxo2TxWLR\nggULvHUpAIA6UKsBoGmjTgNo6iyGhV8AAAAAAMADmsxGkgAAAAAAoGWh6QAAAAAAADzCa3s6NKQP\nPvhAs2bN0lNPPaVhw4bVeD0tLU0pKSmyWq0aM2aMYmNj5XQ6lZiYqMOHD8vPz0+LFy9Wp06d6h37\nQuf55JNP9PTTT7t+PnjwoFatWqX3339fr7/+ujp06CBJuuOOOxQbG9ugsSXphhtuUO/evV0/b9y4\nUVVVVY2SuyS9+eabWr9+vaxWqwYMGKCHH35Y27Zt0zPPPKOrrrpKkhQWFqYHH3zwouM+9dRT2r9/\nvywWi+bOnasePXq4XtuzZ4+WL18uPz8/DR48WNOnT7/gMfV1vnPt3btXy5cvl9Vq1dVXX60nn3xS\nH374oWbNmqXrrrtOktSlSxfNnz/fI/GHDx+uyy+/XH5+fpKkZcuWqUOHDo2S/9GjRzV79mzX+3Jz\nc5WQkCCn03lJn/f3ff7555o2bZruu+8+jR8/vtprjfH5wz2+WqcvJr5ErW5ptZo6TZ1urqjV3qnV\n3qrTkndrNd+pfahWm2buP//5j5k6daqZNm2aeffdd2u8furUKXPrrbea4uJiU1ZWZm677TZTWFho\ntm3bZhYuXGiMMea9994zs2bNcit+fc5z4sQJc88995jKykqzcuVKs2nTJrdi1id2v379LumaLyV+\naWmpGTZsmDl58qSpqqoyo0ePNl988YV57bXXTFJSklsxs7OzzS9+8QtjjDEHDx40Y8aMqfZ6VFSU\nOXz4sKmsrDRxcXHmiy++uOAxDRk/IiLCHDlyxBhjzMyZM82uXbvM3r17zcyZM92OWZ/4w4YNMyUl\nJfU6piHjn+V0Os24ceNMSUnJJX3e33fq1Ckzfvx4M2/evFr//nj684d7fLlOX2x8anXLqdXUaep0\nc0Wt9l6t9kadNsa7tZrv1L5Vq5v98orQ0FA999xzstvttb6+f/9+de/eXXa7XYGBgerdu7dycnKU\nlZWliIgISWe6RDk5OW7Fr8951q1bp4kTJ8pqbZhfu7s5NFbuP/zhD5WWlqY2bdrIYrGobdu2Kioq\ncivWuTFvueUWSdI111yjEydOqKSkRNKZLuBll12mK664QlarVUOGDFFWVtZ5j2nI+JK0bds2XX75\n5ZKk4OBgFRYWup2rO/Eb6phLPdcf//hHjRw5Uq1bt3YrTl1sNpvWrl0rh8NR47XG+PzhHl+u0/WN\n3xDH1fc81OqGrdXUaep0c0Wt9l6t9kadPhvXW7Wa79S+VaubfdPhhz/8oWvaS20KCgoUHBzs+jk4\nOFj5+fnVxq1WqywWiyoqKuod/2LPU15ert27d2vEiBGusfT0dN1///2aMmWKcnNzPRK7oqJCCQkJ\nGjdunDZs2FCva26I+GefE/3ZZ5/p0KFD6tmzp6Qz0/cmT56siRMn6tNPP61XzHbt2rl+Pvt5SlJ+\nfn6dn3Vdx9TXhc51Nt+8vDy9//77GjJkiKQzUwCnTp2quLg4vf/++27Fvpj4krRgwQLFxcVp2bJl\nMsY0av5nbd26VaNHj3b97O7n/X3+/v4KDAys9bXG+PzhHl+u0xcbn1rdcmo1dZo63VxRq71Xq71R\np8/G9Vat5ju1b9XqZrWnw9atW7V169ZqYzNnzlR4ePhFn8PU8YTQusYvFH///v0XdZ533nlHQ4cO\ndXVkhwwZoptvvll9+/bVG2+8oUWLFmnNmjUNHnvOnDm64447ZLFYNH78ePXp06fGezyd+7///W/N\nnj1bycnJCggIUM+ePRUcHKyhQ4fq448/1qOPPqrXX3/9gtdQm4u59oY4pj7nOnbsmKZOnaoFCxao\nXbt2+vGPf6wZM2YoKipKubm5uvfee7Vz507ZbLYGj//LX/5S4eHhuuyyyzR9+nRlZGRc1DU3VHxJ\n+vjjj/WTn/zE9Y9FQ37eDaEh80dNvlynLyU+tbphjqnPuRqrVlOn64867XnUau/V6qZapy/m2hvq\nmIs9D9+pW06tblZNh9jY2HpvDONwOFRQUOD6OS8vT7169ZLD4VB+fr66du0qp9MpY8wF/4OtLX5i\nYuJFnSczM1NxcXGun7+/UcmyZcs8EvvcmDfffLM+//zzRs3922+/1fTp07VkyRJdf/31ks5Mx7nm\nmmskSTfeeKOOHz+uysrK83bXz6rt8wwNDa31taNHj8rhcCggIKDOY+rrfPElqaSkRD//+c/10EMP\nadCgQZKkDh06KDo6WpJ01VVXqX379jp69KhbmyxdKH5MTIzrz4MHD3Z93o2VvyTt2rVLAwYMcP18\nKZ/3pVybJz5/XJgv1+lLiU+tbjm1mjp98ddGnfYearX3anVTqdOSd2s136l9q1Y3++UVF9KzZ08d\nOHBAxcXFOnXqlHJyctSnTx8NHDhQ6enpks4Ur/79+7t1/os9zyeffKKuXbu6fl60aJH27dsn6cw0\nmbO7sDZk7K+++koJCQkyxuj06dPKycnRdddd16i5/+Y3v9HChQt1ww03uMbWrl2rHTt2SDqza2pw\ncPBF/2UZOHCgq9P497//XQ6Hw9X9u/LKK1VSUqJvvvlGp0+fVmZmpgYOHHjeY9zJ+XznSkpK0sSJ\nEzV48GDXWFpamtatWyfpzHSlY8eOuXZYbsj4J0+e1OTJk13T8T788EPX591Y+UvSgQMHqv23fimf\nd300xucPz2jJdfpi4lOrW1atpk7XjTrdvFGrPVervVGnz8b1Vq3mO7Vv1WqLaeZz2Hbt2qV169bp\nq6++UnBwsEJDQ7V+/Xr97ne/U9++fXXjjTcqPT1d69atc02FuuOOO1RZWal58+bp3//+t2w2m5KS\nknTFFVfUO35d5zk3viQNGDBAWVlZruM+++wzLViwQP7+/rJYLFq0aJE6d+7c4LGXLl2qvXv3ymq1\navjw4XrwwQcbLfe2bdsqJiamWgf6vvvu0w033KBHHnnEVbTr+7iZZcuWad++fbJYLFqwYIE+/fRT\n2e12RURE6MMPP3R1uG+99VZNnjy51mPO/QtcX3XFHzRoULXPXJJuv/123XbbbZo9e7aKi4vldDo1\nY8YM17q0howfERGhlJQUbd++XT/4wQ/0P//zP5o/f74sFkuj5H92A6RRo0Zpw4YNat++vaQznflL\n+bzPdfZxWYcOHZK/v786dOig4cOH68orr2y0zx/158t1+mLjU6tbVq2mTlOnmyNqtfdqtbfqtOTd\nWs13at+p1c2+6QAAAAAAAJqmFr+8AgAAAAAAeAdNBwAAAAAA4BE0HQAAAAAAgEfQdAAAAAAAAB5B\n0wEAAAAAAHgETQcAAAAAAOARNB0AAAAAAIBH/D89DeMTTvTQVQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "Xx9jgEMHKxlJ" + }, + "cell_type": "markdown", + "source": [ + "We might be able to do better by choosing additional ways to transform these features.\n", + "\n", + "For example, a log scaling might help some features. Or clipping extreme values may make the remainder of the scale more informative." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "baKZa6MEKxlK", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def log_normalize(series):\n", + " return series.apply(lambda x:math.log(x+1.0))\n", + "\n", + "def clip(series, clip_to_min, clip_to_max):\n", + " return series.apply(lambda x:(\n", + " min(max(x, clip_to_min), clip_to_max)))\n", + "\n", + "def z_score_normalize(series):\n", + " mean = series.mean()\n", + " std_dv = series.std()\n", + " return series.apply(lambda x:(x - mean) / std_dv)\n", + "\n", + "def binary_threshold(series, threshold):\n", + " return series.apply(lambda x:(1 if x > threshold else 0))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "gsU6byeevZ8D", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 652 + }, + "outputId": "f3108ae2-66b7-4996-f18b-d05770afd1c8" + }, + "cell_type": "code", + "source": [ + "def normalize(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + "\n", + " processed_features[\"households\"] = log_normalize(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = log_normalize(examples_dataframe[\"median_income\"])\n", + " processed_features[\"total_bedrooms\"] = log_normalize(examples_dataframe[\"total_bedrooms\"])\n", + " \n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + "\n", + " processed_features[\"population\"] = linear_scale(clip(examples_dataframe[\"population\"], 0, 5000))\n", + " processed_features[\"rooms_per_person\"] = linear_scale(clip(examples_dataframe[\"rooms_per_person\"], 0, 5))\n", + " processed_features[\"total_rooms\"] = linear_scale(clip(examples_dataframe[\"total_rooms\"], 0, 10000))\n", + "\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.15),\n", + " steps=1000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 89.02\n", + " period 01 : 76.86\n", + " period 02 : 73.34\n", + " period 03 : 72.88\n", + " period 04 : 71.01\n", + " period 05 : 71.01\n", + " period 06 : 70.04\n", + " period 07 : 69.19\n", + " period 08 : 68.77\n", + " period 09 : 68.31\n", + "Model training finished.\n", + "Final RMSE (on training data): 68.31\n", + "Final RMSE (on validation data): 65.81\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGACAYAAACDX0mmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlcVOX+B/DPLMAwMAMDzLDKpgIK\nCiiU+77gds3qZ+aSlbfurbx1rVu2L7dSu93saqW3ui1Xu22WS4tmmZlabgiCC4gbu+ww7DDL+f2B\njiIDDsvAyHzer5evnPOcOecZvmfk2/me53lEgiAIICIiIrJB4p7uABEREVFrmKgQERGRzWKiQkRE\nRDaLiQoRERHZLCYqREREZLOYqBAREZHNkvZ0B4hsQXh4OAIDAyGRSAAABoMB8fHxePbZZyGXyzt8\n3C+//BJz585tsX3z5s146qmn8O9//xvjx483ba+vr8eIESMwZcoUrFq1qsPntVR2djZWrFiBCxcu\nAACcnZ2xdOlSTJo0yernbo9169YhOzu7xc/k0KFDWLJkCQICAlq854cffuiu7nVKbm4uJk6ciJCQ\nEACAIAjw8vLCM888g4EDB7brWG+88Qb8/Pxw5513Wvyebdu24auvvsLGjRvbdS6i7sJEheiSjRs3\nwsfHBwDQ2NiIZcuW4d1338WyZcs6dLzi4mL85z//MZuoAICvry++++67ZonKL7/8AqVS2aHzdcTf\n/vY3zJ49G//+978BACkpKVi8eDF27NgBX1/fbutHZ/j6+t4wSUlrJBJJs8+wfft2PPTQQ9i5cycc\nHR0tPs5jjz1mje4R9SiWfojMcHR0xOjRo5GWlgYAaGhowPPPP4+pU6di2rRpWLVqFQwGAwAgPT0d\n8+bNQ0JCAmbPno19+/YBAObNm4f8/HwkJCSgsbGxxTmGDBmCQ4cOoa6uzrRt+/btGDlypOl1Y2Mj\nXnnlFUydOhUTJkwwJRQAkJycjFtvvRUJCQmYPn06fv/9dwBN/4c+atQobNiwAbNmzcLo0aOxfft2\ns58zIyMD0dHRptfR0dHYuXOnKWF7++23MXbsWNxyyy147733MGHCBADAk08+iXXr1pned/Xr6/Vr\nxYoVWLhwIQDg6NGjuO222zB58mTMnTsXOTk5AJruLP31r3/F+PHjsXDhQhQUFFwnYuZt3rwZS5cu\nxeLFi/GPf/wDhw4dwrx58/DII4+Yfqnv2LEDM2fOREJCAu666y5kZ2cDAN566y08++yzuP322/Hx\nxx83O+4jjzyCDz/80PQ6LS0No0aNgtFoxJtvvompU6di6tSpuOuuu1BYWNjufk+fPh319fU4f/48\nAOCLL75AQkICJkyYgEcffRT19fUAmn7uK1euxKxZs7Bjx45mcWjtujQajfj73/+OcePG4fbbb0d6\nerrpvIcPH8acOXMwffp0TJs2DTt27Gh334m6nEBEQlhYmHDx4kXT64qKCmHBggXCunXrBEEQhHff\nfVe47777BJ1OJ9TV1Qm33XabsHXrVsFgMAjTpk0Tvv32W0EQBCE1NVWIj48XqqqqhIMHDwqTJk0y\ne76vv/5aWL58ufC3v/3N9N6qqiph4sSJwqZNm4Tly5cLgiAIb7/9trB48WKhoaFBqKmpEW655RZh\n9+7dgiAIwsyZM4XvvvtOEARB2LJli+lcOTk5wsCBA4WNGzcKgiAI27dvFyZPnmy2H3/5y1+E8ePH\nC//973+Fs2fPNms7ffq0EBcXJxQVFQk6nU544IEHhPHjxwuCIAjLly8X3nnnHdO+V79uq1+RkZHC\n5s2bTZ83Pj5e2L9/vyAIgvDtt98Kc+bMEQRBED755BNhwYIFgk6nE8rKyoTx48ebfiZXa+tnfPnn\nHBMTI1y4cMG0/6BBg4Tff/9dEARByMvLE4YOHSpkZmYKgiAIH3zwgbB48WJBEARh7dq1wqhRo4TS\n0tIWx/3++++FBQsWmF6vWbNGePnll4WMjAxhypQpQmNjoyAIgrBhwwZhy5Ytrfbv8s9lwIABLbbH\nx8cL586dE44cOSIMHz5cKCgoEARBEJ577jlh1apVgiA0/dxnzZol1NfXm16/8847bV6Xe/bsEaZM\nmSJUV1cLdXV1wu233y4sXLhQEARBuPXWW4VDhw4JgiAIFy5cEB599NE2+07UHXhHheiSRYsWISEh\nARMnTsTEiRMxbNgw3HfffQCAPXv2YO7cuZBKpZDJZJg1axZ+++035ObmoqSkBDNmzAAADBo0CH5+\nfjh+/LhF55wxYwa+++47AMCuXbswfvx4iMVXvpa//PIL5s+fD0dHR8jlcsyePRs//vgjAGDr1q2Y\nNm0aAGDo0KGmuxEAoNfrceuttwIAIiMjkZ+fb/b8r7/+OhYsWIBvv/0WM2fOxIQJE/DZZ58BaLrb\nER8fD7VaDalUipkzZ1r0mdrql06nw+TJk03H9/b2Nt1BmjlzJrKzs5Gfn4/ExERMnjwZUqkUKpWq\nWXnsWhcvXkRCQkKzP1c/yxIcHIzg4GDTa5lMhuHDhwMAfvvtN9x8880ICgoCAPzf//0fDh06BL1e\nD6DpDpOHh0eLc44bNw6nTp1CRUUFAOCnn35CQkIClEolysrK8O2330Kr1WLRokW45ZZbLPq5XSYI\nAr744gt4e3sjODgYu3fvxvTp0+Ht7Q0AuPPOO03XAAAMHz4cTk5OzY7R1nV55MgRjB07Fi4uLpDJ\nZKZYAYCnpye2bt2Kc+fOITg4GG+88Ua7+k5kDXxGheiSy8+olJWVmcoWUmnTV6SsrAxubm6mfd3c\n3FBaWoqysjIoFAqIRCJT2+VfVl5eXtc958iRI/Hss8+ioqIC33//PR588EHTg60AUFVVhZUrV2L1\n6tUAmkpBgwcPBgB8++232LBhA2pqamA0GiFctWyXRCIxPQQsFothNBrNnt/JyQlLlizBkiVLUFlZ\niR9++AErVqxAQEAAtFpts+dlPD09r/t5LOmXq6srAKCyshI5OTlISEgwtTs6OqKsrAxarRYKhcK0\nXalUoqamxuz5rveMytVxu/Z1eXl5s8+oUCggCALKy8vNvvcyuVyOESNGYM+ePRg6dCgqKysxdOhQ\niEQivPXWW/jwww/x8ssvIz4+Hi+99NJ1n/cxGAymn4MgCOjXrx/WrVsHsViMqqoq/PTTT9i/f7+p\nXafTtfr5ALR5XWq1Wmg0mmbbL1uxYgXWr1+Pe+65BzKZDI8++miz+BD1BCYqRNfw8PDAokWL8Prr\nr2P9+vUAAC8vL9P/PQNARUUFvLy84OnpCa1WC0EQTL8UKioqLP6l7uDggPHjx2Pr1q3IyspCbGxs\ns0RFo9Hg3nvvbXFHobCwEM8++yw2bdqEAQMGIDMzE1OnTm3X5ywrK0NaWprpjoZSqcTcuXOxb98+\nZGRkQKFQoKqqqtn+l12b/Gi12nb3S6PRIDQ0FJs3b27RplQqWz13V/L09ERycrLptVarhVgshkql\nuu57p06dip9++gnl5eWYOnWqKf7Dhg3DsGHDUFtbi9deew3//Oc/r3tn4tqHaa+m0WgwZ84cLF++\nvF2fq7Xrsq2frZeXF5577jk899xz2L9/P/7yl79g9OjRcHFxsfjcRF2NpR8iM+655x4kJyfj8OHD\nAJpu9X/11VcwGAyora3Ftm3bMHbsWAQEBMDHx8f0sGpSUhJKSkowePBgSKVS1NbWmsoIrZkxYwbe\nf/99s0OCJ06ciE2bNsFgMEAQBKxbtw579+5FWVkZ5HI5QkNDodfr8cUXXwBAq3cdzKmvr8fDDz9s\nesgSALKyspCSkoK4uDjExsYiMTERZWVl0Ov12Lp1q2k/tVpteggzJycHSUlJANCufkVHR6O4uBgp\nKSmm4zz++OMQBAExMTHYvXs3DAYDysrKsHfvXos/V3uMHDkSiYmJpvLU559/jpEjR5rupLVl/Pjx\nSE5Oxq5du0zlk/379+Oll16C0WiEXC5HREREs7saHTFhwgT8+OOPpoRi165deO+999p8T1vXZWxs\nLPbv34+6ujrU1dWZEiSdTodFixahqKgIQFPJUCqVNitFEvUE3lEhMsPV1RX3338/XnvtNXz11VdY\ntGgRcnJyMGPGDIhEIiQkJGDatGkQiURYvXo1XnjhBbz99ttwdnbGmjVrIJfLER4eDjc3N4wcORJb\ntmyBn5+f2XPddNNNEIlEmD59eou2+fPnIzc3FzNmzIAgCIiKisLixYshl8sxZswYTJ06FZ6ennjy\nySeRlJSERYsWYe3atRZ9Rj8/P6xfvx5r167FK6+8AkEQ4Orqiqeeeso0EuiOO+7AnDlzoFKpMGXK\nFJw5cwYAMHfuXCxduhRTpkzBwIEDTXdNIiIiLO6XTCbD2rVr8fLLL6OmpgYODg545JFHIBKJMHfu\nXCQmJmLSpEnw8/PDpEmTmt0FuNrlZ1Su9Y9//OO6PwMfHx+88sorePDBB6HT6RAQEICXX37Zop+f\nq6srIiMjcfr0acTExAAA4uPj8f3332Pq1KlwdHSEh4cHVqxYAQB44oknTCN32iMyMhJ//vOfsWjR\nIhiNRnh6euKll15q8z1tXZfjx4/Hnj17kJCQAC8vL4wdOxaJiYlwcHDA7bffjrvvvhtA012zZ599\nFs7Ozu3qL1FXEwlXF5CJiFqRmJiIJ554Art37+7prhCRHeE9PSIiIrJZTFSIiIjIZrH0Q0RERDaL\nd1SIiIjIZllt1I/RaMQLL7yAM2fOwMHBAS+++CLkcjmeeOIJGAwGqNVqvP766+1acIuIiIjsi9US\nlZ9//hlVVVX4/PPPkZ2djVdffRUeHh6YP38+pk2bhtWrV+Orr77C/PnzWz1GcbH54YhdRaWSo7y8\n1qrnoPZjXGwXY2ObGBfbxdhYTq1WmN1utdJPZmamaarvwMBA5Ofn49ChQ5g4cSKApsmSDhw4YK3T\nW0QqlfTo+ck8xsV2MTa2iXGxXYxN51ntjkpYWBj++9//YvHixcjKykJOTg7q6upMpR5PT08UFxe3\neQyVSm71ILeWwVHPYlxsF2NjmxgX28XYdI7VEpWxY8ciKSkJCxYsQHh4OEJDQ5GRkWFqt2SwkbVv\nl6nVCquXl6j9GBfbxdjYJsbFdjE2lmstobPqFPrLli0z/X3SpEnw9vZGfX09ZDIZCgsLm63gSURE\nRHQtqz2jkp6ejqeeegoAsHfvXgwcOBAjRozAzp07AQA//vgjRo8eba3TExERUS9g1WdUBEHA7bff\nDicnJ/zzn/+ERCLB8uXL8cUXX8DPzw+33HKLtU5PREREvYDVEhWxWIxVq1a12P7RRx9Z65RERETU\ny3BmWiIiIrJZTFSIiIhuYHv2/GzRfmvWvIH8/LxW25988tGu6lKXYqJCRER0g7p4MR+7du20aN9H\nHnkMfn7+rbavWrW6q7rVpaw6PJmIiIisZ/Xq15CWdhKjR8djypRpuHgxH//61zqsXPl3FBcXoa6u\nDvfeez9GjhyNpUvvx6OPPoFffvkZNTXVyM7OQl5eLh5++DEMHz4SM2ZMxPff/4ylS+9HfPzNSEpK\nREVFBV577U14eXnh739/DgUFFzFo0GDs3r0LW7Zs75bPyESFiIiok77cfRZH0otabJdIRDAYrj/B\nqTnxERrMndCvzX3uvHMRNm/+EiEhfZGdnYl16/6D8vIy3HTTMEybNhN5ebl47rknMXJk8+lAiooK\n8c9/rsXBg79j27avMXz4yGbtLi4uWLNmPdavfwt79+6Gn18AGhsb8N57H+O33/bhyy8/69Bn6gi7\nTFQMRiOSM0ow0V3e010hIiLqEgMGRAIAFAol0tJO4ptvNkMkEqOyUtti38GDYwAAGo0G1dXVLdqj\no2NN7VqtFllZFzBoUDQAYPjwkZBIum8NI7tMVDJytFi39QSqGgwYH+3b090hIqIb3NwJ/cze/ejO\nKfQdHBwAAD/99AMqKyvxzjv/QWVlJf74x0Ut9r060TC3pM217YIgQCxu2iYSiSASibq6+62yy4dp\ng7wVkEpE2Hes9aefiYiIbJ1YLIbBYGi2raKiAr6+fhCLxfj1193Q6XSdPo+/fwBOnz4FADh8+GCL\nc1qTXSYqcpkUkcEeyLxYiYIy6y58SEREZC1BQSE4fTodNTVXyjfjxk3A77/vwyOPPABnZ2doNBp8\n9NH7nTrPiBGjUVNTgwceWIKUlGQolW6d7brFRIIlyxj3EGveLvvt+EV88H0a5owJxawRwVY7D7Uf\nVxu1XYyNbWJcbFdviU1lpRZJSYkYN24iiouL8MgjD+DTT7/u0nP0yOrJtiy2vxekEhES04uYqBAR\nEbVBLnfB7t278OmnGyEIRvzlL903OZzdJipymQNiwjRITCtEYVktvD04AoiIiMgcqVSKv/99ZY+c\n2y6fUblsdIwfAJgd+05EREQ9z64TlZsifSERi5ioEBER2Si7TlRcnR0QGeKBnKJqFHL0DxERkc2x\n60QFaJqiGGD5h4iIyBbZfaIS298LEnHT6B8iIqLe5vbbZ6G2thYbN36MEydSm7XV1tbi9ttntfn+\nPXt+BgBs3/4tfv31F6v1szV2O+rnMrmsqfyTeq4UheW18FZx9A8REfU+ixbd3e73XLyYj127dmLc\nuImYPr3thMZa7D5RAYC4cA1Sz5UiMb0IM4YH93R3iIiIruveexdgxYo34OPjg4KCi3jqqcegVmtQ\nV1eH+vp6LFv2OAYOjDLt/+qrL2LcuImIiYnFM888gcbGRtPihADw44878NVXX0AiESM4uC+WL38G\nq1e/hrS0k/joo/dhNBrh7u6O2267A+vWrcHx4ynQ6w247ba5SEiYgaVL70d8/M1ISkpERUUFXnvt\nTfj4+HT6czJRARAb5gXJD02jf5ioEBFRe20++x2Si4632C4Ri2AwdmwC+FjNINzab2ar7WPGjMdv\nv+3FbbfNxb59v2LMmPHo27c/xowZh6NHj+B///svXn319Rbv27lzB0JD++Lhhx/Dzz//iF27dgIA\n6urq8MYbb0GhUOChh+7DuXNnceedi7B585e455778MEH7wIAjh1Lwvnz57B+/Yeoq6vD4sXzMGbM\nOACAi4sL1qxZj/Xr38Levbsxd+78Dn32q9n9MyoA4HKp/JNdWI3Cco7+ISIi29eUqOwDAOzf/ytG\njRqLX3/9GQ88sATr178FrVZr9n2ZmecRFRUNAIiNHWrarlQq8dRTj2Hp0vuRlXUBWm2F2fenp59C\nTMwQAICzszOCg0ORk5MDAIiOjgUAaDQaVFdXm31/e/GOyiUs/xARUUfd2m+m2bsf1lzrJzS0L0pL\ni1FYWICqqirs27cHXl4aPPfcy0hPP4W33/6X2fcJAiAWiwAAxkt3e3Q6HVav/gc+/vhTeHp64Ykn\n/trqeUUiEa5eJVCv15mOJ5FIrjpP1ywlyDsql8SGeXHyNyIiuqEMHz4K7723DqNHj4VWWwF//wAA\nwK+//gK9Xm/2PYGBQUhPTwMAJCUlAgBqa2sgkUjg6emFwsICpKenQa/XQywWw2AwNHt/REQkkpOP\nXnpfLfLychEQEGitj8hE5TIXmQMGBjeVf4pY/iEiohvA2LHjTaNyEhJm4Isv/odlyx5CZGQUSktL\n8f3337R4T0LCDJw8eRyPPPIAcnKyIBKJ4Obmjvj4m/HHP96Fjz56H/PnL8LatasRFBSC06fTsXbt\nG6b3R0fHIDw8Ag89dB+WLXsIf/7zUjg7O1vtM4qErro3YwXWXhr72lty+1Lz8dH2dNw2NpTlnx7U\nW5ZF740YG9vEuNguxsZyarXC7HbeUblKbH/1pcnfinu6K0RERAQmKs24OjeVf7IKq1j+ISIisgFM\nVK4RF6EGwLV/iIiIbAETlWuw/ENERGQ7mKhcw9XZAQOCVU3ln4q6nu4OERGRXWOiYkZ8uAYAuKIy\nERFRD2OiYkZsmJqTvxEREdkAu0xU9EY9Dl5MRIO+0Wy7q7MDBgSpkFXA8g8REVFPsstE5bw2ExvT\nvsS29B9b3Sc+oqn8c5R3VYiIiHqMXSYqgYo+cBQ7YF/W4VYXTbpc/jnMRIWIiKjH2GWiIpM6YbA6\nEoXVxciszDG7D8s/REREPc8uExUAiPeOBQAcKUxudZ84ln+IiIh6lN0mKgM8wqBwckVSYQoMRoPZ\nfYaEqSEWcfQPERFRT7HbREUilmBEn6Go0lUjvfys2X0uT/6WWVCFYpZ/iIiIup3dJioAMDroJgDA\nkYLWyz+XR/8knuZdFSIiou5m14lKf88QeMk8kFJyAg0G83OqXC7/cJZaIiKi7mfXiYpIJEKcTywa\nDY1ILT5pdp/L5Z8LF1n+ISIi6m52nagAlo3+YfmHiIioZ9h9ouLjokEfhT/SyjJQ1Vhtdp/Y/l4s\n/xAREfUAu09UgKa7KkbBiKSiVLPtCrkjBgS548LFKpSw/ENERNRtmKgAGOodDRFEbY7+iTOVf4q7\nq1tERER2j4kKAHcnN4Sr+uFCZRZK6krN7sPJ34iIiLofE5VL4nwuPVRbcMxs+5XyTyXLP0RERN2E\nicolMeooOIilOFKY3OqKyiz/EBERdS8mKpc4S2WI8hqIwtoi5FTnmd2H5R8iIqLuxUTlKqY5VVp5\nqFYhd0TE5fKPluUfIiIia2OicpVIz3DIpc44WngMRsFodh9T+Sed5R8iIiJrY6JyFalYiljNYGgb\nq5BRfs7sPqa1fzhLLRERkdUxUbnG9co/SrkjwgPdcT6/EqXa+u7sGhERkd2RWuvANTU1WL58ObRa\nLXQ6HR566CG89957qK2thVwuBwAsX74cUVFR1upCh/R1D4bKyR3Hio/jDsMcOEocWuwTP0CDtKxy\nJJ4uwtSbAnugl0RERPbBaonKli1bEBISgsceewyFhYVYvHgx1Go1Vq5cibCwMGudttPEIjHivGPw\nU/YenChNwxDN4Bb7DAlT45OdGTiSzkSFiIjImqxW+lGpVKioqAAAVFZWQqVSWetUXe4mnyEAWP4h\nIiLqaVZLVGbMmIH8/HxMnjwZCxcuxPLlywEAa9euxYIFC/D888+jvt42f8n7ufrA39UXJ0vTUaOr\nNbtPvGnyNz5US0REZC0iobVpWDtp27ZtSExMxMsvv4z09HQ8/fTTeOCBBxAeHo7AwEC88MILCAwM\nxJIlS1o9hl5vgFQqsUb3rmtb2o/4X+oW3B83H5P6jm7RXlHVgMUv/YD+gSr88+ExPdBDIiKi3s9q\nz6gkJSVh1KhRAICIiAgUFRVhwoQJkEiaEo8JEyZg+/btbR6jvNz83YyuolYrUFxcZbZtgOsAiLAV\nP585gGhljNl9wgNVSMsqx+lzxfBQyqzZVbvSVlyoZzE2tolxsV2MjeXUaoXZ7VYr/QQFBSElJQUA\nkJeXB7lcjiVLlqCyshIAcOjQIfTv399ap+80lcwd/dxDcE57AaV15Wb3uTL5G8s/RERE1mC1ROWO\nO+5AXl4eFi5ciMceewwvvfQS5s6di7vvvhsLFixAQUEBFixYYK3Td4nLc6ocLTS/ovLQMDVEIuAI\nn1MhIiKyCquVflxcXLBmzZoW26dPn26tU3a5WM0gfJmxFUcKkzEleHyLdqWLIyIulX/KKutZ/iEi\nIupinJm2DXIHOSI9I5BfU4C86otm92H5h4iIyHqYqFxHnE/bU+qz/ENERGQ9TFSuY5DnAMgkMiS2\nsqKy0sUR4X3ccS6vEmWVtjkvDBER0Y2Kicp1OEgcEKsZhPKGCpyruGB2nyuTvxV3Z9eIiIh6PSYq\nFjCtqFxovvwzJFwDkYjPqRAREXU1JioW6K8KhZujEklFx6Ez6lu0u10q/5zN07L8Q0RE1IWYqFjg\n8orKdfo6nCxNN7sPyz9ERERdj4mKheKvM/qH5R8iIqKux0TFQgGufvCRa3CiNA11+roW7Sz/EBER\ndT0mKhYSiUSI94mF3qhHctEJs/tcnvztKMs/REREXYKJSjvEXWf0z9AwNUTg5G9ERERdhYlKO3g5\neyDULQhnys+hokHbot3N1QlhfdxxNleL8qqGHughERFR78JEpZ3ivYdAgIDEVlZUjh9wefQP76oQ\nERF1FhOVdhqiGQyxSIzEttb+AXCEo3+IiIg6jYlKO7k6umCgRzhyqvNRUFPYop3lHyIioq7DRKUD\nrjenSlwEyz9ERERdgYlKBwz2GggniSOOFCZDEIQW7XHhTeUfTv5GRETUOUxUOsBR4ohodRRK68tx\nXpvVot3N1Qn9Wf4hIiLqNCYqHXS9FZXjIzQQABxl+YeIiKjDmKh0ULiqHxQOrkgqSoHBaGjRPpTl\nHyIiok5jotJBErEEQ72jUaOrxamy0y3a3S+Vf86w/ENERNRhTFQ64SafIQBaH/3D8g8REVHnMFHp\nhEBFADTOXkgtOYV6fcsVk1n+ISIi6hwmKp0gEokQ5xMLnVGHlOKTLdrdXZ3QP8ANZ3K1qKhm+YeI\niKi9mKh00vVG/8SZyj/F3dgrIiKi3oGJSidp5F4IUvZBetkZaBuqWrQPDddw7R8iIqIOYqLSBeK9\nYyFAQFJRSos2lcIJ/QLccCanguUfIiKidmKi0gWGekdDLBJbMPqH5R8iIqL2YKLSBZSOCoSr+iGr\nKgdFtS2TEZZ/iIiIOoaJShcxPVRr5q4Kyz9EREQdw0Sli0SrI+Egdmh9RWWWf4iIiNqNiUoXkUll\niFZHoriuFFlVOS3a48I1ADj5GxERUXswUelClpR/MnIqoGX5h4iIyCJMVLrQAI8wuDq44Gih+RWV\n48MvlX8yWP4hIiKyBBOVLiQRSzBEMxhVumqcLj/boj0uoqn8cySN5R8iIiJLMFHpYvE+TeWfwyz/\nEBERdRoTlS4WogyCp8wDKSUn0GBobNHO8g8REZHlmKh0MZFIhHjvGDQaGnHczIrKQ8PVADj6h4iI\nyBJMVKzgcvnH3IrKHkoZ+vm74XROBbQ1Le+4EBER0RVMVKzAx8UbfVz9cKosA9WNNS3a4yI0EAQg\n6TTvqhAREbWFiYqVxPsMgVEwml1ROe5S+Ydr/xAREbWNiYqVDPWOhggiln+IiIg6gYmKlbg7uSFM\n1RfntVkoqStr0c7yDxER0fUxUbGiy1PqJ5q5q8LyDxER0fUxUbGiGE0UpGIpDhe0XFHZQylDX38l\nTudUoJLlHyIiIrOYqFiRs9SVf9FBAAAgAElEQVQZgzwHoLC2CDnVeS3a48Obyj+c/I2IiMg8JipW\nZppTxcyU+pfX/uHkb0REROYxUbGygZ4RcJY642jhMRgFY7M2D6UMff2USM8uZ/mHiIjIDCYqVuYg\nlmKIZhC0jVXIKD/Xoj0+guUfIiKi1jBR6QaXR/+Ym1OF5R8iIqLWMVHpBn3dQ6BycsexohPQGXTN\n2lj+ISIiah0TlW4gFokR5x2DekM9jpemtWg3Tf7G8g8REVEzTFS6yeXRP4nmRv+EN5V/OPkbERFR\nc0xUuom/qy/8XHxwsjQdtbraZm2ebjKEXi7/1LL8Q0REdJnVEpWamhosXboUixYtwrx587Bv3z6k\np6dj3rx5mDdvHl544QVrndpmxfvEQi8YkFx0vEVbXDjLP0RERNeyWqKyZcsWhISEYOPGjVizZg1e\nffVVvPrqq3j66afx+eefo7q6Gr/++qu1Tm+T4rxjAACHC5NatkVcWvsnjeUfIiKiy6yWqKhUKlRU\nVAAAKisr4e7ujry8PAwePBgAMH78eBw4cMBap7dJHjIV+rmH4GzFBZTVlzdr83JzZvmHiIjoGlZL\nVGbMmIH8/HxMnjwZCxcuxBNPPAGlUmlq9/T0RHGx/ZU5rqyofKxFG8s/REREzUmtdeBt27bBz88P\nH3zwAdLT0/HQQw9BoVCY2q9dTdgclUoOqVRirS4CANRqxfV36kKTlSPw5ZltSC5JxYK4PzRrmzoi\nBF/+chap58rwf5MjurVftqa740KWY2xsE+NiuxibzrFaopKUlIRRo0YBACIiItDQ0AC9Xm9qLyws\nhEajafMY5eW1bbZ3llqtQHFxlVXPYU6URwRSSk7i2IUM+Lv6mraLAIT4KpF6tgTns0qhkDt2e99s\nQU/Fha6PsbFNjIvtYmws11pCZ7XST1BQEFJSUgAAeXl5cHFxQd++fZGYmAgA+PHHHzF69Ghrnd6m\nxbWxonJ8hAZGQWD5h4iICFa8o3LHHXfg6aefxsKFC6HX6/Hiiy9CrVbj+eefh9FoRHR0NEaMGGGt\n09u0QZ4DIJPIkFh4DH/omwCx6Eq+GBeuxpe/nEViehHGxvj3YC+JiIh6ntUSFRcXF6xZs6bF9k8/\n/dRap7xhOEgcEKOJwsGLiThXkYn+qlBTm5e7M0J8lUjLqkBVbaPdln+IiIgAzkzbY9paUZnlHyIi\noiZMVHpImKov3BwVSCpKhc6ob9YWF940+Vsi1/4hIiI7x0Slh4hFYgz1jkGdvg6nStObtTWVfxSm\n8g8REZG9YqLSg+LbGP0Td6n8k3ympLu7RUREZDOYqPSgPq7+8JZrcLw0DXX6umZtceFNc8wcYfmH\niIjsGBOVHiQSiRDvHQu9UY9jRSeatandnRHso0BaZjmq63Q91EMiIqKexUSlh8X7NK2obHb0zwCO\n/iEiIvvGRKWHeTl7ItQtCBnl51DRoG3WxvIPERHZOyYqNiDeOxYCBBwtTGm2neUfIiKyd0xUbMAQ\nTTTEIjEnfyMiIroGExUb4OrogoEeYcipykNBTWGztriIpvIPJ38jIiJ7xETFRpim1L9mThW1uzOC\nfBRIy2L5h4iI7A8TFRsxSB0JR4kjjhQegyAIzdriIzQwGAUks/xDRER2homKjXCSOCLaKwql9WW4\nUJnVrO1y+Yejf4iIyN50OFHJzMzswm4Q0PqU+hqWf4iIyE61majcc889zV6vW7fO9Pfnn3/eOj2y\nYxGqflA4uCKpKBUGo6FZG8s/RERkj9pMVPR6fbPXBw8eNP392ucoqPMkYgmGekejWleDtLKMZm2m\n8s9pln+IiMh+tJmoiESiZq+vTk6ubaOuYSr/FJop/3hz8jciIrIv7XpGhcmJ9QUp+kDt7InU4pOo\n1zc0a4uLUDeVf86w/ENERPahzURFq9XiwIEDpj+VlZU4ePCg6e/U9S6vqNxo1CG15GSztnjT5G9M\nVIiIyD5I22pUKpXNHqBVKBR45513TH8n64j3icX2zF04UpCMm3yGmLZrVHIEeStwKrMM1XU6uDo7\n9GAviYiIrK/NRGXjxo3d1Q+6ikauRpCiD9LKMlDZWAWl45WkMC5CjazCKiSfKcbowX492EsiIiLr\na7P0U11djY8//tj0+vPPP8fs2bPx8MMPo6SkxNp9s2vxPuZXVGb5h4iI7Embicrzzz+P0tJSAMCF\nCxewevVqLF++HCNGjMCrr77aLR20V0M00RBB1HL0j0qOQG9XnMosQ009R/8QEVHv1maikpOTg8ce\newwAsHPnTiQkJGDEiBGYN28e76hYmZuTAhEe/ZFVmYOi2uZ3T65M/sYYEBFR79ZmoiKXy01/P3z4\nMIYNG2Z6zaHK1mdaUbnwWLPtlyd/S+Tkb0RE1Mu1magYDAaUlpYiOzsbycnJGDlyJACgpqYGdXV1\n3dJBexatjoSD2AGJBcnNJtvzVskRqHHFyQss/xARUe/WZqJy3333Yfr06Zg1axYefPBBuLm5ob6+\nHvPnz8ctt9zSXX20WzKpDIO9BqKorgTZVbnN2uIHsPxDRES9X5vDk8eOHYv9+/ejoaEBrq6uAACZ\nTIbHH38co0aN6pYO2rt4n1gcLUrBkYJkBCn7mLbHRWjw9a/nkXi6CKMG+/ZgD4mIiKynzUQlPz/f\n9PerZ6INDQ1Ffn4+/Pw4j4e1DfQIh4uDHIlFxzCn3wxIxBIAzcs/tfU6yGWc/I2IiHqfNhOVCRMm\nICQkBGq1GkDLRQk3bNhg3d4RJGIJhmiisS/vAE6Xn8VAz3BTW1yEBtl7zyP5TAlGDuJdFSIi6n3a\nTFRee+01bNu2DTU1NZgxYwZmzpwJDw+P7uobXRLvHYt9eQdwpDC5WaISH6HB5r3ncSS9iIkKERH1\nSm0mKrNnz8bs2bNx8eJFbNmyBQsWLIC/vz9mz56NyZMnQyaTdVc/7VqoWxA8ZSqkFJ9Ao6ERjhJH\nAIC3hxx9WP4hIqJerM1RP5f5+vriwQcfxI4dOzB16lS88sorfJi2G4lEIsR5x6LB0IjUklPN2uIu\nT/52hqN/iIio97EoUamsrMQnn3yCW2+9FZ988gn+9Kc/Yfv27dbuG10l3ufS5G8FzafUv7z2z45D\n2Sivauj2fhEREVlTm6Wf/fv34+uvv8aJEycwZcoUrFq1CmFhYd3VN7qKr4s3+rj64VTZaVQ31sDV\n0QUA4OMhx4Qh/tidlIdXNybir/8XjQC1aw/3loiIqGuIhKuH8lwjIiICwcHBiI6Ohljc8ubLypUr\nrdq54uIqqx5frVZY/RxdaVf2r9hy9nvcETYHYwKGm7YLgoDvD2Rh897zcHaSYOmcQRgQfOM+9Hyj\nxcWeMDa2iXGxXYyN5dRqhdntbd5RuTz8uLy8HCqVqllbbm6uubeQFcV5x2Dr2e04UpjcLFERiUSY\nOSIYXm4yfLg9Dau/TMHd0yI4EoiIiG54bSYqYrEYy5YtQ0NDAzw8PPDuu+8iKCgIn3zyCd577z3c\neuut3dVPAuDu5Ib+qr7IKD+L0royeDo3v2syLNIHKoUT3vr6OD74Pg2l2nrMGhnMBSSJiOiG1Wai\n8uabb+Ljjz9G37598fPPP+P555+H0WiEm5sbNm3a1F19pKvEe8cio/wsjhQeQ0LwhBbt4YEqPL1o\nKP61KQVb919AsbYOixMiIJVY9Nw0ERGRTWnzt5dYLEbfvn0BABMnTkReXh7uuusuvP322/D29u6W\nDlJzsZooSMVSHClIQmuPF/l5ueCZu+IQ7KPAb8cL8K9NKait13dzT4mIiDqvzUTl2pKBr68vJk+e\nbNUOUducpc6I8hyAgtoi5Fbnt7qfm4sjls8fgph+XjiVWY6V/zuKssr6buwpERFR57WrHsBnHWxD\na3OqXMvJUYKltw7CxKEByCuuwcsbEpFVwKfPiYjoxtHmMyrJyckYN26c6XVpaSnGjRsHQRAgEomw\nZ88eK3ePzIn0jICz1BmJhcdwS7/pEItazzfFYhHmT+oPtZsMX+w+i1WfJuGB2VEY3NezG3tMRETU\nMW0mKj/88EN39YPawUEsxRDNIPyWfxhnys8j3KNfm/uLRCJMuSkQHkoZ3v/uFNZ+lYqFU8MwLsa/\nm3pMRETUMW0mKv7+/EVmq+K9Y/Fb/mEcKUy+bqJyWVyEBu4KJ6z9KhUbfjiNkop63Do2FGKW9IiI\nyEZxzOoNqq97CFRO7kguOg6dQWfx+/r5u+GZu4bCW+WM7Qez8N43J6HTG63YUyIioo5jonKDEovE\niPOOQb2hHidK09v1Xm+VHE8vGop+AW44nFaENz5PRnWd5ckOERFRd2GicgMzjf4pbHv0jzkKuSMe\nnxeDuAgNMnK1WLHxKIoq6rq6i0RERJ3CROUG5u/qCz8XH5wsSUOtrrbd73eQSvDn2ZFIuDkQBWW1\nWLEhEefzK63QUyIioo5honKDi/eOhV4wILnoeIfeLxaJMHd8PyyaEoaqOh3+8WkSkjOKu7iXRERE\nHcNE5QYX5xMDANiR+TOKa0s7fJzxQwLw8G2DIRKJ8Pbm4/gpMaerukhERNRhTFRucB4yFWaFTkV5\nQwXeTFqHizWFHT5WdD8vLF8QC6WLIz7bdQaf7ToDo9H8ekJERETdgYlKL5AQPBG39ZsJbWMV3kxa\nj+zK3A4fK9hHiWfuGgo/Lxf8lJiDdVtPoEFn6MLeEhERWY6JSi8xIXAM5kfchlpdHdYkv4ezFRc6\nfCwvN2c8vXAIIgLdkZRRjNc/S0ZlTWMX9paIiMgyIkEQrHJvf9OmTfjmm29Mr0+cOIGoqCjU1tZC\nLpcDAJYvX46oqKhWj1FcbN0F9NRqhdXP0d2OFh7Dx6c+h0QkwZ8GLcYAz7AOH0tvMOKj7ek4cLIA\nancZls2NgY+HvAt7a15vjEtvwdjYJsbFdjE2llOrFWa3Wy1Rudrhw4exY8cOnD17Fs899xzCwiz7\n5clEpWOOl5zCf058AggC7olagBh168ng9QiCgK37LuDb3zPhIpPiL7cNRlgf9y7sbUu9NS69AWNj\nmxgX28XYWK61RKVbSj/vvPMOHnzwwe44FQEY5DUQD0XfC7FYgg9OfIJDF492+FgikQhzxoTinmkR\nqG804J+fH8PhtI4/sEtERNQeVr+jkpqaik8//RSrVq3CokWL4ObmhvLycvTt2xdPP/00ZDJZq+/V\n6w2QSiXW7F6vllFyHiv3vo0aXR2WDJmHqf3Hdup4yaeLsPK/R1DXoMfiGQNx2/h+EHFBQyIisiKr\nJyrPP/88ZsyYgZtvvhk//fQTwsPDERgYiBdeeAGBgYFYsmRJq+9l6afz8qov4q3k91Glq8bsvtMw\nJWh8p46XW1SNNzeloLyqAeNi/bFgcn9IxF17Y84e4nKjYmxsE+Niuxgby/VY6efQoUOIjW1ak2by\n5MkIDAwEAEyYMAEZGRnWPr3d83f1xbKhD0Dl5I5t53bgm3M/oDO5aYDGFc/eFYc+GlfsSc7DW18f\nR32jvgt7TEREdIVVE5XCwkK4uLjA0dERgiDg7rvvRmVl01oyhw4dQv/+/a15errEW67GsiEPQO3s\niZ1Zu7HpzDYYBWOHj6dSOOHJBUMQFeqB1HOleO1/yaiobujCHhMRETWxaqJSXFwMDw8PAE0PZc6d\nOxd33303FixYgIKCAixYsMCap6ereDqrsGzIg/Bz8cGvub/jf2lfwWDs+ERuzk5SPHzbYIyJ9kNW\nYRVe3ZCIvOLqLuwxERFRNw1P7ig+o9L1anS1eOfYB8iqykGsehDujrwTUrG0w8cTBAHbD2bh61/P\nw9lJiqVzojAg2KNTfbTHuNwoGBvbxLjYLsbGcj06PJlsh4uDHA/H3of+7qFILj6Od1P/i0ZDx2ed\nFYlEmDE8GPfPGgid3oDVX6bgt+MXu7DHRERkz5io2CGZVIYHo+/FQM9wnCo7jbePfYA6fX2njjks\n0geP3REDmaMEH3yfhm/2X+jUQ7tEREQAExW75ShxxJ8GLUasZjDOaS9gbfJ7qNbVdOqY4YEqPL1o\nKLzcZNi6/wI+3J4GvaHjD+0SERExUbFjUrEU90bOxzDfOGRX5eJfSf+GtqGyU8f09XTBM3fFIcRX\ngd+OF+Bfm1JQW8/hy0RE1DFMVOycWCTGgojbMS5gJC7WFGJ10nqU1pV16phuLo544s4hiO3vhVOZ\n5Vj5v6Moq+xcaYmIiOwTExWCWCTG7f3/gITgiSipK8XqpPUorCnq1DGdHCV4aM4gTBoagLziGry8\nIRFZBXzynYiI2oeJCgFoGr0zK3Qqbuk7HRUNWqxOWo/cqvxOHVMsFmH+5DDMm9gfldWNWPVpElLP\nlXZRj4mIyB4wUaFmJgeNw7zwOajR1eJfye/ivDar08ecEt8HD86JgtEoYO1XqdhzLK8LekpERPaA\niQq1MNp/OO4aeAcaDA1469j7SC870+ljDg3X4PE7YyGXSbHhh9P4+tdzMHL4MhERXQcTFTLrJp8h\n+GPUQhiNBqxP/QjHS051+pj9/N3wzF1D4a1yxvcHsvD+t6eg03P4MhERtY6JCrUqWh2FP0ffAzFE\neO/4BiQWJHf6mN4qOZ5eNBT9Atxw6FQh3vjiGKrrdF3QWyIi6o2YqFCbBniEYWnMfXAUO+LjU5/j\nt7xDnT6mQu6Ix+fFIC5Cg4ycCqzYeBRFFXVd0FsiIuptmKjQdfV1D8YjQ+6Hi4Mcn57+Gj9n7+30\nMR2kEvx5diQSbg5EQVktVmxIxPn8zk02R0REvQ8TFbJIoCIAy4b8GW6OSmw++x2+P/9jp9fyEYtE\nmDu+HxZNCUNVnQ7/+DQJyRnFXdRjIiLqDSQvvvjiiz3didbU1nZ8VV9LuLg4Wf0cvYmroyui1VE4\nXnIKqSUnUW9owACPMIhEok4dN8RXiWAfBY6eLsaBkwUwCkBdgw56gwAHqRhSCfNpW8HvjG1iXGwX\nY2M5Fxcns9tFgg0vcVtcbN2ZTNVqhdXP0RtVNGjxVvL7KKgtwgjfm3BnxK0QizqfTGQWVGLNplRo\na5p/qeVOUngoneChlDX9UTg1vVbI4KF0gkohg4OUyUx34HfGNjEutouxsZxarTC7nYkKL6AOqW6s\nwdsp/0FOVR6GaqKxeOA8SMSSTh+3sqYRF4pqkJVfgbLKBpRV1Tf9t7Ie9Y2GVt+nlDtck8jImiUz\n7q5OEIs7d+eH+J2xVYyL7WJsLNdaoiLt5n5QL+Hq6IJHYu/HupSPcLQoBQ2GRiyJWghHiUOnjqt0\nccSkmzxRXKxq0VZbr7+SuFyVwJRV1qOsqgG5xTXIbGU9IbFIBHeFoylx8VDIoFI6wfOqhEYhd+h0\nGYuIiLoWExXqMGepM5bG/BHvH9+AE6VpWJ/yIf40+G7IpObrjJ0ll0khl7kiQO1qtl0QBFTV6VBe\n2YDSqxKYy/8tr6zH+fxKnM0zfxNRKhGbykoqhQyebk7NEhsPpROcnaRMZoiIuhETFeoUJ4kj/jT4\nbnx08lOkFJ/A28fex4PR90LuIO/2vohEIijljlDKHRHkY/4WotEooKK64UoCc+nujCm5qWpAenZF\nq+dwcpTAQ9H8Tozq8vMzl0pOTg6dL4EREVETJirUaQ5iKZZELsAn6ZtwuCAJ/0p+F0tj/gilo/lk\noSeJxSLTsyzwdzO7j05vRHl10x2Yy4lMaeWVxKa8qh4XS2tbPYers4MpafFyk2F4lA9CfJXW+khE\nRL0aExXqEhKxBIsGzIWTxAn78g7gzaT1+EvMffCQtXzWxNY5SMXQuDtD4+7c6j71jXqUV10uMTUv\nL5VVNaCwvA7ZRdUAgF1HcxER6I7pw4IQGeLB0hERUTswUaEuIxaJcUfYLZBJnPBT9h6sProeD8fe\nD43cq6e71uVkjlL4ekrh6+litl0QBNTU65F5sRI7D2fjZGY50rMr0Efjimk3ByJ+gAYSMYdUExFd\nDyd840Q8XUokEiHCoz+kIglSSk4guSgVAz3CoXA0/wCsOb0hLiKRCI4OEmhUcoyI8kVMPy/UNeiR\nnl3eNLHdiQKIxSL4q11uqAntekNseiPGxXYxNpZrbcI3Jiq8gKyin3sIXKRyJBenIqkwBWGqvnB3\nMv9MyLV6Y1zcXZ0QF6HB8CgfGIwCzuRqcexsCX49lo9GvREBalc43gAP4fbG2PQGjIvtYmwsx0TF\nDF5A1hXsFggPmQpJRSlILExGqFsQPJ09rvu+3hwXF5kDovt6YWyMHxwkYly4WInj58vwc1IutDWN\n8POSQy7r3Fw01tSbY3MjY1xsF2NjOSYqZvACsr4+Cj/4uHgjqSgViYXJ6KPwv+4zK/YQFycHCQYE\nqTBhiD8UckfkFFXjVGY5fj6ah4LyWqjdneHmap35aDrDHmJzI2JcbBdjYzmu9WMGpzbuPidL0/H+\n8Q0wCgLujrwTQzSDW93XHuOiNxhxOK0QOw5lI6+4BgAQFeqB6TcHITzQ3WZGCtljbG4EjIvtYmws\n19oU+ryjwky3W2jkXujrFoLkolQkFh6DyskdfRT+Zve1x7iIxSL00SgwPtYfoX5KlFU1IC2rHL+d\nKMDx86VwkTnAx0Pe4wmLPcbmRsC42C7GxnIs/ZjBC6h7eTqrEOHRH8eKjuNoUQrkUmeEuAW22M+e\n4yISieDtIceowb6ICvFATb0e6VnlOJJehEOnCuEgFcPfy6XHhjbbc2xsGeNiuxgbyzFRMYMXUPdz\nd3JDpGcEUopPILn4OCQiMfq6hTS7U8C4NPFQynDTAG/cNEADnd6IjNwKJJ8pwb6UizAYjQhQu8BB\n2r0jhRgb28S42C7GxnJMVMzgBdQzFI6uGOwVieMlp5BSfAI6ox7hqn6mZIVxaU4hd0RsfzVGDfaD\nRCzCuXwtUs+VYXdSHmrq9PDzcoGzU/fM3cjY2CbGxXYxNpZjomIGL6Ce4+IgR6x6EE6UpuF4ySlU\n6qoR6RkOkUjEuLTC2UmKyBAPjI8NgItMiqzCKpy8UIafj+aipKIe3h5yKOSOVu0DY2ObGBfbxdhY\njomKGbyAepazVIahmmiklWXgZGk6SurKMMhrAFxdZYxLGxykYvQPcMfEIQHwcpMhv7QWaVnl2J2U\nh+zCKni6XVp00Qr4nbFNjIvtYmws11qiwrV+qEcpHF3x19g/YV3KhzhSmIRGQwOe8PpTT3frhuAg\nFWNMtB9GDfZFckYJdhzKQvKZEiSfKUH/ADdMGxaEwX09IbaRoc1ERB3BeVQ4vt0m1Osb8O7x/yKj\n/Cz6ewRjkEcUQt2C0EfhD6mY+bQlBEFARk4FdhzKRuq5UgCAv5cLEm4OxM0DvbtkTSF+Z2wT42K7\nGBvLtTaPChMVXkA2Q2fQ4eNTn+FY8QnTNqlYiiBFAELdghHqFoQQt6B2LXBor3KLqrHjUDYOpxXC\nYBSgUjhhSnwfjIn269SDt/zO2CbGxXYxNpZjomIGLyDbIwgCRC46HDl/Eue1WbigzURu9UUIuHKZ\nauReCFVeSVx8XDQQi26cFYi7U6m2HjuPZGNvSj4adUbInaSYMNQfk4b2gdKl/Q/e8jtjmxgX28XY\nWI6Jihm8gGzTtXGp19cjszIH57WZl5KXbNQb6k3tzpcmjgtVBqOvexCClIFwklh39MuNprpOh91J\nudiVmIvqOh0cpGKMHOSLhJv6QKOSW3wcfmdsE+NiuxgbyzFRMYMXkG26XlyMghEXawovJS1ZOK/N\nRHFdqaldLBIjwNUXIZfKRaFuQfCQqbqj6zavQWfAb8cv4odD2SjR1kMkAoaGazB9WCCCfZTXfT+/\nM7aJcbFdjI3lmKiYwQvINnUkLpWNVbigzcI5bSYuaLOQXZkLvWAwtbs7uV1KWpqSlwBXP0jE3Tur\nqy0xGI1ITC/GjkNZyC6sBgAMCFJh+rAgDAxWtbqmEL8ztolxsV2MjeWYqJjBC8g2dUVcdEY9cqpy\ncV6b1fSnIhNVumpTu4PYAcHKPs0e0nVxsLwE0lsIgoBTmeXYfjALaVnlAIBAb1dMuzkIcRHqFmsK\n8TtjmxgX28XYWI6Jihm8gGyTNeIiCAJK6souPefS9KzLxZrCZg/p+sg1l5KWYPR1C4JGru7x1Yq7\nU2ZBJXYczEbi6SIIAuDlJsPUmwIxarAvnBya7j7xO2ObGBfbxdhYjomKGbyAbFN3xaVOX4cL2mzT\nsy4XKrPQYLgyg6SLgxwhyiD0dQtGiFsQgpQBcLSDh3QLy2vx4+Ec7D9+ETq9Ea7ODpgUF4AJQwIQ\nEujB74wN4r9ltouxsRwTFTN4AdmmnoqLwWhAfk0hLmgzTc+6lNaXm9rFIjH6KPybPevi7uTW7f3s\nLpU1jdh1NAe7j+ahtkEPRwcxgn2V0OmMV+3V8p+Pa/9FMfsPjJmNwrUbze5jZluLjWb6ZOZ9Lk5S\n9O/jjv4B7ujn7wa57MadWJD/ltkuxsZyTFTM4AVkm2wpLhUN2qtGF2UhpyoPhqse0vWQqZolLn4u\nPr3uId26Bj32peRj19FcVNY0tvilb7Y4Jrr2pZm9LNhkvvLWcqNl72uutkFvSnJEIqCPxhVhAe4I\n69P0pyPzzPQUW/rOUHOMjeWYqJjBC8g22XJcGg06ZFflNnvWpUZXa2p3kjgiWBloetYlRBkIuYNz\nD/a4a9lybNqrrkGPc/laZORUICNHi/P5ldAbrtwt8vGQI6yPW1PiEuAOTzeZzT6z1Jvi0tswNpZj\nomIGLyDbdCPFRRAEFNWV4HxF5qURRpkoqC0ytYsgQpRXBEb7j8AAj/43/Ay6N1Js2kunN+LCxUqc\nya3A6ZwKnM3Vor7xyt0zlcIJ4X3c0f/SHRc/T7nNJC69OS43OsbGckxUzOAFZJtu9LjU6GqbHs7V\nZuFk2WnkVOUBALxkHhjlPwzDfePh6ujSw73smBs9Nu1hNArIKaq+dMelAhm5Faiq1ZnaXZ0d0D/A\nzVQqCvR2bTGcu7vYU1xuNIyN5ZiomMELyDb1trhkVeZgb94BHC1Mgc6og1QkQaxmMEb7D0eoW5DN\n/F+5JXpbbNpDEAQUlHAfdrYAABshSURBVNWaSkUZORUorbyylIOTowT9/JSmxCXEVwlHh+55Xsme\n42LrGBvLMVExgxeQbeqtcanV1eJgwVHszzuIwtpiAICfiw/GBAxHvHcsZFJZD/fw+nprbDqqVFuP\njNwKnMlpKhddLL3yvJJUIkKwr9L0gK41RxYxLraLsbEcExUzeAHZpt4eF0EQkFF+DvvyDiCl5CSM\nghFOEkfc5DMUo/2Hwd/Vt6e72KreHpvOqqptxJlcralclFVY1S0jixgX28XYWI6Jihm8gGyTPcVF\n21CJ3/MPY3/+IVQ0aAEAoW7BGO0/DLGawXAQ29bcHvYUm65g6cii/gHuCO/T8ZFFjIvtYmwsx0TF\nDF5Atske42IwGnCiNA378g4irSwDAODq4ILhvvEY5X8zvJw9e7iHTewxNl2pXSOLAtzg6+UCsQWJ\nC+Niuxgby3V7orJp0yZ88803ptcnTpzAZ599hhdffBEAEB4ejpdeeqnNYzBRsU/2Hpei2hLszz+I\ngxcTUaOrhQgiDPAMwxj/4Yj0jOjRIc72Hpuu1lUjixgX28XYWK5H76gcPnwYO3bswNmzZ/H4449j\n8ODBeOyxx/CHP/wBY8eObfV9TFTsE+PSRGfQIakoFfvyDuJCZRYAQOXkjlH+N2O4701wczL/pbYm\nxsa6OjqyiHGxXYyN5Xo0UVm8eDFWrlyJhQsXYvfu3QCA7777DidOnMCTTz7Z6vuYqNgnxqWl3Kp8\n7Ms7gMOFyWg0NEIsEiNGHYXR/sPR3z2024Y4Mzbdz5KRRTFhGvi6yxDip4S7q1MP9pauxe+M5VpL\nVKz+pF5qaip8fX0hkUigVCpN2z09PVFcXGzt0xP1CgEKP9wZcRtu6TcDRwqSsDfvAJKKUpFUlAof\nuQaj/YfjZt8hcJb2nun6qYmnmwzD3XwwPNIHAFBZ24gzOVqcyW0qF53L0+Jsrta0v0rhhBBfJUJ8\nFQj1VSLYVwlnJ9t6KJuoPax+9X711VeYM2dOi+2W3MhRqeSQSq07YVJrGRz1LMalNQoE+k7FrTFT\nkF5yFj+e3YuDucnYdGYbvjm/AyOD4jGl7xiEegRarQeMTc9SA+gb5ImES69r63U4nVWOMzkVyMgu\nR0Z2OZIyipGU0fQ/giIREKBxRf8+KoQFqhAW6I5gXzc4SG/s5RxuJPzOdI7VSz9Tp07Ft99+C5FI\nhMmTJ2PPnj0AgC1btiDj/9u7+9iq77r/48/vub/vfQttaSllExiMcaeDwW50uiuan4ubDsR15hcv\nE7OomU6zBTemmXFhiYlxkOkyTRaMGbobN6Pi9NrwYg42cMBYJ2OjhQG9hZ72nN6ctuec7/XHOT30\n0DKB9fR8274eSXN67j8n7/OlLz4338/Ro9x3330XfK6GfmYm1eXSRId62dOyj1db9nI2FgagNjSH\ndVWrWVG+FJfdOWHvpdpY0+i6mKZJODpIc2uEptYIzS0RmtuiDI5aXeSwG9RUBKmbHWLe7BB1lSHK\ni7wXtcJILo2OmYuXl6Gf9vZ2/H4/LlfqpEbz5s1j//79rFy5kpdeeomGhoZcvr3IjBB0BfjM3Ju4\nufYG3jn7LrtP76Xx7BF+E/kdz733R66dvZK1VddS4SvLd1NlEhiGQXHIQ3HIw4qPlQOp1UWtXf2p\n0JIOMCfaojS1RPif9PN8bgd1s4PUVYbSQ0ea7yLWkNOg0tnZSXFxceb6pk2b2Lx5M8lkkqVLl7Jm\nzZpcvr3IjGIzbCwuXcji0oWcHQjzz5bXea3lDV4+uZuXT+5mQdEVrKu6liWli7DbJmcPGrEGm82g\nqtRPVamftVenznw8HE/wQXsvTa0RjrdGaGqN0ng8TOPxcOZ5RUF3pselbnaIubOCmu8ik04nfFOX\nnOWoLhMnnoxzsPNtdp/ew/vdzQAUuEJcV/lxrqv6BIXugkt6PdXGmiaqLn2xYY63RjNDRk2tESJ9\nQ5n7DWB2qT8zUbeuMkR1WQCHXfNdLkTHzMXTmWnHoS+QNakuudHS28arLXt5vfVNYokYNsPGktJF\nrKu6lo8Vzb+oE8mpNtaUq7qMzHdpSg8ZNbeON9/FRm1FIDNcpPku2XTMXDwFlXHoC2RNqktuxeKD\n/Kv9ILtP7+FkbwsA5d5S1lZdy7WzV+J3+i74XNXGmiazLsmkSevZvlSvS2uU5pYIpzp7SSTP/Sk5\nf77LvNkhCmbofBcdMxdPQWUc+gJZk+oyOUzT5HjkJLtP7+FfHYeIJ+M4bQ6Wly9lXdVq5obmjDmR\nnGpjTfmuy9Bwgg86ejOTdZtbI7SHB7IeUxxyn1tlNDtE7QyZ75Lv2kwlCirj0BfImlSXydc73Mfe\n1v28enovnQNnAZgTqGRd1WpWzlqG255auafaWJMV69I7MMzxtvTy6NYoTS09REbtY2QAlaX+zHDR\nvNkhqsr8026+ixVrY1UKKuPQF8iaVJf8SZpJ3g2/z+7Tezl85h2SZhKP3cMnZi9nXdVqrp47X7Wx\noKlwzJimSVck+/wux9uiDA6Pne9SUeyjKOimMOCmMOCiMOimKOAm5HdNuSAzFWpjFQoq49AXyJpU\nF2sIx7p5reUN/tnyBj1DEQC8Tg82bDgMOzbDjsNmx27YsY9cjrrNZrPhMBzYDdu499vHPNeGwzb2\n8SO/O8bcNurxhgO7zZb9+PTv+dxterJM1WMmmTRpOduXdX6XUx19JC/wZ8kAgj4nhZkQ404HGlfW\n9YDPaZnJvFO1NvmgoDIOfYGsSXWxlkQyweEz77CndR/RRC+Dw8MkkwniZoJEMkHCTP3E078nzWS+\nm5zFwDgXbAxHJkAVuEMsL7+aFRVLL3mZttVMp2NmOJ4gHB2ku3eI7t5BuqODhHvT10d+jw4yFL/w\n98xuMygIuCgKnAs0hcF0mEmHnKKAG6/bnvMNPadTbXJNQWUc+gJZk+piXRdTG9M00+ElSSIZJ2Em\niacvE6PCzUiwGR12su9LkjDjJJLnPe8CASn1uPh/fN9EOmR1D/aQNJMYGFxRVM+qimu4pmwJPufU\n29hxph0zpmkyMJhIB5hUcEldpsNNbyrQ9PQOZa1GOp/LaRu3ZyZr2CngxuW8/BMkzrTafBR52z1Z\nRGYWwzBwGI7UPy7pSbhWFB3q5UDHW+xrP8jR8PscDb/Pjnef56rShaysuIYlJQtxTuA+STJxDMPA\n53Hg8zioKvVf8HFJ06S3fzgVXEbCTO/QqN9T19872c2H/Y/d73FkzZcpDIwdepqK82emCvWoKOla\njupiXdO1NmcGuvhX+0H2tR+gta8dAI/dwzVli1k1axlXFtVbeq7LdK3LZIknkkT6hjLDShcaduof\njF/wNQwg5HeNmQA8p7IAp2FSHPRQHHLjcal/4EI09DMOHdzWpLpY13SvjWmatPS1sa/tAPvbDxIe\n7AYg5Aqyonwpq2YtoyZYnfN5DZdqutfFKgaHEnT3nQszWT0zI7f1DjL8IfNnfG4HxSF3ZuPI4qA7\ndT0dZIqCHpwO64biXFJQGYcObmtSXaxrJtUmaSZp6jnBvrY3OdBxmL54PwBl3hJWVixj1axlltmR\neibVxepS82fimQnBceDE6R66ojG6IoN0RQc5G4llbUNwvpDflQ4wnnOXo8JMYcCNzWatsDwRFFTG\noYPbmlQX65qptYkn4/y76yj72g7w1pl3GE6mTlxWE6xiVcUylud55dBMrctUMF5tRsJMKrjEsi8j\n5wJNPDF+z4zNMCgMujLBpTjooSjkpmRUoAn6nJbr+ftPFFTGoYPbmlQX61JtUnslvXWmkX3tBzjS\n9Z4lVg6pLtZ1ubUxTZNo//A4AebcZXd06ILnnHHYbZlhpaKgh5ICd1awKQ658bodlgozCirj0MFt\nTaqLdak22c6tHDpAU88JAByGnatKF7KqYhmLSxZMysoh1cW6clmbRDJJT+8QXdFRQSYSO3c9Okik\nb+iCz3e77BQHs3tiikLZQ07uj7A0+1JpebKIyAQLugJcX72G66vXcGagi/3plUOHOt/mUOfbU2rl\nkEw9dpstMymXqvGHHofjScK9g3T1xLLmyYwEm3A0RuvZ/gu+R8DrzISW2SU+/t91cyd95ZJ6VPS/\nEMtRXaxLtfnPPnTlUMVSVlVM/Moh1cW6pkJtYkPxsfNkooOE05dnIzGGhlPzZX74/1dRUzF+z8dH\npaGfcUyFL9BMpLpYl2pzaS60cqjcW8rKimtYOUErh1QX65oOtTFNk75YnHgiSWHAnbP3UVAZx3T4\nAk1Hqot1qTaXL5crh1QX61JtLp7mqIiI5JHD5mBJ6SKWlC4as3Log+hpnnv/T+mVQ8u4pmzxlNxz\nSCQXFFRERCaZx+Hm47OW8/FZy4kO9fJmx1vsbz9wbs+ho8+zuGQBKydx5ZCIVSmoiIjkUdAV4Ibq\nNdxw3sqhg51vc3Bk5VD5YlZVaOWQzEwKKiIiFlHqLea/5n6SW2pv4nRvK/vbD7K//SB7W/ezt3V/\nTlcOiViVgoqIiMUYhkF1sJLqYCWfr/8vjnUfZ3/7AQ50HOaVk6/yyslXs1YOlZGb5aIiVqBVP5qN\nbTmqi3WpNvl1oZVDdUVzmB+sp75wLnUFtQSc/jy3VEbomLl4WvUjIjLFZa8civHWmXcyK4eawyf5\n2wepx83ylVNfOJd5BXOpL6ij1FusYSKZshRURESmII/Dk1k5FCh0sr/pHY51N9PUc4KmyAnaWt7g\nny1vAKmz4s4rmEt94VzqC+ZSHajEbpu8PVxEPgoFFRGRKc7r9LCg+AoWFF8BQCKZ4HRvK8d6jnOs\n5zhN3c0c7DzMwc7DALhsTuYW1FJfkAoucwtq8Do8+fwIIhekoCIiMs3YbXZqQtXUhKq5ac5aTNPk\nbCzMse7mVHDpOZ45ZwuAgUF1YDbz0j0u9YV1l32WXJGJpqAiIjLNGYZBqbeYUm8xn5i9AoC+4X6a\neo7T1HOCY93NnIie4mRvC/849RoAxZ6idGhJzXWZ7a/QOVwkLxRURERmIL/Tl5mYCzCcjHMyeopj\n3cc51tNMU/cJ9rUfYF/7AQC8Di/zCmrTE3TnUhuag0tnzJVJoKAiIiI4bQ7mFaR6Tz7NjSTNJB39\nnengkvppPHuExrNHALAbdmqCVenhojrmFdQSdAXy/ClkOlJQERGRMWyGjVn+Cmb5K7iu6hMA9AxG\naepJ9bgc6z7OiegpmiMf8D/8LwAVvjLq02GnvnAuZd5SLYuWj0xBRURELkqBO8iy8iUsK18CwGBi\niOM9H6SGinpO0NRznNda9/Fa6z4Ags7AqAm6c5kTqNKyaLlkCioiInJZ3HYXHyuez8eK5wOpZdEt\nfW3pJdGp4aJDnW9zqPNtAJw2J3NDc6gvrEsPM9XgdXjz+RFkClBQERGRCWG32ZkTrGJOsIobq6/D\nNE26Yt2poaJ0eHm/u5n3upuA1LLoysCszPlc6gvrKPIU5vlTiNUoqIiISE4YhkGJt4gSbxEfn7Uc\ngP7h/vQw0QmO9TRzInKS072t/O/pPQAUuQsp9RbjdXjxOjz4HF48Dg8+hyd1m9OL1+7B6zx3n9fu\n0ZDSNKagIiIik8bn9LG4dCGLSxcCqY0WT0ZPZ3pcmnpOZHpcLoXb7sqEG6/Dey7YZF2O3OfF6/Sk\nA48Xr8OL06Y/h1alyoiISN44bA7qCmqpK6iFmhsASJpJYvEY/fEYA/GB9M+o68MDDCRiDAzHMvcN\nxAfoj8foGYzQ1teBiXlJ7XDaHOmeG++4wSarV2fUpS8ddFw2p1Y45YiCioiIWIrNsOFz+vA5fZf1\nfNM0GUwMpsPNuSAzcj02cntW0EmHneEBzgx0kTATl9xm73lBxufwUB4qJmgroMJXRoWvjGJPkc7w\ne4kUVEREZFoxDAOPw4PH4aGIS5+ca5omw8n4mN6agYsMPZHBCEPJ4dSLdWa/tsPmoMxbQoWvjPJ0\neBn5udxgNt0pqIiIiIxiGAYuuxOX3UmBO3RZr5FIJhiIxzB8wxw5fZz2/k7a+zvpSF+29rWPeU7Q\nGTgXXvxlmTBT6ime0ZOFFVREREQmmN1mJ+DyU1YUxB/P7tUxTZOeoUgmtGRCTF9n5sy/o9kMG2Xe\nkqwemJHfA07/tJ8bo6AiIiIyiQzDoNBdQKG7gCuL5mfdN5wYpnPgbFaIGf374fNey+fwjhlGKveV\nUeYrnTYrmabHpxAREZkGnHYnlYFZVAZmZd1umia9w33pwNKRFWBG9lwazcCgxFNEhb98TJAJuYJT\nqhdGQUVERMTiDMMg6AoQdAWYX1iXdV8imeDMwNlxe2BG73g9wmN3jzuMVO4rxWV3TebHuigKKiIi\nIlOY3WZP9Zz4y8fc1z/cnz0PJn3Z0tvKB9FTYx5f5C7MTOYdHWYK3QV5W1atoCIiIjJN+Zy+cyfU\nGyVpJumKhcdM5m3v7+RI+D2OhN/LerzL5qQ6WMV/L77zsldCXS4FFRERkRnGZtgo9ZZQ6i3hqpIF\nWfcNxGOZnpfRw0g9gxGGR84PM4kUVERERCTD6/BQG5pDbWhOvpsCgM7jKyIiIpaloCIiIiKWpaAi\nIiIilqWgIiIiIpaloCIiIiKWldNVPy+++CJPPvkkDoeDb3/72+zcuZPGxkYKC1MbNH3ta1/jxhtv\nzGUTREREZArLWVAJh8Ns27aNZ599lv7+fh577DEAvvvd73LTTTfl6m1FRERkGsnZ0M+ePXtYvXo1\ngUCA8vJyHn744Vy9lYiIiExThmmaZi5e+IknnqCpqYnu7m4ikQjf+ta3eOGFF+js7GR4eJiSkhIe\nfPBBiouLL/ga8XgCh8Oei+aJiIjIFJDTOSrd3d1s3bqVlpYW7rrrLh555BEKCwtZuHAhTzzxBFu3\nbmXz5s0XfH443J/L5lFWFqSzM5rT95BLp7pYl2pjTaqLdak2F6+sLDju7Tkb+ikpKWHZsmU4HA5q\namrw+/1ceeWVLFy4EIBPfvKTHD16NFdvLyIiItNAzoLK2rVr2bt3L8lkknA4TH9/P5s3b+bkyZMA\nvP7661xxxRW5ensRERGZBnI29FNRUcEtt9zCHXfcAcADDzyA3+/nnnvuwev14vP5eOSRR3L19iIi\nIjIN5GwyrYiIiMhHpTPTioiIiGUpqIiIiIhlKaiIiIiIZSmoiIiIiGUpqIiIiIhlKaiIiIiIZc3I\noPKTn/yE9evXs2HDBt566618N0dGefTRR1m/fj233347L730Ur6bI6PEYjFuvvlmnnvuuXw3RUZ5\n8cUX+fznP89tt93Grl278t0cSevr6+Ob3/wmDQ0NbNiwgd27d+e7SVNWTvf6saI33niDEydOsGPH\nDo4dO8amTZvYsWNHvpslwN69e3nvvffYsWMH4XCYL3zhC3zmM5/Jd7Mk7fHHH6egoCDfzZBRwuEw\n27Zt49lnn6W/v5/HHnuMG2+8Md/NEuD555+nrq6Oe++9l/b2dr761a+yc+fOfDdrSppxQWXPnj3c\nfPPNANTX19PT00Nvby+BQCDPLZNVq1Zx9dVXAxAKhRgYGCCRSGC3awftfDt27Bjvv/++/ghazJ49\ne1i9ejWBQIBAIMDDDz+c7yZJWlFREe+++y4AkUiEoqKiPLdo6ppxQz9nzpzJ+sIUFxfT2dmZxxbJ\nCLvdjs/nA+CZZ57h+uuvV0ixiC1btnD//ffnuxlynlOnThGLxfjGN77Bxo0b2bNnT76bJGmf+9zn\naGlp4dOf/jR33nkn9913X76bNGXNuB6V82kHAev5+9//zjPPPMOvf/3rfDdFgD/84Q9cc801zJkz\nJ99NkXF0d3ezdetWWlpauOuuu3jllVcwDCPfzZrxXnjhBSorK/nVr37FkSNH2LRpk+Z3XaYZF1TK\ny8s5c+ZM5npHRwdlZWV5bJGMtnv3bn7xi1/w5JNPEgwG890cAXbt2sXJkyfZtWsXbW1tuFwuZs2a\nxZo1a/LdtBmvpKSEZcuW4XA4qKmpwe/309XVRUlJSb6bNuO9+eabrF27FoAFCxbQ0dGhoezLNOOG\nfq677jr++te/AtDY2Eh5ebnmp1hENBrl0Ucf5Ze//CWFhYX5bo6k/exnP+PZZ5/ld7/7HV/60pe4\n++67FVIsYu3atezdu5dkMkk4HKa/v19zISyitraWQ4cOAXD69Gn8fr9CymWacT0qy5cv56qrrmLD\nhg0YhsFDDz2U7yZJ2p///GfC4TD33HNP5rYtW7ZQWVmZx1aJWFdFRQW33HILd9xxBwAPPPAANtuM\n+/+nJa1fv55NmzZx5513Eo/H+eEPf5jvJk1ZhqlJGiIiImJRit4iIiJiWQoqIiIiYlkKKiIiImJZ\nCioiIiJiWQoqIiIiYlkKKiIyYU6dOsXixYtpaGjI7Bp77733EolELvo1GhoaSCQSF/34L3/5y7z+\n+uuX01wRmQIUVERkQhUXF7N9+3a2b9/O008/TXl5OY8//vhFP3/79u06MZaIZMy4E76JyORatWoV\nO3bs4MiRI2zZsoV4PM7w8DCbN29m0aJFNDQ0sGDBAv7973/z1FNPsWjRIhobGxkaGuLBBx+kra2N\neDzOrbfeysaNGxkYGOA73/kO4XCY2tpaBgcHAWhvb+d73/seALFYjPXr1/PFL34xnx9dRCaAgoqI\n5EwikeBvf/sbK1as4Pvf/z7btm2jpqZmzCZtPp+P3/zmN1nP3b59O6FQiJ/+9KfEYjE++9nPsm7d\nOl577TU8Hg87duygo6ODT33qUwD85S9/Yd68efzoRz9icHCQ3//+95P+eUVk4imoiMiE6urqoqGh\nAYBkMsnKlSu5/fbb+fnPf84PfvCDzON6e3tJJpNAamuL8x06dIjbbrsNAI/Hw+LFi2lsbOTo0aOs\nWLECSG0yOm/ePADWrVvHb3/7W+6//35uuOEG1q9fn9PPKSKTQ0FFRCbUyByV0aLRKE6nc8ztI5xO\n55jbDMPIum6aJoZhYJpm1n42I2Gnvr6eP/3pT+zbt4+dO3fy1FNP8fTTT3/UjyMieabJtCKSc8Fg\nkOrqav7xj38A0NzczNatWz/0OUuXLmX37t0A9Pf309jYyFVXXUV9fT0HDhwAoLW1lebmZgD++Mc/\ncvjwYdasWcNDDz1Ea2sr8Xg8h59KRCaDelREZFJs2bKFH//4xzzxxBPE43Huv//+D318Q0MDDz74\nIF/5ylcYGhri7rvvprq6mltvvZWXX36ZjRs3Ul1dzZIlSwCYP38+Dz30EC6XC9M0+frXv47DoX/i\nRKY67Z4sIiIilqWhHxEREbEsBRURERGxLAUVERERsSwFFREREbEsBRURERGxLAUVERERsSwFFRER\nEbEsBRURERGxrP8DZtcbKoxyJekAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "-wCCq_ClKxlO" + }, + "cell_type": "markdown", + "source": [ + "The block above contains a few additional possible normalization functions. Try some of these, or add your own.\n", + "\n", + "Note that if you normalize the target, you'll need to un-normalize the predictions for loss metrics to be comparable." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "GhFtWjQRzD2l" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "OMoIsUMmzK9b" + }, + "cell_type": "markdown", + "source": [ + "These are only a few ways in which we could think about the data. Other transformations may work even better!\n", + "\n", + "`households`, `median_income` and `total_bedrooms` all appear normally-distributed in a log space.\n", + "\n", + "`latitude`, `longitude` and `housing_median_age` would probably be better off just scaled linearly, as before.\n", + "\n", + "`population`, `totalRooms` and `rooms_per_person` have a few extreme outliers. They seem too extreme for log normalization to help. So let's clip them instead." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "XDEYkPquzYCH", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def normalize(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + "\n", + " processed_features[\"households\"] = log_normalize(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = log_normalize(examples_dataframe[\"median_income\"])\n", + " processed_features[\"total_bedrooms\"] = log_normalize(examples_dataframe[\"total_bedrooms\"])\n", + " \n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + "\n", + " processed_features[\"population\"] = linear_scale(clip(examples_dataframe[\"population\"], 0, 5000))\n", + " processed_features[\"rooms_per_person\"] = linear_scale(clip(examples_dataframe[\"rooms_per_person\"], 0, 5))\n", + " processed_features[\"total_rooms\"] = linear_scale(clip(examples_dataframe[\"total_rooms\"], 0, 10000))\n", + "\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.15),\n", + " steps=1000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "b7atJTbzU9Ca" + }, + "cell_type": "markdown", + "source": [ + "## Optional Challenge: Use only Latitude and Longitude Features\n", + "\n", + "**Train a NN model that uses only latitude and longitude as features.**\n", + "\n", + "Real estate people are fond of saying that location is the only important feature in housing price.\n", + "Let's see if we can confirm this by training a model that uses only latitude and longitude as features.\n", + "\n", + "This will only work well if our NN can learn complex nonlinearities from latitude and longitude.\n", + "\n", + "**NOTE:** We may need a network structure that has more layers than were useful earlier in the exercise." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "T5McjahpamOc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 652 + }, + "outputId": "d6e096d4-69bb-4683-a5f7-576c19b9c159" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Train the network using only latitude and longitude\n", + "#\n", + "def location_location_location(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that keeps only the latitude and longitude.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " return processed_features\n", + "\n", + "lll_dataframe = location_location_location(preprocess_features(california_housing_dataframe))\n", + "lll_training_examples = lll_dataframe.head(12000)\n", + "lll_validation_examples = lll_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.05),\n", + " steps=500,\n", + " batch_size=50,\n", + " hidden_units=[10, 10, 5, 5, 5],\n", + " training_examples=lll_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=lll_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 26, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 114.82\n", + " period 01 : 108.69\n", + " period 02 : 106.24\n", + " period 03 : 104.82\n", + " period 04 : 103.61\n", + " period 05 : 102.82\n", + " period 06 : 101.92\n", + " period 07 : 101.62\n", + " period 08 : 101.28\n", + " period 09 : 101.60\n", + "Model training finished.\n", + "Final RMSE (on training data): 101.60\n", + "Final RMSE (on validation data): 99.94\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4lFX2wPHvlEx6742OQAIklABJ\naCEBIuCigBER7Oyu/YcFcVfdgiKsbUWFddlVFlgVRQRRlCK9BUIiEAiEnk5678n7+wPJEkqYkJnM\nJDmf59nncdp9z8yZWU7u+95zVYqiKAghhBBCtCFqUwcghBBCCNFcUsAIIYQQos2RAkYIIYQQbY4U\nMEIIIYRoc6SAEUIIIUSbIwWMEEIIIdocrakDEMKc9erVi06dOqHRaACoq6sjJCSEV199FRsbm9se\n96uvviImJua6+9euXcsrr7zCP/7xDyIiIhrur6ysJCwsjHHjxrFw4cLbPq6+UlJSWLBgAefPnwfA\n2tqap59+mqioKKMfuzmWLFlCSkrKdZ9JbGwsjz32GH5+fte95qeffmqt8FokLS2NyMhIunbtCoCi\nKLi5ufHHP/6RgICAZo317rvv4uPjw/3336/3a9avX8+aNWtYuXJls44lRGuRAkaIW1i5ciVeXl4A\nVFdXM2fOHD755BPmzJlzW+Pl5OTwr3/964YFDIC3tzfff/99owJm+/btODg43NbxbseLL77I5MmT\n+cc//gHAkSNHeOihh/jxxx/x9vZutThawtvbu80UKzej0WgavYeNGzfy1FNPsWnTJnQ6nd7jvPDC\nC8YITwiTklNIQjSDTqdjxIgRJCUlAVBVVcXrr7/O+PHjufPOO1m4cCF1dXUAnDx5kunTpxMdHc3k\nyZPZvXs3ANOnTycjI4Po6Giqq6uvO8bAgQOJjY2loqKi4b6NGzcSHh7ecLu6upo33niD8ePHM2bM\nmIZCAyAhIYEpU6YQHR3NhAkT2LdvH3D5L/rhw4ezYsUK7rrrLkaMGMHGjRtv+D6Tk5MJCgpquB0U\nFMSmTZsaCrmPPvqIUaNGcffdd/PPf/6TMWPGADBv3jyWLFnS8Lqrb98qrgULFjBz5kwADh8+zNSp\nUxk7diwxMTGkpqYCl2ei/u///o+IiAhmzpxJVlbWLTJ2Y2vXruXpp5/moYce4m9/+xuxsbFMnz6d\n5557ruEf+x9//JFJkyYRHR3Ngw8+SEpKCgAffvghr776KtOmTWP58uWNxn3uuef49NNPG24nJSUx\nfPhw6uvref/99xk/fjzjx4/nwQcf5NKlS82Oe8KECVRWVnLu3DkAVq9eTXR0NGPGjOH555+nsrIS\nuPy5v/XWW9x11138+OOPjfJws+9lfX09f/3rXxk9ejTTpk3j5MmTDcc9ePAg99xzDxMmTODOO+/k\nxx9/bHbsQhicIoS4qTvuuEPJzMxsuF1YWKg88MADypIlSxRFUZRPPvlEmT17tlJTU6NUVFQoU6dO\nVdatW6fU1dUpd955p7JhwwZFURTl6NGjSkhIiFJSUqIcOHBAiYqKuuHxvvnmG+Xll19WXnzxxYbX\nlpSUKJGRkcrXX3+tvPzyy4qiKMpHH32kPPTQQ0pVVZVSVlam3H333cq2bdsURVGUSZMmKd9//72i\nKIry7bffNhwrNTVVCQgIUFauXKkoiqJs3LhRGTt27A3jeOaZZ5SIiAjlP//5j3LmzJlGj506dUoZ\nPHiwkp2drdTU1ChPPPGEEhERoSiKorz88svKxx9/3PDcq283FVdgYKCydu3ahvcbEhKi7NmzR1EU\nRdmwYYNyzz33KIqiKKtWrVIeeOABpaamRsnPz1ciIiIaPpOrNfUZX/mcg4ODlfPnzzc8v1+/fsq+\nffsURVGU9PR0ZdCgQcqFCxcURVGUf//738pDDz2kKIqiLF68WBk+fLiSl5d33bg//PCD8sADDzTc\n/uCDD5T58+crycnJyrhx45Tq6mpFURRlxYoVyrfffnvT+K58Ln369Lnu/pCQEOXs2bPKoUOHlNDQ\nUCUrK0tRFEV57bXXlIULFyqKcvlzv+uuu5TKysqG2x9//HGT38sdO3Yo48aNU0pLS5WKigpl2rRp\nysyZMxVFUZQpU6YosbGxiqIoyvnz55Xnn3++ydiFaA0yAyPELcyaNYvo6GgiIyOJjIxk2LBhzJ49\nG4AdO3YQExODVqvFysqKu+66i71795KWlkZubi4TJ04EoF+/fvj4+HDs2DG9jjlx4kS+//57ALZu\n3UpERARq9f9+rtu3b2fGjBnodDpsbGyYPHkymzdvBmDdunXceeedAAwaNKhh9gKgtraWKVOmABAY\nGEhGRsYNj//222/zwAMPsGHDBiZNmsSYMWP44osvgMuzIyEhIbi7u6PVapk0aZJe76mpuGpqahg7\ndmzD+J6eng0zTpMmTSIlJYWMjAzi4uIYO3YsWq0WZ2fnRqfZrpWZmUl0dHSj/119rUyXLl3o0qVL\nw20rKytCQ0MB2Lt3L0OHDqVz584A3HvvvcTGxlJbWwtcnpFycXG57pijR4/mxIkTFBYWArBlyxai\no6NxcHAgPz+fDRs2UFRUxKxZs7j77rv1+tyuUBSF1atX4+npSZcuXdi2bRsTJkzA09MTgPvvv7/h\nOwAQGhqKpaVlozGa+l4eOnSIUaNGYWtri5WVVUOuAFxdXVm3bh1nz56lS5cuvPvuu82KXQhjkGtg\nhLiFK9fA5OfnN5z+0Gov/3Ty8/NxdHRseK6joyN5eXnk5+djb2+PSqVqeOzKP2Jubm63PGZ4eDiv\nvvoqhYWF/PDDDzz55JMNF9QClJSU8NZbb/Hee+8Bl08p9e/fH4ANGzawYsUKysrKqK+vR7lquzON\nRtNw8bFaraa+vv6Gx7e0tOSxxx7jscceo7i4mJ9++okFCxbg5+dHUVFRo+txXF1db/l+9InLzs4O\ngOLiYlJTU4mOjm54XKfTkZ+fT1FREfb29g33Ozg4UFZWdsPj3eoamKvzdu3tgoKCRu/R3t4eRVEo\nKCi44WuvsLGxISwsjB07djBo0CCKi4sZNGgQKpWKDz/8kE8//ZT58+cTEhLCX/7yl1teT1RXV9fw\nOSiKQo8ePViyZAlqtZqSkhK2bNnCnj17Gh6vqam56fsDmvxeFhUV4eHh0ej+KxYsWMDSpUt55JFH\nsLKy4vnnn2+UHyFMQQoYIfTk4uLCrFmzePvtt1m6dCkAbm5uDX9tAxQWFuLm5oarqytFRUUoitLw\nj0VhYaHe/9hbWFgQERHBunXruHjxIgMGDGhUwHh4ePDoo49eNwNx6dIlXn31Vb7++mv69OnDhQsX\nGD9+fLPeZ35+PklJSQ0zIA4ODsTExLB7926Sk5Oxt7enpKSk0fOvuLYoKioqanZcHh4edOvWjbVr\n1173mIODw02PbUiurq4kJCQ03C4qKkKtVuPs7HzL144fP54tW7ZQUFDA+PHjG/I/bNgwhg0bRnl5\nOYsWLeKdd9655UzGtRfxXs3Dw4N77rmHl19+uVnv62bfy6Y+Wzc3N1577TVee+019uzZwzPPPMOI\nESOwtbXV+9hCGJqcQhKiGR555BESEhI4ePAgcPmUwZo1a6irq6O8vJz169czatQo/Pz88PLyarhI\nNj4+ntzcXPr3749Wq6W8vLzhdMTNTJw4kWXLlt1w6XJkZCRff/01dXV1KIrCkiVL2LVrF/n5+djY\n2NCtWzdqa2tZvXo1wE1nKW6ksrKSZ599tuHiToCLFy9y5MgRBg8ezIABA4iLiyM/P5/a2lrWrVvX\n8Dx3d/eGiz9TU1OJj48HaFZcQUFB5OTkcOTIkYZxXnrpJRRFITg4mG3btlFXV0d+fj67du3S+301\nR3h4OHFxcQ2nub788kvCw8MbZt6aEhERQUJCAlu3bm04DbNnzx7+8pe/UF9fj42NDb179240C3I7\nxowZw+bNmxsKja1bt/LPf/6zydc09b0cMGAAe/bsoaKigoqKiobCqaamhlmzZpGdnQ1cPvWo1Wob\nndIUwhRkBkaIZrCzs+O3v/0tixYtYs2aNcyaNYvU1FQmTpyISqUiOjqaO++8E5VKxXvvvcef/vQn\nPvroI6ytrfnggw+wsbGhV69eODo6Eh4ezrfffouPj88NjzVkyBBUKhUTJky47rEZM2aQlpbGxIkT\nURSFvn378tBDD2FjY8PIkSMZP348rq6uzJs3j/j4eGbNmsXixYv1eo8+Pj4sXbqUxYsX88Ybb6Ao\nCnZ2drzyyisNK5Puu+8+7rnnHpydnRk3bhynT58GICYmhqeffppx48YREBDQMMvSu3dvveOysrJi\n8eLFzJ8/n7KyMiwsLHjuuedQqVTExMQQFxdHVFQUPj4+REVFNZo1uNqVa2Cu9be//e2Wn4GXlxdv\nvPEGTz75JDU1Nfj5+TF//ny9Pj87OzsCAwM5deoUwcHBAISEhPDDDz8wfvx4dDodLi4uLFiwAIC5\nc+c2rCRqjsDAQH7/+98za9Ys6uvrcXV15S9/+UuTr2nqexkREcGOHTuIjo7Gzc2NUaNGERcXh4WF\nBdOmTePhhx8GLs+yvfrqq1hbWzcrXiEMTaVcfSJaCCGaKS4ujrlz57Jt2zZThyKE6EBkDlAIIYQQ\nbY4UMEIIIYRoc+QUkhBCCCHaHJmBEUIIIUSbIwWMEEIIIdqcNrmMOifnxssmDcHZ2YaCgnKjjS9u\nn+TGPElezJfkxnxJbvTj7m5/08dkBuYaWq3G1CGIm5DcmCfJi/mS3JgvyU3LSQEjhBBCiDZHChgh\nhBBCtDlSwAghhBCizZECRgghhBBtjhQwQgghhGhzpIARQgghRJsjBYwQQggh2hwpYIQQQoh2ZseO\nn/V63gcfvEtGRvpNH58373lDhWRwUsAIIYQQ7UhmZgZbt27S67nPPfcCPj6+N3184cL3DBWWwbXJ\nrQSEEEIIcWPvvbeIpKTjjBgRwrhxd5KZmcHf/76Et976Kzk52VRUVPDoo78lPHwETz/9W55/fi7b\nt/9MWVkpKSkXSU9P49lnXyA0NJyJEyP54Yefefrp3xISMpT4+DgKCwtZtOh93Nzc+OtfXyMrK5N+\n/fqzbdtWvv12Y6u9TylghBBCCCP5atsZDp3Mvu5+jUZFXZ1yW2OG9PYgZkyPmz5+//2zWLv2K7p2\n7U5KygWWLPkXBQX5DBkyjDvvnER6ehqvvTaP8PARjV6XnX2Jd95ZzIED+1i//htCQ8MbPW5ra8sH\nHyxl6dIP2bVrGz4+flRXV/HPfy5n797dfPXVF7f1fm6XFDBXyS2sIKu4Ci8HS1OHIoQQQrRYnz6B\nANjbO5CUdJzvvluLSqWmuLjouuf27x8MgIeHB6Wlpdc9HhQ0oOHxoqIiLl48T79+QQCEhoaj0bTu\n/k5SwFxl/d7z7EvM4o3Hh+LtamvqcIQQQrRxMWN63HC2xN3dnpycEqMf38LCAoAtW36iuLiYjz/+\nF8XFxTz++Kzrnnt1AaIo188OXfu4oiio1ZfvU6lUqFQqQ4ffJLmI9ypB3d1QFNgSl2bqUIQQQojb\nolarqaura3RfYWEh3t4+qNVqdu7cRk1NTYuP4+vrx6lTJwA4ePDAdcc0NilgrjLwDnc8XWzYdyyT\n0oqWJ1cIIYRobZ07d+XUqZOUlf3vNNDo0WPYt283zz33BNbW1nh4ePDZZ8tadJywsBGUlZXxxBOP\nceRIAg4Oji0NvVlUyo3micycMafd9iVl86/1iUwZ2Y1JYV2MdhzRfK015SqaR/JiviQ35qs95Ka4\nuIj4+DhGj44kJyeb5557gs8//8agx3B3t7/pY3INzDXGDunEf39K4uf4NKKHdkKrkUkqIYQQ4lo2\nNrZs27aVzz9fiaLU88wzrdv0TgqYa9hYWTAyyIdNB1M5mHSJsL7epg5JCCGEMDtarZa//vUtkx1f\nphduIHKQHyoVbD6YesMrsYUQQghhWlLA3ICbozWDe3mQkl3KqZRCU4cjhBBCiGtIAXMT40L8Adh8\nKNXEkQghhBDiWlLA3ER3X0e6+zrwy5lcsvLLTR2OEEIIIa4iBUwTxoV0AmBLnMzCCCGEaF+mTbuL\n8vJyVq5cTmLi0UaPlZeXM23aXU2+fseOnwHYuHEDO3duN1qcNyMFTBMG3uGGq4MVe6WxnRBCiHZq\n1qyH6du3f7Nek5mZwdatmwCYMOEuRo2KMEZoTTLqMurk5GSefPJJHn74YWbOnAnAihUrWLRoEQcP\nHsTWtvF+Q88//zw6nY6FCxcaMyy9adRqogb7sXrbGXb+ks7E0C6mDkkIIYRo0qOPPsCCBe/i5eVF\nVlYmr7zyAu7uHlRUVFBZWcmcOS8RENC34flvvvlnRo+OJDh4AH/841yqq6sbNnYE2Lz5R9asWY1G\no6ZLl+68/PIfee+9RSQlHeezz5ZRX1+Pk5MTU6fex5IlH3Ds2BFqa+uYOjWG6OiJPP30bwkJGUp8\nfByFhYUsWvQ+Xl5eLX6fRitgysvLmT9/PqGhoQ33rVu3jry8PDw8PK57/t69e0lJSaFHj5tvEW4K\nI/r7sH7PeX4+nMb4IdLYTgghhP7WnvmehOxj192vUauoq7+9Nh0DPPoxpcekmz4+cmQEe/fuYurU\nGHbv3snIkRF0796TkSNHc/jwIf773//w5ptvX/e6TZt+pFu37jz77Av8/PPmhhmWiooK3n33Q+zt\n7XnqqdmcPXuG+++fxdq1X/HII7P5978/AeCXX+I5d+4sS5d+SkVFBQ89NJ2RI0cDYGtrywcfLGXp\n0g/ZtWsbMTEzbuu9X81o/xrrdDqWLVvWqFiJiopizpw51+1YWV1dzdKlS3niiSeMFc5ts7HSMjLI\nh8LSag6dzDZ1OEIIIUSTLhcwuwHYs2cnw4ePYufOn3niicdYuvRDioqKbvi6CxfO0bdvEAADBgxq\nuN/BwYFXXnmBp5/+LRcvnqeo6MbtRU6ePEFw8EAArK2t6dKlG6mpl68hDQoaAICHhwelpaU3fH1z\nGW0GRqvVotU2Ht7Ozu6Gz/3kk0+4//77b/q4qUUN8mNLXCqbD6YyLMCz1bcMF0II0TZN6THphrMl\nxtwLqVu37uTl5XDpUhYlJSXs3r0DNzcPXnttPidPnuCjj/5+w9cpCqjVl/99q/91dqimpob33vsb\ny5d/jqurG3Pn/t9Nj6tSqbi692ttbU3DeBqN5qrjGKZBrMm3Erhw4QKJiYk888wzxMbG6vUaZ2cb\ntFrNrZ94m67dPMrd3Z6wfj7sPZrBpZJq+nV3M9qxRdOa2thLmI7kxXxJbsyXMXMTGTmGFSuWMX78\nWAoKCujduxfu7vasWrUPlUrB3d0ejUaNm5sdVlYWODpaExBwBykpZ3F3v5sDB3ag0aixtlZhYaGl\nd++uZGZmkpx8EltbCywtLdFoVLi722Nra4mdnRW9e/dm6dKluLvbU1ZWRlZWBsHBAeh0WpydbXF3\nt8fOzoqaGkuDvHeTFzA7duwgIyODmJgYSktLyc/PZ9myZcyePfumrykoMF5flptVxaP6e7P3aAZf\nbzmFl4Ol0Y4vbq497N7aHklezJfkxnwZOzchIeH8/vePsnz5F1RWVvDGG3/iu+++Z+rUGNav38Dy\n5f+lrq6e3NxSKitrKCqqYPjwKP7whxeZMWMm/fsHU1+vUFurZdCgIUyefA89evRk+vSZzJ//Jh9+\n+AnHjiXy2mt/xtbWDguLSjp37kXXrj2JiZlObW0ts2c/SVlZHdXVtRQUlJGTU0JpaSVlZVV6v/em\nCh2VYuTNfj788EOcnZ0bViEBjBkzhg0bNly3Cik2NpZvv/32lquQjJn0m32pFEXhzZWHOZ9RzILf\nDcPT2cZoMYgbk/8zNk+SF/MluTFfkhv9NFXAGG0GJjExkUWLFpGeno5Wq2XTpk2EhYWxb98+cnJy\nmD17NsHBwcydO9dYIRiUSqViXIg//1h/nK2H0nhg3B2mDkkIIYTosIw+A2MMppiBAairr2feP/ZT\nUlHDu0+FY2tlYbQ4xPXkLxbzJHkxX5Ib8yW50U9TMzDS1KQZNGo1kYP8qa6pZ9cvGaYORwghhOiw\npIBpppFBPljqNGw9nEZtXb2pwxFCCCE6JClgmsnGSsuI/t4UlFQRJ43thBBCCJOQAuY2RA32RwVs\nPpRqsIY8QgghhNCfFDC3wcPJmoF3uHMhq4TTaTduySyEEEII45EC5jaNDfEHLs/CCCGEEKJ1SQFz\nm3r6OdLV256E5ByyjdgZWAghhBDXkwLmNqlUKsaG+KMAW+PSTB2OEEII0aFIAdMCg3t54Gxvye6j\nmZRX1pg6HCGEEKLDkAKmBbQaNVGD/aiqqWPnEWlsJ4QQQrQWKWBaaFSQD5YWGn6WxnZCCCFEq5EC\npoVsrCwY3t+b/OIqDp/KMXU4QgghRIcgBYwBjB3s92tjuxRpbCeEEEK0AilgDMDD2Ybgnm6czyzh\nTLo0thNCCCGMTQoYAxknje2EEEKIViMFjIHc4e9EZy974pNzyC6sMHU4QgghRLsmBYyBqFQqxof4\noyiwNU5mYYQQQghjkgLGgAb3vrqxXa2pwxFCCCHaLSlgDEirURM5yI+q6jp2SWM7IYQQwmikgDGw\nUcE+6CzU/Hw4lbp6aWwnhBBCGIMUMAZma2XB8H7e5EljOyGEEMJopIAxgrGD/VEBW2RJtRBCCGEU\nUsAYgaeLDUE93DibUSyN7YQQQggjkALGSMYP+bWx3cEUE0cihBBCtD9SwFxl04VtvLJlIdV1NS0e\n6w5/Jzp52nE4OYdcaWwnhBBCGJQUMFeprq/hbP5F4i790uKxLje263S5sd3hNANEJ4QQQogrpIC5\nynCfoahVanak7THIrtIhfTxwtNOx60gGFVXS2E4IIYQwFClgruJs5cRQvwGkl2ZyuvBci8fTatRE\nDfKjsrqO3dLYTgghhDAYKWCuMeGOCAB2pO4xyHijgn3RadVsPZwmje2EEEIIAzFqAZOcnExUVBSr\nVq1quG/FihUEBgZSVlbWcN/GjRuZNm0aMTExvP/++8YM6ZbucO1GJ3s/juaeILciv8Xj2VlbEN7P\nm9yiShKScw0QoRBCCCGMVsCUl5czf/58QkNDG+5bt24deXl5eHh4NNxXUVHBO++8w/Lly1m9ejX7\n9u3jzJkzxgrrllQqFRH+w1FQ2Jm21yBjRg32A2DTIVlSLYQQQhiC0QoYnU7HsmXLGhUrUVFRzJkz\nB5VK1XCftbU13333HXZ2dqhUKpycnCgsLDRWWHoZ6NEfB509+zMPUVlb1eLxvF1tCeruytn0Ys5K\nYzshhBCixYxWwGi1WqysrBrdZ2dnd8PnXrn/1KlTpKenExQUZKyw9KJVaxnhO4yK2kpisw4bZMxx\nQzoBsFm2FxBCCCFaTGvqAK64cOECL774Iu+++y4WFhZNPtfZ2QatVmO0WNzd7ZlsH8Wmi9vZnbmP\nKcFjUataVuu5udmxZudZDifnoGg0eLjYGCjajsXd3d7UIYgbkLyYL8mN+ZLctIxZFDBZWVk89dRT\n/O1vf6NPnz63fH5BQbnRYnF3tycnpwRQMcgjiNisw+w6dZhA194tHnvMAF/+/UMSX205yX1jerY8\n2A7mf7kR5kTyYr4kN+ZLcqOfpoo8s1hG/cc//pE///nPBAYGmjqURiL8hwOw3UBLqocGeOJoK43t\nhBBCiJYy2gxMYmIiixYtIj09Ha1Wy6ZNmwgLC2Pfvn3k5OQwe/ZsgoODuffee4mLi2Px4sUNr334\n4YeJjIw0Vmh687f3pbtjV5Lyk8kqy8bL1uPWL2qCVqNmzCA/vt11jj1HMxkb4m+gSIUQQoiORaUY\nomd+KzPmtNu103oJ2cf4V+JKRviGMr3XPS0ev6S8mheX7MPRVsfC34WiVqtu/SIByJSruZK8mC/J\njfmS3OjH7E8hmbP+bgE4WzoRmxlHeU3Lr72xt9ER3tfrcmO70zkGiFAIIYToeKSAuQWNWsMovzCq\n62vYl3nIIGNeOXW0SZZUCyGEELdFChg9hPsMQae2YGfaPurq61o8nrerLf27u3ImrYhzGcUGiFAI\nIYToWKSA0YONhQ1DvAeRX1nAsdwTBhlz3K+zMJtlewEhhBCi2aSA0VOEXzgA29MMs6S6T2dn/Nzt\niDuZQ15RpUHGFEIIIToKKWD05GXrSR+XOzhTeJ7UkowWj6dSqRgX4k+9ovBzfJoBIhRCCCE6Dilg\nmmH0r7MwOwzY2M7BVsfOXzKorJbGdkIIIYS+pIBphgDXXnjYuBF3KYGS6tIWj2ehVTNmoC8VVbXs\nOZppgAiFEEKIjkEKmGZQq9SM8gunVqljT/oBg4w5eoAvFlo1W+JSqa9vcz0FhRBCCJOQAqaZhnkN\nwkpjxa70/dTWt/y0j4ONjtBAL3IKK/nlTK4BIhRCCCHaPylgmslKa0WYTwjF1SXEZx81yJhXGttt\nPihLqoUQQgh9SAFzG0b5haFCxY7UvRhiKylfN1v6dnMhOa2I85nS2E4IIYS4FSlgboObtSv93AK4\nWJLK+WLDzJqMD+kEwBbZXkAIIYS4JSlgblOEv2GXVAd0ccbX3ZZDJ7PJL5bGdkIIIURTpIC5TT2d\nuuNr501CzjEKKgtbPJ5KpWLcYH/q6qWxnRBCCHErUsDcJpVKxWi/cOqVenal7zfImMMCPXGwsWBn\ngjS2E0IIIZoiBUwLDPYcgK2FDXszYqmuq2nxeBZaDRED/SivqmXvsSwDRCiEEEK0T1LAtIBOY8Fw\nn2GU1ZRz6FK8QcaMGOCLViON7YQQQoimSAHTQiP9QlGr1AZbUu1gqyM00JPsggqOSGM7IYQQ4oak\ngGkhJ0tHBrj3I6Msi+SCswYZc9yVxnaypFoIIYS4ISlgDCDCfzgA29MMs6Ta192OwK4unEot5GJW\niUHGFEIIIdoTKWAMoKtjZzo7+JOYm0ROeZ5BxhzfMAsj2wsIIYQQ15ICxkAi/IajoLAzfa9Bxgvs\n6oKPmy0Hk7IpKKkyyJhCCCFEeyEFjIEM8OiHo86e/RlxVNa2vJOuSqViXMjlxnbbpLGdEEII0YgU\nMAaiVWsZ4RtGZV0lBzIPG2TMYQGe2NtYsCMhnarqOoOMKYQQQrQHUsAY0HDfoWjVWnam7aVeqW/x\neDoLDREDfCmrrGVvYqYBIhSLUU8QAAAgAElEQVRCCCHaBylgDMheZ8dgz2CyK3I5kXfKIGNGDPRD\nq1Gx5VAq9QboMyOEEEK0B1LAGFiE369Lqg20S7WjrY5hAV5cKqjg6BnDrHASQggh2jopYAzMz96H\nnk7dOFlwmsyySwYZc5wsqRZCCCEaMWoBk5ycTFRUFKtWrWq4b8WKFQQGBlJWVtZw33fffcfUqVO5\n9957+frrr40ZUqsY/Wtjux0GmoXx87AjoIszJ1MKSbkkje2EEEIIoxUw5eXlzJ8/n9DQ0Ib71q1b\nR15eHh4eHo2e9/HHH7N8+XJWrlzJf/7zHwoLC40VVqvo7xaAq5UzsVnxlNWUG2TMcSGdANleQAgh\nhAAjFjA6nY5ly5Y1KlaioqKYM2cOKpWq4b4jR47Qr18/7O3tsbKyYuDAgcTHG2ZnZ1NRq9SM9Auj\npr6GfRkHDTJm324ueLvaEHvikjS2E0II0eFpjTawVotW23h4Ozu7656Xm5uLi4tLw20XFxdycnKa\nHNvZ2QatVmOYQG/A3d2+xWP8xnEMGy9sZXfmfu4bOAGNuuXxTonoycdrjnDgZDYPTgho8XhtkSFy\nIwxP8mK+JDfmS3LTMkYrYG6XosdS4YICw5yWuRF3d3tycgxznclQz4HsSt/P1qQDDPTo3+Lx+nV2\nws7ago17zzMm2AdLC+MVcebIkLkRhiN5MV+SG/MludFPU0WeyVcheXh4kJub23A7Ozu70Wmntmy0\nXzhguIt5dRYaRv/a2G5fYpZBxhRCCCHaIpMXMEFBQRw7dozi4mLKysqIj49n8ODBpg7LIDxtPQhw\n6cXZoguklBhmP6PIgb7S2E4IIUSHZ7RTSImJiSxatIj09HS0Wi2bNm0iLCyMffv2kZOTw+zZswkO\nDmbu3Lm88MILPPbYY6hUKp566ins7dvPecHR/sM5kX+KHal7eTDgvhaP52hnydA+nuxNzOLY2TyC\nergZIEohhBCibVEp+lx0YmaMed7Q0Ocl65V63oh9l7yKfOaH/wEHXcuLs5RLJfz5s0P06ezMS/cP\nMECUbYOcMzZPkhfzJbkxX5Ib/Zj1NTDtnVqlZrRfOLVKHbvTDxhkzE6e9vTp7EzSxQJpbCeEEKJD\nkgKmFQzxGoS11ord6fupqa81yJhXthfYIo3thBBCdEBSwLQCK60lYd5DKKkuJf7SEYOM2a+7K14u\nNhw4cYnCUmlsJ4QQomORAqaVjPILQ4WKHWl79Op1cytqlYqxIf7U1Stsi083QIRCCCFE2yEFTCtx\ntXahv3sgKSXpnCu6aJAxw/p6YWulZUdCOtU1dQYZUwghhGgLpIBpRRG/NrbbnmaYxnaWvza2K62o\nYd9xaWwnhBCi45ACphX1cOqGr503R3ISKag0zI7bYwb6oVFLYzshhBAdixQwrUilUhHhN5x6pZ6d\nafsMMqazvSVD+niSmVdO4rl8g4wphBBCmDspYFrZYM9g7Cxs2ZsRS3VdtUHGvLKkevOhFIOMJ4QQ\nQpg7KWBamYXGguG+wyivreBgVrxBxuzsZU/vTk6cuFBAWnapQcYUQgghzJkUMCYwwncYapWaHWl7\nDbKkGmBcSCcANktjOyGEEB2AFDAm4GTpyECP/mSWXeJUwRmDjNm/hyueztYcOJFFUZlhTk0JIYQQ\n5koKGBOJ8B8OwPZUwyypvtLYrrZOYXt8mkHGFEIIIcyVFDAm0sWhE10dOnE87yTZ5bkGGTO8rze2\nVlq2S2M7IYQQ7ZwUMCY02n84Cgo70/YaZDxLnYZRwb6UlNdw4MQlg4wphBBCmCMpYExogHs/nCwd\nOZAZR0VtpUHGjBx0ubHd5kOpBrtAWAghhDA3UsCYkEatYYRvKJV1VRzIjDPImM72loT08SAjt4zj\n56WxnRBCiPZJChgTG+4zFK1ay460vdQr9QYZ80pju02ypFoIIUQ7JQWMidnpbAnxHEBuRR7H804a\nZMwuXg708nfi+Pl8zqQXGWRMIYQQwpxIAWMGDL2kGmBSWBdUwHurf+HEBTmVJIQQon2RAsYM+Np5\n09OpG6cKzpBRmmWQMQO7uvD7u/tSW1fP+18dIVZWJQkhhGhHpIAxE1dmYXakGW4WJqS3B3NigtFZ\nqPnku+NskWtihBBCtBNSwJiJfm4BuFq5cDArntKaMoON26ezMy/PGIijrY4vfj7N1zvOyPJqIYQQ\nbZ4UMGZCrVIzyi+Mmvpa9qUfNOjYnTzt+eOsQXi62PDjgRT+/UMStXWGWfEkhBBCmIIUMGYk1DsE\nnUbHzvR91NUbdisANydrXpk5kK7eDuxLzGLxN0eprK416DGEEEKI1iIFjBmxsbBmmNdgCquK+CUn\n0eDjO9jomHv/APp1cyXxXD5vf5FAcbnsXC2EEKLtkQLGzIz2CwMMezHv1Sx1Gp6Z2o/wvl6czyzh\nrZWHySmsMMqxhBBCCGORAsbMeNp6EODai3NFF7lYbJxVQ1qNmkcn9mHCsM5cKqhgwcrDpFwqMcqx\nhBBCCGOQAsYMRfhdaWxnmF2qb0SlUjFtdHfuj+pJcVk1C/8bT5I0vBNCCNFGGLWASU5OJioqilWr\nVgGQmZnJrFmzmDFjBs899xzV1Zevv3j//feZPn069913H8uWLTNmSG1CH5c78LTxID77CEVVxUY9\n1tjB/vxucuDlhndfH+FgkjS8E0IIYf6MVsCUl5czf/58QkNDG+5bvHgxM2bM4PPPP6dz586sWbOG\n5ORkYmNj+fLLL/niiy9Yu3YtOTk5xgqrTVCpVIz2C6dOqWN3+gGjH29IH0/m3BuEVqPmk/XH2Ron\nDe+EEEKYN6MVMDqdjmXLluHh4dFwX2xsLJGRkQBERESwf/9+7O3tqaqqorq6mqqqKtRqNdbW1sYK\nq80Y6j0Ia601e9IPUFNv/OXOfbq4MO+BgTjY6vh862m+2XlWGt4JIYQwW1qjDazVotU2Hr6iogKd\nTgeAq6srOTk5eHt7Ex0dTUREBHV1dTz11FPY2dk1Obazsw1arcZYoePubm+0sZsjqns4G05tJbn8\nJKO7ht76BS3k7m7PO96O/Omf+/lh/0Uqaup5JiYYrcZ8LpUyl9yIxiQv5ktyY74kNy1jtALmVq78\ndZ+amsqWLVvYunUrtbW1TJ8+nQkTJuDq6nrT1xYUlBstLnd3e3JyzGNFTohLCN/zMxtObCXANhCV\nSmX0Y2qAuTMG8MHXR9gWl0puQTlPTO6Lpc54BaO+zCk34n8kL+ZLcmO+JDf6aarIa9U/rW1sbKis\nrATg0qVLeHh4cOzYMYKCgrC2tsbe3p5evXqRnJzcmmGZLVdrZ4LcA0ktzeBs0YVWO66DjY6X7h9A\n324uHD2bx9tfJlAiDe+EEEKYkVYtYMLCwti0aRMAmzdvZsSIEXTq1InExETq6+upqakhOTkZf3//\n1gzLrI1uWFJtnMZ2N2Ol0/Ls1P6E9fXiXEYxC1bFkysN74QQQpgJo51CSkxMZNGiRaSnp6PVatm0\naRPvvPMO8+bNY/Xq1fj4+HD33XdjYWFBeHg4M2bMAGDatGn4+fkZK6w2p4dTV/zsfDiSk0heRQGu\n1s6tdmytRs1jE/vgaKfjxwMpvLnyMHNigujkKedthRBCmJZKuc2lJhcuXKBLly4GDkc/xjxvaI7n\nJfdnxrEq6SuiOo3inh4TTRLDlkOpfPHzaawtNTwzpT+9O7deIXWFOeZGSF7MmeTGfElu9HPb18A8\n8sgjjW4vWbKk4b9ff/31FoYl9DXYIwg7C1v2Zhykqs4016KMDfHnd78JpLqmnve++oW4k9kmiUMI\nIYSAWxQwtbWN+48cOPC/pmrSI6T1WGgsGOE7jIraCg5mHTZZHEMDPJkTc7nh3dJ1ifx8OM1ksQgh\nhOjYmixgrl22e3XR0hpLesX/jPANRaPSsCN1r0mLx4AuLrw8YyD2tjr+uyVZGt4JIYQwiWatQpKi\nxXQcLR0Y6NGfrPJsTuafNmksnb3s+cOsQXg4W/PD/ot8tvEkdfX1Jo1JCCFEx9LkKqSioiL279/f\ncLu4uJgDBw6gKArFxcbdZFBcL8J/OIcuJbA9bQ99XO8waSweTtb8YeYg/v71EfYcy6S4vJon7u6L\npYXpG94JIYRo/5osYBwcHBpduGtvb8/HH3/c8N+idXV28KerQ2eO553kUnkOnjbuJo3HwVbH3BkD\nWPJtIkfP5vHOFwk8O60/9jY6k8YlhBCi/WuygFm5cmVrxSH0FOEfzvnjF9mZtpeYO+42dTiXG95N\n689nG5PYf/wSb62K5/n7gnBzlA05hRBCGE+T18CUlpayfPnyhttffvklkydP5tlnnyU3N9fYsYkb\nCHbvh5OlIwcy46ioNY/OuFqNmscmBRA9tBNZ+eW8ufIwqdmlpg5LCCFEO9ZkAfP666+Tl5cHwPnz\n53nvvfd4+eWXCQsL480332yVAEVjGrWGkb6hVNVVsz/jkKnDaaBWqYiJ6MH0MT0oKq1m4X/jOZVS\nYOqwhBBCtFNNFjCpqam88MILAGzatIno6GjCwsKYPn26zMCYULjvUCzUWnak7aNeMa/VP+OGdOK3\nvwmguqaOd1cfkYZ3QgghjKLJAsbGxqbhvw8ePMiwYcMabsuSatOxs7AlxHMgeZX5HMtNMnU41xkW\n4MX/3RuERqNi6bpEtsVLwzshhBCG1WQBU1dXR15eHikpKSQkJBAeHg5AWVkZFRXmcf1FRzXa/3Iu\ndrTyLtX6CuzqwrwZA7G3sWDV5mTW7pKGd0IIIQynyQJm9uzZTJgwgbvuuosnn3wSR0dHKisrmTFj\nBnffbfoVMB2Zr503dzj3ILnwLOmlmaYO54YaGt45WfP9voss/1Ea3gkhhDCMW+5GXVNTQ1VVFXZ2\ndg337dmzh+HDhxs9uJvpaLtR38zRnON8cuw/hHmH8ECfe00dzk0Vl1Xz/tdHuJhVQlB3V35/mw3v\n2lJuOhLJi/mS3JgvyY1+bns36oyMDHJyciguLiYjI6Phf926dSMjI8PggYrm6evWBzcrFw5dSqC0\nuszU4dyUg62OufcPILCLM0fO5vHOlwmUVtSYOiwhhBBtWJON7MaMGUPXrl1xd7/c8fXazRxXrFhh\n3OhEk9QqNaP8w/nm9Ab2ZMQS3WWMqUO6KWtLLc/dG8SnPyRx4MQl3lp1mOdjgnF1tDJ1aEIIIdqg\nJguYRYsWsX79esrKypg4cSKTJk3CxcWltWITegj1Hsz35zaxO30/YzuNQqM2372ItBo1j98VgKOd\njk0HU3lzZRzPxwTj52F36xcLIYQQV2nyFNLkyZP59NNP+fvf/05paSkPPPAAjz/+OBs2bKCysrK1\nYhRNsNZaM8w7hMKqIhJyjpk6nFtSq1TcN6YnMRE9KCyt5i1peCeEEOI2NFnAXOHt7c2TTz7Jjz/+\nyPjx43njjTdMehGvaGy0XxgqVGa7pPpGood2YvZd/2t4d/iUNLwTQgihP70KmOLiYlatWsWUKVNY\ntWoVv/vd79i4caOxYxN68rBxJ9C1F+eLU7hQnGLqcPQWGujFc/f2R6NWseTbRLZLwzshhBB6arKA\n2bNnD3PmzGHq1KlkZmaycOFC1q9fz6OPPoqHh0drxSj0MNr/8ozY9jY0CwPQt6src2cMwM7GgpWb\nk/l21zlpeCeEEOKWmryI9/HHH6dLly4MHDiQ/Px8Pvvss0aPv/XWW0YNTuivt3NPvGw9ic8+yj09\nJuJk6WjqkPTW1duBP8waxHurf2HDvgsUlVUxa3wvNGq9JgiFEEJ0QE0WMFeWSRcUFODs7NzosbQ0\nme43JyqVitF+4Xx5ai170g8wqdt4U4fULJ7ONvxh1mD+/tURdh3JpLisht9NDrythndCCCHavyb/\nxFWr1bzwwgu89tprvP7663h6ejJkyBCSk5P5+9//3loxCj0N9RqIjdaa3ekHqKlre43iHG11zJ0x\ngIAuzvxyJpd3v/xFGt4JIYS4oSYLmPfff5/ly5dz8OBBXnrpJV5//XVmzZrFgQMH+Prrr1srRqEn\nnUZHuM9QSmvKiMs+Yupwbou1pZb/uzeIoQGenEkv4q1Vh8kvliX7QgghGrvlDEz37t0BiIyMJD09\nnQcffJCPPvoIT0/PVglQNM9Iv1DUKjU7Uve02YthtRo1s+8KYFyIP5l55by58jBpOaWmDksIIYQZ\nabKAUalUjW57e3szduxYowYkWsbFypkgt0DSSjM4U3je1OHcNrVKxfTIyw3vCkqqWLgqnkMnstps\nUSaEEMKwmrXM49qCRpinK0uqd6S1rSXVNxI9tBOPT+pDVU0df/13LH/7PIHTaYWmDksIIYSJNbkK\nKSEhgdGjRzfczsvLY/To0SiKgkqlYseOHU0OnpyczJNPPsnDDz/MzJkzyczMZO7cudTV1eHu7s7b\nb7+NTqfj5MmT/OEPfwAun6p66qmnWvzGOrLujl3wt/flSM5xMkqz8LHzMnVILRLW1xs/dzu+P5BC\nXNIl3loVT//urtwzohudvW6+1boQQoj2q8kC5qeffrrtgcvLy5k/fz6hoaEN9y1evJgZM2Zw5513\n8t5777FmzRpmzJjBa6+9xvz58+nTpw8vvvgiFRUVWFtb3/axOzqVSsXYTqP49PjnvHv4Y+7rdQ9D\nvAaaOqwW6eRpz58eH8b+hDS+2XmWo2fzOHo2j5DeHtw9oiverramDlEIIUQrUilGuqigtraW2tpa\nli1bhrOzMzNnzmTMmDH89NNP6HQ6EhIS+PTTT/nTn/7EQw89xA8//KD32Dk5JcYIGQB3d3ujjt+a\nDmbFs/rUt1TWVRHiOYD7et2DtdbK1GHdtiu5URSFExcK+GbnWS5klaBSQXhfb34zvAtujlL4trb2\n9JtpbyQ35ktyox9395vPsjc5A9MSWq0Wrbbx8BUVFeh0OgBcXV3JyckhPT0dR0dH5s2bx4ULF4iO\njubhhx82VlgdyhCvgXR16MxnJz7n0KUEzhdd5OHAGXR17GTq0FpEpVIR2NWFgC7OxCfnsm73OfYc\ny2T/8SxGB/syKawzjnaWpg5TCCGEERmtgLmVKxM/iqKQlpbGxx9/jJWVFffddx/h4eH07Nnzpq91\ndrZBqzVeh9amKr62xh173vJ/ma8Tv2dd0ibej19CTN+7mNx7HOo22Kr/2txEezgwNqwruxLS+HzT\nSX6OT2P3sUx+M6IbUyJ6YG+jM1GkHUt7+s20N5Ib8yW5aZlWLWBsbGyorKzEysqKS5cu4eHhgaur\nKz179mzYqmDQoEGcPn26yQKmoKDcaDG212m9KO8xdLLqxPLjX/LFsfUcTk3kocDpbWrPpKZy07eT\nE399dAh7jmby3d7zrNl2mh/2niN6SCeiBvtjbWmyWr3da6+/mfZAcmO+JDf6aarIa9U/wcPCwti0\naRMAmzdvZsSIEfj7+1NWVkZhYSH19fUkJSXRrVu31gyrw7jDuQd/GDqH/m6BJBeeZUHs+xzJOW7q\nsAxGq1EzeoAvC38XSkxEDzRqNd/uPs+8T/az+VAqNbV1pg5RCCGEgRjtIt7ExEQWLVpEeno6Wq0W\nT09P3nnnHebNm0dVVRU+Pj689dZbWFhYcOTIEd544w1UKhUjRozgmWeeaXJsuYi3ZRRFYU/GAb45\nvYGa+lpG+IYypcckdBoLU4fWpObmpqKqli2HUvnpYAqV1XU421vym/AuhPfzRqtpe6fPzFVH+M20\nVZIb8yW50U9TMzBGK2CMSQoYw8gozeKz45+TUZaFt60njwTOwNfO29Rh3dTt5qa0ooYfD1zk58Np\nVNfW4+Fkzd0jujIkwBO1NGdssY70m2lrJDfmS3Kjn6YKGM2f//znP7deKIZRXl5ttLFtbS2NOr45\nsdfZMcx7MJV1lSTmnWR/ZhzWWis62/ubZdfl282NzkJDYFcXwvt5U1NXz8mLBcSdyiE+OQcne0u8\nXGzM8v22FR3pN9PWSG7Ml+RGP7a2N19RKjMw1+ioVfGx3BOsTPqKsppy+rn1YWbvGOx05tUczlC5\nySms4Ls959l3PAtFga7eDkwd1Y2ALi4GiLLj6ai/mbZAcmO+JDf6kVNIzdCRv1SFVUWsOLGaUwVn\ncNTZ82DAdHq73Hw1WGszdG7Sc8tYt/sch0/lANC7kxNTRnWnh2/bWZllDjryb8bcSW7Ml+RGP3IK\nqRk68rSeldaKEK8BWGp0HMtL4mBWPNV1NfRw6opaZfqLXg2dGwcbHUP6eBLUw5W84kpOXChg99FM\nLmaV4ONmi6Ot9JDRR0f+zZg7yY35ktzoR04hNYNUxZddLE7ls+Ofk1ORRyd7Px4JnIGHjZtJYzJ2\nbpJTC/lm51lOpxUBMKSPB3eP6IaXi43RjtkeyG/GfEluzJfkRj8yA9MMUhVf5mTpyDDvwRRVFXMi\n/xQHMg/haOmAr523yS54NXZuXB2tGN7Pm+6+jmTmlnPiQgHb49PJL6mkk6e9NMO7CfnNmC/JjfmS\n3OinqRkYKWCuIV+q/9GqtQS598XT2o3EvFPEZx8huyKX3i49sFC3fs+Y1siNSqXC09mGUcE++Lnb\nkZpTyvHzBWyLT6OkoobOnvZY6oy3jUVbJL8Z8yW5MV+SG/3IKaRmkGm9G8utyGf58c85X5yCq5UL\njwTeT1fHzq0agylyU1+vsP94Fuv3nCe3qBJLCw1Rg/2IHtoJWyvzbvzXWuQ3Y74kN+ZLcqMfOYXU\nDFIV35iNhTVDvQahAIm5SRzIikOtUtHNsUurnVIyRW5UKhWdPO2JGOiLo52Oc5nFHDuXz86EDBQU\nOnvad/iuvvKbMV+SG/MludGPzMA0g1TFt3a64CzLT3xJYVURPZ268VDAdJytnIx+XHPITVVNHdvi\n09i4/yJllbU42FgwMawLo4N9sdB2zELGHPIibkxyY74kN/qRGZhmkKr41lytXRjmPZjsitxfL/CN\nw8PGHS9bD6Me1xxyo9Wo6ennxOhgX7QaFafSivjldC77EzOx1mnx87DtcNsTmENexI1JbsyX5EY/\nchFvM8iXSj86jQUDPfrjaOlAYt5JDl1KoLiqmF7OPdCojXORqznlxkKrpndnZ0YF+aAoCidTCjmc\nnMPBpGwcbCzwdrPtMNsTmFNeRGOSG/MludGPnEJqBpnWa77Mskt8dvxz0ksz8bLx4JHAGfjZ+xj8\nOOacm4KSKjbsu8DuIxnU1Sv4e9hxz8huBHV3bfeFjDnnpaOT3JgvyY1+5BRSM0hV3Hz2OjuGeQ2m\nsq6KxLyTHMg8hJXWii4Oht0U0pxzY22pJaiHG8MCPCmrrOHEhQJiT1zi+IV8PJyscXOyNnWIRmPO\neenoJDfmS3KjH5mBaQapilsmMTeJlUlfUVpTRl/X3szsE4O9zs4gY7el3KTllLJu93niky/vsxTQ\nxZkpI7vTzcfBxJEZXlvKS0cjuTFfkhv9yGaOzSBfqpYrqipmxYnVnCw4jYPOngf73Ecf1ztaPG5b\nzM35zGLW7jrH8fP5AAzo6cY9I7vh526Yos4ctMW8dBSSG/MludGPnEJqBpnWazkrrSUhXgOw0lqS\nmJtEbNZhquqq6OnUrUWbQrbF3DjbWxLW14te/k5cKqjgxIUCdiSkk5lXhpuTFU52N58ebSvaYl46\nCsmN+ZLc6EdOITWDVMWGlVKcxmfHPye7Ihd/e18eCZyBp437bY3V1nOjKArHzuWxduc5UrJLAbjD\n34lxIf4E93BDrW6bF/u29by0Z5Ib8yW50Y+cQmoG+VIZXmVtFV+fXs+BzDh0Gh0xPSczzHtwsy/w\nbS+5URSF4+fz2XwolcRfTy15OFkTNdiP4f29sdK1rU0j20te2iPJjfmS3OhHCphmkC+V8Ry+9Atf\nnFpLRW0lgzyCmN5rCjYW+q/OaY+5Sc8tY8uhVPYlZlFbV4+1pZZRQT5EDvLD1dHK1OHppT3mpb2Q\n3JgvyY1+pIBpBvlSGVdeRT7LT3zBuaKLuFg580jg/XRz7KLXa9tzborLq9mRkM62+HSKy6pRq1QM\n7u3O2BB/uvs4mjq8JrXnvLR1khvzJbnRj1zE2wxyYZVxXdkUElS/bgp5GFDo7tT1lqeU2nNuLC00\n9OrkTOQgPzycrMkurCDpYgG7j2Ry/Hw+1pZaPF2szXKbgvacl7ZOcmO+JDf6kYt4m0Gq4tZzpvA8\ny49/QUFVId0du/Jw4HRcrJxv+vyOlBtFUTh5sYBNh1I5ejYPAFcHK6IG+zGivw82VuZznUxHyktb\nI7kxX5Ib/cgppGaQL1XrKq8p5/OT35CQcwxrrTUzek9loEf/Gz63o+YmM6+MrXFp7D2WSXVtPVY6\nDSP6+xA12A93M+jw21Hz0hZIbsyX5EY/UsA0g3ypWp+iKOzLPMia5O+orq8h3GcIU3v+BkuNrtHz\nOnpuSitq2PlLOj8fTqOwtBqVCgbe4c64EH96+DqabM+ljp4Xcya5MV+SG/1IAdMM8qUynayybD47\n/jlppRl4/roppP9Vm0JKbi6rravn0MlsNh9M5eKly59HV297xoV0YlAvd7Sa228WeDskL+ZLcmO+\nJDf6kQKmGeRLZVo19bV8d/ZHtqXuRqvSMLn7nYz2H45apZbcXENRFJJTC9l8KJVfTueicLnzb9Qg\nP0YG+2BrZdEqcUhezJfkxnxJbvQjBUwzyJfKPBzPO8nKE19RUlNKgEsvZgXE0N3XR3JzE5cKytka\nl8aeo5lU1dRhaaFheD9vokL88HS2Meqx5TdjviQ35ktyox8pYJpBvlTmo7i6hBUnVpOUn4y9zo6H\nBkyjh/UdWKjNZwWOuSmvrGHnkQx+PpxGfnEVKiC4pxvjQvy5w9/JKNfJyG/GfEluzJfkRj8m6wOT\nnJzMfffdh1qtpn///mRmZvLkk0+yZs0adu3aRWRkJBqNpuH5zz//PNu3bycqKqrJcaUPTMdgqbFk\nsGcwNlorjuUmEZuWwJ70A5TVlONm7YKNhXFnFtoiC62Gnn5OjBnoh6+7LXnFVSRdLGDvsSx+OZOL\npYUGb1cbg+67JL8Z850JGMcAACAASURBVCW5MV+SG/001QfGaAVMeXk5L730Ev369cPNzY3+/fuz\nYMECJk2axLx580hKSiIlJYV+/foBsHfvXjZt2oSLi4sUMKKBSqWiq2NnQrwG4GBnw7mCFE4WnGZn\n2j7OF6dgrbXC3drVZCtwzJVarcLX3Y6RQd707epKRVUtJ1MKOZycw66jGdTW1uPjZovOQnPrwW5B\nfjPmS3JjviQ3+mmqgDHacgWdTseyZcvw8PBouC82NpbIyEgAIiIi2L9/PwDV1dUsXbqUJ554wljh\niDbOzdqVmUFTeDPsjzzY5z66OHTiRN4p/nF0Oa/vW8hPF36muFqmY6+lUqno4efIk/f0Y+HvQhkX\n4k9VdR1rd53jxY/3smLTKTLzykwdphBCNJvRLibQarVotY2Hr6ioQKe73NvD1dWVnJwcAD755BPu\nv/9+7OzsjBWOaCcsNBYM9R7EUO9BpJVksDt9PwcvJbDh3CY2nt9KsHtfRvgOo4dTN5mVuYa7kzXT\nI3syeXhXdh/NZGtcKjsS0tmRkE7/7q6MC/GnT2dn+dyEEG2Cya6GvHLt8IULF0hMTOSZZ54hNjZW\nr9c6O9ug1bZ86vtmmrpoSJjW1blxd+/FgG69KK+5j10XYtlyZheHs49wOPsIfg7ejO0+glFdhmGj\nM323WnPzgJ8z08f35sDxLNbvPMvRs3kcPZtHF28HJo/szqiBvlg04zcmvxnzJbkxX5KbljH6KqQP\nP/wQZ2dnZs6cSWRkJD/88ANWVlYcPHiQVatWMXDgQL755husra0pLS0lPz+fxx57jNmzZ990TFmF\n1DHdKjeKonC26AK70/eTkH2MOqUOndqCEK8BjPANxd/etxWjbVvOZRSz+VAKcSdzqFcUHGx1jBng\ny+iBvjjY6Jp8rfxmzJfkxnxJbvRj0t2oDx48iLW1Nf379+fMmTNUVFTQu3dvPvvsMwYO/P/27jy6\nzfrO9/hbq2VZsi3Jlnc7iZ3VSRyylOwBktBCGAJJIUxIOtwzt2fm0t4zwykzTSkdmEtPaRiYO5eW\n05kyZcpJh0PKVsKasDQL4GwkOLsdO4733bIt2ZZtSc/9Q7IcZ7WT2Hpkf1/ncCJrefQz3+eRPv49\nv+f3m8vDDz/Mxo0beeCBB8jLy8Pr9fLjH//4qtuUQbzj07Vqo9FosJts3OKcxZKMW4nTm6nvaqLE\nVcYXtQc41VKMTqPFaU5Gpx25HrxoZLPGMH+ak6Wz09BqNZyr7eBEeSufHq6mpaOb5MRY4uMuH2Tk\nmFEvqY16SW2GJiKrUZ84cYKtW7dSU1ODXq8nJSWF559/ni1bttDT00N6ejrPPvssBsPAbKEHDhzg\nnXfe4Ze//OVVty09MOPT9dQmoAQ41VLM3ppCTrUUo6AQpzezMG0+SzMW4jQnjVBro5u318eXx+v5\n5HAVja5uAPIn2vn2gizyJ9oHjZORY0a9pDbqJbUZGpnIbhhkp1KvG61Nc3crX9Ye4Kvag3j6glfe\nTLdPYVnGQmY6pkuvzGUEAgpFpc3sOlRFcVUbAOlJcayen8mi/FSMBp0cMyomtVEvqc3QSIAZBtmp\n1Otm1aYv4KOo8Th7awopaz8PQGJMAkvSv8Xi9G+RGJNww+8xFlXUu9l1qJKDpxvxBxQssQZuvyWD\nB1ZPxdfTF+nmicuQzzP1ktoMjQSYYZCdSr1GojY1njq+qNnPwfojeP09aDVaCpLyWZaxiCm2XLmk\n+DJc7h4+P1LN7qM1dHp96HUaJmcmUpDrYHZeEql2mSFZLeTzTL2kNkMjAWYYZKdSr5Gsjdfn5VDD\nN+yrKaTGUwdAijmZpRkLWZg6T5YtuIyePj9fnain8GQ9pdXt4ftTbLHMzk1idp6DqVmJ6HUjNl+m\nuAb5PFMvqc3QSIAZBtmp1Gs0aqMoCuUdFeyt3s/RxiJ8ih+D1sD8lDksy1hITnzWiL5/NEpOtnK2\nvDk8l8zJ86309PoBiDHqyJ9gD/bO5DpIsFz5igJx88nnmXpJbYZGAswwyE6lXqNdG09vJ4V1h/ii\nZj/N3lYAsq2ZLMtYxPyUAoy6q8+PMl5cXJc+X4CS6jaOlbZQVNYcvooJICfVSkGug4K8JHJSrWjl\nFN2Iks8z9ZLaDI0EmGGQnUq9IlWbgBLgdOtZ9tUUcqL5NAoKsfpYFqbNY1n6QlLinNfeyBh2rbrU\nt3ZxrLSZorIWSqra8AeCHznxcUZmTbJTkJtE/kQ7sTERmxh8zJLPM/WS2gyNBJhhkJ1KvdRQm1av\niy9rD/Jl7QHcvR4AptjyWJ6xiNlJM8blpdjDqUt3j4+T5a3B003nWujoDE7kpdNqmJyZQEFeErNz\nHaTazTKA+iZQwzEjLk9qMzQSYIZBdir1UlNtfAEfRU0n2VdTyNm2cwAkGK0sTr+VJenfwmZKjHAL\nR8/11iWgKFTUuzlW1kJRaTPn6we24UyMZXauIzQQ2IZBLwOBr4eajhkxmNRmaCTADIPsVOql1trU\ndzawr2Y/++u+xuv3otVomeWYzrKMRUy156HVjO0v35tVl3ZPD8fOhQYCl7fi7R8IbNAxY4KNgrwk\nZk1yYLPKQOChUusxI6Q2QyUBZhhkp1Ivtdemx9/L4Yaj7KvZT5W7BoDkWEfwUuy0+VgMcRFu4cgY\nibr4/AFKqtqCvTNlLTS0doUfy06xUBC6THtiWrwMBL4KtR8z45nUZmgkwAyD7FTqFS21URSFCncV\ne6sLOdJYRF/Ah16rZ56zgGUZC5kQnz2mxneMRl0aWrsoKmvhWFkzxZUDA4GtZgOzJgUv0Z450YHZ\nJAOBLxQtx8x4JLUZGgkwwyA7lXpFY206+7rYX3eYL2r209jdDECWJZ0VWUu5NXXumDi9NNp16e7x\nceq8i2Nlwbln2i8aCDw7NzgQOM0hA4Gj8ZgZL6Q2QyMBZhhkp1KvaK5NQAlQ7CplX81+jjefIqAE\nyLCksS7vHqbZJ0e6eTckknUJKAqVDe7QnDMtnK/roP8DLSnBREFeEgW5DqZmJ2LQyxViQj2kNkMj\nAWYYZKdSr7FSG5e3jffLd3Gg7msUFGYlzeD+vDWkmJMj3bTroqa6tHf2cjx0qunk+Va6e4IDgY0G\nLTNy7MzOc1CQmzRuBgKrqTZiMKnN0EiAGQbZqdRrrNWm0l3NW2ffo7StHK1Gy4rMxdw9YVXUrbuk\n1rr4/AHOVrdTVBo81VR/4UBgp4XZeQ5m5yYxKS0erXZsnmpSa22E1GaoJMAMg+xU6jUWa6MoCkVN\nJ3in9AOava3E6c3cPWk1y9IXRs2keNFSl0ZX/0DgFoorXfj8wY8+S2xwIHBBnoOZE+2YTYYIt/Tm\niZbajEdSm6GRADMMslOp11iuTV/Ax+6qL/j4/Od4/V5SzE7WT76HfMe0SDftmqKxLt7egYHARWUt\ntHuCA4G1Gg1TsxOZP83J3CnJJMRF93pX0Vib8UJqMzQSYIZBdir1Gg+1cfd6eL98F1/WHEBBYbp9\nCuvy7iHdkhrppl1RtNdFURQqGzwUlTVTVNpCeV0HABpgStZAmInGcTPRXpuxTGozNBJghkF2KvUa\nT7Wp8dTx9tn3OeM6i1ajZUn6rayZuBqr0RLppl1irNWlpd3L1yVNHC5upLS6HQiGmbzMBOZPdTJv\najL2eFNkGzlEY602Y4nUZmgkwAyD7FTqNd5qoygKJ1vO8Hbp+zR0NRGrN/GdCSu5LXMJeq16Jmwb\ny3VxuXs4UtLE4TONlFS1hS/Rzs2ID4eZpITYiLbxasZybaKd1GZoJMAMg+xU6jVea+MP+NlbU8iH\n5Z/Q5esmKdbBurw1zE7KV8VEbeOlLu2eUJgpbuJMpYv+T86JadZgmJnmxJmorjAzXmoTjaQ2QyMB\nZhhkp1Kv8V6bzr4uPiz/hL01hQSUAJMTJ7F+8r1kWdMj2q7xWJeOrl6OhnpmTle0EQh9jOakWJk/\nLZn5U52k2CN/Ofx4rE20kNoMjQSYYZCdSr2kNkENnY28XfoBJ1pOo0HDorT53DPpOyTEXPlAH0nj\nvS6e7r5gmClu4tT51vA6TZnJFuZPS2bBNCdpjsgs5Dnea6NmUpuhkQAzDLJTqZfUZrDTrSW8ffZ9\najvridEZuTPnDu7IWoZRN7rzmEhdBnR6+/jmbDOHzzRy8nxreK6ZjKQ45k1NZv40JxlJcaN26k9q\no15Sm6GRADMMslOpl9TmUv6An6/qDvH+uZ14+jqxm2zcl3sXc50F8iUZYV1eH0VlwTBz/FwrPn8A\ngDSHmXlTncyfmkyW0zKidZLaqJfUZmgkwAyD7FTqJbW5sm5fNx+f/5zdVV/gU/xMSshh/eS/YEJ8\n9oi/t9Tl2rp7fBw/18KhM40cL2uh1xcMM05bLPOnOpk/LZmcFOtNDzNSG/WS2gyNBJhhkJ1KvaQ2\n19bU1cKfyj7km6bjACxImcva3O9gMyWO2HtKXYanp9fP8XMtHC5upKi0hZ6+4IKTSQkm5k9zMn+q\nk4lpNyfMSG3US2ozNBJghkF2KvWS2gzdWVcZb519jypPLQatgVXZK1idcxsxups/Nb7U5fr19vk5\nfq6Vr4sb+aa0GW9vMMw44mNCp5mcTMqIR3udYUZqo15Sm6GRADMMslOpl9RmeAJKgAP1R9hR9hEd\nvW4SjPGszb2LBam3oNVob9r7SF1ujj6fn5PlLg4XN3L0bDPdPT4AbNYY5k0JDgDOy0gY1srZUhv1\nktoMTcQCTElJCY8++iiPPPIImzZtoq6ujn/8x3/E7/eTnJzMv/zLv2A0Gvnwww955ZVX0Gq1LFq0\niMcee+yq25UAMz5Jba6P19fDJ5W7+axyD30BH9nWTNZP/gvyEifelO1LXW4+nz/AqfOtHD7TxNGz\nTXR6g2EmIc4YvJppqpMpWYnXDDNSG/WS2gxNRAJMV1cXf/M3f8OECROYOnUqmzZt4ic/+QnLly/n\nrrvu4l//9V9JTU3l/vvvZ82aNezYsYO4uDgefPBBnn32WfLy8q64bQkw45PU5sa0el28W/YRhxu+\nAeAW52zuy72bpFj7DW1X6jKyfP4AZypdHD7TxJGSJjzdfQDEmw3MnZLMvGlOpmUnotNe2qsmtVEv\nqc3QXC3A3Lx+5IsYjUZefvllnE5n+L4DBw6wcuVKAG6//XYKCwuJjY1lx44dWCzBywkTExNpa2sb\nqWYJMW7ZTTb+R/5GHp/3AybEZ3O08RjPHHied8s+otvnjXTzxBXodVpmTnTwyF3T+L//ewmPPzSH\n227JAGD3N7W88Po3PParL/n9R6c5ca4lfLm2EGPdiK0Ip9fr0esHb767uxujMTiI0OFw0NTUBIDF\nElxht7i4mJqaGgoKCq66bZvNjF6vG4FWB10t8YnIktrcuOTkmSzIzefLykP897E/savizxyoP8yG\nWfdyx8TFaC/zl/y1tyl1GS2pKQmsWJCDP6BwqryFr4pq+ep4LXuL6thbVIcl1sCtM1NZMjudRJtZ\naqNiUpsbE7ElbS8+c3X+/Hkef/xxXnjhBQyGq88k6nJ1jVi7pFtPvaQ2N9dU83SeXJDLZ5X72FX5\nZ357+L/54MznrM/7C6bar3wK92JSl8hJjY9h3bKJ3Ld0AqXV7RwubuTr4iY+O1TFZ4eq0GggPs6I\n3WrCHh+DzRoTvt3/b4LFeNnTT2JkyXEzNFcLeaMaYMxmM16vF5PJRENDQ/j0Un19PT/4wQ947rnn\nmD59+mg2SYhxzagzctfElSxKn897ZTs5UP81L37zW2YlzWBd3hqc5uRIN1EMgVajYUpWIlOyEnlo\n5WTKazs4dKaR2tYuGlo6qWp0U17XcdnXajSQaInBbo3BFm/Cbo3BHvrXFgo6CXHGYV39JMRoGNUA\ns3jxYnbu3MnatWvZtWsXy5YtA+CnP/0pTz/9NPn5+aPZHCFESGJMAptnPMiKrMW8dfY9jjef4lRL\nMSsyF3PXhJWYDZFfWVkMjVajITcjgdyMhPBf+QFFwd3Vh8vtpbWjh9YOL63uHlzu0O2OHs7Xuymr\nvXzI0Wk1JFqMAwHHagqHm2BvTgzWOON1z1cjxPUYsauQTpw4wdatW6mpqUGv15OSksLzzz/Pli1b\n6OnpIT09nWeffZbq6mruu+8+Zs+eHX7tI488Eh7sezlyFdL4JLUZHYqi8E3TCd4p/YAWbytxBjN3\nT1zNsvSF6LSXjj2TuqjXcGoTCCh0dPWGA47L3UNrf+BxB39uc/cSuMJXhl6nCfbkXNR709+jY4uP\nwRprGLU1utROjpuhkYnshkF2KvWS2oyuvoCP3VVf8PH5z/D6e0g1O1k3+R7yHdMGPU/qol43uzb+\nQIB2T+8lvTf9Aae1w0u7p5crfanoddpQoInBdkHvzYWnruJM+nERcuS4GRoJMMMgO5V6SW0iw93r\n4f1zO/my9iAKCtPtU1iXdw/pllRA6qJmkaiNzx+gzdMfcAZ6ccKBx91DR2fvFV9vNGiD4cZ6QbgJ\n9eY4EkwkxZuIMY7cVaijRY6boZEAMwyyU6mX1Cayajx1vH32fc64zqLVaFmafitrJt7JxIxUqYtK\nqfWY6fMFQ05/oAmfsrog8PRP2Hc5llhDOMw4EkyDbiclmDCbrn4lqxqotTYXCygK7s5eWvrHTnV4\nB267g7cnZyTwg3WzRuT9VXMVkhAiemVY0vjhnP/JiZbTvF36PntrCjnUcJT1+XeRG5tHUqzjpq6x\nJMYug15LcmIsyYmxV3xOn88fCjc9uEJflC3tXlo6vDS3e6lt7qSi/vIBIDZGhyPeRFJCLI4Lgo0j\nwYQj3oTVLGNx+nX3+MJBsiUUUPrHQbWEgqXPf+VxT/Z4E6mOyAzylx6Yi0RLKh6PpDbq4Q/42VtT\nyIfln9Dl6wYgVm8iy5pJjjWT7Pjgv3aTTb4oImgsHzOKotDR1Udze3c42LS0B8NNf8jpCa3ufTGj\nXhsOM+FwE74dS4Jl5K+oGo3a9J/Oa+0YHE5aLggpXaFFQy8nwRKcQ8gRHxqcHT/4ttVsGJX/T1ci\nAeYiY/mAj3ZSG/Xp7OvilOckJ2tLqXRX09DVNOjxOIOZ7HCoySInPpMEY7yEmlEyno8ZRVHo9PoG\n9doM3A6Gnv5FMi+m02qwx8dc2oMTum2zxqDX3Vhv443WRlEUPN19g3pL+k/B9d9u8/RwpW94kzHY\nS2XvH2PUH06sJuwJJmyWGAz6yPeoSoAZhvF8wKud1EadLqxLt6+bKncNFR3VVLqrqeyoptnbOuj5\n8UYr2Rf00mTHZxJvlCnVR4IcM1fX3eML99xcGnK8VxxsrNGAzRoTOk01cGoqKSE2dDsGwzWWu7lW\nbXr7/AOndUJt6h8v1NLRg6vDS6/v8ute6bSa0KzLMdhDbeu/yqs/tJhN0TGCRALMMMgBr15SG3W6\nVl08fZ1UddRQ4R4INa6ewQu22mISyY7PDPfWZMVnYDHEjXTTxzw5Zm5Mn88fHnvT3N59yWkql/vK\nPRzxccaLTk0N3HbEm4izmigpb7notM7A7WsOYg71nFzYi9J/eyzNnCwBZhjkgFcvqY06XU9dOnrd\nVHZUB0NNRzUV7ircvZ5Bz0ky2QdCTXwmWdYMYvVXHvQpLiXHzMjy+QO43D2X7cHp/9cfGN5XrFGv\nDZ/OsYV7TAZ6T2zWGGIM0X8Z+VBJgBkGOeDVS2qjTjejLoqi0NbTHu6h6e+t6ewbvHBrijk5fPop\n2xoMNTE64w2991gmx0xkBQIK7Z29l/TgtHT0kBhvIi5Gh9060HPiSBg/E/kNlQSYYZADXr2kNuo0\nUnVRFIVWr+uCXprgv16/N/wcDRpS45zkWLPCoSbTkoZBp/55QEaDHDPqJbUZGpkHRggRdTQaDY5Y\nO45YO3OdwbXSAkqA5u6WcKCp6KimylNDXWcD++sPA6DVaMmISw0Hmuz4TNLjUtFr5eNOiLFEjmgh\nRNTQarQ4zck4zcnMT70FCIaahq6m8Fiayo5qqj21VHlq+ZKDAOg1OjIs6eRcEGpSzc7LLk4phIgO\nEmCEEFFNq9GSFpdCWlwKt6bNA4IT7dV1NlDp7j/1VEW1p5YKd1X4dQatgSxr+qDTT05zkswmLESU\nkAAjhBhzdFodmdZ0Mq3pLOZbQHB17VpP3aCBwuc7qjjXXhF+nUkXw+zkfFZlryDDkhap5gshhkAC\njBBiXDBo9eTEZ5ETnwUZwft6/b1Ue+qoDE28V9ZWzsH6IxysP8IM+1RW56xgcmKuXBUihApJgBFC\njFtGnZFJCTlMSsgBguNpTrUU82nlHk61FnOqtZhsawarslcwJ3mWjJkRQkUkwAghRIhWo2Vm0nRm\nJk2nvL2STyv3UNR0gldOvobDZOeO7GUsSlsgc88IoQISYIQQ4jImJmTz/Vmbaexq4rOqfRyoO8wb\nJe/yYfknrMhYzPLMxViNlkg3U4hxSyayu4hMLqReUht1Gi91cfd62FP9JXurC+n0dWHQ6lmUtoA7\nspaTbHZEunmXNV5qE42kNkMjE9kJIcQNshot3DPp26zOuZ3C2kN8XrWXvTWF7KvZz5zkmazOuS04\nQFgIMSokwAghxDDE6IzclrWEZRkLOdp0nE8rdnO06ThHm44zOXESq7JXkO+YJlcuCTHCJMAIIcR1\n0Gl1zE+ZwzxnAcWuUj6t3MPp1hLOtp0jPS6VldnLmZ8yR5YwEGKEyJElhBA3QKPRMM0+mWn2yVS7\na/m0cg9fNxax7fQfee/cTm7PWsqS9FuJ1Zsi3VQhxhQZxHsRGVilXlIbdZK6XKql28Wfq/fxZe1B\nev29mHQmlmUs5LasJSTGJIxaO6Q26iW1GZqrDeKVAHMR2anUS2qjTlKXK+vq62JvzX52V3+Bu9eD\nTqNjQeotrMpeQVpcyoi/v9RGvaQ2QyNXIQkhRASYDWa+M+EOVmYt42D9ET6t2sP+usPsrzvMTMd0\nVufcRm7CBBnwK8R1kAAjhBAjzKAzsCTjVhalL+B48yk+qdjDiZbTnGg5zcT4bFZlr2B2cr6shC3E\nMEiAEUKIUaLVaClInklB8kzK2s7zaeUejjWf5OUT23DGJnFH9nJuTZ2HUWeIdFOFUD0JMEIIEQG5\niRPITZxAfWcjn1Xu5WD917xe/Dbvn9vJbZlLWZ65iDiDOdLNFEK1RrS/sqSkhFWrVvGHP/wBgLq6\nOjZv3szGjRv5u7/7O3p7ewHYsWMH69ev54EHHuCNN94YySYJIYSqpMY5eXj6d/k/i3/CnTm341f8\nvF++kye/+gVvlLxLS3drpJsohCqNWIDp6urimWeeYdGiReH7XnzxRTZu3Mhrr71GTk4Ob775Jl1d\nXbz00kv8/ve/Z9u2bbz66qu0tbWNVLOEEEKVEmLiWZt7Fz9f/ATr8u7BrI9ld/WXPL3/Of7r5GtU\nuWsi3UQhVGXEAozRaOTll1/G6XSG7ztw4AArV64E4Pbbb6ewsJCioiJmzZqF1WrFZDIxd+5cjhw5\nMlLNEkIIVTPpTazMXs7/WbSF703fQKrZyeGGb/jlof/Hr46+zOnWEqJw9gshbroRGwOj1+vR6wdv\nvru7G6PRCIDD4aCpqYnm5mbsdnv4OXa7naampqtu22Yzo9frbn6jQ6523bmILKmNOkldRsY9Kbex\nZtYKiupPsePMJ5xoLOaM6ywTEjO5d9pqFmbNQ6+9+meh1Ea9ork2XX3dnG4q5WRDManWZO7MWzHq\nbYjYIN4r/QUxlL8sXK6um92cMJlcSL2kNuokdRl5Gfps/tfMv6aio4pPK/dwtPE4L+7/L7YdfYeV\n2ctZlLYAkz7mktdJbdQr2mrT6+/jXPt5il2llLjKqHRXE1ACAOQmTOCWhLkj8r6qmcjObDbj9Xox\nmUw0NDTgdDpxOp00NzeHn9PY2MicOXNGs1lCCBEVcuKz+OuZm2jubuGzyn0U1h3izbM7+LD8E5Zn\nLGJF1hLijdH7V71QD3/AT4W7iuLWUopdpZS3V+BT/EBwOoAJ8VlMteUxxZbHxISciLRxVAPM4sWL\n2blzJ2vXrmXXrl0sW7aMgoICnnzySTo6OtDpdBw5coQnnnhiNJslhBBRJSnWwYap97Fm4mr21HzF\n3uqv+Ljicz6t2sutqfNYmb2cFHNypJspokhACVDjqaPYFQwspW3l9PqDVwpr0JBpSWOKPY+ptjxy\nEyZgUsHipCO2FtKJEyfYunUrNTU16PV6UlJSeP7559myZQs9PT2kp6fz7LPPYjAY+Pjjj/nd736H\nRqNh06ZN3HvvvVfdtqyFND5JbdRJ6hJ5vf5e9tcd5rPKvTR7W9GgYXZyPmum306CYsdiiIt0E8VF\nIn3cKIpCQ1cjxa4ySlylnHWdo9M3MDwj1exkii2PqbZc8myTIrYPyWKOwxDpnUpcmdRGnaQu6hFQ\nAnzTdIJPKnZT6a4O358Yk0CmJY1MSzoZ1nQyLGkkxzpk6YIIisRx09LdGg4sJa5S2nsH3t9usoVO\nCeUyxZY7qqumX41qxsAIIYQYOVqNlrnO2dySPIvStnNUeCsoaTxPjaeOEy1nONFyJvxco85IRlwq\nGdZ0Mi1pZFjSSY9LvexgYBGd2nvcnHWVUuwqo9hVSot3YFJEq9HC/JQ5TLHlMtWWR1KsI4ItvT4S\nYIQQYozRaDRMtuWyOHlO+K98T28n1Z5aqj211HjqqHbXUuGupryjcuB1aEiOdYRDTaYl2FuTGJMg\nK2ZHga6+LkrazlESCi31nQ3hx2L1sRQk5TMl1MuSFpcS9TWVACOEEOOAxRjHNPtkptknh+/rC/io\n72yg2lNHjaeWancw3BxtPMbRxmPh58UZzGRYBoea1Dgneq18hUSS19dDWfv58CmhKnctCsFRIUat\ngen2KUy1BQfeZlrTx9wpQ9n7hBBinDJo9WRZM8iyZoTvUxQFV09buJem2lNHtac2/CXZT6fRkRrn\nJNMycAoqw5omA4ZHUF/Ax/n2ivA4lvKOyvBcLDqNjtzECaGBt3lMiM8a8wFzbP92QgghhkWj0WA3\n2bCbbMxKmhG+DcA6OAAACV9JREFU3+vzUuOpD/bUhEJNraeeGk8dBy54fXDAcCjUhE5FJcmA4evi\nD/ip8tRQ0hocw1LWfp6+QB8QPN2Xbc0MjmGxBy9tNuqMEW7x6JIAI4QQ4ppMehO5iRPITZwQvi+g\nBGjsah4UamrcdZxoOc2JltPh5wUHDKeRYU0Lh5t0Sxox4+wL91oCSoC6zgZKQoNuz7rO4fV7w4+n\nx6WGrxTKS5yE2RAbwdZGngQYIYQQ10Wr0ZIa5yQ1zsm8lIEZ1N29nuApKE8t1e7g+JoKdxXlHRXh\n52jQkGx2hMbWhMbXWNNJMMZH/eDSoVIUhabultCg2+AU/Z6+zvDjybEO5tkKmGrLZbItV2ZZvogE\nGCGEEDeV1Wi5dMCwv4+6rgZq3HUDV0JdYcBw/0DhTEs6mdZ0UszJN2U8R0AJoCgKASVAACX0c/B2\n+H4lQEBRUBi4HVACKFzucSX4ekUhMOjni7Z/wXsqSgBfwEf9uXqO1Z3B1dMWbl+CMZ5vpc4NXimU\nmIsj1nbDv/NYJgFGCCHEiDPoDGRbM8m2ZobvUxSFVm9b6BTUwOXd/dPZ99NpdOGJ94JB4KLwcEHA\nUMJh4oLnhB5TmziDmVuSZ4VnvHWak8dN79PNIAFGCCFERGg0GhyxNhyxNmYn54fv7/Z5qfHUhf4L\nnoZq7A4u+qvVaNCiRavRoNFo0Wq0GDR6tBpt6GcNWo0WLRo0/c9h4H5N6DGtZvA2+u/ThF8/8Ljm\ngvfUDvr5gm1c/PhF2wi2Z+A5+ZmTiO2Ll8HNN0ACjBBCCFWJ1ZvIS5xIXuLESDdlxCTbZAmOGyXR\nTwghhBBRRwKMEEIIIaKOBBghhBBCRB0JMEIIIYSIOhJghBBCCBF1JMAIIYQQIupIgBFCCCFE1JEA\nI4QQQoioIwFGCCGEEFFHAowQQgghoo4EGCGEEEJEHQkwQgghhIg6EmCEEEIIEXU0iqIokW6EEEII\nIcRwSA+MEEIIIaKOBBghhBBCRB0JMEIIIYSIOhJghBBCCBF1JMAIIYQQIupIgBFCCCFE1JEAc4Ff\n/OIXbNiwgYceeohjx45FujniAs899xwbNmxg/fr17Nq1K9LNERfwer2sWrWKt99+O9JNERfYsWMH\n9957L+vWrWP37t2Rbo4AOjs7+eEPf8jmzZt56KGH2LdvX6SbFNX0kW6AWhw8eJCKigq2b99OWVkZ\nTzzxBNu3b490swSwf/9+zp49y/bt23G5XNx///3ceeedkW6WCPnNb35DQkJCpJshLuByuXjppZd4\n66236Orq4le/+hW33XZbpJs17r3zzjtMnDiRH/3oRzQ0NPBXf/VXfPzxx5FuVtSSABNSWFjIqlWr\nAMjNzaW9vR2Px4PFYolwy8SCBQuYPXs2APHx8XR3d+P3+9HpdBFumSgrK6O0tFS+HFWmsLCQRYsW\nYbFYsFgsPPPMM5FukgBsNhvFxcUAdHR0YLPZItyi6CankEKam5sH7Ux2u52mpqYItkj00+l0mM1m\nAN58802WL18u4UUltm7dypYtWyLdDHGR6upqvF4vf/u3f8vGjRspLCyMdJMEsGbNGmpra1m9ejWb\nNm3ixz/+caSbFNWkB+YKZIUF9fn000958803eeWVVyLdFAH86U9/Ys6cOWRlZUW6KeIy2tra+PWv\nf01tbS3f+973+POf/4xGo4l0s8a1d999l/T0dH73u99x5swZnnjiCRk7dgMkwIQ4nU6am5vDPzc2\nNpKcnBzBFokL7du3j3//93/nP//zP7FarZFujgB2795NVVUVu3fvpr6+HqPRSGpqKosXL45008Y9\nh8PBLbfcgl6vJzs7m7i4OFpbW3E4HJFu2rh25MgRli5dCsC0adNobGyU0+E3QE4hhSxZsoSdO3cC\ncPLkSZxOp4x/UQm3281zzz3Hf/zHf5CYmBjp5oiQf/u3f+Ott97ij3/8Iw888ACPPvqohBeVWLp0\nKfv37ycQCOByuejq6pLxFiqQk5NDUVERADU1NcTFxUl4uQHSAxMyd+5c8vPzeeihh9BoNDz11FOR\nbpII+fDDD3G5XPz93/99+L6tW7eSnp4ewVYJoV4pKSl8+9vf5sEHHwTgySefRKuVv1cjbcOGDTzx\nxBNs2rQJn8/H008/HekmRTWNIoM9hBBCCBFlJJILIYQQIupIgBFCCCFE1JEAI4QQQoioIwFGCCGE\nEFFHAowQQgghoo4EGCHEiKqurmbmzJls3rw5vArvj370Izo6Ooa8jc2bN+P3+4f8/L/8y7/kwIED\n19NcIUSUkAAjhBhxdrudbdu2sW3bNl5//XWcTie/+c1vhvz6bdu2yYRfQohBZCI7IcSoW7BgAdu3\nb+fMmTNs3boVn89HX18f//RP/8SMGTPYvHkz06ZN4/Tp07z66qvMmDGDkydP0tvby89+9jPq6+vx\n+XysXbuWjRs30t3dzWOPPYbL5SInJ4eenh4AGhoaePzxxwHwer1s2LCB7373u5H81YUQN4kEGCHE\nqPL7/XzyySfMmzePf/iHf+Cll14iOzv7ksXtzGYzf/jDHwa9dtu2bcTHx/PCCy/g9Xq5++67WbZs\nGV999RUmk4nt27fT2NjIypUrAfjoo4+YNGkS//zP/0xPTw9vvPHGqP++QoiRIQFGCDHiWltb2bx5\nMwCBQID58+ezfv16XnzxRX7605+Gn+fxeAgEAkBweY+LFRUVsW7dOgBMJhMzZ87k5MmTlJSUMG/e\nPCC4MOukSZMAWLZsGa+99hpbtmxhxYoVbNiwYUR/TyHE6JEAI4QYcf1jYC7kdrsxGAyX3N/PYDBc\ncp9Goxn0s6IoaDQaFEUZtNZPfwjKzc3lgw8+4NChQ3z88ce8+uqrvP766zf66wghVEAG8QohIsJq\ntZKZmcmePXsAKC8v59e//vVVX1NQUMC+ffsA6Orq4uTJk+Tn55Obm8vRo0cBqKuro7y8HID33nuP\n48ePs3jxYp566inq6urw+Xwj+FsJIUaL9MAIISJm69at/PznP+e3v/0tPp+PLVu2XPX5mzdv5mc/\n+xkPP/wwvb29PProo2RmZrJ27Vo+//xzNm7cSGZmJrNmzQIgLy+Pp556CqPRiKIofP/730evl489\nIcYCWY1aCCGEEFFHTiEJIYQQIupIgBFCCCFE1JEAI4QQQoioIwFGCCGEEFFHAowQQgghoo4EGCGE\nEEJEHQkwQgghhIg6EmCEEEIIEXX+P18shA7ChkThAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "P8BLQ7T71JWd" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a possible solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "1hwaFCE71OPZ" + }, + "cell_type": "markdown", + "source": [ + "It's a good idea to keep latitude and longitude normalized:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "djKtt4mz1ZEc", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def location_location_location(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that keeps only the latitude and longitude.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " return processed_features\n", + "\n", + "lll_dataframe = location_location_location(preprocess_features(california_housing_dataframe))\n", + "lll_training_examples = lll_dataframe.head(12000)\n", + "lll_validation_examples = lll_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.05),\n", + " steps=500,\n", + " batch_size=50,\n", + " hidden_units=[10, 10, 5, 5, 5],\n", + " training_examples=lll_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=lll_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "Dw2Mr9JZ1cRi" + }, + "cell_type": "markdown", + "source": [ + "This isn't too bad for just two features. Of course, property values can still vary significantly within short distances." + ] + } + ] +} \ No newline at end of file diff --git a/intro_to_neural_nets.ipynb b/intro_to_neural_nets.ipynb new file mode 100644 index 0000000..167c0e2 --- /dev/null +++ b/intro_to_neural_nets.ipynb @@ -0,0 +1,1223 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "intro_to_neural_nets.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "O2q5RRCKqYaU", + "vvT2jDWjrKew" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "eV16J6oUY-HN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Intro to Neural Networks" + ] + }, + { + "metadata": { + "id": "_wIcUFLSKNdx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Define a neural network (NN) and its hidden layers using the TensorFlow `DNNRegressor` class\n", + " * Train a neural network to learn nonlinearities in a dataset and achieve better performance than a linear regression model" + ] + }, + { + "metadata": { + "id": "_ZZ7f7prKNdy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In the previous exercises, we used synthetic features to help our model incorporate nonlinearities.\n", + "\n", + "One important set of nonlinearities was around latitude and longitude, but there may be others.\n", + "\n", + "We'll also switch back, for now, to a standard regression task, rather than the logistic regression task from the previous exercise. That is, we'll be predicting `median_house_value` directly." + ] + }, + { + "metadata": { + "id": "J2kqX6VZTHUy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, let's load and prepare the data." + ] + }, + { + "metadata": { + "id": "AGOM1TUiKNdz", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "2I8E2qhyKNd4", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "pQzcj2B1T5dA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1160 + }, + "outputId": "e06d6dd4-5aa8-437b-a2c4-9fb99211960e" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.5 28.6 2639.5 539.3 \n", + "std 2.1 2.0 12.5 2198.0 425.2 \n", + "min 32.5 -124.3 1.0 8.0 1.0 \n", + "25% 33.9 -121.8 18.0 1452.0 294.0 \n", + "50% 34.2 -118.5 29.0 2127.5 434.0 \n", + "75% 37.7 -118.0 37.0 3162.0 648.2 \n", + "max 42.0 -114.6 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1426.1 500.6 3.9 2.0 \n", + "std 1172.2 388.0 1.9 1.1 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 782.0 278.0 2.6 1.5 \n", + "50% 1165.0 409.0 3.5 1.9 \n", + "75% 1724.0 605.0 4.8 2.3 \n", + "max 35682.0 6082.0 15.0 52.0 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.528.62639.5539.31426.1500.63.92.0
std2.12.012.52198.0425.21172.2388.01.91.1
min32.5-124.31.08.01.03.01.00.50.0
25%33.9-121.818.01452.0294.0782.0278.02.61.5
50%34.2-118.529.02127.5434.01165.0409.03.51.9
75%37.7-118.037.03162.0648.21724.0605.04.82.3
max42.0-114.652.037937.06445.035682.06082.015.052.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.7 -119.6 28.6 2653.6 539.7 \n", + "std 2.1 2.0 12.7 2136.2 412.6 \n", + "min 32.5 -124.3 2.0 2.0 2.0 \n", + "25% 33.9 -121.8 18.0 1476.8 304.0 \n", + "50% 34.3 -118.5 29.0 2126.0 434.0 \n", + "75% 37.7 -118.0 37.0 3112.0 648.2 \n", + "max 41.9 -114.3 52.0 28258.0 4492.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1437.9 502.6 3.9 2.0 \n", + "std 1087.4 376.0 1.9 1.3 \n", + "min 6.0 2.0 0.5 0.1 \n", + "25% 807.0 287.0 2.6 1.5 \n", + "50% 1170.0 409.5 3.6 1.9 \n", + "75% 1716.0 607.0 4.7 2.3 \n", + "max 12203.0 4372.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.7-119.628.62653.6539.71437.9502.63.92.0
std2.12.012.72136.2412.61087.4376.01.91.3
min32.5-124.32.02.02.06.02.00.50.1
25%33.9-121.818.01476.8304.0807.0287.02.61.5
50%34.3-118.529.02126.0434.01170.0409.53.61.9
75%37.7-118.037.03112.0648.21716.0607.04.72.3
max41.9-114.352.028258.04492.012203.04372.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 207.8\n", + "std 116.0\n", + "min 15.0\n", + "25% 120.1\n", + "50% 181.1\n", + "75% 265.4\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean207.8
std116.0
min15.0
25%120.1
50%181.1
75%265.4
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 206.1\n", + "std 115.8\n", + "min 22.5\n", + "25% 118.6\n", + "50% 178.1\n", + "75% 264.1\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean206.1
std115.8
min22.5
25%118.6
50%178.1
75%264.1
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "RWq0xecNKNeG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Building a Neural Network\n", + "\n", + "The NN is defined by the [DNNRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor) class.\n", + "\n", + "Use **`hidden_units`** to define the structure of the NN. The `hidden_units` argument provides a list of ints, where each int corresponds to a hidden layer and indicates the number of nodes in it. For example, consider the following assignment:\n", + "\n", + "`hidden_units=[3,10]`\n", + "\n", + "The preceding assignment specifies a neural net with two hidden layers:\n", + "\n", + "* The first hidden layer contains 3 nodes.\n", + "* The second hidden layer contains 10 nodes.\n", + "\n", + "If we wanted to add more layers, we'd add more ints to the list. For example, `hidden_units=[10,20,30,40]` would create four layers with ten, twenty, thirty, and forty units, respectively.\n", + "\n", + "By default, all hidden layers will use ReLu activation and will be fully connected." + ] + }, + { + "metadata": { + "id": "ni0S6zHcTb04", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zvCqgNdzpaFg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a neural net regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U52Ychv9KNeH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_regression_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `DNNRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a DNNRegressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " dnn_regressor = tf.estimator.DNNRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer,\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " dnn_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = dnn_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = dnn_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % training_root_mean_squared_error)\n", + " print(\"Final RMSE (on validation data): %0.2f\" % validation_root_mean_squared_error)\n", + "\n", + " return dnn_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "2QhdcCy-Y8QR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Train a NN Model\n", + "\n", + "**Adjust hyperparameters, aiming to drop RMSE below 110.**\n", + "\n", + "Run the following block to train a NN model. \n", + "\n", + "Recall that in the linear regression exercise with many features, an RMSE of 110 or so was pretty good. We'll aim to beat that.\n", + "\n", + "Your task here is to modify various learning settings to improve accuracy on validation data.\n", + "\n", + "Overfitting is a real potential hazard for NNs. You can look at the gap between loss on training data and loss on validation data to help judge if your model is starting to overfit. If the gap starts to grow, that is usually a sure sign of overfitting.\n", + "\n", + "Because of the number of different possible settings, it's strongly recommended that you take notes on each trial to help guide your development process.\n", + "\n", + "Also, when you get a good setting, try running it multiple times and see how repeatable your result is. NN weights are typically initialized to small random values, so you should see differences from run to run.\n" + ] + }, + { + "metadata": { + "id": "rXmtSW1yKNeK", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 769 + }, + "outputId": "83434e0a-ab92-4c6a-b02f-a383f78c580b" + }, + "cell_type": "code", + "source": [ + "dnn_regressor = train_nn_regression_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=10,\n", + " hidden_units=[10, 2],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 235.83\n", + " period 01 : 233.65\n", + " period 02 : 231.49\n", + " period 03 : 216.09\n", + " period 04 : 205.19\n", + " period 05 : 219.64\n", + " period 06 : 185.29\n", + " period 07 : 165.60\n", + " period 08 : 163.54\n", + " period 09 : 162.96\n", + "Model training finished.\n", + "Final RMSE (on training data): 162.96\n", + "Final RMSE (on validation data): 157.89\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VNX28PHvlLRJ74XeCSGFEqRX\nIVQVAqEZUFGvCoqK1/JevffnVbmKFQQEVKTYgIgIgoIoCIiUEAgBQi+B9N7LJDnvH4GRCAkpM2ms\nz/P46Mzss8+aOYmzss/ae6sURVEQQgghhGhE1PUdgBBCCCFEdUkCI4QQQohGRxIYIYQQQjQ6ksAI\nIYQQotGRBEYIIYQQjY4kMEIIIYRodLT1HYAQDVmnTp1o2bIlGo0GgJKSEgIDA3n11VfR6XQ17nf9\n+vWEhITc8vzGjRt55ZVXWLZsGUOGDDE8X1BQQN++fRkxYgRvv/12jc9bVTExMcyfP59Lly4BYGVl\nxZw5c7j33ntNfu7qWLp0KTExMbd8JgcPHmTWrFk0b978lmN+/vnnugqvVq5du8awYcNo06YNAIqi\n4OLiwr/+9S+6dOlSrb7ef/99vLy8mDp1apWP+eGHHwgLC2Pt2rXVOpcQdUUSGCHuYO3atXh4eABQ\nVFTEc889x/Lly3nuuedq1F9ycjKfffbZbRMYAE9PT3788cdyCcyuXbuws7Or0flq4oUXXuD+++9n\n2bJlAERGRjJz5kx++uknPD096yyO2vD09Gw0yUpFNBpNufewbds2Zs+ezfbt2zE3N69yP/PmzTNF\neELUK7mFJEQ1mJubM2DAAKKjowEoLCzk3//+N0FBQYwaNYq3336bkpISAE6fPs2UKVMYOXIk999/\nP3v37gVgypQpxMXFMXLkSIqKim45R/fu3Tl48CD5+fmG57Zt20a/fv0Mj4uKinjzzTcJCgpi6NCh\nhkQD4OjRo0yYMIGRI0cyevRo9u/fD5T9Rd+/f3/WrFnDuHHjGDBgANu2bbvt+zx79iz+/v6Gx/7+\n/mzfvt2QyC1evJhBgwbxwAMPsGLFCoYOHQrAyy+/zNKlSw3H3fz4TnHNnz+fBx98EIAjR44QHBzM\n8OHDCQkJ4erVq0DZSNSzzz7LkCFDePDBB0lISLjDFbu9jRs3MmfOHGbOnMmCBQs4ePAgU6ZMYe7c\nuYYv+59++omxY8cycuRIZsyYQUxMDAAff/wxr776KhMnTmTVqlXl+p07dy4rV640PI6OjqZ///6U\nlpby4YcfEhQURFBQEDNmzCAxMbHacY8ePZqCggIuXrwIwLp16xg5ciRDhw7l+eefp6CgACj73P/3\nv/8xbtw4fvrpp3LXoaKfy9LSUv773/8yePBgJk6cyOnTpw3nPXToEOPHj2f06NGMGjWKn376qdqx\nC2F0ihCiQh07dlTi4+MNjzMyMpTp06crS5cuVRRFUZYvX6489thjil6vV/Lz85Xg4GBl06ZNSklJ\niTJq1Chly5YtiqIoyvHjx5XAwEAlOztbOXDggHLvvffe9nzfffed8tJLLykvvPCC4djs7Gxl2LBh\nyoYNG5SXXnpJURRFWbx4sTJz5kylsLBQyc3NVR544AHlt99+UxRFUcaOHav8+OOPiqIoyvfff284\n19WrV5UuXbooa9euVRRFUbZt26YMHz78tnE8/fTTypAhQ5TVq1cr58+fL/famTNnlJ49eypJSUmK\nXq9XnnzySWXIkCGKoijKSy+9pCxZssTQ9ubHlcXl4+OjbNy40fB+AwMDlX379imKoihbtmxRxo8f\nryiKonz55ZfK9OnTFb1er6SlpSlDhgwxfCY3q+wzvvE5BwQEKJcuXTK09/X1Vfbv368oiqLExsYq\nPXr0UC5fvqwoiqJ8/vnnysyZMxVFUZRFixYp/fv3V1JTU2/pd+vWrcr06dMNjxcuXKi88cYbytmz\nZ5URI0YoRUVFiqIoypo1a5Tvv/++wvhufC7e3t63PB8YGKhcuHBBOXz4sNKnTx8lISFBURRFee21\n15S3335bUZSyz33cuHFKQUGB4fGSJUsq/bncvXu3MmLECCUnJ0fJz89XJk6cqDz44IOKoijKhAkT\nlIMHDyqKoiiXLl1Snn/++UpjF6IuyAiMEHcQGhrKyJEjGTZsGMOGDaN379489thjAOzevZuQkBC0\nWi2WlpaMGzeOP/74g2vXrpGSksKYMWMA8PX1xcvLi6ioqCqdc8yYMfz4448A7Ny5kyFDhqBW//Xr\numvXLqZNm4a5uTk6nY7777+fHTt2ALBp0yZGjRoFQI8ePQyjFwDFxcVMmDABAB8fH+Li4m57/nff\nfZfp06ezZcsWxo4dy9ChQ/nmm2+AstGRwMBAXF1d0Wq1jB07tkrvqbK49Ho9w4cPN/Tv7u5uGHEa\nO3YsMTExxMXFER4ezvDhw9FqtTg6Opa7zfZ38fHxjBw5stw/N9fKtG7dmtatWxseW1pa0qdPHwD+\n+OMP7rnnHlq1agXApEmTOHjwIMXFxUDZiJSTk9Mt5xw8eDCnTp0iIyMDgF9++YWRI0diZ2dHWloa\nW7ZsITMzk9DQUB544IEqfW43KIrCunXrcHd3p3Xr1vz222+MHj0ad3d3AKZOnWr4GQDo06cPFhYW\n5fqo7Ofy8OHDDBo0CGtraywtLQ3XCsDZ2ZlNmzZx4cIFWrduzfvvv1+t2IUwBamBEeIObtTApKWl\nGW5/aLVlvzppaWnY29sb2trb25OamkpaWhq2traoVCrDaze+xFxcXO54zn79+vHqq6+SkZHB1q1b\neeqppwwFtQDZ2dn873//44MPPgDKbin5+fkBsGXLFtasWUNubi6lpaUoN213ptFoDMXHarWa0tLS\n257fwsKCWbNmMWvWLLKysvj555+ZP38+zZs3JzMzs1w9jrOz8x3fT1XisrGxASArK4urV68ycuRI\nw+vm5uakpaWRmZmJra2t4Xk7Oztyc3Nve7471cDcfN3+/jg9Pb3ce7S1tUVRFNLT02977A06nY6+\nffuye/duevToQVZWFj169EClUvHxxx+zcuVK3njjDQIDA3n99dfvWE9UUlJi+BwURaF9+/YsXboU\ntVpNdnY2v/zyC/v27TO8rtfrK3x/QKU/l5mZmbi5uZV7/ob58+fzySef8PDDD2Npacnzzz9f7voI\nUR8kgRGiipycnAgNDeXdd9/lk08+AcDFxcXw1zZARkYGLi4uODs7k5mZiaIohi+LjIyMKn/Zm5mZ\nMWTIEDZt2sSVK1fo1q1buQTGzc2NRx555JYRiMTERF599VU2bNiAt7c3ly9fJigoqFrvMy0tjejo\naMMIiJ2dHSEhIezdu5ezZ89ia2tLdnZ2ufY3/D0pyszMrHZcbm5utG3blo0bN97ymp2dXYXnNiZn\nZ2eOHj1qeJyZmYlarcbR0fGOxwYFBfHLL7+Qnp5OUFCQ4fr37t2b3r17k5eXxzvvvMN77713x5GM\nvxfx3szNzY3x48fz0ksvVet9VfRzWdln6+LiwmuvvcZrr73Gvn37ePrppxkwYADW1tZVPrcQxia3\nkISohocffpijR49y6NAhoOyWQVhYGCUlJeTl5fHDDz8waNAgmjdvjoeHh6FINiIigpSUFPz8/NBq\nteTl5RluR1RkzJgxfPrpp7edujxs2DA2bNhASUkJiqKwdOlS9uzZQ1paGjqdjrZt21JcXMy6desA\nKhyluJ2CggKeeeYZQ3EnwJUrV4iMjKRnz55069aN8PBw0tLSKC4uZtOmTYZ2rq6uhuLPq1evEhER\nAVCtuPz9/UlOTiYyMtLQzz//+U8URSEgIIDffvuNkpIS0tLS2LNnT5XfV3X069eP8PBww22ub7/9\nln79+hlG3iozZMgQjh49ys6dOw23Yfbt28frr79OaWkpOp2Ozp07lxsFqYmhQ4eyY8cOQ6Kxc+dO\nVqxYUekxlf1cduvWjX379pGfn09+fr4hcdLr9YSGhpKUlASU3XrUarXlbmkKUR9kBEaIarCxseHx\nxx/nnXfeISwsjNDQUK5evcqYMWNQqVSMHDmSUaNGoVKp+OCDD/jPf/7D4sWLsbKyYuHCheh0Ojp1\n6oS9vT39+vXj+++/x8vL67bn6tWrFyqVitGjR9/y2rRp07h27RpjxoxBURS6du3KzJkz0el0DBw4\nkKCgIJydnXn55ZeJiIggNDSURYsWVek9enl58cknn7Bo0SLefPNNFEXBxsaGV155xTAzafLkyYwf\nPx5HR0dGjBjBuXPnAAgJCWHOnDmMGDGCLl26GEZZOnfuXOW4LC0tWbRoEW+88Qa5ubmYmZkxd+5c\nVCoVISEhhIeHc++99+Ll5cW9995bbtTgZjdqYP5uwYIFd/wMPDw8ePPNN3nqqafQ6/U0b96cN954\no0qfn42NDT4+Ppw5c4aAgAAAAgMD2bp1K0FBQZibm+Pk5MT8+fMBePHFFw0ziarDx8eHJ554gtDQ\nUEpLS3F2dub111+v9JjKfi6HDBnC7t27GTlyJC4uLgwaNIjw8HDMzMyYOHEiDz30EFA2yvbqq69i\nZWVVrXiFMDaVcvONaCGEqKbw8HBefPFFfvvtt/oORQhxF5ExQCGEEEI0OpLACCGEEKLRkVtIQggh\nhGh0ZARGCCGEEI2OJDBCCCGEaHQa5TTq5OTbT5s0BkdHHenpeSbrX9ScXJuGSa5LwyXXpuGSa1M1\nrq62Fb4mIzB/o9Vq6jsEUQG5Ng2TXJeGS65NwyXXpvYkgRFCCCFEoyMJjBBCCCEaHUlghBBCCNHo\nSAIjhBBCiEZHEhghhBBCNDqSwAghhBCi0ZEERgghhBCNjiQwQgghRBOze/evVWq3cOH7xMXFVvj6\nyy8/b6yQjE4SGCGEEKIJiY+PY+fO7VVqO3fuPLy8mlX4+ttvf2CssIyuUW4lIIQQQojb++CDd4iO\nPsmAAYGMGDGK+Pg4PvpoKf/7339JTk4iPz+fRx55nH79BjBnzuM8//yL7Nr1K7m5OcTEXCE29hrP\nPDOPPn36MWbMMLZu/ZU5cx4nMPAeIiLCycjI4J13PsTFxYX//vc1EhLi8fX147ffdvL999vq7H1K\nAiOEEEKYyPrfznP4dNItz2s0KkpKlBr1GdjZjZCh7St8ferUUDZuXE+bNu2IibnM0qWfkZ6eRq9e\nvRk1aiyxsdd47bWX6ddvQLnjkpISee+9RRw4sJ8ffviOPn36lXvd2tqahQs/4ZNPPmbPnt/w8mpO\nUVEhK1as4o8/9rJ+/Tc1ej81JQnMTVIy8om6ko6VRo2niw5rS7P6DkkIIYSoMW9vHwBsbe2Ijj7J\n5s0bUanUZGVl3tLWzy8AADc3N3Jycm553d+/m+H1zMxMrly5hK+vPwB9+vRDo6nb/Z0kgbnJlv2X\n2Xs83vDYztocL2cdns7WeDrr8HSxxsvZGgcbc1QqVT1GKoQQojEIGdr+tqMlrq62JCdnm/z8ZmZl\nf4j/8svPZGVlsWTJZ2RlZfHoo6G3tL05AVGUW0eH/v66oiio1WXPqVSqOv9elATmJpOGtMe/kztn\nL6cSn5pHfGoup2MyOB2TUa6dlYUGDyfrsuTGpSy58XK2xsXBEo1a6qKFEELUH7VaTUlJSbnnMjIy\n8PT0Qq1W8/vvv6HX62t9nmbNmhtmOx06dOCWc5qaJDA3sbEyI6h3K7q3czI8V6gvIeF6MhN3/d/x\nqXnEJGZzKT6r3PFajQp3p7IRm5tHbjycdJibydbpQgghTK9VqzacOXMaT08vHBwcABg8eCgvv/w8\np06dYMyY+3Bzc+OLLz6t1Xn69h3A1q2befLJWXTr1gM7O3tjhF9lKuV240QNnCmH3ao6rFdcUkpy\nRr5hpCYu5Xpyk5ZHYVH5LFQFONtb4nV9tKYswbGWOptqqqshV1E9cl0aLrk2DVdTuDZZWZlERIQz\nePAwkpOTmDv3Sb7++jujnsPV1bbC12QEpoa0GvX1ERZrwNXwvKIopGcXEpeaS3xK+ZGb4xdSOX4h\ntVw/UmcjhBCiMdLprPntt518/fVaFKWUp5+u20XvZATmJmkF6SSXJmBRbI27zg0rraVR+8/J1xOX\nkmu4DXUjyUnNKrilrdTZ3Kop/MXSFMl1abjk2jRccm2qRkZgquinSzvZH3/Y8NjBwh4PnRvu1m54\n6FzxsHbDXeeOnblNjUZHbKzM6NjCgY4tHMo9X1hUQkLa9YTmelITl5ordTZCCCFEBSSBucl97Ubh\n49WB84kxJOQlkZCbxOn0c5xOP1eunZXWCg+dGx7W1/+5/t9Olo6oVdUfHbEw19DKw5ZWHuUzzQrr\nbFLziE3OLddWBbg4WP5VX2O4HaVDJ3U2Qgghmhi5hfQ3fx/WKyguJPF6MpOQl0Ti9X8n56dSqpSW\nO9ZMrcVN52pIaNyv/9tN54qZ2ni5YmV1Ntl5t06Ns7c2NxQPN+Y6GxlybZjkujRccm0aLrk2VSO3\nkGrBUmtBK7sWtLJrUe754tJiUvJTDYnNzQlObE58ubYqVLhYOV0frXG/fkvKDQ9rV6y0VtWOSaVS\n4WRniZOdJV3bOJd7raI6m8rWsylLbnTXZ0ZZ43oX19kIIYRoHCSBqSGtWouHtTse1u7lni9VSkkv\nyLyezCSWS26iUqKJIrpce3tzO8OtKHfdX7ej7MxtTVJnU+X1bBzLkhqPm2ptPJx1WEidjRBCNAkT\nJ45jzZp1fPfderp1607Xrn6G1/Ly8pgxYzJhYVsqPH737l8ZPHgY27ZtwdrahkGDhtRF2AaSwBiZ\nWqXG2coRZytHfJw7lXstpyj3ekJzU2KTm8SZ9POcST9frq2V1vKmAmI3w+iNs5Vp6mwSbozW3LRo\nX2xKLpBsaHtjPRvDragba9q4WGNjJXU2QgjRGIWGPlTtY+Lj49i5czuDBw9j9Ohxxg+qCiSBqUM2\n5ta0N29De4c25Z4vKC4kKS+53GhNQm4SV7KvcSkrplxbrVqL+/U6G/frM6M8rN1xs3LBTFP9JOLm\n9Wy63WY9m/ibRmtuJDZRF1OJulh+PRtbnVn5mVEuOjydrHGys2hUdTZCCNHYPfLIdObPfx8PDw8S\nEuJ55ZV5uLq6kZ+fT0FBAc8990+6dOlqaP/WW//H4MHDCAjoxr/+9SJFRUWGjR0Bduz4ibCwdWg0\nalq3bsdLL/2LDz54h+jok3zxxaeUlpbi4OBAcPBkli5dSFRUJMXFJQQHhzBy5BjmzHmcwMB7iIgI\nJyMjg3fe+RAPD49av09JYBoAS60FLe2a09KuebnnS0pLSM5PLTdak5iXSEJe8m3rbJytnG4arflr\nllRt62x82jiVey23QG+Y6v3XyE0u565mcPZq+TobCzMNHs66m6Z8W+PlosPVwQqtRupshBBN28bz\nP3I0KeqW5zVqFSWlNZtD083Nlwntx1b4+sCBQ/jjjz0EB4ewd+/vDBw4hHbtOjBw4GCOHDnMV1+t\n5q233r3luO3bf6Jt23Y888w8fv11Bzt3bgcgPz+f99//GFtbW2bPfowLF84zdWooGzeu5+GHH+Pz\nz5cDcOxYBBcvXuCTT1aSn5/PzJlTGDhwMADW1tYsXPgJn3zyMXv2/EZIyLQavfebSQLTgGnUGkMS\nctPgCKVKKRmFmeVGa27MlDqRGs2J1L/X2dgaZkTdfEvK3tyuRqMj1pZmtG9uT/vm5fe9KNLfqLMp\nP2oTm5zLlYTy1fYatQo3RyvD7Sivm0ZtLMylzkYIIWpq4MAhLF78EcHBIezb9ztz5jzHt9+u5Ztv\n1qLX67G0vP0irZcvXyQgoAcA3br1MDxvZ2fHK6/MA+DKlUtkZmbc9vjTp08RENAdACsrK1q3bsvV\nq1cB8PfvBoCbmxuZmZlGeZ+SwDRCapUaJ0tHnCwd6fL3Oht9bllC87fZUWczLnA240K5tpYaS9yt\nb5327WLphEZd/STC3ExDS3dbWrqXr7MpLVVIzsw3TPm++XZUfGreLf0421ngcXNic33qt+stLYUQ\nomGb0H7sbUdLTDmNum3bdqSmJpOYmEB2djZ79+7GxcWN1157g9OnT7F48Ue3PU5RQK0u+6O29Pro\nkF6v54MPFrBq1dc4O7vw4ovPVnhelUrFzQuzFBfrDf1pNH99pxhr9RZJYJoYGzNr2jvcWmdTVFJE\nYl7yLevZXMuO40rW1XJttSoNrjoXQ0LzV4LjirnGvNoxqdVls5rcHXUEdHAxPK8oCpm5RcSnlJ8Z\nFZ+ay8lLaZy8lFaun6E9WzBtWHvUUlMjhBCV6tOnPytWLGXAgEFkZKTTrl0HAH7/fRfFxcW3PaZl\ny1acPh3N4MHDiIgIByAvLxeNRoOzswuJiQmcPh1NcXEx5ubmlJSU37i4c2cfVq/+nNDQh8jLyyM2\n9hrNm7c02XuUBOYuYa4xp4VtM1rYNiv3fElpCSkFaeVuQ91IcOJzE2+ehASAk6VjuTqbG7ekbMyt\nqx2TSqXCwcYCBxsLvFuXr7PJKygmPu2vhfqOX0zlt/CrmKlh8tAO1T6XEELcTQYNGsITTzzCqlXf\nUFCQz5tv/oddu3YSHBzCzp072Lp18y3HjBw5hv/3/15g7twn8fMLQKVSYW/vQGDgPTz66Azat+/A\ntGmhLFr0AR9/vJwzZ06zaNH7WFvbAODvH0CnTp2ZPfsxiouLeeKJOVhZVb8Gs6pkJd6/kdURyyiK\nQmZRVvkRm+tJTmbRrZ+PjZn1TSM2rrhbu+Ohc8PR0r5G077/Lidfz4JvjnItKYep93ZgeM8Wdz5I\n1An5nWm45No0XHJtqqaylXhNmsAsWLCAI0eOUFxczD/+8Q9cXV1ZsGABWq0Wc3Nz3n33XZycnNi8\neTOrV69GrVYTEhLCpEmTKu1XEpj6lafPLz9ac/2/U/LTUCj/42SuNsP9+u0nD527oSjZ1coZbTW3\nVyjVaJj30e9k5Rbx1Piu9OjkZsy3JWpIfmcaLrk2DZdcm6qpl60EDhw4wLlz51i3bh3p6emMHz8e\nPz8/FixYQIsWLVi8eDHr169nxowZLFmyhLCwMMzMzJg4cSLDhw/HwcHhzicR9UJnZkUb+1a0sW9V\n7nl9iZ6k/JTrtTaJN82SSuRqdmy5tmqVumx7hRtJjc4Nd2tX3HVuWGlvXyHv7qTj2Un+vP1VBCu2\nnOIFa3M6NJefEyGEuBuZLIEJDAzEz69sWWI7Ozvy8/P58MMP0Wg0KIpCYmIiPXr0IDIyEl9fX2xt\ny7Ks7t27ExERwdChQ00VmjARM40ZzWw8aWbjWe75UqWUtIIMwwrEZQXEySTmJnE87yTHU06Wa+9g\nYW9IaP4qIHbHlbKVhJ8a35WFG46zKOw4/y+0B57O1a+/EUII0biZLIHRaDTodDoAwsLCGDhwIBqN\nhj179vDWW2/Rtm1b7rvvPrZu3YqT018FnE5OTiQnJ1fULQCOjjq0WtOtFVLZkJWoGXfs8ab8iI2i\nKGQVZhOblcC1rATishKIzS7779Pp5zidfq5c+xHtBvJoz6kMdbWlBBWL1h9j0XdRvPvMABxtbz9q\nI+qG/M40XHJtGi65NrVj8llIO3fuJCwsjJUrVwIwcOBABgwYwHvvvceKFSto1qz8rJiqlOSkp9+6\ndoixyH3JuqbCVeWJq70n3W5aF6+guJDEvCTD1O9jyVHsuLCHFlYt6e7mR0BbJ+7r15rNf1zmtWX7\neWlaNyzNZVJdfZDfmYZLrk3DJdemaipL8ky6lvvevXtZtmwZn376Kba2tvzyyy9A2fTZoKAgjhw5\ngpubGykpKYZjkpKScHOT4sy7naXWglZ2Lejl0Z372o3kH34PYa4x49vTG8ksLNs9+/7+bejv68mV\nhGyW/XCSktLSeo5aCCFEXTFZApOdnc2CBQtYvny5oSD3448/Jjq6bJn7yMhI2rRpg7+/P1FRUWRl\nZZGbm0tERAQ9e/Y0VViikXLXufKg/wRyi/P48vQGFEVBpVIxY2QnurZx4viFVNZuP2u0FR6FEEI0\nbCYbc9+2bRvp6ek8++xfyw6/9tprvP7662g0GiwtLVmwYAGWlpbMmzePWbNmoVKpmD17tqGgV4ib\nBbUfxJ+Xj3Iq9Qz74g4yoFlvtBo1Tz7QlXe+imBPZBzO9paM69u6vkMVQghhYrKQ3d/IfcmGy9XV\nlnPXrvHWwQ8oLi3mlV7P4aYr25ogI6eQt9aEk5pVyKwx3vTz9bxDb8JY5Hem4ZJr03DJtamaequB\nEcLYHCzsmdxpPEWletacWkdJadleHA42FjwXEoDOQsuqn07fso+SEEKIpkUSGNHo9HQPoIebP5ey\nrvBLzO+G571crHlmoh8qFSz5PoqYRPnrRgghmipJYESjNLnTeOzN7dh6aUe5VX47tnDg0bFdKCgq\n4aMNkaRmFtRjlEIIIUxFEhjRKFmb6Qj1DqFUKWXVqW/Rl+gNr/Xydmfy0PZk5BTx4YZIcgv0lfQk\nhBCiMZIERjRa3s4dGdisLwm5iWy++HO510YEtuDens2JS8ll8XdR6ItljRghhGhKJIERjdr49qNx\n07mw6+o+zqZfMDyvUqmYMrQDPTq6cuZqBp9vPUVp45twJ4QQogKSwIhGzVxjzswuU1CpVKw5tY78\n4nzDa2q1isfGdaF9M3sORSfx3e4LlfQkhBCiMZEERjR6re1aEtRqKOmFGWw4u7nca+ZmGp6Z6Ie7\nk46fDsbw65Fr9RSlEEIIY5IERjQJo1oPo6Vtcw4mHOFY8olyr9lYmfF8iD92OjO+/uUsEWcr3+1c\nCCFEwycJjGgSNGoNM7tMwUyt5ZvT35FZWH4NGFcHK+ZO8sfMTM3yzSc5H5tZT5EKIYQwBklgRJPh\nYe3G/e1Gk6PP5evTYbds7NjG046nHuhKSYnCorDjJKTl1VOkQgghaksSGNGkDGrel06O7TmRGs3+\n+EO3vO7XzoXQoI7k5Ov5cP0xsnKL6iFKIYQQtSUJjGhS1Co1od4hWGkt+e7cFlLyU29pMyigGeP6\ntiY5o4CFYZEUFpXUQ6RCCCFqQxIY0eQ4WjoQ0vEBCkuKWH1qHaXKrYvYPTCgDf26enApPptlP5yg\npFQWuhNCiMZEEhjRJAW6d6Obmx8XMy+z86YNH29QqVTMHNUZn9aORF5I5asdZ2+pmRFCCNFwSQIj\nmiSVSsWUTuOxN7flx4s7uJbzj5+GAAAgAElEQVQdd0sbrUbNU+N9aeFmw+5jcWw7cKUeIhVCCFET\nksCIJsvGzJrp3pMoUUpYfepb9KXFt7SxstDy7CR/nOws+O73i/x5IqEeIhVCCFFdksCIJs3HuTP9\nm/UmLjeBHy9uv20bR1sLnpvkj5WFlpXbojl1Oa2OoxRCCFFdksCIJm9C+7G4Wjnza8wezqVfvG2b\nZq42PD3BF5UKlnwfxdWknDqOUgghRHVIAiOaPIvrGz4CrIleR35xwW3bdW7lyKwxXcgvLOGjDZGk\nZd2+nRBCiPonCYy4K7Sxb0VQqyGkFaQTdm5zhe3u6eJOyJD2pGcX8uGGSPIKbq2bEUIIUf8kgRF3\njVFt7qWFjRcH4sOJTD5ZYbugXi0Y1r05scm5LN54nOISWSNGCCEaGklgxF1Dq9Yy02cqWrWWr0+H\nkV10+zoXlUrF1Hs70K2DC6djMli5LVrWiBFCiAZGEhhxV/G0duf+tiPJ0efy1W02fLxBrVbxj/t8\naNfMjgMnE9m45/bFv0IIIeqHJDDirjO4RX86OrQjKuUUf8aHV9jO3EzDM8F+uDtasfXPK+yKuFaH\nUQohhKiMJDDirqNWqQntEoKlxpKwcz+Qkl/xui+2OnOeC/HHVmfGl7+c5ei55DqMVAghREUkgRF3\nJSdLR0I63k9hSRFrKtjw8QY3Rx3PTvLHTKtm+Q8nuRCXWYeRCiGEuB1JYMRdq5dHdwJcu3Ih8xK/\nxuyptG0bTzueuL8r+pJSFoUdJzE9r46iFEIIcTuSwIi7lkqlYmqnYGzNbfjx4nZic+IrbR/Q3oXQ\nEZ3IztPz4fpIsvKK6ihSIYQQf2fSBGbBggVMnjyZ4OBgduzYQXx8PA899BAPPvggDz30EMnJZfUE\nmzdvJjg4mEmTJrFhwwZThiREOTbm1jzYeRLFlWz4eLPB3Zoxpk8rktLzWRR2nEJ9SR1FKoQQ4mYm\nS2AOHDjAuXPnWLduHZ999hnz58/no48+IiQkhC+//JLhw4fzxRdfkJeXx5IlS1i1ahVr165l9erV\nZGRkmCosIW7R1cWbfl69iM2JZ+vFHXdsP2FgW/r4eHAxLosVm09SWiprxAghRF0zWQITGBjIwoUL\nAbCzsyM/P5///Oc/BAUFAeDo6EhGRgaRkZH4+vpia2uLpaUl3bt3JyIiwlRhCXFbE9qPw8XSiZ0x\nv3M+41KlbVUqFQ+P7ox3K0eOnkvhq51nZaE7IYSoY1pTdazRaNDpdACEhYUxcOBAw+OSkhK+/vpr\nZs+eTUpKCk5OTobjnJycDLeWKuLoqEOr1ZgqdFxdbU3Wt6gd010bW57p+wj/2fU+X51Zz7tBr2Jl\nZlnpEf95rA8vL9nHrohYWnnaEzy0g4lia/iayu9MZk4h1lZmaDVNpzywqVybpkiuTe2YLIG5YefO\nnYSFhbFy5UqgLHl58cUX6d27N3369GHLli3l2lflL9l0E84AcXW1JTk522T9i5oz9bVxxo3hLQez\n48oulv/5DdO9J97xmDnju/LW2iOs2noKczX09vEwWXwNVVP5nTl6Npmlm07Qx8eDR8Z413c4RtFU\nrk1TJNemaipL8kz6Z8bevXtZtmwZn376Kba2ZUG88sortGrVijlz5gDg5uZGSkqK4ZikpCTc3NxM\nGZYQFRrTZjjNbDzZH3+IqJRTd2zvZGfJcyH+WFlo+XxrNNFX0usgSmFspy6n8ckPJygpVfjzZILM\nMBOiETBZApOdnc2CBQtYvnw5Dg4OQNlsIzMzM5555hlDO39/f6KiosjKyiI3N5eIiAh69uxpqrCE\nqJRWreWhLlPRqjR8FV3xho83a+5qw5wJvgAs3hjFteQ7HyMajvOxmXz8XRQAvbzdKClV2B+VUM9R\nCSHuxGS3kLZt20Z6ejrPPvus4bm4uDjs7OwIDQ0FoF27dvzf//0f8+bNY9asWahUKmbPnm0YrRGi\nPnjZeDCu3Ui+P7+Vb85s5LGuoahUqkqP8W7lyKwx3qzYcooP10fy6oyeONpa1FHEoqZiErP5aH0k\n+uJSZo/vSocWDkScTWFPZBxBvVrc8boLIeqPSmmE0ydMed9Q7ks2XHV5bUqVUhYeXc75jEuEeofQ\n27Nqo4LbDlwhbPcFmrva8MqD3bGyMHmZWb1rrL8ziWl5/O/LI2Tl6XlsbBf6dC2rX1qx+SQHTiXy\n8vTudGzhUM9R1k5jvTZ3A7k2VVNvNTBCNFZqlZoZ3pOx1Fiw4ewPpOZXrbZl1D0tGdK9GdeSc1jy\nfRTFJRXvsSTqT2pmAe99e5SsPD0PjuhoSF4ABvp7AfD7sdj6Ck8IUQWSwAhRAWcrJyZ2uI+CkkLW\nRle+4eMNKpWK6fd2pFsHF05dTueLbadljZgGJiu3iPfWHSM1q5DgQW0Z2r15udc7tXTA3dGK8DPJ\n5Bbo6ylKIcSdSAIjRCV6e/bEz8WHcxkX2XV1X5WOUatVPH6fD2297PjzZALf771o4ihFVeUV6Plg\n3TES0/IYdU9LRvdudUsblUrFQH8v9MWl/HlCinmFaKgkgRGiEiqVimmdg7E1s2HzxZ+Jy6naF5qF\nmYZnJvrh5mjFj/uvsFtuR9S7wqISPtpwnJikHAYHeDFxcLsKi3T7+nqiUavYExknI2hCNFCSwAhx\nB7bmNkzrHExxaTGrT31L8R02fLzBTmfOcyH+2FiZsXb7GY6dT7nzQcIk9MWlLN54nPOxmfTu4s6D\nIzpVOsPI3tqcbh1cuJacy8X4rDqMVAhRVZLACFEFfq4+9PEM5FpOHNsu7azyce6OOuZO8sNMo2bZ\nDye4JF+Gda6ktJTlm09y8nI6Ae1deGSMN2r1nadHDwy4UcwbZ+oQhRA1IAmMEFUU3GEczpaO7Liy\ni4uZl6t8XDsve/5xvw/64lI+2hBJkgm3whDllSoKq7adJuJsMp1bOvDkAz5V3ueoS2snXOwtORSd\nSH5h1UbdhBB1RxIYIarISmvJjC5TAFh9ah0FxYVVPrZbB1ceHN6R7Dw9H66PJFuWqjc5RVH4Zuc5\n/jiRQBtPO54O9sOsGpvAqlUqBvh5UqQv5eCpRBNGKoSoCUlghKiG9g5tGNZyICn5qXx//sdqHTuk\ne3NG925FYno+H204TlauJDGmtGnvJX49co1mrtaG/aqqq7+fFyoV/B4pt5GEaGgkgRGimsa2DcLL\n2oN9cQc5kRJdrWMnDGpLP18PLsVn8d/Vh7mcIDUxpvDzwRi27L+Mm4MV8yYHYGNlVqN+HG0t8G/n\nwpWEbK4kyKqpQjQkksAIUU1mai0zu0xBo9Lw1ekwcopyq3ysWqXikdHeBA9qS3pWIfPXRvBHVLwJ\no737/H4slvW7zuNoa8ELUwJwsKndnlQ3inn3yCiMEA2KJDBC1EBzWy/Gth1BVlE2357ZWK21QlQq\nFWP6tGbuJH/MtGo+3xrN1zvPyrYDRnAoOpE1P5/BxsqMeZMDcHGwqnWfvm2dcLS14M+TCRQWlRgh\nSiGEMUgCI0QN3dtyEO3sW3M0OYrDiUerfbxfO2f+PbMnXi7W7Ay/xgfrjpElxb01Fnk+hU+3nMLS\nQsO8yQF4uVgbpV+NWk1/X08Kiko4dFqKeYVoKCSBEaKG1Co1M7pMxkJjzvqzm0gvyKh2H+5OOv4V\n2oNuHVw4HZPBG6vCpdaiBs7EpLN00wk0ahVzJ/rTyqPiHWxrYoC/JyrkNpIQDYkkMELUgouVM8Ed\nxpFfXMCa6PVV2vDx76wstMye4MsDA9qQmlXA/748woFTsgdPVV2Kz2Jh2HFKSxVmT/ClYwsHo5/D\nxd4KnzZOXIjNIjY5x+j9CyGqTxIYIWqpr2cvfF28OZt+nt+v7a9RH2qVivv6teGZYD80GhUrNp9i\n3W/nKCmVupjKxCbn8MG6YxTqS3j8Ph982zqb7FyDbqzMK6MwQjQIksAIUUtlGz5OxMbMmh8ubCMh\nt+Z1EgEdXHh1Rk88nHRsP3SVD9dHkpOvN2K0TUdSRj7vrTtGbkExD43sTGBnN5Oez7+9C3bW5vx5\nIgF9sRTzClHfJIERwgjszG2Z2jkY/fUNH0tKa/4F5+lszaszehLQ3oVTl9P576rDxCRKXczN0rML\nee+bo2TmFDFlWAcG+HuZ/JxajZp+vh7kFhQTfibZ5OcTQlROEhghjCTAtSv3ePQgJjuWny5XfcPH\n29FZapkT7Mt9/VqTklnA/C+PcChaZsAAZOcV8f66Y6RkFnBfv9aMCGxRZ+ceeD1R2iMbPApR7ySB\nEcKIJnW8D0cLB7Zf2cWlzJha9aVWqXhgQFvmTPBFpVKx7IeTbNh9ntLSqq8509TkFxbzwfpI4lJy\nGd6zBff3b2O0vvWlxfx8+VeuZF2tsI27o47OLR04czWDhDTZlFOI+iQJjBBGZKW1YkaXySiKwppT\n31JYUvt1Xbp3dOXVGT1xd7TipwMxfLTh7qyLKdKXsDDsOFcSsunv58mUYe1RqVRG6VtfomfF8dVs\nubidL6M3VLowoazMK0TDIAmMEEbW0bEdQ1r0Jyk/hU3ntxqlz2Yu1rw2syd+7Zw5cSmNN1Yf5lrS\n3TOdt7iklKWbTnD2agY9O7ny0MjORkteikr0LI9azam0M2jVWuJyE7iUVfHoWY+OrthYmfFHVLys\nnixEPZIERggTuK/tSDyt3dkT+yenUs8YpU+dpRnPBPsxtm8rkjMKeGvtEcJPJxml74astFThsx9P\ncfxCKl3bOvH4fT6o1cZKXopYdvwLotPO0tXZm0e7PgjAH3EHKzzGTKuhb1cPsvP0HD2XYpQ4hBDV\nJwmMECZgpjEzbPj4ZfR6cvXGqZdQq1VMGNiOpx7oCsDSTSf47vcLTbYuRlEU1mw/zaHoJDo0t2f2\neF+0GuP8b6uwpIilkSs5k34ePxcfHvMNxce5M86WThxJjCS/OL/CY/8q5o01SixCiOqTBEYIE2lh\n24zRbYaTWZTNujPfG7Xvnp3d+NeMHrg5WLH1zyss+u44eQVNqy5GURTW7zrPnsh4WrrbMHeiPxZm\nGqP0XVBcyNLIzzmXcZEA167M6jodrVqLWqWmn1cv9KV6DidUvL+Vl4s17Zvbc/JyOskZFSc6QgjT\nkQRGCBMa3nIQbexacSQpkvBKvhBrormrDa891JOubZw4fiGVN1aHE5uSa9Rz1Kcf919m+6GreDrr\neH5yADpLrVH6LSguYEnk55zPuEQ3Nz8e8SlLXm7o7RmIWqVmX9zBSot5B10fhdl7XIp5hagPksAI\nYUIatYYZXSZjrjHn2xpu+FgZa0sznp3kz+jerUhMz+fNNeFEnG38i6z9En6V7/dewtnOknmTA7DT\nmRul3/ziAhYf+5yLmZfp4ebPw12molGXH9Wxt7DFz6ULsTnxXMmueEp1z85uWFlo2Xc8XrZ8EKIe\nSAIjhIm56VyY0H4s+cX5fBm9oUYbPlZGrVYxcXA7nrjfB0VRWLwxik17L1JayehBQ/ZHVDzf7DyH\nvbU5L0wNwMnO0ij95unzWXzsMy5lXSHQvVtZjZL69rek+nndUxZLbMXFvBZmGvr4uJORU8TxC6lG\niVEIUXWSwAhRB/p73YOPc2dOp59jz7U/TXKOXt7u/L8He+Bib8nmPy6z+Lso8gqKTXIuUzlyJomV\n26KxttQyb3IA7o46o/Sbp8/j42Ofcjkrhns8ejCjy+QKkxeAzk4dcLJ0JDwpkvziggrb3Sjm/V1W\n5hWizpk0gVmwYAGTJ08mODiYHTt2ALBmzRp8fHzIzf3rXv3mzZsJDg5m0qRJbNiwwZQhCVEvVCoV\n0ztPxNpMx6YLW0nINc3055butvz7oUC6tHbk2PkU3lwTTnxq46iLOXEplWU/nMTcTMNzIQE0d7Mx\nSr+5+jwWHfuUmOxr9PbsyYPek1CrKv9fn1qlpq9nL4pKighPPFZhu5butrTxtCXqYippWRUnOkII\n4zNZAnPgwAHOnTvHunXr+Oyzz5g/fz6bNm0iNTUVN7e/do3Ny8tjyZIlrFq1irVr17J69WoyMoxb\nJyBEQ2BvYceUThPQlxbzxcmvySoyzQaNNlZmPBfiz8heLUlIy+ON1eEca+DrlZy7lsHi76JQqVQ8\nE+xHWy87o/Sbo89l0dEVXM2Opa9nL6Z3nnjH5OWGPl49UavUla4JA2WjMIoC+47HGyNkIUQVmSyB\nCQwMZOHChQDY2dmRn5/PsGHDeO6558qtoBkZGYmvry+2trZYWlrSvXt3IiIiTBWWEPWqu5sf/bx6\ncS0njrcPfcSFjMsmOY9GrSZkaHseH9eF0lKFRd8dZ/O+Sw2yLuZKQjYfbThOcYnCUw90xbuVo1H6\nzS7KYdHRFVzLiaN/s95M7TyhyskLgIOFPV2dvbmaHUtM1rUK2/XydsfCTMPe43FNdj0eIRoi48xL\nvA2NRoNOV3b/OiwsjIEDB2Jra3tLu5SUFJycnAyPnZycSE6ufBaFo6MOrdY460HcjqvrrXGKhqEp\nXJtnXB6izZlmfHV8EwuPLiM0IJhRHYYYbWn8m40bbEuX9q7MX3WITfsukZCRz3NTu6OzNDPqeWp6\nXa4lZfNRWCQFRcU8P60Hg7s3N0o8GQVZLNn1KbE58QS1H8Qj3SfX6PMd7T2Y43tPciQtgh7tvCts\nN7hHc7YfuMK19Hx6dHavTehG1xR+Z5oquTa1Y7IE5oadO3cSFhbGypUrq9S+snUXbkhPN90usK6u\ntiQnm2ZoX9ROU7o2fZz74BzgxsoTX7Hq6AaiYs8yrfNELLUWRj+XnYWGf4X24JNNJzhwIoFnP9jN\n08F+eDgZp0C2ptclJTOf/30ZQWZOETOCOuHTwt4o1zezMJtFR5eTkJfEkOb9GddiNCkpNds3qpm2\nBY4WDuy9cohRzUdgqb39jKhenVzZfuAKm3+/QEtn43yuxtCUfmeaGrk2VVNZkmfSIt69e/eybNky\nPv3009uOvgC4ubmRkvLX/fmkpKRyNTJCNFUdHdvxcq+5tLVvzZGkSN4N/5iE3ESTnMtWZ868KQEM\n79mC+NSyupjI8/VXF5OZW8R73x4jPbuQSYPbMbhbM6P0m1GYycKjy0jIS2JoiwEEdxhXq5EttUpN\nX69ACkuKOJIYWWG71h62tHCzIfJ8Cpk5hTU+nxCi6kyWwGRnZ7NgwQKWL1+Og4NDhe38/f2Jiooi\nKyuL3NxcIiIi6Nmzp6nCEqJBcbCw59lu/2BIi/4k5CWxIPzjSr8oa0OjVjP13g48OtYbfXEpi8KO\n8+P+y1Ua9TSm3AI97397jKT0fMb0acWo3q2M0m9GYSYLI5aTmJfMvS0HMaH9WKPcluvjGYgKFX/E\nHaqwjUqlYqC/FyWlCvuipJhXiLpgsltI27ZtIz09nWeffdbw3D333MPBgwdJTk7mscceIyAggBdf\nfJF58+Yxa9YsVCoVs2fPrnC0RoimSKPWMLHDfbSxa8WXpzew8uRXXMq6wvh2Yypdq6Sm+nb1xNPZ\nmsUbo9i45yJXErOZNcYbS3OT31GmoKiYj9ZHci05hyHdmzFhYFuj9JtekMFHR5eTkp/KiFZDuK/t\nSKPVFDlaOuDj3JkTqdFczY6lhe3tR4v6+LizYdd59kbGM6p3K9QmqGkSQvxFpdT1n19GYMr7hnJf\nsuG6G65NQm4iK6LWkpiXRFv71szqOh0HC3uTnCsrt4ilm05w9moGzVyteXqCL241WDiuqtdFX1zC\nRxuOE30lnT4+7swa28UoX/Kp+eksPLqc1II0RrYextg2I4xeEB2Vcoplx1cxoFkfpnQaX2G7z348\nxf4TCfxzSgDerZ0qbFdX7obfmcZKrk3V1FsNjBCiejys3Xmx5xx6uPlzMfMybx9ayNn0CyY5l521\nOS9MCWBY9+bEJufy31XhnLhomiXxi0tKWfbDSaKvpNOtgwuPjPE2UvKSxsKjy0gtSGN0m+GMaxtk\nktlcXZw64WBhz+GECApLiipsNyjg+sq8kbIyrxCmJgmMEA2MpdaSh32mMbHDfeQWly2B/8uV3Sap\nVdFq1Ewf0ZGHR3emqLiEDzdEsu3AFaOeq1RR+GJbNEfPpeDdypEn7vdBo679/3pS8lP5MGIZqQXp\njG0TxJg2w40Q7e1p1Br6eAZSUFJYaY1S+2b2eDrriDibTHZexYmOEKL2JIERogFSqVQMadGfZ7s9\nga2ZDZsubOPTE2vJL843yfkG+Hnx8vQeONhYELb7Ast+OElhUUmt+1UUha9+OcufJxNp52XH08G+\nmBlhDaekvBQ+jFhGemEG97Udyag2w2rd55309bpRzFvxyrwqlYpB/l4UlyjsP5Fg8piEuJtJAiNE\nA9bOoTUv95pLB4e2RCafYMHhj4nNMc0sl7Zedvx7Zk/aN7fn8Okk3lp7hKSM2iVMG/dcZFdELM1d\nrXk2xN8ohcKJecksPLqcjMJMHmg3mqDWQ2vdZ1U4WTrSxbkTl7NiKr0Gfbp6oNWo2BMZV+czvIS4\nm0gCI0QDZ2duy9MBjzG85WCS8lN4N3wxhxJMs92GvY0FL07txuBuzbiWnMMbqw5z8nJajfr66cAV\ntv55BTdHK+ZNDsDaCKv/JuQmsTBiGRmFmUxoP5bhrQbXus/q6OfVC6DSURhbnTndO7oSn5rHuWuZ\ndRWaEHcdSWCEaAQ0ag0PtB/N474z0Kg0rD71LevOfI++tNjo59Jq1MwI6sTMkZ0oKCrhg3XH+Plg\nTLVGE3YdjWXD7gs42lrwwpQA7G1qv8JwfG4iHx1dRmZRNhM73MewlgNr3Wd1dXX2xt7clkMJERRV\nWsxbNtV6jxTzCmEyksAI0Yj4u3blpcCn8bL2YE/sn3wY8QlpBekmOdeggGa8NL07dtbmrN91nhVb\nTlGov3NdzIGTCXy5/Qy2OjNemBKAi71VrWOJy0lgYcRysotyCOn4AENa9K91nzVxo5g3v7iAiKTj\nFbbr3NIBN0crDp9OIrdAX4cRCnH3kARGiEbGTefKCz3nEOjenStZV3n78EKi086a5Fztm9nz75mB\ntGtmx8FTifxv7RFSKqmLOXYuhc9+jMbSQsvzIQF4OlvXOobYnHgWHl1Otj6HKZ3GM6h531r3WRt9\nvHpVqZh3oL8X+uJSDpw0zfYQQtztJIERohGy0Jgzs8tkJnccT0FxIUuOfc7Pl3+lVCk1+rkcbS14\ncWp3Bvp7EZOUw39XhxN9m7qY6CvpLN10Aq1WxbOT/GjlUfsVta9mx7Hw6HJy9LlM6xTMgGZ9at1n\nbblYOdHZqQMXM68Ql1PxTKN+vp5o1Cp+PybFvEKYgiQwQjRSKpWKgc378HyPJ3GwsGfLxe0sP76K\nPL3xd2s306p5aFRnZgR1Ir+wmPfXRbLj8FXDF/OFuEwWfXccUJgzwZcOzSve/6yqYrKvsejocvL0\n+UzvPIl+ze6pdZ/G0t+rLJbKRmHsrc0JaO/CteQcLsXLiqtCGJskMEI0cq3tWvJy4Fw6O3bgROpp\n3j68iKvZsSY51+Buzfjn1G7Y6Mz49tdzfPZjNGdj0vlofSRF+hL+cZ8PXds41/o8V7Kusujop+QX\nFxDqHUJfr0AjRG88vi5dsDW3uV7MW3GNy8DrK/PuiTTN9RDibiYJjBBNgI25NbMDZjGq9TBSC9J4\n78gS9scdNsm5OrZw4N8ze9LG044/TyYwb+EecguKeWS0Nz06udW6/0uZMXx87FMKiguY0WUy93j2\nMELUxnWjmDevOJ9jyVEVtvNp7YSznSUHTyWRX2j8GWNC3M0kgRGiiVCr1IxtG8STfg9jpjbjq9Mb\n+Co6DH0lIwQ15WRnycvTu9Hf1xO1Cqbd24F+vp617vdi5hUWH/uUwpIiHvKZSi+P7kaI1jT6epat\nCbMvtuLbSGq1igH+nhTqSzgYLcW8QhiTJDBCNDFdXbx5OXAuLWy82B9/iPcjlpKSX7PF6CpjptXw\nyBhvvn1rDPf2bFHr/s5nXGLxsU8pKtXzsM80eroHGCFK03HVOdPZsQMXMi+RkFtxctLf1xOVCvYc\nkzVhhDAmSWCEaIJcrJx4vsds+noGcjU7lncOL+RESrRJzmVlUfvtAc6lX2RJ5OfoS4t5xGc63d38\njBCZ6d0oLP4j7lCFbZzsLPFr68zlhGxiEqWYVwhjkQRGiCbKXGPGdO9JTO88kaJSPZ8c/4IfL243\nyVTr2jibfoGlkZ9TUlrCo11D6ebmW98hVZmfSxdszKw5GH+k0lt1N4p5f5eVeYUwGklghGji+nr1\nYl6Pp3C2dOSny7+yNHIlOUW59R0WAKfTzrE0ciWlSimP+Ybi7+pT3yFVi1atpY9nILnFeRxLPlFh\nO792zjjYmHPgZEKVVjMWQtyZJDBC3AVa2jbnpcC5+Dh3JjrtLG8fXsjlrJh6jSk69SzLjn+BgsJj\nvjPwdelSr/HU1I0p3pWtCaNRq+nv50V+YQmHo5PqKjQhmjRJYIS4S1ib6XjC7yHGtgkiozCTD498\nwt7YP+tlldiTqWdYFrUKBfiH70y6unjXeQzG4qZzpaNje85lXCQxL7nCdgP9PFEhGzwKYSySwAhx\nF1Gr1IxqM4zZ/rOw0Frw7ZnvWRu9vtKdlY3tREo0K46vQgU84fcQXZw71dm5TaWfV9mU6spGYVwc\nrOjSxonzsZnEJufUVWhCNFmSwAhxF/J27sjLgXNpZduCgwlHeDd8MUmVjB4YS1TKKVZErUGlUvOk\n3yN4O3U0+Tnrgr9rV6zNdGXFvKUVL1g3yP/GyrzxdRWaEE2WJDBC3KWcLB15rseTDGjWh7jcBN45\n/DGRySdNdr5jySf4NGotGpWa2f6P0MmpvcnOVdfM1Fp6e/QkR5/L8UqKeQM6uGCrM2P/iXj0xVLM\nK0RtSAIjxF3MTK1lSqfxzPCeTIlSwoqo1Ww6v42SUuN+uR5NiuLzE1+iUWuYHfAoHRzbGbX/huDG\nbaR9lawJo9Wo6e/rSW5BMUfOmn7ES4imTBIYIQT3ePbgnz3n4GrlzC8xu1l87DOyioyz6NqRxEhW\nnvwKc7UZc/wfpb1DG453Q2oAACAASURBVKP029C4W7vRwaEtZ9PPk5SXUmG7gTduI8nKvELUiiQw\nQggAmtl48lLgM/i7+HA24wJvH1rIxczLteozPOEoX5z8GnO1ObMDHqWdQ2ujxNpQ9fMqW5l3fyWj\nMO5OOjq3dOB0TAaJaXl1FZoQTY4kMEIIAyutFY/5zuCBdqPJKsrmw4hl7Lq6r0ZTrQ8lRLDq1LdY\nai14utujtLVvZYKIG5YA165Ya3UciA+nuJJiXsMojEypFqLGJIERQpSjUqkY3mowz3R7HGutjrBz\nm/ni5NcUFBdWuY8D8eGsObUOS60lTwc8Rmu7liaMuOEw05jRy7M72focjqecqrBdj06uWFtq+SMq\nnuKShrW1gxCNhSQwQojb6ujYjpd7zaWtfSuOJEXybvjHJOTeeRXZ/XGH+TJ6AzqtFc90e4xWdrXf\nqboxuXEb6Y/YiteEMdNq6NPVg6w8PcfOVVwvI4SomEkTmAULFjB58mSCg4PZsWMH8fHxhIaGMm3a\nNObOnUtRUdniWZs3byY4OJhJkyaxYcMGU4YkhKgGBwt7nu32BENa9CchL4kF4YuISDpeYft9sQf4\n6vQGdGZWPNPtcVraNq/DaBsGT2t32tm35nT6OVLyUytsd2NNGNngUYiaMVkCc+DAAc6dO8e6dev4\n7LPPmD9/PosWLWLatGl8/fXXtGrVirCwMPLy8liyZAmrVq1i7dq1rF69moyMDFOFJYSoJo1aw8QO\n9/GIzzQU4PMTX/LduS23TLXec+1PvjmzERsza+Z2+wfNbb3qJ+AGwDAKU0kxbzNXG9o3s+fUpTRS\nMvLrKjQhmowaJzD/v707j4vqvPcH/jmzMQzMwAwwrIooKqKIGy64JmrSaKype4yYpprm1uTmptem\n8ec1iX3ZNCVNe1NrmlpNasR6JdFo4p5VxQ0XDAIuKCLKDjLsDNvM7w+WSIRxUM4s8Hm/XrxgzjzP\n8UseiR+e85zz3Lx50+L7UVFR+Otf/woA0Gg0qKmpQWJiIqZOnQoAeOSRR3Dq1CkkJycjIiICarUa\nSqUSI0aMQFJS0oOWRUQiGek7DL8d9Z/wVenx7e0E/PXCRpTWlgEAjmSfQHz6bqjl7viv4S8g0N3f\nztXa13D9ULjKXHE675zFZ+pMigyAGcCxi3wyL1FnWQwwzz33XJvXf//731u/fuONNyyeWCqVQqVS\nAQB27tyJSZMmoaamBgqFAgDg5eWFoqIiFBcXQ6fTtfbT6XQoKuIDnogckb+bL3476iUM1w9FRtlN\n/PHsX7El6RN8mv45NAo1XhnxAgLc/exdpt0ppHKM8RuB8roKpNy53GG7qDA9XF2kOH4xF40mLuYl\n6gyZpTcbGtreBnj69GmsWLECAKy+rfLrr7/Gzp078dFHH+Gxxx5rPd5Rf2vOq9WqIJNJrfrzH4SP\nj1q0c9PD4dg4AjVW+f0HDqR/i23Jn+HAte+gVXrgzUdeQYCG4aXFk/JHcCT7BM4WncP08HEdtpsy\nshcOnryJW8U1GD246//78WfGcXFsHo7FACMIQpvXd4eLH7/XnoSEBPzjH//A5s2boVaroVKpYDQa\noVQqUVBQAL1eD71ej+LiH1bhFxYWYtiwYRbPazCI9/AnHx81ioq65gmk1LU4No5ltG40vIbrcb4k\nCVP8JkJe68bxuYsrNAjRBCM5/zKu3MqCl6uu3XZjBvrg4Mmb2HssAyF6ty6tgT8zjotjYx1LIa9T\na2CsCS0tKioq8M4772Djxo3w9PQEAERHR+Pw4cMAgC+//BITJ05EZGQkUlJSUF5ejqqqKiQlJWHU\nqFGdKYuI7KSfZx+8OOZZ6FU+9i7FIY0PHAMzzDiZd7bDNr191ejjp0ZyRjFKyo02rI7IuVmcgSkr\nK8OpU6daX5eXl+P06dMwm80oLy+3eOIDBw7AYDDglVdeaT32xz/+EWvWrEF8fDwCAgLw1FNPQS6X\nY+XKlVi2bBkEQcCLL74ItZrTakTk/Ebqh2LXtS9wKvcMZvSZBqmk/Uvfk4YFYOuhqziekoefju+e\ne0URdTXBbGHRSUxMjMXOcXFxXV6QNcScduO0nuPi2Dgmjotl8Vf34FjOSfwy4llE+gxut01NbQP+\ne8MJuLvKEfurcZB0YrbbEo6N4+LYWMfSJSSLMzD2CihERN3F+IDROJZzEidzEzsMMK4uMowepEfC\nxTxcyizBkL5eNq6SyPlYXANTWVmJLVu2tL7esWMHZs+ejZdffrnNwlsiImpfkDoAfTS9kXbnKkqM\nhg7bTRrGJ/MSdYbFAPPGG2/gzp2mR2FnZmbiL3/5C1577TVER0fjrbfeskmBRETObnxA02LeU7kd\nL+bt669BkI87vr9WjLKqOhtWR+ScLAaY27dvY+XKlQCAw4cP4yc/+Qmio6OxaNEizsAQEVlppG8k\nlFIXnMw72+GTeQVBwORhAWg0mXEihU/mJbofiwGm5Um6AHDmzBmMHTu29XVnbqkmIurJXKQKjPIb\njtLaMlwqudphu7GDfSGXSXAsOdfqh4US9VQWA0xjYyPu3LmDW7du4cKFCxg/fjwAoKqqCjU13HyM\niMhaE1o3eEzssI2bUo5RA/UoNNTgyi1uaktkicUA8/zzz2PGjBmYNWsWVqxYAQ8PDxiNRixevBhP\nPfWUrWokInJ6vdSB6K0OQmrxFRiMHYeTyc2LeY9xMS+RRRZvo548eTKOHz+O2tpauLu7AwCUSiVe\nffVVTJgwwSYFEhF1FxMCxmD71V04nXcOT4RMa7dN/yAP+HupcP5qISprBsDdVW7jKomcg8UZmNzc\nXBQVFaG8vBy5ubmtH3379kVuLn87ICLqjJG+kXCRKnAi9wxM5vZ3nxYEAZMiA9DQaMZJLuYl6pDF\nGZhHH30UISEh8PFp2ufkx5s5bt26VdzqiIi6EaVMiVG+w3EiNxGXS9Ix2Cus3XbRQ/yw62gGjibn\nYnpUL940QdQOiwEmNjYWn3/+OaqqqjBz5kw8+eST0Ona31GViIjub0LAGJzITcSJnMQOA4xapcCI\nAT44c7kQ13PK0D/I08ZVEjk+i5eQZs+ejY8++gjvvfceKisr8cwzz2D58uXYu3cvjEbumkpE1Fm9\nNUHo5R6AlDuXUVpb1mG7SZHNi3m/5+V6ovZYDDAt/P39sWLFChw8eBCPP/44fv/733MRLxHRAxof\nOAYmswmn88512CYsWAsfTyXOXilEtbHehtUROQerAkx5eTm2bduGOXPmYNu2bXjhhRdw4MABsWsj\nIuqWRvkOh0Iix0kLi3klzYt56xpMOJVWYOMKiRyfxTUwx48fx65du5CamorHHnsMf/zjHzFgwABb\n1UZE1C25ypQY5TsMJ/PO4mrJdQzyav//qxMi/LEnIRPHknPx6IhALuYluovFALN8+XL06dMHI0aM\nQElJCf71r3+1ef/tt98WtTgiou5qfOAYnMw7i+O5iR0GGA93F0SGeiMpvQg38ysQ4q+xcZVEjsti\ngGm5TdpgMECr1bZ5Lzs7W7yqiIi6uWB1LwS6++NicRrKaivg4aJut92kyAAkpRfh6Pe5DDBEd7G4\nBkYikWDlypV4/fXX8cYbb8DX1xejR49Geno63nvvPVvVSETU7QiCgAkBTYt5Ey0s5h0SooOXxgWJ\nlwtgrGuwYYVEjs1igPnf//1fbNmyBWfOnMGrr76KN954AzExMTh9+jQ+/fRTW9VIRNQtRfkNh1wi\nx4ncxI4X80oETBgagNq6Rpy5XGjjCokc131nYPr16wcAmDp1KnJycrB06VJs2LABvr6+NimQiKi7\ncpW5YqQ+EsXGEqQbMjpsN3GoPwQBOPp9jg2rI3JsFgPMj1e8+/v7Y/r06aIWRETUk4wPHAMAOJGb\n2GEbnUaJiL5eyMyrwK2CCluVRuTQrHoOTAvewkdE1LVCNL0R4OaH5KI0VNRVdthucsuTeZP5ZF4i\n4D53IV24cAFTpkxpfX3nzh1MmTIFZrMZgiDgyJEjIpdHRNS9CYKA8QFj8Om1z3E67xymB09pt93Q\nUC94uCtwKq0A8x8JhYtcattCiRyMxQBz6NAhW9VBRNRjjfYbjj0Z+3EiNxHTek9ud7ZbKpFgQoQ/\n9p/KwrkrhRgf4W+HSokch8UAExgYaKs6iIh6LJVchRH6SCTmn8e10gwM0Ia2225iZAD2n8rCseRc\nBhjq8Tq1BoaIiMQRHTAaAHA8p+PFvHpPVwzuo8W17DLkFFfZqjQih8QAQ0TkAPp59IGfSo/kolRU\n1nUcTiYNa5oZT+BiXurhGGCIiByAIAgYHzgGDeZGJOaf77Dd8P7eUKvkOJmaj/qG9h9+R9QTMMAQ\nETmI0X4jIJPIcCI3EWazud02MqkE44f4o7KmHknpRTaukMhxiBpg0tPTMW3aNGzbtg0AkJGRgWee\neQZLlizBmjVr0NDQtK/HF198gblz52L+/PncooCIeix3uRuG+0SgoLoI10szO2w3MbJpAS+fCUM9\nmWgBprq6GuvWrcO4ceNaj7377rv45S9/iW3btsHf3x8HDx5EdXU13n//fWzZsgVxcXH4+OOPUVpa\nKlZZREQObXzA/Z/M6+/lhoG9PHE5y4ACQ7WtSiNyKKIFGIVCgU2bNkGv17cey8rKwtChQwEAEydO\nxIkTJ5CcnIyIiAio1WoolUqMGDECSUlJYpVFROTQQj1D4KvywYWiFFTWW1rMyyfzUs8mWoCRyWRQ\nKpVtjg0YMABHjx4FACQkJKC4uBjFxcXQ6XStbXQ6HYqKeF2XiHomQRAQHTAaDaYGnMnv+Je5UQN9\n4KaU4URKPhoauZiXeh6LD7Lraq+99hrWrl2Lzz77DKNHj253kVpHC9fuptWqIJOJ9xhtHx+1aOem\nh8OxcUwcl641UzMFe28cxumCs1gw/IkO96F7NKo39ibcQGZhFaKHBrTbhmPjuDg2D8emAcbf3x8b\nN24E0DQDU1hYCL1ej+Li4tY2hYWFGDZsmMXzGES85uvjo0ZREXd7dUQcG8fEcRFHpPdgnC9MRuL1\nVPTz7NNum6gB3tibcAN7EzLQ3//efww5No6LY2MdSyHPprdRr1+/vnUDyM8++wyPPvooIiMjkZKS\ngvLyclRVVSEpKQmjRo2yZVlERA5nQuD9F/MG+bijX4AGaTdKUFxWY6vSiByCaAEmNTUVMTEx2L17\nN7Zu3YqYmBhMnjwZGzZswNy5c6HX6zFlyhQolUqsXLkSy5Ytw3PPPYcXX3wRajWn1YioZ+vv2Q8+\nrl5IKkxGdX3Hs86ThgXADCAhOc92xRE5AMFszaITByPmtBun9RwXx8YxcVzE81XWEezJOID5/Wdj\nSq/x7baprWvEf79/HEqFDO/8ahykkh9+L+XYOC6OjXUc5hISERFZb6z/KEgFqcUn87oopBgT7gdD\nRS1SbpTYuEIi+2GAISJyUGqFOyJ9BiO3Kh+Z5bc6bDc5svmZMN/zmTDUczDAEBE5MGuezBvsp0aw\nrxoXM+7AUFFrq9KI7IoBhojIgQ3Q9oO3UofzBcmoaej4TqNJwwJgMptx/CJnYahnYIAhInJgEkGC\n8QFjUG+qx9n8Cx22GxvuC4VcgoSLeTA5370ZRJ3GAENE5ODG+I+CRJDguIXFvK4uMowe5IviMiMu\n3eRiXur+GGCIiBych4saQ70HI6cyD1kVtztsx8W81JMwwBAROYEJLYt5czpezNs3QINAHzdcuFaM\n8qo6W5VGZBcMMERETmCgLhReSi3OFXyPmgZju20EQcCkyAA0msw4kcon81L3xgBDROQEJIIE0QGj\nUWeqx7mC7ztsN26wH+QyCY59n9vhehmi7oABhojISYxtXsxr6Zkw7q5yjBrogwJDDVIz7tiwOiLb\nYoAhInISni4eiPAahNsVObhVnt1hu0nNi3kPn86yVWlENscAQ0TkRMYHNi3mPW5hFmZAL0/4e6lw\nPDkHtwq4YSB1TwwwREROZJBuALQunjhXcAFGC4t5F03tj0aTGZv2XUJ9Q6ONqyQSHwMMEZETaXoy\n72jUNtbhfEFyh+0i+nrhiXF9kFNUhd3HMm1YIZFtMMAQETmZcQFRECBYvIwEAL+YNRh6T1ccPnML\nV28ZbFQdkW0wwBARORlPFw8M8Q7DrYps3K7I6bCd0kWG5bPCAQH4cP9l1NQ22LBKInExwBAROaHx\nLU/mzT1jsV1ooAdmjA1GcZkRO765ZovSiGyCAYaIyAmF6wbC08UDZ/OTUNtoeduA2RNC0FvvjoSL\nebhwrchGFRKJiwGGiMgJSSVSRPtHwdhYa3ExLwDIpBIsnxUOmVTAxwevoLya+ySR82OAISJyUi2L\neS09mbdFkI875kzqh/Lqemw9dJXbDJDTY4AhInJSOqUWg70G4mb5LeRU3n/zxseiemFAL08kpRfh\nZGq+DSokEg8DDBGRE/thMe/9Z2EkEgHLZw6Ci0KK7V+n405Z+w/CI3IGDDBERE5ssFcYPBQanMlP\nQt19FvMCgLenKxZP7Y+a2kZ8uP8STLyURE6KAYaIyIlJJVKMC4hCTYMRSYUXreozYag/hoV648qt\nUnx9ruNNIYkcGQMMEZGTi/a3fjEv0LRX0rNPhEGtkmPnkQzkFFeJXCFR12OAISJycl6uOgzSDcCN\nsizkVlq3ONfDTYGlj4ehodGEzfsuoaHRJHKVRF2LAYaIqBsYH2j9Yt4WIwf6YPwQP2TlV2DfyZsi\nVUYkDgYYIqJuIMJrEDQKNRLzk1DXWG91v6enDYCXxgX7TmbhRm65iBUSdS1RA0x6ejqmTZuGbdu2\nAQDOnj2Lp59+GjExMXjhhRdQVlYGANi8eTPmzZuH+fPn4+jRo2KWRETULUklUozzj0JNQw2+L0qx\nup9KKcMvZobDZDZj075LqK1vFLFKoq4jWoCprq7GunXrMG7cuNZjb7/9Nt566y3ExcVh+PDhiI+P\nx+3bt3HgwAFs374dGzduxNtvv43GRv4AERF1VnRAFADgeI71l5EAYFCwFo9F9UJBSTV2fpchRmlE\nXU60AKNQKLBp0ybo9frWY1qtFqWlpQCAsrIyaLVaJCYmYuLEiVAoFNDpdAgMDMT169fFKouIqNvy\ndvVCmLY/MsoykV9V0Km+cyb1hb+XCt8kZSMts0SkCom6jky0E8tkkMnann716tVYsmQJNBoNPDw8\nsHLlSmzevBk6na61jU6nQ1FREQYOHNjhubVaFWQyqVilw8dHLdq56eFwbBwTx8VxzBg0BVdOXkOS\n4XtE9Ant1Nj8NiYKv1l/DFsOXcGG3zwCd5VCxEqJPzcPR7QA055169Zhw4YNGDlyJGJjY7F9+/Z7\n2lizwZjBUC1GeQCa/kIVFVWIdn56cBwbx8RxcSzBihCo5e44cuMUnh46G2Ul1m8X4KGUYtb4PtiT\nkIm/7kjCL2cNFrHSno0/N9axFPJsehfS1atXMXLkSABAdHQ0UlNTodfrUVxc3NqmoKCgzWUnIiKy\nnkwiw1j/UahqqMaZ7Aud7j9zXDD6BmhwOq0AZ68UilAhUdewaYDx9vZuXd+SkpKC4OBgjB07FkeO\nHEFdXR0KCgpQWFiI0NBQW5ZFRNStRAeMBgB8ef2YVbPad5NKJFj+ZDgUMgm2HrqC0spaMUokemii\nXUJKTU1FbGwscnJyIJPJcPjwYfzud7/DmjVrIJfL4eHhgT/84Q/QaDRYsGABlixZAkEQsHbtWkgk\nfDwNEdGD0qu8Ee41EJeKr+Jo9klM6TW+U/39dCrMfyQU//4qHf86cAWvzB8KQRBEqpbowQjmzsZz\nByDmdUNel3RcHBvHxHFxTKW1ZXjn3HpU1FXhv4a/gFDPkE71N5vN+Ev890i7acDSxwdiyvBAkSrt\nmfhzYx2HWQNDRES24enigV9HLwcAfJi6DWW1nXvKriAI+MXMcKhcZNjx7TUUiHjzBNGDYIAhIuqm\nwvUD8FS/GSivq8Dm1G1oMDV0qr9W7YIljw9AXb0JH+67DJPJ6SbsqRtjgCEi6sYe7TURI/WRuFF2\nE59d39/p/mMG+SIqTI/rOWU4mJglQoVED4YBhoioGxMEAYvD5sHfzRdHs0/gTH5Sp/vHPD4QHu4K\n7EnIxK0Crtsgx8AAQ0TUzSllLvhlxFIopUpsv7IL2RW5nerv7irHc08MQqOpacPH+gaTSJUSWY8B\nhoioB9CrfPBs+ELUm+qxKWUrqus7tyh3aD8vTBkeiJyiKuxOuCFSlUTWY4AhIuohhvoMxk/6TEWx\nsQRbLu2Aydy5mZQFj/SD3tMVhxNvIf12qUhVElmHAYaIqAeZGTIdg3QDkHbnCg5mft2pvkqFDMuf\nDAcEYPO+S6ip7dxdTURdiQGGiKgHkQgSPDd4MbyUWhy4+TVSii91qn9okAdmjA1GcZkR8d9eE6lK\novtjgCEi6mHc5Co8H7EUcokMH1/agcLq4vt3usvsCSHopXfHseQ8fH+tc32JugoDDBFRD9RLHYin\nB85FTYMRm1K2oraxzuq+MqkEz88Kh0wqYMvByyivtr4vUVdhgCEi6qHG+I/EpMBxyK3Kx/YrOzu1\nc3WQjzvmTOqH8up6xB262uldr4keFgMMEVEPNrf/LIRognGu4HscyT7Rqb6PRfXCgCAPnE8vwqm0\nfJEqJGofAwwRUQ8mk8iwPGIJ1Ap3fHZ9H66XZlrdVyIRsOzJcLgopPj3V+m4U2YUsVKithhgiIh6\nOE8XDywbvAQAsDk1DqW1ZVb39fF0xeKp/VFT24iPDlyGiZeSyEYYYIiICP21ffGz0JmoqKvEh53c\nuXrCUH8MC/XG5SwDvjmXLWKVRD9ggCEiIgDAI0ETmneuzsKua/us7icIAp59IgzurnLsPJqB3OIq\nEaskasIAQ0REAJqCyDOD5iPAzQ/Hck4iMe+81X093BR49idhqG8wYdO+S2ho5IaPJC4GGCIiauUi\nVeD5iKVwlSnxf1d34XZFjtV9Rw70wfghfsjKr8C+kzfFK5IIDDBERPQjepU3ng1fhHpTAzalxKGq\nEztXPz1tALw0Lth3Mgs3cstFrJJ6OgYYIiK6R4R3OJ7oMxV3jCXYkvZ/Vu9crVLK8IuZ4TCZzdi8\n7xJq6xtFrpR6KgYYIiJq14yQ6Qj3GohLJVdxIPMrq/sNCtZi+qheyC+pxs4jGSJWSD0ZAwwREbVL\nIkjw8/Cn4aXU4eDNbzq1c/XcyX3h76XCN+ezkZZZImKV1FMxwBARUYfu3rl6S9oOFFYXWdVPIZfi\n+VnhkEoEfHTgMqqM9SJXSj0NAwwREVnUSx2AxWHzYGw0YlNKnNU7V/fx02DW+D4wVNTi31+li1wl\n9TQMMEREdF+j/UZgclA0cqvy8e/Ln1q9+/TMccEI8dfgdFoBzl4pFLlK6kkYYIiIyCpzQp9EX49g\nnC9MxnfZx63qI5VIsPzJQVDIJNh66ApKK2tFrpJ6CgYYIiKyikwiw7IhS6BRqLH7+n5cM1h3h5G/\nlxvmPxKKKmMDthy8YvXsDZElDDBERGQ1TxcPLBvStHP1h6n/tnrn6kdGBGJwHy0uZtzB0eRcMUuk\nHkLUAJOeno5p06Zh27ZtAICXX34ZMTExiImJwaxZs/D6668DADZv3ox58+Zh/vz5OHr0qJglERHR\nQwr1DMGc0CdRUV+JzSlxqLdi52qJIOC5GYOgcpEh/pvrKDRY/3RfovaIFmCqq6uxbt06jBs3rvXY\n+vXrERcXh7i4OAwZMgTz58/H7du3ceDAAWzfvh0bN27E22+/jcZGPrmRiMiRTQkaj1G+w5BZfgu7\nru21qo9Oo8SSxwagtr4Rm/dfhsnES0n04EQLMAqFAps2bYJer7/nvRs3bqCiogJDhw5FYmIiJk6c\nCIVCAZ1Oh8DAQFy/fl2ssoiIqAsIgoDFYfMQ4OaHhJxTOJ13zqp+Y8J9ERWmx/XsMhw6c0vkKqk7\nk4l2YpkMMln7p9+6dSuWLGm6hlpcXAydTtf6nk6nQ1FREQYOHNjhubVaFWQyadcWfBcfH7Vo56aH\nw7FxTBwXxyX22KyasgL/78u3sSN9N4b0CkWIttd9+7yyeCT+891vsSfhBiaN7IWQAA9Ra3RU/Ll5\nOKIFmI7U1dXh/PnzWLt2bbvvW7M63SDitVMfHzWKiipEOz89OI6NY+K4OC5bjI0USiwdtAgfXPwX\n3jn2AX4b9TLc5W737bf08TC892ky3tl6Fq8/GwW5rGfdU8KfG+tYCnk2/xtz9uxZDB06tPW1Xq9H\ncXFx6+uCgoJ2LzsREZFjGuI9CDP6TMMdo8HqnauH9vPClGEByC6qwp6EGzaokrobmweYlJQUhIWF\ntb4eO3Ysjhw5grq6OhQUFKCwsBChoaG2LouIiB7CEyHTMNgrDJdL0rH/xpdW9VnwaCj0nq44lHgL\n6bdLRa6QuhvRAkxqaipiYmKwe/dubN26FTExMSgtLUVRURG8vLxa2wUEBGDBggVYsmQJXn75Zaxd\nuxYSSc+aSiQicnZNO1cvgrdSh0NZ3yK5KO2+fZQKGZY/GQ4IwOZ9l1BTe//bsYlaCGYnfCSimNcN\neV3ScXFsHBPHxXHZY2xyKvPwp3MbIBWk+G3Uf8JX5XPfPruOZmD/qSxMigzAz58Iu2/77oA/N9Zx\nqDUwRETUfQW6+2Nx2FwYG434Z8pWGBvuv/fR7Akh6KV3x7HkXHx/vfi+7YkABhgiIupio/1GYErQ\neORXFeDfV+6/c7VMKsHzT4ZDJhWw5eAVVFTX2ahScmYMMERE1OXmhD6Jfh59kFR4Ed/eTrhv+yC9\nO342qS/Kq+qw9fBVbvhI98UAQ0REXU4qkbbuXL0n4wDSrdi5+vGo3hgQ5IHzV4twOq3ABlWSM2OA\nISIiUXi4aLB8SAwA4MPUbTAYLd8qLZEIWPZkOFwUUmz7Kh0l5UZblElOigGGiIhE08+zD+b2n4XK\n+ipsTt12352rfTxd8fTU/qipbcCH+y/DxEtJ1AEGGCIiEtXkwGhE+Y7AzfJb2Hnti/u2nzjUH8NC\nvXE5y4Bvzmfbxy7x4wAAETVJREFUoEJyRgwwREQkqqadq+cg0N0fx3NO41Tu2fu2f/aJMLi7yrHz\nSAby7lTZqFJyJgwwREQkOoVUgeeHLIWrzBU70nfjVrnlmRUPNwWe/clA1DeYsGnvJTQ03n9/JepZ\nGGCIiMgmfFReeG7w02g0NWJTahwq6y3PrIwcqEf0ED/czK/AvpM3bVMkOQ2ZvQsgIqKeY7BXGGaE\nTMP+zK/wr9TteHHYMkiEjn+XXjxtAK7cMmDvyZtIvn4HvjpX+OlU8PNSwV/nBl+dK5QK/lPWE3HU\niYjIpn7SZyqyyrOReucy9t44jNn9nuiwrUopw69mD0Hcl1eRe6cKWQX37h+kVbs0hZqWD6+mz14a\nJSQSQcxvheyIAYaIiGxKIkjwbPgixJ5bjy+zvkMfTS9E+gzpsH2/QA+sfW40TGYzSsqMyC+pRl5J\nNfJLqpF/p+nz5SwDLmcZ2vSTSSXw1bq2CTUtX7sp5WJ/myQyBhgiIrI5ldwVv4xYinfPbcDWS/H4\n7Sg9fN30FvtIBAHenq7w9nTFkL5ebd6rrWtsCjQl1Sho/twScnKK711ro1bJ75mx8dOp4OPpCpmU\ny0OdAQMMERHZRaC7P54Jm4d/Xfo//DNlK14d9RKUMuUDnctFIUWwnxrBfuo2x81mM0or61rDTcuM\nTX5JFa7nlOFadlmb9hJBgI+nsp1ZGzdoVHIIAi9JOQoGGCIisptRfsNxs/w2vss+jm2XP8WyIUu6\nNCQIggCt2gVatQsGBWvbvFffYEJhaU1zqKlqE3KSM+4gOeNOm/auLrI2szb+zV/rta5QyKVdVjNZ\nhwGGiIjs6mehM3GrIgcXilLwze1jmNZ7sk3+XLlMgkBvNwR6uwHwafNeRXXdj2Zsmj5uFVQgM6+8\nTVsBgE6jvGedjb9OBa3ahbM2ImGAISIiu2rZuTr27HvYc/0AerkHYqAu1K41qVUKqFUK9A/ybHO8\n0WRCcZmxbbBp/jotswRpmSVt2ivkEvhp216O8tWpYJJKUVldB6VcCrlMwpDzAASz2fl2yioquvc2\nuq7i46MW9fz04Dg2jonj4ricbWxulN3Ee0kb4SpTYlXUf0Gr9Lx/JwdSbWxAgeHHa22aFhXXNXT8\nJGEBgEIhhYtcChe5pPmzFIrmzy6KpuOtr+86rrirfWu/u86lkEshceJw5OOj7vA9zsAQEZFD6OvR\ntHP1J+l7sCk1Dr8e8SvIJc7zz5RKKUOIvwYh/po2x01mMwzltW0CTSOA8opa1NY33vVhQl19I6pq\nmo43mrpmfkEhk9wThtoEpNbg004Ykkvh8qPjP5xLAqnEfndsOc/fDCIi6vYmBY5DVvltJOafx6fp\nn2Nx2Fx7l/TQJIIALw8lvDyUGByiA2Dd7FhDY1Ogqa03NQWcuqagU/ej0FNb9+NjPxxved3yflll\nLWrrTV22t5RMKmB4fx/86qmOn+MjFgYYIiJyGIIgYNHAOcipzMOJ3ET00fRCdMBoe5dlFzKpBDKp\nBKoHu7PcIpPJ3Dbw1DWiriUo3fVRV3dXILo7DN113NtDhAKtwABDREQORSGV4/mIpYg9+1fEp+9B\noLs/gjW97F1WtyKRCHB1kcHVxXljAB83SEREDsfbVYefD17ctHN1Shwq6yzvXE09DwMMERE5pMFe\nAzEz5DEYakvxYdq/cbP8FowNRnuXRQ7CeeeOiIio23u8zyPIqriFlOLL+NO5DQAArYsn/N184eem\nb/7sCz+VHiq5q52rJVtigCEiIoclEST4xeAlOFdwAbmV+cirKkBeVQEulVzFpZKrbdp6KDT3BBt/\nN1+4yVV2qp7ExABDREQOTSGV33MnUnV9DfKrC5HfHGjyqwqRV1WAK4ZruGK41qatWuEOf1VLoPkh\n3KgV7rb8NqiLMcAQEZHTUcld0dcjGH09gtscNzYYkV9diLyqpnDTFHAKkV6agfTSjDZt3eVu8HPT\nNwUbVcvMjR80Cnc+2t8JiBpg0tPTsWLFCvz85z/HkiVLUF9fj1WrViErKwtubm5Yv349PDw88MUX\nX+Djjz+GRCLBggULMH/+fDHLIiKibkopU6KPpjf6aHq3OV7bWIeC5lmapoDTFG4ySm/iemlmm7Yq\nmWvrbM3d4cbTxYPBxoGIFmCqq6uxbt06jBs3rvXYJ598Aq1Wiz//+c+Ij4/HuXPnMG7cOLz//vvY\nuXMn5HI55s2bh+nTp8PT07n2wCAiIsflIlWgtyYIvTVBbY7XNdajsLqoNdDkNV+Wull+CzfKbrZp\nq5QqW0NN6zoblS+0Sg9IBN7Ua2uiBRiFQoFNmzZh06ZNrce+++47vPzyywCAhQsXAgBOnTqFiIgI\nqNVNGzaNGDECSUlJePTRR8UqjYiICEDT+pogdQCC1AFtjtebGlBUXdy6aLgl3GRVZCOz/NaPzqG4\n6xLUD591Si2DjYhECzAymQwyWdvT5+Tk4NixY/jTn/4Eb29vvPnmmyguLoZOp2tto9PpUFRUZPHc\nWq0KMplUlLoBy7tfkn1xbBwTx8VxcWweXAC0iET/NscaTI3IryxEdlkessvzmj/nI6ciD1kVt9u0\nVUjlCFT7IcjDH0Ea/9bPvm7eADg2D8umi3jNZjNCQkLw0ksv4e9//zs2btyI8PDwe9rcj8FQLVaJ\nTrf9fE/CsXFMHBfHxbERhwvc0U/ZH/2U/QF907FGUyOKjSWtd0W13BmVXZ6HzNK2wUYmkUHv5gWN\nTAOdUgud0hM6pRba5s+eLhrInGgXbjFZCnk2/S/k7e2NqKgoAMCECRPwt7/9DVOmTEFxcXFrm8LC\nQgwbNsyWZRERET0UqUQKX5UPfFU+iPT5YWdmk9mEOzUG5Fe3vd3bUGtAbkVBu+cSIMDDRQOti2dr\nuPlxyHGV2WcDRUdi0wAzadIkJCQkYO7cuUhLS0NISAgiIyOxZs0alJeXQyqVIikpCatXr7ZlWURE\nRKKQCBL4qLzgo/JChPcPVxx8fNTIzr8Dg9GAEmMpSowGGIyluGMshaG26VhWxW1klme1e15XmbIp\n0LjcHXA8oW3+WqNQd/v1N6IFmNTUVMTGxiInJwcymQyHDx/Gu+++i7feegs7d+6ESqVCbGwslEol\nVq5ciWXLlkEQBLz44outC3qJiIi6KxepovmOJt923zeZTSirLW8NOCVGA0pqfwg7xTV3kFOZ125f\nqSCF1sWjdcbmh5mc5lkcF0/IpXIxvz3RCWZrFp04GDGv6fKasePi2Dgmjovj4tg4rq4YG7PZjJqG\nmqZZm5aZnObZG0Nz6Cmv6/jPUMvd77os9UPQaQk9bjKV3Z974zBrYIiIiKhrCIIAlVwFlVyFXj+6\nDbxFvakBhrsCTcsMTklz6MmpzL3n7qkWCqkCOhfPe2ZxWi5bebpoIJWId0fw/TDAEBERdVNyiQx6\nlTf0Ku923zeZTaioq2q6LHVXuGm5TFViNCC/urDdvgIEeLp4YKRvJH4WOlPMb6NdDDBEREQ9lESQ\nwMNFDQ8XNULQu902xgZj04xNuwGnaXbHHhhgiIiIqENKmRIB7n4IcPezdyltdO97rIiIiKhbYoAh\nIiIip8MAQ0RERE6HAYaIiIicDgMMEREROR0GGCIiInI6DDBERETkdBhgiIiIyOkwwBAREZHTYYAh\nIiIip8MAQ0RERE6HAYaIiIicDgMMEREROR3BbDab7V0EERERUWdwBoaIiIicDgMMEREROR0GGCIi\nInI6DDBERETkdBhgiIiIyOkwwBAREZHTYYC5yx/+8AcsXLgQixYtwsWLF+1dDt3lnXfewcKFCzF3\n7lx8+eWX9i6H7mI0GjFt2jR89tln9i6F7vLFF1/gpz/9KebMmYMjR47YuxwCUFVVhZdeegkxMTFY\ntGgREhIS7F2SU5PZuwBHcebMGWRlZSE+Ph4ZGRlYvXo14uPj7V0WATh9+jSuXbuG+Ph4GAwG/Oxn\nP8Njjz1m77Ko2QcffAAPDw97l0F3MRgMeP/997Fr1y5UV1fjb3/7G6ZMmWLvsnq83bt3IyQkBCtX\nrkRBQQGeffZZHDp0yN5lOS0GmGanTp3CtGnTAAD9+vVDWVkZKisr4e7ubufKKCoqCkOHDgUAaDQa\n1NTUoLGxEVKp1M6VUUZGBq5fv85/HB3MqVOnMG7cOLi7u8Pd3R3r1q2zd0kEQKvV4urVqwCA8vJy\naLVaO1fk3HgJqVlxcXGbv0w6nQ5FRUV2rIhaSKVSqFQqAMDOnTsxadIkhhcHERsbi1WrVtm7DPqR\n7OxsGI1G/Md//AcWL16MU6dO2bskAjBz5kzk5uZi+vTpWLJkCV577TV7l+TUOAPTAe6w4Hi+/vpr\n7Ny5Ex999JG9SyEAe/bswbBhw9CrVy97l0LtKC0txYYNG5Cbm4ulS5fiu+++gyAI9i6rR/v8888R\nEBCADz/8EFeuXMHq1au5duwhMMA00+v1KC4ubn1dWFgIHx8fO1ZEd0tISMA//vEPbN68GWq12t7l\nEIAjR47g9u3bOHLkCPLz86FQKODn54fo6Gh7l9bjeXl5Yfjw4ZDJZOjduzfc3NxQUlICLy8ve5fW\noyUlJWHChAkAgLCwMBQWFvJy+EPgJaRm48ePx+HDhwEAaWlp0Ov1XP/iICoqKvDOO+9g48aN8PT0\ntHc51Oy9997Drl278Mknn2D+/PlYsWIFw4uDmDBhAk6fPg2TyQSDwYDq6mqut3AAwcHBSE5OBgDk\n5OTAzc2N4eUhcAam2YgRIzB48GAsWrQIgiDgzTfftHdJ1OzAgQMwGAx45ZVXWo/FxsYiICDAjlUR\nOS5fX188/vjjWLBgAQBgzZo1kEj4+6q9LVy4EKtXr8aSJUvQ0NCAtWvX2rskpyaYudiDiIiInAwj\nORERETkdBhgiIiJyOgwwRERE5HQYYIiIiMjpMMAQERGR02GAISJRZWdnY8iQIYiJiWndhXflypUo\nLy+3+hwxMTFobGy0uv3TTz+NxMTEBymXiJwEAwwRiU6n0yEuLg5xcXHYsWMH9Ho9PvjgA6v7x8XF\n8YFfRNQGH2RHRDYXFRWF+Ph4XLlyBbGxsWhoaEB9fT3eeOMNhIeHIyYmBmFhYbh8+TI+/vhjhIeH\nIy0tDXV1dXj99deRn5+PhoYGzJ49G4sXL0ZNTQ1+/etfw2AwIDg4GLW1tQCAgoIC/OY3vwEAGI1G\nLFy4EPPmzbPnt05EXYQBhohsqrGxEV999RVGjhyJV199Fe+//z569+59z+Z2KpUK27Zta9M3Li4O\nGo0Gf/7zn2E0GjFjxgxMnDgRJ0+ehFKpRHx8PAoLCzF16lQAwMGDB9G3b1/87ne/Q21tLT799FOb\nf79EJA4GGCISXUlJCWJiYgAAJpMJo0aNwty5c7F+/Xr8z//8T2u7yspKmEwmAE3be/xYcnIy5syZ\nAwBQKpUYMmQI0tLSkJ6ejpEjRwJo2pi1b9++AICJEydi+/btWLVqFSZPnoyFCxeK+n0Ske0wwBCR\n6FrWwNytoqICcrn8nuMt5HL5PccEQWjz2mw2QxAEmM3mNnv9tISgfv36Yf/+/Th79iwOHTqEjz/+\nGDt27HjYb4eIHAAX8RKRXajVagQFBeHo0aMAgMzMTGzYsMFin8jISCQkJAAAqqurkZaWhsGDB6Nf\nv364cOECACAvLw+ZmZkAgL179yIlJQXR0dF48803kZeXh4aGBhG/KyKyFc7AEJHdxMbG4ve//z3+\n+c9/oqGhAatWrbLYPiYmBq+//jqeeeYZ1NXVYcWKFQgKCsLs2bPx7bffYvHixQgKCkJERAQAIDQ0\nFG+++SYUCgXMZjOef/55yGT83x5Rd8DdqImIiMjp8BISEREROR0GGCIiInI6DDBERETkdBhgiIiI\nyOkwwBAREZHTYYAhIiIip8MAQ0RERE6HAYaIiIiczv8HyxnAWMNCLXkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "O2q5RRCKqYaU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see a possible solution" + ] + }, + { + "metadata": { + "id": "j2Yd5VfrqcC3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** This selection of parameters is somewhat arbitrary. Here we've tried combinations that are increasingly complex, combined with training for longer, until the error falls below our objective (training is nondeterministic, so results may fluctuate a bit each time you run the solution). This may not be the best combination; others may attain an even lower RMSE. If your aim is to find the model that can attain the best error, then you'll want to use a more rigorous process, like a parameter search." + ] + }, + { + "metadata": { + "id": "IjkpSqmxqnSM", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 652 + }, + "outputId": "57ae932d-940e-40b7-ffe5-8d0e19fc439e" + }, + "cell_type": "code", + "source": [ + "dnn_regressor = train_nn_regression_model(\n", + " learning_rate=0.001,\n", + " steps=2000,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 138.83\n", + " period 01 : 120.81\n", + " period 02 : 113.18\n", + " period 03 : 109.51\n", + " period 04 : 105.56\n", + " period 05 : 102.42\n", + " period 06 : 112.91\n", + " period 07 : 106.95\n", + " period 08 : 101.64\n", + " period 09 : 102.60\n", + "Model training finished.\n", + "Final RMSE (on training data): 102.60\n", + "Final RMSE (on validation data): 102.54\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xlc1NX+P/DXZ2YYhmXYGVYX3JHV\nBQVxxQVcyzSvlpRm3Vtpesub1e9at65tdtvcu3pLE2/fSlPT0kwzM9wQQQQEcUFB9h1kZ/j8/lDn\nSsIwo8wwyOv5ePB4NPM55/N5D2c+8fac8zlHEEVRBBEREVEHImnvAIiIiIj0xQSGiIiIOhwmMERE\nRNThMIEhIiKiDocJDBEREXU4TGCIiIiow5G1dwBEpqxv377o2rUrpFIpAECtViMoKAjLly+HpaXl\nPZ/322+/xaxZs+56f+fOnXjttdfw2WefYcyYMZr3a2pqMGzYMEyYMAHvv//+PV9XVxkZGXj33XeR\nnp4OALCwsMCiRYswbtw4g19bH+vXr0dGRsZdv5NTp05hwYIF8PT0vKvOTz/9ZKzw7sv169cxduxY\neHl5AQBEUYSTkxP+/ve/o3///nqd66OPPoK7uzvmzJmjc53vv/8eO3bsQFRUlF7XIjIWJjBErYiK\nioKrqysAoK6uDi+++CL+/e9/48UXX7yn8xUUFOA///lPswkMALi5ueGHH35oksD8+uuvsLGxuafr\n3Yu//e1veOihh/DZZ58BABISEvDkk09i//79cHNzM1oc98PNza3DJCstkUqlTT7Dvn37sHDhQhw4\ncAByuVzn8yxdutQQ4RG1Kw4hEelBLpdjxIgRSElJAQDU1tbijTfeQHh4OCZOnIj3338farUaAJCa\nmorZs2cjIiICDz30EH7//XcAwOzZs5GdnY2IiAjU1dXddY2BAwfi1KlTqK6u1ry3b98+hIaGal7X\n1dXh7bffRnh4OMLCwjSJBgDEx8fjkUceQUREBCZNmoTjx48DuPkv+uHDh2Pr1q2YOnUqRowYgX37\n9jX7OdPS0hAQEKB5HRAQgAMHDmgSubVr12LUqFF4+OGHsXHjRoSFhQEAXn31Vaxfv15T787XrcX1\n7rvvYu7cuQCAM2fOYMaMGRg/fjxmzZqFzMxMADd7ov76179izJgxmDt3LnJzc1tpsebt3LkTixYt\nwpNPPokPPvgAp06dwuzZs7FkyRLNH/v9+/djypQpiIiIwBNPPIGMjAwAwJo1a7B8+XLMnDkTW7Zs\naXLeJUuW4IsvvtC8TklJwfDhw9HY2IhPPvkE4eHhCA8PxxNPPIG8vDy94540aRJqampw5coVAMA3\n33yDiIgIhIWF4aWXXkJNTQ2Am7/39957D1OnTsX+/fubtENL38vGxkb885//xOjRozFz5kykpqZq\nrhsTE4Pp06dj0qRJmDhxIvbv36937ERtTiSiFvXp00fMycnRvC4tLRUff/xxcf369aIoiuK///1v\n8ZlnnhHr6+vF6upqccaMGeLu3btFtVotTpw4Udy7d68oiqJ47tw5MSgoSKyoqBBPnjwpjhs3rtnr\nfffdd+Irr7wi/u1vf9PUraioEMeOHStu375dfOWVV0RRFMW1a9eKTz75pFhbWytWVlaKDz/8sHj4\n8GFRFEVxypQp4g8//CCKoiju2rVLc63MzEyxf//+YlRUlCiKorhv3z5x/PjxzcbxwgsviGPGjBG/\n/PJL8dKlS02OXbhwQRw8eLCYn58v1tfXi88995w4ZswYURRF8ZVXXhHXrVunKXvna21x+fj4iDt3\n7tR83qCgIDE6OloURVHcu3evOH36dFEURXHbtm3i448/LtbX14vFxcXimDFjNL+TO2n7Hd/+PQcG\nBorp6ema8n5+fuLx48dFURTFrKwscdCgQeLVq1dFURTFzz//XHzyySdFURTF1atXi8OHDxeLioru\nOu+PP/4oPv7445rXq1atElesWCGmpaWJEyZMEOvq6kRRFMWtW7eKu3btajG+278Xb2/vu94PCgoS\nL1++LJ4+fVoMCQkRc3NzRVEUxddff118//33RVG8+XufOnWqWFNTo3m9bt06rd/LI0eOiBMmTBBv\n3LghVldXizNnzhTnzp0riqIoPvLII+KpU6dEURTF9PR08aWXXtIaO5ExsAeGqBWRkZGIiIjA2LFj\nMXbsWAQHB+OZZ54BABw5cgSzZs2CTCaDQqHA1KlTcezYMVy/fh2FhYWYPHkyAMDPzw/u7u5ITEzU\n6ZqTJ0/GDz/8AAA4dOgQxowZA4nkf7frr7/+isceewxyuRyWlpZ46KGH8PPPPwMAdu/ejYkTJwIA\nBg0apOm9AICGhgY88sgjAAAfHx9kZ2c3e/1//etfePzxx7F3715MmTIFYWFh+L//+z8AN3tHgoKC\n4OzsDJlMhilTpuj0mbTFVV9fj/Hjx2vO7+LioulxmjJlCjIyMpCdnY3Y2FiMHz8eMpkM9vb2TYbZ\n/ignJwcRERFNfu6cK9O9e3d0795d81qhUCAkJAQAcOzYMQwdOhTdunUDADz66KM4deoUGhoaANzs\nkXJwcLjrmqNHj8b58+dRWloKADh48CAiIiJgY2OD4uJi7N27F2VlZYiMjMTDDz+s0+/tNlEU8c03\n38DFxQXdu3fH4cOHMWnSJLi4uAAA5syZo/kOAEBISAjMzc2bnEPb9/L06dMYNWoUrKysoFAoNG0F\nAI6Ojti9ezcuX76M7t2746OPPtIrdiJD4BwYolbcngNTXFysGf6QyW7eOsXFxbC1tdWUtbW1RVFR\nEYqLi6FUKiEIgubY7T9iTk5OrV4zNDQUy5cvR2lpKX788Uc8//zzmgm1AFBRUYH33nsPH3/8MYCb\nQ0r+/v4AgL1792Lr1q2orKxEY2MjxDu2O5NKpZrJxxKJBI2Njc1e39zcHAsWLMCCBQtQXl6On376\nCe+++y48PT1RVlbWZD6Oo6Njq59Hl7isra0BAOXl5cjMzERERITmuFwuR3FxMcrKyqBUKjXv29jY\noLKystnrtTYH5s52++PrkpKSJp9RqVRCFEWUlJQ0W/c2S0tLDBs2DEeOHMGgQYNQXl6OQYMGQRAE\nrFmzBl988QVWrFiBoKAgvPXWW63OJ1Kr1ZrfgyiK6NWrF9avXw+JRIKKigocPHgQ0dHRmuP19fUt\nfj4AWr+XZWVlUKlUTd6/7d1338WGDRswf/58KBQKvPTSS03ah6g9MIEh0pGDgwMiIyPxr3/9Cxs2\nbAAAODk5af61DQClpaVwcnKCo6MjysrKIIqi5o9FaWmpzn/szczMMGbMGOzevRvXrl3DgAEDmiQw\nKpUKTz311F09EHl5eVi+fDm2b98Ob29vXL16FeHh4Xp9zuLiYqSkpGh6QGxsbDBr1iz8/vvvSEtL\ng1KpREVFRZPyt/0xKSorK9M7LpVKhR49emDnzp13HbOxsWnx2m3J0dER8fHxmtdlZWWQSCSwt7dv\ntW54eDgOHjyIkpIShIeHa9o/ODgYwcHBqKqqwsqVK/Hhhx+22pPxx0m8d1KpVJg+fTpeeeUVvT5X\nS99Lbb9bJycnvP7663j99dcRHR2NF154ASNGjICVlZXO1yZqaxxCItLD/PnzER8fj5iYGAA3hwx2\n7NgBtVqNqqoqfP/99xg1ahQ8PT3h6uqqmSQbFxeHwsJC+Pv7QyaToaqqSjMc0ZLJkydj06ZNzT66\nPHbsWGzfvh1qtRqiKGL9+vU4evQoiouLYWlpiR49eqChoQHffPMNALTYS9GcmpoaLF68WDO5EwCu\nXbuGhIQEDB48GAMGDEBsbCyKi4vR0NCA3bt3a8o5OztrJn9mZmYiLi4OAPSKKyAgAAUFBUhISNCc\n5+WXX4YoiggMDMThw4ehVqtRXFyMo0eP6vy59BEaGorY2FjNMNfXX3+N0NBQTc+bNmPGjEF8fDwO\nHTqkGYaJjo7GW2+9hcbGRlhaWqJfv35NekHuRVhYGH7++WdNonHo0CFs3LhRax1t38sBAwYgOjoa\n1dXVqK6u1iRO9fX1iIyMRH5+PoCbQ48ymazJkCZRe2APDJEerK2t8ec//xkrV67Ejh07EBkZiczM\nTEyePBmCICAiIgITJ06EIAj4+OOP8Y9//ANr166FhYUFVq1aBUtLS/Tt2xe2trYIDQ3Frl274O7u\n3uy1hgwZAkEQMGnSpLuOPfbYY7h+/TomT54MURTh6+uLJ598EpaWlhg5ciTCw8Ph6OiIV199FXFx\ncYiMjMTq1at1+ozu7u7YsGEDVq9ejbfffhuiKMLa2hqvvfaa5smkP/3pT5g+fTrs7e0xYcIEXLx4\nEQAwa9YsLFq0CBMmTED//v01vSz9+vXTOS6FQoHVq1djxYoVqKyshJmZGZYsWQJBEDBr1izExsZi\n3LhxcHd3x7hx45r0Gtzp9hyYP/rggw9a/R24urri7bffxvPPP4/6+np4enpixYoVOv3+rK2t4ePj\ngwsXLiAwMBAAEBQUhB9//BHh4eGQy+VwcHDAu+++CwBYtmyZ5kkiffj4+ODZZ59FZGQkGhsb4ejo\niLfeektrHW3fyzFjxuDIkSOIiIiAk5MTRo0ahdjYWJiZmWHmzJmYN28egJu9bMuXL4eFhYVe8RK1\nNUG8cyCaiEhPsbGxWLZsGQ4fPtzeoRBRJ8I+QCIiIupwmMAQERFRh8MhJCIiIupw2ANDREREHQ4T\nGCIiIupwOuRj1AUFzT822Rbs7S1RUlJlsPPTvWPbmCa2i+li25guto1unJ2VLR5jD8wfyGTS9g6B\nWsC2MU1sF9PFtjFdbJv7Z9AEJi0tDePGjcO2bduavP/777+jb9++mtd79uzBjBkz8Oijj2L79u2G\nDImIiIgeAAYbQqqqqsKKFSs0u7veVltbi40bN8LZ2VlTbt26ddixY4dmxcfx48fDzs7OUKERERFR\nB2ewHhi5XI5NmzY12d0UAD777DM89thjkMvlAICEhAT4+flBqVRCoVBg4MCBmv1TiIiIiJpjsB4Y\nmUx218Zn6enpSE1NxZIlS/Cvf/0LAFBYWAgHBwdNGQcHBxQUFGg9t729pUHHD7VNGqL2xbYxTWwX\n08W2MV1sm/tj1KeQ3nvvPSxfvlxrGV3W1TPkzG1nZ6VBn3Kie8e2MU1sF9PFtjFdbBvdmMRTSHl5\nebhy5Qr+9re/YdasWcjPz8fcuXOhUqlQWFioKZefn3/XsBMRERHRnYzWA+Pi4oJDhw5pXoeFhWHb\ntm2oqanB8uXLUV5eDqlUiri4OPy///f/jBUWERERdUAG64FJSkpCZGQkdu3aha1btyIyMhKlpaV3\nlVMoFFi6dCkWLFiA+fPnY+HChVAqOS5IRER0r44c+UWncqtWfYTs7KwWj7/66kttFVKb65CbORpy\n3JDjkqaLbWOa2C6mi21jugzZNjk52Vi37lO8/fYHBjm/MWmbA9MhtxIgIiKi5n388UqkpCRjxIgg\nTJgwETk52fj00/V4771/oqAgH9XV1XjqqT8jNHQEFi36M156aRl+/fUXVFbeQEbGNWRlXcfixUsR\nEhKKyZPH4scff8GiRX9GUNBQxMXForS0FCtXfgInJyf885+vIzc3B35+/jh8+BB27dpntM/JBIaI\niMhAvj18CadT8+96XyoVoFbf2wBIUD8VZoX1avH4nDmR2LnzW3h59URGxlWsX/8flJQUY8iQYEyc\nOAVZWdfx+uuvIjR0RJN6+fl5+PDD1Th58ji+//47hISENjluZWWFVas2YMOGNTh69DDc3T1RV1eL\njRu34Nix3/Htt/93T5/nXjGBuUNhaTVyy2vhamPe3qEQERHdN29vHwCAUmmDlJRk7NmzE4IgQXl5\n2V1l/f0DAQAqlQo3bty463hAwADN8bKyMly7lg4/vwAAQEhIKKRS4+7vxATmDt9Hp+NEci7e/0sI\nnOws2jscIiLq4GaF9Wq2t8RY85PMzMwAAAcP/oTy8nKsW/cflJeX4+mnI+8qe2cC0tz02D8eF0UR\nEsnN9wRBgCAIbR2+VtyN+g59utihUQROns9r71CIiIjuiUQigVqtbvJeaWkp3NzcIZFI8Ntvh1Ff\nX3/f1/Hw8MSFC+cBADExJ++6pqExgbnDoL4qyGUSnEjO1WlFYCIiIlPTrZsXLlxIRWXl/4aBRo8O\nw/Hjv2PJkudgYWEBlUqFzZs33dd1hg0bgcrKSjz33AIkJMTDxsb2fkPXCx+j/oMv9qciOiEbb8wb\njO6uNga7DumPj4SaJraL6WLbmK4HoW3Ky8sQFxeL0aPHoqAgH0uWPIevvvquTa/Bx6j1MGZQF0Qn\nZON4Ui4TGCIiohZYWlrh8OFD+OqrKIhiI154wbiL3jGB+YMBfVWwtjBDzPk8/CmsF6QSjrIRERH9\nkUwmwz//+V67XZ9/nf/ATCbBEG8VyqvqkZxe0t7hEBERUTOYwDQjxMcVAHAyObedIyEiIqLmMIFp\nRg93G6jsLRCXVoDq2ob2DoeIiIj+gAlMMwRBQIiPK+oaGhGXVtDe4RAREdEfMIFpQYiPCwDgBIeR\niIjoATRz5lRUVVUhKmoLkpLONTlWVVWFmTOnaq1/5MgvAIB9+/bit99+NVicLeFTSC1Q2Vuip4cN\nUq6WoKSiFvZK7o9EREQPnsjIeXrXycnJxqFDBzB69FhMmqQ90TEUJjBaDPNxxeWscpw6n4eIoV3b\nOxwiIqJWPfXU43j33Y/g6uqK3NwcvPbaUjg7q1BdXY2amhq8+OLL6N/fV1P+nXfexOjRYxEYOAB/\n//sy1NXVaTZ2BICff96PHTu+gVQqQffuPfHKK3/Hxx+vREpKMjZv3oTGxkbY2dlhxow/Yf36VUhM\nTEBDgxozZsxCRMRkLFr0ZwQFDUVcXCxKS0uxcuUncHV1ve/PyQRGiyBvF3x16CJOJOcygSEiIr3t\nvPQD4vMT73pfKhGgbry3hfAHqPzwSK8pLR4fOXIMjh07ihkzZuH333/DyJFj0LNnb4wcORpnzpzG\nf//7Jd5551931TtwYD969OiJxYuX4pdffsahQwcAANXV1fjoozVQKpVYuPAZXL58CXPmRGLnzm8x\nf/4z+PzzfwMAzp6Nw5Url7Fhwxeorq7Gk0/OxsiRowEAVlZWWLVqAzZsWIOjRw9j1qzH7umz34lz\nYLSwtjCDf09HZObfwPX8u7cWJyIiMjU3E5jfAQDR0b9h+PBR+O23X/DccwuwYcMalJWVNVvv6tUr\n8PUNAAAMGDBI876NjQ1ee20pFi36M65dS0dZWWmz9VNTzyMwcCAAwMLCAt2790BmZiYAICBgAABA\npVLhxo22+XvKHphWhPi4Iv5iIU4k5+JR1d1bohMREbXkkV5Tmu0tMeReSD169ERRUQHy8nJRUVGB\n338/AicnFV5/fQVSU89j7dpPm60nioBEIgAAGm/1DtXX1+Pjjz/Ali1fwdHRCcuW/bXF6wqCgDt3\nV2xoqNecTyqV3nGdttmCkT0wrQjo5QgLcxlOns9DY8fb95KIiDqhkJDh2LhxPUaMGIWyslJ4eHgC\nAH777Vc0NDS/vlnXrt2QmpoCAIiLiwUAVFVVQiqVwtHRCXl5uUhNTUFDQwMkEgnUanWT+v36+SA+\n/sytelXIyroOT0/DTb9gAtMKM5kUQf2cUVJRiwvXuLUAERGZvlGjxmieEoqImIxvvvkvXnxxIXx8\nfFFUVIQff9xzV52IiMlITk7EkiXPITPzGgRBgK2tHYKChuLpp5/A5s2b8NhjkVi9+mN06+aFCxdS\nsXr1R5r6AQGB6Nu3HxYufAYvvrgQzz67CBYWFgb7jILYVn05RmTILcib69a7kFGClV/FY7ifG56a\n7G2wa5N2D8L28w8itovpYtuYLraNbpydlS0eYw+MDnp3sYOjjTliL+Sjtl7degUiIiIyKCYwOpAI\nAoJ9XFFTp0bCpcL2DoeIiKjTYwKjo+BbO1QfT+LWAkRERO2NCYyOPJys0M1FiaQrxSivqmvvcIiI\niDo1JjB6CPF1RaMoIuZ8XnuHQkRE1KkxgdHDUG8VBAE4kcwEhoiIqD0xgdGDrbU5fLwckJ5Tjtzi\nqvYOh4iIqNNiAqOnkFuTeU9wMi8REVG7MWgCk5aWhnHjxmHbtm0AgPj4eMyZMweRkZFYsGABiouL\nAQA+Pj6IjIzU/PxxeWJTMrC3M8zNpDiRnNtm+zkQERGRfgy2mWNVVRVWrFiBkJAQzXubN2/GBx98\ngC5dumDt2rX49ttv8eyzz8La2hpRUVGGCqVNmculGNjHGSeSc3Epqwy9Pe3aOyQiIqJOx2A9MHK5\nHJs2bYJKpdK8t3r1anTp0gWiKCIvLw+urq6GurxBDfO9NYzEybxERETtwmAJjEwmg0KhuOv9o0eP\nIiIiAoWFhZg2bRoAoK6uDkuXLsXs2bOxefNmQ4XUZry72cPWWo7TKXmob2hs73CIiIg6HYMNIbVk\n5MiRGDFiBD788ENs3LgRzz77LJYtW4Zp06ZBEATMnTsXgwcPhp+fX4vnsLe3hEwmNViM2jaPum3M\noC7Y/dtlXCusQoifm8FioaZ0aRsyPraL6WLbmC62zf0xagJz8OBBjB8/HoIgIDw8HGvWrAEAzJkz\nR1MmODgYaWlpWhOYkhLDPcKs6w6hgT0csPu3yzhwPB29XK0NFg/9D3dvNU1sF9PFtjFdbBvdmMxu\n1GvWrEFKSgoAICEhAV5eXrhy5QqWLl0KURTR0NCAuLg49O7d25hhacTkxuGzmCg0iq0PC3VRWcPD\n2QoJlwtRWVNvhOiIiIjoNoP1wCQlJWHlypXIysqCTCbDgQMH8Pbbb+Ott96CVCqFQqHABx98AEdH\nR7i6umLmzJmQSCQICwuDv7+/ocLS6mp5Bn67fhz9bLzh49hXa1lBEBDi44odRy7jdGo+Rgd6GClK\nIiIiEsQOuJiJobrdrpVn4oPYNQhw9sWf/Z5otXxxeQ1eXn8cvT1t8ercQQaJif6HXa6mie1iutg2\npottoxuTGUIydV2Vnuhu54nEwvMorS1rtbyDjQJ9u9oh7XoZCkurjRAhERERAUxgmhAEAeN6jkCj\n2IgT2bE61dFsLcAdqomIiIyGCcwfDO8WBLlUjuM5MTpN5h3UVwUzmQQnubUAERGR0TCB+QNLMwsM\nVgWiuKYEKcVprZdXyBDYywk5RVW4msvxTCIiImNgAtOM4R5DAQDRWad0Kh+i2VqAO1QTEREZAxOY\nZnSz6YIuSg8kFaXoNJnX18sB1hZmiDmfB3UjtxYgIiIyNCYwLQh1H3prMu/pVsvKpBIM9XZBeVU9\nktNLjBAdERFR58YEpgVBLoEwl8pxLFu3ybzBvi4AOIxERERkDExgWqCQKTDYZQBKaktxvuhCq+V7\nuNnAxd4C8WkFqK5tMEKEREREnRcTGC2Gu9+azJvd+mTe21sL1DU0Ii6twNChERERdWpMYLToauOJ\nrkoPJBXqNpk3mE8jERERGQUTmFaEug+FCBHHs2NaLauys0AvD1ukXC1BSUWtEaIjIiLqnJjAtGLw\nrcm8x7NP6zSZN8TXFSKAU9xagIiIyGCYwLRCIVMgSI/JvEH9VJBKBBxP4jASERGRoTCB0UHo7ZV5\ns0+2Wtbawgz+PR1xveAGMvNvGDo0IiKiTokJjA66Kj3RVemJpMJUlNSUtlpes0M1J/MSEREZBBMY\nHQ33uDWZN6f1lXkDejnCwlyGU+fz0NjIHaqJiIjaGhMYHQ1SBUIhNcfx7BioG9Vay5rJpAjqp0JJ\nRS0uZHBrASIiorbGBEZHCpk5BrsOQGltGc4Xtz6ZN8Tn5tYCxzmMRERE1OaYwOhhuHswACA6q/WV\neXt3sYOjjQJnLhSgtl57jw0RERHphwmMHroo3dFN2QXJRa1P5pUIAoJ9XFBTp8bZi4VGipCIiKhz\nYAKjJ81kXh1W5uXTSERERIbBBEZPA1UBNyfz5pxudTKvu5MVurkqkXSlGOWVdUaKkIiI6MHHBEZP\nCpk5glwHorS2DMlFqa2WH+bjikZRREwKtxYgIiJqK0xg7sFw95sr8x7Lbn0y75D+LpAIAoeRiIiI\n2hATmHvgqXRHN5suSC66gOIa7eu82FrJ4ePlgPScCuQUVRopQiIiogcbE5h7NNw9WI/JvDfXhDmR\nzGEkIiKitsAE5h4NcgmAQqrA8ezWJ/MO6OMMc7kUJ5NzIYrcWoCIiOh+MYG5R+ZSOYa4DkBZXTmS\nWpnMa24mxaA+zigsq8HF62VGipCIiOjBxQTmPgz3uLkyry6TeUN8b64Jc5KTeYmIiO4bE5j74GHt\nBi+brjhfdAFF1don83p3tYettRynU/NR39BopAiJiIgeTAZNYNLS0jBu3Dhs27YNABAfH485c+Yg\nMjISCxYsQHFxMQBgz549mDFjBh599FFs377dkCG1uVD3Wyvz5mifzCuRCAju74LKmgacu1xkpOiI\niIgeTAZLYKqqqrBixQqEhIRo3tu8eTM++OADREVFYcCAAfj2229RVVWFdevWYcuWLYiKisKXX36J\n0lLt+wyZkkEuAbCQKXAiO6bVyby3txbgMBIREdH9MVgCI5fLsWnTJqhUKs17q1evRpcuXSCKIvLy\n8uDq6oqEhAT4+flBqVRCoVBg4MCBiIuLM1RYbU4ulSPIZSDK6iqQVJSitWwXlTU8nK2QcLkQlTX1\nRoqQiIjowSMz2IllMshkd5/+6NGjeOedd9CjRw9MmzYNP/74IxwcHDTHHRwcUFBQoPXc9vaWkMmk\nbR7zbc7OSr3KTzMLw9Gs44gpiMW4/iFay44f0g1bfjyP1OvliAjpfh9Rdk76tg0ZB9vFdLFtTBfb\n5v4YLIFpyciRIzFixAh8+OGH2LhxIzw8PJoc12WdlJKSKkOFB2dnJQoKKvSqYwEbeNl0Q0JuClIz\nrsHRwqHFsr7d7CAA+PnkVQzq5Xif0XYu99I2ZHhsF9PFtjFdbBvdaEvyjPoU0sGDBwEAgiAgPDwc\nZ86cgUqlQmFhoaZMfn5+k2GnjiLUY6hOK/M62CjQr5s9Ll4vQ0FptZGiIyIierAYNYFZs2YNUlJu\nzhNJSEiAl5cXAgICkJiYiPLyclRWViIuLg6DBw82ZlhtYpDK/+Zk3pzWV+YNvrW1ACfzEhER3RuD\nDSElJSVh5cqVyMrKgkwmw4FE3KnJAAAgAElEQVQDB/D222/jrbfeglQqhUKhwAcffACFQoGlS5di\nwYIFEAQBCxcuhFLZ8cYF5VI5hrgOwm/XjyGxKAWBzr4tlh3cV4VtP6fhRHIepgzrDkEQjBgpERFR\nx2ewBMbX1xdRUVF3vf/111/f9V5ERAQiIiIMFYrRDHcfit+uH0N01kmtCYyFuQwDejshJiUfV3Mr\n4OVmY8QoiYiIOj6uxNuG3K1d0cO2G1KLL6Kwulhr2dtrwpxI4jASERGRvpjAtLHh7sE6Teb18XKA\n0tIMp1Ly0KDm1gJERET6YALTxgao/GEhs2h1Mq9MKsEQbxdUVNXj/FXtvTVERETUFBOYNiaXmmGo\n60CU11UgsfC81rKaYaTkPGOERkRE9MBgAmMAoe5DAQDR2ae0lvNyU8LFwRLxaQWorm0wRmhEREQP\nBCYwBnBzMm93pBSnobC65Z2nBUFAiI8L6hoaEZemffsEIiIi+h8mMAYy/FYvzLFWJvMG3xpGOs6n\nkYiIiHTGBMZABqj8YanDZF6VnQV6edoi9VoJSipqjRghERFRx8UExkBuTuYdhIq6Gzinw2ReEcDJ\n8+yFISIi0gUTGAMK9bg1mTfrpNZyQf1UkEoEnEji00hERES6YAJjQG5WLuhp2x2pJRdRUNXyZF5r\nCzP493TE9YIbyMy/YcQIiYiIOiYmMAY23CMYAHA8R/tk3mG+t9eE4TASERFRa5jAGNgAZ7+bk3mz\nT6OhseW1Xvx7OsHSXIaTyblobBSNGCEREVHHwwTGwMykZhjqNggV9don85rJJAjyVqH0Rh1SM0qM\nGCEREVHHwwTGCDRrwmRpX5mXO1QTERHphgmMEbhauaCnrRdSSy4iv6qwxXK9PG3hZKtAbFoBautb\nXjuGiIios2MCYyTDbz1SfVzLyrwSQUCwjwtq69Q4e7HlRIeIiKizYwJjJAOc/WAls8SJHO2Tef+3\nQzWHkYiIiFrCBMZIbk/mvVFfiYSC5BbLuTlaoburEklXilFeWWfECImIiDoOJjBGFKrZ4LGVyby+\nrmgURZxK4cq8REREzWECY0SuVir0tuuBCyWXtE7mHertAokg4CSHkYiIiJrFBMbIdOmFsbGSw7eH\nA9JzKpBTVGms0IiIiDoMJjBGFqjyg5WZJU7mxKJey2TeYB8XAMCJZA4jERER/RETGCMzk8gQ7DoY\nN+orca4gqcVyA3o7w1wuvbm1gMitBYiIiO7EBKYdhLoPAQBEa1mZ19xMisF9nFFYVoNL18uMFRoR\nEVGHwASmHbjcmsybVnoZeVUFLZYL5g7VREREzWIC006G6zCZ17urPeys5Tidko/6hkZjhUZERGTy\nmMC0kwCVH6zNrHAq50yLk3klEgHB/V1RVduAc5e5tQAREdFtTGDaiZlEdsfKvC1P5g3RDCPxaSQi\nIqLbmMC0o9trwkRnnWyxTBeVNTydrZBwqRA3quuNFRoREZFJM2gCk5aWhnHjxmHbtm0AgJycHMyb\nNw9z587FvHnzUFBwcwKrj48PIiMjNT9qtdqQYZkMF0tn9LHriYulV7RO5g3xdYW6UURsar4RoyMi\nIjJdBktgqqqqsGLFCoSEhGje+/TTTzFr1ixs27YN48ePx+bNmwEA1tbWiIqK0vxIpVJDhWVyhnvc\nmsyr5ZHqod4uEMCnkYiIiG4zWAIjl8uxadMmqFQqzXv/+Mc/EB4eDgCwt7dHaWmpoS7fYfg7+8La\nzAonc2NRr25+iMjBRoF+3exx8XoZCkqrjRwhERGR6TFYAiOTyaBQKJq8Z2lpCalUCrVaja+++gpT\np04FANTV1WHp0qWYPXu2plemszCTyBDsNhiV9VXaJ/P63JzMyw0eiYiIAJmxL6hWq7Fs2TIEBwdr\nhpeWLVuGadOmQRAEzJ07F4MHD4afn1+L57C3t4RMZrhhJmdnpcHO3ZypijAcyvgNpwpiMdFvZLNl\nwkMV2HYwDTGp+Zj/kB8EQTBqjKbC2G1DumG7mC62jeli29wfoycwr732Grp164ZFixZp3pszZ47m\nv4ODg5GWlqY1gSkpqTJYfM7OShQUVBjs/M2RwQJ97HvhfMFFJF69DFcrVbPlAns5IiYlH6cTs+Hl\nZmPUGE1Be7QNtY7tYrrYNqaLbaMbbUmeUR+j3rNnD8zMzLB48WLNe1euXMHSpUshiiIaGhoQFxeH\n3r17GzMsk6DLyrzDbq0JczyJw0hERNS5GawHJikpCStXrkRWVhZkMhkOHDiAoqIimJubIzIyEgDQ\ns2dPvPnmm3B1dcXMmTMhkUgQFhYGf39/Q4VlsgKcfTQr807rEQEzqdldZfp3d4DS0gwxKXn4U1gv\nyKRcxoeIiDongyUwvr6+iIqK0qnsyy+/bKgwOgyZRIYQtyAczDiCswVJCHIdcHcZqQRDvF3wy5nr\nSE4vRkAvp3aIlIiIqP3xn/AmZJj7EABAdHbLK/MO4w7VRERETGBMicrSCX3te+FSaTpyK5vf+6i7\nqxIuDpaIv1iI6trmN4EkIiJ60DGBMTHDPYIBAMeyY5o9LggChvm4oL6hEWcutLz9ABER0YOMCYyJ\n8XfqD6WZNU7lnGlxZd5gHw4jERFR58YExsTIbq/M21CF+ILEZss421mgt6ctUq+VoLi8xsgREhER\ntT8mMCYo9NaaMNFaNngM8XGFCOBUSvNzZYiIiB5kTGBMkLOlI/rZ98blsnTktDCZN8hbBZlUwAku\nakdERJ0QExgTFepxa2XeFnphrBRm8O/phOsFlcjMv2HM0IiIiNodExgTFeDkA6XcGqdyz6Cuhcm8\nt3eoZi8MERF1NkxgTJRUIkWIWxCqGqoRn3+u2TL+PR1hpZDh5PlcNDaKRo6QiIio/TCBMWGht1bm\nbWmDRzOZBEH9VCi9UYeUjBJjhkZERNSumMCYMCcLR3g79MHlsqvIvtH8MNHtNWFOchiJiIg6ESYw\nJu72I9Ut9cL09rSFk60CsWkFqK1XGzM0IiKidsMExsT5O/WHjVyJU7lxzU7mFQQBwT6uqK1TI/4i\ntxYgIqLOgQmMibs9mbday2TeEB8XAMCJJC5qR0REnQMTmA5gmPsQCBAQnX2y2eNujlbwclMiOb0Y\nZZV1Ro6OiIjI+JjAdABOFg7o59AbV8quaZ3M2yiKiDnPXhgiInrwMYHpIIZ7BAMAoluYzDvU2wUS\nQeAO1URE1Ckwgekg/By9YSNXIiY3DnXqu4eJbKzk8O3hgKu5FcgpqmyHCImIiIznnhOYq1evtmEY\n1BqpRIphtybzxrU4mffW1gLshSEiogec1gRm/vz5TV6vX79e899vvPGGYSKiFmkm87awwWNgbyco\n5FKcTM5Do8itBYiI6MGlNYFpaGho8vrkyf89BSPyD6TROVo4wNuhD9LLryHrRs5dx83NpBjU1xmF\nZTW4dL2sHSIkIiIyDq0JjCAITV7fmbT88RgZx3AP7SvzchiJiIg6A73mwDBpaX++jt6w1TKZt19X\ne9grzXE6JR/1DdxagIiIHkxaE5iysjKcOHFC81NeXo6TJ09q/puMTyqRIsR9CKobanCmmcm8EomA\nof1dUFXbgHOXi9ohQiIiIsOTaTtoY2PTZOKuUqnEunXrNP9N7WOY2xAcuHoYx7JOIsRt8N3HfVzx\n06kMHE/KxaC+qnaIkIiIyLC0JjBRUVHGioP04GhhD2/HPjhfdAFZN3LgYe3W5LinyhqeztY4d7kI\nN6rrYW1h1k6REhERGYbWIaQbN25gy5Ytmtdff/01HnroISxevBiFhYWGjo20GO5+a2XeFh6pHubr\nCnWjiO2/XuITY0RE9MDRmsC88cYbKCq6OY8iPT0dH3/8MV555RUMGzYM77zzjlECpOb5OvaDrdwG\nMblxqG1mMu+YAR7o5qLE7+dy8FNMRjtESEREZDhaE5jMzEwsXboUAHDgwAFERERg2LBhmD17Nntg\n2plUIsUw9yDUqGsQl5dw13FzuRSLZ/rDXmmOHb9expkL+e0QJRERkWFoTWAsLS01/x0TE4Pg4GDN\na10eqU5LS8O4ceOwbds2AEBOTg7mzZuHuXPnYt68eSgoKAAA7NmzBzNmzMCjjz6K7du339MH6Yw0\nK/O2sCaMvdIcS2b6Q24mxaa955GewyfHiIjowaA1gVGr1SgqKkJGRgbi4+MRGhoKAKisrER1dbXW\nE1dVVWHFihUICQnRvPfpp59i1qxZ2LZtG8aPH4/NmzejqqoK69atw5YtWxAVFYUvv/wSpaWlbfDR\nHnwOCnv0d+yLq+UZuF6R3WyZri5K/OUhH9SrG7F6xzkUldUYOUoiIqK2pzWBeeaZZzBp0iRMnToV\nzz//PGxtbVFTU4PHHnsMDz/8sNYTy+VybNq0CSrV/x7j/cc//oHw8HAAgL29PUpLS5GQkAA/Pz8o\nlUooFAoMHDgQcXFxbfDROofh7tpX5gWAwF5OmD22N8oq67BqRwKqaxtaLEtERNQRaH2MetSoUYiO\njkZtbS2sra0BAAqFAi+//DKGDx+u/cQyGWSypqe/PSSlVqvx1VdfYeHChSgsLISDg4OmjIODg2Zo\niVrn49gPdua2iMmNx8O9JsNcKm+23LhBnsgrrsLhuCx89n0yFs/0g1Ryz5uRExERtSutCUx29v+G\nJe5cebdHjx7Izs6Gu7u73hdUq9VYtmwZgoODERISgr179zY5rssjv/b2lpDJpHpfW1fOzh1rkb5x\nvUKxI3kf0qpSEdYjtMVyi2cPRGlVPeJS8/H9sWv4yyP+RoyybXS0tuks2C6mi21jutg290drAhMW\nFgYvLy84OzsDuHszx61bt+p9wddeew3dunXDokWLAAAqlarJE035+fkIDAzUeo6Skiq9r6srZ2cl\nCgoqDHZ+Qwi0DcR32I/9F36Dn1J7UrJgYj/kF1Xih2PpsLGQYdzgLkaK8v51xLbpDNgupottY7rY\nNrrRluRpHUNYuXIl3NzcUFtbi3HjxmHVqlWIiopCVFTUPSUve/bsgZmZGRYvXqx5LyAgAImJiSgv\nL0dlZSXi4uIwePDdy+NTy+wVdvBx7Idr5ZnIbGEy720W5jIsmRkAGys5/u+Xi0i4xMfhiYio4xFE\nHcZscnJysGvXLuzduxceHh546KGHMH78eCgUihbrJCUlYeXKlcjKyoJMJoOLiwuKiopgbm6umU/T\ns2dPvPnmm/jpp5/w+eefQxAEzJ07F9OmTdMajyGz1o6aFScWnsdn57ZghEcIZved3mr59JxyrPxv\nHARBwGtzB6Kri+l3ZXbUtnnQsV1MF9vGdLFtdKOtB0anBOZO27dvx4cffgi1Wo3Y2Nj7Du5eMIG5\nm7pRjTdOvI+ahhq8E7ocCpl5q3ViU/OxfncS7JXmWP7EYNgrW6/Tnjpq2zzo2C6mi21jutg2urnn\nIaTbysvLsW3bNjzyyCPYtm0b/vKXv2Dfvn1tFiDdv5sr8w5BjboWZ/LP6lRncD8VHh3dEyUVtVi9\n4xxq69QGjpKIiKhtaJ3EGx0dje+++w5JSUmYMGEC3n//ffTp08dYsZGehrkFYX/6IRzLikHorfVh\nWhMxtCtyi6vw+7kcbNybjIXT/SCRtL7KMhERUXvSmsA8/fTT6N69OwYOHIji4mJs3ry5yfH33nvP\noMGRfuwVdvB16ofEwhRkVmShi9Kj1TqCICAyvC8Ky2oQf7EQO45cxqywXkaIloiI6N5pTWBuP2lU\nUlICe3v7JseuX79uuKjonoW6D0ViYQqis05iTr8ZOtWRSSV4frov3o06g59iMqBysMDowNaTHyIi\novaidQ6MRCLB0qVL8frrr+ONN96Ai4sLhgwZgrS0NHz66afGipH04OPYD/bmdjidF4+ahlqd61kp\nzLBkpj+sLcyw7UAaktOLDRglERHR/dGawHzyySfYsmULYmJi8PLLL+ONN95AZGQkTp48yV2jTZRE\nkGCYexBq1XU4k6fbZN7bVPaWeGGGHyQSYP3uRGQVVhooSiIiovvTag9Mz549AQBjx45FVlYWnnji\nCaxduxYuLi5GCZD0F+IWBAECorNP6l23t6cdnprkjepaNVZtT0B5ZZ0BIiQiIro/WhMYQWj6NIqb\nmxvGjx9v0IDo/t2czOuNjIosXCpN17t+sI8rHh7uhcKyGqz57hzq6vl4NRERmRa9tiP+Y0JDpmts\nlxEQIGBT4lbkVubpXX9qaHeE+LjgcnY5vtiXgkb91jskIiIyKK1PIcXHx2P06NGa10VFRRg9ejRE\nUYQgCDhy5IiBw6N71du+J+b0fQRfXfgOq+M34aVBz8PJwkHn+oIgYN5EbxSW1SAmJR8qe0s8MrKH\nASMmIiLSndYE5qeffjJWHGQAoR5DUa2uwa5LP2LN2U14aeBzsDW30bm+mUyCRY/44Z2tZ/DD8atw\nsbdAqJ+bASMmIiLSjdYExsODa4F0dOO6jkJNQw32X/0Fa85uwl8HPgtrMyud6yst5VjyqD/e2XoG\nW/anwslWgb5d7VuvSEREZEB6zYGhjmmy1wSM8gxFTmUe1p/9AjUNNXrVd3O0wsJH/AAAa3cmIre4\nyhBhEhER6YwJTCcgCAJm9p6KYNfBuFaRic/ObUGdul6vc3h3s8cTEX1RWdOAVdsTcKNav/pERERt\niQlMJyERJHis3wwEOvvhYukVfJ4UhYbGBr3OMcLfHZNDuiGvpBprdyaivqHRQNESERFpxwSmE5FK\npJjnMwfeDn2QVJSKree/QaOoXxIyfWQPDO7rjLTMUnz5UypEPl5NRETtgAlMJ2MmkeEZvyfQw7Y7\nzuQn4OsLO/VKQiSCgKen9IeXmw2OJ+XihxPXDBgtERFR85jAdELmUjmeD5iPLtbuOJYdg12Xf9Qr\niZGbSbF4hh8cbcyx6+gVxKTov1AeERHR/WAC00lZyCywMPBpuFiq8EvGUfx09bBe9W2tzbHk0QAo\n5FL854cUXMoqM1CkREREd2MC04kp5dZ4IfBpOCjs8UP6AfyaGa1XfU9nazz/sC8aG0Ws+e4cCkqr\nDRQpERFRU0xgOjl7hR1eCHwGNnIldlzcgxM5sXrV9+3hiMfH90ZFVT0+3Z6Aqho+Xk1ERIbHBIag\nsnTCosCnYSmzwH9TtiM+P1Gv+mMGemJCUBfkFFVh/e4kNKj5eDURERkWExgCAHhYu2Fh4ALIpWbY\nnPwVzhdd0Kv+rDG9ENjLCeevlmDbz2l8vJqIiAyKCQxpdLfpimf950MQBGxM3IpLpek615VIBPx5\nWn90VVnjaEI2DsRkGjBSIiLq7JjAUBN97Hviad+5UItqbEjYjMyKLJ3rKuQyLJ7pDztrObb/eglx\naQUGjJSIiDozJjB0Fz+n/niy/2zUqmux9ux/kFuZr3NdBxsFlswMgJmZBBv3JONqbrkBIyUios6K\nCQw1a7BLIGb3nY4b9ZVYc3YTiqqLda7bzVWJv0zzQX1DI1btOIficv12vyYiImoNExhq0XCPYEzv\nNRmltWVYfXYTymp1700Z0NsZfwrrhbIbdVi14xyqa/XbOJKIiEgbJjCk1biuoxDRLQyF1UVYe/Y/\nqKyv0rnu+KAuGDPAA5n5N/DvPclQN/LxaiIiahtMYKhVU3qEY5RnKLIrc7Eu4XPUNOg2JCQIAh4b\n3xs+Xg44d7kI3/xyycCREhFRZ8EEhlolCAJm9p6Koa6DcK08E5+d24I6tW4r7kolEjz3kC88nKxw\n6Mx1/HLmuoGjJSKizsCgCUxaWhrGjRuHbdu2ad7bunUrfHx8UFlZqXnPx8cHkZGRmh+1Wm3IsOge\nSAQJHu83E4HOvrhYegWfJ22DulG3drJUyLBkpj9sLM3w1aE0nLtcaOBoiYjoQWewBKaqqgorVqxA\nSEiI5r3du3ejqKgIKpWqSVlra2tERUVpfqRSqaHCovsglUgxz+cxeDv0QVJRCramfINGUbd5LU52\nFnhhpj9kUgk2fJ+MzPwbBo6WiIgeZAZLYORyOTZt2tQkWRk3bhxefPFFCIJgqMuSgZlJZHjG7wn0\nsO2O2Lyz+PrCLp23Dejpbounp/RHbZ0aq3YkoPRGrYGjJSKiB5XMYCeWySCTNT29tbV1s2Xr6uqw\ndOlSZGVlITw8HPPnz9d6bnt7S8hkhuulcXZWGuzcD4rXw17AW79+gmPZp+BoY4PH/afrlJhOclai\nsk6NrftSsP77ZLz3fCgUct2/hmwb08R2MV1sG9PFtrk/Bktg9LFs2TJMmzYNgiBg7ty5GDx4MPz8\n/FosX1Ki+6O8+nJ2VqKgoMJg53+QPOv7FD6J24A9qQch1kkQ0X2sTvVG+bniSmYpohNz8P7mGDw3\n3RcSHZIfto1pYruYLraN6WLb6EZbkmcSTyHNmTMHVlZWsLS0RHBwMNLS0to7JNKBUm6NFwKfgb25\nHfZeOYAjmcd0qicIAp6I6It+Xe1wJq0A3x25bOBIiYjoQdPuCcyVK1ewdOlSiKKIhoYGxMXFoXfv\n3u0dFunIXmGHxQOegVJuje0Xv8fJnFid6smkEjw/3Q8uDpbYfyoDRxOyDRwpERE9SAw2hJSUlISV\nK1ciKysLMpkMBw4cwLBhw3D8+HEUFBTgmWeeQWBgIJYtWwZXV1fMnDkTEokEYWFh8Pf3N1RYZAAq\nS2e8EPgMPo37DNtStkMhNUegquUhwNusLczw10f98c7WM4g6cAFOtgr07+5ghIiJiKijE0RdHyEx\nIYYcN+S45L1LL8vA6rMb0dioxrMB8+Ht0EenemmZpfjw63iYyaT4e+QguDtZNVuObWOa2C6mi21j\nutg2ujH5OTD0YPCy7Yrn/OcBgoCN577E5dKrOtXr08UO8yd6o7q2AZ9uT0B5VZ1B4yQioo6PCQy1\nqT72vfC071w0iGpsOPcFMiuydKoX4uuKaaHdUVhWg7XfJaK+gasxExFRy5jAUJvzc+qPJ73/hJqG\nWqw9+x/kVubrVO+h4V4Y2t8Fl7LK8MW+VJ0XyCMios6HCQwZxGDXAfhT3+m4UV+JNWc3oai6pNU6\ngiDgqUn90MvDFqfO5+H76HQjREpERB0RExgymBEewXi45ySU1pZhzdmNKKttfcKamUyKRTP84GSr\nwJ5jV3EiKdcIkRIRUUfDBIYMany30QjvFoaC6iKsPbsJlfWtr6JsYynHXx8NgIW5DJv3pyAts9QI\nkRIRUUfCBIYMbmqPcIzyHIbsylysT/gCNQ01rdZxd7LCwum+EEVgzXfnkGfA7SOIiKjjYQJDBicI\nAmb2noahroNwtTwD/07cinp1fav1+nd3QGR4X1TWNODT7edQwceriYjoFiYwZBQSQYLH+81EgLMv\n0kou4fPkbVA3tv6o9MgAd0wc2hV5xVV48ZPfEJuaz6eTiIiICQwZj1QixXyfx9DPvjcSC1OwNeUb\nNIqNrdabMbonJg7tisLSaqzfnYSV/41Dek65ESImIiJTxa0E/oDLOxterboOa89uwpWyaxjuEYzZ\nfaZDEIRW69VDwGffJSD+YiEAYJivKx4Z2QMONgpDh0xa8J4xTVEHLiCvtBpPTezHe8QE8b7Rjbat\nBKRvvvnmm8YLpW1UGXAuhJWVuUHPT4BMIkWgsx9SitOQVJSC+sYG9LXv1WoS4+qshG83e/TpYofr\n+TeQlF6MI/FZaFA3wsvNBjIpOxTbA+8Z03P2YiG+O38QxfI0nIppgL+XM5SW8vYOi+7A+0Y3Vlbm\nLR5jAvMH/FIZh5nUDIHOvjhXmIzEwvOQSmToZeeltc7ttnG2s8DIAHc42ihwKasM5y4X4VhiDqwt\nzOCpstapN4faDu8Z01Jbp8bHPxxBY9c4SK0qUGeRi2PHGuHdxRn2ypb/GJBx8b7RDRMYPfBLZTzm\nUjkCnHwQn5+IhMIkWJtZobtNlxbL39k2giCgm6sSowe4QyIISLlWgtgLBUi4VAQ3R0s42VoY62N0\nerxnTMt3v13GJdlhSMxrMdDdD7k1mWi0zcax4w3wcnaCyp73hingfaMbJjB64JfKuCxkCvg69UNc\n/jnE55+Dk8IBnkr3Zss21zYyqQTe3ewR6uuK8qo6JKcX41hiLq7n30B3VyWsLMyM8TE6Nd4zpiMj\nrwJfxhyEzCUTgU7+eHXUc6ivacSF8lTAPgsnYmrgYu0ID2fr9g610+N9oxsmMHrgl8r4rMys4O3Q\nB7F5CYgvOAd3a1e4WqnuLqelbSzMZRjUVwW/Ho7ILqxE8tVi/BqfheraBvRws4GZTGroj9Fp8Z4x\nDY2iiDW7YlHldhJmMimeD5wPJ1tbuJm5w9nCEYlFSRAcsnE6oRLWggO83GzaO+ROjfeNbpjA6IFf\nqvZhI1eit10PnM47i/i8BHS37QpnC8cmZXRpG3ulOYb7u8HdyQrpOeVIvFKMowk5kJtJ0c3VGhLO\nj2lzvGdMw5Gz2The/CukNiWY1jMCPk79NG3jYe2GHrbdcLYgEbDPxrm0UjTesEffLnacM9ZOeN/o\nhgmMHvilaj/2Cjt42XTF6fyziMtLQB/7nrBX2GmO69o2giDAw9kaowe4QyGXITWjBPEXCxGbmg9n\nOwu4OFga8mN0Orxn2l/ZjVqs2R8NSddEOFk44UmfP0EiSJq0jZOFI3wd+yGhIBkNymxcyCpASa4N\n/LwcmcS0A943umECowd+qdqXk4UDPKxcEZt/FvH55+Dt0Be25jfXAdC3baQSCXp72mG4vztq6xqQ\nfLUYJ5PzcDmrDF1crGFjxcdK2wLvmfb35U+pyLb+HRLzGjzl+xhcLJ0B3N02NuZKDHTxR3LhBVQr\nsnGtJAeZl6wwoJcKUgmTGGPifaMbJjB64Jeq/blYqeBs4YgzeQk4W5AIf6f+sJZb3XPbKORSBPRy\nwqA+zsgvqULy1RIcOZuFsso6eLnZwFzO+TH3g/dM+0pOL8bOpKMwc81AoJMvwruHaY411zYWMgsM\ncR2Ay6VXUSa9jtza60hNNMfgPq5cS8mIeN/ohgmMHvilMg0e1m5Qyq0Rl38O5wrPI1DlCydb2/tq\nGxsrOUJ8XNHD3QbXch5PgxYAACAASURBVCuQdKUYvyVkQSII6O5qw3+B3iPeM+2nvkGNT3bGoqFr\nDMxkAp4LnA8L2f8ek26pbcykZghyCUROZQHy1ddQIsnA2TNSDOrlDnMzJvTGwPtGN0xg9MAvleno\nZtMFZhIZzhYkIakwBcO6DkJj3f0lGYIgwMXBEqMC3WFjJceFjFKcvVSEk8m5sFeaw83RkvMB9MR7\npv3sib6KpJrjkNoWY3KP8fBz6t/kuLa2kUqkGKDyQ3VDNa5VX0aleQZOnVJjoJcnLBUyY4TfqfG+\n0Q0TGD3wS2Vaetp5oaGxAYmF5/HLlWjUNtTCw9oNcun9zV+RSAT0cLfBqEB3qNUizl8tQUxKPlKu\nlcDT2ZorluqB90z7yCmqxKZDp2DmlQQnC0fM85kDqdB0CKi1thEEAT6O/aCQmiO1LAW11hk4dqoG\nfl26wIZbDxgU7xvdMIHRA79UpqevfS9YmlniWnkGkosu4GjWCVQ1VMHdyg0K2f0lGnKZFL49HDHU\n2wUlFbVITi/G0YRs5JdUw8tNCQtz/ku0NbxnjE8URazblYgyp5OQKKrxZP/ZcLNyuaucrm3Tw7Yb\nXC1VOFeYiAabTByLLUVf567cBNKAeN/ohgmMHvilMj2CIMDLtiumB0yAtEGOjPLrSClOw9Gs46io\nuwF3K1dYyO7vf7TWFmYY4u2Cvl3skFlwA8l3bBTZ3U3JyY1a8J4xvuNJufg1PQZmbtfg59Qfk7zG\nN1tOn7Zxt3ZFbzsvxOUnQm2bhWOJ+ehq1ZXLDhgI7xvdMIHRA79UpstG+f/bu+/4uK467+OfO71p\nVGekGTVLcpctyb3biZ0CBBJISByMHXpZHp4H2Cy7IZTAE17wGNh9QZZsAiFAEjYk4EDKJphUd1mO\nLVvNVi+WRl0a1VHXPH/IMXbcJFmjuSP93n8les29c+b1Pcfzm3vPPceCUxfH5vh1RJjCqetpGCtk\n6o7QMdCJyxqHRX99+7zEnNsoMibcTNm5jSIPFTRgM8lGkVciY2Z69fQN8Yu/nEBJPT42cTfzM1fs\n9xPNJtocRYZjMbmNhQzb6jlWVksUCSQ6w6aq+eIcGTfjIwXMBEinUq/3stFqtCTbE9kSv54oUxSe\n3gaKvWUc8Byhra8dl9WJVW+d9PsoikJSbBg3ZI1tFFl8bqPIU+WtslHkZciYmV7//UYp1cpxtOFt\nfCBlG1mOJVd87WSyCTPYWOXKIq+pmH5TA6dqK9H1upgbH3m9TRcXkHEzPlLATIB0KvV6fzYaRUNi\nWDyb49fhtDho7G0aK2TqsmnytRBrcRBmmPymde9tFLl+SRzdvkGKqrwcLmiktrmH5LgwbLJRJCBj\nZjqV1nbwx0MnMaYVEG2O4jPpO9BqrvzY86TXTtKZWOteTklrNV06D2fayultiiY9OUauQk4RGTfj\nIwXMBEinUq8rZaNRNMTbXGyKX4vbFkeTr4USbzkHPdnU9zTitMQQbpz8xnUXbRTZ1nt+foyvf5hU\nt2wUKWNmegyPjPLzPXkMuN5FY+rjvkX34LbFXfWY68lGr9Gzxr0MT2czLaNnqfKVUl9pY1mqW4qY\nKSDjZnykgJkA6VTqNZ5HQl3WWDa615IYFk9LXxsl3nIO1edwtqsOhyWaCGP4pN8/MszIxqUu4h02\nKusv3igyKdaGZpYuhCdjZnr8LaeGE0156N3VpEcv5LaUW65ZSFxvNhpFw/K4pfQODHC2v4LGkXKK\nT2tZNTcRrUYmtl8PGTfjE7QCprS0lO3bt6PRaMjIyADg6aefZseOHXz605/GYBhbZ+Dll1/mwQcf\nZM+ePWPrEqSnX/W8UsDMThPZzDHW6mSDezUp4cm09Xsp8ZZzpP4YlR3VRJujiDJN7n6+oijEx1gv\n3SiypBlHhAlnpHnW/TqVMRN4zR19PP5KHvp5uWh1fr6c8RlshmvP85qKbBRFYYljAQZMlHSdwaur\n5GTeIGvSUtHrpIiZLBk343O1AiZgi1z4fD4efvhh1q1bd/5vL774Im1tbTidzote9+ijj7Jnzx70\nej0f//jHufnmm4mIiLjcaYUYN0VRWBy9gEVR8ynrqORv1W9R7C2j2FvGvIhUPjBnGwsi506q4NDr\ntHxobTIbl7p48VAV+095+Pmf80mfE8n2bfNIcEx+7o0QF/L7/fzh9RL8zjLQ93Nz0laclphpb8fN\nKZuINNv5fdFzNEUe4Acv+XjwtjtkU1QRNAG7AqMoCh/+8IcpKSnBbDaTkZFBQkICW7ZsOX8VxmAw\ncPz4cdra2vjIRz6CTqejuLgYo9FISkrKFc8tV2Bmp8lmoygK0eYo1rpWsChqHp2DXZR4yznWmMuZ\n9lLshjAc5slNTjS+t1HkAgfNHX3/2CiyZ2DWbBQpYyaw3i1u5m+nTmNMKyTSFM7nlnzyqhN3LzTV\n2bhtccyPTOPdhnz6rWc5mN/AcvcCrDKhfcJk3IzP1a7ABOz6n06nw2S6eHExm+3SX6Wtra1ERUWd\n//+oqChaWloC1Swxy6WGz+F/ZX6Of135v8mMSaeq6yyP5f+O3ccf4VRLIaP+0UmdN8Fh45/vyeTr\nd2cSF2Vh36l6HvhVNq8drWFoeGSKP4WYLXz9wzz7ZimG5GJQRrlr3keuexuN6zU3MoVvrfkqJmwM\nRp/h4bd/x9mmrqC2ScxOqlsn3e/3X/M1kZEWdAF88sPhkEWb1GqqsnE4FrMybTE1HXX85fRejtbm\n8kTB0ySGu7lz8QdYl7ACzSQmKW5z2tmyKom/Z1fz338vYc++Cg7kN/Dp2xazMXPmPr0hYyYwHv9L\nPj2GOozhrWTELuLmxesm3IcCkY3DEcYv4r7DA6/9B97IGnZn/5pv3fBlls1zTfl7zWQybq5P0AsY\np9NJa2vr+f9vbm4mKyvrqsd4vb6AtcfhCKOlpTtg5xeTF4hsLISzc952bnLfyN9r3uZ40yl+kf1b\nnrO8wq3JW1kZmzXuy/UXWr3AwZLkCF45Us2bx+v4yTPH+cvb4dy7bR6p7sk/0q1GMmYCo6qhi9ey\nyzFnFqNRtHx0zm20tvZM6ByBzUbDd9Z/lZ8dfZIGew0/OvgLdjXtZN2C5AC938wi42Z8rlbkBX0K\neWZmJgUFBXR1ddHb20tubi4rV64MdrPELBNndfKpxffyvTXfZL1rNS19bTx95nl+cPSnHPbkMDw6\nPOFzWkx6tm+dxw+/sIYV8x2Uezr54dPH+fUrRbR39QfgU4iZYmR0lKf2FqN1VeLX97E1cROxVue1\nD5xmJp2Jb63/MvOtS1CsnTxT8Tv2njoT7GaJWSJgk3gLCwu5//77OXbsGAUFBbz++us0NTXxyCOP\nUFlZSU5ODhUVFWzZsgWn08n3v/99XnrpJT7/+c+ff+T6SmQS7+w0HdlY9RYyHItZ61rByOgI5Z1V\n5LUWcbThOFqNFrfVNeErMu9tFLkwKYK65n8shKcokOq2h/z6MTJmpt6bx+s4UlqBaW4+ESY7n1uy\nE51m4hfMpyMbjaJhTXwGbd19eIYqKek6TVdzGEsT4wP6vqFOxs34XG0Sr+Ifz6QTlQnkZTe5rKde\nwcimY6CTt84e4KDnKEOjQ9gNYWxL2sym+HUYJzGZctTv50hBI3v2ldPlG8IVbWHnzfNZNCfq2ger\nlIyZqdXe1c+3f5ODJvVdsDfz2fQdrIi9+m31K5nubF4p3s9ez6v4RzUs1d3Ml2/YOmPnfV0vGTfj\nc7VbSLIS7/tIVaxewcjGpDOxOHoBG9xr0CgaKjqrKGwr5nB9DqP+UeJtLvQT+GX83kaRmzPd9A+O\nUFjVzuHCRhrbfcyND8dkCPq0tAmTMTO1nnz1DPWDlejc5cyPSOOjc2+bdBEw3dksiJlDhNZBYXsR\nTZRRVOZjXep8NFLEXELGzfjIVgITIJ1KvYKZjVFrYGHUPDbGr0Wv0VHZdZaituKxKzMjQyTYXOi1\n418LQ6/TkpEWQ+bcaM429VBY1c7+U/XodVrmuMJC6h98GTNT51RZKy8eLse6+BSKdoQvZXwau3Hy\nT6oEI5ukiDiSrSmcaCygU1fNsTONrJ+Tjk4b9CmXqiLjZnykgJkA6VTqpYZsDFo98yPT2BS/FqPW\nRHXXWU63l3DQk03/yADxNteEbi1F2IxsynQREWakuGZsW4KTpa0kOK1E203XPoEKqCGXmWBgcIRf\n7MljOKYUJaKJGxM3ssa14rrOGaxsnLYolkQvJqe2gF5jHQeLK1mXkIFRH3pXGANFxs34SAEzAdKp\n1EtN2eg1euZGpLApfh1WvYWa7lrOtJdyoO4IvUM+4m0uTLorD7wLKYrCnDg7GzNc9PQNUVjVzqH8\nBto6+0lLCMeoV/dqvmrKJZT9ZX8lhXV1mObnE2aw8fmluyZ0e/JygplNuMnGGlcW2TWn6TPWs7/s\nNMtjl2A1jW9czHQybsZHCpgJkE6lXmrMRqfRkRo+h83x67Ebw6jt9nCmvZT9niN0DXQTb4vDrBvf\nlRSjXsuyeQ7S50RR1dBNYVU7B/PqsRh1JMWFqXYypBpzCTW1zT389tUzWOefZtTYxb0L7mSOPfG6\nzxvsbMx6E5uTVnGsugyfoYGDVXksDF9ApFX2Cgt2NqFCCpgJkE6lXmrORqvRMseexOaE9UQaw/H0\n1FPsLWN/3RHa+ztw22Kx6C3jOleU3cTmLBc2k57TNV5OlLZQUNlOcpyNCJv6fr2qOZdQMOr38+hf\nCujQ1KFxl5IWnsJd8z4yJQWrGrLRa3VsSV5BwVkPXToP2XV5uA3JuMIntyP8TKGGbEKBFDATIJ1K\nvUIhG62iIcmewOb49cSYo6nvbaTYW8YBTzatfW3EWpzYDNZrnkejKKTFh7NhqYvOnkEKq9o5cKqe\nLt8gc+PDMQRwK42JCoVc1Gz/qXr25dVhT89jVDPElzOvb+LuhdSSjUajYeOcLKoaummlmtzmPCzD\nTlJiYoPdtKBRSzZqJwXMBEinUq9QykajaEgIc7M5fh1xVieNvU0Ue8s46MmmsbeZWIuTMMO1L6Ob\nDDpWLHAyPyGcyoYuCirH5sfYLQYSnTZV3FYKpVzUprN3kF++UIDOVcmIvZ4tCRtY55q6lcjVlI2i\nKKxOWoy3TaF2sJzTnQUMdptZFJcU7KYFhZqyUTMpYCZAOpV6hWI2iqLgtsWxMX4tCTYXzb4Wir3l\nHPIcpdnXRmKYG4vefM3zOCLMbMlyY9BrOF3j5XhxC8U1Xua47Nitwd2dOBRzUYun9xZT3d6McV4e\nNr2FLyy9b0KP41+LGrPJcKdCXzhl3cVU9p2hqWWYZQnzgt2saafGbNRICpgJkE6lXqGcjaIoxFlj\n2eBeQ7I98fytpYOebHqHfCSGxV/z8WuNRmF+YgRr02Np7eynqNrL/lP19A0Ok+YOR68LzjoboZxL\nMBVVtfPnfRVELCphSN/BPQs+Smr41G6EqNZs5jvjiSCewtbTNIxUUFLbxurERWiU2bNWjFqzURsp\nYCZAOpV6zYRsFEXBaXGwwb2GWIuDmu46TreXcMhzlBH/CIlhCdfc88Zi0rNmcSwprjDKPZ3kV7ST\nXdRIlN2EO9oy7beVZkIu021oeISf78mn39gIrmJS7MncPf/2Kc9OzdkkRTmYY57P8YZC2pWznKiu\nYX1SxqR2fw9Fas5GTaSAmQDpVOo1k7JRFIV4m4tN8WsJ09uo7KymqK2Y7Pp30Wl1JNjc1/w1Ghtl\nYUumG41GoajKy7EzTVR4Okl1h2MzT91tiGuZSblMl5cPVXOyvJnIpQWMKAN8MeM+IozhU/4+as/G\nabezNHIp2TVn6NF5OFx5hrUJmRh109d/g0Xt2aiFFDATIJ1KvWZiNhpFw5zwJDbFr0Wn0VHeUUl+\n62mON54kTG8lzhp71V/lWq2GhcmRrF7spMnro6jKy/5THoZG/KS67dOyfPtMzCWQGtp6+fUrp7El\n1TJoq2VT/Do2uNcE5L1CIZtwi4U1rmUcKS+jz9DAgapTLItNx2a49tywUBYK2aiBFDATIJ1KvWZy\nNjqNjvmRaax3r2ZodJhSbwW5LfkUtp4myhRJjDn6qoWMzaxn7eJYEp02Sms7ya9oI+d0E44IM3HR\n41t/ZrJmci5Tze/389iLhbT0dmCcdwqz3sQXl34KwxRO3L1QqGRjNhjYlLycnNJafMZ6DtXkMj9y\nLlFme7CbFjChkk2wSQEzAdKp1Gs2ZGPUGkiPXsiquGX0Dvko9pZzrCmX8s5qXFbnVW8zKIqCO8bK\nliw3o6N+iqraOXq6iZrGbtLcdiym2f0lqQZHCht543gdzqXl9GvbuXve7aRFpATs/UIpG71Oy5bU\nLE6Veuk2nOWoJ5c4Uzwue0ywmxYQoZRNMEkBMwHSqdRrNmVj0VvIci5laUw67f1eir1lHK4/RkNP\nI/Fhbmz6Ky+Gp9NqSE+JYsV8B/WtvRRVj+10DZDisqPVzJ6JomrS0zfEI3vyIayNIWcRyWGJbF/w\n0YBOug61bLQaDZvmplNWOUSbUsXJ1jxMfjupUfHBbtqUC7VsgkUKmAmQTqVeszGbcGMYq+OWMy8i\nlUZf87lHr4/SOdBJUljCVTeMtFsNbFgaR2yUhZLaDk6Vt/JucTOuaAvOiKmbXzAbc5mM/36jlPJ6\nL9EZhQzRzxcz7iPSFBHQ9wzFbBRFYW3KPFrqjXiGyynuKqLPB4udacFu2pQKxWyCQQqYCZBOpV6z\nOZtocxTrXauJt7mo66kf2/nak83AyCBJYQlXXPxMURQSnTY2Z7oYGBqlsKqNI4WNNLT1khYfjtl4\nfbsdw+zOZbxKazt49s0yotMa6DVXs961mk0J6wL+vqGajaIoLEtOZqg9hoqeUqr7S/G0eVnmWqSK\n1aenQqhmM92kgJkA6VTqNduzeW8xvI3utUQaI6juOsvp9hKO1B8bK1Rs8VdcQ0Ov05KRFk3W3Bhq\nm3sorGpnf149eq2GOXFhaK7jttJsz+VahkdG+cWefHqGetDPPYVRa+BLGZ/GcI2FC6dCqGezMD4O\na38iRa0lNI3WUFBfzer4pehmwFoxoZ7NdJECZgKkU6mXZDNGc27DyE3xazHpjJR3VlPQepqcxlzM\nOhPxNtcVf6VG2IxszHARZTdRXOPlZFkrJ8taiHfYiA43Tao9ksvV/S2nhmNnmklcVkW30sKdcz/C\nvMjUaXnvmZDNHGc0bu08cuvK6dJ5OFydzwpXOmb95PqrWsyEbKaDFDATIJ1KvSSbi2k1WtIiUtjg\nXoMfP2UdFZxqKeRkSwERxnBiLY7LFjKKopAcF8amDBe+/qGxDSILGmjt7GNufDhGw8R+3UouV9bc\n0cfjLxVhieqkNzqfRJubTyy8a9pug8yUbFxRdrJiMsgpq6HP1MCBmuOkhacSbQnsHKJAminZBJoU\nMBMgnUq9JJvLM2j1LIqaz5q4FfQP91PcXsaJ5lMUe8twWhxEmSIve5xRryVrnoP0lChqGrsprGrn\nQF49ZqOW5NiwcX/JSi6X5/f7+fUrRTS29RCTVUj/qI8vLL3vinkEwkzKxm4xsil5Gbkl7fQY6shp\nzMXqj2JOlCvYTZuUmZRNIEkBMwHSqdRLsrk6s85EhiOd5c4MOge7KW4v42jDcc521RFvcxFmsF32\nuCi7iU2ZLsLMes6c9XKitJX8ijaSYsOIDLvyPx7vkVwu73hJC69l15CwqJV2fQVr41ZyQ+KGaW3D\nTMvGoNeyZd4S6mo1NI1UUtRZQFvHEBlxc0Nucu9MyyZQpICZAOlU6iXZjI/NYGNFbCaLoubT0tdK\nsbeMQ56jtPa1k2CLx6K/9BFqjaKQ6g5n41IXnb2DFFa1czCvns7eQeYmhGPQXfm2kuRyKV//ML/Y\nk8eI0g9zjmPQ6vlSxqcwaq9dEE6lmZiNoiisnJMKPQ7KOkvxDFVQUFvP2sQlaDShs5v1TMwmEKSA\nmQDpVOol2UxMpCmCtXErSbYn4ulpOLeGTDa+4T6SwhIu+xSMyaBjxQInCxIjqGrspqCyjUP5DYSZ\nDSQ6bZf9lSu5XOpPb5dzpsZL6qpavKNNfDTtQyyMmjft7ZjJ2cyPiyPZuIAT9cV0aus4WFHEStdS\nzPrAP901FWZyNlNJCpgJkE6lXpLNxCmKgtPiYGP8GhzmaGq66zjdXsIhTw5+RkkMS7jsI6kxEWY2\nZ7oxGbQUVbdzvKSFMzVeUuLs2K0Xf0FILheraujiqb3FxLj6abMfJ97m4pMLP37N3cUDYaZn4wy3\nszJ2GTmV5fQZGthflctc+zyirWHBbto1zfRspooUMBMgnUq9JJvJUxSFhDA3m+LXYdNbqeysprDt\nDNkN72LQGEiwuS/5gtVoFOYlRLB+SRxtXf1ja8ecqsc3MExafDh63djrJZd/GBkd5ZEX8unsHSAm\nqwjfSA+fX7KLGHNUUNozG7KxGo3cmLKSUxWNdOvrOFp/AsuIk5To2GA37apmQzZTQQqYCZBOpV6S\nzfXTKhpSwpPYGL8WraKlrKOS/NYijjedIsxgI87qvOQ2kdmoY/WiWFLddio8neRXtnGksIHIMCPu\nGKvkcoE3j9dxuKCR+VldNFDMqthlbE3aFLT2zJZstBoNm1MzaWgapWGkktOd+bS1aMhMmJ71diZj\ntmRzvaSAmQDpVOol2UwdvUbH/Mg01rtXMTQyTIm3nNzmfIrazhBjjibGHH3JMbGRFrZkudFqNBRV\neTl2pplyTyeLUqLQhdYDIAHR3tXPoy8WYjSNMJh4DJ2i5csZn77qflWBNpvGjKIoLE+ci34gmpKu\nYjzDZeRVtLAmaRFaFU7unU3ZXA8pYCZAOpV6STZTz6g1siRmIatil9Ez1MuZ9jKONeZS2VGNyxpL\nuNF+0eu1Gg0LkyJZs9hJc0cfhVXt/P1oNe3dA2NXY0yX35NpNnjy1TPUNfcwf62HlqF6bk/7IIui\n5we1TbNxzKQ5XKRY5nGioYguXS0Hi0tZ6V6C2aCuyb2zMZvJkAJmAqRTqZdkEzhWvYVlzqUsjVlE\ne7+XYm8Zh+tzaOptJt7mxqq3XPx6s541i2NJdIaN7a1U2c7bJzw0eftwRVsIs6jryyLQTpW18uKh\nKpJTRvAYc4izxrJr0T1Bmbh7odk6Zhxh4ax2ZZFTU0yfsYH95fmk2uYRE3b5tZCCYbZmM1FBK2BK\nS0vZvn07Go2GjIwMGhoa+MpXvsKePXs4cOAA27ZtQ6vVkp6eztGjR/nrX//KX//6V+64446rPs8v\nBczsJNkEXrjRzuq45cwNT6Gxt5kz3lIOerLpGuwmMSzhotshiqLgjrHy8ZsXEm7W0dDey+lqL+/k\nevC09OCMtBBhC97tk+kyMDjCL/bkMTg0QlRGEd3DXXxuySdxWGKC3bRZPWYsBhNb5qwmv7aObp2H\nnPqT6PucpMU6g900YHZnMxFXK2AUv9/vD8Sb+nw+vvSlLzFnzhwWLFjAzp07+da3vsXmzZv54Ac/\nyH/8x38QFxfHjh07WLNmDTk5OeM+d0tLdyCaDIDDERbQ84vJk2yml9/v52RLAa9U7qXZ14pBo2dr\n0mZuStqCWfePjfTey2XU7yevrJX/ya6mqmEsp4y0aD68fg5z48OD9CkC70/vlLM35yzL1vRR7N/P\nCmcmn13yyWA3C5AxA2P9+LfHXya3+zD+ES3LDbfy2c1b0AR55V7JZnwcjis/Eh+w65sGg4EnnngC\np/Mf1W5OTg7btm0D4MYbbyQ7OztQby+EuE6KorDcmcF3Vt/PvQvuxKwzsbf6LR7K/n+8ffYAQ6PD\nF71eoygsm+/gO/et5J+3ZzI/MYL8ijZ+9MwJfvJsLmeq2wnQ76WgqW3u4fVjtURHaqjVHsegNfCx\nubcFu1niAoqi8LlVd3BH4l0oip/c4df44at76BsYvvbBQtV0ATuxTodOd/Hp+/r6MJybSBUdHU1L\nSwsAg4OD3H///Xg8Hm699VY+85nPXPXckZEWdFdZ2vx6Xa3iE8El2QTHnbE3c9uSLbxW+jYvFb/O\nC+X/w/76I9yz5MNsjl5zSS5Op50bV8+hqLKNP71ZSm5JM8VnT7EgOZJ7bprPqkWxIbd3zfuNjvrZ\n/ceTjPr9LFjbysm2XnZkfJT5iYnBbtpFZMyM+aTjJhYlJvLTQ4/TZHmX7+718qM7vkC8w37tgwNE\nsrk+AStgruXCX2L/+q//yu23346iKOzcuZOVK1eydOnSKx7r9foC1i65rKdekk3wbXRsICsii9dr\n3mF/3RH+69jTvFLyJlvjN7PCmYn2fav6OsMMfPVjS6hq6OJ/jlRzsqyVh5/MIdFp48Pr57BivgON\nJjQLmX0nPZTUeElfrONU23FiLQ7WRK1WVR+VMXOxRJObb6/7P/z06BP0hZXzjRd/xhczdpKZOv07\nWks24xOUW0iXY7FY6O/vB6Cpqen87aVPfOITWK1WLBYLa9eupbS0dDqbJYSYAJveyp1zP8xDa7/J\nWtdK6roaeOr0c3wv+//xRs0+fEN9lxyT4rLzv+/K4P9+bjVrF8dS19LDYy8W8p3f5HC4oIHhkdEg\nfJLJ6+wdZM++CsxGDcNx+fjxc/e8O9BpgvabUIxTrDWGh7d8gzh9MthbePz0E7x8rGjG3d6cDQL+\nGPWxY8cwm81kZGRQXl5OX18fCxcu5He/+x3Lly/HbDbzwx/+kFtuuYWRkREeffRRPvrRjxIbe+Vl\noOUppNlJslEXs85MpiOdDy7eTF/fEFVdNRS1FbPfc4TuwW5iLc5Ldr62Ww2sWOBkbXosg0MjlJzt\n4ERpC9lFjeh1GuIdNrQhcEXm6b3FVDV2s3bjMMW+k2Q5lnDrnK3BbtYlZMxcnl6jY2PiCuo7Omge\nqaG89wxVZTqWpyRNW/+TbMYnKE8hFRYWsnv3bjweDzqdjtjYWH72s5/xwAMPMDAwgNvt5sc//jF6\nvZ6f/vSnHD16FI1Gw9atW/mnf/qnq55bnkKanSQbdXovF99QH4frc9hXd5iOgU4UFDIdS9iWtJnU\n8OTLHtvW2c/eLyz7SAAAFZFJREFUnLMcyK9naHiUCJuBD6xOYktWPEZD4Oa5XY+i6nb+/blTJLlM\n9Ke+Sf/IAN9b+y9EmSKD3bRLyJi5ttfK9vHq2dfw+zVEdazhmx/4EOHT8Pi/ZDM+V7uFFLACJpCk\ngJmdJBt1en8uI6Mj5Dbn81btAWq7PQCk2JPYmrSZzJj0S+bJAHT2DPD3d2t556SHgcERbGY9t6xK\nZOvyBCwm9dyWGRoe4XtPHqO5o48Nt7Zzov0YH0m9lQ/M2Rbspl2WjJnxOdlUxG8Ln2VUGULXvJCv\nbb6LVHdgH/2XbMbnagWMrMT7PnJZT70kG3V6fy4aRUO8zcUG9xrmR6bRO9xHqbeC3OZ8jjXmAgou\nq/Oi+SImg470lChuyIpHr9NQ4ekiv7JtrKAZGiHBYcWoD/4VmVcOV5Nb2sr6lVZODbxNtDmKTy++\n97JFmRrImBkfl81JhmMRJxoKGbTWc7ikkkh/AknOwD2hJNmMj2wlMAHSqdRLslGnK+WiKArR5ihW\nxmaxIjaLUb+fis5qCtvOcNCTTe+QjziL86JF8Qx6LQuTI7lxeTwWk46qhi4KK9t5J9dDb/8QCQ4b\nJkNwrsg0tPXyxCunsdsMGOaeon3Ay6cW34vLduX5esEmY2b87MYw1riXU9BUhs9Yz6nGUjrrI1mS\n7AjII/+SzfhIATMB0qnUS7JRp/HkYtNbWRKziI3utZh1Js52eyhuL2Nf3WGafM1EmyIv2jhSr9Mw\nLyGCrcsTsFsN1DR1U1jVzlsnPHT0DBAfY8UyjRtH+v1+HnuxkOaOfm64EU51vsvSmMV8KOXmaWvD\nZMiYmRiTzsj6+JXUdjTR5j9LTX8ppwu0LE91o5/itcckm/GRAmYCpFOpl2SjThPJxaA1MDcilS0J\nG4gxR9Pia6XEW87h+hzKvBVYdGYclpjzv3h1Wg1p7nC2Lk8g2m6krqWHomovb+d6aOnowx1jxWYO\nfCFzpLCRN47XsTTNToXxLUb8o/xTxqexvG+TS7WRMTNxWo2Wla4MBoeHqfaV06Gv5MixfpYkJEzp\nJqWSzfhIATMB0qnUS7JRp8nkolU0JIa52RS/ltSIOXQP9lDiLedEcx4nmk6hUTS4rLHn55ZoNQpz\n4uxsXR5PXKQFT+vYxpFvn6ijoa2X2CgL4dbA7IDd0zfEI3vyQYHF65op76rgA8lbyXJeebFNtZAx\nMzmKorAoeh7RxigK2osYCDvLweNtJIYlEBs1NUWrZDM+UsBMgHQq9ZJs1Ol6clEUBYc5mtVxy1nm\nWMrw6DAVHVUUtJ3mkOco/cP9xFljz++CrVEUEp02blweT4LDRpPXx+lqL/tOeqhp7MYRYSYybGof\ngf3vN0op93Ry86YIjnT+nShTJJ9J36HaibsXkjFzfRLC3MyPTONkUwEj9npyij1ofTHMjY+47nkx\nks34SAEzAdKp1EuyUaepyiXMYCPDkc6G+DUYNHpquus4017K/rrDtPa1E2OOwm4Ye6RSURTcMVa2\nZLlJddtp7ezndI2XA3n1lNd1EG03EW03XfeXTGltB8++WUa8w8Jowkla+9u4b9E9uG1x1/15p4OM\nmesXZYpkeWwG+c3FDFgaKG4+S12FlcxUB1rt5Bezl2zGRwqYCZBOpV6SjTpNdS5GrZH5kXPZkrCe\nSFMETb4WSrzlHPQcpbKjmjCDjRhzNIqioCgKsVEWNma4WJgUSXv3AKdrvBwuaOR0jZdwqxFnpHlS\nhczwyCiP7MmnxzfELbfoOdpymMXRC/hwyi0hsxGljJmpYdVbWOtaTmXHWTo0dTQOVZN7XCEzJQ6z\ncXJPxUk24yMFzARIp1IvyUadApWLVqMl2Z7Apvh1JNsT6BropqSjnHebTnKypQCdRk+cxYlWo0VR\nFGIizGxY6mJJShRdvYOcqfFy9HQTeeVthFn0xEVbJlR4/C2nhpwzzWzKcpA3spfh0WG+nPEZbAbr\nlH/WQJExM3X0Wj2r45bR0d+NZ7CKXtNZDh4ZZF5sLFF207VP8D6SzfhIATMB0qnUS7JRp0DnoigK\nsRYHa10rWRqziMGRQco6KslvLeJw/TGGRodwWWMxaMcm8UbZTaxNj2PZvBh6+4c5U+PlWHEzx0ta\nMBt1uGMsaK5RyLR09PH4S0VYTTrmrWyi2FvKLck3sjw2I2CfMxBkzEwtjaJhacwijFojxV1nGAmv\n49DxLiJ00STHXXnF2MuRbMZHCpgJkE6lXpKNOk1nLuFGO1nOpaxzrUSraKnuPsvp9hL21x3G29+B\nwxxz/gpJuM3IqoVOVi9yMjA4QnFNBydKWsgpasKg1xLvsKK5zMZ9fr+fX79ymoY2Hx+7KZY3mv+H\nCGM4n13ySXQhMHH3QjJmpp6iKKRGzCHB5ia/tRAiPJwsaaerxUp6StQ1i+P3SDbjIwXMBEinUi/J\nRp2CkYtZZ2Jh1Dw2x6/HbgijobeJEm85BzxHONtVR7gxjChTJIqiEGYxsHy+g3VL4hge8VNS6yW3\ntJVDBQ1oNQoJDttFkzGPl7TwanYNi+ZE0BVzjOa+VnYuupuEMPe0fsapIGMmcOKsTpbELCSv5TTD\nYQ1UtbZQXKgjc64Dwzi2vZBsxkcKmAmQTqVeko06BTMXnUZHSngSWxLWE29z0THQSYm3nJzGExS0\nnsagNRBncaJRNFhNejLnxrAxY6wQKavr4FR5Gwfy6vH7IcFhY2h4lF/syWNkxM8Hbzawv+EACyPn\ncXvaB0Jm4u6FZMwEVrjRzsq4LEraK+g1eGgfbeBotp9FSTHYr7EuUahmMzA0QkObj7LaDnJLm3kn\nv5LWzj7mxkcF5P2uVsDIbtTvIzuEqpdko05qy6Wqs4a3ag9yqrkAP34ijOFsSVjPRveai1bO7fIN\n8ubxWt46UUffwAhWkw5XtJVyTycf2ZBArvYFOge6eHD1N4izOoP4iSZPbdnMVAMjg/y+6I/ktxYx\n2meBqtV84ZZVLJ/vuOIxas5meGSU1s5+Gtt9NLX7aPT6qO9opbm/mV6/F8XUi2LuQWPuQdENox+K\n5Oe3fisgbbnabtRSwLyPmjvVbCfZqJNac2nta2df3SGO1B9jYGQQg9bAOtcqtiZuJMYcff51vv4h\n3sr18Ma7tfT0DREXZWHN1g5eP/s2NyfdwEfnfiiIn+L6qDWbmWjUP8rLFXt54+w+/MN6BsuWcXvm\nCj68Yc5l58UEO5tRv5/2rn6a2vto8vpobPfR2N5LY08rHUNtYOoZK1JMPSjmXhTtyEXHKyjYdZHE\nWZ2sdS9jtWtZQNopBcwEBLtTiSuTbNRJ7bn4hvo40nCMd2oP0THQiYJCpiOdbUmbSQ2fc/51/YPD\nnChpIcoxwuPF/4VNb+W7a/7l/CrAoUjt2cxER+qP8cfivzDq9zNYtYSs6Cw+d9uiS3ZRn45s/H4/\nXb2DNHn7zl9NGfvvHpr7Whk1dI9dRTH3oDH3jl1Z0YxedA4NWqKN0cSHxeEOi8VljSXO4sRpiUGn\nCfzO8FLATIAMePWSbNQpVHIZGR3hZHM+b9Ue4Gy3B4AUexJbkzaTGZN+fmuAx/J+R2HbGT6bvoMV\nsVnBbPJ1C5VsZppSbzm/yn+a/pF+hupTiR1YxtfuyiAmwnz+NVOZTW//0NiVlHbf+aspTe19NHV0\nM6DpOlek9J4vVhSTD0W5+Ktfp+iJszhw2eJwWZ3EWWNxWZ1Em6KCum2GFDATIANevSQbdQq1XPx+\nP+UdVbxVe4DC1jP48RNtiuSGxI3Y9TZ+d/qPzI9I4/8s+2JITty9UKhlM5M09TbzX3m/o7W/jZH2\nWPT1y/lfd2SxMDkSmHg2A4MjNHl9NF9yNcVHz0DfPwoU09jcFI25F8Xog/d1YaPWiMt67kqK1Umc\nxYnLGkukKQKNMvmtEQJFCpgJkAGvXpKNOoVyLk2+Ft6pPcTRhuMMjQ4BY4uVfWvV10Nmv6OrCeVs\nZoKeoV6eKHia8o4qRnvDGS5fzie2LOXGZfE4nfZLshkeGaWlo4+m9rHCpPm9qynePrzdA6AduuCW\nz1iRorX04tf3XfLeVr3l/O2euAsKlnCDPaQKcylgJkAGvHpJNuo0E3LpGerlkOco2fXvsta1ig+m\nbAt2k6bETMgm1A2NDvPH4hfIaTwBgyb6S1awecECtq5OprSq7fxTPs3tfbR09uH3+0E3eNFtH4PN\nh2LqYUTbf8n5ww32sSsp5275xFnGCpUwgy0In3bqSQEzATLg1UuyUSfJRb0kG3Xw+/28XvMOL1fu\nRRnV0V+WwWinA/QD56+omMJ86Kw+RgzdjCgDl5wjyjT2xI/rXIESd+7qikVvvsw7zhxXK2ACP4VY\nCCGEmMUUReHWOVtxWGJ46vRzGBecRIeeYf6xkN0oMISCwxxNrDXt/O0flzUWp8UR0k/DBYoUMEII\nIcQ0WO7MINoUyR/O/BmNVsFhjBm7kmI9V6iYY9Br9cFuZsiQAkYIIYSYJsn2RL695p/l9t4UUN8z\nU0IIIYQQ1yAFjBBCCCFCjhQwQgghhAg5UsAIIYQQIuRIASOEEEKIkCMFjBBCCCFCTkALmNLSUm66\n6Sb+8Ic/ANDQ0MCuXbvYsWMHX/va1xgcHFvE5+WXX+auu+7i7rvv5s9//nMgmySEEEKIGSBgBYzP\n5+Phhx9m3bp15//2yCOPsGPHDp599lmSk5PZs2cPPp+PRx99lN///vc888wzPPXUU3R0dASqWUII\nIYSYAQJWwBgMBp544gmcTuf5v+Xk5LBt29gmaTfeeCPZ2dnk5eWxdOlSwsLCMJlMLF++nNzc3EA1\nSwghhBAzQMBW4tXpdOh0F5++r68Pg8EAQHR0NC0tLbS2thIVFXX+NVFRUbS0tASqWUIIIYSYAYK2\nlcCVNsEez+bYkZEWdDrtVDfpvKvtfimCS7JRJ8lFvSQb9ZJsrs+0FjAWi4X+/n5MJhNNTU04nU6c\nTietra3nX9Pc3ExWVtZVz+P1+gLWRtmfQr0kG3WSXNRLslEvyWZ8rlbkTetj1OvXr+fvf/87AK+/\n/jqbNm0iMzOTgoICurq66O3tJTc3l5UrV05ns4QQQggRYhT/eO7ZTEJhYSG7d+/G4/Gg0+mIjY3l\nZz/7GQ888AADAwO43W5+/OMfo9fr2bt3L08++SSKorBz505uv/32QDRJCCGEEDNEwAoYIYQQQohA\nkZV4hRBCCBFypIARQgghRMiRAkYIIYQQIUcKGCGEEEKEHClghBBCCBFypIC5wI9+9CO2b9/Ovffe\nS35+frCbIy7wk5/8hO3bt3PXXXfx+uuvB7s54gL9/f3cdNNN/OUvfwl2U8QFXn75ZW6//XbuvPNO\n9u3bF+zmCKC3t5evfvWr7Nq1i3vvvZeDBw8Gu0khLWhbCajNsWPHqKmp4fnnn6eiooIHH3yQ559/\nPtjNEsDRo0cpKyvj+eefx+v18rGPfYxbbrkl2M0S5zz22GOEh4cHuxniAl6vl0cffZQXXngBn8/H\nf/7nf3LDDTcEu1mz3l//+ldSUlK4//77aWpq4lOf+hR79+4NdrNClhQw52RnZ3PTTTcBkJaWRmdn\nJz09PdhstiC3TKxatYqMjAwA7HY7fX19jIyMoNUGbj8sMT4VFRWUl5fLl6PKZGdns27dOmw2Gzab\njYcffjjYTRJAZGQkJSUlAHR1dREZGRnkFoU2uYV0Tmtr60WdSXbFVg+tVovFYgFgz549bN68WYoX\nldi9ezcPPPBAsJsh3qeuro7+/n6+/OUvs2PHDrKzs4PdJAHcdttt1NfXc/PNN7Nz507+7d/+LdhN\nCmlyBeYKZIFi9XnzzTfZs2cPv/3tb4PdFAG8+OKLZGVlkZiYGOymiMvo6Ojgl7/8JfX19dx33328\n8847KIoS7GbNai+99BJut5snn3yS4uJiHnzwQZk7dh2kgDnncrtiOxyOILZIXOjgwYM8/vjj/OY3\nvyEsTLagV4N9+/ZRW1vLvn37aGxsxGAwEBcXx/r164PdtFkvOjqaZcuWodPpSEpKwmq10t7eTnR0\ndLCbNqvl5uayceNGABYuXEhzc7PcDr8OcgvpnA0bNpzfKbuoqAin0ynzX1Siu7ubn/zkJ/zqV78i\nIiIi2M0R5/z85z/nhRde4E9/+hN33303X/nKV6R4UYmNGzdy9OhRRkdH8Xq9+Hw+mW+hAsnJyeTl\n5QHg8XiwWq1SvFwHuQJzzvLly0lPT+fee+9FURQeeuihYDdJnPPaa6/h9Xr5+te/fv5vu3fvxu12\nB7FVQqhXbGwst956K/fccw8A3/nOd9Bo5PdqsG3fvp0HH3yQnTt3Mjw8zPe///1gNymkyW7UQggh\nhAg5UpILIYQQIuRIASOEEEKIkCMFjBBCCCFCjhQwQgghhAg5UsAIIYQQIuRIASOECKi6ujqWLFnC\nrl27zu/Ce//999PV1TXuc+zatYuRkZFxv/4Tn/gEOTk5k2muECJESAEjhAi4qKgonnnmGZ555hme\ne+45nE4njz322LiPf+aZZ2TBLyHERWQhOyHEtFu1ahXPP/88xcXF7N69m+HhYYaGhvje977H4sWL\n2bVrFwsXLuTMmTM89dRTLF68mKKiIgYHB/nud79LY2Mjw8PD3HHHHezYsYO+vj6+8Y1v4PV6SU5O\nZmBgAICmpib+5V/+BYD+/n62b9/Oxz/+8WB+dCHEFJECRggxrUZGRnjjjTdYsWIF3/zmN3n00UdJ\nSkq6ZHM7i8XCH/7wh4uOfeaZZ7Db7fz7v/87/f39fOhDH2LTpk0cOXIEk8nE888/T3NzM9u2bQPg\nb3/7G6mpqfzgBz9gYGCAP//5z9P+eYUQgSEFjBAi4Nrb29m1axcAo6OjrFy5krvuuotHHnmEb3/7\n2+df19PTw+joKDC2vcf75eXlceeddwJgMplYsmQJRUVFlJaWsmLFCmBsY9bU1FQANm3axLPPPssD\nDzzAli1b2L59e0A/pxBi+kgBI4QIuPfmwFyou7sbvV5/yd/fo9frL/mboigX/b/f70dRFPx+/0V7\n/bxXBKWlpfHqq6/y7rvvsnfvXp566imee+656/04QggVkEm8QoigCAsLIyEhgf379wNQVVXFL3/5\ny6sek5mZycGDBwHw+XwUFRWRnp5OWloaJ0+eBKChoYGqqioAXnnlFQoKCli/fj0PPfQQDQ0NDA8P\nB/BTCSGmi1yBEUIEze7du/nhD3/Ir3/9a4aHh3nggQeu+vpdu3bx3e9+l09+8pMMDg7yla98hYSE\nBO644w7efvttduzYQUJCAkuXLgVg7ty5PPTQQxgMBvx+P1/4whfQ6eSfPSFmAtmNWgghhBAhR24h\nCSGEECLkSAEjhBBCiJAjBYwQQgghQo4UMEIIIYQIOVLACCGEECLkSAEjhBBCiJAjBYwQQgghQo4U\nMEIIIYQIOf8fP3Vpz1VrUikAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "c6diezCSeH4Y", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Evaluate on Test Data\n", + "\n", + "**Confirm that your validation performance results hold up on test data.**\n", + "\n", + "Once you have a model you're happy with, evaluate it on test data to compare that to validation performance.\n", + "\n", + "Reminder, the test data set is located [here](https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv)." + ] + }, + { + "metadata": { + "id": "icEJIl5Vp51r", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 33 + }, + "outputId": "008551b6-775d-48f8-e593-56b757dc5ba3" + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "# YOUR CODE HERE\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_testing_input_fn = lambda: my_input_fn(test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = dnn_regressor.predict(input_fn=predict_testing_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Final RMSE (on test data): 157.73\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "vvT2jDWjrKew", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see a possible solution." + ] + }, + { + "metadata": { + "id": "FyDh7Qy6rQb0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Similar to what the code at the top does, we just need to load the appropriate data file, preprocess it and call predict and mean_squared_error.\n", + "\n", + "Note that we don't have to randomize the test data, since we will use all records." + ] + }, + { + "metadata": { + "id": "vhb0CtdvrWZx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_testing_input_fn = lambda: my_input_fn(test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = dnn_regressor.predict(input_fn=predict_testing_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/intro_to_pandas.ipynb b/intro_to_pandas.ipynb new file mode 100644 index 0000000..c5b1a0b --- /dev/null +++ b/intro_to_pandas.ipynb @@ -0,0 +1,1741 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "intro_to_pandas.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "YHIWvc9Ms-Ll", + "TJffr5_Jwqvd" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "JndnmDMp66FL" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "hMqWDc_m6rUC", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "rHLcriKWLRe4" + }, + "cell_type": "markdown", + "source": [ + "# Intro to pandas" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "QvJBqX8_Bctk" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Gain an introduction to the `DataFrame` and `Series` data structures of the *pandas* library\n", + " * Access and manipulate data within a `DataFrame` and `Series`\n", + " * Import CSV data into a *pandas* `DataFrame`\n", + " * Reindex a `DataFrame` to shuffle data" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TIFJ83ZTBctl" + }, + "cell_type": "markdown", + "source": [ + "[*pandas*](http://pandas.pydata.org/) is a column-oriented data analysis API. It's a great tool for handling and analyzing input data, and many ML frameworks support *pandas* data structures as inputs.\n", + "Although a comprehensive introduction to the *pandas* API would span many pages, the core concepts are fairly straightforward, and we'll present them below. For a more complete reference, the [*pandas* docs site](http://pandas.pydata.org/pandas-docs/stable/index.html) contains extensive documentation and many tutorials." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "s_JOISVgmn9v" + }, + "cell_type": "markdown", + "source": [ + "## Basic Concepts\n", + "\n", + "The following line imports the *pandas* API and prints the API version:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "aSRYu62xUi3g", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 33 + }, + "outputId": "c4df7abf-f13b-48dd-857d-f6a1d21a47f7" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import pandas as pd\n", + "pd.__version__" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "u'0.22.0'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "daQreKXIUslr" + }, + "cell_type": "markdown", + "source": [ + "The primary data structures in *pandas* are implemented as two classes:\n", + "\n", + " * **`DataFrame`**, which you can imagine as a relational data table, with rows and named columns.\n", + " * **`Series`**, which is a single column. A `DataFrame` contains one or more `Series` and a name for each `Series`.\n", + "\n", + "The data frame is a commonly used abstraction for data manipulation. Similar implementations exist in [Spark](https://spark.apache.org/) and [R](https://www.r-project.org/about.html)." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "fjnAk1xcU0yc" + }, + "cell_type": "markdown", + "source": [ + "One way to create a `Series` is to construct a `Series` object. For example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "DFZ42Uq7UFDj", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 84 + }, + "outputId": "b25c23f0-9d49-404d-929f-6b15e5b1037c" + }, + "cell_type": "code", + "source": [ + "pd.Series(['San Francisco', 'San Jose', 'Sacramento'])" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 San Francisco\n", + "1 San Jose\n", + "2 Sacramento\n", + "dtype: object" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "U5ouUp1cU6pC" + }, + "cell_type": "markdown", + "source": [ + "`DataFrame` objects can be created by passing a `dict` mapping `string` column names to their respective `Series`. If the `Series` don't match in length, missing values are filled with special [NA/NaN](http://pandas.pydata.org/pandas-docs/stable/missing_data.html) values. Example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "avgr6GfiUh8t", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 137 + }, + "outputId": "42ed5851-08d3-4ee4-90c8-762d7e1b2194" + }, + "cell_type": "code", + "source": [ + "city_names = pd.Series(['San Francisco', 'San Jose', 'Sacramento'])\n", + "population = pd.Series([852469, 1015785, 485199])\n", + "\n", + "pd.DataFrame({ 'City name': city_names, 'Population': population })" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulation
0San Francisco852469
1San Jose1015785
2Sacramento485199
\n", + "
" + ], + "text/plain": [ + " City name Population\n", + "0 San Francisco 852469\n", + "1 San Jose 1015785\n", + "2 Sacramento 485199" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "oa5wfZT7VHJl" + }, + "cell_type": "markdown", + "source": [ + "But most of the time, you load an entire file into a `DataFrame`. The following example loads a file with California housing data. Run the following cell to load the data and create feature definitions:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "av6RYOraVG1V", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "outputId": "5a403a61-d833-4b57-fbdb-843b23b5760c" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "california_housing_dataframe.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
count17000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.000000
mean-119.56210835.62522528.5893532643.664412539.4108241429.573941501.2219413.883578207300.912353
std2.0051662.13734012.5869372179.947071421.4994521147.852959384.5208411.908157115983.764387
min-124.35000032.5400001.0000002.0000001.0000003.0000001.0000000.49990014999.000000
25%-121.79000033.93000018.0000001462.000000297.000000790.000000282.0000002.566375119400.000000
50%-118.49000034.25000029.0000002127.000000434.0000001167.000000409.0000003.544600180400.000000
75%-118.00000037.72000037.0000003151.250000648.2500001721.000000605.2500004.767000265000.000000
max-114.31000041.95000052.00000037937.0000006445.00000035682.0000006082.00000015.000100500001.000000
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms \\\n", + "count 17000.000000 17000.000000 17000.000000 17000.000000 \n", + "mean -119.562108 35.625225 28.589353 2643.664412 \n", + "std 2.005166 2.137340 12.586937 2179.947071 \n", + "min -124.350000 32.540000 1.000000 2.000000 \n", + "25% -121.790000 33.930000 18.000000 1462.000000 \n", + "50% -118.490000 34.250000 29.000000 2127.000000 \n", + "75% -118.000000 37.720000 37.000000 3151.250000 \n", + "max -114.310000 41.950000 52.000000 37937.000000 \n", + "\n", + " total_bedrooms population households median_income \\\n", + "count 17000.000000 17000.000000 17000.000000 17000.000000 \n", + "mean 539.410824 1429.573941 501.221941 3.883578 \n", + "std 421.499452 1147.852959 384.520841 1.908157 \n", + "min 1.000000 3.000000 1.000000 0.499900 \n", + "25% 297.000000 790.000000 282.000000 2.566375 \n", + "50% 434.000000 1167.000000 409.000000 3.544600 \n", + "75% 648.250000 1721.000000 605.250000 4.767000 \n", + "max 6445.000000 35682.000000 6082.000000 15.000100 \n", + "\n", + " median_house_value \n", + "count 17000.000000 \n", + "mean 207300.912353 \n", + "std 115983.764387 \n", + "min 14999.000000 \n", + "25% 119400.000000 \n", + "50% 180400.000000 \n", + "75% 265000.000000 \n", + "max 500001.000000 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "WrkBjfz5kEQu" + }, + "cell_type": "markdown", + "source": [ + "The example above used `DataFrame.describe` to show interesting statistics about a `DataFrame`. Another useful function is `DataFrame.head`, which displays the first few records of a `DataFrame`:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "s3ND3bgOkB5k", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 196 + }, + "outputId": "02726dc7-d204-427c-d05c-c1b8246d78e8" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.head()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
0-114.3134.1915.05612.01283.01015.0472.01.493666900.0
1-114.4734.4019.07650.01901.01129.0463.01.820080100.0
2-114.5633.6917.0720.0174.0333.0117.01.650985700.0
3-114.5733.6414.01501.0337.0515.0226.03.191773400.0
4-114.5733.5720.01454.0326.0624.0262.01.925065500.0
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "0 -114.31 34.19 15.0 5612.0 1283.0 \n", + "1 -114.47 34.40 19.0 7650.0 1901.0 \n", + "2 -114.56 33.69 17.0 720.0 174.0 \n", + "3 -114.57 33.64 14.0 1501.0 337.0 \n", + "4 -114.57 33.57 20.0 1454.0 326.0 \n", + "\n", + " population households median_income median_house_value \n", + "0 1015.0 472.0 1.4936 66900.0 \n", + "1 1129.0 463.0 1.8200 80100.0 \n", + "2 333.0 117.0 1.6509 85700.0 \n", + "3 515.0 226.0 3.1917 73400.0 \n", + "4 624.0 262.0 1.9250 65500.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "w9-Es5Y6laGd" + }, + "cell_type": "markdown", + "source": [ + "Another powerful feature of *pandas* is graphing. For example, `DataFrame.hist` lets you quickly study the distribution of values in a column:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "nqndFVXVlbPN", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 395 + }, + "outputId": "54a58049-aed5-45e5-e71c-edbf64059a71" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.hist('housing_median_age')" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[]],\n", + " dtype=object)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFZCAYAAABXM2zhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X1UlHX+//HXMDAH0UEEGTfLarf0\naEmaa5l4U0Iokp7IVRPWdU3q6Iqtlql499WTlajRmmZZmunRU7GNtofcAjJxyyRanT0uuu0p2VOr\neTejKCqgSPP7o9Os/FRguP1Az8dfcTEz1+d6H+3pdQ1zYfF6vV4BAAAjBTT3AgAAwPURagAADEao\nAQAwGKEGAMBghBoAAIMRagAADEaogVo6cuSI7rjjjkbdxz//+U+lpKQ06j4a0h133KEjR47o448/\n1ty5c5t7OUCrZOFz1EDtHDlyREOHDtW//vWv5l6KMe644w7l5ubqpptuau6lAK0WZ9SAn5xOp0aO\nHKn7779f27dv1w8//KA//elPio+PV3x8vNLS0lRaWipJiomJ0d69e33P/enry5cva/78+Ro2bJji\n4uI0bdo0nT9/XgUFBYqLi5MkrV69Ws8++6xSU1MVGxur0aNH6+TJk5KkgwcPaujQoRo6dKheeeUV\njRw5UgUFBdWue/Xq1Vq0aJEmT56sgQMHatasWcrLy9OoUaM0cOBA5eXlSZIuXbqk5557TsOGDVNM\nTIzWrl3re42//e1viouL0/Dhw7V+/Xrf9m3btmnixImSJI/Ho5SUFMXHxysmJkZvvfVWleN/9913\nNXr0aA0cOFDp6ek1zrusrEwzZszwrWfZsmW+71U3hx07dmjkyJGKjY3VpEmTdPr06Rr3BZiIUAN+\n+OGHH1RRUaEPPvhAc+fO1cqVK/XRRx/p008/1bZt2/TXv/5VJSUl2rhxY7Wvs3v3bh05ckTZ2dnK\nzc3V7bffrn/84x9XPS47O1vz5s3Tjh07FBERoa1bt0qSFi5cqIkTJyo3N1ft2rXTt99+W6v179q1\nSy+88II++OADZWdn+9Y9ZcoUrVu3TpK0bt06HTp0SB988IG2b9+unJwc5eXlqbKyUvPnz9eiRYv0\n0UcfKSAgQJWVlVft47XXXtNNN92k7Oxsbdq0SRkZGTp27Jjv+3//+9+VmZmprVu3asuWLTp+/Hi1\na37nnXd04cIFZWdn6/3339e2bdt8//i53hwOHz6s2bNnKyMjQ5988on69eunxYsX12pGgGkINeAH\nr9erxMREST9e9j1+/Lh27dqlxMREhYSEyGq1atSoUfr888+rfZ3w8HAVFRXp448/9p0xDho06KrH\n9e3bVzfeeKMsFot69OihY8eOqby8XAcPHtSIESMkSb/97W9V23ew7r77bkVERKhDhw6KjIzU4MGD\nJUndunXzna3n5eUpOTlZNptNISEhevjhh5Wbm6tvv/1Wly5d0sCBAyVJjzzyyDX3sWDBAi1cuFCS\n1KVLF0VGRurIkSO+748cOVJWq1WdOnVSRERElYhfy6RJk/Tqq6/KYrGoffv26tq1q44cOVLtHD79\n9FPde++96tatmyRp3Lhx2rlz5zX/YQGYLrC5FwC0JFarVW3atJEkBQQE6IcfftDp06fVvn1732Pa\nt2+vU6dOVfs6d911lxYsWKDNmzdrzpw5iomJ0aJFi656nN1ur7LvyspKnT17VhaLRaGhoZKkoKAg\nRURE1Gr9bdu2rfJ6ISEhVY5Fks6dO6elS5fqpZdekvTjpfC77rpLZ8+eVbt27aoc57UUFhb6zqID\nAgLkdrt9ry2pymv8dEzV+fbbb5Wenq7//Oc/CggI0PHjxzVq1Khq53Du3Dnt3btX8fHxVfZ75syZ\nWs8KMAWhBuqpY8eOOnPmjO/rM2fOqGPHjpKqBlCSzp496/vvn97TPnPmjObNm6c333xT0dHRNe6v\nXbt28nq9KisrU5s2bXT58uUGff/V4XBo0qRJGjJkSJXtRUVFOn/+vO/r6+1z1qxZ+v3vf6+kpCRZ\nLJZrXinwx7PPPqs777xTa9askdVq1bhx4yRVPweHw6Ho6GitWrWqXvsGTMClb6CeHnjgAWVlZams\nrEyXL1+W0+nU/fffL0mKjIzUv//9b0nShx9+qIsXL0qStm7dqjVr1kiSwsLC9Ktf/arW+2vbtq1u\nu+02ffTRR5KkzMxMWSyWBjue2NhYvffee6qsrJTX69Wrr76qTz/9VDfffLOsVqvvh7W2bdt2zf2e\nOnVKPXv2lMVi0fvvv6+ysjLfD9fVxalTp9SjRw9ZrVZ9/vnn+u6771RaWlrtHAYOHKi9e/fq8OHD\nkn782Ntzzz1X5zUAzYlQA/UUHx+vwYMHa9SoURoxYoR+8YtfaMKECZKkqVOnauPGjRoxYoSKiop0\n++23S/oxhj/9xPLw4cN16NAhPfbYY7Xe56JFi7R27Vo99NBDKi0tVadOnRos1snJyercubMeeugh\nxcfHq6ioSL/+9a8VFBSkJUuWaN68eRo+fLgsFovv0vmVpk+frtTUVI0cOVKlpaV69NFHtXDhQv33\nv/+t03r+8Ic/aNmyZRoxYoS+/PJLTZs2TatXr9a+ffuuOweHw6ElS5YoNTVVw4cP17PPPquEhIT6\njgZoFnyOGmihvF6vL8733XefNm7cqO7duzfzqpoec0Brxxk10AL98Y9/9H2cKj8/X16vV7feemvz\nLqoZMAf8HHBGDbRARUVFmjt3rs6ePaugoCDNmjVLN910k1JTU6/5+Ntuu833nrhpioqK6rzua83h\np58PAFoLQg0AgMG49A0AgMEINQAABjPyhidu9zm/Ht+hQ4iKi+v+Oc2fO+ZXd8yufphf3TG7+jFt\nfpGR9ut+r1WcUQcGWpt7CS0a86s7Zlc/zK/umF39tKT5tYpQAwDQWhFqAAAMRqgBADBYjT9MVlZW\nprS0NJ06dUoXL17U1KlT1b17d82ePVuVlZWKjIzUihUrZLPZlJWVpU2bNikgIEBjx47VmDFjVFFR\nobS0NB09elRWq1VLly5Vly5dmuLYAABo8Wo8o87Ly1PPnj21ZcsWrVy5Uunp6Vq1apWSk5P19ttv\n65ZbbpHT6VRpaanWrFmjjRs3avPmzdq0aZPOnDmj7du3KzQ0VO+8846mTJmijIyMpjguAABahRpD\nnZCQoCeeeEKSdOzYMXXq1EkFBQWKjY2VJA0ZMkT5+fnav3+/oqKiZLfbFRwcrD59+sjlcik/P19x\ncXGSpOjoaLlcrkY8HAAAWpdaf4563LhxOn78uNauXavHHntMNptNkhQRESG32y2Px6Pw8HDf48PD\nw6/aHhAQIIvFokuXLvmeDwAArq/WoX733Xf11VdfadasWbry9uDXu1W4v9uv1KFDiN+fcavuw+Ko\nGfOrO2ZXP8yv7phd/bSU+dUY6gMHDigiIkI33HCDevToocrKSrVt21bl5eUKDg7WiRMn5HA45HA4\n5PF4fM87efKkevfuLYfDIbfbre7du6uiokJer7fGs2l/7xYTGWn3+25m+B/mV3fMrn6YX90xu/ox\nbX71ujPZ3r17tWHDBkmSx+NRaWmpoqOjlZOTI0nKzc3VoEGD1KtXLxUWFqqkpEQXLlyQy+VS3759\nNWDAAGVnZ0v68QfT+vXr1xDHBADAz0KNZ9Tjxo3T/PnzlZycrPLycv3f//2fevbsqTlz5igzM1Od\nO3dWYmKigoKCNHPmTKWkpMhisSg1NVV2u10JCQnas2ePkpKSZLPZlJ6e3hTHBQBAq2Dk76P293KE\naZcwWhrmV3fMrn6YX90xu/oxbX7VXfo28rdnAcC1TErf2dxLqNGGtJjmXgJaGW4hCgCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QA\nABiMUAMAYDBCDQCAwQg1AAAGC6zNg5YvX659+/bp8uXLmjx5snbu3KmDBw8qLCxMkpSSkqIHHnhA\nWVlZ2rRpkwICAjR27FiNGTNGFRUVSktL09GjR2W1WrV06VJ16dKlUQ8KAIDWosZQf/HFF/rmm2+U\nmZmp4uJiPfLII7rvvvv09NNPa8iQIb7HlZaWas2aNXI6nQoKCtLo0aMVFxenvLw8hYaGKiMjQ7t3\n71ZGRoZWrlzZqAcFAEBrUeOl73vuuUcvv/yyJCk0NFRlZWWqrKy86nH79+9XVFSU7Ha7goOD1adP\nH7lcLuXn5ysuLk6SFB0dLZfL1cCHAABA61VjqK1Wq0JCQiRJTqdTgwcPltVq1ZYtWzRhwgQ99dRT\nOn36tDwej8LDw33PCw8Pl9vtrrI9ICBAFotFly5daqTDAQCgdanVe9SStGPHDjmdTm3YsEEHDhxQ\nWFiYevTooTfeeEOvvPKK7r777iqP93q913yd622/UocOIQoMtNZ2aZKkyEi7X49HVcyv7phd/bS2\n+TXl8bS22TW1ljK/WoX6s88+09q1a7V+/XrZ7Xb179/f972YmBgtXrxYw4YNk8fj8W0/efKkevfu\nLYfDIbfbre7du6uiokJer1c2m63a/RUXl/p1EJGRdrnd5/x6Dv6H+dUds6uf1ji/pjqe1ji7pmTa\n/Kr7R0ONl77PnTun5cuX6/XXX/f9lPeTTz6pw4cPS5IKCgrUtWtX9erVS4WFhSopKdGFCxfkcrnU\nt29fDRgwQNnZ2ZKkvLw89evXryGOCQCAn4Uaz6g//PBDFRcXa8aMGb5to0aN0owZM9SmTRuFhIRo\n6dKlCg4O1syZM5WSkiKLxaLU1FTZ7XYlJCRoz549SkpKks1mU3p6eqMeEAAArYnFW5s3jZuYv5cj\nTLuE0dIwv7pjdvXj7/wmpe9sxNU0jA1pMU2yH/7s1Y9p86vXpW8AANB8CDUAAAYj1AAAGIxQAwBg\nMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAA\nGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYLbO4FAA1lUvrO5l5CtTakxTT3\nEgC0QJxRAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDB\nCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAbj91EDTcT035ct8TuzARNxRg0AgMFqdUa9fPly7du3\nT5cvX9bkyZMVFRWl2bNnq7KyUpGRkVqxYoVsNpuysrK0adMmBQQEaOzYsRozZowqKiqUlpamo0eP\nymq1aunSperSpUtjHxcAAK1CjaH+4osv9M033ygzM1PFxcV65JFH1L9/fyUnJ2v48OF66aWX5HQ6\nlZiYqDVr1sjpdCooKEijR49WXFyc8vLyFBoaqoyMDO3evVsZGRlauXJlUxwbAAAtXo2Xvu+55x69\n/PLLkqTQ0FCVlZWpoKBAsbGxkqQhQ4YoPz9f+/fvV1RUlOx2u4KDg9WnTx+5XC7l5+crLi5OkhQd\nHS2Xy9WIhwMAQOtS4xm11WpVSEiIJMnpdGrw4MHavXu3bDabJCkiIkJut1sej0fh4eG+54WHh1+1\nPSAgQBaLRZcuXfI9/1o6dAhRYKDVrwOJjLT79XhUxfwgNc+fg9b2Z68pj6e1za6ptZT51fqnvnfs\n2CGn06kNGzZo6NChvu1er/eaj/d3+5WKi0truyxJPw7b7T7n13PwP8wPP2nqPwet8c9eUx1Pa5xd\nUzJtftX9o6FWP/X92Wefae3atVq3bp3sdrtCQkJUXl4uSTpx4oQcDoccDoc8Ho/vOSdPnvRtd7vd\nkqSKigp5vd5qz6YBAMD/1Bjqc+fOafny5Xr99dcVFhYm6cf3mnNyciRJubm5GjRokHr16qXCwkKV\nlJTowoULcrlc6tu3rwYMGKDs7GxJUl5envr169eIhwMAQOtS46XvDz/8UMXFxZoxY4ZvW3p6uhYs\nWKDMzEx17txZiYmJCgoK0syZM5WSkiKLxaLU1FTZ7XYlJCRoz549SkpKks1mU3p6eqMeEAAArUmN\noX700Uf16KOPXrX9rbfeumpbfHy84uPjq2z76bPTAADAf9xCFIBPS7jNKfBzwy1EAQAwGKEGAMBg\nhBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGHcmQ61wxyoAaB6cUQMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABgssLkXAADAlSal72zuJdRoQ1pM\nk+2LM2oAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYLX6HPXXX3+tqVOnauLEiRo/\nfrzS0tJ08OBBhYWFSZJSUlL0wAMPKCsrS5s2bVJAQIDGjh2rMWPGqKKiQmlpaTp69KisVquWLl2q\nLl26NOpBAUBz4TPAaGg1hrq0tFRLlixR//79q2x/+umnNWTIkCqPW7NmjZxOp4KCgjR69GjFxcUp\nLy9PoaGhysjI0O7du5WRkaGVK1c2/JEAANAK1Xjp22azad26dXI4HNU+bv/+/YqKipLdbldwcLD6\n9Okjl8ul/Px8xcXFSZKio6PlcrkaZuUAAPwM1BjqwMBABQcHX7V9y5YtmjBhgp566imdPn1aHo9H\n4eHhvu+Hh4fL7XZX2R4QECCLxaJLly414CEAANB61ele3w8//LDCwsLUo0cPvfHGG3rllVd09913\nV3mM1+u95nOvt/1KHTqEKDDQ6teaIiPtfj0eVTE/4OeDv+/115QzrFOor3y/OiYmRosXL9awYcPk\n8Xh820+ePKnevXvL4XDI7Xare/fuqqiokNfrlc1mq/b1i4tL/VpPZKRdbvc5/w4CPswP+Hnh73v9\nNfQMqwt/nT6e9eSTT+rw4cOSpIKCAnXt2lW9evVSYWGhSkpKdOHCBblcLvXt21cDBgxQdna2JCkv\nL0/9+vWryy4BAPhZqvGM+sCBA1q2bJm+//57BQYGKicnR+PHj9eMGTPUpk0bhYSEaOnSpQoODtbM\nmTOVkpIii8Wi1NRU2e12JSQkaM+ePUpKSpLNZlN6enpTHBcAAK1CjaHu2bOnNm/efNX2YcOGXbUt\nPj5e8fHxVbb99NlpAADgP+5MBgCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYLA6/T5qAEDLNSl9Z3MvAX7gjBoAAIMRagAADEaoAQAwGKEG\nAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEao\nAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMR\nagAADFarUH/99dd68MEHtWXLFknSsWPH9Lvf/U7JycmaPn26Ll26JEnKysrSb37zG40ZM0bvvfee\nJKmiokIzZ85UUlKSxo8fr8OHDzfSoQAA0PrUGOrS0lItWbJE/fv3921btWqVkpOT9fbbb+uWW26R\n0+lUaWmp1qxZo40bN2rz5s3atGmTzpw5o+3btys0NFTvvPOOpkyZooyMjEY9IAAAWpMaQ22z2bRu\n3To5HA7ftoKCAsXGxkqShgwZovz8fO3fv19RUVGy2+0KDg5Wnz595HK5lJ+fr7i4OElSdHS0XC5X\nIx0KAACtT42hDgwMVHBwcJVtZWVlstlskqSIiAi53W55PB6Fh4f7HhMeHn7V9oCAAFksFt+lcgAA\nUL3A+r6A1+ttkO1X6tAhRIGBVr/WERlp9+vxqIr5AUDtNeX/M+sU6pCQEJWXlys4OFgnTpyQw+GQ\nw+GQx+PxPebkyZPq3bu3HA6H3G63unfvroqKCnm9Xt/Z+PUUF5f6tZ7ISLvc7nN1ORSI+QGAvxr6\n/5nVhb9OH8+Kjo5WTk6OJCk3N1eDBg1Sr169VFhYqJKSEl24cEEul0t9+/bVgAEDlJ2dLUnKy8tT\nv3796rJLAAB+lmo8oz5w4ICWLVum77//XoGBgcrJydGLL76otLQ0ZWZmqnPnzkpMTFRQUJBmzpyp\nlJQUWSwWpaamym63KyEhQXv27FFSUpJsNpvS09Ob4rgAAGgVLN7avGncxPy9pMCl2/qpzfwmpe9s\notUAgPk2pMU06Os1+KVvAADQNOr9U99oGJyxAgCuhTNqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAM\nRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAA\ngxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYA\nwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMFtjcC2gKk9J3NvcSAACoE86oAQAwGKEG\nAMBghBoAAIMRagAADFanHyYrKCjQ9OnT1bVrV0lSt27d9Pjjj2v27NmqrKxUZGSkVqxYIZvNpqys\nLG3atEkBAQEaO3asxowZ06AHAABAa1bnn/q+9957tWrVKt/Xc+fOVXJysoYPH66XXnpJTqdTiYmJ\nWrNmjZxOp4KCgjR69GjFxcUpLCysQRYPAEBr12CXvgsKChQbGytJGjJkiPLz87V//35FRUXJbrcr\nODhYffr0kcvlaqhdAgDQ6tX5jPrQoUOaMmWKzp49q2nTpqmsrEw2m02SFBERIbfbLY/Ho/DwcN9z\nwsPD5Xa7a3ztDh1CFBho9Ws9kZF2/w4AAIA6asrm1CnUt956q6ZNm6bhw4fr8OHDmjBhgiorK33f\n93q913ze9bb//4qLS/1aT2SkXW73Ob+eAwBAXTV0c6oLf50ufXfq1EkJCQmyWCy6+eab1bFjR509\ne1bl5eWSpBMnTsjhcMjhcMjj8fied/LkSTkcjrrsEgCAn6U6hTorK0tvvvmmJMntduvUqVMaNWqU\ncnJyJEm5ubkaNGiQevXqpcLCQpWUlOjChQtyuVzq27dvw60eAIBWrk6XvmNiYvTMM8/ok08+UUVF\nhRYvXqwePXpozpw5yszMVOfOnZWYmKigoCDNnDlTKSkpslgsSk1Nld3Oe8kAANSWxVvbN46bkL/X\n/mt6j5pfygEAaEgb0mIa9PUa/D1qAADQNAg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiM\nUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABgssCl2\n8sILL2j//v2yWCyaN2+e7rrrrqbYLQAALV6jh/rLL7/Ud999p8zMTBUVFWnevHnKzMxs7N0CANAq\nNPql7/z8fD344IOSpNtuu01nz57V+fPnG3u3AAC0Co0eao/How4dOvi+Dg8Pl9vtbuzdAgDQKjTJ\ne9RX8nq9NT4mMtLu9+tW95wPMh72+/UAADBBo59ROxwOeTwe39cnT55UZGRkY+8WAIBWodFDPWDA\nAOXk5EiSDh48KIfDoXbt2jX2bgEAaBUa/dJ3nz59dOedd2rcuHGyWCxatGhRY+8SAIBWw+KtzZvG\nAACgWXBnMgAADEaoAQAwWJN/PKuhcXtS/3399deaOnWqJk6cqPHjx+vYsWOaPXu2KisrFRkZqRUr\nVshmszX3Mo20fPly7du3T5cvX9bkyZMVFRXF7GqhrKxMaWlpOnXqlC5evKipU6eqe/fuzM5P5eXl\nGjFihKZOnar+/fszv1oqKCjQ9OnT1bVrV0lSt27d9Pjjj7eY+bXoM+orb0/6/PPP6/nnn2/uJRmv\ntLRUS5YsUf/+/X3bVq1apeTkZL399tu65ZZb5HQ6m3GF5vriiy/0zTffKDMzU+vXr9cLL7zA7Gop\nLy9PPXv21JYtW7Ry5Uqlp6czuzp47bXX1L59e0n8vfXXvffeq82bN2vz5s1auHBhi5pfiw41tyf1\nn81m07p16+RwOHzbCgoKFBsbK0kaMmSI8vPzm2t5Rrvnnnv08ssvS5JCQ0NVVlbG7GopISFBTzzx\nhCTp2LFj6tSpE7PzU1FRkQ4dOqQHHnhAEn9v66slza9Fh5rbk/ovMDBQwcHBVbaVlZX5LvlEREQw\nw+uwWq0KCQmRJDmdTg0ePJjZ+WncuHF65plnNG/ePGbnp2XLliktLc33NfPzz6FDhzRlyhQlJSXp\n888/b1Hza/HvUV+JT5rVHzOs2Y4dO+R0OrVhwwYNHTrUt53Z1ezdd9/VV199pVmzZlWZF7Or3l/+\n8hf17t1bXbp0ueb3mV/1br31Vk2bNk3Dhw/X4cOHNWHCBFVWVvq+b/r8WnSouT1pwwgJCVF5ebmC\ng4N14sSJKpfFUdVnn32mtWvXav369bLb7cyulg4cOKCIiAjdcMMN6tGjhyorK9W2bVtmV0u7du3S\n4cOHtWvXLh0/flw2m40/e37o1KmTEhISJEk333yzOnbsqMLCwhYzvxZ96ZvbkzaM6Oho3xxzc3M1\naNCgZl6Rmc6dO6fly5fr9ddfV1hYmCRmV1t79+7Vhg0bJP34llVpaSmz88PKlSu1detW/fnPf9aY\nMWM0depU5ueHrKwsvfnmm5Ikt9utU6dOadSoUS1mfi3+zmQvvvii9u7d67s9affu3Zt7SUY7cOCA\nli1bpu+//16BgYHq1KmTXnytKYqYAAAArElEQVTxRaWlpenixYvq3Lmzli5dqqCgoOZeqnEyMzO1\nevVq/fKXv/RtS09P14IFC5hdDcrLyzV//nwdO3ZM5eXlmjZtmnr27Kk5c+YwOz+tXr1aN954owYO\nHMj8aun8+fN65plnVFJSooqKCk2bNk09evRoMfNr8aEGAKA1a9GXvgEAaO0INQAABiPUAAAYjFAD\nAGAwQg0AgMEINQAABiPUAAAYjFADAGCw/wdkB5RjykY3PgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "XtYZ7114n3b-" + }, + "cell_type": "markdown", + "source": [ + "## Accessing Data\n", + "\n", + "You can access `DataFrame` data using familiar Python dict/list operations:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "_TFm7-looBFF", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 100 + }, + "outputId": "3bba1feb-4cdf-4523-ce20-2324b1bd1146" + }, + "cell_type": "code", + "source": [ + "cities = pd.DataFrame({ 'City name': city_names, 'Population': population })\n", + "print(type(cities['City name']))\n", + "cities['City name']" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 San Francisco\n", + "1 San Jose\n", + "2 Sacramento\n", + "Name: City name, dtype: object" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "V5L6xacLoxyv", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 50 + }, + "outputId": "46893882-7e77-49d8-cfb9-bd5f99f94ef9" + }, + "cell_type": "code", + "source": [ + "print(type(cities['City name'][1]))\n", + "cities['City name'][1]" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'San Jose'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "gcYX1tBPugZl", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 124 + }, + "outputId": "7dae8457-da58-482f-876c-f42ad87e1a62" + }, + "cell_type": "code", + "source": [ + "print(type(cities[0:2]))\n", + "cities[0:2]" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulation
0San Francisco852469
1San Jose1015785
\n", + "
" + ], + "text/plain": [ + " City name Population\n", + "0 San Francisco 852469\n", + "1 San Jose 1015785" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "65g1ZdGVjXsQ" + }, + "cell_type": "markdown", + "source": [ + "In addition, *pandas* provides an extremely rich API for advanced [indexing and selection](http://pandas.pydata.org/pandas-docs/stable/indexing.html) that is too extensive to be covered here." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "RM1iaD-ka3Y1" + }, + "cell_type": "markdown", + "source": [ + "## Manipulating Data\n", + "\n", + "You may apply Python's basic arithmetic operations to `Series`. For example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "XWmyCFJ5bOv-", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 84 + }, + "outputId": "7bffe160-302d-4a51-a7ba-e92e2073407f" + }, + "cell_type": "code", + "source": [ + "population / 1000." + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 852.469\n", + "1 1015.785\n", + "2 485.199\n", + "dtype: float64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TQzIVnbnmWGM" + }, + "cell_type": "markdown", + "source": [ + "[NumPy](http://www.numpy.org/) is a popular toolkit for scientific computing. *pandas* `Series` can be used as arguments to most NumPy functions:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "ko6pLK6JmkYP", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 84 + }, + "outputId": "af610810-93d3-444d-fe8f-77a45f936d98" + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "\n", + "np.log(population)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 13.655892\n", + "1 13.831172\n", + "2 13.092314\n", + "dtype: float64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "xmxFuQmurr6d" + }, + "cell_type": "markdown", + "source": [ + "For more complex single-column transformations, you can use `Series.apply`. Like the Python [map function](https://docs.python.org/2/library/functions.html#map), \n", + "`Series.apply` accepts as an argument a [lambda function](https://docs.python.org/2/tutorial/controlflow.html#lambda-expressions), which is applied to each value.\n", + "\n", + "The example below creates a new `Series` that indicates whether `population` is over one million:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Fc1DvPAbstjI", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 84 + }, + "outputId": "da54c5fb-6f77-478c-d98d-94f412b8f093" + }, + "cell_type": "code", + "source": [ + "population.apply(lambda val: val > 1000000)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 False\n", + "1 True\n", + "2 False\n", + "dtype: bool" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "ZeYYLoV9b9fB" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Modifying `DataFrames` is also straightforward. For example, the following code adds two `Series` to an existing `DataFrame`:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "0gCEX99Hb8LR", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 137 + }, + "outputId": "886866ba-377c-41cd-829a-7d536a30d022" + }, + "cell_type": "code", + "source": [ + "cities['Area square miles'] = pd.Series([46.87, 176.53, 97.92])\n", + "cities['Population density'] = cities['Population'] / cities['Area square miles']\n", + "cities" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation density
0San Francisco85246946.8718187.945381
1San Jose1015785176.535754.177760
2Sacramento48519997.924955.055147
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density\n", + "0 San Francisco 852469 46.87 18187.945381\n", + "1 San Jose 1015785 176.53 5754.177760\n", + "2 Sacramento 485199 97.92 4955.055147" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "6qh63m-ayb-c" + }, + "cell_type": "markdown", + "source": [ + "## Exercise #1\n", + "\n", + "Modify the `cities` table by adding a new boolean column that is True if and only if *both* of the following are True:\n", + "\n", + " * The city is named after a saint.\n", + " * The city has an area greater than 50 square miles.\n", + "\n", + "**Note:** Boolean `Series` are combined using the bitwise, rather than the traditional boolean, operators. For example, when performing *logical and*, use `&` instead of `and`.\n", + "\n", + "**Hint:** \"San\" in Spanish means \"saint.\"" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "zCOn8ftSyddH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 170 + }, + "outputId": "8b8736e8-124b-47db-a0f1-4ee67b566c7a" + }, + "cell_type": "code", + "source": [ + "# Your code here\n", + "cities['named after a Saint and area is > 50sq.miles'] = (cities['Area square miles'] > 50) & cities['City name'].apply(lambda name: name.startswith('San'))\n", + "cities" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityare named after a Saint and area is > 50sq.milesnamed after a Saint and area is > 50sq.miles
0San Francisco85246946.8718187.945381FalseFalse
1San Jose1015785176.535754.177760TrueTrue
2Sacramento48519997.924955.055147FalseFalse
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "\n", + " are named after a Saint and area is > 50sq.miles \\\n", + "0 False \n", + "1 True \n", + "2 False \n", + "\n", + " named after a Saint and area is > 50sq.miles \n", + "0 False \n", + "1 True \n", + "2 False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "YHIWvc9Ms-Ll" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "T5OlrqtdtCIb", + "colab": {} + }, + "cell_type": "code", + "source": [ + "cities['Is wide and has saint name'] = (cities['Area square miles'] > 50) & cities['City name'].apply(lambda name: name.startswith('San'))\n", + "cities" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "f-xAOJeMiXFB" + }, + "cell_type": "markdown", + "source": [ + "## Indexes\n", + "Both `Series` and `DataFrame` objects also define an `index` property that assigns an identifier value to each `Series` item or `DataFrame` row. \n", + "\n", + "By default, at construction, *pandas* assigns index values that reflect the ordering of the source data. Once created, the index values are stable; that is, they do not change when data is reordered." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "2684gsWNinq9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 33 + }, + "outputId": "b88f69c0-80fc-49e7-a967-db287abc8f45" + }, + "cell_type": "code", + "source": [ + "city_names.index" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RangeIndex(start=0, stop=3, step=1)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "F_qPe2TBjfWd", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 33 + }, + "outputId": "21875b69-7b0d-4f6f-d989-eac9e5fb4b15" + }, + "cell_type": "code", + "source": [ + "cities.index" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RangeIndex(start=0, stop=3, step=1)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "hp2oWY9Slo_h" + }, + "cell_type": "markdown", + "source": [ + "Call `DataFrame.reindex` to manually reorder the rows. For example, the following has the same effect as sorting by city name:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "sN0zUzSAj-U1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 170 + }, + "outputId": "0d518bd1-30b9-4b24-f260-acae3f129028" + }, + "cell_type": "code", + "source": [ + "cities.reindex([2, 0, 1])" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityare named after a Saint and area is > 50sq.milesnamed after a Saint and area is > 50sq.miles
2Sacramento48519997.924955.055147FalseFalse
0San Francisco85246946.8718187.945381FalseFalse
1San Jose1015785176.535754.177760TrueTrue
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "\n", + " are named after a Saint and area is > 50sq.miles \\\n", + "2 False \n", + "0 False \n", + "1 True \n", + "\n", + " named after a Saint and area is > 50sq.miles \n", + "2 False \n", + "0 False \n", + "1 True " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "-GQFz8NZuS06" + }, + "cell_type": "markdown", + "source": [ + "Reindexing is a great way to shuffle (randomize) a `DataFrame`. In the example below, we take the index, which is array-like, and pass it to NumPy's `random.permutation` function, which shuffles its values in place. Calling `reindex` with this shuffled array causes the `DataFrame` rows to be shuffled in the same way.\n", + "Try running the following cell multiple times!" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "mF8GC0k8uYhz", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 170 + }, + "outputId": "31906312-cd36-4bf6-a116-f906cb2f1083" + }, + "cell_type": "code", + "source": [ + "cities.reindex(np.random.permutation(cities.index))" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityare named after a Saint and area is > 50sq.milesnamed after a Saint and area is > 50sq.miles
1San Jose1015785176.535754.177760TrueTrue
0San Francisco85246946.8718187.945381FalseFalse
2Sacramento48519997.924955.055147FalseFalse
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "\n", + " are named after a Saint and area is > 50sq.miles \\\n", + "1 True \n", + "0 False \n", + "2 False \n", + "\n", + " named after a Saint and area is > 50sq.miles \n", + "1 True \n", + "0 False \n", + "2 False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "fSso35fQmGKb" + }, + "cell_type": "markdown", + "source": [ + "For more information, see the [Index documentation](http://pandas.pydata.org/pandas-docs/stable/indexing.html#index-objects)." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "8UngIdVhz8C0" + }, + "cell_type": "markdown", + "source": [ + "## Exercise #2\n", + "\n", + "The `reindex` method allows index values that are not in the original `DataFrame`'s index values. Try it and see what happens if you use such values! Why do you think this is allowed?" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "PN55GrDX0jzO", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 200 + }, + "outputId": "58363bcd-09f1-4444-ad37-f673fd03f663" + }, + "cell_type": "code", + "source": [ + "# Your code here\n", + "cities.reindex([0, 5, 7, 1])" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityare named after a Saint and area is > 50sq.milesnamed after a Saint and area is > 50sq.miles
0San Francisco852469.046.8718187.945381FalseFalse
5NaNNaNNaNNaNNaNNaN
7NaNNaNNaNNaNNaNNaN
1San Jose1015785.0176.535754.177760TrueTrue
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469.0 46.87 18187.945381 \n", + "5 NaN NaN NaN NaN \n", + "7 NaN NaN NaN NaN \n", + "1 San Jose 1015785.0 176.53 5754.177760 \n", + "\n", + " are named after a Saint and area is > 50sq.miles \\\n", + "0 False \n", + "5 NaN \n", + "7 NaN \n", + "1 True \n", + "\n", + " named after a Saint and area is > 50sq.miles \n", + "0 False \n", + "5 NaN \n", + "7 NaN \n", + "1 True " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 21 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TJffr5_Jwqvd" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "8oSvi2QWwuDH" + }, + "cell_type": "markdown", + "source": [ + "If your `reindex` input array includes values not in the original `DataFrame` index values, `reindex` will add new rows for these \"missing\" indices and populate all corresponding columns with `NaN` values:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "yBdkucKCwy4x", + "colab": {} + }, + "cell_type": "code", + "source": [ + "cities.reindex([0, 4, 5, 2])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "2l82PhPbwz7g" + }, + "cell_type": "markdown", + "source": [ + "This behavior is desirable because indexes are often strings pulled from the actual data (see the [*pandas* reindex\n", + "documentation](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html) for an example\n", + "in which the index values are browser names).\n", + "\n", + "In this case, allowing \"missing\" indices makes it easy to reindex using an external list, as you don't have to worry about\n", + "sanitizing the input." + ] + } + ] +} \ No newline at end of file diff --git a/logistic_regression.ipynb b/logistic_regression.ipynb new file mode 100644 index 0000000..794111a --- /dev/null +++ b/logistic_regression.ipynb @@ -0,0 +1,1650 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "logistic_regression.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "dPpJUV862FYI", + "i2e3TlyL57Qs", + "wCugvl0JdWYL" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Logistic Regression" + ] + }, + { + "metadata": { + "id": "LEAHZv4rIYHX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Reframe the median house value predictor (from the preceding exercises) as a binary classification model\n", + " * Compare the effectiveness of logisitic regression vs linear regression for a binary classification problem" + ] + }, + { + "metadata": { + "id": "CnkCZqdIIYHY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As in the prior exercises, we're working with the [California housing data set](https://developers.google.com/machine-learning/crash-course/california-housing-data-description), but this time we will turn it into a binary classification problem by predicting whether a city block is a high-cost city block. We'll also revert to the default features, for now." + ] + }, + { + "metadata": { + "id": "9pltCyy2K3dd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Frame the Problem as Binary Classification\n", + "\n", + "The target of our dataset is `median_house_value` which is a numeric (continuous-valued) feature. We can create a boolean label by applying a threshold to this continuous value.\n", + "\n", + "Given features describing a city block, we wish to predict if it is a high-cost city block. To prepare the targets for train and eval data, we define a classification threshold of the 75%-ile for median house value (a value of approximately 265000). All house values above the threshold are labeled `1`, and all others are labeled `0`." + ] + }, + { + "metadata": { + "id": "67IJwZX1Vvjt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "Run the cells below to load the data and prepare the input features and targets." + ] + }, + { + "metadata": { + "id": "fOlbcJ4EIYHd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "lTB73MNeIYHf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Note how the code below is slightly different from the previous exercises. Instead of using `median_house_value` as target, we create a new binary target, `median_house_value_is_high`." + ] + }, + { + "metadata": { + "id": "kPSqspaqIYHg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Create a boolean categorical feature representing whether the\n", + " # median_house_value is above a set threshold.\n", + " output_targets[\"median_house_value_is_high\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] > 265000).astype(float)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FwOYWmXqWA6D", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1160 + }, + "outputId": "169c72b9-a02e-4fb9-a6d2-395cc71a3b4e" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.7 2639.4 538.4 \n", + "std 2.1 2.0 12.6 2147.0 415.0 \n", + "min 32.5 -124.3 1.0 2.0 2.0 \n", + "25% 33.9 -121.8 18.0 1463.0 298.0 \n", + "50% 34.2 -118.5 29.0 2126.5 435.0 \n", + "75% 37.7 -118.0 37.0 3155.0 647.2 \n", + "max 42.0 -114.3 52.0 32054.0 5290.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1423.8 500.4 3.9 2.0 \n", + "std 1091.9 378.1 1.9 1.2 \n", + "min 3.0 2.0 0.5 0.1 \n", + "25% 786.0 281.8 2.6 1.5 \n", + "50% 1171.0 410.0 3.5 1.9 \n", + "75% 1720.0 604.0 4.8 2.3 \n", + "max 15507.0 5050.0 15.0 52.0 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.72639.4538.41423.8500.43.92.0
std2.12.012.62147.0415.01091.9378.11.91.2
min32.5-124.31.02.02.03.02.00.50.1
25%33.9-121.818.01463.0298.0786.0281.82.61.5
50%34.2-118.529.02126.5435.01171.0410.03.51.9
75%37.7-118.037.03155.0647.21720.0604.04.82.3
max42.0-114.352.032054.05290.015507.05050.015.052.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.5 28.3 2653.9 541.8 \n", + "std 2.1 2.0 12.6 2257.2 436.7 \n", + "min 32.5 -124.3 2.0 8.0 1.0 \n", + "25% 33.9 -121.8 18.0 1461.0 295.0 \n", + "50% 34.2 -118.5 28.0 2131.0 431.0 \n", + "75% 37.7 -118.0 37.0 3141.0 652.0 \n", + "max 41.8 -114.6 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1443.5 503.2 3.9 2.0 \n", + "std 1272.2 399.5 1.9 1.2 \n", + "min 8.0 1.0 0.5 0.0 \n", + "25% 797.0 282.0 2.6 1.5 \n", + "50% 1157.5 405.0 3.6 1.9 \n", + "75% 1724.0 607.0 4.7 2.3 \n", + "max 35682.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.528.32653.9541.81443.5503.23.92.0
std2.12.012.62257.2436.71272.2399.51.91.2
min32.5-124.32.08.01.08.01.00.50.0
25%33.9-121.818.01461.0295.0797.0282.02.61.5
50%34.2-118.528.02131.0431.01157.5405.03.61.9
75%37.7-118.037.03141.0652.01724.0607.04.72.3
max41.8-114.652.037937.06445.035682.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 12000.0\n", + "mean 0.3\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 1.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count12000.0
mean0.3
std0.4
min0.0
25%0.0
50%0.0
75%1.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 5000.0\n", + "mean 0.2\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 0.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count5000.0
mean0.2
std0.4
min0.0
25%0.0
50%0.0
75%0.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "uon1LB3A31VN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## How Would Linear Regression Fare?\n", + "To see why logistic regression is effective, let us first train a naive model that uses linear regression. This model will use labels with values in the set `{0, 1}` and will try to predict a continuous value that is as close as possible to `0` or `1`. Furthermore, we wish to interpret the output as a probability, so it would be ideal if the output will be within the range `(0, 1)`. We would then apply a threshold of `0.5` to determine the label.\n", + "\n", + "Run the cells below to train the linear regression model using [LinearRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor)." + ] + }, + { + "metadata": { + "id": "smmUYRDtWOV_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "B5OwSrr1yIKD", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "SE2-hq8PIYHz", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_regressor_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "TDBD8xeeIYH2", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "outputId": "b45397ad-47d7-4e90-a93b-3588f862f56a" + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_linear_regressor_model(\n", + " learning_rate=0.000001,\n", + " steps=200,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 0.45\n", + " period 01 : 0.45\n", + " period 02 : 0.45\n", + " period 03 : 0.44\n", + " period 04 : 0.44\n", + " period 05 : 0.44\n", + " period 06 : 0.44\n", + " period 07 : 0.45\n", + " period 08 : 0.45\n", + " period 09 : 0.44\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGACAYAAACgBBhzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4leWZ+PHve7bs+76HPSSA7CYE\nhLAlgPuCCMaltp2OxXZsnW6jP+uoVDvjTMc6aq3WtjhWUBFRQEDZtwCKLCEJJIRsZF9O9uWc8/7+\nCAkgJDlZzjlJuD/X5XV5Tt7lTt6Q3Hme+3luRVVVFSGEEEKIYUTj6ACEEEIIIQaaJDhCCCGEGHYk\nwRFCCCHEsCMJjhBCCCGGHUlwhBBCCDHsSIIjhBBCiGFH5+gAhBjKxo0bR2RkJFqtFgCz2cyMGTN4\n+umncXV17fN1169fz/Lly695f8OGDfz617/mzTffJCkpqfP95uZmZs2axeLFi3nppZf6fF9r5efn\ns2bNGnJzcwFwcXFh9erVLFy40Ob37o3XX3+d/Pz8a74maWlpPPbYY4SHh19zzhdffGGv8PqlsLCQ\nBQsWMGLECABUVcXf359/+7d/IzY2tlfXeuWVVwgNDeWBBx6w+pxPP/2Ujz76iLVr1/bqXkLYiyQ4\nQvTT2rVrCQ4OBqC1tZUnn3ySP/3pTzz55JN9ul55eTlvv/32dRMcgJCQED7//POrEpxdu3bh6enZ\np/v1xVNPPcUdd9zBm2++CcCJEyd4+OGH2bp1KyEhIXaLoz9CQkKGTDLTFa1We9XnsGXLFn784x+z\nbds2DAaD1df5+c9/bovwhHAomaISYgAZDAbmzJlDRkYGAC0tLfy///f/SE5OZsmSJbz00kuYzWYA\nMjMzWbFiBSkpKdxxxx3s27cPgBUrVnDx4kVSUlJobW295h5Tp04lLS2Npqamzve2bNlCYmJi5+vW\n1lZeeOEFkpOTmT9/fmciAnD8+HHuvvtuUlJSWLp0KQcPHgTaRwRmz57N3//+d2677TbmzJnDli1b\nrvt5nj17lptuuqnz9U033cS2bds6E73XXnuNuXPncuedd/LWW28xf/58AH71q1/x+uuvd5535eue\n4lqzZg0PPvggAF9//TX33HMPixYtYvny5RQUFADtI1n/8i//QlJSEg8++CAlJSU9PLHr27BhA6tX\nr+bhhx/m97//PWlpaaxYsYKf/vSnncnA1q1bufXWW0lJSeGhhx4iPz8fgD/+8Y88/fTT3Hvvvfz1\nr3+96ro//elP+ctf/tL5OiMjg9mzZ2OxWPjv//5vkpOTSU5O5qGHHqK0tLTXcS9dupTm5mbOnz8P\nwLp160hJSWH+/Pn87Gc/o7m5GWj/uv/ud7/jtttuY+vWrVc9h66+Ly0WC//+7//OvHnzuPfee8nM\nzOy875EjR7jrrrtYunQpS5YsYevWrb2OXYgBpwoh+mzs2LFqcXFx5+uamhp11apV6uuvv66qqqr+\n6U9/Un/wgx+obW1talNTk3rPPfeoGzduVM1ms7pkyRL1s88+U1VVVU+ePKnOmDFDraurUw8fPqwu\nXLjwuvf7+OOP1V/+8pfqU0891XluXV2dumDBAvXDDz9Uf/nLX6qqqqqvvfaa+vDDD6stLS1qQ0OD\neuedd6o7d+5UVVVVb731VvXzzz9XVVVVP/nkk857FRQUqLGxseratWtVVVXVLVu2qIsWLbpuHE88\n8YSalJSk/u1vf1Ozs7Ov+lhWVpY6ffp0taysTG1ra1P/+Z//WU1KSlJVVVV/+ctfqv/7v//beeyV\nr7uLKy4uTt2wYUPn5ztjxgx1//79qqqq6meffabeddddqqqq6nvvvaeuWrVKbWtrU6uqqtSkpKTO\nr8mVuvsad3ydJ0+erObm5nYeP3HiRPXgwYOqqqpqUVGROm3aNPXChQuqqqrqO++8oz788MOqqqrq\nq6++qs6ePVutrKy85rqbN29WV61a1fn6f/7nf9Tnn39ePXv2rLp48WK1tbVVVVVV/fvf/65+8skn\nXcbX8XUZP378Ne/PmDFDzcnJUY8ePaomJCSoJSUlqqqq6jPPPKO+9NJLqqq2f91vu+02tbm5ufP1\n//7v/3b7fbl792518eLFan19vdrU1KTee++96oMPPqiqqqrefffdalpamqqqqpqbm6v+7Gc/6zZ2\nIexBRnCE6KfU1FRSUlJYsGABCxYsID4+nh/84AcA7N69m+XLl6PT6XB2dua2227jwIEDFBYWUlFR\nwbJlywCYOHEioaGhnDp1yqp7Llu2jM8//xyAL7/8kqSkJDSay/+cd+3axcqVKzEYDLi6unLHHXew\nfft2ADZu3MiSJUsAmDZtWufoB4DJZOLuu+8GIC4ujosXL173/v/xH//BqlWr+Oyzz7j11luZP38+\n//jHP4D20ZUZM2YQEBCATqfj1ltvtepz6i6utrY2Fi1a1Hn9oKCgzhGrW2+9lfz8fC5evMixY8dY\ntGgROp0OHx+fq6bxvqu4uJiUlJSr/ruyVic6Opro6OjO187OziQkJABw4MABbr75ZqKiogC47777\nSEtLw2QyAe0jWr6+vtfcc968eZw5c4aamhoAduzYQUpKCp6enlRVVfHZZ59hNBpJTU3lzjvvtOrr\n1kFVVdatW0dQUBDR0dHs3LmTpUuXEhQUBMADDzzQ+T0AkJCQgJOT01XX6O778ujRo8ydOxc3Nzec\nnZ07nxWAn58fGzduJCcnh+joaF555ZVexS6ELUgNjhD91FGDU1VV1Tm9otO1/9OqqqrCy8ur81gv\nLy8qKyupqqrCw8MDRVE6P9bxS87f37/HeyYmJvL0009TU1PD5s2befzxxzsLfgHq6ur43e9+x3/9\n138B7VNWkyZNAuCzzz7j73//Ow0NDVgsFtQr2tFptdrO4miNRoPFYrnu/Z2cnHjsscd47LHHqK2t\n5YsvvmDNmjWEh4djNBqvqgfy8/Pr8fOxJi53d3cAamtrKSgoICUlpfPjBoOBqqoqjEYjHh4ene97\nenrS0NBw3fv1VINz5XP77uvq6uqrPkcPDw9UVaW6uvq653ZwdXVl1qxZ7N69m2nTplFbW8u0adNQ\nFIU//vGP/OUvf+H5559nxowZPPfccz3WM5nN5s6vg6qqjB49mtdffx2NRkNdXR07duxg//79nR9v\na2vr8vMDuv2+NBqNBAYGXvV+hzVr1vDGG2/w6KOP4uzszM9+9rOrno8QjiAJjhADxNfXl9TUVP7j\nP/6DN954AwB/f//Ov9YBampq8Pf3x8/PD6PRiKqqnb9MampqrE4G9Ho9SUlJbNy4kby8PKZMmXJV\nghMYGMj3vve9a0YwSktLefrpp/nwww8ZP348Fy5cIDk5uVefZ1VVFRkZGZ0jKJ6enixfvpx9+/Zx\n9uxZPDw8qKuru+r4Dt9NmoxGY6/jCgwMZOTIkWzYsOGaj3l6enZ574Hk5+fH8ePHO18bjUY0Gg0+\nPj49npucnMyOHTuorq4mOTm58/nHx8cTHx9PY2MjL7/8Mv/5n//Z40jId4uMrxQYGMhdd93FL3/5\ny159Xl19X3b3tfX39+eZZ57hmWeeYf/+/TzxxBPMmTMHNzc3q+8txECTKSohBtCjjz7K8ePHOXLk\nCNA+JfHRRx9hNptpbGzk008/Ze7cuYSHhxMcHNxZxPvNN99QUVHBpEmT0Ol0NDY2dk53dGXZsmX8\n+c9/vu7S7AULFvDhhx9iNptRVZXXX3+dvXv3UlVVhaurKyNHjsRkMrFu3TqALkc5rqe5uZmf/OQn\nncWnAHl5eZw4cYLp06czZcoUjh07RlVVFSaTiY0bN3YeFxAQ0FmcWlBQwDfffAPQq7huuukmysvL\nOXHiROd1/vVf/xVVVZk8eTI7d+7EbDZTVVXF3r17rf68eiMxMZFjx451TqN98MEHJCYmdo7cdScp\nKYnjx4/z5Zdfdk7z7N+/n+eeew6LxYKrqysxMTFXjaL0xfz589m+fXtnIvLll1/y1ltvdXtOd9+X\nU6ZMYf/+/TQ1NdHU1NSZWLW1tZGamkpZWRnQPrWp0+mumjIVwhFkBEeIAeTu7s4Pf/hDXn75ZT76\n6CNSU1MpKChg2bJlKIpCSkoKS5YsQVEU/uu//otnn32W1157DRcXF/7nf/4HV1dXxo0bh5eXF4mJ\niXzyySeEhoZe914zZ85EURSWLl16zcdWrlxJYWEhy5YtQ1VVJkyYwMMPP4yrqyu33HILycnJ+Pn5\n8atf/YpvvvmG1NRUXn31Vas+x9DQUN544w1effVVXnjhBVRVxd3dnV//+tedK6vuv/9+7rrrLnx8\nfFi8eDHnzp0DYPny5axevZrFixcTGxvbOUoTExNjdVzOzs68+uqrPP/88zQ0NKDX6/npT3+Koigs\nX76cY8eOsXDhQkJDQ1m4cOFVow5X6qjB+a7f//73PX4NgoODeeGFF3j88cdpa2sjPDyc559/3qqv\nn7u7O3FxcWRlZTF58mQAZsyYwebNm0lOTsZgMODr68uaNWsA+MUvftG5Eqo34uLi+NGPfkRqaioW\niwU/Pz+ee+65bs/p7vsyKSmJ3bt3k5KSgr+/P3PnzuXYsWPo9XruvfdeHnnkEaB9lO7pp5/GxcWl\nV/EKMdAU9cqJbiGEGGDHjh3jF7/4BTt37nR0KEKIG4iMIQohhBBi2JEERwghhBDDjkxRCSGEEGLY\nkREcIYQQQgw7kuAIIYQQYtgZlsvEy8uvvyx0oPj4uFJd3WjTe4jek+cyeMmzGZzkuQxe8mysFxDg\ncd33ZQSnD3Q6raNDENchz2XwkmczOMlzGbzk2fSfJDhCCCGEGHYkwRFCCCHEsCMJjhBCCCGGHUlw\nhBBCCDHsSIIjhBBCiGFHEhwhhBBCDDuS4AghhBBi2JEERwghhBDDjiQ4QgghhBh2JMERQgghxLAj\nCY4QQgghhh1JcMSwUNVcTXrZWUeHIYQQYpCQBEcMeaqq8vap9/j33X+gqrna0eEIIYQYBCTBEUNe\nbm0eeXUFqKrK6YoMR4cjhBBiEJAERwx5Owv2d/7/yYozDoxECCHEYKFzdABC9Ed1cw0nyk8T5h6C\nXqflXHUOzaZmnHXOjg5NCCGEA8kIjhjS9hQexKJaSAqfzbTQSZhUMxlV5xwdlhBCCAeTBEcMWS3m\nVg5cTMNd78b0oMlMD5sEwCmZphJCiBueJDhiyDpS8g2NpiZmh8Wj1+oZ4ROBl8GD9MpMLKrF0eEJ\nIYRwIElwxJCkqiq7Cw+gVbTMCYsHQKNomOAfS31bA7nGfAdHKIQQwpEkwRFDUmb1OUoaSpkaOAlv\nJ6/O9yf6jwdkmkoIIW50kuD0UnljJaqqOjqMG96uS0vDkyJmX/X+OJ8x6DV6SXCEEOIGJwlOL+Qa\n8/jt4ZfZlr3H0aHc0Eoby0mvzGSEZxRRnhFXfcyg1RPjO4aSxjLKGysdFKEQQghHkwSnFwJdAzBo\nDXyS8QVtFpOjw7lh7Sk8AFw7etOhc5qqUkZxhBDiRiUJTi+46V2ZExpPdZORI8VfOzqcG1JjWxOH\nio/h7eTF5IAJ1z1mgl8sAKfKJcERQogblSQ4vTQ/cg46jY7t+bsxW8yODueGc6j4KK3mVuaGzUKr\n0V73GC8nD6I8I8g25tLY1mjnCIUQQgwGkuD0kreTF/NGJFDRVMnxspOODueGYlEt7Ck8gF6jZ1bY\nzG6PnegXi0W1cKYyy07RCSGEGEwkwemDO2IWoaCwLW+XrKiyo1MVZ6hsrmZm8FTc9W7dHjsp4NI0\nVaV0FxdCiBuRJDh9EOQewLSgm7jYUMJp+QVqNx1Lw+eFJ/Z4bKhbMD5O3qRXZslUohBC3IAkwemj\nxVFJAGy7sFNGceygoO4i52rOE+MzhlD34B6PVxSFSQGxNJmayDHm2iFCIYQQg4kkOH0U5h7CRP9Y\ncmvzOVdz3tHhDHu7C6+/sV93JnaspqqQUTYhhLjRSILTD8lXjOII26lrredY6bcEuvgT6zfO6vNG\n+4zESWvgZMUZGWUTQogbjE0TnDVr1nD//fezYsUKTp68/oqjV155hdTUVADS0tKIj48nNTWV1NRU\nnn/+eQCKi4t55JFHePDBB3nkkUcoLy+3ZdhWG+EVxVif0WRWnyOvtsDR4Qxb+4sOY7KYmBueiEax\n/ltWr9ER6zuOiqZKShvLbBihEEKIwcZmCc6RI0fIy8tj3bp1vPjii7z44ovXHJOdnc3Ro0evem/m\nzJmsXbuWtWvX8swzzwDwhz/8geXLl/Pee++xaNEi3n33XVuF3Wsdozjb83Y5OJLhyWQxsbfoEM5a\nZ+JDpvX6/In+Mk0lhBA3IpslOIcOHWLhwoUAjBo1CqPRSH19/VXHvPTSSzz55JM9XuvZZ58lOTkZ\nAB8fH2pqagY+4D4a5zOaKI8Ivi0/TXFDqaPDGXa+KTtJbWsds0Jn4Kxz7vX5cX4xKCiclOabQogh\n4oOsT3h+9x9kar2fdLa6cEVFBXFxcZ2vfX19KS8vx93dHYANGzYwc+ZMwsLCrjovOzubH/3oRxiN\nRlavXk1iYiKurq4AmM1m3n//fX784x93e28fH1d0uuvvcjtQAgI8Ov//vklL+c8Df2Jv6X5W3/yI\nTe97I1FVlf3HD6GgcNekRQS4e/R4zpXPBSAAD8b5jySr8jxOHuDp3PM1hG1899mIwUGey+ByrOgE\n+4oOAaBObyHQPcDBEQ1dNktwvuvKTLSmpoYNGzbw7rvvUlp6edQjOjqa1atXs2TJEgoKCnjooYfY\nvn07BoMBs9nML37xC+Lj40lISOj2XtXVtt2ePyDAg/Lyus7XUYYRBLsFsT/vKAtDkvBz8bXp/W8U\n540XyKnOY5J/HJomZ8qb6ro9/rvPpUOM1zgyK3LYc/YY8SHTbRWu6EZXz0Y4ljyXwaXJ1MxbR//R\n+fr4hUymBfV+5PpG01WSbrMpqsDAQCoqKjpfl5WVERDQnokePnyYqqoqVq1axerVq0lPT2fNmjUE\nBQWxdOlSFEUhMjISf3//zgTo17/+NVFRUaxevdpWIfeZRtGwOHIeFtXCl/l7HR3OsNGxsV9vloZf\nj9ThCCGGgk05X1DTYiTGZwwAF2TxSr/YLMFJTExk27ZtAKSnpxMYGNg5PZWSksKWLVtYv349r732\nGnFxcfzmN79h06ZNvPPOOwCUl5dTWVlJUFAQmzZtQq/X85Of/MRW4fbb9KDJ+Dn7cLD4CMYW+Yuo\nv6qba/i2/DRh7iGM8R7Zr2sFuQYQ4OJHRlUWbRbTAEUohBAD57wxj31Fhwh2DeTRCStRFIW82kJH\nhzWk2WyKaurUqcTFxbFixQoUReHZZ59lw4YNeHh4sGjRouueM3/+fJ566im++uor2tra+O1vf4vB\nYOD999+npaWlczn5qFGj+O1vf2ur0PtEq9GyMHIe685+wq6Cfdw5eqmjQxrS9hQexKJamBc+G0VR\n+nUtRVGY6B/LzoJ9nKvO6dVeOkIIYWsmi4n3Mz9CReWBmHtw17sR7hFMQX0RFtXSq+0xxGU2rcF5\n6qmnrnodExNzzTHh4eGsXbsWAHd3d958881rjvnggw9sE+AASwiZzpYLO9hXdIjFUfNw1bs6OqQh\nqdXcyoGLabjr3ZgRNHlArtmR4JyqyJAERwgxqOzI201xQymzw+IZ7T0CgFG+0RTUFlPSUGZVexpx\nLUkLB5Beq2dBxC00m1vYU3jI0eEMWUdKvqHR1MTssHj0Wv2AXHOUVzQuOhdOya7GQohBpKShjC8u\nfIWXwZM7Ry3pfH+0XxQgdTj9IQnOAJsTFo+LzoXdhftpMbc6OpwhR1VVdhUeQKNomBMWP2DX1Wq0\nxPmNo7qlhqL64gG7rhBC9JVFtfB+5seYVDPLx92Ji86l82OjfKMByKuTBKevJMEZYM46Z+aFz6K+\nrYGDF484OpwhJ7P6HCUNpUwNnIS3k9eAXltWUwkhBpODF4+QY8zlpoAJTA6YcNXHorzC0Cla8mUE\np88kwbGBeeGzMWj0fJm/B5Os2umV3QO0NPx6Yn3HoVE0nJJdjYUQDmZsqWVjzhactc4sH3vHNR/X\naXWEeYRSWF9Mm7nNAREOfZLg2IC7wY3ZYfHUtBg5UvKNo8MZMsoayzldmckIzyiiPSMH/PquehdG\ne48kr64AY0vtgF9fCCGstf7spzSZmrlz9JIuR6ujPCKwqBYKZVq9TyTBsZEFkbegVbTsyNuNRbU4\nOpwhYXfhQQCSIhJtdo+J/uMBOC3TVEIIBzlRns635acY5RVNYujNXR4X5RkOSB1OX0mCYyPeTl7c\nHDyNsqYKjpedcnQ4g16TqYnDxUfxdvJicsBEm91not+lOpxKmaYSQthfk6mZ9Wc3olO0rIy5p9s9\nbqI9IwDIkzqcPpEEx4YWRc1FQWFb3k5ZmtyDQxeP0mJuZW7YLLQa2zVKDXD1I9gtiMyqbFpllZsQ\nws425WylpsXI4uj5BLsFdXtsoGsAzlon2dG4jyTBsaFA1wCmBk6iqL6Y9MpMR4czaFlUC7sLD6LX\n6JkVNtPm95vkH0ubpY2s6myb30sIITqcN15gX9Fhgl0DWRyV1OPxGkVDhEcYZY3lNJma7BDh8CIJ\njo0lR88HYFveLgdHMnidqjhDZXMVM4On4K53s/n9OupwZDWVEMJe2iwm/i/zY1RUVsbci15jXSOB\naM9IVFTya4tsHOHwIwmOjYW5hzDBbzznjRfIrsl1dDiDUkfX8HnhA780/HqiPSNx17txqiJDCsCF\nEHaxI28XJQ2lzAlLYJR3tNXnRUqhcZ9JgmMHydHtQ5HbLux0cCSDT1F9MedqzhPjM8Zu/VY0ioYJ\nfuOpba2joE7+KhJC2FZJQynbLuzEy+DJHaNSenVulEdHobHU4fSWJDh2MNIrmjHeIzlTlUV+nXyT\nXqlz9MaGS8OvR6aphBD2cGU7hvu/047BGr7O3rjr3WQlVR9IgmMnyVHttTjbL0gtToe61nqOlh4n\nwMWPOL9rO83bUozvWHSKlpOS4AghbOjAxSPkGC8wOWACN32nHYM1FEUh2jOC6pYaalvrbBDh8CUJ\njp3E+I4h0iOMb8tPU9pQ5uhwBoX9RWmYLCbmhid2uxeELTjrnBjrM5qi+mKqmqvtem8hxI2hpsXI\nxuwtuOicue867RisFSn74fSJJDh2oigKi6Pmo6KyPX+3o8NxOJPFxL6igzhrnUkIme6QGC5PU8mu\nxkKIgffh2U9pNjdzx6il/WoeHOVxqdBY6nB6RRIcO7opII4g10COlHxzw48aHC87hbG1joTQ6Tjr\nnB0Sw+Xu4jJNJYQYWCfKT/Nt+WlGeY0gMbR/+3tFyQhOn0iCY0caRcPiqHlYVAtf5u91dDgOo6oq\nuwr2o6AwL9y+xcVX8nH2Jtw9lHPVOTSbmh0WhxBieGkyNbEuy7p2DNbwMLjj5+xDXl2B7IrfC5Lg\n2NmMoCn4OHlz8GIada31jg7HIXJr88mrK2CC/3j8XfwG5JrFlQ0cPt37jrsT/cdjUs1kVJ0bkDiE\nEOLTnC8wttaSHD2fYLfAAblmpGcEDW2NVN7go/+9IQmOnWk1WhZFzaPNYupcIn2j2X3p854fMTAb\n+zU2m/jPD77lxXePUFzZ0KtzZZpKCDGQcmousK/oEMFuQVa1Y7DW5cab+QN2zeFOEhwHSAiZgYfe\nnT2FB2+4/iLVzTUcLz9FmHsIY7xHDcg1//HlWarrWgA4lF7aq3MjPMLwMniQXpkpuxoLIfqlzWLi\n/cyPUFBYFXMPOivbMVhDCo17TxKcXjCZLRw4VUxjc1u/rmPQ6pkfMYdmczN7Cw8NUHRDw96iQ1hU\nC/PCE1EUpd/XO362nAOnS4gMcsfFScvh9JJezVFrFA0T/GOpb2sg1yh/GQkh+m573i5KGsuYExbP\nSK/oAb12hEcYCoq0bOgFSXB64fzFWt7ZnMEfPjje70KvOeHxuOic2Vmwj1Zz6wBFOLi1mls5UJSG\nu96N6UFT+n292sZW/vZFJjqthh/cFkfCxFAqjM2cKzT26jqyq7EQor9KGkrZfmEn3k5e3D5qyYBf\n31nnTLBbIPl1RTLabCVJcHphdJgX4yK8OXSqmH0ne1/QeiUXnQtzw2ZR39bAwYtHByjCwe1oyXEa\nTI3MDr0Zg1bfr2upqsrabVnUNrZx9y0jCfN3Y97U9iHcw+klvbrWOJ8x6DV6SXCEEH1iUS3836V2\nDMvH3omLjba+iPKIoNXcSolsFmsVSXB6QaNR+MFtsbi56Hn/y7OUVDX263rzImaj1+j5Mn8PJotp\ngKIcnFRVZVfhfjSKhjnhCf2+XtqZUr7OKmdsuBeLZ7QX300aE4CXu4GjmWW0maz/C8eg1RPjO4aS\nxjLKGiv6HZsQ4sZy4GIa540XmBwwkZsC4mx2n6iOzuKyH45VJMHpJV9PZ3587020tll4a1M6JnPf\nhwo9DO4khs6kuqWGo6XfDmCUg09WdTbFDaVMDZzUrx09AarrWnhv+1mc9Fq+t2w8Gk17LY9WoxAf\nG0RDs4lT5yt7dc2OaarTMoojhOiF9nYMW3HRObO8H+0YrNGx4d8FqcOxiiQ4fTBnchizJgRzoaSO\nT/fn9utaCyPnolE07MjbNaznVTuWxCf1c2m4qqq8uzWDxhYTy+ePJtDH9aqPJ8QFA3Col9NUE/w6\nlotL2wYhhPXWX2rHcOeopXg5edr0XmHuIegULfkygmMVSXD6aNWisfh7ObPlUB5Z+X3feMnH2Zub\ng6dR2ljOt+WnBzDCwaOssZz0ykxGeEYS7RnZr2vtPXGR0+eriBvhy7zJodd8PCLQnTB/N05kV9DQ\ni9VuXk4eRHlGkG3MpbGtf1OPQogbw7flpzlxqR3DrH62Y7CGTqMjzD2UovoS2sz9W817I5AEp49c\nnHT88PY4FEXh7c/P9Gvp+KKoeSgobM/bNSy34d5deBAVlXn9HL0pr2nig53ZuDjpeHRJzHWXmSuK\nQsKEYExmlWOZvSvEm+gXi0W1cKYyq19xCiGGvyZTE+uzPhmwdgzWivKMwKyaKazv30KXG4EkOP0w\nOsyL2xKjqaxtYe32s32+TpBrAFMCJ1JQV0RGVd+vMxg1mZo4XHwUbycvpgRM7PN1LKrKO5szaGk1\ns2rRGHw9u16lEB8bBPR+07+s9fXpAAAgAElEQVRJAZemqSplmkoI0b2NOVsxttaREr1gwNoxWKOz\n0FjqcHokCU4/3TorilFhnqSdKe113ceVOrb03pa3c6BCGxQOFR+jxdzKLWEJaDXaPl/ny2OFnC2o\nYerYgM46m674ejoTE+nN2YIaKozW7xQd6haMj5M36ZWZmC3mPscqhBjesmty2V90mBC3IBZFzbPr\nvTsKjfNlR+MeSYLTT1pN+yZzTgYt723Porymb60XIjzCiPUbR3ZNLtk1/StcHiwsqoXdBQfQa3Qk\nht3c5+sUVzbw8Z4cPFz1PJQ8zqodkOMvJUGHezGKoygKkwJiaTI1k2McHs9ACDGw2tsxfIyCwsqY\newe0HYM1glwDcNIauCCFxj2yaYKzZs0a7r//flasWMHJkyeve8wrr7xCamoqAGlpacTHx5Oamkpq\nairPP/88AMXFxaSmprJy5Up++tOf0to6uHb+DfR24cFFY2lqMfPnz89gtvRtNVRy1Hygfbvv4eBU\nRQaVzVXMCJqKu96tT9cwWyy8/fkZ2kwWHkoeh6ebwarzpo8LQKfVcKiXrRsmymoqIUQ3tl/YSWlj\nGXPCEhjpFWX3+2sUDZEe4ZQ1ltNkarb7/YcSmyU4R44cIS8vj3Xr1vHiiy/y4osvXnNMdnY2R49e\nvYvvzJkzWbt2LWvXruWZZ54B4NVXX2XlypW8//77REVF8dFHH9kq7D6bNSGYGTGBZBca2Xwor0/X\nGO09glFeI0ivzKSg7uIAR2h/uwdgafiWQ3nkFteREBfEtHHWz3O7OuuZPMaf4spG8kvrrT5vtM9I\nnLQGTlacGZYF30KIvituKGVb3q5L7RhSHBZHlGcEKioFdTJN1R2bJTiHDh1i4cKFAIwaNQqj0Uh9\n/dW/aF566SWefPLJHq+VlpbGggULAEhKSuLQocHXoFJRFB5KGYePhxOb9l8g52Lv+iF1SI5ur8XZ\nMcRHcYrqizlbk8M4n9GEundfM9OV/NI6Nh24gI+HEysXje31+QlxHcXG1tdG6TU6Yn3HUdFUSWmj\nbIcuhGhnUS28n/kRZtXM/TZsx2CNjjoc6SzePZtNHlZUVBAXd3nLal9fX8rLy3F3dwdgw4YNzJw5\nk7CwsKvOy87O5kc/+hFGo5HVq1eTmJhIU1MTBkP71ISfnx/l5eXd3tvHxxWdru8FrdYICPC49j3g\nXx+czr+9eYC/bM7kDz+bi6tz73ouzfWfzpa87XxTdpJU57sI9QgaoIjt66PcjQDcEbfoul+rnrSZ\nzDz316OYLSr/smIq0RG+Vp135b2SfNz469ZMjmaW8fh9k9FqrcvnZ42YyvHyU+Q05TAxenSvYxfX\n15fvA2F78lyssz17D+eNecSHT2VBbLxd7tnVs5nqGsM7p6G4pVieXzfsVh115XB/TU0NGzZs4N13\n36W09HIRaHR0NKtXr2bJkiUUFBTw0EMPsX379i6v05Xqattu1BYQ4EF5ed11Pxbs5cSSm6PYcjiP\nP35wnO8tG9/r6y8In8c7Ne+x/vhmVo2/r7/h2l1daz378o7g7+JHhD6qy69Vdz7anUNeSR3zpoQR\n4edi1TWu91ymjwtk1/Ei9h7LZ8JIP6vuHWmIRkHhcN63JPrP6nXs4lrd/ZsRjiPPxTo1LUbe+/YT\nXHTO3B611C5fs+6ejarqcde7cbY8V54fXSeCNpuiCgwMpKLicuPCsrIyAgICADh8+DBVVVWsWrWK\n1atXk56ezpo1awgKCmLp0qUoikJkZCT+/v6Ulpbi6upKc3N7MVVpaSmBgfbbc6Av7pwzgqggD/af\nKu71ZnMAkwMmEOjqT1rJN1Q319ggQts6cDENk8XEvPDEPm1+lV1oZGtaHv5ezixPGtWvWPrSusHd\n4MZIryhyjXnUtVpfvyOEGJ7WZ22k2dzCXaOW2bwdgzUURSHKM4LqlhpqWyXB6YrNEpzExES2bdsG\nQHp6OoGBgZ3TUykpKWzZsoX169fz2muvERcXx29+8xs2bdrEO++8A0B5eTmVlZUEBQUxa9aszmtt\n376dOXPm2CrsAaHTavjh7bEYdBr+9kUmVbW9q3TXKBoWRyZhVs18VbDXRlHahsliYm/hIZy1TsSH\nTO/1+S2tZt7efAZU+P6tsTgb+jfIOCrMkwBvZ74+W05zq/Ud2yf6x6Kikl6Z2a/7CyGGtm/LTnGi\nIp3R3iNICJ3h6HA6Xa7DkeXiXbFZgjN16lTi4uJYsWIFL7zwAs8++ywbNmxgx44dXZ4zf/58jh49\nysqVK3n88cf57W9/i8Fg4IknnmDjxo2sXLmSmpoa7rzzTluFPWBC/NxYsXAMDc0m3v78DJZersiZ\nETwFbycvDhSlDalRhONlpzC21pIQMqNPRXgf7c6hrLqJxTMjGBvh3e94FEUhIS6Y1jYLx89V9HzC\nJRP9Zbm4EDe6xrYm1p/diE6jY+U4+7VjsEaUx6UdjaXQuEs2rcF56qmnrnodExNzzTHh4eGsXbsW\nAHd3d958881rjgkMDOTdd9+1TZA2NPemUE7lVHL8XAXbjuSz5Gbr90zQaXQsjJzLR+c2sbvwALeN\nTLZhpANnV+F+FBTmhif2+twzF6r46ptCQvxcufuWkQMWU3xcMJsOXOBQekmPuyB3CHINIMDFj4yq\nLNosJvR23sxLCOF4n+Zswdhax60jkgmyYzsGa3SO4EjLhi4NnnR0GFIUhUeWxODlZmDDnvPklfRu\nrjQxdCbuejf2FB4YEhs65RrzyKstYIL/eAJcrSvo7dDYbOIvWzLQKArfvzUW/QCuggv2dWVEiCfp\nuVUY61usOkdRFCb6x9JibuVcdc6AxSKEGBqya3LZfzGNULdgFkXNdXQ41/AwuOPn7ENebYHs2dUF\nSXBszMPVwGPLxmO2qLz1WTotbdb3ODJoDSRFzKHJ1Mz+osM2jHJg7OrY2C+89xv7ffDVOapqW7h1\nVhQjQga+iC8hLghVhbQM64u+ZZpKiBvT1e0Y7rF7OwZrRXpG0NDWSGVztaNDGZQkwbGDCSP9WDQ9\nguLKRtbvzO7VubeEJeCsdeargr20mttsFGH/VTfXcLz8FKFuwYz16d3Kp2/PVbD/VDGRQe7cOiva\nJvHNjA1Coyi9Wk01yisaF50Lp2RXYyFuKNsutWO4JTyBEQ5ox2Cty3U4Mk11PZLg2Mm980YSHuDG\nruNFfNuLYldXvQu3hCdQ11rP4eKjPZ/gIHuLDmFRLSRFzLaqGWaHusZW/vpFJjpt+9SUzsrN+HrL\n09XAhJG+5JXUcbGiwapztBotcX7jqG6poai+2CZxCSEGl4v1JWzvaMcw0nHtGKwRLSupuiUJjp3o\ndVp+eHscOq2Gv2zJsLoWBNp7Oek1Onbk78FssX6Ky15aza0cuJiGm96V6UFTrD5PVVXWbj9LbUMr\nd90ykvAAdxtG2bc9cS5PU52xSUxCiMHDolr4R9bHmFUzK8bdhbOD2jHsPl7EXz9P7/G4CI8wFBQp\nNO6CJDh2FB7gzn1Jo6hvauOdLRlWT3t4GjyYFTqTquZqjpV+a+Moe+9oyXEa2hqZHRqPQWt9a4oj\nGWUcyyxjdLgXyTMibRhhu8lj/HE2aDmcXmr1sv1Y33FoFI3U4QhxA9hfdJjzxjymBE7q/OPG3rLy\nq1m7LYuPd2VTXdf9H8LOOmeC3ALJryvColrsFOHQIQmOnS2cFs6Ekb6cPl/FV19bv3/Bgoi5aBQN\n2/N2DapvZFVV2VW4H42i4ZbwBKvPq6lv4b3tWRj0Gh5bNh6Nxvpprb5y0muZNi6Aytpmsguta4bq\nqndhtPdI8uoKMLbU2jhCIYSjVDfX8GnOVlx0Ltw35g6HxNDY3MafPz9Dx59f2UU9/5yK9oig1dxK\nSYM0B/4uSXDsTFEUHls6HncXPet35VBYbt0mfn4uPswMmkpJYxknB9F0SVZ1NsUNpUwNnIS3k5dV\n56iqyl+3ZtLQbGJ50miCfFxtHOVlfZumau8ndlpGcYQYllRVZf3ZT9vbMYxeipeT/RtYqqrK37dl\nUVXbwqRR7dtsnCvouVVPlKcUGndFEhwH8HJ34tGlMZjMFt7alE6bybq6mkVR81BQ2HZh56BZ1bO7\nsH1p+LxeLA3fd7KYkzmVxEX7kDQlrOcTBlBMpA/e7gaOZpTRZrJuJGyi36U6nMrBk1gKIQbOt+Wn\nOdnRjiHEMe0YDqeXciSjjFFhnvzzHRPQ6zScs2Kk+fKGf7Kj8XdJguMgU8YEMG9KGIXlDXy857xV\n5wS7BXJTwATy6wrJrD5n4wh7VtZYwemKTKI9IxnhZV0NTUVNE//46hwuTloeXTq+VyuuBoJGoxAf\nG0xji4mTOdatZgtw9SPYLYjMqnO0mlttHKEQwp4GQzuG8pom1m7Pwtmg5Qe3xeFk0DI63Jv8sjqa\nWrrvoRfqHoJO0ZJXm2+naIcOSXAc6P75own2dWX70QJO51ZadU5yVBIA2y/ssmVoVtlTeAAVlSQr\n2zJYVJW/bMmgpdXMyoVj8fV0zAqF+LggAA6ll1p9zkS/8bRZTGRV924fIyHE4LYxZwu1rXWkRC1w\nSDsGs8XCnz8/Q3OrmVWLxhLo7QJA7AhfVBXOF3df+6fX6AhzD6WovoQ2i/UNhW8EkuA4kJNeyz/d\nHodWo/DO5xnUNfY8OhDpGc5437GcrcnhvDHPDlFeX5OpmcPFx/AyeDIlcJJV53x1rJDM/BqmjPFn\n1gTrekLZQmSQB+EBbpzMqaC+ybrNEycFyHJxIYabc9XnOeDgdgybD+WRXWhk5vjAq34uxo7sXR2O\nWTVTVH/RZnEORZLgOFhUsAd33zISY0Mrf92aaVVtTecoTt5OW4fXpUPFR2k2t3BL+Cy0mp77RhVX\nNvDRnhzcXfQ8lBJj96mp70qIC8ZkVjmWZd3Kg2jPSNz1bpyqyBhUq9iEEH3TZm7jH1mObceQc9HI\npv0X8PV0IjV53FU/F8dH+wJYVYcT2bnhn9ThXEkSnEEg+eZIYiK9OX6ugr0nes7AR3uPZKRXFKcq\nMhyyw65FtbCn4AB6jY7ZoTf3eLzZYuHtzzNoM1l4KHkcXm4GO0TZvZtjg1CAw6etW02lUTRM8BtP\nbWsdBXVFtg1OCGFz2/J2UtpY7rB2DE0tJv68qb0NzPeXxeLmfPUeYh6uBkL93Th/sRazpfs/qmRH\n4+uTBGcQ6Oig7eas4x9fnaO4svtWAoqikBw1H4DtefavxTldkUFFcxUzgqbibnDr8fith/PJLa4l\nPjaI6TH2n+O+Hl9PZ8ZFenO20EhFTZNV53QsFx9My/SFEL3X3o5ht0PbMfzjq3OU1TSREh9JTJTP\ndY8ZE+5FS5uZgrLutxMJcg3ASWuQBOc7JMEZJHw9nXkoJYbWNgtvfXYGk7n7jD3OL4Yw9xC+Lj1B\neaN1BcoDZVfhAQDmRfRcXJxfWsen+3PxdjewavFYW4fWK5174pyxrtg4xncsOkUrdThCDGEW1cL7\nmY5tx3Ass4z9J4uJCvLgrjkjuzxuTHj73mLnCrqfptIoGiI9wiltLKfJ1DygsQ5lkuAMIjNiAkmc\nGExeSR0b9+V2e2z7KE4SKio78nfbJ0CgqL6Ys9XZjPUZTZh7SLfHtpnap6bMFpVHloy/ZgjW0aaN\nC0Sv03A4vcSq2idnnRNjfUZTVF9MVXO1HSIUQgy0fUWHya11XDuGqtpm/vZFJgadhh/e3n2D4dHh\n3gCcs2JH4yjPCFRUCmQ/nE6S4AwyKxeOJcDbma2H88jK7/6X6JTASQS4+JFWfIyaFutaD/TX7oL2\njf2sWRq+6UAuheX1zJ0c2rkz52Di6qxj8mh/iisbySuts+qcjmkq6U0lxNBT3VzDJge2Y7CoKu9s\nzqCh2cSKBWMI8et+ij/AyxkvdwPnCmt6/CMsSgqNryEJziDj4qTjh7fFoSgKf/78DA3NXS9j1iga\nFkXNw6Sa+Sp/r81jq29t4Gjpcfxd/Jhw6Rd9V3KKjGw5nIe/lzPLk0bbPLa+6pimOmhlsbF0Fxdi\naFJVlXVnNzq0HcP2IwVk5FUzebQ/cyeH9ni8oiiMCffGWN9KubH7qacoD2nZ8F2S4AxCo8K8uD0x\nmqraFtZuy+o2c58ZPA1vJy/2X0yjvq374uT+2n8xjTaLiXnhid3u9tnSZubtzRmgwmPLxuPiZP/l\nl9aaMNIXdxc9R86U9rhSAcDH2Ztw91DOVefQLHPdQgwZx8tPcariDGO8RzIrZKbd759fWsfHe3Lw\ndDPwyFLrt8q4XIfT/X44vs4+uOvduCAJTidJcAapZbOiGB3mxZGMsm4bQ+o1OhZE3kKruZU9BQds\nFo/ZYmZv4UGctU7Eh0zv9tiPd+dQWtXIohkRjIu8/uqAwUKn1TBjfCC1jW2cuWBdXc1E//GYVDMZ\nVY5vlyGE6FljWyMfnv0UnUbHAzH32H0frpY2M3/alI7ZovLYsvF4ulq/VUZHgtNTZ3FFUYjyjKC6\npYa6VuuaOA93kuAMUlqNhh/cFouzQct7289S1s1S5sTQm3HTu7K78IDNRhWOl53E2FpLfMh0XLpZ\ndZCRV82XXxcS4ufK3bd0vTpgMJnVyw7jMk0lxNDS0Y5hSfQCglwD7H7/D3dlU1zZyMJp4Uwc2bt6\nxIhAd5z0Wusab8o01VUkwRnEArxdeHDxWJpbzfz5s/Qup1CctAaSwmfTaGpi/8U0m8Syq/AACgpz\nuykubmox8ZfNGWgUhceWxWLQ97zD8WAwMtSTQG8XvjlbTnNrz71cIjzC8DJ4kF6ZKbsaCzHInavO\n4cDFI4S6BbMw0v7tGE5kV7DzmyLC/N24d96oXp+v1WgYFebJxYqGHlvLdBQayzRVO0lwBrmEuGBm\njg8kp6iWzw923XtqbvgsnLQGvsrfS5vZuv5K1so15nGhNp8J/jEEuvp3edwHX52jsraZpQlRjAz1\nHNAYbElRFOLjgmhts/DN2fIej9coGib4x1Lf1kCuUTr4CjFYtZnbeL+zHcO9dm/HYGxo5d0tGei0\nCj+8Pa7Pf/SNubRcPLuHUZzOlVR1kuCAJDiDnqIoPJQ8Dj9PJz47cKHLeVhXvSu3hM2itrWOwyVf\nD2gMuy4tDZ8XPrvLY05kV7DvZDGRge7cnhg9oPe3h85N/6zsMH55ubhMUwkxWH2Rt5OyxgpuCZ/F\nCK9Iu95bVVXe3ZJBbWMb984dRUSge5+vNbqj0Lio+0JjD4M7vs4+5NcWWrW313AnCc4Q4Oqs5/u3\nxqKqKm9tSqep5frTKEkRc9BpdOzI243ZYh6Qe9e0GDlefopQt2DG+Vx/uXd9Uxt/3ZqJTtvecqK7\njasGqyBfV0aGenLmQhU19S09Hj/OZwx6jV4SHCEGqfZ2DLvwcfLm9pHJdr//ruNFnMypJC7ah4Uz\nIvp1rZEhnmgUxbo6HM8I6tsaqJTNSCXBGSrGRfqwNCGKCmMz7+84e91jvJw8mBUyg8rmKr4uOzEg\n991beAiLamFeRGKXKw/e256FsaGVO+eMJLwff6U4WkJcMKoKR6xo3WDQ6onxHUNJYxlljRV2iE4I\nYa32dgwfYVEt3D/uTru3YyiqaGDdzmzcXfR8b1ksmn6u2nJx0hER5M6F4lraTN3/8SqFxpdJgjOE\n3DF7BNHBHhw4XcKRjOv/El4YOReNomF73q5+F8C2mtvYf/EwbnpXZgRNve4xRzJKOZJRxqgwT1Jm\n2ncIeKDNGB+IVqP0eprqtIziCDGo7C06RG5tPlMd0I6hzWThrU3ptJksPLIkBh8PpwG57pgwL0xm\nldzi7nddlzqcyyTBGUJ0Ws2lQjUNf/8ii6raa5eE+7n4Mj1oMsUNpZzuZzuBo6Xf0NDWSGLozRi0\n1/aRqqlv34jQoNPw/WWxaDT23VtioHm6Gpgwwpe80jqKKnreNHGCX8dycWnbIMRgcWU7hnsd0I7h\nk73nKSir55abQpk6duCWpI+JuFRo3MN+OJEeYSgoMoKDJDhDTrCvKysXjqWxxcSfPzuDxXJtIdni\nqCSgvcCur4Vmqqqyu+AAGkXDLWEJ1/3437Zm0tBs4r6k0QT5uvbpPoNNwoT2YuPDVuyJ4+XkQZRn\nBNnGXBrbGm0dmhCiB+3tGD6hxdzK3aOX2b0dw5kLVXxxJJ8gHxceWDBmQK89Osy6HY2ddc4EuQWS\nX1d0w29jIQnOEDRnUghTxviTVVDDF0euXaYc4hbETQETyKst4Gx1Tp/ucbY6h4sNJUwJmIiPs/c1\nH99/spgTOZWMj/IhaWpYn+4xGE0e7Y+zQcvh9BIsViSHE/1isagWzlRm2SE6IUR32tsxZDDGeyQJ\nITPseu/6pjbe2ZyBVtO+JNzJMLD7gPl4OBHg7Ux2kbHHn01RHuG0mlspaSgb0BiGGklwhiBFUXhk\nSQxe7gY+2XueCyW11xyTfGkUZ1vezj7dY1fhPgCSIq5dGl5hbOIfX53DxUnL95aO73cB3WBi0GuZ\nPi6QytqWHv9SApgUcGmaqlKmqYRwpMa2Rtaf3YhOo2OlndsxqKrK377IpLquhTtmj2BEiG32ARsd\n5k1Ds4niHqbQL9fh3NidxW2a4KxZs4b777+fFStWcPLkyese88orr5CamnrVe83NzSxcuJANGzYA\ncPToUR544AFSU1P5p3/6J4zGnpfKDXcerga+vywWs0XlrU1naGm9urI+yjOCGJ8xZFVnc6G2d5vR\nlTdWcroikyjPCEZ4RV31MYuq8pfNGTS3mnlgwVj8vOy7OsEeEuKCAOtaN4S6BePj5E16ZeaALc0X\nQvTeJ9lbqGutZ0n0QgLt3I5h/6livs4qZ2y4F0vjo3o+oY/GRHTsh9P978DojgTnBq/DsVmCc+TI\nEfLy8li3bh0vvvgiL7744jXHZGdnc/To0Wvef+ONN/Dy8up8/bvf/Y4XX3yRtWvXMmXKFNatW2er\nsIeUuBG+LJ4RQUlVI+t2Xtv4MTm6fRRn+4VdvbrunsIDqKjMv87Gfju/LiQzv4bJo/1JnBjct8AH\nuXGRPvh4OHE0s7zHJZmKojApIJYmUzM5xlw7RSiEuFJZYzkHi9vbMSyyczuG0upG3t9xDhcnHd+/\nzbaLLTp2ND5X0H2CE+oeglbRSoJjqwsfOnSIhQsXAjBq1CiMRiP19Vd3OH3ppZd48sknr3ovJyeH\n7Oxs5s2b1/mej48PNTXt0wVGoxEfn8Hdodqe7pk7ivAAd3Z/e5Hj32kzMMZ7FCM8IzlRkc7Feusa\nSTaZmjlUfBQvgydTAidd9bGSqkY+2p2Du4ueh1PG2b0jr71oNAo3xwbR1GLiRHZlj8dPvLSa6qQs\nFxfCIdKK23dvXxQ1D63Gfj3wTGYLf/7sDC1tZlKTx+Lv5WLT+4X4ueLmrONcYffT53qNjjD3EIrq\ni2mz9Nxfb7iyWWOOiooK4uLiOl/7+vpSXl6Ou3v7RnAbNmxg5syZhIVdXaD68ssv88wzz7Bx48bO\n937zm9/w4IMP4unpiZeXFz//+c+7vbePjys6nW2/yQMC7Fud351fPTKDn/33Hv76RRbTJ4bi63l5\n2ui+Scv4/f432Fu6nydGPNrjtbacPUqzuYU7Y5MJDrpcXGw2W3j5H8dpNVl4cuVURo/ouieVIw3U\nc1k2ZxRfpOXzTXYFS+Z03yDP23cSb6c7caY6C39/92Gb+PXXYPo3Iy4b6s/Folo4evg4LjpnFo5P\nwElnsNu93/sig/MXa5k3NZzb5g7sqim4/rOJHenH0TOlaAw6/LpJqGKCRpJfV0ijzshov+gBj20o\nsFvnsSuXK9fU1LBhwwbeffddSksvb6q2ceNGJk+eTETE1dtaP//887z22mtMmzaNl19+mffff5+H\nHnqoy3tVV9t2yW5AgAfl5d1vtmRPrlqF+5JG8387zvL7vx/lyeU3dRb+RuijCHUL5kD+MRaGJuHv\n4tfldSyqhc8zd6LX6JjsNfmqz3HzoQtk5VUzc3wg40I9B9Xn32Egn4ubTiE8wJ2jZ0rJza/C3eXa\nfYCuNN5nLMfLT3E6L4dgt6ABiWE4GWz/ZkS74fBcMqvOUdlYzayQGdRWtwA9t1oZCOcKa1j/5Vn8\nPJ2595aRA/517OrZRAW2/1xKO3mRGTGBXZ4fqG8vIfg2PwsvS9c/94eDrpJ0m01RBQYGUlFxeQv7\nsrIyAgLaC78OHz5MVVUVq1atYvXq1aSnp7NmzRp2797NV199xfLly/nwww95/fXXOXjwIFlZWUyb\nNg2AWbNmcfr0aVuFPWTNnxrGxJF+pOdW8dWxy5XzGkXD4qgkLKqFHfl7ur1GemUmFU2VzAiagofh\ncsuFgrJ6Nu7LxcvNwIOLx9nscxhsEiYEYbaoHM3seallx26pMk0lhH0dvjQ9dXPIdLvds7G5fR8y\ngB/cFours/26lI8Jt24/HGnZYMMEJzExkW3btgGQnp5OYGBg5/RUSkoKW7ZsYf369bz22mvExcXx\nm9/8hj/84Q98/PHHrF+/nvvuu4/HH3+cWbNm4e/vT3Z2NgCnTp0iKsp2VepDlaIofG9pDB6uej7c\nnU1B2eV6p6mBk/B39uVw8TGMLdcuKe+ws6Nr+BVLw01mC29/fgazReXRpTE9jmQMJzePD0LButVU\ncX4xKCiyq7EQdtRkaubb8lP4u/gxyivabvf9vx1ZVBibWZYQzdiIa/cJs6XoYE90Wk2PjTeD3QJx\n0hokwbGFqVOnEhcXx4oVK3jhhRd49tln2bBhAzt27Oj1tZ577jmefvppUlNTOXPmzDXLykU7L3cn\nHl06HpNZ5a3P0jtXAGk1WhZFzcNkMbGzYN91zy2qL+ZsdTZjvUcR5h7S+f6mA7mXth0PYdKowVl3\nYyu+ns7ERPmQXWikrKap22PdDW6M9Ioi15hHXWt9t8cKIQbG8bJTtFnaiA+eZrfat8NnSjiUXsqI\nEE9uT4y2yz2vpNdpiA7xIL+sjqaWrguINYqGSI9wShvLaTZd29bnRmDTcbWnnnrqqtcxMTHXHBMe\nHs7atWuvef+JJ57o/I90U3gAACAASURBVP+pU6fywQcfDHyAw9Dk0f4kTQ1j1zdFfLg7h5ULxwLt\nw7dbcnewr+gQi6OScNNf3Vphd8EB4OqN/XIuGtl8KA8/T2funz/wBXRDQUJcMBl51aSll3Bb4ohu\nj53oH0uO8QLplZnE23G4XIgb1eHiYwDMDJ5ml/tVGJtYu+0sTnotP7wtFp3WMXvljgn3IrvQyPni\nWuKifbs8LtIznHM158mvK2KsT/eLJYYj2cl4GFqeNJoQP1e+PFbIqfPty5z1Gh3zI2+hxdzKnsID\nVx1f39rA0dJv8Hf2ZcKlDtmtbWbe+TwDVYXHlo3Hxcl+c8yDybRxAeh1Gg6ll/bY16ujDkemqYSw\nvfLGSnKMuYz1HoWfi+23DrFYVN7+PIOmFhMrF45xaP+9y/vhdF+HE+0ZCdy4dTiS4AxD7X9dxKHV\nKLyzOYPaxlYAZofG46pzYXfBAZpNl1ca7L+YRpvFxNyIRDRK+7fEx3vOU1LVyMLp4cRE3bj7Drk4\n6Zgyxp+SqkYulHS/SiLINYAAFz8yqrJu6L0nhLCHtJL24mJ7jZZuTcvjbEEN08YGMHtSSM8n2FBn\n480e6nBu9EJjSXCGqahgD+6ZO4rahlb+uiUTVVVx1jkxL2I2DaZGDl5MA8BsMbOv6BBOWgMJl35Q\nZOZVs+NYAcG+rtw798Yb1vyu+Lj25ZaHTndfbKwoChP9Y2kxt3Kuj01OhRA9s6gW0kq+xklrYHLg\nRJvfL7e4lo37cvF2N/DwkhiH73Xl7qIn1N+N8xdrMVu67hju6+yDu97thu1JJQnOMLZ4ZgTjo3z4\nNruCPd9eBGBeeCIGrYEv8/fSZjFxvPwUNS1GEkJm4KJzoanFxDubM1AUeOzW8Rj09tsVdLCaMMIX\ndxc9aRmlmMxd/zCBK6epZLm4ELaSXXOequZqpgRMwklr2439WlrNvPVZ+0rSx26NHTQrSceEe9HS\nZr5qxex3KYpClGcEVc3VN+TiB0lwhjGNovDYsvG4Oev44KtzFFc24KZ3ZU5YPMbWWo4Uf82ugv0o\nKMwNTwRg3c5zVNY2sywhilGhXj3c4cag02q4eXwQdY1tnLlQ3e2xo7yicdG5cKoio8eaHSFE33Ts\nfRMfYvvi4g92nqO0qpHkmRHdFvTa2+X9cGSaqiuS4Axzvp7OPJwSQ6vJwp82pWMyW5gfMQedouXT\nnK1cqM0nzi+GQFd/TuZUsPdEMRGB7tzew4qhG038BOs6jGs1WuL8xlHdUkNRfbE9QhPihtJsauF4\n+Sn8nH0Z5W3bn1PfnC1nz7cX+f/s3Xd4m+W5P/Dvq72Hhyxbku14JLEdJ04gzmIYkkDKKC2hwRBS\noAV66GEcCi3j/ArnOleTktPDTEsOdAQIBcJwaWmBDCAQIE7iLK84sR3HU7IsD8myJcsavz9kO1Fs\nyUuyhu/PdXHVll69etzXjm8/z/1+H51KgpuviKzl+qzhRuNx9qVKm8U7i1OBMwtcOl+FyxYmo6nd\nir99fRYKvhzLky9Fn9O7pcVVustgtQ1ix6c1YLMY3HND+G5/jFQZyTKolEIcP9MRMHsCoGUqQkLp\neEcFHC4HlqmXjNwUEQrdvQN4/dMacDks3HdjLricyPo3MVEugFzCQ22rOeBs8UiBMwv7cCLripGQ\nuX1NNlRKIT471IRTjd1Ym1YEFsNCiliNeUrvPlZmqwM/uHwOdCrJ+CecZRiGwYo8NRxON45dtGv7\nxXLj5oHFsOh2cUJC4NBQ9s2yEC5PuT0e/OWTU7DaBrHhqixoEiPv30SGYZCtVcBsdaDD7D/IT8qT\nIE6gRKOledYtm1OBM0sIeBzce2MuGIbBn/5ZDQFk+MWSn+PfFt6FstMdOFTdjswUGdYtSw33UCPW\nijzvMlXpOMtUIq4QWYoMNPY2o2cg8Po4IWTiTLYu1PacRbYiI+DGwdO1r6wFVQ1dWJgZj6uXaEL2\nPtM1mX2prIN96LIH7iGMNVTgzCKZKXLcdFk6unsH8OZnNUiX6cBxibFz92nwOCz89IZcsFn0LeGP\nSilCpkaG6sZudPcG3rE4fygwscpUMxNDI2RWGM6+CeXGms1GKz7YXwepiIu7r8sJ+y3hgQwXOHWt\n4zQaz9JlKvptNstcvyId2Vo5yk534NsKA9747DSstkGsL8qEOozJnNFiRZ4aHg9wqLo94HH58UN9\nOJ3Uh0NIMLg9bhzSHwWPxcXixAUheY9BpwuvfVwFp8uDu6/LgVwc2lvQp0unkoDPZY8f+DdU4Jyz\nNM3EsCIGFTizDIvF4N4bciHks/HGZzU4UWfC/FQFVl+iDffQosLS+SqwWcy4y1SJonioxUmo6aqF\nw+WYodERErvqe86h096FxaqFEHAEIXmP9/fXo7WjD1ct1qAgK/I3F2azWMjUyNBm6oPVNuj3uFSp\nBgwYNFloBofEuASFEHdcMw8utwcCHhs/uT4HrAieho0kUhEP+RnxaDJa0dIRODgrPz4Hg24nTnfX\nzdDoCIldpQZvc3Gosm8qz3ZiX1kLkuNF2HB1VkjeIxSGt22oCzCLI+AIkCRKRFNvC9yewGGlsYQK\nnFlqRZ4aP70+B7/YUIAEuTDcw4kqKxZ4t24orQq8TLUw0btMVd5By1SETMeAy4HjxnLECZTIUmQE\n/fyWfgf+/K9TYLMY3HdjHvhRlOCerRvKw2kdPw9nwOWAoc84E8OKCFTgzGKr8pORpaW04slalBkP\nIZ+N0moD3AFuu0yXpULCFaOy89Ss+quJkGA7YazAQIiybzweD17/pAbmPgduvjIDaWppUM8fahnJ\nMrAYZsJ9OLOp0ZgKHEImicdl45J5KnRZBnCmyf9fTSyGhQXxObA4etHc2zqDIyQktpQO3z2lDv7d\nU1+dbMOJOhNy0pS4tjD6YjKEfA50SRKc01sw6HT5PS5N5u2zbJpFicZU4BAyBSuGdxgfp9l4+Hbx\ncko1JmRKOm3dONNdh0x5OhJFwc2+0Xf24d19tRALOPhpFPciZmvkcLo8aND3+j1GI0kBm2HjHBU4\nhJBA5qUqoJTyUXbaGPCvpvlxc8Fh2LRtAyFTdNhwDACwPMjZN06XG6/9oxoOpxs/XjcfcbLQ3Jk1\nE4b7cALl4XBZHGgkyWi16jHoDrzdTKygAoeQKWAxDJbnJcE24MLJuk6/xwk4fMxVZqHVqkenbXal\niBIyXR6PB6WGMnBZXCxWLQzquT860IDG9l6syldj6XxVUM8904bvpBo30Vimg8vjQtss2QiYChxC\npmh4meq7yoktU1V20t5UhExGvfkcTLZOFCQugDCI2Tc1jd34tLQRiQoBbl8zN2jnDRellI9EhQB1\nreaANz6cD/ybHctUVOAQMkXaRAl0Kgkqznait99/mB/tLk7I1BzSe5uLg7k81WcfxJ/+VQ2G8d4S\nLuRzgnbucMrSKNBnd0Jv6vN7TJrU22jcSAUOIWQ8K/LUcLk9KKvxny2hFCiglaSgtrsedqf/XX8J\nIec5XA4cM56Ekq/AXGVmUM7p8Xiwc/dpdFkG8P1V6cjUxE5MRrZuaJkqQB+OWqwCj82bNbeKU4FD\nyDQsy00CA+DgOKF/+Qk5cHpcONVVOzMDIyTKneiohN01ENTsm4NVBhw+ZUSWRo7rV6YF5ZyRIls7\nFPjX7L/AYTEspEm1aO8zzoo/tqb8XXPu3LkgDoOQ6KSU8pGTrkRdqxnGHpvf42iZipDJGV6eKgzS\n1gwdPTa8tecMBDw27rkxF2xWbP19nxwvgljAQW1L4EbjVJkWHnjQNAuyuQJe4bvvvtvn81deeWXk\n46effjo0IyIkygw3G5cGaDbWSTWQ86So6qyhVGNCxtFt78Hp7jpkyNOQJEqc9vlcbjf++HE17A4X\nNq6dC5Ui9ranYTEMsjRymMx2dPcO+D0uTTqUaDwL+nACFjhOp++98qWlpSMfewJ0ahMymyyZmwge\nh4WDVQa/PxcshoUFCbmwDvahwdw0wyMkJLocMhyDBx4sD1Jy8b++a0RdqxmFOSqsHNpLLhZNJA8n\nfRZt2RCwwGEuSnW88B/vi58jZLYS8jkoyE5Ae7ctYJLo8O3itExFiH8ejweHDGXgsjhYkjT97Jv6\nVjP+8e05xMn42HTtvJj+3ZWtHT8PJ06ghIQrphmci8XyNwYh0zH8V2GgrRvmKbPBZXGpwCEkgAZL\nE4z9JixKXAAhZ3pLSbYBJ177uAoejwf3XJ8LsYAbpFFGpnS1FBx24I03GYZBqkyLLns3eh3WGRzd\nzAtY4JjNZhw8eHDkP4vFgtLS0pGPCSFeuelxkIq4OHyqHU7X2D02PDYX8+OyYeg3wthvmuEREhId\nSvVlABCU5am3951BR48d65anYn6actrni3RcDhvpyTI0GXthG/C/HUP6LOnDCZhwJJPJfBqLpVIp\n/vCHP4x8TAjx4rBZKMxJwudHW1DV0IVFWQljHpefkIMKUzUqTdW4OvWKGR4lIZHN4RrE0faTUPDl\nmBeXNa1zHakx4tsKA9KSpPjh5RlBGmHky9bKUddixlm9BXnpcWMeM5xo3GhpxoKhpfNYFLDA2blz\n50yNg5CotyJPjc+PtuBglcFvgbMgfrgP5xQVOIRcpNxUBbvLjiu0K6aVfdNlsePNz2rA47Bw3/dz\nwWHH1i3hgWRrFfgUTaht7hm/wInxRuOAV91qteL1118f+fzdd9/FTTfdhIceeggmE02xE3KhOclS\nJCmFOF5r8js9LOfLkCbToc7cgP7B/hkeISGRbXh5apl66tk3bo8Hf/pnNfrsThSvzkZyvDhYw4sK\nIxtvBujDkfIkUPIVaLQ0x/Qd0QELnKeffhqdnd6dkhsaGvD888/j8ccfx8qVK7F58+ZxT75lyxbc\neuutKC4uRnl5+ZjHPPfcc9i0aZPPY3a7HWvWrEFJSQkAYHBwEI8++ihuueUW3HnnnTCb/V84QsKF\nYRisWKDGoNONY2c6/B6XH58Lt8eN6s7TMzg6QiJbz4AZNV21SJelQi2e+u7euw83oaapBwVZCbiy\nICWII4wOEiEXKQlinG2zwOX2n7mVLtPBOtiHLnv3DI5uZgUscJqbm/Hoo48CAHbv3o1169Zh5cqV\nKC4uHncG5/Dhw2hsbMSuXbuwefPmMQuiuro6HDlyZNTj27dvh1x+fo+Q9957D0qlEh988AGuu+46\nlJWVTeiLI2SmLZ/ADuMLE72pxuV0NxUhIw4PZ99MI7m40dCLkq/OQi7m4a7r5s/aO3+ztXIMDLrQ\nbPR/l9RsWKYKWOCIRKKRjw8fPozly5ePfD7eN87BgwexZs0aAEBmZibMZjOsVt//s5999lk88sgj\nPo/V19ejrq4ORUVFI499+eWX+P73vw8AuPXWW7F69eqA701IuKgUQmRp5Khp7PabJpoiVkPJV6C6\n6zRcbtcMj5CQyOPxeFCqPwoOi4NLVIumdI6BQRde+7gKLrcHP7k+BzIRL8ijjB7n83D8r3akyWJ/\nZ/GATcYulwudnZ3o6+vD8ePH8cILLwAA+vr6YLP533cHAEwmE/Ly8kY+j4uLQ0dHByQSCQCgpKQE\nhYWF0Gg0Pq/bunUrfv3rX+Ojjz4aeay1tRVff/01fve73yEhIQHPPPMMFAqF3/dWKkXgcNgBxzdd\niYl0F1kkioTrsnZ5Guo+LEdlYw9uvmrsO0EKdYuwu+4rmNCOBYnzZniE4REJ14aMFgnXpbazAe39\nRqzQXYK0lKQpnWP7hyeh7+zHjZdn4Opl6cEdYJhM9dosW8jCn/55Ck0dfX7PIVbMB3OcQZutLSK+\nB0IhYIFz77334rrrroPdbscDDzwAuVwOu92O22+/HRs2bJjUG13YyNTT04OSkhLs2LED7e3nd2H+\n6KOPUFBQAJ1ON+q1c+bMwQMPPIBXXnkFr776Kh5//HG/79XdHdrmzcREKTo6/CfWkvCIlOuSo5WD\nzWKw73AjLl8w9j/W2eJs7MZXOFBfhiRW7PcJRMq1Ib4i5bp8dvoAAGBx3KIpjafZaMUn352DJkGM\n6wt1EfE1Tdd0rg3L44FcwkPlWROMRovfFZckUSLquxrRbjQHbcf2cPBXoAUscK688kp88803GBgY\nGJl5EQgE+OUvf4nLLrss4BuqVCqfPh2j0YjERO+maaWlpejq6sLGjRvhcDjQ1NSELVu2wGg0orm5\nGfv374fBYACPx4NarUZCQgKWLl0KALjsssuwbdu2iX/lhMwwiZCLhZnxOF5rQovRCq1KMuqYLGUG\n+GweKkynsD7rxlnbK0DIoGsQZe0nIOdJMV+ZPaVz7Dni3d9t/ZWZ4HFDO3sfDRiGQbZWgbIaIzrM\ndr+bi6bJdDAYjGjv70CyeGozZ5EsYIHT1tY28vGFycUZGRloa2tDSor/vzxXrVqFbdu2obi4GFVV\nVVCpVCNF0rp167Bu3ToAQEtLC5588kk89dRTPq/ftm0bNBoNVq5cicrKShw4cADr169HVVUV5syZ\nM/mvlJAZtCJPjeO1JhysMuBHqtHLVFwWB7lx83C8owLt/UaoY/AfF0ImotxUDZvThstSi8BmTb44\nMVsHcKi6HUlKIRZmxYdghNEpWyNHWY0Rtc09AQucQ4ajOGdpnn0FztVXX405c+aMzLxcvNnmm2++\n6fe1S5YsQV5eHoqLi8EwDJ555hmUlJRAKpVi7dq1kxrkpk2b8Pjjj+ODDz6ASCTC1q1bJ/V6Qmba\noqx4CPlslFa3Y31RJlhjzNDkJ+TieEcFyk3VVOCQWeuQ4SgAYNkU75764lgrnC4PrlmqG/PnbLbK\n1p3Pw1mVnzzmMcONxk2WZqxIDs7O7ZEkYIGzdetW/P3vf0dfXx+uv/563HDDDYiLGzsZcSyPPfaY\nz+fz588fdYxWqx0zMfnBBx8c+VgoFOLll1+e8PsSEm5cDhuXzlPhQLkep5t6kDPGPjh58fPBgEGF\n6RSuSbsqDKMkJLzMAxZUd55GmlQ3pRkEx6ALXx5vhVjAwcoFY/8Sn610Kgn4XDbqWv3fSaWRpIDN\nsNFoic1bxQN2Fd100034y1/+ghdffBFWqxUbN27EPffcg48//hh2u32mxkhIVFqRF3iHcQlPjAx5\nGhrMjTG/qy8hY5lu9s13VQZYbYMoWqwBn0e9Nxdis1jI1MjQZuqD1TY45jFcFgcaSTJarG0YdPvf\nnDNaTahtOjk5GT//+c/x6aef4tprr8VvfvObcZuMCZnt5qYqECfj4+hpIxyDY+fd5CfkwgMPqjpr\nZnh0hISXx+NBqeEoOAwblyQVTPr1bo8He480g81icPUSbQhGGP2Gt22oC7BtQ5pMB5fHhTarfqaG\nNWMmVOBYLBa89dZbuPnmm/HWW2/hZz/7GT755JNQj42QqMZiGCzPVcM24MKJurGTv/MTvKnGFaZT\nMzk0QsKuqbcFhr525CfkQswVjf+Ci1Se7YS+sx/LcpOglPJDMMLol63z5sXVtvT4PSZNGruBfwF7\ncL755ht8+OGHqKysxDXXXINnn30Wc+fOnamxERL1VuQl4ZPSRpRWtaMwZ3SPQZIoEYnCeJzqOo1B\ntxNcVsAfSUJiRqne21y8fIrNrbsPe38hX7NUN86Rs1dGsgwshkFtgD6ckS0bYrAPJ+C/pvfccw/S\n09OxZMkSdHV1YceOHT7P//a3vw3p4AiJdppECVJVElSc7URvvwPSi+LjGYZBfkIuvmg+gNrueuTG\nz45UYzK7DbqdKGs/DilPgpy4yf/R3NTei1ON3chJUyI1KTZTeINByOdAlyTBOb0Fg04XuGMk/KvF\nKvDYPJzrnWUzOMO3gXd3d0Op9L0LpKUl9qo9QkJhxQI1dn1RhyM1xjF7BYYLnApTNRU4ZFaoNJ1C\nv9OG1borppR9s/eI95fxWpq9GVe2Ro5GQy8a9L2Yqxu9xRGLYSFVqkF9zznYnXYIOIIwjDI0Avbg\nsFgsPProo/j1r3+Np59+GklJSSgsLMSZM2fw4osvztQYCYlqhTlJYBjgoJ8dxjPl6RByhKgwnfLJ\nmiIkVpXqywBMLfumxzqA0up2JMWJsDCTgv3GM9yHE+h28TSZDh540NzbOlPDmhEBZ3BeeOEFvP76\n68jMzMTnn3+Op59+Gm63G3K5HO+///5MjZGQqKaU8pGbpkTVuW60d/cjSenbUMlmsZEXPw9l7SfQ\natVDK439vanI7GVx9KK66zR0Ug00ksln13xxrAUuNwX7TdTwnVS1zT3A8rQxj0mTemfCzlmaka3M\nnLGxhdq4MziZmd4vdvXq1WhtbcWPf/xj/P73v0dSEiWvEjJRy4cycUqr2sd8/vzdVNUzNiZCwuGI\n4TjcHjeWqyffXDww6ML+421DwX7qEIwu9iilfCQqBKhrNcPtZ4Z4pNG4N7ZaTwIWOBdvAJicnDzp\nbRYIIcCSuYngcVg4WGUYcxkqN24eWAyLbhcnMc3j8aBUXwY2w8alU8i+OVjpDfa7aokGfNpUc8Ky\nNAr02Z3Qm/rGfD5eoISEK0ZTjN0qPqn90WnHY0KmRsjnYMncRBi7bTirt4x6XsQVIkuRgcbeZvQM\n+F8rJySaNVtb0dZnQH5CDiQ88aRe6/Z4sIeC/aZkZF8qP304DMMgVaZFp707plLVAxY4x48fR1FR\n0ch/w59feeWVKCoqmqEhEhIbhpep/DUb5yfkAACqTJRqTGLToaHsm2XqyTcXV9R3wtDVj+W5SVBI\nKNhvMrK1Q4F/zQEajaXDeTixM4sTsMn4s88+m6lxEBLz8uYoIRVxcfiUEcWrs8Fh+/59kR+fiw9r\nP0ZFZzVWaZaFaZSEhIbT7cSR9uOQcMXIix+98fJ49tCt4VOWHC+CWMAJnGg8tLN4Y28LFgz9sRXt\nAhY4Go1mpsZBSMxjs1hYlpOEfUdbUNnQhYKsBJ/nE0XxUIuTUNNVC4fLAR6b5+dMhESfys4a9A32\n42rd5ZPOvqFgv+lhMQyyNHKcrO9Ed+/AmFtbnE80jp0ZnEn14BBCpmfFguG7qfwsU8XnYNDtxOnu\nupkcFiEhN53lqeHZm2sLafZmqsbLw5HxpFDyFWi0NMdMHhcVOITMoHS1FOo4EY7XmmAbcI56fmGi\n93bx8g66XZzEjl6HFZWdp6CVpEw656m7dwCHqtuhjhNhQQYF+01VtvaCPBw/0mQ6WAf70GX3f0w0\noQKHkBnEMAxW5CVh0OlG2WnjqOfTZamQcMWo7DwFt8cdhhESEnxH2oeyb6awsSYF+wVHuloKDptB\nbYv/RuP0kTyc2Fimoq2LCZlhy/LU+NuBBpRWtePyhb5/zbIYFhbE56DUUIY3qt+FnC+DiCOEiCOE\nkCOEkCOAiCuCiCMY+lwIHpsbpq+EkIkp1ZeBxbAmnX3jDfZrhUTIHVneJVPD5bCRnixDfasZtgEn\nhPzRv/5HGo0tzViiWjjTQww6KnAImWEqhRBZWjlqGrvRZbEjTua7ud1S9WIcMhxFWfuJCZ2Pw+J4\nC58xCiGfx7nCkc+FI8cKprTZISET1dzbhlarHgsT8iDlSSb12u8qDeizO3HDynQK9guCbK0cdS1m\nnNVbkJceN+p5nVQLBkzMNBpTgUNIGKzIU6OuxYxDp9rxvWW++8PMj8vG/1z+DHodVvQ77bA5beh3\n2mBz2mAbtKP/ws+ddvQPej/uG+xHh61z0ktbfDbvgoJHCBH3/OyQtzgSDD0u9H2cKwCfzQeLoZVu\n4t8hg3djzeWT3FhzONiPw2awegnd0RsM2VoFPkUTapt7xixwhBwBkkSJaOptgdvjjvqfbSpwCAmD\npfNVeHvvGRysNIwqcAB4l6G4ojFeGZjH44HDPegtigbHLoT6hz932mC74LHuATP0fe3wYOJ3UDBg\nIBwugEYVQgKIOCIIuQIk98fBZWNBwhVDzBVBzBWBz+ZTOnqMc7ldOGI4DjFXNOnsm/L6TrR39WNV\nvhpyCvYLipGNNwP04aTJdDAYjGjv70CyOLr3nKQCh5AwkAi5WJgZj+O1JjQbrdCpJjd17w/DMOCz\neeCzeVDw5ZN+vdvjxoBrYKg4umD26IJCaPjx4SJquFhqt5ngcDkm/F4chj1U7Igv+l+RTyEkueB5\nIUcQ9X9VziZVnTWwDvahSLsKHNbkft3sOdwEALhmaWoohjYrSYRcpCSIcbbNApfbDTZr9M9SqkyL\nQ4ajaLQ0U4FDCJmaFXlqHK814WCVATpVVriHA8Db5Dy8DDWVG3Jdbtf52aHhgmjQBpbAjfbuLlgH\n+9A32I++wf6Rj7sHzGjrGzsX6GIMmJHCx39RJPYpkMQcEfUZhUmpwZt9M9m7pxoNvahp6kFuujJo\nxT/xytbK0WbqQ7PRinS1bNTzI3dSWVqmdNdbJKECh5AwWZQVDyGfg0PV7bjlykywWNG/XMNmsSHh\niUdtpJiYKEVHR6/f17ncLvQ7begb7IN1sB99YxRCvh/3wdhvmvBympAjgJgzVBDxRBBzxJAEmDUS\nc8V0d9o0WR19qDSdQopYDa1kctk3w8F+NHsTfFkaOb460YbaZvOYBY5GkgI2w46JRmMqcAgJEy6H\njaXzVfj6ZBtON3UjZ4ymv9mCzWJDypNM6i4bt8cNu9MeoCC6uFjqQ6u1DU6Pa0Ln57G4IwXQhcXP\nHHkaCtVLpvqlzhpl7Sfg8riwPPnSSfVadfcO4PCpdiTHi7AgY/b+TITKcKJxbUvPmPt6cVkcaCRq\n78+K2znppcVIEr0jJyQGrMhLwtcn2/BdlWFWFzhTwWJYFzRjJ4x7POBtwh5wOUYKnlGFkLMfVsfQ\n40MfG20mtFjbRs7xdetBOFwOXKZZHqKvLDaUGrzZN0vViyf1uuFgv7UU7BcSiXIB5BIealvN8Hg8\nYxafabJUNPW2otWqH9mjKhpRgUNIGGXrFIiX8XH0dAfuuMZFWR8hxjAMBBw+BBw+4oXKCb9u0DWI\nPmc/Om3deLXidbx35u9IFquRqUgP3WCjWKtVj+beVuQn5EDGm/jmmAOO88F+K/Mo2C8UGIZBtlaB\nshojOsx2qBTC/Qe0KgAAIABJREFUUcekSbU4AG/gXzQXOHQ7AiFhxGIYLM9Tw+5w4WSdKdzDIX5w\n2Vwo+HJkKtLx07w74IEHf6x8E90xsmdPsJ3fWHNyTarfVerRZ3fiqsUa8KjYD5lsTeB9qdIuaDSO\nZlTgEBJmy4f+Uj1YObE7iUh4zYvLws1ZN6DXYcVrFW/C4RoM95AiisvtwuH2YxBzRFiQkDPh110Y\n7Hc1BfuFVLYucB6OWqwCj82L+j2pqMAhJMw0CWKkJUlR2dAFS//Ec2RI+BRpV2GZ+hI09bbgndMf\nwuOZeDhirKvuOo1ehxWXqgvAnUSDanldJ9q7bVieS8F+oaZTScDnslHXOnaBw2JYSJVqYOgzwu60\nz/DogocKHEIiwIq8JLjcHhw5NXqHcRJ5GIbBbfNuRppMh8OGY/iy+UC4hxQxzi9PTW5rhj1HhoP9\norfnI1qwWSxkamRoM/XBaht7BjJNqoMHHjT3ts7w6IInpAXOli1bcOutt6K4uBjl5eVjHvPcc89h\n06ZNPo/Z7XasWbMGJSUlPo8fOHAA8+bNC9l4CQmXwtwkMAxwsIqWqaIFl83Fffk/hownRUndv1DT\nVRvuIYWddbAPFaZqJIuTkCrVTvh1w8F+eelKaCnYb0YMb9tQ52eZamRn8d7o7cMJWYFz+PBhNDY2\nYteuXdi8eTM2b9486pi6ujocOXJk1OPbt2+HXO4bMz8wMIDXXnsNiYmJoRoyIWGjkPCRmx6Hs20W\ntHf1h3s4ZIIUfDnuzd8EFsPCXyr/CpOtM9xDCquj7SfhnEL2zcjsTSEF+82UC/NwxpIm816Lc1Ec\n+BeyAufgwYNYs2YNACAzMxNmsxlWq9XnmGeffRaPPPKIz2P19fWoq6tDUVGRz+P/93//h9tvvx08\nHi9UQyYkrFbkefd9oVmc6JIhT8et836APmc/Xi1/A3bnQLiHFDal+jIwYLA0aeLZN95gPyNSEsRY\nMIeyoGZKRrIMLIZBrZ8+nHiBEmKuCE1U4IxmMpmgVJ7PmYiLi0NHR8fI5yUlJSgsLIRG49stv3Xr\nVjzxxBM+jzU0NKCmpgbf+973QjVcQsJuydxE8LgslFa1U9NqlFmVsgxXaFagrc+Anafem5XXr81q\nQFNvC3Lj50HOH70FgD+fH/UG+12zVEe7y88gIZ8DnUqCc3oLBp2j070ZhkGaVIdOezd6HdYxzhD5\nZizo78If+J6eHpSUlGDHjh1ob28fefyjjz5CQUEBdDrfJrPf/va3+H//7/9N+L2UShE4nNBmKCQm\nTjy8isycaL8uK/NTsP9YC7r6nZgfY8nG0X5txvNv8RvRsd+EEx0VONDxDdbnXRfuIU1IsK7L7ra9\nAIBr5l024XPaB5z4+mQb5BIebrgyi4IuLxLqn5mFcxPR2N6LbpsLeRmKUc/nJmeiuus0ephOZCQm\nh3QsoRCyAkelUsFkOh9cZjQaR/pnSktL0dXVhY0bN8LhcKCpqQlbtmyB0WhEc3Mz9u/fD4PBAB6P\nB4ZhcPbsWTz22GMj57njjjvw1ltv+X3v7u7Q9jCMt3EgCY9YuC6Ls+Kx/1gLPvn2LOLFsbPZYyxc\nm4m4c95t2Gp5GbsqP4aSFY/8hNxwDymgYF0Xl9uF/WdLIeQIkcadM+FzfnGsBVbbIL6/Kh2WHuo9\nu9BM/Mxo40UAgCOVbVBJR7d/JLBVAIDyljPQcdNCOpbp8FcIhqzAWbVqFbZt24bi4mJUVVVBpVJB\nIvF2x69btw7r1q0DALS0tODJJ5/EU0895fP6bdu2QaPR4Ic//CF++MMfjjx+9dVXByxuCIlmuelK\nyERcHDllxG2rs8FhU5JDNJHyJLhv4Y/x/NHteL3qHfzy0gegFieFe1ghV9NdC4ujF5drVoA7wV3Y\nLwz2u2rJxO+4IsEz/p1U3tWUaO3DCVmBs2TJEuTl5aG4uBgMw+CZZ55BSUkJpFIp1q5dG6q3JSSq\nsVksFOYmYV9ZC556rRQpCWKo40Tn/4sXQS7mUa9CBEuVanHH/Fuwo/odvFr+Bn556YMQcUfv9xNL\nSvVlAIDlyRPPvjlZZ4Kx24bLFiZDLqabR8JBKeUjQS5AXasZbo9n1OamMp4USr4CjZYWvxtzRrKQ\n9uAMLysNmz9//qhjtFotdu7cOerxBx98cMxzfvHFF8EZHCERas2lOrR29KG1w4ry+k6U1/veeizk\nsy8qerxFUJJSSPv3RIhL1YvRYtVjb9N+7Kh+G/cvvBssJjZn4/oH+1HeUQW1SIU06cRD+vYc9s4K\nULBfeGVrFThYZYDe1AdN4ugMojSZDic6KtBl75nUBrWRgHYTJyTCqBRC/PI27222/fZB6Lv6Yejs\nh+GC/202WtGg912fZwDEyQRIjj8/2zNcBCml/Kj76yvafT9zHVqtelR3nsbHZ3fjpszYvAv0qNGb\nfbMs+ZIJf4+dM1hwurkHeXPioB3jlyqZOdk6OQ5WGVDbavZT4GhxoqMCjb3NVOAQQoJHJOAiM0WO\nzBTf4Eu32wOTxe4teDr7vMVPVz/0Xf2obOhCZUOXz/F8LhtJcUKo40RIjvdd9uLzaNYnFFgMC3fn\n3Yb/KduGPY1fQitJxiVJBeEeVtCV6o+CAYNC9ZIJv2bPEe/szbU0exN22dqhwL9mM4oKRm9ymj7S\nh9OCJaqFMzq26aICh5AoxGIxUCmEUCmEWJgZ7/OcbcA5Mtuj7zo/86Pv7EdT++g8C6WU7zPjMzwD\nFCcTjFqTJ5Mj4orws4V34Xdl27Dz1PtQiVTQSVPCPaygMfQZcc7ShNy4eVDw5eO/AECXxY4jQ8F+\neRTsF3bJ8SKIBRy/icY6qRYMGJyzNM3wyKaPChxCYoyQz8GcZBnmJPuGrbk9HnQNzfpcWPgYuvpx\nqrEbpxq7fY7ncVhQKS8ofC4ogoR8+qdjopLFSbgz9za8VvEGXqt4A7+69EFIebGxLHPIMLSx5iSa\niz8/RsF+kYTFMMjSyHGyvhPdvQNQSn13chdyBFCJEtHc2wq3xx1VvWT0rxQhswSLYZAgFyJBLsSC\nDN9ZH7vDifYuG/Rdfef7fYb+a+kYPesjl/C8BU+cb79PglwIFot+aV1sUWIerp+zFv9q2Is/V76F\nBwvuBZsV3UuDbo8bh/RHIeQIsDAhb0KvsTuc+Op4G6Qi7sjWJCT8snUKnKzvRF2rGUvnq0Y9ny7T\n4ZDBCGN/R1TFHlCBQwiBgMdBmlqKNLVvYJbb40FP74Bvo/PQx6ebelDT5DutzWGzkKQUjmpyFoh9\n/yqcjdalr0aLVY+THZX4sO6f2DD3pnAPaVpqumphdlhwWcoy8CaYffNthQH9A07cdNkccEOcNk8m\nLlvrXV6sbe4Zs8BJlWlxyHAU5yzNVOAQQmIDi2EQJxMgTiZA3kVbRwwMutDe5TvbM1wEtZr6Rp1L\nxOdApRSe/08hGvl4NmT7sBgWfpyzAf/b34GvWr6FTpKCFSlLwz2sKRvOvlmWfOmEjne7Pdhb1gwO\nm4WrFo9uZiXhk66WgsNmUOsv8G/o9v9GSwuWT/B6RwIqcAghU8LnspGaJEVqku+sj8fjQY/V4VP0\n9PQ70NLei5YOK84ZRsfP87gsqBRCJCqESFKKkDhU+CQphN5m5xhZ9hJwBPhZ/l34n7KX8e7pEqjF\nKsyRR24Evj/9gzaUm6qgEiVgjix1Qq8ZDva7fGEyZBTsF1G4HDbSk2WobzXDNuAc1WOnlSSDzbDR\n2BtdicZU4BBCgophGCilfCilfOSkeXMzhvfVcbs96O4dgLHHBmN3P4zdtqGPvf/b0jF65ofNYpAw\ndMeYd+bn/CxQglwILid6mh4BIFEUj58s2Ig/nPgz/ljxJn619KEJ34EUKY4ZT2LQ7cRy9aUTnnnb\nfYSC/SJZtlaOuhYzzuoto2ZruWwuNBI1Wnvb4HQ7wWFFR+kQHaMkhMQEFotBvFyAeLlgpPgZ5vF4\nYOkfREe3De3d/egYKnzau23o6LGhomv0ZozD4Ybnl72Gix8RVAphxGb85MTNxQ+yrsPf6v6FP1Xs\nxMNL/g3cKPmlAUw++6ZBb8GZ5h4smBM3ZpgcCb9sjQKfogm1zT2jChwASJXp0NTbilarfmSPqkgX\nPT9RhJCYxjAM5GIe5GIesrSjZzT67YPnZ3u6bRfM/ox9mzsAyMU8JA4tdSVe1PsjEYZ3t/bVuivQ\n0qvHkfZj2HX6b9g4/5ao6ENq7+9Ag6UR85XZUAoUE3rN3uHZm8Lo+MU4Gw3/zPnrw0mX6vANStFo\naaEChxBCgkkk4CJdzUW6WjbquYFB18iMz3Dh09Hdj/ZuG+pbzWPuliwWcJCoCF/TM8MwuH3+erT3\nt+Og/gi00hQUaVeF9D2D4ZDem30z0WbTLosdR2qM0CSIx5wZIJFBIuQiJUGMs20WuNxusFm+S7/D\nRU2jpRnAijCMcPKowCGERD0+lw1tomTMfY2cLjc6zfaRpa727n50jPT8BG56Hl7qUimFIzNBwWx6\n5rG5uC//Tmw98jI+rP0YKWI15iozg3LuUHB73DhkOAoBm49FiRPLvvn8KAX7RYtsrRxtpj40G62j\n/pBQi1XgsXlR1WhMBQ4hJKZx2CwkxYmQFCca9dxI03N3v0+zc6CmZ5VCiMduK0CCXBiU8SkFCtyT\nvwkvHX8Vf658C7+69KGI3dTwTHc9egbMWJlcCB57/Duh7A4n9p9og0zExXIK9ot4WRo5vjrRhtpm\n86gCh8WwoJNocNZ8DnanHQKOIEyjnDgqcAghs5ZP0/NFz13c9Gzs9s74HK814YX3TuLJOy4JWh9P\nlmIONsy9Ce+e/hteq3gDj17y8wkVEDNtOPtmostT31YYYBtw4loK9osK2bqhjTdberB2jLvd0mU6\n1Jsb0NzbiuwInmkcFl33VxJCyAwZbnrO0sqxKj8ZP7wiAw+uX4hrC3XQd/bjpfdPYmDQFbT3u1yz\nAqtSlqHF2oa3Tr0Pj8cTtHMHg81px4mOSiQK45Exgewet9uDvUe8wX5FSyjYLxokygWQS3iobTWP\n+f2XJtMCABp7W2Z6aFNCBQ4hhEzCj67KwvK8JNS3WfB/H1XC5XYH7dwb5t6EDHk6jhpPYm/T/qCd\nNxiOG8sx6B7Esglm35yoM8HYY8PKBUmQiSJvNoqMxjAMsrUKmK0OdJjto573bTSOfFTgEELIJLAY\nBj+5Lgd5c+Jwsr4Tb3x2OmizLRwWB/cs2AQFX45/1H+Gqs6aoJw3GEr1ZWDAYFnyxLJv9hxuAgCs\nvTQ6bikmXtma8/tSXSxeEAcxV4RGC83gEEJITOKwWfj5DxYgTS3FN+V6/O1AQ9DOLedLcV/+j8Fm\nsbGj6m2093cE7dxTZew3od58DnOVmYgTjN8A3aC34EyLGQsyKNgv2mTr/OfhMAyDNKkOnfYu9Dqs\nMz20SaMChxBCpkDI5+CRHy2CSiHEP787hy+OBe+v2jSZDrfPWw+b047Xyt+AzTl6uWAmHTZ4s2+W\nqS+Z0PF7hoL9rl06sX2qSOTQqSTgc9moa/Wz8eZQH05TFPThUIFDCCFTJBPz8ItbF0Em4uKve86g\nrMYYtHMvS74EV+suh6HfiDeq34HbE7xen8lwe9wo1R8Fn81DgSp/3OO7LHYcOWWEJlGM3PTIvN2d\n+MdmsZCRIkObqQ9W2+Co56OpD4cKHEIImQaVUoRHNhSAx2PjtY+rUDPGlhFT9YPM6zBfmY0K0yl8\n0rA3aOedjNrus+ge6MES1SLwJ3Dr+r6jLXB7KNgvmmUPbdswVgI4FTiEEDKLpKmleODmfHg8wLaS\ncjQbg9OfwGaxcfeC2xEviMOn5z7HCWNFUM47GaUGb/bNRJanbANOfHWiDTIxD8tz1aEeGgmRC/Nw\nLibjSaHkK9BoaYm4KIOLUYFDCCFBkJceh5/ekAPbgAvPv3cCJrMtKOeVcMX42cI7wWPz8MapXWi1\n6oNy3omwO+04YaxAgiAOmYr0cY//pkIP24ATVy/RgMuhXy/RKiNZBhbDoNZvH44OvYNWdA+MLoAi\nCX0HEkJIkCzPVaP46iyYrQ48v+skevsdQTmvRpKMH+fcCofLgVfL34B1cPQWEqFw3FgBh3sQy5Iv\nAYsJ/OvC7fZgX1kzuBwWihZTsF80E/I50KkkOKe3YNA5OsxyuNH4XIQvU1GBQwghQXRNYSrWLUuF\noasfL31QjgFHcNKOF6vysS59NTrtXfhL5V/hcgcvRdmfySxPHa81oaPHjpUL1BTsFwOytXI4XR40\n6EdvRpsm9fbhNEV4Hg4VOIQQEmS3FGViRV4SzrZZsP3vlXC6gnMH1PVz1iI/IQenu+vwUf0nQTmn\nPyZbJ+p6GpCtyEC8MG7c4/ccoWC/WBKoDydVpgEDJuIbjanAIYSQIGMxDO6+LgcL5sShvL4TbwYp\n7ZjFsHBn7m1Qi1T4ovkADumPBmG0Yxs+90Q21jzbZkFtixn5GfFISRCHbExk5mRp/N9JJeQIoRIl\noqm3JWzxBRNBBQ4hhIQAh83Cz3+4AOlqKb6p0KPk67NBOa+QI8B9C++EkCPA26c/DMlf0W6PG4cM\nR8Fj81CQOH72zfDszTWFNHsTK5RSPhLkAtS1muH2s/Gm3TUAYwQkbftDBQ4hhISIgMfBf/xoEVRK\nIf51sBGfHw1Oz0KSKBF3522Ey+3CaxVvwjwwuk9iOup7GtBp78bixHwIOPyAx3aa7Sir6YA2UYzc\nNAr2iyXZWgX67E7oTaOb2s/n4URuHw4VOIQQEkLetOMCyMQ8vL33DI4EKe04L34evp+5Dj0DZvyp\nciecbmdQzgsApZNYnvp8JNgvlYL9YkygfamGG40j+U4qKnAIISTEVAohHvnRIvB5bPwxiGnHa1OL\ncIlqEc6az+G9M38PyjntzgEc6yhHvECJLMWcgMfaBpz46mQrZGIeluUmBeX9SeTI1g43Go8ucLSS\nZLAYFhp7Z2mBs2XLFtx6660oLi5GeXn5mMc899xz2LRpk89jdrsda9asQUlJCQBAr9fjrrvuwh13\n3IG77roLHR2Ru+ZHCCFjSVNL8e8XpB03tU9/WYlhGNyR8yNoJSn4tu0QDrQenPY5T3ZUwuFyoFA9\nfvbNN+V62AZcWE3BfjEpOV4EsYAz5p1UXDYXGkkyWnvbgjp7GEwh+448fPgwGhsbsWvXLmzevBmb\nN28edUxdXR2OHDky6vHt27dDLpePfP7iiy9iw4YNeOutt7B27Vrs2LEjVMMmhJCQyUuPwz035MI2\n4MIL75+EqWf6acc8Ng/35d8JCVeM9878HXU9DdM6X6l+Ytk3brcHeynYL6axGAZZGjlMZju6ewdG\nPZ8m08Hpcc1ouvZkhKzAOXjwINasWQMAyMzMhNlshtXquz/Ls88+i0ceecTnsfr6etTV1aGoqGjk\nsWeeeQbXXnstAECpVKKnJ7LjoQkhxJ9luUkoXp0Ns9WB594LTtpxvFCJny64AwDwp4qd6LZP7d/I\nTlsXzvTUI0sxB4mi+IDHHq/tgMlsx6oFakgp2C9mDefh1I2xbcNwH06kNhqHrMAxmUxQKs931MfF\nxfksLZWUlKCwsBAajW/lv3XrVjzxxBM+j4lEIrDZbLhcLrz99tu48cYbQzVsQggJuWuW6vC9Zalo\nD2La8VxlJtZn34jeQSterXgDDtfgpM9xyOBtLl6mHr+5ePcRb+/F2qV0a3gsG87DqW0eXTQPb9kQ\nqX04nJl6owtDrnp6elBSUoIdO3agvb195PGPPvoIBQUF0OlG/8C4XC786le/wvLly7FixYqA76VU\nisDhsIM3+DEkJkpDen4yNXRdIhddG1/3/6gAAy4Pvihrxp8/rcF/3l0IDnt6f3PeknAtTIMd+LLh\nO3x47u94cNld497ZNHxdPB4Pyg4dB5/NwzW5KyHkCvy+5nRjF+pazLg0JwkL59Ou4aESCT8zcoUI\nHPYJNLT3jhpPfLwY/GN8tPa3RcRYLxayAkelUsFkMo18bjQakZiYCAAoLS1FV1cXNm7cCIfDgaam\nJmzZsgVGoxHNzc3Yv38/DAYDeDwe1Go1Vq5ciSeffBJpaWl44IEHxn3v7u7+UH1ZALzfdB0dwc2d\nINNH1yVy0bUZW/FVmTB29aHsVDv+980j+Mn1OdO+1fqmtBtwrrMF3zQeRiI3EWtSr/R77IXXpa6n\nAe19JhSql8DaMwgr/M8Avbf3NACgaFEyXdcQiaSfmfRkKepbzWhq6YaQ71s2aMUpOGs+h2a9adzM\npFDxV1yFrMBZtWoVtm3bhuLiYlRVVUGlUkEikQAA1q1bh3Xr1gEAWlpa8OSTT+Kpp57yef22bdug\n0WiwcuVK/OMf/wCXy8VDDz0UquESQsiM47BZ+PkPFuB37xzHt5UGKKR8rL8yc1rn5LI4uCd/E/7n\nyMv4qO4TaMTJyImfO+7rJtpcbDLbhoL9JMihYL9ZIVsrR12LGWf1FuSl++5LlibTot7cgObeVmQr\nM8I0wrGFrAdnyZIlyMvLQ3FxMX7zm9/gmWeeQUlJCfbu3Tvpc7399tuorq7Gpk2bsGnTJvzXf/1X\n8AdMCCFhIOBx8PCPFiFpKO14X9n0+xkUfDnuzb8TbIaFv1T9FR39nQGPH3A5cNxYDiVfgbnKwAXW\ncLDftYU6CvabJbI1Q3k4Y/ThpA8nGkdgH05Ie3Aee+wxn8/nz58/6hitVoudO3eOevzBBx8c+fjd\nd98N/uAIISRCyETetOMtO4/inX21kIl5KMyZXnDeHHkqiufdjLdq3serFa/jsUv+HQLO2H01Jzsq\nYXcNoEh3WcDsG9uAE1+fbIM8COMj0SNLGyDReGTLhsgrcCiZiRBCIkCiQoj/GEo7/tM/q3EqCGnH\nK1KW4krtKuj72vHmqff87vx8fnlqScDzHRgK9rv6Ei0F+80iEiEXKQlinG2zwOX2/R6KF8RBzBVF\n5K3i9B1KCCERIk0txYPDaccfBifteH3WDZiryMTJjkp8du7zUc932btxprseGfJ0qESJfs/jdnuw\nr6wZPA4LRQUp0x4XiS7ZWjkGBl1oNvrm2TEMgzSpDp32LlgdozflDCcqcAghJILkpMfh3htzMeBw\n4YX3TqJjmmnHbBYbP11wB+IESvyrYS9OdlT5PH/YcAweeLA8OXBz8bEz3mC/lfnJFOw3C53Pwxlr\nmSoy83CowCGEkAhTmJOE4jXZMPc58PyuE7BMM+1YwhPjvvw7wWVx8Ub1O9D3efPHPB4PDumPgsvi\nYolqYcBz7BkO9rtUO62xkOg0nGg81r5UkdqHQwUOIYREoLWX6vC95alo77bhpfenn3ask6ZgU86P\nMOBy4NXy19E/2I8znWdhtJmwKDEPQo7Q72vrW82oazVjUWY8kuPF0xoHiU6JcgHkEh5qW8w+wb0A\nkBqhWzZQgUMIIRHqliszsXKBGg16C175qBJO19hNwhN1SVIBrkm7Ch22TuyoegdfnP0OALA8OfDW\nDMOzN9cUpk7r/Un0YhgG2Ro5zH0OdJjtPs/J+VIo+Qo0WppHFT/hRAUOIYREKIZhcNf35iM/Ix4V\nZzvxxqc10/4FcmPGtciNn4fqrtP4suE7KPhyzFNm+T3e1GND2WkjdCoJ5qcqpvXeJLpla/3n4aTJ\ntOgdtKJ7IHI2w6YChxBCIthw2vGcZBm+rTTgw6/OTut8LIaFu3Nvh0qUAAAoVC8JmH2z72gLPB7v\nBqEU7De7ZesmkocTOctUVOAQQkiE4/PY+I8fLURSnAiflDZi7zTTjkVcIe5feDdWZ1yGq3SX+T1u\nJNhPwsOyXAr2m+10Kgn4XDbqWscocKSR12hMBQ4hhEQBqYiHX2xYBLmYh3f31eLwqfZpnU8lSsTP\nlm6EjOd/F+gDJ9tgd7iweol22judk+jHZrGQkSJDm6kPVpvvZqypMg0AKnAIIYRMQaJCiEc2LIKA\nP5R2fK4rZO/lcruxt6zFG+y3WBOy9yHRJXto24a6i5aphBwhkkQqNPW2+E3MnmlU4BBCSBRJTZLi\ngZu9mTXbSiqCknY8luNnTOi02LEqPxkSITck70GiT+A8HC3srgEY+ztmelhjogKHEEKiTE6aEvfc\nELy047HsPtIEAFi7VBf0c5PolZEsA4thUBuwDycyGo2pwCGEkChUmJOE24KYdnyhulYz6lstKMhK\ngDpOFLTzkugn5HOgU0lwTm/BoNM3fDLStmygAocQQqLUmkt1uH5F2lDa8UnYHc6gnHck2I9mb8gY\nsrVyOF0eNOh9l0e1khSwGBbN4BBCCJm+m6/IwKp8NRr0vXjlb9NPOzb12HD0tBGpSRLMo2A/MgZ/\nfThcNhcaSTJaelvhdAen2J4OKnAIISSKMQyDO9fNx8LMeFQ2dGHHJ9NLOx4O9rt2aSoF+5ExDe8s\nfvGdVACQJtXC6XGhzWqY6WGNQgUOIYREOQ6bhftvWoCMFBkOVhnwwf76KZ2n334+2G9pjirIoySx\nQinlI0EuQF2rGe6Liuk0mXe/skjow6EChxBCYgCfx8bDt3jTjj891DTSRzMZB8q9wX5rLqFgPxJY\ntlaBPrsTelOfz+PDjcbnIiDwj76DCSEkRkhFPDy6YRHkEh7e/bwWh6onnnbscruxr6wZPC4LVxZQ\nsB8JzN++VGqRCjwWF00R0GhMBQ4hhMSQBIUQv9hQAOFQ2nH1BNOOj50xodMyQMF+ZEKyNWMXOGwW\nGzqpFvq+dtidA+EY2ggqcAghJMboVBI8ePNCMAzw+5IKNBrGTzvec7gJDIC1l9Kt4WR8yQliiAUc\nv4nGHnjQ3NsahpGdRwUOIYTEoPlpStx3Y5437fj9kzAGSDuuazWjvs2CRRTsRyaIxTDI0shhMtvR\n3es7U5MmG0o0DnOjMRU4hBASoy6dr8Lta+fCMpx23Dd22vGew95tGa4tpNkbMnH+8nDShwqccPfh\nUIFDCCExbPUlWly/Ig3GbhteHCPtuKPHhqNnOpCWJMVcHQX7kYnzl4cTL4iDmCsK+51UVOAQQkiM\nu/mKDFyI//dUAAAUyUlEQVS2MBnnDKPTjveVeYP9rinUUbAfmZQ5yVJw2MyoRmOGYZAq1aLT3gWr\no8/Pq0OPChxCCIlx3rTjeRekHZ+C2+NBn20QX5e3QSnlY+l8CvYjk8PlsJGeLEOTsRe2Ad+ZwfSR\nPpzwLVNRgUMIIbMAm8XC/T9YgMwUGQ5WteOD/fXYc6gRAw4Xrl6ioWA/MiXZWjk8HuCs3uLz+Eij\nsaUpHMMCQAUOIYTMGnwuGw/dshDqOBE+O9SEtz6roWA/Mi3ZmqFG42bfRuNU6XCBQzM4hBBCZoBU\nxMMvbvWmHTsGXbiMgv3INGRpxw78k/OlUPIVaOxtntbmr9NBBQ4hhMwyCXIhHru1ANetTMeNq+aE\nezgkikmEXKQkiHG2zQKX2+3zXJpMi16HFT0Do3cdnwlU4BBCyCykSZTg/vWLIBfzwj0UEuWyNHIM\nDLrQbLT6PJ42tEwVrtvFQ1rgbNmyBbfeeiuKi4tRXl4+5jHPPfccNm3a5POY3W7HmjVrUFJSAgDQ\n6/XYtGkTbr/9djz88MNwOMYOqyKEEELIzMoeXqZq9p2pSR3aWbwx1gqcw4cPo7GxEbt27cLmzZux\nefPmUcfU1dXhyJEjox7fvn075HL5yOcvv/wybr/9drz99ttIS0vDBx98EKphE0IIIWQS/CUapw0X\nOGG6VTxkBc7BgwexZs0aAEBmZibMZjOsVt/pq2effRaPPPKIz2P19fWoq6tDUVHRyGOHDh3C6tWr\nAQBXXXUVDh48GKphE0IIIWQSEuUCyCU81LaYfRqKhRwhkkSJaLK0wO1xBzhDaISswDGZTFAqlSOf\nx8XFoaOjY+TzkpISFBYWQqPxvT1x69ateOKJJ3wes9ls4PG868Tx8fE+5yGEEEJI+DAMg2yNHOY+\nBzrMdp/nUqU62F12GPtNMz4uzky90YVVXU9PD0pKSrBjxw60t7ePPP7RRx+hoKAAOp3/Dd8mcruZ\nUikCh8Oe3oDHkZgoDen5ydTQdYlcdG0iE12XyBVN12bx/CSUne5Au9mOvOzzqdiFafk40n4MIhkH\niXEz+/WErMBRqVQwmc5XbEajEYmJiQCA0tJSdHV1YePGjXA4HGhqasKWLVtgNBrR3NyM/fv3w2Aw\ngMfjQa1WQyQSwW63QyAQoL29HSpV4Ejx7u7+UH1ZALzfdB0dvSF9DzJ5dF0iF12byETXJXJF27VJ\nVgoAAEer25Gfdn71Zr44B5tX/SdkLnnIvh5/hWDICpxVq1Zh27ZtKC4uRlVVFVQqFSQSCQBg3bp1\nWLduHQCgpaUFTz75JJ566imf12/btg0ajQYrV67EypUrsXv3btx0003Ys2cPLr/88lANmxBCCCGT\npFNJwOeyRzUasxgWFHy5n1eFVsgKnCVLliAvLw/FxcVgGAbPPPMMSkpKIJVKsXbt2kmd68EHH8Tj\njz+OXbt2ISUlBT/4wQ9CNGpCCCGETBabxUJGigynGrthtQ1GRDo24wlXhnIIhXpaL9qmDmcLui6R\ni65NZKLrErmi8dp8dOAs/vHtOTy0fiEKshNm7H39LVFRkjEhhBBCps1fHk64UIFDCCGEkGnLSJaB\nxTCobQ3P3lMXowJnhu3f//mEjnvppefQ1tbq9/knnvhFsIZECCGETJuQz4FOJcE5vQWDTle4h0MF\nzkzS69uwb9/uCR378MOPIiVF4/f5Z599PljDIoQQQoIiWyuH0+VBgz78/UMzFvRHgOef34pTp6pw\n+eVLcc0134Ne34YXX3wFv/3tf6OjwwibzYaf/OQ+rFp1OR544D784he/wpdffo6+PiuamhrR2tqC\nhx56FCtWrML116/Gv/71OR544D4sXboMx46VoaenB1u3voCEhAT893//GgaDHvn5C/HFF/vwt799\nEu4vnxBCSIzL1imw72gLalt6MHeoJydcZmWB894XdThSY5zy69lsBi6X781nS+ersOHqrICvu+22\nTSgpeQ9z5mSiqekcXnnlT+ju7kJh4XJ873s3oLW1Bb/+9RNYtco358dobMf//u/LKC39Dn//+4dY\nsWKVz/NisRgvvbQd27dvw9dff4GUFC0cjgG89trr+PbbA3jvvXem/LUSQgghE5Wl8Wbe1LWEvw9n\nVhY4kSAnJw8AIJXKcOpUFf7xjxIwDAsWy+hvioULCwB406Ev3rAUABYtWjzyvNlsRmNjA/LzFwEA\nVqxYBTY7tNtWEEIIIQCglPKRIBegrtUMt8cDFsOEbSyzssDZcHXWuLMtgQQjn4DL9YYg7d37GSwW\nC/7whz/BYrHgnns2jTr2wgJlrNiii5/3eDxgsbyPMQwDJozfYIQQQmaXbK0CB6sM0Jv6oEmUhG0c\n1GQ8g1gsFlwu387ynp4eJCengMVi4auvvsDg4OC030ej0eL06WoAwOHDpaPekxBCCAmVbJ13mao2\nzMtUVODMoLS0OTh9ugZ9feeXmYqKrsZ33x3Aww/fD6FQCJVKhR07/jit91m58nL09fXh/vt/ipMn\nj0MmC88+IIQQQmafbE1kFDi0VcMURHqEtsVixrFjZSgqWo2ODiMefvh+vP32h+EeVshF+nWZzeja\nRCa6LpErmq+N2+PBwy8dgJDPwf/cvzLk7zfju4mT8BGJxPjii314++2d8HjcePBBCgUkhBAyM1gM\ngyyNHCfrO9HdOwCllB+WcVCBE4M4HA7++79/G+5hEEIImaWydQqcrO9EbUsPCnOSwjIG6sEhhBBC\nSFBFQh4OFTiEEEIICao5yVJw2ExYG42pwCGEEEJIUHE5bKQny9Bk7IVtwBmWMVCBQwghhJCgy9bI\n4fEAZ9ssYXl/KnAizC233Ij+/n7s3Pk6KivLfZ7r7+/HLbfcGPD1+/d/DgD45JOP8dVXX4ZsnIQQ\nQkgg2VrvZpu1LT1heX+6iypCbdp016Rfo9e3Yd++3SgqWo3rrgtcCBFCCCGhlKUNb+AfFTgz5Cc/\n2YgtW56DWq2GwaDHk08+isREFWw2G+x2Ox555JfIzV0wcvzmzf+FoqLVKChYjP/8z1/B4XCMbLoJ\nAHv2fIoPPtgFNpuF9PRMPP74f+L557fi1Kkq7NjxR7jdbigUCqxffyteeeUlVFSchNPpwvr1G7Bu\n3fV44IH7sHTpMhw7Voaenh5s3foC1Gp1OP6vIYQQEoMkQi5SEsQ422aBy+0GmzWzi0azssApqfsn\njhsrpvx6NouBy+0bAL1YlY+bs27w+5orrrgK3377Ndav34ADB77CFVdchczMbFxxRRGOHj2Cv/71\nDWze/LtRr9u9+1NkZGTioYcexeef78G+fbsBADabDc89tw1SqRT//u/3or6+DrfdtgklJe/h7rvv\nxZ///CoA4MSJYzh7th7bt/8FNpsNd95ZjCuuKAIAiMVivPTSdmzfvg1ff/0FNmy4fcr/nxBCCCEX\ny9LI0WbqQ7PRinS1bEbfe1YWOOFwxRVX4fe/fxHr12/AN998hQceeATvvrsT77yzE4ODgxAIBGO+\n7ty5sygouAQAsHjxJSOPy2QyPPnkowCAxsYGmM1jr3HW1FSjoGAJAEAoFCI9PQPNzc0AgEWLFgP/\nv737j6m63uM4/jz8cIb8EFEsJZjgFgmlRnavpFlLy+mdLq0g5Ng/sXnRLRlZ7PiDnEHCpnOGV/NW\n5o7XcUypdJr9WOLYgsKrkeMCiXPmD36I/BDllwe4f6gM88flWofv4evr8d/37Ps53/d3XwYvPt/v\n9/MGgoODaWoytmeIiIiYz+SokZw424jPYO9+P/Z9GXDmjf3bXWdb/pd76RESHh7BxYsXqKmpprm5\nmYKCfIYPD2blyjWUl/+HnJwNtx3X3Q0eHhYAuq7PGl29epX167P59NOdBAUN5+23l97xuBaLhd7d\nxpzOqz3f5+np2es4pmtJJiIiBnskNJCMpL8acmy9RdWPJk+ewtat/2Dq1Gk0NTUyenQIAIcPH8Lp\nvP06AaGhYZSXlwFw9OgRAFparuDp6UlQ0HBqaqopLy/D6XTi4eFBZ2fnTeMjI6M4duzf18e1cO7c\nWUJCQl11iiIiIm5BAacfTZv2XM9bTjNnzsbh+BcpKYuJiorm4sWL7N+/95YxM2fOprT0OG+++XfO\nnDmNxWIhIGAokyb9hTfeWMi2bf8kIcHKxo3rCQsbQ0VFORs3rusZP378BB55JJLFi5NISVnMokVL\neOCBB/rztEVERPqdpduE9yZc3WJ+ILexNzNdF/ela+OedF3cl65N340Y4XfbzzWDIyIiIqajgCMi\nIiKmo4AjIiIipqOAIyIiIqajgCMiIiKmo4AjIiIipuPSlYwzMzMpKSnBYrFgs9l4/PHHb9ln3bp1\n/Pzzz9jtdlpbW0lLS+PixYu0t7eTnJzMc889R3FxMevXr8fLywsfHx+ys7MJCAhwZekiIiIygLls\nBuenn37i9OnTOBwOMjIyyMjIuGWfyspKiouLe7YPHTpEdHQ0O3bsYMOGDaxduxaA999/n4yMDOx2\nOxMnTsThcLiqbBERETEBlwWcwsJCpk+fDkBERARNTU1cvnz5pn3Wrl1LSkpKz/asWbNISkoCoKqq\nipEjRwIQGBhIY+O1ZpJNTU0EBga6qmwRERExAZfdoqqrqyMqKqpne9iwYVy4cAFfX18A8vLyeOqp\npxg9evQtY+Pj46murmbLli0A2Gw2EhMT8ff3JyAggNTUVFeVLSIiIibQb93Ee3eEaGxsJC8vj23b\ntlFTU3PLvrm5uZSVlbFs2TL27t3LmjVryMnJISYmhqysLHbu3MnChQvveKw7Ldv8Z+qPY8j/T9fF\nfenauCddF/ela/PHuCzgBAcHU1dX17NdW1vLiBEjACgqKqK+vp4FCxbQ0dHBb7/9RmZmJnPmzCEo\nKIiHHnqIRx99lM7OTurr66moqCAmJgaA2NhY9u3b56qyRURExARc9gzO008/zddffw1AaWkpwcHB\nPbenZs6cyYEDB9i1axc5OTlERUVhs9k4cuQIn3zyCXDtFldLSwuBgYEMHz6cyspKAI4fP05YWJir\nyhYRERETcNkMzhNPPEFUVBTx8fFYLBbS09PJy8vDz8+PGTNm3HZMfHw8y5cvJyEhgba2NlatWoWH\nhwerV69mxYoVeHt7ExAQQGZmpqvKFhEREROwdPd+OEZERETEBLSSsYiIiJiOAo6IiIiYjgLO/yEz\nM5O4uDji4+P55ZdfjC5HesnOziYuLo758+fzzTffGF2O9NLW1sb06dPJy8szuhTpZe/evcyZM4d5\n8+aRn59vdDly3ZUrV1iyZAlWq5X4+HgKCgqMLmnA6rd1cAa63q0nTp48ic1mU8sIN1FUVMSJEydw\nOBw0NDTw0ksv8cILLxhdlly3efNm9Y5zMw0NDWzatIk9e/bQ0tLCBx98wLPPPmt0WQJ8/vnnjBkz\nhtTUVGpqanj99dc5ePCg0WUNSAo4fXSn1hM3Xn0X40yaNKmnkau/vz+tra10dnbi6elpcGVy8uRJ\nKisr9cfTzRQWFjJ58mR8fX3x9fVlzZo1Rpck1wUGBlJRUQHApUuX1JroD9Atqj6qq6u76QftRusJ\nMZ6npyc+Pj4A7N69m2eeeUbhxk1kZWWRlpZmdBnyO2fPnqWtrY1FixaRkJBAYWGh0SXJdbNnz+b8\n+fPMmDGDxMRE3nnnHaNLGrA0g3OP9Ha9+/nuu+/YvXt3z2KRYqwvvviCCRMm8PDDDxtditxGY2Mj\nOTk5nD9/noULF3Lo0CEsFovRZd33vvzyS0aNGsXHH39MeXk5NptNz6/dIwWcPrpb6wkxXkFBAVu2\nbOGjjz7Cz0/9W9xBfn4+Z86cIT8/n+rqagYNGsSDDz5IbGys0aXd94KCgpg4cSJeXl6EhoYyZMgQ\n6uvrCQoKMrq0+97Ro0eZMmUKAJGRkdTW1uqW+z3SLao+ulvrCTFWc3Mz2dnZfPjhhwwdOtTocuS6\nDRs2sGfPHnbt2sUrr7xCcnKywo2bmDJlCkVFRXR1ddHQ0NDTFkeMFxYWRklJCQDnzp1jyJAhCjf3\nSDM4fXS71hPiHg4cOEBDQwNLly7t+SwrK4tRo0YZWJWI+xo5ciQvvvgir776KgArVqzAw0P/77qD\nuLg4bDYbiYmJOJ1O3n33XaNLGrDUqkFERERMR5FdRERETEcBR0RERExHAUdERERMRwFHRERETEcB\nR0RERExHAUdEDHf27Fmio6OxWq09XZRTU1O5dOlSn7/DarXS2dnZ5/1fe+01fvzxx3spV0QGAAUc\nEXELw4YNw263Y7fbyc3NJTg4mM2bN/d5vN1u14JoItJDC/2JiFuaNGkSDoeD8vJysrKycDqdXL16\nlVWrVjFu3DisViuRkZGUlZWxfft2xo0bR2lpKR0dHaxcuZLq6mqcTidz584lISGB1tZWUlJSaGho\nICwsjPb2dgBqamp46623AGhrayMuLo6XX37ZyFMXkT+BAo6IuJ3Ozk6+/fZbYmJiWLZsGZs2bSI0\nNPSW5oM+Pj7s2LHjprF2ux1/f3/WrVtHW1sbs2bNYurUqfzwww8MHjwYh8NBbW0tzz//PABfffUV\n4eHhrF69mvb2dj777LN+P18R+fMp4IiIW6ivr8dqtQLQ1dXFk08+yfz589m4cSPLly/v2e/y5ct0\ndXUB11qo/F5JSQnz5s0DYPDgwURHR1NaWsqvv/5KTEwMcK15bnh4OABTp05l586dpKWlMW3aNOLi\n4lx6niLSPxRwRMQt3HgGp7fm5ma8vb1v+fwGb2/vWz6zWCw3bXd3d2OxWOju7r6p39KNkBQREcH+\n/fspLi7m4MGDbN++ndzc3D96OiJiMD1kLCJuy8/Pj5CQEA4fPgzAqVOnyMnJueuY8ePHU1BQAEBL\nSwulpaVERUURERHBsWPHAKiqquLUqVMA7Nu3j+PHjxMbG0t6ejpVVVU4nU4XnpWI9AfN4IiIW8vK\nyuK9995j69atOJ1O0tLS7rq/1Wpl5cqVLFiwgI6ODpKTkwkJCWHu3Ll8//33JCQkEBISwmOPPQbA\n2LFjSU9PZ9CgQXR3d5OUlISXl341igx06iYuIiIipqNbVCIiImI6CjgiIiJiOgo4IiIiYjoKOCIi\nImI6CjgiIiJiOgo4IiIiYjoKOCIiImI6CjgiIiJiOv8FeRqgR1VuLMoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "JjBZ_q7aD9gh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Can We Calculate LogLoss for These Predictions?\n", + "\n", + "**Examine the predictions and decide whether or not we can use them to calculate LogLoss.**\n", + "\n", + "`LinearRegressor` uses the L2 loss, which doesn't do a great job at penalizing misclassifications when the output is interpreted as a probability. For example, there should be a huge difference whether a negative example is classified as positive with a probability of 0.9 vs 0.9999, but L2 loss doesn't strongly differentiate these cases.\n", + "\n", + "In contrast, `LogLoss` penalizes these \"confidence errors\" much more heavily. Remember, `LogLoss` is defined as:\n", + "\n", + "$$Log Loss = \\sum_{(x,y)\\in D} -y \\cdot log(y_{pred}) - (1 - y) \\cdot log(1 - y_{pred})$$\n", + "\n", + "\n", + "But first, we'll need to obtain the prediction values. We could use `LinearRegressor.predict` to obtain these.\n", + "\n", + "Given the predictions and the targets, can we calculate `LogLoss`?" + ] + }, + { + "metadata": { + "id": "7fGYXBygpGTB", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "e3571482-6472-4fe0-c58e-06aa0a80309b" + }, + "cell_type": "code", + "source": [ + "predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + "validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + "\n", + "_ = plt.hist(validation_predictions)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFKCAYAAADScRzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH7RJREFUeJzt3X9sVfXh//HXvW3vLp23ltvdixL5\nuGXBlUnX0hQrbUBbqJYu26pSRhswm9VJqAy0ih06JTFZK1qDhGYICjQQtaOapR9jKHGWBNJapzdp\nCjHBH4npAOm9Wi32h7005/vH4v1SW3pLPy33fW+fj7+473tuz/t138ir55x7jzbLsiwBAAAj2SM9\nAQAAcHkUNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMAYLD4SE9gLH7/hVFjs2cnqqenPwKzmR7kMRt5\nzEYe88VapunO4/G4Lvtc1BxRx8fHRXoKU4o8ZiOP2chjvljLFMk8UVPUAADMRBQ1AAAGo6gBADDY\nhIp6cHBQK1as0Jtvvqlz585p3bp1Kisr06ZNmzQ0NCRJampq0j333KOSkhIdPnxYkhQMBlVZWanS\n0lKtXbtWXV1d05cEAIAYNKGi/vvf/65rr71WkrRz506VlZXp1Vdf1Y033qjGxkb19/errq5OBw4c\n0MGDB1VfX6+vv/5ab731lpKSkvTaa69p/fr1qq2tndYwAADEmrBF/emnn+qTTz7R7bffLklqb2/X\n8uXLJUl5eXlqa2tTR0eH0tLS5HK55HQ6lZmZKZ/Pp7a2NhUUFEiScnJy5PP5pi8JAAAxKGxRP/vs\ns6qqqgo9HhgYkMPhkCSlpKTI7/crEAjI7XaHtnG73aPG7Xa7bDZb6FQ5AAAIb9wbnvzzn/9URkaG\n5s2bN+bzl/tfWV/p+A/Nnp045nfWxvtCeDQij9nIYzbymC/WMkUqz7hFfezYMXV1denYsWP64osv\n5HA4lJiYqMHBQTmdTp0/f15er1der1eBQCD0uu7ubmVkZMjr9crv9ys1NVXBYFCWZYWOxscz1t1f\nPB7XmHcsi1bkMRt5zEYe88VapunOM+k7k+3YsUNvvPGG/vGPf6ikpEQbNmxQTk6OmpubJUlHjx7V\n0qVLlZ6ers7OTvX29qqvr08+n09ZWVnKzc3VkSNHJEktLS3Kzs6ewlgAAMS+K77X98aNG/X444+r\noaFBc+fOVXFxsRISElRZWany8nLZbDZVVFTI5XKpqKhIra2tKi0tlcPhUE1NzXRkAAAgZtmsiV44\nvorGOr3AaRSzkcds5DFbrOWRYi9TJE99G/l/zwIm476adyM9hXHtq8qP9BQARCFuIQoAgMEoagAA\nDEZRAwBgMIoaAACDUdQAABiMogYAwGAUNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMAYDCKGgAAg1HU\nAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAG\no6gBADAYRQ0AgMEoagAADBYfboOBgQFVVVXpyy+/1HfffacNGzaoublZp06dUnJysiSpvLxct99+\nu5qamlRfXy+73a7Vq1erpKREwWBQVVVVOnv2rOLi4lRdXa158+ZNezAAAGJB2KJuaWnRwoUL9cAD\nD+jMmTO67777tGjRIj3yyCPKy8sLbdff36+6ujo1NjYqISFBq1atUkFBgVpaWpSUlKTa2lqdOHFC\ntbW12rFjx7SGAgAgVoQt6qKiotCfz507pzlz5oy5XUdHh9LS0uRyuSRJmZmZ8vl8amtrU3FxsSQp\nJydHW7dunYp5AwAwI0z4GvWaNWv06KOPhor20KFDuvfee/Xwww/rq6++UiAQkNvtDm3vdrvl9/tH\njNvtdtlsNg0NDU1xDAAAYlPYI+rvvf766/roo4/02GOPaevWrUpOTtaCBQu0Z88e7dq1S4sWLRqx\nvWVZY/6cy41favbsRMXHx40a93hcE51uVCDPzBLp9yfS+59q5DFfrGWKVJ6wRX3y5EmlpKTo+uuv\n14IFCzQ8PKybbrpJKSkpkqT8/Hxt27ZNd955pwKBQOh13d3dysjIkNfrld/vV2pqqoLBoCzLksPh\nGHefPT39o8Y8Hpf8/gtXms9Y5Jl5Ivn+xNr6kMd8sZZpuvOM90tA2FPfH3zwgfbt2ydJCgQC6u/v\n11NPPaWuri5JUnt7u+bPn6/09HR1dnaqt7dXfX198vl8ysrKUm5uro4cOSLpvx9My87OnopMAADM\nCGGPqNesWaMnnnhCZWVlGhwc1FNPPaXExERt3rxZs2bNUmJioqqrq+V0OlVZWany8nLZbDZVVFTI\n5XKpqKhIra2tKi0tlcPhUE1NzdXIBQBATAhb1E6nU7W1taPG33jjjVFjhYWFKiwsHDH2/XenAQDA\nlePOZAAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0AgMEoagAADEZRAwBgMIoaAACDUdQAABiMogYAwGAU\nNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCA\nwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAGiw+3wcDAgKqqqvTll1/qu+++04YNG5Sa\nmqotW7ZoeHhYHo9Hzz33nBwOh5qamlRfXy+73a7Vq1erpKREwWBQVVVVOnv2rOLi4lRdXa158+Zd\njWwAAES9sEfULS0tWrhwoQ4dOqQdO3aopqZGO3fuVFlZmV599VXdeOONamxsVH9/v+rq6nTgwAEd\nPHhQ9fX1+vrrr/XWW28pKSlJr732mtavX6/a2tqrkQsAgJgQtqiLior0wAMPSJLOnTunOXPmqL29\nXcuXL5ck5eXlqa2tTR0dHUpLS5PL5ZLT6VRmZqZ8Pp/a2tpUUFAgScrJyZHP55vGOAAAxJawp76/\nt2bNGn3xxRfavXu3/vjHP8rhcEiSUlJS5Pf7FQgE5Ha7Q9u73e5R43a7XTabTUNDQ6HXAwCAy5tw\nUb/++uv66KOP9Nhjj8myrND4pX++1JWOX2r27ETFx8eNGvd4XBOcbXQgz8wS6fcn0vufauQxX6xl\nilSesEV98uRJpaSk6Prrr9eCBQs0PDysH//4xxocHJTT6dT58+fl9Xrl9XoVCARCr+vu7lZGRoa8\nXq/8fr9SU1MVDAZlWVbYo+menv5RYx6PS37/hUlENBN5Zp5Ivj+xtj7kMV+sZZruPOP9EhD2GvUH\nH3ygffv2SZICgYD6+/uVk5Oj5uZmSdLRo0e1dOlSpaenq7OzU729verr65PP51NWVpZyc3N15MgR\nSf/9YFp2dvZUZAIAYEYIe0S9Zs0aPfHEEyorK9Pg4KCeeuopLVy4UI8//rgaGho0d+5cFRcXKyEh\nQZWVlSovL5fNZlNFRYVcLpeKiorU2tqq0tJSORwO1dTUXI1cAADEhLBF7XQ6x/xK1f79+0eNFRYW\nqrCwcMTY99+dBgAAV447kwEAYDCKGgAAg1HUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCAwShqAAAM\nRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0AgMEoagAADEZRAwBgMIoaAACDUdQA\nABiMogYAwGAUNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBg8RPZaPv2\n7frwww918eJFPfjgg3r33Xd16tQpJScnS5LKy8t1++23q6mpSfX19bLb7Vq9erVKSkoUDAZVVVWl\ns2fPKi4uTtXV1Zo3b960hgIAIFaELer33ntPH3/8sRoaGtTT06O77rpLt956qx555BHl5eWFtuvv\n71ddXZ0aGxuVkJCgVatWqaCgQC0tLUpKSlJtba1OnDih2tpa7dixY1pDAQAQK8Ke+l68eLFefPFF\nSVJSUpIGBgY0PDw8aruOjg6lpaXJ5XLJ6XQqMzNTPp9PbW1tKigokCTl5OTI5/NNcQQAAGJX2CPq\nuLg4JSYmSpIaGxu1bNkyxcXF6dChQ9q/f79SUlL017/+VYFAQG63O/Q6t9stv98/Ytxut8tms2lo\naEgOh+Oy+5w9O1Hx8XGjxj0e1xUHNBl5ZpZIvz+R3v9UI4/5Yi1TpPJM6Bq1JL3zzjtqbGzUvn37\ndPLkSSUnJ2vBggXas2ePdu3apUWLFo3Y3rKsMX/O5cYv1dPTP2rM43HJ778w0ekajzwzTyTfn1hb\nH/KYL9YyTXee8X4JmNCnvo8fP67du3dr7969crlcWrJkiRYsWCBJys/P1+nTp+X1ehUIBEKv6e7u\nltfrldfrld/vlyQFg0FZljXu0TQAAPj/whb1hQsXtH37dr300kuhT3lv3LhRXV1dkqT29nbNnz9f\n6enp6uzsVG9vr/r6+uTz+ZSVlaXc3FwdOXJEktTS0qLs7OxpjAMAQGwJe+r77bffVk9PjzZv3hwa\nu/vuu7V582bNmjVLiYmJqq6ultPpVGVlpcrLy2Wz2VRRUSGXy6WioiK1traqtLRUDodDNTU10xoI\nAIBYYrMmctH4KhvrOgDXO8xmQp77at6N6P7D2VeVH7F9m7A+U4k85ou1TMZfowYAAJFBUQMAYDCK\nGgAAg1HUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDA\nYBQ1AAAGo6gBADAYRQ0AgMEoagAADEZRAwBgMIoaAACDUdQAABiMogYAwGAUNQAABqOoAQAwGEUN\nAIDBKGoAAAxGUQMAYDCKGgAAg8VPZKPt27frww8/1MWLF/Xggw8qLS1NW7Zs0fDwsDwej5577jk5\nHA41NTWpvr5edrtdq1evVklJiYLBoKqqqnT27FnFxcWpurpa8+bNm+5cAADEhLBF/d577+njjz9W\nQ0ODenp6dNddd2nJkiUqKyvTypUr9cILL6ixsVHFxcWqq6tTY2OjEhIStGrVKhUUFKilpUVJSUmq\nra3ViRMnVFtbqx07dlyNbAAARL2wp74XL16sF198UZKUlJSkgYEBtbe3a/ny5ZKkvLw8tbW1qaOj\nQ2lpaXK5XHI6ncrMzJTP51NbW5sKCgokSTk5OfL5fNMYBwCA2BK2qOPi4pSYmChJamxs1LJlyzQw\nMCCHwyFJSklJkd/vVyAQkNvtDr3O7XaPGrfb7bLZbBoaGpqOLAAAxJwJXaOWpHfeeUeNjY3at2+f\n7rjjjtC4ZVljbn+l45eaPTtR8fFxo8Y9HtcEZxsdyDOzRPr9ifT+pxp5zBdrmSKVZ0JFffz4ce3e\nvVsvv/yyXC6XEhMTNTg4KKfTqfPnz8vr9crr9SoQCIRe093drYyMDHm9Xvn9fqWmpioYDMqyrNDR\n+OX09PSPGvN4XPL7L1xhPHORZ+aJ5PsTa+tDHvPFWqbpzjPeLwFhT31fuHBB27dv10svvaTk5GRJ\n/73W3NzcLEk6evSoli5dqvT0dHV2dqq3t1d9fX3y+XzKyspSbm6ujhw5IklqaWlRdnb2VGQCAGBG\nCHtE/fbbb6unp0ebN28OjdXU1OjJJ59UQ0OD5s6dq+LiYiUkJKiyslLl5eWy2WyqqKiQy+VSUVGR\nWltbVVpaKofDoZqammkNBABALLFZE7lofJWNdXqB0yhmMyHPfTXvRnT/4eyryo/Yvk1Yn6lEHvPF\nWiajT30DAIDIoagBADAYRQ0AgMEoagAADEZRAwBgMIoaAACDUdQAABiMogYAwGAUNQAABqOoAQAw\nGEUNAIDBKGoAAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCAwShqAAAMRlED\nAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0AgMEmVNSnT5/WihUrdOjQIUlSVVWVfvOb\n32jdunVat26djh07JklqamrSPffco5KSEh0+fFiSFAwGVVlZqdLSUq1du1ZdXV3TkwQAgBgUH26D\n/v5+PfPMM1qyZMmI8UceeUR5eXkjtqurq1NjY6MSEhK0atUqFRQUqKWlRUlJSaqtrdWJEydUW1ur\nHTt2TH0SAABiUNgjaofDob1798rr9Y67XUdHh9LS0uRyueR0OpWZmSmfz6e2tjYVFBRIknJycuTz\n+aZm5gAAzABhizo+Pl5Op3PU+KFDh3Tvvffq4Ycf1ldffaVAICC32x163u12y+/3jxi32+2y2Wwa\nGhqawggAAMSusKe+x/K73/1OycnJWrBggfbs2aNdu3Zp0aJFI7axLGvM115u/FKzZycqPj5u1LjH\n45rMdI1Fnpkl0u9PpPc/1chjvljLFKk8kyrqS69X5+fna9u2bbrzzjsVCARC493d3crIyJDX65Xf\n71dqaqqCwaAsy5LD4Rj35/f09I8a83hc8vsvTGa6RiLPzBPJ9yfW1oc85ou1TNOdZ7xfAib19ayN\nGzeGPr3d3t6u+fPnKz09XZ2dnert7VVfX598Pp+ysrKUm5urI0eOSJJaWlqUnZ09mV0CADAjhT2i\nPnnypJ599lmdOXNG8fHxam5u1tq1a7V582bNmjVLiYmJqq6ultPpVGVlpcrLy2Wz2VRRUSGXy6Wi\noiK1traqtLRUDodDNTU1VyMXAAAxIWxRL1y4UAcPHhw1fuedd44aKywsVGFh4YixuLg4VVdX/x+m\nCADAzMWdyQAAMBhFDQCAwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0A\ngMEoagAADEZRAwBgMIoaAACDUdQAABiMogYAwGAUNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMAYDCK\nGgAAg1HUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGCwCRX16dOntWLFCh06dEiS\ndO7cOa1bt05lZWXatGmThoaGJElNTU265557VFJSosOHD0uSgsGgKisrVVpaqrVr16qrq2uaogAA\nEHvCFnV/f7+eeeYZLVmyJDS2c+dOlZWV6dVXX9WNN96oxsZG9ff3q66uTgcOHNDBgwdVX1+vr7/+\nWm+99ZaSkpL02muvaf369aqtrZ3WQAAAxJKwRe1wOLR37155vd7QWHt7u5YvXy5JysvLU1tbmzo6\nOpSWliaXyyWn06nMzEz5fD61tbWpoKBAkpSTkyOfzzdNUQAAiD3xYTeIj1d8/MjNBgYG5HA4JEkp\nKSny+/0KBAJyu92hbdxu96hxu90um82moaGh0OvHMnt2ouLj40aNezyuiaWKEuSZWSL9/kR6/1ON\nPOaLtUyRyhO2qMOxLGtKxi/V09M/aszjccnvv3BlkzMYeWaeSL4/sbY+5DFfrGWa7jzj/RIwqaJO\nTEzU4OCgnE6nzp8/L6/XK6/Xq0AgENqmu7tbGRkZ8nq98vv9Sk1NVTAYlGVZ4x5NA7Hqvpp3Iz2F\nsPZV5Ud6CgB+YFJfz8rJyVFzc7Mk6ejRo1q6dKnS09PV2dmp3t5e9fX1yefzKSsrS7m5uTpy5Igk\nqaWlRdnZ2VM3ewAAYlzYI+qTJ0/q2Wef1ZkzZxQfH6/m5mY9//zzqqqqUkNDg+bOnavi4mIlJCSo\nsrJS5eXlstlsqqiokMvlUlFRkVpbW1VaWiqHw6GampqrkQsAgJhgsyZy0fgqG+s6ANc7zGZCnmg4\ntWy6aDn1bcLft6kUa3mk2MsUyWvU3JkMAACDUdQAABiMogYAwGAUNQAABqOoAQAwGEUNAIDBKGoA\nAAxGUQMAYDCKGgAAg1HUAAAYjKIGAMBgFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGAwihoAAINR\n1AAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0AgMEoagAADEZRAwBgMIoaAACDUdQAABiMogYAwGDxk3lR\ne3u7Nm3apPnz50uSbrrpJt1///3asmWLhoeH5fF49Nxzz8nhcKipqUn19fWy2+1avXq1SkpKpjQA\nAACxbFJFLUm33HKLdu7cGXr8l7/8RWVlZVq5cqVeeOEFNTY2qri4WHV1dWpsbFRCQoJWrVqlgoIC\nJScnT8nkAQCIdVN26ru9vV3Lly+XJOXl5amtrU0dHR1KS0uTy+WS0+lUZmamfD7fVO0SAICYN+kj\n6k8++UTr16/XN998o4ceekgDAwNyOBySpJSUFPn9fgUCAbnd7tBr3G63/H7//33WAADMEJMq6p/+\n9Kd66KGHtHLlSnV1denee+/V8PBw6HnLssZ83eXGf2j27ETFx8eNGvd4XJOZrrHIA9NE0xpG01wn\nItbySLGXKVJ5JlXUc+bMUVFRkSTpf/7nf/STn/xEnZ2dGhwclNPp1Pnz5+X1euX1ehUIBEKv6+7u\nVkZGRtif39PTP2rM43HJ778wmekaiTwwUbSsYaz9fYu1PFLsZZruPOP9EjCpa9RNTU165ZVXJEl+\nv19ffvml7r77bjU3N0uSjh49qqVLlyo9PV2dnZ3q7e1VX1+ffD6fsrKyJrNLAABmpEkdUefn5+vR\nRx/Vv/71LwWDQW3btk0LFizQ448/roaGBs2dO1fFxcVKSEhQZWWlysvLZbPZVFFRIZcrtk6FAAAw\nnSZV1Ndcc4127949anz//v2jxgoLC1VYWDiZ3QAAMONxZzIAAAxGUQMAYDCKGgAAg1HUAAAYjKIG\nAMBgFDUAAAajqAEAMBhFDQCAwShqAAAMRlEDAGAwihoAAINR1AAAGIyiBgDAYBQ1AAAGo6gBADAY\nRQ0AgMEoagAADEZRAwBgMIoaAACDUdQAABiMogYAwGAUNQAABqOoAQAwGEUNAIDBKGoAAAxGUQMA\nYLD4SE8AgDnuq3k30lMY176q/EhPAbjqrkpR/+1vf1NHR4dsNpu2bt2qX/3qV1djtwAARL1pL+r3\n339fn3/+uRoaGvTpp59q69atamhomO7dAgAQE6b9GnVbW5tWrFghSfr5z3+ub775Rt9+++107xYA\ngJgw7UfUgUBAN998c+ix2+2W3+/XNddcM927xhQy/dolZgb+Hk4NrvVHl6v+YTLLssJu4/G4rmg8\nWkVTnv+t/V2kpwAgykTTv3ETEak8037q2+v1KhAIhB53d3fL4/FM924BAIgJ017Uubm5am5uliSd\nOnVKXq+X094AAEzQtJ/6zszM1M0336w1a9bIZrPp6aefnu5dAgAQM2zWRC4aAwCAiOAWogAAGIyi\nBgDAYMbe6/v999/Xpk2b9Le//U15eXmjnr/55puVmZkZenzgwAHFxcVdzSlekXB5mpqaVF9fL7vd\nrtWrV6ukpCQCs5y4YDCoqqoqnT17VnFxcaqurta8efNGbBMNazTe7W1bW1v1wgsvKC4uTsuWLVNF\nRUUEZzpx42XKz8/XddddF1qH559/XnPmzInUVCfk9OnT2rBhg/7whz9o7dq1I56LxjUaL080rs/2\n7dv14Ycf6uLFi3rwwQd1xx13hJ6LxvUZL0/E1scy0Oeff26tX7/e2rBhg/Xuu++Ouc0tt9xylWc1\neeHy9PX1WXfccYfV29trDQwMWL/+9a+tnp6eCMx04t58801r27ZtlmVZ1vHjx61NmzaN2sb0NWpv\nb7f+9Kc/WZZlWZ988om1evXqEc+vXLnSOnv2rDU8PGyVlpZaH3/8cSSmeUXCZcrLy7O+/fbbSExt\nUvr6+qy1a9daTz75pHXw4MFRz0fbGoXLE23r09bWZt1///2WZVnWV199Zd12220jno+29QmXJ1Lr\nY+Spb4/Ho127dsnlio0vy4fL09HRobS0NLlcLjmdTmVmZsrn813lWV6ZtrY2FRQUSJJycnKMn+9Y\nxru9bVdXl6699lpdf/31stvtuu2229TW1hbJ6U5IrN2y1+FwaO/evfJ6vaOei8Y1Gi9PNFq8eLFe\nfPFFSVJSUpIGBgY0PDwsKTrXZ7w8kWRkUc+aNSvsKdKhoSFVVlZqzZo12r9//1Wa2eSEyxMIBOR2\nu0OPv7/NqskunbPdbpfNZtPQ0NCIbUxfo0AgoNmzZ4ceX/q++/3+qFsTafxM33v66adVWlqq559/\nfkJ3Coyk+Ph4OZ3OMZ+LxjUaL8/3oml94uLilJiYKElqbGzUsmXLQv/WReP6jJfne5FYn4hfoz58\n+LAOHz48Ymzjxo1aunTpuK/bsmWLfvvb38pms2nt2rXKyspSWlradE51Qiab51Km/cc5VqaOjo4R\nj8eas6lrdDmmve9T4YeZ/vznP2vp0qW69tprVVFRoebmZhUWFkZodvihaF2fd955R42Njdq3b1+k\npzIlLpcnUusT8aIuKSmZ1AenSktLQ3++9dZbdfr0aSNKYDJ5xrrNakZGxlRPbdLGylRVVSW/36/U\n1FQFg0FZliWHwzFiG1PX6Hvj3d72h8+dP38+Kk5Xhrtlb3FxcejPy5Yt0+nTp6OiCMYSrWs0nmhc\nn+PHj2v37t16+eWXR1zei9b1uVweKXLrY+Sp73A+++wzVVZWyrIsXbx4UT6fT/Pnz4/0tCYtPT1d\nnZ2d6u3tVV9fn3w+n7KysiI9rXHl5ubqyJEjkqSWlhZlZ2ePeD4a1mi829vecMMN+vbbb/Wf//xH\nFy9eVEtLi3JzcyM53QkZL9OFCxdUXl4eukTx73//27g1uRLRukaXE43rc+HCBW3fvl0vvfSSkpOT\nRzwXjeszXp5Irk/Ej6jHcuzYMb3yyiv67LPPdOrUKR08eFD79u3Tnj17tHjxYi1atEjXXXedVq1a\nJbvdrvz8/BFfQTHNRPJUVlaqvLxcNptNFRUVxn+QrqioSK2trSotLZXD4VBNTY0kRdUajXV72zff\nfFMul0sFBQXatm2bKisrJf03789+9rMIzzi8cJmWLVum3//+9/rRj36kX/7yl8YfrZ08eVLPPvus\nzpw5o/j4eDU3Nys/P1833HBDVK5RuDzRtj5vv/22enp6tHnz5tBYdna2fvGLX0Tl+oTLE6n14Rai\nAAAYLCpPfQMAMFNQ1AAAGIyiBgDAYBQ1AAAGo6gBADAYRQ0AgMEoagAADEZRAwBgsP8HMOXmQ8Bd\nVBEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "dPpJUV862FYI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to display the solution." + ] + }, + { + "metadata": { + "id": "kXFQ5uig2RoP", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + "validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + "\n", + "_ = plt.hist(validation_predictions)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "rYpy336F9wBg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Train a Logistic Regression Model and Calculate LogLoss on the Validation Set\n", + "\n", + "To use logistic regression, simply use [LinearClassifier](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier) instead of `LinearRegressor`. Complete the code below.\n", + "\n", + "**NOTE**: When running `train()` and `predict()` on a `LinearClassifier` model, you can access the real-valued predicted probabilities via the `\"probabilities\"` key in the returned dict—e.g., `predictions[\"probabilities\"]`. Sklearn's [log_loss](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html) function is handy for calculating LogLoss using these probabilities.\n" + ] + }, + { + "metadata": { + "id": "JElcb--E9wBm", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear classifier object.\n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) \n", + " linear_classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on training data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions. \n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " " + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "VM0wmnFUIYH9", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 618 + }, + "outputId": "da4c2e9a-1e86-4fcd-cf4b-82db8532be8b" + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000005,\n", + " steps=500,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss (on training data):\n", + " period 00 : 0.59\n", + " period 01 : 0.58\n", + " period 02 : 0.56\n", + " period 03 : 0.55\n", + " period 04 : 0.54\n", + " period 05 : 0.54\n", + " period 06 : 0.54\n", + " period 07 : 0.53\n", + " period 08 : 0.52\n", + " period 09 : 0.53\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYVGf2wPHvFOpQpFcLAhZQVOxR\nsaJgiRobJsEkazZNoxtNdhMTV1N0d7PGxJTNb2OSjXFTTNQYO2rsFbGLYAFBQOlVirT5/eFKYhQY\nkBkGOJ/nyfNkZu7ce5gzFw/vfd97FFqtVosQQgghRBOlbOwAhBBCCCEehBQzQgghhGjSpJgRQggh\nRJMmxYwQQgghmjQpZoQQQgjRpEkxI4QQQogmTYoZIZq5jh07kpqa2iD7Sk5Oxs/Pr0H21RjCw8MZ\nOHAgISEhjBo1itGjR7Nq1ao67+fs2bPMnDmzzu/z8/MjOTm5zu8TQtRM3dgBCCGEIb3yyiuMHz8e\ngIyMDKZNm4aXlxdBQUE67yMgIIAvvvhCXyEKIepIRmaEaKFu3brFX//6V0aNGkVoaCh///vfqaio\nAODAgQMMHjyY0NBQ1qxZQ2BgYK0jCrm5ucydO7dqxOOzzz6reu39999n1KhRjBo1ihkzZpCWllbj\n83fs27ePcePG3fXc+PHj2b9/P5GRkUycOJHRo0cTGhrKtm3b6vwZODk5ERISwqFDhwC4cuUKjz/+\nOKNGjWLcuHGcO3cOgGPHjhEWFsbcuXOZP38+x44dIzg4uNbPcd++fQQHBxMaGsrnn39eddzCwkJm\nzZpFaGgow4cP54033qCsrKzO8QshbpNiRogWatWqVaSmprJlyxZ++uknoqKi2Lx5MxUVFbz66qu8\n9dZbbNu2jYSEBIqLi2vd3/Lly7G1tSUiIoJvv/2W7777jqioKC5fvsz27dvZvHkzERERBAcHc+TI\nkWqf/63+/fuTmppKUlISAElJSaSmpvLQQw/xj3/8g9dee42tW7fy6aefsmvXrnp9DuXl5ZiamlJZ\nWcmsWbMYP348ERERLF68mBdeeIHy8nIALly4QFhYGO+9957On+Prr7/OokWL2LZtG0qlsqrI2bBh\nAzY2Nmzbto2IiAhUKhVXrlypV/xCCClmhGix9u7dy9SpU1Gr1ZibmzNu3DgOHTpEQkICpaWlDB48\nGLg9z6SysrLW/e3bt49HH30UgFatWhEcHMyhQ4ewsbEhOzubTZs2kZeXR3h4OBMmTKj2+d8yNTVl\n6NCh7N69G4Bdu3YxYsQI1Go1Dg4ObNiwgbi4ONq1a3dPkaGLpKQktm/fTnBwMPHx8WRlZTF58mQA\nevbsib29PadOnQLA3Nyc/v371/lzHDhwIAATJ06ses+d/R48eJDKykrefPNNOnfuXOf4hRC3STEj\nRAuVnZ2Nra1t1WNbW1uysrLIy8vDxsam6nlnZ2ed9/fb99nY2JCVlYWLiwsfffQR27dvZ8iQITzz\nzDPcuHGj2ud/b9SoUXcVM6NHjwZg6dKlWFhY8NRTTzFy5Ei2b9+uU5z//Oc/qyYAz5s3j1dffZWA\ngADy8/MpKSkhNDSUkJAQQkJCyMrKIjc3t+rzqe7nru5ztLKyuuv5O0JDQ3nyySdZsWIF/fv35803\n36S0tFSn+IUQ95JiRogWytHRseofarg958XR0RErKyuKioqqns/MzHyg/QH069ePzz77jEOHDuHm\n5sayZctqfP63Bg0aRGxsLAkJCSQkJNCvX7+q4y1cuJD9+/fz17/+lddee43CwsJa43zllVfYvn07\nERER/Pjjj1XFkbOzMxqNhu3bt1f9d/Dgwaq5MXX9uW1tbbl582bV89nZ2Xe9LywsjB9//JGtW7cS\nHR3Nhg0bao1dCHF/UswI0UINGTKEtWvXUlFRQVFRET///DODBw+mXbt2lJeXc+zYMQC+++47FAqF\nTvtbs2YNcPsf7p07dzJkyBAOHjzIm2++SWVlJZaWlnTq1AmFQlHt879namrKwIED+ec//8nw4cNR\nqVSUlZURHh5Oeno6AP7+/qjVapTK+v9K8/DwwNXVtWqEJzs7m3nz5t1V2FX3c9/vc2zTpg0qlarq\nc1y/fn3Vz/fJJ5+wdu1aAFxcXPD09NTpMxZC3J8szRaiBQgPD0elUlU9fueddwgPDycpKYkxY8ag\nUCgICQkhNDQUhULB4sWLee2117C2tuapp55CqVSiUCjQarVUVFQQEhJy1/5XrlzJn/70JxYvXkxI\nSAhKpZJnnnmGgIAAbt26xZYtWxg1ahSmpqbY29uzdOlSnJ2d7/v8/YwaNYoXX3yRr776CgATExMm\nT57Mk08+CYBSqeSNN97AwsKCnTt3snv3bv72t7/V6TNSKBQsX76cxYsX88EHH6BUKnnqqaewtLSs\n9bOt7nN8++23WbBgAaampjzyyCNV+xo/fjyvvfYaK1euRKFQ0K1bt6rl4kKIulNotVptYwchhDBe\nRUVF9OjRg6ioKKytrRs7HCGEuIdcZhJC3GPSpEls3boVgK1bt+Lt7S2FjBDCaMnIjBDiHlFRUbz1\n1lvcunULjUbD4sWLCQgIaOywhBDivqSYEUIIIUSTJpeZhBBCCNGkSTEjhBBCiCatyS/Nzsgo0Nu+\n7ewsycmp+R4TonFIboyT5MV4SW6Mk+RFd05O1S9CkJGZGqjVqto3Eo1CcmOcJC/GS3JjnCQvDUOK\nGSGEEEI0aVLMCCGEEKJJk2JGCCGEEE2aFDNCCCGEaNKkmBFCCCFEkybFjBBCCCGaNClmhBBCCNGk\nSTEjhBBCNGN79/6i03YrVrzH9esp1b7+6qvzGiqkBifFjBBCCNFM3bhxnV27InTadu7c+bi7e1T7\n+t//vryhwmpwTb6dgRBCCCHub/nyfxATE82gQb0ZOTKUGzeu88EH/+Jvf3uLjIx0iouL+cMfnmHA\ngEHMnv0M8+b9mT17fqGw8CbXriWSkpLMnDnz6d9/AGPGDGfLll+YPfsZevfuy8mTUeTm5vKPf7yP\no6Mjb721kNTUG3TtGsDu3bv46aetBvs5pZgRQgghDOCH3Vc4Hpt+13MqlYKKCm2999m7kzNTh/lU\n+/r06eGsX/8DXl7eXLuWwL/+9Tk5Odn06dOP0NCxpKQks3DhqwwYMOiu96Wnp7Fs2YccPXqYn39e\nR//+A+56XaPRsGLFp3z66Ufs378bd3dPSktv8dlnX3Ho0AF++OG7ev9M9SHFTDXi8xIpVNuioVVj\nhyKEEEI8sM6d/QGwtrYhJiaajRvXo1Aoyc/Pu2fbgIDuADg7O3Pz5s17Xu/WrUfV63l5eSQmXqVr\n124A9O8/AJXKsD2npJipxtcXviezOJshngMY234U5mqzxg5JCCFEEzZ1mM89oyhOTtZkZBQY5Pgm\nJiYA7Ny5nfz8fD755HPy8/N5+unwe7b9bTGi1d47cvT717VaLUrl7ecUCgUKhaKhw6+RTACuxhN+\nYbhZO7Mn+SBLI5cTk32psUMSQggh6kSpVFJRUXHXc7m5ubi5uaNUKtm3bzdlZWUPfBwPD08uXrwA\nQGTk0XuOqW9SzFTDy7Yt7456nZFth5JzK4+PT3/O6pgfKCorauzQhBBCCJ20bevFxYuxFBb+eqlo\nyJBhHD58gLlzn8fCwgJnZ2f+85+VD3Schx4aRGFhIc8/P5MzZ05hY2P7oKHXiUJ7v/GjJkSfw3N3\nhv+SClL4b8yPJN+8jo2pNdM6TqS7Uxe9HVfUzpBDs0J3khfjJbkxTs0lL/n5eZw8GcWQIcPJyEhn\n7tzn+fbbdQ16DCcn62pfkzkzOmht7cGfe73Irmv72Jqwi5XnvqaHU1emdJiArVn1H64QQgjRElha\nati9exfffrsarbaSF1807A32ZGSmBvermFML0/kmdi3xeQlYqi2Y7PswfVwDDT7ZqaVrLn/NNDeS\nF+MluTFOkhfd1TQyI3Nm6shV48xLgc8xpcN4yrUVfB2zhk/OfEFWcU5jhyaEEEK0SFLM1INSoWSI\n5wDe6DOfzvYdiMm+xJLI99iXfJhKbWVjhyeEEEK0KFLMVOPohVQio1Nr3MbBwo5Z3WYyo/M0VAoV\nP1zawAcn/4+0wvQa3yeEEEKIhiPFTDU2H07k7S+PsXZvHJU1TCtSKBT0devJwn4v08OpK3F5CSw9\n/gE7EvZQUWnYdfZCCCFESyTFTDVmTeyCm6OGrUcT+WT9OUpKy2vc3sbUmqe7hvPHLuFYqi34OX4b\n/4z6iKSC6tupCyGEEMZg8uRxFBUVsXr1V5w/f/au14qKipg8eVyN79+79xcAtm7dxL59e/QWZ3Wk\nmKmGm4OG9+YG0alNK05dzmTp6pNk5hXX+r7uzl1Z2Hc+/dx6kXTzOu9GfcTGuO2UVTz4HRaFEEII\nfQoPf5IuXQLq9J4bN66za1cEAKNHj2Pw4KH6CK1Gcp+ZGlhbmjJvWne+3XWZvadSeGdVFLMfCcDH\ns+Y7G1qaWBLeeSq9XLrzXew6IhJ3czrjHI91moJ3q3aGCV4IIUSL94c/PMbSpe/h6upKauoNXntt\nPk5OzhQXF1NSUsJLL72Cn9+vN4FdsmQxQ4YMp3v3Hrz++p8pLS2tajoJsGPHNtauXYNKpaRdO2/+\n8pfXWb78H8TERPOf/6yksrKSVq1aMWnSNP71rxWcO3eG8vIKJk2aSkjIGGbPfobevfty8mQUubm5\n/OMf7+Pq6vrAP6cUM7VQq5SEj+yAh6OG73Zd5t3vTvJESCcGdHWr9b2d7TuwoM88NsVvZ1/yYd4/\n+SlBnv15uH0I5mpzA0QvhBDCWKy/splT6efuek6lVFBRWf/bvfVw7sojPmOrfT0oaCiHDu1n0qSp\nHDiwj6CgoXh7+xIUNIQTJ47zzTerWLLkn/e8LyJiG+3bezNnznx++WVH1chLcXEx7733EdbW1sya\n9Ufi4q4wfXo469f/wFNP/ZEvvvg3AKdPnyQ+Po5PP/2S4uJinngijKCgIQBoNBpWrPiUTz/9iP37\ndzN16qP1/vnvkMtMOlAoFAzv6clLU7tholbxxZYYftxzhUodvoDmajOmdBjPvJ7P42zpxL7kw7xz\nbDkXsi4aIHIhhBAt2e1i5gAABw/uY+DAwezb9wvPPz+TTz/9iLy8vPu+LyEhni5dugHQo0fPqudt\nbGx47bX5zJ79DImJV8nLy73v+2NjL9C9eyAAFhYWtGvXnqSkJAC6desBgLOzMzdv3rzv++tKRmbq\nwN/Lnjdm9OTDtWfZduwaN7KK+OM4PyzMav8Y29u247Xec9me8As7ru3lkzNf0Ne1J5N8x6ExsTRA\n9EIIIRrTIz5j7xlF0fcdgNu39yYrK4O0tFQKCgo4cGAvjo7OLFz4NrGxF/j44w/u+z6tFpTK23e2\nv/OHe1lZGcuXv8tXX32Lg4Mjf/7zn6o9rkKh4LcLgcvLy6r2p1KpfnOchmlCoNeRmaVLlzJt2jTC\nwsI4e/bu2dHDhg3j0UcfJTw8nPDwcNLS0qisrGThwoWEhYURHh5OXFycPsOrFzcHDW880YvObe04\nfSWTv/33BJm5tU8MBjBRmTDOO4Q/95pDa2sPjqWe4O1jy+4ZdhRCCCEaSv/+A/nss38xaNBg8vJy\n8fDwBGDfvj2Ul99/pW6bNm2JjY0B4OTJKACKigpRqVQ4ODiSlpZKbGwM5eXlKJVKKiruvhVJp07+\nnDp14n/vKyIlJRlPzzb6+hH1V8xERkaSmJjImjVrWLJkCUuWLLlnm5UrV7J69WpWr16Ni4sLv/zy\nCwUFBXz//fcsWbKEd999V1/hPRCNuQkvTe3G0EAPkjMKefvrKC4l3X+o7X5aW7vzSs/ZjPcOpbi8\nhM/Pr2blua/Ju5Wvx6iFEEK0RIMHD2XXrgiGDBlOSMgY1qz5hpdemoW/fxeysrLYsmXjPe8JCRlD\ndPQ55s59nqSkRBQKBba2rejduy9PPz2D//xnJY8+Gs6HHy6nbVsvLl6M5cMP36t6f7du3enYsROz\nZv2Rl16axXPPzcbCwkJvP6PeGk2uWLECd3d3pkyZAkBISAhr167FysoKuD0ys2nTJjQaTdV7Vq5c\niUql4g9/+AMA48aNY8OGDXcNSf2eoRtN/t7uk8l8u/MyCgU8EdKJgQG1Twz+rbSiDL6JWUtc3lUs\n1BZM8h1HP9ee0riyFtKczThJXoyX5MY4SV501yiNJjMzM7Gzs6t6bG9vT0ZGxl3bLFq0iOnTp7Ns\n2TK0Wi0dOnTg4MGDVFRUEB8fT1JSEjk5xt3AcVigJ/OmdcPcVMWXW2NYs/uyThOD73CxdOJPgc8y\nrcMEKrUV/DfmBz4+/TlZxdl6jFoIIYRoPgw2Afj3A0Bz5sxh0KBB2NraMmvWLCIiIggJCeHkyZM8\n9thjdOzYkfbt29c6OcjOzhK1uvqRmwdVUyV4x2Ana3zbOfDWF8eIiEwiq6CUVx7viaW5ic7HmeQ8\nisEdevNZ1DecTr3AkuPv82jX8YzyHYxSIYvO7keX3AjDk7wYL8mNcZK8PDi9XWb66KOPcHJyIiws\nDIDhw4fz888/V11m+q1vvvmGrKws5syZc9fzI0aMYMeOHSiV1f9j3tiXmX6rqKSMTzecJzohBw9H\nDS9ODsC5Vd2uEWq1WiJTT7Lu8iYKy4tob9uWxzpNxlXjUtfwmzUZmjVOkhfjJbkxTpIX3TXKZaYB\nAwYQEXH7JjvR0dE4OztXFTIFBQXMnDmT0tJSAI4fP46vry+xsbG89tprAOzfvx8/P78aCxljY2lu\nwp+mdmN4T09SMgt5Z1UUF6/V7TLZncaVb/SbT6BzAPF5ifwt8gO2J+yWxpVCCCHEfejtMlNgYCD+\n/v6EhYWhUChYtGgR69evx9ramuDgYIKCgpg2bRpmZmb4+fkREhKCVqtFq9UyefJkzMzMWLZsmb7C\n0xuVUsljwbfvGPzNzkss+/404aM6EtTNvU77sTG1ZmaXx+mVcZ7vL/7EpvjtnEw/w+Odp9DG2lNP\n0QshhBBNj94uMxmKMV1m+r2YxBz+9dM5CkvKGdm7NVOH+lTdNKguisqK+OnKFg7fOI5SoWR46yBG\newVjqtJ9Tk5zI0OzxknyYrwkN8ZJ8qK7RrnMJKBzWzveeKIXbg6W7DiexIq1Zykquf8NimpiaWLJ\nY52n8GL3P2JnZsvOa3v52/H3uZJ7VQ9RCyGEEE2LFDN65mJnyevhvejS3p5z8VksWR1Fek5RvfbV\nyd6X1/vOZ2jrgWQUZfH+yU9Zc/EnSspLGjhqIYQQoumQYsYALM3VzJ0cQHCv1tzIKuLtVVHEJtbv\n/jlmKlMm+z7M/J4v4KpxYX/KEd45tpzorNgGjloIIYRoGlSLFy9e3NhBPIiiolK97VujMWuw/SsV\nCrq2d6CVlSknL2VyJDoVW40p7Vxt6rU/O/NWPOTeBwUQnX2RyNSTZBZn4dPKC1OVaYPEbMwaMjei\n4UhejJfkxjhJXnSn0ZhV+5qMzBjY4O4evBzWHQszNau2X+TbnZeoqKys175MlGrGth/Fq73n0sba\ng8jUk7xz9D1Opp9tsE6kQgghhLGTYqYRdGxze2Kwu6OGXSeSWfHjWYpKyuq9Pw8rN17uOZsJ3qMp\nqSjhi/P/lcaVQgghWgwpZhqJcysLXg/vSYC3A+evZrNk9QnS6jkxGEClVBHcdggL+ryETysvzmRG\n8/axZRy+flxGaYQQQjRrUsw0IgszNXMmBTCy9+2Jwe+siiIm4cEaTDpbOjG3x7OEdZyIVqvlm9gf\n+fj052RK40ohhBDNlBQzjUypVBA23JcnQztRUlrB8h/OsOdUyoPtU6FkkEd/3ug7H3+HTsTmXOZv\nkR+QXWLcHciFEEKI+pBixkgEdXOvmhi8OuIi3+yo/8TgO+zMW/F8wFM84jOWkooSfo7b1kDRCiGE\nEMZDihkj0rGNHQuf6IWHo4ZfTibzwQ9nKHyAicFwu3Hl0NYDaWvdmqi008TnJTRMsEIIIYSRkGLG\nyDi1smBBeE+6eTsQnZDDO1+fIDW7/hOD4fZlp8kdxgGw9vImKrUPNuIjhBBCGBMpZoyQhZmaFycF\nENK3DWnZtycGRz/gxOD2tu3o6dyNxPwkotJON1CkQgghROOTYsZIKZUKpg714Q+jO3OrrIL315xh\n98nkB9rneO/RmCjV/By3jVsVcsdJIYQQzYMUM0ZuYIAbf360BxoLNf/dcYnVERcpr6jfZSIHCzuG\ntxlM7q08diXubdhAhRBCiEYixUwT4OvZioUzeuHppGHPqRTe/+EMN4vrNzE4uM0QbE2t2XltHzkl\nuQ0cqRBCCGF4Usw0EY6tLHjt8Z5093EkJjGHJV9HcSOrsM77MVeb8bB3KGWVZbJUWwghRLMgxUwT\nYmGmZvakrozu15a0nGLe+foE569m1Xk/fVwDaWPtwfG0U1zNS9RDpEIIIYThSDHTxCgVCiYP8ebp\nsZ0pK6/ggx/OsisqqU79l5QKJZN8HwZuL9WW3k1CCCGaMilmmqiHurjx5+mBWFmo+XbX5TpPDPZp\n5UWgcwAJ+ddkqbYQQogmTYqZJszH05Y3nuhFa2cr9p6+zvI1p+s0MXiC92jUSjUb4rZSKku1hRBC\nNFFSzDRxjrYWvPZ4ID18HYm9lss7q6K4nqnbxGAHC3uGtw66vVT72j49RyqEEELohxQzzYC5qZpZ\nj3RlTP+2pOcWs2R1FOfidZsYPLLtEGxMrdmZuFeWagshhGiSpJhpJpQKBZMGe/PHcX6UlWv54Mcz\n7Dxe+8Rgc7U5D7cPobSyjI3x2w0UrRBCCNFwpJhpZvr7u/KXx3pgbWnKd79cZtX22FonBvd160lr\nK3ciU0+SkH/NQJEKIYQQDUOKmWbI292Wvz7RizbOVuw/c4P3vj9NQVH1E3zvWqp9SZZqCyGEaFqk\nmGmm7G3Mee3xnvTs4MTFpFyWrD5B8a3yarf3tWtPD6euXM1P5ET6GQNGKoQQQjwYKWaaMTNTFc9P\n7MLwQE/Sc4rZdqzmu/1O8BmDWqFiw5WtlFbUr/eTEEIIYWhSzDRzSoWCyUO9aWVlyo7IJHIKblW7\nraOFPcPaBJFzK5dfZKm2EEKIJkKKmRbAzETFhEHtKS2v5OeD8TVuO7LtUKxNrdiRuIfcW3kGilAI\nIYSoPylmWogBXV1xd9Rw4OwNUjJuVrudxW+XasfJUm0hhBDGT4qZFkKlVDJ5iDdaLazdG1fjtv3c\neuFp5c6x1BMk5icZKEIhhBCifqSYaUG6eTvQsXUrzsRlcfFaTrXb3V6qPQ6AtZc3ylJtIYQQRk2v\nxczSpUuZNm0aYWFhnD179q7Xhg0bxqOPPkp4eDjh4eGkpaVRWFjI7NmzCQ8PJywsjAMHDugzvBZH\noVAwZagPAD/suVJjkdLBzpvuTl2Iz0vkpCzVFkIIYcTU+tpxZGQkiYmJrFmzhri4OBYsWMCaNWvu\n2mblypVoNJqqx//973/x8vJi/vz5pKWl8cQTT7B9u8zbaEjt3W3o3cmZ47HpHI9Np09nl2q3neA9\nhvOZMfx0ZStdHf0xVZkYMFIhhBBCN3obmTly5AgjRowAwNvbm7y8PG7erH7iKYCdnR25ubebHebn\n52NnZ6ev8Fq0SYPbo1IqWL8vvsZWB06WDgxtPYicW7nsTtpvwAiFEEII3eltZCYzMxN/f/+qx/b2\n9mRkZGBlZVX13KJFi0hJSaFnz57Mnz+fMWPGsH79eoKDg8nPz+ff//53rcexs7NErVbp5WcAcHKy\n1tu+G4uTkzWhD7Vj88GrRF3OYtyg9tVu+1irh4lMO8GOa3sZ02UI9hatDBhpzZpjbpoDyYvxktwY\nJ8nLg9NbMfN7v5+fMWfOHAYNGoStrS2zZs0iIiKCW7du4e7uzhdffEFsbCwLFixg/fr1Ne43J6dI\nbzE7OVmTkVGgt/03phGBHuyKvMa3EbF087LDwqz6r8KYdiP59uI6vopcR7jfVANGWb3mnJumTPJi\nvCQ3xknyoruaij69XWZydnYmMzOz6nF6ejpOTk5VjydMmICDgwNqtZqgoCAuXbrEyZMnGThwIACd\nOnUiPT2diooKfYXYotlYmjK6X1tuFpfV2uagv3tvPKzcOJoaxbX8ZANFKIQQQuhGb8XMgAEDiIiI\nACA6OhpnZ+eqS0wFBQXMnDmT0tLbnZyPHz+Or68vbdu25cyZ2ytnUlJS0Gg0qFT6u4TU0gX3bq1T\nmwOlQslkWaothBDCSOntMlNgYCD+/v6EhYWhUChYtGgR69evx9ramuDgYIKCgpg2bRpmZmb4+fkR\nEhJCUVERCxYs4PHHH6e8vJzFixfrKzzBr20OvtoWy4YD8Tw1unO123aw86Gboz9nMqM5lXGOQOcA\nA0YqhBBCVE+hbeJ/ZuvzWmNLuJZZUVnJ4i+Pcz2rkLf+0AcPJ6tqt00vyuSdY+9ha2bDX/u+jEkj\nLtVuCblpiiQvxktyY5wkL7prlDkzomlQKZVM0rHNgbOlI0NaDyC7JIfdSXJDQyGEEMZBihlxV5uD\n2MTq2xwAhLYbjpWJhojE3eTdyjdQhEIIIUT1pJgRd7U5+HFvzW0OLNQWjG0/ilsVpWyKjzBUiEII\nIUS1pJgRwK9tDq7eKOB4bHqN2z7k1ht3jStHb0RxrUCWagshhGhcUsyIKnfaHKzbF1djmwOVUsUk\n33Fo0bLu8iZZqi2EEKJRSTEjqjjbWTK0hwcZuSXsOZVS47ad7H3p6ujHldyrnM44b6AIhRBCiHtJ\nMSPuMnZAO8xNVWw6lEBRSXmN2z7iMwaVQsVPV7ZQVlFmoAiFEEKIu0kxI+5SlzYHzpZODPZ8iKyS\nbPYkHzRQhEIIIcTdpJgR97jT5mDn8ZrbHACEthuBxsSSiITd5N2SGz8JIYQwPClmxD3utDkoLa9k\nw4H4Gre1NLFgrNcoSipusVmWagshhGgEUsyI+xrQ1RUPRw0Hz90gOeNmzdu698FN48KRG8dJKrhu\noAiFEEKI26SYEfelUiqZrGObg7uXaktXbSGEEIYlxYyoVsD/2hyc1aHNQWf7DnR17Mzl3HjOZEYb\nKEIhhBBCihlRg9+2OfhhzxUqaxlxmegzFqVCyU+XN1NWWfOybiGEEKKhSDEjatTe3YY+nZ1JSC0g\nqpY2By6WTgzxHEBmSTZ7k2RW82XkAAAgAElEQVSpthBCCMOQYkbU6pEg3docwO2u2hoTS7Yn/EJ+\nqSzVFkIIoX9SzIha1aXNgaWJJWO9Rv5vqfYOA0UohBCiJZNiRuhk7IB2WJjp1uZggHtfXDUuHL4e\nSbIs1RZCCKFnUswIndSlzYFKqWKyj3TVFkIIYRhSzAidjejVGjtrM3YcTyI7v6TGbTs7dKCLQycu\n5cZxNvOCgSIUQgjREkkxI3RmZqJiwkAvysor2XDwaq3b31mqvf6KLNUWQgihP1LMiDoZ0NUND0cN\nh3Roc+CqcWawx0NkFmexL/mQgSIUQgjR0kgxI+pEqVTo3OYAINRrBBq1Jduu/kJBac3FjxBCCFEf\nUsyIOgvwdqBTG93aHGhMLBndPpiSihI2X5Wl2kIIIRqeFDOizura5mCQez9cLZ05lHKMlJs3DBGi\nEEKIFkSKGVEvXm66tzlQKVU84itLtYUQQuiHFDOi3urS5sDfoSN+Dh25mHOF81kxBopQCCFESyDF\njKg3ZztLhgbq1uYAYNKdpdqXN1MuS7WFEEI0EClmxAMZ95DubQ5cNS4M8uhPenEm+5MPGyhCIYQQ\nzZ0UM+KBWNehzQHAaK8RWKot2JqwS5ZqCyGEaBBSzIgHVpc2B1YmGkZ7BVNcXsKWqzsNFKEQQojm\nTIoZ8cDq2uYgyKM/LpZOHEw5yvWbqQaIUAghRHOm1ufOly5dypkzZ1AoFCxYsICAgICq14YNG4ar\nqysqlQqAZcuWsX//fjZu3Fi1zfnz5zl16pQ+QxQNZEBXN3YcT+LQuRuM7N0aTyerardVKVU84jOW\nT8/+h3WXNzG7+9MoFAoDRiuEEKI50VsxExkZSWJiImvWrCEuLo4FCxawZs2au7ZZuXIlGo2m6vGU\nKVOYMmVK1fu3bdumr/BEA1MqFUwZ6s0HP55l7d44/jSlW43b+zt0orN9B2KyL3E+K4aujn4GilQI\nIURzo7fLTEeOHGHEiBEAeHt7k5eXx82buk/4/OSTT3jhhRf0FZ7Qg67tf21zEFNLmwOFQsEjv+mq\nLUu1hRBC1JfeipnMzEzs7OyqHtvb25ORkXHXNosWLWL69OksW7bsrrvCnj17Fjc3N5ycnPQVntCD\n37Y5+FGHNgfuVq4MdO9HelEm+1OOGCJEIYQQzZBe58z81u9vYT9nzhwGDRqEra0ts2bNIiIigpCQ\nEADWrl3LxIkTddqvnZ0larWqweO9w8nJWm/7bo6cnKwJ6n6D/adTuJRSwKAeHjVuP8NmIifST7E9\nYReh/kHYmFU/1+Z+xxLGR/JivCQ3xkny8uD0Vsw4OzuTmZlZ9Tg9Pf2ukZYJEyZU/X9QUBCXLl2q\nKmaOHTvGG2+8odNxcnKKGijiezk5WZORUaC3/TdXo/u14dDZ63y56TzerlaYqGseAAxpN4J1lzfx\n9fGfmNZxQo3b3iG5MU6SF+MluTFOkhfd1VT06e0y04ABA4iIiAAgOjoaZ2dnrKxu/9VdUFDAzJkz\nKS0tBeD48eP4+voCkJaWhkajwdTUVF+hCT1zbmXB0EAPMvNK2KtDm4Mgj/44Wzpy8Los1RZCCFF3\neitmAgMD8ff3JywsjHfeeYdFixaxfv16du7cibW1NUFBQUybNo2wsDDs7e2rRmUyMjKwt7fXV1jC\nQKraHByuvc2BWqnmEZ+xVGorWX9ls3TVFkIIUScKbRP/l0Ofw3My/PdgthxJYN2+eMb0b8ukwd41\nbqvVavn49OfE5lzm+YCn6OLYucbtJTfGSfJivCQ3xknyortGucwkRF3aHCgUCib5jkOBgvVXNlNR\nWWGgKIUQQjR1UswIvTEzUTFh0P/aHByovc2Bu5UrAz36kVaUIUu1hRBC6EyKGaFXA7q44eGk4dD5\nGySn137TxDFewViozdl6dSc3ywoNEKEQQoimTooZoVdKpYIpQ7zRamHtvrhat7c2tSK03QiKyovZ\nenWXASIUQgjR1EkxI/SuLm0OAAZ7PoSThQMHUo6QWphmgAiFEEI0ZVLMCL2ra5uD3y7VXndlsyFC\nFEII0YRJMSMMwsvNhj6dnUlILeB4THqt23d19KOjnQ8Xsi4SnRVrgAiFEEI0VVLMCIN5ZLA3KqWC\ndfviKCuvrHHbu5ZqX5al2kIIIaonxYwwmLq2OfCwcmOAex9Si9I5cP2oASIUQgjRFEkxIwzq7jYH\nZbVuP7b9KMxV5myN30lhmf6aigohhGi6pJgRBmVtacrofm25WVzG1qPXat/e1IpQr+EUlhexTZZq\nCyGEuA8pZoTBBf+vzcHOqNrbHAAM9hyAo4UD+1IOk1pY++RhIYQQLYsUM8LgTOvY5sBEqeYRnzFU\naiv5SZZqCyGE+B0pZkSjqGpzcE63NgcBjv50aOXN+axYLmRdNECEQgghmgopZkSjuN3mwActurU5\n+O1S7XXSVVsIIcRvSDEjGk3X9va/tjlIyK51e09rdx5y701qYRofHv2PrG4SQggBSDEjGtFv2xz8\nsDeu1jYHAA97h+Jl04YjSSdYcmy5XHISQgghxYxoXF5uNvT1cyFRxzYHViYaXgp8nuldx3OzrJBP\nznzB9xd/4lZFqQGiFUIIYYykmBGN7pGg9jq3OQBQKVVM9AvhlV4v4qZx4UDKEf4W+T7xeYkGiFYI\nIYSxkWJGNDqnVhYMC/QkM6+EPTq0ObijtbU7f+k1h+Ftgsgszmb5iX+xMW475ZXleoxWCCGEsZFi\nRhiFcQPaYWGmZrOObQ7uMFGZ8IjPWOb2eBZ781ZEJO7mn1Efc/1mqh6jFUIIYUx0LmZu3rx9L5DM\nzEyioqKorKz9coAQurKyMGF0vzY6tzn4PV+79izo8xIPufUh+eZ1/nF8Bbuu7aNSK99TIYRo7nQq\nZt5++222bdtGbm4uYWFhrF69msWLF+s5NNHS1LXNwe+Zq815rPNkngt4Egu1BT9d2cKKU/8ms7j2\nZd9CCCGaLp2KmQsXLjBlyhS2bdvGxIkTWbFiBYmJMtlSNCxTExUTB7XXuc1Bdbo6+vF633l0d+rC\nldyrLI1czuHrkWh1WPothBCi6dGpmLnzj8DevXsZNmwYAKWlshRWNLyHurjiWYc2B9WxNrXi6S7h\nPOEXhlKh5JvYtfzf2a/Iu1XQgNEKIYQwBjoVM15eXowePZrCwkI6d+7Mhg0bsLW11XdsogVSKhVM\n/l+bgx/31t7moCYKhYI+roG83mceHe18OJ8Vw5LI9ziVfq5hghVCCGEUFFodxt4rKiq4dOkS3t7e\nmJqaEh0dTevWrbGxsTFEjDXKyNDfX9pOTtZ63b+4P61Wy7LvTxOTmMMrYd3p3M7+nm3qmptKbSX7\nk4+wIW4LZZXl9HENZIrveCxNLBoy9BZPzhnjJbkxTpIX3Tk5WVf7mk4jMzExMaSmpmJqasr777/P\nu+++y6VLlxosQCF+63abA29A9zYHtVEqlAxpPYBXe/+JttatiUw9ydLI94nNvvzA+xZCCNG4dCpm\n3nnnHby8vIiKiuLcuXMsXLiQDz/8UN+xiRasneuvbQ4iY9IabL+uGmfm93yBMV7B5JXm89Hplfx4\n6WdKpR2CEEI0WToVM2ZmZrRr145ffvmFqVOn4uPjg1Ip99sT+nWnzcH6ffE6tTnQlUqpYrRXMC/3\nnIWLpTN7kw/x9+MrSMxParBjCCGEMBydKpLi4mK2bdvGrl27GDhwILm5ueTn5+s7NtHC1bfNga7a\n2rTm1d5zGdp6IGlFGSw78Qmb43dQUVnR4McSQgihPzoVM/PmzWPTpk3MmzcPKysrVq9ezZNPPqnn\n0IT4tc3BpkNX69TmQFemKhMm+z7M3B7PYGtqw7aEXSw78TGphQ13aUsIIYR+qRbrcCtfT09Phg4d\nilarJTMzk+HDh9OlSxcDhFe7oiL9zXXQaMz0un9RO1MTFQoFnLmSBSjw+9/KpobOjYOFPf3de5F3\nq4AL2Rc5cuM4Zioz2tp4olAoGuw4zZ2cM8ZLcmOcJC+602jMqn1NrcsOdu3axeLFi3F1daWyspLM\nzEzefvttBg8eXOP7li5dypkzZ1AoFCxYsICAgICq14YNG4arqysqlQqAZcuW4eLiwsaNG/n8889R\nq9XMmTOHIUOG6BKiaMZG9PTklxPJ7IxKYligB/Y25no5joXaghl+0whw8ue72HWsvbyRsxnRhPtN\nxd7cTi/HFEII8eB0KmY+//xzNm7ciL397b+K09LSmDt3bo3FTGRkJImJiaxZs4a4uDgWLFjAmjVr\n7tpm5cqVaDSaqsc5OTl88sknrFu3jqKiIj766CMpZkRVm4Mvt8bw04F4Zo7x0+vxujt1ob1tW76N\nXce5zAssOfY+Uzo8TF/XnjJKI4QQRkinOTMmJiZVhQyAi4sLJiYmNb7nyJEjjBgxAgBvb2/y8vKq\nOm/X9J7+/ftjZWWFs7Mzb7/9ti7hiRbgTpuDw+dSH6jNga5sTK15tusTPN5pCqBldcwPrDy/moJS\n/R9bCCFE3eg0MqPRaPjyyy956KGHADh48OBdIyr3k5mZib+/f9Vje3t7MjIysLKyqnpu0aJFpKSk\n0LNnT+bPn09ycjIlJSU899xz5Ofn8+KLL9K/f/8aj2NnZ4lardLlx6iXmu44KAxr5viuvPn5UX4+\nnEAPfzeD5OZh52H08+nGv46t4kzGeRLyE3m292P08uim92M3VXLOGC/JjXGSvDw4nYqZJUuWsGLF\nCjZu3IhCoaB79+4sXbq0Tgf6fdeEOXPmMGjQIGxtbZk1axYREREA5Obm8vHHH3P9+nVmzJjBnj17\nahzaz8kpqlMcdSG3mTYubRws6NzWjhOx6ew7mYxfa8P0B1NgyvNdZrIn6SAb47fz7sH/o79bbyb5\njsNCrZ/5O02VnDPGS3JjnCQvuqup6NOpmHFwcOCtt96667m4uLi7Lj39nrOzM5mZmVWP09PTcXJy\nqno8YcKEqv8PCgri0qVLeHh40KNHD9RqNW3atEGj0ZCdnY2Dg4MuYYpmTqFQMG2YD0v/e4Jl35xg\n0uD2jO7X1iDzWJQKJcPbBNHZvgNfX/ieIzeOczHnCjM6T8XXzlvvxxdCCFG9et/G980336zx9QED\nBlSNtkRHR+Ps7Fx1iamgoICZM2dSWnp7Odrx48fx9fVl4MCBHD16lMrKSnJycigqKsLOTlaRiF+1\ncbFmweM9cbQ1Z92+eL7YEtOgdweujbuVKy/3mk1ou+Hk3spjxanPWHd5E2UVDX8PHCGEELrRaWTm\nfmprth0YGIi/vz9hYWEoFAoWLVrE+vXrsba2Jjg4mKCgIKZNm4aZmRl+fn6EhISgUCgYNWoUU6dO\nBeCNN96QtgniHm1crFn+p8Es+uwIh8+nkp5bzOxHumJjaWqQ46uVasa2H4W/Q2e+vvA9u5MOcCH7\nEk/4TaONtadBYhBCCPErhba2qqQaM2bM4Ouvv27oeOpMn9ca5Vqm8XJysiblei5fbo0hMiYdR1tz\n5kwOwNPJqvY3N6DSilI2xG1lX/JhlAolo9sFM7LtEFRK/U1KN2ZyzhgvyY1xkrzort5zZtauXVvt\naxkZGfWPSIgGYGqi4tmH/XF30LDh4FWWrj7Bc+P9CfB2NFwMKlOmdphAVwc//hv7I5uvRnA+K4YZ\nftNwsXSqfQdCCCEeWI3FzIkTJ6p9rXv37g0ejBB1pVAoeHigF64OlnyxJYYVa88ybagPwb1bG/QG\nd50dOvB6n5f44dLPHE87xd8iP2CizxgGefRDqZBLpUIIoU/1vsxkLOQyU8t0v9xcvZHPh+vOknez\nlKBu7jw+sgNqleELiZPpZ/k+dj2F5UV0svPl8c5TsDNvZfA4GoOcM8ZLcmOcJC+6q+kyk07FzKOP\nPnrPX7kqlQovLy9eeOEFXFxcHjzKepJipmWqLjfZ+SV8uO4s19Ju0qlNK16Y2BUri5rvVq0Pebfy\n+SZ2LdFZsViozZnaYQK9XXo0+3YIcs4YL8mNcZK86K6mYkanrtk3btygvLycSZMmERgYSFZWFh06\ndMDV1ZUvv/yS8ePHN2S8dSJds1um6nJjYaamv78rqVlFnIvP5sSlDPy97LE20EqnO8zVZvRy6U4r\nM1uisy9yMv0MN4rS6WDnjanKsLEYkpwzxktyY5wkL7qrqWu2TmPwJ06c4L333mPkyJGMGDGCv//9\n70RHR/Pkk09SVib31xDGxcxUxfMTuzCmf1vSc4p55+sTRCdkGzwOhULBAI++LOj9Eu1t23Eq/SxL\nji3nfGaMwWMRQojmTKdiJisri+zsX/8xKCgo4Pr16+Tn51NQIMNjwvgoFQomDfbm6bGdKSuv4P01\nZ9hzMrlRYnGydOClwOeY4D2aorIiPj37H76NXUdJ+a1GiUcIIZobnW6aN2PGDEJDQ/Hw8EChUJCc\nnMyzzz7Lnj17mDZtmr5jFKLeHurihlMrCz5ef47VOy5xPbOIsBE+qAx8M0alQklw2yH4OXRk1YXv\nOXT9GBezLxPuNw2fVl4GjUUIIZobnVcz3bx5k4SEBCorK2nTpg2tWhnH6gyZANwy1TU3mbnFrFh3\nlpSMQvy97Hl+vD+W5oafGAxQVlnO1qs72Zm4F4AhrQcwul0wliYWjRJPQ5JzxnhJboyT5EV3DzwB\nuLCwkFWrVrF582aioqLIysqiS5cuqNX17obQYGQCcMtU19xYmpvQ39+V5IybnI/P5tTlTLq2t0fT\nCCudVAolnex96Wjny+XceC5kXeTwjUjMVGZ4Wrk36fvSyDljvCQ3xknyoruaJgDrNDIzb948XFxc\n6Nu3L1qtlsOHD5OTk8OyZcsaNND6kJGZlqm+uams1PLDnivsOJ6ElYUJsyZ2oWObxmtmWlZRxp7k\ng0Qk7Kak4hZuGhcm+Yyjs0OHRovpQcg5Y7wkN8ZJ8qK7erczuCMzM5Ply5dXPR46dCjh4eEPHpkQ\nBqZUKggb7ou7o4bVERdZ9v1pZozqyKBu7o0Sj4nKhJFth9LPrReb4yM4fP04H5/5nC4OnZjoMxZX\njXOjxCWEEE2JTsVMcXExxcXFWFjcvqZfVFTErVuyEkM0XUHd3HFuZcEnP53jP9tiuZFVxOQh3iiV\njXNTOxtTax7tNJlBHg+x7vJGzmfFciH7EkEe/RntFYzGxLJR4hJCiKZAp2Jm2rRphIaG0qVLFwCi\no6OZO3euXgMTQt86tbXjjSd6seLHs2yPvEZqdhF/HOeHhVnjzQVrbe3O3B7PcjYzmvVXtrA3+RCR\nqScZ4zWSQR79Wmw3biGEqInOq5lu3LhBdHQ0CoWCLl26sHr1al5++WV9x1crmTPTMjVkbopKyvh0\nw3miE3LwdNIwZ3IAjraNv7KorLKcfcmH2Hb1F0oqSnCxdGaS71j8HTo1dmjVknPGeElujJPkRXcP\n3JvpfmbMmMHXX39d76AaihQzLVND56aispJvd11mz8kUbCxNmD0pAB8P2wbb/4MoKL3J5qs7OJRy\nDC1aOtt3YJLvONw0jdcTrTpyzhgvyY1xkrzorqZipt5rQJt4s20h7qJSKgkf2ZHHgjtws7icd789\nyZHo1MYOCwBrUyumd3yE1/r8iU52vsRkX2Jp5PusubiBm6WFjR2eEEI0unoXM829+69omYb39ORP\nUwMwUatYuekC6/fHUWkkhbuHlRuzuz/NcwFP4mhhz/6Uwyw++i67kw5QXlne2OEJIUSjqfEy0+DB\ng+9btGi1WnJycjh79qxeg9OFXGZqmfSdm+uZhXy49izpucX07OjE02P8MDM1nsm35ZXl7E85wtar\nuyguL8bZwpFHfMfSxaFzo/6hIeeM8ZLcGCfJi+7qPWcmJSWlxh17eHjUP6oGIsVMy2SI3NwsLuOT\n9ee4mJRLWxdr5kwOwM66+jtQNoabpYVsubqTg9ePUqmtpJOdL4/4jsXDyq1R4pFzxnhJboyT5EV3\nepkAbCykmGmZDJWb8opKVkdc5MDZG9hamTJnUgBebjZ6P25d3ShMY93lTcRkX0KBggEefRnrNRJr\nUyuDxiHnjPGS3BgnyYvuHrg3kzGT3kwtk6Fyo1Qq6O7jiLmpmlOXMjgSnYqrvSXujhq9H7surE2t\n6OMaSDub1lwrSCEm+yIHU46hUippbe2JykD9nuScMV6SG+MkedFdTb2ZpJipgXzJjJchc6NQKPDx\ntKWtqzUnLmVwNDoNpQI6tG5ldBPhnS0dGejeFytTK+Jyr3I28wJRaaexN2+Fi6WT3uOVc8Z4SW6M\nk+RFd1LM1JN8yYxXY+TG1d6Sbt6OnIvL5OTlTNJzignwdkClNK4u10qFknY2bXjIvQ/lleXE5lwm\nKu00V3Kv4mnljo1Z9UO1D0rOGeMluTFOkhfdSTFTT/IlM16NlRtbjSl9/Vy5kpLLufhsLiTk0M3b\nAXPTxmuBUB1TlQl+Dh0JdA4guySbmJzLHLp+jJySPNrZtsZM1fCTmeWcMV6SG+MkedGdFDP1JF8y\n49WYuTE3VdHf34XMvBLOxWdzPDadTm3ssLUyrpVOd1iZaujt2oP2Nm1JuplCTPYlDqUcQ6FQ0Mba\ns0H7Pck5Y7wkN8ZJ8qI7KWbqSb5kxquxc6NSKgns4IRapeTkpUyORKfh4aTBzcG4Jgb/lpOlAwPc\n+2JjasOVvHjOZcZwPO00tmY2uFo6N8h8msbOi6ie5MY4SV50J8VMPcmXzHgZQ24UCgUdWrfCw1HD\nyf9NDDY1UeLjYWt0E4PvUCqUtLVpzQD3vlRoK7iYc4UT6We4mBOHh5UbtmYPtuzcGPIi7k9yY5wk\nL7qTYqae5EtmvIwpN+6OGrq2d+D0lUxOXsokO/8WXb0dUCqNs6ABMPnffJqeLt3IKckjNucSh69H\nklWSQzub1pir63fJzJjyIu4muTFOkhfdSTFTT/IlM17GlptWVmb06ezCxaRczsVncfFaDt18HDEz\nMZ4WCPejMdHQy6U73rbtSCq4PZ/mwPWjgJY21q3rPJ/G2PIiIOXmDdZd3kReaT4eFo1/13ZxNzln\ndFdTMSN3AK6B3JnReBlrbm6VVfDF5gtEXczA0dacuVO64WFkN9irTqW2ksPXI9kUH8HNskLszFox\n0Wc0gc7ddL5sZqx5aYlySnLZHL+DY6kn0HL71/x471BGth3ayJGJ35JzRndyB+B6korZeBlrbtQq\nJT07OaPVwukrmRyNTqWNizUudpaNHVqtFAoFbWw8GejRF60WLuZc5kT6WWJzLuNu5UorM9ta92Gs\neWlJisqK2XJ1J6sufMe1gmTcNa5M9BlDctF1TqWfw0Jlhpdt28YOU/yPnDO6a7SRmaVLl3LmzBkU\nCgULFiwgICCg6rVhw4bh6uqKSnV7GHvZsmUkJCQwd+5cfH19AejQoQMLFy6s8RgyMtMyNYXcHI1O\n5cutsVRUVjJ9uC/De3oa7cTg+8koymJD3BZOZ5wHoI9rIOO9Q2ssappCXpqrsspyDiQfZnvCbgrL\ni2hlZsu49qPo4xqIUqGkwryYhbveI680nym+4xnSekBjhyyQc6YuahqZ0dudviIjI0lMTGTNmjXE\nxcWxYMEC1qxZc9c2K1euRKP5dQg+ISGBPn368OGHH+orLCEMpp+/K06tLPho/Tm+3XWZ61lFPDrC\nF7XKuO4YXB0nSwf+2HUGl3LiWHd5E5GpJzmdfo7gtkMY0WYwpirTxg5RcPvy4Im0M2yK305WSQ4W\nanMmeI9msOcATFUmVdu5WjszN/BZPjj5f/x4+WdUSiWDPPo3YuRCNBy9/VY9cuQII0aMAMDb25u8\nvDxu3rypr8MJYZS8PWxZOKMXnk5W7D2Vwvs/nKGwpKyxw6qTDnbe/KX3HB7rNAUztRlbru7kzaP/\nJDL1JJXaysYOr0WLzb7Mu1Ef8dWF78i7lc+w1oNY3P8vBLcdclchc4eLpRNzezyDlYmG7y/+xOHr\nkY0QtRANT2/FTGZmJnZ2dlWP7e3tycjIuGubRYsWMX36dJYtW8adq11XrlzhueeeY/r06Rw6dEhf\n4QlhMA625iwID6S7jyMxiTm88/UJ0rKLGjusOlEqlDzk3pvF/f7MyLZDuVlWyKoL3/PeiX9xNS+x\nscNrcZILrvPx6c/56PRKkgpS6O3Sg7/2e4VJvuOwMql5wrmrxoW5PZ5FY2LJt7HrOHojykBRC6E/\nepszs3DhQgYPHlw1OjN9+nSWLl2Kl5cXABs2bGDQoEHY2toya9YsJk6cSI8ePThx4gShoaEkJSUx\nY8YMduzYgalp9cPZ5eUVqNXGvfxVCICKSi1fb7nA+r1XsLIw4dUnetPN16mxw6qX9MIsvjnzE0eS\nTgAwsE1vHu02AUdL+0aOrHnLLMzm+/MbOZAQiRYtXV068ljAI7S3b1PnfSXkJPHm3g8oKi3mxX5P\nMrBtHz1ELIRh6K2Y+eijj3ByciIsLAyA4cOH8/PPP2NlZXXPtt988w1ZWVnMmTPnrucnT57M+++/\nT+vWras9jkwAbpmacm4OnL3O19svAvDYyA4M6d507/1xJfcq6y5v5FpBCiZKNWM6DqenXSD25na1\nv1norKisiIjEPexNPkR5ZTkeVm5M8B5NZ/sOD7Rs/lp+Mh+e/oyS8lv8octjBDoHVPNuoS9N+XeZ\nodU0AVhvl5kGDBhAREQEANHR0Tg7O1cVMgUFBcycOZPS0tvL0Y4fP46vry8bN27kiy++ACAjI4Os\nrCxcXFz0FaIQjWJQgDuvTO+BhZmar7dfZPWOi5SVVzR2WPXi08qLV3q9SHjnqViqLdgQE8FfD/+d\nj09/zom005RVljd2iE1aWUUZu67tY9GRf7Dr2j6sTayY0Xkar/aei59DxwdeHdfGxpNZ3Z7GTGXK\nf6K/rVq5JkRTo9el2cuWLSMqKgqFQsGiRYu4cOEC1tbWBAcHs2rVKjZs2ICZmRl+fn4sXLiQwsJC\nXn75ZfLz8ykrK2P27NkMHjy4xmPIyEzL1Bxyk55bzEdrz5KSWYink4Znx3dpMjfYu59bFaVcKrrI\njksHiM9LAECjtqSXa3fjomUAACAASURBVA/6u/WmtbV74wbYhFRqK4lKO83GuO3k3MrFQm1BSLth\nDPZ4CJP7TOzVRU3nTHxeAh+f/pzyygr+2DWcro5+DxK+qIPm8LvMUGoamZE7ANdAvmTGq7nk5lZZ\nBWt+ucze09cxUSsJG+7LkO7uTep+NL91Jy+phekcvRHF0dQoCkpvr2Jsbe1Bf7fe9HbpjqWJ8d9E\nsLHEZF9iw5WtJN+8jlqhYnDrAYxqOwzNA35mtZ0zl3Pi+deZL6jUVvJMwBP4O3R6oOMJ3TSX32WG\nIMVMPcmXzHg1t9ycuJjOV9tiKSwpp4evI0+N7oyVRf3+Am9Mv89LRWUF0VmxHLkRxfmsGCq1laiV\naro7daG/W2862HmjVDSN++7oW1JBChuubCU25zIKFPR27cFYr1E4WDTM/CNdzpmL2Vf49OyXaIHn\nAp6ks32HBjm2qF5z+12mT1LM1JN8yYxXc8xNdn4JKzdd4GJSLnbWZjw91o/ObZvWRNqa8pJ3q4DI\n1BMcuXGctKLbt2mwN7ejn1sv+rn2arB/tJuarOIcNsVHcDztJACd7Tsw3nt0g1+W0/Wcicm+xP+d\n/QoF8EK3P9DBzqdB4xB3a46/y/RFipl6ki+Z8Wquuams1LL1aCIbDlxFq9Uyun9bxg/0ajp3DdYh\nL1qtlqv5iRy5fpwT6We4VVGKAgUd7Xzo796bbo7+9Z4X0pQUlhURkbCbfcmHKNdW4GnlzgSf0Xob\nDanLOROdFctnZ1ehVCh5odtMfO3a6yUm0Xx/l+mDFDP1JF8y49XccxOXkse/N0aTmVdCe3cbnnnY\nH+dWFo0dVq3qmpeS8lucSj/LkRvHifvfpGFLtQW9XXvQ361Ps5w0XFZRxt7kQ0Qk7qG4vBh7czv+\nv707j4+qvPs+/pkl+0z2fZIACWsSQhZAQUBWQWrFqjWBiq32tnLbltJaW190ofbu41Os7e1TtWpr\ntRYLpioqVRQqi4IEWbIAAUISQkgm62Tfk1mePwKBUI0QMjlnkt/7H14hk8lv+J058+W6rnOur8Yu\nZXpYslOn3K61N8ctJ/nz8b+j1+r5fvJ/Ees31mm1jWYj/Vw2lCTMDJIcZOo1GnrT3mnltZ0FHDxZ\njae7jtVLJzErIVzpsgZ0PX2pbqshq/IIn1Udpbm79zmiDZHcGDmDmWEpLr9o2O6wc7gqh3+d3UFD\nVyPeei+WXucVStdiML3JrTnOX/P/gbvWje+nPMhY32u/OZ8Y2Gg4lw0VCTODJAeZeo2m3hw4Ucmm\nnWfo6rYxKyGce2+ZiJeH0/aIvS5D0Reb3cbJ+gKyKg5z/LJFw9OCE5gdOdPlFg07HI7eK5SKt2Nu\nrUSv1TM/6iaWjlkwrAFtsL05Wp3HK/mb8dR7sDb5O8T4RjmhutFrNJ3LrpeEmUGSg0y9Rltvahra\neXHbSUoqmwnx9+Sh2xOJjfRVuqz/MNR9ae5u4VBVNgcqDlPdXgNcWDQcnsaNETNUv2j4fEs57xRt\np6ChCA0aZoanclvsLYrcIfl6enOoKpu/n8zES+/JD1IeImoETv8pZbSdy66HhJlBkoNMvUZjb6w2\nO+/sK+GDg6VotRrumDuOW28Yg1arnnvSOKsvvYuGz19YNJyr+kXDlo56/nX2Q45U5wIQHziJFXG3\nKhoCrrc3ByuP8NqpN/Bx8+YHKQ8RaVD3lKerGI3nssGSMDNIcpCp12juzalz9fz5vZM0tXYzOcaf\nB7+aQIDRQ+mygOHpS6e1i5za42RVHOpbNOyl92JGWAqzI2cQbVRur6vWnjZ2nNvNJ+UHsDpsRBtN\n3BG3nMmBExSr6aKh6M2BikP84/SbGN0MrEt9iHAf2W7meo3mc9m1kjAzSHKQqddo701LezevbD9N\nbpEFH089DyyfQspE5XfgHu6+VLfXcrDyCJ9VHqHpwqLhKEMksyJnMCMs5brvmnu1um097C3fz87S\nPXRYOwnyDOCrsctIC5ummvU9Q9WbfeYsXi94G193I+tS1xDmrfxx58pG+7nsWkiYGSQ5yNRLetM7\n9bInx0zm7iJ6rHYWpJhIXzgedzedYjUp1ZfPXTSs0TEtJJFZkTOYFDDeKaHC7rDzWVU2753dQWNX\nEz56b5aNXcjcqNm4adW1SHsoe7O37FPeKHwXfw8/1qWsIcQ7aEiedzSSc9nVkzAzSHKQqZf05pLy\n2lZe3JaPubaNyGAf1tyeQFSoQZFa1NCXi4uGsyoOU3Vh0XCAhz+zIqZzY8R0grwCr/t3OBwOTtYX\n8E7RdiraqnDT6pkfNYdbxizA202d9wMa6t7sOv8JW4veI8DDn3Wpawgegn/X0UgN7xlXIWFmkOQg\nUy/pTX/dPTb+uaeI3dlm9Dot6QvHszDVNOwbVqqpLw6Hg3PN5zlw2aJhgEkB45kdMYNpIYmDWjRc\n2lzGO0XbOdNYjAYNN4SncVvsLQR4+g/1SxhSzujNztI9vFv8AUGeAaxLXaPIVVquTk3vGbWTMDNI\ncpCpl/Tm8+UWWnh5+ylaO3pIHh/M/csnY/R2H7bfr9a+dNm6yak5xoGKwxQ3lQCXFg3PipxOjPHL\n751i6ahjW/GHHK3JAyA+aBJ3xC3HZIhwau1DxVm9+aDkI94r2UmwVxA/TF2Dv4ffkP+OkUyt7xk1\nkjAzSHKQqZf05os1tHTx0nsnOVXagJ/Bnf+6LZ6EscMzBeAKffnCRcMRM5genozBzaff41u72/jw\n3C4+MWdhc9iIMZq4I+4rTAp0rQ0Yndmb987u4INzuwj1CmZd6hr8PNR3DyS1coX3jFpImBkkOcjU\nS3ozMLvDwY7PzrP1k7PY7Q6W3RDD1+bFOn3DSlfqi81u41T9GQ5UHua45WT/RcMRMxjnN4aPyz9l\nZ+leOm2dBHkGcnvcMlJDk1RzhdK1cGZvHA4H285+yM7SPYR5h7Iu9SF83b/4g0dc4krvGaVJmBkk\nOcjUS3pzdUoqm3lxWz41DR2MDTfy0O0JhAU673JlV+1LS3crn1Ud7bdoWKvRYnfY8XHz5taxi5lj\nulF1VyhdC2f3xuFwsLXoPXaX7SPCJ4wfpDyE0V2ZheiuxFXfM0qQMDNIcpCpl/Tm6nV0Wdn87zN8\neqIKDzcd994ykdmJ4U5ZHOzqfeldNFxGVuUhChvPkhwylVvGzMdLr84rlK7FcPTG4XDwZuE29pZ/\niskQwQ9SHhq2e/24Kld/zwwnCTODJAeZeklvrt3B/Co27Sygo8vGzCmh3Ld0Mt6eQzvSIH1Rr+Hq\njcPhIPPMO+wzZxFtNLE2+UGX3/HcmeQ9c/UGCjOuN/ErhBiUGxPC+dX9M4mL9OXQqRp+9cohisxN\nSpclRhiNRsM9E1cwO2ImZS1mns39Kx3WDqXLEiOchBkhRpEQfy9++o1Ubps9lrqmTn77WjbbPi3B\nbnfpAVqhMlqNlpWT7+SG8DRKW8p4LvdlOq2dSpclRjAJM0KMMnqdljvnxfKTVSn4Gdx5Z18JT27J\nob5ZPmzE0NFqtNw75etMD0umpLmUP+W90nfjQiGGmoQZIUapSTEBPP7ATNImhnCmrJENLx/iaEGN\n0mWJEUSr0XLflHRSQ5MobirhhbxX6JZAI5xAwowQo5jBy42Hv5bIN5dNosdq57m3T/C3D07T1W1T\nujQxQui0Or4Vv5LkkETONBbz4rFX6bH1KF2WGGEkzAgxymk0Gm5ONvHLb80gOtTAJ3kV/PrVw5yv\nlissxNDQaXXcn7CKqcFTON1QyJ+P/50eu1XpssQIImFGCAFAZLAPP78vjSXTo6msa+c3fz/CzsNl\nuPjdG4RK6LV6vp24mvigSZysL+Cl45uwSqARQ0TCjBCij5tex8rFE1j39SS8PPS8vquQp984RlOb\nrHMQ189Nq+c7ifcxOWACJ+pO8XL+Zmx2mdIU10/CjBDiPyTFBfPrB2aSMC6Q42fr2PDyIU6crVO6\nLDECuOnceCjpm0z0jyOv9gSvnNwigUZcNwkzQojP5Wfw4If3TCN94XjaOnr4wz/zeH1XIT1Wu9Kl\nCRfnrnNnzbT7ifMbR07NMf5+KhO7Q44rMXgSZoQQX0ir0bB0Zgw/v286YYHe7Dxcxv/ZdITKujal\nSxMuzkPnzsPT7ifWbwxHqnN57dQbEmjEoEmYEUJ8qTHhRjZ8azpzkyI4X93K4387zCd5FbI4WFwX\nT70nD0/7NmN8o/ms6ihbTr8lgUYMioQZIcRV8XTXc//yKaxZkYBOq+VvH5zm+XfzaeuUe4aIwfPS\ne/K9af9FtNHEgcrDZJ55R0KyuGYSZoQQ12TmlDAef2AG46P8OHK6hl+9fIgzZY1KlyVcmLebF99P\nfhCTIYL95oO8UbhNAo24Jk4NM0888QTp6elkZGRw7Nixft9buHAhq1atYvXq1axevZrq6uq+73V2\ndrJ48WK2bt3qzPKEEIMU7OfFT1elsGLOOOpbuti4OZt39p3FZpMpAjE4Pm7erE3+DpE+4Xxc/ilb\ni96TQCOumt5ZT3zo0CFKS0vJzMykuLiY9evXk5mZ2e8xf/nLX/Dx8fmPn33++efx8/NzVmlCiCGg\n02pZMWcc8WMD+PO2fLZ9eo7TZY0sSYsmZUIwWq1G6RIFYHc4KCxrROPmtNP9kDG4+7A25Ts8nf0C\nu8v2odPoWBF3KxqNHEtiYE47urOysli8eDEAcXFxNDU10draisFgGPDniouLKSoqYv78+c4qTQgx\nhCZE+fP4AzP5+44CDp2q4cz5RoJ8PViQGsW8aZEYvNyULnFUau3oYf+xSvbmmKlp7CDA6MFPVqYQ\nFuitdGkDMrobegNNzgv8+/xe9Fodt8UuVbosoXJOm2ayWCwEBAT0fR0YGEhtbW2/x2zYsIGVK1fy\n1FNP9Q0nbty4kccee8xZZQkhnMDb0401KxJ59tEFLEgx0dph5c29xTzy3Ke8vP2U7PM0jM5VNfPy\n+6d45LlP+eeeIhpau0iMDaShpYsnt+RQ29ihdIlfys/Dlx+kPESwVxAfnNvFByUfKV2S+ALdtm5O\nWE6RWfAOv/ns93xcfkCROoZt3PHKuc+1a9cyd+5c/Pz8+O53v8uOHTvo7OwkOTmZ6Ojoq37egABv\n9HrdUJfbJyTE6LTnFtdHeqNOP7p3Ot/p6GHX4fO8v7+E/ccq2X+skvhxgdw2J5ZZUyPQ6+Tag6HU\n3WNjf14F2z8toeB8AwARQT7cOnssi2fGYPR2Z+ueQl557yR/+Gce//fhOYQEeClc9cBCMPLrgB+x\nYc8feK9kJ75Gb+6YMjJHaFztXFbZUkNO5QlyKvM5WXOmb9NQLzdPQgP8FXk9GoeTVlg988wzhISE\nkJGRAcCiRYt49913P3ea6R//+Ad1dXWcPXuWsrIydDodVVVVuLu78+tf/5rZs2d/4e+prXXe//hC\nQoxOfX4xeNIbdbqyL3aHgxNn6/joaDknztYDEGD0YH5yJDcnm/D1cVeq1BHB0tjBnlwz+/Iqae3o\nQQMkxQWxMC2KhHGBaC9baxISYuSvbx/jnf0lhAV48dNvpOJv8FCu+KtU11HP/2a/QENXI18b/xUW\nx9ysdElDyhXOZd22Hgobi8mvKyC/7jSWjktbm5gMEcQHTiIhaBKxfmPRaZUZXHDayMxNN93EM888\nQ0ZGBvn5+YSGhvYFmZaWFtatW8fzzz+Pu7s7hw8fZunSpaxdu7bv55955hlMJtOAQUYIoW5ajYak\nuGCS4oKpqm9n99Fy9h+v5O19JfzrwDlmTA5j8fQoxkX4Kl2qy7A7HOSX1LMn20xekQUHYPBy49Yb\nY1iQbCLY/4tHXL5601h6bHbezyrld1ty+OmqVNUHyiCvQH6Q8hBP57zA20Xvo9PoWBA9R+myRrza\n9jry60+TX3eawobivtEXT50H00ISSQiaRHzgJAI8/RWutJfTwkxqaioJCQlkZGSg0WjYsGEDW7du\nxWg0smTJEubNm0d6ejoeHh7Ex8ezbNkyZ5UihFCB8EBvVi2ZyNfmxXLgRBW7s8vJyq8iK7+K2Ehf\nFqVGMX1yKG56mYL6PK0dPXx6vJI9OWZqGnrXvYyL8GVhqomZU0Jxu4rpdo1Gw53zYumx2tl5uIyn\nXs/lJ6tSVL9IO8Q7qO8qpzcLt9Fj6yEtLJlAT3+50mmI9Nh6KGw8y8kLoy81HZa+70X4hJEQNLlv\n9EWvVd+VcU6bZhouMs00Oklv1Ola+uJwODh5roFdR8v7Rhh8fdy5eVok81NMBBjVPwUyHEqrWtiV\nXc6hk9V0W+246bXcMCWMBammaxrRurw3DoeD13aeYU+OmbHhRn6ckYK3p/o+oK5U1VbN09kv0tLT\nCvTemybaYCLGN4poo4kYo4kgz0CXCjhKnsssHfWcrOsdfSloKKbH3ns3b3edO5MDJvSOvgRNItAz\n4EueaXgMNM0kYWYA8oGpXtIbdRpsX2oaO9iTXc6+vErau6zotBrSJoWwKC2K8SY/l/pwGgo9VhuH\nT9ewJ9tMcUUzACH+nixIiWJOUsSgRlI+bz3T3z44zf5jlcSZfPnRPcl4eag/0NR1NHC0JpfzLWbK\nmsuxdNb3+7633otoo6kv3EQbowjxClLtMTSc57Ieu5Wiy0ZfqtsvXWEc7h1KQtBk4oMmEec/DjcV\njr5ImBkk+cBUL+mNOl1vX7q6bWSdrGLX0XLMtb07c8eEGViUFsUNU8Jwd3Pe4kI1sDR1sDengk/y\nKvoW9E6NC2JhahSJsf0X9F6rz+uN3e7gpfdOcvBkNZOi/Vl3zzQ8XOzfuL2nnbKWCs63lFPWYuZ8\nSzm1ly1Qhd79n6INlwUc396Ao9UoP6Xp7HNZXUcDJ+svjb5027oBcNe6MSlwPPGBvdNHQV6BTqth\nqEiYGST5wFQv6Y06DVVfHA4HBecb2XW0nOzCWhyO3kWu86ZFsiDFRJCf5xBUqw52h4OT5+rZfdRM\nXrGl77XOTYrg5hQToQMs6L0WX9Qbm93OC+/mc7SgloSxAay9O+mq1t+oWYe1o1/AKWsxU9NuwcGl\njztPnQdRxkhijJemqEK9Q4Y94Az1ucxqt1LceI78utPk1xdQ1XZpq6Aw75C+0ZfxfuNw06l7rdSV\nJMwMknxgqpf0Rp2c0Ze6pk725JgvjVZoIHVC7xTUpBjXXQDa1tnDp8d6F/RW9y3oNbIwNYoZk0OH\nfBRqoN5YbXb+9PYJcossTIsL4rt3Th1x9wLqsHZS3lJBWUs55y/8Wd1e2y/guOvciTZcCjjRRhPh\nPqFODThD8Z5p6GzsDS91BRQ0FNJ1YfTFTevGpIA44i8s3g32ChqKkhUjYWaQ5ANTvaQ36uTMvnT3\n2PjsVDW7jpZzvrp3AagpxIdFaVHMig/Hw901RhNKq1rYnV3OZxcW9Op1Wm6YEsrCNOdeov5lvemx\n2vjjW8fJL6knbWIIa+5IQKcdWYHmSp3WLspbK/pGb863lFPVVtM/4GjdiDJGXgg3UcQYTYR7hw7Z\n/VQG856x2W0UN/WOvpysK6Cirarve6FewX2jLxP8Y11u9GUgEmYGST4w1Ut6o07D0ReHw0GRuYld\nR8s5WlCLze7A20PP3GkRLEiNGrJpmaHUY7VzpKCG3dnlFJt7F/QG+3myINXE3KTh2b/qanrT1WPj\n/72Rx+nzjdwQH8aDt8WPug1Du23dlLdW9k5RNZspazVT2VaN3XFpR3g3rR6TIbJvgXGM0USET9ig\nAs7Vvmcau5oujb7UF9Jp6+qrZUJAHAmBvQEm1Dv4mmtwFRJmBkk+MNVLeqNOw92XhpYuPs41szfH\nTHP7pTvgLpoeRcJY5S/RrWvqZG9u7xRZS/ulBb0LUkxMjQ0a1qBwtb3p7Lbyh8w8isxN3DQ1nPuX\nT7muhccjQbetB3NrJWV9i4zNVLRV9Qs4eq0ek08E0b4mYgwmon1NRPqEf+k9Wb54LZONs02lvaMv\n9QWYWyv7vhfsFdR335cJ/nG4j6DRl4FImBkk+cBUL+mNOinVl4sjH7uOlnP2wqXM4YHeLEqLYnZi\n+LBecnxxQe+ebDO5Rb0Len089cxNimR+SiShAcrsWn0tvWnvtPL7zBxKKluYn2Ji9S0TFQ+GatNj\n66Girar3EvGW8t6A01qFzWHre4xeoyPSEN5viirSENHvsufL+9LY1cTJujPk153mdH0hnbbO3ufR\n6pngH9sXYEK9Q4b3xaqEhJlBkg9M9ZLeqJMa+lJS2cxHR8o5fLoaq82Bp7uOm6ZGsCgtivBA5wWJ\n9s4e9h+vYk92ed+C3jHhRhammlRxWfm19qa1o4ffbcmhrKaVxdOjWLloggSaL2G1W6loq6KsuXf9\nTW/AqcR6WcDRarRE+oT3TVHFhkdytPQkJ+sKKG+t6HtckGdgX3iZGBCHu07d204MBwkzg6SGE7P4\nfNIbdVJTX5rauvkk18yeHDONrb1XdySOC2RRWhRT44KGbOrkfHXvgt6D+ZcW9M6cEsrC1ChiI9Wz\n59RgetPc3s2Tm3OosLRx640x3H1znASaa2Sz26hoq+43RWVurejb6+givUbHeP9YEoImkRA0mVDv\nEPm3voKEmUFS04lZ9Ce9USc19sVqs5N9ppZdR8spLG8CINTfi4WpJuYkReDtee3rDXqsdo4W1LA7\n20yRufc5g/08WZDS+5xGb/X9L3qwvWlq7eK3m3Oorm9nxZxxrJgzzgnVjS42u42q9hrOt5hp17QQ\nqg9jgn8cnnrZwmMgEmYGSY0nZtFLeqNOau/LxX2OPjtZTY/VjrubltmJESxKNWEKMXzpz19c0Lsv\nr4Lm9t59bBJjA1mYGkXSMC/ovVbX05v65k5++49sLE2d3D0/juU3jhni6kYvtb9n1ETCzCDJQaZe\n0ht1cpW+tHb08EleBXuyy6lr7r3EdcqYABalRZE8PrhfKHE4HJwsbWD30fJ+C3rnJEUwP8VEmEIL\neq/V9fbG0tjBbzdnU9/cxcpFE1gyI3oIqxu9XOU9owYDhRn17SQlhBBOZvByY/mNY1g6M5rcwjp2\nHS3jVGkDp0obCPL1YEFqFNMnh5JXaGF3jpnq+nYAxoT1LuidGR/mcnsYXa9gfy8ezUjht5uz2bKr\nEL1ey4IUk9JlCQHIyMyAJDGrl/RGnVy5L+W1rew+Ws6B/Cq6ey67f4hOw4zJYSxMMxEb4euyizKH\nqjcVljY2bs6mpb2HB5ZPYU5SxBBUN3q58ntmuMnIjBBCfImoEAP3LZvMXfPj2H+skhNn65g8JoC5\n0yLxVeGCXqVEBvvw44wUntyczSsfnEKv13BjfLjSZYlRTsKMEEJcxsfTjaUzY1g6M0bpUlQrOtTA\nIxnJ/G5LLi/96xRuOi1pk0KVLkuMYiN7FzEhhBBOMTbclx/eMw03Ny0vvJtPbpFF6ZLEKCZhRggh\nxKCMN/mx7u4kdFoNf3q7d8dtIZQgYUYIIcSgTYoJ4Pt3JwEannnrGAXnG5QuSYxCEmaEEEJcl4Sx\ngXzvzkRsdgdPv3GMogt3WhZiuEiYEUIIcd2S4oJZsyKRHqud/30jl5LKZqVLEqOIhBkhhBBDIm1S\nCN+5PZ7Obht/yMzlfLXcP0UMDwkzQgghhszMKWE8sHwK7Z1Wfp+Zi9nSpnRJYhSQMCOEEGJI3TQ1\ngtXLJtHS3sNTW3L6toMQwlkkzAghhBhy85NNrFw8gaa2bp7ckkNtY4fSJYkRTMKMEEIIp1gyPZqv\nL4ijoaWL323Job65U+mSxAglYUYIIYTT3HrDGO6YOw5LUye/25JDY2uX0iWJEUjCjBBCCKf66uyx\nfGXWGKobOvjdlhya27qVLkmMMBJmhBBCOJVGo+HOebHcMiOayrp2nno9l9aOHqXLEiOIhBkhhBBO\np9FoSF84ngUpJsprW/l9Zi7tnValyxIjhIQZIYQQw0Kj0fCNWyYyJymC0qoW/veNXDq6JNCI6ydh\nRgghxLDRajR8a9lkbowPo9jczB/fPEZXj03psoSL0zvzyZ944gny8vLQaDSsX7+epKSkvu8tXLiQ\n8PBwdDodAE899RS+vr489thj1NXV0dXVxcMPP8yCBQucWaIQQohhptVq+PZtU+ix2TlaUMuzbx1j\n7d1JuOl1SpcmXJTTwsyhQ4coLS0lMzOT4uJi1q9fT2ZmZr/H/OUvf8HHx6fv6+3bt5OYmMiDDz6I\n2WzmgQcekDAjhBAjkE6r5aHbE/jT2yfILbLw3Nsn+N6dU9HrZMJAXDunHTVZWVksXrwYgLi4OJqa\nmmhtbR3wZ5YvX86DDz4IQGVlJWFhYc4qTwghhML0Oi3/fUciieMCOVZcx4vv5mOz25UuS7ggp43M\nWCwWEhIS+r4ODAyktrYWg8HQ93cbNmzAbDaTlpbGI488gkajASAjI4OqqipeeOGFL/09AQHe6J04\nNBkSYnTac4vrI71RJ+mLeqm1Nxu+M4tfv/QZR8/UsunfhfxoVRo6rUbpsoaNWvviSpy6ZuZyDoej\n39dr165l7ty5+Pn58d3vfpcdO3awbNkyAF5//XVOnTrFo48+yrZt2/pCzudpaHDeBmYhIUZqa2UL\nezWS3qiT9EW91N6b/14Rzx8y8/gkx4zNauP+5VPQDnDuHynU3hc1GSj0OW2aKTQ0FIvF0vd1TU0N\nISEhfV/fcccdBAUFodfrmTdvHmfOnOHEiRNUVlYCMGXKFGw2G/X19c4qUQghhEp4uutZ9/VpjIsw\n8unxKl7beeY//hMsxBdxWpi56aab2LFjBwD5+fmEhob2TTG1tLTw7W9/m+7u3ltaHz58mAkTJnDk\nyBFefvlloHeaqr29nYCAAGeVKIQQQkW8PfX8KD2ZmFADe3PMbNlVKIFGXBWnTTOlpqaSkJBARkYG\nGo2GDRs2sHXrVoxGI0uWLGHevHmkp6fj4eFBfHw8y5Yto6uri5/97GesWrWKzs5OfvnLX6LVysp2\nIYQYLXw83fhRRjJPbs7hoyPluOm13H1z3IDLDYTQOFw89jpzrlHmMtVLeqNO0hf1crXeNLV28dvN\nOVTXt7NizjhWrxNuLgAADD5JREFUzBmndElO4Wp9UZIia2aEEEKIwfIzePBoRjLBfp68u7+E7QdL\nlS5JqJiEGSGEEKoU6OvJT1amEOjrwZt7i/n34TKlSxIqJWFGCCGEagX7e/HoyhT8DO5s2VXInhyz\n0iUJFZIwI4QQQtXCArx5NCMFo7cbm3YUsDu7HKtN7hQsLpEwI4QQQvUig334cUYKPp56Xtt5hh/8\ncR/Pv3OCrPwqWjt6lC5PKGzY7gAshBBCXI/oUAPrV6exJ9tMbpGFw6drOHy6Bq1Gw4QoP6aNDyZ5\nQjDhgd5KlyqGmVyaPQC5ZE69pDfqJH1Rr5HWG4fDgdnSRm6hhbwiC2crmrn4YRYe6E3y+GCmjQ9i\nfJQfOhXfr2yk9cWZBro0W0ZmhBBCuByNRkNUiIGoEAO3zR5LU1s3x4os5BZZyD9Xz4eHzvPhofP4\neOpJigsieUIIieMC8fKQj72RSLoqhBDC5fn5uDN3WiRzp0XSY7VxqrSB3KI68oosZOVXk5VfjU6r\nYXKMf+901Phggv29lC5bDBEJM0IIIUYUN72OpLhgkuKCcdwykfPVreQWWcgttJB/roH8cw1s/qiQ\nqBCfvmAzLtJ3VOzSPVJJmBFCCDFiaTQaxoQbGRNuZMWccdQ3d5JX3Dtic/JcA+VZpbyfVYqvjztJ\ncUGkjA8mfmwgHu46pUtXvfZOKxWWNsprWymvbaWqvp150yKZOSVs2GuRMCOEEGLUCPT1ZEGKiQUp\nJrq6beSfqye3yMKxIgv7j1Wy/1glep2W+LEBFxYRBxNg9FC6bEVZbXaq6tovhJbe8GKubaWuuavf\n4zRAUlywIjVKmBFCCDEqebjrSJ0YQurEEOwOByUVzb3TUUUWjhXXcay4DnYUMCbcSPKF6aiYMMOI\n3cHb7nBQ19SJufbSaIu5to2q+nZs9v4XPvv5uJMwNgDThUXYUaE+RAT54OGmzIiWhBkhhBCjnlaj\nIc7kR5zJj7tujqO2sYPcot7LvgvON1Ja1cK7+0sIMHr0rbOZMsYfN71rTke1tHdfFlraMNe2Um5p\no6vb1u9xHu46xoYbL4QWH6JCDJhCfDB6uytU+eeTMCOEEEJcIcTfiyXTo1kyPZr2TisnSnrX2Rwr\nrmNvjpm9OWY83HQkjAtk2vggpsUF4+ujrg94gK4eGxWWtr7gYr4QXprauvs9TqfVEB7ojelCYIm6\nEF4C/TxdYmG0hBkhhBBiAN6eemZOCWPmlDBsdjtF5U3kFdWRU2Qh+0wt2Wdq0QCxJt++6ajIYJ9h\nnY6y2x1UN7RfFlp6/6xp6ODKO+MG+XqSFBfUF1iiQgyEB3mj16n35oJfRsKMEEIIcZV0Wi2TYgKY\nFBPAPQvHU1nXRl5RHblFFgrLGyk2N/PWx2cJ9vPsDTYTgpkY7T9kQcHhcNDY2t03wnLxz4q6Nnqs\n/Tff9PHUMyHavy+wXJwiGok3Dhx5r0gIIYQYJhFBvQtfl90QQ2tHD8eLe4PNiZI6PjpazkdHy/Hy\n0DE1Nohp44OZGhuEwcvtqp67o8vaO8JiacVcc2lRbluntd/j3PRaIoN8Lpsi8sEUYsDf4D5iFytf\nScKMEEIIMQQMXm7MSgxnVmI4VpudgrJG8gp7r446dKqGQ6f6b4qZMiGYkBBjv0ufzZY2ymt6R1vq\nmjv7Pb8GCA3wYnJMQF9wMYX4EBbgjVY7OkLLF5GNJgcgG4Cpl/RGnaQv6iW9Uc5Am2IG+nrS1Nr1\nuZc+XxxhuRhcIoOVu/RZDWSjSSGEEEIhA22Kea6q5cKlzz6X7tmiwkuf1U7CjBBCCDGMLt8UU0bM\nhobrXoclhBBCCIGEGSGEEEK4OAkzQgghhHBpEmaEEEII4dIkzAghhBDCpUmYEUIIIYRLkzAjhBBC\nCJcmYUYIIYQQLk3CjBBCCCFcmoQZIYQQQrg0CTNCCCGEcGkSZoQQQgjh0iTMCCGEEMKlaRwOh0Pp\nIoQQQgghBktGZoQQQgjh0iTMCCGEEMKlSZgRQgghhEuTMCOEEEIIlyZhRgghhBAuTcKMEEIIIVya\nhJnP8cQTT5Cenk5GRgbHjh1TuhxxmSeffJL09HTuuusudu7cqXQ54gqdnZ0sXryYrVu3Kl2KuMy2\nbdu4/fbbufPOO9m7d6/S5Qigra2N733ve6xevZqMjAz27dundEkuTa90AWpz6NAhSktLyczMpLi4\nmPXr15OZmal0WQI4ePAghYWFZGZm0tDQwNe+9jVuueUWpcsSl3n++efx8/NTugxxmYaGBp577jne\neust2tvbeeaZZ5g/f77SZY16b7/9NuPGjeORRx6hurqab37zm3z44YdKl+WyJMxcISsri8WLFwMQ\nFxdHU1MTra2tGAwGhSsTM2bMICkpCQBfX186Ojqw2WzodDqFKxMAxcXFFBUVyQelymRlZTFr1iwM\nBgMGg4H/+Z//UbokAQQEBFBQUABAc3MzAQEBClfk2mSa6QoWi6XfQRUYGEhtba2CFYmLdDod3t7e\nALz55pvMmzdPgoyKbNy4kccee0zpMsQVysvL6ezsZM2aNaxatYqsrCylSxLAV77yFSoqKliyZAn3\n3nsvP/3pT5UuyaXJyMyXkN0e1Oejjz7izTff5OWXX1a6FHHBO++8Q3JyMtHR0UqXIj5HY2Mjzz77\nLBUVFdx3333s2bMHjUajdFmj2rvvvktkZCR//etfOX36NOvXr5e1ZtdBwswVQkNDsVgsfV/X1NQQ\nEhKiYEXicvv27eOFF17gpZdewmg0Kl2OuGDv3r2UlZWxd+9eqqqqcHd3Jzw8nNmzZytd2qgXFBRE\nSkoKer2emJgYfHx8qK+vJygoSOnSRrXs7GzmzJkDwOTJk6mpqZFp8+sg00xXuOmmm9ixYwcA+fn5\nhIaGynoZlWhpaeHJJ5/kxRdfxN/fX+lyxGWefvpp3nrrLf75z3/y9a9/nYcffliCjErMmTOHgwcP\nYrfbaWhooL29XdZnqMCYMWPIy8sDwGw24+PjI0HmOsjIzBVSU1NJSEggIyMDjUbDhg0blC5JXLB9\n+3YaGhpYt25d399t3LiRyMhIBasSQt3CwsJYunQp99xzDwA///nP0Wrl/7FKS09PZ/369dx7771Y\nrVZ+9atfKV2SS9M4ZFGIEEIIIVyYxHMhhBBCuDQJM0IIIYRwaRJmhBBCCOHSJMwIIYQQwqVJmBFC\nCCGES5MwI4QYNuXl5SQmJrJ69eq+3YIfeeQRmpubr/o5Vq9ejc1mu+rHr1y5ks8++2ww5QohXISE\nGSHEsAoMDGTTpk1s2rSJ119/ndDQUJ5//vmr/vlNmzbJzcWEEP3ITfOEEIqaMWMGmZmZnD59mo0b\nN2K1Wunp6eGXv/wl8fHxrF69msmTJ3Pq1CleffVV4uPjyc/Pp7u7m1/84hdUVVVhtVpZsWIFq1at\noqOjgx/+8Ic0NDQwZswYurq6AKiurubHP/4xAJ2dnaSnp3P33Xcr+dKFEENEwowQQjE2m41///vf\npKWl8eijj/Lcc88RExPzHxvveXt789prr/X72U2bNuHr68vvf/97Ojs7Wb58OXPnzuXAgQN4enqS\nmZlJTU0NixYtAuCDDz4gNjaWxx9/nK6uLt54441hf71CCOeQMCOEGFb19fWsXr0aALvdzvTp07nr\nrrv44x//yM9+9rO+x7W2tmK324HebUaulJeXx5133gmAp6cniYmJ5Ofnc+bMGdLS0oDejWNjY2MB\nmDt3Lps3b+axxx7j5ptvJj093amvUwgxfCTMCCGG1cU1M5draWnBzc3tP/7+Ijc3t//4O41G0+9r\nh8OBRqPB4XD023voYiCKi4vj/fff5/Dhw3z44Ye8+uqrvP7669f7coQQKiALgIUQijMajURFRfHx\nxx8DUFJSwrPPPjvgz0ybNo19+/YB0N7eTn5+PgkJCcTFxZGTkwNAZWUlJSUlAPzrX//i+PHjzJ49\nmw0bNlBZWYnVanXiqxJCDBcZmRFCqMLGjRv5zW9+w5///GesViuPPfbYgI9fvXo1v/jFL/jGN75B\nd3c3Dz/8MFFRUaxYsYLdu3ezatUqoqKimDp1KgDjx49nw4YNuLu743A4ePDBB9Hr5RQoxEggu2YL\nIYQQwqXJNJMQQgghXJqEGSGEEEK4NAkzQgghhHBpEmaEEEII4dIkzAghhBDCpUmYEUIIIYRLkzAj\nhBBCCJcmYUYIIYQQLu3/A6mu1ZgJufHqAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i2e3TlyL57Qs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see the solution.\n", + "\n" + ] + }, + { + "metadata": { + "id": "5YxXd2hn6MuF", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) \n", + " linear_classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on training data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions. \n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "UPM_T1FXsTaL", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000005,\n", + " steps=500,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "i-Xo83_aR6s_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Calculate Accuracy and plot a ROC Curve for the Validation Set\n", + "\n", + "A few of the metrics useful for classification are the model [accuracy](https://en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification), the [ROC curve](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) and the area under the ROC curve (AUC). We'll examine these metrics.\n", + "\n", + "`LinearClassifier.evaluate` calculates useful metrics like accuracy and AUC." + ] + }, + { + "metadata": { + "id": "DKSQ87VVIYIA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 50 + }, + "outputId": "b8cfa1e7-f7b9-44c9-aa6e-91308fc26415" + }, + "cell_type": "code", + "source": [ + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "AUC on the validation set: 0.72\n", + "Accuracy on the validation set: 0.75\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "47xGS2uNIYIE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "You may use class probabilities, such as those calculated by `LinearClassifier.predict`,\n", + "and Sklearn's [roc_curve](http://scikit-learn.org/stable/modules/model_evaluation.html#roc-metrics) to\n", + "obtain the true positive and false positive rates needed to plot a ROC curve." + ] + }, + { + "metadata": { + "id": "xaU7ttj8IYIF", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "1416a02b-bc88-49fb-be6c-d97e91d5687c" + }, + "cell_type": "code", + "source": [ + "validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + "# Get just the probabilities for the positive class.\n", + "validation_probabilities = np.array([item['probabilities'][1] for item in validation_probabilities])\n", + "\n", + "false_positive_rate, true_positive_rate, thresholds = metrics.roc_curve(\n", + " validation_targets, validation_probabilities)\n", + "plt.plot(false_positive_rate, true_positive_rate, label=\"our model\")\n", + "plt.plot([0, 1], [0, 1], label=\"random classifier\")\n", + "_ = plt.legend(loc=2)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFKCAYAAAAqkecjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlgVOXZ9/HvTCaTfd8TErKRZAiL\n7CA7gqKCyhZACLZqrX2s2lZbLX2tbW3VttanT7VWa22toEKAAIqIC4iggux7NpKQhez7Nsls5/0D\nHYnsZjmTzPX5x3POTGYub4b8uOacc98aRVEUhBBCCNHrtGoXIIQQQjgrCWEhhBBCJRLCQgghhEok\nhIUQQgiVSAgLIYQQKpEQFkIIIVSi6+03rK5u7tbXCwjwpL6+rVtf0xnJOHadjGHXyRh2nYxh1/XE\nGIaE+Fz0eJ/vhHU6F7VL6BdkHLtOxrDrZAy7Tsaw63pzDPt8CAshhBB9lYSwEEIIoRIJYSGEEEIl\nEsJCCCGESiSEhRBCCJVICAshhBAqkRAWQgghVCIh7EA+/3w3f/jDby75+GuvvcKGDWt7ryAhhBA9\n6qpCODc3l5kzZ7J69eoLHvviiy9YuHAhixcv5u9//3u3FyiEEEL0V1ectrKtrY2nnnqKCRMmXPTx\n3//+97z22muEhYWxfPlybrrpJhITE7u90J5ksVj405/+QFnZWUwmE/feez9jx45n4cK5vPHGWjw9\nPXnxxb8SH58AwN69X1BTU81vf/s0ISGhAGzd+i5HjhyioaGBwsIC7rvvR3z88QecOVPIr3/9e1JT\nh5CR8Tbbt38IwOTJU1m+/Hvk55/m97//Nb6+fkRGDrDXtGFDBh9/vA2NRsvkydNYunR57w+MEEKI\nHnXFENbr9bz66qu8+uqrFzxWUlKCn58fERERAEydOpU9e/Z0KYQzdpxmf3bVVT/fxUWD1apc9jlj\nUkJJm3Hpmj76aBt6vZ4XX/wnNTXV/PjHP2TNmsxLPr+ysoKXX/43Go2m0/GSkmJeeulfvPvuJlav\nfp1///tN3n//XT7++AMCAgJ4//13efXVNwC47767mD59Jq+//i/uvvs+Jk+exnPPPYPFAmVlZ9m5\nczsvvfQaAD/60T1Mnz7zaodECCHEd7T9RC5NmhpuN4xHq+35M7ZXDGGdTodOd/GnVVdXExgYaN8P\nDAykpKTksq8XEOB52Xk5PTz1uLhoLvn4xVzp+R6e+ktOng1QXJzP1KmTCAnxISTEB09Pd1xdrbi4\naAkO9sbLywtPTz0+Pu4AjBx5HaGhvp1ew8fHnREjhhMa6kt8fDSDBxsID/cnNnYAubmnqKwsZtSo\nkUREBAAwduwYqqpKKC0tYtq0iQQG+jB16iR27drF2bMFlJWV8sgjDwBgMrXT3t6Al5cb3t7ul/1/\n6Yqeel1nImPYdTKGXSdjeO1OFtTwq/Vv4jogF7Q2bh46iuig4B5/315fRelKK1PMHR/D3PExV/16\nISE+V7Uy0+WeYzSaaWxssz/HaGynrq4Nm02hpqaFtjYbTU1tNDe3A2A2Kxe8XnNzOyaTjerqZhob\njVgsin3baDTR1NSO0Wiy/1xTUyvNzR2YzVbq6lqxWl1paGilvd1MW5uFceOu5xe/+FWn99i+/VNc\nXdu7fSUquPpxFJcmY9h1MoZdJ2N4ecYOC39Ze4SK2jY6zFb0ri6004hr3An0A+tRzK4k2qbhbnPr\n1nHskVWUQkNDqampse9XVlYSGhralZdUhcEwmEOHDgDnvmrWarX4+Pjg6elFbW0NVquVkyePd+k9\nkpKSOXHiOBaLBYvFwqlTJ0lKSiYmZiDZ2VkAHDp0EIDkZAOHDh2kvb0dRVH461+fo6OjvWv/k0II\n4eQe+fvnPPC/uygoa6Ktw4LVZkMbcgb3oV/g4luPvjWKX417hGeWL+q1mrrUCQ8YMICWlhZKS0sJ\nDw/nk08+4bnnnuuu2nrNDTfcyOHDB3nwwR9isZj5+c9XArBgQRqPPfZTYmIGEhcX36X3iIiI5Lbb\n5vHgg/dhsynMnXs74eER3HXXPTz99G9Zt+5tIiOjsFjMhIeHk5a2lAce+AFarZYpU6bh5ubeHf+r\nQgjR79U1tXOmohmL1UbmrgKq6o2dHo+P9OW26aFsr3qP042FeOk8SUu+g1Ghwy+41qenaRRFuexV\nTSdOnOCPf/wjZ8+eRafTERYWxowZMxgwYACzZs1i//799uC98cYbueeeey77ht39NYl89dI9ZBy7\nTsaw62QMu87ZxrCuqZ3Xt2VjsdjIK23E39uN2qaLf3Po66Vn9thoPKLOsil/KyarieHBqSxOno+f\n2zdfF/fEGF7q6+grhnB3kxB2TDKOXSdj2HUyhl3Xn8fQbLHR1GoCoK3Dwv9mHKGhxXTB8wJ83Khv\n7mDJjERMFhtjDaGE+HtQ217P6qwM8hoK8NR5kJZ0B6PDrrug++3NEO71C7OEEEKIq6UoCrklDRSU\nNbFuZ/4ln/eb748h0Ncdbw/XCx6zKTZ2n93Lxvz3MFlNDA0ezNLk+fi5+V7klXqXhLAQQoheZ7Ha\n+PJUJQDHC2rxcnelqr6NijojXh7fRFNxZcsFPzshNdy+vfzGJDzcLh1ltcZ63sxeR079aTx0Htw1\neAljwkb0+rnfS5EQFkII0SM6zFbaTVYKyho5UVBHXmkDfl56Tp6pv+zP1TaBu/7cfBJuri50mK2M\nNYRy/ZBwYiN88fXUX/G9FUXh87IvyTy9hQ6riSFBBpamzMffza9b/t+6i4SwEEKILrFYbZRWt5B/\ntgmtBo6crqWqvo3Kb12VDFBa3Wrf1rlouGX8QPx93AgP8MTHS4+H3oVA367dDVLXXs+bWevJrs/D\nQ+dOuiGNceGjHKb7PZ+EsBBCiGtS39zB3zcep6CsCZ2LBstlpg6Oj/TFYrUxND6IhCg/kqP9cdFq\n0LteeubE70pRFL4o30dm3hbarR0MDkpmWcpCh+t+zych3I3uuSed3//+j0RERHb7a5eXl/H//t9j\nvPbaqi69zt69X1BeXsa8eQt5/vk/cuLEMR566BGyso6ydOn3u6laIUR/1GI08/fM4+SUNNiPWawK\nA8N8aGjpIDUukLgIX9z1LkSHehPk546X+4UXSvWE+vYG3sxeT1ZdLu4u7ixPWcT4iNEO2f2eT0LY\nyYwff719e8+eL/j3v1fj4+PDrFlT++1tDUKIy6uqb6OgvAmtRsPuY+XUNrbj5aGjscVETeO5e241\nwPn9rs5Fw9P3jSfI113VoFMUhb3lB1if9y7t1nYMgUksS1lIgLu/ajVdCwlhzi1DeP7yhGvWrObU\nqZOYTCbuuGMBc+fewR/+8BuCg0PIycmisrKCX//69yQnp/DXv/6ZEyeOExMzEIvFDEBVVSXPPPM7\nzGYzWq2Wxx9/Ao1Gw1NP/ZqoqAEcP36MefMWkJ9/mlOnTjBv3iIWLEjrVNObb/6XnTu3o9Fouf/+\nH3fqrj/88H3Wr1+Li4uW2NgEHnvsV1RUVPDUU0+g1WqxWq38+tdPAZoLjh06dICCgnwCAwOpra3m\nscd+ytKly9m58yOeeOIPfPrpDtasWY2Li47kZAMPPvjTC8bn6+UbhRB9V31zB1X1bfzxrcOXfI72\nq3B10WpIiDx3O09FXRs/mJtKalzgJX+utzR0NPJW9gZO1mbj7uLGnSkLuD5irMN3v+dzuBDOPL2F\nw1VXP0+zi1aD1Xb5+UZGhA5lfuKcyz7n6+UJTSYT4eGRPPjgz+joaCct7Q7mzr0DAJPJxPPPv8im\nTevZtu099Ho9x48f49VX/0t1dRVLlswD4F//epk5c27nhhtu5JNPPubf//4n99zzQ/Lycnnmmedo\namoiPT2NdevewWQy8atf/aJTCJeUFLNz53ZeeeV1ysrOsnr169x11zczkRmNRv7ylxfw8fHhgQd+\nQH7+afbv38uYMeP43vfuJScnm5qaGk6cOHrBsa/deecKMjPX8dxzfyM7+xRwbu3o//73NV5++T/o\n9XqeeOJxjh070ml8+tKHWwhn1dDSgbHDQkFZE1//lc06U8/R/FqCfN2paTTS2m7p9DPBfu7cNPbc\n4jnhQZ6kxqofspeiKApfVhxkfd47GC3tpAQMYplhIYHuAWqXds0cLoTVYjAMRqPR4ObmRlNTI/ff\nfzc6nY6Ghm8upR8+fAQAISFhnDp1kjNnChg8eAharZawsHAiI6MAyMnJ4v77fwzAyJGjef31fwEQ\nFTUAPz9/XF31BAQEEhISSltbG62tne+Dy83Nsb/ugAHRPP74E5SXl9kf9/X15Ze/fASAoqJCGhsb\nGDt2PCtX/pzm5mamT7+BIUOG4enpccGx4uIzlxyDwsICKisr+NnPztXe2tpCRUVFp/ERQjim1nYz\nucUNvPDsjss+r8Voxu2ri6J0Llpmj4thVFIIA8P7xvKHDR2NvJ29gRO12bi56FmaPJ+JkeP67O8n\nhwvh+Ylzrti1nq+7phfT6c5dPHD48EEOHTrAiy/+E51Ox6xZk+3PcXH55mo+RVFQFNBqv/mDt9ls\nX21p+Ho2ULPZgkajveDnv/1a53Nx0WK7RHdvNpt5/vk/8frrbxEUFMwvfvETAOLjE3n99bfZt28v\nL7/8Irfeehs33zzngmOX4+p67ivo559/sdPxrVvftY+PEMJxlFS1kLEjD29PvX3ii6+lxPjj46ln\nQKg3fl7n7qv199YzODYQnUvPL1bf3RRFYV/FIdblvYPRYiQ5IJFlKYsI8uh73e/5HC6E1dbY2EBo\naBg6nY7PPvsUq9WG2Wy+6HNjYgaSkfEWiqJQWVlh71a/Xhpx1qzZHDlykJQUwzXVkJxs4PXXX8Ni\nsdDU1Mif//wMDz30MwDa2lpxcXEhKCiYysoKsrOzsFgsfPzxB0RGRjFlyjT8/Pz55JOPcHV1veBY\nUlLKJd83JiaWM2cKqa+vIyAgkNdee4Xbbpt3TbULIXpWW7uFnUfOsv4SUziuuMXAyIQgfL2uPKFF\nX9HY0czbORs4XnMKvYueJcnzmBQ5vs92v+eTEP6W0aPH8eab/+XHP76PyZOncv31k3juuWcu+tzE\nxEHExyfwwx9+n+joGAYNSgLg3nvv55lnnuLddzeh07nyy18+gcViuehrXExERCQ33XQLP/7xfSiK\nwg9/+ID9MT8/f8aMGce9964gMXEQd96Zzt/+9jy//OWv+d///RMeHp5otVp+8pOf09HRwXPPPd3p\n2KlTJy75vu7u7jz88CM8+ujD6PWuDBqUTHBwyFXXLYToGRarjQPZVezPruJwXs0Fj//m+2PwdNcR\n5OtOaKhvv7nTQVEU9lceZl3uZtosRpL8E1hmWESwh+Oer75WsoqSAGQcu4OMYdfJGHbWYbbyo798\netHH0qYnMnFoOD7fmsKxv4xhk6mZNdmZHK05iV7ryh2JtzI5ajxaTc9/lS6rKAkhhBMqr23ls+Pl\n5BY30NZhoby2rdPjt04YyIyRA/D31veLr2IvRlEUDlYdJSN3E63mNgb5x7PcsIhgjyC1S+sREsJC\nCKESY4eFyvo2Sipb+M/72Zd83rP3TyDU36MXK1NHs6mFNTkbOVJ9HFetK4sG3c6UARN6pftVi4Sw\nEEL0IovVxu6jZaz6MPeij4cFeHDbpDgMAwPw0Otw03f/HMuO6GDlue63xdxKgl8syw1phHoGq11W\nj5MQFkKIHlTX1M6OQ2epajByvKCWDpO10+O+XnriI3wZEh/I4NhAwgM9VapUHc2mFtbmbuJw1TFc\nta4sGDSXaQMm9uvu93wSwkII0c06zFZOn23kZEEd2/YVX/Q5N46JZt7keKfpdC/mcNVx1uRk0mJu\nJd4vlnTDIkI9neuODAlhIYToBruOlvHlqUoURSG7uOGCx++anUzKwACC/dxx0TpHl3cpLaZWMnI3\ncbDqKK5aHfMT5zA9epLTdL/nkxAWQohr1Nxmoqiymf1ZVXi66zhZWE9pdefpZ73cdYxOCSUuwpfr\nh4T3yVmqesKR6hOsyc6k2dxCnG8M6YY0wrycd1EYCWEhhLiCtnYLpdUtfHrkLHtOVl7yeTGh3vzP\nvCF4uOkuuH/X2bWYW1mXu5kDlUfQaXXMS7yVGdGTnbL7PZ+EsBBCXEZTq4mfvPDZBceTo/3R6bTc\nNjEWnYsWd70LEUFeKlTo+I5Wn+TtnA00m1qI9Y0h3bCIcK8wtctyCBLCQgin9fVyf9UNRhpaOnD5\nakGWI6dr8PHUYzJbO53fvWX8QMICPJg8PPJSLynO02puY13uO+yvPIRO48IdCbcwI3oyLlrnvRjt\n2ySEhRBO50xFEy9mHqeuqeOqnu+q0/K7u8cS5mS3D3XF8ZpTvJ29gUZTMwN9okkfnEaEdL8XkBAW\nQvR7dU3t5JU28tGBEjQayD/b1OnxeZPjMFsVkmP8zx1QIDLYCw83l3PrjLtK53a12sxtrM97ly8r\nDuKiceG2+NnMjJkq3e8lSAgLIfotm03h3j99csnH//bwZLw9ZK3s7nKiJou3sjfQaGoixieKdMNi\nIr3D1S7LoUkICyH6tMq6NkqqWmhuM7FxdyEtRjMaDWg1Gqy2bxaJiwjyZJwhjOsGBRMV4uX09+p2\npzazkQ2n32Vv+QFcNC7Mjb+JWTHTpPu9ChLCQog+w3ZeqNoUhbU7TrP9YOkFz1MUiIv0Bc7NXrVw\nWgJD4/vnKjxqO1mbw1vZ62noaCTaO5L0wYuJ8o5Qu6w+Q0JYCOGwzBYb9c3tlFa38mLm8cs+986Z\ng7BYFaaPjJJzuL3AaDGSmbeFL8r3o9VouTVuFjcNnCHd7zWSEBZCOByT2cp/3s/my1MXToxhGBjQ\n6XljB4cxc9SAfru+riPKqs1ldfY6GjoaifKOIN2wmGgfuW3ru5AQFkI4lJpGI7/4x55OxyYNi8Bi\nsXHPHIOcy1WR0dLOxtNb+LxsH1qNlltiZ3JT7Ax0WomS70pGTgihug6zlbySBla9sofqeqP9+NIb\nBjFztHS5jiC7Lo/VWeuo72gg0iucFYMXE+0TpXZZfZ6EsBBCFVabjfyzTazfmc/ps40XPP6/D07C\nz0vmX1Zbu6Wdjflb+ezsXrQaLTfH3sDs2Buk++0mMopCiF7RYbJyrKAWq83G8fzaiy6EMHtCLPMm\nxuKqk6+cHUFO3WnezF5HbXs9EV5hrDAsJsZ3gNpl9SsSwkKIHvf58XJeey/roo+NHxzGuMFhDE8M\nJiTEh+rq5l6uTnxbu6WDzflb2XV2D1qNlpsGzuDmuJm4Svfb7WREhRA9pqGlg5+9+HmnY0tmJGJV\nFOIjfBkU7Y9Wzvc6lLz6fFZlraO2vY5wrzBWGNIY6Butdln9loSwEKJbVdS1cepMHbklDezLqrIf\nT40L5KeLhqPVSug6og6ric357/Np6edo0HDjwOncEjsTVxeZ1rMnSQgLIbpFa7uZ59Ycoajiwq+T\nn/uf6wn0dVehKnE18uoLWJ29jhpjLWGeoaQb0ojzi1G7LKcgISyE+M7a2i3klzXyyuaTtHVY7Mf1\nOi03jY1haEIQCZG+couRgzJZTbyTv42dpedOGcyMmcqcuBul++1FEsJCiGvW2NLBT791rvdri6Yl\ncPP4gb1ckbhWpxsKWZ2VQbWxljDPkK+6X/lz620SwkKIq9LUZuLdz85wprKp03q8ft56JgwOZ2Ry\nCIlRfipWKK6GyWrm3YJtfFLyGQA3RE9hTvxN6KX7VYWEsBDikswWG39dd5SsovoLHgsL8ODnS0fI\nud4+pKCxiFVZa6lqqyHUI5jlhjQS/GPVLsupSQgLIS7QbrLw85e+oLXd0ul4bLgPE1LDuW5QMCH+\nHipVJ66VyWpmS+EH7CjeDcCM6MnMjb8JvYvMSKY2CWEhhF1JVQvvf1nE3m/NZvXIkutIjQ1UqSrR\nFYWNRazKyqCyrZoQjyCWG9JI9I9TuyzxlasK4aeffpqjR4+i0WhYuXIlw4YNsz/25ptv8s4776DV\nahkyZAi/+tWveqxYIUTPqKxv462P8jheUNvp+Mr0UXKet48yW828V/gRHxd/ioLC9AGTuC1htnS/\nDuaKIbxv3z6KiopYu3Yt+fn5rFy5krVr1wLQ0tLCa6+9xocffohOp+Puu+/myJEjXHfddT1euBCi\ne5w8U8df1hzpdGxl+ii5tagPK2oq4Y1Ta6loqyLYPZDlhkUMCkhQuyxxEVcM4T179jBz5kwAEhIS\naGxspKWlBW9vb1xdXXF1daWtrQ1PT0+MRiN+fvKvZiH6ApPZyqbdhWzbV2w/JuHbt5ltFt46tonN\nWR+ioDB1wPXcnnALbtL9OqwrhnBNTQ2pqan2/cDAQKqrq/H29sbNzY0HHniAmTNn4ubmxq233kpc\nnJxrEMKRtRjNPPR/uzsdc9O78MLDk9G5yOpFfVVRUwmrsjIob60kyD2A5YZFJAUkql2WuIJrvjBL\nURT7dktLC6+88grbtm3D29ubu+66i+zsbFJSUi758wEBnuh0Lt+t2ksICfHp1tdzVjKOXefoY7jr\ncCl/Xn3Qvu/pruOe24YwfVS0wywf6Ohj6GjMVjMbTm1lU9aH2BQbNyZOYfmwebi7yq1jXdFbn8Mr\nhnBoaCg1NTX2/aqqKkJCQgDIz88nOjqawMBzV02OHj2aEydOXDaE6+vbulpzJ7L0WfeQcew6Rx7D\n3cfK+M/W7E7H/nT/BIK/us2oob5VjbIu4Mhj6IiKm0tZdSqDstYKAt0DWJ6yiEnJI6iubqYZs9rl\n9Vk98Tm8VKhfMYQnTpzICy+8wJIlSzh58iShoaF4e3sDEBUVRX5+Pu3t7bi7u3PixAmmTp3arYUL\nIa6NxWojt6SB59cexdNdR4ux8y/j+Ehffr5kBG767v1GSvQei83CtjM7+KBoBzbFxqTIccxLvBV3\nnXS/fc0VQ3jkyJGkpqayZMkSNBoNTz75JJmZmfj4+DBr1izuueceVqxYgYuLCyNGjGD06NG9UbcQ\n4ltsNoXHXt5DbVO7/ViL0UxYgAcWq43QAE9+vnSEihWK7lDSXMaqrLWcbSknwM2fZYaFGAKT1C5L\nfEca5fyTvL2gJ1p8+fqq62Qcu06tMWw3Wfif53ddcHzu9bFMGxFFgI9br9f0Xcnn8NKsNivbinaw\n7cx2bIqNiZFjmZc4B49vdb8yhl3nUF9HCyEcU1Obib0nKliz47T9mFaj4ZfpI0mIlFsF+5PS5jJW\nZWVQ2lKGv5sfy1IWMjgoWe2yRDeQEBaiD6puMPLYy3s6HfvDD8YREeSlUkWiJ1htVj4s+oT3z2zH\nqliZEDGGBYPm4KGTebv7CwlhIfqItnYzL28+yYnCuk7H75qdzLjBYbjr5a9zf3K2pZxVWRmUNJ/F\nT+/LMsNCUoMufeeJ6Jvkb60QDq6wvImnVx3Earvw8o0//+h6gvzkitj+xGqz8lHxTrYWfoxVsTI+\nfDQLBs3F01W63/5IQlgIB2TssPD3jcc5debCdXwfXDCUEYNCVKhK9LSylgpWZWVQ3FyKn96HO1MW\nMiTYoHZZogdJCAvhQOqa2tl9rJzNnxXaj2mAhCg/fjx/KL5eMgdwf2S1WdlevIv3Cj/EolgZFz6K\nhYPm4unqqXZpoodJCAuhMqvNxqdHylj9Ye4Fj91322DGDw5XoSrRW8pbK1mVlUFRUwm+eh/uTFnA\n0ODBapcleomEsBAqKapo5t9bsyipaul0PCHSlxmjBjBucBhaWc2o37IpNrYX72JL4YdYbBbGhI1g\nUdLteEn361QkhIVQQWF5E0/990CnYzeOiWbelHjcXGU6yf6uorWK1VkZFDYV46P3ZmnyAoaHpF75\nB0W/IyEsRC9QFIWdR8ooONtIa7uFI6e/WRTll8tHMmiAv4rVid5iU2zsKNnNuwUfYLFZGB12HYuS\nbsfbVe7vdlYSwkL0oJpGI6s/zOVYfu1FH//7T6fg4SZ/DZ1BZVs1q7MyKGgswtvVi6WDl3Jd6FC1\nyxIqk7/9QnQzRVH4YF8JGZ+cvuCxWaOjGZYYRHSINz6ermjknG+/Z1Ns7Cz5jHcKtmG2WRgZOoy0\npDvw0XurXZpwABLCQnSjFqOZh/+2m/OXRXHXu/Dk98cQFiAX3DibqrZqVmWto6DxDN6uXqwYvISR\nocPULks4EAlhIbpBVYORR1/6nLqmDvux2ybGMndiLC5arYqVCTXYFBufln7B5vz3MdvMjAgZyuLk\nedL9igtICAvxHeSWNLB1bxHtHRbK69pobjPbH/Ny1/HwouEkRslKRs6ouq2W1dkZnG4oxMvVk3RD\nGqPChqtdlnBQEsJCXCWbTeH3bxzgTMXF1xkNCfDgh3NTiY/07eXKhCOwKTZ2le5hc/5WTDYzw0OG\nsCR5Hr76i68jKwRICAtxRe0mC8WVLTz75qFOx/299fx86Qi83F3x9dLLYupOrMZYy+qsdeQ1FOCl\n82RZykJGhV0nF96JK5IQFuIyMnfls+WLok7HHl44jOGJwSpVJByJTbHx2dm9bMzfislqYlhwKkuS\n5+PnJt2vuDoSwkJcQl1Te6cAnj0uhhtGDpClAwUAtcY6VmevJ7f+NJ46D5YOXsKYsBHS/YprIiEs\nxEXUNBj5xct7ANC5aHj50Wkyj7MAzt0H/lnZl2w8vYUOq4mhwQaWJi/Az02uBRDXTkJYiG85mFPF\n3zeesO8/+b0xEsACgFpjPW9lrye7Pg8PnQcrDIsZGz5Sul/xnUkIC3Ge/LLGTgH8m++PISpE7u10\ndoqi8EXZPjJPb6Hd2sGQoBSWpizA301uQxNdIyEsBGC22DiQU8Wr756yH/vXL6aj1UqH4+zq2xt4\nM3s9WXW5eOjcWW5IY3z4KOl+RbeQEBZO7WxNK//ZmkVBWZP9mI+nK3/4wXgJYCenKAp7yvezIW8L\n7dZ2Bgcmc2fKAgLcZcUr0X0khIXTamjp4Il/fWnf1+u0jE8NY8XsFDkH7OTq2xt4K3sDp+pycHdx\nZ1nKIiZEjJbuV3Q7CWHhdCrr2ziQXcWGTwvsx5794XhCZYEFp6coCnvLD7Dh9LsYLe0YApNYlrJQ\nul/RYySEhdMormzmH5tPUlnX1un4k98bIwEsaOho5K3sDZyszcbdxY07UxZwfcRY6X5Fj5IQFv2W\nzaZQ1WDkTHkTmbsKqGlstz9BcdGpAAAgAElEQVQW6u/BGEMo86bEy1fPTk5RFPZVHGJd3jsYLUZS\nAgaxzLCQQPcAtUsTTkBCWPRLheVNPPXfAxccjwz24ns3p8gKRwKAxo4m3s7ZwPGaLNxc9CxJns+k\nyHHS/YpeIyEs+pW6pnbWf5rP3pOV9mPJ0f4kRPlx/ZBwIoO9VKxOOApFUdhfeZh1uZtpsxhJCkhk\necpCgjwC1S5NOBkJYdEvNLeZePhvn11w/B8/m4qb3kWFioSjauxoZk1OJsdqTqJ30bM4aR6Tosah\n1WjVLk04IQlh0ec1tZn4ybcCWFY6Et+mKAoHK4+QkbuZVksbg/zjWW5II1i6X6EiCWHRZ9kUhY27\nCnhvzzcrHf3unrEMkGkmxbc0mZpZk7ORo9Un0GtdWZR0O1OiJkj3K1QnISz6pBajmYf+b3enY0/d\nO44oOecrzqMoCoeqjrI2dxOt5jYS/OJIN6QR4hmkdmlCABLCoo/Zl1XJp0fKyCqqtx+be30scyfG\nonORrkZ8o9nUwpqcjRypPo6r1pWFg25j6oDrpfsVDkVCWPQZDS0dvLz5ZKdjT9w1mrgIWcdVdHao\n6hhrczbSYm4lwS+W5YY0Qj3lGgHheCSERZ/w+fFyXnsvy77/j59NRe+qlfs5RSctplbW5m7kUNUx\nXLU6Fgyay7QBE6X7FQ5LQlg4rBajmeoGIycK69i465t5nl/8yRS57Uhc4EjVcdbkbKTZ3EK830CW\nG9II8wxRuywhLktCWDikb3e+X/vXY9NlmknRSYu5lYycTRysOoqrVse8xFuZET1Zul/RJ0gIC4di\ntlh5/JW91Dd32I/NHhuDTVFYOC1BAlh0crT6BG/nZNJsaiHON4Z0QxphXqFqlyXEVZMQFg7jjW3Z\n7DxSZt9PifHn0aUjJHjFBVrNbazL3cz+ysPotDruSLiFG2KmSPcr+hwJYaE6m01h/c78TgH8+3vH\nyTzP4qKOVZ/k7ZxMmkzNDPSNZoUhjXCvMLXLEuI7kRAWqvvTW4fILW0EYGh8ED9NG65yRcIRtZnb\nWJf3DvsqDqHTuHB7/M3cEDMFF61cpCf6LglhoRpFUfjz24ftATz3+lhumxSrblHCIR2vOcXb2Rto\nNDUT4zOAdEMakd7hapclRJdJCAvVfHyglOziBgBuGDWAeVPiVa5IOJo2s5H1ee/wZcVBXDQuzI2f\nzayYqdL9in5DQlioor65g7e35wGwaFoCN48fqHJFwtGcrM3mrewNNHQ0Eu0TRbohjSjvCLXLEqJb\nXVUIP/300xw9ehSNRsPKlSsZNmyY/bHy8nJ+9rOfYTabGTx4ML/73e96rFjRPxzMqebvG4/b92eP\ni1GxGuFojBYjG/K2sKd8Py4aF+bE3cSNA6dJ9yv6pSuG8L59+ygqKmLt2rXk5+ezcuVK1q5da3/8\n2Wef5e6772bWrFn89re/paysjMjIyB4tWvRNLUYzL208bv8KGuDFn0yWqSeF3ZHyU7z05Rs0dDQy\nwDuSFYMXS/cr+rUrhvCePXuYOXMmAAkJCTQ2NtLS0oK3tzc2m42DBw/y/PPPA/Dkk0/2bLWiz/rT\nW4c6he+AEG9+e/cYCWABgNHSTmbeFr4o34dWo+XWuFncNHCGdL+i37tiCNfU1JCammrfDwwMpLq6\nGm9vb+rq6vDy8uKZZ57h5MmTjB49mkceeeSyrxcQ4IlO171/sUJCfLr19ZxVT43je58VdArg//vZ\nNOKj/HrkvdQmn8Vrd6wii38cWEVtWz0D/aJ4YNxdxAZEq11Wnyafw67rrTG85guzFEXptF1ZWcmK\nFSuIiorivvvuY+fOnUybNu2SP19f3/adCr2UkBAfqqubu/U1nVFPjaOxw8LLX53/TRrgx+PLRwH0\nyz8z+Sxem3ZLOxtPv8dnZV+i1Wi5OXYm6aNvp77OKOPYBfI57LqeGMNLhfoVQzg0NJSamhr7flVV\nFSEh51YmCQgIIDIykpiYcxfWTJgwgby8vMuGsHAeNkXhyX/vs+9/HcBCZNfl8Wb2eura64n0Cid9\ncBoxPgPQucgNG8K5XHGi1YkTJ/LBBx8AcPLkSUJDQ/H29gZAp9MRHR3NmTNn7I/HxcX1XLWiz1AU\nhQf/upuaxnYA0m9MUrki4QjaLR2sydnIC0depaGjkdmxN/DYmIeI8RmgdmlCqOKK/+wcOXIkqamp\nLFmyBI1Gw5NPPklmZiY+Pj7MmjWLlStX8vjjj6MoCklJScyYMaM36hYOTFEUMncVYOywAHDbxFim\nj5Rfss4ut/40q7PWUdteT4RXGOmGNAb6yrlf4dw0yvkneXtBT3zPLuc/uq47x3HdztO8v7cYODcT\n1rJZztEFy2fx4jqsJjbnb+XT0i/QoGHWwGncEjcLV+2FPYCMYdfJGHadQ50TFuJq2RSFP791mJyS\nc1dCX5cYzJ0zB6lclVBTXn0+q7PWUdNeR7hnKOmD04j1lclZhPiahLDoFi1GMw/93277/pC4QB5a\nOOwyPyH6sw6riXfy32dn6efnut+YadwaNwtXF1e1SxPCoUgIiy4zW6ydAnjO9bHMl8UYnNbphkJW\nZWVQY6wlzDOUdEMacX7S/QpxMRLCoksKy5t46r8H7PtP3DWauAhfFSsSajFZTbxTsI2dJZ8DMDNm\nKrfG3Yheul8hLklCWHxnB7KreGnTCfv+T9OGSwA7qYLGM6w6lUGVsYZQz2DSDWnE+8WqXZYQDk9C\nWFwTm03hy6xKVn+Ya78FCeDlR6aid5V5fp2NyWrm3YJtfFLyGQAzoiczN362dL9CXCUJYXFNHvy/\nXRg7rPb9YQlBPDBvKK66K877IvqZgsYiVmWtpaqthhCPININi0nwj1W7LCH6FAlhcdXufnaHfXvq\ndZHMHB1NVLCXihUJNZitZrYUfsj24l0ATI+exG3xs9G76FWuTIi+R0JYXFHWmTr+vOaIfX/e5Djm\nTpTpSZ1RYWMxq7IyqGyrItgjiHRDGon+8lkQ4ruSEBaXtT+7in+cd/FV+o1JMgWlEzJbzbxX+BEf\nF3+KgsLUARO5PeFm3KT7FaJLJITFRb3/ZRHrPsnvdOxfv5iOVqtRqSKhlqKmEt7IyqCitZJg90CW\nGxYxKCBB7bKE6BckhMUFcksaOgXwlOGR3DU7GY1GAtiZmG0W3i/8mI+Kd2JTbEyJup7bE27GXeem\ndmlC9BsSwqITi9XGs28eAiDYz51n75+AVsLX6RQ3lbIqK4Oy1gqC3ANYblhEUkCi2mUJ0e9ICAu7\np/67n8Lyb1YOWZk+SgLYyVhsFt4/s50Piz7BptiYFDWeeQm34K5zV7s0IfolCWEBwLPfCuDHl43E\n31u+dnQmxc2lrDp1rvsNcPNnuWERKYGyCpYQPUlCWGC22Pj8WBkAd99iYNKwCJUrEr3JYrOw7cwO\nPijagU2xMTFyHPMSb8VDul8hepyEsKCwvMm+LQHsXEqby3gjay1nW8oJcPNnWcpCDEFJapclhNOQ\nEBYcL6gFIDHKT+VKRG+x2qx8ULSD989sx6bYuD5iLPMH3YqHzkPt0oRwKhLCgh2HSgFYNF3u/XQG\nZ1vKWXVqLSUtZfi7+XFnykJSg5LVLksIpyQh7ORMZqt9QYaESOmE+zOrzcqHRTt5/8zHWBUrEyLG\nsGDQHOl+hVCRhLATO1lYx1/WnpsTOjrMW2bD6sfKWipYlbWW4uaz+Ol9uTNlAUOCDWqXJYTTkxB2\nUmu25/Hh/hL7/mPpY1SsRvQUq83Kx8WfsrXwIyyKlXHho1g4aC6erp5qlyaEQELYKZnMVnsAx0X4\n8vDCYQyM8KW6uvkKPyn6kvLWSladyqCouQQ/vQ9LUxYwNHiw2mUJIc4jIexkFEXhpy9+BoDeVcsT\nd41WuSLR3aw2K9tLdvFewYdYFCtjw0eyaNBt0v0K4YAkhJ3M4bwa+4VY/3PHUJWrEd2torWSN7Iy\nKGoqwVfvw9Lk+QwLSVW7LCHEJUgIOxFFUXgx8zgAk4dFMCwhSOWKRHexKTa2F+9iS+GHWGwWRodd\nx6Kk2/F29VK7NCHEZUgIO5E/vnXYvr10pswJ3F9UtlaxKmsdhU1F+Lh6syR1PteFDFG7LCHEVZAQ\ndhKvbTlFbkkDADNHDcBdL3/0fZ1NsbGjZDdbCj7AbLMwKnQ4aUl34K2X7leIvkJ+EzuBrKJ6Pj9R\nAZz7GvrOWTI3cF9X2VbN6qwMChqL8Hb14q7BSxkRKuf4hehrJIT7uXaThT+/fe5r6CFxgXz/Fpmg\noS+zKTZ2ln7OO/nvY7ZZGBk6jLSkO/DRe6tdmhDiO5AQ7ucO5lTbt388XzqlvqyqrYbVWevIbyzE\n29WLFYOXMDJ0mNplCSG6QEK4H1MUhdfeywLg3jkG9K4uKlckvgubYmNX6R425W/FbDNzXchQliTP\nk+5XiH5AQrgf+8/WbPv26ORQFSsR31WNsZbVWevIayjAy9WTdMMiRoYOR6OReb6F6A8khPupu5/d\nYd9eNitJuuA+xqbY2H12L5tOv4fJZmZ4yBCWJM/DV++jdmlCiG4kIdwP7T5aZt++bWIsN4waoGI1\n4lrVGOtYnZVBXkMBnjoP7kxZyOiw66T7FaIfkhDuZ8prW/nP++e+hp48LII7JserXJG4WjbFxmdn\nv2Rj/nuYrCaGBaeyJHk+fm7S/QrRX0kI9xOl1S18fKCUXed1wd+7OUXFisS1qDXW82b2OnLqT+Op\n82Dp4CWMCRsh3a8Q/ZyEcD+w7pPTvP9lcadjf3t4svwC7wMUReGzsi/ZeHoLHVYTQ4IMLE2Zj7+b\nn9qlCSF6gYRwH3cgu8oewG6uLtxzq4HhiUG46uRCLEdX117Pm1nrya7Pw0PnzgrDYsaGj5R/PAnh\nRCSE+yib7dyKSEdO19iP/eORqSpWJK6Woih8Ub6PzLwttFs7SA1K4c6UBdL9CuGEJIT7IKvNxg/+\ntNO+Hxfhw/9bMVq9gsRVq29v4M3s9WTV5eLu4s7ylEWMjxgt3a8QTkpCuA/adbTcvr1wWgK3jB+o\nYjXiaiiKwp7yA2zIe5d2azuDA5O5M2UBAe7+apcmhFCRhHAfs+dkBas+yAFgxU3JTBsRpXJF4koa\nOhp5M3s9p2pzcHdxY1nKQiZEjJHuVwghIdxX5J9t5A+rDnY6NnFohErViKuhKApfVhxkfd47GC3t\npAQMYplhIYHuAWqXJoRwEBLCfYDFausUwNNHRLH8xiTppBxYQ0cjb2dv4ERtNm4uepYmz2di5Dj5\nMxNCdHJVIfz0009z9OhRNBoNK1euZNiwC5dP+8tf/sKRI0dYtWpVtxfp7B596Qv79r8em45WfpE7\nLEVR2FdxiHV572C0GEkOSGRZyiKCPKT7FUJc6IohvG/fPoqKili7di35+fmsXLmStWvXdnrO6dOn\n2b9/P66urj1WqDPafrCUNz/Kte8/uGCoBLADqzc28srx/3K8Jgu9i54lyfOYFDleul8hxCVdMYT3\n7NnDzJkzAUhISKCxsZGWlha8vb9Zy/TZZ5/lpz/9KS+++GLPVepkiiubOwXwfXMHM2JQiIoViUtR\nFIX9lYdZf/odWk1tJPknsMywiGCPQLVLE0I4uCuGcE1NDampqfb9wMBAqqur7SGcmZnJ2LFjiYq6\nuqt0AwI80XXzbE4hIf1vgvu1O/MBcNVpWf/MHLTanu+m+uM49rSG9iZePfAW+88exc1Fzz0jlzAr\ncTJajVbt0vos+Rx2nYxh1/XWGF7zhVmKoti3GxoayMzM5D//+Q+VlZVX9fP19W3X+paXFRLiQ3V1\nc7e+ptoq6tr4YG8RAI8vG0ltbUuPv2d/HMeepCgKByuPkJG7mVZLG4P843lo4vfQGt2prWlVu7w+\nSz6HXSdj2HU9MYaXCvUrhnBoaCg1Nd9MjVhVVUVIyLmvRffu3UtdXR3Lli3DZDJRXFzM008/zcqV\nK7upbOdjsdpY+c+99v3YcPkXraNpNrWwJieTI9Un0GtdWZR0O1OiJhDm7Ue1UX75CSGu3hVDeOLE\nibzwwgssWbKEkydPEhoaav8qevbs2cyePRuA0tJSfvnLX0oAd9GLmcft2y/8RFZCcjQHK4+SkbuJ\nFnMrCX5xpBvSCPEMUrssIUQfdcUQHjlyJKmpqSxZsgSNRsOTTz5JZmYmPj4+zJo1qzdqdBrVDUaO\n5dcC8OP5Q/Fyl6vNHUWzqYW1uZs4XHUMV60rCwfdxtQB18u5XyFEl1zVOeFHH320035KyoWLxQ8Y\nMEDuEe6if75zEgCdi4YRg4JVrkZ87XDVcdbkZNJibiXeL5Z0wyJCPeVKdSFE18mMWQ7iixPl5Jc1\nAfC7e2RmJUfQYmolI3cTB6uO4qrVsSBxDtOiJ0n3K4ToNhLCDmDn4bO88dWiDH7eesIDPVWuSByp\nPsGa7EyazS3E+Q4k3bCIMK9QtcsSQvQzEsIO4OsA9vXS8+wPJ6hcjXNrMbeyLnczByqPoNPqmJd4\nKzOi5b5fIUTPkBBW2dfngQH+98cT5WtoFR2tPsnbORtoNrUQ6xtDuiGNcOl+hRA9SEJYZXtPnZvk\n5PZJcRLAKmk1t7Eu9x32Vx5Cp9VxR8It3BAzRbpfIUSPkxBWUXHlNxM73D4pTsVKnNfxmlO8lb2B\nJlMzA32iSR+cRoRXmNplCSGchISwSmoajfzmP/sBGCizYvW6NnMb6/Pe5cuKg+g0LtwefzM3xEzB\nRdu985oLIcTlSAir5Bf/2GPf/vmS61SsxPmcqMnirewNNJqaiPGJIt2wmEjvcLXLEkI4IQnhXqYo\nCqvPW6Lwbw9PxlNmxuoVbWYjG06/y97yA7hoXJgbfxOzYqZJ9yuEUI2EcC87WVjHJ4fOAjBtRBTe\nHhLAveFkbQ5vZa+noaORaJ8o0g1pRHlHqF2WEMLJSQj3EpuicO8fP7HvD0sIYsVNySpW5ByMFiOZ\neVv4onw/Wo2WOXE3cuPA6dL9CiEcgoRwL7DabPzgTzvt+xFBnvzo9iHqFeQksmpzWZ29joaORgZ4\nR5JuSGOAT6TaZQkhhJ2EcC84nPvNeszpNyYxfeQAFavp/4yWdjae3sLnZfvQarTcEjuTm2JnoNPK\nx10I4Vjkt1IveGnTCQDmT4mXAO5h2XV5rM5aR31HA1HeEaQbFhMt3a8QwkFJCPew8yfkuGlsjIqV\n9G/tlnY2nn6Pz8q+RKvRcnPsDcyOvUG6XyGEQ5PfUD1s7Y7TwLnzwK46mQaxJ+TUnWZ19jrq2uuJ\n9Aon3ZBGjK984yCEcHwSwj0sq6gegEeXjFC5kv6n3dLB5vyt7Dq7B61Gy+yBM5gdNxNX6X6FEH2E\n/LbqQcfyz12QpdVoCPBxU7ma/iWvPp9VWeuoba8j3CuMFYY0BvpGq12WEEJcEwnhHpJX2sBf1x0D\nYHyqLAjQXTqsJjbnb+XT0i/QoOHGgdO5JW6WdL9CiD5JfnP1AJPZyjOrD9n3v39LiorV9B959QWs\nzsqgpr2OMM9QVgxOI9ZXLnYTQvRdEsI94NGXvrBvv/LoVFy0ckFWV5isJt7J38bO0s8BmBUzjVvj\nZuHqIlN+CiH6NgnhbtbUZqLFaAbgN98fg6tOpkfsitMNhazOyqDaWEuYZwjphjTi/AaqXZYQQnQL\nCeFu9pO/fQbAgBBvYsJkneDvymQ18W7BB3xScm48b4iZwpy4m9BL9yuE6EckhLtRUcU3E3P8YO5g\nFSvp2woaz7DqVAZVxhpCPYJJH5xGvF+s2mUJIUS3kxDuRtsPlQJwXWIw0aHeKlfT95isZrYUfsCO\n4t0AzIiezNz4m9C76FWuTAgheoaEcDdq/epc8MikEJUr6XsKG4tYlZVBZVs1IR5BLDekkegfp3ZZ\nQgjRoySEu4nNpnA479zkHGMNoSpX03eYrWbeK/yIj4s/BWD6gEncljBbul8hhFOQEO4mr72XZd+W\nOaKvzpmmYladyqCirYpg90CWG9IYFBCvdllCCNFrJIS7gbHDwp6TFQA8MG8IGo1G5Yocm9lmYWvh\nR3xUtBMFhakDJnJ7ws24SfcrhHAyEsLdYMOn+fbtEXI++LKKmkpYlZVBeWslQe4BLDekkRSQoHZZ\nQgihCgnhbrDj0FkAHlo4DK10wRdltlnYVvgxHxbvxKbYmBI1gdsTbsFdJwtbCCGcl4RwF31+vNy+\nPSw+SMVKHFdxcymrTmVQ1lpBoHsAy1MWkRyYqHZZQgihOgnhLqiqb7NfkDVxaDharXTB57PYLGw7\ns50Pij7BptiYFDWeeQm34K5zV7s0IYRwCBLCXbBxd6F9+/s3G1SsxPGUNJexKmstZ1vKCXDzZ7lh\nESmBg9QuSwghHIqE8Hdktlj58lQlAL9cPlK64K9YbVa2Fe1g25nt2BQbEyPHMi9xDh7S/QohxAUk\nhL+jnJIG+3ZilJ+KlTiO0uYyVmVlUNpSRoCbP8tSFmIISlK7LCGEcFgSwt+B1WbjxczjANwxKc7p\n7wu22qx8WPQJW898jE2xcX3EGOYPmoOHzkPt0oQQwqFJCF+j4spmfvOf/fb964eGq1iN+s62lLMq\nK4OS5rP4u/lxZ8oCUoNS1C5LCCH6BAnha/TmR7n27VsnDCTYzzm7PavNykfFO9la+DFWxcr4iNEs\nSJyLp6tzjocQQnwXEsLXwGZTyCttBODxZSNJivZXuSJ1lLVUsCorg+LmUvz0vtyZsoAhwXJ1uBBC\nXCsJ4atkUxR+8OdP7PvOGMBWm5WPiz9la+FHWBQr48JHsXDQXDxdPdUuTQgh+iQJ4av00sYTKMq5\n7R/dMUTdYlRQ3lrJqlMZFDWX4Kv34c6UBQwNHqx2WUII0adJCF+FwvImDuVWA7BgajxjUpxnvWCb\nYmN78S62FH6IxWZhTNhIFiXdhpd0v0II0WUSwlfh5c0nAHDRarh1Qqy6xfSiitYqVmdlUNhUjI/e\nm6XJCxgekqp2WUII0W9ICF9BbWM71Q3tAPzx/gkqV9M7bIqNHSW7ebfgAyw2C6PDrmNR0u14u3qp\nXZoQQvQrVxXCTz/9NEePHkWj0bBy5UqGDRtmf2zv3r08//zzaLVa4uLi+MMf/oBWq+2xgnvbGx/k\n2LcDffv/1IuVbdWsOpVBYVMRPq7eLEmdz3UhzncOXAghesMVQ3jfvn0UFRWxdu1a8vPzWblyJWvX\nrrU//utf/5o33niD8PBwHnroIXbv3s3UqVN7tOjecqKwluMFtQA8+8PxKlfTs2w2GzuKd/FOwTbM\nNgujQoeTlnQH3nrpfoUQoqdcMYT37NnDzJkzAUhISKCxsZGWlha8vb0ByMzMtG8HBgZSX1/fg+X2\nntrGdp5fexSAsAAPQgP674VIVW3V/O3YK+TU5OPt6sWKwUsYGTrsyj8ohBCiS64YwjU1NaSmfnMx\nTmBgINXV1fbg/fq/VVVVfP755zz88MM9VGrv+vk/vrBv/+6ecSpW0nNsio1PS79gc/77mG1mRoQO\nY3HSHfjovdUuTQghnMI1X5ilfH2z7Hlqa2u5//77efLJJwkICLjszwcEeKLTuVzr215WSIhPt75e\nc5vJvv32Uzfj7anv1td3BBUt1fxj3yqyqvPw0XvxwKi7uD5mlNpl9Xnd/Vl0RjKGXSdj2HW9NYZX\nDOHQ0FBqamrs+1VVVYSEhNj3W1pa+MEPfsBPfvITJk2adMU3rK9v+46lXlxIiA/V1c3d+pp7T1UA\noHPRYmztwNja0a2vryabYmNX6R4252/FZDNzXcgQFifPIyEqstvH0dn0xGfR2cgYdp2MYdf1xBhe\nKtSveBnzxIkT+eCDDwA4efIkoaGh9q+gAZ599lnuuusupkyZ0k2lqq/mq1uS7pw5SOVKuleNsZa/\nHf4n6/I246p15fupd3LvkHR89fKvZiGEUMMVO+GRI0eSmprKkiVL0Gg0PPnkk2RmZuLj48OkSZPY\ntGkTRUVFrF+/HoA5c+awePHiHi+8pyiKQuauAgBcdf3jViubYuOzs3vZmL8Vk9XE8OBUFifPx89N\nwlcIIdR0VeeEH3300U77KSnfrBd74sSJ7q1IZeef8R5r6PvTU9Ya61idtY7chnw8dR7cOXgpo8Ou\nQ6PRqF2aEEI4PZkx61ue+NeXAMSG++DazReQ9SZFUfisbC8bT79Hh9XE0GADS5MX4Ofmq3ZpQggh\nviIhfB5FUSivPXfh2I1jolWu5rurNdbzVvZ6suvz8NB5sMKwmLHhI6X7FUIIByMhfJ6V/9wLgKeb\njvGp4SpXc+0UReGLsn1knt5Cu7WDIUEpLE1ZgL+bn9qlCSGEuAgJ4a9YbTYq640A/HzpCJWruXb1\n7Q28mb2erLpcPHTupBvSGBc+SrpfIYRwYBLCX8ktbgAgyNeNgeF956phRVHYU76fDXlbaLe2Mzgo\nmWUpC6X7FUKIPkBC+Cs5JedCeFhisMqVXL369gbeyt7Aqboc3F3cWZayiAkRo6X7FUKIPkJC+Cvb\nD5YCMHV4pMqVXJmiKOwtP8CG0+9itLRjCExiWcpCAtz91S5NCCHENZAQBsprW2lttwAwINSxFy9o\n6GjkrewNnKzNxt3FjTtTFnB9xFjpfoUQog+SEAbyShsBCPBxQ+ugYaYoCl9WHGR93rsYLUZSAgax\nzLCQQPfLL5ghhBDCcUkIA6+/nw3AHZPiVK7k4ho6Gnk7O5MTtVm4uehZmjyfiZHjpPsVQog+zulD\nuLrBaN8e42DTVCqKwv7Kw6zL3UybxUhSQCLLUxYS5BGodmlCCCG6gVOHsKIoPPbyHgAmpIbhrnec\n4WjsaGZNTibHak6id9GzOGkek6LGodX0j0UlhBBCOHEImy02XthwzL6/cFqiitV8Q1EUDlYeISN3\nM62WNpL8E1hmWESwdL9CCNHvOG0IP/Xf/ZRWtwKwZEYiAT5uKlcETaZm1uRs5Gj1CfRaV9KS7mBy\n1HjpfoUQop9yyhBuN1nsAfzwwmEMSwhStR5FUThUdZS1uZtoNbeR6B/H8pQ0QjzVrUsIIUTPcroQ\nVhSFDTsLAPD10jNc5ZkBHbIAAAxvSURBVBmymk0trMnZyJHq47hqXVk46DamDrheul8hhHACThXC\np8828vSqg/b9e281qFgNHKo6xtqcjbSYW0nwi2W5IY1Qz74zbaYQQoiucaoQ3rS7wL49b3IcQ+LV\n+bq32dRCRu4mDlUdw1XryoJBc5k2YKJ0v0II4WScJoStNhunztQD8NcHJ+HrpVeljsNVx1mTk0mL\nuZV4v4EsN6QR5hmiSi1CCCHU5TQh3Gq02LfVCOAWcysZOZs4WHUUV62O+YlzmB49SbpfIYRwYk4T\nwh9/tUrSxKHhvf7eR6tP8HZOJs2mFuJ8Y0g3pBHm5VizcwkhhOh9ThPC9c3tAAT4uPfae7aYW1mX\nu5kDlUfQaXXMS7yVGdGTpfsVQggBOFEIn/z/7d1/TNx1nsfx5zBAaQGRUYbysyCmWcTV1LNeXHpl\ni1Bat+smdw0DEWoao2dSNXomxhIj/KGoSWvuEv3D8/zjQnva2p3cubtu655pb3cL/bluK1DaKdoe\n0BZm+FWm/Brge3+wy7ZXHNodmO/M8Hr8xfTDzLz6Tsmrn/l++X6/6wOg5G8yg/J+p90tfHLWydXx\nIVbckcWW/HKWx6cG5b1FRCQ8LJoSjl8aw4B3nMRlMQv6PsO+YT5zfc6xK38g2mLlZ3kbeSxrLdYo\n64K+r4iIhJ9FU8I+3xR3JsQu6O3/vvG08knbzxkcHyI7MZPq/HLSE4J/DFpERMLDoijhsfFJegZG\nsN+5dEFef9g3wj7X5xy9chKrxcoT92ygJLtIu18REfFrUZTwb09fAqDnunsHz5eW3jb+o+3nDIwN\nkp2YQXW+Q7tfERG5JRFfwoZh8Ml/uwB4eh4vUzkyMcI+1y84cvkEVouVTbllrF/xY+1+RUTklkV8\nCV8d9s18/aP752eH2tp7lt1t+xgYGyQrIZ3q+xxkJKTNy2uLiMjiEfEl7O6f/gh69Q/sAZ+UNTIx\nitP1SxovHyPKEsVPckspW1Gs3a+IiPxVIr6Ee69OX6Qj0JOiz/SdY/eZffSPDZCRkEZ1voOsxPR5\nSCgiIotVxJfwxStDADyQ99fdMWl0YhTn+V9x+NJRoixRPJ5TQllOMdFRET86ERFZYBHfJJNTBgBx\nsbf/V23rc7G7bR99o/2kxy9ny30OshIz5juiiIgsUhFfwr/7068nZabE3/JzRifG+M/2L/hdVxNR\nlig25jzGhpzHtPsVEZF5FfGtsiwumtHxSe6+xQt1nOs/z64zn9E72k9afCpb8h1k3xGc602LiMji\nEtEl7B3x0Xd1jIyUeKLmODNrdGKM/2r/Nb/tasSChbIVxWzMLSFGu18REVkgEd0wX7vcAIyOTfr9\nPld/Ow1nPqN3tI/l8alsyS9nxR1ZwYgoIiKLWESX8B9dHgCeKMyZdX1scpzP23/Noc7DWLBQmv1j\nfpJbSox1Ye+0JCIiAhFewr2D078jnJ2aeNPa+YHvaDizF89IL6nL7FTnl5OblB3siCIisohFbAlf\nHR7nf3u8AKTdtWzmz8cnx/n82/0c6jgMQEl2EZty12v3KyIiQRexJdxw4CwAcbFWYmOmLyvZPnCB\nXWf20jPiwb7sbqrzHdyTtMLMmCIisohFZAkPj/o4eXb6pKzn//6HjE/6+MW3+znY8XsAHstay6Z7\nyojV7ldEREwUkSX8zbd9M1/HJQ/x9vF/o2fYg33p3VTll5N3Z4554URERP4kIkv4wpWrYJnk/h95\neO/kAQCKs/6On95TRqw11uR0IiIi0yKyhPsnullyfyPtvmvcvfQuqvPLuffOXLNjiYiI3CCiStg3\n6eNX3/2Gb6z/Q1S0wSMpf0vFfT9liXa/IiISgm6phOvr6zl16hQWi4WamhoeeOCBmbXGxkbee+89\nrFYra9euZdu2bQsW1p+LVzv499Y9dA/3MDW2FN93P+QfHn2CJTr5SkREQtScJXzs2DEuXrzInj17\naG9vp6amhj179sysv/nmm3z88cekpqZSVVVFWVkZ995774KGvt7w2BgfNH1G6/AJsBhMdGfj61hJ\nfGwcCUtVwCIiErrmLOGmpiZKSkoAyMvLY3BwEK/XS0JCAh0dHSQlJZGWlgZAUVERTU1NQSvhs5eu\n8M+//FeilnmZGl+K79v7mRq6iydLV7LuId33V0REQtucJezxeCgoKJh5bLPZcLvdJCQk4Ha7sdls\nN6x1dHT4fb3k5GVER1sDiPwXx7vOYYm7xkR3FquT1/GP/7QK2x1x8/Lai1FKys2X95TboxkGTjMM\nnGYYuGDN8LZPzDIMI6A37O8fDuj511udsZLign9haGD6GtGTYz7cbt+8vf5ikpKSiNs9ZHaMsKYZ\nBk4zDJxmGLiFmOH3lXrUXE+02+14PJ6Zxz09PaSkpMy61t3djd1uDzTrbYmL0XFfEREJT3OWcGFh\nIQcOTF/woqWlBbvdTkJCAgCZmZl4vV46OzuZmJjg4MGDFBYWLmxiERGRCDHnx9EPPfQQBQUFVFRU\nYLFYqK2txel0kpiYSGlpKXV1dbzyyisAPP744+Tm6qIYIiIit8JiBHqQ9zYtxOfsOv4ROM0xcJph\n4DTDwGmGgQupY8IiIiKyMFTCIiIiJlEJi4iImEQlLCIiYhKVsIiIiElUwiIiIiZRCYuIiJhEJSwi\nImKSoF+sQ0RERKZpJywiImISlbCIiIhJVMIiIiImUQmLiIiYRCUsIiJiEpWwiIiIScKqhOvr63E4\nHFRUVHD69Okb1hobG9m8eTMOh4MPPvjApIShz98Mjxw5Qnl5ORUVFWzfvp2pqSmTUoY2fzP8s507\nd1JdXR3kZOHD3wwvX75MZWUlmzdv5o033jApYXjwN8fdu3fjcDiorKzkrbfeMilh6Dt37hwlJSXs\n2rXrprWg9IoRJo4ePWo8++yzhmEYxvnz543y8vIb1jdu3GhcunTJmJycNCorKw2Xy2VGzJA21wxL\nS0uNy5cvG4ZhGC+88IJx6NChoGcMdXPN0DAMw+VyGQ6Hw6iqqgp2vLAw1wxffPFF48svvzQMwzDq\n6uqMrq6uoGcMB/7mODQ0ZKxbt87w+XyGYRjG1q1bja+//tqUnKHs2rVrRlVVlfH6668bDQ0NN60H\no1fCZifc1NRESUkJAHl5eQwODuL1egHo6OggKSmJtLQ0oqKiKCoqoqmpycy4IcnfDAGcTifLly8H\nwGaz0d/fb0rOUDbXDAHeeecdXn75ZTPihQV/M5yamuLkyZMUFxcDUFtbS3p6umlZQ5m/OcbExBAT\nE8Pw8DATExOMjIyQlJRkZtyQFBsby0cffYTdbr9pLVi9EjYl7PF4SE5Onnlss9lwu90AuN1ubDbb\nrGvyF/5mCJCQkABAT08Phw8fpqioKOgZQ91cM3Q6nTzyyCNkZGSYES8s+JthX18f8fHxvP3221RW\nVrJz506zYoY8f3NcsmQJ27Zto6SkhHXr1vHggw+Sm5trVtSQFR0dTVxc3KxrweqVsCnh/8/Q1TYD\nNtsMe3t7ee6556itrb3hB1xmd/0MBwYGcDqdbN261cRE4ef6GRqGQXd3N1u2bGHXrl20trZy6NAh\n88KFkevn6PV6+fDDD9m/fz9fffUVp06doq2tzcR08n3CpoTtdjsej2fmcU9PDykpKbOudXd3z/rx\nwmLnb4Yw/YP7zDPP8NJLL7FmzRozIoY8fzM8cuQIfX19PPnkkzz//PO0tLRQX19vVtSQ5W+GycnJ\npKenk52djdVq5dFHH8XlcpkVNaT5m2N7eztZWVnYbDZiY2N5+OGHaW5uNitqWApWr4RNCRcWFnLg\nwAEAWlpasNvtMx+fZmZm4vV66ezsZGJigoMHD1JYWGhm3JDkb4YwfSzzqaeeYu3atWZFDHn+Zrhh\nwwa++OIL9u7dy/vvv09BQQE1NTVmxg1J/mYYHR1NVlYWFy5cmFnXx6iz8zfHjIwM2tvbGR0dBaC5\nuZmcnByzooalYPVKWN1FaceOHZw4cQKLxUJtbS2tra0kJiZSWlrK8ePH2bFjBwDr16/n6aefNjlt\naPq+Ga5Zs4bVq1ezatWqme/dtGkTDofDxLShyd+/wz/r7Oxk+/btNDQ0mJg0dPmb4cWLF3nttdcw\nDIOVK1dSV1dHVFTY7BeCyt8cP/30U5xOJ1arlVWrVvHqq6+aHTfkNDc38+6779LV1UV0dDSpqakU\nFxeTmZkZtF4JqxIWERGJJPrvpYiIiElUwiIiIiZRCYuIiJhEJSwiImISlbCIiIhJVMIiIiImUQmL\niIiYRCUsIiJikv8DvN8/foT4B3EAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "PIdhwfgzIYII", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**See if you can tune the learning settings of the model trained at Task 2 to improve AUC.**\n", + "\n", + "Often times, certain metrics improve at the detriment of others, and you'll need to find the settings that achieve a good compromise.\n", + "\n", + "**Verify if all metrics improve at the same time.**" + ] + }, + { + "metadata": { + "id": "XKIqjsqcCaxO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 652 + }, + "outputId": "e5336757-4423-4d61-a391-95fa21566bed" + }, + "cell_type": "code", + "source": [ + "# TUNE THE SETTINGS BELOW TO IMPROVE AUC\n", + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000005,\n", + " steps=500,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n", + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss (on training data):\n", + " period 00 : 0.59\n", + " period 01 : 0.57\n", + " period 02 : 0.56\n", + " period 03 : 0.55\n", + " period 04 : 0.54\n", + " period 05 : 0.54\n", + " period 06 : 0.53\n", + " period 07 : 0.54\n", + " period 08 : 0.53\n", + " period 09 : 0.52\n", + "Model training finished.\n", + "AUC on the validation set: 0.73\n", + "Accuracy on the validation set: 0.76\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlYlOX6wPHvOzOsw74riiAiIgoC\nWpr7FmCLmaZo4dpuaWnnnPRXRzvnZJtZZrZZlpmWZqbmRqm5r+CCIrig4MoqIJtsM78/PHEiRFFm\nYMD7c11el/Muz3vP3IzePO/zPo+i1+v1CCGEEEI0UqqGDkAIIYQQoi6kmBFCCCFEoybFjBBCCCEa\nNSlmhBBCCNGoSTEjhBBCiEZNihkhhBBCNGpSzAjRxPn7+5OWlmaQti5cuED79u0N0lZDiI6OpkeP\nHkRERBAeHs6gQYNYtGjRbbcTHx/PhAkTbvu89u3bc+HChds+Twhxc5qGDkAIIerT3/72NwYPHgxA\nZmYmI0aMwMfHh169etW6jaCgIL766itjhSiEuE3SMyPEXaqkpIR//vOfhIeHExkZydtvv01FRQUA\nO3bsoHfv3kRGRrJs2TJCQ0Nv2aOQm5vL5MmTK3s8vvjii8p9H3zwAeHh4YSHhzN69GjS09Nvuv0P\n27Zt46GHHqqybfDgwWzfvp39+/czZMgQBg0aRGRkJBs2bLjtz8DV1ZWIiAh27doFwOnTp3niiScI\nDw/noYce4ujRowDs27ePqKgoJk+ezNSpU9m3bx8DBw685ee4bds2Bg4cSGRkJF9++WXldQsLC5k4\ncSKRkZH079+f1157jbKystuOXwhxnRQzQtylFi1aRFpaGuvWrePnn38mNjaWtWvXUlFRwauvvsq/\n/vUvNmzYQEpKCsXFxbdsb86cOdjb2xMTE8PSpUv5/vvviY2N5dSpU2zcuJG1a9cSExPDwIED2bNn\nT43b/6xbt26kpaVx/vx5AM6fP09aWhr33Xcf77zzDtOmTWP9+vV8+umnbNq06Y4+h/LycszNzdHp\ndEycOJHBgwcTExPDzJkzef755ykvLwfg+PHjREVF8f7779f6c/y///s/ZsyYwYYNG1CpVJVFzqpV\nq7Czs2PDhg3ExMSgVqs5ffr0HcUvhJBiRoi71tatWxk+fDgajQZLS0seeughdu3aRUpKCqWlpfTu\n3Ru4Ps5Ep9Pdsr1t27YxatQoABwcHBg4cCC7du3Czs6OK1eu8Msvv5CXl0d0dDSPPPJIjdv/zNzc\nnL59+7JlyxYANm3axIABA9BoNDg7O7Nq1SqSk5Px9vauVmTUxvnz59m4cSMDBw7kzJkzZGdnM2zY\nMADCwsJwcnLi0KFDAFhaWtKtW7fb/hx79OgBwJAhQyrP+aPdnTt3otPpeOONNwgICLjt+IUQ10kx\nI8Rd6sqVK9jb21e+tre3Jzs7m7y8POzs7Cq3u7m51bq9P59nZ2dHdnY27u7uzJs3j40bN9KnTx+e\nfvppLl++XOP2vwoPD69SzAwaNAiAWbNmYWVlxbhx47j//vvZuHFjreJ87733KgcAT5kyhVdffZWg\noCCuXr3KtWvXiIyMJCIigoiICLKzs8nNza38fGp63zV9jjY2NlW2/yEyMpKxY8cyd+5cunXrxhtv\nvEFpaWmt4hdCVCfFjBB3KRcXl8r/qOH6mBcXFxdsbGwoKiqq3J6VlVWn9gC6du3KF198wa5du2jW\nrBmzZ8++6fY/69mzJ0lJSaSkpJCSkkLXrl0rr/f666+zfft2/vnPfzJt2jQKCwtvGeff/vY3Nm7c\nSExMDD/++GNlceTm5oZWq2Xjxo2Vf3bu3Fk5NuZ237e9vT0FBQWV269cuVLlvKioKH788UfWr19P\nQkICq1atumXsQogbk2JGiLtUnz59WLFiBRUVFRQVFbF69Wp69+6Nt7c35eXl7Nu3D4Dvv/8eRVFq\n1d6yZcuA6/9x//bbb/Tp04edO3fyxhtvoNPpsLa2pl27diiKUuP2vzI3N6dHjx6899579O/fH7Va\nTVlZGdHR0WRkZAAQGBiIRqNBpbrzf9I8PT3x8PCo7OG5cuUKU6ZMqVLY1fS+b/Q5enl5oVarKz/H\nlStXVr6/+fPns2LFCgDc3d1p0aJFrT5jIcSNyaPZQtwFoqOjUavVla//85//EB0dzfnz53nggQdQ\nFIWIiAgiIyNRFIWZM2cybdo0bG1tGTduHCqVCkVR0Ov1VFRUEBERUaX9BQsW8NJLLzFz5kwiIiJQ\nqVQ8/fTTBAUFUVJSwrp16wgPD8fc3BwnJydmzZqFm5vbDbffSHh4OC+++CLffPMNAGZmZgwbNoyx\nY8cCoFKpeO2117CysuK3335jy5YtvPXWW7f1GSmKwpw5c5g5cyYffvghKpWKcePGYW1tfcvPtqbP\n8d///jfTp0/H3NycRx99tLKtwYMHM23aNBYsWICiKAQHB1c+Li6EuH2KXq/XN3QQQgjTVVRUREhI\nCLGxsdja2jZ0OEIIUY3cZhJCVDN06FDWr18PwPr16/H19ZVCRghhsqRnRghRTWxsLP/6178oKSlB\nq9Uyc+ZMgoKCGjosIYS4ISlmhBBCCNGoyW0mIYQQQjRqUswIIYQQolFr9I9mZ2bmG61tR0drcnJu\nPseEaBiSG9MkeTFdkhvTJHmpPVfXmh9CkJ6Zm9Bo1Lc+SDQIyY1pkryYLsmNaZK8GIYUM0IIIYRo\n1KSYEUIIIUSjJsWMEEIIIRo1KWaEEEII0ahJMSOEEEKIRk2KGSGEEEI0alLMCCGEEKJRk2JGCCGE\naMK2bt1cq+Pmzn2fS5cu1rj/1VenGCokg5NiRgghhGiiLl++xKZNMbU6dvLkqTRv7lnj/rffnmOo\nsAyu0S9nIIQQQogbmzPnHRITE+jZswv33x/J5cuX+PDDT3jrrX+RmZlBcXEx48c/TffuPXnhhaeZ\nMuXv/P77ZgoLCzh3LpWLFy8wadJUunXrzgMP9Gfdus288MLTdOlyLwcPxpKbm8s773yAi4sL//rX\n66SlXaZjxyC2bNnEzz+vr7f3KcWMEEIIUQ+WbznNgaSMKtvUaoWKCv0dt9mlnRvD+7Wpcf/IkdGs\nXLkcHx9fzp1L4ZNPviQn5wr33NOVyMgHuXjxAq+//irdu/escl5GRjqzZ3/E3r27Wb36J7p1615l\nv1arZe7cT/n003ls376F5s1bUFpawhdffMOuXTtYvvz7O35Pd0KKmRqczUulxNwZC2waOhQhhBCi\nzgICAgGwtbUjMTGBNWtWoigqrl7Nq3ZsUFAnANzc3CgoKKi2Pzg4pHJ/Xl4eqaln6dgxGIBu3bqj\nVtfvmlNSzNTgm+M/UFxRzLTOL+Fo6dDQ4QghhGjkhvdrU60XxdXVlszM/Hq5vpmZGQC//baRq1ev\nMn/+l1y9epUnn4yuduyfixG9vnrP0V/36/V6VKrr2xRFQVEUQ4d/UzIAuAYDvXpTWFrE1wnfU6Gr\naOhwhBBCiNumUqmoqKj6f1hubi7NmjVHpVKxbdsWysrK6nwdT88WnDhxHID9+/dWu6axSTFTg+7N\n76Vry1CS886yIaV2j7UJIYQQpqRVKx9OnEiisPB/t4r69OnH7t07mDz5OaysrHBzc+PrrxfU6Tr3\n3deTwsJCnntuAkeOHMLOzr6uod8WRX+j/qNGxJjdc9b2aqZu+A8513KZFPI0bR19jXYtcXvqs2tW\n1J7kxXRJbkxTU8nL1at5HDwYS58+/cnMzGDy5OdYuvQng17D1dW2xn3SM3MTWnNrxgWOQlEUvkn4\nnoLSwoYOSQghhDA51tZatmzZxNNPj2X69Fd48cX6nWBPBgDfQmv7VjzkE87qMxtYnLicZ4PG1vvA\nJiGEEMKUaTQa/vWvtxru+sZsfNasWRw5cgRFUZg+fTpBQUGV+/r164eHh0fliOjZs2fj6urKjBkz\nOHXqFGZmZsycORNf34a/tTOgVW9O5JzmWHYiWy/som/LHg0dkhBCCCH+y2jFzP79+0lNTWXZsmUk\nJyczffp0li1bVuWYBQsWoNVqK1//9ttv5Ofn88MPP3Du3DnefPNNPv/8c2OFeFNXi0rRXrs+wlul\nqBjdPoq39n/AqtPr8HXwxsu2RYPEJYQQQoiqjDZmZs+ePQwYMAAAX19f8vLybjjxzp+lpKRU9t54\neXlx6dKlen+86w/vLDnIKx/toKz8+vXtLWwZ3X4E5foKvj62lGvl1xokLiGEEEJUZbRiJisrC0dH\nx8rXTk5OZGZmVjlmxowZjBw5ktmzZ6PX62nbti07d+6koqKCM2fOcP78eXJycowV4k0FejtxPj2f\n1TtTKre1d/ZngFdvMoqzWH5ydYPEJYQQQoiq6m0A8F+fAJ80aRI9e/bE3t6eiRMnEhMTQ0REBAcP\nHuTxxx/H39+f1q1b33DmwT9zdLRGozH8tMnPDA3m6NkrbNx/jgFdW+HX8nphNt5pGGcLUtiXFkeX\nVh3p5X2vwa8taudmj+mJhiN5MV2SG9NkCnnp168fv/zyC0uWLKFLly6EhIRU7issLOShhx5iy5Yt\nNZ4fExNDeHg4K1euxNbWloEDB9ZH2JWMVsy4ubmRlZVV+TojIwNXV9fK14888kjl33v16sXJkyeJ\niIjg5Zdfrtw+YMAAnJ2db3qdnJwiA0Zd1YuPdeK1z3czZ0kc/xzbBY36ekfWaP8o3to/ly9il+Kk\nuOJu7XqLloShNZW5GZoayYvpktyYJlPJS0WFjqysAoYMGQlUncOtqKiIigpdjXFevnyJlStXERp6\nHz17Dqx2vqE0yDwz3bt3JyYmBoCEhATc3Nywsbm+aGN+fj4TJkygtLQUgAMHDuDn50dSUhLTpk0D\nYPv27bRv3x6VquGmwglu60rvTs25kFnIuj2pldtdrJwZ2e5RSitK+frYEsp05Q0WoxBCCFGT8eMf\nJy0tDYC0tMuMGzeKv//9JV588RmeemoMx48fq3L8m2/OZNeuHRQWFvDSS8/z/PNP8u23Cyv3//rr\nBp5+eizPPTeed955E4A5c97h8OGDfP31Ar766nN++un6wz6ffDKX554bz1NPjWHjxnUAvPDC0yxa\n9BWTJz/HmDEjK2OrK6P1zISGhhIYGEhUVBSKojBjxowq3U+9evVixIgRWFhY0L59eyIiIioXqxo2\nbBgWFhbMnj3bWOHV2mN92hCfnM3a3SmEtnWlpdv1gqyzeydOXDnF7ssHWJ28nmF+DzdwpEIIIUzZ\nytNrOZRxtMo2tUqhQnfnE/GHuHXk0TYP1ri/V6++7Nq1naFDh7NjxzZ69eqLr68fvXr1IS7uAEuW\nLOLNN9+rdl5MzAZat/Zl0qSpbN78K5s2Xe+cKC4u5v3352Fra8vEiU+RnHyakSOjWblyOePGPcVX\nX11/Avnw4YOcOZPMp58upLi4mDFjoujVqw8AWq2WuXM/5dNP57F9+xaGDx91x+//D0YdM/PKK69U\ned2uXbvKv48ZM4YxY8ZU2a8oCm+//bYxQ7pt1pYaxkT48+GP8Sxcn8hro8NQ/7e3aFjbwSTnpfL7\n+Z34O7aho0v7Bo5WCCGE+J9evfry8ccfMnTocHbu3MYLL7zMDz8s5vvvF1NWVoalpeUNz0tJOUOn\nTmEAhISEVW63s7Nj2rSpAKSmniUvL/eG5yclHadTp1AArKys8PZuzfnz5wEIDr4+HsfNzY28vDyD\nvE+ZAbgWgnxduK+DB7uPpRGz/zyDurYCwEJtzoQOj/Nu7DwWJy5n+j0v42BRv4trCSGEaBwebfNg\ntV4UY4+Zad3al+zsTNLT08jPz2fHjq24uLjx+uv/JinpOB9//OENz9PrQaW6Ptu97r89R2VlZcyZ\n8y7ffLMUZ2cX/v73l2q8rqIo/Pn5nfLyssr2/pgs9/p1DLM8pKzNVEtR/f2w05qzasdZLmf/b40m\nT5tmDG3zIIVlRXyT8D06va4BoxRCCCGq6tatB1988Qk9e/YmLy8XT8/rk75u2/Y75eU3HvPp5dWK\npKREAA4ejAWgqKgQtVqNs7ML6elpJCUlUl5ejkqlqjYnXLt2gRw6FPff84q4ePECLVp4GestSjFT\nWzZWZkTf7095hY6F6xMrK1WAnp7dCHbtwKncM8Sk1PzomhBCCFHfevfuy6ZNMfTp05+IiAdYtmwJ\nL788kcDADmRnZ7Nu3Zpq50REPEBCwlEmT36O8+dTURQFe3sHunS5lyefHM3XXy9g1KhoPvpoDq1a\n+XDiRBIfffR+5fnBwZ3w92/HxIlP8fLLE3n22RewsrIy2ntU9Ibq42kgxuyeu1H336erjnEgKYOR\n/f0Y2KVl5fbCsiLe2v8huSV5vBT6LG0cfIwWlzCdxxlFVZIX0yW5MU2Sl9prkEezm6rHB7bFxsqM\nn7Ylk/GnOW60ZtaMCxyFoih8nbCUwjLjzX8jhBBCiP+RYuY22WnNGTXQj9JyHd9sSEL3p44tXwdv\nBnkPJLckj+8SfzTYwCYhhBBC1EyKmTtwb4A7ndq4kHQul+2HL1XZF+7dl7YOvsRnJbD94p4GilAI\nIYS4e0gxcwcURSE63B8rCw3Lfz9Ndt7/VtBWKSrGBEZhY6Zl5em1XMi/dJOWhBBCCFFXUszcIUdb\nC6L6t+FaaQWLYpKq3FJysLAnOmA45bpyFiYsoaSitAEjFUIIIZo2KWbqoEfHZgT6OHHszBV2H6u6\nvkQHlwD6texJelEmy0+uaqAIhRBCiKZPipk6UBSFMRH+WJir+X7TKXILSqrsf9g3Ei9bT/ZejuVA\n2qEGilIIIYRo2qSYqSMXeyuG9/GlqKScxTEnqtxuMlNpGBf4OBZqc344sZLMouwGjFQIIYRomqSY\nMYDeIZ74t3Tg0KksDiRlVNnnZu1ClP+jXKsoYWHCEsp1N546WgghhBB3RooZA1ApCmMHtcNco+K7\nX09ytajqgN97PEK51yOMc/kXWJO8sYGiFEIIIZomKWYMxN3Rmkd7taaguIylv52stn9420dws3Zh\n8/ntJGQnNUCEQgghRNMkxYwBDejcEt/mduxPzODgycwq+yw1FowPfByNoubb48vIK7naQFEKIYQQ\nTYsUMwakUimMGxSARq2wOOYEBcVlVfa3tPXkkTYPUFBWyDfHf0Cn1zVQpEIIIUTTIcWMgTV30TK4\nhw95haUs23yq2v4+LbrT0SWAkzmn+TV1a/0HKIQQQjQxUswYQfg9XrRyt2XXsTTik6s+jq0oCk8E\nDMfBwp51Z3/lTF5KwwQphBBCNBFSzBiBRq1i3KB2qFUKizYmUVxS9XFsGzMtY9tHodfrWXhsKUVl\nRQ0UqRBCCNH4STFjJF7utjzQrRU5+SX8+Pvpavv9HH2J9O5PTkkuS5J+qjLZnhBCCCFqT4oZI3rw\nPm88XbVsPXyJxJQr1fZHePenjYMPhzOPsvPS3gaIUAghhGj8pJgxIo1axfhBASgKfL0hiZLSiir7\n1So1Y9uPRKux5qdTv3Cx4HIDRSqEEEI0XlLMGJlPMzsi7vEiK+8aP21Prrbf0dKBJwIeo0xXzsJj\nSyitKL1BK0IIIYSoiRQz9WBwDx/cnazZHHuBUxdyq+0Pcg2kd4vupBVlsOLUmgaIUAghhGi8pJip\nB+ZmasYPagfAwvVJlJZVVDtmiO8gWtg0Z9el/cSlH67vEIUQQohGS4qZeuLXwoH+nVuQfqWI1bvO\nVttvpjZjfOAozNXmLE1aSVZx9QHDQgghhKhOipl6NLSXLy72lmzcd46zl6uvzeSudWNE20e4VnGN\nrxOWUqGr3oMjhBBCiKqkmKlHFuZqxkW2Q6+HhesTKa+ovjbTvR5hdHEPIeXqOX45E9MAUQohhBCN\nixQz9SzA24k+nZpzMbOQtbtTqu1XFIUo/yG4Wjnz27mtJGafrP8ghRBCiEZEipkG8FjfNjjaWrBu\nTyrnMwqq7bfUWDI+8HHUippFx38gryS/AaIUQgghGgcpZhqAlYWGMRHtqNDpWbgukQpd9dtNXnYt\neMQ3kvyyAr49/gM6ffVjhBBCCCHFTIMJ8nWmewcPUtPz2bjv3A2P6duyJ4HO7UjKOcXmc9vrOUIh\nhBCicZBipgGN6O+Hvdac1TtTuJRVWG2/oihEBwzH3tyWNWc2cjbvxkWPEEIIcTczajEza9YsRowY\nQVRUFPHx8VX29evXj1GjRhEdHU10dDTp6ekUFhbywgsvEB0dTVRUFDt27DBmeA3OxsqM6HB/yit0\nfL0hEZ2u+srZtuY2jA0ciV6v5+uEJRSVFTdApEIIIYTp0hir4f3795OamsqyZctITk5m+vTpLFu2\nrMoxCxYsQKvVVr7+7rvv8PHxYerUqaSnpzNmzBg2btxorBBNQmhbV+4JcGN/Ygab4i5wf5eW1Y5p\n69iGcO9+bEzZzPcnfmJ84OMoitIA0QohhBCmx2g9M3v27GHAgAEA+Pr6kpeXR0FB9Sd3/szR0ZHc\n3OtrF129ehVHR0djhWdSRg1si42VGSu3JZORU3TDYwZ5D6C1vTcHM+LZfXl/PUcohBBCmC6jFTNZ\nWVlVihEnJycyMzOrHDNjxgxGjhzJ7Nmz0ev1PPDAA1y6dImBAwfyxBNP8I9//MNY4ZkUO2tzHh/Y\nltJyHd9sSEKnr367Sa1SMy5wJFYaK348uYbLhekNEKkQQghheox2m+mv9H/5D3rSpEn07NkTe3t7\nJk6cSExMDCUlJTRv3pyvvvqKpKQkpk+fzsqVK2/arqOjNRqN2mhxu7raGq3tP3uglw2Hk7PZl5DG\nwdPZRN7nUz0WbJmojGb2rs9ZlPQ9bw34B+Ya83qJzxTVV27E7ZG8mC7JjWmSvNSd0YoZNzc3srKy\nKl9nZGTg6upa+fqRRx6p/HuvXr04efIk2dnZ9OjRA4B27dqRkZFBRUUFanXNxUpODbdlDMHV1ZbM\nzPqbsG54H1+Ons7iq18S8HGzwdnestoxPha+9PLsxvaLe/h87w9E+Q+pt/hMSX3nRtSO5MV0SW5M\nk+Sl9m5W9BntNlP37t2Jibm+tlBCQgJubm7Y2NgAkJ+fz4QJEygtLQXgwIED+Pn50apVK44cOQLA\nxYsX0Wq1Ny1kmhpHWwui+vtRUlrBoo1J1Xqz/jCkzYM013qw4+IeDmUcrecohRBCCNNitJ6Z0NBQ\nAgMDiYqKQlEUZsyYwcqVK7G1tWXgwIH06tWLESNGYGFhQfv27YmIiKCoqIjp06fzxBNPUF5ezsyZ\nM40Vnsnq3tGD/YnpHDt7hV1H0+gR1KzaMeZqMyZ0eJx3DnzEkqQVeNm2wNnq7hgsLYQQQvyVoq/p\n1/9Gwpjdcw3V/Zedd43XvtqHWlH495P34mhrccPjdl/az5KkFbS2b8VLIc+iVt09vVjSNWuaJC+m\nS3JjmiQvtdcgt5nEnXO2t2R43zYUlZSzOOZEjbebujXrQphbMGfyUll/9rd6jlIIIYQwDVLMmKje\nnZrTzsuBw6ez2J+YccNjFEVhZLtHcbZ0Iib1d05cOV3PUQohhBANT4oZE6VSFMZGtsNco2LJbye5\nWlR6w+OsNFaM7zAKRVH45vj35JfefGJCIYQQoqmRYsaEuTla82hvXwqKy1j628kaj/O28+Lh1hFc\nLc3n28Rl6PS6eoxSCCGEaFhSzJi4AWEt8PW0Y39iBnEnMms8rr9XLwKc2nI8+wS/n99ZjxEKIYQQ\nDUuKGROnUimMHxSARq3iu19PUFBcduPjFBWj24/A1tyG1ckbSL16vp4jFUIIIRqGFDONQDNnLYN7\neJNXWMqyzadqPM7O3Jax7Uei0+tYmLCU4vJr9RilEEII0TCkmGkkIu71opWHLbuOpRGfnF3jce2c\n/BjYqg9Zxdn8cGJljY91CyGEEE2FFDONhFqlYvygANQqhUUbkyguKa/x2Ad97sfHzovY9MPsTYur\nxyiFEEKI+ifFTCPS0s2GB7q1Iie/hB9/r3lOGbVKzdjAUVhpLFl+4mfSCm88T40QQgjRFEgx08g8\neJ83nq5ath6+RGLKlRqPc7FyYlS7YZTqyliYsISyihsPHBZCCCEaOylmGhmN+vrtJkWBrzckUVJa\nUeOxoW5BdG9+LxcLLrPy9Lp6jFIIIYSoP1LMNEI+zeyIuNeLrLxr/LQ9+abHDvN7iGZad7Zf3M2S\nxBXSQyOEEKLJkWKmkXqkhw8eTtZsjr3AqQu5NR5nrjbnuaDxtLT1ZPfl/bx/8BOyimu+PSWEEEI0\nNlLMNFJmGjXjBwUAsHB9EqVlNd9ucrZyZGro89zXrAvn8y/yzoG5JGQn1VeoQgghhFFJMdOItWlh\nz4DOLUm/UsTqnWdveqyZ2ozHAx7j8f8OCv70yNesPfOrrOMkhBCi0ZNippF7tFdrXB0s2bj/HGcv\nX73l8fc1v4epYc/jZOnAhpRNfHJkIQWlhfUQqRBCCGEcUsw0chbmasZGBqDXw8J1iZSV37qnxcu2\nBf/oMplA53YkXjnJ2wfmylpOQgghGi0pZpqAgFaO9Anx5GJWIev2pNTqHK2ZNc8GjeVBn/vJLclj\nTtwn7Li4V5Y/EEII0ehIMdNEPNbHFyc7C9btSeVcen6tzlEpKiJ9BjAxeAIWGgt+OLGSxYnLKa0o\nNXK0QgghhOFIMdNEWFloGBPRjgqdnoXrEymvqP3A3gDntvyj82Ra2bZkX1ocs+Pmk1GUZcRohRBC\nCMORYqYJ6djame4dPTiXXkDM/nO3da6zlSMvhz1HD8+uXCy4zLuxHxGfmWCkSIUQQgjDkWKmiYnq\n74e91pzVO89yKev2nlIyU2kY6f8oowNGUK4r5/Oji1idvIEKXc1z2AghhBANTYqZJkZracbocH/K\nK/R8vT4Rne72B/Te2yyMV8JewMXKmV9Tf+fjI1+RX1pghGiFEEKIupNipgkKaevKPQFuJF+6yqbY\nO3vkuoVtc/7ReRIdXdpzMuc0bx+Yy9m8VANHKoQQQtSdFDNN1KiBbbGxMmPl9jOk5xTdURvWZlY8\n3XE0g30jySu5ygcHP2PrhV3y+LYQQgiTIsVME2Vnbc4T97eltFzHN+uT0N1hAaJSVNzfqi8vdnoK\nK40lP55czTfHv6dEHt8WQghhIqSYacK6tHMjxM+FE+dz2XboYp3a8ndqw7R7XsLHrhWx6Yd5L3Ye\n6UWZBopUCCGEuHNSzDRhiqK96FzQAAAgAElEQVQQHe6PtYWG5b8nk5hypU7tOVjY81LoM/Ru0Z3L\nhem8e+AjDmccNVC0QgghxJ2RYqaJc7CxYPwDAZRX6Jiz/Ai7jl6uU3salYbhbQczrv1IdHodC44t\nZuXptfL4thBCiAYjxcxdILStK69EdcLCTM1X6xJZs/NsnQfxdvYI4W+dX8TN2oXN57bz0eEvyCup\n3TIKQgghhCFJMXOX8PdyZHp0GC72lqzaeZaF625vyYMbaW7jwd87T6KTa0dO557lnQMfcjr3rIEi\nFkIIIWpHipm7SHMXLf83ujM+zWzZdSyND5YfoehaWZ3atNJY8mSHJxjS5gHyywqZe+hztpzbLo9v\nCyGEqDdSzNxl7LXm/H1UKCF+LiSm5vDWdwfJyiuuU5uKojDAqzeTOj2NjZmWn06v5auEJVwrv2ag\nqIUQQoiaKXoj/go9a9Ysjhw5gqIoTJ8+naCgoMp9/fr1w8PDA7VaDcDs2bPZvn07a9asqTzm2LFj\nHDp06KbXyMw03jgNV1dbo7bfkHQ6PT9sOcWm2AvYa82Z/FgQ3h52dW43r+QqXx37juS8FNyt3Xiq\nYzTNtO4GiLiqppybxkzyYrokN6ZJ8lJ7rq62Ne7TGOui+/fvJzU1lWXLlpGcnMz06dNZtmxZlWMW\nLFiAVqutfP3YY4/x2GOPVZ6/YcMGY4V311OpFEYNaIurvRU/bD7F20sO8uzgDnRq41Kndu0t7Jgc\n8gyrktez5fwO3o2dxxPthhHm3slAkQshhBBVGe020549exgwYAAAvr6+5OXlUVBQ+8UK58+fz/PP\nP2+s8MR/DezSkomPdgQ9zPspni0HL9S5TbVKzVC/h5jQ4QkUYGHCUlacXEO5rrzuAQshhBB/YbRi\nJisrC0dHx8rXTk5OZGZWnTF2xowZjBw5ktmzZ1cZMBofH0+zZs1wdXU1VnjiT0LbuvL3UaHYWpnx\n3a8nWb7l9B0vf1ClXbcg/t55Eh7Wbvx+YSdzD31ObkmeASIWQggh/sdot5n+6q9DcyZNmkTPnj2x\nt7dn4sSJxMTEEBERAcCKFSsYMmRIrdp1dLRGo1EbPN4/3OweXVPi6mrL+y0cmLlgLxv3n+PqtTKm\njArDwqxun62rqy3vek7jswPfsft8HO/GfsTkbhPo4O5vkJiF6ZG8mC7JjWmSvNSd0QYAz5s3D1dX\nV6KiogDo378/q1evxsbGptqxS5YsITs7m0mTJgEQHh7OL7/8grm5+S2vIwOADauguIz5K49y4nwu\nvp52vDg0CDvrW+fhVvR6Pdsu7Oan07+g1+sZ7BvJAK/eKIpyR+3djblpDCQvpktyY5okL7V3s6LP\naLeZunfvTkxMDAAJCQm4ublVFjL5+flMmDCB0tLrKy8fOHAAPz8/ANLT09FqtbUqZITh2ViZMWVE\nJ7oGupN88Sqzvo0j7UpRndtVFIU+Lbvzcuiz2Jnbsip5PQuOfktxed0eCxdCCCGMdpspNDSUwMBA\noqKiUBSFGTNmsHLlSmxtbRk4cCC9evVixIgRWFhY0L59+8pbTJmZmTg5ORkrLFELZhoVTz3YHhd7\nK9buTuHNb2N5cWgQbVs61Lnt1vbeTLvnJRYeW8KRrAQuH5jHkx2j8bRpZoDIhRBC3I2MOs9MfZDb\nTMa148glvo05gaIoPPlgAPcEGGbOmApdBb+cieG3c1sxU5kxqt1Q7vEIrfX5khvTJHkxXZIb0yR5\nqb0Guc0kmoaewc2Z/FgQGrXCZ6sTWL831SBLFahVah5pM4inO45GrahZdPwHlp34mTJ5fFsIIcRt\nkmJG3FIHH2emPxGGo60FK7YmszjmBBW6ui1S+Ydg1w78o8uLNNd6sP3iHj48+Bk513IN0rYQQoi7\ngxQzolZauNnw2ujOeLnZsPXwJeauiKe4xDC9KG7Wrvyt8wvc4xFKytVzvH1gLklXThmkbSGEEE2f\nFDOi1hxtLfjH46F0bO3MsTNXeGfJQXLySwzStrnanNEBIxjRdgjF5df4+PCXbEzZjE5vmB4gIYQQ\nTZcUM+K2WFlomDSsI306NedcRgH/+TaW8xm1X6biZhRFoVeLbkwJew4HC3t+ORPD5/GLKCqr+6Ph\nQgghmi4pZsRtU6tURIf781gfX3LyS3jruziOnc02WPvedl682mUy7Rz9OJadyNsHPuJ8/kWDtS+E\nEKJpkWJG3BFFUYjs2opnBwdSXqHnw+XxbD9yyWDt25hrmdhpAhHe/cm+doX34+az59IBg7UvhBCi\n6ZBiRtTJPQHuvBLVCSsLNd9sSGLl9mSDPLoNoFJUPNQ6nOeCxqFRmfFd0o8sTVpBWUWZQdoXQgjR\nNEgxI+qsbUsHXhvdGTcHK9buTmXBL8cpKzfcwN0OLgG82mUSLWyas+vSfuYc/ISsoisGa18IIUTj\nJsWMMAh3J2umjw7D19OOvcfTeX/ZYQqKDdeD4mLlzNSwiXRr1oVz+Rd5bdN7XCy4bLD2hRBCNF5S\nzAiDsbM2529RIXT2d+Xk+VxmLY4jI9dwC0maq814IuAxhrR5gCvFucyJ+5STOckGa18IIUTjJMWM\nMChzMzXPPtKBiHu9SLtSxKxvYzlz6apBrzHAqzeTuo6nTFfG/MNfEpd+xKDtCyGEaFykmBEGp1IU\nhvdtwxP3tyW/uIx3lx4k7kSmQa/Ro1UXJgZPQKPS8HXCUn4/v9Og7QshhGg8pJgRRtMvtAWThgah\nKAqf/HyUXw+cN2j7/k5teDn0OezMbVhxag0rT6+VGYOFEOIuJMWMMKrgNi784/EQ7LTm/LD5FEt/\nO4lOZ5hHtwFa2DZnathE3K1d2XxuO4uO/0C5rLwthBB3FSlmhNF5e9jx2ujOeLpo2RR3gfk/H6Wk\ntMJg7TtbOTEl7Hla27ciNv0wnxxZSHH5NYO1L4QQwrRJMSPqhbO9JdOeCCOglSOHTmXx7vcHySss\nNVj7NmZaXuz0NEEugZzIOc0HBz8lr8SwA4+FEEKYJilmRL2xttTw8vBgunf04OzlfN78NpZLWYUG\na99cbcZTHaPp4dmViwWXmR03n7TCDIO1L4QQwjRJMSPqlUatYvygAB7p6UNW3jVmLY4jKTXHYO2r\nFBVRbYfwoE84V67lMCfuE87kpRisfSGEEKZHihlR7xRF4eHuPjz5YAAlZRW8v+wwe46lGbT9SJ/+\nPNHuMYorrvHRoS+Iz0wwWPtCCCFMixQzosHc16EZU0Z0wtxMzYK1x1mz66zBFqkE6Na8C88GjUVB\n4Yuj37Lj4l6DtS2EEMJ0SDEjGlRAK0emR4fhbGfJqh1n+Xp9EuUVhpsrJtC5HS+FPovWzJofTqxk\n7ZkYgxZMQgghGp4UM6LBebpoeW10GN4etuw8epkPfzxC0TXDzRXTyq4lU8Mm4mLpxIaUzSxJWkGF\nznCPhgshhGhYUswIk2BvY8E/RoXSqY0Lx1NyeGtJHNl5hpsrxs3ahamdJ+Jl24I9lw/w+dFFlFQY\n7tFwIYQQDUeKGWEyLMzVvPBoR/qHteBiZiH/WRxLalq+wdq3M7dlcsgztHfyJyE7ibkHPye/tMBg\n7QshhGgYUswIk6JSKYwa4EdUfz+uFpTy9pKDxCdnGax9S40FzwaN5V6PMFLzz/N+3Hwyi7IN1r4Q\nQoj6J8WMMDmKonB/l5Y8P6QDOr2euSvi+f3QRYO1r1apiQ4YTnirfmQWZ/N+3HxSrxp2EUwhhBD1\nR4oZYbLC/N34+6gQbKzMWBxzguW/n0ZnoCeRFEXhYd8IRrR9hIKyQj489DnHs08YpG0hhBD1q9bF\nTEHB9bEFWVlZxMbGotMZ7vFZIWri29ye/4sOw93Jmo37zvHZ6gTKyg33JFKvFvfxZMdo9Hodn8Z/\nzb7LcQZrWwghRP1Qz5w5c+atDvr3v/9Nbm4unp6eDB8+nMuXL7N371769u1bDyHeXFGR8Z5I0Wot\njNq+qB2tlRld27uTfDGPo2eukJSay31BzakoM0xR46F1w8/Bl8OZR4nNOIxGUeNr742iKAZp/24i\n3xnTJbkxTZKX2tNqLWrcV6uemePHj/PYY4+xYcMGhgwZwty5c0lNTTVYgELcio2VGVOjQri3vTun\nL+bx+ue7KbpWZrD2fR28mRL2PI4WDqw5s5HlJ1eh00vvoxBCNAa1Kmb+mDF169at9OvXD4DSUqkk\nRf0y06h46qH29ApuzpmLecxZfoTiEsNNrtdM684rnSfiadOM7Rf38NWx7yitMFzBJIQQwjhqVcz4\n+PgwaNAgCgsLCQgIYNWqVdjb2xs7NiGqUSkKoyP86RvWgjOXrjL3xyOUlBpuDI2DhT0vhz5LWwdf\nDmce4+PDCygsKzJY+0IIIQxP0ddioZqKigpOnjyJr68v5ubmJCQk0LJlS+zs7OojxpvKzDTcpGp/\n5epqa9T2xZ1zctLy5sJ9HEjKIKCVI5OHBWFupjZY+2W6chYfX0ZcxhE8rN2Y2GkCTpaOBmu/qZLv\njOmS3JgmyUvtubra1rivVj0ziYmJpKWlYW5uzgcffMC7777LyZMnb3nerFmzGDFiBFFRUcTHx1fZ\n169fP0aNGkV0dDTR0dGkp6cDsGbNGh5++GEeffRRtm7dWpvwxF1Irb5+yynEz4XE1Bw+WXWMsnLD\njXExU2kYGziSfi17klaUwezY+VwsuGyw9oUQQhhOrYqZ//znP/j4+BAbG8vRo0d5/fXX+eijj256\nzv79+0lNTWXZsmW8+eabvPnmm9WOWbBgAYsXL2bx4sW4u7uTk5PD/PnzWbp0KZ999hmbN2++s3cl\n7goatYpnB3egQ2sn4pOz+Wz1MYOuuK1SVAz1e4hH2zxIXulV5sR9ysmcZIO1L4QQwjBqVcxYWFjg\n7e3N5s2bGT58OG3atEGluvmpe/bsYcCAAQD4+vqSl5dXOVfNzc7p1q0bNjY2uLm58e9//7uWb0Pc\nrcw0Kl4Y0pGAVo4cOpXFl2uPo9MZZmK9P/T36sW4wFGU6cqYf/hL4tIPG7R9IYQQdVOrYqa4uJgN\nGzawadMmevToQW5uLlevXr3pOVlZWTg6/m+MgZOTE5mZmVWOmTFjBiNHjmT27Nno9XouXLjAtWvX\nePbZZxk1ahR79uy5g7ck7jbmZmomDQ3Cr4U9+xMzWLg+0WAzBf+hs3snJgZPQKPSsDBhKVvO7zBo\n+0IIIe6cpjYHTZkyhW+//ZYpU6ZgY2PDvHnzGDt27G1d6K/jjCdNmkTPnj2xt7dn4sSJxMTEAJCb\nm8vHH3/MpUuXGD16NL///vtNJy9zdLRGozHcwM+/utmAI9Gw/pqb/zzXndc/383uY2nY2lgwcViw\nQSe+c3UNoYWbK29t/5ifTv1CiaqYJ4KHoFJkVZA/k++M6ZLcmCbJS93Vqpjp2rUrQUFBnD17luPH\nj/Pkk09iZWV103Pc3NzIyvrfascZGRm4urpWvn7kkUcq/96rVy9OnjyJp6cnISEhaDQavLy80Gq1\nXLlyBWdn5xqvk5NjvMdmZZS56aopNy8+2pH3lh4iZm8qFWUVjBzgZ9CCRos9L4c8z/wjX7H2xCbS\ncrOIDhiORlWrr1KTJ98Z0yW5MU2Sl9qr89NMmzZt4v7772fGjBm89tprhIeHs23btpue071798re\nloSEBNzc3LCxsQEgPz+fCRMmVE68d+DAAfz8/OjRowd79+5Fp9ORk5NDUVFRlVtVQtyK1tKMqVGd\n8HTRsinuAiu2JlfrFawrZytHpoQ9R2v7VsSmH+aTIwspLr9m0GsIIYSovVr9Ovnll1+yZs0anJyc\nAEhPT2fy5Mn07t27xnNCQ0MJDAwkKioKRVGYMWMGK1euxNbWloEDB9KrVy9GjBiBhYUF7du3JyIi\nAkVRCA8PZ/jw4QC89tprtxxoLMRf2Vqb88rIEN5ecpAN+85hplHxSM/WBr2GjZmWFzs9zdcJS4nP\nSuCDg5/yfPB4HCxkMkkhhKhvtZo0Lzo6msWLF99yW0OQSfPuTrXJTU5+CW8viSMz9xpDe7fmgW7e\nBo9Dp9ex7OQqdl7ci5OlIxODJ+ChdTP4dRoL+c6YLsmNaZK81F6dbzNptVoWLlxIUlISSUlJfPnl\nl2i1WoMFKIQxONpa8LeRITjbWfDTtjP8euC8wa+hUlREtR3CQ63DuXIthzlxn3AmL8Xg1xFCCFEz\n9cyZM2fe6qBu3boRExPDkiVL2Lx5M1qtlunTp99yEHB9MObS6bI0u+mqbW6sLc0IbuNC7IkM4k5k\nYmdthk8zwy7DoSgKbRxa42ThwKHMoxxIO0gzrcdd2UMj3xnTJbkxTZKX2tNqLWrcV6vbTDeSnJyM\nr6/vHQdlKHKb6e50u7m5nF3IO0sOcrWojHGD2tEzqLlR4krITuLLo4sp05Uzwn8IPT27GuU6pkq+\nM6ZLcmOaJC+1V+fbTDfyxhtv3OmpQtS7Zs5aXokKQWup4Zv1SexNSDPKdQKd2/FS6LNozaz54cRK\nfjkTY/CnqYQQQlR1x8WM/AMtGpsWbjZMjeqEpYWGL9cmEpuUYZTrtLJrydSwibhYObMxZTNLklZQ\noaswyrWEEELUoZgx5ERkQtQXbw87pgwPxsxMxedrEjh8OuvWJ90BN2sXXgmbiJdtC/ZcPsDnRxdR\nUiH3xYUQwhhuOs/MihUratz313WWhGgsfD3teWlYEB8sP8InPx9l0rAgOvjUPMv0nbI1t2FyyDN8\ndew7ErKTmHvwc54LHoetuY3BryWEEHezmxYzcXFxNe7r1KmTwYMRor74ezny4rAg5v4Yz8c/HeXl\n4cH4exl+tmlLjQXPBo1ladJP7E2L5f24+UwMfhJXa8MXT0IIcbe646eZTIU8zXR3MlRu4pOzmPfT\nUTRqFVNHdKJNC+PM4KvX61l7JoaNqVuwMdPyfPB4Wtm1NMq1GpJ8Z0yX5MY0SV5q72ZPM9WqmBk1\nalS1MTJqtRofHx+ef/553N3d6x7lHZJi5u5kyNzEncjk01XHsDBX8UpUiMHnofmz7Rf2sPzkKszU\nZjzZIZpAZ3+jXashyHfGdEluTJPkpfbq/Gj2fffdh4eHB2PGjGHcuHG0bNmSsLAwfHx8mDZtmsEC\nFaIhhPm78vTD7blWWsGcZYc5l268f1h6tejGkx2j0et1fBb/NXsvxxrtWkIIcbeoVTETFxfH+++/\nz/3338+AAQN4++23SUhIYOzYsZSVlRk7RiGM7p4Ad8YPCqDwWjnvLzvMxaxCo12rk2sHXuz0NJZq\nCxYnLuenU7+QX1pgtOsJIURTV6tiJjs7mytXrlS+zs/P59KlS1y9epX8fOkeE01D947NGB3hT35R\nGbO/P0T6lSKjXcvXwZupYc/jbOnIlvM7+Oeet/n59Dqulsr3SQghbletxsysWLGC9957D09PTxRF\n4cKFCzzzzDM4OztTVFTEyJEj6yPWG5IxM3cnY+bmt9jzfL/pFI62Frz6eCiuDsZbg6y0oozdl/fz\nW+pWckvyMFOZ0dOzKwO8emNvYbyxO8Yi3xnTJbkxTZKX2qvzAGCAgoICUlJS0Ol0eHl54eDgYLAA\n60KKmbuTsXOzYW8qP25NxsXeklcfD8XJztJo1wIo05Wz9/IBYlJ+J6ckF41KQ/fm9zLQqzeOlqbx\nXasN+c6YLsmNaZK81N7NiplarZpdWFjIokWLWLt2LbGxsWRnZ9OhQwc0mptOU1MvZNXsu5Oxc+PX\n4noBcehUFkdOZ9G5nRuW5sb7eVcrKlrZtaRXi244WTpwIf8SiVdOsv3CbvJK82lu44GVpuFXqb8V\n+c6YLsmNaZK81F6dV82eMmUK7u7u3Hvvvej1enbv3k1OTg6zZ882aKB3Qnpm7k71kRu9Xs9P286w\nfm8qzV20/H1UCHbW5ka95h8qdBXsTzvIxtQtZBVno1bUdG0Wxv2t+uFi5VQvMdwJ+c6YLsmNaZK8\n1N7NemZq9atmVlYWc+bMqXzdt29foqOj6x6ZECZMURSG9m5NWbmO32LP8/4Ph/nbyBBsrMyMfm21\nSk235l24xyOU2PTDbEzdzK5L+9lzOZZ73EMJ9+6Lm7Wr0eMQQojGoFbFTHFxMcXFxVhZXe/mLioq\noqSkxKiBCWEKFEUhqn8byip0bD10kQ+WH2bqiBCsLevnFqtapebeZmF08QjhYPoRNqRsZm9aLPvS\n4ujiEUJEq364a93qJRYhhDBVtfoXecSIEURGRtKhQwcAEhISmDx5slEDE8JUKIrCE/e3pay8gl1H\n0/jwxyNMGRFs1DE0f6VSVHT2CCHUPZjDmcfYcHYT+9MOciDtEGHuwYS36kdzG496i0cIIUxJrZ9m\nunz5MgkJCSiKQocOHVi8eDGvvPKKseO7JRkzc3dqiNzodHoWrD3OvuPptPNyYPJjwViYqes1hspY\n9Dris46z4ewmLhRcQkGhk1tHIr3742nTrEFiAvnOmDLJjWmSvNRencfMADRr1oxmzf73j2R8fHzd\nohKikVGpFCY8EEB5uY64k5l8vPIok4Z2xExT/wWNSlHRybUDwS6BHMtOZP3ZTRzKiOdQRjzBrh2I\n9O5PS1vPeo9LCCEaQq1mAL6RRr7YthB3RKNW8czgQIJ8nUk4e4VPVyVQXqFrsHgURaGjS3v+3vlF\nng8ej7edF0cyj/H2gbl8Fv81qVfPN1hsQghRX+74pv9fV9EW4m6hUauYOKQDH62I5/DpLL5Yk8Az\ngwNRq+74d4M6UxSFQOd2tHfyJynnFOvPbuJoViJHsxJp7+xPpPcAWtu3arD4hBDCmG5azPTu3fuG\nRYterycnJ8doQQlh6sw0al4YGsQHy48QeyITzdpEnnywPSpVwxb5iqIQ4NSWdo5+nMpNZv3ZTRzP\nPsHx7BO0c/Qj0mcAbRx8GjRGIYQwtJsWM0uXLq2vOIRodCzM1EweFsSc5YfZezwdjUbF2Mh2qEyg\n11JRFNo6tqGtYxtO5ZxhY8pmknJOkZRzirYOvkT6DMDPobX0sAohmoSbFjOenjKAUIibsbLQ8PJj\nwbz3w2F2xl/GTKPiiYFtTapI8HNsjZ9ja87kpbDh7GaOXznByUPJ+Nr7MMhnAP6ObUwqXiGEuF21\nWpvJlMnaTHcnU8qNmUZNZ383jp65QnxyNtdKKwj0cTK5AsHR0oF7PEIJdPbnakk+J3JOsT/tIIlX\nTmFvYY+rlXOdYzalvIiqJDemSfJSezdbm0mKmZuQHzLTZWq5MTdTE+bvypHkLI6czkan1xPQyjTX\nUHKwsKeLRwgdnQMoKC0gKecUB9IPkZB9AjsLW9ysXO64qDG1vIj/kdyYJslL7Ukxc4fkh8x0mWJu\nLMzVhLZ15fDpLA6dykKlgL+XY0OHVSN7CzvC3DsR7BJIYVkhSTmniE0/zNGs49ia2+BmfftFjSnm\nRVwnuTFNkpfak2LmDskPmeky1dxYWWgI8XPl4MlMDp7KwsJMTZsW9g0d1k3ZWdgS6h5MiGtHisqK\nOJGTTFzGEeKzEtCaaXG3dq11UWOqeRGSG1Mleak9KWbukPyQmS5Tzo21pYZOfi7Encgk7kQmNlZm\ntG5u19Bh3ZKtuQ0hbkGEugVRXF7CiZzTHMyI53DmUazNrPHQut2yqDHlvNztJDemSfJSe1LM3CH5\nITNdpp4braUZwW1cOJCUQWxSBg425nh7mH5BA2BjbkMntw50du/EtfISTuYmcygjnoMZR7DSWOFh\n7YZKufEEgaael7uZ5MY0SV5qT4qZOyQ/ZKarMeTGxsqMjq2dKgsaVwdLWrrVvFCaqdGaaQl27UAX\n9xBKK0o5mZvM4cyjxKYfxkJjSXOte7WipjHk5W7VVHKTW5JHbkkeNuY2DR2KQTSVvNSHmxUztV41\n+07MmjWLI0eOoCgK06dPJygoqHJfv3798PDwQK2+vkjf7NmzSUlJYfLkyfj5+QHQtm1bXn/99Zte\nQ1bNvjs1ptycS8/n3aWHKC4t55mHA7knwL2hQ7oj2cVX+DX1d/ZcjqVCX4GzpRPh3n251yMMjer6\nlFWNKS93m8aem6zibH5N/Z29l+Oo0FfQ0SWAIb4P4K51a+jQ6qSx56U+GWTV7Nu1f/9+UlNTWbZs\nGcnJyUyfPp1ly5ZVOWbBggVotdrK1ykpKdxzzz189NFHxgpLiHrn5W7L1KhOvPf9Ib5YcxwztYqQ\ntq4NHdZtc7ZyYmS7oUR49+fX1K3svrSPpUk/seHsZsK9+9K1WZeGDlE0QWmF6cSk/k5s+mF0eh1u\n1i7YmNlwNCuRhOwT9PTsyiDvgdiYa2/dmGiyjFbM7NmzhwEDBgDg6+tLXl4eBQUF2Ng0ja5BIW6H\nTzM7Xh4ezJxlR/hk1TFeHBpEkK9zQ4d1RxwtHRjh/wjh3n3ZlLqNnZf28sOJn9mYsoWHAwbS1rot\njpYODR2maOQu5F9iY+oWDmccRY+e5loPIrz7EeIWhIJCfFYCP59ex7YLu9mfdpAI7/70btEdM5XR\n/lsTJsxoWc/KyiIwMLDytZOTE5mZmVWKmRkzZnDx4kXCwsKYOnUqAKdPn+bZZ58lLy+PF154ge7d\nuxsrRCHqlV8LByYNC+LDH48w/+ejTB4WRHtv05xYrzYcLOwZ1vZhBrbqy+Zz29hxcQ/fHl4BgJet\nJ0EugQS5BtJc62FysyEL05Vy9RwbUzZzNCsRuP6zFOHdn44u7auM0Qp27UCgczu2X9zDhrOb+Pn0\nOnZc2MPgNoMIce0oP3N3GaONmXn99dfp3bt3Ze/MyJEjmTVrFj4+11fsXbVqFT179sTe3p6JEycy\nZMgQQkJCiIuLIzIykvPnzzN69Gh+/fVXzM3Na7xOeXkFGo3aGG9BCKOIS0rnPwv3o1YrvPFUNwJb\nN84emr+6ei2f3efjiL0YT0LGCSr0OgDctM509gymi2cw7Vx8Uavk+yqqO55xipXHNxCffr2I8Xdu\nzdDAQQR7tL9lYVJQUsiK4+uJObWVCr0OfxdfxnQaRhtn73qIXJgCoxUz8+bNw9XVlaioKAD69+/P\n6tWrb3ibacmSJWRnZzsuSicAACAASURBVDNp0qQq24cNG8YHH3xAy5Yta7yODAC+OzX23Bw6lckn\nPx/DTKPi5eHB+LVoGrdl/shLUVkxx7OTiM86TkJ2EtcqSgDQaqzp4BJAkEt7Apz9sVDX/IuKMCxT\n/M7o9XqSck6x4exmkvPOAuDv2IYI7/53tKp7RlEmq5I3cCTzGACd3Tsx2DcSJ0vTnYnbFPNiqhpk\nAHD37t2ZN28eUVFRJCQk4ObmVlnI5Ofn89JLL/Hpp59ibm7OgQMHCA8PZ82aNWRmZjJhwgQyMzPJ\nzs7G3b1xPvkhxM2E+Lny9MOBfLb6GG8vOcjAzi0Z3MMHK4umcb/f2syKzh4hdPYIoUxXzqmcZOKz\njhOfmcC+tDj2pcVhptLg7+hHkGt7Orq0x8688Ty2LupGr9dzLDuRDSmbSf3/9u48Our63v/4c5bs\n62RPCNkTILuETSCRHUTcsBaKYu+51p4e7fG0V3uuPyzFa6u/a3/23J5re2yvrfci6jVVEXFjU/Yd\nkQQSyL5A9sm+TSYz8/39EYyCgGHIZL6TvB/n9JQlYT7x9flM3vl8Pt/Pp+siAOnBU1ket5iEgFi7\n/90w71B+mvEIZe0VvF/+MaeaznCm5RyLJueyLHYhXnrP0foShMo49NHsl19+mVOnTqHRaNi0aRPF\nxcX4+fmxdOlSNm/ezLZt2/Dw8CA1NZWNGzfS29vL008/TVdXF4ODg/z85z/njjvuuOFryMzMxDRe\nsimubuONHSU0d/Rj8PNg3ZJkpqeM/PoAtfm+XGyKjYvddRS2FFFoLKa+txEADRriA2KG9tmEpLr8\n47ZqpIYxY1NsnGk5x47qz6nraQAgOzSDFXGLmOw3adRf62TjV2yv3EHHQCd+br7clbCMuZEzVbXU\nqYZcXMWNZmYcWsyMBSlmJqbxlI150Mqnx2r49FgNFqtCZmIwDy1NITTQy9lNu2k3m0tLXyuFxiIK\njUVUdFSjMPR2FO4dRmZIKpmhacT5T77uicNi5Jw5Zqw2K6eazrCzZi9Nfc1o0DAjPJtlsQuJ8o1w\n6GubrWY+rz3Irtq9mK1mIn3CWZ20itTgKQ593ZEaT+9ljibFjJ2kk6nXeMymobWXN3eVcr6mHXe9\nlrvnxbF8Vgx6net8I7+VXHrMvZxtPc/ZliKK20oZtA0C4O/uR0bINDJD0phiSMJN5zaaTZ4wnDFm\nBm0WTjR8ya6avRhNbWg1WmZH5LAsdgFh3mN71lLnQBcfV+7kaMMpFBSmBaWwOmmVw4up7zMe38sc\nRYoZO0knU6/xmo2iKBwrbiL/8zK6+gaJCvHhkeVTSJnsGhuERysXs9XMhbYyCo3FnDUW0zPYC4C7\nzp3UoClkhqSSHjINHzfvW36tiWIsx4zZOsiR+hPsrt1Hx0Aneq2euZEzWRKzgGAv527GvdRdzwfl\nn3ChvQwNGuZGzWJVwjKn7dkar+9ljiDFjJ2kk6nXeM+m1zTI+/sr2f9VHQowPyOSBxcm4uet7qd/\nHJGLTbFR2VkztBzVUkRLfysAWo2WpIB4MkOH9tkEe7numT1jYSzGjMkywKH6Y+yp3U+3uQd3rRvz\nJ81hcUwegR4BDn3tm6EoCkWtF9ha/glNfc146NxZHruIhZNzcR/jmb/x/l42mqSYsZN0MvWaKNlU\n1HXyxs4SLjb34OOp54cLk5iXGYlWpRuEHZ2Loig09jUPbyCu7qod/rtJvpGXD+pLZbLvJJfdRO0o\njsymb7Cf/ZeOsPfiQXotfXjqPLgjeh4LJ8/HT8UXQlptVg7XH+eTqt30DPZi8Ajk3sQ7yQnPGrN9\nWhPlvWw0SDFjJ+lk6jWRsrHabOw5dYltB6sYGLSSEh3A+uVTmBSqvm8SY51Lx0AnZ43nKTQWUdpW\njkWxAmDwCCQzNJXMkDSSAxNU9fSKszgimx5zL3svHmTfpSOYrCZ89N4snDyfO6Ln4u1CS4D9ln52\nVu9l78WDWBQrsf6TeSDpbhID4xz+2hPpvexWSTFjJ+lk6jURs2nrMvG/e8r4srQFnVbD8lkx3D0v\nDg839XyjdmYuJouJ4rZSCluKONd6gX5LPwBeei/SgqeQGZJGavCUCXvWyGhm0znQxee1BzhYdxSz\nbRA/N18Wx+SRO2kOni7839fY38b2is/4srkAgNtCM7g3cSWh3o47pXsivpfZS4oZO0knU6+JnM2Z\nciNv7SqltctESIAnDy1NISspxNnNAtSTi9VmpayjcvigvvaBDgD0Gh0phqThg/rUtI/D0UYjmzZT\nO7tr9nOk4QQWm4VAjwCWxNzBvKhZuI+j05wrO2vYWvYRVV216DQ6FkTPY0XcYrzdRv+4BLWMGVcg\nxYydpJOp10TPZsBsZfuRKnaduIjVppCTEsqPliQT5O/cn4rVmIuiKFzqaaCw5RyFxmIu9dQP/12s\n/+Thg/oifcLH9T6bW8mmuc/I7pq9HGv8EptiI9jTwLLYhcyOnDFub6lWFIXTzQV8WPEZraZ2fNy8\nWRm/lNyoOaO6bKnGMaNWUszYSTqZekk2Qy619LBlZwlllzrxcNdx//x4Fs+IRqd1ztk0rpBLa3/b\n0IyNsZjyjkpsly/EDPUKHr7pOyEgdtwd1GdPNg29Teys/oJTTWdQUAj3DmV57CJmhGdPmH1Ig9ZB\n9l06zI7qLzBZTYR7h3Jf4koyQr7/AsyRcIUxoxZSzNhJOpl6STbfsCkKhwsb+MfecnpNFiaH+fLI\niikkRo39Eoqr5dI72EdR6wUKW4oobithwGoGwNfNh7TgqUT6hBPkGUiQpwGDZyD+7n4uW+TcTDYX\nu+vYUf0FBS3nUFCI8olgRdxibgvLcNmv/1Z1m3v4tGo3h+qPY1NspAQmsjp51S1fw+BqY8aZpJix\nk3Qy9ZJsvqu7z8y7eys4dLYBDXDHbZN44I4EfDzH7twMV85l0DpISXv58EF9Xebvfh06jQ6DRwBB\nnobhAmfo14EEeQZi8AhU7QnFI8mmqrOGHdVfcK71PAAxftHcGbeY9JBpE7aIuVpjbxMflH/CudYL\naNAwOzKHuxOW273/ypXHzFiTYsZO0snUS7K5vpLadrbsKqXe2Iu/txtrFiczJ3Vs9oOMl1xsio2G\n3iaM/W20mzpoM7XTNnD5/03tdJt7rvu5fu6+QwWOR+A1Ch4D3novp+zNuV42iqJQ3lHJjuovuNBe\nBkBiQBx3xi1halDyuN5HdCvOt5Wytexj6nsbcde6sSR2AUti7sDjJjdCj5cxMxakmLGTdDL1kmxu\nzGK1sfNELR8drsZssTEt1sDDy1KIDPZx6OtOlFwGrYO0D3TQZhr6X7upfejXlwueDlPH8Jk3V/PQ\nuWP4uri5quAJ9jTg7+7nkP0oV2ejKArn20rZUf05FZ3VAEw1JLMibhHJhsRRf/3xyKbYONpwko8r\nd9Fl7ibA3Z+7E1cwO2L6iGeyJsqYGQ1SzNhJOpl6STYj09LRz1u7SymsaEWv07ByTix33R6Lm94x\nmzcllyE2xUa3uefyTM5QgdM+PLMzVAB9fQ7O1bQaLYEeARg8vi5wAq+Y3TF4Gm76p3/4JhubYuOs\n8Tw7qj+ntvsSAOnB01gRt4j4gNhb+ronKpNlgD21+9hTe4BB2yCTfaNYnbyKFEPS936ujJmRk2LG\nTtLJ1EuyGTlFUThd2sLbe8po7x4gzODF+mVTSIsf/buMJJeR67eYvlnCukbB0znQhcK135593LyH\n9+0Mze4EfjPb42nA183nO8tDwcE+7CoeeiqnvrcRDRqyQ9NZHrfoljexiiHtpg62V+7gRONpADJC\nUrk/cSXhPmHX/RwZMyMnxYydpJOpl2Rz8/oHLHx4qIrdpy6iKDA7NZy1i5II8PUYtdeQXEaP1Wal\nY6DzitmcqwueQdvgNT/XTes2vCE5yNOAv7svhW1F1Hc3oUHDjPDbWB63kEif8DH+qiaGmq6LbC3/\nmPKOKrQaLbmTbmdl/BJ83b67zCtjZuSkmLGTdDL1kmzsV9PYzRs7S6hq6MLLQ8cDdySyIHsSWq2c\nmeFKFEWhZ7D3W7M7X29S/mYPT89g7/DH67Q6ZofnsDR2AWHe6jgxejxTFIVCYxEflH9CS38rXnov\nVsQt4o7oeVccNChjZuSkmLGTdDL1kmxujc2msL+gnvf2VdA/YCE+0o9Hlk8lNuL6bxYjIbmoi9lq\nHipuBjpIm5yArXd8ntarZhabhQN1R/msag99ln5CPIO4L+kuskPT0Wg0MmZughQzdpJOpl6Szejo\n7Bkgf285x4qa0GhgcU409+cm4OVh3zc9yUW9JBvn6h3s47PqPey/dASbYiMxII7VyauYmZgmuYyQ\nFDN2ksGvXpLN6CqubmPLzhKa2vsJ9HVn3ZIUcqaE3vQZI5KLekk26tDc18K2is8oaDkHwPyYmayI\nXorBM9DJLVM/KWbsJINfvSSb0TdosfLpsVo+OVqNxaqQkRDMQ8tSCAsc+U3Bkot6STbqUtZewdby\nj6ntrsNd68byuEUsnpyn2hOk1UCKGTvJ4FcvycZxmtr62LKrhOLqdtz0Wu6eG8eK2THodd9/CJjk\nol6SjfrYFBvne4vZcmYr3eYegj2DeCD5bjJH6RLL8eZGxYzuueeee27smjL6+vrMDvu3fXw8HPrv\nC/tJNo7j6+XG7WkRRAb7cKG2gzPlRk6VNBMd6kNIwI1naSQX9ZJs1Eej0ZA2KZHbArOx2mycby/l\nVNMZqrpqifGbhK+7r7ObqCo+Ptc/RkKKmRuQwa9eko1jaTQaokN9ycuKpN9s5VxlG4fONmLs6Ccp\nOgAPt2ufICy5qJdko04+Ph6YTTamBacwPSyTln4j59tKOVR/nH5LP/EBMbhpZekJblzMyDLTDci0\nrHpJNmOrsr6LN3ZeoLapBx9PPQ8uTGJ+ZiTaq6bCJRf1kmzU6Vp3Zp01FvN+2UcYTW34uflyb+Kd\nzI7MmfA3l8syk53kJxn1kmzGlsHPg9ysSHw93SiuaedUSQvFNe3ER/jj7/PNPUGSi3pJNup0dS4a\njYZwnzDmR83GTedOSXsZX7WcpbithCifSAyeAU5srXPJMpOdZPCrl2Qz9rQaDYmTApibHklbl4lz\nVW0cKKhnwGwlaVIAep1WclExyUadrpeLTqsjKTCe2RE5dJm7Od9WypGGE7T1txPnH4OnfvSuIXEV\nssxkJ5mWVS/JxvkKK4y8uasUY6eJYH8PHlo6haVz4yUXlZIxo04jzaW8o4p/lG6jrqcBT50Hd8Yv\nYUH0PPTaiXOqszyabScZ/Ool2ajDwKCVj49Us+N4LVabwoxp4cxPjyA9PmhU7noSo0fGjDrdTC42\nxcbh+uN8VLGTXksf4d6h/CD5HlKDpzi4leogxYydZPCrl2SjLnXGXt7cWULJxQ5gaI/N3PQI5mdE\nEh7k7eTWCZAxo1b25NI72MfHlbs4WHcUBYXMkDQeSF5FiFewg1qpDlLM2EkGv3pJNuqjKAodJisf\nHajgeHET/QMWAJKjA5ifEcmMqWF23/kkbp2MGXW6lVzqehp4t/RDyjoq0Wv1LJmcx7K4RXjo3L//\nk12QFDN2ksGvXpKNOn2di3nQyunSFg6dbeB8dTsK4OGmY8aUUOZnRpIyOVBOOB1jMmbU6VZzURSF\n082FbC3/mI6BTgI9Arg/6S5ywrLG3RiTYsZOMvjVS7JRp2vlYuzs58jZRg6dbcDYaQIgLNCLeRkR\nzMuIJMjf0xlNnXBkzKjTaOUyYDWzq2Yve2r3Y7FZSAyI58GUe5nsFzUKrVQHKWbsJINfvSQbdbpR\nLjZFobS2g4OFDXxZ0ozZYkMDpMYHMT8jkukpIbjpr32ysLh1MmbUabRzMfa3srXsYwqMRWjQMH/S\nHFYlLMPXzWfUXsNZnFbMvPjiixQUFKDRaNiwYQOZmZnDf7do0SIiIiLQ6YbevF5++WXCw8MBMJlM\nrFq1iscff5zVq1ff8DWkmJmYJBt1Gmku/QMWTl5o5mBhPRV1XQB4e+iZnRbO/IxI4iL8xt0UubPJ\nmFEnR+VyvrWUd8u209TXjLfei7sTljMvajY6rev+wHCjYsZhu/FOnDhBTU0N+fn5VFRUsGHDBvLz\n86/4mNdeew0fn+9Wi6+++ioBARP3lEMhxjsvDz15WVHkZUXR0NrLobMNHDnXyN7Tdew9XcekUB/m\nZ0Rye1rEFScMCyFGZlpwCs8afsn+S4f5pGoP+aXbOFR/nAeT7yHZkOjs5o06hxUzR48eZcmSJQAk\nJibS2dlJT08Pvr43vgW0oqKC8vJyFixY4KimCSFUJDLYhwcXJLE6L+HyhZYNnCkzkv9FOe/tqyAz\nMZj5mZFkJASj103su2mEuBk6rY5FMXnMiLiN7RU7ONZwij9+9VdywrK4P+kuDJ6Bzm7iqHFYMWM0\nGklLSxv+fVBQEC0tLVcUM5s2baKuro6cnByeeuopNBoNL730Ehs3bmTbtm2OapoQQoV0Wi1ZSSFk\nJYXQ3WfmWFETh8428FWZka/KjPj7uDM3LYJ5mZFMCnH99X8hxoq/ux8PT3uQ3Elz+Efph3zZXECh\nsZjlsYtYEpOHm871b+Ues0Mfrt6a8+STT5Kbm0tAQABPPPEEO3fuxGQykZ2dzeTJk0f87xoM3ugd\nuGnwRmt0wrkkG3UajVxCgYTYYNatTKXiUgd7Ttay//QldpyoZceJWlJiAlkyK5a87En4eLn+G/FY\nkTGjTmOVS2hoKtMTpnKg+jhvFW7j46qdnGg+xSPZP2DmJNd+lNthG4BfeeUVQkNDWbt2LQCLFy/m\nww8/vOYy01tvvUVrayuVlZVcvHgRnU5HY2Mj7u7uPP/888ydO/e6ryMbgCcmyUadHJnLoMXGmXIj\nhwobOFfViqKAm15LTsrQ2TVTYw1oXfjN2NFkzKiTs3Lpt5j4rHoPey8ewqbYmGpI5sGUe4jwCR/z\ntoyUUzYAz5s3j1deeYW1a9dSVFREWFjYcCHT3d3NL37xC1599VXc3d05efIky5cv58knnxz+/Fde\neYVJkybdsJARQkwcbnotM6eGMXNqGO3dAxw518ChwgaOFTdxrLiJYH/P4bNrQgO9nN1cIVTNS+/J\n6qRVzI2cxXtl2znfVsoLJ/6DBdHzWBm/BC+9a40hhxUz06dPJy0tjbVr16LRaNi0aRNbt27Fz8+P\npUuXkpeXx5o1a/Dw8CA1NZUVK1Y4qilCiHHG4OfBXbfHsXJOLGWXOjl0toGTF5rZfria7YermRoT\nyPzMSHKmhOHh5rqPogrhaBE+YTyR9SjnWs/zXul2vrh4kJONX3FP4p3MicxBq3GNTfdyaN4NyLSs\nekk26uTMXExmC6cuDF2hUHr5wktPdx2zpoUzPzOSxCh/l94TcKtkzKiTmnIZtA7yxcWD7Kj+HLNt\nkFi/yTyYcg/xAbHObhogJwDbTU2dTFxJslEnteTS3N7HobONHD7bQHv3AACRwd7My4hkbnoEgb4e\nTm7h2FNLNvayKQrna9o5VNjAgNnKfbnxxIS7/oZmNebSbupgW8WnnGo6A8DsiBzuTVxJgIdz/3tL\nMWMnNXYyMUSyUSe15WKzKRTXtHGosIHTpUYsVhtajYb0hKErFLKTQybM2TVqy2ak2rpMHD7bwMHC\nb+72AtBqNCybNZl758Xj4e66S4lqzqW8o4p3Sz/kUk89njoP7oxfwoLoeei1Y/Yg9BWkmLGTmjvZ\nRCfZqJOac+k1DXK8uIlDhQ1UNw610dfLjTmXr1AYDz/l34ias7maxWrjbEUr+wvqOVs59OSau5uW\nWdPCycuKwmS2sGVnCS0dJkICPHlk+RTSE4Kd3Wy7qD0Xm2LjcP0JPqrcQe9gH+HeoTyQfA9pwVPG\nvC1SzNhJ7Z1sIpNs1MlVcrnU3MOhsw0cLWqku28QgJhwX3Izo5idGo7vODy7xhWyaWrr40BhPUfO\nNtLZawYgPtKfvKxIZk0Lx8vjmxmBgUEr2w9XsfP4RWyKwpzUcNYuTna56y9cIReA3sE+Pq7cxcG6\noygoZISk8kDS3YR6j10RKcWMnVylk01Eko06uVouFquNwopWDhU2UFjRik1R0Os0ZCeHMj8jktQ4\nw7hZhlJrNuZBK1+WtHCgoJ6Syxu3fTz13J4WQW5WFJPDbnwFTm1TN5t3lFDV0IWPp54fLkxifmak\ny2z2Vmsu11PX08C7pR9S1lGJXqNjccwdLItdiKfe8fvQpJixk6t1solEslEnV86ls2eAo0VNHCys\np6G1DwAvDx3p8cFkJ4WQkRjs0jM2asumtqmbAwX1HCtqom/AAsC0WAO5WZHkpITidhMnu9tsCl+c\nvsT7ByoZMFuZGhPI+uVTiAxW/7UXastlJBRF4XRzIR+Uf0L7QAcB7v7cn3QXM8KzHVpESjFjJ1fs\nZBOFZKNO4yEXRVGobOji2LkmzpQbae0a2nSq0UDypACykkPISgwhMtjbZX76B3Vk02eycPx8EwcK\n6qm5vG8pwNed+RmR5GZGEmbwvqV/v63LxJu7SjlTbkSv07Bq7tBZRGqeXVNDLvYasJrZXbOX3bX7\nsdgsJAbE8fC0HxLmHeKQ15Nixk6u3MnGO8lGncZbLoqiUNfSS0GFkTPlRirruvj6DTMs0IuspBCy\nk4JJnhyo6m+Y4LxsFEWh7FInBwvqOXmhGbNl6ImyzMRg8rKiyEgMQqcdvf92iqJwurSFN3eX0tlj\nJjLYmx+vmErKZHXeED0exoyxv42t5R9T0HKO+ZPm8KMpqx3yOlLM2Gk8dLLxSrJRp/GeS1evmcKK\nVgrKjZyrbmPAbAXAy0NPRkIQWUkhZCSoczlqrLPp6jVz5FwjBwrqaWwbWrYLC/QiNyuSuemRGPwc\nu8eiz2Th/QMV7DtdhwIsyI7iBwsS8fZUVzbjaczU9TRg8AjE280xVyFIMWOn8dTJxhvJRp0mUi6D\nFhslF9spKGu97nJUdlIIEUHqWI4ai2xsNoWi6jYOFNRzpsyI1aag12mZMSWU3KwopsQEjvlloOV1\nnWz+7AJ1xl4CfNxZtzSFGVNCVZEJTKwxc6ukmLGTdDL1kmzUaaLm8vVy1JlyIwXlRirrv7UcZfAi\nOymErKQQkqMDnLYc5chsjJ39HCps4NDZBtq6hk5cjg71IS8rijlpEU6fqbJYbew4Xsv2w9VYrDay\nEoN5eNkUggM8ndoumLhjxh5SzNhJOpl6STbqJLkMUeNy1GhnY7HaOFNm5EBBPUVVbSiAh7uOOalD\nB9vFRfipZvbja01tfbyxs4TzNe14uOm4Py+BJTnRaLXOa6eMmZGTYsZO0snUS7JRJ8nluwYtNkpq\n24dnbVovz1xoNRqSogMuz9oEO/wx4tHKpt7Yy8HCeo6c++bAwaRJAeRmRTJzahie7s456n6kFEXh\nyLlG8r8op6d/kNgIP/5pxVRiI5xzArSMmZGTYsZO0snUS7JRJ8nlxhRF4VJLLwXXWI4KNww9HeWo\n5ahbyWbAbOXkhWYOFNZTfqkTGLoKYm760MF2k0LUf57L1br6zOR/Xs7Roka0Gg1LZ0Zz3/yEMb/n\nScbMyEkxYyfpZOol2aiT5HJzOnvNFFYYKShvpaiqjYHBoeUobw896QlBw4f1+YzCEzg3m42iKFQ3\ndnOwoJ5jxU2YzFY0QGp8EHlZUWQnheCmV/fj6CNRVNXGGzsv0NJhItjfk/XLp5CZOLZH9MuYGRkp\nZuwknUy9JBt1klzsN2ixUlLbcc3lqOTogMuzNvYvR400m17TIMeKhg62u9jcA4DBz4PczEjmZ0QS\nEuiYx26daWDQykeHq9lxvBabojBrWhg/WpJCwBjc8yRjZuSkmLGTdDL1kmzUSXIZHV8vR50pN1J4\nneWo7KQQkm5iOepG2SiKQkltBwcK6zl1oQWL1YZOqyE7KYTcrCjS44Ocukl2rFxs7mHzjgtU1nfh\n7aHnh4uSyHXwPU8yZkZOihk7SSdTL8lGnSQXx7jRclRGYjBZScFkJNx4Oepa2XT0DHD4bAMHCxto\nbu8HIDzIm7zLB9uNxcyE2thsCnu/quP9/RWYzFZSJgfy4xWOu+dJxszISTFjJ+lk6iXZqJPk4niD\nFisXajuGNxFfazkqO3nosL5v+zobq83G2co2DhbUU1A+dFO4u17LjKlh5GVFkRwdoLpHqp2hrcvE\nW7tL+ars8j1Pt8dx55zYUd8nJGNm5KSYsZN0MvWSbNRJchlb316OKig3UvXt5aggb7KTgoeXo9Dr\n+XBfGYcKG+joMQMQG+5HXlYks1PDVXfMv1p8WdLCW7tL6HDQPU8yZkZOihk7SSdTL8lGnSQX5+rs\nNVNYPnQpZnF1+/BylKe7DtO3Du6bkxZOXmaU085WcTV9JgtbD1Sw9/I9T3lZUTy4MNEpT5lNZFLM\n2Ek6mXpJNuokuajH18tRZ8qNFFW1ERbkzZxpYeRMCcPDbWzPUhkvKuo6+Z8dF6hr6cXfx511S5KZ\nOTXslpblZMyMnBQzdpJOpl6SjTpJLuol2YwOi9XGzhND9zwNWmxkJgbz8LIUQgLse2Rdchm5GxUz\nrn/ikRBCCDFG9Dotd90ex/OPzmJarIHCilZ+/bfj7DpRi9Vmc3bzJiwpZoQQQoibFG7w5um12Tx6\n1zTc9Tre+aKc323+kppGmWVxBilmhBBCCDtoNBrmZUTywmOzmZseQU1TN89vPkn+F2XDN6WLsSHF\njBBCCHEL/Lzd+cmqVJ5am01ogBc7T1zk1387TmGF0dlNmzCkmBFCCCFGQVpcEM8/Oou7bo+lo2eA\nP75byF8+PEdnr9nZTRv39M5ugBBCCDFeuLvpeOCORGZPC2fzjgucON/Muco2frgoifmZkWjldGWH\nkJkZIYQQYpRFh/nyfx7O4eFlKdgUhf/57AK/f+s0Da29zm7auCTFjBBCCOEAWq2GRdOjeeGxOUxP\nCaX0UiebXj/BtoOVDFrkMe7RJMWMEEII4UAGPw9+vjqDn6/OwM/bne2Hq3nuv09QUtvu7KaNG7Jn\nRgghhBgD01NCw6+pKgAADgNJREFUmRZrYOv+Sr44fYmX3v6KryraWDUnBl8vuejzVsjMjBBCCDFG\nvDz0PLQshQ2P5BAd6sOu4zU8+9oxjpxrwMVvF3Iqh97N9OKLL1JQUIBGo2HDhg1kZmYO/92iRYuI\niIhApxu68Ozll1/G39+fZ555htbWVgYGBnj88cdZuHDhDV9D7maamCQbdZJc1EuyUR+L1caR4mbe\n3nUB86CNqTGBrF8+hchgH2c3TZVudDeTw5aZTpw4QU1NDfn5+VRUVLBhwwby8/Ov+JjXXnsNH59v\nQvv0009JT0/nscceo66ujn/+53/+3mJGCCGEcEV6nZYHFiWTGhPA27vLOFNu5Dd/P8Gdc2JZdXss\n7nK7+Yg5rJg5evQoS5YsASAxMZHOzk56enrw9fW97uesXLly+NcNDQ2Eh4c7qnlCCCGEKoQEePHk\nDzL5qrSFt/aU8vGRao4XN/LwsilkJAQ7u3kuwWHFjNFoJC0tbfj3QUFBtLS0XFHMbNq0ibq6OnJy\ncnjqqafQXD5MaO3atTQ2NvKXv/zFUc0TQgghVOW2lFCmxRnYfqiaXScv8h//KGDG1DB+tDgZg5+H\ns5unamP2NNPVW3OefPJJcnNzCQgI4IknnmDnzp2sWLECgHfeeYfz58/zq1/9iu3btw8XOddiMHij\n1ztuKu5Ga3TCuSQbdZJc1EuyUaerc3lijYGVuQm8+n4hpy40U1TVxsN3TuWuufHodPLczrU4rJgJ\nCwvDaPzmkq3m5mZCQ0OHf3/fffcN/zovL4/S0lKio6MJDg4mMjKSadOmYbVaaWtrIzj4+tNs7e19\njvkCkA1zaibZqJPkol6SjTpdLxdfNy1PrcniUGED7+4t57Vt59h1tIZHVkwhPtLfCS11vhsV4w4r\n8ebNm8fOnTsBKCoqIiwsbHiJqbu7m0cffRSzeejyrZMnT5KcnMypU6d4/fXXgaFlqr6+PgwGg6Oa\nKIQQQqiWVqMhLyuKF346h3npEdQ0dfO7zafYsquEPtOgs5unKg6bmZk+fTppaWmsXbsWjUbDpk2b\n2Lp1K35+fixdupS8vDzWrFmDh4cHqamprFixgoGBAZ599lnWrVuHyWTiN7/5DVqtTKkJIYSYuPy9\n3Xl0VSrzMiLZsquEvafr+LKkhbWLk5g9LfyGWzEmCoeeMzMW5JyZiUmyUSfJRb0kG3W62VwsVhs7\njtfy0ZFqBi02UuMMrF82hfAgbwe2Uh2csswkhBBCiNGl12lZNTeO3/5kNhkJwRRXt7Px78cvX15p\ndXbznEaKGSGEEMLFhAV68YsHM3n8vnR8vdzYfriajX8/QVFVm7Ob5hRSzAghhBAuSKPRMGNqGC88\nNoelMybT0tHPH/LP8NftRXT2DDi7eWNKbs0WQgghXJiXh54fLUlmbnoEb+ws4XhxE4UVrazOS2Dh\nbZPQasf/BmGZmRFCCCHGgdgIP55dn8P65VMAeGt3Kb974xQ1jeN/47cUM0IIIcQ4odVqWHjbJF78\n6RzmpIVT3djN85tP8vbuUvoHLM5unsNIMSOEEEKMMwE+7vz07jSeXptNmMGbPV9eYsNrxzh5ofk7\n1wuNB1LMCCGEEONUalwQz//zLO7Ljae338Kr287xH+8W0OzAq4CcQYoZIYQQYhxz02u5Z148v/3J\nLNLiDJyrbGPj30/w0eEqBi02ZzdvVEgxI4QQQkwA4QZv/mVNNj+7Nw1vDz0fHKxi0+snOF/T7uym\n3TIpZoQQQogJQqPRMGtaOC88NofFOdE0tfXx//73K177qJiuXrOzm2c3OWdGCCGEmGC8PfU8tDRl\n+Gyao0WNFJQb+cHCRPKyotC62OWVMjMjhBBCTFDxkf5sfGQGDy1NwaYovLGjhP+75Utqm1zrbBop\nZoQQQogJTKvVsDgnmhcem8OsaWFU1Hfx/P+c4p3Py1zmbBopZoQQQgiBwc+Dn92bzr+sySIkwJNd\nJy/y678d58uSFtWfTSPFjBBCCCGGpccH8/yjs7hnXhzdfWb+/MFZ/vO9Qowd/c5u2nXJBmAhhBBC\nXMHdTcd9uQnMTg3nzV2lFFS0cr7mOHfPi2P5rBj0OnXNhairNUIIIYRQjchgH55em81jd6fi6a7j\n/f2VPPffJym92OHspl1BihkhhBBCXJdGo+H2tAhe+OkcFtw2iQZjL//+1mle/+Q83X3qOJtGihkh\nhBBCfC8fTzceWT6FDY/kEBPmy6GzDWz4r2McKKjH5uQNwlLMCCGEEGLEEqMC2PhPM1i7OBmLTeF/\nPrvAv791mkstPU5rkxQzQgghhLgpOq2WZTMn88JPZpMzJZTyS53823+f5Mi5Bqe0R55mEkIIIYRd\ngvw9eeL+DAorjGzdX0mvyTmH7EkxI4QQQohbkpkYQmZiiNNeX5aZhBBCCOHSpJgRQgghhEuTYkYI\nIYQQLk2KGSGEEEK4NClmhBBCCOHSpJgRQgghhEuTYkYIIYQQLk2KGSGEEEK4NClmhBBCCOHSpJgR\nQgghhEuTYkYIIYQQLk2KGSGEEEK4NClmhBBCCOHSNIqiKM5uhBBCCCGEvWRmRgghhBAuTYoZIYQQ\nQrg0KWaEEEII4dKkmBFCCCGES5NiRgghhBAuTYoZIYQQQrg0KWau4cUXX2TNmjWsXbuWwsJCZzdH\nfMvvf/971qxZwwMPPMCuXbuc3RxxFZPJxJIlS9i6dauzmyK+Zfv27dxzzz2sXr2affv2Obs5Aujt\n7eXnP/8569evZ+3atRw8eNDZTXJpemc3QG1OnDhBTU0N+fn5VFRUsGHDBvLz853dLAEcO3aMsrIy\n8vPzaW9v5/7772fZsmXObpb4lldffZWAgABnN0N8S3t7O3/+8595//336evr45VXXmHBggXObtaE\n98EHHxAfH89TTz1FU1MTP/7xj9mxY4ezm+WypJi5ytGjR1myZAkAiYmJdHZ20tPTg6+vr5NbJmbO\nnElmZiYA/v7+9Pf3Y7Va0el0Tm6ZAKioqKC8vFy+UarM0aNHuf322/H19cXX15ff/va3zm6SAAwG\nAyUlJQB0dXVhMBic3CLXJstMVzEajVd0qqCgIFpaWpzYIvE1nU6Ht7c3AO+99x55eXlSyKjISy+9\nxDPPPOPsZoirXLp0CZPJxM9+9jPWrVvH0aNHnd0kAdx1113U19ezdOlSHn74Yf71X//V2U1yaTIz\n8z3ktgf12bNnD++99x6vv/66s5siLtu2bRvZ2dlMnjzZ2U0R19DR0cGf/vQn6uvreeSRR9i7dy8a\njcbZzZrQPvzwQ6Kiovj73//OhQsX2LBhg+w1uwVSzFwlLCwMo9E4/Pvm5mZCQ0Od2CLxbQcPHuQv\nf/kLf/vb3/Dz83N2c8Rl+/bt4+LFi+zbt4/Gxkbc3d2JiIhg7ty5zm7ahBccHMxtt92GXq8nJiYG\nHx8f2traCA4OdnbTJrTTp08zf/58AKZOnUpzc7Msm98CWWa6yrx589i5cycARUVFhIWFyX4Zleju\n7ub3v/89f/3rXwkMDHR2c8S3/PGPf+T999/nH//4Bw8++CCPP/64FDIqMX/+fI4dO4bNZqO9vZ2+\nvj7Zn6ECsbGxFBQUAFBXV4ePj48UMrdAZmauMn36dNLS0li7di0ajYZNmzY5u0nisk8//ZT29nZ+\n8YtfDP/ZSy+9RFRUlBNbJYS6hYeHs3z5cn74wx8C8Otf/xqtVn6OdbY1a9awYcMGHn74YSwWC889\n95yzm+TSNIpsChFCCCGEC5PyXAghhBAuTYoZIYQQQrg0KWaEEEII4dKkmBFCCCGES5NiRgghhBAu\nTYoZIcSYuXTpEunp6axfv374tuCnnnqKrq6uEf8b69evx2q1jvjjf/SjH3H8+HF7miuEcBFSzAgh\nxlRQUBBbtmxhy5YtvPPOO4SFhfHqq6+O+PO3bNkih4sJIa4gh+YJIZxq5syZ5Ofnc+HCBV566SUs\nFguDg4P85je/ITU1lfXr1zN16lTOnz/P5s2bSU1NpaioCLPZzMaNG2lsbMRisXDvvfeybt06+vv7\n+eUvf0l7ezuxsbEMDAwA0NTUxNNPPw2AyWRizZo1/OAHP3Dmly6EGCVSzAghnMZqtbJ7925ycnL4\n1a9+xZ///GdiYmK+c/Get7c3b7755hWfu2XLFvz9/fnDH/6AyWRi5cqV5ObmcuTIETw9PcnPz6e5\nuZnFixcD8Nlnn5GQkMC//du/MTAwwLvvvjvmX68QwjGkmBFCjKm2tjbWr18PgM1mY8aMGTzwwAP8\n53/+J88+++zwx/X09GCz2YCha0auVlBQwOrVqwHw9PQkPT2doqIiSktLycnJAYYujk1ISAAgNzeX\nt99+m2eeeYY77riDNWvWOPTrFEKMHSlmhBBj6us9M9/W3d2Nm5vbd/78a25ubt/5M41Gc8XvFUVB\no9GgKMoVdw99XRAlJibyySefcPLkSXbs2MHmzZt55513bvXLEUKogGwAFkI4nZ+fH9HR0ezfvx+A\nqqoq/vSnP93wc7Kysjh48CAAfX19FBUVkZaWRmJiIl999RUADQ0NVFVVAfDRRx9x9uxZ5s6dy6ZN\nm2hoaMBisTjwqxJCjBWZmRFCqMJLL73E7373O/7rv/4Li8XCM888c8OPX79+PRs3buShhx7CbDbz\n+OOPEx0dzb333ssXX3zBunXriI6OJiMjA4CkpCQ2bdqEu7s7iqLw2GOPodfLW6AQ44Hcmi2EEEII\nlybLTEIIIYRwaVLMCCGEEMKlSTEjhBBCCJcmxYwQQgghXJoUM0IIIYRwaVLMCCGEEMKlSTEjhBBC\nCJcmxYwQQgghXNr/Bw0sywyCBAiPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "wCugvl0JdWYL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a possible solution." + ] + }, + { + "metadata": { + "id": "VHosS1g2aetf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "One possible solution that works is to just train for longer, as long as we don't overfit. \n", + "\n", + "We can do this by increasing the number the steps, the batch size, or both.\n", + "\n", + "All metrics improve at the same time, so our loss metric is a good proxy\n", + "for both AUC and accuracy.\n", + "\n", + "Notice how it takes many, many more iterations just to squeeze a few more \n", + "units of AUC. This commonly happens. But often even this small gain is worth \n", + "the costs." + ] + }, + { + "metadata": { + "id": "dWgTEYMddaA-", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000003,\n", + " steps=20000,\n", + " batch_size=500,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n", + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/multi_class_classification_of_handwritten_digits.ipynb b/multi_class_classification_of_handwritten_digits.ipynb new file mode 100644 index 0000000..4b2568a --- /dev/null +++ b/multi_class_classification_of_handwritten_digits.ipynb @@ -0,0 +1,2500 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "multi-class_classification_of_handwritten_digits.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "266KQvZoMxMv", + "6sfw3LH0Oycm" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mPa95uXvcpcn", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Classifying Handwritten Digits with Neural Networks" + ] + }, + { + "metadata": { + "id": "Fdpn8b90u8Tp", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png)" + ] + }, + { + "metadata": { + "id": "c7HLCm66Cs2p", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set\n", + " * Compare the performance of the linear and neural network classification models\n", + " * Visualize the weights of a neural-network hidden layer" + ] + }, + { + "metadata": { + "id": "HSEh-gNdu8T0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class." + ] + }, + { + "metadata": { + "id": "2NMdE1b-7UIH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random." + ] + }, + { + "metadata": { + "id": "4LJ4SD8BWHeh", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "outputId": "5b257a6b-e346-4d8e-afaa-6940e1ab33aa" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import glob\n", + "import math\n", + "import os\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "mnist_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_train_small.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "# Use just the first 10,000 records for training/validation.\n", + "mnist_dataframe = mnist_dataframe.head(10000)\n", + "\n", + "mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index))\n", + "mnist_dataframe.head()" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...775776777778779780781782783784
91482000000000...0000000000
91227000000000...0000000000
12953000000000...0000000000
63898000000000...0000000000
50672000000000...0000000000
\n", + "

5 rows × 785 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 ... 775 776 777 \\\n", + "9148 2 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "9122 7 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "1295 3 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "6389 8 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "5067 2 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "\n", + " 778 779 780 781 782 783 784 \n", + "9148 0 0 0 0 0 0 0 \n", + "9122 0 0 0 0 0 0 0 \n", + "1295 0 0 0 0 0 0 0 \n", + "6389 0 0 0 0 0 0 0 \n", + "5067 0 0 0 0 0 0 0 \n", + "\n", + "[5 rows x 785 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "nwx5hdFTuKVI", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kg0-25p2mOi0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes." + ] + }, + { + "metadata": { + "id": "PQ7vuOwRCsZ1", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png)" + ] + }, + { + "metadata": { + "id": "dghlqJPIu8UM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72." + ] + }, + { + "metadata": { + "id": "2ZkrL5MCqiJI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 404 + }, + "outputId": "6abf1d9f-8f8e-4bc0-d22c-01d88cfd400b" + }, + "cell_type": "code", + "source": [ + "mnist_dataframe.loc[:, 72:72]" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
72
91480
91220
12950
63890
50670
......
14700
76200
90980
30610
43070
\n", + "

10000 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " 72\n", + "9148 0\n", + "9122 0\n", + "1295 0\n", + "6389 0\n", + "5067 0\n", + "... ..\n", + "1470 0\n", + "7620 0\n", + "9098 0\n", + "3061 0\n", + "4307 0\n", + "\n", + "[10000 rows x 1 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "metadata": { + "id": "vLNg2VxqhUZ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set." + ] + }, + { + "metadata": { + "id": "JfFWWvMWDFrR", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def parse_labels_and_features(dataset):\n", + " \"\"\"Extracts labels and features.\n", + " \n", + " This is a good place to scale or transform the features if needed.\n", + " \n", + " Args:\n", + " dataset: A Pandas `Dataframe`, containing the label on the first column and\n", + " monochrome pixel values on the remaining columns, in row major order.\n", + " Returns:\n", + " A `tuple` `(labels, features)`:\n", + " labels: A Pandas `Series`.\n", + " features: A Pandas `DataFrame`.\n", + " \"\"\"\n", + " labels = dataset[0]\n", + "\n", + " # DataFrame.loc index ranges are inclusive at both ends.\n", + " features = dataset.loc[:,1:784]\n", + " # Scale the data to [0, 1] by dividing out the max value, 255.\n", + " features = features / 255\n", + "\n", + " return labels, features" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mFY_-7vZu8UU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 315 + }, + "outputId": "9d9c72a7-02d8-41cc-f27c-a3b6d29e615a" + }, + "cell_type": "code", + "source": [ + "training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500])\n", + "training_examples.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count7500.07500.07500.07500.07500.07500.07500.07500.07500.07500.0...7500.07500.07500.07500.07500.07500.07500.07500.07500.07500.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...1.01.00.80.21.00.20.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 10 \\\n", + "count 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ... 775 776 777 778 779 780 781 782 783 \\\n", + "count ... 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 \n", + "mean ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max ... 1.0 1.0 0.8 0.2 1.0 0.2 0.0 0.0 0.0 \n", + "\n", + " 784 \n", + "count 7500.0 \n", + "mean 0.0 \n", + "std 0.0 \n", + "min 0.0 \n", + "25% 0.0 \n", + "50% 0.0 \n", + "75% 0.0 \n", + "max 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "4-Vgg-1zu8Ud", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 315 + }, + "outputId": "b44976f5-3063-4a2c-f22d-7e8f2a3e8b05" + }, + "cell_type": "code", + "source": [ + "validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000])\n", + "validation_examples.describe()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count2500.02500.02500.02500.02500.02500.02500.02500.02500.02500.0...2500.02500.02500.02500.02500.02500.02500.02500.02500.02500.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...0.91.00.30.00.00.00.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 10 \\\n", + "count 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ... 775 776 777 778 779 780 781 782 783 \\\n", + "count ... 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 \n", + "mean ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max ... 0.9 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " 784 \n", + "count 2500.0 \n", + "mean 0.0 \n", + "std 0.0 \n", + "min 0.0 \n", + "25% 0.0 \n", + "50% 0.0 \n", + "75% 0.0 \n", + "max 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "id": "wrnAI1v6u8Uh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Show a random example and its corresponding label." + ] + }, + { + "metadata": { + "id": "s-euVJVtu8Ui", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 360 + }, + "outputId": "182a79c8-63de-4169-de9f-a25cf61150e7" + }, + "cell_type": "code", + "source": [ + "rand_example = np.random.choice(training_examples.index)\n", + "_, ax = plt.subplots()\n", + "ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28))\n", + "ax.set_title(\"Label: %i\" % training_targets.loc[rand_example])\n", + "ax.grid(False)" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFXCAYAAAAro2x+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE6lJREFUeJzt3X1MlXUfx/HP8RDT4xNJgPGH2QqL\npbVcOsHUAGfBZj6sTWViZTW1dCA5x5yayxaK2gOZgUzdilWn4VpmFoys5hzSsKdhf0D2RKaIimmB\nBcj9x737LG6x8z0nDtcB36+/9PDr4nvttLfX4fC7jquzs7NTAIB/NMDpAQCgLyCWAGBALAHAgFgC\ngAGxBAADYgkABsQSvea2227TqVOnAvpvUlNTVVNTE9B/k5eXpx07dvhdt3fvXmVkZCg9PV2PPvqo\nfvjhh4C+D64txBLXpOPHj6ugoEB79uzRhx9+qBkzZmjNmjVOj4UwRizhuNbWVuXk5Oj+++9Xamqq\nNm/e3OXrR44c0ezZszVt2jS9+OKLvscrKys1c+ZMpaWlafHixTp37twVx962bZveeuutKx4/fvy4\nRo8erbi4OEnSpEmTVF9f38Nnhv4kwukBgLfeekt//PGHPvroI124cEEzZsxQWlqa7rnnHknSsWPH\ntHfvXp0/f17p6elKT0/X4MGDtXr1ar399tsaM2aMiouLtWHDBhUWFnY59tNPP93t97zrrrv0888/\nq66uTgkJCaqoqFBycnLIzxV9F7GE4xYvXqysrCy5XC4NHz5cCQkJ+uWXX3yxnDlzptxut6KjozVh\nwgR9+eWXunz5siZOnKgxY8ZIkubPn6/Jkyero6PD9D3j4uKUm5ur2bNna/DgwRo0aJBKS0tDdo7o\n+4glHPfjjz9q06ZN+v777zVgwACdOnVKc+fO9X19xIgRvj8PHTpUFy5cUGdnp2pqavTAAw/4vjZk\nyBCdP3/e9D2//fZbvfbaa6qsrFR8fLzee+89LVu2TPv375fL5eq5k0O/QSzhuGeffVZ33HGHXn31\nVbndbs2fP7/L13/77bcufx4+fLgiIyOVnJx8xctuq6qqKt19992Kj4+XJGVkZGj16tVqbm7uEmfg\nf3iDB447e/asEhMT5Xa7dfjwYf30009qaWnxff2DDz7Q5cuXdfbsWR09elT33HOP7r33XtXU1Kih\noUGS9M033+i5554zf8+bb75ZX375pZqbmyVJn332mWJiYnT99df37Mmh3+DKEr0qKytLbrfb9/fn\nnntOy5YtU35+vnbs2KG0tDQtX75chYWFSkxMlCSNGzdODz30kM6dO6eHH35Yt956qyRp48aNeuqp\np9TW1qbBgwd3+6s/27ZtU3x8vBYsWNDl8dTUVB07dsx3FTtkyBC99NJLvATHVbm4nyUA+MfLcAAw\nIJYAYEAsAcDAkTd4nn/+eX399ddyuVxas2aN7rzzTifG6FHV1dXKzs5WQkKCJGnMmDFat26dw1MF\nr66uTk8++aQeeeQRLVy4UCdPntTq1avV0dGhmJgYbdmyRZGRkU6PGZD/P6e8vDwdO3ZMUVFRkqTH\nHntM9913n7NDBqigoEBHjx5Ve3u7lixZonHjxvX550m68rwOHjzo+HPV67H8/PPP9dNPP8nr9er4\n8eNas2aNvF5vb48REhMnTgz69/7CSUtLizZu3KikpCTfY4WFhcrMzFR6erpeeOEFlZWVKTMz08Ep\nA9PdOUlSbm6uUlJSHJrq3zly5Ijq6+vl9XrV3NysOXPmKCkpqU8/T1L35zVp0iTHn6tefxleVVWl\n6dOnS5JuueUW/fbbb/r99997ewz8g8jISJWUlCg2Ntb3WHV1tdLS0iRJKSkpqqqqcmq8oHR3Tn3d\nhAkT9PLLL0uShg0bptbW1j7/PEndn5d1G2so9Xosz5w50+UXf0eMGKGmpqbeHiMkvvvuOy1dulQL\nFizQ4cOHnR4naBERERo4cGCXx1pbW30v56Kjo/vcc9bdOUlSaWmpFi1apJUrV3Z716Jw5na75fF4\nJEllZWWaOnVqn3+epO7Py+12O/5cOf5L6f3l1zxHjx6t5cuXKz09XQ0NDVq0aJEqKir65M+L/Okv\nz9msWbMUFRWlxMRE7dy5U9u3b9f69eudHitglZWVKisr0+7duzVjxgzf4339efr7edXW1jr+XPX6\nlWVsbKzOnDnj+/vp06cVExPT22P0uLi4OGVkZMjlcmnUqFG64YYb1NjY6PRYPcbj8ejSpUuSpMbG\nxn7xcjYpKcm3Syg1NVV1dXUOTxS4Q4cOqaioSCUlJRo6dGi/eZ7+/7zC4bnq9VhOnjxZ5eXlkv57\nn8LY2FgNGTKkt8focfv27dOuXbskSU1NTTp79qzvxrL9QXJysu95q6io0JQpUxye6N9bsWKFb295\ndXW17zcZ+oqLFy+qoKBAxcXFvneJ+8Pz1N15hcNz5ch2x61bt6qmpkYul0vPPPOMbr/99t4eocf9\n/vvvWrVqlS5cuKC2tjYtX75c06ZNc3qsoNTW1mrz5s06ceKEIiIiFBcXp61btyovL09//vmn4uPj\nlZ+fr+uuu87pUc26O6eFCxdq586dGjRokDwej/Lz8xUdHe30qGZer1evvPKKbr75Zt9jmzZt0tq1\na/vs8yR1f15z585VaWmpo88Ve8MBwIAdPABgQCwBwIBYAoABsQQAA2IJAAbEEgAMiCUAGBBLADAg\nlgBgEPRdh/rj3c4B4GqCimV/vts5AHQnqJfh3O0cwLUmqFj257udA0B3euQNHm5cBKC/CyqW/fVu\n5wBwNUHFsr/e7RwAriaod8PHjx+vO+64Q/Pnz/fd7RwA+jPulA4ABuzgAQADYgkABsQSAAyIJQAY\nEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkA\nBsQSAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgFgC\ngAGxBACDCKcHAEKtsLDQvHblypWmdYsXLzYfc+vWrea1w4cPN69F7+LKEgAMiCUAGBBLADAglgBg\nQCwBwIBYAoABsQQAA2IJAAbEEgAMXJ2dnZ1ODwGEUltbm3ltUVGRaV1OTo75mCNHjjSvPXHihHkt\nehdXlgBgENTe8OrqamVnZyshIUGSNGbMGK1bt65HBwOAcBL0jTQmTpwY0A0KAKAv42U4ABgEHcvv\nvvtOS5cu1YIFC3T48OGenAkAwk5QL8NHjx6t5cuXKz09XQ0NDVq0aJEqKioUGRnZ0/MBQFgI6soy\nLi5OGRkZcrlcGjVqlG644QY1Njb29GwAEDaCiuW+ffu0a9cuSVJTU5POnj2ruLi4Hh0MAMJJUC/D\nU1NTtWrVKn388cdqa2vThg0beAkOoF8LKpZDhgwx73QAgP6A7Y4IK9bf3bV+sJgkvf/+++a1GRkZ\npnUDBth/guVyucxrOzo6zGvRu/g9SwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAw\nIJYAYMB2R4QVt9ttWhfIFsILFy6Y13o8HtM665xSYLO2t7eb16J3cWUJAAbEEgAMiCUAGBBLADAg\nlgBgQCwBwIBYAoABsQQAA2IJAAZBfboj8Ndff5nXBvJJoNYNZZ988on5mNZdOZLU0tJiWsfGt2sP\nV5YAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCA7Y4ISmNjo3ltbm6uee3I\nkSNN6+666y7zMQPx6aefmtYF8iFkgaxF+OLKEgAMiCUAGBBLADAglgBgQCwBwIBYAoABsQQAA2IJ\nAAbEEgAMiCUAGLDdEUFpbm42rw3kkxBXrFhhWjd8+HDzMQPx66+/mtbx6Y7XHtOVZV1dnaZPn67S\n0lJJ0smTJ5WVlaXMzExlZ2cH9LGoANAX+Y1lS0uLNm7cqKSkJN9jhYWFyszM1JtvvqmbbrpJZWVl\nIR0SAJzmN5aRkZEqKSlRbGys77Hq6mqlpaVJklJSUlRVVRW6CQEgDPj9mWVERIQiIroua21tVWRk\npCQpOjpaTU1NoZkOAMLEv343nB90A7gWBBVLj8ejS5cuSfrvTWD//hIdAPqjoGKZnJys8vJySVJF\nRYWmTJnSo0MBQLjx+zPL2tpabd68WSdOnFBERITKy8u1detW5eXlyev1Kj4+XrNnz+6NWQHAMX5j\nOXbsWL3xxhtXPL5nz56QDAQA4YgdPAjKO++8Y14byAd2ZWdnBzPOP2ppaTGvLSgoMK0L5Jwef/xx\n81qEL/aGA4ABsQQAA2IJAAbEEgAMiCUAGBBLADAglgBgQCwBwIBYAoABsQQAA1cnN6REEAYMsP87\nG8jWwI6OjmDG+UdPPPGEee3u3btN6zwej/mY33//vXltTEyMeS16F1eWAGBALAHAgFgCgAGxBAAD\nYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgO2OCIrb7TavDWS7Y3t7u2nd6dOnzce88cYbzWuts06d\nOtV8zIMHD5rXInxxZQkABsQSAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABhFOD4C+yemN\nX/PnzzevDWTWBx980LSuuLjYfEz0D1xZAoABsQQAA2IJAAbEEgAMiCUAGBBLADAglgBgQCwBwIBY\nAoABsQQAA7Y7Iijjx483r/3qq6/Ma3NyckzrampqzMcM5APTxo4da1oXGxtrPib6B64sAcDAFMu6\nujpNnz5dpaWlkqS8vDzNnDlTWVlZysrK0qeffhrKGQHAcX5fhre0tGjjxo1KSkrq8nhubq5SUlJC\nNhgAhBO/V5aRkZEqKSnhZzQArml+YxkREaGBAwde8XhpaakWLVqklStX6ty5cyEZDgDCRVBv8Mya\nNUurVq3S66+/rsTERG3fvr2n5wKAsBJULJOSkpSYmChJSk1NVV1dXY8OBQDhJqhYrlixQg0NDZKk\n6upqJSQk9OhQABBu/L4bXltbq82bN+vEiROKiIhQeXm5Fi5cqJycHA0aNEgej0f5+fm9MSsAOMZv\nLMeOHas33njjisfvv//+kAwEAOHI1en0x/ShT/rss8/Ma1NTU81rrf87BrKFcdq0aea1+/fvN63z\neDzmY6J/YLsjABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwYLsjgtLW1mZe\nm5ycbF77xRdfmNYFst1x37595rUZGRnmtbi2cGUJAAbEEgAMiCUAGBBLADAglgBgQCwBwIBYAoAB\nsQQAA2IJAAZ+P90R6M6pU6fMa627ciT7B5YFoqKiwryWHTy4Gq4sAcCAWAKAAbEEAANiCQAGxBIA\nDIglABgQSwAwIJYAYEAsAcCAWAKAAdsdEZR3333XvDaQDxcLxTG/+eabHv/+uPZwZQkABsQSAAyI\nJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAzY7ogu6uvrTeuys7PNxxwwwP5v8uXLl3v8\nmJmZmea1wNWYYllQUKCjR4+qvb1dS5Ys0bhx47R69Wp1dHQoJiZGW7ZsUWRkZKhnBQDH+I3lkSNH\nVF9fL6/Xq+bmZs2ZM0dJSUnKzMxUenq6XnjhBZWVlfGvN4B+ze9rmQkTJujll1+WJA0bNkytra2q\nrq5WWlqaJCklJUVVVVWhnRIAHOY3lm63Wx6PR5JUVlamqVOnqrW11feyOzo6Wk1NTaGdEgAcZv4p\neWVlpcrKyrR+/fouj3d2dvb4UAAQbkyxPHTokIqKilRSUqKhQ4fK4/Ho0qVLkqTGxkbFxsaGdEgA\ncJrfWF68eFEFBQUqLi5WVFSUJCk5OVnl5eWSpIqKCk2ZMiW0UwKAw/y+G37gwAE1NzcrJyfH99im\nTZu0du1aeb1excfHa/bs2SEdEgCc5jeW8+bN07x58654fM+ePSEZCADCETt40IV1B08gO2gC+XAx\n63HHjx9vPubjjz9uXgtcDXvDAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKA\nAdsd0YX1A8Os66TAtkb+70bT/hw4cMB8TKAncGUJAAbEEgAMiCUAGBBLADAglgBgQCwBwIBYAoAB\nsQQAA2IJAAbEEgAMXJ2dnZ1OD4Hw0dLSYlr398+R92f37t3mtSdPnjSti4mJMR8T6AlcWQKAAbEE\nAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAATt4AMCAK0sAMCCWAGBALAHAgFgCgAGxBAAD\nYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAIMKyqKCgQEePHlV7e7uWLFmigwcP6tixY4qKipIkPfbY\nY7rvvvtCOScAOMpvLI8cOaL6+np5vV41Nzdrzpw5mjRpknJzc5WSktIbMwKA4/zGcsKECbrzzjsl\nScOGDVNra6s6OjpCPhgAhJOAbtHm9XpVU1Mjt9utpqYmtbW1KTo6WuvWrdOIESNCOScAOMocy8rK\nShUXF2v37t2qra1VVFSUEhMTtXPnTp06dUrr168P9awA4BjTu+GHDh1SUVGRSkpKNHToUCUlJSkx\nMVGSlJqaqrq6upAOCQBO8xvLixcvqqCgQMXFxb53v1esWKGGhgZJUnV1tRISEkI7JQA4zO8bPAcO\nHFBzc7NycnJ8j82dO1c5OTkaNGiQPB6P8vPzQzokADiNz+ABAAN28ACAAbEEAANiCQAGxBIADIgl\nABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANi\nCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABj8B1PoVcd+Gd43AAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ScmYX7xdZMXE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Build a Linear Model for MNIST\n", + "\n", + "First, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.\n", + "\n", + "You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?\n", + "\n", + "Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training." + ] + }, + { + "metadata": { + "id": "cpoVC4TSdw5Z", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " \n", + " # There are 784 pixels in each image.\n", + " return set([tf.feature_column.numeric_column('pixels', shape=784)])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kMmL89yGeTfz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls." + ] + }, + { + "metadata": { + "id": "OeS47Bmn5Ms2", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True):\n", + " \"\"\"A custom input_fn for sending MNIST data to the estimator for training.\n", + "\n", + " Args:\n", + " features: The training features.\n", + " labels: The training labels.\n", + " batch_size: Batch size to use during training.\n", + "\n", + " Returns:\n", + " A function that returns batches of training features and labels during\n", + " training.\n", + " \"\"\"\n", + " def _input_fn(num_epochs=None, shuffle=True):\n", + " # Input pipelines are reset with each call to .train(). To ensure model\n", + " # gets a good sampling of data, even when number of steps is small, we \n", + " # shuffle all the data before creating the Dataset object\n", + " idx = np.random.permutation(features.index)\n", + " raw_features = {\"pixels\":features.reindex(idx)}\n", + " raw_targets = np.array(labels[idx])\n", + " \n", + " ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " feature_batch, label_batch = ds.make_one_shot_iterator().get_next()\n", + " return feature_batch, label_batch\n", + "\n", + " return _input_fn" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "8zoGWAoohrwS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def create_predict_input_fn(features, labels, batch_size):\n", + " \"\"\"A custom input_fn for sending mnist data to the estimator for predictions.\n", + "\n", + " Args:\n", + " features: The features to base predictions on.\n", + " labels: The labels of the prediction examples.\n", + "\n", + " Returns:\n", + " A function that returns features and labels for predictions.\n", + " \"\"\"\n", + " def _input_fn():\n", + " raw_features = {\"pixels\": features.values}\n", + " raw_targets = np.array(labels)\n", + " \n", + " ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size)\n", + " \n", + " \n", + " # Return the next batch of data.\n", + " feature_batch, label_batch = ds.make_one_shot_iterator().get_next()\n", + " return feature_batch, label_batch\n", + "\n", + " return _input_fn" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "G6DjSLZMu8Um", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classification_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model for the MNIST digits dataset.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " a plot of the training and validation loss over time, and a confusion\n", + " matrix.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing the training features.\n", + " training_targets: A `DataFrame` containing the training labels.\n", + " validation_examples: A `DataFrame` containing the validation features.\n", + " validation_targets: A `DataFrame` containing the validation labels.\n", + " \n", + " Returns:\n", + " The trained `LinearClassifier` object.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + "\n", + " steps_per_period = steps / periods \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create a LinearClassifier object.\n", + " my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=construct_feature_columns(),\n", + " n_classes=10,\n", + " optimizer=my_optimizer,\n", + " config=tf.estimator.RunConfig(keep_checkpoint_max=1)\n", + " )\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss error (on validation data):\")\n", + " training_errors = []\n", + " validation_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute probabilities.\n", + " training_predictions = list(classifier.predict(input_fn=predict_training_input_fn))\n", + " training_probabilities = np.array([item['probabilities'] for item in training_predictions])\n", + " training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions])\n", + " training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10)\n", + " \n", + " validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn))\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) \n", + " validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions])\n", + " validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) \n", + " \n", + " # Compute training and validation errors.\n", + " training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_errors.append(training_log_loss)\n", + " validation_errors.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " # Remove event files to save disk space.\n", + " _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*')))\n", + " \n", + " # Calculate final predictions (not probabilities, as above).\n", + " final_predictions = classifier.predict(input_fn=predict_validation_input_fn)\n", + " final_predictions = np.array([item['class_ids'][0] for item in final_predictions])\n", + " \n", + " \n", + " accuracy = metrics.accuracy_score(validation_targets, final_predictions)\n", + " print(\"Final accuracy (on validation data): %0.2f\" % accuracy)\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.plot(training_errors, label=\"training\")\n", + " plt.plot(validation_errors, label=\"validation\")\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " # Output a plot of the confusion matrix.\n", + " cm = metrics.confusion_matrix(validation_targets, final_predictions)\n", + " # Normalize the confusion matrix by row (i.e by the number of samples\n", + " # in each class).\n", + " cm_normalized = cm.astype(\"float\") / cm.sum(axis=1)[:, np.newaxis]\n", + " ax = sns.heatmap(cm_normalized, cmap=\"bone_r\")\n", + " ax.set_aspect(1)\n", + " plt.title(\"Confusion matrix\")\n", + " plt.ylabel(\"True label\")\n", + " plt.xlabel(\"Predicted label\")\n", + " plt.show()\n", + "\n", + " return classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ItHIUyv2u8Ur", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**\n", + "\n", + "Stop if you get anything above about 0.9 accuracy." + ] + }, + { + "metadata": { + "id": "yaiIhIQqu8Uv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1086 + }, + "outputId": "723e7b3c-8e63-4601-f7bd-617ff0b3fd6d" + }, + "cell_type": "code", + "source": [ + "classifier = train_linear_classification_model(\n", + " learning_rate=0.02,\n", + " steps=100,\n", + " batch_size=10,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 13.28\n", + " period 01 : 10.69\n", + " period 02 : 8.69\n", + " period 03 : 7.17\n", + " period 04 : 7.16\n", + " period 05 : 7.21\n", + " period 06 : 6.88\n", + " period 07 : 5.89\n", + " period 08 : 6.26\n", + " period 09 : 5.51\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.84\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAFnCAYAAACLnxFFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4lfX9//Hnfc7J3jsQCAmBJOwl\nFQQFBIRA3YiIoGhtv7XaWvXXfuXbqrhatdY62lqLrRtEUXAxBBEUVJAhO4QEMghkT7Jzzvn9EYhE\nVgI5I+T1uK5emnu+8/YuLz73NOx2ux0RERFxeyZXFyAiIiKto9AWERHpIBTaIiIiHYRCW0REpINQ\naIuIiHQQCm0REZEOQqEt0g6SkpLIy8trl20dOnSIvn37tsu2XGH27NmMHj2ayZMnM2nSJKZMmcLr\nr7/e5u3s2LGDn/3sZ21er2/fvhw6dKjN64l0BBZXFyAiF57f/e53XH311QAUFhZy4403Eh8fz2WX\nXdbqbQwcOJD//Oc/jipRpEPSSFvEgerq6njooYeYNGkSKSkpPPnkk1itVgC++uorxowZQ0pKCosW\nLWLo0KFnHSGWlZVxzz33NI9g//3vfzfP+9vf/sakSZOYNGkSt9xyC/n5+Wecfty6deu48sorW0y7\n+uqr+fLLL9m0aRPXXnstU6ZMISUlheXLl7e5BxEREUyePJkNGzYAkJ6ezqxZs5g0aRJXXnklO3fu\nBGDjxo3MmDGDe+65h/vvv5+NGzcyceLEs/Zx3bp1TJw4kZSUFF555ZXm/VZVVXHXXXeRkpLC+PHj\n+eMf/0hDQ0Ob6xdxJwptEQd6/fXXycvL49NPP2XJkiVs3ryZTz75BKvVygMPPMCjjz7K8uXLyczM\npKam5qzbe/bZZwkKCmLlypUsWLCAhQsXsnnzZvbv38+KFSv45JNPWLlyJRMnTuSbb7457fQTjRw5\nkry8PHJycgDIyckhLy+PSy65hKeeeoq5c+eybNkyXnrpJVavXn1OfWhsbMTT0xObzcZdd93F1Vdf\nzcqVK5k3bx6/+tWvaGxsBGDPnj3MmDGDv/71r63u4x/+8Acefvhhli9fjslkag7zpUuXEhgYyPLl\ny1m5ciVms5n09PRzql/EXSi0RRxo7dq1TJ8+HYvFgre3N1deeSUbNmwgMzOT+vp6xowZAzRdB7bZ\nbGfd3rp165g5cyYAwcHBTJw4kQ0bNhAYGEhJSQkff/wx5eXlzJ49m2uuuea000/k6enJuHHjWLNm\nDQCrV69mwoQJWCwWwsLCWLp0KRkZGcTFxZ0Upq2Rk5PDihUrmDhxIgcOHKC4uJhp06YBMGzYMEJD\nQ9m2bRsA3t7ejBw5ss19HD16NADXXntt8zrHt7t+/XpsNhuPPPIIffr0aXP9Iu5EoS3iQCUlJQQF\nBTX/HBQURHFxMeXl5QQGBjZPj4yMbPX2TlwvMDCQ4uJioqKiePHFF1mxYgVjx47lF7/4BUeOHDnt\n9B+bNGlSi9CeMmUKAH/605/w8fHhtttu44orrmDFihWtqvMvf/lL841o9913Hw888AADBw6koqKC\n2tpaUlJSmDx5MpMnT6a4uJiysrLm/pzu9z5dH/39/VtMPy4lJYU5c+bw/PPPM3LkSB555BHq6+tb\nVb+Iu1JoizhQeHh4cyBB0zXp8PBw/P39qa6ubp5eVFR0XtsDGDFiBP/+97/ZsGEDXbp04Zlnnjnj\n9BNdeumlpKamkpmZSWZmJiNGjGje34MPPsiXX37JQw89xNy5c6mqqjprnb/73e9YsWIFK1eu5L33\n3mv+S0BkZCR+fn6sWLGi+X/r169vvnbd1t87KCiIo0ePNk8vKSlpsd6MGTN47733WLZsGbt372bp\n0qVnrV3EnSm0RRxo7NixLF68GKvVSnV1NR9++CFjxowhLi6OxsZGNm7cCMDChQsxDKNV21u0aBHQ\nFFCrVq1i7NixrF+/nkceeQSbzYavry/JyckYhnHa6T/m6enJ6NGj+ctf/sL48eMxm800NDQwe/Zs\nCgoKAOjXrx8WiwWT6dz/2IiJiSE6Orp5xF5SUsJ9993X4i8wp/u9T9XH2NhYzGZzcx8/+OCD5t/v\nH//4B4sXLwYgKiqKbt26tarHIu5Mj3yJtJPZs2djNpubf3788ceZPXs2OTk5TJ06FcMwmDx5Mikp\nKRiGwbx585g7dy4BAQHcdtttmEwmDMPAbrdjtVqZPHlyi+3Pnz+f3/72t8ybN4/JkydjMpn4xS9+\nwcCBA6mrq+PTTz9l0qRJeHp6Ehoayp/+9CciIyNPOf1UJk2axK9//Wtee+01ADw8PJg2bRpz5swB\nwGQy8cc//hEfHx9WrVrFmjVr+POf/9ymHhmGwbPPPsu8efN47rnnMJlM3Hbbbfj6+p61t6fr42OP\nPcb//d//4enpyXXXXde8rauvvpq5c+cyf/58DMNg0KBBzY+hiXRUhr6nLeJ61dXVDBkyhM2bNxMQ\nEODqckTETen0uIiLXH/99SxbtgyAZcuWkZCQoMAWkTPSSFvERTZv3syjjz5KXV0dfn5+zJs3j4ED\nB7q6LBFxYwptERGRDkKnx0VERDoIhbaIiEgH4daPfBUWVrb7NkNCfCktPfMzoXL+1GfnUJ+dQ312\nDvW5SUTE6W9I7XQjbYvFfPaF5Lypz86hPjuH+uwc6vPZdbrQFhER6agU2iIiIh2EQltERKSDUGiL\niIh0EAptERGRDkKhLSIi0kEotEVERDoIhbaIiFwQ1q79vFXLPf/8Xzl8OPe08x944L72KqndKbRF\nRKTDO3LkMKtXr2zVsvfccz9du8acdv6TTz7bXmW1O7d+jamIiEhrPPvsU+zdu5tLLx3OFVekcOTI\nYZ577p/8+c+PUlhYQE1NDbff/gtGjbqUu+/+Bffd93u++OJzqqqOkp2dRW7uIX7zm/sZOXIUU6eO\n59NPP+fuu3/B8OEXs3XrZsrKynjqqb8RHh7Oo48+SF7eEQYMGMiaNatZsmSZ037PThXa3xfsZKhf\nHzrZry0i4lTvrknnu9SCNq9nNhtYraf+WvTw5EimX97rtOvedNNsPvjgXeLjE8jOzuSf/3yF0tIS\nfvKTEaSk/JTc3EM8+OADjBp1aYv1CgryeeaZF/j226/58MP3GTlyVIv5fn5+PP/8S7z00ot8+eUa\nunbtRn19Hf/+92ts2PAV7767sM2/5/noNOlV01jL/F1vkpSXwK8H/ALDMFxdkoiIOECfPv0ACAgI\nZO/e3Xz00QcYhomKivKTlh04cDAAkZGRHD169KT5gwYNaZ5fXl5OVtZBBgwYBMDIkaMwm537vvRO\nE9o+Fm8GhPdhZ9Fe9pWmkxza29UliYhckKZf3uuMo+LTiYgIaJevO3p4eACwatUKKioq+Mc/XqGi\nooI77ph90rInhq7dfvIo/8fz7XY7JlPTNMMwnD4A7FQ3ok2JmwjAsoOrTvkfR0REOiaTyYTVam0x\nraysjC5dumIymVi3bg0NDQ3nvZ+YmG7s27cHgE2bvj1pn47WqUI7NrAbw7oOIKM8k32l6a4uR0RE\n2kmPHvHs25dKVdUPp7jHjr2cr7/+invuuRMfHx8iIyN59dX557WfSy65lKqqKu6882ds376NwMCg\n8y29TQy7Gw852+M0yY9Vmkt4YNWTJATFce/QO3Vt20Ha6zSXnJn67Bzqs3N0hD5XVJSzdetmxo4d\nT2FhAffccycLFrzfrvuIiAg47bxOc037uJ6hPXRtW0REzomvrx9r1qxmwYI3sdtt/PrXzn0Ri0ND\nOy0tjV/96lfMmTOHWbNmsW3bNp5++mksFguenp785S9/ITQ01JElnNKU+InsLNrLpwdXkRTSS6Nt\nERFpFYvFwqOP/tll+3fYNe3q6moee+wxRo4c2Tzt1Vdf5emnn+bNN99kyJAhvPvuu47a/RnFBnRj\nQHhfDujatoiIdCAOC21PT0/mz59PZGRk87QXXniB7t27Y7fbyc/PJzo62lG7P6sp8RMA+FR3kouI\nSAfhsNC2WCx4e3ufNP3LL79k8uTJFBUVcdVVVzlq92el0baIiHQ0Dr97/MUXXyQkJIRZs2Y1T7Pb\n7TzzzDMEBATwy1/+8rTrNjZasVgc97aZAyXZPLDqzySFJ/Do5ffr2raIiLg1p949vmrVKiZOnIhh\nGEyaNIkXX3zxjMuXlla3ew0nPlIQQAgDwvuys2gP69O26U7ydtQRHt24EKjPzqE+O4cz+jxt2pW8\n8cYi3n//XYYMGUr//gOb51VXV3PLLTeyePHHp11/7drPGTt2PMuWfYyfnz9jxoxr9xrP9MiXU1+u\n8uKLL7J3714Atm/fTnx8vDN3f0q6ti0i0vnMnj2nRWC3xomf/5wy5UqHBPbZOGykvWvXLp566ily\nc3OxWCysXLmSxx9/nEceeQSz2Yy3tzdPP/20o3bfasevbe8s2qPntkVEOqjbb7+ZP/3pr0RHR5OX\nd4S5c+8nIiKSmpoaamtruffe39G3b//m5Z94Yh5jx45n8OAh/OEPv6e+vr754yEAn322nMWLF2E2\nm4iLS+B///cPzZ//fPXV+dhsNoKDg7n++hv55z+fZ+fO7TQ2Wrn++ulMnjz1lJ/1bI+brx0W2v37\n9+fNN988afo777zjqF2esynxE9hZtEfPbYuItIMP0j9hW8HONq9nNhlYbac+4zkkcgDX9frpade9\n7LJxbNjwJddfP52vvlrHZZeNIyGhN5ddNpYtW77j7bdf54kn/nLSeitXLqdnzwR+85v7+fzzz5pH\n0jU1Nfz1ry8SEBDAXXf9nIyM9ObPf95228/5z39eBuD777dy4EAGL730X2pqarj11hlcdtlY4OTP\nek6fPrPNPfmxTvXu8dM58U7y1NL9ri5HRETaqCm0vwJg/fp1jB49hnXrPufOO3/GSy+9SHn5yZ/l\nBMjMPED//k2f2hwyZFjz9MDAQObOvZ+77/4FWVkHKS8vO+X6qal7GDx4KAA+Pj7ExfUkJycHaPlZ\nz1N99vNcdLrXmJ7O1PiJ7Czaw7KDq0gO6a3RtojIObqu10/POCo+nfO5Ea1nzwSKiwvJz8+jsrKS\nr75aS3h4JA8++BipqXv4+9+fO+V6djuYTE1/3tuOjfIbGhp49tmnee21BYSFhfP73//2tPs1DIMT\nb4dqbGxo3t7ZPvt5LjTSPqZ7QAwDw/txoDxLo20RkQ5o5MjR/Pvf/+TSS8dQXl5GTEw3ANat+4LG\nxsZTrhMb24PU1KYbpLdu3QxAdXUVZrOZsLBw8vPzSE3dS2Nj4yk//5mc3I9t27YcW6+a3NxDdOsW\n66hfUaF9ouN3kut72yIiHc+YMeNYvXolY8eOZ/LkqSxa9Db33nsX/fr1p7i4mE8//eikdSZPnsru\n3Tu55547ycnJwjAMgoKCGT78Yu644xZefXU+M2fO5oUXnm3+/OcLL/y1ef1BgwaTlJTMXXf9nHvv\nvYtf/vJufHx8HPY7drpPc57t9MvLO15nR9Fu7h58B31CE9t9/52Fnmt1DvXZOdRn51Cfm7jNc9od\ngUbbIiLirhTaP6Jr2yIi4q4U2qeg0baIiLgjhfYpaLQtIiLuSKF9Ghpti4iIu+lUoX24qIq6BuvZ\nF0SjbRERcT+dJrRr6xt5+L+beOK/G1s9cm7+AtgBjbZFRMT1Ok1oe3mY6RMXwra0QtbvONKqdboH\nxDAovB8HK7JILdFoW0REXKvThLZhGMyZnIyPl4V31qRTWlnXqvVS9L1tERFxE50mtAFCA725/cp+\n1NQ18saK1FaFsEbbIiLiLjpVaANMGtGDPj1C2J5RzLd78lu1jkbbIiLiDjpdaBuGwa0pyXh6mFiw\nKo3yqvqzrqPRtoiIuINOF9oAkcE+TBuTQFVtI29/tq9V62i0LSIirtYpQxvg8mHd6NUtiM37Ctmc\nWnDW5TXaFhERV+u0oW0yDG6f0gcPi4m3PttHZfXZT5NrtC0iIq7UaUMbIDrUl2sujaeiuoGFn599\n9KzRtoiIuFKnDm2AScNjie8SyLe78/l+f9FZl0+JnwhotC0iIs7X6UPbZDK4fUoyZpPB6ytTqa5t\nOOPy3QO6MiiiPwcrsthbkuakKkVERBTaAMRE+HPVqDjKj9bzzpr0sy6fEqcvgImIiPMptI9JGdGD\n2Eh/1u84wq6DxWdc9ofRdrZG2yIi4jQK7WMsZhO3T+3TdJp8eSo1dY1nXF6jbRERcTaHhnZaWhoT\nJkzgrbfeAuDIkSPMmTOHWbNmMWfOHAoLCx25+zaLjQogZUQPiivqWLw244zLarQtIiLO5rDQrq6u\n5rHHHmPkyJHN05577jmmT5/OW2+9xcSJE3n11VcdtftzduUlccSE+/HFtlxSs0rPuKxG2yIi4kwO\nC21PT0/mz59PZGRk87SHH36YSZMmARASEkJZWZmjdn/OPCwmbpvSB8OAV5fvpa7eetplNdoWERFn\nclhoWywWvL29W0zz9fXFbDZjtVpZsGABV155paN2f156dg1k0k9iKSyr5YMvD5xxWY22RUTEWSzO\n3qHVauX3v/89I0aMaHHq/FRCQnyxWMztXkNERMBZl7nj2oHsPFDM6i05TBwRR5/40NNsK4mfHB7M\nptzvOWw9xOAufdu73A6rNX2W86c+O4f67Bzq85k5PbTnzp1Ljx49uPvuu8+6bGlpdbvvPyIigMLC\nylYte8ukJJ58ayvPLtjCI7cPx+M0f4EY33Usm3K/Z+H3H9LV3A3DMNqz5A6pLX2Wc6c+O4f67Bzq\nc5Mz/cXFqY98ffTRR3h4ePCb3/zGmbs9Z727BTN+WDfySqpZuv7gaZfrFtCVwceube/RtW0REXEQ\nh420d+3axVNPPUVubi4Wi4WVK1dSXFyMl5cXs2fPBiAhIYF58+Y5qoR2cf2YBL5PL2LFxmwuSook\nvkvgKZdLiZvA94W7WHZwFX1DEzXaFhGRduew0O7fvz9vvvmmozbvNF6eZm5LSeYv73zPf5ft5eE5\nw7GYTz5BcXy0/X3hLvaUpNEvLMkF1YqIyIVMb0RrhT5xoYwd3JXcwio++TrztMvpTnIREXEkhXYr\n3TCuFyEBXnz6TRbZ+ae+UeL4aDtT17ZFRMQBFNqt5ONlYU5KMlabnf8u20uj1XbK5TTaFhERR1Fo\nt8GAnmGMGhBNdv5RVm7KPuUyGm2LiIijKLTbaMb43gT5efLh+oPkFlWdchmNtkVExBEU2m3k5+3B\nLZOSaLTaeXXZXmy2k0NZo20REXEEhfY5GJIYwcV9ozhwuIJVm3NOucyU+ImARtsiItJ+FNrnaOaE\n3gT4evDBlwfILzn5dasx/l0YHDFAo20REWk3Cu1zFODryc0TE2lotDWdJj/FaHpKfNO17U8PfqbR\ntoiInDeF9nkYnhzJsMQI0g6V88XW3JPmHx9tZ1XksKdknwsqFBGRC4lC+zwYhsGsKxLx87aweG0G\nRWU1Jy3zw2hb17ZFROT8KLTPU5C/FzdN6E1dg5XXVqSeFMwabYuISHtRaLeDkf2iGZgQxp7MUr7a\nceSk+Rpti4hIe1BotwPDMLhlUhI+XmYWrdlPSUVti/kabYuISHtQaLeT0EBvbry8NzV1Vt5Yue+k\nEbVG2yIicr4U2u3o0oFd6BsXwo6MYr7ZnddinkbbIiJyvhTa7cgwDOZMTsbLw8zC1fspP1rXYr5G\n2yIicj4U2u0sPNiHaWMTqKpt5M3P0lqEc4x/F4ZotC0iIudIoe0A44bGkNg9mK1phXyXWtBiXsrx\n0fYBjbZFRKRtFNoOYDIMbpuSjKfFxNur0qiorm+e1zzarsxhd3GqC6sUEZGORqHtIFEhvlx7WU8q\nqxtYuHp/i3nHR9vLDq7WaFtERFpNoe1AEy/qTs+ugWzck8+2tMLm6Rpti4jIuVBoO5DJZHDblD5Y\nzAZvrNxHVW1D8zyNtkVEpK0U2g4WE+7H1aPjKa+q553PfzhNrtG2iIi0lULbCSb9JJYeUQFs2JnH\nzgPFzdM12hYRkbZQaDuBxWzitinJmE0Gry1PpaauEdBoW0RE2sahoZ2WlsaECRN46623mqe98cYb\n9OvXj6qqKkfu2u3ERgUwdWQPSivreO+L9ObpU+InAhpti4jI2TkstKurq3nssccYOXJk87SlS5dS\nXFxMZGSko3br1n56SRwxEX6s/f4wezNLAOjqH82QyIEabYuIyFk5LLQ9PT2ZP39+i4CeMGEC9957\nL4ZhOGq3bs1iNnH7lD6YDINXl6dSW990mnxKnK5ti4jI2TkstC0WC97e3i2m+fv7O2p3HUZ8l0Am\nXxxLUXktH6w7AGi0LSIirWNxdQFnEhLii8VibvftRkQEtPs22+Jn1wxge0Yxn289xIQRcfTrGcbN\nQ65i28odfJazhrHJwy+IsxGu7nNnoT47h/rsHOrzmbl1aJeWVrf7NiMiAigsrGz37bbVrZOS+PNb\nW/jbwq08cttwfDwCGRI5kG0FO1ib+h39w/u4usTz4i59vtCpz86hPjuH+tzkTH9x0SNfLtKrWxAT\nLupOfkk1S9cfBH64tq3vbYuIyKk4bKS9a9cunnrqKXJzc7FYLKxcuZJLLrmEr7/+msLCQn7+858z\nePBgfv/73zuqBLd33ZiebE8vYuWmbC5KiqRn1+jm0fbu4tQOP9oWEZH2ZdjdeEjniNMk7nb6JTWr\nlKcXbiMm3I+H5gynsLaAJzY9S2xAN35/0a877LVtd+vzhUp9dg712TnU5yY6Pe7GknuEMG5IDLlF\nVXz8dWbzneTZlYd0J7mIiLSg0HYD08YmEBboxbJvssjKq2RK3AQMDF3bFhGRFhTabsDHy8KtKcnY\n7HZeXbaXSJ9IhkQO0GhbRERaUGi7if7xYYwe2IXsgqMs35hNikbbIiLyIwptNzLj8l4E+3vy8YaD\n2Gv8NdoWEZEWFNpuxNfbg1smJ9NotfPfZXuZ1GM8BgZLMpbRYGt0dXkiIuJiCm03M7hXOCP6RXHw\nSCW79jQwOmYEeVX5fJa5xtWliYiIiym03dDMCYkE+nqw5KsDjAwdQ7BXECuzvuDw0TxXlyYiIi6k\n0HZD/j4ezLoiiYZGG2+vPMiNidditVt5O3UxNrvN1eWJiIiLKLTd1EXJkVyUFEH6oXIKsgK4KGow\nmRXZrD20wdWliYiIiyi03djNVyTh521hyVcHuCImBT8PXz7OWEFRTYmrSxMRERdQaLuxID9Prrus\nJzV1VlZsOMK03ldRb2tgYer7enZbRKQTUmi7uTGDY+ge6c+GnXmENvakb1gSqaX72Zi3xdWliYiI\nkym03ZzJZHDzxEQAFqzez42J1+Jp9uT9/R9TUa+v4YiIdCYK7Q4gsXswI/pGkZlXyZ60Wq5OSKG6\nsYZ30z50dWkiIuJECu0O4oZxvfDyMLN4bQbDwi6iZ1APthXsYHvhbleXJiIiTqLQ7iBCAry4clQc\nR2sa+Gh9FjcnT8NimFm0bwk1jTWuLk9ERJxAod2BTLyoO1EhPnyxNZfGKj8mx42nvL6CJenLXF2a\niIg4gUK7A/GwmLhpQiI2u523V6UxIXYMXf2i2XB4I2mlGa4uT0REHEyh3cEMTAhjcK9w9uWUsS2t\nhJv7TMPAYEHqYuqtDa4uT0REHEih3QHNGN8Li9nEojXpdPGOYVz30RTWFLPs4CpXlyYiIg6k0O6A\nIkN8mXxxd0or6/jkm0x+2nMSYd6hfJ7zJdmVh1xdnoiIOIhCu4OaOiKO0EAvVm7KpqyikZnJ12Oz\n23h772KsNquryxMREQdQaHdQXp5mpo/rRaPVzjur95Mc2psRXS7i0NHDfJ79pavLExERB1Bod2DD\nkyNJjg1me0YxOzKKuL7XTwn0DODTzFXkVxW4ujwREWlnCu0OzDAMZk5MxGQYLFi9Hw/Dm+mJ19Bo\na+Tt1Pex2W2uLlFERNqRQ0M7LS2NCRMm8NZbbwFw5MgRZs+ezcyZM7nnnnuor6935O47hW4R/lw+\nNIaC0ho++y6bIZEDGBTRn4zyg2w4vNHV5YmISDtyWGhXV1fz2GOPMXLkyOZpL7zwAjNnzmTBggX0\n6NGDxYsXO2r3nco1l8YT4OvBJ19nUVpZx/TEq/GxeLM0fRmltWWuLk9ERNqJw0Lb09OT+fPnExkZ\n2Txt48aNjB8/HoBx48bxzTffOGr3nYqvtwfXj0mgrsHKu1+kE+wVxLW9plJrrWNR2hLsdrurSxQR\nkXbgsNC2WCx4e3u3mFZTU4OnpycAYWFhFBYWOmr3nc7ogV2I7xLAxj357Msu5ZIuPyExOIGdRXvZ\nWrDd1eWJiEg7sLhqx60Z/YWE+GKxmNt93xERAe2+TXdw1w2D+X8vfMWiLzJ47t4x3D3qVv7fisdY\nnP4Ro3oPIcDL36n1XKh9djfqs3Ooz86hPp+ZU0Pb19eX2tpavL29yc/Pb3Hq/FRKS6vbvYaIiAAK\nCyvbfbvuINTXg9EDurB+5xHeW7WP8cO6MTX+Cpakf8rL3y7k1r4znFbLhdxnd6I+O4f67Bzqc5Mz\n/cXFqY98XXLJJaxcuRKAzz77jEsvvdSZu+8Urh+bgI+XmaVfHaCyup5x3UYTGxDDpryt7C7e5+ry\nRETkPLQ6tI8ePQpAUVERmzdvxmY78zPAu3btYvbs2SxZsoQ33niD2bNnc/fdd7N06VJmzpxJWVkZ\n11xzzflVLycJ8vPk6tE9qaptZMmXBzCbzNycfAMmw8TC1PepbaxzdYkiInKODHsrLi4/9thjJCcn\nM3HiRKZNm0a/fv0ICgri0UcfdWhxjjhN0hlOvzRabcx79TuOFFXx0Jzh9IgO4OOMFazIWsPYbqO4\nIfFqh9fQGfrsDtRn51CfnUN9bnLep8f37NnDDTfcwPLly7n22mt5/vnnycrKarcCpX1ZzCZuntAb\nO/D2qjTsdjuT48YT5RvBukNfc6Bc/+1ERDqiVoX28cH42rVrufzyywH0NjM31yculIuSIkjPLeeb\n3Xl4mD2YmTwNO3be3vseDbZGV5coIiJt1KrQjo+PZ8qUKVRVVdGnTx+WLl1KUFCQo2uT8zT98l54\nWky890UGNXWN9AqO57KYkeRVF7Ayc42ryxMRkTZq1SNfjz/+OGlpaSQkJADQu3fv5hG3uK/wIB+m\njOjB0vUH+XhDJtMv78VVCSn+utBVAAAgAElEQVTsKNrDZ1lfMDRyIF39o11dpoiItFKrRtp79+4l\nLy8PT09P/va3v/H000+Tlpbm6NqkHUy+OJbwIG9Wbc7hSHEVPhZvbkq6Dqvdytupi/UlMBGRDqRV\nof34448THx/P5s2b2blzJw8++CAvvPCCo2uTduDpYWbG+N5YbXYWrN6P3W6nf3gfLooaTGZFNmsP\nbXB1iSIi0kqtCm0vLy/i4uL4/PPPmT59Or169cJk0qe4O4ohvcPpFx/K7oMlbNtfBMC03lfh5+HL\nxxkrKKopcXGFIiLSGq1K3pqaGpYvX87q1asZPXo0ZWVlVFRUOLo2aSeGYTBzQm/MJoN3Pt9PfYOV\nAE9/pvW+inpbAwtT39eXwEREOoBWhfZ9993Hxx9/zH333Ye/vz9vvvkmc+bMcXBp0p66hPkx8aLu\nFJXXsmJjNgDDo4bQNyyJ1NL9fJu3xcUViojI2bQqtEeMGMEzzzxDbGwse/bs4Y477uCqq65ydG3S\nzq4cFUeQnyeffptFUXkNhmFwU9J1eJk9+WD/x1TU601EIiLurFWhvXr1aq644goefvhh/vjHPzJp\n0iTWrVvn6Nqknfl4WbhhXAINjTYWrUkHINQ7hKsTplDdWMO7aR+6uEIRETmTVj2n/corr/DRRx8R\nGhoKQH5+Pvfccw9jxoxxaHHS/kb2i2bttsNs2VfInswS+saFcmnMCDbnf8+2gh1sL9zFoIj+ri5T\nREROoVUjbQ8Pj+bABoiKisLDw8NhRYnjGIbBzRMTMWh6L3mj1YbJMHFz8jQshplF+5ZQ3VDj6jJF\nROQUWhXafn5+/Pe//yU1NZXU1FReeeUV/Pz8HF2bOEiP6ADGDO7KkeJq1mw5BEC0XyST4yZQXl/J\n0oxPXVyhiIicSqtC+4knniAzM5MHHniAuXPnkpuby5/+9CdH1yYOdN2YBPy8LXy44SDlVU0ff5nY\nYwxd/aLZcHgTaaUZLq5QRER+rFWhHRYWxqOPPsrSpUtZsmQJDz/8MKWlpY6uTRzI38eDay/rSU2d\nlcVrm25Ks5gszOpzAwYGC1IXU29tcHGVIiJyonN+rdkjjzzSnnWIC4wdHEP3SH827MwjI7ccgB6B\n3bm8+6UU1hSz7OAqF1coIiInOufQ1hu0Oj6TqemmNGi6Kc127L/pT3teQbh3KKuz15FdcciVJYqI\nyAnOObQNw2jPOsRFErsHM6JvFJl5lazfcQQAT7MnNyVfjx07b6W+h9VmdXGVIiICZ3lOe/Hixaed\nV1hY2O7FiGvcMK4X2/YXsXhtBsOSIvDz9iA5tDcjuwznmyPfsTp7HZPi9P10ERFXO2Nob9ly+vdR\nDx48uN2LEdcICfDiylFxLF6bwdKvDjafMr+u11R2F6eyLHM1gyP6E+UX6eJKRUQ6tzOG9p///Gdn\n1SEuNvGi7ny1/TBfbM1lzKCudIv0x9fDlxsTr2H+rjd5O/V9fjv0fzAZ+iSriIirtOo1pjNnzjzp\nGrbZbCY+Pp5f/epXREVFOaQ4cR4Pi4mbJiTy3HvbeXtVGr+fOQTDMBgcOYDBEf35vnAX63M3clm3\nka4uVUSk02rVsOmSSy4hOjqaW2+9ldtuu43u3bszbNgw4uPjmTt3rqNrFCcZmBDG4F7h7Msp47vU\ngubp0xOvwcfiw4cZyyitLXNhhSIinVurQnvLli389a9/5YorrmDChAk8+eST7N69mzlz5tDQoBdw\nXEhmjO+FxWywaE06dfVNd40HeQVyXa+p1FrreGffEj3uJyLiIq0K7eLiYkpKSpp/rqys5PDhw1RU\nVFBZqW8wX0giQ3yZ9JNYSivr+PTbzObpI7sMJzGkF7uK97KlYLvrChQR6cRaFdq33HILKSkpXHfd\ndVx//fVMmDCB6667ji+++IIbb7yx1Tuz2Ww8+OCDzJgxg9mzZ5ORofdbu6OfjowjJMCLFRuzKSit\nBo59HSz5ejxMHryX9iFHG6pcXKWISOfTqhvRpk2bxuTJk8nMzMRmsxEbG0twcHCbd/b5559TWVnJ\nO++8Q3Z2Nk888QQvv/xym7cjjuXlaebGy3vxrw93887n6fxm2kAAwn3C+GnPK1iS/inv7/+YW/vO\ncHGlIiKdS6tG2lVVVbz++uv8/e9/56WXXmLRokXU1ta2eWeZmZkMHNgUALGxsRw+fBirVW/bckfD\nkyNJjg3m+/QidmQUN08f1200sQHd2JS3ld3F+1xYoYhI59Oq0H7wwQc5evQoM2bMYPr06RQVFfHH\nP/6xzTtLTExk/fr1WK1WDhw4QE5Ojr4W5qYMw2DmhERMhsHC1Wk0NNoAMJvMzOpzAybDxMLU96lt\nbPtf3kRE5Ny06vR4UVERzz77bPPP48aNY/bs2W3e2ZgxY9i6dSs333wzSUlJ9OzZ84x3IoeE+GKx\nmNu8n7OJiAho921eiCIiApgyKo5P1h/k670FTLu8d/P0a45O4oM9y1l1ZA23Dz31fQ3qs3Ooz86h\nPjuH+nxmrQrtmpoaampq8PHxAaC6upq6urpz2uG9997b/O8TJkwgLCzstMuWHrsJqj1FRARQWKg7\n3ltr0kXdWLvlEO98to+BcSGEBHgBcFnkpWzI3MLK/evoF9iPnkE9WqynPjuH+uwc6rNzqM9NzvQX\nl1adHr/xxhtJSUnh7rvv5u6772bq1KnMnDmzzYWkpqY2v4zlyy+/pG/fvphMei2mO/Pz9mDa2ATq\nGqy890V683QPk4Wbk6cB8Pbe92iwNbqqRBGRTqNViTlt2jQWLlzINddcw7XXXss777xDenr62Vf8\nkcTEROx2O9OmTePll1/W29Q6iNEDuxAXHcC3e/JJy/nhjWgJwXFcGjOSvOoCVmZ+7sIKRUQ6h1ad\nHgfo0qULXbp0af55x44dbd6ZyWTiySefbPN64lomw+DmKxJ54o0tvL0qjYfnDMdkanoX/dUJk9lZ\ntIeVWV8wJHIgMf5dzrI1ERE5V+d8blqvsuxcEroGMWpANDkFR1n7fW7zdG+LNzOSrsVmt/F26mJs\ndpsLqxQRubCdc2j/+KtfcuGbNrYXPl5mlnx5gMrq+ubp/cP7MDxqCFkVOazNWe/CCkVELmxnPD0+\nZsyYU4az3W7X89WdUJCfJ1ePiuedNeks+fIAt0xObp43rfdV7C1J4+MDKxkY0Z8I9NiGiEh7O2No\nL1iwwFl1SAdx+bBufLnjCOu+P8yYwTH0iG4KZ39PP6b1vorX9ixkYer7PNL93rNsSURE2uqMp8dj\nYmLO+D/pfCxmEzMn9MYOvL0qrcW9DRdFDaZfWDKppfv54uA3ritSROQCpYekpc36xoUyLCmC9Nxy\nvtmd1zzdMAxuSroOb7MXr25dRHblIRdWKSJy4VFoyzm58fJeeFpMvPdFBjV1P7xYJcQ7mFv6zqDe\n2sC/tr9GaW3ZGbYiIiJtodCWcxIe5MOUET0or6rn4w2ZLeYNiujH7MHXUV5fwb92vEZt47m98lZE\nRFpSaMs5m3xxLOFB3qzanMOR4qoW86Ymjmd014s5dPQwr+1ZqOe3RUTagUJbzpmnh5kZ43tjtdlZ\nsHp/i5vSDMNgeuI1JIf0ZmfRHpakf+rCSkVELgwKbTkvQ3qH0y8+lN0HS9i2v6jFPLPJzM/6zyLa\nN5I1OV/xVa7uKBcROR8KbTkvhmEwc0JvzCaDdz7fT32DtcV8Xw8f7hx0O/4efryb9iF7i9NcVKmI\nSMen0Jbz1iXMj4kXdaeovJYVG7NPmh/uE8r/DLwVk2HilV1vcaQq3wVVioh0fAptaRdXjoojyM+T\nT7/Noqi85qT5PYPimJ18A7XWWl7a/l8q64+6oEoRkY5NoS3twsfLwrSxCTQ02li05tTfWr8oeghT\n4ydSXFvKyzteo97a4OQqRUQ6NoW2tJuR/aNJiAlky75CtqcVnnKZlLgJDI8aysGKbN7a+64+8Soi\n0gYKbWk3JsNg1sQkDOCZt7eQlnPy29AMw+DmPtNICIpjS8F2Pj24yvmFioh0UAptaVc9ogOYdUUi\nFdX1/GXhNlZtzjlpNO1hsvCLAbcS7h3K8szVbMrb6qJqRUQ6FoW2tLtxQ7vx+C8vwc/bwsLV+3nl\nk73U/ehRMH9PP+4cdDs+Fm/e3vse6WUHXVStiEjHodAWhxiQEM5Dc4bTs2sg3+zO489vbqGwrOVd\n5dF+kdzRfzY27Px75+sUVBedZmsiIgIKbXGg0EBv/nfmUMYO7kp2wVEefe07dh0obrFMcmhvZiRd\nS1VDNf/a8SrVDdUuqlZExP0ptMWhPCwmbpmczJyUZOoarPzt3e18+k1mi+vco7pezITYMeRXFzJ/\n55s02hpPv0ERkU5MoS1Ocdmgrjxw8zCCA7x4f90B/rFkV4vvcF+dkMKg8H6klWWwaN8SPQomInIK\nCm1xmp5dA3l4znCSY4PZmlbI429sbv6kp8kwcWu/m4gNiOHrI9+xOnudi6sVEXE/Cm1xqkA/T+6f\nMZgrhnfnSHE1j72+ma3HXsTiZfbkfwbOIdgriA8zlvN9wU4XVysi4l4U2uJ0ZpOJGeN78z9X9cNm\nt/P3D3by/roMbDY7wV5B3DnwNjzMHry25x2yKnJcXa6IiNtwamhXVVVx9913M3v2bGbMmMFXX33l\nzN2Lm7m4bxR/mH0RkcE+fPpNFs+9t52jNQ10C+jK7f1m0mhr5F87XqO09uQ3q4mIdEZODe0lS5YQ\nHx/Pm2++yfPPP88TTzzhzN2LG+oe6c+Dcy5iYEIYuw6W8Ohr35GdX8mA8L5c3/tKKuoreWnHq9Q2\n1rq6VBERl3NqaIeEhFBW1jRqqqioICQkxJm7Fzfl5+3Bb6YN5KpRcRSV1/KnN7fwze48xnYbxWUx\nI8k9eoRXdy/AZre5ulQREZcy7E5+tuZnP/sZ2dnZVFRU8PLLLzN48ODTLtvYaMViMTuxOnG1Tbvz\n+OuCLVTXNnLVpT25ZWoyz3z9L7bn7WFK73HMGTrd1SWKiLiMU0P7ww8/ZPPmzTz22GOkpqbyf//3\nf3zwwQenXb6wsLLda4iICHDIdqWl8+lzXkk1f/9gJ4eLqkjsFsRtP+3F/H2vcKQqn+mJ1zCm2yXt\nXG3HpePZOdRn51Cfm0REBJx2nlNPj2/dupXRo0cDkJycTEFBAVar9SxrSWcTHerLH2YP46KkCNIO\nlfPUWzuZEjWNAA9/3kv7kN3F+1xdooiISzg1tHv06MH27dsByM3Nxc/PD7NZp7/lZD5eFu68pj83\njEugvKqel949wHDvKVhMZv676y0OH81zdYkiIk7n1NC+8cYbyc3NZdasWdx///3MmzfPmbuXDsYw\nDFIu7sF9Nw7Gx8vCp59X0L12NLXWOv65/b+U1+k0moh0Lk6/Ea0tdE2742rvPheV1fCPJbvIyq8k\nIvEQR4N30SOwO78d8ks8zR7ttp+ORsezc6jPzqE+N3Gba9oi5yo82Ie5s4Yyqn80hWkxGKXdyKrI\n4Y29i/QomIh0Ggpt6TA8PczcPrUPs65Iou5AX2wVIWwr2MHHB1a6ujQREadQaEuHYhgGlw/txv/e\nNByvwxdjq/Xls6wvWJ+zydWliYg4nEJbOqRe3YKYd8soosvHYG/0YGHa+2zM3uPqskREHEqhLR1W\nsL8Xf5g+hv7GROx2eCP1bdbtTXN1WSIiDqPQlg7NYjbxq4ljGRE0ESwNvHNwAYu/2ovNfR+KEBE5\nZwptuSDcMnwCF4ddgsm7mtXFS3nx/e+prm10dVkiIu1KoS0XjFkDr6J/aD/MgaXssa7j0dc3kVt4\n1NVliYi0G4W2XDBMhomfDbiJ2IBuWCIOU+K9m8ff2MJ3qQWuLq3dNTRayc6vJONQGTabLgWIdBYW\nVxcg0p48zZ78cuBt/GXzi5R234+tMYCXllo5eHEs14/pidnUsf6e2mi1UVBaQ25RFbmFR4/9s4r8\n0mqOX7b38TKT2C2Y5B4hJMeG0D3KH5NhuLZwEXEIhbZccIK8Arhz0G38dcs/sPbcQYBlNCs2ZpOV\nV8kvr+5HgK+nq0s8ic1up6i8timYC6uawzmvpIpGa8uRtK+XhV4xQcSE++Hp5cH3aQVszyhme0Yx\nAH7eFhK7B5McG0JyjxBiIvwU4iIXCL17XBzCHfq8q2gv/9rxGn4efkQWTmB3Wi1hgV7cdd0A4qID\nXVKT3W6ntLKuOZRzi5pC+nBxFfUNLV/H6ulhIibcj5hwf2Ii/Jr+PcKfYH9PjGMhfLzPJRW1pGaX\nkppVRmp2KUXltc3b8ffxIKn78ZF4MF3D/ZrXl9Zxh+O5M1Cfm5zp3eMKbXEId+nz2kMbeC/tQ7r4\nRdOvYSqfrM/FbDZxy6QkRg/s4tB9V1TXNwVz4VEOF1Vx6FhQ19S1vKvdYjaIDvWjW4TfsXBuCumw\nIO+zjpBP1+eishpSs5sCPDW7lJKKuuZ5Ab4eJMWG0Ce2KcijQ30V4mfhLsfzhU59bqLQPoEOCudw\npz6/m7aUdYe+pm9oEqP8r+SVj1Oprmtk3NAYbhrfG4v5/K5zV9c2Hgvloy1CuqK6ocVyJsMgKtSH\nmHA/uob70S2iKZwjQ3zO+Vp7a/pst9spLK8lNav02Gi8lLKj9c3zg/w8SToW4H1iQ4gM8VGI/4g7\nHc8XMvW5yZlCW9e05YJ3fa8rKawpZk/xPiJ8w3hozhX8/YOdfLE1l+z8Sn51zQBCArzOup26BiuH\ni6o4fGzEfDykSyvrTlo2PMibwb2CiIloCuiYcD+6hPniYTE74lc8I8MwiAz2ITLYh8sGdcVut1NQ\nWsPeYwG+L7uMTXsL2LS36S77kACvphA/dk08IshbIS7iJjTSFodwtz7XNNby7JZ/crgqjxt6X83I\nqBG8unwvm/YWEOTnyZ3X9CexezDQdMd2XnE1h4qONgd0bmEVhWU1/Pj/LMH+nsRE+B+73tw0eu4S\n5ou3p3P+Ptwefbbb7eSVVJOaVcre7DL2ZZdSecJZgrBAL5JiQ46FeDDhQT7nW3aH427H84VKfW6i\n0+Mn0EHhHO7Y55LaUp7e/CJH66v45cA59AtLZtV3Obz7RQaGAQN6hlFQVkN+STXWHz377O/jQbfj\no+YTQtrP28NFv00TR/TZbrdzuKiq6Zp4Vin7cso4WvNDiIcHeTcHeHJsCKGB3u26f3fkjsfzhUh9\nbqLQPoEOCudw1z5nVmTz3NZ/YTJM3D/sLmL8u5CaVcpLH+6isroBb0/zDzeDHQvmmAh/An093PIU\nsTP6bLPbyS2sar4mnpZTRtUJr4iNDPEh+YTT6cH+Z7/U0NG46/F8oVGfmyi0T6CDwjncuc9bC3bw\nn11vEeIVzO8uupsgr0DqG6wcrWkgJMDLLcP5dFzRZ5vNTk7BUVKzm66H78sppabO2jw/OtS3KcR7\nhJAUG0KQn/s9F99W7nw8X0jU5yYK7RPooHAOd+/zZ5lf8OGB5cQGdOPeob/E09wxg8Ud+myz2cnK\nr2x+TjztUBl19T+EeNdwP5Jig+kTG0JSbLBbvtzmbNyhz52B+txEoX0CHRTO4e59ttvtvJX6Ht8e\n2czgiP78rP8sTEbHesUpuGefrTYbmXmVzXem7z9UTl1DyxCPiw6gR3QAcdEBxEYG4OXp/Lvq28Id\n+3whUp+b6JEvkR8xDIObkq6juKaE7wt38VHGCq7pNcXVZbmdRlsj9dZ66qz1Tf+01VNvbWj+ud5a\nT72t/oSff5hXF1CPd3I9ib3qqKyt5Wh9LbWNdZQ0GBRWhLBxaxjWilAMqxddwvzoEdUU4nFdOkaQ\ni7iCQls6LYvJws8H3MIzm//Oquy1NNobCfEKxmSYMAwDEwaGYcJkGBg0/dNkmI5NPz7vh5+b/v3Y\nus3r/PBz07zj2zu2/I+2bfz4Z4wT5rXcFzSdMWgRqsdCtOW0huaArfvRvHpbQ8ufT9hGnbUem912\nli62jofJAy+LJ4GentQ01lDrfQgiDzX9d2gIpKQshLzDoXyTGgJWTwyDFkHeIzqA2Ch/pz1KJ+Ku\ndHpcHKIj9bmgupBnNv+DqsZqV5fSJibDhN1ux37S0+NtZ2DgZfbE89j/vMyeeJo8T5jm0TytxTJm\nD7xOmnbCeqamZU689GC1Wck5mktaaQZppRmklx2kwfbDI2V+9jBMVeGUFwRQVxIMNsuxGiE6zPdY\niAc2nVp3UpB3pOO5I1Ofm+ia9gl0UDhHR+tzRX0lWRU52Ox27HYbNo79027HZrdhx37qediwH1/m\nRz83LXf835umH1/Gdsp17NixNS1/LIyblmn584n1eHlaMKzmlkF5QpCeHMQeJ083eWIxWVx213yj\nrZHMihzSStNJK83gYHkWjfama+AGBmEe0fjUR1FbEkzBIW9qT3gBnbOCvKMdzx2V+txEoX0CHRTO\noT47x4XY53prAwfKM5tH4lmVOc2n6S2Gma6+3QimKxwNozTPh+z8ampPuFv9eJD3iA4gLur4qfUA\nfLzOPcgvxD67I/W5idvciPbee+/x0UcfNf+8a9cutm3b5swSRMTNeZo9SA7tTXJobwBqG2tJLztI\nWllTiOdUZpNNFhjgEeNBn75xdPWOxbMukqoSX7LzqsjKr+TI7mq+3Z0PNAV5VKhvy7vWzzPIRVzB\nZSPtTZs2sXz5ch5++OHTLqORdselPjtHZ+xzVUM16WUH2FeaQVppOkeq8pvneZu96BXck97BPYkw\nd6O63Jfs/KNk5VWSlV/Z4iUwbQnyzthnV1Cfm7jl6fFbb72VZ555hoiIiNMuo9DuuNRn51Cfm+5H\n2H/sVHpaaQYFNUXN8/wsvvQO6UliSC96B/fEVBdA1rEQz8yrICv/6EnfN28O8hPvXO8W0un77Aw6\nnpu4XWjv2LGDBQsW8OSTT55xucZGKxYXfMpQRDqu4upSdheksSt/H7sK9lFUXdI8L9g7kH6RifSL\nTKJ/VBIRPmHkl1aTkVNO+qEy0g+VkXGo5bvVAeK7BnL7lf0YnBjp7F9HpAWXhPZDDz3E1KlTufji\ni8+4nEbaHZf67Bzq85nZ7XaKa0vYd+zO9LTSDCrqf+hXiFcwiSEJJIX0IjEkgRDv4KbvjZfVHBuN\nV5KVV8m+nDJsNjujB3Rh+uW98Pdx7dfdLlQ6npu43Uh70qRJfPzxx3h6nvkdxArtjkt9dg71uW3s\ndjv51QXHrodnsL80o8Xz+RE+YSSG9CIpJIHeIQkEejb94VleZ+Vvb28hu+Aogb4ezJyYyPDkyA71\ncZmOQMdzE7e5exwgPz8fPz+/swa2iEh7MwyDaL8oov2iGNPtEmx2G7lH89hfms6+0gzSyw6w4fBG\nNhzeCEAXvygSQxIY1XMof7hlGKs3H2Lp+oP868PdfLs7n1lXJHaK74mL+3B6aBcWFhIaGurs3YqI\nnMRkmOge0JXuAV25PPayH97WVpLBvtJ0MsozOVKVz7pDX/OT6KHMGH4dQ5MieH15Kt+nF5GaXcq0\nsQmMHRKDSaNucQK9XEUcQn12DvXZsRpsjWSWZ/NJ1grSSzLp6hfNHf1nEekbwfodR1i0Jp3qukZ6\ndQtizuRkuob7ubrkDk3Hc5MznR43z5s3b57zSmmb6ur6dt+mn5+XQ7YrLanPzqE+O5bZMBHmE0JK\n30spKi9nV/FeNuZtIcI3nBEJvbhkQDTF5bXsOljCl9sPYwcSYoIwmTTqPhc6npv4+Xmddp5CWxxC\nfXYO9dk5Avx9iPfpSZRPODuKdrM5/3tqGmsYFJXMxX2j6R7pT2p2Kd+nF7M1rZAeUQG61n0OdDw3\nUWifQAeFc6jPzqE+O8fxPnf178KgiP7sK81gV/Fe9pWm0zcsifioUC4d2JXqukZ2Hihm/Y4jVNU0\n0Lt7EBaz6ew7EEDH83FnCm0dTSIibdDFL4rfX3Q3wyIHcaA8iz9veo7Ukv34elu4ZVISD9w8lMhQ\nX1ZvOcSDr2xkR0axq0uWC4hG2uIQ6rNzqM/O8eM+W0wWBkcMwM/Dj51Fe9iYtwWTYaJnUBzhQT6M\nGdQFgF0HSvhmdx75pdX07h6Ml4fe8HgmOp6baKQtItLODMNgbPdR3Dv0lwR5BfLxgZW8vOM1qhqq\n8bCYue6yBB6aM5z4LgF8uzufP87fyDe78nDjB3akA1Boi4ich/igHjww/B6SQ3qzqziVp757nqyK\nHAC6R/rzh9kXMWN8b+obrcz/ZA9/e287ReU1Lq5aOiqdHheHUJ+dQ312jrP12cvsyfDoIQDsLNrL\nxiOb8ff0JzYgBpPJICEmiBF9ozhcXM3ugyV8uf0IXh5m4rsE6lWoJ9Dx3ESnx0VEHMxkmPhpzyu4\nc9DteJm9eGffB7yxdxH11qYQCg/24b7pg7jjp32wmA0Wfr6fJ97cwqGCoy6uXDoSjbTFIdRn51Cf\nnaMtfY70DWfosTvL95TsY2fRHpJCe+Hv4YdhGHSPDGD0gC6UHa1rfilLo9VOr5hAzKbOPY7S8dxE\nz2mfQAeFc6jPzqE+O0db++zr4cNPugyjuqGaXcWpbDyyhUjfCLr4RQHg5WlmWFIk8V0C2JdTxvb0\nYrbsK6R7pD9hQZ33pSw6npsotE+gg8I51GfnUJ+d41z6bDZM9A/vQ+Sxt6h9l7+N2sZakkJ6YTKa\nRtRRob5cOrAr9Q1WdmYUs37nESqq6undLRgPS+cbdet4bqJr2iIiLjI8egi/u+jXRPlGsCbnK57b\n9jJldeXN8328LMycmMjc2cPoGu7HF9tyefA/G9m2v9CFVYu70khbHEJ9dg712TnOt88Bnv5cHD2M\noppi9pTs47u8bXQPiCHc54fPFIcGenPZoK6YTQa7Dhbz7e58couqSOwWhLen07+i7BI6npvo9PgJ\ndFA4h/rsHOqzc7RHny0mC0MiBuDr4cuOot3H3qJmpmdQj+bHvkwmg6TYEIYmRZKTf5RdB0v4avsR\nAnw9iI3yv+AfD9Px3ESnx0VE3IBhGIzrPpp7h9557C1qK3h5x+tUN1S3WC4m3I8HZg1l1hWJWO12\nXl2eyjPvfE9BafVptoVn2z8AABPhSURBVCydhUJbRMTJerZ4i9penvzuebIrDrVYxmQYXD60G0/c\ncTGDEsLYm1XKg//ZxPKNWVhtNhdVLq6m0+PiEOqzc6jPzuGIPp/4FrUdRXvYeGQzAZ7+dA+IaXEa\n3MfLwsV9o+ga7kdqVinb9hexPb2I+C6BBPuf/jRqR6TjuYmuaZ9AB4VzqM/OoT47h6P6bBgGiSEJ\nxAV2Z1dRKlsLd1BcW0qf0ETMJnOL5WIi/Bk9sCsV1fXsOtB0rbuuwUrvbkGYL5Bvdut4bnKm0Dbs\nbvzJmcLCynbfZkREgEO2Ky2pz86hPjuHM/pcXFPKf3a9RVZlDl39orljwGyifCNOuezuzBJeX55K\nUXktkcE+3JqSTJ8eIQ6tz5GKa0rYXbyPclspA4MH0COwu6tLcqmIiIDTzlNoi0Ooz86hPjuHs/rc\nYGvkg/0f82XuN3ibvZjdZzqDIwecctm6eisfrj/Iyu+ysdvh0oFdmH55L/y8PRxe5/lqtDWSUZbJ\n7uJUdpfsI68qv3megcHFXYZxVc8UgrxOH14XMoX2CfSHnHOoz86hPjuHs/u8KW8rC1Pfp97WwOXd\nL+WahCktTpef6OCRCl5bnkpOwVEC/TyZNTGRYUkRbvd4WFldeVNIF+8jtSSNumMfUvEweZAU0ot+\nYcnERkbx9ralHK7Kw9vsxeS48YztPhoPU+d4Tv04hfYJ9Iecc6jPzqE+O4cr+nz4aB6v7HqT/OpC\nEoLiuL3/zQR7BZ1y2UarjZWbsvlwfSaNVhtDeof///buPDjKOs/j+LuTTkjSnbPTHRJykQNycIhc\ngqAooDMyyghqIhKt2lp3HWtmamadKSkch5nSsgqr3LUU12Nkati4DtHEA0YOFUEZAYPCosRuCCEE\ncnXn6Jydq7uf/SMYAxJO83Q/ne/rnxTN08mvP/D0J8/Rvx+rb5tMbKTvblTzeD1Ud5w+W9Q26roa\nhv7OHG4i35RDvimH7JgMQoIHzw6YzZE02tvY11DO1pM76R5wER9uYkXWz5gWn+d3v4iMFintYeRN\nTh2SszokZ3X4Kudedy//ayvlkONrIkOM/MuUVUyKzRpxe3uri79tt3HsTBsh+iBSLUYmmA1MMBtJ\nNhtJNhuIjAgdtfF29HfybcsxKlpsWFsr6XH3AIMTy2THZJwt6slYRrhWPzxn14CLbdUf82ndPryK\nl5zYbFZm30mScfyojd9fSGkPI29y6pCc1SE5q8OXOSuKwp7az3nnxD9QFIU7M25nadqioUVHzudV\nFP75dQMffXmGxhYXHu+5b/FRhlCSzQaSzUYmxBtIthhJMhkYF3rh0+8X41W81HScGTrtfbrz+8+a\nx4XFDpX0pNgsxgVf+peFC+Xc2G2ntHIr1tbjBOmCWJB0A8sylmIMMVzxeLVCSnsYeZNTh+SsDslZ\nHf6Q88n2GjYefYO2vnammHJ5KK+AiJCIiz5nwO2lsdVFXVMXtU3d1DZ1UdfUTUtH7znb6QBzTDgT\nvivzs18T4sJ/sMZ310A31pbjVLTY+Lb1GN1nZ3ML0gWRFZNBvmky+aYcxkdYrvh09kg5K4pCRYuN\nssqtOHqaidCHsyzjNhYm3TDitX4t86vS3rJlC6+//jp6vZ5f//rXLFq0aMRtpbS1S3JWh+SsDn/J\nubO/i79V/B2bsxJTWBz/OnU1qZHJV/x9evrc1DV1U9vcRZ1jsMxrm7ro7nWfs50+OIhEUzhxCX0Q\n5aA9qBZHXwMKg7URHRo1eDQdn8Pk2CzC9de2FvilcnZ73Xxau49t1R/T6+kl0ZDAyuw7yY2bdE0/\n19/4TWk7nU4KCwspKyvD5XLx4osv8tRTT424vZS2dknO6pCc1eFPOXsVLx9Uf8SOU7vQB+m5L3s5\n85PmXPNNWoqi0N7dT21TF6ccrdhaK2kYOEXPuHp0If1nt9Hh7YwhuDsBS3Aq6bHJpJy9Xj7BbLjm\nj5tdbs6d/V1sPbmDffUHUVCYGp/HiqyfYYmIv6af7y/8prS3bdtGeXk5lzsJm5S2dknO6pCc1eGP\nOVe02NhUsZlut4u542dSOPluQi/juvGFKIpCfXfj0J3eJ9tr8CqD85tHhhjJMGYSSwq6LguO5gFq\nm7qxO12c3x6xkeMGT63Hf3+KPSk+ghD95Z3CvtKcz3TWUVq5hRNt1QTrgrk1ZSG3p996zUf8vuY3\npf3aa69x8uRJ2tra6Ojo4Fe/+hXz5s0bcXu324P+Mv+xhRBirHF0t/Bfn/+FKmcNadET+I8b/43E\nSMtlPbdnoJdv7DYON1RwuOEorT1twODkJlmmdGYk5jMjcQoTY1MueNNb34CHWnsnNY0dnGoY/FrT\n0EFL+7nXy4N0kBhvJD0xirTEKNLGR5KeGEWCyUBw0LV/hEtRFA7UHqL4/96h2dVKdFgU909dzqKJ\nN4x4s56WqV7ahw4dYsOGDdTX1/Pggw+ye/fuEU/ryJG2dknO6pCc1eHPOQ943ZRWbuGfdQcICw6j\nKPfeC86ipigKdpeDoy02vm05xom2ajyKBwCDPoJc0yTyTTnkxU3GGHr1d2Z39QxQ3/zddfLvb37r\n6Tv3enmoPojEeMP3d7KbDVyXOx5378BV/dx+zwC7Tn/KhzW76fcOkBo5gXuyl5MZk37Vr8VXLnak\nreo0MyaTiRkzZqDX60lNTcVgMNDa2orJZFJzGEIIETBCgvTcP3kFmdHp/N1Wxl+OFrM45SaWZ/4U\nj+LhuLNq6LR3S69z6HmpkRPIOzvBSXrUhY+mr4YxPIRJKTFMSokZekxRFJydfUMF/l2h1zV1UdM4\n/JehI0xMjGJuroVZORbioi7/NHdocAg/nbiEGxJn8X7Vdg7aD/Ofh/6bmZbp/DzrDuLCtDs3+3Cq\nHmnb7XbWrFnDxo0baW9vZ8WKFezatYugoAv/Z5Ejbe2SnNUhOatDKznXdzXyl6P/g8PVTHxYHG39\nHbi9g0e44fowcuK+P5r2h3m9PV4v9taeoTI/09TN1yea8Z6tpUnJ0czOTWBWjoVow5Vdrz/Zfoq3\nj2/hdGctIUEhLE1bxNLUm6/6ur+a/OaaNsDmzZspLS0F4Be/+AWLFy8ecVspbe2SnNUhOatDSzn3\nuHt58+wsahOMieTFDX5uOiM6ze8/02w2R1J1qoWvjjkotzo4fqYNBdDpICc1lrl5CVw/yYwx/PLu\nUvcqXsobD/F+1XY6+juJHRfDz7PuYKZlul9PiepXpX0lpLS1S3JWh+SsDi3mPOB1a26hjfNzdnb2\ncdDm4KDVTlV9BwDBQTryJ8YxJ9fCjGwz4eMu/Rp73b3srNnNJ6c/w614yIhO597su0iNuvLPuKtB\nSnsYLe58WiQ5q0NyVofkrI6L5dzc1sNBm4MvrHZO27uAwclfpmWamJNrYXpm/CWnYm1ytfBu1Qcc\naTqKDh3zEmdxZ+ZPiAr1/aWC4aS0h5GdTx2SszokZ3VIzuq43JwbW12UW+2UWx3UN3cDEBoSxHVZ\n8czJTWBqRtxFPxtua62krHKr3y4BKqU9jOx86pCc1SE5q0NyVsfV5Fzb1EW51UG51Y7DObiqWPi4\nYGZkm5mTayEvPQ598A9vdvZ4PXxeX84/Tu6k2+3CHG5iZfadTDHl+vx6t5T2MLLzqUNyVofkrA7J\nWR3XkrOiKNTYOym3Dl4Db+noA8AQpmfmZAtzci3kpMYSdN6ELt0DLrZVf8Rndfv9ZglQKe1hZOdT\nh+SsDslZHZKzOn6snL2Kwsn6Dsq/tXPwmIP2rsG506MMocyabGZObgJZydEEDTuibui2UzZsCdCF\nE+axbOJSDJdYSW00SGkPIzufOiRndUjO6pCc1TEaOXu9CsfPtFFuc/ClzUFXz+CMa7GR45idY2Fu\nXgLp4yPR6XQoisLRFitllVtp6mnBoI9gWcZtLEiaq+rH5aS0h5GdTx2SszokZ3VIzuoY7ZzdHi+2\nGiflVgdfHW8amlrVHBPGnNwEZudYSLEY8Sge9tR+zvbqXUNLgN6TfRc5cdmjNrbhpLSHkZ1PHZKz\nOiRndUjO6lAz5wG3l4rqVsqtdg5XNtM3MDgPe6IpYugI3BDpZWvVTvY3DC4BOj0+n7uzfoY5YnSn\n3pbSHkZ2PnVIzuqQnNUhOavDVzn3DXj4pqqFcqudI1UtDLgHlyVNNhuZm2chOc3DroadVLWfQq8L\n5paUhfwk/VbCRmkJUCntYWTnU4fkrA7JWR2Sszr8IeeePjdHTjRTbnXwzckWPN7BikxPNJKc1ckJ\n5QDt/e1EhUZyV+ZPmTv++h99CVC/WeVLCCGE8Gfh4/TckD+eG/LH0907wKHjTZRbHVhPOTnVoIOg\nOSRMaqA7ysYb1rf4rHYf/z7tIWLGRasyPiltIYQQ4gIMYSEsnJbEwmlJdLj6+epYEwetdo7ZgiHU\nREjKcU5Ti9Vew7zUaaqMSUpbCCGEuISoiFBumTGBW2ZMwNnZx5fHHJRbE6j60knURPUWHpHSFkII\nIa5AbOQ4ls5KYemsFDxeL8FBP+417YtR7ycJIYQQAUbNwgYpbSGEEEIzpLSFEEIIjZDSFkIIITRC\nSlsIIYTQCCltIYQQQiOktIUQQgiNkNIWQgghNEJKWwghhNAIKW0hhBBCI6S0hRBCCI2Q0hZCCCE0\nQqcoiuLrQQghhBDi0uRIWwghhNAIKW0hhBBCI6S0hRBCCI2Q0hZCCCE0QkpbCCGE0AgpbSGEEEIj\nxkxpP/PMMxQUFFBYWMjXX3/t6+EEtGeffZaCggJWrlzJhx9+6OvhBLTe3l6WLFnCO++84+uhBKwt\nW7Zw1113sWLFCvbs2ePr4QSk7u5ufvnLX1JUVERhYSF79+719ZD8lt7XA1BDeXk5NTU1lJSUUFVV\nxdq1aykpKfH1sALSgQMHqKyspKSkBKfTyd13381tt93m62EFrJdffpno6GhfDyNgOZ1OXnrpJcrK\nynC5XLz44ossWrTI18MKOO+++y4TJ07ksccew26389BDD7Fjxw5fD8svjYnS3r9/P0uWLAEgMzOT\n9vZ2urq6MBqNPh5Z4Jk9ezbTpk0DICoqip6eHjweD8HBwT4eWeCpqqrixIkTUiKjaP/+/cybNw+j\n0YjRaOSpp57y9ZACUmxsLMeOHQOgo6OD2NhYH4/If42J0+PNzc3n/CeIi4ujqanJhyMKXMHBwURE\nRABQWlrKTTfdJIU9StavX8+aNWt8PYyAVltbS29vL4888girVq1i//79vh5SQFq2bBn19fUsXbqU\n1atX8/jjj/t6SH5rTBxpn09mbh19H3/8MaWlpfz1r3/19VAC0nvvvcd1111HSkqKr4cS8Nra2tiw\nYQP19fU8+OCD7N69G51O5+thBZT333+fpKQkNm7ciM1mY+3atXKfxgjGRGlbLBaam5uH/uxwODCb\nzT4cUWDbu3cvr7zyCq+//jqRkZG+Hk5A2rNnD2fOnGHPnj00NjYSGhrK+PHjmT9/vq+HFlBMJhMz\nZsxAr9eTmpqKwWCgtbUVk8nk66EFlEOHDrFgwQIAcnJycDgcclltBGPi9PiNN97Izp07AaioqMBi\nscj17FHS2dnJs88+y6uvvkpMTIyvhxOwnn/+ecrKynjrrbe49957efTRR6WwR8GCBQs4cOAAXq8X\np9OJy+WS662jIC0tjSNHjgBQV1eHwWCQwh7BmDjSvv7668nPz6ewsBCdTse6det8PaSAtW3bNpxO\nJ7/5zW+GHlu/fj1JSUk+HJUQVychIYHbb7+d++67D4A//OEPBAWNiWMdVRUUFLB27VpWr16N2+3m\nT3/6k6+H5LdkaU4hhBBCI+RXRiGEEEIjpLSFEEIIjZDSFkIIITRCSlsIIYTQCCltIYQQQiOktIUI\nMLW1tUyZMoWioqKhVZMee+wxOjo6Lvt7FBUV4fF4Lnv7+++/ny+++OJqhiuEuAJS2kIEoLi4OIqL\niykuLmbz5s1YLBZefvnly35+cXGxTG4hhB8aE5OrCDHWzZ49m5KSEmw2G+vXr8ftdjMwMMAf//hH\n8vLyKCoqIicnB6vVyqZNm8jLy6OiooL+/n6efPJJGhsbcbvdLF++nFWrVtHT08Nvf/tbnE4naWlp\n9PX1AWC32/nd734HDK71XVBQwD333OPLly5EQJHSFiLAeTwePvroI2bOnMnvf/97XnrpJVJTU3+w\nMENERARvvPHGOc8tLi4mKiqK5557jt7eXu644w4WLlzIvn37CAsLo6SkBIfDweLFiwHYvn07GRkZ\n/PnPf6avr4+3335b9dcrRCCT0hYiALW2tlJUVASA1+tl1qxZrFy5khdeeIEnnnhiaLuuri68Xi8w\nON3v+Y4cOcKKFSsACAsLY8qUKVRUVHD8+HFmzpwJDC7Ik5GRAcDChQt58803WbNmDTfffDMFBQWj\n+jqFGGuktIUIQN9d0x6us7OTkJCQHzz+nZCQkB88dv4SlIqioNPpUBTlnDm4vyv+zMxMPvjgAw4e\nPMiOHTvYtGkTmzdvvtaXI4Q4S25EE2KMiIyMJDk5mU8//RSA6upqNmzYcNHnTJ8+nb179wLgcrmo\nqKggPz+fzMxMDh8+DEBDQwPV1dUAbN26lW+++Yb58+ezbt06GhoacLvdo/iqhBhb5EhbiDFk/fr1\nPP3007z22mu43W7WrFlz0e2Liop48skneeCBB+jv7+fRRx8lOTmZ5cuX88knn7Bq1SqSk5OZOnUq\nAFlZWaxbt47Q0FAUReHhhx9Gr5e3GSF+LLLKlxBCCKERcnpcCCGE0AgpbSGEEEIjpLSFEEIIjZDS\nFkIIITRCSlsIIYTQCCltIYQQQiOktIUQQgiNkNIWQgghNOL/AWKWxV0tVhv9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlcVXX+P/DXYVVkRy4qQpYOqSSF\nWkaoKAOilo5jppThWDSKy5iWpiIBmqA0lTMllk6mRZYLUjq5oNNEo3bFrVyYtLRiRGXfZBFZzu8P\nv96fqCxyOPecc+/r+Xjcx4O7nfcH0PvifT7nfI4giqIIIiKiNrJQegBERKRtDBIiIpKEQUJERJIw\nSIiISBIGCRERScIgISIiSRgkJIkoitiwYQOeeuophIWFISQkBPHx8bh69aqk7c6fPx9BQUE4cODA\nPb/31KlTiIyMlFS/ve3evRsVFRV3fe7tt9/G559/buQREbUfgeeRkBR//etfceTIEaxevRoeHh6o\nqqpCQkICfv31V2zatAmCILRpu3369EF6ejq8vb3becTKGDlyJDZu3IguXbooPRSidseOhNqstLQU\nKSkpWLlyJTw8PAAAdnZ2iI2NxUsvvQRRFFFTU4PY2FiEhYVh1KhRWLlyJerr6wEAwcHB2Lx5MyZM\nmIDBgwdj5cqVAICIiAg0NDQgMjIS3377LYKDg3Hs2DFD3Zv36+rqsGTJEoSFhSE0NBSzZ89GRUUF\nMjMzERoaCgBtqn+7iIgIrFu3DpMmTcLjjz+OTZs2Yc2aNRg5ciRGjx6NixcvAgB++eUXPPvssxg1\nahRCQ0Px1VdfAQAWL16MX3/9FRERETh27BgWLVqEFStWYMyYMdizZw8WLVqENWvW4NSpUxg2bBgq\nKysBAB988AHmzJnT3r82onbHIKE2O3nyJLp06YKePXs2etzW1hbBwcGwsLDAxx9/jNzcXOzatQtf\nfPEFjh07ZviABYCjR49iy5Yt2L59Oz799FPk5uYiJSUFAJCSkoKgoKAm6x88eBA5OTnYu3cv9u3b\nh169euH7779v9Jq21L+bo0ePYtOmTVixYgX++te/okuXLti7dy969eqF7du3AwDefPNNDB8+HHv2\n7EFiYiKWLFmC2tparFixwvD9DBw4EACg1+uRmpqKUaNGGWr4+fkhJCQEa9euRV5eHj777DPExMS0\n+HsgUhqDhNqstLQUbm5uzb4mIyMDEydOhJWVFTp06IAxY8bg0KFDhufHjBkDS0tLeHh4wM3NDVeu\nXGl1fVdXV1y4cAH79+9HdXU15s6diyFDhshSf/jw4bCysoKPjw+qq6sRFhYGAPDx8UF+fj4AYM2a\nNYa5mQEDBqCmpgYFBQV33V5AQABsbW3veHzevHnYu3cvFi9ejJkzZ0Kn07X650GkFAYJtZmLiwvy\n8vKafU1xcTGcnJwM952cnFBUVGS4b29vb/ja0tLSsNupNfz8/BATE4OUlBQEBgbi1VdfRXl5uSz1\nO3XqZHjNrfctLCzQ0NAAADhw4AAmT56MsLAwjB49GqIoGp673a1jur3OqFGjcPz4cYwZM6bZ759I\nLRgk1GaPPPIIioqKkJWV1ejx2tparFq1CtXV1ejcuTNKS0sNz5WWlqJz5873VOfWD2sAKCsrM3w9\ncuRIpKSk4JtvvkF1dTXWr1/f6L3tUb81amtrMXfuXMyYMQPp6enYuXNnmw40yMvLwz//+U88+eST\nWL16dbuPk0gODBJqM0dHR7z00ktYuHAhsrOzAQDV1dWIjY3Ff//7X3Ts2BHDhg1Damoq6uvrUVVV\nhR07djQ773E37u7uOHv2LIAbh9HW1NQAALZv347k5GQAgLOzMx544IE73tse9VujuroaVVVVeOih\nhwDcmJuxtrZGVVUVAMDKyuqObuluEhIS8NJLLyE6Ohp79uzBjz/+2O5jJWpvDBKS5C9/+QsmTpyI\nGTNmICwsDOPHj4ebm5vhr+mIiAh06dIFTz75JJ5++mkMGzas0QRza8ycORMbN27EU089hQsXLqBX\nr14AgN///vfIysrCiBEjMGrUKJw/fx4vvPBCo/e2R/3WuBmq48aNw7hx4+Dt7Y2QkBBERUWhqqoK\nI0eORHh4OHbv3t3kNjIyMpCTk4Pw8HDY29tj3rx5iImJuafdfURK4HkkREQkCTsSIiKShEFCRESS\nMEiIiEgSBgkREUnCICEiIkmslB5AU9q6aqxUShzEVt/E2c9ys7Qwr78jyqurFalrZ2OjSF2lfr91\nDcocrmwhKPP9yvlzbuvnoLE/x1QbJERE5k6pP6jvlXn9SUpERO2OHQkRkUpppSNhkBARqZSg0LzP\nvWKQEBGpFjsSIiKSgLu2iIhIEgYJERFJopU5Em2MkoiIVIsdCRGRSnHXFhERScIgAVBZWYnCwkIA\nN667bWdnJ2c5IiKTYtZBcvr0aSQkJKC8vBwuLi4QRRH5+fnw8PBAbGwsHnzwQTnKEhGZFLMOksTE\nRCQkJKBnz56NHs/KysKyZcuwadMmOcoSEZkYbRwPJcsoRVG8I0QAwNfXF/X1yiwxTURE8pClI3n4\n4YcRFRWFkJAQuLq6AgAKCwuRnp6Oxx57TI6SREQmRyu7tgRRpiugHD16FHq93jDZrtPpEBgYCH9/\n/9YNjBe2kh0vbGUcvLCVcZjiha0cHFzb9L6rV4vbeSTNky1IpGKQyI9BYhwMEuMwxSBxdHRr0/vK\ny4vaeSTN43kkREQqpZVdWwwSIiKV0spaWwwSIiKV0kpHoo24IyIi1WJHQkSkUlrpSBgkRESqxSAh\nIiIJONlORESScNcWERFJwiAhIiJJtBIk2tgBR0REqqXajkSpJcCU+AugtLLS6DUBwLFjR0XqKvVX\nllJrXllZWipSVym19cqsHWdno9qPszbTSkdiej95IiITwaO2iIhIEnYkREQkEYOEiIgkkLMjSUxM\nxMmTJyEIAqKjo+Hn52d4btOmTdi5cycsLCzw0EMPYcmSJc1ui0FCRKRScs2RHDlyBNnZ2diyZQsu\nXLiA6OhobNmyBQBQUVGB9evXY9++fbCyssKLL76IH374AY888kiT29PGTA4REbUbvV6PkJAQAEDP\nnj1RVlaGiooKAIC1tTWsra1RVVWFuro6VFdXw8nJqdntsSMhIlIpuXZtFRYWwtfX13Df1dUVBQUF\nsLe3h62tLWbNmoWQkBDY2triySefxP3339/s9tiREBGplCAIbbrdq1vP26uoqMDatWuxd+9efP31\n1zh58iTOnj3b7PsZJEREKiVXkOh0OhQWFhru5+fnw93dHQBw4cIFeHl5wdXVFTY2Nhg4cCDOnDnT\n7PYYJEREKiVXkAQGBiI9PR0AkJWVBZ1OB3t7ewCAp6cnLly4gGvXrgEAzpw5gx49ejS7Pc6REBGp\nlFxHbfXv3x++vr4IDw+HIAiIi4tDWloaHBwcEBoaisjISEyZMgWWlpbw9/fHwIEDmx+naORFrcrL\ny+Ho6GjMkveEa23JT6mzdevq6xWpa25rbVVdv65IXaXWUpPT/T36tel9v/52up1H0jyj79qaPXu2\nsUsSEZGMZNm1tWnTpiafy8vLk6MkEZHpMee1tjZu3IiAgADodLo7nqurq5OjJBGRyTHrRRuTk5Ox\nfPlyxMTEwOa2/ZaZmZlylCQiMjlaCRLZJturq6tha2sLC4vG0zBZWVmNzqhUG062y4+T7aaNk+3t\np1ev/m163/nzJ9p5JM2T7fDfjk18SKk5RIiI1EQrHQnPIyEiUimtBAnPbCciIknYkRARqZRWOhIG\nCRGRSgka2WnEICEiUit2JEREJAV3bRERkSQMEiIikkQrQaKNmRwiIlItdiRERCol14Wt2huDhIhI\npbSya4tBchsjXzASAGBra2f0mgBQUVWuSN3rdcosnqjUon5K/JsClFs8USsfflqglZ8lg4SISLUY\nJEREJAHnSIiISBKt7NrSRtwREZFqsSMhIlIprXQkDBIiIpVikBARkSQMEiIikoRHbRERkSTsSIiI\nSBJBIyckaqNvIiIi1ZI1SO62xlBubq6cJYmITIcgtO1mZLIEyf79+zF8+HAEBARg4cKFqKioMDz3\n2muvyVGSiMjkCILQppuxyRIk69atwxdffIHvvvsO/fv3R2RkJK5evQpAuZVQiYi0RhAs2nQzNlkm\n2y0tLeHs7AwAmDRpEtzc3BAZGYkPPvhAM0chEBEpTSufl7IESf/+/TF9+nT8/e9/R4cOHRASEgJb\nW1tMnToVpaWlcpQkIjI5Zh0kr732GjIzM2Fra2t4bMiQIfD398fu3bvlKElEZHLMOkgAYNCgQXc8\nZm9vj4kTJ8pVkoiIFMATEomIVIpLpBARkURmvmuLiIikMfs5EiIikoZBQkREkjBIiIhIEq1Mtmtj\nlEREpFrsSIiIVIq7toiISBIGCRERScIgISIiibQxjc0guU19Q4PRa14uyjd6TQDoeX8/Rer+738/\nKlI3u7BQkbrebm6K1FXqr1lLC2U+/JT4vwvI+/2yIyEiIkm0EiTa6JuIiEi12JEQEamUVjoSBgkR\nkUoxSIiISBKtLJHCICEiUil2JEREJAmDhIiIJGKQEBGRSiUmJuLkyZMQBAHR0dHw8/MzPHflyhW8\n8sorqK2tRd++fbFs2bJmt6WNmRwiIjMkCEKbbi05cuQIsrOzsWXLFiQkJCAhIaHR8ytXrsSLL76I\n1NRUWFpa4vLly81uz2hBUlxcbKxSREQmQRAs2nRriV6vR0hICACgZ8+eKCsrQ0VFBQCgoaEBx48f\nR3BwMAAgLi4O3bp1a3Z7sgRJRkYGwsLCMHXqVPz0008YO3YsIiIiEBwcjG+//VaOkkREJkeujqSw\nsBAuLi6G+66urigoKABw44/+Tp06YcWKFXj22Wfx9ttvt7g9WeZI3n//fWzYsAGXL19GVFQU1qxZ\ng969e6OwsBBRUVEICgqSoywRkUkx1lFboig2+jovLw9TpkyBp6cnpk2bhoyMDAwbNqzJ98vSkdjY\n2KBbt24YOHAgdDodevfuDQDo3LkzbG1t5ShJRGRy5OpIdDodCm9ZDTs/Px/u7u4AABcXF3Tr1g3e\n3t6wtLREQEAAfv7552a3J0uQuLm5Yf369QCAzZs3AwByc3ORmJiILl26yFGSiMjkyDVHEhgYiPT0\ndABAVlYWdDod7O3tAQBWVlbw8vLCb7/9Znj+/vvvb3Z7suzaWrlyJf797383eqyoqAjdunXDq6++\nKkdJIiJqpf79+8PX1xfh4eEQBAFxcXFIS0uDg4MDQkNDER0djUWLFkEURfj4+Bgm3psiiLfuHCNF\nLo5TWlVl9JoA4N/3UUXq8sJWxlFdW6tIXaUubGWlUF05v98//nFum973xRd/a+eRNI8nJBIRqRbP\nbCciIgm41hYREUkiWDBIiIhIAnYkREQkiVaChIs2EhGRJOxIiIhUSisdCYOEiEilGCRERCRJK1Y7\nUQUGCRGRWrEjISIiKbhri4iIJGGQUKs529kpUlepxRPd3b0UqXsl9zdF6jYotC6qtaVSiydaKlL3\n7JUritTt08JlaM0Bg4SISKXYkRARkSRca4uIiCRhR0JERJIwSIiISBKN5EjTQZKamtrsGydMmNDu\ngyEioltoJEmaDJLjx483+0YGCRERAc0EyYoVKwxfNzQ0oKioCO7u7kYZFBERaeeorRbPWNLr9QgJ\nCUFERAQAIDExERkZGXKPi4jI7AmC0KabsbUYJKtWrcLWrVsN3UhUVBTWrFkj+8CIiMydyQSJnZ0d\nOnfubLjv6uoKa2vreyqi1+vvfWRERGZOK0HS4uG/HTp0wJEjRwAAZWVl2LVrF2xtbZt8/Zdfftno\nviiKeP/99zFz5kwAwLhx46SMl4jIbJjMeSRxcXGIj4/H6dOnERoaigEDBmDZsmVNvj45ORnOzs4I\nCgoyPFZTU4OcnJz2GTERkZnQymR7i0HStWtXrF27ttUb/Oqrr7BmzRqcO3cOixYtgqenJw4cOIDZ\ns2dLGigREalTi0Fy9OhRrFy5EhcuXIAgCPDx8cFrr72GAQMG3PX1tra2mDdvHn755RcsW7YM/v7+\naGhoaPeBExGZOo3s2Wp5sn3ZsmWYP38+MjMzodfrMWfOHCxdurTFDT/wwANYu3YtunTpgu7du7fL\nYImIzInJTLa7ubkhICDAcD8wMBDd7uFCLuPGjeMEOxFRW2ikJWkySC5evAgA6NevHz766CM88cQT\nsLCwgF6vR9++fY02QCIic6X5o7b+9Kc/QRAEiP93mdBPP/3U8JwgCJgzZ478oyMiMmOaP2rr3//+\nd5NvOnHihCyDISKi/0/zHclNFRUV2LFjB0pKSgAAtbW12L59Ow4ePCj74IiISP1aPGpr7ty5OHfu\nHNLS0lBZWYlvvvkG8fHxRhgaEZF508pRWy0GSU1NDZYtWwZPT08sXLgQn3zyCfbs2WOMsRERmTWt\nBEmLu7Zqa2tRVVWFhoYGlJSUwMXFxXBEFxERyUcjUyQtB8kf/vAHbN26Fc888wxGjx4NV1dXeHt7\nG2NsRETmTetHbd307LPPGr4OCAhAUVERzyMhIjICzR+19fe//73JN+3fvx8vv/yyLAMiIqIbNB8k\nlpaWxhwHERFpVJNBwmXfiYiUpfmORGn1Ci09b6HAL66ypsboNQGgrqFekbrZly4oUvf+Hr6K1P31\ntyxF6lpZKLNXoaauTpG63ZydFakrJwYJERFJopW1tlo8IREASkpKcPr0aQDgRaqIiIxEKyckthgk\nX331FSZNmoTFixcDAN544w1s27ZN9oEREZk7QWjbzdhaDJINGzZgx44dcHFxAQAsXLgQW7dulX1g\nRERmTyNJ0mKQODg4oGPHjob7HTp0gLW1tayDIiIi7Whxst3FxQVffPEFampqkJWVhd27d8PV1dUY\nYyMiMmtaOWqrxY5k6dKlOH36NCorKxETE4OamhosX77cGGMjIjJrgoXQppuxtdiRODo6IjY21hhj\nISKiW2ilI2kxSIKCgu76zWRkZMgxHiIi+j8mEySfffaZ4eva2lro9XrUKHQmNhGROTGZIPH09Gx0\nv0ePHoiMjMTUqVNbXaSurg55eXnw8PCAlRVPpiciag2TCRK9Xt/ofm5uLv73v/81+57ly5cjJiYG\nAPDdd99hyZIl6Ny5M4qKirB06VIMGTJEwpCJiEhNWgySNWvWGL4WBAH29vZYunRps+85d+6c4evk\n5GR88skn8PLyQkFBAWbPns0gISJqBaFVi1gpr8UgWbRoEXx9723V1FvbMScnJ3h5eQEA3N3duWuL\niKi1ZNy1lZiYiJMnT0IQBERHR8PPz++O17z99tv44YcfkJKS0uy2Wsy7pKSkex7gzz//jJdffhlz\n5sxBdnY29uzZAwD46KOP4ODgcM/bIyIyR3It2njkyBFkZ2djy5YtSEhIQEJCwh2vOX/+PI4ePdqq\ncbbYHnTr1g0RERF4+OGHGy2N0tyldm+/TO99990H4EZH8vbbb7dqYERE5k6uyXa9Xo+QkBAAQM+e\nPVFWVoaKigrY29sbXrNy5UrMmzcPq1evbnF7LQZJ9+7d0b1793sa5GOPPXbXx8eMGXNP2yEiMmdy\nBUlhYWGjKQtXV1cUFBQYgiQtLQ2PPfbYHUftNqXJINm5cyfGjh3LS+4SESnEWMudiKJo+Lq0tBRp\naWnYsGED8vLyWvX+JudIUlNTpY+OiIhUR6fTobCw0HA/Pz8f7u7uAIDDhw+juLgYkydPxuzZs5GV\nlYXExMRmt6eRg8uIiMyPXJPtgYGBSE9PBwBkZWVBp9MZdmuNHDkSu3fvxtatW7F69Wr4+voiOjq6\n2e01uWvr+++/x7Bhw+54XBRFCILAtbaIiGQm1xxJ//794evri/DwcAiCgLi4OKSlpcHBwQGhoaH3\nvL0mg6Rv37545513JA2WiIjaTs4VUubPn9/ofu/eve94Tffu3Vs8hwRoJkhsbGxaPWNPRETtT4lr\ni7RFk0Fyt7MciYjIiDSyaGOTk+0LFiww5jiIiEijuPAVEZFKmcwy8kREpAwGCRERScIgISIiSTR/\n1JbSLDSSxO2hrqFekbpOHe0UqavU93v63HFF6jo6OCtSt6rqqiJ1bRW65lCHW1YnNxXsSIiISBKN\n5AjX2iIiImnYkRARqRR3bRERkTQMEiIikoJHbRERkSTctUVERJIwSIiISBKtBAkP/yUiIknYkRAR\nqRQ7ktsUFxcbqxQRkUkQLNp2MzZZSn777beIjY0FAOj1egwfPhxTpkxBcHAwMjIy5ChJRGRyBEFo\n083YZNm19e6772Lt2rUAgOTkZHzyySfw8vJCSUkJpk+fjmHDhslRlojItGhk15YsQVJXV4dOnToB\nABwcHNC9e3cAgLOzM0RRlKMkEZHJ0cociSxBEhkZiXHjxiEwMBDOzs6YOXMm/P39kZmZiWeeeUaO\nkkREJsesg2Ts2LEYOnQovvvuO1y6dAmiKKJz585ITEyEh4eHHCWJiEghsh3+6+zsjNGjR8u1eSIi\nk8e1toiISBKz3rVFRETSMUiIiEgSjeQIg4SISLU0kiQMEiIildLKZDtX/yUiIknYkRARqRQn24mI\nSBIGCRERScIgISIiSRgkREQkiVaO2mKQEBGplEYaEvUGSYMZXbekg7WNInWVapsbFPrVOtt1UqRu\nVdVVRera2HRQpG71tSpF6lZUVytS18nOTpG6aqLaICEiMnsaaUkYJEREKsXJdiIikoRBQkREkvCo\nLSIikoQdCRERSaKVIOHqv0REJAk7EiIildJKR8IgISJSKY3kCIOEiEi1eNQWERFJoZVdW7JMtvfv\n3x9vvPEGioqK5Ng8EZFZEAShTTdjk6Uj8fX1xciRI/Hqq6+ia9euGD9+PPz9/WFlxQaIiKi1tNKR\nyPLJLggCHn30UWzcuBGnT5/Gtm3b8Prrr6NTp05wc3PDunXr5ChLREQKkCVIxFuWgO/Xrx/69esH\nAMjPz0dBQYEcJYmITI6FOXckf/jDH+76uE6ng06nk6MkEZHJMetdWxMmTJBjs0REZsWsOxIiIpJO\nIznCICEiUisB2kgSBgkRkUrJuWsrMTERJ0+ehCAIiI6Ohp+fn+G5w4cP45133oGFhQXuv/9+JCQk\nwMKi6dMOufovEZGZOXLkCLKzs7FlyxYkJCQgISGh0fOxsbF49913sXnzZlRWVuLAgQPNbo8dCRGR\nSsl11JZer0dISAgAoGfPnigrK0NFRQXs7e0BAGlpaYavXV1dUVJS0uz22JEQEamUXEukFBYWwsXF\nxXDf1dW10Tl+N0MkPz8fhw4dQlBQULPbY0dCRKRSxjr899aTyG8qKipCVFQU4uLiGoXO3TBIiIhU\nSq5dWzqdDoWFhYb7+fn5cHd3N9yvqKjAn//8Z8ydOxeDBw9ucXvctUVEpFIWgtCmW0sCAwORnp4O\nAMjKyoJOpzPszgKAlStX4k9/+hOGDh3aqnGyIyEiUim59mz1798fvr6+CA8PhyAIiIuLQ1paGhwc\nHDB48GB8+eWXyM7ORmpqKgDgqaeewqRJk5oep3i3nWMqUN/QoPQQjKa2vl6Ruh2srRWpW1NXp0hd\nWzO7jIGNTQdF6lZfq1KkbsW1a4rUdbKzk23b6adPtel9Yf38Wn5ROzKv/1lERBrCM9slUmqxMiU6\noTqFOpK8KmX+ctQ5OipS92JxsSJ1u7dwxItcistLFanr/8hwReoezNyrSF05cdFGIiKSxKyXkSci\nIukYJEREJAl3bRERkSRa6Uh4QiIREUnCjoSISKW00pEwSIiIVMpCGznCICEiUiuekEhERJLwqC0i\nIpKEcyS3EUVRMz8UIiI10MpnpiyH/x48eBCjRo3C5MmTcerUKTz99NMYOnQoRo4ciSNHjshRkoiI\nFCJLR5KcnIyPP/4YZWVliIiIwMaNG9G7d29cunQJCxYswGeffSZHWSIik2LWcyTW1tbQ6XTQ6XRw\ndHRE7969AQCenp6wtLSUoyQRkcnRyq4tWYLEyckJq1atQklJCby9vREbG4shQ4bghx9+gJubmxwl\niYhMjlaCRJY5kqSkJOh0Ojz++OP48MMPMXDgQBw6dAidO3dGYmKiHCWJiEyOhdC2m7HJ0pHY2dlh\n8uTJhvtjx47F2LFj5ShFRGSyeEIiERFJopXJdq7+S0REkrAjISJSKa1MtjNIiIhUikFCRESSaGWO\nhEFCRKRS7EiIiEgSBgkREUmilSsk8vBfIiKShB0JEZFK8cx2IiKShHMkEjWIoiJ1LS2Mv7fP1lqZ\nX0NHGxtF6l4sLlakbjdnZ0XqKvVhcPXaNUXqHj62X5G6D/sGKFL355+Py7ZtHv5LRESSsCMhIiJJ\n2JEQEZEkWulIePgvERFJwo6EiEiltNKRMEiIiFRKK2e2M0iIiFSKJyQSEZEk3LVFRESS8PBfIiKS\nRCsdCQ//JSIiSWTtSERRRElJCURRhJubm5yliIhMjlY6ElmC5Ndff0VSUhIuXbqEnJwc9OzZE2Vl\nZfD19cXixYvh4eEhR1kiIpOilTkSWXZtxcXFYcmSJfjnP/+J7du3o1+/fti/fz/Gjx+P+fPny1GS\niMjkCILQppuxyRIk169fh5eXFwCgR48eOHfuHABg6NChuKbQ0tZERFpjIbTtZmyy7Nry8fHBK6+8\nAj8/Pxw4cACDBg0CAERHR6NXr15ylCQiMjlaOSFREMX2v4KUKIr4+uuv8dtvv8HHxwdDhw4FAJw9\nexYPPvhgq1qv+oaG9h5WqyixT7Kuod7oNQHAQlDmoL1LJSWK1FXqwlZWlpaK1L1SWqpIXSc7O0Xq\nmuKFrcqrq9v0PseOHdt5JM2TpSMRBAEhISF3PN67d285yhERkYJ4QiIRkUpp5agtBgkRkUqZ9Xkk\nREQkHYOEiIgk4a4tIiKShB0JERFJopUrJHL1XyIikoQdCRGRSsl5ZntiYiJOnjwJQRAQHR0NPz8/\nw3Pfffcd3nnnHVhaWmLo0KGYNWtWs9tiR0JEpFJyLdp45MgRZGdnY8uWLUhISEBCQkKj55cvX473\n3nsPn3/+OQ4dOoTz5883uz0GCRGRSlkIQptuLdHr9YbVR25e5qOiogIAcPHiRTg5OaFr166wsLBA\nUFAQ9Hp98+OU/q0SEZEc5OrOKf3jAAAKiklEQVRICgsL4eLiYrjv6uqKgoICAEBBQQFcXV3v+lxT\nVDtHYmlhPhlnbanaX4MsvHm1TKPoqtAilUqRc/FEUyd17V7z+bQmIiIAgE6nQ2FhoeF+fn4+3N3d\n7/pcXl4edDpds9tjkBARmZnAwECkp6cDALKysqDT6WBvbw8A6N69OyoqKpCTk4O6ujp88803CAwM\nbHZ7slyPhIiI1O2tt97CsWPHIAgC4uLi8N///hcODg4IDQ3F0aNH8dZbbwEARowYgcjIyGa3xSAh\nIiJJuGuLiIgkYZAQEZEkJnfcaXOn/cvpp59+wsyZMzF16lQ8//zzRqkJAG+++SaOHz+Ouro6TJ8+\nHSNGjJC1XnV1NRYtWoSioiLU1NRg5syZGD58uKw1b3Xt2jU89dRTmDlzJsaPHy97vczMTLz88sv4\n3e9+BwDw8fHB66+/LntdANi5cyc+/PBDWFlZYc6cORg2bJjsNbdt24adO3ca7p85cwbff/+97HUr\nKyuxcOFClJWVoba2FrNmzcKQIUNkr9vQ0IC4uDj8/PPPsLa2Rnx8PHr27Cl7XZMjmpDMzExx2rRp\noiiK4vnz58WJEycapW5lZaX4/PPPizExMWJKSopRaoqiKOr1evGll14SRVEUi4uLxaCgINlr7tq1\nS1y3bp0oiqKYk5MjjhgxQvaat3rnnXfE8ePHi9u3bzdKvcOHD4t/+ctfjFLrVsXFxeKIESPEq1ev\ninl5eWJMTIzRx5CZmSnGx8cbpVZKSor41ltviaIoirm5uWJYWJhR6u7bt098+eWXRVEUxezsbMPn\nB90bk+pImjrt/+ZhbXKxsbHBP/7xD/zjH/+Qtc7tHn30UUPH5ejoiOrqatTX18PS0lK2mqNHjzZ8\nfeXKFXh4eMhW63YXLlzA+fPnjfKXudL0ej0CAgJgb28Pe3t7vPHGG0YfQ3JysuHIHbm5uLjg3Llz\nAIDy8vJGZ13L6bfffjP8H/L29sbly5dl/z9kikxqjqS50/7lZGVlhQ4dOshe53aWlpaws7MDAKSm\npmLo0KFG+w8QHh6O+fPnIzo62ij1ACApKQmLFi0yWr2bzp8/j6ioKDz77LM4dOiQUWrm5OTg2rVr\niIqKwnPPPdfiWkft7dSpU+jatavhJDW5Pfnkk7h8+TJCQ0Px/PPPY+HChUap6+Pjg4MHD6K+vh6/\n/PILLl68iJKSEqPUNiUm1ZHcTjSTI5v/9a9/ITU1FR999JHRam7evBk//vgjFixYgJ07d8p+Jbcv\nv/wSjzzyCLy8vGStc7sePXpg9uzZGDVqFC5evIgpU6Zg3759sLGxkb12aWkpVq9ejcuXL2PKlCn4\n5ptvjHbFvNTUVPzxj380Si0A2LFjB7p164b169fj7NmziI6ORlpamux1g4KCcOLECUyePBkPPvgg\nHnjgAbP53GhPJhUkzZ32b6oOHDiADz74AB9++CEcHBxkr3fmzBm4ubmha9eu6NOnD+rr61FcXAw3\nmdfPysjIwMWLF5GRkYHc3FzY2NigS5cueOKJJ2St6+HhYdid5+3tjc6dOyMvL0/2QHNzc4O/vz+s\nrKzg7e2NTp06GeXnfFNmZiZiYmKMUgsATpw4gcGDBwMAevfujfz8fKPtYpo3b57h65CQEKP9jE2J\nSe3aau60f1N09epVvPnmm1i7di2cjbRA37FjxwydT2FhIaqqqoyyP/tvf/sbtm/fjq1bt+KZZ57B\nzJkzZQ8R4MaRU+vXrwdwY1XUoqIio8wLDR48GIcPH0ZDQwNKSkqM9nMGbqyt1KlTJ6N0XTfdd999\nOHnyJADg0qVL6NSpk1FC5OzZs1i8eDEA4D//+Q/69u0LCzNaMLa9mFRH0r9/f/j6+iI8PNxw2r8x\nnDlzBklJSbh06RKsrKyQnp6O9957T/YP9927d6OkpARz5841PJaUlIRu3brJVjM8PBxLlizBc889\nh2vXriE2Ntak/+MFBwdj/vz5+Prrr1FbW4v4+HijfMB6eHggLCwMEydOBADExMQY7ed8+zLixjBp\n0iRER0fj+eefR11dHeLj441S18fHB6IoYsKECbC1tTXawQWmhkukEBGRJKb7pyQRERkFg4SIiCRh\nkBARkSQMEiIikoRBQkREkjBISDY5OTl46KGHEBERgYiICISHh+PVV19FeXl5m7e5bds2wzIp8+bN\nQ15eXpOvPXHiBC5evNjqbdfV1eHBBx+84/H33nsPq1atava9wcHByM7ObnWtRYsWYdu2ba1+PZGa\nMUhIVq6urkhJSUFKSgo2b94MnU6H999/v122vWrVqmZPDkxLS7unICGitjGpExJJ/R599FFs2bIF\nwI2/4m+uYfXuu+9i9+7d+PTTTyGKIlxdXbF8+XK4uLhg06ZN+Pzzz9GlSxfodDrDtoKDg7FhwwZ4\neXlh+fLlOHPmDADghRdegJWVFfbu3YtTp05h8eLFuO+++7B06VJUV1ejqqoKr7zyCp544gn88ssv\nWLBgATp27IhBgwa1OP7PPvsMO3bsgLW1NWxtbbFq1So4OjoCuNEtnT59GkVFRXj99dcxaNAgXL58\n+a51iUwJg4SMpr6+Hvv378eAAQMMj/Xo0QMLFizAlStX8MEHHyA1NRU2Njb4+OOPsXbtWsyaNQvv\nvvsu9u7dCxcXF8yYMQNOTk6Ntrtz504UFhZi69atKC8vx/z58/H++++jT58+mDFjBgICAjBt2jS8\n+OKLePzxx1FQUIBJkyZh3759SE5OxtNPP43nnnsO+/bta/F7qKmpwfr162Fvb4/Y2Fjs3LnTcCEz\nZ2dnfPzxx9Dr9UhKSkJaWhri4+PvWpfIlDBISFbFxcWIiIgAcONqdAMHDsTUqVMNz/v7+wMAvv/+\nexQUFCAyMhIAcP36dXTv3h3Z2dnw9PQ0rDM1aNAgnD17tlGNU6dOGboJR0dHrFu37o5xZGZmorKy\nEsnJyQBuLP1fVFSEn376CdOmTQMAPP744y1+P87Ozpg2bRosLCxw6dKlRouCBgYGGr6n8+fPN1uX\nyJQwSEhWN+dImmJtbQ3gxsXB/Pz8sHbt2kbPnz59utHS6Q0NDXdsQxCEuz5+KxsbG7z33nt3rCEl\niqJhDav6+vpmt5Gbm4ukpCTs2rULbm5uSEpKumMct2+zqbpEpoST7aQK/fr1w6lTpwwXItuzZw/+\n9a9/wdvbGzk5OSgvL4coine9wJO/vz8OHDgAAKioqMAzzzyD69evQxAE1NbWAgAGDBiAPXv2ALjR\nJSUkJAC4cSXNH374AQBavHhUUVERXFxc4ObmhtLSUhw8eBDXr183PH/48GEAN44Wu3mN96bqEpkS\ndiSkCh4eHliyZAmmT5+Ojh07okOHDkhKSoKTkxOioqIwefJkeHp6wtPTE9euXWv03lGjRuHEiRMI\nDw9HfX09XnjhBdjY2CAwMBBxcXGIjo7GkiVLEBsbi127duH69euYMWMGAGDWrFlYuHAh9u7da7j+\nR1P69OmD++67DxMmTIC3tzfmzJmD+Ph4BAUFAbhxIarp06fj8uXLhpWnm6pLZEq4+i8REUnCXVtE\nRCQJg4SIiCRhkBARkSQMEiIikoRBQkREkjBIiIhIEgYJERFJwiAhIiJJ/h9RUggzKzfSfgAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "266KQvZoMxMv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "id": "lRWcn24DM3qa", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Here is a set of parameters that should attain roughly 0.9 accuracy." + ] + }, + { + "metadata": { + "id": "TGlBMrUoM1K_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = train_linear_classification_model(\n", + " learning_rate=0.03,\n", + " steps=1000,\n", + " batch_size=30,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mk095OfpPdOx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Replace the Linear Classifier with a Neural Network\n", + "\n", + "**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**\n", + "\n", + "You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class." + ] + }, + { + "metadata": { + "id": "rm8P_Ttwu8U4", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Replace the linear classifier with a neural network.\n", + "#\n", + "def train_nn_classification_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network classification model for the MNIST digits dataset.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " a plot of the training and validation loss over time, as well as a confusion\n", + " matrix.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing the training features.\n", + " training_targets: A `DataFrame` containing the training labels.\n", + " validation_examples: A `DataFrame` containing the validation features.\n", + " validation_targets: A `DataFrame` containing the validation labels.\n", + " \n", + " Returns:\n", + " The trained `DNNClassifier` object.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " # Caution: input pipelines are reset with each call to train. \n", + " # If the number of steps is small, your model may never see most of the data. \n", + " # So with multiple `.train` calls like this you may want to control the length \n", + " # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, \n", + " # or since it's in-memory data, shuffle all the data in the `input_fn`.\n", + " steps_per_period = steps / periods \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)]\n", + "\n", + " # Create a DNNClassifier object.\n", + " my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " classifier = tf.estimator.DNNClassifier(\n", + " feature_columns=feature_columns,\n", + " n_classes=10,\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer,\n", + " config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1)\n", + " )\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss error (on validation data):\")\n", + " training_errors = []\n", + " validation_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute probabilities.\n", + " training_predictions = list(classifier.predict(input_fn=predict_training_input_fn))\n", + " training_probabilities = np.array([item['probabilities'] for item in training_predictions])\n", + " training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions])\n", + " training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10)\n", + " \n", + " validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn))\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) \n", + " validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions])\n", + " validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) \n", + " \n", + " # Compute training and validation errors.\n", + " training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_errors.append(training_log_loss)\n", + " validation_errors.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " # Remove event files to save disk space.\n", + " _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*')))\n", + " \n", + " # Calculate final predictions (not probabilities, as above).\n", + " final_predictions = classifier.predict(input_fn=predict_validation_input_fn)\n", + " final_predictions = np.array([item['class_ids'][0] for item in final_predictions])\n", + " \n", + " \n", + " accuracy = metrics.accuracy_score(validation_targets, final_predictions)\n", + " print(\"Final accuracy (on validation data): %0.2f\" % accuracy)\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.plot(training_errors, label=\"training\")\n", + " plt.plot(validation_errors, label=\"validation\")\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " # Output a plot of the confusion matrix.\n", + " cm = metrics.confusion_matrix(validation_targets, final_predictions)\n", + " # Normalize the confusion matrix by row (i.e by the number of samples\n", + " # in each class).\n", + " cm_normalized = cm.astype(\"float\") / cm.sum(axis=1)[:, np.newaxis]\n", + " ax = sns.heatmap(cm_normalized, cmap=\"bone_r\")\n", + " ax.set_aspect(1)\n", + " plt.title(\"Confusion matrix\")\n", + " plt.ylabel(\"True label\")\n", + " plt.xlabel(\"Predicted label\")\n", + " plt.show()\n", + "\n", + " return classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "wjl0KEzaxaxa", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 969 + }, + "outputId": "fabe0d81-9696-4ffb-e89f-4862054610c2" + }, + "cell_type": "code", + "source": [ + "classifier = train_nn_classification_model(\n", + " learning_rate=0.05,\n", + " steps=1000,\n", + " batch_size=30,\n", + " hidden_units=[100, 100],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 5.25\n", + " period 01 : 3.34\n", + " period 02 : 2.79\n", + " period 03 : 2.27\n", + " period 04 : 2.40\n", + " period 05 : 1.89\n", + " period 06 : 2.07\n", + " period 07 : 1.89\n", + " period 08 : 1.92\n", + " period 09 : 2.04\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.94\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFnCAYAAACcvYGMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGXaBvD7TEsmk0oy6ZWEDqEG\nSKS3ECwUEZAVBXfVVVFW3AKiu9jbqqifumtFXQsWBFF674RQQ08lvddJJsm074+EQEghgZk5k8n9\nuy6uyMyZM888TrjnPXPO+womk8kEIiIishkSsQsgIiKiphjORERENobhTEREZGMYzkRERDaG4UxE\nRGRjGM5EREQ2huFM1AG9evVCXl6eWfaVlZWFvn37mmVfYliwYAFGjRqFqVOnIjY2FtOmTcOXX37Z\n4f2cPn0af/zjHzv8uL59+yIrK6vDjyPqDGRiF0BEndff/vY3TJ8+HQBQWFiIuXPnIiwsDGPGjGn3\nPiIjI/HZZ59ZqkSiTokjZyIzqK2txT//+U/ExsYiLi4Or732GgwGAwBg3759GDt2LOLi4rBmzRoM\nGTLkhiO+srIyLFmypHFE+vHHHzfe98477yA2NhaxsbG4//77kZ+f3+btV+zZswd33nlnk9umT5+O\nvXv3Ij4+HjNnzsS0adMQFxeHTZs2dbgHarUaU6dOxYEDBwAAycnJuO+++xAbG4s777wTiYmJAIAj\nR45g3rx5WLJkCZ5++mkcOXIEkydPvmEf9+zZg8mTJyMuLg6ffvpp4/NWVVXh8ccfR1xcHCZOnIhn\nn30WOp2uw/UT2RKGM5EZfPnll8jLy8Pvv/+OX375BQkJCfjtt99gMBiwbNkyvPDCC9i0aRPS09Oh\n1WpvuL+3334bbm5u2LJlC7799lt89913SEhIQFJSEjZv3ozffvsNW7ZsweTJk3Ho0KFWb79WdHQ0\n8vLykJmZCQDIzMxEXl4eYmJi8Prrr2P58uXYuHEjPvroI2zfvv2m+qDX66FQKGA0GvH4449j+vTp\n2LJlC1auXInHHnsMer0eAHDu3DnMmzcPb731Vrv7uGLFCvzrX//Cpk2bIJFIGkN73bp1cHV1xaZN\nm7BlyxZIpVIkJyffVP1EtoLhTGQGu3fvxpw5cyCTyeDo6Ig777wTBw4cQHp6Ourq6jB27FgA9d/T\nGo3GG+5vz549mD9/PgDA3d0dkydPxoEDB+Dq6oqSkhJs2LAB5eXlWLBgAWbMmNHq7ddSKBQYP348\ndu7cCQDYvn07Jk2aBJlMBk9PT6xbtw4pKSkIDQ1tFprtkZmZic2bN2Py5MlITU1FcXExZs+eDQAY\nOnQounXrhhMnTgAAHB0dER0d3eE+jho1CgAwc+bMxsdc2e/+/fthNBrx/PPPo0+fPh2un8iWMJyJ\nzKCkpARubm6Nf3dzc0NxcTHKy8vh6uraeLu3t3e793ft41xdXVFcXAwfHx+8//772Lx5M8aNG4eH\nH34Yubm5rd5+vdjY2CbhPG3aNADAK6+8AqVSiUWLFmHKlCnYvHlzu+p88803G08IW7p0KZYtW4bI\nyEhUVFSgpqYGcXFxmDp1KqZOnYri4mKUlZU19qe1191aH52dnZvcfkVcXBwWLlyId999F9HR0Xj+\n+edRV1fXrvqJbBXDmcgMvLy8GoMHqP/O2MvLC87Ozqiurm68vaio6Jb2BwAjR47Exx9/jAMHDsDP\nzw///ve/27z9WqNHj8aFCxeQnp6O9PR0jBw5svH5nnvuOezduxf//Oc/sXz5clRVVd2wzr/97W/Y\nvHkztmzZgh9//LEx7L29vaFSqbB58+bGP/v372/8brmjr9vNzQ0ajabx9pKSkiaPmzdvHn788Uds\n3LgRZ8+exbp1625YO5EtYzgTmcG4cePw008/wWAwoLq6GuvXr8fYsWMRGhoKvV6PI0eOAAC+++47\nCILQrv2tWbMGQH0Qbdu2DePGjcP+/fvx/PPPw2g0wsnJCb1794YgCK3efj2FQoFRo0bhzTffxMSJ\nEyGVSqHT6bBgwQIUFBQAAPr16weZTAaJ5Ob/eQgICICvr2/jCLykpARLly5t8kGltdfdUh+Dg4Mh\nlUob+7h27drG1/fBBx/gp59+AgD4+PggMDCwXT0msmW8lIqogxYsWACpVNr495deegkLFixAZmYm\nbr/9dgiCgKlTpyIuLg6CIGDlypVYvnw5XFxcsGjRIkgkEgiCAJPJBIPBgKlTpzbZ/yeffIK//OUv\nWLlyJaZOnQqJRIKHH34YkZGRqK2txe+//47Y2FgoFAp069YNr7zyCry9vVu8vSWxsbF44oknsHr1\nagCAXC7H7NmzsXDhQgCARCLBs88+C6VSiW3btmHnzp149dVXO9QjQRDw9ttvY+XKlVi1ahUkEgkW\nLVoEJyenG/a2tT6++OKLeOaZZ6BQKDBr1qzGfU2fPh3Lly/HJ598AkEQMHDgwMbLu4g6K4HrORNZ\nT3V1NQYPHoyEhAS4uLiIXQ4R2Sge1iaysLvvvhsbN24EAGzcuBHh4eEMZiJqE0fORBaWkJCAF154\nAbW1tVCpVFi5ciUiIyPFLouIbBjDmYiIyMbwsDYREZGNYTgTERHZGJu5lKqwsNKs+/PwcEJpadvX\nVNKtY5+tg322HvbaOthnQK1u/cRQux05y2TSG29Et4x9tg722XrYa+tgn9tmt+FMRETUWTGciYiI\nbAzDmYiIyMYwnImIiGwMw5mIiMjGMJyJiIhsDMOZiIjIxjCciYioU9m9e0e7tnv33beQk5Pd6v3L\nli01V0lmx3AmIqJOIzc3B9u3b2nXtkuWPA1//4BW73/ttbfNVZbZ2cz0nURERDfy9tuv4/z5sxg9\nOgpTpsQhNzcHq1Z9iFdffQGFhQXQarV48MGHcdtto7F48cNYuvTv2LVrB6qqNMjIuIzs7Cw8+eTT\niI6+DbffPhG//74Dixc/jKioETh+PAFlZWV4/fV34OXlhRdeeA55ebkYMCASO3duxy+/bLTa67TL\ncM7R5CHPmA1fSeufmIiI6Nb8sDMZRy8U3NRjpVIBBkPzFYujentjzoSIVh93770LsHbtDwgLC0dG\nRjo+/PBTlJaWYPjwkYiLuwPZ2Vl47rlluO220U0eV1CQj3//+z0cPnwQ69f/jOjo25rcr1Kp8O67\nH+Gjj97H3r074e8fiLq6Wnz88WocOLAPP/zw3U29zptll+H8W9pWJBadw4sxy+Hu4CZ2OUREZAF9\n+vQDALi4uOL8+bP49de1EAQJKirKm20bGTkIAODt7Q2NRtPs/oEDBzfeX15ejsuX0zBgwEAAQHT0\nbZBKrTsXuF2Gc59uPXGq8AwO5x7D1NAJYpdDRGSX5kyIaHOU2xa12uWWVyOUy+UAgG3bNqOiogIf\nfPApKioq8Kc/LWi27bXhajI1H7Fff7/JZIJEUn+bIAgQBOGWau0ouzwhbJjPQCikchzKPQqjySh2\nOUREZCYSiQQGg6HJbWVlZfDz84dEIsGePTuh0+lu+XkCAgJx8eI5AEB8/OFmz2lpdhnOSpkSI4OG\noEhbjOSyNLHLISIiMwkJCcPFixdQVXX10PS4cRNw8OA+LFnyKJRKJby9vfHFF5/c0vPExIxGVVUV\nHn30jzh16gRcXa37Falgaml8L4JbPbzRbH+mPKzc9TaifAZjYb97zbpvusoch6boxthn62GvrcPW\n+1xRUY7jxxMwbtxEFBYWYMmSR/Httz+b9TnUapdW77PL75wBoI86At5KL5wsTES1bgac5EqxSyIi\nok7CyUmFnTu349tvv4bJZMQTT1h3whK7DWdBEBDtF4X1qZuQkH8CYwJjxC6JiIg6CZlMhhdeeFW0\n57fL75yvGOE3FBJBgoO5R8UuhYiIqN3sOpzdHFzRz7MXMiuzkVmZI3Y5RERE7WLX4QwA0X7DAQCH\ncuNFroSIiKh97D6c+3v2hqvCBUfzTkBnuPVr34iIiCzN7sNZKpFihO9QVOu1OFV4RuxyiIjICmbP\nvhPV1dX4+uvVOHPmdJP7qqurMXv2nW0+/sqylBs3bsCePbssVmdrLHa29pEjR7BkyRL06NEDANCz\nZ08899xzlnq6NkX7R2Fbxm4czD2KYb6DRamBiIisb8GChR1+zJVlKceNm4hp09oOcUux6KVUw4cP\nx3vvvWfJp2gXHyc1wt3CcLE0GUXaEngpu4ldEhER3YQHH/wDXnnlLfj6+iIvLxfLlz8NtdobWq0W\nNTU1eOqpv6Fv3/6N27/88kqMGzcRgwYNxooVf0ddXV3jIhgAsHXrJvz00xpIpRKEhobjH/9Y0bgs\n5RdffAKj0Qh3d3fcffdcfPjhu0hMPAW93oC7756DqVNvb3G5SV9f31t+nXZ7nfP1YvyjkFKehkO5\nR3Fn91ixyyEi6vTWJv+GEwWJN/VYqUSAwdh8gsrB3gMwK+KOVh83Zsx4HDiwF3ffPQf79u3BmDHj\nER7eA2PGjMOxY0fxzTdf4uWX32z2uC1bNqF793A8+eTT2LFjK7Zv3wIA0Gq1eOut9+Hi4oLHH38I\nKSnJjctSLlr0ED777L8AgJMnjyM1NQUfffQ5tFotHnhgHsaMGQeg+XKTc+bMv6meXMui3zknJyfj\nz3/+M+69914cOHDAkk91Q4O9I+EodcDh3AQuhkFE1EnVh/M+AMD+/XswatRY7NmzA48++kd89NH7\nKC9vvlwkAKSnp6J///olIAcPHtp4u6urK5YvfxqLFz+My5fTUF5e1uLjL1w4h0GDhgAAlEolQkO7\nIzMzE0DT5SZbWo7yZlhs5BwaGorFixcjLi4OmZmZuP/++7F161YoFIoWt/fwcIJMZt71Mq+ft3RU\nSBS2p+5HjiETg/36t/Io6qi25ocl82GfrYe9bp9H1PcCsO7aBWr1ILz0UjH0eg1qaqpx/PghBAcH\n4r33ViExMRFvvPEG1GoXSKUSeHk5w9FRDjc3JRwd5XB3d4Ja7QKTSQupVAI3NwesWvUm1q9fD7Va\njUceeQTu7k4AAAcHOdRqF6hUDnB2doReL0NdXV3je0MiMcHT0xkKhQxeXq5Qq13g7OwInU5rlveP\nxcLZx8cH06ZNAwAEBwfDy8sL+fn5CAoKanH70tJqsz5/S5OqD+42CNtT92PT+b0IlIWY9fm6Kluf\nvN5esM/Ww15bx630efjwGLz66hsYOXIUcnLyER7eA4WFlVi//ndUV9egsLASBoMRRUUa1NToUF6u\nhVrtj/j44xgyJAbbtu2BwWBERkY+BEECwBFnziTh9OlEFBVVQKFQNO6nqqoWcnkNIiJ64csvP8PM\nmfeiuroaaWnpUKk8UVenR2lpFQoLK6HR1KCqqrbdr6utELfYYe1ff/0Vn332GQCgsLAQxcXF8PHx\nsdTTtUuISxD8Vb5ILDqHyjrzHHogIiLrGjt2fOPZ1FOn3o41a77BU089jn79+qO4uBi///5rs8dM\nnXo7zp5NxJIljyIz8zIEQYCbmzuiokbgT3+6H1988Qnmz1+A9957u3FZyvfee6vx8QMHDkKvXr3x\n+OMP4amnHsef/7wYSqXlFlSy2JKRGo0Gf/3rX1FRUQGdTofFixdj7NixrW5v7k+qrX0q25m5Dz8n\nbcCsiDswMXiMWZ+zK+IowzrYZ+thr62DfRZpyUhnZ2f85z//sdTub9pwnyFYl7wRB3OPYkLQaAiC\nIHZJRERETdjlDGHaWj1KK2pavM9ZocJAdT/kVeUjvSLDypURERHdmF2G81dbLuKxN3aiqqblubRj\nGhbDOJjDpSSJiMj22GU4h/i4QKPVYefx7Bbv79UtAh4O7jhWcBI1+lorV0dERNQ2uwznsYP8oXKU\nYXtCJup0hmb3SwQJov2GodZQhxMFp1vYAxERkXjsMpyVDjJMuy0MldU6HEjMbXGbkX5RECDgINd5\nJiIiG2OX4QwAd47uDplUgs3xGTAYm0/X6an0QC+PCKSWX0ZeVb4IFRIREbXMbsPZw8URowb4orCs\nBscuFra4TYx/FADgYC5PDCMiIttht+EMALEjgiEIwMbDl9HSXCuR6v5QyZwQn3scBmPz76aJiIjE\nYNfh7OPhhKG9vJGRr8G59NJm98slMkT5DkalToPE4vMiVEhERNScXYczAEwbGQygfvTckhj/+mue\nD+XwxDAiIrINdh/Oob6u6BPigfOXS5GeV9Hs/gBnP4S4BOFs8UWU1ba8DigREZE12X04A8C0kfXL\nQ2483PJ0ndH+UTDBhMO5x6xZFhERUYu6RDj3DfVAsI8zjl0sQH4L60YP8xkIuUSOQ7lHYTQ1v+yK\niIjImrpEOAuCgGkjQ2AyAVviM5vdr5QpMcQ7EkXaYiSXpYlQIRER0VVdIpwBYGgvNdTujth/Ohfl\nVXXN7o/2a7jmmYthEBGRyLpMOEslEsQOD4beYMT2hOaj5wj3MHgrvXCy8DSqdVoRKiQiIqrXZcIZ\nAEYN8IOLkxy7jmdDW6tvcp8gCIj2i4LOqEdC/gmRKiQiIupi4ayQSzFpaCCqa/XYczKn2f0j/IZC\nIkg4nScREYmqS4UzAIwfEggHuRTbEjKhNzQ9M9vNwRX9PHshszIbmZXNw5uIiMgaulw4OyvlGDvI\nH6WVtTh0Nq/Z/dF+DTOGcSlJIiISSZcLZwCYEhUEqUTA5iMZMF63IEZ/z95wUTjjaN4J6Aw6kSok\nIqKurEuGczdXR4zs64Pc4mqcSipqcp9UIsVI32Go1mtxqvCMSBUSEVFX1iXDGQCmXpnS80jz5SSj\nuc4zERGJqMuGc4CXCoMivJCSXYGkrKYLXvg4qRHuFoaLpcko0paIVCEREXVVXTacASCuYTnJTS0s\nJxnTMHo+zNEzERFZWZcO5x6B7ogIdMOplGJkFWqa3DfYOxKOUgccyk3gYhhERGRVXTqcAWDaiPrv\nnjcfabqcpINUgaE+g1BWW47zJZfEKI2IiLqoLh/OkRGe8PdS4ci5fBSX1zS578qhbS6GQURE1tTl\nw1kiCJg6PBgGowlbjzZdECPEJQj+Kl8kFp1DZZ2mlT0QERGZV5cPZwAY2c8HHi4O2HsqBxrt1YlH\nBEFAtH8UDCYD4vOOi1ghERF1JQxnADKpBFOiglCrM2Dn8awm9w33GQKpIMXB3KPNrocmIiKyBIZz\ngzED/eHkIMP2hCzU6gyNtzsrVBio7oe8qnykV2S0sQciIiLzYDg3UDrIMGFoADRaHfafzm1yX0zD\nYhg8MYyIiKyB4XyNSUODIJdJsCU+Awbj1Wube3WLgIeDO44VnESNvlbEComIqCtgOF/DVaXAqAF+\nKCqvwdELBY23SwQJov2GodZQhxMFp0WskIiIugKG83ViRwRDEIDNhzOanAA20i8KAgQuhkFERBbH\ncL6Ot7sSUb29kVGgwdn0q4teeCo90MsjAqnl6ciryhexQiIisncM5xbENUzpuelw07OzY7iUJBER\nWQHDuQUhvi7oG+qB85dLkZZb0Xh7pLo/VDInxOceh8FoaGMPREREN4/h3Iq4kVdGz1eXk5RLZIjy\nHYxKnQaJxefFKo2IiOwcw7kVfUM8EOLjgmMXC5FfUt14e4x//TXPh3LixSqNiIjsHMO5FYIgIG5k\nMEwANsdf/e45wNkPwS6BOFt8EWW15eIVSEREdovh3IZhvbzh7a7EgcQ8lGuuTj4S4z8cJphwOPeY\niNUREZG9Yji3QSIREDsiGHqDEdsSri6IMcxnIOQSOQ7lHoXRZGxjD0RERB3HcL6B2/r7wtVJjl0n\nsqGt1QMAlDIlhnhHokhbjOSyNJErJCIie8NwvgGFXIpJw4KgrdVj98nsxtuj/RqueeZiGEREZGYM\n53YYPyQADgopth7NhE5ffxg7wj0M3kovnCw8jWqdVuQKiYjInjCc20HlKMe4Qf4o19Th8Nk8APVn\nc0f7RUFn1CMh/4TIFRIRkT1hOLfTlKhgSCUCNh3JgLFhQYwRfkMhESSczpOIiMyK4dxOHi4OiO7n\ni7ySapxMKgIAuDm4op9nL2RWZiOzMkfkComIyF4wnDtg6ohgAPVTel5ZTjLar2HGsFzOGEZERObB\ncO4Afy8VBkV4ISWnApcyywAA/T17w0XhjKN5J6Az6ESukIiI7IFFw7mmpgaTJk3C2rVrLfk0VjXt\nyoIYR+qn9JRKpBjpOwzVei1OFZ4RszQiIrITFg3njz76CG5ubpZ8CquLCHRDj0A3nE4pRlaBBgAQ\nzXWeiYjIjCwWzikpKUhOTsa4ceMs9RSiaVxO8kj9cpI+TmqEu4XhYmkyirQlYpZGRER2wGLh/Prr\nr2PZsmWW2r2oIsM9EeClwpFzBSgqr5+AJKZh9HyYo2ciIrpFMkvsdN26dRg0aBCCgoLa/RgPDyfI\nZFKz1qFWu5h1f9eaM7kn3vnuBPadycfDMwZgskcMfkr6FfH5x/FA1CxIJF3nXDtL9pmuYp+th722\nDva5dRYJ5927dyMzMxO7d+9GXl4eFAoFfH19ERMT0+pjSkurzVqDWu2CwsJKs+7zWn0C3dDN1QFb\nDqdj8pAAOCvlGOI9EAdyjmDvpePo59nLYs9tSyzdZ6rHPlsPe20d7HPbH04sEs6rVq1q/O/3338f\nAQEBbQZzZySTSjAlKhjf70jCjmNZmD4qDDH+UTiQcwQHc+K7TDgTEZH5dZ1jrxYwZqAfVI4y7DiW\nhVqdASEuQfBX+SKx6Bwq6zRil0dERJ2UxcP5iSeewKxZsyz9NKJwVMgwYUggNFod9p/OrV8Mwz8K\nBpMB8XnHxS6PiIg6KY6cb9HEoYGQyyTYEp8Bg9GI4T5DIBWkOJh7tHGKTyIioo5gON8iV5UCoyL9\nUFReg6PnC+CsUCFS3Q95VflIr8gQuzwiIuqEGM5mEDs8GIJQP6WnyWTCbQ2LYRzM4TXPRETUcQxn\nM/B2VyKqtzcyCzQ4k1aCXt0i4OHgjmMFJ1GjrxW7PCIi6mQYzmYSN6JhSs/DlyERJIj2G4ZaQx1O\nFJwWuTIiIupsGM5mEuLrgn5h3XAhowypORUY6RcFAQIXwyAiog5jOJvRtBHBAOpHz55KD/TyiEBq\neTryqgpEroyIiDoThrMZ9Q7xQKivC45fKkRucVXjYhgHc+NFroyIiDoThrMZCYKAaSNDYAKwJT4D\nker+UMmcEJ97HAajQezyiIiok2A4m9mQnmr4eChx8EweqqoNiPIdjEqdBonF58UujYiIOgmGs5lJ\nJAJiRwRDbzBhW0ImYvzrr3k+lMND20RE1D4MZwu4rb8vXFUK7D6RDQ+ZGsEugThbfBFlteVil0ZE\nRJ0Aw9kC5DIpJg8LhLbWgD0nsxHjPxwmmHA495jYpRERUSfAcLaQ8YMD4KiQYmtCJgZ6RkIukeNQ\n7lEYTUaxSyMiIhvHcLYQJ0c5xg0KQLmmDicvlmGIdySKtMVILksTuzQiIrJxDGcLmhwVBKlEwKYj\nGRjpOwwAF8MgIqIbYzhbkIeLA6L7+yK/pBoVBc7wVnrhZOFpVOu0YpdGREQ2jOFsYXEjgiEA2HQk\nEyP9hkFn1CMh/6TYZRERkQ1jOFuYn6cKg3p4IS23Al6GHpAIEk7nSUREbWI4W8G0kfXLSe45Vox+\nnr2QWZmNzMockasiIiJbxXC2gvAAN/QMcseZ1BL0UA4AABzi6JmIiFrBcLaSaSPrl5NMPu8AF4Uz\njuadgM6gE7kqIiKyRQxnKxnQ3ROBahWOni9CpMdAVOu1OFV4RuyyiIjIBjGcrUQQBMSNCIHRZEJ1\njj8A4GAur3kmIqLmGM5WFNXHG56uDkg4VYVQlxBcLE1GkbZE7LKIiMjGMJytSCaVYEpUMOr0Rqiq\nuwMADnP0TERE12E4W9mYgf5QOcpw7qQDHKQOOJSbwMUwiIioCYazlTkopJg4NBDVWsBPEoGy2nKc\nL0kSuywiIrIhDGcRTBwaCIVMgtwkTwDAoRxe80xERFcxnEXg4qTA6Eh/lBUo4S71xOmic6is04hd\nFhER2QiGs0hihwdBIkhQVxAAg8mA+LzjYpdEREQ2guEsEi93JYb38UbxZS9IIMHB3KMwmUxil0VE\nRDaA4SyiqSOCAb0CDtoA5FXlI70iQ+ySiIjIBjCcRRTs44L+3buh7LIPAOBgDq95JiIihrPopo0I\ngbHCEzKjCgkFJ5FUmiJ2SUREJDKGs8h6BbsjzM8V1Wnh0Bl0ePfEx9icvoMTkxARdWHtDmeNpv5S\nn6KiIiQkJMBoZHiYw5UFMQzF/uhZGwc3B1dsSN2CD099zsuriIi6qHaF84svvohNmzahrKwM8+bN\nw9dff42VK1dauLSuY0hPNXw8lEhMNOGhXn9Gf8/eOF9yCa/Gv8PD3EREXVC7wvncuXO45557sGnT\nJsycORPvvvsuLl++bOnaugyJRMD00WEwGE3YsCcbj0QuxMyI21Gpq8K7Jz7GpjQe5iYi6kraFc5X\nrr/dvXs3JkyYAACoq6uzXFVd0Ig+PugR6IYTSUU4n16GScFj8dSQP8PdwQ2/pW3BByc/Q0Vdpdhl\nEhGRFbQrnMPCwjBt2jRUVVWhT58+WLduHdzc3CxdW5ciCAL+MLknBAH4dvsl6A1GdHcLxbLhS9Df\nszculCbh1fhVuFSaLHapRERkYdKV7fjyePz48Rg2bBgWLVoEqVQKg8GA2bNnw8HBwWyFVFebdySu\nUjmYfZ+W5ubsgPKqOpxJLYFKKUd4gBsUUgWG+gyEo8wBiUXncCT3GAAg3D0MgiCIXHHn7HNnxD5b\nD3ttHexzfQ9a066R8/nz55GXlweFQoF33nkHb7zxBi5dumS2AumqmaPD4OQgw/r9qaioqn/jSgRJ\nw2HuR+Hu4Ibf07bh/05+ysPcRER2ql3h/NJLLyEsLAwJCQlITEzEc889h/fee8/StXVJLk4KzBzT\nHdpaA9bubXqmdne3ECwf/hcM8OqDi6XJPMxNRGSn2hXODg4OCA0NxY4dOzBnzhxERERAIuH8JZYy\nbrA/AtQq7DuVi7Tciib3qeROeGTAQsyKuAMaXRXeO/EJNqZt49ncRER2pF0Jq9VqsWnTJmzfvh2j\nRo1CWVkZKioqbvxAuilSiQTzJ/WECfUnh12/WpUgCJgYPAZLrznM/f7JT1Fey8PcRET2oF3hvHTp\nUmzYsAFLly6Fs7Mzvv76ayxeUNc4AAAgAElEQVRcuNDCpXVtfUI8MKyXGinZFTh8Nr/FbcIaD3P3\nxaXSZLx69B1cLOFhbiKizk4wtXMR4erqaqSlpUEQBISFhUGpVJq1kMJC84761GoXs+/T2orKtVjx\nyRE4OcrwykMjoXSQtbidyWTCrsx9+CVlI0wmE+JCJyIubBIkguW/erCHPncG7LP1sNfWwT7X96A1\n7frXe/v27ZgyZQr+9a9/4dlnn0VsbCz27NljtgKpZV5uSkwbGYJyTR1+O5Te6naCIGBC8BgsHfIY\nPBzdsTF9O94/8QkPcxMRdVLtCudPP/0Uv/76K3766SesXbsWP/74Iz766CNL10YApo4IhqerA7bG\nZyK/pLrNbcPcgrE8agkivfrhUlkKXo1/BxdKkqxUKRERmUu7wlkul6Nbt26Nf/fx8YFcLrdYUXSV\ng1yKuRN6wGA04fsdNw5aJ7kTHh5wP+7ucSeq9Vr838lP8VvqVp7NTUTUibT8JeZ1VCoVPv/8c8TE\nxAAA9u/fD5VKZdHC6KqhvdToHeyOUynFOJ1ShMhwrza3FwQBE4JGo7tbCD4/8w02pW9HclkqFvWb\nDzcHVytVTUREN6tdI+eXX34Z6enpWLZsGZYvX47s7Gy88sorbT5Gq9ViyZIluO+++3DPPfdg165d\nZim4KxIEAfMn9YREEPDd9iToDe0bBYe6BmNZ1BIM9OqHpLJUvBq/ioe5iYg6gXafrX29lJQUhIeH\nt3r/xo0bkZ2djYceegjZ2dl48MEHsWXLlla359naN/bN1kvYcTwL94wPR9yIkHY/zmQyYXfWAfyS\n/DuMJiOmhk7AtLDJZjmb2x77bIvYZ+thr62DfTbD2dotef7559u8f9q0aXjooYcAALm5ufDx8bnZ\np6IG00eHwVkpx68H0lGmqW334wRBwPigUXh66GPo5uiOTek78N6Jj1FWW27BaomI6GbddDi3d8A9\nb948/PWvf8Uzzzxzs09FDZyVcswa0x21dQb8vDvlxg+4TohrEJZF/QWD1P0bD3OfL+YCJkREtuam\nD2vff//9+Oqrr9q17fnz5/H3v/8dv/76a6vLHOr1Bshk0psppUsxGE1Y+s4epOaU499PjkavkG43\nftB1TCYTNiftxlenfobRaMTMvrG4p98dkErYfyIiW9Dm2do//fRTq/cVFha2ueMzZ87A09MTfn5+\n6NOnDwwGA0pKSuDp6dni9qWlbV/D21H2/H3GnPHheO2b4/jgx5NYcf8wSG5iXedhHsOgHuKDz858\ng7XnNuN0zkUs6jcf7g5uHdqPPffZlrDP1sNeWwf73PZ3zm2G87Fjx1q9b9CgQW0+aUJCArKzs7Fi\nxQoUFRWhuroaHh4eNyiV2qNnkDtG9PXBkXP5OJCYi9GR/je1n/rD3EvwzYUfcbLwDF6NX4UH+s5D\nX89eZq6YiIg64qYPa99ITU0NVqxYgdzcXNTU1GDx4sWYMGFCq9vzbO2OKamowTOfHIajXIpXHo6G\nk2O7Lllvkclkwp7sg/gl6TfoTQbEhkzA7WGT23WY2977bCvYZ+thr62DfW575NyucJ4/f36z74ql\nUinCwsLw2GOPmeVMbIZzx204mI5f9qZiSlQQ5k3sccv7y6jIwmdn/oeimhKEu4Xhwf43PszdFfps\nC9hn62GvrYN9NsOlVDExMfD19cUDDzyARYsWISgoCEOHDkVYWBiWL19utkKpY6YOD4KXmyN2HMtC\nbnHVLe8v2DUQy4YvwWD1AKSUp+HV+FU4V3zRDJUSEVFHtCucjx07hrfeegtTpkzBpEmT8Nprr+Hs\n2bNYuHAhdDqdpWukVshlUtw7sX7e7W+3J7X78ra2KGVK/LH/fZjTcwZq9DX44NRnWJ+yCQajwQwV\nExFRe7QrnIuLi1FSUtL498rKSuTk5KCiogKVlV37sITYBvXwQr+wbjibVoKTyUVm2acgCBgbGIOn\nhz0OL6Untl7ehXdP/BelNWVm2T8REbWtXeF8//33Iy4uDrNmzcLdd9+NSZMmYdasWdi1axfmzp1r\n6RqpDYIg4N6JPSCVCPh+RxJ0evONcINdArEs6kkM9o5ESnk6Xj26CmeLL5ht/0RE1LJ2n62t0WiQ\nnp4Oo9GI4OBguLu7m7UQnhB2a77fkYStRzNx99juuD061Kz7NplM2Jd9CD8nbYDeZMCUkPG4I2wK\npBJpl+uzWNhn62GvrYN9voXrnK+oqqrCl19+icTERAiCgEGDBuGBBx6Ao6Oj2YqkW3PXbWE4fDYP\nGw6mI7qfL7q5mu//jSAIGBMYg1C3YHx25htsvbwLyWVpeLDffKjR+puLiIhuTrsOaz/33HPQaDSY\nN28e5syZg6KiIjz77LOWro06wMlRhlljw1GnM+Knm5h3uz3qD3MvwRDvSKQ2HOY+nnPGIs9FRNSV\ntSuci4qK8I9//APjxo3D+PHjsWLFCuTn51u6NuqgUZF+CPV1weFz+biUaZmTt5QyRzzY7w+Y12sm\nag11eG3fB/gp6VfoDDxrn4jIXNoVzlqtFlqttvHv1dXVqK1t/5KFZB0SQcD8yT0BAN9uvwSj0SKT\nv0EQBIwOiMZfhy5GgIsvdmXuxxsJ7yNHk2eR5yMi6mraFc5z585FXFwcFi9ejMWLF+P222/H/Pnz\nLV0b3YSIADfE9PdFRr4Ge0/nWPS5glz88dqU5RgVMBI5VXl4PeE97M48YJbrrYmIurJ2hfPs2bPx\n3XffYcaMGZg5cya+//57JCcnW7o2ukmzx4XDQSHF2j2pqKqx7OFmB5kC9/aahUcGPABHqQN+TFqP\nD09/joq6rn0WJhHRrWhXOAOAn58fJk2ahIkTJ8LHxwenT5+2ZF10C9ydHXBXTCg0Wh3W70uzynNG\nqvvhmeFPoU+3njhXfBEvH3kbZ4rOW+W5iYjsTbvD+Xo8dGnbJg0Lgo+HEjuPZyOrUGOV53RzcMVj\nAx/E7B53oUZfg49Of4E1F9ehjieLERF1yE2H8/WrVJFtkcskuHdSDxhNJnxnpnm320MiSDA+aBT+\nHvUk/FQ+2Jt9EK8ffRdZlZb9/puIyJ60OQnJ2LFjWwxhk8mE0tJSixVF5hEZ7oXIcE+cTinGsYuF\nGNbb22rPHeDsh78PexLrUzZid9YBvJnwPu4Kj8P4oFGQCDf9mZCIqEtoM5y//fZba9VBFjJvYg+c\nTSvBmp3JiAz3hEIutdpzK6Ry3NNzOvp69sLX537A2uTfcK74Ihb0nXPDdaKJiLoy6cqVK1e2dqer\nq2ubf8ypurrOrPtTqRzMvs/OyFkpR22dAadTiyGTStAr2MOs+29Pn72dvDDCbyjyqvJxruQSjuQd\ng7eTF3xV1hvJd3Z8P1sPe20d7HN9D1rD44tdwB0xoXBTKfD74csoKtfe+AEW4KJwxp8jF2Fuzxmo\nM9Th48Sv8O2Fn1Fr6Nq/nERELWE4dwFKBxlmjwuHTm/ED7ssM+92e1xZQOMfUUsQ4OyHAzlH8NrR\nVcioyBKtJiIiW8Rw7iKi+/si3N8VCRcKcOGyuCfz+al88LdhT2Bi0BgUVBfhzWP/h62Xd8FoMopa\nFxGRrWA4dxFX5t0WUD/vtsEobhDKJTLM6nEHFg/6E1zkKqxP2YT3TnyM0hrLLNhBRNSZMJy7kDA/\nV9wW6YeswirsPmEb1x336dYTzwxfioFe/ZBUloqX49/B8QLOPkdEXRvDuYu5e2w4lA5SrNuXCo3W\nNmbuclao8NCA+zG/190wGPX47Mz/8PW5H1CjrxG7NCIiUTCcuxg3lQLTbwtDVY0ev+xNFbucRoIg\n4LaAEVgWtQTBLgE4nJeAV4++i7TyDLFLIyKyOoZzFzRhaCD8PJ2w+2Q2MvJta/UoH5U3nh76OKaE\njEextgRvH/8Qm9J28GQxIupSGM5dkExaP++2yQR8u+2SzS1iIpPIMD08Dk8OfhiuChf8lrYFq47/\nB8XaErFLIyKyCoZzF9U/zBODe3jhUlY5jl4oELucFvX0CMeK4U9hsHckUsrT8Ur8KhzNOyF2WURE\nFsdw7sLmTuwBmVSCNTuTUVtnELucFjnJnfDHfn/AfX3mwAQjVp/7DqvPfgetXpyZzoiIrIHh3IV5\nuysROzwIpZW1+P3wZbHLaZUgCIj2G4ZlUX9BqGswjuafwCvxq5BcliZ2aUREFsFw7uJujw6Bh4sD\nNh/JQEGZbY9GvZ28sHTIo4gLnYjSmjKsOv4f/Ja6BQajbY76iYhuFsO5i3NUyHDP+HDoDUb8sDNZ\n7HJuSCqR4o7usfjLkD/Dw9Edm9J34O3jH6Gwuljs0syuRl+D1PJ07M06iDWJG1Cs5RrqRF2FYLKR\nU3ULC817SY9a7WL2fdork8mE1745jqSscjw9dxD6hXVr92PF7LNWr8Wai+twNP8EHKQKzOk5AyN8\nh0IQBFHquVkmkwnldRXIqsxBlian8WeRtgQmXP31dJQ64J6e0zvla+xM+G+HdbDP9T1oDcOZAACX\n8yrxwuqj8PV0wvMPDodM2r6DKrbQ5/i841hzcR1qDDUY4h2Je3vNgpPcSdSaWmMwGpBfXVgfwpoc\nZFfmIkuTA42uqsl2TjIlAp39Eejij0BnfyicBPzv5C+oMdRioLo/7u01Cy4KZ5FehX2zhfd0V8A+\ntx3OMivWQTYsxNcFYwf5Y/fJHOw8no0pUUFil9Ruw32HINwtFKvPfY/jBaeRWn4ZD/Sdh54e4aLW\nVaOvQbYmr8loOKcqD3qjvsl2Xo7dEOEe1iSM3R3cmoyO1WoXBCtC8dX5NThVeAap5en4Q+/ZGODV\n19ovi4isgCNnalRZXYfl/z0ME4BXHx4JV5Xiho+xpT4bjAZsvbwLG9O3w2QyYXLIONweNhkyiWU/\ng5pMJpTVljeEcP1IOFuTg0Jt0+/BZYIUfs6+9SHcEMQBzr5QypQ3fI4rfTaajNiZuQ8bUjZDbzLg\nNv/hmBVxJxxlDpZ6eV2OLb2n7Rn7zMPa1AE7jmXhm22XMGagHxbG9bnh9rbY57Tyy1h99jsU1ZQg\n2CUAC/veCx+Vt1n23eSw9JXviDU5qNJVN9lOJXNqHAVf+enjpIZUIr2p572+z9maXHx57ntka3Lh\n5dgN9/edh3D30Ft5adTAFt/T9oh9ZjhTBxiMRqz84ihyCqvw3MJhCPV1bXN7W+1zjb4GP176FYfz\nEqCQyDG7x12I8R/eoROptPoaZGsaRsKNh6Xzmx+WVnpeMxr2a/Gw9K1qqc86ox6/p27F9ow9AGC1\nIwX2zlbf0/aGfWY4UwedTy/Bm9+fRHiAK565r+0zg229z8fyT+G7i2uh1Wsx0Ksf5veeDWeFqsk2\nTQ9LXz1juqim6VzeMokM/irfJqNhf2dfKGWOFn8dbfU5uSwNX51bg+KaEgQ6++OBvvPg7+xr8Zrs\nla2/p+0F+8xwppvw4S+JSLhYiIfu6Ivo/q3/Q98Z+lxaU4Yvz32PpLJUuClccHePu6A36hsOSeci\nuzIHVfqmh6Wd5SoEOvsjoGEkfKuHpW/Vjfpco6/Bz0kbcDD3KGQSGe7qPhXjg0ZBInAqg47qDO9p\ne8A+M5zpJhSVa7HikyNwcpThlYdGQunQ8qHSztJno8mI7Rl7sCF1S7PlJ72VXgi48v2wsx8CXfzh\npnC1qWuJ29vn04Vn8c2Fn6DRVaGHe3cs6DMXnkoPK1RoPzrLe7qzY595KRXdBC83JeJGBOPXA+n4\n7VA67hkXIXZJt0QiSDAlZDx6e/RAQsFJeDl2Q6CLP/xVvnC0wmFpa4lU90OYWwi+vfAzThedxSvx\n72BOz+kY7jvEpj5sEFHbeMyLWhU3MgSerg7YdjQT+SXVN35AJxDsGohZEXdgTGAMuruF2lUwX+Gi\ncMbDA+7Hfb3vAWDCV+fX4NMzX0NTV3XDxxKRbWA4U6sc5FLMndADeoMJ3+9IErsc6gBBEBDtH4Xl\nw59CuFsYThaewUvxb+FM0XmxSyOidmA4U5uG9lKjd7A7TqUU43RKkdjlUAd5KbvhL0MewYzwadDq\ntPjo9Bf49sLPqNHXil0aEbWB4UxtEgQB8yf1hCAA3+1Iht5gvPGDyKZIBAkmh4zD36OehL/KFwdy\njuDVo6uQWp4udmlE1AqGM91QoLczJgwORH5JNbYnZIldDt2kAGc//D3qSUwOHodibQnePvYRfk3Z\n3GxSFSISH8OZ2mX66DA4K+VYfyANZRoeEu2s5BIZZkRMw5LBj6Cbozu2XN6Jfyf8H3I0eWKXRkTX\nYDhTuzgr5Zg5pjtq6wz4eXeK2OXQLerh0R3Lhz+FaL8oZGpy8HrCe9iZsbfZNeBEJA6GM7Xb2IH+\nCPJ2xoEzeUjJKRe7HLpFSpkj7utzDx4e8AAcpQ74Ofk3vH/iE5TUlIpdGlGXx3CmdpNIBPxhck8A\nwLfbLsFoG5PL0S0aqO6HZ0c8jQFefXGpLAUvH3kHR3KPwUYmDyTqkhjO1CE9g9wxvI830nIrcSAx\nV+xyyExcFM54ZMAD+EPve2CCsWHikv91qYlLNLoqnC++hNzKAn4wIdFx+k7qsDnjI3AyuQg/705B\nbEx3scshMxEEATH+Uejp0R1fnVuDk4WJSC1Pxx96z0Z/rxuv7d3ZlNdWILksFcllaUguS0NOVcNJ\ncacAV4ULItzD0MO9OyLcu8NX5c1FRMiqLLrwxRtvvIFjx45Br9fjkUcewZQpU1rdlgtfdC4bDqbj\nl72pmDE2HHdFh4hdjt2z9vvZaDJiR8ZebEjdAoPJgFH+IzAz4g44yhysVoO5FWtLG8K4PpALtFcn\n1ZFL5OjuFoIQ1yBojBU4k38JFXVX+62SOyHCLQwR7mGIcO+OQBd/hvUt6gz/RlfpqpFblY/cqjzk\nVRWgd7ceGODV12z7F2Xhi8OHDyMpKQlr1qxBaWkpZs6c2WY4U+cydXgQ9p3KwYZ9qVC7OiC6H9cP\ntidXJi7p060nvjz3PfbnHMGF0mQ80HceurvZ/ocxk8mEAm1RYxAnlaaitLas8X5HqSP6efZuHB0H\nuQRAJqn/51CtdkFBQQUKtUWNo+qkslScKjqLU0VnGx7vgO7uoejh1h0RHt0RfM3jqfOp1mkbQ7j+\nZ/2faz+gAUBFXaVZw7ktFhs5GwwG1NbWwsnJCQaDATExMTh48CCk0pbXw+XIufO5mFGK99cmorpG\nj6kjgjF7bDgkEq58ZAlivp91Rj1+S92CHRl7AQCxIeMRFzbJpsLIaDIityq/IUzrA7nZyNe9e8PI\nNwyBzq2PfFvrdbG2FCnl9ftPKktFQXXTkXeYWwh6NIysQ12DoZDKzf9C7YgY72mtvgZ514TvlT9l\ntc2vPunm6AE/lU+TP4HO/mZd01309ZzXrFmDhIQEvPnmm61uw3DunGqMwPOfHkZ+STX6d++GR+7q\nB5Uj/1EyN1t4PyeVpuKr82tQUlOKIGd/PNDvXvipfESpxWA0IEuT0ziyTSlLQ5X+6sppbgqXhjCu\nD+SOfGfc3l6X11Yipbx+VJ5clnr1O2sAUkGKENeghu+sw9DdLcQuV0C7FZZ8T9foa5FfXYCca0fD\nmvwmR0+ucHdwuyaAfRt+elvl/5eo4bx9+3b897//xeeffw4Xl9YL0esNkMnM94mErEej1eHf/0vA\nsQsF8PNS4dlFwxHs6yp2WWQB1TotVp/4EbvTDkEukWF+5AzE9Rxv8e9f9QY9Ukov41xBEs4XJuFi\nUSq0+prG+9UqT/RRR6Cvuif6qiPg46y2+vrVmtoqXChKbqgxGallGY1nfUsECcI8gtBH3QN91RHo\nrY6As0Jl1frsUa2+DtkVecgsz0FmRS6yGn4WVhU329bD0Q2Bbn4IcvNHkGv9z0BXPzgplCJUfmMW\nDed9+/bh3Xffxaeffgp3d/c2t+XIuXO60mej0YSf96Zg0+EMOCqkePjOfhjUw0vs8uyGrb2fTxWe\nwbcXfoZGV4WeHhFY0OcedHP0MNv+6wx1SK/IQFJZGpJLU5FWkQGdUdd4v4+TuvHkrAj3MLM+t7l6\nrdXXILX8cuNh9ssVmTCYDAAAAQL8nX2bvAZXReuDF3vUkT7rDDrkVRc2+064WFsCE5pGmIvC+ZoR\ncP0ff5UPnOROlngZt0SUkXNlZSXmz5+P1atXw9PT84bbM5w7p+v7fPhcHlZvvACd3ogZo8NwR0yo\n1Ucw9sgW388VdZX49sJPSCw6D0epI+b2moEon8E39f+7aZCl4nJFVmOQAfWLdlgryCzV6yYfOMrS\nkFZ+udUPHD3cu8PDse0BTWfXUp/1Rj3yqwuv+044D4XVxc1C2FmuavadsJ/Kt1MdkRAlnNesWYP3\n338fYWFhjbe9/vrr8Pf3b3F7hnPn1FKfL+dV4v21p1FSUYthvdR48PY+cFTYzslDnZGtvp9NJhMO\n5sbj56QNqDXUYbB6AOb1ngVnedv/QFbpqpucvJVZmd34j69EkCDIOaDx5K1w9zCorDjqsVav9UY9\nMiqzkFyahqTyVKSWpaPGcHVRGU9Hjybfm6uVnnbxQddkMkFv1MOorMXZrFTkavIavhvOR6G2qNn8\n7k4yZf1I2PnqKNhP5QsXhbNIr8B8RD8hrD0Yzp1Ta32uqKrDh78k4lJWOQLVznji7gFQu9vmdzud\nga2/n4u0xfjy3BqklqfDVeGC+/rcg36evRvvL6+tvGbCD9s+eUqsXhuMBmRrchvOBm/pJDfXJkcP\n/FQ+Zg1rg9GAOqMOOqMOdQYd6gx1jf+tM+pQZ2zhNoMOdcY66Az6hp/12139WYc6o/7q4xruu34U\nDNTP9d78xCwfuCpc7OJDSUsYzmQxbfVZbzDiu+1J2HUiG85KOR6d3g99QrtZuUL70Bnez0aTEdsv\n78FvaVthMBkw0ncYJIIEyeWd67IjW+m10WREXlVB46Vb118e5ixXIdw9DBFuoVDKlNcEax10DYF4\nbbDqGoL02mC9NmDNvSKZAAEKqRwKiQJyqRwKifzqT4kcfu5qeEi71Y+GnX3hpnC12xBuDcOZLKY9\nfd59MhvfbL0EkwmYNzECE4cGdrlfwlvVmd7PmZU5+Orc942j4842YYet9tpkMqFQW9QY1MllaTe1\ngphcck1QSuUNf78aoI23SRWQS2RQSBXNglUhVVyz3dV9XHubVJC2+Xtuq322JoYzWUx7+3wpswwf\n/pKIimodRg3ww4LYXpDLOP1he3W297POoMO5kovwcHBHgLOfWSdusLTO1OtibSnSytOhMxlaCFZ5\nw8j1SrAqIJNIbWba0c7UZ0sRZfpOomv1DHLHPxdG4f2fE7E/MRe5xVV4fNYAuDt33rmaqXVyqRwD\n1f3FLsPueSo94Kk032VkZDts4yMUdQndXB2x/L4hGNnXByk5FXhh9VGk5DSfNo+IqKtjOJNVKeRS\nPHRnX8wZH4Hyqjq8/s1xrgtNRHQdhjNZnSAImDoiGE/dMxAKmRSf/X4e321PgsFo3rNFiYg6K4Yz\niaZ/d08898Aw+Hk6YVtCJt5ecwoare7GDyQisnMMZxKVTzcnPHv/MAyK8ML5y6V4YfVRZBVoxC6L\niEhUDGcSndJBhsV3D8CdMaEoKq/By18fw7GLBWKXRUQkGoYz2QSJIGDmmO54bEZ/mGDCB7+cwbp9\nqTDaxmX4RERWxXAmmzKstzdWLBgGLzdH/HogHR+sTYS2Vi92WUREVsVwJpsT5O2M5x4Yht7B7jiR\nVISXvz6G/NLqGz+QiMhOMJzJJrk4KbB07iBMGhqInKIqvLg6AWfSisUui4jIKhjOZLNkUgnmT+6J\nRdN6o05vwDs/nMKW+AzYyHTwREQWw3Ammzc60h//mD8ErioF1uxMxqe/nUOdziB2WUREFsNwpk4h\nPMAN/3wgCmF+rjh0Nh+vfXMcJRU1YpdFRGQRDGfqNDxcHLDsD4NxW39fpOdV4oUvE5CUVSZ2WURE\nZsdwpk5FLpPiwdv74N6JPaCp1uGNb09gz8lsscsiIjIrhjN1OoIgYHJUEJbOHQhHhRRfbr6I/229\nCL2BC2cQkX1gOFOn1Te0G55bGIUAtQo7j2fjre9PoqK6TuyyiIhuGcOZOjVvdyVWLBiKoT3VuJhZ\nhhdXH0VGfqXYZRER3RKGM3V6jgoZHp3ZHzNGh6G4ohavfH0M8efzxS6LiOimMZzJLkgEAXfdFoYn\nZg2AIBHwn/Vn8fOeFBiNnLCEiDofhjPZlcE91Xh2wVB4uyvx+6HLeO/n06iu6bwLZxhNJlRW16G4\nXCt2KURkRTKxCyAytwC1M559YBj+u/4MTqcU46WvEvDE3QPg56kSuzToDUZUVutQWV2HSm3Dz2od\nKqt10DT5ex002vrbrsxWOqSnGvdO7AFPN0dxXwQRWZxgspGJigsLzXsSj1rtYvZ9UnO23GeD0Yif\ndqdgS3wmlA5SPHJXP0SGe5lt/yaTCTV1BlRqddBUXxOs2vqfmutCWKPVQVt742lHBQAqpRwuTnI4\nK+VwcVJAU6PDpYwyKOQSTB8VhsnDgiCT8sCXJdjye9qesM/1PWgNw5luSWfo86Ezefhi0wUYDEbM\nGtsd00aGQBCEZtsZTSZUaVsexTYP4Prt2nNttVQiNAStAi5O8oY/Crgor/lvJzmcG25TKWWQSpoG\nr5eXM9bvSsKancnQaHUI8FJhQWwv9AxyN1ufqF5neE/bA/aZ4UwW1Fn6nJZbgf9bm4jSylpEhnui\nm6tjY9BqrhnZtue3wUEubRayzk0CV9HwdzlclAooHaQtfhjoiCt91mh1WLsnBXtO5sAE4Lb+vrhn\nQgRcnRS3tH+6qrO8pzs79pnhTBbUmfpcrqnFB7+cQXJ2eZPbVY6yq6NX5dWRbOPPa25zVsqhkEut\nXvv1fU7JLsfXWy4io0ADlaMMd48Nx5hB/pDc4ocA6lzv6c6MfWY4kwV1tj7rDUZk5GvgIJfAxUnR\n4iFkW9RSnw1GI3Yez8Yve1NRU2dAd39XLJjSCyG+rf/C0411tvd0Z8U+tx3OPFubuhSZVILu/q5i\nl2EWUokEk4cFYVgvbwHOVaUAAA8fSURBVKzZmYT48wV44cujmDgkEDPHdIfSgb/eRJ2V7Q8ZiKhN\nHi4O+PP0/nh67iB4uyux/VgWnvnkMI6cy4eNHBgjog5iOBPZiX5h3fDCH4djxugwVGn1+O+vZ/HW\nmpPIK6kWuzQi6iCGM5EdkcukuOu2MLz0p+EY0N0T59JL8c/PjuCXvamo0934Gmsisg0MZyI75O3h\nhL/cE4nHZvSHi5MCGw6m47nPjuB0SrHYpRFROzCcieyUIAgY1tsbL/1pBGKHB6G4vBarfjyFD35J\nRElFjdjlEVEbeDonkZ1TOsgwd0IP3NbfD19tvYhjFwtxJrUE00eFYdKwQE4DSmSD+FtJ1EUEejtj\n2R+GYNG03pDLJPhhVzJeWH0USVllYpdGRNdhOBN1IRJBwOhIf7zy8EiMGeiPrMIqvPq/4/j89/Oo\nrK4TuzwiasBwJuqCnJVyLIzrjWcWDEWQtzP2J+bimY8PY++pHBh5bTSR6BjORF1YRIAb/rlwGOZN\n7AG90YTVmy7g1f8dQ0Z+155WkUhsDGeiLk4qkWBKVBBeeWgkonp7IyW7As+vPorvtidBW6sXuzyi\nLonhTEQA6qcBfXRGfyydOxBqdyW2JWRixSeHEX+e04ASWRvDmYia6B/miRf/OBzTR4VBo9XjP+vP\n4u0fTiG/lNOAElkLw5mImpHLpJg+Kgwv/mk4+od1w9m0Ejz3aTzW7UuFTs9pQIksjeFMRK3y8XDC\nU3MG4rEZ/eGslOHXA+l47tN4nEnlNKBElsRwJqI2XZkG9OWHRmJKVBCKymvw9g+n8OEviSitrBW7\nPCK7xOk7iahdlA4yzJvYAzH9ffH11otIuFiIxLQSzBwVhonDAiGV8LM+kbnwt4mIOiTYxwXL7xuK\nhXG9IZMI+H5nMp7/IgHJWeVil0ZkNxjORNRhEkHAmIH104COjvRDVqEGr/zvGL7YeB4arU7s8og6\nPYYzEd00F6f/b+9uY6Mo9z6Of2d3u21329Ju6QOcUqDFYw8toCJ3AoKaiJpoIhHUIlLNeWFiiC80\naORGEQzGpCQmRiCoqAmpMVTBxyjgY00Ti3qiQe2xPPTmUCh9wm7bbbfbdrt7v9gCpaUckG53Ov19\nkk27s7PT/1yd9NdrZva6nPzzrn/wv6tvICfDTeWvkWFAKzUMqMhVsW/atGlTtDZ+5MgRiouLsdls\nzJ0795Lr+kd50H23O37UtynDqZ3HhtnbOT0lgSXzpuJKcPDvE17+dbiF6v+0cqY9wMnmTpq8fry+\nHjoDffQFQ9gMcNhtGIYR69KHMXtbW4XaOdIGI4naDWF+v5/NmzezcOHCaP0IETERh93Gnf+Ty4KC\nTHZ/fZR/HW6htr5jxPVthoE70UFSYhzuxDiSEuJIcsWRlHj+4U6IIynRQZLLOfDcofmnZUKIWjg7\nnU527tzJzp07o/UjRMSEPCkJrLl3Dk1eP22+Hjq7+4Y9urqD5773+ftobPVzuWfBE+PtA6E9KMwH\nnrsTLwz3sw9nnDl76SIjiVo4OxwOHA59UktkospKc5GV5rqsdUPhMP5AkK5hId6Hb+Dr+eVBugJ9\nnGrpItgfuqztO+y2SA98SGgPC3NXHMkpiVez2yKjwjTpmZbmwuGwj+o2MzKSR3V7cnFq57Ghdr5Q\nOBymp7efDn8vvq5efP5efF19kef+Xjq6IssHv+719XCqpeuS27XbDK6ZlsqcWZMpyp/MP2Z4SIw3\nzZ9KS9ExPTLTHHHeUR5UPyMjmZYWzUkbbWrnsaF2HpkBpMTbSYlPhLT/3usN9ofoCgTP9cwH99Lb\nOnupa+7kSF0bNSe8vP/1Uew2gxlTkinITePa3FRm/W0SCU7T/Okct3RMX/qfEx1hIjKhOOw2Jrmd\nTHI7L/p6RkYydae8HKtvp6bOy+G6No6f9lFb38FnVScU1jImonZE/f7775SWllJfX4/D4eDAgQNs\n3bqV1NTUaP1IEZFRkRjvYE5eOnPy0gHo7glSW99OTV0bh+u8w8M6O5lrc9MoyE1lVo7CWq6eETbJ\nLOqjfXpDp0zGhtp5bKidx87ltPWwsG7wnRt0xWYYzJyisP5vxssx7Q/00dDqp9nbzYzsZKaku0dt\n2zqtLSIyihLjHRTlpVM0Us+6wUft6Q4+P3jiXFj/PTeVgtw0Zv1tkm4wM5m+YIjmtm4a//TT5PXT\n2Bp5NLX68fnPD0c7Jy+dJx+YNyY16QgREblKQ8M60BvkWH07h+vaqKnz8p+BsN53sA6bEblmfa3C\nekyFwmG8HT00ev2REG71n/v+z47AsM/Z2wyDyakJzJySQlaai+x0F/Py08esXh0RIiKjLMHpoGhm\nOkUzRw7r/1NYR0Vnd18keAf1fhtbu2n2+ukNDv9c/CS3k2tyUsn2JJLtcZPlSSTb4yIjNTGmo9Hp\nCBARibIrDevp2ckU5KZybW4a1+QorIfqC/bT5O0eEsLdNLb6LzorWrzTzpT088Gb7XGR5YkMkuNK\nMGfbmrMqERELGxrWPb39F350q6GD4w0d7Pth4oZ1KBymtSNwQfCe7Qn/2R5g6J3MNsMgIzWB/Kkp\nZA0E8NkQTk1yjrvhW63/GxYRMbl4p53CmR4KZ3qAiRXWnd2RsdWH3ozV7O2m72KnoZOc/H1aKtnp\nkZ5vtidyPXjypARLTYoyfn+jIiIWdSVhbRgQH2fHMAxsA51DwzAwjEFfBy/j7GsDy650/cHLLvne\nEdYBMKArEORkk4+uQHDY/ic47Uyd7GbK2dPPA6ejs9Jc4/ofkSsxMfZSRGQcu2hYn27ncJ2XIyfb\nCfQECYUBwoTDECYy9ng4POjr2dfCkVPG4RCEw6FLrH/x9w5d9lfZbQYZqYkDN2O5LrgenOIef6eh\nR5vCWURknIl32imc4aFwhifWpUTCmsHhDhAmFL7EMmBGThqtrZeehGQiUziLiMhfdv5U9ZX1dO0W\nuj4cDWodERERk1E4i4iImIzCWURExGQUziIiIiajcBYRETEZhbOIiIjJKJxFRERMRuEsIiJiMgpn\nERERk1E4i4iImIzCWURExGSMcPhq5hURERGR0aaes4iIiMkonEVERExG4SwiImIyCmcRERGTUTiL\niIiYjMJZRETEZCwZzi+99BLFxcWsXLmSX3/9NdblWNaWLVsoLi5mxYoVfPHFF7Eux9ICgQBLly7l\ngw8+iHUplvXJJ59wzz33sHz5cioqKmJdjiV1dXXx+OOPU1JSwsqVK6msrIx1SabliHUBo+3HH3/k\nxIkTlJeXU1tby/r16ykvL491WZZz8OBBjh49Snl5OV6vl3vvvZc77rgj1mVZ1o4dO5g0aVKsy7As\nr9fL9u3b2bt3L36/n61bt3LrrbfGuizL+fDDD5k5cyZr166lqamJRx55hP3798e6LFOyXDhXVVWx\ndOlSAPLz82lvb6ezs5OkpKQYV2YtCxYsYO7cuQCkpKTQ3d1Nf38/drs9xpVZT21tLceOHVNYRFFV\nVRULFy4kKSmJpKQkNm/eHOuSLCktLY3Dhw8D0NHRQVpaWowrMi/LndY+c+bMBb9wj8dDS0tLDCuy\nJrvdjsvlAmDPnj3cfPPNCuYoKS0tZd26dbEuw9JOnTpFIBDgscceY9WqVVRVVcW6JEu6++67OX36\nNLfffjurV6/mmWeeiXVJpmW5nvNQGp00ur766iv27NnD22+/HetSLOmjjz7iuuuuY9q0abEuxfLa\n2trYtm0bp0+f5uGHH+bbb7/FMIxYl2UpH3/8MVOnTuWtt96ipqaG9evX6z6KEVgunDMzMzlz5sy5\n583NzWRkZMSwIuuqrKzktdde48033yQ5OTnW5VhSRUUFJ0+epKKigsbGRpxOJ9nZ2SxatCjWpVlK\neno6119/PQ6Hg9zcXNxuN62traSnp8e6NEv5+eefWbx4MQAFBQU0NzfrctgILHda+6abbuLAgQMA\nVFdXk5mZqevNUeDz+diyZQuvv/46qampsS7Hsl555RX27t3Le++9x/3338+aNWsUzFGwePFiDh48\nSCgUwuv14vf7dT00CqZPn86hQ4cAqK+vx+12K5hHYLme8w033EBhYSErV67EMAw2btwY65Is6fPP\nP8fr9fLEE0+cW1ZaWsrUqVNjWJXIX5OVlcWdd97JAw88AMBzzz2HzWa5vkvMFRcXs379elavXk0w\nGGTTpk2xLsm0NGWkiIiIyehfQxEREZNROIuIiJiMwllERMRkFM4iIiImo3AWERExGYWzyDh16tQp\nioqKKCkpOTfLz9q1a+no6LjsbZSUlNDf33/Z6z/44IP88MMPf6VcEbkCCmeRcczj8VBWVkZZWRm7\nd+8mMzOTHTt2XPb7y8rKNAiEiAlZbhASkYlswYIFlJeXU1NTQ2lpKcFgkL6+Pp5//nlmz55NSUkJ\nBQUF/PHHH+zatYvZs2dTXV1Nb28vGzZsoLGxkWAwyLJly1i1ahXd3d08+eSTeL1epk+fTk9PDwBN\nTU089dRTQGSu6eLiYu67775Y7rqIpSicRSyiv7+fL7/8kvnz5/P000+zfft2cnNzh00w4HK5eOed\ndy54b1lZGSkpKbz88ssEAgHuuusulixZwvfff09CQgLl5eU0Nzdz2223AbBv3z7y8vJ44YUX6Onp\n4f333x/z/RWxMoWzyDjW2tpKSUkJAKFQiBtvvJEVK1bw6quv8uyzz55br7Ozk1AoBESGuB3q0KFD\nLF++HICEhASKioqorq7myJEjzJ8/H4hMKpOXlwfAkiVLePfdd1m3bh233HILxcXFUd1PkYlG4Swy\njp295jyYz+cjLi5u2PKz4uLihi0bOjViOBzGMAzC4fAFY0yfDfj8/Hw+++wzfvrpJ/bv38+uXbvY\nvXv31e6OiAzQDWEiFpOcnExOTg7fffcdAMePH2fbtm2XfM+8efOorKwEwO/3U11dTWFhIfn5+fzy\nyy8ANDQ0cPz4cQA+/fRTfvvtNxYtWsTGjRtpaGggGAxGca9EJhb1nEUsqLS0lBdffJE33niDYDDI\nunXrLrl+SUkJGzZs4KGHHqK3t5c1a9aQk5PDsmXL+Oabb1i1ahU5OTnMmTMHgFmzZrFx40acTifh\ncJhHH30Uh0N/TkRGi2alEhERMRmd1hYRETEZhbOIiIjJKJxFRERMRuEsIiJiMgpnERERk1E4i4iI\nmIzCWURExGQUziIiIibz/10YdSnY4WT/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlYVdX+P/D3ZnQAGT0oKFp6ySQp\n0DJDRbkgalleM6UM0/AmDpmWpiIBmiA0eVOxtCwNNVGktJzratcBUTMnSkstEpV5UAYZ9/cPf56f\nqByQzT5n73Per57zPGfgrM+CkPdZa6+9tiCKoggiIqImMjN0B4iISN0YJEREJAmDhIiIJGGQEBGR\nJAwSIiKShEFCRESSMEhIElEU8eWXX+KZZ55BUFAQAgICEB0djevXr0tqd+bMmfDz88P+/fvv+72n\nTp1CaGiopPrNbfv27SgpKbnnax9++CG+/vprPfeIqPkIPI+EpHj//fdx5MgRLFu2DC4uLigrK0NM\nTAz+/PNPrFu3DoIgNKndhx9+GLt27YK7u3sz99gwBg8ejNWrV6Ndu3aG7gpRs+OIhJqsqKgIiYmJ\niIuLg4uLCwCgVatWiIyMxIQJEyCKIioqKhAZGYmgoCAMGTIEcXFxqKmpAQD4+/tjw4YNGDlyJPr2\n7Yu4uDgAQEhICGpraxEaGoqffvoJ/v7+OHbsmLburcfV1dWYN28egoKCEBgYiKlTp6KkpARpaWkI\nDAwEgCbVv1NISAhWrlyJ0aNH48knn8S6deuwfPlyDB48GEOHDsWlS5cAABcvXsSLL76IIUOGIDAw\nEN9//z0AYO7cufjzzz8REhKCY8eOYc6cOVi0aBGGDRuGHTt2YM6cOVi+fDlOnTqFAQMGoLS0FADw\n6aefYtq0ac39v42o2TFIqMlOnjyJdu3aoUuXLnWet7a2hr+/P8zMzLBmzRpkZWVh27Zt+Oabb3Ds\n2DHtH1gAOHr0KJKSkrB582asXbsWWVlZSExMBAAkJibCz8+v3voHDhxAZmYmdu7cid27d6Nr1674\n5Zdf6nxNU+rfy9GjR7Fu3TosWrQI77//Ptq1a4edO3eia9eu2Lx5MwDgvffew8CBA7Fjxw7ExsZi\n3rx5qKqqwqJFi7TfT69evQAAqampSE5OxpAhQ7Q1vLy8EBAQgBUrViA7Oxvr169HREREg/8fiAyN\nQUJNVlRUBCcnJ51fs2/fPowaNQoWFhZo0aIFhg0bhoMHD2pfHzZsGMzNzeHi4gInJydcvXq10fUd\nHR1x4cIF7NmzB+Xl5Zg+fTr69esnS/2BAwfCwsICHh4eKC8vR1BQEADAw8MDOTk5AIDly5drj830\n7NkTFRUVyM3NvWd7ffr0gbW19V3Pz5gxAzt37sTcuXMxefJkaDSaRv88iAyFQUJN5uDggOzsbJ1f\nU1BQADs7O+1jOzs75Ofnax/b2Nho75ubm2unnRrDy8sLERERSExMhK+vL9566y1cu3ZNlvqtW7fW\nfs3tj83MzFBbWwsA2L9/P8aMGYOgoCAMHToUoihqX7vT7X26s86QIUPw888/Y9iwYTq/fyKlYJBQ\nkz322GPIz89Henp6neerqqqwePFilJeXw9nZGUVFRdrXioqK4OzsfF91bv9jDQDFxcXa+4MHD0Zi\nYiL27t2L8vJyrFq1qs57m6N+Y1RVVWH69OmYNGkSdu3aha1btzZpoUF2dja+++47PP3001i2bFmz\n95NIDgwSarI2bdpgwoQJmD17NjIyMgAA5eXliIyMxK+//oqWLVtiwIABSE5ORk1NDcrKyrBlyxad\nxz3upW3btjh79iyAm8toKyoqAACbN29GQkICAMDe3h4PPvjgXe9tjvqNUV5ejrKyMjzyyCMAbh6b\nsbS0RFlZGQDAwsLirtHSvcTExGDChAkIDw/Hjh078NtvvzV7X4maG4OEJHn99dcxatQoTJo0CUFB\nQRgxYgScnJy0n6ZDQkLQrl07PP3003j++ecxYMCAOgeYG2Py5MlYvXo1nnnmGVy4cAFdu3YFAPzz\nn/9Eeno6Bg0ahCFDhuD8+fMYP358nfc2R/3GuBWqw4cPx/Dhw+Hu7o6AgACEhYWhrKwMgwcPRnBw\nMLZv315vG/v27UNmZiaCg4NhY2ODGTNmICIi4r6m+4gMgeeREBGRJByREBGRJAwSIiKShEFCRESS\nMEiIiEgSBgkREUliYegO1MfCwsogdaurKw1Sl+RnqAWK1bWGWb5rYWZukLqGUmug/7/mZvJ9Hm/q\n7tn6/l1XbJAQEZm6pgaJvnFqi4iIJOGIhIhIodQyImGQEBEplCCoY9KIQUJEpFgckRARkQSc2iIi\nIkkYJEREJIlajpGoo5dERKRYHJEQESkUp7aIiEgSBgmA0tJS5OXlAbh53e1WrVrJWY6IyKiYdJCc\nPn0aMTExuHbtGhwcHCCKInJycuDi4oLIyEg89NBDcpQlIjIqJh0ksbGxiImJQZcuXeo8n56ejgUL\nFmDdunVylCUiMjLqWA8lSy9FUbwrRADA09MTNTWG2VKbiIjkIcuI5NFHH0VYWBgCAgLg6OgIAMjL\ny8OuXbvwxBNPyFGSiMjoqGVqSxBlugLK0aNHkZqaqj3YrtFo4OvrC29v70a9nxe2oubGC1sZN2O8\nsJWtrWOT3nf9ekEz90Q32YJEKgYJNTcGiXEzxiBp08apSe+7di2/mXuiG88jISJSKLVMbTFIiIgU\nSi17bTFIiIgUSi0jEnXEHRERKRZHJERECqWWEQmDhIhIsRgkREQkAQ+2ExGRJJzaIiIiSRgkREQk\niVqCRB0TcEREpFiKHZEYas8rQ3wCqDbQ1vpy7hGkRIb6dGdprth/ZrIw1O+zhbnx7S2mlhGJaf2G\nExGpCFdtERGRJByREBGRRAwSIiKSgCMSIiKSRC3HSNTRSyIiUiyOSIiIFIpTW0REJAmDhIiIJGGQ\nEBGRJAwSIiKShKu26nHt2jV9lyQiUiWhif/pm96DZOrUqfouSUREMpJlamvdunX1vpadnS1HSSIi\n42PKx0hWr16NPn36QKPR3PVadXW1HCWJiIyOSR9sT0hIwMKFCxEREQErK6s6r6WlpclRkojI6Kgl\nSARRFEU5Gi4vL4e1tTXM7rh4Unp6Ojw9PeUo2Sx4YSsiaXhhq+bTtatPk953/vzxZu6JbrIt/23Z\nsuU9n1dyiBARKYlaRiQ8j4SISKHUEiSc2yAiIkk4IiEiUig5RySxsbE4efIkBEFAeHg4vLy8tK+t\nW7cOW7duhZmZGR555BHMmzdPZ1sMEiIihRJkmjQ6cuQIMjIykJSUhAsXLiA8PBxJSUkAgJKSEqxa\ntQq7d++GhYUFXn31VZw4cQKPPfZYve1xaouISKkEoWm3BqSmpiIgIAAA0KVLFxQXF6OkpAQAYGlp\nCUtLS5SVlaG6uhrl5eWws7PT2R5HJERECiXX1FZeXl6dFbSOjo7Izc2FjY0NrK2tMWXKFAQEBMDa\n2hpPP/00HnjgAZ3tcURCRKRQgiA06Xa/bj+dsKSkBCtWrMDOnTvx448/4uTJkzh79qzO9zNIiIgU\nSq4g0Wg0yMvL0z7OyclB27ZtAQAXLlxAx44d4ejoCCsrK/Tq1QtnzpzR2R6DhIjIxPj6+mLXrl0A\nbu42otFoYGNjAwBwc3PDhQsXcOPGDQDAmTNn0LlzZ53t8RgJEZFCyXVhKx8fH3h6eiI4OBiCICAq\nKgopKSmwtbVFYGAgQkNDMXbsWJibm8Pb2xu9evXS3U+59tpSK+61RSQN99pqPj169G/S+06f/l8z\n90Q3jkjuUFtbq/eaLVq01ntNACgtu26QuoYKMLVsN9FcDPUZscZAdY3xj5lafmeN8WdPRGQkGCRE\nRCSBXMdImhuDhIhIodQytaWOuCMiIsXiiISISKHUMiJhkBARKRSDhIiIJGGQEBGRJFy1RUREknBE\nQkREkggqOSFRHeMmIiJSLFmD5F57/WRlZclZkojIeMh0qd3mJkuQ7NmzBwMHDkSfPn0we/Zs7bWA\nAeDtt9+WoyQRkdHR1xUSpZIlSFauXIlvvvkGhw4dgo+PD0JDQ3H9+s2dZrlrPRFR4wiCWZNu+ibL\nwXZzc3PY29sDAEaPHg0nJyeEhobi008/Vc0qBCIiQ1PL30tZgsTHxwcTJ07Exx9/jBYtWiAgIADW\n1tYYN24cioqK5ChJRGR0TDpI3n77baSlpcHa2lr7XL9+/eDt7Y3t27fLUZKIyOiYdJAAQO/eve96\nzsbGBqNGjZKrJBERGQBPSCQiUihukUJERBKZ+NQWERFJY/LHSIiISBoGCRERScIgISIiSdRysF0d\nvSQiIsXiiISISKE4tUVERJIwSIiISBIGCRERSaSOw9gMkjvU1NbqvWZZeUnDXySDli1aGaRuZeUN\ng9Q1tWvhGOrTrLmB6hrq/6+cP2eOSIiISBK1BIk6xk1ERKRYHJEQESmUWkYkDBIiIoVikBARkSRq\n2SKFQUJEpFAckRARkSQMEiIikkgdQaKOCTgiIlIsjkiIiBRKLVNbehuRFBQU6KsUEZFREASzJt30\nTZaK+/btQ1BQEMaNG4fff/8dzz77LEJCQuDv74+ffvpJjpJEREZHEIQm3fRNlqmtTz75BF9++SWu\nXLmCsLAwLF++HN26dUNeXh7CwsLg5+cnR1kiIqOilqktWYLEysoKrq6ucHV1hUajQbdu3QAAzs7O\nsLa2lqMkEZHRUUuQyDK15eTkhFWrVgEANmzYAADIyspCbGws2rVrJ0dJIiKjY9LHSOLi4tC+ffs6\nz+Xn58PV1RWxsbFylCQiIgORZWqrRYsWGDp0aJ3nPD094enpKUc5IiKjpJapLZ5HQkSkWAwSIiKS\ngCMSIiKSRDBjkBARkQQckRARkSRyBklsbCxOnjwJQRAQHh4OLy8v7WtXr17Fm2++iaqqKnTv3h0L\nFizQ2RZ3/yUiMjFHjhxBRkYGkpKSEBMTg5iYmDqvx8XF4dVXX0VycjLMzc1x5coVne0xSIiIFEqu\nvbZSU1MREBAAAOjSpQuKi4tRUlICAKitrcXPP/8Mf39/AEBUVBRcXV11tscgISJSKLmCJC8vDw4O\nDtrHjo6OyM3NBXBzp/bWrVtj0aJFePHFF/Hhhx822B6DhIhIoQSzpt3ulyiKde5nZ2dj7NixWLt2\nLX799Vfs27dP5/sZJERESiUITbs1QKPRIC8vT/s4JycHbdu2BQA4ODjA1dUV7u7uMDc3R58+ffDH\nH3/obI9BQkSkUHJNbfn6+mLXrl0AgPT0dGg0GtjY2AAALCws0LFjR/z111/a1x944AGd7XH5LxGR\nQsm1/NfHxweenp4IDg6GIAiIiopCSkoKbG1tERgYiPDwcMyZMweiKMLDw0N74L3efoq3T44Rqmqq\n9V5TUMl+Os2lrbPuFSByKSzMNkhdQ/xOAYCluWl9TiyrrDRI3VZWVrK1/VJIeJPetz5Rv7usm9Zv\nGhGRivDMdiIikoR7bRERkSQckRARkSQMEiIikkQlOVJ/kCQnJ+t848iRI5u9M0REdBuVJEm9QfLz\nzz/rfCODhIiIAB1BsmjRIu392tpa5Ofna0+hJyIi+all1VaDW6Tc2m44JCQEwM2LoTS0gRcREUkn\n1xYpza3BIFm8eDE2btyoHY2EhYVh+fLlsneMiMjUGU2QtGrVCs7OztrHjo6OsLS0vK8iqamp998z\nIiITp5YgaXD5b4sWLXDkyBEAQHFxMbZt2wZra+t6v/7bb7+t81gURXzyySeYPHkyAGD48OFS+ktE\nZDKM5jySqKgoREdH4/Tp0wgMDETPnj11Xgg+ISEB9vb28PPz0z5XUVGBzMzM5ukxEZGJUMvB9gaD\npH379lixYkWjG/z++++xfPlynDt3DnPmzIGbmxv279+PqVOnSuooEREpU4NBcvToUcTFxeHChQsQ\nBAEeHh54++230bNnz3t+vbW1NWbMmIGLFy9iwYIF8Pb2Rm1tbbN3nIjI2KlkZqvhg+0LFizAzJkz\nkZaWhtTUVEybNg3z589vsOEHH3wQK1asQLt27dChQ4dm6SwRkSkxmoPtTk5O6NOnj/axr68vXF0b\nf2Gi4cOH8wA7EVFTqGRIUm+QXLp0CQDQo0cPfPHFF3jqqadgZmaG1NRUdO/eXW8dJCIyVapftfXK\nK69AEATcuhLv2rVrta8JgoBp06bJ3zsiIhOm+lVb//3vf+t90/Hjx2XpDBER/X+qH5HcUlJSgi1b\ntqCwsBAAUFVVhc2bN+PAgQOyd46IiJSvwVVb06dPx7lz55CSkoLS0lLs3bsX0dHReugaEZFpU8uq\nrQaDpKKiAgsWLICbmxtmz56Nr776Cjt27NBH34iITJpagqTBqa2qqiqUlZWhtrYWhYWFcHBw0K7o\nIiIi+ajkEEnDQfLcc89h48aNeOGFFzB06FA4OjrC3d1dH30jIjJtal+1dcuLL76ovd+nTx/k5+fz\nPBIiIj1Q/aqtjz/+uN437dmzB2+88YYsHSIioptUHyTm5ub67AcREalUvUHCbd+JiAxL9SMSU2Vp\nrv8fya1taPTtSlGhQeoWFGQZpG779g8apG7m5fMGqWsoVTXVBqlrbWF8f84YJEREJIla9tpq8IRE\nACgsLMTp06cBgBepIiLSE7WckNhgkHz//fcYPXo05s6dCwB49913sWnTJtk7RkRk6gShaTd9azBI\nvvzyS2zZsgUODg4AgNmzZ2Pjxo2yd4yIyOSpJEkaDBJbW1u0bNlS+7hFixawtLSUtVNERKQeDR5s\nd3BwwDfffIOKigqkp6dj+/btcHR01EffiIhMmlpWbTU4Ipk/fz5Onz6N0tJSREREoKKiAgsXLtRH\n34iITJpgJjTppm8NjkjatGmDyMhIffSFiIhuo5YRSYNB4ufnd89vZt++fXL0h4iI/h+jCZL169dr\n71dVVSE1NRUVFRWydoqIiIwoSNzc3Oo87ty5M0JDQzFu3LhGF6murkZ2djZcXFxgYYTbGBARycFo\ngiQ1NbXO46ysLPz9998637Nw4UJEREQAAA4dOoR58+bB2dkZ+fn5mD9/Pvr16yehy0REpCQNBsny\n5cu19wVBgI2NDebPn6/zPefOndPeT0hIwFdffYWOHTsiNzcXU6dOZZAQETWC0KhNrAyvwSCZM2cO\nPD0976vR24djdnZ26NixIwCgbdu2nNoiImoslUxtNZh38fHx993oH3/8gTfeeAPTpk1DRkYGduzY\nAQD44osvYGtre/+9JCIyQWrZtLHB4YGrqytCQkLw6KOP1tkaRdeldu+8TG+nTp0A3ByRfPjhh03t\nKxGRSTGag+0dOnRAhw4d7qvRJ5544p7PDxs27L7aISIyZaoPkq1bt+LZZ5/lJXeJiAxE9Re2Sk5O\n1mc/iIhIpbiEiohIoVQ/tfXLL79gwIABdz0viiIEQeBeW0REMlN9kHTv3h0fffSRPvtCRES3UUmO\n1B8kVlZWd+2zRURE+iPnwfbY2FicPHkSgiAgPDwcXl5ed33Nhx9+iBMnTiAxMVFnW/UGyb0aJSIi\nPZJpSHLkyBFkZGQgKSkJFy5cQHh4OJKSkup8zfnz53H06NFGXVq93lVbs2bNkt5bIiJSnNTUVAQE\nBAAAunTpguLiYpSUlNT5mri4OMyYMaNR7alkSzAiItMj1xYpeXl5cHBw0D52dHREbm6u9nFKSgqe\neOKJRh/eYJAQESmUvvbaEkVRe7+oqAgpKSkYP358o9/P80iIiBRKruW/Go0GeXl52sc5OTlo27Yt\nAODw4cMoKCjAmDFjUFlZib///huxsbEIDw+vtz2OSIiIFEowE5p0a4ivry927doFAEhPT4dGo4GN\njQ0AYPDgwdi+fTs2btyIZcuWwdPTU2eIAAoekdw+1CJ5uDk4GqRuTW2tQepevXrRIHXNzc0NUre6\nutogdS3MDPP9quXkvfsh1/fk4+MDT09PBAcHQxAEREVFISUlBba2tggMDLzv9gRRoX+xFdoto2Ko\nf3iGChJzM8MMwE0tSAzFGIMkftWGJr1vdmhwM/dEN05tERGRJIqd2iIiMnVqGWUxSIiIlIpBQkRE\nUqjlwlYMEiIiheLUFhERScIgISIiSdQSJFz+S0REknBEQkSkUByR3KGgoEBfpYiIjIJg1rSbvslS\n8qeffkJkZCSAmxdQGThwIMaOHQt/f3/s27dPjpJEREZHX9vISyXL1NaSJUuwYsUKAEBCQgK++uor\ndOzYEYWFhZg4cSIGDBggR1kiIuOikqktWYKkuroarVu3BgDY2tqiQ4cOAAB7e3tuxkhE1EhqOUYi\nS5CEhoZi+PDh8PX1hb29PSZPngxvb2+kpaXhhRdekKMkEZHRMekgefbZZ9G/f38cOnQIly9fhiiK\ncHZ2RmxsLFxcXOQoSUREBiLb8l97e3sMHTpUruaJiIwe99oiIiJJTHpqi4iIpGOQEBGRJCrJEQYJ\nEZFiqSRJGCRERAqlloPt3P2XiIgk4YiEiEiheLCdiIgkYZAQEZEkDBIiIpKEQUJERJKoZdUWg4SI\nSKFUMiBhkNyp1gDXSzHUNVrMzbj6Wx9qamoMUtfaupVB6lZUlBmkbrWBfs4W5uYGqaskDBIiIqVS\nyZCEQUJEpFA82E5ERJIwSIiISBKu2iIiIkk4IiEiIknUEiRc/0lERJJwREJEpFBqGZEwSIiIFEol\nOcIgISJSLK7aIiIiKdQytSXLwXYfHx+8++67yM/Pl6N5IiKTIAhCk276JsuIxNPTE4MHD8Zbb72F\n9u3bY8SIEfD29oaFBQdARESNpZYRiSx/2QVBwOOPP47Vq1fj9OnT2LRpE9555x20bt0aTk5OWLly\npRxliYjIAGQJktu3Re/Rowd69OgBAMjJyUFubq4cJYmIjI6ZKY9InnvuuXs+r9FooNFo5ChJRGR0\nTHpqa+TIkXI0S0RkUkx6REJERNKpJEcYJERESiVAHUnCICEiUii1TG1x918iIpKEIxIiIoUy6VVb\nREQkHYOEiIgkkfMYSWxsLE6ePAlBEBAeHg4vLy/ta4cPH8ZHH30EMzMzPPDAA4iJiYGZWf1HQniM\nhIhIoeTatPHIkSPIyMhAUlISYmJiEBMTU+f1yMhILFmyBBs2bEBpaSn279+vsz2OSIiIFEquEUlq\naioCAgIAAF26dEFxcTFKSkpgY2MDAEhJSdHed3R0RGFhoe5+ytJLIiKSTBCadmtIXl4eHBwctI8d\nHR3r7IN4K0RycnJw8OBB+Pn56WyPQUJEZOJu32j3lvz8fISFhSEqKqpO6NwLp7aIiBRKrjPbNRoN\n8vLytI9zcnLQtm1b7eOSkhL8+9//xvTp09G3b98G21NskBhq2VtFVZXea1ob6IJfZZWVBqnb2tra\nIHVramsNUtdQZydXVJQZpK6Dg4tB6ubmXTFIXTnJ9bvj6+uLpUuXIjg4GOnp6dBoNNrpLACIi4vD\nK6+8gv79+zeqPcUGCRGRqZPrA7WPjw88PT0RHBwMQRAQFRWFlJQU2Nraom/fvvj222+RkZGB5ORk\nAMAzzzyD0aNH199P8V6TYybMEJ/SDTUiuWGA0RfAEYm+GGpUb2ojEgtzc9na/u+vvzbpff7duzdz\nT3TjiISISKHUsmkjg4SISKHUskUKl/8SEZEkHJEQESmUWkYkDBIiIoUyU0eOMEiIiJSKl9olIiJJ\nuGqLiIgk4TGSO4iiqJofChGREqjlb6Ysy38PHDiAIUOGYMyYMTh16hSef/559O/fH4MHD8aRI0fk\nKElERAYiy4gkISEBa9asQXFxMUJCQrB69Wp069YNly9fxqxZs7B+/Xo5yhIRGRWTPkZiaWkJjUYD\njUaDNm3aoFu3bgAANzc3mMu4Lw0RkTFRy9SWLEFiZ2eHxYsXo7CwEO7u7oiMjES/fv1w4sQJODk5\nyVGSiMjoqCVIZDlGEh8fD41GgyeffBKff/45evXqhYMHD8LZ2RmxsbFylCQiMjpmQtNu+sZt5O/A\nbeTlx23k9YPbyOuHnNvIn8jIaNL7HuvUqZl7ohvPIyEiUii1HGzn7r9ERCQJRyRERAqlloPtDBIi\nIoVikBARkSRqOUbCICEiUiiOSIiISBIGCRERSaKWKyRy+S8REUnCEQkRkULxUrtERCQJj5GoVEtL\nS0N3QW9aWVkZpG5pRYVB6hpqjy9DMdTeYnn5Vw1S197O2SB1r18vkK1tLv8lIiJJOCIhIiJJOCIh\nIiJJ1DIi4fJfIiKShCMSIiKFUsuIhEFCRKRQajmznUFCRKRQPCGRiIgk4dQWERFJwuW/REQkiVpG\nJFz+S0REksg6IhFFEYWFhRBFEU5OTnKWIiIyOmoZkcgSJH/++Sfi4+Nx+fJlZGZmokuXLiguLoan\npyfmzp0LFxcXOcoSERkVtRwjkWVqKyoqCvPmzcN3332HzZs3o0ePHtizZw9GjBiBmTNnylGSiMjo\nCILQpJu+yRIklZWV6NixIwCgc+fOOHfuHACgf//+uHHjhhwliYiMjpnQtJu+yTK15eHhgTfffBNe\nXl7Yv38/evfuDQAIDw9H165d5ShJRGR01HJCoiCKotjcjYqiiB9//BF//fUXPDw80L9/fwDA2bNn\n8dBDDyn6AJIMPw66Q1llpUHq8sJWxs0YL2x1rby8Se9r07JlM/dEN1mCRM3445Afg0Q/GCT6wSDh\nCYlERIqlllVbDBIiIoVS8mGA2zFIiIgUikFCRESScGqLiIgk4YiEiIgkUcsVErn7LxERScIRCRGR\nQsl5ZntsbCxOnjwJQRAQHh4OLy8v7WuHDh3CRx99BHNzc/Tv3x9TpkzR2RZHJERECiXXpo1HjhxB\nRkYGkpKSEBMTg5iYmDqvL1y4EEuXLsXXX3+NgwcP4vz58zrbY5AQESmUmSA06daQ1NRUBAQEAID2\nMh8lJSUAgEuXLsHOzg7t27eHmZkZ/Pz8kJqaqruf0r9VIiKSg1wjkry8PDg4OGgfOzo6Ijc3FwCQ\nm5sLR0fHe75WHx4juYNaltupmanteWUo5mam9TlRzj2vjJ3UPQZN6zeNiIig0WiQl5enfZyTk4O2\nbdve87Xs7GxoNBqd7TFIiIhMjK+vL3bt2gUASE9Ph0ajgY2NDQCgQ4cOKCkpQWZmJqqrq7F37174\n+vrqbI/byBMRmaAPPvgAx44juFE4AAAJ6ElEQVQdgyAIiIqKwq+//gpbW1sEBgbi6NGj+OCDDwAA\ngwYNQmhoqM62GCRERCQJp7aIiEgSBgkREUlidMt/dZ32L6fff/8dkydPxrhx4/Dyyy/rpSYAvPfe\ne/j5559RXV2NiRMnYtCgQbLWKy8vx5w5c5Cfn4+KigpMnjwZAwcOlLXm7W7cuIFnnnkGkydPxogR\nI2Svl5aWhjfeeAP/+Mc/AAAeHh545513ZK8LAFu3bsXnn38OCwsLTJs2DQMGDJC95qZNm7B161bt\n4zNnzuCXX36RvW5paSlmz56N4uJiVFVVYcqUKejXr5/sdWtraxEVFYU//vgDlpaWiI6ORpcuXWSv\na3REI5KWlia+9tproiiK4vnz58VRo0bppW5paan48ssvixEREWJiYqJeaoqiKKampooTJkwQRVEU\nCwoKRD8/P9lrbtu2TVy5cqUoiqKYmZkpDho0SPaat/voo4/EESNGiJs3b9ZLvcOHD4uvv/66Xmrd\nrqCgQBw0aJB4/fp1MTs7W4yIiNB7H9LS0sTo6Gi91EpMTBQ/+OADURRFMSsrSwwKCtJL3d27d4tv\nvPGGKIqimJGRof37QffHqEYk9Z32f2tZm1ysrKzw2Wef4bPPPpO1zp0ef/xx7YirTZs2KC8vR01N\nDczNzWWrOXToUO39q1evwsXFRbZad7pw4QLOnz+vl0/mhpaamoo+ffrAxsYGNjY2ePfdd/Xeh4SE\nBO3KHbk5ODjg3LlzAIBr167VOetaTn/99Zf235C7uzuuXLki+78hY2RUx0h0nfYvJwsLC7Ro0UL2\nOncyNzdHq1atAADJycno37+/3v4BBAcHY+bMmQgPD9dLPQCIj4/HnDlz9FbvlvPnzyMsLAwvvvgi\nDh48qJeamZmZuHHjBsLCwvDSSy81uNdRczt16hTat2+vPUlNbk8//TSuXLmCwMBAvPzyy5g9e7Ze\n6np4eODAgQOoqanBxYsXcenSJRQWFuqltjExqhHJnUQTWdn8ww8/IDk5GV988YXeam7YsAG//fYb\nZs2aha1bt8q+tcy3336Lxx57DB07dpS1zp06d+6MqVOnYsiQIbh06RLGjh2L3bt3w8rKSvbaRUVF\nWLZsGa5cuYKxY8di7969etvCJzk5Gf/617/0UgsAtmzZAldXV6xatQpnz55FeHg4UlJSZK/r5+eH\n48ePY8yYMXjooYfw4IMPmszfjeZkVEGi67R/Y7V//358+umn+Pzzz2Frayt7vTNnzsDJyQnt27fH\nww8/jJqaGhQUFMDJyUnWuvv27cOlS5ewb98+ZGVlwcrKCu3atcNTTz0la10XFxftdJ67uzucnZ2R\nnZ0te6A5OTnB29sbFhYWcHd3R+vWrfXyc74lLS0NEREReqkFAMePH0ffvn0BAN26dUNOTo7epphm\nzJihvR8QEKC3n7ExMaqpLV2n/Ruj69ev47333sOKFStgb2+vl5rHjh3Tjnzy8vJQVlaml/ns//zn\nP9i8eTM2btyIF154AZMnT5Y9RICbK6dWrVoF4OauqPn5+Xo5LtS3b18cPnwYtbW1KCws1NvPGbi5\nt1Lr1q31Muq6pVOnTjh58iQA4PLly2jdurVeQuTs2bOYO3cuAOB///sfunfvDjMT2+yyORjViMTH\nxweenp4IDg7WnvavD2fOnEF8fDwuX74MCwsL7Nq1C0uXLpX9j/v27dtRWFiI6dOna5+Lj4+Hq6ur\nbDWDg4Mxb948vPTSS7hx4wYiIyON+h+ev78/Zs6ciR9//BFVVVWIjo7Wyx9YFxcXBAUFYdSoUQCA\niIgIvf2c79xGXB9Gjx6N8PBwvPzyy6iurkZ0dLRe6np4eEAURYwcORLW1tZ6W1xgbLhFChERSWK8\nHyWJiEgvGCRERCQJg4SIiCRhkBARkSQMEiIikoRBQrLJzMzEI488gpCQEISEhCA4OBhvvfUWrl27\n1uQ2N23apN0mZcaMGcjOzq73a48fP45Lly41uu3q6mo89NBDdz2/dOlSLF68WOd7/f39kZGR0eha\nc+bMwaZNmxr99URKxiAhWTk6OiIxMRGJiYnYsGEDNBoNPvnkk2Zpe/HixTpPDkxJSbmvICGipjGq\nExJJ+R5//HEkJSUBuPkp/tYeVkuWLMH27duxdu1aiKIIR0dHLFy4EA4ODli3bh2+/vprtGvXDhqN\nRtuWv78/vvzyS3Ts2BELFy7EmTNnAADjx4+HhYUFdu7ciVOnTmHu3Lno1KkT5s+fj/LycpSVleHN\nN9/EU089hYsXL2LWrFlo2bIlevfu3WD/169fjy1btsDS0hLW1tZYvHgx2rRpA+DmaOn06dPIz8/H\nO++8g969e+PKlSv3rEtkTBgkpDc1NTXYs2cPevbsqX2uc+fOmDVrFq5evYpPP/0UycnJsLKywpo1\na7BixQpMmTIFS5Yswc6dO+Hg4IBJkybBzs6uTrtbt25FXl4eNm7ciGvXrmHmzJn45JNP8PDDD2PS\npEno06cPXnvtNbz66qt48sknkZubi9GjR2P37t1ISEjA888/j5deegm7d+9u8HuoqKjAqlWrYGNj\ng8jISGzdulV7ITN7e3usWbMGqampiI+PR0pKCqKjo+9Zl8iYMEhIVgUFBQgJCQFw82p0vXr1wrhx\n47Sve3t7AwB++eUX5ObmIjQ0FABQWVmJDh06ICMjA25ubtp9pnr37o2zZ8/WqXHq1CntaKJNmzZY\nuXLlXf1IS0tDaWkpEhISANzc+j8/Px+///47XnvtNQDAk08+2eD3Y29vj9deew1mZma4fPlynU1B\nfX19td/T+fPnddYlMiYMEpLVrWMk9bG0tARw8+JgXl5eWLFiRZ3XT58+XWfr9Nra2rvaEAThns/f\nzsrKCkuXLr1rDylRFLV7WNXU1OhsIysrC/Hx8di2bRucnJwQHx9/Vz/ubLO+ukTGhAfbSRF69OiB\nU6dOaS9EtmPHDvzwww9wd3dHZmYmrl27BlEU73mBJ29vb+zfvx8AUFJSghdeeAGVlZUQBAFVVVUA\ngJ49e2LHjh0Abo6SYmJiANy8kuaJEycAoMGLR+Xn58PBwQFOTk4oKirCgQMHUFlZqX398OHDAG6u\nFrt1jff66hIZE45ISBFcXFwwb948TJw4ES1btkSLFi0QHx8POzs7hIWFYcyYMXBzc4Obmxtu3LhR\n571DhgzB8ePHERwcjJqaGowfPx5WVlbw9fVFVFQUwsPDMW/ePERGRmLbtm2orKzEpEmTAABTpkzB\n7NmzsXPnTu31P+rz8MMPo1OnThg5ciTc3d0xbdo0REdHw8/PD8DNC1FNnDgRV65c0e48XV9dImPC\n3X+JiEgSTm0REZEkDBIiIpKEQUJERJIwSIiISBIGCRERScIgISIiSRgkREQkCYOEiIgk+T8l6BQg\n6zYrsAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "TOfmiSvqu8U9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below.\n" + ] + }, + { + "metadata": { + "id": "evlB5ubzu8VJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 335 + }, + "outputId": "91b3d4af-e642-4328-9120-49c25dc6d0ad" + }, + "cell_type": "code", + "source": [ + "mnist_test_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_test.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe)\n", + "test_examples.describe()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count10000.010000.010000.010000.010000.010000.010000.010000.010000.010000.0...10000.010000.010000.010000.010000.010000.010000.010000.010000.010000.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...1.01.00.60.00.00.00.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 \\\n", + "count 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " 10 ... 775 776 777 778 779 780 781 \\\n", + "count 10000.0 ... 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 \n", + "mean 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 ... 1.0 1.0 0.6 0.0 0.0 0.0 0.0 \n", + "\n", + " 782 783 784 \n", + "count 10000.0 10000.0 10000.0 \n", + "mean 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "id": "PDuLd2Hcu8VL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 33 + }, + "outputId": "394f8a5d-038a-4c81-82bb-254e09db828d" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Calculate accuracy on the test set.\n", + "#\n", + "predict_test_input_fn = create_predict_input_fn(\n", + " test_examples, test_targets, batch_size=100)\n", + "\n", + "test_predictions = classifier.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['class_ids'][0] for item in test_predictions])\n", + " \n", + "accuracy = metrics.accuracy_score(test_targets, test_predictions)\n", + "print(\"Accuracy on test data: %0.2f\" % accuracy)" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Accuracy on test data: 0.95\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "6sfw3LH0Oycm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a possible solution." + ] + }, + { + "metadata": { + "id": "XatDGFKEO374", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units." + ] + }, + { + "metadata": { + "id": "kdNTx8jkPQUx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_classification_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network classification model for the MNIST digits dataset.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " a plot of the training and validation loss over time, as well as a confusion\n", + " matrix.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing the training features.\n", + " training_targets: A `DataFrame` containing the training labels.\n", + " validation_examples: A `DataFrame` containing the validation features.\n", + " validation_targets: A `DataFrame` containing the validation labels.\n", + " \n", + " Returns:\n", + " The trained `DNNClassifier` object.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " # Caution: input pipelines are reset with each call to train. \n", + " # If the number of steps is small, your model may never see most of the data. \n", + " # So with multiple `.train` calls like this you may want to control the length \n", + " # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, \n", + " # or since it's in-memory data, shuffle all the data in the `input_fn`.\n", + " steps_per_period = steps / periods \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)]\n", + "\n", + " # Create a DNNClassifier object.\n", + " my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " classifier = tf.estimator.DNNClassifier(\n", + " feature_columns=feature_columns,\n", + " n_classes=10,\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer,\n", + " config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1)\n", + " )\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss error (on validation data):\")\n", + " training_errors = []\n", + " validation_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute probabilities.\n", + " training_predictions = list(classifier.predict(input_fn=predict_training_input_fn))\n", + " training_probabilities = np.array([item['probabilities'] for item in training_predictions])\n", + " training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions])\n", + " training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10)\n", + " \n", + " validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn))\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) \n", + " validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions])\n", + " validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) \n", + " \n", + " # Compute training and validation errors.\n", + " training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_errors.append(training_log_loss)\n", + " validation_errors.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " # Remove event files to save disk space.\n", + " _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*')))\n", + " \n", + " # Calculate final predictions (not probabilities, as above).\n", + " final_predictions = classifier.predict(input_fn=predict_validation_input_fn)\n", + " final_predictions = np.array([item['class_ids'][0] for item in final_predictions])\n", + " \n", + " \n", + " accuracy = metrics.accuracy_score(validation_targets, final_predictions)\n", + " print(\"Final accuracy (on validation data): %0.2f\" % accuracy)\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.plot(training_errors, label=\"training\")\n", + " plt.plot(validation_errors, label=\"validation\")\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " # Output a plot of the confusion matrix.\n", + " cm = metrics.confusion_matrix(validation_targets, final_predictions)\n", + " # Normalize the confusion matrix by row (i.e by the number of samples\n", + " # in each class).\n", + " cm_normalized = cm.astype(\"float\") / cm.sum(axis=1)[:, np.newaxis]\n", + " ax = sns.heatmap(cm_normalized, cmap=\"bone_r\")\n", + " ax.set_aspect(1)\n", + " plt.title(\"Confusion matrix\")\n", + " plt.ylabel(\"True label\")\n", + " plt.xlabel(\"Predicted label\")\n", + " plt.show()\n", + "\n", + " return classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZfzsTYGPPU8I", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "classifier = train_nn_classification_model(\n", + " learning_rate=0.05,\n", + " steps=1000,\n", + " batch_size=30,\n", + " hidden_units=[100, 100],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "qXvrOgtUR-zD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we verify the accuracy on the test set." + ] + }, + { + "metadata": { + "id": "scQNpDePSFjt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "mnist_test_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_test.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe)\n", + "test_examples.describe()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "EVaWpWKvSHmu", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "predict_test_input_fn = create_predict_input_fn(\n", + " test_examples, test_targets, batch_size=100)\n", + "\n", + "test_predictions = classifier.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['class_ids'][0] for item in test_predictions])\n", + " \n", + "accuracy = metrics.accuracy_score(test_targets, test_predictions)\n", + "print(\"Accuracy on test data: %0.2f\" % accuracy)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "WX2mQBAEcisO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Visualize the weights of the first hidden layer.\n", + "\n", + "Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.\n", + "\n", + "The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.\n", + "\n", + "Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called \"classifier\" has already been trained." + ] + }, + { + "metadata": { + "id": "eUC0Z8nbafgG", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1171 + }, + "outputId": "3b956c70-9a2e-45ca-d586-430a5043f9e2" + }, + "cell_type": "code", + "source": [ + "print(classifier.get_variable_names())\n", + "\n", + "weights0 = classifier.get_variable_value(\"dnn/hiddenlayer_0/kernel\")\n", + "\n", + "print(\"weights0 shape:\", weights0.shape)\n", + "\n", + "num_nodes = weights0.shape[1]\n", + "num_rows = int(math.ceil(num_nodes / 10.0))\n", + "fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows))\n", + "for coef, ax in zip(weights0.T, axes.ravel()):\n", + " # Weights in coef is reshaped from 1x784 to 28x28.\n", + " ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink)\n", + " ax.set_xticks(())\n", + " ax.set_yticks(())\n", + "\n", + "plt.show()" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/Adagrad', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/Adagrad', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/Adagrad', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/Adagrad', 'dnn/logits/bias', 'dnn/logits/bias/t_0/Adagrad', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/Adagrad', 'global_step']\n", + "weights0 shape: (784, 100)\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGcAAARNCAYAAAD/4C04AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWd4m9eVNXrEAoAE2Htvogolqvde\nLMmy3HsSx05sx570OHWSTHqbSTLOpNhxmuPEiXuvsmzLsnrvvbH3TgIE2O+PefKutU8s3ft8AT/+\nuHv92hI2gBfvOWefA3CtvcaNjIyMGIVCoVAoFAqFQqFQKBQKxZggYqwvQKFQKBQKhUKhUCgUCoXi\n/8/QH2cUCoVCoVAoFAqFQqFQKMYQ+uOMQqFQKBQKhUKhUCgUCsUYQn+cUSgUCoVCoVAoFAqFQqEY\nQ+iPMwqFQqFQKBQKhUKhUCgUYwj9cUahUCgUCoVCoVAoFAqFYgwRdbkHT73zRydu2VotHsu8ssSJ\nh0KDTtx1vFnkZawodOKB7j4nrt14XuRlrURe3bsXnTilPEPkDXThNdzpXiduP9jgxOPGjRPPccW5\nndhblODEiVPka/d1Bp24t7bbibuOt4i8nA2lTtzwJj5HZGy0yBsXRdcRgTh+QorI66f7MvP2z5lw\n48Bff+HEwdoe8VhvDz5zwVUTnfj9v2wXeUle3OuiaXlOPBgYEHnJs7OduONwoxPzHDHGmJS5yBv0\n9ztxdDzGqtmaczx23jzEPRfaRV7C5DS8bxDvG1ecLPIGenDfo2jsAvXdIu9S1xeT5hV5Vc+ddOLF\nX/uWCSfO7vgLrq+mSzwWV5zkxC07a5w4IjpS5MVPxLyr24w1FpscK/J4DLtOYD1HuOTr8ZxmDLSH\nnHicS/7+O9w35MTu1BgnjsmNF3m+vEQn7uvAHO0+2ybyslYUOXGwxX/JvGANxjT3Wszzlr11Ii8m\n2+fEU9bdZ8KNnf/9IydOmpkpHxwecUIPza3G9ypEWmxOnBNHxrqc2G+tg6w14+k1MN5pi/JEHs+Z\npGmoibx+48vSxHMiPdg6eJ51Hm0UefGT8Lx+GsdoqsnGGBPlw+eIdOO1+9p7RV5fG/7N9Xa4f0jk\n+S90OPHCL3zDhBOVx55y4nGRcn73d2Hux2RgLjW8c0HkJUxNd+IoupcDVj3lOTFCccehBpEWPynV\niRMn47Xbj2E8Og81ieeMi8T6TZyBce8+2SrystZhr294G58jztrHek5jzUUnYnx5nzbGmOE+1GRv\nPtZ5yzZZ790ZqEuz7/qiCTcO/v2XThyTKa+R5yfvL7zvGGPMCIZEjEmEW9bK2BzUt44DGJPugJzf\nhSvoXEX3KdQccOJThy6K58xcV+7EPO9bGjpEXvEK1IPm3bVOnL2ySOR1HME84XXO+4cxssa2V+Ee\ntfXIM8bc2+c68cRlHzfhxJltjzmx/6Ksf7lXTnDi1oP1Tpw8Tdbdpu2VTpyxpNCJhwdkTeG1zmeH\nzpPyzOtOwbz10ri37EGdHR4cEc9x0XpJm4v63LSjUuQl0Nr2JGP/7KnqlNeQhMeiqbbyWdMYY1p2\nYs2lLcp34mCzX+TFUi0rmHKbCTeOvfJbJ7bP26kLc524nr4bxKTKc4snA2vYV4QzUdM7cv9MKMee\nFKjEWcoe7yE/anFEDNYB18oIq/570nGfuDi0H5b1uq8Ve2H6sgInts+ykVRHAhUYY3vf4e9Zda+f\nc2JXskfkjYvC8+be+2UTTnR2HnJit1uusf0//Z0Tpy7BeGbOmibyvF7UqDe/jrNS0ZJikbfz1QNO\nPH0q1cxe+T0jGMB+XP65RU584je7cT103jXGmIJVC5z4mS9jXs5aNFnkbXkH11Cej7Vzur5e5K2/\nb5UT97Vj3IcHh0XeHx5+0YljXFiz+Wny7HXH/3zKiZOS5ptw4/R7jzoxn72NkWeL2ldOO3Fbi/xO\nMuX2GU4casEeNxiU55tI+k4Rk4VzLddXY4ypfgtzOn0mxsubj/3YXylrYOsRrLn0uZhzMdZ5JNSK\n6+s6glre19cv8pLL8Nl5bSdNzxJ5/krsu90nUMtcKTEij8d//qe+Zmwoc0ahUCgUCoVCoVAoFAqF\nYgxxWeYMs2Vyb5wkHvNX4NchXyF+pU6dnyvz6Bd9/jW/+PZykTcUwi9qMQnIs38hTpiCX68C1l8L\nnGtYIK9hMIBfwCJj8NdW/suUMZIh0X4Ufz3KXF4g8vgz9Q/gNRJS4kQesywi6K/BbusX/85j8i8v\n4YaH3s9XmCge43HsPIK/6JVkSFZRHP1CmbYw31wKjcTISF9W6MT812Fj5DgEavGraz0xkUL98pfL\nwnlT8Hpe+su7xZQaInaGoYcat1bKa6C/SjTux18SU0pTRd6JfbimOdfNcuLa186KvO6g/JU5nGh+\nr9KJB615GziPMcwhVkiHxWJo2ILXKLkN6y/UJv96y/OW722oISDykhfgF2z+q3nSHPySzAw0Y4zx\n07VmrwcDzZ4fvDYHiI2QtkCyPjpOYJ320F9ye63PlL0Kfx2ufPqEE3vS5Vr0n6O/XK0zYQezhWz2\nSOcxfBZmmSTPlL/Md9A6jfJiHXmttd2ys8qJ40rBGrP/wsD1yJWAv7Tx+rUZLCP0q3/HSfx1ICbT\nJ/KCDfgrevwErKuISLlmxV+fqeYPBWQNcBHLy01xl/XX65gseR3hRMse1Apfkbzn0T6MadN23P9Y\ni3HBf4mueRl/gYqbKGtPDP012BWPsQk2yb9sh1qwNgPxqKfMEuCxMEYyDHvr8VgWsWKNMcadhPuc\nuRp/wezvDIm8CA/q6UAPxs1mNfV3ELOOWFc510wUedXPnTCjCWbL2HUqWIP7caYK473snqUiL4Lq\nI7M0O+rkGms8h/k5YUOZE6db64DPIMw05po8a8N08ZzqbWAGZE3PceIMi+nIjKhAH1778EuHRZ7P\ng3mWlBx/ybwR+uth3yA+e2me/Eu0/dfScCJAf6W094Ymqn+xuVh/bRaLQZz76K+tKbNyRN6AH/cs\nghgIYr80xvScwz7ELJrsNdjvus5Jdhr/BZkfs5nJHnq9dtrf+zvl2YPrQdocnIeto5JJmYvP2HEc\n+0+y9dfgcaP8Z1xmlgWs/YnvZxYxROz9s+0AGAuRk3GeSJotP0snne3zbwAbor9b1rOal884sTuB\nmIDMSvK6xHP4Bvc2oKakL5Jn5gGacy078D1roFMyBjLXot4m0P5pIuSABGpwzyJclx6sQYs5FU74\n21GHBuPlXjPv3z/txHUn33biBz/+Y5F3xxevc+K0DHyvPLDxqMhbdM1sJz6/Fefz6la5rqbmoSY8\n9Mk/OfHXnwBrMjJSMil+eNu9TvyNJ3/jxKdffkHkXf/AVU7M30UH90pGzEM/eNKJv/Iw2NhPfet5\nkXflzJlOHEXjO/2zi0Re21l870iaPwrMmVePO7EnWqpB+DxRcDO+j5VY6+DQL7Z94GunlkoWUOby\nQifuoVrevk/W6Ei6H0nluIaGTRj7AWtus4Imjs7GnafkHHHR2i79BOYV72/GGHP6t3udmM9OXacl\n0y9+PM7a1duxJnJLpXLDZk7ZUOaMQqFQKBQKhUKhUCgUCsUYQn+cUSgUCoVCoVAoFAqFQqEYQ+iP\nMwqFQqFQKBQKhUKhUCgUY4jL9pxJmg1tl93fhXsOsNtHf4vsTeCiHgsjQ9Bw2U4yTZuhzUqj7uUR\n0fL3o67T0IsFq0nTuRSaTtYDG2NMfzv00M2kN42ydJvxU6DpLLgePXZYj2+MMXEl0I55qPNzoFp2\nrBZ9Vegx7jBtjDE5V5Wa0UT8eLgsHPzdLvFYD/VJKcxGn5ncdeNFHvf+Ya1z0NLqe6jjNuuou89L\n95wTG9FPYN4noKnMXI3eIH5rzvE1tOzFnOs5Jzvch6hfBztHLPzccpFXRT0NJnwYOv6tD78v8uJj\nMIdZz5syR2rrY615Ek7k3YD5yPPKGKmTZ/eFpOmyY34a9YNiV5key9kobSF0uglToK1kvbsxxtS8\nhF4ZidOpRxG5yvS3ynqQfzP6LbCDga3JZh1nBPWjaTsoO+EnkotQx368Xpo1NhFRmIt51D+L+3gY\nY0zdxnNmNJE2H/e28X3pIjFE/QWSZ2DsOk/IfirRiXTNpIvttepPMt0DdlbxWC5j3LfGdqz4B+z6\n39eEceVeI31Wrx/umeAidxG7x0d8aQo9B3r8YNDqr0TX0UuuZV6r94s3R9bYcIJdy/raZK+H2EzU\nP96fksidyRi5/jKvkE4UDNZNswZ6xHYWITc81l6z20LqXNlDo4N6HA1SjxjbgeTCo3DhGEf7cd71\nsg+dO/mD+ylVPC77BSTORK3gvjV9HdbZIUmuzXCDHZDsXg+pi7FOm9sw53rOy72m4SjqkddNToNd\nci2mxGFe9LXiff0XrT2Ozi7HTqJ/29xVcDXprZKvXbIe49CyHfV/ZEBq2lMWo/5ffBm1MjdZauHz\nrsPrVbyAPbJ4kuzl58nGZwrR3mf3vop0XfaY+S8hhnqV8PnSGNnriPuE9FsOJNzHULiEDMvXa9mN\nMwevt5RZdn8WrFmuhxzz+jfGmGRyJW2jnmLuNLnndpzEmuWzsX2e5uvz12KO+XLl2PQ2Ydz4TB9q\nlf3l2BlqNNBNfWWSLfccdoxs34f1Fj9F9q9IX4wzBNc9+17zPtu8C+vFZX1Gbx7mViy5SboTkTdg\n9UTjc0s7Odd602UPNHZoip+M7x3stmaM7C3WRC5W0ZYL02AXriN9BV472Ch7kyVYPc3CibQcnK/P\nb5H9VJ596s9OfNWXr3Ti7KQkkffCQxud+MZPIe/oZukee+varzvxgY0/ceJ7HpbOjBERuE8d3/gf\nJz7++NNOPBySe+n6pXCXO/grXPfcBz4j8g785mEnfuqtrU78lYfvF3nTx8H9qfY19DH64t/+KvKC\nQfQ2i47G+eUnH7pX5D3w5++Z0UT5R9B3xe5Tx70HK1865cQplgMe9wtd8KWVTjzO+m7ecRy1zpuN\nNRZ3i5wX7XRWqXsDPXdK75znxBefPSieExXCubaH+ljVH64VeTM/je+ffVQrap4/KfJK70a/0dN/\n3O/Ek+6dI/IuPIbebBNvQm9P+0zKPdE+CMqcUSgUCoVCoVAoFAqFQqEYQ+iPMwqFQqFQKBQKhUKh\nUCgUY4jL8k1jiGZky4tYyhQdDxutkSFJpWVqKVvkCVs4Y0zWOth3NpLEKWWepGKzbWGQ6KNM4T36\n+nHxHLaGnHInKFts322MMa27QXdiu0+2wbY/B0tHbJvCuCJQs5gy2XlCWm95iTI5GmjZg7EqXiZt\nUqOIfs6Shu7T0m7s4nG8Rm4O6KT5N04WeWyJ21MFiqbbklIkxIKuO0gUXLYz7K2Q9O32JFDgmLab\nvVZ+Jl8WaLGBFtDhqi2aGtNJt/0WtMTVX1kr8hq3gF7eug33gWVwxvyzjXw40fge1oQrRdJv+0hK\nOMxUdms+nn0M8oTECZCRNF+Q85HnRCJRh/2WbCbYCwp4NlHcR4gO7i2W9MQ4ks6x7G3Ysgdni92e\nU6A8s4TGGCnhYAmlTQ9OJVvUurdhv+ctkFTDOMvuLtyoJ+s/m0YdT5TjRrJOtyU7LEMKNYF+nrla\nrgOm4UfHoUZHJ0gLUpYRdZNsI9QASvQ4y/J3qBe1k23PbYow0689ZNkd6bn01hNXhDGwadmJJA/i\nvcWVaNG8R9G+l226uR4YY8wQva8nG3mBGrl2uo5hzSWUY42FLFkwj5u3APMgZY6sNQlZkKGypSlL\nHrOXlonnsBQiSNa7jVsqRZ47A+PGtGSeX/ZjLDW17dX5jNDXiPdlGZgx/1xfw40zO7EWAyEpfYg+\nDbnD5JkkO7PsNbOmYa+pI7p0+VK5L/pI6rPp95udeNYUKWmursQeNzEbr83rr69ZzpEzFZAesZVs\nWrw8VyT0YO1Mno3PdOrARZEX/dYFJ27oxFknY760qh4gCjhLKG1L04PPHXDiSSvvNuFEDMlF/kmK\nQ3b1jZvxGW2pkJdstlmy0l0hJWyRsai76ST9bdou6elZq1CH2RY7ZSrukb9e7k+8tyay9MQ6VLI9\nM193lGVly/XPk4qzV/PuapHHdThhEt6345iU0g7wPZtiwg5+b1tCm0aSZ64dLPkxRkqKWC45ZElj\n828haTVJyPrbpdwtdQFqbM9FjBfLyof65X7H1um5a1GTa96Scuk0OiP1kfTbnpvN9J0kna6nt0bW\nSm8R5gJLtWteOSPyBki+mj/RhBVvfv1HTnzgoqwp//E0bKz3/uevnfie3/23yDv85z868duPbnHi\nu+7eIPK2/+ARJ158F2QpZ1/cKPLKbrnFiWNcWCMsAzPW2WbixyDPqnwN9snfvfkukffAn77gxB8i\nKXDFE1LGG0tnzFff3e3EKfOeEHlJ4wvxOV7BWf3GO1eLvEM/f8aJl39/qgk3Gjeh/tvyOT6PJRTj\nnBZL539jjFnwpRVOzHLs6udPiLxYkg66qPa6Y1JEXtQ8rLk2+t4Q6sI6KLlV2ooHWlAPBuh7pTtK\nnj3raG0mTMJZLCZPfiZhzU2/jdhnO5aF87m07bBsydBBLVbMreafoMwZhUKhUCgUCoVCoVAoFIox\nhP44o1AoFAqFQqFQKBQKhUIxhrisrKmZqPUsOzJGyouYzpyxvFDkMfWQaejdF6RDDNPzWxtBawy8\nKamqte2gmrI0xhcAbfhiU5N4TkkGpBTsGsQ0e/tzMN36SEWlyJs7D7TIjsOgRcbkSRoxd37mzv9u\ny4XCbbnghBvVh0A/T0uTEonca8FtDJJ7Rd61kpZ9+jCo8hmr4KjUa3XzZrpl3ERQ037/3SdF3oIJ\nE5x4/1/3ODFTzqpapbRqaSHubxRRjPss94WGt7c5cSvRh8dfKd1FfPm4F1fMWOfEw5bLBdO+13z7\nKic+98g+kTfI9NnZJqxIJPlcyzZJTU6YCiqerxAyItvBIZPcDJKpu3qMRUkMEXWx/eClHZW8eaBr\nVjwDKWEOycxSZ0tZYnctvd54dDk/8/xrIq/0BkjLQoswf888vFvkNb1L85Kcvtj9wRhjuqjeRPlA\nb23eKu9lyV0zzGjCR05vthQn0o3xyiIHn3GWe07HMdQcrsNtB+rk68VgLbGrXLBOUqL7u0gaRpIn\nliowTdwYYwxJSpma2nlY1t7cpXCOYPonSwSMkS5HlTSXsizJItP1uw7hPmSsKBR5TFc3c01YESJZ\nSRo5YxhjTBc5dBhSwLDEwhhjkmbD4YVlgAXXThN5Lfsxv5n23FUlJUXs7sDSqvyViyhLSnKad6J+\nZV8BCn60JZFwJWCeDpOjy/CgpPR3kqMCSwL+ae4QPdhbTPtRhKSXD/d/sHNYuDBpCSRFB9+VUujF\n9yx24uatkK0ELDkBO1bx+aFyj3Riiz6Mtbj0GkzICzsuiLyWbrz+4BA+f+1W1K8pS6UeIXAY6zc9\nAfOAafzGyHrDdWPeeLlAQuQqNDEReW8+tVXkrbkaLiSHn4R0iR0gjTFm6ceXmNECSzL9lVIOk7EY\na5OlLbxHGmNM47sYg3SqVzGWFJvXQSPNiQHLDaj+Hbxe0jScPWvehLtJxhJZN1hOFUWyGV5v9r+F\nnNRyb2MnO77u1DlyP26nvcSdhHNo5jJ5fZ2WzD3cYKcod6q87yy9GiQ5bdtO6bpSeAdqZ0wizp79\nQUt2QOu0n9z2ouKl3JfrT8JEnLGiPdiruGWAMca0HsL5prIZe8HLe/eKvOtIclE2udCJayrl/pns\nw77B8u5Ir9w/vTSnB/yoBwU3Symr7ZIYTsSRq+mMwkLxWDCIc9bFBsy5uBf/JvIyl+MMN4/+/8Db\nUiq05ks4H9a8DNfQ0+fleS5tHtxpF38DEid/K/KqXzglnvPAtV9z4m/+GE5J33zylyLvB7d9Fs/5\n0yed+PyjB0Teu29i7P0kn7XH4tATzznx9T//vhN/5ZrbRN6Db7xsRhMptHc3vCvlaRPvw5m9i75L\n2zL1oT6snZZ9WKc5V0oZb8cJcoykWt7bWCny2AGvaCXGvuH4DieO8sg1EWzEd9OUqYVOnL1C7k9/\n+RXuZ+Y2rKOr7lkl8t7/+TtOnJcGGabtQJW2HN+TOshpzna7LfnodHM5KHNGoVAoFAqFQqFQKBQK\nhWIMoT/OKBQKhUKhUCgUCoVCoVCMIfTHGYVCoVAoFAqFQqFQKBSKMcRle85E+qDhat4m7QLZHixY\nD21Xn2VHx7bTzeehs8yaLrWv728+6MRrb4VGOcbS6g+/DDtkrw8axzjq5XD1h5eL57z/AnqaFJNF\nNlvYGWNMzWlYXaUnQQu/aO0skZe7Bprvk7+G5u3VzbIfxnVXQbc+0I73TZyeIfIqnjrmxIU/lPrC\ncGDClegfE5sl+4uwhrl6EyzFBnqkHeaUxdSbhrR8qTPlOFa/edaJvWQfest1K+RFkYaQddlsM770\nmmvFU4LtZKlM/VRszZ+we+vsu2SevxZa5DOvweIte0KmyFv2acynd77/hhO7o6XGcdGy0etX0kM9\nVKIsvXHSFFik9lSgx06/1YuncO0KJ267AA0v294aI8eDe/uce/ywyCu+rdyJs6gPUTxZ7Nl9b2LS\nsJ4jIzEXWWtsjDF9fdBut1DPpPzbpHXgrofRB6HrVaznrLIskde2G/1YXGQPGD9J2vVe/OsRJ877\n/k0m3GBrZHt8uBdCy05oou15y/r8NurzkTRRfpb0hdC+RrpR6uMKZM+F7osY//5OXJM7CfWVLUyN\nMSZhMjT4rHFPXSztdnsu4LW91OPJ7qMTk4A1N+Fusqo+Ivcd7lXDuvsIl7WVWZbH4cQg1caA1Rel\nvxX3jz9jRLT8vPG0X/VSvXK55BiWrIIuuWovag/3kTDGmN5eaMPjs9GnJzISOmd/12nxnILr0Y+g\n4X30SOFeUv977VjDHSehoQ6cl3bAVdXUf436naSmyj5n3L+O52WU1YfI7iUWbrQcRo2Zf9Mc8dhF\nsvxs7cF+N3WN7OFw+HH07ZlyPXpeFC2Q9ezkVljaBqqw79S1y9qbnYS1mZWLueBOl304GOllqNdZ\npP3vPiH7hLD1cut+6k9lrRUXrfto6kF11Ufkuer8Zuz1w/QaEwqlzXv7AbIQXfiBH+H/GHwWSZ4h\na373ReyZfC61e30lTMX+2UQ28hkrC0VeE/VgbKvD3Gc7dWOkbXr1i+hnkb4ItdEVJ89hxqC++nyY\nY8GgrH+dLVh/vjy8T29A9v6LILtZrhXcT8gY2XePbbptxGb5LvlYONBKltGZq4rFY731uK62vZi3\nuTfKHoLcl2JkBP14Iqz9s5Mst93pqI+pc+W85ffl+dO8rdKJC66X55G4Yqzf7A7UAO4FZYwxQ8MY\n7yPH0aMonvq2GGPMX99/34k/devVTnzyqOwFMp3WacpMWgcR1j6bZc+78KG+A2siziPX2PkXNjvx\ngQv4vCX5cu3UHcA8mPOlZU486B8QeY9+Az0sH/jzd5w45aDs98I2920+1Pt3X8F3tY/+4iPiOfdT\nDzi2UK/oeUvkXb8W3+/O/h77QOk9suFkaRR6enWcxh6ZPVMWw8I1S504IgL753ee/K7IO/SXh5x4\nzt1fMuEGn+fYPtoYY5p34VyasaTQibf91zsiLyoS9Wfhl1c6cetB2ReRfzs49x72k5JFsgbEU8+n\noSHUsD6qZ3bfrcbNONN0Ue8X7t9pjDE3rME4ttZiPx7qHxR58+5Cj7X61/BdueEt2Tcuay2u3Z2M\n9cw9II2Rc8t8gK29MmcUCoVCoVAoFAqFQqFQKMYQ+uOMQqFQKBQKhUKhUCgUCsUY4rKyJraTzrhC\n0nQHuon6RPRtpg8ZY0w0UWRdRHV67w1pLTc1D5TP91+EDGnRKmk3VXQ1qIzuFFB9Y1JAu4z2SUu8\nT/z+5048OAgKedVOScXKIulR4Ycg2ei5KKnHLftBlUuZAwrh1A5J8/YVkXyAWFpdJN35v4GhEOhZ\nNS9IanvpfaDgjRA1+cjGYyKvZAIon0zdtKlkPpKt8Ov97Xl5r5voXv3kjw84cTJJvgJNci7xeL/8\nzRedeNZCafv9l6c2OvHdd21w4nGWVas3GxbAbMued7XkmPnJlnLRvaDA7X9sj8g79NBOJ8752Q0m\nrKB7acviWBrQthcU8shYubz97eedmGUgTIE2xpiYdIxhfzfWRNkn54m8drLBS5mGdcD2eLueket8\n8R2gcrYffdWJx0XJsXEnofawzfKe324TeVNIZtB5EJTR/dtPiLwr7ge1sm0fqJW+Akk3ZtnGaICl\nTLbypv4tjE9MDj5zRKS8N0xNjiTb4+h4aZ1b/RIo9R6ib9u2zkxtjx8PC9LYOMiiCspmiuc0N2ON\n+WshH0gqGi/yRkZA3+6qRd30Zco5PG4c9pCOMxifKMvWOdSKeZG+EHtGhDV/oi1b1HAibgLuUQLd\nL2OMqXwKlszpy2FHGx0vad4sFeprBzU3GJD2sLxfeai2RlvSxobtkM24ybKRJQ1sQ2uMMeNoXnUe\nw7xPsORxvJ8mToYExGNZDactxXzheZ46W0pf6zeDBuwiC+GhkLy+OJJHjgbiSRbit6SdKVNBfS4p\nw1mg0bIW7QxgPla+iTFo6pL2vadqMa5sOTtrkrSKZ5nxxh2g6F9RjmtIX1UonvPCw1iLc0vwep29\nUsLS8yio90kZqHu25C5lDvb6DrJaHg5JmjdL1/ImYl7Ya69hn7QbDidS6VrrNp4Vj0X5cH0xmZir\ngRo5Nlxj0kiWyXawxhgzTP+ecAPkLL218vVa96B+JZJkKqkcc6rbskxOKMIa6evDWvQ3N4q8kSFs\nGq4EzKP48XKttJD85+yf0TJgwsdkHb+UXT2ftf5vgOWqxpJScA1LW4waY5/z+awyQtKUlj2ypnpz\nce5LLMP4tOyW85TnD0NKmeTZiSXInUcwxrlz8kUeS5PT6nCerquT3w1mFeOLw8kTkGmwbMQYY2pI\n+u0tQF2za2rbTsyLEqm++ZcxYSr2u/xr5Zm8aSf2/i/818ecODYzXuSlZ17lxFu+DbnSjC9eLfOW\n4H6+9LXfOnH5Ynl2n3jreiduPLbfiacX4Fp//vGHxHPuuBvX8OITkGOtnj5N5E36FL4LhLoggat6\nQZ49fSRh9pPMO9QsvxPxfhqI53C6AAAgAElEQVSoxvs+/ncpp/r+s/9jRhNcv7LXyfOci2r7vl+g\npYDXkrFNuBFrpP04aliwTsovmy9gvk+5Ed/1bdvpJpISGkNrexfWdtK0dMOoacO5NI726f375Xdg\n3sd4n4621lhlC651wZWoo/1WKxdvDvbWC38+5MSJM+WZ195fbChzRqFQKBQKhUKhUCgUCoViDKE/\nzigUCoVCoVAoFAqFQqFQjCEuK2tyZ4BmVbPxnHgseyVkTv1toPU0NrSJvEnrqPP8ACh2ZbmyM7ov\nAe81w4fXzlsv3RFSUuAY0NMDepLLBXp5erqkEAYClU4cG1voxDnzFoi8vAWgVkZHE+W5aqPIY3o4\nU5pKZxaKvF6icLHDjitZdmQPNPvNaOLQm3DmWfnAavFYfxeooM3doOYV5cqO1r4i3I9IN8nTfva2\nyCuk5/G96fDLz5iVDKpf50nQxYb7QJ0WsjBjzBA9lkpuB54MScH97LfQff3w86CVTYiSFPI4csdJ\nmYOu8VFu+Xp7Hget0B/C/brhJ9LNp2lnpRkt9JELTKRX3kum/UZ6MDb2ffElg6LYGcLasWnt3edJ\npjI1g/IkzY+v6exvQZl/eR/ionRJNax4He9beitoojaNsescnEaSyyGZYpcDY4zpOgoK+Ll6dOO3\n3RFadoH260rC/bKlRZlLCsxogiWgtjtN/ESSFOWA7tuw6YKVh871kS7UGF+BdMXhecEOJdGWVKif\nJKppBZCdDQ+jzlWdeFo8J9LDLjv8epKS3tuJMWF5aMPG8yIv2IW5lLsW87S3rlPkZSzG+ARbQFVt\nO9Qg8txpcj6FEyzvaD1YLx7Lvxn7VdXTkDj5Jkr5E8vHUmei9tS/I+/LYE+/E7NzTj+5DhpjTCpJ\nvA4+DinhjNvBXY/yyO0+qQgU8LZMfA7bCYppxNFE9e+tl3IOTyrWXMrECU7ceEBKZD3kPJQ2HWPd\nH5Bj3bwbzhBGqpvDghhyoLFdTFp2oF6EaC6dOSelD/OvI1kwSSkO/u09kZcaT+u5E5/Trmf5szG/\nb5sDSj7Lh4cseVqwH3OEnaXaeiSFfM5sSMJZsmFTzXvrMK7VeyFHSE6U92jSR+FiOUzOFj2VchwL\n13+AFUW4wAXccqYZHiTXFZKteYtknWQZb3Qc1hhLuowxJmUBpEeeVMyJxnek1I0lqXF0huk4DpkL\nu7UZY0zzPpyvufbbUht2WGMpaMhyHk0mRxL/GeznlX+XazFlMc7hw/2Yi7akR7iwSsVK2GE7A/qr\nMJ/a96POJ8+R7lx8r7sv4DPXHZL3MKUB4z/5njVOXP38KZGXMBX7bCxJoQYCqL0xCfJ8M24c5ln5\nfbc68dFH5P4ZR/sB18NxloS5sIxke2fw2Y9USRevNXPhFFrH8uhUuQ/m3TR6gzfjnnuc+Mhjj4rH\nCq6f4sQXHseZfCggpZIXY+CWmUpn8p7GapGXMgE1JTMRMqIHH35G5M3ZBEnfzd9Dq4EEcqyc3Ca/\ni/JecOOdVzjxpme2i7yWH6NOZuVBCrxjv5Q1XVkI16ni27BfpKbK72IvfRHOS7PuxXfTD/ddIfKO\nPvysEy/+2rdMuOHLxz7uy7Vk/9SyoGRVqRMPBvpFXst2OV7/QFScrCuTb8PGzudI+zyXfQXOCSzT\njKdazvuvMca003fOWddhfVx8fKvIi47CuWjueLyP7ffZQdIoPrv3nJG/eQzS+bB/EHH3KZnnGy+/\n39pQ5oxCoVAoFAqFQqFQKBQKxRhCf5xRKBQKhUKhUCgUCoVCoRhD6I8zCoVCoVAoFAqFQqFQKBRj\niMtbaTdBY5VcJrWVbPtVU4u+D42dUm9cSlZuOdOg2a06JDVp41dCk8iWxy5XmsirPvESroHs/trO\nQ+eXOXmxeE5LBTT4ibnQhNZsk1bIGfMLnbi1AnrCjHJpP9idAX3wtv+BtrxsmdRWsz2g/wKso/1N\nUuOdvULalIcbE6dAxx5qk9rk5i2VTrzmP6Bx7zgprR5jyR7s79+B5jElTurQE6ZAe/mjHz3mxJ++\nar3Ia2jH/UibC81nw3vQb8dafQB6KvCcLrIJ7TworzVuEvTcT26D9fJ/3ymtoIcHoG3e/8ZhJy4+\nIPWO+an4THXtmD+Vz0r9tq909Kxfc69GD4fOU5YVO8mUYwuhwYyxLJNPP/66E+esx+slTbP6C+Xg\n80ZH4zM1Hjgs8gLnMR5P7djhxK9vhg3gXddfL56z4hb0NOkhW8FWy+6S+8I0bYOFZFaS1Gl6Sbc5\nifrt7D1yRuTxPPWRFfwA9VsxxpihXqmdDTe8pOftPtMqHhsizX9kLDT+SbPk+HDvJdZH271kWMMb\nbIL+1p0kdej9nah1rTW7nbjzNOaZ/7y0Go6lz5E2D+u3atNukcc2td3H8XqxVt8H/kzc78NbJDXP\nXeeg22XbUo6NubRFbDjA9qut++vEY51sxU772FDg0vOqaSf2wgi33JKTJ2At8mfqa5M1iu24SxdB\nNx1BPY5yplwpnsM9K4puwfhWv35c5GWvgp1rbAJ624yUyN4QDe9hnQ7NxL4fVyDX7IAfay7YgTUQ\naX32mExZ/8MNthzf/7e94jEfWYOeOYvxKZ8/QeQFqrB2LpxEnm11G+jDZ140G2edpOnSXtNLGv9B\nqkX+arxP92lZN26+E30zXn1yixOvv2aRyBv04/XiyS7dtr7u70RPjYnX4FoHemSt7KT+A2wV77H6\nXAwGZY+ccKLh/UonjsmW+10szR/uK2P3JuD5yJ+Re78YI23OuRdM+jLZp6ybalQ31U0X9Yyqfc3a\nn+ajhvqyaWyukDU9Ohprqa8X72Pbg+euQi+H1CXoJchja4wxtZtx3iq7d64T+6vlOd5r3Ytwg3uE\nhVoD4jHugZVKPXLad8nay98bdr8MG/q+ATn/yu+a48QnH0E/wUMVFSJv+WT0hTn5HHqhTL4BvfLs\nuc09HLtaUEdL75JrseUw+sjFFeGMFZMp53Az9e6IoJ5KiybK7xoRMdQDLoi9lNe5MbLvm5lqwopD\nj/wB1+OR9e9Hd8D++Zt/+4ITJycvFXnHnvoTXm8jemV+eMN/ibxTr//diSd/HH1cfnTnLJH3+68j\nj/t23fLJrznxi4//Qjynh3ou7tyMcV9YPknkzfz8x5z4z5/6thNf+eFlIo+/Kycn47FgUJ55Mwvw\nXTe9eIkTv/LTb4i8jz/0TTOaSCe7ej4DGmNMB/V8iuT+MUOyphbejslV/w7mOvdXMsaYmpdRB9OW\n4GyROjtb5FU8gbmQNEX+JvAP9Fg9XW7+PnoMdZ3FnhnrkjU1jvb6TUcw3tfNnSvyls3AXvjco5uc\n+EOfv0bk1b1x1on595C4PtlrNn6y7ENoQ5kzCoVCoVAoFAqFQqFQKBRjCP1xRqFQKBQKhUKhUCgU\nCoViDHFZWVMe2YK2HZCWoSwJiSS63eScHJE3RLZSTDuc/pHZIs9FtNh2shwcHpDSkSGidsdlw0rv\n+JPvO/HBwX3iOQVluKaDp0G7L5xTKPJa9oNCmExSj/r98vWYLltYDPpVxhL5ep2nQHGPJgpYUpyk\nM40MSHp4uBFNNrrxxVJ6w3TfzT+CZXjxRGkv17IV92bdBti8Pf3MuyLP+xaonJ/ecBUesH4GZItA\ntj2c8uHbnNjlktfadhCUx+/9ARTKh7/yFXmtu0Hx/djKlbgEl5zub/3nm7huorY1dHSIvNzUlA/M\nS5wmKelt+2iNrDOjBtu2LiaVrBhpjTVuljRdbwFZ5KUUOnHPsLQC7TgFunBfOyR8TOE3xpg3D8DS\n7tAFUBd/8yVYApbdPkM8h6nhpTMhdevtldfaUYH3ZWq4bcneuAO0wTP1uP9XrpSUxMYK0DOziHZv\nSyn6O4JmNNG2H9do0+tTSR7UcYToo5ZcieHNBt08UC/lkimTC504KgYSS5dHykxCLVjb9e9iLnSS\ndeDpOkkhzzwNWdLu3zznxCunSq70vz/0kBN/9777nDi63pIixoDymVEAKnbyDElv7T4PeqqP5DLR\nXmlLztKCcIOlTLZMYKALsogYsl91J0l76gDJBgboNVyWJKSdLCWTqN7sPXha5GVdxHgMk73whAFI\nklozpIUke0UOk31twdVyzbYcwtoOxEMiEe2Tcpi0edhn69/Gc9wpks6bMBm0ZJZPsJWvMaMrhzFG\nrv3y9eXiMa6jE2huhZpk/WFZYVkqPud4y+q8oxI1bB9JLldY8r5EsnLmz5+/Yr4Tt+fLsW/ehvW7\nejEk2PGl8pzRRXLYuAK874VXToq84qvJbpfmkjdPSgxZZtxzFustdaE8O1x8Hdc7Jcz7YiJR3Lm2\nGmNMRDSkFTzPuBYaY0zXSZJb5mHNxpdKSUj7EVhrc01meZwxxsTT3HHT2evsE6DM7zp7VjznJpKf\nDA2hhniT5b1MSsI86PVg3P35UobUVQXZFd+H5kPyHsWl4fwXIAt1e6y7WN4wCs7o48bhnrVskTbR\nLpI85V2NN7fPsi0kjV58G+5ToErem6ateP3oZIzPsrVSEsM1ICMXa6mN3mfWZ+4Tz+mI3+XESam4\nhraGXSIvaTJqOd/3oFVfXMmoKcnNGKv6dnlGje1FnovqkNvaTzqPN5vRQs5VsFa219itbaiHzXsw\nb+OukGPz/HNbnHh1OWrygx+9X+SV5WJdjF8LWUnzhR0ib0UZvsPuf2SnE28/i9YMb/9sk3jO87vx\nHfGJbY878Y8+LOVF7nTc21t/dqcTBxrlPc6aANnpXz75WTznwS+LvJgsjO/OHz7sxIVpHyzjGS2w\nFbT/opxnGWtxnkgqxX4f6pLfDfwks/RQe4VBv5TGTrwf53SuUxefPCLyWPY4RLI9luoWfEiePXf+\nYosTF02HVGvd59eIvIe/jjFmKdPhykqRt8IHWdO1Ny13YltSX3AT5lxOEDLotv1SxpY2L89cDsqc\nUSgUCoVCoVAoFAqFQqEYQ+iPMwqFQqFQKBQKhUKhUCgUY4jLypr6O0HxT7Q6JDcTNbB4dqET1x+V\n9Pe3XwFF7KYvbXDinKlXiLzODkiHClbB0WV4WMoMhobgSjEyAtov0yKzMyWdd+d2SKN2nAbFdkGz\npJ+tWAup1dnfo9t78mzpltLwDqj/7KLTtEPSMZnOzRT3wYCkazftAgV16tUm7Ni/BVKjSI8ccnbF\nmbwUlNHMpYUir+p5uGH1NWEMrpk7R+RFuEFNe+590AhvXikdtDqrQJdjeUfPdHTl7u+R1PDeWsg2\n7r7xRidOLZDj3V0LqmTuGjiXPPnDF0TeDfevdeJDLxxyYl+MpOGnUhfxNKKwnXjxqMibfZ/syB9O\nDFGn+ZFBi/5PNER2AHJZUgqmX5/5G6icOetLRV5yGT5v5Yu4L0zzNcaY8nxQBW//OPjqxIQXkiRj\njMlYhOcEg5j3tiubiTjvhD0n8Zn6h6QLT046xn6E3th264mg+lD5KmqAO1rSb/OuHwXONl9HNOZP\n0vQs8RjL1fj6B3tt9wpIH9qPQR5kd8IPdkJqwLW8cuulXcaSy+FE1L2nEtczIiVY5xtB8U/2gbb6\n7jH52ssXYU0wTTQzUco5ZhXBsW6gA9TXoaCU8LmTMYejyKGidb+USSVa7oLhRFI5KOm87xgjXafY\nQSVllpT79ndhPHjeDlgyKZ4Hmx+FLKknKPdFD83jHz/6qBNvfPePTmw7S8VkQ5ITrINcqeeMdGuK\nioeEo/AWUIebtleKvNefhTPeTBrP4XpJXec6lD4XtcdvSd3aDkpHqnAj1IJ1ZbukDPRg3lW9CQmK\nP2TJ2Kge5RfjnNDVIGnebx/FXnHzOjiU9FbKexMkt73BXpwTEhNxNvFNkzUqUPNXJ+Z51mZJWFiy\nU/kMxrjkmskij+dwHckcU8qljJclh6FGyDEG/HLNllxbZkYLfrp/yTPkOa2d5k88SekClZKq76Gx\nT5iIvObt8jyXSa6awWZ8Xtspic8zm/4IN8+f/xXjtGaZdHRppLNjygzsC90N8hoGBzFnExNx9nIn\nyjOLNw2vUfEyXElDlnNRBDkjpZKswN7rbeeqcIPfj52HjJFy7BC50nVZTjLswvjen1Ar56+TMs3+\nDozXcAjrt6ZVrpd4OgcG6b4VLS9x4p4eKb+IjSt04t7eSrxnt6wbcTkYn6EQ9umRIXm24+8QvXS2\nnrCwROQN9X6wBNSWMbFDZrgRpHqaVb5APLbgq/i+V3PyFSfe+5M/iLwvPwYnovYLqLsJJ6SE7d2N\n+L64fBDjGZsh5Xhl98Oh9Qd3/9qJ547g+8h1P7lTPGfiH3H+vfDaFif+ymNfEHk/vOPnTvwNkoK2\n7pXyldqXf+PEwX7UxraqQyJv/zs4O7EsL9gopW49naec2OeT7oHhQOcJaseRIKXLPXSeZ1lww1sX\nRB5/D+TvK74SKalv3oX6xkfMIb+cz0W3QuLmJxkgf9+pe/OceM6iL6xwYq7XzTukU/RNtB/z+lsR\nJ88EMfmogR6SWbkst0N2zqx7HdcUP0l+Tz3yK0jwsv7rWmNDmTMKhUKhUCgUCoVCoVAoFGMI/XFG\noVAoFAqFQqFQKBQKhWIMoT/OKBQKhUKhUCgUCoVCoVCMIS7bc4a11jEeqati600v2UGm5kptYBFp\nNePy0QdgYEBqrSMicSn9/dRjokfaww5QXwa2hkzPh56r+rzUqo/PhBY5LwV58VZvkcYT6KMw6dZp\nTmzb7brJuph167mrpJVXD2no3Ul4r3N/OCDy3F55b8ONeWvwWfwXLL012be1nsT1sl2ZMcZkroKF\nWtsB9C6oPyZ1uklR6GNw7+ducOKOg40ij3skzLkfWs7as9Cj+quta83Afb/xztVO3FvTLfIyyJL4\nlz/8uxNfOUNqj6PJvn3WLdD0R1nWxd4stiuG3jEzR2oIGzdDn18gZfz/Mtii17ZuY5vQYD20lakL\npA1n8zboOxOot0jHcdnrwZOBOd1NNpQt3fI+T1yAfj6+ImhJI90Y28Rs2R8h2Itr6GmFfXaoVfa5\n2P+3vU5cOhtzr69JaqgPnsM9X3MHtKO2BWDubOiImw5jzubfJAfKtoAMN/g+NW+tFI95qAeIl/Ji\n0mQvGT+NiY96VPhyZR+XQAPGi7W09vwZ7qN+RtQvIZ3m9xUFsifQ2dPQ7eYko+ZXWn28uB9Ndinq\n8MiA1NbXV+J5vgToeW0tc/I89LkYHsS12j0S+kbREr36eWi+I1zyXqYuxDyLpLnU2yDXDgusj22k\nnmCRkSKN96i0eNShJsu6csmt0Kj/nqw32/egVifPlbbkPNcjaI/r6pY9jjpoH4s7hLGu2iP7YVx5\nHXT8rcdR731uWU/rt1U6Mfd6cVl9M3or5Bkh3DixCRbSc+6aLx6r2Ai7a7aUL1su65n/POoMz8G+\nQbl/ZiVhPY8MYez3Hpa22CuoNx2/XkvL2048EJTjk78Cda9+P/qLtO+X56DMK9AzpbMJ8zHqpByf\ngU7sNWlz0MOm3eoB5D9D/Suo91KUZWvPe9IE2XruXwZbPkdb+3Y82VPzvcxcViTy6t9FjWnZjT5o\nvvHyLNt+FHM61IQx6KmTazGebMqnFxQ48X995jNOnJMqzw6Js9DPp3kn1lXphutEHp+N29rQVyU5\nV55tQiH0veC1PfmmaSJvgKxt+TzdddKyA14le5yEG9w3L7Fc9gvjHkjtB7F3x0+y+mCSBff06Tib\nnNtxXuRNuRrn9J4z6PeSFSNfL2Ue5n71G6gH3DMrNna8eE7LRaw/XxbGlM9oxhgT7cOZPzoO8zbU\nbPUXOYc11tKC14jtlvsbW6IPduM7Ut7Nst/TuFH8c3x6GebW0JD8HIEAzmmNm3Hu8+bJXkZNR7AX\n5s5Z4sTvPvJTkXftfbBDjojAOX4gIHv7/PTfHnHiq2bBKj2jEN8fIiJk3ZhwN+5txfPoCzNg9f77\n8LWrnPgPn3nMieeWyLVSdi/smdObC534jZ9vFHkfe/gHTnzq+eecuGC97Ov5u0/+yom/8YysD+FA\n7jr0gat8Vp7Le6n/TfdZrJ30RdIWum03zh2+iah1iVOsvmW5WIt9fag/1X3yO/KL30S/0NcO4LGb\nF6I/7ez108Vzor04N7c3Yu+y+94ceQV9o5rpO86kbHleSitEv8zs2ehldPyRl0Qen1F94/Fe2Svk\ndw1Xsjzv2FDmjEKhUCgUCoVCoVAoFArFGEJ/nFEoFAqFQqFQKBQKhUKhGENcVtYU6wVdLPc6Sedt\nOwSaUBTZM9sWWHPvBe0o2Eq0vHxJLW3eS5ILoisy/c8YY/xkWzhIlo05V8FSLHqHfA5Lb3KKQauK\ns2irTMXqIrpjNkl6jJGWcUylbTslad5te0AtjZsAalfGqkKR19c+ehR8Y4yp3Q+qbtEqaZvcvhf3\nJi4V1MisFXJ8+sj6la0nm7ZLSu++C6AIRx8GRf/mT14p8lgqVnceUqac0quc+NmHviaew5SzVbdg\nXsVNlBThQBWuacWUKU6ckiQplG37MN5JZMP57M9fFXnrroUdcO0h3Mvc6dIeN22+pPaFE2yLnZIi\n35dlZp5MUPmCTZJamnfdJCeOSQJ1eGREWp9WPH/QiSffB0pmXo2k5iZOwD1LTQXFMxAAbTUuTtaN\n4WGa6yOgTg/5pAygbBUogB2HQCcvypS0yN4qyGsOvgQKan5qqsiLikNNyF2G9dx9rk3kDXSD5p0X\nfpdC07Yf6y1jRaF4rOfiJSQSlkSHqfxRsZAQsD2zMcb0kj0y18rMlXJtj4vCOm0kir+XrAPHRUu5\nzexJM+kaUAOz++Vrs4yS53B/h6Qf54zHXBqkMWBaqDHGBBswp6NpTFnCYIyk6IcbSbNxrbaUop3G\nd5gtJIul5IzHsLAItqoNta0iL20i1ml0Iu5f4gFL6kbymqn3Q6JT9ewJXLdFKW7cinW6/Q1QhfOs\ntVO2EHvGEFl7T7xmisjb+cRuJ561DhR3t0Xf7TwCmVTnSYxT2jwpw0xZLP8dbvg8uJ9bHtkiHps6\nA3KFNA/OI2yxbYwxu49D7rB4Hijaw8NSttfux7xla9HCNCml6GuFDeeUO29y4shIjHe/S86Rvj7U\nf5ZMtVmS8Ax6jCWqpTOkHLvjKMbHRVaqedfIWu4heXewhaylq+Q+kbpo9PbFAMlFBgPy7MlykX6y\nqI+wZJ2RVEP5/rkSPCKP5RiZq1Dn6s9LyXbcENY2z+EMD56TMV3Ki2q3wxo4ewX26b4+KS/yeFB7\nBgYgeelsOirymnfj7MlnlsJYeeSPzUaN7x2H+ZIwWc7L/p4+M5rgedZ1Qtbuvlbsa7G5kP52HJb3\n3Z0OuVGoFp9lyFqL4yIx/ilzcZZiC+H/vQ78u+BqjIkvB+Pr9cr9zlMGSUNXF84jiZOlVMsYzLMe\nsoPva5N7eOVprG2WtXoS5dwM0neIxEmo34MBWa/4XoYb51/YjPhQpXjs+p/9hxPHknRz66v7RN7C\nKKyL9kzITe79/cMib9t3f+jEvfUY64goKW/+zHc/4sSnn8caGRxE/Rs3Tp5tBkKowft2Q/qaOl/u\nR5EePK8kA3vrtM8uEnksh/Sko2YuumqWyHv2iz9y4tnX43x1/JebRF5czOXlMP8qKp6Cpbe/Se4h\npR8h6VAE1lHtK1KeO/5efLZWkiK+/aD8LMUZGGPer3KL5Fll9gJ8H2DJcD/FvgJ5xqrfgr2Z5dOR\nVuuC1d/Gd85HP/dXJ07Mka831I/3ajl72Ikn3XuFyLv48k5cXwvmUvUbskZ78+Xr21DmjEKhUCgU\nCoVCoVAoFArFGEJ/nFEoFAqFQqFQKBQKhUKhGENcVtbkyQIFq3lntXgsWAcaa9JUUPbib5NU5+oX\n4GwRSzT59iOy83/aPKK+EjOt46R0khmmru7uVNAYx5FbgE1bmnSzpJA613DAcjNYC7kDd4ivef2M\nyGOHlNrX4Ghlu+PEE72wlVwz/CGL0j9rdOnbBUtAvWTavTHGuFJBkeuoBk02Ilr+bscygWFyWll2\nl7RfYEeHHnIoqdp0TuSt+sHXnTiKHJ6OPvuQE/f2SSptdy8oYtxl/8JF+ZkyEkA7/cMm0Oh+9asv\nibyzGzE3/SQBSYyNFXk8v9OI2ti8Q8rYIlySHhlO1DyHa01bli8eY3eNITfmbdVO6XQzKwfrLyIa\n96/Rcg3y5uP+DQ1AxmC7WA0P4726u9HVPSEBlMyqU8+K56TkwVViaAgU20CdXIuJJFM5TfTEgpIs\nkbdiGTr6s/xnqFdS3D1pGFN2choKSTmVTXkPN5JnE+35tJQnMPWSqd1J0yXFk8FOW/GlUo4SGYPy\n3nMK7xUkhzZjLDc6qqND/STLyZGSwG6qB9HxoKQPkyzAGCnnrHwT45g1R9a8KJKvcu21nfICFaCa\nc42y196w5QYVTsQXkTvV09LNIP8muGOw8wtLWYwxpp+kW62NoLUzdd0Y+RmZGp8yXa6DUHvvBz4n\nthBrueOUpO2/9SLotzMKC3FtltMQuxMG61En85ZLF4lZJPftJap+494akZcxE2ug+wQ5M1ry3mGS\nUJl1JuxIzsY+XrRGyn1HyAmM5Q3GmlYLZ2G8ueZMXC9dUtqepfPSTEhTDj8ha3RpEeQT1Tvfc+LM\nOeVOHB8vZUhNJyBDZScZGyPkEFZSiDFo3HRR5LFbV+IUzLnGt2Uenw8HSc7usepLz1mqc0tNWMG1\nx50sPztLB7nOj4uU0od+kpLkXIl54IqT8gGWBbNkfcpN0iXEl4d5FZuAc21nDc5A7DBjjDFpc1EP\nG7bjTBnpkWfZvMWQTPS2Yh8L1EopGZ9RJ5IjDruG2v/u78a5tOOolAzxfTYffJz+l8Dy11g6fxgj\n5b8Xqd7GF0nJa+0JnLFLlmMcM1ItqS3VphDt97GWc1D1O3B5Ypkxy90GBqQL38gI5lnbWXK7TZdr\nomUPauLrL2x34uVT5feno1U4Y145B+cqd7qUtbI8i+X6LNkzxpi0xaMnMSy5AYs7da6U3vv9OL/m\nrsR6ydh6VuRdOIzPOybnByYAACAASURBVOnWa5x4YEDKa8414LwY2YQz0M0//4LICwRQX1/cCwfQ\nSUffd+K4AjmPTj2CvEGSxA0G5Zmyt4qkoeQo+tN7pARrA7lEFd+C2l2yXm5q46/a4MTPfQnuVLFu\n2aZjRlGhGU246Hv1UINsW8Gy5lArPr87VdYVPmvU7Kx04rKJBSIvguTyLNUT9cYYc+4gJKWrb0EN\ndNFzeiqkQ2uAakoCfRePiJZnyl5yLvzQt2504v5OeR6JzcL31J5KvPbgoKy9fO7OWgfnroN/3iPy\nFq2WTm82lDmjUCgUCoVCoVAoFAqFQjGG0B9nFAqFQqFQKBQKhUKhUCjGEJeVNcUQjSfa6lyfSs4K\nTe9XOvFQr6REjxC93H8WVKBgSEpWouPx+r3kyMTSIGOMGaCu8VkrQCXrbQTtLVAhaUbDRJOPn4DX\ns2VIJ59Ed/XBIdC39pyTkpzrVsEpiCngA1ZH+6q9lU6cNwN0Qhd1cDbGmIGu0e2EX7WdXAbKJB3+\nxB7QCidNLXTiPQ++L/JKr4BTQ9NOUDL7mgMiL9CGf3cHQQub/7llIi8yErS1cePwGyGP6dI8SW9t\n3AiK4rnzoBUv/Tf52u4EUOx+tbTQiUNN8lpnfHyeEzPV9dBTFSIvUAva26HX0V18yf2So332j3A8\nyfnhDSacYLEISyKMMSZ5NsaU3XtsB5vGTbh/fdTFP9qSjrAEgyVAngxJpWUHDHcy1t9wXpByJDWw\nsQeOLiGaO8mWTIPljOVXg9Jvy1cSJ8BVorcR49R1RkqGes5BspdLzm7DQ5aTQ4SkvIcbUUR5tD8z\nSz0TyyEnYPcUY6S005WCuR5slNRfXz7ourGZqOX+alkf40im0033ieV83RfaxXPiyc3DRa5JLbuk\nhKWPJAQppXhO1R4pCSy/ExKZkUHUXttBI31lIV6bpDzsGGWMMTH0ecMNdh/IWC0p841bUDsi3Zir\nttvVIO0V7PrWelJ+3liWZ5EsxW85p/WTpK/6ZTgnTPg4KNU9FXIMI8ltgeMES9YpJGxEI+7vl64q\nKbMglXGRQ1N6vKQysxNi6hLsiyFrXxwcZYcYdugb6JJSY54/g92olfFTZE0NXCT5VhPub/ObkmI9\n5wrUMHYEmpAla0AdOWg1duK111GtGBiQY7/jL5CnnW+EHCUzUbpBTKE5yDLwDKJeG2NMHkkMAzTP\nWBZljDEZywqdePdvtuF9yqTs6twOyEOkEO5fhycNcpGWXVJ6H1+Culb3xqXl516SAEWRJL7jtJT2\nsMTSTTJZloLaiI/HuLvJkc7jyRZ5wSDGPXU26kH3RblmQyHUHjedyVt2y9ofQ3s1y7v4rG6MMSkk\n02aJU+JV0l2o3ZI5hRvpiyHVZjclY4xp3Q+ZDsudBy3nNHbzzCM3QLuO8HcZdjOKzZKypszZuDdx\nNJdi03E/IyNlrfT7UXvjaP/1W7KzKB/2q2A/ruFktdw/ryjH/Gluw2skBOVnjyf5cE8rJJQ+y5E2\nInr0pPdHHoTLaUWz3MdWPwBHG5YHVbbIPWTDnSud+Hf3f8+Jr7xjucgrny5r1j/QVnlE/Dt7IqRD\nP37qK07sjoFUvLNaSkvzNuB86HkftfCnX39U5H3q3uud+MQufEf8xcaNIm/j1+A6e+AxSFtyiypF\nHsthVn15jRPbda3+qGzjEG4M0fjkLpPnm67TGK/uU9jH2UXNGClT5PYUQ41yHWRNwDiwU1lUnDzP\nTV0Hud9wH86HhfMhfXO75d58fs/jTswui4EaOef494G48eT8a9X1hvfIhZbWVUyMvEfRcTjb1r2O\neVE0V+ZVPAX3pqwvX2tsKHNGoVAoFAqFQqFQKBQKhWIMoT/OKBQKhUKhUCgUCoVCoVCMIfTHGYVC\noVAoFAqFQqFQKBSKMcRle84Y6hfQurtWPJSxHDpytoeN9krrNu6PMcD2oe9JCzX/eWhrvUXQAA8F\nZQ8bbwEei4yERrTtIF4v0Cm16y1N0L9NpZ4zxtJQhwagtatpg57OFS0/0zs70Ztm9ULY2wWrpa1e\n7lRoh7lfR3xpisiL9Fx+GP5VTL4N1nXN26V+cXwBxi5rDXSc7iOyvwhj5xlY4qb4pEXgzJnQa/qG\noUNky9//xZtOlJ4LnekwWTdXvHJKPKPsbijWk0j72GdZsPaT3rib7IpzSEtqjDGVfz/mxAkzoH2c\nVVws8mq3wkI01gUt5N4/7RJ5c+9eYEYLYk0EpN64rx2/sXJ/ksRyacEc8mP9JZCG2tZWRidAZ8s6\n2AGr182uN7EOFl2LsTlPWsqk8XKuJ06D7p57THCPGWOMyVsIi/a2SoxT9/k2kReoR3+qlPGTnTjY\nckDkDYUwr4Kt6HXDPQaMkfboufebsIPnqt1LhvvpcE2wbQVDVBPZ5theBzEZWJvtR9AzIHmG7HPR\ndhi9blxJpMcna2BvrtTj2/uBk1cg+0T5uf/XMOptwYJCkddDvRX4vWKypZa58zi07CPULyhltuzh\n0H2O5slCE1aw1XzPOTkf+XpZu50+X1qYNm2vdOJY6gnRc0D24kmgMWjaVmkuhVOHUKOKc7DGal5G\nDe1skvvT6mvmO7H/PPZIb6Ecw6yV2Bc8Xtxnt1vWl84+rDnuJ+Wy+tXFk17bk4b5mzJdjmHD+9K6\nOdyofgt68Bi31Lh7r8U9iMnHfKzaK8cnPgZ9OvLLyM72gux51XEM89ZH8+dotdyPd55Gz4p/W7vW\nibupX1Bz86viOYcu4j71U6+8JZMmiTyu37W1uJ7ax2V/iOx01OyE6eg9kjhdjjf3AuEefdE+Wa/y\nSjLNaIH7Xdn2vQN+6hVUhn5X3PPIGGk930y276FGv8jLvx726KFW7F3Z0+0CQ+fm1i1OnJSE9dZQ\n/bJ4xjD12ap+EWu28FbZv2eoHzW+5jWcwxKoB5gxxlRvxHm4YAP6BfJ9MMaY3jrUhAQ6GzdbfS6y\nlst+CeHGMPVhCll1qp/2taTpmEv8GY2R/ZsaTqAvx9M7doi8O1escOJMqssdx2RfHbaR5/EeTMX5\nsu78S+I5niSc00LUf7H+Ndm3MnMtzpjzxsNSl3t/GSMt0fNn4nxjf3fhcUyn/lQdB+Vn4j5M4UbR\n7ZirOVafn0AtzmnFS9Gr5fOPSTvpxoubndhD37sqNsv75w9hDFxROCvlrC8Veade+Tvy6Gxz5vX3\nnPian/1YPOeFL6JHzJKvrHbiX3/hEyLP7UadnHIrPt+ZbY+JvP1Un3msuS+bMcaU3/4xJ+beRXXt\ncp7P/+p6M5oYpLqZNEXW/Ajqu8W9ocZFyXnbcxo1lnsqpcTJ89ww9bcMUm+a3oty/qTSdxTuQzsw\n0E6x7GfD/QrzqAay1bwxsndVwiTUR1++7NnGPQ7Zwnt4WH4fy1+K7y6Jk1CjT/5xv8gbGpb9Lm0o\nc0ahUCgUCoVCoVAoFAqFYgyhP84oFAqFQqFQKBQKhUKhUIwhLqunYWu9mBxJR+ogmry/EpSu5FmS\nwtpbQ/a2JEHIKpRWfSyfYCtB2/aVKbOBJtDxC8hut++PUm6SNRU2fUzHt2Uumamwvvvyr37lxBm5\n0nrxF5+5z4lDZGHa3NUl8gy54s0ogvypt1bmJVrUsXDDlYhxZFqoMcb0kcTjzGMHnZjp0cYY4/OA\nxrViJu51XGmSyGs/AqnGK/tB40r0SpnUx75/qxP/6f4vOnFROubF1Pvni+dcfOywEy/69leduLtb\n2uc17DvhxE21oNd5T0kLtUOVlU58JVniDgxKKV1iDlFLJ4NS13lIylK2/w52osW//bAJJzxk3Rnl\nlRT8cSQ/ZDmM15KEMPW8jmi/udPl/O4nCm+oHtTucZaN9d7zsEid1QQKfTqtX6bl/u/1gaqaNA3z\nfigk73lXM2idLpL1pFiSnAGSalW+BfpynEXfbdwKOULHWbIGjpIlMHv9eDOasC17L4XoOKw3267e\nT1aZERfw+3qgSdLwe6kue4sxDnWvSZpsVyeeF0OyvbyrqT5KFrVJnoVxCNTgfRp2SyvQ1KmoN7E0\nHwe65X3o78I4xqRDjhVp2bx3kySBJUQBa5+wJXjhBEuZsldLS88QUV+b3qt04o4TslZEkpwuSPKJ\nzCwpA6y7gOexpPKFPXtE3mKSsESRtLi5DrTf6lYptfGdxb4QlYDXtm2/WfbRdg6SC0+qlD4kpJHd\n5VxQdtvIIt4YY7KXgmLcsB2035gsWa9YXjkaYNp8h1+usch3YJvZ3oL5nZpqSb7IhpqVBhXH5Too\nyCdb59O4H5uPHRN53/n0HU7c14BrqiR5GstUjDHmtlVLnTjQjfNIQp6svWxz3xHAay/YMEvkVe4A\nDf/l32KeTbbOQdOXQGZRUEhy1WZZh+orpGwqnOB11L5FrrHs1ZCO9LdhXcZaZ9kRkluefAXjMfXG\n6SKv7RD2zKIVsLptOLlT5PFeNi4Ce3NvAix2bTltJ51NUkieNdQn98Vukv/z+ui5IC23M+ZhrNr2\ngsbvsc4EvB8FKlFDk2fKfbb9OM77GaNwXO0+g8/vyZBS+ZyrsA/VkpQre4WUWm19Cuf++g7INBdb\n8r6MWZBP7nh5nxMnWRL93Aqs+1iS66ZNo3ll5Fk+RN8B+CyWslCuHf4ekj8H309sqQtL61imcbk5\nzG0Tmq3a23mS1mK5CStyJl7txAf/+JB47I1Nu514KVkSbz5+XOR9+bFvOfEN34P8qc86N/HnePFp\nSJTmmaUir+Ug1mw6ravdZ3EGWtYlJfBL/x22354YzJVPrLpR5H36Ntg4nzpZ6cRXfGmNyPvIt/C8\nrAmrnLipYqvIO/zoH5zYV4zvVS01UoYZ/CWkXyt/uMqEG+5UfNfoOClrdy1JjX1Jl2594cnAaxQP\nY28o/cQckdd+AnWF5eI5i+WeNDyM81zbGVxDRz1aKGQUrhbP4fNERARqZd41cv9sP4prYDn83r/u\nFnlFJZgL6fMgh2y7cFTkcXuB3PlLnHjqp+RZlqX8HwRlzigUCoVCoVAoFAqFQqFQjCH0xxmFQqFQ\nKBQKhUKhUCgUijHEZWVNQoIwRcqQmLrTWwXpUtWOCpGXVQZ6ZFcvdbgvLhB5vgLQuHqqQEnsrZG0\nQQ9R3tnFpOpVUIsiYyVltJdclFLmg9p27rFD5lK487rrnPh0nezufLEKVEF2axg/Q34m7mxdsRF0\nzOINkmbJnfpHA2//9C0nXvHJFeIx7tC/bxPu4erPSopYGzkzMP2M6ZTGyDGOdWN81iySNLWffR4U\nvlsWLXJivtdvf/oP4jmf+c87nTgqCvOgLyhpf654SEKm3g45Gc9nY4y58l64RL3++3dxrbcuFnl1\nOyqd2E3yInaLMcYYt+XqFU6I7uAD8n3b94O6GU1SxEiLOp2YhzUWTa+XPE3ylNlhjbuwP/Cjh0Xe\nTHK16mvGuHPH8xcffEM8Z9UGSNWylhc6sS9BronmM6Abs+tG4YINIq+lGlIyNzm/DPXLNTVCmoMA\ndYVPtGRN7kRJKw43AlVUz6xm7TlEtwzUgGJuU9FrKkHf97RijH050lHp9FHU4ik0bxOmpIq89DTU\nrRGaW12nIINhWYAxxsRSDYiiessuCsYYUzz+g90hXJZkpeccrnWAnB7YMcoYY9IWgU7KcireP4yR\nUqFwI2NJoRPXv3tBPJY6B/vLxDtBOe5plhKg6mdPOnHyPNBlWywaek8Q+2wDUfXvWifpzIdO4zrY\nTZBr0uIZZeI57ACXsQhzoPOslH8yMibPc+KKd94Rjw1N/GA5R84yyZ9v3AOJTuJknCtsRz/bqSvc\niJsM+r+3X0qA2skNkN0mJiyTe/yZp7Fn5i1DPXRZdSXSA6lYYyfW9mfXS+eNXz32ohOvnAr3k5W0\nbx9/Qp5bMopQbydeD6lR6z7pqHaiBrKmpdfMdeJ+y+XtTD32E5aENFmy7cbjmKtpxagpF7fKNZEz\nfvTcmqpfxjpyp8SKx2xJ5D+QNFnud1UvQgadOwHnVXYtMcaYpHJ8ju4OyJ9iM+U87SFnrQgXrsFN\ne67fOteyFCU2BdfX55dnGz/Jl/wNPU6cYu3hESRN9BbL2sjw5uN5PksGx6h/+/wlHwsHQk2Q2fkv\nSomqJwtnvZF+7E/jLJfJsjzsDQmxmAsT50upcoDkSv/52GNO/N377hN5tQ2oAXkkHa96A/L6rJXS\n2fPsn9EaIOcKSB75/GaMMd0tGLvBbsyz7Kul21DWXEhFA+2QX9hnwDPv4H3jqZVEyY1TRF6gVjph\nhRO7fvhTJ5791XvEY7kkxUxJx3l/vuWwc/ppuJgNkNR57+EzIm/uNEjdPv3IvU7cflzun176vnhx\nG+rSzTfi7H/iobfFc4K9eN+C9Xifnz37dZHXvAtS+es++lEnvm/tF0ReTTOkQe+e3OTEtqxl07s4\n895YAqe+krVShvPs7yCPXGnCjwA5bNYckvLcHPo+n0rSyfpNsua7qBan0dliMChrqptkfL6pWL9D\nQ/IcGWihswF95xwM4Xx4Ydvz4jn83fTiM1gf7AhsjJQIskPbKkuyzs5SnSTDzJoxV+S1nEV98Hdh\n3la/eFLkRZHToFlu/gnKnFEoFAqFQqFQKBQKhUKhGEPojzMKhUKhUCgUCoVCoVAoFGMI/XFGoVAo\nFAqFQqFQKBQKhWIMcdmeM0Ok5wpUSW2gi3pbDA5Di5U9LUfksSy0mHqysE23MVIHNjJE/SEs/WnK\nTOjze0lz23ASWsPMSVLjzHpe7mcQYWlW4yegP8KNU6Dm27HxoMjLTUZe9lro0g48vV/klUyGhi4q\nAr+D2bbBlc9A81w0zYQdV37zKife/+vt4rGCBYVOvPwe2NBteeg9kTf/ZligtR/Ava6okhrPjAT0\norj97nV4vRek9eu1c6HTY4vn6dOhDy7LzxPPaXwXFmqueGjz+y1b3tcfhob0kZdecuKPrFsn8pLJ\nOnH9x1Y48dk3T4m8SddB+995FNrHzg7Z1yIQ+v9mk/x/gv7OS78294+JK4G+PNQi7WGPH4ZufOYy\n9J+ofVnqeUdIW9nQjj4Xd6xYIfJ4rNkC8plfv+7Ey8tkn4t2shRmm0hPhuxVxTbbrgR8vroTss9F\nQgH1IKmDnjoiUv7unFwGLWkK9dGJsWw7O+n6CuSlhwXJc1C/uk7K3h7BJtSzuEKMo60vn34z+igF\nSF8+6Jf20WVzsJbefWuvE6fGyR4JbHM/7Tb0hnKnUP8ij7RXrtiFtVi8GDXQ7i/R/D502fk3oR+G\n3XMh/wbc7CBZ8UZZ/cO8WeiLMI5q6v+bLWE4MUL73bgoeV9aD6BfR0wa1kdGoVSH18djLfbWYdyH\nhuVYhwawB8+eCe15hDUef90Me83PXA1L07J56GEw2CPnR4QLr9F6kPqqjcg+Yjwegz7ophv3yp4m\nLurXlFSG9Sv04saY/g70OKl8Ar07bLvZiKjR/dsRW232WX1XYhOhmU+fi+vqtPriTP/0wg987Rw6\nmxhjTKgJPZvKJ8IC+PApqdVfMx32zZPKkXfs7ziDpCTJ3lKpC3B9p/8CW9iMWfIsxvPnl796xonX\nz5wp8pYvneHE1WcwnyflyNdLXSzH6x9Iqpf7oic99gPzwoFc6gnRfkyOTdcF9GuJG48zINu3GmOM\nOx31j/eDPX+XZ5bCvbS28zB3hkKyh4EnA6+XPJ0sxmmO9ZyXvWQiaH9yZ9PaaZbXmn896mT9Zjl3\nGNxvIZWso1v2yB4S7fvwmeKLcK7tbZTzN+4SvcPChfjJ6FnEdf1//41zOh/Z7Z563EOrNB9rZO97\n0up2aiG+h/zp6+gjEpebIPK6qe/bhUoa+3rXB16PMcbEUq+N/k6Md8chOTdLb0EfLk8K5su4SPmC\n3fWose1k5R4/UfaNy2FbcdpCGt+R56oIt9w3womKJvRWefsjnxeP3fFl2GK/9j3c86kTCkVeXR3O\nRNf+9NtO7H72cZF3fi/OH60/w3eVkjUTRF7mStyX6aUfceLag3hO/CR5LzOmoP511sNyu+t8q8j7\n2YNPOPFnqOZ9foPsi5i6BGfU+9d83Il/+9bvRd41vejH0nkU93LI6rtXPBpe9gTuqzme+uEZY0xK\nOXrONO3E2S7vOqtn5A481rAJZ52GSmnNPeVm3OuLT2Hv8mTKc3ngAr6HRFGv2Ul3oGdbZ7T8HnPq\nMXwfn/UlnL8Gre9p3dTHKy4X9XpoQH5/4j5e3Iuzq/G0yIumXjKuGOw7UT6XyOu4TG8/Y5Q5o1Ao\nFAqFQqFQKBQKhUIxptAfZxQKhUKhUCgUCoVCoVAoxhCXlTU1bgJ1LOdaSRerfg7Sj/SFoG1FRMvf\newa6iEIUAb7dQLekWDdvhdVoXwCPNVv2jcnVoFn5K0E7ZOu8k/ul7d80L+iPCZNhO1l4q7SZYzsw\n/hzlBdI+s7oV9DbvKdAnF9yzSOS17AIlsfBaUPq7Tkt6nH0d4UawFfSsEYuyvmcjbL/cZP+56A5J\n144kOqSvFBTX2XOyRN7+50G/jqvCvdlxSkqFppLt4cUmUD57qjEPPJY19e0PftqJ6/fifZgmb4wx\ndW2gDH/9I6Ayzr5G0rffemKrE3ceB92utk1SjlO2gwqcswEyAV+jpPqmV8m5Gk4w7T6uRL4vS4pi\nM4iqb9kfsx0r2xDHTZSvF2wARTN1EGOYXyLHuqka8/j97ZhHK6ZiPg9aNvEv7YW8ZmYRKKczUieL\nPKb6MsU6r1xaz9adhjVhH83z3n4pD2ErSz9RJFNnS9pmqHn0LJiNMSaG7L4HCyRdlaWj8cUYkyiv\nXAc8V0ON+My+8dIytZckoQVpqHts5WuMMVNnQP5U9SoommyLbduWxlO9jYoDXTOlQNqxtu7E2mnc\nAop14lRJzW3ejTwP0WqTSgtFXn8AFFSW3cZZdrFxRZe2j/1XwZIsb66UmLDct+M0JJ9JC+UYTr37\nJryeH9TpxLI0kTee5AmdJNuInyzz/o0smQtprL0FJD1MkHauHqbgkzQ0IloeC5iez3KJtOmyHjBl\nvusCagPb/xpjjI/Gpr8Nrx1rWWePpu2rMcbsewa05ziPvDcTr0YNO/kKpFfzP7dM5EW6Ma717+H8\nYFOYa05ANpZCssIVt8kzQ/se5J09AWr4vA/BwpyltcYYE2pGDZjxAKTJoVZZy6K8uKZ7r4ZV6/Gz\nlSJv6BTOLXnZmEtv7D4g8q4luVJ/K8Yx5zpp/dq46dLym38V3SRnDFlSHJ5P3mxap9YZyJOKmtx9\nFvO2fLmk6vdWdX9gnGSdgUaGsPfUvXHOiS+exX1d9sVV4jmRHsyjC2+85cRp86W0m61oM5bgXBrt\ndYu8QANqVE8l9rukaVJ2mjCJ2wngult2SflT1mppGR120JAMWPJcts51JWPO2ecbdzLW8FAfPtes\n2XI+xuZhLgQqcZ8O7ZeyiEAfroP3wonZODOwNNIYYw5vwzl3WgLGJNIja2pvPeZqQmG+Ew/2yzNk\n83bUgM4qjOOZPXJNTV0DuRvLLwpultpsth4ON+bcAEn0NOtM3kTyqlgX6lDJXTNEXgxJ9fb+9NdO\nvOXIcZG34fol+AedTXqtM3gdnzm+Cvn13idwDl3zHSlDevi+HzvxA3/5pRO/8JsfiLybFixwYpba\n1FvSnUySZj+88bdOvOX7fxF5U27Fvfj7Y7DLXktSV2OMWf650TDQBvpIgmss2R7f30E/alHPWbnH\nHziN7+AL5mMvDfZLK20+w6UvwTro75I1gM8dRVcuduLoaJxvYlPlmW/G55eYD0KoVcqVeG027kYN\nyFwg60ZvM2RIvXQ2sc/G/PqRLrx2JksPjTE5a8eby0GZMwqFQqFQKBQKhUKhUCgUYwj9cUahUCgU\nCoVCoVAoFAqFYgxxWVlT4kxQIBs3y67fLI+p24bH8laXiLxY6oDO8pPq9y+KvOz5oDT17gP9s2Rq\nvshrJYkJdwf3ukErm321pMp1nQAdqfYAnp83V742d3tvPwhKevIsSVvt3QPKVdGNkMp0VcjO+uxA\nxXKBktvLRR67TplRcGtiuqpNwVqwAdd/7n1QcH/xnb+KvJuJwld4HSQow0NSPsJOMEGiW3/1cx+W\nF0XXMUKypgVzQMPM2SCldMd++aoTZ63HPBvwS6pcFrlpHa0CLTRru6S9McWOu4OnxUupQoQLv2Gy\nyxjTxI2Rcplwg6UA7mTpflHxBNwIfIVYb/nXSLmcv446nlNH8VjLsYglh/nXgNrHzjvGSJetVWvg\n5lVzDOs3qyhdPOfuu0AhzVqJMey+KKVk7NAwSN3qK/e+IvKYks61ZsSalwM9GGsX0Z8bNss6lLG0\n0Iwm/NWghdoOeL5C1J8uotczTdkYYzJXgmJe/yYkMQmWgwO78RS1/j/svWeYnVd19r+mz5nee9Vo\nNDOSRr13yZLcZONeMNgEbENCgAAhQEggbzAvEJLw0kLH2NjYxparXGXLqlbvdVSn9znTe/t/yJXn\nvtfG0v+6wplrvqzfpy2dfc55yt5r7+fMuteNcZs3oCVFHKcaHMnT/5DqODylkusUSwb8juSCXThi\n8nB+IRF66YkkuRdLbMbGdOo6v8ap4YPNOlU1bYWWogaSqAxci2HHAWm0H2M1eTrSWPv6qlW/Hj/S\nfuNI0hcypV71Gx3BefVW496kl+uF4pbvwEmnsxL3IHUaUqLHx3WcrNsLmQo7faUt1etizxWkLIdT\n+nbKAu3eE0rSDP9JrIW9l3WqOUsO2J2EZVYiE+/AVUjODJHp+ru7zmL+FS1DnGo7ou+PUJzia8Nj\nU0Qkfy5dU9o7tR/Ve4a4GZgvJRkkt6nA8fiy9VxkSV/9NoyrI9u0FCAvBZ/98Pe+57UXLVig+mUm\nYJ7eTE5uN69cqPo1XMb+q60b59v7J+2GER2lnTkDCbu5pTgSIE6Z72fnwmC9BwojCVr6MsSN4FBH\nKtSINYrT7nsr9brPzlDs0lOyCOPoyh+0g1DsdNwbduLh2CwiSv7TRY5PSeVartROcTg6F+tityMx\n7DyFvTE7UPkcwzRgCAAAIABJREFUiWE/OSuKzvYPCO3HMA/S1+r0f55XHDtaHbe4xrP4jFgfyUt7\ntLxvoALSQS6HsOyW+arfoTePe+3iTDwDdPZhTWrZqeP6us9fh+OhvUXyEh0rs+ZjLtXu2+e1eyv1\n+svyyIJNkNkNvnRS9Wvaj2sRRuUJXHmlG2MDScl1H/faLc1b1WsR/L170QwO1seTfz3km2MbEEem\nB61X/ZqP4nnqJ999xmt/5YcPq36Rmdjb+nyY2+u+DufW1//5FfWeOz8HifD2b/3Qa2/8P/eqfoM9\nmH+8j5z/iC4JEZuBe1+7Gw5wcx9dovqxO+HSaXj26erXErHGHXjeztPKy4CQewc+lMsLiIjs/4/t\nXpt/Ayi7Xe9HYisxHllGmNGgn8HipyLWtdBzv/tslTwH869mJyRpafS7QVCQzjUJCcM+/9IfIWF2\nHdF4PRhqwbV2j6H7PO43uzXtelw7IM+/AXuujnOIr+yaJyIyNqKfUVwsc8YwDMMwDMMwDMMwDGMS\nsR9nDMMwDMMwDMMwDMMwJhH7ccYwDMMwDMMwDMMwDGMSuWbNGbZ1TJinNa1s0dl5ArqqrjPaJrqT\nLP0KboRYNSpC63lbDuG7pt4902vXvXpe9YuaAj10KWmyR7qgpz/zzhn1noLpOV47ogMaZbbnEhE5\n+e5pvCcNFpIXd15Q/dLJsqunHuc71KG11qlkMd7/Giy6us7r+hquJWCgqX4V350zW2tfU+bh380H\ncQ+++K2Pq36/+f7zXvv+GahZkbGqQPU7Uwvd4KJiWIW59s+nn4f18pLboHkPiUSdjMqntC47fSNq\nbbQdgvafa3CIiEwjffDNj5AG+D1dN4nHIGvXpy7UmueW09Bvn/45NKOREVqTmLRUX9tAEurDVK17\nQ8+JzA04f9ZuN+zUdos5a6GFbGyG5eOgM27TV+P8m3ZRnRlHq5kzFTGh9hTGDl/X6AJtrTzSi3na\n2wA7urRyXR/HfwnnyLr70T5tBRni+/D5zONDRKShCjGqaCXGJWvYRXSdgomg6yyOIyzRqcVAdZh8\nVNck0qkxVP8e6kokL0Fsaz/u1K8gu2XW7FY9d1r141oDa74Ii1e+nu0ndS2ZKKozw/WBHNmvjI/i\nM+rfxnFn3aBtBPkzEvKgDe/163PiOjoJpTi/Bsd2eahTj+lA0n4K1yI4TJ8w1zbia5a9QZ8vv6/+\nCET4rpV7ykLcX7Z8TEiYp/q1te3y2pFJGFejo6i10Vah40b+yjVeu/qDHV67t05fy6RZGDtc3ypu\nhrbz5no7PK9GhkdUv4EGnCPbsPc16XOPo9odE0FUHsbwqT3aRtdHdq9TkxBfE2fq+nNhVLsrNILq\nXFTo+MMx7NALqPWz+IHFqt+Bp7G+zFgF7X/tIdS2SCvQtaUSaJ5v2wI9/qJpxarf9pOoQZM3Bef0\nlYfvVv14zkaRVfyZd8+qfhFU26IkH+M0eVmO6jfg1IMKJL5U1JRgfb+IXtPDEyjWOqEhMg77uaYD\nmCPu/jCc5lXztkqvHRypa4INtmA/l0FrM9f7qGvVdSS4plw/1SvqcPaGXCtubAhjius1iIhE52F/\nzrE13FlzMikOc22zgRY9F/sbdA2lQMM1//yH9dxhm+IhP65b8kK93+qvRtwKpv1SXomuP9Z1Dnt2\nrpvBc1lEpGx6AV6jYxg8jrmYdYuui8h1svJuR/3Exp2Vql9fN/ai/bR2uful8HjUzeg8g/GdVa7r\nV4xT+YqOCzg/ro0x0Rx7GjbRZ/fpZ6bpy3Cdth1DvZygX+vjq6lHHaubvvOo16549i3Vr/R+1C4s\nz9vjtc//8bjqxzVQv30vPu+Lv/2y13btnc9SPZ8l/wDb6uq3j6p+KVR376vf/5XXfmHfH1S/mBg8\n9/oycN/TC9apfu3+D7z2wUvYuz/4pdtUP//hBplI6t7AvZvygLbxnvNJ1AQ6+XvUcQl2xll0JMbt\n9s2oqbR8o963vPWdN7z2ik/AIrvfqdnGe9bEBbSXfQn/HztVP2O27kVMHOhDjbDEaXrfsnsb7ivX\nZQs5on8e4bl5bifWiblr9bNL/X7Eh7lfXOm1697RcyI6H5+X+SGPjpY5YxiGYRiGYRiGYRiGMYnY\njzOGYRiGYRiGYRiGYRiTyDVlTUEh+O2m44hOL49IQ4pm0qIseo+WPnDqMNv4DQ5r+YAvEmmDbDeb\ncb225m47APlEdyPSAQsphdB3WVsh95yDjCg+G+meY8PaymreLbDgZuvKojItm6k5iLSleLJRzF6p\nU8CajsHubcq9kGrVvHhO9esf0HasgSZjFdI6O081q9cqn0eqc50f92eqY7n3+R9/ymtfegKSJE4R\nFdE2nG8dRb8Hr9NSIbb0TiNL8+4aHENVs05Tbv4TxkXpjbjfJ367X/Wbfj/swVv3wjo9NDpM9Vt/\n1zJ81y5Y4fF1EBGZORXXb4AsZyOztAW1mxYbSFiS5VqHc4p13j1IsfOf0HO24reQLiTMgTRt2JGA\n8L/DE3BOXY4NZ1go0qDzFxXg/8m+0bV3ZpKzYSfpbzisXmPL8j6SWbiySbYvT1+LY8hYp+ds9zNI\nk+TPHhvUkovalyFvmKIzMANCxnoclyup4vgYRymaLGMSEYkhiSDLxHJu1h6nzR9AksZyqpQVWnYQ\nQhbIzR8gtuXdBHvE9nE9lkZIwuJLwzwIi4tU/dj+OWk+0lH7HQlLbCHOqaOy0mtHZepYXkvW4XHT\nIHuJSNOWj0PtWjYQSIZJBpg4R8t9WRISQqn1UfHa5rfHj3sTRtKeoS69JHecQbyOLcL5+v17Vb/+\nDvSjTH3xX0AqbfdlbfmbWIx7yjK62Cx9Tr0tFIdpfWcZk4iILxOf4SdZ4ZSPapvNmpex/vH1Gu7S\n62A32x+XS8Dx07UtzND28hFkrR2ZjvHdV68lX5VbcX05hdmVKkeTPGjBnQgsPH9FRJZ/ZpXX3vtL\nSNVm34q9RfthPRd7aI7x+vvecS0L5jW3vKDAa295S4+lBUXYcyU24zymLtBrOMvT1Nx2ZHE9F/S4\nCyQDbRgj/c69YUlHeALikpuC39+BuJtQlua1uy5p+XnPFVznggcwIFsdSRHbBvN3Ne2q9Nqpy3Q8\nGO5CTOm+eHUL+WSyY2XJcfpKLd3hmF7/LtaPlMWO5MyRL33Y+0X+XJYeaAaacB/TVuap11iiPE72\ns67UKv0q8u6Rbh1XIlNwf9i2u+YFXQ4h53bICuu2YN0pXg4pmLt/SF2E+9p1GeOn74q2yO6fgfPl\n5xBfut5TXngWczhnFY6VJU4iuqzDtAex/23aXaX68dqVr9UYfzEpC6DNKPfpdYyt5zcsxfEdPKGl\nttd/co3X/uY9X/HaMZF6X1F4B2JoH8mS9lRoeersAZzv15/+gdeu3PG+106O1bbx209DKvPSnXi2\n+NnbWq7UcgUS0m/eC5vtnlZtr77lG7/32iyh6hnQUq1Nf7PBa9/7cbR//t3nVL9/fPJzMpFM+RjW\nmmM/3qNeyyLr6qw5iCWuRfuab2z02ud/AfmT/7SWxxdnI56Fkmx7xClfEF2Eda1qByRf//kKbNAv\nntdj6bqVWI/vXALb8if/+Kbqd+869EtZjvnLkkIRkSHanyx6GM+OLJ8VEUldhOtStZlkV9N0DHX3\nOy6WOWMYhmEYhmEYhmEYhjGJ2I8zhmEYhmEYhmEYhmEYk8g1ZU1pa5Aq2bKnRr3GaeTtVD2aJU4i\nIgffgLSljKqmZy3XaZjx0yB/8B/H57kV8+Omp3xoOyYHaU+hPp1mFEFV9jmNuuOETrHi9PIUckEZ\ndtIiZz8MhwV2Dxka0OmonJI/1IE0+9RVOm1zcAJT8EVEarYhDSzPcQ05uwVpVwvvnO+1617T6YEF\n9yONN2Ux0hf7G3VabNoopBozN5DExqnAn78I9//xzz/htYfp/XMLdRp1CKVl79+MVLnlH1uq+vH9\nZ2lBjJOa6z+AY+rqQ/r2+r9eq/qxC9fePyGVcfXtZarfQMvEuW5lbkSquTu+u68gbZzlJkNtelxF\nkLtZ7fuQcYWFaLcJH83tg4chQVi2Tsv2wijtj51VOih1MThUf/YwpfHXHNzmtV0XifExpPqyvDI8\n2enHGg5ujmnJYg45erHkIMS5lsGR1wyJfzHNu5DyGpmupTjxpYhn9VsxZzkuiej7z44dLGMSEYkr\nQVX6/kakgLOESERkdACp2ePkGjLYBZlAzro56j1D/RhzPTVI2fY558QaG5aTBUfo6zw2hGPglHrX\ngSUqFzE1glysWslZUEQkfU2BTBScht6yW6cwc5q8/yhS6+NztYwhlM4xZkqB1w7xaYe1nitYU8JJ\nNtnr1/GUJSvBLC0mpxZ2cBER6WvFPOX50tfmuN7QnBjtQXwZcGI/y/T4OvAaKaId+XzZ5EqWqsdO\n8/uV+Mc9EnCySfo40KIdhfprMF9Y5sn7BxHtTFf9MmQRUbn6Wrfug/SF51tcqZZ9hkTg2qz43JoP\nPe6waB0P+Ng5RT+lR9+f8nysuREpmIvnz+oxnFlKLnynMa/KcvWebbgd14UlRNF52nHGl6VlA4Gk\nlWTuLHMUEYmkdSwyGe2wCH08Q/2IcyN9WJ943RERyd2IPVDTAcjZXDkz/7u3BlJsdvzpuqAlUxwn\nY6YgBrMcREQ7mnEMdSXHccUYV8Hh6Oc6Z8XQvWIHubq3tZRWrUELJOAkzYMszpWd8b9HaO7E5Otx\n1kmlCLLJharXcfJLLMN39TVh7WLphIhIdBbmcPEjOOmG7Zflahz9IaSIyVMwHl1HL14bwkhy50od\n4jKw3o2NIkaHxjhOoeQc1LwH+4C0ZfpZo/LZUzJRjI0g/scW67mYM/0Gr334v37htR/80WdVvwvP\nQXo/h6SX9//o26rf+Djm6ZrrcW8aT2know2Pfd1rN1x4x2vvfxnPD/zMISLy6N/f5bV5rX/vWz9T\n/WpaMd4++fPveu1Xv/pd1W/9P+Lc2RHtpa9vVv3y5t3otU+dg4Tqh2++ofqdfBnXL/0OCTinfwZ3\npfJHtZtg0+5Kr113EnuQ2KJE1Y/35VzqJDJKx8qQGOyD6l5DTN124qTqd9P1kCW1dWNtvmfFCq+d\nfeut6j3sHBwZhu9JS9DzPIRkSSyHDHXiOjuRjtFep/2Kjr2psxFfeJ0dG9LPJL4MLWF0scwZwzAM\nwzAMwzAMwzCMScR+nDEMwzAMwzAMwzAMw5hE7McZwzAMwzAMwzAMwzCMSeSaBRZGqQ5AWILWX3F9\nBLZUdK20Zy9DXY7GM1SbZr6uTdNANTCy1qO+BtfTEBEZ7obWMIPq1vTWQdvbsk9bG7I+M3MNtPCJ\n09NUv/gU1NQIDYUuud2xLW3YAVvjFLI2HOrWlsTtJ3C+rMNuP66tMMMcy65AEx0D3dtov7b+iyAt\nXkIprsegU6+kdgtq0ISTFaGryy79FOrWRMZDd9pX6thik2VvSRauYUI0tOGvHDyo3vPpr6LwQFo9\ndIdu3ZD4LOiNu9OhBwyL12O4tQNjZow0kjzGREROvQb94/wN0J37j2h9a9rKApkoKjejnkHhPTPV\naxF0P9qP4ZjcekDRYdAvT38ENtaupfPoAOpKrCPtcNMeXZsgeTbsZ5vJspE1850XtfV1eALGItdB\nCXGsF4//EdbarAkumKrjRtpqxID2k6ihwVphEa3vTCzHcfdUaYvL7E3TZCJJJ1v71gM6TrF9YBDV\nCgkK03r1rvO4phxX3FoPbP+ZQPeqr1FbkA5QHYPUhVQbRYVyHdd9MegXWYrPvvTiLtWPa3REkZ3w\n6NDVbcS5RklSubZ1bj2MGhP+Vox1t36PirHzJaBwHOm9ouOknzTLviyMucub96l+PD7DErD2pS3R\nVrdxNP94LsU497rlEK5L2mLcGx/VcYmMTVXv6bhS6bWryN664A5dS4vnVVUT7KeX37ZS9Ws9iGNo\nJpvfqBxd44PXD7apbnhX19vJuaNUJpI2qjkWW6prJKSvK/DaHB/ZGl5EJDQaaw/Xx+tx7JCjC1C/\nguuB8BwV0fVKuKZG3VvQ47t1aur2IS4/vxd7FdbZi4iMUF2hVdMwKcJDdew9dwTjccYyxEPX9js8\nCfuWvc/AcnbVo6tUvytkJ1p2nQSU8EQcQ291p3rtanUMk7Szu3RXYo8ZRvczfY5eZ8PDsT+KLcB+\nJilPf+DYGK5TfwHuTT/ZVru29inzUcev4xzmWNpSXauK14hxqkGSOqdI9RvswuenUD0Stz7O2DDG\nNtetybtVzz2OuxNBTyXVfsmPv2q/DHo26HTqkXHNnKTMRV47p0hfw54ezLm607AzHtdbBvFT/RKu\nMcE1LF1L645e1PRJGsY+iGuliYj00zNT6iKck3t/+siWvvs87s+f1amk5ZnrvfA+QuTPY3EgiUrH\nOR789+3qtZHbMW4z1uEZrPo9vcef/Vef8tpT78F96uo6pvpFRmK+lN2FGjG73/2G6nfwPnzehoWo\nm5cSh2MtXKnnTlwRrt/z33zRa19u1M9t912/2mt/9npYaf/HKz9Q/X76CP59zxc2ee27f/BXqt/I\nCOIXW8afeePXqt+MWx+SiWQKPV+4NtF9V3CMwVTnrsZZx4qoRimfS0+/fkbOW4hr30t28/f+7c2q\n30u/eNtrLyku9tqRtJdw6zAV3zIdx0Br8wP36rjOdbh4jUueo581mqimI59Twc0lqh/X5/XRnjcq\nW8+9pm34HaHoQ+p4WeaMYRiGYRiGYRiGYRjGJGI/zhiGYRiGYRiGYRiGYUwi15Q1Ne1AGk9YpE5v\nuvwcLNk4Fdu1vh6oQwp92b2QDbWfbFb9orKR/sNppunzdIp183HIazoovT+xBKn1kZt0ijun1g+R\nVV3alGWqX1stUnPD4pAuGxqmLa9SF+F8Od2YrRtFdDo0p4+y7OO/v0unMgaaiirIJ9ZuKlavTbkB\nKVk7vr/Vay9+WF+bD36122vPvhEpa0mztOxguBfpixcef9drJ8zQKfVse1lE9shVu5Hq9dBf3aTe\nwymaHWeRTuo/rS3Ru8rwGluajjlSiq5+pIYuuR+WcZw6LCJSfjvGrf8QUuET5+pz3/dzSDryf3y3\nBJI4sgHn1Gv33wkzMQ/iHdkeS3jYHn6oU6cadpPNZ/JCpI8W3DVd9YvJQtr4uZ9ifHB6Yfpybb+6\n6z9hnx0TiTmWrcOGJMZgzuWTZbmbWs9WpWxDGeJYYjfsqsT3klyAbbVFRDooLhU66e+BxrXl7aG0\nztRlSMXuPKelYbEUP5q2V3rt+HJ9v1OX4zPYyj4iNUr1k2D8Rt9djdg7Srbs3RfPqbckkDSMpTNZ\n66eqfpXPY53opDn7Z+n1lCYaX4pYwda2IiLhlFI+RPdu1LFOd2NsIEmYjuPzZeq1YaQHx8vXxY09\nnC4cPxXzqK9ZSxF9KfQZbN94Ssc8XpMuPX4Unz0LYyLEp9dcTs/vplhY/5aWF7HkZ/pyrBfuPYwp\nwLzqojGbOFPHSV4ze0jekTQ3U/VT0jTt5B4Qkhchbbn2PX3OncdwfdM3wHI7doq2oe+n/Y3QdB7p\n1WsIx6aaF8967aMXtC3vbBo/1cP4jPp2XKepjr1y+iycx53jsBztG9T9ihYUeO0ekkikxWsZSfYG\npJrz2tB+SMt4s2gvkXAE8h1Xtp0wVUvGAgnLA93xw/JNjhuD7Trm871haVREko6TnT3Ym/BexF+r\n7YkH25Amz2shW6gPOpbWVRQns26gtP04Pd5q9h/32gkzMLf7WrU1t/8Y4n0SWbs2bNPjjS2yh3sw\n3vpqtERsouE44Epv2Iq96nlI5Fx5XyTF26q9kEFkLVik+gUFQTYbQXvPnMVLVb/GE7BbDg7Fe/h7\n+hu0RHjhQ5h/LJdwSyh0kf1u3euIh+4aziUj0lbAFtst9zBK+yL/fkjQBgr1OHPl44Hk6H/u9Nob\nHvsH9dobX/u/XjslAfFm4Vf/WvUbGYGMKzQUz4RtFRdUv6Cp2LPU7Mbe87O/+7nqV7H1aa/9wm8w\nJm6+CffaLcUxRHvjT/7sq147PFw/w1zZ/ZrXnnsSUi22kRYRWTNzBo71Tch//Ae1VDC2BOO5+SL2\nSke3HlD9crdA4vXQL34hgebM09g/pOTq+MN288G1mBM9nc4++gz2GjEsGT6n4xSX2eD5HJmin6U/\n8qn1XnuY1qTq/fiNIiFW78VSFuHZJTYLe5DKV4+ofrxXTKTnJ7auFxEZasf3JszEPK18vUL1y16F\nscDP/a7E0N947RhrmTOGYRiGYRiGYRiGYRiTiP04YxiGYRiGYRiGYRiGMYlcM8ctvgTpSL2XdQpO\n3i1Ibw4mN5FxJxUoPAVpgx1U2dyVAHG6MKey1+05ofqlzEWqEqef9TVdPUWInUEySiHXGRjQbil9\n5FoSTimowz06FavpPaS3DpGzTWeNdnKITUWaVSulP7NziohIyw6kBJeu+fBz+EuIi0J6brDjrtRA\nFaOX/Q1cFhqd9NesJNyf3ss4z9hCnfYWQc5TEYm49zEFWmZw7Fm48Sx8BPck6iDScaPztSMJy21G\nycEnxZFWXd6Pc0qqwD2obtXykCUPIAWV01OT5+kq3ZefRCpx2iqklibO0N9b4jhcBRJ2iGk7qtPL\nWeqTtgzH1+G4GSSUIS2THX9CHVndMKXNsxQlxKnczlIZlk9w2mH7GS2lmHc/ypIf/iMq9fc46Y6c\nWn+1aurud7GsovuCdktJI3lW/TsX8f+UKiyiY9lE0EljmNO1RbSMqI/Go5sCH0Xvi6N72uOcM6dr\ncrr0cIeWsUVQCmk3uczEkpQuKEinZLbuRexMWQpJzagjCYwtxmeMkYzLl6nPPYjOkV03BhzZWRS5\n+0RnIe2Z3eRERMZHtIwokLBclWOciEgvuY6wTCA6T0tH+DqzrCLxGu5UfD/8R+pVv0E/rlPuXZAB\nssy44c2L6j0sqyu9DVLVkW4th0mcgfWKnQobt19R/VJIWtVbg/R0vp8iepyz40/HaR0rYgonTpom\nInLhLUj1MqZqOQHLknjdiS7Qa9JIF+JReDKts84591XhekSSi1euX0t+GjswfkpWwSkpIwJx6vx7\neqwXkgvE9Afmeu2WvTWqHzswJtOcHWzV8YVdcHiexpbpY+W4nE+SKffcD23FHm7BJyWg8HrXU6ml\nHiw/CYvBGjfQps+XJYbRJIN21wL/Ucy5qBz0c6WxodGQCvH8S55egPen6/jHTmzDtMbV7z6j+rG7\nGcuvo9K142dwBLb2Q12I965rUGx+4of2azus4wtLqCYCH7ntDbbq6zmu1g2cf5Dzp+UOcpXj/VJ9\nkHYECqf9Do+LK+9sV/3y12NfeuUtSGfYGSm+TEtdwujeR88hd8IBvS72k9soO0Syq5iIXrd7ybkp\nvkRLurovIkZxHIp15L3sJhhopt6FNWRoSO/n1nzzAa+949t/9NpdXVpiEhKC+xsVBXlITK6Ouz0N\nmC9vPQ051a9+9KLq99Fb13ntz/8GUquKJyGvv3D0tHrPvguQUN21DPKntDVaos97oId+8hWvfeb3\nr6l+mTdB6v34d17w2rffqt0OY2iPUNmMtTAlVseK+ZsmQONLpBdjzLllSlKXIt6GRZEk0pGfh1D8\n4fV+yO+4Wx7GeC+8Dy5Kw84+//JWyMFSCzH2yx/C80REopahjpPUvXEf1sz+Gi1F5N8ieN/tyloT\n52BvxucRFav3gAMkTefn3iFHjpyUpce0i2XOGIZhGIZhGIZhGIZhTCL244xhGIZhGIZhGIZhGMYk\nYj/OGIZhGIZhGIZhGIZhTCLXrDnDNT96K3VNlx7S1kemQJvV36itQAdboB9NZSu4C471H9m/5ZP2\nLDxOa2nbSJPJOlWujdF1XtdeSF8NrWDdcegTQ50aGh1kAenLgV502LEaZj1dFNkYs22iiEhkBvST\nXAPDtc6OLdV1WwLNCNVn8R/TmtZGsugsGEKdHdcKdPrfwGp6gOobNO+pUv0SZ0OXl0B1SI48c0j1\nK5qNsdBKlnJT7sW9b3jPqXtzPSwmuQaSq/tdMAc1Y6qeOem1Q4L1b5HhpEseG8S5n/61tq6LicX4\nTijFOdVs0fbCESmORXEA6aP5Fu3oiNmik+vM+DK0VrXxfdSI4NoJwaH6usSR7XkHWcqmkL2ziEj7\nQYyl1NX4vOFu6EVdbTTXM1j66RVeOyhU6/tbD0LPG0U1FYIGdO0Ttgtny+kcqoklItJ1CfEmfRXi\nQWeFrkPk1kIJNFH0+a61HtcBGmgiG07HInaoHXpXjjlxZfpadxzHvUsgvWykMy46qdZH+mrovJuo\nvkioY5uctgLXsOsCjru/Qcd/VaeILCZZIy8iEkM1x8apbFn7ER2vuD7SYCNdo3m6Vsugf+LqPw33\nsPWu/h6uLcJWw1xXRkTER3VHQsKxnoyP6JptbCvefRlrSOoyrX9v2Yu6ZWwP20W1nEJj9fqUvroA\nx0BrWiXZs4uIhFNdHbbfZtthEZFOGr/J8zBmm+nY/vvzsKazBXifY0sbEjlxtq8iIu09GKuDZ/V6\nFxaCeFQyF1ao/oO6FkfKCsTECKr10LyjUn9XB86tZG2B185yLNbDEnBtjr+HWgjlq1FHKCFa1+vr\no70Z79ncGmGnjqDmUPh5xNdkp6ZB3jrU+2rehXuXQcctIrLvT6jlMWt5qdf2OfWVFl4/WyYKtmxl\nG1QRkfaT2M+F+HAtgsP1WsP2whyDh52aYOkrCrx2Ty2ueepivS627MM1Syqnek0fYL+Q5NTJC6X6\nDX1UW8St+RBDtW6admPvNeDUJeOaCFwDyJem7Wa5Dhjb12ZvLFb9Gt6nvdgKCTi8H4kt0rWN+psw\nd4KoZqJbKymZrHPHaF7x9RQRiaG6Qpf/gHpIESm6dsThH2z22pH0HMLxlWtriYikLcVY4GvGezQR\nvW5zXTW2hhcRiaSY0rgD9zu+WF8jrkXENXq6L+lnob6qibNI5zpo4bEn1WuJ2djXH7x0yWtvSnpM\n9bu05zl7fylNAAAgAElEQVSvnT4b53Tkx7tVvw2P/aPXrvc/4bXLsrNVvwWf+bzX3vqP/+K1I8IQ\nD2bdVM5vkdmhiFdFq2/32q31u1S/pM9gDeY6M4X3zlL9Dv3HDq/91T98x2tzfR0RkR98/Ete+xvP\nPe61Bwb0Huj8i2/IRBJP9aVi8nRdFN6fDHXjuXjgz+pEoR//VpB/+3TVj8f+ID1nu7Uli2/B+6Jo\n/3riN3hWS0h26hhSncRuP9b6TCdeJ8/F82Ll86e8tvuc3k77XI7KkWF6nW04hftVSvs3v1MrNMpZ\nJ10sc8YwDMMwDMMwDMMwDGMSsR9nDMMwDMMwDMMwDMMwJpGg8fHx8f//boZhGIZhGIZhGIZhGMZE\nYJkzhmEYhmEYhmEYhmEYk4j9OGMYhmEYhmEYhmEYhjGJ2I8zhmEYhmEYhmEYhmEYk4j9OGMYhmEY\nhmEYhmEYhjGJ2I8zhmEYhmEYhmEYhmEYk4j9OGMYhmEYhmEYhmEYhjGJ2I8zhmEYhmEYhmEYhmEY\nk4j9OGMYhmEYhmEYhmEYhjGJ2I8zhmEYhmEYhmEYhmEYk4j9OGMYhmEYhmEYhmEYhjGJ2I8zhmEY\nhmEYhmEYhmEYk4j9OGMYhmEYhmEYhmEYhjGJ2I8zhmEYhmEYhmEYhmEYk4j9OGMYhmEYhmEYhmEY\nhjGJ2I8zhmEYhmEYhmEYhmEYk4j9OGMYhmEYhmEYhmEYhjGJ2I8zhmEYhmEYhmEYhmEYk0jotV48\ns/XXXrtlV416LTwpEh8SFea1h7sGdb9E9Iudmuy1O8+2qH69tV1eO2l2Oj6vZ1j1i5uGzxjpHfLa\nHSebvfZge796T3xZ6od+b/4dZapf865qHMOCLK9d9+YF1W9kdNRrJ9I5xUxJUv1a99biGGakeO2x\noVHVr+Mkjmn1v/6rBJo938Vnjo2Mqdd6e3CtBkdGvHa936/6RYThHpeV5nvt8XH9XYlzM7z2cOeA\n1w6Lj1T9+ht68BmjOKZju8547eBg/dthSmys105OS/Da7vWMyo/z2rXH6/CdQ0OqX25emtc+euqi\n156Wman6jdFJFtxU4rX3PLVX9Zt/w2yvPfuOz0ogOfDLf/Pa7rWML8HY6q3u8Np9dd2q33AH5ibf\np0G/ni9MTCGu83CnM7cTcBw8r3i+jQ6OyNXgWBGTn6Beaz/R6LXjpuH8IpJ8ql/NqxVeOzgU4yVz\nQ5HqFxQShO/txve647d5Z5XXXvblb1z12P+3VFc8j+/aXaVe82VifMdSLOm80Kr6jfbjmobFR3zo\n/4uIRNHnDbb1ee2uc/rzItKivTbf44x1U/DZgzoOj1McGenFa22H6lW/kEgsMQnlmG8RSVGqX18D\n4n/CNIyf7qp21Y/jPK9BMYWJql9EIsZJXsndEkiOPfdjfG+B/t4hinkdJ5q8duqKPNWv8zTOI4TW\nz/qjdapfKMVAjsEhoSGqX3s34mnBCty3yFTc27b9teo9nU245mWfWOC1j/zqA9UvKAhzJyUp3mvn\nOuunUL+azYjjEhykuiXOR+ypeOus146OiFD9spZhnSm/9a8l0Bx/4adem9cqEb1X4eNveOeS6hc3\nDfN0qB2fkbYqX/Ub6cMc4esZGh2m+nWcaaF++P9oio+Nb19W7+HrOdSBY+g5r9fwzBun4nj6cTyd\np5pVv4y1hV678k+nvXbaSj2GI1Mwh/3HEK95PLv9ytY/LIGks/O41w4NjVOvnXriT147oRx7ys4z\n+nyfe/l9r/3Qo5u8dsN+vedd83++7LWf/hzWhjkr9TxInp/ttUf6sOforelE+0qHek/0FMSRXS8f\n8Np5KSmq35pvPeK1dz/2O699sbFR9Vu0eLrX5j34lJvWqX77v/dHrz3r88u89uavb1b9Nn4a7yte\n+qAEmi1f+cpVXwsPxRoSn4t5cOGUXj8TY2K8dkIi2vG07rhEZWPM8BopItJXh/gYTvuO6Nx46qP3\nWGffQdzj4y67c5bqx2twcDhi+ZCzF+PXkhdiXJ177rjqFxuJe5xzG/aoLft0zG+6jPhy67//uwSS\nHd/8ptfmdV9EZKAHcangNsyXihdOqn5JWbi/mddhHeus0HsW3hPy3iE4TK+LrTvxTBcSG+61e1ux\nXuas13vFEB/iV2QyYlfbEb238VPcLHt0odeu23pR9Uueh+eJS8+f8tpp87JUv4SZiOMnf4cYkL9q\niurHa3rxksDPxdpLL3rtnhodp0IicF+jae64+/xQH64171/5PSIi47QBb9mHeDs2rJ9T+RpGJuP8\n1fc6+4yOs7g/A029eGFMb/pjKPbynnls1HlWrkb89mUgvnBcFxFJmoVjbTmAcwpP0M8u43QcM2/+\ntLhY5oxhGIZhGIZhGIZhGMYkcs3Mma4z+MXL/SU0dTn+itK07YrXzlivf+XrpF+IO07iL4kRqfov\np6Ex+KWt7Tj6hTl/IYzOpV/rBvCr2Wg3/kLhZlzwX/i7+vHL9Jlnjql+6SX46wr/ap51/VTVj/9C\nf3bzCa8dV6l/QUtdkeu1ey7gr1j+Gv3X4Ck3lcpE4m/DuXDGiYjIQDv+gpaeg78WJifHq36RGfi1\n8uAu/Pq79qGVql8f/YrIf0kMadN/Eei6gmuQMhe/NIaG4H4v+Mg89Z7gcFz31g/wF4GUpTmq39nX\n8de+sk0zvDb/hV9EZLAFv6YuXo2/bAw4fw1JoCyTlt34JbRvUGeSdNN8kTskoAw24q86PP5EdAYZ\n/+UgYab+i1H3RYzB/nqMifjpul9fLe6hnzIhUhbr69y0vdJr81+D+ZfkxBn6s/0UA3hOhPh0fOG/\nNA91YRzxXBYRSaJf1NuP46+H7Sf1XxI5m6ftMM4pMj1G9UtZos8x0NS/hb+qBEfo2JZA96FxB2Jq\n0lydySVCWUB0bbor2lSvePrrEv9FYKBV/4UwbSniVHcV/lISwsfnpBg17EAGQSj9RSp+eqrqx/e/\n4X38xd/NnOT1heNGVFas6pexpsBr91KM5vEiIjJAc1tKJKB0ncY8rz5YrV5LzUEmBf/F9uRzR1W/\n9AzKuOjGNS+5q1z1a6eMhHi6lvwXeRGRWLpmV3bh3mROw5qWMCtdvWd4J+LXsd/s89oFiwpUP/XX\nSPrr1JknDqt+xXfOxPGUYi258oHO9MjLx19OM3Mp66+1V/Vzs3ADDWeqjQ3r7EuOJZx1ET9Dj2+O\n+fGzKNY5f53jvUrT+5VeO2m+ntv8l/IgutYDTfhLb2RmtHoPzxHOjM28Se9bIilbra8Ra1zqslzV\nj69FTAH2AbxH++9++C7+i3+Esz51cGbOegkoQUG4Xr29Feq1xNlYt/m6Zl9frPo9SFkRPNbdTFvO\nltn02O1eOypKf96ld9722iU33eW1z1541mu7+9/c1chcu7kIsSEqXe/DKp7f4rXnfWmV145/Su9l\n02h/XvsyrktzoY5DpQ9hj8VjdNGyGapfdJb+i3egScrAvjQ4TI+fdIr5nOWbUqUzw6ZS/BGafu7e\nguf2QAvWwpgCvTfmDOW+aqw1MXl0rOH6WGdswjH01eA9zdt1lg9nxcWUkKLglN63TPsosrF5v5W3\nvED1i0zDPqb7Eq5Ld61+JskovnoW0V/K2BjiQdF9M9VrvB7z8c35m6Wq39lfHfTarMjod/bkqQux\nTxsfQbwaG9VxN4Wewfob8BlROYiZvN8QEYmlONnwHtauRGf95Gyqoz9Dtql7Tk27Kr125ooCrx2R\nrDMpODMngrKuOg7rMeHG9UDjp70zX2cRnck8Tte6r7FH9eP1j5URQc7aMEr7Nh+tYwPNeo8alUHP\n/UOIU7wH5P2uiB4/ibSGDzlZsnGUJdtP6yxnl4rodTYoBOfhZoo2vIf9F8eeQWd/k7pUZ6K6WOaM\nYRiGYRiGYRiGYRjGJGI/zhiGYRiGYRiGYRiGYUwi9uOMYRiGYRiGYRiGYRjGJHLNmjPsWOTqv1v2\nQGufuhy6vlbHEYI1j+x6k1+u9Xt1W6HTCiZBpi9fa257LkPz1nYJeu+clXAY4NoaIroOSlQ4dNNR\nCVeve3NlL7SGhUsKVT/WqiclQQs37NQBENLkJXK1aaeOwrhrGRNgEuKhR71wWd+fqYWoAB9HdTma\n9+haCpECnfvsGahuzs43IiLnD9B1K8FnN57Tuskp66DTbj+GOiTl7Hzg/HQYTPWH4kj737JTH+vM\nO6HT5Qr8obHaDeTgFuivp8/APY7I0Jr+Y6+jMn5hPu5jYboew+wIFGjCk6F/TluhnUD6m6FljCTn\nnebd+rqwC8eYctvR4zauJPVD2z2Oc04WuX+0HYTLDNdKaD2sK9ynzEdMYaeEUEcXHjEfetzhHhyf\n/7geR6zr5non/gP6ewdJW568COMywqmgPuo4fwUarjEx7tSlaCXNcQLVFwl26m4N0/3i0MHafBGt\nYeaaOykLslW/hvdR3yZ7A+5pM7mVJJZnqPdw7Q2uAzA2pKv2t1PF/HTSW3NNHRGRiBSM2wQ6VtZr\ni4iMkzsSjzOueSQiMtis9b2BZIS09emFugYJ1+uo2YY1bdp1uvDNle2oPVSwEnXaXDc95sIrqKU1\nOqb7zf0MdO6txxq8djc5DKQt13EjbiaOPasA8fji5lOqX0w87s0Y1aUodurjNFA9JV821ri8eVpb\nzfVyuPZGY4125Ii5hotcIAiPw3rQ41z2RK6DRrGp87TWwofGYc/AjmGN2/T45no/aatwPdi1UESP\n22Sq8cVrS2+VriPRTnW8uH5C53HtSjQwgLV62oOoNdJ6UO8JOsgZxUeuZw1vaaeq9LUFXjuF6ta4\nNdG6L+t1Y6L44HvvqH+XPzDfa8fnY93Z890tqt+6f4GD1LnnXqf//5Tq9+yXfui1Ww5hbe04eUj1\ny70NNQRHRzFeUhfhfl55SrvUnPrpG167qxvvyVuh955pyzB2uiuxz5316XtVv8P/9qTXjitDTYXo\nbL2f5toQXEeBnfpERC79HjVtsr51mwQadgJj11QRkT6qFTJAtS3cmM/HX78FDquhsbomBM/tfqq9\n5DrJxJFjYkcUaqSxE2DDu7qeVsFdqNVz6jXc44wEXc8mlFwWe6hWXOoMvafkOZc4D2uw6yTD9TzZ\nmSY6Re9l3fqCgWRwGDU63Jp/MYW4lkmzcB5NznOGLx7X9sofcf2SF+s9SyW7Hq0u8NrjznXhGidx\npVjvGrfivrHjpYiOtbxvcmtuxeQj3rOLEdccEREZpPopo4PYH3D9VBGRRKpRF07HxO5gIk49vQmA\na0+5e88Ycktjx85IZ5z1VCLmR+fgPOsdJyuu/5VYhrHfLk2qH++ruCZOXBFiW/XLZ9V7Yosx5niP\nOtCs19xuqn3JYyFzrY6BrYewTvJ4dp1H4+i1Fnou4mef/z4mvZdwscwZwzAMwzAMwzAMwzCMScR+\nnDEMwzAMwzAMwzAMw5hErilrat2LtHbXYratDmlLbBcVnadTsNiOLiIFKWujgzr9PYIkJ3V1SCEc\nPq/7pc1HeltWKlIh+RjiyrSlFqeXs1Uzp16LiIzRMZXdipTtrvM63brxCFKVomNwTpyWJiISRmnT\nfbWQX/Sc17IrKUmSiSSObE17LlWq1y5VQvowl65b0hwtY+ij9PgoSscLj9PWxtlp+K4YSitzrdHC\nKTWU0wjHSFYSEq6HJ8u/kkgW10/XVkSn5VXvqfTanHYpom3V2db45IHzql9BGu5rfyfe09qlvzdt\nqpY4BBK2rnct3lo/wDyNLkTaoZv2y6mGEalIQ4xM1XbSrQfweW3nMBfd8522APK2iBSk9nWRvWzC\nbJ2m23oIc6dg0yKv3efXabCxqUjnjo6e5rWrT7yq+vXXa4vF/yE0Xqegpq7A9eN0zOrNZ1S/ILJc\nLdBukAEhOgfxsebVc+q1JEp75DEcHq/nGFvAx5ey7KxD9ctcg7TMmtfxXWMDWrqVcwskN50Xce9Y\nCtZ9Sdt0c/pw7yWMq9TVWjrD15rtssNi9f0ZpTHNUqZYsjkU0ZbgLQeQZsqp0iIiYyMTJ0+LIumg\nuy6efBr20ikpmIs8J0T03Ow4ihTe9I06lZZtnGOLcS3aDtSpfmwPWXQv1i62GO+6oI+hYjdS/+dm\nQeaSuVjLkIIpPrcexHpR/Yoev5kkqzv7OiRYs+6fp/qdfPqI184oQmyd/+llql/1C3puBhq2lE9w\nLLLbT+Ce8NhMW6XHdy/JKlnqHeLTUgreC/iPQHY22qNjedZNSPMe7oEMKZQ+z+fIooc6cO9Z2tm2\nV48RHnONZGsf5aTXs5QpnaSwrmy38yzWhiiKa/1tOm2cbawDTU8n9nauDKmvD9Ky6rcgTe4b1FLs\nqp07vXbhbbC0DgrSf7u88/sPee3t397stV3J4snfwg64zg9b7ZlluJZx5Xq8Ve7B/bj+O1/x2o0X\nd6h+HHdPPot5lPItvVgt/BquxcnfPeO1uy7qOD7Yjv1MXyXWj5ipek868/ObZCI59IcDXrtsbal6\nretsq9tdREQiwvQc4/nHFtfunO2jPYMvA3Np2JF383qVMgdxvm4b4iZLpEW0tGLqYuyP4kv0OjbS\ni3l/fDPk9VF+vZ8pJPk/S2IGmvQcY1tnjg8t+7Rk0d1LBBJ+Fkqep6/L2V/g/k796CyvneiUt8hc\ngznCz4gcC0VEus9jHEfSuV943LGK/2vsMTtp/fORlXaoY4V8ZTfmYuY0HF9HpZZnTn8YseLEi5D9\nZWfruR1VgNgYRs+5LfR8LSISGo09UVwJnsVCnbVkqH1i5b4cr92SG+1nSEJLUqGMlVp+OUL3q/sK\nrpsvQz9r8D1uIzl27BQdf0YGMF86juAYwmJwPWOmJKr3cAkUJU+L1nvPkW7M+5SFGLedznM/78m5\nnkBsnv5evkZx0zDvw5yyGu5znItlzhiGYRiGYRiGYRiGYUwi9uOMYRiGYRiGYRiGYRjGJHJNWZOq\nduykUmXNQgp+JKcqOcZDQ+SWE0UyIrfKeeZ1SOcOPorfjM6f16lfqaPkdkKZ6+xycS2njkRKFzv4\nvq6YPz0PjgMxlFY1PqJPqpPkMNFRvg99j4iIn5xqOL2fHR5E/tyxIdD0XoEkaVZhgXqtvg0SqzZK\nWXcriTeQk0Z0M1Iv4zJ0v+ybkYZ59Emk9xavLlb9OKWLZWhn3kVa6DTfVPUeXzrG2b6f7vLaM27W\nKb1cVb25E+e+9P7Fql8RpeWxbKu0RKfBsjqIr4ObHt1X++ESm0DQfQn3KdSRhMROw7hjt47ITJ1C\n6MvCvTr7HNIwC9c415mkI5kJSIMNcaQULAPcT85XC6+HW5b/cIN6T8pSciChC8uODP8NUtJ725Gu\nnDJ1luqVMpUkHCPk3DRNO5VUvwSJxNgQ5mL+3dNVv54a7YQSaNpPIeXRTffneMFOeSGROq21l8Zq\nDLkX9VRqWdMoOSclzobsZ6RHp283bse1jqV09vBkxDauli+iXRCii3AM4U7qJt/Xkz/d67ULNunU\ndXbE4bHuS9MuADxmxumY+hr1+Bkfvrrr0V9KeCLmRJiTIntV5z3nzyDT75/jtVtIltjnjD92NKt8\nq8Jrp5TqdPDaV/BawixIhWr2V3ntvGUF6j3z7kdadiyNowuvajnR1E1w0AsOxolMe3SB6lf1IqRM\nxesgReTxKiKSMxsxgMdipyO7yvmIlosEmvajiE0DjjNU7q347tAo3OP+Jj3O2g/hM0KiMYajcvW4\nDScXEp6L7DYhItJxDnGLXSeTye2x/qDeE+WQC1pCGe596twC1a/jEo6VXeoGHNeIpLtwfOzGWPW8\nHhcsU+f9jStFbHXS9wNJ5TPYw835Wy2faz8Fqez2t+Co9OgvvqX61R//wGuHhyP9fWxMp50HByO2\ntfVgz3Zxm5ZB58xAavya+//aa5997kWvnb9OS/jObMO+hx2emvdUqX7nj1d67ev+8Qav3XDosOrX\ncQrjiKU3rgydY20wyXjSFueqfo9/7v957S899ZQEmrLVmG9tR/SegcV03QPY3+Qv01KK2n24VqlF\n2FMGh+l1ll0S2eVo3HHKK34Q96h2G9yBkudgLrrrDq+Zw+3sEKOfSU69hVhZ58c9WFii92Isz2KJ\nKjvDiWh3n4O/3++1Fzy4SPWreBr7tMJZ90kg4X181fPa8W+ASgo07qj02vzcJyLiP45730zrYtb1\n+rrwd/XQ+uJL1XH34q9pXpAsk0tauLKm8FDMg927Tnjt+75zl1yNrAwcT94dZeq1rguQYHUcx3ib\n8uAc1a+fXIQa38PzcVeLHmMzP62fYwINuyu1HHCkV3StWErO65aISOoixI9Bklz7j2oXVXaKZZdO\ndiAUERkkCXJsKfaoXHKk8YI+Bt6LpVAMdOX/7EzXsg/nmzBT77FiqGSLn46PnbpEROJo/Wvei2eX\nqAwtR3Z/U3GxzBnDMAzDMAzDMAzDMIxJxH6cMQzDMAzDMAzDMAzDmETsxxnDMAzDMAzDMAzDMIxJ\n5Jo1Z4bZ5nFM6zG5LkXFG9Ail2yaob+AahCw/Vn+nbrWQ/Mu6EV9pHmbJlr7GkrWWZ1kdxmWBC3t\naK9jT7kUNUTYdrk4M1P1C46ENjUmF/oyV5OYOFfbtnrH4PQb8kNrFxKFS500V39vf+PE1SoR0XbZ\n827ROsdjz6LeRG4+NHaj/Y7VOdkWPrN7t9deO1PXezl7ptJrD4+iJsTMFK0FbX4P3xtO2vWSFahN\nc56sXkVEym9DLZM4H95z7JVjqt/Cj0GTWUg22Nuf3K36jdKYbiGb6MXFuj5OwQb8u6MJ/UJCtJY5\nZbm21Q0kPAZdXS1rHrnkxUCL1jlzjZiUHOg2Xc18cjzm3+UG6PYbO7RWc0kI6kos2IBaMJFUG2i4\nW9c3YYu8qrdRByCcaiCIiIRFkw091XnoqTmk+rElJdcacq0m826HDriT4lBPtT6nSGecBpqE6RiP\nvVW6FgdbYIaS/r9lv9b9sl3uQCvucfJ8HVfY6lYofLvjopPqDqSvpFjZiGuYtVLH9ZFh3JOt337T\na2ce0/UCeI5lzIfut9+pMdR1CseaTbVGfIlpqt9AJ/rFTYPO27WlTHfsUwNJMM031w4xPhrjJ6YI\nVtpuXbEuqifSXY+Y0tuo+7F9Y0w8PjueNPciIv7zuC67t2CODI7g/XPn6DoXvfS9g2THnL9K1wEY\nH0VQiZ+B723YruvG8fgdpfoIVQd03Qy2z266jOPOd+oLNVFtgoJyCTjxM3EcIVe0TWr1q6jhk74S\n1uL+fVoz7+/COM6jWmXJ87JUP76GwWH4m1h3pV/1iyBb2CCqjzdGNZQyHZtajp2scY9IidKfTRbZ\nvXWIPWxHKqLrRHFdLB7PIvp+d1/AeQx1Dah+g+3634Gk9OG1Xruv75J6jdcDxu03SDH0+A+f99rF\nj85X/V7/5qte++Ff/cJrj47qePry33/TayeWY8+Rtwl73tBQXQ9u7T+hfkzVnve8djTtQ0VEbv/Y\nP3jtvd/5ldeeer+uxVa3DXOz9jlYbt/0f7+o+vG9GiOrZtdW+qq1tAJExwnUi8i7VdeaOvgkaqiU\nraLXRvUzSf5qWFeHUV0+t4ZN0mzsc7nmVcJMvdbs+/4bXjs1H3UkOs7iWN16E1H07BJSxLUAdX0J\n3uc2vAababeeINeq4bFQ/Ybes017aC4+g+qCNW7VMTqlRJ9jIOFjz1hfpF+jWh7Z19P+OjhIrgbv\nZ+rfvqhea+/FdeFPKF6va9kde/24156xCq+d3YX4Pu8uPc994TiPB//fo1678tWDqh/HV65dyGup\niEgE7dcLH8A87b6iYz/XRuqjOmAzH9U1Zs7/DvM557E7JNCwdfdwpz4X/ndsIcY31yYTEQmLwjn3\n1GKtYUtrEZGoTMyXdppXw13683j9DKIxw5bjdeeceR6L9Wnfb1FXbNaNejMRHof1j63d+dhEdE2g\nWKr55FqdD7TR2KRjdWvMdFMtIlknf4ZlzhiGYRiGYRiGYRiGYUwi9uOMYRiGYRiGYRiGYRjGJHJN\nWVMEWYZeeLdCvZbWhJSmtGyk/LkpPnFsx012lW5ae2Q60qA4lTbCSXVOmYt0YU4P7joLS63ILG1Z\nVb0HEpqoCKQwpS7Uqccsx2CLrxEnxZOtQfm1qBydgpq+tsBr+ym10k37dS24A03/EI7x0ns6HXLD\nJ1Z77ep3ICOqbGlR/V74AGlhX7sDqXTxxfrYO0gysvc8vsuVmSQtRmq2/xBZjlP6WnKsvo/tdA3Z\nxpolVyKOTTfZTO9+913V75ENG7x2N9mjbzupLdZvjUE6eFIu0tky5ujx0+tYGQeSuGLMMZZEiIi0\n7q312iyt4jkhoi01Ky/imocE699ofTmYB4ndaM+7UadORyQjrbP9GORPsVNwjTLXaLtLnrOc8le/\n84rqN9iGtE5OcUxeoK85p+rXvHjOa6dfV6D6jZBMj+U6bB0toi38CmdLwKl5Fcfofjefc/MuyBMy\n12uZCVsT9pIt4JhjBRpCUriEUqSTdjgp6rH9iFstZJc+0oPr3lWtbdQb36/02kcuI3U6KUan69/9\n2Zu8ds9ljFs35hWTLTPbdo8MaelXbx2kOF3nML6zNmqrTbYsF+2w+xdTTTKd0b06bZyvbAylNw+0\narviCxVI815wOw5w2LE555RbTuENDtVzNp1kNAltmH/vboPEqdZJhQ+LI4toWo8HmrRMI2Mt5jDb\ns7NEWETEl4F7zzFp1JFEnzqKFPWy0gL0cyRiCeXayjLgUD58SKTeCmWRxWvLTszFcUdKUbAc/ZLI\nevPPUtsTsJfieRoRr62NO84gtTt7LQJQ/W5Y0+ZvXKLe0+vHWAqJwN4pyJEMsJyR5aUXf39U9eM9\nWxLZBrv2vWwN6kujvVOfvo8hoVr+G0iO/ScklWlLtQSeJWLXP7DKawcHa7kXx8nFX/+C19772A9V\nvzkrII1tb9/rtQe69Tq78OGlXruDpKXZsyDBGh7We4XLT0Ga3ViHPRRLw0VEWmheLf/nz3rt57/0\nmL+yN3MAACAASURBVOqXl4JYMfejiK1Ve7aqfpfewb7+QiPWcL5eIiIrV03AYkjk3Ylr27y7Wr3G\na0rvJcgPg8L1uEooh2SH5aCjzv6dP//UScTvoB2nVb/56yF/qNiDmDWzGFL+y1t1TJ2yDpKdvhqs\nXZEZel1kmdOMHOzZWmr13q6wEFLCo3+CnKVoboHqV7sFx5E/C/Pg8J4zqt/Ung8vyRAI4kjm4sq9\nOitx3xJITjs2pMd3Le0Dp38K4zZ+mpbx7vvlHq/d0onrvPunL6t+y0ogg3v8t6957Uc+h2cY3huJ\niOQuwjxtb0RsLLtXS4gGB7GH9vkgab1UsUX1y1kBWVLrBYwx3ruKiHTR/ihjOT6v/l0t6Sr7zEKZ\nSFjaz3sOEZFeWvODyJo8Zb6W2nZVYf/l4zIHPVquxBum6CzIiFLK81S31pOYs/ws2UjlMVq69W8K\nLx2AXHB2QYHXLnXkRUNUeiEkEmtBpE8/a/SNI1bGZmPMhIUlq34D7djjc1kH1x7c3XO4WOaMYRiG\nYRiGYRiGYRjGJGI/zhiGYRiGYRiGYRiGYUwi18yr6SGZRnKirlzM1aQZ171iiFL1x8eQw9TjuFfE\nTUNqUBBJH5LKdRpefyvex6lzaeTO4Tp3pBYiNYuruLMDgohIwxtIH8u7B+4kLB0Q0elIg61Inwxz\nKq3XvI5Uw6KPQhLiuqW0H6Uq0xOQsbb0VlQjd52nLr5x1mvHxyCdza3OX0CuR1FUfZzTR0VEegaQ\nzv2RB1GCeshxbGAJGbtzVZ/AvQsO0mnZ4eE4dpZq/ftLL6l+m6ogO8in9N7MRJ2W/bf/9V9e+wef\n+pTX3lehJXz33bveaz/xFNKoH7z/BtWvv06P6UDST2MmPFGnwhfcj/TbQZqXoz16LraRZCWBXGXO\nN+gq57ndmHOlt+Ozm7Zp6VE+zRGWJUYkIW28t0FLH8LIQePEdoy91DgnvlTjfeM0T0cHdRpsBDmV\nNPqROuur0GnEwZSumDwf6YpulXm3Snyg8WXiuKLztAySK8BzHB12ZAKJxUgh5fk37siaWJ5SdR7p\nza5MiuMyx7ZgmpeuLGf7frggvLkHKcZPfPcbql8NSSUjI3Dvg8Icp7NySGcaDiMtNCZPO8SklWPM\nxRcjTbTzYpvql+w44gWSpCRcl7B47XTDEiB20uJ4JyKSOAQJzJM/fsVrL3Kc4qJJhpu5BKm+IW5K\nP7mAnSeJxJ2fg6zsypaz6j2JeUhDbyM5Te5GfQwsrap8D2tkYoqes0MduB9xM5D2O3hIywo49lRe\nRmr4ipvXqH7HfgOXlpLVEnCU7NMxo+nsxvVIW4O9Bc8VES3haSZHktwbylS/vmak3rOskt1YRERi\np2If1LAXKfCJJJka6G1U7+mjz+O08RHHKS+e0vcbtyOW592mHU74nNhhoueK3ge17Mb5hiVgjCQv\n1CnuI8N6jxBIkudgrfrjL19Xr33xt3/ntYf7sZ7U79KyZd6b1J17y2vP+uKtqt+pH0EW0U+ucaFR\net/XehDSo4KNK7z281/6jtfOSNBxrc4PScNRkon+4xOfV/1+84UnvXbOqfe9dulsLR+uq8CavnDm\nSq+957Ffqn5r/+UzXjvqu4977awlWsb0wfubZSKpfB5jPTRMP5a0kVxhiNznsmfrcfbmE9u99qZH\nsWcLjdMx+vLhSq99ohLt5WV6zoZQiYZpyyCb9R9AzGIZk4iWC7YfwTyNcly32i5jvSq+C3usZ//t\nFdUvNQt7gsIZkD+5ktIg3isnIEYtu1U7EUU762kg6alBfBho0fuFGZ+FFPPczyE3KfqYHmeFmxCL\n+ik2nn3xhOp3ugaxZw5JVgaG9V7pUhPWpE9/8S6v3XkG8zdvtXYxrDu6w2snluCaV+7UksAkkt32\n0dqXv3qt6tdej2M/+MQ+rx0eqsc5lxcoWo3x5rr7nvwZPiPzux+RQNN+GufiyqxTSb7ELqqJRQWq\nX2geuScPYU0KdaQ8IWH0zDmGtaZpv3bUY4luGu2DeL/e6jy37aBSHFdIsrnx3hWq3+gAxkxiAa77\n0FCz6sd7hN4mxOu+hsqrHitLhN1nb5bofxiWOWMYhmEYhmEYhmEYhjGJ2I8zhmEYhmEYhmEYhmEY\nk4j9OGMYhmEYhmEYhmEYhjGJXLPmTMIM6NjbyO5YRGSsD1qv+GzoKdmOWUQkdQZ0eSO90Ha5NQyi\nC6CFHCQ95Qd/OqD6Lb0DRVn6SLOVsgjaQNdCMiIFNTBYT31pj9a1pZB1c28dNOKuzryVbIO5DkqI\nYyPOtVlqXtR6fya2NPmqrwWCcLLxHHJsxEJJ53j8MnToS9ZoLegwaX0jqL6Ia4XHFtyJB9Eva5PW\n5tZtwTjJvKHIa5fm4B4M+fWx1hyEnVpeNsbV331E6y5LZqBGwOY3d3ntu27WhQtYp/vCPug4/+6W\nW1S/igMYJ7cvhi2eW2MooVxb8gUS/0HMv4g0bQUalY17wDUMQqL09I5IRn2Wd9/Gddk4W99rnptd\n53A/M68vUv3q30L9iah8xADWUjplg+TY45jPM5ZgTOx6V9u5jtVhzs3MhTXkSJ/WwHachS70ZDXG\nR+l1uo5C12mcRwzFmqat2grZl6+14YHGnS9MTy3ZRlP5mOEuXa+JLWzr39PHzySWYTymr8SccGtt\ncd2dyDTM2RayHH327Z3qPS+/847X/vTdd+M9Vbr2i6r3RbbBUVmxqp//HOpERWejlklPta5zERaL\neg583L3V2nLbR7E30IxRnZ+EFdq+t+sSzr9ud6XXzpin6yOc3YV6ZBlUCystWdcE4NpfY4P4Xp9j\nzdp9BfWW4mg9/uApWP6WFOljrTiF45t7E2qipc6apvrteAz1JuJ8iCH9nTo+c72xN3cdxHE79cvm\nFaI+RjrV3mjaWan6FSzXdTQCTcY61F6qeUFbzuaStS/vJ1r216p++bfguvW14B407df1uUZIu8+1\noYadujBsr8q1uziO9rfo2mbh8R++vrMlvYhID9XOi6Y4d2mzthCe9lGsB31ksR5bpGu28frMVsE1\nr5xT/ZIXaEvSQMKx/J4H1qvXDvwA9WOiwrFWu/bUaXNxfHHZmCMDvXrPm/0R2PL+6st/8NqFVI9P\nRKRkGmoiNBw67LVnLsf7czZOV+9JfBV1KZbcjT1uT52Oa8vJGjipCOvxrt/sUv02fg318JoqUBNs\n0VfvVv2az6OuE8ea576sa9OUZuv4FWhii1CbIThM/804j/6dOBc1hl5/8n3Vb2oGXtv9FOpNzF0z\nU/VLj8fYT6U2jxERkXPvYRzzteG6N9Htek6UTEWNr7BP4PMuPq73N0evID6kHMc6PX+KrgcXReN7\n96uIqbOcGh+D/YgjiZm4DiffPKX6TVtMe7i5ElA4dvkP6TqGbTGYS7FTcM143RIRqXgHz0lcm6xo\nrX5+4HqUrxzEdfmrm3QMGB/Ffbu0Dc8cJbegdt3AgI7p/Bx3+blD+E6nzlvqfMSKqFjMj/7+KtUv\nOBTvU/XWmnVNk/WPolYNP9v2N+l4nzpr4uzQRfTzcphTr6njPPbRY0NYx0JL9L5leBhxq5vWnbQZ\n5apfZz2eIdIKURsrKlWvScHBOI7uetTOHBtALI8I08/f996EuThANUrdOm8ZS1FnprMO8zIqTT8L\n+FKxxnF9pTiqMyUiMky/c4RE4N6HRurjGxt1Ct05WOaMYRiGYRiGYRiGYRjGJGI/zhiGYRiGYRiG\nYRiGYUwi15Q1Vb+F1Ouc67SkISkU9l6c9uta3aavLPDaVZuROuza5V3cgZSzadchdXP24hLVj39O\niqe0/Sayhkyar9Nor2aPW7xGp8oNdVKaPNmIu3IlTt8uvxvpcUHB+rculp+kLEMKnGvN3V/fLRMJ\np04HO1ZmWWRL1vwOyVGcn+2WbUAOJKdqiZOyvmAGrilbZPc46YvBNGZ8KUj1a74Ii7KIJJ96z9k6\npLPdtAapaAOXq1W/qvNIoSyiVNefPPWy6neJLKSbqd3Tr9P1N5Dsh8ccy9tEROLyJ86mMGUpZHvu\ntWx8F2M/51ZIElqO6LTsqFzcj7gojM289VNVv2CyOY4vwflWPqctSDvqMY5jp0Gax9Z0o/3aRjUt\nDSmtQ224zs2dOn27gu51JkkfTv1By2t8lMoYFoLjPvDaEf29lL4cUQEL3egifc9cy+NAM+RH7Oit\n0VZ6/SQh4HvFKd8iIm1HcV9TybbWlQEOd+C7mj+A9WR0nrZAzlyL2M4ysUiSHuWnasne5t/9h9dm\neR/HTRGRcJrDbCU47sQNlo72kqy1ca+e290VkA2lrkDsYsmPiMj4qJZuBZJQsoM/+7KeEykpGE/F\ndyOF9/CTWp5btgrrGhu4ujEvLBbpvCxTGenVcph2SiOvJ0v5BJrnri2mklmsgJSiZvt+1Y/nFdPS\npcdvZx/kkCwdmFOsU/WFYn9ECs43dVme6lb7Msljbv/QQ/iL6L6MtSYyR8vsmj/AuOP1351jl/6I\ntPesGxBHg0P0Ahocin8PUAxwJRwDbbiGLGXqPI156a7hLaexDqXOwHoX7ti8h0bjPFhmlTZHW7WO\nkewqtgDxutGRncWXQbIYRVLEPkdiOOKMu0DCsqvCG7Rs+eknvu61/3Xzr7z2v33sC6rfo59d6rUr\nfg8b3ZJP6M+LLcZMveM+rCHJ87XkZ0UxLHsPNb/ntS8cg9Rmyz+9oN5TWgLZactOjL2MG/S+++1j\nx7z2Tze86bW//4svqn69DZibf/i3l7w2r4MiIjNIMpw6D/vm2Y4dsM9XIBNJOFmxu+udLxNr8ijJ\nGGbl6XgRl4w53FKB8x91YuXIGMb3HZ/a6LXdffnBfXheWbCALJ6bIIvIXK2ll9UnYYUdSfvapPl6\njm3Mwjm1XcBYik/VcejcdtgD857tg9NaOrhmxRyvve05jLO1dy9V/bppfx1ozj573GtPuV5LYxNK\nIP27+BtI/VjiKSIyZQmu5xDtX159cpvqx1LC6TSGMzfq+bLn17u99pKPw877vV9v99oLVsyQq9Fe\ng7V0+icXqNd6GxHnak/iWTl9uR6XQSEI5FxGIsan1/reGnxedB6VCXDiadtJWF3L/Vc99P81/H0R\nybqEwiDt2fkYq3fuVv3ii7E2CK9jJGMSEYlKJev5Fuw7up25GE170dAo7L94Dziy97h6D8vF7/pn\nlL6ITtGysKAgrIuRKfgNIDhYn/veH8JKfeb9eB7uPK+l/PxM3N8ISVruzbrUQmSS/nwXy5wxDMMw\nDMMwDMMwDMOYROzHGcMwDMMwDMMwDMMwjEnkmrKm6ESk5bUd0BKJ2GlIR+J09dRl2hGiZT/S6SPJ\n5Sd6kZYT9L+B9D1OZ/szByRyKuEU4MzrkDo96rgUDPd8uKyJ5RsiIs2UHpyQiZStzkotI8mcBqeg\nQUpzPvOqTnHPLUOa6Ik/IpWveJ1O+QtPvnZ601/K9j8hzXH1XUvUa93nkeaYQfIRvqciIu+/irR8\nTlkvmKolZOHkCDRG8pbeWl1xPMRxOvofuCI6O8eIiPzyxRe9Nlfmnlek0+YbKa2fXabuW7FC9UtI\nxFhqJqcNx2BIpixHquQApamdrdVV3uP8uJYLZeKIytWpyVxdvZkcdvw9+poPHsRc3LAYaXmxTrXx\nmCSklvqvoHp+4X2zVL/Oi0jHPfsi3Ca4sn7bQR03mN52HN/Tr72mXnvottu8NrtrsNOLiEhCOdJb\nu8/geGIcB7SOU5AF9FYibTNttU5B9aXrtOJAE0LSgtH+YfUaOzm58iCGpS8cw1xHvfTVSJUPi0Ha\neHyRlij11GLcDpLby7H3UTF/b0WFes/ickhiIpLgFhNb7Kak43rGFeB7698/r/qF0vHFFiIdtfOE\ndjQ4chLy19UluMfhjhyog6Rr+VfPWv5fERqH2JXcryViWTdC2tJ2GPejbH2Z6qdkXJcp9jhOgyEU\nh1l26zrFna39cBngnnNIf//M9z6u3hOdjvtx5XWkJSfP0zE9n9oH34CsYutxnUZ847x5Xnt6LmSY\nfL1ERBLnIsW/itZ9N665ksNA03Ec6eE5t2r5tJIX0T2JnarHd9VruL7nn4AjS//Q1aU8ZXdDJuvu\nTViCfOY9xN7crKs7Ab5xBBLOh6bf6LU7T7eqfkUPQfrQuKvSa/scKWclyc9LHp7vtdkRU0Tk0rOI\n+dnkfJWxTsfozrMtMlG88yzG7UpHHh5CEoKffPIrXntBkZY+DJEbHsuHQ0P1WlB/DK5HAyRtcR0E\n33r31147PBzp/ZyCP/XBReo9Ph9ee+kffuS104f1tfzKE1/z2j1NJG8tWKz6nfzdM17775/4tteu\n3LpD9fvdr7Huzmkp8NoZK/X37v72b7z2Dd//vgQadvLrOKPHy7ndWCtmbkQwr27TcoIskiuxFLO/\nVo+LwWGsu+xG8/52LYWeS3uNLnLNaqN9Vdgfjqn3hFJcvnwO+8PS5bqEwiuvYdyWkRPWZnINFRH5\nzCPQcw5RTKr/QMuT3tkOeSXvjXurtCQmfVW+TBRKspOvXazazyDWpm9ArDj/snaT4j0rOxvNdCRs\nhasxh3OO4LMHHTfauTcj1vJzZVIMYh6XKhAR6TqPuHmpCZ997rFXVb8NH4O7UPk9n8A5+LVzWkwM\n3MJGx3B/lzyon8Xa9mMNP0dujjnpKaqf6zYXaNj9L8ZZkxOnYW8wMojxGOpIbYc6ca37yXmq05nb\naUuxD+I9m+tqypL/MJKVh5LsO9SRXy+ZBRlRVDLucVSULuMQRDU8uF3x5HuqX/EN+LwrL2KNjE7T\n62fiHMimeP/WXa1/R4jNu/b+xjJnDMMwDMMwDMMwDMMwJhH7ccYwDMMwDMMwDMMwDGMSsR9nDMMw\nDMMwDMMwDMMwJpFr1pzp9kP/F5+ltWcdVAsgnGoOjDnWuT6yhL1w4LLXLujQuvbpj6BKB9txD3Vq\nDeHoAD4/KpOsgTOgpYyO1pqyqoEtOD767M5TWv+WSzpbthNLczT4rDdu3YM6HlOW6NonQ63Q5C34\nzDJ8b4XWgvc5utBAs/HRdV7brXPBVqZNjdCxRl/WNS9ufASfcXELtPAhPj2EMtfiGtS8gn5x5VrX\nWUEWgbu+iVo9BWSRl3BM1+L57qc/7bW/8pOfeO1vPfKI6jd3HTSejW+i1k/GdG1nuPUtWLex5Wxk\nuFMPh6zR2B48pULXm+gb/PDaRoGg5lVcryn3l+vXtlV6bdZqZiZp3W9PP3Sg4cmYs/7jDarfcBHO\nI5RqPkVG6npS7UPQ45Y/gHoTcXno59az4ZpC9e/AVu83X/ua6hdPmmXWbfoytL6T9bFsSc+2sSIi\nhffhmvXVQwPrarLbj+GcCmZKwMlaD620/6S2YudjZg0+2ymLaItsttUtuEcXV2GbWSYsTN+TsDjE\nqfx1sN58+WnYV375Y3eo93BtmexlqJ/QXq0tPrvIurO/CetJkFPvi2tcXXwGtSwifHouLl0HDXkr\nabQz1hSofkGhE/d3h4RZqDnG64mISH8zzpHt0F24jkkE1dYKjdbny+sdW72OdOs6F9tO4Jqtn41r\n9DrVMLj+2TnqPYu+/imvXXoHaiJ88NjPVb+qFqyT7b1Y+z6+Zo3qN0B1VvzduA6Fs9NUP7YWTZmB\naxmdo69XA9VFmQjL0LgZWJO4xoxLBFle9lbrdTFrDfYMncexJ4qL03pytoe/8jL06glFujbWANXH\nmDITcfT5V7Z77U0LtKXrfdfD8tl/Dvcqda7et/TQsbO99Uis3hPEFuDYD/xop9ee+0ld1yRrLc59\nhPYV9W9qu9SM63T9kkBy+1du9tr+I3odu+OWVV47dSlqVrh7oLYjqN2SQdbIrRd1PYz0ctRpe+mn\nb3ntj9+m60nVv466WH2173rtKbfieP75br3erZ2JxSY1DvPg2R9vUf0+81+f9Nrtp7BW/fJrn1P9\nuF7KXB/q6Lj1pGIisc5c/w3UK4qLm636Tb1j4iyYRURCaF8Q5BT9K1uJGo2DtKdu7tRr9xjVnCnO\nxF6vzq+PvXgers3vvvu8194wW59zNNViaqtFvYjLVIck2DnYS7R/mJqB2hMDDbr+X0M7Pm9WPp5d\nPrZqleoXHIZ1LJRqbSTH6npIvbT3XLocY2mwWce1OhqbU+ZJQCm6HfuP4W69Fw5PxHNG49uXvDbX\nqRERmbkctb+iqd7JK794R/U7/RSeu9Yux7rWdU4/W0VQDUzaxsuRy3gWvfIjXdcujiyu6+k+3bxc\nV5JMnI61KywMxxofr+Oznyyis5cXeO0ep65gQyWOg2t5unuZkk26flGg4T26u4cc7MAxBofguNLm\napvoxv2oVxidj/Ukelx1k7FR/Ef+OtTgaa++oPoF054hPB735zLVfFo2f7p6TzzVo2y/gFqc0XP0\n9Wu6jBpBXH8sbaWuc+Q/hv16Nu3j3bo8XAeyi571B/16LvJ+Lv0u+TMsc8YwDMMwDMMwDMMwDGMS\nsR9nDMMwDMMwDMMwDMMwJpFryprCQ/Fyf3Ovei2S7Hs5RTthXobq59+HlNGZNyDtLaFMpzof/hls\nClNzkDIfU6jTg/PWwA55ZASpwkFBONa6czoFLpYkEj6yveKUcRGRATrHipOVXruoQKeCJi+G9d3z\nP33Da2+In6/6pVOqfW8NUjBdu9TkRfrzA82238I+sbxEpxiz9V90BOQTMVP0dR8gSUIIpXK+/762\nHyy7gLS31Cxc996L2kasoQMpXZzGy6mqaXE6zX3nGaSD338z0plLp+n0s1GS1i1ZCTnLiJNquWoe\n0j/jZ2I8Nu6pUv12bYFN4bKNyAWd4djjdhxtkokil6xeOe1QRGRkEOeb+xH0O/XMUdUvNR33IyIV\nUooEx0qQU/yjMzAOupq0/TGnh/f1oR0Uijkf6VgcD1M6fXgiUqqje7RtenQeUgVjKC0y2JHDNO9D\nemvMlMQPfY+IlpsM0vkNtuhUw5xbtKVuoKndAnmaG3/CkxFT2S6wr0anb3OaaBDNxdBILeWKK0Qc\nTcjEWA8OjlT94ikmDg1BFlGQSrKPVn2dWNbU34N7EB6nPzuOrId9qfiehh1XVL9xyjnOvRFp7H21\n+txDSGaX+xGk0g5TOqqIyKBfy2EDCdsnx+U6cbIRa0j62gKv7aYmd55GnDx3HNeC11wXTs/n6yUi\nsrAYqbq1ZDH7g09BupTrjO2eHsTToCDMq5wNWhacVIfYuPNtyEQjw5zxFoW5nrISkpzBNn0v2g5A\njsaW4ENOfI5K1jEh0PA6zOubiEjiTKSs+48jnXnQ3QdlQV4Qnor5O+xYuh65gnu8qBT3qq+6S/UL\nJZkwS5niSHb7xPbtwrC0Yv4UyIpj6rX0oYtk3JFZmIuuVJSvSzpJKNuOatlQBMV2XpOiC3Sat7LS\n1hn/fzHJhVjfQ8L13Nn6w61eezal4L/06k7Vj62Hw179wGt/9Jt3qn6XXoXMc9FUzJHql8+qfrGl\nkKo1H8RYf/Effum171m2TL1n9peR137w+8967Qe/dbfq972HIOfu7scY+8Lf36f6RWXi3g8NIbU+\nOVNL0z7/K9r/RSOejo7qeBoSec1Hhb+Y05uPe+3cWVo+zdJ5bt/zhZtVP5a5CsklmqqrVb+5hdgn\nrJwOKcS/v/KK6vedrz3stWuOQWbR0oU5yzbYIiJ1FHvZsjszVUuJv/RPH/Par/0Wlr2tXToeXHc9\n5BNjw5DQLnRkZy88BfncxRPYv+Zm6L1dVL6em4GkZS/2Aa7sdupfQRKYeSPmzsXnT6p+vLc58hz2\n3fmp+jz+P/beMzyu6zzXXqhT0HvvlSQAgr0XUWIRRfWuOLJsWbaPE9tJ7MT5nORciZM4ybFz4pa4\nxrFsy7JkdYrqokRKIiX2DpIg0XsdDIABZtDOj3zez/MuS/yu6/Pg4M97/1rkrD3Ye6+697zP+5yj\nNvV14lmCpVXGSOvmOJJrFqTDnnrPX+wWxzT+ElIZTnFQ89nbRL2u40ecsice0qW2N4+KeryXZRn+\n7PSsqDfLazo9Is5Z9Qbeh0V7qVQqhwXel06NyTU5kdIU8How2CClrGJ7QuW5WblvmQ3hbwVGcV0T\nvVJOlVCMMTtJ8qDM64qd8sH/lBbmq2mP6snCfBgMynQCcZRKw5uB8/Fd7RL1JruwR+DrGD4pvy9p\nMfpq+hpISn3npHwuheTxH4ZGziiKoiiKoiiKoiiKoiwg+nJGURRFURRFURRFURRlAblmrKIrGSFY\nmZuLxGeNTyOTff7GYqd89XUpfcglh5yr+xEaGHugSdSbIKcHDpGdttyfgkGEGvW+j1DhrLWQ62SV\nrxPHeL04966255xy+gopJzpG0qr1n0DYaf+7MiySMzBv3wwpE7vKGGNMlAu3d5RcS9i5wRhj4gvn\nL9TQGGM234f7MXp5UHx27iTC0VgiMXRAhnk/fwQhfBsXQc6zdfMyUS/Uj1Dblw4ivG/PDWtFPX8A\noWmxUWjvlDiEsrtSpCSmoR1hkw9ed51TTlslQ0s5M/zAEYTKsWzEGOl6w6HcGZajQeZqhKadfg39\nfvX9q0W9zsH5czToewd9MGd7mfgsdQW5UFEblm2rFPViEiFbC3SiD05YIf3pixF2n5iI9h2JkhI2\nVzJkZxEReM8bGkNIYoxbStO8CQj5TspBGPXooMzOHhOHc+07gmu3Qzw9OQjJz6gnt7UembXfS84L\nIZI1Fdwms8wHh+dPDmOMEe3zO45CFAs6O4PrTKxKF9W8mQjRDFD4pytZykDYlSkmBmGhwaAMr2Qp\n0+D5Fqe8/iHMgQFrzmI3qbhESClmZqTsI56ka+x+klon5a+edIQcs/NBRK1cohqfesspp9Wj39sS\nMU+2nIvDyegk5g1Xz/hH1vNQn2t49Lj4rHgXJEZLSSIctFyD3tyP4zhMflW5lB6xUwk7TKSWYLzZ\n/c13Ge2eRK5BQ0dlOC/LjW7+4k6nbN/zwWM4bpycKOx5N28X5peWXyGsveeilIUWbpg/lx9jLIms\nsAAAIABJREFU5PrirpJh81cfg8zCnfjRoehjF7GevnIS4fBLi+R+KSsJfbq5C9eZ4JYywJ523Le1\nlZi/k0jWVF9cLI5pITet+lr0i0irvaMTEaLP8pCrT0lXogwam7xmXD5yVdQryEU4eNoarJm2VHTK\nLyUO4eTQ13/plNf9P/eKz+7+JvYpv/nyd5zyZ/75Y6JebsUup9zXCYlJcoaUjgx88IxT7iCJ4eIK\nKVn5wfdQ7yvfhcNkViPWpMd+/JI4pvOv8H1Lb8XfzSqX8qfSrJed8sZdkFi/+8wRUY/7QVo5pDvv\n/v1PRL2pGUhlKvZgXchfuUnUEw6j8raEhVRyHxq5Iveo7nj0wc5unEd9gbQbSiZ3llh6dlkRlPMU\nO66xPJRlTMYY87NH9znl29dADjZDc+3JlhZxTAzJUr2UJuDYJSn7WEn7zW03QOs30iT3kLwvZSlF\nfIl04syk+WXJdej3HUfks0uMTzo/hhOWr7Is2xhjpkn23vMa5pFZS57bR86j3DcrK+Qef9VDaI8I\nkizac56XHADZ3XfTrXBemp2Wjoup5CBYTg5e4375zBqXx/tf7DcCbVKKze7D7MxbfK+UYA0cx/pZ\nSA5wV34i992x6fK5KNyw1NhODzB0BhIedubtYWdFY0w8SchYGsXOh8bIPcRYK/YtthTaTWkYeEyM\nXsUxJVlSJjQ9jj6XkIv1KTpayn1dLqx3PY2QvLIrlDHGJNVhfmGZZ8oS+Xe730I/4f0cOwEaY8zM\npHQNtNHIGUVRFEVRFEVRFEVRlAVEX84oiqIoiqIoiqIoiqIsINeUNY0NImQ71so0XLwTIbeNLyFb\nfUqCzPz/1DMIQ48i+UpOsgyXWr4Eoc5NFyBfWbxFOkz0fiBdPpzzi0XIkd8vM4CPjiJsl8OSO16U\nEiyW9bBsq/QmKX0YovDt0X5IQhJzpISjYy+cWTgMKnODdBfqfU+GHoab8/twLdkp8r6vvgWhoQef\nRsbxgrQ0Ue/TO3Y45az1yKb/1H9KZ6wSynxdRaFkE70y/J/lSyy7muiETCMyRr47/JevfNopc1h2\n39vSXWliEmF0oWmEzQ2Py3NYvAahv/2H0OfY/cIYY4bG0MaVSxCublUzeZnynoUTDtmdm5Wh9XEU\nuhmkTObd77aIehyOe6kbmdavv3eDqDc+hNDFVApDDE3IcOOed3HfOfxxjiQ5UWVyipmaRPu2PQe3\nGHbLMsaYKX/wQ8vjzT5RL+t6hApe/RVkdElLpExhmpylhFRSRtWKvzUfuLPQ721pj+8S5AnRXhkW\nzEyN4xw5jDchQabuH+iATNM3gVDLiEg5rtzUxpyNv+mXZ5xy0hIprSpcAXlL53lIAYrr7xD1WEKV\nUYHzi4uTspzm4086ZW82+rD/qgzzTiMpahS5U41Z4eBC/iaVAb83i25COLL/opTPhQYheep+A+Hb\nrQNWvX0IdS7eiPBgf6vs31d7MBYfuQeuEieOXRT1KmmuXbUVzlw8SbmtkOJpN+QmfUcw/zU0yvn0\n+i/e4JS7XoL8kGUyxhgzQY5euTuxnscmyHqXfwSpVsZGrCWJPukQMzclw83DzUQP5qJAt3SHSKrE\nXD58EeMyf4fst9PkPlc3hBDr063yHsbQ3mdjNfYTEdYicqxJhs7/lpxcjL83Dp4Rnz2+D/KLn371\nq075rOVSs+0OSItHTmNcFu2We6yIKJxT+z7skZZcL90J+2kfxJIB32kpT4tyS4e9cNJDro/fe+Sf\nxGfsfLZxGcbsWLscYxGVHy6L+OUX/lHUW7sL89dt//JFp/yNB/9S1Nu9HHuqw9+Hg0jFSqxVy8hV\nyxhjPOQK87NvQXpf84yUNOz5M0iw/I1Yjx/41p+Jevu++gOnnNOONpyxZCQ3/P2X8NkM9jl7//Lb\noh47WtXfY8JOXBH6T+8l+ayRXY89V9paSMztDdhoI9aAiR5cS9oqKVPnNT4pjhwSE6XkZ0c92ptd\nJ+tcxU750Tfe4kOE3DSK1tn6dfIZovUM5tvqesgiXOnWHE37Ft8ZjCtb3r28GlJ3vr68Ffminp16\nIZxEUTqKvJukpJ5dNVNIhh88KOfJAR9kPzXr8R1dZ6TUNr4Lsq6mtyEZq31Q2sEF6HkisQx7m7hC\n7Fc5/YQxxmStx/PZNMlufmffnQ6pVedhOEtdaGgR9cZOoT3S4vF8nHJJymGKbkEfGTgO57EZ6+9m\nbpTPj+GGHVVDI9aaTNK69hexB8m9QaZaSM6qc8qt72GMJBXKc+9+//yHnkPIkjUlF2IOaN8PF9po\nL9ouy3quDg7geW/CR06F2XI+8HjQjvmL9jhlfm9gjDGBTvRNfp63Ha2i4zDGWMY1QjJyY6Q7dEGF\n+R00ckZRFEVRFEVRFEVRFGUB0ZcziqIoiqIoiqIoiqIoC4i+nFEURVEURVEURVEURVlArplzJn8b\ndLHNr0ur2ySyEM0qRX6Hviapq2Lb5dfPQCt9olnmjgmRbVrnILS0aQnS9oq12yLXBllsu91SU3bp\nl8iL4s6G5s+268rMgyax4SK0kLkD0hoyuQ5aQf8b0DSeOyv14jW1uH/xpHe0c8zEF8hcNeGm9nbY\nwXG+HGOM8V9ALoTNt8Ma+vSrUm9XvQpaWpYt77l1o6jXcgL3jS0+m/ukjvimW5HnhPPMpJMttq13\nHG2Cpr/vNHKmvHFGavB3kla4dAd0q0GrHYfP4/xmqP8NWblp6m6BfjJEeRGGz0htvZmxEpiEEdYR\njzUPi8+yNlIeHLIVTC6TOXBazkL3u+1Oyj9g5ZOKTYL2ut087ZRnp6T2NbEC38/694IbcL/m5qRd\n3Mwc7h/nDbJ1v4MN0NyODaM9WJtvjMz54cnDXGHnOOo/i/6SmI3xNtEv6813zhn+/lkrp0ZsMnTt\nnPvAky4tsofOot+l1mIuGup5X9Rzc16vZHzf8OV2Uc93Ae2fQPNUfBkdHyn1/dHRuIeppchZERUl\n7QdnZtDeoRD6yGCLHLPuNFxjQgq01y1HnxL1Uil/AGvcM9YWiHqjLXKMhJNI6qszAWnTmlhLuY4o\n99KG0lWi3oXXkG/pwLPI9VWUIXMlffr+m5xyfxPN1XevFfWyVqMN5ubwd/tOQI8fYbXhDFnMhobR\nTpX50rb00PdhLzkSwBy65QGZzCfYi8+6Xkaei3jLarj8E8vwfWQv7MmRa31s4vzZvhoj+3rXy9Lq\nNkQ2lynVaBN7fpgNUe6gSvRNzqlmjDHeOFj7XmztcMr162Uel/vXI69QlAv9m7X+1w3ViGM4xwnn\nrBkclXl0eI4tvBffMXJRzv8Hn4Mt86o1sGEOtPtFvYLdWFuF7t7qZ+lrZN6LcLL6jhVOOW+NzDfh\ncmFu/MlnkYtnuZV3pWHy5065chcSqqzcIvdz0WTpfOZ7TzjlGzfJv/vae8gTs+s6jPtAM3IW2Hnt\nvv/KK075n/4GufWGzsq2GTyGdTGW8qA88xffE/XqNmAOPfMo8mHkVMs8Z+PjyIs4NYnz2/m1PxD1\nYmJkrsJwc/U09sSrH14nPmt7Gjkt829Bn+t5Uz5DxJchD0kkjZ2kKpkvjfdwnLfGtg1elIt9M+8n\nhk9gL/HZj98ijjl9GHk4FlVgX2bniIl3Yz6YoHxX1ffeKupNTaFNggOHnbIrVa6zMQnom8Onkaes\n9YjM6TI+iWuvvdmEFU8unq3s/GZsaT3Rheu184QUkAX6qz9ALrvaoiJRr+MdtH3RGnzmyZDzbuFN\nmL96D2M8Z6zGfqHxh8fEMdHJuJfTvuCH/r8xxmSsx3VwG9p7VP53zXbkvuI+aowxTZSD0ZuA9i24\nReYEa3wSOVVLpZt8WEiuRv7HvsOy/3iy0MacE9Teb8UmoH24b06OfnTeFXcm2i5xkRyzzXuxR+J8\nNJlbip1yzxtyvq56eBPO20N9xCP3isEg9iBTU7iOyVH5fJdUhX1A69PIlePJkXl2OW8U27QnV8m8\nmp2t8p2KjUbOKIqiKIqiKIqiKIqiLCD6ckZRFEVRFEVRFEVRFGUBuaasabIPYcqFm0rEZxzi2n0F\n4T+Rlk1rWkaSU85IJLu8YRkGNUehpk9RiGe3Vc/rQogU24feTfbOs2kd4hgOSexuQpjoa6dPi3rX\n19Y65c4h2PLlfiBlSB46Bw5PXbKoWNajcKfTL+JvVa6QNopDjdJmNdxcfhHhcpUU5meMMRdeQIgc\n2zU3dHaKeus/BRnS+V/ByiwtJ0XUmybbNw7drLMs1NJXI9R5huzqWJYTXyjDTIfJopP/zrIS2TfZ\nem68FWGh+9+Q4Ytsw9lGEizb5rLoAqz//N3o9xzib4wxVVulfWA4SV6CEO2pUSn3Gu/EOQWHEPI3\n0SbD0Fc8tMYpn38Modd59TLsvPMVhPinUJ/w5Er5XfOLCDdOKYREICYG5chIGeJ58dm9TtmVQTbd\nw1JieLUF8rusJMwhA1aofg1ZSEbGIEz09GOyrQfJDn3LTQj59p2VoYspS2XYd7hJXY6+NNYxIj7j\n8E+WiXkyZahucBD9ju23kypkKChLjDrfwfyTt2mZqDdTiflx6CLmTlca2id7hbTp7u99A+ftwjjt\nantO1Gvfi7D5nOsxrmIT3aJetAf2g60HD+Dv7pBjcWoUNo+tTyC0NGGRlPBFx3+0FfnvC1sNp6zM\nEZ8Nn0RIub8P4y9vQ7GoV3cH7ueJ38BaumCFDLl98WlY8e7YBolE4abNot5IH8biyGWWCmEN4r5i\njDGDhzHH7z+DdWD7ehkrffQwLMGjaX0//g+/FPU+//m7nfIMWcDOTkrpV+8hrKezJK3KphBlY4w5\n+r13nXLJv91vwg2rW/L2yLmbxxivOyxNMcayne7B/e3zy7l3842Q36xfjX2L27LO5f492Yc5y38R\n80FCugyjDgzhXFlOdc6y0u58p8UpD7+CsZOXLeeNDJpvvSQVDY1ISdfoFZxT4W7snQYOy/3X0HGS\nUkvFyu/NyedPOeXxFmmR3Xwe5/HpH33TKf/gkS+JeneRxKvnCqQUk91jot4kya+XffEhnMO3fybq\nra2AL+rVBkhIb/7nP8Yx33hcHPM3D95H14E+JsVPxmSsR3g+W7vWrpZerPlkZX/qHez/lm2WcsjI\nSKw5TY9BapqxQc5D4x3oz8vuk1K8cLBkB/alkwNSapy+DvsTXiNHh2T75JMVsSctiT6R8mHeb9bd\n+ymn7PdLqe30NO7vGPWt2BSsXYcPyGM23IB5fcqPsWxLwstuh7yF5aVth98W9TxZGH8sI0m0JOve\nZEhRJ3pxX+osqV/v2y1mvpjowt8dbZPPbSGaT9mGOHmRlPF2vYa95/I6zMmD3fL7lj6CvWx6AdIx\nDPdJ6/mRVqyF+ZtxL3pOYr2LSrCk8j3o6ynF2MuW3S1lvC37jjrlOx/+slN+/F/+XtRj6ev0KObQ\n2GS5Byq/B3PoMO1L21+4JOpV3Fdn5pPut7Dez0zKscNyME6vkLWmWNSbGMTY4fEW8stnF36+4DQR\n/GxgfwfLF2Non1fxCSkdH+vGXmzSi7XKZEtZq6+P3gPQhDtwQqYA8ZLsejaI++LNk89FXnpOGjiK\nNWjUNSTq8d7hw9DIGUVRFEVRFEVRFEVRlAVEX84oiqIoiqIoiqIoiqIsINeUNcUXI1zdf0lKb1jK\nFEcyn5ho+ZUzEwhH2r4Fob2LrkhHiJR4hOr+0X0I8XTFxIh65ylU9yJJb6Ji8Xcbvn9EHNM3ghCr\nKXLlWVspQ5lZhpNOLlG5a6Ukh0OsONt7tFeeK4fWL7sdUoLRqzK8KWe9/P5wk1WC0MGjv5Fyj+V7\nkJE+hsLsdi2TMoaIaEhGcmsRln1ov5SGFaQh3LI6D2186JIMzev/DkIH15Jkih1FPAnSdStzI6Qv\noxTSW7ZY3j8Olec22LhUSrqiqL1mAgjD7+uTIZRFdyAE9eIP0Leqt8ks6n1HSAp2uwkrLY8jDFO4\n6BhjpijcPDiAe5R7Y7moN0RhesWbIQe6+rbMGs5jruWDFqc8OSWdlyZCCNstvB5/q+so7hGHdBpj\nTNpKtOmFxxGSnl2dJerVbMC95RBHvj5jjOk/gGzyLFMorJFSrfHjCNXsfR1Z3b0l8l66rFDTcDN6\nBWM/ebHM3h5J7kMx5AwyabmMDZzH3JtImeu9uUmiXsuv33LKKcsh15oY6RH1YkgKkVKFepGRuO8B\nn3R4Gid5X9EKjN/+kQOiXuYmjM3xLhzDEjRjjBklKQ6HgHe92yLPldz6cneiz7ktR6vOfTTfhNmV\n4txv0G9r75ESsSDJ81j+2vu+vH8RtG6ULcE9steQG3dDB8Lz8/S0lM3kl93hlJOz4JQ03I2w+0BI\nHnOoAc4iW5dgjvvjf/13Ue9PboWDyLErCDv/3KduE/VYCjRL4dCDnXI+LdwIGWoquXVc+slxUa/q\nRjlfhxteh3nsGSNDmHO2Q1rH+xljpOPG5JOYhxdvk9KP6THMlQklCMuOT5dr1/gwwqAjyLFthsKo\neX0zxpi2VswHS5ZhXs9LlS5ZQZq/WWIekyRdSKY68P2nyLWxJFfO0ezK1HUA443Dzo2R7izh5uZ/\n+qxTbnnzHfHZrr9/2Cn7fHD7uPsf7xT1UjMwxtqOv+yUh/qlhO10K9aapP0vOeXEGinNOPALzLsX\n2jHu116BHDwmVa4zZQ9ASnjuO5DzFVhyu5/99a+dcmga7XT7LZtEvQ++8bZTfuA7f+uUm956UdTr\nJalbMcm77PnZlSLdgcJNdBz2aSMNUn6ZtgJ7hg6SyaZb7ie8ARjvhowhq0LKUSLzsP5HR8dRWcoT\n2NVlaiXm9ZP/fsgpb7l9jTiG7xu7+sUVyrV55NKHS0/t+WV6HPNGJD3jhCxpe1IGxjrPL5d/Jffn\ncYnz2I7kVtr8fIP4qPIBPGd0vYo1JGO13KddOgWXn/3nMPd89RuPyL9Fe70zP/mVU7YdCXle9+Zh\nLLJznS2ZqiN5TFwW5rwIy2GNJZ+P3HWXU+6lvmeM3CdXFeCYN392UNQrSIe8NKsY5aRqKTuNjJZj\nM9wkkdTMdobtehP76PRVaDt/i3w/wO5VsTR3jFuOfz6SDEfGYr1j115jjEksRf+epX4Wn4FzGGlv\nEcfE5+K+DZzB3D3W9vZHfnf7i5hfom25G+1RWdoYlyfH9sBJSslAcvb2fRdFvUTLRc5GI2cURVEU\nRVEURVEURVEWEH05oyiKoiiKoiiKoiiKsoDoyxlFURRFURRFURRFUZQF5Jo5Z+ZmoP0fsfKk1NwH\nrf0U6akne6W93ThZT0aRrvRSl7SpqiWr5UAQ2u3kOJlL4DOfhP7dfxnavhGyCeXjjZF5ChI80L/l\nLJW6tiCdezxZYaYssbTWJD089h/vOeXFt0mLswDp7ry50BrGWRbRM5aGPNxwbpWp6Y/WtHLOgJ5h\naUsZuQ95DJLI/mzdFnnNn//ad53yv34eOtGdN0sPzfwdsD2MjORcCmiDwcsyTw3bC6fVok3Yws8Y\nY5IWQcvXcRAa1mKyUDZGaveTKnFM/qjsPyH6dz5pwM8/eUrUs621w0nmZowP24Jv4APkuvEWQjfd\n8oLU/eZtQ+6EoaPdTnl0UuqX2a5+6UPQ3155XNpGxpGlK9ueT43R/bN0ulFu9MWkRNJ7J8i8B2xj\nyprV3G3SWnmQ9J3DJ8g6z7JBLclCnx2bwPXGR8vz47lsPuA5lW0jjTEmi6yEfRdIdz8nrf9SSqCR\nfestWEfuyJEWu2w1Gk3zt++MtA/n8cztOHwW58f5L4wxJrUOuWmG+jEH2vaAXfuQzyi+CvmoUmvk\nnMo5Ppp+Dp180Y0y58LwKbQxX0dynfy+hCppNRpOFu1BfpZLz5wVn3HeMs7lERqQ+ZrcXnzWeA56\n6OMvNIl6991ynVMu2oR7EREh9dCTk7gvLhfsvb2puEeD43LNjaZ18ZP/8i9O+aGbZZKe4XFY2xZm\nQI8+fFHqzKPIZjv/ZpxreoS05e19Q17jb8nZWiz+Pd428qH1wkVaPe7T7LS0uh2nnGYjF/qc8kS7\nzJ8SV478Djk0fu3cEfk7ue1wn7qPypwQbAedsQ73LToO86anTOaSiWtA23NuC9tOvu0E8vXFUN6C\nlkudol79TcgPEUt92N8o94BuygXGeWXS18r2ji+S+51wMjeH+8x7LGOMufjLV5zygXexVqfFy3my\nfiPyKAw0oK0X3b1U1Jv+NfL+9L+P3EDFdy8R9Xgvu4v2PWd/iZxK9Z+SltZnvoX8E65YtHXbXrkH\nKqMcGJG0tmZtLhb18mmv8/gX/84pb/6UzE1zfC/uS+YG2HTHeOW+u/UJ5Cos+poJOzGJ6GeZG2Qe\nJt73pa9H3/JmyXb00Xw0Rrndoj0yj1dcOvb9AwPIDxQck3ve1CzsfRLTkP+q+i5aV+PkGOOcY+kr\n8HeCQ3JvWLQbz0+tLyEX0dSwlUuG9qWuVOyDRN5LY8z5R592ypybLG9Tsag30SttysMJ598qv61W\nfMY5XtLWIE+IbTFeewPGUmkZ7l8f5RY0xhhvEfa53gKUXVbuOc5ld/TfkcupYhvm41grT6orDd/h\ncmG8XX72FVFvyoe2Wl+FHIlvnpV7gs2LkH/MlYY5Mz1R5jha9mnMCa1PXXDKGRvleLCt5ueTmCT5\nrJFBeWaGaV2c8stnJncm7mFoBPeJcykaY0xyHfaeIRo7534u889F094iZyXOwU1jYrRJrk+cv2+8\nFet52kr53M85YjhHop1vJ7ECY3HwJJ6fWp48J+p5cjEvTQ6hrdhC3pjfzZNoo5EziqIoiqIoiqIo\niqIoC4i+nFEURVEURVEURVEURVlArilruvzCeaecZ0mAIinM3ZuD8Kz4fGkrFZOIsCgOza3KlTbJ\nRRshV8gqR6jTeIe03uKwsIRShMRxCG/JtgpxTN97COedmcUxtr1dx0lYrVXVFTvlgRMyHDypEiHz\nOcU4176DMvTOnYWwpSEK+x3rl5KLoj1SbhNuYuJx31MsmdgQWZlx+PrindLGlMMhh08ijPrAmfOi\nXi5ZaQcGcUymFZqXmbkL9QK47yNDCPH8HftGCuNNIhsyO3x7rAnhaNkUAmeHybMVnjse4YszkzLM\nu/8DnN/cLCQmthwo0TN/NoVswZy6PEd85s3HdXD4XmhG2lizlKm9CyGJ+ZblaoCs//rexdjpGpZh\nfiu3whKXZYXxxdJKlUkrRDjv7K0Yixz6aIy04I6icFm/FbrYtB+yGQ5P7fPLeWP1vQhRTqLwSdsy\ndGp8fmVNIQqFdaV7xWexNFemk31o02NSTtbQgZB6Dm0/8pqUSPT6EKad2oNQy6ExOf/cUb3dKQeH\ncG9YlmPfp+43IAVge/OS+2U4c8YWhMrHknSt4b9k2GpSPqQPiYswh/S/Ky2oQwG0T9522AZP9ki5\nSXJNtpkvho6QJf1WaVfP4bxXnkJ4c3KelHYkkyzTHEYbdg4NfWS9nvchM4tN6hD1ilZjfZ6cxPmN\n92OuDnTIe1SejXs0TWPe7h8+Whc2VGOtutIjLdkzKUy7IgP9baxNygXySBra/Tr6UcamIlEvoWx+\nLUODPvRbtv40xpjRi5BSzJKNNYfuG2OE5DBrBfYdoYBca/qOYB5lmQ9LiY0xZtEDkG0HArg3nkzM\n8QMn5PpU8+BKpzzZh7bL3lIi6rlIhuQ7hXV/aFRe+zTJUnnP5rLsn5OqIXHjdTHaCt/mEP1iOT38\n3vzii992yqtXSfvyortgDf2Je1Y45dGOPlGP5+Sim2BpPeGTlriF9ZDUVN5xk1MOBuX+MLME9yVv\nB/q6i+aGl7/xsjhm8/2QP7G01JYBLHVhjMXGYg8UFSUlPi985ZtOmeUTttXwxk9D5uRJw989++0D\nol7tF7ea+aTxSaxxvA81xpiSCsxtbG/7OyJyGouzUxizx77/nqiWV439U8U925xyZIwcBzExuB8u\nFz2TtL3mlPO3LRPHTE+0OGUfSeRylq8U9VjaWH7rDU65/R15rpMkh4rLRTuOXJaSUh7bLBWKsSTw\n4+3zJxUd9aHdipPkXlhYjNOz45wl2eY9P6cduHRISsDX0Rqy/9tvOuVUS7J4qqXFKdcUYPxOk3y9\n8oF6cQxbqp/53m+cclSclMfF0rPo1AjmTJY2G2NMzlo8+wwfwx68emuVqDcxwBIY3C9b0pVQPX+S\nbWPkemfLlYbOY92IJcmTnZqDZWyxyWhTf0O/qBdLe+Cz70HCmZYgJaq9I+i3Kf14Xol2oR5Lrowx\npvtAi1PmtCyRMTImZWoUfWGO5g1uX2OMaXsSz7qdg/i+1Z+UKTuY4dPYIyVYcuTpwLWfNTRyRlEU\nRVEURVEURVEUZQHRlzOKoiiKoiiKoiiKoigLyDVlTe4YhHHZmYY5PC6e3EOGTsuQ0RgKZR85j5Cm\n6hulbIbDoDg8qYfcdowxxk1hUP2HEfLuSkPoFIcpGWMMB86xS0ak5UCSngM5Boe9ZVnh1i1PILwp\ndRVCJAOtMmSQwwtj6fwKV0mJ2MykdPIIN30ky4qxMpPn7UJYfn4U7sdb/3lQ1Ntw92qnHCLpA7sH\nGGPMBspa7s0mKQVltzbGmMtTP8N3rLvXKfuvIpS4/z0paYgrRZjpDMleGvdfFvWKliGMkEOvL/7i\nhKiX40G99v2QWbQcln2uYhdC+dmVYu0fSseFCcupLJx4SIJlhyazG9f0GPpS/lrZb7lPL67EmPU3\nyBDZVBpjkbEIr/TESvlY59u4T4s+ibDx6QmcQ2hEhkUOtkG2xqHHI+flvMHjmSUHtkMMy0BWrMec\nErpoOaDRLRs89uHZ2Y0xZvB9kgxsM2FnjuaElFo5djjckl2oWIppjDE1xWhXTz7GWPMZOV66SYbG\nEhb/xISoxw5VLAnM3Cz7DzNJ4dLp5L7Q/sJFUS91JeRZp3921CnbDgmpKzCPXnoaciB22jPGmOoH\nITvofBmStrSVUiYb8slrDCe+YYzztDgZStvxAkJzi3dhLoy2QqIP/Bjza3YK1p2tm2X4MAoSAAAg\nAElEQVSYfD+FNCeRs4Etw2l8HW4dOeswX7XSWnWqSc5rEyRlevwbf++Uh/ukJLCUpBk810x0WpJj\nch9oex5Occk1maJe628gc+H1k90Xjfld2XG4CdAeZtJyMYn0oH8W3QN5THBYiilYBhgVhevvPyLl\nvuwG5SeJau62MlFvoBlrVHIB+s9IN8L62SXJGCn7ZCe/CMspL76Q5KYz2BVttMLk8zfTXD6N+zLa\nKWVsLCNhp40ukjwaY0xMspTmhJNHfvgNp3zyP34sPmMpimibATkOeL/Y+HPISpZ86jZR7/yFI065\n/Dasa+9+fa+ot+MfvuiUg0Hcsyuv7XfKdUusdn8Hc/ehbvwdW6ZRvRtrXP87+L6aL+4Q9cbJsfTe\n70D6dexH/yrqecjhKrUEsrAyS57a+F/vO+WMv7jBhBsXPWssu2u5+CyC9qXcz86/It0yXz8DadT1\ntTj/nPx0US+HHB+DE9iXJqfKvxsIYO5lqcsU7bG6DklnnqItkImNjWAc9J4/Keq5UzGGZ0LYq/jO\nyH1QBu1Prv4U33H0qhxjuz9xnfkw+t6WkpjQ/4eU4vehZA/6T8fLck+eSO6JQyTtcVlzGaco4Dl5\n61dl/x4myRjLcO290i13bXbKLJXPWA2J09AZ+WzSd7DFKSeRC2TzW42i3vtvYkzwfsbes3S/D0kr\nS5xsyRC7isWXYa4OdMq1vov23Ut2mrAzchHP6Wkr5LNqFD0PcLoPa6kxvnOQP7HDYfIyueftOox7\ns2IP5GUtB2T/rqxEe7GD1KQPa+mU5bIbQxLIBNpLZK6Xe/5hOldXBtYJ7i/GGJOwGPPI6nJyX4z8\naMfXDHIu7P9AStHZfe3D0MgZRVEURVEURVEURVGUBURfziiKoiiKoiiKoiiKoiwg+nJGURRFURRF\nURRFURRlAblmzpm0xdDsjl2RNrohspydJf3yRJvUoWfcCR0i51SIsPK9uEiD2Uc6tJQaqVFjy66C\nW6DJ5jwSUR6p72dtfVwONLaDR6UlZdJi5Cfh3Av9R2S9jI3QkV19DTkGkhOkPpjpbYaOr8qyGmZr\nVnP9R37F/2+a+/G36+qk1rnhWWhmq/YsccqbHpD2YO2vQ/MeTZrKhk55b1j/WZ+AvxWy9IC5O5Dr\npukI7OoM6fei42U7hgag9w+R7nDdl7aKen6yTRvvRF6BrGVSPxnsh6Z1bhp9eNEddaJewzPQMufX\n4Tu6X5b2fmdaoe+tu+1zJpwkUJ8ZtPL3cM6BKC+G9IRlQ896XraK5TwSxhiTUo/8JF1vNDnlwnJp\n4T3tx7gK9KDd3WxBZ1klcm6pANkfl9wpc230nYCu1p1Ndnmk4TTGmLxOslO+Rs6fCTq/gpsxb/S9\nIzXZnnxp4Rdu0sjyONqap7jfsr1rpCXonZrCHHj+PeTvuP6RraJe8XncK7Z4jrXms7HL+LsDQxgv\np0+hf2+4c7U4htvVd4EsQ28oFdWCZJGenomcUfm3VIt6A0ehx41zIUdF7nY5X7U/h5w2bNvN+YuM\nkXkKwk1KJvIPBKwxllyDNWSS5hePZXW75jZYq7Jm+chz0mK8MB0650A7/lb+7kpRjy1XG39+yCkn\nLsHxN+6Wtt9jzVjjGg5iHSvIlTliWEOdRvOfK1lqpgNdOL/S+zGHRkTIXFWJ5cg/MEy5puz5yke2\nm1WbTNjhfGQT3XLuSFyE+xYRhfbhfDHGyFxCE2OYlzlXlzHGJNNeKiEb93DggsxjwLn9Wt9A/hM+\n17E2mdsuqQL3s2zlx/DdA2+Let4ErCEpeTi/iAi5DZyawtowM0X2rrGyHttnh4Yxzu0cQ+Ptsl3D\nydX9z6J8Rc5riyJwjT3njjnljPpiUe8c2UZv+drfOuXJSbnOppbiPicloX/X3C9zlYRCyIs2MYac\nM4kejJfaT98hjtn31f9wyvVrsT51Ncg8P1O0LrxwFDm8LnxZ5hv7w+9+1Sn7/cjNUnKnPNfRToy/\n7z3ydaf88a/fK+ot/aOPmfkkOIU8LuefOyM+q9iKuS55EcZBbbacU1MoP893X3rJKX9mh8xX4qOc\nGnOUC2os1yfq8Z7r4r8jD1DaGozf5GqZz2bgKs7dT3bXsSlyrmzb3+KUp+mZZmpa5sobOo5ng3jK\n2+JuaxP1eik3WcGt6D+Ji2Q+qenx+ctv2bIPa3NCqmyb5Cq0W+eb2FO60uV9YbthzskxfKFX1Bs+\njnFRmYN9aeWtNaKel573hk7J8fxbeo7IXCBFu3H/Xvkx8joVpMl7yTn9Bsjq+eEbZE6mjFqcX1w+\n9g72WsL9JTiI3EpFt8v8rPNNOuV8tfNozkyif+ZsLkG9flkvktYK/xVcl++UbMdsymkzcpb2kTXy\nWYPtvQt24Dm19QXMbTGJMrdZLPWf3BvoOWFA5o1z0fPKeCvmgIw18llj+BTNxbT/HW+S80YW7YF5\n75RSJ99l2O1vo5EziqIoiqIoiqIoiqIoC4i+nFEURVEURVEURVEURVlArilrYhlEhmWr2v4SrNI4\n1DJlebao13cI4XccBsvhUcZIi66SHbCFG+ltEPVcKQhB6j4A6UMShTvatrxJiQjp55DbiBj5bury\ns+eccuH6Ypz3tLRna98Pm6+yHQiBO7NXhmMuvw+h6yPP4bttGcnE6KSZT+pqEdLlLUgUn2WQXdiV\nl8j+NEXKO/IohO2pn7zqlNdVyvD6nBUIiXORJTOHrBkj+8UQySIGRiF1SbNsJH/0xhtOeVU5QvTv\n+JPdol7x2j1O+crbCHtOtayLWUbSdQhhoRnrZThbxyDCvDveQvm6BzaIetdvkRZt4YTtZ9NWS9vg\nuELIRbx5ZPloWcqzxTWH5TWdliGy6evQhmOT6Jvnj8vQ6RV1aPvxFoR4spwjfZk812mycnRRqO/w\n5S5RLy4X1xFLErbe96QMabwZ4aQZG9Butu032/Kyra0tP8i0ZFPhpu8d3GuWURojpUczFH6cVCXD\nablda9yYl+csCRlfG/eLRZ+T9s9Xfgr73qxChGlnzuDvTvbJsFX+vrEWhHXOWnPlqV9DplNzM2RI\nfVY7cjizOyvOfBSRJIdtfRp2xUV3LhH1bHvDcDJDVqp9Z2WoNEtoa+6BVG/4tGVDzNCp2hK2EIW5\nh/oRjjvWLkNpuQ2SarHGde5HCHlaUEq/2k+gL5bXoR+1nJdh3iz163obUjduM2OMGTqOezFwGN8x\nGZCS1nKSPA2TrWrRvbINRxoHzHzCFpq5O6Xka7wD8wpL7lKWSMmONwvzyuA5zGHjzbJ9eP4Z60M9\n3hMZI+WXLPHlOTWhOJkPMTO0hvf3v47/n5L7iqgorMcBHyRA8alSiuj1Yr/QdwZyN3FuxpjEcrR/\nfAnOacKyJZ8Nyr1eOOFrz0qS1utPfAlSoRUbIA3gtcUYY8ofhIXr2ed+6JQzV8t5Mq4A3//9T3zC\nKbcPSgv4P/oOPvu7h2BjvbqiwinXT0t73B4f+sutD/ylUy4auyTqnfrfaF+W8bit9W58HMed+85h\np+wbl22z5a9hF+4mO+uYBLeod+p7v3DKG77yNybcxHnw96Zm5DzVeRhrxTilG0i39mm8L7pnBHuz\nfSdOiHpF7djHrK2DvHasUaZuOPkrSOFqbsWc5b+IeenKm7J9XqK/taEa350cJ9c0lnFN0/VWr5f7\n6ZZjLU45ugP71Rst6/QxkmPw/sB+dgmRXCbclN0JSVG0Wz5aNj+B55/Su1HPZz2rsX1x4TrkeBjs\nOCbq5a5c45S7jkNyNnxCrseDQczd6bQ/bKHzybbGue8M1oX8VMxxBYvkXvYWWqszc1GP119jZEqQ\nt34ICWVRupTEpdfh2ZmfU89+55Cox+unkeqfsDDahH6WUCrX+JAfa0pwGPuRQKeUrrKMLzIa+9DS\njy0V9fppbfXSGuJOlxbrnizMdTMzJJWntuOUCcbIPRKngpjoknPv1Aj2J1nX4zl3vF3KhxMrsR8W\nUu91sv9wuhTe09vYUnwbjZxRFEVRFEVRFEVRFEVZQPTljKIoiqIoiqIoiqIoygJyTVkTZ7Een5Qh\nsiVrEf4zS043kVZokZdCQWcCCOXrPSQlEolVCPFqfw8uBbPTMvQnvggZ1OdmELLHWbmnLGegi43I\nIj75Kj6zZQCcTZ9lVyyrMMaY6Vn83WEK5V56e72o17aPHDDWFTtlO8y36GbpXBJupvy4ZjvcemwQ\nYa4pqbiH7jwpa2JZw6I8ZNietkJQA+Qk8ekv/S+n/NkbbxT1/vHRR51yJmVbX10Fmdh9OzeLYz63\nc6dTjiN5VqBbhqmNlaO9M5ZBanTq3w6IevnXIZw7dx3q9bzeJOoleRFiV7cdofcc3mqMMYa7U5hd\ntzI34/zii2RYe/vzuN6srcVOuWmvlASGqK1KNuHaq6+rEvXGqQ1Tk9EP3r98WdRjp5JjByAxyU7+\n6PDEbrq37CqQsViOgakphFYOX0KYqdcKSe8/A7kIOxsk5MkQ90FyKMrehmv35Mp+3vYs7lnBV0zY\nKbwN1zlyWYbD8zyTuQUyE9sRKGUpxouXwj1jYqT8yZOJ+xEcRAjq3KwMdS59EKGmXW9AshnloYz7\nDfJcB8nxovQ2SAYGj0nHFO5bcfnoF5ExUk4WT+vEOF0vh7MaY0zKSlw7O9t0k9TUGGPiSXKTKxW5\nvzf+AELD04vkPS9dCukkhwBz6KwxxrhzcF251B8jLUecBJKOXNkLaeP5n70j6q3aCsmYJxPfzSHQ\n7U/J+YDds159HaHhK0ulzGWOwm+9dD5RliRwoI+cDrKwTucsl7HX534OqVvtxyH9Pf2TD0S90m0V\nZj6ZJPmNHcLM7idxReib0ZYkuenXcIvg+dCdLcOZ2SWl4xmar28oEfV6D2Nf5CEHy2kKo3alSek4\ny8ojI7GH8STK746Kos9yMCiuHnhe1GO5acoicpkqki6T07xHIueugOXOxO5/4Yb3Uhv/5xfEZ/nv\n7XPKLAv74Z/+XNTbvhRjpPqPYAv2/FefEPVWbke9KtoDrblehup3k5TwX/dCJvXDz/ydU37iSz8Q\nx0RF4nfSMZIy+a5KiWFGPcbSH34M+017D9T+IvrYyr+4xyl/65NfE/XWjGCdTUvAWthzsFnUO3mB\nnPtM+BkYQZ+p3iPljbMhkiFTKoIoSzoTJNnnqocge1k2uULUY0eWiXbctwPHz4p6+eTO89NvPu2U\nm3qxH9m+VLZ9YQa5SW3EWn/uPSl/WrYbfYmdao88JudAZvUDcEwcPitdb1jGy641Xcdk/8mul9Kc\ncMJSpo7n5fXm014v2gsJXtdpuV/IIZlnx77/dMrF90gXJp7L4knWz2VjjOmhsZhSiWu/TGkmxj+Q\n7j38XOBqwR4/0iXXu/1n0V9K+zHHXVck955pK/F3a+iZ1W25jU3TcyvLXSsflA5rrY/j75ZIY9mw\nkL4cc5u/WToKCWdYchu1JToxlBIljiXw1jrLz6auNLSp7baZWYZZp/cK3g/4L2EfaixJOLstDdA4\nKLCcQjtfgWPiaCP2ubk3SKnz8HmMOU4ZwPOJMcbk7cK+ZYak5P2HZfqI1OXX1qRp5IyiKIqiKIqi\nKIqiKMoCoi9nFEVRFEVRFEVRFEVRFhB9OaMoiqIoiqIoiqIoirKAXDPnTEoJ9OXZGTJ3hP88tHiB\ncWieWXdtjLStSlsFLZubdM3GSHtD1pL2vS9z03S+iLwXLDEbPIn8CjMTMqdLdjq00nx+vl6pjQ5O\nIJfA9Hlo2casfDvFG6FJnOjE9dm2dZz3ovld5ERYdFutqNf+MvSZFetM2GnuglYuxbL0S6R8Kr5h\n5JXJL5f6crZGS2rAMU8ckjZvFZQ/5s4N0Ak+dkDmeykrg13nogJoA5dQubFR6mXj3cjJkZwELXxw\nQGpGO9467ZRzNkM3mL1GWi/OkF595Czam+38jDGmsq7YKTe/Cw1rxS6pXTy3F1rQtSa8jJLtN+eE\nMUZas09SbpG8jcWiHucm8J2kPrFK6pB5bKesQntWtEuNZM8V2CAmUNtkl6Ntul6TuUDYKj2RcvYE\nh6XFY/pStFVyZfpH1lvyGeiw2XrXzlUy2YecA8Jm2bJcjk2T81K4mRzC+XutvE4dL5JOmzTHcaVy\nLA5QLjC26E1bKq+F7YBTF8Puz9co7SbHyDrRQ+c0cg5jIne31N+OXsExnJvGbd13L+X0mQ1hvDW+\neEHUy1uG9k6swLrT/YbsP558rBORpEsO+WROFzunTTip+ThyGPguSCvQvreRq2RgCPe/ctciUW+s\nGfaaA8ehu+ecCsYYM0wWkJmVGFf+gJzz0pZjDE+N4V507oOe2s4Plkw5Z268eb1TtqTbJoUsPjue\nQx9t7pF5D9Z/EvM99ynb1jw6Cm0z0Ys1h9ciY4wZbZR693DDmv+et1vEZ0nVmHM8lB/o6qOnRT22\n72Wr6UCr3Ft0HMM+prUf4ypiv7w3WeuRW4xzQ7nTsW5ffOyUOKbqXiQe6DuFXCNJ5TInWtCHuScm\nHnkpRs7KPlxwK9a10Tbo6Uca+kW9aMorkEg5nhKqZB4m24I7nORsxT7isS/8T/EZ5xBsG8C94Fwi\nxhgzS3Pt3r960inf9k8PiHp9J5F3ZcnnsVEbOifnU84bxXlmPvbN+53ykf8t90Occ2akCfPB4UcP\ni3o87neV3OCUL+47L+qt/dJWp3x171tOOTNR5mz70Zdhkb2Cck3FJLhEvdv+5y1mPileg/xI9v7d\nRXnrZimHQ9dLV0S9+DLMZwF67rjwmlxreD//dz/+sVP+q4cfFvVGyHZ8mMp/euetTrmpXbb9nB/j\n/tW9aLttW2TeEH5WGD6FvHmzVh7MkmzkMBtrwVh0pcm5kvNsct4MV4x8HvPmyfYPJ4Ee3HN7D815\nxqruwPNP7UMrRb12ylVT9ofI5xObJPdlTa+/6pTnZnDPOI+YMcbEFaNP9J9qccpeF/q3K07a0Lvp\n3qYXYF577SUrJ1o21sU9X6B8mDlyX3f82+865WWfo3U2Ss79V/8L8zp3g+43ZA7M8oeWmXmFTst+\npp2g/TefI+dWMUbmjOHnLDt/azy1T2I55mVXvMwdxDkoeW+XuR6503jfY4wx0S70mYzV2F/OWDlf\nM9bjs84X8H7hwn/I9k5bivZOX8H7rZCox/l3gkOBD/1/Y4zxZl97LGrkjKIoiqIoiqIoiqIoygKi\nL2cURVEURVEURVEURVEWkGvKmti+MaFShoIGJ/BZDIcpd0pLv64rCNnzUkh6XKEM6RlrJ3u7HoSm\nRXsta246bvQyQp1CQwhVtEOxZqfwb38fzi+rRlo8sn3ZRCeF4lqypshovNPKWAe5gG2NyxZqoQGE\ng/nOyTDikrukdWC4qdkAG7sLh6Qdcs4SnKN7HG3ac1xa3CXlQD6RUQt5y45xaSV4qQvysuUlCFX1\nT0g5Sv8IQv45/LhjEPewOlfKbYrIFnvsIuqNTcj2GSTpzKWDuN44twypS05D+OHJRoQO1hVJ792O\nSwhdzSlAuDtbwxtjzOSU/Hc4iaFwQLclMWRrQg5J5NBeY4yJI5tBDkOc8sv7l8E2zp0I061ZIaUt\n8SS3YSniRbIpTLKkCmxfn7cdlnP9R6V8cbgB95ylIom1GaIeSyaSq/GZr0GOsUAbroOvybY4joyd\nPzmMMUbEgsbEydBx/tspdQhntm1+Z8nCdpLsQ/1Ncv7pfwfWff0HUM6/XVqnJy2GXMZ3DlKVBJI2\nHn/sqDjm+FXIje43O/CBFZY98AHmkQjSy+QtzRP1WP7kp3k0b3elqMf21Czvc1ljItAh71k48V/B\n+Y23SflK9nZIA+ZeRtg9t5Mx0pI5IhrtfvWotLAtqcdY9JO00ZanXn38jFMuuBHjquozCBs/8m8H\nxTFuWqtTVmBOf+c374t6ixshweoaRpntYI2R1tqJFdgvdL8uw7KTMmkNJ3lc6iopm2Rb6fkgeRHm\niyRrfxPlRvt07EWoPVuEGiMlF3FkBz9yUUqAUlZgr5F6EvVsyeIkSQMmOrAH6R7EfcrNThfH8P7G\nk4VxNHBCruEs/UsnibltUzvRh78bJAtqW0oxQfbNoTSMy9hEuc7G5Ulr2XDS+QbGGO8jjDFmlPYc\nD//7nzjlwcvS5vfX33zBKf/pz75Bn1hz2TtvfehHqdY+MjoWbXD7n+12ygf++XWnXLlerqUsA3nv\nv2AVu+nTm0Q9XreP/eKIU979j58R9SYmWpxy4S5Iaj54U8ry/uBPIVc6/sQxp+y/JCVxuWvrzXzS\ncxJ9NT5etiPvt/v78ZyQlijlI/GlkKAMn8ZzhztWjtngNNbPJ7/3z07Zmy+/j+XyM7SudXRjbLst\n2dD2zZC8sryv6205r3c14vxK12PNuO7Prhf1Rlsw3w4ewj2ayZPSDJY3s91x92UpPbXlauHEkwn5\nZ/7tUvLfRfLaWXo+a3umQdSLTkBb8bX7SK5pjDGFdy52yjzXeiyp+DQ90yTlY95k6ZFtkc3zaf5N\n2H88cH2pqDdyGWPEnYo+2/zEOVGv9pOQ3ktpqeyXLHMSz94lUuIzSpJhI6eRsNDxMp6ZsjYXi89i\nqf8MkbV0YnmqqMfaaL6fQ6ekDJDTjLA0b3JArl0mAs+V/Hw/R9bk3ky5lna8jr6VTs/i451yz8Z9\nJLEGe4KBY12iXohSEgzS/GKnUGDZFcu7c7bJ/uO/in1ktlxC/vt7fve/FEVRFEVRFEVRFEVRlP9b\n6MsZRVEURVEURVEURVGUBeSasqZkCq23M0bHU1jYlB9hQe4sGW69uJacBPa3OGVvqQzVankJIUjV\n5GYUstxZ/Jc45B3h2xwSZWdjZjeROAqRTCiXocytexE6109Z11c8sErU41DftmdxzKgl3Un/CJcC\nOxv9ODkimHlIxM3hyJlJMsS4twHhWQXri53ysWMyjHBZOkK3uk8j5IxdBoyRbgDJSTjmY1+0sv2T\nhKz1dYQ8ssPQ6ZfP8hEmhkIer3TjvHNTZDhbTDTau6QOUqhEK3T93DMI8S1MR8hjlCVtKV6O7+g6\nQ65gkzL7dv1O6cIVTqb96N+RVsb93rdanHI8SVHGm32iHkuAOPTVznAfQ2HpHFKcskzKDrpfQUh5\n7o2Ir8wn5x2PNR8k9KINIiLw3e4MWa+HpBAc7mm7wbEsibOh29LGuGL0+0A7xvbMuJSiRUTP7/tq\nzmI/dLZHfJZC2eD9FKprzxdMGrWJ7fSTtQ2ywgGSiDSSBMYYY/I2FTvl8avoMwE6V1tGc8eOjU6Z\nXVsCtpMYfUfyMqwnMZb0wUUuWSyz49BPY6SUlbPsT/mlPG0+w7dZopS3y5InkHMEu6AFB+QYCw3j\nGnn8RVvzKYftlpD8JDgoZVLxFNY+E8IxTY+hrWdn5ZjwFmEe4dDecivGNoL6VSzNrUkVUl7DkjOW\nRcQkybZIqcf3swtHyCfXT5dLhn2Hm543Mcdw6LUxMtQ9bTUkQAErJHrwCNbCxEW4H+5MGeo8+D4c\n1lzkEsWh0sZIeWj+bZAfFtDcbTvWRXkwJ06QLMp2yUpdhvvOe6S2Z+XeTsy3tOZynzXGmOAgzoMd\nviLdco5Oqc0y80U8hfyvX7tFfHbqB5DnjfZBGptcJmXLW2ogKz/4te875as9cn4eD2KO+dyfw3mp\nt+GYqNf9MpxpvMUYY+3kGDV1UM7pS3dh7zBFrmrx+VIu0Lkfe6UNX9zqlINBKeNl58K933/cKX/2\nR/8g6v3X5/7WKd/5j3c65dZnpPvTk1/+oVP+zH+uNuGm4k7MbbyfMUaOq7hJ7G+uHpJOfrFHSfZD\na6YrWj7mLN8DKT7vGfwXpJQrJgVr1KadJFcqo3N4Vt4nVybWyYkOzBW2rJ8leCw3P/Yf74l6Sx/E\ns8fUFK4pypJjn3sRe+VF10NSZEv9Qj45hsPJMKVr8FnObos/t8YpX/npCadcfL/cM1/4CeTTkyQr\nK7lP1oumOc93CvKa0KTcz3lIdjp8BvWq/wf6MD87GiNlQxmL8HfP//BFUW9smBxAad84Myrde3gN\n530Kr7nGGFNGLkwnvgOHJ3tPwFLa+UBIw2altJPdYFMWQQ4/ZV0Lrz395C6atUHOvf1HsC9lOe20\ntS9nGfg47d9jk7G34LXPGDlOx+gZOzZZjglvNq43yoW5gt8bGGNMkBxfWYbvspynpydw7lHkBMZ7\nf2OMSSiWz602GjmjKIqiKIqiKIqiKIqygOjLGUVRFEVRFEVRFEVRlAVEX84oiqIoiqIoiqIoiqIs\nINfMOdN3EPartq7KSxr3waPIw9H6fouoxzlJym9a5JRHLE0i26yyvSbrxowxJo10/JyrhXMRJNVm\nimO8RThX3wnoiAfHpE4uh3IvuMgC1n9RalHnLB3ebynZKvMPxNI9a3kROVw81isxtuCcD9rfhjb3\naq+01qspRD6V0QZc5/UPbRb1eilfUMWt0GiznvK//wPF1ldgyTZGbWqMMYEO6ANbSYt95Sm0T0mW\n1Kr3knYxzgWtYVyi1GCydeKVUzjvesu2lLXdVdvRN20t6AxZF7NtvLdA2vaxhVq44T7c/ZrUWuff\ngtwEbN2WulLmiBlmbS5pj1Pq5Hhxk26a80D4zkgNftpa5GIQlsmUs8BbL/NXDPFcQZbbmRsKRT3W\newfIstVY3W2UclDFF0G7HbRyOQR7oJXN2Iy/NXRc2uVlbZKa2HDDWmnuV8ZI7asrFX160La1r4YG\nn7W9Y60yxxB/f9Z1yD8Te1q2I+ulExYhJ1D6CrRv3/vS1jhnK76PNbaBVplzJntnmVPmnCQjF+T8\nn0pWzh7KZ9ZHduDGSHvv0WZYbabUyX428P782jD/lq7X5Vgc6cb1Z9ZhrWo/3SHqzZI1a2EN7vPy\nm9aLelOjuGdjZC06a+VUukI52/KW5zvl/l4cw2usMcZEkr568JTsE0zqalyHpxNtM9Zu5bQiTbWb\n7CXtfECcZ2W0EePXnW1ZUrrn19aeXd8514sxxqSvxT3kHAT2tfA+aJJyzE12y/cyWUQAACAASURB\nVBxDiYsxZqNJhx5fKHPvse5+kvIUuTNwb+ycej37kTMmk+Yvb67MTdb29AWnzNbztrae8+8EB9BW\nnHvHGGMmKfce24lOjci8FsJWXLqv/97wXnHOyhu0+W8ecsrnfvSsU2688qaod/PXP+6UX/rrXzjl\nVWsWi3q1D93nlCcmMC/5zsl8L0cuIy/MqhnMf3VFaJvVX7lLHBPwY77amLDOKc9Oy7Yu273NKV/d\nh+vI2SrzM12itTWB8o4MdZ8Q9ZYUIG9X/1GcA1t7G2NMaabcI4QbzhFj9zPOJRFowfxatr5M1OP1\nf5DW9cRMuU879wryxBRXYm5LsfZLvtPYL/VcQRvnU53SW2UfGaeca2N0roGQ3FOWrEBfuPIM2iq3\nXK5jnOMqhuZrO6de3R2wOudnNXu+OvXMSadcfZ0JK9kbae80J5+RmijPXcYW1Ivxyn675BHk2Omk\nnIYzVi6ZU99BP86qRbtF9cl5N+9G5CXt3IfnkYbvw4Y+b7vsR20HMJ8mU16VEis/Du97Op6/5JSn\npuXYGTqJvhgaorlRLsfG34i5LHcZ7b1OS/vpie4Pz2UaLnjOn8mT1yL2el3om3NWe0/R8wXnEwyN\nyrUhpQ5tF+jCeLGfpWaCOI+87XjObt+H5+qMVQXiGJ7P4im/i/0uY6x95EM/m5uW15S8BH0hSNcX\nHJD5/zgBW9pSXJ+dA246IOcEG42cURRFURRFURRFURRFWUD05YyiKIqiKIqiKIqiKMoCEjFnxyMp\niqIoiqIoiqIoiqIo/9fQyBlFURRFURRFURRFUZQFRF/OKIqiKIqiKIqiKIqiLCD6ckZRFEVRFEVR\nFEVRFGUB0ZcziqIoiqIoiqIoiqIoC4i+nFEURVEURVEURVEURVlA9OWMoiiKoiiKoiiKoijKAqIv\nZxRFURRFURRFURRFURYQfTmjKIqiKIqiKIqiKIqygOjLGUVRFEVRFEVRFEVRlAVEX84oiqIoiqIo\niqIoiqIsIPpyRlEURVEURVEURVEUZQHRlzOKoiiKoiiKoiiKoigLiL6cURRFURRFURRFURRFWUD0\n5YyiKIqiKIqiKIqiKMoCoi9nFEVRFEVRFEVRFEVRFhB9OaMoiqIoiqIoiqIoirKA6MsZRVEURVEU\nRVEURVGUBURfziiKoiiKoiiKoiiKoiwg0df68IkvfMEpJ3o84rOah1c55e63mvCF3hhRb252Dv+I\niPiwojHGmNDwpFN2Z8c75dmpWVFvsnvUKY8OjDnlQDDolKv3LBHHjDX7nLIr3euUD71wTNSrrSpx\nyqkrc5zyzMS0qNdy4CqOeWgl/k6rT9SLjI1yyu1v4pjqjy8X9UYaB/B9N/8PE25e/PM/d8pxLpf4\nLGtzkVMOdOLejlwZFPWio3At0XFoY9/gqKg3O4v2KtpY6pT7j3aKevG5iU45d2e5U+57r9UppyzN\nFsfExMU65d6DLU7Zbp/4ilSnPNmDPhIanBD1srYWO+W2Zy86ZQ/1P2OMybkB1xHyo58NHGr/yO8r\nWXq/CSf7//qvcX6pcizGlSQ75YkuXG/GunxRb7Rp2ClHJ+Betu2/KurlrsRxw2f6nHL6Wvl9U36M\n2WBfwCkn1WSgzmhIHMPtYWgOCPYERD1+bZxQSe3ZOy6qJZTjs6kx/K3ggPy+odYhp1x131Kn3PjE\nGVFvbBLXdOe3vmXCzbv/8HdOOak2Q3wWV4h2jPZgjHW9ekXUy9yCMTsdmHLKnow4UY/vx+QA7luE\nNfm66TiuN/hBl1OOSZbzBo85dybmVHti5/l/shttX3BbtagX6KJ5hL5iamRS1EsoS3PKQ6e6nbI3\nL1HUC9Fxdbd9zoSTS+/8zClP9o6Jz7z5OA93Gu5L/xE5/yVV4Tr4HnmzE0S9QA/uS/sLl5xy4e2L\nRD1PJuasoTM9+LuHMUfl7SoXx/DaGpvsdsqDx7tEPW7SpCWZTtle6yOjsUaYOVxT/wcdoh7PQxWf\nWPZhh/z3eZzAedTf83kTbg5/6+tO2ZMj5/zRy5gvUlfnOuXLrzSIehkZKU45aUm6Ux45PyDqjfjQ\nT8pvQttFRMvfx/wX+53yRDvaPpbGWMflbnFM7V31TnngEO71iLU2l92Mv3vu6dNOOSs7VdSbpbHt\nKUB/nB6bEvUiomg/F4PrCA3KMdvRjWu677vfNeHk4ls/dcrJVXI+7XoT82bejgqn3H9MjsWpUazp\n3hxc7+z0jKjnycJnIVr73KleUW/4LMZfYhX6RO9bLU7Znk+TFmNcedIxHwd9cs/izaF5jgeMNXaa\nnzzrlKPc2Obn7aoQ9eZmMAdExmD8zgTlnqrrNewR1vzRV0y4OfS//sEpx2bI+5m6NMsph0bQVnw/\njTEmZ1eZUx4+gTESZc1TwX7sDTx5aNPEyjRRb7Lf2pP8v8TRHD85KOu4aG/GexDuY8YYE5uMejyP\ndrx4WdQbCeA7Cuqx/0qsln09OIR64y14DvFbzyQJtO9e88d/acJJ85lf07/mPrIet2HjC+fFZwn0\nnMnPEqFp2R+TCzHvxhdj38R7HmOMSaH1qoPWTxOJuSv7+hI+xAzQWt3ZiLHsiY0V9bJq8YzYexb9\nLasuV9TrPYN1jJ9TMxLlniWb+q/vTK9T7m7sFfWmZzAvzcceteGNnzhld6bcU0720z4yEnP+zKRs\nn7FmrPH8HDw1JNeGonvwrD7eMeKU+9+Tz1YMP7vEFSY55eFjcl1MXoZ5w0V73OGTPaJe3o2YEztf\naXTKqctyRL0h2hcl0P7N3rPxXMnPQrwfNMaYvoN41l33Z39lbDRyRlEURVEURVEURVEUZQG5ZuRM\nQT7eOp68IH+9zadfeJrO4S1X/Z3LRL1AO96GjTXibVpsmvz1/+QpvDFevqLKKcekyHr81sztR7ni\nvjqnPD0uf+Hx5uLN1sg5nPe2T20R9bpfwRuvgXdwTcUfqxP1yimCo+0Z/JJ2rqlV1ONfqGtK8Wv3\neOeIqDfaQFEqN5uwk1GMX2+mRuQb/IRS/GrWfaDFKc/Myoil7I04/7Gr+FVx0c56UW+kAfc3vghv\ntMfol0hjjBnr8jvl3gPNTjlzA0cFyLfg/MtxXBHemEbGyvaOduOXiIlO/GLpyZdvOGencY1ZFI3g\nzUsS9eZm8CvAAP0SnbY6T9QLWb/yhxOOR0iwfuEZo1+ip4bRvld+c07US6df58Ya0R7JWfINvoei\nEBLK0D+an74g6rkT8Wu7oV//R6/gu6d8sr/N0a/1/EtXvxWF1NeGMRHdifb8nbFN58q/TrUfkWOx\n5Dq8Hecxy79kGGNMwSL5q0e4yd2D8xg+I38RSaR+y7+op66Qb/DHaU7lX+Am+mVUUWgIv7pOj2Ms\ncfSgMTJqJaEEv0gFy/Br3ES3jBBJrkVf4nE+E5S/NkfSr+v8y1WgW/6q76ZzmqRfHGOtX6U7nkOE\nW9p6/JLotq5p0roXYYX6uh35EEe/TPppnkwoSxH1eve3OOX0DQVOueNl+cspjz+O4BMRqcaYlicx\n1pMWpVOZfrmxI6tovHDUZ7BH3rvCuxY7Zb4mV7Jcm0P0feMtmJM8OXLe5V/8pylKY/icHA+pS2W/\nDzfxFHHYeUjOF3EezG2BVoy3/CVyzm88ibWrZjHuO0f7GWNM3BTWlJkQrrnzlSZRL3czfsUN0dw5\nTJF/Xiv6deQC1tzuLkTs5FfI+8dRNXll+FXRnSvbZ/QCvqP1LI6JjZbbxdEJzC+ZSbi+QEiu20tv\nl3uEcMJRDLNTcu6Jo3lptBX9kfc8xsjIl663sAeMtMZ2fBGNYdrCRUTKaMGEcqzP/Ity/s3Y147Q\n/tkYGRUcGsU+gn9NNkZGws3R/iU2xS3qFdDfivbguyOtNvQ3o61jk9wfWjbGmNwdZWY+maaIhzQr\n4ncmhHa98hLW7tx6qx5Fkfa14LrsiIfC3ZVOmddPjsQ0RrYdR2ec/cVxfHeMjMpJpYgWjtCx+4jP\nh7mOIyYSyuU6MXoWY8xFEVV9tFc3xph4iiB2ZyEKMJkiR4wx5vLzMlIlnPjO45rsqMq291qccuEm\nzHHZ1VmiHo9ZO2qD4We1+BJc+2iTfM6Y6MNaNkX9o+S+GhxDUR7GyChrVoy4XLIfpdTh3Kcoot6T\nJc87IQHzS8FmrOGRMXbUJPosR3uVbpERr7yXmw/G2zDn2Ps5Pz3fcUgtR6AZY0wiRZaIfahf7rdF\n5Bl9n73nnaD9oofWK3HfC+Q5JNPzTtCHOTUiWo7FQRr3aSuw/+/d3yzqZdMcyGvGwHErKpr2X6xk\n8DfIaNrC2xeba6GRM4qiKIqiKIqiKIqiKAuIvpxRFEVRFEVRFEVRFEVZQPTljKIoiqIoiqIoiqIo\nygJyzZwzubuRH+F0g3R04VwPdTcjJ0tsotRDR5ADyXgLabf3VIp6bVeh+2q6CJ3zigdWiXqNz0Ez\nWfuw/Mz5m5HynVNoGJo31qXt/8kBUe/GL+9yygHKiXLux0dEvQLSTLZ0w80mOU5qDVd/Yp1T7n0T\n+rVDv/5A1HORbnW9CT+s84tJku3D1+mKw2d2BnPWkHLOCs4vYozUjHLG/6xtxaLeiV8cdcrjDTg/\nzuwdHW9lRyc3pL53kCMgd7vUQ8fE4zpYu9n2/EVRb6gBbVe4C/1x6LTUHnPOmTFyT+l7Wjr9LH14\njZkv4ikrefd7Mj9CiLK3Z1VBZ5mYlC7qTZAb1/AQyjHkxGWMMUmk/26gayxaXSTqxSTgPnOfiIjC\n+Gt+2srGTzk5et9uccq24xa7inGfcFvzC+vE2e0oq1xqrWcmoDcepzwzqQlSpxpfKjXf4YZzoUz5\nrBxFlItjjHJ28PxljLwfjP19k6S35vwE403SwSGRcmW0PwtNf+HdyKTPeaGMkbpnzlkTa80vg2dJ\nR00ub+wgYozMpZCxvhAfWBY+nKeIXX8434Ax19ar/77wnDl2efgj67HrG+eiMcYY9+1wq+I+bJ83\nu09w3oK4fJkXK7mO9NWUs4dzhQ1f6BPH8Jhl16mBIZnnIviLU0659N5ap8zzrDEyl9P0hGwPZo7a\nNKEC2vSg5cQ22U95jqQ5VVjg/UhqiczjxUm+Gk+3OOW63TL/XLUH60bTQeTlS/TKHEhp9XAe7DvY\n5pTjUiw3jD5cc0crcjjU3YG8LSPnZb4Sdk3KzsF12PnlRkdwf5Oj0R9bD8mxnZGPHA6Vtbi+kbPy\n75Zux2fNb8DlovQ66Qhk54IJJ+ww1PGKzNdUsAdjbJTmU3tO6TuC9kirR66D7v0yH1AsrXec92ui\nT+bj4hwpA+Q6kk65VJIXyfXJRzloxtswP2dtlGuuh/KJcE6cvnfbRD0f5YbgsZ1cI3N88Hrkp73c\nbEi22TTlkyqQzRsWvMWYz9peuiQ+i8/ANVfcjDwNF56V+6/MTKzd+SuxhgiHSGPMCOX24Jxctksn\nO+aMt2POX3IfxmLzMzIP3yTlmIihPECDzdL9tGQXcgKx6+dgj1ybC9cWO2Uv5fVoetPKTUZ5CDmv\nZoL1nFXz8ZVmvmj6APPIykfWic9qKnGfO/eifft75fpZQftczndiu29GujDux5rRbzkfpjHGRNOY\n5bySPEZD1jyZkod95LQf629ijXTI4vyaPF7snDDRiXiOSaDcRUNnZY41zl/nu4Q+mmc933RS/h4T\nXlNYY4zMEWe7GPL+hK852iP3c537yPWI8sekLJe5ZEQuRMrjMmc9+8XQvp/nfDc72yXLfbI7Gfe6\n9yD2MHY+pBD1LXb3yryuWNQbpn1aJOWHdFn5vnhfNXwCzlAFd8hNDOcJzPvK7cZGI2cURVEURVEU\nRVEURVEWEH05oyiKoiiKoiiKoiiKsoBcU9Y0SuFiG26VEqKO5xGalroSoUpTozKkK+RDqFEC2Wtd\nffS0qJeeiDDb8+0I82vdK6UoaXkIXWQr0HOPn3TKx5tkOOptd2z+0PP79TvviHpsAbkkHyGott1u\nL4XgL14Dm7OWkzK09PijkC/1jSAMdsOu5aLe7JS0rQ432dvJgnVGhvSyRGKWrAO7X5MytiKSOExR\nGG9StQz1u/IrtGve9fi7x54+IeotWYfY2FiySw90IHzUb9lvDx5HWNnoJCQcUe/KbszhqWNXETYZ\nbcndsjYg9LWVQqIz62XoXdISXGMiWRYOvN8h6o1epdDVMIfhDzXhu4t3V4nP2Ho4SGHK0XEyNHCs\nF/KTIrL0syUSLFOp2IXQcFeqbcGMtmJr30aSQuWvl2HZfUdgO5e7DdK541b/WEz949whtA3b0xtj\nzKq7EabLso8UkhEYY0zPq5gTUrJwvbbMT9jdbTdhZ/B9XD9LUYwxZopCPHlc2naGKbW4tnaS6mVt\nk1LE4VMImy2+F9aR/qsyxJolT9F0P9gaPn21tC1lqQKH49pjgudb/jvBQRmCmlyLcHteMzyZMqyW\nJXNsb2pbv/otuWU4Sa3D/WerRGNkGOt4Ks5pula2NbcNS7zyd8swdJYHsXzCkyxlOBNxdB40xQfo\nmIHDsm2iSWY26Udb89xqjDFVezD3Dx7vwrnukvqG0o9B8jNG0oyBD6TVZMGtmFNafom5Iu82Oa9F\ne2T4cbjh+ZDXKmOMaXwZ46psMdaJ6TG5F2C5R1Y+2sRbIGVs3MZRNLbPXJR7ldo5OYadcyUJn79D\nSh98Acz/7YMY20keaXW+/l7Ibj3ZCF1PsWznL70IKWpPK0L386rlusiymsL1xU75zEtSbrLi3vmT\nUrAEedaaJ3mO4vs/ZckOAiRZ4XKU1f8myRJ2bhZzmStVzlHDZzEHVH4a195zELKP3kNyrzg3jXN1\npWGdHTzRJerxZzE858ltnbCBZinTwAdyDsihfs/7hchoKZ3tebfFzCc9DXTPbqsRn42R1fHQCbS3\nbZGddQOuha25O4+3i3oFqzGe+w5AIm7vBaJZQk3tzetdWq2UibGUkMuF26Q0ZZTkN26SkSzaJPdL\nF5/CWMogmXJGoZz/OQVA1nXFTvnsz4+Jelml2MsWy9v8e5Maj3HQb/UzlovHlWLdZpmyMcZ0kRyG\npfcl10k7aR7b09TXbTle0R7IcJt+gz1mzvXYA5betFkc099w1inzM+Z4i5x3ey5jDW/qg2R4c7ac\n79JW5zllllPZ9upsvZ5NzyYXXzgn6qWnyv16uJmluSgqVj5b9b4N6W4erf/+K3JPKSDZrStVrkmD\nR7E3mClEO9prP1tpG94DUhqN9Fq5dvqa0Aezt2JuGDwp51QPpWjhZx9b/sTP6fm78X0hv52eAMXi\nB9D/xlpl/8m98dr6UI2cURRFURRFURRFURRFWUD05YyiKIqiKIqiKIqiKMoCck1ZUzeFXs7OSulN\n1jKEar33HJx31u6sF/X85yETSFuLY9oGBsxHkUROBy+ekHKHz3zpLqfMIfSpiQgN/IM/uUUc89aj\nkC9FkzPNjmXLRL2KbISrJ2bi+xLmpKNLSj1CGR//3j6nvK5ShqSn5FL4ng9ymLFLMuQ+/45qM59w\nGGZkrHwf109tnLoG7dNC4WvGGNP9JsKv40hOMGpJJMruQxgXu/FU1RWLeoFWhA9zeK4nF/c6QO5C\nxhiTSlKVPJIuNTx7VtSbu4QQWXbCGhiV39f7CqRmqx6BT1ZwUGaG5/DD2ZkPD281xpi5mfmTp2XU\n4Nr735VhupmUhZ6zwbc9KyWBRTejn3GYt+02we5AExTmfbaxRdSrys11yrEUEu2me37sJSlfZDJG\n0d+KsqTsY4CcZXg+GLTaMEjn2vUB+jLLCI0xZoykGvWLEEqbWCnDg+2w2HCTWI2/x1nnjZGOBCwT\ns13LWOrCUtFxK2xSzLdPw1UiY1OhqDd8BuOFpUIx/HetsPmBYwgNZXlMyR0ypLfpKawNsZTVfsyS\nHcWwm83bCDVnJxpjjElbD3lVAoW0DtE1GGNMyhIZbh5OYpMQmpu3S4Zbtz0Fx6LcnQhbteeGoRDu\n3zTJvew+MfQ++nRCOdr6ymOHRb0ky0nit7Q+h/PJWJUnPgvRPMfufKXWObC7EssmJwekHIYdt1hW\nmLlR9jeW4hXeA8mU7ULW9HPMHYVfu9uEm6y1BU654w0p4y3ZjDmC3U+8+XIvwGOz/SLadLZVOmMt\n3gmXmcZ2koalyfmHpRXd5zGevQ34/w8aG8UxPLdtXYL72dwnz4GdeYZPk6zOctpY9shapzzaROPU\nkpROk0Na4wGcU2GeHHtnnoZTRpVUEISV/JukLK7/CPaH6SvQ930N8r6wAwnLhtg1yRhjgoO4fyzx\n9aTLPjFdjvvS/Tb2TdMBhO3b605KJfpiz/tIGRBXICUMvOfgfUlMspTksKyJx2XaylxRj91OBo5D\nYpBaZ7mq+KWcL9yU3IC50l6DWQrReQptuvg++azBkoShY5A/ZVXIvYX/Akn/6jBvsrzeGOn8k1AJ\nR0OWQrkypdT76jnM14u3Qdsu5NJGus9krMGaxi5gxkjXyjxaT4bPS6efKBfGMKeCyLauPd1aA8IJ\nu6Y2vyT3nuysmEIS3+7XLUe0NLRBtA/jzU6fwONigKQxtpy9dS9kYaV3r3DK/jbcv/4h+fyQXI72\nmCCZqJ0mYLIb5+fxYa7wX5BtHWhFm0Yn4DtaL0q5bxa5C02Qw1jZFrnHsPcI4YbnNnYNNcaY0BDW\nmo4XME8lLJLzWXw5ZGzJ5NRlS+qzNhc75XFKaWFf4zS7udJ+JNCBe+tOk2OR58eOF3Gu7U1yr1hY\nJefE38LuaMYYk74W/aL5CfQZW4reTuMvjca2LZNiN+MPQyNnFEVRFEVRFEVRFEVRFhB9OaMoiqIo\niqIoiqIoirKA6MsZRVEURVEURVEURVGUBeSaOWeqHoTlc6BTaiE73oRGO96NXAJeSyM7dBb63uAw\n9GrlldKa9fhJaMLqipBDo6q2WNT74GlYwxVnQMtWdAf0nWd+eVwcc6kLGu8Msuy+8Y6Not57L+O4\nOLqmGJdl1Uz2rhuqoHPu8UmNMufVWX8L9I6nX5XWaAkXoWc1dSbssIZ38KjMV5LD9oOUy2LxH8h8\nPJFkX9ZFNttDPfKal5FWOWsr8hjEWHpNP1lD567CvRkdgN3k4RdkO0b1QCto549h8lKR34dt1bfV\nSO/AGC/OiXPn2JpntvYN+dCH2WLbGGNiEqTuO5z4L+H8WPtojDFDlP8j0gWtZmyytBfmnA7/h733\nDJPzOq8E307VVd3VOUd0NxqN7gYaOROJIEASYARFipIoUdFB9lr2eGzveP14ZmdnZ8cer63xeB3k\nkSUrWZTEnEASIAiAAAGCIHJsdKNzzhU7AvNjVnXOe0Vgn2dYeHp/vOfXbdStqi/c+977FU7oIA+S\n2Tl9vqNhaGnbybdg28blqh/r2q+1Ylwt2whvm2rHpyAYxbUcIq1whaPbvPIitMKJ9BkrtjbK7VD1\nAD4jxfGQGApAz5rZgPnm6j7d6MB4I4djmAe1Zwd7vPBY4mhWEZGeV1Arc9dBLxtxPq+P5nrVbtQp\njqEUEUktgO/AEMUtB5ox5thnSkQkqx7XMLMGeuOZST0vZ8OoKawvnqvT152Pqewx3MeO5y+rfhyZ\nzRHjrOEXERmmCNoKPbQ+NVg3PTs5o17zVUCnPHIK19JXovXLmVQ7CtfDbyLoaLxzKAbXkw09fvkj\n2l+DddjdbyB6vvRe1GC3HrQfpXj55RiXrOEXEZnsxj3l+sK+VSK6bqYV4Xzdc2IPmuGPcI3cvUPN\ns7rexBtcvwpXay+GifOoe+y503tcRyCn+3FPpmfxeQuqtWcHz6vSHOjxp53a++MX9sfa7JtVUwif\nhor8fPUejhRuH4I/zs7P6f3N2EeYE2kUZ8uxwyIiE9fwGTeOoI7WbNfeBydfhR/gqh1YWzlyVESk\nMuvurYuFGzCWgo5HDHuVDNJ9K9zkeG5RfQ00Y8+Wu1LfQ/bCSluAfWRCkv4/zukJ7BH8VbjXWTWY\nY+F+7b0weAoef55M2ns6ewquf1wzJ/t17Q+Pw08qTJ5ErudMoA2+Kuwz0/eeXj9znGsRbwQuYcxx\nZLmISPZSjP2SRhxH7xvaFzEhBfchdzWutbdQR51Pl+Pz2cOH1yoRkUzyOWl7Dd5d2RW4p1eONqv3\nFGahhqWQv4gbm8zR0tlFmDuB1sOqX8FG8sUi3wxviT4njuYu31X7if8uItL7Jq5ZzSqJK9hTLrtU\n7xf8tdiTe6ge3JzVZnYJNJUKGrH2tf3kvOpX9ggW9Qrymhq9qPdKvOdISMB6lVmJz44M6/Up1As/\nGvbjcz3RMhux70nphccRrxciIvmbcA+Hj6IOVdbqORXowx41jXzowh362Tu76e756Yno8xy/oP25\nindiP8E+Rzdndc0fOYm1JtqF/YO31Bm35D1Y+Sie4duf18/I/oUYP+yRdu4l+JmtzNaeUaNncE+O\nncTnLamoUP2iffD3eeccfO4e2b5e9Rs/g3HhKSBfHmfdKaAY9GGKlM9u0v5P3gJ9LVwYc8ZgMBgM\nBoPBYDAYDAaDYR5hP84YDAaDwWAwGAwGg8FgMMwj7sjhf/fboNhu+vwG9dosRWuv/fy6WPvcz3T0\nddNeoiYT24sppyIiS0dANbzeBzpS6rCOn1p5HyiAbz6PiOzCflCVmOYrIvLMUztj7X/1f/19rF1f\npqnMHLNdQLHSE+c0tav1OcRoNXwFkhz/Kzo+rmh7VazNkWQsAxMROfw64mZXfFbiDo68LNpWpV5j\nCnuoGRSzTCealanPcyF8Xk6upuv3v98ea/M95mhgEU3ln54GlXhqFHTcles0db/iYchl/JloD1w7\nqfoNvAdpVIYPxzAR0RHZZZWgoP7tXz8fa39x53bVr7UTFL1Vu6E7CzZranJmvaabxxMsPUovz1Sv\nsTQnezGOoZ+ug4jI0DFQKpkqHLqqz2NRI16bO4HvDfQHVD+OKV9+D+5HuBU0v0RH1rR4L6LWxy+A\nJli4ROv5OCaZKenJfk3zniDaZfbDoLo2flNTEmdo/CYS/Xnsoo6k7D4IN29oJgAAIABJREFUqcfi\nbRJ3TFJcdvC6vu48x5gqP+3QvHluTlwGHdyNH+R6xnK8jqM6vpLH1hRJM5bfWxVrDx9x5ByPYO4E\nO1A3OJpVRKSE4jVDXRgXM3Q8IiLeIlA8sytw7ysfr1f9mKYdpehUf7WmUXM8bryRVob51/2qrvkp\nJB2aHIDUwGE6yxzVZI5lLNikKbfBNqwbSV6cL8fdi+gYWF8pajLHy3Ye0DIAXodSaF7x/BARqXwK\nUsI5ki4Nvt+h+uWSZIIjhGcmdAxvxSO4p12vgap/y6FG87iv0IqauGDgNNa+YkfWlLcRfw9/AGpy\neEqfiycZW6hijkId1WuNj+LX//Q7/xJrf3H7dtXvJg2UzDRQp3kuP/gHD6j37P/Ld2LtVYsgUz76\nwoeq3/KlmItF90A6PjWux9IwRS9XrICE1q1DCVTbZyhqObNOr4MTV4bkboHnVaoThTxD8qIckgKE\nOhz5E0Wwch0aPd2n+uWQVEbJTs87UorNuLa894qO4nuHiO4uouccv9+ToeNhIwOQOLD8IK1S7wmY\nQp+3AvOy/2i76jcbxH0bO4fzYJmjiF6rZa3EHXMUM84WBSIiQx+QFJ/3E85/LY+PodYNH8a1bnis\nSfXzV0MikVkMCULXoVOq3xxJVjmuPo9kFSUkURQRyVoMqYu/EvXAW6DXo56XUff4Pvor9ecN0n56\nmp6RcldrSQx/RiJJtXifJyKS0KT3Y/FEQiLFvCfp7/EVY15NDmNdLNyo17swRSMPkxS0mOwXRLRs\n9urfYv+fvUyf72wB7uFUEtbSkbPY07tyNt6/ckR0zhInkp32Irv+CDX5/W8fVP3KSf6bSGPHfV5I\nIbkXr4VuPLjaN94rcUe0F/t8V4ozcADPFOV7sY4Hb2j5XNkexL77aC8WGQipfn7a60UGMH+T0/Vz\nP0dmc6z6wibMX1dmzdHuj6xGDQw5xzp8Bc8Q62qx0QgPa6kor/X7qVY86NO/jbCMq/RhXIdfscuY\n0HtgF8acMRgMBoPBYDAYDAaDwWCYR9iPMwaDwWAwGAwGg8FgMBgM84g7ypoWVYAKlOzXUqHKbaCZ\nMX00KVH/3nP0J8dj7dXk6P/Szw+pfp/9xoOx9jvfgWPycEBLKX54CO/706ehAfqP/8f38VmbNqn3\ndF8Cha23G1S5igbtXD9wnGmnoDyXE0VLRGT4KGiWHc/BBXpySqcesNwkcAnSHZbaiIhUF2rqWLzB\nTvGua3zBetCWsxtBF5uN6jSVMz9DctLar4HGleDIVtidml21k7yaptb1JlzuSyjViZMeap/aqt4z\nNwcKbigAOUF6qab01nwBUrq090HDmxrSVPMjh+H0zffgmT/5d6rfHz77bKz90Rt4z64/uF/16z9E\nMiJ96J8aTGsfvwNNfHIE5xgd0LQ8lkxwwtPUtKZ1Nh9BQs7aPSti7UQnySjag7nJaTTJlMyV7iSw\nJKdhHDB1OjKhJRIZuZC0TTdSffHpcZR8m4SjSYeSmL0AY6z7MKSXoRua4n73SL//A0wLZbd/EZ2+\nkbcGsorBw+2qX/YSUPRvzWG+pDhpPLlrUd9Y8rTkGR3TkEzXNEq00ymSzjCFVURkJoxad5NSkyKz\nOq1pkj4v2oPXKh7T1HU+j4kW0HanHckFjx+mcnscSYOSUuyQuILd+Vm6KiLS88b1WJtlPoqaLyIL\nv4Qa1fZjJFGM0LwUESl7AGsPy8KY2isiklaM+ZeSAmp818Ezsfbyb92j3tP5KhJIZiO4nwsf03q+\noauXYm2mDuev16lxLNlLprmY6KQdDn6Ia7Hwi7gObnKaN09LOuKNss1VsXb7YZ1Ok50FGn5GHWQQ\nqWP6mHxluO4sf56K6r3AwY+wp/nqfffF2v/+v/031e+Ljz4aa9/XBDlGOtVXt7at2Y0aPUWJbfc/\nvFP163sLsraZMNZSN9HFk49znKAUnczFul5VcmoUyYuUBEZ+de8YT7B8rmijTmFKL8faM07U9cxa\nfR6j53G8eSQh4PQQET1fCkl65NLpu0jenrMSn8dpmJN9mt7PaXOcfJKaqveoQ12Qlxavh9yw9Knd\nql80ijk2PoD1vHKnrv29H0BSmb8G85nTNEV+VR4Tb6QvhLzh0r+cUa/l5mF/NxnCuM2uc8bjGtyv\naZLZjV/StgTTAewnWEbv7o3PUhJMEUkWL3yIvas3Re9HsgTHxOtE4PKw6pdLtgmdlMJUsqVK9fOS\nHCiZxkikRz8XTdDzBUtC0h25b88pjItarfz+1GBpS4qzHrNMhyW0vF8V0Um4lSRvc+XnMzQOskjm\nffR1LU3bsAPryyTtPwYHIXEqd54DvSWQ4fC+JKNEr3f+Yrzv8t8ciLU5LVZEJJEkXhmUWuWON64B\n7cewT1zoJD26MuF4YybEzwP62WDhV5Hi238Ex1hIMlkRkT5Kc+6htMdkZy8QotQ73s8VOfNgnBIE\nWf5V+xT2KqOtOjktrRDjYvQ86hzL0kVEqqqxX7r6Cp7nfRl6P821Z9uyJbG2K8cu3IFjZ4mwOPeb\n5/YnwZgzBoPBYDAYDAaDwWAwGAzzCPtxxmAwGAwGg8FgMBgMBoNhHmE/zhgMBoPBYDAYDAaDwWAw\nzCPu6DlT8gCiqI5//wP12ooH4B+TSjFxZQuLVL/cAeiqQs3Q+T2wbqXqp7R95Mly//Llql9qHl77\n/suIkPwyRVL+wXe/q97z7V//9Vj7u3/4h/gsJ251RRNitMYHoOk89L33Vb9lTRRJSfoycfxXAs3Q\ngaaRtq71nI6lXfm51XI3wf4LPV1aW1/5CLw9ZihWMdw5ofotWgvPjtGP4YtQsEFH4eVvIF0m6dA9\nWVq/N3wMWry+gzimTPJSGDh7Sb3n5iy8LXIaMM7SMqpVv85DuF+RLtLmammgPPgMjGEuvYXv+q+/\n//uq3/kO+KHs+gay60bP6ajN3FU63jCe4CjC6WGt002vgq649x1cS0+Gjp3m3NGJALwJOEpZRCQ/\nE2PVR14W7GshIpJB38v3V2nm/ToaMjUV921yEr5OI5f0nEjLoujKBagVfn+d6jeWg7jYsTZ4KmRW\nah1x9xHo2G/N4Tq4scHFzniONzx5uE7Ba9rroeg+jOMAxSVyzKiI9pxgjyZ3fHe/Cf8TH8XaRxyd\n96o/gM9F8AZ09pXb4S114/Uj6j06Opd09q26bgxcRDxr1S74p0QHtedCZiXmTsEStIevXlP9gi24\nZkNtqK/u3HM9aOIJ9lqaHNT+Hz6Kuc+iSGHWSYtonxmOW+TIdxGRAYq+ZU+hrFodw8neG4WbKMqX\nvIEys3Vcfe4qeCKwv1BopF31Y021vxSa+bkZfazsOcO6+Gi39kfgcZpFY8c9d54DJU9K3MGeaAVV\n+nr2tGDc9g1hzC19TF/DsVNYA861QIM/FtbjYvfDG2Ptl1/CXHqE/GdE9H6n8jPwXOAI85mAjuBs\nfR91L5U8MDw5es1NIr+mkY9Qe9nfSkRHTXO0N+/RRESyqlDbEyi+N6tB+yENvNsmdwvpleQr06y9\n2HjtL9pahX/v075YvAawt0XBOr0WsHdO4Dpqz4wTiTo3iXrNHlmebNSk8m9pw4+5OdTDvg+xF4n2\nn1b9Fu7YG2uHQvCSCYf1NfZ4ME/ZTyosOvaba1T3Png25DlRzaF27c0Wb4TbsG7UPbZUveYhL47L\nP/nkdVxEpGcf1rscWg/Y50NEJHAV9y54DTXGfR4IUnx2Ks3nFPL/q6nXPiRj9Nll5HlU4kRBT9GY\nqdiNPc3YGb2nnCPvx2LaH4TaxlS/nFXwNuonT6+UUb3uNH5RP3fFExwVHGnT42WKvOcKtmB9cv06\n2P+O95Hn9utngZoKnO8P3kZ0dUW+ruPnjsInatkGPOsEO3Gdq/bqazJ8Afv9zBqMnaQk7RESHsec\nq3gS/k9uRPL1n8PvpJh8nW7dcsbvCeyBK9fCP8tXqvfdd3suRjowF51HWukagZ/WLHnTuD5o/JqH\n9j6pBdqzLYG8EPl3hEi/rtGRTtTyvBXY23e8cyLW9jnPJ60/xbNBGq0TIyd65HbweVDjO3u0V9Wm\nb26JtfvexX4r5Dwr89644nFaw6Pav4fXhk+CMWcMBoPBYDAYDAaDwWAwGOYR9uOMwWAwGAwGg8Fg\nMBgMBsM84o6yJk8maLHbf0/nkQ4RLTbYgvhkjnET0bTY/DWgGrqUnvd+CClKzwioht87eFD1W15V\n9YnHer0PNLU3T3xHvebNAv329F9CCtVy+Lrqt+proJp6id6a3aejt/IpkniEJD51T+voyvKloO8N\ndh2KtZnKJSJy5PtH8RmbvizxRu5KXPfMxZr2F2oHPbLjJOh8q39Lx66m54L63PIL0LJdivAUSSaY\n3luxW8dSptfinkz2U9wufZ63QNNMC1eC/j/eCupmeoP+jTHcDpoZR1mKZhFKmOjbHFXNbRGRpkpQ\nDAeZop2kOX+pzvHGEyl3oAZyfKqX5Cuj/ZpuV5RfFWvnFoHmt/+4jq58aA8o+Hx/mbYqouVt1Z8D\n3T8pFfcjIUFfy/ZDh2Lt7AbEc3qcGOjwWHusPR0ETXQkSR8rU1+ZgznWoqOLWcKQXoZzDzZraVHw\nuv473pgZpwjIZTqelGPoWR7oUn/lJgZyxkLQbsOdmu7qpWuauQRSg7IqLTUb64AUjqPPe09+HGu7\ncbHjRN9meVHJUk2Hr9wBCejYWVDqC+7RsbeBDowlfwXkcpEuPYZHKBK3bBVFvzbr6NfpUR3BHU+w\nvCHViXvm+F6m2Rfv0LT2tCr063wV0q2CdVpikrsC17PrRVCKE5N0zeMY+b73QLnNoNjgwdbj+kRo\nvnAcerJPRx+zpGZqArV6/LKm/foo8rP/GNaS0KSmea/46rpYu+sF0M59FZqWPDWo5XfxRoio9wnJ\nupYX5OL+sKyp8x29Z8hvhExz+TRkBzd6tHyEpUw5ftDj01K17CBjEeYmx+VybHLPkfPqPYvvb6DX\nsD51fqSlojkUD55LspXrz+nPGwmi5i97CHXdpeunkYTv6uuQHRQ5c8+Tf/ckhjPjOKYsZ2+TXorj\n42hXf42uf7wX5XkUaNU1hediVhnu9a1buj7z/mjkFOpadhPGyuys3jexrClnCdaF0fN6HPW3vBdr\npxeRJHBGy1x6T4HSX7Iaso3h5suqn6+ApBq0V4/0OLKCLkeaGGdMs/SqQ69jIZLTFdP6Ermh+13u\nwvr5yNNNcjtMsfxyDOPnvbc+Uv1W16BmD0xgHTpwHvPF79X7FrZkGDmB46n5krZnGKSIXZbmJTh1\nvZjkUCxTP3dQ38cV90MKNhHB+RXmOlHs9L3VWqH5qdFxoj3WnnOk8nVrUaP4+rPsVkTvKbtJWnpj\nQEdp7zsNud8f/f4zsXakXe8Xfu9v8Cz41/V4Hlu5Byc/ePqGeg/vc3MKYTmRnKyfA7OycE/7el6N\ntdWcEpGqh+pj7bbXsd41PKtj7RtJQtX5Ivpl1um6dnNSy9zvJjKXaolq1iIcy7Uf4B4kp+k9Q9ke\nSPX2/cW+WHvV+nrVz0/nPPQ+1qvyRxerfhVkvyHqNwXslziiXUSPrZe+j6jzzfX6GFr7Mc4KszAX\nK8v0/jyRnttL74cFSsdzF1U/lkcOHKbnRUcjlk11XhbKr8CYMwaDwWAwGAwGg8FgMBgM8wj7ccZg\nMBgMBoPBYDAYDAaDYR5xR1lTy4/PxdqBiKYYl9SColm4FXSxqVHd7/RJULHHD0B+UbV6gerHzuhf\n/wbSQwbOaGflv3j55VjbS5TgP/n73461J4e0c3RCIuhEq//ggVi768AF1S9KjuITl0HV56QcERE/\nySKYStX3sXbWn4uejLXzVoJe6KbtbP/1bXI3MUh0MU7RENEu703PgGY3dlHTabvbiXq/GZIEpg6L\niAQ7QK/1kcxnvFnTEm/NgDrISQrDJ0EFLdvuuPZ7QLGL9IHW2XJ9v+rnLcb3Zi8GdcyftUj1m1uD\nMTfZB1qiK9+ZnIHLNlPvi7frlKjZ6N2jG6YvgNQjJUNTCMc+xr2KBkEpX/aNdarf+FWkWXDC07qh\nWtVvmqi+OcsxPsbO6TFxi+Q1LD3y5mC+DJ3XMoDxsxgHnETAnyWi05+Yqp9TrZMX8tZgXg0cao+1\nORFARKfbdL6EsTMZ0lT9Mkd+Em9wItNMSM9FlgkoWY7j6j9ESWc5K1CH89fo5IjUHbjHo1dRA7jO\niWi5Qvth0P9zcnE8N7p0igTTjIuICuq5qpeUpvswtrz5mJdJHi13yyrHdRnvwv3m5CERkRSS2g59\ngOuw4Kklqh/X/HgjKRXnOH5BS3tmw6gVGXUYqzNBPc54vHPq2c0pXUMmaM7mkCx44sqw6jfYAwlG\n9SaMYU6ScdfmUCtqdSKl7SQ6ErayNUjtYpmiN1tLByODkP9kkLyrZqOu40FKGpmaxvUqpVoj8qtU\n6bsJTpcQ0alb6UFct7Ituub3vI+xWrAUx995TlOdy/MgQVlaVxVrt7b3qn7pJDnke8JgOaiITuPp\nGsa4qK/RaUOhCZzH5RchzahcpSWGQsEogWv4vERnzkYpQaOGxtzYeT0nMus1LT+eyG7EtXATQ7je\n+KtxXX1FWj7HclCWD09c1XOM9wXefJzj+FV9vvxdYUpWifbieg1OXlXv4bqWVoT105WTRugz/MU4\n9+ELLapfXhPt0dIp4bBOj6m+jyFdTV+AOXtzWku13KSueKNgPeQJvEcQEclswPhpPYb1qTAvW/Vb\nuRbSh+43sV9luaWIlgKnUBLUZ/bo/eGp7yEJJkzPJ+8dOxZrf3WHtntIp1TWaBekYW3/4jxrTGB9\nH7lONb5S72/YJiCZxkJtrV7rr5NFA+9Xk9N1DY32arlaPLH8a9hvumsNg1P9Bj7Wz3d8nfMycN+8\nKdoGY3EZxsvv/PF/ibUrCrQMp54sCTrasH+tL8Nnhx15XG875jPL+Rq/9KjqN9gNy43sQsjoBlu0\nPI7X4KW/QSltzr6OJYx+sn04+T0tR27YpiU/8UbWEsy39DL9fNdO47jqMUjV3L0sp2o++u8oDdSR\n3nO/wu3Y64UdOXv+FqTkBkawQLF03JN/e7uHClp/89Zo6X1WFGNm4hLm4opvfUn1G6PkvEArjpv3\nMCIiXpKdcULiwAW9hy7epvcSLow5YzAYDAaDwWAwGAwGg8Ewj7AfZwwGg8FgMBgMBoPBYDAY5hH2\n44zBYDAYDAaDwWAwGAwGwzzijp4zHMXqRpkltELTH6LIx8pHtB7u/t9BvHTPq82x9qG3Tql+Ox+C\nFu87/whfmWcf1JrOlmZ8xv/9rW/F2sEb0ID5KZpORGSCdNNzldCHeTJ19BZrivl8Fzla644XoXnj\nuLeGh7TvwTT5uzR/B+dbsFlrwQePIHa0dq3EHeUPQ3N8a07rHFmzN/oxNHHF92k9XPnD0NMH23Ct\n8xbqiGwh+brHS9rFXH0Np2pwfZv/ARrNVX/0bKzt82ld7dgYPHxSKTI6f7WOnx2jGHR/Fsbj5KTW\nt3I0XsE26B3dmPfRM7guEzfgl+BGZ3cfa4+1q/78aYkn2Gem43kdo1i4BRedQ0J73tJ+L3kU08v3\nunKb9lnpJo+XNDrfsRYdLZqeh/Pv2w8tOPtppDgR2azxDrKv0wI9Z2cSMXfYZ+b0h1qrv5z0neyJ\nEG7X0aLT49B4p1OUas4K7XNx/S18fsNOiTtmo6g/6eVaMz+XB++IAGlxXd+BnNU4ZvYHcvtNh6Hb\nnaDY46FW7aWQmYa5VLYCc+6Nl4/G2h+3tqr3PLgS8azZ6RgHZVuqVL9wH3kkkFfX5Ij2h+g/DS1z\nBvluuFGbuU04d44aHvmoW/VLyaH4Xm158qkRojnBkZEiOnp+iOr6TETrkjnOl31m3AjbmVHc39EQ\nvIKqNuj6vGwHeRkFMXcGDmAuX+rSHjHr7kWc6JUTqBVL8nT0ce/HiOWdo/Gbu0xrt4tr74u1Q90v\nxtqu/w/Xh+JNqF2Tg3pMJPno3jdK3BEg75t8pw7MkAdNUT18nY6+8KHqt+GBFbH2sX3QpHcODal+\nP3sPEchrG3Ey//rfPKP6+SiGMzUb9+HmTdxT9jwSEYmSx962X9saa5/8wQnVrziH6l4VaiqvpSIi\naRn4+8JFxMxu/eIm1c9fgfk8TBG4HPkrItJzBuNulT7dTw32L4o4fhqB61ivOKI42q89t3h8emlN\n9zoeBlx7Lv8Nrm3tsytUvxnyAEryYS/R8zZ8YUp26Pk7R/UhRL4M7rGyX0rPEewD0hxfFZ8Pe8yp\nKeyHEhL0/8cmefVeJ/Z5xXrdzlyY+4n94oWpIfiQ5K7T8c+JdO+Ky7GnHO7Ta3yoD2vcumfhk5W7\nSO9vhi7iGYLXzLEL+hknKw33v6IG9z6T/Cs6nHmeQJ5P1eV4z4nzet+yYRnifH10S5J8em7zmBsl\nH8isBu3jxPv1mzPwB7r4U+2DueyLq+Vugfc2V17SHjuNTyF2mhOFb97UXkblS7BHnezB2K8v03v8\n6dnZ277GqN+O/X+4BeMlgWKRs5y46Iw63N/xs7jmp/78J6rfLMWFZ1Zg/cxeqj3Bgs2oQ+x/NPKR\n8zxCdTPFj3lZvVifX6T77sbaC9XDhGT93FbzFdS67tfh61T1lN5k3ZrFffWkY5+bXafrDe99ml+C\nT1v9Z3X0fCSCfUyQ9vb8zJ5erv1x2OunpgTzyLH6ET/5efJvAklJzrqYg/swVYjPrtqrNycB8gnk\nuGxvoX5eZH9Wi9I2GAwGg8FgMBgMBoPBYPj/GezHGYPBYDAYDAaDwWAwGAyGecQdZU0JFOVYX62l\nOKV7EJE6cQU0nmSfpi11vwQ630QY1MXIlI7e+tP//L1Y+//846/H2tOjOoL0p3/xH2JtL1HEau97\nHP/uLVLv+fDwn8Xao6dAv41G9DH40kBpWrIcPKPxLk2fLN4FmmRHMz4vNUfToDjKMTkNl9qlJXMc\n8N3A9DiuYdvLWhKz4BHQK8dOQ+oy5cSRFy4DdSshCbS3yaim5o1dBjX0/KuIuK5ZpuM6mfZ24AIo\nkMtmIcUYHtZU0MgAaMtMU/b4clS/WzdBRWRKb0GBlsj1dr0Sa3vzQGE9+Z1jqt+iezDWk5NA80vN\n07Tnpd+4C5q0/xfDJyDbCE3qOVFC46n/XdD/Kp/QkjOOTObr78YBZ+QjyjOVqN2ljmTlzOvnYu36\ntbhGkTbQsl1JQ2ohXTN66fCBj1W/KYqDfOizoOovLtVzJXsZ5vr112lst2vpTu1ujPMAxeV5cjR9\nu3iRpqTGG2kloF668cpcRzmSOdWRmUwS1b3vIuZscrquvVxngp2YV+74GQ6AJtt6DhG7P3gZ8tK/\n+J3fUe+5SBIZjrycndRR0PmVoIzOEQWV5QgiIjlE/2Tppb/QiQz96ZFYO7Me9ONwp6b6ujU2nuB1\nsfl7mjaevxpSnyS6H9VfWKb6MdV3ZhL3ZvSSptbnLsH4jlJUcM8rzapfih+yx76jkFMdvYoa+v2X\nXlLv+UbwM7H2ax9CrvPkmL43GxtBDWcKeJJHx7RyrS1bvybWvvHG+6pf9hJ8BlPwR07qtSRnuV7H\n4w1fFubVbFSPW5ZIjpCcYFGJlnIxPX7tRqyRvc413LtlS6z94EZIC1jiJaLr5dgV1GU/zSOu4yIi\nufVYW5OSsIepbdLRna0XO2PtFJ4fTuq8twg1em01ImI739YyWZY/eYux1xkdcmJQy++eJIYlfDyu\nRESiA6iTkwOYOywRFhHJWoz3hbtx7K6k0uuF9HnRV/G9M06/mQBea3n9Sqx9rRd7xcw2LWm99BFJ\nnkh+dqatTfXb9TDkOokpqENu1DVH3t+6hbrb/s4R1W+W5FRcd0vu1VKgkXMYSxVayRkXqPhxJ0bX\nV+J3u4uISFmT3gvwWpi7CPuRhARnXSQpE0vhSrbrc85uxLj46J9RH//sa1+LtV1ZTt2jsDbguVw1\npOtBHkWH8z3IW67rS4AsBILXR+V2SKRzSiF5TK5fX7ubjq1BPNH1MtaaFd/YoF6bpujwSDeu+QxJ\ng0REPjiC/Ud5LupGjnMePaO4Fim0J1/1uTWq3zhZHFQ9DelN7wHMtw9e0xYbXOO//p/+U6z9x1/9\nquo3MIFx+ugy7FEnB7QUcbCH7uHzeK1wpR6/aSTL6d2H4yt9sFb1c/d58YZ6rrlD3HfJfZgvY86+\nhWWWwxcgjeV1TETbHNQ9hrmT4kTAj17C808y7XU4qnqEnu1FRKqexP1O8mCfPx3U98eTgfPNyMB6\nx1JiEZHwKPYnPGdTHesG/s2CLUtuzupa4Sv95Lr2SxhzxmAwGAwGg8FgMBgMBoNhHmE/zhgMBoPB\nYDAYDAaDwWAwzCPuyP2ODkOG1D2ik1pSjoGOlJoPeuvVfzmr+jGFfiQIOts9i51Up52QhCQS5dZN\newl0QzJR+uCiWHt0CO750UFNW8pZBZraP//ZC7F2+6CWc3zl3ntj7ReP4fOe3rNN9RsjB+/SQlDr\nf/AfX1D96oge17ABx5pVp53Wj/zt4Vh78TZNnYsH2l8BtTYlWd/y1BxQuryloKJN070XEbn0t2/F\n2nW/jns1flVfw8A1jJOapZDCXTt9Q/VjmuJDu0CBjAQglxg83qneMxMEfXjxZx+MtRMT9Rgp28SO\n2/ie0VEtVxr8AJSz1uM4vppVC1S/pFTQJqueBvUu0Kpppi5dOp7ouQbK7pKndDoEUyDLHwHnuP0F\nLWGroNSutEpQKCOOJCSzEeMzSok4xw7oud3Sj3mw4iG4q09T8oK3SDuU//j7+2LtXJLDNJZr+cot\nolN2nGiPtRMTNAd/NqQp5b9EaoqmfnISTCElc/W+o1OIklPunhxGRCTchfqV5EhA2Rk/Zxkova70\noXMfJC0+kpaESU4motO5yh8ANTad6peIyOWLoM4//MDGWPupr90fa3MqlIhI7TpQWpla6qZ6DJ7E\nfPYvoLSYJVqywnLYOXLwn+huV/04XStCEoQZR+pxN+dixiKcY8HUnfP+AAAgAElEQVQmLddkKQRL\nKTi1SkQkEEXtmJvG+WYt0mtDgFIIBw+jXhVs098rNEQCUVDId61HqlZlvv7smzTH8rKQvFOao2Wi\nP3r3UKz9ZATjw1+l+83k4HuzC1CjSrbpZJqZEOjCY9cxFvPX61QKN70p3si/B+vT8DGdZDU8iLm0\nYD0l+TkJj+3vovZmZWOtceUEfi/WqEQv5jknjomIBCjBru5r93zicZfX3Kv+Hho6EGv3HkfixWxA\n18blj6JGs0Tixde01GVtLWpFwx6sdzVP6DTKntdQhzIXY2y5NTm9WlPZ44kp2qekV+jEP5aQFq7C\nGExJ0TVq9AbkGMVrIE1LTNSy5Vu3aJ4WLqV+ekz0XUbKHSe6ZFP6T7KTaDUU+OQElr/72c/U35vq\nsW8eC2F+LG9ap/r5/VjrWz9GykxWg5btTpB0LiULY5QTo0REijY69SbOCLXj+6aceT94CTWi/hnU\nlT5n7S5bjfk8GSZJYJaOQhmnVKaSHXit77CWkOWT3cCKz6COFi2HRHX4+hX1Ht4rphdj3K//3a2q\n3xSlR0Z6ce/ZFkBES0zSKVVmsl8nk82SvK/nAK4LrwUiIsmH22PteCfDFm1HnZxy0hjnSO6csxJr\neE+L3oswRiidsDBP15DNvwmZKEv0fYVOalkR7f9J4sT7GVeqOkhypTWrVsXaTYv1OramAPdmbhLz\nvONCh+q3kiReIdr/iSMxa3sVYymP9gHXnOSrhqd0klHcQYcV6hi/bbepMYwtThUT0ffbQ/LhJI/e\n87LUfW4SUqGJazoF7Y3nsEY99DnMpWgvxkjT7+1R7xm7gbU5dyH2m75CJy25GdL0Qkr+HR/XVgu8\nR80kGebIOT2GA/2Yzx563nZTDDP+PxLwjDljMBgMBoPBYDAYDAaDwTCPsB9nDAaDwWAwGAwGg8Fg\nMBjmEXfk8Ccn4reb9V9Yr17rfPNarO2bAKWuaKmmN9Uuguyn903QjIp2VKl+h34IKujuP9wda5/7\npw9Vv+/uRwLQ/0L/zpTb6TFN5UsvA72Vqd1Jifq3KU4taaoEjfPSBS3JOXwZcpH7lxNV2KEQsgTD\nXwVa3vF/OKr6uY7v8Ya/CFQ/1yF6lFz454iSn+zIAsrWgu41fBqu1ecosUdEJDqNz2hcAhpgaa6m\ncPG1yqzHPUn0YEi6cg5vgaYZ/xJpaZpyOz4O+uLMDOjbZ//qLdUvvRDXov5+JBt5nNSt0TO4RuNn\n8NnhqJZSpJ/D+6p1OMunRu12yOJuTmuH+7KH8BpTEqcp8UhEJNKN8X3jGKiv5Q3aNb6f5BN5JAmc\ncj5vzUJQgtmhPmcVasDP/36fes9Smle1C/C96TWattr1ESRtTA33ebWEbYKSpvrGQcFsWKBlUlkN\nSF5o+8WlWLtwg+7HteJugKVMISexKKMGVElOi+H0DxGRRKpb2XWor1n1TloJUZ8ziSZbtK1K9WPZ\nAdOAw5TwxHRtERFfMdGHKZXCV6Dry2wUY4blLINH2lW/st0Yw8F2XJe8Jj23246eibU54cOliLrJ\nefFE4Cqkm+zaLyKSSClyhffg2P0lel3kidp/AmupN1NLj7JWYl3LqUcNvvDXh1U/TnVhWRKnkS2q\n0POc0wr/9Kufj7X3f6ATqB5dC/57Lo2jqVEtffWX4bVIBMcz6fSL9H2yhCPoyETd+h9v9OxD+lDh\nFj3OZo5hHfPSnHATpXJLMXdClCZYlKUlNvx3Ou0FODlORCSN5mLLTyCtLiAJVmqqTjGcncL1DbXg\nGh49c0n1WzkGqUGQ5ObleXmqX+1myJpOvYSx4Hdq74IVmh7+S3AajohIqHXsE/vFA5lU/1Kz9Zxn\naU4kheSkqVoS4ldpUqhzaWlaxjA8gDnH8sXhU3pMjF7GmnS2vT3WXllNn+ekoOSkQ/7bOoA9xpYN\nOvXmWg8SSRYWgao/5ex5h4YOxtr+ckqGC+u1pHgrJa5cwff6F+j1uGc/7d2/KHGHtxDn7+7zRg9h\nHWKpo8dJy1SyNrq+PSdPqH5Vj0ECNnIZ+6BSJ6HK40U9S8vDdZudxTF4nWNIpCS/lBSsx32n9DFE\nezAG0xbguMNdujaOnMDYyl2P+s2JNSIiXtrLpuWSfG5Cr9tT43rPGk/0vIvnpOxaXVOiXThfTwHm\n6eJd9arfEjovrrUDPdpWI+Mq5J/lO/AM1vaifl7klEq25mhcg73rUJ+uT2Nh3N9f27kz1s539oq8\n9rOMuq5MS6uu/Qh7loOUTLuqRo+3JQ9BKhlqwTHlZOvPc9P14g2W2vJxiOjndk4j63pTp0fW7t0e\naw9dgdQ2Z5Erj8RzA8+dcIdObONE0EwaW8FmkofPaTuTsqUky5/GOjver9fFdJK/dl79Bb6nWKdk\ncVIVp9iWbdI2E7O0zw1ewZjz5Ov1yZOp11MXxpwxGAwGg8FgMBgMBoPBYJhH2I8zBoPBYDAYDAaD\nwWAwGAzzCPtxxmAwGAwGg8FgMBgMBoNhHnFHzxnWSLH/gIhI9yi0XqtWN8XaiSn6955IF97H3hgv\nfPsN1W/nbuhA//Jb/xhr76YoMxGRZ7Yh1jqf/G18+dCsuv4IEfJeKCPvkxPNWie3fQn0/T95//1Y\nOytN60p7hqF3vNYLDfADy3XEWSEdn4qSS9fxwuzTcjcwR9rISI/WWxdshG6cI2z5eEVEJq7hnPvP\nQAvK+kwRfa0uXYLvQHhKa505Vr2kGdrpbtI2Vz3WoN7jKyBd9pvQVC/co0WYycnQSw9dR/yzx4lJ\njg7h2H2kE2WPARGRqX70i9B5JDqeRVPRu3cfWw7BH2HZF9eo18YpIpDjMAuWaJ8L9i5hDWfJfVr7\nOvgd6HbbjkKTvWWzHt/jndCjRjs/2Udi+QIdS84R2Yk+3I80Jwa1fgFMe84/B98DjxORfakV3jSb\nn4YvVoIbuR3GHOD55kZEBzkKXpeeuMCbi5qa7NPjcWqUfJhKcH9YiyuivbJ8pejHc1REJIvibUc+\nxpxNSnf06qSfZU1/2XZooKfDOlJxbgY+QGGKtB78sFP1C5DmtmIv5nPhFj0uWL+dSJHiHa+eV/24\ntrPufvyy9u4o3PDJfhjxQEo25ljeMh3DGWjDupiYgmO9dUt704R6ca94bQ1WaP8KTzX01TfnMH8z\nKvV8KZvAupZN6wvP+ZNXr6v3bNu5OtZOr4Du+uGCzaofj48bB/EZ6x9uUv16DlIk8eaqWDvZ8SDh\n8Tx+AfeN/XpERBKS7q64Ppdi2c+9qr3T6ih6uestnHOqT8+daYr/zCEtfPq4XkPmQuh39i34Dri+\nYFWkV+f1aoLqUuD62+o92RRLf2sO/nXuvoL3Kp20h9mxdKnq994rqP/5tE64d6P7PMZqGdnmuR5Z\nPF/ijQDVvLFzOoY4exmuC9da1yspJR0Rp50HPoq100q1t096GeZcchrWIV+xvtc55JW0nvzSJule\nR7r1PozjfK/24Lp+6yt79bHS+j5D/iGu90mwB/4IyV4cKx+3iMjwWXzX1BCuy7TjTZK/Vsfcxxsz\nFAXtydLjZckXEGMd6cV1Yz88Ee1R1fZTzLHqL2gDwGAvzrloGfwioqEu1S8awDUsLIP3yM2buDZ5\nedojbGAAzzW9xxHF6+6n2UNq9Cy+5819x1W/HStQY/kzQq16PW47gb124+M430sv6/WzqPjO8b2f\nBrznylysr0sSjbsJ8tlyn9XGWlDnsqtxrPXkvSaifawiI+SVRL59ItpzpmEl9rmvvAbfzznH8/Oh\ne+CxNhnAvX7ne4dUvw1bcG/YUzSH6rGInktfWI/7Pn5aRzC3v4tnn8rNWH9uOR42LS/Aw6V2ncQd\neSsxr7IbtI/hLI3BQYplL96h/bm6j6GOptA+LTKs92nsizg9gevk1qmqAhzHvr/C+rd0ATxs2l7U\nXnl1T2P8DF+Dz4xbX6LD5CFF+/O+0/rzqrc9GGv3N2P8BAf1nvf8IUSir30Kz2qjH+q9nYpV19ZL\nImLMGYPBYDAYDAaDwWAwGAyGeYX9OGMwGAwGg8FgMBgMBoPBMI+4o6wpShT33DU6hrP0AuhjTNty\nY36FqIbDRN9LSdZf/e5boEFtI3nRxzd0jPWue0ETKr0PcWj9R0Dry1ykY9zmJnFMZStBK6vr1HQk\nP8Xo/uYXHo61XanW9suIVq7bA6p+4IqWFWQvBb1t4iroXCUbdJzYidc1fSreyFkNmlqyI2no34/r\nm9EIKmLX8XbVr/Ie0NbKibKe16OvddUToPq1PQ9KZZ5Di82oBA2w+R9OxdpTs6DNBVt0tGqoHTSw\nnCWFsfZo50XVL0xSupYDFPnucSjp9F25JLfZ/7fvqn4rVkCOlzwDCnSCy/NOvHs0/MYnICmaDWm6\n+s0Z0DKDNAZLOWJbRAYOtcfaRbtA8XTjFcs3QHIychpj/daspn+yRCkQgSRn38uIDqwqLFTvmaFr\nztLIHQ4NlmnOpZWgNCY4Ep8VZXU4HroOV/drSvrKr4L/yfc9w6HBjlwZlLuJCEWOpxVruurgUdQj\njtyeDWqZwNLf3RVrD3yM86x6aK3qx9GCXMN8hfp7vemo7QkJ6Dd4GdTwjAX6OnlIqjLQRvRMhyJc\n+QTq4xytDUxhFRHxUz3gKN5bTuRsAklfWOaY6kgnpgN3LzK0YD0iNcO9Ws7H1Hq+5hPtWnIxfBwU\n+qxGjO+iRfeofoM3QHPnKPLi7ZpG7KHo8Bf+BfXr/jTQ9rds1bLEsl1YPzmKd/TjPtWPqefLvwHp\n4OilbtWvgGr85Aj2Dm7Mb+ZCrBlpFGPpRktGh3Q0ZrzBa+GCck1FZxo+S5kSHOlV8VbUyn0/OBRr\nc8yxiMg/7t8fa7OEZaUTp8q1yUNylABFx1Z/XsvJQh2Yfz96A3Lft48eVf1WkHxpRxM+w5U/TUQg\nb9m2B/stt/6//OKRWLtoAeq3G3ubF3CiYOMIliC7+z5eF5XE0IloD7TheLPqKT65KFP183qxbwsO\nQxJftm6j6vfev/9erD0awhieIYlTS7+WNKyvw1q9phYRroEOLV+p3IP1Lo3mW2bBYtWv5dUDsfZk\nP44ho05fI6b4T9GGJtqrZVdZzrWNN0YoptaVwJcvo70jHWPzu9dUv8UPYq1JJUuG4VO6TmUshNzB\n68Xa17bviOpXsg1zc3oaYyQ9vSrWnpjQcsiO57EXzV2Nzw7d0JHEnS9j3R4KYA156KFNqt/0MGrn\n1QN4TyCipXn3/va9sfYo7dlWfkXrXsYu3r39Te0zWF+GTjgSMYrSzl9P49YZVxl1mH+DB9tjbf9C\nvf/gyPHBox2xdu5KLXVLoz3CwHWc++Z66EiSk7S0KpHWO5YPNzk2BlWPYW1lSU1amZYcXz8GuVJa\nKp4fFmzVtT+LJEMT53GsxQ8sVP1cyX680U9ypZzl2hphnOYpy0bD3XofNEP7Oz9dw+GPe1W/W7Oo\niRk0FkLN+tkvlyTD/eNUE0n6XLJDX8/wGMZFYQOkkWNdOkp7jM7JV4L1JNqn9x+9Fw7jeBbhu0Zb\n9G8Ulfn0LENrTZ4TxZ6ap6O1XRhzxmAwGAwGg8FgMBgMBoNhHmE/zhgMBoPBYDAYDAaDwWAwzCPu\nKGviFJehwx3qtcLloI+lklM8J2iIiISI8l5K9O3aYk2xZmpaJlFLo89pym0+UcqTkkDJTCI3fjfd\nZPwMaEuTEVAmd+/VFHJOFvHXgkbXe167LDMN+Od/ty/WvneJdhQPd+Lcp0dAT5zo0ZTWbV/SxxFv\nXH8bdMjGJ/V1T0rDdRs6hfMsXKhduplJ9+Xf+A+x9r/93OdUv6wreJ+/WlMRGROtuNaeAtC7FqwC\nVc5N0uk+BdnH6AXIBJIcuiHTxdoGQQ90U7IKs0C385GkbckCLTtLJyf2vuM4hsKVWuo3fFbLAeKJ\noffxvRn1DjWZHMazSe7V9fwV1Y/pwl5KmAi1aMot3+vBCUjEspxkkUAUY/q1jyBLbO4GjfjBNTpZ\nas920Gx5znpyHElDH2iwYXJTdynPqSSPnJ3AvOQ0KhGRYCtokmWLQNXsfFMntpXcxZQfEU2v79mn\n03OK74NUhaV5WYu05EsEdP0Ckmnm5emUnesnfhhrp5CEY/yqpjaXr6+jv0DDnA3jeg6f1jWQkz04\n9YbPT0QkOghqKEteZ6N6LGXmgWY81ApZnGgFgmRSTZmmVJj+g22qX9YSXb/iCU7NcKVpw2dA272y\nH3LNjBItkWApU94yrGljgx+rfpWNn8FrYydi7WCfvh+cTvWU5/5Yu/9D0Mtnu3RiCCcvtP0MdPwa\nRzaTWYpxOXwNawknA4mIjJzDupbTiDqUWa0TQoLtqDdDx3B8nGAiIjJyCteyZqXEHcPHUae6hrUk\nuYESMpLTIS9yJTFTJP1eRRKl1IxU1e9hqoMVRHu+6Eir6xt0itkv4cugfZUj9Wt9FzWM6fqf375F\n9Tt4FjJFrqO9Y7r+N5RBdsCpGRfe0XRwTgUb68FeZzCgKe4Lt2l5bTxRsBZzJ3BDU+EjtIZkEi2+\ncPFquR0iEVDUk5L0fiEwhOvsofs7OaklHCxTSaV0QU6F2bSiUb3HV4n6sGAQayGPPRGRkuWQUPWd\ng+Rxbuqy6peShePjRL+MBdmqX5jkSyzX5BQVEZERsiRYoLe5ccHCz6Hm8LwXEfEWYq+SSnudJc65\n8DFn0T7IlYHkVEICdvMm7RlW6f3c4Enc12Ax5oi/HFKmoY+0ZCqPruHgkU9+phERSSOpx8UX8D3L\nHZlPYiP2tjd+iOvSuETLWjmNktPSAq16TvScwXetekbiC7rOLMcSEUmrwvhOp3NPzdbSDk5tTCBZ\nMMu8RUQqPwMJG0vwJpq1pHJmHNeifC329R++jRRXN43XN4nnjuVfgVQ8wbEtCHZjH1X9BBao43+u\n0/SaHscz1wzJrdsOtah+K78JSRvL90dP6/lQsUPLnOKN7KWYO78iF6frGWzD+J6d03YmxbQfGab5\n7Cas8R6O95teJ6FqjvaLRfTcVvIgJKBJXj1GUtOw7xi4BNmZu4YnerBnDVAqoiulm6Hja9+HvZ0r\n5X//Cp679pKUaeK8vo9FO7UMy4UxZwwGg8FgMBgMBoPBYDAY5hH244zBYDAYDAaDwWAwGAwGwzzC\nfpwxGAwGg8FgMBgMBoPBYJhH3NFzJtQGnWXx/Vrndvg7iJVatgEaTh95WYiIhClCLkR6rvK99XI7\npGRCL3vf//aAeq3nbfg0+PKhCeZYzIRk7XuQTHrtiq3QHY6c0Lp9juiqS4H28+2zZ1W/omxoXZsq\n8Xmn27TvwSLSLnYODcntkPQOfiNbvO223f6nUXs/7g/74IiI+BdBl9fRBl1xxqz2SGD801/9G7zf\n0f3mLYa+fPgqNNocHSuiNeocl760AlrFihXag6CoBj4NHJvM0XciIi0XoIXc8cSGWHvinPba6B3F\n2Jy4jPvTN6J1umljuBaZxWjfnNIeDou/skruFnLXQKt5a05rJtPILyfUhmN3/Z8W3g+NY14D5nPr\n6HHVr7cZ4+ACeSKcbm1V/XYuh5b2/RPww/itp59Gnz3r1XuC13F8i76O6zU5oqMh2Z+EY0e3PL1B\n9bs1i2tx6W14IhRn63E5cRH3N53iswPXtf9TblB7XMUbg++iRlQ+vVS91vUStKrp1dDVOhYTMjMJ\nP5q8QhSMYFDHh3PsbxdFdxbdp/XqKSm4VtPT8N4oWYP7O9KsY0tTKbqZdd5lO+pUP76v7J0zdFLX\ng6Qk6L5Z2+1GaUfJfyh4Hd+bR/GcIno+xxvsl9P3jtaN8+F6vVjHZsa0V9LcFMZ332Gsacuf+h3V\nb3IS3lo5OfBr8nodH7Roe6x9cwpztuoh1P70ch3x6cuEtrzxdzCvUlO1LvzWLRwre23wGBARKchD\nfe4/QeNtvd47eAswx9hnhj0GRH7VpyHeYAeBFXuWqddaDmLtKizGGpm1VHsZ9b7fHmuXUrx54Ir2\nsGG/s4JyfN6WLL1f8ldT3aJ5kOLHdedIehGR/BLUs3Ab9hwdfXq9Y282jux2o2THwphjH74O/6f1\nj+j1LZ/8126S7n7lOh3rPBu6ezX15gyuha9IX0svxeh2/gJrw9xOvW4X1MHvxO+HF0xCgt4eT4d5\n74R70/+BjlJtXATfoDeOwYtt02JclxPnda1Ou4q1Ot0Ln4cVu7X/U/vBd2Nt9nq8OavHBM/NjCqM\nt1CX3v9Nkk/LFNVq9ugREckv0P478UbfO9hbsB+LiMhMELWz6xD6OcuiFDbCr3CMPHKK79Xr3WQE\ntTMygTE8Oaz3IHwN2M+m63WshTkrdNQwj3VvEa5ZeoXeT498hGN49I/2xNq+AsfnIoK5WLMQa1ze\nGu2Pw34dHCfdd0CPzSbyUIk3On+OOZbo0bWcfYOGT8CnZ8Hjeg/EY7B0D/xE+t/Vz1azExgTqXSd\nZxyfyqFx7JVSRzFfSnNwnRc9rP2fgrSf4b2I66fHHiT7/u2LsfbiJdo3bGoM/jsD5FHkeiENUj1N\nK8d4yVqs15yx83fP21JEZOgojsPneL8IPXsUbcN5tu3X/olXD2KOLGjAuB0jr1ARkdQC3JPUXLRn\nJhxvyXzUs5wmzHPecHl8eo5FRvBd6aX03DarPWLYV6f3bezn+HhERMbO4Lr7a1FT3/nnw6rfI5/F\nntxHY/NWo97PcF37JBhzxmAwGAwGg8FgMBgMBoNhHmE/zhgMBoPBYDAYDAaDwWAwzCPuKGtKSALt\nyuNEQ/qJejlH8WdJaTrOaiIAWt7Gf/NorB2d0LTzvHWgPjHdK8mjv3fRk7ti7Vu3QE/tugyaaGaN\nju5k2lvL65AOFC/V9O25DlBD33sDdNStjZr2Vn8v6KmtR0CDWtuoIyOTKAYxOwe0voonGlS/QIuW\n0cQbSR7c5hSH2j5xBfdh1ecR93nqJydVv9BZULA2Er255WUdrxlYAkrg9CjofByBLiJy+SJoilsb\ncD0udUHuUDSqaWCnz4JqvnEXouu6z2iJRG0T6HY8HhN9erifa2+PtecoCm7O1ZEQmIY/NarjAl0J\nRjzBdM+h81qKw1IrHnOlu2tVv/RiXM+ZadCbOdZXRMcgPpiF6/zgGp1ny7KZP/n612PthgW416cO\nX1TvWbMVOZzRAcQs972lJVP7zyKucvcWjMtkJ1Kxbz9ou0GK9vam6H5hkhg2rSiS2yFjYe5tX4sH\nSh+B7Gcuqun+FY9D6tlDEd+DwXbVL7MB9yu/CFTbyUkd69n3JmpTxRP4bHeYjg1/GGsz5TNEEkiP\nE6noycLfPA5639PR5Fn1OFaOumVZj4jI3BzGd1EtIiVDxVpONXYVdPC8VVgzut/Q/ebCOqo7nhh6\nH7JJceI1cziGkmQHbhzm9DjGY5ikfh1Lf6H6eSk6dpposN4sTeHlSNjU/E+mCrt03v6PEb/LtdpX\nrNdmjvNNzcHnDX7QofoVbsJYVJK6d3TMbwZFVLIUpe+ArgGVj+t1Mt7IWYv1f+yMrqkLt2MtZ5r7\nkV+cUP2WVmGt6T2ENY0lbSIiBZm4XyzbmBnXNPwr72IfU7sOMtS2w7g2pY1639LVAfp2fgZo6LNO\nxCdHxnLcc12llgS2doO+zVKotiP6/lRvhVyNI7fDXTpKO9ympTRxBe0V+w5qCcctGu8smWMJiIhI\nNIr9w/Q45sFsRPfzkTQjhWTvCUk6Dp33d0/XYT15/2XsqVZWVan3jIawFlavJRmOU6tDrZBij5+H\nbK3mS8tVP18+jjXUA2lHsMWJGiYZ7yy1Xcl28bY7x75+WqSR7IejkUW0LCnSjnPp79PnEmzBtcki\nCQHHM4uIHP7r92LtDHqOYamfiJ5/fD1Y6jHqxH6X7UbdmCIJLu91RET8tM8Yu4T7ODKj65CHItFL\ndmG+ufYEWXU4336qQ9FpPYbPfR9jsOovn5Z4InsF1r7MRXrv3k9zM4X2EoEOfQ9D7Tivm2RdkLFI\n78smB3Fts2g/5M7ZvETUNpZVJ76LZwGe1yIi4+dQTy//EBHMWXla4pOSjXuz9be3x9osjfkfJ4JJ\nvPAz2P+68lRPJq7L5BDOL9I7ofoFLmnJbNxx8/Yv8fMFX7eSJr0mhW/gmL/73Jux9m/+2l7V7/xr\n52PtiQj2gMuXaik0S5xHSV5U9cSKWNvv1/sFvx9rQyCA+9jyo9OqXyKtDWwFMXhE729OnsXanHwM\n76kr0efedhxjfdXSjbF2SpbeQw8cbI+1G3bIr8CYMwaDwWAwGAwGg8FgMBgM8wj7ccZgMBgMBoPB\nYDAYDAaDYR5xR1lTgOjW4VZNo8snmm7+BpIx/FDLYUaDoChWnQC92ZOjKT6cvFG0uQoHmKxTV87/\nl5di7abffSTWZtpq33va2fvWHHhaM0xddPj9JeTg3XQ/6GfXD2knaqbpMnU4tVC7O3Pq1OQAaGou\n7e3aZdCnlj4kcYdKNCjUrvt8jEyhdaU9KzdAFnF6H6hozX3aOfyhQko2Iioau9OLiKx7bDU+4wDo\nYkwTnx7VlO/1W5FccPYw5FSrd+lEg3dfgUxjQwjHzc7gIiI7lsIpniVJZfdqCm+kGzTtsz8+FWsv\n3qVpdL1v4b5W6sCKT43eM7h+BQs1ZTR3FZz7j3//g1h74Jp2Rm/8AmRJnS9C3seu6yIiBZRoxtIt\nplSL6Hmf5IWkoYhoyLde0hzJs0fxveVXQOctWqnTBwpvYBz1d4HG2d2hE0iql+NYl+RRglCfpoLm\nlUHKdHMSNaByqab033SopvHGHCX9DL2v6fAswctZiRQIV47ir4AsYqBrf6ydmqGlLt4SzPVLROUs\nW6NT0G5SepWa9tQeeK9dvSe9BnX59BuQoLHcVUSkfAhU1fKHMSkmLun7ONYD+RvXK06pEREJd+K+\nRvtBFffk6uSg/Ae0pC+eSOa63qfp6pwSUnI/jmEuqinzLG1hWm3guqYsT9F5cXpixYO65k204n2R\nHqy5+cswt2/8XNN5C7dg7kxTykX7Pi0RSyOJTv8Y1r6yMhWhq+8AACAASURBVCe5aD/qX8FGjDFX\nRsKSp2AHzolp+yIi4T6SN2hVbFzA8glPnh4/PBH2HUXN39Kga344gvq46LOU+OSsn+OUHjZL8rSU\nDJ2oV3cPxsyZg1jjOijtsWJNpXpPeQnWg1NXcA/u3auT8iIkNxq7gv3Ijw/qtIn7KYWvvB6U7Z6r\neq1PTMZ9DHeQBDJPr7PplbdPfvy0mCTpiJtOyNJLXscCV/Ucy23E2pPowTo2N6bXgllaNxIScT/K\nN+sEnNFW7GemSY68+WHIczNqtUzD8zYkY1mLIZkKtmrJewVJ/UYdeTNj6BQkrmOncN+8pVrCEexG\nPfUXQbaRs1RLf3nduhvg/bH7bDAdwHzx0B6uwJErXe/Fea5ejuMfPqnlvix5TktFbXPXruMHdEpr\n7Fhn8L3VhYXqtea/xJrOiUAl26pUv1skdclpwlqfVaLXrdAInmV4j5rbpFOiRs7h3DnppyBZ///7\nFF3neKObZK5uuR4i+dLSbdj7uwlI6bQu8nzmtB0RkSv/CNsJlsRNu1YDtHUqW4tEwgUPYx70vHeF\n3yKhAawLJSSdnuzX147XuK7n8Ww7N6f3a7yuTVNyE0soRbS01kvPkjecNLjlz969xC0RER/V6ySv\n/ongFsnPZyiZzOMkG3WcxjxYThJOtkoREWkdwDOKJxnfdfKs3oP0HUSi7Df/4suxNsvcU5p0TZ2b\nw30cb8b3lD+sE0U50Yz3aaFhvbdbtxz7V07xijpjrvpB2uc2Y61xk6wTHUm8C2POGAwGg8FgMBgM\nBoPBYDDMI+zHGYPBYDAYDAaDwWAwGAyGeYT9OGMwGAwGg8FgMBgMBoPBMI+4o+cMx2dXOvHPXa9c\ndbuLiEhFpdZgLlsJHXboDpGKB/bBqybtIDwMHvzmfaqffzF0ZW/+yfdi7eUPQyed6NG/OQWuQe/4\n/hXoCy+89Zbqxz46v1fxBP49Q0eofXgG575hjY7ZZqRXQXPqpdix/ne1J86aR3VEcbwx8iF0ecE8\nrWEeuEHa6eUUZ+58RvclfEbPKD5jVXW16nfuIjTv922E8vT8eR3DGfwQHhO1xdDPTk9Dz5u7VI+l\n9pPtsTbrbz98+5zqt2U74tU4GvncS1pDzPGm06QjTnbi4Iu2wLchTFGOaaV6XExc1D4a8UTZalxL\njicW0drPBfnwH/CVO8d3DfrHRV9DHDpr6UVEbk6T7pJ9Lh7VRjrTE/CpyKiDTj7QfPuov7pyjLGP\nWzAm0nxa7920ANec/RYaVmtfCo4NZj115U6t3Y6SN8gQRfFlO5GPyhtp2yefw6fBHEVyZi3Tun72\n7fFkwwPD9WtSPiw0DzKaFql+WTR/2Lem66SOCKxKxfcGr2FuD/ajzTG8IiJHTsB3avfntsTaF965\npPqxz1OkHxrgW3Pak2PkDCJJWYdesFar1zNpnE2Qd8Qtx5enZx98wuLt/1SyA55Ubnwv6+THLkDn\n7HeiQHvJF62cvGk8Ttwie5Wkkl+Y16t9g9KKKC6X/NtmopgTeWu1r1Pn81gLS/fgGBpX6GjIUfIz\nSOnF8ZXt0eNtgiKnuda4Mez+cvgK9JFP16wTf57v+FDFG+PtqG2hSe1v1kDjLMePtbtgub42PO6m\nyF8kJUN7JbHPThLtT7gWiYhEKPp2LIx7x143iY5un304kq7ited/eED1e/LZnfgM6sfrr4hIpo/i\n20dwXXKdfdCFfVjD2bujfq/2QxriSFK9nfvUGKM11/ULCw5iPJbswvgecWLtm/8RHnU5q3AtitZp\nb4K5OYq3pVrmqdDjln1iSu/HHJkJ4Fq6Xhs1z2CfPEy1MGeZHm+RXvgGsX+DN0OvYxnV8GnpPtYe\nayeN6S1/Bnl5sDdGSrr275l0fBXijeT0lNu+lpqD8ThJ0dKpq/S4baL9DntlRHu0d8TCNVWx9hit\nIWfa9L48g+ZBYxXqLUdpn/5A+5X4PLhu+Stx73gPLiKy+DfgBzX4Efw5bs588nOViEhqDuZ5alqe\nei10A54n6QtQX/PX6fUz3KW9+OKJhY+gRgWadUR2/ZMY30k+3OvOFy6rfpFx1FBvGu61t0T7daT6\ncJ0jHTin6ie0H8vMJOZL19FjeA/5jc053kUZZbh+kQ68n6OzRUSig+R5Rx4xSal6bgcovj6VPORa\nHC9Trq/Tw5hv9Q8tUf066JrV3IVHR/8C+Amy/5+I9p3ktc99FqrdjrpXTc8Xh17/SPXbuRnPIS/v\nx/356Rtv3Pb4Ht91T6w9OYzx4nqJFW/HsylHtHe+2az6+Ytx7B2tWI+HAwHVb3Uxec5Q7fWXaz+k\n7MV4PpscxfGNntVrfYrjreXCmDMGg8FgMBgMBoPBYDAYDPMI+3HGYDAYDAaDwWAwGAwGg2EecUdZ\nk7eYoli/q+lIHCEdfgFU9kvdOrZuG1F+ODJ0mug+IiLTFHHdNQx6UtMbmvrlK8IxMQ1xdTpiCm+8\noamBR6/i76ce3BprP1uh6UjBq6CftZwHFbeyRMtrOD6PKXHnL2jpzpZqyJpGToDWmLdO07UzajTl\nPd4YHQeFLymg4+DqHoYsq5cixVbt1Xy5kWO4rznjoIgxDVtEZGkN5Cjdb+LebfnCRtXv8qsXYm2m\nUc/OgUbnxs8uWIUI0Vqi/3/0+hnVj6P1Rk7iujc9ounWp1/C+4qzQeVzKemBG6App1HMXMvPL6h+\nRat1LHM8EaV4XG+Rpnhy9G0ZxdCnOpGmoRugJHJk6GS3proylbH0PtDBA21aEpdG0XDXf4FrUUnv\nyV6ppTuh6ziGzTswxqaHdD34r794Jdb+4lbMWTeCtPl1UDxzs0FPvPCavjcpSTjfZZ8DlfL8czpe\nuOGRpXI3wRRtlqOJiAwd7cJrEbxW9ZSmtaZSbCHT4xMStNzBV0AyGJLi3JrREqB0iuZm+VdelOLM\nR3WM+ubVOKYbR1D3apfpWHam5Yc68Rm5jsQmjailbT+CZMod68k+LFkc75qzTFPcRz/W0oV4ItwD\nuitTyEVEgiShZakfU11FRNJKcG2HPgCtvfJRLR+eouhNjoAPBXTUJMvESknSd+H/QQRlWoaOiy7e\nCdpvchpo4ixjEhHJXoprm1mHY2DpmIiOB+d42NnwlOrX/nPIYRZ+BTWg/7CWFfS9h/WoTKtn44Lc\nOtyT6cv6nFkKnUeypmvH9DmzNNY/Qed5h5TMm0R7D0S1XIRlETseWRdrczJ38Lqei+EAaufiUsyr\nTfevUv0mzkECtHw31sL0g5rmPUR07hqSvfhrc1Q/fxRrZjLJYC6/oGXGuX49h+OJGZoflY/rucMS\nUm8W1o3+cS1FXPgVyKBTvBjDgW5dQ7IqsP+I9GBf4SvSEo65KayfyamYc0NXUN+L7tF1MimZ1oVx\nyJ/cuN2MKpyHvxJ1PNCjZTNRigPOKsQ9rHhEazwnSAIZJJlfxgJ9r2/NanlDvOEr5XrYpV7rOIu/\nk2kdL16k9+WzIawHfVcRS1y2TO/Lckm2GenCddr9pe2qH0utuL72HMB6l+isuStoXiWlYq3yOdIH\njwf1kccPy8hFRNLK8L7JIZJn5WlZ8Ow4as90FtqzEb3H4GeweCPSE7j9a33BT2xnN+l76BvD2I+Q\nDUbZLi1T96Sj9kTH8Lw4fkOPnSmSvfirMXcK1mBBCXRoO4KpITwjsQTLrekv/f3bsTY/v66r1cfK\nks+MOhxD4+PLVL9hGvclu/EZMxN6/cxx5PDxRpTl545c3Et7/ugAxmOCM64+egMWElz/t9OaJqKf\nQzbUQUZakKX3VY3lkOd1kvToMv3esHel1swOk3z12H486217XB/D9cNY09d8meSG72v5v38haiJL\nqFjmKCISodoboPrqSjd9jhTMhTFnDAaDwWAwGAwGg8FgMBjmEfbjjMFgMBgMBoPBYDAYDAbDPOKO\nsqbeC6AFsSxARKTpa6AGsQt9YY92B58Lg1aXQlIUpvyJiKxZCKf4vjFQ+zqHtQNzYw2oRc/+xsOx\n9tnnQVsqIYmKiEhDGWiNt+YoXWFIS3wuXAet+r5vbMc5TGo37/RBfP47r4A2/sDeTarfuz84gu+l\nf9+9U3O0O54Dzbvyf39K4o2abaDIzTnJPOmUnFG8FVTbc69oavKyPaBrbqgHXd+lak0TLbH/Iuhn\nZ1/U0iP+vFmShnlJiuE63Jc8gDHS/FMc34otms7cewj3cTgIitnwoE4L2/AVSK04JWX8ypDqx6/N\nUaJIxU6dHNT+Duhxy5+UuCJ7BWiwbfu0pCGvGveDJS/u+A63YF6NF4PKmdOoaZITraDipXgx1oua\ndELM9DTSaJZS+kDrP4PS6MnVjuRZRGMdPwvqcaJP14PP3QNH9oJSUEGvvKLlSvlZoP0WbAXtfOYd\nPWfz1oDuz3TMqtWaXq70A3cB45dw3ZkiKiKSRhIZLyWw8PGK6KQyplvfLGhR/aYoYYOlaoleXctZ\nXpVBqUIzYzrBhsFyqrJG0MSnxzUFN4XqA4/N9FJN8x4+TbLPTajXLi2babZllIQS7tWU6tIHdZJQ\nPKHSkAL6fNOI4sr3JuRIB72UMpaQCL702JUB1a983eZYu+88UmWCjsSQ6deeLEgkWLpTsF6vzV0v\nImmk5ktIOwxc1jKNaC/GX/Zy1IrCzZWqH0+dBPpvn1knDYNTCkIdqEksJRL51ZSneMNXivmXO6r3\nDDz2l6wH3XrWud8sa56leZToJHYUUuLfyCmM9er1ei9Qsh3yQ77HnETEiR8iIn/8zT+Ltf9w795Y\n25WiTIRB8c9NxvElOXu7HJJWDXXgnlQ7iWNtxyEPqrkHa+GiB+pVP16P4w2mlIdJLiEiklGJe3rj\nBcjyi7dXqX4j57AOpZVgrJc27lT9OK2pbBPmr8+n18Wk3Ri3nKpWAnWudL5xkd+ixuKCPZDoT3R0\nqn7tJKUuuAfzj9OJRLScg6Ujg8f15/lJUp+hUlq0nMFNkYs3OPkxxUnLzJjFdxeuun2CmyvX/SWa\nT2q7gSaSe2c2IuWKj0FE5PRr2Mew1cLqGszRphVawtJxBHOisBa1N9dJwOs+ilqeuQj7N5+zLnJq\nI6cDuetd0S4cEz+vsKxfRM/nBj28PzX8lE475cjxWt7BnpWfR9xUJ15TRi9hLZybdhJFffj8hEQs\nNuFufV2SSDbTT8mKlY9R+p0jyeEkJ05qHTjcrvo9+hXIaAKUTjjSo6VpPHYWUapT6Kbea5Y/hrrJ\nz6mD7+nvzd+i60284SHp/eBB/d0sX6rYi2voJhGV5mAsLKB9GssyRUQifbhfVeur8P5xLVNvuwT5\nUvUS7GNY1uTKv26SrHXbXjyfuHYPxSWYf7wXS0zW4yJK46K7E/v4tffr50AGp4tOOYl36WWZbncF\nY84YDAaDwWAwGAwGg8FgMMwj7McZg8FgMBgMBoPBYDAYDIZ5hP04YzAYDAaDwWAwGAwGg8Ewj7ij\n50xBJfRSJU6UWdcLl93uIiJS9QUdVzx6HnreadJcBW5oXR57g/RTVPNYSPstRKagK9v1WzvwvfXw\nKchbrXWpgefxvZeutMfabgzeg//qgVj7FkWFX/iF9ktpfBTnuG0jtPoj57VfwCP/60Ox9vhlaNRc\nbWuSX2ts442UTES5JSTp3+NYl8c+QGu/tF71638XuvGFzyJ6Msmjjz01FfdhLvpWrF3v3JORU/Az\nKtgEDeX5H5yKtTliW0RrbkspipLjiUVEshqg9c2jyLPCjdojgTX9KX5co2nHa4OvEXt3jJ7UUZvZ\nJTr+LZ7oeBtxp5NOfHlmPXTTCUkY05MD2nOGY62Vt48TnZtMmu/OfR/f9pg85CGSSRHX+RswBsJd\n2muD9b3sPTHZq+f5om3QqbJG9OaU9lEo2IJ72vkmdM35y7XGm89pkjxcxq5qT6th0jk36GS+uCCN\nPJ5mw/o+TvbjuNSYm9bnzH4l4U7UytEz+j7ytWY9bsbiPNWPdd+sdfbkYV41NGlfp1Q6BvaGSq/U\nOloVF04a686Xr6h+7OWUWoyxmebEFA4fQ9ykist2armHxlaFXro+Ndi/KOisY1HSvKeSpJz1+CKO\ntpn8SfxOhG33h0dj7WmK2C3apL2SvGnk0zOLORemOFJ/tfZVmYri3nS9djXWTncikz1ZqI08d1w9\nevkT0MyzXpsj4kVEKh5Hv+5X8L01z+ho0YjjIRJvJJNPT0ebnjuN2xA5nExrw1ifrlOzFOc+Hka9\nbdirz4XnYqCDImId37LRCziOE7+AT0rTOvjeXDuto6A/uxm+RLw2vP3GCdVvI0WVzgRRD0aC+jpv\neBp+gjzmIh26lrNjwhDFlhY4viAjzh4unihYC/+BYOe48yrNMQ/2NimZ2j+F6/AUnW/7iTdUP177\nMyiW91ae9sNITcXaMzWF65KYiO+tfnStes/MNI49MoI1aJK8Y0RECrdV4XvJf+uW45WmfPJoLUl0\nvB65bE6OUuxwqa4B00F9HPHGNJ1neo2uU5Gz2L+n5mNtuP6GfgaZnMFcjNI8CET0sQcuwVMwowFr\nobcwXfVbWIVxPENRySUbsOcYPNmt3pNbjGMfp2jy9ku630KKcuY9kusnNUQeQQUbsE++9v3Tql/e\nMnh03KJxyl5XIiJJFHkfb1x/ET5KGRna1yOBBpqfvI1cr6TTP0LNW/1l1KFD3z6o+q15cnWs/fzf\n7fvE7xER2VyPtYbr89xzGCvs3SSi9yJR2pNlOxHW116A/5OPfLpKl+n6l3UD9zdIXkEFxbpfkGLU\noxRLHp3S+0T13HEX9qjsjbLg8/p5Xui5uOsV7LfZf0ZEJHsJfK5yqrDGTYb1MzIXoOKtmBMjZ/Sz\n1WLyn5uNYC4+sBX+XDPOc/VgF/mlkb9jquNlxzH3/PxU9dRS1a/9+Uuxdv292B9MO14301RHI91Y\nW0vuq1H9evbBo7RysfwKjDljMBgMBoPBYDAYDAaDwTCPsB9nDAaDwWAwGAwGg8FgMBjmEXeWNRHd\n6/qPtLSn7tmVsfZNole6MoYzb52PtbPSQHUrKNK0ydVb8XmlFFnGMiYRkbKVoPZx5BlTEgcPd+hj\nfWxJrN39PcRb7/7XD6h+r/3nN2PtNatAh1u6d7nql5IBClt/ByiSi3ZqblIS0dW7PsQx1T+lKc9z\nIR01Gm+wpMPrxIgxtYqp9n4nNjMlk875aHusnVWnJRIJFRhSTG1z5VQc6e0rAOWsakNVrJ3n0KMH\nPwDFs5giR3v36wjh8j24DxMUiz0T0mMp4EhaYt+7WktiFL2+i+iGQU2jmx3X8pN4Im8RpFqRTh0X\nyFTY4ROgzzJFT0TH7XKca6kjWWT6NstSXNpvmOj5fe+Cas9xzHVPa97l6A3IGIo+i7jsnvd1dHvu\nMtyD7jdAnyx2YugHKGaw/qugurIETkTLD+ZIGpXTWKj6+Up0vHW8MTUGyqjPuZ5F20BB5rnYt1/L\nGPieRElmMdWvZWzeMooKJimOOBGOEzcg7/P6Qfls7QS1tKRN1+um394Qaw8dwbycjWqKf8/rkOPl\n34PaXXyvvo9Mve97B9GnrpSi7GFIMyYpKj6tRMufEj06HjieGPmIZFwLNAU/awfqEstEr/7TKdWv\neBPWVpZhsrxSRCTYgnvjK8U5uvX00ncgwfCTLGDhlyFBdaMhxwtBMS7cirGnpGgiMkyypDm6v/5F\nekyE2lEPQs047oXP6vVzvBl1N5kkUxPXhlQ/VwoWb/Dx1tTrmHGmdnuL9dhipFeAEp2Vift4/dVL\nqh/vY1IoupqlKSIine9iLUv3Yi5yPVjz1Br1HpYtj1GkadPj+rq37kPt9ZDcra5Gnzuj/yTufdVu\nvb8pHAR921OANWjkbL/qt/RBTQ+PJ3repv1L8u33GLkrIPsItmspYtm9oORPBbC29h5w9hW7UXvG\nrkCmHnLkVHxP+Zh4nU5x5CVRkgv6ClG3WymCWESkZheOgSW+eY6Ml6XZuYsgex674sgKaFylUmzz\n5KheP4dJQlp+++TY/2ncojWJ75uISMnmqlg7eB1ShaJFeu3m/cnlg7TPyNY1urML16CuBO8Z+0hL\nG3n93PpryEHnuj4T0HvKoUsY+8WrIDVt339e9bvxcXusXT2H2jviSOXTqyGD7nweMq60bL2PT69A\nP15Led8jIiKO/C2eqPssnmt4HyoiUr8d58jrdsSJvq6swz6F5Yc56XqvNPw+6tLjX8Yec2Zc78lZ\n2l9Bcl0l6/9Ix41H6PimyM4hNKk/Oysd98BDEdmuVCt7BY1Tmm8sORYRyWrE+jEzjnFV/ZiWDLl7\nhHiDLQqmRvSeMtiKdb3kfux1Rk7p+z0bwbgLd2MPl0W1SEQk2YdrNXoRcyfBiTfn+lBCe8eJ69hL\nJHm1xUYayZWyKK7eXScKN2Jf2kdx627Eur8G44efexNT9F6z6xzOo2QXiiVfOxGRkp13LqTGnDEY\nDAaDwWAwGAwGg8FgmEfYjzMGg8FgMBgMBoPBYDAYDPOIO8qamJo07Dj6d337QKy98j7QVi8e0ikc\n7J6tnLQdan24E9SnIqJ8Tw5qWtUIUZ8i5Mi+4utIF8ommriIyOBxUODqy0A1HL+mZS27v3V/rM3U\nxZuzWq4y9AE+LzERv29dektTmTcs3BJr94yC0pRDUgwRkYrPaNpavMGpFC6rcS4MCmRGPehsGQ6l\nPCUDVDqWs/gKNeW75z3QSVMp7cWlf2Y3gerX+QrGTIhojnUPP6mPdRWOdYocsd00m1t0vwrWg7IW\n6tI0QqbOhUmu5NLUvJQQMFWEdtH2Kn18Dh03nshfh3E7kaEp0WMXQLH20vGlV2o677XnIB3KysN9\na/2eliyWPgLqNFNkmVovIuKvwueHWkEVnyW3++vPv6fek7Mc9PKB07jv2Q2aotzyfRxTOqXM9L3d\nqvqlEp10lFKnMmr/O3vvGR/XdZ77LpQBMAPMDDDohegESIC9N1EkJYrqzbJVbMmxrVh2fOU4x/ek\nnMQpzkl8j0/i+MR24tiOE0u2ZUuW1SWKqqTYxN47id6BQRlMwWAA3A/5eT/PuyzxgzU8+PL+Py1y\n1gz2Xn3PvM/7SLkd9+lkAOvGpJVpPS3zqkviR2aSZE3hSzK8vohkTTyWijdXi3osIw0sQzh78JAM\nieaw97HzCAe3wyur7oCEMxFB25TdTFn2h6TjxZWfIUx7aABrd/0S6WjA0s5BWodzF1v1yE2FnZYK\nyKHCGNmP4+RuMHqqX9TzstzyAzLhfxR8tL8MWk5EvE6y00bdA9L1gOV4YZJuubzSSYAMZ8wEOZpc\n+dkxUY3brJDcRHifHTgsw7cLyCWPw9BHLdlH42eW4XJITjVkfR73TfkdaHRbYtj7NkLFfSSBzKmx\nHGKsEPVk034U/dNwk9yDW9+BpIUdF/IWyXVq7AzmVS6tvRUrpQMISy54jXn/SemotPIBuPhM0JzL\nIEfCcWv+stQsdyHmlS3tK12AtSKLpDOnXjsl6rFL21gU61Xo0pCox5/fexHzr4qkycYYM0bSYnOb\nSSpukjMWrpBt3rMLe0Wc2pIla8ZIZyMOs2epiDHGdO3AmGApWa4ljeXzwiDNkaw87FXDZ+R6xbIk\nliPX3zJP1GNJA8ukJiynEr72oWPYF7Ir5T15itF+fA5L90npRFrGtf0dN5/ON+yCY4wxnkxcSyHV\ns8+ULFdoXA+3x+wK6SDIcpme7ehTX7OUXIRbyfWO0jXw59nSB28A84rl0+mpst4wOQdVkvQoPVtK\nM3hN5HHG5zJjjOl5DWOdHajiloRj1Fo7kkknufdkW86A55/HGjM5hXYJ5EgZeU41xuf+7yAFxaL7\nlop6/CDD8lR/oyWbycFZmV2iEny+Igc0Y4zp3419gZ0UcwPyzDJ6DPI4Phv7GuQ1XHgK5+5sH9YA\nvzXe+DmmeAuuKWq5ropn4mugGO1+7dKHvla6FVImkR6A3MKMMSY2iGsM0L7T8co5Ua9kEyRKvkqS\nF+2Vz9J5C/H5QspK3ynYTmScooCltjHLBZId8FgyNRWXkuNBkvh6SGI+sF+eAcu2IU3EwPs4V2UW\nSimiSAHzAf2okTOKoiiKoiiKoiiKoiiziH45oyiKoiiKoiiKoiiKMovolzOKoiiKoiiKoiiKoiiz\nyNUTLJCub+7KWvFSEeUCCLVBo+7zSF0VW0j2jkAbuOTRNaJeKulsO56HLs3WVrYPIk/MvHpojFue\ngk41f6W0YI51QfPeOQTd9LmXpWa+mTRvVQ9ABGbn2vCUQ2/WcQA63bml0s6w6xXYyBb5oFP1zZP5\nMKYtO81kw3a2WWVS45lKWmK2K2t9Wmr+RkgjO/8u5E/gvjdG2sh5yqAfPfKDvaJeVgb0gQsehc7+\n+A/ed8qX3nhevIc1xsXrkZ8jMSatX8PdyB9z6hfIXTLvTinsY6vvnh3SrpiJkOVd3gr0cZ9l2c40\nbPjQl34nOL+GDducJ8gGt/cteU+1t0K/zn0d7ZUazJFT0NJyjpiBPVJbOdaJdqn7BMbElWegL56x\nkhx565BjIk79eewHMvdC4734PM5HlUE6e2OM8ZMOu5X0rJEueU9sj1i0GtaxASv3ScuzsKtsWG+S\njo800fa8nyLNMdtsd2+XGuBEiPLC3Ap9q62d7tvZ6pS9ZANoW8X3bIdevYgsL/l6gpbNKI+5IjfW\ns0iHtL4uoJxPiQjW8qx8S39Luaa4j8PW56WkYy3mscl5HowxZvCQXNuTSR+tFXa+sCBZGbNFfcia\nvwHqA77H6bjc71IpF08q3TtbbRpjTAHZQQ4dRY6JTGpnO7/SRBbmBFubZ5yUfdPyJPILcT4DO6cV\n563hfGMi15wxpvJurEPttNeX3Vgv6l3r/E9xyn3QtatFvDaZQD/kb6C2yZU5gTjnydnncAaZd7fM\nMcT2sS27Md+W3Cbtrs8+j8/gfAx8BpmIS3tcbl/OVTVl2dpzPjLOqbPorkWiHu8NGWcxnm0LUs7H\nULUObdT9fruox3lrko2PLFJD7TInDp9fi9birGifZtc6AgAAIABJREFUKSOUg2AqinvivjXGmDTK\n3TdFeULchXLtufIU5gv3G+dCtPdzzhETuoK8IHbepYptWPN4fR679OG5RAqWI0+LbQ8er8TnT0+S\nBbicsibaLfNGJZuBXRgzpQvl+T10EffmLsGcSHPL9aGd7i2/DvvsyGmZ34dz9YTIMpz3FmOMCVIu\ntZkpjCU+Y7ms3DzRUYz1TNrDC30y703jPVgf+Fw7elJeK6+pOXXYwycGZA644q2Yf4P78J6+TplX\n034+Sya5lG+O+8kYY6Yof2kOW1pb+/Yw2RAveXC5U7bz6cUH0c68Ltl5ttjWPtyFM8bYGbSLnTeI\n7Y8v/wLr8Zwmmct0qhHrCOc3GbVymc59AOtrajqu7+yTR0S9QCXOxumUu87OQ9TyGnL7LLzTJJ2q\n+5qc8uBhK48hrREeWh9DVp46Xiu73kCOGO43Y4zpfQdnKX8T5qLXyj/X9RLumXOiFdBZ3j4n8xo9\nM4XrLrt5rqjH+Uvbn2t1ynZOUc4lxDl17BxDvJ/w3HaXyf3ElSNz5Nho5IyiKIqiKIqiKIqiKMos\nol/OKIqiKIqiKIqiKIqizCIpM7buQFEURVEURVEURVEURfm/hkbOKIqiKIqiKIqiKIqizCL65Yyi\nKIqiKIqiKIqiKMosol/OKIqiKIqiKIqiKIqizCL65YyiKIqiKIqiKIqiKMosol/OKIqiKIqiKIqi\nKIqizCL65YyiKIqiKIqiKIqiKMosol/OKIqiKIqiKIqiKIqizCL65YyiKIqiKIqiKIqiKMosol/O\nKIqiKIqiKIqiKIqizCL65YyiKIqiKIqiKIqiKMosol/OKIqiKIqiKIqiKIqizCL65YyiKIqiKIqi\nKIqiKMosol/OKIqiKIqiKIqiKIqizCL65YyiKIqiKIqiKIqiKMosol/OKIqiKIqiKIqiKIqizCL6\n5YyiKIqiKIqiKIqiKMosol/OKIqiKIqiKIqiKIqizCLpV3ux5cRTTtlbVipeG77Ujg/xuJzy6SeP\niHqLHl3llN/5p7ec8uoHVol68eGoU56amHLKnnKfqOcpznHKPW9fccqpLnzPVLyxWrzHlZPplE99\nZ59TnvfoClHv1b9/1Snnejy41i9eJ+pd+ukxp7zoK5uc8oUf7xf13BXy2n9DTnWu+PeRXxxyyg98\n5zsf+J6Pwvmd/+GUY0MR8Zqn1PuB70lzy6ERPNrrlAOLi53y0KHuD/27Lj/a3V0m2yLDh9fGLgfx\nHm+GU56ZnBbvaX33slOuWFPllH11AVFv+ASuNW8xxu305JRVr88pp6SlOGW7f8Lto0451j2Oz4vL\nzyu5qdYp16962CST47/6rlMeOz0oXvM15TtlV26WUw5dCIp6ifG4U07NTHPKdl9769GeE0OYlzlV\nsl0mgnjtyEuYE8vvXuqUM/M94j29O9CHOfV5TnkqLvvaNxfXMHYe9zs5Fhf14oO4hsLrK51ypHNM\n1ON7n5maQTkh/663AW3ZfMvnTbLpuPArp7zvu7vEa6X5NI5ncI3B0LisNxfzL9SBsVn34CJRr/P5\nc065cCPaJsOfJeoNHepyyj1nMXfm3tbklHPnF4n3pKWhX9/6+nNO+ca/+rio99bXcb+b/+IWpzxy\noU/Uy20occouF9rh1D+/Kupd6u5xyjVFuKaMXHlPngqsa0vu/7JJJl0tuN/J8QnxWnZJgVMebUVb\nTk8kRD1fLcaZScXak4jI8c2fn5mHNo+PxkS9zFz3B74ng/4/EZafnUZrwDSttTPTck7MTM/Qe7BW\npLrSRL1ID+acy4f+mIpOinrZJei3kcud+Lx0+VtRbg3W+Px8uQcnA+7Hsz88KF5r/MwypzzeNuKU\ne99tFfWq7sMcEeeMHx4Q9XKLsf9V3N6I9/jkuO3acdEpl15f45QHj2COeuvyxXtGzvQ75akItXVK\niqhXcn21Ux67NOSUs4qyRb3uVy855cBK7J/uohxRr/WZ00553hdwnuvb0yrqFa3F2lNWebdJJn19\nLzvlUNuweI2vd4rm39DRHlGvaM0cp8xjMBGTc3b4JOZzRh7NtzG5BkzTnsLr0sQgzl6BRSXiPcHj\nuCbPHD+uOyLnjrcGayPPxYFDnaJeZgDX56PxMni4S9QrXoMx1vXWeadcuKpC1At3h5xy43W/Z5LN\ne3/710659OZ68VrPK5gTKdQ/gdVlol60B/uki86XfKY0xuovmiPe2jxRb/TsgFPms56/CetXpNs6\nZ4TRX9x3afSMZIwxuU2FTpnPI5MhOZZ63sAzTloG1tts61o95djv3IWYz1PWvtO9HeevDf/jL00y\nuXLs57ieEnneHz6NuZMzB+fISG9I1ON9sedd3Du3lzFG7JmD+zH2syv9oloOzRdD+9oEPW+Ot8h1\no2g99h1eW701ss2zCnjdxPX072+Tl5pBeybtuTlz5LXGaVzyeIuPyL1+gp7hln3qKybZnHvnx/hb\n1E7GyOds/1ycdeznSn6eivagj/0NBaJepA9zNoX6lMvGyHvm16K9eD8/txhjzOgpzN/0HMy/3IXF\nol6sP4zroeeGhPWskb+63CkHD+O5NyPfLeoFlmJd6n8PY6GA3m+MPMPNv+FRY6ORM4qiKIqiKIqi\nKIqiKLPIVSNnul684JTzlstvOItXznXK/UfxS0vNlrminicf31LlZuObRv42zRj5TaGbojl2P7FH\n1Fv7CfxCc/5Eq1O+7X9+0ilPRIf4LebAP+50yksfW+OUJ8flN2NLV+EXLf52fWJYfivY8HuIDDj2\nrbedcpYnU9QLLMavIzu/+45TXlm0XNS7/k+3mmtJlL6dzqmW3/7G6Nec0EW0m8v6dT1/Ob4N7HwO\nv8gXb60R9frfxTeF0U783cmQbOu+8/jl3J+NX4RdAfrFNSx/NSqowrfqQ0fwS5PXinTJoUia8VZ8\nKx7pkL9y8DeeXYc7nHK1Fe3BcHQMR3QYY0zC+pUrmfgoomPkRL94rf19+na2Avd++YL8NW1iEtfX\n1Ix+88+Tv0rwt/tTUfzywr+gG2PM0D58/pqHMa9C9Kvs3mfkL8iLV2OO8S9d+Svlt8pdL+PXsiKK\niJkclW2evxbvS8/GL2SH3j0l6q27Z6X5IKwfl3/rl6tkM3oB13/dn9woXuvfi35MpV9Fs625w2Ph\n3PEWp1xv/dpQtAm/APW9iXo1D8sImzm3z3fKvecwL/MXVDvl3X//knhP7wiiCe76On4Nf/VrT4l6\nNWVY/9tfOeuU+Vd8Y4yJh/DrRYoP46/+c0tFvex38GtTpAPrS1aJ/FW/5Dq5LiWTjBxcw3hnu3jN\n5cU18S+drmz56+3oJYyDnEqsX3ZEjG8OIheGL2KNsn8R9ZfjfqfimJeRXqx5nmIZJRmitTG/scEp\nD52/IOrl1uMaxnt4b5XrQV4NfvEe6cB44yjJ//oMrF8FjfOc8nDLRVEvHpO/aCYbjiKovqdJvNb6\nC6wf1fcvcMr5K+Sv9WGKquH1f/6n5LjtfAFRCSPn8IvelBWdkb8UbT1E0RQuL9pwJiEjNjn6laN8\nUtLkb28caZGeg/HoLpRzx9+MXzdD59Hf3mr7l2PskzMU6ZeWJY+VEyP062ulSSpTdG6MdMn9nSMS\n+JfcdCuKweXBOWB6Gv2R7pbrKbcnR0jYZyrxKy9Feohfhq0osdJNOFekpqKvp6fl2t/1Js7a3jr8\nXX+j3MP5zMrRCfY5LBHFesNRQ7Gg/MU8u+yDI6yTRdUnmp3ytBUx7a7CeusuxjNE3LpGHtMx+kXe\nP7dK1IvTWsxzwv670wmMHz4Pc6SGfUYtvA4DnKMMxltHRD3+tZ6ji+1o7Dl3Y33kyO/fioKkOccR\nGCOn5VkxbkVmJhOOQp4IRj60XrQffZNlrT0cOcrRRqMX5DNdyQb0aYCeTezzW7gD7c7qjJLrMd9G\nTsk24gg5jmzktdUYY1Jpf+d1PLBIqkyGjiHKwk9nt7AV3e2mM0yUxkfAivQIW+tcsuHI2wm6DmOM\nychDe3TvwFpUslmet6anMBY4cmj0ouxHHu+8x3FEjDFShZFCh3Ze49M98oyVQc+SPH8H9naIerwf\n8Bgu3VYn6o3y8x6t5XbUNo/9BM1FjsQzxnpevMH8Fho5oyiKoiiKoiiKoiiKMovolzOKoiiKoiiK\noiiKoiiziH45oyiKoiiKoiiKoiiKMotcNedM9YPQWo+TK4gxxoz3IDcBu+qcef2MqBduh06vsBQa\n2fxlUrvNGvpMPzTAXrfMhMy63Q2PwcEh1AMdaAflRLHhTP19R2Tm+sV/uN4pp6ahaV7/a5lvYemt\nyNkw77PIH8P6VWOMGXgf2ratfw6nkkErs/6+f0A+mnv/6c4PvfbflY6DyIvQaLlfRUm/yLks7NwH\nl39xwimX3wgtnp1Vm3XLmeSYkhGQ/cj5T/yLkf2e9YlTlj42zQ1tYPsF6DgLLe1mlJwFCtfCiaF3\nn8wP4SOdvDsDesXUDPmdJWeA73ubcikUyNw0WVfJVfNRGbsE5yXffOnWUVIB/SzrapsKpQsHuzJx\nPowUl7xf1l5zXiY7h8HxNuRI8ZzBuGJ9Z3lAZlC/eBTtt+Zz65zyyZ9Jl7fKlZQx/yQ0wUeOyXwY\nWccxJhYuR76rxUuk4wO7GXAenQkry3z48rXNc1GyBjl3tv/lM+K1inz0a80DWHsvP3VS1Os+hvWj\neQ3uueN5ue7VPLjQKTc9jvw2iYRcy6P9mC+JKWiA93wDTijLH1sn3tP5Cvrhvf8NF77GhdWiHmuK\nIy3YC3YdekvUW3gTcg4Ur8W47dsjnQ8SwgED47lia6Ool5p67eZifBztNzMl8xSku7GO8NzJypdz\n0ZXDeQ8whu11N3gBa1ZuPdbJWFBqsgfPo++zyRkvNR3z3Nbjs6sM57ZItdaDnj2UC4bWzKximS+g\n/wT2fm8t5j3ntjHGGDe5A411Yz2w3Z+uNexS1EMORcYYk7sMOv/pD8ldYowxhSvganP2e+875bGz\nVo6ErVijhw7g3FGwRrricF4vdo7gnFx2nob+3Wj3HHJxcVtOjBf+Da6QoxGse3k5cmxmlZHLEeVS\nGLPyBRSuR34Nnufd1j4rTnoy3dVHJjaAeVC0Wia0SU3HvOrbd4VekH04GSbnFspRYed14pwmuQ3I\n8TLWIl0RpyknkKeQc6RQLgIrZwifo9IyMS9jQzLnQ1YR1rUgOWUW0DnHGOlqOnAA+0XxetlGcVoT\nSjYibwS7qBjz27mRkg2fOfqtNb+Q3LTafoWxXnnPPFGPc2TmNGL9GToiHUXjQcqzQ/n1OHeJMdJh\nz0+vjRzFs48rV+bTSs/GmOPnAXbqMsaYMOWgYYdNdgoyxphIF/aa4SPIhZJdazmK0ucF6NnKdqPM\n9MrrTSbpdD7vJSddY+Q9+uchp9XwCemclk2OoLmNqBcdkPOgZ2erU2ZnsmkrH1fx6mr8rXNoP143\nyrbKsyKvAZxbKn+xdFjj/WpiGmvItHUmYGc2Hosey62J54C/HmfBhOV26Cm5tvmfOI9LTp3Mp5VG\nz2fZlCtvwsr/xM/97Jjb9eJ582EU30h5a2ZkPjs+97H7I+fAYfdJY4xJof7huVy8qVrUmyZ3aO67\ngf0yNw2PM849Z+eqitB3Jakf4ohpjDE+y7nKRiNnFEVRFEVRFEVRFEVRZhH9ckZRFEVRFEVRFEVR\nFGUWuaqsaYSsn46+ekK8tv5RSIDY9mr9f9ss6h393l6nXLqILM8sG+vscoR4sRWVDG4yxk/hpLFB\nhLqxRVdHr7SsWnQbYmk5DKqqSIbzHvrWLqe86r/D3nrNI2tEPbatO/2jg0554RdlPQ7F6ngJYee5\nC4pEvaJ8GaKYbIqqET7Vu0OGG45QeHMDyZp8VttEu9HHbDM+cqxX1MtdinBwtjxLs+wr522DdemJ\nVzC2KgpwDWyhaIwMnTvfjfDA1LdlmHLDZtjC9r6F+522QuXig/i8Ugp1S8uS18ohdmwxmTNXSnZa\nfkn2qwtNUmnbi/D/qjXV4rXpOEL2wiQdcZfJ8Hcvhbyf+dlRpxwokeOvaCNCazncevyKlCfc8iVI\nZYJkbc7WkCyTMcaYDY9vcsojZyFXKpsv7Qf3v47rW1hX7ZRXrpWWt6cOQ47A1oaxQRlmefLJw/i8\nTy5zyqFLMiQ93X/twn6NkVKhLX9yk3jt8hPHnPLECEKvF3x5vai3g2SWc2tIxmDZnV756XGn7KG5\nlGdZM3orKEQ/inbb+uc3O+X+A1KK6aWxv2orZI4Xfn5M1POVQGKTXY9rnVsp5ZWl69Gvv/rjJ5xy\nVaG0iK0l22+W72RkyHqRMRmSmkzYBpdDuY2RNriJMMbWWEhKQngPcZP0ITNXyj/Z5jElBZ9dUNks\n6o35qK9zEB4czWzF/3ukNaS3CGNschLXZ0tVI20I0/VQv2UFLFlnAGMsFsR7XNmyjbLyUC8lBW0Z\n6pSWpizxuRawvTzvg8YYk58FGdGJf4dcafmXN4h6bAvron0jq1zORd4zK8ked/CwlFywLafLCxnN\nGFnJ2vI0Hku8nmVaMtvsKvTdlQN95sNYuAbX1/sm9k9/owzD7ngBZ5pKsiKvvUuu0UHrHpMJWwXH\nLIkqS/rY7nrSkhSxLIklAyxvMMaYbOrTvr2Q3iQsO+XMAsxhniNshWxfa5hC4VlqyxJhY4yhI5XJ\nqcMabEuw2G43QLICW5o8M41Q+56dmA8FlsRHSBPl0pMUIj243pmEnPcxkrTUPISzfOeLUsbrIwv4\n8Svou+mYPIPweS6wGvO87015Ng6N4O92n8H5pvEuSI4HdkoJ1sQQ9k+ev/5meebnOTt6BmM4NV2u\nvSMnME+zSrFPRNqlNDnfkkf+hslhKZMt2JBkL3tigOSauZYEKMOHvctdhHMpP/cZI9f8CZLoB5rk\neMybT2dekn7Z8yo6hPW5YjmeTcdG8Mwxcl4+L1ashISb9/POQztlvRXXU73LTjl4TqbL4DnrqcD9\n2pKzgb2Qg1bcimcYW+aXy2NJquCSQjbJrUbPDcrXKMVDkFKEZBXKvSaHzqXjtL6WWPbUnCai82XI\nEj0l8tklQDKiMbK0zqKxNHLWutY52O/OvYBns4Y8ecZqfQOy7drbsPel58hngdB53Afv57Z82Ef7\n5EgCY8uVI89BtoTdRiNnFEVRFEVRFEVRFEVRZhH9ckZRFEVRFEVRFEVRFGUWuaqsqXAlQuXSt58S\nr534KWQCG//iY0754s/fE/VqtsJNJHhQZuZmxi4gJCnSjhDHm/7mEVGvY+cBp5zXhPCu2hshsRg9\nLsOjcygUi5Utdgb1riDCljpew/0Wb6gW9VqeRAh5jh+hhsOnZKjwnFsQ3hsbhiOKywqX4uzY14LB\ndtxX/R0y5DhtL8L/W15DJm2WDxhjTBaFmXlIPmGHwMdI4ibaul9mW2eHL5Yy5a1ACG58RIZ9BZZg\nPN5CYaEN994i6p1/+hWnXLAOmf79YzIcPEaOBJkU6mY7E0xTmK2HQthiffKeCi3HhGTCobQpssnN\n5ZfOOmV/PvVNuvzu9b3vQ7bXtAzhhXlWCOrZX0KaUrsF89dlSX44hLeKwtqzshA667Yyy4euYCwO\nkNtEcFy6Q2z9whannE0OY3YI6sqSJU753NsYv7aEbf4WhCvu/uFup7z8jiWi3tB+GZKabKJxhNSP\nXbEkVez0QOM7HpLr1JpPr3XKJc2rnfLhb/5U1Cu/A6GxA3sQMms7zuz/X6875UIf2jp4ApLF7vel\nA0vJUoSDi5B0q93Z0YWd3Hp2XBb13vybZ53ymm3ok/GLUkqXTWtPkJwe9r0rQ45rl1c75TK5hXxk\nWJLL/WSMMenpPP+wH6RY7eLKRsi7KwshwKmpGaJeRgZCZIOdkPq5XFKKWFgMiVwshnYpLr4d1z0p\nXe3GxxFGPBnB/Ev3yGvwNZGchW7DdtBgWSG7wGTmSmnGWAvaxV+LccTyuv+6Jvn5yaZwE2LCQ9ul\ni8R0HPvT0i8izD3UJqUuORQCzvc/aYcsk3xkhMZChtU2HC5dsolc+Eaw1hbWrhbvSVmDv9t3aQ+u\nJ126V0yRK0WRH9c9mZD73dBhjJ/sGoyzlp9K17jSW7CHTND1RTql5KLybnnmSCYs5bTvN0r7O8vZ\npyJShsRuKCypd1tuZOzGyM6WMWseeGsgN5qgccASJ9vZM9SCdc5FEpCo5USZkY9ziockkCHLSYtl\nBcHj6E92UTNGnmd4LbOd0/IXlptrCZ8jXT65/rDLCbsAld0sXXZY7sdOLT375d6VkU4uSiRTt5Zo\nU7ER86+XpCUsV6q8T45tngd83fYayH+XZXHBY/IZyVON+ceuP9OWjG2EpFHhFsw/d6WUDcUsF65k\nUrENZ8V+67zA98/yvnFrrWBZZuEqev5Ml+fIofM4P0R68Gw1Z5M8zyUSmJu957A2ugvw3JY3X0rO\nRgdwnuZ2tR3WWt7Z4ZRZ7pOwXGZzG7Gvefx4Rhi6JGV57MjHctkMSz4ct55jkk3oEtaS7AopPx85\nSc+4JEFLz5ZzluWmlXfgWXL4jHxG5uezqRjmATuTGWPMyCl83tBFPAP4BrBeT4Wt5zaaI+z+an82\nS5lYasTz3Bhj3HMwBvl+O3e1iHpFJCOdoOdhUyT7MW+JTOVgo5EziqIoiqIoiqIoiqIos4h+OaMo\niqIoiqIoiqIoijKL6JcziqIoiqIoiqIoiqIos8hVc860PoO8K6GY1FDXzoMeMHgROtCq+xaIemyH\nFu2GNvDUHqnxnrcE9p/5ZG83PS3/bsk66EBbnkHul4kVpOGclNoz1hTn10P/1r39NVFv5Wb4H5/f\nD4ve3tNSo9b0KVjxXnwK19D5+mlRL0A6Vf8caEcnR6RmsO6RxeZaUn8b7rnl5bPiNc6ZU3UjNLy2\nRWDeMuhdQ2SpfPgtqUMvJi17aTPszyrvldrcKeqTEbJGY12nt17qo9NI08/66DM/eUHUmxzDZ/Sd\npzEclfbKYRrTa4tXOeWnvy/HxaZmeEdyLhOXS06fnOprZ4m+8yfIk+LOkFpIvwdaRjdZ3R7bIfNE\nzSlA7oi+i9Bweufmi3oLHl7ulFlPb1vbnqXxvoSs9OJ+tGvV/I+L94yUIm/GBNk89u+T2mPOkZLz\nEOaHnQ+jYFE1rpVyAE30W5aKtPZEJjD/Tm+Xc3ZqWtobJps1n4ct9o7/86Z4rYjyvYw8jVwDWS5p\nwbfiTz7plCcnkQNj6f97v6jXthM5hjIL0D/tv5JrANsD7/8n5G4pXIF8MQXLpVXniW9jPM5/dKVT\n9li2gmWNW53ysR/9u1MutSwVF9Tc5ZT7TmGMpFlW1e/+41tOOTcba9eqx6TduG0tm0zYut62NY6M\nIo+SpxhtMXxWaq05b00G2eVGrb0hbJADaWYKY3Po0hlRb8wLDX5hJfozHic777ET4j0+H/T5aWm4\nhkhmq6hXXorcRZOTmKeTMZl/ZWIYc85D+TqGjss8Cimp+E0oJR2v+atkzq50t2WBm2SuUJ6Z2psb\nxWu8v7BOvtCaB1M8FqhP85ZKu/rQBfQDWyBHe2UOiPItaOtQO/ZFzr92atfT4j2lN+JMNLAPOeSK\nr6sW9fKWYA/3NyEPwvAxeb65fLTVKa/8PZnfhnnlu2845W2f2eSU+49I6+y293GWuPMf7vzQz/td\n8JRRzh/LhphzW6RloD89ln0v2/wOUc4Pl1fmWEtLw/qcnoWzhJ2zYpjyVMh5Tp9n5TcpXoV8HdEg\n5XyYY18r5inbBqd75Do5TjlsMim/hp0TbJD6ynOV/D2dOzBXij4lc/wlgymyu7Yt4AcoL2IG9Umq\nlVOPz/mh82hDO59dvpfu04XPyFsi56yh3GzlWzDHeCzZuXmyqK0590jwhFz/wxcptwrlvho9I3Pq\nsZX6yGl8RrRH3lN8EOMxfx3WqHCLzNnGf9fcZ5IKW9LbFvCcu8VDY9reP3mOcG68nvflOY3X59IN\nOEvEwtJOuecdPJvGKcfo2XNYk5bfLJ+/xmnshMcol9aEvNYln8XaGDyONZT3aWOM6aO8KCUbcU92\n3ik+V3grcVYfOmLtn7zMbTJJx1uP5wF+5jLGmOwqPOO4cnAWj1q5jNgyPMuD50B/g9zTU2ku8XcF\nIydk3ljO8ZVVjDnGeZ2OvC7PN0VhtHvFKpxlizZXi3o92/GsX3EnzgF9O1tFPR5zGRUY31XbGkS9\n4EGsqWmURzJ3gVxfgodRr265+S00ckZRFEVRFEVRFEVRFGUW0S9nFEVRFEVRFEVRFEVRZpGryppq\n71/hlH3zC8RrWYUILWJr6IGDHaLewZcQou7JRL0b/3SbqDdNoWCdLyOEcvSUDG+qvR/xP7v3Ioxp\nI4UnXumTIYTlcYSMpqQgzMi2GvZSuHFFC+73YocM062n8KsissNynZTXuvArsPdmq9jrvrpF1GNL\n3VIZNZ0U2B6s/l4pO+M2GKfryF8rrRPffAIW6ekUlr54vpQnpGRQmOhChPv2vivtxkopTJQt29tI\nSmfLaMYvIESz7jMIyefwZWOM6XodYWo1ZM1t236zVSbbwl7fZNmNp+GeLndhLNQUyzA122ovmay5\nbalTbt0j27K4BiHqHOq7+oFVol6M7Pm63zn7gf9vjJSccQzl8FEZ/p5G4+DwE7C4X/wxXOveF/9O\nvMfbgDnGdrNVNdJWbqAbfZ32PCQcl09Ji8bVn4WtdMFqjKOTTx4W9crK0NertyKMtd+SXPjLZBh5\nsuExfeOX5DrQ+xZCcLOrcB22xefYECwY80tg89t99i1Rb/Q41qMzrViXFy+bK+od/mdIlFoHEFY9\n8XVY0s8pkTbHl2mNLSN78+ABuVaONSPMuOGhzU750jPS+rrz17inFX/6Oad87F+eFPXS0xBm66Ly\nmZ/I/maJZrJhCcFvWWmTDGuULCnzF5WJeqFWrLUpKRQ6bK150wnsi8V1aD+XS8rHolHIn2IxzJGp\nKexV6elybE9MkNV3CoXsZsi9PhrF2Jmh6xn0Ynf6AAAgAElEQVS7LO17vdWw7x0mK01bHhIhe+Dc\neRhXkUG5b4v1WipHkkID7YXjrVKilSC70orbEOo8cLhT1Jvox75RsBbrj21Xn0LrKIe9FyyT42Jm\nBqHtHPY+HcceN9EnrZt7aN3gvzt8Uq7XobPoLz9JOOo/KfeJWpKST9KeVlQibVVXkFQrSKH39Q8s\nEvVs6UIyCdEYTM2UIfgptG/zPB2y7IrLroPse2aa7Y/dop7LhfEdHyXJeqmUxAWnMI6rtmB9jsfR\nHy6XXE/dbrKUnTrolAPl0ho4I4MsvEtwH8M+KWEeo7XHT7LloLXfpdPZnfvJPlMVrZWSw2TDko5Y\nvxzfxZurnfIISfCCJ+V6wfLQrFLs94Fh+Xl7z+P54i6yve3YeUXUq7kd4yLdjfHD42LopGzPRAjz\nJZ2seG2pS3Yd5CF8v7YcKG8BLXy0pLBUzRhpcTy4C+u/fYbOmZtnrhUspUuz5mJ2Je6X94lwl5Sz\ns8yF91J7PPK+kYhivep9r1XWI/km2zuvfxjz8vgzR8R7KusxJiID2BcqmuVazee1wU6shSVN8iw7\ndBZ/l1MfZFh9nZWPPu3YjvO525KKe2hsXwvSaa0Md4+J13iNSKVnvYot8rkyNRX3NnQJ98K258YY\nEydLeV6jWW5ojJT/ntmJs+Jy+o5i5Z3LxHt4bx04iH3bXy2f2woeR9qKS8+945QDy2V/D+7BOejU\ni0jnseAuud9NjGE8+kux9vL4M0bKjD8IjZxRFEVRFEVRFEVRFEWZRfTLGUVRFEVRFEVRFEVRlFnk\nqrImTinPrijGGPPGXz/nlDc8vskpT0WlS8ai1Q0f+Nr735Zh7Wu+ipBtDm8qshwHOOyXs2ezA9Lx\n1lbxntgPINMYj8GJZ9N1S0W9XT+GdOdKP0KQHvrCbaLe6DmE8Uc6EaZVdpOU+IxcQRhU/TK4UYW7\nZKjYtSZ0DiGunXtaxWssDaghRyV2AjDGmPIA5CjskuJrluG58SDeF6Ms5e5yGZqXloWQxfYXIFvh\ncFTO+G2MMSUb0YaZboSLhYMyfLuQQnC9Fbi+7p3SISyN5Anj5EB1vE06VbEDle1axgxSlm5z14dW\n+50YOITPLiiVoakp5FLx1vP7nXKuR7oerHtwjVNeuAV93bJXhvMWlaCvwxQSnN8swwEryRnq+z96\n3ik/fwASp4+vXSve8+ybkNDcugxhiCkpUgbAUi2WUqz4lAzB730TEq98khWMRuT4HT0EN5ult0HW\n1DEkpRk+K3Q/2fS8juvIKJBh8/kky/LPhbSEJTDGGDMxglDQgQTaMzNPfl7xjZgv5R6E3v/VF78j\n6rGL1913XOeU4zR/L7fL8O0imhO//OF23INXzvMNNajndsOVYsHDD4p6sRjmcPdprMNl26Q8KbcX\nY7CfwrfnfUm6ylxLiSG7DWX6ZYhxdADriLsI62R8VDrFZeQi7HdiBHPMDt8urrveKScSCAEP9u8V\n9XwBzGeWL3k89fT/8lpZ8sQSp/F+KU3OClCfZuBMULxYhvMmEtjXKjdAEjA+ek7Ui5MsmN1j2G3F\nGOl2dS1g2RBLa40xpuMFhGJ3bb/glIOX5HrB7m4FpCCItss9vuw2SAmnSKLk8snQ9kgvzhPjbQip\n738fYdnxhDxjpY3iPoq3YM7n1lnOUpswn4Mkx5iMSFnriX/Z55Srb8G6MRGUYziwHOH7WTTWLz4l\nXTPqP7HQXCt85CzC8npjjBk41GlXN8YYE7BcMybGMGdZsujxV4l64RGs3fWrH3bKg4O7RL25N3zC\nKU9NYW7H4zg3hoelPDeRQF/n5KDNp6Ys10GScPQchfyJnVOMMcZdhn0sKw/7ef4yuc/GSabAMpIJ\na73yFF/bfTGXHK9iRfKeI51Y9+J0zi+8TvbPEM2RVHKZyZ0jz0u1o+j/EUqbULpSSrf4OYQlJ5F+\nzNHz26XzYQHtf22DkPQuvknKPiZJNslHH9txrOuVi07ZXYHPZvcaY4zJXYR7GhjG+bX0Zrl/coqD\nZMPSy9wFUofqysb4ZIlJwXKZPiHSg3WTJTU51bIP+QwUPIq1zDNHjtOxSzg7sQtRiGV/1jnZXYHP\nKBjHnnTusDwne904b53p7PzAsjHG1BShLfreaXXKuYtkG/lJqhUgycuwlS6DnfuMVPIkBXaYS4zL\nc5TtCvcbOF2IMcbE42hfTynaMzNPtjX3I8up+kPyDNJ1CP9e9nGkNuE9vHLlVvGemRmMx3A5xpIt\n745F0F/FG+DqNDMlJYHsvMTn34lBuV7x2GeHsAJLGhq1JF42GjmjKIqiKIqiKIqiKIoyi+iXM4qi\nKIqiKIqiKIqiKLOIfjmjKIqiKIqiKIqiKIoyi1w158zpf4aWtu7T0tJvTiHyFJz5j0NOOTYpdeOr\nv7rJKbPWsCgs6539PvJU1D0IjfLAPqnNjXZBp/Xotx9xyuMd0Oze0Ce18EMhvOeBf3zUKe/5xvOi\n3pbHb3DKmxPQqx178pCoxzlX5j6Cdhl4X+rkClZ+sLVmhk9qoy+RRrtxo0k63vnQWk4flzkNyu9A\nTqDu7bCgzqnNFfUWfAx5OoYOwLbV1m+3k1afNagFq6XebuwKNIm5C/EZ0xOkx8+WOkbWo8YyoOXL\nypc6Rs4JNEg65LKtMifQqR9gzJWthX55zUpppZ1VglwNDTHo/dle0Rhjwi3SFjCZcG4G/wKZ52f8\nMjTzW+5AThbbwrabrP/mf2GlU86pkXreM08ddcqhKNnGZ0prudd/jbwXw2Fo6//4sfud8qmDF8V7\nWKsZHEeuA5/bsi31QaPMtpETQ1ILn0uWsGyhPmP5T6+8DzrVjjeRO2DJuvminn+etBFONmW3IvdE\n8LjMleShcdb5KvIjxYelTjywDLke/HOgke3Zf1rUYz336EXo37/+/cdFPW6qlqdhyZpKYvgllmb+\nL7/+I/NB/N3ff1H820VrXWYmtLh7vvG3op6H8hfl0XoQtWzeB97DGutvQl/FR+S4yApcO0t0tkUd\nvSz70F+He3S5kOthpEPq1acmsI6wPaXX0taPjWFv8PmwBmd4AqLe5CStjWHkp5och+VjUbW9uZC9\nM+Vyy7DyoLjd1U452IHrmc6VuU9S09HX46MYv6E2aVOdQVa0GbRGTVh5zliPbuTSkxSCR9BOeYul\nrWUuaf45T0Dt3XJv4JwGhZQzKi1DWsmmZ6FNY0GcR1p+IfOzuCnnWt4izHPOUTR2Qea9KVqPvctb\njIYKD8o8Ud4i5KPJrkBbx8fk+sJ7Yc4cnAMiHdb+Rtc0RftibpUcw0GyP66Vaf4+Mpy/JyNV5utI\no/05nXLcpbnkXjMRwtzhfFKcc9EYY1LS8drYGNbJ6WnZfrEYzkeJBPo6LQ1/N9Ul1yvO+zMZQw6+\n0fMDol7B4mqnXLoUe/ilF94U9cq21OIuZpA3ws4lmEr3xLkssgrkmYrz9xTLFIxJIXQF8yirWObG\nmqDcZ6lkj85jzhjZ35ybpqNNWm5z/sTSG9BOkW6ZAyIrgP5KRKgNB3DWGR6X+9MgPWusuxs2v8bK\nqeetxRwZPo7rK795rqiXEZBj1UEOTeOlOTeSh89LsebE2DmcA8ymD/7o3xXOk8LnbmNk/o6a+/B8\nFjwt16gI5ePMbaacLNZ5ji3Csyux1194TeYACviQpyeT2jKwBGtrtEP2O+c/atuLnIb18+QzzP1/\n+D+c8hc+gTxT9SVyLynKxxrKz0Q9++Xz4hjlBvVUffj5xVt37ezQjTFmYB+uy7aT5n0t2oexP3hK\nnvOn6fk5jXJZZVjPJMJ+nerFeuS8mv8gnrO7KQ9TzScxlqam7HUY9xGh/EXDx2SOMG8DzpH9b7c6\n5aIt1aLeRB/mfXYN+nTIOseHKRduw+04Lwwd6hL1bIt0G42cURRFURRFURRFURRFmUX0yxlFURRF\nURRFURRFUZRZ5KqypuLN1U6ZrdCMMabsdoTfXfoVQjzX/9mtol7HdoRV733zmFPe+uhmUS90ESFd\nVc33U1leU3cbpEg/+soT+OxzsOucW1oq3vPZ37/TKV/8GWxaxyy73X/7Hz91ypsXIIzftodliVeG\nl0MfpVSr522EslfcAvnQpf84Kuq5/R8SupgkrrwLuUf9DQ3itX0/gBVv86Z5TvnkOzI8sGkt+ru9\nFWGTmbtk+CtbGJ4+iL9bQrIKY4xxpadTGe/JnouQU7cV3nrl5wgBdxdC6pJVki3q5S9FKF7pWgyg\no//4mqxXh3A2Dnl0eeVYnwwhpHXPq4ed8qb714l6xVYYXDKp2ApLxI4dMoQwy4NQwaOHICfY+KC0\nsc4nOUzPzlan3HqoVdQ714Xwu+sWIizviR+/KuqxReBf/MmnnfKF93B98xorxXs2rKPQUIpUHTkp\nQ4/30FrB9pTRuLT2W30PQoczPOi3Wo9cAxIko2Rr13CnDNU/8hQkjHPXPmKSzVv/B+HnC5ZKm8vD\n/wqZ2DSF8W74s22insuFsNa933jWKS//ynWi3jc+DcvsoTGEdd67Zo2o13wPQkObH8eYGT6DPslr\nkraPd62CfI4lZNFuaSGcXQGpx8QELCFLttaKehd/hX1i/AJC3O3+7h5GGOzCKkihbIvH1ucwfooe\nu8kkE17jbEnl9BTG2aTBnuYustayJ3B9nmqEMKe6pBxmZBRtNpQFie/oaSl38M6DdDXShjHNa1dk\nmQzf9lM4ry8Xc2JiWO6LCZJZcDtne+X4jUYRRswyAE+J3D9Z0hqh0GgOVTfGmKmY3E+TTfk27Gmx\noGWH2QjpaE4lQphf+//kHrJ4KT7j0Pewl6635mz7y5AcVt6OPan+kytFvaPfetsp9x9DyH8+hdpz\naLwxxoycQlj1L7/+a6e8tqlR1Kv8GOR4gTno75M/+LWod+AYzlJbZrBWVGyTh7Erv8BeyHOC29UY\nY1pJKplsWLYxap8xKISepVvp2dOiHn9GjGSUwSvyDJROZ+DRMNooOhgW9VJS0B9sD89yyKmolORM\nUb2iNdgzvTWWfDGK64sMsBRInoG6duDsVXYD5Ny2FGjgCMZYxe0YL6OWZXxes1z/kw3byuZUSUl9\nDp0JU+fh92S2ozbGmGg32qZoU7VTDg3Ida+A5DcZeZDmRXtlvRjZ4OaQbGiC7KgXrZTn6fse+2On\nvPQw5sdffvXTot6Vd0iasRH9s/vb74h6lXMg8a19GLJW3puNMSbNhfsoWAU5s/1Mwq8lm+xy7GPx\nUdk38iyP+earleM7Mx/ncO7f4WNSOlJxG8Yq75nLv7Re1Bs4AHlVXhPacqwFc6fsNrle8f7H0u7W\ni92i3jcfhzw8l+y4x2NSXuMKoG9OH4Okfn5TtajnnYs9fGYaa0WmdcawZcfJhttz5IQcZ6mZeK3q\nTpwbh89JyQ6np2C5UvCYlLHx+YT3ENsCnlNV5MzFXAy14jw4MXJAvCdG6zKnfrClgz2U7qHsNvxd\ntuk2xpiKe/B83L8LdvWj1vcIOSRhnqS1Ij4gpaylW+QZ2EYjZxRFURRFURRFURRFUWYR/XJGURRF\nURRFURRFURRlFrmqrCm3AaG9B/5xp3ituBavlayCVCERlyE+XcdJInEHQniHj8jwJh87b8QRcnby\nqf8U9S4dbnXKLF/a2AT5xVO7d/NbTNchhFvHyU1qxSdWiHp/vvlfnXI9ffaWL0kJVsdLCGlNz0Go\nq3++dNFhh4WMHIT8NXx+uag33nntXH6MMSY/D+H/7jIZYl5VgVC/DAqfqy6TLkyDZ0iSkIuwU/ue\nOTTNW4+Qxb6dbaJeCoULemrQNiUb4BTB7l7GGJPuwnDNLMK1eutkaGRp7c1OeXwcMp8Vf/wxUa/9\n3fedMssO7Az3p/79oFN++yTkF3MKpLMPOw7VyaH1kRk9jfavvks6DPVRhvGGMki60rKk1IOdbpjG\nrfPEv1PeQLmjF+GE7HpmjDFrGhDSe27XBadcFkDYYcFameE+1o9QQw5fTrNkkxtvRwP+72/93Ck/\ndquUCxx+ERLBQA76sCsYFPU2b8K4mk4gZPTi2xdEvbJ8OZaSzYaHIYUb3CP7Y/kfICS3b1erU05L\nkyHrOTnor6IGhJv/8k+fEfW+9FcPOeU3foBw6TX/bZOo1/U6Qqy5f3he7f+mDLdecTuknTx3yhbK\nzx5o24/PJhcTWyY7/+FlTnnoMOqVW25wzeT00/suwlEnx6X8ac5tUtKRTDhclt1sjDFmjFxHpicR\n2stOL8YYk01rHsslWN5rjDEu2kPefWYfPs9y/xjbi5DZ7z/9tFP+s898xilvs6RkmW6MnbFhSEZT\nLachvg9/CeZ8IiElbLHg6Ae+x+4bXx3Ct9NJiuhyybYcvtRiriXssuCrl/OeXQd5z2SnF2OMcBFZ\n81WcE0LtUmIzSU44meR6d/I7z4l6WS6s2Qu+grWuex+kQU0f/7h4z/Ag5BOFb6Ket0Fea7gL/RO6\ngvNcMUlAjDHmFpI+BA8jlH96jZQqzP0kZJSxEPYJW55WsLbCXCsmx3FNWYVynYxTSLmH9urJmBy3\nQlpHl963S55Z8leiXcLkXJWw5DXd5zGuLvdBFrD9yBGnfM/q1eI91z+EfSHBcj7LlSfTR3NkBvfB\nkhJjjMkjGRyfLzMDUiLhayA5JElS3VZb2utNsmHHlI4XzovX4iSRZJnJhOUM6y3APpSgNceWHdSR\nTDFEbmvF5HpmjJQEpafjsyPkvDfcIs8ZT3zta07ZXU7nkWPyLJvnp/MmOVDVL60W9VjaE6b+cVnS\nlvaXcS4tvg73EbpiOcmQ5LV2mUkq7MgUbpcOfSzT4XnJ8ldjpFuhuxBtlNsgHZCGTqA9R07hbFx8\nfbWo5yOpEKmpxLPt0AkpVwpd/GBZ9eCYXDdCJF+aX461oaJeXis7oq39BOTg01NSXhluHfnA90wM\nSjmMu4wkYtI8MCkUbYCs0nbdyif3pr79kGgVLJOuTn17IcFOIyk0O68ZY0xPB/bJpjshteU+NUam\nZOglGdLIKew77hIpHS+7CXJBnmOuHHn2rLgNZ5pxGrfsxGiMMRN0NmbJ49LPrBL1Uuk5lc9BtsRw\n6Ci+A5kjlVb/9Tm//V+KoiiKoiiKoiiKoijK/y30yxlFURRFURRFURRFUZRZRL+cURRFURRFURRF\nURRFmUWumnOGdfK24rT3MjRhWe2wqQpauWRK5kF/t/cVaKPv++YnRT3OVXP+tV845ZELUoNf0wz9\n8vOvILfMu6fJqtLKBZKdCUvFVf99q1Nue/G4qPd3X/yiU152z1Kn7CnxiXpLHoPF7ugwcl6kZ0jN\n2+6/f8kp+8hqbWpKWmE2fjrJ4k8LXzPao+/dVvGatJFDL/sXylwyiUPoV7autq0ZOV+BsCKszRP1\nBs5Bi911ANpFto3b/5q0HN9JfVxxAFrSW5YuFfVGz/7QKc+9G9bu09NWXorroRV0u6GzbD8s7VI5\nH8atlMukoEjmSCi9uc5cK9ouQBfrypPW66xPvdQLjXH6G/K712nS/aal4rXzb5wT9VjX7c6APtO2\nYI5MQA+9nCxhWcfN+V2MMaZ8A3KVxOOY27v/7T1Rj7W+n960ySl/7yVp583z6g/+ADmFdv3kjKi3\nqg1a0lyyBV32OXlPE5albrJhK2K2xjTGmIs/wPpYegss/c78y1uiXs1DWHsng9A9b7hhiai3+z/3\nOOV12zBH2p49LerlLkR7xIPQN7NeNp6Q8zzSAf015w469q9PiHppWdhiDl+CVXjjzTJvUsubyHuz\n/A+Ry8KbK+sNXIHVeeUdC5xyuHdY1Gv5JXJvlH71LpNMvJVYT0cuSE0/W4aGOymHQ7HM9TDwHjTZ\nvM/2dEiLbLZl/KdfYF9snifzRC2uqXHKf/SpTznljHTSP1sWzJxHYcJIjTfDa/zMDD4j1Ncu6mX4\nca2padhzR8OyjThPiCsb9UI90o7Tth9PNrmUL+349/eL1+puRfuy7XHzw3Kv7nkDexfnCnEXy9xu\ncx/BmO4+CMvP+s/Jz+t8Ffk2Ljy5yyl7qpBTJCVFauYHKUdTD1nNd/1Krqmr6rGm5M/Dvdta+Dk3\nYK3IKsBez7bQxhjT/RbmYqQdY90+ExRvrjbXCs4PF7Zy93EOgkQceWXYftUYeU4Zp3wTBetlvrTQ\nZbx2fDdyEgXHx0U9XivPdCCv2PmzeE/gxhvFe9gy252Ls83IFZmXLD5Kebso74htO99/GucrzmmV\n7pZ56HLo705P4rqz8mXOGZ6z14KeHZhH1Z+Qlu1svxvpQN47n5VTKdZD1rlX0MeFPnl+738PuYR4\nbhcslzbTqS6sy0NnkP+Krc7DV2RuFT7v7NuDPai5QuZdKliHf3O+ILYUN0bmg8oga/jftsjG501P\n4hqGj0sr5LJt1+6MOnoJ+UPcpXL94zHoKcFrfbtlXidvNfqU5/ZkWOZdyaAzsG8+9mN/pZyzw5da\nnXL7czgTzn/kdqc8PSHnWEoa/u7cdWiv5oA8d3Nep7Zf47NLb5RtzJ83chb7u6dcjku2ny6kPK7t\nz8uzrJ1fKtkM7EN7uEvlHizWdvpSYOCQ3Lt5Dxnvw7NLOuWzMcaYnD70N+dgtJ8/h+h7Bc5jmUnj\nYDIsn+84Zwznf3XnyLkYi+Gz+czBZ3VjjBmnfvQ2Yo0eb5NrQLQbc7hgNf0tK29XuEW+z0YjZxRF\nURRFURRFURRFUWYR/XJGURRFURRFURRFURRlFrmqrGnwEGy0implmNHl0whpniK5xPSM9P6rI2vk\n3GOtTjkxIeUDu775plNe9bm1TjnDsv478BRCgu/YBDvC02fx2c3NNfwWYen87J88hXpVMsSq+TrY\nr3a+Dbsutp8zxpjurEu4PgqruvSWtACsWYvr4M9gS0ZjjBnvoPAmGa2eFNIyyYK6QLZntBchub1k\nHcnWZcYYU30/JATRPoRtjbfIEGGWjEQobKtwo7QpnCQ7vUIf3nN6B0L4+kdlu0+SHKwkj+yaV0ob\nt+K1sIx1u9HWgwPSDjgtHX03NoYQuPIl14l6l159xSmv2AYpCodAG2PMyBmSJCwySYVlPq4cGW6X\nVo+2mDmP8NvwhAxFLpiLORykENS69TIMs/MA5raHZE1F62TIKI8dDkEt3YRxn+qStrxdu485ZQ59\nrZ0j7QdzF8NC2VOBMM4Fly6JejfdCDlV72GsV3dvXivqcfjyhZ9DzliyyronkqKYjSbpBOoa6F/y\nu/HKjyN0t38P+mBoWFo4Dn0PcqXSOrSTbVO46Q82OeWCWozbWEzKUQbJ5rP6Jtx0sA1h+Nv+9vPi\nPfu/8VOn7GlBPzY/eqeo1/Y2pBnLqU/2fG+nqNe0EWtvbAjh6VMTJ0U9Dss/+13IpIo2yrU83Zoj\nyWT4HMJgbYvsTLJIZUvhuGW3OzyIPq1YiWuvr5Ihy1MkJfn244875XGy8TTGmCV3Q9KWoPDeBI17\nf7Vso2gU6318NErvkSHzLgqn7zkEO2CXX9q5cohx8AzGlH+ulBmzX3HwNCRPWflyb7LDipPN5f/E\nWtT0KSkvGj0LmVcO2btG+6SEpewWsuFsw17YuuOiqMfS6nn/zwan3P2uPDOUbMLelR3A3uVy4QzT\ndWqHeI+3BtdXSvuih/6mMcbkUxh+EYWGTyfkmS14EWef2ADmot0fFTdhzl74Ac5l1Q8sEPV63yFL\n9M0mqbCkN9uytY/24pySmUvh7yEZ/n7+HfRBvhdrWTdZthojpcCnSa7E/2+MPKc8/klIKh+7Fdbo\nqda6wWOHbav5uo0xZpjkSgGSnEX75D1lk110hKQywWNSYpjuwdnQW49QfZbKGSMli6bRJJ18OsOx\nVNAYKePOX416bN1sjDH9p3BvIx3YC+dvbBD1oj2YwwGyBma7Z2Pkml28CPsny+MDKwfFe1jWXx/C\nNTQ8IqX3wePYQ1im4p8n10o39XGIbH5ZFmuMMTlzsT7wWScUlXIgtoBPNt4qrD0dL0mpfApJxIaP\no5/m3CYHE8u1evdgf2KJmTHGpNCccxejjcb75fg2dC4tpnPpwEWcAT0VUl7EtstZRfjsoYNyTlSs\nXueUa+7HPOI9zRgpDy9Zi/sdbZGfl78UY7HztQtOOXdRsagXukLPHXKpTQo8JyZo/TfGmNFzGO9s\n2d6/R8rTQt3Y/9PozBbrl5+XS3sSj9uJoDzfeCktRpobbR0PYY76quTcSffg2cVXgrOPy5Uv6g1e\nxDk30oVzWZb1rMzP+tn0TMLXYIwxhpalAZJqTY7Ket65MtWHjUbOKIqiKIqiKIqiKIqizCL65Yyi\nKIqiKIqiKIqiKMosclVZk58y+gcPdIvX0tMQvucnx5QVf3y/qDczg1ClxjUI4+IwamOMqVta7ZQ5\nvNk/p1rUGxiD/OnIDoSdXt/U5JQ567UxMlQum9wv8tdJeVFiHOGKpWsQ9lu6vknUy8hAu5z47rNO\nuahMZo+v2IJQxnM/eNsp26HR4cskDdpqks7ltxFiPW2FbnLoc8NDCN1klwZjjEl3Idw3uxhhYZ0D\nMpM4y1jY7YCdDowxprNFZpH/DW0DkAax84Qxxjy0AeHgX/n2t53y+rUL5bWm41pDIVxf1ArRC1RV\nO2W3G9fadU66NbnLEPZ46OcI31728eWiXucOktw8YJIKu7awXMIYYwYPY24WkTPB+W45ZzlXeF4l\nxmroguybuXfBLYFDUCPd0klg+DLclipuRuhwdBDje/CADN2svAO6vb59CM3NXSJlTT3vtTrl6rvh\n2LO+UYbB/vJ5SNXYtWvf0bOi3ppF+LvsMjU9IZ1Fuls+3LUmGYwPIcyRZQvGSBeRzHyEUFYuk3KU\nghV4H4/pnDlSEtP2LMY+u29wmK0xxkzSunf+F6875UJaA0//6HnxnkwXQlUrNsL17OKzUnJx8n2E\n59YdRXhuca6UIMSHEcba+gzcpBZ+5SZR7/1vvuyUG+5FTK8tnztxCGveqsdMUgnMRzhvSor8fWPw\nJPYkdghgGacxxoyE0W/+MxQqvLVW1NDoTY4AACAASURBVJuZwnrNoyVvsZSdsuSE5RzFDZhX6ely\nTe8hN5HMQrxmy4smOXSYpA9un5yzExGs3THa46asOZZKYeMeCul358vxOzMjpRrJpnhLtVN25UgH\nJG6PIVpfbSlX/iK4MbjzIWkLLJBtE+4mN6M4zj6WgYMJlK5wyh4P5n13xwuoUye1z5FRrCksy7lg\nrf+rlkBW2PozyAUX/OEdol7uPEi8Tr34fadsnwG7SPYTm8QZK+ekDOvPWyzD8pNJBsl+Qi1yH+Pz\nHLupeOfKsPb2Qcy/vGz0O59FjDFmnPYNXr+u3yBd8k4ewzkgQtJfVxbmqCsgx5GnDGOfpTEj56Rb\naekG3v9wDhjo7RT1WIbE7RC3pK8ZFFrvIYcxf5Ul9w1e232RSYSkrDKzEOsRSxVYSm2MMUWLIMco\nzcAak+b+cHlkNjnmTIbl361d+pBTHh6GM9nASZwtbLkqk5tPrkS7WsVrPnKKY2msLSllKdPISZyZ\nXblSsphLz2osCytfKvvR32hJTJMIy4EqbpfntNgQObdWYO60PS+dI1k6UrQW61/vu1JiyI5UofOY\nv1ZWDSEfLLkBeys/j8y/6yHxnpQmclcaed8pB2rrRb3Lr8JFs+S6aqdsy3g5DQQ/O6akyvU0Kxvr\nZMFKnBeEjMlI+dM1gRqR90FjjEnNxNrU8ybGme1QxZ+RiGD98ZRJFy+WQ+Utxp7pypHjO43Od3ye\nyMrDc0xkQEoMu+l5bGoTOSkWymfPyTG0tbcWn8fnKGOM6XoHY7B8M8ZSz85WUa+AZGF5S3FPo6fk\nGpppPWPbaOSMoiiKoiiKoiiKoijKLKJfziiKoiiKoiiKoiiKoswiV5U1ZfoQdjMSkeGQi+5BKOcM\nhTD1nT4q6tmhPL/BXSgzZOcuQNjRJLlNvPfNp0S9/hGE+TWWIXyoK4jQr6Z7pVVOx2sIcT/ZhjCq\nhgvSQSiPpBWcmdt9o6x3/vkXnbJ3HkJkC5dLmcKxb0Eek+FCU9uZx4eDMnwq2Sx8BPKbjl9JuUfu\nMtwzy7+y3DJ0LjwMCQr3T/W2daIey9hCqWjriSE5fjh8OCsHIbjFfoT3+tzSqaCGXJieXfgPTrlw\ndYWoN3gO4WxRkuJ466TsrPc4QlXD7R8comiMbJel90I6M7RPhhIHmorMtaJqMUI8h4/KsLxRmpss\n2bnhE7JvWnYiDPHgAYR5Jyypm68V99UxhLDqeELKExbMQcjswW/Bfae0GWPH5ZVygVP/vM8pZ2Yj\ndDF/lRxvNR+DtOrC0yecMstBjDHm7tWQ1Pzb65DUNFdKKVCA3CDankXYfbYlBYrtvrZSirELCL0c\nzxoRr7mLIYvIIeeRmD13yiHjG70IWdegFYaZRS4Gz33tOad8sl06PfCY2bkXDkg/+Yu/cMq2C18q\n6TFmZvD+6jul1K+QQpNDJIMrXi1DhC/8GOOi8TE4cA2eku5ci34f/c2ODWlZcitbfad030kmwbNY\n1zIsN5WChbivsU7Mo0kro7+Qhd0LmYrtZsCymbx52F8mxmRf+wrxdwvKsSelp/M+K/vQV4+2ZWkb\nSweMMSZ0RcpLf0NKmtzbWaLDa+3wCblesTsGS5nGO6WMRLilXANlzDi5CY6dkyHRXnI/ifWiT6o/\nJu0xZmYgEUxNxXom292YRARjn+WG7nIZ5j0ahIPUhZchZSqgs0Xv4WPiPYd+DQetszTmvNb+mU6y\nmskErjuRkG5wx5/5Hl4jqcd0XO4T1feQ3JvWh1GrLaPWmE4mUyRhZ1mFMdINMKsoh94j97HyAPo6\nIx3ryKo75BrSsgv7Jzs0ZRbIdr79b+HQNBlCyLyvCFKP6Wkp629/56BT9pPsypYYhrow51zZmKfs\nKmOMdBphx605d0tJHEuoIr0YB4mwlFP9luNakhm/hPN7RqFsTx6DrM2O9sv0ANMx1PPVY8HofPmC\nqFd8Pc7zEyQ39VVJudvQ0HtOeXISLkfv/RR75OLVUr4TbUcb+pfgGljiaoyUKE3RddtSLZZbjpDs\nec4NUkYSp/vgsw6vccYY0/Ui2qI2yVtk+wt4tii/Za54jZ952l9CPbtdpmKYmyyHSViSswlakwNr\nsTYmLCe2jDx8PktoSq6Hc9PY2HHxHnZLc7tR79i3fyHqVd6HMyqnGrClqmksZ3RhX5iz6HZRr/3Y\nS/gMWsty50un5F6SyJV90iSdcDvGuv3cxs7HjJ2qI9KJz+B7sd2Cy27EuYX3e5d1BuHvGKYjKKel\n4fNGTstzhsuH/TjchnlQPHeNqJe2EG590/SMk+n/8LEZIqdej7VGu2ktnuJn6pIcUS/cLuemjUbO\nKIqiKIqiKIqiKIqizCL65YyiKIqiKIqiKIqiKMosol/OKIqiKIqiKIqiKIqizCJXzTkTH4feLDtT\nWlu1bodOq2AetJWxHqk9u9wOu7Cb/wYau5QUaW938VewdrzxfyLXQVWjtFBjmm+G5o8tPourbxT1\nhg5AQ33HGuQzeOH1PaKe+x3o3MryYDG4yEgRobcWr0W6oDGNDkptdTdZQd/ydXgr9x89L+pVbagx\n15LTT0KTXrle/q2+92HD2fh7EKG27tgr6rF2M68J/T3cKvW8OeVoG9aa++fJfCxs35xdg/wan/3K\nN5zybatWife89uxup7ztDtiChlpkToScalxD3xstTrl9f6uoNzCGvlu6BbkEYkGpsxzYjRwdgRXQ\n8xZeL3MRxYNSR55M0rMxX8Zj0paX9Zjrfh92471vyLlT2oB+m38f8jK9+J3XRb3XjiJv1D3UB19/\n4glRr+iee5xy0/XQXhevr3bKuYHV4j1jmzEW21+GjeL0lMxnkJKGOecvRO6Aurukrf0I5bO4YyXm\n9t7zco6xlfHCbejrlpfPiXpN10tNfrLJrsRY73hO5n+qeQi5ZC79B/qg9uHFot75p2EnzfaDrG02\nRuqF2YqdLemNMebPf/Yzp7xiGdYAzu/jSpdbRd2taKfdf498No13yZwcfA2ZZJPZf/CyqBdYDmvo\ncBf0yrY9+OWfQB8+FELelcatst9SbOF3EvE3QAOeliZ1ydPT1Gakm07NkO238G70aU4p5qW7yLK6\nzcC6OTkJjbJtNRka5Nw8KBeUo6+zsmTilqLajXh/CHlMpuJSt59OeQ+ulguJ82OMnEH+mNLN0h48\nIwfzeXoa8zItU7ZRdrm8x2TjJg24u1TqwU8+edgpL/49rCuscTfGmNYXsZ6VbYV+PitX5kGbSWCf\nLKJ9I79GzpeeI8iDVrYJa2r7K7A93/XWEfGehlLMnTu2QE9v52GK9GC+ND+O/fPEt98S9WrvxzXt\n/j7ybqz73HpRj/NhhCnHQNkWmQ9jmvLbJJs0skz21cmcIcNk6e1vxJztfEXuDQtupr2fzizxEbnP\nLngI+eZ4fHMuAmOMyczEmhw8iXU83Y2zSHRAnpPZYpZz3HGfGSMtsnlttefOTAL7afF65P3i3BjG\nGDNGecDcZKVt59Lq2YmzRMmDJulkUC6KwlVWDsGDyKPE+bCGDlwU9XgOc7vZeU14Xrg82DOnrZx6\niQmcUUfOIdfPso04g0yOylxifaOYB4Pv4RoabpT703AbPjtKz0yc68oYY4KHepxy8Uq0C1tJGyPv\nd3IY59DEuMzVklUm17lkMofsszmXkTHGdFHez8q70BbhLpnvis8I0zSGA8tKRT3Oa8V22Z5ymeuL\nP4MJtQ1/aB3ODzcxhLXC1yxzv4y3oA95XpWvl8l80jPRv8Ee7CsZXjnHxluxv8d68Z7Ku+aLemmZ\nsm2TDdut973XJl7jsVq4DutKfEQ++7i82Ls5H1bfu63yj9FyxHlq+FxrjMyXxvmLTn9vu1POrpZn\nRbao59xkwS65f/qKkR9pbAxnJ/uefJRHL0y5nLIse/Dh42R578N6FQ/K/aR489Wf+zVyRlEURVEU\nRVEURVEUZRbRL2cURVEURVEURVEURVFmkavKmtgeq2SDlHAUr0RoWvvrCN30L5ChX7UUfnf5Jwid\nbvisDK0vXgS5yOU9zzhltxWGV5dT7ZTZ3dXlQ+ji5KSUuZTdjLClgf2Q8Zx/vkvUe2TTJvydzWwF\nJ8PeOl5BiHIVWRP6KmXYONtF7/o7hP7XrKoW9VJd1zZMrWAOwrEu75ShoPNugzTs3H8i3Kv+/oWi\n3tChbvNB5DbK/na7EcIeaMZ9xUMyPLfhswi/jo9jnP3423/mlJ/+6RviPfd8YRv+DtkO2yGUbCuY\nkY9xUbVIXmtxH0KYr+xH2G6FJU+6fAX37l8ImcGIZRHL0qNkw2GT7gxpM5dGEo6TP0XYZPMDS0W9\n8SsIw+RQ7NXN0g6SLbPPdmGOeLwyfK99AKHdkS70b99ehEKmXS9Divf9L/TpPJLA9L8jwyczixHm\nXH5rg1MO0T0YY8xwK/5dR3bjmZYM58QbkFBV5CP8vXxDtahnWwcmm66XECZb+TEp0WIrwfrPIjT2\n3b+TsrNCH0J3SzYhNDK3eJGod+kMQj6blkFq8Orr+0W9z2/DvKouxfhmmZUty3n165BWNc2rNh8G\nh+GPnUco8pLPPPah7+FY11DolHglPgnZh4fmwbkdUiI2RfbwC6Rj5UeGbZJjo9I2mENu09xYD/Ka\npKwztwhzMzUVbZtISGnswGXM5+xS/N0ZSyrCYbsscXC5EOrb0/WieA9b0QZqsAaEw9JqPa8Re7Pb\njXNAfOykqMfh4eUk8UlNk+tidjb21kQC1xCZOiHqTQ5fW1v7nEq0TSIqw/9Xfvk6vEZWt5MxuY9V\n3QF5Wu9+7K2tZ2XbNHwWkqDe93F+CFRLKcXgHpxPcqogIdv5JsZBkV+Gb89/YIlT7nkdcsH2K72i\nXtZF7Ffrm2H3XHaDlJ2Nk+1o46JqpxyzZNtT1GaeEuwNPe9IySLLdMqvNu1/BybDGCMjB+V5LqsQ\ne0jvTkiKClZL2QyfH1jWNHZB2kmzbMY/D6H//mr5eeMDrU65ZDn2uKkpjHXfHCm/GO/9YGvlNLdc\ndwPN+FspKVhrBo61iHqptAbwvAy1yrPxh8kFRs72i3q+hmtrpc1jfeTcgHjNT1bC0V7MP1+DlAAN\nnsE15zbTeitVdqZnB856c+7F+X0yItcblsuwlfiR5/C807SuQbyHz2bly9BXk2NS0uAjqXZPJ/aQ\nvBwp58ipg0Tf5SWJxLD8PIZf4/cbY4y7xGtXTxoDJD/Lpv40xpgZkq0PUz+x3NwYKUHjceC3xl9m\nPlvFU/qNSrnXFDRhH+L243meFZBS1e5XsY5PUL8Flsi+YfkTp1KYmZF782grnh+iJD8rWFYu6omU\nIKTKtqWIHybVuha4LDvpaDtbZOMibXnfBPVJ/xD2k6qFcq0Md+DzgrTmeCrkHte1D30Sp3naMYi5\nkz8m96cy+k4h0kpS+Ro5Jww9tvN3HrZ8bIyePVLptZRUKaHn17jv0n1Spp2adnXpvUbOKIqiKIqi\nKIqiKIqizCL65YyiKIqiKIqiKIqiKMosclVZE0sfOATYGGPO//Bdp5xZhLCwaSsUaO7nlzvlztfY\n2Ud+LxSjcC8fZSwPWnKas+chf9j61ZucModo7//md8R78n0I5XvrBMKNmysrRb1Vf3S9U+ZQpUik\nVdRjt5y25+H20vQl2UZ+H2RN7gqEsRatkX+381XpeJRsssiVojguQ+4G9yEUsWgpwsAu/VKGZfvJ\npSOrAPeVk1sv6nm9FB4/jvvKyZeh05OTCEdzZSNr+dG3IGO4fYN0a+Ls2Xzd5bfPFfUG9+M1F4VJ\ncqidMcZcONHqlJffh3FqrDDCyWMI0x4+jFDxwEqZQZ6lVskmeBJhzyUbpcTw+ItwsNnw+CanbLup\nJCKYz4N70UadPTKMuIhkMwuWoH9Ptknp0fp5FBJMmchzt6E/Ot+ScpPCUoQUttF6sOCL0tWpfx+k\nFeefRBhxoEFK0/Lp374GyJWqsqX0yzcXr3Hof6RTugV0nYc7wvJPm6QzNIS/l3NayuJKNmKO9O1t\ndcrNW6X8qWoTJBddByFRSs04Iz+PJFsnvgP3tQf/6A5R78ILkHxlkhSAnRQmLKnf2nvhYMPhueOd\nI6IehzNPkmxrZOR9US8exvqdIKlC9xtSIhGfwvo1THLI5o3SDcNrh64mkdRUhE5n+WVofbgPfZpb\nQfNjUsrx0tKw5kUicAhISbFcV6awFo1exJrJUhFjjMkqxJrsK8X6EI1inrNcwhjLGYNck9x+ua6F\n+iC1cZVgn06zpG6p6dj72dUoHhkV9UYnsV7l+LBf5FdLKe3AxePmmkJyUG4LY6TU5ey/Yo4VLZZt\nU7VthVNmF5i8FbIe92vFeuxrMeofY4zZdQJz8ZNf+2unfNeNcKDcfMtKfov5+Tcgmd68DNLG+hXS\nDYKlI6Nt6FPblYidfsK0PvrmSWlBL8lDgjQX590pHaiyrRD1ZMLXmmGFjfN6k0luQMYKQ/dWQAIz\nRNKo/OWyD3l883gZOi0lRewMFQthPYjQGbV4nuzDsQTOuYkw5qm/Xrb58HnU47XVlj5Eu8lFtAf3\ny+uEMXKc+0uwXoWu7BP1WMJxLYiTfMSeix0vQArsb0J7dByTc6dmA/bP0CVI0nIXyHQD/gfRPyxp\nmRyX98jnJ75/li51Wtcw92a04aXteDYorJROYux+umAlpJHt2+WzADuKssukLaXICKDN+LOHye3J\nGGMyC2T/JxNe/+zxUnkPzjA9b2NPt/smNkgSJXJqtKVH7Axo9xszOUGuTJRig53dwj3yDFiyFePo\n8tN4Dor1SdkMO0yOnIYkh+WBxsg1hc+ona9K17h0kl0FluKzbSmi3ffJhvtxKiylftw2vE51nZbn\nNHb6LKvG+vr9J14S9aqL8Noper74cp4cpy/sxh5cVYj5u3IlnKz6WqXEfGIIZ9aqjyN9B7s4GWPM\nwAX0MUvfet+W6zrvIdX3Yp/t2XVJ1JvopzFcK+V9jL1m22jkjKIoiqIoiqIoiqIoyiyiX84oiqIo\niqIoiqIoiqLMIvrljKIoiqIoiqIoiqIoyixy1ZwzmaRj7H5d6qpcpGtkuy1vrdT6j12G9pP1rVd+\nJe1c+7pQryAOu63sKqlXnjoHnZanANqzsU5ocdf96Vbxnov/ftApf+rP7nXKw8el1eSZf0UeBB/p\ns4cuSy1byVzo5K6cgnY78F6rqNf4GPJodL0FLWnwhNSBunwyP0ayGSbL57yF0tKVLcv++a+edMrF\nuVIr96kHPuaUWU86PS3zGIRC0NnmBdY6ZbZ9NMaYRALay+1//k9OmfP5uCul3eToCeRGKViPMdL3\nbquox5rCN17GOFtSXS3q1VYjxw5b+nGeB2OMmdeIHA5sTRhl6ztjzOhpXF+NdDX+yNR+Anrjg/8u\n9eA1c5Hzo/NF6FhLbpJ5fgKLoe+NkkV9ZofU8+56BzleLp6GDvRrX3lY1Gs7hrHfRpZ2paPQevIa\nYowxM5PIGVL/CHIvBE9L7XbwJDS8BQtgYRg6L+1Ni7dUO+Wu7VijElMyt1LBcvR17iLMAdY1G2NM\nyxl5HclmiCzl55XL8T0VR06g/CW43pyA7MepKeh58+ajT9MzZM4jrxc5PDLSDzhlT6m00yyoQN6U\n3AVkpb36HqfcefY18Z5Rsj0c74Am2l0kr8Hjm4P7qMCakpMzX9TrvPS2Ux7Yi3E1Y9lGFjXQ9VUh\nt9Fhsjc1xpiMvdja6lfLcftRSSTQh/FxuQawJfPUFLTH+fmbRL0xsqGOx9F+nEfCGGM8xeirUBvq\nBRbJfBicjysWxr6WGUA9ziFnjDHuQqxlU1NY02MjMj+OvxTjLxbBPhvullp9tv8cb4UGvXrbGlEt\nFsb+F+xAXhm2ADfGmLwaOe6TDdu8X3nimHgtlSyMOceEbcMZn0BbFSzGPnHlqcOi3vTkB1udT1s5\n4Erz8Plfe/RRp1xNOnvbtjQaR16A/gGMkQKrv6OdlNePcnfYZ7ZoN+o1fxkW4J07ZI6EOfdhDqdv\nR3+Pt8i8U5ybYI5MUfeRcXmRZ8bW8HM7ZxViXbJtjTnfUpqH8klZa1km56+jPD1Fi2ROMM4vlerm\nPDXo62C7HG88zycycQ2c/8EYY3LovBbpQz/ZeSg8lFNjgnKnxK17L16GPmzftdspF1D+wf9637XN\nOZNNeyHb6xpjTO4CGvshjPXpablWBigflCeX1r0pmStkvBvntIGDdH638kkN7EbeO86FUr0UOSMH\nzsi8cSOnsC/OWYl6trX0BH1enM6evnJ5HinfgjXw1EvYM5Z/Wubo4zw93W/gHFSwfo6oF277/9l7\nz/g4r+vcd6MMMDMABr13ggRIsPdOiqRIFUqiqiVbluVux6m+dm7aTTm2EyfxSU7sxGmW7bjIsmR1\nWVShSJGS2MVOsAAEid7bFAxmMCjnU97nWdsSz/1dDS6+rP+nTc6ewVv2Xnu/M+tZD83NzSaupFXg\nHEOtsk5KYhL25LERjKVAo3y2GqE9dMEGHHvPG7KmSeUj2A/z2Eyw7YkpJKQVY4wlUUzneqXGGJNO\n9TUXfB41xcZt229aPyYqMC6TPPJ5ruIezDH+u9PTdp0ozOe0Ehxrslfag2dUzVw9PWOMCbVhjKRV\nWZbodMh8rWseXSr6tTyFsfrL1w457QarbuVD6/GM+E4D6q39ct8h0e+lt95y2p+85x6n/R/P7HXa\nn79nl3hPEc2dcXpmHR+W9RPTqB5sG9WQdRfKujfZi7HXDrbjOcRr7+NpD5hRg731mLVfmpq8uSW6\nZs4oiqIoiqIoiqIoiqLMIvrljKIoiqIoiqIoiqIoyixyU1kTp0oOdMk0tZpdsMAMUxpiepm0uu09\nihS7zAV4LWeOzG+Nfnev+SDOvy2teO/9mweddqAdKdZjZMX9s28+J97z8O/sdtr+S0g7TK+WKVsv\nvvKu0942DeuttX/8gOgX6ke647XzSNPqfL9d9HMXIC1qkKyQM+dI+9XCTdIaOd7krYHsxVsiJQ3d\nlI6c6kL6nC0BYhIoRbH79Gnx2uAx2MYV7YCVZ/78ZaJfLIa0MLZa47adqlt8R43TPvETyJWCETtN\nGeliaalIe86ukted09YK1uMetD57UfTzliNtLYVSmycsu0B7PMWTnrdh68b3yRhjvJSW13sK1z8h\nQV4/N1l9c+ply34pWbzrS7eaD+L4UyfEv+fWkJyqDfOK5yLLc4wxxkV2p2ODiBu2bV0WxQoP3Sdb\n9sEpn5x2Pv/jUld2+d9w7ANkT1m3WdqwL394pZlJkpOQ5j50sku81v8u4krd5zY57VG/vDadb+J+\n8RjufK9F9JuYQkzlsWCn575/Gqmcm4oxRs797AmnbctLs0lW8x9/BDnk7o3SIjYafN9p+0g+kXyP\nlAxUrdrjtANNP3La4RsyxZ3v/9FncE93fk2mtJ57Qlp1x5PkZMy3RJ9bvObN4rRlyEraLv9K9HOR\n1bsvV8oimFiMLHE9mFfDVjo9p1iz5bZ7EySBJlH+FjM5jvTekStIJ89ZLNP7Of3ak4ZUfU99hegX\n6G1y2izXiUbksbKFdWYJ7wNkmvfoMOaDkaE7LrDMa+5n5byfpjWELU+P/1TKsR/4hz9z2qEQ+s1/\nXI7HQA9spwdOQjqZu6pM9KtfjDXTU4q1eiJEafNpMm3+wY9td9qcau4tkenW//zNJ532Z8qwJ0qx\nxnB+zXKnPdh6Hsdj7R1YisPW4aFrUhbXchDxatFuE1dSfJBzjFzuF69lL0Qaur8Rr7HEzBhjIqdJ\nsnIn5CLhYRmfR0l2wDKS6Fif6Nd3HOO2cEMV3uPD9Qr3ymvEQ7/nAMaKu1jGSbbpHR/C/M2YJ62a\nw52IG8lpWCMrN8i1fXQUY5blrqEOGXdt+V28CbOkw5Ia+xuxV/TReZZbChaOqd3HIauwZSEsXWMp\nTmRAyp/42hfvxN6TY2VWidzzjXRBEsJWvrxnNkbavBdvg/zCZdnBn3se8reVn8TayvfXGFmiYcKP\nWDFwWD6T+BbK57OZIr1CXpfOt+g5kGRqCdaaxLImvk+l99SJfsHrmD85JHtPTJb3OhrAPfVlY0+Y\nlIT5m7FMlmbovvKO02bZZOlCK6YHIMmdLMH8sOML71kmY7g3/NnGGONZhvF2/Ul8dpolOxWlAqpN\n3BltwRhOto4xcBl7i3ySzPVZJT1ScrCmrK7B3LmlXu51zpHMqbkZz6IDI1Ia+5WHH3baU7QfGY/h\n3qVYJRSGziB+szzUZ8XKVB/WySwq+5FdL0uADNCzVXSIpIi18vOSPBiDLDe3ZbdBXifl47ExRjNn\nFEVRFEVRFEVRFEVRZhX9ckZRFEVRFEVRFEVRFGUWuamsaYLSfuvuXyxe45ScyTH0G+2WbirhdqTf\nnX0DcpFld8i0vKEgKmbXL0Aa1OqHpIwhNkpOMFlIY3rzn1HNeeeGFeI9nNLEspSpcfnZDz2KlM8+\nSokKj3SKfrEQUhJ3/Y+HnHY0JKVfY704p/I7avF+q/I9p6rOBOlUcZur3RtjTCSMY7ljOdKZS2+t\nEf04Va/37Ran7bUclUYDSBFufRlyiT6qfG+MTNnmdqgZ19B25hkhBx8vyZVy0mXqb0MH0saXVkKu\ndPG0lO+sexBpos0/hjxrNCCreWfR/eGU29QCWc27/QDS8hbvMXGloQHSlm1fvkW81v0azqt4PaQG\n7BxjjDGdb0B2UPcQ8svrH5WuHpyyneiCDKfAJ+81pxFWuiFfivZjDLjS5DWaiiJdMcDyizzpGJW3\nCp/HKc88f42R7kBzqGJ8WrqUK819DOM8+iNIbc7ubxD9WP5Tu/FxE29YZlf10CLxWvNP4Djkb0HM\nCZNMzBhjcpYhjTejAq4rEcs9jGUbxTshH3ntO9J5KYvuUVIq7nfbCbjq1FmpoH/++X9y2qvn4rOD\nQ/IYFn4Bjlytv0T8d7ulnCMWQxo9V7jvPC9jb2kVSQxJ3udKl+m3HB/iTSSIFPJgm0y/zSSXlHQf\nXBom88KiX2QI5+vvxxj05cm0CtiehwAAIABJREFU32iU0tVpnbUli6Eb5JhVhDkRGkBae3RQpu2H\nu3AMmXVINU9JyRP9vN4qHHcE62JwUMbT1CyMI079n4zK+JKVjxxellWMh+Q1mml4Hfdfk64hPJ4y\nKb05+6qUsITDiMuhLsi3JselJIadg/ou4p66rHjGToPX38V6kpuJcV+yW0rCeVw0PI90+M4hKZ15\n7H64WLK82ZUm50piIv4dJocJOw0/TPsbP7nUZNTJWJHVN3P3NdiGcW+7ZrD0zzeX3KkKpdS24xCk\nI6E+7B1sWTU7JfF46T3UIvoV3wqZCo+xWAjX0p0r1zs+j8KtVU576Kzl7EkyVi/tRWKWxLpkDfbA\nk5NYP64feF30y6J5PxXDfthej5PcUi4Sb9z5OK/okNx/5SzBetf5a7ieTllOfi3PIo6mkxRk6Iy8\nhiwDL1iH/VJyqjzngRMYC5F+xM4xeqbJWSkloNcb8Z7KMsjq+k/LeJBehPnXewR7Y1ual0Nr8wiV\nRkizXON6jyHO5y8npyrrGYfXhngTHcI8T0yWzzT5a7Desytl16tNol8yxUke08keOf443jC2O6iv\nEmMnKQn3d6gfjqfpmfJZp3j+Fqft8eC4uztfFv1YBjcRJnlNliWvuSBdgf8bO774e0haTPtf28Uw\nYMlG4w07MqXmynPJpbHFa6S9/xq+iLFaFcY9SJ9ruR2+h+fKP/3Up5x2+6B89ivJwZ4w04v7+NDX\n73baXLLEGLlus/tVittylO7EHpPl4cOX5efxczs7HPobZD+WQ7rzaG9tObHZ8jcbzZxRFEVRFEVR\nFEVRFEWZRfTLGUVRFEVRFEVRFEVRlFlEv5xRFEVRFEVRFEVRFEWZRW5ac+bS09DiFpRLHXHNJ2A5\n2Ee1PGw7usJb4PWVTrUEshdKmyrWrA1ehtaaLS2NMab/BLSVbFn1+Pe/4bQbX31RvMdPOs7Fj6KO\nRDh8XfQL+6E9Y032sKVlGz4NDevkTujGPPmyvoavGprTM/94AO8flddo0/xtZia59hTsMIs2SPvT\nNKrZUbAJrzU/J2tx5MzF/R8YQJ2FxCFZO6iwCtpurnnR0yE1/ct3Qpc9PQmRI2vub5Dm3hg5BhPC\n0LcWW3akXcPDH9je8Il1oh9rm71kg508IK1K2RI91Ipzz6yTtRkKyNIv3rB9tl2jyLcQx8G6e9u6\njTWObe/BLrBknfRxm57GnOs6ghiQ5pH1ETouYr7U3QXrebau7DxwRbynYie08G1vnnLauWT3bowx\n0WHcm9JV6512cKRR9EtOxb0KtkOLG06SFu9cI6tqJ9Wj2Sc1z9V3SMvGeFNUhns11CC1yBUPoN5I\n1z6MfW+ZtLCdGIW+uecIYliiW4ZzD42F/f9rn9Neu3Op6MeWuxdfQM2K5Y+jXkzjL8+J9/zhH33S\naZ99HbalBUtkPYfeQ6jJkehGPZt0qyZQfz+Ob5pqCQyHZA2byKkWp33bX0FvPBGRNRfclj1wPImS\nPWJWrYwBrNeemEBsnIjIuhuTZE2bVYLaNGNjck1KTMQ95XmVPq9Q9At1YnyzpSzbVtvWyv6rFJPp\nwEfa5DFMluJ8JyZwP4YbpEU2a+PzVyMmD13ssfqh9lBiEs4p2apr8X/SZH9Ukuk6cW0tY4wZPotj\n5uOYsvYjra+hfpUrA59XsmmJ6DfcjHlQQFbldn2C1ndw7bmuUBpp9e2aA7x++jz4vL0tLaJfdQH2\nXG1XUQNj5ypZoy8YwNofofphwUZZB4BrrvFaE+mRc7b6UXkt4gnXpbDruDBJKVgzRwdkDZLiTZh/\nwQ7cd/vzet5pcdq8zhZslnsqUX/Ch7/LNQj9V2RtkfQq3N9gM65zYoocl7xPDl6nOlOFcu8Z9lOt\nKbZznZR7gjGqpZJG58R1jIwxxmXNj3jDNQljfhnLC7bg+iaRLXiOZQvdRjX1Ir04r/J7LRtmtgpO\nxXyZiMoYPY8s6ntOYR805+PYL7W9elm8p34L/hbX3vNaVtpcU2QihDqQ7m6rph7VY+RYYVtku9Px\nvnG6fknWnsC29I4nY1QbL2eprMXD6x3XCi24pUr0a3kZ1zPah3to26Hn07NKCq31kUF5D4MdeHYb\nGH7FaRevwD2cnJTvGW5H/EvJxLGmeHJEP5OLuTThxZxv/dUl0Y2ttN00T+09L1+/cdr/uqy9TMn2\nOWYm4XJ2do1SrpPTexRztnC9jIGFm6qcdu4KjPXut+Qz3dyV6DdIMXHjJ9aLfpNUP5P3ucFmrIXp\nVh2mVKrnNnIVnz1wWD4b5JElODPwrpxjZffPx+eR5XvUqqmWuQjr7MBx1KAqukX6ntt1wmw0c0ZR\nFEVRFEVRFEVRFGUW0S9nFEVRFEVRFEVRFEVRZpGbyppCY0itSuqUNtFTP4UVWfZyyDn6DraKfpzG\ndf0y2b29K1Osy8jqlS3yogNWytACpAyFu5E2PjwAiQRbRxtjTH4tUthajiG1rXz1dtGv7f0TTjuV\nrARrtt8l+p0690On7auG1ObZP/qV6McWzwWZsNHKtayf3/hbWNt+7gf3m3jD13a01S9eY8s7ljJ1\nWFZmLGvykZVZ/lqZmsfW6SmUFpwXkOlxk1GkOUYo3Xec0hLn7qgV72HJAKehJ1i2fcs2I02Zc/Rs\n6zpOv56gVNBUy25wrItS+duQRtd5Sqa95ZVbaY9xpKoQ4/7sj0+I1yqWIS0veA33LdIj5XP5lL4X\noZTRkTaZasiSIk6vLN0j04MLKX075o847VFKlb7ynpQhTY5iHCTQPcytk3aG/g5c2+a9kLzY6bJD\n55GGnlaOmBK4KmV0PN6iNMbqHpYp970HW/CPW0zc8ZHN7JRlc8lcPAup6FK3vO45S3ANvMVIe07P\nl+mZb/zFz532xkeRJpqSLaUUoRsY0/lkl85ptrUft6RQhfi7O9fg7/qvynT9vEWQL117+rDTHhmR\nqaUpKRjfl19CPNzxf+8S/fb+zV6nffF7+LyrndJye8XKmZOnjY9grNtp4uMkIRjLwPUrrpNrzXQ+\n5k4ohDmSnCxTcycnEXs4tTshQUovOR5OU6CM0bGmWVaO2YsgjeK04bRieQwTMZxHqhvv8dXItZnt\nTgM0pthO0hhLypSMtXosLOUmickzK6Xoeh0yiKIdMv40vwY5ZvU2rJ/5G+Qcy6jEtfJ4kLackiIl\nF2lL8BlXW7FPYHtOY4wpWoC9VC5JHwbfhwyp2EprP/FdSFRzMjAvF5RJuS9/diJJ0C58V1rEZixA\njEoj2+HC3ZtEv75LkKfxOAu3Sanz1MTMydOSSPbD89IYY/JWYG8ySJbU1bfcJvpNTGBPlEPyZttS\nfmI15ghbK2eWVYl+A1cwn9052AMlp2POZlgp+ENkk8wxnddzY6REomAdxuKwJR0MkDQq1Iy9e8Gm\nStGP7dF732tx2p4iKaUdfJ/S8x8zcYctqW07ZLZb5njb/oaUJBeSfIJlTbbN7yjJwfa/jbFfUSVl\n6TWfxNjKJPnq4HmsNb5aWe6B9x1F2xAPBk5JK+1wu5/amC+ZVrkH/jyOFfzMZYwxY7SX5WeXsL3f\nn0F5GstvbElgjKRbUZqnLPUzxpi6xyGxbH0azyO21C2N5inHxsp760W/cC+tXbTv6TgMOWrAsi/n\nfZnLhznrLZfPrG4qCcF7yqylUnLMZTAKt1Y5bXvvULYbshl/Y/+H9hunvbaR2+G4kEuS5MmolDeG\naU/I8qfB83LtTvbiuqVkYv7xs70xsvRFTi3WzMx5MvaGOqiUBo3hwCVcpynrWPk6nX4Vsvx5c+W6\n2LQXUrrSxYghqUVy38KS0CQP1s8say6yrJwl+kPn5DUabcHcrJVLqzFGM2cURVEURVEURVEURVFm\nFf1yRlEURVEURVEURVEUZRa5qaypbg1SfV2ZsmL0yVfPOO38bqQJLnxEOr9wKlnOCuRgPf/dvaJf\neTIkLCxzaT0hZVKr1iKVMzUTKYCRQaQxNv7qgnhP4ieQBnV9L9KVM+ZIGcrpfXjfpk9vdNqhkKzI\nnk7OCe//wyGnzdIlY4ypvw0pduwsZctwgs/LdNx407UfDhCuJJnWyE4/pfNwPdJOy9TShpOQWZTl\nIpUz0Uq5m/cI8rMGruA9tpsAa5TSKnDd2LXAdr+68TTuD1e77913Q/TL3YB05tMvYJxWXpOp5lWP\nLnba7FySYLkhjZxFynF+PVIWhy3pzGCHlP7Fk8JbkSI7+rKsBu+m65R4kzRvfo3TTN/993dEv7nV\nuH7vnUFqadLr8rqsXYA5G4sg5dtNabUsgTPGmHArUnjnfmGl02765XuiH1den6JK/1z13xhjWg9B\nkrXwMaTEplpSiv5DiCMtfUiFrLosx4TbckaKN+3vkmvLQpkO2UdOd3kkL0pKkxIWThltfxXxbGqd\nTBmduwJjJjGVxgVJ1YyR6cgld0GGxGmc7AxijDEuOgauhH/jkJTIsdNNyU6sJx6PlIe0HPu10175\nFcTern3XRL/qfNyvuZ+E1Cr1BXmNRi3HmHjCrjxphXIN8ZUg1Xng0lUcz6iU93m9kLlkZ8NFLhS6\nKvqlpaHf9PRJHINLrjUpPswrvuYsNbJTil1ujPWpcdzf6Ii8dqlZmEu9ZyFl8Vnrp/8a4mHOIqz1\nE2EpaQ20YLxkVOJY7RR3X7VMbY43Jbfh2vaSE48xxiz5PJzK2A0k2CLnQd8xOFZkLUTqfSwo3c1y\n5yzCPygf3JUux+30FOJl8y+x3tV/Gcdz5l+OiPekucmpJYY4PBgMin5tFyBNyU7DPeV5aYwxWfMx\nx4bIkWssJKWDQychJyjfg5T8RGt/03cCf7dcmrR9ZNIrIG8I3pD3pvsgYi07hgT9cn/o9iLNfWoK\n9zAUkk6D7mzMl7Q8jO/RQXldOO1+gtZFD61JHMONkfvkQBMkSVMRmao/2oF5nkqSKXt/zjIX33zM\no4QkKe1mON6zc5MxvznX483QKaT82+6ERbswPtmpkp1ajJHS5c5mjNue/5Cylbm7IHlNaIObT1+n\nlJD5SMqVSG5f7EoX6bPWGdrX9pBE2nbmOf0zSNPbBhA3t2TIccHSxgmSntqOaLEh7PXyVuNv+c9K\nRz0uBWHibKKWQzJZdvIxxpicxXiNHX1tCdtoJ0kMV2OOTUuTMXPsRciSFi9HHL/+cxl3c9bg+g28\nB6m8P4BjKFkhZS4ck68fxP5jwSrpRMkyM5YOuotlWYR8cnMbo3ICUcvZ2EelI/gYxqx7ba8Z8UbI\npiw85NDH52JLpieofEF0EPvN+sfulf0mIFdyubDnH+m7KPqVLtnqtK++/JLTTs1HDPQ3yOexpE5c\ntyW34Fl8rEPKbrvJ0bc8BfvSqttlWY2hC5COJpNr3ODhDtGPJasFW6qc9vAFOReTM25+HzVzRlEU\nRVEURVEURVEUZRbRL2cURVEURVEURVEURVFmEf1yRlEURVEURVEURVEUZRa5ac2ZqRg06sOnpVXf\n4lUQD895AHpotv40xpj+96HHZeutz3zvs6Kf/zo+/+he2KxW5cuaEA3/Aa0m2zunkc4r3St1jO/8\nG+rC1NXDSrD/pNSK1VZBq8kWgxe+e1D0K78LWrT1t65y2i/9yX/JY30d9Tq4hkRqhrT2q9s538wk\nJWTpZyw76bEu6NLZri4lX9YKmbyBsdAfgGZv37++Ivr5/mu/0968GDq/wh3Vol/D02eddsVq3BO2\n7mx7pkG8J5s0qFyHZDQsa2jk0Tku2bnQaQevSE1x/wmMze5zaBfOl1Z4oWFoKydHofvNsuzebAv3\neDJ8Bprs7pER8VrCO9DWJyXi+9Y0q+7K/n8+4LTr51fh/QlyTCSlQ0+Z6kJ75fy5ot/gIPTB/Bmd\njdCCD4YsbfQENPSD/0hWzbsWiH7d77Y47bMtaK9uksdQsQnjiutBsFbYGGPm70HNh7IszDfbcnum\nWfQFxErb2p2vIVvwuQvkfRy+DO3q+DDZBf7gqOgXm8QcqSYL1tRcGR8zahBHWUPPlq7XX5J1jtLK\noTEONeF+F9fKuZNE9s/peVVO+9rBF0Q/tt5MduM9tvWnj7TN53+ItYDHlTHGJCfNnGWotwTHEGiV\nOuKpGOYp2xUbI+/1+HgftTEGw0Gp1Y/FqBaMH3FouMeqm0Ha/RSqP5GRh7UqMVEu9+Ew6gONkJ2o\n16o3EWpDvMlZjDpJwVarxhbVBfA34fPsegFc98LlQi0LV4bU4A814FoWSIfZuMAWpZ4Sec6jnVTb\nIwtjM6Na1t7oeQv13JoPIebkF0qr5Kbh8057ye9ucNojlvW8pxD1Cry5mPcX/+04+qRIrfr1XoxB\nnwfjYFWNrCXDIzB7MS6obZc6cJZsf6kOScfrsm5SjGKPvwljOHBZxtSsxTImxJOh89g35q2UdT14\nHIe7cD8nozHRL5KM88ooRl2J8aBcu7h2Uorvw+2A2R6W9yk5dVirAm3t4j2pFP+45kNkTB5rSjbm\ndvMvMKYK1ssaXmNkZ85xfNKqYcPzPq0S+xfb9jWZ7KhLpBt3XCi9neqGPCVjm68O+yyuo2dbDE+N\n4/4UleE9qXlyveN6LdX1qDdir8djZBucRDXb8snCPGeBvO7XnsSaVHhLldOOBWXdraIsXOuySsyP\nlGx5rEluxGz/FaqLaJ17GtXBHLmEtcWVLWsR9VPdFSMd5T8yw1fwd+16nhxPc6jWXnQk/KH9eD43\nW7VkNjyEfdRoG+1DffIeDh7Hvr7iITyP9B3BdTi9X463+oWYp0s+vdpptzwt66B4qLZM0Y45Tnvo\njLRND1G9Pt4TlGybI/qFe3DuXBOSa9EYc/O6UfFgkJ6LeF4aI+8P28uP9cj6Zlxzpmr7dqedmOgS\n/bKz1zrtoSHsX/NKNop+3Vfx7MLPiBeexXPkovuWivdwfa7xITwj5m2Qc3YtWaRn0/4mMijHJtdq\nnJ7Cupi9SvqZ99Kzy/gg4lWSW+5Jk9LktbDRzBlFURRFURRFURRFUZRZRL+cURRFURRFURRFURRF\nmUVuKmuq2gNr2mtPHhOvsXXb4W9D2lKzTXoluilNt+Nl2IR6y6T1Fqfp3fYHu/Cel6SdYfl9kD9w\n+t4Qpa9lrZBptMVHINc5dw6px3sekrZebJHqJpvCinvqRD+28Gt45ldO++6/flT0e+lPfua0131l\ns9N++5/2i34r5su0tXjTzZZ+y6R971gn0tE8pUh/zZgr0xLXVSK9b+QM0qiX3iet0wOXkCabuQip\n06EbUorDsoOMGvytnjeQas9piMYYE7yO6872cjnV8voFSWbBacXBEZk2z+n2lVuQYhi4ItOySzdV\nOW1OO217VdreDjXi3OdvM3GlvxWSrCzLnjqrDCmyPTdwDP42mZZXmoPr3HIdqZf257EV6op5uC5v\nnz4v+p1vhT31ifdhbfjHn/600375+HF+i/nUNlyYOZvJJnhS2vy2D+J8R6OYvwW3yJxqTp/0n0M8\nsOPQwGGZRu78/4Bf/HvJ46s+sF+8OP1vsMFd89Wt4jVOa63ag7TdgYtSosX2k3nryQb2oLQZZxvW\n3BVIvSxeIP/upWeecdrRXoyZrEcxf0s3S1li3zu49zn82StWin6RCKSjwV7I71gKZYwx515G2vKS\nO2Bxf/6YnGPzSiE7KF2J9NSrh5tEPx4z8WZ6AtfZTi/PrMA1C9yQkicmGiX5UyIkA6F2GSeLFpE0\nhVSTOSXyOg91nnLabLk64cHnud3SMjQWwjXiFGW24jbGCD1MkCROqVkyBZ9TsT0FWPfZdtgYYyYm\nsOZEgrhGE5aEw1sys7b2wu5zSEpjizYhzlz9PmKYt1LKn/I2YgwWUNzsfeuG6JdIksW+I5g7tpyK\nJTLpc3DDy+/GHqT/pLRu3kyW4CzFaD4ibe1La3EfsuoxTlnaYoyUs3Pq/kRISjPqyPKex3r+xgrR\nb3xEXtt4krME+xl77iSRPDJC19WWprFsr7sV8s3idQtFv1gajf1UXL/hgJznucsQo/pPYt0JeBEL\nC2rXiPcMdSI9P2853t9LY8UYYzrehowuf5HcyzHuErpvNM6nJqy5TZsglkOGO6Xd7EzeQ2OMGaDy\nB7558v4MHMd1yyf5li15jfaTtW815k7XcSkVddHeM70QMca2ti3aWuW0e2i9Y/l09/Xr/BaTTn+3\n7bnL+P85UuboD2Odrb8H0lP/VSm9HyCJyWQI8dFdLKXOSSk4J3ce9nM5yyz75+CH2yR/VLLnk1Ry\nXMrnpsYxF1mWneyxpB00HsfofmYvt8Y6yUpiJHVLsay5M2oxlnh9Yrv2zY9LCQ2PK/8VxEZfnXzO\nyFmGeMpzJ2+1XGejNHeCZLkdbJOyYI5RvlqU85iwpIgzbaXN6064W8qVBk/guSFvA84z0m89W9F2\nvnnvm0676rbNol8gAKnYUDPWq7F8WUZlmsZFKj2bz6dyCK5MWS6kbAHWTN77dJ06IfqxlInHn79J\nzsWJMdyHos1VOO6L8liLt+OZqeNVSGazFklttr9Brrs2mjmjKIqiKIqiKIqiKIoyi+iXM4qiKIqi\nKIqiKIqiKLPITWVNL/3pU06bq2MbY4yX0nHdp5B6d/iFk6Lfrt+71Wl7CpGKZ6cksttE3wmkMXor\npfzJlYaUrugAUgOLdiH9O81KFS7ZgDT5gb/AOe375muiX2UeUrsvvwqnoMICmWaZkosUttxs/K2J\nmJRI3PlXdzttrvy84w93in5c+XkmqLofqV+cmmWMMe583JNkqh7df0TKQNjJiR0c+g7KtNscclQS\nbhhFMg0zqwNphX1vtzhtThsfOi/ThS++B4nb3BpUck+xKtKzc1fPAaSXuy2XC5Z98D3IXCzTz4aO\nIZXPlYXUuUyrIn3uKplCGk+mKN2ucoVMG58II9118Schd4gFpbSDnRoCv0aF+q5hmV6Z3obrmUmp\nnPetkOP2XpIitb57i9POycecXbFaOpGNdSN1c5LSrVNz5DyvXwwZzeI0pCeOnJUphE1NiBXz6pDy\nbKe3ptN5sIOcDcvlzJIP7fb/mfn3wDUq1Sud6DxzkXrZcxZp7j4rDb/vGNK0hy5AylW8rUr0G3gX\nc9hD6dujo5ZMily9ehpwfVP3I8000i0dSUYGKd31JMbmiDVn+9qRGrr+j2AP0dsipYPzluN+txzC\n3931x7eLfixB6CKnnJ1/9THR782/fNrMFBwrPPnp4rWkJIy7KXLcisWk5CIWQCr21CSuZWaNTJ2O\nRnF/Q90kAcqR9yM1C/ew7yTGRzAFczslS8bq7DmQ7kTDkJkle2Wq+RRLDmmpyiySczs5DfeDY3+g\nS7oiRgaQAu2j802wTShmdlk0V5/EHFvwGSkTu/IDyDRzlkAmzW5KxhjTT3LJ0rsgpUyvlXO2cjnW\nRZbbjHZJ+cj05AefdOAa5lG25X7kv4wxkrMUf8dnSZN7SZrBzjSZ86XrYP9RnFNqFl7zLZD9xoMY\nt60vY20u3CDXp+iATHmPJwGSmCe65G+N3iLEPJYaDJyS8X+S5HTlO+H40X9eulOxc04kHfMvrUK6\nNA5fwjxNr8JehGNw17kj4j0sC8iaj3Uh2ZIwzLkXUu9AI8YExxNjjEkgiR1Lv2wHEt8czL/RTuxf\nkz3y0YDd+WaCaD+Oa2pcSpy9FdgTsqNh/2EpV8pdjT0hyzHKLUmucCgdwR7Ju0A+N3S+Bqls9ccg\n358kV6hIn7yeHMTy1mHMpWTJPWo2xZSRixgvtptWBkm8WAZhuz9FujF+CrdXOe3eQ1JemWFJxuLJ\nEJ3HaIvlKPohDkO21IPfl0UyqVCL3KNynEujEhnDF+T+kMs2sGMPO5PZ8Fzk97ise8iuTMXb8fzJ\nexRj5J6y/Hasmb1H5b1hKVO4G+vClD0mambuHhpjjIfc3VjiaowxuWvwjBNuR7zIWijv4ySVk4gO\n4hq2vS3jHjuFZlVjvkxPy7/rIgfm5p9Dwp1Ri/fzvLb/PdYN+VTpbbLkQTdJRdlN6zeuMz2DsVPl\nxKiUY7McbyqK62A7sRVuqzI3QzNnFEVRFEVRFEVRFEVRZhH9ckZRFEVRFEVRFEVRFGUW0S9nFEVR\nFEVRFEVRFEVRZpGb1pypLoCOrHCl1JdHQ9C7ZpJG9oHdj4t+B77xrNPOToMufuLFy6JfzlroRYfP\nQDdY86mlol+4Bzoy1pie+zk04oVFUitW9zlYx+b7oCstsCzPssle0ncOVqfCassY0/wLWAq7fdAh\nHvjW66Lf8gdgRX75FWjeVn5+neg3aVuXxhm2CWVLMmOMcWWk2t2NMcZ4y6X+diIbGtdJ0tGND0qL\nRdZH+snq3F0ga86wtt5TDh3/CFkJ2rbfC1ZC15lI1oH9DVJnmkWa/IINqEMyZtnC5VAdgF6yG8+j\n9xhjTMYC6Bp5rLc8c1H0E5p36TD+kancAN0024MbY0y4A7r7niD0k1lLZG2CSB+0kMseXI7/75X1\nKwzVi7j2DnTX87ZKrSbXKyqYi+vCNuzBa9IyeXxigvrhuva8JS0pxd+he53sk+N1LtVpcRdhHPXu\nl3pettZs7Yd2+5Yv3yL6TUalvjfeNLyI2BF55n3x2vz1uL4DDdBvpyTLMD3/t9c67dLtqCfV9FNp\nEVhNsbP1WdTQyrFqI3lLoTGu2FjltBOpxkLbGanvX/VbsJ8coZoXiSnyWLn2QctLsMte/dUtoh/X\nQuB6QWPW2OR6L1lUK+PGi9Kyff6mWjNTcD0VrtNgjDHBGNV4obFq93OTHWR0GOc41iNjFF+/7Drc\nt+lpqXMOtmOeFa5BnIz48XfTc+V6NzqE2hvuTFzLoUY5d9imletmBPqlzTnXM8ssrcKxZkn9eHoR\n4u5gA+oL2XUJPAUza6XNa+Foh7w/hWQH7S3FWtj7trw20xSLWZ8/ZcWR1FzEypanUe+r6qFFot9A\nADUwuPbIMMUDrj9jjKy/MHQea+HgObkuznkYfyvUhvNNJetdY4yp2IO6Jj2HEJczF8i6Ald+CO1/\n1b2IQyMX+0S/SM/M1ZzloH6bAAAgAElEQVThemt2zaKhC7hmmfOw1uSvkvNgegr3bagRdXnsWjlc\nM4DrJtl1gjKoFp07F9d28DTmW97KUvGedKrpwvcwFpC1RTKohk1WPdeokHEjcx7m8zDtw3KWSFv7\n3ncxnvn+plr1EWyb+3jDazfXPjTGmEyuPUL2w/weY+R+hGtDRYZkXRheQ7jNe0pjjCnagTja+ATW\nVnch7ulYu7zuiVSrh2sh+qz6Ff6r2INkL8U+d9iq2ZaYjGOaovjKNaOMMSY5E7WJeA0eH5K1iAKX\nqdbbDhNXClYjZrb1yblTdgfW47E+qjtojavS29CPzz3BqieVnEq1mNgOPlfGsnSqPznux7UYbUNN\nlwyrNhfXveH9ph3TOeBwLaTRNrmW+LguSj/+LtejMsaYVLLjDjYjxmfVy7gbtvYI8Ybtvl0+WfOK\n70k6xbnosHwO5PpIXDfLvtZ977Q47eEsxD27Dlrfe9h/lt6JMTJN9fBGrso6hulUV4jrc/G6YIwx\naXQfgo34jIHjslZePj0X8rNUZp08Vq5zWnY36mXa9ZD+T7WDNHNGURRFURRFURRFURRlFtEvZxRF\nURRFURRFURRFUWaRhGlb56IoiqIoiqIoiqIoiqL8/4ZmziiKoiiKoiiKoiiKoswi+uWMoiiKoiiK\noiiKoijKLKJfziiKoiiKoiiKoiiKoswi+uWMoiiKoiiKoiiKoijKLKJfziiKoiiKoiiKoiiKoswi\n+uWMoiiKoiiKoiiKoijKLKJfziiKoiiKoiiKoiiKoswi+uWMoiiKoiiKoiiKoijKLKJfziiKoiiK\noiiKoiiKoswi+uWMoiiKoiiKoiiKoijKLKJfziiKoiiKoiiKoiiKoswi+uWMoiiKoiiKoiiKoijK\nLKJfziiKoiiKoiiKoiiKoswi+uWMoiiKoiiKoiiKoijKLKJfziiKoiiKoiiKoiiKoswi+uWMoiiK\noiiKoiiKoijKLKJfziiKoiiKoiiKoiiKoswi+uWMoiiKoiiKoiiKoijKLJJ8sxevHPyR0w5cHZBv\nTE912v7L/U47f12Z6OfyoV/PWzecdmJiguhX8VC90x483eW0CzZWin7TE1NOe4ragWuDTttTnCHe\nc/nps0572ZfWOe2JsZjo1/HCVRzPgwtwrK4k0c/fiGsRHQw77ZzlxaLf+HDEaY+2jTjt7KVFot/w\nuR6nveKxr5p4c/xf/w5/e5n82yPne512akGa0475o6Lf9CSutZmaRr8R2S8l1/2Bn8GfbX9euC3g\ntPM3VzjthAQ5RjyF6U67/0SH05607mPuyhKnPXQW1zZvdanoN3S222mPtQedtrfSJ/qlz8lBv270\nS6/KEv2G6Vqu+uzXTDw59t1vO+2M+bnitbEOXL/0Ghxr5rw80a9rf7PTTkrFmE6wxjcT6cL5Jmek\niNdCzRjTcx5bgv+nse7yucV7RluGnbavDscXputqjDH977U77axF+TiGNHkM0zQWM+g+9R5qEf3S\n6F5lzcfnTY5Pin7RwVGnXbvp0ybe8FysfnCJeC3UiWsTpuved7Rd9Much/PkOZackSr6pVfjnHv2\nI/Ympcj7XfnQQqc92oWxNHwa86Psrjrxnr7DrU47cAP3250l77d4H03nviPynBLoZwKO3zlLZEzt\neuua085fg7Wm5+AN0a9sN/5ucek9Jp5c2vcDp91Gx2OMMZU75znt1Fyv07bXmmSPy2nzOubO8Yp+\nsRDub8cLV5y2tzpT9JuKYhwH2/xOO7MWsSLc6hfvqXiQ7nsH7mG4PSD6jdDaWry1ymmnl8ljaPvV\nJadd/dhSp335iZOiX+m2OU6b19bBE52iX2gYc/G2v/1bE28O/vmfO+3g2Jh4bcln1zjtpFRsk9yZ\n2aLfpe+97bTL7sWYi4XGRb+uNxF7+wO4vtv+/F7RL9iB9cqVjljH42XUipUpNO+HzmHOJqZa27tp\nxMqJUYzHG++3iG6rvrjBaTf+7IzTXvy7G0S/5BTM095TjU6705qL0/R3430fX/ujP3LaVbfVitdS\nsz1Ou+35y047FImIfnnliKed17GGr/uDraKf2PcNYbzwfTLGmOxFhU77/X9+z2l7U9Bv7iMy9o/Q\nHnrwPMZA2a65ol+IYu2107jOqx5bI/rxvDr2xGGnveZT60S/jl/jvhXvqnHa1tbLNL2Mub377//e\nxJumoz912j1vNIvXim7HcaWVYG/W9sJl0Y/Xl9w12OslWfNg8CTiTKQbMab6k4tFv+GGPqfNa1L3\nq01OO9EjP9uVibnIzwPpFXKvGGzFWt+z77rTTsmW62eSF/M+ewnGlcta66/+12mnnVtf4LQnwnLd\nGe/HuN30//yliScdzc877WQ6bmOM6X8f+/WMKsRQe/8VpLUmbxXuoX0eIVrjpsYn8Nk1cm/Mz4UJ\n9MzJz5FJbnkP+XliahKxy57nibSH9tHes+stOX6nJ/AZvgXY86aVyueMKboWfUfanHbZnXLv1XMQ\n42Umnhevn37SaU+MTYjXGl+86LSTErFpi4zL9S45Cddm0adWOe0e69pMxXAfUvOx9/GWy2sT7qDn\ns1LMxct7G5x2Vpp8xsxZjPniLcF7zj93VvRb+em1TvvGs/i8VI+83+m1uMfRATz3T1pjkym8pcpp\nd/26SbxW/iC+86ha9PBvvFczZxRFURRFURRFURRFUWaRm2bO8LezWfRrgDHGePI5ywK/RHS8K381\nqdiBb/6zluAbXfub1eanLuA9d+ObwitPvC/6FW9CJo34pfwYfokt2yl/bcgrwTe1XW/gl84k61f4\nsvvwdyP0zdjVVxpEv7q78Ytj9kJcl9ZfyX4mCd/U8rlzRo0xxqRVyV/j4k0WfYMYbpe/no4PjNnd\njTHGJFvfEsfo28FEF77Tc5fKLKVc+rWg4yX80ptWKX85mIriG1lXJn4tSM3Br112NgX/wuyjX4T5\nV0Wb2Aiu9cBJ+cusuxBjmMf3CP1iYowx/e/hW2w+91DzsOhXulv+chdPOFtm4HCHeC01F9dslH5R\n4MwHY+SvMDnLcJ866dczY4yZjODe1H4R33r3Hm4R/Wq/uBJ/lzIueg8iqyJ3dYl4D38T787F9W9/\nVv4KVkmZdN2v49v24ttqRD/+NaPlacy/hCT5018GZc7wr1aR3pDo5y2R39jHGzEX+2SGgqcAmWHh\nTryWViLnWCZl/nDWncvKbBqmrLGiHdVOO3BFZkFOxfCLzTj9IhyluRO8Icc6Z+ks+DJ+tZ0Iy19Q\n+vlXyk7M50hAxsD5NM7Off+o006wMizFuH0Nv0TM+fhy0a/3ONahYpkw95ERv4TlynvD1zwWwLVw\nF8iMmIItVU47RL/I8y96xhjxa3A1Zadd/M8TolvxWmQc1tAaydeo5M554j2cPdf1Nq5XzoJ80a/u\nMyucNmcb9rwt1/rCnciICXdj/Ka6ZHzmtYVjTf6mCtEvwcoYize+OsTUWEOveG3f/9rntG/9/Vud\n9rRP/pJYSPOKf6FvfPq86DcQxNifnMI93vdXz4l+W/6v7U67ez9+IeXsk6Hrg+I9pZuqnPaFQ1hz\n+T3GGHP7/7jPaV//5SmnveEPt4t+rlSM6YrbsaYluTyi32gvrlnzPqwh1VtkjPYUpZuZIhxFZhn/\nmmmMMU17saYsp4zp2KiMUZ58HJ9rP/YiickywzCd9jBXXkMmSeVyOW4jlE29iOJSWhneP9Yn153S\n7fM/8O9kWHvD7AXYRyZSBiSv+8YYk7cSQW/rH2L8XvmB3E/zuJx4DffQztjJLpRZcvGGMwTDEZmN\n7eIsfcqEKNgqs+qTUjD/Qu3IMEpMkr9BF2zE/erah70Ff7YxxvQcxb6vfBdip6cCewSOX8YY4ynG\nWPIWYR71n5CxLHsRMtgL6Nf11r1XRb+y7YipvP8dtfbx8x5dhn60nouMd2NM468umJli3I+9Q7hX\n7t05W5nvU2RYzlk3ZcfHKLsvdGNI9OPszqIdiDdJKfJeR/uQGcWZ2hwbfyPDfB+eETMoE91+Hsmv\nR+ZuZAB/J32OnLOcxTbainHpvyifM3h/nkJZf3w/jfnNZ6l4c+FJZGFleGTMz0zHnr3sPsSsCSum\ndu7FvmMyQplIMTkee7ox5+oWYoykWfvwSB/GCf8t3lskWul+gUvYV/FzAmfKGGNMA50vqzXmPCwz\n6ZqeOue0eV6Grsu9cc4KPPNwfCi5Wz4fhmgsmEXmN9DMGUVRFEVRFEVRFEVRlFlEv5xRFEVRFEVR\nFEVRFEWZRfTLGUVRFEVRFEVRFEVRlFnkpjVnuKp5eo3U0UWGoM0q3gH9Vc6wdNdgJ4GREDRg3e+1\nin45VLuFq2eXbKsW/RJIP8ra3nyqdTI1ITV6A13QhNVSvRhjVaS/8QxqVoyMQkOYlyHrCnCV7inS\ndNr6Tq4rcOMl6J/nfkxq2VIyZYX2eCPqNthl+Ok1bxl0fnYtjvwN5U6bnXDclp6caxxwfRBbI8vV\n19k5IrMOusNQk9SZsiMJV1SPWnVz+P5k1uPz7Irv7P7EmtG81dJxbID0wuzAkpon60i0k3tA1Qdo\nCD8KmXOhi03NkjrQNHJNYTebPLpnxsjaOT0HqJ6BpQNljTZrc+3rHOrAPY300/VbC707jyljjAld\nwz31NyEeJFi68JFLcK/Iobo1Q1RjxRhjhq+gXwG597CLkzHGBJrxd0fOoFYCu7IZY8yEpSGPN24a\nP3acuvEk6lRkLkVtAbfldMb6/Io9OP7L/3Jc9CskTX7La9Cyr/jaNtGv+x2MmWAjrlPRtiqnzbp/\nY4yJ0nxp/imq35ffO1/0m7N7k9MODbbg/cNWrSu6XfMeRHx0WXXBRuh+swa/c7/U6gcuU/2Au01c\nSSFHKrvuQfdruJbVj+I87HHb/ixqVmStQP0BjkPGGDN4As6F4xMfPjbZVW16HmqpsOvBmKWZ73sX\na7CXXKLsucPHXrAB59tHNRmMMWaAasRwTHHlyPWN1xYP1WUINst4n7VE1rmLN8XkGnX6kKwXd9c3\n4PB16NuoP7P5a7I+C9e2eu0f3nDaO754i+iXQ7WIKu7BnH3jG6+Kfq50XKsMqqvGGvzWS7J2mo8c\nStY/vt5pn/jpMdHvxT99xmnv+Wu4RA2c7RL9pmP4d6Qfe6xwl6yRxXVNVv/BZqdtx/Iz/wTHornS\nVOgjs+XP7nLab/zl8+K1W//iTqd98n8edNpzdkrt/8Bx1HCrvBe1zrg2mTHGjFCNCHYnybBqTBz5\nIdyRMty4nws/hrogmXNkXae2X6MWCNesuPKvsrYUO/BNUv22gttlPan2V1B7qGAz5mymdaxdp3CO\nJbdgr23Xw0irmNlabOw6mGvVAOmh2ktcf2PMWkPctEbxXtGOP1zPI2sx1lmu+WbDjrSV9+MZoteq\nscn1E0ep7lbuMll7LzKEecU1O1d+fbfod/k/DjhtjjXZK6TramIy5hzPU7ueSvlm+TwVTxKoRtN0\nTNYgYbfCBHL54b2/Mcb4qlHjZZLudZrldsU174LXsW6MWrXxkshNK4vqNfGzGruYGiP3W1G6T7Y7\nKz/rFJDL7PgNOS4jPVjTUwt5L2c53ZLTV8F6fF7r85dEP1G3ZYuJO/mFiBGF26vEa1w/5+JPUb+q\ncF6B+TAuPYNaLYVVcjyWVCAOjtN8DlsOWh6uD0r38WY1gXg+c13Ns3tlPbi15GB3+Vm8xs9Ixsiv\nC2JBjO/sJXIu8thqeZUcoHfJGJ2QbD2LW2jmjKIoiqIoiqIoiqIoyiyiX84oiqIoiqIoiqIoiqLM\nIjeVNRWRpOjGk9KCLXcN0vTGepCmzGlkxhgT7kCKHctNSkkKZYwxQZI7cJrp+KCVIkYp/eV3IE0o\nYy5Se21br2GSKHE6vduSpfgoZbSoHKmgnHZojDEDR5C+PT6C4ym5U9oPss1tZimkJy3PyTS1FC9S\n98v+9H4Tb1IpDd9Y9pqZ85Fm1vMW0rhSrGszchFSkClKpw1a0qPye2BHPvA+0q9t6/T8tZDccHpg\njCx2k6z3nN6L9LjsdKSsVayR0gKWKyWn4TPYutkmQOcRuCythif8GE+cEmtbeBfdKsd0PGGbQrYb\nN0ZKmcbakdpXtEWmsLJMYOQC0pbT5spU5xjNkRs/p5RE6/zYFpBtPVkq1/XrJn6LcZfg3vQfgiyi\n8uGFoh9LxE6+hVTD2mIpm6wiWQ9bbtsSQ7a/9Fah7W+0bKXHSWq00sSdyz+Bhe3cB6W80T+Ie+eb\nQLpndFDaTbKspukH+LzqR6SW7vyPTzptTjtt/sVp0e/KZchbtn55q9M+/sMjTrt2jbTHzSK5YKQX\n8dW2ffR3U0zxIW03o0JKRbvfQdpphOwvbVlc/qoP9sVOr5BWrz6S9sSboVOQfRRtl3PCU4njCLYg\nxdo+D46Hwib5ZLfoV7Qdc7jpVawbMoobc/0K1kyOmw0nMP98li1m2yCkX7d/DlI3Hl/GSDvIFDdi\nRfl2Kc0YacG9HiOZY7JXStPceYjDE6MkZ1gu53bTk4g99btM3OG5v+dvPi5ea3kB86ooC/uCHkuO\nnU73+y6S2NhWskGS9fYebnHaGz+3SfQLdSCmBhtxfy69hP3Xqs+tF+95i2y/58/Bujo2LvdBu/5g\np9NmeWBsRO5vWPrsoXht29pPUqx88zuQdOX55FhfcP8SM1OEunEPl90p/851Gj8rfxfXOdkjJZos\nqdn/jdec9uLbZDztuoS5ufEr0BN0UMq8McYk0fVjiQBP2s798j0H9kEicO/v3u60I9Y97DnTgr9D\n8pC2RilNW7AT62KgCeOI0/GNMWbTlyBHY8mCLQG/TtLXpQ+ZuDN6HeO+YFuVeI1lkMOnsKfOXiDj\nD+/NMin+x8LynJt+if1EHkkkklLlsws/N4SaMEfyOrAGha5JGU3hRhy7KxX3PilJ7qddXpxv/lzY\nrUejvaJfagHeV3P/Rqfde0bKMNtIJuul55juQ9I63UPXyNxl4srQWcwPfq4wRo671Ewcg9cqi8CS\nyO7XMUfYntgYKX9iOXjxHfIZjNfqcBdiMEt306y9A69PvE6znNwYKRfkZ05bqpW1lEp20BjLWSrX\nu2SS8rTSM2LOStkv9SbPMfGgcAf2HOOWdPDcS4ipC7ZAHuqxrK8zyTrdS5JAT4nc9/Hne4rxGs9l\nY4wpqMVmPBZDPEsuxvwYviClmHkkJcyoQzzYSM+oxhgTC+He1WzHdwr28+fom4hDXjrWK89JmRTv\nzRY/huPuP9Yu+iXYJUYsNHNGURRFURRFURRFURRlFtEvZxRFURRFURRFURRFUWaRm8qarv0MKUzV\nH5Mpng0/Q9ovp1e6kpJEv3KqIt/7Fiqb2xXUCzZVmA9i8JRM1yzZjVSqJJJScFpf2R6ZtrTuk6jG\nHGpBOmHPaVmNeTSKtLV3X3rHaT/+tftEv+BVSGBc6UjZ5grxxhiTtxbuMWPdSIlKs6p+e61Ur3jT\n+TpSUu0UOa74z1XAJ6z0Vy5VnU8OJSzxMsaYUBula65BirWdMspOPezu03sIaeP2sa6rWeu0uTJ3\nwVrpStR7hD6DUgf7T8hj9dUh9bJ4K1L5ug/KcZG9DNW4Wb5ju1IkuW86nT4SIyS1slNGfbX4N1cv\n732vRfTj1NLS25H+2fGydLqpfhTp4SzNmIpKtxhOXeQMPZYL2HORXbs4nbThxzL9NqcS57GgDOMj\n0ZJNcnpq2X34W13kmmOMMQXraYzQwfaThNIYY1KyZ9Y5rXg1jmMiJOdY8QqcZ89hjOE5D8nYm16K\ndGl2u5mypFzLvgz5w95v73Xa63avEP02rUO6dPsLcPlISca1jvZIF6HuDsy/hmYcq79fyjnqH0da\nJ8+XlufPin4Zc3G/x0lmUbRejp+JKOJolKQzhevk+mHPzXhSsgtzp/+4jClZi5Amzw4faVbabwu5\nqRRvwLFXPGC5h5G8YHIK9zcvR6Zin6a1rKIcadSnmiH1O9kkJYbf+eJnnXbjK0iTX/5bUjYTC2Jd\nHPPjnDpfl59XfhfuVceLiClFt0tJ3GQE5xQmlymXT8pNMquk3DLesOzYdm5kl7/iW3H8p75/WPQr\n6MW4be6FFHPp72wQ/UrpM3IWIt269UUpF8+nOMWxaMkjmLO9B6VDzNYvQop48SlIFu206ZEGSCbS\nq3FtL78rJTZL7oTc8uizkEbe89dScn3wW5AA7fi9HU7bds24+Czmeu3Gx008YSnOuF/KDliudOg7\nbznt+u1yjiWR3H4NOXec/Jl0v6tZRDGGrm1vj5R21yzAPYz0QZL6/pNwXlp27zLxnrIcjCOW55Zu\nqhL9sttQJoBjTd9BKbcbOY8U/5AfcXLeQ1JK20r75mTao839vNT0jg9b0rc4w9KC0RbLcYdkkfO+\ngOPqPiT3acOnIathKVTguuW6FcY9GX4fc2mxJbHpGMJ9nVuEPeAr3yVXto/Jed7y7EWnnU0yTXbi\nMcYYTwG51A0hVqakyWeDAlobxqPYV7nzpbQlaxliPkt6C9bJvfFMUrgRx5rklpKQQDOkKOO0ngye\nls93vL9maYvt2jhBUjXfInL8sUpQpJHEazyAv8ulAcYtWWfRMszNWAzPM1Pjg6If7z05huStltLr\nwTMYl+wyy88fxkg5N0ud7b2My5LbxJtWKingtZxC134B4z1wTcY95sZe7G/qP7PKaXO5AmOMqf08\nPq/1ZawTrgw5XyYnMWe7j2OvkknPPokueZ3CPXId+m9i1r6bSxm8/iSe+2+9d53ox+spO1PWPyJj\nOa9JjU/hO5SyrVIC3289O9to5oyiKIqiKIqiKIqiKMosol/OKIqiKIqiKIqiKIqizCL65YyiKIqi\nKIqiKIqiKMosctMiGRWW5RQz7+56p831RMZI62mMMd37oAst2AxNYuCKtLD1FkOT3/zjM/jsdKmv\nu/RzaKrrHoB+li16u/c1i/fUfBJ6bdaZ52+VdQpSGqCn32KgS25/Q2rrPRnQgpfRNeqxtOAJyfju\nizWJmfUFol/DL3C+c1Y8auJN7mpo3LlGjjHGxMj2zUN2r2yVa4ys4RG6AR1m+Z75oh/XEBgnW2zb\nYrd7P8ZFyW2o4ZC3nur09MixxFaeEfo7g2elbpX14NEPsWozxpjh89Dg941As734c4+IfgOt0N23\nPQO9Y/HueaJfgKxPzXITV6YncP1Y62qMMcPnMaa5zpGnVNa5KJoHfSZrXz3lst/QBVyXzFrol3ve\nluOb62G0XMM96AtAF3/X798m3uOlY2Jd7eIvrhH9eC5d68b5bf6stJ69+hxqNtR/EhedtcbGWJr2\nThxf6U5pvcj2qzMB15EYOCrr3XjLMT5rP4VzsWt7DGfjerBGe3xIaqfdhdALL1kIvWvgvLQcZIvr\nAOnxV3wWNZ46nr8i3tM9BB0/25tXPSQt0bmmjysDsWf+J+4U/a69jJoQ2WT53nNU1kNifXDVfaiN\n1H1IXiNfHcWvQhNXAjeo5phlOx24inVtfADXsuMVWdcjZy5ZfdN0bn9OarLzNqNmQNkiaNnbLsix\n8+MXXnDaJVS/IoHqwX3j49IuuvxexG4f1Yka7ZJa7b79mIupRRhTGfNyRL+edxFDi+/EvErxWdeI\n6g/Y9swM11+ZESiOZi+Qa3LfsTanffE5xIQNf7hd9BsPYs7d+N5Bp83naIwxR3+J+iV1NTgvd6lc\nk3rfwTXkmlQNBzH/tn79VvGesT6sk+XL8NnZls1vJlkPn3ziqNNefIesQzJB1ulr7oSe3t/cL/qt\n+jTiA+vss+bLvUPeezNXU6+dLGdT8qX9at1XsKbU0vp55H++LfpV1GNepbLN+5Ss4ZWai893k53t\npNXvxtXODzzWeStQ185r7UUKya79U9/8ptP+5T98S/R75SDGUckJ1A16wKoHxEWUug9h/p79uazt\nlpaK2L/wsaVO+8jf7Rf9KpbM7FzMmIdzSZ8j40r/e5iLHqoLk724SPQbpH1L9dYqp527Utowp1As\nnp7AvYsOSNvg1fMQw040Yn3Zeivq3uQsksdQsAbPFF0HsGduf01aZOcuwfv89NxRRDbGxhgz2oq9\n9jQNs4waWY+rdCP2Cxe/h1pQ2Svl8bEVedlf2mPmo9FzqAV/d6n8u7xnFfbUVr2X/A0YZ7z/H7kk\n9yxFm3GdAtexHnsLZd2gPqoNUrgJtTI7fo19Rd1nbhHvCQ3iPLi2TVa53O+3voUYyuOy7x35/DlN\ntTxz1mEsDrwna45UPoLagj0jeD6yn9mifjlO400u1djseV/uMyZfxTzgWjj+s3J8D4Vw74Yv4rVF\nX9kj+7Viv8N72ZBVd+ra8087ba7D1Uu1GX/wX6+I99yxHHNi1e/gucF/TX73EGzE+CmmOJxp7QkC\nDXhfoA97pMRj8hr5qCZoZjFqAzbtk3vogiIZ52w0c0ZRFEVRFEVRFEVRFGUW0S9nFEVRFEVRFEVR\nFEVRZpH/196/Lc9cFP/OJZvjiTDSYD2F0npr3ucgKWp8Avbbdvo7pydxqq+3zEr/pHTFa89A0pBd\nQ/KLdpm2NPVDyFLyNiJt7sV/fUP0e+Cru512kRdpcx0vydR6htPmah6Stnodb8MajK1iPXnyGhUv\nkCmA8WZ6EimF3W80f2i/4ttg92nLkNiVM9mLYWNLXTIXIhWs5wBem7BsLiMxSGIGTyANmO3Qnn/j\nPfEeF1n7zi9FKvK8ZPkdY6QfcgJODR9okmnZVbfBln0qz+u0r774suiXS5aIU5SemWj9XTtFM56w\nlWXEkg6O9yPNMZFSDQePyfRqN50j35uc5dKynG0aQ5RWO3xDWue9df680356L6yaP74b8ygWkPfd\nR1bfbN3OKY3GSJvBLctwfG2WFd/cuyA/jA7iOoyS9M4YaXMeboOd99QKmfJc8UC9mUmGTkD+lZwm\nJZssg7z8X4iV8x5eIvqNXMI4zqXjZwmfMcb0H0Zsqn4E0oXut6UFKcvL0tyQoPS+3eK0C2+V6dbZ\nfvxdlmz+RnxJQq+YTeAAACAASURBVOAYH8S8vPLUXtEt2oPXEug9/ksylpfdhTnb+ASsaQcG5P12\nnaRz/3spU/yo8D0s3G6loV/HcRST5faAZbkd6cX5cgr4aJ48jyhJo370JK7ZJ+/YJvo9ePvtOKZM\npNIuXwfpUoElE+J0Y47vz//La6Lf1jUYf+OU+n++QZ7T/M24N2wLmlYsZZP5KyG9HDiDazlyTqZG\nF+2Q1pPxJtSPOMr2rsbINWTLn3EqtvV7Fp3aus/Dkj7YLGPl+AT2SFUfx1xs/E8pM0khC1EeW1Ov\nYz1O8si4MXgScT5K1s0Ft1SKftEh3LvXz2JvUlIkLV07uhFf6jYilf8H33pa9KvIw/u2P4q08cGj\nct3xWhLTeJJPUnljSeTC3ZCvcmysXCrl7NOTWIfOPI24m5ch955six1sxf1d99ubRb+D/3TgA4+1\n7HbMj9bnG8RrY+PYp+y5FbK1qGVhvWcX9pjJJBNt//WHyz9Z4mtLtfjvDp6F5W9OupSHpFfN3D00\nRkqwbalj6R0kJ6HXWp6SNvSVdyPWBW9AFtH21jXRLyMP5xYewrz/wb8+I/p9fgfs4e/+yi6nnTUP\nOtmRxh7xnuGz+Hf5HuxNeK9jjJTB8L3yX5TyHRfZSefRPo33M8YYMzWF/fScxyFPs69R+QPSRj6e\nsHSp711p7V5EsYwl9amWVbMrHfFvukDK95nONyFNK7oF68Tlfz8h+hXfUuW021+CrIT/7ht/8ZR4\nT80CWidpvE2tl/cwQ+xlcQ8TU+QaUUBStXAXYpK7WJ57jMpA5JEFul3GIEL7qJmg7ViL0y6cJ6U9\nLpLABy9DussyJmOMKaA9SIzszRufflP04/Psb8D6z88WxhgzRXtUFvWWrMb7f+9PpGybS6Xwc2Wy\ntX5eOo/98G1/dofTtq9zdJxs0Ivw2X0t1h51N0qdtO6DDIz32cYYk+S9+dcvmjmjKIqiKIqiKIqi\nKIoyi+iXM4qiKIqiKIqiKIqiKLPITfNqXORKFKb0R2OMGT3S4rTzypHelbdKygS4ynYquTYMHJcV\njqvuQ2Vltxtpzx3HpbSllyqC51PF8wyq8M4pTMYYk1aJlMxnvveq024fkOlIh3982GkvWIZUuVrL\nSSbYhnSuogVI5+1tPCL65ZAco+NlpNQVbpOp8HZq30ySverDJSyRfqSij5yRKea+enL6ITeHjsvS\nKYllRFy1ev/Th0W/tSuRXnmpARKbrmGko7JUxhhjPnPffU67tR+p19Ul0o4lKRkyC07zdrtkOhu7\n1IxT6mDJNplOn+7DsY5uhiRmYlTOianohJkp2OUnrUKmGA8cRxo5u6XlrpFzkZ1bWMpkn8e+n2Mc\nL12NVOzM0kzRL3oa58uyinu2rMOxlklJA0vs2NEkf7mcE5NR3F+u7p+QIFOez/wK7m1L70U6b7rl\nZhBsQhq6h5zd+k/IOMTjt1waOcWFyo+hIv/IFSmzyyV5C89L2+3GW4J0e3Y9s+UO05QuPRlBSqad\nEt30OmITX9+sXMzfYUtywqnm+aVI60/YIj97aAjzPisLcfTsf/5Q9Jv/FUhCWl+GO06hJc1ofwXp\n+4ExSBUqlkvJTsa8XDNTeEh2y24OxhiTNgdzs+lJSEcKVpaKfjz/3v3Pd5320m1SVhe8gnH7pd9C\n/LNdFFiukEj3sIhkwOOWxDBvFY6pcy/SxBdXSNlHWiXm/ff/5VmcgyV9qN8OWQFLB/PXyHuTno60\n32g1STKtdZvd/maC5V+Dk9zUlLyPlfeQE9hRSCn7j0vJTuFGXKt02mfw/DXGmMX1WFPe+Xs4k81d\nIeMeS/qanoUkYd0fP+S0u06cFu9Z9oXPO+1T3/13pz3wrpSdHTiPzyvORnzs6pH7oIpyrKcRckzJ\ntu730uoqp80p23Zaf5JbSlbjySDdD2+VXJ9unMIcWfn1nU7bUyCdtFiSUHIrpN3hbulaFryOvcm5\nX0D+tPhj0poxywv58OJPr8axnoNsyFjrWP3H4Yq15HOIk31H2kQ/Xp+8tLa++ZN3RL81yzDHsutx\nP8dfkzKXdJKxcjwo3SblL+2vy/fFG5bzlOySCy+7K7a8jvhf/5lVol/bs3Du4tIItpzg5PkPjnUr\n5sh9XwvtMeeWozxDaiquU8ky+Z6sWqzHR/9un9P2eaSTWCbJtufcjfUzFpNyyJQUOJ8lJeFejY5K\n+bDLhfkcS8E4zdskY/lMwm5mKTnyfPvexTguvxtjs+ZO6X430o1Yy86HsYCMzyyvDVbgmqWXWM6j\nx/F80tGLz6stwxhbvEuW2JiMIh7w3nOC5FjGGOOrxjMnO0blWfLhKXIE48+ejMjSEfxamGJNiuUI\nye5eRl6+uFC2EsffelLK0zhezKG9bElUnsvg+/RcSLEuc5F08uun+JaRg/Vlx2LpIJhKz24uN9qt\nJMGae5t0lw404X630fcVJUvlXowdYNl52n4umpjEOXKZkhzbDS4dsafmPoytcLtf9Os7bbkMW2jm\njKIoiqIoiqIoiqIoyiyiX84oiqIoiqIoiqIoiqLMIvrljKIoiqIoiqIoiqIoyixy05ozg6Rrr945\nT7w2fBqWcQlk39v5WpPol0YWfKz9TKZ6H8YYMzUFfXn7MWjwvZYN54Jboa+emIAeuq8TOu6ceVIH\nOuaHnvWh374Tx/qW1G2mpEDLNudB1M249qSsl1K+B9p6lws6Z7YnNkbWvZiewLmnWOfeRtas5m4T\nd4JNpLG2bAq5nsXUOLSRBVtlrYee/Ti3vn7oIY9elRaOe3Jxv8dIs711t9QHBxuh0VwwH3+ruBfX\nLPvxx8V7RqOombBhMdkURmStl9QCaL4DndD5zXlwkejnzkW/ZC9sKZNTpIVm0A8tc9FK1IRoe0tq\n//M2SK1pPOH6RbZNYd461GjqPADNc9UeqRsfItvaK8dgL1m7qkb0W38f7lXzAcznpET5Xe76WtSj\nYatYtqOeHJda1LE+6MfZZjvYKS0k85fis7veu4j3W7WvapZi7EyO4RhO75Ma+VV3QdMfasb4LSSr\nRWNk3aWZ4OJ/Hnfa2eV2XRzM01yq3RVskTr01ByM23GyD4+OSU1r8eYqp91FsS7UHhD9crMRY290\nobZMAVnv5m+U2vXCctRwGBtr/cC2McakpqKOTusJ1Psq210r+mVkQGOctxbn2051BIwxJrMOtWQS\nKIbYdXSEvnediSvJ6YgVMb+s45K9GPUdEqn2Vd9hWTtiMvLB9ak8tmb+AubF+QO4FtGY1L/fUo85\n19iN2hZrKL7nlq4V7+lqOOS0my7h+FzJ8lqOtuJafuETu512+hw5frnOSuV26LjDwRYjwVrYfwx1\nUbiWjzHGTE9I69J403MMtZbGR2R9m4L1GO/hNsyXYcsytPVF1B6pX4J9x76D0iL7038LO/eadNTG\nuvJ9af3qysTeIN2Lug3vfAt2r3l5srbK2Frcu8zFsD7l2lTGGLNnAeYO1yuJWed+bT9qcuwnS9NP\n3C0LHCSnYb/EdsBFO62abVaciycxqsEyYdmhl27A2tDwPYx1XquMMab2UawNh76DfeTaz6wX/brO\nYj8co/oDjS9cFP3q7kMsC1ItivdewL0eCUub1lup3hLXlWErZWOkzXSiC/Fl2/0yyJVsQjwYpdop\nu/7yTtEvMRFriceDfcTV518V/Xj/MRMMd4447aweWetn+AziWdlm1GgaOCnrbmVQXUTe2421yfVu\nRQ3N07Oob1aVL+thrHsM1zTQjPtYuOU26iX30w0/ecFpl9bjmk1ZsWyU1qeihdgzjw7LdSKWgP1I\nsBX7lqJly4wEMdVPtTa4npIxxgxfwHNbldwOf2S47mfMqtfhobqaPe+0OO0kr6zhxc9G+WSz3PDE\nSdHPl4/YduZZ7MMX3S5PqqsDfystFZ/NsaLQ2tukpCG+BlqxZ86dK2vTBAew1+57G3/Hrn2VS/Xl\n/A1Yz+1aXD1vYI+WlIE9RuFG+Sw21iPXoHjDdWYKinLEa54KrBvtz2P9LL1Lfj/Az/033sYzRKRH\n7q+5LuL1Huw9V9+/UvbjmmYU9ypov5RRKO/jAD2bVm9DjaFxv1zvnv8n1Da9/6uIjymZstZP4XLU\nqkml+DI+PCb6DV6kOjpVWPtSMmUsT82/ea1ZzZxRFEVRFEVRFEVRFEWZRfTLGUVRFEVRFEVRFEVR\nlFnkprKmgg1IE/I3SvtBTidNq0YKUybZJxtjTMcLSC2KRvGevJIy0c/lQsptRiXSjrKKZSoZW14O\nDx9z2t5MHGvHezJVuHg9Ut0C00hPPHBRpqPevR1pjIOXkbK27EufEf2CQaSX93cddNo5K2TqZ/Nr\nSPvyZSANquEHMkVv0Zdkunm8KSB5w7hfpmCNUJody0xC16SUoqkV6Ycrb4fNqCtJpuYNjSAlNdGP\n9LvMNK/ol7kU6dddx5AG1jOC9FZOHTbGmPoyjJmiW5HeGmiSxzrUgPQ4ljJ5C2Wa98gVnDvb5LH9\nuzEyhS05HSmywctyTvhqZ86+NzKINGi2tjVGysdyyV6+/6i0UmVpSsFlpDpfOy3leOUlSO/NzUXa\n4LiVqsppon1+pOlGBpG6OEQpycYYk5iCkFN+J6Qt/mvyWnYfaXDaLG+o2iXTJ/0XcR4uSoldfc8K\n0a/nMFI1MygVcui0PD57DsebhV+ATSrLzIwxpnQbxmrjjyCl5LlijDGjHbjWZffAPnB6SlqGxih1\nl9PS08rl+Hnt50j5L8xCLE9Ixnf3eXOXiPc0vgWZhaGUUzt9OzGVrG6LMP9c6VLaGYmgX9frlAYb\nlWPOS6dYdjeNn8vSlrxwk0wFjicsoWJJrzHGhLswF/l++ObJ9GC2Ylzmxn0/8ZRcu2IkwUgjG8vS\nHPl5//bGG07729//PafN8qnRRClBnYritTk1SNllq3ljjIn0Yj77yALWN1fGu+FLiLsDMcgKPVbc\nTUzEebA0yu43PSHjf7wJkV2px5IAdbyKa5VZj3i4+lYp2ekga/e+GxiD6+bJOMVp/iM0VruHh0W/\nNfdBSsMSy4WrMEYmJqTsY3oac260Fetn6XqZGt7xMo710K+xB9n1+BbRLzsN6dYVJPV4/9QV0W/X\nF7Y57aFTiKPXDjSKfpn0eYXf2m3iCe89c63Y3XuwxWmnU7+qe1aLfpf/Zb/TXrCJ5LSvXRP9lv0W\n7s3+v3/TaXtSUkS/vf8OaRRLgfN9WHcWVcoUfLaPZgv5vGpp093fBBkdW0yXbVkq+iUnI8ZH3Rhj\nws7bGFOwAuM0OIL7m7da7s87aT5Uy6UgLtR/Cut12JI1pZIkJtyBcy6wYnzwBvaBA8cgeYpaa8j5\nNuw379iKsVC0Xc5ttvmtfQQy3kgE0qCBNilfzFqEtZrXpEDbiOhXPh/z6uz3fuG006rl2myvL/9N\n18lT4t9JtK8qXIqxcPTbT4t+OZVy3YgnLNWK9EvZHss1PcVYX9IrpeSR9wUtz2ANqXtUzoO9//i6\n0165nPZA1poxOYXYmJWJv1v9AD4vK0tKAgMBSN1KFu5w2gMdsrxF8AbZXeeRZMWybg/34jkoj6Ra\nkT4pT8qg9XR8BM9pkQEpBbKl1PGmbjckke1W6Y/CHXjuGh/APW5/We4tshZifA+RFLh4obSdfuFF\n7D0/8RWsDSxdMubDn6WDVMIi9V75jNl3CHv+q814FkqxZNvr6xDzLzwFidyczXNFv9HrmMPf+s5P\nnPa9a+Xzu8+DsVBQivmWUSe/G7H34TaaOaMoiqIoiqIoiqIoijKL6JcziqIoiqIoiqIoiqIos8hN\nZU2NPz7jtMvvku4ankKkGvZTen5iikxHGg0jPWvJ72xw2s0/lE43vhqkdI12IXXRVyhTEv1+uAc0\n/wKpuSW3IQXJTu+/8SLkT20XkT7fOyJTDVNykG7dRymxmfNk6mJSEvoNnkWaaNthKQ/hlHTfAqQ0\n1Vgpoz3v4m+VVpu4MzVOqe2t8pw9xRnUDymBdurc8h1Iq+Y091SXS/TrHEJqqZteK1laKvqFKEWM\nXWsKlyHt7czbDeI91duRghsll5qMGis1kiqds1Qrkiy/ixyj8xi8iFTVjCLpmNJ+HOlxc++EA1KC\nS35eQuLMfdeZkABXgPTKLPHaRBiSrNQcpNSNXpMp89EhpCGWURp1zzNyfHd0o9r/xt+/xWmH2uXY\n4fFSTFKPUAv65ayQaYyJdA8ClIZctFim4PddPeu02a1hfEjK8njOsuPK2delW1PtQqRAZ5GjSdT6\nvMBVnLuxDRHiQFIqrlPmAilXavzJEafto7TQ9Ao5vgPkxtD+3GX0q5Upy0f2IX4vq4MjV9bSQtGP\n00533o8YzfN81C/TW48+j9j7zSeecNoP3yndQCpJFrH763c4bXaeMMYYfwyyNl5Dln51m+jX9iqk\nqO48rEHebVKWEiLpl5FmZB8Zjj3Zi+U9DJPEMDkNcShnuZRc8FgNkSxzyTbpsMYZ0jzfrp24Lvr9\n1be+4LST3Ii7uUWbnXZqqpQhuVwYH1FyHHjnueOi37I6pPuffx7zsihPjsvi2xFTOLaaBOlo4kmH\nbNRL648tJ+09AWlC1bcfMfGm9A5aTyzHooQkHDNLuF/+m1+LfnUliG/FCyAp5X2GMVLikEyp+zWL\npbyFU9irNt3utPtbsYdxeeWaO3gB8ouUbMTDqz/fJ/pVfgwS8bwO7EEuvHRe9Fv7WxgzOc04P9vR\n6sXvQ0r3wNfvctpTUSkt6O+Vcz2ejJN8guOBMdLho2hrFd4TttzvislJ5iz2sux6ZowxFRGk+xeR\n/HPp728U/TanIuaNtCBuTk3ieLKq5X6o7XVIKTjdPWmuPKfsakg45qyAq2I4LF3y3v/bHzrt8gcQ\nU1gCbYwxXi82nI0HXnbaHLuMMWbOJ6RsaiYZPC7lvjWfwkIcuI51YsySP518BfFsBe1X80uli2aR\nH3uBweOYp7bMpOYhrIVtB4867drbH3TaueXyulw9gfjQcw3x7EqnjAfBFxFvS+YiboTsPdsYYs+b\n5zBG5hTKNfyBv/uE0+46AclTwcIi0c+Wq8UTdhHylss99MQo9qgpWdijhq3xmFeP9ZQdf/xXpGy5\nJBtrT2wYcSmcJNea2o9Bg9e1F3Jplwt7pclJKRtKTER8HWiHlCnZiru8drHcLhaQz6xz7oZkb3wc\n0l/bSSvZg8/nsWg/U7N0bibgOGq7QnKZAnGPLRfgoYsY+4ExjPWuBjm399yB2NlAe7uaVfJBeDCI\ncTJFUrVs2lt07pNO0e+cxufxeWR4pGtSKILxM68Y+7Tzb8nnzxePY1/0/ml8f1GWJ+VKj9wGmXAS\njZn2d+SejZ+dP0gqqpkziqIoiqIoiqIoiqIos4h+OaMoiqIoiqIoiqIoijKL6JcziqIoiqIoiqIo\niqIos8hNa854qH5FSqbUaRVsgW5z5BfQQgYuSm1g7cMQU3UfgP72VLPUX5kfkcabLD6vviJ1X6xf\na+yCfm1BI/TpgyGpHS0j29GKxdBcfrZMasWmYtCyFe2Ezv7gX78h+qWTpWn7AOo/bNgt62aE28ha\nrg+6xrClbQ23+M1MwtrGqGVx56vFNWC9Otc3MMaYi8/jHlcth06+eL3UzOcOQ2+dUYPrznpUY/43\ne28eH+dV3n0fbTPSaDTa9220WPIi7/ueeImd1XFCdkKAJoSGAiXAQ1sKLZQHaOEhQKEtFAiQhCQE\nErLHjh0njhPvuy0vkmXtu0braLSN9P7xvr1/v+tA3PdTxo/+ub5/HWfOjO459znXOffk+l0/qfcf\nphpDo2QZXZIltZVcS2aoAWMWOCR1jO4cWKpx/aHDz8naKuUVmAsh0iSmeqW2lGsHcT2VhAJZ54Jr\n+0Sazj31Trvs49JW0Eva3BDZ9hXfJW3o2Y6ba9jkWba85R+Gjrr/IuZ3smUVfvk3qOvCFur82WXJ\n0jI5ezHu+1gQ97D7kqx7EDiGe5oyF/rqqXFp1Wyk1NUhI0neG7ZS5TpEGVZNnPDY1bXvNTQf2arT\nGBlTudiIXWOC1+Yg6WUTrVpbi+ejTtgo67KbZLzZthW6X641kDIX2mNvirQGrqV6DB/bvt1pLyyR\nWmGeC+efgE636hPSfpCthuNSEIeq//Vd0S91ITT0nTR+f1Tr7BK0+xWrTESJzyQrxzpZI2AqjPkZ\nasGaiM+QNo+swW/vQA2MAp9cLzwPGmsw5pc7ZX2WUvpbqbO5HgHNt663rI/GmHOdC7b8NcaY83Ww\noVz7AObK+KDU1g9cRD2IWA/VoKqTNT5i43EOYLv2OOu7l99zdetcsNV8Yp78ziMURxNyYMF6x7/c\nKfp1n0AtCY5t9nc5uAP7593f+2unzbW1jJHzJyoKYxhNtRTyim8V73F79znt5j34vNFOude3vfmn\nx72jX8YDrk3WfxrzLPd6aS3q3om4dP5ZOh9slP2635S1yiKJx495y2NnjDGlNH+4HkHP2Q7Rb+5n\nECDS6Swyy71I9JsYxnxPzsPfbXzpnOgXFQNb2dhEjFEi1Yob7ukW78kmW2i3F/tsT4us/9TyOtXN\nSN7rtDOWWXVVtqDQFp//si376caDsBHPpHok4VF5lpmatPbdCMPzMWu9vMbmN2DN3ncJMcabLff4\nqsWYdx6KZ4m5cm33HKp22jFUKy9s1UqqfQb1Roq3o95QXwD3pOtwk3jPnh04Y/Kzyq/+8AfR7x8e\nQo2wjG70e26ftGu+ZSmsvj1uxJR5c2QhtUA1rqNjL+oPFdwoa4XaNs+RJHUe9h13inxeHKNY23cG\n68+Ok9HROH8kFuEeBq0zy4KP4fwwPkRx3LrXIz147vKWo07NUA/GKMk/W7ynrxcxj+dHZs5m0e/s\nftR1cqfj+2Yul89Eg52Iu3llNzvt+HhZI+Xyjj1OO9RK9ttL5GO6qL+z3kSc1jdqnXZKkle81svr\nL4AzZcpCWQMpTHUw/aN4JrT3mh889rLTHh7FfZx1Qo7hvGLEhDWfQE20Pf+GMZtqaBbvyU7G/OE6\nM/z8bowxT7wDO+/xMGJA2Ip5Ny1BjS+uF/OhldKK/dx5zK2lN+NZzdcra7ZlXes3V0IzZxRFURRF\nURRFURRFUaYR/XFGURRFURRFURRFURRlGrmirCnveqTEXfy1tL7OmIf08gQXpaKVSZvf4VakW+/b\njZRbtsYyxhgXpYUFLiGt7NWjR0W/dbORguYnm9aYGKS1n22SqYacEtVzESlhnHZojDGLNyBVLnCC\nrJUt6604+luV+bBEPL/3oujHll8LbkN6kztZplX5qjLN/y1cVnp9+27Iy3I2QJJQ/6JM1S2YAYsx\ntoXtOyvT69NJJhIVg9/+oiwb67RCyN2ySyGrOfbDnzrtPWelpO2WUqQlsrTDWyllOZyKOEUpvf4s\nOc6BVrLzTqb0PcsS27/M77T7q5GOzONljDEd7yCdrWyJiSipi7HeGn4nx8WdBflJOIR0Qm+xtLr1\nUBowp4Imz5DjxynNY/1IxXNZUiH/PXOd9r4v/9Zpb7kFaeLR1n0fHcSY5xYjxTOUIddsx57f4BrI\n7rrpXWlXX34rpFs8FwvXlYp+LGEYpTRiW8aUsVDKnCLNYD1kMMmWJSJbKV56GjKvnHUyzZvlMmwD\nuOs1mQLP0pe/fOQ2p91xVNp6FlyLsUolK0tPEv57OCxliX/9nw/jNZovmXnS+rq77W2nXfcUvtOl\nX0k5Rx5JJiZIdsYyJmOk7TTbHScUyHTmjDUyLTaSBEmumrlKygnYbrjrFPYQj3V91TuRWl++HCnq\nY91SisJSjfIVuB8lw/Lv+m+BBCM6GvvL1BTe73LJ+Nffdt5px6dhX7D3xSKyitzzOGRmxZaFZPoM\nfH6YZGpRlr0p7ws1vyZrbkty0X0AMeFPWU3+udQ+B6tNV6w8ClU8BIkyr9mLPz0s+s1+ZJPT7q1F\nbGo6JCWLzT1IBz/7sxedduE2aZ3+5r9AQr3+L3FNnizE3roTvxHvKZgN+/rUKkjfSq67RvR7738/\ngb9L8THhqLRNHqzFtZ66iO/U0zMg+pWS7Dg1GynkUZat6qJHIqwrJCYp9hx47B3x2rov3+K0E3Kx\nv3ftl3KC49+HLCy9FJKi3stSjudNxhrp6sI+Vr5BSkeGSOrIUmyWeF5+6rR4z5zPbHDabfuxv9e/\nc0n0y6mAfOCr/+eXTvuxf3tU9GO5CMsNbXx09gp1kRWyJQ9p3QWpQ+4DH/hx/2MansZazLxGxoG8\njYiPA5cxtlMTUnZQfCueDZp34B5Hx0nJa/Y1fqfdTnLxYIOU3+VQvzg3nmuiozG2NW9LqSjLerut\nZxwmQKUX/ulZnJ26++Q1zPfjGuYUIuZnrJCW2B27sE5dJE12WfKiIYplRqp5/mzikrDvjATkPubJ\nQfzi8/nEkJTGDnYibsZ58D3c6fK5xUXze4jWaZxXxjI37Wszbl7mtMfHEctiYuQYpaTiObC9FrKZ\nYLJciyzr5T0uypLapxfg77Jtd1SUnJdjJHuJS8H3m7Tkmrx/Xg1ySRLZ+Hv5HBhDz0bZG/xOe6BW\nxsr6y9iHdp1GrCtIl6UR8ukM0d6Lubm6slL0W3Eb5H2tryMWbfzMRqd94Sl5pvTEYwxbenB9te3t\not8XP3uP037+Wdzv8hx59pwxg9YfPQu5MuT8iWknqXYSrsGdJefw2d/iemes+Iix0cwZRVEURVEU\nRVEURVGUaUR/nFEURVEURVEURVEURZlGrihrCo9CIpG5IFe85kpFKo9vG1KTzj0jU4teIVnS63uQ\nMpRdINPylpYjrf1rTz/ttD99882iH6dVjZDDTnkuru+TD0s3A3bsMeeQ4plSJGUf7BDDafKpgWTR\n7w9vve+07/sLpBT3vxsU/RY9DGeLMUrV7z4m3YW4Sv7VoP8CvrPtwpR/A1Jy2/cgNZLlEsYYM+eW\nmU47mtLqYhbKKTTai5T4KaoM7y2Ucje3GyljPZ1wHWhrhWzITjVn96cPcukxxphgE1IWWSaQs1VW\nuI8/A9lHwIZm7QAAIABJREFUwVY4bTQ8Xy36TY4i/TBtMeZZrOWiEx139X7r5FTGmAT5d73kAjE5\ngftrp5dffhrphf67q5x2Qq6UKyWQ/Imr5IfH5JxgZ61NG6HjSiW5TnKhlJf0N5HDTjTub3f9IdEv\nZyPS7tnJJ3+F/LwOSkvu60UacaY1z2Mp3TXajfvpyZPfvf1dfF6+VK1FhI7dWGPpq+W6H6W5ypXi\ng/Uy1Tk+BzK23pNIj771kS2iXy9JM4ebsSbSZ0p5C9/H9Kx1TpvTfQOB98V7cnIRl4eGIOcMhRpE\nv6EmXPvpGnz3uWV+2Y/SrX2zsJ8MWumyYXI5KrgNMSnGJWOFPfcjibeM5JWWwwfL55iWffXi3/Nu\nW+C02RkoyZIYMplLMPfj4mR68FAPJEAZ+ZCRBIPkHBMr97HuI5C3seNbjCXrrOuAu0ZuKr57yQ0z\nRT+O/b3HMPfYJcMYY1p3IC2Z/1aw0XL1uXrGIsYYY7oHsCZWP7JOvFb/DGQW7B5TdLvUAtQ8CZlX\nUx2+87wPSUe98jDkS+lz/E77/I+lFGfxVui3XD6Sp9EZxj/vQ+I9HW1vOG1213Ol1It+DV2QdBdM\n4Dtt+aKMGyw1u+WrkAZdfko66nGaNssTRnukLC52rpQaRJKi6zHOTSekW8el32JPGW3H2eyav7lO\n9Os6iLXDbqNzH5EuHC98FY47Nzy61WkHjsvzXGcjzltLyOVnnMYoZ5PcXF7+Ms68/cOIx5OWu87J\nBsTXr3/hY067hRxWjDEmNhZ73LlmrPOFK+SaPX4A0sbbvo3U+tZ9Z0S/2qP1TnvxVZA1zfgEzg+d\nB6UksJVkWeX3Yn3wucAYYy49gXmbPIfkudnScebS4+g3MQ5ZnC9TxtQQOazGZyBWdJJkMdEt3Yb4\n/pyqr3faH9q6VfTj2PPDH38B10MuN8YY8+x/vu60S7MhaTvyG3leKsrHa1kkx7JpfBvSnDnXf2C3\n/xEj3RgvX4ncx+p/S9IWepbg9xhjDKlwTXgMY2FL2PprEOfYYTIuUcaay7+Gi1xiGe5NLMlNoq+V\n52mWGyXn45lheFBK6ocuY79KLMbeWve0jJPzHoL0vvXim07bnSLLW3ipbAM7h/WeljIcn+WaGmn4\nHMqxyBhjZt2O9Xf4V5DRl82V5/JCKiHBUqYbN8mYOt5PzqmrCui/y2eNnGXYP/l5p4+c99otSSC7\n/fI54/q/kq5bHW/hvo7SbwozSuX5nCXre6vxjPix67aLfnMScBbtPQZ5V0ezlJfOvLnKXAnNnFEU\nRVEURVEURVEURZlG9McZRVEURVEURVEURVGUaeSKsqaRLqSc9Z/tFq+lLYW8g6v7V2yXqTr5l5Ey\n9MhddzntC60yFZTTjh578EGn3UYVnI0xJtMHudGGryAvr+swUlPt1MDMZUhPiidnm+EWWU2dXWGi\nydHFWKmlD3wKqb5t+5Aqt/hhy5WAMut7DiO1NG2JdIQZZFcAqbyJCDEujG2q5RAj+sUjna94kUxT\nm6AUUq5AnZQt+8UmII0rzoOxHumXTg9TU0gnjYuHtGTB/ajKPW9skXgPu8JMhXFPUiqkawjLNDJv\nhGxryEqbZ5nUQB3uAac8GiMdIdh9ofd0h+jnzpTVuCOJm1y24jMTxWs8txJLkBoZapfz238X0itj\n3Fj6Y70yDZ2dnEo3QLZ3aferol/+akgzPCSNCrbyvZa//3IqclcXUjzjM2TqcfMOSGX4XttrkVMh\nfZR2OHhBphB6aVxYftb1nnSJYtna1aD8Qcxp27HIU4TYNu8ziCVt78h02p5TmHdL1iLeHnxapjq7\n45Cuu4BkFoEjMvYmliBNNBTCeMTFIVXX5ZJrrLUBKf69lFoaONom+rEkZH4VpKstjdLlLWMEMbuQ\n1mVioZTiJJMk69KzSJVOsdKoiywXnEgyNYE52PmulHF5y3EdGVWQbtppupdeg5ygYClcAC6+eV70\nW/ZZyG1a34Z0IX2RTDdmGVfdnpecdhylTp95Ts43dhz4+v/5ldP+0v1SNuMpxLwcrMF+HO2SbhMt\n+zEW7Gi4f7f8u5V52P9iqd9Yl+USdUeE7UQsNv8j0pFf+rtnxWvbvnWv046Kwjo69dgbot/8R29y\n2rEvQvqXXC5Tz1/5Ku5JlNnvtNc/KOVUR57EGr5lCz775E+fctqJH5dOdCwNYHladLRM8d/yWaRz\n894VOCP3sZkkMYlx47sPDco5V7gd8oTmVxCvbanonm9gzO750U0mkpz43k6nXWa5JlXvgOvR4o/A\nMSXWkqKwIxq7ejT/yy7Rb/EiOIjEp0Hy2Vktx2/BQ3B76aXXClcipodzpJxj0+cxZu/+APJ/lqsY\nY8xjv4fTV+lBnOVarXPyDR+Fa976eL/TvvCSdHpctApx8uh3X3PaFffMF/38FVfXxXBsEPExPkue\nBTz5iD/udJx9bBcmjlNJJBHpeF/KpCo+ifkd6iSHqmy5h/h8ON+wPDRwGHtccq7cn7asx9qs3PP/\nb8x6DuH8Js46xpiPfIlcFkkSnTRb7sfsiummuTkakDG10rqvEYXOZlOWw1DRbYjlkyRRsuVKAyRX\n4nIPcV65ZoUjK33GxZ9Jd193Kva/hmOYB+zA2nZcvoclpK3kZst7mjHGePKxZkeacdb23ztX9Bsb\nw1mHpb8FM2UsnArjPDxIzypDdTJWxHqvnkzUGPmsx07MxkiZTvlCv9PuuiDPc539KIdw36PbnHZ4\nRD6bh9qw/rjkhqdAriveg3mepZG76vpZ8tn2le8gni1biWefxDzpROclKfmdWXB/SiyU/br3Qza7\nitykjv7huOhX5sc1Fd6G+Dr1ojzbTU1dWbetmTOKoiiKoiiKoiiKoijTiP44oyiKoiiKoiiKoiiK\nMo3ojzOKoiiKoiiKoiiKoijTyBVrznANlsJbK8Vr3VTngq3MWBdpjDHlOdDde+Oh/9t651rR79gO\n2I89/S7sKW9askT081HtiKZXoeGquvc+p93fLzWEQ03Q4+YuXoz3Bw+IfolF0Ln1UV2Hwltl/YL+\nC9BF+sjWK9ayOE5Kw5h1JaOWQ+CwrPkQ5ho5m0zEYevl4VZZh2SU7e+onsPkuLSIZc1nVBTqG9iW\nrlHJmAuTk9ARp1i1aUZH26kfapz0V0O7mL3WL96TngNr8okJaBonJ6WlYvtIvdMOkU1telWh6Nd/\nCdfAOst0q+5I137cu7QqvGbXLGJtdKRpfQ31JnI2y5oDXFeC76c9flzbKGUm9JkFG+eJfn2Xoa1s\nDcDq1WNZbvdehh53uBn3I38tdM09F2rEewoXYoLHxkJb3lqzQ/RLnQetfS+tRZ57xkiL9ol03MP6\nfXWiX/Ikvi/XnSq+Tda1GO2VdRUiDVuiJ1dJS+smqtnB9ZBG2odEv8EQ4vIEaX3Z8tgYaXs8Pkg6\n4nx5H3PXoFbDYDfmWWoO6tSEw3JcAmTvyDWLRoallfQA2aAeP425sOYmGde5JgtbgGetKRb99v7o\nbae9aBtqArhTE0S/vvOwxM2WZRv+bLoPYH1krpIxhTX+CdmYZz7LIpsts4ebUKOp/FpZN4MtQyfI\nprv+6dOiH9eQYi1zXw9iVNE8ea085l+8G7UNLl6UdZjKhhHzkmYi3nOtK2OMKdmK/Y73z9VzZe2w\n5ErUSxgmzXmcpaXvO4d7WCSPHxHhjX943mknxktb0/P/sddpN7XjOgpz5Jod7MBYcVyx60SxjfVN\nZCf65D+/IPrd+3no83d99V+ddjTFveCgjG28p3MthmO/eE30y6GaGnFUi4FjrTHGhEn73/waasnk\nLJbWom//K2qjVM7GOj367BHRb9kD0j41koQnUW+i56CcjymJuB/HnjjstHOz5Zklax3OJnkUMxPL\nUkS/pBl4H9e/s63ne47hfMe1QBr2YE71HpX2uDnXYU/vGaI10SGP6F//xsNOe6wPsSb87gXRj21f\nT799zmlznSljZN0o/42oIWTX0rLjXKRpeR17Q+Et0u47mvbMtj2wgg5Z56/czSjY2EHXn3uttC33\neGY4bV85ziCddftEv/AYng+G2xGjYxOpDlOHvAY+N6/7CqzO+zqqRb+EFMSRsRCeT5pfk/cxpRz1\nK7rpHBoOTYh+HWcwn5JKsc7tGG2ozEXpAhNRfPR3x6waa1ynso/O+O50WaeRayu63Pi8ybEu0S9A\n3zewH98xxTpTBU7jbw3QuYnrm7AltjHGDF7COTlrBWKeXcewtx79uL5ff43sF5+K75FVhRqBHc07\nRb84D2Iyx3G2mzbGmASrplekmaS6R8XXy/NIy06sv9K78F3sOjjFKagvOET1PIOX5Fj76H5lUU2v\nibF+0a+3DufSUAeecVJn41zfd0mO+4b71jhtPhN1HW4W/bhG0xSt3zir9miMB/c4OwF7QeaIfFb2\n07iMBHBuLtouf0cYH5T31UYzZxRFURRFURRFURRFUaYR/XFGURRFURRFURRFURRlGrmirGm4Aal8\nCZb9VPY6pAoGTsJeK2udTEPPT0IKYVQsUii7LHu74kykNz285TpcYIqVWuTGZ3BKZncLbCx7LWvD\nlEp8NsthyjbdKPp11sHisuweWDqf/eE7ol/Z/ZBtsN2WK1GmwcbGIv2MLWAnLZs5d4pMyY80Lkr5\n7zkoU7ric5HWmeRHSu9oQMoYErxIa42JQerh2Ji0WA+HkZIbHY17198lLRw57dFXiLR5TnMctqyg\n03OQmub1Yl6NjMgU4VhKP/MW4Z6MB6UlnZdsekfIfnvosrSlZNle5yGat5YV2iCnM0qH1D+b0g9D\nelT35CnxWsZqpF5OjWNuBVukfTlLgDr21TvtrJVScsbfi+VsueVSczc0hJT3yTG0u88jBTFrtpRM\nsSXe8DBSj9vfljIAln2wFGjYSkENL0FKYfchzO20FJn6OUSpqoMkS0xfli/6te2EZKBUqjEiAlu2\nD9XIeVZ5B8bq0u/POO2Fj24Q/XxH6532mdfRb16xjL0eskE8txNp1QvvlZKi3hqk4bMcJfoGjPu7\n331LvCfLh7iXSam/xTdK/YkrGam61y9GivaFZ06KfilkSdrRiPsz2CjTW+esxLpnK9Wu96UUR1h0\nrjcRhVOn2bLVGGMmyIae96fmly+Kfrye0+dhXFrfqhX9RjoRswYoLrkTZBrxUC/JGRdjTp84hzTk\nks0zxHuSVmPdt76JftGWTKO3D3HYG8b3nbTSeVt24TPYStqVJve3jr1Y920NSFev3CzlDCzVuhoE\nR7AHXfuAlFmzdMF1BNdfdItMTe67iOuv2wNpxrJH5aT79IZHnPZoH+LyJ2+bI/p1vI+x6SV5y6a/\n2eK0R3rkPlawCrKh+jchnZl3twxgvCZa3sA8C78lY+/MB2AnOjWJfpOjUkqxZBs+30cyzNSFliyY\n1mb5MhNRugYwlpk+eUb1ZWEP6KnDHPbNkrImll6mr8Da8ZZIKeKZxyGNYjmVfa8bnsdZp+I+WFq3\nH4UUMTAkpar+DEiw+Hvk5UnL5Od/DinEkjLIeFZ8RErHWl7FXOzow5657K6lot9IF+ZSVAykc+2X\npYykyJL2RxpvGeJKp/VswJIJPtvZVtrddLbl7zJsyYLHg7C+TSvG+uN4bYwxGdnXOO2WXkgEkyow\nL4qqpCSQY9aer/3caS94cLnoN9CMa+07i7FuPt8m+gV/8LbTHh1H+YNgo7w/lZsQO0fpLBvskN+9\n5HYp444kgdM4O6TMlPKi8SCu3UulINJLpO30+DjmarAbYxHnk7JTdxqeE6qbMJbf/NrXRb9vPYK4\n207rIOMsnhl8Hrk/pS/BfswlJ+JzP1gS6CKZaJo1J+pfQJmNnGvw3Nzxbr3ol78F+3MczfO0xdKS\nvY/G2Ww2EWecZOpTVnkLnoN1z+Ls2TMon9Wyk3Gey78F0qikchl7E0gKPNyD78XSUGOM8dKzqTsd\n9+vpLz/ntHNS5PN3xTy/006dj/Iq0RlynbP0tGAJzgGBlhOin68S1z5wHmdUW/7K5TfG0tDv0mtv\nin6+GXIsbDRzRlEURVEURVEURVEUZRrRH2cURVEURVEURVEURVGmkSvmDRdRClzj72W18cLtSKPL\nXIq0dnbJMMaYCUoLy1iElNGkcpkyyq4cI+Q40/Vuo9UPqdgsjRmkytkXd8uK50uoinjXCUobj5Ip\n5GFK0/bl4TtVfVbmjoXDSKVl6Uj7W++LfvlbMRaB40jR45RpY4zpoArWxf9oIg6nwXmtcWcnmMEG\npM3bzhkjI6iIPjmG9OZ4r0xfnBhFSuVAHdKZOQ3RGCl36D6NtGp2O8lbuVC8R7j7NL3otG0Hn9zV\nVC17AGllwSarAvhJpDZmkDQjc5l0JmDnDZZd2ZXmO3ZKF41IMkzpqf57ZCqom8ay6RU4mPUekSmy\n5Q/BqWykHWvMXrMZC/D9Q10Ys9jYZNEvUIPUaXYpmJqELCoqSv7+29WItHuWUnhLZGrgcDPSJNn1\nJrFQSrAGyM0mk+RZcYly/vZTJXd2f/CVytTCyWul5DDSeLIxh0N+OZ7NLyFupRRgPFr3nBf92IEg\nPwvXn3t9uegXDiH2TpLczZUiU4R7KT74yEnnt1/+vdPmdFZjjPElILXUV/7B6Zm+HLiQuFz47J4Z\nMm2VU1VnVODzmvdKyUXNYfx7RhQ+O3ejdDAbH5IObpFktAcxaqhRyuxS5yF9lqvxF9wi5V7sDuei\nlO2sFXJ+D5ELWjbtkW27ZawJDyLu8p47vwLjkjFfyt52f/0lpz2THLuWf1im4MdT7G56EXPxXK3c\nm9kJJlSN2FOcJt1SJvowLosfhByDpRjGGJOx+uo6xGz+FOQ7iblSEjNQh3jBUqbxIemwwM5iebNw\n76csyWtcHPbdqWTcn9M/eE/0K9yK1PbNf7vVaQ+1YB6Ur7hHvKf18itO+5Y7Pu20f/X3fy8/exvm\nIKf4L94q48bEBGJv+V2rnHbdCwdFP5ZUrvoMpD2hNpninned/PxIsv5zkHzaa36YzmbX3IU989gP\npCtPDjkwJpLUebhNyoKXfgGy3mA7zpsd79WLfhMk4Tj2XawxVxyO20s/LWV0LTsw91PJZSoclHF3\n81rs4XyWe+57r4h+8SRp5XT/Q88eFv3mb4ash89RK/7XtaJf8xuQZeY+YCIOO526LJl/kKStmctx\nTju3W+6L/tl4LW0R7unkhNzTAycQm1gCZOQx0hx5GW5p7kzEwKzViKNR0fJNNT875rRnbsecs2Xb\n4RGcobOv8Tvt4gkpI+klCTbf0/QZ8twdn4k5c+oZXIPt0NdXTWe9CMu20+aSw+a5TvFa3yn8O3U+\n+g2lXRL9OvdjT8lehXGOjpZSFJYbDZE8dfVyuXc1dGP8WPbdTyUOMorkMxFL50IDiPfpi6S8qOVl\nnNe8JIUaG7CcqpJRGqDnOM495bfLNXbxmd1Om79f2JIPZ2/wm6sJlzPxzpCy7aqH/rQuNdO63yyh\n5eesiSEZz6aoxEcOneFy1skzQ8d7kPue24txr8jDuLf1yjIBfA0ZM/F7RVSUnEt8Lu2oRWmT7gNS\nKs8lQPh5MXuufE4NBjGn616k3wSsM8GpJyF3K110n7HRzBlFURRFURRFURRFUZRpRH+cURRFURRF\nURRFURRFmUb0xxlFURRFURRFURRFUZRp5Io1Z4QebJPUgDWT3i6R7EQ9edJurOcINHYBavvvqhL9\nYuJxKRNUKyHRtioNQavJVnpsa7bo49JWcIL0nXlLoUk8+5MXRT/WuDe9Bbs9oUs1xkwMQtucStpW\nd4asQcL2zG6yDJuwtNHFd8uxiDRcAyTBsoMbPA9tPV8Xax6NMabxd+ecdvnHoLFzuaT2tes0tMkD\nZC0dHSf1gG1noPst2cD2uPi9MDQka6b01FBNjlKyj56yLF3fhtU025WlzpIWnzwu/WSNFrTse71+\naLaHm6HHjEmQtYO8M69sjfbnwDrYJqv+U8510Gp6iqGZz9sstf6s20yia+206joN1kBPX3onNO49\nPdJOmb8/X99ALe67re9ki8sjhzGnFgyViX5sTXjsFdguV62VtTvikqDnbXkNc4/XpTHGxFN9oPAY\n5kt/jbSC5zohV4PRPqpXcjEgXiu6HbUt2MLc7ZNr1lcBjWw/1QvqPydrB3Ftq/N7sHZsG9dlG2Dr\nPEAad7bLDo3JmJW7GOsvRHasaTMLRL/BLmjtuw6h1oMdA5vPoqZV2TrM2+HRD74fwVrElOzVsp7K\n1bRhjqf6A0HL2n1yFHMr1Er2vZXSEjeealtwzafsBdJaeZL24L5q6Lpj4uW6mgjj7xZuxWdMjGK+\nud054j1LH8A+2Un21rZlsmsR5iLv08tvklrrI69hnZZkZTntWKv+E9NF9rd2XZ7G5xEfKlabiBOi\nemv2Hj8Vxt7Qcxr70IRVA2SkG+97/zAslO+7QX6XmmcRO9nW04ZrsfXS/eb/jXb0Fz8U72GL9S3r\nUfslfamskcBwXRN7H7v0G9Ql8VOtFraBNcaY8QBqK/QcxfodPC/jGtflKI6wk2/3UZwpO463iNfm\nfWql0657EnPTjinjvfgevMZOvyNrmuST5XjxrahhkLVS1okq3Ai76uTkBU77yE9+4LR7z3aI90RT\nvCrbjvX74g/fEP1u3IA6Sf1ncK1pXq/ot+Hj65y2Ox33eqRLxv7EfMT4HqoNwTUSjfnjs22kYbvs\nYEPfB/arfwp25AvvWSJe66d7x3VmXMmyhk3OWr/TbnwRMYbXvDHGZKzEXpaQhfHlejGjgeEPfE/H\nm6gLdrZR1q9YuATxoWsfzl9By/bb7ca4XGzG/N5k1R3sv4h9e/YteI1tq40xpu2t/zt1EVNmZonX\nfGV0NqbaG1z/zxg5zzhuBNvknODaUFvuxVzPe10+L8bGYJ/0JeGze+kM5J0ha87w+ZdrPiVmy/N9\nxYOIL90nsX9OxMrvNDmB75s2D/V2+GxkjDGpC7AvjFFMGumUc2K4Vdb0ijQJBThv2nU1J4ZxbvPm\n4tkvf3W+6Nd2GM9gibSnpc2Re1/PKcTvrv1YIwnW7wgjbRiDWWtRH2/Xiwec9rp1C8R7Ku5Grdjk\n5Pn4DhNyPEdGcA28nu1riKd6kdkzEXtiYhJFv9YjO5y2KwVnpyhrrufPlM8oNpo5oyiKoiiKoiiK\noiiKMo3ojzOKoiiKoiiKoiiKoijTyBVzv+ufhVViX79MBSpeQ7ZXq5CGzuldxhiTSZZTMQlI0ZsY\nkenB3ky/054cR5rfsEdKTFiewPZ0bNfIVnnGGBOsQ0rcOFmjpSzMFv1Y5mIopS5vk5SHsH1q9gJI\nAkYqZFptN6X6ZixEirFtvzrURP+eaSKOpxCpq7FWCnPyfKQfDlF6dMZSmaaWugjpaJ0HkX42tUym\ngg63QvbDaVx2Onj+IswLTinn+zNA9sfGGJNRhfvQdQISlvgsmVYW7UYqY5hS9Dv2y5TOqFj0G76M\neRafL1OEhQUa2U3GW6m+LMWJNGwNXXLfPPEap0gPVCO9NblcSinYHp3T5z0FMn1vrAcple3vY5xt\ni8vu9zEPWBIYOIb06Og4aVs61guZxZKlkPEk5MtrOLsL0i0PWUjasjy2heZ5wDI1Y4xJ8lO6K0mX\nYtxSHmLb3EeakU5IgNJXyjXGloMtp5FqmT9P9mM7UU8e1nbnnnrRL2cLpGK5mUjdnXvrfNGPpSrv\n/QrWf4u3Yp5lLJbX0PIGrF9ZUtR+QNohpy9A3AuTfXTKPCv2Uhp6qAVpuzNvlDKf6lewJ42OIabU\n/fqk6OfxY1wKK0xESSLr8GCz3J8SchA7RroQ1+KSpLQncBJ7VMF6SAcH2uT+yes+ewXuZ8NLp0S/\n0s34kvHxGPNoD9JqR0bk/sSfzfOe54MxxrS+Xuu02SL67eeltfL67ZAMv/V7WFJev0nanCdSGjlL\n8eIsi/ekqygTNcaIuP7+c4fESyzZYtnPOMUvY4zx3wlJcm4PvucvPvuE6HfLA5Cj8Dovu0vKE+Iz\nEMNeewzp0SNkZc+W5cYYs/Q2zJ/F7fjsp3/2uuj30D/BgnvJF6932m99/XnRb8lHcR/ZXjlANrDG\nGDNGcTSb1oRtg7r3W2867fkfMhEljazrWdpujDGtb2Lespy28hoZEDoOQVrHsuDbvvMF0a92B8Yz\nYwZiY0yM3Bf7uxCj4uKw72Rw3M6R97DvAtZB+26ca+/77t2i34t//wenvfImeCEnnJHxJbEA3+Ps\nTzC3E+Ldol/lX8IqPWc11t/lZ2V8YXn41UBI7/OkrX3XO4iJwWGsvzaKS8YYkzwPZ9n+c3L/F593\nHuellFyME0tSjZGymuaXIHEr3IZzS9iSgMb5ML4Za3Am2uSTzxAx8WTX3IH9LjwsPy9jFeZMXjw+\ng+V3xhjjq8D96TmKvYXlYsYYkzxbliGIJIMkZ3dbZ0XeN4SUdfMs0c9Ne0CsC2skp0L6fg8MoOyE\njyzl1/+vTaJfsAXPI0nFWIvJB/GMmTZHnkX43Ny2B88MfZdk/GOpW7AJfyexSM7fhGw6l5JsPNGS\nnA1SGQi2s869Xs6dOO8Hy4QjAe/Dnnz5Xc78GvbP6Tm4/oKbpYx3vE/aiTv/PSglpbzGMldBHupO\nlfOHpdZuso2//Us3O23eO40xpu0YLOVDFbjflqO1cXswf1JnIYZwTDbGmLw5a522x4Mzb8PZZ0U/\nnj/DJElrfFHKZH0l8v7baOaMoiiKoiiKoiiKoijKNKI/ziiKoiiKoiiKoiiKokwjV5Q1ubMg20iz\nUkaHydEmVEmSEKu6szsV/x6m9D2XT6Ywd51FKugEOQVx1WpjjOl4t95pZ69FatGP//pxp52fLlMw\nV6xF6vDpPyD9nR0LjDGmqQdpZUUZSE3KXTND9HOnIzUrUAcXlFCbrKKdVIp0qVgPUtHG+mRqdGrV\nB7s3RAKulM5OWMbI+zBGUhe7sjQ7y8TnIZ3P/i6cEs9SBZ8lYzj/B9zvVC/uA0sVim6RGq/WfXgP\nO6EVylmAAAAgAElEQVSwY48x0h1kqJ4kY1Y+W8dxSm0sxRjZTlXxlNLL6behdut+l1291F/+u+xS\nZowxY5RCmLaM5HNNUj538lWkKldtgm2GXZG9oRryB98sfCdbmjFKMpULL8GppGQ95Bf9Z2VqYFcH\npHPR0Zhj5RWyYn6xH2sidSHagUMytTSOqqHnbICsIPdaKaUY7SXpHKXj9xySUo+cTdI1KtK0kmOW\n/yY5v5NnI6UyfzNizpHH9sp+MxGb+k4jRZvvvTHSLY0dCSbHZfp24CDGoJBiZ8sBrA9viXRB4Er2\ngw24pykzZdp0og/3IVAHqctLr70n+hVn4n0sKXn3mQOi36xipHkXbkdKtJ1GzemykYZjo+02wXK6\n5Fm4T7b7SUoV4uHkJNbRiOUaNNINGVyoDfcja5V0iGknF46hmUj37yJpbfmWG8R7egfweVeSZLIb\nXMvLkDkuXSznL8ellSsg92nbJeWk7CzlisV+MUqSP2Okg83VoHonpJP2bEmmedzwDGJb7lYZHzjF\nPJpcOiatvaaH1hjLSMct1zJ2kuM1kTMLMTCxKFm8576PfNVpf2Qj5FPbtkqLq1GWZEVB/hTvknG9\n5WVIE72ViBv5G+T9zr8W8shQADILljEZY8yyh1aZqwXLqDsPN4vXqsitaaQHc6vjnXrRbyCEcZlB\n8qz28/tFv+IN+B7sEDnYJ90TE5LhwtHXBnehgqrrnHb1C0+L9zQfwVrkkgG7/klK0xq7EV82kuRg\n9iI5LydpHs2lcRhqlmeCMXKt2f+Dd5x2pk/KGYIsxZcmbRGBXTBz1vjFa70UOytuwr7Y9b50QOqk\nWJdPZwH7DOL1Yq9IIkmMy5JS8Hm+vwPXN0VumXMevkW+J4j93Z2A/XywUzpietIR//vOQqLDZ2tj\njCiv0PISYm9imZRE8PNFHp1heB4YY8zYwJ+Wm0SCrFV4Hgucahevsbtg5jJIpNv2XhT9gg14lkz8\nMOJcd7Nci0mZkE6ORUMGaMvM+NzMTpnsvMPSJ2OMSSmDHM2VjDmVPVtKq7pq8Cw5QeUYAkfkXs8u\nYJkk/++1zgQxCdjv4knmH2vJjAMkiy2SaqKIwI65/LeMMcYbj3NCIT2fjVpy3xSSivGcs58X2dUr\nPROyoakpeR+9W6hsSSM9B9JvCrYcm2ViA9UUA6Lkbh9PsrMgPS8W3iold83H9jhtLvHQuU9K0Qeb\nMIeLrc9gkv4bqahmziiKoiiKoiiKoiiKokwj+uOMoiiKoiiKoiiKoijKNKI/ziiKoiiKoiiKoiiK\nokwjVxR1p8yBHqx9p21DjN91hluhsbLte4fIajTUAX2rK1nqO4OkOU0gPSBbkxpjzMBF6MjqyOo7\nRFaT+y9cEO/xJeBvzVkOG8WLRy6Jfn7SeOffAG3rxIisA+DJhh635uewFkuukvUW2t7E52dfC41k\nx0GpjU6xrNwiDdfYGCS7bGOMcadhbLiWxVC97Mew1e2EpZn3lqE2RSrVVeg9K63/csoxtzovQQ9Y\nfiM0emxjZ4ysP9TTjOsbD3ywjjbGgylu2zUXkUV6C9VsSJtl2Q2SRHHgIjTf4ZDURSbPvHo2hWzZ\nG86SfzdtPuoRdOyF/tFbLuuEVC7H9+WxHGkdEv1Yb95ONqNRh+S8Zf37zFJoaftOoA7KaEjOj+5B\nzJ2qKujCbat11umyvbq9xlg/yrWq7PpCbBMfrMdYJlXKeMW1O0qkY3lE8KZD3+qxYlvrLsQLrplS\nvM6qn9MD3W5yFdbRUJ1cs4U3QhPc/i502VmL5OdxzSaOFR5hWy51uu+9cNhpb3z4GqfNMd4YY87/\n4jf4u2Srbc5LW0GuQzJ4AfWt3LFyiyr7KAoe9JxA/aGBsLzfbBWfI0vxRBTej4yRVqXtb+B+lj+4\nWPQ79x+wt22LQz9XptwXJwaxftju2tbW525GnQHeczMW4ct3XpL1e2KopouXrObrXzwn+sV6MT+G\ng4gbSVZNmAGq7ZC9we+0eW+3GTiD99hWyL0Xu+zuEWWQao3c+DVZO6K3GjGM665wDQNjjHnlG684\n7fUfRo2XZI+s49XZj3tSfRY1bM79TNbN+Lu/fcBpFyxFXaGRNqyrHqvu1nc+9jGn/cXHUXtvxZLZ\nop+hS/fmIu5xjTBjjMldCfv68z99G9davU/0K7wVBQ8CJ1CboHhmvujHNeAiDd+PWQ8uFa+d/TfM\n9xn3I27YWn++2qEG1BwYsGqVnHvmhNOu2I6aSom5sj7L/m/Dmjw5BTG+by4+r+O4rHXmo/ny3C93\nOu2Hvn2f6DfrIObL/l+iDse6T18r+rF1eNMriLV2Haf2HdjviioQK9KXyKDpK7m6Z1QP1TDrr5U2\n2PlbcRbnPTJrTbHoF30I8SM6Fu1z1fWiX9ViOgf109nYiuXFt2MdeMiavJNqFg12SztvPqflLMD6\nHeuXZ9SJEM5SY7Sfp5PdujHGnHsWcy6R6n3YNsy9p7H+UsgOuPF3sh5S5no5ZpFkpAsxKj5Dxr+u\n91Bzx52G17JWytppje243mAL1Z/Jl3W22o6gTk+oHX83fbGMPWmV+L4DjVhzXCvOrsMzOYl/857U\n2yL3Ra531duKuOHfUiH69VINmp7DuIaYhDjRL3s97n3fOcQKu56L/UwcafpP4lkt+zp5Vkym83LT\nHxBX4tJkzbrRdtT4Sl2KGlzd++UzBNfZaXGj/lDONfLvJqZhbOJoPxmmc9/gpYB4zyDVxXW5MNYT\n4/LsxPWQ0ijudVs1zDJobo3RObnpvNyPY6iWZj/dx6JtsmbbaED+rmCjmTOKoiiKoiiKoiiKoijT\niP44oyiKoiiKoiiKoiiKMo1cUdYUImtLT4lMo2PZAEsSWt+SUpTSbbDxa2qDBKjp9zLdrrUTKYX+\n2Uhh6rksUw05ZayJbLGbSWJxwyJpebboBlg+sr01p34aY0ws2WJOjiLNvvl1afcWpu9bcg9sugOn\npDUaj4vLh9TwjAW5op9tLxZp+s8jtSrUImUHPrISHKH7bVtpNzYhzXv2RkiP7DRvtsKr3QF5Wc6M\nLNGPZRuJbowNS4X6L8h7n74Y45a2mNLP3pOp4QlFSDNmq9NhyzKPlS+VH8WcCZyU97HtTczpdLIr\nTiyUqZacihhpi7uEHKT92pKzVJLFxfnwfTl91BhpVeuitNPzlryP7fKKFiHtdJxSgI0xJoukhLxe\nYukakufK+15SiFThYUoBbth3WfRLy8TYJhYh9sRYadmBE7hXUbGUyr1bfqfMuZg7KfMxXlK6c3Ut\nmI0xJp5SUjv3y3kb60HqZdsOXD/LWYwxJp2sKAPH8P3DIzJd88Rj7zrtNCE3lWs2d+4yp33uqZfx\n2SSf8FOcM8aYG750vdM+/zji+sy/WCL6NQeQauptx1h/+NFtoh/Hnt6TiDWLbpwv+rELYtYySOlq\nf3FM9JucmMQ1yYz/P5vAcYyLbd/IlsnpqzhFXY65JwvytvSluJ+db9eLfhmr8B0PPQspmStdyp88\nZKsr4hwFOfta20iqnEapx2mWzDZIksDyOzAP2nfKNeYmS8qRLqTsDlRLmcIU2bumr8YYxWcmin7h\nYSl1jDQrtmOuBtvk3tBzAPcxcx1iYO0fzop+lXnYD8b6kA5/sr5e9Ft2J2zMw5OT5oMovAbXdPbf\ndzjt/j7s2/mLpfThhV/CbnnjggX4LCuNmqUeLhfkdwk50i615teIG+nL8f3OvHRa9JtVgLNDUiHm\nz+iAtGuO90npaCRhGW/PfikVWvDoZqcdDmM+sgTEGGM6GjA/C27E+TLYIL/HicP1Ttv1MtZS9iIp\nAZqk+1vfjL+1+iZ8duOLR8V7hkext973WUjsjv+nlCLyWcmfhXt46ucHRb+Km7HPZpBUxpa1+z+1\n3mkHLkB60m1J70XskFt6ROg5hHvnnZEmXmNJsqHz5viQPI8ESA7F8fByp5TUGxp6lh/yuccYYyYn\nEKe8JGsaIdl7lyV9yCU5BstjypfdL/pdPgUrdbYkvvzUKdEvIw9yUz7zulLltbIkK24pzl/5N0uJ\nTSfJi8xaE1FY2pi/ZYZ8cTViaKgTsayvWkoHs69B+QeWGNr9WMrPUr2pCWkdPtCEvbr9LZwxy+5H\nnJwcl/G4/X3sixkLMeYjvVKGwtKoGbdD5hiXJO9NKB/fd4Ts2W3pPZ9t+dliIihLA4wPyn9HGncu\n9uHAESnZiUvBd/P4cY22JLmApIijtC/GWlIuPvddIFv1jGVyj+tsxr7L8qWxbjw7/+MvfyPe8+jN\nNztt/3Y8s1aTPNUYY0ZIPs0W67bkbuAS1hiXhZhzq6x/wM/E/DzR/JIst9I1gDPHnC3mj9DMGUVR\nFEVRFEVRFEVRlGlEf5xRFEVRFEVRFEVRFEWZRq4oa3IlI4VyqEZWQp4cQfoYp/GkzpUp0Zzal7MW\nKWvs5GOMMcO/Qlq6txSpfLaTTC+l8c9YCZeB0lpUTV95xzLxnklKo2YXj5KbVop+53+xy2nHzKTK\n7y45TKPtSG/rI8mQt8ROx0RaXs9JpPyxG5UxxtS/gCrgZVIVEBHSKe12KF2m6vZQ2tpoB74Xp7kb\nY0xGEiQJ7NAUR3ItY4xxU7r9FKXtnTtuyd3ykZZ4qhGpluvIfcZ2s+Eq4qMFSGebstIDUyjttIfm\nS7BJpq5zEn2oC+l1trtEDKXsDZNsy5b5uNOljCiSsItQ0a2zxGsd+8ihqQRrx2Xdm+Al3Ps8Snct\nK5cV7jPXIJ3v1NNYl7bgJ43mRN8Qxs89ivmRtlR+di+tg9rj9U574Z3SzWaoDvGGJT5515eLft1n\nIYEpKcO4pPrlWhw4j5TnyRHIJbreaRT9YryUdnm9iTgdpzEfuaq7McakzUD6fy5VyefUT2Nkui/P\nwZJ7pfQoQOn7yfTZsbHSXWRqCmm9M+5CmntMDNZfoPGMeE96MdKCG7ohv/jX278u+t23Hp83NYa/\n03dGpprnkdvQwDncq7SqHNFvkCR9LAPL3iSr+3fskvEmkrBThp32W/phyLAukpOfHSd5j7v8EuJ/\nkZUOzk5Hs8ltrc9ykmk4jBiQV4kxY4lYbJKMa63tGOe+nUi3LtsqNZluSqGfCuMeBgekHDeanBey\nViGGhEekPInlvv2nMQ9ClsOHb9bVk8MYY8xgLWJM+gIpTSm4FVIDTk0uv3WO6NdJshqWCN+5apXo\nl3ON32lnLEdMzHxBOoD0NWLednZhrl/zlTuddvtRuRaXlmNezFqPe+dJLhT9wmHc40svveW0C7ZI\n+VOwCXtc2556px0fJ1PS+2px71peq3Ha7LxmjDGzHqRDTYRvadZazLPkcunCNNCItZlUiHNF7voS\n0S9lNl67QPJITjs3xphtH9mAf9CZt/n9BtGvaIXfaQ+TY0jz87jXi9dKJy1Oob/0BOT6uRXynFy0\nDe9r/ANKA6QH5drmM/mBn73ntDd+VW5q73/7VafdP4zz35qHLc1L1NWV+2at9ztt24mO3cm8VF6B\npUbGGLP4C1ud9lgQe+QtN6354D9M4zTaKWUr7AyVR86eQxQ32IXVGGOOfm+v0668A3KH5jYpu02x\nHUH/P+xyAhkrsYZZzs5uucYYk389znOXn4H8MGej3BcnLelzJGFnQbsURBZ9jzgf9pMES8rKJR5y\nliOWBS1pGp+H48npy2M9WwVbca/mPASZS3cNxoifCY0xJrkS94a/B8vK/t/vgT295zDmaEqV1P3x\nvsClNNyWNLmO1j07rbKblzHGJM+5CrpCIp4k17V7pRtZnp+ez6hkwbDlyHjp1/gu/rsh+RqVlSqM\npwBn0YIifJ7t7nt0N+5Xmhf3+MglrNEtCxeK97x+AvKljEp8dt48+UwSDuE8whKyy09KiaGPnGKz\nV8MFrPEluYezC1fjcTxfFC/xi35xzVd2MdTMGUVRFEVRFEVRFEVRlGlEf5xRFEVRFEVRFEVRFEWZ\nRvTHGUVRFEVRFEVRFEVRlGnkijVnuvfBJo615sYYU7AdOmWugWBbKw80o8YC2091vSN1uqwdu9SO\nWgmbPiF9UNku9vzL0F7f/4mbnLZttztBlpy91dDgxyXJ+itTYbIdpXoGJ96XmrLcVOgBvaSRjLM0\n/YMd0Hiz/W3nW/Xy71o1UyLNBI2Z29L1j1HNCq4FECSttDHGZC7B9bvToJVk+1BjjGk7CHvgjAxo\ngrst/XZvP2oJsQ066x3t2jzRcfgtUdgG+6XNO1uWJZNO8GyTtC6+ZgVqDsW4UVdmKknWh3DR9+V1\nkGDVxJm4itavfA0jPVIbzfUrmOg4aW+XswV1PUY6MP4xllWztwifV7oCmmquZ2N/ftML55325BWs\nYtNpHk2OozbBkGXxKaz5KKbYY+xJwrjw/LB1udnr/E47PIa50xmUccidJTXQkWbOx1F/YaBW1vFi\nbXLDb2Ed6Jspaylkks1gwUbUIHC5ZH2CrK2okTAwAP3s+Lgc63AYMcDrRVzvC8CeteVVqSEfXYW4\nx7F79SxZDyk4gvjQ04l4O+e6RaJf04uYP5UPL3fa9c9L+96BRnxG2d3Q9Pfsl/cxfaW0YowkQ2Tl\naNdiGLiM17LIPrTvVIfoFw5hDibnI0427qgR/dimd5jWrK9CzglDt6ezFvVoElzYk7KWSa31/A9B\no83XxzbYxhgz3o97yHW1kjJl/GOb+OZXEIPZut4YY+Kz0I8tQ4ONcj8OtctaS5Gm/N7VTrt5t7TX\nPLkH9TxmziN71xa5j2VTbZ0zv0aNoVV/K63iL/z8HaedsgDjMTYha0D0nsZ9CJK98htfedJpFxfJ\nOkwtZFeffBh7XNoCWTcuJRv1ctIXc80iuU8MUD0j/+2IL+ND0sI1rQK6e67L4yuRc3Pft9502gXf\nv91EEl8Z/hbXjTPGmCham701qAkRsu6hKxV7iIfmt2tYroPqN3EOnHcraksVb5R10AJHcOZ1paOe\nxbFTWNvxLXLPnUlzveg2xNDG5+XZs+Y/Djvt8gcRQ7uPShtxD9XhKJ+H+3TisX2i38JPrHDaYwNY\n5zXPyHoL/ptkXaJI48nG9XYflfbU6Uup1geF284D8jzn9eO8zdbf4wF5Rs0nS/OW16lWklXrprcG\ndS+SaG92Ua2Q3pNt4j2837FVcu4quS/21+M7dh/Evcu61i/6cV0dPne377ks+vmo3mUS7Q3BZnmO\nz1gl61BFkmg6Q8db56j+izjjx1GNF9smOmsZ4unkJM4Yg3XyrJRIZ1G2uw51yxqlnhzMq4FO3Ou2\nN3BmSZ4nz4pc94cty7l2qTHGdB/APeT5xvHEGGPivNiD+ZnGfk6NiUdMGKFYVrhNzp3h9kFzNeFa\nOkVz5TmKLa673kc9FZ9VQ2mU4lkj1VVLni37jdOZhs/8w5flWWDuAsTY40dxtrjjno1OO2TVp11D\nNfBEfSCyfDfGmNwN2N8vvIJztzfeqkVEsad1F2rxuK26SQk09+fR9+2nupfGyHPAn0IzZxRFURRF\nURRFURRFUaYR/XFGURRFURRFURRFURRlGrmirIl/ukm2LLI5xZXtmGd+UtpY91Da3xTJHTylUoqy\nMRNWuiwd6SArR2OMqW9GStLi25HWGR2LlCiWLRhjTNpcpAFPDOO6g5b9V0IeUs7YsnvjX20Q/Wop\n5dNXAW/IniMytbTyI7i+8CjkGGynZowxbpdMcY00facwZlGW1GWKpCWcmmfLQlp2II0rl2xBA0dl\nWmdaOcaj6SzGozRbzh9O577vo7B3ZNvgzhPSptabjJRjTqEc6pLpbMNjuMfnXkXqYXmOTAfnVOxx\nsgFkazVjjMleh7TgvnNI+R6qk/IQW9IXSdi+3Laa5JTgkQBSsWsfPy76DYaQJjr7HkgaMpdIO8ie\nU0hXzFmL1+yU0YQs/N2s9UhHZTmCt1DaXcZ5kPKXcic+u7+lXvTj7zhwDv57w1aarisNqYeDdD/+\nSIJF1pN9Zy0/PyJrxdVL+zVGpvHa97HjnXqnzem0qXPlvO09A+lDqA3rMmO5TEGtr4WUImMxJC22\nDecwWSoPurBmvXlkv+2Vkk2Ojw99FBaVHEOMkfehn9bO5KhMEZ7xANLrg3Q9Kda+k7oAY1H9JOxJ\nS6+rEP0SaE1EmrE+yE08BfLvsL13gNJYo60xj2KJJkn1Sm+TVs2JuZSWnYXU7hFLwpE6D+OUR/Ii\nTqluf0umwudskOv+v5iw5CvZa/1Om1OqJwZkP88SXCt/RpQl/eK0377zJK+x+k1NyDkSad75xvNO\nmyVExhizZDv27uzFkHQ0vHpE9OM1PPcBSBYP/PPLol/JJlikv/P0+077ju98RPSrfxHSqMwkjOes\nj+KzG56WUr/lc2A5m7MZ1rnVPzss+i18FON+4QnsDYEhGdcrluEzzjyFNWbLr/t/A9ljlg+WqEu+\neKPot+D+peZqkZACOUfX/kbxWrAOe8WMT+B82XtcprUPnMU6TSUJTeE2KeUJ0DlqYhDzpfeo/LzS\njy5w2rwHb/gI7Knta2BJbgLJ/tp65Rnjmr+9zmk3/B4p+Al5Mg41PgdZnrcCY7TotutEv4EGnLFO\nPIm5nZQgpRlnfwfZX8XqB0yk4bPFYI2UsEyN43mA9w13rpQT1J/AnjTnEUhjs9YXi35tZJGdRGNj\nx6n5qxEDBloRO5NIQnT0x++J9/hnYw9uInm97zNSztF/AWeQIppn9pmg4QXcx/wtkHYU3CD3u6bX\n8LdYAp9gyYs66XlqxgoTUeJScGaxZU2Dl+hs5sf1hdpk7Bntxfl1oBZjZMcetqjn29Z/pkv0886g\nEhTFeObk/XdyQsrwC9dALl3/GmJofLosCcGWyQU34n6M9UsZXf8FxBfet1mmZowxwXpIefLoXk9a\nz7Px1vsizZmXsL+keOR35nPg5TOQFZZEW3t3mNcs2vb58O1nsRfO82Od8vOdMca4M/Cds5PxTDFC\n88c3M0O85+wOxMfxMxhDf548U1bT9w3Rs+Oih1eKfj3HEV96+WxnxY3867HXc9mP9EXSit38N+VM\nNHNGURRFURRFURRFURRlGtEfZxRFURRFURRFURRFUaaRK8qavDOQvtdzTMpXyu5DtfpsShts3V0r\n+nGV5G6SwCRaTjcplJbdtQ/pUqX3z5f9TqEfuyudeglpl7NvkKnhl5846bSjqCJ04a1W2irJs7Kv\n9dPfkWlvuavxfV3k7DPRL9O8+84gdXWkA+lssZarU/oG6aIRaWLpGm0HpIEapA5ODCBVd8pK9cvb\niFRnF6UvulNlRet+qqqePwMShDPH5byoourboyRlaqtDhfzD5AJjjDHbboC7xgc5khhjjI9ScjPz\nMIcT8mXqb6gdKXFciX3Mqu7P48cuUTGJ8u8mZF89px9PIdLG3SkyrbGFHF441TJjuZxXOXS9A1Q9\n3+WT7lSjAcifgq1IH/Xk+kQ/dj5L8iN9NJ5cXFp3yvvO0pvJCdzD1pelG1AyVTJPLEE66qjlJMM5\nrexENlgrpUtttZRWS3Et/iresz9FmNKyeR0ZI+UtLvouQ5aLTc9hxKkYchZIyJBr+/JzSOtsPwJ5\nX9Z86eLCjjlDtH67D+I9nKppjDH1z8ApL3kuJJBJxVJOVvtLpPXz9w0myO80PoTYM3Ae9+6P1mwL\nZDUzbkWc794vHT46yA2w+J/uMJEkg5yg3MnyHrL7h6cI4zpgpVuzI4Q7G/faTlmu/x3uITsdtB2W\nTiWl2+CqM8guYJQ6a0tVG8gJJpXuIUt1jTGmY2+90+a1GBqV+x2vRU5rb9wlYwDH6/Ew1kPpnVWi\nX9sOGf8jzdw7IO1seOW8eI0lDl3ksnN8n3TP4ZTmZS7IICpvnys/j6TMWz8HacnFX0hZxCg55hRv\nxppjeVpvUEraSpdgLw02IV7Xd8k5l07ulnP/Cinb9vnm3E+Qyr/0ryHFGRuQ0q8ucssJ1GA/GR+1\nXbekdCGS1L8E2dW4dX1Dw9jHdv3T60575lLprpRQjHXadxJ7midXxtOTb2ItrvkkxqXNcg0a7cXf\n5bNx5jycoY787qh4jz8b66/+Odyn9V/cJPqx1IPXYuocmao/RNKg8+9ib827plL04zi58AGUJAgc\nk5LyPOvcGGl43vZ3STeajDLEo5xrIMUcteQjUxOIdV2HsR8kWtJqlmNefgcxZvad8lkjHMY6Y2fK\n9rchccoulrGSZR9l4tlFShjifOjXR2exrrel62A2yRSHaIxsSUwGOfGxE1H2yiLRr+alanO14HEe\n7ZbntARaSyz9TbVky+wuNUqupJPjMkbFZ2LPDNGzFe+lxhjjm4H703saz2MJBTjL2nKl4V7EgOw1\nWL8tlpOir5Jc6ej28t5ujJRTcXukW8ZxvqbASSpFYUmikyulRC7SLPvEKqfNZRyMMabuvUvUD89j\nJ35xUPSb/1HEkqF6nL3ZDckYY5YshRNV2mKcS/vOdIp+iUUYt8pUnHVYBtjwjjwvLPsLkiWR8sie\nSwlUJiCpHPeUz3LGSPflhHh6pi6QsTHUinIp/Lx47lX53XNy8beK5U8WxhjNnFEURVEURVEURVEU\nRZlW9McZRVEURVEURVEURVGUaUR/nFEURVEURVEURVEURZlGrlhzhmsgpC+Qdq6sNw41QmMVkyA/\ncmIIn5FL1p22JpG1Y6yBHrFskvtPQR+WuRZ6StbJ2Ro9rpXB9pzDbdJKm7WCXe/h+xXfIQVhcV7o\nzfqpZkve9VLLHOPGWDT8lmoHzJfa/wnLujnShFqhlRsjPbQxUlufWIZ6EeODUr/Neu6EHNSBSF8h\n7XtdNB6xVOPk2keuFf16DsOyNyEf9yePLO5uKZd6VK5jMIe0tEMN0m5yoBoaXp6PSZa9cgdZy7Kr\nWc5GaTE7SHU44qhe0HCTnD+e/Ktn3zvajfvmWihrxLjToT92paIdOCLrRLnSUR9jpAXrKtQkNd5p\nZCc63IbXYhOk5Xsy6zOptkxKFdWvmCX1sS6frNHxXxTePkv8u30P7g3XqYnPkPrgy7+BDR6vt7m6\n8BwAACAASURBVNQqOXdcVKeHrQ5jPPI72fUXIk1/NbS0KdY1esnGu58shvl7GSO1zhlLoTU/8+P9\nol/+tdCrcy2iwFGrnsCGMrxGtcWKb0fcs+NB+jLMkZ4DWMvhkLR9zL8RdTOS/Kj1c+nxY6KfbzY0\n/VlrsLZZe22M1OqzPXXRdjl/YlxX3Nr+LIZJ+z9qWVoXbYce+hxZGafNlOugl+w1h+sxH1Pa5Zzg\n+DxC9ZbyV/tFv653YSPsJj1+sB7XateSSZuPv8U10RpOy7oEXBcmnmrFJRekiH5cr2i4HrExd7m0\npx+jmlbpS7G2h1tkPPXNubra+nPPn3Layz63Trw2EsBYv/nD3U67IlfWa+LaB1yrq+09WTti3l+v\ncdrR0ZjDeddLG86OvXgf16c69sN9TnvO3QvFe2Kojl7Lq9DJL9s0T/Q7tAvfN20x1i+fD4wxZjbZ\nEO/+32847VWfWCP6XTxa57TXPbrRaY/1yTNG7W7Y/FZJl+0/m/zrcObqPCTrTvHeP3sN6gG502Wd\nMT4THnpsr9N20RnFGGNKCnAG9mRjr+8flmdZri+UtRA1XvZ98w9Om+1gjZH7X9f7WMvnfirt0FvJ\nWrsoA+u5YW+d6FewFDF09iz0O/zdXaLf0i/gXLb766867Y1fvUX0C4/J+i6RhmvJJSXL+zM+iBox\n5x5HrZ7KjywS/cJBnKM76d55auT5MC4NZ5CSuYgxE8PyHN5JdRI5DieVYR+rfVXWoMqlWjB8rm87\nK++Pl+qRtbyEmkBxKfJsx/XD+OyZOkvuExyvgr2I5f1UC8oYY6o+dvVs7ftO49ksb3OZeC0mHueP\nHrI8j7Esk/vo+S6NzjaJebLe4XA7xSw6oyYWyz1J1Gii17g2Xuf+RvEerhnlpno0Mdb5l2uX8PPr\n2IBcK3zm7aFaTr6KdNGP4/g4fZ4dn7mOq5HHnogQoPsYbT1Lz70ba651B9bHwr9YLvp17sfzc9Yq\nxKI0qulljDFj9Fwz1otx4xqbxhgzeAnroPYQ1lL5csyzzDJ5vuG6msHLOAdlrJLPrMn0jNJJ56im\nBnmtFSvxt4bpN4+6k3L+zNqIWrb8XFm+Tv4+MFQna7PZaOaMoiiKoiiKoiiKoijKNKI/ziiKoiiK\noiiKoiiKokwjUVNTU1P/fTdFURRFURRFURRFURTlaqCZM4qiKIqiKIqiKIqiKNOI/jijKIqiKIqi\nKIqiKIoyjeiPM4qiKIqiKIqiKIqiKNOI/jijKIqiKIqiKIqiKIoyjeiPM4qiKIqiKIqiKIqiKNOI\n/jijKIqiKIqiKIqiKIoyjeiPM4qiKIqiKIqiKIqiKNOI/jijKIqiKIqiKIqiKIoyjeiPM4qiKIqi\nKIqiKIqiKNOI/jijKIqiKIqiKIqiKIoyjeiPM4qiKIqiKIqiKIqiKNOI/jijKIqiKIqiKIqiKIoy\njeiPM4qiKIqiKIqiKIqiKNOI/jijKIqiKIqiKIqiKIoyjeiPM4qiKIqiKIqiKIqiKNOI/jijKIqi\nKIqiKIqiKIoyjeiPM4qiKIqiKIqiKIqiKNNI7JVePPyz7zrtgcu94rXUmRlOe6gGr8X6XKKfOyvR\nacdnoh3tkr8Lteyuc9qZS/KddlR0lOgXONqGa5if7bQnJyad9nj/iHhPT12P086ajfeEWobkZwcG\nnPbI2JjTLplXJPp5S1Kc9mBNwGnHJMjhbD3d6rR9Hg/eX5Yi+o12h5z2qs9/2USab911l9MeGpFj\nc/PGFU77O7/6ndN+aNMm0e9ATY3TvvcL25z28WeOin5lC/1Ou+L2LU67u/aE6Ff9NP6dv7jQaf/z\n95502g9a17Dr1Cmn/ekf/QWu7fvviH6/P3DAaS+bMcNpH6mtFf3+fecvnPbUVNhpD/XKfpefOe20\nf/zCq077gWuuEf3Kts9x2uXL7zeR5PSL/+a0D78qx3Lhtfi7Xn+q0x4bkPe6/2Sn0w4Pjztt/71z\nRb/4VMzPodYup919uEX0O/LeWad949/c4LSDzf1Oe2pySrwn2IDXMpZhnWeULBL9dn7l3532gvuX\nOu200hmiX28D7tXr39/ptD/0zx8S/caHRp32SPew007M94l+IwGsxZJ5d5tIU7P/10471CHjT2xi\nnNN2pSTgmjqDol98JmIJj2/fqQ7RLyEvyWnHJbmdtrdIxp8hul+ebK/THqhF3Iyn/26MMVEUlido\nLokXjBz3qQlca/r8HNGvZSfuoys13mn/0Xen/WRiCDE6qTxd9EvIwvUWlN1mIsnplzA3e4+0ideS\nZuE6+qu7P/Az8raU4TNOtDvtaFeM6BcemcA/aCmlLckT/UYDmNNDl7Afp1RlOe32t+s/8HqyViEG\nhzrkmMclYU8fH8SYj/UMi37hIcwDX1UmXrD28Cnaq3l/D9A4GGOMh+bv8ke+9IHX/j+l4dxzTrv7\nUJN4zZ2ONRbrxffvPSbvd+ZqnA06321w2iN9MvZWfBzxbYTGbdyK0TFunCGa38Ca8BYiTuVcUyLe\nM0Z/KyYBMaTj7cuyH50z/Pch5g+3DYp+7jTEHp5zXQfkGGWuxHfnv5WxvED0a9+N19b83VdNJKne\n+Z+4hr0N4rWUOZiDfA+DdX2iX0I+5tlwI2JhzqZS0a/z3UanPdaFexhfkCT6ef2Ir7yeu/Zh/NxZ\nHvGeoXpcUyzNARffC2NMtBufl0oxdKw3JPqN0N6StiDXafM52Ri55hKyEVvjfG7Rr+cQ9v6Vj0b+\njPru1/4R11Eox5PjjysV45Fg7UnBZpzfh5twH7PX+UW/8BjOenE0L9r31Il+PFa512IuDNPYDtUF\nxHv4mSI+G/eYz/jGGFO0fZbT7q/BPhvriRP9PLkYi8nx8J9sG2PMKJ1bouMwR2peqRb9qh5Y4rT9\nVXeZSHLwR9922hkrZAzgazr88/1Oe+aGmaJf3V7EvPAkxt+/UD6D9dNzV4ie1YZHR0W/9CSMXyad\nNwcvYsyNXBIma32x027beclpDwzK/W7+w3h2Gm5HDD341EHRb/1nr3XaPcfwTDjWK2N/oEHOpf/C\nfmbLL0RcW/WFv/+T7/lzqD/zrNMe65PzNj4DMeLIT9532jOvny36cfwYuIBzUOB8l+hXfBPuP8ew\nrGV+0W9yAmeLiRDa3UeanbZ9Bhyk82v3ScS5FKtfz0VcU+mt+B6+EtlvagqbYagT9/vsE8dEP/96\nnO3GBzEfCzbJMTr52B6nvemb3zQ2mjmjKIqiKIqiKIqiKIoyjeiPM4qiKIqiKIqiKIqiKNPIFWVN\nk6OURjcpc7/icyilMBq/8XSdlmm/Y/1I67l4CCliRYXZot8kpQwNnEaaUcZqmR6XthgpmqMsTyhK\ndtoxbpkantSFdClOh7PTxQrmI+0tJhHpjuffviD6lZKUgFNijVRwmOI1SIVs3Y+U2+QEmboYlyRT\nFCPNwYsXnfbda9aI1/a8B4nMz3f/1Gk//bkfiX65qZDLnHkO79ny9Y+JfuPjSCXb/80nnPaar3xS\n9GtJxDWlzkHq/U/eRJpy9eOvivf8/TOPOe3d//AfTvsAfT9jjPnW45932t/59E+c9vdf/mfR7+Lz\nr6Pfj59x2n/z+Q+Lfpzm+Ll0yGU41dUYY5768m+d9peeiaysaTSAuTpozdtQC1Ls3nrlkNPecs9a\n0a+nE6nTvUFIFyZ+LWVSLpr7acuxJvbslhK2B75/n9OOjkYaY2IG1mhUlAwxLSPHnfb4AGLDUL9c\nY65YvC+7cjmu4R//Q/RbQKmlBelIQ/R4pPzpwPd/6bSXfgn3cHJSjmVU9J9OLY0ULCHgdG1jjBnp\npLRZiiVTVux1JUP2w+nMvsoM0Y9lbSyd6Tst5U9ukkl5CxBHOXXanSrT6/trkKrK1zNYK8fPUwA5\nRlIFYgjLx4wxZoLkMnmby5124KTcT0ZJEsISvu79UnKRs1GuzUjCUpzYZJn+z/Kv4GWk1qfMl/sd\nywTSKd26Y5eUoqQsgnQhOhb7LK8dY4yJpTWbTpIn/ryCGyvEe4KU+t93GpJHsacZYwbO4l5nb4ak\nZrBGdDOjUbinLKnrIjmIMcZkrMSe3rwDaew5a4pFP5a3XQ2GGiH/GqZ7ZYwxyTOROs7SssJts0Q/\nTnWOJwlCUoVMieaxZqlBwVKZrt9yBPO4dAvuV6gNcgmWPhljTOuruBEeP9avfR7Juxmf174H82K4\nRcqaCrdVOu2630O6mkZjYowxgeNI0ef7HWyUsqHQoFzrkaTtnXqnXbBVxvyoGKxTllWwZM0YY8KU\nJp9A51ohKTTGBBoR2zJnYj0nz5JxN86LmDARpLi2FenuoS4pHXRn4JqCdZiX3tJU0S88imviz7bl\n/wkk1215DfMjPidR9PNVYp4KeWWs/P+2EwNj5mqSdyNifqhdyn099F34Ows5rZHSNZa8/pG0muZn\ny756vD9GPjd4qAzDKMk7kkgWzPulMcYM1uPedb2DM3+09UzSexZ7cALFDS7bYIw8I7B8sf5NGXxn\nP7AYn0F7ZlaZXLMde+udtr/KRBQuYTFq7e98byrXYp3a9yYzG/N9lCQh7791UvRbfR1kokk0J3I2\nyH3/5E9Q4mC0B9dUfQH3pmqufE8Lx9MizL2+fqsMximMcy3JsarWVop+PJ/P7cOzCkuujDEmbzn2\ngr4TmB9NPT2iX1qvlPNFGpaoZq2Ve/Lx/8R4+hfjtU5rj0+akea0C7ZiPJJnyfnY+Tbuwzit2RhL\n3sf9Yql8SDiEeJi+UEq9x+m3hzySAtvy17mfWum06397xmmPWeVRLr5xzmkXzoMM3B0r92M+o6bO\nxT5R/a/vin4x0VfOjdHMGUVRFEVRFEVRFEVRlGlEf5xRFEVRFEVRFEVRFEWZRvTHGUVRFEVRFEVR\nFEVRlGnkijVnYuKhk3TFSQ3YcDN0yqFGsrCzrMwSfdDSFiagtkigS2q8c2dBWz8Vhg4xcLhV9GNN\n9ThpMKPI3pr1jcZIrWCmH/rg2A7521T9MejmytZCAzt/+wLRj7XIrAFmC1NjjGlphI5/5kZYhnUd\nkpbEiTlXV0P4jW+g3gtbDBoj6+5wnZnmgKwdsXXRQqfN+uDeRlkrJDwCHXD5HbDrfPyRfxD9ijJJ\ne/j8eaf5m7PPO+2b7lkv3tPTiHolcz8Mje3ev5N2gY9/+WmnvX056pWMBS3bwybM4U9uge334HnZ\n78Xfwqr7xhtXOW22ZDTGmDv/dpu5WpTdutppz7ht0wf2K+qBXdvpn0hLv3VfQR2c+p17nXb2WmnN\nWv0j6EovvoqxLUyXdRT6LqIWxRhZ+XpLoDcd6Zba+tyVWAfnfvS20+6IqpffYxWuaXwc92NkXOrM\nkzKhF974tflO+9Lrb4h+JbfBbvzgt2Ghu+jzciy9PqkXjjTRcYg5A+ek1TLrr8dJ71p0i6xz0fFe\nvdP2FCIe9p+TNoVsuevJg3aaaywYY+ncP8Aim2vMGGPM1Djq4LCmOtO20aWaEP3VuL6C62X9E7YW\n5foJtkVsCtWnGm7BvhMdL7eyMcvKOJIMXIAGnOtaGCOtUJMqsA76bZtzst9la3cb1sn3kuVj+hxZ\nwyYhF3sIW00mkvbbrjXE9VK8pdg/g7Sf29S9iHhQvFnW+Bi6hFoOPEZcO8AYY4YuY5/MXgnt9uSY\nrPHB88WsMBGHbUHdVi0OXqeBE7gOtus1xpjuM6jTMfuhpU7bjr0Vd85z2kkJqN80alnFJ/twHb4y\nxNumXajXxzU4jJH27TnrsObZXt0YY/rZ0vQy7k+cpZnn+1N8I+Jhj3VuSV2I2mJsuZoyS85Nd4Yc\n20iSTDVZ+LqNkRbS7W/BJjneOm9NUP0mtgG3a84UrsNewxboXM/GGFnra4xqb8RQjIq36t6YKMQR\n/rsXdp4T3WZsoLhJ5TrcluV22w7Ml8x1qA3R8rqsVdJLcyKaaiCkVmWJfnHWWESaWA/VuZubI14b\np32I4zo/Jxgj6zp5yxH3ml+WZ9TUhfj8qodxPrz89GnRb7AD58NUuoban8M6137WyN6I9Ze2DDUw\n2vbJOhfpKbhfg/TckJAn52b/edwfjqlVDy0T/Vqpdlcm1fSy61Ndaa/5czm2C+NXtbhcvJa1GnPQ\nlYSaTONBWcuon2qtjE9gzhWkpYl+fXTWqevAe9KX5ot+WeV4zsghS/Ui2kuDHbKWDFt4J9JZpLFb\nnoH8saghlZmCc9hwvXzGOvoW6pjwGbryPvlc+cp3UQNzXjHGi/dpY4wpuV1aMkeaBKoT2HVA1vLj\nvav1JPaDRZ+RtUxDtHY6qN6qXVMpfSnWCNdlirPWFT+nVt6E58oQ1XBs3Vkr3lO0HeMU58Z5yz5T\nHv0BasHMugv3JFgv95MFH8OaC1B9Lm+mXLPxWfj3JJ2TZ35quejX9vYlcyU0c0ZRFEVRFEVRFEVR\nFGUa0R9nFEVRFEVRFEVRFEVRppEryprYIjts2bnGkYVoTwgpRx63tBaNS3HTe2CN2d8nU8k4/Wci\niBTCiZBMp2QbxMAZyIYMpcO9e1imJ65bgZRiVzrSspLnSFuvwjR89vgQUl3DlmVf73GkNI0M4bvb\nY5Tiwedx+lWClYLa1SCt0iJN7zGkktU0SZnYzBKklS959GGnfeibPxb9PCVI2zv1FCyVl39OSo9q\nf4a095MNSGfb+pcbRb/2HUgzfuodSGz+6vN3Oe2EbJkOfeaXR5x2Rx9S6LevljnvsWQ/ON5L0jdL\nglByH+bFvsf2OO0WS9L1xSe+57T7e2Hp9/533hL9MnxIByyZbyJKOIx01P5mabdb8xtcU1IurmHV\n30lL8M5zkIUd2XnKaa8vThH9ugeQuu8mOWNhjlwvCWQ1yWm1vgr0K1l1k3jP0cdgbf7/sPee0XVV\nVxfotnrvvTfbkmy5yL03DK70bjokoZOEhA9IIyQhARISSCEJhFBDx4CNbWzce+9NlmT13nv3+/FG\nzpxrB/zGeFwN/Vnz1zJ3natT9l57n8ucawaNgsTQppAHES25eD1kVmkTUkRe4SpIzmLngWbqEWDV\nIfr3ANFEPTzktXd1EV0xQEpvXAG2/vNLlPKE9mLQYUPHgXrd1yGpv13VkEL00Pi2pUIsk+oiez+b\n/h+/GPKUXpKgeBH12sjSJqQVHRWobUxPN8YYH5rDnZRXsUFSUCOnw0aymeRybNFrjDFNJ1HzQ0ZD\nPhGSJWn4HRZV2ZXwovrdbdm+NtGaxM83YKSUBHaRNXLbOTwPH4vWHpqD6+J6aEsqWSLnl4Ra3Z6P\n746aJ20x2Srdl6i4bl5SplG2C3U8OBLPo2yjpOUGxePv9rd/s/WuP9WbMqIih4+RcoZhHoP7/47Y\njpztx40xppPmGMsn/K05G5KNWtd4AnsQex/EFsCZD4Ae3Vwg1/4uGrdcE2OnYp2270vYWMh3LvRh\nolpseFOxHxT18FSMxwhLiuhJtuyVJAfyDJHW5iw/7O/GWKqxbO0v9FPxmGdcimCSOVaukTWFJUVs\nCTtMbgNMB83FCrKdtu+foXrqRpL/tnxZT0Nz8TwaD2Dv5UfSQVsKVb8XEoEBeoZhAbIesDyVa3Xl\nhkKRx/KaitW4ptgF0jaYpQR1O/Dc2s7JPZC/ZentarQVYz/HkjFjjAlMx16gbneZE9t7Bq8wjM8g\nsrJvPlYj8njcHv7bLifOWCrlw2wt3nQUc7udWjeMuELKoBuP4phgqg22TTevmWFjsI5VrJc1lS2J\nWebTZ9VXth5mq2APy5I49pJ0M1hIj0H9dveVf7eV6hzL3vut97v4y7GHOf8J3iUyl44SeSwd8fgI\n9ZD3B8bI90VuQXGuEvPS22rZMTIea8H+7ZAkjc+RMl5uqzFANc7dXb5Wd/bgWZ2pwPvXhbdlgZk4\nAZL/vQcgZ1xwwwyRZ1vIuxp1B3COze1Sdps0Hvu0xOGYY01n5H33p73AAO1VgrMjRF7wCPw77028\nn/hbUliW+3oGYp7zXLattPP+gfdFP5aRV8trSp6BWsk1JW5upsjb+VvIzobRIpJ77zSRV3dQvmP/\nF931ZeLfPtEXb2eizBmFQqFQKBQKhUKhUCgUiiGE/jijUCgUCoVCoVAoFAqFQjGEuKisKf8Q5BM5\n1CHZGGNOrTnpxNmLQDmr3lki8npqQS1lWUlIqKT0NBWDGso0s+Ja6UBSvRr0x0qStkQ2gbY0OilJ\nHFNbBopmaBMoiTblj7vpM30yckaiyEu4/OsdXZgSa4wxvkmgoHpSh/Lzm2VeSMDguRkYI51VIoMk\nLTv1ZjzX1lY8U5uGn3nVlU5cfPhPTrzxd+tF3rjF+L6gGlDdApMlLbakB9S8n/zzASeu3g5KJlPW\njDEmmhy91r6DjvktnbL7dgbRK+f+4jtOvOrxl0ReEY2tBOqiPm+Z7IT/wu0/cuI7n7vZiZf89kci\nr7tbuqG4EmXU8T1hvtRMBUSCChtGlOoPfySvd2QSOtnPux/88rBUSeftH4DTyGSSrbUWW/TteDzr\n0BzQREPiQE098e474pi2ZshrUqdAVnbiZeluknnNtU7cfHqlEydcJqmle56DHG37BtAix6ekiLwm\ncsvJvh1OX58/8arIy5kJKmPELbONq+FLTiG9rZKanHw1uss354MGXH9Y0iSj56bgs/2gw7tZzgws\nW/HwxWeeQVJyUbWtCOfUAKpuzEJQ4JtOyLGdMB1UzpSxGD+dnZK62RKC2svS1ajJUkpRtg41ketw\nW4Oc2+5Ew2dZineIlIp2VbWawYI/1fXAdFnX6sldsKke98x2FvGOAt3aPx1yh8AMWXdb8nH/QrJA\nk6/aLKWNTKEX7lmzsRbacjavUNyz9gpyXCyX966vH+OInU68LFcnll3xOXh6SEo/y+0SLoWrR8VX\nUprh6X1x1fW3RQvJ52yZCc8dHo9MjTdGUrY7SiBLDMqSz5G/o4PGJkv9jJFzs5/cq3xJzjJgSdq8\n6JjqXdh/8VwxxpjUxdi3cD0s/zxP5AWPwVjyjce+aqBb/l2/WHzWfAZraZ9V13j/4WpUf4V5MMxT\n/r9GT5I3NxDV3JY3s0wscg7kT7arXStJfbjWRs+U+02mxrM8lx1mbGlaFP3dVpqnFYdkPW0rJLmR\nO74jel6KyGMnO64B/N+NkTXZLxljrOWkdKbxibTcpVwMnyiSbHbJ+857Z26n4BMr3yHYjYfXTFum\n2XgI0qOwSMgvTn0m2yEkjZbOP1+HyrVSSsdj8NB/IKsYPkXKibZ/idYA4TtxHQE+Ujp4geZ6dTPq\nS7Ilayo/gX0Af0fmdyaKvLOv4u8m/Ppq40qk3YZ9aekn0mWMZbwsk/W05F6R5ACXtAT7yJ5m6fi3\n4aWvnDg7hSSf1tzuonXoyG7UiklTsdf68PMt4pixU1AnFyyc68Sv/OZ9kbcgB/vfGmoFMHn+JJE3\njebOyb2otf4Bcs9SXYw5d9ld+LselkQs/xO8C4yQJkkuQRDJCEctkZKdnb/DfQ/Nwx61o0eOx+FX\n4jcBL5LDtlpyybZSvMMnLsLevuGQdHXiFgilKzG22JnS3dpnnCnHnIjtwD7NHnOxJNFnd7RjHx0W\neTMexTvT7he2ODG3DDBG1rL8NThXWyXrReeROdf8D5Q5o1AoFAqFQqFQKBQKhUIxhNAfZxQKhUKh\nUCgUCoVCoVAohhD644xCoVAoFAqFQqFQKBQKxRDioqLu+HBoz5qPS6us8EDojeupP0sg2XgaY4x/\nKvT0bQXQ0vpalpQFO6Ex4/4f+VVVIi8uFNqxRMrrIs1b0sxUcUwTaUwj55KdqCUC8yH7LtZrF6w8\nKfICQ5AXtxS6SJ9Y2TuGLRu7amDfZVtuB1r6dFdj22no3hbOmSA+625CT4fuRsQxM6Xt6t5nXnHi\nnWfOOPH9v1oh8hJyLnNi3xiMkYBAaUvW1bvdiXua0eeC+zn88Vdvi2MeeewmJ752GrSQox6WvUFK\n1kKT2d+P707LlH0uLnsa5159CM+45ay0N40PwzxoKSRLwDCZNzDwzfax3xbBI6G59PSUfS48qOfA\nuc9hP2g5hpqMu3Kd+MhLO514+NWyl0AszTHW8IZnSt30i3f9zIkXTBuHc/hogxN3VUrbuvd3wboy\nJAG1IcqywbtwAVrSwj3QCtv9Fqb9H8bbmCo8j0arXp3fj+8IJt3+Vc89JPLyP5M9lFyNdrIMjZ0n\nbU17qFeDG/UkCJ8gte88X4KzYSWb/9ohkecRAK1y+CR8R0+TtCr1I7tqb7L13PXKDieece8scUzF\nfvQISpmB8dLWdkLkuZPe34v6BbRXyl4bsfNxL1jDy9bUxhgz0Iei3XQcfTM6rR4zfglyHXIlGg9i\nPXH3k0toANnlshV5h9VbpPoYeiJE50BnX/mlZU9Na0MN9XPjfhrGGHN2LeY9r819bRhTUTNkbwzf\naOSx3TH3eDDGmKBM1J426oHTRj1WjDHGm6xsA8h6l61wjTGmknrL+FFPEy/Lht0/dfCeoTGyz0x7\nkbyW9NvRP6F8HfpKdJTJ5+jhjznWS/3sumukDj1qKvX+IZ29sfqqBabgvjWfQz1roX4lMZfIusG2\n8d4R6G/QUWb1BKK+NZ20HwmfECvyuBcRW3vXHZV7sXqyGk6kfZCHv3yOndWD1/8p5lLci5azsk9K\nAI27ws8wP2xb40CyfWWLVO5pZYwxHgG4Ll+qmdwXyhjZj+vsu7BfZdvv+r2ylwz39glIQQ3xPyl7\nLvon4bOaHagHobQOGCPXiLqd+FudXfKaoidhT8Q1xTtG7mV9Iga35wzvj72s/mHtZZibYTRWT390\nTOTx+bOVtleYr5WH+nborX1O3Gr1Ljy7fr8TL7oKdsbx06g/kLVX/HIP1mB+J+H+F8YYk52A+849\nvRra2kQe95nhz7Y88ZrIWz4RvWW8fFCTuurk/iuI3sdcjQ3PfenE7m7y//uPyET9ixqFvmX5B2Tv\ntKL1eKa5c9C3pLtGXkfuNLxPcO++C33y3eroEdTulXv2OPF3BxY68ScbN4pjmjtQux96ASPxjwAA\nIABJREFU9AYnvuPBK0Re4xHsP7h/DNdwY4xppd4sk69HP5oeq1fJiTXoxdPyAfoV2XbWV/x0uRlM\nRE1HD5/yDbI/6qT7MQ9OvIr5MfZ7U0ReWynGLa9D0bPleyW/c3L/sNjFGSLv0Lu4HyOm4zN+3t11\n8n7ye9vw5egxxHsiY4w5+DauIzEZ+1+7P2v+q5jbvMdqtep//EKc37C1eFdOmiz3XzGz5e8UNpQ5\no1AoFAqFQqFQKBQKhUIxhNAfZxQKhUKhUCgUCoVCoVAohhAXlTXVNoOOlDFOWti6EaW5qgjUy7So\nGJHHlLOWEqL0z0kReanRoGWy1eYbn34q8m6/EpbOo1JBE2IZwO7PD4pjWAoVTXm+0dKKr/wL2Jwx\nRTkiM1rkeRCVva0IUq2eRikXYNlUTz3oW1HxUsZUT7aW5gbjclxxCyzA2MbOGGN6VuGc/ZJB7828\n5kqRFzEJNPxfPn6bE9v20St/9DT+Vj3ofD946xqRN/tndztx3so1TpxwGejRz658ThxTdRhWh1Fk\nD/nHu/8s8u58EjbMV0zE3332kbtFXsM5UB4D00CBK98kLV1ZWnf91PlOXLTjK5HHtn1ht0sLum+L\nTX/Z5MSz7pC0vNKToMyyTVx2VorI8/HD3Jz98/uc+J1Hfi3yshIggTn9V8hXEpdLC3k/b9CDj53E\nPfPywPw4VizH22XjIH966u+Qrd172WUir/X0m04cl4rawHRyY4ypO4Lv9wqGrKK7WtKDx98GOun6\nv4DGOnx3qciLmvz/bZ/5bRA7D9Kw9kopO2gk2UAgW7CelHOsk2wpg0ju5hUmbTij54A2yXUqPFdK\nyBgsVWF5acUXkt7qQzT8+kpQw70DJW3aKxh1z5+kRp7ekjLaUob6EpyCcdplPUeWZMVegnvZ1yHn\nhG0/6UqETcL9YztmY4ypOwh5bugosre2JEDRY/AdbFPL64QxxtSTdCtkOJ61TfPOXD7aidvJipel\nLL0WnbfpFCRULEG118WBPtDuG8niMoYs3Y0xxt0P99yNbH5ZOmuMMV4kK2gsAiXYx8uSw1TIZ+9q\nsNzB3VduhZrIUrO/HRLLqFmSlh0Yh+fotywFx9dJiSFbXLP1NUv9jDFCi8q23f1tOAdbvvPCS7B4\n/emz33HiaEvGVrMH8paCaoyrvn1SKupJ9Xv43ZDCRs9IEXks8WWUrTwj/h0+ffBqauUarOFst2qM\nMX1kN5y6BDKImi3WHqgWdPh2ouO3npbX19yGOTd2Mmj8bJNujDF9ffiOid991IlbWo44sV+MnGN9\nnXjWRR9AGsoWvcYY47WVbIip3rO9rDFGyOX4/ldsljKSFpZN9WPD2tUtawXLYgcDtbuwDnuHW7Km\nGtSBuHlY0yJipXyEbbbbivCucforeW8y52MspIyCvGjzZjlnl94IuTzXosoCzB17L59fifo4fST2\nS7bV8Mbj2MvGhGDNvHSGbDvw6meQCt1/++VOnH60ROTlrMA87etArWg6JWVx4RMH7zn2kjxrzJQR\n4rOQHLxDsXQ3PEDOA/53ewGe4bnyCpE3hmRNBw6fdWKWixljzNhxkJikRWEfOfIO3K+tD0nJdg3V\n6t2f4V3Slr0xrnp0iRM3nZJS7KbzWON8ybZ5y6r9Iu/S2zDeNr0NSXlksJT39nf1mcFE2Srcz4AM\nKUmu3lbkxNm34R62FEppjx/tJ3hfXrlByrb5PZvHz7H35VwM9YfMMpzs1r/4Hb07hsu5uOoApFAP\nzkDdOLDmiMjLmUyW7bQWpN48RuS1l2E8upFtd0e5rNFl6/A7Quo8kjh5SC7MhX7bXFtCmTMKhUKh\nUCgUCoVCoVAoFEMI/XFGoVAoFAqFQqFQKBQKhWIIcVFZE3e177Bo2UXnQDPLWZLjxCxJMsaYtgLQ\nnSLGgY5UtU1SS/Mq8H2ny0C/jUuWNOJMohFvPQaHnQlp6No/Okt2QW6thVtAHVF7E5ZJmUZAOrnU\neJL8KUpS7yrXg5rV0wpaVq1FQR177XgnrqBj/CMkbbOr8Zvpcq4AuyeExknZwZjvwLHoxTt/7MTJ\nSyS98vA60DB3fAo6XmuXlHLd8POrndg3HPdt9WM/FXkD5Fg1/u6pTuzlBSlA3RlJj47IwVjo6wb9\nbN6oUSLv7Mc41xHxoHFu2n5Y5C0hiUz8GEi/vjzyqsi78UZ0di/eBUlM2uylIm//b/9hBgvJkbgv\ntoQjl+6ffzTyDvz+S5F34i+gAGbdB3nWVb+9UeS1VYI2X7ketPHG41JeMzkbdMDEKzCX2shdYYa/\nlHd1kvRrFsnFIuMkffL99duc+IaFoJ0O9Mhu/H1tmH/JMxY4cdnqPJEXlIS6MXkBnFgGunpFXtol\ni81g4gKNe+8QKUOKvxQUyIqNkImx84QxxnSUo561k1S0p0HORW+ik3oRrbizRspFfKMwDzzIMad+\nL+Ry3e1yzPWeQ10PzWHZZ5PIaz4LWnV/N2irvhat358cU1rLQAv2i5fyp55mPO/ST1EfbGefyMmJ\nZrAw0Ivr6KmVtTuanA486fm25TeKvC56hr1U/z0sFyaPOqzBLbSWtlt11xBDmiU67BQROVPKXE5u\nB305YyTOuydJXhO7LBYWYp2eNk+us40kz+0i6Z2x9gRu5OAVNx01vduSdNmOVK4G36ewHCnH7idX\nuAsk6yr7REok0u/EM+7twn3y9JXjdviyRU7s5gb5RenBzSKvimQnrbTnevUrSGgjdkppJ8u2eX4c\nfO+AyEuMwdrw5RFQu2+fO1fkpV0LiVw1OYTFzE4ReX6x5FhEzlI+8XJu/4/c24XoIPehxCzpWNTX\nSfIOcn2zzy+AHGwGqEbZ7ptJM7KcODQOa0h/vxy3wcGgw7e2yj2Mc3zsWPHvMx+ucuJTtP9Nj5aS\nejdyEe0swX6zu1euY35B2GPWbodkiCXHxhiTfjtkxuycwu5txhhTRU4qGZOMy+FJkshWy90rNB3r\nH4+l/g55zVUk+WIJyrQHLTdPkoDtP4F9wugkWR83r4Sk25cklxPn4X0nf6+UadwxD/vIpEvRCqL5\ntJQXXRaFseWfjPF36n0puWApU94hPIMpd8p9Fc8/hleo3GN0D+K7BrvbnNyfLz7LJbevmnrsEZLH\nyHWaa3IESbB63/hmKU8W7fEjxkvnOXY+G5EOKVRoKNytik99II5JW4bxwg5AfrYTcQKu150csja/\nv0vkZdL5Ve3EGA3xkw5o69/EnnfWpZAMVRyVTl91B7AGp+QYlyP5WrxP8XUZY0wHSfFrqCVAcFak\nyOshpzt/klYHWXn8vIvWYj/yk3/9S+Q9ecstTuzzDt7vJs3GDbjmrkfFMbddAXetex76Lb7ruutE\nXtpVeH86+sd1Tnz6dbl+BoWTlL8GYzhljnSxbTqEfVDcAuzpS1fLtYDd/2K+ptOAMmcUCoVCoVAo\nFAqFQqFQKIYQ+uOMQqFQKBQKhUKhUCgUCsUQQn+cUSgUCoVCoVAoFAqFQqEYQly050xYGLRitnYx\nfSy04ifXwvova2GWyPMnzV8P6R07urvNN2E49ZVJiJD2iIU10A7PHQtt9IU+aGSDMuUxbEMZmgtN\nYvM5aUnZXYfzYz1vW4fUacZNhF1b4zGcz8AFqa2v3Qa9Nlsidp+SWlnWsg0GfKhnTkim1PyxXpq1\n6zaufv6HTvz2w9DvPfzvF0Xei3c87MT1rdAOP/TiXSLv7GuwqDvyGrS9hTXQXl+w7ueye9H7ha0o\nG9qlreyMR+Y48fj7pzsx94owxpi3fgqt6ef/gfY/Ikj2C0hdNhl/6xx6gbz3/adF3qVPLDKDhcmP\n34xzKDkpPotKg2by3/f/wom5T40xxiSRlvTA81848cgV40QeWzpvP4C5vfO07Lfw+ApoN7lXSeXW\nIic+Sfp5Y6TO9pL50P2y7toYY24cBt3vqi0YH4ta5LlmPjjTifc8A51q7o8uF3lbnn7PiZNzoS3v\n75Jjovos9MJpubKnhivQeBr1orNcauvDJ6Luxc7F3+5ulvWHe3aEkcY6aJm0kaw+CI1rYCrmdnBy\n0jfmDXOHBWsR1dqUKNnPIela1PnAOGiqPT1lDelJQo+AppP4vqI1Z0VeRDZ6KwwjO2EfqzeNGZC9\nEP6L6BmyN1nlZszThHQ7+9uhuwHPI3qBHCNVX1GvILLSjpgmn40n9QNqob4wLWfkmsT9MPjZeJbI\n/mZs08h9Kdhq3bbgHJmLPm3NZIXJVuHGyJ4z2TPQW6rsM/kMuc9DRCJ6SPU2yrXeNxHrXeVurJEh\nyXLsXPC76PbkW6N+J2pTyEhZK4vfha49g+ykw8fJe9NKPZ/aya4+/fL5Iq+nB/fX2xtzKW7cFJEX\nnI5eDfmvwU70iZ/c7sRNB6vEMUFj8H3cJ4oteo2R1sv7yGZ0SW6uyEvIx3iMnZPixAWvy34YcUvR\nU4Pte7ur5HocvzDDDBbSr8aaZvc7bDwMW2OfaPT4aC+S/RPr96KHQ8Jy9FELyZY1j63Ne3vxHfw8\njTGmsuxzJ+6sQ++lA6/tcWK7D4pXCPoQsW2sf4DsT/if1Zuc+MbLsM95b+1OkffFJuR99MrzTmz3\nkqk/gnvUdBS9Euz+VO4BsveEq5F4FdaTpjOyP0vYGPSD4j2cZ4DsSdWwD89x9M1kLd0p99vRc1Oc\neDLVTe5NaYwxY6gHjYcnahH3CMu5UvYOEhbCQXimKdOWiLy2Nqy5nQ2o+TOfvEbkDRuG80tazr0V\n3UVe81nMWd8YjJ/63bJfSfKNo81ggfsZjb9MNkMp24VeK7l3Yb9at6dU5B3chP1m9EF8Zr9bhVM/\nsnAaH+HjZX3uakDPmAPPfezESYtQ380wI9BWjNqYej2uwx5HXfWoc2ueX+vE6TGyf9kXh1DH2V69\nqFaO81t/imffRmtJo/V+E+8jn72rUfo5xmbKtXK8+EVjfLdTTe23ejcGD8e+o5SsuX3j5bvu9g9R\nE3OnoCfQT269VeS506bwy6NHnfiW2cudeNok2Qzrzc8+c+LwWOyT7d8eOuqxnnIvvxOlcmzODECN\nis3CMz61Qb4XTViB8+DfGHjfbowxnRWy3thQ5oxCoVAoFAqFQqFQKBQKxRBCf5xRKBQKhUKhUCgU\nCoVCoRhCXJQ37Ef0Y+8oaSvYsAcUwrSxRIGU7DPTcAC0yYoGUHuHW5IBrzycys6zoEFFWhITtgz8\n8gCska+4AjTR2t2SjhS3ELx2dx/8nZ4GKReoOoVzbekgCzVvb5HXcgYUwpX79jnxWMv2+1QRziMy\nEPfS/j5bvuNquHmCTsWSE2OMSV+G53Dlsw84cd6H0obZ3Re01pv++H0nPvnBOyJv5thsJ2aqatWm\nQpFX2QQ6+LV/eNKJW1pAnT70wnZxTMWXoHy3Ef3sTLmkbvr/HVS5JqIEJkdJ6vrcibC83LgPf/dw\noTzX7y9/zIlf+uIlJ77qWUn5u3BBUvtciXU//acTz37yUvFZZyekAeE0zib/eKHIK/gP6Jpsge4T\nJuf2yd3nnHj+fFiqj4yTlNFOktvU7ME51LeByp1j2VMmXU6W20UYA40HK0Ve9v24xuy7IVFqrpR2\ndAFENZz+U1BQN/78BZGXNgvU+uARoFw2npD24Jte3oJjXllhXA22ao2aLu9NL9lV97Ti+bSdlzbM\nbGnbQhIENw95D+Mm49lVHwMVtLNG0mSDMmBVev5NyuvB+VjMXyFja6X513D0oMiLnoFrZFvsiP6v\nlycZY0zYOFBQ28ukfMfNG/U7ag7qbY1Fj+Y8V8OdZEMdZVIi0dUByqxvE54h3+P/F19f8yNnSmvR\nmu2YV16BWDeCMuX3NZAkISANcham0rpbtNrombh/wdmojS2W7Ws70bdZ3uyfIq1Fm09hzWyvRg2I\nmiIlXe007709SS5hDTKfaEvS5mL40fn3tkmr+ICRuL8n/g5ZZdZdE0ReRDb2Fm6esLodNsymnuN5\nVxzfgb/bIinWhRtg7Tv7Z5Ay8R7BK0TOMZZ0p90GmUVfu7ymD34Lmvev7r3XiSdcOV7keYdBelpP\nEtdhnvL/5fE+i6Xj3jFyPandD/lYnNwifWtUrsGeIHy6HGcBGZDW+ZCVb/NxOb4bmkAv734PcocJ\nP75W5PX2Uq0lO/SODrlf8PaDzOmFJ//uxIXVmKNhAXJsp14DycqMB+c68YYX1ou86+dAxlteiuu4\n5bJ5Iu+m2bOc2JcszwNTpNSt4Titf/0YY80kQTXGmL72wdvbGGNMO9XRtrwG8VlHMT5j++yADCmD\n9E3C+lJHYzMoW+779n2w34lzl2C+hOVKG+aS9dgHsawmcjTWNM9AuZf3CkJ9bDqDexg1T9731grM\nK67LFy5ImbWPD/ZcVQcxNgMsGXjKYkjEPT1Jytq5WeTV0jqZ6GK1Id+jctoPGmNMFe33s6jOr1or\nbaej6H3vXBXu0aLb5og8/0Rcf38n6lxLobQUr6HWEofOoz43fow1bfg0qXuuPYa/K1p2XCJbdrTl\nY5xOWYBxZMuH75oBS+fP3oLckC3AjTFmzZ/wzjXnWki//LykfK/9vNxzuBps8Vy9s0h8FjkVYz+I\nLO7tecDrqW8cal3raSnb5jq4awfG95QJ8l5315OUnOS6vK9aMkGuzVdOgWTY0x1zrJne7Y0xZt/f\nsB5nzMSkaKD3GGOM8QqDxLSzAp+5DZMbl8p1BU6cfgfaMNRuLRZ5ftZ6ZUOZMwqFQqFQKBQKhUKh\nUCgUQwj9cUahUCgUCoVCoVAoFAqFYghxUe430yHz10k5QXgsKIVd1aAJ2R2JmY6bPQeSBuMufxfK\nq5SU/P8iIlB2dz5YAMrQD75/I/8hJ0wk6YQxxnQRjb+d3BVaz0m5gDd1G08IB11q9UFJI16QA/mE\nL9Gya1skBX98KiRDp4n6HxUl6Zi2E5arUb4GVOnsu2XX+NNvwLUn5TrIdJIvl5Kdx699xolvOI5n\nxdIHY4zp6QOlr+dtSCRaOqWEbOmv0Y37wHOvOvHI++Cu9M62beKYHJKNzZuHbvx30zHGGOMVCArz\nnue+Mt+EYV4Ygw+9+gTOu0fSnjvr8Fzz3tvoxIEjpLSgcB3keEufm2xcibk/xXOrOyIlHKfX4BrZ\ncaurUdIfvcNBy+svABV+oE9SaSffgG7jntQVvzJPSoASF8OtY9NreFZjRoEmmrB0hDim7AuMxdwH\n7nHivj55rvlrQPH0JXmDV4icK4Wb1zgxyyWmPX6FyHNzw3En/rLaiUc9IB22bHqmq9FWiJoTliO7\n+vc0QwbTQLTy3sYukeeXADlGD8kietukRKK9CTRKvm8evtJ54/xbx5y4ogHn9+FOOID84oYb5HVQ\nHY0ZD0pvQFy0yGsp+fq6bsuOWGLaRLIaX8utqekIKMfhuaB8D3OT1FL7364Eq1D7e6Q8K4DcDFgq\ndMGaY/UHIAvubUUN9Q6T7iyxl8BRiZ148ncWiLziOtCFo0g+nDmR5uIiORdr9qGOuNPz6G2W44gl\nkDEsDzkpKcoJ4yHJ8k8APZ1dpoyRc8A/GXm+cVLCXLOpCNcx17gcQVS/LWayOP/GU5iLNbskXT95\nKSQEoRkpTlx5ZL/I6yjHGhI7B8+0u0mui+xyVbwFsl6WJvsnSjkZuxRFJsxw4vO7vhB5WQmgUSdO\nwLPqa5VreNxkrK0Vtdj7uFmypp5anHvYJEhCbNck3ke6GmGTUQN4fhhjTPS8FCdmeaBfshxngdl4\nhkHpuP9NZXkizzsUc7O1FDXTK0TO2QaSRVy7BHL7vFM4Bx8/SwZAdbxmO+r2lGVScsa1oiIPNSB1\nnNSLNeahhp4lNxFPD1l3ec8bPhJyLFvy39Ui1yBXo5/kvm6WG413JGoOj1VPay/QUYo55u6HNc7N\nQ47btHisu0KCYrUXGH0fZBHB4SQX7MPfsfeKgYGQyvtNwjjI2/K2yPMOxzXFZSxz4q4u6cTG//88\nOhdSj9JNh0VWTwqez0AfxgU7WBljTPwV8t3IlRh9M8bqQL+8l2F7y+x0Y4wxvpZkx98Hz/SGX8MN\ntLlQ7iNY7pdMjr5xc612GTRGLr/nEife8g72Nlm26xfJWcZdg2sKH5Ui8hrDsX7WkGQlbpGUSf35\nybecmGX+KaOkrKVoC8bS+vcgtcm05E/2WuVqePhj7oRZ7lc15LrFbqOxC+U1J42CJDSRhlzzXOn4\nF1OId6Zckrrbct/YiXgOHh6o3+7u2B/O+4HcY7HUPW4Bzs/LR75/578PaV0c/UbRcETOxYA0HOcx\nBvvckEa55x3owXkUfQhZXOI1liyu5OLyNGXOKBQKhUKhUCgUCoVCoVAMIfTHGYVCoVAoFAqFQqFQ\nKBSKIYT+OKNQKBQKhUKhUCgUCoVCMYS4aM8Z1k6xFtAYYzyDoZnlvgBd1dJ+im3iGo9Bu83WhsYY\nE+IP+0W2Duvoltqz7yyFxW5AKjRgrGuv3ye1x8cPwBKPe3LET5c63df/vsqJx6akOPHUEVKrz+eU\nEgWdrm29xfZdoxOh8W5qlHkRwYPb54K14m898ifx2fiR0OI1n0MPgc7KVpH346dg6/nbn73mxLYe\nkq3RuM9MQliYyBsYgCVieR3s77w+gpbWw11qj9k+u+gkNKxr1+8VeVfeBFvJsXeh98vxf8s+AH98\n9z0n/sd0PB+25zTGmJRboCP+aNVWJ37g93eIvITJ0hrZlfDzQ5+C2EnyXlZtgw60ncZmpzUXI6fh\n/Nqo39JAn+ybwZappZ9CE/rr998XedV/+IMTf/I64sTFsFMPC5stjiluhQaz5NA6J/azbHPL9kOf\nv+M0NPM/ev0xkTeMelc1H0NPnNBQ2fOnvh7PbczD1zhxZ3uRyAvNjjKDCe77M8zSwrcWolcI197E\nKzJFnpc/ejhwLwu731f19iL83SjU1+YTUifvHYNafPII+kT96ru34Xy6pZ43dfpyJ+7uhh68p03q\naMX5kQW1h69cesJIK162CmPOJ1La8gaNJsvnPKpX1dIeXPQ5mWJcihZax/xSZf+PgFTYPLIdLVsv\nGmNM2AT06GDbybz1p0WemxvGyDASm3OPGWOMCfLFuDpWjHoQQ7aTYVWyJxqv26Wr0V+ju1fa5kbH\noN50VuE68opkH4GRdM87yQLdK1z25AjJwRzz8MdaX7O5SOSFT5Vri6vRT3Ps9JuHxGdBUdC1B5AF\n/AWrVrZVQpfeXoqxb/dZYQvgsnW41+7WPIicLq3U/4v6g+gd0VUrx/q4Ffc5cVXJWifurJBrOLcq\n8I3B+XFfMWOM6erA3wpIwX7JtubuoJ4D3C8r1Oql1Vklz8OV6G3FetfWZvXvoX4iPAb7O6XVbQj1\nEghPRT9Bu58I2x/3krV09TZpkcp9UXq78beyp8Cm9YLVk4PHjrsPxgQ/J2OMcfNEf0d/b+wbzx+R\n5xAVjLrk049xnjBJjq8e6mcWmI774D1Jzj27j5CrwT25eurkc+S/HT4RPTB8rT2DL/X78qHeXW2l\nck2KX4b9PPeViJsrvaWDgtB7iXviBQej/0xr61lxTMWpDU4snqmf7PPmRb3tjn+E/XTMrBSRx/WG\n+07ZfSq5Z1hHOfYRSddli7zC97H/SpfOw98aO15Bn5Qk6gNjjDGVjdhv8tifmS37cGTcjd4iHbW4\njuYzci7OXDHNibmnqK+1X/hsL/ox9u/GveT3wJLt58Uxk+/Cd+/4J/p+Tb9TPsOPXkRPL2/qPepx\nRr4/PPDLFU7MPU8/f3+ryJs/Ae8ZJeXYO4y8Jkfk2X3pXA2ebwO9cr2LnpnixC35eG/rbpI9qcrz\nP3XiyCS8A3R3yt5BCaPxPt/Tg+fd3S37W3Z1Yk1yc8e9qd6NZ+dv2cuHjqZ9hhfuWd5b20Ve7CV4\nB26rwL5q51k5txfR3i6f6u2k2+UGk+eiO/V3rPhSjovmWqyLo5ea/4EyZxQKhUKhUCgUCoVCoVAo\nhhD644xCoVAoFAqFQqFQKBQKxRDiorKm42tBgYsMkvaD5w6DTjRqHqhpHpYVrX8KqHgdpaDx2JT+\n6ibQvaaPAxXvQr+kVSWQTTbT+LvJ+m/TJml9zfKa0npQsVIt6+tRJD1iW+zMsdKejSn+Cf6gf+7b\ncULkfXX8uBOnkfyJpT/GGFN4CpZfLmbgG2OMCcoExXCym6QRhhFNdNVfYE83b+kkkffir99x4vuv\nh/Vf0pXy+x678Vknfvrlh5z4qQf+KvI+2rMHeW//8GvP+/fXTxP/bioAlSw4DdTpkVsl/YypZH0d\noBjP/MlNIm/cvVOdmG3NNhw9JvLGN2MsXEPWmD+7R0rEbp1NEp5rjUtx7B8fOvHpM0Xis1m3wz41\nPAsUvYY8Sdc88FfQTrOvBjV354tbRN4Vzz3uxAWfnXLiV196XOSlXrLAiSuP4nkWrcT9C7p9nDhm\n/I9gof7JjyGFmn3/HJFXUA1a47zRsHXv65UUZbYBT6CxuPv5Z0VeaRmokPN/BlvyDkvqEZEhz9fV\niJkLeVrdQSm/7GkANdQ3HhTtgV4pKSpdf9KJWbLYdFxSQYVdNZVR/2QpxSkgW2a2emQL0/b8RnHM\n+V2QgHKN7iiTEgaWbfgTHTdwtJQ+NJ7EuYdNQk1iaZAxxkRMhf1k0ylQnaOmSbr+YFppR8zGPXK3\nLMHrdqKWs1wp5hK5hhz7GJaSXSQj6uyR0pEe+uz5N9904sduv13ksaxp+VTUbv8UPGum/RtjTGc1\nnlX8ZaD0f/iStGC+NA3f10tj1N4ThE/GWsgStqZjclzyeVRvoRplPbPm0yTdWmJcDj+SjESPk5ah\nwSOxZlZvKcIx8fIeVqzH3GmuQS1JnJ0m8jzJhpnlGExzN8aYrf/c5sRp0bDo5HEfN220OObsRli1\nshxZ2AQbY5o6IIlhi9m+Tiljay3CXOc9lr1n80vC2OoownU09Evqum1R7Erw+UVmSkvT1nzQ5H3j\n8NwiJkrJjhtJYwcGIJNqKbWug1CyBnuOAev6/ANIUkNS7FA6V1sex/e25Cz+rpfwKp+FAAAgAElE\nQVQlYWjLwzVd8gisgau3FYk8lqr1n8Wet/awvCauPSyVOf/FGZEXOQr1OnWMcTkqdkPGbN/PlBzU\nW5b28Dg1xpiQkZC8VmwqxPFLJ4q85hLU6OiZ+O5+S8554QJJ7w/DbtcvBvsb31Apg/aNwjir3QPZ\nZ1eVlCI27MdzYBt6tio2xpj0xZfh+wohvazbISWlQdnh+Fsk8bWlHln3Srm3K9HYTvIiyyJ7+gPY\n37UWYDx6WDbWXz3zpROzNKq1U0rd2g8WOTHbXX/x4nqR50VW8T19qIeLfwodSWedfDa1OzEW3UhK\nzBJ6Y4yZPxN/t/AsnsfMh+eKPLZybyeZN7fOMMaYoGxcbyJNgdJV8v2G52zisy5+0TBSVtl0QtpJ\nh09A7QwfhXeNxvwikddWhn16bxukfkFJcp318MB88fbG/B02TEr0y05AEtRDEipum5KQvUgc09CA\nOVt3DPMqY4WcAz3tWDNLP0Pdm5kp2wnwGj7+emgCa2nPZ4wxgZmYi/6Jcq/NiF96cVt7Zc4oFAqF\nQqFQKBQKhUKhUAwh9McZhUKhUCgUCoVCoVAoFIohxEVlTVnzMr/xs7Bu0Pl6qTt90znpIhFK9GDv\nKNDkS05IWt7i2+c6MdPy/OIkjZgpuDXU/fjgUTgg2LTIOdmQSZ2voS7Yo1NE3tHDX+/qdPpIociL\npc8ix4DuOXGSlPis3rDbiZMjQdkqrpWdx8dO++b77Aqw5CtyhnQU4m71d/75YSeu2H1Y5A2PBfUy\ngLr61x/7ZuovOwH85Jl7xGfvvghZxKGXILfJq8T3eXvI4Tl2BKjiJz+ALMDdTf7GGBqGMfP3jaCJ\nXzFJSrX8Q9HZPec+OPhcd4fsPJ40d6YT7/vdu07813Wvirzdz7xpBgvB2Rg/k0dIt6a6vZDHMGV+\n/9vSxWrJb+5y4uINoPxNWCHvC2P41aDQR2fLvL4+OLdse2OnE7NLWXD2OnFM4Wq40TBVtbtR0lYv\nuQn3vInGaE+LfDY+YagphW/CaWjjYSlNY4lAVwPOOyAhUuSVbEMn99HLRhlXg6+THW2MkfLDAZIK\ntRVL6UPHefybnbWM5agRMBzjpJ2+o69FSmfOVqAT/uJrcN+rD2FcJS5IF8ewJCQsEW4CxVulA0Fr\nHijMLaewNvROlS58LIPpZeeXcVL+5B8Hmig7NAl3JmNM+VrU8kRptvetwVKm6k1SOhhElNaWU7j2\n/e9Jp7j9BZDDMH17bLJ0ENxzDtdx7/XXO/Enu3eLvJ/fcIMTR85CjWcqduv5BnEMyz95fIyxzuH0\nYax/4y5BPfCxJD7s2NNJTj5hubEir4okBz7RqMH9HXI+9LdJmYGrwU4/7KZkjJTMBZPrQ4fl/BI5\nA3K6UVmQRLY3yT0DSzCYNl57TNLGWQ5w6DzG1pFNm5z4Bw9eL48hZyg/cpayXZ0iAtnNBnWz1pJX\nxs4c7sQtxeSwGSXl2I1Ul/tacf8ipsv1yc1j8P4foA+td4Hp8u/yvqeZnmfTYSmzS7sdEt8qcquz\nwRKqiLEY06e3S9lB2hXYbw4jSdzWNQecODpY0t2bSBIyLgcSwx5rXXQjmaiQWVjKMXZj9KfxsXXH\nEZG3ZAXkJuy0GpUj52zIqMF1MeT1xXZh4j2qTzTWxYCkUJHH8t9gWks3/vJDkcfOs2ExeA4syzTG\nmJq9nzlxRC7kGJ5+OL6/X9as/X/CfrON9jcjcqWstYXWcG+ai77WHCvagnlftBVrRqCvlLsFZ5Ez\nTRBqVMtZ+T5WsxXyjthHLjeuxAh6R8i6Zbz4jOUnfB1ZN4wVeSNGY+2JJClnh+U8t/cztK5oOoEa\nNXWWdDaKmIzvqFyP98XWYnIrtWTj7JS5+gDmbEamlE6fOoH6PPVa7I3tevfxLzGOwqmlRfZ0uTHJ\n34K1PjqB3pu95bP285XrrqsRQmPJK0T+bXd3tC3pbEJN9QqS7mG8tnKrgJZaKZesbsf7Aa+R3Q0d\nIo9dO2v24beDPnKii52aJ44hRZo5sxqtABIKpBzSPwXSPy9ykY5dKPe8Hz/zuRPf+AzkZIEpsg7V\nHcD55f0H9ZbXBWOMqd6K8ZMsfzowxihzRqFQKBQKhUKhUCgUCoViSKE/zigUCoVCoVAoFAqFQqFQ\nDCEuKms6vRkUpDGXyxbtA0Ttrj8OqhzTjIwxpoC6arO7Q3yq7Kzv4QOKdUAqaEJMhzPGmL520Gd7\nmkCdig8DpXXzCema9Dk5NM0ZBalCQ4mkeceGgN4UmUgdl1Nlx3NPcqRiuqyxDEJu+M5iJy7dBpqz\nt6enyMs/XOTEsq+8a9DfDhmDu4/820z/7OnBtRxcJemv7OKSOu9SJ37v+78VeXPJWSciBzKk3i5J\n/7zrGTgnrX0e1LZ7/vaEEx/5/fviGN8E0Pn6avDsYtIk5Xb4TaDqJh2DjGbNYSnV+uGfIbV67QFc\nx51/eUzk7X8WUqaxP8B3l+7ZIfI+3w/pwqXGtYibmuvEbbVF4rNDX4CK7bUDNMT0UVLCtvu3Hzjx\n1MevduKudknzLjuy0YlZRvT6g/JZL7gFEpjxM8HL6yOZY9w46bjVR3THJHfQBuv3SGp93BJQ6/d9\nCgprSIGsG6VbMa86yOlmyWL5dztLMP4Co0Ex3vz0OyIvY85wM5io+gqUXnY7McaY9lKcY9AI1B/b\necgjCNKHgDTUyvYSKbnoJ1e5qnxQf2254MJLQcntqgK1Pe1K0DDtjvQeJIkpr4bEhinLxkj3ofEr\nUN0KV54SeX6BGLchY/GMPS33vwsk3eqjula9XbpcxC7MMIOFljOok/5pktLqEYDz7e2FOwSvT8YY\nkxyLmhU1G1Tu+v1yHszKwrwKJDnjrBxJkQ0eS26A2aCX99P99/SR462lBH/Ln8Zi+UYp7Zg0CzWd\nJWfddVJywc4EPM8bLIcYljn1d+MesQzWGGP8Ur7Z6cAV8CEKc+Q0WSvPvwunxXaSIMQslC5MTGH3\n9sa4ra2RskrPYIyLsk+wrzpeUiLy2FFkHLl58L7KzXIICxkBaaYbze3zH8jnmLoY7hAsm2QauzHG\ndDVSHSGJuC9Ry40x5gLJvfxIOlOy8rTI8wqnNcnFG5yuGsiBxF7MSLmXbyzkBLZEp4LkDr4kC4ud\nKmWtPZ3Yc7DDU5aRrhuVa/F93eSssuD66U5ctqNIHJMUj3NqqML9z7bkIfUHIEEt+QBUfe8YP5EX\nMBLrx5GtyPOzXHQqd6JuhtE4CBkt71Hzabq38pRcAjcP7PPLVkqZWPAYjG+WS/pEyPHoSZKRw+9A\njtLdJ13LJt4MmQVLWPwsN7u28yxFxHpX/CneLxotqWggSaZKqH3BNff8WOT953dPO/H+1+F0ab8/\njZqNlgcseaxqklLnNHbYOYL9XEeTlIfY7x6uREg0ufcNk3uWig2YE1k34v7bEqD+TjyrHa9gfz1y\nlJTa5s7HmuThh2vqKJXvGWfewZ4/+zbsoesOYO1rL5D30o/e98ZQDW6plN8953t4F+indhu11ho+\nKgHSqvhLsOfd+MY2kbfowYX47O+bnZjlYsYY01EtZemuBt/Pgn8fEp+xrDJ0LCTnPU1yL9B6Bu/c\nXiF4BuWrpPRo2ynsA6ePRB0NSpX7Kl6DRasUqgH1efK7WXab+13U3pL35e8DvO9OJ3fZhiNy3zJr\nLj6rp88CLFlTya4iJ46hvdgFq90K78m/DsqcUSgUCoVCoVAoFAqFQqEYQuiPMwqFQqFQKBQKhUKh\nUCgUQwj9cUahUCgUCoVCoVAoFAqFYghx0Z4zI6dDt9+wt0J81t/Tb6cbY4wJTZba+rLD0Bqy5fGE\nG0aLPLaTCwmb4MS+vtLe7uzWfztxzCXoHVH5IbRxNc2y98JDVy1zYtaxR0xKEHktebCd4x4YUbMs\n++mj0HSGjofuruW01Dzv+BhWxmPH4F4G+ErbsapGqXl0NS70Q+vWdFL2F/EKxblUbEa/iOv/+AuR\nt/NXf3bi0v1bnPja3z8o8orWQ0fp6Qkt3l+++5LI25+PcfGzu9F/5p1Hfo+/Q72CjDHmiR8/78Qb\n1z7lxAXV8pqSrkCfhowYPJ97/irP9afX/dyJH3nqVid+6+Hfi7yrnr7SiR+/9hknzoyXY/PmRXPN\nYOHsWxucOGKqHLch/tBdDvRAszvqtqtEno8P7CAP/etvTjz2jjtFXlAodPxf/RzPne0+jTGmdjv6\nkHA/jMTl0En39cmx/dnr6GczdzL6WMUukrZ1vpHQj09aDpH7yn9/JfIa29Aj5bHXH3Di5nPSQjL/\nSJETZ/fjGFuDHTw83AwmYi9FHbB7ybDNdtNxqjGWnfRAL/pF5G2EPj8yOEjk9Tagh0fydLLytC23\nSd/rFYx60Hgcmt2IKXKse/hD/166Ej00bFt71tC3kK129AT5fS2n8bw6K9FXgO1djZE9diIm4jvY\nOtsYY9rIltF8jU3ht0EgjZFWy5aRbTlj5kAnX7FZWm6LhZfGga9lT+2fhkwPf9LWF8k1jvsvtBTh\nXmZMRl3r6ZFzsbYBNZh7L8SGSg11N1mWB41G/wdvqwdJI/WWYVt4v0TZO8YzCP1X/APxmYef7Idh\nW5y6Gi0F6BfhFSLXZO6plHQNBlDBW7KPS8p16EvS1oZeK2w1b4wx1dTbg+d9a6fU6nMtf3kderH9\n7ROsx2GxduMWzOfaIuw5Uq+XNrXnP0IfHL4+73DZr6S9DGOL+9lwfyBj5HgsXYU6NGDtDcMtK3VX\nws0TvUq6ymWtaCvCeI+agT1cxQbZF6uL+sJE0H+v3C17E/Q0o49S+HhcE/doMMaYuGXoW1b1FeZ9\n81H0GMi4Svaz4V4bbjSPvC0rW+9IPCv/ZMydent/Tr0Zw8lCPXeB3Hc3Hsc59bWhlwWvMcYY0981\nuHOx+STOwz9d9njs68C96W3Cmsbna4wxPqnok7PgFzc6cXu97AHSS73KuDcKW/kaY0zQCIyGhuN4\nJtxnpq5F9iHxob4wft6oc28/JffTAWm4xr5ifPeIsSkibxvZr3PPojDr2mt2oXcVW4J7nJR9LYZ5\nDt7/j4+chfVu44tynzb1avS14/4k1Vtkr7j2bsyx0WQ17WH1nms8hL1Jyo0Y03btSUrHvrR2D/ar\nwdkYK2mXzxTHtFThnNIOYf7utnqa5Cajs2TVXnwWliP7IlYcgrXyznepv9CAnGPcpmdkHPbq9nvQ\npOsHozMpcOJlrCHp18g6JSyz6XzbCmXvpWN5uG/j/b65z9G0EXjGEbTPPfSVrL2jJ6GmRlF/uKBo\nHF9xYJ84JoSeQ1cd9jDD750k8hpPYix50TgLz40TeeXrsMeMoP1rZ61cdzKvw3tNJ+1fO8tlrRh3\nzxRzMShzRqFQKBQKhUKhUCgUCoViCKE/zigUCoVCoVAoFAqFQqFQDCEuKmvyiQLFtqtaSho83EDf\n8yGa7p49J0VeWhToY6fKQO9KPVol8tzJCs57Po6pK9st8oaR9VojfcfqA6D/XTF5sjzXQKIaJoAK\nalM3md4rbDwt+UFoDs6vgyj4bpZNdRzZpzZXgioclialE3G+F30M3xp+RH/95JX14rPbfnmdE0eP\nBz2wpUVagTLlrHY7KJR5q6Ulbogf7mFBzxYnvv2p60TezUTLfO6J15z4mQ9/4sQ7f7tWHHPrbFBV\nf/XUd5w4dLSkEf7tQXzfw69A6lJ3Ol/kvfAFbJR/uHSFEz/x8n0ir2pbkRPff/vlTlxxWo7hv338\nhRNP/9FPjSsRmIGxVLFaSjjS54Hyd3gNnlvObVJ20N4OquEA0ZTfeOAJkcdU++/94yknntMn6Xvl\ne2Ed3lmBz7rJbvfcv74Qx9z2OzzDGqL68zwyxphjb2A+h4dCrmPLZpbkwh7R3R1SqOEzloq8ETPv\nwN/qwPh1sywfe9sG16aQJQ1MszXGmJg5KU4clIrnXfK5tKaNXQgJ2MDnRPnu6hV5flFUz8hWNjhd\n2qTyb/QeHrjXXtNB8Ww6KyWbh98AhTSvErTsQ4WFIu+HKyCtKz2M6x1m3fesa0EF7W0BtbnTGhcs\nx+iswZjzCJC11zdajn1Xon4f0eTlEmK6KnFO0fNTnDhpqbTbrSNr8qA0POsASwLURFLZ5hOIWTph\njDENByFrCJ8Eym1l+edIkmo2Ye3YRlaVCaOl5Kw+j549nUNvhxxvLLfs68K49IkOEHls+e4zDmN0\noM+iebsP7v874nEWlCHX5NSbcnBeJK9ii3tjjKkkiUylQewdJcdfRyHu74ajqNF7zkrb4IICfMdT\nd9/txMPcMV88PKRkqqoQEoIOsntlu1hjpIV0INl/ln4hz4EtUj288Ox8/KRssrsRckYfqjWhY6QM\ns2ojakJarnEpuqpQH9o7pEQsagxo6TU7UfMjLVkwSzSbjkFOyjbTxhgTTPeM6eoJs+RFFa+HLCBm\nAeSkvlG4l0delvvaALJg9o6AlInp+MbI+hIxBdfR3yUlZ36JGCMpSagpO1YfEHkLbp/txPV7sD8f\nsCRsPfXSktnVCL/ItbBUu2AfxlLSVdkiL++tLU6csWKGE3tbcl93H4wTlsWxHbIxcq2u24t7w5Lc\ns6uknGzSBEi6MxLxd99+dY3Iu3Uc9ieNJBdf/9V+kbf8Btg1n/gS71bxUbIO+ZP9c8tZyFp9rHWw\nu17OEVfCh1pTTFoq/db9yKK+tQAyHf9E+WzCyfKe18XOGjkPUm9GfQ6OxT0PjpPropcXpGk9PVi7\nzrzxpRPbe0/eK41ehHei5LOyrp3553YnvtCPtevQ6iMib9857NfvvA3P3c+SMJ94F5bTbHk/6Top\nYzrwAeZw5ty7jKsx5hHMHbsONFJbjCqqqc0dsj4suGeuE9eTtXhPr5xjybQvCqQ9b/JR2aoijGSk\nDUex3wxZBNlV0tQF4pj9v8N7YNwitBNoL5eS8PhJU5349JurnZhrkjFyDd79e1idx8TLuVhfhbV+\n/H2QIrpZksLWYpKZZ5r/gTJnFAqFQqFQKBQKhUKhUCiGEPrjjEKhUCgUCoVCoVAoFArFEOKiehru\nTs8OC8YYU34SdL6kSejSHRUkaWqe7qANtpBcIjBdujr5RIASx7Td7gZJw6veAFpjP1HJuvtAv+q3\numBzB2+WTw2zfppiqmozOTk0WM4vQbG4xu46nF9ITqTI86du7QN0Tg2Fsvu2f4DsyO9qNOwGrewH\nr/9OfFZbCIpcby+uszlfnmNXLWhr6w+CtnflVbNFXm8TxkzYGMiNij+U8qfMByA9e+Deq5345fv+\n4cQ3PrJMHJNNlO9ucqJpL5NdsK9dAXrb3ucg4wqLkS4Arz/7XZzDo9c7cUTiNJHnHwH63vnV6LY+\n7f8WibxPrtpjBgs9JBWKJpcyY4yp2w3K7SVPXubEXV1lIq+vD/fJKxxjLs5yZ+kkx5CeHnT7L/nq\nkMgLJOectnOYLw/eAker+Tk54piULtBEd2+E88nlP5HPOvd7eAYsX1lxnaQy1x9CHSrffNyJfRbL\nTus+PkxRhJxj2hPXi7z6gjNmMNFF9PBIizbZWQvqbtt5PLvEZZLz2EAuSuFTQbFuzZcd81newu4x\nfn4ZIs/LC7TMijzMl6g0UDK7o+TYDg0A/Zgds+Zky+dz7izkO7nLxjlx8wnpIlH1Jep6xKxE/B3L\n+YBd/So34Zjomckir+EYSQ5dLKVwJ/eB/jZJ02UHQXbcSlgsZU3dNA68fDCP+j2ldHCYB6i0TF3v\naewSeV2VGDvselS5GffIXsPZbYHd1lrPytofmoLPWFbs6+0u8oQsgCQBNdulPCT9ZjyQqp2o6S0n\n5TrbQzK9ETOMy1FzEOuiu6+UxbGku5XWwq5ySYGvqwNFOudWuEx2WTR8vvf560DLHpcqa/l3Fi50\n4mmPQNLQR24+vb3SdYvrBkvBig7J+55E+yB2LEq+WtqZnX4PdTk4CFLgkko5Z5NiIZNqb8M+qLdF\nSkMjpiWawUJnGeZLYIiUcLBkYoDGkrvlHtJJ0qh+kuoV18nxOGMh6iZL4As/3ynyLtD2k9euVnI0\n4X2xMcYEj4L84uxO3HN2XTLGmHCSZLF7VvZDch927g3U6yiSy85YMkHktZdi/HrQGK1aL+Wp3ZYc\nwdWo24V1ImyCdPcKSCRnI3L/s11SIqZjnJWsPejEcQul1KW7EbWXJVStBXL99AqjfTlJQv0SMK4m\nT5brXUMJvuPoUTzH2+5bLvJazmBszb0GsorWM7L2dtDe1ssD7y75ZZUiL6oV1zTqVtRXdnEyxpjY\nS6QrpitRuw/PMCBF7inLV8PNqLwK1541T66L7SSvZenzrk+lHI9dWMPGYK33DpPvUnGT8J7RXIHn\nkXgF9lRcP40xxofmNkse7e/mthoh9K6z6yW5hwwjtzR2rOy3ZME7TkO+vnQC5mnDIfms5/xQyndc\njcI38X5XXyPXmrHkMORJDodua2SrBa5NfiSrLC2UrSAKXoO77/BYzPv4hXKc8vuPFz2fzk6MuYZT\n8n2nlpzU4kmSFJgof3soXAeJUtTsFCeu3iIdNlNvwLuM905yxzwpJf85d8AN6gK991fvlG0MYuek\nmYtBmTMKhUKhUCgUCoVCoVAoFEMI/XFGoVAoFAqFQqFQKBQKhWIIoT/OKBQKhUKhUCgUCoVCoVAM\nIS7ac6b5CDTzkbOTxGcZZDd2fA16PfSSJtQYYwKCoc0al5LixLZtZjPZv3n4QhvYZekBg8ZA58xa\nr1GJ0Ju2dUk9fj/ZBve2oieKsEQ1Un8amo2/E5Aqe5UcfR+9NxJSoTXMJ/28Mcb4Uc8ZtieOsPry\n+FqWaq5G+AzolFsapdX5qz9714nve+E2J+4ol31cuG/P/NHoG5K4eLTIq96De/D3J9524oVjx4q8\nn1z/vBNfNQU6xnv+cIsTe/lLW9llM6EfPboL+sy4M1JDuPUkrvGBF+5w4t1/2Sbybn0YttiR46Bx\n/M78a0Xecx887sSlR6AbPL1H6ix/+Y+HzGDhyBb07Jn34Dzx2ci7Zzpx3hu7nDjzTmmZ7O8/wokH\nejFnk2bIvgfvvbbOiWd1Sx02IzQNx+38F3T39y9CL54ZT94ojjm/FvaDEyej10E12ZUbY0xbEbTw\nDdTTZPr/Sb1t5GSMbXIGNn19sjfE8Q9fceLEhRiLh//wpcgb+wN5b10N7ssx0Cd7gPS1o1dD9HT0\nUKneJXtHCEs+N/RPCMqMEHltZNUXPRJzx81N9lwoP43n7UH9GJrqoNsvePuoOObO3/zGicePQy+Z\nID8/kedBvRV2rYRNqN3nKGMJxkIQ9SNjrbExxrh7YckKGwfdOdtCG2NMQIqs2a6EbxzqdVuenB8D\nvVjX3HxwLxvPyH4doWRrXH0IGvWBHrkuNpGlZBL1BrEtdrkPVSP1JIqahnW76YzURvN4az6OzwIz\npTVk1GSsrRWbUN/bC6UlJe8RWGvdF+oj8kq+QC3zjSGrZmsddBtk+97I8ehL1dMkx1kLWZh302fc\nq8AYY2Kot86XL25w4oRweQ/bu7HvuH/ZYide8bOnRN5N//mTE4fHkr7fE2thd7ccS+xKz/0J4tNk\nv6Y+sg7nHn/byRLWGGPO1+D7F82Bfn54VIrIKzoJjf/k76EpkOj3ZOQ4czVil6APTM02WScvDKAm\neEdiH9p8XN6/oCyy26VedtkjZR+rpiO4ruOn0I8gM072N/Mm++KdK084cRHd17QYacvrdQJ1jfvR\nhOTKvH6ylQ4bhbWvu0Xu1y5QHapch/20X7LcU3VXoY7w/AufKK+pe5DnIj8DjwAv8VlrUaMTRwXj\n/D0D5PpZtRnPJJr67BR9cFzkRc3Ccw1Jwz2s2S77s/gnYQ3hfl8dFdhb9LXJsR1I7ztdlZiLtk03\ng/us2P+7vLMO9334POzf3H3lq5t/As6P14bYBbJ3B7//uBqBGah5216Re23uH5M9Br02tn66T+T5\nsoV0HPZpE2bJ3j4d57H28HubZ7Bca/71wHNOnBKJnqDRUdh/uFm907yoNrJ1/dkC2TMkmb4vOBsx\n9+AzxpipI/DcCquxnsdZfZzG0PtxQRVqzZzL54i89c9iv3b3K9cYV6OqEn1xRi6S/cgaT+D8u6ox\nztJukr0ld/99hxOzHbndDzaa5rMf9ZLxtGoA91zLX0X9S6nG+8bI/cOoZfi7/3n+Mye+5YmrRN4w\nWsMHevGeyz1mjDGmmSzgexvxPl9eI/tEhVegFvfSmtvXKmsF7wljZLk1xihzRqFQKBQKhUKhUCgU\nCoViSKE/zigUCoVCoVAoFAqFQqFQDCEuKmvyTYL8hql8xhhzbj+s9pISQZ/1irDsxsiGOiYCVLJT\nn0iafBTRzHxJMhU+XvJ9mMLWXgi646ws0K98LLpj0GhQzqo2gfro4S0vP3AkaHndZB3ddl7aiWUu\nALX53GZYxEWFSMpoczu+o7MHlKbISfKaelsHj/ZrjDFHPyPL4uk/Ep9duXyWE//gRths/+gOKe1h\nitemX4NWl31BUvPObARFPyUK1P2k5dIy74+PQ0JVth8UuB6igVXvlHRUtpW96tm7nPj9R/8p8h79\n9yNOXHMAz3v4NEnxTJ5+qRN7eIBezzIrY4zZ8Ju1ThxMso1lz3xH5L1496+d+Bcf32BcCaaChiTK\ne1nwGazgAtLIdtKS9nz5E1Dm5/wMFtK1J8+KvLFEr3z7UcjewgMlbTB6OmQMOXMw/5iSWH38mDiG\nJYYtpZhXbm7yd+KYGfju/p2Sbswoeh8SNq9wUFqPnNst8rJvGu/E+f/BZ/sLpBQxqw00fiNVYS6B\nfzxqatXWIvFZxGRYX9fuh2RggGwJjTHGN+brJTt2HQkimjFbont4yDrlGYh6GRKFeV6wHrbaP3/3\nXXHMO7/5pRP7RGNO+MZJySbbvNcR9T7IV64TbWQzy5JKlr0YY0wvSSTcfVC/2ULYGGN8IqStrivB\nVPaoOVL6UP4FpI68ntjSjlaSnAWS7WivlRc8At/B0r+grEiR10e2nO60ruZUmRwAACAASURBVJV8\nDAow109jjPEmu+jQ8ZBP9LVJ6ntHFZ5HxARauyZJK/ieZlB9/WMxDtqLpfwpfCLGedt5shcOlFRm\nNy9JN3c1WPZiz7GADEjrPKpAU69YlSfyGttB7Z6+fKITb14predPlKCGVTZi3/Kze+6Rf5fGQl9f\ny9fGvr5SYh6YinNluXj1piKRFz0/xYnZLpYlJcYY47UKNXvDdkgbb/j+MpE3naylSz/Huu8bJ+ds\n9VbIjbIuMS5FLdm0e1nyuTayRuYxx/bExhhz6NPDThxIdSm/SsqzeA8XG4IavC8/X+QlN2Nuhgbg\nXqw7jL/T3SfH27iJkD70FuOzTsu6PSAV46O9CtcXnCDtyoOyce4VuzH2fPtlffYIxpxju3GuY8YY\n00GyvFFLjMtRvBH3MHPFOPEZWxjHzYN88/Crco5lLMC+iGuld6SU2pauxFjt6sFYdxsm62PL56id\nWXdgbvvRe0z3WFnbuD3DpVMx5lh+YYwx3rQ+rX7lKydeft+lIm//u5D9xIdg/1q6Tj6fjJshAWKZ\nBlulG2NMwVpce9r4m40rUfUl9lK5l0hJSOk+zNPDB7HfHD9S7slbm1FP+7uxV/zzK5+IvO9eCel8\nxTG0p7j69h+KvPf+CPl1C61jxWWQ5yQnSengKWpX0Ez1fd6NM0SeF1lJs+wvKkTuzzIvJ1kPyXP4\neGOMSaZ1l99z7fYbM1ZMM4OJQB+cF7ezMEbWo2iaiwXvyne1GQ9DirWWZFi5M6Q8zZt+L/CNRq08\n8e5hkTdiMd4vRlyN++kVhHNtod8ajDGm+ST+vXTpdCfe/I+tIm/ud3Gu7rTnKF0j1/pQskv3opqU\nPlbuAdvod4kLtB6z3boxxjQcqMA/5pv/gTJnFAqFQqFQKBQKhUKhUCiGEPrjjEKhUCgUCoVCoVAo\nFArFEOKisiZ2BbG7knMH5rZ80Cvr86QjRHAcKPQnj0MKlT1KOsQcP4HPPPaAZu8TJSmJQSNBGQ0c\nDjqvP3Wnt2nUR9eCcsW01QjLDYgdPvh6yw7LLt0xw6F3aO4AnS0+XdKWwgLg1hESDMpWd4N0hvCx\naJeuxuXPPurETTWSLnZiPyh8Y5JBz2qvlHTa5jxQxGb9ABysyq2FIm/GD+F2s/IXnzqxTY879cZK\nJ163GS4uqSSFmnrLVHHMVbd8H+fwIT579t3HRN6/H37NiectmODE4ROknKw6H85GIYkYjzMek45A\n7p5fL5GoPHhQ/PvRN373tXmuQNatS524fJ+k85YehXRk/lOQe5Uf2CvyEkaBZttcBpppjUV/T0zG\nOB53DeRA7764SuRte26jE0/5LiifPmEYz7UHy8QxFSdB5esimriXhyxFaST/Gf8o6PQn/rRW5B0t\nxnVwN/7Rt00UeSUfgaJc04z6MHvMKJHn5jG4v1fX7sX9sOd94zFQbf3JVSNkqqSsF75DUjGiSwda\n8oReoslWHwGdmR2ZjJHPq7UZLmg1JK16/hEpvwgdCypwB3Wn72nqFHmJV0ECGkUd7t08pWQlICGY\nPsMzaDwlnVVYrlR/EHTfmFlyPSn5HNcRf69xKXidsN0vWNLXRI4/Pb3f7NYxcgXmmC25CB6JZxo6\nLtaJbbo606C7q6WT03/hZsl4WTI2jMa9LSVjB4M++ju2k1YnydFYchYyWuoD6/ZgPWXJgbuvHJfs\nijUY6GLXlRa5v+kiF5ugLEjLQnLkGn/+LUgkz+8ArX/S6BEibyytrV8eOeLEs26ZLvIis1CPAgNB\n5a6vZ0clWaN4zvlG4565W7KwFpJcNDTjevs75NiMJDfJpHg8O9uxp3I91v7wyVhb+dkbI52qXI2u\nBlz7BUs64kEyOXb97G+T15sSh2fKTmX9O6WzSEw8PqurgixxmCWHOVJU5MTVTcg7TM99yvXX8yHC\nDai5GLT4YEu+yPXGNwrzdGBAXhPfi9AU7JNt1yB2RmI5TMIVUjpduVZKt1yN4CiMudYC6YDHLiws\nD00YHS/yGg/AHSliFtbM9vON5pvg7Ymak3yd3Au0kjsLx7w+NRypFMf4J2Id4/X32OdS3u1FjlyL\nb5/rxLYcl6VWLFmMnWnLaSHB8E/BOVQfrhB53h4XfeX7VggmJ11+FsYYM/pW7MPHUn2o3CjfHxKo\nBQU76E1Ml/KnVz+H5HrZBHz3nVdJJ56XP/zCiRfkQGo1ahIkmUEj5b7pQj/mzvFzaIvgGSTbZXRW\nQ+5auqsI55qWJvJ4T9lATnG2OyHvK7iO9zTKdfZCv6xLrsao+/FuZcuxi7ZijQtrwX7EN0LuZXlv\nkEr78hZrbqfmYs5texlyo0BL9j5A15z3CRzwxj+A9bO9SO6JXlyJ9xV+9tc8e5ORwFys2II2CaE5\nct9S/hnkeF20n2N3Q2OMGT0ixYmDaD3pqpYuXjGXyHFiQ5kzCoVCoVAoFAqFQqFQKBRDCP1xRqFQ\nKBQKhUKhUCgUCoViCKE/zigUCoVCoVAoFAqFQqFQDCEuKkBke9LOSqmXOncCvR7GXEpWYZZ+ub8d\n/86IhUbNz9LbTUuDbrBgC/VBmS57RzQeR1+GbtIRR06TfRkYmWR71ZwP7WjU3BSR110P/bJ3OI6J\nTAgTeft3o39FQjg0ZYVnZH+N1OHQxPqQPbi7r7ztp9bj+0ZLt0oXAbrVpjOyJ9D20+jN8Oe1b+KI\nYVKvfuzVt5143b9g3dxt9VK4adw1TjxzGZ5dWJa0XY0kTX5xHnSxft7QdXqHSR3jgRroTHu7oH+3\nJN/mkmXQTO5cf8iJF1tWZpWkIXxpz+tO/Nir94u8rmZolsvIMvSdNZtF3mN/hdY3YORw40p8/OM/\nO/G4eVIbfbYC929KCzShAUnS0q/xEHTA4SnQYG4u3yTy0mPQTyRj5o1OfLOn/C23vQQaz/DkMU7c\nUo97ZOvxp/0fLBC7yVo5JllaSDLKTq924h1nzojPllwz04n9qG9J/rtHRV7ipXge6UnI2/KHjSLP\nvA1teNyTV37jOf3/Rcgo6Fh7Lctitg728EMvgNLV0urcJwa6dNZB91n9T0JnYI51NaL3AWvXjTGm\nrQzPkW2dI8ZgHETPTBHH8HPl8w5Ol7aUfTRPWU9v98Pw9ITuu70BvWRiJ40Rea01sIVlO8OSVadF\nXsJS2TPBlWg6CY1xn9W/InQi1jhen1rzpNbaJxr3opasbu2eR2yRzX1hOq3eNO7UR6irDvc8gPoP\n+CXJHmvcy6FuH9aumDmyf0/DMdQNr1Dccx4rxkhNNZ939YbzIi9yNqygLwxgLDbsk/0RQsbKeu1q\n8D0LnyrXp06yz+6sQNx8Qq6fOTMwzvL3y+tkePrgb+VST4LSL6UlbkAyanbFfqxd8ZOxpnV3y/vE\n44J7D0XMlHsi7kPCa8HZcvl9o0fj/KqKcb0Dx2TdiCCrYL8E9Azh/i7G/K9FsSuRsBQ1jvs9GSN7\nPvGc8ImVfT0C0rC/azwKC+rUKXIeuLlTT5bleO71h+T9iz2CeREUgr+VlYAx5u9t9a+g+Rw3G3/3\n5IdHRF7u92CjW/Q+eilGz0sReVFTMccK38Ja6OYj627DadSyqEk4v4KPToi8oFhpwe1qJCzDczz7\n+iHxWewM9FdpOoz9f8oKadfcSr1luBadPij7mtS3otdUqD+NhQ9Pmm9C5DTcG37ep7bK/Qj3G1o8\nHr3EEpNk/4qoOSlOzD1Eii1L4il34nl7BmLM8Hg2Rtr0DvRQDciy/u4M2avGldj5KXpHLvrhZeIz\n0ZeOes95hUo76R0rYR0+Lgd9YVKi5HVwH6uTpehhZvcunJyB7yioxthxP4iaueOdNeKYh36MPe/0\nEagN1RvkOPKifmkxo7Hub163X+SNYhv6O/FO1Nch+7n0tuLfLfSeeqFX9uus3oJ37yzZHtMlqN2L\n+1lr1bZx38M6xO+SkTOSRF4z1d5a2uePnJIh8rjPTO5S2MGfpHdiY4zpoD6yFy5Qn8Uw9DRsrpS9\nOB++HH06B6gnbeH7slco9ybj/XTNjhKRx9fBa9rSJ5eKvL1/3ubEDbU4bw93WXurqGdi6hi7D44y\nZxQKhUKhUCgUCoVCoVAohhT644xCoVAoFAqFQqFQKBQKxRDiorImT6L7NLRJWVNcGOhe3USxK6us\nE3lM30yaQTTRC9L2kKlubKPVViRt8Nham6lTNVtB9XLzlvSh0HGg2jP1n483xpjo2Sm4DpIS+KdI\necj0mFwnPrENtMbxRMsyxpi6PaCKM3VqoLtP5CWPkBbPrsbxV9914mDLHuwXLz/gxGc++sSJO0ul\nlXbYFJxj4RegBy7NzRV5QdGQj2zfDNnPk0//U+TdNBNylE0nQKH9xd8fdOL+Tkn7m58F6te7r//a\nidsK5BgZf+93nTh3xSNO3N4uaYk8bqNOg/L/mzteEnl33gbaWvhkULmzjkkq/MG/w5o76Y/XmcFC\n3DxpK3jzRJxTI9GUWZZojDGpN4IGXLwZdMIVf/6NyKs4+5UTd3RgXg10S3plGNnKHn/5YydOvBJU\nw/dfXSeOWRFwuRPvfQ8U1u4+SS297vnvOHFbMSQ5NjXQMwi0WKadVpKFqTHGpNH8C4nGfVj2jLSz\n2/qrt81ggq03L/TJGhg8CpaDbEcblhsr8iJGQNbWUgUZm22x6O+PuejpCVlNw3kpAQoeDkkRKxAy\nlkFq1t4qrVQbT6EGsJSiK1TaGYbGQ5bU1QWaaGTkQpFXW7vBib2DQDVvLCoQeSyN6iLpSew8y77S\nffD+vwPPK+8IafnYcgprCstNAkdIaaxHANbF7jrIQCImyZrC9rYdlajJLSfl2tVRQ9bPZMvLkpxh\nln05y1yipoOW3Fos62noaMxzlg60npdSLb94SB9qaT0OmyzXt5Y87BGaaX0PzQgXeQODbBnKsjhb\nThZG19w/AvOjYo2UIZUdBTV53I2QZrecrRd5ngGQNSWQrLm7UVrPF38MOjevNWV7YNk9csEt4hgP\nD+xVhg3Dd7eHyfWO5Q5sZZ9jWV97BmNsRnZgLHlHSZlx/kbY9/p6ob5m3i73BGFJcuy7Euc/Ry3z\n8ZRW7H40D3zjYDvdUSolgY1HIGWKJXvTPkuif/4jyF5K96GWpS+SEsq0JVj/zq/B/jAqGHuM2BC5\np+RaETkBc9E/QcqJ+mkN5rrbbl1T2UqMieQbsF6UfiZlOMEkTeR9aeJCKT8oXCelta5G5QbUeXdr\njfcmm96AkRhLvW1yf8j3wydSStcYC66FVIiPqTxULvJ6+vBZKOUV7YF8MTFGWp0X16G2pd9CMo1/\nHxB5SeG4pp4m1AAPS5rH1+gdimN8owNEng993/n/QBqVced4kVd3AO8kifIRf2tkxqNeDVhSnLZC\n1PkQ2jfyGmSMMTMuh+ynpwnvahnj5R6o81Pcl5gIjOH9Z+U+JYRkazUkS0lNxvf1D8h1pnwbni/v\nN/fny+9eMmGOEzcdwX7oyu8vlt+3GmtGxZf4jvAp0gqexyy/m8bMk/LKmLlyfrga/F405vuzxWcn\nX9rhxL39eMbRuXKNZ6novPmQuNXsKhZ5vG7w+8XEWyd/4zmNpfvRVIV3x5gJ8n52VWNPlLgcNbli\no9xT+lP7B7YOZ8msMcb4HoYM/MQWrDvnqRWCMcbkXIc510uW4t31UorIbVS+DsqcUSgUCoVCoVAo\nFAqFQqEYQuiPMwqFQqFQKBQKhUKhUCgUQ4iLyppYeZQ6OeWbv4RcD5IzJP2su+7rqTs2fc/dG6dS\nsgsUyq1vyq7N41NwHnEZkCsNo076vnHSCarhMKQEJYWgsI66TLre1B0ArdGbKGa2bCZsAq5xzLws\nJy7aImlvTIv0qMI9CsqS9O32pi4zmEi5ATKO9378vvjs0ltBW/OO+GYq6Cf/hFPSU+897cSn6L8b\nY8yJv33mxCMmgCL8yQtPiby/3v0DJ140bpwT11MH64B0SYd++fsPOXHCTNDeWjOlS8Zr9/7IiZki\ne7pMumk1d4Bm9ruPnnDi/LekW0A4USrZRWf5E7JLt02zdSWWPL3ciRtPV4vPosdiHLP0wTbJCAgG\nTa+sGpT0U5/8R+TFkmxq5WMvOvHY+dkib/UrkD/NnIIxtvY5SJns7vmVX4FqPzwDEo6EZZIavumX\nkOKlT8f5XHrVdJFXtQM0ycBE0MaXP3KnyDv5Ms4pOhMd50u3yw7vTLMcDHiTlMI3VtapgGTQczur\n8Rz9LKeM3l5IJgKicA+72uS4qD4HmZ1XMORfHr6S/s9U0xhyCqk4jHtjS0C7azB3Qv4f9t4rMM7z\nutbe6B2D3jtAgr33IjYVUhLVLclyt6y45SRyiUviHMdO7HNixy12fCxbsSTbsmX1SpEURZEq7L0T\nJEH0XgeYQQf+q3xr7dcSbzz4cbOfq03OO4OvvO2b2WuvBUhTdmUavVGQAuSW3OzFp1/5f6pdcjnm\nxEFK/2TJj4hI51G4B7Dkx3W+4s/ICbFqNIJks+PDOn17kK5LOsl5+qq0zCV1IdLSk0iW2ElrlYh2\nKUgnd5yC22eodmMkSeBj4tRwV0rMDjHsQlR0h/7ssHD8hjPix+exu4SISCLJfxPK0Zc5VVhEpxEP\nNeP+/oXsanRyZU3pCzCvVz1xXL2WmIcxx46TYdEf/HtWVALmjqE23W+7qtAv4mK1Uw9z5QrWP5bC\nxWWhv3R17VXviYsr8eLedqRbu+O8/iWk10fQsb75tl7vppGrZl4OxmW6I7lLX4r+eOlPSO0Od5zY\n+hq11DGU8LVMnqslJpEJOH+e/1wXSL5Ol34Hd6SIcEcWfA/JSS9hPLfv1a4eLKlll57MWZgnM5Zp\nJ63xEYzf/gZ8tjufsqMZu+6lz9f7bl5nakjmEl+s15LMFTgOlizGpGgXnaRY/e9Qw3u9nE1atu2v\nwtzEcrxAve5XLeR6l0YuRQVpeh+ZRteq6lE4t+Qu1v2bZcJjA7g//gHck0Tnuiyg5xOWF/nS9VrP\n97WfrnuwR0sfkkgW4R9Gv+jcp/eyubdAwlx4F+bvwS79eV0naY8QYuX9yVrsIzIatcQkZz32Fd3n\nIL13XQdTaa/deRRr4UCdble5AfvFeNpHbXakQv4LkJmt+sxqL37y+y94MUufRERWP4iSC5eexT3c\nct9a1e7xX77sxVzmI79Nr/XjJJvKGsUeNS9FS6LJVFdJfIad50Oeewr0UAkJ9Rcwx+T2arl4yYcw\nB7a8hecu182ZZZ+5c7EPynfkkr2nMbYHGrHndR1FU2Zhbr/yO7jPTX8IUuL+y/o5XWh/GBWPec83\nS68T7eTKlFSJ9a6bXDlFtDPb4rsg3a13ZFK8Z+X9kiu976vVpRdcLHPGMAzDMAzDMAzDMAxjCrEv\nZwzDMAzDMAzDMAzDMKYQ+3LGMAzDMAzDMAzDMAxjCrlmzZn6fTVenFGs66TE5pI1IWnFai41qXZz\nt8zx4m6yG4sv9ql2zWRJOa0YukGu2yIiEkaFNKrOQuNYmI7ja7iodfsli2BNOLMYWsXAVa1RSyiF\nTr73FI7VtZBs213jxWzDVn6TrpvR/ja0bAmlOF+27xMRSZ6pNXCh5sRP3vHiWQVaV9vyNtebKPbi\n2hP1qt38Yrx28fe7vfj0RV3v5e1zqBG0dibq8YyPPKbafe7X3/fiiAjWfKIuwonfPKres/grsMj2\n+6EV7j7dotpdbsG/a9qgG/zDuy+pdh31qKlx9Ed7vLj8dl1bpb8O2ma2l0/I1/rtXtLSymIJKQd/\niONje3oRkfgcaG7TZuD+jo9rrWr7ZdRVSJ4Be9hoR/saGYn7UVGKsZi1qli1S92JOgPnzqIfHKhC\nPZuH7tqs3hNshx7zB0/Cfvt7sz+v2vFnBIag27zx27rOTzRp4yeopsaFJ3apdiX3Yx567qv/4cUr\nP7ZStUsjW+nJIInsgrmOhIiuG8I1XnrO6Xovo1TbqORuaIDbD+oxm1CM2h499Hnntp9V7UrnY34c\nHUB9Db628U5f55oGifR33DokfE9OPIk6MzyORLRdOtdP6I9xrdPR933TMW8OduoaH+4cG0pisjA+\nuCaMiEjWdbiWXHsjbYkufNN5GOtkKtXsYT2+iEjOGoy57uOY12Iy9ZoUT5a7o30YL0nToIUP1GiN\n82A76hH4ZqHfVz9xUrXj+nDxJVjHUuZkqXYd+9D/Eivwd0edekC9pOVOno2/69YqCY+95vbkr6b2\nWaxVqc4aHEPWtJ37Ud/BR/dKRKS8EscfRfbovtn68zreQr2XuV/EnNP4hq5TN28B6uhd3o05MLsA\nf4ePTUSkcTds6FNm6XvCxBfh3g00Yc+2fsk81S6a+lZ8PtYWt4ZZF1lQp1ONj8F2PRYTc3S9jVCS\nvxW1NsKjdX/pOo4xxjUN4xyb5do/Yz4svRtrv1OiSZp3orZA8gzM48UfnqvaFQxgDuy7Arv5lDm4\nt1xjRkQkuwJ1Lmr37/Bi//kO1S4qFXNy8Z2Y+yMj9fwcnYIxl1CO+Znt40VEuk7hHgaproc7f7q1\nakJN10GysXYufBLZ8rIVcW97n2o392+oDmGNU3+CGKI6LP2D2CPluNeGap4k0Lw3axn63IRjGR2b\ngzWda4WUbdX1Svrba7yYa3IVObX3Rmgu5z5c9CG9R41KRr/ovYQ+07hL18OIS5q82kElmZjzuDaS\niMjhV7D3XLCB6pbU6L3NxXN4Hpm/Aefo7j/CuUYp2cNXPqg33rxPufQ06sds3oy6gymz9ZzZRXXt\nuAbhmV26/unSCtRPmb4CcZ5TW2SIrNKPP4pnjnCnxtpwH/pLRBzOb8+jb6t2N31d76lDzcKPL/Vi\nf3WXei19PvYxvc3Y+2TN0/ub2etKvDiJLdadZxJ+tu6ux5hNpDpvIrrmU0Ih+kLnCYzRYae23dAI\nPqP1ENZf19I6gmqOsf22z9kTFOVj7U8owHyQmKrXE7b95lpax/7zPdUuPR/fN8hq+Qssc8YwDMMw\nDMMwDMMwDGMKsS9nDMMwDMMwDMMwDMMwppBr5g3nL4HNXrBGp29HUapzJ6XI5qSkqHbNZHWbTBaa\nbHMoIuJLRmpQXAHSYAt6tJwqqwKpRnXnkAoZ7UNKcX6ulgv0X0K61DmyU3YlPnGUGj5AKWZuuhRL\nrTLIHnGgWadZJs/BsQ6Tdd7EmE7bZEvYySB3Cc4zyrFIzF4E272hACzazv1GW/WxZeD6b3/Gi2eM\n6RTmOwaQEth9FtKwxCLdL75w4wNe/O1fftGLA/VIrT1y5IJ6T3P1D704kiyy/7BXW4v+YtsPvDg8\nHP1ifFyn6n7noZ978bf+6wtenJCt09ne/C5s9+744T958TNf/q5q19aLMbLoYxJSVn3jNi9uOXhe\nvcZSlMhIjJ3BgE7fSy2BlXbNdqTYtezS0rQLjUiT7wng/ubcqNM1N/8TrJE5vfCmf9yCY3PGTkoB\npG6LL1704rgcPWbvWIfU//ZWjN+WvdWqXTylF/acQX/raNDpmInUF+esImmjY8dZdsf75BeGkAiS\nbjS8XqVeSyNJQyKlcru2psOU6szxUJe2XeXP4D5SOk/buAZobm/aibRxlsQklet52H8ZqdN91bg/\nbB0oolOE2SYz4NgIJpYgxbN+G/qFm1o63I15uWUP+sLEuJ5T4wu1bDaUtL4DuSpLQUW0pGOQ7SWd\nOT5lHlKpm3Zj/MU7khW24E4owvq0/3Vt/bx4BcbVldM4vlKSObop5GwhemAnLIQXzNV2lwePYx5e\nmwMLyaZXdP+Nycbn9ZHdZ2y2Tvtl+RKvR8EGvX4Ok+xKbpKQk7Ue946tS0VEusnSvPAeXNuG5/Wa\nlEBjZITmupF+Pe9N24x1NtiCNW7EsUpmGUzZWn0f/oeYZH09//yHnV589x3rvbjnirZ0ZXloONlE\n++KdPteFfjtOUsue01pyxxIZvqeuDSqndoeaQUpRD9Zru93EMswpMak41p6LWirE1shtNLaHOvW9\nSZqGz2si22a2gxURiUpDny7civveeQz7VZYKiog09EEqnkp7yvS5jjVwDY59JEC29hP63rD9dEwG\n+gtLAkT0fBpLcq/BDr13mMx7KCKScxM8geOydP/mY2E59lhA7+dGg1jj/BfR910pV1Ih5t45H4cM\nJjrZkfzQlB2fi+vWT5KpnOWz+R3SRnNl6hzcR3+Tlhf1N2DN5bWPpUsiuoRCMUmzWe4kItL4Z0h2\nMlZhfZ/hyHzOP3pEJovStbiHbIssIpI7hP1/bAbmG5YNiYgs/twqL+46iTl4/x8OqHaFGegHc/9+\nnRcHO/S+IiYNf2vp1+7w4ro3Dnkxy8lFRE4fhQRm4Trc3+lr9bWMiMUzbMdRPC+NDui5n6VMlTdD\nqtVGc4iIyKHdKBOQHIc+Gx2p+0SA+o68/xLxV9FG1tLuvirahzFScTf6Y+ub+hmC5WRx2ZiXa5/T\nkvqMFdifsJQrc4WzR23EZ/DzcupsjLGCtUvVe/zN2B8O+zHP8d5ERKT8gYV4rR7rb+0L+jkrJgnP\nkixhjivSc2pkPPpF7XbskQpX6r1i3wV9HC6WOWMYhmEYhmEYhmEYhjGF2JczhmEYhmEYhmEYhmEY\nU8g1ZU2cqhqbq1MNORUsnMr4c+qsiEgEvRZJaUHsBOWSmkFV7cd1iiynzJYuLcXfoZSoun06xapk\nHdLtFlMK0lhQV4QebEE6r48kAa7k4uIupC4WUCpor+OqIiRfikxG+l5rtW43rXKGTCZtxyAtOHxF\np1d+5hdIH+smWcjn/t8XVbszP3vTiw98/wkvXvaNB1Q7lrdkLEJK7vlf6LTEe1ZCthKXBSnOiceQ\nbvjOOV0d/VMbN3ox97Pp+Tr1NzER17O9AfKd9371nGpXTNXlf/WN33vxGnKZEhG55fu4FnVH4aSw\n5nPXqXZP/MvTMlnExCB9LzZLp0NmVkBqULcPld0nRnVK4t5nnvdilvS9R/IiEZEvPf7vXlx/aI8X\nn/qdTond8O1PePFwKdIG/ZROn71Qp/32d6P/3fM5VJ3f9V+7VbvZflg4XgAAIABJREFU05ACmFuO\ncz+y67Rql5mM8ZyZi/Tgii16TO18Atdlw12o1N9/Wcuf3GryoabrNMZY/o06J7WT3EXSaez0ORXz\n/ZSWX3AzpGquiwun8neT+9xov5738m+B+wTLb6LJGclN/Y2kCvcs58xYqqWiI5ROyrKPGCfVnB2p\n2MmJpWoiIlmr4IbU/Ab6UkS8lsn6eS7eKCEllq5r0JHFsZwqjlxqXOkqy17Y0cqVnQ42YU3qr0bK\n9vQ87Y7AKf2lM3EPYtJxrJl+LS0N+CHbWL5pPo7BcdJal7vEi1ki0Ful03LjovBbD7vZBBxHq75m\npCgnkGvj+LDuY6mLc2Qy6ScJkZu+nUxuS1eewpwTEa5/z+I9Q08E7nHwqk6vZ7cRP6VVRyZr571E\nkrv0X8LxjZNbhSv7uPe+TV4cTX0z1mnHcH+MydDzRscBpOhzf3bdmjoPQKaTtgz9McqR7IRHTd5v\ngGER+OzuS1qulDof/cdP95rd5UREIg5SvyXXsta9taodu9+xVMiVk/ov4DgG2t5f2ujO1V3kxDZO\nDkCjjmtJUgmOoYmcvsKcm6PcGEmK4Dr/cR/L34q1hJ2KREQSiiZPJiqi+0jLHr1/5+cGll4NDOpn\nDb4PIz14zTdLS2MvPrLPi9NXYp1NyElV7TLmlXhx51nac9E4D3To69R7Fte3n+S+7ryesQR/l+U7\nrsw6awOOoeYPkL0EnXOfdi8cwwZoTqrZo/twVOTkOeD5z6Hf59ygJfDHqERB3yvYE8y7Z6Fqx2Ok\n8yTW/oFhLRXi58J3vr/Ni4sXaDlM8nQaz+/gvk/Qc2TCQi1LyaA9ZQLNf1Hxut2VPx7Ea+SiNtCs\n++/sexd4cZBKgJx5T++7eU+eOJ0l5VpSOOK4H4aa4ruwZ7/yuJZP911Bny64AeUBmkf1cyU7NF59\nCv02z9nz9tdjnWy9CGlm12W9t+gj6WnRHFwnlpH3X9TPJwV34RmAx0Rfq5bcDfXiM3ifm+q4UaaR\ni+jBH+/x4sxMvZ7EksPhjI+TDHz7JdWu6EP62cjFMmcMwzAMwzAMwzAMwzCmEPtyxjAMwzAMwzAM\nwzAMYwqxL2cMwzAMwzAMwzAMwzCmkGsKEFmXF52mNbLVb0E/lTcLWqxUR69+dT/0dwHSYGYUaR3d\naB80hWGR+M4o3NF4R8TikMfIHrbnPLSeRcu1ZVXnIdRyYCvBmEx9ThfewzlVroA2zq0XUDAN59u+\nrx7HRjV6RETqW3BMfB5zbtJaMz9bam2SkNPcA13fyunT1Ws1z0MP2F4Nzegzj+5Q7W5aAxu5RNLP\nDg5qTevYIO5JYiJs407X6XosH/o/93jxn7+G19bftsyLf/h5bWvMesDkfGhLy3Ydkw/imx/7Dy/+\np397UL329o9Q0+afn4L99rZ/ekS1azq+34tZZz/vC/epdtGRz8tk0XrhsBe/+JNt6rWbPwk95pU3\nYN228V8+p9rF50EL6Sui69c6T7VruwIt7bt/xLkvvWm+avfUl//Ti1dsgXaYNbIDvS3qPdtJH7zm\n47i/N3/zZtWuZS/mjZLboNss/ZA+hua9GLNsC5rsWD8vKkN9qtJNKEISdr0es4ODWkMeariOV6Oj\nQc27AXNO5wnMWUGnZgfr18dHMEenLchV7VrfxdiMIXvX+IIk1S6aPq+fLK57TuHeZa4sUu/heiqs\n+215S1ud83zNtRSSKzNUu0SqixBO83+vY3vbcQTXJZ/q7fRW6XZJpbp+QCjhGgaBOl1bpPcMdNOx\nNN645oiIruuRSNdybEDXXQmnWmoZy1GnwH9J1yHiGifjVMOG11WuCyIiEteC+8bvd9v1HIf2P6Ec\n+mrfdD3G+i93y/sRFqXHWEI66kaER0e+byzyl7ayoSZYi9o3xffqNfnCY0e9eMansfZdeuKEaldC\nuvEuGi+lH9FzKteTGhvEOJhwbKdT5qK+VitZrJd9AnULuHaTiMj4KPoC9zOuNSKi6+oMtEB3f+UF\nbW9a+QD+VkwKatgMdml75fQV6I+95zH+ek5pW+e0JXpeCiW855r2kQXqtaZtmF8zVqFOQdfRJtXO\nl4nxFxmP/WvyNL1HZYvUYbJAH6L5T0QksQR1KupfRK2NvC2Y34MN2vY7ayXWY66rOByp69l0nkAf\n676K+16wQdf44PqHw11YF3t7+lW7qAiyQKe1ZKBX/93oJF0bKdSE0xwx5tjax2RhHmAL6fgE3b+5\n3lI81Zbsc2pjcY2vpBLc45GgPudRmosnxnBtouha+B1bXq4hFZdNdYk69dgJNuH+sx3wqUcPqXYl\nVOMreTbWzLQE/Zx17k+Yl+Z8AjXCug7r/UzWWr2Oh5IhsnYfd2rUrbkT+3of1YHZ9oPXVbtVWzHX\nltKcXBGt930nH8Uedd792B+6FuM8z8VmoXYoW9kPdOjxO/9TONbRIObavnp9LZNo/VNza6Me21z7\nL1CHvdyy+7T1M+97hnswZs89e1K1S0uiGqg3SMg59JO9Xjz9Zl1/s4fqAFU/hXo0FZ/StYOCdN15\nrxfjfI8wSs/wcx/E9Tj5m4OqHT9z99Vgr5KxGP+ftlLXHm3Zhb1oQin2LSW3VKp2MT6MUz/Vd2w8\nWq/atdGefOGDy9HuNb2P57pYsVRbjOtgiYiIU+fOxTJnDMMwDMMwDMMwDMMwphD7csYwDMMwDMMw\nDMMwDGMKCZvgHD/DMAzDMAzDMAzDMAzj/1csc8YwDMMwDMMwDMMwDGMKsS9nDMMwDMMwDMMwDMMw\nphD7csYwDMMwDMMwDMMwDGMKsS9nDMMwDMMwDMMwDMMwphD7csYwDMMwDMMwDMMwDGMKsS9nDMMw\nDMMwDMMwDMMwphD7csYwDMMwDMMwDMMwDGMKsS9nDMMwDMMwDMMwDMMwphD7csYwDMMwDMMwDMMw\nDGMKsS9nDMMwDMMwDMMwDMMwphD7csYwDMMwDMMwDMMwDGMKsS9nDMMwDMMwDMMwDMMwphD7csYw\nDMMwDMMwDMMwDGMKsS9nDMMwDMMwDMMwDMMwphD7csYwDMMwDMMwDMMwDGMKsS9nDMMwDMMwDMMw\nDMMwphD7csYwDMMwDMMwDMMwDGMKibzWi0ef+LEXx+UmqdfS5uZ4cev+Oi/OWlao2o0Nj3pxy94a\n/OGEKNUuLBLfE410D3zg3+V248NjXpy+IA9/c2hEvycc76l74RxeCA9T7fJuKPfi4b4hL07IS1bt\nWt7GeQy29HtxzsZS1a6/tgefUZTixb3n21W7nOtKcAxFd0io6ex8B3+7rl699s4jb3vxktsXeXHd\nniuq3eKvbPLiqkcPeLFvdoZql7E434u7Trd6cffRZtWu7OPzvbhx52Uvnhgd9+JgY596z9g4XstY\ngP4X5YtV7dLnoy/4qzu9uK+6W7WLzYynzyv24pM/eUu1m/HgEi+OiIrw4vpXL6p2g60BL1733e9K\nKDm749deHKjpUa/5ZmZ68UjfsBdHxESodtU7q7y44taZXhzmjAP+jECd/ltMX12vF6fSMYz24/1+\n5/1Zywq8uOdYC/5/Y4lqV7fjkhfnrsCc0n9F38PIxGgvTluUi2MI6DlgqCvoxa2HGrx4QjTBIYz7\nO378Ywk1F/b81ot7z7Sp15Jn4Rqef+WMF5csLlbtwiJwv+qPYjyv+sZtql37CdzvpreuenHFA/NU\nu2ALxllELOblpGLMWcHWfvWehpfQ97n3pC7JVe3aDzV6cdZK3Me4nETV7tLTp7x40VfWe/HF/3dQ\ntZvzd1u8eO+//tmLlz18nWoXFYc5OzNzo4SSw4/+hxdnrSpSr5387SEvLl6O+9Z8pEG1W/zVG7x4\nz7+94sXz7lqg2vkvYf7icR6XlaDa1f75rBcPBtGHE7Oxfl48X6vec90X1nlxoN7vxT0nW1W7yET0\nibY6HM+cjyxS7SJisJ04/dhhL5734DLVrq8WY3h8EPuD7JVlql1/U5cXly14QELN4V//0IuHOwfU\na5FJmFdi6FoPdQRVu1GaKwvvmOHFgYZe1Y7n1OgUrFeRCdGqXQytZSP9uI895zu8OKHIp97TSWNs\nfADXc2JMz24JZXjfQBPGcwytg+7nd1Nf4H4gIjLUhmuRWJHqxWN0DCIiA7SOr/3nf5FQUrXvCS+O\ny9BjIiwC+772Q5gnh7sHVbv0pdizDNI856vUe5uoxBgvHmhHO//lLtWu8xj2OkklmEO5r6ctyVPv\naX8Xe+iyB7A3uvLEcdWu5P65XtxPa+twrz4n3iPEF2IuHBsaU+2ik3FO6QtxTB3HmlS7YD3687LP\nfU1CTUcH9qFdF6+q1/qvYr5Inp6OF5zFm+fK1LnZXtx5VJ8L9+9E2pf7L3eqdryvTMjHNeT9Utep\nFvWe5Aoc32AH9oOjQb0fyViAtXB8DK9FRMapdo1vncdn0DNJstM302fi2aVh9wkvTpqWrtoNtuOY\nZt3wkISSd7+PPS/3dRGRpFk43kQaE+5cwdeJ9wjVz55R7SIjsLctvB3zbssO/dzCc2BMNua53E1Y\na1pp7ImIpM1H34mIw/xc+6fTql1sPo4vLAx9wj2nhFKcL5+fOz/7L2COj4zDXBvs02vTdJofSube\nL6Hm+J9+5sVRyfrZiueVUT/6Y9JM3R+b9mOvUbK50ouvvH5BtctbiLl3fATPdym0FxYRGaP+VPsa\n9p5pM9AuqUL39SEaf32XMYfwM6aISHgU1olRP63TzrqYtRb7ubEB3Mfeix2qXXw+9lx8vfxX9bNQ\nSiWOd9HHviQuljljGIZhGIZhGIZhGIYxhVwzcyaxBL+GxGbpXzq7zuAb49hM/GLRcaxRtRuiX6T4\nmzb3m7GEAnybzd9C8t8REYnNwLdZ0Sn4lrlhO34ljqJfA0R0NkfWdfj2KzxKZxZwpkfaPGRmdJ/X\nv3CnzM7Ce+jbvjbnG9iiO5CdMNCGX1rSF+pflyfG3d/vQ0uwk34JndB/6/pv3OTFJ36534sjwnQ2\nxXAffv1KXYBvlgeadXZL3Uv4ZjR7XYkXD3U5v0zG4h6V37XGi0dH8e1i+3F9PeMpi6rnLO5JUlma\natdOv1Iff+2kFy++Y6Fqx+8bHcSvgLlrSlS79362x4s3/e/bvTh/8zR9fKnZMln0nsT5Zm0oUa+d\n+zN+KZl5N7Ii3F8RRkbx7XNELIY+//IqIhJLv1gkleMadbyrs65S6Fcs/mabM2cyl+Sr9zQfwD0d\npUyovHj9q2zxluleHKAMnUGnH6WXYY7qPom5IswZ290XkK1WfCt+aWnaflm1K948XSYTHgdXzuvr\nuZK+mV//z/d4caBTZ531UOZdaiLm3ne+94Jqt44+o+1tXPf4LP0LA/+7/Th+tfRfwS/CF185q96T\nU4E5MJwyJjIW6fudvaLEi+tePUft9C/HqUXoZwd/8KYXj47pX3ovPLbLizMz8YvUS99+SbVbtRXZ\nbpl3hTZz5uKxahwPxSIiS+/F3x2grMrc5TrDpu51/Ao343r0xwN/0plCqYkYizG09h354yHVbv03\nbvTic5RtFB6LcbBg02z1nmj6VezKezie5h79C8+y+5d68UgXfqFvfElnDs744lovLt+Cczr8q/dU\nu/JV+JX39B78MlzhZMXl3zK5Y9FHe5BIZ/7hrFo//TLG5y8iUngnzrOX5pjEUr0mhYVjfWnfi7EY\nV6SzcqNTcU84wybAWZ/OGp4yD2ORM3QSCnWGDc/Lg5z1Upqq2vH+KZl+3RsNDOt2lFkQk4a9WPdx\nJ5tghp5vQglnH8ZfX65eu/TbY14cGYlxkOxk+wYoK4SzImqe0r/Wl3wYWSuc1ZuzWmc2qqxA3tvR\nnspXliVMQj7u1UgQ17n8k3rPwlmOvN4V3jZDteM9JWepR6foddE3Hddi2I++PTGq513O2psMemto\nr+f079wNyHLg54GJEf0LeAJlenbRtVHZNiISbESWYD/9ss1/R0Sk8zgybmLSMPcOdWPsDLbrTLpE\nOobUSqyFExP6evbVU0a3k7HDpJJCIS4Dc8VIQO+DOFuG1QZuNtmAkwEbSjJWIit6hLJ8RESGe9C3\n/FU436GWgGo3MUaZ8zQuB0d05lE47Qta3sAaPDqks1Y4A6WpCn2Cs1lkXPejbnoObDmL9+TO13ub\nQXr2SSzHHMoqCRGRziPYXw8143zTluvPSyzBHMBZFr58PY9PNr3nsN4lVei1gddMzvZzM9VT8nEN\n+iijLWd2jmoXuIp7HOXDuhNo8Kt2/NyQswT9bLAN17PuNb0f4b1j5QPISOYMOxGR2GzM15dexj43\nLUlntfKceOl5rA2p+fp+99OzEKsLOHNcRKT53Rq5FpY5YxiGYRiGYRiGYRiGMYXYlzOGYRiGYRiG\nYRiGYRhTiH05YxiGYRiGYRiGYRiGMYVcs+YM6xODTVoDlrUCGvrus9Docf0ZEV3XJZoqOnOFZBGR\nyGhoOv210PmlztJ1PNpIexaTDl1jAdWoYJcDEZEJ0rBybYykIq095qrLre/UeHHR1pmqHVfqz10P\nh6ahHq0DZY0x18fpOadr2LBOdTKo+RP0cekrtc7x8jN4beH/Wu3FTTsvqXbN5PbClfAdebDS5Q11\nQo+bOldrrP01uNap5dD8RUVB41i1fYd6z9p/utOLjz+GmgtudfTCW1AdfDH1s7xl2l1k+z8/7sXL\nH8K5uy46szbh/nPfZPcGEZHmg6RX3LJaQkniNFyX5m26Tkr5RtS+cR2pmNgo6G8vPYf7PuLU9ZhB\nrkeN29APctaXqHaXt6O+UPEa6LVHejH+Wg9rl5r06VRdnerZNL6q+5tvDtp1U42VZGescF2GYB3X\nDtB9ouTOWV7ceRDHlL5M1z4Z6dd1FUJN4XpoXwPOvTr3JJw5pt1GjjvFWvfLDnFcP6GgUs9TnVWo\nOVTfgfFW2Kj7N2uHR3rwd0s+PMeLYyL1UlF6N2ohjA5hnPdc0J8dQZpvrk3Tc1E71l04jfmlJ4jP\n2/rwTard2T/iGmWVoY9EOccXEa1rK4SS1Z+DM9RAq665xVr7YC36Y94WXZ8qnBy3zv0OtTE2fe1G\n1a7vKur+dLyDGkXrvnq9aldDThLjNCmPkztL30XtKsPOLWmzMD9HV+lr2Uya/tl/t45e0ZN/9yVo\n68PJVXHW1jmqHTsUzVxagU8b09r/t36C2kOf+NWHJNRwrZGU2XqfMUL1N/rOQ6Oee4u+j42vY97K\n3oC9gOuU13kAc07KAlzrGKcmBK+ZjW9g/Jbdh3on7v6mfS+cMXzzcB5+x0Wir4rcrz6K2mT9jrMU\nO//EklNVWLiuO8guOFzDLGudrsESk6odaEJJ/k24Hy1va5cfdnHha+E/p2sOJM1ETRLu0VnOesfu\noFyX5/Lj2lEpNhfXid3cmrajr7hua1z/qe551OZyXcTY1bCI1jTXrclHLj0xqdhb99XpNefqU5g3\nuC5I+cfmq3YXH8ccVblOQg67BI45Tj9RMaihkrWIzqVBrzVcE4kdU3jvLSKSVIJ9x0Ab5m+uTyKi\n+z7va+PoGSfG+Wx2Umw9hHnT3eN3n8Iz08QIPjvXqZsUTTXHhvux7re+q533uI7lCF2HtkN6/xWV\nqOtohJJxOg+3DuSlJ1ETp/Qu1D4bKdA1t/h5cZDqK/matHNOZDLOg2skun0nmuqYqDKa5JTUeUnP\nkxX3YL1KpPNw53R+hg2S26Fb8zSenL785OCbVKb3dVz3LDIJn8HvF/nL+p2hJoLqc3HdWRGRcNpX\n8RrfeFzXT6zYjLm39g16hlhcoNoN9mPOSShFbR13b5xWhvlsoAn9go8nl2qcioi0U41MntvqD+qx\nEyCH1orF+Iwhp54U7z25Li4/74ho90Mf1btKdFwWY2N1P3GxzBnDMAzDMAzDMAzDMIwpxL6cMQzD\nMAzDMAzDMAzDmEKuKWtizYqbujNGlmXxlJrW5dgoJpBV5DClY7lWk8F2pNzG5+I9nConolO8OIWw\n+S2kEBbepC1DhwNIB8xfuN6L264cUO3yN0AW0HkGqf78d0REOg4jfTuRUtMS8nT6WaCRZBYR+B4s\n1klp7a8j61KdTRoS4ktwXHHZOjU5KRP/7j5Hltvh+nu784eQmjaTbBqTHJvC+h01Xhwbj7St2V/c\nrNr1tyHlrPMi7l0cWbYvf1jnz/Y1IY26aB5sycrvuE61u/L8Hi8e7YfFW/fR11S7mddBCtdxAMcz\n8yFtvRsWhvM48oPnvJgtmUVEOvdTCukWCSmcUh0Rp4dtE0nw0ik9v71XSxHLVyNltuO4tmdmzj6D\nFNS8abC+u7jtnGpXMBuSILbS4/FSdpcei+M0b/gvYcyzjElEJLEEacDKznu/Tp888RxSDReQ1Gao\nXVs08vt8c8gG2rHcbtpBkrFbJOS8873nvXjxF1ap1zJIRtr+DuafE08fU+3Wfh2SlqpHjnjx5fe0\ndXrRHKSQpichzTs+O0m1i6d0y+x7S+kVzAFJmfo9ta8iHb6XrEA7+rTMZ+5WyDGG6PzOvadtD0uz\ncE+mfx7WzUNdOrU0fwHOqeTmFV4cnabTy9MX5MpkMdiBvuWuiyyPYdnj2KC2mjz8h8NevPQz6Afn\nfnNYtZv92WVePEx/q+e8Tulny+zICMQZK3C9+q5oWdPlA5h3l35mpRfH5el7veOxPV48rR/S0Oo/\nnFTt0hbjmrPMIlin56HaOuwRZq7BHFx9sE61S4qbPDmMiEjGEkh82w/oeYXva1QaJCcsdxIRiaBU\ndLbo5fVeRGSYJRcFGG9NjpwzJgcp0akzIFkcG0D/6SGrVxGRgB/7qpLZGEdNO7X8NWUu5tiz/41+\nFuGs9TM+vdiLG17BOPU50uQxmvM5ZZv3RyIiE6PYLxRVSkjpvYK5J1Cj5VksDWDJXFyh7t/9l5FC\nn7oA43fQsR1mOSxLqV0ZA1tp91VjzIWT9OvEI3rv2T+IfjVrI/ahybO09L77GNbttFlYfyOzHHkN\npd1f+CWs7F0b8fhC7A1ZmtZ1Rvex+V/aIJMJz/Ox6VrC0nYM/ZjlMm47IYlgVCzuccfJatWsj/oM\ny27ZLltEZICskjsPoU+z3Xrh7VpKPNxHksAMfF7XCb3fGiDJa+4WSDu5v4iIxGTg8zqPYP8b5dj8\nxtK589w74Tw/saQ01LB0JKlUy2HKSCrE82Tzfj3nz/gE1pdoH+Zd/wUtRczZBBk9j+36l/S+Io7s\nqrM3YW/TRvurrAVa2t5zFmvraB/m7dqqJtWuqBzr3dHj+LsLB/U1HwtinkwiW2y11xTdr9hW2pWF\ndhzR82uoSV2MPX+Ms6+q/jPKIcRR/y5arqWsPHbyV+E1llKLiGQuwrXnZ5KMxfqejNH62XgB7dhi\nfU6hlg01dWEsdb2IuTwtUT8Ddwewn+O9T8psvd6l+rEn6NyHtSA6U18jXt9ZRth5TPefvFu1RNrF\nMmcMwzAMwzAMwzAMwzCmEPtyxjAMwzAMwzAMwzAMYwq5pqyJU+CyVum0pWAzUtO48nihI/XgdO5e\nrort2PywBKjzKNK2slY76VKUapo2D+lXnGY64Xx2atYSL46PhxxmuHePatfVg9Rmdk2oflKnbyeW\nI2WPU+9c+VO0D+lOwSacH1emF/nLtO9Qk3Md0vmiErSkKrEcKb0NJA3z5eoUMWbavZBVNLx7UL3W\n1I3Pm54Np4LBgE6TbXgVaYCpC3AfORU7wqmeH7gK+VfBbUiHr9+jjyGa0l1jKIu39l3t5pCeiZR/\nls7U79buC6OUlsgVtpt3aBlJbLa+tqFkhNIrffN1ul37TlzLCXJOq7xRp9yOk+NA5lKke/Zf1qm0\n0d1Ik+dK+MVOiuO7rx/14r4BvOeWeyEzq3lBS6FynPHs/f91perfvezmQ8OKj0dEJLwKL7LbQpgj\n32unlMlsqure8qZOeXZT/ENNWhKlvNfoivScuptC6fUsaRMROfAfb3nx6m9CPxcWpucflnOOUMrx\n7n/brtqtIKey3z38Oy/+6I8+7MX1tXr8ZnQh/TORpKbla+eqdh2Uis2pyOcv6Ir5J2vx77w6pHvG\nOm42OevQT0ZHMR/kbdAuF637arw4VxsE/NWwfDXZcaV498e4N3w3pq3Ux5eTAtkep+fzOBIReedH\nu724YhHOvX5/jWpXsg6fX7gVa/BVcnEqcxxYhtqwxh39b8gsqpp1Cn4qrRlnHsFcW7hRnxO7SEyQ\n8RLLmEREFt4J+SG7W1Ws1p9X67gqhBp2Zgt33L04rTyBnFYmxvXeYmIEJ8puG12HdQpz8jT0kz6S\nAbIczf08TgFPoDEW7riGZK7AniZI6eRJ07TkmN1F2DXDdcmqfwkufNXVOI95pdpxJrGCzqkGYzG5\nUktnXLlIKGEZNDuwiIikz4fsgPc9F37xrmqXugTteK13rzMzQvLc/LU6Pb2TpEenD1V58aoHIMPc\n9YaWL7KsqeA0rt/VFj3vLtyM+bXm+VNePO0+LQGvewty19n/C5Ly2p2HVDt2lEsh2Vqy03e6ziGN\nP3MS3JpYbj8xqvsjy8bCSS442Kklr+zQFxOPvpk2V0tcw8LCKcYjUOcZLW1MnYt9ae56rF2DNM+x\nc6uISM1L5724kJzEUmZp2XYMzflXX8QeyXUdZDfKknsgEW915EBNu7BvTqS9bMGmBapdxxktpQkl\nLEVvfbtGvZZGblJ9VZj/8pz94DCtBywlY/moiMih3+7Ha7Rny8nQciqe21LLS7w4pQx/N9DqSM5I\nEs9r2qxSLdGvfguS1OXXYVy2XtBjlp9H+zpw7jNI0iuiZU2jtDb1O/vEplO4Losl9LAkt3VvjXot\nipycRrrI0TCoXbLSaE5liZP7rNvSgXMrI6ekd17S89SSxdjT5JZjb8ylUg6/rOX/izfDkTCMnKXO\n7Dir2i24CZK7+jfxTJeQrNetUZIWxxdg/+uWKWkkuVr+TZAspszRjpC81rwfljljGIZhGIZhGIZh\nGIYxhdiXM4ZhGIZhGIZhGIZhGFOIfTljGIZhGIZhGIZhGIa421yfAAAgAElEQVQxhVyz5gzrHV0L\nySGqS5E6D1oqf7W2PPOfR+2IcdJTDzRrrWYSWVL7ZkKfqWymRSQyAdrDKKqJkz4bevzwcK1PHBqC\nbrp23w4vHnTsdhPIiuvC29AKs0WviEiwiertkEVeXK5j0cg6bMdymuEaGJNB63vQ7pfeou17uZ5F\nfBzuN9eBERFJb6TaNO9BD+ha2EaRjWvORuh061++oNpxXRjWdc771Ee9uKtF6w5rO6EVfO5HsMWu\nzNO2a1n50NxybYvcVK1HTSyERnakH1rXliMNul0qNIUzvwjBdetRbYOaOlPXggklaXQ/eByJiMy8\nE3rXqpdwjer2ONbK63A/uk+iDkSvX4+D3PmoR3NwG+rvZPt0HaKBYehi7/3KVi++8Cy08PmLC9V7\nAjQm4vIxXtoOaA0112/i2lesHRURWfIp6PhZw9m0U58700XnnnWd1jw3vT55mmwRkeAg+llsptaq\nxueirsRoENc2GNBz79z7YTdZ+zKuNdc3EBFJiMV4XnAP5rCgY0/dS3P0h751hxdfIpvuI5f1dSnO\nxBxdNIQ4Pl/PgS+8uNeL74mFRf2cRRWqHc8jY4PQL0fE6CXq4iOo1ZB7Pfqzay+f6uh7Q0mwBRrq\nnpNaX15Ugr+bQGuaW0chjOp/sC22WzeoYmGJFydSzY/R03qOYhvTxp2Yl6LJBtp/Wa/Ne/ejltrt\nn73Ri31vaK11CtUw+PbPUJPoFw/8o2rHNVdYn8027iIi51/DHBUThfcs/vJ1ql1Cka5xEmr4GBNL\n9Now1MP1c1AzwL3fMVRnjPvtYL9jsZ6JfsH1Ew69cUq1W7gC2vqm89hbcD0Ct17fGFm3lt2LuaFl\nn2PTTfWbfGTTXfuMrgvGtbsSYsgm2umbXAuEr5FbY2a4R9dRCiVN23GObl2KrtOY59kmenhU10dI\nX4D6CFefxP3o69Hr4syP49o2U62yxpf1vNs/QJbCZAffvhdr3IbVuhbIwSOoVRII4nrx+BDRt77k\nLnxGsEfXOOq/hDpyw6tQ67Fg0xzVrvsS6qxwH5tw6vco+/ZJqDkTlRjzga/xOfM9TZur96g8j/ry\nsb6MjmqLdX8NrkdmJa5hxlx9DH1NqO0RFYX9e3gG7k/Lbl07qOAG/N3BtvevXSIiMkq1VdJnYd8Y\nRc9cIiLBejxrXP0j+mbKfL2+RZPdMv+tpndOq3au7Xso6aJaS1lr9L6K9zNxBdjncP0ZEZGOg7jm\nPrKRf+HpPapdLI2L6zehpmhzlZ6f43uxZ63biZokPqqLNdyr5+oEOr6iZZu8uPXSPtWu4qZKLw5Q\n7abRMV0j8BDtnTbMRt2ahiN6z1u0Cs+wgRp8XsfFNtUuZ/rk7W1ERFrexTOTr0I/tyZQ/+R6Lylz\n9TH1kh15Cn0/wGukiEge1Yk6f0CvV0zdZfSt+k70mRXzsF7Gx+i+PdSOfW7bZexxw526kid3wB58\n+vwSL86gupwiImf+iGeh3JnYe7J1vYhI9lrUWuUlk783EPnLeoouljljGIZhGIZhGIZhGIYxhdiX\nM4ZhGIZhGIZhGIZhGFPIta20EyEnGBvRqVpswcd20okFWvrQvhcpUiMkOyj/hE7rZEmCn2x0M5Zq\nH9RRssyOjkY6oM9HKZ5BbcG597u/8eLhEfydhi5tIczkpyGV27W84hT1sCikZdXv1ba8lR+BlGCA\nUuFZUiIikjPJsqaLB5BWl7dJ25UWbMR1G1uHNLVXv/Wsarf202u8mNOe9/9a21Iuvhcphjt/9oYX\nz8jXKWLpy/Hv8o23eHFHAyzyfv7wY+o9nCLsDyJlbeWMStXu4HFIqO75zp1ezCnLIiJxKeg/vVVI\n7V7wpTWqXX89pDhdVUhFjHdkbGGTaMPMMsLwKG3x2XsW42X6HXPo/3U65LAf6ZtJlejf+ZXa0m+w\nA9d2ZgHu07hjI7tmIVI0WQaQOxcys+EOLaHJ2wx7SbZb7KxqV+049dwXjzT52DxtkT3QhHE1xpbn\nGTq1ns8peJVSRs/pNNhxRzIQakpuRl9teF5L/Zq7IB0snQM5WFe/loAWUhplKqWTzgvXsoPuS0jf\nrnsdqffuGfJ1a3gFtuyF98zy4iVd2s5x2jKkdY6TrSyn44qI3PdJyGUuv415yLV557WGPy8iWqd5\ns91r3XacU/ZyLZ9Tlsfa6favJokkMK7MJZ7sRC/sxv0tKNKSR5Yv+Sm1OzNNr58XjkCet2YZ9ATL\nv7xetfvTN5724vnFSClv95ME9+B59Z61SzBX7Hoc8jPXTv78YaTuczr58ccOqnbTNmAe6TqCNOSk\nDD1mF38S1r51ryNVmFPfRRyb5EmGbaZFRBKLcI8H2zD+WMYkoi1P2S43y5lH2vdDhnbkCu7p2tXa\n3pytRjPzyKq6mmTFzr6lgPYq27/9ghcvul3vscYGMc6HyIa44Da9foaTdDT6II57bEDvgxJIOsjv\nadzuyH0diXQoYYlmxQP6WraQ9Cg6HXuHHMe+t3nPVS/20fwS06ZlTWM0L/lm414Ptus1LpmvH8k1\ng/WYG/ftPqnec7YO+4rlizE3JvRo2XgazffDtC5Exkerdry/6q9F34nP0/v4zgO4v3lk+8rSTRGR\n9GV6/xZq2sgaOvc6vUcd6sL8mEIlDyacMcbXuqcefTCv8kbdLhr9YiBQ48WR0Xq+8RVAnpCcjL7V\nUrvdi5d+/ivqPR0du7x4fBz9ZTSgpTORCZBg9Nfh/iQVp6l2gQL0mbZ36FmqT39eYineN07ParHp\nWhoakzp5tvaZq3C9zjxxRL1WcQv6dBdJ5Apu1PLmy69hjYq4iHnuupl6v+Arw/mqvcO4lg/H0nzN\nEulxeoZzryXLwvyJeGZo36+t1vPJKj2GZGUjPVrmcuestfS3sF4E6rWki4+v+F7srZuc+dQ3Z/LK\nJ4jo9b/b2ZfHp6D/sDytfqc+RpYOcSmC2Bw9xnrJJpwlnPPLSlW70RGMpX/4+c+9uKHzJi+eWaC/\nK+irw9ipacOzUG9Qz9eLy7CX5RIKwSY9B2YVQeLF8qysZUWqXe8V7LvDyZY8IT9Ztes5j3ayUv4C\ny5wxDMMwDMMwDMMwDMOYQuzLGcMwDMMwDMMwDMMwjCnkmrImrt7uVlPP34IU5l5KfWrdpytQR5Fb\nBKfPjgZ0CnNsOtLP2juRVhZo0Gnypcvv9uLubkhqOjp2e3F/o077jYnEaSYnIC3riT17VLvjJ054\n8Zc/9jEvLunUaVAXSCbEjjWVxTqtquMQUkZHqCJ4lE9fy7b3cM2KZ0vIWf8NpHW2O05EYeGo8s8p\ns2XZuvp20zac8xBJwyqX67RElhOs++hqL06ZkfmB7Vqq3vHi2mchL3r4lw+p92z/3jYvDgwidTA8\nWn/HuPEuOPhceBTplcmO+4e/EdeCnbvCwrRsaKAVr3Fq97gjneG0x9zP3iahhN3NXEec4Q6MFx5X\n3Vf1OEibhgr1NeT2knFBp1cqByNyTUpfkqvafZBbR+AyUhXjCvSxTowhnTShGBKOZHIPERFp213j\nxYnTIDHou6DPiV2d0lci9frS61oy9MRbb3nx1x+6z4sHa3VKa8GGMplM6ilFNcGRbWSPo39mrCh4\n31hEJCKapm1SMoVH636bSpX2e67gumnxk0hcHtItE4pxDCxfTE3Qco6Os0hNzl2JtM7hTt2X/vOn\nkNv83cP3enHT21dVuwVfhpPTyADGW0KCltzlrUfM1fgTS/TY7jwE1wdZISGl4zDN6906hZnHzrQh\npOc3HtPzbmoaxsUwrXf5t2gNVqlvHtr1ot3lR4+qdiXknsVr0u7TcOtYO2uWek9bE6WN37nci599\n4g3V7lIzJEq3LV3qxTkFeszGUcpy5lrIzNgVT0QkKgop6dxn43x6jRjo1SnVoSY6GXuT9gM6ZT2p\nAsfYew7HweNDRCSSXMLYtcc3T6eeJ5Jz18JxpGz3Ow4OiZT6PEop8FcpLbskS392LMk5Wqshwe18\nT/e5JHI/iaa523XQ8FOqeWQS2uVv0tKCkSC70WAshjnyyjaStk8L8Vj0kcQw0Kj3ikkzMP917cd8\nkPUxnYbOrl17f4F1gqXtItoxMYIdrQp0ujpLkOOzMSZ2knRwxXK90esbwHtYgjXzk7eqduPjuM4X\nf489b9GdemwnUHkBlg8HGnV/Y5kxu4kkOy4tkXFaNhVqEopwvKODek1mN5TMOeiDvQ16DUkpx/4k\nOhr7146Wt1W7+GTMTSxlaj2spRm5y+GCOT6OY8guut6L21pe18eQtsyL+/rgStd6TB9r3nq4zPCz\n1WCHljCzg2PxXegzowP6+anueciBeL/gOvQlFJOsTZuc/tW0kzQtLVPLc5t3QUqWuQR/uHqb3qfl\nLcQebpD3vBl63q05hjml8gb0idxSPTfyHMhyloIlmANYjioi0rIb96rvKubCFEdO1PJOjRezfKrw\n9hmqXes7uszG/5CZrR0C970A+TA70BbdrefdHnLXFG2+GxIiaE129+WpJPtkWX6uIxVlJ9JIx0WP\nSaT1dKAZMiKWqomI7H4MY/gfPv5xL+a1sNGR+/K/s8hpttx5tk0rw1wXm4XjjsvW+3OWu3Gpk7i4\nEtVuvAjrabAVfdiVSbmuiy6WOWMYhmEYhmEYhmEYhjGF2JczhmEYhmEYhmEYhmEYU4h9OWMYhmEY\nhmEYhmEYhjGFXLPmTBTZSrm65N6LsIFii8GYdG39x7UA2EpbHFte1lCmLYR2NKNyjmrX3f2eF/c3\nQQ/IFmVNOy6r9yRmQ98/PgTNZZ9jqfWzL32JDg/H13VOWxKzleW0HOiQozP0ubNuLos0eWzNKSIy\n0q/1o6FmpJ80vM51TyqH7pHtDLlugYhIwSoc/5k3UBdm0c03qXbj46TLI+1wA1n5iohkUp2KmDTU\nbim6C/rKxh1aA3zD1/C3ev4FlqGxTg2WF/4ALfZMsvA+u09r8LfMg/bw7H4cX/6Nuu7DMFnjRSVC\nP5kyXWtV/8KjOISwNvPSq+fUa9NvhxZ5hGrOlN6utaqsbebxHJmgNaHjVBcmvgia54hYPV207II2\nN5nqGaSvwDXvPaPrRgy0oO8ffx42uhXztGa1rhljbnoudKB5t+p703kYtQTOvXLGi9lCWETk4du2\n4pjIWjRrkRZeDzQ6utAQk7sG5xmXp/st9x++P2y1LCJSvAV29cFu1H4ZqNfnnEBje8nXPuTFfe1X\nVDuukTBI9rEnHzngxXmLdN2bzlMtXlz3LvpBdau2lv7nX/2tF1/9I2wp+wd1rZaoKPSfiAhcl5ER\nbeHNVsEjZLc+nfTAIiKJFVrPHUp4rSn56Dz1Wu1T6IPdPehLJWt1LSO2PmWL4zN/PK7aLfl72HDy\nmjs4pOfn6ZtQz+2tZ/Z7cTTVW0tL1Brqf3sa9YB+vf7rXvy3j3xetXv87x/z4vx0qkXhaKZzZ+NY\nh4YwLt176KM6OmFRqDc2MaFtfvl8CyahFFTDy7CNL9iqaxtxHTi2/8xcosfBsF/3u//B3S9Fp2Du\nTaL6GmypLiKStbbEi+ufwzyfm4r+XLBFz4Fs47qFLJ4b3qrW7WiMcM2ZiBhdq6r0VhQyCAtD/xno\n1+tn10nUIuL+nFyp6xREXKPmwF9LMlkrp1Zqy+6uc6inV/GZRV48Nqz72UArxul1X1jvxUGnPkty\nEdaKhjdRyykmU9fj4j3ms99/2YtT4rHPeXOvrhm15a41aDcLdRR6GvRazzWauM5MF83HIrq22wDZ\nsw+2aHvwwvWwW4/PRB+rfeWUahdD9fWyQ1tOT0REEqjumVu3cpyeL4YGsC8YG9BjbGyM6jpG4VyS\n03Q9nrAw7Mv9LRgjxWvXq3aRkRinbfV78P/0XNRxvInfIn1pO9CO+n18ga7B0rIfzyhxuVjvArU9\nqt3YAD4/msZ5QqH+PN4391zAnit9gd7ftO6j+icLJKTwfmZgQu+jwqgu5PgI+qYvXe+BxmlsJpRi\nz3v2zfOqXUEG1qGqXah9suSzugjLaBDrZDFZVQ/QPse1F2fb+Jbt2Cv5pus6TLPv/YgXX3jpKfxN\np1/ymOU6i6POc9+yEti1u/VOGLaTnwy4JmrKTD2Xj/gxxnKpPl7/Vb3Gt9P6GaSarTM/u1S1C1Cd\nKx5XQ85+bv5s1O/jOjjtB7Amza3U9tsfhG+urh2UTPXl4tN4DfngBzreMw8P6/15Svpiaoe6uO6Y\n7busa+S4WOaMYRiGYRiGYRiGYRjGFGJfzhiGYRiGYRiGYRiGYUwh15Q1tVHKEFsIi2jrMLbUjUmJ\nVe2adyAtrPheyC/6nDSowQ6kPkWn4jOCfTrFsfsc0ubHKXW44zDS/4ZHdVrZrt1Iz79+Luzx/n7r\nVtWurh3pgKs3Iw2WbRNFRIr6kLJXsR6pXZzyJSKStQKWfWwJHqjTqYvxTrpTqBn2Q0KQv3a+eq3x\nPaSvpi9GOl/QkUj0kT3yLd//nBfv/e7j+m+x1GADUsXDIvX3gJxu2HkUKfAVt93gxakl5eo9kZFI\nfV29CmmhbMMoIhIRjr9VvrjEi+c5Nqj+C0ibX3Aj5HNX/3hStSu4FZKB8TGkusXEaUu22AydMhxK\nJkhCkJKa9IHtOE2+54yW47EsKSoJKYRslyoi0nUQ9yOPUhfZblxEp53ymO05hhRrV17CEqq5m3HN\nG9+tUe1aejFeiprxd3ui9Dnxvc8mS/GK1brvdJ3EvBEdhWMIOjIm18Iv1HCK/8knDqvX/GSnuvGr\nGAd9VVre98bBP3txQgzu3Yqvb1bt9v/7di9meWnPWS01SyEpxJW38LfYvtdXrdNsi2hMfO2LP/Xi\nXzz7z6rdH7/1jBevJWvSnjZ9H8/99zYvnvPQ7V7MqeUiIjd8a4sX7/sh5IsJZbqfuWnkoYTTlFn6\nKyJScAdsNC/9HMe3xJHD9FzA+SeXI106b7ZOQ2fb9C4azyzVFRF57jHYX/tIPpFDcpgIR0LzzJs/\n9uL4VPzdAX+zarf5PsiVJkgWmzJTpwdffPElL04jyWjAsYvuGHsEnzEDfa/tuO7nPA/JFgk5vtmU\nHr1fW2nn3VDhxRPj4/JBRCVg/EWRNbf0672A/xzWmtwbMTfFpumU+p6LGJszP78JH9eCaxGXqa2b\n2cpzpO+IF1d+dKFqxxapPefRl9IqtExKBP3E3wrZB/dFEb1usKV4RIyeK/qq9V4vlETRetJ9Qfdb\nliOzAq95l5Z1Jk3D+OO9Gb9fREu82k/gb6WUa7nDqYOQy61ehjWuvhrrYtCRjbOdLw/TQSe9n1/j\n9bz7mD73zm6MuZl3zH3f94iIBDrwvu6zWCNdydBw9/vL90IGnVjmUj1XtrwN2WxEFObbtGla69h+\nGtL0pCV4XulpPaPa9dVATpA5H+P8yvadql3JDdd5Mdu0sxwhfYmeryPjcXyDHdi3JOTrMcuywo6j\neHaZGNNSiryNOMeoeDxzsSxKRKSPpM+pZPkeGafnl+Rpuq+GEl7H4vP0+fZSaYjEUqxJeesrVLur\nT2PvPdgECXxSnC4Zwf0lJeGDbZsv/f6EF8dx+QRap9sP6rk/2ICx00OlL0qctT4qCnuMkpsgS+xt\n0veGJYZcnsDvyFqGSGrF12iwU5ffGOJ9uH6cCwnZ60q8mKW/IiIxmbiG3Pdj0vT9GaG5c7gV17Pm\nKT0WuRxC/mrI9eveOqiPaT2OqZPGS2QU5rNgj75OmUvwPDsxinvAsi0Rke4zmPc6RzAfpi/IVe2i\naL0LC0f/azmgpaexmZAOpk/HM/ClP+9V7dwSIy6WOWMYhmEYhmEYhmEYhjGF2JczhmEYhmEYhmEY\nhmEYU8g1ZU3Zq+Co41Ylj6YU3qEupBO5aWVhUfj+JzoJ6WfFq5apdgMDSAWamEAKUs1Lhz7w+C6f\nwHvyKH37fGOjajeDHHtiKf2qZNNs1W4apYux28KQk1Y2byvcJjhd0a363XkaKVJ8vdj9QUQkcZJl\nTd0nkE7bfUq7qbC7FqdhujKksg8jf+7qLqRnFS5zXHYO4Z6kzkV6pSuL81cjpS9nHapst1045sXs\n/iEi0nppnxdzxe623TWq3abVSOce6aEK/rN1WmLZHau9+OLjb3rxtI/riu+BdqSkB5uQ3nroV0+q\ndkXTkeZXMldCSvMupJenztNyKpZZnH8WaZwseRERKdkMKQqn6kc5siauKs5yw8QiLQvzVeAejNL9\nTalEirabMvrmr/Z48diYds1g1t2IiucTI2iXvVr3N5YLRpJUK8rnyCu7kVofTrK3uSu0G9z4yAcf\nUyhgWUheub6PK8h9g9uVf0LbKlTSHHv6PzEmjv/4TdXOTym5ySW4J8/86FXVboMfnz/rHozzWZRC\n33lQz6nvPg7XvO//+xe8+Cd/+xvV7m///RNe/OS/PufF6Y5z0KwHoVup2f22F+ev1QOp+g9Ie2ZH\nuTPvXlDtNnzlepks2BWr67R2SYkgR4hb/vVOLx4d0BIJltNdePWsFy/41HLVrn4b0ornPbzei0/9\ndI9qd+ttmMsG6vHZCSQrzN+oHYlaD0AuMD4d/T6r5DrVLuUGSBo4lbupSssAcikd+shP4cI080M6\n9zpIMieW3AauarlvdKZeT0NN/xXMCY7xlLS8XePFY+QyWXavdptISaN/h+3xwqY3tXSG5Qp9V7D2\npRRraUZ0Cu5dTAzmh/TZSJtvb9+l3tNVB2lycine46/Ra33fVcgE2MWl8T3tEFa4Fn2Q59dYx5Uo\nbTb9ras4Jx4DIiLdx2mMhFieNk7p6q4kJJ7cY9gR001rZ2eUxlchjclYpeU1ExPYExZcD2lav9Nv\nF16HefwHP/8TPi8Ze8UPb9JjjPtEHs150T4tfYiKw7G2HSOnoXv1Xjb8RcyHfH4H/usd1W7mDXD5\nYRedYLOW+8Y6soVQw+Mlw5E1FW7BMQ504rgCDXpvwa6f/f2QGsT60lS7oRTMZ/3N6JtchkBE5Mqr\nb3kxy6eHST491KnlXqlFmGMT0tDnBvx6nUjKxT4mfgvkQIPdui+5LqfvdzwiIj6SxcVmJbjNPXiv\nGGrqnsE1Z8dPEZG0pZCIsCwn4BwP7+svvIZ1sfw6LX/yn4eM69RlPHMU1Ol2LL/m55s+csVyHTpZ\nAjP9VozlzKKVql0wiPVzbIw+u1qP2dwNNMdz2YHzHapd3mbIS/1VeC3KKRXCrl2TQbAJ1yMY0PuW\nrHXot40vo29mritS7eLJlUquvL+zs4j+fmBkBJJelv2JiHSRbJPPf7ARa1rfgOPYSfu0IPW51mN6\nL8vlBCo3oL80bNNjr7MR+4W0HHoWctadiZn4d+QstMtcpeeX0aB+JnaxzBnDMAzDMAzDMAzDMIwp\nxL6cMQzDMAzDMAzDMAzDmELsyxnDMAzDMAzDMAzDMIwp5Jo1Z1rfo/ohTp0LrkUx1I7YtWDOXA0t\nWlQUtJ/tV/epdlz3ov0QLLxdm+nuo9Celc6ANnX326hVcsONWhc+0gftZ9Ht0K8OdmprYLYKzt8E\n7WhMTL5qx7r77lb8XX+N1hpOkIb3Wtp6/neBdgAOCVyLI9rRDtfvhtY3OR0a7ZL7dC2OV7/1ohez\nrV1gSFuGrrwfevWuU9DZJpVqq9tMspYdCeD+5M/d6MWXtr+o3hNOVp6HX8Z1P3xZW9e9cxJ1KV7c\n8TO8P0p/F9lZBU1h6YdRR2h4QPfh47/Z78XjVJzghu98XLV7+ZuPerGuHPHXE002fq72v+1tjNNM\n0rWnLMpR7brIbj59Ofp0y66rql3BVvR9riEV43O1zNALB1vJqjoMGtnMZVpnuYi0/396FjVS1syY\nodpxjaJY0sw37dL3uptqHeSvRe2iwTY9tpc8gBpXrW9Aq1/1hq5VMuuuSfAmJNhyMDpdj8XXv4Na\nMDd89UYv3vnDHardvT/+qhf7B3ANIyO0frtiBq790R9BP3/jzbp3PvGH1714zmloinsCuIZcs0dE\n3y+ekzfO1TViOg6gLsBMqv2V5tScYdjmvedqrXqtvRXHcfO/Yfy9871nVDuugxZq2tpwDPl5leq1\nmBTc05EAtMz+6k7VLjYD9RGyC6CzTy3StsbhUbinkZGYQ7v6+1W76KuYG7XdNWoRNO3RVtWRNKf4\ncjHmW6u15SPX4fDNhX32YJs+hrLbUEdj1Tdhh95x1rV9xZjNXYO/23VE17XjvcNkwLVHMlfpWlZC\nNbna3qvz4r4GXTsiOhpzSe8laOvj3LpyZPU+TPbIY2P6GsZl4n3h4ZhHR0fRn+Pi9LFG5KLPtRxB\n3YdIx/o1mWqEsWV3jGvnXY/7HRbBNQN17YMBuv9c74XrwIiI5N+qax2Fkt4LuOZFW/Se5ex/onZV\nQiHWxfwt+nha9uAejg+j9lJMul7v+puxxvGeMqlC1zRp34v+8vnNm704Lg/3Nm2RtmlNKcNc3d+C\n+dS1Wud6jHzfmnboMZZQgj1qoBH7mdI5ej3uPY1+UHgn9sZ9F/V8lbpQH2+oKdqCdaPzbJ16baQP\ne2e2Aud5REQk40PYU3aeRl0J37QM1a5tb40XszVwmmOd23QCzyENb2JPmUv1Lbtf13tFrtXItUvG\nhnWtjehFuD+jQxjb/sv6uvO4Sp5BNtjsqS56nxaXgX42NqxrhoRHXfOR768ia2OJF1999bx6jZ8L\nczehBsuEM1fw9Zu+Gf3x8Z/pZ4F7blnnxWuvR43JaKfWINe/ynD2mDi2d9W/U+fiWXfnL7C/WtGq\n5+r8jZhvGt9CfRzXrlxZNR9Av6z4zCLVrpPqul6mtXr+J/TzrFsDNdREJmLdKLtjlnqtZQfmyth8\n9DOeD0X0dZ9+L56tnG4rLbvx7JG7FHWzfNP1c+Vwz/vPAe1+9KvaDl3DJ7cEe5WslZj3Wvfp+SUm\nCmPnqd9u9+LNC3Stx+FRjOFDJ/DcMCMvT7XLLcJDfMMh1PjqOtKs2g3SdwLTVshfYJkzhmEYhmEY\nhmEYhmEYU4h9OWMYhmEYhmEYhmEYhjGFXDPHLSYdKbeTSAUAACAASURBVH+uBXNkAlKB2HY6riBZ\ntfOVI606OhpxVKJOYQ62kH1XA1KVUiiNWkQkfQVSF5veRIrVxnVIETt/tFq9Z/N3YGkaEQHpTnhU\nmz7WEqRRjwwidT3Wp9OW/H7YFSvZR4qWKSSR9fBQN1KZWe4kotPIJoPec0j3ytlYql7z5SK9Mu9G\n2NAd+blO9bvz3z/pxcEe9AVXPvDH/4v0w7N1SB+7d/Vq1e6G737Wi5NykW548vn/8uKMRfq6P/nN\np714wyZYLTd06lTQe9Yh5bH9XRxD4W06rTE+G3010AzL0JY3tcxn1TeQmhwZifc0vHdEtaso1/K3\nUMK2spe36ZTRgiVI2YshyVP19ou63TL07+ptSMsr3zpTtRvuQ0qh/zzSni8+d1q1q7wLqcicjspW\nfANOKmh/Da7z3/5fyFIC9b2qXcpMjHtOz2/br2Uui+5CSmv1M5C65d+kLRVrn0baaUcv5pfMTC23\nY1v2Su3kHhLGh5A2z9JJEZGUWTjnpjcgN7z3x19W7VhWef13PuXF5x/fptqN9kMatuSrN3nxYK+W\nKH2+8H4vniALzEAt7kl8vp7Xg5Qqf89D/+DFr770S9Xu1Sf3ePGXnvi5F/f3aznZ8DDmlJxFSIMd\nH9fprcu/jPn7/COwch4a0baEe38DSUPFso9JKIkg+VigUffbyDisB+/+FFKyytVarpS5FHNFB6U6\n1+zUcl+2TJ3IxrUoXaClLSwDTJoGmUXO9PVe7K96Vr1nhMZ52zmk7Z9+Wlsr55WiX/7we7/z4r/7\n7N2qXfs5jLGwCOQvp83UUoooWu9GgpDOpS3W8z3bC8tCCTnD3UgrHmzX81SA0vBz1mPN5HVcRKT9\nImysWc7Te65dtctag7k3rhIyi5Z92q4zLhf9OyYJ61DVKy+8bxsRkfg8jM1UmkOGerSkoY1k6qMk\nL00oSVHtUqbRZ5AEq/qJE6pdfCn6ZtpC3Lv+Wj2/jPRSv50nISVrFa7ryZ+8pV5LzMF1ytkIKQVb\nuYuIjPhxLVhm0bJb7yNL7kHafVY59jMtVdqeuvSjWBcDtJdNKsO4HO7R/ejKUwe8mGXo8c5+OnM+\n1ozUMswB2TO09KHlzEEvjsuC/MCVkfC9772A/bBvTqZq579IkoENEnLGRnE9wiP1b8Y9p7E2sPxQ\nyXxES5l4LLYf0da5+TfjGnK5gct/OqXa8Zryfx57zIt5jXP37j0nIXtMJelagnMfr/wJ9yeanrOS\np+tzOrUNe64ZaZDsBK7o0gixudj3sb131lK9TsSlT96zRjzJz1Py9ZzC1+n4r9HXFzyoJdbcP2Mz\ncE7Fmbo/shyNn8FYgioiUrgVe/7UVEjbA4EaL87bpGtJVP8ea+HCJZAtJ0/X8riqR/GMVPkQNos9\nVxpUu+4T6L9KGvPTt1W7RX8Dq+4ZVOajdU+NajfZz4tjg+j3o/3aJjqhDHO+jyTT/staYsilF/qv\nYj3IduTDKfMhIUtIwLgMduvvG4o2YX4bDJC0eBf2kRlJel28egnjfuAs1tKKHF3uYYTuyS2r8Xf2\nHtXPO0UZuP8sy8+aq+WQDS/juaujC/vD2fdomRTLz98Py5wxDMMwDMMwDMMwDMOYQuzLGcMwDMMw\nDMMwDMMwjCnkmrKmQC1S5zg9TESk8wQqDxffjXRPlieJiHRfQApS3EKkByel6c+LiEW1+XGS/bhy\nBz9JdLJXIV36qV/DceQjD9+m3hMfj7S1QABpxBMTOq0oIgKpZP2UEjyWpp1fuquQLpU9B/nWicXa\noaHhGNLWoskZYrhXp+oH6ugc10vIYacIn1NJfIJcKTqP455m5mm5x2vfetKLVz+0xos7DuqUUXZy\n+srf3OvFuRu0nOrUL+GuMuMzyJOdvuUOL265pNOFP/xdpNF3UKrqh79+h2pX/xJS3Qq2Ii0xzqfT\nzwb87++KEJ0So9r5a5Bi17ITzk0RiVGqXdoSnZYfStqqkHKcWazvYQSldQ6Ri1pmmU7D7DmFzyje\nBNnPcz9/XbXbsBrpd2dOI7V7xR1LVLu9v8X9WfMRpGRy2mXerDL1nmm3bvHizlrIkHxOymj7YaSG\n5qxBKiRLbUREBmfj32UfQkriyKCeh8o+hnNKOY05ieU5IiLdV7RELtSEx0ASMzqo54HOo5B6xhdw\niqYucT88jDnwuX+ADPDGr9+k2rHTT7ANMovOY1pSGh6NdtueQ6ouO5Pd9Tc3qvc88vtXvPjJf/0X\nL/af1XKO+8i1JzaWpGqR2gnl9W9824tzpiPVte2y/rzV//hhL05bhteyE/X8wlKPUJOeidTe5FLt\n1NK2H2nVi+7HeIl33HvOPwpJZCq5ieSt13K8sWGkGF9++j0vTpmj5b4sAUqZgddO/uZxL573mY+q\n97TXYC5rexeSly/99Keq3e3XX+/FB8gJr/A5PWYjwvFbz6Z5kHZE3a3TsKNJ/svOC67LD8s7JoOs\ndSUf+FpcDvpngGQwPSd1unV4LMZOVDLWjehU7RrCzjqtdK07zurPC5L7oS8e6dE8FvPStYNPF7l8\nRMTjmrFTl4hIxjJI6diVqMeRYF3+3VEvDgvH3JOxVsvTOvZhjg5exTycvqpAtYsu1NcilPSRW1/5\nfdoprmkbHE8CDTg+lkuIiETEoQ8mVGDfk1yp+3fnSewXIhbhM1zJfxLtt1jeFxOPdbu3Sss6Kz4M\nmdToKI51wHFEGxtDX0xOhrS76rXnVLvM5bhXLNnrOqTnfnYDmv45zFf1r+rji8vTkoFQ0/JOjRe7\nEtqc9dhDRCVijAUdSWn3CazrbU3oFwWz9b6MxzPLeOMdZ6xSeq75ReRXcAw0zvuvaDlHBEmws2ZB\nwxf0azl2yb3oq91ncNwDzvNT+VzI9tqo/7E8RkRk8Sewv+k8hr1x22H9d9PmatfdUMKST37mENHz\nfFEUzmnQcR4aps9IorX15of13qaLnlXYHcl1yes+R2Nz4iUvZAcz19UuZQFkL0F6/mzfV6/aFd+L\n/tF6CM+V7PorIpJzPfYmIyQnHWjWY7v9ID6/+hju29LPrFTtXLlqqBmhz49x5kouddL0KubXoLOX\nXXXLDV5c0wG56VCvPvashXg+Gx9Hn07N0TrmhARcwyMv/AjvT4d8rrZZlymZQU6QHTR2fAv0GKjb\nhf10QyPWwq0f1frN8SEcX/MRrH1XDusyGBUr8X1DfiWO4crTWiY1SLLJ9yuhYJkzhmEYhmEYhmEY\nhmEYU4h9OWMYhmEYhmEYhmEYhjGFXFPWxKmvXZR6JyKSMgMpsz1U5d1N1YpJQwrzyAiqNgc6tRwm\nPBLpwXFZSKWKcVINR/3kJFMFCcKGOXO8eLBNp5V1NcN9YrADr/H5iYh09iDlM5Gq2Ldd2a/aRVEl\n7a5aOFSwU4eISMp0XKNAIyRiLHESEUmeplPjQ01iKc4ljK6ziEj/VRzXWBBpVuGxumvMWgG3kZrn\nznmxKw27/n5Ini5RJW1xKlNXPoh2wU70rZEh9JHoZH2dGrcjjS6G+kjz9suqHV/PrlP47N073lDt\nygohc2pvx9+ddr2W3LWSe1Ph3bO8uP4F7ZrUe4bS6tZLSMmZjVTLGCetPcqHtPGeOqRxdtfplFum\nvxrnu2aWdmt6bjvkSh///FYvrn7rkmq37BakHvLnRaXgeCJidH9LKKM0+RJU6q8/vFu14/HXRW4N\nAx06DbbnPK75SD/mlBEnfdI3C2Ox6W3czxRHluLL98lkwu4n236yQ7224QGktkeSPOHMfz+v2rEj\n17q/uc6LkzK0+1OgB45PyXlIteTUcBGRwW5c081bkUJbewwSHf/5DvWejTTf9vXh/Su/eb9ql5yM\n1N+GapxHdKLuw90BzMtdx3Dcm/7hBtWuo+qMF9fsRH9c/JVNql14uJ6LQ0nqQozFS7/TDjZRMZg3\nM5dD3nHiVwdUu7hocmQpRBr/+JhOVw80I/164YOf82K//6Rqd/QpyKQKNpOjC6Vo17y3Xb0nYz7k\ngvXnscb946c/rdpdbcX4+83XkN7f2a0lgT99BVI3luFscWSiPIbLH0Dqf1+V7mMFN1fKZMJuVTEp\nWnqTQPNAw6uQF3W36XPOW4R7HE4SlpR52hGih1zvWCKihTMib71+2IvLsiBPK5wDSdJoYFi9p4uk\nVqnkbulKwvl8Wa6UtVLLlThtvvEVpOtXOS6Bs+/H/N/2NtLwWcojop09Q036PKzhDdu181V8Ce4h\nr0+xzvrJjkWtb9V4cfd5LfcqvgPrZMcZrCHuGleyDLL6C9ue8mJ/A2QLAy16jxrswj3sIHmrz3Hv\naSXZZMsojnWwRe+7G1/HtYjOwPmmLNT9Mmc5zqm3FsfnOsK4e+VQkzYfx8Vrn4juqyzDdx3RBkgS\nw1Imlm6JiIwNYI5lmeJQQEszmndgHZpxN+YplkJlrtBjZ5DW9+5a7H/zZlyv2g0N4e+OluLvth/W\nz0XsuMjOqhkrtHRwjCQXSqYTrsdi0xvYK+c9KCHl6ot4LshdrV15WGbMz20TWskqvhmYEUfofkRE\n6zE22IT+3jlOsk7nuSU2G3ulDpJ/JpdjXPG8KKKlf1GpJFVN0268cSmYa9u6MHZKbtXOae2nsU8Z\nZPdS59mJHY5SExCffkK7wuYvoHs/GY6iNF7CHOc0fvZIJLe0TEdOFhFB5zIHMqKwcP15kZF438BA\nDY5hXO/fx8awZ0imPsJrTbEzzlmeVXI75rmYVH0fc6hExtkGyJVWObLgvhqsIRV3Y/9b86JeF5NK\nIenjeTNzgS6r4XM+38UyZwzDMAzDMAzDMAzDMKYQ+3LGMAzDMAzDMAzDMAxjCrEvZwzDMAzDMAzD\nMAzDMKaQa9acSSxHPYYRx/6ZLUNZ/5exRmswk8ugS2s+cMqLh/3685RdLlnkxee6tnqw1OpwLGH/\nB9carWkndJYx6XFuc7xGmj/WpWZUzlLtRkZwfD1XoFEb7tY6ubb90CGyvszVjIdHT57tq4hI1jxo\n9688r+vnJNE9PvsS7s+4o4ecsxXWf2f3Q888Z42uz/Lcb3d68eaNy7w4Y7nWyA76od9jC9WrT+EY\nZn76ZvWe0QA0rRGkE/XN0dq9/a/ConnebNgw3vi/9efFkz1b6zm8p+uI7lcxpFut+zNqXkz//DLV\nrvaFszJZRFNNBKVbFRH/RWh4fTOhx2SLUBGR6hOoC7DjRdR4WTdL92/m2GuobbHqk6vUa6wFn775\nHi8eHkYdmJbTR9V7Lr3ymhcnFEPr3/KmtqO72obPYP1tTbvWmad3oa7O+oc3enHT/8feW8bbVV5r\n32O7rO2u2R53V+JGgAR3qFAoFU5p6WlLWygtp06FGi1aaIMFDRZCnHhC3LOz3V3Wdnk/vM+Z1zVm\nIef5na48+8v4fxrJutfaU26ba41rXB8VqnbeEqr5FIQaCFxvQESk1zUv+Zogmpv6BrTgOmYE+nF4\nNGpMRGTqOjiseWcNb0CAru1x/Im9TlzRCLv01T/7vGq347G1ThxH1zooEP0n8yo9zgM34zxyVmMc\nlG7V80vKbNyvon9ibE/+5h2q3ZIHVzhxdyP0xfv/+LFqV9uKmh+rHsR4fuXb/1TtLltDc8/V2hLx\n3yUsGTrpmuZm9VrBpGwn5nsz7YH5qt0L9+OaJ3PNDz9dIyAmB/Nm0f43nNhbquuJTLpushPv/gXG\ndmwEjrXgi5PVe8o/xHz69n7UOlkyfrxqN3cU9NoPPveCEz/xx++odssroN2eUYAaZbETdJ2LMLIa\nbSvCOnB0r64ZEpaK2iwpWq7tE/xJT990TNshB5MuXVlubytW7VjXPox07e46BlwTonQr5qY/vv++\nanf6DOrbXLFggRNXfoxxsHziRH6LjJuAelLhNFeEuWxQvVT3LYLm3v4uXeeovxN1LjxUt8Ujeh5q\nOYk5mms7uK2qgyIunSU6W/Emz9V1LvyDUKfCPxhzWZOrfqLQkON6Uu3ndM22TU/AEnbaAtQc6KNa\nfSIix158zokzV6Jd1TbcW3HN/aXrMBYT5+M8/AL076fRtEYcfxZjtq9f14TJmIB5g+setJ7Q62fE\nMNxTvu9uO2t/V80PX8P3qpFsb0VEQqm+4KCrdiETEoZ+xnbXvL8UEQmnmk/9HdiLd7ieJxLpWYb7\ncCftv0Jidf2imAysk11deDZoadH7ID8/nG9oNJ6RBntLVbvkBdn0tzAnuWsAhUbjfnWGkh23az2J\n+h/qXPw75N+MdaN+n66dw/VauC8Fhus9KltpF29ErZa8K3VdxIAI7OEazqFPj/+a3qPWH8Rx7Hob\ntVuOl+I6nyrTFtnfv/56J45IwvNRaIK+14x/EMZp0dv71WutZLc+7Co8izUd1WsO91Puy8GB+hrx\n37oUlB/AtYkr0XO+txnzrSeK7qmrzljhxnecOIpqr3bV6ZptienYF1UXbXLi0NhI1Y7HS3gyXuN1\nlp8nRHRNqtYzqGfHNTpFRHKuwfPP0d/h3NtL9N6O1/owOoZIV53K6o0XnLi5BXNFUICeQ/nZ+9Ow\nzBnDMAzDMAzDMAzDMIwhxL6cMQzDMAzDMAzDMAzDGEIuKmsKI3ssdypVbxvSAeOnIAV/oEenyNbu\nhpQiIBypaEkztPypjVKI2G422JWCxHZWmUuQRtdaivQ1TnUVERmkdLHyA0hhy5yh02AjKS0qJApp\ngl1dOs2y9QJkJBEZSGni9DURkfB0pD556bijRyWpdpzGfyloLi52Yk4RFdFymbRsHFf4MJ2qxTK0\nhffDtrZ6e7Fqd8fDSAlsIIuyzlotxYnPwb1j29vGVFzr8p371HvGfmmNEw8MoP+dek6nhs+9FpIG\nTm1jOYiISP0FyCxaTiBF253mnUnp6q2FuPfHfr9TtQuL1H3Vl7SdQd9qqtepgWxn3tEAyUBkmk5N\nHr0M6Xvnq5HaXdbQoNpNzc934su+AwvIqi0XVLv0pZAudHSwzTbS92KHpwvD8whLiOKnpal2NR9B\ntsHHOixBm8+OWzPBiff8CRbgIxZqG97afUgx5vvUdFCPbZawXQp2PbfLieMitP3ghp+iH3f2oH/f\n8YfvqXZtTbDuCwjB2Km78IlqN+vBO5345PNvOXHxu1p6NOFqyCTaaA7j1HC3FLPsGK5nzFjMG5ye\nLiKy55eQOYZQem59sU79PfU8jj0yBvegsV3PG+qaUcr25fcvV+3c9qm+pGojZCkZCdrqtuEc0me7\najCv59w8TrWbRmOMU3PDwvSatPXHzznxiCtgS86p+SIidR9jXRt5FaQUbBvsliZwmu63fwiZWc0O\nnVofHIo+9sQf/tOJmw5pecjyq5BSHpGF9aN+V7lqF0rrYnAsxuKy7+h7WLVJzze+htPI3SnGrec+\nfRywNbmISNMnuAYsXepp1RLnPrrHXTS2b52nvVC/d+yYE+8jidPdy3Ft3GOCJQ51dO+iRuu5Mm02\n+kV/P/ZYNce1BJSJIFvQNvf+JgPrC88P/i771UoeL3niU+r3o2/x8YhoWSGntYel67HTfBjyAj+a\nU7ztnapdHUkqPdm4LsFRWk7aR/Kg1mJ8dsxozJMHn9qj3pOSgXsVHInPi0rPVu3Ord3qxDlLsP4W\nfXROtetrx/1Inoc5xX2s9bQu+tM476pqU+3SlufLpaSLpI7JM/TfqtyK9S40Wa+ZTNZN6N/d9AzQ\neFiv8WxhHBiB61Fwk5Zzlr6Gv5t3J/YZPI+2l2npgzeQ+gjJHZKTV6h2HR0YpzwWM1doiZzHA5mU\nnx/6c2enluLwa4P9uKdddXquSJyuywv4kpP/OOTEsUl6LDZ9gnvQ04C5seC6xard+dcgbYnPwdrq\ntnRmGSXbZxe/eEy1O3gC4yIhEuN+6QTcz/WbNqn37DiF+37DIpQ+iHU9t5W8B5lUnxf3LWqEnne9\nRegjRW9Avhg/Vq8l0cPpfaQSCo7RpTgqNqBMh9woPmf0zZOc2C29SqbrweOI51cRPU4rN+AeJLNE\nWERKj7znxMfWQvqXOVY/N4QPQ3/nsiUVW1EOIecqLX1LW4Z5pJ2evxMn6kWorRLnuOTaWU78/nNb\nVbvpo4fjPObgPLyuuTK6AHuJDi/6eu41Y1Q7tZ5OlX/BMmcMwzAMwzAMwzAMwzCGEPtyxjAMwzAM\nwzAMwzAMYwi5qKxpoBfpsu50SE5j8qNKza1ntUSij6QLfixpaNZpvxG5SAXiSvFuOQynFEZEIOWv\nsRPyqYhMXbW5ZhteO0ZVupNHJKt2njhIrfr6IKtoOasr3MeOhHWEt5pdh1wV1Mm1oPkIUqeiRuiK\n6W43Fl+z52lIKWbfe5l6reJdOGSEpiIVLXm2Tq/vqEa6ZkwqUvQHZulzrvoIqegsW+H0dRGRlmqk\nDp79O9IhJ30LDiyhocPUeyqPbcXxVOJ4Jt6jnV9amvF50ZRiWLdfp9fXUEpvP7knzP7+7a5jPe3E\nPdRvuaK6iHb48jUpS+E6ldCpU18b9uA82imNNTBSHx+nni+ai9TF1z7Yodpd9Z+4B5yinTRL34+4\nOPSloCCkjJaceNmJe11OFvv+jnTu1FikhgeG6KmorgXjb2Q6UhzTJuh0R74fKbEY98c3auesEZQq\nHUqubHW7dHqw1HjlUrLq0Vuc+NBjWo434X64TVXvQSroiWdfV+36KYV24n23OXHFxrdVu71P/smJ\nh2VirnOnqNfswPzIcplzH0FWUXFAX6eRq5CiGRyFsf324xtUu4IUpO5mXw6pmTtNecoDkG3s+Ol6\nJ175w1WqXR1JJdklZeMfdGry8m8slUsFS7f6BrTci13u0ldBdlC58bxqFxSFsTls2RQnLvt4l2qX\nMw8puCxB9ZbqdPqGBoyXpncwN1aRm9Qy1zXhexAYBknDuwe1s8jM4UjnzRsPCVzLcb0urnsZ92Dl\nNDhDldfolOfgSvw7tQrzc2udTg9Od61Bvqaf+k9IjF6fBkiiFDEM80qHK4U5ogBzWOt57H28LqeH\nqJFY83v2a2c65od33eXEVU3YW1SQK92yJdPUe9hZKo6csf5F3j2ItbrpNMnAa/WcxzLFllO4V3GT\ntGVWy2m8xvu5CJdrRvxULVn1Jd5CksPX6fONHA5ZROoSjKOSV/TaEJII6V/1ecib127frtrd/7lr\nnXjjU3BumrtK56SPuBLOhW1tcDvsbsbanDlKX5OeBkhb6sktsqNa97eMKzCHVm9DP8pbqd30eE/g\nLcd8wKUKRESiCnCNmk9hPMeMzlXtandi35ytFZo+IYDmn+42LdsOTcGaxHKlpLl6P8JysPYSjJ1R\nt1yp2rGMqNUDyV1orL422TdijYtOgmTKW4E5miU1IiIJuZj3wsIgIaqr26jaDQxgbxwRMYbek63a\nDQ72UYy1palISxGThuPvRhdgTu1p1tI8LkOQdpv4lFE3QSrEZS9ERGq3Y4/hH4x15+zL+rqwq1rM\nWJxHIJXEEBGpPowxkrsKff/Cu6dVO3+SKZ6pxHvOV0Fm9fCXvqTeE0BySG8x5pd/caGjkhs89wS6\n3OnCh+F5dvRqWhc3HVftyt/Gfis0DX2xcb+W5QUFXfSx/d+mhpxT42fq/TavFVwio7tB97MmWhvi\naU3a8Li+3+xENWYc5pzDe86oduN7sZfiax1JrknuchQsceN7UDuo92KROfjuoWIP5rlFV2o33iNb\nIEkLXIf+GONyQDu/F2NzxDwcd9V7+u+2enEeEz9FnmaZM4ZhGIZhGIZhGIZhGEOIfTljGIZhGIZh\nGIZhGIYxhNiXM4ZhGIZhGIZhGIZhGEPIRcVr9VSPIWGWtr4OjoPOua0Q+k7WPIuIVKxHTZOoMdAQ\nxo7R9V76yQ6StdtJ0/XfTUxe5sQ1FajZ4C2D5p7trUVE4qdAKz2LrRJLWlS78u2wRsu4DHozv8BK\n1S4wEDq38GQcd0i0tjwrfhmawrjp0Bg3HXFZ+9Ex+dpqUkRk1t1znTgyVWsIB3pQ+yWMas7Exs5Q\n7aq3v+TEfv6o6dJRrq/hyRPQK6bHQcuXTtaTIiIdNdBfs0VlSzn6XIdHW7UGkaY4b9lKJy76WNfu\nSJoEXXZ7IzSEAaFatzrpW+hLxW+hzkJjidaCcu0lD9l1trpqLuTf8yl+aD7i5Fpc8+wFumZI3BT0\nrUCqBVV6WNcJ8SctLetqb3TZGbZTvYTk6biW/f26/lNr62En7uvDPWR9etVZbcXX1Ys6D7V035Oi\ntPXihFxY9gUnYFw1nNCfF+YhW+x26GFzR2jLyNAE1BXoojpWmau15bafv59cSjb/eJ0TT//yXPXa\nSw+84MQ3P/Z5J25O1vexZkuxE5fsRJ2PYSsmqHand6NuTe4dqBXS8EmFatfTCL3wwY9Rj+Gym2Er\nuPsVbWvvoTpecZMx56+6W/elSBr3bPtd9PJR1S56LPpCbz/GW8t5XcOM1wNvJeaejHhtaR2W9NmW\nq/8uUaOwjrWd0/bC3lLUEji9FuMjPlcfH9etaTgNjXJwtK7tljphphOfe+sDJ86+XNcdyZyPexUU\nhPXvjW//2onddVUGB1DDYOPTW504KVqvn2NWod7CRz9FTaGp101R7UL24v5ybbhxK8aqdspS+E87\n0e7Wyapd24UmuZR0VqKeR7TL/jR9BbTifJ0SR+vaHk1UsyIqA/uMqDxdc2agHzXNMrOw94nM1+si\n11HqovpXITR/cS03EW2bzP3KP0D/9uatRT2VbhrzZSf0fCB0vgkzMI+6LYm5NmA/1TPzC9SW7VVU\n1y7Px0tkaDrGeepivXkqfRVzGV+X6HG6RkA726YHoN29K7T9MddFmTgCfythimtPNYBr21mHOerI\ns/uduLVD18fJTED/G8a1VPz0elS0FnUUAj04Hq+f3of50fgr2ox1YPhqbefaR3UaYsdgXLKN9P8L\nuJZMw0G9344Zg/vF839wqL6PXW3YL8aPQ78NDdX1fWrKsGZ6af/qrjnDNZsGMlBTKWEM9l+BgXqu\nbCjBnJ9CY9tdSyYoCHWZ2trQT3u7dL0dbwWOUXCTYQAAIABJREFUr5vqxyRM1OfU24v5JjiU5jJ/\nXWcxfvKlq/800Ic5rnqTrqvlycH5ch3S+Kl67LD9eONRzDfNx2tVu/yr0Y/bi7BOcA0TEZEWGmdR\n4ZhD540e7cRjp7j20xMxj3NfdD+3RZH1dfVu7HkDj+jnFmW9XoXzSJqpn23Pn8QeX6ppj7pG71GD\nIvQewdf4BWLO6ajUNa8ajuLcMpbSdaM1Q0QkKgd9n9enU+W6P56gGrCRB/D8zVbnIiLX3/sdvHYZ\nal0WpOJezWnX9S25hmpvM/pcSHy4aldDdZg+OIzxe0umXpvTqEZmF9W9CaM6jSIi2WMw9/TSMfEe\nQEQkMVfvOdxY5oxhGIZhGIZhGIZhGMYQYl/OGIZhGIZhGIZhGIZhDCEXlTWx5SpLFURE4qchHY1T\nCLtbtPQhbgbS6FgyUPjCEdWOLf4qziN1iu26RER6O95x4vTcNU7sWQmbq8K3P1LvSSQL4Ciymett\n0+nBbFXX14c0QX+X7WtrBWQGoYk47vYyncqctABWoI2fICUufXmBatfjOg5fs+MJWEIu+e5y9Zqy\nOd2J8++q+adql0DphyeeRfpZ4nCdWtrThzTZboqL1mn7ygGyrn5mE9JMv/PHPzrxl667Tr3nS3+8\n04kbyiFDyp6zTLULDES6dfExpBKzfENEJIbsTQd6cTzdrnZReZAkFL0EOcZgv07lq92LfpF6jfiU\nYbOznZjt/UREIgsgH+NU+LYubVcfGoQ06Lwp+LxrPvct1e6O1aud+N6xJD/Upyu9/ZB1sRUvX8um\ndj0fVJO1b0MbUibnjRql2rGN7OQESAlOVugU/AlZGGOZU5Am6h6znFLI9pflb59V7VIW58ilZObX\nkZK5+dfaVnDRjbOduL0a8i0/lzzBLwDzaBjbjLbrflFO9ruVG5HaHuKaU7ua0N+nLxnvxDtf3uvE\n826frd7DsqEjT6FdH0mSREQSojEW/cNw3aNG65TOtCnQO3RWoc+ExGmpaM3OYieuInlWbLJOLxe5\ndPK0kk2wRBxxk06/HbYafbX4FcgjA12pyMnLsSbt+d02Jx65crRqV3MK81fBaszdXV06xdrfH9fJ\n68Xx5Q3H2hwYotN582+c48ThJNc8u1nbWL71NNbT1V9c4sTBUfqcVq1CH4kimVDrWS1NYzvqsbdA\nytRyRltud9dq6YevCSKZV4vrGIX2AvEkIajYeUg1S5sNX+GBAfT90Ci9Lg6Q5fqIz813YrdU1OOB\nbXn16d04nM+Yv0REqjdDQtDwCdkwl2uJRMoizG3HN2I97ujRtrdJ9ZgPekiC4HFZZLO9bSzJ2Sve\n1v0nJEn3O1/Ce7uuOm0JHkj9M4jkgl01rmuei3R1nhtrj+kxlkWW4NQ9JDxWS0XKD2I8894hfRza\nbVq7Qb0nIhR9cetvNzvxkgf1fi2SrNs5ZT4gREvJhq3BPNT3d+y13ZK4TpJPtJB0JOsGLX8qfEb3\ne1/TfgFrVaJL7tFN61NHLeaO0Gx93QPD0M+CgzH+ako3qXaJGViDB3q30Ct6zWBr3poTkDvEFmAv\n3FhyUr2H5VldGdgPFm/YqdpF096TLcwjc7SUwluBMRxLctAu1x7VPwH/bjyNZ7W02VpS2l6rJTe+\nJDAcFtKhrjGfQGOHn3cGevR+oZasjPla8D5HRKTlFEk0SWKSuiBbtZtP6+6JQnz21Pno34MuSc6u\n52CVnhKDOW/EbRNVOy7FUdMC+VliZKpqF5aGtbWrDuOt+aSWakUOxz6en1WaT+ryCf0kfc0cLj4n\nZiLm8iCPtgXvKKL9+x5IlLraXVJbGqeBJBVdPmmSanf7jZjfeL1/Yr0uVfHovfc68f5z2MtefjPG\nsltiHpmP69lEz99sgS4icnwD1sJFYzFewjJ0qYWde7CfY4v2zDYt/cqehDWpj+bopMuGqXZt5/Xx\nurHMGcMwDMMwDMMwDMMwjCHEvpwxDMMwDMMwDMMwDMMYQi4qa+J0r+jROk03IARv7WxAWk/rOZ2a\n3FWLVFPPMKSet3bqtLz4TKS9pVHVb3cV6NBopLrV1iL1qYcqmedeOV+9p7UGjgpJuXC/qDm3S7Xj\nauO1n1zA/1N6o4hIYARSvfg6cJqviEjjEUgTIvJw3N5KnW4c6XIy8jVxEZAguP/24odWOXFnA1Lu\nupt0Svm6R99y4usfgpxs82+0hKyf5Eojr0bKd0+zltjsfRPSqJvmwrXmY3ItuOPRG9R7GqhaOktn\nBvv3qnaxGUhZTJmPVO6KDedUO28VrsWFE0hBnTFbp9WyK0zkcKQpp8zSVdSL3zgol4qeJly/kAQt\n9eA0bXZRC6rRqc7503OduLMM5/6Fa7QGa3IOrpmS/vnr73KDqL93kgMSp5AfLSlR7xmTiWvLsiZ/\n12dPXwh5Dct65i7RaZFceZ2dwyJy9ZhqO4sUwoFujOfgOJ3i2OlKefc1ux9HyvvMW2Z8ZrsKcjhJ\nmKWdpwruxBzWeBL9tq1QSzMmZWc7cUQuUjzdip+ObtzjfqrGzzK4QFd668d/2OrEqVTFPvdWLfPx\nD8K9Y9lKZLaWSJz+J5yIKs7hGPr3XVDtJt8BF73kudlO/PJ3X1XtWmvRv1f8YpX4EnZ0cbtCVW2F\nxCT3VqRBN5/RKcyvP/ymE89agGvm/jyWIZRshzzVP1iPl5BYjHtPBq5twW1wcRoc1OtYxXbIHXid\nTnA5p207gbTfU+8hnvLFmaodu9odfBFyrOHTtYtO3XbMCcOux1wdP0nLFGp3aSm1r+GU+tAsnYbP\nzjzt5Ujl7qjQ62djIe53IMmNQmJdaf3JC524uxvrWJdrb1FXhOvGewse226XyWhysynbhL1O2iyd\nRl26Dg48LDnmcS4iMkjXheUyDQe0U15vI9aklOW4x4N92pWCHah8TWcN1hB2cxQRCc+AFCJyGMZE\n/W7tGFJf9emuYKOuG6/+zWtDxgzsWbq69OfxmC1757QTX/9lOI585cYb1XvYSYbd6tqK9bG9t+5j\nJ144G/NLRI6eTxtpHu8k2Zq3VPcd3uO3U9/ucMmYcm/T18LXZF0FeWPtJ+fVa8lTWLuBea/2pHbV\nDEuEJM0/Fut6FY0JEZHO8biP1RuxvsRM0A6yvE5ySYbKHZDt8V5CRCRpJsZc6ZY9Trxvo3YnnOyF\njJvHi3useDLxzNRLjmjudaK9CmOTr0Nns5bE9HkvXQkF3iu6JSE8lzVtK3bi6LFJuh05G/EzQ4RL\nUsmvddDaxc8FIvqeziIpNbvtHN+vnwvY4Sk/BxK2dpczbft5jM34SMw11S43TH9yuctdA9ly6yn9\nrByWjs/oacDzbPtZLX9JpHIZl4KGXZjPYqdpiVbaKpTkYDdFP9cxBkZjv3jqEMbYvLvnqXbsstzb\ngv7Dz4QiIoeLi5341jWQVp/chPk1LTGO36Lm4T7vZ69BIeTwdaAQc4W/yylvwUo4ZB7YAte8zFF6\n3+KhtaaX5F7u9am75uKybcucMQzDMAzDMAzDMAzDGELsyxnDMAzDMAzDMAzDMIwhxL6cMQzDMAzD\nMAzDMAzDGEIuXnOG/AJD4rX9KmsD2UY3yGWv2VkJTXAw6eJHrNYWb61kJxccT7agZVrn5x8EPZ/b\nOvG/8XPZ6PqRdqy5HlrafpdeNJr0hX3t0MWH52gtG9dtYc2u++8mkN04W+yxFa6I1k1Luvic4auh\n63fXfmk+R5Z0jTjG4m1ap7vmmyud+Mxznzjx1NWTVbuizdBv1pCed/3+A6od1zVYtAxavjf3on5M\nzQ5dr2TCHV90Yq8Xf6fu5CnV7q0//smJ2bJ7zAztO1ezEfUCJl6LWib9rjoArKWNGwebucIXda2b\n7npdR8mXeLKgPXbrJ7nuyrn90DaPXqTtqbvINvPZD2AvGR2u6yNkToNuupxsUXtdeuis66GfZbtL\n7vcz9mnbeC/VNylIhZ41pUBrjztLMcZSlqJWTv0ere/fvQkWl7MWQ4PfckJrrbl2VU056je4a92k\nueYvXzP2StRhis7XdtLNZ3DMh05Cd79khp4UBgYwhsPToFOOHq4/Lyof9ZF2/xW1CmZ/5TLVLjYB\nY/HUedT5mLIYx8pzvIjIyFm4r888944T3zlMW1qzNe2pzdAHz/mPBapd5irUbxp4DeMvbaUes3V7\nUGOnZhPG7w2PXqvalb6l5wRfEkeWplxjRkREaL45+QdYIUeP1PdmzhL01S6ykNz55Meq3aipqOVx\n4TDmwyl36npFXHOtrxNadm8J+lGEy6a15Tj6G6+RyQuzVbvrqeYT17phS2wRbV05LiP6U98jIhKa\ngPmm8gPM4zk36HpFwbG6HpSviR2HegRcU0JEpOI9HBfvR9z0tmIsDvZBZz+oS+XJoXf+gr9LttMx\n+VqvzsfBVuW1NHf3u+b/dtL+51yJOd9dP8tDdUmGUV0TT7KuXxGeifkgiKxo3fejrw01MBr2Yl72\n5Ot+FjveVcvDh4STxa7bmjaEam/wOO1o0PvGrJnZTsx1IPjcRUQKZt7hxNVV65248Zi2J+Y5mfdR\nv77vPifu7dN7jKZ23KuRi2GDvenpbard4oVTnNhLVunJcXoN5z1LAK1xgR49j0cWUA29hVhnA8P0\nowFbOsslsO/tqMeanDxF7xnaq1FPRdW2c9VwiErC+8p3YW/mLdN1otqp7k54Cvp+d72uARHANSRp\nPIdQXb8o17PBvt+jLljmBNSKK2/Q9eBG0f4mIBLzRkelnlMHujDWo8h+u8nV50JpDHfWoEZWzAhd\nK9Q/SNch9CXc51oO6/pUHqpBE0PzQUSmriXD91doLmw6ocd2DT23ZEzFfjWN+rCI3lP1tWO+CqE1\naMxkXRON6/wcex91jfqKK1W79Djc+4QCXOfWIl0nqrQec0rIu1hXuLaNiEjzCazvXOsmfo6uOViy\nAfUIRy0Sn9PYjD4Y6dX7lpqtxU7MtSAH+3Wtn+MHse+YtAjP+jXb9TMdrymxE9Evat/V4yUpGveE\na9uNWoS58siHugbVhHHYpyXMxjXscq2LGWNwrVOycB+T5unaPqE0x06lfV5va49qxxbjTY24lvGp\nuq+H5+i9shvLnDEMwzAMwzAMwzAMwxhC7MsZwzAMwzAMwzAMwzCMIeSisqZaSkFi20kREX+yjQyg\nOHWRTivroNTL1rNIVWo5pWUHnAraVYS0vD6X9IjT8hoOI7Uv72ak4KvUONHp71k3QOITFOlK0+3G\n+1gq0nJWW55xOlfVZkh33KnRnEbMkpK4idqerOEg0uVytUrIJ3Dq4M7fbFGvTbkT1rT1p3B/3Paa\nbKVbcDskQD0tWsqTPR8pgj0kdbn/rrtVu9I3ITuIIFvdX/7+P5y4zGV93dOD46s/DYlE1QYtwYoM\nxX1NG4EU8sazus+lktXouXdOol277j8zb4Vl7PbHIAda9MMVql39QW2h50s45TYoSvdbHld5E3BO\nna50Xrbq+8KqpU7sbdJp3tGjkA7IfZot4kREmo5g/EWRpIblglnDddo+zyNRZAFbulnfQ7Z3bnsd\n6YqBLhnS1MlIa+wgi1mWQomI1GwuduLUfKRPuue1uEl6bPqa0++hn3nf0Hal02+EvG/FV2AXuPlJ\nndo++2q0G+jBtQ7P0GmSnGY85aapTuyWKCXORZ/xNqOf8bjkOV5ExEPypXFZSP8MTdby1+ZDSG/O\nzEC/6mrUKb0b/4xxdfXPIFHiFFYRkUiySN+8HXaGtb/XVo7po3W/8yVsbRk9UUs2ehox5wUG4Zp1\n1+ox1teGdPX42Uirfe5vz6t2U8iKnu2Pg/6h09ODab7uIuvczJG4Dm6ZSw+lzO87jzTkORdZ6zNW\nY7yFJUSqduefO+jEfiRlYqtnEZHACKwlMSQtKn79mGqXuliPYV/Dsmi3VStLlMPTkZLP8jERkfZC\npLCXn8I6nj5CzyNB0ZBg1O+GNC800TVeSJoTOxbXJpHWqo4qPa8PdON+8VrQ16Ztc0MSsadJX4J1\nmudxEZFQsumt/BD9IsAldYkoQFp/22naO6RomZRbJuxLWPocNSJevcap9mmLcL5uaU9IAu4By9Sj\n03NUu74+zFk9LZCzdbnGNs+VvB9iafv6t7R88drPYz0OpeNZcOsc1Y6t3C/UYG4N+cC1J2hAOr0n\nDK911ehj5VIDpeshYeb+ISLSdo5kBvqQfELjYYydRtHykeS52U4cSvvy4BCXLLgce8IIWp/Ktuq9\nRZMX12D8PBpXrv1S7BisVzx3BsfgeraVaAnLmBsgV+V+sMZfS4l7mtB/sq7FM0nt7lLVjp+Lgmje\nDHeNsQGy4w4muVdQmJ5f2GJdtIr034bn0Ia9ei/M82nddpxjQ7Bu58nFZ8SMwroR4ypJEJ6K84/I\nwDw00K/nmrhRmU7c24F72HIOz3SBHi3D9A/E2ppAFtkxeVrCxiU8Nr4BCfPC5VNVu6om9BF/enYM\nCtBreHYizjfjKsi8jz69T7Ub9zn9+b4mPpEkRK7nb5aknVl/wolT8nRZgoJ07Dv4GaL4vB7brZ1Y\nT/n8x92iH4TbWSpGEmy2oZ95+0x+i3r+DAjFnB+RredK3g/z+HCvi7x+JkyHTKrR1a7kDPr05Nuw\nV2frcRGRtpP6ewU3ljljGIZhGIZhGIZhGIYxhNiXM4ZhGIZhGIZhGIZhGEPIRWVN8TOQusPpsiIi\nQVFIsYsfjxRelquIiERTxWQvyQ6SKJ1QRMSf0t7Y4encfu2GsedVSF2iwpCSGfoB4v1Hzqj3LP/8\nAifmNKiwRC0D6GrC3205DQlM6mU6pa7kbTjiZJCbyKDLooFToHvJJalmW7Fqd6ldKSo3Ia0zwCUL\nqXwPacvR43Gvhs+eq9pVbEHKeVcd0nOjXC4knLLO7jGtF7TsoL4U/+Z0MQ+lRsbk6TTl9lb0LU5N\nHv31eapd4Vo4Q3WTE0qPyyEheSbSlpuPIEU4f+VI1a6XUpiX/giSi9L3D6t20aN1at+lglPkRXSF\n//QV+U5c/sF51e7UyWInjvUg3TUlW8sOmk/gWgRHo2/WutyzWA7DqesJI1CdvTleV9mPyEYKad1O\npLdGRuv02+RMyNE89J6mT6pUu4wrMP5K30Ra82C/Hoth6UiD9RZCNpmyQqdvt5fgNZkkPqdgEY43\nPFXLQjpJ+ugXhHF65SNXqXaf/B4p8SljyD3sNV2tPr4A4y97NVJhz/1jl2rHcoVhy+F4cfxlyK6C\nAvVSERaMcX6MpDezZYpql7QYY6xhN6rYNx/VqaDjh6Pd2gdecuIZY/Tcm7Qg24kvfwCywpZzen2q\n3lsml4rM6+CIc+Flfc0L7iDHsDNIW63cpceOJwpzXsMepMH++pGvqnZPPvmWE6+chA7Jjmoielz9\n6eF/OvHdV0Hu63ZUOHgBktwVa2Y7MUt6RUSKPsKaG30e1znYJa8MiMCcHE0p6ex+ISJSRnuE/DvQ\nL+NGa1eKxpPkzKYNXHxC/U58Pqfai4gkzEU6PMtR2k7pftbdC2lYO0kx3fPPoS1IAR87BXP0yaf2\nq3YZ5DbiLcd+iSWKLIkQEcm6crwTl2/Cte1r1bKmDnaIoVRudi4REQkj55cgcpIJcUmwIsn9y0sp\n2yyBFtGy4/zp4lOS5mAcVL6nZdD5X8BcVL0dfb2jwuUyRnKF5HHQeoSGamlkdzfWxcQs7I+66jeo\nduwo2FCN9aST5IaXL9cp+Jxaz9KqmJF6bT74Opwy538JUpmmo9odZ+y1mKP482p363nRn1xXI9Ig\n3wt19Ykol6TD1/A9YAcuEZG6/bie7GDW16GdG7nkAct9M+ZpeVoM9VWWUxdcqx1kWWKYTo4z9UfR\nlzwuKTFLOCITMZbZDU9E35PwiGwnDo7V+yW+P+EpuD9d9Vqi2lqI/XQoOSS6ZcEJU/Uc60tOPQtZ\nqydCO9yVrIOc20NucFEj9PNDK62Z3Fc9WVpyxvvNXnKvGzZ1qWrX2YnP6PWHnK2XnJvc7qcZS7Hn\nYGfd/S/puXrsfDwnzF+Atdnt2sp7p7jpmFPSEvUYq3wf+/UecgFMGe2S2vtf2pyKuCn4e8Ub9Zwa\nXYGxmZyFe1d+Vu/L82ah75/eAXepgknZql3pcex9UqZjzW05rSU/vCfZ8zruQyK5OCWkanlaO42R\nhLHYJyfO0GOAJYtcnsFdesV7AXM5SxY7irWj9JhVmCu4bIJbTpuyXD97uLHMGcMwDMMwDMMwDMMw\njCHEvpwxDMMwDMMwDMMwDMMYQuzLGcMwDMMwDMMwDMMwjCHkojVnmg5BRxbrsphlm6mqrdBgBka5\n6mGUQY8VEg8dYkCw/tP+VGMhIhf60yyXvnrqnTOcmDX0B/8BHVparNaeseVZN9lrhSZoO7qoZOjk\nQmKgceusb1bt2Ear5Ty0cbGjta1qQBi012xZ6LalZavOS0HGCmgog+O0FpS14k0HSDeoJbKqzgxb\nZbrPuW4/NJ77/ozaGG7N7fSvQbMdFBFC7cgq3WXHN9AH/V7tx6gRUF6nawyxrjOMjjXsE23j1lmH\nvpm5BvrREy98otp5u9AH2U6aLThFRC6sQ/2JPF1649+G9f6tZ3Tdg75+XJdusvLl/xcRGTsNhRsq\nT+FeD/TqWhSsu2T7Rv5sEd2P2eLy/Buway8/pnXhsxah3kI11SIICHdZt9Pf5Zo/CbMzVTtvObTI\nPIeUvHNatcu6AveX9avlrjoFSbP05/uaJNLVHvrNDvVadCr0sy1V6JuhwbqGQ3EtdOkJ2ajLNPwW\n7Y3J9XO4ZpS7HkYMWYayVeuM++c7MdtLiois+946J54/BlagbjtvrlkURvaQbi18/QGMzVVzFjvx\ntud3qnYpy6DTrabaXe0VWpM+4RuXwO/1/1CzBX93xBf0QO/1os6HH9lmdvVqXXtLNdaNEVTT7K9/\neUO1+/qDNzsx20GWvXdWtWOd+3XzqX6MWnf0GMtJwn3nPhASo9eIbKqlFkQ2ra2Feh6SAW6HPsv2\noSIiudRPe9qxrnTW6joK7nXS12TfAm242w6zndbFxNlkNV+k9eV512BeiT2IPtxcqGushYfguvFc\nXn5Azz/H/o51LSUGaw2/f+z1E9V76o+inlFENt7jydD7isaDtJ+j++2uQ8L22dGjUfPEz3UfO6qo\n1tkqjO3BPj22vSV6/+RLuH5f9s3j1GsDvahL0XQUcyav9SIiVR9iHeoYg3OKn6D3vOERqF3S0YFa\niLWuekU5dBwBNE55fepp0Gtpdyz+3V2PccV27yIiSx663InP/RW19eKm6WM98te9TjxsTrYTs6W4\niEjRWtRP7KY6F131HapdaLze6/garjkZEKLH/SCtFT1URyltnq5H1lyI/h2ejNoY7lqQ4TQu/Hbi\n7zYc0PvD/nbM2U3nMEZCE7GnrN+v96i8fzj/xlYnjhmjawd50rFOdrQXO7G/67kogup1cd2kblf/\nSadacY1HcR24lpGISNUW9PWUm8WnJIzCnNLsqlEaSLbR3VXo0y2uvQhf89Iy1FHyP6qfH9JTsUf1\no7o83tJ1ql2/F7VlkuZlO3H0CNwPrk8kInLmz3ucOIrrcI7PVu3Yln7vAdT6WnzDbNVuZA7mZK4d\nxvVsREQS5qDvcA0prjskItLf2SOXkpaTqLWSs2KEeq2Raj5GU5/ud9XtaT6Ozxi9GPWvumr0Gs9X\ngK3Yy9/Sz3SHqlCzbWQ+1uOYiXj+TJ6iC9OVb8bzGF/DIFdNtFZ6vqjegPEcTvdNRCSR7g+vfaGp\nem6s2Iq1IWc1zp1r1oj8ay0+N5Y5YxiGYRiGYRiGYRiGMYTYlzOGYRiGYRiGYRiGYRhDyEXzhtOW\nQYIgOvtM+guQTu8tJYupMJflKtkysjVVr0fLldKXIUWRpTEZq3TqIqfWDpAt9uilSB9yp0OHkfyk\n+SyOoadVpwa2NZMNOKVoe8t0KnNfB1K4OBWrekexascyLpZ3BbusSnua9bXwNRVkh5a2OF+9xtbi\nkQsgB2ujtG4RkeZS/DueUiXDw7NVu+wFSC3LWQhbu74+LTvo6UFaf81upFEnkuwjaX6Weg+nfB4/\nhPcs/MpC1a52O9K8WdaUOFt/XnsxzontUnOW6PS4uHGwYWsvQ1/3D9Hphk1enYLsS7opvdmdIhuZ\nDxlgC9k/JrrSsgNJOpTaj3TAmnPavjH4MFLoQ8nWMqpAW5tzyuyFF5Ae3UmWslnTs9V7anYVO3E5\npW/Xt2l704wqnNOIy0c7cfXGC6pd1Cgck4fSEN1j7NDLsHlMS8Rnpy/Tad5tLktmX1NGcqvYTC2/\nZHvIvDWQCsXk6/uYUQQJBsuG2B5SRCSM7l0EyY3WfVen/q6hNP/wVKR8s8yk/G0to5mzEnKe9tO4\nZut/94FqN200xtLwu2Y5cWup7nPh6TjWU29CgjV1oZYqCKWo79yFdhOy9Ng+/ad9Tpz84yvEl+Te\njHMfHNTXvOETpMVGkw1uYrK+13U1mHtaT2Eu/NwNy1U7Tl/vKMZ9L6nTNo+hzZiXIsKw7kRXYly5\n+3ZGDuaAyDT0sZZiLUVkS+awJMynRe+eUO16+tB/s6/HfTv9p72qXdRopKRXHMRaP/m+uardyb/g\nffkzxOcUr0Xac/zsdPVaJ1232o+xnuTeNl6166GU6KyrIDdKbtIpzCPIYred9kvjZ+i08d5GfF7a\n5SRD/QBrOB+biIiH9iAsnenv1On6oam4dyxtDHTt2XpI0hJKe6eK9TrVfNh1mJdLXkZfiCj47HnN\n1/S1Yvy1nNX2q2zpnXQZUuFrd2hbez+S1MSNw5goeV337+T5WIOLX8FrUSO1HXAvSSkyLsf+tbsF\nY9lt09pLe8BhlApff0CPxeJXMOd5cikt3iUbzyU5QgzJlAufP6zbUX/uqEa/cktfO9m6WTuM+wS+\nB43HtcQwLBVrg7cU++i+Hr1/Z/kcyzndktzOKpxL+DCsd5nztL15Zzvkary3534VNyGF36Ik4glT\ncaEq3tHrZ+RI7Ft4ne7v0vKQml04BrYNWgfNAAAgAElEQVQ359IPIiJ9nXgf23S75ZrBMaFyqeD1\njqXxIiIhVE6BrYuDXGUwGkkaWpAMGWGPq7xFGM1ldYchtWE5rRsug1FC43f01y9T7Tx5uGZ83KW7\nilS7uHj0nXnLsSfgEhYiIr3tWD+9ReijMaP0Pp77CK+RMaOTVLuOai0N8jVxk7EXKFx/Sr2WQc9Q\nZ9/Da+6yFcOvwNpw4k08G4xcPlq1q96Dz0iheZml+yIi06+c7MShJAuu34v58ewH+lhjPGgXTs+B\nrYlacswlFBroOaTqkF7Dc6n/JM3BdSh+8ZhqlzIDz7CV7+E5tbdPr4MhvAZopbKIWOaMYRiGYRiG\nYRiGYRjGkGJfzhiGYRiGYRiGYRiGYQwh/9d2CM2ndJpR7Bikf7aRM0Fkga5A3Esp0UHRSGEb6NEV\n/VluxGmw7vTKhkNIG2cpCqfRdVbrtN/uZKTEDVLaYesFnd7UWYl0sSRyhel3HauH3JVY4sQVnEVE\nuij9LJbSH92uGew4IEvE57BDU/XHxeo1TpXsbUM6LktlRLQkJn32VCcu2aodZ9LnTnLiTY+86MRz\nv71I/10PrkcQSTPaSGrEKY4iImnLIcmauhJ5YHuf3qXaTVgNN5CP/4bjGzE2W7XLvQGpiIUvwu2r\n/kSNasdpdIWU6jzhPu0IkztJf74v4XvYSC5qIiKRebhXYWlIkfW4nHMq30VqfHACPo/TM0V0qmk4\nfZ7bTYXTt0OT0I9aijEuPcP0MQx0YywVTIE72oSMSNWujyQ67ATlbdUuEv6F+H65vhppiHlLtRwy\nbwLS2uOnQsLQ4ZIIVJ7SacC+pvwE+vSku3QaNTtW1O1Dumb1R1rKlUGuR310DzjFU0Qk0IMx20/z\n1MQRWsr1z++/6sTpcehLLFOJDtcysdwpSIc/vh1Srdt++wXVbuOPXsNn7IVTxJ63Dqp2Kx+EC0nT\na5APhB7Vc0BXBe7XwlXTnPjjD7TD2gDJn+aLb9n3q41O3EESPhGRuAikz1YfxFo18o7Jql35E3Cy\ni5+J/shzjYhI4yH0x45m9P3sJJ3qnHkF+js7KSZNQ2p4aJL+bF5nmy+Ufer/i4hkLMJcOzCAfjTm\n63reOPGH3U7MDimhKfrvdpLD2vCr4ZgUFKrngKyrtKuOz6GfppqP6Dk/neQozbQelKzTUpeY8dgH\nBZPLVdmb2i0u/UqMWXa8Spim5VTszsNSJp6TA1wOLK1nIOdhGW/MSN1HeN/C80vcRC2bZHObsjeQ\nKu5xuVfUkuQiOBHn7naE7G3RY8SXePIhoWKJtoh2Awyh9SnT1a+85ZDKnHoC+4CwBD3nlb2GaxFI\njkJRw7Xc11uBz0uYCGlLOTk3sXRARMv/y9+FfIzXcxGRYVdDFtBwGHMj761FRIKpjxU+f8SJWf4i\novtzymKsx61ueS/J8kQr+3xCZBr2gyHRuoyAtxLzBc9h3Y16L8ByHpYbBoZrqUs0PSt0N0MaVX/2\nuGrHnxFH95Hl8G7XwYhUnEfVLvSXpIXZqh3LQ5uO0Xw9U8tza3ZD6sHn51KRqGNNm4c+0tWqyxOE\nROr+5EtK3sacl+ia15qP0fxKfck9lzFcwiJpnr4uAeS+03Yaz3Etxfp8U8hpr57mvMS5eL47+rst\n6j2JJEfzpGHOjInW7r6hafh3HK0Dx5/Xe5sgcqpi5023K2z+KsgZuaxEs0sCKS73MV9zsY9nCW3+\nYqyR7tIf/HzP8iK3+9zSr8CZs5/mppmu+ZHd41ieVl6EfpXg6tu8B+wkZ63Gt0+qdgH+6GdpebiP\nUaO17IzLjxx6EnudlGzdLoKeeVpPYm1OmJSh2vHe/dOwzBnDMAzDMAzDMAzDMIwhxL6cMQzDMAzD\nMAzDMAzDGELsyxnDMAzDMAzDMAzDMIwh5KI1Z6o2o9ZBcKy2YGsiy16up+Lnr8WQ7Y1kR0VCSbeF\nGlvCshU229aJiCTNgoaQtblMRI62cmw9A81eElmBsU5TRKT5MPRrbBMclaPrr7CveA3ZbCbNzFSt\nukgTW7MN7aJHuWzmErRG29ec3Ajt64y7dZ2U6HTUJDj4qzedOCJZ6/eqS3ANz2+Cdjp3gbbmZku1\n2d9Y4MTn/qZ1mPlfIus5uvetZIeZc4Ou07Dpx287cWYKdH5Lf3St6xhw77J2oJaC2+Z9368+dOLQ\nILwnIkFrSzupdtCUB1Y4cc0+3f8ylmsLbl9SuAF/KyZC13Bgu79WsjVmO3gRkbgZ0NKyFjJmoraD\n9AvEPeQ6M2WbC1W76FSqJ0N/K55q2BS9re3tYrMxlvh+1NF9EhFJnIex1Ek61fjhWt/JdQZyR6Iv\nNh102XFSTRvWxxZuOafaxUXqe+9rcuai3gvr3UV0nYBjH0O/Pftzs1W7cy/BmjDnKuiU3bUPtq1F\nLabrr/i8E8eN1vNUVgtsu3vomHY/g/f39mttPdt2X/6TW5y4+J19ql0u/a36vajBMvuG6aod6+mX\nPLAUf8ely2Xt+pZ3UR/ill/eqNp1NVw6W/vcZdBaD7rGWBXVD/NEYFz2d+s6Lqlk515Na8PIu6eq\ndokzoFNOmZ/txCGRut5L7QGs1VzDq+kM6lLsXastrVc8shqv/fIjJ85bru2dz/0T9XFCqaYJ144R\nEUlfgr594R+w7M1crWt8cN/heh+Nfdri+GL1CHxBzEToy9321CUvof5EaDrNCa79zQDp33k/4cnR\ntbYqaK+SRPexylVPiq2wwzJwj9neOspVD674n7DyZBvXerJ1FxEJodpdPFe0nG1wtSPbW7KmjZ+i\n60j40U979QfQzyKG6do07mvrSzx0jdx7xbzPo/6dtwp9NdBV86/1NNZCrh2RMjdbtVN1EWk8d1To\nccAWuW0lqB2RdS3m2QHXfMC19tJXYn5x27QmTMY9SJ6B42s+r2tClryKugoFd2Ef1d2s97xVG7Gm\nc/01/xBtP801By8FDSeKnbi7Sa+LvL/hWhbuc0mcjrmyi+pRup9J+N9NR7GepC7MUe0GaG/RVfvp\n9s/haXqcl75/yInTl2E/2OGqgxkWjT7Sn49aG43HdD3B9HnjnLi9FnsaT2KyatfVij5cugH7AxnQ\ndZj8qVZS4g1LxZcU3IHaZO0l2oa4Jwj9KXkOnuGOP71ftcuch3vAtT4DXWsBW44HRFA9zDm6rgfX\nOAmgPsz25SmX6Xo2tTtQS6v5EPpHeJZec3lMFL6EcZoxbZhq19OI/sw1ytz784oPzsuno+d7XiMu\nBXzNhl8/Tr3G1tDJC7OdmGudiYhcoFpWIWGYlyuP6jWp7gT6dArNbUFR+vsGni87a3F8o1d8+t5V\nRK93vJdocNVm5HWWzyPEZYneuB9rXO482sc36L9bsx37mIwrMZf3uWr5tbprCbmwzBnDMAzDMAzD\nMAzDMIwhxL6cMQzDMAzDMAzDMAzDGEL8BgcvsS+XYRiGYRiGYRiGYRiG8ZlY5oxhGIZhGIZhGIZh\nGMYQYl/OGIZhGIZhGIZhGIZhDCH25YxhGIZhGIZhGIZhGMYQYl/OGIZhGIZhGIZhGIZhDCH25Yxh\nGIZhGIZhGIZhGMYQYl/OGIZhGIZhGIZhGIZhDCH25YxhGIZhGIZhGIZhGMYQYl/OGIZhGIZhGIZh\nGIZhDCH25YxhGIZhGIZhGIZhGMYQYl/OGIZhGIZhGIZhGIZhDCH25YxhGIZhGIZhGIZhGMYQYl/O\nGIZhGIZhGIZhGIZhDCH25YxhGIZhGIZhGIZhGMYQYl/OGIZhGIZhGIZhGIZhDCH25YxhGIZhGIZh\nGIZhGMYQYl/OGIZhGIZhGIZhGIZhDCH25YxhGIZhGIZhGIZhGMYQYl/OGIZhGIZhGIZhGIZhDCGB\nF3ux5MTLTlz10QX1WuTweCeu3VnqxDMevFu16+/vcOL13/2DEy9+6HLVruilo0480N3vxBO+eotq\nt+enTzvxqC9Pd+JPHv/YiWd+Z5V6T3t1jRP3eXuc+Nzrx1W7wupqnMe8cU48+uZrVLuac3ucOCwh\nwom3/vxD1W7RD1c4cdHLx5w4amSCfBajl33pM1/733JqM66Zf6D+Ps4/KMCJPRnRTpyctly12/yD\nR5x4yrevcOLi9/ardoe2nXDiyYtxDd99bYdqd7ykxInvu+4qJw6MCnbi2sI69Z5Afxz7xPvnOfHz\n9/9Ttbv5J9c5cVzqJCdurPxEtett63bizhqvE//+F2tVuxtmz3bi4Xfg8869cFi1y7t5vBNnj71R\nfMnvbr/diefMG69e62nqcuLkBdlOHJufrdptf/R1J86dk+fEzz/9rmo3JjPzU49h7p1z1L/DktH3\ndz2+De9fPsaJ48Ylq/eUrT/jxCl0rLW7y1S7yPw4J+6sasPf2XBItVv8ucucuG4b5qGkBVmq3f6X\n0U9HTs2TzyLrStzfxMRFn9nuf8vmH/zAiTOvGK5eaz3b4MSxdN3q95Wrdn3tvU6cuiTXif38/VS7\nwcFBJy5bd8qJM9aMUO3CknAfi17CPJV9/Vj8zc5e9Z7upk4n7u/qc+LaLcWqXdQYzHWerBj8zcQI\n1a75NMa6XyDOo36nPvdAT5ATR+Ti88Izo1W7uu3oC7P/8wfiS87v/4cTV64/q17LuGakEzcdwXoS\nPyVdtevrwDrUcKDSiaNoXRXRfd+P5u7OynbVrqmmxYkTc3HN46akOfHxF/X8lzwM7WpK6514wp3T\nVDtvGT47IBzXPyBEbx+66zGHNh+tdeKIgjjVLjIn1ol5PgiJCVXtBnsHnHjO9x4SX1N05EUnrvzg\nvHothcbV4ADG0UBPv2pXvxPzVtx0XOuO8lbVLiwF/T08LQov0BgVEemsxTXsqMS9H+jC+POW6M/m\nUZ96eb4Td9V5VTv/QKz1Lcdwf1ob2lQ7TxjuQ+Z1o5249uMS1Y73MTz3tnd0qna5l2NMjJj/efEl\nhQex9tdsKVKvpS7Dtehtx1pfu1Wfx2A/+ln6lZiTA2hvJCJS+upJJ46fneHE3Q0dqp1fAMZp9Ahc\no4p3z33GWYh4aC7zD8bfbTpUrdrFjE104uC4MCducM2TUeOTnDgoAnuqNlpjREQSZmGtr6c1OHHO\nMNWu9HWsHwt+8pPPOIv/Pac2PeXEvA8VEemgOVDtV3kciUh3C/pd2zmcJ49fEZHUBVj/q7fjuaa3\ntVu1C8vA54enROLvpuJeddbpscjH6i1pxt9cpPccA72YR3pasX/jtVhEpL8ba2vDJ1gn3OcUOy7F\niUNi0C/ay5pVu1a6LlPuuF98SVsb5vLu7hr12onHP3Li4lrMPdXN+vi+8uTDTlx75qATu6ZJSR6J\nNap0x1YnDo4NU+3iR2A8v/EdPAcFBWLtuupn+plrYAD9qPD13U486XP3qnYn3/m7E/M+NyZZ788D\nAnBPOzsx95R8uE+1ixmFsT1s7Bp6T4Vq19ODtToubqb4mqKjLzlx9UeF6rW0lbievW3ot+1FTapd\nNJ1LxTuY9zw5emwHRYY4cetJnNeg64bzupu6HGOJ54P2Et2X2s82OnFAOO53f0efahcxHPuToCgc\nj3uu5Pm2txnn3tfeo9olL8xx4upNmF8iXXu70ESPExfMukPcWOaMYRiGYRiGYRiGYRjGEHLRzJmY\nDPxq0pikv8GPn5DqxGNWIltm3xO/1J8xHt8oHi4uduKk3+9U7c5VVTnxmkevduKBAf2t1Mi7pjpx\nyzl80zbqxglOXPS6zuaIn45fLRNG4Ff9qnD9reC06Tjf8DR8U374jzozI5B+iYgaiW/Drv/dz1W7\n2qpNTvz6BmT2fONqnV0UEZ0vl5LBPvwylDRpgnqtpQLXYNPPNjjxyIn6F+GRX8R1Dw7GPX3lpY9U\nu9u/cqUTn/gAWTSjMzJUu3v+jG+hD/9moxPv2I1vy3t69a/1112z0Im3/xRZSjc9rDObkjIXOHF7\nO37xCYtNUu2qt+Gb63G33YZz2Fep2q3bhW/Pv341+kh0nv5FeN/f0KezH/dt5kxHN37V8XNlP+Xe\ninvacATj6JUnnlHtbv7t15z4z3f/wolnj9CZFKHB6N9j75zixAee3K3azXsQmWEF0/FL86aXcR1W\nRuvskwun8OvciFuXOPE7H7+v2s32IIMlgbIOlg6LUe3CUzFOk+/DLxY1h4+qdjUt+PV//jxk1Rz8\nyy7VbutH6H8PrPV95kwo/bLTsFf/IsLzVGc1ZUa4fjWKnYDxx7/4D3TpX/UH6BfhlKW4PyGx4apd\n3X786pq+ssCJzz6Fa5F1/Wj1Hv5VPmEyjtudOdNdh1+V+ZeHvg49ttsL8StH9Bj86pL/+Umq3eAA\nzqmSf9UJ0GMiZUmOXCqq3sM1j56oM8M6KjjThX4BP6bXz7qj+Lcniq6LK0OpowyfxxlKUaP0rzCc\nbdrTiF916nbgl7r4aP1LM2fVhKXi170BWi9EdBaIJwfjr+V4rWoXOyn1U9vFjtXXqPhlZKyG0a9H\nnD0gIhIYFiSXkh76pTxthV6DOZuibhfmLM5UExHpoezL4GhknDTs1pkMwZQVVPoaMjASZul1MYg+\nw0O/3LecQmZZ5tUj1Xt4LNXTsdZWNKp2MR5c6+ybkBUXeqhKtas7hn+fX3vEifNuGqfa+fkhZ8dL\n2TIpk3SW2Nn12AeMmC8+peQNrO9x43U/az6BX+8bjiHOXFGg2nHGIu+VOikjVUSkrw9jrPkoPo/n\nbRGRhn2Y1/kXVs4Ec/8syvvNqo34tTUiW//SzLScQJ8ITtRzuocyCRv243giR+h5o2ZrsRMnzkEW\nDc81IiKpyz4729QX8PzVdFTPlWG0xgeG4ZHFW9Gi2gWE4rXeNjw38H5dRKSzDmurP2X/hWWEqHax\no7BfDAjBXNR8Fvf+X7LT6Jf85HnZTly5UWfmxU5ApovKgvHT2a81NH/HUv/m+UBEpLsR6yz3+4E+\nvXlwfbxP8Xiw5hZ9pJ8L/Cmrl+eh2XfOVu1KdyHDft3f8DwyKUev59k/x57/zMbTTlzjysS58TFk\nelQ2IbsjKhzj5eEbv6fec8XkyU7c5MX9bf/Rz1S7gi+gXe0uZA6m3nyFavfb25EteO+Tj+J4PtFr\nRPkBfMaLpW84cWePfga+83vXOnHcDN9nznRWY88RRRkwIiIV7+G5kFUY7rW75TRlwdC811Wjxwtn\nj4SmU3Zapt6r1NN62kRzL+8peQ4VERmgrLO207QWurJyOKuV5z3ew4iI9Hfitc5yXKNEV5Y+Z5Xz\nvNl6pl614/nq07DMGcMwDMMwDMMwDMMwjCHEvpwxDMMwDMMwDMMwDMMYQuzLGcMwDMMwDMMwDMMw\njCHkoqKnPT9DrZW5P/yyeu3Qb1GpumU+NLvnj+lK+KNJE3bN8rn4wx6tJ/evgY4sORW1LGqrN6h2\nJ/6GOiHzf/SAEw8OQrO67tf3qffcvhwa49qTcCPJunGMarf195udeHIW6ngERWstanc1dHPbDqJC\n+WC/1rI9//hbTrxm/iwnLnxOO84EhEODP/tb+ph8QQxpZyMitN66vAj1eVb++Hon3v5fb6t2jRdw\nj/OuhaZufJbW2/3+l3DAeGz9X51456O6/skL9+Pft/0GlapnhUOfefjxl9R7Rt+E44sZC3egJ7+r\nawJ9/W/QHp5/AXUz+tu0dnPYDbjWX1uOGjF/27JRtYtch/Moewv61r9v3arazR/j+3v339xNNXoa\nT+sxFuqBFjksBVrI6Qt11fgTf4ErU2QYxmXWBO3MkHUFagv87q4/OvGNn9cOXo0nUZsnJB4aXtb9\n7lurK9IvfRgubX5+mANCg/R8kDIPGmOuLcUOJiIiZ9/E2CmsedOJa1u0Hv3O/4RGuWZ7sRPHR2md\n6twHr5JLSSjpWxOn6VoFTSdRw2OQ3Bwyr9A1gWp24v4Hx+M+pi3WdQE6yT2npxljtmqrdjWJzIV7\nDstxU6lOTXux1nJzJXvWHvOYEtF1Q7hGgNtZiusC1O+Cvtjf5ZgSQjV7euo6P7Nd8wmqhzJZfIpf\nAI69t0U7fAQkkSsAOQPWntc1AqI8GC+stW47pR0CuNYPry9VLheF9FWY15upHyXNwtjuadE1NNjF\npf0CNNnH/nlQtRt9DeaRHjrfrjrtUtNM7lR9XtRBKSvUfSd2EuotcA0Ej8txy72e+hquK1P+5hn1\nWvQErJneWtSoOPqsrmeXf/koJy57A2sD3w8RkX5ym8i6HmOkxuWAlDQH62k/1R+KyMMYrd+raxVU\nn8f9zpqNeXMcueGJiJxYi30H9wXupyIiWStQp6H5CPZlqg6WiFRtK3bivDU4pzOvH1PtYuN0/QBf\nknE5rrPbNYNtrNIXYy4LcNUy4vddeA31caLSdX+Mm4yaSt4i9Gk/V70rdkzk69xVhfnY/R52ZUqk\nOkTuMdFL9yo8Hdc10KPrqnAtFHbVctdxiib3p8BwfMa5F4+odsmT0+RSwn0rxFU/h+d8rs8SlqLd\n3fic46dibW08pGsIthVhruO1K2a4rq/Bzks85w9QDQ33dQ8jV6dW+jtJLver+oM4Jq494XZrihmL\neciTgRoYbnccD/VVrm/VeFjX7wlN0NfWl1RcWO/EBStWq9e+82fs62+5ErX8uOaIiEjx26ghVVaP\nfd99T31HtevpwTp5ugI1la6+Z5lq9+q3n3TiOx/FHv9Hd8M5+Etr9L42lOqvHX0H+9cxq8aqdvv+\ngPo4Y67B8+LAgN4TrLgFjqKBgegf8x/SLlF7f/acEze0oe/dfN1i1e7Q2gNOnD/jdvE17BYXGq/7\nC/dVXj/d7krRBZhz+B672wXR+OF2buelpMuwLgaE4Pg6qjBvuMcEby5SlmP+D3KN2cr3UQ8qPAtz\nakR2rGpXdwI1gdiZsbNCO7ZFkUNfdyPtUV3uli3kUCq6tOL/3/5f/8swDMMwDMMwDMMwDMP4f4V9\nOWMYhmEYhmEYhmEYhjGEXFTWNObu6U585E//UK+NuGeOEz//jWed2C1PaDmO1J3KRqT5sTWwiMgX\nnviNExcfftWJ00YvVe3S5iCFra0NdrlRUUgry0nSlskH/wAb64QM2B9/uEOnb9/x0HX4bEqROnxA\n20pnJyL9ceIEpNW6U+u/88JDTly1H2miEVnaoisoQsumfE31NsgYNu/SMrFpN01z4oAApNyt+K9v\nqnZbfoQ0wKyJsMsevE3brk7qhIag6ugeJ869SlvxJpciLazoVaRbl5x5x4nrWnW6WHY10vmq3kda\n/9yR2lrUzw/3QdlMf6Kti9ny7Lu/vMuJz2x9QbV79Z+wBbz/6W858bRynV7e3qVlA77kg4cwJmbf\nNUe9VvgG+ncy2USXH9HHN/+Htzhx6FuQhUXk6PS9/j6cx7XXw748ukDbcLaSFKL1JFJQb7kb0qWj\n7+sU9yrqi0e3QGaVEKVT35/9JuabLz/xH068+/23VLtRN0104kmUgvn2I1qWV/IOJAdpC5D6z1Z8\nIiJvfg8SubueXCC+JoXuD/c/EZGOUsh+BkgG0ZqkLXGDKG05IhfzWQ3ZOYqIhMSiHafyx01MUe04\nvbKf7AePv4N7Fxeh063DIvHZLSfx/o9f0zK2Fd9EmjFbDbP0RkSkpx7XIu8O3NPaPfqcWC4TROcX\nFKXnUP8QPRf7ErYyrtun55TirUiR7enDtUzJSFDtWGowSBa9CVO0fKBqE2x12X41YVamauctQ99J\noJT+nlaM5V6XfIXvx/BrMGZDk7ardpyamzyTxk6MlhX0kjV1F0mBIvNd9r0fYQ4IScaY/RepW+Sl\nXRd7yQa7qU1LdtKzIe3pJWlKeIMes62ntD3mf1O2XsukgkgyEhBO264BnebdVaeP479hyYlbZh0R\nivvQR+d08sXDql1sDNb3jnL0l8BInebNUg2W6PgH6+1iBllSc7p6wVVa2hgcdenuYyCl2Te4xmJ/\nO+aKcLKkdp9H9Gjs50JIJtp6Vs+78TMgN2KbVk7vFxHZ/cxeJz5Je4SrFkPa/t5WPU8GBWC+unY0\nZBYNn2hJTjjJnFjuExCq992eTOwxu5sgP2xxzbsxZHNf9QHmruhMvUfldeZSEJmHz289p6Wd4WnY\nG7DMwi0JZDmBtxSyCLf0qLeVbLapvEL9Ab1fSpyOObblPMZ5UBStY2TRLiLSSxK58j04vpSxqapd\nFO2leOy4ZR/KbpfmCrfVeTudbyTJMdzS0L6OXrlUVG5A/3lh28vqtZRYHFMiSbxaC/W9Hn4Hnh8e\noefPLT9+UbXLpXXo2q+tdOK67Xq/wOMqIglr6+/e+bMTl+/drd4TRX39igyMt9gRem1+7L+wR51w\n6xQn7ujQsvH4SXjf+9+DHXd8rN7z5t8C+fCyfuwJYifqvlNwnZZh+Zq6HbiGmVePUq/10n6i7Rzm\nx8S5WrbXeBRyurBk7B17mvQzUlctpIghtBfvc+1VGkhWz7LChBnY67ht4uv3YD3gvY7b0lod9zHM\njz3N+ljjqAzBQA/GX2Cvnl/4+BrIAjzQtW4H/A97VMucMQzDMAzDMAzDMAzDGELsyxnDMAzDMAzD\nMAzDMIwh5KKyprBopHuO/8qN6rXqE5Cs3PhjOKFsfWyTaneK0jpZ9hHj0VW6ayvglJQ+Bm5Nr3/r\nYdVu9ldQ+XrnzyCBmfgFpCONXKjdTbgKdAWlbl5/zwrV7sAzOKcrfv5dJ3anWzcdqHLiyJFIT3Sn\nOAZTGhOnZkanaBnOS9/8nRPf87Tv3WKqjiI1dtH3dEpcUipkYx99/xEnvuzhr6h2Gw5BepT8wlNO\n7E6vnPhFyIN6e5H29uxXH1Xtrn0UfYavb2obqmq704U5RT9qHPpm9wGdzhwUhLTEyEikIofN0VKA\nog8g7Tm2DbKXJJfE5uo18524+QJSVe995inV7re33ymXiqnXT3XiPU/vUq8VTEKKZ2Qi4vj4k6rd\num8/4cQ3/+5BJ76w+QPVrukk+nHaIjgAlW84p9qlL81HPAflxk8/AxnYjC/MVu/Z9yxSSFc8crUT\nP3D1I6rdV28m6dwg+kFcinavqIfMnZsAACAASURBVP4Iso/oMegTHT06LTLvBjhQnSTXEnZbERHp\ndL3P17STnKB2c7F6zZOHVPIWkol1VmuHqm6SVvhRLmdnqXaoYrlM9ChcG/eYZamQ+OGzFz8Md7S+\nPv3ZFeQWlLYIY3ZSzBdVu/MfvuHEnF6u0rVFpLwc8/drX4Y72pTcXNUuJw8pwl0ktwnP0K5bUZcw\nDb/5M1y1RLRsNmY8JAPudHVOz+d5bqBPz3lh5OTErgJxU3WqM6cOsySu4m1IcuNnZ6j3sKyuIwz3\nM26clr31tKAdu9+5XVW6KUWZpXfiSjfu7UX/iyFnjEGXxIclOpeC0h1IP8+eq/tZI7mpsKSDx5GI\nSH8nyVtG4/hLNmgpdOZi7EnYBaZyt5ZmBJyEzCKMrs2+dzBnTV48Tr3nbCWOdSb1uay5OapdJzlb\ndNVC6hIcp+Vp3H+669EuMFxLZ9gRLYjSxmPHJat2teSOlzNBfAvtHdwSVZ7JY0i61OtydWJZZkQO\n5uCkeTpVf9czO524rRNjoiBVj8WuXsynozIw5s6dKXPiv7/5pnrPz7/6VSd+/7mtTjxrspaDpy8j\ndyqSqARH6rHYWoxzYimBn0t6X/4O+mnsBNy3qOFahtleTE4oU8TneMshYY8eqf82S/qqNmO9D3E5\nD7H8MGY0Sht0VGp5fHgq9nf1B7F3jB2jyyFceAGlCGIm4tqEJuIaspuSiEgTuSNFx9Dc5prXeU7s\nKMPxuWVI/Ayh9l+u9YTleH20vgfHuKQULvmbL3lrA8bHrV+9Qr229s+QsB9f+4kT5y/Tz2oygOvU\nTQ6TXlcZjIE+nP9jD8E5+Js/ukO12/QHlL74672PO/HnfnOrEz/6w6fVe5ZPhKz6jb2QKP5lvd6j\nLhmHeXjrX/EsMW6qliImkmPiwofxjLD2G79T7bzP43xTp2LeOPvKUdWuYw76y7ir9FrgC5LmQ3rv\nfgYLJillwkwcY/XGC6odu6Bx2YRg1xofkoPPY3m9283Ok415+cRGPNe012NN43VQRCQjHs/mHpoD\nWHYkIhJFzw1+JHliqaWIdoNqOIW1L3GCnv9b6TwyrkL/rttTptqFpug9qxvLnDEMwzAMwzAMwzAM\nwxhC7MsZwzAMwzAMwzAMwzCMIcS+nDEMwzAMwzAMwzAMwxhCLlpzxuOBvnXdN3+sXstMgC70Qg1q\nVPT2aw0+15ZZ/ePVTvyXrz+n2oVEQFO25aFfOvHIucNVu6e/D0u1lfNQhyMqLduJE3Nm8VukkSyY\n2Xorbfpk1S5rDuqv3L8KmsSHX/iGard3PTSTt152rxM/tfa7ql3Fh9Bg3vdn1GLp7/eqdpOmu3SX\nPmbPWeiKA/6oCwAU18GaeOvx40686CffU+2yk6G53bwR13PvWa2tf+J6XNMLr+A6TRlXoNqFR0KH\nOTAAXfv9V9/vxH/Z8Gf1nr/f93snTolBfxkY0BrCDaRB5VoPydG6Xsm2k9AuPvA8+lxLvbZ/Do9G\nnYu9P3/diZ+hujkiIt969ttyqYgi/WNmiq57UH8OGsfSH8EG3F3XiW3un/8axnNkmNbqX/YfsM8+\n9yRqTGTfPFa1+8NXUHPnhtswdoKpnsaff/AP9Z500oHetRTX61urV6t27ItXewi2tL3NWnvMFqls\n5+2uA3DgWdST4poAXG9ARGTRLdqm3Nd0kOVx+lV6bgvyQB/uT7UB+rv1nNpPtQYa90Fny7UiREQ6\nitguF58d77Jm9GTocfHfdLfD5rLxWLV+kcYc23i2nN+gmkXmUU0uqtXitjdd/hPUqsl4CrXEzpzV\n1pgHj2C+mbMCc023y+K4uQd/K0s7+/7b9JJFb+UZfV24BlD4MF27ihmgWjXtZEmZda0+2JptxU7c\nTf02PF1/NlsjN1SgpknUGKrf4NJ7H30B8/jYm3Ety946rdpx/aYR10LjzvbdIiLVtdB119B9m+3S\nbmetQc01rokTOUpbbve2XNqaM6NuQW2B6k3a/rShCvry+Aay1HT9nMU1Iga6cE+DA/XWqr0EY6Tt\nFMYV1xYQ0bVgvMW4vkm0dnky9Xhd+QBq5zUeqaJXdH2RuMkY916qTzXgqpt0fB0suNNyUFPDXWOI\nLai9dH41W1xWsrTn8jVFr55w4mFX6n1U4wGqQcDryRZd58eTj5oILSewhpwr0bXscmkPFJqEa3H6\neLFqNzIHte2e24AajF/9MvYLD/d9Sb0nMw3Xma3R2+p0vTFvBe5byqi5Tlx18mP9eRMud+LGOuxD\nA0MiVLveBRizpW+ecuKuGr1H5Vo8l4LIPNwDd43HoAiykSdbdq6zJSLSQzVneG4KcdUiKlmHPpN+\nOfalLS4Lb1Wji+bO4lfw/qgCV20zOna29g1L0cdauh57mgiqRxmWqutQ1O9BzU6uR+aut9N0hKyL\n6TOCXDb2qr6cj/n23x9y4gvrd6jXfvjyk0780Q9/5cRtp/U1//vjeB65Zhn693WP/VC1u2fJdU78\n6DN4PjtPdYJERO754+ec+MEb8XfDPLi3j732IL9FgkJwP3ZcizHxtdW65sxf3octtp8fFoa+7g7V\n7rf3oIbevFGocfiFJ36t2r30H9934sVrEJfs1c/eI1bo+q++pptq+TXs13Vc/ALQqePJWtqTrdek\nSLKKbyvE/ubwlhOq3ZhJqGnZVIx20Wn680rOY11rakedGa5j664z+dNXX3Xie9qwRvL+X0Qk4STV\ng6VnobK3dQ1Zfk5KHo9nwqbjtapdwlS81k97cq6bI/I/29pb5oxhGIZhGIZhGIZhGMYQYl/OGIZh\nGIZhGIZhGIZhDCEXlTWdfusVJw4J0hZsY+5b5MTFP3jJiWcs116J+z+EDdhHP0XK++gMnc770ree\nc+KFLC1wWcvd+f1rnfjUy0hhe/wuyFL6XNKqB/6OdLTTu5HK3XxYpy15cpFaefvSBU4cE6flT7c+\njn+3tyPtbeoknVY7jfIay99D+nbGKp22uWHjPieefo/4nJu/usqJO1x2uwse+aYT39gJq6+mpp2q\n3Vef/i39C9/p7XjkMdVu9y9wj+d9/yYnfuLLv1LtJn/tbid+4IpbnPieZcucuPDN7eo9i6+DXG3U\nKljm/eWLX1XtuG8N/zzuVWzKeNXu9Nd/6sR7f/asExfcPlG1e/pByKm+9BfIvYYXaflTezVSAON1\nhv6/jScatqgni9er18JDkLq65PtI3/OW63s9dSTGZuE7W5w4KFJLTJ767lonHkbyxWF92tZzyXhc\nz6h8pPd2NSCts6JBp60WViP99vv34L5/uHm/arciYwbeswEpwNtO6LTI2yaib1eeROrj8VIth/nc\nr/C3il89Lp/FpUz7FdFWhG7r4O4mXLdIup7NJ7T0iqUUoamQru3cpi0XL7scsk8hS8TQKJ2KHRkJ\nKU1DDcZ9XxeuRUSWTskMGIF+ERiGtcFtU1u3D2nZWZfDg/XCuj2iwZySf/s0Jx7ur63YBwaQxlq7\nD/IEt8Uxp4P7GraMTh+rJRv9Xpw/3yd3unpnDVJzS8+h36Z3aKkbS1GCi9F3zr+q554mL46JJTWR\nZZBIsORKRCQ+Gum8R9dCvuhyvpaSekg9qp6C3CfKJYfk3swynKZDVapdwR3znPhIG/5u3wktT/Wk\nXtxq8t+lZB1kre7+kzcOMpOKLbAJTZmt7ZV5D9HUhnuaMSlTtWPr24Aw3B9vaetnttt3BPPe5fcs\nduKgSC1V6GnFmGA5itta2kNjOJiszjmNXURkzBrM671kZ958VKdvs7wqYRpZv75wSLVrfxvSnIKZ\n4lNSLoPtq1sOEzMBlvC8FnZ36zlKzqNPVzciTo3Rcx7Lw2f7Y6/HY09EpLkJ5/v1r1/vxOX7sCaN\nGa+t27lPpKZgTo+gPamISANZvAdHYS8bn6/njY6OQif2VuLc24uKVbvE6einacvznZjllCIiYWmX\ndiw2kzTAbWFbtwfXLZSlTK6JKpjs3NmWt+g9LdOMiMb17azDvaveq61uh5FtOa/HLCmKSNPHeu5Z\n7GM8JNWq263XI08SzoMt23ldEBFJX4Fj4PXEW6XnDZZnswzaL1BfpIhs3Z98SXMprL7TFuep1448\njf31ql/+wom/v3rNZ36eH9kx1xTqZ4Hp+eirbLU+5ds3qHZP3vtzJ/7t+j858ZkX33firkp9zcfd\njz1lWhzu701ztOS9sx5STt4DPfL536t2f9qI/TrLn/70hXtVuzySTfb0YM3NW6rHtteL6xwcPEN8\nTX8n9n0DLkl9BElAA0IxZ4W7pPHcH1nOM3JUlmrHFvCJEf8fe28Zb2W1fY+v093dxeHQ3aF0l6Ii\nWNiK3S12omJeu66NKKIg3SANBzg0pzmH093B/8X3f58xx3O9vPi5+fBmjlcT93z2fvaz1ppr7eMc\nY6Be5+7l87ukG6UOQO2U+1ibsJA3xpgJV4AWV3MclKmw4byHN5Xi3N0iqJEh9u8uvkf1UYyPv43y\nKeUFqoQ1t53+FGg7c9ihnTMKhUKhUCgUCoVCoVAoFBcQ+scZhUKhUCgUCoVCoVAoFIoLiHPSmjyE\n68q4526g14oOonV16kvXWLGfHzu6nNw634o7TQQtorWGW0s3/452wNhB/7tV68u7QKO5+cPnrTjy\neygzN9ja1L67d6EVj7sD7cFhHZm+UpYNukP0SLROtbfzvVYUwc3Aww/tnv3vvIfy1j31ghX3e2iK\nFXt7d6C8B75m2pSj8cGrP1rxy7++S69lbYMzSl022vQO7zpJeWld0UYfJFrth89/gPKO/Pad+Bfa\n1C/u353ynp55vRVffw2cBXZvAm1l37ZtdM0d96FF+IUrQGu69d25lFebJ9xjRFtZfQE7GoydJ1rF\nvdGWuOcj/tzhQ0EHWnjDM1Y870OmU2Uuwhx2tEPMhue+tuJhV/D6iOgL95MS4WZTfaSU8mTrdH0W\nnlH4yETKmzsfz/nY96AO5vzAdCDp0tYpFBSabZ+CGhPqz64yVwwBTcVNtCFvt7l+fbp4sRVvysD8\nzXmNKT5+SWizjBbuLj2v7095r97yLyu+fyGc05xduO03bym3QDsa0l3J2Z3dVBqqQC+QziM+8dwy\nmr0724o7dsPY9+3EdSVMUA3aW9Fq6eJic7loRsunXxDer+gM5vM3r/xK18yYNcKKJX0iuFsk5fl3\nBL/PwwNtnL4p3F6d/gbqd0B35MWM5LrRUo+208KtoDWFdAmnvBChmO9oOHtg3KpOMm0vQNAQSgWd\nJ9KbacHrfwWtq28HtIAXrOa6m5mBVvvoILy3bwC7dYSkgma2YS1c8iS9KK1bIl3jKuiM0RWgymz8\nix0vJG1SuqAdK2AnB293vN8PuzB37r/zSsprbUVLfspQfHf7PLc7cDka0mml4jC3HCfPwjmmTTiT\neYayA164oNW4i7blOkGVMYYdgdxDsV4+/Gop5XWLR8v14TyM/fJbQNu+e/JkuiY4Qjg5iflXfZBr\npWxXr88H9SZ2CrfNVx5CXQ8S1KD/cn4RbhPeUdhb7PS5qGHcyu5IFG1G+3tIH3aha8jDPAsW9cA3\nkik68jXPQxjfWhsFXM6D2gbUocQwbk8/KCi1QaHY/zpMxfm3eEM2XeMjKFRBPUBvKPmLqTaSFttY\njnb86qz9lFefg3uPm4qaHtGZ90VnZ4xpxRmc6b1sbnBtDUwZcDRixoO+U7KLKUCyDgSK/eXMukzK\nOyvcjPw6Yd/xsVEHvROwXioPYK53u53PVf7BqAHVZTj7JHSH61ZuxhK6RlImqkQ9SLmG5R68glGv\nnZywdjyCeD9pEmMsaRuutv0kbBDoae3NyGuwuW5Jx0TDLP9/jMQecBFqaamk16q64Cza1IR7kHua\nMcbkCxr80YNwfXtk4aeUd+/UqVZcth/7UG7WYcrrlZhoxQcW4ky5PxPvPfc9dqZ9cfaDVvzgl/h9\nU3KA51vJdl6b/8Fd97ObUtZOOLyW7YIDnLOtTi4Ve2aHXXB1+vHDPynvdnnGOg8sNUnb87HR2Uu3\n4TufFVR5O6W0VdDba45jTO3nvqYSzO8mMVfjbbTgmHHYo+Tnenih5nt4RBgG8lpGYT6WnmBKuFxL\nQd3wHtW2s12hqNmbhNNvrE3DokMkxsc9QDiw2sa7pbLRnAvaOaNQKBQKhUKhUCgUCoVCcQGhf5xR\nKBQKhUKhUCgUCoVCobiA0D/OKBQKhUKhUCgUCoVCoVBcQJxTc+bAUlizeoYx17r+NHiceYKruvqX\n9ylv2p3j8WHCesspijmtfbqDc+rpCXvSHS++Q3kjZoAXuud12LMVlkE3YfnevXTNa788acUf3Pax\nFZdWf0l5D78HH+u8P6A94RaYbf4XelyGa05u/55eK63GMzorLDKzty+jvGqhizLg1of/52f9v+KN\nZbA6b2tjDmrpVnAIe94DrZGG3J8ozyMMPMSEvtCIqauz2RQKjuJLVz1jxfd/chvlXeoG3YZeV0O7\npblsgRV368Bc9U2Ld1hxcRU41Qtu+hflPfkdPjdzKfRPKtPZOj1mCuZc4VrwSfPLyylv/PX3WvHB\n/dCEKDuUTXkdZ4805wu9b4YHqX8ka4ucWroBr6WC/3hYcHaNMSZ1DixsfW4B9zP7F7Zg9oqCJkn/\nh2DNnbeGuZpBYn5Hx8MS8bI3YXk+cN9KuubZ+zFWz06/04qvGj6c8hZWQLNh/2cY9wFDWMxnwYOf\nWfH0/uDTN9vsYSW32SsEmgMHFrJFY6cb+5rzicZ66OL4+rP2QdIYaBJUZoCXXXuC9St6zIZGlU80\n6qi0MzeGdWakDae7O3NkGxpQA1oa8VnS6ltqzBhjzM7VmDMJwm69ymb73eV6cMMbG6HBkjBkNOWV\nbYOmUlszuMJubnyvzU7gDve4F1aJdYWsD+Hixno+jkSV+KzUy1kT58C3sIZ2dsb/+3CxaQSMnY17\nrzqEZ+Zqs0mubsA8TumJetgsuNrGGNPegmc25eYxVtwm9AfOtrJ1u7RtbiyETlvPBK678ns4uyDO\nLmadlmmjse6vFVo3hemnKa/uBOprtKjB8jsYw3acZqJxOJxc//ccKd2Jew4XHH/Jd7fjkNgb+ozm\nedEs7DqbS8WYRrJG0+p06P30Skqy4tpG8NPtmi55uRiH4bPwuV4RrC1VLeyFoydiD6nJ5P0uRGhV\nOYt15OZrm5uCk1+4FtbNATa7Xl+bboEjIXn8TSV8tpFnrrYmocNRzHmnl8OaVj7n8lrWLhwxACId\n7kKP0U1oNxljTFwdnp9nJMag5jjOeT6JrK8kdWZk3S3PZN0DaQPdWgfNH49gT8oLFRokZzbhHBA7\nmudEUy3qaXMNvruzO/9/W1cf/o6ORm0u7sPDZgHv4oHfDW2N+M5BvXjtlO2AVo3c//068r4o7ebb\n6jEvKo/y3tWegrUoLber/ESNt2nW1ZzEWmoXGjhVx1n/rykc9+cmnm1LHetbFi5HTQm9SFgA13At\nl2us+gQ+S2oUGWNMewnbAzsStbVYR9/f9zq91mcwdI82roQG6M0fv0F5O1+GJmaLOL/EijOGMcZk\nir1nyECcUW9/hvVj5ohzZWwM1tyQJOiNNjaydswVs8daccFmaIsEpLG2VEg3/E51c8P9Hft6NeWd\nWA89xTHPQu9w912vUd47K/Cbq74ez/LRb8dS3uIHX7biaz6YZhwNWX+kdowxxgT1xpqT+mt+MbwW\ny49CD1Cug0DbM8xdesSK/bvgGcp7sKOxDGuxyQW/2yJTEinPwwPvl3dytxVLrTRjjDFiCef+IjSL\nbFt9xBDU1KlCr85uxe4ltPNyhD5k52l8JpCavn8H7ZxRKBQKhUKhUCgUCoVCobiA0D/OKBQKhUKh\nUCgUCoVCoVBcQJyT1jTpxXlWnL+DbYilDWy36aD2NJVyu3WHQVdZsZMTrln/1FOUN+K5p634lSuv\ntuLxUwZT3q4/YRk4eT5a5lNEu/EYv9l0zepnQDfqLVqFxzx3F+VVnEG7YvhQtBDaLW+3vrPRirte\nAprC8V/ZaniMuL+ivWjfCu3JbePhPTqb84niPNyvvd1/wMN4Bp/eCtu40XMvorx9P4Mq5uYHa7jo\nwWxHHtcLlKdu8aAUvXXLR5TXJxlW5V3r0ZrmHoI2zLiJbMsefQYt8LvmgT735rJvKa+1FW1m3WfD\nsvvIUs5zccf0zzqONvZ9WUwHqiwFbW/YVZiPSYOnUt4rc0Ddmi+soB0B2U6/+7VF9Nqf+3B/ktrT\n1MLte3888Y0V958J+k5FNre1x0/HfHRxQeudfR1EhKO1L+sAqHN5P6M1sPt9bPv69h9ody3YAmpM\n93FMV+pxCGvp49VoE3065SrKe/R9PPP2FrTBvvvwV5QXJ9pia/PRKu4VwG2/hz9F+2PsyzONo5Fy\nJVrjK9IL6TU3QWmpOIrW5JAebBHYUAgb3MQ+l1ixnPfGGJOza4UVR3SHlWf2Jm67jRsKe/OAgN5W\nHBaJ8d698226JiYYY+8pLJRjp6RRnpsbaFeNjbCYzdrA9xA8AHa2KSPRqtvUxFREF0GNrS/Cc3D1\nYtrQf7WuOhCdrgGt7Mi/mUKbNgnUtJw1aEm3Uyq9YkBpCxmI9ujmKrZX7D8G88UnDu2ym2z7cXIE\n5kiwsBSW9qtbf9lJ13RJRJuuTxLa4r9fvZHyJNVj7khQN8f0YC9W2b4sKb0d+yRRnqeg2zScwZyt\n3M/PyDuBqc+ORlMRPjvxEt6DqwU9IXM79ic/m+V2dglTIf6D4O68Zk+vwFwI6IXXJvfivGHpuI/W\nFoyd50jQuYNtltFh3WAzWlMEW1k3X6aiRI8Flam5GucWpySmITm74v/ZnV52zIqLC3ifGPY49r+S\ndNCaijfmUl7xVvw7gcv8P0b0eFixl+1k+lzY8L+38Jbz2RhjwuJAnQzrgDXRsDKD8g4ewbmgW8dE\nK06ZMYzySg7jrOfqhXolKaiVtnlUcRD/LjqAMcwrY1pToqAYSttmSY03xpicLbjXAB/s4fU9OS8g\nCnSTsv2brbguk6m0NYKKmORgC2Zj2L7dTqGSdU/OzYAOTHmtSD9jxZK6FD4snvLqMkGhCuiKc0Hl\nQR6Tgg14hhV1eL9Bd+J5lu0toGviJ2KfLU1H3XD24J9akiJYX4ha6RvHFMCg/tgXK3bjvBB2EX+n\n/GWgznhFY2+xU/1CBWXR0fDwCLfivsO70GsJk7FnnnjmZytua+Pfi4u2brPiiX1wzbvLF1JezipQ\n3Uv2ZFvx04/Opby1vyHvVXEmf+yyy6y47AiP+5gXn7Xid6670YoTw5iS0+NqnKGDk8V3nzeP8vbd\nAlmE4iM4L1z6zAzKe2k2fkcP6YiaPu7lFymvte38UdOMMaa5AvXRO5qp95Ie7xWGfbwqm2tvcKdE\nKy7cit8Dpbb1EjYY9bbkL9DLOs5iKpfkGLUH4/t7eGFMGhv5HpydscYaxTqoL6ihvBZx5pI0VP80\nptJJCqOTqEN2yZfaLNSXuB74fna6ZmWGOO/8TU3VzhmFQqFQKBQKhUKhUCgUigsI/eOMQqFQKBQK\nhUKhUCgUCsUFxDlpTfvfBFWh+z3T6TVfX7Rd7f8eFBPZrm2MMd/debcV9xgHmkq4aGcyxpj6+mwr\n7pmYaMV7NnFr6aTHQZvxDUAL/Qc3z7die9vqfZ8/ZMXpb/5pxdteYKpN9EVov/YTrb55v7IjUbhw\noigvh9vLpsOHKS92A1oPc3ZkW7FdsdozMMacTyy4Aw5VZaLd3BhjkiK+tOI+gvIV0pXHx/cPfLfV\n36Ol/mLRHm2MMdWH4UR16ev3WXHgMx9T3sAHR1jxd/fCoclFtO12mDFGXmIWPvmeFT/42DVWvP1F\ndggb8hQ+d8HVaBW0O2OMHQUKx8kzaIlNjeK28boCPLMvF4DSddN8br+d8yCvEUfizfs/t+JrrhxP\nr0VlY67GzsCaKPiCW5OnvQonsNwdoJVIRxhjjFn3AugwHm6gi3SezD3p4aK1trEUbYMRozGPfn/8\nS7pmhaBgVQg3jLsnM/1p3k1o+Vy/AlSjwG7hlCdboEt2oC3y5kcup7yDv8J5ISgJ7f3Bt3aivD+f\n/MKcT7TWQ/2+8hi3rMtW7GDxPSMvYlpISw3WXGUl2mTLjzEdL7bPCCs+cwRrNnkEP+v2dlCAWlrQ\nkinbRL3j2V0kPR00jS7xqBW5i7kGtk7EezcIGlJ4f27Lrs5Gu31JHu7VI4CpLX5+ULzP+uE7K068\nnCmQzudw4vmnOC1ayN1deQst245nFhiFZ1ZzhuuupOBVZ+C7+3fhVv2sHRjTtABQXrp2tVOF0Fq7\n/cu//vb+Bo5nCqrck5b9gDWWbqN1do7D+P6wFVTVW27keucViXvIPIXnkHuI241jW1FfXYWLVfzl\n3ApfuouvczSixoISU2VzavEU7oR9boBT3oGvdlHeoClovfdLRh0+vewE5bmHoqVZUs2aiph2kFeM\n+ygQjnXDI9H33GHoHLrGxcVDxKhzp3cwjU3WylbhClOyld1K3APxfqGDQIOIDmCXwJIDoG34J2Pe\nuvmzc1DZeRzHfEEXc3Xm/9coTa3qBRU0fqDNjUxQJSv2gjri78Vt6NIhMuEyzNWaohzKqz6Oup4w\nBWuuZD+oX15RfE4u3412f0lbsJ9llwknUl9x3hyUmkp5koYja0BrI9M9m5owNpKKZ3emaSxmyqyj\nET8dz7Olhr9zk8158T+oyeHzjX8a5qCTmAuNZUydCeyDc2DpVjg8RY7hmhoiDGMCBG2sLl+4VI7l\n5y6dEIO6YgzObM6mvLpczKXALnjWdlcntwCsJWdP7GnSKccYY84Kh0NJufCzURbLBZU6wcFqCsdW\n4vfiymXb6bU7ZsCdcfh9oMbW1Z2kvBcWg76UtWaDFW947gfKi4wD5eT510Bhf+W9eyivUDivbssC\nRbOmBrT5ytxTdM2pHfisduH4Zj8nn1qE9/C+G+eUU79toLzr3n/OiuWZytmZfz/UiPcPTcP576lL\nmF4/63o+/zsakn5jp/rJGWmYjQAAIABJREFUvUs6QfrZHPpKD2JvCOyM7yId/oxh90efeFD6Cnfv\nobyYAdiDS/fgGboHYXztNN6CcuzVcu+LGMxnz6K/QLuVe3hgEv8ur85Fja4XNcDHdjaW7nB1OVjn\nDUVcQ4O6MaXZDu2cUSgUCoVCoVAoFAqFQqG4gNA/zigUCoVCoVAoFAqFQqFQXEDoH2cUCoVCoVAo\nFAqFQqFQKC4gzqk50/8R2NQueYjtvEY9Be2X0L6wezv1TTrl+Qne7llhtVlns7MqP43r0i4Hvzr7\n/TWU11wpeH9h4AM++O2XVlxVxXy1jc/Dui0sBLy2jsIKzRhjwqJHWPH+zz+x4h9s1qKPfAKrtLrT\n0GiQWjTGMK84rhe422c2Mqc/7dLz4E0ocOV42GInXtGdXlvy1K9W3P/O4Vacs5THsUXwoGc+Da0B\ndxu/vFlYqefvhDVjl8t6Up7kBHeOAbcvX1hHZi5fT9fIubTqe7x3uD/rUmRt/82K7/78BSu+c8IN\nlNdxJTQHooPANZQ6K8YYEyTsNS+ZhGfkabNGC47qZ84XwsR3bLPZBE+8+mIrXv3+OivunsYc6vz9\neO3EMvDVI4OZL9ppHuaL1DNwcuLnUlsKrqbkhUt+f0NzM11z302wMIwaBTt1Dz8ew7IMvLdcV4vf\n+5PyhnWCZkxGHrQTenZjfYTBd+MZHXoH7+Hbkb97lxGsQeNoSAtNzyCeP7GToePVLHRl3D2CKa94\nB9ZmWTM45B6h3pSX/j6s0zvMHWDFZ05sojw3H9xTUCQ0EtzdxecK7rUxxhQKPYy6Jtxr/w4plCf1\ncTxDcH8Z72ylvJSrRX0QYhEVR1ivwrM3akVgT3B2C9ZnUp57IOpSLN/SP0ZZCXjEHjbNmdDO0FM5\nvhm6I7FJzC+Wdqe+CdiTSnfkU17Pq7BHSXvw/Cy2nU7yB4+6tAbrT2pWFC2romv698Fc7yXW6YlC\ntnifOwXaXx7h0DqQz9gYYxqLobEw+MahVuwby/tiyS58x0bBw25rYotQnwS2lXU0ClZC76Ctlmuq\nTyrmfuZKaAyljuf64OSMuSo55b6pXFe8hY1yibCWPnqMbaelJXpsCPQrkmdhb8na8xNdk9QXNTVn\nPdZV5ibWcwjyhU1okNDdkFodxhjjn4p/S+vU0l08N0sOYw6GdsJ9N+SyvlJ1HWt+OBIefqhdESMS\n6bXWOoxpu5hbZ/ZwTQkVmgghg1BfWjeylkzPJLx/ozjn2DVRnN1wtmmqxvkwuDtqw+lVrEmUkwXN\nu6ROOCtGdGCNtciDuCd5JvCL5P0zMQlFz9kDWiVtDa2UV50jtFTyUB9aKvg72TVyHI0GoWlTm8WW\n7e7B2DcqDmLOxYzjPb5VnEXl2o4eb8sTum/xMyG8Yj/LunjhvCPtvKV9to8Pa860tGBfdHNH/Yq6\nmM9iVUJ7o1rozLiJ+fx//4ZWRsgAzM3cRazFGdAD6y+wE/RYzrbzvh3UleeTI+EhzjMTLxlKr1Xk\nwl6+eBtqXvxUFr4pyID19Zal0AzpFs86Ib+sQZ2LEmf38C6sq9Z+9nsrPrXtRyte9O5yK546ewRd\nI/e1bkJvLdhm3Z5yKX4LzBp6vRU/IWy6jTHG3R33V5aP71dp0zm77fFZVvziY59a8VtLX6U8Z2ee\np45GWwPqpncsr3tXMT+llb2LzSreIxBrtiYH6zmgE2tZSc0ZqY/UWM57RlUx9ILkWVT+TcEnmmtg\n0Xr8zg7qg9pbtp/tvBPHQ8+m7KSwpPdKpLx6b6zT6DFCr86mE+UVgX22Mh31yqs/a9g0V7G2lh3a\nOaNQKBQKhUKhUCgUCoVCcQGhf5xRKBQKhUKhUCgUCoVCobiAOCetadWTsDie+soD9NpLc2BZduMz\naMdKmsWWpmSHKVqAT2VwO29LOVp8Anuj5TY+NJTyyveh5bo8Ha1pPy4C/SkmhNvPLn1imhWvX7jW\ninNfZ5uwoXegnUva5c29jq1nD38Ei8q48WhrlPaFxhjjLmzwUq+6A+9dxy34b1//qBU//hO3LDsC\nrsJirDqTrcwGjkEbYHsrWn8Tpw+gvB8Xv2LFwV+jbavXA5dSXv5JjMOZ3bAgv/6D5ykvZ/sqK/5w\nFeLxvXA/9dnchn/fV+9a8etXg1qWNoJbGb1FC+5tY6+z4ntv5nbD7/69EnnPwZ50/ze7KW/Ti0ut\neMgjsARsLGFrtPIzoNN5J7Nd5z/FpBnDrDhx4kB67bVrQd26YyHaK939uP1x9bOwOe85EfS2Zltb\ndnDwECs+vAzW0tFDmRJXL6iJod2wDlpqMO4TH5pA11QcRPu2tBP+8cF/U95172FNxPRFi+yp5Ssp\n79hWtC93FS2oR45mU15gJtp5u9yJMaw4xXk7v4IFZE+eLg5BvbBlj5uaRq+VinZpZ2GH2VRyiPL8\nRTtp4Sp8f3sLs6u/sBnfzVRKCWn92j4RY+IdgtpbbLPDnXYJWnqz96KW55Vwi2dIPVr025vx3r6J\nTFnxDkW769GPQbvy7cD0kOOLQEnzT8P9VRzmWt5xbm9zvpA6AdSWygNML5LUnq5TsBdm/MFjWH4Q\n9p2SUhkY4Et51ScwNpLO2GMm17w9P6JmBQv6irTndDKMjX+BHje4Iyh1906bSnmyJbg2E2379Xlc\nn0P6gd4s6UqVh/gZBXTBWmwsQfvyqR8OUF5w13NbTf5TSMvZpmamNYVG4Rm27sW8LdnCttPBfXFW\nKd+D2hY9iakU8hk0inrbZzxTmk9txnoO9AGF7OxZ3F9EZ96bM35HjW4QNdnXk+t/Tgna6AvXYhy7\njmML86BozNuC/WjDl3akxhiTcklXfFYc1nPlUV6L/lVN5nwhSJwVnd1d6LWcpdiHQnshr7W9nfKO\n7cRalBQJJydeMW7BeJ51uaAr+XfkM2p4P9B1q7JwXu2QgrOSzyVH6ZqwAQetOP8PtPC3VjMtuOtI\n0ECW/YQ62fdsMuW5+gpKjqALyBpsjDG+kTgrtYg2+5ZKbrkv+UtQ2iYZh0OepYK6R9Jrrp74Lg2C\nMp3/53HK8xU2uL4dQEuUlr/GGOPkinnSLl47a6PuSstef/F+Ib1RD9va+Mzf1oZ6VncG66A2l2ul\nTywoGDGjsP5K9vE+Lal5TcISPHYG04E8BBVHUonbbONdkykoY3yc+8doEHuffQyl9XfalROteNGD\n71DepKenWPH4eTinff3yL5QXIGrjc4s/s+K/Xnyf8oZ3xnMK744v3C8Z6y97K/8eK6/FXJz11pNW\n3NjItM4tLy6y4ufvxO8Mz3C2OX/2squteFQ31NbYKR0pL/8PzOd/rcJ5+Ngvv1Fe1EjB0+bjkUMg\n67x3DFOSjaidzdWYZzVZTIWOG449KnObkMiwnVETLsfzqBB7ZF12JeUt2wyK29F8jMPdk/Hb3D2I\n97tYcb6Wa0L+njDGmIYGrDlXQWVsauJzS/FWUEpDBEWp8hDvd/UlWAfRo0BntK/Fygxx3TDzX9DO\nGYVCoVAoFAqFQqFQKBSKCwj944xCoVAoFAqFQqFQKBQKxQXEOWlNHaeg3e71a+6n10Z2RUvrkjdA\nL5oybyzlBXZHa7J/Atrxty/bS3nd7gT1qOo02rv63MktSG7eaF1qbUSr0ry+11hxQCwre9eVoeVq\nwGVwPfC1uUG0CiX7yJGJVuwZxm1qKVNHWnF7u3AjcVtOeWdFC9ibV8+14phgdl9pbOGWakcjUCi5\n21W11/wBGsecwZdb8f43V1De498+Y8Wurmh1u3n0NZT33Fugb/UQNLb9731FeQHd0dr+1m9oHTyz\nOduKJe3FGGOOr4Dr1rXPg0rnGcwuNTePe9yK3/sJ7+0dwm3yNwtV+1OLoX4/YB73mLl44pk5OyMO\nTWK3r12v4DvGvsB0r3+KTStAW8jaxa2v1903w4pl66t0EjHGmAFz0GpYug2tgcnXsJPW93dhrScl\noIW3oWAb5e3didbQQRMEjeEg2vW6CpckY4xxHw5Ffzc3rD+705lsKTz1E1rrpcuNMcbsPgkawMwJ\noNpEN/EaqzmOdt7IvvibdNVRpuGMeJjrl6NRsQe1qOowq/V7x+MZVGfgNZ9k7l0t+QsUGUlbObH3\nCOVdNBLUF9kOXnDkDOUlXYQ22ZwfsA4ixqAlM2p4Il2T/gdaVfsKJ5nWBq5lJ1ZgjkQmgbrUYmvX\nL9mPcewgKEnZPzMdSDpaSceUyGFMI7TPfUei5hTmkrMn11P5uZIWYXdE8xfOc8nTsc/W2ahC3qL9\nXVKFCldzK3baAIyhXCPNP4GC22hzTpswE3trWzP2qvYmpgHUZYECEz4Y1MGC1acoT9LqWhvxHqH9\nYymvsRRtv14R2Fvtn3u2jeknjoYcKw93dqIr2YAW5qRhoIzYzwz5S0BB8UnE+nWxzYsYQX9uE98z\n67uDlBfbCfVWOuQU78T9uAdxG3XpbtAhPURL+t4s3ife/+EHK178+RtWXHuqgvJyXeGEGNIT93PG\nNueqM1A7PWNAA/MIYRe6kt2CEunYbZGcMWpzuRU+fBDmXc0R0AODwtnVI8T972k/DTbHInfhNpc4\nDo6GR77ic5/zWIx9QBLoHQ0NeA5OTjw/6vKx7kPFfTeWMG2m6gD2hd5JqM+ny9nhqPGwoMEJJzJJ\nAzPGmOLtoKRKR7FgQWU0xpiqU/z+jkZAKs5ijWXs1OLui/nU3oKaIKm/xhjTVIbxktT2sGR20ZSu\nk6f3bcD7uTEtztkd71+TjTXSJKiYTZ14jgQkgu4QEAtqo4tHNuUxxxR108mF9y2/RMzNFkEjqT7O\nZwfpcBgsKEXVduerQF6bjkTGWjiAVv3OYzhXyBo0NaF+zV74GOVtfQEuucOfxm+JjNyFlDdvAujy\npXlwblpzgKmx934K+YNewf2t+HgjaldZ0Wa6RjppTe0Np8JfdzG1asT8m6x43TO479RUdvS7+xN8\nj2ZBmaovYsdi6bLY2op4yS/srnnflOHmfEK6Qv6XdMNenF+jhGORna5UmQc3utJ8zMHUyUyh3f02\nnn1sb5wtTp5iGv03SyEtMXwQ3JXcA+EeVbiSzyMRglLkIhzrCg9spzw3IfsR2wWczaMrvqO8tavx\nG6zTYTyHrlcwxVxSB6uP8O8L+twAj//5mjHaOaNQKBQKhUKhUCgUCoVCcUGhf5xRKBQKhUKhUCgU\nCoVCobiAOCetac0XG634wa9fpdcK9qOVbNQQtKz9+Si3qXWYArXskBDQgRJCN1Des1fiuj7JaCMe\nfN1gyquqQpuQbPP++IvfrfiVX96ga45/uc+KY8ej1fD5m9+jvHah1n7TTLTNufTlluej34DyU5GL\nFiY7XcnNG+1SSeGg8fS5gd12on9mOoKj0VwB5X3ZqmmMMZfeizauUtF+nDa3D+V9cy9U0IeOBe3g\nr127KM83Hm3fmf8G9cE9hJW0AzqC4rbk8V+tWNI0ugn3HWO4dbf1d7S3pmdnU978B+ZasVcw7id3\nBVPppKr65iMYg+Fxd1NeZTm+Y9F2tIrHDGOKTcwEduhwJAb2RqtkYC9uTW4XFIJdv4IClF3Cra+T\nZ4NitHoH1sS0eG7zHvcM3Freu/VjK54wmGlccz94GffQjjm2PxtK89m/7qNrPCPRhl65F891sI3+\n9PsT31vxqLtHWXH+0mOUlxAGqkzKbLQvV2UxdefwT5iL4flo5faJZzpVY5loI3es4db/vaVws2up\nZZpJa734t6B0SPqAMcb4CvpEy0mMfaGttX3mTQ9Z8XO33mrFKbHcsi7pE7Kt30usj4IVJ+maxCRB\ndxOUqX3rMigvOQJUwqJsfI+TZ3h8ZkxAi2zZftA02hqY6pK7BDQp2Xrv5sdOMnWn4YplUoxD4SOc\npgo2MHXEX7gbSPcY91BuJ6/MEu3CopPd7mLVVMrt4f+Bh82ZIGoE9symStTQAZNRq4t2sNNQ2ADU\n12rRiivbmo0xxjMMdA7ZFu9ro9t5hgh3IdHmbKf4BKZhzdadBp2jbDu3Mvt1ZtdFh0N0YruHMzVW\nroNSQUWU9Ehj2NkjIhVj8F+0OkE7cPfDZ8XYHDsK/sQ6a61CPZDPwstGs/YUTi1PfYLaO6kf0zke\nvPZaK96xEe3/bq48PpKOXL4TazH1Zq7/hetBczrbinrl4s3npUSbs4wjUXUMNcU+z6oOYf+TLeRu\n/lwrqsWYSipiQAqf54J7Yt8tPoL9JGYSj2Hm13hNus0lT0VtqMxjiph0QZP0lc27mdY5pDPOAX4B\nmAdRfZk6KJ0uvWJQ37OX8/4ZMxyt/zkrICcQ0Sea8pJnOdjax4Z6sYfYZQTy/sTZLETcV/E2dnx1\nFnMwqDPGqqIwnfKkc4uPqNdtjba6J2hs0r1Vzu+WGt7DXVxkHcH9FAm6vjHGxEzAnGmqFnSWOr6H\nymOYw/LM7OrDlAjpLCVrr4eN8l8v90UHY9KLN1rxb49+TK/dMR5uqG8ufRv3U89UlNhRqKGn1sFd\n9IFZl1BewuWQ1Wgsxx755A/8my7jO7jfnmjCGrtiIH6L3jZuHF3j44V6WlwGitPOV76lvPUZOOuM\n7wlpALt0RG0BapR0X3Sy0fKyikH3enEOpBlueGgm5Z1cvMGK+9/ENd4RqDmKewwZGEOveYtaIs/i\n3nH8W+jYt/utuOM0jFWdzbVM7pKrf//LiiXt2xhj7rsajlc9E3Awl+vleC6fHwKFdIZvEmq5Vzjv\nTx7CIfPkRjhwNZxm2tnwfji7S9qVne4bPgL3J8/Wkj5lzH9LKtihnTMKhUKhUCgUCoVCoVAoFBcQ\n+scZhUKhUCgUCoVCoVAoFIoLCP3jjEKhUCgUCoVCoVAoFArFBcQ5NWfmvHW7FZ/44096zV1w3jfN\nf8aKiyrZzjBW6MLseGuBFZ8qKqK8l5fAhvh0xhorDkpiwYDfHvsCN+8CTv+tN0+34pIjbE/513Fw\nae96+Eorvu9ptupMGAQbXWllVpbF9mySs5yRD0viSTeMpLyt70KzJ7cU/LL6D9m67eK7+TpHY9nX\n663Y3cYvn/UK7LM7DIQtdksL8+38vTAmRmjzvPfAA5R36nNojKTdPsSKD73DdnDP3PCOFQf7gvMX\n6g/9k173sWVcfzfwg4OC8N53jmXO6Bsf/GjFcw6CMz/2hYcpT9qgPzAA3M3cnWwjHttvhBW3pOGa\n4nTmb4d2P3+aM1FjsQ58IsPpte8e+NKKk4W20Y3vXk95WYvAvT4rxrBWcEyNMWbVJuh6TB4D27rD\nB5hbeer+Z634orswh5Pm9LBib79EuubAO7Aj/HMv5soNk1MpL0zMgzMbsq04sA/r7TRnYG03CSvC\n959mfvDDn6KWle7DnHD1Yv6ptONLZtklhyDrW9QS7wTWuznbJqyIBS/er0so5R3eiPE5chrcV7l2\njDHm6Ztg9ejriXrd1MA8+TahWeQdg/eQVskh/VinRlqauvmD/17X2Eh50tpys+BoD+jIOg3l6dgP\nGnLAS+569wTKk9pG1fnQAnHzZQ5+9vfYA9IuMg5F5X7ca+xo3p8k31/qs0htMmOMiekFjYjQtDQr\nrspnDRu/vuB8S4tPyWU2xhhXL3x/afsaexEmcdzFrBnS0oJ7Shl2mRUfX/cD5cmxlloqdm0IKeJS\nlQH+/OllJyhL6gVIfn7IYNbNcPZga1tHQ2px+Keyvo20NHcPxjju33yY8oZdg32oWNSphCu6Up6H\nF+pywTbw8cuEposxxiTNgbZH0RbYZ0tNl4ZStlcuOo158eIdc6144zbW2jhTgXkxvAssTX08eO3s\n2A2Njw6RqLdSq8MYthX3EPocrQ2sm1F9VGifDTAOhbTItv+vxrpaaC91GA1tFWl1agxrKoUPi7fi\n00uPU15jEp57SzXqkNQnMoYt6z0qkdfWJmKbbfzB3Vgj8aGo9yOG96Y8qZ1TdBD1r2wHaznIMT25\nFnuEXRexWugeeHnjGlcf1keQZ77zgfL9+C7O7nxGlfbSVWIu+XfkfVEKWGT9jH0noHMYpUn7dbmW\n2lt4HD2FXouHqAFBaZgjzs58fnBywnOrLoJ+VFAv3j9r8/A7SdbAs238m+TEcqzFhIHQsqjPY+2Y\n6Ak4P0kdL1eb/pNnKGvQOBKN9f97nj3yPM6ilXk4N//10RbKk78LxwzD3lVfydpr8gx3Zie01F7c\n9hHlhfqhxjfm43wYLe7PbkMvNbg2nYDujYuLL+V5fwitTM9ovHbWZisdlYaz8ap3nrDiP/eyBuaz\nj99gxZ2m4Xfq6idfo7weNzm4iNoQOw3nkeKtOfRa2CDo1LkJrbOC9Xxu8fHHPCvdivHxiORn6OmG\n+dkrMdGKv93Mv5HHCU2fuiZxNnZG0Q8L4PO01Pwz7VhX9QU8lxrL8G+fOLyHXZ+pVuhO9Z7Yw/wv\nyM8t3Ya/D8TYfuPYdRL/633O+apCoVAoFAqFQqFQKBQKheK8Qv84o1AoFAqFQqFQKBQKhUJxAXFO\nWpMxaPOTtsPGGBM3AJSTuuwlVnz5w3Mo7+DHoDHETRN2wD0iKO+rO2AdJts6/7WCW7qiQ9B+3C5a\nlaa9DNqCuzu3O97xMT43awUoPvZ21DVPg2ozcv7NVhyUkEZ5sg1xcDFaopKHTae80i1oabpkwXwr\nfnn2LZRX/hJswO/5+nLjaFz18hVWvPNtpheVifZAJyfcR3jkRMrrPhx2mBFD0dbpm8zti3t/2G3F\nIeloibMZi5pu8XiPQf3QYu3XCeN74qPddE1rC1qBk67EfQf68NyULXCSypS94w/Kqz6OlujUy2DX\nHNuPaWbHfsX8fvlt0GW+WP895b17I1oWH/vRsVyKLf/CuPWcyLaWw0b3suL6XLTe7XhtDeUVVaHd\n9e5PYbPs7Mxt7dUvgdbQVIS23+kvX0t5K5/G92+uQgv5H6+iFfT6D56na3rdO8uKnd7F34bt7bzx\nQ9GGHj0MFnZNtUzBGjYM7YWh0UOt+LYnuCVx82tr8X7hoobYasDBXNhzDjWOh39XtFhXZ7DVeato\ndZd2uXZ75eiDWHOZwn5x9ym2pRzTA8+mw0VoqTxra9/O/AOt0yOfvc+Kg1LR1p/1yw66xk/QQLZ9\nv92K5RwzxphxfTE3+yQlmf+FBtEy2tqK+2tq4Gfk5oFnUS1sdN38eA6HX3wefND/f7gKS8TabKbx\n+qdh72kULfN26/Be9w6z4rY2tOm6+7NF9plNaBcO7g0b2dY6pqa5u2M/9QxD+3ZwMGiJJSVcD/z9\nRdt4PWq1fU3k/wnKRWhftOc3lzdQ3tHF+I5RXXGv/p14Pz4rxrcsHfO32mZTHWyjMDoa7YIq1FjC\nVCG/JFggS+pRtK1dX9rI+6biNfcAtgI9uQj1W9I27PbUVcI619kN9dE7GnRDu2V0Ql/M9WJBdekc\nyzSx08IWNiQM7dtnCrmmDuyLvT5M0HzyfjlCebEzcK6qOYX38LDR3ext/o5E2MW4P7tNa2gsWvDb\nxf7SWMRj3d6Ault5mOuNRMFa0HoLBBWi5wTej4M7YL7LFvd9b0AaIG48t7hLir6kVdSc5u8UFoF1\nlTwZz782q4LyTgs6d1pXzI+sY2w3Wy1oJJISbbdDbxDyBOcDAV3w2TUnuQ5Iuq+cS2dtVKvmCtDG\n3AJQRyvSufZWiTGRa8nDRvkJ7IB7ktSqs2dRr0NCRtE1ORmg1FcJ2+TWWq7XjWfwPOvKMB/DbRbm\nkp7WWILfGnU2amOzoNlV7MP3jb+Ebezled/RqDqJ/fiMTd6iZTmo2Bl5oLnM+/RVyrtlNH6r9CuA\nrba0uDfGmGU/QDJiRD+cc2YP5VPbI19BLuPGR0DdffIG0AXtFMN1b2Cf/OKud624fxrLFrSJfbLn\nJbB6dnLinofXr77Tiv2ERfRjN11JeXJ/v30s7LMLbbSrRfNvNecTrfWYq81lTFNvEPtk9RFx/rLJ\nZQT2wNqR66psJ9ef5Mtwtj/xE6iIjwtbdmOMqdiLfa34NJ5HcwsotGGxvDfXnEJeWxPGyr8D50ka\nrqQ45aXnU17CgEQrltTI3N9Z3sI/CWdUSXcrXMuyEKGDeH+2QztnFAqFQqFQKBQKhUKhUCguIPSP\nMwqFQqFQKBQKhUKhUCgUFxDnpDV5eqJl1CeG2+EOfwOqR+8bQSl66cq5lHfptaOtODRusIhtnyVa\nYZe8sdyKrx/FbYOyhddXtB4/Mws0jecWvU3XfHz7m1Z83ZtXWbF/YE/Ku+RavPf2e0Hb2rWQlaM7\nzUAr1js//mbFj8axW0pOEVq2A1f8ZMVP/PgF5S175FlzPhERO96K+9/J9JGaHLQfrnoez33WwkGU\n12EqxjHzz3VWnL6e3SuchXq2bHtPupJbf7uGg/YTFIR50dCA9voN3y+ga6Y8MtmKv3wS1JueQuXb\nGGMG3n+xFS99+AUr7jiM2xIDu6H1TjqXnFq6kfK8o6H4/tg9mD/VFRmU19rGdABHQlK3ak9xC3Nd\nMVpkDwhaTksrt2teOX+m+Tt4eLD7U4cpaIUt2YT3qy3hGjD2GbSgNtfh+XWMAvXh90dfp2uOCHez\nqCCsX+84dp+RtJlTP/1lxQmXdKG8xEsxrzJ+BOVsy9r9lDewH75ThzmY2+7u/N1Tytihw9GQCu2u\nPtw6Lv8dNx0t6wf+tZ3ymsW4jh6K9tyuNhpD5+l4NnH9UUcbG7ld01so1Dc1oc29YMshK5aOTsYY\nk/4rnu/AS+B01rp4J+V9ux50Dj/hGOXvzS3koyLRatpSj7ZxJxf+/wceHqCFRQxLtGLpZmOMMQVr\nBcXLwW5N0jGl4TS72jWJdnNJf+oSxxueiyvWs6srWl9b3ZjGEHUx6A+ZP8DdLGaSze0qG23jgfGg\nj1VUYDzaWpmGVFEGqlqZcEvxT2HnIkkDkTU9eizXU0klCBUuU3WFTDH0ChduKaJNOsxGna7P4Wfh\naEjKSfmeQn4RU9r4d8bziEpgiqFfPP7t4w/nrtzNWymv02zsXZWF2DMrDjLlQrpGScqFdM+RFAZj\njCnNwJqNH4MxObWB0heDAAAgAElEQVSS2627JeA85yEcijauYapzR+HqNEA4ZnnGcI1ub0ZNCEjD\nuizelkt59trhSJxZC9pf/KVM4ZBuG5IWESZo2f/3GmJJD4q3OW4VCve6/uMw1s2VPB7uoj54x6K2\nys/Z8u1f8hJTLOigIcJhJnEkrzG7Y9Z/UH2CqQ9ewgVl6Wp8VoC97o4Brc5PuB/ZWCT/RStxNNoF\ntSTyIqakNhSjRkg6p28cu7PkbAdlQjq9ufryPitphR4hoJm4BzEVsXhnzt++FpmI87SdKuosJA8K\n/sL1dnfafgOETEAK9u26LKYDxYzBPJPUKnKiMcZUHsD7B/cDPcZOKZSuao6GXxL28HCbc068oPF5\nrUUtqypnx6KrLsJm3e2WgVbs5svONotn4UzU9x7QfPIOrKS8f1/0jBUHpuGs5+8PuvW+9/n32Lgn\nJ+H9lmFfjRqZTHmSSv3lHfic1Ch25nrsh6+tOGMpPit5LP+2bW1FvRoiHBztDrun/gQ9sufldxlH\nQ9K1fJJ5v5OOZsF98D1zl/O5uVxQgQsFxa3X5WyBWrodZ9EkQdNsKmNHpYiRONO47MB6rhfnr4Au\n7Mrm5IqzY52o6wFpTLNuF5QnWec6jGY5kzZBf5KUYw+bs11mOva/1CGo3/Y1K2U1/s7FUDtnFAqF\nQqFQKBQKhUKhUCguIPSPMwqFQqFQKBQKhUKhUCgUFxD6xxmFQqFQKBQKhUKhUCgUiguIc2rOFB6G\n9kZwSid6LavgoBX/+44HrHju87Mo79R3sMdycoWVseQrG2NMneCXT7ltjBWHd+tBeflbd1lxQr8p\nVvzCYmjENDayNkabsNxurgE/uM6NOdm7isBXPPLeFise9QxbX88ZCrvrtz6D1k1Mt3GU11INrmHN\nSXDedrzOmjghQaxV42gU5eN77f+Q9SsGPAQtmYGCo3fw268pr+ts2L7dcN8rVnzz+PGUN+lh8DWb\nhEXgklfZxnpAT/D5/tzygRX3SADf+JZP+Dk9dQn0Xu799DYrXvzoz5QnNYImvXSPFc8dwXPz2ouh\nTTPkMfBJ0y6dTHmf3g476DGzYNUXEj6E8q6Zz5oOjkTiCHAXT67leXusAPN9SCc8165383wsPoDr\nPnrkZSu+fQFbZId0Ab+zpQYc77Ms62F+eRRzZOoz06x4X3a2FR89zdZ599yFtRN5EZ653RbT2Rk8\nznphs7x/4RbK63Uf1r20MR7u3Jvy4ifi35/f9RHyBrIWUmslOP0xz1xiHI2ijeChRwvdAmOMKd+N\ncawTegmpM7tRXnMValhlOrjmva5n4mpoEvi9DQ3ZVtzWxjacSf0vtWI3N+gdNBWvsmJXm1V1jxnQ\n6yrfgTEeNJmfe8WP0EPyEDoII6fxvVYcgD6XTyB48c2VvKaaq6CD01gKXrJ/Mtsj+ndk3RRHwkdo\nHfjZbBkLlp+0Ys9IaKhEjUykvOpcaJy0N4N3XZfLmgOt9dgnpc6MXyjz3+vdMK8qc6DDEZiAvBab\n/XbBClhkR45CXmhCf8rzDMH3aK7CeHj6RlBe5HCMb9G2bCtOGTeJ8pqaMM9rTwmtnK6s/9Ra32LO\nJzyFxWe9zYbZTViaVx8FN9wvhf9/Vv0ZcN5rsndbsV2HJHMFdNpiRkJvIiSWrbQPfbkI/xAyHz7x\nQhfKxsfPLoH9sxM+xrTbauqJAsy5Af2gFzC2J2vvRQgL4ZD+0A5yD2Cb95pM6Jy0VON8E9KX7YDz\nl/J+5UiEDYZeR+kO1tKSGgTNFZi3bbazp08Mnm3MSFHXjrL1aewUrL96YYUstQiMMSaoOyzgncWZ\nqlFow2XaNEi6x0MHJ3k8PkfaQxtjTKvUnImEdlPHG3keZXwMrSmpWZEYxroMbaS3gP9eeaiY8+Ra\nvNg4HIGdMefsOilVh3EvUkei+mgp5UWNQw3b9RX0tJI6sRbb8QPQDuo1Hdoj3lGsqeQs9IL8Q4Ue\nRhPWUdHOU3TN9iWoAVLfp3c31g4624LDVNFOzNvoi5Ior1xYCIcOxFoM6MzjKM8OfkIXS+qHGMNz\n3dH45mHoQD703bf0Wk4G6lrsNJxRT36xj/LGvvi0FTs7Yz9pbWUr9xcXIS9n1zIrto9h0Rqs4Wee\n/sSKo4Oxb18xahhds/zZ3624S1eMR1Qy72OFmdDovPw1/LZ4++YPKa/mwceteOBdOK/6+PD5r70d\n+/Mlr1xnxa6uPGZH/73MnE9I6/q6bD6PxM3A3iXrXtTFiZQndTE7dIC2ZMU+1nbzikINk5bmp7ez\nblmcG+u1/Acurvjv7S38A8VT6ERJPbyGIp5LhSuxhstqsJ9HhAdRnq/4Hge/hVZSfD/WMPOrxPla\nzseiw1yvAnvz+ckO7ZxRKBQKhUKhUCgUCoVCobiA0D/OKBQKhUKhUCgUCoVCoVBcQJyT1lR1DO28\nXhFMT1h7ELSmOz680YqDgoZSXsijaK1feP1jVnzdi0wxWfrdBitu3YTWwJvf5Jau7z5CS1fdO79Y\ncU9Bhxl0GbdlX34/6E++YbA0LT3C7bYhndBm1usBaTvMNoJfrHvPijN/Rfuki+d6youdgPbUcmGZ\n+f6CHynv3VXLzflE5lfpVtz9BqYTtLWgla54PVrju98zjfJKcrZZ8bzJoP2MuXs05bkK+89qYbs6\n8Wa2jfOOBpVrkmhV/ehnPIu0P76ha6aPAY0o+0fMv9HXsVfuWUFjK80GDe7tX56kvIBgUOZcXNAC\nd2rdb5R39Vs3W/GBhaB6LHiFaS8v//iwOV/wE7SNnrE8v2s/Ao1rxT5YHC+5im2NH/gYVLD7P7/f\nir9/gK0Epa3npIvwWV4RbHVbWg3qTfq7sI4dmArbxDGTB9I1KxYjb65o4a3JYivQxH7TrbipF1oN\nXb3ZFlPSXtZ+vMGKr1hwM+Ud+xprc8wkrIG4CUwZam//e6tSRyFyFL6z3VovZCDar2WLZ+lf3Aoa\nMxltwZIO+t80ELSn1peC+hAQxTbMbW14htXVqBW1guqxYOlSuuaWsWOtOK4P2jqLd/E+4e0BOtT4\nm0dasaQkGWNM5zsxT/JXwJax1UYZCBR1vnQX1rad6uETe/6oou2taBWX1BhjjKmsQ0trYjha9bf9\nsIPyeg5Gm7y0UJe21cYYE9AN71G8VVCXApkWEdoPc6epHM/CNQVttfY1FjoYe2GjsLQ+tmcJ5RUf\nwt414JEZVlySwfunRyBah9tFO73duj1/I6jO4cMwnmfWMEXA6zyOoTFcS/w7s73mkR9RRyXNx82P\nqT1le0EncPMHFdM9kPMkzcnFBa3c+9/hPS5M2AgHp6FW1Bbic5zc+P+p9eyDettWi/USGMzUvmgD\nKlP2Rjzr6B4xlOeXgr3GRVgD2+k78jvK2iPtVo0xxjeVqX+OhGxXby7nNVGXg5b81jrcn52K6BmK\nfa0yC+30dhpgpaDRyPpSfpApQEE98JwbBJVJzoHxvXrRNc4uGNPgbqBFlR9iq3VphSzHpmQXrzHf\nIHynEV1hCS6to+3/rhB2zO02OozdftzRKNwAKma0zbI4pD9qm4uwyC6zUSQKV4HCUteIZ91io4Yl\npWK+Nwh6mn0PSZ40woobG7GvOTnhuRduyaZr1onfRVt3oOZ/98pzlNfWgvnoI2ijzra17Z+GNVyy\nNQ//vQvXq/DhGJ98QVd1cuH3i5/MdvOOxKX343fBod8/otc2LIacwrXvQAbj/ae4/nWrOWLFix4C\nPWjWG2wZvfypn6w41B9rsbaRxzptGGqjtLi++s6p+O8jr6Brwvfg/P/6o5/jvw9ni3dp637vbMgE\nxIby2MR1Bs3TNwQ1vaKCzwRN9difg0JBU3RyYqvmz35eYcUD73zUOBpVR3BW9LXVyvpCnMVlfZU2\n78YY4+SMf7dW40ztHc+/5xsFxWjXKpwL+o1huYFja0B/ju2IcfTrjPXhxLdgGgrw+8Q9GHWuaF0W\n5Umb9qB2rMUzRXxeihRxwsBEK64VkiXGGBOaCsph8QYhYzA5lfLsv2Xs0M4ZhUKhUCgUCoVCoVAo\nFIoLCP3jjEKhUCgUCoVCoVAoFArFBcQ5aU1ekbLdjlvwn/zxMyv+5BZQJK7/gN2V9r2FtrUhaWjH\nrz5ZRnkTpwy24mNCAf2hK1+lvA9XfWrF/7rlBStOECr0cYNZffuh6XdY8TPf3GfF/inc9luZjRak\nnV/8ZcVj5s+gvJCQEVYc1CPbir+a/xPljekH5f8lm9HWt+B3ppFk7YWSeYf+VxtHI2oC6Fr+kdye\nKhXCO80DJe3XR7gtccYroIlIKpNXOKujZy9CW+fOXWhRrGlg15Wft8B158P59+JzBoByEtwziq6R\nrXIdJ4AW9/6N91Ber8REK/5NUB8ampiy4iUoF3Omg3YlFcSNMcbbG+83fP4jVrz9+HHK2/3WJiue\nuoBpYf8U7sItZ+db7Lgl3TqmT8IYpl7BtgqH3vnTir3iMG6ny3gtzlsApfiaHLTsff78IsqrEhSO\nQR1BlZFtgk3FTNOYeiPmzrNz3rLiJz69k/LSv0F9cXbFuJ9OZ9pM+VK0RXZLRtvpnteZhpORj7bv\nsVdDMf+HB7mtNkao+F/61hTjaFTuR5u6d2IgvVYmnBmiR6O1W1IVjDGmvQWUJ09BNfMI4pZ1T0/h\n7hCF98jdxI5XgZ1QO2uyMN7STertaQ/RNWXCHUI6I0lqhzHGeB4E7UC2WHvHMGWlcCNaTV0ENbIu\nn110GoozrDh8CGpZo60lvXQn5klyH+NQtIg23Xo2FjEpI9G6WnMc66pbT3ZmcBEtrYFdQJvJPHiI\n8mIT4BDQJKhgnuFco0r34Ps6i9b/4iNwFWgoqKFrnIXTgXRLc/HhMYzsC1rB8W82WLFXNNf+muOg\nfUgXmIOCCmqMMclX4YzQKChYXjH8fh42ypijIWnbZ1uZxpEwFO3nXsJxIfv7g+Z/wT0QNTrhsq70\nWubXoAuePYu1mHrjIL6nTNQHSWVqEhRh+1ksuDf2ydw/QDVrrWVajnRviu6FMXX15mNgVYZwxxGf\n1Xia50/4CNRbX+EQ02L7XLkfOBqSBmKnetSeRFt6azXuqSqH29AlvVTW0PIsdiqJHgvHHemCEzuJ\n29XLxFoM6oFmeEmtSrudqcn1RXi2J7+Eg42d5uKThOd8eCnmYkKvOMrz7Yh9bPMS0JuTm9ghJMwP\nY+MtqFp2tzH7fTgakjLd2sj7naegclUexdy0nw/P7MNz79YbY1WRw/SEqC7YN1zE2EcOSqO85mZ8\nVk0+zlhS5UA6ZRpjTGwI9sJu3UHNsD8/Sdk8vRt0pRAPdpaS6947Htf4JrCTTIOYPy5e2FvCB/O8\nyFsBekj4tRONI5HcF46ulZW76bUxgrq7+YV/W/GrS3+gvOydoNSOvh006HdufJ7yIgKxDgY8NMGK\nH5jxFOXFhGM8zlRiPW//Gb8LEoexq+nZVsgiPPstftu+aXNhum4ezvgfrnjdioOCuKZ/dTt+nyRe\nAjpjayOfWSJjcd785g7QuAoruF7168DOX45Gu9i7vSL4nFElqJ3NYm76JDBdqakE362xHuel/ftO\nUF63DthDymtxlrfTu12csX5ahYOsrzhDO3vyPla0DesqQJxRZQ01hp3oXANQD8uPsKtTZQX+Xbkb\nsY8HO5l6i/NX/OVdrPi/zrLC6dEwi8sYo50zCoVCoVAoFAqFQqFQKBQXFPrHGYVCoVAoFAqFQqFQ\nKBSKCwj944xCoVAoFAqFQqFQKBQKxQXEOTVnPnwNGhNBPmyj6+f1vRWPmgKdEHd31nGprQUvbfcp\naMnMnsr8zqhB0GeJnwRe3pAitkn+9p43rHjsVOjUSE5n/s6tdI209s1eBE7/iWN5lJeSDMszaQEb\nENCX8v49D/oYk1+A9sldn7Aug5sbeKG974GOx8K5D1LerEemm/OJ5+4HV/KzDWzb/eqcm6z4hjeu\nsuJLXr2F8p698gkrfvzfsMLb8MIflCd5g0PHQewhZgxrLmReAdvGAKF50XMubNmP/cmW4+sWQwco\nZws0KnbatF+WCgvD1x/C94ib2ony/AOgfdDSAts1b2/W5fn1AfBYU/pBi+Cal9gOPiZ5qjlf2LZg\nnRXX2bRzrrgHFoZHl2B+r7n1DcoL9gV/9NLbL7dit6WbKe/AZ+CoR6RCD0PqUhhjzANvYKzyl0Lr\n4INfYXffKZY51Gv+BYvaDz9+zIr9Q9ni8dXvPrDi666ZZMUhUcy1jo8HZ7UsHXMqYTLXl/iz+PeR\nX2HZN/M5tkM/9eV+cz7hIrjXwd2Z/y/tS6sOg+PuFc/6LGXCrvpUOqxf446EU17ArZjvZ/aDA27X\npinehvdImNzPiutL8TyLtuTQNavWgbPd8SjuJzqYxyd0uOC8C65+RTpbxHpFYm7GDUddz9/OdpOu\ngk8vraED08Ior7jObivuODQKHaWinWxhG5QK3QtPocniHsTWytUZGN8VqzDn+g1na3ep1yE1WIrW\nsh2kf1d8bskW6CCEDoTuUNhA1h+Qa9YvDRoVGWsPU15cGN5bfk7lAbYQzisFHz05EXtp1Diu/ZVH\ncJ20bc7blUt5UiOl8yjjcDTko+aHDGQ76ew/8WziLob+U+w0tqEv3oR1kZeN9eJ/iPVPpEbJsc82\nWrFPB14vtScwp8OFrbYcb6knYowxnuE4m7W1Qy+hup41DZpahVZVmdTzYW2fI/tgSTzoGugnHN11\nkvJqfsf7hyTj3Cc1AYwxJnYK12JHQurFuHjxcfZsC56FnEuuLqzZs+dH1Ma4cNSRgJ5cT8sPomZ5\nhonzsG1fjB6N+d4u9Ct8kzDWxTv47Nlc9vfaS+3iOxjD+kcB3hi3Vlu9278Fen+9u+P8W5hXQnlS\nL0xqfZ1t4889/Tu0Ihyt4WWMMY1CT0vaWxvD9tl+HXC/FQfYSjuiB2pO1i6sl0H3svaetDdvFNoY\neasPUF5LFc5Z0eOg85G3FLotA4awtpSfWDvOwtu3IJefe0Ap9pCIztAlKt3G8yJ6Ij63XtSraqHv\nZQxruEkrdmlxb4wx7Y2t5nzhyErYTqeNvYpea+6K++3bCetq3lj+7XPjdOi/dL0JWp/hAesor2cf\nzOnyI6jB/l58tombCc2PqWXQnIkV9tZl+bvomvBuEACpr8J4zHvlWsqryUSt9vVFjdv3+fuUN+TK\ngVZ8y3hoVj5205WU53ct3uPS16F109bGep0BAazr6mhI62tpq22MMYHizCpfk3pVxhgTInTQcn6C\nTmCy4ZpaU4l1kBaNMakr4hoQ3xd7oZvQySoU59KgNN5zI4S9fOHGbNyb7dwt942GAnxuXKdoyjvb\nhjrf1oB1FWrTdZJntsYSfD+fONa6qTrK5yc7tHNGoVAoFAqFQqFQKBQKheICQv84o1AoFAqFQqFQ\nKBQKhUJxAXFOWpO7aP+MDOSWnO5poHdEDkdcWbmH8jpejhaxkD1oSYzpMZLyDn79nRXX5qF9r/s9\n3JJYVAU7KtnelLkRLbeTXnmarqk6hParJatBeZK2d8YYk5+LNqPDwno3eSXbvSVHoW3Q3x90rOOr\n2Wo4acR4K971CqyB7/vqbcprb2eaiqPxyTrY01VW7qTXJk0bYsXh0WOsOGvXL5Q3vie+Z8FGtHx/\nu2kT5/UCJS15MihpP9z/LuXddRdoNWU7QIu49w6M92sv30HXXP0W7LyPfrzBil/66F7K2/YJrII7\nzYY9XWlWOuW5uaON3skJf6fcOJ/t29cdAlVo7LNobXR1Zarf3i/xHfvd8IBxJAbfN8KKT3y2l18U\n7bP97oFNdJ9mbmH98lHM47pCtHje9fGtlNdYjta+r5+CPXx6djblFa5BC6+vaM9/4G60a3pHc7vj\niM2gbcT0w9xrbeU2xt7JoBKsX4G206m3jaU8H9HO+9M3a6x4ZmemuZRngHIw6EHUnuMfckvr+gy0\nYA43jodPPOpo+X5bW/ZQtG7m/Y7W6b82crv10LG9rTjcH98/7lKmhjU2ouXTV3yuuy9bFrcIGkK1\nqHt+MXiGKZcyPW1OL9RAaZvsabM/zvoWdq/1go4nW76NMSZQtFt7jcNzcHbh8WkS7f+le/D8/JKY\n6nG2ma2RHYmG05irqXN60mu1OVhXFbtxf56xNpvoMDynwRMxnsc2s9Vku1jD7oKO5uTCz8/FE3Qv\nSeHI2YQ1+sKdr9A1j112mRVLGkNkEFNtEq/CHp7zI9ZHvY1emZwCalDEiEQrtls/t7dgbOoLYSfZ\n5cpelJe5OMOcT7iK9uO2Bq6VLW1/TzEs38NrNngAWp8TBMXmwHK23O4xCc/w6CpQTqJdeRzt9JT/\nQNIhnVz5/6m5B4Ayl18Ge/CO8UzV8hNW0/L7ugcy5a5DEq7LX475mBgbSXmy5kvKTuEynsPl6Xhm\n8cws/seoEXbZstXcGGOcXPCcgnrj3o+sP0p5aQNBHSk9jH2ifjvT7MJ7Yaxrs2Bv6xPPNrJn27H+\nyg+AChUxAHtayb5susY3HjSAJmFjLelOxhhTvB7X+QibW3kWNsaYPqOwz0q6Uloan3lLxdkrdDBq\nvLM7/zTwiuP65WiE9cdnn9mQSa/J5+nmg+8p90tjjMn9DePa6xpYlXv48m+XemFhK59bQKpNkiEP\ntdxdUMKdxfo7fZTrQc9RoDmF7sbeHC9+IxnDa7Z4XbYVR4zhvBJBc4q4KNGKXWy2wWfW45lJu+PY\n8Wzz7mSrxY7Er5+vtuLwxfw7o/9o1L+338fvpAcfvZryDq1Ezf9kyu1W/MrPT1Le8Y8hcZA4EGf8\n99ZcT3kZKz+24k1HBNWvEWvs+fe/oWve/BTyFEveggzE9e/Oo7xvn19sxUdfhT34TWPGUJ78DbJk\nH2QkGhuLKO+KgaB0vfsDvu/Rr/g39bCnMK98fBKNoxF2MdaVpJHb/y2ttJurGilP1uXThZiPCZ14\nT5L7hqTm2c/G7Y2o7TWnsX493IVF+5p9dM1F4yFHcuQ06hyfko0JExQs31ScI5tK2M47ZADuvbUW\nZ2b7WpR08dhpoKqV/MX7SXAv3k/t0M4ZhUKhUCgUCoVCoVAoFIoLCP3jjEKhUCgUCoVCoVAoFArF\nBYTTWbsFi8Db14LCMfZqbvKXKvmRgspSU8wtiVKpOXKscD3oOZ7y8g+uwj9EG6NsaTTGmLpctBqW\nHUBbWL+H4Zxz6IMldM2+o3CJChCuUy2t3Mo8+p7RVpwt2rd73DeF8s7sBc3AKxztjkWb2NFEOmUc\n/A5UFEmrMMaYT+/52oqfXMTUKEfg8KpPrDiqP7fhOzujvbIoA21hUnHaGGOiOuKej/3xsxXbW4ll\nq3hIb7QBtzXxsw6JRdtp3i4osacOn23Fp0+yE9QvLyy14osmwFXGxZ3/xthhElyTDn0BKk/O8QLK\niwpDC1tlFagKY19gN61HpsNp66Z5UJdPGj2O8pqa0IoXEuJYUsyxjV9Y8YFf2FFIunIcFe17l4wa\nQnlLN2y34lHd0WZ6IIfn7dABgno0EW2xRZtt83sAWpGrT6Kd/utPMG4PfcHUNBcXzLdNLyIvoYdN\n8Vy0GydPwHNe8ghTAg8IqtXl00ZYcVBPbhn8bsFvVnzVw3ABCEzh1ujivWhJ7DLuZuNorH0Crmex\nE7jl2Es4gGR+ixrjGcZUIQ/pziLcGH5ZspHyJMUwuC+eR+xF7D7X1Ag6Z1AwnJLq67OtuLW1Ul5i\nAgOxfotyQSerzauiPHd/uN61CiqFnZYT0hEuOE5OaBMtOczUlhJRY6Mn45qKdG6D9RTuT13GOnYc\nVz76qBU32faQrjZqzn9w6HtuufURboCRoj2/Mp1bnRcs+tWKUyIxhlP68hgeykP7+66ToPi2CnpO\nYjg7JZypxJjefjVqpmzZNYbNaNwCcN8n9rFjVJ/LcU+1maB9tFRyy3PEKLTuyxb8sy1MRXP1w2f1\nmMEt5Y7Azo9es+Lik+xKEdUde1eTcOfy78SOENJlTD6n5kp22GgoxP6SLpx0UuPYEcLFG23asgZK\nR4nosVw3ijZjHDwF1aV4I9drnyTQO9zEupSOQsaw82VjEb67XwemDp5aDhpJ8nisxeYqpru5CkpW\n1/HsAvlPseM9UPUCe7ALR80J7Elhg7C/SOrh/+WhBV/Sx3Zv5drTLRnr1E/Qg/JtLmNy7sSK59JS\nh+fSYHMjkc/8lKDzNbXw+apZ1Bvp2th3Wm/Kk3RI+n7eTFOQ87lcUJzskBS2npff9T/z/l+x95uF\nVhwp6DvGGFMvnpV3JOhVFYe4VvqL+ekVhFrn6WlbYy7YP/P24XdHUCpTLlqbMPdr87GvSbc+u0PY\nog9XWHHHKNAluo7pQnlOztj/JK2wfK+N6iwc2xokzaLN9rNN0ISlQ0xoP/5OkmbX+8q7jSPxxHSc\njaUzqDHGlNWAijL30ZlWXJfL5wXpVid/Y3a6iX8zBQXBRa65Get8/8efU16scO0s2Yk9sutMnOlb\nW/ke5o2D05TcPyXV3hhjrl0It9KiHXCMPbyK3Q79hIOUfL/YfuwKW3kI57Aqcabvd8cwypPfo/fs\ne4yjsfuzBVYs3eGM4d9x1RnYu91sbpTRwqGx7jRkSpptZwHfBOxJFWJuSuq4McYczcJ37tYd43Di\nKP57oDefk3tcjzPqhnfXW7Hd0UuOT8wovHe7jRrfICjYPoKOlb+aXQwjh2Bca45hbkr3RWOYdpvS\nl93NjNHOGYVCoVAoFAqFQqFQKBSKCwr944xCoVAoFAqFQqFQKBQKxQWE/nFGoVAoFAqFQqFQKBQK\nheIC4pxW2l1iwFcM6Mhca8lTLkqHRfGKz9ZT3uUvgl+YI7i0ZbuYG5g8a4AV71mw0ooTJ6RRnuRQ\nHtkMnt/G56HbMvZ5tlYOWLfMioO7g5dcsjOf8qpPge/Y5S7YQNeWMKd418+wNuvSHzaMf67dQXmB\n28FtvepNWLztFt/PGGOuemqmOZ8o3JhtxV8s/JVem3sP9DcSh8Gm+OxZ5tvl7sU9d7/0Nis+nfkb\n5y3CGNeegA5iRl8AACAASURBVO7Aln3M375mATjvgR1h2Svt5fZ9vJ2uufJ16Aq5uIBfuO551hjq\nMAlzM/8keIx2O3gnwdNNmwGdlUPff0d5o7rhNf8O4Jq7urJN9NJH3rLiOe87VnOmfB+4yD2v6EOv\n1Qmdj/EDJlrxqS9Zm+aGx2Ff/scHsD2cfvcEylv5r7VWHCk4mInTWa+oYAM0BxpLwJGdOXqoFe9/\nazNd0/t+rKsAwRFdvZKtF4emYd3vz8B4JEawbkZeKXivAcI+Oyg1kfJm3TnZiiXH+9v7P6W8KXez\njpCjkTwLWj8u7mxrefxr6JLEjkVdObn8COVVCJ5tqB84wSkRrLnQLPQKpE3hycU8JlLjq3U09Eai\nk6BDcnL793RJUwTmXF0BuLhSg8sY5ig3lYILL3UQjGE7Qsn19U9mnQup1VC2GxoJjWfY9jCwK88T\nRyLlUtil1mazfkXhKmiu+STBYtfLnTW8CipQG/OWCl5yANvy3jYO8/GTNdD28Qxm3nRIBZ77xN7C\nmrsAOltf/Mq1/6snYde5+y/w5EP9ua4NvvtiK87+HhbRiQlRlCftMytP4TsliedlDNtFB3bBOMnx\nNIZ1Uc4HArthvTQVs2Vx9XFx/7NQ/4vEXmqMMU5CK8RZcMiXf8HnoL5Cr6DXxXgep/flUV6gwTg2\nVkC3JnwQ9L1KdvE1VQehl9NSi2cbMpD1JryEHo20Ss79mfdm/84468l1VJlRTHkdpsCUtOoI7uHM\nCc7zFnO/K0sN/mNIDST7WpTjW7gG69LVZjvtk4xzwcafceYYMob1o06nY362HkBdC/BhrQOpw1d2\nAOuv+gj2quA+vHbkWAfE4n6kxb0xxpTmYY0ldMecaCq3aRzlQ+fhrNAnaWvgPDln5Zk+cgzrazRX\ns1aEoyFtsaVGhf2+msqxToO6cI2vEXqUfmHQtWpv53uvKMC5KCAF57nivayXGdYbOkVSx8UnDjX6\n9G/H6Bqp/5cnbO2j956hvNSbcIarOo55Ic+kxvB39wzBPJNW7sYYE9KHdXX+A48g3icCu4T9bZ4j\n8Og3r1rxuzc+Ta9JnZn7bnvDit/5/GHKi7oY4+bqhue86YXFlNd1JnQ+wrpCz6fHTWzNXZABHb63\n3vvJim88grHpcd9kuqZGrJF7JuO1dJs24+d3waZ73ifzrTjhYtbHyfj8FysOFzbVTaW855wqwm+f\nDkJfziuQx2zrCvzm6j3bOBweoZhnrfWseeWXgvOYdyzGp3AF665IPZV2oSUXPawb5TXXo561CU1C\n7zjWuomqhMaL1GvqdlEnKw7oGELXtIu6l5qKtRwxIpHy3HywH8i/AYT3Z42YhlLUpfpCxInT2Jxb\nyvi2xQuNMJvWmVc0n7Ps0M4ZhUKhUCgUCoVCoVAoFIoLCP3jjEKhUCgUCoVCoVAoFArFBcQ5aU1J\nM9AuFpN4Cb1WW3vCigvXoF3a3r4dGgEaQ64zWqcDbVa3Wb/stuKo/mhB2vEj0x1mvApr3tPlaHVr\nERZlWy67la554jvYLVYXow3xyEZuSQwSNtuxw2HDtf/jFZQ37qlJVuzqjtauDrtPUd4VC1+y4lVP\nvGjFWcXc9tsrhNtiHY2TZ9BSecMDl9JrCYPRNu/sjLHb9eqHlLd0B8Yh1P9PK75uIbcRHs9G6+/s\nt5+14o/HXMbv9zRa84ZeCkrb1tWg1OzJ5DbTgQbtgpUnQUkrrrLZ8dVinrm5YooPe2Y+5WX8/pEV\nB6SidbBsJ7fXR6dhrkpLRWe3TZSXmMStyo6Er7BB/f2DVfRaqrBs3LfukBWH+NlaA4X74nVvY40c\n/zfTXOLD8CyaytB6WbaLaYDBfdFKGzE00Ypd3EAbaqziFuUTn4ESeKIQVK0rHppKeenfIm/QvaBV\n2G1ftz0BalX6YtCCordy63/KtaBk1QlLPA9XLoGhqT3M+UTWTxgf/xSm7IT0wDyTrdPxQxIpTxow\n7lkBy+1AUb+MMSarBFSDuBrQlaJGcsu6bDt19UYNyNz9I/67Jz+nKkH7IMvaoWwPKSl37gGYF26B\nbL1YI6yX/RIx17MXHaK8FmHTK62B42dya2ljGbcMOxLS4rO9hedjTRXa373b0LYaPZRbZON9YId8\n9Hd8x+BIpjW1VOL7Pn437BY9bfSxCPF9i4RF9szrxlhx1zi2q48ai3kQWgOKxIaftlHe8S/24nsI\nukNtFrfpNgtqY6SwLi5czi3P0nM6QtxDkM0K2b7WHY3Sv1Aj3G00MS9hkVsq6M9esdyK3CS+87Ht\n+J5TbxtLebt+2GXF/q1Y99Iy1RhjSoXlbP9poD64C/qOfc7Js49fCtq/i9dzG75/d9EeL6iMoUN5\nXji74v/ZSVqNZxifU4rXZVtx1GTMZzs1I1RQshyN4F7Y+8r2FtBrdYLmEtwPe1XZDt7H/FLRDh8h\nqM8N+TWUJ2m4bsGoX2dy2Ibdpwm1tlXQzDxCMcf++oYp26nJeEZ+nXE/dhv6ToOxj3kLmlpzNduX\nlzbic6Xta9VBPntKurSLB+a8nSbl4skUXEej6gSoPXbKjm8y7r9BfK+aTKbGRg0DFbpwD84CLp5s\nHy6ptnHR4nkOSaG8zJU4i7rb9qv/IHpqR/r3iFrU/5BIzKXW6mbKk/uTu6AeObnw2pFUPVdhgx42\nkNfsWbGeZX0t28/W3K21Yp44+KhTlg262KFcloKY7YtzxRdrXrNiV1c+o7a04Pt6eGA/mP7GAsq7\ndijspa8chnjSqy9TXoWY3x+s/MqKH50BaYZh8x+na9799Skr/uUp/LadcNtoygvvgrnj5YXxqKpi\nOYEf/wS1auIZUI6/2cS/H+6YM82Kd+7EbxiPrzgvp4TrjaMhpRvK9jMdr1ZQc1prMJeCbDRNSe2U\ndFo7xTAobKAVu83E3lqdw7XcWdQmn3ickeR5NSSxO13T2Ig52PM2nJ1qa/lMGRDQz4rdA7BPN1Wy\nnXfxFuynAd1AqawWtERj2AY8ahzON0UbeT8O7HJu6r12zigUCoVCoVAoFAqFQqFQXEDoH2cUCoVC\noVAoFAqFQqFQKC4gzklr+v51UE86RLIT0ax33rTiAbdBcTvjVqYUFZ6EK0zf2++04oYGbvGpOrzc\nij1FG1TPkV0oz80NrYLDh6GtLGM/KEW3fHAnXbP95W+t+OJn7rfivZlfUN51d0+34uyVaO0eMf8m\nypOtdztfRdvbrLdfobxTW3624j53wcGmi63lPiCIXXAcjf6j0L8onTKMMWbFE3AYmvjSA1Y88LG7\nKe+ji6FaPusytPe5u7NCtnREevNavMe0/v0pr/8daEU8+hkobd0vg0OCz+/s1vHbE3jW4+5B2/j1\n7z9Fec/NuseKp180yIqPrePxTps4x4qbmqCUvnLLZ5T3/7F33uFxVmfaPyozI2lURr0XS1ax5d4b\nxsY2phlMS4AASVgCSUg2CWFDelsgZXeTDambBgFCCQFCBxdsDMa9N7lIltV7mxmVUfH3x3flve/n\nxPi7rs3o0z/P769jz5mZt5zznPOOnvu5ZxRCkjCD5XgyA9VExcr02XDCjhwf/Xfp7rXrUaQ9rvk3\nyNTqXpQuP7v+jDl83Q/nOu2im2UF9Qhy72DJRenaCtHvPMkO3nkY0r+rHr4LfRKl61f5pxY7bdfz\nuL92GnV0FNKoWyid8MwuKR1cVIa04pn3w3nsPz7+PdFveDvO/Z7vosT95Z9fLfq9/S24N33k0UdN\nuImKxO/hWcul1MVP6dz95FiRYDkWDZLrUVkRHFnGhuS1nn0n5lwXpadGx0vp6TA5cQz14D4kFCCd\n/Oyzh8V7stcgBZxTqvstp41ucqnwpCJ9u75GpstOXYs4HySnkfx1cszVkiystwrppAmT5TXy/j8q\n4f8ztJDzS6hXygnyluCeNu1AWm1CukzfziTXhinXIz6zo5UxIkPdCLWI9WcVHzkVFM9Gem/be5g7\nlVfLee6vxnhLqoBDz6IVcj0K0XrV3wipB0tojDFmLB/XnJ0J0i6RKfhxWbgWLDHoPizHxHlW7ywy\nYYdTsU9bjmiVtyL9/PgzkEhkFEnXypgs7FUKSdbKDjnGGJOTgvHJUrWiHCnlYiehsRCuTd0blFJd\nJK97xgLEAHa48mRKGVJcNq47x1uWxxhjTD85orVtxfdmXColiykLIBVit6ZAnZQZR5EcY1KYpRTt\nJE3rt2RILCPitHhbetmyEfM5tyCD+slxy7If/xlIOYsLpBSx7xiuBc9ZdiOZtcpyMKPXOI77psvx\n0f4+Ysoo7UWGe6VcIJ1khaeegswiMlIGDhetsyzX7G+Q95Cv7RSp7ggLPG5ZxmSMMUmlmHPsAtOy\nVcregy1YD4ZJxsttY+R6euxPcNLJvaJU9OPnkCgPrs0wyTmGrL38lI9i/8ryLFuK6E6ETKqPnO3s\n++2hkgddLFGypIPs/BhH0svYDLnu2JLDcPLdz/zCabPUyBhj+sjJL7sMA+gnd8pntevvwf714R/9\nt9O2nx94f5gYi3neeEY6t6YthFyQHWjZkXBkRMpXOg9AUhPnwbi0HcvcbozL976LZz9bnvvwiyif\ncG4Hnoe/vV4+2za/hb3tlfdhX9r+gZTof+Jz15nxZJBcpBItB6TuQ1ijeZ52fiCloom0H/ML2Y89\n/uD07HLhekbFSOlW7krI1tsPnnXaMSmYH70tcg1niWBkJOLmyIB8Bm7rRlkH3v9GuqSUk+W5kdEk\nbS+QLsDJNId5L5tzuZRNdpA7ZaFcDv7vd/zjfymKoiiKoiiKoiiKoij/v9AfZxRFURRFURRFURRF\nUSYQ/XFGURRFURRFURRFURRlArlozZmvP/eU064iGzJjjNn8DdgSr3oY9R2ueehm0a+/A7rLTd98\nyGlnVEor7a1boeu+LBr1MFLnSxvGoSHoLud8CnZox+77N6d98nFpPTb9MxCs/+pu1JxZv3Kx6Bc4\ng2MtvRUW4GwxbYwxY2PQsHYFoFf87k13iH633LUW/UhPnzJDnvuJ52EJPvfj95tw03AAmsWVVv0c\nPpZt34NmdNHXbhP9WEOafRnZg+0/JvrN/TL0pN5fvO+0s9ZKvd0P7v2V02bL529970GnXbxI2m+f\n3QN9cEElrN0f+og81of/9rTT/tnHP+O0F4ZkTY69L8JCr7gQ9QLuffTjoh/Xuegj22CueWGMMXuq\noRldeJ8JK54MaCsf+8rT4rXJWbiH9S/BWvrAcWlhW56DGgFvf+t3TpvHsDHGXHE/dL8p3bgurkRp\nJ+kl298YN+bIv9/6TafNttzGGHPbf2GOHNp/2mnHH5P1hVZ+Dcfw2y884bS/9Nj3Rb9n70fNpOJ2\naNDv+8Vdoh/bRQ+2o66HsKA0xtSOs03h5E+ilkXnQWkXOEq1BuILoWNt3iS19SGyV81fj5osrVtr\nRT+uK8H1Xlzx8lpz/YTMpdD9Nm3B9+atKxfvGR1EjYSYDFh4t70rjyEmE6/lX4PPcL1rjSWyDm94\n+aTTjoiUGuW8a1BjiG0UO/Y1in5cD8kUmbDCNTQG22WdC67Jkl4J7XGSZZvIVpNsa2zXF6p9HvE1\nZ+1kp+1OlPdwgLTNDRQDQiF8T8YlstbGyTdh1znUghiQuWqS6HfuZXyetxD3qX2btEtNWYj44puG\ncw/USmvcgSY/9aPrYtVDqD+Mz59nws9AM845d3qOeK2T9ODl16OGT/Urx0U/H42zeKrBc+p12W/6\nnRc+gy7L6ra7CvEneTbi+kAIe45Cq6YB1/cZJktl2x688Q2Kt1QvwC5DwRbpaYtQzyZYK63TfbR3\nGCPL7ehoqdW3622EE67RYdcW4djuScP6OdAi52xcIepP8GdwjRljjOk9ifWebVBrnjsi+uVfidol\nbAc/RLUc7BoxXI+GbZu79ln24DRP0xYjDrkS5B6V6yrEJWIceK06URw3+HrZdV/Y7nk84FieOEnW\nuah7FbUkCtah9kSeVQNvbAzrZ8du1MDIXF4k+vE6y7F8pF+OnyDVTkqdhbHuoToX3jxZb4jHyEgA\nn2fvM1reRd0MtnLnuWyMMb4KjLO4XIzT7qOtol+0F+fBa6a9R81cIuvchZOv/xDPFlxLzBh5Ld76\nOuqzfOqXnxb9BnuxVnzt8c877b9+/QXR76En8JzUfQTPVr978M+i39ef+Y3T3vId1Em952fY49cf\nelO8h+srLb0dz4i+crmX/enHv+S0v/zkr5121avPiH5vfQO1c/IqsJ9+9PGXRL8fP4tnn2/egWP9\n/mNfFP3aPpD1WsNNx07MnbFB+czkm4Xx2E+xIyZH1i079yz2LVz7zI6p52ndCPUg1nFtLWOMyb8e\n8z5E+9ra7TjWxBlyjxVL+9KG1085bbu2FNvac82/xFJZX250EDG1k2rvuJLkXpZrOkZSrSquP2OM\nnPcXQjNnFEVRFEVRFEVRFEVRJhD9cUZRFEVRFEVRFEVRFGUCiTh//vz5/3c3RVEURVEURVEURVEU\nZTzQzBlFURRFURRFURRFUZQJRH+cURRFURRFURRFURRFmUD0xxlFURRFURRFURRFUZQJRH+cURRF\nURRFURRFURRFmUD0xxlFURRFURRFURRFUZQJRH+cURRFURRFURRFURRFmUD0xxlFURRFURRFURRF\nUZQJRH+cURRFURRFURRFURRFmUD0xxlFURRFURRFURRFUZQJRH+cURRFURRFURRFURRFmUD0xxlF\nURRFURRFURRFUZQJRH+cURRFURRFURRFURRFmUD0xxlFURRFURRFURRFUZQJRH+cURRFURRFURRF\nURRFmUD0xxlFURRFURRFURRFUZQJRH+cURRFURRFURRFURRFmUD0xxlFURRFURRFURRFUZQJJPpi\nL/7yE59w2vPmTxGvVdx+ldP2d5zGCxHyM2oeP4gvS3Q77SMnzop+137vWqfd3+J32pHuKNHP5fU4\n7Y59jU47WN3ttN/YuU+858uPfdVpf/ej33baj7z0a9Hv8P8857QrPnmZ0/7bVx8T/a556Hq857/f\nc9rps7NFv7j8JKf92CN/ddrlOTmi35TZxU57wb1fMeHmwDM/c9rpC/LFa8HGXqcdmxHvtEN9g6Jf\nf2Of004oSXHa50fPi34jA8NOe7At6LTjchJEP38N7lfiZHzeyMCI0450yd8OR/rx2Z7kWKc9FhoV\n/WLS4px29/E2p+3NTRT9xujY+TOiYuS0iIzGcUREYoBHRMux6a/pctrTrr7XhJOOji1Ou/bVA+I1\nd3KM046Oczlt35QM0a9p4xmnnX91udMeaAuIfj0n2p121iVFTrtxw2nRz1vgc9pjw7h+cdm416Fe\nOY48qV6nHRmFaxls6hP9hvuGnHa012U+DO6XsajAaXcfaxX9Ij24p94cjIPOA02iXxyNkdLFd37o\n9/5vObH59067+6A8xtEAxnd8OeZElEeOs+Zd9U47m895f4vol78e97h9Z4PT9lXKccExu+9Up9N2\np2CO+Y93iLck0PG5fBh//Q1+0c+MjTnNJPpee471N+J9o/0hpz3QLMfmcDfudwSNn4yVRaJfdCw+\nv3jOx0w42fvYT5y2b2q6PD4/ju/g37D2lUwvEP38dYi7xR+Z5rSHugdEP3cSru2pZw857dbeXtFv\nZBTzLzoK48XjwtyZef0s8Z7qN6ucdmAQ83Ty7CLRL2VWltM++dxhp51eLsdRaxXGsy8Za0nmqkmi\n3+4/7XTaUy+twLHSeDPGmKHOfqc966P/asLN6R1POO2BVjnOBhoQj2LzEBM4/hsj141+ek9ieZro\n10cxlYnJjhf/bjqAPU3Jlbg2kRQDTr10VLwnIgLHVLAM13qgSc7F82NY73j+cWw0xpixIazBo4No\nx09Klv1CeI0/e7A1KPol0Po+ZfXdJpzs+xPmYrTXLV7jtfA8bVOa3q8V/cpum+m0G14+6bTdaXI8\nDndjjrhT8VrqPLmfa3oD62xcIcbOYDOuS+66cvGe0QHEvEgX7nX1s0dEv7wrSp0238NBa/z6KY4n\nVlKMsvZrcTS2W7fWOm1vkU/047lZtuwTJtw01LzotDv2NIjXhtoRB9IWY//KY84YY9wJ/GyAdT02\n0yv68bl0HcSamXWpjFM9J7B3TChJddou2o+MDY+J99T8CTE/7RIcqyclTvSre+mE0/bSPUiskHFj\nqAPnHpuFWFH/ptyL8RrST/Oe9+3GGOOhvfGM9Z814eTQ8z932hHRcu+eUIwYMBzEWD8/Iq8fj+PB\nNpz7+VHZL/eqMqc9Qp8XaX0v7/F76X7yPs9+xuSYLp5nrLjG84/3v/aYiI5HXArR/UxblCf6jQ7h\nM/g6pM6S8YX34fPu+rIJN3wfkyrk/obHMT9/p86Uz77tNIf3bcCe4arvrRP9+PnxiQeedtoFaXIe\nMMUVuG68p4wvlDHr7BPYL037Ar6389QJ0S8+H+977qvPO+2V1y+U/ejz296vc9qFN1SKfg1vnXLa\nrgTc+9Q58j5u+clmp33nr+VvEcZo5oyiKIqiKIqiKIqiKMqEctHMmSl5+IWq41yn9Sp+HTzzOP6S\nX3LnTNErfTn+YvjSbzc47fY++Ytu9b2/ddoLS/HXgfmfXir6vfOfG5125WL8elpIvxw/8OmrxHs+\n+MFfnPaDv8WvxVXPvyL61Z/DX/6int3mtFMTZNZHbw3+CjbpRvxq5q/uEv2OP49f7ipyc512h1/+\nRStllvzVMdzwL3bnz1t/OcnCufEvoTHp8q8N/Et4oLbHadt/AY+jrIQx+iXYm5sk+vFfhLuP4Lq7\nEvHXj8hoj3hPEv31gn/tHmiXfzXqb6F/0+lGx8m/rPGv4vzXwlCP/Ou1ob9M8q/0KdOzzP8v2g/X\nOO2MJTL7yV+LLCT+ayH/vzHG+KZnOm3OQurYLf9S5ZuB8+qrxrxPmiJ/Reex07QZx5c8Fd/Df1Ew\nxpj4DIz14WGMoxgr+4mznGJ8+MW6q0oea+YSfF7TlmqnbWebjNBfPfg1zr4wxpjkUnltw80oZYZl\nXSb/Usf3oY8yVTKWy6yL4vVTnXbrJmQg5t9QIfoFKTvD0F8Ze6vkX/EzluDzPfQX4d7D6NcX7Bfv\nSfLgLxb+04h7ybPknOivxzF0UPZOujWGG7Zh/MS4MU8zVxaJfvxXT/48zrIwxpjzlM0TbnzTcO79\nDTKDpeY9jMEpl2B9iqe/HBpjTGcN5lXgHM2DDBl3BzswbhMzMCcKVk0W/c5txl/rk6gfj7GAFQ8y\nS3EenrO4h7HZcr3j48uoxP1tOCTn4pTrpztt/uuonT2XGIe/vvlP4joErb96Zq0pNuNJ9yH81byv\nrke8NkyZSJk0ltqPyuy0qEgcc1IRMkv4r6XGGJNIsZPXnVYrS6D4coyZwFncryGKX4XLZNwIUNZw\nRBSOZ6BJroucXZVE2a+R0TIGdh/HWBgI4T62n5XZc1lTEXtd8bTu1Ms5ERX34ZmP/yyDdI52Fi9n\n9/mmYdwWWJmY3cfwF/WstSVOe9jKHm5/F38t5Yyisy8cl99bgL3OcC8y6VIWYB/Wd0Zey9YdyIbM\nWYH7m7VUxn7em3zYX+6NMSb9ksILnkdUvDz3KDdl31CGSlKlXOs5m2c84Iw0OxOaGaC9Xc8BORdz\nrkJM5AyFrGWFoh9n3HDWU1+NfMbh7KPeY1gLx2gNT10isx9icpDdwutib0iuufnXUlYr/RXeVyav\ne/UuZOLwnq3sE7NFv8Y3kE2RexWen/gv98b8Y5ZcOPFNxXrSskUqI0JdGLdZKxDXe6154KUYGkt7\nQHtu8x6G41/ulaWin59i1lAnjoGzAHlMGWPMUDtiLWeQZa+Qcbd9L56XRmmN4/MzxphRerYYDiAe\n8PEYY0ziZDzfdB9oxvHlyOfF1Hm5ZjwJ1uHZ/NT7Z8Rro5QJ3duPORZ6YUT0u/2/73PaCcW41vWv\nVol+BddhL3vLt6BI4cw3Y4xJooyyxtcw1jOWYz/IGaTGGOObi5g/MoJzSq+YIfqNjeHe3fzQDU47\n0i3nSt3LiPNTPwGlz+BgvehXfwzj4kwLYlTaZrmvyk9NNRdDM2cURVEURVEURVEURVEmEP1xRlEU\nRVEURVEURVEUZQLRH2cURVEURVEURVEURVEmkIsKELcchSvAorIy8VrTvr1OO20hNHA95I5jjDFF\nl61y2pnP7XLan/mfB0S/5r2ozxIVA12s7eLSHYQesHgd6tFUPYZaNGerN4v3LLxridM++Qc4OXUH\npNawoRMa0+XX0nH3FIl+rVuhp9yzB5WfL1k3X/SrvAW60CNP43vXPfIvot9An9Sdh5sh0nvarhTJ\nVO06lmqI2K4UbtKqukhP70qQdWH487kORO9pqS1lnWcK1UIJUnX5RKtOQ4icUFg3nFwga20078W1\nTiBtacCqK5BCOvTBTqrEbmkXhZ6bavYMWbVp3ONY5yKBKoV7EqVrButvY6kuT3Ss1Jc3vg2tZi/X\nWomUv9H20eflrIaOOypanl/jFuhH2VmL9enDwWHxHn8z9Jhuqi8UtOoU8DUfHYT+dnRAfp47CZ/B\nty1joeWOcw66ZK5/1HdSjsvhQRlvwg07qNhzjDWzSdOgPbc10clUE4g17z1HpPtTNM3NlLmkrT8t\ntfWnnkbsLbgcmu3sK1F/wbO/WbyH6x20Ug2uhFI5Z7k2FLsT2BpyXw7Gt78F92DAcpsI9UAfzDWU\nbEev5jehlS5fbsIKO0zYtRimXA89c+3rmB/sxGCMrN0ySPfX/jyOoRnLMKZ3P7FT9KtYgvW57TD0\n2jlUxyV4Ts4xbyHmQRnVtmh975zo13wa4yolEWsEu0IZI52+zhyoddpzbpkn+rEzVJIX9Wca2+Vc\njD9LcU5+RFgIdSB+s5beGGPGKM5zvYTkIjm+vZMwbqs3wqVhJBAS/dzkktJyFHNpaFjGM64rMVCP\nWOGbjbHOc8AYY4bIRahjC2J82bXSRaJtC+4rf/boiBybaRQreF4FTsuaelyvKy4PY2lgd53oFzyM\nmD/X2XN79AAAIABJREFUhJecqzHu7bWhh2rJVP0JewJ73MZRfT0vOWzWb6oW/bIWIH75T+FapM3+\n8JqBiaVYj7nWkDdP1uBLpnodfVS78NRGWaMhuwj9Mi5FLZWmXbJGg5vcLN0+tJvflufEa2bKXJxH\niGrlGGNMx3uoqzBZmpiEhaYNiNf/UHOGDpL3WJ4sWZ8rLotcj6aiRkXrDjkeOd5ybZ2YNKvOItVP\n47WZ6zEOtMh6IFxLLViPtct2a+sml6hMq/YckzwHxxBFe3COE8YYE0XztPZpPLclzZSOeuxyGm46\n6ZxstyZeq/tbcc249qQxct83THEu1nJ75euZNB3n2HVI7lNCFBvzrkSs6DpMMdiq/cIuuz1HEEO4\nnpcx8jmI60/azlIcJ3lPHpMqx9tQF9Z63q+1fyBrmmSvLjHjSXwx1rSKMrneuRNxvzr3IK7nXyef\nwSIiMFZTiuH03L5DPuvyWNj+G9R5DY3IGjZRH+Dac01C9zt4Fq+vkTWomnvwvJezCXG07BJZl4jr\nh7E7WtpCWU+K3dwa92L/9c4T74l+vL7MK8G9KrpBOl7z+nQhNHNGURRFURRFURRFURRlAtEfZxRF\nURRFURRFURRFUSaQi8qaphcg1TmzXKbH/eknL13wPf/yzY+Ifwd6kU50+YNXOO3uWmnRxWnABYtX\nOO3+ftkvitILd/3wBae97FufctqpB98X78mqgPypqwDpn55OaTN3rgNp1S9/+2WnveKOZaJfHFkl\nXnPplU6bU/iNMSY5Bynuvm9A+vWD278j+hVnIuXv039cb8INp99FxfjEa537cT2SZyCt1VL2CEtX\ntmvuIDs5Y4zx5pEFMtnCxmbGi34xqUjz5lT+2Cz0G7ZSwxPSipy2z4cE6UDgtOiXv2iF026v3uO0\n02ZJS8VgC9KH+fy8ZAdujEy97CeZxXCfTP217cLDSUwSWbGGpDzBQ+m4sT70O/f6XtGvcB1kdsEW\npNSFrPNg+0W2V7ftYeNJasVytKFupAbaVuv9zejnP4t0wsQSaSsXJItils4lFElJVzfJKJMqcO5C\npmaMGWxDKjPL5aIs6ZeduhpuxoaR8sq27MYYE03X3UsxpukNGQN9JEVspNR720ownqwoG3dA0pA5\nXabh55JF5BhJHFxejKukShn/h8k6Mjke/ewU4baDMt3e+bxsOVcaz5J0Jh4xIMKS+fQcRL9ALGQ0\nkZZ1+tiITC0OJx1kexudKGWd+1+HRGzKbFhqDrXJ8Zg6n6TAlN56+PXDoh+n9y6etNhp52dZtvaU\n9t23C/egbTtS+u35y/FrkNJ5OQXdGGOSZ1JqfSzmc9whmUbMFtxTU5DCW/ualGbEuDDn2Np37jqp\nl7ClQeHGlYK4Ptgt5XOxlDo9yta586WNKUsEy9dBRtS5S66LLPlKK0Ssy1xu2fyS2i94FmnZbCHf\nbMk0EjJx3d0hjMe+KikTG6N0e5ZN1uyoEf1iSI7B4yLSii+edKzhLEXJnp4j+nVXSUlHOGkly14+\nJ2OMGSJr6PKPzXLavZask9cxto3PnCPPg9cGPnd7jes5jPncRVKP7FWIB82bpbxoqAXH2uPHWpU3\nRR4DyztY2jLYL9fwQZKX9zfgfob65ZwqWAdL506yr/VNk/F+ZNL47W2MMSahDHNi0JLeJ5ZDosSy\n+f46OWcH2vEaS7lYgmaMMRlkMx4dh3ne3yT3Vd1k1Z1IVr79tEYmFn/4viVA8rQ0kjsZI2ObOwFx\nqPb5o6LfeQoIKSSfi02X++m0BYhLHjr3hjdPiX5R7vGzRI/NxjElLS8Sr/FeniXwdpkFQyEmWIdr\n6bbkWLwvYLlXvFUKgcfSCMlXYuh5hNctY+QeprUOMdQ3Q66LHNO5dETiZEvaTcfKJQgSSmS/IZJx\njZEM2mWde+9JiqdSTRQWRvpxnQabpWyvpRHnPOtOlPF480dviX7rH8HvAG27sb6wtN0YYzp2Yi+1\n7gf3Ou26rdtFP76GySQhe+17rzrtS25bLN4zk97DYyl1toypw0HETj/N2Rd/9obot6QCsbL0Huis\nV9y6RPTLno99QM3LKOXiTpL3MW+tlDnZaOaMoiiKoiiKoiiKoijKBKI/ziiKoiiKoiiKoiiKokwg\nF5U1zb6VLBIsmUvM60gHnFVU5LSzKmVq8p4fPYl+91/ttI8/u0H0m/kFpEF948bPOe3V06eLfvPn\nIxXo3e1IIT96z7ed9ice/ZR4z6tf/S+nnZeJ9EROqTbGmNt+/FGn3X0c6fP9DTLd8RSlaV318Ked\ndtXTr4t+IwuQylf7IlydPv3vt4l+7/x6qxlPuMJ2b3Xnh/aLjMZNjrAcfOIo9a/3DD7j/LCsrM9y\ngvgCklBJcxbheNJ1GOmjhauRIhbska4hEREYc2cPPeO0YzNlWmJ0NFIW+6maPqeIGmNMfA7Ggoek\nS+wEZYwxnfspRZ0cdthJxRjLaSXMBdVDA3Ab8tfINN3kKUjzG+hBymPafJlC2FtD50HzecRKdQ7U\nIrU7lRwL7PTtKA/mz2A7ZBtccT/eknpFFiJduvMI0vNdXim5YOeNtFlICe6tlhXOcxbPxPeOIbW0\n9tUDol/+VUhJ7DmFa5S5RMoK2ncjzTLrOhN2WH4TONMtXosiueAopay7EuW1YQlBLKVK2hXzG15H\nSnPlJxHLQ33S7YU/L7kcUtboaJI15cp7PzqKse8hiWL7dim5SMrB/ed51dssY2rRbHwvu2HY0q+R\nURyrrxxpxpFRcoHq3iclN+EknVyTbPeTBR9Bqu+OZ5HS6vVI+ZOHJJ8uij3ZyVK2l0JuHXWvn3Ta\nR+ulg8Phje847V5yNLw9ClZV71dJedHtH4ckt3kT1rTUBTLtt8OS6PydSbfItZklcYGzGNvF108V\n/fY9BampIfVZ6+azoh87rowHLFWIy5NS1u69cPPgdHaWvRhjzGAj1heWIk66bYbox06DLJ+wJaWR\n5HLC17fhLczl4vXyelb9FVK44w1ww7BlSK5ozOHoOszT2dOlewVL1xhviZREs4ybneLs9H87fT+c\nRNMeru1dGXvGyIHLT+PRVy7H1TDF2trtmAf2nE2fB+lI83GMj5RWOXZ8M3H+URTvO8ipJH2ZlLmc\nrcHcdNN9OrD7pOiXSpLP8tWI92mzpFQ1jY614VV8RqYlr2negPiVuw5uNv4auTaxQ+C4QFuu7BVy\n89RThTWf5c9jg9LRxZOCdaj6j1j/UxbJeBZHrqTRbrwnLk1KlDJn41mj6zTGBe/7xiyns4Mv4Hsr\nlpPDrbWnzJ4PifmJP77ttG3Zh5/22izpPvmbPaJf2lK8j/dSuZfLuV3zBJ6ZzFUmrMSQI51dFmFs\nGPcqUIeYOWK5eSaVYW6yhK/rgHRhYtiBqveUlHKynJilLSzb67UcO33TMH+XfHUNPqtHSpNZLsjr\nh+1QGuVBHPKShHLUciWLJNmkKw2xx3Z/smVY4SbKTc9+ljp82dcud9p9Z3HdeoLy2vz+c7932nf9\n7A6nPdAmZWyTb77Uade8+a7T9qRKCVDbNsT2w28ccdq3/OSLTrv2nW3iPR17IdP00lja9yspmWIW\nP7jWaedvOi5ei8lB7PXEYvwULJFzrOq515w2S8lZPmWMHKsZV5p/QDNnFEVRFEVRFEVRFEVRJhD9\ncUZRFEVRFEVRFEVRFGUC0R9nFEVRFEVRFEVRFEVRJpCL1pyJ9kLPe/LPB8Vrn/7FJ512w5vQtNZs\n3CT6TftX2FA3vo/PiIqTX133HvRiD/zyHqf9/HelZffUW2CJeDPZtTW+Bk32xu++wG8xl3/vFqfd\neQK2tLZt7unfwno4h/S3nbulHez0K6c57frt0K8NNkk9Xc1fjzntnadh9zyr6BrRLzLiXTOesN6d\na1kYI+2zWfcbqJfa+vh8aCW5/kykdQ3ZhnqoGzVAIi1L3KQ8qvVB9W1CIeiL3V5Zr6SvDeMsmiyQ\nh/2yhoYrBe9jq8SUonLRL9CFmjaJaXgtMlJqzYOp0Kpy3Qy2zzPmH2t5hJPmLdA8py+UuuSBToy7\nnhO4fhkLpb58dAi6X7YfZKtwY4wZC0FoGk365TN/lHVcEspQSyBI9VO4ZkiDpZnPXgU9eep0nEdc\nXLHoF3cp6nr0tUAXb1skB7tQD6P1XdSs8BbJ+giseU6dUuS0a1/dL/oVrZtnxpPUOZhv/c0yXnBt\nK9aq+iy9/zCNs8KbYdtn12cpvRP1vzqOYKz3nZAa6+FexIeBlgtbsPZYNWKGqfZLRj60+hGRUmw+\n0odjCvih1X98yxbR77rAAqftIavlojkFol88xRf+LrZONcaYRMtWN5xs+/17TjvOrkthcLyzV2Gd\nYKtrY+Q45nlZcIO0V3z+R69c8Lv6h6R+eX4J5lVzD2L3bzdudNorpk0T7+E4vmcT6pbMqIkT/YaG\nsWaMUB2PM08fEv08btw3tpocDcnaEDkpqJ1Q34B4lV8g7XttrX24CZxB7a7W01Ytq1mITVwnasSq\nEZNE9VV4vti1FNg+1ssW96+fFv3yr0cdkchI3IfslYiP/Zb9bHIaPq90BLGisUvWJqtuRV2YpDh8\ndmuDjAdcHSO3BOc3UC9tVYMhsvrO4jpR8tztuBROEkqpTohV6CKG6jpxnQZ7DTn89D6nzfEmfpKs\n/xRLtUoSJ+N7A+dkfZbzVIek+wTqm8Vk4przfsoYY3Kp9tnYMI4vO1rGP18F4hrvN2xr5eZ3sGYm\nU904UQfQGJNA1sPdR6nOYp2M97y+F882YSeCai11Hpb77fb3UF8rZR7tV637XfciakR09mIuFhZV\nin4de1H7J57quAQbpDV3HFlDc12StLmoYROXKusXzbsT65grAfE6NkWOpZpXsYZkr8bc5j2zMcYE\nqzHHutJwfyruWyD6nfgF6pv1HES/WKuWVtmnx29/030Y35uxRI7bfqrNNRJADE2dkyv7NeMeDPeS\ntbRVXyid7NBj06iGUJysI+qKw952ZADfy3WmslbKa9RDc/b8GNpss2yMrDfG63ukZVc+TGtG9yFc\no5FeuZbkXotnzmgvxo5tLR/qHb/nDGOMCZJFPa9HxhjTcRBzh+smLV/cIPqdOFaLf9CC8pcfvCz6\nXf95FFs58R6eFYomyRpaZ9uwPuelIGZVv4Fae7GZMgaGaN/y3ubdTjvKqqd6zc2oy3f6McyjebfJ\nOfbMT7AXu4Os63f9/gPRb85H5jpt3mM99c3nRb/196wxF0MzZxRFURRFURRFURRFUSYQ/XFGURRF\nURRFURRFURRlArmorKmF7DUnXSPTrVu31zrtjRtg63bL19eLfmefR+ozWywmz5FpS54UpKUH65FS\nydaBxhgzQulof34Y8qVVZLndNyBTA3f/+FWnvfDBa5326mk3i353rlrltDMHkWpop5q/9Z+wvpuc\nhZTRtw5I2cfdX8Pnx+1Ciu2m7z4t+s1eKdMuww1b63GqrzFSBuNORCqdO1nKBIKNuCexGbgnnBZr\njBEpbJyOF2nZMEfHUeoqWVwHGmAdOGKlMsaSXCaCrHPZ2tsYY/qbKd2QUpGjouRYik9BamREBFIR\nuxrlfWRJlq8E6e5tB86IfpzGOp6wNbpNxgJImToPyPRgtink69f2gbQgHSB5XgTZq6culCmoQbIn\n3XgIsoi5fpJZWRZ7bprnk9dC3hcKyXvINup9dH9tG0GWPmStwJxt+0DasHPciC9EfJh07XzRb3hI\nyvnCzem/wAYwa668nl01OM/Z91/itG2JoYvuf0oW0pR7u6T0dLAXc5Zt0G3JV5Cs0znt1k3jmS16\njTFm8UzExOZaiiEumVZcsGyS044hu/VFTVJiyFIcVxTm26ToItEv1A5pVFwB0pFZemKMlB+Gm+kL\nkH5cfUiOsx5K7U5bjFjBMkxjjBkkO9acBbCDr3lVpshe92lYV7JsxpUkY00PWYdn+nB/L58LGfAr\nO3aL9zRuhPRhUjrkEhEu+TebSEoD/v2GDU47JUHOxYWlsJSM3wbZx/lReS8CA0jLZrtntrY2xpiz\nWxFfp4+DrX1MJtaTPJ9Mw48j6VEXWXL2tUjpA88llqMMWxLXwVaMfZYsFt0q7chZWmLIUbj2uaNO\nO2WetAZm2TLfK9uWPURSxJoWjJfDdTL+Ty/AtRig43bRcRtjTGwGZDoNJ3CNYs7J9P8xWt9n3mTC\nSsd2SF6S58o9Ja/bzW9iLMUVShlDdj7GHccNb64lqz6L80oiWdOwX8oAa16BvCa1BJ/9lxch5Vxr\nWVX/aetWp/2Fe2502v4zsl/9B7VOO28+1npbqhVP+7K0aZiXo6NSmjYcICmtl6W00g6dZUfjwUg/\npG9dOxrFa94i3IfkShxX537Zb4DWl9Rk3GPbXrllJ8ZMOu8xLZlU8iRct7gsfF5cPPYZHo+8TlEl\niCnDw1jPhwflPijUgfjPkqkhWt+MMabDj/uVSnuxxo1y75lKcq9IN9b6gSYZr8aTZBozwwEpZYxn\nC+lB7MVCvfJZjWUgFDb+QSrE58WlGmxr86RSzL/e07jO/NwSYd13H61D/lrMvzhLIpaxGHGSpXJR\n1rNOXF4StXF+vrWTRb/mDbinUVRSxC4JMd6kUBztq5GxPGveVKc9MoI9W/61Uv401IH7OjKAsXDn\nf90m+tW9hFg56zrsVTLmyP1hXifWRZb+jdA4O39e7jOWfONOp11ei333+TEZK1mG6z+BOfve4++L\nfnMmYS/Le5rF9y4T/fj3iz6STl92idSDvvI7lICZsupuY6OZM4qiKIqiKIqiKIqiKBOI/jijKIqi\nKIqiKIqiKIoygVxU1jTtU8hB3fCtX4vXVnwLr+VtOeG07Wrjr23c4bRLjyJdqisgK1DPLUMO7+4q\nOBhwKpExMsXrls9c5bSbtsKpZeZMmS6Wdw1SpLY9BCnU126WsqbcfKR2P/Lg75z2j174mui38u7l\n5kJMapRpll37m5128ceQuh6zuVr0C1ipq+Gm+zhkB3ZKV+YipObVv1bltMdCMhXUQ3KoniP4vNT5\nMsWa0xlTZuJ+e2Kle4rLhTTHwUFct9FRciCIlW5DbScgkWOZgJ1+bLsP/Z2Os/sv+P/GGDPsx3H7\nLZlU3hUYPx4Pzjciqkb047T28aTnZLv491gIqZycxlm0YpXo192E68fpmpEeGQY4LZOvZe9x+b2n\njyMdntPk//S3vzntNcvlXKlcwCnWSOH1ektFP7cb59Hjestp284fIYo37DQUY1Vu902BE4w7Fump\no6NWJXyWI8ihHRYKViM22WmYaRVIC27fgzTZklVS0xEMIj6eP497746VMoZgMyQ37Gx0dot0iElO\noetB8aH2HOKXL06m7rvT8e/uMxgH89fJ1M3IaMTrKEqbz0ySczaNJDIszTiw5ZjoV16CmNB3FOOx\nsadW9BOpyreYsHJiH+J3aal0TmMpU8dO3MPOBhnjE2Iwr1h6mXOZdC3b+99w9Si6FGtk+y651iSV\nIk37LKVH13Ugjt96++XiPezSxVKb9AXynKLexzi6JYAU3uCglO500pqeVI75e/JZ6eqUt7TIafeQ\njO70ZunsNuNjc814wg5f/RdJ/3enop/XcjvkecXulqMDsl/LOYzVc9WYV7YEe9E1c5w2S98yLoUE\nN6FQznN3MsZS8BxSza3wYu6/9WdO+4E7kfJ9uknKX1nCyK5OyV4piZ5eCjl2ejqOKWW+lBfZDpHh\nJNiH65dvORGxHDZtGeJG0ya5bmcuxR6obTtiGUvbjDHGm4+YVf8K9ko5l8v9ZpCc1Br2wEX0WD3k\nNFfOlnFyTjHmfeMR3I8my3Frejn2w71HMKbqdkl55aIH1zrtvgZ8b2ymlCL2kQMNj1lbPtxNe1mz\nwoQdllLbktQUcpvifV/OClkOwEvOS527ER+Tp0oXuIwFuN9D3Zhjtrx7ZATH1EESqqxF2FsMDlqS\n8A4pG/s7kZYszMcOWiR7aXjjlOhXuoL2SzSPbIlNTBrmJo97lpcYY4y/DvEhUyqy/mmE02O9dPtK\nqsQ94DILLMk0xhhXPO49Oy95rbkdRTJmLrMQbJRxfKgH589rHD+n2i5MydNwYfh5M2WKXBdHQvgM\nPr6oWLmfTi7Eun0xuXXmiiIcHznB2qUjOvfLeB1usmdDKt96VJZ46DqF2JlZibXq/UdeF/14Xav5\nMaTQ6x6+VfRjKfOeF+CaN5kcx4yR5RVKbsf3Bpt5vZPX9q8PYL2rnIl7cLZKSvTZebSKnuE/96t/\nEf1YHslz9pkHnhP9rvkc9ll+koXFl8r7mLRf7qltNHNGURRFURRFURRFURRlAtEfZxRFURRFURRF\nURRFUSYQ/XFGURRFURRFURRFURRlArlozZlQCJrWtQ/dJ16r3/mu015691KnHRElf++5j3RbTz3w\njNMuSJO2mYEANGqsHctZUyL6tWyA5q2+DcfHevc7H3xAvGcgWOu0z1BtjLnFUt+//whqMdy5YoXT\nfulrL4h+i6+C5o01hEvo/40xpv0AdLpHH4VFav5aWV8jLlfqe8NNUhlsH21rtLbdZCu4mGq8WPZy\nPVS3Joq0oN2HpTYwvhi6X66NEl8gdefRMfg8Txw0ngOdqM0QHy/tvMeGoA0cGoAFYudOqSFsaoHm\nNm8S2bfPzBL9GjehdoSfNJIlK+X9GQ3huwYioO22tf/DVj2UcFJwJSxXIyKkpelgH7SQ/S3QPA91\nS+vclGLY4CVmYp6OjkpdcuP70JmGSPtqa2m7ySb76rmoD3EXWdIHrLoULrJrbzm2x2nH50mtNVtf\nD/fgM6Lc8hg8ZM2dPguxomWnrF/B2s+oGOiSB9ulxSXXtCmQ7oBhIUTnYtel8OZDR55UjhpNQ0PN\noh/XU+ntgoV5SvpC0a/2OK7vIGn6535eWv91kX1vzwHEx6Jk1I6IyZI1fPLXznDavmnQk9v6bVcC\nxhnrxMsXyzkWQcvGuT00x2JlDGCLV7bTjC2QNWy4DlO4KZuCmgVnqurFa6dPIxbNvgJzNjpBWl/z\n+Z55CjVZvFath+I1sO0++jrslEtmSutnrlOx9jbUeWLd/kCLrIfAdcTOfYCabXaNkMNUN4Mtz6fl\ny5pgMxdjwvA4SMmXcXKIbGTjJ+O1tl3SMn6wTc7NcHP6Ndh4Fi6Tte2qXoL1Zt5MWN57S+S51FP9\nuMIrcK9CvTLucY093vvEWNbz+97EWJhSWeS0eV0dHZZjO3ky+nlzcN0bN0i73Z9+8YtO+8BZ3O/1\nC2Xc4NcWLMSa0XS6RfSr3Y69WPk61P+wa5PF5ozf/ia1AnFysEvaEPcdx7rom4W4kTpH1sTx0WeI\nemvJF65dZ4wxKXNRkCwmWcae/Cl47eTmvU67kubLHzZvFu/pJMvkq2gt7QnKOcBzlilZIWvYdBxG\nDOWaHIMd8vO4TlIc3ae6V+T6mVAka36Em7wrsB50H5d7yiiqiXfub5izowEZp5LnYH/nLcQ9iUmS\n9Q5PPwWL3ILrpjjtabfdLvp1te902lxDy+XiZxdZZ9CDUGHaq7A22/bKjCsR4yxlthybbdtwHxMr\nsI/3pMh6FdG0N0ssQW2LgQZZg6WL65XM/9BD+l/B3+vNl+OlheJk0c3TnLZdF2s4gBo0nmSs/c2b\nZJ3OpKm4p8FmzB3eDxoj95Fcm3KgFe/JXSk3eo1bUE/KRXVqeE4ZY0zaDDw/DrajVknqbFmsMCIC\n9yY2HfOX6+EYY8wo7VncPoo91jWKnyTXoHDTchC1X2rflHEgZylqn3WcoRqW1j5/2mKshbu3Yi2t\n3yjrz514H3uLOdfASjvVelZLTMZeasfDv3faCTnYMx86KNe7q76OmrQn/4BzKiyRc+zgITz3p8Qj\nVka75RwLUr2mCKohdcd/3yP6vf8Iam4ufnCN0+48LJ9TZ88pMxdDM2cURVEURVEURVEURVEmEP1x\nRlEURVEURVEURVEUZQK5qKzp1JPb0DFOpt/Gcdog2bi9++NNot/a78M665IlSIVPXShtyT7443an\nXZaDtLDtf94h+l37yG1O2/cBLLxZLrHrh0+L97y4a5fT/uGL/4H27d8R/W66YaXTfujnT6H97/eK\nfsNk/xZP9n0sWTDGmIq7YUnW8OpJ6ifT2aK9UqYSbkZIPjFKciBjpFUcy8nsFHhOs+siKVPKDOnH\nx9bL3I6i77G/198CO8KYVIylgF+m1HEaOlue/fyZZ0S/lUshs7vaIEWYLUyNMeZ0M/69YhrSsgca\n5bkHUpHONtiG7xWph8aYseHxk1IMkpwgcE6m/yeVIc02uRRyB7aCNMaYsTEen5DGdJ6SkqJYkrCk\nlSGtfSBgpeVV4zgSK3EMfG9jTkpb8uTpGC9uSuf1Jcsc26YT7zht/wl8hm37zfaI/kak3SeUpIp+\nHSTfK7wa89JI1aTpPCbTZ8MNjxF7LsZQyiurChMTZ4h+Y2OIP5HJiHtn9z8rv4w+JG4SWddb6f8h\n+rcnA6mcxTcuomOYJd5z/jxiSkwF0kSHe7eLfi6S83TswvjxTpJpz/FkRZkyE5/XUyUlEg3vQkpR\nfB3GZm9Vh+gXP2n80vBjMnGfSqMLxWunj5J9OUl8cy15but29OvoQ+q5LbnglP6yJbDs5WtkjDHd\nZJ96ahPSsmeSHXXBwhvEe6pe+KvT9kTje5596R3Rr7cf42N6Ic73nSNHRD/XCazHLBk+1yHvzayi\nIqfN0tWyVeWi38g4ykSNMWaM1rtgrbR+TU4ie9bqC6czG2NMfBr69RyDVNeVINf0VLKKr27F+pmb\nIu01s3wYtyzDTZ6C+52RcYV4T08PUra96ZCHtCdJyR3fr1g3jq/Xks4so30aS5mSLCvtdhq3vUdx\n7qP9Mq6NDsp/h5OBeqzVvLYYY0zaEuwx2ebXkyrT1etewr4isRJyCY9PSiRYTtpVj+vir+kW/bwk\nAUokWeaiMqSxf+E3vxHv+cat2CezlLN0vbSL5n04y7w7Dkh73ZQZGDueRNw3l0tKIroOQG7ftQdW\nAM9yAAAgAElEQVT7ofT5Upox2C7XjHDD5QESJsk5wfJflt4n5Em50sGfIG5V3IW4NzZmSbnoGqZk\nLXDaQ0Ntop83EVLHugNY11i+npgnr1PDZkiZeo8h7tk2v0k0zkYKsZ6PjUqZ1Ngw/j02gnajJTsr\nv/cSp915gOSaN00T/Xqq5DmGk1AfzsN+XsxfB+kQy3cG2+QeNVCLWMtrYUy2lFX7yjC+ExJIPhwt\nJZQtZ2Hj3PwO9nYcK7qqGsV7+mktSJ6L7wlUy3keFYv4mr0E8rjRUTneOk6RFI/2fPGFlvRrW63T\nzqBxft4aE25LIh1uUisx7mMz5XU/9/wxp91iWc8zCSRx+9j1X3baHzz8pOhXVIz588Ifca+uv/0y\n0e+V115x2lOLcG3Sl6A9pVM+f7/0vZed9qxinFP2KlnOpJ9KG0y6GfH2r1/5s+g3JQ/ryfPPI9ZM\nzpZ7MZaiVp5DDPDmSflr3yn5bGSjmTOKoiiKoiiKoiiKoigTiP44oyiKoiiKoiiKoiiKMoFcVNY0\n+WNIa9/8/ZfEa7nNkA1sfQapkXNny9Tkqj9ucdqBTqT7VJRdLfotuwe/E/VQtf91t31e9OvshEuU\nbypcQpKzkIqbPl06gWS+i3SkOy+9y2nPnCQdGrpPIwXpwY/f7LS9BTL9LLtshdN2ufDawIBM86p+\nC2lanJKYPF1WouZUMbPahJ1QL9INo9xSXuRJQ4ovVzZPnSFTtQYo/dAdg5RFdt4wxpiRAFI+U+dR\nymesTHPkquxD5GyRXrTYaXe17BHvGRrG8f1pA67tR668UvTbeRIpn5splXtZhazKvpPkPHMoDd91\nTqbTJ5DbFadrRlpSLS9VDg83nBoerJMp+JwGHB2N1Lnz52U6ZEoKrm13N1wk0sqnin5jY5DdddXi\nWnbulumf6ZdAQsWp4pwOHmc5dYxSKrYnBmNsbExe8xhyI4iKJ0eJXHmN48kVgNOf3fGWg8aVOI5g\nG1LSbdlMqiUXCTecMms7DLEMqfndWqcdKJYyzdyZlzrtwUGkole/cEz0Yzet0oXkZLW5RvSLJwca\nF0kRU1ORKt3VJeWlnB7f1wkZTbwVKwcoZTR9KcYLuyAYI8dFO8mfApZk4MOklwmWi46fU5BXmLDC\n6epZq+QaMo3iKcfWriPSgcRXibTqaclSPsFsfQLOIiwv6n4qcKHuxhhjPv6l9U6bHSqOP/e86MdO\nbIkZmB+XVkopxZPv0pobh3MqzZEp/YXpSNVPz0NMqmqSkovsuViPeRzE5cm5fX7UsqkIMxn5iOv/\nIL2h7x4ewdj0pktJjJAn0NrXtVuec3omxmdGDq5NQrmUXyaVQh4al4bPdrnwnuFh6cDCsbP+ANZF\nnlPGGFORCysZXvtY4mSMMc3VGKuZuTg++35kR2Ku95NsKG1Brug37B8/eVpsPsZt+w4pu2U5QGcD\n4kHZDVLqkUL7lPq34NyROlOOb7aWyV0JGUN/h4xR/c24P6s/iVi9diWcS++6QUoMS6YjNvaRbHn/\nM3tFv0X3wmmv7yTi0FCHlMo3t0HCkUYlBKJipGTbS9IK3ueODsn5kLFEusOFm0A9ztl2OovLwj3u\nOw0pADvfGGNMznLE4ijao7bvk/K+1PkYnx0NWNciIqVDadsOvI8d7NgJ8PAT8v4crcd7eL+Zvkw6\n2/Fekb/HdknNWAEZaR9Jdws/KmN023441aQvwP3u2CvnRD+7N60wYYXvR+ch6ezGpSCylhU57R7L\n7TXzMtzDkSCueWS03Gv31pA8qxhSsoEOOb4HWhGXeDvMKjP7GJJm4rnSTXtZV5J81uFrmViM74mw\n7qErAXuqjArstUdGZBxPqsBnBMgZqN9y3EpfKMdSuBnoxjizn3GKPorYeepPcHV1Rcl+LPEd6n7P\naXtjZSmIWHIqdpO0unOfLEGxYDWe71sPYm3lee6dLPeA+b24btlXYv975pnDol8mxccDj8PhduYU\nq+ZBFO7rymm4Dr4C+b3pi/B5h55EfIiyrlGkNU5sNHNGURRFURRFURRFURRlAtEfZxRFURRFURRF\nURRFUSYQ/XFGURRFURRFURRFURRlArlozZmqX0Jrvu6HXxKvbf7Or5z2+u9c57QbN5wW/SZ/DHUu\nhgehAXO7pV3eqz99y2kXpkF3Pemq/fKYfgN7b64/0DcXOrmjb8naCzkp0IRdPguWsCs/ukT06z4I\n7WEcaeEScmSNGL8f1mj1G1DTJNQpNYnT7rrRafe245iaNku73ozl0o413CSRrbBto+uv6brgexIt\nO8Nu0hDmroMlZM8JWbMjnmwkQ93QDtuaUbYk5bohPe2wBbW1x1xz4ft33OG04zzSWm5qPjSZU2eg\nlkzHOWlddsel0IPHke6ez8EYY7r3Qv+YSTUmbMlgP+lbTZkJK6z9tO2kRwehzW05CB1o4cLLRb9z\nx/+Cf9DBp+RNF/38PagtwzrsSI+8h+5k0o+ev3B9iLgsWUciMhoaUY4B3W37RL+uI9Ass3XxP8g0\n6Xv5Gg10ynvdS/WkWEecPj9P9OsjS2LbZjscBHoxhn3J0vo1iq6vbwpiYLRX1oTo64VmtnUH6lyx\nZtcYY3IzMO85NnkLZa0btj2MptpQHR1bnXZEhPzs40/AprC3Afro+GRZByBrDeYfj6VBq1ZVfyPW\nBtb3e5KlRjnQjJgQ6oGO3ZUoY4Adi8NJ3nWoq/bBH6R1+NRFqHfGNTqGrONp/wB1BrhuiV2LpyuA\nmJISD1vLgZCs43HDHavweWVUB6Uf/bz5ci6+uwlzrpJsIoODMu72D+E6N3WjvsbIqKxpsq8a69oM\nssuOccl6Y++8sstp55GVdFSk/FtRyWKyvJxtwg7bs57bVSte4xoxo34UKxhqlTapPVRL7vixs057\n/jXygBNpjo3RuOg5Lq1tuUZTsBH1qdhSfWxY1rlgS1Y/1eRoOy5rKfA6+dGlS532INVyM0bWTPBk\nYD53W/W5hkZQlyQxDjHVrkMX6Rq/vwFy7LJp3VLrtCetwbxso/83xph02n8V34xaAl2HZd2DYaop\nVHYlasakp8s6ZR3pW512TzXm+W++8hWnbdvQ81hMqkTNiyTLbpXXJzfVqoqxLG9dZLc71I16ND0H\nz4p+50cwFl0piLVjVg2mjvdxHoXf/4gJNx46F7bVNsaY5rcRV6K8iCXNW2TttE6aS74piIEJxbIm\nxJknDzntRHqNa4QZY0zyDKzPXLex6m+4d34rVrb1YC1s68X8nZQn6xz1U7202CzcO67NYoysM8O1\nck49fkD0y7sC47uR6ibFZMlxMZ5zseEN1LHiPZsxxvim4n5wfSGOL8ZIe2E+1qylso5obw32hx2H\nUFcne95M0S9Qi+vk9mFOHH8G/5+cItfFMxtQZ9HnxfFFRslrl7YMa2aol+aY9UyUvRQPA037sfb5\nKjJEP657xvPBY9Wk6zyIuFQgy2iGBW8qzqt+s6z7yXWpZn5prdNu2Xlc9MtZgmeKUAh7Bvsa8jPF\nTV9EHdoDVq2tglKcKMd83lPGWnbrr+zFZ+yhvcmnHrpV9IvPxvP9B69gT9RfK/dYe+kzvvPMd512\nsEPW4vzDV1Ej8o6vY51ILp4s+jXtOGQuhmbOKIqiKIqiKIqiKIqiTCD644yiKIqiKIqiKIqiKMoE\nclFZU3QiUqzf/ubPxWtrvn+P037+yz912umJlh3mszud9uRbkUr77x/9jOi3bsVCp522GLKUzjNV\not8Tm2DNfd/nbnLaze+fc9qrvn2TeM+Zp5F6fuPdSDNqekemRe4+jrS8tbNgI3vil1tFP98spKMV\nXjHXaXcck5Kux+572GmvewB2z3FWejlbwo4HnUeQBpc8RabSJZJ1p78aKYUjAzLVOZtsCvk1Tp81\nxpgYslRuJstet0/KE6JJ3jJEUiuWptjpfGsegEyn8wDs1NjG2RhjsvqQGtp3DCmGnHptjDF58zHO\nBttxDNFemYbP1on+asjAEifLlOphS4YVTlhukrdG2tX3ViOdl23k22qk5CI2HePO40GKbNN+aZOc\nORPSP3csUnNtS79QD853iGx5k0qRaiikXkbam8YuQjq52ystt41B2mqoC9/TYdl59yaRtSal0tqp\n0Syr8+bY3wXGey6W3Ij05vqXZWxrI6lL8a1IC7Utcc+RZfYvn3nVad+6bJnoV3Qpri+npUdb0pm+\nMxjTA/W4x6FOyKc8Vprywf2IlUtvWOC07bTpYD3GTyRJGd3W3G7Zh9TkKXfOcdoNr5wU/XxJSF0d\naoMExJZqpS0ZP7tJHsPzb54nXutvwvgJnEU678FtMu2XJTzlrYhfdXvOiX4sRZk5DTq7+DNyHnDc\nPPM7pObGlyJtn2WmxhiT7UOKMktZEuNkPOU1feUSxIbfv/iW6LdqBuwul316udN+/b/eFP3ySbbM\n8qGU+dK6uL+h14wnbbSGFC4sEq8FyYrdNw0p+Se3nxH9ijJwrfJTISM88vZR0W/6WpI1kBQzdbaU\nxCRm4h7Xv7vTXIi0GfJY69+CzMKVhHW2uVtaPE/KwNq/8TDm9vIpU0S/lGKcx5a3kNbO980YY0oX\nQHYWFUfrebuUfjUew3Wec4cJKzzfXElyL5J9BdLI27ZhXnmyPlwCxPLKwktWyO/qR1p7bCzuW0+P\nlJgkJMDmOLocc6ezENch5qSMwTw3vfmIZXZcY8lY11HsbZLnSOn98ZcxJnIn4zW2JzbGmNgcXIuU\nuZh/LZul/Cl5vhyn4YblfQONcg3OXYf9ztjw6AXfY4wxBVdAPnLq94iBRR+RkiK2sD1PskSO68YY\nE+XG41GwFvuR3Epcp83PyBj4qX/F80WI9kTCLtsYM9iIfdGU+1Y47e7TdaJfEklfWNLNMiZjjDn+\nIiQSc+5ehHOIkY94ke6LPvL9U0SR/Lq/Xu4V46lMgjcPY5rvpzHGZEzH3Bkawv0d7pcxhZ8Nkopx\njZKTF4h+DSMYB4O0Xxgdo/seksfw/okTTnsZxcZj9fIers5E7HfFI4YklaaKfv7GNnoNMXTIKjER\nrMN6N0wyusQK+Xk8ZseDtsPYq7hT5D6N93ceD9bFo2/LUiL8vHfwLyhNMv3aGaIfXzfeK8a4ZXw8\n9uxBp73i25902pu/83unPXW9/OzPfgLlVvKvRgzZ9shG0a/sEsyly7+wxmk3vnZK9Ktcis84/ht8\nRv518nns3kc/4bSb30Uc9aTIfVU7x4SrzT+gmTOKoiiKoiiKoiiKoigTiP44oyiKoiiKoiiKoiiK\nMoFcNMctrgDpZ4s/Ih1d9v/HM067rgMVxUtzZWryk3/b5LS/RHKla5bL9LNDR5EymlGPzztwVqZX\nLi5HCtEff4eU/hkFBU475jdbxHu4Cn0EyRvKb7hG9Nv6Nqo7b38R6bwzZkjbFv8ZpAt3puG4uw+2\niH6XXAXJU/WzSDMdG5NpabPuX2PGE3Ze6rPcmdgFYiSI6tR2iudoCJXE+2ogJQmRE4AxxkRQun5i\nOVL4bBeSjr1Iy0+kNMAxyt20Ux479iMtmF12bAkWy0AyL4Mcy5ZcjA5QdfR0yDYC1fIapdO4jaBq\n41GWe1FMupR+hBNXHD6785hMr2TZ1dgYroU3U7oB+ZsgbxtwIa12zLrX/jaMaXb3irYkbCPkLMDH\nsPd3kElNuapSvIevUfsZpIPH50pHhc7duNe5V5MDjpXSmV45Fa+dxzHUvrFL9GPpW/tuSGgirOrx\n+Wtktf9w0/wWZBFjlsNV0fVIoR2mudi5p0n0G2zDPbmC3Od82TIFnp0PUpfQfAnKKvTDfvnvv7OJ\nHEVWGxn/XVEY+83v1zrt3MuKRT+WL9W9AYnS5FtkCmrZR/HvYBNSok/VSvmOl2Q+yeSkMGw5sLCb\nUZk05funiYqBhKNlk1yfEqci5rH7wqKb54t+7zz1vtN+exvWnUWlMl198SKk5L++CTKXpeUylTZl\nOqQLPpKu8rWMipFygXnzsAaPkBNN1ZtSgnXdfBx7Pblk3HObzMVlOUbrVlyX2VOlS8EYxV125gr1\nyLXEjjfhJn8Njst290pbiphf9ybSm0tmF4l+h3dAmlhM8bZsziTRr/cwUtvPNsFFaV7CXNGv6xCk\nqG7LqezvtO6S0ipex4b7cB9t96vqVnxvEknXbLfD97ZBIrFgMq5RfLlMr+8lVxJ2xBkJyPXYdusK\nJyz1SCiSa0jre5AypZPMscOSmEST9IOdD/v7a0W/yMgYeg2fYTvZBQKIc243rpknFbHw+ptWyPec\nwp5jsJnW5kG5B0qei3le14wxlRCUEusZt0Aaytel76zc27S+U+u0a/4CKV7JLTLeN75CKf7rTNgZ\naMI551iSnUAd3H1YGsvX0xi5X4wh5yWW6xtjTPZqrFHsdMZuQzZDJHvnPcPH77jKOgbsT1gSEpcj\nSxkM5kNi42/EvqzniOWwRrK2+ALcx5aNsiRDbgVkZ/3NiPO9x6VzEMfUnE+asJIyE2PT45P3huUd\nkdGYtKlz5PNiRAT2FeyA1LFH7gNK1q102v4OxMOuaCnlj6exz3vUU8245kvSpDvrtQuw3t3+ve87\n7dm01zLGmHkleC7MXF5kPoyEXMh/PB7cp2i3lOW5LsEzUu1fIRMa6pTrYlyeHEvhpnEj9v+5q+Wz\nL5cL8Pdgvsz/xCLRLz4P1zRIbo9cCsEYOV/SFyJGH35H7kHu+BXcoQMBlA8pXQ0XJ3+NlPFOveVm\np/2ru7+Kz/rpx0Q/txv359TT+O2g8jNyblf/DU7RJXfiOWHUksUd/DnG4JTb4droTZbOsPMelM9G\nNpo5oyiKoiiKoiiKoiiKMoHojzOKoiiKoiiKoiiKoigTyEVlTa88u9Vp35BwuXht23GkHV02DanX\nlZ+XEp07qaL1dz73C6edEi8r5s8oKrrga4Xp6aLfiQZIEj52/SqnXUEp1tHRMu0rGETqcdO7SDk9\ncVC6IUzOQlpeUxfSP7PsVH1KDdz+E6RBZSZJWUF7HdIpS6+B/KLnsExd3P0fqPh+9Y8vM+EmRPIT\n20khklJ6Y7PhYtNnSXsy5yJ9rDuEdDxvgTzn7uM4N65WH5ctHXKEuwP1YynAcEDKLTgFnmVXgVqZ\nzsbppJyuz5XSjTEmzgfHou5apEbaFcp7q5Aays4OCcUyldiVeOE09HDgr8c1T60sEK91HkOF//4O\njLm+0x2iXzRd87SZcPIZHZJp6BFRlCtOypvkcukI0XUccptYckCqINeMIUsukFiCNG+WhZ1+bK/s\nV4Zr6ytBKmiwRaYoc0pifz+lzrql5IyPI5bcOjxpsoJ6fyelAcvhEhYyluO6t22VzjzdR3CP2THs\nyEEpY5gyGfe/KB7XxnZmOHYA6anlJDXobOsR/Z7fARlaCcXA4CBSUFkmZIwxReT8Mvl2pHgOWO5c\nI/1436z7EdvGxoZEv8YNSFVlmUZ5qXRd8pJ8gmNZQomci4NWnAsnHSSLi7PcVA5vgDSARWvL7r1E\n9Lvsdjhrde1BirU7RcaQXTuQ3ryyEmmwaQtzRb+EFEji+jqwNntzsRaODY2YDyN5Ku5n2vtS9sHn\nUf5ZSKFsiSHH/n5yxihcXyH6dezE9as+ge9KdssU95otGBMz1n/oof+v6diO72bXGmPkGpA6DXOC\npTzGGOOOxpxjF5gT+6TsgCKqyU3BWD368mHR72QTYuoVV8DBMpZkEbYUk+XDQXLUCwzKFPKpeUir\nnjGPpKLD8j5eWgRJjItcN45tlqnmk6cjlsXmIv7HWmv92AGZ9h1OosjFsOFl6ezGLj/skHV+RMpJ\n2VGQ5a89p6SclPcPnU27nXZiupTtJSRgP3x681+cdqAacddbLKUUmWuwx2Sp+J7XpBNUZRrGZeUq\n7CmHLblA78mOC7brD8q5nVWE9bPwsiJ6JUL0GwuN3z00xpgYcj2z4wq7RMawI6M1blkykViGfYYt\n4w2STKqDHBItlbFJnYd4lFSGe9/4OuJS8xE5RvLmY20epH3trlf2i37DI4jFS6+F41+ktYbHpOF8\nuw5hnfAWyXUnfSHm9smn4GxTtE7G3pa3qs14wfvwkUy5p/SSQy3voaNjZbmDoSHIZgdoDUmbL9e7\nUAhxODUHuuVjT/9Z9POfxb12k5vUkkpcF5bKGWNMTQOO4dH773fadjmK+FTcG5Zx9Voyut5TmH/x\nhThuu2xDIs3F+JJkeo+MFcN9cu8Ubmbdf4XTfvehF8VrOUXYJ8QV4J527GsW/SruhTQsg56L7efF\n1FLsWzZ+5wmnveQuqUU/vuF3Tjs2C+tL/Tass4kpcg3/w2e+5bTZjfLc36Sz1NSPXY/joTm/58cv\niH5H6vCctcb34ZLr1EmIPR17ER/OPS/XzxlfkmVVbDRzRlEURVEURVEURVEUZQLRH2cURVEURVEU\nRVEURVEmEP1xRlEURVEURVEURVEUZQK5aM2Zmz57pdNmO2ZjjFlIlp/Do9DONX1wRPSrIdvfh373\nRaf99Pelnuu6Rz7itBs2QZt1yWpZ7+VqqllR9Rvofnf94CmnPfUeadPtPwctZOs+WLK19faKfhsO\nwULym/9xj9O2beF2/WSr064gK6/UWVIz7ycNZtpUWJIdf1leI593/CyYjfnHuh8MW1+zpS7XJzHG\nmD6q9dNfj+sWbVlkR5B+c6iDrPD2SW2uKwHv2/k8bMvnXQ27Oo9V+8XfcWE7wyjrWLkmUGwGdIgJ\nqWWiX4hq58SkQPPMGm1jjEmZgZoDfH7RMfJ7h3ql5V04GaFaPE1bT4jXspbDtrXuVdRXii+W1qLu\nJNQPGOiEFtcVJ+8h64CzpkHX3nJ0j+jH2mEX6XnjZ0N33X1S2suz7Vw0vSdlbrbox7UEBnsw3rxZ\nGaJffz/qscTEQHedUCzHmzcHWtehXmjTe6uknSHreQukW3FY4FooeevlF4xQTaWu/dDwsj7dGGNG\ngmSXXgjdb6hb1h0ozUc8qq7F9chIlDW56tpwDeYUI95m+aB1jouVtVC8JXgt1Ifvdftkv+EGxJSu\n44ghdk2gjCWoXxGThLWm44is3RE4i5jK39WytVb0c4+jDXPaAoyzw3+Sc2L6atSF4ToQtt0ix7z6\nTmjUZ0+SFsyX3w3LUK5FMXn1taJfbCw0+W436iNs++5/Ou2YOHlNsq9ArYyzz6FWTv5NU0U/thce\npnvdtEnWLwiR5aePbJdt+0wfWa7OrsCx2mvJebsIRJjhug2tR2WciqLYVLcPtaGySzJFv/NUm66V\n9hNFmTJORcViq9XVjn67T58W/W68ArWJeK3pOYjj882Ux9C6GbW2oqhWVXmO3I/09mP9jI/Aufvm\nyNg70AQr3oadOPfZN84R/bgeRusWHEP2Gmm/2rVbxuJwwnXp3OmyflgP3VP/Sdyn0k9J+/L+VrIe\npppCdg05tsHtOYU9nL9mt+iXNgu1lzjeZ64sctpnrLoH5VQjhd+z9A5ZeyFIe8rnHn/baX/yazfJ\nY6W9U+cBrCXZxXJcchzm9YdrNBhjTIRrfP+OyzWemt6WNdaSpuOYA2SXm2qNW94Hcj23YrK9NcaY\nc88i1rmphk/GUlnLr3UbPiMqBtfJRfUmJk2T9YZOb0Ldo7xKzD+u8WSMMVUHqT6eC5+de7nsxzXb\nAjSGc6+Te9nYdKzpU+9GDZtQr4y9actkDbdwws8/rR/Ienpchyohjyy3PTKWBXoQD7kWTHKOtHZv\nO4kahUMpqEkUba37PI5j86hWyUHsRVp6ZA2+ug7s/0fp2Xb1jBmiXzKNv0iqPWbXduPzcNEaF+Oz\n6uT14P6mTMd16T4u96j8TDMetB/BPVj4heXitZon8Yz81l/ed9r2Wt3/KPbRC/4NtQY76LobY8yZ\nF7Y67Zk3wXb6p199XPT7t5/f67Sf/u5fnXZ1C2L8PbdeLd5z5X2rnfbJvyJeB+r7RL/OetRoSpyE\n654xW46LtG7Enr5jGCOpi2U9JFcixmAc1cdxxVvPi4Oy9qyNZs4oiqIoiqIoiqIoiqJMIPrjjKIo\niqIoiqIoiqIoygRyUVmTJxkpf4Od0pp00ddud9o9TZAhBeplKtBZSpmf9G6t0777F3eJfj4fpEhJ\nNyLttLt7h+iXkoI0q8kfR8ofp7fax9D+Liyw2B52zvrZot+lX0T6VWIm0gZ7GqtEv9Xf/6zT3vq9\n/3Ha6fNlymCgBmlq0bEXttw0xpjugLSfDTfnR5FyZlv1scWdJxlpwW076kS/PrKDY/vhup21ol/R\npUhp5lTVYI20u+Y07xgX0r269iIFN2NFoXhP+hJc38EOjMdgrbzfbLmdsQAyjb52eR+HWR6ShRTD\nxMky3TDQgDR0ttMMNEpZnJ0KHE6C53COcTlSltJD96bwWth4tu48K/plzoIE78zz25128kxpkd3f\ngjTvgSSMzYhIeX6DZHUYJKlbQjHSOiOtdGiOKdHRXnqPvObRJGuKT8BxB4PSLpXHwWgy5nbq5Cmi\nX+OOfU47kWyX4/KktV/PUZlCGm5a9pI8sE6On9QFSI/ksT4zKG0p9x1D2qm/ClKSZRXSNvMMpXwG\nh5Bm2tAprR5zUpFSz3PxkT/+0Wn/9sEHxXsiGzFGOJ08a2mR6Mf23u4EyASiXFIyEB2N+xDsghTW\ntgc/RRbFM65EqrM3T84JtnYPN2wZmlkg/dZDJL2sPwE5h7CnNzJWXH01pAuNx6QEpOcQ7mHulUh5\n9/ulLIL/ztJwaKPTbqaU7dlLZFp2FEka0hZDqsUSRWOkLDahEFLJVMvelK1Bjz6PVOGCGXJd5NjP\n923Pk7tEP76/44GbYlHRGiknqH4bcSZ7MlKdQ+1SuppJNqGcDl88R65d9Ycw7yctwxq53EoHdyUh\nJbq/FunXcZPwPbzXMUbaMPceQ/zyWDKfJLIojsvH540OyPiSVAFL174TOKexQZmuz+OEJWJ1L0jL\nUNdFbEf/WXqPQYbEa4YxxoyQxCuSxlzjBiklGyI5HsfdaEvuG+g6R6/hs/2npAzan4J7MIXAmg8A\nACAASURBVNCAOMkW0Sn5UnLsiqdUeJKAdB+ScrtX3/rAaS8qwx61v0GuJefHMK5iMyGDsG2qOXYP\nUewKWVL4zFVSbhl2aBoU3lgpXhodwvhseQd7mvOj8lxis3CeqQsRm+r/JmXgiZWI2TF0bYYty213\nKuLD1Otvddq9vbA3P/jTLeI9Hlo/f/Sb55z2/sOHRb9ffelL+B6W71vxgEsjRJK0KmDted0kwQvQ\nvoJjrTGWxPByE1YG2rFXTJ0tJWeG1ruuEyR5ipDPGTyvWNLVuO8D0S9vHuSfg4N4Zjg/JmUziSSv\njZ+EOXf+APYYtvyz0485m0d7I9/kVNGPnwVCfsQQr7WnrH8J44+l2AOt8rkvSJbxPJbtzxv2j6+V\n9uu/2+y0b/q6lE+bMXNBllRIiX7BzZBGP/4FWGR/4mcfF/2uXIvyIZt3P+m0L62UMaD3JOL81bfg\nN4Dtr0De9trb8reCkoNYt7//2GNO+zM33ij6TUnEbw+8LxtqlzFw7jr8XsDPEK3bakW/2FzsaXx5\n2JOz9NAYYzweOe5sNHNGURRFURRFURRFURRlAtEfZxRFURRFURRFURRFUSaQi8qa3vzZBqdtV2O+\n6ov4Xeel/3zdad/0jetEv8/8D9Lh4+KKnPapDX8R/WobkfY3+ealTjs+XsoToqKQ/rnv10h183rw\n/+y6ZIwxt966xmk37kZK/8an3hP9ZhXh+GZ9GWnOtrPIG19/1Gl3kSRp4AcbRb+lX4bTxp6f4btK\nV8sUsNef3GrGE06ls1NBR4eQit55ACmPtrRnoBXyEf6MrAopiQmchpTLkAzGN0tWZQ+eRVomu8Kw\n/MuWCXH1/JS5SAkbttxAsi5FCm5/K44nuUCOpd6RU0674+CFU5aNkS44LKMZ7pXphZyKGG68BbhG\niZYEiFNfBzqRkpmxULoP+JuR8ll0PVyxAo0yLZuvewu5cNj3g2U4Y5QuzfKn9AqZnhgRgfs70I+U\n1qEumULoKcS4aj6KdMW0cindicxAKmjnUXzeSLBR9GMpQD+lk6ZU5Il+LM8aD2LcSJUPtMu0Vs85\nfHcPuYbYMsh5M5HO/j8vvum0Z1L8MsaYHnJnSUtAqvy241J2cO38+U67n+RPT33n207blSJlSBwT\nc5fjHjdslunbOStxrCP02d0npJtD6nSMVR5LwTqZvj19LWR71VsgT6hYLyUw7qTxk1JwNf7eZjle\n2LFn+WcvddoH/iglOzOXYRz312POsjTGGGOyJkFiwmM4NUc6KtVsecVp244Vf4fd84yR8omBRsyj\nUUu+whIHjn/Nr0t5yOkmpJePjOEeZpAEzhhjdp1A3F1QhnU2ziOPO1AtpbDhpvcI5Cepi2QcKFoB\nF5b6bZDSuaLkXoD/nRALecJwj1wbplyH8cnp7JOvkPGMZZWuZFyPEbr3GYulTKzvNPY0fO9c1hyI\nyYCMlN0ObTctVwK+K399Bf2//LyuQ7jfnlRIqFIWyHRt2+0ynCSWYS30n5bjJXUR1ieWw/S1SbeO\n7Hm49/uegovanFvniX495JqSSO5K8SVyPY7LRvr65LvI4Yr20JFR8lqyxNfjw/HFpElpWu5uSLPz\n5yFmps6VEsOOvVj/qt7DfON1wBi5f02l17Is5yKWVRtpIBUWEkhyMtAm40XnXuxLi27GWtPfJPud\n3ohrw/NtdEDGs+ZdkLQUr0cctfc3k8g5reXMO057iOYLO6AZY0xWMvZpX7h+ndN2fVK6aUWT5I5l\nhewsa4x0e0mgc7edQkN+HFN8IY6h4TUpA7efZcJJ+we4rulLZYzqrcK6dp7kr77p8rmAncrcFDdY\nDm+MMc1HsCfsb8Y4SJsrYw87f/WRC+sYzUX/gFwXK/Nx7IULIE/1WHMxwYfY6O+GdGnA2tedrYc0\nMSsWklZ7bxPlIdkaPR+5ky3XuOTxi6fGyOdgb6a8P2lLca1vux1zrOG1U6LfAJU8YNnYqd/KfdDG\n9yA3qn8Z89eOU4O0ZnIpgqomxIZ/ffgO8Z7mDVi3r1mxwmnb89yXgv1vRz3KPUREy37sgPfs9150\n2rd85wbR76VHXnXa5bR3mPWFZaJfWzV+p0haLB3ljNHMGUVRFEVRFEVRFEVRlAlFf5xRFEVRFEVR\nFEVRFEWZQPTHGUVRFEVRFEVRFEVRlAnkojVnLlkPi6l9b8o6LmybefevvuK0o6KkLq/15G6n7ZsL\n/W3mwhLRz+tFHZae9v1O++TjW0W/rhZo+kvXQPPXcxC6vs//9JPiPX6ycV78GehIR0OWFvVN6BPr\ntqGeze8efVH0W0KWtZUF0CfOfuBjol/9btSZmXYrbLis8j3mmrsuM+OJO4ksbD1Sc+o/i2vDmvRo\ny07Vfwr1PJJnox6IrWEdIRvrwBnUexmj2jbGGOOdBF1sfTXu3ZTF0ABnzJS1eVib64rH8aVZGvyh\nbqq1Ucq1KCwNIWla+bgT8mQdHVdCKz67S+pTmVDv4Ie+9s8yHEANA7bJNMaY2AzUumHr4d5qWb+C\n60r0uVGngOsFGGNMYjH09KE+nJNdc2CgBTrQyGj8zjtM1yHKI+28Y3zQi7rcydQvKPpFR0O3H0t1\nZcbGpN0l17Dp2gf9afb/Ye89wyO9qqzto6xSKJVKObZiq3NQ55yc2jZO7WwDtgFj4B0wY8PADHhg\nwAwMaV5ycsAY2zgnnNudc05qtToo51ySSqVSen9wzbPWPrT7u66h9OnPvn/t7jpVesJJT9Vee10h\n55dequES7ME9rHntqGiX/zFZAyLUTLkVuvHRITn/cF0JvoZjQTl2Dh2Bjnx+EWx0U6dIq0dPMvoF\n24J+eOKEaDd9Ia6V0DqTFW93XZd4T/5lqMnR34LxUXz1laKd34+6JA1v4bjDo6zaHW7Uc+CaRYlW\nPYc9j2NeXv4ZaHgbLc0zW8QWSgfpfxie87wl0ko7NRoa7doXUNsnI1e2q9yLtYY10Ks/tki0G6S6\nCjFe3I+D//UH0a6mFdevkOavhFjM/d1V7eI9icUYf+nLoK2vf7NStEueh89r349aFnvOyGu+uAR9\n4kQd1ouYdKtuRivuaTCIebd4TYlo13duYmvOJJDN6mCLrF/B9Q48GZiL3NPkfeyjNc47inE67JM1\nZ0YCOM8grSHpS+TaNUA2uGx7zDVsOg9Lu/XwGMyB/a1Uc2yVtPPmfQCvpb0Vsl9kLEO9kfFRrDXN\n2+VcPkLnyGvBcJdcB2MysK8wS0xICVAtPO8Cq/4d7fvSV9E5jcj1k2sLlC7GfNpzolW0y7kK9ZFa\nyD410CJrTPD8lVOOOerC+6jhGBEjt95jVMcvaSpZ9Fp7ivnlqOE1ROfO+wNjjPHOxbVIP47zSJ6Z\nJtoVlWE9YitfX6XcO0S6J66GlzHG9FZhP2L/ZJxO9W+GaZ/WtU/WlWOLet7TRCbKvWwmXYPmtzAP\n51wv95tVz6GGZOY61DF8//ewzy7JlH1u68lTTrxuHvaeRw7K2i+L12NRypiPWoinfinrVhbeic/g\ncR+XK215eY/Aa2v6ajkHxGdJW+ZQkncd9k5te6RFdvIsrIu8/4r1yrWBa86kl6Euoq9DrjXJpegT\n4dHoB74Lcp/Cdbf4uSu3DFbfQy1y79ndj3/H0t46LEI+P7hcmLt5Xzo2LI91xWfxzMlzg3eO7DsB\nWhfCo/ov+h5jjInPm7h7aIwxEeEYgKOj8tp4pqc78fGfU81Xt7yP/OzGtXVaTrWIdsf+sNWJF5Tj\nPXa9NH811sXGStQ6++pvHnDi+6//d/Ge7z/6OSfufQvnsXrTZaLdmddfcGLvXPQLXvv+9m/M0Xd+\nFzWkdv/fbaLd9BzU/yq7G334wrOyHuNAB+5x6TLzd2jmjKIoiqIoiqIoiqIoyiSiX84oiqIoiqIo\niqIoiqJMIpeUNf3liXed+OEnvyle2/adZ5x47SOQovi6Tol2LLk4/KefOrFtb3do77NOvP6+1U58\n/NQF0W7fWaTJrycbwMAw0h3vnCbTm5778XedmFMhxyx5yLM7dzrxyDtIE/z3x74o2r36HdiWFs1E\naltP60nRjmUgiflIVT31s52iXYaVehhq+ijVLyxKfh830od0PE5Zs9NpRwZwfdlW0ZUlLc8S8pFy\nx5Z5bYdkCur0T8OmsoDSc4PdSO1r3CnTwOJykMoZn414bFjag0fF4pj6Os87caRL2g9yKjDbMtrt\nOB2cU9v8A1JiY9uUh5IhsqbrPiXTrdmGsuMg7LKTZ8u0ST/ZRA+QbTOnbhpjjL8F6c0sb+vcL+9h\nxlqk+h59AhZ5i7+E8WtLcliu5O+lNN0MmarZXgFrQh+lPBddL60SOyqQlszyi4F6aZfKtufcjzzT\nZJr3CKX7TwS9p8kqN0laJIr7Q/2xobNTtgui3wVHMI/a0qPspUj9rfgQUpV71q0T7dgqfpQskIfp\n/6Oj5JhgG2JO6x9olNbSKbMvnibqKpDzBstkG9/CHO8tzxLtclMgRWnZjLUhborsP3a/CyW7/oh0\n3jkrpAyOpSgpZCnMMitjjPmvp1904oUkB0o/Is/DTWP7/ONHnDi+SLbLGkKfcM8g6Q25pg/2SUlm\nxx7MFZwKf/qoXHMXkjVreyXmngPnzol2nM4bHUlbCystO38KUtztfQDD8tmJIJIkoGNWynr1h+iD\nBWtIImnZcMaSZCeGZcEuubXi1PRosuTsrmwT7Xg9ZjlGfCHut20ZXd+Ez0iOxzEE2mRKup9kre5S\n9JHIBCn7GCRpAa9p4dY1+ijiizzi3x3HWj6i5T8OH3t8vvy7Qx2QN/ccRb8Nt/ZAsdmYi47twLoz\nbunPY0jmmboQfb11Z61oN0z3sOEgpO1sDZ9/43TxHra+7q2EzKxlb71o5ymEJDBrAyRYLEkyRsp4\nG7uwLmQkSRldyweQqvl7cL2iImX/5f3fROAuwXk1vCElQBHROBYXWUvnXDdVtONrwMPUlW2tNSQn\nZsllvyWJSSS79K6jkFLwtbn/Bz8Q73npsR85sY9kdWvukv7jfWfxt9pPYa5JXZYr2sUlo5+5r4Ds\nY2ioWbSr/NUueg39z7YNdtNcnnH/NSaU9NDeJn2p7GfNW7Cm8Bw3aM1RUTTn+drRDwId0rKcpf1c\nniClWI6rliOQrfMcXPEqni1O1ssxtn4RbI15Doj1xot2DafxHJiQhTWt05rv/CRVZelXy1YpE00m\nKSKXT8hcXSDaseV07pdMyEkowp6ju0I+a0R7sGfNmI/9TdJ0uY8++pO3nXjaZyHVHjgv7cMvvx97\nUZbX9lTJPW80WccP0v7Xdx7t5pIFuDHG9BzCfbhlOcZf8c3S0jo6Gsdev2+rE/NezhhjGt7BfmfK\nDbiPRfPl3/VTaYAXv4c+8rEvXCHaDf5Vyt9sNHNGURRFURRFURRFURRlEtEvZxRFURRFURRFURRF\nUSaRS8qalpchja7m3d3itbWP3O3EA91I6/zVg0+Kdl/547eceOatK5z4/PZXRLsrl17uxJw+9r3H\nHxft3tv+hBNXvgrXkaX3oNzxrFlF4j2cmrvzNFLCZufni3bXlMNNitOyf/PQU+ajYPcGd5qs9l7z\nLFLX6wL4u7HJLtFu858hc5pxxWc+8m/9b4miSvuxljOP7zzSK/3kWBEZJ1Od4/KQGsrp2+4S6RDD\nDjTJVI3cdl0Z6oFkgjMv2U0qb/VifotJTJzlxF1dSOP0pM0W7dobttPxQN4QkyjTnocNpC6p5UjR\nG+qSKZRdx5BCOtyP9N7wSJkymlqeYyYKdoix0+2GyeUndQGOYahbyhhiUnHvWWbRdUSmyHJqaRq5\niSSWyXtd+wIkjOFU4X2wFTKXxAJ5333NmCuGqGp/Qq7tpIX0yWAn7kfjziOiXfoSOYb/h7b90i2g\n4EZUTR8Zwt/tr5dploE2HHtOwUU/+h8ijFytOLXZGGMGmjH+BgIkKbJSzNt7kSY7JQ0pmcn58lqP\nBmgsktzBlSllbCwpik3AXBFGfS5jkZQX9RxGyiintP6dYxnd1pSFGGPsjmaMMc3vQH7YR+cuz8iY\n1KVI++49iTTq4R75d22pYyiZMRfri+2kEJOBaxug+dRXLfvZw7fc6MT/9ZeXnHhmrkxrH7+AtOox\nSrF+58Wtot0nv4LPYxkgp8nb7jMDNE7ZJWPRTQtEO3YeGiFHoggrZf6xzZud+HNXwrXr4C4pdfZQ\nX1xyH9bt9r0Nol1DFdJ+p0+AoeEYz6PWfUzNtXve32C5kzHGeNMgN/J14n4n5yWLdpzK7/dRyvpy\nOX8116BPZ5dg/aw/gWuTliY/2z+E+8OyxBKv3GfUW3KR/yHncumS1UOyGpYAubKlQ0w4ycJYnmY7\nVeVfK/dFoYTnuLYdUl7Estv+asy1FZulG1khrYXpSbifde3SxYpdtnqr4Gbkq5YyM57nLjwPqXtT\nN9q5K6UMIIrWO3bBKrxxhmjH8w27u4xYEmsfOaSsIFe7tu3yGqUsJdkM/d2gtXdIKJR9LtTUv4J7\nkrpCSmLq38I8UHgL3KU6LJl1LK1rvPex9558rZLKyBnL6re858pcjb40qwHj/BUq1WCMMenkdOaZ\niTIBtptWyiJc994KjPkxy0lseDb6WUcFrpEtMR8dwbxc+nE4ww62She67qMTJzFkeX3DW1KywVLO\nSEviy7BEmuWBLKcxRu4xk+k6R0TIOY8deRNyMbZn345nvbkx0iGx8yDk9kn0fDPQKKWDyaXop4Nd\nWHNT5sm9kov2BLxXt2172dWIZWH2HiOx9OJrU6jgfr//+QPitY9971NO/PIP33TiW2ZdL9qlLiA3\nLBqL51pk/0vzY7y0VWEcpBVJV8SjB9Gf5i/GenLgpUNO/NWnviXe099Jkk3aW7efkPP/hbdedeI5\nDyx14vhcKR1/70dw25uVjzk1Pke2i4mFxK24F+O086h8zkqynp1tNHNGURRFURRFURRFURRlEtEv\nZxRFURRFURRFURRFUSYR/XJGURRFURRFURRFURRlErlkzZlYsk+Nz5O6qso/wmb76DHosG+5c4No\n99a//cGJ598ILSRrhY0xpvl9WK1lroe+c0fl86IdW6qdqENdCe/bqInyr0/9Sbzn3g04pt4BaOt/\n9957ot2Pf/OQE/tIU1zSLTXFeWTn6juDdt4ZUgcaDKCuQt41sP373XeeE+3mFxaaiYQtvbuOt3zk\na1yPxr4/XHsk6EN9B9t2OiYBdV2CftTGiPHIWjdjpJFN2QRdtb8P93RszLKqHsd7XC5oFUdHZY2Y\npHR8XscFWOkFumWND66H0UFW30IXaoyJJQvNFLKP62+QtsEDzaRJlY7P/zA563FOffWydsRwH/TM\nrFu1awR4Z6GGAdcG6rdqn4xRLYHWXbgfKQvkSbHVbQLV/PCWoiaHfQ/HRqD9ZO23z7Kx5DooEXQ8\nSVNTrXY4D9bgx1h1nTpO4DxiSP/M2mVjjEksmlhtPdctsG2iY5uhTY46gXoHCbFSb33FXFg9cq2f\nA/srRDuunzDvdtQRscc21/ThOhzhMbjuXDPDGGMyLsM95jozKbNlDY2BZmixTz6HekFcV8YYY6bO\nnOLEgXrSmlO9LPuYvIvQH21L5sYd0qYylHBNiR2P7RSvpbkx5grWopZHxcHzol1BOGpO/PtD96Dd\nXlnTJCUR61oy1f3ZNCNdtGPrTa4txZr74W5Z96CWamrUvonYttGNioAGPScFevc9B6Qe/d8+BT06\nW7xzHRRjjCm/FX3x3AuoyVHwMWlL3l1rzdchRsw/p6V1Z1wurrvvDF7jmjvGGBNONdJGqYZA5cka\n0a4oB3NlN+1Bql7aJ9oFhrFnyJ+PsdRPdWXG2uR1mbsUGvzBJsxnXDvBGGO883AM3Edad8pj9cyE\nZn5kEMfjOyuvEdfr4P1SX42sr5Q0Tc7ZoSRzHfZONS/I2kbCTjmLLJjTpda/qQp7IrYeTnTJNeTY\nXtTsSaDXiubIOY/raXlpnHbtx70Z6pAWwrFpqMM0Nop+FBEjx2LnIdzT1MWoJzVmzZPxqfg8rgHk\nmZMh2jW9h3kpxo11Jm6K3DvYlsehZoT2XLz2G2NMMtU043paedfK+aLjUMNF241Y+zmuRcT1KFNn\nyX146wHMxbw/yVhb4MRW2S0TTjXl3IXo9yMBOffWv466F8W3w+Z3dFTWNWl4F8fAtSMLbpN1Frme\nBddC7LdqnXnnyz1HKPGdo2u0aop4je3msy/Duti2W9ZAiqFnELZAr39Z1gmJL8Dexk91aoa6D4l2\nbLPtp70eP+vEZcq+HpiCvs41Oe26N8FB3Ks2srznedYYY/r4M5LxGUkz5RretqXGid2l6DtsQ26M\nMeFREWYi4TpjvG4ZY8xAF+7X/b/5Vyf2D1i24LSG1PwFa/zCq+eJdj/8D9RzffSZh534oZu/J9r9\n4Cm8FuW++DU89es3xXuyryl14v5aPKuV3XCdaBek2pe/+fIfnbgoQ86VmR482x768RYnnvfFFaLd\nG/+KurhXfgt29REuOZdPXS+ttW00c0ZRFEVRFEVRFEVRFGUS0S9nFEVRFEVRFEVRFEVRJpFLypq8\ns5HWkzl7oXhtqBN2xdfffIMTH/3ZLtFu43fvdeJzLyAVyE5Dj0lF+tl7P//AiQvTZeoX24lu+izs\nOjnlbOQJmRa5/E7YY21Ih3TAljRwCu/Tz0LydMNiael8pBopXOvJEu/CszKlbsFXbnPi4z+DXeon\nPy/Tqk6/f9pMJGxdx1bLxhjTTTZ+LHlKtlLuRuh+BdohgwhaFrac0pu9AtbXY2PSOjcyFsfUUYW0\nt+gk3MfAuJTvBIMfOrHLBZmVr7tGtBsguVFSMc5jNCjTWwea0M5Ltt+29IvTYlnC4bZsom27xFDS\n+CEkKynlUl7Eqc98P2ItK1W+NyzJik6R7cIiKDW3FCngQ51SPuaZhnRjtstr2g2Le1uGxH3RXYTr\n11slU+Z5PLun4zNatsn0STel1sdR6no72SwbI+UwfL3s40vImLi0378dCK6tfT2HOHWcvjaPz7NS\nzBsxb8UXItVyQYqUDrJtN8upoqwU+ES6x2zbOFCHPjLYJC05Y6y/9T+cfWyv+Peu45jb5uQj/Z/l\nG8YY03AWadkZ6egXF96TlpxTb8ScMkJyPjvlOG9D8UWPLxSwjem0MilpaG1AP/ZVQuoxd8NM0c53\nCq8FGnFty+YWiHac2t1I8pMmS2q7cCOkbh2HcC0jqL8FrWtevgHX0pWJvxMWIXP1n/nJ607Mqb0/\nffBB0Y4lWCdqKY3dK+fJgXqkg6eT7Wj9Xy371aiPtlwNBWNB7BM8c6z1juZKPoqya6S1cccOpLNf\naMV6VT5D2lOPDuDzcnPxt0qyi0S7w9sgzRknecf8q+c4cViU/E2tYxfkHEkzMZ/xPG6MlItUvHjM\niWffJa3TAyS54fcMXJASibajkNhkkNw3nvqsMca0vIe0/KkrTUjpPIixmGxJdjoO4LWOM1gPRi0L\n29LLIAvz0zy3Y+tR0Y4li2+QpO/BuXIOGO7FvBQ/BeOlNAJz0siAHItuWodG/LzfkHsKPkeW5DS9\nK2WTs750OY4ngPs22Cbn8Zyr0E8D7bjvEZbdcbBb7vNCjZv67fiYvD9pJN+qfvq4E8dY+5v4fFxr\nloU0vinnFd6D8F7PltAONmGeyl661onj4gqc2LZurjn8shNnzsCcH5GYINrF3on72HkG0qVoj/y8\n3Cshzaj/K2R1ti1vzzHMPQn5kPx450tZSi+tSaGG++NoUD6DRVD5A77+tkU72xL3k0Q/60q5nrfv\nhEw9cj4+z7adbtp8zokTp2IdcpGMMCJC7mXS52NMDHZjPY/zymvZvAfPLbwnb91WI9pF0d6EJfr2\nsbJMm+fd2PR40W6iZU1VO9EfF3xCPvvWv4E+GF+APmfvD1MX4znTSzLwqCQ5xv7lO/h+oK8We5qv\nfvlO0a7rGPr7MXoWuuzr+A7AX+QR7zn7LOaKEpIB+v1yruR549Pfw9+156Hq5/Bc09qLvfGFp4+J\ndlm0R2ol2V7umnLRbnAQr7nds4yNZs4oiqIoiqIoiqIoiqJMIvrljKIoiqIoiqIoiqIoyiRySVlT\nAqVk7nr0KfHaEKVIc6pWu09WGx8eRhodp89Xv3NGtHN1RDvx9f8BmdQT//y0aFdOzkb/5ws/dOJf\nP4HK0X9++VHxnqgEpFKxO1HLh7IKdjpVGH/gXyFJavlASik23LzMiTOXo2J87ZsyDfaZB3/ixJfd\nv86JP/zDNtFu0w/uNhMJy7Vspxa+xxHRSJdr398g2rG7A1e3tlPuOBWs7n24s7gyZFpn+twZF30P\nV7uPjJUpcP1NSHsLREAuEbDkIZHx6EsDzXiPv0Wm3rGEqmUHUswSCmV6HLsh8WeMW+nR4yPSlSSU\n8H0baJBjLJFSQ+NykHrNzmbGSNkVp0snz5Xpmkl5kIz5u5C6OET33Zi/d0T6Hzgte7BNSge90zDG\nOk5gXNkSH+5XTW+iXeHNUh6SSBIBfxtSUGMsqVb22ulO3F2FdHd2DTPGmOa9JB+7ZpUJNUkk0WKp\nkTFSZsHpn+HRcpoOp3TYYZLZ2TIGdjLpJaeV9GlSuhUWhvEy2Il2vafg4JOyRMohk0pwHhf+jLTO\n1JUyxX8Vudm01GMtGLMcfAw5ArE0wz0uZWctH2DO5tRpz6w00a6XZEPmchNSqiqQUp3ulpKzuBjc\nN3b1qHj2iGiXOQ1jbpikiLyWGmPM2DCu09tHsb6MW9dv939jPX3okY87cYCkconFUl6UkIt5rvs0\nxvlYQH72bV+4GsdKzi/vPyndDu/4zEYn3rAG/aDpQ7l+DpMEsqUafcwTb60l1vwaasbpNP3WnDpO\njjmJJZhf7ZTyTh/Wg8WLsaZFxMp2YZk4tzP7kVY9LWeqaFe+mtZFOn2+j+GWrCmSXCCGOnBt3WXS\nlahzL8179OGtW2tEu+S5JA+izPvYTHl/mEZyymHpoTF/P7eHksF6XP/odDmXZ64p1dDfCQAAIABJ\nREFUwD/ofIM9UirE7oxjQ/iM+g4pAVl3zSL6OHzea29Ix7YVZZBJBcnda+59kAj010uJWPcJyGti\nSXoftNbc5DLM6cE+XNf0VXLe9XdiPLdsxfjzzJbSL3ZhCjRjrY72SpmoPS+FmvTl2BfUvSxdBweq\nsYeL8mB+taW17FTpq8C9S19XINr5Sa7EsubeM/J+J5PkctCH/h0ZyeNAjsWihXc4cUvjX5043i3l\ni8PDcPDha9vwqixxkLYG14Ul3CwJN0ZKinhf1ntOysUH6+Q8F0qSZ6Fv/Z0LJq09bfsgBeVnDmOM\nqTuI84/NwHW23YJZ6t78DqRLpZ9aJNplkPNvclEBjuEo3J/cOQWGCQvDPfVm47WhIel+N0CudCwB\nZwc/Y4zx0LE2vEqOb1PlPcxeD+lWTxXWxbRFuaKd37q2oWb65dgr956R/cfQs1ocyVf7q6SD4NBH\nyOhjkuWYjUvFHqR5F+RU+ZdLOVX1m3ucOJws0rjMxJ535B7rpu/fbC7Gm994Qfx71X3Q2vacxLx5\nZp+UPzV24Rw/8+uvXfSzjTGmtwX3uO8CPbP2yzIdUa6PXk+N0cwZRVEURVEURVEURVGUSUW/nFEU\nRVEURVEURVEURZlE9MsZRVEURVEURVEURVGUSeSSQtLkUtSeSHBJ/ZUnCxrAC+/Dqs7WiXdXwgLL\n3wi9Y9pUWSMg0Azt6xvfgnVncETWSJn3ZdSBuKEFOt1Wsmss+/xS8Z6wMJzmB99+zYkX37tMtOMa\nJD1kMT3voU2i3blXNztx+1Fcl8aTjaLdx3/+dSf+9q2wHZ2VL/XBe74PberHfrTOhBq2guZ6LMYY\n00ea1Biyl4vLlRrPqAS8j/WuMW7ZbngQeshAFzTRcenSXtPlgpY2IQ/XOi1jvRO3t2wW72G7tvRF\n0GeGRUpb2XC2gqWQ7buNkZbKaUug6+yybApZE5w0AzVO7Lo8dv2dUJJzJWoTDLbK2jk+uofJM6D7\nbT9QL9rFpOL4cubCLrCzQtaEYLpOtH7ka1zDxt+Msc12iHadn/Bw9CNPGeaAxAJpqcjkXolj5fpJ\nxhhT+wbqnURSH02ZJ+uq1L4JW72stdAh/13doNGJqxtkjKwdEf0RNXuMMSZtBeYI7qfGGBO+jGoC\nNeP62tew6yTmRw/p1St+vkv+rZX4PK57k0b1Y+KzZW2VFrJ1ds8gG1Sr7lL1eei0C0tRt8bXIrXv\nUZE4x6Y9VNNlrryPMenQLLOV6tiovI/ZV0sr41Cy5O4lTtxfLWtHnNkD3fT4C7Be7OqXOvFZZA87\nMoD52a4n0rIZY/Paclgx7joja7Z9/CqsZT7Sicem4Xol5MlaWlxXZYBrEVhjIr4A7zvwFure3HH/\n1aJdzxH0t4Afc0PBjdJ+muuKJc/H/R2z7Fejk2Xdi1DDFvXD1t/imhW8Zta+LW15w8mq3D0NNV7G\nrHEwRjXDpi5A/YmRfln/JIz09AklWGe5PpV9XeKoHkP7VtROa2sdEO24jkjaON7D98MYeR/YUrn7\nrKzJkZiF6zfWhfMNdss6KVyzLdTEZGFNy1xTKF7jGmn+WvTvIctSfpzOl+eX6xfJ+hXn9mKP6XZh\n7rlm/RLRLqEI83DFe6ifwvvLsfOyr7O1djjV4eB6VMYY03EMazr3UVeenJ/7arAn4j7Vvq1WtMu7\nCfUlhqiGRONfz4p20Z6JHYu8h5mySc4XtVSDZjRAfdNaF3tPoE5HbA7Opfb1StHOU4JxGj4d19o7\nR641ftpnJXpxndrPHnTivNkfE+8ZGMB1y867Hu9p/0C0C3RgPTj/PNaJguumi3ZNb6OeStHdc5x4\nsF2O7dQFWFvZorljp9wDhkdPnA1zfz3qrgx1yOPjfU/uRuxleyrbRTsPWcW3bqlxYntv3X0Qe/Qw\nWjNbdsk6op7p2K+PjOD4YmkvHBsr73t77X4nDo/AXoStno0xZqiNnm+oTuWIT853bI+eOB19z64B\n11eHzx+kfR3bpBtjjGeurBsVangfGeOVNWJ4r8LPP0WfmCfavfdtPNMuv3e5E7dul88aRZvwrM71\nh4JBudbs2Yx9x6ZHb3Li5i2438s2SqvqhATMI7/+zL858Zr1sl3L+/iM/Jvxntwr5Vjsb0LNme46\nzElc98YYY+Jor3z2fcw9pda+6vhbGPd3/OLvCyNq5oyiKIqiKIqiKIqiKMokol/OKIqiKIqiKIqi\nKIqiTCKXlDXFxiLdfeYXrxCvBQaQdlQSixTC1v0yHbLiFcgJVn8D6Uith2Sq4b4dJ514+VVIO+qr\nkOlNJ3+224lJsWIGBgPURqbtH76AtCW263SlS3vnrmNIlROWxAEpX8m+DCnzf3r4WSdeMUemQX3w\nyG+c+P5v3u7E/oZe0W5kUEq3Qo2f5ECe6VJOlko2bZyWyJZpxhjTU4H0Q04Ht6360uZDCtFbiZTA\nsHD5PaC/dQv+QeleAwmU9hbGd1imZHZV4p6w5MoYY3prITXg1NewCPl5wQb0Ge8sWNu6sqUEy0/X\nhVPA7VRLV9rEyZrGhtBHfFVyTOSsg3VpzRuwk/PMShftouJY1oVrbtucd19A6nPWSrL3OyvTK9l6\nUlgJkt1s0LJRbd6LcR6g1NzM1TIlneHPZotpY4xJpNR/Thu3U57ZHp1Tvod9MiVx2DdxKfjGSIlc\n/wVpP8hW2HWvwFIyLlPen8SpSI2NpT5n251ySm9GPuSC3q/OEe2ajux14jHu32RVOtAkZUg566c5\nce8FyFnarLT52VfA+pyzOj2zZd8cC0IWwfbmbG1rjDHBdrJopPvN8h1jjBnxS+lCKGFbe7bJNMaY\nBVMgF6l8FX195hJpmdzyIdYklqmwvMEYY1KXYX4++wZSaZdNlZ8XztJLGhOchswyN2OM2fYM1tIF\nS7F2nT4iU8MHd+Iz1t0DWXHXQWkteqERn1+QhnWm67Bsx5/P6/G0G2aLdsLeWmZNh4SmLVhrXElS\nYujvQz9LJJlOXKJsFx+BfhfhwvzqcksZCFufswWwbTPN0uJBkoGzTKr+AykxL70d4zllBfoLjylj\npNQgKhFrJkvKjTGmaUeNE2cuw3qevVbO0f3nMI+W3YR7N2pJT32nLTvWEJJB68aoJYsLkOVsdCru\nW85yOXZYclH5Hubd7Hxrr0QTWATtZ6K9sk+wle6iTyOlf8cPIG1Jc0sZUmQUxm9PJdZV7xwpYegn\na9b4IqxpDSQzNcaYqAgcw/T7Ic8asiRnAep/Pvq7RXfJNaLhTSmjDDVdBzBHxFr7qIJb0beat6Dv\nR7utvQDJCsNoHYuw9p4s849KxGfwZ//tQ7BfHOra7sTJ03FPKl57SrylZOO1Tjw4iD1q/XunRLvM\nVZD1Z5DE1ZaeRrrQL6IScKy8x/rboeJYm7difi2+d75o12lJ9kMJyxmH2uW8lrIQsquOQyj/EGfJ\npfk5I5nkO/bzQ9wUej5rxd+y+0472XanLiY5OMntm0d2ivd4CnBvat855MSuTPnZUSQT5TWc9+rG\nSJkoP2/ZclIhUafSESyLMkZKniaC43+EbC8uWj5bTf8M5pLS669y4o5qaWPdN4i+8PJP33Liu79/\nm2j3u8//womv++QGJ6785T7RbvkV+E7g1K/w2oKv3ODE1W/K5/43v/5TJ+b5drhX7vE98/Hs17wZ\nY6f0jpWi3Qvff9KJebxd/4D8boTXv+4BrC1pC6eIdiUNl7a118wZRVEURVEURVEURVGUSUS/nFEU\nRVEURVEURVEURZlELilrajy0w4ltJ5B3v/e2Ew8EIA1YvHymaJdEacs//OQPnDg5QabqX/eZy5w4\nPBIpe7vfOSwPmNI1r/oC3tN9FCnVuVeXifdkVRY4sSsTkpWaZ0+IdrnX4X3PfuslJ14xR1aPZycQ\ndpPKvKJYtAvfgRT/F376phN/7rcPi3btFafNRJKxAulULN0yRqYCcyodSxqMMSZI8g+udG5Xf287\ngHPmv2un8LFMgqt0121Fn0uenSneE5OKYwonCUhknEy9c1M1/kiS8tjp1hHk3tRJ1yWhQKaWjo0g\nnXlsGNeLU2L/9nmXHE7/EJEukuxY59t6CFJCPvaek22iXSK5SPhbkb7H1f2NkQ40cST9s104WHZQ\ndieqjfe14bP7q2WFe5aicLX6QKdMrY8jJ5D05Uittx2yIklK4M5FymhvnXQpYBehlDn4vLo35Rzg\nypGStlDDDk22pGGoFdc9llLlh31B0Y7n4kGSKtiuKI1vo190T4EkLX1Jnmg33EduQdEYVx0HcK3j\nrfn/3JNwNIiIxz2YcrOc/9mNIS4D80btq1LWGk5ponxP2WHGGGMyNkDGEEEp36efOSraZc3JNhNF\n7wmMq4RieV3Ob8E197rRl07slbKA2SRzGjiP++5dLI/bVwVJyMyPI7W38s/yfIdImtF5GsfHzjS5\nC6VL4FVfRjqujySKtgwgIwlSrc69SEnne2GMMVHUt7uqcN/zlsr+FuwkOelCOGUELGe3gVqS2V5r\nQk7mSqxPfVVSepN/RakTsxQkNkvuWziF/cJrkJ2lTpNyFN95SBj9QxinU1YViXaDLZDiDJFDU/Ic\nrIVt1hreR3Osn67ZQJt0CONU87y5mCuDAbkuxkTR+KN7ym6bxshz5/m1+4iUz2WsLzATRd1fIB10\nz5FSSc80yJLcpZAfNrxmufeU49rmTcf4S54r9x/tu7CmJJGcseLdCtEuvxR9epzk4dmZeE9Hh3R5\nK16H/la9DfKamPNy/WRXJr7mGdZ8x052je9gTmIZsDHGjJE7ITtz1T53UrRjWdhEEJGAv930jiyN\nMESOVSzx7TolZdZ9VRhjUR7szXjfY4y8bn7ah/afta51LubvPnLAS5uHfb7tYnXsl087sXsm+l/a\n4hzR7vzjJAMhuX36Mil94L7Zex7HwFJvY4yJofszSpLeYcsNzi5rEEqSyBHS3u/z3pulRzGWJDCN\n1opo2l+37JAuPxnkzNb0Lhytoiypm3c+xkXnQexn3HSsvKc3xpi2o5gfvDQH2K48actxrL6z6Hv2\nniBI+7Le01gXU8ovsUehPTmvCcYYMxac2DIYi7682omf//qL4rXss7ju8clYT1ILpXzu+m/iGeUv\nj7zsxP31ct5bOQ3y+Oxlc53YvifcTwo2LnTisDA8O6ZZ+9r6o7jfs65B6Yez78r5nyW+kTQPnfzv\nd0W7B34Lx6f6nZCEp82eJtrVvou9cWke7vFo0HLxSpXP2DaaOaMoiqIoiqIoiqIoijKJ6JcziqIo\niqIoiqIoiqIok4h+OaMoiqIoiqIoiqIoijKJXLJIRs4C2GYOD0tN9ry1qMOSdzn0Zs27pWXcob2o\np/LQEw86ccNmqdM98RostwtmQA9t17Dh+gisxZt6G/Tzp//4lnjPtt3HnPhzv/uGE799+h3Rbsdh\n6Gyvuhk2WqylNMaYLrKjK82CvthbVCLa/faRZ5z4gUfvcuKGHYdEu/FRaXkZatj2Kz7f85Htesmi\nub9a2vzGUu0Rbpc8K8NqBz1pH31GUom8hmx/zbUyuCaQrTvkugiRZCto634Tp0DzyRamgX5Zu4Nt\nJNlO2pUqLfN6w6ETZfvooGW73E+lW/JKTUgZG4Vml7X0xhgToLojXH8gnmx9jZG1E1gDPGZZkKYu\nhE6yn2zfM5dKbeVIkOwID6I2VOpcqZtmuEZRfA6Ob6BRaqjbqd4JO6pnrZF1LiKj6DM6UOvAttJm\nbf34OPpBxip5rP4Jtils246aTKx9N8aY4VHch2w6rgirrtOpxw44cektsBlt3SltrNlalHXo3bZW\nX4wrjMu4XNQ3iIqPEu9hG8k4sp5vfFfWC+B6Rj7SW0+5cbpo13MKdVLGadynks2oMcZUPg2tfvGN\nWBuKrpD2uGMTOKeyrfGBN6SFZI6X6igFMD+U5GaJdnUn0L+5BknYEfl7SepynP/RJ6BlnlIu68fU\nHq7D31qLySeKLJ17yabUGDnu+85grg4MyxokXA9oiGqPdR2SFtkpi1BXIdCMtTnQLutJxWZAaz3O\n/uoWaSvzP/K1UMDry5g1Ftu343pGxGMuGbHqP3HdHbZUHrHWmvSluI+83jXvqRPtctejBk0sadL7\nazCvZy6UY8JP9SdGaH+Ut1EuQgNUIyxI9WxiLdtvrtfBDNbJmjO8b+G9mF33ofsw1chZe9GP/l+T\nthbzZO8p2b876Dpz/ZjBPlk7IofsfAN0HsPW+p5CdUPq365yYq9VP5FrtzRvq3HiuBTsK2bdLms0\n9JzAnDz3XtjVtmyRtTaGqf5KAtVSsa2VG15HjSveH8VYtQR5nezpwxw8OCT7r+mWdelCDa87rmxZ\n9y2M7MMLaL0b7pf3MZJqCLZsxnXjulbGyDpK0VQDL3mBrDHEx8QW1+1HURMo2C2PIYxqtqVSvZPK\nX+8X7XhOzVhX4MS1L8nnp5yrMIZ7qJZYRIy831yHLsaLe8z7VWOMGaB6grlfMiGllWpspi6SNXZ4\nruij+8nPc8YYM0g1gLKp7hfXrzRG1lHKXFvgxCMBWY+F69clcb0duv5h8lKKubv1NPqRZ7Z81hml\nNWOY6tEMW7UZvQvQD+LzsV/tsmzN05dhvWOrb1eGfB7xTJe1tUJNbBzGwcbPbhCvvfu7D53444tR\n++XEr63aNFfj3k3LQV+oePm4aMd73tl0T7zWtW7bjXWyY9dmJ864DOvl8z98XbznqutXOPGR11Cj\nLytZ1gQKo7mTawfNf3iTaFf5p786ceYG1J36wxd+Jtrd+d1bnJjr4MTEyftWdLncs9po5oyiKIqi\nKIqiKIqiKMokol/OKIqiKIqiKIqiKIqiTCJh45fKK1YURVEURVEURVEURVEmFM2cURRFURRFURRF\nURRFmUT0yxlFURRFURRFURRFUZRJRL+cURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+c\nURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+cURRFURRFURRFURRFmUT0yxlFURRFURRF\nURRFUZRJRL+cURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+cURRFURRFURRFURRFmUT0\nyxlFURRFURRFURRFUZRJRL+cURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+cURRFURRF\nURRFURRFmUT0yxlFURRFURRFURRFUZRJRL+cURRFURRFURRFURRFmUT0yxlFURRFURRFURRFUZRJ\nJPJSL1ZuedyJ8xavE691NR924v/87K+c+Bfvvyvand//jBO3flDtxNGpLtGu9nSjE4+Pjzvxtd9/\nWLTrbDrgxI/e/0sn/uR1lznxvkOnxXuuf/hqJz71NI77ikf/TR7rjheduGT1rU7c0bpFtMvIvsaJ\n//i5Lzjx3b/4kWi37d//04l3VlY68Wd/fo9ot+dH+PybfvpTE2rO7HjSifvOdorX0lfkO/Ho0KgT\nN793TrSLcEU5cfLcDHrPiGjXX93jxBkrpzix75z8u+OjY07cuq/BiVPmZDqxv7ZXvMc9I9VcjPDI\nCPFvz7Q0Jz7yq91O7M30iHZD3YNOXHpvuRN3HW8W7XqPtTlxTGa8E2esmiLaRcRiOOUWb7rosf5v\nOf4K+nr6knzx2rknjzhx0d1znDjQMSDahUXiu9ieUzin+CnyuiTmJzvxULffiV3piaLdaGDYiX0X\nupy4cz/GcmR8lHhP4a3znLh1H+aD1PIc0S4yGvPDYBf6VNO7sl8mz89y4l46p7RleaJd0zt4X+rS\nXBz3mQ7RjueexZ/9qgk1u3/8qBOnr5b9Z6Q/6MQD9ej7WeuKRLuuY+ifMalxTpyQmyTanf3dIScu\nuGu2E3fsbxDt3GUYVxExkReN/c194j09x1udOL4I/SfB6ktt22udODwa4zShKFm08zf6nDhpOsYv\nj6m/tcNxJE3FcbdsvSDaeWgeKVl0twkl9edecuKaZ0+I1/JvnunEPD4GW/pFO1dWghPHeNDXmzef\nF+1SFuXSv9A3Ax1+0a5zL8Zc2kr0/YFajJ0R/7B4jysb4zmpFNeyr7ZbtBtqx9+KSox24rHhMdEu\nkl4b8Q05ccfRFtEua00BjiETxxDrlXuCutexZi75/L+YUPPMF7B29w8NidcGgxiLc/Ix3/oGB0W7\nzEL01dhM3FN/g0+043EaFhHmxPvePybaTc3OduKzzRjnU7Mwzx2rrRXvGR3DfYgIxxy/9tpFol3v\nKcx1jZ1Yj9t88lgL0nBOzd3oC0UZGaIdH19KIu6jfY0WrsaYWPDJfzah5PCfsF+KTIwRryXSHNNb\niXN3l6aIdjz3jI9hjNn3cKQXfWR8FO0yLisU7cJpne081OTEwc6AE+ddXybeU//aGSeOSsJ5uLIT\nRLvUhZgP/M04Ph7nxhjTfRxrYeZ6HF9sWrxoV/8S9sopy7EGx6bKdsEeHPu0dfeZUHPshZ87cXRK\nnHitdUuNE2dfVeLEDW+f/cjPi89Cf/TMThev8T0eonmUz9EYYxKLvU7M613yfKwtwW7Z18OjsMYF\ne+XnMYFmrAe8L4svkOvnGO2vXXROHfsaRTueewbOYcx6yuWY7TmEuXjVt779kcf3v+G1hx5y4qkb\np4vXeO3hvb+/Xo6xtjrMS1lTcexxuW7Rru8s9puj9NkJpV7ZrhKfF+7CXiI2A/3bM1P2j6Eu9Inu\no7jvPP6NMSbnuqlodwzXNXGqfE6JjMMeOAxTvwmLkLkRg63oE7WbsV8tumaaaBegdnNv+ScTaire\n+70T87OUMca0094xPg/7zaiEaNEu0IlrODaC+z0yEBTtDI1Fz3Tch/YDsn+nL8WepvMI5lTPTPQR\ne/8Q9GH8DfBcHiaamaEuGsN0PCn0bGGMMYNteJ7ylGAe7jkn99Ou9PiLvseeX/jvlt/1JWOjmTOK\noiiKoiiKoiiKoiiTyCUzZ/hXsvBw+Qv4bx56yom/8QS+vevpOSDadezFt0ozv7DRiQd9TaJdWDi+\nzuo4j185Dv/3k6JdzrWlTryouNiJl3wRv3KPPPpd8Z6M0uVOPH4HvsVrq98s2j3+45fxnsc+xHHn\nyV/hM2bjF3/+9SgYlNkhGUvw7dqX/+V2J/6XGx8U7eJj8EvJTSb08H2MSZHfLtKPsSYqHu38XfKX\n2QzKROjYTZkuS2XGwxhl31Q8cdCJp9+zUP5d+rWPMzf4lww764J/qR3pw7fY/jr57TtnB3mS8IsC\nf1tujPwmvLcKfa5mV7VoN/OO+fjs8/jGftj6FnhsVP6SHEpyVs914rAwOWxL7sHxNX2IX97TFueK\ndk2UDZW5AWPHd1Zmj/ScwK8F6cvxq3FPZZto13UEfb/07pVOPBrArz1ZS2aL93RfwPHFJKMv8vU3\nxpjEAvzqydc8aYb8Jp+PNWN1gRMnZMpfjKZ/BudRvxnZc/GF8pcqzl6ZCDxz8OsAjzdj5PUYqMMv\nof318lfRgTpk1QzT8XLGkjHG5G3Cr1cXnj6O/79B/hLjol9TOykrJzopFsdmzRtpK3E9W7fWODFn\n2xhjzEgfjq/wLmR1+VtkJk5EJ943FsQcEpchs7WYgSb+NUT+HMJ9MNTUv4pfm93T5K/w/TX41TKB\n+jDfT2OM6ac+PdSGOS/7mlLRjn/FcxfhV8HaFypEO85mbN9e58RFn8C8UfeqzCh1pWNu5F98++lX\nyb+9iGvLGU9RCTJTIdCGX/SGKXMmZY4ci137sfbnbZrhxBf+fFy0+6hMyVBRMgeZazu2WxkslKnS\n1Y/zysyQv8xG0ZjlX4erKutEu6Ic/NoeX4BfHGfmy71FQhk+fz79Wsz9uTxcZmpwNqeP5oqWw3I+\nSEhERoIrGnPPollTRbuxQfytwDDOqbVXZrKuvAZr+iD9MllVVS/aDZyXfT+UcNZB92GZodWyD8cR\n78G5J5XJfpVMv77Wvoxx5V0gfznlfjvlVsytHYfkXpazB2Po19y8a5Atw78mG2OMKwdjsZ+uV3iM\nzAo+93tkQ0Z5MP4yN8jsSs766KXsUDuzMSIe827nLuzrUlfL7Nz2rcjWmiaT6EMDZRH0n5PzT3AE\n/ZHn0dyNcq5sfR/Zk4mUQdG+U/ZH93TM2ZztF+WW8xn/rQjKuuBfwDnr2xhj3Pm4vuGchRor7yNn\nkfL8H5Mu96jjw1gLOdM7xlIecCbmAM3fdmbK6ATuUefeg0w9zk4yRmanDdGeoLpKzlGLPr7EiXmM\ntG2T2YKxNOdx5q6dUZRI+zueKzgjiZ89jTGm+wjmEQ+tXYF2+UwUpDUuaQb2dXaWMWdJcdb28T/K\nZ+XsqVgjxiiD286wibYyREINZ7fY9zF7Deaw1v0Ybz5LkcHXmrNqONvGGGMiojFGImk/nE3PJ8YY\n00vPKFmrsV61HcCzmivFWheT8Nn9lIluKy34OXN8BOfbdVyuJ5krMMcO+TA3JJfKNbzuHewlMlZg\nj9FvZTcmWtnjNpo5oyiKoiiKoiiKoiiKMonolzOKoiiKoiiKoiiKoiiTiH45oyiKoiiKoiiKoiiK\nMolcsuYM1w8IC5P1EdKToB1LyVjhxJ2tu0S73KuhDxsaQs2KX3/pSdHuvm/f5sTsHuKdIfVccXHQ\noi2+Fvr+1x9GzZm4GKkdDQahV2unGjiLHnhItPv016CL5HoLnnypfxsZgYbwc1RF+g+fe0S0u+mb\n1zlx4759Trxx/nzRjuvWTAS1L0JHnXO11OnWvnDKiaOTcc6J2bI6ehjVdOhsg3Yuttaq6k+6zOIb\n4NJgu5oMkjtGXwAa3sI5uJ6s4zTGmHOv4lgLrsB5+KulFj7Kg/PgatlxOVbF9ypoc+OtavCMi5wL\nwqPwfaZd94FdEULN6d+iBlLygkzxGmvhp94P3W/1c7KGQ3I5NPQJ6Ygb/3pGtGMd9rln8RlFt84S\n7YJduG9Vj2934igvrn/dBwfFe5Ko+ntPRbsT1x6RNRqyC3Dv3dPJTShO1iEHKSfpAAAgAElEQVTK\nXItrznVMmt6STg7hpPkeplpDudfL+iujSdLRJtT4qV5M526pjx4dgb6ctclhVj0Vz2zooHmeqj11\nSrRr2ULueDQmGl+T95s11209OL6kONRpSF8ka0tF0d/lGhV2zZlhqsMxSDVJWINujDGDpMtOmQ/H\nmmCfdEjga9FbIWsgMd1UD8ms+shm/ztIti8q/Rtjuo6hBhI7TcVmSNcVdoBLXYU5Ly5L1tjhe3Pm\ntxhLudfKOiHsmsda/b5qrJF2fSV2Dap9EX3HrmfAtb585HrTd0G6OqWvQp2KWHJhik6S63HKAvQl\n1nVnrCsw/39Sfxrz5iqq6WWMMT1UOyh/aQFeGJcafHbF6ezD/DNzUYlot3c71r+sTmjNR8ZkDYi8\nJnLDovptzIHz0tFrTeECHAPVx8lIkvr+mHSM50AL5t6kmbKOV+8JnFPJPGjm7bm3mxxs+KqMWdeo\n3XKDCiVNRzCHJnnkGCu7HetV644aJx636m40fyiv50e18y7CvMQ1rlLKs0W7zsPoV0O0/xhk90Sr\nlgM7p3GtkozlsvZLPTmY9TZSHYUdsiYH14pgJ5+qxw+LdoW3YI82MvjR7nITTdsB7MvDw+Vvxq4Y\njIkOmi8G62Vtj+Aw1Uqi656yWN6fDqqt456B+jOjQXm/2aGUXa742uasl7V+ek5i7LCLkMsaY9x/\nvAtwfPacOtiE+xDsxn7LrgUSS/XD/AGsmWFd8lpmXymfZULJCNXFGrdqKg224n5w/boFd0pHOXYR\n5fp/1hbIJJagphBfi5SF8l67S3B/23djj+kmR8gYr3QHY7ewRKrz1lcl66okz8Ieles6RVnrXbAD\ne4Sjf0KdmXDrpM6fxPFx7Z2WzbIGZsb6AjORcO2lntPt8rUkzOUj/ehnrkw596bMwRrf34g+PdQp\n6/akUt23vgb8rfhsuXZ5p2E/3NdIeyfaS7RRDRxjjPHOxTMOO1ylLZHfKSSloe5dw/6dTmw7UAX7\ncR/ZCdffKuchrv/EtXdirFpBnhJZ08xGM2cURVEURVEURVEURVEmEf1yRlEURVEURVEURVEUZRK5\npKxpkFKBWiO2itc2PrDBiQ//+vdOXHyntEz+2h3fduKvf+c+J7alRwnZSNWvO3rUidmu1xhj+lph\nf+2Kw2ecbkR662WXy1S5it+97cR7jsFOdPY90gKxaBmMrF99GBKltd+QKYks8fq3T/7Eib/4KWmE\n3c7WtpTqm5EvrRxT02W6eahJI4mEbTGbsiTnoq+5i6VlKMsLoiPRbfxWaqmhVHm2C0wul1IcL2X0\nNe1BOh/bCu7cLyVy5ZchTbl9G95zvrVVtJtH9rZsBcoWszbH/wjJQGqmvB89VUi381UgfTFloUxL\nG7TsgUNJ0I8UT7afM8aYpNlIr2S765TFUorCMpCO3bCXtNMwM1ZDKuSmlL0Yj0zLK/1UuRO3bEfq\nZdZ6pM42bZYp4w0vY/wV3AmbbZbdGGOMhyRtdS9BPlZ0t5QfxLhwr91ZuC49x2WfSCxDO05rTsyW\n/TLonzjbV2OMSaA02f4aKcfj9GtOGe3YK+06C25FKjqnXrOdsjHGJM/Cv889DXu/KEt6FEtpmIZk\nTWmUrt9xSM7DCSQDDCeb0eYPZGpp0d2wz659DtKZQEDKldLpb/WThSnbqBtjzHAP3pdHkrS23XJs\n+xsmbiyyva0tOUuahrm9new/c2+S8jm2lOzYg7HYvkPavrqycW/iciB9aN8j26WvQnrwYN3FZSRs\nH2qMtNIWc4B1TqlLsH6wVbi71LKVTsRnNJCsMOcKmUofTtagPUcxTrsOyz6WfcXEpeAbY8wASWvZ\nStwYY9rINrp/F+QEWVPkXoAlO41d6KuZbfLalGWjf7tzaX2xJEAsVXHF4nr6BrAuprmlBHeU5Cgs\nExihNcMYaW+elQxplW0Ry9SfxB5m3HqN0/LTs3G+M/PkfeMxG2pm34fzHeqREkOW9wUasZcdyJLj\ng/cpU8ja3XdBzj0sz2Nr15EBKYWNI4kSp/uzhWvXUdnXIymFnmUf3aekdNM9A/2vow7Hx5KXv/0t\njDGWYse65Trrb8I8yen4I5acNDZHyhZCTe7lkAF2WPs07zLsY3jtTpolx6KHzjMilu1xpcQmkay0\nfRWQqrDEyRjZL/j+1L5d5cQZi3LFe1juO1CNdez8+1WindeLMeyvxZhny277316Spdt7gp6jkHvF\nuyHLSZ4n9wSN75xz4qkrTUip+Aue20qvni5e887HPoutyCMtqaR4D51v83tyX7Hv2f1OnOPF3MPz\ntjHGpOzDWEwuxv3lvXDju+fEe3h/xM/AXksyxWOsn0okjI/KmdK7COfRtRnjLbNQ9t+2GswpLJfm\nv2OMMYH2ATORDLbg81Otc2bpo7sU13PYmgObt2Pfn7UaY5vHpTFSyjQWhIy385h8No+nkhRRcRiL\nbPvN+w9jpPSIyynwe4wxpmf0pBN7puG5w7bcDvah3/Ja45kq7+NAM5VHceG4E6bIv9uyB/0u7brL\njY1mziiKoiiKoiiKoiiKokwi+uWMoiiKoiiKoiiKoijKJHJJWdNPv/u0E3/h/9wsXtv86l4nXjwN\nzjntR2pEu9IspHS1bUWa91ef+aNo11IP6VF7BVKdS26SDjF5VDXdlYQUpJJBSCzO/PaAeE9tO1Kn\n7vrh7fg7NXtFu+4TSA1k6Y7XK/P/jj33Wye+uhx/d9926Uj0iZ9/zYm/czucoR5+4p9Eu5e/9rwT\nrzChZ4SqxnNKvjHS5YOrnvdQ9XFjjKnbDdmKJwkprrZMamQUqWmtW2uc2NcmU4mLrkP6cNpMpF5y\n+ujQ2Rp+i7np7oed+Ib16514fqF0SQqQ08BBcrZYPWOGaOeZTeloJ9BH+jqkU0HSGPpZdCpSRjsO\nyNS7hHxZYTyU5F6F1MBhKy2PU0OTynBOp36+R7Qrf/h6J+6uhuwg0CHT2gPkqlOw9BonHhmRUpGT\nj7/gxJyC6vEi1XxwlnxPFrkrcdrgmJV63PIh0liHqWr/7h9+KNot+eJqJ/adR4pynOW+NT6Cvl32\nADlavSrdpDJWTjETCadK535MOu5wWmcHpcnm3yRThNn1qP4D9O9Mqwp9x0FIEoZI3rf7jHRrWtAP\nx4k3DuJ6fHFhgRP3DshU2ns/96gTf3rTJie++5FNot3uX8DFK78Aqc2JyTIFdYQcn3ynINlJWS7T\nxlmu1k2pyTFp0nHBdkcKJZHkZhC0JCFD5Mww5Q6sXbaLFc+byfNwXdhdzhg5pyTmI4347BOy38aS\nw0TWVZCVsBQx0CWP1ZVKkilyV2rbK2UFcVkYSy5af9sPSrex9h1433QaYzx+jTHmwlOQ2CVORUq6\n74x0w2DnE7PahJzp89HvbTlBTBTm1MIltL5YMqQpLnKlOIy05wGflNi09EDi0EDypxlzpduLZwrk\nRk1V2I9klWCNnLmqXLzH34w5Vjh1nZOynLhc9CV2bfGdle1Yppg3G+PPdms6sQ0S1bFG3Duea4wx\npnCqlNeGkt4q7FNsadoQrWspy3AeYyPSBWuoE/eKXcvyb5TzbsNfIU1JsGTfTMc+jAt2MIskCWrn\nKSm7ZYcrlmK7oqVjSPGmmeZidPfKPUtKCsYsy2syNsi9Ess7BpuwR2NHQGOM6dgjZTShhu9dtDWX\n++txXON0ndp2S2lnMsm7+89ibxaVLKVcQ+QcFE3OdNV7pCsOk1WEz27uhrQzrkJ+9onzNU48u7jA\niQsXSqkfu0n11+D+NNe1iHZ56djPHXvhiBNHRci+XrQKn9+8jyTr1VKmnbZM7hFCSd4CfPaZN6Vz\nZEIsrlPhTdiH91puQEkk22OXQNtxq+U9nNeU6yAZTrdKC4STY2Ll25DHl12Osc17Q2OMiXJjzLEU\ntG6rlOinlaFPZG3E/tyW/7furHHivHLMB2f3yc+bdRXGdstOPCsnWC6zkfFyTgg14ZFUmsKaUwfo\nuZCdrEYsd7ectZCztx6CwxxLmv/2H/hbHnp2sZ2SknKwVx4eZkcz9JHhZCnF5P1NeCTm3tZ9cpxn\nLpXOiv/DSNCSydKzMstIG9+VzrAZJDFv3Y81Y8R6Vs5YJp34bDRzRlEURVEURVEURVEUZRLRL2cU\nRVEURVEURVEURVEmEf1yRlEURVEURVEURVEUZRK5ZM2Z4kxo4blWgjHG5KVA/z77n2504sqn3xbt\nlk2FVixtFTSJu7/7fdHuT1u2OvGNS5Y4cfcxqcGsPAq9WEkJtMwespHdUyVt6255+GM4howr8FnH\nZN2bWZs+TTG0bC88+BXRLicV5z4QgPZs4xelHVbLKdi9ffvFPzhxxQvPiXZLr5xnJpLUhbhOda+c\nFq9FJULb13keesLMBbLWQ/7SAidme0jWZBojJflsWXbunNQsD74I273sYty7qv2oNZKcIOtGPPt/\nv+PE+/ZA01qQK+2QuX7AfT+6y4nDLL1j1zHYWRbcAVvnyFg5LKoeO+TEXqoPkViULNrFpEqtdChx\nUU2IkWpZI2CArBjDSMNZuEnW2Ok8i1ojbP+ZVCqt3fvrWaeMz/N1Sx2xdwF0wDw/tJzd6sSDrbKG\nBtfeOPtn1J5gHbIxxlRQjSPWK8fFyFolLVvQXxorcD/n3bdYtBN1esgpOGudrPlQ/SccU/63bjGh\nhm0Qg11S05q5BvUA8m+EzriV9MfGGDPSh3OJi8e1seuaBDtRc+EC2c2z9aQxxky9BX3/oZUFTly1\nGf0lM0O+578ffNCJw8Mxri5bdI9oV1wMLfwqqvm0uETqfFPioQkeCqJvcr0sY4xpa0Lfn04Wz8O9\n0kpWWI1eY0JKQgGskMOnSvvVSJp7ohLQV5u3SCtQto5vJE36rAeWiHZ8/tXPo2+2NMv6LPH7cb7s\nhD1Gtp4560v5LWagGeN8bBh1OEasGjEJCdD0127fjP+n62CMMe4SXIvYeNSgMmFyDU9dSfU/glhn\nI2OkDepEwzUNAs1SMx9LNWc+fGOfE2cnyzm/eDZ04/20F4hLlHUH8qhGBFuB1p2Rdcs6yJp74QrU\nIOB5vfesvPdsldx/AXr82tOyJlDiBbxv6h1zndgzK120Y+vhvX9CXb7Za6Qd/NRpOPfxUbwnyiPr\ncOzZdtyJl5rQwnVlgh1yPs2n9Y+vX3+D7Ge516DWQd2LqEvBNa2MMaav+eIW9bXnpC32lGL0/bMv\nwaY1gubJ5EKrZg0dH9exCrdqIXWfwDGxjTjXSzRG1sWKpP7GdQCNMSY2HXuWRLLGte3VXdkTa6XN\nc5ZdF5H3qMm0zx/uk/MU16YZofoQw82yDgnv2xpPYfydb5V1gLiWZh/V4+F9aUeX7Esn6lB3q74T\n463tfdnu/e2oxXbrxo1OvHSqrENX3YJjSqR9EPclY2QdkuJNqHXGdYSMMWZ8TNb2CyXn9mKNy0iS\n9Rf7aG5s2479DO8hjZF79I5taJe6TD6PLPv8Knx2Nea85FmyVlLvObJKd2FO/pev/9KJb1shK30u\nuGG+E3/nm3huu3zuXNEu6hz66bbNh52Y96vGyBpF8woKnNiuJ1W3DdcvpRBjsfms7JcdNTin6etN\nyMlcgz1xZKQc90lTsU/geqV2HZwLL2HdyFiNfa3vrKxlmrMSz76tR/B8EeWW17C7FnVrYpJxH7lu\npb3/bT+IPRHvTaKtmkBs5x2dhL8bbT1/ZpYso2PA+QV9cu/J/85dgRUvGLRq6tEzcWaW+Ts0c0ZR\nFEVRFEVRFEVRFGUS0S9nFEVRFEVRFEVRFEVRJpFLyppWlSM9zrbUOlpT48QR33oCH2hZvK37d0iF\nvnHzl5z4P57/oWh3ZTdSrGd8AlaRTz7yvGjniYeV59Z9SJe9dc11OO7ZUiLxz5/G37p5+S4nXn7P\nctHu7a894sSLv7IWfzNOylV6+yFNuOyfIZMaaJC2dXueh6xp/T8hTXrz2/tFO04BnHebCTl9JIPJ\nv0HaQw5Q2mNUElJhU8plumHbbqRrVr6KVN2MAimJYRlLXQdS2JbeJdP1u4+RJW4dji83CynGMaky\n/SwuD9epvBtyiYzLpDSFpXDR8UhNa9omLYTdJEnou4BjGOqUKb2+QaRLZ3pxTLZd86BlJxdKap/D\nNZ/2gPSV7fUiNbfpDUj6XHmJol3mWlyntLn4jMbT74l2sWm4Zi1nYV2dkGXJx2KQLly88G4n7umB\nDCzSJW3r2I607F6M88rHD4l2qdlIPR7ugXSuo89KUW7G2CxYgfM798xx0S7ncvSXkUFIReKSZT/3\nLpFpl6EmhiyPbSkOS6/8jRiXLCM0xpiIKZi2fSRxYHmDMcaEU5pncQbZ1VtzdJCkid5ZuMeZFbgW\nyfPlvR/fD7mMfwDn8eqL/y3adR9Ayr+X7DADlmV0YgnS/NmmtmO3lENyOndYBHLhbUlh2vKJswwd\nqMM8n75c2iHWv4L024LbsH6mLJB2wh0HcF6F12FO7rXSfln2k74aFo2eufJ+dB/GdY4giVhzJeZC\n254yjiw6m96EHaRrikxJr3j6ZSfmPpZSLs/JR7KZmCIcX1iY3GaEz0L/6z2LlOLie+aLdr3nJnYs\nHj6IezVnmlxDUnPRB1PSId+qtaxu287h+IMjSPN++oOtot1dq5GGH0fXd+5q2X/YhpmlQmERuIa2\nhTnLMSJpfKRZ0oKnSUqxog3ymJJM2Zdi47APiCC9Sd9pmZbNNsQdtPcZb5LWtIvKpRwqlHRW4fq7\nM631uB3r8SBJWzwzpIyrl+xhC++EBWzbPmnVHBuD8XP8OGxwMz1S3rdlNyTbZ5sxLi+bDfloUlDe\nm3mfwT759GvPOnHCFEs6WIj9VnQ0zsNyeDfDfZiT2arZlpfH1mKuWL5irRO375ft2EZ2Iug5if7I\nsjpjjAmnuZ1l9GNBeUzjJOGMpr1shCVTbziJ8ZOShD4T2S5tnXt9WKMySula0366sknKEldOQ18v\nKoMUZ9Ba777xi8858fnnTjhxkiWVjyfpaFQizik2NV60Y9mej6Q8vgprPRkiG/mPmZCy4F7s8fc/\ntke8Fh2JezDSh/1X62a5P0xfV+DEKYuxvtj3kG3pgz3Ynx/4xU75eem4nsFRnPsj99/pxIllUprM\ncuSvf+XjTrzn7SOi3cl6zA+/f/11J/7k1VeLdr1+PE+kejHuE6ZKaaO/BtK3wSbMXWlZsk/Ye7FQ\n030Ka1yiJb+MS8Xz2UgQc2qcNfdySYtOkhelLpLytIEujB8ev4n5ct4T5RWq0b+TinA8vnOy3EPv\nSVqbezAfurLkfjrYjf4TS/vztv1Sih6+FJKn8TEcqy2n4r45Noa+3t8sZbKj/x9zqmbOKIqiKIqi\nKIqiKIqiTCL65YyiKIqiKIqiKIqiKMokcklZU/7NkAcFLKnHN//yOyfe9q2fOvHcL8rK1/0+yBjY\nJeTAD6Rj0YZvfcKJo6KQ0vTVp1eKdp1NqJKcnrcB/9+OlN0Zn79SvOfpL25y4tqtO5zYTg2cfiuq\ncTe+hzTvRV+V+X8/uQ8yqYgn8f2Wf0g6F00vRRp69fOoRH3TgzLtLdAhr22o4Wr9XVZVf04hTaSK\n1kPd0vkgay0qbntmIJVsyHKcaTiHz582F+9hKYkxUkJVeDVSQQuW4lqHh8s0/EAAKcJJU3E9a1+U\nLkLxheg/+/4Lkp1Zn1gg2nVQ6m40pbMVXLNItOOc4V5ySxi3con7WpHmN+cGE1IyNhR+5GucYpdQ\nhjE2FhwV7RJTIe3p7T3oxHEZUv5U9xocvabdCaubsTHpjjAygJTUE2/82onjSX7G6YTGGDPqRyof\ny2lK7pgj2nGqr3AD+terZLsnkWoal43ziK+XqYvJ08nloR/HVL9VyqkmmpE+nHPaUim9GaWU47ER\nivtl+qOPnGWGe/F5w13yWrOsrfgGOL94p8q+FBaG6zs0iJTR/Jsgtwmz3CHCIvHvIpo3Ii2nguIN\n1+I8xnB8x3/zF9GOJYGp7AK2Wv7dNBpyPScg50hbZslD2K1powkp8ZRy27qzTryWOA3Xgl3Pqt+s\nFO1yyBWL7+Erj78v2m16AGtZP7lSVG2RjoSx5PyQXY7U4Zm3ww1h2HJh+tHDjznxXz+EfPG5nz4q\n2nFqPbtMNX1wTrTzzoPlQOu53U7sSpPrLMtFUufjXtf/VV6jGK+UtYaaMJLs8HpkjEwr7+5HXGNJ\nH9h9Y/kC7JfKu+QY85QjFZ2lGa0fyLT+pi7c4+wUzOUsIRoZlfM6u4GUF0GexcdtjDG3kivJ8Vo4\noZTnyhRylhPnk3uKd5G0lGCnpDSDfh8RFyXaNVdIN6NQUnwT5rXmt8+L1zi1nt0O++uk/HyAZD+c\n4u7Kkan6tX24nvUk2X7igw9Eu/uvxJhdvwpSveT5uH5TV3xSvKep9lUnLt54mRMPDcn+1nYE0uyw\nCEgCvDOlS000uTUN1OL8Zi6TbkC8l2Ppuu3gdfY5KRMONf5G7J3sfRXPPyxvsaUuqYsgg2EntuE+\nuS9neehoAGvr8uOWM810XBuWIEeTzCrdSJmGm+S5vKaVfVw6ufp7MAfO/hIkj4OdUrbNxNJ8yBIQ\nY4yJceH+j2Sh30dZkn9flZQmhpIacjqbsV5KGev3YL4ZI7lm8nzZb1n2veUXWJPS3HIsppOchV0D\nq5rlXHOc3LOu3rjsou+ZftmnxXu6uiDJ8jdgn7x4vdyjntiJ9eqOK1DeYuV0ee7HqmucmKXYbzy/\nTbTzkjvQsg14Fo3NkP2S3YomggTa39hORFHxkOexw6MZlVLEpGm4P9EJuKf+Vjn3RtD14PFsyzQ7\nD2M/x/0n0IoxFpcrpaIMy/6GrOdtlgt2HILkMXeNfF7k/euIH2Mss/AK0c7ng6tmdy32ae5cWUIh\nPlPux2w0c0ZRFEVRFEVRFEVRFGUS0S9nFEVRFEVRFEVRFEVRJhH9ckZRFEVRFEVRFEVRFGUSuWTN\nme995pdO/Ol7Zd0V3xTUekidDn1qo6VDHyILuYeeftKJG868JtpV/O4tJ06ai8/rP98t2u3cBe3r\nomJou370Gj7vkQelnvdXT0DPG0fa/IJ0qau96WHU1+g6Da1v2hJZp4XtXEs3wS6Vtb3GGBOVBH1+\nYgHs0FjjZowxCXm2bVhoiSRrVduWN0g1Y4R9r6VzrHn+pLkYjfVSEz1tfZkTv/kMNJXrgvNEu5yr\noX32k513RxNqArlTpSX62VfRR7g+jm25zcdevBH6z6ClPZ5yHayc2w6gxpCvUVpo1h+D3nHuJ1GP\npvENWfehjCzgQ81gC7TItW/IuhTJpO8cphovRbfLa964DxbuKXOhf7fte2sqcL4FAVyLiAhZO6K3\nEve+aNNSJ274EOOyeKPUWrsyUEvGm4uxU/PhFtHOS3rvrHXQTXcdl5riQbJx5r6cc3WpaNdzBrWC\nOvdCV1r2qTWiXV+TtKkNNWNU46llq6w3kUl1nbhujytNjsVwqvcS6MD82m/NP0HSySeXor6Nv7NV\ntItOwvjpPoXXkkph2yr0xcaY2FTWEUP3m5Anl5TxcbyPa0bNeeA20W5gAGMpLAzzVVyytI1sOQRd\nu5dqOPTXyHUiZ6O8/6HEU4a+GWiXFqlJU3HNeL4JDMuaW1zborMCfbPIWpOGOtGu6zjuTdnl00W7\ngjXrnLi/H9dysA33ZnxU6seTSeN+7403OrFnjlW/gtYx7gdcY8YYqRmPisc6Gx0j7TjHx1AHoHkr\n7CrtGjODzbJmSqiZvwBr1fFDZ8VrvkFc9+YuWHReMXeuaBefimsYSXU+Aq0+0Y6tiNmOPMorazR1\n1OB95XcsdGKu7bZt51HxnpYejPvTDZi7O3zyGLyJqLuybiHqJ9jrZ/tRjNM4N9W6sWoWtR5FzZPU\nMvTbvgtyLOYulPWgQknbdtSyiPLIfVV/Na6LKwvnzrbzxsgaJDye/Q3y+iXHY/1LdOG6fOpyq54I\n1R7k2iBc76M64Vnxnkiq03PysVecmO2EjZF1kvz1sN7t2ifXrexrsL/qP4f70dgs1/oZNOZSFsi/\nxXjykj/ytVDA9rajfjlXjtC/+Vyi3LIm4RjVEem7gDHrpjn5b6/hM9IWomZMfI6sWdFbhWvFtVCS\naO2Lccv3DPvJArkIe8X2CwdFu0iaK8PCIpzYky3rlfhaz5iLEeiU607zSdRJ4WuUaNk1D7VO3Jxa\nQDXq7FqU+Suxt+E1bcsr+0S7+VTDa9aCEid+9pUPRbtlQfTvtCbsjQ+el3WnHrz5OidmS/kwqqXV\nVC+fRWPjsf61HZZW6UxxLta/kimoJzLYF7hYc2OMMZFU24xt140xxjsPex2uI1n1zmnRzkPzUNEE\nPHLEJGEsRsRYNSMDGIuD7ehLXD/SGGPyFq92Yl839mxpRUtEu3Pv4pkujeYftvM2xpispViveuqw\nb2bban+zrNdUsAY1aSMjcU5+v+wjvQ30jBONsdjfLp8DkzKxX0jIx7Pp0JC0yGbb73DqZw2bZd2u\nsCj8rfSbZN0aYzRzRlEURVEURVEURVEUZVLRL2cURVEURVEURVEURVEmkUvKmq6aDxvA/KukRCIi\nAumQHaeR1pN/eYloN+VqvO/M5qec+Dc/fF60qyNrwo1nkKs1LUemWt7xn7c4cWwC0s/u6UNKU/Mp\nmYrWO4AUwF+996IT1+x5U7Rj67uUOUgx++e7fiDa/dNGeLPGZcHirf51mYLI8qdRspKefs09ot19\na5AW+9QuKR8LBQP1SM+1019LPoVrPdyP1DR/i0wRi6W0YLYLjDwiU0vZAu36T8ESMm1+sWiXlIS+\n1RyETIfT+c6//Z54T9tJpLp1kBQg0bKCZru6gQtI/S28Tlpkd5+rcWKRtpor07Bn3YaU9IZXYJ83\n5Y5Zoh3LfIxUHfzDpJDlLEtejDHGUKoz24e27LogmiWQtG7bo7i2xQsKRLsp0zDmuk6xXae0gmPZ\nXs1rkEylLUeaeFiYnGJ2/BzypUV3YFymLZa20jGxSJPvroZUMtqyEVgw8PsAACAASURBVJz5ecip\nONXX3yT7bxhJCRJKcR0at8tUw4gYOt7ZJuS4SSo0aKVhNr4NaUU0pZsnXSP7Y3AQKdvDlPJtnzPb\nHl946YAT510r02nb9kFmklqOe99xBHOFu0imR0e78dmRLswB7QesVNANsCPsOIn7mFggLT15vkmf\njrnB3yelX5wS3X0Q8gS+v8ZIKacpMyGlZQeOKTZdSs46DuKacXp+2bUzRTvKfBXW3LEk0zBGWq9n\nrStwYl+lvH795Vh7XHEYf7H5OIaK994W70mKw5zHqdJDllQrcz7mudFRksF2Skkr29KydWV/g7yH\n8WRRzNI7losZY0ygS1pehpoIF8Z6SoK8j6VZSFmviEJf4n2KMcYkB3D8ZTMw6WcmyHVxdAhysAGS\nHVTUN4h288og4ew5RenStC66XXIOzE0hiS8da9Cy3N6wHmNxLIDXOL3aGGPcJLOOpPOItSzRc1YU\nODHvb5LKUkS7/sqJs+/Nuhz7Cl+VvDdeku7W/AWy7KFBKc/qJQl78lzs+zb/fqtoN6sI42pxCfa5\ntvVzyT2Yv9jGuX0P5sbuk1YqPH3GqB/jaN/TUvYxbR7kIa1n8RlZs+Xa3EnzUOYVuEYxR+NEu8ad\nNU5cSuPy/PMnRDt3zkfb1IaCuDz87c79cv8+RuMlOgXrDst7jZHrKdsPR1qW23FZcr/o/J2gHC+8\nhiQVol8kJUFu2N9fId6TNgV73uYGyGXsY+ivh8SmjyS5wz75DBEeg7GZsaTAiQOWHfA4yaW9C9EX\nmrbLuTf/6hAvhkTFs5BbsrTPGGPK1uLvNpzAnBcIyrHYTlJMXytkvLPz5R5o5lVYT998CnvK+y+7\nTLRLKMW+JS4b9z2c5jy7H3VfoH0KPd+11cl5rLoG80Y/rQPFGVIWvO625U7M692JI7IEyNgRzAF8\n/QpXymen9oMTK70foXPpPColoCwxZGl7BMmLjDFmeBh71Jg43ANbUuSdjWvFFtkps+X9HuigvWgu\npIjR0Vhr+i7sEu9pPrnbiXlPGREh1/rM0pVO3N8PCVlcnLzu/L6Opp1OnF1wvWjHx5RYhr1TYrac\nU1v2S7majWbOKIqiKIqiKIqiKIqiTCL65YyiKIqiKIqiKIqiKMokcklZU8kVSEXrOiPTrd/6zQdO\n3NiJdK/7rpAuGQkJSD/70c9+7MRrZso07wZyRIiKQMpZ4Z1SW1D/BtL+2muQxnTVow86ce0e6Wbz\nX3cgpenha+904u+88D3RzuVC2mpnC1KifvjEw6Ldk4/8xYkXpnzaiUvvHRHt/vCVPztxy06kQX3N\nkgj8+r0/mYnEMw1SiqFOmQ556jdIm43zUJr7PJmax1Km5neQmsayKGOMqX3plBOz00BXZZ1o19wJ\neRCnj55/F/c320rVPVaLPtjWC7nSzVeuEu1aP0Aqpz+A9MCMbplKnEopZ9Vvb3di31mZvsjp+kNB\npPUJCYwxxpXtNhNF1zGkF7qstNykQtyr6pfhohZhpdKyU1DZKozT9iMydTEuBenrnK5+4dkjol36\nKqQeHv0T3AjYSeuVn/9EvCczCenR7P5x9g+HRLvk+UgjHqV04y2v7BXt5hcizbvo46joHhZuparS\n9YsiVxVblmKnqIcavo+DjdI5gY/flYwxyxJSY4wJozRcvoZjQzIte5BkTuxeFBUj3eHyVkNS5vFg\nrkxOhYzwzJsvivdMveYGJ+7pxL3zTJfSlLZquK+5SH7YulOuJyxFHPbhHsdZY8pdir4Vm4b5qnWr\n/LyJdPqJTED/4bnBGGOSSQ7rO4O054rXZUpregruQWIZ5tb4Qnlv2H2t9xQ+r+AWKalkV5iwMPSP\n5iNwTgu35Ct9/6+974yPq7q2P1YbaUZdo94lW5Z7773STAu9J0ASAslLIyF5LyS8hATSSU8geSFA\n6CUUG2ywsXHvvchW733UR13/D++Xu9Y+Ab8PGf31Za9Px8yeq3tP2efcYa+1yJGIy7JTDspcPdiN\nHNBErmcFN8i9mV0Iufy5YZssrY+ZgjnCa9Fee4N+6doSaOz/CGMyZ5Ys92+vw/4STOeRmcukg2DF\nUfTVoTePOO1Js/JEHOds73LkzfFb5fxx0/iHEO2KXSsnU1m3McacrMQ9HC4FlTXEyoGcbyqaMJfm\nTpJ7+DBRKpl+M+CTzh2JS5A3il8Fbai9R54xUuNHz+nHFYt7tSmvPJ+Y6lG2TTpz9ZagL4JoT7fp\nY5V16IspK0EN9c6V4+GJy3Habb1wThvqwnxOv0Sek+u24kzV2gpqR0a8PCtWnQXlZ8btoNcwndkY\nY9rP4Jmis3A+qHxDltJPvhvXqHgZZzc+Cxoj88uogGh77gx5vmGqWSs5bQV55PkmhlwrW5mOMSzv\n3UV0jO469HVUlpynwgmmkanEcCFlxxpjjKnZiXzrzsBZh11gjDGmeReoPREZOIN4cmT+76nBHl69\nGWfm3ka5xtKIusbzPnVpjohj17hAI86LvTqe9vP//cO4p+z5uKeR/XJsUjJx7gmvRw7OWSkpJkwF\nvvJuuPJ0l0vHytSlyMPDQ3h2Pm8mrczhr5j695FDi2qx3k5VyDMGIyGanj1Knil3vw5KeW4i5uji\nG+aLOF7DnO+bD0uanytCUmYDDXY9irGczpiuzGfZpELpMunvxGfsKDrQKfPUUD/GJIn24N4OSVGN\nTMxx2tHROPu0tOC9zS416SVnsjo/xiAqV67zMA9yZfMJjPHIULmIYzfJmBy821adlWfjlPGrnXZX\nF9bsQJ/lptomHc1saOWMQqFQKBQKhUKhUCgUCsUYQn+cUSgUCoVCoVAoFAqFQqEYQ+iPMwqFQqFQ\nKBQKhUKhUCgUY4iLas4Urr3LaR/7++/EZ3c88Xmn/fvPP+G0sxasEXHvfvsxp/3DN19x2n+85wsi\n7t4//LfTvrARFtcjFl80mmwaX9sEvtm0MugUDPcPi+8w33NBQYHTfvTW74m4FrLj/urXbnHa+zYe\nEXF3/OennPaW7+DZ137/fhG3eir4p2wR97dHXhFxuUngsN75hz+YQKP1JCzpYqdIbuAnWWW2Ha8X\ncdHrYR2Zezu0Mcoty8WmWnAl2e4vdpr8uz2V4JO21IOLxzozA23Sjm96NjSBEifiemmWffuhX0Hn\nYuLV4CfalnmNp2GjHE9aEc2WVV13Be51/C14dtZVMMaY4QGp+RFIxE3D/RX/VWq/1EdA04GtJmMs\n/Y/mPbDyHCHbusS50q6+uxRj2HoQ3NFc0kQxxpiWw+in1d+73Wnvfexlp91h6Q/0DaDPsjxYi9FT\n5L0y17V2CywHl62T+ghBZKF8+A/QiYqzrHFDY6Bt0XEe/PHExdLC2ztb6hwFGjEFyF+sF2OMMd01\nyBFdFVgTA1Yc276z/gxbAxsj7UT7SLskNVf2Ycke5KPe8eDCsw5M3iUyr7POzBDx2CMTckRc3SHM\nVd8R5JRgj7RebK3EmMx4YJHTtnVHhgdxT8zbH7b0SiJzR0/nIjofOhBlz8v858mBzkDaWvDkYybJ\n/Lfr98j53WXQDGG9NWOkxfXSb19Gn8g9rvxN5LL5913ltKv79zrts2fKxXfWz5rptIcGkbts7RfW\nBCu4ETmgcafk4MfPhnVxvw986vTLpb5G0d9huZq6EPor/nqp32BrZgUaaXGYIwePnBOfDZAN9fgU\n5N4e2guMMaahDes0iDRe2ske1xhjeknvxU1zJCxMroPOM+Dac76NnYz5014k+fjz0rHOp2Qin+0p\nkra8p0ibZuEqXPvcu9IOeGgYc2v8Isxh2/6Z9Zaik6ATEjkgLbdHBuRcDSTqd5Y77eSl2eKz/g7k\nvE7SkZt080wRx3m4eR9yyrRLpa5TUAjWZkQynjEiRq5tRuNurBEvafTs/tV2EZeWgJwSR5oV7lxp\nYZ2Wg/GIzsJ6Y50pY4wJpz2i5RTGPXaqvNfuWuw5SatzcL0gqRnSuOOT9TYCAZcX/dnfLs99bJHt\nyYbWSFhcuIhroHzEZzZfl8wr+ctxXmTdwK4yuWajKM+zNXljMTQq+DxjjNRbYov7szXyTMlWydmN\nOOtkN6eIuC4f9DoiYzCm/9gptfeW1eHeUwtxDdse3LY8DiT4/BGeEml9Rn+XzgvjVxeIuFjSDXLt\nw3mVz6HGyDPROJqqbD1ujDH1u6Efk7EC6967mHSirP3OnQX9mKn0frT42nki7thGvN9NXkKaZdb1\npkaSdlEr5kfnealt6avCGI6jhwq2tMNCPKM3hsZIXVI+XxtjTBhpfPEZq+W4HJ/QqLCP/Q7bbxtj\nzCDtIf3dOAPa+nhtVdAJKz+Dcz5byPe3SA2XENKz4zNzxWtyv8u4AnMwOBx9a/dzWBTyTU8L9mD7\njNrajDPXYA/mqf1bxv8FrZxRKBQKhUKhUCgUCoVCoRhD6I8zCoVCoVAoFAqFQqFQKBRjiIvWDQ8N\noUwowSr3rz+E0qCbv44y6t2P/knErf0+6E8+H+ysLv/apSKu6uCHTrunCqWWBRuuEXEh41H+eFsH\nSgPZmvXJ5zeK79y8ZInTLm0AxWcm2fAaY0w1WYKnLkUp9i1rV4q4n975X057/cwZTjs0VJagxkxH\nCenLf0Qp1trpkh6y7gdfMqMJP9nxReXJcv8BKiEdIiu3yHxp4RidjLK9/n6UdcZOl5bbnWQtmLIG\n/es7IsvejpxEmRqX7jfsgtVjYa6knDCVqf4sKBKpq6RtaRCVBNZsBiUmcYGk77QcgEUdlylXXpD3\nmkT2z/0051yxsqzWd4yoYIvNqMGmCXRXorS+j0v7rCq66Ekon+04i7K8XotOEE10qN5GlNXGJE4R\ncfVd5bheA8pHM5djPCZ4ZWn4iRdBEewmatv5/SUibj6VTDL1KCJJ2mz6zmA9Z85AqSrbahpjTMtB\nlBVHkl1tf7u0h2W78dGAvwH9aZeYdxBdYZioAFHWWuxtwjWYHphsWUL2Ea1wgJ6zq0tayTI16vwf\nkaPjab20n5DUTheVLbOltWeJXLNsrxw3F2X4lVvkPdS0oqR1TjiuNzLULeIadpQ77UiyoE63yqP7\n2kfPSruzFPcaniTLdLm0e4AsqIcHZXl5dirGvqMT48Tl7sYYk5yCZ2w7j3zVfk5SW5hS1N2NtZgy\nF+svcuMp8Z0eP+bElM+iZLurSlJ3GreVO+3QaOS86InSZpPLoXncmd5qjDFeongJap9VDs5UztFA\nGdlJM3XJGGPKGkHhSc5DLhlnWcTOcEtK7T/B42GMMYdeOeS0u6qr7XAH1zx6rdMeJuppWubVTtsd\nv1N8p60MZ5++OqyrZdOk7ffG/biH4W0oyU+wKKBesoVtOUH77LIcEce2qJxD6iubRFw3zemlJrCI\nKcQcbCCKkzHGdF4ATSDtcoxTD1F5jJGl8WwZ3XasQcSVk5X28gdWOO3mc8UiLiYf9xQUhnzAtOc1\n371WfGd4GLmiswr9F5ebI+LYqrn1LMa9dovcP5k+wDnJu0DaftdvBSWay/iTl0mKWMpaecYKNJh+\nw5SI//03ckk/0XOHLArLQCs+q/Nh7Pl8aYwxvqMY18h8nAV6ymTe43vaswv0VaacVDfLPOwJR36M\npHZKrLTITqV/HyzB2IWGyFeyXqJN8fvJVQukDXNvL9aYdx727Z7aThHnOyrlCgIJtqs/9uJh8Vlm\nHvLryVPYn1bcJTNCD51FhwexFkNi5Jxg2mxIJOZHsmUdzrS9njaM+wCd48cFyxoFdzryn3s+1kuE\nV86jmbRfBZF0xp5XDoi4hVfPcdpxtBbPvC3346RYvGeU1uNepy2bJOLazsr8GmhEpOGMzVbuxhgT\nlYl9raME8zHWOm/3tuDcVvsu9iR3tnxHZnvqhPxCp93fLylfwcnoN6Y9dhN9+Lm3t4rvvL0V//7s\n9dc77fBQSVe6Zimo1by/V7wq6U/e+VhXUXk4l1nHFuNvQJ+54pCH3bHybNwaJN8zbWjljEKhUCgU\nCoVCoVAoFArFGEJ/nFEoFAqFQqFQKBQKhUKhGENclNb0zjcfcdrzvrhMfOavRrlYaCHKyqKSJe0g\nIgIlQ231KOOy1eCPvQZXj8se/ZzTbq07KOJ+/sCTTvtrv77XabOjy+OvPcJfMSeeQHnTF/6A7zTs\nLRNxaQdAfXjszl847R+98WcR981nH3faW7+H+6k+uVnEJVJJ3HeXf9Npb/vB2yLuyE+fdtrLHvlv\nE2g0lqEMrq1KKtJzGX1SEqgkrVbpXOIcjOPICMo9BZXHGMOjyuWo9VWy/HPRGiind14ATWDql+EK\nExTkEt+pP4T5U0DlzDWbJUVi8q2z8J33UULZXdom4kJJiT2OytCDPbKEktHbiLJL/r4xxoTGhNvh\nAQM7dKQumCY+iy+A4rnt2sAYNw79mTiLyj0b5VgzDYHLDtsbT4u4nCvRzzwnDFX6d1sUiaXfvsRp\nH/8lHGvYOcUYY5r3o/Sfy63bTkvHkKzLcA8lL+132h0XZFkk04mEG8nt0rmDHUhGAzFEBanZdF58\nxmruCVSaHJEsaQfsFtQ/AY4Q0emybHIoHWt7sA+llr5K6UzjIjV9dm8LCsNcsks32f2KXXaO/vwt\nEZe+Hu4i3eSG4Y6Qa2XmQtAmuay//Ywcb/67PFbFzxwScZlXF5rRAs8lHidjjBnoRJ9XvQGK5rA1\nr3LvBB22/Dk4LaVOk3QYBpeo+yslNWP8dSuddulW7EO5q9c57Vi3pGBF0l49QJRWd6rcw+vIkWjc\nfmT48AwZFzUe8zKE3TnkVm8iqSS4+j3k7kjr75Y9j37J/sENJtBYNBe0H79FvVqyEuOzdwfuw3Zn\nWb4c+aOLzkTshmeMMZMWICn2NeFvDfnlvKjfiTOJdx7OD0NDmFddjXLPDaN9J2oS8oG/TlL7IiOw\nzpnqEUX/3RhjkudgTrfS/n76XVmGP34+qC4eKlfPS5Ll/zWHq8xowXcS+SFtjaTeJC5APqz9ANQR\ndvw0xpjGHXAzCk/Bve/cdVzEFaSBttFTL8v9GcHBmMdMI4+bhLUdGSmpCh0dcDDjtdNeLfuOXW/i\nCnG9hg/kWTZ5RQ7+Qcn77PPHRFzWEsR5MjGGtrNIw/Zyp50/xwQc7AoT7Ja0g+Zd6IPQeMx1+x7Z\n2Wj8zBynPWS5ajIqj+HayalyXjB19P3jmAtfueIKpz0wKNcvU55cRJ9Imyhpk32NyAHxRCt0u+SZ\n91h5udMuTMe6PF8t3Z/mrodUAlO1+5olLdh2LA0kqjbiPDP37oXiM6ZpL8qns541hkyPzLgMVGV/\no8xlIUQP6ijG+0PNe/JdgNf6UB/OqAmzsJbDPJJqw2MYGorzWliYpPG2upAbB4nCPLkwR8SdfA95\nk8+e2cmS1p68DjIQA5twrzaVNn1dvhlNsCtR6AT5juMrQq7spXNQn+WU1H4aZ7j4OeQqZz0Lo2oH\nzu/jQiRlkR3bIimnhpIj0+1XSkfRa+aD+udOQF73WvIWA13YW9toP8n+lMzRLSTN0XLw4yUxjDEm\njCilsZMxn8OjZR+lrZJUfBtaOaNQKBQKhUKhUCgUCoVCMYbQH2cUCoVCoVAoFAqFQqFQKMYQF6U1\neUk9OsSiejz57DtO+5FnvuK07XJevx9lgyk56512ye5XRdysG2Y77eo9e532gX9I1e8vPHyL0+YS\nzxn33u20m6qlmwGXgbndcLr51S8eF3H33wtnqAc/C5epxvK9Iq5+K0pkF3x9pdO2qVqDPSgV95Wj\nDHHiYunwEF0gy+UCDS4c9Pf3i8+4hC+DqAC9LbLMe2SEyzfxncjx0kkmIh0lvcGkYL7gqytEXNMh\n9Mf4z4Ca4vWudNoVp18S3+Hy7XBSTvcNyzLv8ARSyM6G8nrTMamOnbIYVK2Kt0H1mHDrDBFX+hLK\nEifdB1cTn025iP5kOtS/C6ZTNRyTKuKRWeQ4QOV/7hRJh2G60smXQSPst0pzM1KhvF5wL0oD63bI\nktHBnnKnHUKlyKyef8oqhZ9GJdYTbgMlgBXOjZGuGRc2Y2wWf+syERcRkYPnaILjG5dS/u8FcT0u\nnW07K8fQTUr1ZhSqR30nMVdDLbev3lqMMTts1G0rFXEpy3Ocdh+5VwynSkeg4GDQFXyVyMN+y8Fh\nkCgt4alYVy37sEZPlJSL73SfBGVnRjacPeZ+Y4OI66zDNaLWk8K95YrV58PcdKdizZa/Lud69lXI\nUVwi20COQsYY03oc/Zwpzc3+bfQTLYXL/Y0xJorKqNOvwB+u/keRiGuj3JF7B/JNX5ssffWkE9WA\n9lZXgqSiNBwH9SZzOdZsdzf+bqRFOeYS97YzKENm5wljjJl5HfJzGM1Zu0S+bivmKdO9emokBYsd\n4CbeDY5Ef6d0Tqt7V7rgBBod9biv4nq5hywmJ7Voov0EW84vB/aC6jmd1sGPH3laxGUlIqfOzUdi\nKbhCOipx33eWoVzfjMCBsov/u/lXGsg/wSXfxhiz4XpQ03duwrkqJ0k6bZzdgTkzZS1Kuxu3ynGs\nO4HSbm8W1nZdqcyp7JwTaDAdpvQZSUMa7MO+lnf7x9M+jDGmtRP5MIJo3q1dkkqRvxrrmV3Lhvvk\n/ln+Jtxaouhs53KBSlGx/13xnXH0HEyN9B2W89K7GFS33Y+BvhgUJNdiEu0Le17Yh2ewXMliyTnN\ndxoOMX7LpYX3o9FAB1Hbh/yShhRGjngRqTjTnN56VsTxeKX24vm9UTLv8Rk4mqieYV6ZU9lJ7sGr\n4EjrycD+NHOcPPN3+pG/+e/w3m6MMe48nNlCatHvVZb705QMjHcpOcitWTJLxFUfxP6ekAHah+1E\nxNSvQINd2U4/J90dJ14LKv6Z9zFu0RalcuJNWKcffH+T085IkJSzqPF4xiAX5mb+TYtEXG8H+rOT\nnH3iaN77WyQFPilnudMeGcFcbKrYJeKi83BPTKfyLpSOaOzcV7wJzx7skWvKT/skO842HZfvLdlp\ncj4HGv3tmMPBLnmPsQXkzkv3yGdIY6TkA0sj2PTLhnbIHhSupfdPizaaSC5zzQcgecDuqvHzpKN0\nw2s4E4W14zk6S+T+OdCGectOcWWvybNndDbWLK/zrCWS/sS/A4S4cb2WInmOZ7pl0lrzL9DKGYVC\noVAoFAqFQqFQKBSKMYT+OKNQKBQKhUKhUCgUCoVCMYbQH2cUCoVCoVAoFAqFQqFQKMYQFyWSMsf9\nox9tEZ/dcyO0H0IjSP/jmOSB5iwAF7m5YbvTHrJ4ur/58YtO+4evwE666HfSmjXlLfDA4tLBASvv\nP+m0dxw8Kb5z96/vdNp/uf/7Tvv6hdLu7Y3XYO0b8y4svO/+7QMirm4IXHhv0kqnXVMkecQ1ZC0X\nFkd6KZYWSPM+cOhGw6bQQ/Z8EfHSTpX5kMHhmA5RpGNijDHtJeBldleCJxiVLzVn2smCOzwRz+nx\nSJ2djnjw/kLCwZmvrfyH03YnyWvXXQCvM6EA1rvjgi1tAuJCsl1ZMtlGGmNMdw2eI2MNdADaLC2Z\nwSFoedSS/kfsFGmFF2xpNQQSrK9k8ztd0RjTSuJJ5t02XcQN9+M55n1hidMesXySB4nz3XISc9O2\nCvfkgPfbQtbXzcR/nnWznNAjZKk41Iu/07xTWoaGxGLOrnj4dtxDqLTcbqnGOvUuh4ZQ/WbJ75z2\n5SuddmcTeK+2nkvQRaz+AoHYyZgzthUo26X3kT5Q3LRkERcUinmWNRdWyaGhcs36fLAmjEhEjrY5\n/cW7sH7m3IOcuPN96BLNyskR38m6AVoZjbthr9hRUy3iUiZAa6r4faztMGsuxU2CFkITWe+mrpR/\nt+496H0lrYLGB+sDGCP7L9DIuh7PXvGKtJdPnAtudP2ucqftSpF5t4dsl3lOsK25Mcb4G8G99uZC\nZyB8tuRXR0Rg7rOO2MAAchzzqY0xJuMKcLyr38VelbI0R8QV/xX6AReqoDOSkyTzXxjxq9mGNm6a\njHOR1SSfMWwdopCo0dPwMsaYqHjsT71Vck1UHcKc7iNNrqkFOSLupa3Qt5uSCevmm5csEXGdpIER\nF4W/OzwodaJYu8s7ayruoQd7kq0l89HfdjvtiemYF8fLykXcnFnYM09WVDhtW1slgax9e6ox/1wh\n8ri44zTm/rQurMU4S5fHP/DJVsb/LsLJxjRmktTOGSRO/7mnMYejEuX5a+4DS5329l9sddoLJkix\nqiHaP3uqsa5Yt8UYYzpLoW3BkiTNF6CBEJUnzzbuKOSNoufed9pVtfIsUvYyNGi6aU7Vk929McYk\nHcX1U+OwZyavyhFxzUewnltPQvskNFieZTKvk7oKgUZ7Mc6XEXEyB7KOV9N+aJixXowxxnjCsafE\nRWJexM6ROjvVZG08QGe7iBj5d8NI14v1qUI8WKNJ86W+SDKNdxidtUM9Uheq/sNyp50ai337VJU8\nB81dQppUJONi5/L4NFwjyIWxG2dp4iTNtLT4Aohpd+Ksx/bWxsi8NmEBztq2buO7v8bcL0jFvUYX\nSl1O1neMLcS6DwmRuWegC/MlZgKu0VmBNcr6lcYYc2HL606b92n7/MvzgHXoXNb8rXgR8y0hHWvR\n1nHyky5RzBQ8k9vSmOksIQ2v5Sbg8DdBlyi2QObUul04L7P2Un+b1PHivumkuRA12bIjP4Bn7iLd\nqYwNE0Uc60Qa0tcKT0Jfh1q6uBMuxfkmhN6f9j63T8T1kFbSjKl4T40tkDpHpUewZ06/Hmex+q3y\nHWLCXQucNmu1th6tFXHWa9e/QCtnFAqFQqFQKBQKhUKhUCjGEPrjjEKhUCgUCoVCoVAoFArFGOKi\ntKbCL8KW7OVbfy4+i6tE2e9n1+Q57UOHz4m4oL/+1Wlv/RD2jXbJ6Ow8XOPR237otD9z31Ui7tkn\nYeH91Qc+57Qfv+d3TjvbKrcODUWJ592/+7bTbqk4IeKqf4WyqvxkUAkuvCAt1JJWoIS3u5uoNtnS\ngtn7AOzB33/490770jseFHHn3nzNjCaYypRz/RTxWdNhlP01FfC8rwAAIABJREFU7wUlwZ0dI+Iy\n18MKz1sIqlCPT5ZqZdx4Kz7rAX2kvUnakrnonnpbUEbH1I6Bjj7xHbbNbKsEvcFLtq3GGFP+Amht\nTQ0oAUxMlZSY5FW5TruDyvCTyKrYGGOqD6HUdJDuqfWotLgT9rbTTEDBfTHYLcvEB7pRUjjps/Bk\nO//cdhFXU4qy5bmfR9n9macPibh537jUaV/YDhv5yDzZf4ZoOYV3gOZ49mlYIL7z+/fFV9xhKD1k\nG8X8KVkirq0S41b6Np5j2s13i7jwOMxTtsjLvknO8zN/BuUw5wbQBexn8mRIalCgwXbDfste00O2\n75HzUC5tW7+6YzHfz7wMu/n0dTKntpzE/PSk4drxU2WZN5v5RiSh5H9yOv5O9FRZ3tpPdq/JK7CO\nYlIlfbH+/HbcQybGqvWIzBtcph1FY3Lsqf0iLiER1+B+iciKFnFMnQk0mC5hr8Xq90APip+Jfq5+\n67yIi0hDP9duAa0sMlfOx/RFc50209bqTx0Qcd5ClOeHhWHvCgqi9WbRPiIisI+lrwelqKdOWiZH\nFWD/zCNqR+q6PBHHNL3YQqJquay50w/qq4+s7NtPyRJ3u5Q90DhZhP0pPV7STJJzcc/ndmGPfGeX\n7PcjxRi7bLLLbu6QfbhsEmghB87jzLAyV+6z/jrkBKabxo3PcdodFySNlykoda3Im0NW3fSBIzib\nbd4BCvcvvvxlEVfSgH3i6GHYasdHSjrQvPFY6ylxmJu+LmnXu3B6oRktsNWrbWsfNwvrL/synFn6\nWqVdfTDRRAumYk1sfF+Wv2fOAm0tYRYoF8MWHS95Cfaysmdxxsy9AzTj4DB59C5+fbvT9jeg//Im\nZ4q4IT/K5G958DtO+8mHHhJxZSXIr4ULMU61Vgk+00aZ1mPb0ha/SM8x4xYTaLgTPZ/4GdPt+4ki\nlzpd3uOZPcixta04CyydK6k8CWStnbYE4x1iWdJXf1BiPg57t8KyfdEaeeb30TkynujISQvkOLLd\nMlNCUkbkOegs2U5npSKnHtkr37Mm5+D6TA/1WOebkQFJowwkBE17SK6Jpr04Q1efx7kkzKJKJkZj\nH4+IwnyMniDzM6+5Rrp2wvXzRNxAB94Fqt9ALossQL90V0hKYMaamU67fh/eW3xHpa29m84c3X6M\nYenz8r3SnYr55krEuSSmUO6LbBF9dBuoULNWTxVxozmGxsic2npCvuPEkZQDW5Pb5yAPnWMSiErX\nYlF7kjNAHXJnoj+ZdmaMpNfy+ZCparZUCtt5d1WBhjr7Crlmq4l+PtSF5yiuaBBxuZOxZn307sfv\nkcYYMzSEs/FwP+4pfZV8KextlxbuNrRyRqFQKBQKhUKhUCgUCoViDKE/zigUCoVCoVAoFAqFQqFQ\njCEuSmtqPoYyq19t3ig+6+yEUn/FNlAfPvfUEyJu68OPO+3kGJTwphA1yBhjPEUomR2fgnJUW9H6\np5tAmagsesVp9/TDrYNVvo0xJjgYJZOl733gtIf6ZeldWzfKSbPJkSMqXdKk+qhkmV0yvnX1HSLu\nvm/f5LRXfQ+fVR39QMSxW8doIJlKV21nno4TKCXPvoXcIazS345KlHEl5KNEOy5llojr7cWcaSlC\nmWnW7CtEXGPVdqftb0Apd+pyKLn3NMrScOGiRCr04Zb7Qu6tKB/r+yPcfMbfKZ2DGvaVO+3Y6ShB\n5fJCY4xxk9tVIpUsj7OcfWrftVyjAgkqGQ32SCeF8GiUR5a9g1Ls9tp2EZc9A/c+0IkyzIk3SVen\nqvdRlskuY9ETJM2A6Q+sSs7z7YrZci3+/OGnnfb9X/iU0+ZyfmOMuVCH+bbgWzc47aEhOS+HBvAc\nrKbvOylLUGOoHLOvDdfoqZJzjJ2QzCgYVAjqx3S57hPIgadxD2ijQz2yZDQ6F8/G5aStp+Qzjwzi\nb0WmIqeGhVk0k1bQOxr3o0Q4cRbuZ8QqU06cBNrYuHHos/Y6uQbY+auXXACSLerg9l9uc9p52Zgz\nmXNlmff+LcecdgpRFmfdK533mvZWmtECP0eI5cLBNLmm3ejLyV9aJuLq96Kfwqmkf8KiO0VcRwf2\n2a4uokZZpmJMZao+/KHTjkhGbnSnSNeH/n7MF3ZOs+khXIqdcSXoIUN9srw6b/E1TvvCVuzN7WeO\niziXF+XqPH8zrpAODXXbPp5WEChMn4a9xp0u+6anBmXU7HaTa1Gms7zIiUz7mTc+X8SV1qNEeuki\n7E8DPklZdCWhr4d6kVMvPAdqNTvHGGNMJLnUVDST45vlktTYjv0ghOilKanSlSKJKEphiTRWndIR\nbYjGLjgS6yAtU9Ime+skzSmQaNxW7rTzPyPPIuf/DBp9ew/cVHKXybGpfBPUEXYF+dzP5Xmu/kNQ\ngpie6l0kKSv7n4R7FpfCB4UgTzYfqRHf4ZL+gztBafB2SLpmDdF1nn34YaeduFzmyYHNoHA007kp\nZ4OkmFW/C4pdznU48/bUyDmWba3NQCNqPGgr9l7TSzSvxMnIc91lko4yYTL6oK0an9nulgl0jgkh\nhxfbMTKeaCdn9yNfz5oMmlhfk3QFjCMqZjC5JlW+IWn92USt9ruQaxp2VIi44nrk6Ahas5Eu6djW\n4sN4Zc3Du1XzYUkjGR6mvr3JBBTDtB/8C2U7DzllYjbaJdsk3bfWhz39Nxvxzjlpi1xjNyyC5IaP\n3ttqTvxGxDF1/uU9e5x2XhHm0cKpck00J2OsT7wLWtScmyVlqmknzhjeQlzPdidkN6j+DuT79rOS\nxlt0BDllQhrOQB1nmkWcd6GUcRhNjAuR7xrjgnDwCI3EHEy/dq6Iqz2A3OtvwPxu3CffrRKJPsnu\nZnETpUNp2Dz0af1RnCeCQ9G3/iZJQwpPwPXYdSvGokvnbcBBv2YzOTFHyTPBYAfySC+NIztBGWNM\nK8kJcH5xxUiZDneSPIfb0MoZhUKhUCgUCoVCoVAoFIoxhP44o1AoFAqFQqFQKBQKhUIxhtAfZxQK\nhUKhUCgUCoVCoVAoxhAX1Zyp21HutLMWSw7/Xx6AtXYe8bA7z/xaxO08Cz7vtVctd9rf+88nRdyz\nO2GRffx/nnbak9ZJ61y/H1zdsr+DD/jHrRspRnJHSzbBzjd5SY7T3vFjafO7gWyIW8k2rW6z5L6P\nDIC3+c13fuK0v/fjz4u4YbI862wCnzBugrQA9F2QvNBAo5HG0ZUkLQsTSfun9Ri4cqFRktPKUjV9\nGbjfs0+/J+IS5oMPWfYWxr6nWuqf9LVA9yOWLAe7asA5jc2WVq3Mdyx/Ebxsttg2xpgYsv1NmAPu\n5pDFwWe7XeZPRqRKrqG/EnxFtmvra5Z840jL7i+QGOwC3zHYsnys3Y11wBafg5YVOdsVs11e80HJ\nfyc5H5O4GPOj43yTiMtfd6XTrtizGX+XON4/fvxZ8Z2d+6CJc88NsN/ubpQc5RXXQUOkpxM81Yr3\n94i4SaTzVLftr07bnSEtaoWNM9n5eXKkdTbziAtXmoCDNXw6zkousZ90LhqrYLOXu1xqJHSWQ3cg\nMh96GMEW9zXci3+XvgYL4KgJUmOivx3zxJWAteSdgzzVfEjOkfPPb8X3iXdf75M6AMz5dkfg2b2z\nZA4cGMS6+sXL/3Da37znRhE3NQ/zMWoi1ttQv7RRTL9E2ooHEu2nwRW313wPWTbm3AhdgfZyyYfO\nWAb9K48HGgZVF14VcXGpsPXsJk51ZKact82V0NbqKscYiD3oQqv4jpvWRFgsxiZ+jhybvmZw+oWt\nrWXxXvLRa047ZiJ43QnWWFdvhA1sRCp0Wkr+elTEBYVJvnugwZazx7dJTQiet7lp2J9KqqW1KFu/\nBgdh7ew4La+3gGynw2jf6WuUeiwdZ7HuxwXjesdPgAs/MCS1ftykRRHrxrVZi8YYqTf3q//4D6c9\n3C+vF0aaQIb2fbZ/N8aYrgvYq/cdw5iytbcxxsybM3pW2p7xyH+tls6Yn3QIs0i7qn6/PB/O/CrO\npT0NWL8RMVITYKAd55mcG6EbVL2pSMRlZuA8zJpKTQexj9n22zzXk2OxtllnxBhjlq2Frk4s6ajZ\na3Hmfdg/G3ZjT7O1ZMLcuH7de5hjofFy7oQnfbLVdSDAmhChsfJve0ijpO0EcmBEhtTj4UOql7Rp\nWLvJvh7vwVWN8nyTG4O+mXPdbKfdS2s2LDZCfKejCNcLIStf1qswRmridRYjL9v6cnPzcAY+V4tz\ny5zpBSIuitYBn0sTZkj9J3e61WcBRCvZCw9YZ09ba+SfyFmYI/594Q1c47Pr1zvtQSvnHa+ANk92\nItbpkVJpFb9wAs4BXsrVJ+j7l9y0VHzHdwxjkzcRmlFtx2V+OXQWek2rJ0MDx9ZiazuLeZUyH7pO\np545LOJCKG+mXIIzX8d5eU7ss3TKAg3vVFhDD/R2is+6a5AfWXuvp13+PpA6T+p//RPuB+T889O5\n33cSazvU0vLrb8e8yFsCrcqgIKyxllMviu94SEst+zKct6o/lBp4fD5JpPfXhn1yn+CcmLAAcXYu\nZ42h2GycV/t65DgOD0v9TBtaOaNQKBQKhUKhUCgUCoVCMYbQH2cUCoVCoVAoFAqFQqFQKMYQF6U1\nLfov0HRKt20Sn937+286bV8VSlrdSXEiLu+OGU77j1/5m9P+5YvfktdbBRtOLkfNeHObiLtpHSxJ\n69tQvn3/2g1O+7dbXhffSVqIktaHbvqx0/7KfdeLuIx5uHZR5dtOe/O+IyJuzTSUtP7Xdz/jtE+8\nfkzEzbwFpVRvPorrbfjG5SJuy5/wjAWL7zKBRspalEZWv35OfNZPltkZG2CX2F0laUiV78Hyjiki\nyculJXrZayjn7u5DaaNtrbfxw/1OO+R9lPOtW4zy0cFFssSzeS9KI5PIOjLMKoN9+afo6+v+A33N\nlCRjjNn/HO5h6nKUXrsSZKlqRBZK8ZgyUH1IlvKlTR89i7v829EvRb/fJz6LIzs6LhMcGZK26U1H\nUBbLZaeeLEkB8tehlHFkECWaWStl+WdYGNY6U8SqtoIGeOfKleI7V8+f77Rf3bjDaX/9z18QcfW7\nyp12+wWUA9p0pa4uWA2HEBXPO228iDvy83eddsoC2DJG50laSv22MjOaYApB8qoc8RlTVYI3o2S2\ndIe0p06fTFQ9P+a0TbHppHLYouPlTnvz02+IuClZWEvX3neJ024iS3mb+iDyxrVYO/H1sgz2zCaM\nD+eDkJdPiTi2/eWy/r56SfuILMAz9lN5b8shSQ1lGmDqV642gQTTUvyWFXsvlZT7Z2ItDnTKMm+X\nC2X3IyMoi+2qlLSwSC9oLoZsUF0RknJR/hL2kJJiUNBmbcD+a+e1uMmgRbQRZbF2u1wDWZeihD4s\nCrk2xC0pF+1U0t9E1JH0NdKTnmmjQzSv3Nmy5DlmirQkDTSYJpufI6lXLU3Y/3xtmNOFU3NEXNFp\nlMdPW4HnbGiX+2dcAcarlcq3PcmSKhQaTTSTw1h/M6aizP2xv70svnMV5dQ0sv1m+2hjjJmUjv2J\nKU7Jq3NFXOVG0HR6aV16M6380ov1l0A24nx+M8aYINco0tPoObpKfeKjSDfme/VhzMeZn18o4oaH\nMQdjMzHX7VL9hAWgOPS2Ii/FTpe2r7/6zjNO+9ZLVzrtccGYb8M9Mp+mrcL4hieiLL67Us6j07sx\nNsEHsM9OmCXHsGIL9o/M1bi2nce9i/BMIUQlqN8i6SEtB5BTxs83AUd4CuaPiyxwjTGmqwzj2lyB\nfOjNkfTcHTtx/s5PxpiwNbwxkubUWEaUkzj57sIUTt8xrNm4GWTnbY0P0/o7inCv4RYl8MIHGMf8\nFTirtByStMnzdfj3lEycWyLz5DMN0jmgmXI5j70xxrTyPrnEBBRM3UpcKq3dmeJ1/O+HnLY3WNYH\nMBUzIwHjm3WVtHJn6tHnH/ml026pk/3nI2oUU1Vn5mK9RFlnQN9hXDue6Cs+a2w4n/I7Ub9P0lWa\n9iD3lH+Is1zmfPnudPj9E0779CuYy3nL5Vn27Da8w82+zQQcXfWgbbvi5JmBczlT5DyxUoIiNBTz\ns/b0R047xtpnw73I34kLMb976uQ5kqlMjVWg1IdEYF6FWFSo4WHMx/BwjFXmakm56qjB+DDdPHmh\nXDvBweiLoCC8a/DfMcaY+gN4B47PRS7rtM52bt775Rbyv3/jX/+TQqFQKBQKhUKhUCgUCoXi/xf0\nxxmFQqFQKBQKhUKhUCgUijHERWlNjSVwRslZuVZ8Fh6O0vqHv/qg0378zT/LPxCLEubLV0HtPihM\n/ulfb0Rp2ivfeMpp3/gzSXeo2g4qyvJbpjvt92+FAvMTdz0gvlPdjHLrv2wHvaG19SMR98F3/4Br\nf+cGp/2tGyT96dWvP+a0z72Gck8uwzPGmGBS4G/uRJnWmz/ZKOI+96fHzGiiaS/KtoQTgzEmiEo3\n2WWn9bCkCVRSH575GShucR6p4v/wH//otO+6BlS17ackjSGLFNbZfWLvEZSEFTbIktHMxTlOu5vo\nBB88u1PErV03z2l3FqO0NCpHlq0WTEFZoe8USvmmfEmWPbP6fcpSfIddjYwxpqtElq0FEmd/u9dp\ne5dkiM9S52EdVH4A15bUtbLUsPwlUEz27UAJ5VXf3iDi3EQ7iMnANZqKpMp5xEzcR2QaSkPnPwSH\nnfLNcmxOvAlK1hd/Dkpg02Gp5h9CjlTs5FB43bUirqcH5dvDRFs7+cQWETftAYxp5ZsoCz17QP7d\nwnvnmtEEO7CEeCQtZLAXFIKEeSjDbCyWLhL+atBlzlbh/ic2ypLRv23f7rTZ0eDTq1aJuBhaF7Vb\nUc6evh5lnS37pFtTzDRQTrrKUXbe2yBpSExXCqIFE2ZRbILJqeC+L6KElcuFjTGm8SPQSLhU2i5p\nHRc8ev/fISwaJa3svmWMMQkxNG7kkhJdIPeG3l6USMfEUJmtZCKasDCMW/U7mNMR6bLEOn4uxp6d\nX85twZ6bt1Dmg3N/Rnn5BSoHZ/qZMcbkR8F1iqkZ7DJijKSXhhP1q/r9syIunmggVUSzzbl1qoiz\n+yLQYCed8GS5j9WdL3fa6fHIbWdOSsrXMFHN+mjuT87KFHExk+BeFUUOa8XvyL7JXQt3kaLXsG+X\n1KPU/oq5MkdVNCE/zF0LynVeinQdZHeNAXL38Vsl5ClLsMdFUL+cf+WkiMtchDgvOc1xvxpjTPU5\nzK1AM2KYppN1jaTPNewhWtI5TCZ2TzFGztuIGaBjjAzLCcg0uMpX6SwbJA8Cl87CemZHobipmPeD\nlitPdx3OOidehWuZ7XzF/87KxPV6qy1XFVrDUdmYb8f/vF/EzfjsAqddR7nfnStpM8GjSU0zxtTt\nw1glz5b0cHc65nEWjZXdh8sWYO6z+2Nbp6TUR/ThnBtD7mZHyuTanuPC/hc7E33dcR5nygTL2a7u\nXdBW+gdwHonJl9SZiRum4HrncLa2c+9Uohx3EE0x2XLs9B0F7SqdHDb7LWefwU5JwQgkklfnOO0j\nzx4Un2Vk47zA54C+JnleGKJ8yg6O/W3yOQba0E+LJ8MBKdc62zSQ9MUVqzDXgyPw3tNdK6nJyWtB\nefKRa+/4e2aLuPNPYv888wLWbMZcSemqbcU+OX46xmbz67tF3Bxy5ur0gxrVVSLpmkH2i0eA0deC\neWbTmjjfRiSCljM8LMfH5cK5JTwea6yrrlHE5U6/2WlXl0COJH2WlFAIDsaZKyUbLq/8Dm/fKztL\nheUiP7YUSffluAkYr5ZiyHdEZ3tFXOsF5AcXubRFp0jaWfoivH92teI7kenyLPt/QStnFAqFQqFQ\nKBQKhUKhUCjGEPrjjEKhUCgUCoVCoVAoFArFGEJ/nFEoFAqFQqFQKBQKhUKhGENcVHPmqe+84LS/\n9AfJyX77W0847Yeeut9p/8dld4q4u9aCAxgUgt+C2s9L3u9QFvij81aBO7r9+38XcSsevslpv//I\n8077R6/AmnvcOJf4zm8+9xun3dcHDuHw4LCIm/kZMKKDgsBt/fCR34q4m554FPc9BH7e3x74rohL\nPYNn/PJf/tNpf/+W74i40y++5LTnfuZrJtCIJa7zyJB8ZranZv5/1g2TRVw8cWuLN4JvnbUkR8T9\n1vN1p81ceOZTGmNMfDR4xNtOgMs+SPozrDFjjDHtZGdY3ohr5yRKW9nNm8GrXrNoptNuPiJ1M+Ln\nQDfJ3YD7KX76qIgLiYK2Rfmr0G0Z7pO2lHbfBhK5t2FN9LdLfmfxK+BderLAFb/wd6kRk38zrtH5\nLDitHSVSO+LsFuj+TLuW9HZmSgu6yuPQHvITb3fyhpVOu/DqVP6Kyb10hdMu37rLaUflSj2g1ELE\n1RXBctvvl/amLaegy9BTgXtgm1djjLnw5GGnnXYl7FJTIuW87K4h/rH8KCBg7n7bacm/7anE3+7t\nwv3bHOOKBnxv5jw8y4E9p0XcwgJ8xloFjZbNr6sB8zuGtFHaTmC9NTVI3jNbeNc0g4MfESZ1dJhD\nP20yOrTlnMz/89dBN6mN+PNBoVLrgLVkUlaBGz7QJbn0LZZmViDRXYX+s7XTQklHqLUC6ypmssxR\nw8NYf3UV0CBLmiUtQ8t3vO+006/AeLYckc934jVYbzJXf8pK2JzbekBspT2btH0S5kodha4K8PY7\ny9HurZNaDlFkcz7cj1x4sbyYtgEaK51lco7FTPDa4QFFWDx44/0t/k+Ma+rAumR9NGOMmT4duhSu\nRHDrI/NlPguJgEZEL2m72Wu79UDtx362/FroJQxac731beiR9TUhX5fslXbIObPArR+ivSs8XM7h\nbhqHNtJc6LUssl9/FpamE9MwZ+rapPYa22wHGmwbHGZZMPOYxs7CGShhlpzfjXugYzU0Ff3X1y7n\nRPlbOPf0UF+crqoScSsXwL7+zZe3O+0b4i512nwWNsaYxh3Y17aexHloZk6OiCugfg5PxZm84VS9\niMudA22L9iL00bRPzxNxQ6TT1luP/BAaJfN43DTZZ4FGbBbWS0+53J+GB5A/ekkfqdfSIan3Yd5m\nJiJ3BAfJvmY9rIoS6CFdctcKEdf0Ecak8zxyOdtY12y8IL4TOx05tYdstm39ov5WzK3uWjxTj6U5\nkz4X2lXhtLa7y+Qa6ydttx7SYwyy1nZvj7x+IDGO5vTsO6W6VCedMf0lyHHeeVJfaBHtn9XH8G7S\ntEuusfi5OFeuqcO5Nr1Qnjd/+8ybTvvESWiNzJiNfSfELec663GlroeeSN0OqUkUNQFz1u3H+0PL\nCbkWXaHI/bzuE6KkJljKYuTn2AbsrbHTU0Rc80tynww02EK+/iP5zBGkR8njze/BxhjT19dM/8Lc\n722UZ4aq86867chEzPXu7iIRx//uacD8didD08vWGYzJRs7ylUILyn7vbzgInZnsZavpb54TcZEZ\nWPeeaJxlq/buEXHRZM0e6cUzVX90WMS5eL+SrurGGK2cUSgUCoVCoVAoFAqFQqEYU+iPMwqFQqFQ\nKBQKhUKhUCgUY4iL0pqWFqIkOsIj627WfBf2u/HxsL26fuE+EffSDlAX7vsq7KkPvHJIxK3+Oqy6\nC67BtWuP/0nEXT3vNqddWYqy3efTUTYeNVHall6yEBZoR37ynNPedOSIiJuTjxLljFxce9KtM0Xc\ns18EherGn3/Zac+cJi21dm7B9Qc6UE748POPiDi2JR8N+I6idDNxqbR5S14NagBbEXMprDHG9FGJ\ncPIklNn9/alNIu7y2ejrxetAg+HnN8aYxlJc/5pbQH3zU4nns0++I75z531XOu2MAyjLPlgirdHm\nj8c4pJCddNsZ+Uye6SiJq3wbZXNpRJcwxphIsho+8SQoU4l5suw+bV2+GS3UbETpnSdPlsyPUNkv\n26FP/dIiEddGY5q1BM/YXS5LZBd+abnTrngZVJlmq7Q0ZT361jsH5altbbBRjIqaJr4TFoa1WXAZ\nLJN9jdLis6UWecQVA/pBWJi0pGzahdLj/DuxTiMtClsE2coGkR1w8XPHRFzCDFlCGmh0nEa5Z7BV\nOh4aAzpm3CzcR+V2Ob9nXIY+ZRrDksvmiDgP2bh2lqIUlu0QjTEmIgW0A98h5IqoyZjf864qFN85\n9Gvk9VoqJ5+ULsuUJ2fCbp3thEeOy3vgkvqsG2Ez6k6KFnFs89hLbTu/2GX5gQTbp9r0qXayRU2Z\niTh77bDtI5fZ9jaVi7jQGNBre+pQzpt5qRyPxPno54ZdZDdOZeJB4bKPeipQdp96CXLX8IAcm+Bw\nlGUz/bDGyhtcas+Us4adspSZqWpdVPofNyVJxFX+AzSS9K9cawKNkjPIHV0WnYBpgEw1YFttY4w5\nfRLnBD9RXZJjpRVx4RqMF9u+s9W8McaMJxvXlGCMSTiVQLcXNYvvrFkl1/0/kZom96eak5irZY2g\nRq5IkNbc7ixQ3IbTMDebdsrxzk9BjuJ+CbJoJPUWzSmQmHADcmHpa5LWOeE27AeVtI/1WRS28GTk\nv+5mUClaDsm1nbkeVIjy93BeuOKGZSKuvx3zJcuLMWAr7oOvyhJ37r/PXH8J4vafEXHhZCUdPRHX\nTpgj827te6Db+Gux/mqIwmWMMZkrsIczbS1/sTwnCrqvZF4GBMO9OHt2tlp0yYnom+4urJfIDLk3\n5BPlYsiPuME2mc+CwrC2cyei33xHJB0lcSXeedqO4bP6A5gjGasl9zk0Ens4597G3ZKOHeLCq1c4\n7QW5loU5U6OYGtvbLGkk0US5iCDr8dBoKfEwmtT7xo8wt5KWyffF8CRQ8CbMyHHafa3+T4xjei6f\njYwxpo3GqqUL8yVdssfM4omYrGyrXV+C/FdX3CC+4/WiL3lvPvThSRHHVM4TFXj2BYuniDhXHfJ9\nQxH+7gyipBtjTC+d5TpoLw1yydf0yPBwM5oYpLVj08ojkjG3mErucsu4yv2gY0fSfsK28cYYE56I\n8WZ5htS18l2KqWeDPZQDIic57caGA+I7Q370NdMKPekplIUfAAAXoUlEQVQyb8QmTXXaLVWQtEjN\nXyPiBgaQA/v68H4RP0W+M3SUgcLnjkcfpS6ZKuIGB6WFuw2tnFEoFAqFQqFQKBQKhUKhGEPojzMK\nhUKhUCgUCoVCoVAoFGOIi9Ka1vzgIafd3S2V/w/+bJvTHhr+wGmnFsoSn/vXwF2JKRcFhbJsso+U\n1/f99X+cdkykdIm6cSkoVLfs/7PT9nhQIvbMF6Vr0tLroBzOZfExRfLaSx6EUnN84kKn3d0tFdnn\nrEZ5UtWu3U4750ZZtjTx0yud9qbvwHWqMDhCxB39zTO4h4ceNoFGZD7KQsMT5DO3krJ4zU4oc+de\nNUnEDXRi7KKIVnPPd24Ucd1UhsmUiyCXLHuLi0V5XMlu0DbqiCJxx2evkPdA1AXvApSjXrFMzqUh\nKnvjcrbJ194m4nw+uFykUxldbKF0Vil5BtSXkRFcz3bNqH4H1KOML5uAopfKP20nkPG3YE30tGI8\nS58/IeKSiNIWnYs5Ud8tS525JLinE383Jj1GxDFVJiYX48F9xO5oxhgTEoIS8s5OuEklpq0Sce3t\n+Kx6G9rd6bIU0JODe6p6G+rqwe5QEcfK6D6a82GhMgUmzBpdimFEJuZ90hJZ+str0Z2GuAzLEW0c\n0QZO7EN5/bwrJP2S3aDYFcEu12daW8IS0GOqtmJdurzSCWXilSjdHfwHysYrm2XZ6qx5KCtmpX+3\nVVratBe0n+F+oleWSCqiy4v81UX3PWIp8LPzVaDR58OayLLyZCu5pnSVYH3EL5BuJ+4UPP9AF/Ka\n7RQXMwW5KJzcgAb9kobD95S4AGPI/TrOLlFOx1pkFwl2ozLGmNBIlBS3HAPt7djJYhF35XdAOw2P\nQX6JSJVucIM9yJudF+D0ZUZkTbp3YYYZTTCVacT6275u0OzWXoOzQMeZFhEXT05ErVRe/85hSVvJ\nn5vjtE9tAcUmr1A+Y/tZrB93BtZLWDTTJWRui5+NnMUuas37qkUcP+PsCaBj2GXzvFe3n0AOCQmW\n82fSXCo9p2vHW1StmAh53gkkQqPQL2krJR25+i3kxgjqS9sNKHER9sW9v0VpfXahpAoxRSSbKE42\nLZhz5cLr4Y4UlY19e+EdC8V32olyfWI/7nv17UtFHJ/D6t5Ffs67a4aI4/0vk+jW9R/JvZ6nfRLR\nMFuOy33bO3t03ZpipoHSGFot5wu7D/Fz2eegtuOgp3DuaNotKaXRJHvAe6lNdxA5dQnmSBDtn1E5\n8h6K/4azYjQ5HyYuyhRxvoO4RtxMOInVbpPuOEnzMQc7LyCPevIk/amfaE79vt6PbRtjTEfF6FEM\nO4l267Kol+xgxLl1xlRJZQ2h8Z36KcxppqIZY0xvI64RRu6VB/dJGuDqO7B+eJ26iE7jJwcwY4x5\n9S24g3567jVOe8Gl8nxV9BHO+2vvALUxfpo8Q1ZtwnoO7QQlyZUk38WaDoIqk0EuUTY1reFknRlN\n9NSgPzLW2RxGJAw+m1Wfls6wqcvxPu5vwjnInSnXGFM9+xoxh/2WqxOPUdoyOAkPDmIehMfLMypf\nO2U83u07OiQ9bWgIayQ5F+PY2rxbxHVW4DmSJmNuhlv7cUgh8pe/DX3UUSLPDvyelXK1+Rdo5YxC\noVAoFAqFQqFQKBQKxRhCf5xRKBQKhUKhUCgUCoVCoRhD6I8zCoVCoVAoFAqFQqFQKBRjiItqzrzz\n0A+cdu4Cyeed8fkFTtubvsRp9/U1irhffuYRp13bCs7koy8/JOJeePAFp/25P/3Yadec2iri5k79\nvNN++6HHnHbBUnCA131JWmClTlzhtPc8+nunfdXdMm7741ucdmPHq07bts88Uw0u912PwB48IWm5\niDv0G/ytS7+PuF0//LuIm37vfDOqoJ/g2s9LDQfWtphKY9pyXPIa2fIsgqwnG3ZJi8DgCEwptu1L\nWSGt0Rp2kt1rG/iEzLGOzpeW6JVvwlq15hjGYNjSC8hZhLnK1oYdHZIXGRQEHivz/8pekpzELh94\njYND0NfobbP4vD3S3jCQYDu6ziKp4VBUtN1p598FXuz4O+aJuK5a8ICZP+mdK/nkte9BS2LOg9D9\nqdoq9TAmXAHL+5AQzKO2NthgBwfLvOFrOuS024vBwawse0rEZV+F5xhHehiNOyx9HLLgDA7H3Eu7\nRNratxKHPuMy8GHLXz4l4gYsHaFAo4v0DvpbisRnzCMPiQCPddjSU4klDalJhdCtYUtYY4xJIA2B\nIbJHTrGs4vvbez+27fYQPzpO6gCEk/bLhFXoz6nxMm6IbLsj02H9Wvqi1ORgLnIX8eIjLU5/9Hg8\ne8ULGDtXiuRvR+ZLTn4gwX1R+4HUXfFk4++mX4I9qfmQ1P8Y6IbeSVclPW+efN6i3dA7S4vDZ2y7\naYwxsZOgTVO7GffEtr47z54V37n5waucNtsz+6ulXk8c6TC1n8b+MWOqXGPtxbhGRxDWNmsIGWNM\nyxHsLawlwJpExhgTbOkMBBrhoVhjhTPkmhgZwp5Sugd6eznzc0Tctndg3+kKQf4JGjdOxBXthz7I\n0i+vdNr+Bsmt76BxaN0PXQrOB12WxknjaeS2xALMg75OqUsU68EaaaU9N6xWrtnuWnzmSUFOcXXL\n/Y5RfRr3mpgo115tfYsdHjC0HMVcsnWn8m6f7rT72qAfcv55eQ7Y8ztoTBTMxzklMls+RzvZwPbW\nY9zC4qS1bfw06C6GRUEHoZ7mka0jkUB7cNxpaE9EJMmc3l2GPOLvxfhWvXlOxGVeDev2ftLqi5+R\nLOKGB9BnMaSRYtu1txzF+KbnmICjt4G0IxKldoSP8pF3CbRb+pq6RVwiaer10HeiJspz5GA3znoe\nOlfZulN85u3vwNxPIw0fY61z1kJs2o9xdHmkrol3Oe5V6KeES/2KYdo/vYugo9O8V+4nrInD2ocJ\nc6X+SWjIRV/5/i2kr4KOle+o1CyKiMIa8c6kexqWfe6v+/h1FRZjnT9IQ3Dgbewvy6+V71Ips6c5\n7c50vKuUP48zfqQ1P7K8OKewRumBD6SG47SJ2DPYItp3TD77ENm/+7ow1tMtG/a6fbi/bpq/tsaY\nrUEYaLi86OuBbml13rAb5+/IHORHT6bUoxz0o9+aDyN3DPfKswDr2yTSmmDtNGOM8c7F3B8ZwWfd\n7dhXWT/KGGMiPDlOu+4CNHITsqU+l8dD57Rm/N4Q6rLOnnm4fv2xI4izbN75nYTzt70/2X1mQytn\nFAqFQqFQKBQKhUKhUCjGEPrjjEKhUCgUCoVCoVAoFArFGOKiNW57i1B2f8mj0hv4wGOwsU77PuzG\nNv/XT0XcLV+GvSZbuw72SfrAZZ+D1ZWvGaXCB57eK+I2PDYL3/nhA0774I+fddqdZ2UZbco3QLtK\nJku7gtW3iLjm3SgVXPnQOqe9/5c7RNyDz/zMae/9IegYx/sOirjJN6B8qn4/Sg0n3z5bxA10jy6V\nItQDK9QRq4yQUfYCSv1ip0uLuxYqo3QRdcGTJa3RuMyTbfGCw+RUS6IyTC5f7DiPsbPLt2PJbjFj\nAyzeBq3+852EpeI4up/a7adFHNuitnagvC59siwFTcvFvbozUIrWvF+WluYtn2ZGC7mfIsrZmRLx\nGVMDzv0Oayftckk76CwGHSplBUoyh3ql9Wn8PJRYu1xJFCdLDc+//bbTZnv1YGHNKktBz/wR9zfl\nfjxT03ZJVwoORjlgMlmdDlql+iFkpcp2s12WHTCXofc2o7R04mdWiLh+v8+MJuJoXUUXeMVnHSUY\nn9Ln0G/pV0wQcUFkiewiKlOP9cz9ZL8+TLSmccHyN3kuQZ7yAPJe9qL1uFa/pENWbAN1jUuMIyxq\nVUwyrKbrjmLs2SLaGGlL30b2ve0n5N+NnYWy/DiapyGWdXqHVZYfSNS/D3qCCZJl7WlrsOZajlE5\n75DMuzXvgq7EfWFTirxRoPpEFoDSxRQ+Y6Q1dyRRv3gtrk+VY9PwAWxbiyqQyyLCwkTc6bPlTnvO\nGspxFg2g9QCed8I9c5x2/U5pD8tl2gnLQMtrPiDz6fAgrp8zCqk1KRp91mmtHaYXpI0HTcW2aF80\nG7ae7+7E/j8lK0vETZiNfFu37ZPpLf5q5KmuHqzfMDo7HdkvKSwzpoJmwXakNs02OQPl+/E0b6vP\nSwpzLtl+DxB1198v91m24GZL8eo6ufay8lLMaCF2MtaOfbapegv9xNbKeddMFnG5VG7up30ibpI8\nBwwPIocOkM2yy6LhuOOQo0pe3eO0Y6bIMxUjJhPzZe1/g4517oVNIm6E1sSEWxBnPzvPseTlOU67\nfrtcY7wXxM/COMVOlvda9gxRwa792Ef4t+Anu2y7Pz05OHNx3rNpvHwOHBf88edQY4wJZwtj6rde\niyblSkAc51ePBzm+7uR+8R2mZ3lIMsC20maqci9RGwf75BkrhGj59VswpiFRMkd3EzV2aJivLZ/J\npm4FEi46B/Rb5zRXNM74PLd8pxpE3MkdoN5OmIA1G5YgaU3RE3F2mjwp5xPvyd+B3DZI0gW8l17Y\nL8/TWYnIKUO9WPMbvrNBxLWdRU7ms7WR7BWTewfWaQadc+z5xlb2fTRuxftlfp59m5QrCDQGiQYZ\nFinXWLALZ89+2hvstdh8BJS+9PU4v57//QERFz0Vfd1VhrN32lr57tJRiv51p2AcmX7c2yL3ux4X\ncgrTi9qbpN36uHHIgUMDeCZfUa2IiyQaEudbMfbGGHcGckXbGcyRf6VNyj6zoZUzCoVCoVAoFAqF\nQqFQKBRjCP1xRqFQKBQKhUKhUCgUCoViDHFRWtO0bJQcl23fLD6rJuelQ0/93Gkv+faVIs7tRjlv\n086nnfbjd/9WxP3ns6BNffQjuCbVt8ty4ze/9TunPXUZqC0TPg2606mnZOlUby/Kkw6/c8xpT778\nsyKupB7l/UH/A2ea+CjpIrH1e7iHDT953Gn/6CZJk1o9Bdfv68O1Tz7xgYib/+17zGiieQ9KWUNj\nZRl14mKi7BBFyS5Ty7gW6v9Nu8mhySrrH+z8eIpWjEXhYMeTlCUoy67eglJk27mE6RzsrtS0r0rE\neeejHJJLGYMs94+C+1AeWPw01Lfj50j3Ii7fY3F+Vis3xpi+1tFzaxoephJIqzI1KgclmhlXY030\n+6TSOpe4soNK9dvSNchPdBimhcVMklQUVyxKVcueBQ2Hy2qzr5cl5KlLkVO4NHBwWNaClm8CbYZL\n/2MK5T2wM0E0lapG5kmHNXZyiM3CPQwOShcFuxw30Gg7CZqOXXIcOx3l8Ow21GGVTbJjEZdvJ86X\npdNcCsqOV6nzZom44QGUZg8MoDy6qwl5c8DqF1bTZ5oju6MZY0xHE9ZzBDm/NO6Ra5ZLaZPXYM9o\n2CopMeMo34zQnBnokE4yGZcXmNFC1nWY041W7rnwFFyosm6c4rTrPywVcd11mHfJK3Kctk1zSVpO\ntB/qs8gJcn7XboNDUwyVfEckYe9qsvqc16b7FOZbmOU+UE20JD/ReoZ6JB0yeT3cJxoP4G8lLZQU\nHx+V+rJbjI34maNHhzHGmAu038+aKN0Ez5fTnlmHY1LhbOmwUX4Sz8luWrPnTBRxpcdA2zxSirkw\nM1e6RKXEYhzYTYqdrKIjZIl/fxvWDlPGUvOlM89fX8MZjh0oE6MlNTn6NKgGsbmIS8mVuZcpT919\nuIfcKRki7thB5OhFJrDwncC9Ji6U+Y9pRD203qIsBzh2h2s8jHL8hNnyHNC8C3PCw25wFqWoZhf2\nwqyrQev0eJCTzr+xUXyHnTxayd0k61q5f7JrUMP2cqedYjm/xM3A2rnwNM6yqavlfBvuA22D/257\nqaT3ekd5LbqSQImx80pPFcauvxXPP+CTOd+7FOPP9EObjp2yFn3FTkm2O9dAF+Y0n/t66nFWtB3l\nBuj+wtOxZt0p8h2C91P3YjoTWY4uTLMLS8S6D46QVC3e3zPIqdJ2DmJpgEDj0N9wjkiw6DBuoqbV\nbEQ+sN9Hlt8Pmnkrre3gMFlH0F2J98Jgoq0lLcwWcdXv4WwbNx1zOIEcCHvK5Ttm9BTsn+yoc+R3\nu0VcZTPom0s3zHXa9nwzBpOH3flCIiU1jcfeuxhzOSJdzh2WUxi/wAQcPJeMkfPbk4U1wrQsy7TM\neGfDtazlOPJKynorT01EXPmboE7y2jPGmAF2nJuNOdJUijkXVyDzdf0eUMfDYrF2hi3qYMl7+L2B\n3TbZkdQY+b7C+2xYrDyLRabj39UlmH+eDLnPhkVYkiAWtHJGoVAoFAqFQqFQKBQKhWIMoT/OKBQK\nhUKhUCgUCoVCoVCMIfTHGYVCoVAoFAqFQqFQKBSKMcRFNWcW3r7Qaf/tJ6+Lz+76Bvz0OskCtrdd\n2lj/8p5fOu2Hnv2h0x5/7xwRd/Bn2532qSrwuP19knu2bOVMXPu3LzvtJ96G7s2q//6a+E5rI+y4\npy0DB/i5B74o4q77Kay5v3vjN532Aw9LLZn5cy5x2t3d4PqvWzVXxI0bB75efPxipz3z65KP+dM7\nvu60H3ld9nMgIPieh6TuAPM1B9rR13WbikVc/ELw+ZjLHZ0v+Xan/gAOYPbl4N2X/l1aKgcRSTGN\nrIIjyO41IlFy/hr3QOumpxycYtbdMMaYsldhmR1XSFo3FjGyrQjaBzk3TnXalW9Iq7Vosrpt2gvN\nEOYDG2OMJxv9bJabgOLCX2DTWnDvYvFZcDD6qWwHeJvZ108RcbGTMG69LeCLDnZKjnd0LvFKyXZ6\nsFvG+SNIi+GLuKcBsoCt/UDaFLKOUC9p9ERlxYg45ozHzwU/mPV1jJHzJYn0k4b6JXe7oxj84Jo3\n38d9379UxHkSpTZSoJFIvHibm8w28nHToBdhWy72t4PX3nUBuXfIspRn3Z22k5jrwa6TIo61b6o2\ngSObQlooQ6RNYIwxMRNhy+uKg17AcL+MGxeE3/87S/F8rD9jjDH9NJfYmjvv9hkibrAHzzjE3GFL\n+6qP9Zak5Mm/jZ6Grk/8LIi48c0HwQ13W3zjrKug4TVEfZZ+mbRN9zfibyWuAJ++84LcZ1mThPui\n/QLm/cCgnG88/1xx0I8atnQPEqeAq5++DnoGtR/IPaLuPaz1gs9hL+zzSS0u5vH31GGdJy/NEXGt\np0gvQcokBQRzZ0ADJDxN8vrT2invsR6WpS/CugMLpmC/66yVltvDZKN5401rnDbraRhjTEgk9uOK\nYliolrwN/YVJ4+WEPleMfdFL+jF1RVI3ZFEBnjc/C/t5f4/MG7GkLVZ5GFo5WbPl32Wthkg36U7F\nhIu4vKTR07lga+WuCvm84XR+iCSthMp/nBVxMZOQ872kS8F51hhj4ubgs+gJyH99rVLbraca/cJz\nuDsBc4K1G4wxpo2s0j28R7bI3B9GfZuxAfOt+K9HRVw0nXvYwtV3RNrytjdh/iUWYNwn3iPP57Vb\n5FoPNDrKoPsTViefme2lg90Y7+R1Ur9iZAjrNCwe/dRd0ibi+EzTuh8aQ7UfSX0zdzTmdCxp7rTT\nWLEmmDHSornlELQ2Ygo/+VzRW4xc3nq2SXyWtjLXDjfGGBPikXolhrc/SlH2fsz6cIHGfDqX1lnz\npYc0YsL5jG+dA2o2QSekuRHjlrtMaoKd3Yo1POManBF8Z6Q197gQvIOxZkjLUawD1jsyxpgoOje1\nHsf6nXSDPIuk0x7MupS2loyPNLzOfoD7nrhc6uL1kf7RAPUL6yIZY0zyyhwzmvDOgQ5Mw/7z4rPk\nBdj/QyPx/H1tMlf21COvsG5lfGGOiGsrJR090vBss9YBz+Pzb73ltLPWI0+1lZWL77AuU1c59gZ7\nTSSRVllQKPLLUL88L7ncmBc9tL/H5Eo9ro4KjHfWJbBRbz4l80tnLeaW92PSg1bOKBQKhUKhUCgU\nCoVCoVCMIfTHGYVCoVAoFAqFQqFQKBSKMcS4Ea55VCgUCoVCoVAoFAqFQqFQ/H+FVs4oFAqFQqFQ\nKBQKhUKhUIwh9McZhUKhUCgUCoVCoVAoFIoxhP44o1AoFAqFQqFQKBQKhUIxhtAfZxQKhUKhUCgU\nCoVCoVAoxhD644xCoVAoFAqFQqFQKBQKxRhCf5xRKBQKhUKhUCgUCoVCoRhD/D8IYtXGbNeA2wAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "kL8MEhNgrx9N", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The first hidden layer of the neural network should be modeling some pretty low level features, so visualizing the weights will probably just show some fuzzy blobs or possibly a few parts of digits. You may also see some neurons that are essentially noise -- these are either unconverged or they are being ignored by higher layers.\n", + "\n", + "It can be interesting to stop training at different numbers of iterations and see the effect.\n", + "\n", + "**Train the classifier for 10, 100 and respectively 1000 steps. Then run this visualization again.**\n", + "\n", + "What differences do you see visually for the different levels of convergence?" + ] + } + ] +} \ No newline at end of file diff --git a/sparsity_and_l1_regularization.ipynb b/sparsity_and_l1_regularization.ipynb new file mode 100644 index 0000000..8dc5bdd --- /dev/null +++ b/sparsity_and_l1_regularization.ipynb @@ -0,0 +1,1148 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "sparsity_and_l1_regularization.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "yjUCX5LAkxAX" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Sparsity and L1 Regularization" + ] + }, + { + "metadata": { + "id": "g8ue2FyFIjnQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Calculate the size of a model\n", + " * Apply L1 regularization to reduce the size of a model by increasing sparsity" + ] + }, + { + "metadata": { + "id": "ME_WXE7cIjnS", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "One way to reduce complexity is to use a regularization function that encourages weights to be exactly zero. For linear models such as regression, a zero weight is equivalent to not using the corresponding feature at all. In addition to avoiding overfitting, the resulting model will be more efficient.\n", + "\n", + "L1 regularization is a good way to increase sparsity.\n", + "\n" + ] + }, + { + "metadata": { + "id": "fHRzeWkRLrHF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "Run the cells below to load the data and create feature definitions." + ] + }, + { + "metadata": { + "id": "pb7rSrLKIjnS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "3V7q8jk0IjnW", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Create a boolean categorical feature representing whether the\n", + " # median_house_value is above a set threshold.\n", + " output_targets[\"median_house_value_is_high\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] > 265000).astype(float)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "pAG3tmgwIjnY", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1160 + }, + "outputId": "22acee31-335b-4148-82da-08ba2dca3652" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.6 2647.5 539.3 \n", + "std 2.1 2.0 12.6 2185.1 422.0 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1466.0 298.0 \n", + "50% 34.2 -118.5 29.0 2124.5 433.0 \n", + "75% 37.7 -118.0 37.0 3137.0 645.0 \n", + "max 42.0 -114.3 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1428.7 501.7 3.9 2.0 \n", + "std 1127.4 385.7 1.9 1.1 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 788.0 282.0 2.6 1.5 \n", + "50% 1165.0 409.0 3.6 1.9 \n", + "75% 1721.0 601.0 4.8 2.3 \n", + "max 28566.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.62647.5539.31428.7501.73.92.0
std2.12.012.62185.1422.01127.4385.71.91.1
min32.5-124.31.02.01.03.01.00.50.0
25%33.9-121.818.01466.0298.0788.0282.02.61.5
50%34.2-118.529.02124.5433.01165.0409.03.61.9
75%37.7-118.037.03137.0645.01721.0601.04.82.3
max42.0-114.352.032627.06445.028566.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.6 28.5 2634.5 539.7 \n", + "std 2.1 2.0 12.7 2167.6 420.3 \n", + "min 32.6 -124.3 2.0 20.0 3.0 \n", + "25% 33.9 -121.8 18.0 1451.0 294.0 \n", + "50% 34.2 -118.5 28.0 2142.0 436.0 \n", + "75% 37.7 -118.0 37.0 3182.2 657.0 \n", + "max 41.9 -114.5 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1431.6 500.0 3.9 2.0 \n", + "std 1195.7 381.8 1.9 1.2 \n", + "min 13.0 4.0 0.5 0.1 \n", + "25% 792.0 280.0 2.6 1.5 \n", + "50% 1176.0 410.0 3.5 1.9 \n", + "75% 1720.2 612.0 4.8 2.3 \n", + "max 35682.0 5189.0 15.0 52.0 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.628.52634.5539.71431.6500.03.92.0
std2.12.012.72167.6420.31195.7381.81.91.2
min32.6-124.32.020.03.013.04.00.50.1
25%33.9-121.818.01451.0294.0792.0280.02.61.5
50%34.2-118.528.02142.0436.01176.0410.03.51.9
75%37.7-118.037.03182.2657.01720.2612.04.82.3
max41.9-114.552.037937.05471.035682.05189.015.052.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 12000.0\n", + "mean 0.2\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 0.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count12000.0
mean0.2
std0.4
min0.0
25%0.0
50%0.0
75%0.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 5000.0\n", + "mean 0.3\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 1.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count5000.0
mean0.3
std0.4
min0.0
25%0.0
50%0.0
75%1.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "gHkniRI1Ijna", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "bLzK72jkNJPf", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def get_quantile_based_buckets(feature_values, num_buckets):\n", + " quantiles = feature_values.quantile(\n", + " [(i+1.)/(num_buckets + 1.) for i in range(num_buckets)])\n", + " return [quantiles[q] for q in quantiles.keys()]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "al2YQpKyIjnd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + "\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"households\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"households\"], 10))\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"longitude\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"longitude\"], 50))\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"latitude\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"latitude\"], 50))\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"housing_median_age\"),\n", + " boundaries=get_quantile_based_buckets(\n", + " training_examples[\"housing_median_age\"], 10))\n", + " bucketized_total_rooms = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"total_rooms\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"total_rooms\"], 10))\n", + " bucketized_total_bedrooms = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"total_bedrooms\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"total_bedrooms\"], 10))\n", + " bucketized_population = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"population\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"population\"], 10))\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"median_income\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"median_income\"], 10))\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"rooms_per_person\"),\n", + " boundaries=get_quantile_based_buckets(\n", + " training_examples[\"rooms_per_person\"], 10))\n", + "\n", + " long_x_lat = tf.feature_column.crossed_column(\n", + " set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000)\n", + "\n", + " feature_columns = set([\n", + " long_x_lat,\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_total_rooms,\n", + " bucketized_total_bedrooms,\n", + " bucketized_population,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "hSBwMrsrE21n", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Calculate the Model Size\n", + "\n", + "To calculate the model size, we simply count the number of parameters that are non-zero. We provide a helper function below to do that. The function uses intimate knowledge of the Estimators API - don't worry about understanding how it works." + ] + }, + { + "metadata": { + "id": "e6GfTI0CFhB8", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def model_size(estimator):\n", + " variables = estimator.get_variable_names()\n", + " size = 0\n", + " for variable in variables:\n", + " if not any(x in variable \n", + " for x in ['global_step',\n", + " 'centered_bias_weight',\n", + " 'bias_weight',\n", + " 'Ftrl']\n", + " ):\n", + " size += np.count_nonzero(estimator.get_variable_value(variable))\n", + " return size" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "XabdAaj67GfF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Reduce the Model Size\n", + "\n", + "Your team needs to build a highly accurate Logistic Regression model on the *SmartRing*, a ring that is so smart it can sense the demographics of a city block ('median_income', 'avg_rooms', 'households', ..., etc.) and tell you whether the given city block is high cost city block or not.\n", + "\n", + "Since the SmartRing is small, the engineering team has determined that it can only handle a model that has **no more than 600 parameters**. On the other hand, the product management team has determined that the model is not launchable unless the **LogLoss is less than 0.35** on the holdout test set.\n", + "\n", + "Can you use your secret weapon—L1 regularization—to tune the model to satisfy both the size and accuracy constraints?" + ] + }, + { + "metadata": { + "id": "G79hGRe7qqej", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Task 1: Find a good regularization coefficient.\n", + "\n", + "**Find an L1 regularization strength parameter which satisfies both constraints — model size is less than 600 and log-loss is less than 0.35 on validation set.**\n", + "\n", + "The following code will help you get started. There are many ways to apply regularization to your model. Here, we chose to do it using `FtrlOptimizer`, which is designed to give better results with L1 regularization than standard gradient descent.\n", + "\n", + "Again, the model will train on the entire data set, so expect it to run slower than normal." + ] + }, + { + "metadata": { + "id": "1Fcdm0hpIjnl", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " regularization_strength,\n", + " steps,\n", + " batch_size,\n", + " feature_columns,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " regularization_strength: A `float` that indicates the strength of the L1\n", + " regularization. A value of `0.0` means no regularization.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " feature_columns: A `set` specifying the input feature columns to use.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 7\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.FtrlOptimizer(learning_rate=learning_rate, l1_regularization_strength=regularization_strength)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on validation data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " # Compute training and validation loss.\n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "9H1CKHSzIjno", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 702 + }, + "outputId": "93971a96-20b3-4c02-9da9-80b49d7a3352" + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.1,\n", + " # TWEAK THE REGULARIZATION VALUE BELOW\n", + " regularization_strength=0.0,\n", + " steps=300,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "print(\"Model size:\", model_size(linear_classifier))" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "LogLoss (on validation data):\n", + " period 00 : 0.32\n", + " period 01 : 0.29\n", + " period 02 : 0.27\n", + " period 03 : 0.26\n", + " period 04 : 0.26\n", + " period 05 : 0.25\n", + " period 06 : 0.25\n", + "Model training finished.\n", + "Model size: 786\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGX6//H3mZbee0ISQghpEJqA\ngdCkBcQKQlADWHCLdXX3+1Ms2NctsrrurrsuKohKFbHQpDfpICWFhEBCS6+kl8nvD9asrBAyYU5m\nJrlf1+W1ZibnPHc+O4Hb5znnOUpzc3MzQgghhBA2SmPpAoQQQgghboQ0M0IIIYSwadLMCCGEEMKm\nSTMjhBBCCJsmzYwQQgghbJo0M0IIIYSwadLMCNHJRUZGkpeXZ5ZznT9/npiYGLOcyxKSk5NJSEgg\nMTGRCRMmMGnSJBYtWmTyeY4dO8ZDDz1k8nExMTGcP3/e5OOEEK3TWboAIYToSL/73e+44447ACgs\nLGT69OmEhYUxYsSINp8jLi6ODz/8UK0ShRAmkpkZIbqouro6XnrpJSZMmMDEiRN56623aGpqAmDn\nzp2MHDmSiRMnsmzZMgYMGHDdGYWysjKefPLJlhmPDz74oOW9v/zlL0yYMIEJEyYwc+ZM8vPzW339\nR9u3b+e222674rU77riDHTt2sH//fu666y4mTZrExIkTWbdunckZ+Pj4kJiYyO7duwE4deoU999/\nPxMmTOC2227j+PHjAOzbt4+kpCSefPJJnnnmGfbt28e4ceOum+P27dsZN24cEydOZMGCBS3jVlVV\n8eijjzJx4kTGjBnDCy+8QENDg8n1CyEuk2ZGiC5q0aJF5OXlsWbNGr788ksOHjzIt99+S1NTE88+\n+yyvvvoq69atIzs7m5qamuueb/78+bi5ubFhwwY+//xzlixZwsGDB8nMzGT9+vV8++23bNiwgXHj\nxrFnz55rvv5T8fHx5OXlce7cOQDOnTtHXl4eQ4cO5Q9/+APPPfcca9eu5f3332fTpk3tyqGxsRGD\nwYDRaOTRRx/ljjvuYMOGDbz88sv8+te/prGxEYDU1FSSkpJ4++2325zj888/z7x581i3bh0ajaal\nyVm9ejWurq6sW7eODRs2oNVqOXXqVLvqF0JIMyNEl7Vt2zamTZuGTqfD3t6e2267jd27d5OdnU19\nfT0jR44ELl9nYjQar3u+7du3c++99wLg7u7OuHHj2L17N66urpSUlPDNN99QXl5OcnIyd9555zVf\n/ymDwcDo0aPZsmULAJs2bWLs2LHodDq8vLxYvXo1WVlZdO/e/WdNRlucO3eO9evXM27cOE6fPk1x\ncTFTp04FYODAgXh6enLkyBEA7O3tiY+PNznHhIQEAO66666WY348765duzAajbzyyitER0ebXL8Q\n4jJpZoTookpKSnBzc2v52s3NjeLiYsrLy3F1dW153dfXt83n++lxrq6uFBcX4+fnx3vvvcf69esZ\nNWoUjzzyCLm5udd8/X9NmDDhimZm0qRJALz55ps4ODjwwAMPMH78eNavX9+mOv/0pz+1XAD89NNP\n8+yzzxIXF0dFRQW1tbVMnDiRxMREEhMTKS4upqysrCWfa/3c18rR2dn5itd/NHHiRGbPns27775L\nfHw8r7zyCvX19W2qXwjxc9LMCNFFeXt7t/xFDZevefH29sbZ2Znq6uqW14uKim7ofAA333wzH3zw\nAbt37yYgIIA///nPrb7+U8OHDyc9PZ3s7Gyys7O5+eabW8Z78cUX2bFjBy+99BLPPfccVVVV163z\nd7/7HevXr2fDhg2sWLGipTny9fXFycmJ9evXt/yza9eulmtjTP253dzcqKysbHm9pKTkiuOSkpJY\nsWIFa9euJSUlhdWrV1+3diHE1UkzI0QXNWrUKFauXElTUxPV1dV89dVXjBw5ku7du9PY2Mi+ffsA\nWLJkCYqitOl8y5YtAy7/xb1x40ZGjRrFrl27eOWVVzAajTg6OhIVFYWiKNd8/X8ZDAYSEhL405/+\nxJgxY9BqtTQ0NJCcnExBQQEAsbGx6HQ6NJr2/5EWFBSEv79/ywxPSUkJTz/99BWN3bV+7qvlGBIS\nglarbclx1apVLT/f3//+d1auXAmAn58f3bp1a1PGQoirk1uzhegCkpOT0Wq1LV+//vrrJCcnc+7c\nOW699VYURSExMZGJEyeiKAovv/wyzz33HC4uLjzwwANoNBoURaG5uZmmpiYSExOvOP+///1vnnrq\nKV5++WUSExPRaDQ88sgjxMXFUVdXx5o1a5gwYQIGgwFPT0/efPNNfH19r/r61UyYMIHHH3+chQsX\nAqDX65k6dSqzZ88GQKPR8MILL+Dg4MDGjRvZsmULv//9703KSFEU5s+fz8svv8w777yDRqPhgQce\nwNHR8brZXivH1157jblz52IwGLj77rtbznXHHXfw3HPP8e9//xtFUejbt2/L7eJCCNMpzc3NzZYu\nQghhvaqrq+nfvz8HDx7ExcXF0uUIIcTPyDKTEOJnpkyZwtq1awFYu3Yt4eHh0sgIIayWzMwIIX7m\n4MGDvPrqq9TV1eHk5MTLL79MXFycpcsSQoirkmZGCCGEEDZNlpmEEEIIYdOkmRFCCCGETbP5W7ML\nCy+pdm4PD0dKS1vfY0JcSTIznWRmOsnMdJKZ6SQz06mZmY/PtW9CkJmZVuh02ut/k7iCZGY6ycx0\nkpnpJDPTSWams1Rmqs7MvPnmmxw9ehRFUZg7d+4Vd0MsX76clStXotFoiIqKYt68eSiKwh//+EcO\nHTpEY2Mjv/jFLxg/fryaJQohhBDCxqnWzOzfv5+cnByWLVtGVlYWc+fObdnqvKamhjVr1vDZZ5+h\n1+uZOXMmR44cob6+nszMTJYtW0ZpaSl33XWXNDNCCCGEaJVqzcyePXsYO3YsAOHh4ZSXl1NZWYmz\nszMODg4sWrQIuNzYVFZW4uPjQ2BgYMvsjaurKzU1NTQ1NV2xDbsQQgghxE+pds1MUVERHh4eLV97\nenpSWFh4xfd88MEHjBs3jsTERIKDg9FqtS3PLlm5ciUjRoyQRkYIIYQQreqwu5mutjffI488wsyZ\nM5kzZw4DBw5k4MCBAGzatImVK1fy0UcfXfe8Hh6Oql5w1NrV0+LqJDPTSWamk8xMJ5mZTjIznSUy\nU62Z8fX1paioqOXrgoICfHx8ACgrKyMzM5NBgwZhb2/PiBEjOHz4MAMHDmTnzp3885//ZMGCBW16\nFoyat835+Lioeut3ZySZmU4yM51kZjrJzHSSmenUzMwit2YPGzaMDRs2AJCSkoKvry/Ozs4ANDY2\n8uyzz1JVVQXA8ePHCQsL49KlS/zxj3/kX//6F+7u7mqVJoQQQohORLVmZsCAAcTGxpKUlMTrr7/O\nvHnzWLVqFRs3bsTb25tHH32UmTNnMn36dNzd3RkzZgxr166ltLSUp556iuTkZJKTk7l48aJaJQoh\nhBCd3rZtm9v0fe+++zYXL1645vvPPvu0uUoyO5t/0KSaU4AyxWg6ycx0kpnpJDPTSWam6wyZ5eZe\n5O9/f4fXX/9jh4xnqWUmm3+cgRBCCCGubv78P5CWlsLw4YMYP34iubkXeeedf/D7379KYWEBNTU1\nPPjgIwwbNpzHHnuEp5/+P7Zu3UxVVSVnz+Zw4cJ5nnjiGeLjh3HrrWNYs2Yzjz32CIMGDeHw4YOU\nlZXxhz/8BW9vb1599UWKiwuIioply5ZNfPnl2g77OaWZEUIIITrA8i2nOJBeYNZzDoryZdotPa/5\n/owZyaxatZywsHDOns3mH/9YQGlpCYMH38zEiZO5cOE8L774LMOGDb/iuIKCfP7857+yd+/3fPXV\nF8THD7vifScnJ959933ef/89duzYQmBgN+rr61i+fDmrV69l+fIlZv05r0eamWs4U55DnZ0Xdjhb\nuhQhhBDihkVHxwLg4uJKWloKX3+9CkXRUFFR/rPvjYvrB1y+M7mysvJn7/ft27/l/fLycnJyztCn\nT18A4uOHdfgecdLMXMPC1KXUHq/luUFP4W7nZulyhBBC2Lhpt/RsdRZFbXq9HoCNG9dTUVHB3/++\ngIqKCh5+OPln3/vTZuRql9b+7/vNzc1oNJdfUxQFRVHMXX6r5KnZ1zAmeASV9VUsTl2Osdlo6XKE\nEEIIk2k0Gpqamq54raysjICAQDQaDdu3b6GhoeGGxwkK6sbJk6kA7N+/92djqk2amWsYHnQzAwL7\nkF6aybZzuyxdjhBCCGGy0NAwTp5Mp6rqv0tFo0bdwvff7+TJJ3+Fg4MDvr6+fPzxv29onKFDh1NV\nVcWMGTM4evQIrq4du6Iht2a3wuDSzNNrX6OmsYb/G/QEQc4Bqo3VWXSGWxk7mmRmOsnMdJKZ6SSz\ntquoKOfw4YPcc8+dpKZm8eSTv+Lzz78w6xgW2QG4M3Czd+X+6HtobG5iYcoS6ptufCpOCCGE6Gwc\nHZ3YsmUT06ZNY+7c3/L44x27wZ5cAHwdvb2jGREUz44Le/gqay339LrD0iUJIYQQVkWn0/Hqq7+3\n2GyWzMy0wV09b8Xf0Zdt53eTWnzS0uUIIYQQ4iekmWkDg9bA7Nh70SpaFqct51L9z++5F0IIIYRl\nSDPTRsEugdzWYwIV9Zf4PP2Lq953L4QQQoiOJ82MCcaEjKCXezjHilLYfXGfpcsRQgghBNLMmESj\naJgZMx1HnQNfZH5DfnWhpUsSQgghbtjUqbdRXV3N4sULOXHi2BXvVVdXM3Xqba0ev23bZgBWrVrF\n9u1bVavzWqSZMZGHvTszoqZQb2xgYcoSmowdu8uhEEIIoZbk5Nn07h1n0jG5uRfZtGkDAHfffTcj\nR45Wo7RWya3Z7TDAN44T/gPZl3eINWc2cnt4oqVLEkIIIX7mwQfv480338bf35+8vFyee+4ZfHx8\nqampoba2lt/85nfExPRu+f433niZUaPG0K9ff55//v+or69veegkwHffrWPlymVotRq6dw/n//2/\n55k//w+kpaXw8cf/xsFBj17vwJQp0/nHP97l+PGjNDY2MWXKNBITb+Wxxx5h0KAhHD58kLKyMv7w\nh7/g7+9/wz+nNDPtdE+vOzhVdobvcrYS7dmLCI8eli5JCCGEFVt16luOFBw36zn7+/bh7p6Tr/n+\niBGj2b17B1OmTGPnzu2MGDGa8PAIRowYxaFDB/jss0W88caffnbchg3r6NEjnCeeeIbNm79rmXmp\nqanh7bffw8XFhUcfnUNW1ilmzEhm1arlPPDAHJYuXQjADz8c5vTpLN5//yNqamqYNSuJESNGAeDk\n5MS7777P+++/x44dW5g27d4bzkGWmdrJQWfP7NgZKIrCotSlVDfUWLokIYQQ4gqXm5mdAOzatZ2E\nhJFs376ZX/3qId5//z3Ky8uvelx29ml69+4LQP/+A1ted3V15bnnnuGxxx4hJ+cM5eVlVz0+PT2V\nfv0GAODg4ED37j04d+4cAH379gfA19eXykrzbHUiMzM3oIdbKImht7A2exPLMr7kgdgb7y6FEEJ0\nTnf3nNzqLIoaevQIp7i4kPz8PC5dusTOndvw9vblxRdfIz09lb/97Z2rHtfcDBqNAoDReHkrkoaG\nBubP/yMLF36Ol5c3//d/T11zXEVR+OkOJo2NDS3n02q1PxnHPNucyMzMDUrsPoYw1xAO5v/A/rzD\nli5HCCGEuEJ8fAIffPAPhg8fSXl5GUFB3QDYvn0rjY2NVz0mJCSU9PQ0AA4fPghAdXUVWq0WLy9v\n8vPzSE9Po7GxEY1GQ1PTlTfDREXFcuTIof8cV82FC+fp1i1ErR9RmpkbpdVomRUzAzutgWUnV1Nc\nU2LpkoQQQogWI0eOZtOmDYwaNYbExFtZtuwzfvObR4mN7U1xcTFr1nz9s2MSE28lJeU4Tz75K86d\ny0FRFNzc3Bk0aAgPPzyTjz/+N/fem8xf/zqf0NAwTp5M569/fbvl+L59+xEZGcWjj87hN795lF/+\n8jEcHBxU+xmVZhvfylbNB1qZ8sCsPbkH+TRtOeFuYTw14BdolK7ZJ1rqIWO2TDIznWRmOsnMdJKZ\n6dTMzMfH5Zrvdc2/cVVws/9A+vv0Iav8DN/lbLN0OUIIIUSXIc2MmSiKwoyoKbjbubHmzHfkVJyz\ndElCCCFElyDNjBk56R1Jjp6GsdnIwpQl1DbWWbokIYQQotOTZsbMojwjGBMygoKaIlad+sbS5Qgh\nhBCdnjQzKritRyLdnAPZfXE/RwtPWLocIYQQolOTZkYFeo2O2bEz0Gt0fJa+kvK6CkuXJIQQQnRa\n0syoJMDJjzt73kpVQzWL05ZjbDZauiQhhBCiU5JmRkUjg4YS6xVFWkkG289/b+lyhBBCiE5JmhkV\nKYrC/dH34Kx3YnXWWi5U5lq6JCGEEKLTkWZGZa4GF+6PvodGYyMLU5bQ0NRg6ZKEEEKITkWamQ7Q\nxzuGhKCbuViVx9en11u6HCGEEKJTkWamg0zpORk/Rx+2nNtJWnGGpcsRQgghOg1pZjqIQWtgduwM\ntIqWxWnLqKyvsnRJQgghRKcgzUwHCnHpxuQe4ymvv8TnJ7/Axh9YLoQQQlgFaWau4YfMIlJOF5v9\nvGNDRhLh3oOjhSfYk3vA7OcXQgghuhppZq5h6ZZMXlmwh6KyGrOeV6NomBkzHQedPSsyvqKgutCs\n5xdCCCG6GmlmruH2Yd2pqWvi43XpZl8O8rT3YEbk3dQbG1iYspQmY5NZzy+EEEJ0JdLMXEN8rD+D\nYvxIyyll+9GLZj//QL9+DPYfQM6lc6zN3mT28wshhBBdhTQz16AoCo9O7YuDnY7lW05RXF5r9jGm\n9boTL3sPNmRv4VTZGbOfXwghhOgKpJlphZebAzPGRFBb38TC9eZfbnLQ2TMrZgYAi1KXUtNo3utz\nhBBCiK5AmpnrGNbHnz49vEg5U8LOY+Z/tlK4e3cSu99CSW0py05+ZfbzCyGEEJ2dNDPXoSgKsxIj\ncbDTsmxLJiUV5l9umth9LKGuwRzIP8zB/B/Mfn4hhBCiM5Nmpg08Xe2ZfksENXVNLFp/0uzLTVqN\nltkxMzBoDSw9uYqS2lKznl8IIYTozKSZaaPhcQHEhnly/HQxu4/nmf38vo7e3BNxOzWNtSxKXYqx\n2Wj2MYQQQojOSJqZNlIUhdmJUdgbtCzZnEnppTqzjxEfMIh+Pr05VXaGTTnbzX5+IYQQojOSZsYE\nXm72TLulJzV1jSxS4e4mRVGYETUFN4Mr35zZwNmK82Y9vxBCCNEZSTNjopF9A4np7sGxrGL2pJh/\nuclZ70RyzDSMzUYWpi6hrqne7GMIIYQQnYk0Myb6cbnJzqDl842ZlFWaf7kp2rMXtwQPJ7+6kFWZ\n35j9/EIIIURnIs1MO3i7OzBtVDjVdY18osLdTQC390gkyDmAXRf3cawwxeznF0IIIToLaWbaaWT/\nIKJC3PnhVBH7UvPNfn69Vs/smBnoNDo+S19Jed0ls48hhBBCdAbSzLSTRlF4YFI0dnotn23MoFyF\n5aZAZ3/uDJ9EZUMVn6YtV2UGSAghhLB10szcAB93B6aOCqeqtpHF32Wo0myM6jaMaM9epJacZPv5\n781+fiGEEMLWSTNzg0YPCKJXsDuHMwo5kF5g9vMrikJy9DSc9U58mbWGi5Xmv4NKCCGEsGXSzNwg\njaLw4KQoDDoNn36XQUWV+W+ldrNz5b6oqTQaG1mYuoQGY6PZxxBCCCFslTQzZuDr4ciUkeFU1jTw\n6XcnVRkjzieWYYFDuFCZyzdZ61UZQwghhLBF0syYyZibuhHRzY2DJ9VZbgKYEnEbvo7ebD63g/SS\nTFXGEEIIIWyNNDNmcnm5KRq9TsOn352kotr8y012WgOzY2agUTR8krqMyoYqs48hhBBC2BppZszI\nz9ORu0f04FJ1A59vzFBljFDXYCaHjae8voIl6avkdm0hhBBdnqrNzJtvvsn06dNJSkri2LFjV7y3\nfPlypk2bRlJSEi+//HLLX8qtHWMLxt0UTHiQK/vTCjh0Up3lpnGho+jpHsYPhcfZm3tQlTGEEEII\nW6FaM7N//35ycnJYtmwZb7zxBm+88UbLezU1NaxZs4bPPvuMpUuXcvr0aY4cOdLqMbZCo7m83KTT\nali84SSVNQ3mH0PRMDM6CQedPcszv6KgusjsYwghhBC2QrVmZs+ePYwdOxaA8PBwysvLqaysBMDB\nwYFFixah1+upqamhsrISHx+fVo+xJQFeTtw9ogcVKi43eTl4ML3XXdQ31bModSlNxiZVxhFCCCGs\nnWrNTFFRER4eHi1fe3p6UlhYeMX3fPDBB4wbN47ExESCg4PbdIytGD8omB6BruxNzedIhjo/wyD/\n/gzy6092xVnWZW9WZQwhhBDC2uk6aqCrXaj6yCOPMHPmTObMmcPAgQPbdMz/8vBwRKfTmqXGq/Hx\ncWn3sb+9/yaenL+NTzdmEN+/Gy6OBjNWdtmjQ5P53YYc1udsZmh4PyK9w80+hqluJLOuSjIznWRm\nOsnMdJKZ6SyRmWrNjK+vL0VF/72Wo6CgAB8fHwDKysrIzMxk0KBB2NvbM2LECA4fPtzqMddSWlqt\nzg/A5f9DCgvb/7Rqew3ckRDGym1ZvLf0CHNuizFjdf91f9R03jn8T97Z/RHPDX4KB529KuO0xY1m\n1hVJZqaTzEwnmZlOMjOdmpm11iSptsw0bNgwNmzYAEBKSgq+vr44OzsD0NjYyLPPPktV1eV9Uo4f\nP05YWFirx9iqCYODCQtwYU9KHj+cUudC3Z7uYYwPHU1xbQkrMr5SZQwhhBDCWqk2MzNgwABiY2NJ\nSkpCURTmzZvHqlWrcHFxYdy4cTz66KPMnDkTnU5HZGQkY8aMQVGUnx1j67QaDQ9MiubVhQf4ZH06\nEQ8Pwcleb/Zxbg0bR1pJBvvyDhHrFcVAv75mH0MIIYSwRkqzje+6puYUoDmny779PptVO04zrI8/\nD92qznJTfnUhb+1/B61Gx/ODf4OHvbsq47RGpmVNJ5mZTjIznWRmOsnMdJ1umUlcKXFICKF+Luw+\nnsexrGJVxvBz9GFqxO3UNNawKHUpxmajKuMIIYQQ1kSamQ6i02p48NZotBqFRevTqa5tVGWcoYGD\nifOOJbPsNJvP7lBlDCGEEMKaSDPTgYJ9nbltWHdKL9WxbIs6T71WFIX7oqbianDhm9MbOHvpvCrj\nCCGEENZCmpkONunmUEJ8ndl5LJcTp9VZbnI2ODEzejpNzU0sTFlKfZP5n+AthBBCWAtpZjrYT5eb\nFq5Pp6ZOneWmaK9ejO6WQH51AV+eWqPKGEIIIYQ1kGbGAkL8XLg1PpSSijqWbz2l2jh3hE8k0Mmf\nHRf2cLwoVbVxhBBCCEuSZsZCJg/tTjcfZ7b/cJGU7BJVxtBr9cyOnYFOo+PTtBVU1MsthkIIITof\naWYsRKfV8NCt0WgUhYVr1VtuCnIO4I7wiVQ2VPFp2oo2Pe9KCCGEsCXSzFhQqL8Lk+JDKa6oZeW2\nLNXGGdVtGFEeEaQUp7Pzwh7VxhFCCCEsQZoZC7ttaHeCfJzYeuQCaSotN2kUDckx03DSO7Lq1Lfk\nVuWrMo4QQghhCdLMWJhep+HBSZeXmz5el05tvTrLTe52btwbNZUGYyMLU5bQYFRnHCGEEKKjSTNj\nBcICXJl4cwhF5bV8se20auP08+nN0IDBnK+8yLenN6g2jhBCCNGRpJmxErcPCyPQ24nNh89z8myp\nauNMibgNHwcvNp/dwckS9W4LF0IIITqKNDNW4sflJkWBj9amUVffpMo49jo7ZsfOQFEUPklbRlVD\ntSrjCCGEEB1Fmhkr0iPQlcTBIRSW1fLFDvXuburuGsKk7uMoqytnyclVcru2EEIImybNjJW5c3gY\nAV6ObD54noxzZaqNM6H7aMLdunOk4Bj78g6pNo4QQgihNmlmrIxep+WBSdHAf5abGtRZbtIoGmbF\nJGGvtWd5xmoKq9V56KUQQgihNmlmrFDPIDfGDw6moLSGL3eod3eTl4Mn0yPvpK6pnkWpS2kyqtM4\nCSGEEGqSZsZK3TW8B36ejmw8cI5T58tVG2eQX38G+vblTEUO63O2qDaOEEIIoRZpZqyUQa/lwUlR\nAHy4No16lZabFEUhKfJuPOzcWZ+9mTPlOaqMI4QQQqhFmhkrFtHNnbE3BZNfUs3qXWdUG8dR78Cs\nmOk0NzezMGUJtY21qo0lhBBCmJs0M1bu7pE98HV3YMP+s2RdUG+5KcIjnHGhoyiqLWFFxteqjSOE\nEEKYmzQzVs5Or+WBSVE0N1++u6mhUb2LdG8NG0ewSxB78w5yuOCYauMIIYQQ5iTNjA2IDPFgzMBu\n5BZX89WubNXG0Wl0PBAzA71Gz5L0LyitVW+fGyGEEMJcpJmxEVNHhuPjbs+6fTmcya1QbRw/J1+m\nRNxGdWMNn6Qtx9hsVG0sIYQQwhykmbERdgYtD0yMprkZPlyTRkOjek1GQuAQ+njHkFF6ii3ndqo2\njhBCCGEO0szYkKhQD0YPCOJiURVf71bv7iZFUbgvaiouBme+zlrPuUsXVRtLCCGEuFHSzNiYe0aF\n4+1mz7q9Z8nOU2+5ycXgTHL0dJqam1iY8jn1TQ2qjSWEEELcCGlmbIy9QccDE6MwNjfz4Zo0GpvU\nW26K9YpkZLdh5FUXsDprjWrjCCGEEDdCmhkbFN3dk1H9ArlQWMU3u7NVHevO8EkEOPmx/fz3nChK\nU3UsIYQQoj2kmbFR94zuiZerHWv35pCTd0m1cQxaPbNjZqBTtHyatoJL9ZWqjSWEEEK0hzQzNsrB\nTsfsidE0GZv5aK26y03dXAK5PXwilxoq+TRtBc3NzaqNJYQQQphKmhkbFhvmyYi+AZwrqGTNHnUf\nEDk6OIEojwhOFKex6+JeVccSQgghTCHNjI2bNjoCDxc7vv0+m7P56i03aRQNyTHTcNI58kXmt+RV\nFag2lhBCCGEKaWZsnKO9jtkTozpkucndzo0ZUVNoMDawMHUJjcZG1cYSQggh2kqamU6gTw8vEvoE\ncDa/knV71V1u6u/bh/iAQZy7dIFvT3+n6lhCCCFEW0gz00kkjemJu7OBr3dnc75Q3TuOpkbcjreD\nF5vObiejNEvVsYQQQojrkWauLdCeAAAgAElEQVSmk3C01zMr8fJy04dr0mgyqrfcZK+zY3bMDBRF\n4ZPUZVQ3VKs2lhBCCHE90sx0In17ejO0tz85eZdYv++sqmOFuYUwsfsYSuvKWHryS7ldWwghhMVI\nM9PJzBgbgZuzga92neGCystNE0JvoYdbKIcKjrI/77CqYwkhhBDXIs1MJ+Nkr2fWhCgam5r5aG26\nqstNWo2WWTFJ2GvtWJ6xmqKaEtXGEkIIIa5FmplOqF+EN/GxfpzJreC7/edUHcvbwYtpve6ktqmO\nRalLaTI2qTqeEEII8b+kmemkZozthauTgS93niG3uErVsQb7D2CAbxyny7P59OiX0tAIIYToUNLM\ndFLODnpmToikscnIR2vSMBrVu0BXURRmRN6Nl70nazI2M//w++TLDsFCCCE6iDQzndiAXj4MifEj\n62IF3x1Qd7nJUe/I/xv0BAkhg8iuOMvvD7zD5rM7MDard82OEEIIAdLMdHr3jo3A1VHPlztPk1ei\n7n4wTnpHnoh/kDm9k7HT2rHq1Le8c/ifFFQXqTquEEKIrk2amU7OxdHA/eMjaWg08tFadZebftTP\ntw8vDHmG/j59yCrP5vf7/8K287tllkYIIYQqpJnpAm6K8mVQlC+nzpez6dD5DhnTxeDMw32SeTD2\nXvQaPSsyvuK9I/+mWG7fFkIIYWbSzHQR943vhbODnlXbs8gv7bjHDwz068fzQ54hzjuWjLIs3tg/\nn10X9sqOwUIIIcxGmpkuwtXRwP3je1HfaOTjNWkYO7CZcLNz4ZE+M5kZPR2NomXJyVX87YcFlNaW\ndVgNQgghOi9pZrqQQVG+DIz0IeN8OVs6aLnpR4qiMCRgIC8MeZoYr0jSSzN5fd989lw8ILM0Qggh\nbog0M12IoijcPz4SZwc9K7dnUdCBy00/crdz49dxD3Jf1D1AM5+mr+CfxxZSVlfe4bUIIYToHKSZ\n6WLcnAzcOy6C+gYjH69N79Dlph8pisLQwEE8P+RpojwiOFGcxhv75rM/77DM0gghhDCZNDNd0JBo\nP/pHeHPyXBnbjlywWB2e9h481u9hkiLvorG5iUWpS/n3icVU1F+yWE1CCCFsjzQzXZCiKMycEImT\nvY4VW7MoLKuxaC3Dg+J5fvBviHDvwdHCE7y+720O5R+1WE1CCCFsizQzXZSbsx33ju1FXUMTC9el\nW3x5x9vBiyf6P8LUiNupb2rgo5TP+PDEp1TWq/uQTCGEELZPmpku7OZYP/r19CYtp5TtP1y0dDlo\nFA2jgxOYO/gperiFcrjgGK/ve5ujhScsXZoQQggrJs1MF6YoCskTInG007Fs6ymKyi233PRTvo4+\n/GbAr7ir563UNNXywfFPWJiylOqGjr/7SgghhPWTZqaL83CxY8bYCOrqm1hkBctNP9IoGsaGjOS5\nQU8S6hLMgfzDvL7vbU4UpVm6NCGEEFZGmhnB0N7+xIV7kZJdys5juZYu5wr+Tn48M/DX3N4jkcqG\nat4/9jGL05ZT02gds0hCCCEsT5oZgaIozEqMwsFOx9LNmRSX11q6pCtoNVomdL+F/zfoCYKdA9mb\ne5DX980nrTjD0qUJIYSwAqo2M2+++SbTp08nKSmJY8eOXfHe3r17mTZtGklJSTz33HMYjUaqqqp4\n7LHHSE5OJikpiZ07d6pZnvgJDxc7km7pSW19E4vWW89y008FOQfwu5seZ1LYOCrqL/G3owtYkv4F\ntY3W1XwJIYToWDq1Trx//35ycnJYtmwZWVlZzJ07l2XLlrW8/9JLL/HJJ5/g7+/PE088wc6dOzl3\n7hxhYWE888wz5OfnM2vWLNavX69WieJ/JMQFcCC9gBNnSth1PJfhcYGWLulntBott4aNo493NItT\nl7Pr4j7SSjK4P/oeenn0tHR5QgghLKDNMzOVlZUAFBUVcfDgQYxGY6vfv2fPHsaOHQtAeHg45eXl\nLecAWLVqFf7+/gB4enpSWlqKh4cHZWWXn6RcUVGBh4eHaT+NuCGKojB7YhT2Bi1LN5+ipMJ6ZzxC\nXLrxf4OeIDH0Fkrrynn3yAcsz/iKuqZ6S5cmhBCig7VpZua1114jKiqKcePGkZSURGxsLF9//TWv\nvvrqNY8pKioiNja25WtPT08KCwtxdnYGaPnfgoICdu/ezZNPPomHhwerVq1i3LhxVFRU8K9//eu6\ntXl4OKLTadvyY7SLj4+Laue2Rj4+Ljx8R2/+tuIoS7dm8dJDQ1AUxeRzdJQH/e5hRMQg/r5/EdvP\n7+ZkWQa/HjyTKB/bmqXpap8zc5DMTCeZmU4yM50lMmtTM5OamsqLL77IkiVLuOuuu3j00UeZNWuW\nSQNd7RqM4uJifvnLXzJv3jw8PDz46quvCAwM5MMPPyQ9PZ25c+eyatWqVs9bquKTn318XCgs7HrP\nCerfw5OY7h4cTMvnq62ZDOsT0OZjLZGZG178rv/jfHNmA1vO7mTelvmMDk7gth6JGLT6Dq2lPbrq\n5+xGSGamk8xMJ5mZTs3MWmuS2rTM9GMjsm3bNm655RYA6utbn8739fWlqKio5euCggJ8fHxavq6s\nrGTOnDk89dRTJCQkAHD48OGWf4+KiqKgoICmpqa2lCjM6MflJjuDliWbMim9VGfpkq5Lr9Vzd8/J\nPD3wV/g4eLHl3E7eOvAuZ8rPWro0IYQQKmtTMxMWFsakSZOoqqoiOjqa1atX4+bm1uoxw4YNY8OG\nDQCkpKTg6+vbsrQE8NZbbzFr1ixGjBjR8lpoaChHj15+wOCFCxdwcnJCq1VvCUlcm7ebA9NG96S6\nrpFPrPTupqvp4dad5wY/xehuCeRXF/D2ob/zVdY6GoyNli5NCCGESpTmNvwt1dTUREZGBuHh4RgM\nBlJSUggODsbV1bXV4/785z9z8OBBFEVh3rx5pKam4uLiQkJCAoMGDaJ///4t3zt58mQmT57M3Llz\nKS4uprGxkSeffJL4+PhWx1BzCrCrTzEam5t5e+kPpOWUMmdyDPG9/a97jDVlllmaxeK0FRTXlhDg\n5MfM6OmEuHazdFk/Y02Z2QrJzHSSmekkM9NZapmpTc3MiRMnKCwsZPTo0fzlL3/hhx9+4PHHH+em\nm24ya6HtIc2MugrLanjpw/3otAqvPzwEN2e7Vr/f2jKrbaxjddZadl7Yg0bRMCH0FhK734JOo9qu\nBCaztsxsgWRmOsnMdJKZ6az6mpnXX3+dsLAwDh48yPHjx3nxxRf561//arYChfXycXdg6qhwqmob\n+WTDSZtZbvqRvc6OpMi7eLzfHNwMrqzL3sSfDv6NC5XW9dgGIYQQ7demZsbOzo7u3buzefNmpk2b\nRs+ePdFo5EkIXcXoAUFEBrtzJLOIfWn5li6nXaI8I3h+yNMMDRjM+cqL/OHAX1mfvZkmo1xgLoQQ\ntq5NHUlNTQ3r1q1j06ZNJCQkUFZWRkVFhdq1CSuhURQemBSFQa/h842ZlFfZ5sZ0Djp77oueyq/7\nPoiz3olvTm/gz4f+Tm6VbTZoQgghLmtTM/P000/zzTff8PTTT+Ps7MzixYuZPXu2yqUJa+Lr4cjU\nkeFU1jTwqQ0uN/1UrFcULwx5miH+Azl76Txv7X+HjTnbMDa3vqu1EEII69SmC4ABqqurOXPmDIqi\nEBYWhoODg9q1tYlcANxxjM3N/PGzw2ScL+eXd8QyONrvZ99ja5kdLUxhyckvuFRfSZhrCMnR0/Bz\n8u3QGmwtM2sgmZlOMjOdZGY6q74AeNOmTYwfP5558+bxwgsvMGHCBLZv3262AoVtuLzcFI1Bp+HT\n7zKoqLbN5aaf6usTywtDnmGgb1/OVJzl9wfeYcu5nTJLI4QQNqRNzcyCBQv4+uuvWblyJatWrWLF\nihW8//77atcmrJCfpyN3/2e56bPvMixdjlk46514sPd9PNT7fuy0dnyR+Q3vHP4XhdXFli5NCCFE\nG7SpmdHr9Xh6erZ87efnh15v/c+8EeoYO7AbPYPcOJBewMH0AkuXYzYDfON4Ycgz9PPpTVb5Gd7c\nP58d57+XWRohhLBybWpmnJyc+Oijj0hPTyc9PZ0FCxbg5OSkdm3CSmk0l+9u0us0LP7uJJc6wXLT\nj1wMzjzcO5kHYmag0+hYlrGa935YQHFNiaVLE0IIcQ3al19++eXrfVN8fDwbNmzgs88+Y/PmzTg5\nOTF37lyruAi4WsW/SJ2c7FQ9vy1zcTSg12o4kllE6aU6boq8fNFsZ8hMURQCnQMY4j+Q/OpC0koy\n+D53P856J4JdglAUxazjdYbMOppkZjrJzHSSmenUzMzJ6do70LdpT3cvLy9effXVK17Lysq6YulJ\ndD3jBwVz6GQB+1LzuSnSl4GRPtc/yIa42bnyy7jZ7Ms7xMrMr/n85BccKTzOfVFT8bB3t3R5Qggh\n/qPd2/i+8sor5qxD2KDLy03R6LSXl5sqaxosXZLZKYrCzQE38fzgp4n27EVaSQZv7J/P3tyDNr3X\njhBCdCbtbmbkD3IBEOjtxF3Dw6ioqmfJps5xd9PVeNi782jfh7g3cgrGZiOL05bzr+MLKa+TnbCF\nEMLS2t3MmPu6AWG7xg8OJizAhT0p+ew53nkf4KgoCsOChvD84Gfo5dGT40VpvL7vbQ7kHZHmXggh\nLKjVa2ZWrlx5zfcKCwvNXoywTVqNhgcnRfPKwgP84ZMD3Da0O5PiQ9FpO+fDSL0cPHi838PsvLCX\n1afWsDB1CT8UHicp8m5cDM6WLk8IIbqcVpuZQ4cOXfO9fv36mb0YYbuCfJz5zT19+XhdOqt3neGH\nU0U8NDmGIO/OeQu/RtEwsttQYjwjWZy2nB8KT3Cq7AzTI+9igG+cpcsTQogupc3PZrJW8mwm6+Lg\nbM/flh5m94k8dFoNU0b2YNygYDSdeFnS2Gxk2/ndfJ21jgZjIwN9+zIt8k6c9W1r5ORzZjrJzHSS\nmekkM9NZ6tlMbbo1+9577/3ZNTJarZawsDB+/etf4+f38wcOiq7J2UHPQ5Nj6N/Lh0/Wp7NsyymO\nZBbx4K3R+Lpbfl8iNWgUDbcEDyf2P7M0hwqOklGWxb2RU4jzibV0eUII0em1adO83NxcGhsbmTJl\nCgMGDKC4uJhevXrh7+/PRx99xB133NEBpV6dbJpnXX7MLMDLiaF9Aigsq+HE6RJ2Hs3F2VFPqJ9L\np7143NngxM0BN2GnNZBanM6B/CMU1RTTy70Heu21H/8hnzPTSWamk8xMJ5mZzqo3zTt06BAff/xx\ny9djx47lkUce4YMPPmDz5s03XqHolFwdDfz6zt7sTc3ns+8y+GT9SQ5nFPLAxGg8XK79obRlGkXD\nuNBRxHpFsThtGfvzDnOy5BT3RU8l1ivK0uUJIUSn1KbbTYqLiykp+e+zaS5dusTFixepqKjg0iVZ\nTxTXpigK8bH+vPbwEHqHeXLidAkvLtjH3pS8Tn07c6CzP78d+BiTwyZQ2VDFP45+xGdpK6hprLV0\naUII0em0aWZm5syZTJw4kaCgy8+lOX/+PL/4xS/YunUr06dPV7tG0Ql4uNjxm2l92X70Iss2n+KD\nb1I5lFFI8oRIXB0Nli5PFVqNlolhY+jjHc0nacv4PvcAaSWZ3B99D1GeEZYuTwghOo02381UWVlJ\ndnY2RqORkJAQ3N2t49k0cjeTdWlLZgVlNXz0bSoZ58txddQza2IU/SM613Od/lejsZH12ZvZkLMV\nY7OR4UHx3Bk+CXudnXzO2kEyM51kZjrJzHSWupupTRcAV1VVsWjRIr799lsOHjxIcXExvXv3Rqdr\n08SOquQCYOvSlsyc7PUM7R2AvUHHsdMl7E3Jp6ishqgQD/S6zrnRnkbR0MujJ729ojhdnk1KcTqH\n8o/SzTmAYC9/+ZyZSH43TSeZmU4yM52lLgBuUzPz7LPPYjAYSExMJDY2lpMnT7J27VrGjx9vzjrb\nRZoZ69LWzBRFoWc3NwZE+nD6YgXHT5ewNzWPbj7O+HTSW7jh8pO44wMHY2w2klKczt68gxRVl+Jt\n54VTG/elEfK72R6SmekkM9NZqplp0zLTzJkz+eSTT654LTk5mcWLF994dTdIlpmsS3sya2wysnZP\nDt98n02TsZlbBgRxz6ie2Bm0KlVpHc6U5/Bp2gryqgtQUOjn24fxIaMIce1m6dKsnvxumk4yM51k\nZjqr3jSvpqaGmpoaHBwu/xdzdXU1dXV15qlOdHk6rYbbE8KI6+nFgm/T2HL4AifOlPDwrTH07OZm\n6fJUE+YWyvNDniar9hRfHF/LkYJjHCk4RpRHBBO6jybCPbzT7skjhBDm1KZmZvr06UycOJHevXsD\nkJKSwpNPPqlqYaLr6e7vyrzZN/HlzjNs2HeW3392iMQhIdyZ0KNTX0szNGQgPe0jSC/J5LucraSX\nZpJemkmoazDjQ0cT5x2DRumcP78QQphDm+9mys3NJSUlBUVR6N27N4sXL+a3v/2t2vVdlywzWRdz\nZZZxrowP16RSWFZLkI8TcybHEOJ37SlGW/a/mZ0pP8vGs9s4WngCAD9HX8aFjmKQXz90GstfdG8N\n5HfTdJKZ6SQz01lqmandD5q82nU0liDNjHUxZ2a19Y2s2JrF1iMX0GoUbh/WnUnxoWg1nWuW4lqZ\n5VXlszFnO/vzD2NsNuJu58aYkBEMDRiMva5z7qDcVvK7aTrJzHSSmeks1cy0+2+Fzrx7q7AO9gYd\nyRMieXp6X1ydDHy58wxvLj5EbnGVpUvrEP5OfiTHTOPV+GcZHZxAdUM1X2R+w0vf/541p7+jsqFr\n5CCEENfT7mZGLkwUHaV3mBevPjSY+Fh/zuRe4uWPD/DdgXMYu0hD7WHvztSI23lt2FwmhY0DYG32\nJl7c/SYrM7+mtLbMwhUKIYRltbrMNHLkyKs2Lc3NzZSWlnLs2DFVi2sLWWayLmpnduhkAZ9sOMml\n6gYig9156NZovG18XxpTM6ttrOP73P1sPruDsrpyNIqGwX4DGBc6En8nPxUrtR7yu2k6ycx0kpnp\nrPKamQsXLrR64qCgoPZXZSbSzFiXjsisoqqeRevTOZJZhJ1By4wxEQyPC7DZ2cL2ZtZobORA/g9s\nzNlGfnUBAH29YxkXOpowtxBzl2lV5HfTdJKZ6SQz01llM2MLpJmxLh2VWXNzM3tS8vhsYyY1dY3E\nhXsxKzEKDxfbuzD2RjMzNhs5XpTKhpyt5FScA6CXezjjQ0cT5Rlhs01ea+R303SSmekkM9NZ9aZ5\nQlgbRVEY2juAqBAPPl6bxrGsYl76cB/3j49kSEzXWGr5kUbR0NenN3HesWSWZfFdzjbSSjLIKMsi\n2DmQcaGj6e/bR/aqEUJ0Wm16NpM1k2czWZeOzszBTkd8rD9uTgaOnS5mf1oBF4uqiApxx05vG49D\nMFdmiqLg5eDJYP8B9PGOpqaxhozSLI4UHuNg/hH0Gj0Bzv5oO0FTI7+bppPMTCeZmc6qHzRpzaSZ\nsS6WyExRFMICXBkU7UtO/iVOnC7h+xN5+Hs64u/l2KG1tIcambnZuTLAN46b/PrRaGzkVNkZjhal\nsOfifozNzQQ6+6O34Q345HfTdJKZ6SQz00kz007SzFgXS2bm7KBnWO8A7AxajmcVsycln+LyWqJC\nPaz6cQiq/vLrnejjHUN84CA0iobT5dmkFKez88IeahvrCHT2x05rUGVsNcnvpukkM9NJZqaTZqad\npJmxLpbOTFEUIrq5M6CXD6cvVnD8dDH7UvMI9nHGx0pv4e6IzOx19kR79mJ40M3Y6+zJqThHWkkG\n28/vprzuEgFOvjjqrTOfq7H058wWSWamk8xMJ81MO0kzY12sJTNXJwMJcQEoChzLKmH3iTwqaxqI\nDHFHp7WuWZqOzEyv1dPTPYyR3YbhZufKhcpc0ksz2X7hewqqC/Fx9MbVYP3PwLKWz5ktkcxMJ5mZ\nzlLNjO0umgtxHTqthjuH96BvT28WfJvK5kPnOXG6mIcnxxAe5Gbp8izKoNUzsttQEgKHcKjgKBtz\ntnEg/wgH8o/Q2yuK8aG3EO7e3dJlCiFEm8jMTCukKzedNWbm4WLH8LgA6huNHM8qZufxXBqbjER0\nc0ersfweLJbMTKNoCHIOYHjQzYS6BlNSW8bJ0lPsyT3AyZJMXAzO+Dh4W91eNdb4ObN2kpnpJDPT\nycyMECoy6LUkjYmgf4Q3H65JY82eHI6eKubhydGE+Fn/soraFEWht3c0vb2jOVV2ho05WzlRnM77\nxz4m0Mmf8aGjGeAbh1ZjG7e7CyG6FpmZaYV05aaz9sy83RxIiAuguraBY6eL2XksF42iEB7kisZC\nsw/WlpmnvQeD/PvTz6c3tY11ZJad5kjhcfbnHUaraAlw8rd4U2NtmdkCycx0kpnp5ALgdpJmxrrY\nQmZ6nYa+Pb3pEehKanYJRzKLSDlTQkQ3N1wcO/42ZWvNzNXgQj/fPgz274+x2UhW+RmOFaWy++I+\nmpqNBDr5o9fqLVKbtWZmzSQz00lmppNmpp2kmbEutpSZn4cjCXEBlF6q4/jpEnYdy8XOoCUswLVD\nrxGx9swc9Y709o5maOBgdIqO7IqzLXvV1DTWEuDkh72uY5+JZe2ZWSPJzHSSmemkmWknaWasi61l\nZtBpGRjpS5C3EyfOlHA4o5CMc2VEhrjjaN8xsw62kpmd1o5Iz54MD4rHUefA2UsXWvaqKa0rx8/R\nFyd9x+y4bCuZWRPJzHSSmemkmWknaWasi61mFujtxNA+AeSXVHPiTAk7j+Xi4mggxM9Z9VkaW8tM\nr9ER7t6dkUFD8bB352JVPidLM9lx/ntyq/LxcfDCzc5V1RpsLTNrIJmZTjIznTQz7STNjHWx5czs\nDVoGR/vi4+7AiTPFHEwvJCfvElGhHtgb1Lvxz1Yz02q0hLh2Y2S3oQQ4+VFUU8TJ0lPsuriPM+U5\nuNu54WnvoUozaKuZWZJkZjrJzHRya7YQVkBRFIb1CSAqxIOP1qZxNKuYFxfsI3lCJIOj/SxdnlXS\nKBoG+vVlgG8caSUZfJezlbSSDNJKMujuGsL40FH08Y5B0wme1i2EsE4yM9MK6cpN11kyc7TXEd/b\nHxdHw+XnO6UVkFtcRVSoBwa9eW9L7iyZKYqCj6M3NwfcRIxnL6oaqjlZeopDBUc5UnAMO60Bfydf\nszQ1nSWzjiSZmU4yM50sM7WTNDPWpTNlpigKPQJdGRTlS3ZeBSdOl/D9iTwCvBzx9zTfha6dKbMf\nedi7M9CvHwN946hvaiCjLIujhSfYl3sIRVEIdPZHdwN71XTGzNQmmZlOMjOdNDPtJM2MdemMmTk7\n6EnoE4BBr+X46WL2pORTUlFLVIgHep3MMrTG2eBMX59Ybg4YCM2QVX6G48Vp7Lq4l3pjA4HO/hi0\npu/t05kzU4tkZjrJzHTSzLSTNDPWpbNmpigKEd3c6R/hQ9aFco6fLmFfaj4hvs54uzvc0Lk7a2Y/\n5aBzIMYrkoTAmzFo9ORUnCO15CQ7LuyhqqGKACc/HHT2bT5fV8jM3CQz00lmppNmpp2kmbEunT0z\nVycDCXEBNAPHs4rZdTyXqtoGIoPd0WrbN0vT2TP7KYPWQC+PcIYHxeNicOb8pYv/2avme4pqS/Bz\n9MHZ4HTd83SlzMxFMjOdZGY6uZtJCBuh02q4e0QP+vX05sM1qWw6eJ4Tp0t4aHI04YFuli7PJtjr\n7LgleDgjguI5kHeEjWe3sTf3IPtyD9HXJ5bxoaMJdQ22dJlCCBshMzOtkK7cdF0pMw8XO4bHBVDX\nYORYVjG7juXSZDQS0c0djabte6t0pcz+l0bREOwSxPCgeLq5BFJUU8LJ0lPsvrifU2VncLNzwdve\n82d71XTlzNpLMjOdZGY6mZkRwgYZ9FpmjI2gf4Q3H61N49vvczh6qpiHJ8cQ7Ots6fJshkbR0M+n\nN329Y8ksy2JD9lbSSzPJKD1FiEsQ40JH08+nt+xVI4S4KpmZaYV05abrqpl5uzuQEBdAZU09x0+X\nsPPoRbQahfAgVzTX2QG3q2Z2NYqi4OXgyZCAgfTxiqa6sYaM0iwOFxzjUP4P6LU6Apz8cXF2kMxM\nJJ8z00lmprPUzIzS3NzcrMqowJtvvsnRo0dRFIW5c+cSFxfX8t7evXuZP38+Go2GsLAw3njjDTQa\nDV9//TULFixAp9PxxBNPMGrUqFbHKCy8pFb5+Pi4qHr+zkgyg2NZRXy8Lp3yynrCA115eHIMfq3s\nSyOZta6gupBNZ7ezL/cQjc1NuBlcGB42BD+9P91dg/Gwc+/Qp5zbKvmcmU4yM52amfn4uFzzPdWa\nmf379/Phhx/yr3/9i6ysLObOncuyZcta3h8/fjyffPIJ/v7+PPHEE0yZMoW4uDiSkpL44osvqK6u\n5r333uO1115rdRxpZqyLZHZZZU0Dn23MYF9qPgadhntG92T0gKCrztJIZm1TVlfOlnM72XVhL3VN\n//0vP1eDC6GuwXR3DaG7azChrsEm3ebdVcjnzHSSmeks1cyods3Mnj17GDt2LADh4eGUl5dTWVmJ\ns/Pl6whWrVrV8u+enp6UlpayZ88e4uPjcXZ2xtnZ+bqNjBDWytlBzy9uj2VALx8WbzjJZxszOJxR\nyIOTovFyk79o28Pdzo27e07m1rDxVGiK+eHsSbIrzpFdcZbjRakcL0oFQEHBz9HncnPjdrm5CXIK\nQHsDOw4LIaybajMzL774IiNHjmxpaO69917eeOMNwsLCrvi+goIC7rvvPpYvX86KFSs4ffo0ZWVl\nVFRU8PjjjxMfH9/qOI2NTeh08oeUsF6lFbW8t+IHDqTm42ivY84dfRgzKFiWRsyopKaMU8XZnCrJ\nJrP4DFklOdQ21rW8b9DqCfMIIcKzOz29utPTKwwfx5/fJSWEsE0ddjfT1Xqm4uJifvnLXzJv3jw8\nPDwAKCsr429/+xsXL15k5syZbN26tdU/cEpLq1WrWaYYTSeZXd0vb4uhd3cPlmzK5N1lR9h+6Byz\nEiNxc7aTzNrh55lpCRPo/yUAACAASURBVLMLJywgnHEBYGw2kldVQHbFOXIqzpJdcY7M4jOcLMpq\nOcJF7/zf5Sm3YEJdgnHU39huztZMPmemk8xM1+mWmXx9fSkqKmr5uqCgAB8fn5avKysrmTNnDk89\n9RQJCQkAeHl50b9/f3Q6HSEhITg5OVFSUoKXl5daZQrRIRRFYXhcINGhHny0Jo0fThVx6sNyZk6I\nZGIrv6CifTSKhkBnfwKd/RkaOAiAuqZ6zl26QPZ/mpvs8rOcKE7jRHFay3Ety1P/ufYmyDkAnUZ2\nsBDC2qn2Wzps2DDee+89kpKSSElJwdfXt+UaGYC33nqLWbNmMWLEiJbXEhISePbZZ5kzZw7l5eVU\nV1e3zNgI0Rl4uznw2xn92XLoPCu3ZfGP1SfYf7KQMf0D6RUsd+WoyU5roKd7GD3d/7vUXV53qWXm\nJrviLDkV59mXd4h9eYcA0Gl0BDsH0d01+PI/biF4XWUTPyGEZal6a/af//xnDh48iKIozJs3j9TU\nVFxcXEhISGDQoEH079+/5XsnT57M9OnTWbp0KStXrgTgV7/6FWPGjGl1DLmbybpIZm2XV1LNwrVp\nZJwvByDU34UJg4K5KcoXXTuf89RVqPU5MzYbKagu5ExLc3OOC5W5GJuNLd/j/P/bu/Pgtsp7b+Df\no93aZVmLbUl2YsdZnNWOA1lZEpIL5Za3oTQhbehM52WGYTqFTmGGCYW0Q8s0zPQOQ2BoS9sZGm4v\naSFvht4uSYAEAiQ4++LE8RLHllfJtmxLlmVby/uH7OMooUlkYkuyv58ZxrF8ZD/6cWx/fZ7fcx65\nZmR6Kj5FVaB3QiP/90vv0wW/N5PHmiVvyi3NniwMM+mFNUtOLBZDV38Yu/dX42SNFzHEt0lYt9SB\nuxblQa2Sp3qIaWkyz7OhyDDc/paEKzhdIV/CMdasHBSMTE8VGpzI1+ZBnmbTU/zeTB5rljyGmXFi\nmEkvrFnyRmvm8QXx4fFmHD7bhsHhCJRyKVYvzMV9FU5YjFO3MXU8Un2e+YcCCb03jX43BsIh8eMy\nQQqHLj/hCo4ly5zS6alU1ywTsWbJY5gZJ4aZ9MKaJe/amgVDw/jkdCs+PNEMn38QggCUlViwocKF\nYgd35QbS7zyLxqLwBjvFKzdX+txoDrQmTE9pZGox3IyuotIqNJM2xnSrWSZgzZI35VYzEdH4qFVy\n3H9nAe6rcOJ4tQf7Kt04ccmLE5e8KMrTY/0yF8pKciCVsK8mXUgECWwaK2waK+7ILQcADEeG4Q60\nonE04PQ24UL3JVzoviQ+LyfLLF65KdQ74dDmQS7l1CJRshhmiNKUTCrBnaV23DHPhhp3D/ZVunG6\nrhNv7j2PHIMK65Y6sXphLrKU/DZOR3KpHDMNBZhpKBAf8w8FRsLNWIPx8Y7TON5xGgAgFaTI1+aK\n4abQEJ+e4m7hRDfGaaYb4CXG5LFmyUumZu3dQRw45sbn59owFI4iSynFmkV5WFfunFbbJEyV8ywW\ni8E7cM30lL8VkVhEPCZLliUuDR+dntIptDf4rF9tqtRsMrFmyWPPzDgxzKQX1ix546lZYGAYB0+1\n4OMTzejtH4JEELB0jgUblrkwI1c/QSNNH1P5PBuOhtHsv2p6qq8J3oGuhGPMquyEe984tPlQ3GR6\nairXbKKwZsljmBknhpn0wpol7+vUbDgcReXFDuyrbEKztx8AUOIwYP0yFxYX50AimZo3d5tu51lg\nuB+Nfc1iuGnsc6N/eGwrF4kgSZye0jthVVsSpqemW81uB9YseWwAJqKkyWUSrFyQixXz7bjQ6MP+\nSjfOXe5CTfM5WE1ZuG+pE6sW5EKp4GasmUwr16DUPBul5tkA4tNTnQPdCeHGHWiF29+Cwy1HAABZ\nMhUKdE5xBVW5bh6AqRluiXhl5gaYypPHmiXvdtesxRvAgeNufHG+A+FIFBqVDHctzsfacgdMOuVt\n+zqpxPPseuFoGC2Btqv6b5rgCXYmHGNSGlFocIkrqFy6fCikihSNOP3xPEsep5nGiWEmvbBmyZuo\nmvX1D+Hjk804eKoF/uAwpBIBy+basGGZEy5bZm9uyfPs1gSHg+L0VOtgG2q8lxEY7hc/LhEkyNXY\nRqan4iHHrrFy9dQInmfJY5gZJ4aZ9MKaJW+iazY0HMHRC/G+mraueJ/F3AIT1lc4saDIDEkGbprI\n8yx5FosOHk8fukK+hK0Z3P4WDEfD4nFKqWJsemrkKo5ROT1v1sjzLHnsmSGiCaGQx5dvr1qYi/OX\nu7H/WBMuXPHhYqMPuWY17qtwYkWpHQo5+2qmOkEQkJOVjZysbJTbFgMAItEIWvrb4quneuMBp7bn\nMmp66sXnGZWGhKXhLl0+VLLpcysASn+8MnMDTOXJY82Sl4qaNXX4ceCYG0cvdCASjUGbJcc9S/Jx\nb7kDBk3691DwPEteMjUbCA+gsa854QZ/fUNjzxUgIFdjS9h7Kldjg1QytQIxz7PkcZppnBhm0gtr\nlrxU1qwnMBjvqznZgv5QGDKpgDtL7Vhf4YTDkvyN2SYLz7PkfZ2axWIx9Az2omFk5dSVviY09TVj\nKDosHqOQyOHUOVBoGNuewaQ0pnRzza+L51nyOM1ERJPOqFVi45oifOPOQnxxvg37j7nx2dk2fHa2\nDfNnZGP9MidKC7Mz+hcSfX2CIMCkMsKkMqLMuhBAfHqqPejBld6x/pvLvVdQ39sgPk+n0CY0Fxfo\nHciScQd4uv0YZogISoUU95Q5cNeSfJyp68T+SjfON3TjfEM38i0arK9w4s55dshlXOVCcVJJfB+p\nfG0uVubfAQAIhQfh9jePhJt4wDnXeQHnOi+Iz7OprQmba+Zrc6fc9BRNPk4z3QAvMSaPNUteutas\noa0PB465UXnRg2gsBr1GgXvL8nHPknzo1Kntq0nXmqWzVNWsZ7D3qt4bN5r63AhFBsWPyyUyOLT5\nCdNTZlV6XA3keZY89syME8NMemHNkpfuNevuC+GjE804dLoVA4Ph+F2H59txX4UTuWZNSsaU7jVL\nR+lSs2gsio6gd2R6Kt6D09LfjmgsKh6jlWsSmosL9E5o5OpJH2u61CyTMMyME8NMemHNkpcpNRsY\nDOOzc204cMyNzt4QAGBRkRnrl7kwxzW5jZ6ZUrN0ks41G4oMwe1vTdieoSvkSzjGmpUjLg0vNDiR\nr82DXDKxnRLpXLN0xQZgIkprWUoZ7lvqxNoyB07WeLH/mBtn6rtwpr4LLpsWGypcqJhrhUzKvhpK\njkKqQJGxEEXGQvGxviG/OD01+vZYxykc6zgFAJAJUuTr8hL6byxZOWkxPUWTj1dmboCpPHmsWfIy\nuWb1Lb3Yd8yNE5c8iMUAo1aBteUO3L0kHxqVfMK+bibXLFUyvWbRWBTeYKfYe9PY50ZzoBWRWEQ8\nRi3Lum56SqcY/y0GMr1mqcBppnFimEkvrFnypkLNOnsGcOB4Mz4924rBoQgUcglWL8jDugoHbKbb\n3+swFWo22aZizYYjw2gOtIorpxr73PAOdCUcY1Zlj4Sb+PYMDm0+FNJbC9pTsWYTjWFmnBhm0gtr\nlrypVLNgKIxPz7TiwxNudPcNQgCwpMSC9RVOzHIYbtsUwFSq2WSZLjULDPcn3Lm4sc+N/uGg+HGJ\nIEG+Nle8cjND74RVbfnKzTWnS81uJ4aZcWKYSS+sWfKmYs3CkShOXPJiX2UTrrTHX9uMXB02LHOh\nfLYFUsnX66uZijWbaNO1ZrFYDJ0D3WKwudLXBHegFeGrNtdUSVUo0DvEgFOod8Gg1E3bmn0dDDPj\nxDCTXliz5E3lmsViMdQ292JfZRNO13YiBsCsV2JtuRNrFuVBrRrfGoSpXLOJwpqNCUfDaAm0XdVc\n3ISOoDfhGJPSiJlmJ7JlZtg0VtjVVtg1Ft7B+Ca4momIphxBEFDiNKLEaUSHL4gDx9z47Fwb/nKw\nDh983oA1i/KwrtyBHCN/QdDkkUlkKBjZBXxUcHgAjf6xcHOlz40Treeue65BoYNNYxsJN1bxrV6h\n40qqFOKVmRvgXzLJY82SN91qFhgYxienW/DRiWb0BIYgCED5bCs2LHOiKM9wS59jutXsdmDNkqfU\nC6hquoz2/g60Bz3o6PeiPehB9zX3wAGALJkKNvVYuLFrrLCprcjJyv7KfpypildmiGha0GbJ8Y3l\nhdiwzIXKix3YX+nG8WoPjld7UJxvwIZlTiyZZYFEwr9yKbX0Si2KjTNQbJyR8PhgZAgdQQ/a+z3o\n6PegPehBe9ALt78FV/qaEo6VCVJY1Zarpqrib61qyy2vqqKbY5ghopSQSSVYMT8Xy0vtqG7qwb7K\nJpyt70Ld/+tFjkGF+yqcWL0wFyoFf0xRelFKFXDpHHDpHAmPR6IRdA50xcPNSMiJX83pQGt/e8Kx\nAgSYVabEkDPyb3UKtm7IdPwpQUQpJQgC5haYMLfAhLaufhw45sbn59vxPx/WYu/hBty9OA9ryx3I\n1qtSPVSiG5JKpLBprLBprFhkGXs8FouhZ7D3mpATf1vVVY2qruqEz6NTaGFXW6+7mmNU3r7bG0w1\n7Jm5Ac4xJ481Sx5rdr2+4BAOnWrBxyea0RcchlQioGKuFRsqXCiwc8nseLBmyZuMmvUPB8Upq9Gg\n094f78uJIfHXs0qqhE1thU1jSQg5OVlmSCXSCR3nreLS7HFimEkvrFnyWLN/bzgcwdGqDuw/5kZL\nZz8AYLbTiP9cU4QZVg2ylLy4fKt4niUvlTUbigzDE/RedzXHE/QifNUWDgAgFaSwqHPiAWe0P2ek\nAVkpVUzquNkATER0DblMitWL8rBqYS6qrnRjX6UbVQ3duPTfJyCTCphXmI2yEgsWz8qBXj25P7SJ\nJpJCKodDlweHLi/h8Ug0gq6Q7yuv5rT3d1z3ebJVJvEqjk1tgX1kWblWoZmslzIpeGXmBviXTPJY\ns+SxZslp7ezHBXcvDp9qhtsTAAAIAlDiMKKsxIKyEgvMBvbXXIvnWfIyqWaxWAy9Q33i8vGxqzkd\n6B26/jVo5Zr4UvKrruLY1VaYVIavtZScV2aIiG5BXo4Gi+basW5JHjw9Azh5yYuTNV7UuHtwyd2D\n//moFgV2HcpHgk1eztT6C5ToqwiCAKPSAKPSgNnZxQkfCw4PxK/kBL0jjccdaO/34HLvFdT3NiQc\nq5DIExqPRwOPJcsMmSR9I0P6joyI6Casxiz8xx0u/McdLvQEBnGqthMna7yobvShsd2PPZ9eRq5Z\nLV6xKbTzLq00/ajlWZhhKMAMQ0HC48ORYXgGOuP3ywlePWXVAbe/JeFYiSCBJct83Sorm9oClSz1\nV0I5zXQDmXSJMV2wZsljzZJ3s5r1h4Zxtq4LJ2q8OH+5C0PhKAAgW69E2SwLymdbMMthnFY35uN5\nlrzpWrNoLIrukO+6ZeTt/R4EwwPXHW9UGsRw880Fa6Ec1E7IuDjNRETTikYlx/L5diyfb8fgcATn\nL3fjZI0XZ+o68eGJZnx4ohnaLDmWzMpBWYkF8wqzIZdNn1vOE92IRJAgJ8uMnCwz5mOu+HgsFoN/\nOJDQeDwadKp9taj21UKVJcd/Oh+Y9DEzzBDRlKaUS1E+O341JhyJorrJh5M1nThV48Xhs204fLYN\nKoUUC4vMKCuxYMFMM5d8E30FQRCgV+igV+hQYipK+FgoHIJ3oBvzXIXw+4YmfWz8jiWiaUMmlWD+\nDDPmzzDje+tLcLmlDydqPDhZ40XlRQ8qL3ogk0pQWmgSl3zruOSb6KZUMhWcujyoZEr4wTBDRDQp\nJIKAYocBxQ4DvnNPMdyeAE7WxFdGnanvwpn6Lgj/it+kb7SBmFsqEKUnhhkimvYEQYDLpoPLpsP/\nWT0THb5gPNhc8qK6qQfVTT3484e1mJGrE4NNrplLvonSBcMMEdE1bCY17r+jAPffUQCffxCnar0j\nS7570NDmx/ufXEZejgZlJTkoL7HCZdNyyTdRCjHMEBHdgEmnxL1lDtxb5kBgYBhn6uL3sjnf0I3/\n/aIR//tFI8x61cgVm5xpt+SbKB0wzBAR3SJtlhwrF+Ri5YJcDA5FcO5yF07Wxpd8HzjuxoHjbujU\no0u+rZhbYOKSb6JJwDBDRDQOSoUUS+dYsXSONb7ku9GHEzVenKrx4tMzbfj0TBuylFIsLMpBeYkF\n82dmQ6Xgj1yiicDvLCKir0kmlWD+TDPmzzRj6/rZqGvpFVdGfXmhA19e6IBcJkHpVbt8a7PkqR42\n0ZTBMENEdBtJJAJKnEaUOI3YdG8xmjrGlnyfruvE6bpOSAQBs11jS75NOmWqh02U0RhmiIgmiCAI\nKLDrUGDX4VtrZqK9O77k+8QlLy42+nCx0Yf/PlCDmXl6lJVYUF5igS1bnephE2Uchhkiokliz1bj\ngTsL8MCdBejuC4m7fF9q6sHl1j68d6ge+RaNuBmm08ol30S3gmGGiCgFsvUqrC13YG15fMn36dqx\nJd9/++IK/vbFFeQYVOJUVHG+gUu+if4NhhkiohTTZsmxamEuVi3MRWgojHNX7fK9/5gb+4+5odco\nsGRWfGXUnAITZFIu+SYaxTBDRJRGVAoZKuZYUTHHiuFwFBcbfThZ48Gp2k58croVn5xuRZZShkXF\nZpTNiu/yrVRIUz1sopRimCEiSlNymQQLi8xYWGTGYxtiqG3uEe9lc7SqA0er4ku+588YW/KtUXHJ\nN00/DDNERBlAIhEw22XCbJcJj66dhcYOv7gy6lRtJ07VdkIqiS/5Li+xYEmJBUYtl3zT9MAwQ0SU\nYQRBQKFdj0K7HhvXFKGtq1+8l82FKz5cuOLDrv01KMrXiw3EFosu1cMmmjAMM0REGS7XrME3lmvw\njeWF6OoN4WRtfCrqkrsH9S19+OvBeuTlaDAzT48ShxElTgMsxiwu+6Ypg2GGiGgKMRtUuG+pE/ct\ndaIvOIQzI0u+a1t68dnZNnx2tg0AYNQqUOI0YpYjfrfifIsGEoYbylAMM0REU5RercDqRXlYvSgP\n2WYtTl9owyV3D2rdPahp7kXlRQ8qL3oAAGqlDMUOg7gVQ6Fdx+XflDEYZoiIpgGpRIDLpoPLpsN9\nS52IxWLw+AZQ4+5BTXMPatw9OFvfhbP1XQAAhUyCmXl68cpNUb6eu35T2prQM/Pll1/GmTNnIAgC\ntm3bhoULF4ofO3r0KP7rv/4LEokEM2bMwC9/+UtIJPG/AkKhEB588EE8+eST2Lhx40QOkYhoWhIE\nAbZsNWzZaqxelAcA8PkHUTsSbGrcvbjU1IPqph4AgEQQUGDXiuFmlsMAnVqRypdAJJqwMFNZWYnG\nxkbs3r0b9fX12LZtG3bv3i1+/MUXX8Sf/vQn2O12/OhHP8Lhw4dx1113AQDefPNNGAyGiRoaERF9\nBZNOiWVzbVg21wYA6A8No7a5d2RaqgdX2vxoaPNj/zE3ACDXrMZspxGznEaUOIwwG1SpHD5NYxMW\nZo4cOYJ169YBAIqKitDb24tAIACtVgsA2LNnj/jv7Oxs+Hw+AEB9fT3q6upw9913T9TQiIjoFmhU\nciwuzsHi4hwAwOBwBA2tfeLUVH1LHw6dbsWh060AALNeGQ82I+Em16zmiimaFBMWZjo7O1FaWiq+\nn52dDa/XKwaY0bcejweff/45nnrqKQDAjh078MILL2Dv3r239HVMJjVksom7lTfvzZA81ix5rFny\nWLPk3Y6aOfKMWL3UBQAIR6K43NKLCw1dqLrcharL3eKdiQFAr1Fg3oxslM40Y94MM4ryDZBmWFMx\nz7PkpaJmk9bNFYvFrnusq6sLTzzxBLZv3w6TyYS9e/di8eLFcDqdt/x5fb7g7RxmAotFB6/XP2Gf\nfypizZLHmiWPNUveRNXMlCXDynk2rJxnQzQWQ1tXUJyWqnX34Oj5dhw93w4AUMqlKM7Xi9NSM/P0\nUMjTd18pnmfJm8ia3SgkTViYsVqt6OzsFN/3eDywWCzi+4FAAI8//jiefvpprFq1CgBw6NAhuN1u\nHDp0CO3t7VAoFLDb7VixYsVEDZOIiG4TiSAgP0eD/BwN7l6SDwDo6g2Jq6Vq3D2ouuJD1ZV4W4FU\nIqAwVydOS81yGKDm3lI0DhMWZlauXImdO3di8+bNqKqqgtVqFaeWAOBXv/oVvv/972PNmjXiY6++\n+qr47507dyI/P59Bhogog5kNKiw32LG81A4A8AeHUNvcK4abhlY/6lv68E80QQCQb9GixGkQb+hn\n0nF/Kbq5CQszZWVlKC0txebNmyEIArZv3449e/ZAp9Nh1apV2Lt3LxobG/Hee+8BAB588EFs2rRp\nooZDRERpQKdWiPtFAUBoKIz6lnhTcW1zD+pb+9DsDeDjky0AAKsxC7OchpFtGIywmrgNA11PiH1V\nM0sGmcj5TM6XJo81Sx5rljzWLHmZUrNwJIorbX5xaqquuRfBwbD4cYNGMdJzE79647BoIZFMTLjJ\nlJqlkynXM0NERJQsmVSCYocBxQ4DHrizANFYDC3efnFaqqa5B8erPTheHd+GIUspQ3G+QZyaKrTr\nIZdl1oop+voYZoiIKG1JBAFOqxZOqxZryx2IxWLw9gygxt0rrpg6d7kL5y7Ht2GQSePbMJSMTE0V\n5RuQpeSvuqmO/4eJiChjCIIAq0kNq0mNVQtzAQC9gUHUjDQV145upOnuAdAIQQBcNt1Iz40BsxxG\n6DXchmGqYZghIqKMZtAqUTHHioo5VgBAMBRGXUuvOC11pa0Pje1+HDge34bBnq0e2R3cIG7DwKbi\nzMYwQ0REU4paJcPCIjMWFpkBAMPhCC639qFmZJ+p2pZefHqmFZ+eiW/DYNIpR+51E++7yc3RQMJw\nk1EYZoiIaEqTy6SY7TJhtssEAIhEo3B7Aqhxj22i+eWFDnx5Ib4Ng0YlwyyHEQtmWWDWKlBg08Kg\n5f1u0hnDDBERTStSiQSFdj0K7Xqsr3AiFouhvTs4smKqF7XNPThd14nTdWN3sTdoFSiw6eCyaeGy\n6uCy62Dh9FTaYJghIqJpTRAE5Jo1yDVrcNfi+DYM3X0h+AbCOFfjQVNHAI0dfpyt78LZ+i7xeVlK\nGQpsWrhGQ45Nh1yzGlIJl4ZPNoYZIiKia2TrVZhdpEORbWwbHn9wCE0dATR1+NHY4UdTRwCXmnpQ\n3dQjHiOXSeCwaOCy6Uau5OjgsGjSekPNqYBhhoiI6Bbo1AqUzshG6Yxs8bHQUBhuT0C8etM0EnIa\n2sbugisRBOSa1eLVm9HpKm6qefswzBAREY2TShFvFp7lMIqPhSNRtHb2o7E9HmwaPX64PQG0dPbj\nSFWHeFyOQTXWh2PTocCug5GNxuPCMENERHQbyaSSkT6asb2EorEYPL6BsSmqdj8aOwI4UePFiRqv\neJxeo4DLphWnqFw2LSzGLC4VvwmGGSIiogkmEQTYs9WwZ6uxbK4NABCLxeDzD17Th+PH+cvdOH+5\nW3yuSiGFy6qFyz7Wh5NrVkMmZaPxKIYZIiKiFBAEAdl6FbL1KiyelSM+HhgYFntvRkNObXMvapp7\nxWNkUgnyLRoUXHUVx2HVQjlNG40ZZoiIiNKINkuOeYXZmFc41mg8OBSB2xsYCTnxKaoWbwCN7X4A\nbQAAQYhv1XD1FJXLpoM2a+o3GjPMEBERpTmlQorifAOK8w3iY+FIFG1dwZFG45H/PAG0dQVx9MJY\no7FZr7quD8ekU06pG/4xzBAREWUgmVQCp1ULp1ULIL6DeDQWg7dnIL6K6qqQc6q2E6dqx+5orFPL\nxWAzGnKspsxtNGaYISIimiIkggCbSQ2bSS3uIh6LxdATGEqYomrq8KOqoRtVDWONxkqFFE6rVlwu\nXmDTIS9HkxGNxgwzREREU5ggCDDplDDplFhUPNZo3B8aFpuMRxuO61t6UZfQaCwgL2fsjsYFNh0c\nVg1UivSKD+k1GiIiIpoUGpUccwtMmFtgEh8bHI6g2RtICDluTz+aOgL4bLTRGIAtW31dH45OrUjR\nK2GYISIiohFKuRRFeQYU5Y01GkeiVzcaB8RG48qLHlRe9IjHZeuV+L/fXIA5Dv2kj5thhoiIiP4t\nqUQCh0ULh0WLlQvij8ViMXh7QyN3Mo6HnNbOAHz+EACGGSIiIkpzgiDAasyC1ZiFpSONxgBgsejg\n9fpv8MyJkf4tykREREQ3wDBDREREGY1hhoiIiDIawwwRERFlNIYZIiIiymgMM0RERJTRGGaIiIgo\nozHMEBERUUZjmCEiIqKMxjBDREREGY1hhoiIiDIawwwRERFlNIYZIiIiymhCLBaLpXoQREREROPF\nKzNERESU0RhmiIiIKKMxzBAREVFGY5ghIiKijMYwQ0RERBmNYYaIiIgyGsPMV3j55ZexadMmbN68\nGWfPnk31cDJGTU0N1q1bh3feeSfVQ8kYr7zyCjZt2oSHH34Y+/fvT/Vw0trAwACeeuopfO9738Mj\njzyCgwcPpnpIGSMUCmHdunXYs2dPqoeS9r788kvceeed2Lp1K7Zu3YqXXnop1UPKCB988AG++c1v\nYuPGjTh06NCkf33ZpH/FNFdZWYnGxkbs3r0b9fX12LZtG3bv3p3qYaW9YDCIl156CcuXL0/1UDLG\n0aNHUVtbi927d8Pn8+Fb3/oW1q9fn+phpa2DBw9i/vz5ePzxx9HS0oIf/OAHuOeee1I9rIzw5ptv\nwmAwpHoYGWPZsmV47bXXUj2MjOHz+fDGG2/g/fffRzAYxM6dO3H33XdP6hgYZq5x5MgRrFu3DgBQ\nVFSE3t5eBAIBaLXaFI8svSkUCrz11lt46623Uj2UjFFRUYGFCxcCAPR6PQYGBhCJRCCVSlM8svT0\nwAMPiP9ua2uDzWZL4WgyR319Perq6ib9lwtNH0eOHMHy5cuh1Wqh1WpTcjWL00zX6OzshMlkEt/P\nzs6G1+tN4Ygyg0wmg0qlSvUwMopUKoVarQYAvPfee1izZg2DzC3YvHkznnnmGWzbti3VQ8kIO3bs\nwHPPPZfqYWSU22VRxgAABVNJREFUuro6PPHEE3j00Ufx+eefp3o4aa+5uRmhUAhPPPEEtmzZgiNH\njkz6GHhl5ia42wNNtA8//BDvvfce/vjHP6Z6KBnh3XffxcWLF/Hss8/igw8+gCAIqR5S2tq7dy8W\nL14Mp9OZ6qFkjMLCQvzwhz/E/fffD7fbjcceewz79++HQqFI9dDSWk9PD15//XW0trbisccew8GD\nByf1e5Nh5hpWqxWdnZ3i+x6PBxaLJYUjoqns8OHD+M1vfoPf//730Ol0qR5OWjt//jzMZjNyc3Mx\nd+5cRCIRdHd3w2w2p3poaevQoUNwu904dOgQ2tvboVAoYLfbsWLFilQPLW3ZbDZxStPlciEnJwcd\nHR0MhDdgNpuxZMkSyGQyuFwuaDSaSf/e5DTTNVauXIl9+/YBAKqqqmC1WtkvQxPC7/fjlVdewW9/\n+1sYjcZUDyftHT9+XLx61dnZiWAwmDAlTNd79dVX8f777+Mvf/kLHnnkETz55JMMMjfxwQcf4A9/\n+AMAwOv1oquri/1ZN7Fq1SocPXoU0WgUPp8vJd+bvDJzjbKyMpSWlmLz5s0QBAHbt29P9ZAywvnz\n57Fjxw60tLRAJpNh37592LlzJ39J38A//vEP+Hw+PP300+JjO3bsQF5eXgpHlb42b96M559/Hlu2\nbEEoFMKLL74IiYR/j9Htde+99+KZZ57BRx99hOHhYfzsZz/jFNNN2Gw2bNiwAd/5zncAAD/96U8n\n/XtTiLEphIiIiDIY/6whIiKijMYwQ0RERBmNYYaIiIgyGsMMERERZTSGGSIiIspoDDNENGmam5sx\nf/58cUfizZs34yc/+Qn6+vpu+XNs3boVkUjklo9/9NFH8eWXX45nuESUIRhmiGhSZWdnY9euXdi1\naxfeffddWK1WvPnmm7f8/F27dnEPKyJKwJvmEVFKVVRUYPfu3aiursaOHTsQDocxPDyMF198EfPm\nzcPWrVsxZ84cXLx4EW+//TbmzZuHqqoqDA0N4YUXXkB7ezvC4TAeeughbNmyBQMDA/jxj38Mn8+H\ngoICDA4OAgA6OjrwzDPPAABCoRA2bdqEb3/726l86UR0mzDMEFHKRCIRHDhwAOXl5Xj22Wfxxhtv\nwOVyobq6Gtu2bcOePXsAAGq1Gu+8807Cc3ft2gW9Xo9f//rXCIVCeOCBB7B69Wp88cUXUKlU2L17\nNzweD9auXQsA+Oc//4mZM2fi5z//OQYHB/HXv/510l8vEU0MhhkimlTd3d3YunUrACAajWLp0qV4\n+OGH8dprr+H5558XjwsEAohGowDi24xc68yZM9i4cSMAQKVSYf78+aiqqkJNTQ3Ky8sBxDeOnTlz\nJgBg9erV+POf/4znnnsOd911FzZt2jShr5OIJg/DDBFNqtGemav5/X7I5fLrHh8ll8uve0wQhIT3\nY7EYBEFALBZL2BdmNBAVFRXh73//O44dO4Z//etfePvtt/Huu+9+3ZdDRGmADcBElHI6nQ4OhwOf\nfPIJAKChoQGvv/76DZ+zaNEiHD58GAAQDAZRVVWF0tJSFBUV4dSpUwCAtrY2NDQ0AAD+9re/4dy5\nc1ixYgW2b9+OtrY2hMPhCXxVRDRZeGWGiNLCjh078Itf/AK/+93vEA6H8dxzz93w+K1bt+KFF17A\nd7/7XQwNDeHJJ5+Ew+HAQw89hI8//hhbtmyBw+HAggULAADFxcXYvn07FAoFYrEYHn/8cchk/BFI\nNBVw12wiIiLKaJxmIiIioozGMENEREQZjWGGiIiIMhrDDBEREWU0hhkiIiLKaAwzRERElNEYZoiI\niCijMcwQERFRRvv/usfFj+zLys8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "yjUCX5LAkxAX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see a possible solution." + ] + }, + { + "metadata": { + "id": "hgGhy-okmkWL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "A regularization strength of 0.1 should be sufficient. Note that there is a compromise to be struck:\n", + "stronger regularization gives us smaller models, but can affect the classification loss." + ] + }, + { + "metadata": { + "id": "_rV8YQWZIjns", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.1,\n", + " regularization_strength=0.1,\n", + " steps=300,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "print(\"Model size:\", model_size(linear_classifier))" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/synthetic_features_and_outliers.ipynb b/synthetic_features_and_outliers.ipynb new file mode 100644 index 0000000..99e8d75 --- /dev/null +++ b/synthetic_features_and_outliers.ipynb @@ -0,0 +1,1160 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "synthetic_features_and_outliers.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "i5Ul3zf5QYvW", + "jByCP8hDRZmM", + "WvgxW0bUSC-c" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4f3CKqFUqL2-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Synthetic Features and Outliers" + ] + }, + { + "metadata": { + "id": "jnKgkN5fHbGy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Create a synthetic feature that is the ratio of two other features\n", + " * Use this new feature as an input to a linear regression model\n", + " * Improve the effectiveness of the model by identifying and clipping (removing) outliers out of the input data" + ] + }, + { + "metadata": { + "id": "VOpLo5dcHbG0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's revisit our model from the previous First Steps with TensorFlow exercise. \n", + "\n", + "First, we'll import the California housing data into a *pandas* `DataFrame`:" + ] + }, + { + "metadata": { + "id": "S8gm6BpqRRuh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "9D8GgUovHbG0", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 404 + }, + "outputId": "6b9900d6-4d0f-4237-c919-05cff55c8a7c" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import sklearn.metrics as metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))\n", + "california_housing_dataframe[\"median_house_value\"] /= 1000.0\n", + "california_housing_dataframe" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
7285-118.334.042.02010.0494.01203.0427.01.9134.6
5581-118.233.852.02539.0497.01152.0488.04.1268.2
171-116.233.75.01664.0444.0907.0374.02.892.9
16274-122.537.852.01382.0230.0708.0279.05.8339.8
9759-119.737.410.02106.0410.01003.0397.02.8124.1
..............................
5541-118.234.041.02099.0530.02325.0528.02.2140.8
11098-121.039.215.02809.0450.01267.0408.04.0191.7
946-117.132.836.02163.0367.0915.0360.04.7174.1
12173-121.538.525.03033.0665.01559.0627.02.799.5
7677-118.433.827.03245.0605.01572.0556.05.4379.0
\n", + "

17000 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "7285 -118.3 34.0 42.0 2010.0 494.0 \n", + "5581 -118.2 33.8 52.0 2539.0 497.0 \n", + "171 -116.2 33.7 5.0 1664.0 444.0 \n", + "16274 -122.5 37.8 52.0 1382.0 230.0 \n", + "9759 -119.7 37.4 10.0 2106.0 410.0 \n", + "... ... ... ... ... ... \n", + "5541 -118.2 34.0 41.0 2099.0 530.0 \n", + "11098 -121.0 39.2 15.0 2809.0 450.0 \n", + "946 -117.1 32.8 36.0 2163.0 367.0 \n", + "12173 -121.5 38.5 25.0 3033.0 665.0 \n", + "7677 -118.4 33.8 27.0 3245.0 605.0 \n", + "\n", + " population households median_income median_house_value \n", + "7285 1203.0 427.0 1.9 134.6 \n", + "5581 1152.0 488.0 4.1 268.2 \n", + "171 907.0 374.0 2.8 92.9 \n", + "16274 708.0 279.0 5.8 339.8 \n", + "9759 1003.0 397.0 2.8 124.1 \n", + "... ... ... ... ... \n", + "5541 2325.0 528.0 2.2 140.8 \n", + "11098 1267.0 408.0 4.0 191.7 \n", + "946 915.0 360.0 4.7 174.1 \n", + "12173 1559.0 627.0 2.7 99.5 \n", + "7677 1572.0 556.0 5.4 379.0 \n", + "\n", + "[17000 rows x 9 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "I6kNgrwCO_ms", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll set up our input function, and define the function for model training:" + ] + }, + { + "metadata": { + "id": "5RpTJER9XDub", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(buffer_size=10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "VgQPftrpHbG3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(learning_rate, steps, batch_size, input_feature):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " input_feature: A `string` specifying a column from `california_housing_dataframe`\n", + " to use as input feature.\n", + " \n", + " Returns:\n", + " A Pandas `DataFrame` containing targets and the corresponding predictions done\n", + " after training the model.\n", + " \"\"\"\n", + " \n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " my_feature = input_feature\n", + " my_feature_data = california_housing_dataframe[[my_feature]].astype('float32')\n", + " my_label = \"median_house_value\"\n", + " targets = california_housing_dataframe[my_label].astype('float32')\n", + "\n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(my_feature_data, targets, batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False)\n", + " \n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column(my_feature)]\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + "\n", + " # Set up to plot the state of our model's line each period.\n", + " plt.figure(figsize=(15, 6))\n", + " plt.subplot(1, 2, 1)\n", + " plt.title(\"Learned Line by Period\")\n", + " plt.ylabel(my_label)\n", + " plt.xlabel(my_feature)\n", + " sample = california_housing_dataframe.sample(n=300)\n", + " plt.scatter(sample[my_feature], sample[my_label])\n", + " colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)]\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " root_mean_squared_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " predictions = np.array([item['predictions'][0] for item in predictions])\n", + " \n", + " # Compute loss.\n", + " root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(predictions, targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " root_mean_squared_errors.append(root_mean_squared_error)\n", + " # Finally, track the weights and biases over time.\n", + " # Apply some math to ensure that the data and line are plotted neatly.\n", + " y_extents = np.array([0, sample[my_label].max()])\n", + " \n", + " weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0]\n", + " bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + " \n", + " x_extents = (y_extents - bias) / weight\n", + " x_extents = np.maximum(np.minimum(x_extents,\n", + " sample[my_feature].max()),\n", + " sample[my_feature].min())\n", + " y_extents = weight * x_extents + bias\n", + " plt.plot(x_extents, y_extents, color=colors[period]) \n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.subplot(1, 2, 2)\n", + " plt.ylabel('RMSE')\n", + " plt.xlabel('Periods')\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(root_mean_squared_errors)\n", + "\n", + " # Create a table with calibration data.\n", + " calibration_data = pd.DataFrame()\n", + " calibration_data[\"predictions\"] = pd.Series(predictions)\n", + " calibration_data[\"targets\"] = pd.Series(targets)\n", + " display.display(calibration_data.describe())\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % root_mean_squared_error)\n", + " \n", + " return calibration_data" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FJ6xUNVRm-do", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Try a Synthetic Feature\n", + "\n", + "Both the `total_rooms` and `population` features count totals for a given city block.\n", + "\n", + "But what if one city block were more densely populated than another? We can explore how block density relates to median house value by creating a synthetic feature that's a ratio of `total_rooms` and `population`.\n", + "\n", + "In the cell below, create a feature called `rooms_per_person`, and use that as the `input_feature` to `train_model()`.\n", + "\n", + "What's the best performance you can get with this single feature by tweaking the learning rate? (The better the performance, the better your regression line should fit the data, and the lower\n", + "the final RMSE should be.)" + ] + }, + { + "metadata": { + "id": "isONN2XK32Wo", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE**: You may find it helpful to add a few code cells below so you can try out several different learning rates and compare the results. To add a new code cell, hover your cursor directly below the center of this cell, and click **CODE**." + ] + }, + { + "metadata": { + "id": "5ihcVutnnu1D", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 940 + }, + "outputId": "5dd367e7-b321-4490-af76-9fd840eea9e9" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE\n", + "#\n", + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] / california_housing_dataframe[\"population\"])\n", + "\n", + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\")" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 212.74\n", + " period 01 : 189.69\n", + " period 02 : 169.06\n", + " period 03 : 152.27\n", + " period 04 : 140.15\n", + " period 05 : 133.37\n", + " period 06 : 131.40\n", + " period 07 : 130.91\n", + " period 08 : 131.69\n", + " period 09 : 132.39\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 197.4 207.3\n", + "std 91.5 116.0\n", + "min 43.8 15.0\n", + "25% 161.5 119.4\n", + "50% 194.3 180.4\n", + "75% 222.2 265.0\n", + "max 4363.4 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean197.4207.3
std91.5116.0
min43.815.0
25%161.5119.4
50%194.3180.4
75%222.2265.0
max4363.4500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 132.39\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8leX9//HXfVZ2QiYxBAigIHuD\noBimCaugIloUtV9ba911gFDUUi2Kq62ztVWr9tdKSxVlDxFFVCAsUVGECISZSXZOzrh/fxw5ZSSM\nrJOE9/Px8CH3Off45LpPct/nc1/X5zJM0zQREREREREREWlglkAHICIiIiIiIiLnJyUlRERERERE\nRCQglJQQERERERERkYBQUkJEREREREREAkJJCREREREREREJCCUlRERERERERCQglJQQCaBOnTpx\n+PDhQIdxWjfffDPvvvvuKa+/8MIL/OY3vznl9SNHjjBu3Lg6O/7UqVN5//33a7z9Cy+8QL9+/UhP\nTyc9PZ20tDQeffRRysvLz3lf6enp5ObmntM21bWfiIg0DZ06dWLUqFH+68ioUaOYOXMmZWVltdrv\nv//97ypff/fdd+nUqRMfffTRCa9XVFTQp08fHnrooVod92zt27eP2267jbS0NNLS0pg4cSKrVq1q\nkGOfi5dffrnKNlm/fj3dunXzn7fj/2sq9u/fT6dOnU64h7n++uv55ptvznlfzz77LP/617/OaZv3\n33+fqVOnnvOxRM6VLdABiEjz0rJlSxYtWhToME6QlpbG73//ewAqKyu59957eemll3jggQfOaT/L\nli2rj/BERKSRe/vtt0lMTAR815Ff//rX/OUvf+HXv/51jfaXk5PD3/72NyZPnlzl+xdccAGLFi1i\n2LBh/tc++ugjIiMja3S8mnjggQeYMGECf/7znwHYtm0bN910E0uXLuWCCy5osDhq44ILLmjy126r\n1XrCz7BkyRLuuOMOli9fjsPhOOv93H///fURnkidUE8JkUaosrKSxx9/nLS0NIYPH+6/IQDYsmUL\nV111Fenp6YwZM4bPPvsM8GXTL7vsMubMmcMNN9wA+J7uLFiwgIkTJ3LZZZfx97//3b+fefPmkZ6e\nzvDhw7nvvvuoqKgAICsri2uuuYaRI0dy//334/F4zin2/fv306VLF8D3tOfuu+9m5syZpKWlMWbM\nGL7//nsAioqKePDBB0lLS2PEiBH897//rXafO3fuZNKkSaSmpjJr1iw8Hg933303r7322gnrXHLJ\nJbjd7tPG53A4uPbaa1m3bt0Z4+jUqRN/+ctfSEtLw+PxnNCz5a233mLMmDGkp6fzq1/9ivz8/Dpp\nPxERadwcDgdDhgxhx44dADidTh555BHS0tIYPXo0Tz75pP9v/7fffst1111Heno6EyZMYO3atQBc\nd911HDx4kPT0dCorK085Rp8+fVi/fv0JvfqWLFnCpZde6l+uzb3CW2+9xfjx4xkyZAhLliyp8ufc\nuXMnPXv29C/37NmT5cuX+5MzL774IqmpqUycOJFXX32V4cOHA/DQQw/x8ssv+7c7fvlc7mE2bdrE\n1VdfzahRo5g8eTJZWVmAr8fIvffey7Bhw7jhhhtq3OP03Xff5c477+Smm27iqaeeYv369Vx33XXc\nc889/i/wS5cuZdy4caSnp3PjjTeyb98+wNcLc9asWUyaNOmEeyuAe+65h9dff92/vGPHDi677DK8\nXi9/+MMf/D1PbrzxRo4cOXLOcY8ZM4aKigoyMzOB6u/nHnroIZ544gnGjx/P0qVLTzgP1X0uvV4v\nv/vd7xg6dCiTJk3i22+/9R93w4YNXHnllYwZM4bRo0ezdOnSc45dpDpKSog0Qn/961/ZtWsXCxcu\nZNGiRSxfvtzfjfORRx7hlltuYdmyZdx66608+uij/u2OHj1K586d+cc//uF/bdeuXSxYsICXX36Z\n5557Do/HQ0ZGBn/605948803Wb16NeHh4fzpT38C4JlnnmHQoEGsWrWKm266ic2bN9fqZ/nkk0+Y\nMmUKy5cvZ+DAgbz55psAPPnkk1gsFpYuXcp//vMfXnjhBXbu3FnlPtavX8/bb7/NsmXL2LhxIx99\n9BHjxo07oUfGypUrueKKK7DZztwBzOVy+Z8unCkO0zRZvnw5VqvV/9rWrVt57bXX/DElJSXx7LPP\nAnXffiIi0rgUFhayaNEievfuDcCbb77J4cOHWbx4Me+99x4ZGRksWrQIr9fLfffdxw033MCyZct4\n/PHHuf/++ykpKWHOnDn+p/hVPe12OBwMGjSIDz/8EICSkhJ27NjhPybU/F6hoKAAi8XCwoULmTlz\nJn/84x+r/Dkvv/xy7r77bt566y12794N+HpDGobBzp07efPNN5k/fz7z589n69atZ9V2Z3sPU1JS\nwq9+9Svuu+8+Vq5cyY033sg999wDwH//+19yc3NZuXIlL7zwAp9++ulZHbsq69atY/bs2UybNg2A\nb775huuuu45nn32WgwcP8vDDD/PSSy+xbNkyhg4dyiOPPOLf9uOPP+bVV1/l5ptvPmGfaWlprF69\n2r+8cuVK0tPT2b17N8uWLfOfq1GjRvH555/XKG6Px4PD4Tjt/RzA559/zvz58xk9erT/tdN9Lteu\nXcu6detYvHgx//jHP8jIyPBvN3fuXGbMmMGSJUt45ZVXGuVQHmm6lJQQaYQ++ugjpkyZgsPhIDQ0\nlAkTJrBixQoAFixY4L+49O3b1//kAHxftkeNGnXCviZMmABA165dcTqd5OXlsXr1asaMGUPLli0B\n+OlPf+rff0ZGBmPGjAGgR48etG/fvlY/S4cOHejWrRsAXbp04dChQ/6f8cYbb8RisRATE8OoUaP8\nMZwsLS2NkJAQQkJCSE1NZevWraSmprJv3z7/k4JVq1b54z6dkpIS/vnPf/rb6UxxDB069JR9rFmz\nhrS0NGJjYwG45ppr/D0v6rr9REQk8KZOnUp6ejojRoxgxIgRXHLJJfziF78AfNeEyZMnY7PZCA4O\nZvz48axbt479+/eTm5vL2LFjAejevTtJSUls3779rI45duxYf/J91apVDBs2DIvlf7fuNb1XcLvd\nXHXVVYDv3uDgwYNVHv/pp5/m+uuvZ+HChYwbN47hw4f7axJs2rSJ/v37Ex8fj81mO+taUmd7D7Np\n0yZatmzp7xkybtw49u3bx8GDB8nIyGDUqFHYbDaio6NPGOJyskOHDp1ST+LJJ5/0v5+SkkJKSop/\nOTg4mEGDBgG+hMXAgQNp27Yt4LvWr1+/3t8js2fPnsTExJxyzKFDh/LNN99w9OhR4H9JicjISPLz\n81m4cCGFhYVMnTqViRMnnlW7HWOaJvPmzaNly5akpKSc9n4OYNCgQQQFBZ2wj9N9Ljdu3Ehqaiph\nYWEEBwefkMyIjY1lwYIF7N69m5SUFP/DGJG6oJoSIo1QcXExTzzxBM899xzg66LZo0cPABYuXMhb\nb71FaWkpXq8X0zT921mtVsLDw0/YV0REhP898GXIi4uLWblypf/pgmmauFwuwPcE6Ph91Hb86rHj\nH4vhWJfW4uJi7r33Xn9cTqez2uJTx1/0IyIiyMnJISgoiFGjRrFo0SImTZpETk4OAwYMqHL75cuX\ns2nTJgDsdjujRo3yP9k4UxwtWrQ4ZX/5+fkkJCT4lyMjI8nLywPqvv1ERCTwjtWUyM/P9w89ONYz\nLz8/n6ioKP+6UVFR5OXlkZ+fT0REBIZh+N879sU0Li7ujMe89NJLmTVrFkePHmXx4sXcfvvt/PDD\nD/73a3OvEBoaCoDFYsHr9VZ5/KCgIG655RZuueUWioqKWLZsGXPmzCE5OZnCwsITrm/HkvRncrb3\nMEVFRWRlZZ1wPXY4HOTn51NYWHjCvUVkZCSlpaVVHu9MNSWOP28nLxcUFJzwM0ZERGCaJgUFBVVu\ne0xoaCiDBw9mzZo19O3bl6KiIvr27YthGLzwwgu8/vrrPPbYY/Tv35/Zs2efsT6Hx+Pxt4Npmlx4\n4YW8/PLLWCyW097PVRfj6T6XhYWFp9zfHDNnzhxeeeUVfvaznxEcHMx9993XpIqGSuOmpIRII5SQ\nkMD//d//nZL9P3LkCLNmzeI///kPnTt3Zs+ePaSlpdVo/1deeSXTp08/5b3IyEhKSkr8y8dqJdS1\nhIQEXnrpJTp27HjGdQsLC0/497GL7NixY3niiSeIiIggLS3thCdIxzu+0GVt4jgmLi7O/wQEfF1O\nj91gNlT7iYhIw4uJiWHq1Kk8/fTTvPLKK0D114TY2FgKCwsxTdP/BfDo0aNn/QXebrczbNgwFixY\nwN69e+ndu/cJSYn6vFfIz89nx44d/p4KkZGRTJ48mbVr17Jz504iIiIoLi4+Yf1jTk50HLuGn0tc\nCQkJtG/fvsrZqyIjI6s9dl2KjY1ly5Yt/uXCwkIsFgvR0dFn3DYtLY2VK1dSUFBAWlqa//xfcskl\nXHLJJZSVlTF37lyeeeaZM/Y4OLnQ5fFOdz93up+rus/l6do2Li6Ohx9+mIcffphPP/2Uu+66iyFD\nhhAWFnbWxxapjoZviDRCI0aM4D//+Q8ejwfTNHn55Zf55JNPyM/PJzQ0lPbt2+N2u5k3bx5AtU8I\nqjN8+HBWrFjhv9isWrWKV199FYBevXqxcuVKADZv3uwv6lTXhg8fzjvvvAP4upLOmTOHr7/+usp1\nV6xYgdPppKysjLVr19KvXz8ABg8ezNGjR3n77bdP6GJYX3EcM3ToUP/NBsA777xDamoq0HDtJyIi\ngfGzn/2MLVu2sGHDBsB3TZg/fz4ej4eysjLef/99UlNTSU5OJjEx0V9IcvPmzeTm5tKjRw9sNhtl\nZWVnLM48duxY/vrXvzJy5MhT3qvPe4WKigruvvtufwFEgL1797Jt2zb69etH7969ycjIID8/H7fb\nzYIFC/zrxcfH+wskZmVl+WsrnUtcPXv2JCcnh23btvn38+CDD2KaJr169WL16tV4PB7y8/P55JNP\nzvrnOheXXnopGRkZ/iEm77zzDpdeeulZ1a4aNmwYW7ZsYdWqVf77k08//ZTZs2fj9XoJDQ3l4osv\nPqG3Qk2c7n6uOqf7XPbu3ZtPP/2U8vJyysvL/ckQl8vF1KlTyc7OBnzDfmw2W7UPg0TOlXpKiATY\n1KlTTyii+PjjjzNlyhT279/P2LFjMU2Tbt26cdNNNxEaGsrll1/ur2fw0EMPsXnzZqZOncrzzz9/\n1sfs2rUrt912G1OnTsXr9RIbG8vs2bMBePDBB7n//vt5//336dmzJ4MHD652P8cPiwDo3LnzWU85\nde+99zJ79mz/U5IhQ4bQqVOnKtcdPHiwv0r10KFDGTJkCOB7epCens6HH35I3759z+q4tYnjmB49\nenDrrbdy/fXX4/V66dy5M7/97W+Bc2s/ERFpesLDw7n11luZO3cu8+fPZ+rUqWRlZTF27FgMwyA9\nPZ3Ro0djGAbPPfccjz76KC+++CIhISH86U9/IjQ0lE6dOhEVFcWll17Ke++9R1JSUpXHGjBgAIZh\nVFkzqT7vFZKSknjllVd4/vnnefzxxzFNk/DwcGbMmOGfkePaa6/lyiuvJDo6miuuuMI/u9bkyZO5\n8847ueKKK+jSpYv/+nrxxRefdVzBwcE8//zzPPbYY5SWlmK327nnnnswDIPJkyeTkZHByJEjSUpK\nYuTIkSc83T/esZoSJ3vqqafO2AaJiYk8/vjj3H777bhcLpKTk3nsscfOqv3Cw8Pp2rUr3333Hb16\n9QKgf//+LF68mLS0NBwOBzExMcyZMweAadOm+WfQOBenu5+rzuk+l8OGDWPNmjWkp6cTFxdHamoq\nGRkZ2O12Jk2a5B/6arFYmDVrFiEhIecUr0h1DPP4wVwiIk3MX//6VwoKCvyVs0VERKRhZWRkMG3a\ntBNmnRAROVvqcyMiTVZ+fj7//ve/+elPfxroUEREREREpAaUlBCRJumdd97h6quv5he/+AWtW7cO\ndDgiIiIiIlIDGr4hIiIiIiIiIgGhnhIiIiIiIiIiEhBKSoiIiIiIiIhIQDTJKUFzcqqe9qcpiY4O\npaCgLNBhNCtq07qnNq1bas+6pzate2dq0/j4iAaMpu7V1z2EPouBp3MQeDoHgadzEHg6B1U73f2D\nekoEiM1mDXQIzY7atO6pTeuW2rPuqU3rntq0ZtRugadzEHg6B4GncxB4OgfnTkkJEREREREREQkI\nJSVEREREREREJCCUlBARERERERGRgFBSQkREREREREQCQkkJEREREREREQkIJSVEREREREREJCCU\nlBARERERERGRgFBSQkREREREREQCQkkJEREREREREQkIJSVEREREREREJCCUlBAAnC4P2QVlOF2e\nQIcSUNW1w7m2T1205/H7cLo87M8pYX928VnF1tDn89jxissqT3tcfc5EREREROR4tvra8fr167nn\nnnu46KKLAOjYsSM///nPmTZtGh6Ph/j4eJ5++mkcDgcffPABb775JhaLhcmTJ3PNNdfUV1hyEo/X\ny7zVu9iyM4f8IicxkUH07hjPtcMvxGo5f3JW1bXDpKHtmb8m86zbpy7a8/h95BU5CXZYcLlNPF4T\ngGCHhcHdL2DysA6nxNbzojgMYOv3uQ1yPk+O1WKA14SYCAd9OiX4j6vPmYiIiIiIVKXekhIAAwYM\n4Pnnn/cvz5gxgylTpjB69Giee+455s+fz8SJE3nppZeYP38+drudSZMmMWrUKFq0aFGfocmP5q3e\nxaqM/f7lvCKnf3nKyI6BCqvBVdcO3+07SlZ2ySmvQ9XtUxftefI+Kiq9J7xfUell9aYDfJ9VeEps\nqzcdOGHd+j6fJ8f6Y96E/OLKE46rz5mIiIiIiFSlQR9Rrl+/nhEjRgAwbNgwPv/8c7Zt20b37t2J\niIggODiYPn36sHnz5oYM67zldHnYsjOnyve27Mw9b7rYn64dDuSUVPl6Ve1TF+15un2cbH921bHV\n5vjn4mxi3bIzl+KySn3ORKTZyj1azvPzv6z2eiEiIiKnV689JXbt2sVtt91GYWEhd955J+Xl5Tgc\nDgBiY2PJyckhNzeXmJgY/zYxMTHk5Jz+i050dCg2m7U+Q28Q8fERAT3+odxS8oudVb5XUFyB1WEn\nPi6sgaOqnZq06ena4diT/5NV1T510Z6n28fJqgmtVsevSnVtejaxFhRXUFzpbXafs9oI9O99c6Q2\n/R93SSm7n3oVS5CDi35zR433ozY9e4WllWzdlcvf3v+K2yd0DXQ4IiIiTU69JSVSUlK48847GT16\nNFlZWdx44414PP97ImqaVX+lqu714xUUlNVZnIESHx9BTk5xQGPwuDzERASRV3TqF8boiGA8la6A\nx3guatqmp2uHYzUSTlZV+9RFe55uHyczOPvERE3P5+na9GxijY4IJsJhaVafs9poDL/3zY3a9H8K\nlq1h76ynqTx4hIhBfWhx64012s+Z2lQJixO1T4rk4jYtyNhxhJ19WtGxtYafioiInIt6G77RsmVL\nxowZg2EYtGnThri4OAoLC6moqADgyJEjJCQkkJCQQG5urn+77OxsEhIS6issOU6Q3UrvjvFVvte7\nYxxB9qbfG+VsnK4dWsWHV/l6Ve1TF+15un2cLDmh6thqc/xzcTax9u4YR0SoQ58zkXrkPHCYnT+7\nn+//7wFcOXkk3fN/dPrH82feUOqEYRhcndoBgP9+vPusHq6IiIjI/9RbUuKDDz7gtddeAyAnJ4e8\nvDyuuuoqli9fDsCKFSsYMmQIPXv2ZPv27RQVFVFaWsrmzZvp169ffYUlJ7l2+IWM7JdMbGQwFgNi\nI4MZ2S+Za4dfGOjQGlR17fCbG/ucU/vURXsevw8D32wbVovhfz/YYWV431ZVxja8bytG9G3VYOfz\nf7EGAb6eJQAxEUEnHFefM5G6Z7rdHPrLP9ieeg1Hl39MxMDedFv5T5Kn344lJDjQ4Z1XOrSKYmDX\nRL7fX8j2zLxAhyMiItKkGGY9pfRLSkp44IEHKCoqwuVyceedd9K5c2emT5+O0+kkKSmJJ554Arvd\nzrJly3jttdcwDIMbbriBn/zkJ6fdd3PoqtvYuhw7XR4KS5xEhQc12SfXddGm1bXDubZPXbTn8fsA\nyDlaDqZJfHToGWOrq/N5tm167HghQTbKne5qj9scPme10dh+75uD87VNS7Z8xZ5pcyj7eie26Cha\nP3wPcdeOxzCMM298Bs19+EZ9fV5K3SZ3P/MRrRPCeeRn/bHUwbmQc3O+/j1oTHQOAk/nIPB0Dqp2\nuvuHektK1KfmcJL1Ya17atO6pzatW2rPune+tam7qIT9T7xE9lvzwTSJmzye1g/fgz227uoYKClR\nM/HxEfz+9S/44usj3DahKwM6t6yX40j1zre/B42RzkHg6RwEns5B1U53/1Cvs2+IiIhI7ZmmSf4H\nK9n36LO4svMIvjCFlLkziBzUN9ChyXEmXtaOjTuyee+TTPp0jMdmbdCZ10VERJokXS1FREQasYq9\n+9l5wz3s/tVM3IXFtJp2G91W/lMJiUYoITqUy3smcaSgnHXbDwU6HBERkSZBSQkREZFGyFvp4uDz\nr7N92LUUfvQZkZcPpPvqebS69+dYghxVb1RRim39QqybljVssOI3/tIUHDYLH6zbg8vtOfMGIiIi\n5zkN3xAREWlkitdvYc/0JyjfmYktLoa2zz5MzMS06gtZer1YdmVg27IKo7IcT6uODRuw+LUID2JE\n32SWrt/H6s0HSBvQJtAhiYiINGpKSoiIiDQSrvyjZD3+PLnvfACGQcKNV5P80B3YWkRWu42RdwDb\n+oVY8g5g2oNw9xuDp9OABoxaTjb6kras2XqQxZ/v5fKeSYQE6XZLRESkOrpKioiIBJhpmuT+ZzFZ\nv/sj7vyjhHS5iHZzZxLet3v1GznLsW1dhWXnRgxMPCk9cPdNh9CmPTtGcxAeYid9YBve+yST5Rv2\nMXFI+0CHJCIi0mgpKSEiIhJA5d/vYc+MJyj+bBOWkGBaP3wPLX/+Uyz2ai7RphdL5lZsm1ZgOEvx\nRsXjGjAOM1FffBuTUf2S+TAji+UbsxjRN5mI0GrqgIiIiJznlJQQEREJAG+Fk4PPv8Ghl9/ErHTR\nYtQQ2v5+GkHJF1S7jVFw2DdUI2cfptWOu88VeC4eBFZdzhubYIeNsYNT+Neq71n8+V6uG3FRoEMS\nERFplHQXIxIATpeHwhInUeFBBNmtgQ5HRBpY4Sfr2TPjSZw/ZGG/IIG2jz9IdPrQ6gtZVlZg3bYa\n63frMUwvnjZdcPcbDWEtGjZwOSdDe7VixYYsVm8+wBX9WxMTGRzokERERBodJSVEGpDH62Xe6l1s\n2ZlDfpGTmMggeneM59rhF2K1aIZekebOlZPHvt/+gbz3loHFQsuf/5TkabdhDQ+regPTxLJnO7ZN\nyzDKizEjYqjsPw6zlZ66NwV2m4UJl7Xj9SU7+GDdD9w8unOgQxIREWl0lJQQaUDzVu9iVcZ+/3Je\nkdO/PGWkpvATaa5Mr5ec//ceWXNexFNYTFjPLqTMnUlYj4ur3cYozMG2YRGWw5mYVhvunsPxdL0M\nrPYGjFxqa3C3RJau38unXx4mfWBbEmNCAx2SiIhIo6JHsyINxOnysGVnTpXvbdmZi9PlaeCIRKQh\nlO3YxY4JP2fP9CcwPV7aPv4gXRa9UX1CwlWJdfMK7ItewnI4E0+rjlSOvwtPj2FKSDRBFovBlUPa\n4zVNFqzNDHQ4IiIijY56Sog0kMISJ/lFzirfKyiuoLDESUK0nqCJNBeesnIOPPsqh1/9J3g8xIwf\nSZvZ9+NIjK96A9PEkrUDW8YSjNJCzLAWuPqPwZt8MVRXa0KahL6d4klJjGDDjmxGDyymbaKmbRUR\nETlGPSVEGkhUeBAxkUFVvhcdEUxUeNXviUjTU7ByLduHTubwK2/jSGpJx7f/yIV/ebL6hERxPrbV\nb2P/+F9QXoK72+VU/uQuvK07KyHRDBiGwdWpHQB49xP1lhARETmeekqINJAgu5XeHeNPqClxTO+O\ncZqFQ6QZqDx4hL2PPEPBko8wbFYuuPNmku79OdbQamZd8LiwfrUW61drMbxuvIntcQ8YhxlVTfJC\nmqwuKdFc3KYF2zPz2Jl1lI6tNXOKiIgIKCkh0qCuHX4h4KshUVBcQXREML07xvlfF5GmyfR4OPLG\nv9k/9xW8pWWE9+tBylMzCb24+t9ty4Gd2DYuxijOxwyJwNVvNN623dQzopk61lvi929v4r8f7+ah\n6/tUPwWsiIjIeURJCZEGZLVYmDKyI1endqCwxElUeJB6SIg0cSXbvmHPtDmUbf8Wa4tIUp6eRfxP\nf4JR3TS/pUexbVyCNWsHpmHB3Xkwnp7Dwa4hXM1dh1ZR9Lowjq27ctmemUePDnGBDklERCTglJQQ\nCYAgu1VFLUWaOE9xCfvnvsKRv/8HvF5iJ42hzSP3Yo+LqWYDN9Ydn2H9cg2Gx4U3oa1vqEZ0YsMG\nLgF11eXt2bYrl/9+nEm39rFY1FtCRETOc0pKiIiInAPTNClY/CF7H3kW1+Ecgtu3IeXJGURe1r/a\nbYzDmdjWL8RSlIsZFIZr4Hi87XtpqMZ5KDkhnIFdW/LF10fI+DabAZ1bBjokERGRgFJSQkRE5Cw5\nsw6yZ+ZcCj9ch+Gw0+r+W7ngjpuwBFcz9KKsGNumpVj3bMfEwNNxAO5eIyEopGEDl0Zl4mXt2Lgj\nm/c+yaRPx3hsVk2GJiIi5y8lJURERM7A63Jz+C//4OBzf8Vb4STysv60feIhQjq0rWYDD9bv1mPd\nthrD5cQbm4x74DjM2FYNG7g0SgnRoVzeM4mPthxg3fZDpPbS50JERM5fSkqIiIicRvHGbeyZPofy\nb3dji40m5amZxF49ptqZE4zsvdg2LMRScATTEYJr4E/wXtQXDD0Nl/8Zf2kK67Yf4oN1exjUNRGH\nih6LiMh5SkkJERGRKrgLCsma8yI5/+89AOKvv5LWM+/EFh1V9QYVpdg2r8C6ezMAng59cPe5AoLD\nGipkaUJahAcxom8yS9fv46MtB0gb0CbQIYmIiASEkhIiIiLHMU2TvHeXsu+3f8CdV0DIxR1IeXIG\nEQN6Vb2B14tlVwa2LaswKsu6CmurAAAgAElEQVTxRifiHjAeMyEAXzJNEyqLAQOCIhr++HJORl/S\nljVbD7L4871c3jOJkCDdlomIyPlHVz8REZEfle/ey94Zcyn6dAOW4CCSZ95J4i9vwGKv+nJp5B3w\nzaqRdwDTHoS73xg8nQaAJQBd8V1lUHwE3OVgDVJSogkID7GTPrAN732SyfIN+5g4pH2gQxIREWlw\nSkqINBJOl4fCEidR4UEEaWyxSIPyOis59OLfOfji3zGdlUSNuJSU308jqE01BQid5di2rsSyMwMD\nE0+7Hrj7pENoABIBHheUHAFnkW85KALCNc1kUzGqXzIfZmSxfGMWw/smExnqCHRIIiIiDUpJCZEA\n83i9zFu9iy07c8gvchITGUTvjvFcO/xCrBYVxhOpb0XrMtgzfQ4Vmfuwt4yj7WMPED12RNWFLE0v\nlt1bsW1ejuEswxsVj2vAOMzEADzh9nqhLBfK8gATbMG+ZIRDNSyakmCHjbGDU/jXqu9Z8vlerhtx\nUaBDEhERaVBKSogE2LzVu1iVsd+/nFfk9C9PGdkxUGGJNHuuvAL2zf4DefOXgGGQ8LPJJE+/HVtk\neJXrGwWHfUM1cvZhWu24+1yB5+JBYG3gS6lpQkUhlGaD1w0WG4QlQHAUVDMjiDRuQ3u1YsWGLFZv\nPsAV/VsTExkc6JBEREQajJISIgHkdHnYsjOnyve27Mzl6tQOGsohUsdMr5ecf31A1u+fx3O0iNDu\nF5Py1EzCe3apeoPKCqzbVmP9bj2G6cXTpgvufmMgrJpZOOpTZalvqIa7AjAgNA7C4jTdaBNnt1mY\ncFk7Xl+ygw/W/cDNozsHOiQREZEGo6SESAAVljjJL3JW+V5BcQWFJU4SokMbOCqR5qvsu93smf4E\nJRu2YgkLpc3v7qflzddg2Kq4HJomlj3bsW1ahlFejDciBlf/cZitAtC93l0JpUfAWexbDoqC8ASw\n2hs+FqkXg7slsnT9Xj798jDpA9uSGKO//SIicn5QUkIkgKLCg4iJDCKvisREdEQwUeFBAYhKpPnx\nlFVw8I9/4/Cf38Z0e4geM4y2v3sAR1LVBSGNwmxsGxZjOZyJabXh7jkcT9fLGj4J4PVAaQ6U5/uW\n7SEQnuj7vzQrFovBlUPa8/KCr1iwNpPbJnQLdEgiIiINQkkJkVqqzawZQXYrvTvGn1BT4pjeHeM0\ndEOkDhxdvY69M5/Cue8AjlaJtJ0znehRQ6pe2VWJdfsarDs+w/B68LTqiLv/WIiIadigTRPKC3wJ\nCdMDFruvZ0RQpOpGNGN9O8WTkhjBhh3ZjB5YTNtETesqIiLNn5ISIjVUV7NmXDv8QsBXQ6KguILo\niGB6d4zzvy4iNVN5OId9jz5L/sJVYLWSeNtUWj1wK9bQKnoZmCaWrB3YMpZglBZihrXA1X8M3uSL\nGz4J4Czx1Y3wOH21IsISIDRGdSPOA4ZhcHVqB56dt5V3P8nk15N7BjokERGReqekhEgN1dWsGVaL\nhSkjO3J1aoca97gQkf8xPR6y35zP/rkv4ykuJaxvd9o9OYPQrtX8XhbnY9uwCOvB7zEtVtzdLsfT\nPRVsjoYN3O2EksO+YpYAwS18vSMsulSfT7qkRHNxmxZsz8xjZ9ZROrZuEeiQRERE6pUeu4jUwJlm\nzXC6POe8zyC7lYToUCUkRGqhdPu3fDP+Z+yd9TRYLKTMnUGX91+rOiHhcWHdthrHBy9gPfg93sQO\nuMbdgaf3qIZNSHjdUHwI8nf7EhL2MIhpD5FJSkich471lgD478e7MU0zwBGJiIjUL93tiNSAZs0Q\naVw8JaXsf/rPHHltHni9xF6ZTpvf/hp7fGyV61sO7MS2cTFGcT5mSASufqPxtu3WsEM1TNNXwLI0\nB0wvWB0Q3hIc4aobcZ7r0CqKXhfGsXVXLtsz8+jRIS7QIYmIiNQbJSVEakCzZog0HgVL17B31tNU\nHjpCULvWpMyZTlTqJVWvXHoU28YlWLN2YBoW3J0H4+k5HOwN+DtrmlBZDCXZ4Kn01YoIbwkhMXWS\njDj2YF15jabtqtT2bNuVy38/zqRb+1gsOqEiItJMKSkhUgOaNUMk8Jz7D5Hxy2kcWbgaw24j6d6f\nk3TXzVhCgk9d2ePGuuMzrF+uwfC48Ca0xT1gHGZ0YsMG7arw1Y1wlfmWQ2IgLK5OhmmYJmSXWPkh\n34HDatInuaLW+5TASY4P55KuLfn86yNs3JHNwC5VT18rIiLS1CkpIVJDmjVDJDC8LjdH/vYvDjzz\nF7zlFUQM6kPKkzMIuahdlesbhzKxbViIpSgXMzgM18DxeNv3atiuBB6Xb5hGxVHfsiPc1zvCVjc9\nNPLLLGTmOSiptGJgckGku072K4E14bJ2bNiRzXtrM+nbKR6bVaXARESk+VFSQqSGNGuGSMMr2bSd\nH6bPofyb77FFR9H9xd/iSB+BUVWCoawY26alWPdsx8TA02kg7l4jwFHFlKD1xfRCWR6U5fq6MliD\nIOLHuhF1oNhpITPPTkG573KeEO6mXUwlIXYVR2wOEqJDubxnEh9tOcC67YdI7dUq0CGJiIjUOSUl\nRGrp2KwZZ8Pp8iiBIVID7sJi9j/xItlvvwumSdx1P6H1rLtJ6tSanJziE1f2erB+tx7rttUYLife\n2GTcA8dhxjbgFzrTBGeRr26E1wWGFSISfNN81kEPjXKXwQ/5DrJLfJfx6BAP7WMriQjy1nrf0riM\nvzSFddsP8cG6PQzqmohD1w4REWlmlJSQZqsxJQA8Xi/zVu9iy84c8oucxEQG0btjPNcOvxCrRd1x\nRapjmib5C5az77d/wJWTR/BF7UiZO4PIS/pUub6Rvdc3VKPgCKYjBNfAn+C9qK+vmGRDcZVB8RFw\nlwMGhMZCaBxYav93yOWBvQUODhTaMDEId/iSETGhSkY0Vy3CgxjRL5mlX+xj9eYDpA9sE+iQRERE\n6pSSEtLsNMYEwLzVu04oiplX5PQvTxnZMSAxiTR2FXv2s2fGkxR9/AVGcBDJD91O4m1TsTjsVaxc\nim3zcqy7twDgubAv7t6jIDis4QL2uKDkiK+HBEBQhK9uhNVR+117YX+hnX1H7Xi8BsE2L+1inCSE\ne5rlLBtPPfUUmzZtwu1288tf/pLu3bszbdo0PB4P8fHxPP300zgcDj744APefPNNLBYLkydP5ppr\nrgl06PVi9MC2rNlykCVf7CW1VxIhQbp9ExGR5kNXNWl2GlsCwOnysGVnTpXvbdmZy9WpHQLek0Ok\nMfE6Kzn0ylscfP4NzAonkamXkPLEQwSnJJ+yrun1Ytm5AduWVRiV5XijE3EPGI+Z0IBPk71eX82I\nsjzABFuwLxnhqH1CxDThcLGNH/LtVHos2CwmHWKdtIpyY2mGyQiAL774gu+//5558+ZRUFDAlVde\nyaBBg5gyZQqjR4/mueeeY/78+UycOJGXXnqJ+fPnY7fbmTRpEqNGjaJFixaB/hHqXHiInfSBbXjv\nk0yWb9jHxCHtAx2SiIhInVFSQpqVxpgAKCxxkl/krPK9guIKCkucZ12TQqS5K/p8E3umP0HFrj3Y\n42Np89wjxEy4ospClkbeAUpXLMZ+JAvTHoS73xg8nQbUyTCJs2KaUFEIpdngdfum9QxLgOCoWteN\nME3IK7OSmeegzGXBYpi0aVFJ6xYumnsOs3///vTo0QOAyMhIysvLWb9+PbNnzwZg2LBhvP7667Rr\n147u3bsTEREBQJ8+fdi8eTPDhw8PWOz1aVS/ZD7MyGL5xiyG900mMrT2PXBEREQaAyUlpFlpjAmA\nqPAgYiKDyKsiruiIYKLC62ZKQJGmzJV3lKzH/kTuvxeCYZBw0zUkP3Q7tqiIU1d2lmHbugrLzgy8\nmHja9cDdJx1Cq1i3vlSW+oZquCvw1Y2Ig7C4OqldUVRhYXeeg8IKK2CSGOEiJcZFsO38mFHDarUS\nGur7Oz1//nwuv/xyPv30UxwO35fw2NhYcnJyyM3NJSYmxr9dTEwMOTlVJ6WPFx0dis1WP5md+Pj6\n/Qxed8XFvLpgOx9tPcTPJ3Sr12M1VfV9DuTMdA4CT+cg8HQOzo2SEtKsNMYEQJDdSu+O8ScMKTmm\nd8e4gAzdaExFQOX8ZpomufMWkvXYn3AXFBLapSMpT80kvE8VX7hML5bdW7FtXo7hLMMbFU/YFZMp\nCE5suIDdlVB6BJw/zvgRFAXhCWCtos7FOSqr9M2okVPquzTHhvqm9wwPOj+SESdbtWoV8+fP5/XX\nX+eKK67wv26aVbdHda+frKCgrE7iO1l8fMSpM8HUsb4XxhIbGczidT8wpFtLYiKD6/V4TU1DnAM5\nPZ2DwNM5CDydg6qdLlGjpIQ0K40xAQBw7fALAd8QkoLiCqIjgundMc7/ekNpjEVA5fxV/v0P7Jn+\nBMVfbMYSGkLrR+8l8ZbrMGynXpqM/EPYNizCkrMP0+bA3ScNz8WXYEuMhoa48Hs9UJoD5fm+ZXsI\nhCf6/l9LlW7YU+DgUJFvRo2IIA8dYitpEXL+zqixdu1a/vznP/O3v/2NiIgIQkNDqaioIDg4mCNH\njpCQkEBCQgK5ubn+bbKzs+nVq1cAo65/dpuFCZe14/UlO/hg3Q/cPLpzoEMSERGpNSUlpNlpLAmA\n41ktFqaM7MjVqR0C2kOhsRUBlfOTt7yCgy+8waGX3sR0uWmRlkrbxx4kKLmKHg+VFVi3rcb63XoM\n04unTRfc/cZAWFTDBGuaUF7gS0iYHrDYfT0jgiJrXTfC7YX9R+1kHbXjMQ1C7L4ZNeLDmueMGmer\nuLiYp556ir///e/+opWDBw9m+fLlTJgwgRUrVjBkyBB69uzJrFmzKCoqwmq1snnzZmbOnBng6Ovf\n4G6JLF2/l0+/PEz6wLYkxqgmkYiING1KSkiz01gSAFUJslsDVtSyMRYBlfNP4Zov2DPzSZx79uO4\noCVtH3+Q6NFDT13RNLHs2Y5t0zKM8mK8ETG4BozDTLqo4YJ1lvjqRnicvloRYQkQGlPruhFeEw4V\n2dhTYMflsWC3mrSPdnJBZPOdUeNcLFmyhIKCAu69917/a08++SSzZs1i3rx5JCUlMXHiROx2O/ff\nfz+33HILhmFwxx13+IteNmcWi8GVQ9rz8oKveO+TTH41UbUlRESkaVNSQpqtQCYAGqPGWARUzh+V\n2bnse/Q58t9fARYLLW+dQvIDv8Qafuq0mUZhNrYNi7EczsS02nD3HI6n62V1UrfhrLidUHLYV8wS\nILiFr3eEpXaXTNOE3FIrmfkOyn+cUaNttG9GDZtGT/lde+21XHvttae8/sYbb5zyWnp6Ounp6Q0R\nVqPSt1M8KYkRbPw2mzGHi2mb2PyTMSIi0nwpKSFynmiMRUCl+TO9XrLffpf9T7yIp6iEsN5dSXly\nBmHdLz51ZVcl1u1rsO74DMPrwdOqI+7+YyEi5tR164PX/WPdiALfsj0MIlqCrfbFBI+WW8jMc1Dk\n9M2okRTpom20i6DzZEYNqVuGYXB1ageenbeVdz/J5NeTewY6JBERkRpTUkLkPNFYi4BK81X29U5+\nmD6H0s1fYY0Io+2c6SRMvQrDetJnzTSxZO3AlrEEo7QQM6wFrv5j8CZfXOu6DWfFNH0FLEtzwPSC\n1QHhLcERXuvjl1YaZOY5yCvzXW7jwty0j6kk1KFkhNROl5RoLm7Tgu2ZeezMOkrH1i0CHZKIiEiN\nKCkhch45XRFQTRMqdcVTWsaBZ17l8N/+BR4PMT8ZRZvZ9+NoGXfqysX52DYswnrwe0yLFXe3y/F0\nTwWbo/4DNU2oLP6xboTLVysivCWExNQ6GeF0G/yQb+dwsQ0wiAr20D62kqjg83dGDalbx3pL/P7t\nTcz/eDczru+DcT5XSBURkSZLSQmR80hVRUBtVqPaaUJFzlXBik/Y+5unqDxwmKA2rWj7xHRaDBt8\n6opuF9av12L9ai2G1403sQPuAWMxo+IbJlBXha9uhKvMtxwSA2Fxta4b4fbAvqN29hfa8ZoGoXYv\n7WOdxIae3zNqSP3o0CqKXhfGsXVXLtsz8+jRoYrEn4iISCOnpITIeej4IqD/XLWz2mlC7/lp34DE\nJ02P88Bh9j3yLAVLP8KwWbngrp+RdM8tWENPrcdgObAT24ZFGCUFmCERuPqNxtu2W8MM1fC4fMM0\nKo76lh3hvt4RttrVVPGacKDQxt4CB26vgcPqpV1MJS0jNKOG1K+rUtuzbVcu//04k27tY7Eo+yUi\nIk2MkhIi57EzTRNaUelu4IikqTHdbo68Po/9T/8Fb2kZ4QN6kTJ3BqGdOpy6culRbBuXYM3agWlY\ncHcejKfncLA3QJFV0wtleVCW6xu2YQ3yFbF0hNdutyZkl1j5Id9BhduC1WLSLqaS5CgXVs2oIQ0g\nOT6cS7q25POvj7BxRzYDu7QMdEgiIiLnREkJkfPYmaYJLShy6o+EVKtk69fsmTaHsq++wxodRbvf\nPUzcteMxLCd9G/e4se74DOuXazA8LrwJbXEPGIcZnVj/QZomOIugJBu8LjCsEJHgm+azlk+U88t8\nM2qUVFoxMEmOctEmuhKHSrJIA5twWTs27MjmvbWZ9O0Uj00ZMRERaULq9ftGRUUF48aN4/bbb2fQ\noEFMmzYNj8dDfHw8Tz/9NA6Hgw8++IA333wTi8XC5MmTueaaa+ozJBE5zpmmCY2ODKK4sDwAkUlj\n5i4qYf+TL5H95nwwTeImj6P1w/dgj40+ZV3jUCa2DQuxFOViBofhGjgeb/teDTNUw1UGxUfAXQ4Y\nEBoLoXFgqV3WoNhpITPPTkG57xKaEO6mXUwlIXbNqCGBkRAdyuU9k/hoywHWbT9Eaq9WgQ5JRETk\nrNVrUuKVV14hKioKgOeff54pU6YwevRonnvuOebPn8/EiRN56aWXmD9/Pna7nUmTJjFq1ChatNC0\nViIN4UzThAY7bBQHIC5pnEzTpGDRh+x95BlcR3IJ7tCWlLkziBzc79SVy4qwbVqGdc92TMPA02kg\n7l4jwBFS/4F6XL4ZNZxFvuWgCF/dCGvtZvSocBn8kO/gSIkVMIgO8c2oERGkGTUk8MZfmsK67Yf4\nYN0eBnVNxKFZlEREpImot6TE7t272bVrF0OHDgVg/fr1zJ49G4Bhw4bx+uuv065dO7p3705ERAQA\nffr0YfPmzQwfPry+whKRk5xumlCRYyr27mfvb56icPVnGEEOWj14GxfcfiOWoJO+6Hs9WL9bj3Xb\nagyXE29sMu6B4zFjk+o/SK/XVzOiLA8wwRbsS0Y4wmq1W5cH9hY4OFBow8Qg3OGhfayLmFBP3cRd\nR7ymyfZdHlZtrCQ81OCXExsgASSNRovwIEb0S2bpF/tYvfkA6QPbBDokERGRs1JvSYm5c+fy8MMP\ns2DBAgDKy8txOHw3r7GxseTk5JCbm0tMTIx/m5iYGHJyqi66d7zo6FBstqb/BCA+PiLQITQ7atOa\nueenfamodFNQ5CQ6Mohgx//+NKhN61ZTa09vZSWZf3iD7x9/CW+Fk9jhg+j+4m8JuyjllHXdBzKp\n+HA+3tyDGMGhBKVOxt79Egyjfse3x8WFU3E0h7Ls/XjdLiw2O2EtWxMUFYdRi2EiHq/J94fg24Mm\nLg+EOqBba4M2cTYMw16HP0HteL0mGd9UsOCjEvZnuzEMGNs5rFaftab2ORWf0QPbsmbLQZZ8sZfU\nXkmEBKkqkIiINH71crVasGABvXr1onXr1lW+b5pVj7ut7vWTFRSU1Ti2xiI+PoKcHHWMr0tq09qz\nAcWF5f4hG2rTutXU2rN4/Vb2PDSH8u8yscXFkPLMLGKvTKfMMCg7/ucoL8G2ZQXW3VsA8FzYF3fv\nUVQEh0Fuab3GGBVqUrj/B3BX4KsbEYc3LI5il4Xi3JIa7dM04XCxjT35dpweCzaLSYfYSlpFubEA\nubl1+iPU2LGeESs2VHI4z4thQL/ONkb2dxDfwqjxZ+1Mn1MlLBqv8BA76QPb8N4nmSzfsI+JQ9oH\nOiQREZEzqpekxJo1a8jKymLNmjUcPnwYh8NBaGgoFRUVBAcHc+TIERISEkhISCD3uLu77OxsevXq\nVR8hiYjIWXIXFJL1+PPk/Ot9AOKnXkXrGXdiaxF54opeL5bvM7BtXYlRWYE3OtE3VCO+AbqNuyuh\n9AiF2T9+eQ6KgvAEsNa8B4NpQn6Zlcx8B6WVFiyGSesWlbRp4aIxDc/3miZf7fawYn0lh44lIy62\nMXKAg/gWmnXhfDeqXzIfZmSxfGMWw/smExlau1oqIiIi9a1ekhJ//OMf/f9+4YUXaNWqFVu2bGH5\n8uVMmDCBFStWMGTIEHr27MmsWbMoKirCarWyefNmZs6cWR8hiYjIGZimSd78xeyb/Ufc+UcJ6Xwh\nKXNnEtGvxynrGrn7sW1YhCXvAKY9CHe/MXg6Daj1zBZn5PVAaQ6U5wNgCw3HHRQP9trVTyiqsLA7\nz0FhhRUwSYxwkRLjItjWeGbUUDJCzkaww8a4wSn8c9X3LPl8L9eNuCjQIYmIiJxWgw02vOuuu5g+\nfTrz5s0jKSmJiRMnYrfbuf/++7nlllswDIM77rjDX/RSREQaTvmuPeydOZeiTzdiCQmm9ay7afmL\nKVjsJ10mnGXYtq7CsjMDAxNPux64+6ZDSD3/7TZNKC/wJSRMD1jsEJ5Ai+RW5NZwmAZAmcvghzwH\nOaW+nzM21De9Z3iQkhHSdKX2asXyDVms3nyAK/q3JiYyONAhiYiIVKvekxJ33XWX/99vvPHGKe+n\np6eTnp5e32GIiEgVvBVODr7wdw699HfMShdRIy8j5ffTCGp90mwZphfL7q3YNi/HcJbhjYrHNWA8\nZmK7+g/SWeKb4tPjBMMCYQkQGgOGpcaFLCvdsKfAwaEi34waEUEeOsRW0iKk8Uzv6U9GbKjkUK4v\nGdH3Yhuj+juIj1YyQqpnt1mYcFk7Xl+ygw/W/cDNozsHOiQREZFqqSyziMh5qnDtBvbMeBJn5j7s\nifG0fewBoscMP+WLvpF/yDdUI2cfps2Bu08ans6D6n+ohtsJJYeh8sdimcEtfHUjLDW/dLm9sP+o\nnayjdjymQYjdS7sYJ/FhHmoxUUedUjJC6sLgboksXb+XT788TPrAtiTGhAY6JBERkSopKSEicp5x\n5eaz77d/IO/dpWCx0PKW60iedhvWiPATV6yswLptNdbv1mOYXjxtuuLuNxrCouo3QK/7x7oRBb5l\nexhEtARbzbuge004VGRjT4Edl8eC3WLSPtbJBZFuLI0oGfF1pm+YxkElI6SWLBaDqy5vz0vvfcV7\nn2Tyq4ndAh2SiIhIlZSUEBE5T5heLzn/XEDW71/AU1hMaI/OtHtqJmE9TurabZpY9mzHtmkpRnkJ\n3ogYXAPGYSbVc8E80/QVsCzNAdMLVgeEtwRHODXtxmCakFvqm1Gj3OWbUaNtdCWtW7iwNZLv+VUm\nIzr5akYkKBkhtdCnYzwpiRFs/DabMYeLaZuoul0iItL4KCkhInIeKNuxiz3T51CS8SWW8DDaPPYA\nLW++BsN64hAMozAb2/pFWI78gGm14e45HE/Xy2o11eYZmSZUFv9YN8LlqxsR3hJCYmqcjAA4Wm4h\nM89BkdM3o0ZSpIu20S6CGsmMGkpGSH0zDIOrUzvw7LytvPtJJr+e3DPQIYmIiJxCSQkRkWbMU1bB\nwT/8lcN/+Qem20P0uBG0nX0/jgsSTlzRVYl1+xqsOz7D8HrwtOqEu/8YiIip3wBd5b5khKvMtxwS\nA2FxtaobUVppkJnnIK/Mt4+4MDftYyoJdTSOZIRpmnx1UjKiTycbI/s7aBmjZITUrS4p0VzcpgXb\nM/PYmXWUjq1bBDokERGREygpISLSTB1d9Sl7fvMUlVkHcSRfQMqc6bQYedmJK5kmlqxvsG1cilFW\niBnWAlf/MXhb13O1fo/LN0yj4qhv2RHu6x1hC6rxLp1ugz35dg4V2wCDqGAP7WMriQpuHDNqKBkh\ngXCst8Tv397E/I93M+P6PjWetUZERKQ+KCkhItLMVB7KZu8jz1CweDWGzcoFt99I0n2/wBoacuKK\nRXnYNi7GevB7TIsVd7fL8XRPBZuj/oIzvVCWB2W5vmEb1iBfEUtH+Jm3rYbbA/uO2tlfaMdrGoTa\nvbSPdRIb2jhm1DB/HKax/FgyAiUjpGF1aBVFrwvj2Lorly9359HzwrhAhyQiIuKnpIRIE+N0eSgs\ncRIVHkSQvZ6nZJQmxfR4OPLGf9j/1Ct4S0oJ79uDlKdmEtr5whNXdLuwfr0W61drMbxuvIkdcA8Y\nixkVX4/BmeAsgpJs8LrAsEJEgm+azxpmDrwmfH/I5KusUNxeA4fVS7uYSlpGNI4ZNapKRvTu5JtN\nQ8kIaWhXpbZn265c3v0kk+4dYrE0hoydiIgISkqINBker5d5q3exZWcO+UVOYiKD6N0xnmuHX4jV\noi8457vSL3fww7Q5lH25A2tUBClP/4b4n07AOOmzYTmwE9uGRRglBZghEbj6jcbbtlutCkqekasM\nio+AuxwwIDQWQuPAUrOkmmlCdomVH/IdVLhNrBZoF1NJcpQLayP4VTiWjFixoZIDOUpGSOOQHB/O\nJV1b8vnXR9i4I5uBXVoGOiQRERFASQmRJmPe6l2sytjvX84rcvqXp4zsGKiwJMA8JaXsf+rPHHl9\nHni9xF49mjaP/hp73EkFKkuOYstYgjVrB6Zhwd3lUjw9hoG95jUczhycy1fE0lnkWw6K8NWNsNZ8\neEhBmYXdeQ5KKq0YmFyUCPHBZTgaQach0zT5+gdfzQh/MqKjjVEDlIyQxmHCkPZs2JHNe2sz6dsp\nHltjyOKJiMh5T0kJkSbA6fKwZWdOle9t2ZnL1akdNJTjPGOaJgVLP2Lvw8/gOpRNUPs2pMyZTtTl\nA09c0ePGuuMzrF+uwfC48Ca0xT1gHGZ0Yv0F5/X6akaU5QEm2IJ9yQhHWI13WeK0sDvPTkG577KV\nEO6mXUwlbZLCyan6V3Hvy1IAACAASURBVKPBKBkhTUVCixAu75nER1sO8On2Qwzt1SrQIYmIiCgp\nIdIUFJY4yS9yVvleQXEFhSVOEqJDGzgqCRRn1kH2/uZpjq5ai+Gwk/TrX5B0181Ygk/s9WAcysS2\nYSGWolzM4DBcA8fjbd+r/oZqmKZvNo3SHPC6fdN6hiVA8P9n784Do67v/I8/v/OdK8nkmmSSQEIO\nEg4B5b4UDEIQAVG7nuvRre3WdrW7291uxaNaa1U8qna31e2v9qdWf1qxbnUVRCAcgiDhRhCBcOQE\nkkkyOSbJXN/v9/fHN3LmmISZTI7P4x+Y5JuZTyaTyXxf83m/3/E9vk2PX+JEnYkqtz5RIyFKITfJ\nR6wl8hM1NE3jYFsYUSHCCKGfWHJVNlv2n+KTLSVcOTYNswi0BUEQhAgToYQg9AO2aDMWswGP7+IT\nscRYK/G2MG7BF/oM1R+g6o/vUPnSa6itHmKvnEz2sw8TlZd9/oEtjRh3fYZcsh9NklBGTScwYR6Y\no9q93pDwNeulGgEPet+IZIhJBqlnJ+d+BUpdZiobjGhIxJgVcpP8JEZFfqJGe2HEhJF6z4i0JBFG\nCH1bgs3CvCkZrNpWxvrdlVw3PTPSSxIEQRAGORFKCEI/8NHm4+0GEgATRyaL0o1BoGnnV5QsfYbW\nb45itCeQ/exDJN2yGOncM3RVQT5UhPzVeiS/FzUpg8D0JWhJQ8O3sIBPDyN8TfplSzzYUkA29ejq\nFBUqG0yU1ZsIqBIWo0qO3UuqTYQRghAqC6dnsXHPST7dVkr+hKFEWcTLQUEQBCFyxF8hQejjOusn\nYTXL3DQ7p5dXJPSmQH0j5c/8Duf/+xAAx503kfHITzDZE847TqouxVj0CYb6KjRzFP4ZN6LmTerx\nToUuqYpeptFap182RYEtTf+3BzQNTjcZKakz4VUMGA0auUlehsYFIj5RQ9M0vinRR3tWVLeFESOM\nzJ9mIi1JBIJC/2OLMnHd9Ew+3HSc1dvLuGn28EgvSRAEQRjERCghCH1cZ/0kfH4Fd4ufaEvP3pUW\n+i5N06j9cDVlT7xEoKaOqFHDyX72EWKnTzj/wFY3xt1rkI/vAUDJm0xg4nyw9rypZBcLg1aXHkho\nChhM+s4IS1yP+kZoGtS1yByvM9PsM2CQNIYl+MhM8BPpDUAijBAGsvlTMli3s5zVO8qZOzmDuOie\nT8URBEEQhEshQglh0PP6FRrcXuJtloiWQbS3Dq9fwRdQSYw1U9fku+hrRD+JgclzopySh5bRuHk7\nktVCxsMPkPajuzGYzwmfVBVD8U6Me9ci+TyoiWl6qYYjjPXhXrdeqqF49R0YMSkQbe/xboxGj4Hj\ntWbqPTKgkRbrJ9vux2rUQrvubhJhhDAYWM1Grr8ym3cLi/n0y1LumDci0ksSBEEQBikRSghh1VdO\n+NujqCrL1x9lzxEndY1e7HEWJo50cPvcPGRD7+0Xb28d40ckIwF7i2uoa/RiMbd/34l+EgOL6vVx\n6tW3OPlfr6N5fcRfcyVZzzyINSvjvOOkmgqM21dgqK1EM1nwT12MOnIqGML0WAh4wX1ab2YJYE3Q\nd0cYevYnpMUvcaLWjLNZ/3p7dIDhdh82S98II9YU+ShvCyPGt4URQ0QYIQxA+RPSWb29nPW7K7l2\n6jDscdZIL0kQBEEYhEQoIYRFXznh78zy9Ucp3Flx5nJto/fM5TsLRkZ0Het3VZ53jMenAHoPCZ9f\nITHWysSRydw+N6/X1imEV+PWnZQsXYbnWCmmlCQyn/wP7EsKzm9k6W3BuKcQQ/FOJDSUnPEEJi+A\nqNjwLEoNtPWNcOmXTTEQmwrGnp24+AL6RI2TjfpEjViLwvAkH4lRkR3veWEYASKMEAYHk9HAjbNy\neP3Tb/jfL05w76LLIr0kQRAEYRASoYQQFn3lhL8jnTWP3HOkhpvzc3tlB0Jn62hPjNXII3dPwpEY\nLXZIDBD+WhdlT/6W2r+uBEki5d7byFh6P8Y429mDNBXDsb0Yd69G8ragxjvwT1uClhamJqeapjew\nbHaCpoJsBlsqmG096huhqFBeb6K83oSiSUSZ9IkajpjITtTQNI1DpXqZRnlVWxiRZ2T+dBFGCIPH\nlePS+Gx7GV/sP8W8yRlkpoYp5BQEQRCEDohQQgi5vnLC35kGt5faDppHupo8NLi9pCRG98o6Ompi\n2R5XkxezSY74/SdcOk1VqXnvY8qe/h2Kq4HocaPIfv4RbBPGnnecVHdKL9VwlqEZzQQmLUC5bGZ4\nSjU0TR/t6a4Cxa/3irClQpS9R2GEqsHpRiMlLhM+xYDJoDE8ycuQuAAGEUYIQp9gMEjcMS+Pl5bv\n4921R1h616Tzd2gJgiAIQpiJUEIIuc5OtHvzhL8jiqqyekc5Bkk/abpQsM0jQ9EvI95mwR5n6TAg\n6enahL6t9chxSpYuo6loD4boKDJ/9e+k3nsbkvGcp2SfB3nfeuTD25A0DSVzLIEpCyEmPjyL8rfq\nYYS/Rb8cZYcYR4/CD02DmmZ9okarX5+okZXoY1iCH2MEq7c6DCOmmRiSLMIIYfAal5PExBHJ7Cmu\noeibKmaMSYv0kgRBEIRBRIQSQsh1dqLdF06ql68/yobdlR1+vqvmkaHsl2ExyUwc6Tiv1KUzorFl\n/6a0eih/9hVO//fbaP4AidfNIfPX/4El/ZwTAE3DUPIVxl2fIbW6UWOT8E9bjDY0TJ3xFb9epuGp\n1y+bbfruCGPPfk8bWg0cqzPT2DZRY2icn6xEP5YITtT4NoxYU+SjrC2MuCJP5tppZhFGCEKb2+eN\nYP/xOt5ff5QJeclYzeIloiAIgtA7xF8cIeQ6O9G+8KS6t6dzdFZaYpAgf8LQLptHhrpfxre3t+dI\nDa4mD4mxVsaPSGqbvlF75mOisWX/Vr9hKwcee4GW4+WYh6aS9fSDJC7IP+8YqaEaY9EKDFUn0GQj\ngfHzUMbOAjkMT9WaCi210FKjb22QLXoTS7Ot669tR7NP4nitmdoWfa3JMfpEjWizCCMEoT9ISYhi\n4fRMPtlawsovS7k5PzfSSxIEQRAGCRFKCGHR3on2uSfVkZrO0VlpiQYsmJbZ6e2Ho1+GbDBwZ8FI\nbs7PvSiguWVO3x2pKgTHV1VD2eMvUvfJWiRZJu1Hd5P+H/chx5xTwuT3Ie/fiHxwC5KmoqSPIjB1\nMcQmhn5BmgbeRnBXg+oHSYbYFH3MZw/qyL0BiZI6E6eajIBEvFWfqBFvjdxEDU3TONxWpnEmjMiV\nmT/dzFARRghChxbNzGLLgVOs3l7GrCuGkBrBUktBEARh8BChhBAWnZ1oQ+Smc3RWWmIPorQknP0y\nLCb5oq9t72NC/6ApCtVv/Q8Vz76C0tRMzKRxTPrj03iHpp9zkIah/CDGHauQWhrQYhLwT12EOixM\nY/n8LdBUBYFWQILoJIhO7lHfiIAKZS4TFQ0mVE0i2qQyPMlLUnTkJmqIMEIQLo3FJHP73BH890cH\n+EthMT+9dXyklyQIgiAMAiKUEMKqvZPqSE7n6E5pSXv6er+MYPR2ycxg1HzgMCVLn6F5z9fIcTay\nn30Ix91/R1xqPE5nk35QYy2mHSsxnCxGM8gExuWjXH41GM2hX5Di15tYehv1y5ZYvW+E3P3bUjU4\n2WCk1GXGr0qYZZVsu4+02MhN1BBhhCCEzpRRDkZnJvDVsVr2Ha1hfF5ypJckCIIgDHAilBB6XaSn\nc3RVWtKZSw01eioUQUKkSmYGE6W5hcrf/B9O/+k9UBTsNy0g84l/w5xyzov6gB/5603IB75AUgOo\nQ3IJTLseLS4ML/xVVe8Z0VILaGC06mGEOabbV6VpUO2WOVFnxhMwIEsaOXYfGfF+5Ag9fDRN46ti\nL39d00rpaT2MuDxX7xkx1CHCCEHoCUmSuHP+SJ54fQd/WVfMmGw7pkiOzREEQRAGPBFKCL0u0rsN\nuiot6cqlhBrdFcogIVIlM4OF67ONlP7iBXwnq7BkpZO97GHi58w47xj/8YOYC/+K5HahRcXqpRqZ\nY3vUy6FTmqZP02h2ghoAgxFiUsAa36PbcrXoEzXcXhkJjfR4P1mJPswROu/XNI3DZXoDy9LTzYAI\nIwQhlDIcNuZOSqdwVwVrdpSxeGZ2pJckCIIgDGAilBB6XaR2G7S3jp7syLjUUKM7QhUkRLJkZqDz\nVpym9LEXqF/9OZLJyNB//T5D/+X7GKKsZw9y12Pc+Smt5d+AZCAw5iqUK64BUxgCOF+zXqoR8KD3\njUiGmGSQuv9Op9tr4FitCVer/qcixRYgx+4jyhSZiRqapnGkTC/T+HZnxJQxVvLHSyKMEIQQu3F2\nDtsOVrFiaylXjhtCYmzfL08UBEEQ+icRSggR0Zu7DcIl3E0oQxkkRLpkZiDSAgFO/+k9Kn/zf1Bb\nWomdMYns5x4makTO2YOUAPLBLcj7P0dS/Mjpw2mduAgtMTX0Cwr49DDC19azwhqv746QTd2+Ko9f\n4kSdiSq3PlEjIUohN8lHrCUyEzXaCyMuz5WZP83MhDEJZ/t0CIIQMjFWE7fMyeXNVYf464aj3HfD\n2EgvSRAEQRigRCghdCkcjRF7c7dBfxXKICHSJTMDjXv3AUoefIaWg0cwJsaT9dTPSb59CdI5pRHS\nqWMYt6/A0FiDZo3BP+MGYqfNoqXGHdrFqIpeptFap182RYEtTf+3m/wKlLrMVDYa0TSJGLNCbpKf\nxKjITNToLIxIFzsj2lXf6Gfd5lpsMTIL5jgivRyhn5t1xRA27qlk28Eq5kxMZ+SwhEgvSRAEQRiA\nRCghdKg3GiOKkZcdC2WQ0FdKZvq7QKObimWvUP3WB6BpJN++hGG/+FdMSee8UG9pxLjrM+SS/WiS\nhDJqOoEJ88AcdV5occk0DVpdeiChKWAwgS0FLHHd7huhqFDZYKKs3kRAlbAYVXLsPlJtgciFEeV6\nz4iSU3oYMW64HkZkpIjHanuOlbawsrCazUUuAgGNETnRIpQQLplBkrhr/kiefnsX7649wuPfm4oh\nUmN2BEEQhAFLhBJCh0RjxOCFYzdJqIOEgVAyEymaplH38VrKfvki/uparHnZZD/3MHEzJ589SFWQ\nDxUhf7Ueye9FTcogMH0JWtLQ0C/I69ZLNRSv3isiJgWi7d3uG6FpcLrJSInLhDdgwGjQyE3yMjQu\nEJGJGiKM6J5AQKNoTz0rC6v5plhv+Dkk1cLieQ7mXpUU4dUJA0VuejxXjUtjy4HTfL63kmsmZUR6\nSYIgCMIAI0IJoV2DqTHipQQK4d5NEsogQZTM9IyntILSh5+jYeOXSBYz6Q/+mCH/9F0MFvOZY6Tq\nUoxFn2Cor0IzR+GfcSNq3qQeNZfsVMAL7tN6M0sAa4K+O8LQvadyTYO6FpnjdWaafQYkSWNYgo/M\nBD+ReEhomkZxuV6mIcKIrjU2BVi7qYZV653UuvwATBwXx+ICBxPHxYl3soWQu2VOLruOOPnbpuNM\nvSwVW1T3e9UIgiAIQkdEKCG0azA0RgxFoBDu3SThCBJEyUxwVJ+f0394m8rf/l80j5e4q6eTvewh\nrDnDzh7U6sa4ew3y8T0AKHmTCUycD9aYEC8m0NY3wqVfNsVAbCoYrZ1/XTsaPQaO15qp98iARlqs\nn2y7H6ux9ydqtBdGjB2uj/YUYcTFTpS1sLLQyaZtdfgDGlaLgUXzHCya6yB9SPcfC4IQrHibhRuu\nyuH9DUf5cNNx7lkwKtJLEgRBEAYQEUoI7RoMjRE7CxSCCQFCtZskmJ0aIkjoXY3bdlOydBme4hOY\nHElkvvgY9psWnO0JoaoYindg3FuI5POg2ocQmLYEzTGs8yvuLk3TG1g2O0FTQTaDLRXMtm73jWj1\nSxyvNeNs1p/27dEBhtt92CwijOjLFEVj+956VhY6+fqw3iQ1LcXCorYSjZhocX8JvaNgSgabvzrJ\nxr2V5E8YSmZqbKSXJAiCIAwQIpQQ2jXQGyN2Fih88dWpoHZPXOpukt5oJCp0j7+unvJf/yc1yz8B\nSSLlH24h46EHMMafffEt1VTopRp1J9FMFvxTF6OOnAah/Jlpmj7a010Fil8vA7GlQpS922GEL6BP\n1DjZaERDItaiMDzJR2JU74/31DSN4gq9Z8SJk21hRI7MtdNFGHGhJneAws01rFpfg7PWB8D4sbEs\nnpfCpCvikEWJhtDLjLKBvy8YwUvL9/Hu2iMsvWtSaJv3CoIgCIOWCCWEDg3kxoidBQoen4LHpwCd\nl2Nc6m4S0Ui079A0jZq/rqT8yd8SqKsnaswIcp57BNvky88e5G3BuKcQQ/FOJDSUnPEEJi+AqBC/\nW+hv1cMIf4t+OcoOMQ4wdLffCZTXmyivN6FoElajyvAkL46Y3h/v2VEYMX+6mWEijDhPaUUrKwur\n+XxbHT6fhsVs4Lprklk018Gw9O6PeRWEUBqXk8TEEcnsKa6h6GAVM8amRXpJgiAIwgAgQgmhQwO5\nMWJngUJ72ivHuJTdJIOpkWhf11pcQsnDy2jaugtDlJVhj/0rqf/49xhMbU+Pmorh2B6Mu9cgeVtQ\n4x34py9BS80J7UIUv16m4anXL5tt+u4IY/dKpVQNTjfqEzV8igGTQSOnbaJGb7+5rmkaR9vCiOMi\njOiQomrs3NfAykIn+79pAiAl2cyieQ7mzUrCFiP+VAt9xx3zRrD/eB3vbzjKhBHJWM3i8SkIgiBc\nGvGXROjSQOxn0Fmg0J6OyjF6uptkMDQS7evUVg8nf/cmp155E80fIGH+bLKefhBLxpAzx0h1pzBu\nX4HBWYZmNBOYtADlspnd3rXQKU2FllpoqdHLNmSL3sTSbOve1WhQ06xP1Gj1GzBIGlmJPoYl+DH2\ncjVQe2HEmLYyDRFGnOVuDrBucy2frndSXaOXaFx+WSyLCxxMGR8vSjSEPsmREMXC6Zl8srWEFVtL\nuWVObqSXJAiCIPRz3Qoljhw5QllZGQUFBTQ2NhIXFxeudQlC2F0YKCTYLLR4A2dKN87VUTlGT3eT\nDIZGon1Zw+fbKHn4WbwlFZiGpJD11M9JvG7O2fponwd533rkw9uQNA0lcyyBKQshJj50i9A08DaC\nuxpUP0gyxKboYz67WV/R0GrgWJ2ZxraJGkPi/GQn+rH08kQNEUYEp7yylZXrnGzcWofXp2I2S1yb\nn8yieQ6yMkSJhtD3LZqZxZYDp1i9vYzZVwwh1S5CdEEQBKHngg4l3nzzTVasWIHP56OgoIBXX32V\nuLg47r///nCuTxCCmk7RE+0FCv/z+bEelWN0dzfJQG8k2lf5qmsoe+Jl6j5aDQYDqT/8ezJ+/mNk\nW9sIT03DUPIVxl2fIbW6UWOT8E+7Hm1oiPuo+FugqQoCrYAE0UkQndztHRjNPn2iRm2L/lSeHBMg\nx+4jxtz7YcSxCn2axpkwIrstjEgVj2UAVdXY9VUjK9dVs+9rvUTDkWRm4VwHBbOTiLWJjYtC/2Ex\nydw+dwT//dEB/rKumJ/eOj7SSxIEQRD6saBfBa1YsYL333+ff/iHfwDgwQcf5I477hChhBA2vTWd\n4txAoatyjFAGJAO5kWhfo6kqznc+pPzp36E0uokZP4bs5x4h5orRZ46RGqoxFq3AUHUCTTYSGD8P\nZewskEN3sqj4vNBQoe+QALDEgS1FH/XZDd6AREmdiVNNRkAizqqQm+Qj3tq7EzVEGNG15haF9V/o\nJRqnq/WdUWNH2Vhc4GDahARkWZRoCP3TlFEORmcm8NWxWvYdrWF8XnKklyQIgiD0U0G/2o6JicFw\nzomgwWA477IghFokplN0VI6hqCrvFh4JaUAykBuJ9iUtB4spWboM966vMNhiyHr6QVK+ezOS3HZf\n+73I+zciH9yKpKkoGaMITFkMsYmhW4SqQksNdc5avWzDaNWbWJpjunU1ARXKXCYqGkyomkS0SZ+o\nkRTd+xM1jpYHRBjRicpTHlauc7JhSy0er4rZJFEwO4lF8xzkZIqt7kL/J0kSd84fyROv7+Av64oZ\nk23H1NsNbARBEIQBIehQIjMzk9///vc0NjayZs0aPv30U3JzRXMjITwiPZ3iwnKMcAYkA7GRaF+g\ntLRS+eIfOf3Hd0FRsC8pIPNXP8Oc5tAP0DQM5Qcx7liF1NKAFpOAf+oi1GGXhW4RmqZP02h2ghrA\nYDShRjnAGt+tvhGqBicbjJS6zPhVCbOskm33kRbb+xM1jlYEWFPk41ilHkZc1hZGZIowAlXV2HOg\nkZWFTvYc0HfDJCWauOX6NOZfnUxcrCjREAaWDIeNuZPSKdxVwZodZSyemR3pJQmCIAj9UNCvkB5/\n/HHeeustUlNT+fjjj5k8eTJ33XVXONcmDGJ9aTpFizfAF1+dbPdzYnxn3+Rau5nSR5/HV3EK87Ch\nZC9bSsLcq84e0FiLacdKDCeL0QwygXH5KJdfDcbulVF0ytcM7ioIeND7RiRjz8qmprYl6KvQNKh2\ny5yoM+MJGJAljRy7j4x4P3IvvyEpwoiOtbQqbNhSy8p1Tk5V6c9bY0bqJRrTJ4oSDWFgu2l2DkXf\nVLFiaylXjhtCYqxo1CwIgiB0T9ChhCzL3Hvvvdx7773hXI8gAH1rOsVf1h7B42u/Vl+M7+xbfCer\nKH3sN7hWbUAyygz5yfcY+tN/RI626gcE/Mhfb0I+8AWSGkAdkktg2vVocSGshQ749DDCpzczxBoP\nMSkgm5C60cjS1aJP1HB7ZSQ00uP9ZCX6MPdyBvBtz4hjlfpUmsuyZa6dZiYzTYQRJ6s8fLrOyfov\namn1qBiNEnOvsrOoIIXcLPGcIAwO0VYTN+fn8uaqQ/x1w1Huu2FspJckCIIg9DNBhxJjxow5Oy4P\nvZYwNjaWoqKisCxMGNz6ynQKr1/hUJmrw88n2CxifGcfoAUCVL3xPhXP/wG1uQXb1PFkP/cw0aPP\nNg01VBzGuGMlktuFFh2Hf8pC1Myx3R6/2SFV0cs0Wuv0y6YosKXp/3aD26tP1Khr1Z+eU2z6RI0o\nU+9O1BBhRPs0TWPf102sKKxm9/5GNA3sCSa+szCV+fnJJMSZIr1EQeh1s64YwsY9lWw7WMWciemM\nHJYQ6SUJgiAI/UjQocShQ4fO/N/n8/Hll19y+PDhsCxKEKBvTKforIwEYHRWoijdiDD3voOUPPgM\nLfsPISfEkf3CL3D8/Q1I3zYgdddj3LESueIQmmQgMOYqlCuuAVOIwiRNg1aXHkhoChhM+kQNS1y3\nAg+PX+JEnYkqtz5RIyFKYbjdR1wvT9QQYUT7Wj0KG7fWsXJdNZWn9OeE0XkxLC5wMGNSIkajKNEQ\nBi+DJHHX/JE8/fYu3ll7hF9+byqG3m54IwiCIPRbPeq6ZTabyc/P5/XXX+e+++4L9ZoEAegb0yk6\nKyOxmmXunD+iV9cjnKU0ual47r+pevOvoKok3bKIzMd/iinZ3nZAAPngFuT9nyMpftSUbL1UIzE1\ndIvwuvVSDcULkkEv04i26/8Pkl9pm6jRaELTJGLMCsOT/NijeneixrFKhTVFPo5W6GHE6Cy9Z0TW\nIA8jTld7+XS9k3Wba2lpVTDKEnNm2llU4GBETvempwjCQJabHs9V49LYcuA0n++t5JpJGZFekiAI\ngtBPBB1KfPDBB+ddPn36NFVVVSFfkCBcKJLTKTorI5l1xRCiLWKrdm/TNA3XynWUPv4i/tNOrMMz\nyX72YeJmTT1zjHTqGMbtKzA01qBZY/DPuAE1Z3zoSjUCXnCf1ptZAlgT9N0RhuBzXkWFygYTZfUm\nAqqExaiSY/eRaguIMCLCNE1j/zdNrCh0snNfA5oGifFGblgwhGvzk0mMF7/3gtCeW+bksuuIk79t\nOs7Uy1KxRYnfFUEQBKFrQb+C3rVr13mXbTYbv/3tb0O+IEHoa/pCGYmg85ZVUvLo8zSs24JkNpH+\ns/sY8pPvYbC0Tc1oacS4cxVy6QE0SUIZNZ3AhHlg7l5fhw6pgba+EW19RkwxEJsKRmvQV6FpUNVk\n5ITLhDdgwGjQGJ7kJT0u0KsTNUQYcTGPV+HzL+tYWeik/KQHgBE50Vw/P4WZUxIwGXt55Ikg9DPx\nNgs3zsph+fqjfLjpOPcsGBXpJQmCIAj9QNChxLJly8K5DkHoszorI/H6lYiVlgwmqj/A6T/8P06+\n/Bqqx0vcrKlkLXuIqNystgMU5EPbkPetRwr4UJMzCExbgpY0NDQL0NRz+kaoIJvBlgpmW9C7LzQN\nTrk09lRE0ewzIEkawxJ8ZCb46c2HzvFKvWfEeWHENDNZQwbv47e6Ri/RKNxUS3OLgizD1TMSWTwv\nhZG5okRDELpj3uQMNu07yca9leRPGEpmamyklyQIgiD0cV2GEvn5+edN3bjQxo0bQ7mefkmcmA4O\n55aRKKrK8vVH2XPESV2jF3uchYkjHdw+Nw/ZIN5NDaWm7XspWfoMrYePY0xKJPuFR0n6u4Vnnpek\n6lKMRZ9gqK9CM0fhn3Ejat6kbvV16JCm6aM93VWg+PXrtKVClL1bpSCNHgPHa83UezRAIjXWT06i\nH2svTtQQYcT5NE3j68NuVhRWs2NPA6oG8XFGbrshjQX5ydgTzZFeoiD0S0ZZD/JfXL6Xd9Ye4aG7\nJnX6OlIQBEEQugwl3n333Q4/19jYGNLF9DfixHTwWr7+6Hl9JmobvWcu31kwMlLLGlACrgbKn/k9\nznc+BMBx13cY9shPMCbG6we0ujHuXoN8fA8ASt5kAhPngzVE72z7W/Uwwt+iX46yQ4wDDMGfxLf6\nJY7XmXG69afatATIsLVis/RiGHFSL9MoLtfDiFGZeplG9iANI7xelU1FdawsrKa0Qi/RyM2K5vr5\nDq6amojJJJ67+4ojR45w//33873vfY+7776bHTt28NJLL2E0GomOjub5558nPj6eP/3pT3z22WdI\nksRPfvIT8vPzI730QW9sjp1JIx3sPuKk6GAVM8amRXpJgiAIQh/WZSiRnp5+5v9Hjx7F5dJrqX0+\nH0899RSrVq0Kk6SbIAAAIABJREFU3+r6OHFi2reFaweL16+w54iz3c/tOVLDzfm5YsfMJdA0jdq/\nraLsiZcJ1LqIGp1L9rMPEzttgn6AqmIo3oFxbyGSz4NqH6KXajiGhWYBil8v0/DU65fNNn13hDH4\nEaI+BUpdZk42GNGQiLUoDE/yMTIzBqezdwIJEUacz1nrY9V6J2s31eBuVjAYYNa0RBYXOBiVGyPe\nye1jWlpa+PWvf83MmTPPfGzZsmX85je/Yfjw4fzhD39g+fLlLFy4kE8//ZT33nsPt9vNnXfeyaxZ\ns5Dlwfk470tun5vH/uO1vL/hKBNGJGM192jgmyAIgjAIBP0X4qmnnmLLli3U1NSQmZlJeXk53//+\n98O5tj5NnJj2XeHewdLg9lLXzohQAFeThwa3N2LTQvq71mOllD78HI1fbMdgtZDxyE9I+9HdGEz6\nU5VUU6GXatSdRDNZ8E9djDpyGoRiZ5KmQksttNToZRuyRW9iabYFfRWKCuUNJspdJhRNwmpUGZ7k\nxRHTe+M9RRhxlqZpfFPczIrCaop216OqEGczcsv1aSyYk0yyXZRo9FVms5nXXnuN11577czHEhMT\nqa/Xw8KGhgaGDx9OUVERs2fPxmw2Y7fbSU9P5+jRo4waJRosRpojIYqF0zP5eEsJK7aWcsuc3Egv\nSRAEQeijgg4l9u/fz6pVq7jnnnt4++23OXDgAGvXru3w+NbWVh566CFqa2vxer3cf//9jB49mgcf\nfBBFUXA4HLzwwguYzWY+/vhj/vznP2MwGLjtttu49dZbQ/LNhZM4Me27OtrBoigqC6ZlBrVzorNd\nFvE2C/Y4C7Xt/PwTY63E24J/R130I9GpHi+nXvkzJ3/3BprPT/y8q8h++kEsmW07tbwtGPcUYije\niYSGkjOewOQFEBWCBmqaBt5GvVRDDYAkQ2yKPuYzyCRB1eB0k5GSOhM+xYDJoJGT5GVoXABDL4UR\nJ07qPSO+DSNGtoUROYMwjPD5VTZvc7FyXTUnyloByMmM4vqCFGZNT8QsSjT6PKPRiNF4/kuURx55\nhLvvvpu4uDji4+P52c9+xp/+9CfsdvuZY+x2O06ns9NQIjExGqMxPL8XDodo6niue64fy5cHq1iz\no4wb5+Qx1BF8yNtT4mcQeeJnEHniZxB54mfQPUGHEmaz/o6S3+9H0zTGjRvHc8891+HxGzZsYNy4\ncfzwhz+ksrKS73//+0yaNIk777yThQsX8tJLL/HBBx9w00038corr/DBBx9gMpm45ZZbmD9/PgkJ\nCZf+3YVRKE9MhdDpbAfL53tPsnHPyU53TgSzy8Jikpk40nFe8PGtiSOTgwoXRD+Ssxq/2EHJQ8vw\nHC/DlOYg68mfkbh4nr6dXlMxHNuDcfcaJG8LarwD//QlaKk5oblxfws0VUGgFZAgOgmik4PuG6Fp\nUNMic6LWTIvfgEHSyEr0MSzBT29NjxRhxFk1dT4+2+Bk7ee1NLoDGAwwc0oC1xekcNkIUaLR3/36\n17/m97//PZMnT+a5555rt+eVpnVdHuVytYRjeTgcsTidTWG57v7s1vxcXv3oAK/8dS8/vXV8WG9L\n/AwiT/wMIk/8DCJP/Aza11lQE3QokZOTwzvvvMOUKVO49957ycnJoamp4zt70aJFZ/5/6tQpUlNT\nKSoq4le/+hUA11xzDa+//jo5OTlcfvnlxMbqi5w0aRK7d+9m7ty5wS4tIkJxYiqEXmc7WNS216qd\n9f4Itk/I7XPzAL1Ux9XkITHWysSRyWc+3hXRjwT8NXWU/eplav9nFUgSqd+/nYyl/4Qcq7+TJtWd\nwrh9BQZnGZrRTGDSApTLZnar0WSHFL++M8Lb1qzXEge2FH3UZ5AaPAaO1Zpp9MiAxpA4P9mJfizG\n3ukZceKUwpptPo58G0YMawsjhg6u5x5N0zh01M3KQidbd7pQVbDFyPzdolSuu8aBI0mUaAwUhw8f\nZvLkyQBceeWVfPLJJ8yYMYMTJ06cOaaqqoqUlJRILVFox+RRDi7LSuSrY7XsO1rD+LzkSC9JEARB\n6GOCDiWefPJJ6uvriYuLY8WKFdTV1fGjH/2oy6+74447OH36NH/4wx+49957z+y4SEpKwul0UlNT\n0+7Wy/7gUk9MhdDrbAfLhS7s/dGdPiGyQR95dnN+brfLLwZ7PxJNVXH+5WPKn/4vlPpGoi8fTfbz\nj2AbP0Y/wOdB3rcO+XARkqahZI0lMHkhxMRf+o2rqt4zoqUW0MBoBVsamIMvtWr2SZyoM1PTrD99\nJscEyLH7iDGLMKI3+f0qX2x3sfrzIxw+6gYgK8PK9QUpzJ5hx2IeXDuOBoPk5GSOHj1KXl4e+/fv\nJysrixkzZvDGG2/wz//8z7hcLqqrq8nLE3+D+xJJkrizYAS/fH0Hf1lXzJhsO6be2komCIIg9AtB\nhxK33XYbN954I4sXL+aGG24I+gbee+89vvnmG37+85+ft62yoy2WwWy9DGc9aHf9699PxuML4Gr0\nkhhn6VZ36YFea9TT++VSZAxN4Krx6Xy8+XiXx7qaPMhmE45kfYTkqZpm6po67hNy7rHn3WY319jT\n24mUUD5Om74uZv/9j+PauhvZFs2YFx8h6/67MBiNaJpG4NAuPJs+RmtuxJDgwDr3ZozZoy/5djVN\nw1PvpKW6AjXgx2A0EZM6DEt8ctBb+lt9GgcrNE5UgwYk2eCKLInkWDMQ/LvxPb0/i8t8fLihiQNH\nfQCMyzVz0zWxjMwaXDsBamq9fLTqJP+7+hSuej8GA1w9M5lblqQzcVy8KNEIkUj/fTpw4ADPPfcc\nlZWVGI1GVq9eza9+9St+8YtfYDKZiI+P55lnniEuLo7bbruNu+++G0mSeOKJJzAMshK4/iDdYWPu\n5HQKd1awZkcZi2dmR3pJgiAIQh8S9Jni0qVLWbVqFd/5zncYPXo0N954I3Pnzj2z8+FCBw4cICkp\niSFDhnDZZZehKAoxMTF4PB6sVuuZLZYpKSnU1NSc+brq6momTJjQ6VrCVQ96KYxAU0MrwVYPDeRa\no97ql3Bhk8hv79MlMzNpafWx50gNdY0eJOls6ca5EmOtKD4/TmcTXr/C6boWzEYJr//ig8899lLX\nCmCP7bgfyaXcTqiF6nGqtHg4+ds/cfoPb6MFFBIXXUPWk/+BeWgqta5WpPpqvVSj6gSabEQZPw9l\n7CxaZSNc6u37mvVSjYAHvW9EMmpMMk1+A0017i6/PKBCeb2J8noTqiYRbVLJSfKRHK2gecDpCX4p\nPbk/S07pPSOOlOk7I0a07YwYPlQGvDidXe8KGggOH2tmZWE1W3e6UBSIiZa56boU7rolB6PBD0BN\nED9PoWtdPU57I7AYN24cb7/99kUff++99y762D333MM999wT9jUJl+amWTkUHazik60lzBybhj3O\nGuklCYIgCH1E0KHE5MmTmTx5Mo8++ijbt2/n448/5oknnmDbtm3tHr9z504qKyt59NFHqampoaWl\nhdmzZ7N69WpuvPFG1qxZw+zZsxk/fjy/+MUvaGxsRJZldu/ezSOPPBKyb1DofeHul9BR6PGT2yYC\nemnFzfm5XH3FEJAkNuypZMPuyouuZ+LIZIyyxLuFR9hzxNlpyUdHfUK6mp7R0VonjEhm3a721zTQ\nSjfq12+h9JHn8ZZVYk5PI+uZpSTOn61/0u9F3r8R+eBWJE1FyRhFYMpiiE289BsO+PQwwtd2cmWN\nh5gUkE1BfbmqwclGI6V1ZvyqhFlWybb7SIvtnYkanYcRg4M/oLJ1Rz0rC6spPqGH0cPSrVw/L4Wr\nZyZitcg4HFacTn+EVyoIQleirSZuzs/lzVWH+OvGY/zohrGRXpIgCILQR3RrT31jYyOFhYV89tln\nlJeXc/vtt3d47B133MGjjz7KnXfeicfj4fHHH2fcuHEsXbqU5cuXM3ToUG666SZMJhM/+9nP+MEP\nfoAkSTzwwANnml4K/U9v9EvoKPSIjjKzZGbmRSHA+BHJzJuczt7i2ot6f1x4Xe2xmmVumn3+tIdg\nd4N0tNa5k9MpmJIxoPuR+E47KX38N7hWrANZJu2f7iH9Z/chR0eBpmEoO4hx5yqklga0mAT8Uxej\nDrv0Ug1UBZqd0FqnXzZF6X0jTFFBfbmmgbNZ5nitGU/AgCxpZNt9DIv3I/fCrvCSUwprinwcPjeM\nmGZmePrgCSNcDX7WbKxh9UYnroYAkgRTJ8RzfYGDyy+LFSUagtBPzbpiCBv3VFJ0sIprJqYzcljf\nnrQmCIIg9I6gQ4kf/OAHFBcXM3/+fH784x8zadKkTo+3Wq28+OKLF338jTfeuOhj1113Hdddd12w\nSxH6sM6mX7iaPDS4vaQkBt9U8EKdhR7bDpyiye1hw56TZz5W2+hl/a5KCqZk8NQPp5+3q6Gz6zqX\nz6/gbvETbTn7Dnswu0E6u/59xbU89cPpPWqUGQpd7fC4FJqiUP3nDyh/9lVUdzO2yVeQ/dzDRI8Z\noR/QWItpx0oMJ4vRDDKBy/NRxl0NxkvsjaBp0OrSAwlNAYMJbKlgiYUgT2JdrQaO15pp8spIaKTH\n+8lK9GHuhR+NCCOg+EQzKwudbNnuIqBoREfJ3HBtCgvnOkhLEWOWBaG/M0gSd107kqff2sU7a4/w\ny+9NxdAbW88EQRCEPi3oUOK73/0us2bNQpYvfoH82muv8cMf/jCkCxP6p86mXyTGWs/0VOipzkKP\nmvpW9hQr7X7u210a5wYinV3XuS5cd2dhw85D1Sy5MpvYaHPQAc2lhDTdFe5+H81fHaJk6TM07zuI\nHB9L9vOP4LjzJiSDAQJ+5K83IR/4AkkNoA7JJTDterS4EIyH87rBfRoUH0gGvUwj2q7/Pwhur8Tx\nOjN1LfpTosMWYLjdR5Qp/BM1StvKNAZrGBEIaHy5y8XKQieHjzUDkD7EwvUFKeTPtBNlHRz3gyAM\nFrlD47nq8jS27D/Nxr2VzJ3U3XbRgiAIwkATdCiRn5/f4ec2b94sQgkBAItJZuJIR7slEaHol9Bp\n6BFnpbah/a6D7e3SCHZ86IXr7ixsqHf7eOL1HUwe7eCm2cPDGtD0RLj6fSjuZipe+ANV/3c5qCpJ\n37mOzCf+DZMjCQBDxWGMO1YiuV1o0XH4pyxEzRwb9A6GDgW8ehjh009msSaALQUMwT21efwSJ1wm\nqpqMgESCVWF4ko84q3pp6wpC6SmFNdt9HCrVw4i8DL1nRO4gCSPqG/2s/byGzzbUUFfvR5Jgyvg4\nFhekMH6MKNEQhIHsljl57D7i5MNNx5l2WSq2qOB6/QiCIAgDU0jmNAYzxlMYPL7tixCOfgmdhR7T\nx6ZRdOBU0CFAZ9cFkBTX/rq7CjNc7rMn+uEMaLorHP0+NE3D9dlGyn7xG3ynqrDkDCP7maXE58/Q\nD3DXY9yxErniEJpkIDDmKpQrrgHTJQYyaqCtb4RLv2yKgdhUMAbXzd2vQFm9iYoGE5omEWNWGW73\nYo9WLjkn6Urpab1MY7CGEcdKW1hZWM3mIheBgEaU1cD1BQ4WzXMwJFV04xeEwSA+xswNV+WwfP1R\n/rbpON9dMCrSSxIEQRAiKCShhHhHq3eEsw9AKMkGA3cWjAxbv4SOQo/7brocny/QbghwRa693bW0\nd11X5CVRMDkDe5y1w3WPykxk64HTna5zz5EafvWDqe2uNRINLUPd78NbcYrSR5+nfu1mJJORoT/9\nR4b+y70YrBZQAsgHtyDv/xxJ8aOmZBOYfj1aQuqlfROaek7fCBVks943wmwLateFokJlo5Eyl5mA\nKmExquQk+kiNDfRKGPHnVXV8Vaz/DPIy9DKN3Iy++7scKoGARtEefYrGN8X6rpahqRYWFzi45sok\noqIG/n0gCML55k3OYNO+k3y+p5L88UPJShNNzgVBEAarkIQSQniFuw9AuFhMclj6JXQUesiy4aKQ\nIcFmISbKxFfHatm45+RF9113ApQLfw5Ws4yqafj87W/1dzV5cLf4wxrQdEeo+n2o/gBVr71L5Yt/\nRG31EDtzEtnPPkLUiGwApFPHMG5fgaGxBs0ag3/GDag54y+tVEPT9NGe7ipQ/HqvCFsqRNmDul5N\ngyq3kRN1JrwBA0aDxnC7j/RemKjR7s6IQRJGNDYFWLuphlXrndS69LGdky6PY3GBgwlj40SDO0EY\nxIyy/vf3xeV7ebfwCA/dNUm8ySUIgjBIiVCiHwhXH4D+zmKSibdZzpzsw8WBxeod5WzYXXnmazq6\n74IJUC78OXh8+kmmxWjAG7g4mDj3RD9cAU13hKLfh3vXfk4sfYbWg8UY7QlkLXuI5FsX6y8kWxox\n7lyFXHoATZJQRk0nMGEemIMbxdkhf6seRvhb9MtRdohxgKHr9Woa1LXKHK810eyTkSSNYfE+MhP9\nhDsbKjutN7A8N4y47dp4kmy+8N5wH3CirIWVhU42bavDH9CwWgwsmudg0VwH6UNEiYYgCLqxOXYm\njXSw+4iTbQermDk2LdJLEgRBECIgJKFEdnZ2KK5GaEc4+gAMBO3tHrlqfDpLZmYiGwxnAouvjta0\n+/XB3HfnlsvoX9P+z0Hq4N3eSPSN6EpP+30EGpqoWPZ7qt/+G2gayXfcwLBf/AsmewKoCvI325D3\nrUcK+FCTMwhMW4KWNPTSFqv49TINT71+2WzTd0cYg9vR0eQ1cKzWTH2rDGikxvrJSfRjDfNEjbLT\negPLb0r0MCI3Xeba6SbyMow4HBaczoEZSiiKxva99awsdPL1YTcAaSkWFs1zMPeqJGKi+9bvgiAI\nfcMdc/PYf7yW9zccZUJeMlEW8X6ZIAjCYBP0M39lZSXPPfccLpeLt99+m/fff59p06aRnZ3Nk08+\nGc41Dmqh7gPQHX25h0V7u0c+3nycllbfmR0QXd13zvpWzEbDRd9fe4HHyMyEDhtben0KV41L41BZ\nfcT7RnSlu/0+NE2j9sPPKHviZfzOWqwjcsh5/hFip08EQKoq0Us16qvQzFH4Z9yImjcp6FGc7d+o\nCi210FKjb3WQLXoTS7MtqC9v9UucqDNT7daf3uxRAYYn+bBZejuMMHDtdDN5GQP7BXaTO0Dh5hpW\nra/BWasHLhPGxrK4IIVJl4sSjUiocnqRZYlkuznSSxGELiUnRLFweiYfbylhxZcl3Dqn7/3tFARB\nEMIr6FfLjz32GHfddRdvvPEGADk5OTz22GO8/fbbYVucELo+AN3R13tYBLt7pLP7zmyS+e37e3E1\n+S76/toLPL48UNXheuxxVu5u6xzeV0OcCwVTTuI5Uc727/6GmsItSFYLGQ/dT9qP78FgNkGrG+Pu\nNcjH9wCg5E0mMHE+WGN6vihNA2+jXqqhBkCSITZFH/MZRJ2xT4FSl5mTDUY0JGwWhVy7j8To8I73\nLKvSe0YMtjCitKKVlYXVfL6tDp9Pw2I2cN01ySya62BY+iWW7AjdVufy8cUOF5uLXBw90UJ6moXf\nPzM20ssShKAsnJHFlv2nWLO9nNlXDCXNHtlyR0EQBKF3Bf2q2e/3M2/ePN58800Apk6dGq41CecI\nRR+A7urrPSyC3T3S2X3n8SlnekKc+/3dnJ/bYeDRkSvyks78HCLdNyIUVK+PU//9Fif/83U0r4/4\nOTPJemYp1uwMUFUMh4sw7i1E8nlQ7UP0Ug3HsEu7UX8LNFVBoBWQIDoJopOD6huhqFDRYKLMZULR\nJKxGleFJXhwx4R3veWEYMXyogQUzBnYYoagaO/c1sLLQyf5vmgBITTazcJ6DgtlJxEQP3O+9L3I3\nB/hyVz2bttXx9WE3mgYGA0wcF8cN16ZEenmCEDSLSeb2uSN49aMDvLeumJ/eOj7SSxIEQRB6Ubde\nQTY2Np7pjFxcXIzX2/6JoRBaPe0D0BP9oYdFd3aPXHzfWWj2+PH4Ln73/IuvTnHV5UM6DDw6UjA5\no5vfQd/V+OUuSpYuw3O0BFNKEuNe/gXGObOQJAmppgJj0ScY6k6imaz4py5GHTlNPwvqKcWv74zw\nNuqXLXFgS9FHfXZB1eB0k5GSOhM+xYDJoJGT5GVoXIBwVgwMxjDC3Rxg3eZaPl3vpLpGL9G44rJY\nFhc4mDw+HlmUaPQar1dlx756Nm1zsWd/IwFFL0sanRfD7Ol2rpyaQEKcKcKr7FpJSYnoRyWcZ/Io\nB5dlJfLVsVr2Hq1hQl5ypJckCIIg9JKgX0U/8MAD3HbbbTidTpYsWYLL5eKFF14I59qENt3tA3Ap\nItnDIljd2T1y4X3n8yv88vUd7V6vx6ewuqi0w8CjPUlxVuxxvTNNIJw9Pvy19ZT/+j+pef8TkCRS\n/uFWMh66nyF5Q3FWVGHcsxZD8S4kNJTh4wlMug6iguvx0C5V1XtGtNQCGhitYEsDc9ePLU2D2haZ\n47VmWvwGDJJGVqKPYQl+jGGsLipvCyMOnhtGTNdHew7UMXblla2sXOdk49Y6vD4Vs1ni2vxkFs1z\nkJUhSjR6SyCgsffrRjYX1bF9TwMerx6qZmdEMXtGIrOmJZKSHPpSvkt17733nin5BHj11Ve5//77\nAXj88cd56623IrU0oQ+SJIk7C0bwy9d38F5hMWOz7ZjC+aQuCIIg9BlBhxIzZszgo48+4siRI5jN\nZnJycrBY+t6LoIGsN8ZKRqKHRU+0t3vkqvFDWTIzs93jv73vWrwBzCYDXn/7fQYOldVzRa6dTftO\nB7WO3piwEc4eH5qmUbP8E8p//Z8EXA1Ejx1J9vOPYJs4DjQV34FtmD//GMnbghqfgn/69WipOZdy\ng/o0jWan3jfCYISYFLDGB9U3osGjT9Ro9OgTNYbE+clO9GMxhq+J5WALI1RVY9dXjaxcV82+r/US\nDUeSmYVz9RKNWNvA3RHSl6iqxjfFbjYVufhyp4smt/74S3WYuX66ndnTE8ns4707AoHAeZe3bdt2\nJpTQtPA2nhX6p3SHjbmT0yncWcGaHWUsnpkd6SUJgiAIvSDoV5cHDhzA6XRyzTXX8PLLL7N3717+\n+Z//mSlTpoRzfUIv680eFpfyzn97u0cyhibgdDZ1+nUfbT7eYSABUO/28dWxOoal2Ghu9VPv9pIY\na2XCiCQ0YF9xba9P2AhXj4/W4hOULF1G07bdGKKjGPbLn5L2gzuQjEakulMYt3+Cx1kORjOBSQtQ\nLpsZVI+HDvma9VKNgAe9b0QyxCQHNamj2adP1Khp1p+ykmMC5Nh9xJjDGEZUt4URJwZHGNHcorD+\nC71E43S1HkqOG21j8bwUpk6IR5YH3vfc12iaxomyVjYV1fFFkYtalx+AhDgjiwscXD3dzojh0f3m\n8XfhOs8NIvrL9yD0vptm5VB0sIpPtpYwc2xar+1GFARBECIn6FDiqaee4tlnn2Xnzp3s37+fxx57\njCeffFJsvxyAwtXD4tsQwhZt4qPNJ0Lyzv+3OyC8foVTNc0ofqXDgKOzfhnnqnf7qHf7uGZSOgum\nDjsvNLl1Tu+OSQ1Hjw+11cPJ/3qdU6++heYPkLAgn6xf/xxLRhr4PMg7ViMfLkLSNIwjJ9A8rgBi\n4nv+TQR8ehjhawuMrPH67gi567p3b0CixGXiVKMRkIiz6hM14qPCN1HjwjAipy2MyBugYUTlKQ8r\n1znZsKUWj1fFbJIomJ3EonkOcjL7f+PW/uBklYfNRS42b6uj8rQeCEVHycyblcTs6YmMuyx2QPTt\nGIi/P0LoRVtN3JKfyxurDvHXjcf40Q1iiowgCMJAF3QoYbFYyM7OZvny5dx2223k5eVh6APjIYXQ\nC3UPiwvLDyxm+czkC7i0d/7Pu+4mL/bYjgOOzvpltOero7Xcdk3eed97b5TQnCvUPT4aNm6j5JFn\n8ZZUYB6aStZTPyfxujmgaRiO78O4+zOkVjdqbBL+adcTN34izV3sPumQquhlGq11+mVTlN43wtT1\nlvOACuX1JsrrTaiaRJRJn6iRHB2+iRqDKYxQVY09BxpZWehkzwG9yWhSoolbrk9j/tXJxMWKEo1w\nq3X5+GK7iy+KXBwtaQHAbJK4ckoCV8+wM+nyOEym/v03tqGhgS+//PLM5cbGRrZt24amaTQ2NkZw\nZUJfd9UVQ9i4t5Kig1XMmTCUUZmJkV6SIAiCEEZBv/JsbW1l1apVFBYW8sADD1BfXy9eVAxwoToB\nv7D84NxA4lw9eef/3bVH2LDn5JnLnQUcnfXLaE9HJ/3hbDh5oVD1+PBV11D2y5eo+981IMuk/egu\n0v/jR8gx0Uj11Ri3r8BQdQJNNhKYMA9lzCyQe3hiqmnQ6tIDCU0BgwlsqWCJ7bJvhKrByUYjpXVm\n/KqEWVbJtvtIiw3fRI2KtjDi67YwInuIPk1jxAAMI1paFTZsqWXlOienqvTH1JiRNhYXOJg+MUGU\naIRZk1sf4bm56PwRnpMuj2P29ESmT0wgKiqy041CKS4ujldfffXM5djYWF555ZUz/xeEjhgkiTvn\nj+Tpt3bxztpifnnvlEvuoSQIgiD0XUGfdfz7v/87b731Fv/2b/+GzWbjd7/7Hd/73vfCuDRhIAi2\nZAK6986/oqq8s/YIG88JJM7VXsDRWb+M9lx40h/OhpPtUVSV//n8GM0ef7ufD6bHh6aqVL/9NyqW\n/R6l0U3MxLFkP/cIMeNGgd+LvHs18sGtSJqKkjGKwJTFEHsJ70h5m/RSDcWn94qISYFoe5d9IzQN\nnM36RA1PwIAsaWTbfQyL9yOH6XXoYAojTlZ5+HSdk/Vf1NLqUTEaJeZeZWdRQQq5WaJEI5w8XoUd\nexrYvP38EZ6XjYjh6hl2Zk5OIL4fjPDsibfffjvSSxD6sdyh8cy6fAhf7D/F53tPMnfSwBm/LQiC\nIJwv6FBi2rRpTJs2DQBVVXnggQfCtihh4OhOyUR33vlfvv5oh4EEdBxwtNcvI9pqpLzafdF1XHjS\nH66Gkx258Pa+ZTXLzLpiSJc9Plq+PsKJpc/QvPsAcmwMWc8sJeWev0MyGDCUfo1x56dILY1oMQn4\npy5GHTba01yMAAAgAElEQVS654sNeNr6RjS3LTIBbCn6dI0uuFoNHK810+SVkdBIj/eTleDDHKYK\ngopqhTXbfXx9fGCHEZqmse/rJlYUVrN7fyOaBvYEE99ZmMr8/GQSBuiJcF/gD6jsPdDEF9vrKNrd\ngNen90DJyYxi9vREZk2z40gyR3iV4ed2u/nggw/OvIHx3nvv8Ze//IWsrCwef/xxkpOTI7tAoc+7\neU4uu45U8+Gm40wdnUJs9MD/vREEQRiMgn7ZP2bMmPNesEuSRGxsLEVFRWFZmDAwdKdkItjpHsHs\nvkiwWdoNONrrl2GUpbYdEB039gxHw8nOdHZ70RYjS67MprbB024JidLcQuVv/sjpP/0FFAX7DfPJ\n/NXPMKcmIzXWYtyxAsPJo2gGmcDl+SjjrgZjD1/oqYG2vhEu/bIpBmJTwdh1t3S3V+J4nZm6Fv1p\nyGELMNzuI8oUnoka7YYR082MGDawwohWj8LGrXWsXFdN5Sn99250XgyLCxzMmJSI0Thwvte+RFU1\nDha72bzNxdadLtzN+uMsLcXC7GmJzJ6eyLA+PsIz1B5//HHS09MBOHHiBC+99BK//e1vKSsr4+mn\nn+bll1+O8AqFvi4+xsyNV+Xw3vqjfLj5BN9dMCrSSxIEQRDCIOhQ4tChQ2f+7/f72bp1K4cPHw7L\nooTO9WZPg0vVWcmE1Szj8yvdnu4RzO6L0VmJnd43F/bL6KqxZ6gbTnals9ura/Lyy9e30+D2XVRC\n4lr9OaWPPo/vZBWWrHSylj1EwpyZEPAj71uHfGAzkqqgDskjMG0xWlwP36nU1HP6Rqggm/W+EWZb\nl30jPAGJE3Umqpr0iRoJVoXhST7irOGZqDFYwojT1V4+Xe9k3eZaWloVjLLEnJl2FhU4GJETE+nl\nDUiapnG8tJXNRXV8sf3sCM/EeCNL5qcwa3oiI3L6zwjPUCsvL+ell14CYPXq1Vx33XVceeWVXHnl\nlaxcuTLCqxP6i7mTM/h830k+31NJ/vihZKWJfiSCIAgDTY82SJtMJvLz83n99de57777Qr0moQO9\n3dMgVDoaMXrT7OG4W3zdDle62n1hMRm4c/6Ibq/TYpKJt1naDSY6u02zScYW4i2lXX2P9W4fcLaE\nxFhby4TPPqB+9edIJiND/uVe0v/1BxiirBgqDmPcsRLJ7UKLjsM/ZSFq5tguw4N2aZo+2tNdBYpf\n7xVhS4Uoe5fX51egrN5ERYMJTZOIMasMt3uxh2miRqVT7xlxoC2MyErTyzRGDqAwQtM09n/TxIpC\nJzv3NaBp+gnxDQuGcG1+MonxokQjHCpPedhcVMfmIhcnq86O8CyYrY/wHDt6YIzwvFTR0WeD2u3b\nt3PLLbecuTxQfgeF8DPKBu6cP5IX39vLO4VHePiuSeLxIwiCMMAEHUp88P/ZO+/Apu577X+Opodk\nW/LCNsMDDBgwG0PATENIyCC7N729TZubN23at+P2Nk1706bcJk3TdN32bdq0TUKSJi0N6aVJyQAH\nCGaZjdnD7GnZkizZkrXOef842BhbkmWw8eD3+Qvr6EhfHR0J/Z7z/T7P8uVX/X3x4kUuXbrU5QUJ\nInOjPQ26imgRownGzutiHRlWlo7NJsHYucVYR4JPtOds8odYUXG8S9+DWE05JTnEmD0bGfi7VTgD\nfswl48l94bvEF+ZDgxPd2nfRnj2EImkIFk0nVDwH9LH5drQj4FXFiIAaX0i8FRLTQRNdUArJcM6l\n47TDQFCWMOpk8ix+Ms1BIUZcI02+EJ9utrOy3MaZ800AFOYnsKgsg2mTUtDreq9I2VeptfvZuNXB\n+ko7x095ATAYJKZPTqF0qpUJo/t+hGdXEwqFqKuro7GxkV27drWMazQ2NuL1enu4OkFfYlSulYmF\n6ew4YmPLgUtMGzWgp0sSCAQCQRcS84pwx44dV/1tMpn41a9+1eUFCcJzoz0NuoOuihj1BULMGZ9D\nMCSzZf+llohRo0HD1FGZMY+BtB6DeffT6g4Fn8WleWyouhA20rQ73oO2HSbJiUYcDVc6JzIunmbm\nmr+TVnueprgEMn/wTfK/cB+SIqPd+ynavZ8ihQLIGbkES+5AScm8tkJCAXVMo8mp/m0wqd0Ruuji\nhqLApQYdJ+x6fEENOo1CvtVPTjclapyzhVi91c/e6v4rRtTUqiMa5evraPSoIxozp1pYNC+DwgIx\notHVuBqCbNnuZH2lnQNHrkR4TixOYkaJhZJx/SvCs6t57LHHuP3222lqauKrX/0qycnJNDU18fDD\nD/Pggw/2dHmCPsZDc4dSdbyOv609xrihacRfw0UNgUAgEPROYv5Gf/755wFwOp1IkkRycnK3FSVo\nz432NOiNhOtmKCnKoMkf4vBpJ/WNfvZV21mmPRZ1pKXt41jMBhp9wbD33XHIxp235GJOMNDgCeAL\nI0hA97wHbTtM4o06/nvpNtw2J1M2f8yoqs1IKBweOZFDC+/lB/9WhubSCXRb30fjqkOJMxGYehdy\n3thrHNWQabSdA/s5VWHQGlUTS4Mp+m4K2L1ajtfpafRrkSSFQcl+BlsCdIduFlaMKDFQOLh/iBGK\norDvUAMry2vYtrseWYHkJB0P3jWAW2enY00RIxpdibcpxLbd9VRU2tm1z0Xo8ke+qNBEaYmFWyZZ\nSDKLxVAszJo1iw0bNuDz+TCZ1O+NuLg4vv3tbzNjxowerk7Q10hLiee2ksG8t/Ek/9x8kgdmx3YB\nQiAQCAS9n5h/We3cuZMnn3ySxsZGFEUhJSWFF198kTFjxnRnfYLLRPMY6EyUZl8m3PjKp7svXHWf\nWEZa2j6O3e2P+JyOBtVUctKIDBaX5vfIe9DcYaIoCqWOasx/fo3ERjcOSzoVc+7l/MAC7iq2krh5\nOdpT+1AkidDwEoLj5oHhGtz+FQV8Lmi4hEcOgqQFc4Ya89nBIt/t01BdZ8Dp1QIKmaYAedYAcd2Q\nqHHephpY9lcxwueTWV9pZ2V5DafOqiMaBUMSuGN+OtMnW8SoQBeiRni6WL/FwbbdVyI88wfHM6PE\nyowplpsiwrOrOX/+Smyzy+Vq+Xd+fj7nz58nOzu7J8oS9GFunzqEjXsvsmrrGUqLsxlg7d8XYwQC\ngeBmIWZR4uc//zkvvfQShYXqQu/AgQM899xzvPXWW91WnOAK0TwGYo3S7MvEEgPamkjjFJ19HFBN\nJZuPe0+9B02nznLqez9lwNpNyHo9+2bdzpbRM7BYEvh6di2T7RuRgn7ktIEEp9yJknqNP/YDHnBf\ngqAXkIhPy8JLUoe+Ed6AxAm7gZoG9SvFGh8kPzWAydj1iRrhxIgFJQaG9xMxwlbn58M1Nlavr6Wh\nMYRWCzOmWFhUls7wgsR+8Rp7AyFZ4eCRBtZvsbN5h7MlwjMrw0jpVAulJVYGZnUcbSuIzNy5c8nL\nyyM9PR1Qu36akSSJN954o6dKE/RRDHotD80dyksr9vGX8qN844Fi8Z0oEAgE/YCYRQmNRtMiSAAU\nFRWh1fbvhXBvI1KKRaweCn2ZWGJAWxNpnKKzj9OaXUdqWfLo5JZ/34j3QPYHuPj7Nzn3q1dQmnwk\nlU4h9/mnGD8oh3tPHSPtwCq09TUohngCU+9GHjpBTcToLCE/NNSoHRIAxiQwZWDKTMVrc0fczR+C\nUw4D5+t1KEiYjCEKrH4sCd0vRgzOVD0j+oMYoSgKB440sLLcRuVOJ7ICSSYd998xgIVz0ki1iKv0\nXYGiKFSf9FBR6WDDVgd2Z3OEp547F6jJGUNzb94Iz67mhRde4B//+AeNjY0sWrSIO+64A6vV2tNl\nCfo4E4enM3KIhb3H69hTXce4odcYbS0QCASCXkOnRIlVq1Zxyy23ALB+/XohStxgoqVY9DStTSO7\no6aOIjLbEmmcorOP0xqHu4kGT+CGvQfuyt2c/M6P8R45ji7NyuCffZ/Ue25FampEt3UFScd3AxAa\nOonghPlgvIY2VlkGTy146gAFdHFgGgCG6I8VkuFsvZ7TDj0hRSJOJ5Nn9ZFh6vp4z/O1appGfxQj\n/AGZii0OVn5Sw4nTahpB3uB47ijLYEaJBYMY0egSzraK8LxwOcIzMUFL2cxUZpZYKRpuEhGe3cDd\nd9/N3XffzYULF/jf//1fPvvZz5KTk8Pdd9/N/PnziYsTnSiCziNJEg+XDeOZV7fx1/KjjMq1oNf1\njt9CAoFAILg2YhYllixZwo9+9CP+67/+C0mSGDduHEuWLOnO2gQR6KoUi66goyjNriLWiMxmIo1T\ndPZxWtNa6OjO9yBgd3L2ud9g+8s/AEj/3L0M+u5X0SWZ0BzZim5XOVKgCdmapY5qpA/q/JMoipqm\n0WgDOQgaHSRmQFxyVN8IWYGLbh0n7Xr8IQ16jUKe1Ud2cpCuXtOdrw2xutJPVWsxosTA8CF9X4yo\ntfv5aK2N1Z/W4WoIotHALZNSWFSWwchhYkSjK6i1+9mw1UHFFjvHT1+J8JwxxUJpiYXxIsLzhpGV\nlcUTTzzBE088wTvvvMOzzz7LkiVL2L59e0+XJuij5KSbmDdxIKu3n2HVtjMsmpbb0yUJBAKB4DqI\nWZTIzc3llVde6c5aBH2QcOaTrY0mu7KDItz4ythhqUjA7qN1MY9TPDR3KIdPOzlT09BuW5xBGzby\nE7rfN0JRFOqWr+T0kl8RtDuJHzmU3Be+h3lSMVLtWXQfvoXGfh5FH0dg8iLkwilqPmFn8TdCwyUI\nNgESJKZDQmrUsQ9FgTqPluN1BjwBDRpJYXCKmqih6+J1XX8VIxRFoepAPW8tP8nmHU5kGUyJWu69\nPZOFc9KFkWIX4HIH2bTdQUWlgwNH1M+3VqtGeM6camXyuGTi48QV1RuNy+Xivffe4+9//zuhUIjH\nH3+cO+64o6fLEvRx7p6RR+WBi7y/6STTRg3AmiQ6bwQCgaCvErMosXnzZt544w3cbvdVZlXC6PLm\nJZpp5M7DNkKyQtWx2i7roIg2vnL/7BBag56QP9ChcBAMKXiaAmG3JRh1fOezE1i/5zxVx2IXOq4X\n77GTnPzuT3Bv3I4mPo5BT3+NzMceRiP70W35B5qjO5BQCOWPJThhIcRHj+UMS9CvihH+yx4Rcclq\nd4Q2eqRkfZOG43UG6pvURI0sc4BcawCj7upEjesVoC7Uqp4RVceuiBELSgyM6ONiRCAgs2Grg5Xl\nNqpPeQDIHRjPorJ0SqdaMRrE1frrweMN8elmOxWVdnbvvzrCc+ZUC9MmigjPnmLDhg28++677Nu3\njwULFvCTn/zkKm8qgeB6SIjTcd+sAl778BB/W3uML909uqdLEggEAsE10qnxjSeeeIIBAwZ0Zz2C\nPkQ000i728faneda/o4lqjNWwo1OGPVa0tMSsUUxZWwmWt3OBh/xBi2fWzAc35zu9ckAkJt8nP/N\nUi78dimKP0BKWSlDfvwkxpxMNMd2odu1CsnnQU7OIFByJ0pm7jU8SUgd0/Da1b/18apvhD56XKjH\nL7HpsMw5h3q/1IQg+al+Eg1XixHXO8LTX8UIu8PPR+tqWfVpLfUudbxl1rQ0ymZaGFVo6tOvracJ\nBGR27XNRUdkmwnNIPKWXIzzTrKLzpKf593//d3Jzc5kwYQJ2u53XXnvtqu3PP/98D1Um6C9ML85i\n3e5zbD1Yw5zxDtLTzT1dkkAgEAiugZhFiZycHO66667urEXQi4jlqnc000gJUNrvEjGq80YSre4b\n5RsBUL++kpPf/Qm+E2fQZ2Uw5Ef/ieW2OWgcF9F9/Cc0tjMoOgPBCbcSGjmtw1jOdigKeB2qIKGE\nQKMHUyYYzVF9I3xBiZMOPRdc6tdDkjFEfqqflPjwiRodjfBEoq0YMejymEZfFyMOVzeysryGTdsd\nhEKqoeLihRncNjedUSPTYhLOBO0JyQoHDjewvtLO5u1OGj3qeTMwO57pk5IpLbGSIyI8exXNkZ8O\nhwOLxXLVtrNnO+/rIxC0RSNJPDy/kOfe2MFbq48ybdzAni5JIBAIBNdAh6LEmTNnAJg0aRLLli1j\nypQp6HRXdhs06BpM9gS9ls5c9Y5mGhlOkACwu5qwOTwMzOi5qxnR6u5u3wiAgK2O00t+Rd3fPwSN\nhsx//xcGPvkltAYt2u0foD1ciaQohIaMIjjxNkhM7vyT+NzqqEbIr3pFJGZAgjWqb0RQhjNOPWec\nemRFIl4vMz5Pgz7YFFHDiDbCE0mAulAXYnVlgD3HgkD/ECMCQZlN25ysLK/h6Al1RGNQThx3zMtg\n5jQLcUbhY3AtKIrCseYIz0oHjnp17MqaomfejFRmTrVSMimD2tr2/jCCnkej0fDNb34Tn8+H1Wrl\n5ZdfZsiQIfz5z3/mD3/4A/fee29PlyjoBxRkJzNjTBYb9l7g/Q3HmV6U2dMlCQQCgaCTdChKfP7z\nn0eSpBYfiZdffrllmyRJfPLJJ91XXR+muyMyu4vOXvVuaz5p0Ec2igRVrPif5VXthI4bfbzCmWZ2\nt2+EIsvY3l7Bmed+Q6jeTeLYInJf+C6JY0agOVGFbudHSN4GZHMqgSl3oGRfQy3Bpsu+EY3q33Ep\nYMpQ0zUiICtw3qXjlN1AQJYwaGVyLX4GJAXJtJqxhdccgOijMA53E/UNvpZuk/4oRjjqA6xaV8vH\n62w46oNIEkwZn8yisgzGjBAjGtfKmfPeFiHiQo16fpkStcyfqQoRIwuvRHiKY9x7+eUvf8nSpUsp\nKCjgk08+4Qc/+AGyLJOcnMw777zT0+UJ+hH3zy6gqrqW11ceZKA1gSEDxBiHQCAQ9CU6FCXWrFnT\n4YOsWLGCxYsXd0lBfZ0bFZHZHVzLVe/W5pM2h4f/WV4VVZSAq4WOh+YO7ZHjFc00szvwHDzGye/8\nmIbtVWhMiQz+0X+S+cgDaNx16Fa/hubSCRStjuC4eYSKZoC2k8Z8cvCyb4RD/VufCOZM0EVuZ1cU\nsDWqiRpNQQ1aSSHX4mdQSgBtjIc+llGYC3UhVm8NUHU0iAIMytBw69S+LUYcPdHIynIbG7c6CIYU\nEuK13LVAHdEYkGHs6fL6JLV2PxWVDioq7Zy4HOFpNGgoLVEjPMeNTkLf1VEvgm5Fo9FQUFAAwLx5\n83j++ef5zne+w/z583u4MkF/IynRwBcXFfGrd/bw8nv7eeaRyRgNfeeCkEAgENzsdIkl+d///vd+\nKUpcy9X7a52v7w105qp3W4x6LQa9NuL+4dh1pJZQSGbtrvMtt93o49XdvhEhj5fzv/gjF//wFkow\nhOWOeQxZ8i0Maclod5ejPbgJSZEJDRxBcPLtYLJ0/KCtUeRWvhEyaA2qb4TBFNU3wuFVEzXcPi0S\nCjlJAYZY/Bg6+Y0QbRRmxOABLCu/WoxYUGJgZG7fFCOCQYXNO9QUjcPVaidKTpaRO8oymDXNKqIm\nr4FIEZ6TxiYxs8TK5PHJYvSlD9P2c56VlSUECUG3UVyQyl0z83lv/XH+8skRHrltZE+XJBAIBIIY\n6RJRonVEaH/gWrsdrqXToDcRqwHktewfDru7iV1Ha8Nu6wvHqyOc5Rs4+b0X8J+9gGFQNrk/fpKU\nudPRnD6A7r3XkTwulMQUApMXIQ8a0bkHVxQ12rPhEoQCqleEKRPirVHFiAafxHG7AbtH/einJwbJ\nS/WToL/2z3DbUZgUUzIpiYM5eDwehWCfFyOcrgCrP63lo7W12J0BJEldNC8qy2BskblPvqaexOsN\nUbnbScUWB3sOqBGekgSjR5gonWJl6qQUkkwiwrM/Ij4rgu7mkUVF7D5Uw/o9Fxidl8qkERk9XZJA\nIBAIYqBLfvn1tx8a19rtcD2dBr2B6zWAjLZ/OAw6Dc4Gf9htfeF4RcJ/oYZTP/gZjpVrkHRasr7y\nebK/+Ri6YCO6NW+gOX8MRaMlOGYWodEzQdfJ6MKAVxUjAqqhIvFWSEyPms7RFJQ4addz0a0DJFLi\n1ESNpLjwiRqdoXkUZsaYPD7e4uPwKXC4YGCG6hnRV8WI6lMeVpbXUFHpIBhUiI/TcEdZOrfPSycr\nU6Q8dIZAQGbnPhcVW+xs21OP36+KYAVDEiidamHGFAupFhHh2d/YtWsXs2fPbvm7rq6O2bNnoygK\nkiSxbt26HqtN0D/R67Q8fvcolizdxtIPD5GXlURqsvi+FggEgt6OuBzVhuvpdrjeToPeQHsDSCMj\nBltYXJrf6f3rXE1R7ytJYDUbsLvbCxMGvRZTQt9apCihEJdee4ezP/0dckMjpknF5L7wPRKGDUG7\nbz3a/RVIcgg5ayjBKYtQktI69wShgDqm0eRU/zaY1O4IXeTzKhCC00495+rVRI1Eg0y+1Yc1IRSt\noaJTXKyTWb3Vz57LYxp9WYwIBhUqd6kpGgePqiMa2ZlGFpWlM+eWVOLj+27nzo0mJCvsP+SmotLB\n5h1XIjyzM43MnGplRomFnAFisdCf+eijj3q6BMFNSFZqIg+XFbL0w0P84f39PPnw+F7v6SUQCAQ3\nO0KUaMP1+ir0ZNRkV9B81XtxaR5vrz7KoVN2Nu27yKHTDsYXprO4NI8GTyCiz0bz/rdOHsSPXt+O\nyxOI+Fw+v8yEQiub9l1st63JH2JFxfFO+0r0VOpJY9VBTjz5YzxVB9EmJ5H6w2+T8/l7SbAdR/f+\nb5AaHCgJSQQm3YY8eFTUEYt2KDJ46sBTq45taI2qiaXBFHGXkHw5UcNhIChLGLUyuVY/A8zBrhUj\ntvnZc6TvixEud5DV62v5cI2NOod6zk4Yk8SisnTGjUpCo+lbr6enUBSFoyc8VGyxs3GbA0e9mrSS\natFTVppK6VQr+YPj+9z5Ibg2cnJyeroEwU1KaXEW+47Xsf2wjX9uOsXdM/J6uiSBQCAQRKFLRAmT\nKfLiqK9xvd0OPRE12R2sqDhxlVjQPMKyoeoCPn8oos9Gsx/H9kM1UQUJAGtSHPfPzmfnEVvYxI7W\nnSkdiQ0hWeaPK/aycc+5G5riEXI3cPanv+fSa38DWcZ1ywzWlSwkUB/ii2/9nmJ9DYqkIVg0nVDx\nHNB3oltGUcDnUkc15CBIWjBnqDGfERZ1igKXGnScsOvxBTVoNQr5Vj85ybEnanREOzEiXfWMKMrr\ne2LEidMeVpbbWL/FTiCoEGfUcPu8dG6fm05OlriKHytnzqkRnhVbHVxsFeG5YFYapVMtFA0zCWFH\nIBDcMCRJ4vO3jeDEBRfvbTzByCEWCgel9HRZAoFAIIhAzKKEzWbjgw8+oL6+/ipjy69//eu89NJL\n3VJcT3C93Q43OmqyO4g2wtIsHkTy2WjrxxGN8YVp+AMyvggRog53E3ZXE2t3nevQdPRGp54oioLj\ngzWc+v7PCFy0YcwfzPEH/pUPvUncHn+axeZTGDUyB33JHMqZybziiZfPh1Bs50PAA+5LEPQCEiSk\nQkJaRN8IRQGHV0t1nZ5Gv5qoMTBZTdToqtOvv4gRoZDC1t1OVpbb2H9YTXwYkGHk9nnpzJ2eSmJC\n3/q89hQ1tT42bFWTM06euRLhOXOqhRlTrIwbbRYRngKBoMdIjNPz2J2jeOHtnfzx/f388ItTSIzT\n93RZAoFAIAhDzKLE448/zvDhw2+Kdsyu6Hbo7qjJ7iTaCEtbWnczuD1+th+q6XCfOIOWGcVZPDR3\nKMGQErUzpXzHWdbuPNdyWzix4UannvjOnOfkf/2U+vINSAY92f/xGKmPf46tb6/mefNWsvVenCED\nr9gL2OjNxOjyUH5sM/WN/o47OEJ+aKhROyQAjElgylCjPiPg9mmorjPg9GoBhUxTgDxrgLjrSNRo\nzSW76hmx+7IYkXNZjBjVx8QId0OQ8opaPlxTi61O9TEZN8rMorIMJowRIxqxUO8KsGm7k4pKe4vn\nhk4rMXlcMqUlFiaPExGeAoGg91A4KIU7b8nlvY0nef2jw3z57lF96v8tgUAguFmIWZRISEjg+eef\n785aeg39odvheuhMtGfrboYdh2wR0zQAUkwGRuVa+Zf5hSQY1VNPqyFiZ0pxgZWqYx1Hht6o1BM5\nEOTSH97i3M//gNzkwzx9ErnPP4U2PZnghnf5asIRZAU+bshhuSsPj6JekfH5ZXx+9bhE7OCQQ5d9\nI+oABXRxYBoAhsh1ewMSJ+wGahrUY2mJD1KQGsBkvP5EDVDFiHfWOqjc29SnxYhTZ72sLK/h0y12\n/H51RGPhnDRun5fOoOz4ni6v1+P1hqjc5WT95QhPWW4V4VliZdrEFMwiwlMgEPRS7pyey4FTDrYf\nqqEiz8rMsdk9XZJAIBAI2hDzL8mxY8dSXV1NQUFBd9bTq+jL3Q7XQ2eiPcN1M4QjxWRgyRenYA6T\nqBGpM2XO+BzW7Tof9vFaiw3xRh0pJiOOhu5LPXFv28PJp57He/AYulQLuT/9Hil3z2f/yg8odu3G\nLIU45k/iVWchpwLmDh+vWVRBUfC56zDLTiQlBBodJGZAXHJE3wh/CE45DJyv16EgYTKEKEj1Y0no\nOjFi9TY/uw/33c6IkKywfU89K8tt7D3oBiAzzcBt89IpK00lMUEsoqMRCMjs3Oti/RY72/fU4w+o\nXTdDc9UIz+mTRYSnQCDoG2g1Gv7PnUU88+o23i4/wrCByWSlJvZ0WQKBQCBoRcy/zCsqKli6dCkW\niwWdTidyxvs5bYUCg14b1owyWjdDayaNyAgrSED4zhSdVuLt1UeQJNUvoS0WcxymBD1vlx9h1xFb\nWEECrj/1JOh0cebHv8H25/8FIP3hxWR85wkC9TZ87/yaKaF63LKeN11D+dSThUJsi3a7u4nyTYcZ\nNyBIjkWHP6hwqFbLqFH5aLXhP5YhGc7W6znt0BNS1ESN/FQfGaauifdsK0Zkp2l4YEEyg1L9fUaM\naGgM8klFHR+ssVFTq3anFI80s6gsnYljk9GKEY2IhGSFfQevRHh6vOrnPWeAkdKpVkpLLGRnCvNP\ngUDQ90hLjueR20bwuxX7ePkf+/mvf5skPG8EAoGgFxGzKPG73/2u3W0ul6tLixH0HtoKBaYEAysq\njjWpuA8AACAASURBVHeqmwHUDolJIzJi8uNo3ZnydvkR1kZ53PGFaayoOBGxm0MjQU66iftn53f4\nvOFQFIW6//2I0z/8JcFaO/HD8xn8/FN8Uq8l//1llOjV2tY0ZrHMVUCDfMU8S3NZSInk6JBh1vKZ\nkiTGDQbQsfGol3d3uHF6ZMpqNO2MOWUFLrp1nLTr8Yc0+P1+9uw/Qq3tAmOHqV4nWunaf1yFEyNu\nLTEwKl9LRkYcNlv0FJXewJlzXlZ+YmPdJjs+v4zBILFgdhq3z01nyEAxohEJRVE4etzD+ko7m9pE\neM6flcrMEit5IsJTIBD0AyaPyGBfcRYVVRd499NqPjNvWE+XJBAIBILLxCxK5OTkcOzYMRwOBwB+\nv59nn32WDz/8sNuKE/Q8rYWCcD4bvkAoov9EisnAV+8dTU66uVOxnNGMKzUSzBqfw+LSfJ55pTLi\nY8gKnKlpYPm6451O32g6fpqT3/0JroqtaOKMDPzuVxnw2L+w++NV3OXcSaI+yAm/idechVQHktvt\nryjw9QeKeeOjQ9jdVzw24g0Sd40zMW9kAjqtxNFLfv5S6eJkbbDlPq29MhQF6jxajtcZ8AQ0yLLM\nvsNH2X/oGIGgus/1JIzUOFQDy11HgiiKKkYsKDEwOr9vjGnIssKOKhcrP6lhz351RCM91cBtc9UR\nDeFzEJnTzRGelXYu2dRz1GzScuvsNEpLLIwUEZ4CgaAf8nBZIUfP1rNq2xlG5VkZk5/a0yUJBAKB\ngE6IEs8++ywbN26ktraWwYMHc+bMGb74xS92Z22CXkhbn41o/hNN/iDPvbGzw8QJXyB0ldARzbhS\nUeDWyYNo8PhjSgiJNX3DFwjhtLtpenMZNb99HcXnJ3nuLeT++DvExctoy19hmusCjehY6hxGeWNO\nxFENa1IcwwdbmDA8g/LtZ9FIMHtEAnePN2GO02BvlPlrpZPtJ9vX3+yVYYw3cbzOQH2TmqiRkejn\n7ZWbOW9r353U2YSRvi5GNHpCrNmgjmhcrFGP4egRJhbNy2DyuGS02t7/GnqCmlofFZUONlQ6OHlW\njfCMM6oRnjOnWhlblIROJ46dQCDovxgNWh6/axTPvbmdV/55gCWPlpCcKPxxBAKBoKeJWZTYu3cv\nH374IZ/73Od488032bdvH6tXr+7O2gR9hEj+E01+1XgxUuJESJZZtuYYu47YsLt8LeLF4tK8iN0X\n1qQrxpWxJIR0lL7RXMPZVZsYu3IZFoeNYEoKhf/zQ1IXTEe/uxzN0R1IKFR4Mnm7figuOfoPmGYf\ni4fmDiXLLFOUGiAzSUtTQGHnOYkRIws5Yd8Wdt+BmVYuelOw29VxkNSEIPmpfhobG7kQRpCI5TU2\nE0mMGJWvRdMHxIhzF5pY+YmNtRvraPLJGPQSZTNTWTQvndxBN58hbSw4XQE2bVMjPA8duzrCc+ZU\nC5PGighPgUBwczFkgJn7ZxXw1zXHeOWfB/jGg2P7xP+BAoFA0J+JWZQwGNSFWCAQQFEURo8ezQsv\nvNBthQlio22XQWe3dwWt/SdsTi+/+tvusKaYG6ousLg0vyUOdNmaY1d1WLQWLyJ1X4wvTEOnlVi2\n5hiNTR17HRj0WkwRDDYB3lmxk9D/+yOzD+1AQWJv8S1sn7aALxIg+71fI/k8yMkZeCbezjv/uIhL\nbi+CNHtIWJNUn42H5g6FYBPahkvMyZNR0OLVmNCkZTIhxxj29cUZjYwdVUhh/hDsXokkY4j8VD8p\n8aqwo5Mix7R2lDBS45Ap3+pn52UxIquVZ0Rv/yEmywq79rlYWW5j1z5VlEm16Ln/jgHMn5VGkhjR\naIfHG6Jyp5OKyqsjPMeMNFNaYmHaxBRMieK4CQSCm5eyyYPYd9LOvuN2Vm87w61TBvd0SQKBQHBT\nE/Mv07y8PN566y0mTZrEF77wBfLy8nC73d1ZmyAKkboMmkckOtreHRj1Wgw6DY5WPgqtafKH+Mvq\nIzx6R1FU34hdR2pZ8uiUln+3NtZ8aO7QdmJGNJr8IVZUtPeVUGSZC2/9g5wf/hKj14MtPZv1c+8j\nYWAKTyUfpLDehaIzEJy4kNCIqeg0WsYXhsI+76zxOdw6eZAq/GgVaLwEXtV7BX0ikjmTeN3VqQXN\n3SVV1Q6ys3MoKixAp9MRr5fJt/pIS7w6USPamEykhBHb5c6IvihGeLwh1m6sY+UnNi5cUoWYokIT\ni8rSKRmfIkY02uAPyOyoqqei0sGO1hGeeQnMLLEyfXIKVhHh2a9x1geoOuhmzwE3ew+6GZgVxw/+\no2ODYYHgZkQjSTy6qIhnXt3K8nXVjBhsYciAjuO8BQKBQNA9xCxKLFmyhPr6epKSkli5ciV1dXU8\n/vjj3VmbIArRugweLivscHt3kWwyYjEbrjJ4bM2h046W7o1InhAOdxMNHn9EY81IYkYk2noueA5X\nc/I7z9OwdTeS3sDG0jupHjeF+1NOMT/xGBoJtngzGHzHA6RmD2h5nPtn53P4tJNztgZk5UrCx0Nz\nCzBoNeC1g7MWFBm0BjBlgsFEuLxOSdIwa3IRQwr0BGQNeo1MrtVHVlKQSP6CbcdkWgs1rbE51DSN\nnYeviBELphgYXdD7xYjzl5r44BMbazbU4W2S0esk5s5QRzTyh4gRjdaEQgp7D7mp2GJny04nHq/a\nVZOTZWRmiRrhmSUiPPst3qYQB440sOeAm6oDLk6dbWrZZkrUMjRPfF4EgmgkJxr490Uj+cXf9vD7\n9/bzzCOTiDOILjKBQCDoCTr89j1w4ABFRUVs2bKl5ba0tDTS0tI4ceIEAwYMiLK3oDvoqMvgzlty\no25vXqB3x2iHUa9lxBArm/ZdDLvd4fa1PGcs4whtjTWjiRmRaPZcSDVqOP8/r3Dxd2+gBEMk3zqb\nt4bPZnC8ixeTt5Oi9XMhGM9SZyEXjNk8m55+1eMsX3ecMzUNLX83J3xs2XmMmQVaCAVA0qhiRLw1\nrBihKGBr1HLCbsAb0KCVFHItfgamBOgoMr1tTGvb962vihGyrLDngJuV5TXsqFJHNKwpeu65LZMF\ns9JITtJ38Ag3D4qicOS4h4otdjZuc+B0qSksaVY9C2alMXOqldxBIsKzPxIKKRw90UjVAbUb4nB1\nA6HLU3IGvcTYUWbGFpkpLkoib1C8SE8RCGJgdH4qCyYPYtW2M7xdfpQv3j6yp0sSCASCm5IORYkV\nK1ZQVFTESy+91G6bJElMmzatWwoTRKajLoOzNQ1Rt9tdTazdda7bRjsenj+MnUdsYX0lmgWHaxlH\nAKKKGRoNyHL7fSzmOKTtO9n3/RfxnT6HIWcAQ557EuuUEXzj47+R5b+ET9bwt/o8VjYMJoiGsjFX\n1xBOCBps1fGZkiRGZMkoIRkp3gqJ6aAJX7vTq6G6zoDbp0VCITspQK7FT2cvzLQVatqJEamX0zR6\nuRjhbQqxbpOdlZ/UcO6C+n6OGJrIorJ0pk6wiCSIVpw666Wi0s6GSgeXaq9EeC6ck0ZpiZURQxPF\nIrSfoSgKZy80tYgQ+w658TapX3CSBAW5CS0ixIihiRj03TOWJxD0d+6bVcCh0w42VF1gdJ6VKSMz\ne7okgUAguOnocDn0ve99D4A333yz24sRxEZHXQYDM0xRt5dvP8PaXedbbuvK0Q5fIESDJ8C00QNY\nu/Ncu+2tBYdYxxFaE03MyB2QxPHzVydUJDS6WLjl75x4dgtotQz40ufI+dq/YajeivafvyVLkTlt\nHMirdQVUN2qwJIWvob7B13I8k+M13DvRxPRh8WgkiV2nmxicX0CqOTlszQ0+ieN2A3aP+nFLTwyS\nZ/WTYFAivs5YsDlVA8sdfUyMuFDj48M1Nj6pqMXjldHpJGbfYmXRvHSG5iX2dHm9huYIz4pKe0tr\nfpxRw6xp6miGiPDsf9gd/hZfiKoDbuzOK2a+WZlGZk0zU1xkZvRwM2Zh8ioQdAl6nYbH7xrFkqXb\neP2jw+RnJZGWEt/TZQkEAsFNRYe/aj73uc9FbQV+4403Im776U9/yo4dOwgGgzz++OOMGTOGJ598\nklAoRHp6Oi+++CIGg4H33nuP119/HY1Gw4MPPsgDDzxwba/mJqGjLgNzgiHi9uKhqVQdqw37uG29\nF8IRaeSjrbGmxWxgUIYJT1MAh9sXVnDoaBwhEpHEjC/fN5bfvbuHXUdqcdZ7mHh0O2M/XYnW6yVx\n4hjynn8KkzmAtvxPaLwu5MQUglPuIHPgcP6jg1GWeKMOow7mj0rk9uJE4vQaztgDLNvq5tAFP78s\nav8DpikocdKu56JbB0gkx4UoSPWTFBemnaMTtBUjBqSqBpa9WYxQFIWqA25WfmJj+556FAUsyTru\nujWTW2elkZLcNSMaNyJtpjtx1gfYtN3B+i0ODldfjvDUSZSMT6a0xMqksckYjeKKeH/B4w2x//AV\nEeLM+Su+EElmHaUlFoqLzBSPNJORFjlhRyAQXB9ZqYl8tqyQ1z48xB/eP8B3Pju+20zBBQKBQNCe\nDkWJJ554AoDy8nIkSWLq1KnIssymTZuIj4+sJG/ZsoWjR4+ybNkyHA4H99xzD9OmTePhhx/mtttu\n4xe/+AXLly9n8eLF/Pa3v2X58uXo9Xruv/9+5s+fT0pKSte9yn5IR10GkbbPGZ/DujAdDHDFe6H1\naEAzHaV5tDXWtLv92N1+5ozP5tYpg9stEtsuHsM9ZyQiiRkGg46Hywq5LTXIqe+8hH/fIbRJJgY9\n8xQZd81Ct30l2l3VBBWJf7iHsMFdyOhDEg9ly9FrUBRkr5Nn700n1aSl3hti2dZ61h/xolxudvD6\ngpgvR48GQnDaqedcvR5ZkUg0qIka1oRQOJuJmKl1Xh7TOBREvixGLJhiYMzQ3itGNPlCfLrZzspy\nW8uCqzA/gUVlGUyblIK+IyONGOmJtJmuotHTHOFpp+qAu8VEtXikmdKpaoRnYoK4Kt4fCARljh73\nsOeAi6oDbo4cb2wZOTMaNIwfnXR5JMPMkIHCF0IguJHMKM5i3wk72w7V8P7Gkywuze/pkgQCgeCm\nocNfus2eEa+88gp/+tOfWm5fsGABX/7ylyPuN3nyZIqLiwFISkrC6/VSWVnJkiVLAJgzZw6vvvoq\neXl5jBkzBrNZjWKaMGECO3fuZO7cudf+qm4COuoyiLTdFwjFZDDZlmhpHvfNKohorFlVbefBucNa\nauvKxWNbISHY0MipH/6CS3/6K8gy1sW3Mvjp/0t8zX60K3+LJIeoarKw1FnIpVACEORiR2MrAQ+4\nL5Ec8hKM1/BBVQP/3NNIU+DK6IXVbCTZZERW4Fy9jlMOA0FZwqiVybX6GWAO3nRiRE2tjw/W2Chf\nX0ejJ4ROKzFzqoVF8zIoLOj6EY2eSpu5VvwBmR171AjP7XvqCQTV86kwP4EZJVamT7ZgTREGn30d\nRVE4fa7ZF8LF/sMNNPlUFUIjwdD8RMaONFM8yszw/ET0whdCIOgxJEni8wuHc/y8i/c3naQo10rh\nIHGBTCAQCG4EMV9+u3jxIidOnCAvLw+A06dPc+bMmYj312q1JCSoC8bly5czc+ZMNmzYgMGgXk1O\nTU3FZrNRW1uL1Wpt2c9qtWKzdS7y8Wamoy6DttuNei3jhqXxyY723RLjhqWGbXnvKO1jZnFWVGPN\n1t0X3bV4dHy4jqpnfkbT2YsYcweS++OnsAy1oKt8G6nBQdBo4nVHAWscFuDqhXzYsZWQHxpqwHfZ\no8KYxMrdjfxjewNtmTA8HUeTgRN2A76gBq1GId/qJyc5gPY61hh9TYxQFIV9hxpYWV7Dtt31yAok\nJ+l48K4B3Do7vdsW2R2dnx2NJN0oQiGFrTvtvL/qHJWtIjwHZsUxc6qFGSVWsjJEi35fp9bubxEh\nqg64WxJSQI1rHVuUdNkXwiQ6YASCXkZCnJ7/c1cRP3lrJ394fz9LvjiFxDghEAsEAkF3E/Mvom98\n4xs88sgj+Hw+NBoNGo2mxQQzGuXl5SxfvpxXX32VBQsWtNyuKOFN/iLd3hqLJQGdrucXGddLerq5\nR543Pt4Q8fZwNV2obcTujiw6WKyJpFviqXF4221PS4mnIDeVOIOOJn+Qquq6sI9TVV3H4/fFdzoj\n3Hv6PPu/8SMuvb8GSa9n6Pe+TP6XHyRQ+QHBtSuRkVgbyOet8zk0KeEf2+5qoq4xwPAhJgxaCW/t\neTz2C6Ao6OISMQ0Ygj7RzBfyZBSdkS37LlDr9JKWEs+MCUPJGZjLoRr1ymdhFozI1mDUxwFxnXot\nzVyqC/Lepw1s3ONFliEnQ8c9c0xMKoq75nbuJn8Qh8uHJcnY6WPc0Xna1BRi9ac1LP/nOapPqj4I\nw4eaeODOgcwtTe/2VICOzk+tQU96Ws8YaKpCjYvy9TWs2WDDcdm4MDPdyD23Z1A2K4OhuYkiwvM6\n6anvUgB3Q5Bde51s3+Ng+24Hp89d+R5MtRi4dXYGk8ZZmDjW0qd8IXrymAoEPcmwgSncPT2PFRtO\nsPTDQzyxeLT4jhYIBIJuJubVSVlZGWVlZTidThRFwWKxdLhPRUUFv//97/nTn/6E2WwmISGBpqYm\n4uLiuHTpEhkZGWRkZFBbe8V4saamhnHjxkV9XIfDE2vZvZb0dDM2mzum+7b1X+jIzC/adl8gxOaq\n8+32AdhcdYFFJYPb7RMKhLCaI4986BSF4oLU8MaaBam46724gRqHB1sY4QKg1uml+mRdzN4SSjDI\nxT/9lXM/exnZ48U8dQLjf/dDAjVH8Cz7JVIowAV9Br88m8u5YPQFqSTBD17exIIxZu4cm0i8HtDo\nwJRBMC4ZpwfwqO/V4um53DZlEBedIex+M/VNOuo9CpmmELlWP/F6BZczppcQ5hjIlG/zs6O5M8Kq\npmmonRFB6urad2l0xPWOy0Q7T211fj5cY2P1+loaGkNotTBjioVFZekML1AX2vXOxk7X3Fk6Oj9D\n/kDMn7Wu4tRZL+u32Nmw1UHN5QjPJJOOe27PZlKxqVWEp0JtbeffV8EVOvNd2hUEAjKHqxsvm1O6\nOHbCg3xZS48zapg0NoniItUbYlB23JXFjOLHZvPfsDqvh46OqRAsBP2dO27J5cBJOzsO21i/5zyz\nxuX0dEkCgUDQr4lZlDh37hwvvPACDoeDN998k3feeYfJkyeTm5sb9v5ut5uf/vSnLF26tMW08pZb\nbuHjjz/m7rvvZtWqVZSWljJ27FiefvppXC4XWq2WnTt3xtSBcTMQbkGZEKen0evH4fa3W2DGsgCt\nb/B1OGqRbDJeJWp0lPZh1GtjivfsKMo0kp8FXC20BPYe5OSTP8Zz4Ag6SzJDnnuS9NKRSNuWo3PY\nUOJMrE2czKuHDMhKx1c3hmUa+EyJmSGpenwBmaqLOorHDAWp/aLdG5A4YU+gpkH96Fjig+SnBjAb\nrz1Ro9YpU77dz46D4cSI67s609XjMoqicOBIAyvLbVTudCIrakrAA3cM4NY5aaRawnfhdCexnJ83\ngku2KxGep89difCcPc1K6VQLxSOTyMpKuuECieD6kGWFU2e9LQkZ+4+48ftVFUKrheFDE1tGMobl\nJYqYVoGgH6DRSDx25yieeXUrfyk/yrCBKWT3UMedQCAQ3AzELEp8//vf57Of/SyvvfYaALm5uXz/\n+9/nzTffDHv/Dz74AIfDwTe+8Y2W237yk5/w9NNPs2zZMrKzs1m8eDF6vZ5vfetbPProo0iSxFe+\n8pUW08ubnXALytYL+rYLzI4WoL5ACH9QxmI2YHe3v2KXYjKwouI4R84424keHYkOscR7XsvisbXQ\n0mBzUrp9FQU7NyEpCmkP3cmAr38e47FNGD95HVmSCA6fyjLnED7YWdPh8R2QpOX+yWYmDFHHLDYe\n9fLuDjdanYFnRyoYW42RNjTJHK/V4vDFoyBhMoTIT/VjTeg6MSLTqmHBFD3Fw3Rd4hnRlV4L/oBM\nxRYHKz+p4cRptdslf3A8i8oymFFi6fYRjY6IRRTrDpz1ATZuc7C+0sGR1hGeE1pFeBqEeWFfo6bW\nd9kXwk3VQTcu9xVfiEE5cao5ZVESo4ebiI/v+6OEAoGgPanJcTxy2wheWrGPl9/bz9P/NhF9Pxgd\nFggEgt5IzKJEIBBg3rx5LF26FFDTNaLx0EMP8dBDD7W7vVnUaM3ChQtZuHBhrKX0a5o7AuKNuogL\nyrbsOlLLnbfkRlmA2giFZKqq67C7fBgN4f9TrW8MsOXAlcV8W1EjmujQupMh2ghGZxePy9Yco3zb\nGQqO7uH29e+T6HFjt2TQ+KXHMA6SyFu/lDgpxIlgMgcHzWLa2PFUvlIZ9XjlpMbxtYVZWHQedFqJ\nIxf9/LXSxck6deGhka6Yc/qDMh/tchNvTkev1+PxePE1XGLGlFR0EVwsOxqvOV8bYFWlj/3H6RYx\noplYumI6GpepqfXx1rvnWP1pHa6GIBoN3DIphUVlGYwc1nu8EGIRxbqKRk+ILTucVGy1s7dVhOfY\nIjOlJVamTkwWBoZ9DHdDkH2H3C3dEBdqrnxuUi165ky3UlxkpnhkkkhFEQhuIiaNyGDm2GzW7znP\nO+uqe2Wak0AgEPQHOvXL2eVytSxCjh49is8XfsEj6DxtRy9STEYcDbEdX4e7ibM1DREXoHUuH2t3\nXfGRaPKHAIgzaPEHQhj0Wpr8IUJyeJPR1lfV26Z5dNazoDOLR48vyJ71VSxa9XcGnT5CUKtj67Rb\n8UwdxxdMhxnobsQt63nDNZT1niyUS27WHN8e8ThoJJg9IoH7JycRp/Nib5T5S6WLHSevvr/FHEdS\nopELLh0HLkgkWc00+fzs3r2Pw9WnkGUZb+PAdj9OIh2LxaX5NHj8+IM63vjQQZ0zATUBpIm8HA+P\n353TLVdfrnVcRlEUDh1rZGV5DVt2OAnJYDZpuW9RJgvnpJNmvfEjGrHSURrNteLzy+yoUiM8d7SO\n8CxIpHSKhelTLFiSxWK1r+APyBw62tAiQlSf8tDssZwQr2HK+GTGFqndEDkDjL1GfBMIBDeef5k3\njKNnnZRvP8voPCvFBWk9XZJAIBD0O2IWJb7yla/w4IMPYrPZuPPOO3E4HLz44ovdWVu/pPkqujk5\n/qrb245exCpIgLrAHJhhirgA1UgQTm9IjNPxn58Zy+9W7G8RKsIR7ar6tXoWdLR4lP0Byr/xc+7+\n5wp0oSBnBheya+4i7hziZGZCFbICaxqzWOYqoEG+shi8YPdg1GvwBa4eqxgz0MBDU5LITtGhSBpI\nSGPV3rp2ggTA1LH5VF004QloQAqx9+BR9h06RiB4pYU73PhDpGOxsaoWiSwM2jQkKZGQ7MUbOEcg\nZMdxFN5Z19QtV186Oy4TCMhs2OpgZbmN6lOqmWxBbiILZ6dSOtV6040hhEIKVQfdrN9ip3KnE2+T\nek4Nyo5j5lQrM6ZYGCAiPPsEIVnh5GlvS0znwaMN+APql6JOK1FUaGoRIYbmJqDVChGiN3DkyBGe\neOIJHnnkEf71X/+VQCDAU089xalTp0hMTOTXv/41ycnJvPfee7z++utoNBoefPBBHnjggZ4uXdCP\nMBq0PH7XKJ59YzuvrDzIki9OISWKB5ZAIBAIOk/MokReXh733HMPgUCAQ4cOMWvWLHbs2MG0adO6\ns75+Q9ur6OmWeIoLUnlo7lCCISXmUY1wjC9Mw5xgiLgAjdAAgcPtw+eXI3YWNJOUaCDe2P5U6UrP\ngta4tuzkxJM/ZsCxk3gSTKybeSd549L4YfIxEjVBTvhNvOYspDqQHHb/1i83O0XHQ1PMjBloVI9D\nXAqSKQM0Oh6YY0VWpJZRkryBmUwaV4QxzoQnoBAnNfDmB5vxNjW1e462Qk24Y6GRjMTpm8UIjSpG\n+FUxItZj1dEoSEfEMi5jd/j5aF0tqz6tpd4VRCPB1IkpLCpLZ/b0rJsqHUKWFQ5XN1JR6WDjNkeL\nl0B6qoHb5looLbEwZGC8uHLey1EUhYs2P1UHXOw54GbvQTcNjVeE19xB8ZdFCDNFhSbijGJOvLfh\n8Xj40Y9+dNVvjL/97W9YLBZ+/vOfs2zZMrZv3860adP47W9/y/Lly9Hr9dx///3Mnz+/xWBbIOgK\nBmeaeWD2UP7yyVFe+ecBvvnQuC4dtxQIBIKbnZhFiccee4xRo0aRmZnJ0KHqgibY6sqxIDK+QIg/\nf3yYjfsuttxW4/C2CAhlEwdGFQZSTAZcjX4s5ub0jQDOBl+7BWbrBajd1YTRoEVRlHZdA8101GHR\njLPBz38v3XZNSR6daaUP1Dk58+z/ULvsfZAk9o+ZRs3MW3hkwGnyDMdolHUsdQ6jvDEHnU4LhH9d\n/oDMvHEDyEv2UZJnQKuRuOCWyBg0BAxX6mkeJbn9lmFU1+pxB9QrH02N9VTu2sfpC3Yi/eZoO/7Q\n+lhoJANx+uwOxYhox+p6ozzbvsZw4zKHq9URjU3bHYRCYErUcs9tmSyck0ZGmvrabobFt6IolyM8\nHWzY6sBWdznC06zjtrnpzJxqaYk4FfRe6l0B9rbyhWiOYgVIs+opGZ/C2CIzY0aaSRGjNr0eg8HA\nH//4R/74xz+23LZ27Vq+9rWvAbR4Vm3evJkxY8a0GGRPmDCBnTt3Mnfu3BtftKBfUzZpIPtP2qmq\nrmPV1jMsLBnc0yUJBAJBvyFmUSIlJYXnn3++O2vpdzQvLHcergmbdgFXTCojCQOpSXH84JFJeH3B\nlgVlpKvnrRegbUWQcHTUYdGacGMZ1xPx2RpFUaj92z8589+/IuioJ6GokJwlX0dzaDfT9AfQSLDe\nM4C/1Bfgkg3EGbRMGZHB+qoL7R5Lp4G7JiSzaKwGSTESREcgMZOs9CTaKgz+IJx0GDjv0gESScYQ\nx09U88HGw61qC19z8dDUq96DZJMRi9lMky81ZjEi2rHq6ijP5nGZQFDm0812VpbXcPSEOqIxKCeO\nO+ZlMGuaFaPx5hnRuFjjo6LSTkWlgzPn1W6Y+DgNc6ZbKS2xUjzSLNr4ezE+n8zBow0cPVnDg2Qj\niAAAIABJREFU5u11LakwAIkJWqZOTGnphsjKEL4QfQ2dTodOd/VPlHPnzrF+/XpefPFF0tLSeOaZ\nZ6itrcVqtbbcx2q1YrNF7zy0WBIuC9tdT3q6SA/rabrzPfj25ybzf3++lr+vr2ba2ByGDhIdOeEQ\nn4OeR7wHPY94DzpHzKLE/Pnzee+99xg/fjxa7ZX/zLOzs7ulsP5A24VlOBzuJry+YNTZf3OCAXPC\nFXPBWMz8Dp12RNxmMRkYmWtlcWke0L7FP8VspNETwBds34nQ1vSysxGfbfEePcnJp36Me/NONPFx\nDPr+18meXYh+7xoGGDycCSSy1FnIIf+V//hnFGexuDSfo2fruWD3tNw+YYiRByabyUy6fFqbMtHF\nW9uJEUEZzjj1nHHqkRWJeL1MvtWH2eDnL++dDFunRlIFCmuS2q2y56iNdTvPYU0yUpQ7gARDNkpo\nBEadFLMYEelYdcdYjKM+wKp1tXy8zoajPogkwZTxySwqy2DMCNNNs2Bz1AfYsNXBhko7R46r545e\nJzF1YgqlJRYmFosIz95KSFaoPum5HNXp4tCxRoKXDUd1OokxI80tIkT+kAS0mpvjnL6ZUBSFvLw8\nvvrVr/LSSy/x8ssvU1RU1O4+HeFweDq8z7WQnm7GZnN3y2MLYuNGvAdfvH0Ev1i2h5+8vpVnvjCZ\nOINIW2qN+Bz0POI96HnEexCeaEJNzN+khw8f5v33379qTlOSJNatW3ddxfVXoi0sW9N8lbyzUZnR\niDZWAarnwuZ9Fzl82tEyEtC6xd8fCPHMq9vC7tt21OBK3Tbsbh9W85Uxg2jI3ibO/+Y1Lvz2dZRA\nkJQFM8n99udJPF2JZvs/UXQG/BMW8Mn5dGxNdjQB9ZiMHZaKoig880qlGm+q1zDQouO+iSZGZBmQ\nFZDjLGhMGaC5euEuK3DBpeOkw0AgJKHXyhRY/GQlqT4KNY7Ix00B/vMz49h+uKYlyUQjGfA2ZbH3\naBqSFCLDoiExwc7Ji2cI+ZqIM2jDGog2p55Eeo+7cizm6IlGVpbb2LjVQTCkkBCv5e5bM1g4J/2m\nMWls9ATZvMPJhkoHew+2ivAcZWZmiZWSCSkkJghPgd6Goiicv+RrESH2HWqg0aN+niQJ8gbHM7Yo\niZnTMshK195UXT43K2lpaS1x5DNmzOA3v/kNs2fPpra2tuU+NTU1jBs3rqdKFNwEjM5LZeGUwXy0\n9TRvrT7Co4uKOt5JIBAIBFGJWZTYs2cP27Ztw2DovXGAvYmOhIFmWl8ljzUqsyOijVWA6hEB7UcC\nmjswfIFQlLEMI/5ACF8gdFV9iqKgKLFdpar/dAsnv/sTfCfPYsjKZMgPv05aZgDtrneRFIXQkNEE\nJ90GCUn8yyi4d/aVcZV3P61uqTk5XsO9E01MHxaPRpLQJiaDMQ10Vy+2FQVsjVpO2A14Axo0kkKu\nxc/AlAC6VuuYaMfNetl/49UPDob1jNBpbXztwULijYPwBbKpb/BhStCzouJEO6FpcWkeDZ5AxPf4\nesdigkGFzTvUFI3D1Y0A5GQZuaNMHdGIj+v/C3CfX2b7nnoqttjZsdfVckV9eEEipSUWpk+2CF+B\nXoizPkDVwWZfCBe19kDLtsw0A9MnWyguMjNmhJkks/rfl7gacfMwc+ZMKioquO+++9i/fz95eXmM\nHTuWp59+GpfLhVarZefOnXzve9/r6VIF/Zx7Z+Vz8LSDjXsvMjovlZKizJ4uSSAQCPo0MYsSo0eP\nxufzCVEiRjoSBjJapW+0JpbRjI6INlYRjrYjAUa9loQ4fdjanQ0+nnl1W4vxoqIofLLjXMt2u9sf\n0fvAX1PL6R/+EvuKj0GjIfOxhxn8wC0YD36KdLgBOSmVwOQ7ULLDH5Pm7hO9Fm4dncjtxYnE6TWc\nsQf4cJ+Pbz06EXe996p9nV4N1XUG3D4tEgoWo5f8tCDmuPZXVTsaR7lYF8DblEVSXGvPiPMEQnVo\nJHB7cok36q56DyMJTQnGyAviax2LcboCrP60lo/W1mJ3BpAkmDQ2iUVlGYwtMvf7EY1gUKHqoIuK\nLQ627HTS5FPHjwbnXInwzEy/ObpD+grephAHjjS0iBCnzl5JujElarllUgpji5IoLjLfNJ09ApV9\n+/bxwgsvcO7cOXQ6HR9//DE/+9nPeO6551i+fDkJCQm88MILxMXF8a1vfYtHH30USZL4yle+0mJ6\nKRB0Fzqthi/dNYofvraNNz4+RH52Eukp8R3vKBAIBIKwxCxKXLp0iblz51JQUHCVp8Rbb73VLYX1\ndaItLG8ZPYBvfrb9AroraT1WUefyIXF1VGZrwsVbNnrDG3OGLttMNHdZxBnCL5BbCx2KLGP78985\n8+P/R8jVQOK4IvKe/hLJDQfR7FqJotUTHFdGqGg6aMOfkr5AiOPnnAxLk7hvYTqpJi313hB/rayn\n4qgXCXC4fC0ndINP4oTdQJ1HvcXb6GDLzv2cveiImmQRboymKDcTLdn84R8hjLqMq8SIZqJ1MFyL\n0NSZcZ7qUx5WltdQUekgGFRIiNdw5/wMbpubRlZmXKeet68hywqHjjVSUWln0zYnrgY1ESgjzcCi\nMgulJVaGDBQ/FHsLoZDC0RONl0cy3ByubiB0ecLJoJcYO6rZFyKJvEHxaIQvxE3L6NGjefPNN9vd\n/utf/7rdbQsXLmThwoU3oiyBoIVMawKfnV/Iqx8c5A/v7+epz07oVDqWQCAQCK4QsyjxpS99qTvr\n6NNESsOItrD8/+y9d3Rc933m/bl3+mBmMDPoRCUIgiAIEuwgKYKSWNSpyHGRLNu7sd9Nsptk3+zm\nzSa7OY6dsmm2k7ObbLIbe6N1NoktJ3KXbdmiGqlCUKxgB0mQaESfGUwvt7x/XGDQBo1i1+9zDo8E\nYObODxeDwfye+32ex241cysHjieaOFRV440T1+cUJCB3vWVwjraQmeTKTIBJocPV38fV3/5jYsdO\nY3LnUf0Hv0HZOh/mjp8i6RpqRQPKlifA5ct5nIkGk8BIgMeb7PzSQ14yqs6P26O8fCpGMmN8Z36P\nHZ/HxvBokmsBCwMRo1Ej365yufMyP3mnI3vM+ZospjaYdA8kOXZR5tgFFU1TKfJK5OUFOHHp0qx1\nOu1mzDexqWG+Kk8wpgLaToT40YEhzl8yLBrLSmw8ubeIh3cU4HDcvxYNXde51pPgUNv0Cs98j5kn\n9hTR2iIqPO8WdF2ntz+ZFSHOXIiQSBrKpiTBihpnVoRoqMvDahFv6AUCwb3DA2tLOXN1lCPnh/j+\n29f4+V21d3pJAoFAcE+yaFFi69att3Id9yQTG+YTHcMEwil8bisN1X6e37cSp82y4MZyMcwleCz2\nvu1XRhe83UxLwELWk8VQaJOI/fe/5drfvQiqin//Xmp+8UmcXYeRLp5Hz/OS2foUWsWqeY/zw0OX\nWOGK8vw6DwDvX03wL+9HGYlOF0M2NpRwaUCmo9+Bpks4LRorClLkWdJ84/tdOY89V5NFIKzx2tEM\n75/TUcfFiH1brWyoN6Pj4A++3k/PUHTafXqGonzr9cs3VNc5HzOnLMIRhVcPjvCT14cZDRp++41r\nPTy5t4j1azz39ZXl/qEUb7cFOHg4SG+/MebvdMjsHq/wXCsqPO8KAsH0lFyICIHQZC5EWYmNB7cb\nDRlNq9y4XSK1XiAQ3LtIksS/erSBzuthfvTuNdbU+FhVlfsii0AgEAjmRrwj/ADMrPwMRNK8e2aA\n4x3D7FxXlrUH3Mj4/kzBYz7LwVwsFLbpc9nY1DC7KWOpmRQzqe48x973XmZ4dARbVTk1v/vvKLQN\nIp//GbpsQln7EGrTLjDPEzSoqSjRYZ6sV7CYHFwdzvDikTCXBo0NjiwZdpRCj4MdmxooKCrnwnWw\nmnSW+9OUuo3ay/kaNWbaVgwxIs375xRUjWlixMRmP55SGA7ltt3caF3nYrjaHedHB4Y5eDhARtGx\n22Se3FPE43uKKC+9fy0agVCGd44EOdQW4NLVyQrP7Zu8tG4zKjzF1fU7SzyhcvbipAjRc30yF8Lj\nNtPaYoRTrlvtprhQ5EIIBIL7C6fdzC89vYY//cfjfPWH5/j9z23F5RBBygKBQLAUhChxg8xX+ZlM\nq3PaAxbLTMFjPsvB1DVNnaqYb+LB67Lye5/bgtuZO7h0pvXEasldbzmVvEiIXW//kOpLp8FsouxX\n/xWVe+qwXjmMpKloy+pQtjyF7imY+yC6DskQxIYxawqBpMa3j0Y4fCU5zYKi6fBrn9hBSvaRUmU0\nXWP1Mp1CWwLTIhs1fG4b+S4bgbDG60fTHBkXIwq9Eo9stbK+3oxpxuTBN169tKBl5YMGlU6gqjpH\nTob40YFhzl40JjNKi208saeIPTsLcN6nFo1oTOHwsRAH24KcvTBe4SnDhiYPO1t8tGwQFZ53koyi\ncakzzqlzYdrPRejojKGNZ83YrDIbmjzjlgw31RUiF0IgENz/1JXn83Oty/nuwU6+/pML/OpHmoSF\nUCAQCJaAECVukMVUft7olfN4SuHt9uuLPuZcUxUfe6gWh90MOda5aVXRnIIEzM40cDmtfO9QJyc6\nRghEkkgYwgCApKk0nXqXLYd/ijWTJm9LMyt+43k8gVNIl95Dd3rIbH4crWqNYSSfi3QMooOgJAEJ\nxV7AH3zzPOGENu1mZcWFbG5uJKznoysaV7uu8f6pC+TnmbONJhPTJPM1iditDn54KLMoMQIM0edC\nV2DO5U+IHB+USFThwKERfvL6SDYvYf0aN0/uLWbj2ptv0fggFqGbtoaUUeF5sC3A8SkVng11RoXn\njs2iwvNOoes63X0TuRBhzl6MZptNZAnqavNoXu1m3Ro3q2rzsIjJFYFA8CHkyW3VnL8W4HjHMG+e\nvM7DG8rv9JIEAoHgnkGIEvMw32bN5bRgs84/PbCUK+dTH+ubr3aQTGs5b5frmHNNVVzsDtE7FMt5\nnPmCL6eSq96ys2+ML794EoCiwR52vf5tioavk7Q7OfbQY/zSJ6txdr+JLskojTtR1z0Elnk260ra\nECPS49Gf9nzIK0bVZNLq5Abc7/WwcW0jy0qNKtJYeJRXDp0gFjfsFEPpzKxpklxNIpJkxWEuIx4v\n4r0zCoVeiX1brGxYlVuMmGChANCGKt+8m/qFNv9dvQl+dGCItw4HSKcNi8ZjDxfyxJ4iKpfd/AaJ\nm2ER+iAois6pc2EOtQVpm1LhWV1hp7XFT2uLT4z73yFGAumsCNF+LkIorGS/Vl5my9Z0Nq1ykecU\nf0YEAoFAliX+zVONfPGFI7z42iXqK/IpL3Ld6WUJBALBPYF4N5mDXJu1hiofn9xXj9NmnLLvHbq6\noJ1hvprIuR7L57YSSypz3t7rmn41fj4bSe+MMMapnLo0wscfqsNmMS24WZ759dryfEosKnWv/pCm\n9veQ0Olo2Ej+o838StkQ1uHLaCU1KFufQveWzP3NayrEhiExPn1gcYCr1PgvMBaOk0qruJwO1jc1\nUFtdAcD1gSGOnz6PpiSJxWeLBFOnSaYKCRNihNVchCTJqFqSp1sdPLjBOa8YMcF8VhC71cQn9+W2\n1cy3+QeJoyfHePnAEGcuGD+vkkIrj+8pYm9rwS3d8N2IReiDMlHhefBwgHePBomMB5aKCs87Syyu\ncOZCdDwXIkzfwORz3Jdv5sHt/mwuRKF/7gkrgUAg+DDj99j57BOr+R/fOc3f/uAsv/uvN2MxC7uh\nQCAQLIQQJXKQa7P2zpkBjnUMsXPdMp5pXT6nEDCVma0WufjGgUu8cbwv+3FggSrOhurpV+Pns5HM\nNw0RiKQIhJO8caJvzivlOTfTKwt5JNHF41/9M+yRMULeQnoe3ccza1MsswwQUq28mG5AldbxrKeI\nmd99KqMyFknisySwJEdBV0G2gKsEbO5p9g6nw84DW9ZRXVmByWRiNDjG8fZz9A+N4HPZCEVzn6tA\neHKaJN9lw+d2kUwWTBMjkuk+XM4YD6xrWZQgAfMHgO5cV5YVrGaS6/n0s7Y+Lp5PM9ADQyPG97Fu\ntZsn9xaxqTl/0Wu6UeYTs252YKeu61ztTnCoLcDbR4KMBIywUq/HzJN7imjd5qe+1in8t7eRTEbj\n4pVYVoS4fDWetWPZbTKbmz2sazSyISqX2cXPRiAQCBbJxvoiHtpQzpsn+vjn16/wqUdujcgvEAgE\n9xNClJjB/AGWGgeO9hJPKjfUajEVVdX4h59e4K2TubMjcmG3mnh+38ppn5vv6r3E3MKE323jwNEe\n3jgx+fgzr5TP3Eyne/qx/sPf0Nl1EYvJzOltu9mwZxn7PaNoOrwSreCl8HISuhkCfSBJ2SvuEwJH\nPBzkiTUOLD4zGRVM7iLkvAKQJu0Cqga9Yxa6QxZqa9xEYnFOnr7A1Z5J8WZ9fSHtl0dyf98S/PT9\nHp5oWcGbxxVQV2OzSFkxIq0aNal5DhfmJVZIzgwA9bntbKgvnPNnPfP5pKZkkiEb6bCVdj2N1SLx\nyEOFPLG76LZOCMwnZt2swM7+wSSH2oIcbAvQ1288ltMhs3tnAa0tPtY2iArP24Wm6XT1JrINGWc7\nIqTTxquDLEP9irzxcEoP9bV5mM3i5yIQCAQ3yrO76+joCfHa8V7WLPezfmXhnV6SQCAQ3NUIUWIG\niwmwvNAVXFSrRSqjMjoWz2mLeOGHZ6cJAothU31RTq9/Q5WPd84MzPp8RbGLnjksHOvqjE19Lk50\njLB/R012My2rKutOHGTTkQNYlAyDNStRH2vhs9UhHPIol9Ie/k+onq6Me9ZxJq64v/LOJdb646xd\n50bTdN68EOd7x6NsbTLz/N4iwCjeGIiYuRqwkFZlzLJOrT/J21c7CI+NIktMEwFMspRzakHHyuHT\nZk5dSKAjUZAvE032MhDsm3a7nqEo33r98pKsCjMDQBcKhxyLphgdS5GOmUmFbChxI6xRNmvYfUn+\n6/+7juXl7jnvf6uYv5VkYdvRXASCad5+P8ihtiCXxys8rRaJ7Zu97Grxs3GdR1R43iaGRlLjuRAR\n2s9HCEcmbWGV5XYjnLLRw5pVrvu2yUUgEAjuBDaLiX/79Br+4O+P8sKPz/P7n9uKzy0ykgQCgWAu\nhCgxg/k2axOEoim2rynNKQRsbijGaTfzjQMdc9oiUhmVw2f6F1yLzSyTVrXxTa/OO2cGuNAdzDZr\nvPRmJyc6hhkNp7BbZUAinVGzG/ePPVTLP79xhXdPD2TzL2wWmY2ritjVXMabx/tyPm4wkqR3KEog\nnKL0+jV2vf5t/IFB4g4Xlx55nMe3W6iyjhJRLXw1WMfBeBk6s6+sBiNJwpE4flOEx1YqmGQbZ/tS\nvHgkQl/Q2CAdvzhM67plmG1uesbsxDMysqRT5U1T5c1gNsHze1fy0QdrZ4kAz+6uQ1U13jp5HU03\nMiPs5jJs4zYNnRQf2+2ieaWJL/7d3ALMjVgVpgaAzkUsrvLO4TCRbg9KytiImx0ZbL40lrwMhfl2\nlhXfnPrQpTKfFWUxtqOpRGMK7x0LcfBwgLMXo+hTKjxbW3y0bPSKTe9tIBJVOHMhkp2G6B+afA3z\ney08/MBELoQHv1c0mQgEAsGtpKLYxbO76/inVzv43y+f4/97bj2ysMIJBAJBToQoMYP5NmsT+Nx2\nPrmvHofdnHOMf6EAwbFoiuFQYsG1pBQNq0WaFqg5tVlj6hTERFvHjqZSPvPoquym8tP7VvHxh+oY\nGI3x0yM9XOoNcfjMIB3dIWxWOWfLh89tp8yqse/gd6k9+R4Al5o2s/KJlfxyQQhNz/BmYhnfDNUS\n1XJvbswyPL0xn0K1D0nR6A+r/PP7EU71TBd7ZIuDdzvNlBQ50XWdUnea2gIFm3m68SSXCGCSZR7d\nWsVbJ0dwWCbFCMOmcR1FG2FF+TaicfWWWxWm0tuf5MevDfPGO6MkUxqyScbqSWHzpTDbJs/3Ujf/\nN5ulWlGmkkppvH8qxMHDQU6cDqOokxWeu7b52b7Zi9cjNr63knRG48KlaFaEuNIVRx//tXE6ZLZu\nyM9aMspLbSIXQiAQCG4zuzeWc/ZqgJOXR3ilrZsntlXf6SUJBALBXYkQJXIwsSl7u70/Z8PGhvpC\nnDZzzjH+xQQI5rtsFHkdDAUXFibSmdypEH3DuW0ZF7tD2f+f2prxzpkBDp8bzH5tzkkQXWfX8Hk6\nH/0itaNBRgtKSTzRyrONSfLkEFfTLo4VbOe71+duCNlYbePjW9yUeIynl+Io5r99+yLDY5OP6Xbl\nsXFtA9UVywDouT7A8dPn2VLvZfUi7RShiMabxyXyHeuASTEirRpTEQWeSRvCrbAqTEXTdE6cCfOj\nA8OcOBMGoNBv4eP7S9m908+Pj1y7oc3/rWSpVhRF0Tl5NsyhtgBHToxlKzxrKhy0bvOxc6uo8LyV\nqJrOte5Etqbz/KVo9vXBbJJYvdLF+jWGCFFX4xR5HQKBQHCHkSSJzz7RwBdeOMJ3D3bSUOWjdpnn\nTi9LIBAI7jqEKJGDic3aM63L+carl7jQFSQUTeXcTM68gr/YAMFtTWX84FDnDa9RmyPBMhhJ5mzV\niCUzOW9vt5pw2syEoikq02EefOu7OM+dRbPbqPj1z9BQrlCkh4hpZv4l2UisZgM/t6uOg9fbZm3y\nqwrMPLfVQ0OZFU0Hze5DdhVjlk00rwxw4GgvdpuV5sZVrKytQpZlhkeDHGs/x9CIUQt6okNZ0E4R\nimi8fizD4TMZVA0kSSGa7M2KERNMnUS4WVaFmcQTKm+8M8qPXhumf9A4H431Lp7aW8TWDd7sxnAp\nm//bzXxWFE3TOXsxwsG2IO9NqfAsKbLyVIuf1hYfVeWiwvNW0T+Uov1cmFPnIpw+HyEamxRJayoc\nhh2j0U1jvQuH/e55TgkEAoHAwO208otPNfLnL57kqz84yxc/uwXHHG1dAoFA8GFFvCrOg9Nm4d88\n1Tht4mChzeRiAwQ/t38N8USa4xeHCUTmD9bMhSzlFiZ8bjsHjvVOqxmdLx8jnVH5L59oIv71bxL+\nu39CT2fI372dFR/fjDN8BUnXSdc0E1r5II8W+HNu8vMdMj+/ycUDKx3IkoRqycPkLgXz5FXzjz5U\nh9tbisNdhNlsJhyJcvz0Bbr7pmdrzGenmClGFHgkXK4AJy9fZmbPSOW4l3OCD2JVyMX1QcOi8frb\noySSGhazxO6dBTy5p4ja6twb/MXkUNwN6LpO53iF53tHxxgaMZ4/Xo+Zp/YW0driZ6Wo8LwlhCMK\np89HstMQgyOTtbeFfgstG7w0N7pZu9qNN1/YYwQCgeBeoLHGz2PbqvjJ4W7+8Wcd/OL+xju9JIFA\nILirEKLEIljsZlLVNL791pU5pxKmXpU3mSZH5//hlQu8e3Yw533mYllhHr3DsVmfb6r1zdmqkYv6\nkW5Gn/0r0ld7sJQWUfMrH6HYPYIcvozmLSazdT96SQ0zy6ye3V2HSdLJl6I8tMqG3SITTICnpBKT\nfbJNQtOhP2zmWtCK2+fGImt4LWP8+GdHGBlLzlpPLjvFWFTjtaPTxYi9W6001Up88YVuchWfxpMK\niqpjGi96WKpVIReapnPqXIQfHRjiWLth0SjwWfj5J0rZt6uA/Hs8Q6FvIMnbbUEOtQXoGzCECFee\niT3jFZ5Nq92YZCFE3ExSKY3zl6JZEaKze9LSlec0sW2TdzwXwk1ZsciFEAgEgnuVj7TWcqEryHtn\nB2iq9bN9TemdXpJAIBDcNQhRYgGWMiUxM+ByArvVxM51ZTmvytssJj775GqcDsu8UxN2q2las4am\naTlFiYyiL1hpCmCPR9lx6GXqLx4nLcuUfGo/NdsLsMZ60DUryqbHUBu2gZzje9Z1TOkIzzZLoDnQ\nkMk4i/AV+WF806TrMBwzcTVgJTHeqFHjS1PhzWCWzaxfWbignWIuMWLTKjMmk8RQML7kAMsbmVZI\nJFXefDfAj14boq/feLyGujye2ltMy0YvZvO9u1EcDaZ5+0iQQ4eDXOmarPDcsdnLrm1+Htldzlho\n9vNMcGOoqk5HZ2y8qjPMhcsxFGU8F8IssXa1OytC1FY7hQgkEAgE9wlmk8wvP72GL/6f9/mHn15k\nRXk+xV5hfxQIBAIQosScqJrGt16/PGet50zmC7h02sx89MEVOe8H06/iB8JJDhzrpf3y6DSbwTOt\ny4nGM9kpgs9/7XDOY13sDuJzWwlE0rO+ZreacFplStveZts7P8GajONsWsWKX3iIfK0HKTaIWt2E\nsvlxUpY8xsZyiDGZOEQGQUkAEjgLkJ2FyFPEi1BC5sqolUjKhITOMk+GGl8aq9k4T4GxFM+01gIY\n5zeSwu+ePL8zxQi/R2LfFDFigsVaZW6U/qEUP3l9mNcOjRBPaJjNEg/t8PPkniLqlud9oGPfSSJR\no8LzUNv0Cs+Na8crPDd4cYxXeFotuZ+zgsWh6zrXB1NZEeLsxRjR2GRIbG2Vg+Y1HtY1ulld58Jm\nE+dbIBAI7leKfU4+80g9//vl8/zt98/yXz69EbNJvO4LBAKBECXmYKFaz5nMF3AZiqZmXbVPphWG\ngvFpm36bxURZQR6feWQVqYdnT2g4bYY9YP4JgRTb1pTy7pmBWV/b7Vdo+M4/ET/ajuxyUvnrz1FR\noyCnu9E8BWS27kcpWZ5TjPnIA5VI0SHs+vhVc5sHXMVgsmaPH0tLdI5aGY0bT6uiPIXl/jROq46q\naXzjwPTjOu0WNE1D143NWzoj8/2DadrOKiiqIUbs3WJlc4M5Z5PAfPWtq6q8Oc/PQui6Tvu5CD96\nbZijp8bQdfDlm/m5R0t45MHCe9bHn0ypvH9ijENHpld4rl45XuG5yXvP20/uFkJjGdrPR8arOsOM\nBCbtXGXFdrZvyqe50cPa1W48bvESLBAIBB8mdjSVceZqgMNnB/n+21f56IMr7vSSBAKB4I4j3hHn\nYDG1njOtHIu9aj8xgdF+ZZThYGLOCYz5bAYLPdbz+1bitJuzoY6FdpmHz7yF729+TFzRDgqwAAAg\nAElEQVRR8T3yACser8WRHkFXLSjr96I2PgAmM9860DFtkx+Lp/HoIUzBDFazRE9A4ULAxu5ty7Lr\nTSoS1wIWBiJmQCLfrrKiII3HrmWPk0vkmVi/JFlIJEtp7yhGkpRZYkQqozIazm2hmRpgGQgnsVmN\nr793ZoCL3cF5p1tg0p5js5g5fHSMHx0Ypue6kXVRX+vkqb3FbNvsxWK+965kZBSNk2civH0kQNvx\nMVJp4+exvMpBa4uPnVv9FBVYFziKYCESSZVzHVHaz0VoPxfhWu9kLoQrz8SOzV6aG41piLVrChke\njtzB1QoEAoHgTvOZR1ZxpW+MH7/XRWO1j9U1/ju9JIFAILijCFEiB4ut9ZzKfFftp+YkLHUCIxcL\nPZbTZsnaQfp//CahP/pz0r39WCtKqf3cPgpdAaT0CGpFA8qWJ8DlA6aLMZIEO+scfGSTC6/TRCCm\n8u13Ihy+kkQHhuMSH3+4np6Qhd4xC5ou4bRo1BakKHCqTM3jm0vkkSQLdnMZNnMxkiSjaknMpmH+\n43OGqGJMV1ya10Iz1fryL2918vrRnkWd2wlx6MjpEQZ7IR22oakSZpPErm0+ntxTTP2KO2fRWEqW\nyVQ0TefcpSiHDgd592gwWyFZWmyjdauP1hYflaLC8wOhqjqXrk7kQkTouBLLTp5YLRLNayZyITws\nr3Qgi1wIgUAgEEzBYTPzS0+v4U//8Thfe/kcv/+5rbid4iKBQCD48CJEiRzcaFbBxx6q5WJ3iL7h\nKJpu1HaWF7n42ENGfsKNTGDMxUIVl+mBYbq/8BWCL78GJhNln36CmvUOzOoIep6PzJYn0SpWTTvm\nhBjTUGrl2RY31QUWUhmN7x2P8MqZOOnxQD5ZlgmlnLR1O1A0GatJY7k/TalbIVc5wEyRZ7YYkSKZ\n7iOtjiJLOtFENU67eckCzpkruVtHjl4YYv+Omuwf/GRa4b//03mOHY+RidkACcmkYfen2Pugn/9n\n//JF/QxuBUvNMoHxCs8uo8Lz7SNBRoOGXcCXb2b/vmJ2tvhYuVxUeN4ouq7T25/MihBnL0aIJ4yp\nE0mCFTXOrAjRUJcncjgEAoFAsCArluXzTOtyvv1WJ//nxxf49x9dK/5OCwSCDy1ClMjBYqceZvLS\nm530DEWzH2s69AxFeenNTp7fW39DExhzMVfFpa6qDPzdi/T+2f9Ei8ZwrV9N3cfX4zaH0PUUytqH\nUJt2gXl2foDXIfEfH/XTVG5s3t+5lODbxyKE4pM2jOVV5axvasCd50TTDTGiIj/DfDlNEyJPIKLN\nKUZM1HpOiD5LFXDGoimGQ4mctw9F03zxhSOsqvAxcF3n3Nkk6YQMWDHZFGy+FFZXBkmGCz0BUhl1\nyXWhN4ulCDF9/UkOtQU41Bbk+qDxvMpzmtjbWkDrNj9rVrlEe8MNEgimp+RCRAiEpuZC2GhtcdO8\nxk3TKjdul3gZFQgEAsHSebylmrNXA5y8PMIbJ/rYvbHiTi9JIBAI7gji3fQcLDSJMJP5N9HDfPTB\nFbekLWJq9kSs/QLXfvuPiZ06h8njpvbff4SyijQyIbRldShbnkL3FMw+iKZCbBhrIkBTuZWOgTQv\ntoW5NjrZElBWXMjGdY0U+PJRVZXOa1184gE/LvvCV4VTaYlCzwrUjHOKGHGdtDrChBgxwYTos9S6\nz3yXjSKvg6HgbGFCy0hcvypz7WQCXZMBCYs7jd2bwmSfbjVZqjh0M1mMEBOJqLxzJMjBtgCdXcb3\narVK7NzqY2eLj41NHiziSv2SiSdUzl6cFCEmckUAPG4zO7f6slWdxYUfrNVFILjZpDMaPdeTdPUk\n6Oo1/lVXOPjsc2KDIxDczciyxC/uX8MXXzjCt16/TH2ll4oi151elkAgENx2hCgxB3NNIszFWDSV\nU2wA42r3xEb3RiYwFkKNxuj90v9i8IVvgaZR+NgOancVYzMl0Z0eMpufQKtqZJa3QtchEYTYMOgq\nyBYOdqp8/fVA9iZ+r4eNaxtZVloEQGdXLyfOXGB7YwEue+G86wrHNF4/luG90xkU1YXNqpBRrxNN\n9ONzW3Ha84glMoSiqVmiz1IFHJvFxLamMn5wqDP7rSkJE6mQjUzUwqRFI4ktP4Vs0Wcdd65j3y7m\nmqTRVIn+Ho0vfKmDS50JdB1MJti0zkNri5+t6/OzFZ6CxaEoOh2dMdrPhY1ciM4Y2vhAkM0qs6HJ\nkxUhqitELoTg7kDTdIZH01nhoas3wbXeBP0DKbQZL2lOp3hNEAjuBXxuG599vIG/+s5p/tf3z/Kf\nP7URl0O0YQkEgg8XQpRYgPlaMKbisJmRJWa9MQQjW8JhM071xKa7/cooI6HEghMY86HrOsGfvEHX\n736FTP8QtuplrHh+GwXeBLqUQVm9E3XdQ2DJsclORSA6CGoaJBnyiklZ8vnh0SMA5DkdbGhqoLba\nuNJ2fXCY46fPIalptjfOv97pYgT43ONtGqvzUDU3Y9GqrMgzV6DjjVhoPrd/DZFoioOHAwQHTKgp\n45ybbAo2bxqrO420wBDBBxGHPihThRhdg0zUQjpiJRMzWk06BhM01rtobfGxY7NP1EkuAV3X6e6b\nyIUIc/ZilGTKUCFkCepq82he7WbdGjeravPEtIngjhOLK3T1JrnWk6CrL0FXT4LuvgSJpDbtdk6H\niVV1eVRXOKiucFBT6aCq3IFTCJUCwT3Dhvoi9m2u5NWjPXzlxRP85nMbhDAhEAg+VIhdzU0ikVJy\nChJgCBWJlILbac1OYPzyRx1cuTa65HaFCVK9/XT9zpcIHTiEZLVQ8al9VDVZMckJtJIalK1PoXtL\nZt9RSRpiRDpmfGz3gqsYZDNjwTjRpMbm5kZWrajBZDIRCI5xrP0cA0Mj/OZz66ktz59zveGYxhvH\nMrw7S4wwYzYZV5rNpukiz3yiz0LBodlzkVG51hul/eUhDvwsRThqA3QsrjR232yLRi4KpgRK3ilk\nSaLE6aPrYtiY7tCNRZtsCmtWO/m1T9WLCs8lMBJIZ0WI9nMRQuFJO1J5mS1b09m0ykWeU7wUCu4M\niqLTN5Cke3zqYWICYiSQmXY7WYbyMjvV5ZPCQ02lg0K/RYTjCQT3Ac/uqSOtqLx18jpf+eYJfvOT\nQpgQCAQfHsQ78ZtEvsuG320lEEnP+prfbZtlCbBbzTeUW6BlFAa/9g36/vyraIkk7k2N1D21ApdT\nQbc7yWx6DG35utlWDU2B2DB6IogEaGYnsqcUzHYAVA2iqpuff2IPFouFSCzOyTMXuNrdB0CBxz6n\nILEYMeJGWCg4VFFV/uafO3j/aIRo0ARIWG3wkSeKSVuivHv++qIeZ0dTKZ95dNUdmZBQNZ1zF6Mc\nagvw3rHQeIWnFYtNw+xKUVQq0dJcMG/7hsAgFlc4cyE6ngsRpm9g0grjyzfz4HY/6xrdrFvtptAv\nxB3B7UXXdYKhzLjwkDTEh54Evf3JbKXsBL58CxuaPFRX2LMTEBVldjHBIxDcx8iSxGceXYUEvCmE\nCYFA8CFDiBI3CZvFxMZVxTntBhtXFd2UDW/kaDvXfvuPSZy/jNmXT+1nH6a0SgdZRVm1DbV5D1jt\n0++ka5AIoMdGkHSN4bDKN9vC9I4F2VCf5hMP1zEcs3I1YCGtysiSwvsnz3LxyjU0bXJMOJetIZcY\nsWeLlS0fQIyYsHM4bOY5Qx+PXximyOrjmz/oIxjQADMmq2q0aLjTmL0uPrW7HmeezNvt/STTas7j\nFHgmrTO3c8Ov6zpXrsU51Bbk7SPBbLODL9/C/kcKaG3xUVluIxxL3/AkzYeBTEbj4pVYVoS4fDWe\nnVay22Q2N3tY12hkQ1Qus4uryYLbRjKl0t2bzNouuvoSXOtJjIuOk9isMsurHFnhYeLffNasuSxv\nAoHg3keWJD79qFHXLoQJgUDwYUKIEjeRpTZ2LBYlFKbnT/4Hw//4XdB1ih/bxvIdPqw20IqqULbu\nR/eXTb+Trhu5EbFBUDOkFfj20TBvnI8zcVHufF+aNzrMWKw2dE3jyrVO3m+/iIyGNKUVw26V0XQd\nVdMwyfItESNUTeNbr1/mRMcwgXCKfJeVUHT61ImmSKRCNjqvWPmb4z0YFo0MNm8Ks2PSojHRVPH8\n3nqeaV3ON169xIWuYDZQc90KP3s3V+L32G/rm/reKRWe/VMrPHcVsKvFT+OMCk+7Vfx6TkXTdLp6\nE+OWjAjnOqKk0uO5EDLUr8gbD6f0UF+bh9ksRAjBrUXVdAaHU9nWi4kpiMHhFPqU4QdJgtIiG00N\nbqrL7VRXOqipcFBSZFt0iOrM10j/FMuZmKISCO4fhDAhEAg+jIhdz01kqY0dC6HrOqPf/Sndv/cX\nKCMBHLUVrPhIE75iCd3mJLPhEbS6DcxKb8wkjNyITBwAxebjj75/ld5Ro+aw0O9l47pGSosK0HWd\nUHCYA++cJJ5IzlwCAMm0xuvH+lBVE15n5ZLFiMVc2fvW65enTZlMFSSUhIlkyEYmMt6iIWvYfEls\n3hSmHC0aU2s9nTYL/+apxjt2dXEkkObtI0EOHQ7Q2T29wrO1xccGUeE5L0MjqawI0X4+QjgymQtR\nWW43wikbPaxZ5RLBfoJbSjiiTGY+jE8/dPclSKenvwa5XSbWrHIZoZMVDqoqHFSV27HbPtjzc+Zr\n5Gg4lf34+b31H+jYAoHg7iIrTEgSb57o48vfPMF/EsKEQCC4jxGixC1gsY0d85G82sO1//KnhA+2\nIdmsVD3/IJVr7EhmGXXlJpQN+8A24zHUDMSGIDlmfGx1gauEQESlbzSJ25XHhqYGaiqXAdBzfYAT\npy8QCkfmXYuEBbullPaOYiCD12VkRmxpnF+MWOyVvVRGnWXV0HVIRyykQjbUpPE0la0qdm8Kq8do\n0Zir7WSuytAP+jNZLOGIwrtHgxxqC3Kuw8jEmKjw3LXNz5b1+TjsYgOdi0hU4cyFcRHiXIT+oclc\nCL/XwsMPTORCePB7xZszwc0nk9Ho7Z/eetHVmyA4pky7ndksUVFmzwoPNZUOqsvt+Lw3P3gy12vk\nBBOTYVPFVmHxEAjufWRJ4tOPGILjhDDxm8+tx+0UmUgCgeD+Q4gSdxlaKk3/3/xfrv/lC+ipNPlb\nG1m5rwKHx4TmX0amZT96YcX0O+kaxEchPmLs5k02cJcYogTgcGi0tjRTVVGBLMsMjwY51n6OoZHA\nvGuRMGO3lGEzFyNJJjQtxePb7eze5FzUaPxir+yNRVMEwsbmU1MkUmNWUiEbuioDOpa8DDZfCrND\nmZbfOVfbyZ2o9UwkVY6cGONQW4CTZ8Oo49bxNauMCs/tm314XOLXbSbpjMaFS9GsCHGlK54de3c6\nZLZuyM9aMspLbSIXQnDT0HWd4dH0eNtFMtt60TeQRJveuklRgZXNzZ5puQ/LSuy3zSI09TVyJlMn\nw4TFQyC4v5gQJiTgjRN9fOXFk0KYEAgE9yVil3QXEX73KNd++09IXunCUuij9l/voKjWDlYHmQ17\n0VZuMczzE+g6pMKGVUNTQDKBu9io+ZQkFA16QxZ6QhZqqtyEI1GOn75Ad1//vOvIJUbEM924HFEe\n3Lh1UW/El3JlL99lw2myM9Qrk85aNHRsviQl5WCxaQQiyqzjFHhsrFtRQPuVAMFIkkKvg3UrCm5b\nrWcmo3HiTJhDbUGOnAxlx7hrqx3savHzwFafaHmYgarpXOtOZGs6z1+Kks4Y581skli90sX6NYYI\nUVfjxPQB2lsEgglicZXuvsm6zWs9hvUinpiuPjjsMvW1eTOCJ+13vDI232XD77ExmkOYmDoZJiwe\nAsH9hyxJfGp8YkIIEwKB4H5FiBJ3AZnRED1/+N8Y+eeXQZIofWwzy7d5MTssqLXrUTY+Cg7XjDvF\nITIISgKQwFkAzkKQTWg69I+ZuRa0kFFlLCadGm+SQ1cvEYsE51zHXGJEWhkBdDauqljUBEIqo9LZ\nN7bglT2f287hoyFefm2Y3itGa8hMi0bLOmMqJFeryYb6Ip7fW58dVV5RU0BkLLHg+j4IqqZzdqLC\n82iIWNwYiSgrsbGrxUdri5/yMvsCR/lw0T+Uov1cmFPnIpw+H5nWQFBT4TDsGI1uGutdwtYi+ECo\nqs71gWS27WJiCmJ4dHporizBslI7G5qMys2aSkOAKCqw3pXTODaLiQ31RXO8DhqTYUu1eAgEgnuH\nqVaON0708eVvnuQ/fVIIEwKB4P5BiBK3kak+XzDGh0de/AHd//UvUYNjOOsqWbm/Dk+pHc1bTHrr\nfvSSmukHUdMQHTImJABsHnAVg8mKrsNI1ERnwEoiIyNLOtW+NJXeDGbZuFK2f0cNX3zhyLQgyZli\nBKSx2YZIK8MoqeS06sz5mDo6PBpOIUtMS6CfwG2389pbIV59a5TgWAZJMvIW8grT9I2FCEXTOZtL\nJltNbDRU+XimtdY4BeN5EXarmfnTMW4MXde5fC3OocNGhWdwzKjw9Hst7NlZwK5tfmqrHXflZuZO\nEI4onD4fyU5DDI5MPtcK/RZaNnhpbnSzdrUbb77IhRAsHV3XCY4pdPcmGA6GOHcxRFdvgt7rSTLK\n9BcdX76Z5jXuyeyHCgcVy+xY77GA2YXanRZr8RAIBPcmkhAmBALBfYwQJW4DuXy+D/o1ar/190Tb\nTiI77NQ8u42K5nyw2VGad6M2bAN5ylUtTR3PjRgFdDDbwVUKVuNNZigh0zlqJZwyATrLPBmqfRls\n5ulv0BMphbFxQSLXZEShN8CvP1tJnt1PKlO7pLC0maPDMzMflKSJVMjGWNTKtVMDOB0y+/cVs2eX\nH4eTrFiT6zGn13sGePfMABe6g7fUL91zPcGhtiBvtwWzgYuuPBP7dhlCxOr66RWeH1ZSKY3zl6JZ\nEWKiZQSMytNtm7zjuRBuyopFLoRgaaRSGt3Xp7ZeJOnqSRCOTrd0WS0S1VOEh+rx4Ml8z/0hfC3U\n7rRYi4dAILh3EcKEQCC4XxGixG1g6mbdpGRY8corFBx/i6im4m9pYMWeMuz5dtTqJpTNj4PTM3ln\nXYdkCGLDRm6EbIa8YrDngyQRS0t0jloZjRs/ysI8hVp/Gqc1dwpkvsuGz51HIumfYdPoQZYD/Ifn\ntuO0GcdaSmPFXKPDug5K1EIyZENJGMddVmLjyb3F7Nru5QfvXuV/fL9rUaFs3zt0lXfPDGQ/vhV+\n6eHRNG8fCXCoLcjV8c21zSrT2mJUeK5v8mAx31tXWG82qqZz5Vp8vKozzIXLMZTxq9Nms8Ta1e6s\nCFFb7RTCjWBRaJrO4HBqWujktd4EA0OpWRNXJUVWVq/Mp7rSwdpGPz4PlBbbPhTPtblelxdj8RAI\nBPc+WWFCgjeOT9aFCmFCIBDcywhR4hYzdbNe0XWR1je+S344QNrtZsUzq6lsKkDzFJLe+hR62Yrp\nd07HjBBLJQlIkFdkZEdIMilF4mrAwkDEDEjk21VqC9Lk27VZa5ggEtd487iCpK3GbpGzYkRaGQZ0\n9m6uwGmzZNe9lCmJmaPDmjqlRUMxNvHrm9w8/UgJzY1uZFniGwc6Fh3KtpBfev+OGpSRGGpGXfKb\n77kqPDc3e9jV4mfLhnzstlv3hv5ur+/TdZ3rg6msCHHmQjSbpQFQW+WgeY2HdY1uVte5sNk+3KKN\nYGHCUcN6MSE8dPcm6O5LkkxNf/1y5ZlorHdNC56sKrdPyx4pKnIzPHwrjFv3HgtZPAQCwf2BJEl8\net/4xMS4MPGbn9yARwgTAoHgHkWIEreYsWiKZP8wew/+kLpLp9AkCfuOBnY8VolisRJa1Ypj00Ng\nmvKjUFJGbkR6/I22Pd+YjjBZUFToDlnoHbOg6RJOi0ZtQYoCp8pcU/GGGJHh3fYMaQXy80x43EF6\nh3tQUolpmRE3Wik3MTo8OKSQCllJR6ygSyDp5BcrfPHXmlheMXl1b6mhbPP5pUfDSX7vhfcJxVL4\n3YtbbyKh0nYyxKHDQU6dMyo8JQmaGly0bvWzbbP3lld43s31faGxDO3nI1zsvM6R46OMBDLZrxUX\nWtmx2Utzo4e1q9143OJlRJCbjKLR15/k2oT1YnwKIhDKTLud2SRRUWanqsJOTaWDqnIjfNLvtQi7\nzxJYyOIhEAjuHyaECQl4/XgfXxHChEAguIcRu4lbiK6qZL7zQ577x7/CkkqilBez8aP15Je7OZoo\n5OX4Gn5jw8PGZXkwciNiw5AIGB9bHEZuhMWBpkNfyExX0IqiSVhNGsv9aUrcCnNNLM8WIySe2mml\npdGM2ZxHKlM2643rUqYXJognFQ62jdDfYSMWdgAgW1Rs3hQ2Txq3y0zVsumNFEsNZZvPLw0QjKbm\nXW8qozISSnDtWpr3joZ4/9RYtsJzRbWT1m0+dm71UeC7eX/MF5qAuJvq+xJJlXMdUdrPRWg/F+Fa\n72QuhCvPlBUh1jW6KS0W3nTBdHRdZzSYmdJ4YfzrG0iiqtNvW+CzsGmdJys8VFc4WFZq+9Dbom4m\nS7HeCQSCexdJkvjU+MSEECYEAsG9jBAlFuBGR+tjZy5y7bf/mNiJs5gddsqebmbF9jKGNQdfHlnJ\nyVQhezePV2zqOiSChiChqyBbwFUCNjc6EkMRE1cDVpKKjEnWWe5PU5GfwTTHe/hoXOfNE2neOTUp\nRjz5gIWWNRYs5kkFY+Yb16VOL4TCaf7i6x2cP5dEScuAjNmZwe5NYc5TspMb0YTCN17t4DOPNmTv\nu9RQtvn80vOtV5Lgr1+8yMn2KJGAjK4ZJ21ZiY1d2/zsbPFRXnpzKzwXMwFxp+v7VFXn0tXYuCUj\nQseVGIpqiDRWi0TzGiMX4sEdpXjdOvKHwKsvWByJhEpX32Td5oQAMdXSA2C3yayoyTNCJyvsWfuF\nK0/82REIBIKbxYQwISHx2vFeIUwIBIJ7EvHucA5udLRejcXp+8rfMvC/XwRVpXDbSlbsrcTkdvBK\nqpZ/GV2Gy53H01uXsX97FaQiRm6EmgZJNmwaTj9IMoG40agRTZuQ0KnIz1DlS2OdY6+6WDFiLhaa\nXhgOJbCaZcbGNF59c5TX3xk1roJKErb8FDZvCpMtd6bFiUsjfGL3ZN7DjYSyzfRLe/Ks06pNJ9B1\nGBrK8NV/7Obd90MkkzpgRjJr2PKTWN0ZdjyQx7P7yhY8JzfCYiYgbnd9n67r9PYnsyLE2YsR4gnj\nZyVJsKLGOR5O6aGhLi9blyj8+h9eVFWnfyg1bruYzH6YWvEKIEtQVmKjudFtCA+VDqrLHRQXWoWY\nJRAIBLcBSZJ4ft9KAF473psNvxTChEAguFcQosQc3MhoffCVN+n6/JdJXx/EVuqn7qk6/CsL0JbV\noWx5igccXprGpy5K/VaCPZ1GmCWA3QeuIpDNRFIynaMWguNtFcUuheX+NA5L7kaNrBjRniGdAc8S\nxYgJ5ptesJhN/NFXTzNyXUZJGGGYZquGw5/C6kkjm3KvbYKxaHrWRnupoWwz/dIOm5k/+Pr72fWq\nKZl0xEo6YkHLmHi9O4hs0rHmp7G605gdk7kbJy+N8rGHZodiftDQycVOQNyO+r5AME37eUOEaD8X\nmebjLyu20dripnmNm6ZVbty3OD9DcHcTGstMEx6u9Sbo6UuSUab/XnvcZtatdmeFh5pKBxXL7Nis\nwnohEAgEd5KcwsRzG/DkCWFCIBDc/YidSA6WOlqf6hug6/NfJvTTt5DMJiofXUNlazlyvo/M5ifQ\nqhqNaQKgON8KsSGCV4LGnS154C4Bs51ERuLasJXBqPFj8TmMRg33HNMHOcWIHRbW18vEk2k03QQs\nvOme+rmZ0wuaKpEeszIWsqIpxu3Nzgw2bwrLFIvGQvg9szfaNxrKNtV2Ul9ewBvXRklHrKip8ftK\nOlXVZp7eW8o/HTwDOdY4cxrhZoVOLnYC4lbU98UTKmcvTooQPdeT2a953GZ2bvVlqzqLC0UuxIeR\nVFqj93oyK0B09STo6kswFlam3c5ilqgst1NT4aCqwjFuwXDgzbfcoZULBAKBYCGywoQErx3r5csv\nCmFCIBDcGwhRIgeL3VjqikLfV79J/59/FT2RwLOqnLonl+MszUdt3EF67UNgGd/86ZoRYBkbAV3D\nZLWjOorA6iKjSXSNWOkbM6Mj4bKq1BZk8DvVnGuIJnTePD5bjNi82sR3Dl7h++/M3lgDszbd61cW\nogOnLo1kP9e8spA9m8o50h5gsBfSESu6ZrRoWPNT2KdYNGQJtPkHJLLMt9FeaijbWDjDu0dDHDwc\n4MLlOOAASceSl8FforNjs49PPbISRdV55dTiphFuVujkUiYgPmh9n6LodHTGaD8XNnIhOmNo4/qV\nzSqzocmTFSGqKxxilP5DhKbpDI2kjeyHKeGT/YOpWb+zJYVW6tfnZ4WH6koHZcU2TCbxfBEIBIJ7\nDUmSeH7v+MSEECYEAsE9ghAlcrCYjWX42GlO/ervYevuQnPYqfvYOpZtXoZWspxMy350b7FxB103\nciNig6BmjNwIVwm+qioGh2L0hSx0hSyomoTNrLHcn6LElbveM5rQeet4mreniBFP7LCwbdymMV9z\nBjDra68d65t2/JGxFK+8NUiels/QgLF59nvNJMwRrPmzLRpzCRIVRXlEExnGomn8HhsNVT6eaa2d\n95wvRCKh0nYixMHxCk9Nm1Lh2eJnU7ObfJ8DNZ3Jih8mmUVNI9zM0MmlTEAsdVJE13W6+yZyIcKc\nvRglmZoUiOpq82he7WbdGjeravOwWMRI/YeBaEyZFjo5YcGYeG5M4HSYaFjpGg+cNIInq8odOB2i\nMlIgEAjuJyaECQk4cGxKxoQQJgQCwV2KECVyMN/GclOFk/4vfIXB//sSNl3HvaGKNftXErO7+Jvg\nCpxlm3h+QpDIJIwQy0zc+Njhh7widMnEtWGJ090OUqqMWdZZUZBimUfJ2aixkBgBC22sh4kmMjm/\nBkbhRypsIxWyomVMxFBprM/j6UdKWLfGxRf+ro3R8GwFwu82JivaL4/OutKfykdV+TEAACAASURB\nVKh849VLXOgK8O6ZAS50B5dsh0hnNI63hznUFuDoqTHSGWMNdTVGhecDW6ZXeBYV5s0KZVzMNMLN\nDp1c6gTEfJMiI4F0VoRoPxchNGXMvrzMlq3pbFrlIs8pfp3vZzKKxvWBlCE89CTo7jP+Oxqc/rtt\nMkF56WTbRXWFkf1Q4LMgLdZvJRAIBIJ7GkmS+OT4xIQQJgQCwd3OLd3FdHR08Cu/8iv8wi/8Ap/+\n9Kfp7+/nt37rt1BVlaKiIr785S9jtVr5wQ9+wN///d8jyzKf+MQn+PjHP34rl7UoZm0sXTZag5ep\n+MKfMTQ0ilyUT9PPr8KzvICfxSp4aXA5Cd1MwaVRProrhS01Askx42BWF7hK0E02AnETV0atxDM6\nsiRR6U1T5c2Q6wJ5IKzw2tEkxy8ypxgxwXwb61wTHwBqWiYVtJEKW0Eft2h4Ujh8KX79lxuyG+W5\nBJqNq4p4fm89qYdn51R879Bl3j0zMG0Ni7FDqJrOmfMRDrYFOXwsRDxhWFiWldjYtd1Pa4uPZSWL\nr/BczDTC/JMxtkWHTk7N5riRrAyAWFzhzIXoeC5EmL6ByTV5PWZ2bfPRvMbDutVuCv3ijcX9iK7r\nBEKZacJDV2+Cvv5UtrZ1Ar/XwoYmjzH5MB4+WVFmF1MyAoFAIJgUJiRjWlYIEwKB4G7llokS8Xic\nP/zDP2T79u3Zz/3lX/4lzz//PI8//jh/8Rd/wUsvvcQzzzzDX//1X/PSSy9hsVj42Mc+xr59+/B6\nvbdqaYti6mZ25PxVwn/y34m89R6qxUzVYw1UtlZxWfXxpeF6ujJuAKwmeKDWhGWsE9DBZDNCLK0u\nwkmZK4NWxpImQKemCEqdCezm2RMI4ZjK335viIFRJ0ZQZYbKkjj/9iOl2OfoA51vYz0VXQclZiYZ\nsqHEjdA6yaxh9yazFo0Cz9KyD2Ze6V+qHULXdS51xjnYFuCdI8HsNIDDKeEtyaDZkjiKEqhOCyVF\nJfN+f3Mx3zSCzWLCabfkPHdOu2VBQWG+kMyFJiwyGY2LV2JZEeLy1XjWFmO3yWxa58lOQ1SV28WV\n7vuMRFKluy+ZzXyY+BeNTc+TsVllaqunh05WVTjwiNYUgUAgEMyDJEl8cs/4xMTRXr70zRP8lhAm\nBALBXcYte0drtVr52te+xte+9rXs59ra2vj93/99AB5++GFeeOEFli9fztq1a3G7jY39xo0bOX78\nOLt3775VS1s0WjrD6P/6B67/t79DT6bwri6j7qmV2JYV8uLYCn4cKEQfr3ZoqbXzsc1uClwmdEkG\nVzHYvcQzMlcHrAzHjFPtdyrU+tMsr3AxPDxdkIgldN46keaN4yk0zY2mp0lmekkpQwSv6nznYGzO\nKQObxcS6ukLeON6X8+uGRcNKKmRDy4y3aDgUo0XDlZmWYfFBsw8Wa4fo7ktwqC3IobYAg8NpANwu\nE3t3FRDRxrg4OIIkGbJMIKLeUPDkYkhlVGKJdM6vxRIZUpnZ1aFTWUpIpqbpdPUmxi0ZEc51REml\nx3MhZKhfkTceTulhZa0Ti1lc8b4fUDWdgaEUZzqSnD4XGG+9SDIwNP33RJKgtNjG2gb3pP2i0kFJ\noVUElQoEAoHghhDChEAguNu5ZaKE2WzGbJ5++EQigdVqvAAWFBQwPDzMyMgIfr8/exu/38/wcO6r\n7LeTSNsJrv32n5Do6MSS76T2I80UNi9Dr99CZsNeUod60QO9rCiy8FyLmxXFVjKKzpkBaGqqI62Z\nuDZipT9sNGq4bSorCtJ4HbPrPSfEiLdPZUhlAFTi6R5SyhAwKVwsFLq4d1PFLFFCTcukQuMWDW3S\nomHzpnF5dFoaSzjTGfzA2QdTmW9qw2V18ObbId57v4trvQnAmAjYtc3Hzq0+LgwO8O6Zq6QyWs6w\nz6UGTy5EKqPS2TdGIJJblAhFU/NmSixmKmRsTMmKEO3nI4Qjk7kQleV2I5yy0cOaVS4ROngfMBbO\n0NWXpKtnMnSy+3qCdHq6COl2mWhqcBmTD5WGAFG5zI7dJp4DAoFAILi5TAgTEhKvHu3hS+NWjnwh\nTAgEgruAOzb7q+u5qxvm+vxUfD4nZvOteeOeHg1y/j9/md6vfxskidIdy6nZtwJbzXIcez6Oqawa\ngH/3EQ+7lutUuI0x6/evJviX96NY7A52aknc+cUoGrjs0FQpUeE3I0mWaY9lz8vjlXeivHo4TjKt\nk++SeWS7hX/46fs5z0MwksRktVBUmJdz7e58B8U+B4OBBEp83KIRm7Ro2HxJbPlp5HHLyCMttXzm\nidUMjMYAidICJ3brzXlKPNBczg8OdQKgKRLpqIV02Eowaabr9ABms0RrSwF7HyzmgS0F2O0mvva9\n07xx4vq8x13oHBQVuRe1PlXVeOGHZzl8pp/hUAJZJlunOZVCr4MVNQU5z4uqavzVP5+cJb5oqoQS\nN9MzKPEffvfCtKvhhX4rj+8uYfN6H5vWeSksWFxexZ1ksef0w0YqrdHVE+PKtcl/nV0xRoPTBS6L\nWaKmKo8VNXnUVudRV5NHbU0eBT6rsOPcJMRz9OYjzqlAcP8hSRLP7TEuPL16tCebMSGECYFAcKe5\nraKE0+kkmUxit9sZHBykuLiY4uJiRkZGsrcZGhpi/fr18x4nGIzfkvWNfOcVur/wFZRACGeFj5VP\nr8JdV4ayYS+JlVtIyDIMhiA+AvEAFW6dkTh87Y1RLg8prFxeRfOaehx2O6lMhoYSjTKPgqzBlG+R\nWELn/Yvws/dipDLgdko8us3K9iYLmq7x8juWnFfuvS4bajozq2FigkRSxal6CHeZ0dLjtZh2Bbsv\nRe1yG4m0RDCi43PbaV5ZQCye4t/+yYFZOQiLbceYjz3ryzl3NsbZc3HiYRnGbS5NDS4e3OZn2yYv\nrjzj6ReJxBkJqLxzKrf1ZCo+t33Oc1BU5J7z3MxkZn3qXFrYuhUFRMYS5DrqNw508NrRXnQNlKQZ\nJWYmEzejpkxMfL8j5hR5XhXdkqKwWGbrujye21OGSZbRtTTDw7knNO4WlnJO71d0XWd4ND2l9SLJ\ntZ4E1weTs4SsogIrm5s92caL6nIHZSV2zOPBtBPnU1fTjIzc3T/7ewXxHL35LHROhWAhENy7TAgT\nkgQ/e18IEwKB4O7gtooSO3bs4Kc//Sk/93M/x89+9jNaW1tpbm7m85//POFwGJPJxPHjx/md3/md\n27ksADKjQTp/7fPINgvLn1jFsp016Cs3kd74CDhcxq41EYTYEGgqyGYy9kK+9NJ5nO4Cnn50Nflu\nFxlF4dTZi/T397Hzc5uRpcmJjnjSsGkcOpnJihGPbbOwfe3UNg0TeQ5rTlEiz5E7dLF/KMVPXh/m\ntUMjxBMasmzCXaAiu+IUFVnYUF/Cs7vrUFQ9mwnx7beuLDoHYbGkMxrH2sc41BbkWLbC00RNpZ1d\n2/w8uM2P35f7j958ORRTmZl3cSPMZ7mQJeNH7ffMbWXRNJ2LnVFefytIJJiHkjD//+3dd3hc5Z02\n/vvMnKmapt6LJVfZltx7xwYMhGqwMTjJFZbfsiT7JvtCNo4pzr6w5DLJBjaEDYRls8QEMBCHsEsx\ntrGxDS4YG8mWe5MlWVYvI02fOb8/pmhGdWRLOir357p0SZoZjR6NpJnz3Od5vl9/9xIAgARR54Wo\ndyM9XYU6e0toG4rVDez8piLQP7xv62IMJuFdSPpqm81AabV5OxSdvFxhh80emT7odQqMzY3xBw/B\nwpPpOsToh9bPS0REI48gCKHjm8++LsPzbx3BP6+dxmCCiGTTb6HE8ePHsWnTJlRUVEAURWzbtg2/\n/vWvsX79emzZsgVpaWm48847oVKp8Nhjj+Ghhx6CIAj44Q9/GCp6OZBEgxb5jyxEjEUJVU42PLO/\nAyk5x3+lqxVoqQI8DgACEJMI6ONRXuPFzBkzkBgfB5/Ph9PnLqHoxBk4nE4oBIRqEXQWRtyz3IjJ\nOV6oVZHLt51uL2wOd6djtDnaii5KkoTiE1Z8tLMGh4uaIElArFmFO25Kxo2LE6DTKzpMDJUKIClW\n3+vuGN3xeiUcO2XF3gP1OHCkMTR5S0/VYNFsfwvP1ChaePbUPUQAsGRqWpf1LnqjuwBEAvD4minI\nTTdDo1LC6fairskGhx04dcaGohPNKD5pDXRH8G+NUaq9EGPcUOk9EHUeCApgTn4yzpY3QnB0/B59\nXRdjsOiuC0lfrL7pSx6PhCtV7bteOFBTFxkGKhRAeooW0yYHwwctsjN0SIzn1gsiIhq6Og0m7p8a\ndRt0IqK+1G+hxKRJk7B58+YOl//xj3/scNnNN9+Mm2++ub+G0iOvz4f391xCfsYYnGqNweHyXBTq\nXVgd54CytQZwBZaxas1ATBJavWpcuKpGnU1EYjxQWn4FR4+dQnNLa+g+Y41aqEQ1PtnvjAgjbpqj\nwtxJKqSnxXS6PLb7zhVOVNfZceKUHR/tqEHZFf+Md2xeDG67IRFzZlgiujV0VZwx2u4YXZEkCafP\nt2LfwQbs+7oBTYEWnglxKty4OAGL5sQhJ1PXq0mbRqXE1LGJEas3wi2Zlo51N47r9LrgmXmjWRfV\n9+ouAIkzapGbbobN5sWL75/CidOtaGkSQh1LAP/POWOKGSevXIVDsIdqdLTdhwa3zM3GxterOv3+\n0TzGQ1FvupAMFEmS0NDkadt6Ue4vPlle6YDHE/l7izWrMGWi0V90Mt2//SI9VQu1anAFKkRERH2h\nQzAR6MrBYIKIBhqb3CMwmfqmEtswHgCgV3sQr2gC6i4ACgAqHWBIgVPQ41KdCpVWEYAAs9aLcxfO\n4Yv9ZyLuT4ASieYcPP+mA652YUT7lRHtdTVh9roVkGx6/PzZ82i1eSEqBSyeG4dbbkjE2NzOiz72\n9nsA/jClqxej0nI79h6sx76DDaiqbWvhefPSBCycHYfxo2Pg9vrQ1OKEy+Pr9UqA1ctGQ5IkfHns\nKhwufwFRrVqJeZNTQq2swrcGiEoh4sx8YqwOBXnxPZ6Z7ywAkXyAxy5CqTRiw7+ewYXL9sA1IgSF\nDyqDCyq9B4tmJeD/u2scBEHAWztcnYYo08YlItGiu6bHeKjqy9U318rh9OJyhSMUPARXQFhbvBG3\nU6uFUL2HYNeL7HQtzCZVF/dMREQ0PAWDCUEAth1iMEFE8hjxoUT4ZEopAIvH63HHVAOMWgXqWrww\nJWdC0JhxuUmN8iYVfJIAvcqH3Hgn4vVeFKSmwe204eiZWjRa3TDpMwApAVV1SvgkF5TKGozOUmBB\nYR6Uip5XDoRPmCXJP1F2NqjhblUBEGAxCVh9ewpuXJKIOMu1TaK6W5XQvmZDVY0T+w41YM+Belyu\n8K/M0GoUWDzXvzWjMN8EURTg9fnwzudne710v339gQdWjMOqJaNR02gHJAmJsXpoVEp4fT68teNM\nxP3rtSqUVbeE7qu6wR71mflVS/JQV+vB1982wW5VwOPw14U4XeGGKHqgM3ohqV1QxXig1HhDdSHO\nXa0PBS7BswtHz9R2aKmqVCiifoyHg+tdfdMbPp+EqhpnoN2mwx9AlNlxtcYZUbBUEIDkRA3yxxr8\nhScDrTeTEzVR/S8SERGNBIIg4L6l/mMaBhNEJIcRH0oEJ1NqJbDhtnhkxatgd/nw7tdW7D5lxz+u\nnYQ6Rww8PgFqpQ+j4lxINnoQnNMoBQXuXDAGJl0Wviz2wOUGfJIbDncFnJ5qAD58fgRQKKSol7Df\nOT8XF865ceyYHS67f0IfG6fAursysGBWHFSdLCfvqrhgV5d3N6FubHLjq8MN2HOgAafP+7ekiKKA\n2VPNWDg7DjMKzdBoIsfQ26X7ndUfGJ8Vi/tXjIVeIyIj0dDj/XdVf6KzM/OSJKGy2omiEiuKTjTj\n+KkWtNq8APwvuEqNB6LeA5XegwXT43HoVAM6a8gRPsFWKhRYu3ws7lmc1+vHeLi51tU3PWlu8aC0\nrH3hSQecrsjCk4YYJSaOM7StfkjXITNdC512eIU/RERE/YHBBBHJacSHEsHJVIvNBY9Pwq5TNvzt\nSAviE1Nx241zUGXTQ6mQMCrOhQyzG8qwubjNIWHPt/4Clg4XEKMD3N4KNLVUAoicNEWzhL2mzoVP\nPq/B9j21aGn1QqlQYOYUI26/KRkTxxo7rdHQVXHBVUtysWXnORw9W4vGFhfi261caD+hVilFHC22\n4tkXzqP4hBU+yd+JomCCEQvnxGLudAti9J3/uVzL0v3OQoYvj1/FN2eqsaAgLWKFRXf335lgcKBW\nqHDspBVFJ6woPmmNKGKYGK+GUu+EV+WEqPNE1IU4W9HYqwm2RqXsdBVAT6HFcNKb1Tedcbt9KK90\nRBSdvFRmR0NTZNFXUSkgI1Ub2HahDa2AiLWoWHiSiIjoOgSDCQECPj10Gc8H2oVaGEwQUT8b8aFE\n+GTq2f+pR2pSAhYumI/4WAskyYcMsxtZsS6ow+ZU7cMIg07A7QtUGJ3pxtOvV3T6fbpawi5JEk6c\nacFHO2pw8EgjfBJgMoq497YU3LQ0AfFdtNAM6mqFwoGSq2ixezpcDrStXHC5fThS1Iy9BxtwuKgJ\n7kDhv7G5eiyYHYf5M2Oj2iLS26X73YUMDpcvYpxOtxcXKpqiahcarAsherT41xcu4XJ5W+uLGL0C\nc6abMXWiGQX5RihUXvz81QPobKrc2OLE3Ikp+PL41Q7XXcvWi65Ci+EmmpUhkiShtt7tLzpZ4S8+\nWVphx5WrDngjSz8gIU6F6QWmUPCQlaFDeooWosjwgYiIqD8IgoB7l+YBAD49dBm/YjBBRANgxIcS\nQHAyJUARk4aUpCQAgK2lHovGq2HQtE2AOgsjvrNAhbmTVdCoBDjdyqjPsDtdPuzcW4ePdlbjYqCo\nYm6WDreuSMKCWbFRVfzvbnIfHkiEO3K6FqMTk3DgcCMOhrXwzEjVYtGcWCyYHYfUpN698PR26X53\nIUbbOGvg9UkoPleLumZ/i1Wp3X4KSQK8DiXcNhEemwoeuxL+5qGATeVEQb4RktqJBmczWj0O1Aqt\nqPV4kZgQB49X7HbM968YC51WHBFbL/pKZ6tvqqpd2P5FXcQKCJs9Mn3QahQYnRMT0fUiK10LQwyf\nnoiIiAZaKJgQgE8PMpggov7Ho374J1P3Lh2Dg5d10ChcyE1wIT6m7Ym3pzAiKJol7LX1Lny6qwY7\n99ajsdkNhQKYN8OC21YkYfzomF4tQY9mcg+0Td5dVjUaz6vwy28uAPBvYbhpSSwWzo7tdQvPcL1d\nut9diBFUb3Vi15G2VSc+yf9z+FyKUAjhtouALzhmCdoYCTnZaty3MgsTxxrx/hfnsONwtf9qoeNq\nke7GrNeIA771oqv6H4Od1yvhSpWjrehk4K261hVxO4UApKZoMHWS0d/xIvCWGK+GgoUniYiIBg1B\nEHDvksCKiYOX8fxbR/HPaxlMEFH/YCgRoFIC83PsgS4L/gmS3Slhz1EX9oSFEbctUGFeuzAiXGdL\n2KeMiUdhZgp+/fsL2P9NI3w+wGwUcc+tybh5aSIS4rrfotGVnib3XqcCrmY1XFYVfB7/JFchSlix\nOB5L5sVjXF5Mn00Ge1PUsbsQI0gh+IMIn0doCyFaRUjethUkCpUXotFfnFKl9+B3P1uCmMDS/mjq\nXEQz5oHYetFVXZDOOpfIGVxIkoTGZo8/dAhsuygts6PsiiO09SfIYhJRmB8WPmTqkJGqhUbd8wqg\nwWSoBkVERETXKxhMCAA+YTBBRP2IoUSY4EKBawkjgsKXsNc22FFyyo5tu2rx/tvnAAA5GTrcuiIR\nd9+aheZm23WNt7PJvdetgKtZBZdVDZ8rMIkSJKhNLqiNLiyfl4jvrcy+ru/bmd4WdQxO/PcVV8Lh\nalvOL/nQFkLYxLafAYCg9EFldEGl93fKUKraionGm7RIidfD2uTfChNtnYvBUIgyms4lvQku+oLT\n6UPZFTsOFbXi+ImG0AqIZmvktiC1SkBWeqDoZGD7RXaGDhbztbWrHSwG+vEmIiIajARBwKrAigkG\nE0TUXxhKhLE7Jez51o09R129DiPC1Te48OmuWmz7ohbNVn/70DnTLbhteSLyxxogCAI0mr6Z/K5e\nNhoOuw/7DzehsUaAxxH4lQoSVAYX1EY3VDFuCAogM8mAB28a1yfftyvRriwIhhi3zcvBK++ewamz\nrbA2CvA4lIAkhH4GUe/2hxAxbijVPug0yogQI2jq2ARo1SKsgc97U+dCzkKU0XYu6W3L1Wj5fBKq\nal24XG5v23pRZsfVaid87Wp4JCeqMX60ObT6ISdDh5RkDZTDcOtFfz3eREREQ037YGLTW0fxMwYT\nRNSHGEoE2J0SNm22wWqTEKMFbpuvxryC6MMISZJw5oINH+2oxleHG+D1AoYYJe5amYyblyYgKaFv\nn7hbbV4c+KYRew/V49gJG3ySCoIATJ5gwMLZsahoqUfJpTrUW92wxGgwZWwC1i4fI/tZXkmScLnC\ngeITVhSdaEbJ6RY4nD4A/vGPydFjykQTauxN+La0EkK74c6bnAKFIPS4TeR6W1QOlGhWdJgNml63\nXO2MtcWD0gq7P4Aos6O0woHL5fbA498mRq/E+DEGZGfoMGmCBXFmAdnpOuh0g+Mx62vtt2hcS4tb\nIiKi4SwUTAjAJwf8wcQ/3z8VsUYGE0R0/RhKBIhKYFy2EslxCsyfrIJGHV0Y4Xb78OXhBny0owbn\nLvq3Y2Sla3Hr8iQsnhMHjabvQgCny4dvipuw50A9jhQ3t7XwzIvBwlmxmD8rFrGhZfOJg2Y/fG29\nKxRCHDtpRUNT2xaA9FQNCvNNKMg3YtI4A2L0/j9Jry8FWz5Xdho+KBWKqLZc9KbORbiBfNyiWdHR\n25arbo8PFZUOlJY7wrpe2FHX4I74WqUSSE/RIidTF1F4Mj5WFSp6mphoRE2NFcNRV1s0lk5N79Xj\nTURENBIIgoBViwMrJg5cxvNvM5ggor7BUCJAJQq4f4U26ts3NLnx2e5afLqrBo3NHggCMGuqGbct\nT8Kk8YZr7mTRntcrofikFXsO1OPgkUbYHf6z2plpWiyaE4cFs2KR0kULT7m2JbTavDh+2oqiEiuK\nTzSj4mrbBM9iErFoTiwKJ5pQMMHYZZHPYPCwqDANkCQkxuojAoJofrbe1rmQo45ANCs6ugouJAkw\narW4cNGJffubQ+FDeaUD3nY7XOJjVZg22RQWPmiRnqqFShy59RG62qLh9Um9anFLREQ0UgSDCQEC\nPj5QymCCiPoEQ4leOnuxFR/tqMGXhxrg8UrQ65S446YkrFyWiOTEvnlC9vkknD7fir0HG/Dl1w2h\n4oKJ8WqsXOZv4Zmdce0tPPua2+3D6QutKC6xouikFecutIbqEWg0CkwvMIVWQ2Sla3scd1+HA9GG\nM3LVEehpRYdGpcTkUQnYceAqvE4lvC6l/71TgUafApuKL4buS6tRIC9b76/5kKlDVoa/+KTRwH/1\ncN1t0Sg+V4eCvHjsOnqlw3WDaesPUZDb7UOT1YPGJjcamz1obHYjM02HcXkxcg+NiIYhQRBwz+Jc\nAGAwQUR9gjOVKLg9Phw43Ij/3VmDM+dbAQAZqVrcujwRi+fGQae9/kmKJEkoLbdjz4EG7DvUgJo6\nFwDAZBSxclkiFs2Jxbi8mEERRPh8/rH6t2RYceJMC5wu/woOhQKITVDAJzrhER1IShSRO16PW5Yl\nRN3eUo5wQM46AuErOhqaHbDbgCtXXdjyt6uh1Q9VNS4AxrCvkmAwKjBprAk5mXrkZPgDiOQEdZ+1\neR3OetoSs3xGJpRKRa+3/hD1FafTh8bmtpChqSnwPix8aApc32rrWPw3LVmDl385UYaR950zZ87g\n0Ucfxfe//308+OCDocv37t2Lv/u7v8Pp06cBAB9++CHeeOMNKBQK3Hfffbj33nvlGjLRiBEMJgQB\n+Gh/KZ5/6wj+ee00JCYae/5iIqJ2GEp0o7HZje1f1OKTz2vR0OSGIAAzCk24bXkSCvKNfRIQXK12\nYu/Beuw92ICyKw4AgE6rwNL5cVg4Ow4FE4xQKuWfZFbXOkMhRPFJa0RryMx0LQonGFGQb8KJyqv4\noqgCgP+Pq77F26v2lh6vJEs40Nu6DX2hsdkd1vXCgdIyO8qu2OFyR7a9MBlETJ5gRE6GDmmpasTF\nKTE+zwRTzNBuuymnnmp5xJm0g6JdLA0fkiTB7ggEDU3+QKH96oamZo//4yZ3hwK07QkCYDSIiI9V\nIS9bD7NJhMWkCr0fP2Zor5Kw2Wx45plnMHfu3IjLnU4n/vCHPyAxMTF0u5dffhnvv/8+VCoVVq1a\nhRUrVsBiscgxbKIRRRAE3L3Iv2IiGEz866MLMHI3hhLRtWIo0Ynzpf4uGnsPNsDjkaDXKfCdFUlY\nuSwBqcnR153oSkOTG7v2l+PTnZU4c8FfHFMlCpgz3YJFs2MxrcAMjVrep3RriwfHTwVCiBNWVFa3\nTd7iLCosnR+HgnwjCsYbERfrrwvhdHvx7le1nd5ftO0tl0/PkKXIYG9aiPaWy+1D2RV/6BBeeLKx\n2RNxO5UoIDNNi+xM/5aL7EABSotJHBQrZIaTaLuzyNkulgY/SZLQ0uoNrWAIrmaICBnCVjW0Dxzb\nUygAs1GFlCQNLMGQwex/bwkPHcwqmAzioAis+4tarcZrr72G1157LeLyV155BWvXrsWvfvUrAEBR\nUREmT54Mo9F/dnbatGk4cuQIli1bNuBjJhqJ2gcTj27aiRtnZWLl7GzoNJxmEFF0+GwR5utvG7H1\n4yqcOuffopGeosEtNyRh6by4btshRtOtodXmwf5vGrHvYAOOnbTCJwEKAZgy0YiFs+Mwe5oFMXr5\nzsS63D6cOtsSCiHOl9ogBY6fdVoFZk4xozDfiMKJJqSnaDqdJPdFe8vvzMuRpchgX7QQ9fkk1NS5\nIoKHS+V2VF51hmpsBCUlqDFzijlUdDI7Q4e0ZO2wnmQMNtfanYWGN59Pj8JTjAAAIABJREFUgrXF\nE7E9Inx1Q3jg0NTsgcfbfdAgigLMRhGZaTpYzCLMYQGDxSTCbG773BCj5ParAFEUIYqRhygXL17E\nqVOn8OMf/zgUStTW1iIuLi50m7i4ONTUdP4aExQbq4co9s/rLZeuy4+/A3n8/T2FGJsTjz99fAL/\n+1Up9h27igduGo8Vs7KgVHLtxEDj/4H8+DvoHYYSAY3Nbjz32wsAgOkFJty6PAmF+cZuDxB7Ksjo\ndPlwuKgJew/U45tjzfAEWniOy4vByhtSUThBB4tZniX4Pp+Ei5ftKDrRjOITVpw82xI6iycqBUwY\nY0BhvhEF+UaMGRUT1WS5L9pb2p2e6w4HrlVvJqmtNk+o5ealcjtKy+y4XGEPdUcJ0usUGDc6JtT1\nIidTh6x0HfTdhFw0MHrbnYWGLq9X8q9kCIYK7WoyhNdsaLZ6OoSI7anVAiwmFXKzdZEhQ/vQwSxC\nr1NypVMf+eUvf4knn3yy29tIUg+/PAANDba+GlKE4dxCeajg70Bek7MteGX9DfjzxyfwyYHLePn9\nInyw+xzuWzYak3Pj5R7eiMH/A/nxd9C57oIahhIBFpMKT//f0UhKUCM9JbotGp1tQ9j+dTkqr3gg\nOvU4cKQxtC84K72thWdyombA/1idbi/OlVpxqdSFE6dbUHzSipbWtuJoORk6/3aMfCPyxxquqXjn\n9bS3BNqCC7nOYHc2SVUKCpRfcYTVfvC/1da7I75WoQDSU7XITm8LHnIydUiIU3FCMshxi8bQFOw4\nUddoxcXSpg7bJcK3VFhbPehprqrTKmAxBbZOmNttlwgGDkb/x1qtgv/XA6yqqgoXLlzA448/DgCo\nrq7Ggw8+iH/8x39EbW3btsHq6mpMmTJFrmESjXhatYjb54/CosI0fLD3AvYWV+KFd4swcVQcVi8d\njYwkg9xDJKJBiKFEmKmTTFHfNrxbgyQBXocSrmY1XC0q7DvrAOBAUoIaty6PxcLZccjO0PXTqLvW\nbPWg6EQT/rqjAmVlLnhcbcvnEuJUmD3VgsJ8IyZPMPbZio1o2ltGsxJioM9gS5KEhkZ3W9HJwOqH\n8kpHh+XZsWYVpk4yIStDi5zACoiMVC1UqoFbnhjNliGioaarjhPhqxq66zjRniFGCbNJRGa6tkNN\nhmDAEFzdIHcdH+pecnIyduzYEfp82bJlePPNN+FwOPDkk0+iubkZSqUSR44cwYYNG2QcKREBgMWg\nwfdXTsAN0zPx7udnUXKxHhsvHcLCglTctTC337bjEtHQxFDiGjVaHaiu9sBp1cJlVUPy+A9oBaUP\nWosT/2fdWMyZEjegZ9OcTh9Onm0Jbcm4cNkeuk5QACqDCyq9B6LegyVzU/HAiuw+H0M0S+I7Bhca\njM+KxZ0LcyNu190Z7OuZlDucXlwud6C0wh88lFbYcanMHrFyBAA0agVGZelCWy+CbyajfP82PW0Z\nIhpMOus40WHbxHV0nLCYRaQm66ESpVDAEAwezCYRKpH/E0PV8ePHsWnTJlRUVEAURWzbtg0vvfRS\nh64aWq0Wjz32GB566CEIgoAf/vCHoaKXRCS/zCQD/u/qKTh2oR7v7jqHPUWVOHiiGivnZOGmWVk8\nsUJEAABBimYD5iAj5x6dymon9h2sxxcH6lFRGdiCoJCgNrigNroh6j1IMGvx7MOzu32i7Wz7Rk8T\n7fbXe30Szl+yBVp1NuPUudZQ3QpRFDAuLwaVLQ1wKx1QarwIz0fiTT2Psb/ZnG68tf0sTpXWo8Hq\nimqC3d2kPCXZHPGYen0Sqmqcoa4XwVUQVTXOiKXcggCkJGoCXS+0oa4XyYkaKAdZ0bm3dpzpdJXJ\n8hkZoZarfYl74vrWcHg8IzpOBIo99kXHifDtEb3pODEcHtPBpqfHdKgX7+qvvxf+LcqPvwP5dfc7\n8Pp82FtUiQ/2XkCzzY1YowZ3L8rF3EkpUHBLXJ/h/4H8+DvoHGtKXKf6Rje+PNSAvQfrcfZiWwvP\n9EwlGj3NUMW4IYTNoXtbkLGns9/B64+crkFtnRtqnxZqnw6N9YhYwpyb5a8LUZhvwoQxBjTZHPj5\nq+Wd/pL7s71mV9qHKh/svYivjl8NXR/eGrSrCfZbO85i15GKDl/jdEhYPj0P3x6vD61+uFxhh8sV\nOSEyGpSYOM7gLzqZoUNWhg5Z6VpoNYM/qQ/fMtReeMtVot7y+SQ0t3gCIQM7ThARUd9TKhRYMjUd\ns/OT8cnBUmw7VIbXPzqJ7YfLsHrZGEzIjpV7iEQkE4YSXWhp9eDAN43Yc7ABJacCLTwV/roTC2bH\nYvZUC7RaIRAmRNZPuHNhLqobbFFvLeisYGbw81tmjsIr753B0ePN8Ng08HmCtSm80McIWLEoHoX5\nJkwab4DZFFkXwqzouajkQOgsdCkYnYCis9FPsL0+H97afga7j1yBx6mE16WA16kMvX14phUfbi0O\n3V4UBWSkakPBQ05gFUSsZegWnoym5SoLNlIQO04QEdFgpNOIuHtRHpZMScdfvjiP/SVV+NXbRzFl\ndALuXZqH1PgYuYdIRAOMoUQYp9PfwnPPwXocCWvhOX50DBbOjsO8mRZY2k38w+snGPQqfLD3Ija+\nfjDq/f7tz35LPsBjF+G2ifjbX5vx3lvHAtdoICh8EXUhkhLUeOiBjC6Dj2iLSva3zkKX8NUO7TVY\nHWi0OiD4xFDRyT2Hq1Fx1QmfywwgcrKjEH0QY9y4bUkmRgW2X6QlayGKw2tSFE3nEhregh0nIjpM\ntO84EXhvbem5EGRUHScCgYNWw44TRETUd+JMWjz8nYlYPiMTWz4/h2/P1aL4fB2WTE3D7QtGwaRX\nyz1EIhogDCUCWm1e/HBDCZqaPQCA7AwtFs6Ow8LZsUhK6H6yFyzI2H6/fzTbEeqbHKiq8sBt08Bj\nU8FjVyI06RYkjM7VoqK5AaLe06EuRDRnx9sXlbQYNBifHYs7F47q6SHpE91tOVAIgE8CJC/gdbWt\nehC8KvzTk2dhd7QreqdQQKn1Qqnxv4kaLxRqHxRKCfEmLX74gzxYm+ydfq/hYLCETNS3uus40bZl\novcdJ7LSdR1qMlhMbSEDO04QEdFgMCrVhJ+tnYqjZ2vx3q5z+PxIBfaXXMVtc3OwfEYGVCKPb4iG\nO4YS8G8N2Lr3HHwqB7RxHiSmArMKDbhzWVLUHQ2i3e8vSRLKKx344kAzvjxUg+OnrLA7gkU/JCg1\nXv9KiBgPkpJEPP2Dyfh///016po7TkaiOTse7IZx58JcvL39DE5dbsD+41dx+nLDgHRtCN9yIEmA\nz6WICCC8TiV8nnbfXwAyUtTIztAiO0MHi0WBP+8+CUH0oasTtVPHJkCrFjHcS8r01HKV5NdVx4nG\nZjecLgFXq23X3XHC3L4IJDtOEBHRECYIAqaNTURBXjx2Ha3Ah/su4r3d57HraAXuWZyHWROSuFqP\naBhjKAH/9oJdRysgxvsfkBY3elzh0F53+/3rGpzYtrsaF0udKD5hRX2jO3RdapIGqRleVLU2QdR7\noFC2beyePj4FRr26T86Of7D3Ar7sZVHJayVJEhqaPLhcbse50la46wywtfhXQ0CKfEHRaAGF3gtJ\n6YbJrEDBeDN+cMcY6DRtf5pOtxefHVN1um1BIQCLp6aPmEl5NC1Xqe+17zgRChys19dxIjVZExYs\ndBI2dNFxgoiIaDgSlQqsmJGJeZNS8L9fXcLOb8rx6ocl2H64DGuWjcHoDLPcQySifjDiQ4m+6mgQ\nvt9f8gFumwiPTQW3TYTPpcQfz1cCAExGEQtmxWLB7ESMylQhKUETVgiy87Pf13t2vD+7NjidPly+\n4m+56e964UBpmR3NLZ6wW4mAIEGpDm698EGp8WLprCT84LbxPbZC7W7bwuIpaVh347hrGvtQFtwy\nRNfO65NgDXScCAUK1uvrOGEJbJswmzrvODEq2wzJ62LHCSIiom7EaFVYvWwMlk7LwPu7z+PwqWo8\n9+Y3mDEuEauW5PEYiGiYGfGhRF90NPB4JJy/aIfaYULzZTu8jsi6ECmpSty8MAUF+UZkZ+igUAgR\n/Wt7Ovt9vWfH++Jn9PkkVNW6/MFDuf/tUrkdV6udkNrN1ZIT1ZgwxozsTB2yM3TITNNgz/EyfHuu\nLixUSQmFKtFMsLltgaLh8UhotgYDhuvvOKFRK2AxiX3WcSIxMQY1Nd1v1yAiIiK/JIsOj945CefK\nm7Dl87M4fLoGR8/W4obpGfjO/BzEaFU93wkRDXojPpS4lo4GkiThcoUDxSesKDrRjJLTLW37wgUR\nmhgfFFon4hIEzJ4Sh7UrxkRVt6Gnyfm1nh3v7c/Y3OLfehEMHi6X23G5wtFh77shRon8sQZkZ+hC\nb1npWui0HQOTB9LGYdXS7ldEdIfbFkYuOTtOdPa3TERERANrdIYZG9ZNx9enqvH+7vP47OsyfHms\nErfPH4Wl09IhKllPiWgoG/GhRLQdDWrrXaEQ4thJKxqa2rYnpKdoUJBvQmG+EZPGGyCqhEE1ce7q\nZ5QkYFRiLPYfbsTlcgcuBVZBhNe8AABRKSA9VRMRPuRk6hBnUfWq6FBfbDngtoXhIZqOE8HQwWZn\nxwkiIqKRThAEzJqQjKljErDjm3L871eX8PbOs/j8SDnuXToaU8cksBgm0RA14kMJoPOtAZNy4jEq\nNhF/eLMMxSeaUXG1bZWBxSRi0ZxYFOabUJBvREJcxz7Kg2niLEkSbpiShcoKD06es8LaLAEeEW6H\nAtvP2rEdpaHbxseqML3AhKx0f/CQnaFDWoqGFf2pW911nGhs9qCp3aqGaDtOJMSpYDF10XHCrILZ\nyI4TREREI4lKVGLl7GwsmJyKD/ddwq6jFfjd1mMYm2nB6mWjMSrVJPcQiaiXGEqgbWvA1JxU7DtU\nj7Pn7fjwm1b4pIsAAK1GgekFplAIkZWuHbRJrN3uRWlFsO6DI1T/odUWPNvs33un1SgwJleHnAxd\nqPVmdoYOhhj+SZCfJPnrM5RdsUd0nAjfLhFsbXk9HScsJhXMZhEWIztOEBERUXSMejUeuHEslk1P\nx3u7zuPbc7V45o3DmDsxGfcszkOcSSv3EIkoSpyBBjQ1u/HEL89CkvyTp7F5MSjMN6Ig34QxufpB\ndybW65VQWe0MFZ4M1n6oqnVF3E4hAKnJGhTkG/0BRKYO2ek6JCWoWf1/BOqs40Rbh4nr7zgRqslg\nbOs4EQwe2HGCiIiI+lpqfAz+z6oCnCxtwJbPz2J/SRUOn67BjTMzccuc7Ig280Q0OPG/NMBkFPHj\nv8uBXqfExHEG6HXy14IIamxyRwQPl8rtKL/i6HBm2mQUUTDBGAoecjJ1yEjTcg/9MBfecSK0XaIv\nOk7k6JGcoIVWg+vqOEFERETU3yZkx+Lp78/E/uNXsXXPBXy0vxR7i67gzoW5WFiYGlXReSKSB0OJ\nAEEQsHhunKxjcLp8KL/iCAUQpWV2lFb4l86HU4kCMtO1yMnQISsjuAVDB4uZbZGGC7fb16GzxPV0\nnNDrFDBfQ8eJ8Na1RERERIOZQhAwf3IqZoxPwrZDl/HJgcv407bT2PFNOe5bOhqTc+N4MoVoEGIo\nIQOfT0LFVTuOFjeGtl+UlttRWeXscBY7OUGNsVPMoeAhO1OH1CQN99sPQQ6nN1SDgR0niIiIiPqH\nRqXE7fNHYVFhGj7YewF7iyvx4ntFmJgTi/uWjUFmkkHuIRJRGIYS/ayl1dOh6GRpub1D9wG9Tonx\nYwzISteGul5kpesG1TYSiiRXxwmLSYTJyI4TRERERN2xGDT4/soJWD49E1t2nUPJxXr84o+HsGBy\nKu5alAuLQSP3EIkIDCX6jMcjoeJqYOtFmR2XK/zv6xrcEbdTKoH0FC3G5pmQkigiO8Nf+yE+VsXl\nZIOAJEloafVGbI9o33EivGbDdXecCFvNwI4TRERERH0vI8mAx1ZPwbELdXj383PYW1yJQyersXJ2\nFm6alQWNmicBieTEUKKXJElCfaM7Ini4XO5AeaWjQ6eCOIsKUyeZ/C03A8UnM1K1UKkU3Ks/gLrr\nOBFa5WDtg44TpshtE+w4QURERDR4TM6NR35OLPYWV+KDPRfwwb6L2P1tBe5elId5k1Og4AlCIlkw\nlOiG3eFFWYXDX3Qy7K2lNXK/v0atwKgsf72HYO2HrAwdTAY+vP2ls44THm8DKq60osl6fR0nIotA\nsuMEERER0XChVCiwZEo6Zk9IxicHS7HtUBn+6+OT2HG4DHcuzEVuugkmvVruYRKNKJw1hyk+aUXJ\naWug64UDV6udEdcLApCSpMHk8UZ/0ckMHbIztEhO1PBseB8I7zgRrNHQZL3+jhORWyd67jhBRERE\nRMObTiPi7kV5WDIlHX/54gL2l1zFb/9SDAAw6FRIi9cjLSEGqfExgfd6xBo1PDFF1A8YSgQ0Wz3Y\n+Kuzoc+NBiUmjTf4Vz4ECk9mpmmh1XDy2hsOp7etJoPV0ycdJywmFbIzdDAbIwtAZmUaIUgedpwg\nIiIioqjEmbR4+Dv5uHFmJg6drEJlnQ1X6lpxtqIJZ8qbIm6rVSsDIYUeafExSE2IQVq8HglmHU9Q\nEl0HhhIBJqOIJ3+SB6VCQFaGDrFmkUloJyRJgs3uQ5O17zpOmIx903GCdTqIiIiI6FpkpxiRnWIM\nfe72eHG13o4rta2orGsNvLfhcpUVFyubI75WJSqQEqdHamB1RTCwSI7VQVTyJBlRTxhKhJleYJZ7\nCLKQq+OExaSC0ShCyWSZiIiIiAYRlahEZpIBmUmGiMs9Xh9qGu3+FRWhwMKGyvpWlFW3RNxWqRCQ\nFKsLra5IjfcHFinxemhUXH1N8vJ4fbA7PbC7vLA7PP6PnR4olQIm5cYPaOFXhhLDVFQdJ4Jhg9UN\nbw87J3rqOBFqbWlWwaBnxwkiIiIiGn5EpQKp8f5aE9PGJoYu90kS6pscuBIeVtS1orLWhso6G46c\nabsPAUC8Wdu2qiKsfoVey+kZdU+SJLg9Pn+YEAgSbE5PW7DQ/vLQmzfsYw9cnq5XtD/1vRkYlWoa\nsJ+Jf/VDSGcdJ5rCVzWE1WzoTceJvJyYdh0n/IGDxaTy121gxwkiIiIioi4pBAEJFh0SLDoU5MWH\nLpckCU2tLlTWtvoDi7rW0MfF5+tQfL4u4n7MBjXSAisqQqsrEmJg1Kt4LD4MSJIEh8sLh8vbLjBo\nCw66ujw8ZPD2NNHrhKhUQK9RQqcREWvUQKcRA2/+y/QaEVq1iDiTBlnJhp7vsA8xlJBZZx0nQmFD\nX3WcCNRkMBvZcYKIiIiIaKAIggCLQQOLQYMJOXER17XY3aisaw1tBQkGFidLG3CytCHitjFaMaIb\nSLA7CDuCDCyvzwebwx8O2Bye0MetDjfsgY99goCGRnvYaoWwFQouD6Te5wnQqJTQaZQw6lVIitWF\nAoVgyKDTiNCpxcjLtZGXd1ebT24MJfpBRMeJiGCh7WNrqxd19a5ed5wIBg3+FQyqUKcJdpwgIiIi\nIho6DDoVxmRYMCbDEnG5w+VBZZ2trV5FoNDmuYomnG3XEUSjViItXh/YUqJHRooJTocbalEJjUoB\ntUoJtartY41KCbVKAaViZM4ZgisVWh1u2ALbHVrDwgVb4PK20MEdCB38lzldPc/dwgkAtIGQINak\nQZomBnqNGLlKQS2GViqEr1wIv81w/30xlIhCsONEMFDoi44TFrMKifEqmI3X13GCiIiIiIiGD61a\nxKhUU4c9/W6PD1UNtlAnkGDtirLqFlys7F0HOqVCCAUU4WGFP8zoeLlG7DzcUItKaNRKqMWOl/dX\njTmX29tupYI/SAgGB3aHf+VCZ7exOXu3UkEA/IGBVkRyrA56jYgYrQo6rRj4WIReq4I+cBu9VkR6\nihkOmxM6jQiNWjmgBSOHKoYSAZIkYd+hBpSW2wek40RKsontK4mIiIiIKCoqUYGMRAMyEiP3+3t9\nPtQ2OnClrhVKlYja+la43D443V643N62jz3eiMudbl/gvRdWmwtOlw++a9lb0M14O4QVwY9FReCy\nQOgR+FipEPxbHsKCBXtY4GBzeODxdn8CuD2NSgm9VoTFoEFaQkxYgBAZJug1Kui1gaBB479eq+l9\nqJCYaOQ8r5cYSgRYW7z4zauXIi5jxwkiIiIiIhrMlAoFkuP0SI7TX/eE2OP1tQUWHi+cLi9cnrbw\nwhUWZLg8vsD1kWFHZ5fbHG40tPjgcnnR29hDqRBCIUK8SRsRHOi0/pUL7cOFGK0YWs0gKrnqfLBj\nKBFgMor49dPj4XT5Qqsc2HGCiIiIiIhGClGp8Hdp0PbP/UuSBI/XF7FKI3wlh9crQRe+LUIrQi0q\nOCcb5hhKhMnL0cs9BCIiIiIiomFJEASoRCVUohLQqeQeDg0SXMtCRERERERERLJgKEFERERERERE\nsmAoQURERERERESyGDQ1JZ577jkUFRVBEARs2LABBQUFcg+JiIiIiIiIiPrRoAglDh06hNLSUmzZ\nsgXnz5/Hhg0bsGXLFrmHRURERERERET9aFBs39i/fz+WL18OAMjLy0NTUxNaWlpkHhURERERERER\n9adBsVKitrYWEydODH0eFxeHmpoaGAyGTm8fG6uHKCoHanj9JjHRKPcQhh0+pn2Pj2nf4uPZ9/iY\n9j0+pkRERDRQBkUo0Z4kSd1e39BgG6CR9J/ERCNqaqxyD2NY4WPa9/iY9i0+nn2Pj2nf6+kxZWBB\nREREfWlQbN9ISkpCbW1t6PPq6mokJibKOCIiIiIiIiIi6m+DIpSYP38+tm3bBgAoKSlBUlJSl1s3\niIiIiIiIiGh4GBTbN6ZNm4aJEydizZo1EAQBGzdulHtIRERERERERNTPBkUoAQCPP/643EMgIiIi\nIiIiogE0KLZvEBEREREREdHIw1CCiIiIiIiIiGQhSD313yQiIiIiIiIi6gdcKUFEREREREREsmAo\nQURERERERESyYChBRERERERERLJgKEFEREREREREsmAoQURERERERESyYChBRERERERERLJgKCGD\nM2fOYPny5XjzzTflHsqw8fzzz2P16tW455578Nlnn8k9nCHNbrfjxz/+MR588EHce++92LVrl9xD\nGjYcDgeWL1+OrVu3yj2UIe/gwYOYM2cO1q1bh3Xr1uGZZ56Re0hD3ocffojbb78dd999N3bv3i33\ncIaM5557DqtXr8aaNWtQXFws93BGJB4DDA58jZMXn8Pl19raih/96EdYt24d1qxZg71798o9pCFD\nlHsAI43NZsMzzzyDuXPnyj2UYePAgQM4e/YstmzZgoaGBtx111248cYb5R7WkLVr1y5MmjQJDz/8\nMCoqKvCDH/wAS5culXtYw8Lvf/97mM1muYcxbMyaNQu//e1v5R7GsNDQ0ICXX34Zf/nLX2Cz2fDS\nSy9hyZIlcg9r0Dt06BBKS0uxZcsWnD9/Hhs2bMCWLVvkHtaIwmOAwYOvcfLhc/jg8Ne//hWjRo3C\nY489hqqqKnzve9/Dp59+KvewhgSGEgNMrVbjtddew2uvvSb3UIaNmTNnoqCgAABgMplgt9vh9Xqh\nVCplHtnQdMstt4Q+rqysRHJysoyjGT7Onz+Pc+fO8SCBBqX9+/dj7ty5MBgMMBgMXHkSpf3792P5\n8uUAgLy8PDQ1NaGlpQUGg0HmkY0cPAYYHPgaJy8+hw8OsbGxOH36NACgubkZsbGxMo9o6OD2jQEm\niiK0Wq3cwxhWlEol9Ho9AOD999/HokWLeDDSB9asWYPHH38cGzZskHsow8KmTZuwfv16uYcxrJw7\ndw6PPPII7r//fnz55ZdyD2dIKy8vh8PhwCOPPIK1a9di//79cg9pSKitrY046IyLi0NNTY2MIxp5\neAwwOPA1Tl58Dh8cbr31Vly5cgUrVqzAgw8+iJ/97GdyD2nI4EoJGjZ27NiB999/H//1X/8l91CG\nhXfeeQcnT57ET3/6U3z44YcQBEHuIQ1ZH3zwAaZMmYLMzEy5hzJs5OTk4Ec/+hFWrlyJsrIyfPe7\n38Vnn30GtVot99CGrMbGRvzud7/DlStX8N3vfhe7du3i/30vSZIk9xBGLB4DyIevcYMDn8Pl97e/\n/Q1paWl4/fXXcerUKWzYsIE1VqLEUIKGhb179+KVV17Bf/7nf8JoNMo9nCHt+PHjiI+PR2pqKiZM\nmACv14v6+nrEx8fLPbQha/fu3SgrK8Pu3btx9epVqNVqpKSkYN68eXIPbchKTk4ObTXKyspCQkIC\nqqqqeFB8jeLj4zF16lSIooisrCzExMTw/z4KSUlJqK2tDX1eXV2NxMREGUc0MvEYQF58jZMfn8MH\nhyNHjmDBggUAgPHjx6O6uprbyaLE7Rs05FmtVjz//PN49dVXYbFY5B7OkHf48OHQmaba2lrYbDbu\nibtOL774Iv7yl7/g3Xffxb333otHH32UB2vX6cMPP8Trr78OAKipqUFdXR3rn1yHBQsW4MCBA/D5\nfGhoaOD/fZTmz5+Pbdu2AQBKSkqQlJTEehIDjMcA8uNrnPz4HD44ZGdno6ioCABQUVGBmJgYBhJR\n4kqJAXb8+HFs2rQJFRUVEEUR27Ztw0svvcQX0uvw8ccfo6GhAT/5yU9Cl23atAlpaWkyjmroWrNm\nDZ544gmsXbsWDocDTz/9NBQK5pc0uCxbtgyPP/44du7cCbfbjV/84hfcunEdkpOTcdNNN+G+++4D\nADz55JP8v4/CtGnTMHHiRKxZswaCIGDjxo1yD2nE4TEAEZ/DB4vVq1djw4YNePDBB+HxePCLX/xC\n7iENGYLEDZBEREREREREJANGaEREREREREQkC4YSRERERERERCQLhhJEREREREREJAuGEkRERERE\nREQkC4YSRERERERERCQLhhJERERERNRvysvLMWnSJKxbtw7r1q3DmjVr8Nhjj6G5uTnq+1i3bh28\nXm/Ut7///vtx8ODBaxkuEQ0whhJERERERNSv4uLisHnzZmzevBl7mZLVAAAHqklEQVTvvPMOkpKS\n8Pvf/z7qr9+8eTOUSmU/jpCI5CLKPQAiunYHDx7Ef/zHf0Cj0WDx4sU4cuQIrl69Co/HgzvuuANr\n166F1+vFc889h5KSEgDAnDlz8JOf/AQHDx7EK6+8gpSUFBw7dgyFhYUYN24ctm/fjsbGRrz22mtI\nSEjAk08+iYsXL0IQBEyYMAEbN27scjxbt27F9u3bIQgCqqqqkJubi+eeew4qlQqbN2/GJ598Aq/X\ni9zcXGzcuBG1tbX4h3/4B4wdOxZjxozBI4880uXP+eKLLyItLQ0VFRUwGo144YUXYDAY8PHHH+PN\nN9+EJEmIi4vDs88+i9jYWEybNg2rVq2Cz+fDww8/jMcffxwA4HA4sHr1aqxatQoXL17Exo0bIUkS\nPB4PHnvsMcyYMQPr169HUlISzpw5g4sXL2LVqlV4+OGH+/4XSERENELNnDkTW7ZswalTp7Bp0yZ4\nPB643W48/fTTyM/Px7p16zB+/HicPHkSb7zxBvLz81FSUgKXy4Wnnnqqw/GO3W7HP/3TP6GhoQHZ\n2dlwOp0AgKqqqk6PAYho8GAoQTTEHT9+HDt37sSWLVtgMpnwb//2b3A4HLjllluwcOFCFBUVoby8\nHG+//TZ8Ph/WrFmDefPmAQCKi4vxwgsvQKfTYebMmZg5cyY2b96M9evX49NPP8WsWbNQVFSETz75\nBADw7rvvwmq1wmg0djmeY8eO4bPPPoNOp8ODDz6IPXv2IDExEdu3b8ef//xnCIKA5557Du+99x6W\nLl2K8+fP49///d+Rm5vb7c9ZUlKCF198EcnJyfjpT3+KrVu3YsWKFXjllVfw/vvvQ61W44033sCr\nr76K9evXw2azYfHixZg/fz7++7//G7m5ufiXf/kXOJ1OvPfeewCAZ599Fvfffz9WrlyJ06dP49FH\nH8XOnTsBAGVlZXjllVdQUVGB22+/naEEERFRH/F6vdi+fTumT5+On/70p3j55ZeRlZWFU6dOYcOG\nDdi6dSsAQK/X480334z42s2bN3d6vPPVV19Bq9Viy5YtqK6uxg033AAA+OSTTzo9BiCiwYOhBNEQ\nN2rUKFgsFhQVFeHuu+8GAGi1WkyaNAklJSUoKirC3LlzIQgClEolZsyYgWPHjmHSpEnIy8uDxWIB\nAFgsFkydOhUAkJycjJaWFuTl5SE2NhYPP/wwli5dipUrV3YbSADAtGnToNfrAQBTp07F+fPnceHC\nBVy+fBnf/e53AQA2mw2i6H/6MZvNPQYSADB69GgkJyeHvsfJkyeRkJCAmpoaPPTQQwAAl8uFjIwM\nAIAkSZg2bRoAYOHChXjrrbewfv16LF68GKtXrwYAFBUV4YUXXgAAjBs3Di0tLaivrwcAzJo1CwCQ\nnp6OlpYWeL1eLhslIiK6RvX19Vi3bh0AwOfzYcaMGbjnnnvw29/+Fk888UTodi0tLfD5fAAQeh0P\n19XxzpkzZzB9+nQAQFJSUujYoqtjACIaPBhKEA1xKpUKACAIQsTlkiRBEIQuLwfQYZId/rkkSdBo\nNHjrrbdQUlKCXbt2YdWqVXj77beRlJTU5XiCBxLB+wAAtVqNZcuW4emnn464bXl5eWj8PQneV/jP\noFarUVBQgFdffbXTrwned15eHj766CN8/fXX+PTTT/HGG2/gnXfe6fDYAG2PYzA06ez7ExERUe8E\na0qEs1qtoS2enensGKGr4xpJkqBQtJXLCx6PdHUMQESDBwtdEg0ThYWF2Lt3LwD/SoSSkhJMnDgR\nU6ZMwVdffRWqm3Do0CEUFhZGdZ/Hjh3DX//6V0ycOBE/+tGPMHHiRFy6dKnbrykqKoLdbockSThy\n5AjGjRuHadOmYc+ePWhtbQUA/PnPf8bRo0d79fNduHAB1dXVAIBvvvkG48aNw+TJk1FcXIyamhoA\n/iWaO3bs6PC1//M//4Njx45h3rx52LhxIyorK+HxeFBYWIh9+/YBAE6cOAGLxYLY2NhejYuIiIiu\njdFoREZGBr744gsAwMWLF/G73/2u26/p6ngnLy8vdGxRWVmJixcvAuj6GICIBg+ulCAaJtatW4en\nnnoKDzzwAFwuFx599FFkZGQgLS0NR44cwf333w+fz4fly5dj+vTpUbXJysrKwssvv4wtW7ZArVYj\nKyur06WU4caOHYuf//znKC8vx5gxY7BgwQIolUo88MADWLduHTQaDZKSknD33Xejrq4u6p9v9OjR\n+M1vfoPS0lKYzWbceeed0Ov1eOKJJ/D3f//30Ol00Gq12LRpU6dfu3HjRqjVakiShIcffhiiKOKp\np57Cxo0b8fbbb8Pj8eD555+PejxERER0/TZt2oRnn30Wf/jDH+DxeLB+/fpub9/V8c4dd9yBzz//\nHGvXrkVGRgYmT54MoOtjACIaPASJa5KJqI9s3boVX331FX7961/36f0Gu2+8/fbbfXq/REREREQk\nL8aERNQr27dvx5/+9KdOr7vrrruu+X6PHj2K3/zmN51et2bNmmu+XyIiIiIiGry4UoKIiIiIiIiI\nZMFCl0REREREREQkC4YSRERERERERCQLhhJEREREREREJAuGEkREREREREQkC4YSRERERERERCQL\nhhJEREREREREJIv/H4JGoOstETobAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i5Ul3zf5QYvW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "Leaz2oYMQcBf", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] / california_housing_dataframe[\"population\"])\n", + "\n", + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZjQrZ8mcHFiU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Identify Outliers\n", + "\n", + "We can visualize the performance of our model by creating a scatter plot of predictions vs. target values. Ideally, these would lie on a perfectly correlated diagonal line.\n", + "\n", + "Use Pyplot's [`scatter()`](https://matplotlib.org/gallery/shapes_and_collections/scatter.html) to create a scatter plot of predictions vs. targets, using the rooms-per-person model you trained in Task 1.\n", + "\n", + "Do you see any oddities? Trace these back to the source data by looking at the distribution of values in `rooms_per_person`." + ] + }, + { + "metadata": { + "id": "P0BDOec4HbG_", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 390 + }, + "outputId": "8658e529-c2f4-4fb2-8c9d-7556a25a3285" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "plt.figure(figsize=(15, 6))\n", + "plt.subplot(1, 2, 1)\n", + "plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAFlCAYAAACp5uxjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt0W9WZP/yv7rJi2ZZkKeRGCUmc\nUHI1hkJogAQHGjp03JIE6gldFMp0VmAWMwsKKfDSodPfUKBl9fJjpi1D2kzfMrg1XazMOwxJQwJN\n2yQ0cciFAsZhgFycWLLli2zdLOn9w0jxRefodi7e8vezVhe1Lucc7ZbznL33s59tSKVSKRAREenE\nqPcFEBHR1MZAREREumIgIiIiXTEQERGRrhiIiIhIVwxERESkK7OeJ/f7B4r6nsvlQDA4pPDVTB1s\nv9Kw/UrD9iuNyO3n9Tqzvi5kj8hsNul9CUJj+5WG7Vcatl9pyrH9hAxERERUPhiIiIhIVwxERESk\nKwYiIiLSFQMRERHpioGIiIh0xUBERES6YiAiIiJd6VpZQQnReAJ9oSiqK204ea4fL71xAu+d7C/6\neM4KIy6eVQNPlQ0XXVCNZfNr4XRYAQADQzGc6grB56pAIplChc2McHQ488/qShtsluyLzcZ/V+6z\nWhrdfpPherQwFX8z0WSWMxAdOHAA9913HxYsWAAAqKurw9e+9jU8+OCDSCQS8Hq9ePrpp2G1WrF9\n+3Zs27YNRqMRGzduxIYNG1S78EQyiZbdHTjc7kd3f1Sx4w6EkzjS0fPJX50AgAvcdphMJnQGBpEc\ntZ+t0QAkU+f/6XZaUb/Qh1vXzIfJONLZjA0P4//8RxtOdYUweitcT5UNK+q8Yz6rpdHt19MfhVvn\n69HCVPzNRCLIq0d0xRVX4Ec/+lHm729+85tobm7GunXr8Mwzz6C1tRVNTU149tln0draCovFgvXr\n12Pt2rWoqalR5cJbdndg18FTqhx7vLM9kayvp4NS+p89A7HMNTU31gEA/s9/tOFkV2jCd7v7oxM+\nq6Xx7af39WhhKv5mIhEU9Rh44MABXH/99QCA1atXY9++fThy5AiWLFkCp9MJu92O+vp6tLW1KXqx\naZHYMA63+1U5thIOtwcQjScwMBTDaf/EIJTts1qSaz89rkcL0Xhiyv1mIlHk1SPq6OjA3/3d36Gv\nrw/33nsvwuEwrNaReROPxwO/349AIAC32535jtvtht8vHyxcLkdRBfw6A4OKDscpLTgQgclqwcBg\nfMxQntxnvbXTtLk4jLRfz0D29tPjerSg9G+WqiJM+WH7labc2i9nILroootw7733Yt26dTh58iS+\n8pWvIJE4//SYSmW/00q9Plqxpcxd1RWwW42IxJJFfV9tLqcdiVgcTqsxM3+U67PFbolR1PVVV8Dt\ntGUN5npcjxYS8YRiv9nrdZZd+2iJ7Vcakduv6G0gpk+fjptuugkGgwEXXnghamtr0dfXh0hkZN7k\n3Llz8Pl88Pl8CAQCme91dXXB5/MpdPnZGFQ8dmlW1NXCZjHB6bBilrcyr89qyW41Y0Wdd9JcjxZs\nFtOU+81EosgZiLZv347nn38eAOD3+9Hd3Y0vfelL2LFjBwBg586dWLVqFZYtW4Zjx46hv78fg4OD\naGtrQ0NDgyoXHeyPIhrTbkz/Arcds7zTYBwX+9J/p//pdtrQ2DAbt66Zn/nMI1+pxxxf5YSw6ama\n+Fkt3bpmPhobZsNTZYfRAHiq7Lpejxam4m8mEoEhlWMMLRQK4YEHHkB/fz/i8TjuvfdeXHLJJXjo\noYcQjUYxc+ZMPPHEE7BYLHj11Vfx/PPPw2AwYNOmTfjCF74ge/Jiu5fO6gr83RO7VJ8n+pvG+bji\n0xeU3Tqi0V37qbimptTfLPLQyGTA9iuNyO0nNTSXMxCpqdjG9Hqd+OF/HlI9ffsbty3HJRe5c39Q\nMCL/H3kyYPuVhu1XGpHbTyoQCVtZIT2ccrg9gOBABNXTbAiGlOshGQzAbJ/8/A4REZVO2EBkMhrR\n3FiHW66dh75QFBU2Mx7/+ZvoGYgpcvzpLkdmSI6IiNQjfF0Tm8UE3ydBY1qFcoHjm7fXK3YsIiKS\nJnwgSovGExgYzF6Kp1B2qxHWIhbaEhFR4comEPmDQ+gdHFbkWJFYEj39ygQ1IiItReMJdAWHhCpb\nJewcUVq6ovLBd7sUPe6ugydx+42LFD0mEZFaRK4uL3wgUqsK99ET3YjGE1NmbQ0RiU3k6vKTO0zm\nIFdRuVQ9A1H0lZgOLmIXmYjEI3p1eaF7RH2hKHpUqq5gtRhR6bAU9V2Ru8hEJB65e2FwIIK+UBQ+\nl0Pjq8qf0HfF6kob3FU2VY4djSXx8t7/Leq76S5yd38UKZzvIrfs7lD2IomIIH8vdDntqK5U5z6p\nFKEDkVxFZSUU06UVvYtMROIRvbq80ENzwPlSP4fe7UIwpExVhbRiurSid5GJSEzjy565nHasqKsV\norq88IEoXernmmUz8djzbyp67JpKW8Fd2nQXWWoDtsneRSYiMY0veyZSRX2hh+ZGq55mnbBfUKnq\nLqwp+H9I0bvIRCS2dNkzke41wveI0sLRYdktuYuxpn5mUd8TuYtMRKS1sglE1ZU2VE+zoG8wrtgx\n7dbi0rdF7iITEWmtLAJRIpnES2+cQETh7cOrp5VWzTvdRSYiImllMUeUXrcTjScVPW4orFzvioiI\nshM+EKlZ5mfXIXW3IiciojIIRGqW+Tna0c0FqEREKhM+EKlZ5ie9AJWIiNQjfCBSs8yPy1n4glYi\nIiqM8IEIAL5w9adgUuGXDEbieOmNE0gklU2CICKi88oiEL342gkkVIgVkViSVbOJiFQmfCCKxhP4\ny4c9qp6DVbOJiNQjfCDqC0XRq3DV7fEKTVrgzqxERPkTvrJCdaUNLqcNwQH1stvyrZrNnVmJiAon\n/N3RZjHhsoXqbY4H5F81mzuzEhEVTvhABAA3XfkpVY5rNABzfJVYf93FOT/LnVmJiIpTFoGoMzCo\nynGTKeBkVwi/2XMi52fz2ZmViIgmKotANNtXqerx/3jsrGSPJp2YUGEzS1Z4KGRnViY6ENFUI3yy\nAgBYLSaYjAYklN4Z7xORWAL+3jBme88HvGyJCQ67JesW4fnMMTHRgYimqrIIRD39EdWCUEZq7PHT\niQlp3f1RdPdHMcdXiaHIcME7s2Y7Xvrv5sY6hX4EEdHkUxaBSO3tGuxWE7yjNriTS0wYigzjsTsa\nEI4O570za65Eh1uunccdXomobAk/5hONJ3C0I6DqOT5zqW9MIMiVmBCODsPncuQdPJjoQERTmfCB\nSM39iNKuWz5rzN9yW08Ukpig1vGIiEQifCCqrrShRuUbtclgGPO33NYT+S5+VfN4REQiEX6OyGYx\nYXldLfa0nVbn+GbjmPmhtHQCwuH2QMGJCdkofTwiIlEIH4gA4JZrL8bv3zqtylYQV4ybH0ozGY1o\nbqzDLdfOQ18omndighSlj0dEJIqyCEShobgqQQgAPneFfPkgm8UEX5YeU7GUPh4R0WQn/BwRAFTY\n1ImnRgOw6+BJ2R1aWQmBiKg0ZdEjCkeHVTluMgXsOXwGRqMBf7N24Zj3WAmBiEgZZXHHrK60odqh\n3nxKtlpz3PKBiEgZZRGIDIYUQhH1hsbStebSuOUDEZFyyiIQfWfbIdWSFdJe2fdhZq6IlRCIiJQj\nfCAaGIrhtEr7EY22/y9dmWE3VkIgIlKO8IHoVFdofGFs1aSH3VgJgYhIOcJnzc32VcJoGMlwU1t6\n2M3ncrASAhGRQoQPRE6HFdM9DnQGhlQ/l9Viygy7sRICEZEyhB+aA4Db1szT7dzpSggMQkRExSmL\nQHTRBdUwGnJ/rlTRWIIZcURECiuLQOR0WDWpz+auYkYcEZHS8gpEkUgEjY2N+O1vf4vOzk7cfvvt\naG5uxn333YdYLAYA2L59O2655RZs2LABv/nNb1S96NHStd7uWLcw94dLxIw4IiLl5ZWs8G//9m+o\nrq4GAPzoRz9Cc3Mz1q1bh2eeeQatra1oamrCs88+i9bWVlgsFqxfvx5r165FTU2Nahc+vtZb9TTl\n8y6qHGaEwsPMiCMiUlHOu/eJEyfQ0dGB6667DgBw4MABPP744wCA1atXY+vWrZg7dy6WLFkCp9MJ\nAKivr0dbWxvWrFmj2oWna72l9Q4qX/j04pnVuO36BcyIIyJSUc6huSeffBJbtmzJ/B0Oh2G1WgEA\nHo8Hfr8fgUAAbrc78xm32w2/P3stNiVEYsOStd6U9NHZfgYhIiKVyfaIXn75ZSxfvhxz5szJ+n5K\noqSB1OvjuVwOmM2F3+Q7A4PoGVA/ey0YisNktcBbO031c2nN63XqfQlCY/uVhu1XmnJrP9lA9Prr\nr+PkyZN4/fXXcfbsWVitVjgcDkQiEdjtdpw7dw4+nw8+nw+BQCDzva6uLixfvjznyYPB4hahuqor\n4Hba0C1ReFQp1dMsSMTi8PsHVD2P1rxeZ9n9Ji2x/UrD9iuNyO0nFUBlh+Z+8IMf4KWXXsKvf/1r\nbNiwAZs3b8bKlSuxY8cOAMDOnTuxatUqLFu2DMeOHUN/fz8GBwfR1taGhoYG5X/FJ+xWs2StNyXV\n13k5LEdEpLKCU83+/u//Hg899BBaWlowc+ZMNDU1wWKx4P7778ddd90Fg8GAe+65J5O4oJbRtd66\n+yOqnOPmq+eqclwiIjrPkMp3QkcFxXYvR3dNo/EEftx6BH/5qFfJSwMALJ9fi3u+tLjstv4WuWs/\nGbD9SsP2K43I7VfU0JwIEskUTpzpV+XYb3UEcm79nV5Qy11ZiYiKI3z17f/8XTuicfW2Zz3cHsAt\n186bMFc0fkGtu8qGFXVe3Lpmftn1oIiI1CT0HTMaT+Ddj4OqnkNq6+/0gtru/ihSALr7o9h18FTO\nHhQREY0ldCDqC0XRo3IKd7atv6PxhOSC2vQurkRElB+hA1F1pQ3uKnWrYS+YUz3hNbkAKNWDIiKi\n7IQORDaLSfX1RPvfPod//PEf8KvfvYdEcmQuSi4AZutBERGRNKEDETCynuj6y2apeo5ILIHXDp3O\nzP/IBUBuFUFEVBjhA5HJaEQ8oV7W3GiH2/2Z+Z9b18xHY8NseKrsMBoAT5UdjQ2zuVUEEVGBhE/f\njsYTeKu9W5Nz9QxE0ReKwudywGQ0ormxDrdcOw99oSirdBMRFUn4QNQXiqJ/KKbJudxO24T5H5vF\npMk25URE5Ur4obnqShs8KmfOpa1gEVQiIsUJH4i0yJwDgGuWzuD8DxGRCoQPRADQtOpiqN1Puemq\nT7F0DxGRCsriztrTH4GatQxclVauDSIiUklZBKKfbX9b1eNfcpF7UswNsdI3EZUj4bPmBoZiOBMY\nVO34dqsJzWsXqHb8fLDSNxGVM+ED0amuEJIqbu332aUz4LBZEI0ndFsvlK70nZau9A0AzY11ml4L\nEZHShA9Es32VMABQIxaZjAZ8/qoL8cKudt16I7kqfWfbK4mISCTCByKnwwqf245zPRHFj51IpvDU\nr95CZ89Q5jWteyP5VPrmgloiEllZTDA0N6o3h3N2VBAaTW7fISWTCtSo9B2JDTPpgYgmDeF7RABw\n0QUT9wxSitSQX7beiBpJBekFu6PniNIKrfSdvr6jJ7rhD4aZ9EBEk0JZBCI1GQ3ImgzhctpRYTOj\nKziUSWBQK6kgXdHhcHsAwYEIXE47VtTVFlzpgUkPRDQZCR2I0k/4f37nnGrncNjNCIWHs77+7V/8\nOdPzWTq/FkfeVyepQIlK30x6IKLJSuhANP4JXw2h8DDm+CoxFBnO9EYcdjNOdoUyn+nuj2JP22nJ\nYyiVVFBKpW8mPRDRZCVsIJJ7wlfaYDiOe764GBazEdWVNnz7F3/O+jm5YTy9SwSlkx66swSjyXB9\nRDR1CRuI5J7wldYzEMV3/uMQ3FU2LLzQJXleqYW1k2H7cCWTHoiIlCRsIJJ7wldDCiNDcH86fhZ2\nqwmR2MTUZ0+VDUvneXD0RE9JSQVqSV/H0RPdCPSGJ931EdHUJGwgknvC18tgJA6TyYjH77ocoaH4\npNs+PJ308PVbKnDiw+5Jd31ENDUJvXjk1jXz0dgwW/MfEY0lcPXiC2C3jr2JR2JJ7Dp4Ci/v/V/4\nXI5Je5O3W82T+vqIaGoROhCZjEbccu08WM0GTc/rctqw+rJZcNiy38jlqi4QEdFYQgciYCRpITKs\nYvntLIaiw/jOtkPoGYhlfb+7P4Ke/pHad9xDiIhInrBzRGkVNu1/QrZEhfF2HvwYFpOJewgREeUg\nfCDqC2mTNVeoA293jQlYUuV09NzniIhoMhA+EMGg7fxQvqR6TelyOmaTgbuuEhGhDAKRt6ZCtY3x\nxrNbjYjEkiUdI11OZ9ehUyxASkSEMkhWAACzBiNadqsJn7l0ekGfzyZdtVuuACkTG4hoKhE+EPWF\notDivh2NJ3BDw4VobJgNT5UdBsNIbbls7FYjPNXZa7etqKtFODqcswApEdFUIXwgqq60Sa7nUZIB\nwK6DJ3Hrmvn4zt2fwQO3LpesLReJJXHaP3Fn1zm+Sty6Zr4qu64SEYlK+EBks5hQN8el+nmSKWDP\n4TNo2d0Bm8WEi2dVwyMRTKR6SkORYQwnUpnyRNmwACkRTTXCByIA+OtVczU7V3oORy6YSPWURg+7\npcsTearsMBoAT5UdjQ2zWYCUiKYc4bPmAMDt1G4oa/Qmctm28K6wmXDKP5j1u6OH3ZTYdZWIqByU\nRSDScnJfLphU2MySm+YBwNL5ngnBppRdV4mIykFZDM1puag12xxOOpjIZcMBQONls9W+PCIi4ZRF\nIKqeZlX9HO4qGxobZqNp1VzJIqZy2XCeKjvcVXa1L5OISDhlMTQXCsdVP8emxjoc+7AH/89zb6I3\nNFKSZ+n8WjReNhvuKjtsFhO34yYiKkJZBKJdB0+qenwDgJd+/wFOB84nIXT3R7Gn7TT2tJ2GZ1Sd\nuGwJDNyOm4hImvCBKBpP4HB7l6rncNhNY4LQeOPrxDEbjogof8LPEfl7w+gdHFb1HPE8N94bXScu\nncCgRxDiZnxEJBLhe0Q/2/626ueIDedXcXv0GiM9JJJJbi1BRMIROhANDMVwRmbITGt614lr2d3B\nrSWISDhCPyaf6gpJltPRg56ZcSNzZdxagojEI3QgmlE7Te9LADBS5HT1ipm6Zsb1haLcWoKIhJRz\naC4cDmPLli3o7u5GNBrF5s2bsWjRIjz44INIJBLwer14+umnYbVasX37dmzbtg1GoxEbN27Ehg0b\nVL34V/Z/pOrx85UCcOMVF+o6D5NeTNudJRjpPWRIRCQnZyDas2cPFi9ejLvvvhunT5/GnXfeifr6\nejQ3N2PdunV45pln0NraiqamJjz77LNobW2FxWLB+vXrsXbtWtTU1Khy4XJDUVpzT4IbPRfTEpGo\ncj7C33TTTbj77rsBAJ2dnZg+fToOHDiA66+/HgCwevVq7Nu3D0eOHMGSJUvgdDpht9tRX1+PtrY2\n1S5cbihKa0vnuVW/0eeTks2tJYhIRHlnzd122204e/YsfvKTn+CrX/0qrNaR+m4ejwd+vx+BQABu\ntzvzebfbDb9fvR5LdaUNLqcVPQMx1c6Ri9EwsvfQ0RPdeGFXu2SadDSeKHpxayEp2SajEbdcOw/X\nLJsJpFLwariOqZTfSERTW96B6MUXX8Q777yDb3zjG0ilzqeqjf7vo0m9PprL5YDZXPhNK5FI4n/e\nPIlwLL/1PWpJZ+yl06QdFVbc3bQk834ikcTW/3ob+493wt8bhremAlcunoE7b74UJlN+80nPvXws\na0p2qefyep1F/uqxlPiNIlKq/aYqtl9pyq39cgai48ePw+PxYMaMGbjkkkuQSCQwbdo0RCIR2O12\nnDt3Dj6fDz6fD4FAIPO9rq4uLF++XPbYweBQURf98h8/xPa9HxT1XTX98cgZrLtiTqZH8MKu9jFB\npCsYxva9H2AoHMtrXU80nsAfj5xW/FxerxN+/0DBvy+bUn+jiJRsv6mI7VcakdtPKoDmfGQ9ePAg\ntm7dCgAIBAIYGhrCypUrsWPHDgDAzp07sWrVKixbtgzHjh1Df38/BgcH0dbWhoaGBgV/wohoPIH9\nxzsVP64SRqdJK7GuJ9+UbL3WEHHtEhEpIWeP6LbbbsMjjzyC5uZmRCIRPPbYY1i8eDEeeughtLS0\nYObMmWhqaoLFYsH999+Pu+66CwaDAffccw+cTuW7j32hKPy9YcWPq4TRadL5BJFcpYDyTclW4lzF\n0Ou8RFRecgYiu92O73//+xNe//nPfz7htc997nP43Oc+p8yVSaiutMFbU4GuoHbByICRtUK5jE6T\nVmJdT74p2XqtIeLaJSJSgnCzyTaLCVcunqHpOeWCkAHZ06TTQSSbQtb15JOSrdS5CqXXeYmovAhZ\n9PTOmy/FUDiGg+92oTekfvq2zWJEND4xQ89TZcN965dKpkkrsUmeyWjMa38jvTbka1p1McKRYbz7\ncRDBgSg3AiSighlS+eRZq6TYzI901sgHnX34zrZDCl/VRHarCZHYxIn3xobZeWe/abXGJp9zKZF1\nM359k8tpxaJPudG8dgEcNktJx57sRM5amgzYfqURuf2KzpqbzGbVVsJuVX/4JxpL4OrFFxRdsUDL\nTfK0Old6y4nu/ihSAHoGYvjT8bN4ee//qnpeIio/Qg7NpdksJlx+iRd7j5xV9Tw1lVZsunEhALB6\nAHKnbd9y7bwp3T5EVBihe0QAcPmi6aqfw2YxZf6TT2+j3Lfq5pYTRKQkoXtEAPCp6eqXughF4hgY\nisHpsMrOwUyVrbqZtk1EShI+EDnsZlgtBsTi6uVchMLD+NbWN+F0WDEYjiE4EMsaZErdqluUwqHc\ncoKIlCR8IHrxtfdVDUJpvaHYmFTx8UGmlHmT8T2pmkobltfVorlxwaTtSemVLk5E5UfoQBSNJ/CH\no/rWnUsHmVLK3YzvSQVDUexpO42OU3147I6GSRmM8l3fRESUy+S7wxXA3xvOutBUS+kgk543yUZu\n3kSuJ3WyK4QXfteu2LWqQcvUdCIqT0IHolh8WO9LyASZQsrdjM6qy7XT7OH3WcWaiMqb0ENzVov+\nlz86yOSaN8mWVbd0fi2qp1nRO5i9VFFfKMYq1kRU1vS/k5fAW1MBq9mA2LA+VYrsVhOaVl2c+TvX\nvEm2rLo9bacx2ztNMhC5q5gOTUTlTeihOZvFhIZLfLqdPxpLIDQ0MYBkmzeRmwsKR4cxyzst63tM\nhyY9lPuibJpchO4RAcBldV786dg5Xc5dXWnNu7cin1UXxT/fuhy7Dp7E4fcD6AvF4K5iOjRpb6os\nyqbJRfhAZLfq9xNWLDjfW8m1GDVXNQJ3lR2337gIG9eIsaiVylOpi7KJiiF8IHrj8BldzjvHV4nm\ntXV5P0HmW40gPaxHpDUWsyW9CB2IovEE2k/1anpO17iqBy/sas/7CbKUagSilP8hcZWyKJuoFEIH\nor5QFH0a7NCaVj3Nin+683I4HVYAhT9BFlONgGP2pBUWsyW9CH0nq660weW0ana+vsEYwtHzi2jz\neYLMln1USDWC8RvQpXtcLbs7Sv49RKMVsiibSElC94hsFhPsdjMwoE2vyACgwna+yeSeIKscVvzP\ngY9x/IPuonsyHLMnrbGYLelB6EAUjScQ6A1rdr4UgG2vvos7P/9pOGxm2QSE3sEY3njrfCJFMdlH\nHLMnrbGYLelB6KE5f29Yky0gRmtrD+D+//sHvLCrHYlkEreumY/GhtnwVNnz+v7h9vxrxxVbSJWo\nVCxmS1oSOhAhpU9pn2g8iV0HT+E/X3s/8wT52B0NqKnMPV9VyFbaHLMnoqlA6EDkdTlgMOh3/j8d\nO5vp3YSjw3ll8BXakxnd4zIaAE+VHY0NszlmT0RlQ+g5IgAwGoCEPh0jRGIJ+INDmO1zyiYujFZo\nT4Zj9kRU7oTuEfWFokjouy8e0l0yuWE0QL4nk0+BSY7ZE1G5ErpHVF1pQ/U0C/oG47qc3241wVtT\nkfk7W+rr0nluNDbMgbvKPiGI5LNYlRUViKjcCR2IbBYTLvmUG/v/ok/17auXXFBS5QS5ApO3rpnP\nigpENCUIHYgAYNONC3UJRHarESmM9GrGB4Z8CpfmWqyaSKawp+105jVWQSaiciX8o7XDZsayeS7N\nzxuJJbH70OmiS+3ILVbt6Y/grfZA1vfyWYfETc2ISCTC94gA4NNzPThyIqjLuQ++24WbV16UKYSa\nL7ksu+pKK3ol1hrJVVRggVQiElFZ3J1qqypyf0glvaEYvvX8m5lKC/mSXay6oLaoigoskEpEIiqL\nQJRM6rSQ6BO9g7GibvhSi1Wb19YVXFEh15wTh+mIaLIqi6G5yTLqVGhFbLksu0KrILNAKhGJqiwC\n0dmgdhW45RR7w8+WZVdoKjg3NSMiUU2SvkRpjnVkzzDTmho3/HwrKrBAKhGJSvgeUTSewPun+vS+\nDAD63/C5qRkRiUjoQJRIJvHzV97RrehpWvU0Cy6/ZPqYG74epXlYIJWIRCR0IGrZ3YE33+nS9Rpq\nplnx+F1XZNYRqb2WJ58Al09lByKiyULYQBSNJ9D2nr5BCABWLPSOWcwqVz+ulNI8XKxKROVK2DtY\nXyiKnoHcG9GprfGy2Zn/Lr+Wx591LU++5XhKWazKkj9ENJkJ2yOqrrTBVWlBMKTPFhDAyAJUd5U9\n87fcWp7u/ih+ueM9fPWmRTAZjQX1cHItVpVauyR1jns3rijhVxMRKUvYHpHNYkKF3aLrNYzPkkuv\n5ZHyp+NnMz2YQno48gEugp7+SNb3pM6x9b/ezv9HEhGpTNhAFI0nEBrSrze0un7WhLToXLu0AiM9\nmIGhWEHleHIFuF2HTk14Ta4Xtf94J4fpiGjSEDYQ9YWiGNAxEN14+ZysSQK3rpmPqxdfIPm94EAE\np7pCOcvxjGazmLB0nkfymEc7uicEFrleVKA3POEcSuF8FBEVSug5IqmSNmrzVElXUDAZjdh040K8\n81FP1mQKl9OO2b7KgsvxNDbMwZ7DZ7KeM1tpIbn2qa2pULwCBLP6iKhYwt4h8hkGU0uuCgo2iwn1\nC32S33U6rAWX43FX2eEpYGtNMvsXAAAgAElEQVQIufa5cvEMxRe6cgsKIiqWsIEIGBkGW3npdE3P\nOds7La+SOVJbPKS/m+v98QqtJReNJ7B6xSysXjFzwjnuvPnSAn+1PG5BQUSlEHZoDhgZBlu/ej7+\n9PY5zc45GB7GcCIFU44QnqvcTjHlePKpJZdtiGzp/Fo0XjYb7io7bBYTTLkuvkDcgoKISiF0IAKA\nbf/zjqbnC4ai6OmPYIZnWuY1ubI7ucrtFFKOJ5/gla2yw5620zAZDSVVdpDDLSiIqBR5BaKnnnoK\nhw4dwvDwML7+9a9jyZIlePDBB5FIJOD1evH000/DarVi+/bt2LZtG4xGIzZu3IgNGzaoduGJZBIv\n/K4dR070qHYOKbsOncLtNyzUbYJeKngVu/BVietZUecdEwDT9K5ITkSTX85AtH//frz//vtoaWlB\nMBjEF7/4RVx11VVobm7GunXr8Mwzz6C1tRVNTU149tln0draCovFgvXr12Pt2rWoqalR5cJbdndI\nZpGp7WhHN6KrE3jpjROq1JUrll5DZIlkEqlUCnarCZHYyHyQ3WrCyiUXcAsKIsop52P75Zdfjh/+\n8IcAgKqqKoTDYRw4cADXX389AGD16tXYt28fjhw5giVLlsDpdMJut6O+vh5tbW2qXHQkNiz55K+F\n4EAE/t7wpJugl1v4quYQWcvuDrx26HQmCAFAJJaA0WBg6jYR5ZTzLmEymeBwjDxFt7a24pprrkE4\nHIbVOlJx2uPxwO/3IxAIwO12Z77ndrvh96sTLIL90k/+WnA5bRgMxyTXMGVblKqFfDPrIrFhxRad\nMmOOiEqVd7LCrl270Nraiq1bt+KGG27IvJ5KZd+VTur10VwuB8zmwucPIrFheF0V6AqGC/6uEqLx\nBJ5+8S3J92trKjDvIg/s1uzNG4kNI9gfhavKJvmZYt27cQUcFVbsP96JQG8YtTUVuHLxjEzK9tb/\nehv7j3fC3xuGd9R7xWbSdQYG0TMgHZBNVgu8tdOyvi8yr9ep9yUIje1XmnJrv7zugnv37sVPfvIT\n/Pu//zucTiccDgcikQjsdjvOnTsHn88Hn8+HQCCQ+U5XVxeWL18ue9xgcKioi/Z6nVg6z5N1clwL\nofCw7PtL53kw0BfGwLjXtUpuaLr6Iqy7Ys6YzLqenkG8sKt9TJt1BcPYvvcDDIVjRc9pJeIJuJ3S\nGXOJWBx+//iWEJvX6yy736Qltl9pRG4/qQCa8+43MDCAp556Cj/96U8ziQcrV67Ejh07AAA7d+7E\nqlWrsGzZMhw7dgz9/f0YHBxEW1sbGhoaFPwJYzWtmgu7dXJlY7kqrbKLUrWsPpDOrLNZTIjGEzjl\nD0luJFjKEFqhC22JiMbL2SN65ZVXEAwG8Q//8A+Z17773e/i0UcfRUtLC2bOnImmpiZYLBbcf//9\nuOuuu2AwGHDPPffA6VSv+xgaiiMa03b+obbahkCf9NzPp2Y4JXs3eqRWj++BSQ2WlppRl89CWyIi\nKYZUPpM5Kim2e+n1OnHqTC8e+dk+TXdptZiBRAJIyrRYY8PsrMNcXcEhfPOn+7MGA6MB+Je/vVJy\nbVC+lRfGGz8UJ8VTZcd37v5MyYGwlGsVichDI5MB2680Iref1NCcsJUVbBYT6i50Yb+G5X3iwxiz\nViYbqd5Nhc2Mmkobglmy6bKlVpc6nyTXAxtPqSG0QqpEEBGlCRuIAODGK+ZoGogAyAYhYOIwVyKZ\nxAu73sdb7YGsQQjIHgiyleopZLGs3OJWADBgpKI3h9CISG9CB6IL3NNgNgLDSb2v5DyX05bp3SSS\nSXz7FwdxsiuU9bMeiUAg15tpe8+f13ySXP03n6sC935xMbyfJDMQEelJ6GXvZpMBlQ6r3pcxRigc\nw0tvnMjUwpMKQjWVVjx2RwOaG+smDLXJ9WZ6BqL4f3e8h0RSPvrm2o9ots/JIEREk4LQPaKW3R3o\nDWmXrJCN1WxAbPh8CkI0nsKug6cQTyRx5P2A5Pf6BmMIR4fh/CSQjp7oz7X77B+Pn0WF3ZxziE4q\nm+3Omy9FT89goT+ViEgVwgaiQibj1eKqtKJvMHsg3PvWGdnsupppIwFHKilh2YJa7D50WvL7+aR8\nS20bofR+REREpRD2jpRrMl4LVrNRMtgkU4DFZJD87vJPEhSkFrkaAKxcfIHk9wupZzd6cSsR0WQj\nbCCSqzStNqMBuGb5DMksuDSDRBya46tEc+MC2V7dW+9349Y18+GRqaZdYTMrVryUiEgvwg7N2Swm\nLLrQhT8eP6v5uVMpoH6+F79/q1P2c/HhFFYuvgDvfdyLnv4IqiutWLGgFs1rRxIUOrtD0kkJ/RGE\no8OSG8457GZ8+xd/1nRDPiIiNQgbiADgy2vr8Oa75xAf1rY4hLvKDqfDktfnbr9xIQCMmaMZWVvU\njrb3uiTL7hgMwI4/n8Sta+YBGJtw4LCbx2Tj6b0hXzGmShUGIspN6EDksJmxYoEXb76TvZinWlbU\n1WKmtxI2ixHRuHQa9dJ57sxNdnTFgfGLVbNJpoA9badhMhrGJBxU2EZ6QtmouR24UvTaXp2IJi/h\n/81fd+WnND3fHF8lmlbNRV8oiuULPLKfbWyYM+G1QrP90pWx0wkH4ehwzu3AJzMtK5CLLhpPcA6Q\npgShe0QAUGnX9if4e8P41vNvoqc/CpfTCpPRgESW1DlPlR3uKjuAscNQhWb79QxE8N5HPXBXV8Bb\nUyG7xkjN7cCVGErTowK5HkptK/YaaaoRPhBpvUtrJJbI1JuTq/y9oq4WZpMBL+xqH3NDWTrPI7tY\ndbxUCvhB6zEAIwVXr15ygeQaIzX2/1HypigXhEvdimIyUKqtSq0zSCQa4R+vfK4KvS8BdqsRbqd1\npJCo05bZHC/bMNSew2fgsOdOdMgmEkvgtUOnYcDIdhOeKjuMhpHel9yGfKVQcihNLuVezd6cVpRo\nq1y9Rg7Tkda0GCIWvkfUN6RviR8AiMSSSCSHkcL5tUPReFLyhjIYjmN1/Swc7ejOZMItW+CBASPr\nh3oGIjBAet+jt94P4Dt3XzmhYoLSlB5KS9e/y5aoIfpurkq1Vbn3GkkcWg4RCx+I/v2//qLJedxO\nGwYjccksufgnJcDTT8HhiHRSQW8oihsvn4ONq+dPCCTrr0vgg9N9ePrFtySvpWcgmrkhqXlTUuOm\nWK67uSrVVnrNARKNp+UQsdCBaGAohrM92swRfXquCx+eHcCprvyKhb77cRAupzXrPFL6hpJtIzmb\nxYSLZ1XDLfFdYCQoanFDUuOmKFX/TnRKtVU59xpJHFonFgk7R5RIJrHtf97V7Hx/OHoW/t78g17P\nQBQL5riyvrfwwhrZ79osJtQv9Em+v6LOq8kNSW4riRV1tQBQ9NhxudW/y9VWhfzOW9fM12wOkCib\nfHr4ShK2R9SyuwNtMtssqCEay38HPqvJiPdP9QIYqU2XTI1sGWE0GrHv+Fm893FQdrz11jXzkUyl\n8KdjZzNZejaLEZ9dOkPTG1K2obTlCzxIplJ49Ln9TC8eRalhx3LtNZI4tB4iFjIQRWLDum8BkUt0\nOInoJ/8jppMORvYtGgkq6fHWRDKFGy+fM+FmYzIa8eXrFyCVAg6/50fvYAzT7GYYpCqpqiTbTfGl\nN07gNaYXT6B0AMk2dEukBa2HiIUMRMF+/beAUMobh09jT9tpeLL0Klp2d2BP2/n1Qj0DMdkbvpr1\n29I3xamyKLUUDCBUDrRMLBIyELmq5HcwFUm6tzS+V1HIDV/LNEumFxNNDVoOEQs5oG+3miUnhrWy\noq4WNZVWxY+bXrRYyGShlvXbyn1RKhGNpUVikZCBCBjpNq5eMVO389dMs+LxO69QPBilg0y+N3yt\nV+IrmR1GRAQIHIhMRiNuvOJC3c5/pKMbVpmb8hxfJexW6ZuyUSLnYPQao3xu+FqnWQJMLyYiZQk5\nR5RWXWmTXfippp6BKP7j1Xfx7kc9Y143GoBZ3ko88pV6DCdSeOF37+Pdj4LoDUXhctqxdJ4bjQ1z\nsOvgSew5fGbCcUcHmXwmC/VYia/G2DE3yiOauoQORDaLCXNnVqPnPX1Sufe9fW7Ca8kUcLIrhNbX\nP0BzYx2+9lefznqTbV5bB5PJKBtk8rnh67kSX4nsMG55QETCBqL0Dezd/+3W+1KyOtzuz2S2Zbth\nF9KryHXDF7l+G7c8ICJhA1E+223rqbs/il/ueA9fvWmR7JO9Er0KLdIs1Rg645okIgIEDUQiVFYA\ngD8dPwuH3azZk70aCynVHDrjmiQiAgTNmgv2R4VZzCr6ZmZqrlHimiQiAgQNRK4qG6wWMS5drRRq\nLai9RmmqrEnSYodLIpEJOTQHAAZIbF+qE4MBSGW5JJGf7LUYOhM50SIXZgQS5UfIQBTsjyIan1yB\nKFsQAs4/2Yu4TkaLNUrlvOUBMwKJ8iNkIHJV2eCZZEVP3VU2LJvnwdETPWOe7NdfdzFe2NUu5FOx\nlmuUyq1iNTMCifInZCBKFz2dTOnb0+wW3H7jogk9n1/97j28duj8Vg7pp+JUKoW/WbtQxyvOTzkP\nnamJGYFE+RMyEAEjN8hEIonXD5/RdLbIAGQ932A4jmg8MebJPhpP4I/HzmY9zh+PncX66+ZP+qfi\nch46U5MepZeIRDW5x4ZkmIxG3H7jIszyTtP0vFJBrzcUnZAd5+8NZ7b5Hi8SS8DfG1b46tSjRSn4\ncjJVMgKJlCBsjwgY6XGEo8N6XwYAiadcqQyGfN+f4kRM8BiNw5pE+RE6EPWFtF/YarUYEMuSsZft\nKdfrcsBmMWTN8LNZjPByjiCrckl75rAmUX7E+bc6iwqb9nF0OJHCHF8lPFW2MXvxNK2am3XRottZ\nkfU4XleFIlsnlONCSS13nNUChzXVV67/LkwVQveI9BiWSyZHtnlYvWImbrziQlQ6rHh57wf41vNv\nZp7el8zzIBpL4N2PehAMxbMeJxwZziQ3FKpcegzZMO2ZClHO/y5MJUL/L1VdaYNVp1B69EQPqitt\neHnvBxOe3l8/fAb73j4nGYQAIDgwMbkhX1r2GLR+0tRjx1kSV7n1nqcqoXtEAKBXTzw4EIE/OFR0\nFfBiU3jlegx/ONqJplVz4bBZirqm0fR60mTaM+WLvefyIXSPyN8b1i3xzOW0AwaD5NN7LsWm8Mr1\nGCKxBF743fsFHU+qx6PXkybTnilf7D2XD7F7RDqmP6+oq4W3pkLy6V2KZ1TPohhyPQYAePej4IS5\np2xp0HI9nuFEStcnTaY9Uz7Yey4fQgciufRopVnNBgwnUnA57Vg6z43VK2YBQEGlhlYuvgC337gw\n501cbv2MzWLCogtd+OPx7BUb0gtrfS6HZLC5d+MK2YKcjZfN1rU8DdOeKR9a1kIkdQkdiGwWE1Ys\n9GH/8XOqn8tuNeEfNy7H74924mhHAK8fPgN3lQ0VdnPOYGi3mvDZpTNk51ei8QR6+iPYdfAkjp7o\nlp2X+fLaOhxq70IklpxwnNFPglLBxmo1y/Z4bl550aR40iy3QqikPPaey4PQgQgANq2tw4Hj51Sv\nN9c/NIyfbf8LOnuGMq9190eBLDdru9WEWDwBl9OGRRe68OW1dXBIrHka3WsZf+OX2jbAYTPjs0tn\nyj4Jyk3kHnj7rOTQXnAggnB0WLUnTdGrJdDkwt5zeRA+EDlsFlRXWtEbiql+rtFBSM40uxkPb6r/\nZOhQ/l+K8b2WbLLNy+R6EpSdyO2PoEaizdI9HqWfNLneg9TE3rPYhA9EI0/Y6gehQgQHorBaTHnN\nBeWT/p1tXibXk6DcRG5tTQUuvciFPYfPTHhvdI9H7viF9my4SRwRSRE+EJ3xhybZpuH5z6PI9Vry\nPZ7Uk6DcRO6Vi2fg5qsuhMlkzNnjGX/8Yno2XO9BRHLyCkTt7e3YvHkz7rjjDmzatAmdnZ148MEH\nkUgk4PV68fTTT8NqtWL79u3Ytm0bjEYjNm7ciA0bNqh9/RgYkq5eoJd851FypWIXerzxpIbX7rz5\nUvT0DBY1tl5Mz4abxBGRnJyBaGhoCP/8z/+Mq666KvPaj370IzQ3N2PdunV45pln0NraiqamJjz7\n7LNobW2FxWLB+vXrsXbtWtTU1Kj6A+bOrFL1+HI8VTY47BYMhuPoDUULnkeR67WMHL+0eRmp4TuT\n6XzPpZCx9WJ7NlzvQURycgYiq9WK5557Ds8991zmtQMHDuDxxx8HAKxevRpbt27F3LlzsWTJEjid\nTgBAfX092trasGbNGpUuXX9L53mybg9eiGy9lqXzPWi8bDbcVXZFhqyUmsgttmfD9R5EJCdnIDKb\nzTCbx34sHA7DarUCADweD/x+PwKBANxud+Yzbrcbfr/8RLzL5YDZXNxNyOt1IpFI4mf/3ztFfV8J\nb38YhLO6Ak4AJqsFriob7EVUYb3vy5chEhtGsD9a9DEK5fU6C/6Os7oCXlcFuoITd5atranAvIs8\nktd+78YVcFRYsf94JwK9YdTWVODKxTNw582XjumhiaKY9qPz2H6lKbf2K/mOl5IosyP1+mjBYH7p\n0ON5vU74/QN4YVc79h/vLOoYSvAHw/jBrw7h3Y+DiqQkmwEM9IUxoPyljpFuv2IsnefJ2rNZOs+T\n89qbrr4I666YM6b32NMzWNR16KmU9iO2X6lEbj+pAFpUIHI4HIhEIrDb7Th37hx8Ph98Ph8CgUDm\nM11dXVi+fHlxV5uHfFOf1WSzmsaU2pGbuC+XhZylri/ieg8iGq+oQLRy5Urs2LEDf/3Xf42dO3di\n1apVWLZsGR599FH09/fDZDKhra0NDz/8sNLXm5Fv6rMeRk/cl9tCTq5kJyKl5QxEx48fx5NPPonT\np0/DbDZjx44d+N73voctW7agpaUFM2fORFNTEywWC+6//37cddddMBgMuOeeezKJC2rIN/VZDQYD\n8JlLfDjwl66s7/cMRODvDWO2t7JsF3KyZ0NESjGk8pnMUUmx45xerxNnz/Xh2784iJNdIYWvKj/f\nvvNy/LD1qGQgdDutWDa/FkdPdGf9jKfKju/c/RldehMijzFPBmy/0rD9SiNy+0nNEYk3NvSJlt0d\nugWhygozKh1WOOzSO6H2DMSw5/AZ2eKi3LiLiEjQEj+R2LCuiQqh8DAe/tm+rNswjGc0AMksfU4u\n5CQiGiFkjyjYr3+iQj5BCMgehAAu5CQiShMyELmqRhIVROB22rC6fhY8VXYYDSNzQ40NsxXZuCsa\nT6ArOIRoPKHAlRIR6UPIoTm71VzQFt16ql/oRXNjHaKrlVtHVG4p4UQ0tQkZiICRhZWJZAp72k7r\nfSljnN+ddexCTyXTnUVLCS+XxbxEpA5hA9FkMT7wNK2ai9BQXLWbrkh7+7DnRkT5EDYQtezu0LU3\nZLea8NmlM7IGHodNOq27VCLt7SNaz42I9CHkY6ne6dsA4LCZccu18+CwWeBzOTTphSSSSex482MY\nDNnfn0wp4bl6bkywIKI0IQPRZEjf7g1FNV+Q2rK7A3sOn1EtJVzJLLx8em5ERICgQ3OuKhtqKm0I\n6ngz07r3IdfDMBqAa1fMKjolXI25HO7KSkT5ErJHZLeasbyuVtdr0HpBqlwPI5UCbrx8TtFBIz2X\n090fRQrn53JadncUfb3pXVmz4WJeIhpNyEAEAM2NC1BZoX2HzlNlU2xBaiHSPYxs3FXF9zDUnMu5\ndc18NDbMVmUxLxGVDyGH5gBgOJGCxSQxa6+i+bNrcMu189DdF9F0XUy6h5FtEW8pPQw1s/C4dxER\n5UPYQNQXiiIYimt+3rfa/Xj0VK8u62JK3R01Gy3mcrh3ERHJETYQVVfa4HZa0TMQ0/S80eEkop/c\ntLVeF6NGD0OtnhYRUb6EnSOyWUyoX+jT+zIAnJ9LyZX+LPd+IanT6R5GIUFC7vicyyEiPQnbIwJG\nbqCx4WH8/q2zul5HcCCCX+54D+99HMw6ZCeXHg1A1TI42c599bJZuPmqCzPH51wOEelJ6EBkMhpx\n7dJZmgUim8WIaHziPkRWiwl/On7+GsYP2cmVugGgahmcbOfevvcDDIVjE47PuRwi0oOwQ3NpPf0R\nTc5jMAANkkOB2UsdHG4PYGAoJpke3fZeF9re65L8bqkVDlhmh4hEIHwgqpxm1eQ8bqcdX15bN2Eu\n5erFF0ju1hociOBUV0gyPbpnICaZbNHTX3oZHJbZISIRCD00BwAWszaxdEVdLRw284S5lFg8gb98\nGMxabsjltGNG7TTYrMa8txZPMxiAHX8+iebGBSyzQ0RlTfgekUGiAKhixwewesXMMRlkNosJnmo7\nXnrjBL79iz9L1rxbUVeLV/Z/VHAQAoBkCtjTdppldoio7AkdiBLJJHaqvV24Abjxigsn9EpG12cb\nL53+3LRqbt7bVUjViFCjzM4XVl3M1GwimjSEHppr2d2BA385p+o53FmGsOSSAGoqrXjsjgY4HVZ0\nBYfy2q7CJVNJXI0yO7Nn1sDvHyjqeEREShO2RyQXDJSUbQhLLgmgfzCGcHQYwMgcTU0e8zDL62rh\nkShoqnSZHQ7HEdFkI2wgkgsGSrFbjUimUkgkx87xyFXCHh04bBaT7HYVRgOwun4WmhsXcC6HiKYs\nYQORXDBQSiSWxO5DExMGCkkCaG5cgDm+yqyfvXb5TNx+w0KYjEaW2SGiKUvYOSK5Yp1KO9wewC3X\nzhsTYPKthG0yGvHYHQ144XftOPx+AH2hGNxVEz/LMjtENFUJG4iAscGgW8UKC9kSBgoJHCajEbff\nuAgb1yRyfpZldohoqhE6EI0OBu+f6sUzLUdUOY9cwkAhgYNBhohoImHniEazWUxYMLtGMvOsVEwY\nICJST1kEIkA+gaAUc3yVTBggIlJR2QQi4HwVAakqBcUYigxjOKFyHSEioimsrAKRyWjELdfOQ02l\nchW5WaWaiEhdZRWIgJGFrr2h7FsrFINVqomI1FV2gUjpha5MVCAiUlfZBSIlkhYMrGxARKQZodcR\nSWladTH+cPRMUfsAuSqt+Mdbl8NbU8GeEBGRBsoyEIWGYogWEYQA4LJFPsz2Zq8NR0REyiu7oTkg\n/+0XxrOaDWhaNVeFKyIiIillGYhybb8gZTiRQmgorsIVERGRlLIMRMDI9gszagur68ZUbSIi7ZVt\nIDIZjfj2nVfAYcs/4WDZAg8TFIiINFa2gQgYCUauKnven1eyNBAREeWnrAPRwFAMnYHBvD9/uD2A\naDyh4hUREdF4ZR2ITnWFkCygXmlwIMq6ckREGivrQDTbVwljAeNtLqeNyQpERBor60DkdFgxq4DF\nqfULvUxWICLSWFkHIgB45Cv1mDOqZ2Q0AJUVZtgs57tKdqsJay6bxbpyREQ6KMsSP6NZzWY8fucV\nGBiK4VRXCLN9lXA6rIjGE/D3hoFUCl6Xgz0hIiKdlH0gSnM6rLjkInfmb5vFxJpyRESTgOKB6F/+\n5V9w5MgRGAwGPPzww1i6dKnSpyAiojKiaCB688038dFHH6GlpQUnTpzAww8/jJaWFiVPQUREZUbR\nZIV9+/ahsbERADBv3jz09fUhFAopeQoiIiozivaIAoEALr300szfbrcbfr8flZXZ52JcLgfM5uKS\nBLxeZ1HfoxFsv9Kw/UrD9itNubWfqskKqZR8WYNgcKio43q9Tvj9A0V9l9h+pWL7lYbtVxqR208q\ngCo6NOfz+RAIBDJ/d3V1wev1KnkKIiIqM4oGoquvvho7duwAALz99tvw+XySw3JERESAwkNz9fX1\nuPTSS3HbbbfBYDDgW9/6lpKHJyKiMqT4HNEDDzyg9CGJiKiMGVK5MgqIiIhUVPZFT4mIaHJjICIi\nIl0xEBERka4YiIiISFcMREREpCsGIiIi0pVQG+NxryN57e3t2Lx5M+644w5s2rQJnZ2dePDBB5FI\nJOD1evH000/DarVi+/bt2LZtG4xGIzZu3IgNGzYgHo9jy5YtOHPmDEwmE5544gnMmTNH75+kqaee\negqHDh3C8PAwvv71r2PJkiVsvzyFw2Fs2bIF3d3diEaj2Lx5MxYtWsT2K1AkEsFf/dVfYfPmzbjq\nqqumTvulBHHgwIHU3/7t36ZSqVSqo6MjtXHjRp2vaHIZHBxMbdq0KfXoo4+mfvnLX6ZSqVRqy5Yt\nqVdeeSWVSqVS3//+91O/+tWvUoODg6kbbrgh1d/fnwqHw6nPf/7zqWAwmPrtb3+b+qd/+qdUKpVK\n7d27N3Xffffp9lv0sG/fvtTXvva1VCqVSvX09KSuvfZatl8B/vu//zv1s5/9LJVKpVKnTp1K3XDD\nDWy/IjzzzDOpL33pS6mXXnppSrWfMENz3OtIntVqxXPPPQefz5d57cCBA7j++usBAKtXr8a+fftw\n5MgRLFmyBE6nE3a7HfX19Whra8O+ffuwdu1aAMDKlSvR1tamy+/Qy+WXX44f/vCHAICqqiqEw2G2\nXwFuuukm3H333QCAzs5OTJ8+ne1XoBMnTqCjowPXXXcdgKn1768wgSgQCMDlcmX+Tu91RCPMZjPs\ndvuY18LhMKxWKwDA4/HA7/cjEAjA7XZnPpNux9GvG41GGAwGxGIx7X6AzkwmExwOBwCgtbUV11xz\nDduvCLfddhseeOABPPzww2y/Aj355JPYsmVL5u+p1H5CzRGNlmJlooJItVehr5e7Xbt2obW1FVu3\nbsUNN9yQeZ3tl58XX3wR77zzDr7xjW+MaQO2n7yXX34Zy5cvl5zXKff2E6ZHxL2OCudwOBCJRAAA\n586dg8/ny9qO6dfTPcx4PI5UKpV5Gpsq9u7di5/85Cd47rnn4HQ62X4FOH78ODo7OwEAl1xyCRKJ\nBKZNm8b2y9Prr7+O1157DRs3bsRvfvMb/Ou//uuU+v+fMIGIex0VbuXKlZk227lzJ1atWoVly5bh\n2LFj6O/vx+DgINra2tDQ0ICrr74ar776KgBgz549+MxnPqPnpWtuYGAATz31FH7605+ipqYGANuv\nEAcPHsTWrVsBjAyjD/n8ie0AAAEMSURBVA0Nsf0K8IMf/AAvvfQSfv3rX2PDhg3YvHnzlGo/oapv\nf+9738PBgwczex0tWrRI70uaNI4fP44nn3wSp0+fhtlsxvTp0/G9730PW7ZsQTQaxcyZM/HEE0/A\nYrHg1VdfxfPPPw+DwYBNmzbhC1/4AhKJBB599FF8+OGHsFqt+O53v4sZM2bo/bM009LSgh//+MeY\nO3du5rXvfve7ePTRR9l+eYhEInjkkUfQ2dmJSCSCe++9F4sXL8ZDDz3E9ivQj3/8Y8yaNQuf/exn\np0z7CRWIiIio/AgzNEdEROWJgYiIiHTFQERERLpiICIiIl0xEBERka4YiIiISFcMREREpCsGIiIi\n0tX/D8HvhIHhJHspAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "jByCP8hDRZmM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "s0tiX2gdRe-S", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize=(15, 6))\n", + "plt.subplot(1, 2, 1)\n", + "plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kMQD0Uq3RqTX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The calibration data shows most scatter points aligned to a line. The line is almost vertical, but we'll come back to that later. Right now let's focus on the ones that deviate from the line. We notice that they are relatively few in number.\n", + "\n", + "If we plot a histogram of `rooms_per_person`, we find that we have a few outliers in our input data:" + ] + }, + { + "metadata": { + "id": "POTM8C_ER1Oc", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "plt.subplot(1, 2, 2)\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "9l0KYpBQu8ed", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Clip Outliers\n", + "\n", + "See if you can further improve the model fit by setting the outlier values of `rooms_per_person` to some reasonable minimum or maximum.\n", + "\n", + "For reference, here's a quick example of how to apply a function to a Pandas `Series`:\n", + "\n", + " clipped_feature = my_dataframe[\"my_feature_name\"].apply(lambda x: max(x, 0))\n", + "\n", + "The above `clipped_feature` will have no values less than `0`." + ] + }, + { + "metadata": { + "id": "rGxjRoYlHbHC", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "d7ba55a3-a5aa-4988-b640-28b8309fbf11" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"rooms_per_person\"]).apply(lambda x: min(x, 5))\n", + "\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFKCAYAAADScRzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFxdJREFUeJzt3X9MVff9x/HX5ccNYbu0XnqvG4u1\nybJFM5mG2DohNEWhiSTL6CwWiDaZrJkpLjbBKtOta2JSUUfDMKQudkSi0bLeNY6ZRkhbTNp5y9Ld\nhOnSpNU/FuIPuNfhj/Fj3JH7/WP53tnVcqncH+97eT7+0sO993w+H7g+PefAwRGJRCICAAAmZaV6\nAAAA4IsRagAADCPUAAAYRqgBADCMUAMAYBihBgDAsJxUD+BegsE7cXutRYvyNTY2EbfXW4hYw/lj\nDeODdZw/1jA+4r2OHo/rCz+W8UfUOTnZqR5C2mMN5481jA/Wcf5Yw/hI5jpmfKgBAEhnhBoAAMMI\nNQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwz+duzgPux\ntfW9VA9hVl0t61I9BABpiCNqAAAMI9QAABjGqW8gSayfmpc4PQ9YxBE1AACGEWoAAAwj1AAAGBbz\nGvXg4KB27Nihb33rW5Kkb3/72/rxj3+sXbt2aWZmRh6PR4cOHZLT6VRvb6+6u7uVlZWlTZs2qba2\nVuFwWC0tLbp69aqys7O1f/9+LVmyJOETAwAgE8zpm8kee+wxdXR0RP/+s5/9TA0NDdqwYYNeffVV\n+Xw+1dTUqLOzUz6fT7m5uXr66adVVVWlgYEBFRQUqK2tTR988IHa2trU3t6esAkBAJBJ7uvU9+Dg\noNavXy9JqqiokN/v19DQkIqLi+VyuZSXl6eSkhIFAgH5/X5VVVVJkkpLSxUIBOI3egAAMtycjqgv\nXbqkbdu26datW9q+fbsmJyfldDolSYWFhQoGgwqFQnK73dHnuN3uz23PysqSw+HQ9PR09Pn3smhR\nvnJysuczr8/weFxxe62FijVcGNLh85wOY7SONYyPZK1jzFA/8sgj2r59uzZs2KDh4WE9++yzmpmZ\niX48Eonc83lfdvvdxsYmYj5mrjwel4LBO3F7vYWINVw4rH+e+VqcP9YwPuK9jrNFP+ap78WLF6u6\nuloOh0MPP/ywHnroId26dUtTU1OSpJGREXm9Xnm9XoVCoejzRkdHo9uDwaAkKRwOKxKJzHo0DQAA\n/itmqHt7e/Xb3/5WkhQMBnXjxg398Ic/VF9fnySpv79f5eXlWrlypS5cuKDbt29rfHxcgUBAq1ev\nVllZmc6ePStJGhgY0Jo1axI4HQAAMkvMU9/r1q3Tzp079e677yocDuvll1/W8uXLtXv3bvX09Kio\nqEg1NTXKzc1Vc3OzGhsb5XA41NTUJJfLperqap0/f1719fVyOp1qbW1NxrwAAMgIjshcLhonWbzP\n+3M9Zn7SZQ3T4V7a1lm/13e6fC1axhrGh6lr1AAAIHUINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBg\nGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADD\nCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhG\nqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBC\nDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYNicQj01NaXKykq99dZbunbtmrZs2aKG\nhgbt2LFD09PTkqTe3l5t3LhRtbW1evPNNyVJ4XBYzc3Nqq+v1+bNmzU8PJy4mQAAkIHmFOrXXntN\nDzzwgCSpo6NDDQ0NOnnypJYuXSqfz6eJiQl1dnbq2LFjOn78uLq7u3Xz5k2dOXNGBQUFOnXqlLZt\n26a2traETgYAgEwTM9SXL1/WpUuX9MQTT0iSBgcHtX79eklSRUWF/H6/hoaGVFxcLJfLpby8PJWU\nlCgQCMjv96uqqkqSVFpaqkAgkLiZAACQgXJiPeDAgQP6xS9+odOnT0uSJicn5XQ6JUmFhYUKBoMK\nhUJyu93R57jd7s9tz8rKksPh0PT0dPT5X2TRonzl5GTf96T+l8fjittrLVSs4cKQDp/ndBijdaxh\nfCRrHWcN9enTp7Vq1SotWbLknh+PRCJx2f6/xsYm5vS4ufB4XAoG78Tt9RYi1nDhsP555mtx/ljD\n+Ij3Os4W/VlDfe7cOQ0PD+vcuXO6fv26nE6n8vPzNTU1pby8PI2MjMjr9crr9SoUCkWfNzo6qlWr\nVsnr9SoYDGrZsmUKh8OKRCIxj6YBAMB/zXqNur29Xb///e/1u9/9TrW1tXr++edVWlqqvr4+SVJ/\nf7/Ky8u1cuVKXbhwQbdv39b4+LgCgYBWr16tsrIynT17VpI0MDCgNWvWJH5GAABkkJjXqP/XT3/6\nU+3evVs9PT0qKipSTU2NcnNz1dzcrMbGRjkcDjU1Ncnlcqm6ulrnz59XfX29nE6nWltbEzEHAAAy\nliMy1wvHSRTv8/5cj5mfdFnDra3vpXoIaa+rZV2qhzCrdPlatIw1jI9kXqPmzmQAABhGqAEAMIxQ\nAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQa\nAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QA\nABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYA\nwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMNyYj1g\ncnJSLS0tunHjhv71r3/p+eef17Jly7Rr1y7NzMzI4/Ho0KFDcjqd6u3tVXd3t7KysrRp0ybV1tYq\nHA6rpaVFV69eVXZ2tvbv368lS5YkY24AAKS9mEfUAwMDWrFihU6cOKH29na1traqo6NDDQ0NOnny\npJYuXSqfz6eJiQl1dnbq2LFjOn78uLq7u3Xz5k2dOXNGBQUFOnXqlLZt26a2trZkzAsAgIwQM9TV\n1dV67rnnJEnXrl3T4sWLNTg4qPXr10uSKioq5Pf7NTQ0pOLiYrlcLuXl5amkpESBQEB+v19VVVWS\npNLSUgUCgQROBwCAzBLz1Pf/q6ur0/Xr13XkyBH96Ec/ktPplCQVFhYqGAwqFArJ7XZHH+92uz+3\nPSsrSw6HQ9PT09Hn38uiRfnKycm+3zl9jsfjittrLVSs4cKQDp/ndBijdaxhfCRrHecc6jfeeEMf\nf/yxXnzxRUUikej2u/98ty+7/W5jYxNzHVZMHo9LweCduL3eQsQaLhzWP898Lc4faxgf8V7H2aIf\n89T3xYsXde3aNUnS8uXLNTMzo6985SuampqSJI2MjMjr9crr9SoUCkWfNzo6Gt0eDAYlSeFwWJFI\nZNajaQAA8F8xQ/3RRx+pq6tLkhQKhTQxMaHS0lL19fVJkvr7+1VeXq6VK1fqwoULun37tsbHxxUI\nBLR69WqVlZXp7Nmzkv7zjWlr1qxJ4HQAAMgsMU9919XVae/evWpoaNDU1JReeuklrVixQrt371ZP\nT4+KiopUU1Oj3NxcNTc3q7GxUQ6HQ01NTXK5XKqurtb58+dVX18vp9Op1tbWZMwLcba19b1UDwEA\nFiRHZC4XjZMs3uf9uR4zPx6PS99v/kOqh4Ek6GpZl+ohzIr38/yxhvFh6ho1AABIHUINAIBhhBoA\nAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAA\nGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDA\nMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACG\nEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADMuZy4MOHjyov/zl\nL/r3v/+tn/zkJyouLtauXbs0MzMjj8ejQ4cOyel0qre3V93d3crKytKmTZtUW1urcDislpYWXb16\nVdnZ2dq/f7+WLFmS6HkBAJARYob6ww8/1Keffqqenh6NjY3pqaee0tq1a9XQ0KANGzbo1Vdflc/n\nU01NjTo7O+Xz+ZSbm6unn35aVVVVGhgYUEFBgdra2vTBBx+ora1N7e3tyZgbAABpL+ap70cffVS/\n/vWvJUkFBQWanJzU4OCg1q9fL0mqqKiQ3+/X0NCQiouL5XK5lJeXp5KSEgUCAfn9flVVVUmSSktL\nFQgEEjgdAAAyS8xQZ2dnKz8/X5Lk8/n0+OOPa3JyUk6nU5JUWFioYDCoUCgkt9sdfZ7b7f7c9qys\nLDkcDk1PTydiLgAAZJw5XaOWpHfeeUc+n09dXV168skno9sjkcg9H/9lt99t0aJ85eRkz3VoMXk8\nrri9FpDJ0uG9kg5jtI41jI9kreOcQv3+++/ryJEjev311+VyuZSfn6+pqSnl5eVpZGREXq9XXq9X\noVAo+pzR0VGtWrVKXq9XwWBQy5YtUzgcViQSiR6Nf5GxsYn5zeouHo9LweCduL3eQsSbeuGw/l7h\n/Tx/rGF8xHsdZ/t3Nuap7zt37ujgwYP6zW9+owcffFDSf6419/X1SZL6+/tVXl6ulStX6sKFC7p9\n+7bGx8cVCAS0evVqlZWV6ezZs5KkgYEBrVmzJh5zAgBgQYh5RP32229rbGxML7zwQnRba2urfv7z\nn6unp0dFRUWqqalRbm6umpub1djYKIfDoaamJrlcLlVXV+v8+fOqr6+X0+lUa2trQicEAEAmcUTm\nctE4yeJ9OoHTPPPj8bj0/eY/pHoYSIKulnWpHsKseD/PH2sYH6ZOfQMAgNQh1AAAGEaoAQAwjFAD\nAGAYoQYAwLA535kMQObb2vpeqocwqz+2/SDVQwCSjiNqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAw\nQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYR\nagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQ\nAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAzLSfUA8B9bW99L9RAAAAZxRA0AgGGEGgAAwwg1\nAACGEWoAAAwj1AAAGEaoAQAwbE6h/uSTT1RZWakTJ05Ikq5du6YtW7aooaFBO3bs0PT0tCSpt7dX\nGzduVG1trd58801JUjgcVnNzs+rr67V582YNDw8naCoAAGSemKGemJjQvn37tHbt2ui2jo4ONTQ0\n6OTJk1q6dKl8Pp8mJibU2dmpY8eO6fjx4+ru7tbNmzd15swZFRQU6NSpU9q2bZva2toSOiEAADJJ\nzFA7nU4dPXpUXq83um1wcFDr16+XJFVUVMjv92toaEjFxcVyuVzKy8tTSUmJAoGA/H6/qqqqJEml\npaUKBAIJmgoAAJknZqhzcnKUl5f3mW2Tk5NyOp2SpMLCQgWDQYVCIbnd7uhj3G7357ZnZWXJ4XBE\nT5UDAIDZzfsWopFIJC7b77ZoUb5ycrLnNa67eTyuuL0WgNTi/Tx/rGF8JGsd7yvU+fn5mpqaUl5e\nnkZGRuT1euX1ehUKhaKPGR0d1apVq+T1ehUMBrVs2TKFw2FFIpHo0fgXGRubuJ9h3ZPH41IweCdu\nrwcgtXg/zw//JsZHvNdxtujf149nlZaWqq+vT5LU39+v8vJyrVy5UhcuXNDt27c1Pj6uQCCg1atX\nq6ysTGfPnpUkDQwMaM2aNfezSwAAFqSYR9QXL17UgQMHdOXKFeXk5Kivr0+/+tWv1NLSop6eHhUV\nFammpka5ublqbm5WY2OjHA6Hmpqa5HK5VF1drfPnz6u+vl5Op1Otra3JmBcAABnBEZnLReMki/fp\nhHQ4zcOvuQRi+2PbD9Li/WxZuvybaJ35U98AACA5CDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBih\nBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1\nAACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYlpPq\nAQDAXH2/+Q+pHkJMXS3rUj0EZBiOqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj\n1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYfxSDgCAKVtb30v1EGL6Y9sPkrYvjqgBADCMUAMAYBih\nBgDAMK5RA0AcpcP11a6WdakeAr6EpIT6lVde0dDQkBwOh/bs2aPvfve7ydgtAABpL+Gh/vOf/6y/\n//3v6unp0eXLl7Vnzx719PQkerefkQ7/wwUA4F4SHmq/36/KykpJ0je/+U3dunVL//znP/XVr341\n0bsGANwDBy/pJeHfTBYKhbRo0aLo391ut4LBYKJ3CwBARkj6N5NFIpGYj/F4XHHdZzJ/MB0AsDDE\nu1VfJOFH1F6vV6FQKPr30dFReTyeRO8WAICMkPBQl5WVqa+vT5L0t7/9TV6vl+vTAADMUcJPfZeU\nlOg73/mO6urq5HA49Mtf/jLRuwQAIGM4InO5aAwAAFKCW4gCAGAYoQYAwLCMDfUrr7yiZ555RnV1\ndfrrX/+a6uGkrU8++USVlZU6ceJEqoeStg4ePKhnnnlGGzduVH9/f6qHk3YmJye1Y8cObd68WbW1\ntRoYGEj1kNLa1NSUKisr9dZbb6V6KGlncHBQ3/ve97RlyxZt2bJF+/btS8p+M/KXcli4bWkmmJiY\n0L59+7R27dpUDyVtffjhh/r000/V09OjsbExPfXUU3ryySdTPay0MjAwoBUrVui5557TlStXtHXr\nVlVUVKR6WGnrtdde0wMPPJDqYaStxx57TB0dHUndZ0aGmtuWxofT6dTRo0d19OjRVA8lbT366KPR\nX0JTUFCgyclJzczMKDs7O8UjSx/V1dXRP1+7dk2LFy9O4WjS2+XLl3Xp0iU98cQTqR4KvoSMPPXN\nbUvjIycnR3l5eakeRlrLzs5Wfn6+JMnn8+nxxx8n0veprq5OO3fu1J49e1I9lLR14MABtbS0pHoY\nae3SpUvatm2b6uvr9ac//Skp+8zII+r/xU+gIdXeeecd+Xw+dXV1pXooaeuNN97Qxx9/rBdffFG9\nvb1yOBypHlJaOX36tFatWqUlS5akeihp65FHHtH27du1YcMGDQ8P69lnn1V/f7+cTmdC95uRoea2\npbDk/fff15EjR/T666/L5UrOvYEzycWLF1VYWKivf/3rWr58uWZmZvSPf/xDhYWFqR5aWjl37pyG\nh4d17tw5Xb9+XU6nU1/72tdUWlqa6qGljcWLF0cvxTz88MN66KGHNDIykvD//GRkqMvKynT48GHV\n1dVx21Kk1J07d3Tw4EEdO3ZMDz74YKqHk5Y++ugjXblyRXv37lUoFNLExMRnLm1hbtrb26N/Pnz4\nsL7xjW8Q6S+pt7dXwWBQjY2NCgaDunHjRlK+ZyIjQ81tS+Pj4sWLOnDggK5cuaKcnBz19fXp8OHD\nBOdLePvttzU2NqYXXnghuu3AgQMqKipK4ajSS11dnfbu3auGhgZNTU3ppZdeUlZWRn57DYxbt26d\ndu7cqXfffVfhcFgvv/xywk97S9xCFAAA0/hvKQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAw\nQg0AgGGEGgAAw/4P1DJKJgyt6msAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "7W277iV8Nryp", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 940 + }, + "outputId": "31d4340b-d58c-4ec3-8aec-7e62265cb129" + }, + "cell_type": "code", + "source": [ + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\")" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 212.80\n", + " period 01 : 189.05\n", + " period 02 : 166.67\n", + " period 03 : 146.38\n", + " period 04 : 129.22\n", + " period 05 : 119.64\n", + " period 06 : 112.63\n", + " period 07 : 111.08\n", + " period 08 : 108.52\n", + " period 09 : 107.93\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 200.8 207.3\n", + "std 53.1 116.0\n", + "min 45.1 15.0\n", + "25% 166.9 119.4\n", + "50% 200.8 180.4\n", + "75% 229.7 265.0\n", + "max 448.4 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean200.8207.3
std53.1116.0
min45.115.0
25%166.9119.4
50%200.8180.4
75%229.7265.0
max448.4500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 107.93\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGXax/Hv9CSkkEqRJiUUpQSw\nIL0mICoKgiJY1l13195WXVdU1LXLWl5x7Yu6rqysYqNGRMUCBoKyAoagQAJIKumZTDnvHyOzIKmQ\nySTh97kuL5lTnnPPcyZzztznKSbDMAxERERERERERJqYOdgBiIiIiIiIiMiJSUkJEREREREREQkK\nJSVEREREREREJCiUlBARERERERGRoFBSQkRERERERESCQkkJEREREREREQkKJSVEgqh37978/PPP\nwQ6jVpdffjnvvPPOUcufeeYZ/vKXvxy1/MCBA0ydOrXRjj937lzee++9Y97/mWeeYejQoaSkpJCS\nkkJycjL33HMPFRUVDS4rJSWFvLy8Bu1TU/2JiEjL0Lt3byZOnOi/jkycOJE777yT8vLy4yr33//+\nd7XL33nnHXr37s0nn3xyxPLKykoGDx7MHXfccVzHra89e/bwhz/8geTkZJKTk5k2bRqpqalNcuyG\nWLhwYbV1sn79ek499VT/eTv8v5YiOzub3r17H3EPc8kll7B169YGl/XEE0/wr3/9q0H7vPfee8yd\nO7fBxxJpKGuwAxCR1qVdu3Z8+OGHwQ7jCMnJyfz1r38FoKqqihtvvJFnn32WW2+9tUHlrFixIhDh\niYhIM/f666/Tvn17wHcduemmm3j++ee56aabjqm83NxcXnrpJWbOnFnt+g4dOvDhhx8yduxY/7JP\nPvmEyMjIYzresbj11ls577zz+Pvf/w7At99+y2WXXcby5cvp0KFDk8VxPDp06NDir90Wi+WI97Bs\n2TKuueYaVq5cid1ur3c5t9xySyDCE2kUaikh0gxVVVXxwAMPkJyczLhx4/w3BADp6elccMEFpKSk\nMGXKFL788kvAl00fMWIEDz74IHPmzAF8T3eWLl3KtGnTGDFiBP/4xz/85SxevJiUlBTGjRvHzTff\nTGVlJQBZWVlceOGFTJgwgVtuuQWPx9Og2LOzs+nXrx/ge9pz/fXXc+edd5KcnMyUKVPYsWMHAMXF\nxfzpT38iOTmZ8ePH85///KfGMjMyMpgxYwajR4/mrrvuwuPxcP311/Pyyy8fsc2ZZ56J2+2uNT67\n3c6sWbP44osv6oyjd+/ePP/88yQnJ+PxeI5o2fLaa68xZcoUUlJS+OMf/0hBQUGj1J+IiDRvdrud\nkSNHsm3bNgCcTid33303ycnJTJ48mYcfftj/3b99+3YuuugiUlJSOO+88/j8888BuOiii9i3bx8p\nKSlUVVUddYzBgwezfv36I1r1LVu2jOHDh/tfH8+9wmuvvcY555zDyJEjWbZsWbXvMyMjg4EDB/pf\nDxw4kJUrV/qTM//3f//H6NGjmTZtGi+88ALjxo0D4I477mDhwoX+/Q5/3ZB7mI0bNzJ9+nQmTpzI\nzJkzycrKAnwtRm688UbGjh3LnDlzjrnF6TvvvMO1117LZZddxqOPPsr69eu56KKLuOGGG/w/4Jcv\nX87UqVNJSUnh0ksvZc+ePYCvFeZdd93FjBkzjri3Arjhhht45ZVX/K+3bdvGiBEj8Hq9/O1vf/O3\nPLn00ks5cOBAg+OeMmUKlZWV/Pjjj0DN93N33HEHDz30EOeccw7Lly8/4jzU9Ln0er3cd999jBkz\nhhkzZrB9+3b/cTds2MD555/PlClTmDx5MsuXL29w7CI1UVJCpBl68cUXyczM5IMPPuDDDz9k5cqV\n/macd999N1deeSUrVqzgqquu4p577vHvd/DgQfr27csbb7zhX5aZmcnSpUtZuHAhCxYswOPxkJaW\nxlNPPcWiRYtYs2YN4eHhPPXUUwA8/vjjDBs2jNTUVC677DI2bdp0XO/ls88+Y/bs2axcuZIzzjiD\nRYsWAfDwww9jNptZvnw5b7/9Ns888wwZGRnVlrF+/Xpef/11VqxYwTfffMMnn3zC1KlTj2iRsXr1\naiZNmoTVWncDMJfL5X+6UFcchmGwcuVKLBaLf9nmzZt5+eWX/TF17NiRJ554Amj8+hMRkealqKiI\nDz/8kKSkJAAWLVrEzz//zEcffcS7775LWloaH374IV6vl5tvvpk5c+awYsUKHnjgAW655RZKS0t5\n8MEH/U/xq3vabbfbGTZsGB9//DEApaWlbNu2zX9MOPZ7hcLCQsxmMx988AF33nknTz75ZLXvc9So\nUVx//fW89tpr7Ny5E/C1hjSZTGRkZLBo0SKWLFnCkiVL2Lx5c73qrr73MKWlpfzxj3/k5ptvZvXq\n1Vx66aXccMMNAPznP/8hLy+P1atX88wzz7Bu3bp6Hbs6X3zxBfPnz+e2224DYOvWrVx00UU88cQT\n7Nu3j3nz5vHss8+yYsUKxowZw9133+3f99NPP+WFF17g8ssvP6LM5ORk1qxZ43+9evVqUlJS2Llz\nJytWrPCfq4kTJ/LVV18dU9wejwe73V7r/RzAV199xZIlS5g8ebJ/WW2fy88//5wvvviCjz76iDfe\neIO0tDT/fo888gh//vOfWbZsGc8991yz7MojLZeSEiLN0CeffMLs2bOx2+2EhYVx3nnnsWrVKgCW\nLl3qv7gMGTLE/+QAfD+2J06ceERZ5513HgCnnHIKTqeT/Px81qxZw5QpU2jXrh0AF198sb/8tLQ0\npkyZAsCAAQPo3r37cb2XHj16cOqppwLQr18/9u/f73+Pl156KWazmZiYGCZOnOiP4deSk5MJDQ0l\nNDSU0aNHs3nzZkaPHs2ePXv8TwpSU1P9cdemtLSUN998019PdcUxZsyYo8pYu3YtycnJxMbGAnDh\nhRf6W140dv2JiEjwzZ07l5SUFMaPH8/48eM588wz+d3vfgf4rgkzZ87EarUSEhLCOeecwxdffEF2\ndjZ5eXmcffbZAPTv35+OHTuyZcuWeh3z7LPP9iffU1NTGTt2LGbz/27dj/Vewe12c8EFFwC+e4N9\n+/ZVe/zHHnuMSy65hA8++ICpU6cybtw4/5gEGzdu5LTTTiM+Ph6r1VrvsaTqew+zceNG2rVr528Z\nMnXqVPbs2cO+fftIS0tj4sSJWK1WoqOjj+ji8mv79+8/ajyJhx9+2L++W7dudOvWzf86JCSEYcOG\nAb6ExRlnnEHXrl0B37V+/fr1/haZAwcOJCYm5qhjjhkzhq1bt3Lw4EHgf0mJyMhICgoK+OCDDygq\nKmLu3LlMmzatXvV2iGEYLF68mHbt2tGtW7da7+cAhg0bhsPhOKKM2j6X33zzDaNHj6ZNmzaEhIQc\nkcyIjY1l6dKl7Ny5k27duvkfxog0Bo0pIdIMlZSU8NBDD7FgwQLA10RzwIABAHzwwQe89tprlJWV\n4fV6MQzDv5/FYiE8PPyIsiIiIvzrwJchLykpYfXq1f6nC4Zh4HK5AN8ToMPLON7+q4eOfyiGQ01a\nS0pKuPHGG/1xOZ3OGgefOvyiHxERQW5uLg6Hg4kTJ/Lhhx8yY8YMcnNzOf3006vdf+XKlWzcuBEA\nm83GxIkT/U826oqjbdu2R5VXUFBAQkKC/3VkZCT5+flA49efiIgE36ExJQoKCvxdDw61zCsoKCAq\nKsq/bVRUFPn5+RQUFBAREYHJZPKvO/TDNC4urs5jDh8+nLvuuouDBw/y0UcfcfXVV/PTTz/51x/P\nvUJYWBgAZrMZr9db7fEdDgdXXnklV155JcXFxaxYsYIHH3yQTp06UVRUdMT17VCSvi71vYcpLi4m\nKyvriOux3W6noKCAoqKiI+4tIiMjKSsrq/Z4dY0pcfh5+/XrwsLCI95jREQEhmFQWFhY7b6HhIWF\ncdZZZ7F27VqGDBlCcXExQ4YMwWQy8cwzz/DKK69w//33c9pppzF//vw6x+fweDz+ejAMg549e7Jw\n4ULMZnOt93M1xVjb57KoqOio+5tDHnzwQZ577jmuuOIKQkJCuPnmm1vUoKHSvCkpIdIMJSQk8Jvf\n/Oao7P+BAwe46667ePvtt+nbty+7du0iOTn5mMo///zzuf32249aFxkZSWlpqf/1obESGltCQgLP\nPvssiYmJdW5bVFR0xL8PXWTPPvtsHnroISIiIkhOTj7iCdLhDh/o8njiOCQuLs7/BAR8TU4P3WA2\nVf2JiEjTi4mJYe7cuTz22GM899xzQM3XhNjYWIqKijAMw/8D8ODBg/X+AW+z2Rg7dixLly5l9+7d\nJCUlHZGUCOS9QkFBAdu2bfO3VIiMjGTmzJl8/vnnZGRkEBERQUlJyRHbH/LrRMeha3hD4kpISKB7\n9+7Vzl4VGRlZ47EbU2xsLOnp6f7XRUVFmM1moqOj69w3OTmZ1atXU1hYSHJysv/8n3nmmZx55pmU\nl5fzyCOP8Pjjj9fZ4uDXA10errb7udreV02fy9rqNi4ujnnz5jFv3jzWrVvHddddx8iRI2nTpk29\njy1SE3XfEGmGxo8fz9tvv43H48EwDBYuXMhnn31GQUEBYWFhdO/eHbfbzeLFiwFqfEJQk3HjxrFq\n1Sr/xSY1NZUXXngBgEGDBrF69WoANm3a5B/UqbGNGzeOt956C/A1JX3wwQf5/vvvq9121apVOJ1O\nysvL+fzzzxk6dCgAZ511FgcPHuT1118/oolhoOI4ZMyYMf6bDYC33nqL0aNHA01XfyIiEhxXXHEF\n6enpbNiwAfBdE5YsWYLH46G8vJz33nuP0aNH06lTJ9q3b+8fSHLTpk3k5eUxYMAArFYr5eXldQ7O\nfPbZZ/Piiy8yYcKEo9YF8l6hsrKS66+/3j8AIsDu3bv59ttvGTp0KElJSaSlpVFQUIDb7Wbp0qX+\n7eLj4/0DJGZlZfnHVmpIXAMHDiQ3N5dvv/3WX86f/vQnDMNg0KBBrFmzBo/HQ0FBAZ999lm931dD\nDB8+nLS0NH8Xk7feeovhw4fXa+yqsWPHkp6eTmpqqv/+ZN26dcyfPx+v10tYWBh9+vQ5orXCsajt\nfq4mtX0uk5KSWLduHRUVFVRUVPiTIS6Xi7lz55KTkwP4uv1YrdYaHwaJNJRaSogE2dy5c48YRPGB\nBx5g9uzZZGdnc/bZZ2MYBqeeeiqXXXYZYWFhjBo1yj+ewR133MGmTZuYO3cuTz/9dL2Pecopp/CH\nP/yBuXPn4vV6iY2NZf78+QD86U9/4pZbbuG9995j4MCBnHXWWTWWc3i3CIC+ffvWe8qpG2+8kfnz\n5/ufkowcOZLevXtXu+1ZZ53lH6V6zJgxjBw5EvA9PUhJSeHjjz9myJAh9Tru8cRxyIABA7jqqqu4\n5JJL8Hq99O3bl3vvvRdoWP2JiEjLEx4ezlVXXcUjjzzCkiVLmDt3LllZWZx99tmYTCZSUlKYPHky\nJpOJBQsWcM899/B///d/hIaG8tRTTxEWFkbv3r2Jiopi+PDhvPvuu3Ts2LHaY51++umYTKZqx0wK\n5L1Cx44dee6553j66ad54IEHMAyD8PBw/vznP/tn5Jg1axbnn38+0dHRTJo0yT+71syZM7n22muZ\nNGkS/fr1819f+/TpU++4QkJCePrpp7n//vspKyvDZrNxww03YDKZmDlzJmlpaUyYMIGOHTsyYcKE\nI57uH+7QmBK/9uijj9ZZB+3bt+eBBx7g6quvxuVy0alTJ+6///561V94eDinnHIKP/zwA4MGDQLg\ntNNO46OPPiI5ORm73U5MTAwPPvggALfddpt/Bo2GqO1+ria1fS7Hjh3L2rVrSUlJIS4ujtGjR5OW\nlobNZmPGjBn+rq9ms5m77rqL0NDQBsUrUhOTcXhnLhGRFubFF1+ksLDQP3K2iIiINK20tDRuu+22\nI2adEBGpL7W5EZEWq6CggH//+99cfPHFwQ5FRERERESOgZISItIivfXWW0yfPp3f/e53dO7cOdjh\niIiIiIjIMVD3DREREREREREJCrWUEBEREREREZGgUFJCRERERERERIKiRU4Jmptb/bQ/cvyio8Mo\nLCwPdhgnDNV301OdNz3VedMLZJ3Hx0cEpNymEqh7CH3Og0/nIPh0DoJP5yD4dA6qV9v9g1pKyBGs\nVkuwQzihqL6bnuq86anOm57qvOmpzoNP5yD4dA6CT+cg+HQOGk5JCREREREREREJCiUlRERERERE\nRCQolJQQERERERERkaBQUkJEREREREREgkJJCREREREREREJCiUlRERERERERCQolJQQERERERER\nkaBQUkJEREREREREgkJJCREREREREREJCiUlRERERERERCQolJQQaSJOl4ecwnKcLk+zOG5D4mlo\n7DVtX1JexbZdBZSUV1W7fUl5Fdm5pWTnlByxb037HU8sgdZYdSbBofMhIiIi0jSsgSp4/fr13HDD\nDfTq1QuAxMREfvvb33Lbbbfh8XiIj4/nsccew2638/7777No0SLMZjMzZ87kwgsvDFRYIk3O4/Wy\neE0m6Rm5FBQ7iYl0kJQYz6xxPYNy3BljurNk7Y/VxmMxm+tVRnXb1rb9+aNO5uE30tmbW4rXALMJ\nTooP5445Sbz72U9s+iGHgpIjEw4hdjNnnNKOnXuL2ZdbdsR+f7l0MHZr7V9fNcVy7cyk46/cYzhu\nQ+uspu0lsHQ+RERERJqWyTAMIxAFr1+/nn/+8588/fTT/mV//vOfGTVqFJMnT2bBggW0b9+eadOm\ncf7557NkyRJsNhszZszgjTfeoG3btjWWnZtbEoiQBYiPj1D9NrI3UzNITcs+avmEoZ244eIhAavv\nmo7bOSGcrJzSauOZPSGxXmVUt21t24eHWimtcNd7eV06J4Qz/zen17pNTbGcO7I704Z3a/Ax66ux\n6qym7VuilvS90lrORyDrPD4+IiDlNpVA1ktL+Zy3VjoHwadzEHw6B8Gnc1C92u4fmvSxz/r16xk/\nfjwAY8eO5auvvuLbb7+lf//+REREEBISwuDBg9m0aVNThiUSME6Xh/SM3GrXpWfkUVnV8B/kx3vc\nvblHJyQOxXN4U/W6Yq+uO0hN29eUeDiWhAT43kNtXTlqi+Xr/+4PWJP8xqyz6raXwNL5kGORd7CC\np5d8x56fi4MdioiISIsUsO4bAJmZmfzhD3+gqKiIa6+9loqKCux2OwCxsbHk5uaSl5dHTEyMf5+Y\nmBhyc6u/KTwkOjoMq9USyNBPaC39KVhzsj+vjIISZ7XrCksqKSx20iEA9V3bcb01tI0qLKnEYrcR\nH9emzjJ+vW1d2zc2rwElVV66d62+7mqLJe9gxVGxN5bGrLPqtm/JWsL3Sms7Hy2hzluD0koXmzPz\neOLNTdwxOwmrRd18REREGiJgSYlu3bpx7bXXMnnyZLKysrj00kvxeP73lKmmXiP16U1SWFjeaHHK\nkdTcqHF5XB5iIhzkFx/9Qyc6IoToSEdA6ru245pN1ScmoiNC8FS5/PHUFfvh29a1fWMzmyDCbq6x\n7mqLJa5t6FGxN5bGrLPqtm+pWsr3Sms6H+q+0XS6tY9kRP8OrNuyn5Ub9nD2sG7BDklERKRFCVg6\nv127dkyZMgWTyUSXLl2Ii4ujqKiIyspKAA4cOEBCQgIJCQnk5eX598vJySEhISFQYYk0KYfNQlJi\nfLXrkhLjCLEHJi9Y23FPig+vMR6H7X8tkOqK/fBt69o+PLT691nT8rqcFB9ORJi9xvW1xXLmqR2O\nir2xNGadVbe9BJbOhxyrWeN7Eh3h4L11u9iXVxbscERERFoUy7333ntvIAp+//33WbduHYMHDyY3\nN5fXXnuNiRMn4nQ66dOnD6+++iqDBw9m1KhRPPnkk0ybNg23282TTz7JjTfeiMPhqLHs8mOYFlDq\np00bh+q3kfXrFk2F001RaRXOKjcxkSEM79+eWeN6Eh4eErD6rum4fzivH5VVnmrjMZtM9Y7919vW\ntv11M/qzZWcBpeVVGPhaOnRKCGf+ladR5fJysMRJRdWR/fVD7BaGD2iPx2tQWu46Yr+/XDq4zpkQ\naorl9xcMoKLCdbzV2+DjNrTOatq+JWpJ3yut5XwEss7btKn5+twSBKJe7FYLPbvG8OmmbHYfKGFE\n/w6YWtDnpbVoSd81rZXOQfDpHASfzkH1art/CNjsG6Wlpdx6660UFxfjcrm49tpr6du3L7fffjtO\np5OOHTvy0EMPYbPZWLFiBS+//DImk4k5c+Zw7rnn1lp2S2k+2xK1lGbWLZHT5aGo1ElUuMP/xLUp\n6ru649a2vCFlNHT7kvIqsnNK6ZRwZEuHQ9uHOqwUlVWBYRAfHebft6b9juX9N9VnvLHqrDVoid8r\nLf18qPtGzQJZL/e/9BUbtuVw0fheTDqtc0COIzVrid81rY3OQfDpHASfzkH1art/CFhSIpB0kgNH\nf0RNS/Xd9FTnTU913vSUlKhZIOtl5+587npxPVUuD/ddeToJ0WEBOZZUT981wadzEHw6B8Gnc1C9\nZjMlqIiIiEhrFRlm55KJiVS5vfxj+fZ6Dd4tIiJyolNSQkRERKSRnN43gaRecWzfc5BPv90X7HBE\nRESaPSUlRCSgnC4POYXlOF2eujcWEWnhTCYTcyb1JtRh5d9rMikorgx2SCIiIs1aYOYjFJETnsfr\nZfGaTNIzcikodhIT6SApMZ5Z43rWOXOGiEhLFh3h4KLxPXl12XYWrfiBGy8coNk4REREaqBfBiIS\nEIvXZJKalk1+sRMDyC92kpqWzeI1mcEOTUQk4Eb078ApJ8ew5cd8vvr+52CHIyIi0mwpKSEijc7p\n8pCekVvtuvSMPHXlEJFWz2QycVlKbxx2C/9K3UFRqTPYIYmIiDRLSkqISKMrKnVSUFz9DXhhSaVu\nzkXkhBAXFcqFY3pQVunmjVUZwQ5HRESkWVJSQkQaXVS4g5hIR7XroiNCiAqvfp2ISGszJukkEju3\nZWNGLmnbc4IdjoiISLOjpISINDqHzUJSYny165IS43DYLE0ckYhIcJhNJq6Y3Aeb1cwbq36gpLwq\n2CGJiIg0K0pKiEhAzBrXkwlDOxEbGYLZBLGRIUwY2olZ43oGOzQRkSbVLiaM80d2p7jcxb8+3hHs\ncERERJoVTQkqIgFhMZuZPSGR6aN7UFTqJCrcoRYSInLCmnRaZ77ZnsPX3x/g9L7tGNQzLtghiYiI\nNAtqKSEiAeWwWUiIDlNCQkROaGazid9M6YPFbOK1Fdspr3QFOyQREZFmQUkJERERkSZwUnw45w7v\nxsHSKv79SWawwxEREWkWlJQQERERaSKTz+xK54RwPvt2P9/vKgh2OCIiIkGnpISIiIhIE7FazPxm\nSl/MJhOLlm+nssod7JBERESCSkkJERERkSbUtX0Ek8/sQl5RJe98+mOwwxEREQkqJSVEREREmti5\nw7vRITaMjzdmk5F1MNjhiIiIBI2SEiKtmNPlIaewHKfLE+xQRETkMDarhSum9AXg1eXbqdL3tIiI\nnKCswQ5ARBqfx+tl8ZpM0jNyKSh2EhPpICkxnlnjemIxKxcpItIc9DwpiglDO7M6LYv3vviJC8f0\nDHZIIiIiTU6/TkRaocVrMklNyya/2IkB5Bc7SU3LZvEaTUEnItKcXDCqO/FtQ1ixfg8/7S8Odjgi\nIiJNTkkJkVbG6fKQnpFb7br0jDx15RARaUYcdguXT+6LYcCry7bh9niDHZKIiEiTUlJCpJUpKnVS\nUOysdl1hSSVFpdWvExGR4OjbNZoxgzqSnVvGR1/tDnY4IiIiTUpJCZFWJircQUyko9p10REhRIVX\nv05ERILnwrE9iY5w8OGXu8jKKQ12OCIiIk1GSQmRVsZhs5CUGF/tuqTEOBw2SxNHJCIidQl1WLks\npQ8er8Ery7bh8aobh4iInBiUlBBphWaN68mEoZ2IjQzBbILYyBAmDO3ErHEa2V1EpLka0COWs05t\nz+6fS1i1ISvY4YiIiDQJTQkq0gpZzGZmT0hk+ugeFJU6iQp3tIoWEk6Xp1W9HxGRX7tofC/++1MB\n737+E4N6xdEhtk2wQxIREQkoJSVEWjGHzUJCdFiwwzhuHq+XxWsySc/IpaDYSUykg6TEeGaN64nF\nrAZfItJ6hIfamDupN8++u4VXl2/njksGYzaZgh2WiIhIwOhuXkSavcVrMklNyya/2IkB5Bc7SU3L\nZvGazGCHJtLslKR9R/F324MdhhyHIb3jGdongczsItZszA52OCIiIgGlpISINGtOl4f0jNxq16Vn\n5OF0eZo4IpHmqXJXNhlX3MK2c3/DlmvuDXY4cpwumZhIeKiNJZ/uJPdgRbDDERERCRglJUSkWSsq\ndVJQ7Kx2XWFJJUWl1a8TOVF4ysrJeuhZtoy5kIMrPyX89EEMeO6+YIclxymqjZ2LJ/SiyuXlH8u3\nYxhGsEMSEREJCCUlRKRZiwp3EBPpqHZddEQIUeHVrxNp7QzDIO8/y/hu5HT2P/MqttgYeiz8K33f\nfZGIUxODHZ40gjP7tWNgj1i27S7k8+/2BzscERGRgFBSQkSaNYfNQlJifLXrkhLjNAuHnJBKN3/P\ntnOv5Mfr7sZ9sJiON/6W/p8vIXZaMqZWMCjio48+yqxZs5g+fTqrVq1i//79zJ07l9mzZ3PDDTdQ\nVVUFwPvvv8/06dO58MILefvtt4McdeMzmUxcmtKHUIeFxWt2UFBcGeyQREREGp1m3xCRZm/WuJ6A\nbwyJwpJKoiNCSEqM8y8XOVFU5eSR/dCz5C3+AIDoqePpMu8GHJ07BjmyxvP111+zY8cOFi9eTGFh\nIeeffz7Dhg1j9uzZTJ48mQULFrBkyRKmTZvGs88+y5IlS7DZbMyYMYOJEyfStm3bYL+FRhUd4WDW\nuF78Y/l2Xl/5A9fPGNAqEk8iIiKHKCkhIs2exWxm9oREpo/uQVGpk6hwh1pIyAnFW+XiwMtvsfdv\nL+EtLSO0b0+63ncrkcOHBju0RnfaaacxYMAAACIjI6moqGD9+vXMnz8fgLFjx/LKK69w8skn079/\nfyIiIgAYPHgwmzZtYty4cUGLPVBGDujA+q0H+HZnPl9vPcCwU9oHOyQREZFGo6SEiLQYDpuFhOiw\nYIch0qQOpq5j970LcP64B0tgLxVxAAAgAElEQVR0FF0fvJ2EOedjsrbOS7jFYiEszPd3vmTJEkaN\nGsW6deuw2+0AxMbGkpubS15eHjExMf79YmJiyM2tfqaew0VHh2G1BiapGR8fEZByAW6+ZAjXPf4J\nb328g5FDOhMdERKwY7VkgTwHUj86B8GncxB8OgcN0zrvaERaMafLo9YCIieAisxd7Ll3AUVrvgSL\nhYQrZtLp1t9jjY4KdmhNIjU1lSVLlvDKK68wadIk//KaZqGo7+wUhYXljRLfr8XHR5CbWxKQsgEs\nwAWjuvNm6g6efiudq6edGrBjtVSBPgdSN52D4NM5CD6dg+rVlqhRUkKkhfB4vSxek0l6Ri4FxU5i\nIh0kJcYza1xPLGaNWSvSWriLS9n3t5c48PK/MNweIkecRpf7biGsz4kzhsrnn3/O3//+d1566SUi\nIiIICwujsrKSkJAQDhw4QEJCAgkJCeTl5fn3ycnJYdCgQUGMOvDGDenEhu05pP3y39A+CcEOSURE\n5Ljpl4xIC7F4TSapadnkFzsxgPxiJ6lp2Sxekxns0ESkERheL7n/eo/vRlzAz8+/ga1DO3q+9Ci9\nFy88oRISJSUlPProozz//PP+QSvPOussVq5cCcCqVasYOXIkAwcOZMuWLRQXF1NWVsamTZsYOrT1\njbFxOLPJxG+m9MVmNfPG6gxKK1zBDklEROS4qaWESAvgdHlIz6i+r3R6Rh7TR/dQVw6RFqzkm2/Z\nPe9xyr/bhjk0hE63/5H2V12COfTYxg2ob1eG5mjZsmUUFhZy4403+pc9/PDD3HXXXSxevJiOHTsy\nbdo0bDYbt9xyC1deeSUmk4lrrrnGP+hla9Y+JoxpI07m7bU7eevjHfx2ar9ghyQiInJclJQQaQGK\nSp0UFDurXVdYUklRqVMDQIq0QFX7c8j66zPkv7McgNjzU+j8l+uwd2zX8MIML+aftmDdnEpF+05w\n1qxGjrZpzJo1i1mzjo791VdfPWpZSkoKKSkpTRFWszLp9M58sz2HL//7M6f3TWBAj7hghyQiInLM\n1H1DpAWICncQE+modl10RAhR4dWvE5HmyVvpZN/Tr/DdyOnkv7OcsP596Lv0JXo8+8AxJSRMB3Zh\nW/4Cti+WQEUJls69AhC1NBcWs5nfTOmLxWxi0YofqHC6gx2SiIjIMVNLCZEWwGGzkJQYT2pa9lHr\nkhLj1HVDpIUwDIPCFWvJmv8kzj17scZG02X+LcRfdA4myzH8HRfnY01fhWXPVgA83frjTppI1Mld\nQCN/t2qdEsKZelY33lv3E29/ksmlKX2CHZKIiMgxUVJCpIWYNc430F16Rh6FJZVER4SQlBjnXy4i\nzVv5DzvZM+8JitdtwGS10P73l9Dxpt9hjQxveGHOcizfrcWSsQGT14M3vjPuIZMx4js3fuDSbJ09\nrCsbf8hh7eZ9nNa3HX27Rgc7JBERkQZTUkKkhbCYzcyekMj00T0oKnUSFe5QCwmRFsB9sJi9jz/P\ngUVLwOMhauxZdLn3ZkJ7dWt4YR43lowNWL5bi6mqAiM8GtfgSXi7nAImU6PHLs2b1WLmiil9eeC1\nNP6xfBv3/eYMHHZdF0REpGVRUkKkhXHYLBrUUqQFMDwect54l72PPoe7sAjHyZ3pcu/NtJ0wAlND\nEwiGgTlrG5ZNKzGXFGDYQnAPTsbT50yw6FJ+Iju5QyQpZ3Rh+dd7eOezH7l4gsYTERGRlkV3MiIi\nIo2s+KuN7J73OBVbd2BuE0bnv1xHu99ejNlhb3BZpvy9WNOWY87ZjWEy4+59Jp4BYyCkTeMHLi3S\necNPJj0jj9S0LE7rk0DPTlHBDklERKTelJQQERFpJM7s/WTd/xQFH6QCEDfzHDrdeQ32hGOYsrHs\nINb01Vh++g4AT6c+eAZPwoiKb8yQpRWw2yxcMaUPD7+xiVeXb+PeK07DZlU3DhERaRmUlBARETlO\nnvJK9i9cxP6Fr2FUOmkz+FS63n8r4UmnNrwwlxPLfz/Dsu1LTB433pgOvkEs25/c+IFLq9GrU1vG\nD+lE6sZs3v9iF9NH9wh2SCIiIvWipISIiMgxMgyDgvdXk3X/U1TtO4AtIZbOj/yZ2OlTMJnNDSvM\n68GcuQnrtx9jqizDCIvENWgC3u4DwdTAsuSENH10DzZn5rH86z0M7Z1A1/YRwQ5JRESkTkpKiIiI\nHIOy//7AnrufoOTrTZjsNjpcezkdr78CS3jDx3ow7d2BdeMKzEU5GFY77oHj8PQbDtaGj0EhJy6H\n3cLlk/vw+Fubefmjbdx9+VCsFiW0RESkeVNSQqSFc7o8miJUpAm58g+S/ehCcv+5FLxe2k4aRZd7\nbiLk5M4NLstU+DPWjSsx78/EMJnw9ByCe+B4CNMTbjk2/brFMGpgRz77dh/Lvt7NucPV7UdERJo3\nJSVEWiiP18viNZmkZ+SSX+ykbbidpF5xzJ6YiKWhzcZFpE5el5ucRW+z94kX8BSVENLrZLrOv4Wo\nMWc2vLCKEqybP8a8cxMmw8DboQfuISkY0e0bP3A54cwc25MtP+bzwRe7GJIYz0nx4cEOSUREpEZK\nSoi0UIvXZJKalu1/fbC0ik/S95G5t5i7Lx+qxIRIIyr69Gv23LOAiowfsUSG0+W+W0i47ELMtgZe\nRt1VWLZ+ieX7zzG5q/BGxeMekoK3Yy8wmQITvJxwwkKszE3uzdNLvuOVZdu4c+4QXRNERKTZUlJC\npAVyujykZ+RWuy4rp5Q3U3cwd1LvJo5KpPWp3JXNnvl/4+DKT8FkIn7O+XS6/WpssdENK8jwYv7x\nW6ybUzGVF2M42uAakoK352Awq9uVNL5BPeMYdko7vvr+AKu/ySbljC7BDklERKRaSkqItEBFpU7y\ni501rt+ckcfMsT01xoTIMfKUlbPv6Vf5+fk3MKpchJ8+iK7330qb/n0aXJbpwE9Y01ZgLtiHYbbi\nPnUUnlNGgj0kAJGL/M/FExL5/qcC3v38R5J6xdEuJizYIYmIiBxFSQmRFigq3EHbcDsHS6uqXX+w\nzElRqZOEaN2AijSE4fWS/85ysv76DK4Dedg7tqPzvBuIOXcipgZ2rzAV52HZuBJL9nYAPCcPwJ00\nEdq0DUToIkcJD7UxZ1JvFi79L68u28ZtlwzGrG5CIiLSzCgpIdICOWwWknrF8Un6vmrXx0SEEBXu\naOKomoZmG5FAKd38PbvnPU7Zxi2YQhx0vOl3dLjmMixhDWzR4CzH8t0nWH7YgMnw4k3o6hvEMq5T\nYAIXqcXQPgkM6R3Pxh9y+WTTXsYP0edQRESal4AmJSorK5k6dSpXX301w4YN47bbbsPj8RAfH89j\njz2G3W7n/fffZ9GiRZjNZmbOnMmFF14YyJBEWo3ZExPJ3FtMVk7pUeuSEuNa3Q/2w2cbKSh2EhPp\nICkxnlnjemoANzkuVTl5ZD/0LHmLPwAg5pwJdL7rehydOzasII8byw/rsWxZi6mqEiMiBtfgSXg7\n99MglhJUcyYmsn13IUvW7mRgj1ji2oYGOyQRERG/gN7JP/fcc0RFRQHw9NNPM3v2bN588026du3K\nkiVLKC8v59lnn+Uf//gHr7/+OosWLeLgwYOBDEmk1bCYzdx9+VDGDj6J6HAHJhPERoYwYWgnZo3r\nGezwGt2h2Ubyi50YQH6xk9S0bBavyQx2aNJCeatc7F/4Gt+NmE7e4g8I7deLPkv+Ts/nH25YQsIw\nMO/+L/b3n8a6cQVgwj1kMlXnXIe3yylKSEjQRYU7uHhCL5wuD4tWbMcwjGCHJCIi4hewlhI7d+4k\nMzOTMWPGALB+/Xrmz58PwNixY3nllVc4+eST6d+/PxEREQAMHjyYTZs2MW7cuECFJdKqWMxm5k7q\nzcyxPVt1l4baZhtJz8hj+ugerfJ9S+AcTF3H7nsX4PxxD5boKLo+dAcJl0zDZG3YZdGUm4V14wrM\nuXswTGbcfYbhGTAGHEEcz8XtxFNlD97xpVkadkp7NmzL4bud+az7bj8jBzawJZCIiEiABCwp8cgj\njzBv3jyWLl0KQEVFBXa77yYpNjaW3Nxc8vLyiImJ8e8TExNDbm71PzxEpGYOm6VVD2pZVOqkoIbZ\nRgpLKjWop9RbReYu9ty7gKI1X4LFQsIVM+l06++xRkc1rKDSQqzpq7Hs2gKAp3NfPIOTMSJjAxB1\nPbmdUJYDzhKKK8IhQlNAyv+YTCYuTe7NXS+t5601mZzaPZboiNY59pCIiLQsAUlKLF26lEGDBtG5\nc+dq19fUbLC+zQmjo8OwWvVUNFDi4yOCHcIJpbnXd2WVm8JiJ9GRDkLswRkbNyIqlPjoUHIKK45a\nF9c2lB7dYhsUW3Ov89Yo2HXuKiphxwPPsuv/Xsdwu4kdeyanLPgLEacmNqgcw1mBc0MqVZs+BY8b\nc7vOhIyehrVTjwBFXjdPVSVlOXtxFuUBYA1tQ3j7rtjCwoMWkzRPMZEhzBzXk9dW/MDrK3/guun9\nGzyrjIiISGMLyC+MtWvXkpWVxdq1a/n555+x2+2EhYVRWVlJSEgIBw4cICEhgYSEBPLy8vz75eTk\nMGjQoDrLLywsD0TYgu+HQ25uSbDDOGE05/pubgNLDugRS2padrXLS4oqqG8tNuc6b62CWeeG10ve\nW++T9fBC3HkF2Dt3pMu9NxGdMoZKk4nK+sbl9WDekYb12zWYnOUYYVG4kybgPXkAFSYzBOP9eVxQ\nlgeVhb7XFgeEJ+C2h2MLCw9YnQc7wSTHZ/TAjmzYeoDNmXms33aAM/u1D3ZIIiJyggtIUuLJJ5/0\n//uZZ57hpJNOIj09nZUrV3LeeeexatUqRo4cycCBA7nrrrsoLi7GYrGwadMm7rzzzkCEJHJCO5Zp\nNA8NLHnIoYElAWZPaNjT5cZwaPDO9Iw8CksqiY4IISkxrlUO6imNo+Sbb9k973HKv9uGOTSETrf/\nkfa/n4M5pAFN1g0D894MLJtWYi7KxbDacQ+agKfvWWC1BS742njdvmRERSFggMUObeLBEalBNaVO\nJpOJyyf34e5XNvDm6h306xZDZJjGIBERkeBpsrbY1113HbfffjuLFy+mY8eOTJs2DZvNxi233MKV\nV16JyWTimmuu8Q96KSLH71hbOzTHgSUtZjOzJyQyfXSPVj2opxy/qv05ZP31GfLfWQ5A7PkpdP7L\nddg7tmtQOaaC/b5BLH/+EcNkwtNrKO6B4yE0SN0ivB4oz4eKfDAMMFt9yYiQtkpGSIMkRIcxfVQP\n/vXxDt5cncEfzjs12CGJiMgJLOBJieuuu87/71dfffWo9SkpKaSkpAQ6DJET0rG2dmjOA0u29kE9\n5dh5K538/Pwb7Hv6VbwVlYT170PX+28l4vS6uwUeobwY6+aPMe9Mx4SBt2Mv3IOTMaIbltRoNF4v\nVBRAeR4YXjBbfMmI0LZgavquVNI6jB/SiQ3bD7BhWw6n981lcGJ8sEMSEZETVHBGrRORgHO6PGz6\nIafadXW1dggPs+GwW6is8hy1LjoihKhwjdguzYdhGBSuWEvW/Cdx7tmLNS6GrvffStysczBZGtCa\nxlWFZes6LN+vw+Rx4W2bgGvIZIyOQeoiZHh9XTTK8sDw+BIQbRIgLEbJCDluZrOJ30zpyz2vfMPr\nK3+gd5e2tAkJUpckERE5oSkpIdLKOF0eCoor+eCLXRSUVFW7TV2tHZZ+/lO1CQmApMQ4dZuQZqP8\nh53smfcExes2YLJaaP/7S+h40++wRjagi4XXi/nHzVg3p2KqKMEICcd12hS8PQZDEAZ1xTCg8iCU\n5frGjzCZISwOwmJ9rSTq4DXA463fbFZyYusQ24bzRnTjP5/+yFupO7hyar9ghyQiIicgJSVEWonD\nx4/Ir6HrxSG1tXaobTyJELuFaSO7H3esIsfLXVhE9uPPk/Paf8DjIWrsWXS592ZCe3VrUDmm/T9i\n3bgcc+HPGBYb7v6j8ZwyEmxBaA1kGOAshrIc38wamHyJiLBY3/gRdXB7ILvIRlaRjbh8g75xgQ9Z\nWr6UM7qQ9kMuX/z3ZwYnxpOkbhwiItLElJQQaSV+PX5EbWpr7VDbeBJVLg+l5VWEOfTVIcFheDzk\nvPEuex99DndhEY7uXeh6781EjR+OqQGDPZqKcrFsXIll7w8AeLoPxD1oIrSJClToNTMMqCqB0lzw\n/PK3Fxrtax1hqbs5vdsL2QdtZBfZcHtN2MwGXeNNoMYSUg8Ws5nfTu3H/Fe/4R8rttP9pCii2mg2\nDhERaTr6ZSHSCtTWuuHXzjq1fa3TaEaFO4iJdFTb2kLjSUgwFX+1kd3zHqdi6w7M4W3ofNf1tPvt\nxZjtDegHX1mG9btPMGd8g8nw4m3XDfeQFIzYkwIXeE0MA6rKfC0j3JW+ZSFRvkEsLXX/KHR7YW+R\njayDvmSE1WxwckwVJ0W56BAXQW79vhJEOCmuDReO8c3GsWj5dq6b3r9BST4REZHjoaSESCtQW+uG\nw8VGOpib3LvW6UAdNgtJifHVtrrQeBISDM7s/WTd/xQFH6QCEDfzHDrdeQ32hAb0T/C4sGz/GsuW\nTzG5nHgjYnEPScbbqU9wptOsKvONGeEq9712RPqSEda6k361JSOsGv9SjtH4oZ3YnJnH5sw8Pv9u\nP6MGdgx2SCIicoJQUkKkFaitdcPhkhLj65VUONSSIj0jj8KSSqIjQkhKjKu1hYVIY/OUV7L/2UXs\nf+41jEonbYb0p+v9txI+6JT6F2IYmHf/F+umVZjKDmLYQ3EPnYIn8TSwBOES6KrwtYyoKvO9tof7\nZtSwhdS5q9sL+4ps7DksGdEtpopOSkZIIzCbTFx5dl/ufnkD/0rdQZ8ubTX9soiINAklJURagdpa\nNwDERjYsqWAxm5k9IZHpo3tQVOokKtyhFhLSZAzDoOD91WTd/xRV+w5gaxdH50fvJPaCyZgaMBuG\nKXcP1rQVmPOyMMwW3P2G4zl1NDhCAxh9DdyVvpYRzhLfa1sYhCf4/l8Hjxf2FlvJKrTj8pqwmA26\nRf+SjNCfpTSimMgQ5iQn8sL7W3nxw63cccngWlvWiYiINAYlJURaiepaNwzoGcuEIZ2IiQw5pqSC\nw2bRkzJpUmVbtrPn7icoWZ+OyW6jw3VX0PG6y7GEt6l/ISWFWNNXYdn9XwA8XU7BPXgSRMQEKOpa\nuKt+SUYU+V5bQ33JCHvd78fjhX3FVvYctOPy+JIRXX9JRihHKIFyZr/2bN6Rx4ZtOSz/eg9Tz+oW\n7JBERKSVU1JCpJVo7NYNTpdHrSSkybjyC8l+ZCG5/1wKhkHb5NF0uecmQrp1qn8hVRVYtnyKZfvX\nmLwevLGdcA9NwUjoGrjAa+Jx+ZIRlQd9r60OXzcNe3idY1j8Lxlhw+UxYzEpGSFNa86k3uzILuK9\ndT/Rv3ssXdtHBDskERFpxZSUEGlljrd1g8frZfGaTNIzcikodhIT6SApMZ5Z43qqGa80Oq/LTc6i\nt9n7xAt4ikoI6XUyXe+7hajRZzagEA/mjG+wfvcJJmc5Rpu2uJIm4u12Kpia+DPrdUNZHlQUAoZv\nFo028b6BLOuRjNj/SzKi6pdkRJe2VXRuq2SENK3wUBu/mdKXJxZv5sUPt3L3ZUOx60MoIiIBoqSE\niBxh8ZrMI8amyC92+l/PnpAYrLCkFSr69Gv23LOAiowfsUSG0+W+W0i47ELMtnpemgwDc/Z2LJtW\nYS7Ow7A5cCdNxNN3GFgaME1oY/B6oDwPygsAA8w2XzIiJKp+yYgSK3sKfckI8y/JiE5tXdj1O1CC\n5JSTYxg/pBMfb8zmP5/+yMUTegU7JBERaaWUlBARP6fLQ3pGbrXr0jPymD66h7pyyHGr3JXNnnsX\ncHDVZ2AyET/3Ajrd9kdssdH1LsOUvw/rxhWYD/yEYTLjSTwd94CxEBoewMir4fVARQGU54PhBbMV\nwuIgtG2drTS8hq9lxO7DkhGdf2kZoWSENAczxvRg664CVqdlMbBnLP26BWFcFhERafWUlBARv6JS\nJwU1TCtaWFJJUalTA1/KMfOUlbPvqVf4+YV/YlS5iDgjiS7330qbU3vXv5DyYqzpqZh/3IwJA89J\niXiGJGNEJQQu8OoYXl8XjbI8MDxgsvjGjAiLqXcyYs9BG073L8mIqF+SEboqSzPisFn47dR+PPj6\nRl7+aBv3XXk6bUKauBWSiIi0err9ERG/qHAHMZEO8qtJTERHhBAV7ghCVNLSGV4veUs+Iuuvz+A6\nkIe9Yzs6z7uBmHMnYqqja4Ofy4nl+3VYtn6ByePCG90O15DJGB16BDb4XzMMqPwlGeF1+xIQbeIh\nNAbMtTdv8Brwc4mvZcShZESnKBdd2lYpGSHN1skdIjl3eDfe/fwn/rkqg6vOPSXYIYmISCuj2yAR\n8XPYLCQlxh8xpsQhSYlx6rohDVa6+Xsy5v+Ng+s3Ywpx0PGm39HhmsuwhIXUrwCvF/POdKzfpmKq\nKMUIjcA16Gy83ZOgKQdeNQyoLPLNqOF1ASYIi/X9Z679UnooGbGn0EblYcmIzm1dOKxG08Qvchym\nDOvKdzvz+XrrAQb2jOOMfu2CHZKIiLQiSkqINFPVTcl5rNN0NmS/WeN6Ar4xJApLKomOCCEpMc6/\nXKQ+qnLyyH7wWfL+/QEAMedMoPO8G3B06lDvMkz7MrFuWoG58ACGxYZ7wBg8/UaArQlb7BgGOEug\nLAc8Vb5lodG+cSPqGEzTa8CBX1pGVLrNmEwGJ0W56KJkhLQwFrOZ357Tj3te2cDrK38gsXNboiPU\nck5ERBqHkhIizUx1U3IO7BWHCdi8I69B03Qey/SeFrOZ2RMSmT66xzElQOTE5q1yceClf7H3yZfx\nlpYR2q8XA5+eh7dfv3qXYTqYg2XjCiz7dmBgwtMjCfegCRAWGcDIf8UwoKrU1zLCXelbFtIW2sT5\npvmsxVHJCAxOinTRJVrJCGm52kWHcdH4Xry24gde+WgrN80ahLm+3a9ERERqoaSESDNT3ZScazbu\nPWKb+k7TeTzTezpsFg1qKQ1yMHUdu+9dgPPHPViio+j60B0kXDKN2A7R5OaW1F1ARSnW79Zg3rER\nk+HF27477iHJGDEdAx/84arKfC0jXBW+145I37gR1tqfDHsNyCn1JSMqXL5kRMdfkhEhSkZIKzB6\nYEc278jju535rNmYzYShnYMdkoiItAJKSog0I7VNyVmd2qbp1PSe0lQqMnex594FFK35EiwWEq6Y\nSadbf481Oqp+BbhdWLZ9ieX7zzG5nHgj43APTsbbqTc05ZNYVwWU5oCrzPfaHg7hCWCtffwLw4Cc\nUgu7Cu1KRkirZjKZuGJyH+a9vIG31+6kX7cYOsa1CXZYIiLSwikpIdKM1DYlZ3Vqm6ZT03tKoLmL\nS9n3txc58PJbGG4PkSNOp8t9NxPWp57jjxhezLu2YE1fjamsCMMRhuv0qXh7Da1zJotG5a6E0lyo\n+qU1h60NhMeDrfa/j0PJiN2Fdsp/SUZ0iHTRta2LEJuSEdI6RYU7uCylD8++u4UXP9zKX+YOwWpp\nwkFnRUSk1VFSQqQZqW1KzurUNk2npveUQDG8XvLeep+shxfizivA0eUkOt9zI9EpY+o9xacpZzfW\ntOWY8/dimC24+43A038U2EMDHP1h3E7fmBHOYt9rWyi0SQB77U9+DQNyyyzsKvAlI8CgQ4SvZUSo\nkhFyAhjSO54R/Tuwbst+PvhiF+eP6h7skEREpAVTUkKkGaltSs7q1DZNp6b3lEAo2bCZ3Xc/Qfl3\n2zCHhtDpjqtpf9UlmEPqmeQqzseavgrLnq0AeLqeijtpEkREBzDqX/G4fMmIyoO+19YQ35gR9vBa\nu4tUl4xoH+Giq5IRcgK6eEIvtu8p5MOvdjGgRyw9Tqpndy0REZFfUVJCpJmpbkrOgb1if5l9I79B\n03Rqek9pLFX7DpD112fIf3cFALEXTKbzX67D3iGhfgU4K7BsWYvlh/WYvB68cZ1xD03BiO8SwKh/\nxeOG8jyoKAQM3ywabRLAEVFnMiKvzDdmRFmVLxnR7pdkRJiSEXKCCnVYufLsvjz6ZjovfriVe684\njRC7bitFRKThdPWQY+J0ecgtLAeTifi2oa36qbvT5WnSqTFrm5JzxpiGxXK803s29XuX5sdb6eTn\n599g39Ov4q2oJGxAX7refysRpw2sXwEeN85Na7F/uRJTVQVGeDSupIl4u57adINYej2+ZER5AWCA\n2eZrGRESVc9khI2yKgtg0C78l2SEXckIkd5dokk5owvL1+/h32syuTSlT7BDEhGRFkhJCWkQj9fL\nvz7ewZdb9lNZ5QUgxG5heP/2XDS+FxZz6xnsyuP1snhNJukZuRQUO4mJdJCUGM+scT397zOQP9qr\nm5LzWKfpbOh+9Xnv0roZhkHhirVkzX8S5569WONi6PrAn4ibdQ6m+nwGDANz1jYsm1biLCkAWwju\nwcl4+pwJlia69Hg9UFEA5flgeMFshTZxEBJdZzIiv9zCrgIbpb8kIxLC3XSLrlIyQuRXpo3szpYf\nC1i7eR8De8YxsGdcsEMSEZEWRkkJaZDFazJZs3HvEcsqqzx8vHEvJpOJ2RMSgxRZ41u8JvOI8Rjy\ni53+17PG9WzVP9pre++t6RxL9cq3Z7Ln7icoXvcNJquF9r+fQ8ebfos1Mrxe+5vy92JNW4E5ZxeG\nyYxt0EhKew2HkCaaOtDw+pIRZflgeMBkgfB2EBoNppr/PmtKRnSNrqKNkhEi1bJZzVx1Tj/uW/QN\nry7fzn1Xnk5kmD3YYYmISAuipITUm9PlYdMPOTWuT8/IZfroHq2imb/T5SE9I7fadekZeXg8Xj5J\n3+df1pp+tNf13lvLOZajuQuLyH78eXJe+w94PESNO4su995MaM9u9SugrAhr+mosP30LgKdTHzyD\nJxHVszuluSWBC/wQw/CNF1GeB163LwHRJh5CY2qdYtQwoKDc102jxOlLRsT/0jJCyYjgycjI4Oqr\nr+byyy9nzpw5fPPNN5vVgLMAACAASURBVCxYsACr1UpYWBiPPvooUVFRvPTSS6xYsQKTycS1117L\n6NGjgx36CadTQjgXjOrBvz/JZNHy7Vx7Qf96z8QjIiKipITUW1Gpk4KSqhrXF5Q4KSp1HlP3guam\nqNRJQQ3TchaUVJK+I6/ada3hR3tt772wpLLVnGP5H8PtJuefS9n76HO4C4twdO9C13tvpu2EEfUr\nwOXE8t/PsGz7EpPHjTemA+4hKRjtm2iaQMOAyiLfjBpeF2CCsFgIi2tgMgLi2/haRoQ7lIwIpvLy\ncu6//36GDRvmX/bQQw/x+OOP0717d/7+97+zePFiJk+ezLJly3jrrbcoLS1l9uzZjBgxAoul5X4H\nt1STTu/MdzvzSN+RxxdbfmbEgA7BDklERFoIJSWk3qLCHcRE2GtMTMREOIgKr+e0gI2sscd2iAp3\nEBPpIL+aH+dt2zgoLG29P9pre+/RESFBO8cSGMVfprH77ieo2LoDc3gbOs+7gXZXXoTZbqt7Z68H\nc+Ym/p+9Ow+Pqrz///88c+bMZN8XSEhI2HdIAggIBNnEBbFV0a9LW7TaVms3W9u64N7Wn+unVmtL\nXalWLa2Ktghi2XdI2JewE0Igk2SyZ2bOnHN+f5wQCNkmZJuB+3FdXjKTOTP3mTOZzHnN+37f1h3f\nILmqMYLDzSaWfUa2OE2iwxgGuCvMMELzAJJZFREaZ/aPaGEzZ605TaOiLoyICzUrIwI9jDheqLFm\np0qfXjBhaHeP5uLZbDYWLFjAggUL6q+Ljo6mrMxcxrW8vJw+ffqwadMmJk2ahM1mIyYmhuTkZA4d\nOsTAgQO7a+iXLYskcfd1g3ni7c18uDyPQalRxEUFd/ewBEEQhAAgQgnBZ3ZFJnNgQoNeA+fLGBDf\n5RUCndWQ0a7IZAyIb3JfRw2IY+eh4kv2pL2lfc8YEBfQVSDCOe6ThZx4+lWcX34DQNyts+n12wew\nJfjWpE4qOIh121dYyoswrDa8I6eiDb4SlC6YS24Y4KmC6iLw1v0eBkWZUzXk5sMUM4ywcMxpo8J1\nfhihEmbXO3/cnUTXDfYc1ViZ4+FYobkfYaEaELi/q1arFau14UeURx55hDvvvJOIiAgiIyN56KGH\n+Nvf/kZMTEz9bWJiYnA4HC2GEtHRIVitnfPcxMeHd8r9Bor4+HB++O2RvPKPHN5blsdzP7oS2dK1\n0zgu92PgD8Qx6H7iGHQ/cQzaRoQSQpvcOrUfumGwftdpXB4NOLf6xq1T+3X5eDqzIePZ/cnNK8ZZ\n6SI6PIiMAXF1gYfULSftXbVEZ0v7LgQ2rcZF4evvUfjn9zFcbkKzhtP7mV8SNsq3r9Ul52ms25Zi\nKTyEgYTWLwvvyGkQ0kV/fD3VUFUE3lrzsj3CDCOszYeBhgFldWFEeV0YERviJS1GJTyAwwiParBl\nn5fVuR6Ky80KjyFpMlMybVwxKpLi4qpuHmHHeuaZZ/jTn/5EVlYWzz//PB9++GGj2xhG65UuTmdN\nZwyP+PhwHF3RO8XPDUuNZPTAeLYecPDBf/dwzRW9u+yxxTHofuIYdD9xDLqfOAZNaymoEaGE0Cay\nxcKdMwZyy5R+OJw1IEnERwV3y7fnnd2QUbZYuH36AG7K7tsoCOjqk/auXqKzpX0XApNhGJR+voz8\nZ/6Ip/AMSmIcKS88Suy3Zvm2xGdtJdbt/8NyeBuSYaD36Is362qMmC6aN67WmGGEWndCaQ+vCyOC\nWtzMWWvhWOmlFUZU1uis26mybqdKjQusMowbamVyho3EGPNYXopNBg8cOEBWVhYAEyZM4IsvvmDc\nuHEcPXq0/jZnzpwhISGhu4YoYL72vjNrEAcLyvn3qiMMTYshNVF8YygIgiA0T4QSwkWxKzK9Err3\nQ0ZXNWS0K3Kj++nqk/buWqKzqX0XAk/1rv2cmP8SlZtykWwKPR+cR9JP5iGH+nBsvR7kfeuRd69B\n8nrQI+PxZs1CT+oPXXHiq7rMaRqeum/9baEQmgBKy3PVy+rCiLK6MCImxJymEREUuGHEmVKdVbke\ntu334tUgJAhmjFW4coRCeEjgL0Xcmri4OA4dOkS/fv3YtWsXvXv3Zty4cbzzzjs8+OCDOJ1OioqK\n6NdPVHR1t7BghbuvHcwrn+zgb1/u5fHvjkbppCkzgiAIQuAToYQQsPyhIWNXnLSLJTqFi6WWODn5\n/Bs4PvgMDIOoq7NJfeLnBKX1an1jQ8dydCfW3K+Raiow7KGoWVej98tqcUWLDuN1mw0s3RXmZSXY\nDCNsoS1udnaaRlltXRgRbFZGBGoYYRgGhws0Vuao7DtmTpmLi5TIzrAxerAVm3LpVUQA7N69m+ef\nf56CggKsVitLly7lqaee4rHHHkNRFCIjI/nd735HREQEc+fO5c4770SSJJ588kksnVA9JrTd8D6x\nXJWRzIrcAj5dfZS5YvqfIAiC0AwRSggB63JpyCiW6BTaSle9FL37CQUv/RWtooqg/un0fvohIrPH\n+bS9dOYo1q1fYSk9hWGx4h06CW3YZLC1PFWiQ2geM4xwlZuXrUHnwogWKjPKXWZlhLMujIiuCyMi\nAzSM0DSDHYe8rMpROekw9yGtp4UpmTaGpstYurh5YFcbNmwYCxcubHT9Rx991Oi6u+66i7vuuqsr\nhiW00dyr+rH3WClLN59gRN9YBvWO7u4hCYIgCH5IhBJCQLscGjK2XBHSfcuwCv6pfOVGjj/xEq6D\nR5Ejw0l9+pckfPdmLErrb/dSRTFyzjLk/H0AaGkj8GbMgLCozh42aCrUFEOt07ws282eEfbwFsOI\nCpeFo6UKzlpz/6KDNdJiPAEbRrjcBpv2qKzZoeKsNJAkGNFPZkqGjd49L42gVbh82G0y3589hN8v\nzOGt/+zlqbuvICRIfPQUBEEQGhJ/GYSAdjk0ZGypIqTapfKvVYc7reGlEDhcx05y4smXKVu22mxA\ne9e36fXwj1Biffhm0l2DvHMF8oHNSIaOHp+Kd/Q1GHE+TPNoL90LNSVQUwoYYFEgLB7ska2GEcec\nCqU15p+xqGCNtGgPUcGBGUaUVeqs2aGycbeKywM2K1w5QmHyKIW4KPG7LQSuvkmRXD+hN4vXHePD\n5Xl8//oh3T0kQRAEwc+IUEK4JFzqDRnPVn6s3VlYvxQrgMuj+9TwsquWEhW6nlZVzak/vsPpv36A\n4VEJvyKD1Gd+SeiwgT5s7EU+sAl510okjwsjPAY1YyZ66pDOb2Kpa2YYUVsKhg4Wq1kZERTVtjAi\nyKyMCNQwosChsSpHJfegF12H8BCJq7IUJgxXCAm6tKdoCJeP6yeksetICet3n2ZUvzhGDxIrpAiC\nIAjniFBCEDpZRwQCssXCTdl9yTlQ1CCUOKu5hpddvZSo0HUMXafk30vIf+411DPF2JISSZn/M2Jm\nT299OUjDwHJiD9acZUhVTgxbEN6sWWgDrwC5k/8sGLpZFVFTAoYGkgxhiRAcDVLzr8lKt4VjpQol\ndWFEZF0YER2AYYRhGBw4rrEyV+Vgvvn7nBhjYUqmQuYAK1arCCOES4tVtvD964fw1DtbeO+r/fTr\nFUmUmHooCIIg1BGhhCB0ko4OBMqr3DgrPU3+rLmGl921lKjQuapyd3N8/ktUb9uFFGQn6Rf30vP+\n7yKHtN6IUnLkY932FRbHCQzJgnfQeLQRU8DeyZVGhg61ZWbfCN1rBhCh8RAcCy38PlwYRkQEaaTX\nTdPoihVJO5LXa5CT52VVrsrpEjNM6Z8ik52hMKi33HqYJAgBrGdsKHOn9uPvy/J457/7+dktI8Rr\nXhAEQQBEKCEI7dJSFURHBwJtXQJVLCV66fEUFXPyd69T/MkXAMTMnk7K4z/F3qtn6xtXlWHNXYZ8\nbBcAWspgtMyZGBFxnTlkMAxqnUVQchJ01ZyaERIHIbEtLi1a5ZY45rRRXF0XRtjPVUYE2nlMjctg\nwy6zeWVljYHFApkDrWRnKPRKEL+DwuXjqoxkth8sZteRElZuP8VVGcndPSRBEATBD7QplMjLy+PE\niRNMnz6diooKIiIiOmtcguDXWquC6IxAoK1LoIqlRC8dutvDmbc+ouDVt9CrqgkZMoDUZx4iYnxW\n6xt7XMi7VyPv24Cke9FjkvCOnoWRmN65gzYMcFdAtYMqzQNIEBwDoXFm/4hmXBhGhNs10mNUooO1\ngAsjSsp1Vm9X2bxHxeMFuwJTMhUmjlSIDhfTp4TLjyRJzLt2MPPf2sTH/zvI4N7R9IgRf4cEQRAu\ndz6HEu+++y5ffvklHo+H6dOn88YbbxAREcH999/fmeMTBL/UWhVEZwUCbVkCtS2VFaIRpn8yDIOy\n5Ws58eTLuI/mY42OJPUPvyH+jm8hya0cJ13DcnAb1h3/Q3JXY4REoGbMQE8f0WLvhg4YNHiqoLoI\nvOZrLyg6AZclEmSl2c2qPRLHSm04zgsj0qJVYkICL4w4flpjZY6HXYc1DAOiwiRmjVK4YqhCkD3A\ndkYQOlh0uJ3vzhrEG5/tZsEXe3nkrkzR40gQBOEy53Mo8eWXX/LJJ5/w3e9+F4CHH36Y2267TYQS\nwmXHlyqItk618FVblkD1pbJCNML0X7UHj3HiyZcpX7EeZJnEu28l+aH7sEZHtryhYWApyEPOWYql\n3IFhteEdNQ1t8ASw2jpvwIYBajVUFYHXZV4XFAkh8YT3jMXlqGxys2qPWRnhqJIBiTC7RnoAhhG6\nbrDnqMaqXA9HT5n9IpLjzeaVI/tZkeUA2hlB6GSjByUwfmgPNuw5zX/WH+eGiZ1cuSUIgiD4NZ9D\nidDQUCznnaRYLJYGlwXhcuFrFURbplo0p7kKBl+XQG2tskI0wvQ/3ooqTr2ygDNvfYTh1YiYOJbU\np39ByKDG1TAXkkoLsW5biuX0YQxJQus/Gu/IqRAc3rmDVmvMMEKtMS/bwyE0AazNh2/VHonjThtF\nZ8MIm0ZajEpsgIURHtVg634vq3I9FJcZAAxOk5mSodC3l2heKQjNuWPGAA7kO1m87hjD+8aS3lNM\nCRYEQbhc+RxKpKam8qc//YmKigqWLVvGf//7X/r27duZYxMEv+RrFURbplpcqKMqGFqqrBCNMP2L\noWk4PvqCk394HW+JE3tqMqlP/JyoWdmtn9jWVGDd/g2Ww7lIGOhJ/fBmzsKITuzcQau1UO0wp2sA\n2MLMFTWU4OaHWhdGnAnwMKKyRmfdTpV1O1VqXCBbYOwQK9kZNnrEisBeEFoTEmTlnuuG8MI/cvnr\nF3t5ct4Y8TdHEAThMuVzKDF//nzef/99EhMTWbx4MVlZWdxxxx2dOTZB8Eu+Npxsy1SLC3V0BUNT\nlRWiEab/qNy8neOPv0jNrv1YgoPo9Zv76XHfHViCWpnmo3qQ961D3r0GSVPRIxNQR8/CSOrfuQP2\nus2eEe66KRlKiFkZYWv+9VKjShwvVThTZQUkQm1mz4i40MAKI86U6qzO9bB1vxevBiFBMH2MwpUj\nFCJCRRghCG0xuHc0M8eksGxLPv9ccYg7Zw7s7iEJgiAI3cDnUEKWZebNm8e8efM6czyCEBDaUgXh\n61SLs7qqgqGz+l4IvvOcOkP+c69R8ulXAMR++xpSHn0QW8+Eljc0dCxHtmPNXY5UW4kRFIo6+hr0\nfpktLrPZbprHrIxwlZuXrUF1YUQozSULtarElsM6xxzBmGGETlq0O6DCCMMwOFKgszLXw96jGgCx\nkRKTRymMGaJgVwJkRwTBD92U3Yc9R0v5X04BI/vFMbxPbHcPSRAEQehiPocSQ4YMaVBCLEkS4eHh\nbNq0qVMGJgj+rD1VEK3pqgqGti4x2hZiNY+W6S43hW8upPC1d9FrXYSMGEzvZ35J+JiRrW4rFR7B\num0JFudpDNmKd1g22rBJoHRiiKSpUFMMtU7zsmyHsARzukYLYcRxp8LpSvPPTIhikBbjJj6AwghN\nN9h5yMuqHJX8IrN5ZVpPC9kZNob1kbFYAmRHBMGPKVaZe2cP4Zn3tvL2f/fxzD1XEBbc/Eo9giAI\nwqXH51Bi//799f/2eDxs2LCBAwcOdMqgBCFQtLUKwhddWcHQnr4XTRGrebTMMAycS1Zw4qlX8eSf\nwhoXQ+9nf0XcrbORWnl+pHIHcs5S5JPm+66WPhJvxgwIbWU1jvbQvVB9NowwQLaZPSPsES2GESfq\nwggDiRBFZ0RvC3a9NmDCCJfHYPMeldXbVZyVBhIwvK9MdqaN9J4iZBOEjpaaGM63Jvdh0crDvP/V\nfn504zDRJFYQBOEy4nMocT6bzUZ2djZvv/029913X0ePSRAua51ZwXChjq74EKt5NK9m/yFOzH+J\nirVbkKwyPX5wJ0k//z7WiLCWN3RVY925AkveFiRDR09Iwzt6FkZscucNVtegpgRqS8HQwWI1w4ig\nqGbDCJcqcbxM4XSFGUYEK+Y0jYQwjYS4cBxNz0jyK+VVOmt2qGzYpeLygGKFK0coTB6lEBclQjVB\n6Eyzxqay41AxWw842LjnDOOH9ejuIQmCIAhdxOdQYtGiRQ0unz59mjNnznT4gARB6PgKhtZ0RMWH\nWM2jaV5nOSdfeJOi9/8Fuk7k1AmkPvkLgvultbyhpiLv34S8axWS6kIPj8GbeTV6yuBmg4F2M3So\nKTWnahi62Z8iNBGCo0Fq+qTc5TUrIwrPCyN6R7tJDAucaRqnijVW5ajk5HnRdQgPkZiSqTBhuEJo\ncIDshCAEOItF4vvXD2H+25v5+9d5DEiJIjYyqLuHJQiCIHQBn0OJbdu2NbgcFhbGq6++2uEDEgSh\nc3tWdBaxmkdDhtdL0d8/5eQLb6I5ywnqk0rqU78gatrEVjY0sBzfjTVnGVJ1GYYtGO/oa9EGjAH5\noorbfBisbk7RqC4GQzMDiNAECIlpYxjhISHMSyC0WjAMg7wTGitzVPLyzeaVidES2Zk2MgdaUawB\nsBOCcImJjwrm9un9eee/+3nrP3v55f/LwBIo6aYgCIJw0Xz+hPv73/++M8chCEITOqNnRWcRq3mc\nU7F+K8fnv0Tt3oNYwkJJefynJN5zGxZby83bJMcJrNu+wuLIx7DIeAdPQBs+BezBnTNQwwBXmbmi\nhu41A4iQOAiJbXYVD3ddGHGqLowIspphRGJ4YIQRXs0gN89sXllYYjav7NdLZkqmwsDesjgBEoRu\nNnF4T7YfLCb3YDHLt+Qzc2xqdw9JEARB6GSthhLZ2dktNhtauXJlR45HEIQA1ZW9MPyV+2QhJ55+\nFeeX3wAQd+tsev32AWwJcS1vWOnEmrsM+fhuALTUIXgzr4bwmM4ZqGGAu8IMIzQPIEFwDITGmf0j\nmuD2SpwoqwsjjMALI2pcBht2q6zdoVJRbWCRIGOglSkZCr0SLv3XpiAECkmS+O41gzhcsIlFq44w\nJD2GXvGt9N4RBEEQAlqrocSHH37Y7M8qKio6dDCCIAS2ru6F4S+0GheFf3qXwjcXYrjchGWNIPWZ\nhwgbNbTlDT21yLtWI+/fgKRr6LG9zCaWCb07Z6CGAZ5KqHKAVlfREhxtVkfITVdxuL0S+XVhhG5I\n2OvCiB4BEkaUVuis3q6yaY+KRwW7AtkZCpNGKUSHX3rNK2tdGhu3ldGvr0ZKDxG2CIEpIsTG964d\nzB8X7WTBF3t57DujUayX3u+rIAiCYGo1lEhOPtfh/dChQzid5jr1Ho+HZ599liVLlnTe6ARBCCiB\n2AujPQzDoPTzZeQ/80c8hWdQesST8uiDxH77mpaXs9M1LHlbsO5cgeSuwQiNRM2YiZ42rNkeDu0c\nKHiqoboIvC7zuqBIc0UN2dbkJh4vnCizBWwYceK0xspclZ2HvBgGRIZKzLxCYdxQhWB7AOxAGx09\nUcPSlcWs3lhKrUtnxBAnT/3y0g4DhUvbqH5xTB6ZxOodp/h87VFuntK3u4ckCIIgdBKfe0o8++yz\nrFu3juLiYlJTU8nPz+fuu+9u9va1tbX85je/oaSkBLfbzf3338+gQYN4+OGH0TSN+Ph4XnjhBWw2\nG4sXL+a9997DYrEwd+5cbrnllg7ZOUEQukcg9cK4WNW79nNi/ktUbspFsin0fHAeST+Zhxzawn4b\nBpaT+5FzlmGpKMZQ7HgzZqANGg/WlvtNXDRPtTlNQ60xL9sjzDDC2nSPD48G+WUKBeWKGUbIOqnR\nHnpG+H8YoRsGe49qrMrxcOSU2S8iKc7ClEyFUf2tyLKf70Ab1bo01m12snRVMYeOmsc3NlphztWJ\n/L+b0tC9TTeeFYRAcdu0fuw7XsqSjccZ0TeWASlR3T0kQRAEoRP4HErs2rWLJUuWcNddd7Fw4UJ2\n797N119/3eztV6xYwbBhw7j33nspKCjg7rvvJjMzk9tvv51rrrmGl19+mUWLFnHjjTfy+uuvs2jR\nIhRF4eabb2bGjBlERYk/PIIg+Be3qlF64gzVf36b0n98DoZB9KwppMz/GUFpvVrcVio9hXXrV1jO\nHMWQLGgDxuIdcRUEd9JcabXWrIzwVJuXbWFmGKE03TTzwjDCJpuVEYEQRqheg637vKzK9eAoMwAY\n1FsmO1Ohfy+55aqVAHRhVYRFgtEjI5iZHU/m8AhkWSI22obDIUIJIbAF2azce/1Qfv/BNv725V6e\nunsswfZOWoVIEARB6DY+v7PbbGaJr6qqGIbBsGHDeP7555u9/bXXXlv/78LCQhITE9m0aRNPPfUU\nAFdddRVvv/026enpDB8+nPDwcAAyMzPJyclh6tSpF7VDgnAht6pdFlMJhM6j6TofL9tP1T8+ZfCq\nJdg9LtzJyQx78bdEZ49reeOaCqy5y7Ec2Y6EgZY8AC3zaoyohM4ZrNdlVka4K83LSgiEJZj/b4J6\nXhih1YURqdEeeoZ7kf18CndVjcG6nR7W7VSpdoFsgbFDrGRnKPSIvbR+12tdGms3O1nWRFXEtEmx\nxMU0PQ1HEAJdv16RXDe+N1+uP84/vjnI3dcO7u4hCYIgCB3M51AiPT2dDz74gNGjRzNv3jzS09Op\nrKxsdbvbbruN06dP8+abbzJv3rz6cCM2NhaHw0FxcTExMec6zMfExOBwOFq8z+joEKzWS+sDpz+J\njw/v7iF0CE3TefuLPWzcXYijrJb4qGDGDevJ3bOHIvvR2dal8nwHkvj4cFweL84KN9ERdoJsLb8V\nvv/UQmJe/yv9nEW47cGsnXwDe4eP53prD+5t5vgZHjfurf/Ds/V/4FWxxCURlD0Ha++BnbFLaG4X\n1Y6TuMtLALAGhxKakIItLLLJ23u8BnmFBgdPg1eDIAWGJ0n0SZSRm1mBoz068nVe6PDy1YZq1ubW\noHohNFhi9uQQZowLJSr80vrbkHe4ksVLC1m2soiaWg2LBa4cG8sNV/fkiqwYrC1MSRHvLcKl4oYr\n09l1uJS1OwsZ1S+OzAHx3T0kQRAEoQP5/Mnz6aefpqysjIiICL788ktKS0v5wQ9+0Op2H330Efv2\n7eNXv/oVhmHUX3/+v8/X3PXnczprfB220Ebx8eE4HK2HTYHgw+V5DZanLHLWsnjNEWpqPdw+fUC3\njev8yo1eSVGXzPMdKGJiQvnTJ7nk5jkorXATE2EnY0A8t07th2xpGFa5juZz7MmXif16DboksWf4\nOLZcMRNXiDnlYt2OU1wzNqVhBY6uYzmci3XHN0i1lRjBYXjHXIfeJ4NaiwU6+nhrqlkZ4SozL1vt\nEJqA1xZGea0EtQ0fT9XgZLnCyXIFTZdQZJ2+sSpJEWZlRGlJxw4POuZ9xTAMjp7SWZnjYe9RDQOI\niZDIzlAYM0TBrkiorhocro4Zc3dqririhpkJDaoinKVVzd5HZ76Xi7BD6GpW2cL3Zw/h6Xe38O6S\n/fRNjiQyVFQHCYIgXCp8DiXmzp3LnDlzuO6667jhhhtavf3u3buJjY2lZ8+eDB48GE3TCA0NxeVy\nERQUxJkzZ0hISCAhIYHi4uL67YqKihg1atTF7Y0g1HGrGrl5TVfc5OYVc1N23y6fyqHpOh//71CD\nk+ErRyYze3xqo5NhofO8/cWeBmFVSYW7/vLZsEqrqubU/73N6QUfYnhUTiWlsy57DiXxSQ3uy1np\norzKXd/UUyo8jHXbEizOMxiygnfEFLQhE0Fpuqlku+heqC6GWidgmKtohMabjSyb6KHQKIywGKTF\nuuvDCH+l6Qa7DnlZmauSf8ZsXpmaaGFKpo3hfWUs/t7wog2OHK9h2aqGvSLGjIpkxuQ4MkdEIF9C\n+yoIbZUcF8rNU/ryj+UHeW/Jfh68afgl1y9GEAThcuVzKPHrX/+aJUuW8K1vfYtBgwYxZ84cpk6d\nWj8d40Jbt26loKCARx99lOLiYmpqapg0aRJLly5lzpw5LFu2jEmTJjFy5Egee+wxKioqkGWZnJwc\nHnnkkQ7bQeHyVF7lprSi6SZvF55IdpWP/3eo0cmwP1RuXIxA7dPhVjU27i5s8me5ecV8e1I6VYuX\nkv+7P6GeKcaWlEjPR3/CP0+FUlLpabRNdHgQkWF2pLIi5JylyAV5GEhofTPwjpoOIREdvxO6BjUl\nUFtiLvVpUcwwIiiyyTDCq8PJMjOM8NaFEb1jPCRHqn4dRrg9Bpv2qqzZrlJaYSABw/vKZGfYSOtp\nuWRORuqrIlYWc+iY6BUhCC2ZltWLHYeK2X6omDU7C5k8Mqn1jQRBEAS/53MokZWVRVZWFo8++iib\nN29m8eLFPPnkk2zcuLHJ29922208+uij3H777bhcLubPn8+wYcP49a9/zccff0xSUhI33ngjiqLw\n0EMPcc899yBJEg888EB900tBuFiRYXZiIuyUNBFMnD2R7Er+WLlxMZqq9mhu6oM/Kq9y4yirbfJn\n1oN57J/zJp6de5GC7CQ/dB89fvQd5JAgMi6YCnTW+L6hhOb8F8vBrUiGjp6Yjnf0LIyYTvigrOtm\nEFFTAoYOFiuExkFwFEiNn3uvDgXlCvllZhhhtRj0ifGQFKli9eNDVV6ls3aHyobdKrVusMowYbiV\nyRk24qP8eOBtTgmGEAAAIABJREFUJKoiBKHtLJLE3dcOZv5bm/nH8oMMSo265JefFgRBuBy0qZtZ\nRUUFy5cv56uvviI/P59bb7212dsGBQXx0ksvNbr+nXfeaXTdrFmzmDVrVluGIggtsisyGQPimzyR\nzBgQ1+UBgD9WblyMpqo9Lpz6cD5/q6iIDLMTHxVMkfNcMBFSXcEV65cwcN82PEDM7BmkPP5T7L16\n1N/m1qn9ADNAcla6iA9XuD3JQVbpeqQiN3pELN7MWei9BjZZrdAuhm5O0aguBkMDSYbQBAiJ8TmM\nSK+rjPDnMKKwWGNlrkruAS+aDmHBErPGKYwfrhAWfGmcoIuqCEFov5iIIO66eiB/WbyHBV/u5Td3\nZAZEKC4IgiA0z+dQ4p577uHgwYPMmDGDH/7wh2RmZnbmuASh3S48kYwODyJjQFz99V3J3yo3LkZb\nqj38taLCrsiMG9aTxWuOYPF6GbFjLZmbl2NTPbhTezPylUeIGJ/VaDvZYuH26QO4aXIf1Lxcog+s\nwlJZjmEPQc24Dn3AGLB0cOhiGGbzymqH2T9CspjTNIJjmnwsrw6nyhVOBFAYYRgGefkaK3NU8k5o\nACRES2Rn2MgaZEWxXhphxJHjNSxdVczqDaW43OeqImZmx5ExXFRFCEJbXTEkke2Hitm09wxLNp7g\n+glp3T0kQRAEoR18DiW+853vMHHiRGS58YfhBQsWcO+993bowAShvepPJLP7dvu39f5WuXEx2lLt\n0daKiq407/ohsH4j4QvfI9zpwB0cStEddzLrqXuxKkqz20lFxwnb+hWWkpMYFhnvkIlowyeDLbhj\nB2gY4CqvCyNUQIKQWPO/Jpbq1M6rjFDrwoi0aA+9IlX8deVkr2awPc9sXllYbDav7JtsNq8clCZj\nuQT6RdS6NNZscvL1qnNVEXExCjdek8i0iaIqQhDa686ZA8jLL+PztUcZ3ieW3j3E1F9BEIRA5XMo\nkZ2d3ezP1qxZI0IJwW/ZFdkvpkY0Vblx5cgkZo9P7eaR+cbXag9/7p9Re/AYR597laRla0GWCb/z\nJoY+/ENC46Kb36iyFGvOUuQTewHQeg/DmzETwlvY5mIYBrgrzTBCq3uOg6MhJA7kxmGJpsOpCisn\nymyomoRcF0YkR6r4a8ZV6zbYsNtsXllRbWCRYNQAK1MyFFIS/XTQbSSqIgSha4QGKdx97WBe+ng7\nf/1iD098b0x3D0kQBEG4SG3qKdEcwzA64m4E4ZLWVOVGr6QoHI7KbhlPW/s9+Frt4Y/9M7wVVRS8\n/FeK3v4Yw6sRMWksqU8/RMjAvs1v5K5F3rUS+cAmJF1Dj0sxm1jGd3CIZBjgqTLDCK/LvC4oymxi\nKTf+Nv1cGKGgahZkyaB3XWWEv4YRDqeXz1e72bRHxa2CXYHJoxQmjVKIiejeuSUd0fektlZjzWZR\nFSEIXW1oegzTs3qxfNtJFq06zE//X+Ppd4IgCIL/65BQ4lJZmk0QOlpTJzzdXbnRnn4PvvTp8Kf+\nGYam4fjoC07+4XW8JU7sqckMe/kRLOPHNv++pXmR87Yg71yB5KnFCI1CzZyJ3ntYxzex9FRDdRGo\ndY037RFm3whr4+dI06GwLozw1IURqVEeUqL8N4zIP2P2i9h5uApdh8hQieljFcYPUwi2d+/fjY7o\ne3L47AoaoipCELrNzVP6sudYKcu3nmRSZgopMR08pU4QBEHodB0SSgiC0JA/Nno8G5As3ZLPipyC\n+uvb0u/Blz4d/tI/o3Lzdo4//iI1u/ZjCQmm12/up8d9d5CYEtd0dYphYMnfh5yzDEtlCYZix5t5\nNdqgK5qcPtEuai1UFYFabV62hZkraihBjW6q6VBYaeWEMzDCCN0w2HdUY1Wuh8MFZr+I1B5Wrhwu\nM2qAFavsHyfqF9v3RFRFCIJ/sSky980eyrPvb+WlD7Yx/7ujiYlo/F4qCIIg+C8RSghCJ/CnRo/n\nByQlFW6a+/K2Lf0eWqv26M6VTzynznDi2T9S+tlSAGJvuoaURx7E1jOh2W2kkgKsW7/CUnQMQ7Kg\nDbwC74irICi0YwfndUGVAzx1oYgSCmHxoDR+LnXDrIw4XhdGWCSDlLowwuaHYYTqNdi238vKXA8O\npzmlb2CqzJRMhQmZURQXV3XzCM+5mL4noipCEPxX7x7h3DatPx98ncebn+/h4dszsMp+uuyQIAiC\n0EiHhBJpaWkdcTdCJ+mIOdOC7/yt0eOFAYneTAuYjuz30B0rn+i1Lgr/8ncKX3sXvdZF6MghpD7z\nS8JHj2h+o+pyrNu/Rj6yAwCt10C0zKsxIuM7dnBet9kzwl1hXrYGQ1gC2BqHHmfDiBNOBXcAhBFV\ntQbrd6qs26lSVWsgW2DMYCvZGQo948wB+9sUP1/7npytili2spjDx0VVhCD4s6mZyeQXV7M6t4BF\nKw9z27T+3T0kQRAEwUc+hxIFBQU8//zzOJ1OFi5cyCeffMLYsWNJS0vj6aef7swxChfJH6cQXA78\nqdFjSwHJhTqj30NX9M8wDAPnkhWceOpVPPmnsMbF0PvZXxF362yk5l7nqht59xrkfeuQNC96dA+8\nWddg9OzTsYPTVDOMcJWZl61BZs8IW1ij/hS6AacrzcoIt9cMI3pFqqRGebD5YU2bw6mzaruHLXu9\neDUItsO00QpXjlCIDPPv95fW+p6Ulmr8a/EJVm8UVRGCECgkSeLHt4zi4Akny7bk0y85ktGDmq+Q\nEwRBEPyHzx91H3/8ce644w7eeecdANLT03n88cdZuHBhpw1OaB9/mkJwOenIRo/nV7kAba46aCkg\nuZAv/R78reqmZt8hTjzxEhVrtyApVnr88C6SfnYP1oiwpjfQNTw712Nb+18kVxVGcDhqxnT09FHQ\nkUGd5oWaYqh1Aoa5ikZoAtjDfQ4jUqJU7Fb/WtnIMAyOFuqsyvGw54iGAcRESEwepTB2iILdFhgn\n6031PTF08FTYKCkO4bfPHQTMqohvXZPIVFEVIQgBIdhu5f5vDefZ97by9n/3kZIQRmJM9y8JLgiC\nILTM51BCVVWmTZvGu+++C8CYMWI9aH/mb1MILicd0ejxwj4QQTYLIOH2aG2qeGkpILFImCeVrfR7\ncKsapRUulm87yc5DxR1SddPecMPrLOfkC29S9P6/QNeJnHYlqU/+guC+vZvdRjp1EOu2r3CVFYGs\n4B05FW3wlaB04MmmrplhRE0pYIBFMSsjgiKbDCPO1IURLq8FSTJIjlRJ9cMwQtcNdh3WWJnj4cSZ\nuuaViRamZNoY1lcOyMqBs6/3DbklOE6Bp9KGoUu4JJ0xoyK5ekoco4aJqghBCDTJcaF8d9ZA/vrF\nXl7/dDePfidLfN4RBEHwc20qCq6oqKifG3zw4EHcbt++gRW6nj9NIbgctbfR44VVLi6PXv/v5ipe\nmlt+tLmAJHtUElePTW02GLgwGDnfxVbdtHdKkeH1UvT3Tzn5wptoznKC+qSS+tQviJo2sdltJOcZ\nrDlfYTl1CAMJZegVVA2aDCERPo+7VboGtaVQU2J+5W6xQkgcBEeDJDU4NopVDpgwwu0x2LxPZXWu\nSmmFgQQM7SMzJdNGek+L3/WK8FVtrcaaTU5y1umcPG5WIcVGK8zMjmPapFhio0VVRGc7duyY6Ecl\ndJpxQ3twsKCcFTkF/H3ZAe6+dnDAvl8JgiBcDnwOJR544AHmzp2Lw+Fg9uzZOJ1OXnjhhc4cm9AO\nHTmFQGi79jR69LUPxNb9RcyekEZIkLXFE/2WApKWgoALg5GmtLXqpj1TiirWb+X44y9Su+8QlrBQ\nUub/jMS7b8Via2a5ztoqrDu+wXJoG5JhoPfoizfraiIHDqCqqSVBL4ahm1M0qovB0ECSISyxLoyw\nmCHMNwfJzXPgrPQwbGBvhg3qj1WxI2GQFKHSO9r/woiKap21O1TW71KpdYNVhvHDrWSPshEf7d/9\nIlpy+FjdChpne0VYYGyG2StCVEV0vHnz5tVP+QR44403uP/++wGYP38+77//fncNTbgM3Da1P0dP\nVbBu12n694pi8sik7h6SIAiC0AyfQ4lx48bx2WefkZeXh81mIz09HbtdnNj6q46YQiC038U0evS1\nD0RZlYcn395CWIhCftG55RYvPNG/mICkssbD1v1FrY6hLVU3FzulyJ1/ihPP/B/OL78BSSLuthtI\n+e0DKPGxTT+QV0Xetw559xokrwc9Mh5v1iz0pP6NplBcNMMww4iaYtC9IFnMaRrBMWA5tw8f/+8Q\n32w9SVpqMpMmDCAiPAxN16mucDBteChBfhZGFJZorMpVydnvRdMhLFhi5hUKVw5XCAsJzBP2s1UR\ny1adW0EjPtbGt66JFVURnczr9Ta4vHHjxvpQwjD867UvXHoUq4X7bxzGU+9u4e/L8kjrEU5qYnh3\nD0sQBEFogs+hxO7du3E4HFx11VW88sorbN++nQcffJDRo0d35viEdmjvFIJA5W/NGNuqpSqXCzmr\n3Dirmr7dhSf6vgQkZ6dXbNvvoKzK0+rjt6Xqpq1TirSaWgr/9B6Fby7EcLkJyxpB6rO/JGzkkKYf\nwNCxHN2JNfdrpJoKDHsoaubV6P2zGgQF7WIY4Co3V9TQVUCCkFhzqsYFj+HyaJyplLnh6quIjAhD\n13XyDh9n1/6DBFkNpg+7Auj+16dhGBzMN8OI/cc1AOKjJLIzbYweZEWxBmYYIaoiut+F5fLnBxGi\nlF7oCnFRwdw7ewiv/nMnb3y6m/nfG01IUDPVdYIgCEK38TmUePbZZ/nDH/7A1q1b2bVrF48//jhP\nP/20KL/0Y+2ZQhCILpUlUFuqcmmL80/0fQ1qfJmycb62VN34OqXIMAxKP19G/jN/xFN4BqVHPCmP\n/YTYb81q9kRGOnMM67avsJQUYFiseIdOQhs2GWxBPu9LiwwD3JVQXQSaB5DMqoiQOJCtjW5aVCVz\nuNhOxogR6LrOwSPH2bnvINU1tQDUSnR7XxdNM9h+0MvKHJVTxWbPkj5JZvPKwekylgA8aTxbFbF0\nlYMjx83nWlRF+A8RRAjdYUTfOK6f0Jsv1x/nrf/s48ffHi5ei4IgCH7G51DCbreTlpbGxx9/zNy5\nc+nXrx+WADrRu5xdzBSCQNSdS6B2dHXG+VUupRUu7DYZ3TDwqHorW54THR5EWIjCh8vzfApqfO1l\nARAb0faqm5bClkGpUQBU79rP8cdfpGrzdiSbQs+fzCPpwXnIoU2/fqWKEuScpcj5+wDQ0objzZgB\nYdE+j6tFhgGeKrMywusyrwuKMqdqyEqjmzqqZY6V2qhRLYBB/smTbNmxn6q6MOKs7uzrUus22Lhb\nZc12lfJqA0mCUf2tZGcqpCYGZmgpqiL8U3l5ORs2bKi/XFFRwcaNGzEMg4qKim4cmXC5uXFiHw4X\nVJB7sJilm/OZdUVqdw9JEARBOI/PoURtbS1Llixh+fLlPPDAA5SVlYkPFUKn8/Vkv7uWQO2s6oym\nqlw8qsaTb29pdrrGhTIGxPHZmqM+BzWt9bKICrOR0T+O6aNTiIkIuqjn88IpRTZFBgy2bT5E6J//\nTPr2jUiGQfSsKaQ88TOCevdq+o7cNcg7VyIf2IRk6OjxqXizZmHEp7R5TM3yVENVEXjrAgV7hBlG\nWBuGCWfDiONOG9UeM4zoEW42sDx11NEokIDu6etSWqGzZrvKpj0qbhVsCkwapTBppEJsZOAFzKIq\nwv9FRETwxhtv1F8ODw/n9ddfr/+3IHQVi0XivhuG8uQ7m1m08jB9kiIYkBLV3cMSBEEQ6vgcSvzi\nF7/g/fff5+c//zlhYWG89tprfO973+vEoQmXs7ae7HfXEqidXZ1xfpWLXZEZNSCOFTkFTd7WIoEB\nxNT1DrlxUh+eeGtTk7dtKqhpcXpFmJ0n7x5DeEj7TvTOD1sWLj3Axh0FDN25ntGbvsbucVEak0jt\n9+9m7M9uavoONC/ygc3Iu1YgeVwYYdGomTPRU4d2XBNLtQaqHKBWm5dt4RAWD9aGU0EMA4qrZY45\nFao9ZriSGKbSO0YlRDHnzvtDX5f8Io1VOSo7DnrRDYgIlZg+RmHcMIWQoMCrIDh8rIalKx2s2eQU\nVRF+buHChd09BEGoFxlq40dzhvH/fZjLnz/fzZPfGyNWIhMEQfATPocSY8eOZezYsQDous4DDzzQ\naYMShLae7HfHEqjdUZ0xPatXs6GEYcAvbxtFn+RI7IpMkbOm2aCmpMKFw1lDr4Rz31a2NL0ia1C8\nT4FEW6axlK1Yzy1f/ZtoZxFuezBrs+ewZ/g4YmyhXKtqDbc3DCwn9mLNXYZUWYphC8KbNQtt4BWN\nejpcNNVl9ozw1K1kYguF0ARQghvczDCgpEbmWKlCVX0Y4aV3tIcQW8MVBbqrr4tuGOw/prEyR+Vw\ngdm8smeshexMhYwBVqxyYJ2419ZqrN5UyrJVxQ2qIr59bSxTJ4qqCH9VVVXFokWL6r/A+Oijj/jH\nP/5B7969mT9/PnFxcd07QOGyMyAlipun9OWTFYf4y+I9PHTbqIDqOSUIgnCp8vnT/JAhQxo0BpIk\nifDwcDZtavqbWEG4WBdzst8dS6B2R3VGTEQQsc2ELzERQfWBBLS+isdzC7cxcURPbpvWv/5D2cV+\ns9+WyhbX0XwOPvoCk1euR5ck9gwfx5ZxV+MKDgUaP3dS8UmziWXRcQzJgnfQOLQRV4G9g55br9vs\nGeGum46mBJthhC20wc2aCiMS6sKIUFvLyxt2VV8X1Wuwbb+XVbkeipzmmAakykzJUBiQKgdcc7em\nqiKuyIhkhqiKCAjz588nOTkZgKNHj/Lyyy/z6quvcuLECZ577jleeeWVbh6hcDm6emwKB0+WkXuw\nmM/WHOWm7L7dPSRBEITLns+hxP79++v/raoq69ev58CBA50yKOHydrEn+11dKt+R1Rm+Vhi0JXxp\nbRUPt6rzzbYCJEmqrz652G/2fals0aqqOfV/b3N6wYcYHhVHal9WXjmbkvikBvdV/9xVlWHN/Rr5\n2E5z+5TBaJkzMSI66NtVzQPVxeAqMy9bg86FEeedvBsGlNaY0zQq3W0LI7pKVa3Bhl0qa3eoVNUa\nyBYYPchsXpkUF1jNK0VVxKUjPz+fl19+GYClS5cya9YsJkyYwIQJE/jPf/7TzaMTLleSJHHPdYN5\n+t2t/GfDcfolRzKyn6jaEQRB6E4XVfesKArZ2dm8/fbb3HfffR09JuEyd7En+11dKt8R1Rmapvu8\nOsZZbQlfbp3aD003WJlTQHOnz7l5jkbVJ235Zr+1ypZvT0qn8vOlnPzda6hFJdiSEkmZ/zMOBadS\nsq3xVJSx/SII2fUN8r4NSLoXPSYJ7+hZGInpPo2nNZrqgcpCqHWaV8h2s4GlPbyVMALiQ72kxfhP\nGFFcprMqV2XLPhXVC0E2uCrLbF4ZGRZYJcmHjlazbFWxqIq4hISEnHsP2bx5MzfffHP9ZV+qdvLy\n8rj//vv53ve+x5133omqqvzmN7/h+PHjhIaG8sc//pHIyEgWL17Me++9h8ViYe7cudxyyy2dsj/C\npSMkSOH+bw3juYXb+NuXe3nie2OIiwpufUNBEAShU/gcSixatKjB5dOnT3PmzJkOH5AgtPdkvyuX\nQG1vdcbbX+xpc6PMtoQvssXC1WNSmu1DAVBa6W7XVJOWKlusB/PYP+dNPDv3Ygmyk/zQffT40XeQ\nQ4K4VddBkuqfu9hwG3OTyxhf9iXSmWqMkAjUjBno6SNA6oATbN0LNSWUOpxg6GBRzAaW9shGYYSz\nVuZoacMwone0hzC7f4QRRws1VuV42H1YwwCiwyUmZyiMHaIQZAuck3dRFXFp0zSNkpISqquryc3N\nrZ+uUV1dTW1t41VpzldTU8MzzzzD+PHj66/75JNPiI6O5qWXXuLjjz9m69atjB8/ntdff51Fixah\nKAo333wzM2bMICpKrKwgtCw1MZw7ZwzgnSX7ef2z3TxyZxaKNbDCXEEQhEuFz6HEtm3bGlwOCwvj\n1Vdf7fABCQL4x6oFvmhPdYZb1di4u7DJn/nSKNPX8CUyzE5MuI3SSk+TP48Jt7erEWhTlS0h1RVc\nsX4JA/dtwwPEzJ5ByuM/xd6rR/1t6p+7yX1wH9lLzIGVyBUODKsN76hpaIMngLUDTkp1DWpKoLYU\nDB2LVUEPToSgqCbCCAvHSm1U1IURcaFe0vwkjNB1g91HNFbmeDh+WgcgJcFsXjminzVgKgkMw+Dw\nsRpRFXEZuPfee7n22mtxuVz8+Mc/JjIyEpfLxe23387cuXNb3NZms7FgwQIWLFhQf92KFSv4yU9+\nAsCtt94KwIYNGxg+fHj9EqOZmZnk5OQwderUTtor4VIyaWQSB0+Ws3ZXIR99c5C7rh7Y3UMSBEG4\nLPkcSvz+978HoKysDEmSiIyM7LRBCUJ3rVpwsS6mOqO8yo2jrOlvCzuyUaZdkckcmNBsb4mMAfHt\nem7Pr2yxeL2M2LGWzM3Lsake3Km9GfnKI0SMz2pyW8l5mrCtXxFx+jCGJKH1G4131FQIDm/y9m1i\n6FBTagYShgaSDGGJxKSkUlxSfe5mBpTVWjjqtFHhMp+H2BAvaTEq4Xa9/eNoJ7dqsGWvyupclZIK\nMxwZki4zJdNGnyRLwDSvrKnVWLOplGUrizlyomFVxLSJscSIqohLTnZ2NmvXrsXtdhMWFgZAUFAQ\nv/rVr5g4cWKL21qtVqzWhh9RCgoKWL16NS+88AJxcXE88cQTFBcXExMTU3+bmJgYHI6mp5MJQlPu\nnDmAY6crWZFbQL9ekYwf2qP1jQRBEIQO5XMokZOTw8MPP0x1dTWGYRAVFcULL7zA8OHDO3N8wmWu\nK6didLXIMDvxUcEUORsHEx29jOmtU/uhGwbrd53G5TGXiAyyyVw5vEeHVJ/MvaovIbnbCF/4PuFO\nB+7gUIruuItZT30fq6I03qCmEuuOb7AcykHCQE/qhzfzaozoDvgwaOhQWwY1xeaUDcli9owIjgWL\nBem8Xh1nKyPK/TCMqKjWWbdTZd1OlVo3WGUYN8zK5FE2EmMCo8T4bFXE2x+d4utVRaIq4jJz6tSp\n+n9XVFTU/7tPnz6cOnWKpKSkpjZrlmEYpKen8+Mf/5g33niDv/zlLwwZMqTRbVoTHR2C1do5IXd8\nfAcEqkK7XMwxePyeK/j5q6t4f+kBRg5KpHePiE4Y2eVD/B50P3EMup84Bm3jcyjx0ksv8cYbbzBg\ngDnPfe/evTz33HN88MEHnTY4QbiU2RWZccN6snjNkUY/6+hlTGWLhTtnDOSWKf1wOGtAkoiPCu6Q\nx6g9eIwTT7xE0soNIMuE33kTQx/+IaFx0Y1vrHqQ961D3rMWyetBj0xAzZqFkdy/3ePAMMyVNKqL\nQVfNqRkhcRASC5aG+1lWF0aU1YURMSFe0qJVIoK6P4w4XaKxKldl234vmg6hQTBzrMKEEQrhIYER\nRoiqCAFg6tSppKenEx8fDzQMDCRJ4v3332/T/cXFxTFmzBgAJk6cyGuvvcaUKVMoLi6uv01RURGj\nRo1q8X6czpo2Pa6v4uPDcTgqO+W+Bd9c7DFQgHnXDOL1T3fz7FubePy7owm2X1Qv+Mue+D3ofuIY\ndD9xDJrWUlDj8zuuxWKpDyQAhgwZgiz7bzm9cPnwdTlNf3y8u2cPpabW06B3xoh+sVyVkYxb1dp0\n/76My67I9EromOTWW15JwSsLKHr7YwyvRsSksaQ+/RAhA5tY893QsRzZgTX3a6TaSoygUNSsWej9\nMhsFBm1mGOCugGqHucwnEgTHQGgcWBq+xZXVWti7V6eowuyy7i9hhGEYHDqpsTJHZf9xs5IlLkoi\nO8PG6EFWbIr/VxMYhsGhul4Ray/oFXHLnFTSegVO3wuhYzz//PN8/vnnVFdXc91113H99dc3mGrR\nVpMnT2bNmjXcdNNN7Nmzh/T0dEaOHMljjz1GRUUFsiyTk5PDI4880oF7IVwusgYmMHNMCsu25PPe\nV/v5wQ1DA2Z6nCAIQqBrUyixbNkyJkyYAMDq1atFKCF0K03X+fh/h9q0nKa/PZ4sn+udUVrhYvnW\nfHYeKmZlToHP99/Vz4OhaTg++oKTf3gdb4kTe+9kUp/4OVFXZzf5AU46fQTrtq+wlBZiyFa8wyaj\nDZsMSjunpxgGeKqgugi8dU02g6LMqRpywykj5S6zMsJZa75nRQeb0zQiuzmM0DSD7Qe9rMpVKXCY\nY0lPsjAlw8aQPjKWAPhAXFOrsXpjKV+var4qQnxj0LVKnR7swWp3D4M5c+YwZ84cCgsL+fTTT7nj\njjtITk5mzpw5zJgxg6CgoGa33b17N88//zwFBQVYrVaWLl3Kiy++yHPPPceiRYsICQnh+eefJygo\niIceeoh77rkHSZJ44IEH6pteCkJb3TylL0cKK9i8r4j+vaKYltWru4ckCIJwWZAMXyZgAseOHeOZ\nZ55h586dSJLEqFGjeOyxx0hNTe3sMTYiPtx2nkA6efhweV6TzRunj+7V7HKazfGlyuBiHq+1+z3/\n+f7g6wN8s63x0p3TspK5Y0bzHcE78nloTeWm7Ryf/yI1u/ZjCQkm6ad30+Pe27EENQ4YpHIHcs5S\n5JMHANDSR+LNmA6hHbBUn6cKvbIIi+bCACR7pBlGWG0NnnOXpnCsVMFZa+av0cEaGX2s6K6q9o+h\nHWrdBpv2qKzerlJeZSBJMKKvlexMhd49/D/sba4qYsyoSGZmxzFyaMNeEYH0vhKoCk672LitjI3b\nyjh0rIbBA8N44hctr+BzsdozT/af//wnL774IpqmsXXr1g4cle8667UoXufdryOOgbPSzZPvbKbG\n5eU3d2bSN0k0dm8L8XvQ/cQx6H7iGDStQ6ZvpKWl8dZbb3XIgIRLQ1dPm7jwsXPzmu6w7stymmf5\nWmVQWeNh6/4inx/vwvuNDrcxqHcMt8/oT4i9ceNHt6qxbtfpJu9/3a7T3DylX5P709LzsHZnITdO\nSke2WHzJtLHCAAAgAElEQVQ+Ts0dU8+pM5x49o+UfrYUgNibryXltz/G1jOh8Z24qrHuXIElbwuS\noaMn9MY7+hqM2OQWH9snag1GVRGSWoMF2HbMxYo8N0k9rNw8JZFFy/PIzXMgycGMHjmYhHizWVlU\nsEZatIeoYJ3Y8HAcrvYP5WI4K3XWbFfZuFvFrYJNgUkjFSaNUoiN9P9+Eb5URQhdwzAMjuXXsmFb\nGRtzysgvMF/UkgTBERr51ad5bIGjU6umfFVRUcHixYv597//jaZp/OAHP+D666/vtvEIQkuiw+38\n4IahvPTRdv782W6enDeWsOAmGjYLgiAIHcbnUGLDhg28//77VFZWNmhWJRpdXn66erpAU8qr3JRW\nuJv8WUvLaV540v3x/w41qDIoqXDXX759+oD6fd2230FZlcfnx7vwfksrPazffZqcPAcTR/Rs9Fw5\nymrrV8W4kMujcbq0ht6JjdPFlp4Hl0fjufe24fFqrR6n5o7pLeN7UbTgQwpfexe91kXoyCGkPvNL\nwkePaPyAmhd5/0bkXauQVBd6eAzezKvRUwabZ0rtobrMaRqeKiRg10k3/95WyfESLwB7T57kwIky\nalSZkSNG0qtnIgCFRcUoWilTJnZAINIOJ4s0Vuaq7MjzohsQESoxbbTC+OEKIUH+PUWj2V4RmU1X\nRQidR9cN8o5UszHHrIg44zDfkxSrxJhRkRDkIs9RhEU2/0aXVHgbvJ91tbVr1/Kvf/2L3bt3M3Pm\nTP7whz806E0lCP5qSFoMN05K59M1R/nrF3v42S0jA2I6nSAIQqDyOZR46qmnuP/+++nRQ6zffLlr\n7US+K0SG2YmJsFPSxAl5U8tpNnXSPaJfHDsOtlxt8a9Vh5ucGnG+qDB7g8drqXrB5dGafq5amUW1\ndNMJ7rthaKPrW3oeAApLz3WZb+o4nQ1plm7JZ0XOuakjJeUuDn+0hM2/+Aql2IESH0vv5x4mbu71\nDZbUPDt2y/HdZhPLKieGLRjv6GvRBowBuZ3dy71us4Gl21xOULcG8+byIrYeqW5ws5ioSPr3H0Cv\nJPP96bSjhB17DnDGUUJsRBCzr+jR5dU8umFw4LjZvPLQSTNw6hFrITtDIXOAFavVvz/gnq2KWLaq\nmKOiKqLbaJrBnrwqNmx1simnHGe52SsiyG5h4thoxmVFkTk8AosMjy3YWB9InK8t1WMd6fvf/z5p\naWlkZmZSWlrKO++80+Dnv//977t0PILQFtdNSONQQQW7jpTw5fpj3HBlencPSRAE4ZLl8xlDcnIy\nN9xwQ2eORQgAHTVtor3sikzGgPgmA4OmltNsKkg5/yT8Qs5KFw5nTbP7er7yag+LVh7itmn966dK\nNFe9cNbZ5+qs+OgQbFYJj7fpcCLvZFmTq3HYFZlBqdGs29301I/mHvvGSX34bM0RcvMclFS4Of+L\n7pjiQq5cvZjkk4fRLTLx991B6kP3IoeHNbovyXHCbGLpyMewyHgHT0Abng32xlUqbaJ5zDDCVW5e\ntgZBaALF1RLbjhw9N9aoCEYOGUhKshlGnKkLI047Supv01LlTGfweg22HTCbV54pNZtX9k+RmZKp\nMDBV9utu7qIqwj94VJ0deyrZmFPG5twyqqrNUCssVGbqxFjGZUYxcmg4NuVcQFjkrLmo6rHOdHbJ\nT6fTSXR0wyWCT55sOewVhO5mkSTunT2Ep97ZzOdrjtI3OZKhaRe/eowgCILQvFZDifz8fABGjx7N\nxx9/zNixY7Faz22WkpLSeaMT/I4v0yYiw+wd3muiqV4Ht07tB/z/7L15eFxnfff9OXNm14w0Wi1b\nXmTLlrzKlmQ7UhyvsbNBggNZICSFQHlToC3hbd/ylAcCtLwNkD7Q0kIhgZA0C01iQhZI4sRJvFte\nJHmRF23eZNnaZ9XsM+f540ijXRrJ2mzfn+vKlWtGM+fc557Fc3/v7+/7o1c7zYLctNj9PZ87mLig\nkSA6gA6QbDWCJA0rLgBEogofljUgSRIPbc4d1r0A3XOVFgxzpa2DHWWXkJCAgUWJdleAF7ZX8ehd\nC/uVXnxuSy5l1c34g/F1krC7/fz+g+peQkZUAYPfy6rS91l84gAaReFC9kJK193Nt75xN7K1z2LG\nbUdb8T7yhUp1DmYvJlxwGySmxjWGQYmEwNsKPrt6WzaAJR30VpAkkjQRUhINRCUDy5fkMjtrOgDN\nre0cP1XF5abWfoccyDkzHnT4FA5Uhth7LITbq6DRQNFCLesLdGSlT+3wyiFdEWvTSLGJeurxxueP\nUH7CRWmZgyPHnPgD6uc5OUnHHRuTKVmZzJJcC7I8sCg0UvfYRKDRaPjmN79JIBAgJSWFX//618yZ\nM4cXX3yRp59+mk9/+tMTPiaBYCRYTDq+unUZT75Yxq/fPMn3H11FSuLgXWMEAoFAMDqGFSW+8IUv\nIElSLEfi17/+dexvkiTx4Ycfjt/oBFOOoX742iwGth9WW1qOVdbEcPkVXe00hxJBhhJSBhIkQHVb\npNtMw4oLPamobok5RQZzcXSRbDWw/dBFTr56jGa7L67j769sxGzU9ir7CIQieLxBSpZk8nHF5biO\nY7MYOHPRHrstRSMsrjzIqtL3Mfq9OGxp7Ft3D/XZC0lN7LOYCfqQT+xGPnMAKRohmppFuOgOlGnZ\ncZ17UKJh6OgSIxSQ9Wo3DUNirzyKUFTLpltWY+rs4NHS1s7Rk9VcaWphVkZ/JwcM7JwZS1odUXYf\nDXH4VIhgGIx62FCoY+1yHTbr1A2vjLkidray56CdQLDbFXH7hnSWL7aiEa6IccXtCXP4mJPSMgdH\nK12EOp1S09L03L7RRnGhjdx5CXG9DiN1j00EP/vZz3juuefIycnhww8/5IknniAajZKUlMRrr702\n4eMRCEbDvBmJfG7zAl58v5pfvXmSf3ioAK08db/bBQKB4FpkWFHio48+GvYgb7zxBlu3bh2TAQmm\nNkP98E0w6XrnEoxB1kQ8+RUGnTykLXkoISU10UB+TirH69r7uS1kjWZYcaEn7e5AzCLd5dbYe/zK\ngAGWZqMubhGhJ11lH1pZ6ifWzMqw0OEL4fAESLYaMRu11Df3b325cE4yBzpdEjPqa1mz+y1S2xoJ\n6I3sv+UTVC5fQ7QzCyK2mIlG0NQcQXvsI6SAFyUhiVDBFqLZy0C6ih9n0Qh428DXDkoUNFpVjDDa\neokRHUGJ8+16Wjq0mBLMBP0dHD1ZRfW5BpKtRjavnMl9G+axbefZYZ0zY8X5KxF2lQc5URdBAZKt\nEnes0HHTYh1Gw9RdzA/kishI07NlXRqbbkkVrohxxu4McbBc7ZhRecZNpPPrYVaWkeJCGyVFNrJn\nmUZV5hOve2yi0Gg05OSoZWq33norTz75JN/61rfYsmXLpIxHIBgtGwuyqLnk5OCpJrbtrOOzty6Y\n7CEJBALBdcVVptCpvP7660KUuIEY6Idvfk4Kx+vaBnz8aLMmxiq/wqCTyc9JHVAEyJ+fxiO35Q3a\nCrPntba7/aAMVmABKdbuwMsuF8fWtfP4/QfVnLlox+5WxYL8+amDBmwOR1fZx46yS/3EmjZXgI2F\nWdy+ahZJFkMP4aL3AmXr2rnUH69l4bt/JKfuBAoSpxev4tDNdxBIsKIAqV2LmY05aOrPIJdvR+Nq\nRdEZCK/YTGTRzaC9isWrEgVvu1qqoURBksEyDUzJvUSOjqDEebueFo8MSFgNEbKTQ6SYYX3ufJye\nWb1es3icM1dDNKpQeTbCroog56+o9vqZGRo2FOrIn6+dsnkLiqJQc87LB7t6uyKKi2xqVoRwRYwr\nza0BSssdHDjioKquI5ZrOz/bTHGR6ojImn71lvCe7jFZryMSDE2KQ6KLvsLK9OnThSAhuCaRJIkv\n3JHHxSY37x+uZ35WEisXDtASWyAQCASjYkxECWWYzgGC64uByiacngA7B9n5H23I2mjbfvakq/yj\nSzDpypDoSm84VtOCrJF4cNP8AY/V91q3H7o4qMOhIDe93wLAbNDy5U8u7iV6OD0Bdg4RsjkUyVYj\nJoN2ULHmeG0bD2ycP+giXRsKcuXff8Odv/5vNKEQjZlz2Lf+HlqmqdkwG1fM4PbVs0myGDC6m9B+\n+DyapnMokkQkdxXh/E1gGrhMIi6UqFqi4W1VXRKSBhIywJzST4y4YNfT3ClGGOUQ2SkhplmVmIFi\nMIfMcM6Z0RAMKRw+HWZXRZA2p/p9tzhbZkOhnnlZmikbXtnhjbDnoHBFTAb1l32UlqmOiLMX1LmX\nJFi0wBITItJTx6eDiUEnk56WQEuLe1yOP1qm6udEIIgHo17L1+5dxg+fP8Kz75xmVoaFaSkTGx4r\nEAgE1ytjIkqIHxrXFoO5AkZKz8XfeISsjcUx+5Z/dGVIdMlo7e7ggCUmfeeo61of2pKLpJHYf6Ix\nVpZh1MusWZY5pEU63rkajoLcNHyB8IjEGoNOJt1mov2N7dT/8D8IXmnCMC2d+nvvZ09qHnZPoNsZ\nsWk+st+D9vB7aOqOIqEQmbGASNHtKLZpIx5vDEUBv0PtqBENqwKEOQ3MqaDpfg96O50RXWJEMODl\n2MkqztRdGpOMkpHi9kbZeyzE/hMhvH7QynDTEi3rC/RMS5maNcXCFTE5KIrC2YuqEHGgzE7DFfUz\nKstQsDSR4kIbqwuSsCXdOEJQRUUFGzZsiN1ua2tjw4YNKIqCJEns3Llz0sYmEIyGrLQEvnBHHk+/\nfYpf/PEE//svVk6qG0kgEAiuF8ZElBBcGwwXGnk1jEfI2tUec6jyj74MldXQc45kjYaHt+Rx/4b5\ntNi9IEmk20wjur7hgjBTE42sWJDa6eRo61cbHo4oIxJrOo6f4cIT/4rn0FEkg57pf/soM/7mUQoS\nzNzeU3whjHziY+ST+5AiIaK2aYSK7kCZcRX16IoCAZcqRkSCgASmFEhIU/MjOvEGJS7YdTR5tIBE\ngj5Cff0F/rT7ZOwxY5FREi+NbVF2VQQprwoTjoDZCFtW61iTr8NqnppihHBFTDzRqMKZ2g5Kyx2U\nljloaQsCoNdL3FSYRHGRjVXLk0gw35j/1L733nuTPQSBYMwpXpJJTYOTj8sbeHF7FV/6xCKxOScQ\nCARXyY35S+kGJZ7QyKvhakLW4sl0GOkxhyr/6MtQWQ0DzZFBJzMzwzpq10nX+I/XtdHq8MVyOTav\nnEVKojF2rPs39D++rCEusSbU2s6lH/2Slt+/CYpC8p0bmfXENzDOmdnrOpLMOsKnDmGp3o3G70Ex\nWQgt/wTRnAIYrVilKBB0g6cFIp2vgSlZdUfI3YtjX0jivF1Hk7tLjIiSnRzAqg/y6tu1Ax56tBkl\nww9Zoa4hws7yEKfPqy6YtCSJ9QV6Vi7SotdNvR+dwhUx8YTDCpVVbkrLHByqcGB3hgEwmzSsK06m\nuNBGwbJEjAaxe5qVlTXZQxAIxoXPblrAucsu9lU2smCWjXXLZ0z2kAQCgeCaZkxECYvlKmrMBRPC\nWIVGDkW8LTp7Mpx7YzTH7GIkZRLDZTX0naPRuE76ChgPbc7lsc+YqDvfNuh1DZaPMJRYEw2Faf7d\nKzT89BkiLg+mvHnM/qe/J2nt6l7HiESj7H53D8taDpIluwkqGk5Zl5F7193IBtOwczYgigLBDuho\nhrBfvc+YpHbUkLvr530h1RnR2ClGmHVRslMCpCdEkCRotl99nki8RCIKx2rD7CoPcalFDa/Mnq5h\nQ6GeJXPlKbmo73JFbN/Zyvl64YoYbwLBKMdOujhQ5uDIMSeeDlW0SrRo2bwuleJCG/mLrOh0U9NF\nIxAIxhadVsPXti7lB88d5sX3q8nOtDJ7mnWyhyUQCATXLHGLEi0tLbzzzjs4nc5ewZbf+MY3+OUv\nfzkugxOMHWMRGhkvIwkajNe9MZrwwuHKJHqyfEHqiLIaRuI6GUrAMOq1o5r3wcQax84DXHzi/+Cv\nPY+cZGX2P/89075wH5K290ddcjbTtv117gg0ENXA7o5MXnPNpf2ykc3W+tE5Z4JeVYwIedXbBqsa\nYqntLifpEiOa3FqUAcSILsYjo6Qv/oDCwZMhdh8N4fCoAZr582U2FOiZM33q7XJ3uSLe39nK3kOq\nK0KWVVfE7evTyBeuiDHF64tQdtxJaZmD8hMu/AFVsEpN1rG+OIXiIhuLFliQZTHnAsGNSJrNxFfu\nXsy/vXacX/zxBN/74irMRiEICwQCwWiIW5R47LHHyMvLE3bMa5SJWOTFS5djYCTOhHiPOVz5h16n\nwR+M9nu+RPxzNFLXyVACxjc+VxTX9Q1Gl1jjP1dP9fd/iuODPaDRkPGF+8j6+79Cl2rr/QSfB+3x\nj9HUHGaWonAqYOMl53zOh7p3eEbsnAn5VDEi2KHe1ltUZ4Su223h7+GM6BIj5iQHyLD0FiN6XtdY\nZ5R00eaM8PbeAKWVIfxB0GthTb6OdSt0pNmm3k53hzfC7lI1K6LLFTEtTc+W9WlsXCNcEWOJyxPm\ncIWTA2V2jp1yEw6rAvz0DIPaMaPIxvxssxB/BAIBAPk5aXzy5jn8af8Ffvvn0/z1p5eJfAmBQCAY\nBXGLEmazmSeffHI8xyIYR8ZzkRcvfR0DNosBu2dsWn7GU/7R4vDxb68exR8M9jvO0Zo27tswP645\nGonrZDgBwx8MD3l9wxHxdHD5335L4zMvo4TCWEsKmfNPf495SR+nQySEfPoAcuVupFCAUEIK/3Ex\nizJ/KqokM/g1DErYrwZYBjrbDurMYMlQ/9+JPyRxwaGj0aWKESadmhkxmBjRk6vJExmIhpYIu8pD\nHK3xEImC1SyxsUjHzct0mI1T60ekoijUnPXy/i7hihhv2u1BSsudlJY7OFnlJtqpWWbPNMWEiNlZ\nRrHQEAgEA7L1lnnUNbioqGll+6F67rhp9mQPSSAQCK454hYlli9fTl1dHTk5OeM5HsE4MtaLvJHS\n1zEwmCABo2/5OVT5h16rwe7uL0hA90I8njkaietkOAHD7gqMKthFiUZp3fYOl/7lPwg1t6HPymT2\nE4+T/Mlbey2eAsEwoeoKkqt2ofE6UQxmQqs+gW9uIed/exj8o3DOhIOdYoRTva01dooRCXQpDf6w\nxEW7jis9xIg5yUEyLGHiXUtfTZ5IF4qiUHUhws6KEDX1ag5AVrqWNfkyRXlatNqptdAUroiJobE5\nEOuYUVXXEbs/d56Z4iIbNxXamDHNOIkjFAgE1woajcT/c88Svv+7Q2zbWcfc6VbyZidP9rAEAoHg\nmiLu9dCePXt47rnnSE5ORqvVij7j1yBjscgbLSNpzwlX3/JzoBKEeMSEeOZoJK6T4c6ZnGjA7fQN\neZ198ZRXcuG7T9FRcRKN0UDW3z9G5l89gmzuXkRFolE+fm8/S5pLyZadhBWJk5bF5Nx1D7IxAQPx\ndfDoRSSkihF+h3pba1AzI/SWmBgR6BQjLneKEUZtlOzkIBnW+MWIvowmTyQcViivDrOrIkRjm7r1\nvWCWzPoCHWtX2mht9YxuMOPAYK6Iks4OGsIVcfUoikL9ZT8HylQhokvw0UiwdKGFkiIbqwtspKXo\nhzmSQCAQ9CcpQc9XP7WUn7xcwa/ePMn3H101oWWxAoFAcK0TtyjxX//1X/3uc7lcYzoYwcQwmkXe\n1TJce06bRY+rIzhmLT8HKkEYiZgw3BzF6zoZ7pxGvZbWONuKBptaufTkf9L66p8ASLlnC7O+8w0M\nMzN7P9DdTtN7f+AT/osgQ6k3nf9x5dBy2cTmxIaYg2S4a4jldJhlDEE7+OyAonbRSEgHQ2JvMcLR\nKUYoqhgxJznItKsQI0aD16+w/0SIvcdCuL0KGgkK87SsL9AxM0Od26liwx/KFbHpllSSk4Qr4mpQ\nFIXa815KO4WIy03qd4VWlijKT6S40MaqFUkkJYp5FggEV0/uLBv3bcjh1Y9r+fVbJ/m7z64YtBuX\nQCAQCHoTtyiRlZVFbW0tdrsdgGAwyA9/+EPefffdcRuc4PphKMdAaqKRJ764El8gPOTCvG+Y5WjC\nO8eqhGUkrpPBznnfhnk888YJ9h1rGLKtaDQQpPGZl7n8788S7fBiXLwA27f+hmkbbup9zoAP+cRO\n5KpS5kaj1AQTeck5n5pgUuwhPR0kg11DJBrl5R3VnDnXyupsLVuWJIBWQtFokRLSwWjrJUbUd4oR\n0UkUI9qcUXYfDXHoZIhgGAw62FCo45blOpKtU+dHoXBFjC+RqMKZGo8qRJQ7aG0PAWDQayjpzIco\nyk8iwTz1uqsIBIJrn9tXz6K2wUl5dQtv7DnHZ9aLkmeBQCCIh7hFiR/+8Ifs27eP1tZWZs+eTX19\nPV/60pfGc2yC64jhHANWsx6reWDr9FBhliMtQRjrEpZ4XCeDnfPlHdVD5mEoioLjgz1c/MHPCJyr\nR05Oovn+L7NrxlLay/yk1JSq87BhLvqaI8jHP0YK+gibkvivhixKfRnEE2LZ9xr+sLMGQ9DBt+5I\nJMGgweGN8NrhDrSWZD57q1onGwzDRYc+JkYYOsWIzAkWIy40RthZHuREXQRFAZtF4o4VOm5aosNo\nmDqL+5grYmcr5y8JV8RYEgpHOXHaTWmZg4MVTlxuNTzWbJLZUKK27lyxJBGDYeqIUwKB4PpEkiS+\ndNciLjV7+POBC+RkJbFiftpkD0sgEAimPHGLEidOnODdd9/lkUce4YUXXqCyspIPPvhgPMcmuM4Y\nrUthqDDLnsdsd/uxJRhYEccxJ6KEpa+zo+c5h8vD+ESWTOM//xvOnQdAlpn2l5/jQNFG3j/tAI+6\n+9vm8mOvrCDU/AbmiBtFZyBceBvenFXUPFsGvhGGWCpRwp427pofwmK04vFHefWwm49OdRCMQGpi\nlE+uidLkMdDg0nWLEbYgmYkTJ0ZEowonz6lixPkral5EVrqGDYU6ls/XIstTQ4zockVs39XKPuGK\nGFMCgSgVlS5Kyx0cPurE61NDTJMStdy2Po3iIhtLF1rQaYUQIRAIJhazUcvX7l3K//9CGb95+xTf\ne3QV6TbT8E8UCASCG5i4RQm9Xt3FDoVCKIrC0qVL+fGPfzxuAxOMDX0XxpPJaFwK8YRZPrhpPpFI\nlIqaVuyeAMdrW5E1Ur8yiPGma64tZh1v7DkXc3YkW/UsnJPCQ1sWYDaoO+KD5WHoAz7y/vw2VT/a\nD+EIietuYs4//R2auXMoe6Y09rhsnZvPJ9Wy2OAgEpYI5q5CWXErjCbEUlHU8MqOFrTRMLIG3qzw\n8H5lB76QAoBBryc7ey5lDRYUJAxylNnJQaZPoBgRDCkcOR1m19EgrQ51XIuyZTYU6MiZKU+prIhd\nB9r5YJdwRYwlHd4IZcedHChzUH7CSTCovgfSUnRsWpNCycpk8uYnIAuhRyAQTDKzp1l5eEsuv3v3\nDL98o5JvP1wkRFKBQCAYgrhFiblz5/LSSy+xcuVKHn30UebOnYvb7R7PsQmugqFKHsZyoT4a0WMk\nLoWhwizb3X5aHD52H7vMxxWXY/cP1hZ0vOg71wa9jD8Y6THOIPsrGymvbuGW/Ok8uGl+vzwMKRpl\n4anDrD7wHiZfB/rZWcz5/jex3b4eSZJotntpcwVIkf08kHiWteYmAMp9qfzelcPf3n0rGcbuOY3L\nlaIoalvPjha1swYSYUMyP3rrHPWtfgAMeh2Lc3NYuGAuOq0Wrax205hIMcLtjbLveIh9x0N4/SBr\nYPViLesL9GSmTo0feT1dEXsPtRMMKt2uiA1p5C8SrojR4HSFOHTUSWmZg+On3IQjqhAxY5qBkpU2\nigtt5GSbp4wgJRAIBF2sXT6DmktO9p64wu8/rOEvbs+b7CEJBALBlCVuUeIHP/gBTqeTxMRE/vzn\nP9PW1sZjjz02nmMTXAVDlTyMxUJ9okSPocIsFQX+7dWjeAPhAZ87UFvQeBmJ2NJ3rnsKEj3xByO9\nXoMuN0Pm5XOs2fUm6S2XCen0tN7/We74yd+iMXRnbJg1Ee5PPMtdlnr0UpTzQQsvOedzKpiMRgKT\nofdHeUhXiqJAwN0pRnTOqykZzGloZR152W6anE0szsth0fy56HRavD4/Xmcjn1yZjDxBOkBTe5Td\nFUGOnAkTjoDZCJtX6ViTryMxYWqIEQO6ItL1bFknXBGjpbU9yMFyNajyVJWHqKpDMHe2ieJCGyVF\nNmbOMAohQiAQTHkevi2X841udlY0sCAriZKlmcM/SSAQCG5AhhUlTp06xeLFiykt7baOp6WlkZaW\nxrlz58jMFF+wU414Sh6utpRjvEWPLoYKyATVhTAYA4U6DsdIxZah5nowul6DexdamfHrtzDv2wvA\n+WWrUP7yi9z3mVWEIgpOu5cksw7TxWPYKnaw1dqBPaLnd6557PFmonSGWEYV8AXCAwaF9nKlKAoE\nO6CjGcKqEwKjDRLS1DafQCgCNxUsJnNOPhqNjM/vp7qujmSjjwc35oy7IKEoCmcbouwsD3LqvCru\npCZJrFuhY9ViHQbd5C9EFUWhOtZBo4crYmVnVoRwRYyYy03+WOvOmnPe2P0L5ydQXGjjpkIbmRmD\nZKEIBALBFEWvk/n6vUv5p+cP8/z2M8yeZiEr3TLZwxIIBIIpx7CixBtvvMHixYv55S9/2e9vkiRR\nUlIyLgMTjJ6hSh5Gs1Dvy0SIHj3pLkVoGdAxMRhDhjoOwkjFlqHmejBcdjcXnnoa129fwuzzY1q+\nmKRv/Q3L1xSilaWYKDIjcIW/SK4jUfagyDre8eewrT2LgNJ7blOshuGvs0uMCKm7+RgSISEdtOrz\nQhG45NRxyakjEpUw6BRmWP2YJDebcqePex5JJKpwvDbMrvIQ9c1qeOWcTA0bCvUsnSdPiUV+hzfM\nrgN24YoYAxRF4cIlX6x154VLqkim0UD+IivFRTZuKkgiJXngjjwCgUBwrTAtxcyX7lrEL/5YyS/+\nWMl3v7Cyn7tRIBAIbnSG/Vb89re/DcALL7ww4oP/5Cc/oaysjHA4zGOPPcayZcv4h3/4ByKRCOnp\n6cqIt3IAACAASURBVDz11FPo9Xreeustnn/+eTQaDQ888AD333//yK9EEGOokofRLNT7Mt6iR1+6\nShHW5U/niWcPx/28wdqCDsZoxJah5rofisLcukpu2fdnHM52dOmpLP35Exju3IzU6cJ4eUc1p49W\n8eWkWpZb24kqsLMjk8a5a/BlmAm09XeMFOalD36dIZ8qRgQ71Nt6CyRkgM4IQLhTjKjvFCN0GoU5\nqQGyEsOdrojx7VDiDyocOhli99EQdrfq/ViWI7O+UM/c6ZMbzArCFTGWRKMKtee8lJarjogrzepn\nRquVWLk8kZKiZFauSCLRIn6sCwSC64uivAxuWzWL9w/X8/x7Z3jsniWiBE0gEAh6MOyvv0ceeWTI\nL87//u//HvD+0tJSampqeOWVV7Db7dx7772UlJTw0EMPceedd/LTn/6Ubdu2sXXrVn7xi1+wbds2\ndDod9913H1u2bMFms43+qm5whip5GOlCfSDGW/QYjPRkM6mDnNeolzEbtDg8gbhbjfYlnlDNmX1s\nl0PNtayBiLrpT0rrFdbsfousS3UoskzmVx8h6/EvkzlvOi0tamBs0O0k98LHfCHjEhoJKv3JvOzK\n4ULISmqdlx98eQkQZ0vVsB88LRDsDKPVJYAlHXSqyBCOdjojHDrCXWJESpCspNCEZEY4PVH2HAtx\n4EQIfxB0WliTr2PdCh1ptsnPixCuiLEhElE4Ve3h2OuN7NzXQptdbWdrNGhYs8pGcZGNomVJmEyT\nL0AJBALBeHLfhhzOXnFx6HQzC2bauLVo5mQPSSAQCKYMw4oSX/va1wDYsWMHkiRRXFxMNBpl//79\nmEyD911etWoV+fn5ACQmJuLz+Th48CA/+MEPANi4cSPPPvssc+fOZdmyZVitVgAKCwspLy9n06ZN\nV31xNzJxdV8YJeMteozmvLfkT+8X6hgIRWhzeuPuDBJPqGZhXka/fImec93u9mNLMLAiN42ta+fx\nhzfL0b/0e+aV70OjKFzIXsjJOz5NbslSHkzodCGEQ8in95NwYjdr9EEaQmZeduZwNJAKnbkRdrcf\njzc0fEvVcFB1RgRc6m2tCSwZoE9Q/xyFBqeO+k4xQqtRmNspRkxEt7LLLRF2VoSoqA4TjYLVLLGh\nUMfNy3QkmCZ31yjmitjZwt7DduGKGCWhUJTjp92Uljk4VOHE5VGDaC0JMhvXpFBcaGP5kkQM+skX\nnwQCgWCi0MoavvqppXz/d4f4nw9ryJ5uJWdG0mQPSyAQCKYEw4oSXZkRv/3tb/nNb34Tu/+2227j\nq1/96qDPk2UZs1lddG3bto1169axd+9e9Hq1Rjg1NZWWlhZaW1tJSUmJPS8lJYWWlqGDA5OTzWi1\nYmdtOL7xuSL8wTB2V4DkRANGfXy26PR067CP+esHCjCb9JRWXqHV4SPNZqJ46XS+dPcS5HHcah/u\nvDOBSCTKs2+fpLTyCi0OH+kjGNua5Vm8tefsgH9rdwfZceQSZpOer2xd1m9cT79xgtLKK7S7Apyq\na2Hano9Y/sdthNqdOGxp7Ft3D/XZCwG4eOQSZqOOL+QFMe77E4rbAcYEtvkW8FZLGhF6jzPNZiIn\nOzX2GvbdX4mEAnibG/A71M+ObDSTkDETvcWGJEmEIwq1jVB1RSEYBp0MS2dJzM+U0MlGwBjfCzAK\nFEXhRG2Q9/Z5qKxTg0lnpGu5c00CJfkm9JMQXtnzPe72hHl/VxNvvXeFuvNqmcuMTCN33zadT2zO\nFLkGceDzRzhY1s7O/a3sP9yG19cZUpqsZ+udM1h/cxoFS5PQToTyJYgRz3e5QCCYOJKtBh67Zwn/\n55Wj/NcblXz/0dVYTMJ5JxAIBHEX7zY2NnLu3Dnmzp0LwMWLF6mvrx/2eTt27GDbtm08++yz3Hbb\nbbH7FUUZ8PGD3d8Tu9077GME3WgBt9OHO47HpqdbY+UEw7F1TTZ3rp7Va9e+vb3jqsY6Fud9eUd1\nLzdFs93HW3vO4vUFh+0McnfJbLy+4JChmvuOXebO1bN6uRR6nnNGfS1rXnoLW1sjfpOJE5u3cihv\nNVG5++OWp3dQXPsH/OecKBotkSVriSxdh3v3RSIt/Z0g+TmpsdewV7tSWYGOVvDZAUXtopGQTsSQ\niMsvEfF6Ys6IUKczIjslxMxOZ4SjPZ4ZHx3hsEJ5dZjdFSGutKl1LPNnymwo1JE3R0YjRXA6POM3\ngEFIT7fS3Owa1BVx+/o0lnW6IiLhAC0tIwsyvVHwdIQ5csxJaZmDikoXwZD63Z2Rpmfz2lSKi2zk\n5SSg0Ugj+l4RjA3jOedC7BAIRs/i7BS2rp3HH3ef5em3T/L4/cvRiHwJgUBwgxO3KPH444/zxS9+\nkUAggEajQaPRxEIwB2PPnj386le/4je/+Q1WqxWz2Yzf78doNNLU1ERGRgYZGRm0trbGntPc3MyK\nFStGf0WCCaWr5WQgFKHZHn+pxFidty9X2xkknlDNvmGeXee0utop2fMn5tVVoiBxevEqqjbfQyPd\nGRvTZC+fS6pjlUl9z4ez84kUbAZLMqCWgkQVhf0nGvEH1d1mo15GURSC4TDbdp6lorqFgD/I1pWJ\nrMs1qWUXGp3aTcOYBJJEJAoNTi31dj2hqISsUchODqpixDi/PF6/woHKEHuPhXB1KGgkKMjTsqFA\nx8yMyXU4dXjD7P5TA6//+VKs48O0dD23rU9j05pUbCIrYkgczhCHKpwcKLNz4oybiPoWZeZ0IyVF\nakbE3NkmEeAmEAgEQ/CJkjnUXnJy4mwbf9p/nnvWzJ3sIQkEAsGkErcosXnzZjZv3ozD4UBRFJKT\nk4d8vNvt5ic/+QnPPfdcLLTy5ptvZvv27XzqU5/i/fffZ+3atSxfvpzvfOc7uFwuZFmmvLx8WLFD\nMHWIRKOxFpbtrgApiQYKctP75S5MFGPVGWSoUM2+YZ72Zgfztr/F8vJdaCNhGqfPYe/6T9GaoRZZ\nWM06oj4v9yaeZ0tCA1pJoTqQyNvhJfzjJz+D2+mLHUvWaNBIUkyQAPAHI3xY1kB1vZOW9g62LDFz\n+7IkzHoNDm+EGruOVSvmx8SIy04tFx16QhFVjJjTKUaMt1bU5oyy52iIg6dCBENg0MH6Ah1rV+hI\ntk6ebV9RFKrqOvhgV+uQrgjBwDS3BjhY7qS03MHpGg9dZracOWa1dWdhErNmDJ4vJBAIBILeaCSJ\nr9y9mB/87hBv7jlHTlYSS7JThn+iQCAQXKfELUo0NDTw4x//GLvdzgsvvMBrr73GqlWryM7OHvDx\n77zzDna7nccffzx2349+9CO+853v8MorrzBjxgy2bt2KTqfj7/7u7/jyl7+MJEl8/etfj4VeCqY+\nr3xU26tUos0ViN0erlRiPBirziBDhWrmzVZFNkVRaH9jO1d++HOKrjTjSUii9Ja7qM1dAZ07xTop\nyhrpLPdmnseiCdMcNvJ7Zw6H/OlsXjkLo17bq6xmMKeHToYlGVHuvDUdq0mD2x/llUMuPj7txZpg\nZMniKO0+AxcdOoIRDbI0cWLExcYIO8tDHK8LoyiQlCBx2006ipfoMBkmb7GvdtBo5/1drb1cEffe\nlcVNKyyjdkX0Kp+ZAFfQZNBwxR9r3Vl7Xi2XkyRYOD+B4iIbxYU2MtLGp8uOQCAQ3AhYTDq+unUZ\nT75Yxq/fPMn3H11FSuL45TsJBALBVCZuUeK73/0un//85/nd734HQHZ2Nt/97nd54YUXBnz8gw8+\nyIMPPtjv/q7n9+SOO+7gjjvuiHcoginC1ZZKjAdj2RmkV1cNlx+DXn3ugcpGmg4e55bdb2GqqUYy\n6Gm/ZyuvzygirO9aqCmsMrbw2aSzZGp9dES1vOTM4X3PTJISzWxeOnAnlL5OD1kDa3NN3L3cQnKC\njDcY5Y/lbj446cUfUtBoNGRkZFLekEBYkZElhdm2ILNs4ytGRBWFU+ci7CoPcvaymhcxI03DhkId\nKxZokeXJESMGc0Xc3NlBY9kiK9OmJY6q1n6quYLGEkVROF/v48ARB6XlDuovqyKOLMOKJVaKi2ys\nLrCJVqgCgUAwhsybkcjnNi/gxfer+a83K/nWQ4VoJ6Ivt0AgEEwx4hYlQqEQt956K8899xygtvwU\n3Ni0OHxxlUpM9M7yWLVD7cqX+Mz6HF7cXsW+ykaMXg/rDrzHwpOHkVDwFK3i5v/83+hmzaD9o1oq\nqlux+Zr5fFIteQYnYUXiPc9M/ujOxhPVYdBq+N9/UYRtEMdGl9Oj3R2gJMfIpwospFu1BMIK7x73\n8M7xDjqCqhiRlzOHpQvnk2A2EUUVI2baQujHcYpDYYUjp8PsqgjS4lB9/AvnyKwv1LFgpjxpWQKD\nuSLGMitiqrmCrpZoVKH6bAelZaojoqlV7Yyi10msLkiiuNDGqhVJWBLi/mdCIBAIBCNkY0EWNZec\nHDzVxGsf1/G5zQsme0gCgUAw4Yzo16bL5YotOmpqaggERCr9jUjXjnF5VTOD9UpJthqxmHW8vKN6\nwneWe4oJYyWGVJ1rJb9iN0UHd2AI+mlPmca+9ffgX7KMNTOmq+csyeBh/VF0F04AcMSXxu9dOTSG\nuzMsAuEof9hZx5c/uXjA8xi0Gu5ZlUpOUpAZNi2hiMKOkx386XgHSVYzvrBE7rzZLFu0gASziVA4\njNvRxO0rLOMqRri9UfYfD7HveIgOv+rgWLVYy/oCHdNTJ6eEIR5XxFhlRUxFV9BoCIcVTlW7OVDm\n4GC5E7szBIDJqGHtTckUF9koWJqIyTj1r0UgEAiuByRJ4gt35HGxyc0HR+rJSDZxa1Hfxt8CgUBw\nfRO3KPH1r3+dBx54gJaWFu6++27sdjtPPfXUeI7tumSq1qN3jcuaNHxgXd8d44EoyE3jjT3n4tpZ\nHq85GaxDx0B0jcFk0OILhHuNpfG9Pdz6q5+QbG/GbzCxZ/2nOLWsGEUjI7n8uOwuMhuOIJ/ajxQN\nE0mezn9emskhh2XAc525aCcQivS+VkWBoAc6Wlg7J0pU0XLwbIA/HHGiaPSsXpLFLUV5VDfLaLV6\nwuEIdefOk6Bxc/+GbEbj9oxn3pvtUXZVBDlyOkw4AiYD3LpSxy3LdSQmTI7FdCJcEX0ZqwDVySAY\ninLspIvSMgeHjjrxdKghqlaLzK23qK078xdb0euEZVggEAgmA6Neyzfuy+dfXizn5Q+qSUzQs2ph\nxmQPSyAQCCaMuEWJuXPncu+99xIKhThz5gzr16+nrKyMkpKS8RzfdcNUrUfvO670ZBP5OamDjmuo\nHWOA1M7r2rp2Ht/77cEBH9O1s6yVpQmdk4EW4T2vv80VQCNBVIEUq56bkiLkf/AGzg/2kCRJnFxW\nwuHi2/CbEgDQEGWLtZHMjw+iDXpRzImEVmwmOm852j+fAUfjgOOwuwO9F7HBDuhohpAPRYGj9UFe\nPeQkjJaF2dO4tWQxVzxGzrZr0OsUplkCWGU3a+elYNClj3gehnsvKorC2ctRdpUHOXlOXcCmJEqs\nK9CxepEOg37iSzS6XBHv72pl3zi7IgZirAJUJwqfL0L5CRel5Q6OHHPiD6i5Hyk2HXduSqGkyMbi\nXMukZX8IxgdPR5jTNR2crvGwYlkK+QtFVxSB4FohI9nMN+9fzo9fLueZt09iMWpZJDpyCASCG4S4\nRYmvfOUrLFmyhGnTpjF/vlqbHw6Hx21g1xtTtR6977ia7b4hxzXUjrEEfOO+fGZmWGm2e4fdWd5R\ndmlC5mSoRXjf648qoAv6WfDeO8ys2IMzGiGhuJCX8zZyJWla56MUlhvaeSiplpk6L36/zHuhBbRn\nruS+uQuRJQ0PbVlAeXVLr9aeXcQWsSEvjvOXoMMFQL1T4umPWmiwh5EkiZw5GWTMzuW8w4wkKcxM\nCjHLFsKgVYDRLzYGey8qCiyZM5edFSHqm9RF7OxpGjYU6lmWI09K28wOb5id+1VXxMUG1RWRmWFg\ny7rUcXNFDMRYBqiOF25PmMNH1dadRytdhMJqcdW0dD13FNkoLkpmwVyzaH96HWF3hjhV7VH/q/Jw\nocEXa9na0BQkf+HcyR2gQCAYEXMyrfzNp5fxs9eO8R+vn+BbDxUyJ1N0pBMIBNc/cYsSNpuNJ598\ncjzHct0Sbz36RJd2jKZOfqgd45REI+mdu//D7SybDNoJq9EfbBEeiUQ5XtfW/UAlSu6Zcm7a9y4J\nXjduq41jm7ey9dsP0/hCOQCztB4+n1TLMqOdqAIfd0xnm2sujqgBWhuJSFoe2pyL2aDjlvzpAy5i\nN+anYuhogKCHEIAugaAxlZ9vO0a7O0JO9izyFy3AakkgEolw7sJF7itJxmq6evfIwK+5BoM2nfLT\naZSfDiABS+fJbCjUkz1dM+HhlUO5Im7fkMbShePrihiMsQpQHUvaHSEOVahBlSfOuImqWhKzs4yx\n1p3Zs0yTFkAqGFuaWwOcqvZwslOEuNzU/f2q10ksybOwJNfC4jwrtxRn4nJ2TOJoBQLBaFiUncJX\n7l7Cr96o5GevHePbDxdO2fJAgUAgGCviFiW2bNnCW2+9RUFBAbLcvVicMWPGuAzsemK4evR2l5+P\nKxomvLRjNHXyWlnCbNQNKDb03DEebmfZFwhPSI3+kMJLTSsOj9pxIKPxImt2vcm0pnpCWh2Hb9rC\n0aINRLQ6Lr1eSbohzD2mWtabr6CR4Lg/mZed86kP986N6Cmo9F3ELphu5sHiJLJtETU/QmciKSsb\np1fC3u7FlpzO2jW5JHaKEWdqz3HidC2BgJ9PFBRjNV39fPR8zSVJh1E7Db02A42kRVGiFObB7cVm\n0m0TX1Lk6ejOiujpirhtfSobb544V8RgjEeA6mhoaglQWq4KEVV1HbGd8flzzZQU2bip0EZWpuh1\nf62jKAqXGwOqANH5X0tbMPZ3s0lDUX4iixZYWJJnISfbjE7b/bk16EVGiEBwrbJqYQbu23J58f1q\nfvrKMf7xkSKSEvSTPSyBQCAYN+IWJaqqqnj77bex2Wyx+yRJYufOneMxruuK4VwDO8ou8XF5Q+y+\niSrtSLIYSLbqaXcH+/1tsDr5Vz6qpb7Z0+/+WRkWHtw0P+b2sJj1KIqCUS/HShiMepmbl2Xy4Kb5\nhCPKhNToDyW8OD1BbH4PBbv/TN6ZMgBqFyyn9Ja78FiTAdBLETZoqrk75SJGTYT6UAIvO3M4Hkgd\n8Jg9BZXYIvaW2UTdzRgVDxIKaI2QkA56CzqzlcYmP+fdKaxZnU4kGqWq9jwnztTg9akL8xSrYcTz\nMZjrRn3Nk/AHUtDLqUiShqgSwhe8hNnk5P5bV2KYwMDDXq6IQ3aCIQWtLLFmlZoVMVmuiKEYSYDq\nWFHf4IsJEWcv+gDQSLA410JxoSpEpKeKH6zXMpGowsVLPk5WdYoQNR6cru4SyUSLluLOLJAluRbm\nzDIhT7HPhkAgGDs2Fc7E6Qny9v7z/OzVo3zroUJMBtGiWSAQXJ/E/e127NgxDh8+jF4vfviOlKFc\nA/k5KRyvbR3weePZajASjfKHXXV4A/0zD2DgOvmhXAcdvhAv76jheG0r7a4ABr0GfzDa6zH+YASN\nJCFrNMgaJqRGfzBBSBMOU3z6AIv2vo8uFKA1bQZ713+Kxiy1BltCYY2piQeTzpIiB3BGdLzqXkA5\ns2kNhmKBmH3pJahEQuBtxeCzq7dlPSRkgMGKgkSzR+bIZQWP34CEQsPlBkrLT9Ph8/U6ZoJJF/d8\nDJaf8cDGHOoaFHaWh1AieRi0EIn68AcbCUZaAYVb8maO285/X5FkSFfEmlRsiZPriphsFEXh7AUf\nB8rslJY7aLiivn+1skTB0kRKVtpYtSLphp+na5lwWKHugpdT1W5OVnk4XdOB19f9fZyarGNdcTKL\ncy0szrUwc7pRlOEIBDcYW9fOxdkRZPexy/zn6yd4/P7lvRxRAoFAcL0QtyixdOlSAoGAECVGyWD1\n6BsLsthZcXnA54xnq8HB2noa9RoKczPYurZ/QNpQroN2d6CX26OvINFF3/KGqKKw/0RjLzeFoihE\notExKV3pJwgpCnPOnebmPW+T5GzDZ0xg/9pPcGbxapTO8y3S2/l8Ui1z9R6CioY33HP4k3s2AbR8\n/9EV6HUy2w9d5OMBXreC3DQMsgKeJvC2AwoRtETNaegSkmNixAW7Hm9IgyTBdGuI6VY/f9p+kg5f\n//n1+kP9W4gOQv/8jCC7K3ycqnPhC6gL2HkzNEhyC2cvNxAO+ElNHL9shF7dTZwBzLIJbSCBK5ci\n14QrYiKJRBWqajsoLXNQWu6IWfX1eimWD7FyeSIJZrFTdi0SCEapOdsRy4Ooqusg0ON7cnqGQe2K\n0pkLkZGmFyKEQHCDI0kSj9yei9sbpKKmld/86RSPfWoJGvHdIBAIrjPi/nXb1NTEpk2byMnJ6ZUp\n8dJLL43LwK43BqtHD4QiE95qcCjHQzAc5UBlI1UX7f1yLUwGLUkWfSyHoSeDOQf60re8QSNJvTpU\n+IMRPixrQJKkIUtXeu68A0PW+Hcttmv3V7LknW3MuliNotHQvuV23phbQtCoij7TtV4+l1hHkUl1\nruz1TuNV1zzaImp9fmpnkKdBJ/PQllxkWdNLZFq1MJX7VtugrRaUKN4gvHuig+3H3SRZWygpWMDM\nrNl4QzKgkGkNUZijx+sO0mz3D5GxEYhLnOr5ukrI6LUZGLXT0Gj0+AIK+fNlNhXpmTVNBuYQCM0c\n92yEVz6q5f2DDQRdOgJOK/agDIRJsEh8duuMYV0REx3+OtGEwwqVZ9wcKHdwqNyBo9OubzZpWFec\nTHGRjYKliRgN19+1X+94fRFO13TnQdSe8xKOdH9JzplpZHGulcW5CSxeYCElWQj+AoGgP7JGw2P3\nLOGnrxzl8JlmEs16HtqyQIiWAoHguiJuUeKv/uqvxnMcNwx969Eno9XgUI6HrvT+nrkWXa0zK6pb\nBhQkID5BAnoLLaPp/tG1815e1Uy7O4hBp3aHCAQjgwaEKu4O1ux5m/m/exXCESxrV5P1xDf54a5m\ngq4AFk2QT1vPc2vCZbSSwplAEi8553M2lNjr3D1fj14ik9tHis6H1t8O3laQZMoua3j6g8uEIjA7\nazrLl+SSnJRIR1BhemKIOckhTDqFBKMBr3v43JF4xCmnJ4DDrWDSzcagTUeSZBQlgj/USDDSyJ0l\nhWQkd8/neGYjKIrCiSo372134G5PBEUCFHSWIAZbkGnTtNy1OX3Q9/dQbVzHM/x1IggEoxw96aL0\niIPDx5x0eFVRLtGqZcu6VIqLbCxbZBUW3WsMlzscEyBOVrs5f9EX+17UaGDeHLPaGSPXwsIFFhIt\nwvEiEAjiQ6+T+dv78vnRS+V8WH6JJIueT96cPdnDEggEgjEj7l9Fq1evHs9x3NBMdKvBoRbAfamo\nbiUSVXqVZvQkNdGo5mLUtcV1vPycFACa7V6C4eiIO3D8/sMaPirrHksg1G1/7hsQqkQitPz+TS79\n6JeE2x0Ysmcy+3vfxLRxDecuu3C6LnCX5RJbrRdI0IRpDJv4vTOHI/40ipdm4rzoHPr1UBQMIScZ\n0VbwhUHSQEI6AZ2N/3ntENMzM8lfnEuKLYmoolB7vp76+gt8+/P5/RbjVytO1TdF+LBMItG0HJCI\nRoP4Qg0Ewy0oREhNHB/XTV/6Z0Vo0egiGJKC6BODaLTqKq3dHabd5Wd6asKAxxmsjSuMb/jreOH1\nRSg75uRAuYPy466YbT81WceGm1MoLrKxaIFFBBdeQ7TZg5yq8sS6Y9Rf9sf+ptVKLFxgiYVS5uUk\nYDIJt4tAIBg9ZqOObz6wgn95oYzXd58lMUHPuuWiA55AILg+EFs1U4CxbDXYZXc3GbT4AuEBjzXU\nArgv7S4/R6sHDuJMthh44osrsZr1vLyjOq7j+UIRvvNMKe2uAMlWPYYe3Tl6HXsAd0AgFGH/iSvD\nnmPv8StsMbpo+qef4a2sQmM2MfMf/5r0v/wsr+27SMVvSpkfvMRT0+rI0PrxRLW84JjPBx1ZRNCQ\nmmjkC7cvBAYpC1EU8DuhowWiIZAkMKeBORVFkqlvDlNy000xMaLufD3HT9fg9nSgkRi0FGOk4lRU\nUTh9LsLO8iBnL6uLXJMhTKvrIsGImmfRxXi5bkB1RZypVTto7D/c3UGjuCiJ6rbLRHUhBnKZ7ii7\nxCO35fW7fzQOmqmIyx3m0FG1Y8axU27CYfX1mJ5hoLjIRslKG/OzzcKCew2gKAqNLaoIcarazclq\nD00t3a4xo0HD8iXWmBNiwbwE9BPYxUYgENwYJFsN/L8PLufJF8t5/r0zWM06ChakT/awBAKB4KoR\nosQU4mrs9H3LGroyHlIHsb33XAC3u/xIg2RCqBkSg7TU7AjgC4SxmvWx45VXtdDuHvjxRr1MaWVT\n7PZArUi7GGgR3WL3Dhqg2UWC20Hxvj9z7l+PAZB6313M+vbfoM9M5+Ud1Zw/dpK/Tqol1+oirEi8\n45nJG65sOpTuXIOe5+71eigKBFyqGBEJoiDh0yQiW9PR6w20eWXOt+vwBGWSkxTOXrjE8VPVuDwd\nsUPYLIO394xXnAqFFY6cCbOrIkiLXX3R8mbLbCjUMS/LxKsfm6ioNoy768bTEWbn/nbe391KfWcH\njekZBrasT2PjmhRMJg2P/7yeQGjg5x+raeWBjfP7XeNQ5UXjGf46FrTZgxwsd3CgzMGpKk/sM5U9\nyxQLq5ydJbooTHWiUYX6y/5YOcapag/tju43siVBZtWKJFWEyLMwd5YZrVa8pgKBYPyZnprA4/cv\n5ye/L+dXb57k7x5cQe4s22QPSyAQCK4KIUpcJ/S1u3cthgazvfddAG8/XD9giUbBgrRBSzN6uhl6\nHu/F7VXsq2zs93hFGTh4wqiXSTBqsbsDQy+ih1jIyeEQy8t3UXDkY3ThEG3TZ1P08+/A4oUoFgNB\neyv5Fz/g0Qx1XId86fyPcx5NETMaCSQgZbAuFIoCQQ90NEM4gALUtkm8UmrnXNMVFuZ0sHzJpr6L\nIAAAIABJREFUQvQGI6CQYQnz9kdlVF1o7jfOwdp79g10TLIY+gkTHp/C/uMh9h4L0uEHWQOrFmlZ\nX6Bjelr3McfKdTMQg7ki1qyycduGdJbmWWIdNJrtXoKhwUWkwQI8xyJfYyK50hyIdcyorusWoHJz\nEigutFFcmMT0acZJHKFgOCIRhXMXvbFSjFPVHjwd3Q6u5CQta1bZWJxrZUmehVkzjDd0pxiBQDC5\nzJuRyNfvXcbPtx3n59uO878eLmRmumWyhyUQCASjRogS1wFD2d27GMz23uXOeGjzAmSNxPG6Nlod\nvl7igCwP3D50IDeDQSfzxbsWYjJqe5QhGNBrZa60ewccWzAU4dsPF6LvXIwPtohOt5kw9i33UBTm\n1Z6gZO+fsbrteM0W9m64l6pFhXxQ4SW4dy8Ppl5ig+ECRboodUErLznnUxXs3lVQgL//7ArmZSX1\nP3fQA54WCPs6LzCJt495eGN/A1mZGdx560rSUpJRFAWfx866RQa0UphWu3PAa+jb3jMSifLyjupe\ngY5mo44OXxC7O0hKooFFczKxmrI4cjpMOAIQxh9qxmS0E5WSyUjpL+CMdYjlcK6IgTpoDJddkmwd\n2DUyGeGvI0FRFC42+CktV0szzter7w2NBMsWWSkutHFTYRKpopvClCUUilJzzhsTIE7XePAHugW0\njDQ9K5d3OyGmZxiEu0UgEEwpls1L5Ut3LeKZP53ip68c5duPFJGWZJrsYQkEAsGoEKLEdcBQdvcu\nhrO9dzkdHvuMibrzbb3EgZFmHfRzYRy6yMcVlwcdW7K1u9XmUBh0MmuWZfJhZ9BlSusV1ux+i6xL\ndUQ0MkcL11O26lZCBiMyUVYpZ/n0tPMkyiFawwZe985ntzsdhd6LixSrsb8gEfKCp1n9P4DBCgnp\n+KM6zjTWcOemW0hPTQbgfP1ljp+qRibEpsU3DVN+0Nsd8OzbJ/sFOnYt4mWNBb9/OpW1NiQpjF4X\nxutrIBBuAaL4QrDjiLozPx7hj4O5Im5ZncyW9Wm9XBEDMVx2SWHe4N03Jjr8dTgURaHmnDfmiLjS\npL5GWq1EUX4ixUU2Vq+wkWgVX6lTEZ8/QlVdR0yEqK7rIBTudm7NnG5kcZ6FxZ3hlOmpQlASCART\nn5Klmbi8QV75qJafvnKMf3y4EKtZfH8JBIJrD/EL+hqlp90/nm4a8drejXptP+FiJEGcA5UhHK9r\nG/KcPXe/+z6/L5+9dQGyx0P02ReYV74PjaJwPnsRB9Z+EmdyOqBQYGzlc4l1ZOm8+KIyrzjn8a5n\nJrJej0L/UM1eu+8hv1qmEfSot/UJkJCBojVh98nUtMisLioC4MKlKxw7VYXD6QaIhVjGW34QCEUo\nrewf3KmTkzFqp6OVVStmOOJBq2slFHUSCPc/5liHP47GFTEYD26aj6Io7DvRGHO4GPUyNy/LHFJg\nGMvw19ESiSqcrvGoQkSZgza7milg0GsoWWmjpNBG0fIkzKKrwpTD0xHmdE1nZ4wqD3UXvLF2x5IE\nc2eZWNzpgli0wDKi97Rg4qiuruZrX/saX/ziF3n44Ydj9+/Zs4e//Mu/pKqqCoC33nqL559/Ho1G\nwwMPPMD9998/WUMWCCac21fPxtkR5L2DF/n3bcf5/z5bgEEv/l0SCATXFkKUuMboCrTsafcvyE1n\n+YK0Xq0y+zIWtvfBsg6GGtfGgqwhXRw3L1UXp5FolJd31HC0uhWHp/v5PQM6lXCY1hdeZ8FTvyLi\ncKGdO5us7z1OrSYTbXUr2b4W/iLlLHnadqIKfNgxg22uubii6q5BOBhhzdJMzlx09N99DwfUAMuA\nSx2YzgwJ6Si6BOw+Deeb9bj86vU2NjVx+NgZ7E5Xr2vpEhziLT9wegK0ODrLQtBg0KZj0E5D1hhR\nFIVg2E4gfIVw1IM0hBFmIBfMcOJOX67WFTEYskbD57fkcd+G+eq1KkpcrpguxroMZThC4SgnTrsp\nLXNwsMKJyx0GIMEsx1p3rliSiEEvOitMJezOUHcoZZWHCw0+uiJsZBkWzE1Q23PmWVg4P4EEs/in\nb6rj9Xr553/+Z0pKSnrdHwgEePrpp0lPT4897he/+AXbtm1Dp9Nx3333sWXLFmw2EfwnuHG4b0MO\nro4g+ysb+eUblfzNZ5ahlcW/UwKB4NpB/DK7xugbaNkVZHlrURabV86Mdb8YqPvG1TCY6NAlGgw2\nrkhUGdQ1kJpo4JHb1ZaQ//TcEeqbPf2eD2ppgmvvYS488a/4ztQhWxOY9b3Hmfbog2j0Oh7yuvi8\n8QS6c0eRgJPhNJ5vm0dDOKHX+VISjTzceb7Ygl0TAc8VtcUngNYICRmgT8DulznfosfZKUakmsNk\np4R4+9zlfoIEQN7s7h/B8ZQfJFkMpCVZcXckYdBmoJG0KEqUQKgZf7iRqOKPPTbZakCSGNZ9Mdzr\n1JexdEUMhUEnT9kQLn8gQkWli9IyB0eOufD6VEdHUqKW2zakUVJoY+lCq+iuMIVobg1wqrrbCXG5\nqftzoddLLMmzdOZBWMmbl4DBIH6cX2vo9XqeeeYZnnnmmV73/+pXv+Khhx7iqaeeAuDYsWMsW7YM\nq9UKQGFhIeXl5WzatGnCxywQTBYaSeKLdy7E7Q1x4mwbv3vnDF/+5CI0IgtHIBBcIwhR4hohEIrQ\n4vBRXtW/owPA0Zo2fviVm2J2d5NBiy8QHjPb+2CiA8Bn1ucMGrR5vLaN/JzUATMlCnLVTIEXtp/p\nJUj0pOpgFVUvP43zvZ0gSaQ/tJWZ/+tr6NJSIBREPvYR8sm9SJEQUds0QkV3cOhUlIamoV0KGYk6\n8DaDz67+UTaAJR30Vhx+mXOX+4sRVoPq/+7bTrXLJnmgsvH/svfe4W2d99n/5xzgHAwCBLiHODVI\n7UFqULIsybYs20ncOMtOHKfJ24z2TZq6SZqOXE6apmnSNKmb0fTX1n0zGseJXTdJ3QxvSx4alknt\nQVKLFJc4QWLj4Jzz+wMkuECI1CIlPZ/r8iWDwDl4ziCI536+3/umsXUgKQKkaz/o7NPZ1aCha4tx\nKBKGqRGOtRGNd2MSnzT2murEquDFqi/SXacR34lkVcTOXna/deWqIq4ngqE4bx0aYm+Dj4Yjg8Ri\niWX1vByVOzbnUFfrpXphBpYb/DxcD5imSXtXlOONAY41+TneFKC3fzSe0+mQqV2ZmWjHqHKxoMKJ\nYhUixPWO1WrFah3/FeXs2bOcPHmShx9+OClK9Pb2kp2dnXxNdnY2PT3pjZ+zspxYrVenvD0vz31V\n9iuYPjfzNfjSx+p45F93s+dYF0V5Lv7PvctmZRw38zWYK4hrMPuIazAzhCgxx5m48p06VHN8Cf9I\nufuVMjtKl+5xoKmXLauK0xg7Rti+thSLRU5ZNRDVdA40907azqrFWPPWK6xq2MWgHse1diXlX/08\nGSuXgGEgn2rAevBFpLAf0+FCW/U2jAU1IMs8UGgkxzapSsGIQ7B3WIwwwaIkKiNsmfgiFs51qPiG\nxYhsZ5yKLI1M+/hYy3TxpxNFgLHtB6Zp0nxeZ2eDRmNrYjW+MMeKqvZxvvs8sUh4OH3DTjCs4Quk\njkidqvriYtfprrXl7N4/yAu7ejnfMb4q4vZbsvHc4H31viGNNw8M0nDkLPWHfMT1xG/TvEIbdbVe\nNtZmMb/cIVIWZhndMGltC3OsMZCshhhpowHIdFmpq/Um2jGqXJSXOoR4dJPw9a9/nUceeSTta6aK\nnh7LwEDqJKjLJS/PTU+P/6rsWzA9xDWAT71rOV9/vJ5f7DyFVYK7N5Rd0/cX12D2Eddg9hHXIDXp\nhBohSsxxJq58T8V0jSwvhfRpEhEwp27RyHLbyc60T1k10DcYwheIjW5gmixsOkjd67/FFRwk5PYw\n/6ufo+C99yBJElLnaaz1zyIPdGFaFOIrtqEv2wzK6LGnNEm0AKFeCPeDaYBshYw8sHsZjFg426ni\nCw+LEY5EZcREMSIVJ1sHUv58rPmkrpscbI6zs0Gjozexz/nFMttqVLas89LX5yCqFY07N/5QjLbu\nACX5rnHiUrrqi1TXyTRBj1ho7ZL5v39+HC0+WhWxY2suyxe7buhJeG9/LJmYcaIpgDE8X5lf5qCu\n1ktdrZfSYhGhNpvE4yanW0Icb/JzrDHAieZgsoUGICdLYUtdVrISoqTIfkPfs4LUXLhwgTNnzvBn\nf/ZnAHR3d/PQQw/x6U9/mt7eUWG7u7ub1atXz9YwBYJZx+VQ+Oz9q/na4/U89copPBkqG5cXzvaw\nBAKBIC1ClJjDpFv5nsiVMLKcinRpEpkZKh6XbVrGjqlMCz0uGznD+87tbuOWXc9Q1HmOuMVK/bo7\ncH/sQbbduwppsAdL/XNY2hNu6/r81cRXb4cMz5TjtikW8r12CPUnBAnTAMkCrgJwZDEYtXKuU2Vg\nWIzIGhYjPNMQI+DiYk13f4RTbQqvHdQYDJpIEqxaZGXbGoWywsR7jrRJjJybhOFnU1pPiKnMH8de\nJ0OXiA0pRAdtGLHEexXmK9y1LY/bNt3YVREdFyLsrfexp97HqbOJFVFJguoFGdTVennb9nkolskt\nMoJrQzRq0HRmNJ6z8XSQaGz0d64o38bGWi9Lh30h8nNVIUIIKCgo4MUXX0w+vv3223n88ceJRCI8\n8sgjDA0NYbFYaGho4Atf+MIsjlQgmH1yPHY+c/8q/v7xBn7w2xO4nAor5ufM9rAEAoFgSoQoMYdJ\nN+kFkEiYN04s77/SpEuT8AVifOVH+1m1KJc7audxsLlvSmPHqfa9tlAl8sufsvjYfiRMzixYzp7N\n78C7qIxP3DEf677/RW5+C8k0MAoqidfejZlTnH7QpgFhH4R6wNBBkhNtGo5shmJWznYqDIQTt3+W\nQ6ciK4bHMT0xYgSXU8WmykRi47eTJRWPcx7/8guTmBZDVeDW1Qq3rlLI8aTvdZ+OJ8RUqFaZUm82\nrY2DxAIKmBJgorhjbFqfycMPLpmzk7uZpoWMxTRNzp0Ps7chEd3ZOmzYKcuwaqmbulov69d4yfYm\nhJi8PIcoqbuGBEM6p97qY8/+Ho43BTh1NpRsnQEoL7GztMrNsioXS6pcyeskuLk5evQo3/jGN2hv\nb8dqtfLcc8/xve99b1Kqht1u53Of+xwf/ehHkSSJT33qU0nTS4HgZqYkz8WfvHcl//jkQb7/yyN8\n/gNrWFA89UKOQCAQzCaSOZ0GzDnGzTKhiGo6jzy2d8rkioffu3JG8YrTYaoeqFFvi176hiIptoTt\na0umbC1IhRHT6P7RU7Q/+hj6UIDBvCJe2/wOAkuWsXZhFh+c14dy7FUkLYqRmYNecxdGyeLEsvdU\nmCZEfAnfCENLvNaRA84chmIK5wYU+kMJMcI7LEZ4ZyhGjPDEi03jBASL5MSuFKFYspEkicwMiVtX\nKdQtV3DaU4957PlOf73tfPXjG1KeU38gzs49/eO8IhSbgZIZpaBYYu2y3CnTN2abmaaFjGAYJs1n\nQ+ytH2BvwyBd3YlzplglVi/PpK7Wy7pVHtyuybqr6PO7ugwOaZxoDg77Qfg51xpOts3IMswvdyaS\nMapcLFnkSnmNBJfP1bzPr3fzrqt5XsRny+wirsFkDjT38M+/OEKGXeGvHqqhKCfj4htdBuIazD7i\nGsw+4hqkRnhKXKekq1BYU5VHSf61+2I44tNw76YKvvyD/QwEJk+cR3wUUrUWTMT3ym5av/SPRE63\nYPFmUv7Vz+P5wH2sCsfJ6W/GcfhZpIM+TNWBtu7tGFXrQE4jcpgmRIcg2AN6DJDAkQ0Zufg1lXMX\nFPpGxAi7TkX2pYsRML61RpG92JRCFEsmAIYZ4j3bMtmwzIbVMv3KhIu1g4wYmSYO1+REc5AXdk1O\n0NixNZdFCxwMBWNXLH3lajGTyhBdNzl0YojX9vVx6FiAAV+iBcNuk9m8Pou6Gi81KzJxOObu8d6I\n9PbHODESz9kUSApjAFarxOJFLtauzqayRKV6QYa4PgKBQHANWbMojw/fvZgf/e4kjz55kC98aC1Z\n7qvjQSYQCASXihAl5jhj4ydn0hZxtQhH4/hSCBIweeKcisiZVlq//E/4XnwNZJn8D7+XeZ//I5Rs\nL1J3K+763yH3tmHKFuJLb0FfvhVsaYwITRNiAQh0gz48LkcWOHPxx23jxAjPsBiRdRlixAh9gxEC\nwUwy7YVY5MT4NH2QiNaJYQ5RXrSe/iFjRqJAOu8Or8tGLG7Q54tOTtAosHH75mzWrMygpDAj+X52\ndW7/el8sLeQ9WxcgI3HouJ899QO8vr+f2PCpkS0mFfMV3v/2UtYs96Aqc68K5EbENE26uqMcawok\nhYgLPaNGtXabzOpl7kQyRrWbhZVOVEUWKwYCgUAwi2xZVcxQMMYvXj3Do08d5K8+WIPTLlrlBALB\n3GFuz1oEqZMkZnHlO93EOV0CiO4P0PGdH9D12BOYWhz3plrKv/JnOJcuAn8/1ld/jqXlWOK15cuI\nr9kB7uyU+wISYoQWTIgR8eGVWbsHMvIIxO2c61HoDSZu70y7TuVwm8blWioEwiZ7jmi8dsjEaavE\nNA2i8V6iWie6GU4MQ7Xw7acOMuCPTbsdAaaujDFN8PWbfO6rR9ECCqYpJasitm/J5mh7F/uaz/C7\nI9Nvf5gLTFUZYhrQ1aHzj/96lqMnAoQjCRFJshjYPBqKW8PqiDMowek+OxuUrGs99JsGwzA53xFJ\nmlIeawwwMKgln3dlWFi32pNox6h2UVnqxGqdm74lAoFAcDPz9o3lDAZjvFTfxnefPsxnH1iNOocr\nKQUCwc2FECWuE6ZKXJiNcUwnaWME0zDo/a/f0Pb1f0br7kMtKaLsSw+T9fY7kLQIlvpnsZzci2To\nGLklCRPL/PL0g4iFINgN2nDWvM0NGfkEdDvnetRRMcI2WhkRi+v0+C5d1OnxGbx6IMb+E3G0ONhV\nKMjx09h2CtPUxr02EtOJxBKRhjMxqoTxlTF9vih6wEagX0kmaMiKjt0T484tufyfd1TyxItNvFTf\nntx+pu83m0xMC9GCVjS/ihaygimxv2OIglyV22/1cPB8G0E9PElUGhu9Krh8dN3kbGso2YpxvClA\nIDgaz5nlsXLLOm/CmLLaRWmxPZkgIxAIBIK5iyRJfGD7IoaCMfaf7ObfnjnGJ9+1fM4vYAgEgpsD\nIUoIZsx0W0oCDUdp+eI3CR44hmS3UfDZj1P6qQ8j2xTkxn1YD7+CFA1hZnjR1tyJUbEivYmlFk54\nRsQCiceqK1EZYThp6VXpGRYj3DadymyNLIeOYRr87KWZGymOcLZTZ1dDjKOndUwgyy2xZbXC+mUK\nitXJz18a4o0jXUkRYiqmO3mWJYnVZcV0nlY4d85HPG6ClEjQsHliWB1xJAmOt/bhD8WmbH94/XAn\n991aidM2d8szQyGDTMnLubYA8ZCVRJ4MyKpOdZWdj793ARWlDnp8Yfb8W3PKW2M6LUOCqYlpBqfO\nhpICxInmAJHoaHtTQa7KutUelg4bUxbl2+ZsgotAIBAI0iNLEh97x1ICYY0Dzb385LkmPnx3tfhc\nFwgEs44QJcZwObGEc42reSwXaymJdfVw/mvfo+/p3wLQurSGVzfcjc2ZzztfeoPb4keQ/X2Yio14\nzQ70xXVgSTN5jkcTlRHR4Z50xQkZ+QTJ4FyfSk/QAki4bToVWRrZTj05gX3ypZlHbBqGydEzOjsb\nYrR0JSZopfkyW2sUVi60YkmuDEtIknRRQQIuPnn2B+Ls3N3P87t6aetMtKMU5KkMmYOomTFk6/iQ\nnAF/hLbuwJTGmJGYzhMvNPOxdyy96NiuJd290WR058lTQRLZPwo2p4HFGSG3QGbDqpxxotGltgwJ\nJhOO6DSeDnK8MeEH0XwmiBYfvbdKiuwsrXYl0zFys9VZHK1AIBAIrjSKVeaP372Cf3jiAK8e6sCT\nofKuLfNne1gCgeAmR4gSXHos4VxkusdyuaJFqu2NaIyuf3+Cju/+ACMYIlpWzu/WvY2ueZVUKH4+\nqO5j6YAPAwm9aj3xVbeDPU00lR5LVEZEBhOPrXZw5RM0XbQM2OgOJMQIl02ncoIYEdV0enxhGhq7\nU+46VeVCVDPZf1zj1QMafUOJidrSSgvbalTmF8uTVhLSGTVOJNXk2TRNDh3z8dT/nGf3/gG0uInV\nmvCKuGtbLgvnO/jif+xLjmX8/mzsO9GFJMFUob4nWwaIavqsC2xtnRH21ieEiNMtiZYbSYIli1zU\n1XjZUOPB47FOeT/OtGVIMEogGOdE83AyRmOA0y0hjOFCCEmCylJHogqiOhHP6c2cu5U1AoFAILgy\nOGxW/vT+VXz9J/X87+5zZGao3FFbMtvDEggENzFClGBmsYRznYsdy6UKMCMihMup8KvXzo7fflEu\nd+mdtH3l20TPtWHN9lL8xYf5p6F8zJCfP/ScYLOjC1mChnAOvzOW8umaO6aeTOoaBHshMpB4bLGB\nK58Qbs6NFSNUnYpsjZwxYsTE45tivj6ucmEoaPD6IY3dRzTCUbBaoG65lS2rVQqypz4n6SI8JzJ2\n8tzni/Lcrh52vzlIe2di++ICGzu25rJtUzaeMRPDqSbjTrvCq4e60r6nLxCdldYG0zQ52xpmb72P\nPfW+ZOWHxQJrlmdSV+Nl/RoPXs/4CXC6cc61FJq5ysCglmzFON4YoKU9nBStLBZYVJkxnIzhYvHC\nDDKc4k+AQCAQ3Ix4MlQ++8AqvvZ4A0+80ERmhsq6xfmzPSyBQHCTctN/I51OLOH1shI7nWP5712n\nZyTATJzk21TLuHYF/Vwrtv/8Pqdbm5CsFgo+/gHmffYTDMR0bn/qae4pOI9NNmiJufjp0AKORbOR\nJegZCKEqlvEr40Y8IUaEBwATLCpk5BGSPLT4bFwYFiMyhsWI3DFixAgTRZmpyHLbicQUnnwxQv3J\nOLoBGXbYsV5h00oFt/PiFTLp2grk4QqG7MzE5Pn+2xZw5OQQ//HUOc63aJimBJJJ5XwbH353KSuX\nZKbs6Uw1GV+5MIdDzRev0LiWrQ2GYdJ4OpioiGjw0d2biIlUFYkNazzU1XpZu8qDK+PSPnLmWgrN\nXMA0TXr6YhxrHE7GaArQeWH0XlRVieWL3SyrcrGkykX1/Axstuur8ksgEAgEV4/8LCefed8qvvFE\nA4/97zFcditLKtIknwkEAsFV4qYXJdKtdl9vJnoXO5aegdBFRYuJTJzkjwgSajTM2n0vsPzQbmTT\noGv+Yrb++5fxLJ6PfLqB4oMvcV9mgAFd5UcD83ktVIg5bGSoKha+8/ThZKXF+sW5vGedFznSD6aJ\nKVvxSx4Mey6dgw4uBBImiBmqQUVWlNyMyWIETL+dwiq7cdkr+c6TiXOV65XYukZl7WIrqjJ9s6d0\nbQVb18zjrnWlWCQLu98c5DNfakxWDMiKgd0TQ/XE8FlMjnWorFrqSfkeqSbjg4EoOxvaU75+LFe7\ntSEeNznW6Gdvg499DT4GBuMAOOwyW+qyqKvxsmZFJnbblRvDXEmhmQ1M06S9KzrsB+HneFOA3v7R\n5BenQ6Z2ZWbSlHJBhRPFKkQIgUAgEExNeaGbT797Bf/0X4f43i+O8BcP1lBe6J7tYQkEgpuMm16U\nuJFM9C52LEjSRQWYsR2FqSb5kmGw+PibrN/9HI5IkEFPDrtvfQfn5y9lqzWC8pt/QfZdwLQoHHCt\n5HtNXqLm+EnpSGSmzSpRV2Hl7kUacrgPU7JQ327ym8MB5s3LYX65C1mWcSqJyoi8KcSIEdK3U0io\nlmwybMWAg6EAVBbLbFujsnS+BfkSnacfuH0hum5woLmXwUCM7Ew7qxflsLK0iCee7h7nFeHKjoMz\nkkzQGGE6FTljJ+PprjNAzpiWnCtNTDM4dGyIPfU+9h8cTMZFul0Wtt+aQ12tl5VL3CiKmAxfLrph\n0toWHlcJMeSPJ5/PdFmpq/Um2jGqXJSXOsaYsAoEAoFAMD2WVGTz8XuX8a+/Oso//dchvvBQzU27\nACAQCGaHm16UuJFM9C52LHlex4wEmImT/ML2s9zy6v+Q19NBTFHZu+keDq++lSJ7lL/MOUb+vp2Y\nSOgLaoivvoNqu4tbXz6VbD3wumyEonHius5t1U7etioDj8NCIGrwmyNhApKXId3DrZtKkWUZ36Cf\nQ8cbWVRoYf00vD1ST9Yt2Kx5ONVCQEWSYOUCK1trFMoLL+/ahqJxfvZCEydbBxgMxHDbbTj1TPbu\njPN05ylg1CtixTIHf/fTt1J6XMy0Iifddd60vJAP3VU97ft2Ooan4bBO/ZFB9tb7qD88lIyMzMlS\n2FKXzcZaL0sWubBYxIT4ctDiBmdawhxv8nOsMcCJ5iCh8GirVOJ8ZyUrIUqK7CLGTSAQCARXhHWL\n8/HvqOLx55t49MlD/NWHavFkiAQmgUBwbbjpRQm4sUz00h2LRZZnJMCMTPIj7Reoe+M3LGo6BEDj\n4lr2bboba6aDj2Se5jZnB7IERuF84rV3Y2YXAWCBca0HMU3npTeOcu8qF9kuCxHN4H8OBHj9jE7V\nwkUsqCilQJbxDfk5fLyJlvMdmIB/0MaWVcXkeR0XrSYYOT5JUrFbC7BZ85EkC7JksGmlwpbVCjme\ny1vFH/HZeP1wB+GoQTxsITbopD+ggBlDluHWDVns2JbLsioXkiQR1fQrWpFzses83WOYyvB0KBDn\nrYOD7Kkf4NAxfzI2sjDfxsZaL3U1XhZWOpHFyvwlE40aNJ0JJqsgGk8HiMVGZauiAhub1nqTxpR5\nOaoQIQQCgUBw1bi9poTBQIz/3X2Of3rqIH/xYA0Om5gqCASCq49kmlMFCs5denr8V2W/lxuTOZeY\n6lhGJ6OpJ7N5ee7k+TXCEZ77/LfJfOZ/UOIaFwpKeWPL7zFQVMK9nnbe5jyHQ9bxWTKxb34HUuli\nUvZXmCZEBzEDPUiGRixu8tKJELuadCoXLGBhZRkWWWZwKMDh402cO98+qaJAgmklhbTU+wUYAAAg\nAElEQVR0xXn82X76hxzDW2kU54f5xO8V4HZe/jWNajo/ea6R1w9dIDakEh1UMWKJ/cqKjs0To3Ce\nxNc/uSF53keuxXNvtvLKgY5J+9y+tuSSU14u9Z594sWmSeKUEZeYn52PHlQ52uhPRkeWl9ipq/FS\nV+ulvMRx3U+Mx97j15JgSOfkqUAyHePU2RBxffROLy+xs7Rq1Jgy23vjxHPO1jmfbWbzb8rVPOd5\nedd3v/nVPC83430+lxDX4PIxTZMfP9vIq4c6WFKexZ++b9WM/InENZh9xDWYfcQ1SE267w9C/hzD\njWSiN9WxTCfFwDRNBn7zEq1f+Q45bZ3EPV7e3PJ2DlUuZ3u2j3e76nHpQXTVQXjFbTgWrwc5xRdu\n04SoH4I9oEeRgKZeiR+/PkhZ+ULu3J4QI4b8AbRQL3sPNk3pk2AydVKIYZo0tujsbNA41aYDTvKy\nJJaUa2xZ4yTLnXWppzGJbhj8/KVm9jT009MhEQtkwnCChuKOYfNEsToSnhdDkUTrS47HPq4aweNS\nKcnLIBSJ4wtEyXLbuWVVMfduLLvkcV3KPTvWK0SPyWgBhVhAQY9YOHAmCkRZVOlk41ovG2q8FBfY\nL3l8NzODQxonmkcqIfycaw1jDGsQsgzzy50sG27FWLLIhdslPo5vFC41elkgEAhmG0mS+NBdVfhD\nMQ409/Ifvz7OH75z2SV7bwkEAsF0EN+Cb1KmmswOHT7JyU9/Bf/ueiTFStEnf5/ih/+A9UPdWOuf\nxTbYiWlaiC/bjL58K7KaYsJqmhALQrAb4onECeweorZ8TJxsv92KJMn4A0FOnz1LvkvjgdsXEg2l\nbi2ZyIgxpCzJNDTG2dUQ48JAYra3qFTGlHo43d7GM7ujvH50ZpOBVCubQ4E4j/7oJEeOhjFiiTYL\nWdGxeWOomTFky/i6jpF2jInJJb5ADF8gRkleBp97/2qyM+2UFHuvqZJqmiYnTg3RfhZiARd6dOQj\nwMTqiKO6Nb74iRUsnp86DUQwNb39sWQrxommAOc7IsnnFKvE4kUJQ8ql1S6qF2TgsF/f1ViCqZn4\nu3+x6GWBQCCYS1hkmT/8vWU8+uRB9p/sJtOp8uCdi677SkmBQDB3EaKEAACt30f7N/+N7p/8NxgG\n3u23Uvblz2DPzcDa8L9YWo8DoFesIL7mTnBNUX0QCyYqI7RQ4rEtk5g9nxa/i45eK6Yp4VAM5mWG\nUbNC7Fhalpz8j/VJ6B+KpDSFBPD54/xud4SDzeAPmcgy1C62snWNwq5Dpy9pMjBxZTPLbaM0Kxvd\nb2dvvS/hqSDJqO4Y6piqiFSsqcodPo7U8aRtPUFefOs8H7pr8ZTjuZKYpsnpcyH2NvjYW++jvSsK\nOAATq1NDdWsoGRqy1SQn005lqeuajOt6xjRNurqjHBtuxTjeGOBCbyz5vN0ms3qZe9gPws3CSieq\nSCS5KUgXTTydpB2BQCCYC6iKhT9570r+/qcNvNTQhsel8o5NFbM9LIFAcIMiRImbHDMep/s//5u2\nb/0bum+IjOpK5n3pM3g3rcZyeCeWPW8iGTpGXinx2nsw80pT70gLJyojYsHEY9WVECMCmXT2WTFM\nCbvVoDwrRoE7TsIfcXylxtjWkp6BEN95+vC4dg5ZsmGzFmJX8njtkIldhW01CreuUvC65cuaDIys\nbBq6RGzIhu+cyulYGAhTkKcyxGDKqoix2FULm1cW8cDtC+kbjKSJJ4UDzb3cf7s+5fOXi26YNJ4K\nsrfex94GHz19iQmzTZXZWOvFsIVpvHABacLpuN4SZ64VhmFyviOS9IM41hhgYFBLPu/KsLButSdZ\nCTG/zCnSSG5S0kUTzzRpZybE4yad3RHaOiO0d0ZZu1qjouTG8SURCATXHqdd4TP3r+ZrP6nnF6+e\nITNDZcuq4tkelkAguAERosRNzNDr+2n50rcInzyNxZ1B2Zc/w9LPfZjBN1/F8qtvI8XCmK4stJod\nGGXLUptYxiOJyojocAuC4kSz59MS9NLRkRAjbMNiRGFSjEiPTbFQku9OJmlYZBd2ayGKJQtJklCV\nOHfX2dmwVMFuG93hpU4GIrE4u+v7CHY6iQWUpFeE6o6RV2zytT9ext/++C36hlILElkulSUV2Tx4\n5yKctsQkwOOy4XXZGAikHo8vEKPHF6ak2HvxEzJNtLjB0ZMB9tb72HfAx+BQHACnw8LWjdnU1XhZ\nszwTm00ergxRbojEmauBrpucaQ0lRYjjTQECwVERKctj5ZZ13oQxZbWL0mK7SCIRAFNFEye4lKSd\niUSjBu1dCfHhfEfi37aOCJ3dEfQxOufRxiBf/tyCy3ovgUAgyHLb+OwDq/j64w38+NmTuJ0Kaxbl\nzfawBALBDYYQJW5Coq3ttH7l2wz89hWQJPIevI+Sv/i/2MJdhJ/4R6y+XkzFTrzmLvTFdWBJcZvE\nY8NixGDisdWB5sinJZhFR+cYMcIbozBzemLEWAzDZGl5BSfP5hIMj+Rkh6icF+ET75yHap28mj/T\nycBQIM7O3X387uUeurpTe0WEgUhMnzJK9ZblhTx0V/Wk6gKrRSLDYZ1SlAD49lMH2by6l3s3lqX1\nu0jn4B+NGhw8NsTeeh/7Dw0SDCVmJZ5MKzu25lK7yk3JPJUcr33cttMxPL2ZiGkGp86GONbo53hT\ngJOngkSiRvL5glyVdas9iXaMKheF+TbRWytIydho4onMpBIpGIonRIcR4WFYhOjpizExM8vpkFlQ\n7qSkyE5JsYOSIju3biwkEg5fiUMSCAQ3OUU5Gfzp+1bxDz9r4F//5xife2A1VaVXblFFIBAIhChx\nE6GHwnR+74d0/uvjmNEYrnWrKP/bP8NV7MZa/0vk7hYMWSZeXYe+chvYM1LsREuIERFf4rHVhubI\npzWYRXunmhAjLAZlWTGKLkGMiGkm+0/E2XUgRt+gCagsLpdZU2WyfEE2dnXqW3Y6kwHTNDneFOD5\nXb3sfstHPG5itUq4suPgDE/yipCA595s5YE7Rv0uUkWpTuTJl0/R1hNMe6z9/hjPvHaGUDiW0u9i\nKgf/ezdWcvCInz31PhqODBGNJSbPudkKt23Kpq7Wy6IFTp7eeZr/2n0+ue3isiw+cGcVzjGZ4zdS\n4sxMCEd0Gk8HOd6YMKZsPhNM+IYMU1JkZ2m1K5mOkZutptmbQDCesf446SqRTNNkYDCerHZICA9h\n2jsjDAzGJ+3Xk2llWbUrIT4M/1dabCfLq0wSydwuKxGhSQgEgivE/OJMPvWuFXz36cN89+nD/OVD\nNZTkCQ8qgUBwZZBMc+Kay9xH5L7ODNM06fvlc5z/u++idXajFOVT9sifkH3nBpSDL2I5exgAvWQx\nmdvfRb+eYpJqxCHYC+EBwASLStyRR0soh/ahhBihWgzKs7RLEiP8IYPXD2nsPqIRioBFhrVLrGxd\no1KQPX7SP7ZyABi30j86kR8/GXjb+gpe3TvA87t6ae9MVC8UF9jYtMHDjq15vFDfkjb5Y/vaEh7c\nXpW2amHs+B55bO+U8aYTycm089WPb5i0vydebEqOyYhLaMFEdKcRVjCGF/GLCmxsrPWysdbLggpn\ncmIydtux2FWZzSuLb7powkAwzonmhADRdCZM4yl/8hxKElSWOlg67AexZJELb6boxb+S3Kx53SOf\nF26nytCQPtpyMab6YaS6aSx5Oepw1UNCdBgRIGYSG3s1z3m6nPHrgat5Xm7G+3wuIa7B1WfP0S4e\n+/VxvC6VL3yollyPY9zz4hrMPuIazD7iGqQm3fcHUSlxgxM8fIKWL36LwP5DSDaV4j/9KEWfeD/q\n2bewPPNdJD2OkV2UMLEsrMSS7Yaxv0SGDqFeCPUDJsgKcUcereFc2rtU9GExoiwrRpE7jmWG89yu\nPoNdB2LUn4yjG+C0w53rFW5ZqeB2jt/ZxMoBm2oBTCIxg5zM0ejPkbYEnz9CR2ecnW/08/GnjiWr\nIjZvyMLqjnB+oJ+XT17gYEcLqxblsm1NMa8e7MBIIdONNcq8WGVB/1Bk2oIEpPa7iGo6+4/2EBlQ\n0QIK8bCVRN0GqA6Dd95ZzOZ1WZQW2yetkKYz/IzEjCsaTTgdkWY26PdpnBgTz9nSHk6WvFutElXz\nM1iyyMWyaheLF7rIcF69sc/VcyS48iTNJie0XLR3RYjFxn+wyDIU5dtYXu2ipHhYgChyUFxoE3Gx\nAoFgzrJxeSFDoRhPvnyKR588xF89VIPbKaoJBQLB5SFEiRsUrbeftq9/n56fPwOmSdbbbqPskT/B\nEevC+sK/IUWCmM5MtNXbMeavAmmCmmDoEO6HUB+YBshWdEcurZE82i7YkmJEpTfRpjETMcI0TU63\n6ew8oHHiXGKVMNcjsXWNytolVlQldZnFSELGCJHY6Arj2OjPd9TN55U3+nhhV+9w/CXMK7SxY1su\n2zbl8Ou9Z3jxrc5x275c386m5YUpBQmYmWv+i/VTV1ykYqzfReeFCHsbfLy2r59zraOrDxZ7HNWl\nobg0FJvB9q1Lyc9ypNxfOsPPES43mnCq1pLZqMAwTZOevhjHGoeTMZoCdF4YPX5VlVi+2J1sxdi0\nvgC/P3TVxzWXzpHgyhKNGrR1jW+5aOuM0NUdHWc2CaAqEvPGtFskxAc7hQU2FKu4DwQCwfXHXevL\nGAzGeHZfK995+jCff/+a4YUigUAguDSEKHGDYcQ0LvzwSToefQzdH8RevQDPn/8x85bl4Tj4S+TB\nHkyrSnzV7ehLbwHreHXbNIyEEBHsBVMHyYLuzOd8tIDz3TZ0Q0KxmFR4oxTPUIzQdZNDp+LsatBo\n60nUzlcUyWyrUVlWaUmbXpBu9R/ANCEetvC7Zwf55VNHklURW+qy2LE1l6VVLiRJSrufky0D5Fym\na35U0zl8qveirxs77vn5Wfzqt93srfdxri3RBC7L4HDr4IiiujRk66hacrGxpDP8HOFyowknCkRj\nRaErUYGRDtM0ae+KDvtBJIwpe/tH4zmdDpnalZmJdowqFwsqnOMmf3a7Bf81qKibzXMkuDIEgvGU\nLRfdvbFJr3U6LCyoyEj6PIyIEHm5KhaRzCIQCG4w3rttAUPBGLuPdvEvvzrKp9+zAutMy2UFAoFg\nGCFK3ED4XtlN65f+kcjpFiyeTHp+/yM0llXy9rb9ZPQOYCARX1CDvno7OCf09JgmRAbob26GuAaS\njO7Ioy1WQGuPPSFGyCYVOTMXIyJRk33HNF49qOELmEgSrFxgYWuNSkXR9JT1qVb/DV0iNqQS9akY\nWmJfBXkKb7sjj22bcsic0IOdrorAF4iycVkhbxztmvTcdF3zL1alULe8gKaWQXp6NOSYAz2k8nxz\nGAhjtUqsXZVJXU0W61Z7+PW+M5fk4J/O8HOEy4kmTCfsXG4FRip0w6S1LTyuEmLIP2oCmOm2Ulfr\nTSZjlJc6Zn0SeK3PkeDSMU2TAZ82rt1ixHjSNzTZbNKbaWX5Ytd48aHYQZbHKhJZBALBTYMsSXzk\nnsX4QxpHzvTxw9+e5KPvWDLbwxIIBNcpQpS4AYicaaXly48y+OLrIMvkf/h9HFq7mbyeQ/yFcy+y\nBEciWfx0cCHVRYt5cKwgYZoQGUwkahgahiRjOHJoixXS2usgPixGlGfHmOfRZiRGDPgT5pV7j2pE\nYqBa4ZaVCltWK+R6Z6amj139H6mKiA3aiAUUMCWQTFR3jLxik299ZuWUKR0Xiw39wJ1VOOzWi7rm\nT2ecYzFNcEpOzAE3A2cMhgYSK/sOO2xa62XjWi81Kzw4HaMT1ek6+Kdi5DWvH+4c1+YywkyiCSeS\nTni53AoMAC1ucPpciONNCRHiRHOQUHj0GHKyFLbUZbGsys3SahfzCudePOfVPkeCmWMYJt29sZTi\nw9j7a4T8XJWaFZmj4sOwAOHKEH82BQKBAMBqkfnkfcv55s8PsOdYFx6XyqfuXzPbwxIIBNch4tvV\ndYzuD9D+7f/Hhf/4GaYWx72plvK/fhiH3kXF4RewZei0aU6eGFzIoWg2IBEaWaW1yhD1Q7Ab9Bgg\nYdizGVDLONFpJW5IWGWT+dkxij0aM2l9buvW2XVA42BzHMMAt1PitlqFjcsVMhyXNnm0KRaWluXy\nwmu946oiZFXH5omhZsaQLSabaksuKzbUabMmjTIvxZxw7P5NA+JhKzG/ghZU8OkyHU29uDIs3HZL\nNnU1XrZvLWZoKLW/gUWWJ40FoG8wctFxjWx7362VPPFCMydbBvAFojMWWVJxMWFnphUY0ahB05lg\nsgqi8XRgnClgUYGNTWuHKyGqXeTlqHNOhJjIlT5HgumjxQ26LkQ53zm+5aK9M0JMG28aY7FAYb6N\nFUtclBY7kp4P8wpt2G2ikkUgEAguhk218KfvW8XXH6/n2X2tWK0W7llfisMmphgCgWD6iE+M6xDT\nMOj9r9/Q9rV/RuvpQy0pouxLD5OzOBvl0G+QQkMMGgqPDy1gZ6gIg1FFod8f4UJnNyUZIWQ9MWEy\nbF469CLO9WUkxYjK4cqI6YoRpmlysiUhRjSfT6w6FmTLbF2jUFttxWq9tEmkaZocawrwwq5edr8V\nIh53IA1XRbhy46hOnZimk5058yqCdBUI00nZSEUkqlPuycUdjdDWpmHoieO22SW2bs5m49oslle7\nk+fDNo2Jj02xkOOxX5JpotOm8LF3LL2iCRAXE3Yutv9gSOfkqUCyEuLU2RBxfXSyWF5iZ2lVwphy\nSZWLbO/1F895uedIcHEiUZ32zijnO8MJ8WFYgOjsjibjXkdQVSkpOIw1nCzMF2aTAoFAcLm4HAqf\nvX8133ryIL9+4yxvHO7gA3csorY6b84vIggEgrmBECWuMwINR2n54jcJHjiGbLcx7/N/RPG7NqMe\newV5TwembCW6ZDN/96ad9tD4kuTqQpV317oosw+ADi0+GUvOIlr63WjDYsTyUgmvNThtMSIeN2lo\nSphXdvUnZgILSyxsq1FYXG655D9GQ/44r+yekKBRZGPH1lw2rfNioCdXm2c62bbIMu/ZuoAtK4tA\nkvBkqISjceK6mbI95WIT+mAozv5Dg+yt93Hg6FBylT83R2X1che3rs9hWbUbi5ww2uz3h2csDlyu\naeKliixTMZPWksEhjePNAY43BjjeHOBcaziZciLLsKDcydLqhB/E4oUu3K4b42PpctpvBKP4A/Hx\nLRfD4kNP32SzyQynhUWVGZNaLvJy1LRGugKBQCC4PHI8dr7yB+vYdbiLp15q4l9+dZQV83P44I4q\n8r2p08IEAoFghKv67b+pqYlPfvKTfOQjH+Ghhx6is7OTP//zP0fXdfLy8vjmN7+Jqqo888wz/PjH\nP0aWZe6//37e9773Xc1hXZfEuno4/7Xv0ff0bwHIvu8uyh5+CGdHA5bXfgqAXrmS+Jo7IcPLEl8T\n7cOT1spchXfXulg2LzGJP9ga5WCvh4LSKhw+GxbZpCIrRolHo6jQTc/UIRdJQhGT3Uc0Xj+k4Q+Z\nyBLUVFvZukahJP/SVoFHqiKe39nLnnof8biJMpygcde2PJYsykgpcsxksj0xpjERYWUSiRnkjKk+\niOsm/UMRXqxv4/Cp3knVCf6AzpsHEkLE4RNDyRjAkiI7dbVe6mq9zC9zJMerGwZPvNg8qdLhj6fR\nezkXTROTws6qYjBN8rKcyTH09seSrRjHGwO0dUaS2ylWicWLEgLE0moX1QsycNhvzKqBVO03okIi\nNSNmk+fHtFuMiBCDKcwmszxWVixxj4/ZLLbjzRRmkwKBQDBbKFYLH7hrMSsqsnj8+UaOnOnji/+x\nj3dsquDu9WWiMk0gEEzJVRMlQqEQf/u3f8vGjRuTP/vud7/Lgw8+yD333MOjjz7K008/zX333cf3\nv/99nn76aRRF4b3vfS933nknXq/3ag3tusKIxuj69yfo+M7/wwiFcS6vpvxLn8ar9mHZ/3Mk08DI\nLydeezdmbklyuwduX4jXblLuirCsOFH+frwjRkO3m5x5K6lYZCOmaTSdOs0Ht+WRMc3+6b5Bg10H\nNPYf14jFwabAthqFzasUstyX9sdmyB/nlTf6eH5XLx0XxldFpErQuBwmVhyMNYEcqT5obPURimiT\n/AB6+mL8+oVuXnkxRH+PkVztn1/uoK4mIUSUFqdeDZiq0sHpULnvloq0Y55rpoljhZ2+wShum538\nDA8ui5MTTUEujIlLtNtkVi9zD/tBuFlY6URVbq4vJVe6SuV6Rh8xm0yaTIaTAkQoPL7nQpIgP0dl\n4crMceKDMJsUCASCuU1BtpPPPrCaN0908/OXmvnlq2fYe6yLD+2oZnF51mwPTyAQzEGu2jc7VVV5\n7LHHeOyxx5I/27dvH3/zN38DwG233cYPfvADKisrWbFiBW53IhGipqaGhoYGbr/99qs1tOsC0zTx\nPf8qrX/zT0TPtWHN9lL21w9TuLoA6/GXkGIRTHc2Ws0OjNKliW/wI8SjWII9vK1KBxRCusIzxyQ8\nRSsoWWAnpmkcOt7EiaYzxDSNe9duIMOWkXY8LZ06Ow/EOHJaxzTB65K4e7XChmUKdtvMVyZN0+RY\nY4Dnd82sKuJySFdxMJbz3YHk/+sxGS2gEPMr6NHEr0sYneqFLjat9VJX4yU/N71pYbr33Xu0k3vW\nl6ZdQZ9LpomGYfLvv2jktbf6iIetxEOZDOgyrUSBKK4MC+tWe5KVEPPLnFgsYuV6JlxJ/4/ZQosb\ndF6IJisfevrPc/psgI6u1GaTRfl2Vi61UzpGeJhXaMdmu7kELIFAILhRkCSJDUsLWDE/h1++eoaX\nG9r4h58dYNPyQu6/bSGZGepsD1EgEMwhrpooYbVasVrH7z4cDqOqiQ+hnJwcenp66O3tJTs7O/ma\n7OxseqbTP3ADE246Q8tfP8rQrr1IVgsFH/sApfdvxt78BtLBQ5iqg3jtPejV68Ey5hzrMQj2QsQH\ngGmx0ycV0hjKprDSgqbFOXy8iePDYsQIL9a38aEd1ZPGYRgmx87q7GyIca4zsYo5L09mW43CqoXW\nS5psTlUVcdfWPLZuyr6iVRETSVdxMIJpgh61JISIgIIRG5kUmlidGqor8d8ff6yKknx32n2N0D8U\nSSkoAPT6whetdJhN00RdNznTGuJ443A7RlOAYEgHEuOVLAaKO4bVESc318I3Pr1OOG5fIhNbi6Zr\nZjqbhCM67WPaLdo6Ei0XXT1TmE1OMJosLXZQmGe7ZCNcgUAgEMxtnHYrH9xRxaYVhfzns43sPtrF\noVO9vGdbogVUFi13AoGAWTS6NE1zRj8fS1aWE6v1+lxBTIfmG6LpK9+j5V9+iqnr5O3YTNVffBil\n4wD6gV+DLKPWbMW2YQeSY7SywdBiBHs7iAx0g2kiq3b8aglHer1ENAmLDCF/N//7cgPRmDbpfY+d\n7cftcSSjNDM9Ll4/GOLZN4Jc6E+0N6yqsnHPLRksqZx5HKNpmhw4Osgzz3aya3cPWtxEVSTu2pbP\n791dxMqlnmvSB+72OMjLctA9EJ4wPtAjFmIBBS2gJONGkUyUDA3FHUPJiCNbRu/N7/3yKBuXF/EH\n9y7DksodcwxPv3pmyudyvQ4WVOSkjTEF+OP71+B0qOw92kmvL0yu10HdNN9/JkRjBiebhzh4dJBD\nxwY5cnKIcHi0xSU/T0WzhrE64lgdcWTFSBbphHRQ7Cp5uemrbuYCeXnTE5SuJY/96siULT4fv2/F\nLI4sYVZ67nyIlrYQ51qDnGsL0XI+xIWeyWKb22VlWXUm5SVOKsqciX9LMyjIswmzyWvMXLzPBQLB\nzUllUSZf/PBaXm5o4xevnuE/n23kjSOdfGhHNWUF4rNKILjZuaaihNPpJBKJYLfbuXDhAvn5+eTn\n59Pb25t8TXd3N6tXr067n4GB0NUe6jXF1HV6fvY/tP39vxDv92GrKKHsLz9BrteP/NYv0AG9dAl6\nzV1EM3PwBwwI+MGIQ6gPQv2AiSkrDFgKOenLI6ZbkCWTUm+MUq9Gnw+eTiFIQGK1/vS5Phw2OwdO\nybywN0AoAhYZ1i+1snWNSmGODMRo7wxPu7R8ulURvb2BdLu5oqxckMOLb7VhmhAPW9H8iYoIUx+e\n2EsmijuG6tJQMjSkKeb7PQNhnnntDKFwLG36RVTT2Xe0c8rn1y4pwD8Yxp9m+5Hzfd8tFdyzvnTc\n+e/vD07zyFMTjug0ng4mKyGazwTR4qPiS0mRnaUbshLtGFUu3G4Ljzy2l76hyckHWW47ekyjp2eq\no5kb5OW559wYo5rOG4faUz73xqGOi7b4XAlM06R/xGyyY7zZ5JA/ldmkwsol7nHVD6XFdjwpzCbz\n8uxz7pzf6FzN+1yIHQKB4FKQZYnta0uprc7nyZebefNEN1/50VtsX1vCfbdWXnSBRiAQ3Lhc09/+\nTZs28dxzz/HOd76T559/nltvvZVVq1bxyCOPMDQ0hMVioaGhgS984QvXclizin/fAVoe+SahY03I\nGU5K/uKPmFdXjHJqP9JgHCNnXsLEsqBidCNDh3B/QpAwDUzZik8uoNGfTyRuHSdGqMPzmOxMOzlT\n+BJ4XR5efkviQFOIuA5OO2xfp3DLSoXMjMSsfLql5SNeEb97pYc3GwaJ6wmviK0bs9mxNfeqeEVc\njJGJvcOmsCAnj/3xCK0tGoaeGIdkMVEzo+TkS+Tky7T3Tl/0Gpt+kcoL4GItI/feOj/lzyee7yy3\nyuLybB68c9FlmSb6A3FOnhpNxjjdEkqW2csSVJQ5WFblZklVBksWufBmKpP2MVutJDcy19LMVDdM\nunuik1ou2rumMJvMVVlUmZkUH0qLHZQU2chwii+PAoFAIJg5WW4bf/TO5Wxe2cfjzzXx/P7z7D/Z\nzYPbq6ipyhUpSgLBTchV+1Z59OhRvvGNb9De3o7VauW5557jW9/6Fn/5l3/Jk08+SXFxMffddx+K\novC5z32Oj370o0iSxKc+9amk6eWNTLS9i/N/+x36n3kBgJz3vo3y92/G2VaP1NucGYIAACAASURB\nVNSC6fSgrdmOUbmS5HK9aSTEiGAfmDqmZGHIWsRJfyHhYTGixKNR5o0xUWy2WiScdmWcKGGV3diU\nQkw9i/0ndHIyJd6+xc3iUh2bMv4PwlTpEQAPbq9KVkU8t7OHzu7EKrqs6uQW62xan8Xv31N2zfvi\ndcPgp881s6e+n/4eCS2oYBqJ48ryKKxa7mLz+myWLHIRCMfwuGxYLRI/+u1J3jjaNa33GPBH6B+K\n8MqB9pSCTTqTypxMO7leB/7B8KTnJp7vfn+M3Ue7aGjqYfPKomn7DPT7NE6MxHM2+WlpG43ntFok\nquZnsHS4CmLxQhcZzouLCg/cvhBICDID/ghZbjtrqnKTPxfMnKthZqppBh0XoknhYeTf9q7IuGoY\nSNwLRQU2Vi0d9noY9nwoLrRjU+emn4VAIBAIrm+WV+bwlY+u57d7W/jt3ha+/8sjrFqQwwfvrCLX\nmzrNTCAQ3JhcNVFi+fLl/OQnP5n08x/+8IeTfnb33Xdz9913X62hzCmMcITO/+8ndP7zjzAiUTLW\nLKPi0/fjjZ5CPv0aplUlvno7+pJNYB1epTZNCA9AqBeMOKYk47cWcNJfRCiuJMWIUq+GzZrak+PJ\nl08lUyUUSzZ2axFWS6L3v7xQZluNyvL5FgoKMiaV/E6VHmGa8MZb/bQ3n+HNA4PE4yZIJqpbQ/VE\nsTp0dAleOxLCZpPStjlcSQLBOPsPDvL0s210dMTBTEzoZEVH9WjcsjaLTz2weFx/u8UiJascHrqr\nmhMt/fT7J7coTMSTYeO5N1t49dCoiDFRsElXWWBXrZNaN9KldURi+rh9j8U0TXr6YhxrTBhSHmsK\n0HlhdJKrqhIrlriTrRhV8zMuKd3AIss8uL2K92xdcN2nRMwVLsfMNBzWaeua3HJxIYXZpE2VKZvn\nmNRyUSDMJgUCgUAwC6iKhftunc+GpQU8/nwTh073caJlH/feUsFd68uwXkHfLIFAMHcR9bfXCNM0\nGfjNS7R+5TvE2jpR8nOo+OL/pbA4hqV7L6YkoS9aS3zVHeBwjWwEkUEI9oChYSIRtORxIlBMMK4i\nSSbzPBplacQISExyGxr7sFkLsFkLscg2TNMkFu/HZuvnD9+1Iu2kZ2JpuaFLxAZVooMqPs1CBz7c\nmRJxWxg1MzbOEHKEsW0OV4OBQY19DT72Nvg4etKPPuzNKKtGwh/CHcOiJkwZWwcG0HQDm2yZsi1l\ndVUeL9en7vEf976B6DhBYiwjxzzTyoLppIQ0NPbw7i3z6e2LD/tB+DneFKC3f9Q3xOmQqV2ZSdWC\nDEpLVFYuziTDMbkd41IjKG2K5Yq1FAguXoEy5I+PabcIJwWIsdd8BFeGhar5GWNaLhL/5marwmxS\nIBAIBHOOopwM/uz9q9l3/AI/f6mZ/951hj3HLvChHVVUl2XN9vAEAsFVRogS14DQ8WZavvQt/Lvr\nkRQrRZ94P2W3lqB0HEfqNjGKFxGvuQszqyCxgWlCdCghRugxTCRCllxOBorxx21ImMzL1CjLSi9G\nAPj8Bs/uDaPHl+BUrZimTkS7QDTehWFGCWtctF/d47KR5bZx4YJOdFBFCyhgSiCZuLN1/uTDC/n5\nq8fp9089kb7SffEA3b1R9jb42POWj8bTQUaCWxZWOlmxJIOXj59GVo1J240dy1RtKXfUzmP72pLk\nBNHrspHhUAhFtCnjPdO9z0wqC6Yq5R+JK42HLbR2WPjww4eJjXlJptvKxlovS6tcLKt2Ma/YxtM7\nT7O/6QzPHYuSvWe8D8j1GEF5I2ORZT5wxyK2rSyl6UyAAZ9OV0eML/3DKdo6U5tNZnsTZpOlxfZx\n1Q+pzCYFAoFAIJjLSJJE3bJCVizI4Re7zrDzQDvfeOIAt6wo5H23LSTTqc72EAUCwVVCiBJXEa3f\nR/s3/5Xun/wCDAPv9s1UvH8jLl8jUscxDG8+Wu09mMXDK+amCbEABLshHsUEwpZsGoPzGNTsSJgU\nD4sR9ouIER09OjsPaBxoig+XcBuEY21E492YjE5uLtavPuSP8/IbfVxochLwJ95TVnVsnihqpsaO\nDfMoK7ExkEaQmM77TJe2zgh73hpgb4OPMy0JLwZJgiWLXGys9bKhxktejkpU0znS3Zq2Rz9dm8TB\n5j6++vENk4QEfyjGX//gTXyBi7d2ZLlt4455upUFNsXCygU5vNzQgR6xJFJCwlbiYSsYoxNNyWpQ\nVqHy9i3FLK12Ma/QNm4i+sSLTWl9QC7mEyK4euiGyYWe6KSWi/bOCOHIZLPJgjwbVfOdw6KDg9Ji\nO/OK7NPyABEIBAKB4Hoiw67wobuquWVFEf/57EneONLFweZe3nfbQjavLEIWortAcMMhRImrgBmP\n0/2f/03bt/4N3TeEfWEFFX/0TnLVTqS+o5h2F9q6t2EsqIGRFelYEALdEA9jAhGLl8bQPHwx57TF\nCNM0aWzV2dmg0Xw+0b+QlyXRO9jKYKALmLztyoU5k1btTdPk6MkAz+/qZW+Dj3g8kaBRVmFFtwUJ\nm2GyM+2sqZrHA7cvJK6bU5r0jXCpyQymaXKmNczeeh976320dSaMGq0WiTXLM6mr9bJ+tQevZ3xb\nwnR69LsHQtNKPBgrJISjcQanIUgALC7LmtExR6MGJ0/7eeq585w9FyYc8CQqUoaRFR2rK47VGcfq\n0JGtBqrHztZbJr9POsHlQFMv926qSPv81Wy1uZlImk1OaLno6IqmNpsstI1rtygpEmaTAoFAILg5\nmV+cyRc/spaX69v5xWtn+NHvTvL64U5+/65qSvJdsz08gUBwBRGixBVm8LU3af3Stwg3nsHizqDs\ns7/PvIUSVn8TZkwhvmIr+rJbQRleQddCCTFCS8RQRuRMmsMl9MUykDApytQo92rYlanFiHjcpKEp\nzq4DGl19iVXWhSUWtq5RyPFE+cK/d0657fbaktGxD2m88Np5fvnb9qRBYkmRnR3bctm2MRu3y5rS\nf8AiTx0TaVctybSI6WIYJo2ng+wZFiJ6+hIigKpKbKjxUFfrZd0qz7hIwlTjuliP/qUkHqTbZuJx\nf+DO9NUGwZDOqbf62P1mDyeaA5w6GyKuj1xnCxZVx+oYESHiyCkEqanaYi4WMdnWHbhmEZQ3AyNm\nk+c7xhtOXuiOYky4bHabTHmJIyE6jIgPxXYK82xYLGL1RyAQCASCESyyzJ3rSlm7OJ+fvdTMWye7\n+fIP97NjfSnvvKUSmyoWUASCGwEhSlwhoq3ttP7Ntxn43SsgSeS9727Kt5XhCJwHP+jzVxFffSdk\neBIbaJFEm0YskYgRlV2cCpfQE3MnxAh3ojLCkUaMCEVM9hzVeP2QxlDQRJZgTZWVrTUKpfmJD+mo\nJqWNpMxy2zhywj+pKmLbxmzu3JrLkkUZ41oCpmpBmCgAeF02Fpdn8eCdi3DaJpsrTiQeNzna6Gdv\nvY83D/gYGEy0mDgdMlvqsqir9bJmeSb2/7+9Ow+Psz7v/f+efdGMZrTv8iJb3jd5wTaLgRhMSLMR\nAoZg2pMcTrNw2rRAS0yC6S+U/kjbhIbQkNIs1ATihpKEtGGxA2a3DZaRjWRbtmxsbbZ2aUazz/Oc\nP2Y0mpFGqyWPZN2v6/IleTZ9NWNLz/OZ+3vfpsRfPiP1RRiul8N4Jh4Md594VywvwGpK/O/V3ROk\n5oSbI0ddfHTcRUOTP9YHQ6uFOaVW2r3dBHWRySXxDUO1Ggad3ML4wpMMu5niXNuEj6CcCbp7grHA\noaHJR330Y3tn8maTC+alxUKHksJIEJGVYZBmk0IIIcQYZNhNfP1zSzlc184zrx7n5f1nef/o+diU\nMyHE9CahxAUKe7w0P/5zmp98BtUfwLZ6GXNv20C60ojGXY+SN5vQ6htQs4oidwj5Iw0s/T0ABLRW\n6rzFnA84AJV8e5BZI4QR7d0Kb30YZH9NkEAQTAbYtMrAlSsNZNgTy7yHOolWQhqs4XT+esfxhKqI\nm/6kiDXL0rDbxvZPYzxjIv0BharqHvZVdvH+h924eyNbTtJtejZflcX6CifLF9kxGIYuXR9NX4Th\nejmMdTJGsvsYo9+nLxDGaTOyan7k/m0dgdhozprj7tjWEwA0KuY0hfJ5aXz2miIWzbfh8vr51k/2\nkayNU7JAAsYXnqwqz8ZuNY57BOWlTlVV2juD0S0XvoQQosc9uNlkVoaBFYvtCVUPxQVmHHZpNimE\nEEJMpOVlWTz8vy/jv9/7mJf2neXxF46wcl42t183n2yHJdXLE0KMk4QS46SqKu2/eZn6v3+cYHML\nhvwcZv+vG8jN7kEbqkexZxFavQWleGGkU104EAkjfN0ABLUWTvmKaPY7AUYVRpw5F+aNyiCH60Ko\nKjjSNFx/mYH1SwxYTEOf/PSdRFceb6O1JYTittDbreOwEhhUFZGbm05rq2vcz8tIzRy93jAfHO5m\n38EuKo/04PNHtptkZRjYtD6T9WucLJpnG1UZ+0h9E0bTF2E8YcrA+9isBp7fW8cHRzpoaVTYfaaH\nV/67it7e/tfSZNKSk6vFFe6NbMkwh9Food7j4th5PRXLHGh1Q1c3ZKWbWF6WxeG6jnGHJwPvM55A\n5lISDqucb/MnbrmIfuz7d9lHG202Gat8iAsfrJaZG+AIIYQQF5vRoOOmq8pYvzifZ149zocn26g5\n08FnL5/DdWtL0OukD5MQ042EEuPQe/goZ779j7g/OIzGZKTozz5N6TIz+lAbqtZCaM2NhMvXgk4P\n4SB42sDbCUBIY+J0oIhGXyYAebYQszKDWIcIIxRVpeZUmL2HApxuipwoFWZrubrCwMr5+lGdvLvd\nYSxBB731AXpaIv0ZSgrNXLepv1fEZOpxh3j/UDf7Kjv5sNpFKNrgryDXxPrVTtavdjJvtnXMJe0j\n9U0YS1+E0U7G6KMoKufOB6g+3stLbzXT2BhADZtj12u0YQqLDVy3MY+G7k5OtbTR1RskWYYfH6AM\nXb2Qw+2by5P2zugz8LqRApfxBDLTUSCo0HSuP3RoaQ9T97GLpvP+2L/FPnq9hsK8uGaThf3NJo3D\nVOwIIYQQ4uIqzE7jvttW8V71OXa9dpJf763j3epzbLt+AeUlzlQvTwgxBhJKjEGwrYOGf3iC1l+9\nCKpKxub1zL1uDla6UBUvocWXE166CUwWUELgPg+eDkAlrDFyJlDIWV82AHm2MLMyAliNycOIYEjl\n/aMh3jwUoLUrcpuFs3RsqjAwv1g3Yll4wgSNg12Ewv29Iq6/OpuF89ImtbS8ozPA/kPdvHewi+rj\nruhYUphdbIkFEaVF5gtaw3gaVY5XOKxy6qyHmuOR7RhHT7hj200ANDow2APoLSEMlhBao4LVYaZb\n00Xl6aEbjUJigDJS9UKy8GSkvhojBS5jDWSmKo83nFDt0Pf5+dbkzSZnF1sStlyUFJrJy5Zmk0II\nIcR0odFo2Li0gOVl2bzwRh17P2zi//9lJVcuL+CL18zDZhm5r5kQIvUklBgFJRDk/M930fT9pwi7\nerGUz2buLevItLuALsKlSwhVXA/2TFDCkWka3g5QFcIaA/WBAs74clDRkBsNI9KGCCNcHoV3Dwd5\n53CQXl9kssXaxXo2rTJQkDXyu9jdPUFee6eD3W+2xXpFXKyqiHMtfvZVRiZmHK/rjV1eXpbG+gon\n6yscFOSZh3mEsRlPo8rRCgQVTp72UH3cRU2tm2MnexNK+vOyjaxd6aCkyMjvDtSiMSgMzFc6enzs\nO3JuxK8VH6CMp3phNH01LiXdPcFYg8n4ECJZs0m7TcfC+bbYlouSQjPLl2ahUQPS70Fckvoqpuyy\nt1oIMYPYLAbuvGEhG5cV8B8vH+etw80cOtHGF68p44plBfI7X4gpTkKJEXS99g5nd3wfX90ZdM50\n5nz10xTODqPVuFCyigmtuQE1dxaoCvS2gacd1DAKOhpDxZz25qGgIccWZvYwYURLp8IbhwJ8cDRE\nKAwWE3xijYErVhhITxu+bFxVVY4cc7P7IldFqKpKfZOPfQe72FfZxemzXiCy/37pQhsbVjtZt8pJ\ndmay1o0TY6L6Inh9YY7X9cYqIU6c6iUYV9pfUmhmcbkt9qfve/IHw7x76nTSag2bxYDLO/hEeaBk\nAcpoqxdG01cDmPTtGcNtKxkPVVVp64hMuqhv8iZUP7jc4UG3z8owsGKJnZL4MZsFZhzpg98hyckx\n09o68usixHQysGIqJ8PC8rKsWMWUEELMBPOKHOz4X2vY80EDv33rND//wzHeOdzMti0LKMqxpXp5\nQoghSCgxBN+ps5x56Pt073kbtFryPnsVs9elY9SHUNOcBFddhzJ7aeTGng7wtIISRkFLc6iQU958\nwujISQsxOzN5GKGqKqeaFPZWBqg5HTnRykzXcNUqA+sWGTAZhw8SunqCvP5OB7vfaKO5pb8q4vpN\n2WwaR1WEPximua2XcDCMyaBLeqKpqionP/ZEgoiDXTRFqzH0Og2rl6ezvsLJ2pWOpCeDY1nHeJtO\njvak2OUOcfSEOzYd49QZT2yLiVYDs0stLCm3s7jcxqL5aUN+P8NVa4wUSDhtRq5aVcynN5SOuN6h\njNRXY+crxzl+tjNhW8fnrpyL2xOYkABhpK0jI94/rHKu1Z9Q9VDf5KPx3BDNJnNNLJxnS9hyUZxv\nxiLNJsUMN7BiqqXTe0lXTAkhxFB0Wi1b1pWydmEuz+05wcHaVh76+ftcv66Ez2ycg8koxwxCTDUS\nSgwQdrlpfOynnP/351CDIdJXL2LuJ+dityuoBj2hpdcSXrQBtHrwdUWqI5QgKlrOhfOp8xQQQk92\nWojZGR5spsFhRFhROXwyxBuHgtSfj5x4leZpubrCyLIy3bANH5NVRRgNGq7emMn1m8ZXFZFwYuny\nk2k3YTUb6PUG6HQFyLCbKMnIJI009ld209YROdk2GbVsWONkQ4WTiuUO0qypO8EdqbKgoyvI0b7x\nnLUuzjT0j+fU6zSUz02LVUEsnGcb0/cSX63R3uMb4dYRRoOWv/vyOubOyrqgaSfD9dUwGnS8+1H/\n9pG+bR1vH27CH1DGHCAkM9qtIy5PkNrTLnq6Fc61BGKjNpuHaDZZlN/XbNISCyAK8kzSbFKIJCZi\nEpEQQlxqMtPNfOOmZVSdbOOXu2t5ad9ZDtS08KXry1k5LzvVyxNCxJFQIk77b1/h7I7vE2xtx1iY\ny5zPryKnRANaCM9fR2j5NWBOA39PZLxnOICKhpZwLie9hQRVQzSM8GIzKYMe3xdQOVAT5M1DQTpd\nKhpg6VwdV1cYmV2gHTZMmOiqiHjJTizbuv2EPHoCbguddQbqwl7Ai9Wi4+oNmaxf7WTl0nRMxv6T\nxAst4Z+o3giqqtLaHqD6eH8lRF9/DQCjUcOyRXaWREOI8rlpmEzjP9ntq9b49MbZ7PjZAbrcgRHv\nc+XyAuzWC9/WMlylBiTfKuQLRP5tXmjviWQnQmoYwgEdb7zbia+tnqZzfo6dctHrVoDEf99mk5bZ\nJZZItUNcz4fcHBO6MU5iEWImm8hJRFNJbW0tX//61/mzP/sz7rjjDpqbm/nWt75FKBRCr9fzj//4\nj+Tk5PDiiy/y9NNPo9VqueWWW/jiF7+Y6qULIaaQFfOyWTgrg/9+92Ne3n+WHz5/mFXzs7l9czlZ\njonrdSaEGD8JJaKUQJC6//sgWqOBkq1XUbzUgt6gJVxUTnj1FtT0HAi4oeMUhP2oQHs4mxPeIvyq\nkSxriNmZXuxJwohut8JbVUHeOxLEFwC9DjYu03PVKiM5zqFPhhVF5aPjbl7d28r+yu4JqYoYKP7E\nUlUg2Gsg6DYQ7DWgKpHH1ugUjA4/2bkavvfN1aQN6GR8oSX8A9cx0Ejv9KmqSkOzj5raaAhx3J3Q\n9NBq0bF6eTpLFthYXG5n7iwLBv3Ev+Pu9YfoHiaQ0EDCczNRkvXVWFjq5J2PRm6y2Xe/sbyTqqoq\n3a4QR4530XRWJRywEA5oCft1qOHI8+oCfv9x5PXU6BT0FgWtMYzOGEZnVNi0NpevfHqBNJ4SYgJc\nzElEF4vH4+G73/0uGzZsiF322GOPccstt3DjjTfyy1/+kp///OfcfffdPPHEEzz//PMYDAZuvvlm\nrrvuOpxOGQcohOhnMuj4wqYy1i/OY+ertRw60UbNx5189oo5bF5TjF4nlZhCpJKEElFao4Fl//IX\nmM9XY7bpUDLyCKz+JGr+XAj2QudpCPlQgU4lk1pPET7VTJY1xNIhwoimtjBvVAY5VBsirIDNouGG\n9QY2LDNgs6SmKmKgc60emhsUAm4rwV4DqJF1afUKxnQ/BlsQvSWMRgN+DfT6goNCiYmocOjo8SU9\noIbB7/SFFZUz9d7oVozInx5XKHb7dLueDaudLC63sWSBjdJiy0V55324E4NMu4lv3rKCHKdlwsuo\nk/XVADh2tnPI5zTeUO+kKopKW0cg1mCyvql/0kX/ONT++2j0CnprEJ0xTLpDx//5fDnPvl5Dl3fw\nGo43dBAIKVJSLsQEmMxJRKliNBp56qmneOqpp2KX7dixA5Mp8vMtIyOD6upqqqqqWLZsGXa7HYCK\nigoqKyu59tprU7JuIcTUVpRj429vX8W7H51j12sn+c/XT/LuR83cuWUh84odqV6eEDOWhBJ9wiEc\nvpOQ4yS48hMoc1dByAddZyDoAaBLcVLrLcajWMi0hlic4SXdnBhGqKpK7dkwew8FqT0bOXHLzdCw\naZWR1Qv1GPTJT44vRlVEn+6eIAc+7GbfwS6qalyEw2kAaA1hjPYgBlsQnSk8aMRlsnfcLqTCIX67\nx56DybYfRDjTzJw/H+Lt985RU+vm6Ak3Hm//856VYeCq9RmRxpQLbBTlm1LyDvxwJwYVC3IonuSu\nzwP7agy9rSOR02am162y71RXLIDoCx/8gcHNJvNzTSwujzSbrO/o4lhTGzpjGE3cmwxXrymmtMRE\nd5JAAqZ3SbkQU9HAiqlsZ//0jelIr9ej1yceolit0WA6HObZZ5/lG9/4Bm1tbWRmZsZuk5mZSWtr\n8t9JQggBoNFouHxZASvmZfP83pO8WdXMI88c5KoVhdx8dRk2y/ibtQshxkdCiT46PYHP/TUYTZGN\n8T0Nke0aQI+STq23GLeSRqY1xMIkYUQorPJhbYi9lUGa2yPXlRVFmlcunK1DO8RJcqQqop3db7QP\nqoq4emMmtrSJeYnaOgLsr4yM7qw57kaJthuYW2rB4gxT392G1qgMCiLiJXvHbbR7meMDCL1Ok7Dd\nI8NuxOPvH/OoKhDy6Ql5dYQ8enoCBh6sPBm7vjDPxMa1NhbPj1RC5GQZJySEGEtPjKFuO1EjSifC\nwLUYdDp63aAEtIQDusiWi4COrpCOvz54POG+Br2Govy48ZrRj4V5JgxxzSbDSkH0tRz8/YbC6iVX\nUi7EVDWwYqpsdhaubm+qlzXhwuEwf/M3f8P69evZsGEDv//97xOuV9XkvXTiZWRY0esnp3okJ8c+\nKY8rRk9eg9SbLq9BDnDfnev41Ol2fvxfh3mzqolDJ1q5ceMcPnXFHDLs07ffxHR5DS5l8hqMjYQS\n8YxG6D0P/sg0BLdq44S3mO6wnQxLiFWZXhwDwgivX+W9I0HeqgrS06ui1cDKcj1XrzJQkpf8oEdR\nVD465uLVN9oGVUVsuTqbBWUTUxXRfN7Hvsou3vugixOnPbHLF85LY32Fk8sqnOTnmuJ6QvSdWPZN\n3wjS5fYPe2I90l5mm9XAs3tqYwGE02YizaKnobU3drv2rgAhr56g10zIqyfs09HfFFGlqMDEisXp\nsekYGY6JTbDH0hNjpNuOd0TpROr1hGPVDoEOK3Z/Dl1tPs53BBl4vK7Xw+xZVkoL4wMIC7nZxlFt\neRnu+9Vph67WmK4l5UJMJYqi4u4N0+0K4nJHP7rC9LhD+P0mSvIvvf9j3/rWt5g1axZ33303ALm5\nubS1tcWub2lpYeXKlcM+RmenZ9jrxysnx35B05TEhZPXIPWm42uQYzOy/Y4K9nzQwB/2nWHXnlr+\n6/UTbFiSz/XrSinKTkv1EsdkOr4Glxp5DZIbLqiRUKKPqkb6RqgKHtXKCW8xneF0MixK0jCio0fh\nzQ+DHKgO4g+CyQBXrTRw5UoDmenJm+UkrYooMrMl2iviQqsiVFXlTIOXfQcjFRF9Yy+1Wli+yM6G\nNU7WrXSQmZE49SH+xFJnNBAOBDEZdKOqHBhpL/Nv3zqdcF2n2x8NIQyEvJFqiLA/MYTQmcPoLSH0\nlhC5uXr+4Wsrk379C5320WcsPTFGe9uRRpReKFVV6e4JxUZr9oUQ9U0+OruDg27vSNfHtlzk5xnJ\ncOoon2MnP2ditroM9f1OpcoRIaa6QFChxxXq/+MO0R33ecJ1rhDu3lCs6m2gw0fd/H/3XVr/z158\n8UUMBgN/8Rd/EbtsxYoVfPvb36anpwedTkdlZSXbt29P4SqFENORXqflhstKuaaiiHePNPPq+/W8\ndbiZtw43s2xuFjesK2HhrAxp0C3EJJFQIkpV4Vy4kDafmfawE6dFYWWGD6clMYw4ez7SvLLqZAhV\nBUeahs3rDGxYasBiGvyDarKrIhRF5eRpT6Qi4mAn51oi0x8Meg1rVzpYX+FkzUoH6aNojmky6MjJ\nTosle6M9sR7qxPNzV85lx0/3owQ10UoIPSGvHiUQFyBoVPSW/hBCbwkl9CZYszh/UOAwEdM++oyl\nJ8aF9M8Yr75mk7HwIS6E6G822S8ny8iqpen9VQ/RrRejef0nw1SoHBEiFVRVxeMN94cKA8KFblcI\nVzR0cEX/7vMPbpg8kEYDtjQd6TY9RQUm0m160u2Jfxx2A+vX5OL3+S7Cdzo5PvroIx599FEaGxvR\n6/W88sortLe3YzKZ2LZtGwBlZWU89NBD3HPPPXzlK19Bo9HwjW98I9b0Ugghxspk0HFNRTGbVhVR\ndaKNlw+c5cipdo6caqc018aWy0pZuzBXpnUIMcEklIhSNRrOBvIwGVRWnop0CgAAIABJREFU5iWG\nEYqqcvR0mL2VAU41RS4vyNZy9SoDK8v16HWDQ4XJrIoIh1Vqat3sq+xif2VXbPylRqtitAXJyIUN\nqzO4Y8ucMZ+kj0f8iWeXy4fXo+HkKQ8/+unHnKoyogQt/TfWqOitwf4QwtzfINFs1JFmNtHpGn7L\nyHimfQxVVTHanhhjve1YhUIq51r90WoHbyx4aGz2D242qYX8HBNLym2x8KGk0EJhvgmLeWqe8E92\n5YgQky0UUulxDw4SelxBetxhelzBWNDQFz6EB+eGg+j1Ghx2PQV5cQFDsqDBpsdu12NP06NL8jtn\noHS7gdZpHEosXbqUnTt3juq2N9xwAzfccMMkr0gIMZNoNRpWleewqjyHU009vHLgLB8cb+Gp39fw\n/N46Nq8pZtOKIqxmOZUSYiLI/6QorQYuK01sChYMqXxwLMQbhwK0dkZqZBeU6ri6wsD8Et2gCoeh\nqiKuuTwyQeNCqiKCQYXDR13sO9jFgUPd9LgjIzBtaTpmz9XT6uvCYI1UGQSAN6o8GAyaUY/kHC9F\nUalv8lF93E1NrYuaWjed3f3jObU6LYa0IHprJIRINtWjzxXLC0Z8R32s1QojVVWM1BMjvhnjWG47\nFL9fofFcf9VDa0eIk6fdnGvxEwon1mEbDRoK8/urHUqiAURBbmKzSTE+E7X9R0w/qqri8yuDKhaS\nVTT0fd7rGUXCAFgtOtLtesqyTTjseuw2PQ77gLDB1lfRoMds1ko5sBBCTGFzC9P52ueW0trlZfcH\n9bxV1cyvX6/jxXc+ZtOKQjavKSbbYRn5gYQQQ5JQIgm3R+WdI0HePRzE7VXRaWHNIj2bVhkozB58\n8jJZVRE+f5hDR3rYV9nFB1XdsTGYGQ49N1yTzfoKJ/PKrDz0s/0Ye0KD7j/aLQXxJ2cjCYdVTp31\nUHPcTXV0PGf8NoIMh4Er1mXEmlK+UX2GvYeakj6WVhPZNpOZ3l8VodNqh31HfazVCiNVVYzUEyP+\nuRvLbXs9ocFbLpp8tLQHBjWbtFq0zJ1lobjQkrDlYrTNJsXYhMNKQvPVC9n+I6aGsKLidg8OEoba\nJtHjChEMjTylQauFdJuerAwDc0otCRUMg4IGuwG7TYdBL/+GhBDiUpTjtHD75nI+e8Uc3viwiT0f\n1PPq+/Xs+aCBNQtz2LKulDkF6alephDTkoQScdq6FPYeCvB+TYhQGCwmuHa1gStWGHDYEg80+6oi\nXtnbxoFDE1cV4e4N8UFVN/sOdnHoox4CwciBc262keuucrJ+tZPyuWlooyerLZ2ecW8pGFhFkGE3\nsmpBHp+/cjZWU2TCRSCocOJULzW1bmpq3Rw72Zuw7zk328iyxTaWL7KzYlE6+bmJjRO/VFhOXWMP\n9S3uQV9/06oitqwtGdM71WOpVhhtVcVYmjHG37ajx0e6xcysbCfpOPi3Z+pj4UOyZpPOdD1LFthi\nwUNJoZkVS7NRwn55p/Qi+tnvq8e8/UdcXP6AkjRI6A8a+qdNRBo+hgeFfcmYTVrS7XpmFVv6t0bE\nVS3Y+z5GqxvSrIMr4oQQQsxsaWYDN66fxfVrS9hfc55XDtRz4GgLB462UF7i5IZ1pSyfl4VWfn8I\nMWoSSkSFwirff86DPwiZ6RquWmlg3WIDJmPiD5SuniCvvd3O7jfbORetiigtMnP9BVRFdHUHOXCo\nm32VXRw+2hPbh1xSaGZ9RSSImFNqSXpwfCFbCgZWEXS4Auw5UM9r75wnz+aAgJETpz2E4t5RLCk0\ns7jcxqL5aZxobeV4QzvHu1torTHREYq+2xy3Tp1Wy4N/toZnd9dy6EQb3e7AoMqIsRhLtcJoqypG\nasaoKCqt7YH+wKHZhKYjE1+zjw6vwsf4eIPG2O37mk2WxI/ZLDBjT9JsMjvLRGtrIOEy2VYwefzB\nMPs+ak563WQ1K53pVFWlxx2k8ZxvVNskesba8NGup6TQgt2mw2E3DBs0mIxSxSCEEGJi6HVaLl9W\nwMal+dSc6eSV/Wf56HQHtfVd5GdauX5tCRuX5mOU4wohRiShRJROC5+63ITNomFpmS6hbH4yqiJa\n2wOx0Z1HT7hj7/KVzbKyYY2TyyqcFBeYR3ycsZykx+urIlDCGkJeXWQ8p0cfG8/ZQRA0QeaWWlhS\nbo8FEY70SAXFs3tqebemf1vGcO8267Ratm1ZyC3XTszJ9mgrG8Ya2Og0WvxeDZWnehK2XDSc8xEI\nJL4Nq9VCQa6JZYviez5YKMo3YTaN73ubyKkiIrlut5/WLm/S6y60WelMEQwpuKKNHQduk0gWNLh6\nR9fw0aDXkG7XU5hnGlSxMKj5o02PzaaX7U1CCCFSTqPRsGR2JktmZ9LQ6ubVA/XsqznHf7xynBfe\nPMW1FUVcW1FMepox1UsVYsqSUCJKo9Fw+XJDwmVd3UFee2fiqiIam33sq+xi38EuTn7siX5dWDTf\nxvoKJ5dVOMjNHrmvw0Bj2X7Q0RXkaK2bD450cvqwkXAgvjGPis4cxmAJobeGyMnR88jXVgwKEMY7\nGnOiJjCMdszkUIGNqsDs7Az2fdAdm3JR3+TlXIt/0MmT0aChqMCcsOWiuMBMfp5pwveOj2eqiBgb\nh81EjtNCS+fgYGK0zUovhotVLaOqKj6fEgkURujH0Hedxzu6ho9p1sjYyrwcEznZZkwGhtwmkW7X\nYzZJw0chhBDTW3GOjS9/ahE3bZrLHw82sPdQIy++8zF/2HeWjUvz2bKuhIKstFQvU4gpR0KJARRF\n5cjRyASNC62KUFWVj+u9vHcwEkTUN0XGs+l0sHKJnfWrnVy2yonTYRjhkYY31Em6qqqcb/VTXeum\n5nikJ0RfI04AjVYbN54zjN4cio3nBOjxhpK+czyZozHHYqSQw90bYkVpAafrgpz8uJdet4oa1BEK\naNlz0ssePo7d1mrRUTY7jZKCxC0XORep2eR4gx4xNiaDjvVLC3jxrVODrhuusuhiudBqmbCi4nJH\n+zC4R94mMdqGjzpdpOFjTpaBdLuVdJuOdLsh9jE+aEiPjq3U6/v/3+Tk2GltdV3QcyOEEEJMF06b\niS9sKuNPNszm7SPNvPr+Wd6sauLNqiZWlGWxZV0pC0qdEsYLESWhRJyXX2/ld6+0JFRFbLk6m6vW\nj74qQlFUak/1RrZmHOzifFukX4DRoOGyVQ7Wr3ayZoVj3BM5hmPUR7Yf7K3qoKbWTfVxN+2d/Q0X\nrRYdq5ens2SBjcXldt4/2cBrhxqHfLyh3jmeiNGYE0VVVTq7Q9GtFt7YxIvGZl/CaNK+f+qOdD0l\nc+OqHqITLzIc+pT+YpgqQc9M8OVPL8HjDYyqsuhiG1gt09bl59X3GunsCLNxcVGssWPSsME9toaP\nDrueWSWWIcdVxk+ZsFqk4aMQQggxViajjk+sLuaaVUUcOtHKywfOUlXXTlVdO7Py7Gy5rIQ1C3LR\n62SbrpjZJJSICoYUfvZcAxotXHt5JteNoSoiFFKpqXXx3sEu9ld2xyYvWMxarrwsg/Wrnaxamo7F\nPLHvwoYVlTP13kglRPRPj6v/RDzdrmfDaieLy20sWWCjtNiS8K7/vDnz0eo0vH24GV9gcEn2UO8c\nj7ePxYVQFJWWtkBsu0VDk4/66Mdk5eS52UYqlqXHhQ+RIGIywqCJMJWCnkudTje67T8TTVFUej3h\nQUFC3zaJrp4gB2u68fttqGEtSlgDauT/657TXva8fDLp42o1YLPpcdgNlBT2T5Vw2BKrF+LDBqNB\nDn6EEEKIi0Wr1bB6QS6rF+RysrGbVw6cpfJ4K//2Yg3Pp9dx3ZoSrlpRiMU0NY9ThZhs8i8/yqDX\n8sQ/LMFq0ZJmHflpCQQVqqpd7DvYyYEPu3H3Rk6M7TYdn7giiw1rnCxfZMcwgQf/wZBC3ceeWABx\n9IQbj7e/S312poGr1mdEGlMusFGUbxo2VOnb9vG5K+fy3O5ajp3tpNPlH9U7x2PpYzHW7/HceX+0\nz4MvFkI0Jmk2qdNBfq6J5Yvtse0WxYXmC2o2mSqpCHpmugvtcRIMKUnHVQ7Vj8HlDqGMOFRCBxoV\njU5FZwyj0alodSpavcKW9cUU5lix2xOnTKSl6aThoxBCCDFNzCtyMO/zy2jp9LD7/QbeOtLErtdO\n8uI7p7lqRSHXrSkhM33kZvdCXEo0qjqaYt+pJVV7k73eMJVHethX2cUHVd2xsXWZTgPrVztZXxGp\nStDpJuYEwe9XOH6ql5rjLqpr3dSe6k04MS/MM7F4gY0l5TYWl9vG1SQz4esFw+iMBsKB4KhPgsfb\nkM/nD9N4zk99k7d/0kWzL3mzSaOG4vy4Xg/RjwW55oR969NR/F77/n4Cg4Memb4xcZL1N1BVFW+0\n4ePgoCE4IHSITJ6IDwSHY0vTDTtFou9zs1nLY89X0uH2MzBLzEo38/Bdl03bcEp6Slx8k/mc5+TY\nJ+VxL5bJfF7k33lqyWuQevIajJ3bG2TvoUb+eLCB7t4AOq2GtQtz2bKulFn5Y/95K69B6slrkNxw\nxw9SKTEClzvE+1Xd7DvYxYcf9cSawuXlGLlhtZP1qzOYP8eKdgLeqez1hDl2MtILoqbWTd3HHkLh\nyNfTaGBWkYXFCyIBxOJyGxkX2CBzIJNBR0522pj+E430brPLHUrcchENIFrbA4Num2bVMW92WmzC\nRV/4kJNlnJDnd6ob7VQRMbJwONLwMVn1Qih0nnMtnkHVDaFRNHzU6zTYbXpys0wJfReSBQ0Oux7b\ngIaPI1m9SKplhBBCiJnEZjHwJxtns2VdKftqzvHq+/XsqznPvprzLCx1smVdKcvKstBKbydxCZNQ\nIomOriAHDkUaVR455oqVXJcWmdmw2sn61U5mFVsuuPFbd0+QmhP9kzFO13tjTeq0WiibZY1VQiyc\nZ8Num5ovl6qqdHYF48Zr9ocQXT2hQbfPcOhZtsieOGaz0IwzPbXNJqeKiRqdeinx+5X+Jo9JtkcM\nrG7o9Yyu4aPFrCXdrmdOiWXQuMp0m4F0e+KUCatlcsdWTta2KCGEEEJMbQa9liuXF3LFsgKqT3fw\nyoGzVH/cybGzXRRkWdmyrpQNS/Iw6OVNCnHpmZpnuSmgqiqvvd3BnrfaOF7XGzuhmT/HGhndWeGk\nKP/C9ne1dQQiVRDRIKKh2Re7zqDXxCoglpTbKC9Lm/DGmBcqrKi0tgUSej00DNFsUqOB3Cwjq5en\nJ1Q9lBSaR9WzQ1y6FEXF7Qkn78eQ5PNuV3BQP5FktBqw2/VkOAzMKrYMql7o2z4xq9RBOOTHbpt6\nDR+lWkYIIYSY2TQaDUvnZrF0bhZnz7t49f169tec5xcvHeOFN+q4tqKYayqKsFuNqV6qEBNGzg6j\nQiGVn+w8SzissrjcxoZoEJGdOb7/8Kqq0tzip+a4OzYdo6Wtf8uC2aRl1dL0WBAxf451QptiXohg\nSKE52mwyfstF0zkfgeDgZpMFuWZW9DWbjIYPRflmTKap8f2IyRUMKolBQl/YkCRo6HaFcLtDKKOo\nYjAaNZGJEgWW5Fsl4rZJ2O16bFbdqLb55OTYaG2d2q10pFpGCCGEEKV5dv73nyzmC5vK2HOwnr2H\nmvjt26f5w74zbFxWwPVrS8jPlOMFMf1JKBFlMGj54cOLMZu1ONPH3qtBUVTqm3zRfhAuamrddHb3\nb12wpelYt8oRq4SYU2qdsIaY4+Xzh2lsjjabjAYQzS0BGpq9g6YEGI2a/kaTBWZKCi0UF5rJzzFN\n+2aTop+qqni8SqS5Y7Sh43DbJHpcIby+0Td8dNj1FOaZErdJJAQMBuy2yHQJCbWEEEIIISDDbuKL\nV8/jTzbM5u3Dzez+oJ69hxp541AjK+Zlc8Nlpcwvdsg2aDFtSSgRJz939NMrQiGVU2c9HK2NVEIc\nPeGOjQUFyHAYuGJdRqwSoqTQnLJmjT3uUMKEi4Zhmk3abXrK56YN2nKRnTkzmk1eavoaPo64TSKu\nR0Nfc9Xh6HUa0u168nKiAYNNP2TQkG7XY0/TpzyEE0IIIYSYziwmPdetLeHa1UVU1rbx8v6zfHiy\njQ9PtjGnwM6WdaVcYzejqqoEFGJakVBilAJBhROneqmJhhDHT/bGRoJCZBrHupUOFpfbWbzARn6O\n8aL+MFBVlY6uYCxwiO/70J202aSB5YvsA6ofzMwry6CtzX3R1i1GT1VV/AElcYvEMNskXO5QQlA2\nHKtFS7rdQE5W31aJ/uaOyUIHi3lyGz4KIYQQQojkdFotaxfmsmZBDicaunnlwFk+PNHGk7+r5snf\nVWM0aHGmmXDajDhsJpy2yOdOmwlH9KPTZsRikibzYmqQUGIIXm+Y43W9sX4Qtad6E0YGlhSaY1sx\nFpXbxt17YqzCikpLW4CGuC0XfeGDx5tYRq/RQG62kXnL0ykuNFNSYImGEKYhm03KD6aLR1FUuroj\nU0siQUIQlysc+egOD5o20eMKDerpkYxWC+k2PRlOA7NLLLFAYVAfhrigwaCXrRJCCCGEENOJRqOh\nvMRJeYmTcx0e9h5qpMMdoKW9l67eACcauhnuyNGo18ZCCkdccDEwzLBKeCEmmYQScWpq3Rw41EV1\nrZtTZzyxvgpaDcwutbCk3M7ichuL5qfhGEffibEIBhWa+ppN9oUPTT4az/kIhhJ/vOh1GgryTKxY\nEq14iG69KMw3YzLKyebFEgwqg6oXYn0YBmyV6HGPvuGjyRgZW1laNCBgSLJNIt2mJ22UDR+FEEII\nIcSlIT/TytZPzCcnx05rqwuAsKLQ0xuky+2ny+2n2x2Ifh5I+PvJxu5hR6kb9FocaUacdhPOtIEV\nF/2fp5klvBDjI6FEVDCk8J3v1aIokZP88rlpLFlgY9F8Gwvn2UizTs5YPq8vTGPzgC0XTT7OtfoH\nNZs0GbWUFlkSej0UF5jJk2aTEy7S8DHcHzIMt00i+jF+O89QNJpIw8d0m56ifBM52RZMBrW/yaM9\n0uQxFjbY9NLwUQghhBBCjJlOqyXDbiLDPnzfvLCi4PIEkwYW3e4AnW4/3W4/dSOEF3qdNlplEQ0s\n0kw47UYc0Y+Rv0t4IQaTUCLKoNfy0D3z0Whg/ty0Ca8wiDWbjNtuUd/kpa0jOOi2tjRdpNlkYX/w\nUFwgzSYvRCik4uodHCT0N4HsnzbRFzqER9GOQa/X4LDrKcgzDTuu0hH9u21Aw8f4NFsIIYQQQoiL\nTafVxqoehqMoKi5PoD+46A3Q5fLTFf3Y3RsJNU43uVDUniEfR6/TRIKKuD4XfdtHMu1mCrKsZNhN\nElzMIBJKxFm2yH5B91dVlfbOYKzaoT6u50OPa3CzyUyngRWL7QmTLooLzTjskh4OR1VVfH5lyIqF\nZNMmej2jbfgYGVuZkx2ZKpGwNWJA6OCw6zFLw0chhBBCCDEDaLUaHNH+E7MY+rxJUVVcniDdCZUX\n/Z93uQN09/r5+JyLsJI8vDAbdRRmp1GYlRb5mG2lMCuNTIcZrRx7X3IklBiHsKLS0uoftOWiodmH\n1ze42WRejonyudbolgsLxQVmigrMk7YlZLoJKypud9z2iCT9FwaGDqNp+KjTRRo+ZmUYmFNqSahe\n6A8a+qdM2G06afgohBBCCCHEBdBqNDjSjDjSjJTmDX07RVVxe4NxvS78tHf7aG730NTWy5lzLk41\nJYYWJoOOgixrNKjoCy2sZDssUlE+jUkoMYxYs8kBWy6azvmTN5vMN8WaTPZtuZiJzSYDQWVQ9ULy\nfgyRaROu3tCw+9P6mE3Rho/FliGnSDgGNHyUKgYhhBBCCCGmHq1GQ7rVSLrVSEmubdD1obBCa5eX\nprbeyJ9oWNHQ2svH5xK3Pxv0WgoyrRTmxFdXpJHjNKPTzqxzselIQok4H37Uw5Fjrlj1w/kW/6Dp\nCGaTllnFlkFbLvJzTAm9Ai4VqqrS6wkn3SaRUNUQFzqMtuGjPS0SIBQXmpNOkYivaLDb9DMu3BFC\nCCGEEGKm0uu0FGSlUZCVxuoF/ZcritofVrRHA4s2D83tvZxtcQ94DA35mdYBW0HSyM2woNfJucVU\nIaFEVDCo8Pf/UkcoHEkh7DYdC+al9W+5iAYQWRmGaV0aFAwpuPoaOsY3dowGDf6AhtZ2b+wyV+/o\nGj4a9BrS7XoK+xo+DtOPwWE3kJamQzeNn0chhBBCCCHExafVasjLtJKXaWUVObHLFVWlvdvXX1kR\nCy08NLT2JjyGLvoYhQO2guRlWmU7dwpIKBFlMGj5+2+VEwgqlBSYcaQbUr2kEamqis+nJG6PGKEf\ng8c7uoaPaVYd6XY9eTmmQdskkgUNZpM0fBRCCCGEEEKkhlajIcdpIcdpYcW87NjliqrS2eOPVVU0\ntvXSHFdlwfHWhMfIzbAkNNcszE4jP9OK0SD9ACeLhBJxyuempfTrxxo+ukJ0u0feJtHjCg3qbZFM\npOGjgZwsA+l2a2IfhgFBw5zZTgI+H3q9BAxCCCGEEEKI6U2r0ZDlMJPlMLNsblbsclVV6XIHBlRV\nRP5U1nqorO1/DA2Q47T0V1VkRyosCjLTMBklrLhQEkpMIn9g4NjKSGPH7r4tEwOaP7p7w6Nu+Oiw\n65ldYhlie0Ri2GC1jL7hY1aGkdZW/wV+50IIIYQQQggxdWk0GjLsJjLsJpbMyYxdrqoqPb2BhOaa\nfaHFhyfb+PBkW8LjZDvMCT0rZhV58fT6MBp0GA06THotRkNkyp/JoJvWrQAmi4QSo6QoiQ0fk1Ut\n9I2r7Ktu8AdGbvio1YDNpseZbqCk0NI/RWJAP4a+oCHdrsdokH1OQgghhBBCCDHRNBoNDpsJh83E\notmZCdf1eAKRrR/R5pp91RWH69o5XNc+qsfX6zQY9TqMBm3/R4MOo37Ax9jnfbeL3NakjwQcRoMO\nU9x9DXEBiNGgnVZTRySUiLP/UBenzniS9mPocYdQRs4YMBoiDR+LCkw47AbsNh0OuyF540d7ZGyl\nNHwUQgghhBBCiKkt3WokvdTIgtKMhMvd3iDN0YBC1Wrp6PISCIYJhhQCwTD+6Me+y/xBhUAo8ne3\nN0ggpBAKj+Jkcwx0Wk2S4CM+9IhcZzJoMcTdxplmZMPS/Is6nURCiahgUOGffnya0IAeDbY0Hek2\nPfm5g6dKJOvJYDbJniIhhBBCCCGEmClsFgPzi53ML3aSk2OntdU15sdQFDUaVEQDjJCS8Hd/UCEY\nilzujwYcgb5wIxZ6JL9vIKTg8fkJhBSCoZHDj+JcG3MK0sfzVIyLhBJRBoOWf/zOAty94YQmkDqd\nVDEIIYQQQgghhJg8Wq0Gs1GP2Ti5X0dRVYJBBX8oHFfNEQ06QmGMeh2z8+2Tu4gBJJSIM7vEmuol\nCCGEEEIIIYQQk0Kr0WAy6qbU1JApE0o88sgjVFVVodFo2L59O8uXL0/1koQQQgghhBBCCDGJpkQo\nceDAAc6cOcOuXbuoq6tj+/bt7Nq1K9XLEkIIIYQQQgghxCSaEnNC3nvvPTZv3gxAWVkZ3d3duN3u\nFK9KCCGEEEIIIYQQk2lKVEq0tbWxZMmS2N8zMzNpbW3FZrMlvX1GhhW9fursgbnU5ORc3MYmM508\n3xefPOcXnzznF58850IIIYSYDqZEKDGQqqrDXt/Z6blIK5l5xjvCRoyPPN8XnzznF5885xffZD7n\nEnYIIYQQYiJNie0bubm5tLW1xf7e0tJCTk5OClckhBBCCCGEEEKIyTYlQonLL7+cV155BYDq6mpy\nc3OH3LohhBBCCCGEEEKIS8OU2L5RUVHBkiVL2Lp1KxqNhh07dqR6SUIIIYQQQgghhJhkUyKUALj3\n3ntTvQQhhBBCCCGEEEJcRFNi+4YQQgghhBBCCCFmHgklhBBCCCGEEEIIkRISSgghhBBCCCGEECIl\nJJQQQgghhBBCCCFESkgoIYQQQgghhBBCiJTQqKqqpnoRQgghhBBCCCGEmHmkUkIIIYQQQgghhBAp\nIaGEEEIIIYQQQgghUkJCCSGEEEIIIYQQQqSEhBJCCCGEEEIIIYRICQklhBBCCCGEEEIIkRISSggh\nhBBCCCGEECIlJJQQMbW1tWzevJlnnnkm1UuZEb73ve9x66238oUvfIFXX3011cu55Hm9Xv7yL/+S\nO+64gy9+8Yu8/vrrqV7SjOHz+di8eTMvvPBCqpdyydu/fz/r169n27ZtbNu2je9+97upXtIl75FH\nHuHWW29l69atHD58ONXLmZHk9+nUID/rU+vFF1/kM5/5DDfddBN79+5N9XJmpN7eXu6++262bdvG\n1q1beeutt1K9pGlDn+oFiKnB4/Hw3e9+lw0bNqR6KTPCvn37OHHiBLt27aKzs5PPf/7zXH/99ale\n1iXt9ddfZ+nSpdx11100Njby5S9/mWuuuSbVy5oRfvzjH+NwOFK9jBlj3bp1/PCHP0z1MmaEAwcO\ncObMGXbt2kVdXR3bt29n165dqV7WjCK/T6cO+VmfOp2dnTzxxBP813/9Fx6Ph8cff5yrr7461cua\ncX7zm98wZ84c7rnnHs6fP8+f/umf8vLLL6d6WdOChBICAKPRyFNPPcVTTz2V6qXMCGvXrmX58uUA\npKen4/V6CYfD6HS6FK/s0nXjjTfGPm9ubiYvLy+Fq5k56urqOHnypBwciUvSe++9x+bNmwEoKyuj\nu7sbt9uNzWZL8cpmDvl9OjXIz/rUeu+999iwYQM2mw2bzSZVcimSkZHB8ePHAejp6SEjIyPFK5o+\nZPuGAECv12M2m1O9jBlDp9NhtVoBeP7557nqqqvkAOoi2bp1K/feey/bt29P9VJmhEcffZT7778/\n1cuYUU6ePMlXv/pVbrvtNt55551UL+eS1tbWlnDQmZmZSWtrawpXNPPI79OpQX7Wp1ZDQwM+n4+v\nfvWr3H777bz33nupXtKM9KlPfYqmpiauu+467rjjDv72b/821UuaNqRSQogU2rNnD88//zw/+9nP\nUr2UGeNXv/oVR48e5b777uPFF19Eo9GkekmXrN/+9resXLmSkpLPf1iXAAAKkklEQVSSVC9lxpg9\nezZ33303n/zkJ6mvr+fOO+/k1VdfxWg0pnppM4Kqqqlewowlv09TR37WTw1dXV386Ec/oqmpiTvv\nvJPXX39djnEust/97ncUFhby05/+lGPHjrF9+3bpsTJKEkoIkSJvvfUWTz75JP/+7/+O3W5P9XIu\neR999BFZWVkUFBSwaNEiwuEwHR0dZGVlpXppl6y9e/dSX1/P3r17OXfuHEajkfz8fDZu3JjqpV2y\n8vLyYluVSktLyc7O5vz583KyMElyc3Npa2uL/b2lpYWcnJwUrmhmkt+nqSU/61MvKyuLVatWodfr\nKS0tJS0tTY5xUqCyspIrrrgCgIULF9LS0iLbyUZJQgkhUsDlcvG9732PX/ziFzidzlQvZ0b44IMP\naGxs5IEHHqCtrQ2PxyN7/SbZY489Fvv88ccfp6ioSA5SJ9mLL75Ia2srX/nKV2htbaW9vV36p0yi\nyy+/nMcff5ytW7dSXV1Nbm6u9JO4yOT3aerJz/rUu+KKK7j//vu566676O7ulmOcFJk1axZVVVVs\n2bKFxsZG0tLSJJAYJQklBBB5F/nRRx+lsbERvV7PK6+8wuOPPy6/4CfJH/7wBzo7O/nmN78Zu+zR\nRx+lsLAwhau6tG3dupUHHniA22+/HZ/Px4MPPohWK211xKXl2muv5d577+WPf/wjwWCQhx56SLZu\nTKKKigqWLFnC1q1b0Wg07NixI9VLmnHk96kQkSq5LVu2cMsttwDw7W9/W45xUuDWW29l+/bt3HHH\nHYRCIR566KFUL2na0KiyAVIIIYQQQgghhBApIBGaEEIIIYQQQgghUkJCCSGEEEIIIYQQQqSEhBJC\nCCGEEEIIIYRICQklhBBCCCGEEEIIkRISSgghhBBCCCGEECIlJJQQQgghhBBCTJqGhgaWLl3Ktm3b\n2LZtG1u3buWee+6hp6dn1I+xbds2wuHwqG9/2223sX///vEsVwhxkUkoIYQQQgghhJhUmZmZ7Ny5\nk507d/KrX/2K3NxcfvzjH4/6/jt37kSn003iCoUQqaJP9QKEEOO3f/9+/vVf/xWTycSmTZuorKzk\n3LlzhEIhPvvZz3L77bcTDod55JFHqK6uBmD9+vV885vfZP/+/Tz55JPk5+dz5MgRVqxYwYIFC9i9\nezddXV089dRTZGdn8+1vf5vTp0+j0WhYtGgRO3bsGHI9L7zwArt370aj0XD+/Hnmzp3LI488gsFg\nYOfOnbz00kuEw2Hmzp3Ljh07aGtr42tf+xrl5eXMnz+fr371q0N+n4899hiFhYU0NjZit9v5wQ9+\ngM1m4w9/+APPPPMMqqqSmZnJww8/TEZGBhUVFdx8880oisJdd93FvffeC4DP5+PWW2/l5ptv5vTp\n0+zYsQNVVQmFQtxzzz2sWbOG+++/n9zcXGprazl9+jQ333wzd91118S/gEIIIcQMtXbtWnbt2sWx\nY8d49NFHCYVCBINBHnzwQRYvXsy2bdtYuHAhR48e5emnn2bx4sVUV1cTCAT4zne+M+h4x+v18ld/\n9Vd0dnYya9Ys/H4/AOfPn096DCCEmDoklBBimvvoo4/44x//yK5du0hPT+ef//mf8fl83HjjjVx5\n5ZVUVVXR0NDAc889h6IobN26lY0bNwJw+PBhfvCDH2CxWFi7di1r165l586d3H///bz88susW7eO\nqqoqXnrpJQD+8z//E5fLhd1uH3I9R44c4dVXX8VisXDHHXfw5ptvkpOTw+7du/nlL3+JRqPhkUce\n4de//jXXXHMNdXV1/Mu//Atz584d9vusrq7mscceIy8vj/vuu48XXniB6667jieffJLnn38eo9HI\n008/zU9+8hPuv/9+PB4PmzZt4vLLL+cXv/gFc+fO5e/+7u/w+/38+te/BuDhhx/mtttu45Of/CTH\njx/n61//On/84x8BqK+v58knn6SxsZHPfOYzEkoIIYQQEyQcDrN7925Wr17NfffdxxNPPEFpaSnH\njh1j+/btvPDCCwBYrVaeeeaZhPvu3Lkz6fHOu+++i9lsZteuXbS0tPCJT3wCgJdeeinpMYAQYuqQ\nUEKIaW7OnDk4nU6qqqq46aabADCbzSxdupTq6mqqqqrYsGEDGo0GnU7HmjVrOHLkCEuXLqWsrAyn\n0wmA0+lk1apVAOTl5eF2uykrKyMjI4O77rqLa665hk9+8pPDBhIAFRUVWK1WAFatWkVdXR2nTp3i\n7Nmz3HnnnQB4PB70+siPH4fDMWIgATBv3jzy8vJiX+Po0aNkZ2fT2trKV77yFQACgQDFxcUAqKpK\nRUUFAFdeeSXPPvss999/P5s2beLWW28FoKqqih/84AcALFiwALfbTUdHBwDr1q0DoKioCLfbTTgc\nlrJRIYQQYpw6OjrYtm0bAIqisGbNGr7whS/wwx/+kAceeCB2O7fbjaIoALHf4/GGOt6pra1l9erV\nAOTm5saOLYY6BhBCTB0SSggxzRkMBgA0Gk3C5aqqotFohrwcGHSSHf93VVUxmUw8++yzVFdX8/rr\nr3PzzTfz3HPPkZubO+R6+g4k+h4DwGg0cu211/Lggw8m3LahoSG2/pH0PVb892A0Glm+fDk/+clP\nkt6n77HLysr4n//5H95//31efvllnn76aX71q18Nem6g/3nsC02SfX0hhBBCjE1fT4l4LpcrtsUz\nmWTHCEMd16iqilbb3y6v73hkqGMAIcTUIY0uhbhErFixgrfeeguIVCJUV1ezZMkSVq5cybvvvhvr\nm3DgwAFWrFgxqsc8cuQIv/nNb1iyZAl33303S5Ys4eOPPx72PlVVVXi9XlRVpbKykgULFlBRUcGb\nb75Jb28vAL/85S85dOjQmL6/U6dO0dLSAsDBgwdZsGABy5Yt4/Dhw7S2tgKREs09e/YMuu/vf/97\njhw5wsaNG9mxYwfNzc2EQiFWrFjB22+/DUBNTQ1Op5OMjIwxrUsIIYQQ42O32ykuLuaNN94A4PTp\n0/zoRz8a9j5DHe+UlZXFji2am5s5ffo0MPQxgBBi6pBKCSEuEdu2beM73/kOX/rSlwgEAnz961+n\nuLiYwsJCKisrue2221AUhc2bN7N69epRjckqLS3liSeeYNeuXRiNRkpLS5OWUsYrLy/nW9/6Fg0N\nDcyfP58rrrgCnU7Hl770JbZt24bJZCI3N5ebbrqJ9vb2UX9/8+bN4/vf/z5nzpzB4XDwuc99DqvV\nygMPPMCf//mfY7FYMJvNPProo0nvu2PHDoxGI6qqctddd6HX6/nOd77Djh07eO655wiFQnzve98b\n9XqEEEIIceEeffRRHn74Yf7t3/6NUCjE/fffP+zthzre+exnP8trr73G7bffTnFxMcuWLQOGPgYQ\nQkwdGlVqkoUQE+SFF17g3Xff5Z/+6Z8m9HH7pm8899xzE/q4QgghhBBCiNSSmFAIMSa7d+/mP/7j\nP5Je9/nPf37cj3vo0CG+//3vJ71u69at435cIYQQQgghxNQllRJCCCGEEEIIIYRICWl0KYQQQggh\nhBBCiJSQUEIIIYQQQgghhBApIaGEEEIIIYQQQgghUkJCCSGEEEIIIYQQQqSEhBJCCCGEEEIIIYRI\nCQklhBBCCCGEEEIIkRL/D9oINejFLRekAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "4o3yqccROPP6", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "86452113-af41-440b-e095-ce3dcaecd6c2" + }, + "cell_type": "code", + "source": [ + "_ = plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt8E+ed7/+ZGWlGkiXbkiwFbEO4\nGEMSMDbQNDdCIKTZZEvLbghp2aSbZptzdrs5p/t7bdu0STZtctLt9mRf2W73tN3dnNCk7dImP/Jb\nNj3bExpCIJQEAtjgQALGJgEMJr5ItiRLmpFm5veHGCHLc9Ndtp/3PyEezU2aeb7P8718vpQsyzII\nBAKBQCBUFLrSF0AgEAgEAoEYZAKBQCAQqgJikAkEAoFAqAKIQSYQCAQCoQogBplAIBAIhCqAGGQC\ngUAgEKoASyVPPjQULvk53G4HgsFoyc9TDqbLvZD7qD6my72Q+6gupst9AMW7F5/Ppblt2q+QLRam\n0pdQNKbLvZD7qD6my72Q+6gupst9AOW5l2lvkAkEAoFAmAoQg0wgEAgEQhVADDKBQCAQCFUAMcgE\nAoFAIFQBxCATCAQCgVAFEINMIBAIBEIVQAwygUAgEAhVQEWFQaoBPiFiLMKjzsmBs1amZk65Bjtn\nQYxPgqEpDAZj8LvtiAkihKQIyDLGkxIssgzOyqT3YWgKH18KQ4aM+bNqEeOTSCQlyJCRSMqIRAUw\nNI2zgyHEBQnNDTUYjydBU8DwWAyBMI95V7kwEorB7bJDkmVYGBqzvQ5IMiBJEj66GIIsS5AAzPbU\noM7JYWBkHKIkwWXnEInzOHUuBEmSMG9WLa6d54FMAecGQghHBQyF4rBbLVjT0YhwNIHunR8iGktg\njt8JSUzd/8cXR9E/Mo6mhhosanYjGhfw4dkxMBYZNqsFtQ4OjQ01GI8LSEqAmJRxYSQCl50FJQOe\neg7j8STGxgVcVW+HLMvgkzJcDgtC4wIuBaNwWBnIFA0KgNNuxVg4joiQBEMBkihjdFyAnaPBcVbE\n+CRoUQZlZTDX50QklkAgHIMsUZClJHiJQq3DCoAGn0iAkmWIAKJRCfVOCxrqHYjEBYQiCdhtNBIJ\nQJKSYBgGNs4KipIRFyTQsgxelOF1cZjrdyKWEDEa5uGtsyHKixASIqwMg8HRcYQjPEBRsNms8NXa\nIINCJCbA7eLgclgxGkmgoZbF+eEoEgkRS+bUo2WOB2cvhXDm4hiEpIj6GhYcy6KxwQZJpmChadQ7\nOYxEPkY8ngDHMqAoCv1DYTA0hfYWHxrcdiSSEoIhHqPhGC4GYvDX20BTNBw2Bhaagd1mwbxZLsT4\nJEBREEURR08Po66Gw9WzXGiot+PsJ2H09o+iscEJIZGEkJBwzdVuMAyNOicHAPj4UghnB0Koq+Fw\n7XwPIlEB7334CepqOMxuqEEiKSIQ5nHdPA+cDhZDwShAUairYTEW4RGMJTEejqHOySHGJ9PvdeZ7\nDgBDozFAluFzOya899njgdr/q+2rNY5kv9uVHGcqhdZ3VugxyzFuf/jxCPYevYg17Y26gh7FgpJl\nWdb7wMGDB/G1r30NixYtAgC0trbiK1/5Cr75zW9CFEX4fD48++yzYFkWr732Gl566SXQNI3Nmzfj\n3nvv1T15OZS6fD6X6nlEScLLu3vR1TOEQIiHp5ZDR6sP961rAUOXx3GgXEPnqUEEwgIoALo/BgDO\nSsPntiMyzmN0PFmOyyQQSg5DAaLRw58H3loODpsV4zEBgbAAzkojKcoQpdTJbCyNm5bNxua1C7F9\nz5n0eOB2saixs4jGE+nxwW6zYCgYA5+Q0vveuHQWKIrCsdPDE8aRTbctwPY9Z9LvNk0Bkpy6HjPj\njNa4NZUQJQn/8c5Z7HrvHOKCCODK9/3F2xflNc6Wa9weCsXw6E/enfT3H3z1Rvhq7QUdW8+wmzLI\n//Zv/4Yf/ehH6b99+9vfxq233oq77roLzz33HGbNmoWNGzfij/7oj7B9+3ZYrVZs2rQJv/zlL1Ff\nX6957Eoa5G27erDrcP+kv69f1Ywt61tLfl1610AgEMrLHL8T5wcjZTue0TgzHQyy3viW7zhbrnH7\nob/brblt67fWFXTsoktnHjx4ELfffjsAYO3atXj33Xdx7NgxLFu2DC6XCzabDStWrEBnZ2d+V1wE\n+ISIwWAUcWHyKpJPiOjqGVLdr6tnGHxCLPXl6V4DgUAoL/1FNMYAcGFI/3jlGmcqhdH41nlqKOf7\nL9e4/eHHIwVtLwRTMeTe3l78+Z//OcbGxvDII48gFouBZVkAgNfrxdDQEIaHh+HxeNL7eDweDA3p\nGxy321F0fVBRlLD1Nydw4PgAhkZj8NXbccPS2Xhow3VgmNT8Y2B4HIEwr7p/MBwHw1rha6gp6nVl\no3cNBAKhvBTbWy4ZHNDMOFOOmGWpGBgeRyCkPb4Fw3zO42y5xu2fvX5Sd/uBk0O49VPzCj6PGoYG\ned68eXjkkUdw11134fz58/jSl74EUbwyE9HyeBt4wgGgJF1Asl0ag8EYXtt3BtGYkHZpiAkRHheH\nEZUHxu2yQRQSJXcX6V0DgUAoL2byN3JBiRlrYTTOTHWXtZgQ4anVHt/cLi7ncbZc4/YNS3zYd/Si\n7vZCzlOQy/qqq67C3XffDYqiMHfuXDQ0NGBsbAzxeBwA8Mknn8Dv98Pv92N4eDi93+DgIPx+f94X\nnQ9mXRqclUFHq0/1cx2tDWXJgtS7BgKBUF6a/c6iHq/Jp3+8co0zlcJofFux2Jfz/Zdr3L5mnreg\n7YVgaJBfe+01vPDCCwCAoaEhjIyM4I//+I+xc+dOAMDvfvc7rF69GsuXL8f777+PUCiE8fFxdHZ2\nYtWqVSW7cDXGIrymmyQYjmMscmXbfetasH5VM7y1NtAU4K21Yf2qZty3rqVcl5u+Bo8rVYpBmdiH\nY2k0+2tQX2Mt7cURCNMAby2HOX4nPC4OFFJVCgx95U2zsQzWrWzC419aMWE88LhS+3lrucvjA4dm\nfw04Kz1h37UrGrFuZdOkcUQ5nvJuK6f01nJlH2cqxX3rWvDZW+bDxl4xlMr3ne/9l2vc/sFXb8zp\n78XCMMs6Eong61//OkKhEBKJBB555BFcc801ePTRR8HzPBobG/H9738fVqsVr7/+Ol544QVQFIX7\n778fn/vc53RPXmyXDJ8Q8cTzB1RdGt5aG555+NOTZlFTqQ75Kn+tbh1yk7cG//NXXRgbT0w6B2cB\nbm1rwtxZrkl1yMEQj76B3H4LzkLhM9fPQZ2Tw++7L+HspXDBLj+XnTasQx6L8ojHRdA0laottlkx\nHkvg7Cfjps5Ra2cwy1sDO2tB78AYYnFR17XocVox96rJdchjseLHHYtNo9eOz944D+cHI4Z1yIOh\nGH733jnEBSnn8zhYCjRtQSQ++bnLpGNRA7wuFrs6td2BWthYCnEhVVfe7HPhT/9gMeqc3KQ65BqX\nfVrUIU91l7WCz+dC/8XRaVGHfOun5hXlNymo7KmUlOKBq4ZyplJh9JIOBqP49r8cUDUUFAV8/b52\nLGiqmzRgaE1i9OJgazsa8cCdS4pWurVuZRPuv2Ox5vbs+sPsOlHKIGan4HayaG/14d3jA4bGR++Z\nESUJv3n3HPYfu4hAKK55fppKGW63k8Vsbw1OfBzUPJ/VQiORzN0g6qF1D9kDms/nwj/+6khev6Wy\n3jT6+r21Njz54Co8/eKhnJ43ZT8zBm06GTJyH9VFse5FzyBPO6UuxXXR1TOMYDiOhno72hZ6Z4SL\nqM7JaSZSUACe/fXRScIEem5+LQPX7KvB+lVzEI4KRSvd0nPX8wkRL/7fkzj4wSfpvwXCKaEHBbPT\nymBEwFudFww/N8fvnPDMZBuwpCjjs7cswO0djYjxSew8dF71uFYLjZWL/dhyR0oIQWvyA6DoxhhI\nvQf3rFmYNmJqwgrXLfBg/fVX4+4brkYsnsT+45dyOke9k0VMSBpOcILhOGJ8Eh2tPlXD3+RTr93t\naG2Ay8HC5WBzui4CYaox7QwyQ9PYsr4V96xZiLEIj4XzvAiPxSp9WWVBSXpQG+wU4zoS4tPbt6xv\n1TXiHheH5Ysa0N07gkA4jvoaDnYbg0g0gSeeP4h6J4dgpDhZ4kdODeFzN8+fMOiKkoRfvXka77xv\nvJotNuMxAQPD4/DU2bFj35kJBkxRfgpGBHhcHNoXNUCGDBtLT7pOPiHhneOX4LBZsGV9q+bvUyqU\n3Am/2wEAeHl374Tzj4R4vH10AG8fHQBNAbMbauBxsRMmOwo2lkkrLmXidLAIRiZ/Phu3y4Y6Jzdp\n0ux22dDR2pBWt8r++0yYTBMIwDR0WWcz01wmoiTh12+exv73L6kOngqZMXUjNz+fEBEIxfGTHcdx\nYchcrDYf3E4OK5dcWb1Xg5KZmpHNB+X7tjDUZbnUobLUoXtrOTzz8A3p+KfeCl3BabcgEpssqHP7\nyiZQFDXBYLYt9KC7b8RU+V62+9wo7pr5d7Mxw+nyvpP7qD6Iy3oKU8qkA71jMzQNiqJ0jTEwceWk\ntWK5b11L+lw73ztbUmMMAMHIldX7PWsWovPUYEnPZ4ZircwDoTiGRmNo9jmxZX0rREk25TovlPF4\nAq/u7cN961p0wxMT9oklsaa9EcfPBCY9DwxNp71PdU4OYxEee7q0k7QoAJ5a9ZUuZ2XSK3etv1eD\n5jxh5pKdDFhqiEEuMqUcQERRwrZdPbrHNivJqbgPASApyli/shkbbpqXTpxRVnLKuYxqsuqdLELj\nAuqdHKJ80nBCoEdXzzBubZut6jadqsgAnvt1J66dn3LNdvcOG+6jh42lISQkw0S2uCBNmOToiTVk\nXuv1S/z441sXoH8wgma/c0IoIdNg6oU8AOD6a6/Cg3ctyXtSquZizwy5EAilQG0cv3l5EzbcOLek\nE0FikItMKQeQrb85YXhss6ugjtYGWBhK08Bn34deCq3byeG7D30qbcxf2X0ab+msmowIhOMARWnG\nMhUaGxzgBRHBMA+3ywY+kVR1tVYLo+NJvHP8Eo6cHARfYAKXkJDwqWuumpDopkdXzzA2rl4AO2cB\noP980BRw8OQn2PrbDw0nlZyVQVtLg+Zqv7d/zNT1qWEk9JOZrEYgFBO1cTxb8bEUEJ9PESml+Dmf\nEHHg+IDhsZUVixYeF4e1HY1Y29GEbbtOY9fhfoyEeMi4YuC37TqdU/Z0++UsWG+dDa/u7UN3X0p8\nnTajdKJCbQ0LyDKWtzTofu7aeR488/AN+Nv/cgOefHAVWMvUeJwLNcZAysPxwJ2tWLeyaYLwghaB\nUBzfe+kw+k2EHWiawttHByY9Fy/v7lX9/PqVzZrHyhbkyQW9yWUgHMeZC2PTukEDoTJUsvnQ1BjB\npgi5KIXlc+yhUfVs8cxj68nL3XTdVams6b4RPP78QeztUl/VHO0ZNq2xPcfvxJb1qV7ZyqxS2ddM\nXbAaYxEBT249hO6+ETT6JscYFbp6Um5fv9uBGJ9E0KSLm2XynClcxmm3oK7CSmkdrQ1wcFbcf8di\n/MN/uwU3XKsvU0tRwEDAnHZ8UqMxsdZg5Km1wasxCcwMjaihdGVTO67e5FIp43vi+QPYtqsHolTe\nLHzC9GUswmuOf4FQYeO4EcRlXUT04mlGA5OZY/vq7RgMTjbK2cfWStKSZRlvHrlihLUM5ug4j3on\ni1GVUhZFvKHeyaJjUQO23NEKhqZL0k7SaFKQmZhmFMtUqKuxgqZpCCoZzhRlrp45xotw2so7l1Wa\nH3hcHJa3eLG2ownhqIAYnwRrpXG0V78lXL6To0yyS6gU9MrttDSGzeRa5FPGRyAUSp2T06yu4Fim\npAlexCAXkXwGplyOfcPS2Xht3xnDY2fXYisP0BPPHzB9ruUtXuw9OtlFvnp5I65f4p+U6GM2dp0P\nWgpOmRMRzsqgbaHXMHa9sLEOXafVE6rMFgCKkoyxaHldpcqlOWwWdPeN4K2ui+nvxWqhkEiWvnpR\nb1Kpl6mvhl6uReZzm3nckVBcsyuTElMmEIpDYV60fCEGucjkOjDlwkMbrkM0Jpg+dmY27GAwatpg\nxgURFobG+lXNGedKCWK83zeMt49ehNvFYsnVHmy5YxEcnNX0CjUftFZ3ykREWW1lxq4lGWAtFEBR\nEBLS5TirjM7Twyk5S41jshYaQgkUs4pFZgxY+V7KYYwB/Uml2iRQ67N63pTfdw+g89QggmEhvWre\ndNsCiJKMIycHEYqq62Urq3ftaDaBYI6xCA9eo0pEuFwGpVauVwyIQS4yuQxMOR+byf/YuRrMo6dH\n8MzDn06fa+d75yasPgNhAe8cv4TOniHc0jYb961rgcNmLYlBzlQMC4bjqHdyWHK1GxtXzwcwebWl\nGCrqsjHmLPSEMiw9922ljDFDA7WXFa+MeumWg9keB4SklPOkUqu2OBM9b0pcENO/lbJqPnVuVFVS\nM5NCQ0IEgkIpQ49GEINcIswMTOU8tp47XY3s+Kyy+swmLojYdbgfoihhPGa+bthsvBZI9U7dsr4V\n0TVJ/OqNHpw8F8S7xy/h1Lkg2loacOy0+mqLT6SMq1ZWczUYvitQ+JsHU6Vj//T/dePSSOXkXm0s\ng8f/dGVa69yMklYuOB1WcBoynGpcGNI3xsD07y9MKB+lDD0aQQxyBSl368dsd7qeiEfmTNBMfLjr\n9LBqEpgWZowxTQFr2hvT171j35kJjQ9GQnxBaldGxthdRK1uI0RJxvY9feCsdNGMMWelwCdyn3Hc\n0jYbDi6VRZ458ctV9Ebr+d6x76OchGP0fqd6J4tVS/xE75pQVNRCjzcvb8SGG+eW9LzEIFeASskB\nqrnTX93bZzgTrHNycBuIdIxGhKLHX2UAd14/1zCLuxQrXaXlXyAcx/d/cQRCGeK0J88GIBZwIzaW\ngZAQ0xrTgXAcx3oDJvZLqX4VkoiVmeGs93wnRTnnbHyt37fWweLxB1bCW2fP6XgEghFqY2VzY33J\ndbmJQa4AlZYDzHR5ayWhbVy9AIPBKJwOK3bs+whR3nhFU+z4q+fyKp1PiDhzYUwzPl0Kt7PDZoHD\nZkGMt+RljPPJfDaSCq2vYdGx2Ifu3lSduGKoPC4OKxb7sHH1AoxFeOw60o+jp4cRNNm8QpaBf/zr\n22CR5bwSsbJVs/Se71vbZuecZ6DVljEUFfB3/9ZJtK0JJaOUoUc1iEEuM8WQAyymqzt7JqgY4O+8\ncBCBEJ9TrK/YtC/y4tW9fejqGSpJspge5wcjeHl3b0r/2cA7kI3iKbCxNGTJvDKXjaXh4Cya5+pY\n7MMDn1kMfm2qUYSds6TlSpVuTv/57lm8k2M/41SsnQJn1TZoZkRv/G6HYQb1kVPaq2NvLYe2hV50\n9wU02zKOhOIT9iF1yITpBDHIZcbswKaGmeYS+aLMBLNbHpbTGCs1pt7L9yXJMt6sYPtFZYK0YrE/\npzaQiqcg905RFJa3NKjWUs/xO3HPmpTXIqVHfQVRkrBtVx86Tw0W0JBDhl7tpdnMU7MZ1Gp0tPrS\n7T6zJ5xb1rdiw03z8N2th1Tj+qQOmTAdIAa5zJgd2LLbfo1FeGx/+4xpV7fRKlqr52yx1bbM4nZy\n+PoXlmM0IqDZ7wRrZUwLmZSKkVBKL3n9yiYMj8Xwfu8INFQliwKfEDG/sRaiJOHER6MIhOKoc7JY\nusADUZLx5P8+iEBYSE9c0vXWVgpCHslbCpyVhttlQzgU03xmzGaemsk3yEZxuSvhEy03YYxPYlQj\nyU6tDrkYnqRyJ14SZjbEIJcZo4EtuwMTd1nQQm+1lenqNkoY09q+6bYFeGnnqbK7hhWcDiuee+VY\n+poWz3WXTPkrF5799dGynUuWga3/eRI0BTQ21ODJL38Kbx+7iHePX5qwslRMrxI7L8QYAymX9cN/\nuwuyLCEuSGkPRabnRUgmcfJscMJ+DE1hTfvstCEVkkn87S86czLGFAX81eblaPY5DT+rN5llrQyc\njlRmeDGSJkkfZkIlYL773e9+t1Inj0ZL3++2poYry3ly4dp5bsT4JMYiAnghCU+tDTcvmzWh7WHs\nchJVUpQ1xf4VeCGJW5bNRo3dil+/eXrC/jFexJmLIcT4JFrn1OOl109h79GLk7Yf6x3BBx8F9U5j\nmmZfjaaiUjbuyxrd5wcjE67p/GAENpYxvPfpiAwgFE3gyKlB9JwfK8t3kBSl9Hkyn5llC7wAgKdf\nnNwpSpZTz+e6Fc3pzxgJeGTjrbVhw83zIEoyAqE4LBYaFkbd4FkYGsNjcZy5GFK5fhlCUsINyxrx\nwuU2pWrvgHI/Rui9R2aPUQjVOG7lw3S5D6B491JToy0sQlbIFUBLzStfl7HbxaWzkY0kCbVWL/0G\nAylnoZEQJdTVsLCxFvCJZKrUSXF3CyI8tROTcH7fPaAbM6x3snjsgRX4u3/rNHmnuZOLAEm1Uene\nzr/vHsDG1QsgipKmOEf/YAQjYzGwVsaUgEc2mYl7ZlaiG1cvwO+7L6p6jLp6hjEW4YuSNEn6MBMq\nATHIFSQ7VpZvg4Ylc93grAz6hyJ5J9QY2SyOpeGx2cAnRVwKROGp5XDjdbPwxTtawdCUahLOxtXz\nse2N0zhyajCtmpWJy8FCSEqa18wLIm5eOgsffBzMW6BjqhrjaiAuiPjVGz341BK/ZmmZDOB/vHQY\nLU11OZef3bx0FmRgQuKeUdZ0JCqA1wjfBMNxfDwQyjtpUqGQxEvC9CI7l6fUEINcReTToMHGMth8\newu27epB56lBQ8OqhVYXHYVQNIlQ9MqKbSTEY//xS7DbLNiyvlV1gHJwVnzls9di020L8P1fdmJo\ndGLJyvnBCH6y47jmKrbOyWLzuhaIkoxv/fO7Vd30YbpypGcQH3ysH8oIRRPo1OigpYXHxWHzuhY8\n/eIh1e1aK1GjpMh5s2sL1iGupJYxoTpQyyG4eXkTNtw4t6Q5BCQ7oYpQEr5y4Za22fjN/o+x63B/\nASUvQLPfOKlGDa2m9YBSjtODZ146PMkYK1wYGtfuyxwR8PSLh/APrxwjxrhANMKyhsQFqSTyoSsW\n+xDjk4Yr0Wz03pGO1gbUOTnd7WZczUbnIO7q6Y+SyzMS4iEjtQB5bd8ZvLy7t6TnJQa5yrhvXQvW\nr2qGt1Z/Fu5xsVi/qhkbVy/QjTt7alPNtrWPw2H9qmY8/qUVWLeyKeeBOxBOlQapGWXloS5kojAS\n4nNOFDLCW8uh2VdT1GNWMzaWwbNfvRl/tamtIudnLRQ8Lg40lUriWr+qGfeta0mvRNUw6r2cekds\nk45pZrsZ7lvXgnUrmy637UzBWWgkRQmiRCaH0xmjHAKtBUgxIC7rKkNJ+Lq1bTae3KruzgOulLzo\nxbsoAH+1qQ1vdw+ollndvHQW7r9zcXrGf+9tLTjaM5Rb2QpSpUHZpTKVrGnW44brrsI9ty7A935x\npNKXUjaEhAghIWLx1W54S9SzWo+EKOOvNi8Ha6HTRnZkLA6nw6rZsrOQ3svFaIHK0DRoipqQd8En\nJezpuoi+CyE8+eAqUv40TalkDgExyFVKnZNDvZPV7KA0GhFSbQ8lWTPe5am1wed2aOpVZ2eyjkV4\nBHNczSoTg+xknHwT1EqNDBnf+8WRnDpTTXWU1abZFpwUUpn7Wp3AcsXjssFXb4eFoSbE5bRkWef4\nnWktdT1jaqQzXIgOsd6E8vxgBNve6MEDdy7J69iE6ob0QyakyUwmMGM0untH0LbQqyq3mLnKMLNi\nMEoqc9os4FgGgTAPCupNHTpPDeGeNQsNj+WtTZVplbu05+CJwbKer5ywDAVBpWZZeQ5EKeVu1SsF\n89Zy+NqmNtQ5Obyyu3dCu8t8Uc5vVpZ1aDSW1lIvhiBHPqp1RhPKrtPD2LxOJPHkaQhnZdDW4sVb\nnZPH1LYWD+mHPJPI7pRjRDAcx/pVc8AwNDpPDSEY5uHOkiJUMLOi0DLuAMCxFjz54Cqc/SSM514+\npvqZQJjHL3eewoN3L9Fcjd2+ag4kUdQ8DyE/so2xjaVxw3WzsLajCXxCxKt7+1QHmUw4jsHr753H\nybMBBMLC5fwDCnxC1JyETdjfSsPOWTA2LsBzuQ3k2o4mhKOC6RBGZomeURmUnrHNV7VOiW/X6/TD\nHosIpPxpGnO6fyynvxcLYpCriHx6/qZcKCyAlAhG5n/zYf2qOZqGMhiOI8Yn0WVQ4qKUQ2m5yr+y\ncSn+8n/uzv8ipyhWGlApxy4ZcUHCgROfYG/XRXhqOURixh6Xi0NRXByKTjgGANy0dBY4K204iUok\nJTz+wHIwDI1dR/rR3TuMPV0XdY2bGbLLoLSM6SObO9L7GLU5Ndre3tqAtzovqF6Pp5aUP01XwlEB\nF7NU6RQuDo0jHBXgcrAlOTcxyFWEnptMa2XS0dqAV/f0TRgoC2lJ56m1aSb+uF022DkLunuNa06V\nAVTNVR4aT1RlfLnUlNMYK2SuNAvh5Nkg2lq8sBm043S7UnkLqdX4FWNWaOlUdjKNljGVQWHTmgUA\noJspu+GmeYZqXFvWL0Jv/5hqlj8pf5q+9A9GNMdbSU5tv2aepyTnJmmCVYReGYi3lsPdN82bUMqx\nbmUTkqKEvUfVVy16Kfp8QsRgMKq6ffFct+o+Ha0NurWjmSgDqJpL0V2rfZ+E6iQQ5rGn66JhkldH\nawMAbWOoho1lQFOpErzMMqNMsjuhaR3/zcPn8cTzB/CLnad0M2X7B7VV7ZRnl6FpPPngKqztaES9\nkwWF/EqoCFOLZr8TtIaXkaby12wwA1khVxH6naB8+It7lmPDjVenDdyre/uwu0vdpQaop+iLkoRt\nb/Sg6/QwRiNCulzpShP4oUmrKRvLpJtfJEXtrO5M6p0sdr53Dsd6hxEIC/C4WKxY7Md961pgYy1Y\n1uLFHoN4ZiWwsQyuv8aH7r7AjMrEzhf6coKYomO+cfV8nLkwpjtpq3eyCI0L6RDGxtULEIkK6Wfa\nqMWjUcLVSIjHO8cvaa7m3S4bmv1OU5m0DE3jgTuXYPM60oZxpuBysGjyOVU9I00+Z8nc1QAxyFWH\nXokScCUxy0ydb72TmxDnEiVpUkcexdV38mxwUjcfhbgggqIoMDSNpChiyVy3YfatkJQmuNED4VSZ\nliTL+H+2rELP+VH9L6KIMDRaVHjFAAAgAElEQVQgmnAXt7c04POr54OhgH3HCs8urkaMJFJzRQbw\n9S+04+rZtdix7wy+88J7GAnxaUOdjbfWhicfXIUYn5xg3Bxcaigyev6B/CRmM+lobYDLwZrq76xQ\nSAkVYerx+JdW4Hs/78SFoZT7mqaAebNr8c0t7SU9LzHIVYZZUQMzdb419lR/WKWe85W3ejVVr7SM\nsUJXzxBEUUqveI3QKmd65/1L+JNAFAMZiUOlhEaqbZ+RuhJnpXF+MIynf3YInloOrJUCX2Cf4Wqk\n0efAhSJ+9x6XDQua6iatbPVyHlwOVnOVYeb5N1tPrTQnOXluVNW4mzH+gHHZFGH6wVoseOqh6xGO\nCugfjKDZ78SCq70YGgqX9LzEIFcpRjNyM6uEwWAUj/70HYSjiVSWrckexWqMhPiilCnFBRFdPfk3\nwVCj2VejOaGQANVOU9nwCQl8IvVdllvJqpwU0xgDxjFjmkqtoj0axk4Lo+dfOY5eS1FPLYf771wM\nAHkpekX5JH71Rg9OngsWrSaaMLVgrQy8dbZ0m9lSQwxylZDrLNzMKiFlZFLGqJqMTJPPqVnGlSsr\nFjVgyx0teOJ/v6faI3e6UGxXsx5av43TbkE0nky78Jp8Tmy6bQFGw9reGllOubQXNNUVdXWpGFNR\nlDQnig6bNX3OXBS9lJKq7L7LhVQvEKYWler2RAxyhcn84UdCPOqdLDoWNWDLHa26P7woSZBkGTaW\nnnKGaM5VLs2kiVygqZRi0kcD4Sn3HeRKOZ3nWsY4MwwhySkJye17zuCeNQt15VszjXEx3b98QsQx\nnRK88ZgAPpG7mpaROI9Wa8hiQ1zllUOtrO61fWcQjQklnYwRg1xhsn/40YiAt7ouotdAwP7l3b3Y\nfUQ7w7qaicaT6aSJQoyyYjhK0R6QMJFoXD0noKtnGBtXL4CdswDQbhJhpJqVD2MRXjefIZiHmpaZ\nZMlSNxgQJQnP73gf+49dIK7yCmDU7amUkzHy61YQQwH7Xadz3q/a8dZycNdyYC0WfP0L7Zr1foTq\nQiu8EAzH8b2XDqvG8Of4nelYr1p/2V2H+/Hib0/m3c6uzsnB49IuQfG4uJzVtMwkS5a6wcDLu3vx\n2r4zk76rUvfiJaQw0+2pVBCDXEHGIrxubPdohrAHnxAxMDyedmNNVaWrJXPdsLEpx4yeIg6htDRp\n9IPOdQFmtdAYCKgnikXjSSRFWXcCuf/4JTz+r+/iFztPYmBk3LRxVt6D5S0Nmp/paPXlvJLRE+e5\nctziqXRlC/RUshcvIUW+fbqLAXFZVxDDFovjPAKhON7qupBy9YV5eFwc2loa4HaxOfUtrgZYC40v\n3nEl/qIo4hCjXBhWhkJCpcuTGgxN4baORnzulvl4+c1enDwbQDAsgGVpUEDOsXhZ1v58IGM1oTeB\nDIRTYZq3ui5O6qudjZrru9lfg6FgLJ3AmClkkyt6yZI2lsEtbbOLotKl5cJf29FUsV68hBT6Ak2l\nlUwlBrmCcFYGHYsaNLNEPS4bdh3pn6AJPBLi8VbnBczxOwsyyE67BayFLqtRv+E6PxiawsDwOMSE\nqKuIQzCPqNVLUYVahxWSDDz9s0NXBDwA8BqGuK7GirFx7XI5Qad7Zn3NFZexWSEPxT0rihLuvH7u\npIQmtWQbhHisXdGEte2NcHtqYJHlggbN7PrkeieHJVe7seWORXBw1ryPm4mWFrcoShXrxUu4glqN\n+s3LG7HhxrklPS8lyzm8zUWm1EXWAODzucpynnxRU89SWNvRiO6+EdWX01vLoW2hNy2BqYXTZkUk\nrj6g3tYxG0JCxjtF6Hlrhhuu8+P0+bH0Sn/JXDc2rlmIp7YeLHtfZIIxrIWGjaURimr/NvU1LEbH\n1Z+/tSua8MBnUnXA2b2QjbgiyXllxZwUZTzx/AGN98GGZx7+NJob64v2vpcqy5lPiLr3kerFOzlh\nc/2q5ilXblXt468Rmc9AsZ4tn8+luY3EkCtMWsB+RRPcTg4UdUXAfv2qOTruKx53Xj8XTz10Pdwa\ns2ZvrQ3f+fIqcBb1n/nAiUFYreV7BA6cGEwlqsipFcH+45fwrZ/uJ8a4jOSSRCckJV1jbGMZdCz2\nqW6b43diy/pF6f+/b10L1q9qhtdkUxFJxqSEpnIn2yj1ycV2URrdx/qVzfjc6gUTGsmQhhaVoVTP\ngBYz1mVdTTV+DE3jgc8sxua1LROuiU+Ihu4rzspg5RLteEdMEMEn1d2RcUHEMY3exjaWgYOzIBhO\nnVvNjVKM+K8ZjWlC8ShmvP6mZbPwxdsXgaEpdPUMIxCKoy6jjj4pyhgZi6af0y3rW7Fx9Xw88+Jh\nXArGcjpXV88QNtw0z/B9iAvJtFRspd9rLfRU9twuGzy1Njy8cRnuun5O1YxRhPJgyiDH43F89rOf\nxVe/+lXceOON+OY3vwlRFOHz+fDss8+CZVm89tpreOmll0DTNDZv3ox777231NeeF6WohywW2YpB\nRskFADAwMo6kKE3obGNjady0LJV8MjCsr1Gt5e7mBRGPPbASrIXGzkPnVV1oJP47c5njd142xpPl\nJy0MpfmO7dj3Uc7GGEitlGN8UvN9aF/kxat7+9DdN4KhYKyq3utszCYNkYYWMw9TBvmnP/0p6urq\nAAA/+tGPsGXLFtx111147rnnsH37dmzcuBE//vGPsX37dlitVmzatAl33HEH6uvrS3rx+aCVTAGU\nXw7PzCpdLbmgfZEXkqwdT4sLEk6fHwMA+NyOvNS8OJaBr95+eWVzZRWUKcK/4eZ5eOXNXnx4NjDl\nMr4JhaGUNDGXbV2m8ciOF6cTliQZ3TrKWnrQFGDnLJoNISRZxptV8l6bwWxjC8LMwtAg9/X1obe3\nF7fddhsA4ODBg3jqqacAAGvXrsXWrVsxf/58LFu2DC5XKli9YsUKdHZ2Yt26daW78jyopAJLJrms\n0jNXIAxrhSgk8OrevgmDjxrnByP4xc6TuPuGefj0dVdhb9dA3tebvQpyOljs2HcGT//sEAIhHlYL\nUfeYaWiV4Oi9Y0d7hvNWVZNkIMYn4XKwk1bkAPDE8wdU9yvne50LZru6EWYWhgb5Bz/4Af7mb/4G\nO3bsAADEYjGwbEodx+v1YmhoCMPDw/B4POl9PB4PhoaMlaTcbgcsltI/hEpW28DwOAJh7WQKhrXC\n16AumFBMnt/xvuoKwmFn8fDGZbr7xoUkuvtGTJ1nX/cl7Ou+BF+9HU1+Jy7k4F7mEyKSFIXmrIzA\nZpXrF5KFBybtnAW8kERDvR02jsG5S8QVXs1wrAUL53nTIi8AIIoS/umVo5rlTWPjPDiW1iyx0sNX\nb5t0vubL/62W9zpfmjX+rpeNO5WYLvcBlP5edA3yjh070N7ejjlz5qhu16qYMltJFQyWviduZtq9\nmBDhcWknU4hCouQp+nxCxP5j6hrU+49dxF3Xz9GcKft8LvR9nIqRmUH5GQbziNnJMvCdf3kHKxb7\n0yUnYxEeds6ief358ulrr8IDd7ZiLCLg9ffO4uAHnxT1+ITiI8syhocjE57Vbbt6dD03tTUsohol\neEYsXeBFeCwGtbezGt7rYjPVy4UUpst9AMW7Fz2jrmuQ9+zZg/Pnz2PPnj24dOkSWJaFw+FAPB6H\nzWbDJ598Ar/fD7/fj+HhK7GhwcFBtLe3F3zhxaaSCiwKZko3Mt2AmXFmIJWhyWUkcJWSQFjArsP9\nOHEmAD6RRDAsoE5HWSxf/vDGq8FZGfzzf5wgSWJThLgg4syFsXQnp3BUwOGTg7r7FPLcHDs9BIam\nVMM61fBeEwjFQNcg//CHP0z/+5/+6Z/Q1NSErq4u7Ny5E5///Ofxu9/9DqtXr8by5cvxxBNPIBQK\ngWEYdHZ24rHHHiv5xedDpZMpjEoeFMObHWd2u1h0LL4Kf3jDXF25wlKQqVVcbGPM0BQ8tRy27TpN\njPEUgqaAv//1UbhdLBw2K0LjAkLR/Fa/ZlAmh4B6kpby/nb3jWB4NKb6XldTqSOBoIZppS7FIN9y\nyy149NFHwfM8Ghsb8f3vfx9WqxWvv/46XnjhBVAUhfvvvx+f+9znDI9ZSaWuYryc+R5DS7UoU4lH\n6zOchdasK1aYavrQazsacfT0CGmjOMNhLZRhPoLHxeF7/+UGzffNVWdH38cjE97Jai511GK6uHqn\ny30A5XFZE+nMPCj0Bb+y/+RVOkPTutJ6RtQ7WSxvacDeo+r62Hr7QZYwOp6/ahZnpdMC/7meeywi\nqIqPVBqaBqxMfvc1laCoKzkHarAWGoLBRDBfbCyDFYsa8M4Jc7kDNy+dhQfvXqL6rqm972YmwNXG\ndDFkU/0+yi2dOWOVugqh0Fpmo5KHQtorrlqSSsKyWmj8vnvAdKx51RI/TpwJFGSQnXYrvrFlKZ7d\n1gk+Yd68jkUE1Du5qlwhSxLASxJmexyabQarFQrqCmtq6BnjfCdaenhcHP7yj5bCaqHhu5wzcfJc\n0FQ9+/7jl2C3WUy9a9VS6kiYWqgtum5e3oQNN84tqVelOv01VUwx+5Vq6aSa6ckKAGyGDrWNZXD7\nyqb0KvueNQvh4IwHGppKNQHYuHo+AuG46WtXIxjm4bRZceOy2Tnt56nl0N6q3de2GuATItoXeit9\nGTlRLI9DKbwDKxb7ML+xDs1+FzgrA87KYMViv+n9zb5rlWw2T5i6KIuukRCf1lR/bd8ZvLy7t6Tn\nJSvkHMk1Szof9LJGFby1Njz54KrUgEJRaVWtzOsMmlhtyDJw56dSTSwKHXhZKwOHjUFv/1hO+9k4\nywQ1sEAoXnXu69EIjy/d2YqjJmvACdrculy9V/HG1fMRiSfQdWrI8FkMhuMYGo2BtdC6ORxmkygJ\nBIVKelWIQc6Rcr3gyoCl5XZeMrcerJWBz+1QneXrXWcmnlob7JwF5z8JFnzNcUHED7YdxYUhff3s\nbCLRBJKinHbjD43G8MNXjlaVHGe9k0NnnrKPMw2jpMK7b5g3we2nmpOxqA7rVjbjpztOpBucZMJa\nGfzwlaMIhoUJORzZmNGDL2YzimJmcpOs8MpQjkWXFsQg50i5ah4Vt/PNy2Zj58GzON0/hmCYB2tl\nAMjYf/wSjvQMAqDAC+KkxDIzq2wAsHEMnnzhoG4T+ly4mKMxBoDQuJB+yDkrg2afEysW+3Pqn1tq\nWAuNt4/mLz86E6irYbG8xQM+IeHgB+o1yd5abtKkVS0nY+SDQTgdLFYuVn+G44KYnqhm5nB87Ysr\nJ33WSA9eKzEzF4NYzExuUZLw/I73sf/YhSmTFT6dqKRXhRjkPCh1LbPay9220AvQNN46cmVwymwY\noZZYlnmdgVAcHMtAlmUICQluFws+IeW8mjUiH1ez2zV5kE6pg0nY05VbtnipyKdDUaWosTEYj5de\nOCaTT1/jB0VROPFRECMhHgyt3lqzo9U3wbhF+SR+363+G3f1DOOpP7s+/e/Uu8ZhPJ5QbZbS1TOM\nuDA5KVEtiTJbDz7z/blvXUvOxrWYTWuqqQHOTKSSQjPEIOdBqYXh1V7It7ouwm4iSUuJcQAp18s9\naxbinjULEQjFsetIP46dHgKfEDA6LkCqkkqeGrs1/f1lrkosDFkN5EqzrwbReKJsBpmmAX+dHUd7\nhyfEfRVjzFppJBISPLXqQh1b//MDzU5kgVAcgbEY1q9sxoab5iHGJyEkRHxn6yHVzwfDcQRDvOag\npiRRGsUIRVHCWxkTQS2DqDyrds5StJgjyQqvDtQWXTcvb8SGG+eW9LzEIBdAKfqV6r2QMd54kA2E\n4vjlzlOpEpKM2b0kyxN6GleLMQaAaDyBKJ/Ajn0fTVAmi5q4X8IV1rQ34jOfmoMnnj9YtnNKkr73\nwGW34msPtMGXUU2geIA6Tw3q5glQNPCP27snPMcbVy/QdSe6azmEx/S9GXoxwkA4jq7T6rkCikHM\n7vesV7KXa8yxkvFLwhXUFl3FqkPWgxjkKqOQGmQg1cd4//FL6f9XZvfVvNgcCfHY9sZpvJNx3dWU\n0DUVsDLAdfM9qazjGhaj4+a/P4+Lw6eum4XfHThb9Ox2Je8hc1WX7QHSQpKQNryZq1Q9d6KNtag2\noMhEL0ZYX2NsXHcd6Z9wfr36+VxjjiQrvLooxaJLjyoepmcmejXIdi7/+ZNaPK9aYC0UPvgoUOnL\nmNIkROAn/34c3/jpu4jEc5vMrFjswyP3tuO2jsaiX5fbxUFIiOmaYT0PkBm6eoaxcfV8rF/VDG+t\nDTSVKgFcv6pZN4eDT4gYDEbBJ8R0jFCN9tYGeDXeP7fLpuueViPXmKPetZFGGdMfskIuM2YyNxfP\ndU9YLSrc/qk5GI8K2Nt1QbWshLXS4MvQBarYCEkZQpKsiItFModH4JbLNcGCkMTpC7nVj5thPJ7A\nd7YeSruc13Y0FeQBCobjiEQTpnM4tLKfN922AIB6YiZDU5or8Bif1L3+eieL0LhQUKLnfeta4LCz\n2H/sYkUa4BAqBzHIZcKoLCJ7u41NDTBxQYTbmVKy+srnluLE6cEJseBMEgmpaiUoCdXJu+9/As7C\noG8gjP7B4mbcA1cqARSXsyjJpurjtVBWqUrtsJE70ShjWc2o61VRJEXt61fEemJ8sqBET4am8fDG\nZbjr+jmkDrnCZLe/LTXEIJcJo4Ehe7tSY8laaAQjPLp7h7H1NycQimgnrFitNJYt8ODt7sLqZZt9\nNegvcjkUoToRJRlvHlGf4JWCY6eHsbzFOyGLORfsHIOnXzxkqhzJbMZytlHXq6JgaP0YtsvBwuVg\n87q3bModvyRcgWhZT2OMBoZwVNDcrnTYUbRU3z2u3RFHSEg4+OEnmON3wlvLXY6v5Taza/LV4Ik/\nXYk17bnpURMIZgiEedza3oibl87Ka//+ofEJ+sK7Dvdr6gsXqmOtpTV/37qWnGPYhKkF0bKexhgN\nDP2DEdNxNSONXz4h4fxgBGs7GnHn9XNh5yz4xk/2G/aZVRgZi0OWKZSiK6fHxWLe7Fp09hAJypnM\nj/7fY2hv9cPttCIYMa8QpyXJqVWfW6qM5VLrEFQzM0HOk2hZT3OMBoZmv7OguJoa3X0BbF63CGMR\n3rQxBlKu8ud/c6IkRrPGzuLER6Q5w0wnGEngrc4LmON35mSQtfSxtepzOSuD9kUNqi759kXeggfV\nmeRSLqY0aLVTyVrw6fVNVilGpQwuB6u5PV8CoVQ3nDonl7PbutjGuNbBoslXg/ODkZz6JBOmN9F4\nAms7GuGttQFIVQlwVhoUUu1EbSyTdgnf2j4b9U712KzealfraSNPYW6ouXD1wgVTGb3SU6JlPU0w\n0r/O3s5aGdUuT2aRAXzv54dxS9tsLF3owd6uyjVGCEUFhKOkrIkwkWCYx/pVcwCKwtGeYYxGUiuv\nJYvd+OIdrWBoKiX5evg8uvtGMBpRf4a06nP5hIhjGqpbx06P4N7bxGnrdi0mM03Ok7MyWNbixZ7O\nyYmHy1o8RMu6msg3hmIUd8re7nRY8ereMzjaM4xghDdsaad+rRLePHIBNy69KrcdSwBZkcwsOCsN\nyACf1M55qHey2HWkf0IZ30iIx/7jl2C3WbBlfSve6rqgmZHtVdHHBq68o0JCLLrrcSbEULOZiXKe\nWj3dc+31nivEIJukWDEUo7gTZ2XgrbPh5d296O5NGeN6Jwun3apainRbRyPifBLvfTioabAPfaCd\nmU0glIJEUsKfb1yKn/z7cc3PsBYG3Ro9prt6hrDhpnmaKzPWSuPxL61AvdOW/pta20KOpVWbV+Tq\nepxJMdRsZpqcZzgq4IJGTf6FwXGEo0LRStuymd5PUhEpZwwl81wAMBoR0D80jgWNtZNKLf7kjlZs\nXL1Ad/Wss0ghEEoCa2Xw6109up+J8knNRMaREK9bfSAkJGzfc2bC317e3YvX9p2Z8I5qdZLKVYZy\nJsVQs5lpcp79gxHd3IP+wUjJzk1WyCYoZwxF71yRWAJ/sfFasFYLfPV2CAkRPedG4Xfbcy4hIRBK\nSVwQDXMgQtGEZiiGplIu7Tonqxk7Pnk2mNam1ntvbCwDB2fBaCTVmWnJ1W5sXD3f9L3MpBiqlku+\n1D3gqwm/217Q9kIgBtkE5Yyh6J1rMBjDMz/vhNtpRUKUEY0nIcmpwcvGkp+SMLWgdPIiJBn4+18f\n0zTGADAa4dPG48yFMZ3VtIhH/2QFdh06j5Pngnj3+CWcOhdMu5yToqwbF87n/Z9qsWYjl/xMqr0W\nDZJ1jLYXAhnFTVDOGEqdk4Pbxeq2H8xeCUtyyv1HIEwljLRnjDTZ650cdh46j+7eYYyEUomPasd0\nu2x4+9hF1bakp86NIhpP6MaFc3n/p2qs2UjaV2Em1F4rv7faJMxby5U0Zl69T0gVUa4YiihJeHVv\nH6L81OvYRCCUmxq7FW91XkgbSq2FS9tCj2by2PnBiGFcOJf3v9BYs9ImMi6Ub4Jt5JJXWmfOFDgr\ngxqbVXWbw2YlZU/VQDliKGYbtxMI0w3WQiMpSqit0Y4ZAwAFwFNrw3Xz69Hdp95Dm6ZSyTeey+/o\n2o4m7MmhmYVaXNjM+19IrDl7Ze1z29G20FuWlfV0K2sqNFzAJ0SMx9SfwfFYIp23UAqIQTZJqWMo\nhTZuJxCmMk6HFX+1qQ11Tg5Pv3hIo70hh0fuWYa3jw2gq2dI03DLMvC1e9vgcXHwXTYkuUjTqhkh\nM+9/IYYtezI+GIypuoxLwXQpaypWuGAswiOoETJU8hZKNUEhBjlHShVD0XuZCYTpTjDEAxSVlpFV\nb2/ow/73L2n2A1fgWAY/f/0kgmEBnloOyxc1wMZZAJh7v/SMkN77n69hq3QWt+KS12opOVWSt8zG\nwY3Q/x1JDHlGoCRzEQgzkZTU6yH88o1T2HTbAtX2hhtXLzDlRYoLIgJhIR3D3X3kAi7k0N87XyOk\nF2tuW6gtuVhom8hiMNVbShYzDq6U0Wmdh8SQZwCclcGiOW4cJKpahGkKTQGNDTWqinMAwCdk7D5y\nATRFqbqHB4NRXS9SvZMFnxARyzMpkqaANR1NBRkhZd/OU0MIhK9I3nb3jWDbrh5V92k1uIynellT\nMePg4aiA8Zh6Ut14LEmUumYKf/DpOSU9Pk2V9PAEgi63tjeidW59Sudah85TQ+mViN/tSBsGvS48\n9U4Wj9yzrKCGLGvaG7F5bQtGxuJ5ZxYrhm35ogYAVzK/9bKtq0kJK/s7nyoUs0NTJZW6iEGuImZ5\nagwHq0IoYT17Tsy5qqbSl0AoIxxLY/2qZtA0hd1HLoBP6Gu5BsI8AqH45OPoGK5VS/xoanDCV5+7\nipK3lsO6lU2gaQpPPH8A3/6XA3ji+QPYtqsHoqR/rUqZUqYB5xOijka3uvs022Xsd9unlMu40hRz\nUtPsdxa0vRCIy7qK4KwMVi72450MAYNi4nFxWNbixcETlzQ1fsvBJyPRip2bUH7EpIxb22bjuVeO\nmd5n1+HzeODOJZP+fqX8KOUS9rgmZtLesHQ2Xtt3ZtJ+anBWGo8/sBI+twOv7u3LKSFIL6M3H/dp\ntst44TwvwmMxU/ehxVRTCyuU6SDvSQxylbHljlZ09gyWxGCuWJyaQRbj2JyVNlzpaCEkq2SpTigL\nSUnGk1sP5bRPd19AN4FGlmXIcuq/mTy04TpEojzeef9S2n3N0ICo8qje0jYbzX6XbkLQkZOprlPZ\nMUO9jN571izMOyasuIxtrAVhzU/pM1XVwgqlWHFwI5d0/2AE18zz5HuZukzfX2eK4uAsuKWtsajH\ndNmtWNvRiI2r5xet1plPSCAhaUKpCITiGLrsCs50CSuGUJGWDYSFCbFZhqFBU9SEWLJijG0sDYpK\nuajXr2rGF25fBAAYGo1pr2gjPL6z9b0J7mujjF4AFY0Jz+TOVEDhcXDisiZMINv1wlqZgpJVwrEE\nuvtGEONF0+IIZiDrXEKpkAF87xdHQFEpj463lkNbSwOOnVY3hJ2nhnDPmoWIC0lNY1ljs+Kx+9vg\nuzxYR/kkfvXGSXx4NqD7LI9GhAnuazMu6Uq5Tytd0zwdYK2MpleFoVPbSwUxyFVItuvF6bBix76P\nsP/9gbxLOkZCPEZISRVhCpEZEhkJ8bqCIIEwj1/uPIX7//BaHWPJg7UysDAUtu3qwe+7L+YUvunq\nSRl9M2VKlSojmm4ymJVgLMKrGmMgZaRL+R0Sl3UVo7heHJwV96xZCGeJat8IhKmCXune/uOXsGNP\nL+o1YrSKsVRcurnmUoyEePz89ZOwMJRpl3S5y4iKWf4zU7FzFs3njKZS20sFWSFXgHyyH8ciPIZH\nC8u6JBCmOkale28cOgetSqWO1lRtcCF5FO+e+AQ1dmvVZvROFxnMShLjk7p9umN8smTCIMQgl5FC\nsh9ZKw2uwFgygTDV8dZyWNRchwMfDKpuVzPG3torxnJkLG6oGW9UQaDEq6tV2araJgtmFiDVVKJV\n5+Tg0ehJ7ymxljUxyGUkH/FzxYjv674IvoK1wwSCAoVU0pWNpZFIyhBVlhMrl/hw5GTxu5d1tPqw\n4aZ5eO/DQVNCN/VOFk8+uCq9olE049UGWwUjLYBg+ErHn1I1mymEapHBFCUJz+94H/uPXdBcgFRj\niRZnZdDe6sPuI5NzFtpL7GUgBrkEqM328s1+JD2SCdXEbI8D37p/BcbGBUCW4XRYsX3PGZw8G8Ro\nhE+vxhJi/p4czkIjIUrpbFZeEOHJWuWaVZ0LjQsTXIyclUGNXd0gMzSwdkWqicWpc0HNioRCOv6U\ncyVY6cmCmQVIsTo0FRutVIVSl3oSg1xEjNR7tF5wrexH0iOZUG5cDivC0QSsDIWEONHqOW0WfPtL\nK/Dvb3+Eoz3DGI2knvElc9144k9XQUiIaUP12L+8o3kOqwVIqGv3AwCuv86PP7j+anhqbQAwyYDp\nuRSzyU5k4hMiovGE6mfrnVx6YqwVhwVSAjt6xlTN6FbjSrCUmFmApP5dfSVafELE0dPq0qdHT49g\n022l6/hEDHIR0ZrtSQcZuIwAACAASURBVJdVhZTOL9loZT+SHsmEcrNkrhun+0cxGpls7CLxJB77\nlwOIZHTCGQnx2H/8Eo70DOKWtkb80a3z8cyLRxCMqBs9AHjs/lV443C/plt437FL4KyW9Aope6LK\nWRmsWOw35TnKTmTSLwu64oq+b10LZFnG/gzFLxvL4KZlszRjsXpGt1pXgqXCbEvJcpRo5eqV0Fs8\nBUKlLR0jBrlI6M0IM2X81NDKftSrdzRitseBuJBEUGVgJRDUYGjg0En1ZCmFiEZburggYdfhfhw4\ncUnzM0AqwWqWtwZfvnsJOCuNvUcvqk5SjVZI2YlL9U4ONXYr+ISI4dGYaiITnxAhJCXNGHLmxJih\nafzJHYux6bYWDI3GAFlOC4pooWV0RVFCd9+I6j7TVazDbEvJUradzNcrUefkYGNp1bI4jmVIUlc5\nKDS2ozcj1DLGNJVq+aY14+asDNpaGnQFEbQYCESxdkUT1rY34h9eOaq7YiEQAIChKdUErVzQM8bA\nxMnnndfPxZ6ui6qfC4bjGBqNgbXQqu+kVuKSq86Ovo9HdN3FHKv+fqtNjDkrg2afsVSirov29DDG\nNCbG+awEqykjWQuz5VelLNEqzCtRGWHgGW+QixXbyWc1KyM1KOmdZ/3K5rwMMgB0947glqWziDEm\n6OJ2sqhxsCXt8woAKxalVqyKQbFzFs13hrUy+IeXuxCMJOBxsVix2J9+J7MNUqYxs7EW+N2OtAZ2\nnZOb1Mkp0wUtJMSilAXpTcjHIgLqnRyCkcJWgtljVb2TQ3trA7asX1T0OHQxjP5961rgsLPYf+yi\nZvlVqUq0CpEQHYvw4DUWUcLl76ViLutYLIZvfetbGBkZAc/z+OpXv4olS5bgm9/8JkRRhM/nw7PP\nPguWZfHaa6/hpZdeAk3T2Lx5M+69996SXHQxKVZsR29GaGPV64c9Jl5GT60N3jzd1iOhOH60vTvn\n/Qgzh298oR2He4bynvSZhaaA++9cPGny67BZVZ/tuCCm3xmlgYQoSWBoWnfyPB4T8ML/+QAnzwXT\nnxnXSOKqsVnw2P0rDF3RZtCbkHtqbWhr8ap+x5krwUwjqEb2WBWMpOREe/vH8OSDq4pilEVJwrY3\netB1ehijEQHeApLPGJrGwxuX4a7r52ga91KVaBUiIWrW3V4KDA3yW2+9haVLl+Lhhx/GhQsX8NBD\nD2HFihXYsmUL7rrrLjz33HPYvn07Nm7ciB//+MfYvn07rFYrNm3ahDvuuAP19fUlu/hCKbYQu9Zs\nT5ZlvKlS02bGLWOU8WnEWJSsjgnq2FgGzX4ntv72w5Kfq8nnxG8PnJ00+R0J8Wj212B4NG4oevP2\n0YsTNIYzJ89K4lS23rveRFbRti6GATBy0aYMGqW6ElTz0t28vAkbbrziPdMbq84PRrDtjR7V/tG5\nIEoSnn7xMM5neEqKkXxmpvyq2CVahRjVSqqdGRrku+++O/3vgYEBXHXVVTh48CCeeuopAMDatWux\ndetWzJ8/H8uWLYPL5QIArFixAp2dnVi3bl2JLn0i+cpRFjPLT2u2J0oSKCrzZUyVimxcvcDUdd+3\nrgWxeBL7dcQK8kEReCDMVGTdjNJ8YWhAllMVBTSVMsbf+OJyPPWzw6qfN2OMAfXuO0BqAixKcs6r\n/HxXO1rvrJ77VW8luG1Xz6SJymv7ziAaE9JG0Kjiouv0MDavK6wcZ9uu0xOM8YTjT7Hks0KNqvJb\nHvpgAGNREXUOBmtWXo0NN84tyfUqmI4hf+ELX8ClS5fwz//8z/jyl78Mlk0V2nu9XgwNDWF4eBge\nz5WmzR6PB0ND+jW0brcDFkthP7AoStj6mxM4cHwAQ6Mx+OrtuGHpbDy04TowTGp26fO5VPd11dnh\nc9sxGJysEd1Qb8fCeV7Y2PzC7M1Z//+1L65ENCbgX3ccR3fvEN45cQmdp4cByIjxIvzuidcdF5II\nhni4aznYWAv+4t52fHB2N4IatZc1NgvG4/oJNdmYNcZOhwXRmLa+K2FqEhckuD014Fi6qCpwkgT8\n/dduRYxPYt7sWtQ5OQwMjyMQzi3p0SyBUBzdvepZzHp8euksNDea9+CZGWu+9sWVk97dbDLHhriQ\n1MzA7u4bwX+9xw4ba4Grzg5PrQ0jobjqZ8ciAhjWCl9Djen7ySQuJHW/w0AonvfxtcbfUvPI5g44\n7CwOHB/A8GgMDSq/lxZjY1HsPtKfHvPGoiL+z+/PYPPahairK53Yimlr8+tf/xoffvghvvGNb0CW\nr4zMmf/OROvvmQSDUbOn1yR7djkYjE2YXfp8LgwNhTX3b1voVZ1FtS30IjwWg/ae+V3rmxnnivFX\nDKhy3WORGBIJGSfPBhAMC6h3WmFjreATSU1jDCBnY5wLkWjpjk2oLJ8MhiCLxZ9p/cfe03jgM4sh\nxARcGo/jV2/0lMwjU+dkEdAwVAo2loGDYxAIC2k9gAPvX4QgJE3HR43GmkwsgKnxYzAYxZDKggAA\nhkdj6Pt4JO2l04pDA6k4tSgkdMc6o+vQ+w7rnGxexzcaf0vNxpvnTYphBwLjhvv92d/tnvSsSjLw\nwNNv4IVvFeb11ZugGD6Fx48fx8DAAADgmmuugSiKqKmpQTye+vE++eQT+P1++P1+DA9fUTcZHByE\n3+8v6MKNMIoB8wnjmfd961qwflUzvLU20FSqTnL9quaiC7GHo4Ipbd+9XQN45/glBMICZADBSAID\ngahq3SRnmX4KP4Ty8szPOyEU2SDLAN4+OoCnXzyMKJ/Ez357Em91qdcbF4OORQ1wu/S779x43VVY\n3pLq9qRch5Istm3XaQwGo7rjRTHGGjVyaZe4Zf0izPGrl2AVGtvUuw4g9R0X012tZMHn+73lQq4t\nMM9eGtOcOMqXt5cKwxXy4cOHceHCBTz++OMYHh5GNBrF6tWrsXPnTnz+85/H7373O6xevRrLly/H\nE088gVAoBIZh0NnZiccee6xkFw6YiwFnu46zKVaWn1ZcSUnYOHxyUFX9KF9cDgssNANepZSCQKgG\nzg9G8Nf/6/e6nZNy5YZr/TjdH5oUo+UTkm5DiFvbm/C/XlWvONjbdQFvdV7QzSgudr6JQi6xToam\n8eSDq9JZ0GMRYYLGdyHoXcccvxNb7iiOmthUkBA99KH+wunQh0O4elZdSc5taJC/8IUv4PHHH8eW\nLVsQj8fx5JNPYunSpXj00Ufx8ssvo7GxERs3boTVasVf//Vf48/+7M9AURT+8i//Mp3gVSqKmZ6e\nb5af0QNWquYQ4WgSAHElE6qbYhpjALj7xnnw1dsnJU1ardpCDm4nB1GSNA2qsmLWyyjWH2sKa8mn\nlgx28/JG1QQihqbxwJ1LsHld8cVBMq8jEI6jvqb4dc5TQUL0U9f48NuD53S3lwpKNhPsLRHFiC1k\nx3UU1q9qNhVDLuX571mzEE88f6DoWawEwkyEs9L44X9fPckAab2DmXhcLKK8aCqBzFtrwzMPf9r0\neWwsjVvaGgte5WV62Zob6ysWey2mEljm+MsnRM3xUOs7rxRqMWQgVZlS0RhytVOuGLAaRnGloWBU\nt1SBtVBgramfgK6MUhuBUDFsGhKWWqh1WTLbES0QFkxnc2c2P8hEGWuyr1vR8X55d6+p42uRa6yz\nVJTqOsw2nKgGnvvvN08Sz6Sp1N9LyZSXzqxkM26jBwwUpS0NaKFRY7diNMzD7eRQY7egf8g4+49A\nmOp4XBxWLPZpCuaoYWMZ3HvbwrQcpuKq/sXOUzl5oGwsgxqbBYEwDy3foFa4i6Fp3LNmITpPDaoa\n96lWq1tuKqmAlStOmxW3r2qeVIfstFlLet4pb5AVKtGM2+gB89XbNRMlhKQE4XJdZjDCIxjhMcfv\nxNBoTPVlZy00hGRx43EEQrm5eeks3H/n4rRBPXluFBdMTEQb6mz43s+PTMjTkGRZN5FLjbgg4tE/\n6cAbh7TbP3a0prKxM42/wliE1yw/LGbLwOlIJRWwciU71j0WFTVL3IrJtDHIlcDMA6bWJi7KJ1WN\nbjSegJ2lVbcRY0yYSixd4IGnlsPxvgCCYR7uy6tiJc4qShK27TqNgWFzXqFM75GSCGRj84u47em6\niFPngprbPzwbxOP/+i6CYWFSkuZUWuVVI6VqJlFMii2pnAvEIBeI0QOW7VIXkhK+88J7qsfSc6MR\nCFOJ42cCAACaTtVuUlkBuZd395qWulSEPLJR61drhu7eEdXOSwoXVIw/kMoCnkqrvGrETIix0u0l\nS1XiZgZikAtEecA23DQP/YMRNPudcDkmixQoLnU+IWp3hXFxkGVZVQSEQJiKSJdtZqZh23DTPBw+\nOWj+GEWepI6O86h3sjnpAmSujKp5lVdpY2YWtRBjtdQo1zk5uF2s6jhc7yysxM0IYpALRO0hamtp\nwPqVzXDarYjxyQkvh4WhNFvOtS9qQM/5MWKQCdOWfccumhbJoSnglrZZOPFRsKilgx6XDW0LPXir\n66LpfTJXRpVMJNWiWoxZIVRLjTJnZVBjVzfINXZrZbs9EfRRe4je6kwp/yiutswG6y/v7lXtqDLH\n74QMaHZbIRCmA3xCAp8wN+GUZODO668Ga7UUVVynrcWDLetbIcky9h4dMLWPWny4EomkWlSLMcuX\nSsZt1a5Fq4d2NJ4Anyisq5YeU2PqVKUY1UBO0sx9o0fz89F4Al2nzLvxCISZwK7D53Hfuhas7Wic\nVBeaL6f7x8DQNKw5dJorZny42DrOpdLZLuR6cr2/aqpR1ruWkRBf0mshK+QCMOpRmo2iP6sGSegi\nECbT3RfA5nUy7rx+bk4uZj0uDo1jZCymacQYmkKtw4rRcSEtH1mM+HCp3MqlSkLKNR6tdn83L2/C\nhhvnGt5fNWWvMwYqTUbbC4EY5ALQe4jUGIsIqHdyqhmerIUuuu4vgTDVCYbjGApGEY0nc2rfaGUo\nJDS6WEkycOjDQU0jJssyFs+tx8lzowhGeHT3DoOhqYINZ6ncysU2ZvlOHNTuz2ztbjVlrw9qtMPM\n3O6ts5fk3MRlXQDKQ2QWT60N7ZdFB7IhxphAmIzVQuN7vziCv9vWlVMvZZrWl6N9ZU/fpFIsBdbK\n4MAHVxLPFMNpJI2p56otpVtZbxzKx5gphnUkxEOGufufSq1wjWjWaHFpdnshkBVygWSWQIwYNElX\nSiMYmsoomeAQiSUMDXKpmrsTCNVMvhNVISFjlseBgUBU8zPa5VTqG7SSi8ysKEtd21qsUqx8k6uK\ncX/Vkr3OWhkwNAVR5QFhaAosybKuXjIfokAojl2Hz6O7bwQjIT5tRD1ZKkUThEISIp7cesjwPMQY\nEwjm8dTa8K0HVuDvf3UUF4YiurXMNKW8pzYsmVuP/RqSmlqGxYwrutQx0mIZs3wNazW0wi0WYxEe\nksYDI8lySYVBiMu6SHBWBrO9NdhyRyvaWhrgvvwAup0cli9qmBR/UR46n9uBuprSCpYTCDONjtYG\nuOwsnnroevzDf7sFX/nDazQ/K8vA1+9rxzP/f3vvHt/Eded/f6SRRrIs+SJbDtiGBHyDAAYMIQFC\nuMRAkzYbmgskFNI0aba7afpk99W0ZSmbNNl02ybdbC+b/bVhQ5MmpSUlv82LfTZPSQghJYRLwIBD\nAhhDLmAMlm3ZlixpJI3m+UMeoctcNSNbss/7L9CMZuZ4dM73fO8PXY91KxtQViQsPGgzBdpMxc3S\nTJjFBbcPLSLZEYmmWiVmZT2ir7V2auIFqxBSglVvs/lIUmy3wCLSicxipkhhkHwitSSgxxfLS6aM\nhvhuOTV6sanepVsEKYEw1lnaVJVkqnXYaMyZUoH/3ntORIOzoLrCHp+TYsFFwRCLjS8cABNihxZs\nTrJ8Z6pGKWZWvmvJZGzd1ZZRdLLeaAmuEhrfwpmVuG3+xKw9b7bgRFJexD7XCyKQdYAXsAUWk6T/\nZdWiyXhj77l0X9PNtThzoZ+0XyQQNFJgobB6abI1ip+fjTVlghvf/sEQfvCbDxAMRVFWZMGMGics\ntBGMgLDlG78o6a2cqlGKmZW37moTjE72+oJYv3KKqvHrQab+aKHxVVeWwO32Dsdj60a/jxGNXWDC\nUVLLOldJDeYQS2kCgF5vEK/uPI0Dn1yOf5boa3riG9fh1bfa8N4xoikTCJnChNj4gikUbDWhwj5k\nFr6y4LJRDmwopvn0DDDYc1RZ9S45xDTKRB+pVBDVe8cuAgYD1jbXDaumrNUfPdI+YK0UWKTFotxx\nLRAfsgZS0wOkOshwHHDo5GXBY0fbuhFhOXz9S1OweNb4LD0tgZB/qJVDFtoU10qF0neUlqbVUvvB\nSlOK03WkgqiiHPBuS4dsupWeJPqxtfqj8xW5SlykUlcOIlc2UwixSE+PNwh3XwC0yYi7l9bBbKLw\n4cku9A+SJhOEsU1UddZTbJJJzU8lqVRaOkwVWk24c3GNIq1WSXGh4ajlPBzNKfKlE5VogrrS4xog\nAjlD5MpmqmnvRpsp/OK1Y/GG6DPryjGzpgzvf9Spe+s5AmE0E2TYuAajpqxtKk5HbB62tvfA4w2C\nNlOK/MYA4PEyiv2MUkFUV66XvR68vJDc+eH5pGBUvaqIBUMRdPYMxtNB86ETVXFhevtcNce1QARy\nhkjtbMuKrPj7Vdfi6d+3KLpWMMTGJ3vPAIPdR5Q1bicQCMmUl1gRikRRXEiLzk/aZEQoIq0lNzW4\nsLa5HszSmMCy2+ihgMxYoJNZotStkrzbRG1xzbJasGwU7x27KLgBz0Yt50SNuGeAETXRZ6qd89dv\nPduTVooy1ztRBZiI7HGhnvd6QARyhsilB1S5HLDS4rtqgyG2Cx8MhiVTJwgEgnJ8gTCeePEQnEUW\n0b7j86dfhYOfXBadd4tnj4/7fxMDlFIDnV57NznFkUcqPUjMNLx2eT1gMKi+XqakFjORcqdlop2n\nXl+I4W6rqJQCiyneOjcVoyG7QV1EIGtAKj0gwnKQqq91/dQKrLx+Ip763eFheloCYfQTYK5YmnoG\nGFS7CtHdH4gLXytNwUQZsWDGeFFL1LmOK2k6qX5PXkAzYRbNc6oBIG7WVpIeJFbVi2WjaJ47QfX1\nMkFN/Esm2rnS62fTFK+FABMR3aBEOaIh5yxS6QE9/X5JzffAJ10osJhUdYsiEMYCYtpJJnT2DIJN\nmIbBEIt3jnRgyexKWGmj4Bw93+XDH95ug4kypmmydy2ZjO17kmsJNNaUoXnuBDiLrJLanlyK056j\nF+PXW71iChBhs6I9qmkbm4l2rvT6w91WUSnFdgtK7WZ4fOG0Y6V2mlTqynWE8u6K7RaUyQjb1rO9\naKwtFzRTEQhjFT0DGVmRPfHxMz2SG+b9Jy4l+Yh5Tfb0F31JqVM9AwzePXoRFGWU9YfKpTglXs9h\nt2LVwmskr5cpSiK7y4oy186VtqXN1ZKaFjMFu80iKJDtNjqrz5x7IW6jBCWtGT3eIJrnVGPp7EpN\neY8EwmigqNAMMzU8E6FvkIHDJl5DXixgq8MtnMfM162WqkctVSc6lQMnOjXVtBaDjUbx+ntn4QuI\nZ4CU2Gk8fv9crG2uzygKWm7t09pWUY+a33LXHxT5+wwGQlm7L0A05KyyZlkt2CiH9452iEZPOous\nsfJ4IgEdtNmIcDgKZ5EFdRNLcUCkEw2BkO8MDKZrJNmipNCCGTWl+OtxdfNJKvjplZ2ncfoLT1pq\nT4TlZOtkp9LdF8iKf1VJsNXAYEizn5QXtq1ne9DdF0Cpw4rG2jI0z6mWNe2LMRy50sCQJcMrLJB7\nvSFSOjNfoYxGrF/RAHCcYA3dRJNNrDyeIS1AbNWiyfD5QyiwmPD63nPDPQQCIW+wWUzgIJ+2AgCz\n6suxtrkOLW3d8AXkz+cR82/TZgofJGyWE03c/mA4LkBm1ZVj2ZwqHD/Tg96BIAwi1ysvKdDdV6k0\n2CpT325qANza5np8684CnP2sR5diIHJtLvUqPEKirEc5a5fXg6KMksXaxQLE2GgUrx38HC2n3aoW\nDgJhtCGVP0wZgeuurcB7CrqmTaiwY21zHSIsB9qkTrO6qtSGzl6/wBFh1TnV3/zOkQ40z63G0w9d\nL1iQg+eG6eN191UqDbaS8u0KCT0pzdVKm3TRJqU2Ey2n3WCjHFrbu3XRnEmU9ShHTbH2xACxUCSC\n7/7HPgwGs+ezIBD0Qs/o6FRokxGb7puDp18+jBCbfhMTZcRH7d2Sz1VipzG7rjy2QTYa0dPvh0fE\nNCmElaawYX0T/mffZ0mb6ykTS7BPhSuJz7+tKLWJWsYeuG0aenv17f4mF2xVliDIUpESulKa66P3\nztHl2aU2E71eRtcqYyPZXIII5GFErgtK6u7z6ZePEGFMyBuyWea1orQAz712XFAYA7EgLCYsLFw5\nAN+7ZxYmVxUnbYSVRgPz3Ng4Ho4COm1zDQCnvvAovk7vUO36apddcLMOAF2eANjwlbSn1LUhE/Os\nVDGjBdPHYf3KBtFrSeVPt57tEfxOy2k3giHtVj0mzCIUiaLUQQv6dsU2gpkWHpHrIdA/GCIa8miG\njUax9e02HD3TjT5fCGVFFkybVEr6IxMIAOxWk6a54HRY48I4VZApCbISSgFK3VwrDdYCYp3f/n3b\nUcyZclXcrGoxUygrtl7RQr0MnI6Yz5kDcPxMzBxb6qBRWEAn+aXVmGelihmJfV/KXHz0TDf6RWr2\n93oZ/J/XW3HvMmWNNlJJ1cottLBg1bvKGDiZnaXccQ0QgTzCsNEonnrpcJqvSW30J4EwGjEaAF9Q\nm5bVMLEktunddTZeu5k3X6+5mRdQ7jQN12I2YHZDBdYtr4fNIp4iBQgLOpvVJNru0eMLY9fhC4hy\nHNYtbwAgrIW+k1JNrNcbStIS1ZpnM+l1LGUu7veFJPvA7z58HkZwGZmOU/8efBliK00hFGZjkds1\nTrSe7RG0TmQanOYqtYkWjbHSFFxZrCxG/ehHP/pR1q4ug9+f/faChYUWXe/DhFn0DgRhMhlhouR3\nfXLn/+HtNhxvFzb5EAhjHa26iMVkxOeXvNjd0oG28/3x0prBEIvPLnlxvL0H3/7qdCyZXY2e/kCS\nJs5GgQtdgwhFopgxuQyA+Hw2GgyYMbkMi2dV4sYZ43Hr/KuxtKkKASaCfh8Tv28qnT1+NM+dADbK\nYevbbaLnydHvC2HxrEpFaxIQ87kXFpgVnW8yGbH/40uCz1ZWZMXMunJ81ukV+OaVZ5s/7Sr0+xhV\n66bY36O4kMaGrzXhtoWT0FRfge7+IM5dHEg7b+GMcZhdJ10LQggTZYTHx+BTgTHdNKsSTRlcM5HC\nQvFNAtGQFaI2B07J+UyYxbE24UAUAoGgHWYoKlusycv5Lh9+v/MUTBSFQye7BM852taNVYsmD3V7\nkp7/qabstc31uOHaCtHOb8EQC7fHD9pMaWoXmal5VokvWq6RzppltWBCbFLaVyI9A0E8seUQ+n0h\nxSZ2Ka3c42VAD9UVB6TN8Jly7811MBoMaDndhV5vCE4HjRtnVeO2+RMzvqYSiEBWiFwOHE+8v+ih\nL5Jyj+NBEFEulpuM2I+uT8TUAwB2KwVHIY3OnoDoOQQCQRt7ZdxDHm8Qf3y7LSmSWompmF8LDJBv\neK82wCwVteZZtQqGnO95/coGnJYIbON7wys1sUv9PVLHmokZPlchAlkBkkENQ5F8JsqQ9AM3iMzB\n9452AByHtcvrYbfRoM3ifVX9IRb1EwqJQCYQRpASuwWnvvAIHhOK5E3tNVxcaIbRCEQFprmVpuAq\nKVAcYCaG2rrQYgpGIBjBOoFoazmhp/b55SKg5bRyoe/JZbGo4U/vnEny3/d6Q9ix9xwG/Qy+NuTz\nzwZEICug38eI7vx4U9GuIxeSfjxigXhRDvFi9IB4zVwgNoFbzhCTNoEwkky5uhT7RcyxQqbiVGHX\nL1ESdOGMcZKm11l1ZYiwUew93ilaOWrxrEpV5lkpBWPfiUs4+XkvmhoqBLVlKaGX+vzFheLBXkpM\n7NkwRSuBCbN4v7VT8Nj7rZ24a0lt1jRwIpBlYKNR7PzwvGiuW6nDigKLSXF/UZ6W027NASsEAiF7\n8MLuziU1oubYVPOpXHlKizlWbczpSC/CkaiFUrQZbCgcX/iNRqNgRa/Fs6viLjClyFXs6vWGMiqs\nkapFF1hM+PErR9DlSbfwKTGxj5Qp2t0XEFWUmHA0nkOeDYhAlmHb7nbJ9oiz68sRYCKqAzI8XoYI\nZAIhh6ksL8Sam2uxfc85DAaFtdxU86mUNQ0ACmgTfnjfrLiZWgiLmYKrvBBu95UoX7GKXtlsj5hp\nYY1ELfqG6eOxQ6AGvxoTu56maCVIxfXwx4lAHgGkdruJpqIIy6kOyCh1WMAhJpgJBELuccE9iB//\nvkUwl9hKU7ixcXyaQCy2W1Bip+NBTKn0+0OgTUbFwigxClovbVGpvzfjwhoJPHDbNPgDoWE3O2uh\nt186ZkfuuBaIQJZAyrTDAVg5byIooxGUUbxST7WrULDKUFNDLJct0yAOAoEgjMEAFBea0SfQYF4t\nYv2PbRZTzLQs4GOdXVcu2N0NiFUNUxINzbJRbN3VJhgFnSggM+1wdMU/m14QhSfTwhqJUFT+RUDX\nVZdoOq4FIpAlkDLtpE4ssQCEu5ZMxvY950R3iP5gRDR/j0AgJEMZYwGTpQ4L+gdDiAjUtq522fGD\nrzXhxy8fFunMpByxsox9PkZUe1y7vB7tHQOCmrUSUy0TZvGr145ht0SapdbewIn+2Vd2nhZcg9RG\nbksx3GZnLVAyhUvkjmuBCGQJ1ITeR1gOzXOqcduCaxBgIiiwmBBgIuA4Q1qgQ4CJIMJysJgprF/Z\ngFOf94o2xCYQRjNmyoCwSMMIIYrtFty3ogEftnVhX6vwRtYfDOO13W2ahTEg3rhASnukjEY8fv9c\nbN11BsfautE3yMCpwFTLC1m+GIUQvF/39ffOKqqLIIfFTOEbt06BzWrKK7NyNimwmGCAcJU4A+mH\nrC9qTTxyofeprPHFPwAAIABJREFUO1Wx4u93LZmMXUcuCO5omxoqiOmaMCYJsxxm1TpxrL1X0fm9\nAwx+sb1VstRGzwCDo2fky9FaJGoA8FS57BlpupTRiPUrGrB6aa3i9SY1XUoIjzcIt8cvWxdB6l6p\na+BoKqyhBwEmIhpwy5F+yPqQqYlH7seaOonEir+f/qIvrYEE/71Eod8zENRtzARCrlNcaMYdN9Uo\nFsg8cjq11y/vP2bCUdwwrQLHzvSkldY0GmLCeMO62fjvv36asfao1FQrly7FU+qwAgaDRFlJ8UAs\nuTUwn8zK2SS2xhvAhNN/ZRazUbNfXQpFAvmZZ57BkSNHEIlE8K1vfQszZszA97//fbAsC5fLhWef\nfRY0TWPHjh14+eWXYTQasXr1atx9991Ze3C1KC19KYbQj1XpJALEg0P4HS0v9N0eP/79tWPw6BCQ\nQiDkOv2DYTz32nHdrytmak7lQtegYJ3rKBerc/3ff/1Utfao1AqXeJ5cbjDP7PpyuEoKFJeVTETr\nGjimMAgbrcUqMOqFrEA+cOAAzpw5g23btsHj8eCrX/0q5s+fj7Vr1+KWW27Bc889h+3bt2PVqlV4\n/vnnsX37dpjNZtx1111Yvnw5SkqyF5GmFCWlLzMx0SidRID44tDrDeJcRz8mVxXHP2uYWIoDnwgX\nuq+uKERtdTEOnLgk2B6MQMg3xFKEtKBEGAPAxW7pPsuJ64Oc9qjUCid0XmNtOUodtKjvuCzB9bV9\nz1nFedE82VoDRyP9PgaMyNoaDEU1p4JJISuQr7vuOjQ2NgIAioqKEAgEcPDgQTz55JMAgKVLl2LL\nli2YNGkSZsyYAYfDAQBoampCS0sLli1blpUHV4N055DMc+3UFIQX27FzHPDsn46BNhvAshzYod8B\nZYztz/j6t7TZiJvnTsAdiybhT++cIcKYMGaYN6UC7R19qgIfnQ4LZtaVo7W9R9INJCe4eweUrw9K\nNVCh895t6cCECrvgGBdMH4f1Q/Wlt+5qE/Qzi+VF82RrDRyNyAVtZTOoSzZ+m6Io2GyxF7V9+3bc\ndNNNCAQCoOmYU7usrAxutxvd3d1wOp3x7zmdTrjd6spJZgtecAohZeJhwiy6PH4wYeHWbXwUthKq\nZCq7hMJXhDEQ68UajQI3XFuBpx6ch2f/fgG+uqQO/mAE+z4iaVKEsUN7Rx8KC4SDaKpchYKfz6wr\nx8rrJuDx++fiqQeuQ5nI/DfKN2LCzg/Pg03oDCG0LshpoPy5Uuf5g2EsnV2JsiIrjIZYr+HmudX4\nxq1TYDFTkt8Vy4vmyXQNHAukvs9+mUpdcse1oFjU79q1C9u3b8eWLVuwYsWK+OecSBcFsc8TKS21\nwWTKvpmkurIEC2dWCZZwWzizEtWVyWZ1lo1iy/98jAMnOuHuC8BVUoAbpo/HA7dNS8tBe2T1bNC0\nCQdOdMIzwKC8xAqHjYYvEEZ3XwDlQ9/9+q1T8V87TuD/2/+5qmc/2+nFgZNdOHzyMtx9AZTaadHe\nrgTCaIQPlKSMBrBDKm2BhcLN103EN758LV5+8yQOnOiMzzd7gRknzvVgz9EOlJcUYEZNOeZNGyc4\n96qvcuCLS+mN6HmiHPBuSwcchRY8cNs00XWhyxNAr0jVPY83CIo2w1VeiM7uQYnzGNz7pWvxcJEF\nngEGpUUWWOkrS7TUd/t8TPweYqhZA/XE5XJk7dpaEFrn500bh4FBaYFb6izM2pgUCeS9e/fiN7/5\nDf7rv/4LDocDNpsNwWAQVqsVly9fRkVFBSoqKtDdfaUzUVdXF2bNmiV5XY9He56gHC6XA263F7fN\nnyhYwu22+ROTasYCSDMLdXkC2LH3HPyBUJLpKdEX5BlgUGK3YPrkMqxtrkOE5ZLyjru6fRjIoEym\n2xPAmx98Fv8/yVcmjFXYBPtygGExOMjgzGc9uGXeBNwybwL6fQz++tGlpPni9gSw+/B5WMwGTKiw\nYzAQE+68C+lyj7QPmWff8Yvw+oJJFbj4dcHrC2JpUzVK7cI+4FKHFWwoDLfbCzbMwukQD8gKDAbR\n2+tDzTVl8PYHkLgyyX2Xv4cYatZAveDX31xEaJ3/f9//VPZ70VBE05ikhLmsQPZ6vXjmmWfw0ksv\nxQO0FixYgJ07d+L222/HW2+9hUWLFmHmzJnYtGkTBgYGQFEUWlpasHHjxowfWm+U5tqpCX5I9QV5\nfDFfEGU0YM2y2qS841IHjcFgRPVziyWoEwhjnT3HLmLP0YsosVswq74cdy6uweGTlwXPZcIcznf5\nUOWyAd5Q3Hcsl4fM0+sN4qhIK9T3hp7DQgtb+xIDraSKDdmsJjz10ofoHWDgKi3AtElONM+phrPI\nCouZyqhHcCIk3/gKajJkUun3MSOXh/zmm2/C4/HgH/7hH+Kf/fSnP8WmTZuwbds2VFZWYtWqVTCb\nzfjud7+LBx98EAaDAd/+9rfjAV65hFy0pNLgBznBzbLRpN10ppotEcYEgjC8V4zfCJ/6zAN3n3Th\n/w53Zla5Eonevrxw511JVppCKMyK5iwLFRuyWU1JdQq6PAF0eTrwbktHPMJ6zbJazT2CM619PdpQ\nkyGTRhZznwycEmdvlhgOU4ZakwkTZrFp8wFBs1BZkRVPP3Q9LGYKXR4//um3B0TLqxUXind8IRAI\n2YEyIik4Ui+WNlWhtb1bUUZFWZEFj97VCFepTVEecoElphnLXbt5bnXcZSYmWMU+11r7OlOk1t+R\n3BxIrfNy/PL/uVGThqzJZD3WUGoWkkp5ktpNEwiE7KG3MDYagMWzq+L9iJWUuPV4GdBDJmYpeGtd\nl8evSFtLdJmlWvrkBG4uFQUZqc1BIkpbUArRPxjKmsl6eEafZ6xZVovmudVp6QepZqGGiaWC359V\nXy6aZkEgEPKHxbMqsX5FAyijEWuW1WJChXxjerVpRFIpSYnwLjMheIHbM8CAwxWBu213u+KUrOFC\n6lmHE6F1/uY5VZjbIJ3KGopk7+9FNGQBpIIfUnd3FpMRBiPAhKJwFl3x5yjdTRMIhNxkQoUda5df\n0R4jLAe/SIWsRNS2LVSqrYkJejmBe1Pj+JwpCpJLFcPE1vlzF/tw+LREwFcWvbxEIEsgFACWavph\nIjEb2XinDT/8+hzYLGYAyYEbvQNBEpxFIOQZg4EwIiwHvvSAXCBQqd2COVNcWLVoEro8flW+USUN\nZsQEvVwgKgwGidrXFoTCLJgwOyyCMBcrhqWu8wbJXmLyx7VABLIKpHZ3nb1+vL7nLNavnAIgeff1\nu/89iUOnhGtTEwiE3KTXyyQJCMm4ETuNf75/Lt488DmeePGQqG9ULJApcb3oHQhi38eXcfDEJUWR\n1FLPVeqwwlVSIKqBDwbDeGLLh8Pmx5V71lyoGCZnkiYm6xxBbod89Ew3Vi9L32me+sKT7UcjEMY8\ntMmA5nlXxwVZsQ7BlV0eP0JhNh4xLSbY5k6pwJsHPhcMnGKjHO5cPBlb3z6DU5/3wuMNiQpAi5nC\n+LJC/P2dM3Hb/KsVRSErCURNTZeizRSCITZeE3+4gry05lIPB30yKapyx7VABLIKiu0WlNjFJ3m/\nL5Rmcun3MYp6s6ohW6kdBEI+s2hmZZIgk0snKrXT8AcjcbeTEM+91goAsNJGLJgxHquX1gBIzwNe\ntWgSnnjxkOA13m3pwHtHO5IaWSgRgGr6E8vlJydq4O6+AH7x2jHBErzD4cfVmkudbQKM9Hotd1wL\nRCCrwGKmMKu+HO+2dAgedxalm1zUdIRSChHGBMIVTEagaUoFbmwcj2AokiTIGmvKkgr08CycPg4r\nr58oKkRTCYai2H2kA0aDISkQqMBigi8QxqtvtUnOcbGuUloFYKIJXEkVLouZAm0ywiOi5Q2HHzfX\nK4bJdQBT2tozE4hAVsna5jq0X+hPqqrDI2RysZgpNNaKC3ECgaANymjEoU+6cOiTLhRYKMyfPg6r\nl9Zg+55zaD3bA+BK+1Onw4KmhpipOMJyqjfLLafduHNxDUyUIV4aV8tmO1MBKJXLK3etXPHjqrEA\nDCc1VUWajmuB5CGrhDIa8fj9c7F0diVK7DQMEM9T5mmeUz28D0kgjCESTc4BhsXuIx348e9b4rmu\nwBWtZmZdOdY214MyGlW1T+XxDAV6JebSaiFTAagll1dq3Lnix9UDufa5YnT3iffPVnJcC0RDzgDK\naMT6lVOwepmy0m/OIivKdDZbEwgEcS4IWLAAoLW9B8zSK4GXSemJ3qBsimmpw4ICiynjxgSpZCIA\n9cjlzXU/rha0VgKLsNI/ArnjWiACWQNKTS5SkYXjnTYMBsMY0Dnwi0AYy4gtmakm4lR/5s5DXwj6\nnHmaGlwIMJHMGxMMYaUp3Ng4PiMBqEcub677cbWgtUyoq9Sq6bgWiEDWGa8/hAtdPlRX2JPqnUrt\nSPu8DL73f/aP1CMTCGOGRBMxE2bh9vgRYqOgTRRcJQW4c0ktmBCLI23utNaM1a5C3LVkMjhOvNBG\nInzXJ3pI0DEhFs4iC6ZMLMW9y+ths2S2/OrpA85VP26m6GE9cJVI/z3kjmuBCGSdCEUi+PHvW9Dh\n9iHKxYJIqlx2/PC+JtAmk0w5TlLHi0AYDmbXl8NEGfDq26exr/UimPCVuUcZARNlBBOOwmJON21e\ncA9i+55zuHNxDRomluKDE5cE71FWZEVjbRluahwPijLCVVIAALppovmQyzscCBVZ0cN60N7RL3t8\ndp262AOljGmBrGf7rx//viUp8jrKAee7fPjx71vw5APz4p8L7UgLLKZ4FCiBQNCfEjuNuVMqsGZZ\nLbbtbsfuI+lZD2w05n8EkKYd87zf2hn3TVrpRM3XisYaJ5bNqcLuIx1obe/GnpYO2ejnTNeg0ewD\nlkPKR6yH9eD0F72yx4lA1hG923/1+YKCaVAA0OH2weuXbtcVYCJEGBMIWeSRO2dg8vhiMGEWLacz\nL2Mbq27Fxv8NxHKa161sgMVMYeuutiQftJj/UusaNJp9wHLI+Yi1Wg/qqkrw1ofiaap1VSUZPLUy\nxmTak97tv17d2SZ6LMqJR3zyFNstcDqy01+TQCAAruIrZuNenUsfnvqiDwAkhX3LaXdS+o3aNUgs\nhYe3uMkJmkxTgHINJa0klbbPFcMtk9Ykd1wLY05D1rv9FxNm8WmnuM/BaACqZXqoWswUCgto3RcK\nAoEQI8BEYLOa8OaBz3S/dmKfYrE5nNioQskaxKNVk9bbGjjSKPURa7EeTL1GWgOWO66F/HsjGlHy\nQtVer88nnrJ0VakNtJmS3J0yYVZRn1UCgaAep4OG3WbGUy8dxl+PCwdiyVFcSMd9xqnwvkk+FkQI\noyEWKwIAvQNB0Qjt1DVIqzVPb2vgSMP7iIVI9RErtR6kEhSJH1B6XAtjTiCreaFar2c0AnUTi7Fp\n8wH8028PYNPmA9i6qy0eOMLT72NI0RACIUtMvdqJ1987JxrnIYfBAMysdWLhjHGCx3nfpFQsSJSL\naekAsOtIun+TJzUtS848yyNkklbzfSlyydw9HFXGzl7o03RcC2POZK13yoDU9arK7fjrsc74/8UC\nPIrtFlhpY7wVGoFA0A+KMuDo6cwra3Ec8Nfjl7BsThWa51aLRjYX2y2iFfnKiiwotlvAhFm0tneL\n3quxxqkqhaes2CpqktaaApSr5u7RHGE+5gQyoP8LFbpeY40zXtg+lVRfNRuNIhwhYdYEQjb46/FO\n+ZMUcPxMD55+6HpR36T0Zt8Fy5DrSqrKV/PcCfF/K0nhkYo4vnNxjaYUIDUVr/RMIZUj2xHmNVXF\nmo5rYUwKZL1fqND1+n0M9oiU4Evdnf7hrTZSHIRAyIDh7A3Oz1spQSa32ZcSsmVFVjiLrpRllLPm\nxe4jHRyWqTVQafBrJlq0XsI7W1XGKsulg3DljmthTApkHr1faOL1lCaoe/0hHNFgTiMQxjLD2Ru8\nxG7Bzg/Po7W9W1T4yG321brMpAR8T39Q1iSdqTVQqblbjRadqybwVHhfv9RxqboSWhjTAjlbZhb+\numLN0fnyfVt3teHDk5cRihDfMYGQCWoq3N1w7VU41t4dL+ihlsICc1Jfc174BIKReGEQHqnNvhIh\nGQxFcKHLCxgMuHNxjaCAl9r0l9gtCEWiiLBc0gahwGJCgIkgwnKgJGSgEoVCTfoWoL3pw3BRbLfA\nYIBg5y+DAVntFz0mBbKWnZqUEBe67oQKOwYDYfT5mKSJl/rjJBAI6lEqjK00ha/fMgXrohz++HYb\nTn3hUZzZUFZkQWNNmWhMyL4Tl3Dy8140NVQoWkOk69pH8cd3zmD/iUsIMGz82RfOGId7bq5LuraU\ntu1nInjixUPxte2uJZOx68gFxWueEk1eyh/Oa9F8J3i96z9kk1CYFW3DyXGx49l61jEhkFOFaCY7\nNSVCXOi6PQMMljZVYeV1E+L3l/pxEggEeQwA5k2twMGTyspgLpgxLr6IPviVa8GEWfQOBPHW4fM4\n+PFlUa15wfRxWL+yQTImBIgVBBHTlsUQ0qKF6mwHQyzeOdIBg8GQtj6latu0mUoq78mvbae/6EtK\n+1Ky5mnxh6cGjenR9GG4+PTigOzxxtryrNx7VAtkNhrF5jc+wr7jHXEhKrXTldqpyQlxKSHb2t6D\n1UtrFaUzEAgEeThAkTB2OixoanCl+UwtZgrjywphpoyCwjixXzFlNEoKn0TUasuJyNXZPtrmTluf\nErVtt8ePX25vFRxPh1s4B1tqzZPzh5soA2xWs+DfJNUfrmfLyEQycTvKfcdhM0t+X+64Fka1QBYS\nolLNx8V2alLC9sgpN25bcI1k0/LU6yqd3AQCITMsZgM2fG0O7AVmdHkC8AfTA3Gk5nWh1YQ7F9fE\nBaqUCTcVXlsG1PlG5epsJ5bfTMVipkCbKdE1SMy0r0Q7FfOHb9vdLlhsZUKFXXADpGf9h0zcjkq/\nU1QoHbAld1wLo1YgS002sUAQsZ2apLnFx+CJLYcwu96FUodwPWqhkm5KJzeBQFAPE+bwb9uOwR+M\nCPYnB+TMqOnC74oJ161oM63WN8o3mRETyk6HRVKTlNroq13z5JBaX/1B4aAxPes/ZOJ2VPqdLk9A\n8t5dngDKhpqV6E3uxJrrjNRkE9stiu3UpMpjAkCfL4R3WzpQWCC8cxJLZ2ieWw2nI3sRewTCWMYX\nuFLKMrE/OY/aMrq8Cffph27AgunCZTQTUVsb32Km0NRQIXqcLy4i9X2xspJVLuHc2UzLTWbSE+DK\n3+96/Ovf3oCnH7oea5vrVac8ZVISVM135JoByR3XwqgVyFKTzemwYGlTleL2XFI/9ET8wTCWzq4U\nvW5iTVj+x/kPq2dmPkgCYZQj1qwhU/j+5EDmdZEtZgrfuHXKUIs/8Q11iV1aoxVizbJaLJtThQLL\nlXtbaQo3z6lKW5+EakyLtR784X1NmloSpqKlJ0CmTR94MtkMqPkORRkg9rOjjAbQWYwGH7Umaymz\ncFODKxaItVR5QAD/wz1yyg2PyK7X42Wwct5ErF5Wl3RdNhrF1l1tgr4LV0kBSuw0+nyk9SKBkArH\nAfd/qQEv/eW0Ltfj+5NPvcYJIHMzamLA01O/+xCdvf60cwoLzKqFDmU0Yt3yBvz9XbNw8kwXYDDA\nVVKQdB05X6hYIJae1Qn19gmrIZMAMTXf2fr2GYhl07FRLqsR4aNWIAOxyWYroLHv+EXByaamUhf/\nQ79twTV4YsshQQHKv9jU64r5Ltgoh/UrGjC7rlwy2IxAGKs4i6yYXe/Cn3af0aX5Smp/8kzK6CZG\n6QJAKCKcMuUPhsFkmLNqpU2ornAIHlPiCxVb2/SsTjhSTR4y2Qwo/Q4TZnHyM+EsHB6+jWY2GNUC\nmTIa8dCqGbhl3gTdKnI5bDTmTqlQ9GL5yjhivov3jnYAHIc1N9eivWMg4/ZwBMJoZdrkUvzPB5+B\nVVAj04BYJaVShxVMOAJfIL0Eos1qgs2avuwpEVRCmmnDxFJVgWFayaUCG9lu8iBFJpsBJd/p9zHw\nSPS3B4D+wRApnakFvWtWS73Y1ElbLGGOjnLAu0cvgqKMePz+udi66ww++KgTTBYbYBMI+cThk13w\nM8pKXZYVWfDPD14P2miAwcDhsec/SBPKvkAE23a3J0XVKs1lFdJMPzhxCVaaEsz91ZJfK4aaAht6\nlAZWco1sNXmQIpPNgJLvFNstKC40o39QQiiLlfHSgTEhkPVG6sVu3dWWNGmV+Ib5ne2qGyfhyKnL\nRCATCEMoFcYA0D3AYMN/foCFM8Zh1aJJsJgpQS2Zn28myqA4lzWT6nrZ8KUq8YXq0cQhXxpBZLIZ\nkPqOxUyhqd4l6kKkTQa4srj5IAJZA6kvNtOSmL0DQby68zQ++cyDAb90pxECgSBOgIlg1+ELOH6m\nWzRX2OMNwu3x4y+HzuODE5fin0vlskpppkyIxcLp43Dqi76s+1KV+EJTlYJMmjjkSyOIbLB2eT32\ntl6EUGiA2URl1SxPBLKOuPsCGZXEtNAU9iUsDAQCQRvu/qDoMdpsxL//uRUer/BcFfLFSmmmziIr\n1q1sAIBh8aVKucz08DHnkp96JIgVNhE+NhiMwOsnPuSchjfvtJzuEg2XB2Ll/Jhw9vwPBAJBnmAo\nimBIfOMsVE5SSjNtrHHGBfFw+FKlXGY9/fIdmOSeMZ8aQWSDtvN9ssfnSBRw0QIRyDqgtJViKMyl\nmbbqqotw4BNlHWsIBEL2EQvGStVMS+wWFBaY0Xq2B3uOXpT1s+rdf13IF6pHE4dsNYLIF/xB6Shr\nueNaIAJZI2r8xommrd6BIHYduYDjZ0gbRgIhlxALxkrVTHd+eB7vtlxplSjmZx3OACk9CnaMZNGP\nXIBlpa2Ycse1QASyRtS0Ukz8Mb97tCNpMothpSlYzUb0SYXhEwgEzdAmA26cWSkbjGUxUyi2W9Da\n3i14PNXPKloYiI1i/cop+g1gCD0KdoxU0Q890GqJYGXSmuSOa4EIZI3IdVjhADhTfsxqtOobG8cj\nFGHx12Odej42gUBIIRThYDQYFGmtSv2sUnP9vWMXAYMBa5vrVPdNlhI4ehTsGMmiH5milyXi2qtL\nNR3XAhHIGpEy7yyeVYmV8yam/ZiVaNV8Y/VViybhhy8c0P25CQRCOkqjiJX6WeW6zr3b0gHKaFCU\nSqRW4OhRsGMkin5kil6pWqxYO0CFx7WQOxneeYxYh5W1y+sFu5rItXMEYiUAOY7D1rfapKvGEAiE\nNErsNDJR6HoVtExko1G89m47fH7heZnomlIy18VaBqbCC5yeAQYcrgicbbvbZb+biFCXqHwnk5aM\nYgwGpWtByB3XAtGQdUCtecdipoYKlItP/J4BBu8ckfcxEwiEdGbXu7D/xCWEWXVCp6RQumUiG43i\nqZcOC9adt9IUbmwcn+RnlbKg8ShJJdIjNzhfqm9lgp6pWp4B8Rx2Jce1oOgttLW1obm5Ga+++ioA\noLOzE+vXr8fatWvx6KOPIhSKlYfcsWMH7rzzTtx9993485//nLWHzlWU9vlkwmy8JyuBQFBGVXkh\nKl3Si2pFaQGa51ajeU41GIH60nLMGtJuxbTIrW+3iTaBsVlMuHNxTZpwW7OsFktnV4r2dlaSSpRJ\nD+BU9NKwcxEt/ZlTMcms33LHtSArkP1+P/7lX/4F8+fPj3/2q1/9CmvXrsXWrVtx9dVXY/v27fD7\n/Xj++efx0ksv4ZVXXsHLL7+Mvj7pBOuxSr+PIWZoAkElwVAEP1jbBHuBsGFvwfRxeP77y7C2uR7O\nIqusqTiVCRV2rFlWg6272rBp8wH8028PYNPmA9i6qw1sNBrTUs8IR1YDgMfHCApGymjE+pVTsHh2\nleD3lKQSZSJwEjcVepp0pRgpczhviRBCbapWw4QSTce1IGuypmkamzdvxubNm+OfHTx4EE8++SQA\nYOnSpdiyZQsmTZqEGTNmwOGI9fBsampCS0sLli1blqVHz1+K7RaUiQSEEAgEYXoGGPxp1xlcN7UC\nH3x0Kd6ExUIbMae+AmuXxwJ3ujx+FFhMoE3KFuHiQhpN9eVYu7xeMjCoeU61ZLMYOXN3LJrakFEq\nkZrcYPVtIrVX3xIzhz+yenbG11SLXqlatJmC0QhEBXr8GI2x49lCViCbTCaYTMmnBQIB0HSslmdZ\nWRncbje6u7vhdDrj5zidTrjd+V30Qu/KOjxK/EoEAiGd/R9fTvuMCUXxwYlLaGlzw2AAAgwLAyBZ\nxpaHNhnw1IPz4LDRYMIsWk4LV81rOe3GbQuukdxIz5LRxLSmEikROEyYxSs7T6c1zch2m0ixjYyt\ngMaqhddourZS9ErV6vcxgsIYALgoslo6VHNQFyeSJC32eSKlpTaYFO5iteByOVSdz7JRbPmfj3Hg\nRCfcfQG4Sgpww/TxeOC2aaAofYIfHlk9G+cuDuDcxQFdrkcgjHUShY3SxJRQhENBoRWu8kJ0dg+i\n1yusAfd6GRQUWrFwZhV27D2XdnxyZREevadJ8fpQLfJ5MBSBZ4BBMBQRXLcevXdO/JzSIgusdGwJ\n59es/Sc64fYEBK9tEPFhL5xZierKzM2wwVAErWd7BI8dONGJ9bdOjT/ncCH291WCo7gArhIr3H3p\nwVvlJVbUXFOWtfFkdFWbzYZgMAir1YrLly+joqICFRUV6O6+4l/p6urCrFmzJK/j8fgzub0qXC4H\n3G6vqu+kti/r8gSwY+85+AMh3VqP8do3gUAYOYwGIDAYhJuLIuAPwWiI5QeLnXfb/InwB0I42taN\n3oEgiu00ZtfFzN29vYMZW9VSTb6u0gI01pSJRkCzYRZnP/PF75O6ZgkRYFiMd9pw2eNHlIuNqcpl\nx63XV6teIxPp8vhFNwHdfQGc/awnb3KZecQErpU2wdsfQOZ/LWkFMSOBvGDBAuzcuRO333473nrr\nLSxatAgzZ87Epk2bMDAwAIqi0NLSgo0bN2b80CNFNluPJU5WNSU3CQRCdohysR7KDhuNABMRFMap\n5wmZRdnx+slnAAAa8UlEQVRoFFt3tWWcUpRq8u3yBBTXxW6sKRPVUBOx0hQ6e68oQVEOON/lw/Y9\n5zQpGlJFUspLCvKuGQUTZkUbSPiDYTBhNmtVy2QF8okTJ/Czn/0MHR0dMJlM2LlzJ37+859jw4YN\n2LZtGyorK7Fq1SqYzWZ897vfxYMPPgiDwYBvf/vb8QCvXEHJ7jUbrcfEJpHYj5hAIAwPZUUWUEYD\nTn7Wi4rSAlEfcVmRdMCWXJUoqbVHjRIgdJ93j15UPmAF91CLVEzMDdPH53zJzVT6fYzoutwzwIys\nD3n69Ol45ZVX0j7/3e9+l/bZl770JXzpS1/S58l0RE1CvB6tx5gwC7fHDxgMcJUU4PX3zgpOompX\nIaSKgxAIhOzChFj84Df74yZcm1V4SbRZzTBRBuHNdW25aNe2ltNusFEOre3domuPHnWx5YLYxpUW\n4LKIWVmPKGuxgLMHbpuG3t7BjK87EhRYTJKui1hRp+wwJip1qalxqqX1GBuN4o/vnMEHH3UiGBpK\nyTCLm6vESu8RCITsYqWNiLBR+BLKIEY5wBeIwEQZEElpsXe+yxcvoJG2uZbo2tbrZWRbNOpRF1su\niO2SJ5DVKGuxCGe9gmATyVb2C49S10U2GPUCORiKqPYJZ5rPtm13O3anlLvkcyWF6PeHUGKnJXMb\nCQSCdiwmI558cB5CYRYsB/x2xwlc6hHWGFOFMU/LabdopLIYYppr4tqjVAmQFNx2Gn4mIrneiKFn\nj+NsNqMYrtKfchow0ZA14BlQ7xPOJJ/N6w/h8EnhHEYxnA4rpk8uxXuktSKBkFWYSBQ79n2Gb37l\nWrzy1mlRYSyFx6vevSSmuaauPalKQHnJlShrHinBPWdKBQBIRlozIRYLp4/DqS/68q7HMaBfNyc5\n+gelFaT+wRDRkDOltChzn7CS3R6/azt8qgt9Mi8yldn15YrytQkEgnaOtHVhjb8Wx9rEy19KQZuN\nsFlN8IjkKqshde1JVQJqrimDtz9905AquEvsFky5uhSrFk0aivbm8N7RDkGTq7PIinUrGwAgb3oc\n82Qz+yUNuTU5i2t2frf4UICVNulW41QIftem1uy8cPo4rFo0CcckauMSCAT9YEJRHG1zo08m/98u\nEtjFhKMIZ2ASFqKxtkxw7eGVALE8WF5wP/ngPMyfNg4GA7D/xCU88eIhbNvdjrXNdVg8q1Lwu/x6\np7QJjlKGo361Hs01lOIqtUHM9U0ZY8ezxajXkIEru8qW0254vAxKHRY0Nbg0m2qkdm1SOB0WrFvZ\nQHKRCYRh5qW/nIbRIK7kUEbgXx6ah8ee3y/YiN6nUy/c5jlaakkBb+w9h30p5THj5tvl9aAoo+aa\nznIMZztHPbJf1EAZAVZg70WJtezSiTEhkHn4gAy1gRk8qdF9mQrUpgYXLGZK8kemtBYvgUBQh1gE\nLQAU2Sy41BMQFMZ6UVZkhbPImvH3lZhv9ajpLMdw+XQBbdkvaun3MQiJ7LtCES63a1nnA1p/OGI7\nwVWLJqsq7lFWlLxTlfqR2awmDOq0GycQxgrOolgVPCHtRgkeH4Pn//sjfR8qBa0CRGnecjYjnofV\npzuEXt2c5CB5yFkkk7SnVKQEutKuTaV2Cx6/f25adF76j8wCJszCFyDCmEBQisVsxA/Xz8G+jy9j\n58EvNF1Lau6JmTLFsNKxtYUJsXAWKRcgwVAEXR6/oHY73OZbIbJR0VAOvbo5yUHykLNIJmlPicjt\nBJ988Lr4v3sG0ruD8PQPMoIvMvFH5u4L4I2959CSYRQogTBWcZUWwFlsxYcn09sz6sm4MhsaJpbi\n+JkeyfkOACV2Gk8+MA/0kHtLiQDhrXGtZ3vg9gQSrHGT4POH49cYLvOtGCO5Kcim5g8QDTmraEl7\nAoDegaCoSdrjDcLnD2PNslpE2Cg+aO1ESKSogNS9/EwYr77dhpZTl0V9FwQCQZwLXYPY+vaZrAdJ\ndrj9mDKxFI01TrS0udE/KF5tb2AwFN+EKxUgYta491s7h7TsmIC+a8lkAMmWtSkTS7Fq0WRtA1RI\nLmwKsgXRkLMIn/aU6Q9n1+Hzosd4Ibttdzv2yBR4F7oXvxt+v7VTsKQdgUBQzqnPPXCVFoi2AtSL\nfR9dUjRf1WqKUtY4/n6p8S+rFk3C1rfP4NTnvfjgxCWc+sKTtUjnVIbLp6sVtaU2Cywm0aBaA4iG\nrJlMfzhMmJVsa9ZYWzZ0XfHUJ6MBWDy7SvBeqbthAoGQOX0+BkvmTMBuiU00AFFzpFKUbp7Vaopq\nsjb4+Jc39n6KD8TSn3SOdE5luHy6mZJpWlaAiYhmuHAgGrJmMv3hyE2Q5jnVsudEOWDldRPSfgCZ\n5jATCKOVIhuFaZPKYaEpfHS2N7559gfDCCjUSP921XQYwUnGdFS57Djf5dP78QHEUiqdGWqKUn7Z\nVDzeINx9gWGPdBYi2z7dTMk0u6bYbsm4DadWxoRA5lH7w5GaIIm5hFKTyOkQfoGkKAiBkMyAn8X+\njy+jeW41nn7oevT7GFBGA55+5YgigTy7vhyFBXR88907EMSuIxfQ2t6TZBm7df41ePYPLbjs8cfb\nLqrRmK20Md7NLZFSO42v3zIFk8YXZaRBSfll0+7lsAIcN+yRzvmClrQsaf+4K6ubnDElkNWiNHBB\nahLxRUBSUbMbJhDGEkfburFq0STsOnIBh091oV+mLG1qfj8Qm7vjywqxfkUDmKUxH6LdZsYbez/F\nxt9+kCRQpYSxlaZQaDUNVfiL3SfKcWld3QAgEGLxyz+3aqpYxY+h9WwPuvsCoM3CLRNn15fDVWob\n8fSnXEVrWtaXF1yNdw5fSDJdGw2xz7MJEcgyKPE/r1lWC47jkoI9rDSFBTPGiZqt1OyGCYSxhMcb\nxNa3zyT5RoWw0EZs+FoTxjkLYTFTYMIsOrsHwYbZpE0wbxnbuqtN9Xy7sXF8mquLjUZhNBjiawIv\nNMUCr9TAu9e+dWcBzn7WA7uNxht7zwmuP5TROGojnbWiNS3re89/kOZHjnKxz1/43lIdnzQZIpBl\nUOJ/poxGfG15A+5aUgt3XwDgOLgUFG9fs6wWbJTDkdNdGJBInyAQxhIldhqnPu+VPW9RYyWuvqoI\nbDSKrbvaYsE7XgZOR7qGqjRmo7jQDK8/nCb4ErWppNoBHj9+ub1VUIvV4se10qb4PaXWn3yJdB5u\ntKRldXb7RHtiR1gOnd0+jC+36/asiRCBrBAl/meLmUK1S9mLihcAaO8mwphASOCacQ60nBHPbii1\nWzBnypXmMEqCd5TGbBiNRsyfNg73Lq+HTSa9xWKmQJupYfHjiq0/uR7pPJJkulk53i7+2+OPE4E8\nyiApTwRCOlaaQqHNLHq8xE7jRw9cFw+aUhq8ozRmw+NlsO/EJRRYTYrMzblQxhLI3UjnkSTTzcrM\n2jK8tues5PFsMer7IWdCtvt7kpQnAkGY+dPH4ZNPPaLHZ9eVJ0UwK+2Ty5swlXK0rVvR/Je67lj3\n4+YKavs/O4sLNB3XAtGQExiu/p4k5YlASMZZZEFTvQtLZ1dhT0t6BDNP89wJSf9Xo6GmmjAdNhr9\ng8IR3GrMzcSPO7ro6JbOUe/o9mHy+OKs3JsI5ASGq7+n1CJipYXTHAiE0cp4pw2Pf+O6eKS0ktx/\nHjXBO6kmzAKLCU+99KFmczPx444u3L3SpVfdvYGsCWRish5Czhelp/laysy1YMY4NM+tRlnR2M0h\nJIwdKCOwYX1TXIBlYgJes6x2aM5YYTTEBHfz3GrJlMOKUhscNlrxvZS4sdSaRgm5iYmSFotyxzXd\nO2tXzjOGu7+nlJmLMhpxU+N4PL7lQ93uRyBogTYZYDQaBCtUaYHjgEAwAkfBFb+wWhNwooZK0Waw\nobBioSh3r+FyYxFyh/qJJZqOa4EI5CGGO1pSzszlKrWJ1lMlEIabUISDcP8bbQjNrUxNwBYzBVd5\nIdxur+L7y91ruNxYhNzBYaNRVW5DR7c/7VhVuS1rjSUAYrKOM1LRkmJmLjVRoVaaGjLVWTChwg6n\nwwKjIVZbVy1WmoLTkb0fHCG/if0+Yr8vK619TkjNreE0AQvdazjdWITc4p/vn4sJFcm5xpMri/DP\n98/N6n2JhpxArkVLpj5PeUkBLGYKg4Ew+nxXauuuWjQJPn84vrvn+3+GIlE8/uIhVfdMLBVYYDGh\n18tg58HPceZCP3q9DDj9laSchDYZhrRCQiJMmMXf3T4NTocFzuICvLH3HI6ccsPjU2/JWThdvLSs\n3qjtiQsMvxuLkDvQJhOefGAevP4QLnT5UF1hx+Sry1RZXzLBwHEjt8Rme3AA4HI5VN8nk8mbTfjn\nqbmmDN7+gOLnY8IsNm0+IGn2ttIUQmE2zYctdC13XwC/eO0Yer3pqSJlRRZ8rbkev/q/H2U2yBxj\nrEe7i3VA4j8vS/Cl+oMRPLHlEPpkmkAk4nRY8OO/vUH3+ZU637X4gKXmT1mRFU8/dH3W1odM1q1c\nZLSMA9BvLC6XQ/QY0ZAFyLWqN/zzWGkTvFD+fFIpIVaawo2N49O0a6lrVbvsaGqoELzezLpyfPRZ\nr+bm75lQYqfRWOPEx596FPvcJ1TY4fWHRIVIKMzihmsrcPCTrix4TnMfsXfIf57qS507Rfh3UeUq\nRId7MO1zsS5oeqPFB6ylHjKBkAlEII9y0s3wFkyZWJpUq9dmES9VKH+9mGbNcRx2SxR0kMNKU2BC\nLGizERyAcDgKZ5EFDRNKQJkMaG3vRf9gKElDa6wpQ/PcCXAWWWExU6LdfCZU2OEPRtLcEP5gBD/a\n8qGgubXUYcXXb5kKGAw48PFl0ec2GgEuKh/uNM5pQzgSjT9DY20Zjp9xC1ob5NBz02OA8LOX2i2Y\nUevEx+c86PUGYYDwPfnylGK/i7uWTMb2PcLdirKNlp64PLnmxiKMbohAHuXoXbRA6HoAsGnzAcHz\njQZgfHkhAsEIPF4GBhFhYrOYsHH9HLhKYmXpUp+VN9MXWEwIMBHBcUgtnhGWS7umw0ZjzhRpDWj1\n0locPe0GE0lP97HSRvz82wvx+nvn8K7MZiQYiuDJB+YlPTtlNEjWM7+i+fehdyCI4qH/nzjXm5Eg\nF6LQaoIvGEn73ONj8PG5XjTWlGF2vQvPbTsu+P1EX6rY72ykimbo4QMmRT8IwwkRyGMEvc3widfr\n8vhFFz4OwHfumIFiuwXnOvrx8z8dEzyvz8eANhnjix1/7UR/Of+ZWNqB1OJJGSE4finNjm/pJySM\nAWDF9dfAZjFjbXMdAEgK5f7BEAJMJOkZ+Hu/39op6K+eO6UCa5bVYuuuMzjW1o0+H4OPznrgUeGr\nBQDabEQoLDwGXzCCCRX2ocIXyRWKegYYvHv0IgCIpuClpi2J/c5Gwg2kZypjrrmxCKMTIpAJmpFa\n+JxDC5/FTGFyVbHiBVJJMI5YcJuaxVNMiEs1sy8rigntB26bht7eQVBGI9avaECYZfH+8UuC33FK\n5NuuWjQZf3y7Dae+8MDjZZI0+22725MEfSbRzIsaxyMa5fDesYuC1gl/MIJnvrMI3/3le4I+9daz\nvWisLRfccOSyL5X4gAn5BhHIBM0oXfjULJBSwTi8oFIaOas2al7K91hip/H4/XPhsNGgUkrofX3l\nFHze6cP5rvTi9FICwGYx4cGvXJv2nHp0BZtQYcc9N9ehpz+IPUPabioebxCdPYPoF9G8Pd4gmudU\ngzIa8s6XSnzAhHyCCGSCLihd+NYsq4WtgMa+4xdFz5MLxmHZaNyUCohHzirRsoXOmTKxVDRae2DI\n9CxkNqeMRjx+/9wrJuZBBk4VAiBVs5frClZipzEwGEKJ3QI/ExE0e/uDEURYTtKKQZupWEEZCeuF\ns8ial75U4gMm5BNEIBN0QenCRxmNeGjVDNwyb4LoeVKCqNcbxNEz3YLHUiNnlaS8CJ2z78QlWGmj\nYN1mOd8jb75evbRWswCQEqJlRVY8fv9cBJgIQpEonhApAJMYvCRmnQiGWLz+brtiK0c++lLz9bkJ\nYwtSOpOgK0rLHUqdxwsiIUoKLaK5w4kN6ZWUPZQ2CRsEP1XaBUiPso9y5VwdNhoVpTa4SgpE/16J\nG4hViybDSgtP+QMnOrFq0SRVXZMIBIK+EA2ZkHNI+Zpn1Zejtb1bNjBMScoLANFzQmEWC6aPw+kv\n+kS7AG1+4yPsO96R1S5AUq6ARJ+zEu3W5w+BEenW1N0XQG9/zFd824JrRFPLCARC9iACmZCTSLen\nFM7fTRQ+dhsNiwKzs5Rfde3yOlBG44h2ARJyBZgoQ5rfe1ZdOZbNqcLxMz2ivnkpE7iFpvDL7a1p\nmwsCgTB8EIFMyEmkfNJKAsje2HtOtHdvouCW8qu+sfdTrG2uT/M96lEBSi2JPtDUlKyeAQbvHOlA\n89xqPP3Q9aK+aynLQ4BhEWDY+PVIi0ECYfghApmQ0wgF48gFkEkJTCtNYdWiSfH/r1o0Ge+3XhQU\n3mLCdSS7ACnZDEjdO3UzIxWhna3NBYFAEIYIZELeIhY5KyUwQ2EWPn84Xr9byq8qJlz1rAClFq2b\ngdTNjNIIbQKBkH1IlDVh1CEVpZ0qMNWcyyMX/ZxNjTKT5xWC38wojdAmEAjZhwhkwqhDjcDMVLiu\nWVaLv1k0edhThPTeDIzk5oJAICRDTNaEUYmakomZlFdUUuAkW+hdDlJJ9TQCgZB9DBzHjVj/dbfb\nm/V7uFyOYbnPcDBaxjKc41BTx1ptzeuRfh9qn1cKl8uBCxf78r685Ei/E70g48g99BqLy+UQPaa7\nhvyv//qvOH78OAwGAzZu3IjGxka9b0EgKEZNycR8K6+YzZaaBAJh+NFVIB86dAiff/45tm3bhrNn\nz2Ljxo3Ytm2bnrcgEAgEAmFUomtQ1/79+9Hc3AwAqKmpQX9/P3y+9FZ0BAKBQCAQktFVIHd3d6O0\ntDT+f6fTCbdbWz9XAoFAIBDGAlmNspaLFysttcFkyn7wiJQTPd8YLWMh48g9RstYyDhyi9EyDiD7\nY9FVIFdUVKC7+0qv2q6uLrhcwjmOAODx+PW8vSAkyi/3IOPIPUbLWMg4covRMg5geKKsdTVZL1y4\nEDt37gQAfPzxx6ioqIDdbtfzFgQCgUAgjEp01ZCbmpowbdo03HPPPTAYDHjiiSf0vDyBQCAQCKMW\n3X3Ijz32mN6XJBAIBAJh1DOilboIBAKBQCDEIM0lCAQCgUDIAYhAJhAIBAIhByACmUAgEAiEHIAI\nZAKBQCAQcgAikAkEAoFAyAGIQCYQCAQCIQfIai3r4ebgwYN49NFHUVdXBwCor6/HN7/5TXz/+98H\ny7JwuVx49tlnQdP0CD+pOG1tbXj44Ydx//33Y926dejs7BR8/h07duDll1+G0WjE6tWrcffdd4/0\noyeROo4NGzbg448/RklJCQDgwQcfxJIlS3J+HM888wyOHDmCSCSCb33rW5gxY0Zevg8gfSy7d+/O\nu3cSCASwYcMG9PT0gGEYPPzww5gyZUrevROhcezcuTPv3gdPMBjEV77yFTz88MOYP39+3r2PRBLH\ncujQoeF9J9wo4sCBA9x3vvOdpM82bNjAvfnmmxzHcdy//du/cX/4wx9G4tEUMTg4yK1bt47btGkT\n98orr3AcJ/z8g4OD3IoVK7iBgQEuEAhwX/7ylzmPxzOSj56E0Dh+8IMfcLt37047L5fHsX//fu6b\n3/wmx3Ec19vbyy1evDgv3wfHCY8lH9/J//7v/3IvvPACx3Ecd+HCBW7FihV5+U6ExpGP74Pnueee\n4+644w7u9ddfz8v3kUjiWIb7nYx6k/XBgwdx8803AwCWLl2K/fv3j/ATiUPTNDZv3oyKior4Z0LP\nf/z4ccyYMQMOhwNWqxVNTU1oaWkZqcdOQ2gcQuT6OK677jr88pe/BAAUFRUhEAjk5fsAhMfCsmza\nebk+lltvvRUPPfQQAKCzsxNXXXVVXr4ToXEIkevjAICzZ8+ivb0dS5YsAZCfaxZP6liEyOZYRp1A\nbm9vx9/93d/h3nvvxb59+xAIBOIm6rKyspzuz2wymWC1WpM+E3r+7u5uOJ3O+Dm51ndaaBwA8Oqr\nr+K+++7DP/7jP6K3tzfnx0FRFGw2GwBg+/btuOmmm/LyfQDCY6EoKu/eCc8999yDxx57DBs3bszb\ndwIkjwPIvzkCAD/72c+wYcOG+P/z+X2kjgUY3ncyqnzI11xzDR555BHccsstOH/+PO67774kLYDL\n8yqhYs+fD+O6/fbbUVJSgqlTp+KFF17Af/zHf2D27NlJ5+TqOHbt2oXt27djy5YtWLFiRfzzfHwf\niWM5ceJE3r6TP/3pTzh58iS+973vJT1jvr2TxHFs3Lgx797HG2+8gVmzZmHChAmCx/PpfQiNZbjX\nrVGlIV911VW49dZbYTAYMHHiRJSXl6O/vx/BYBAAcPnyZVkzaq5hs9nSnl+o73Suj2v+/PmYOnUq\nAGDZsmVoa2vLi3Hs3bsXv/nNb7B582Y4HI68fh+pY8nHd3LixAl0dnYCAKZOnQqWZVFYWJh370Ro\nHPX19Xn3Pvbs2YN33nkHq1evxp///Gf853/+Z97OEaGxcBw3rO9kVAnkHTt24MUXXwQAuN1u9PT0\n4I477oj3aH7rrbewaNGikXxE1SxYsCDt+WfOnImPPvoIAwMDGBwcREtLC+bOnTvCTyrNd77zHZw/\nfx5AzMdUV1eX8+Pwer145pln8Nvf/jYeZZmv70NoLPn4Tg4fPowtW7YAALq7u+H3+/PynQiN4/HH\nH8+79/GLX/wCr7/+Ol577TXcfffdePjhh/PyfQDCY/njH/84rO9kVHV78vl8eOyxxzAwMIBwOIxH\nHnkEU6dOxQ9+8AMwDIPKykr85Cc/gdlsHulHFeTEiRP42c9+ho6ODphMJlx11VX4+c9/jg0bNqQ9\n/1/+8he8+OKLMBgMWLduHf7mb/5mpB8/jtA41q1bhxdeeAEFBQWw2Wz4yU9+grKyspwex7Zt2/Dr\nX/8akyZNin/205/+FJs2bcqr9wEIj+WOO+7Aq6++mlfvJBgM4oc//CE6OzsRDAbxyCOPYPr06YJz\nPN/GYbPZ8Oyzz+bV+0jk17/+NaqqqnDjjTfm3ftIhR9LZWXlsL6TUSWQCQQCgUDIV0aVyZpAIBAI\nhHyFCGQCgUAgEHIAIpAJBAKBQMgBiEAmEAgEAiEHIAKZQCAQCIQcgAhkAoFAIBByACKQCQQCgUDI\nAYhAJhAIBAIhB/j/AeghtMa5FbJ9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "WvgxW0bUSC-c", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "8YGNjXPaSMPV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The histogram we created in Task 2 shows that the majority of values are less than `5`. Let's clip `rooms_per_person` to 5, and plot a histogram to double-check the results." + ] + }, + { + "metadata": { + "id": "9YyARz6gSR7Q", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"rooms_per_person\"]).apply(lambda x: min(x, 5))\n", + "\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "vO0e1p_aSgKA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To verify that clipping worked, let's train again and print the calibration data once more:" + ] + }, + { + "metadata": { + "id": "ZgSP2HKfSoOH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "gySE-UgfSony", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/validation.ipynb b/validation.ipynb new file mode 100644 index 0000000..41fbc47 --- /dev/null +++ b/validation.ipynb @@ -0,0 +1,1555 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "validation.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "4Xp9NhOCYSuz", + "pECTKgw5ZvFK", + "dER2_43pWj1T", + "I-La4N9ObC1x", + "yTghc_5HkJDW" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zbIgBK-oXHO7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Validation" + ] + }, + { + "metadata": { + "id": "WNX0VyBpHpCX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Use multiple features, instead of a single feature, to further improve the effectiveness of a model\n", + " * Debug issues in model input data\n", + " * Use a test data set to check if a model is overfitting the validation data" + ] + }, + { + "metadata": { + "id": "za0m1T8CHpCY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As in the prior exercises, we're working with the [California housing data set](https://developers.google.com/machine-learning/crash-course/california-housing-data-description), to try and predict `median_house_value` at the city block level from 1990 census data." + ] + }, + { + "metadata": { + "id": "r2zgMfWDWF12", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "8jErhkLzWI1B", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "First off, let's load up and prepare our data. This time, we're going to work with multiple features, so we'll modularize the logic for preprocessing the features a bit:" + ] + }, + { + "metadata": { + "id": "PwS5Bhm6HpCZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "# california_housing_dataframe = california_housing_dataframe.reindex(\n", + "# np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "J2ZyTzX0HpCc", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "sZSIaDiaHpCf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For the **training set**, we'll choose the first 12000 examples, out of the total of 17000." + ] + }, + { + "metadata": { + "id": "P9wejvw7HpCf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "outputId": "ce95b0d0-aa4f-40e3-982d-5fdbae44b16e" + }, + "cell_type": "code", + "source": [ + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_examples.describe()" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean34.6-118.527.52655.7547.11476.0505.43.81.9
std1.61.212.12258.1434.31174.3391.71.91.3
min32.5-121.41.02.02.03.02.00.50.0
25%33.8-118.917.01451.8299.0815.0283.02.51.4
50%34.0-118.228.02113.5438.01207.0411.03.51.9
75%34.4-117.836.03146.0653.01777.0606.04.62.3
max41.8-114.352.037937.05471.035682.05189.015.055.2
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 34.6 -118.5 27.5 2655.7 547.1 \n", + "std 1.6 1.2 12.1 2258.1 434.3 \n", + "min 32.5 -121.4 1.0 2.0 2.0 \n", + "25% 33.8 -118.9 17.0 1451.8 299.0 \n", + "50% 34.0 -118.2 28.0 2113.5 438.0 \n", + "75% 34.4 -117.8 36.0 3146.0 653.0 \n", + "max 41.8 -114.3 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1476.0 505.4 3.8 1.9 \n", + "std 1174.3 391.7 1.9 1.3 \n", + "min 3.0 2.0 0.5 0.0 \n", + "25% 815.0 283.0 2.5 1.4 \n", + "50% 1207.0 411.0 3.5 1.9 \n", + "75% 1777.0 606.0 4.6 2.3 \n", + "max 35682.0 5189.0 15.0 55.2 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "id": "JlkgPR-SHpCh", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "outputId": "1ef064a1-fde3-463e-8050-e3b2e6d1ea2b" + }, + "cell_type": "code", + "source": [ + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "training_targets.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean198.0
std111.9
min15.0
25%117.1
50%170.5
75%244.4
max500.0
\n", + "
" + ], + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 198.0\n", + "std 111.9\n", + "min 15.0\n", + "25% 117.1\n", + "50% 170.5\n", + "75% 244.4\n", + "max 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "5l1aA2xOHpCj", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For the **validation set**, we'll choose the last 5000 examples, out of the total of 17000." + ] + }, + { + "metadata": { + "id": "fLYXLWAiHpCk", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "outputId": "a7d86b5c-f6ba-44d2-8b2a-d0200685d579" + }, + "cell_type": "code", + "source": [ + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_examples.describe()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean38.1-122.231.32614.8521.11318.1491.24.12.1
std0.90.513.41979.6388.51073.7366.52.00.6
min36.1-124.31.08.01.08.01.00.50.1
25%37.5-122.420.01481.0292.0731.0278.02.71.7
50%37.8-122.131.02164.0424.01074.0403.03.72.1
75%38.4-121.942.03161.2635.01590.2603.05.12.4
max42.0-121.452.032627.06445.028566.06082.015.018.3
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 38.1 -122.2 31.3 2614.8 521.1 \n", + "std 0.9 0.5 13.4 1979.6 388.5 \n", + "min 36.1 -124.3 1.0 8.0 1.0 \n", + "25% 37.5 -122.4 20.0 1481.0 292.0 \n", + "50% 37.8 -122.1 31.0 2164.0 424.0 \n", + "75% 38.4 -121.9 42.0 3161.2 635.0 \n", + "max 42.0 -121.4 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1318.1 491.2 4.1 2.1 \n", + "std 1073.7 366.5 2.0 0.6 \n", + "min 8.0 1.0 0.5 0.1 \n", + "25% 731.0 278.0 2.7 1.7 \n", + "50% 1074.0 403.0 3.7 2.1 \n", + "75% 1590.2 603.0 5.1 2.4 \n", + "max 28566.0 6082.0 15.0 18.3 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "id": "oVPcIT3BHpCm", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "outputId": "9aaf9730-5c5e-43de-8269-202cd83b8e35" + }, + "cell_type": "code", + "source": [ + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "validation_targets.describe()" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean229.5
std122.5
min15.0
25%130.4
50%213.0
75%303.2
max500.0
\n", + "
" + ], + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 229.5\n", + "std 122.5\n", + "min 15.0\n", + "25% 130.4\n", + "50% 213.0\n", + "75% 303.2\n", + "max 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "id": "z3TZV1pgfZ1n", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Examine the Data\n", + "Okay, let's look at the data above. We have `9` input features that we can use.\n", + "\n", + "Take a quick skim over the table of values. Everything look okay? See how many issues you can spot. Don't worry if you don't have a background in statistics; common sense will get you far.\n", + "\n", + "After you've had a chance to look over the data yourself, check the solution for some additional thoughts on how to verify data." + ] + }, + { + "metadata": { + "id": "4Xp9NhOCYSuz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "gqeRmK57YWpy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's check our data against some baseline expectations:\n", + "\n", + "* For some values, like `median_house_value`, we can check to see if these values fall within reasonable ranges (keeping in mind this was 1990 data — not today!).\n", + "\n", + "* For other values, like `latitude` and `longitude`, we can do a quick check to see if these line up with expected values from a quick Google search.\n", + "\n", + "If you look closely, you may see some oddities:\n", + "\n", + "* `median_income` is on a scale from about 3 to 15. It's not at all clear what this scale refers to—looks like maybe some log scale? It's not documented anywhere; all we can assume is that higher values correspond to higher income.\n", + "\n", + "* The maximum `median_house_value` is 500,001. This looks like an artificial cap of some kind.\n", + "\n", + "* Our `rooms_per_person` feature is generally on a sane scale, with a 75th percentile value of about 2. But there are some very large values, like 18 or 55, which may show some amount of corruption in the data.\n", + "\n", + "We'll use these features as given for now. But hopefully these kinds of examples can help to build a little intuition about how to check data that comes to you from an unknown source." + ] + }, + { + "metadata": { + "id": "fXliy7FYZZRm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Plot Latitude/Longitude vs. Median House Value" + ] + }, + { + "metadata": { + "id": "aJIWKBdfsDjg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's take a close look at two features in particular: **`latitude`** and **`longitude`**. These are geographical coordinates of the city block in question.\n", + "\n", + "This might make a nice visualization — let's plot `latitude` and `longitude`, and use color to show the `median_house_value`." + ] + }, + { + "metadata": { + "id": "5_LD23bJ06TW", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 497 + }, + "outputId": "edb59ec6-3018-4343-eac5-c8e956aaf625" + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize=(13, 8))\n", + "\n", + "ax = plt.subplot(1, 2, 1)\n", + "ax.set_title(\"Validation Data\")\n", + "\n", + "ax.set_autoscaley_on(False)\n", + "ax.set_ylim([32, 43])\n", + "ax.set_autoscalex_on(False)\n", + "ax.set_xlim([-126, -112])\n", + "plt.scatter(validation_examples[\"longitude\"],\n", + " validation_examples[\"latitude\"],\n", + " cmap=\"coolwarm\",\n", + " c=validation_targets[\"median_house_value\"] / validation_targets[\"median_house_value\"].max())\n", + "\n", + "ax = plt.subplot(1,2,2)\n", + "ax.set_title(\"Training Data\")\n", + "\n", + "ax.set_autoscaley_on(False)\n", + "ax.set_ylim([32, 43])\n", + "ax.set_autoscalex_on(False)\n", + "ax.set_xlim([-126, -112])\n", + "plt.scatter(training_examples[\"longitude\"],\n", + " training_examples[\"latitude\"],\n", + " cmap=\"coolwarm\",\n", + " c=training_targets[\"median_house_value\"] / training_targets[\"median_house_value\"].max())\n", + "_ = plt.plot()" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAHhCAYAAAA2xLK+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xec3VWd+P/X+ZTbprdk0jupJJSQ\nhBBaCCkIIsgqRZTV3fVnd3dF3VUerq6u7vLgqw99iOt+97uIIixqqBKqoUkJ6ZDek8lkJtNnbr+f\ncn5/3Gk3cyeZNBDu+/l4wGNyy+dz7p3knPM+5X2U1lojhBBCCCGEKBjGe10AIYQQQgghxLtLggAh\nhBBCCCEKjAQBQgghhBBCFBgJAoQQQgghhCgwEgQIIYQQQghRYCQIEEIIIYQQosBIECDOiltuuYXf\n/va3Ax5/+OGHueWWW4773p/97Gd861vfAuBTn/oUW7duHfCadevWsXjx4hOWY/PmzezYsQOABx54\ngJ/85CdDKf6QLF68mCuvvJLly5dz2WWX8clPfpKXX355SO/dt28fa9euPWNlEUKID4rvfOc7LF++\nnOXLlzNz5szeenb58uXEYrGTutby5ctpaWk57mvuueceHnroodMpco6pU6dy9dVXs2zZMi677DI+\n+9nPsnHjxiG9t3+bJcTZZr3XBRAfTDfeeCMrV67ktttuy3n88ccf58Ybbxzyde6///7TKsfKlSu5\n8MILmTZtGp/4xCdO61r53H333cydOxeAN954g3/6p3/ia1/7Gtdee+1x3/fCCy/gui4XXXTRGS+T\nEEK8n333u9/t/Xnx4sX8x3/8R289e7KeeeaZE77mH//xH0/p2sfzm9/8htraWrTWPPPMM3z+85/n\npz/96Qnr/P5tlhBnm8wEiLNixYoV7Nixg7q6ut7HDh8+zPbt21mxYgUAv//971mxYgVLly7ltttu\no76+fsB1Fi9ezLp16wC49957ufzyy/nIRz7C66+/3vuaZDLJV7/6VZYtW8bixYv593//dwAeeugh\nHn/8ce6++27uu+++nBmGI0eO8JnPfIZly5Zx7bXX8thjj/WWcdGiRfz617/muuuu49JLL2XVqlVD\n+swXX3wx//Zv/8Z//Md/oLXG932++93v9pbrzjvvxHEcVq9ezS9/+Ut+/etf86Mf/QiAn//85yxb\ntowlS5bw2c9+lq6urpP9yoUQoiDcfvvt/PjHP2bFihVs2LCBlpYWPvOZz7B8+XIWL17Mfffd1/va\nqVOn0tjYyJo1a/j4xz/OPffcw4oVK1i8eDFvvfUWAN/85je59957gWyb87//+7/cdNNNLFq0qLeO\nBvjP//xPLr74Yj760Y/y29/+dkiz0UopVqxYwT/8wz9wzz33AENvswZrQ4Q4UyQIEGdFcXExS5Ys\n4fHHH+997Mknn+Sqq66iuLiY1tZWvve973Hffffx3HPPMXbs2N5KOJ89e/bwq1/9ipUrV7Jy5Up2\n7tzZ+9xDDz1EPB7nmWee4dFHH+WRRx5h3bp13HLLLcyePZs777yTv/7rv8653l133cW8efN49tln\n+eUvf8n3v/99Dh8+DEB7ezuGYfDkk0/yz//8zye1hGjBggVEo1H279/P888/z7p16/jjH//I008/\nzdatW1m1ahWLFy/m6quv5pOf/CTf/OY32bJlC7/97W9ZuXIlzz33HJlMhgceeGDI9xRCiEKzZcsW\nnnrqKS644AJ+8YtfMHr0aJ555hnuv/9+7rnnHhoaGga8Z9u2bcyZM4enn36aW2+9lV/84hd5r712\n7VoefvhhVq5cyQMPPEBjYyO7d+/mv//7v3n88cd58MEHhzTD0N/ixYvZvHkzqVRqyG3WYG2IEGeK\nBAHirLnxxht58skne//8xBNP9C4FqqqqYv369dTW1gIwd+7cnFmDY61du5aLLrqI6upqTNPkwx/+\ncO9zn/70p7n33ntRSlFWVsaUKVN6O/T5OI7D66+/zq233grAqFGjmD9/Pm+++SYAruv2lnPmzJkc\nOXJkyJ/ZMAwikQixWIxly5axcuVKbNsmGAxy7rnn5v2Ms2bN4qWXXqK4uBjDMDj//POP+10IIUSh\nu/zyyzGMbBfm29/+NnfddRcAY8aMoaamJm8bUFRUxJIlS4Dj1+3XXXcdpmkyfPhwqqqqaGhoYO3a\ntcybN49hw4YRDAb56Ec/elLlLS4uxvd94vH4kNusobYhQpwq2RMgzpoFCxaQTqfZvHkzhmGQTCZZ\nsGABAJ7n8dOf/pTVq1fjeR7xeJwJEyYMeq3Ozk5KSkp6/1xaWtr784EDB/jRj37Evn37MAyDxsbG\n4+476OjoQGs94HptbW0AmKZJJBIBsp163/eH/JlTqRStra1UVlbS1tbGv/7rv7Jt2zaUUrS0tPCp\nT31qwHuSySQ//OEPWbNmTe9nveKKK4Z8TyGEKDRlZWW9P7/zzju9o/+GYdDc3Jy33u5f5x+vbi8u\nLu792TRNPM+jq6sr557Dhw8/qfIePnwY27YpKSkZcps11DZEiFMlQYA4awzD4Prrr+ePf/wjpmly\n/fXX947crFq1itWrV/PAAw9QWVnJ7373u5xZg2OVlpYSjUZ7/9ze3t778/e+9z1mzpzJz3/+c0zT\n5Oabbz5uuSoqKjAMg87Ozt5KvaOjg6qqqtP5uAA8++yzjBs3jtGjR3PXXXdhWRZPPvkkgUBg0M1n\n999/PwcOHOCRRx6hqKiIH//4xxw9evS0yyKEEIXgzjvv5FOf+hS33HILSikuvfTSM36P4uJiEolE\n75+bmppO6v3PPvss8+bNIxAIDLnN+vGPfzykNkSIUyXLgcRZdeONN7J69Wr+9Kc/5Yx0tLa2MmrU\nKCorK2lvb+fpp58mHo8Pep3zzz+f9evX09bWhud5PPHEEznXmj59OqZp8tprr3Hw4MHeytqyrJzg\noeexRYsW8fDDDwNw6NAh1q1bx8KFC0/rs65Zs4a7776br3/9673lOueccwgEAuzYsYONGzfmLVdr\naysTJ06kqKiI+vp6Xn755ZzGRgghxOBaW1uZNWsWSikeffRRksnkGa9DZ8+ezZo1a2hrayOTyfQm\nkziRnuxA999/P3//93/fW96htFnHa0OEOBNkJkCcVePGjWPYsGG9P/e49tpreeqpp7j66qsZM2YM\nX/3qV/nc5z7Hj370I4qKigZcZ/r06dx8883ccMMNlJeX86EPfYhdu3YB8LnPfY4f/vCH3HvvvVx1\n1VV88Ytf5Kc//SnTp09nyZIl3H333dTV1eVM8X73u9/l29/+No888gi2bfP973+fESNGHHcvQT53\n3nknwWCQeDzOiBEj+MEPfsDll18OZPcqfOMb3+CRRx5h7ty5fOMb3+Bb3/oWs2fP5sorr+RrX/sa\n9fX1fOUrX+HLX/4yy5YtY+rUqXzzm9/kS1/6Er/61a+44447TvYrF0KIgvKVr3yFL3zhC5SXl3Pz\nzTfz8Y9/nLvuuosHH3zwjN1j9uzZ3HDDDdxwww2MGDGCa665hl/96leDvv7222/HNE1isRiTJk3i\nv/7rvzj33HOBobdZx2tDerLsCXE6lNZav9eFEEIIIYT4S6a1RikFwEsvvcRPfvKTIc8ICPGXSJYD\nCSGEEEIcR1tbGwsWLKC+vh6tNU8//TTnnXfee10sIU6LzAQIIYQQQpzAQw89xP/8z/+glGLixIn8\n4Ac/OCMJJYR4r0gQIIQQQgghRIGR5UBCCCGEEEIUGAkChBBCCCGEKDDvSopQ1/Vob3//5ratqIi8\nb8svZX9vSNnfG+/nstfUlJz4RQXg/dxevJ///knZ3zvv5/JL2d8bZ6q9eFdmAizLfDduc9a8n8sv\nZX9vSNnfG+/nsous9/PvUMr+3ng/lx3e3+WXsr+/yXIgIYQQQgghCowEAUIIIYQQQhQYCQKEEEII\nIYQoMBIECCGEEEIIUWAkCBBCCCGEEKLASBAghBBCCCFEgZEgQAghhBBCiAIjQYAQQgghhBAFRoIA\nIYQQQgghCowEAUIIIYQQQhQYCQKEEEIIIYQoMBIECCGEEEIIUWAkCBBCCCGEEKLASBAghBBCCCFE\ngZEgQAghhBBCiAIjQYAQQgghhBAFRoIAIYQQQgghCowEAUIIIYQQQhQYCQKEEEIIIYQoMBIECCGE\nEEIIUWAkCBBCCCGEEKLASBAghBBCCCFEgZEgQAghhBBCiAIjQYAQQgghhBAFRoIAIYQQQgghCowE\nAUIIIYQQQhQYCQKEEEIIIYQoMBIECCGEEEIIUWAkCBBCCCGEEKLASBAghBBCCCFEgZEgQAghhBBC\niAIjQYAQQgghhBAFRoIAIYQQQgghCowEAUIIIYQQQhSYIQUBqVSKJUuW8Mgjj9DQ0MAdd9zBJz7x\nCe644w6am5vPdhmFEEK8T0h7IYQQ7w9DCgJ+8YtfUFZWBsBPfvITPvaxj/HAAw9w9dVXc999953V\nAr7bOuOKhnaF673XJYFEymfXwQzt0b+AwgghxBAUUnshhBDvZ9aJXrB371727NnDFVdcAcB3vvMd\ngsEgABUVFWzduvWsFvDd0pWEV7cHaOgwcH1Fadhn2kiPCya473pZfF/z++djbNyeoTPmEwnB9IlB\nbvtQMeGgrOASQvxlKpT2QgghPghOGAT8+7//O3fddRePPfYYAJFIBADP83jwwQf5whe+MKQb1dSU\nnEYxzy6tNX98weNwW99jXUmDdfsMhlUFqal5d8v/wBOtvLQ21fvnRArWb0sTDFj8w18PP+nr/SV/\n9yciZX9vSNnFqSiE9uJEpOzvjfdz2eH9XX4p+/vXcYOAxx57jPPOO48xY8bkPO55Hl//+tdZsGAB\nF1988ZBu1NwcPfVSnmX7mwwOtwQAlfO4r2HjHofzJwVpaoqyt1HRGjMoDWumjvQxzsKgvO9r3twU\ny/vcph1xdu5pp7LshLFbr5qakr/o7/54pOzvDSn7e+P93hgVSntxPO/3v39S9vfG+7n8Uvb3xplq\nL47bm3zppZeoq6vjpZdeorGxkUAgQG1tLY899hjjxo3ji1/84hkpxHutI2FwbADQI5mGWNLn0TU2\nR9r7XvfOQZ8lcxwqi/Wg1/W1Zt02h12HXJSCaeMszp9mY6j89wJIO5po3M/7XCIFjS0eZcUmr21O\nsb/ewzRh9uQAs88JDHj9vsNpfv98jLa2NCNqLK5eWEI4JMuJhBBnXqG0F0II8UFx3CDgJz/5Se/P\nP/vZzxg1ahQtLS3Yts2Xv/zls164s23nYdh6yKA9pkkmHayAiW3ndpJLwpqn1/ocaTdzHm/qMnh1\nm8X185y81/a15jerkmzc2benYO02l+0HPG5bHkINEggEA4rKMpN4auBehNIixYgak1+ujLJtf7/r\nbs1w6QVBbrqqqPexF9+K8YfnOkmm+oKUDdtTfPHWKqorhj6TIIQQQ/FBby/Eu8dxNJ6vCckeOCHO\nqpPuDT744IOk02luv/12ACZNmsS//Mu/nOlynXWb9ileetsgldF4no9pKlwXMoaHYShMSxGJKCbX\nery+08x7jYZ2g464orwodzbA15rHX0ywbksGwzJyOvzrtzvMmmhx3lQ77zUNpbhoVpD6Jhf/mEmG\nQEDx21Vxth9wc67p+fDa5jQXTgsyYZRFOuOz6tVoTgAAcKjB4fEXu/jMjZUn81UJIcQp+aC0F+Ld\n0dru8vvnu9hzyMF1NWNH2CxbWMTMKaH3umhCfCANOQj40pe+BMCNN9541grzbvE1rN+l6Yw6eF5f\nR9k0FQHbQGuFHTCpjPiMqvBxBkkQ5PqK1DETATsPZnj0hRgHG7rTejpgWiZWIPtVa2D7QWfQIABg\nyYIwAG9tSdHY4vWmK23p8GntzN5QK43Rb1OC48CmnWkmjLJYszlBa3v+tKL76zLZ78DXvPl2giNH\nHUpLTC6fW0QwIKMuQojT90FqL8TJaW53eW1DHNeDOdNCTBkbHNL7XE/zy993sL++r1Hdvi/DkWaX\nL95iMH5U35LXzbvSvLE5TVunR2mxweIFMGP8mf4kQnzwFeS6kM441Lf4OQEAgOdpMvjEo0mCoQBa\nh9hzRDGsHA41DbxORZFPTWnfNdIZzUOrohxtzV3T77keylCYVnZGQQ2y/wCgsR027FHEnQjTpgVp\nW9eBm/AHXT6Uo+c1J3htV8zl5w+1sftgpvexl9+Kc8cN5UwZJyMuQgghTt5zr0f540tRYolsG/j8\nG1Eunh3hUx+pOGEb9vrGRE4A0KMz6vPS2gR3dAcBa95O8fBzMVI9zVeTx+5DLVx3WYQlCyJn9PMI\n8UFXkEO/vq8HBAA9PC/7XDyaIpV0qGuG+dNMQlbu6y1DM2usi9nvG3x1Q3JAANB7Tzf7uFIwfUL+\n2Gt7HTy4Gjbszu5X2F5nUlpdTlFZBDt4zMzBsUuFLLhgWraSnD87TE1F/iVMk8YE+N0znTkBAEBD\ni8vvnulE68E3OgshhBD5NLY4PPliV28AANkZ6lfWJ3hlXXwI7x/8UMy2zuxzWmte3pDqCwB67uPC\n65tTOK60X0KcjIIMAgCO19c1TQMNpJIZNDBrvMGy8zNMrnUZXuYxYZjHktkOc8bndvgHy+oDoNEo\nYN4Mm9mT+4KAjKN54+0Ub7yd5rV3NIn0sWUxCYdtfN8fGAh0s0y49IIQ40ZkrxsMGFxzWQlFodyR\nl3EjbT68uIRdBzL5LsP+eoe9h/I/J4QQQgzmzxsSxJP5G9Z3dqXyPt5fecng3ZHS4uxzsYSmsSX/\n+tzGVp/6pnf/cE8h3s8KcjlQWRFUlEB7nvSwvuejNViWied64HvsqIe2pM24WphQ7RCy81d0Y2oH\n/zqHVZp8ZHGYOVOs3mnRP29K8ae30rR2ZoMHw0xRVBIkXJS7JMcOWGit8b2+IGPWZJuSIhPLhDnn\nBJgxMTdF6OUXFTNhdID12xxa21OMHGZz1YJiTEORGWS0xPez6VCFEEKIk+EeZxTeGWTmvb/LL4rw\n6obkgE5+OAgLz8vukwsGFKGAQSozsJ0K2lBSNIRls0KIXgU5E2CZivMmKY5dU6O1znb8uynT4FAL\nvLwV9rYE2d4Y5MWdYRo68y+1uWBGkHPGDQwEKkoNPvORYs47x+4NAA42ujz5arI3AIBsABLrTOJk\ncitB3f0/3/exAiajam3+5oZSrpgbAqV4eUOa3z4dH7CecuyIAH93cy1/c1MV11xWSjBgYFmKsSPy\nzygMrzSZOUn2BAghhDg50ycFBz1Ac7A2p79gwOCvbyhjyjgbs7uJHTXM4qZlpczobpcCtmJKnjYW\nYPJYm6qTOEhTCFGgMwEAV8xR7K7zOdgESqnuAMDHc/s65eGwjX/MV5R0TLYeCTK8NIFxzKCDoRSf\nvamUR/4UZ/chB8eB0bUWVy8IM6Y2txJc806aZJ4ZUq0hmUhjB/ru66Td3rX62tdEIja7Djo89FyC\naLwvkNmyJ8NNSyJcOP342RiWLyrhcKNDR7TvswYCcOX8YmxbRlKEEEKcnNnnhLhwRpi1W5I5j08Y\nZbPskqGdbjpxdIA7/7qK+qMuqbRmwmgb08xtk/5qaRHRhGb3QQfPzx7fOXVCkI8vlU3BQpysgg0C\nlFJ8crnFv/x3Ci/PChjDAO37DK8dWLF0pUyOtFuMrhy4/jAcMrhgZpiRw4OMGW4wZWz+EZBEavDp\nUd2vPE7GJdrZt6lKGQZNbZrn3kznBAAA8RSsXpvm/GmB455KPGNSiC9/oprVa2I0t7uUFBlcPDvC\n+TOkEhVCCHHylFJ89mOVjB8VZce+NK6nGTcywDWXllAcyT973t+uA2n+vCFBR9SnotTgsrlFAwIA\ngOKwyZduLmX7Poe6Rpfh1SZXLayitTV2Nj6WEB9oBRsEAIRsg6XzLZ5d4+L3dLxVNoNPSRgmTAzn\nrYQAnDyBQ1uXx2+fTrHviJfdV2DAlLEZPnlNmHAod560tsoE8p82HDB94tEUnueRiKZ7ZwGUUtgB\ni2AQjrTm3wB1+KjH0VaPEdXH/9WOHxXg03JomBBCiDPEMBQrLi1lxaUn9741byd5aFVnzsbit3en\nuf3aMi6YER7weqUUMyYFmDEp0HtfIcTJK8g9Af0tviDAHdcEuWCazcTRJuNrTZbONfnm7WEmj8k/\nih+2PUZXDOyEr1ydYm+915t5yPVh+wGPR14cuO7n8gtDjKoZ+PWPHm7ytdsijC7PEO9K9QUAhiIY\nDqCUYuJIE3uQ35xpQcCSClEIIcRfHq11Tipq39c8/0ZsQGahWFzz/BtxSVstxFlU0DMBPaaPM5k+\nbuB05dThaTqSBvF033Om0kyqcbCPeXlb1GNPXf48x7vrPDKOJtBvvX04qPjbG4pZ9VqKgw3ZgGL8\nSIsPXRKivNTkCx8vpaHF5eEXUhxpAV8rLBNqqxRJR2FFwoQtjet6OP2OLZ440qSq/MRTr0IIIcS7\n5WB9msf/1M6+ujSGAVPGhfirayrxXKhryD+zfajBoTPqU14qbZoQZ4MEAcdRHtEsmpSkPlZMc7uD\nbcGYCocRZQM7+7G4Jp1/dQ/JjB4QBABUlpl84pqiQe8/otriKx8vYu9hnyOtHr4Pr7wDTV0ACtMC\n0zIxDEU6kWF4lcF1lw2cOu3huppX13fR2eUxbVKYaRMHf60QQghxJrR3uvzsN4056T+bWmPUNzl8\n6fbh2BZ520/bUtgysy3EWSNBwAkUBTWXjIbm5uMfdjKi2qSm3KC5Y+BmgeGVBkXhgRWZ42re3ObR\n2JrNznPBZIMxw3PX+SilmDzGZPIYk/ufcUhlBk6NBoMWC2eZXHNxkGAgf4W5c3+S+/7QzOGj2Zo2\nYLUzZ3oRn79tuFSyQgghzppnXu3Ie8jXgcNp1m+JMWlsgG17Bx5UOWlMgKJIwa9aFuKskX9dZ4ht\nKebPsrGO+UYDNiw8N9B7PkCPeMrn/z3l8vQan417fNZs8/nPJxxWvjz4ib2tXYMc8qUVwyqtQQMA\n39f85rGW3gAAIOPC2nfi/P6Z1iF+QiGEEOLkHR3klF+AhiaHm5aWMGp47pKfsbUWNy0tPdtFE6Kg\nyUzAGbRkXpDisGLDToeuuKai1GD+TJvzzhm4wXj1Bp9DTcccVoZi3Q6fEeVpFs7JzfW/bb9HPOnj\ne5BJZUgnMyjDIFQUIBgMUFU2+Gj+ui1xDtTnDy627U7mfVwIIYQ4E4qLBh9vLI6YjKkN8M9/W8Or\n6xO0dnjUVJosuiAis9RCnGUSBJxhC84NsODcwAlfd+honhyjZM8BeHGjw8Wz+2YPnnzN4Y0tHn53\nzBAIBbACFq7jkYgmKQm4TB1TNui9OqL5NywDpNL5yyGEEEKcCZfNLWHN5hjJY87HKS81WbIwO9of\nsBVXLRh8j1wPX2s2bk9z+KhDWbHBJefL+TZCnCoJAt4jzuCzo3TFfKIJTWmR4uBRj7e29wUAPQzD\nIBAyCARtWtrjrNkJF50DZp4Bl4tmRXj0OYNofGCHf/SIEwcsQgghxKk6Z0KYWz5UxdOvdNDQnG38\nxtQGuHFpBVUV+VNx5xNNePzXHzrZfdChp0l8eX2KL99uU3Hi+EEIcQwJAo6xp87h1U0Zmtt9ImHF\nrEkWNy0tPuP3GVkNTR0DH/c9H1N5vZmEtu7zBw8YNBimQbAoxB+ejXK0s5JrL3IHBAIVZTaLLizh\nmVc76Z9yubLMZMVl5WfmAwkhhBCDWHxxGYvmlrBxWwLbUsyZFhn0MM7BrHwhxq6DuWmEjjS7/Oqx\nFr56a9mAvXdCiOOTIKCfnQcdHliVoCvR99ieQx5pt5OrLjTYsDVOOqOZN7uIYOD09lRfs8Bi6/4M\njtd3Ha01mbTDrAkWoUE2+eZj2SapdIb9TQavbgFbpxlbazJmeN+v99brqqiptNmwLU4i4VFbE2DZ\nolImjZM0oUIIIc6+gG0wf86pDar5vmb3wfx723YfSLO/3mXi6KHPKgghJAjI8fKGTE4AAKCBF9+K\nsfqVGA1HsxXQo891sGRhCWUVYZrafcqLFZfMCQ44B+B4isMGf/shi/tWpemKZ+/jZlzG1yo+urhv\njeO5kwze2Orlnw3ovp3WGsM08TyfN7b5NNansC2YMsbiK5/IXkspxdJFZSxdNPjeASGEEOJUbduX\n4dVNKZrbPIojBrOn2Fw5N3xGRuh9nc1ql4/nQywh+9uEOFkSBPTT0JJ/A20yDfGuvj+3tLs8vKqd\nojIHO5RdU//mOw63Lg8zbsTQv9LRwy3++VMm67dnaGn3qa0Oc95UG6NfhTlmmMmCmT6vv+PhHVPH\n9VSsTsaltCJCIp7piQtwXNi23+V/Huvg1qWy7l8IIcTZ8/buNA88FSPee6SOz55DLp1RzQ2LT3/B\nvmUqRg+z2BYbOBtQW2MxbYK0c0KcLAkC+gkFFTAwF7/WGv+YHrjW2VSdPUFAY5vPE6+k+NLHB5/q\ndD3N06+n2HXIJZWBkdUGV1wQYN7M4KDvAfjQxTaTRxls2OWxdb+P64EyugOAtEMwaBEI2fieTzKe\nW0Fu2ZMitsiiWA5cEUIIcZa8vCHVLwDI0sBbW9NcvSBEccTM+76TsWRBhMNNDl2xvnY6YMHShWUn\nNRMvhMiSIKCfqWMtjjQPHGXwHA83zzyk7+cGBgcaPBrbPGor81d2v1mVZNOuvk1NTW0+B454fOZ6\nxdja4/8qpo41mTrWJJbwuft3LumUB1pTXB7CtrPvNUwDx82dzYgnNR1RX4IAIYQQZ4XWmsaW/Mtx\nuuKarfsc5s86/SBg5qQg/99N5byyPklLh0txxOCimWFWXFFBc3P0tK8vRKGRIKCfaxeFaOvy2bbf\n7V2DX1YEdS3xvK83rdxKzfUgnc5/qu++epete50Bj3fENC9vyHD7NUP7VYSDCu37ZFIOruuRSjqE\nIjYl5dm1/246NwgYXmUybJCgRAghhDhdSinCAciT8A7TgKrSMzcINWlMgEljZOmPEGeCBAH9WJbi\n0x8uYv8Rlz11LuUlBrMnW/yf+1Js35O7Y9gwDYKRUM5jI6sNRg/P3+HeU+fiDHJm19G2wQ/zOtY7\nezJ0tMbxut/i4eNkXHzPp6g0jNdv2ZJScMl5EZkmFUIIcVZNmxCgoTU14PHxIy0mjZGsPUL8JZIg\nII8JIy0mjOz7au768jj+8zckBvNsAAAgAElEQVR17D6QwvOgssKmI2WT9vo6/OEAXHZBANPI3+Eu\njgzeEQ8Hc59zXM26XZqWLogEYO5UKOs+dv2VjaneAKC/VCLDonNN9tsm7V0+ZcWKOefYfHRJKS0t\nsZP5+EIIIcRJuf6KCB1Rn637MmS6J73HjTD5+NIiyd8vxF8oCQKO4Wt456DJ4VYTT0N1ic+SC03+\n5mM1Oa+ra3T58+YMbV0+JRHF/FkBpo4bfLRj3owAL6/P0NiWu25SAbMm9v0aOuM+D78EDW19r9m8\nD1Zc5DN9nMHR1vzrLj1PU1Ou+PBluRuTh1r5ZhzNpr2ajAMzxkNliewhEEIIMTS2pfibG0o4cMRl\nT12G6nKT2ecEMJTiaKvL27sdQkHF/Fknl05bCHH2SBBwjNVbbHY39H0t9W0mR6M+y2ZnR+V7+Non\nFndo6/BpaIaumEcm43PulPyZfixLcdOSEI++mKK+OduRj4Rg7nSbyy7oe8/qTbkBAEA0CS+9DVPH\naIpCio48+59MA2oqTq3j/s4+nz9t1HR0Txj8eQucP9ln6VwlIzhCCCGGbPxIi/HdM+laa373fJy1\nW9Mk09nnV69Ncf3lYc6bevyseEKIs0+CgH4Otyr2Ng5c09/YBpv2Wyyc6nLgSIY/PBfNObrcsAw6\nopq6RpdPXaeYMTH/pqUpY2z+8RMWm3Y6RBOa2VMsKkv77qe1pq4pf9maOmB3vWb6RJv65oHrgSaO\nsph0CqclxpI+z63XRPtteUhl4M3tmmEVcP5kCQKEEEKcvFc3pnl1Qzon8XZzu88jq5NMHR8YsBRW\nCPHukjUf3VwPNh0KUlxsUlpiEAmDZfVVXS1Rg4yj+dXjXTkBAIDv+nieRzwFr25KH/c+pqG4cHqA\nKy4M5gQAvdfKn1yot4wfvizCpDE2dsDEsi0sy6Sq3OJjSyOnNGq/fhc5AUAPrWFn3XEKI4QQQhzH\n1r2ZPCfvQFuXz2ubBm4iFkK8uyQI6PbG3hBH232aGhO0NiexLEUkbOB178K1DHh1fYK2uElpZTFl\nVSUUlUUwjOxXqL1sVdfSPvRMP8dSSjGyKv9zlSUwdYxiw06ne7mQgVIKZRh0JRQvbRjkPPUTSDuD\nd/QTUkcLIYQ4RamBx+70Sg6STlsI8e6RIAA42qF4fWOc3Ts7aWxIUH84zo6t7XR1OYRDinTaZXSV\nx6b9iqLSCIFQADtoEy4KUVpVjGEYaJ2t0IrCp/eVXnZutsPfX9CGi2dkj01/c4uDM/C4AbbsdWjr\nPPkAZOyw/KckA3RETz2gEUIIUdhqq/K3h5YJU8bJamQh3mvyrxB4aaNLW2vukEUm43OkLsbEyWUE\nTJ+KsENH3Byw5MayLcIlIZLRFAqYPeX08iHXVhrcsdTnje3QHoOwDedNhrHDspVpa2f+7ECJFOyu\n85hflrvEKJH0ee71GIk0TB1nM31i7masc0aDZWhcP/dz+Z5PR5dPc4dPTbnEikIIIU7O4nlhdh9y\naWrPbbdmTbaZNu74B36tfSfOaxvjdHR5VJaZXHphMefPiJzN4gpRcCQIAI62ZpfSBEIWppkd1Xcy\n2Ww/ra0pTFOx+7CPp/Ovubcsk5Jik4Xnhbhybijva05GScRg6YX5nysOKzqiA0fubROGVyre2uaw\n57Df/ZjHph2ttLRlP99zr8Psc4L87Y1lmGb2s/haoX0Px9EY3WccaF/jej5oONqmqSk/7Y8khBCi\nwAyvNPnbG4p54a0UR5o8bFtxzjiLFQvDx33f6je7eHhVO+nuWe8D9bBtT4pbr6vgsrklx32vEGLo\nJAgA8DWRkiCW3TeKbgct0kmHRNzBDtrsaghQWp4dIU+lXFynb2Sjoszgyx8tpziS/7Tgodh12GfD\nHuiIQVEIZo2H8ycPHIGfNcnicNPAhZYTR5n8+R2fzXtyl/A4aQvIBgGeDxt3pPnjqzGWX1LMG29n\niCY0lvJxHT1glqMoDGOHS/YGIYQQp2ZEjcXtHyo+8Qu7+b7mxTWx3gCgRyqjefHNGIsuKO4dsBJC\nnB4JAgAzaGP5uR14pRSBkEU6mSGdSVNRXoxp+ti2jW2bxKIZHCfb4b7kXPu0AoAtB3yeehNS/Sq9\nA43Z9J2XnpsbCCxdECSW1Gze5RBNZM8HGD/S5NzJFo+/NnANvxWwsB0LJ9O3cXjTjgzrdsZJZMCy\nDdAKJ+1iBczejc4AM8cblBbJUiAhhBDvjqOtDnWNeTa+AXVHM7R3eVSVS9dFiDNB/iUBgYAJyYGP\nG4ZBIGTjpF0M5eK6EAgYGKZBKGyB9pg5XlFdDvevStPalT3Ma9ZEk4XnDtw/kI/WmrU7cwMAyKYK\n3bgHFkzX2FbfdQylWDw3SFOnItPgo5WiPWnwxvb811dKYdq5QUBDq4vZL2YxLYPisjCm7xIIGhSF\nYNo4k2Xz5a+HEEKId09R2CQcUiRTA5e9hoMGoaAMTAlxpkgvD7CP8y1oHzSKRMIjGfcwTYVpmkTC\nBrdcbhFL+Pz+T07vaYig2d/g0xXXrLi4b5Ow72vW7tTsO+KjyW70XTBD4fnQ3JH/3u0xqGvWTByh\n8DW8vV9xqEWxvwE6YgEMKxs5JNPZ/5SRLW+eT3HMH3ODE8/1iXYkqK4K8/VbA9i2wpCTgoUQQpyi\nLfs9tu7XpB3N8ArFotkGRaETd+BLi02mTQixcfvAkbmpE4KnnYFPCNFHggDAdx0810RrjWn1jeB7\nrkcimsQO2qTSHo7jk0n7hCMmJWEYN9zg/z7RPwDI0ho27HK5/HyTSMjA15rfv+Sz5UBfZ3z7QZ+9\nR+DmxQZBG5J58ilbJpREstdbtc5kZ31P5WdSXJKdwejq7EvmbygDj9woQGuNm8k9Q0DlWU/pe5pk\nymPjXk17DErCmoumKoK2BANCCCGG7rm1Lq++7eN1N0c7Dml2Hfb55DKLsiEsMb3tukpiiWZ2H8w2\njErBOeOC3HZt5dksthAFp+CDgCPNLjt2tNPRla2tDMPACpgEIwFM08RxPAzLJBQO0dGexOuu1cbW\naLTWA1Kf9eiKw57DPrMnG2w7oHMCgB576mHDLhhfC5v2DrzG2GFQU2aw+4hiZ/3AznggaBEKW6SS\n3dmNbEXKzwYNkK04J4ww8VImqYwiEjLYss/NWfffn+P6PLuu7z6b9mo+slAzukZGXoQQQpxYe9Tn\nre19AUCPhlZ4aaPP9YtO3J5UV1j809/Vsm5rgoYmh9HDbS6YGRnSElshxNAVdBDguJr/90hHbwAA\n4Ps+mZSPYZj4tgY0ShlEwhaGoTANmDjc5/JZPkpBKKCIJvIfthXtXtO4t37wkxFf2OgTCBhYZjZ7\nT08HfnQ1rLgo+/OBJgXkr/xs2+wNAsYMUyycFWD7QQ90dl3/5ReV8dq6DrYecPE9CB5O4AxyuPCx\nFWxrF7ywEe5YOmjxhRBCiF5v7/NJpPM/d7g5/6BZPoahmHdu0RkqlRAin4IOAv68IUFdY/4eseu6\nmHYQw1QYJvjaoLI6zKUzPOZP68nCo5gy2qC5I//Jumu2+sybphlk4L37PgrVc+Kwymb7KQ6kGV1h\nUBqx2VvvsXV3hvZOME1FqChAIND3a+sJGoI2zJtuMHOCxcwJVvdzmv9+tJM/b0j2jcoYNobh4fu5\nlbFhQKR44BkHh5uhpdOnukxmA4QQQhyfeZzBelNSewrxF6Wgg4CW9vyddwDf9bO5iLXOHiCGYtwI\nm/nTckf1r1lo8/Y+j1jimAsY0NwJ63Z4zBxvsGGXxs0zCNKT71ip7L18DV2pAM+vTbJ5j0s8BalM\n9jUOkE67lJSFCYVt0Brb9Jg4QjF/hsnsSblpStdtd3h5XerYW2JaBrg+PXFAOKiIlEYwrYFpTj2f\nQWcOhBBCiP4uOMfgz+/4dB3bJgLjayUIEOIvSUEHAdUV2U5vMBxAGYpMysHvGTJXABqUIhDM5s+v\nLh0YNNiWoqrcJJbqe04p1bu0Jp6CiSMN5s/QvLVd4/S7hGEojH7DJkoptNYYpoFlGzS1Z5cc9T8Y\nRfuQiGcIBE3SSQfDVASKQpjWwAhj+4HBeu+KBbPDjKw2sC2YNzPIQy9qDhwd+MraChheIRW3EEKI\nE4uEDBZfaPDcW7nLgiaPUiy+8NTP0xFCnHkFHQRUVAQpq1a9JwWHi33SyQyJrmS2I28YhIsswiET\n388ur8mnpkxR1zRwuYxpwIQR2Q708nkm08f6bD2g2dcArTGFYagB6/AV2U6/ZZu4jk++W7oZj+bG\nKKlEBu37HK1XdMSqKIn4jK3pe50/+EQHaQeunNu3/OeSmZrWLoj2y8oWCsCCGcjpjEIIIYZs3jSL\niSN81u3wybgwpkYxZ7IhbYkQf2EKNghIO5rn13m9AQBkMwOFIkG0r3EdD9PKdsZNO5vvPzPIwPol\n55rsa/DpiOU+Pm2sYtKovuuPqzUYVwvbDsIjr2nybvZV2Udd5zg9eCBcHMAOWsQ6kmjf5+D+dlbZ\nVXz8UpeK7hPaJ4wy2bQ7f6HbYtl9CD1ByORRBrcu9lm7K5vZqDgM50+CscNlL4AQQoiTU11msHz+\nwPZDa9heb3CgySTtQHmRZvY4j6qS/INs/bPdCSHOrIINAtZu92iLDnxcKYUdzHb6i4qDVFQGjz1q\na4CR1Qa3LrF59W2PxlafgK2YNEpx9dz8X++kEdkzANw8/XyFwnE8XMfvLk82r78yFH73pgLTyh5Y\nZpomqlIRbU/gZnxiKc0Tb1l88koXpeCSOQGee8slnsi9kRUwiaYtXt7sc+FURUn34Su1lQbXLTjB\nhxVCCCFO0Zu7TTbtt9Ddg2ANHXC41WDZeQ7DyvpaW9eDI10msYzC14qw5VNd7FMWOlGLLIQYqoIN\nAvIdztXDMBTFpWGCQYtg0CKdyVY6w8sGr3zGDDO4dcnxR80dV2Mo2HJQ4Xr5hzW0r4l2JLEtmDjK\npClq4ZM9wMzzfFzHw7D67mPbJqGwTTrpYJnZEf43d5pcPM3DMhXDhoVoOJrBdX1QYFsmgZCFUorn\n13m8vgWmj1V8eJElmRuEEEKcNfEU7KjvCwB6RFMGmw6YLJ2TnbnWGg60W8QyfW1dNGOS6DCYUOFS\nHJRAQIgzoWCDgMmjFK9szj8abwcsikuDeJ7GcTwScY/qMsXYKpfB8vUfz646j5c3Ohxp8bFMKC0y\n8Twb0xwYNISDmvPPz6b5XP22iVZ9dzRNA9M0sG1FOtMzU6AIhQN4nk9JiUU6ozjQAheT/WAjqy3a\n88x4aK3RGmJJWLtTE7A9PnRxwf51EEIIcZbtPWqSzORvQ1uife1hV0oRy/M6z1e0xA2Kg8dfLiuE\nGJqCXfA9qsakpMTGDpqY/TL0GIaitDxIIGBhWQb1dVEyGY8jzS4P/AkOHD25EYj6Zo/fPJVg844E\nLS0pWjs9Dh31SMZTA3L1A0wba3DtJUHiGZOGtvzXtG2DSROKKCvLdto9z6esIoJpKiJhRTQFv/6T\nwR/XKmZPsSk6Jv2/1rr35OMeO+t8PF9GV4QQQpwdIXvwNsYy+p5LOIMfkJkZZBZdCHHyCnLod18j\nPL0WHN8kGDTRAY3vabTvEykOYFlGNoe+Uihl4Lk+lm3SmdC88jaMv3po99Fa8z+PdXH0aF+etHQy\nQzASJBQJEu2IU1pR3Ls5d3gFXDorOxXaGjeZON7CMCAW8zja7PZukHJdjR0wGV4TAlI0JR2S8QxN\nzQbDasJoFA3t2f/2HvGorjQpSmlSKZ/2qI/WmmPjj1gSMg6Eg6f//QohhBAAR1p9Gls1E0YoJtXC\nhv0ebbGBqUJHVvY1SrY5tGBBCHF6Ci4I8H340yboiOfm5zcthWVZ2LbZmwrUdbMdZjfTl0XocCtE\nExrTyJ6yGwoMPiqxdkuKuiMDz09PJ9LYAQutNUVGknGjI1SXwbyp2U74jqMBHNtmWHX22tWVNuVl\nLjv3pNAaAoHsBI5hGlSWB4l2OXS1J+lsS1FWFsLrN1OaciDZkX19JGgQcTJE4wPLWlECwcDJfZdC\nCCFEPrGEzx9edtnboHHdbNs2fZzBvOnwxk5FZ7JnIYIGz2P3wQy2r5g3XVEZgZa4T8o9drGCpiKc\n59RNIcQpKbggYMdhaOrI33HPLs8xu3/WpJLZw8O0YfSOwmuteeA5l6NtPqYBY4crls+3GV45cGXV\nxu0DT+vtkYylCEYC+K7LRy/te7wjYVDfaXPsVGh5mcWI4TaNTU7vMiDoy+FvmApPa3zPJx7Pv14y\nkVZEIhbRuJPzuKHgvMkGhuRgE0IIcQY88orLzrq+UftkGjbs8gkHHD62EF7eavDOfognPDLde9wO\nNGg64rDsIsWYcpcjnRbx7qVBtuFTVeRTEZGZACHOlIILAhKD98t7O/q+n11n72Q8lKFw0hn8iJ3N\n0OP6HGzsG4nYflDTHnX4/A0BAnZuJ/pI82An9oLnefiuj3PMSEdTfGDmhB5lpSZamRQV2X1lRpOM\nOyjDoKjEJhZzsGyrt1I9VsoxmD/dYH+jTzwJ5cXZAOCScwvur4IQQoizoKXTZ++R/J31nXU+1yzQ\nNDQ5tHfkPqeBTXs1i2b5FIUNJle7xDMK14eSYHYGXghx5hRcz2/6WPjzNk08NbCjrVR2BgAgk3bR\nvo9lG8SSDqaVpqw8QDQxcJS9sU3z5laPy87Lfp1aa576c4KOuMIKWKCzswx+92ZcrTWqu6M/subY\nX8HgoxzhsIV3bGq1qJM9R8DXaE/T0Z6kqqZ40GsoBZfOsbjukuwUrW0x4NRiIYQQ4lS1delBD9dM\npMHxoKkj//PxFPzyiQwfWWQzcZQp6UCFOIsKLq4uCsGcCWCogRWLaWaX/biOh+t42EGLjuYYvq/x\nXJ+wctBe/gqpLdo38v70a0mefi2F6yuUyh70ZVomRr9hDKWyJyouvqhvJ25ju2LPYUVdg8/hoz5t\nHX7v/gQA55hK1XV96g9HsYMmyjCIRzPEo2kS3ct9smlAc8s7sgoqisFQioCtJAAQQghxRo2uUZQU\n5X+uqkQRsCBo539ea019s8tDz6c40OCRcSQIEOJsKbiZAIAr50BlCew8rElmwPcVnTGfWMLD9XxS\niQzptEs6kT1RTHWvu/e1ZrC0ZaVF2Q6+72s27hi4GRjAMAw8x8M04IJZET58WYTa6uyvoLFT8cKW\nIIl+h6NkMuB4muFVoNCknb7nXNenqTGBFbDx/ey8gutmDxOL2B4zJyr2Nii6En3lLYtoFs3Qcvy6\nEEKIsyYSMpg9weC1LbnLUi0TLpxqoJTCMjyUMrEsI5uAw8129n3Px0k6tOsA//m4Q02VzdTRsGK+\nIQdaCnGGFWQQADBnYva/LM2WvQ73PtyV97U9h3pNGGEQT+sB+wqqy2DBDIP12zPsOuTSkv8yKEMx\neVyAGxYXc8743FycWw5ZOQFAj2RSM6o4wzm1Lg+8bJLxLTxPE406ZByfQCB7mnA07eA6HkqBh8Gy\nCyCZ1uxoCHCkOU3A1GQyHpt3Q0MLXDTNxDKlQhVCCHHmLZlrsn13nLrGDK4LxcUml1wYYf6MIL6G\n9rhJUXEAw1DdZ9doEvEMmZSLYZq4jotpGXTG4a2d4GufDy8cmFpUCHHqCjYIONb0CTaVFTZt7cdk\nzjEN7KBNRQksX2AzcZTPK5s9jrTo3uxASy60+M3TSbbv79kvYGLZBr7n5xwIFrA0E4d5VJcP7Hx3\nJvKvzPK1Ip0B0wDfyXDkqIPvZ0fzTcvAsrJLeiw7O5oSigR7R0vCQVh6UYBX1iV44jWPzn6pQTfu\n1tx2tUlZUcGtCBNCCHGGeR5sPZhd8z95pObBP3aw+0Cm9/mODp/X1kWZM8Wkri2IHeobCFNKYVmK\nUNgiEU13z2x7vXv0AHbWZQe2wkEZvBLiTJEgAHBczdE2n6vmh3j2DUUi4aE1GJaBZZlUlBh8+NIA\nrgfVZYrPXm/T1qmxLEVNucFTr6X6BQBZSikM08gJAjpa4zz4SCtPvXCUZVdUc8tHRvY+FxhkfSRA\nOKBpj/ocadK4/dZHeq6Hb2uCIQvDMLCDFqGwTXGob9mS72teWJ8bAAAcbtY895bHX10pQYAQQohT\nt78Rnlmnae3KtjsvbARlVDJldvawzXhXiqb6Dlo7ff70ZgK7LJT3OrZtEgiZxDIOSqmcPW3RJLRF\nNaMkCBDijCnoIEBrzfNrXTbv8WjtglAAxo0MEgloosns9OSUsSbXXl7O/Y938IcXHVIZqCqF886x\nuPqi7Ne3rz5/Xn6lFIZh4DoOyViCzqY2ADq7XB5d1ci40WEWzq0AYGyVR0O7wbF7DiqKfKbUejzx\nuiaVOfYO4Do+ppVNZWpZ2fJksxBlO/fb9jk0tOb//AePZjcOy+ZgIYQQp8L14PHXfY62ZJekAli2\nSThi42QUkUiAUCiAHbQ4vLeFzTszTJ7ukS8vSU+b6bs+hqF6z8EBKAlDLOayanuGsmKD+eeGsSxp\nu4Q4HQUdBLz6tseLG73e8wFSmWzHeOoYxRdv6hupuP/JKFv2943ot3bB6nUu2/elqSrRtHd6aJ0/\n005tucv6t+rRfm6GA8eFN9Z19AYBs8e6RJOKvUct0q4CNFXFmkvOSWMY0NA2eIYEz9XZDES2wvPA\n9frKmnaP8z4/m5BUqlEhhBCnYuMen/qGVG8AAH0Z9krKgoSCAVJpTUlpmHBRgGTK5Uh9nPJhZQPa\nTM/ziXUmegOAcHEQ3d2c+W6Gnz3QQbp7xe7zr8e55ZpSpk7I3V8nhBi6gg4C3tnXFwD0t++I5s0t\nDnvrPRrbfI626ezyIKNv5EIDh45qduzJ7hJWpsIO2DmVmmlCSTA9IADokUj1VZpKwaJpDnPGuuxv\nMSgKwIThHj0DIdZxVu2YZncGI626X9tXhtmTA1SVZgOXY42uUXJKsBBCiFO2cWcmJwDo4ToeqYRD\nUVG2jUmloagkhOsmicU9ipIpApFwznsSsTS+p1EGREpCmKZBIOBTZDq8vSX3YIH6Jpf/faaLb/9d\n9dn7cEJ8wBX0gvBoIn/n3PHgydcybNzl0dCi8f3sacL91/dDX+pQAO1pPDe3IvQ8iHklg95/9IiB\n6yJLIprZYz0m1fYFAAATavN31pUBwZCNaSpCYZNwxCKe8vG6Aw/bUlxyrjEgJ3NlKVxxnmRaEEII\nceoGO50espt7K4o1kUi2q1E9rAjLzo49jq92mTzCp7JYY+CTiKdJJjKEi4OUV5cQKsqO8F822yDW\nEct7/cONLmu3JM/wJxKicBT0TEBFkaIjmi8Q0KTzrL/Xmpw19P4xI/za09Cvs60MRXOXYsq0Gg7W\nRUGDk0yjtWbMyBDXLxs25LJecb7BvkaPuqZ+11cQClnZA8mUoqUxSihikwla3P9Mhk9fk61EF8yw\nGFbus2G3TyKlqSxRLJxlUFla0DGgEEKI01Rdpth7OP9ztqmoKFV0JsC0oKwkwCGVbUvPGWsyd3o2\ngHj8Dc3mfQbFZZGc95uG5q0tGTrSAQJhyCSdAfeIxgcPQoQQx1fQQcD5U03qml2OGcBHMfg6+p4g\nQGuN7x5T+ajc2YEeSR0mXJx9baQkzOgaxec/UUtleWDIZbVMxV9dbvJ/n1GkMxoUBAJm7xkG2c3A\nikQsQ1FRgJ0HMrRFbWpqsu+fONJg4kjp9AshhDhz5kyxWLvNJd+q12lTQr1LWYsiFpYNtp19YFil\nSTLtc6ARpo2GhjZFU/8VP1oTj7l0ZHxQFuFiE8MwScX7DuqJhBSzp+bPNCSEOLGCDgLmTbdwXVi3\n06OlQxMJZTvL2/Z5OAMHHHIoUxEMB0inMvTEDIaZv5Pten21o8agNabw9ckvxakoUUwZbbC3Mc+h\nYolsgQ3DoPVoFDMY4MnXPKZOHPBSIYQQ4oyYPt7msvN9/rw50zugphRMnhBi+jkRsk2kwrYNPM8j\nnXZBKVa+6oMy6Upkz8EZXa05fzIk04rDTR5NrQ5ev8QWSikCIZt0sm+f3dxZIYZXFXQ3RojTUvD/\nehaea7Fglkk8mU0RaluK36R9Nu8ZuNEpWwlZvT/7vk9VbRntTV2MHmbSGjPxjhkN0b4mk8xdW5RI\nal5dH+XmaypPurxLL/B56i040JTt8HuuTyqZobMt0fsa19cYWrP3iE9Diyu/ZCGEEGfN9ZcFGTU6\nyKZdLmgYPzZEeZmF1tCVMNA6O3CVSrp43TPoh4+kKK0oArKZ6g42ZZcJ3bEM7vnf3ACgh2Ea1FQH\nKY/4zJ4S5OqFRe/ehxTiA0j6h4ChFCXdSxG1hgtn/f/s3XmMZMd94PlvRLwr77qrurv6Yl88xEsU\nKZEUrVuibMuybHg8NmyPbQwMrBfCLLAL24vFYoHB/GN4F2vYwIwxM4Zn1iNjNLZnLMuSrNOSKIki\nJd5Uk+y7u/qouyrvfEdE7B8vK6uqq4rdzUMS1fEBCDYzqzJfZTUjXkT8jiI9aVlaNSwvdgcdev1A\nbar+k9c0Ftxz9wi/9RHBP3434ZtPJ2wslJClKTrLtrxnku4ccvRqSiH8s0cM/+ufNAlCj7ibofXW\nmEiTabQR/Ncvd/i1D+5cASjTliePpyyuGsaGJA/c7uMpVzHIcRzHuX73HYSJkZDFliLRkm4MjbZk\nuZUvAKy1XJ5ZL1OXJlvnxZkFOHXJEnh5mezt/MIHy9x37FW6azqOc93cImCDJIOvvxwxW1eEZcHu\nMkxPF5m50KLV1ltqGq91BU6Mh7WGkSGfQlkg4nwVEAQKiLBG025srmBweP/rq23sk9Fpbb35tybP\nVUiNJU0yzs8pGm1FdZsNk9klzae+2OXi/Ppg+90XUn79oxHjw65ykOM4jnN9hIB9Q5rpqubbJ0PO\nLSnWChBaa1mab7O0sH5ibU3e9V5563ONBRabcHhaMjO/dX6bHBHcc9jdtjjOG8Vlim7w9PmA2brH\nxvZZBsWuPeUdu+oqJUk1xKnl6RMWIRWFQkChEKBUnrhbGSpv+p67jka8667Xd4z5f/5OFXtVyVJr\nLVma5ddqwWhLt2d44dFyE6cAACAASURBVNz2r/H3j8WbFgAAM/OGz3wzfl3X5jiO49xc0szy2HMp\nn388QSUt3nWox/6RlKX5FqdeXuTUK1e1rheQxJvDbn0PDkzAhx/wufMWxcY0u7Ga4GMP5+WwHcd5\nY1zXkrrX6/GzP/uz/O7v/i4PPvggv/d7v4fWmvHxcf7oj/6IILj+Kjc/zubq2+9+SyUplT3arc3H\nl2shQpWCpd62LG7TkAugUPQ5vD9ESTh6IOJj76ttaof+WpQixXve7vGV7/YGCck60+sNzQQYrWk3\nu9TbEtj8szXbhjOXt+Y9AJy5rGl1DeWCWyM6jnNjbpb5wll3aUHz6a+mzG3obL9nTPMrHw747vfa\nLC9uzosLQo9qrUDvqkXAkT2wazSfd37joyGnL2pOXdKUCoIHbvMIfLcAcJw30nXd5f27f/fvqNVq\nAPzJn/wJv/qrv8pf/dVfsX//fv7mb/7mTb3AH6ZtQuv7BMXC5ptoISEs5DX6J4cspQj8HSJoykXJ\n7/3LSf7335niFz889IYNZKWCHOz65/kJ679OIQRxLyVLMuYXtpY6ijN2rICUpDs/5ziO82pulvnC\nWff5xzcvAAAuLVo+/52U4dEyU9MjVIeKVGoRIxP5fxcrBUZqknIEo1V44Bh84uHNc+OhacVH3hnw\n7rt8twBwnDfBNRcBp0+f5tSpU7z3ve8F4IknnuADH/gAAO973/t4/PHH39QL/GEaKW2/CihHMD5k\nKZZ8glARRh6lcojvewgst+2FobJk/9T2r3tgkn6i0xtrdDigPFxiaKLK8ESV2liFsJjvsq31D7DW\nslTf+nONVAV7xrf/9QsB7Z5rwOI4zo25meYLJ7fSMJy7sn0S7/lZgybvZl+pRQyNlpiYqlAseSgl\neOjOkP/lFwX/888JPvqAdEUpHOeH7JqLgD/8wz/kD/7gDwb/3e12B8e5o6OjLCwsvHlX90N2x3RC\nKdx8PCmF5a4D8La9lsCXhJFPEHqDHIHpMcst/Zv/n3mnYN/Exu+FW3bBR9/5+ga2Rsswu5ihN3Rj\nsdby1ClJVAhQKj8R8AOPUrWIH3mI/mAqhKSwTQ6yFIJj+7ePBjMIvv3C9qFCjuM4O7mZ5gsnF6d2\nS8PNNWkGcwsZzWZKkhi6nYzF+Q6ddkIQSpablnrrxirlGWP5/Le7/N9/2eBf/4c6f/a3TZ55qXPt\nb3QcZ4tXzQn4u7/7O+655x727t277fPWXv//vOPjlRu7sh+B8XGYGLM8fRpW2xD6cGyP4NZpAVQQ\nfsL3XtIs1C2eglrB8p67PSYmosH3/95By3MnU+ZWDHsnFLcd8HZMKr6W+eWUv/gfSxw/1aPTs+zb\n5fPBByt89JEaz59KuLK8deCTUhAVQlqNDp6flzS9744S4+N5cvLJixkX5g27RgTVqkCqFGss1uYn\nAELmYUUrLfFj8Tv7cbiG18pd+4/GW/na38putvliJzfbtY+OWvbvWuH8la0lP6USmP7cAgzmwlYz\nxfMVz522PH/asn+X5KcfjLjtwLVLf/77v17in7633jV4cdVwYXaJ3/3lUe69rXjD1//j4mb7e/Pj\n4q187W+EV10EfP3rX2dmZoavf/3rzM7OEgQBxWKRXq9HFEXMzc0xMTHxai8xsLDQfEMu+Ifh3umr\nH6mwsNDkzmkYjTSf/lrK5VnNZWM5dQaO7VP82qMRfj/kZ89w/g+kLC6+tmsw1vL//mWd0xfXB9YL\nV1L+y2eXwaR0Mh9rwRiTT679vAAh87KlVlvwLe9+e4n7jxkuXGzyme/CuTnQRiCEpRxaRsbLeFKQ\nxBmNZjwozayk+ZH/zsbHKz/ya3it3LX/aLzVr/2t7GadLzZ6q//9e63X/s7bBPPL0N1QWE4p0Ei8\nbTbBpMwbh1lrMFZw5pLm//tCm996VDBc3jlAYWFV88Tz7S2PtzqWf/jGKtNjb80T7Jv1782P2lv9\n2t8Ir7oI+OM//uPBn//0T/+UPXv28Mwzz/DFL36Rj3/843zpS1/ikUceeUMu5MedsXBh2eOfnoGV\nVobph+akGbx4RvPZb8X8wnujN+z9nnsl4czF7ZqMwZMv9Hj/gz5GazZWCc0XAxajTb+tumD3ZIgU\nhi89A6eviA1fK2j2BFKCHypKlYBSNWTuchNrLW876PoEOI5z/dx8cfO671aPobLgWy9knLlkSY1A\neXKQm7adLNOkmR3kATTa8ORL8JH74fQlzYU5y2hVcMctEtWvpvfSmZTODhWs55ddHpvj3Kgb7rrx\nyU9+kt///d/n05/+NLt37+bnf/7n34zr+rEyuwpfOV6k3lWUhuG2aonVlZjTJ1dZO+E+MaOx1m4J\n/Vltar7xVI9mxzBclbz3vohS4do32HNL2Q79EqHeMuwdt9jtxjzLoC275ymWm5bvnIkwoeToIWi2\nNLPzyeC6jQFrNPW6xvMEI2NFSLrcfdiVB3Uc5/W5GeeLm9WhacX3T4Lw4VpFYPNTbEsQSMbGiySJ\nodmIqbct/+nzMScv2kG1Pt8T7Jn0efsRyeiQ7IetynzDa0OeXDFyScWOc6OuexHwyU9+cvDnv/iL\nv3hTLubHkbXw2HGod9dv3JWSjI4ViOOMmfMtAHqxxZj8CHTNy+cSPvWFNssbqvM8dTzhN3+uzL6p\nV4993D3hIQRsF0Y7XFU8c9KiTb7jb6xFkCcBS5WHBAkp8HyPF85klBckE2MBpZJHoaDwfcGFi+vb\nKbVagNfW9GKDkIJO5vPF78Mn3v3aPjPHcW5uN+t8cTNLtWXmOvK+rc1z0Ky2jI0X8X2F7ysCX3Ly\nUpteotAmQ0jA5k3Izl9OWGpFHNmtGBopkJn13jhxJ0Frw+23XDufwHGczdx27zVcXlXM17d/rlZb\nL7szOSI3dTK01vK5xzqbFgAAc8uGz36ze833vfNwwOG9Wwe1MIB33RXSaBt0ZvKdEMsgP0BnBgSE\nxQAvUCSpYHk55dSZNssrecOWasUjCvNr9TxBoeARhpK4m6H72y9nZyHTN1a1wXEcx7lJ2e03rdae\nNMb0u9xbglAwMVUkitb3If1AUaoWKFdCqsMFfF+BEIQFD2Msaao5cVGgbV7wQoh8o6tYDvmp+0o8\n+uAbF47rODcLtwi4hm6680ck+zf9hRAeunPzDfvckubsDh15j59J+d7xZNvn1ggh+O2fL/P22wIq\nJYHvwf4pj1/6YIl7joUsN7aPf7TWgsnDkpQnSdOMpJeSZbCwmNJoaoyxVKv54Fup5NWLfF+CsGht\n8HyVNwzbmpLgOI7jOFv4nmD36PbP9e/92T0Kdx8LmdpVIYq2bnJ5Xj7fKiUplEIgP+UOQo9eJ8n/\n66qoH6EU+/cWkdKFAznOjbrhnICbze6hjJdmobvNPbvJNHccVDz4Np/bDm7+KM2r7orAf/tqj04M\n77l3c/TkCy81+daTy3R7hgN7C/z6T09ggDixVMsS2c85WKzv/OLa5KcBaZwhhKC50qYyVMTzBL4v\n6CUQ9zSVimKoFqxfr7EkGZRKgjSG77xoeN/b19/TcRzHcXbyU3cJFuqW1db6Y3ZD7P7MAiw1E0Yn\nw21v2j1PDMJgpRSEkU+aaoJA0euYfE7dZuprtFxSsOO8Fm4RcA3FwHJkNzx/Lq+2sybyDO+5zzBZ\nLWz7fbvGFJ5i5yYqqeW7L2Y8fJc/qI7wt5+b5a8/e4U4yUe5x55Y4clnVvk//tUhhir5rom1lpfO\nZSyuaozO6/pv7UMg8gpBNt/ZV75Hp51QrkYkab5jkySWJEuxI3lIU6ed4YceNtZIKcg0PPYipMby\n6P1uEeA4juO8ur0Tkt/4sOHJlyw/OGdZbdktm2GdnqXY7lGqbJ07PU9SrQbU6/mumxAiD1ewebhQ\nXhHPIOXmE/qJEQm4hYDj3CgXDnQd3n0r3D0dM17OGCpopodTHrylx2RVs1CHLz0Nf/e44KvPQr1f\nwlgIwUht549XSMHCquXCbD5wLa8mfPbL84MFwJpXTnf49N/PAnmC1H/8+y5//vc92p18dyXPC9g8\n+AmRv7/nKaQQKCUxmSYIBCAwBipVj147JY01q/WEdkejpMBai9xQ1u34OUucutwAx3EcZ2fWWk7O\nZJyeyXjkTsFodefT8ImyJvA2PylEvvsfBJIoyuegLNMEkUeWZiglWFls0270aDW6ZFker7p7FB65\nx+UDOM5r4U4CroMQcGwq5dhUuunxVy7BF58SdOK1nXLBiUuWjz1gmR6HB++K+MzXt+vqK5FS4iko\n9zdDvvH4CvXG9kH4J87kK4vPfyfm+NmtRwtGW4RYL09qLYMKQaafHyCVZGwsHyiNhTgxGG0xVlOv\n5+8rFHi+wuj1RUWjA/Mrlr0T7jTAcRzH2WpmLuNvv9bj/BWNsTBUFlQrCmv9bU6q4fAey3JsuLic\nl9Nb27hao5QgSTK6rYTUE8Rxitkw9Vlj6XUS7n+b4tF3eoNGnY7j3Bh3EvAaWQuPv7RxAZCrdwTf\nfjl/7EPvjPjAAwUCXwyqGUgl8cM8GffALsnESH8QfJX3WhsbT13cuRui7cdc2n6zMN+XYAVGW6y1\nlCt+Xm2h/zXNZkaS5XkGAGEoMamhWPTotNcXO4UAht/ajUwdx3GcN1i7B197Dv76MfjLr1guLuYb\nTACrLcvMbIYntm5sTY/BfUclhcAipUBuE9IadzMay/kGWpZZsFtnSGtguKgZrbrbGMd5rdz/Pa/R\nfB1mV7Z/7soS9NJ8Z+MX3l/kD36zwvSUTxD6hFGAlJLpccHHH1lPCn7PQ8MMVbc/mDl2SwmA5FWq\n9Vjym3+d6rzmcuizMYOqWI5YXOyRZYZuN2N4yGdsrEBmBIWiwlpLWAiwFvSG0qCHdkO54P6aOI7j\nOLnlJvyXr+UbYScuCawKqI2WKZTW5zRroRIZjk4LShHUSnDnLYJf+aBCScHhyQxfbY0XiuOMuSut\nzaFEOxSn2KkCn+M418eFA71Gov/PdiGP4qoqZpOjPr//G3njriuLhpGK5O23eoNW6ADDtYCf+8gk\nf/3ZK3R76+E4tx0p8csf3wXAnjG5Y2t0IQRSSoLIw/e9/CKMQQhBuRZhrKTZzOj1NOWKolzyWFqM\nSdO8z4Dn5X8VklhjLURBvgD42IPumNVxHMdZ99gPYLGxeW6QUlAsh3kpz7WJ0Vh+4yMeaWaRkk1z\n3p4Rw/23JBy/5LHaUYCl006Zu9La1An41eQJwY7jvFZuEfAajdfyhKRLS1uf2z0K4VUlkIUQ3HXI\n565DO7/mJz46ye1HS3zjO8t0Y8Mt+4p85H1jBH4+0L3vvoDzs5rlxvoAKYBCyadSDel2EtrtLM83\n8CRCSWojxU3vkaYWKQSLCzFKClotQ6eTUSoFeQxmN6MQwG8+ClPDCsdxHMfZaHabeQ9AeYqwENDr\n5NV9OokkzeyOMfu37s44MpUxV5esNjSf+kKHON3mC7fJMJYSPv6ISwh2nNfDLQJeIyHg3bdbvvAU\nNDrrA9xo2fJTd1gyDT84nzfcun0fFK9zrDp2qMyxQ+VNj2ltefZURqcHv/yhkKdfzlhYMWgr6dqQ\n0fESQgisLdJqxFw4t0K5WiAIt//1riynJImmWvVYXs1o1XssXKqTpilSSuxohW5XwvBr/ngcx3Gc\nn1Di1TbgN9ywdzKPf3zS8LGHdt5QUhJ2Dxt2DwvefbfHN5/NNjWqnJ5QXJwHsyEeVsj8hPvF85K3\nH3k9P4nj3NzcIuAG9VJBkkE5shycgl9/v+WpU5Z2D2pFuO8wnJ2D//EdWG7li4PvvGR5+2F49x03\n/n4vnc/43HdS5pbzgbVUgPtv9fjEeyP+89cjSmp9cBVCUKlFTEyVWZxvEUbVbV8zzQy+L+j0bH/x\nYPthTYIs09RXm/zlV2v8wrstbzvowoEcx3GcddNjsFDf+niWanrdFCkFXuChlOD5M4Z33g4TQ9c+\nWf7ogyFH93k8dzIj03DLbsmlFY+WFhhjiHspQgqiKM89uLCAWwQ4zuvgFgHX6QcXJN8/49FLQCrJ\n1CgcmdRIYZkaExwcSwn9vCPiPz4lSLVAKTDG0uoJvnPcMl6DY9PX/55xYvnMN1OWNoT/tLvwzWcz\neloh1PaDarEcoi+3yJIMY/KkYT/wUEpirSVLNWkKQSCw1tDrpIPKRdZaslhjgM89mZdyiwK3EHAc\nx3Fy73kbzK9aLi2tzw3GGNIkIyoGg2o/Whs6PcmffSbj0QcsD9x27VuOQ3sUh/asz21zT+T/llJS\nKIabvnabpsOO49wAtwi4Dv/0TMZXnvNQKt9tz2LDqbZlblkwMhQSp3D8ss/0UMITL1kM+QIAQEpL\nlhkyI3hpxm67CEgzy+yyoVoU1Mrr56xP/GDzAmCNsXD2UkZtYvvrzQdGSxxn6CxvtR53U/zQw/O9\nwWltEmfE3WTwfWtlTK2xtBtdvOEyT520PPwaTjAcx3Gcn0ylAvza++HZ05aZRcvpi4aVVgZCDMJQ\nszQvMmGMoRsLvva05q5D6oY3lY5Ow3Nn1suPrhHA4T1v0A/kODcptwi4hl4CT54wjI/6BKFAAElq\naLYMq6sp2JTJCZ9mW3JqIcSQsLFmkOh37I17Kb1kayDll7+X8NQrmqW6JQzgyB7JJ94TUC1JOvHO\n16WEJcs0nrf1NKDbSfsNv/KGYVbnrduTXoa1FqXW+wUkccpaLSOxoaxRa7VLbbhML9ny8o7jOM5N\nzlNQ8A2vnNO0ewIp+3ORAOUJlK9I+xtRQkK9Dd9/OePhO70NjS37gag7lAAFOLwb7jsCT5+CtT6W\nSlqmRy0LyzATwfj4m/qjOs5PLLcIuIaXLwqKJS9vvtUXBgqvJkliTbOZsWtSEfqSOBUUC4p6urmg\nv5R5QdHlhmFja4ZvP5/yle9lgx2OOIEXzxriNOF3Ph5xYJdCimzLDgjA9ITg0moPWSn2Xz/X7aYs\nzrUZ3NhfVchUZ3ZwSiGEQEjIEo3y8l4B1lisNQgpsVimx17Pp+c4juP8JHrqpR6f/nJMN85LUfuB\nR6EUIsibVHq+xAsUOlsva/21pw2PH0+ZGMrnnqWGxJLnGLz/XsFYbetGmRDwkXfArfvg5RlodQwX\n5g2nrwjOXBF84znDU6da/Ow7LZ5y8UGOcyPcIuAamqm/aQGwRilBpayYm89oti1RCKQ772hIBZdm\nY1rdiHIh/5rnTultb/DPXDacuaQ5tk9ybL/kpXObewOMVOCRuzySVPMX/1inVA2RUhL3MhbnmnS7\nCaVyAcjzATa5qtRaVIxoxm2M1ijPQypJGqcUqwHVYn4U6ziO4zhrnjsR86kvdEj65TwtlribYIyh\nXC1iTd7FXimJ8gSmP4V1k7yR5kozn4ekMkgpWW3lOQa//VFDMdw632YGVuIAWfIoRXCoalluQJJA\nu53x4rmEgm/4yP2urLXj3AjXaeMaSoWddxbWInGkEoN76yzb2sxLSlBKEceGVy4LLi5L2rGg2dm+\nIYo2cHkp31359Y+E/NQ9HtPjgolhwT1HFL/+aMjUqGLflMf/9sseftxg5swSly+sksSaYqkw2NnP\n4zI3vI8QGGMHjylPIZUkLAYEYd5oTABRIRycYDiO4zjOmm8/Fw8WABulcUaWrXfxtcYONsbWQmM3\n2jg1za/Cd49vfU1t4J9eKXJh2aPeBm0FYSiZGJGM1Cy1Wt4n5+QVN1c5zo1yJwHXUA6379ALsHeo\nyeqywpOSNDOEytKLN3+9EBCGalDF4JWFIqdXJFjDxG7FUqOxpQ+K78H+Sdn/s+BnH/J5+bzgwqyh\nWhJMbeiSWCpI/tWvVOjGhn/732PmVvJBV2uNTjRZpgkLfv4eIl+wQD74WmuRUhBGPr1OQqlSQCmJ\n9BRRKaTRETxxAt517Pq6NzqO4zg/+RZWdp4XsyTD9/t5Z6zPM1Lm85YQ67kAV09+S82tc83XTxS4\nuGiJ+zlyUlpKBcFoDapFQatjKBQk3bYP6C3f7zjOztwi4BpuGU+ZWVKs9ja3APaVZvdoxrDf4lS7\nytFdPdptxWLdI03NoO15EEiklKSpJoxUP5HX4nmSQjli7z7LhfPNTa99ZFqydzIfROPU8p8/3+Pk\nhfXQoW89l/FLHwg5sGv96FNJQaeV0Gub/iC7/npGGyanh2is9gbHshtZ29+xkfngHBYCfF8hJTx9\nWnHHvoxK4fV/lo7jOM5bX7kgWFjZ/rmo4A+aifkePHDvMHFsWFhMmLm0udKEvKrGZ5oJ5lYFEzWL\nEGAMXJjP8+XWGAPNtkVJwUhVUAwtxkrCUOIWAY5zY1w40DV4Eu6cWqFWSFDSoIShEqUcGO3ghwHV\nqkfgGQqBZayqEQKCQBFFHlHkDXY/0lhz4MBa8648RtL3YGQkYO+EIvRhqAzvuFXxqx9ar4X82W/F\nvHJ+c+7A7LLhM9/sbQrzWa5rFlbzO/yrTxbSRKOUpDa89U7eWEuvEwMWa8APPKyxmH48ZzcRHJ9x\nf00cx3Gc3J1Hgm0fj4o+I+MlwijfXywVPYJAUql4HDxQ4MD+cFCYQik4erRMpZw/ICUsdEL++xMB\nn3nSZ7EhuLAkNy0ANur0LAhIsrwfgedJ6h0XEuQ4N8KdBFwHzxccnuygDVgr8NSGajvSp1bM6yNP\nDRnGK4aF5tXJSZZKRVEbWr+5T1JLIRIgJYcPRuzeZakW4YFjEG4YX09f3H5nY2bOcnJGc3Rf/ius\nliWV4vZ5BsqTSCVQngRhMdoOFidxJ84TuDyJlIKJXWUunUuJIoXvy/zkwEUDOY7jOH0femfEworh\nyePpoPpPoegzvmcIqSRB6GF0wq5Jj9n5jGbHsH+3x+6pCOlJrlzuMTFRoFIJKESKl0+0KBR8fF9h\ngcuriq+9KDi6e+edfW3AE4ZM56cDvhJ87QeK99+hqRXdpOU418MtAq5DEIWQGvKcps2DS2p8xqsZ\nSliKAYwPW1a6oHW+I68UhIHA9yOszeP1rbV4niVNQWeG52fWE3BPX7H8zAOWfeP9Ov7bJF+tXUVj\nww1/MZIcO+Dx/eNbv0Gq9XhMKQRpprESjNF0W3mgpRCCciXA9z1GxysUiwHGWAJPc9veneM/Hcdx\nnJuLEIK776gwG0s6rQQ/kBRK65tcYajYNVGiUlGUQs3zJyyvnEnZP+1RKvrcflvAWsxQGCr27yvR\nbG+eWxebgluMRQqLsVt3+H0FK3WD7yvCfg+f5Qa8eFHx8NFsy9c7jrOVi/O4DuNDRbbdDrcW6SmE\nyP/84jmYrwtKRUmlLKhWBOWS3FRi1Nq8cZfJ8pdcXU1YWWqxNN+ivtphpWn5zvH1agq7xrb/FQ2V\n4Y6Dm9dwB/eWCCN/UNBHCAgLPuVqkYUrTdJUE8f54GiModvuISR4vspv+PtHuFEpP4qQUnBwKj+h\ncBzHcZw1Y1VLGEqqw4VNCwDIQ3s8X7HWi3LPVF6cYuZyRrdrEGJth79fpW7b+v4CrGD/+NbTAIFl\n73Cbdk8grKUYSTwPKhWPiwtu08pxrpc7CbgO5aLHcEFS71o2Di/aSqQQXF60fO8HkswKpMwoRJax\nMX9Lz4AkNVhj8X1JmkEh0Jw/U19/vmtY6rVQskA3VhRCeM+9PpfmNY3O+usoCQ/c7lMI89e/vCw4\ndUXwwgXL0FiZNNVkicYL8kRkay1pnNFY7WxayyhPYXV/EPYl3W4K1qIGXYgtd+93A6rjOI6z2dSQ\nZc+o4cLC1tr8hUgigDSD5TpEAdQqkkZLo7Uh8iSd1KI1qMCSZls32aSwTNYMd+/P+CebMFcPSLSk\nFGoOT3bYPxZTKYKKO7RllaaR9PDp7FB623Gcrdwi4DrVCpJSYGjF+X10KQBPSf7mW3B2bn233hho\ndzRqRTAysl5RyNg88TZOLe1ORqmYnwqUygHt1obMJwuL812EKANwZK/Hv/iZAt9+PmWpbihGgrsO\nezxwe76z8rUXFMcvSDKTLwiigiFLNWmq8xwA+p2BlaDTSjctTMLQZ3zUp9WzCKHwPMnlmVVGJ6tI\nmfc+OD9r2TP6Jn6wjuM4zlvSuw5lLDUkni+JCgKtBUlqqfaTfdPM0orBIBiqSnqJpRtbpMjDdzo9\nS6Ascc9wdU+a6VHD9Kill6TceyDG2jwPQMn8lBtguJSwmATsLy1xolOlHitK0dbXchxne24RcAM8\nJRnaEBqzUIeZxe0Hm05XM2y9QQ6AAMJQEgSCbtdQb2iGd8HIeIlOO9lc0tNAo5MRBfmv58Autakc\nqLWWV85rvnvccG5BUygFg7rMUkrK1ZB2M6ax0qFcLRBEHjo1eL7E9xVxL+s3DIOVhua++4Y4N5PS\n7WRYC43VDkHgkaWGS0tv+MfoOI7jvIUZC199TvHKJUmqAQxRTzA57lEtK9J+SL7AkmYCrfOeNkNV\nw0rd0ktFXgJUw1LdkhmBFHn8fymCPSOGh49lm3oKCLHeoHONJy0XmkNMlHoIKYm7mkcf6DfFcRzn\nmlxOwOuw3IJMbz/YGGPR2pJlliSBJGWQGByGEqUEcQqep9izv8bddw+xf39psMPxZ/8geP7U1tpo\nxlr+61dS/tPnE46fzei0EpbmW7QavcHXSCkpVUKshW47Jkmyfgk1RaEUUhmKBouGJDbMXIzZMxWg\nPIUfSOJuRrcdY4xFuLHUcRzH2eCJE5IXLyjSDfNfL7bMLWQIYQc367K/a6+UQEpBsaAYHZEYBErm\nz6/tfxkr0EZw74GM996R4fe3KAPfQ+8QlWpQaCO40B7GmpSj+yUjFXdb4zjXy/3f8jrsHYNStH38\noZSCJBUkaX6EqTWsdVNXShAEguV6vl2SppZ6C4ZGIu65ZwTflyhP8amvZJyf25wU9d0XM549ublv\nABZazZg03ZpAlWWGTrOXhyOx9v6KQmm9DqnOQHoSa8AYQZqkdDt5laEDk6/ts3Ecx3F+Mm0Mgd2o\nF1va/YaVkM91oQ+hD80OgGSkosAKekk+J+oN05ZFcPaqHANPKXo63Nr/Rks6WUQpMqx2QxptH99z\nu1aOcyPcIuB150EThQAAIABJREFUKIZw67Rlu8pBhcLWZKmNg50U0OnknYXjWCOkotGC1abh8JEK\n1oLve/z7z6T8x88b2t38m0/O7LAlYqHbyU8OrLX0uhtKhYq8RKg1ZnC06vkKP1QolS8+jAGtNcOj\nEdZYslRTKxruvsUlWTmO4zjr4h1KVwObknylFJSKgsDP56U0M3jKYkW++YXNT8uv9dpdU2A1LtFN\nfeLMo5WGLMZVNB4SS7udsJyWWGm8UT+h49wc3CLgdfrA3ZZH7jBMDVuqRctQGYpFhbXQbmd0Ohlx\nrDd199XaEoagfJ84ziiEkolRhZQCIRVJBmEgEVKQZoaFhuDf/oPk1MV0EGu5rf5btFsx7ebm8CCj\nDZ1mQqveHTwuEIyMFigUPHS/SlAp0GAs1hiWG5bPfddVB3Icx3HWDZe23xwyxuB7FmPzMCAhLIWw\nHxZkYaSsCXyDIM8r6PY0jUayaX4c2qbRV+hBR0csJ1UW4xr1pIyxCmOg3jIsn7xIqXUJJdymlePc\nCLcIeJ2EgIdug3/xAcP/9NOGOw8CCIzJm4UZk+94xLFByjxXIArzAdEYQa+XMTYWUCkrhmsSIQRJ\nAsMjAaYfCFmqhLQ6GX/+uYyLS+yY82SMYXG2wdzFVYw2GJN/f5bqQVfHbiclSzXWGCanIqb3VQDL\n4lJeOejSTBNjDUHkY7GcvASd2A2sjuM4Tm5XLUVnW8NP282EizNtIL/xVxIKgUFYjfIs1aKmqOLB\nAqFeT9Da0u3mu1vlyHDn/q2vO140ZHrrPKSkYWrEknkFHn7ujyjb5hv8kzrOTza3CHiDXVnZ/g49\nyyyBbygVBIGfZ0t1uxlT4wGT43l8fqmQNzwxJj9GxVoqlRBjYNdkgajgE6d5B+DNCwFLmmQszTWp\nr6w3FDDarH+dGHwpcTdlaChgfKKEtbBaT2m1MoxOQYUMjVWoDBWxxtJoa5bqbhHgOI7j5BaXExbn\nWnTaMWmSEfdSVpfbLC+0mJ3t0utleNJQjAxSwFAxphgKCoGFNGbEq2+awnRmODSp+fBdKePVrfNN\nJbJk6Vrobf6PIH/t0aqlVpaMts6TfOOzfOkZwzbrE8dxtuFKhL4BVruSC8s+nVQiA0G5aGht07DE\nmrxCQpIYLs/GaG1ptPK8gDwUCAJfYqwh7mn8QFGqRkgJhVJebjRNU3zfp1wS7BnJd1pePtsjibcf\n9ayxiKu6Mfa6KWdPr7JYCQgKAVIKqlWfThvGdkX0OglCQJJofGkZG/K3fW3HcRzn5uOpfB7ZlHvW\npw1cudjm4fsL/QhVSzHohwkZ6IoCe+R5TvSODL7HWJDCMF7becMp9POSoFfzPdgfzgIwlV3kK3MB\n57+S8i8/LFx1O8e5BrcIeA20gefOwMVF8iZdQUCxlN8oFwp5PwB/VbNS3xxPb4xhZdUwv5AQ90Ns\nerFheTVjbMRHZ3ljr2LBZ3UlASRC9OMp+0GV3WaMP5I3Cvu1jwQIAf/Xn3WuvsQt1voVAGhtEEaw\nutJjzJfURksAlMqSdjsliDykFAShx3AhpRC4kdRxHMfJvesOn8eeSWh1tz7nKclyXdNsaSplhSdN\n3i9AQ72rCD2DSA3d7vrGlRBw/KKHJ+F9d27e0FpswDOn4HJdUyoIDk2LTVWAjLEcefpT+demVaaj\nZa5kIxy/mHDHXhfs4Divxi0CblCm4b89Bmdn1wchIWImxw17doVAHspTq0hWG2ZQ1ixNDWfPb5/V\nm2UWbewg9l4IQZxohMybrZw/ucitd04gpUD5CmstFkU7huGyYN+Ux4unty/XIOT6dXq+JEvNpq7B\nzUbCcH8RIKXo5y3kJxZBoPjET732z8pxHMf5yVOrKD74QMhnvhlvKt1ZKPmUqxHdTka9ZaiU8yIZ\npv9F9a7iQKXFxWSSMPKpImi1Mnw/v1k/tyB5+ULKlWUoFyAKBF95VtCJ1+NZryxY7r9dUC7l32Oe\neZrlv/wiwaNHODH1fubmygilefxlyR17f5ifiuO89bhFwA16/KXNCwDIE4DnF1NGhrxBaVDflxQL\neXfgLLP0ejuX9YlCSaNpB5V/tLEEYT54+oFHUAg4e6pOZbiQ36RrgxdGPHHS49F7Mx59KGJ2UbN4\n1cmDUmpww++HinIlZMRvcn5O5icY5CE/zWZMpRJibd7gzOaV2xiqCPZPub8ijuM4zmYP3R1wplFG\nSUGWWRotDWK9NPalOcueyTx6P1QZ5Ugzv+pTiWd5oX0rAGGYV8XTJs+Fa3QFf/1NBtXqPGWxUuY5\ncn2NNrx03vKOQzHm+edJ/82/xrZSTlwepzF6FN1KGK+AChTgkgMc59W4O7wbdHFx+8eNgeWVjD2D\n/gCWu/Zn7K5qPv89S8tuH1ITRYIkWz+yTBJDr2dQSvYrKECxElFfbCOVxGhLqRJSKgfMrlrmVgVn\nVorccXeZZicj68ZcuNjBeiFRwcf0a/57gQdCsHdS8Iv3L/HtE0W+/XIRKQXt/k6MlJJ+QSGMsdxz\ni2C7HgiO4zjOzaubCB4/W2RyYv2mf1xbFpczGk1DEHq0e/mpszGGUGkkljS1PL56jE6/grVY62Fj\nLQaL0XawAIB+g01jEL7YdIK9fH6F7v/ze/DM04PH4o5AKYHvS7SBoYLELQIc59W5gLkb9Gq3xEKu\nNw6rFTT3HcjYPWq5Y19eDu1qYSiYnIgAS5pqOt2MRjPFmHw3XkpBluUhRVExQKcGFShK5bx7Yqbh\nyy8EnJr1WekoMkIoVJjcO0alVsAPPMLIp1gOUf3k4E4qGa8ZHr27xa17enh+Pognccbtu1YR/esv\nR5YHjroFgOM4jrPZiYWAbra5IaZSgpEh1c9jE/05yrJYlyhhWFiVjJZT4mTjd62FwK6/xpZkXpsX\nuNik08VuWAAApOXh/qJCkFrFcGVrw07HcTZzi4AbtGd0+8elhIlRReBZioHm1ol4MJi96zZ4751Q\nK4NSEAaCiTGP248WGB2SDNckSknabY0xFjMY8PI+AsZAoRzSbPaoDRUol73+2CnoJFcPdAI/UJsG\nUiEESuW/6qEojzmKAnjHoWSwU2MtvONQh4dvbQF5EzTfnRM5juM4V1ntbH+D7fuSSllijMX3BGma\n0Yx90kzgy4yRSsbt+zLGh9Z26AVef56REjxPUiyHWxYCV29HVS+8uKnEqClVaL3/43lX4tQiBewf\ndacAjnMt7jbvBj10G1xcsJyb35AYDExNeJRL+cA4VU0ZLq7H5wsBuyd9Vm2A1gKl2HC0mXdUHK4J\n6g1Lr7fhKDQzJEnebbhZ75JlhuHhAkEgiWODNptCMAfWknrjeGP1BUEx0LzjQH3wWCnKr9EaS+Dn\n13Noqkc7LXKrq6rgOI7j3KBqWbC4ZDmwV9HtJ/TG+BwY75KKkG6s2D+l0ZllueXhKUEqLErmIT+e\nlycYW2PpdrJBWOyaIh32v/xVrBAIa8n23kLnF38L/4F3kl1O8TyBsIJbxpIdrtBxnDVuEXCDfA/+\n+XvgK88Lzi1IpITRYY+RofW78VasgM3VeuabCiHkYNdjI2Pz04FaNaDb7Q1OA9aqLujM0OuklKsR\n1kq0tnieQEmL2fpyAJvasPcf4f6DLYaL6wuDejcYfO2BCY2vLH7Bsn9ME6eSKLjBD8dxHMf5iTdU\n1LS2nEKDwFApSXZPSNJUoqrgdVOkNUShYKXuoa1ACpiesCy3oBBCnOS9BzINpZJPo5GiraE2HHBo\nLEV5gl5iGalAR46Q/ps/pf78kxB3Sd/+MPgBgbUUIoExgtGqRrl9LMe5JrcIeA2Uglv3S8JquO3z\nQvcgbkFYZqEheGXW5/KKxAhDMQLf2zg65cm3UliklHheXlFooyTOBmXWjDHEscZamB41XFje+v5p\nqun18pv9fBdFUClJwvFxZmKPveEcqx3F989XUErgKcs7dl0CIjqx4IvPeHSfgINTgo89YCkX3pjP\nzXEcx3nrOzqRcHlVUW8ZFhdTokgyOuJRjRI8TzE6HNCutygon7GxNrXFE1yo3kMzDiiFeUiq7+en\n0UJKShF0YqiU823/Tie/mS8WPBIki6sSJcAPDSIA6UnSe9615bqkkihlieOM589JRsqWPaPWNQ1z\nnB24RcBrNFXNuNjwSfXW7YYhu4S3NMMVuZ8vn9lNvKH6TxxDrWIIg7XHLAJIdX7KcOygx/mZlJVm\nXjEh6aXE/a6MOjOkqcFow1hZU/QtvY6hl4BSkihSFAJYWo3pdrN+gpakXJYcPhCCkMxloySZ4YVz\nBdomQIiEyWrGkRf+hnhiHy/XPkg3ya/t1CXDpx+T/PaH3CDqOI7j5FZbmu8900QphedJWu2My1fy\nU+z3vF2SZiVmVzwyBe890CBsNZlrFJDCEvkWYTVYxS27Us4vFPA8i+4YsAJPCSoVj+XllDQzLHU8\nMm3JgAuLikJomRi3m8qGAsSJJdN5/sDFRctSWxGFil3Dhve/LaVa/JF8VI7zY80dmL1GoQf7ainq\nqqo/w2KFQ94FhNUUerMk2eaBylhob2jwm+/UWwqyRxAIlFJ8+AHD3UcM77tf8qGHAw4fyLsRe57E\naM3PTP+ATrPNd16SdHp5edI0NXTaKednOnQ6Wb+iQr5waDY1s7NxP0RIciWZxKsNMTTsUygqxqZH\nOf22f4a/MIM5/tzg2pQSzC5bTl5xKwDHcRwn9+eftxRLAYWih/IlQehRqoQEvuKbz2iW6yY/Mhce\niVbI2hAHRtrUihm+Z+mmCiU1BV8TBNCNAQRpZjHWIoQgCASFwtZ9ym4MrdbmvjtpZmm08hN0o/N/\np6nFIri8ovj6cf/N/kgc5y3JnQS8DnuHM2pRyvxcA2MFVdlkj5pD9hcGQ16HsbDJQlzd9H1pZsEY\npLKUgpTxUpta0OOpi/lAFQVw7IBE27zKT/U+SZIKGj2PyWKL20ZXSVLB3509tql2sjZ5V+BEb66K\nYLTl5NmEVivjvnsqFAJDLxGMjfi02xrlKbrV3cwfeh+3nniWb/vvp9lM8QNFlmouLXkc3e3KhTqO\n4zjgBz5RKJmc8AZlPZeXNSvG0KtnxEke5iOF5dTKKCbqIAtQjWJ6WUCqJaUgJQMkeUPNKMzLe1pD\nP0E4r2rX7W6t8jMcZTTaAisEWkOrYzEGtDaDUNiNrqxIFhuCsaqbxxxnI7cIeJ2qoWEkPIcwWzsC\nGyAzWw9bPGW4d888ntwcZrOr2iHrJZxdGmJ3rU0nk0S+IQoltx4JefJ5zSP7rgCwf6iFFAbL5uSs\nq49I1wghOD/T4+D+iMlRSa2o6aU+1bIikBm+snSH9jAuHmdkNMTzJcuLHSyWyHf1lh3HcZxctSqZ\nGA+oNzTdnkFJGKopSkXJuTTve+N5Ag/NcjeAeJjpGvhSE5OH7GRastLxKYSaNBMUi/1FQL+oRam4\nucLdRuM1y7FyzOMnPOrdfI7NMku3kw4Kaqz1xgHQRlDvuEWA41zNhQO9XlJhg9K2T62kFVbSrc+N\nlBJ8tTXOvua3uad6FoFltlEAaymqLmApRoJySVKaHAMgVJqH9sxufVMLgQ+jQ/m/12ht0BouX+mh\nJISeRQhLqSxRyiAEWOlxoVXFxE2CQJCkGY3lDvNL6db3cRzHcW5KI8Me7eef5baVb/Cg9yQP6G8R\nvPQtOu2EKJIEvmS4JqiVNFJBQ5cQ/fw3AIEg0RIEDJcyAs8gBXhe3mAs8gwPHY1R27TnHC4Z7tqn\nOThh+OcPJYxEMfXVhGYjIcvyr1dKEEXrm1el0LBnZKdaeo5z83InAW8AXZ2GLEFm3cFjRgWY2i4q\nC4bE5GE9SQqVMOO23U2W2z7L7ZBCoNldy2/0pwp1VAqBTGllEWGWUvQSJJZl6fPxdyfM9SapiCYj\nYo537Znn6YVdg0RegF3jlnfdBsWCoNW1zMzCd1+ATiu/kfdVnodgAayl3bIUI58k6xHV53k8vZeX\nXu6ye9owMlriwkqX4xfh4z/cj9RxHMf5MSVOPsexQxGz6h00qBEQM1mbY+TKE1zZ9RBKpIS2w1TF\nEIaSWmQQCLSRCGEQWBo9n+FCShTCaM3SigXaauJYcGxfytEpgzApz5xTLNTzcty7hw3vOpoNGllK\nCb/0sOWlywE/OBvT7AiaPYkXqE29eA5P6S0lr63FFbxwbnpuEfBG8CP0+K3Y9gLoHkgfUxon6UQM\n1ySd/k26wLKrajkxV2OhGWCRgOXsYpnRQouSF3B0WNM1ERZBnCkkGYGCo2NNAmkIPcvp1kEqpZhS\nb5n33N7hhYUxstSSZZrdUwHFQhuAckFw20GICooTl0a4MlPnwP4Ia6GXCpSAY3sT6j3J6krG8VcC\nXrHTeL6m1cgo1zyCSDFUcuFAjuM4Tm7PlM9JdesgHDUhZIZ9TOzyya5cYGxvhUuXYor7JSdnQ3bd\nIsBmdHURTxqkUHgSwsCiDdSbGuFBt2NRSqBNfnd+ZLfh8C7Dalvgq63lqtux4OSsB57PbQcNx6ZS\nLixYXrpkqXcMhcBycNJw74H1sKLnz8JzZ2ClDcUQjuyGR+7IFxSOc7Nxi4A3ipSYyuTgPzMDL14O\n6WxoqGIRXG4EdHr5wLfWDL3RC1htD7G8HGPvkPhSkxlFagRxJgg8jS8MAQkl1SH0QkSvSz0ag0wx\nUUlY6UaAotmDbiIpBOtHn5PDhnMLisNHhykVLUlmafdgeiwhkJbVrsGsLPH9pWkAglCRpIYsSXnk\nnQWEjoHoh/AhOo7jOD/uGtHUlnw0gEXG2RtcoNkNmM+G+PQXljh8sEVZZGgUXRkSKIs1gmohz6Nb\nXDG8/HKbI7cGWJs3r6xE6/OXEDBc3hoWdHlV8eSZYMMcG3J+0ePhIz0+tmv7ENbnzsCXnoZU54uM\nVhfmV6EbWx59x+v8UBznLcitfd8kMyv+pgXAOoGSkCQGnRmstRhtEVJQrfg8fbaMMBoFWCuYa1VA\na3QrryvqkRKpjMrKeWJZxvMse4dbg1c3Gs7MF0g35FMVAkMxSEmNpBsLupmkWsxbtFsE1ULK/loT\nJfKBd2xEEoSSobLh+8926RpXXs1xHMfJ9XbYFDJ4pFGNi91REi25MCuYGoopez1qfpvxYBUh8hv/\n2UXN0qrluRMQFAIW57t5U0xjefmi4sz8zrcn1sILF4Mtc2yjp3h+ZudW98+fXV8AbPTyRWh3t/kG\nx/kJ5xYBb5I02znY0FrodA3NtqHTNRhjsMYSRpJ2T9BKJEpqLAJjoat9xttnuNSs4SdNRnqXUDqh\nWj9HQcQU/fXKRBZoJz4XltbPTZUwvH3fKtbkJwBnL8FqR+Y9DATEqaDoawqBwffgjsOKQwcilNU0\nW3D2fPJmflSO4zjOW4int79jVqRcknvR1mOoqpic8KlMTbCc5mWyI9mj27OcvSx5+ZzgsWcs7S74\ngSJN802oLIP5huRLzwacX9h+Hl3pCJZa29++LLUU2TZFhYyBldbWxwE6seD8wjV+aMf5CeTCgd4k\n4+WMkwsBxm4dxJJ0/WgzTfOKCWGQ11oOAoGne0wUM5a6ZQIf2knAebOLlo4gy9i//CzCGgqNWbLx\nu/DE1qoHrZ6HsXnWQdE2qZYs+8faZLJCuST4/9m78yDLrrvA899zzt3e/nKvrKqsVSWVpNJily0b\n4R1ovAHNAIPDTcMMA8xAxDDRQQdBhAk6Jmamo2GADv5o2vQMHdF09BgDxqZNA8abbNnGi3aVttqz\nqnJf3363c878cbOyKpVZJSHLqirpfCIkpe577777Xry4Z/ud329uSRN6kkaQk+ZlrBmw5+AwocoZ\nGzIY6fPQ85JaM9wxzanjOI7zxjQQZZTN0GLrKnFVt7mUVkkSy9QuxbGDdYRQtPIaNdVDCs3z04JM\nS6wtMuRZW1S2DwKJ2WjKrC3CZ//mMZ9DIwlvvR2aVXj0pObsjCHVgraWNJvRllo5UEyE7ZQIVAgo\nhdCNtz/mKctI7dX5bhznVuIGAd8jQxXDZD1jprV1aTLNDJ1OjqfYmK0Q5Lkl8C1ZVtwMx8o9fC/g\nWPg8s2YPs70yoT5EPWnhyZSlaB/j3bMok6CtR41V3pR8gyeCt3HEO8uCnSA2VSIxILQpQ3aZLPcZ\nq1aZHQjKYZGlYX45x2Y+99bO88LyPpRS5Eja/YQ0l6SZpTlcYveYAnbO1+w4juO8sciwjNSayLSJ\nKeHZDCUNvWCESlUzNqqZGjM0y4LUgEHR0RVI+swsX+l2XM7pb42lWo8QolgJuEwbwbdPwjPTUA0y\nzs5cPeHVo9vJ2TtV3TIQGK5qdiptIwTcNglLre2P7RuDiaHv8ktxnFuQGwR8D90/lVANLUtdRZwJ\nltYtk80+99yboZSl3VecmfOZWQkwxhYVEqVlf7PNsh6hK2tYIxAyYLrtMdWw5CXBYvMoNS9GdlaZ\nLK9ipcft9Xn2tz/BSAkW7BjfUO8m8Cy58VnJmozINUbrKVp2WOjVKQWSlb5gj7/I+eUyF/WejasW\nrHU9tLF4qigytnfMFVhxHMdxCgaLJqAvikmuVPhFus2NhBe7Gjm1UvF3IFNSU2z6PbtY3lwdv1wU\nDIoMdkpJggB6PcNVDyFEMXvf6srLb7BpbTWh3ghoNEIAqqHm2J5rh6+++55iE/ALMzBIBZ6y7BuD\nD771u/9OHOdW5AYB30NSwO0TKbdPQJJZnpvTjNavzKiPNTT1ssYY6MWSZj0kHeT4UlPOuvT9Cutr\nIRaQSoEXEdkErUqsVA5SFQGRyskszIy9lSPrn8LGZcZLS9xVPg/UURI6XpN+LAlMQkl5QB0pLdbC\noysHtl13P5OceGqFWqNIJ3rn3gEQvjZfmuM4jnNT0xshojvl2ZdSMFROECLEIinJAYHMODcreHS6\nvvk85UkiJZBCUKl4KAmVEvT7xXm11mgNWWZQSiKVLJJZ2K2TUjKLuW0yxLMJd0zmVMJrT1pJCR98\nAN7Rg+kly2gdJodfne/EcW5FLtj7NWKsYaS2PaQm9OGefX3ee3gOIST1MAEBkR2A9cBTJBkIDBk+\nMs+o6lWmsz3k1REGlAFLX1SId9+BXVlEAkNee/M9pLC05RhPn/W4sOgDFq3BkzvfLGcv9ZFKMTZe\n5vZ9llrkKqo4juM4BbvDXrfLpBRkNkBrgUCQaJ+SSnlhvgJsdOJtsRfO8xRRSSGlQCnwPYnZ2BiQ\nZ5osM5j8yux/ECl40VuP1TQfeovgzQey6w4ArlavwD0H3ADAcdwg4DWSanvN6oTNimZXtc9wdpHJ\n+gCBQClDXa8yEa3hK4MvYyazc2grqOoWfRMy2x9CJQNyEZLj0ylNENuAPDP0ZJPqYB6sJTcSg8dC\nOsT8uocUBkXGocntG4o7nZTZ2T5KScLQo1oPKQWuWJjjOI5TUOr6ne3UBKS6KIbZz3yUhLv25Rht\nsabI1FMUuDQYU5yr2CBcvP7yhuFeJ0V6xUEpBZVqwMhohVK5CEOSAu484Nonx3ml3CDgNeLJ68yc\nCANKcXdwikOjXayFiu2hpCYiYXejjxeEjMklAtMnI2RYrHE+30O9NY22korXY1WM8IU9v4jOc/q5\nT22wQrV1ifWehwGUlEgVUQo0hyZzmlHGykrMYJAzGOSsrSXMzRdrsf1+jjGWOPdJcxc15jiO4xTu\nm0qu+ZiUkOSCOFWkuShSUVNkwPO8rSFEJrebM/9SFh1/zxMEAfR7GVoXoUAASsmNFQhBuRIQhIq3\nHJUc3ffddWPSDE5ckDw/I9Au/4XzBuN6d6+RciDppoJMv3gGxRISI7KE0WyOmewI6/2A26MOuR8R\nZx5lP6FZ8jBeFWnWWFST1JM5Vvxh+sEw5e4iojrGAI9WXicfm2Ly5OfR+/dQCducPddn/wFBrEMC\nX1KPimqKZ2cta+sZa+tXqitKqfADTZZopLB4SmwUV3Gbgx3HcRw4Oql5fjann3qbLUPRubesrSZg\nfUabgl4SUgszslywGlcolQxpVhTIzDZSZV/OBhQGAm2KaJ9uJyeODVIJSmUPrS0CQakkMFqQZZZ9\nu0N+/F16W4rQf4zHzkienFZ042Ig8chpw9uO5BzZ7do7543BrQS8RoQQDJU9wrwHdmPmg5wyXSIS\ngrVZtAy40BlmKWkwECWkEOwqdRhPzlHxM1IT8LS4l6rfZzy7SLOckHgVAt3DCkVJxORGEPtNQtuj\nk4UgBHeNtjkx7VMpSbTJ8JQlkIbnzu18o/N8D2s1oQ/1yFAvbQ8bchzHcd64fuRNMWmaAQYhLNYa\nFub7LC6mzMzEtHsQZx6ZFsx1KvSTooiXEALlSTy/6Lz3uylpnOL7MIgt3a6m2ylGBsqTxb6B0NvY\nLAy1ahH+k2vxXQ0AppcE3zrtbQ4AANZ6kq8+59Ppv/LvxXFuJW4Q8BoKlGSsWWXX3HcY6p5jJLlE\nrTdHafYFopnn6YzfTq2UE+uAjhrFJ8NXhqpeZ6+apd9LmTeT1OhgylU8BaHMwCsWdHKjMNoyLyag\n2sAawylzO6iAldWc3Ei6rYRmZGgGhiSHoabH3j0heyZDwqC4oQohyJKcCzMxdT/mOpFMjuM4zhtQ\nri1LSzFZalFK4PuKXZNldu8p0+9rFhZTcm3opgFznSr9eGvqTykFxhjy3LKymtIfaLrdHGNASIHn\nSXxfIsTG//uSMFQMEksUCpSEU/OKb54O+OoJQ3fwj2uoTs4qcr39Nf1EcOKi22fgvDG4cKDXmheQ\njhygdu7bhN1FpDWk5RFW9z1AUptA9U2xEdjL8MlQWUygB+xRl8i8JhWvR47Pev0AJoVK3mLgN8it\nYikpE6mEga3gpT3WvXFWGOZCNyBJYiSG4ZJhKLQ8dR4mxgJ2TYR4GxuvRkd8ZuYSZi710LkhSSzn\nZiz377+xX5njOI5zczEaxsbKlCuKsWpM6GnW+wFKFckput2MVttQGpMYrVlcyjfbGigGAVoXq8zG\nwKWZmCyz+J5CSPAChefJzdl+peTGvgCDFwg8JfjGqY3U1XPwlB/xloMphydeXmB/kr2yxxzn9cQN\nAm6E5i5ceG+RAAAgAElEQVTm73w/3qCNMDlZeWhzt1ScewyX+vgSchNQG1xCAtJotCwxUopJVQWE\noMEqXp7SKo+SEWCkz6HGGpmtcKlyJ6fFnURY4kyChTxLWe36/McvBWgDeW544fSAiTGf0ZEAz5NM\nTgScObmCFxQ/jbm1G/g9OY7jODelVizZO26IAoMVPknuIYRmotohSSL6/ZQ4MfT6UApBa4tSdrNT\nr/WVzEAAaWIQUpDnuqghEEmCwOPyU4QoVqmlBKsNIgq2XE+cSZ6Y9tk3unPF4BdrVq4d9z9Sd3sC\nnDcGFw50A5QCH09J8lKdrDK8OQAYZArQ7G+sA2CFQgsfKyUWQa+xhyptlO4h0ewenGYl3E1KGRBo\nLVhPykwv+jxZfR8EHp3YY7WlGR6WrKxpZBCCkJspQEslj7mFlEFczJ4EgWJyssTwWA0Az/1CHMdx\nnBdZ6PmUSxLlKTwliEJJo+aTmhIT9Zh7DhQZhJbXYbCRTOhy59xaS5pqpNoejmOBKPIIQ7/o9G88\nRcmixoC1IOzO+9S6ieLs4ssL5bn/gGaosv08k03DXXvdPjjnjcF18W4AIQSNUkTkeygpwBqMzqmr\nNofqywjyy08k90pY6dHz6gQKov4K4VNfR0rBbO1OWuEkUKRWa/V9lnsel1Z8Aq+Iv5xdsrTXE24/\nENEYKm3bSCWExPMkq6tX1j9Hx6qMjVfwPMHU6Gv2tTiO4zi3gExDrOUO7QlUygIjQs6uNADNUF3Q\n7Rcz66VSURQsCASBL1FSEkaKSsWjUvU3z5Om+WZlYCGK+P8ihail18uYX8pot9Mdr02bl7c3oFqC\nDxzPuGO3plkxDFcNd0/lfOgtGcr1jJw3CBcOdIMoJamXI5J+i8z0EVdNXkirSa0EIRC9FvF6G//A\nLg7qM6jBGnqoQmotwcnHyA49AEFIe+Cx1lMsrIcYayj5hlbs024nvOOBCr1EEgaWXn/7DEet6qE3\ncjVrbdHWQ0oYGVK85143I+I4juNc0Ukkxu7cU7ZAGEjGhnKefW7ArvGQVgeUguEhj1IMcQJhoOh0\nMzxPEkWKNDX0+8UEWJ5bOp2UatXH8yXGCIyFNMlJk2LVetDPaDTCLe8d+YaDY/nL/hwjVfgn97/8\n5zvO640b795AxmjybPDiKugIAQEZOk7JPvHHJP/t0+Tf+RqeTlFJBz0ySaedM7R6kspf/AFrHcFM\nq0KuJcYKet2MCwsSY+DwwSrdxMMi6XYTOu3B5gzLZZ4SlKJiqbU/MGzs1WKiKSmFOI7jOM6myLdY\na4lTuLhgOH0hZ25Zk2VFGk8pYbhWbO71VVEdeKihCPytG4MrFY8wVAghCAKJ54nN2H9rodfLEGJj\nFcAUtQLCyCeM1Ea60CutpxKWo5MZpWCnK37l1jqGFy4Y2jtMoDnOrc6tBNxA/ThnMRkiMT4SS0UN\naPqd4iaIRQY+5X/6U+hnniQ98QTmrvuQ/Q7aK9FdTsj23EH4tT9GPfY1grs/ROhfLrcuWVnXTI5o\n1uMyQkCWGfoDi5QwP9Ni7/46Wkt8H8qR4fAew+lZTbd/5aZajdxNz3Ecx9mq5FkWVi3CxEwNZ3gC\nVnseM4uKaiUgzzS1qqRaLUJTm3UYGfLItSW5KopHIBAbQf+X56akvDJQ0NqSZxrPV3h+Eb4qpcXz\nPOJBTpoadg0bhiqKyVrC1MirV/I3zSyfflhzaqYY7JQjOLrP8KMPFnsgHOf14CUHAYPBgN/4jd9g\nZWWFJEn4lV/5FarVKr//+7+P53mUy2V+53d+h0aj8Vpc7+vGIIXpdpnMXIkDGpiI1HhMRGuAxcNg\nmuOU3nwc0+tiTz+LkJbADpgYLHKmcjvh3R+isnyKNDPUyoZGTZImUK1CvWR4/PkuB/ZHGCPQRlCu\nFKE+y0sD9u2NqFUVU6M55Uiwf0LzzLniJxH5hrv2uGVSx3FeHtdWvHEYA8OlHocnYgJV9N73DkNr\n4PPktCHWEa1uysSIAAyjQ4rAN7S7ckutgKuXwdNUY+0Oefv7OY2mQglQPsSGzRoC/RgOj1s++FbJ\n0tKrNwAA+MzXNE9fVVCzH8NjJy2+0vzIg27+1Hl9eMlf8pe//GWOHTvGL/7iLzIzM8PP//zPU6lU\n+N3f/V0OHTrExz/+cT75yU/yS7/0S6/F9b5uLPbUlgFAQdDRFZq6QyRihDX4uo/wfYJDt5GXa2Se\nj590CbIWC/MWdeiHOHj6s8SxQVUER3etUS3VqJcht7BrVPD8Cz3uvrNKFAmsgWYzZHGhx8JyzuSE\nYqXjUyllVCONrxSjNcM9UxkTTZcmzXGcl8e1FW8c3zltOTx+ZQAAoCQMlTOO7JI8dSFkdiHn6P6i\nk9HNPDxl6cdXzmEtmxuLjbEbm4oVvf6VzrwxFikEUSAYbcDFBUu5BIMYopJCCMvc6qvfTvViy+mZ\nnc978pIl19atBjivCy85CPjgBz+4+ffc3BwTExP4vs/6epHGstVqcejQoe/dFb5OxdnONxCLop9H\nRP4AlSV4duOGGEQkXYt3dIrg3FM0hcf+z/9bnvup3+HcxPeB0Fyal4weChkq51QqitwISoHgwF6P\nlfWc0SbMzBuqVcXQcESuBa2WYajp0R0YyqHhp98+oBy9hl+E4zivC66teOPwVEbgbe8kCwGV0JBn\nKdZaZpcs1VqxqVcbwUhVI4CRalEj4MySR24kSgq8yCMKFcrLabczrLUYbZDKZ6hmKJckeW6ZGres\n9z3WWzlaW3z50oOAXix4bs6jl0pKvuXIRMbQdeoErHct/eQa5xpAnBbZhRznVvey17Q+8pGPMD8/\nz8c//nF83+dnfuZnqNfrNBoNfu3Xfu17eY2vS+I6Ny5JDllOczC7eSxd63L+j77AsT/835j7ziWG\npypUJocZ+tJf8MyxH2Xu6Q7DY1WSXDJcicFKWrqKFxiOjGsePSnZNw4myxF+iO95CCmQ0uJ7lrWu\nolrSbgDgOM53xbUVr3/hdTbfWixSWEolj9Onltk1WcEAkS944LaEREOqBa2+YKRuWGoJLscFCSEo\nlxSt9Xhjtl1iNLTahnIoEBLWWhY/Ap1bTG5p9UCba7eni23B109FdJMrK+/Tyx4PHE7Yf409BKMN\nQaMCrd72x4ZquIQZzuuGsC9OFXMdzz33HL/+67/O8PAwv/qrv8rx48f57d/+bSYnJ/nZn/3Z7+V1\nvu6cmc85u7D9BhSQMOnNoP0KAkuQ9Wh0LxLMnOHE//1Zpv7Xn2T95ALizNN4734ns0+2mXnfT/PF\npwL2TA1x/1HJRLTOSPscj8u3Mjz/NONHR3hyboSJSo9qmDDdGaPdVyAsQ1VLGCoWVwXfd6TH/bfV\ntuV+dhzH+cdwbcXr24mzXUze2TGf/sXViMdPeaz3NKdOLHP49iYHDg9TCiH0LHuGk8v1MTEW5lcV\nM8v+lnMsLw/I8yubhKMQxkZgtS3wPUsY+iwupUgByvd45zHJD79l5znNv/wHy/nF7ccnmvDRd3HN\n9u4vvtjn89+JtxwTAn7snSU+8KBbBnBeH15yJeDEiROMjIwwOTnJnXfeidaab33rWxw/fhyABx98\nkM9+9rMv+UZLS53v/mpvkLGx2qt+/TUJzUjRiotqwAC+NNRUlzwoNs5ZIA6baCR7/LPsevA20laf\nfHGV3omLjL3PQw01OLanxxcf98nyjN3xGZpPfAt16QLD39dk+Et/Rvnun2O03mBXPM1SeJhd+hJt\nswc/VIzUDOsDhbWWSLS4OJNTCv3rXPlr53vxvb9W3LXfGLf6td/KXq22Am7d9uJW//293GsfrcCz\nMwET9a0FuzoDj7lWBCJndXEAQJwIPGkxVjLIBL1EbmaekwJG65r5VYU2RYffWotSCnPV7H6ew/SM\nIQxhfMSj3bH4viSJNcqHkzOGu3d3MFZQCq68Ls1hbrXMTtnQF9YtL5wfMFLdOQveO++xZJnkufOG\nTgyNCtx7SHL8toylpVc3acYb5Xdzs7nVr/3V8JKDgEceeYSZmRk+9rGPsby8TL/f58iRI5w+fZrb\nbruNp59+mv37978qF/NGIgQcGNZ0EkM3KSoihrJPmm1/bhbWaQ0dJhyeJt8/Rfbnn0PYFG/uHOZU\nn5Hqgxw7kLKQwKA2xOH1Z2mvD7jvkX/LcmWI0CRMMEPZjxlincx2GaorhIR0o+pjrWToDDx8T980\ngwDHcW4drq1441ASTi+UaA98hioZShjasc+ltRKVMszNp8SxQQgo13wCX+B5kGbQjeWW9NOBD82q\nYaVddNSzzJJlWwMU0txitMVaQRhI0tSgpMUPihCflTZ8+tESBslIVXP37oy9w3oj3fbOBCDEdcJy\nheAHjyve92ZJrsFX1141cJxb1UsOAj7ykY/wsY99jI9+9KPEccxv/dZv0Ww2+c3f/E1836fRaPCv\n//W/fi2u9XWpFlpqYXEjavWunZc/D8qkS20W/uATHP4nd7LwcIzVKek3H0dIQTmwHKutshqPQGOE\nIdWhdX6GkfsPsXhxiYNmjksvtDl8fJHHuRffF1RLmjT3KQVQ9/rMdyqUohSXwM9xnH8s11a8sRyd\nyJnpRaytlDGmqAg80rRcnMlYmO0wOdWg0VAoJQk2atj4Hiyue1gr2NXMNuraWLK8aAMDZVjpbJ0J\ns7YoTKZNMRDo9AABzaGAXs8SJwYEm9n2FtsenYHkfeGA4YpltKa5tLZ9JWCkqhkqX3sQkG3sXSj5\nELiMoM7r1Ev+tKMo4vd+7/e2Hf/TP/3T78kFvZHJ68wy2FaLS597gvq+YaJGRHl3FUYmyRaWGKSG\nlbzOveOznOjtYf6O97B/9QmC2VnM7AXOd25nVJ2h9f98kbWzR+Hv/g21j/wC2Y//AlIWFR5vb66w\nNKhxYb1CoiWTjczd+BzHedlcW/HGcsdewd99qsP+fSXKZUWWWZ47mfL0U6scu2+MJBd4KmT3hGKQ\nFJtppbD0+hqBIs1g31hGJGLeMdVi3UxweNzwB582gA9cnsa35JkhTzVRPUBKQbkkyTKL70OSQhBs\nTbc9yCSn5n3edjjlvn0pnVjSGlx5TjnQ3LcvY6cmN8vhqZmQC8semYHhquXAaMZtYzss0zvOLW6H\nbT3OjRIFwY5Ll6K9xsz/+YfEiy1MpunOrVIda5CvtCEzXPr9P+IjB05wPptgfinhfOVedFAhHK4i\n8wT19a+z8sXvUPnpf0r35EX0cpfws3+CuHAKay2jpXU8BYHKEVmf/voSf38i4NSiCwtyHMdxdmJ5\nx1sijk7lTNb6lOlS8lN+/Mf3sn9fhJSKsVFFp2cIPMMgKVYDQl/S6WmM8Hj0BckL5yw11eNgOE06\nGFAqB0Qlj6ikiCJFFHkEftFVGR728TyB70vaHcMgtlTKkijc3pXppUVrOlyxvP+eAfdOJexpJhwc\nHvDDxwbsbu6cGeihFyKevuCx1oVuHy4uCR49F3Buxc2KOa8/bhBwE/E9RbUUYZZWsLnGphnxY08x\n/y//d9onzhdPUlB7+3Hs0fvw0x7VeyfoP32JPKiwklRYnE/pdeDry4fI9xwgqISohUWqk03EHXfR\nONTEZBYx6FJ9+FPsqawwWWmDEPRiyR3ZM9xRvsTxsQt86QmYWXU/EcdxHOcKay0LbctoLacUWOpV\nyaF9Pm+/NyDybZEJKIChqmJ1LacWGbQ2KGEIAtCm2B8wPOTzyCmPmVYJqxNsZ5Z6tDVBvxCCMPJo\nNjzqdR8hBKutogOf55Ydp/OB8lUbhM/PpHzpK0t85rNzfPIzC3z8z9Z5+tT2QgALLcHMisJcFZlr\nbVEb4IU5NynmvP64Ht5NJgp8hkaarPz6v2L+n/0SS7/8a6RPPgOA36yw72c/hFetwj0PEP7gu5l4\n614a3/8mOj3Bvt0eCIuf9jgbHeNT4T8jN5JdBwLG3nY70eEpKgd3oaJiWbR+/js0RFHIJ8kEpxcr\n9AdQWZ9hLGjz1oNt/vZxN/vhOI7jXNHPLPEOCXJ8ZamFKUIIPAWeZ/A8ycWFIrtOoAyH8hdQQrC+\nnmKRNJsB35puoq0gUjn3TaxsO6+UguGRiCQ1zC7k5Fe99+rygOnzHRbm+2RZMTgIPcORiSJ8p9XT\n/Oe/7nLqQk6uiwHI2Us5/9/fdllY2fohnpnxuVbJgfXuy9sUbC0stWClU/ztODczNwi4CQVDTaZ+\n5ecpN0KE74ES1O7Yy22//CNU9o8DYKXCjE4xdOwQh9/cwLTWqZQku8Z8jpVeYK5f5tn5GtkP/Bj7\n3rEb2xxheDBNfvAudr33TqKJBrWaYPDw11nuBjx+cZjlbon5bBhlMsLeKlPNHp5vEfGtmULLcRzH\nefUl18mQ6UtDu5OhtcZTAp1DN4aF5YwwMIR5B5n38T2JNpahhsdy26OdFykPh0rpjudNUsPMfP6i\nWXpLPNDkmaHbyViY6zNUznnb4YSRatED/8ojMSut7Uk3Wl3LVx7dWgfAu04//+UkBjo5I/gvX1H8\nyZc9/uRLHp98WHFx+aVf5zg3ipvmvUlVj9/HXf/mf0HPzGDynNKu4c30ZEZIJBojYP6JOUY/+hbW\n7UFIEnxfElfG6XZyohC6OqD3lg8zkS5SXp1jfWgX3s/9c3bPneGJ+3+Ju77173jh8XkulHYBEIni\nBixNjpAwOaRRnQXy6NbOYe44juO8OtR1HhMYTp3s4vkSbXyEhHpVst6Gfj9noXo/t81/lYXag/T7\nIVEkqEaGgQ1JrYdGEQSCTjtDeQLPU/jKEidg7NaeeDzI6HYSolIRJpQkhiGvz/6RK/Obrc7Osf8A\n7Rdl5Jsc0pxe9NgpsWijfO3zACyswxeeUgySjXbawsyq4HOPCT767pyyqzLs3ITcSsBNTAdl/F1j\nlCZHtgwA8lIdz2SofID98E8Sj+0nr4wzHp+jESZ41hIPcqb2+szZ3bT9STydwOIlvLEJ8sYuqrft\nYayW8/xtP0mjUfwMGrLDveWzAOTSp0eV0XoO0v1MHMdxnEKtJPB2bBYsVa9Pzesx6Of0BjA6EuKp\n4vlDtWIg0I4mwKQoafCV4YGpVVayOsv9iIu9JkJYVpb7LC30WFvpUQoMoQdcTheqNb1uwupiD50b\n8vxKZ36ptTUGZ6h+7SFLs7r1Qxye0EzUt3f2A8/QrOU8fCZAXyNe6KnzcnMAcLVWX/D4WdeGOjcn\ntxJwM1OKuDaO1RqpU6yQpGGNwCbIPCPDp7aniUUyIpbwkhb37ioTrl7A8/ayb1zR8kbJEk08yAhy\nje33qI8M00+nkMLA6C7kzCr70uc5Pr5AIHNyFTBfvg1Q5FqQN/be6G/CcRzHuUlIIRgqGZZ7GosC\nBAJNIDNKKuPNR+GhExKlFI2qxVqoVzRCGNa7krXoDoY86HYzvJqkk3h8+xQcnhhjzQzjqaIjbi0M\nBprpmZSx8QpBAEmcszDTQV/V8de5wfeLzn45vNIRtxaO3lFjJaswiC3z830WF4pKxkM1yXveGr3o\nc8EPHUt49Lzh/HJxvkY559DEgHJoiDOfr56OeM+RZFvhsP72fcabevG1H3OcG8kNAm5imReS55ZS\nZwEv7WOkh6lZBrVxAtumH41SyS6RWMOd5jnWyzVKep5PnDzKgw+UqZUNvSRkPlbktVH04ipLn3uM\n0f/+B8jCKtJoqqEmnHmOd5/5HOU3v5ne4buZrR4lVk0kOQoJXnCjvwrHcRznJuLJjLo3IDMeFoEn\ncpQsZsmHGzC5u0KWWxpVi9aWfcMpxnhUqx7zizFhENAMBuwaq7HaGqfdzbgQ1ajVwLxoR208yMgy\nje8rwsij0YxYXe5vPn65P16J4PgRS5pbpIAnZ0osdj3GJ4snTO2rcfFCm6TV5gMPlhltbu8CBT4c\nnMjYNdzDV1uvoxxkjNcF5+c1WpXRwGQ9ox5ZatG2U21qlF/BF+w4rwE3CLiJaSNozD2Dl1+ZRgj7\nq/TSAd2hKQyWXEWUeksMnnmC6Mi9fPPsLg7ct5d6TWGwICH0Ybp0F6PqIVY/8XdMfeAYbV1CDE0A\nmvGn/it4ltapaVaO/xxCChQ57TTg6O4b9/kdx3Gcm5MnPYQo6su8mLES5Xk883yPo4d8RpqCcgSX\nVhS5hqXFAVobxiYz1tqC0aZCKc3ifI8wrFEtK8bGQpaWiul1a9kcBACE4ZWuixDQHC0T+YK9Qxl/\n9U3BaqeoYFwq50zt8TYjWqUSHDhY54H9HsOV7ZuFL+ulltDbOewn8jSPnQkIK0WQ/7nlgL3NjPsO\nJpyek3TirSsEIzXDmw5d+70c50ZygWo3sfLaxS0DACi2K5Xac7CyhLSWKO/TbsHC47P0Rcibu1+i\nWffwlcYaKKscJSyJLNP+gY8ydNsoph8T5W18ZSgvn9u82XnLM/iXTpIYj9iUODgsqEYux5njOI6z\nled5eGrnecSzCwHPvdCl3y8y+jxzKuPJU4L1vkevZ/B8RTywrPV9Ls3laAvDQ5I8t7TWYqJIMjFx\nZWpdyq1Vge3GSoGQUB8qEUU+KI/ptYBLy0VoTqcPi8sZ56YHW67NIphvX3/+s+Rfu9MusEhxpV3M\njeD8qk9fe3zgeM6+MU3oWyLfcmjC8KG3aAJXYsC5SbmVgJuYF3d3PK50RrRwmrg9oFTpczEbx56a\nIfjUX1I7spugM4NpTOCJDGNgLOpS9QZUKzmld+5n4T99gvr/+D/RHwimPvV/bZ5XAOM1gRqVxX4B\nx3Ecx7mGclTm7FyfRiXHV9BPBOcWAh49U8YPLEms6ceWQQKrLRgb16ytpSgJvifwymXKac5qS1Gr\neAwPW5KkaHsqFZ9SSTEYaEplH8+7PAiwVEJDrRlRqYWbqwMASimCwJCmVzb3rrfz4hyl6+U02mqk\nLFjoFnsEXizOJJVaQLpl/7BgoePxln05U2OGQWqQoliFd5ybmRsE3MSsCoDejo9FSRvVBeGXqT3y\nOebOzGG1of5jH8D++R8jVzLEv/x1FnoN3jQ6jTUZIs2xD76X3fFn6D3zOFPP/tGWc4qJKbxDd72s\nfMiO4zjOG1ucKT77nTr1ck6zopld8emnRWdbKUG9JjY65IJcQ7utyTKDlIbmUICHplyVICWVSk49\n9VldKUKA8txgLSgli5l+wJOWI5Oa3sAjFTvn3AxChVKCJNEYYzEG2t18cxAgsEzUr1PoAAh9iRIC\nY+2W9jDVgktLklRu3yenr5o3K7ltdM4twoUD3cRMY2LH41p6hNUS5fYC6WqLYOks8aU22coy0enH\nuX2fJv/AB1n6959gJOpQsV3WzQhKGGbrd9Nf7BCuXtx60koN9a4PI1w6UMdxHOdluNxBXm77nJ6L\nNgcAl+2bCqnWfIaGik68FFCqeExMNvF9hY67ZLkljXNmFyxCetTrxXN7vZwsK8JuTJrwpgMpP/bW\nhPfcnVEKrx2mao3F8yXlir8ZQtQfmI0QIsveoYyR6+wHuGx3w6cWSgappJ9I1roKtCKVO9fMqUdu\n9dy59biVgJuYKTWwSoHWm6VLrBBI3wMpUL0uXsey/O1prLWMHG4iOh2CQ3fQ6Qc0vv9u9tZbWHza\ng4iyP4ySIdNfucQdf/XbqG9/Abu2hChXUcffg5xwqUAdx3Gcl6ccwnBdsNqVmyMCnRu0tpTLknLZ\n48A+j4WllKEhRRgGVKze2NhruHPS8PSsz8JCQqUcYLQhjlO6XY/p6SvZf9o9y1g1Y3yjps2xfYan\nL1heXNTLGovRkKU5UdnH8yVCWDItmZ3p88EHYLLx8jrrQgiaZZ/mVZl9rIWVQc5CZ2ucTz3SHB7d\nudKx49zM3CDgJiZMBmEJdI7VurjJen7xX2OIF9aJ9gyz/PQalaky1oPlp6YJO5a9b76P8ac/z7OL\n/4LbxixpZln3R2nma9R/819gVpfwf+AnbvRHdBzHcW5Rz89IepmH8q50xqUUKGMYHwsQQqAUjAz5\nXJo1NBsCnUkyYzHaMNcfZr1niGNQEqxNmbnQZ/ZSjFISdXW8/1X9/fGGJZCaOFOIjcVra9isHaC1\nxZgiTaj0FULAwqplbsmyu/nKP68QcHwq5vSSYaWnMBYaJc3hsYxgozdlLSy2Jet9xXgjZ6jskms4\nNy83CLiJmVITay1CefCiLAw6SemtxFQ6CeWJCN3XLD22SLI8YPxtLcJ2laWvfQ17ocKlX/gVyrbF\n6Ys1HhxdQdxxlLn/998z9Zv/CpSPNQaLQQi1rQCK4ziO47yYtfDUtCTXW9sMIQRBoKiUroSWBoFA\nSpib6XPoQIlWD5Tv0Yo9ur0eQSBYXRmgc1104K1GCIHQBqkku0dg366t77Nv1PDsBbEZknS5tIA2\nBm2K2gRSFmsFRhcPPvS0ZLENb7vdMLxzVM9LkhJun0g333N61efJmYhMC3xpaPcFy21Z1E6QAbub\nOQ8eSVAu0ta5Cbmf5U1M1yfR5dFtx22es/TQCcbecRfl4TIqioiXE0xsyfuapJ3Q/vTn8ZRkX+tx\nDmbPMtSU7B2O+fyFQ/RkDfmjP4V96iHi3ir9ziKDzhKD7jJpsnNGIsdxHMe5LNOw1t25C6E1xMnW\nsJs8M6ysxHiexVhBHGssYDJNueSRppow8otOvS0688ZY6mV475sU8kUTVO+82yBFsXn48gDAWEu+\nsRogRLE6IKQgywxKCowVnJzz+KtvK7pbM4e+IqeWAp5fDFkfePRSxXrsk6Pw/eJacyO4sOrz14+H\nGAOnZgWPnZGsdr7793acV4NbCbiZCUF84G34Z7+NXJpGKEW23mHlO6epHNpFbTQEY9BpURRsMF9k\nEhosG+JLa4zcPQw6JWBAY+F52uXb2TMesJ5U2TtUo3fhDO3/9kUaP/wOAKzJyeIOQij8oHQjP7nj\nOI5zE1MSAs8SZzuvHntXxe/EsWFxvoc2lulLKZVamSS1BIEhKoWkqUFIgTEGz1N4viKJM8JIsnsy\n5NEz8PBzgqGK5d6Dhsg3/MOzliwxxGlRBEwpiTEWC1fCkwTo3IItViKUEvi+ZLVjeehZwYePXz9L\n0GWvdgUAACAASURBVPXkGmZbHi/elyClIAosaXbl2Hpf8h8+5zHIBCD4hxcsRyYNP3i/3jENqeO8\nVtwg4GbnBWRHvp9Sfw3VXkCVYOrdRzYfjldblIYF/ZkrL+lPL4MSrL+wCFgqJ89StW3C2/czVJL0\n8waJhLN7f4LRf/dz1N77NuRV1UzyrO8GAY7jOM41KQlTo4ZnLm5fDShFgiAojqep4eyZDpaiIz47\nl7DX8xkMNDrXIKDbLZLuD/oZQhSz934oiOOc+TXwPEG3k7PWUUXV4czS61+JtTfaYozG9yVKCYSU\nWL31moQQIARSFtcxvy45vexx2+grGwisDSRxvnPtAfmiw54n6KcWsbGBIc0Fz1xU1EqW7zvqsgo5\nN44LB7oVCEG69x50prcsieZxSuu5c5R3RfgVhRqq0Xz/28FAUIuIl/v0znc5/3/8R+h12LPwdQ40\n1vFNzMCWSXKPo//ze1j+T5/Z8nbWuJuS4ziOc33vuktzcFyj5EYFXyySnEE/Zn4+5sKFHo8+ssJ6\nK6cxVEJtFPzqdovY/3Y7xxpI0yIDntwInPcDhacUvi9ZW+4jAM+XdFoDWq2Y3Gzvukjgv3vQcN8h\ngRQ7d20ERehQo6GQEha6HskrXAwo+VsrB1/NvuiwFAJpss1Kx5edW3RdMOfGcisBtwg9eoDFR09R\nHSnjVSL0IKF16gLJ4irKV5T31qn96IcpHT1A66FHSDsxbGyGSpfWyeZmKR8+SlfH1GnTt3UyI+js\nuZ38r/9my3u5WgGO4zjOSwk8+NG35syuCubWinCdb59WnJuB1ZU+xoAf+lTrIZ6viEoe62sxvW6K\n8hTWQpzkGGPwfUWa5Phh0fnXmUB5ivZ6n+Vlychoibjv0evEyB3aKGNhcV0wNQYnpne+XqmKDQfW\nCHRuybRguSvY07T0E8OTp4tm875DUCtfvx2shpbhsma5t70blb9oYBEEUK4oevHW2J+rQ4Yc50Zw\ng4BbSJZLlv7hyW3HLTD1P7yf8g+9m+5si9JIjf7M2ubjo8d2YdcSBpUxSt1lamnKeng7Ruf0R6YY\n/rF3bTmf55dxHMdxnJdj97Bl93Ax6fSt01CuhpSr2yv6SikplTz6vXQzNCaJc3xPYYzBWEs5CvE8\nRRgq6s2QXjsm7qUk1SJk1Q8Ua0sdGiPb0/ucmQNtLY2KodXb2om/vB8ABFmmsSh6PYMdsXzrOcNX\nn7Z0NkoTfP0EvP1Ow7vvu/5A4K5dMU/PRqwNFCCwttgL0Ltq07GUlnKQM5NuDx0arrn0oc6N5aZ8\nbyHhvcd3PB5NjjP69mOUukuoQXvLAADAClg7tULymf+KCSLGuqcYlUsMB11Ea5l88gAAUnr4Uc3t\nB3Acx3FekfHG9Tu2QgrsRlir0aZI4WkMeW6JSj5RySNLc2p1j3JJkWWaNNX0ujFQhNqkaU6abJ9G\nn1kRfONZ6PQMYmMjsFTgB5KotJECWwAIPE8QJ9DqGr74+JUBAEAvhq8+ZTk1c/3Q2HJgeWD/gLdM\nDTg6ETMaxSSpoZias4S+ZbRhabf1tlSq5dBy30EXeuvcWG4l4BZS/uBPoVtrKJkiGw1skqAvTDP0\n5ruLnMpY/Hh7is/WySVsvszuikcwc5rurjuIpMVLUtLyEMlSj0f6+7ljMue2mrspOY7jOK/MA7dp\nzsxLBunWOUZBkTknSw2eJxESdGrIsqLN8XxJrR4hBOyaDPF9xdLCAGshz3KMiZASsqTYRzDoJfiB\nt1nbRiqx+fcgAaU0pbKH1jAYZGRZsQrheZIwkqQphDLj778jSbIX7SKmSIF64pzlyJ7rf14hYLSq\nGUVzYBj2jxqeuijJjARrqXqGqSnNRA3m1z2SDIaqlvsPGvaNuZUA58Zyg4BbiLCa+vt/CJFftdb4\n9rch4zZkxTH/wD7Ul79B9rm/Q/3h71F98x10HnoMgLlvniMY+wLhL9+N/IeHKY/fjjq6i13Tf89X\nho+z1otQMuHg2PYbouM4juO8lFoJ3nlnzheeDjaPeRsd9MEgK3rNFP8flhRKSbxAUi77KCUJQ4nA\nsrQw4OJ0GyhSYAupiPsp/Y0VgSzV3HvQcGrOI9NiW6FLrS3WQhAopBT0+zlaZzQaPkIopM2Ynrf0\nE4HyJHm2fQLslcTsj9cNP3i3Icvhr78FXz8JcQqlAI7syfnJB8HbOamQ47zmXDjQraS7uHUAACAV\nWVjDbuQqzkWAV68S/MRPEn7yU0z+8k9vPtXzPVaemEV11+j/6V8y0j6JEIJGPMdPhH9Frg0n59y4\n0HEcx3llrIVTCwFhoDb/UUoipcDzFGC50l+XjO+qMDZWplLxiaIiZKc/0FycbqO1Js801XoJow3t\ntaIWzuUsQkrJYlXhJSrdK1WE/2htSVNDr5ezsp6zvlG0S10jWf/EsGBpHf7uEfj01+HLTxShQi/H\n33wHnpkuBgAAgxSeOgd//+jLe73jvBZcj+9Wkvd3Pq48cj/CywasehPFIQnp8G6ysQRZCtn/z99D\ndOwQs3/+MJx8Ft3pE+4eZz6vsCfXNEWbnxh6iL8fvGvn93Acx3Gcl9DuCxZbO88vFhtz2czus5G6\nfxspBTrXqEBRa5SISgHWWurDFUAw6MdYa5lesIzUDDMrO6QM3dgTULyPQClBnlu63Qxj7OZxIQRS\nCfZOVcAaVldT+n3N7hFoVgX/+YvQT66c9/mL8OPvgF1D1/4OBimcndv5sTNzkOXgu96XcxNwP8Nb\nyXXCB3M85r2DzAaHN4/5StOiSe1T/4UR7zxGZ+x92wT4EcpPScb3M/TQJ8AaVL9NdbfPPcmzwG3f\n+8/iOI7jvC69OE/+1a6etY9CQa0qN8KFINeWOLYkCCb3j2x7XRD6pElOqRzR7wyYXzEoaRmuh6y2\nryoeZixJnIOAWi3cOFY8pvWV51lrEcKiVJHdR0iPvXs8KrLP++4x/NlXxZYBAMBKBx5+Gn7qOvNl\n3f61Vwx6cTFIcIMA52bgwoFuJf7OWXtSLflG/n08Ze9jkF0JNqyJFikhuj7MTO0u/HqVxpCiXLaE\nx47S/uJDZF/8W6y1yDzFzxMOpSeu3C0dx3EcZydGE1x6itKzn6d84m8Jz34T0W9RL1vGGzu3IcZa\nPE9ircUYw/paUkxCqaKSb+BLKmVJnu1cwevqYlthudhzMLNUrAbkWU6eabJMk8QZWlu67ZQ0ydH6\nygbky6sRVxPAoF+8pzbQHI5Y7UoW1nf+6DMroK+zda5ZhWbl2o9Vomu/1nFeS24QcCupTmC9rXeP\nzCrOZ1PEslgmjXOJNlBNlznQeYrAtxihSP0yamUWUSoRxm3Kgcb72z8n68ak3Rg8D5UNKJsW8szj\nN+bzOY7jODc/a4nOfINw7hm83jJqsE6wco7S6YeRSYe79mTblgOMseS5xfOLGH4pJWHkcfp0Z0vn\nXilBtbp9mlxrQ5Ze6XlfvaLw3HmNkMXgwhqz5a17vYw41ggBnifxfbUlBMna4lxZZjGm2K/QGly/\nayQ2/7Uz34M79+382N37i3Bdx7kZuJ/irUT5MHQQWxlnRQ9zKR3nycFRZvJdVz1J4MfrHG19jXK6\nRsn0CUoevspRl84iazVEGhO8/8Pw9vchlETVqzAygchikmgIdfKbN+wjOo7jODc31Z7HW5/Zfjzp\nEMw/j68scVLMvue5KWbnU7PZ4YZiL4AfeESRx9ra1tgZX1oEGp0brLVobUgGW1P1XD1w0Nps7C8o\nBheeJ656zBarDIHa3ERcKvnb9iJYC0ZbohA8Ydk3BhPNnT//npGX7si/73545zEYb0IpLM713vvh\nHXdf/3WO81pyUWm3GqmgOs659YjODhUIAcbj80RmQCpLVPJVemqKRrIE43v4/9m78yBNj/rA89/M\n53zvt+7q6vs+dEvoaCQECCOEAYFtbDAz9jjs2ViHY8yGZ8fgWMfaDkf4j1mHY9fY4XBsrD3r8Y7H\nXmAxgwcEBoQsARJIQrfU91HdXff5Xs+VmfvHU0dXV1WrJbWk7lZ+IhR0v8dTWW8X9eQv85e/n5ga\nQScZ4aYNODtvxz/3EtJ1EY5D6gSQzmNa8zinn0NtufEt/uYsy7KsK53TGEesc0hNdubo7jf4riFe\nI6tncfK+OGkXjqTVyjh19ByVesC2HV20OoqZ8SZpZhYO9Upcf+V0JY0z3IXEemMEWpuFHP88EBBC\nLZUIdS6YsTuuICx4dNop8rynggB6alBxFY4D99wA3/wxNM+LUXqrcO8l3BqFgPfeCPfeAJnKy4K+\nShEjy3rL2SDgKlULFY14dRAQ6Bab0+MApG6BQtogcwTFqZO0S104qcHLOhR0A8d3Kf0P/47sO/8A\nx48S3/I+HCU5sfWD7Bo5YoMAy7IsaxUjvfWfc1yqRdjcqzk6uvoepbI8N18ulOWUUhL6mvGxFuNj\nLSbH2hSrBTIt8vQeY9BagcjLXBtjSJOUrv4KhYKg09akiUZlGqUUvp+PLSy4GJ03IVsMDgAQLOwW\n5Kk/vu8iEBQKgk2DEteBGzbldT33b4aBGjx5FDoR1Ctwx558Zf9SdWJDlORnAV6tlKllvdVsEHCV\n2tqV0oglc9HyP6GrY3YlLxIQg1YErUkmi9uJE0EjlQx3HWSf8wyer3AbU8hiQtI1SP2ue4gOvYJP\nSlqugd+LGD30Nn53lmVZ1pUq7duJN3EEJ1lZttoAqp632H3fdRlTDUkzyvcMjGEhNWjxIHA+OQ9C\nwexssnSNudmIKNZ4gYfrOWQL3XyzTGEw+L5HvbcC5JPqjZsKjIzERO2U2ckm/UN57U4hBUHg0mrl\n1/Z8h3rdo1R0aLTyFKFC0cPzHAJPs2e7h+MI+kspheU+Z3RX4f5bX/tnNNfSfO0HihMjhjiBgW64\nfZ/krgN22mVdOexP41XKc+CmoZiR+YzO2WFc1WFzcpS6ngGjIUtxEEybGgXZpt23m24aZEEPMp5A\nYNCdNvNhlb6eAWT/LFJlOEJSV+Nk4TqlDSzLsqx3Ni8g3nwrwfAzyKyDlhKRZWgnRBkJxvDDwx7N\nWILIz9AKkVfmKRTcpTKdnicohvDi8ZVleJTS+AtpPZAHAUIIat3lFa+LIkO56OC5ktSV+L5DuxVR\nKod5/r+E3p6A6emYJFZo5VCrhriuYnpW4Xn5TkW1LBHCUA8Vu3oS3ihjDP/wXcXJ0eWUqZEp+MYT\nmlKouGGHbRlsXRlsEHAVkwI2lmNKzUeR2eqixAJDt5kiDrtxdABjp6CrAFkGSlOKJjnObrSj2dQ1\nh4dGGqh1JmgPbkfGLdzABgOWZVnWSqrcS7RxHzKay2f4nSbO2DDhj79KtOEAp2cfXPUeIQSeJ5DC\n4PsSoVN+/IMxsmx1SdGlRmICWDhQnKUKKcVSx+DFwKJadYlihRf4NOc61BeaiiFAGcHNN5R5/uUW\n8/MpeoMhDCSOVCidBxyvHOowPgIH90u8oTdeL+Xl05pTo6vPTKQZ/OSwtkGAdcWw1YGudtJBFypr\nPpW6IX6tgOdokFA48jTlaAapEzCQJXlDsePRAPPV7YwWd6CQzHTvRVV6GJuJWeN3s2VZlvVOZgxi\n9iRTkcchuY9DYi8z4UbU5t3oco3w3AvsiF9Y863FQPAbH874xK0tnnlyZM0AwHGdPF1IG4xe3DVw\nMBpUZpbOFZSKDlIK4kSB0RiTnws4/5pCCKIUbryujBSglcJxBJ6fnzmIOinGwNQcfPNJzYsn3/hN\nb2zarNvbc659kU5qlvUWs0HA1U4I0oE9GLlyU8cAUX0DWroExEycmIGN2/GSJkIplB9wVm6kQEKc\nuZzztpB6RcbD7Zz29hFpD2MMX3/OdjWxLMuyztOa5LDazmSwBeMXMX6R0WAHh7wb0b1DCGAnx9Z8\naynQuA6AoK/bw3EdXM9FOnn5Ttd3CcL8cK8R4Dj52QEvWD6MrJXB9wWDgyFzczGjZxp0WilRJ8V1\nHLI4BvIKRaiEmZkUITSbN4UEQR5ctOZTGrMxndZyCaM0g2eOvvEgYKBbrNtGoFa0h4OtK4cNAq4B\nWf8uOjvuIi7WSb0CcaHO/MBeGv27cXWKpyNuOvn/UR/qQpe7UGmKOnWK9PQwVTNNlgpwPTyd0nZq\nxNpjTlVpJAFBKDg5bn9MLMuyrNxwu4jwfKRcTtuRErQXcLa0B4BKsFZLXcPOQY3Whv/7aw2m5par\n9kgpcVyHIPTyXQAW6v4vpP50WitTXvt7fZIo5dCL08SdlDRJUZnC9T2kgO6aw/6hJvfvHObs2Qbt\npkIpSFOFlIY4zkiS1WMcmcqDgRWjNoZzU5pTYwqlX30lf/8WydbB1ZN9z4Vb9tj7qXXlsGcCrhFp\n9yZiZ6E6g3AxCALVQWJAZdDdj3Ac0IYsE6QvvUBp8xBpuoUgEJS9CIxG6hQQNLICp2Z8XE/y0pjP\ntv7VZw4sy7Ksd54OBZw1FrSlgJniFrYCXVs3sD/KOD0paceCWtGwc1Bx2w7FD5+LGB5dK0iALM0n\n8ouEFAvnAc5foTecPjHH9NTCfUmAyQzFso/ne3iepKvucuS04URxI0MbfUYnEzqRJpgx7NhZZ+PG\nAkeONFd9/UYH/ubb8Av3QrUIJ0cVDz2hGB43aJNX+bnnBod37V1/+iSE4NP3OUvVgaKF6kB37pf2\nPIB1RbFBwDVCOD5ID6FTXLNyGUPELczemxDGIAA1PgpA4pbxpU8lTNDCIxM+JT0H9BCnLu3Mpys0\nBJ7NYbQsy7JyFy13LyTDOx6gZ8d+3i8zkgw6iaAcmqUuu1Oz66fcGHPh3xebgBmSJMX3PbJUMTe/\nvDDleg6VWpFWI8L3XaQrKZUcZpuS9nTC3r0FTp2Yo6unxPCZBtu3VymVHCpVj8b8yk7E0pGMTsP3\nnoX7bzN86ZGMqbnl58em4es/VHRXBDuG1p/QV0uSf/VBSTta7hOw2BvBsq4Udl/qGiGEQIbV1U9o\njeN7CCnAKIgispPHaQc9jG55N4dmuhkqN2hnDpkWOFoBhpmmS+CB52qq4dorNpZlWdY7jxTrLwy5\nZEz3XocWDi+cgidegXOThvPnv4O960+eL2yopbVBa00QejSmW6hMEbVXlvEMCj4Iges7xFFKoRQy\nPWfItERlhlMn50jilPmZNlKAFIJ2x9DXF573dcFx5VJ34bOT8PhLakUAsKiTwFOHL+3sQDEUdFeF\nDQCsK5LdCbiGyEIdhETHTdApMu0gswhXpQg0ZBnZ0Vdo+T2cPPBzTJs6zXlJlrVwBDTSkIAmUQKt\n1KVaMDhCcePQGr3fLcuyrHekvjBlPPJX7QhoA5vTY8zGJf72u9sYmYbFGp9PHoWP32WoFuG2/QHf\nezLixNmV9xbpCMLSwqFgY1BKk0YpjuegjcBxHbIsAQxSSqQj8AIPx3GAxUpCBiEFrbYmCH2arTZT\nk4p2s4M2ee+BTEEn0oShQ7nikST5hP78ACRKDXON9YOdZsfukFtXPxsEXGNkWF3eEVAZZT3N2ZEG\naQat0Rkm/fcwc+8tBIFk0MCRkzDb9sBxQDpkuo/MCLrKCldkbO1K8exPiWVZlrWgWg5J54aZ8YeW\nc4OMoVePUOuM04q7GZk+P0IQnJ2C7zxr+JmDeVrMgQN1Jpst2q14YaXfp6uvRBh6jJ6dI8syQFIo\n+wgESpmFvgEOpWqIWcgbWpy4K2XIUkVYzHe+00STpBqBIO7EaGUQKqFSr9GJ8wpDZ0/PUCqX0Dpb\namC2qNE2HDonkQ5otXrVv16yK/vW1c9O765ljkurtJ2nTho6iYSagBqgIekYSoGiqw7d5ZRXxitk\nBrqKAb3FjK6Cor9i8OwZJsuyLOsCG5JzDKbDtP06Qgp81caNW3iNSUbjoTXfMzwhiFND4MF022No\nWzdaabQxOAslQjGGsOARdfJmX1oB5OcCVJbvDKhMs1iIX8o8DchxHKQj8sm+EERRRhzlOw1ZmmGU\nJs3ynP84UiSJYmy0zdBmn3LFo9lYDgTycwj5WQbPkyRmuV8BQLUEB697YzfHM+OK8RnDzo2Svr43\ndCnLet1sEHCtMoZs5DBadbin6GIqLrOxz8Nn91AsBziOJEolhVBRdFO0yWsnHz+XcfMuYQMAy7Is\na12qewuFE4/jyUm0H+DEbaRWxG6Zbx7bseZ70iz/L/AgXThqJh258nCiEPkZNlia6BtjUKlamJwL\nVKoRMi8rqrUhiTKCUCwEB4IsM7QaCSrTGG2QSJTOuw0XCy7tdkqWKTzPRWWKWjWk2YhJkgzHWTkt\nEkLgunKpOpHnwifukQz2XPqRSmPgySOC42OCVgSNpmJqOiOONcUQbj8wzwN32IPD1lvPBgHXqOiH\nX6Pz0NeR7QbagNy4merPfZr7tx/m60d2UKoUwHfoCSMCVzNYadFMQ0YnJKzb69CyLMuyQNU2EA3d\ngD95BK/TwABZoYt0ww3URjwm1jhQ21eD0sJZ3N6KodFZ/ZpyqNl3wPCNH2R5zVGTp+MopZHu8sRb\nZRotDW7eeYwsUyRxRrHk0mpE5KcD8gDC8SVID+k4OI5AZYbJsSZpqqhVXYwGP/A5eXiCeneBcr2C\nXqcfQJrB5Cyw9dI/q+88J3nmuIClFmKSUtVBzUa0I8UjT0dIXB64y7vYZSzrsrPVga5B6cs/Jv7K\n/0vJV1QGa1QHqwTz48R/+X8QSsO7+04yNZORKUNVT+FnLYq+puDl7dSLnt0FsCzLsi4u699Fe9/9\ntLe/m/au99LZex+m1s+tOw2eu3ISHbiG23abpSMEt+5QlIKVr5HCcGCT5kMHQ/7XX6twYIsgSzO0\nNnlnYXd53VIIQZZkKJVvKWSpwvVcjDF02nkakOs6aKUpFAuUSgX8wOPM8CxzM23mZ2PSOCONM2Zn\nIowxBKHP7HSHcvmC9dEL6pZOzV/6ZzTXgleGzw8Aco4rKZSWJ/2vnLJV+Ky3nt0JuAZ1vvifKPWW\nlzotCiHwyyHCSUi/+WUKD/wb9iRNzrbqFAoRgWoTa4lwMrYMOgxW7S8jy7Is6xJIB1VfeQbglp1Q\nDA0vnoJmJ2+6deM2w44Ny6/Z1GP46LtSnj3hMNuG0IOKF/HSc7M8/kNFT93l/jsrnBqD1kV6VWql\ncRwnDxQciTGGNM4wWiOlxPM9lFYUiiFaazrtlPHxFhgw2jA83GJoSxdz023kQge0iXNzVLrLRJHK\ne+tccGi4XLz0j+fYqCBK107zcc/b2WhFi/0QbEqQ9daxQcA1yMkiZDFc9bhX8Ilffgn/gZTthTEm\nsiqDpRYOmi45z7H5LrbVOmSpA/7bMHDLsizrmrB3I+zdePHU0sG6YfCWfNX+saca/N1Xp2mdV3rz\nmZfbDA6VaUWrt6YXqwMtHthdrO9vzMIZgsygpQIBjuPgeJK4mSy8B8o1n+ZcQhznO+BzM52la8Vx\nRt2VGJORKb1iI6C7AgcPXHoSRSmAPDFp9eT+/Ov21KQNAKy3nE0HugZd7HCRSRWl00/idOYoZPME\n8Uz+uFYUXSCZ5W8f8fnLb3qMzrxFA7Ysy7LesZQyPPQv8ysCAICpWUXSjrnwnJrWeikNiDXud4v5\n/EobsjRDCIExeTAggKDoEXc0jitxPWfh6gYh8z+F5WBh9V/gOJIgdCiVPTYPCH72XpdS4dKnTrs3\nGvprawdDSZwHQIEHd+y3ObjWW88GAdegLFn7F47RhvnxhM5D36U2eYT7n/tD+P63oTVPe6LBnuo5\nBisRB6/LqFfgiz8MiNM1L2VZlmVZlyRKNVMtxVRL0U700ir+omPDMcOja99sRicStg3kZT5VpsjS\njCzJMCpPn/GDixymNSAWUoQWdwp6Bqt5VaBUUSoHdPWVSWKF60kwAs93kELSbi2OR+C6Dl3dBSr1\nEql5bQkUUsAHbtT0VZd7DQgMQqV4JmHHkOSXP1rh1r02McN669mfumtQu+96/ObLeIWVvxzbEy2i\niSZ01yg5RapkdLSgMHqS67ITRN5BYu1RKsDeLYqZBnzzGZcHb7cdgy3LsqzXbrqtmY+WJ/2N2FD2\nDT2l5fQXzwUpQa/uyYUj85KaazXsko5ECoG+IKjIV/4XmomRlxyVUlAo+fiBS7sV4/oSA/i+S6sZ\nE4QBadKmd6DG3FSTsFrEW+iUuXj9+Y7kB4c9Brtiaq/hXMDGXvjX79e8MmxoxrC1zzDYJTAmRAhB\nX1+BiYnGpV/Qsi4TGwRcg/p+87Mcvf9D9F3XT6G3hFGa+dPzTDw3QXmrz8zDh9l+2xOkUQK1Almp\nC9VuY4DIBACEPmzuN4zPOIANAizLsqyVWhF85XGXqYZAG3AduHVHxt3780lzJ10ZACxqJhB4hkqQ\nBwHbNgbs2ORz9HSy6rXddY+RqTWiA6Do5yk/qxnMQg6+MQYpBUKIpUDCZJru/irN+QilFGHBZWaq\nhco0nVbM/GwbN/SXggDXWU6a6CSCF4Yd7t772gpoOBKu27o6WLGst5MNAq5B0nUpHryFke8+QTKf\ngga34lLeWkBXu4lnTpDMNMnaHeSufZhKnaTYx7yuM6crS9dxXSgGFz/YZVmWZb3zaA1/+z0370a/\nIFPwoyMeUZLygZsM7XVSUwGi1FDJ15wQQvDJB7r4qy9NMTG9vOi0Zcjjur0lxn68OjgAqJUF77vd\n55++n5BkLJ29FTJPAcrSDNdz8TwHrTXzsx2kKylWQwQCKWBseJqN23pJ45R6T5Gx0zM4C6VFjTFo\nrRk/16BWH1z6ukfHPGolyfWbrsx82WMn23zju+OMTSRUKi733tnNXbfV3+5hWVcgGwRco9zP/THO\n/i9T+6e/QWYJxnVJ7vskycGPUTj5q6RZinPbu5FbdkJ7nnZ5E7EooFmusDDfgpu223KhlmVZ1kpP\nHxMrAoDzvTjsct+N6UX7Tl6QwcP+nQX+4N8N8u0fNphraAZ7Xd5/V4WxKc1jzyQka8y3B3oc7r7J\n58vfaZFpges5IMTC2QGFyhRSShxXkiX5n+MopVItkKUaR2iidsr8bAfPd6j3VJg8N0etr0inTKtO\nDAAAIABJREFUmdDTXyJJBI7rMDPVoqunBIDSkueGHQLXsHvwytopf/7lef70/zrF1MzyB/bUc3N8\nZmKIjz8w8DaOzLoS2SDgGtVREnX/p+jc/6kVj0sg/M3/EeeuTciwkC/nRC3E1AnktptxhEEZmGkI\nqqFg34Yr6xecZVmW9fY7ObF+XRGlBaMzUC0LGuvsBgTu6lSYcsnlEz/VteKxzYOSm/b4/PjFlbsB\n5YKgf7DIobOCLDMorZFS4LgSpTQqyxewlMo7CaexyvsIKI3K8nr8szN5A4K4E7FvfxdRJrnxjo0U\nix5Pfv8sWZri+yGlaoGxkVm6eko4Dvi+wCA4NeVecUHAPz40viIAAEgSw0MPT/DAfX0Evq0HYy2z\nQcA1yqxRk3hR+d47kXIajEF0GjhPPkZNO7Q2XU+c+iQpbO0ybNp1ZW51WpZlWW+vSuHiz3/vZY9f\nuCuh6BvaF2TzhC5Uw0vPh//lj1Xorbd5+XhKO9YY6RPWSpyYDjkxbdi8q5ckVnkX4cyQxBlZqmjO\ntZGOzCfuVZ/WfLKQ4qNwXYdKNWBqIqMxF7G9x2Eq7ebo8Zi4FDO0qczkaJNte0pobfBcF98XBL5Y\nyuXvrNME7O2itOHEcHvN50YnEp55YZ47b7VpQdYyGwRcowquIcpW/4Jyspja7CsIRyPGziBffArI\ne4PVRl5ky423A2sfwrIsy7IsgPfsV7w0LFmrCZYjNeWS4OvP+nz0loSGa4hSgyHfAaiF4jUdim1H\nhnp3gTtqBaY7LsPT51e+E/iBh+u5aGXwjcHz8hKfpUpIqeozPxuB0YSFAM8TeL4hDFxEV5H5uRjH\nc3jk8Q4f/0jE+Jjk2LFZbrixl9HRFlrnpUir9ZBqxUVrw2KLgqJ/ZZ2ZkwJ8b+2VfimhXLK9CKyV\nbBBwjeotGTrZhYGAoev0ExR+8pU131O+SLlly7Isy1pUDOG2nRlPHXNZGQgY9myG/m7DS6ccjIFq\nKKmubmJ/SR5/SfPo84ZWnrmDECl+YCiWV7a1X4wphBD4gUuWaYzx8DyPsKCYnmjg+S5+4DIx2mT/\n9VWSJCUoBhhtmJmLKYWa+bbA8xzOjURobRg9M0dQ8BjYkNcElTIvPyox7Oy7snbLhRAc2F1mbGJ6\n1XO7thU5sKf8NozKupLZIOAa5TmwpaaJZcDM2DRuZ5auxglqzZfICgV0p7Pi9abag7P75rdptJZl\nWdbV5t7rDDiGw2cMSQKVIuzYCLWFInNdFcPjhyDNoL8G+zYvT9YvxfiM5uFnDfF56UTGQBxlOK4k\nCJenMPnOwvLKvOtKEiFQShMWPMqVkKidIIC4lTI70yaO8hQijQYER4YljiPo7S+hlEClCsdzSBKF\n4yyvorsO3LwpZlvflVc441c+tZHxyZiXDreWPo2NGwL+zS9ssiVJrVVsEHANcx3om/gJAy8+ijDL\nv6ycoUGSsTFUM88dNH6Iufl94NqtAMuyLOvS1Spw1/XrP/+95wRSSsDw9DH4xLsNpeDSrv3MMVYE\nAOeL2glpklEsB/nq/Br9AoRkRZUgMKhMk6aK2ekOSWIQUqBihV/wmJh1yLIMISRCLlxPCDrNDtXq\nchAQuIYd/VfWgeBF1YrHH35uD4/9aIaTZzp0VV3uf28fQWAPBFur2SDgWqYysuPPrggAAKSUuBu3\nk6UOJizB3tthcOvbNEjLsizratVbUsxEq3PNkxRGpzTbtxU4eaqDEJLhSfjuM4aP3fnq100VtOOL\n9BnoZLSbMVI2qfUUqdRW5htlmcZoQ6YNaZJhBPiBn9f/1wY/9MhUilb5PbG7v8rYZEoWa0pVj+Z8\nvNR1WC80HFvUU1Y4rzKnPjKsOHw6w/cEdx5wqZbfukm4lIJ77+rm3rfsK1pXKxsEXMPk3Bg0ZtZ+\nThrMB34R3JV5lUrDmRkXY2BTd4ZrFw8sy7KsdQxUDPORRrGyadi5SRjsD5FSsGdniZcPN3Fdh+EJ\ngdJm3Ul0ksF3npWcmhC0I4egoImjDKUMznkT8SzLUJnCOJKZiRZSCooLWwy+LxBIzp2axfNcStWQ\nNFXUuko05zoUywGu5wJ5Tn+hFCKEYGayjXQEg5tKeI5hakyitUY6ghefneCm2wbRStNbXGd7AtDa\n8Hf/HPP8UcVCg2K+/3zKh+/yufM6u9tuXVlsEHANM34BHBfU6m1L43hEjz+CGj2LqNYo3PsAp5oV\nXh7xacT5qs5LI4p9gwk7+q7MbU/Lsizr7eU6sHdAM9U0vDzikGTQ6DgIx8NfmLMXQkF33WO+qclU\n3p5mvSDg609Kjo4sP+l5Do4jmZ/tkGQG33dJkozWXAdjyFN9XMncVIuu7gK+LwhDB61ciiWX5nxC\nz0CZYjmf6Lu+pL+7myzTaLW809CcbRO1E7TWTI636O0tUKqXyOKMeleRsTOzNFu9tNuap2KHXYNq\nRVCy6JGfpDxzeOXue7MNDz2ecGC7Q6V4aStrxhhmGxrfE5QKdjXOenPYIOAaZsrdiL6NmNFTq57r\nnBuj9chXl//+2Hc4fte/p9F/09Jjzdjh2TMBtYKmp2zLhlqWZVmrSQHTTYeTEwHnVwryPaiW8sZc\n5bLDfFPTVwdvnZnH6AycHF89sZZSUCh6zE63yZKM1ny0ouOwzjRJnFGrLa+0O66g3l2kOZ8wM9mi\nUAooVQqUqwW0NkSLzQuModOMSKJ04a+GViOlUvHRmWJgsAxCIh1Jq5XfBycbgj/9Yszd10nuvH7l\nbvqRM2sfFm604YkXM37qdn/N58/34xc6fPuHTYZHUzxXsHurz6ceqNHXbads1uVlw8trnHfrB8mq\n/UtVAgyCqKOZ/sGTK184OcLWJ/56VS/3VElOTNktTMuyLGtt7Vjw7LDPhT0DkhQ6cf7nNNUUA8Pt\ne9bP8z87JcjU2hVspJP3JIijZClX/3xaaZRauVil0vzvaZzRaSUImQckSZQSRylgSOJ0KQBgocCQ\nygzDx6eYHZ/l1NFxtDE4riRL811xIQRT8/CVhyOeP7qyTGh2kY3zNHv1vgKvnIj4L1+b5dhwSpJC\nq2N45pWY//OLMyh1ZfUlsK5+Ngi4xslaD53bf5boup8i3nEH7Rs/xPgTL6DT1b+pqhOHqI2/tOrx\ndI2mY5ZlWZYFcHTcJUrXnk4kaR4A1PyYn323YdcGmG9pHn9J88wxTXbexLa/ZpBi7Ynu4oFeL1h/\nUWp8PKLTye9tnVbC2EgDACFFHiQsBAVZpug0OgwMVdmwuY6zcPhNa43jSYzRNGbzxgRRO2FqdJae\n/jIjZ/MzdmmiaDcTohSeeHFlELChd+3PwXPhwPZXX8l/9Mk2zc7qz+DE2ZQfPttZ4x2W9frZvaV3\nAiHJNuwBwKgMs85ShUTjJK1Vj1dCmwpkWZZlrU1d5BZhtGFHd5vrb5IYY/jWk4ZnjhraCzsE33/B\n8MHbBHs2STb3wVC34czUyoUnYwxRJ59sCyEQC7n4xpil1gBh0UdrmJ9P0SrjxJFptDY4jszLgwqQ\njkBliuZMG6Nh5Ow0W7b3M7CpzpkTkxhtCCsF4s7K3YY4VgyUC8xMt5gcmwOcpU3zuebKb/6+2zxO\nnNOcm1z5+M27HbYOvnrH3pnG+h/m2NSV1ZzMuvrZnYB3GOG4uJu3rflcp76JmaGVDcOqoWJ3//qV\nECzLsqx3ts1dGa5cewV/Z3/K9Zvz554+YvjhS8sBAMDELHzjR4Y4zV/zsTs0USdFL0QWaapozkd0\nWinSyVN5HEcu/SelwHEl9d68G26WGUaHZygHKdfvDSmV8rXOIPRQmWZ6bJ5OOwEMrbl8IOVagUIx\nz9VXSUq9u7AwujzY8H0HIyAIQ8bOzZOmy3n/4QX192tlya89GHDvTS67Nkn2b5N84l6Pn//ApTVH\nqF2klGhv3a7bWpfXq/5EdTodfud3foepqSniOOY3fuM3uOeee/id3/kdTp06RalU4gtf+AK1Wu2t\nGK91GRQ++DNk505jZqaWHwxCyvd9iK39MNVUGKC7pLluKOYiu6+WZVmAvVe8k/VWDdv7Uo6MeZx/\nLqC7pLhx8/Ii0qFhc+GxMwBmGvDUIcO7rxeUQrhxa8L3n9cIIFtI4ZFOvgPQaXby3H+TnxPwA4+w\n6ON6y6vs77mjxM6NRQBGxjO+9I0W7WbE3FTzvK8q0NnCtaWgf6jOiVdG6bQSugYqy2cAhCBNNGmc\nNx0TxiDIdxi01mRuie++6PPe/fFSxaNaSfLgvZfYEe0Cd99S5IWjMZ1o5Qe1ZYPL3bcUX9c1Xy9j\nDN94ZJbHn20yN6/oqbvc/a4KHzho/z98rXD+4A/+4A8u9oJ//ud/plAo8Ed/9Efcfffd/PZv/zau\n6xJFEX/+539OkiTMzs6yY8eOi36hdvvqXU0ulYKrdvxrjd3p6cfbewNogyiVcbftpvixX6R0171s\n7FLsHkjZPZCyqSsjeBsXHq61z/1qYcf+9ihdahvVK9TlulfA1Xu/uNp//t7I2DfWFQU/z+kv+Yat\nvSl37ogpnFcM58eHDHOrM04BGOoV7NiQBxB7t7hMzSpGZwXSkTieA8YwMzFPlqqlFCCjDSrLMNpQ\n68l3ArTKuG5rSnGhrGalJNFKcezkedsPAoQjqHYVqHaVAHA9h/mZNirTlKsFjNHEnRQ/8EEIEIIs\nzVCZxgtdiuWA7t4CXb0lZtuSTMOm7teXOnv+Z9/f41IrS6ZnFfMtTeDD/u0Bv/RgjVrlrb0hf/mh\nab700DTTs4p2pJmazXj+UJswkOzeFq4a+9Xmah/75fCqP1E//dM/vfTnkZERBgYGePjhh/nsZz8L\nwKc+9anLMhDrreVu2kb5X/362z0My7KuEfZe8c5jDIw0JPORJNOCwNPctDWhu7jYaRdePiM4N+0g\npaFU0CzN4M8jBWzpX/nYp38q5JNKc+yMplgQ/ON3WkycXaPnjYE0yei0Y4LAY3q8xWNPpHziw8ur\n1QN93lLlHykFSEEap2zctmnpNfk8Pw9CiiWfqXGNXwiQQiIExFFKlmm80KNUKVCrh1QqyxHOuWkH\ndl6enP27bylx8KYiY1MZhUBSr776WYLLLUk0P3i6gb7gnytT8OiP5/nQe2oruihbV6dLDis//elP\nMzo6yl/+5V/yW7/1W/zLv/wLf/zHf0xvby+///u/T71efzPHaVmWZV0F7L3inWN41mG6szxBzRKH\nTiKBjFpo+MbTLifG89KeAFI41Osps7MrJ/O7NsKujasnlK4j2bs1X9F31jlzAGA0TI/PIxB0mjEk\n+SHkxUl9b13gCIORDjrTSAy7b9i49DzkVYAWewfMTreX0pAAhJALKUgGAfiBRxCsnJgn65Q2fb2k\nFGzoe/tycc9NJIxNrV1EZHQyZb6pqFftGYWrnTBrFdxdx8svv8znPvc5kiThs5/9LB/5yEf4i7/4\nCxqNBp///OffzHFalmVZVwl7r7j2tRPNE4dTsjV6Y3WVBVFH8q2nVqfHuA70lVMmZxS+C7s3u3zs\nngKee/FJ9D98fYL/56uTaz4npSRYSI9I2gmVsuQ3f7VnaZK/uS+kvx4wMZ0yPid46OmVaUlpmjFy\naob56fzBvExo/pwjJa6/MNkVgoFNNbQylMsutXph6RrbB+AX3nPt1FqZmUv5t59/mUZr9T9wf4/H\nX/1vBwj8a+f7fad61TDuhRdeoKenhw0bNrB//36UUkgpuf322wG45557+LM/+7NX/UITE403Ptq3\nSV9f5aodvx3728OO/e1xtY/9ana57hVw9d4vrvafv9cy9qmWIFNrr1Q324rjwwpYncaSKdjQLfjk\n3YuTfsXsTHPV6y501w0+f//fBdkaDbekI3EcJ5/0h7BhYDm1p+SDzBKmplIkMFiFB2+D//rdjOmG\nIEsV0xMNola+C2CMIUsVjpuPffF/EQIpoNVISKKMxmy+Q1CtBYSuZmdfzMTE6zsTcKX+3OzfGfKj\n51Yf4jiwK2R+IYq6Usd+Ka72sV8OrxrGPfnkk/z1X/81AJOTk7TbbT7+8Y/z6KOPAvDiiy+yffv2\nyzIYy7Is6+pk7xXvLHnRiLUTCVy53jO519P3thhKbj5QXmrsBXnKTFAMCIrB0qTf9SUfPFikGsBA\nWdBbkivSfgC6K/DT79IMHxvn3MmppQAAwPEcjDZ5nwABSIFcCDCUMiRRniKjNTTn2mztSXnv/pgt\nPddeP51f/fk+bjlQxF+I9cJAcOdNJX75Z/re3oFZl82r7gR8+tOf5nd/93f5zGc+QxRF/N7v/R4H\nDx7k85//PF/60pcoFov8x//4H9+KsVqWZVlXKHuveGcpB4ayb2gmq9N4qqFmQx1OTazeCXClYefA\na58wR4lhuuVS7a6SxinaaIIgQEiBUnqpr0DoS/ZsDimGF08vevGEIiiGZEmG1hqBwPVcpCvzqkNK\nUfALOE7+PRhtlncFFrSaKUePt2jPS2o3C8rFays9plJy+Q//dojjwxEnh2P27AjZNHh1VzGzVnrV\nICAMQ/7kT/5k1eNf+MIX3pQBWZZlWVcfe69459lczxiedRcCAYEjDfVQM1jR9JXg7LRieGp54iww\nHNis2ND92vcCDp3KmG3maT5+6K94TkqBXkhdH+pzKFzCPPXcRJ6uduG1IE8BUrFCK72U1iakWNGL\nACDTguEJGJ7QnJmAX/2wIPCvvYo5OzaH7Ngcvt3DsN4E9mi3ZVmWZVmvWeDCrt6MViyIs3x3YPEM\nrevAx96V8fxpzeiMxHFgW79i1+ByADAypXnpdJ51c9NO6Kmuv5JeKealOtcqZbL4WCGA99zir0r/\nWXPsF5msG2MICy5Ga7Ioo6fHJ1KrIwvHWb7G2Un4/oua+25xSFJIFRSDvPSoZV2pbBBgWZZlWdbr\nVgoMa/Uuchy4ebuG7SvTf4wxfPNJw9NHIV2oQvmjQ3DwgOaGnS5nZj0SJSh6mu29KQXPsH1IsnVQ\ncHJkdRRQKQi2DrocvMFn//ZLK6t5w06Pp19JOb/DMYDWmjRNkY7P3e/byEvPTWKyiB1DIafHzFI1\nJMeVq9KDzkwYvvx9GJ7Iv69KEQqeoRBAXw3u2geFYO2oYGrecHIMBup5B+afHEoIfcGNe3wcW4/f\nepPYIMCyLMuyrLfMS6cMPzq0clU/TuGxF2Ay9giLyyk6402XWzZ1qBXgwfcEfPE7MSNT+RulgF2b\nJP/+l3poNtqvaQy37vP5m681MDiIhUm2VpokThBCYIyh2UzYd30vjz18mk9+UPDgewK+/ZTi8BmD\nlKt3LY6eNSBSlMp7FLQ6Dq4r0drwyjAcOQu/+D5Dpbg8qVfK8J8favPcsfwzEBhUmjI52kJrw1Cf\nw4PvLXLjHpuLb11+NgiwLMuyLOtNFacJaZqiMaSpxHd94nTlRDpTMDal2FpcfqyVOBydDLhtc8SW\nAYf/6VMFnnw5Y66l2dzvsH+bQyF0aL6OSo9JojBG5XUSDWRZhkDgOA5aG2bnMgY3VBjcUMaRgk39\nDh+6UzA8qYiT1dcTQiAdiecJEBC1U4zJAwFjYHQGHn0B7r/N8OyRjCgxTLUcnjm+3JTLIJCeT7Wn\nzOxEg3MTin/4VottG12qpbe+c7B1bbNBgGVZlmVZb5p21CFK4qW/bxmAT7w745+eKNCKVk5s1+pf\nOtfOJ9FCgOsI7rr+4ik/xhhmGuB7UC6sn0ojBGhtYDHFR543FgN9ffnqe1+vx3W7fBodKAaSD9xi\n+JfnNM3O8sulzAMAyK/pBw6Fkk/UTnGc5WDn6DnN84ciRqfyFCnHAS/wKFyQT+WHHq4ryTLNzLzm\n0acjPvKe0kW/b8t6rWwQYFmWZVnWm0IptSIAWNRf19xzfcqhUZ+5ec3MfD75LxfdpQn/kteQEv/M\nUcUPXlCMTIHrwrYBwYfvcuivr07fuW6Hy3NH0rUvJKBeD4mjjN0bDH//iODsZJ7CtKHb4SMH4b/9\nwBAnICSr0oOMNriuREpQmUIrgxe4zM4bZqaXz0goBaqdIh1JEC4HN1IKitUQlRlajQ7PHlV85D2X\n/jlY1qWwQYBlWZZlWZeV0pAo0Nk6k2xgy4DGq/pkyjA1ozh8UtPbpdEXBAFdRXVJVXaOndX8tx8o\nooWYQyVwaNhw+HTELdszPnFfBfe8ij437fV57ki6dtUhA4dfmeH9txd56pWQmeby+4YnYablUClq\nsvVaHgiBWPhPpZo4zlDKYMzab0jjbEUQoDJFay6iq7+CENBMJV99LObj99izAdblc211trAsy7Is\n621jDIzMKmaHh2mePc3ZGYeZuLRmac9FriMY6HW55fp8gutItfRcNczYN7BGAv4anjyklwKAFWMS\nLo88nfGfvjK79NijP2nzxe8qwlJIUAwJigFSnNeNWEjajYSona4IABY1O4JwnUo/QuQr+cYY0jTD\nL7gIAVmaEbXXDorOT4MyxtBpxmSpImonFMsh0nF4+qhcM13Ksl4vuxNgWZZlWdZl0RodZmPjBJ7U\nSJUyFB9j1N/GXHkT9aC14rWRWtmoq+AZZo1L3YuolxwqAWyspRyf8GhEksDT7B7IKPprT4Qb7fUn\nyNKVPHuow+mRBCnhSw+nSEcQBA5xrNAa/KJP0l4OOFLtMDG//vfaVRF0lfLKP3rhSwsBnucghCCJ\nM+JOhuM6BKFL1MkQEtbcDDCQpXmDsqid0JrLDxzoTOP6Dp12TKFe4PvPp9xz4+oGZ2+X6bmM06MZ\nG3odPNeWMr3a2CDAsizLsqw3THcaFNUkcfcgkeODyvCSFkPzR+m4FbTvIYXBGOgon9lk5UFXIfMG\nXL5IKQfQVzY8/EqB2c7ygd1Tkx7v2h4zVFcXfvmF0ptrBwI608QJvHI84eFnFEMbq5RrIb7vkCaK\nxnzEyJl5nCDvFiykoFBwqRXW/36rRfjQbZKXTin+63c0XuDgeQ4YiDoJzbkIyCf33kK34b66w/j0\nyrEXAujECp0ppCPwfAfXk2SpxnElAtDKEEcZT76iuOfGfLfg0Sdb/OTlNp1YM9Tv8aF7qgz0XFqf\nhDdqrqn50ncjjp1t0Imhry54136P+++06UpXExsEWJZlWZb1xjVHyYr15YR+xyUt1ADo6oySOLvw\npGaiJQiclE3FSZSRtLKQubSE0gK04fh4iBGa0VlvRQAA0E4lz5/x2VDrrDon8K59ksNnNJ0LUoLS\nJCNq5w/Wqw613hLdfcsBiOc7dPfmKUsjZ+bRjqarr8rWQcHd1wuOjhimL0gJKhcM79qd//nAVoe0\n06HdBMeRaGMwejkY0UqTCUG9DL/+MwHf+XHK8bOKTBk29Tt0dRd47iRLnY7DIoRFn5nxBpXuIkpp\njMkbmXkLLZn//hsz/PNjjaUdiFeOx7x0NOKzv9THUP+bu1NgjOG/fDPiyPByMDMxa/jmEwmlguDu\nK2inwro4eybAsizLsqw3xBiDkpK1TvCmfglfxFSLIa4jqfkRBVfhOZrQzegOmtT9JkmWp/xMzgoC\nzzDZXHuKMtOWTDRWP7dzSPLgux0qocYYg1aauJMwP5U3EdiyweWmfSGV6tqr1ZVamJf6lIJi6HDw\ngKQYwMfugm0DBs8xuNKwudfw0Tugp5q/TxtDbx7r5BN2vcZuhFZs6IYkMXzyvpDP/VKJ/+VXyvzc\nfQVOToilAGCR57v0DFaRUtJs5DsKvb0BN++STMykPPZUiwu/zOhkxtcfuUj+0mVyZFhx7OzqnRit\n4SeH1j8Ibl157E6AZVmWZVlvkMGIddYVHReCACkMcRqvihOEgKITkWZ1hCOplzO29WjOTK2XYy5W\nTYAX3bTL4YYdgv/8tSbPvtKh2dYIAds3enzmI1XiTOL5azfd8jyJEAaVaYrVkB8dM8RZQrkiOHij\nwACehA0V8FxoRZqvP644MaJpJh6Op9CZXnUIWmcZrU7G07Pw8rGIO28I+Ln7iggheHkY1mt2LKRk\nbrqNzgz1uk+1EnDXgYhvPdak1V67ytCpkUs7RP1GnJvMz1Cs5WLnMqwrjw0CLMuyLMt6gwRIF8zq\nFWKUQoVl3NmT+FoSOyWMXDkRD11F4Gak2mGw26GnnNJVVnRmVwcWtVDRX12vNmdes/9XPl5l+r1F\nnj0c0VV1uHFPvsqfKUPR13TS1YFAEiuSWOG4DjOTDYSo8LUfZHQiQ73m8MF3u3iuYLRpGKoa/u7b\nGcfPLU96HcdBCkmaZktHEwSaTnu5I3AnhkeeitnU73LXDQHhRTJntNIIYejtC9myrcqu/gRHCsJg\n/SQO/zUezu1Eim8/Ok27o7npujL7dr56Q7Jtgw6eA+ka/9T1ik0wuZrYfy3LsizLst4QIQR4hTVL\ngWqRpwmJLKKg25SzmVUlclIlSZXEdwzCyS9y3VBCOVg50/Rdzb4NKfIS5rrddZf331Hm5n0F5MIb\nXAd2DyrSVJEkaqnkpjGG2ZnlJflWIwYEN+4PuG6H4eTJOb74UEwrljRiyStn9YoAYOlzkIJKyWFT\nn2RjL0SdbNVrjIHnj+Yr9vs3w2D32lOxes3nhpv62LajRikw7N2QX+vuW0sM9Ky9hrtvR/jqH8yC\nx5+e43/+wyP8zZdG+eJ/H+cP//cT/OlfnUatt82yYNuQy+4tq4Mo34M79r81B5Oty8MGAZZlWZZl\nvWFuoRvteGjyhXADKCRaekizPBl2TUbWTomy5SlIIwmQUuI7GrnQvKunbHj/3oi9Awkb6yk7+hLe\nu6fD9r7VE+tLdXIMDp/RtNsZnY6i0UhpNhLGRxqMnlnOpx/aWML34PhZuH6Px9YtJaYnmvzjt5rM\ndQTz66TwAAz2OvzWLxbZOrB+pBKn+UTbkfDg3T710vLEWwD1imBog0foGwaqGXfuiKkV8tf4nuTn\nH6jTU1+eiEsJN+8r8Imfql/S59CJFH/75RHGp5Zz+JPU8OiP5vjqQxOv+v5feiDk9v0u3VVJ4MHm\nAckn7g24zQYBVxWbDmRZlmVZ1hsmpcQv95O0Z9FqMTfd4OoUT6/MVa87czzd3MRgOIMWuV9FAAAg\nAElEQVQRLmOdKkU/QwpDwY0QC+cLSqHhlq2XJ8+9HcO3fuIw31menBsDSaaZme4sPSYkbNtRJ4o1\nc/Pw1GHNrQd8Tp9u02om/OTFhH3bXGDtYKQU5tffudnje0/Fa+6ODPUuT7/2b3X5tQ/B00cNUQJD\n3bBnkyHTHbSBYI2Z2ruuL7FvR8j3nmjQjjW7t4bcvK+w6oDxeh7+wQxjk2sf4n32lQY/+9P9F31/\nGEg+86ECtXqZM+fmKRUE8hK/tnXlsEGAZVmWZVmXheN4hOVetErQrSmcpIFco3a/IzQbghlGoy6+\n9pWTVLsibru1RrEcsK06B3Rd9rE9c1ysCACWxywpV0PiToqUgltv788bXxmJrPtMTCh2bEiod5eY\nnmpx+HB+XqCnBlNzK6/lOXDTzjyAuWm3x3U7XV44ujJYGOqTfOCOlRWKAg8O7l99rYspFx0++v5L\nW/m/UDtaI6F/QRxf+uFe3xNUijap5GplgwDLsizLsi4bIQSOG+CUujHJ3Krn8ymmoOjESCH4vXue\nZ24q5m8e3scDH6jS3ffmNJzqXGRDoVjy6NlXZ8vWKo6TBwqOI3AMVKo+rU6KH7ioJCNqZhw/Kbjj\nQJlSqDgzbtAGuitwx36HG3fms3chBL/28Qrf/GGHo6czUmXYPOBy/8GQWvlVZvhvsluvr/KPD00Q\nrTHh37rp0s8VWFc3GwRYlmVZlnX5uSFaBkgds7j+np8VEBghSfFxpeZMz63s9Z/iP5Sf568f282e\nzUNvynC6K+s/19MdMHBBk63F7BbXEcTKQZsEJBhtyGJDOxH8+oMep8Y07Qh2bZIrqvNkytCK4EMH\nC3z0PVdWqsyOLQXe/a463/3+zIrHhwZ8Hvxg79s0KuutZoMAy7Isy7LeFKLUT9Y4h8N51YCEJKJA\nhyKuyJhx+ki9IslAPwfHR1CNEK9y8Zz01+OGrYYXT2tGZ1amr3gu1Ourp0OLufxKGZTwiTsdPM8j\nIUVIQZRKhMhLZp5PG8O3fpTxwgnNXBMqJTiwVfLhu1ycSylr9Bb59X+9kc0bAp55sUknVmwZCvnY\nB3vZOGh3At4pbBBgWZZlWdabQoZlmnE/TjqPT4JGElNgTnaTKUmvGmUmK1FKZhBSsHV7geMvNbmu\nL8J4l3cy6jrw4B2aR1+Cs1MCrWGgbghLHtkFjc6MMSgt0NrgOxqjIUsVnu9RrBYIQp/ZpqbRgkpp\n5Xu/9eOMR55dDnpmGvD9FzTaZDx496tXzzFa5SVUpXvJB31fDykFH/tgHx/7YN+b9jWsK5sNAizL\nsizLetNUqjWmRv9/9u47yu7jOvD8t+oXX36dAxqNRESCQWDOSSSVLVmWzKFlW9JKa61sr9bjMJqR\nZ3zOeNZx7fXujHd0pGN7pdVYtmVLNk1JVCIpUswZRCJy6Ebn8PIvVu0fD0Cj2Q3mBLE+50gk33v9\ne/V+jYNXt+rWvU1m3F4QEqUFKoVyNM6qYCeptRGATDBHMz9MPCIQc8fQvetf0vWjWPPIzpg40bxj\ng00uc+aDqsUsvPfidldfDUgBzTDi2THJRNVCCEEcaxotRaulyGagq2xz9HgAop0i5Pku9fkmGsF3\nHnO54nyHwVKMbbVTgHYeWr6R2a7Dilsv0Xju8hP7iXnFvuOaIBJkbMU5ndP0dHpIv/iS7oNhvFwm\nCDAMwzAM43UjhKDQHGegsZeWVQQ0ubSKpRMiXPrTEQQg0EgpUKvWkOgprLCOdrPtmp1n8ORzMT98\nbIqJ2Xa1mx89HnH1+Q43XbL84eL5eso//bDJ5LxASMFQr8VNlzis6wx49oALQhDHpxr+0gqg2kiZ\nmk7xMx6V2QZCClKlaTVCdh+SFHtLHJx2WNMdUfZi5hvLj7XSgLmapr9raRBweEry6EGfMF2Ylo02\nilwajTA80EB6L97J1zBeLhMEGIZhGIbxurI7B2G6QjGZWfR4XRTorh8CKVEIml4ntvbJTO1FVo+g\n3BxpYYCkc/WSa85WU+64P6R2WuOuagN+8FjMQLdky5rFqTf//MM57rynShS1V+pt12Z0MsfIpMcF\nW/JEydLJeZzA6FiM1oo4StFodApoiIKI6oniR63EYte4j1AWQ0MOk5Mhzebi0qCFbLsJWHucigd2\naqbmoZCrUw0Ewrc4PfsnTB12z/awonPcBAHG68IEAYZhGIZhvK7sfBl7tEXLLSCFJsXCSVt0tQ6e\nqhzU8juoWWXWTt2LwxxKlLGEQM4eQFs2aWlo0TUfejZZFACcFCfw9N50URDwwwcqfPN784tel0QJ\nteka48LCPxzhFs5UmlQQRynNeoglLZI4JYmT9uHgZrTodc3YIZt3WJnxmJhoMDcTnMrr3zQs8V3B\nXE3x9bs1YzMKrTWWpdu7JQXo7c8ueue5IEMrguVOEjRaKfc8FjBfU3QUJNdf4pPLvLmlR42ziwkC\nDMMwDMN4XVnVcey4ST5eOmvXQN3vYaxjC5nKOKoVMdmzhu5oHLwMApCVUeJsF9LJnPq5MDpzU6vg\nec89+FR92depVFGv1olCD/cMJUSDIKI628JxLXr6C8zPNGg1WwgEWi1+n5MBjWUJenqyNGoxrpVy\n7mqL91/VnnL96MmUw6MxadLekRASHKf9nJ8JKJYWDkRLqbGspelQB0civnJHjcnZhfMHj+4I+MQH\ni6wefPHDx4YBYNq8GYZhGIbxulJeHs3yB2JDO89o9ztw7RRR7qTRsZIn3GupOgtdg2USkNQniOsT\naN2e+K7oPfOqd2/H4unNyHhyhldC1AzoLGqy7tIDvWEQMzXWwHEtyl05LLv9Tz/TnmjnC4t7CySn\nNeK1bUG5M0PR13zoWgf7RBOyJ/dEpwIAaBcCisKEKEyYnY3QeiGw6M40yWSXpgLdcW9zUQAAMDmr\nuOOeMxxIMIxlmCDAMAzDMIzXlcp3k+aXb0KVZgt0yVlyIsC3Qxq969l7RLHDvWjh52V7pVzHLZJm\nu8HVxZtt1g4uncb0dQquecfi1fD0zJsG2K7L5Vsk150b019OsYTGsTSWSKnXIjq6s/StKJ2a+Fu2\nRaGcQwAXvKPr1HXiRBM8ryuxZQmm6+0xHptI+fr3WwTB8tWD4jglSRStVjuSKHkB21YGS84DzNdS\nDo3Gy17jwGhMpb789Q3j+Uw6kGEYhmEYr7tg5Tb8o09gNaYRgBIWYbZMs3Mh199Ck7VCtCoSygL3\n1S/k6tzTRF7+1Gt00mq/Vgo++X6fe5+CXQcDlNKsPFHtp/S82v25rMN8FC4Zk+M6CFswMZ1w0zrN\n6p6YegCWhO8+Iak3l+9V4NiCbZf2USxniBNNkkIzWPyaJNEkiQYEf/2vTXYdStEIhBAopUCDPC3V\nR6t2P4LeQkI502TkWJ07x2D9cMBlWz3kiUZjSrX/txydglIvEPEYxmlMEGAYhmEYxutO+wVa669D\n1iaJ5kZRmTzKzSx5XSuAtYMpiRZscI5wf3wZF/jTp12ofaBWCEHGk/zS+wtMTb1wYsOFW3I88qxF\n2ApQiUJIge06ZPIZKtPz3PdEk+svzmJZgsKJIfV3wOHJpdeypebGKwocnfOo1DmVvnN6Y6+TK/pR\nmCJ0cqJ3wMLzUkqUUiilkLI9diEllgWt2Qo/errFybn8w9sjtu+L+NSHClhS0FGUDA/YHBxZmuK0\natCmXDBJHsZLY/6kGIZhGIbxxhACVexD9axZNgDQGg5Pe6zMzbHKHqVXzjAedi6+hOW+7E66m1cJ\nhIBiV4lST5lSd5lcKUfUCoiDkLHplMPHF6fYXLpeMdS9eMldoNm6SlHKgVLtiX6zqWg0FM1mO50n\nTRXVakK9HtNsRIsPCpymHQgsrNrbtqSnBA9vbyEsC8d1cFwHy7F4Zm/EfU8GJ26h4F1XZSnlF9+D\nUr79+PPvTa2Zcsd9Df76X2r8/ffrjE6e+XyE8fZidgIMwzAMw3hD2V6BZquJbS2eZI9WfIa7YtAp\nnWoGKaHLqzNSzTNUrAMS6b38Drqb1mVIGxPUWh6O5wKaqBUSNAIsx8FxBLns4smzY8PPXpHy1AHN\n+Hw7RWhtn2bTkGa+qXl0n0162vxeKQgCTZomzM60cC3Nb3xY8udff4GBaZBSYLk2jmvj0QLLxpIL\na7QW7U7GO/bH3HBxO3A6b73H537B4sdPtJivKcoFyTXv8Nl3XPDlO2OiWNPXKVnXr7jjvgaTMwv3\n+YndIR95Z55Lzj1TSVTj7cIEAYZhGIZhvKGkZXPX9k4Gy00GOiJSJTg65XL/cwWuWFelpfM8WlvD\nxzY10U3NXbv7uf3yaYo5F+lkX/wNnqej5HDx+XnufbhKUG+delwIges5rBty6O9aWlrTseDSDUsT\n8KerkjRt5/s/37o+za/cbOHYAq01mYxFjCCJ04VWxLTTiCxb4uc8hBB0l6BSX0gPWnS/pGSutvix\ngR6b2961UNf0H+6JeXr/wlhHpxVP7gUhchQ7FM1aQJKkNFrwvYeabNvkYlkvb0fF+OliggDDMAzD\nMN5Qx6cVu0dcth9xlzz3zLE80s8RtBKebKxl/2yRJE3YPVHk8g2vfNL6P/18P1IKfvJ4jShSSFvi\neC5r1+T46M1naBJwBrN1wXIBAECYSBxbcHRS84MnIbV9cgVBmiqiICYKErTWpGlKrtBO33EsuHSj\nYPtzElj+1K/rnPmzHxhJeWZf2j4wLNrBzcm0oDRN8X0Xy5bMz9TRSjM2rXh2f8SFG1/f3YD9RwJ+\n8GCNsamYrC+5YFOGW68unjrk/EolqaYZaHIZgfUqr/V2ZoIAwzAMwzDeUJPzEC+fKk+1aeGpmCRO\n2TPVgXQlaSo4VslyiWphv8KmuLYl+PRt/Xz853p56JkWs5WUzrLNlRdkTtXwf6ly3pkr8PiuJk40\ndz4C01U4GSxYlsTPumiVQpIyMODgZSy6yzabhlK2rpHMztvsOhQte93hgeU/+HNHUr7+g4jkRKq/\n1rq9y+BYSCnRCipzDUodOTI5j2atfbbgXx5IOTiZ8L7LrRcMMF6pvYcD/vvXp5mrLvyi9xwKmZpN\n+KUPdr3AT55ZqjT/+pOQXYdSag1NR0Fw4Qabmy99+edEDBMEGIZhGIbxBlvdD77Lkrr6AEorWo0U\ny5ZMtfJsKNZoZLKgFTKsQLb8qt7bsSXXXrS0AdfLsXkoZeeIYra+OHXHlpoNAyn37LDQjk1fnyRJ\nNK1WTLOZIoSgUM5R8OFT71ZkPUlPT56pqXauzzUXujy+K2a2ujjIyPhw0WaP5yZcEgWdmZT+UorS\nmu88FNM67T6e3AWIghgv47YPHwtNtdLAddopT9KSRMrmyb2aZpCyflBxfEpRyMLVF3j43qufUH/v\nJ7VFAcBJD29v8K5ri/R2vvzOxt+6N+ShHQsHmyfmNN9/JAYBt1xqzji8XCYIMAzDMAzjDVXOS7oK\nMaMziyfRWmtUolGpIpN3sW2L0XmfgWLAqq4muUOP0NpyC7wOq77zTcFIxSVMIONoVpZjRqcFO0cs\nqk1BR15z6wUxGa99SPiGcyMe3OswMS9RWlDKKs4dSohSyUjFJZNpj9FxwPMspAyp1xO0hkQ4/NV3\nA379g4vHUMhKPvpOn+88GHJsXKGBgS7JhVt8jjaKBJX2/TqIpnc+wYvrjM8uvyshpSAMIlDt+4kQ\nKFshBPhZ79TK+Z6jiid2hugTlYoefjbmozf7bBh++ZP00x2fXH5Ho9nSPLWrxa1Xv7zrNwPNzkNL\nKxtp4AePBNy4zcZ+pdtEb1MmCDAMwzAM4w13+WbJ39+TIKVsN9DS6lQAICR0drYr4bRii55CwJzq\nwArryNoUqtj7mo5lrGqxe8IjTheCkmNzNscnU8Ko/djYvOav75a8+8KItQOa3pLmZy6OmK4KghgG\nOzVSwB1P+jz/vICUglzOoV5PkFIgpaDRsqk2Unp6Fo9l02qHjatsjoylxAkMD1rcvz9HKz49YBJM\n1hwy+MDy3YNBEIcxWmmk1X7PJFbky7nnTZYFliVJVHvVfrqi+df7Q37jdhv5KoKtjHfmKvTl4suf\nrI/PplQbyz+XKsl/+K8z/MlvvLZ/Ln7amT4BhmEYhmG84c5bK+kva+IwIQpikjBtr1gDhaJ/aqVa\na6i2HLSSkMbIoPqi1w4jzQNPB9z/VEArfOEOulrD4Rl3UQAAgJB0lOxTk3bLkli25K7tCyvYQkBP\nSbOyW2NJaEWC+ebyUyvHsXBdgedZJy4vODK5/CFgIQSrB23WD9uMVVxa8fKTZsdzWFRy6Hkf7OT9\nlJbEsix0mi5ZLdenve6kYxOKfUfPcGjjJTp3/dI+EADDAw6XbH35FZ56ypLM0nPkQPt+BanL/iNL\nu0IbZ2aCAMMwDMMw3nBSCj5wtcNA1+LV5mzeoaOrPYFUSqM1RMrBV/X2hHXfM4j9T4FefgL94DMB\nf/Q3Vf7+By2+8cMWf/g3Fe59IjjjOGqhoBouPx1yHTi9+Ey7qo1k18gZJvq2xrXOFHRo+np9Bgc8\nclmJSjRDPS8+DUuW/5gAKC1OdVBe9LjSpEqdCqTyBR/LFkTh0l2DNFGLmpad1Apf4I1fgg/eVOLy\nC7J4p2X9DPU5fOwDna+oOlAhK8kvH1cAYNmS7z9YfwUjffsy6UCGYRiGYbwpVg9Y/PrPSZ7el7J3\nVBMol0zORoiUnKfIeorD4xJle1zX/BbJfAV59BB696NEj97D5HwnXLUNff55CCE4PpVwx49bNE9b\nEJ6vab59f4uVfRbrhpbmoVuinbxz5qn7YkLAVHX5Up6OBQMdKQcnl07uPVdQzDu0QigUBJW5gO2H\nLc5Z/cI7FYOlhP1TaulOBVDyE1xb0wjS0/oL6IUeBkJTKOdAwtxkleFBh3wRZqrguSC1Yqq6NHe/\nuyzYsubVnQmwLMFnbuvh0EjIrv0BpYLk8gvzL7sS0+muucDim/edeYfi9ahy9NPMBAGGYRiGYbxp\nwkhx9EiF6cmIAI+BNX24noOyNB2liGI2oae2g2phNbMD11DMPErHcz/Ga06gH3iIx/74ixQu38a6\nv/wvPPSstygAOPUeMTy2M1o2CMi6mnImZa61dEoURu10oec7b2jpAdWTNgwkzDZswkQQp5Ak7R2F\nYh5sqx0oxAg6ulyePqzY87cR/Z0ea3oSpuY1x6YFcSLoLikuPkexslsz3BFzcNpFn3bWIO+mbOiP\nKeQs6q2U9HkpPbYj6eguE4UJk8fmUEnKLZcX2bbFZmJOU8zCzLzgq98VzJ1Wjchx4OoL3NdsQr1m\nyGPN0GtTueeKC3z+8d4qUi6kNJ3qhxCnvO/6l9fv4e3OBAGGYRiGYbwpDo8E/LevjDE6sbAandlV\n5YLLV9HZU6AR+JzTH9DZl2HWHkZJh/lN1+JWxsiN76W4qszIPYeo3v8oR77wJwQf/I9nfK8znQ0Q\nAtb3ROwYEzRPy72PIr1ocgzt/Pmcq+gsLv8eO8dc9k+4YAk8C1ytEULjOeJUCozjaBIlcBybIGhh\nWZLJimSi4hIEijhuT+arLYvJecnPXJawZSCi6CuOVyxSJSj4CloN/uGuFtMziiRSiBN5/9A+A1Ao\n+lRm6sydKD/q+xaHjqdcspVTaUjFnORXPpjlvqcipiuKXEZw0SaHrete3S7A60UKwYev9/ine6NT\nnxUgiRO2rtb0d781x/1WZYIAwzAMwzDeFP9w5/SiAACg1QjZ9+wo179rI3EqODrtcc6QQ09ynAln\nGGyXxtBWcuN7ke7CRLD60BMM3tbkTFOb/q4zV6TpyCouX93i6JxDmAgyjkIoxb2zLiePT2qtyXkp\nt1+1fOnL+ZbgwKRLqhdW0Nur1ALfjtFCEqcWllBkPUEQpFiWpJTTaCkIQnAcQXxa2n49EDxxQGKp\nmH2jCa0QekrQkU34yRN1mqcfdUgVTt4mk3XJ5FwsS7YPBNsW0pJoIbnvyQjXafCzN+UX7ku3xUdv\nfoFk+7eYqy/02bzG5kvfrDNX1XiO5t+8J8OWdWfPZ3irMEGAYRiGYRhvuHozZe/h1rLPzU43mJoO\n6ej0iWJopC5dchpfNQisPFGpDw3k169g8ycdnvv/HiWp1Lh4VcSTox5Hxhbnja/olVx/0QunpDgW\nrOuO0VqTJCE6jfk3V1gcnc0TJoI1vSm5F7jEsVmHRC2fQqO1ZqijwXTdoxa0p17lvMXMbEKtpSmd\n2FmQUmDbnOr+C3BwDCanFnYkak0Ai1g7LCoPqiGNEnJ9hXbJ1VQRNGMcd/Hq+PZ9ET9zvcZ6Fbn5\nb7auks2//8SraxpnmCDAMAzDMIw3gVIadYYCNFq1n4/i9gHWJ0c6WDV8HEeHBORpFQYZ3/Quund/\nn/q6DWz81QJHfnCY/Kp+/uc++PYDAYePtxtzrRqwefeVPhn/xSvxKJUSNudR6cJq/4p8Ey9bxrKW\nTpm0hmogidPlzw6c5IiIklND5wVhYtFoaTQC29KkqSRN2gd5tQYpJbatSZL2BVvLFjYSuL5N2AyR\n1sLnisKENFE4jqRWaZEuU1qoWle0Qk0+e/YGAcZrwwQBhmEYhmG84Yp5m7XDPjv3Npc8V+rMki/6\nACglGJnzUMMQiQypglg7zK+5krlv3cO68+bZt/E6evvOQ1gWhRzcdkvuFY0pCmqLAgAArWKiVoVM\nvmvR4/Mtwd5Jj7mWBQg8K8WxNHG6dHLd4QcUZJ3Icsm5DvWmRZxqPFeSKpirxEhp4Zw4jLuwI6AI\nwuWr4Tiug+1ZtGotvKwPGmxb0FMSDPbAQ+PL77J0FC0yvgkADNMnwDAMwzCMN8kHb+6kq2PxeqTr\n2azd1L/QLAywLUlL5KmTJ1IOINGuR7xmM7Wh85k/MELvB659VWPRWpMmyzebUmlEmi6k3qQKdo75\nJyoKtccZphauq7Hk4i2BDr/BmtIsUkBWtohTcG2NJRQD5YhqNaGr0yaKEhxHcvK8q5SCnrIgjs5U\nElPj+R6ZQoYkjnE8m94ej54+j4NTLgNre8gWFnfXEsBFm12sV1Cn/41UbaR860dVvvyP8/zdd6uM\nTp6pK7LxapidAMMwDMMw3hRbN+b4wq8O8f/+S5Xx2RTPdxk+p5ti+bSOshqKecEIq1H69GmLgGIH\n9b2HyHZ1oqT9Klc29Qvm9OgTzcmU1ozNp/TlqvTloRnbTNazpLq9I9BbaCGTEB1HdMoKq0pzpKLE\nyXSf4zM2q3tDomaMbSksyyFNNKWijSXBdSStE+U+g0RiW4IkXVql6GSqj+u5NGst/JxHoWxTKgiO\nHE/BslmztoOxY7MEsSDraS7bZPPuq19+t9430rGJiC//Y4Xx6YXg57EdLW57d5FLtprDv68lEwQY\nhmEYhvGmGej1+Pynevjbh3OkzztYa0lIUs35g02UfN6URWvCH92L97HraMxlkdHyVXteOoGVJNjT\nR0gzBZJSz8Iz0sKyXLTWzNVDLKlPHRLOuQk5J+bgXBmlJQrBls4JOid2kQ0q6FAQZspUejdSaVqs\n6IxxbFjXPcUz0wM4riRKBMW8JAgFJ3t+CQGpkrgZm6S+eCVcKUUSpydeJ7BtSTbnMjkVIhGoNEVI\nQSJsnFyetJUQA0fnBNWmppR76+4E3HlvY1EAAFBrar7zkwYXbfFfUbdhY3kmCDAMwzAM400lBFy5\ntslPDmSRp9KANFprunIRA50hQaII1UJ5nvTgQdz6NPnz16N/eBR3/gjsfZBkZo7qgUmOfGcXsquT\nzvfeRM/PfwDpOiTzVRACu7S4qZSqVRB7H6VwfBeOCkFaxKUequsvRWVL2E4WIQSNMCFKl+4WZN2U\nrmyLqUYOV6YoN8t8z0b85+5G5nL4rXnS6QNsbtZxypfhegIZR4zN2+RyEinFksntyf/WSlMoOEhL\nEsUprUaCYPFrhZBYtkRpQaUl8XybZivF8+xF1z06ofn2Qwm3v3NxmtBbRao0h0aXT/0ZnUjYczhi\ny9rXpvGYYYIAwzAMwzDeAtb0aboK8zxwIEMtcPBsxdbBefJ+O+3F0jHgoeOYdPt29J3fYsV//iwT\nh+a4Nv8M8Wg38eBavI4O+ntz9Fy6mh1/+E9U//5rjP7R/4W2fVQzQLo2+W3nMfibv0I9aDL/6G7k\nmlV4526ldOgwKj9M58gT5FRKcd+jNC/7MI7XPmgcp2coZwRk7AStNUIoGolLxivQKA9RqI1CNo/f\nmkdbNuvrjzPlbObRuTXYjiROBCu6QqbrWSxLo5Smp0tSb0AQpvT0+Agp0bqdBhTkU2amm2Qtl2Y9\nQqWKcncWrcF2LaIYMr5gfi7BtiVBsLi78eFxTZRoXLsdHMxWEn70aIvpuYR8VnLFBRnOWfkmBgkv\nsNBv9gBeWyYIMAzDMAzjLUFKzbbhyrLP+S64c4cJd+wl050l+3ufwDm6j57Dj6NrVayJMcThfcQr\n1jF/4fV0ju9g+Pd/jYn/+6us/sx72f37/0Aw1SSNbSo/eoDqI0+jLQsr46EaLewN64h/99/RNf8s\n0xtvQB99lJycxp2fJEglYn6CfBIQ9W4i9QtLxpcoQRgLZhs+5WxIqn0svw+3No2DAAFxqQfmZ7h7\nZA2eIxCpIutCVy5hfB5sS9DTKbFtST6rqdYBYbXPAKSaMBJkMjbdPVkyGYvJ8QZBK6RvRZm52QDP\ncwFNPts+uxCFMep5Oxdx0u5D4NpwdDzmy/80z+TsQnDzxO6AD99U4Jptb/zZAUsK1q5weLK69ID2\nyj6bjavfmjsYZytTHcgwDMMwjLcE3zlzV1/HtuldtYqhd99E10WXkS2vwDu2D6oVxIkDvTIKcA7t\nJPvco0z1bkV6Hv2/+lEq+ycZ/v1P4F+2GeKEzd/6U2TWoXDrtaz87ldY+a9/Renn3kX9T/+C+fNv\nxQ+mCOeqJP2rqB3YR2N+jj3eeTycv5nqyAyFsR2LxpYqmG54aC1oRjZxPSRMHUYz65lPchztvgRl\nu2DZkM1zbuE478rczzWFZ7h8fYVG2J6O+R5YJ+r+27agkGvfj5N5/+6JObDrWrruYk0AACAASURB\nVEgp6BvIMzjciWVJHMcCAZ4DSoFKNWm8dOeiv1OQOZFR8+37G4sCAGj3JfjBw03i5AUaH7yOPnBD\ngYGexWvUxbzkPdfmlj0PMF9XfPuhhK9+L+Yb9yQ8d+xM1ZSM5zNBgGEYhmEYbwm2ZZFxliYpSCnI\nee3HhZQI24bxw4jJY0teKwB77AjSdlC5AqOFc0lHx+jIQend14KGw3/4Fc696/8hCVNaTpmoeyXe\nB95Lxy+8H/XIIzgqJu4cQNk++8qX0xAlLqr+kF51nMnudzBZdZFRuw5/nAjGqlkqLZ8MDRAS79B2\nXBnh+5KRnouZ3j9DtTDcHp9lsc3aTlHWWe1PolLNyGyWjAeus3iSa9uQzcDJpr8nS3sK0W6m1j5L\nwIk0JFCpotFMmJhOiOMU210cVHkOXHWe1e4orDVHjy+ffz8xk7Jj//LlUl9vgz02v/OJDt5/fY7L\nz/d55+VZfucTnVy0ZWlloIlZxV9/J+GBHYo9RzVP7Vf87Q9T7t+eLHNl4/lMEGAYhmEYxltGIeNS\n8F1cW+JYEt+16ch62NbiCa2oziA4w2p1FCCEZu8xSVOUyA6UseOAjnN6AdDHj6OqdVb/8jVoLBQW\nsXaxrrqatN5EF8o4OQ+KRRK/wBF7PbFwWd3ciZRwpHQJ6uA+js7leHa8g9FKHoAuZuiUM6x0pyFN\nkVox468kuOMugnoEcbRozFLFHJ30yWUlGb993FecFgcI0U6DymehkGv/txDtSqbpiQVvKQRKabRu\nBwHjkwmNRkoap9i2hbQWLljOw7mr21M/AbxQoR3bevMy8HMZi/dfV+CTHyrz0VuL9HYun71+z1OK\n6edlj8UJPLRTEUZvzk7G2cQEAYZhGIZhvGUIIch6Dh25DJ35DKXM0gAAQA2eg3KWrxSjCmWUFqRa\nkLWaWF1diDikEbe7EPdfu5nZr92BM7SC5NChk+9Mavs4l19CqSDxLE2cKdGZi4hwOO6sppjM4KgQ\n15esivdwdf1fuV7fzXqxD4AsTc619jDZfxHZ6nEiZSOFJp2cxKnPYh/ciTytI3FVFaiL4qkGYWKZ\neffJib/rQMZv7wCoExk8Wp/4Gd0OAvIFr33YOEood7YPC2u1MBmersB8feE+rz3DAeChPptz1731\n8+9Hp5c/qD1fh+0Hz3yI22gzQYBhGIZhGGefcjfJirVLHlaOR7z2PILUQRe6yTzzEN65GxHZLEmt\nBq5F8Zx+wkPHkSpm7rO/SfN/fOPET0t0oQxKU4sKNJ0yjqOxZcqE7EMj0bSX4ueGLsIRirJV4QL5\nFFvFdlZ6E5RFlbrXQ4E6Ngk2EVYuT2FyL7I2h1WbA0AjSIqDbFsr2dwfUPDSUz0COPGK57OthR2A\nk4QQKAVSQiZrgRb4GQfbsZASVq/K4fvtC0sBu45Kdo8IUgUfvDHHcP/iVfZyQfL+M+Tfv9XIF5jF\nuqb0zYsyQYBhGIZhGGcdISTx5e8h3HwxabmHNFcg6RsmvPQmosFzONQaQMYN5r7yLQpZhcqV6avv\nZ+V7L6J5fA4rn0VMTaJHjtP48t+QTs+gtcZq1Yn27qLy6E4mJlISJcl7ilDmmN8/QSJc0iimVRpk\ne/ctpArqbgfr2U2hZGPLFCUsFJqBcC+zTZ/oIx9j3/C7EWjSKCb1y0S9m8gODnP+KljXnXDFmibn\ndIeU/ISTAcDzdwaU0sSxao/ztM0RrTWOY5HxJWGzTv1EdZ1SwWJgIMPmzSWyWQtpWzx20OF7Tzl8\n/X6bVuzw2x/v5OduznPNtgzvvirL5z/ZwYWb/Dfot/jqrOpbPlDpKcO5a8wU98WYO2QYhmEYxlnJ\nyXUQbL2a1i230Xrvxwmu+xla/Rs42FqBH9WR/+532PJvP4BIFU7SonV4ioF3nsfoXc/Qdeul7P3b\nR9upNNMzBP98JyCoN1OqA5vouOF86l/7Jo3II1WabH2M/X/+Tbj3+3RmAnjyEXzR4rHiu/DjGmMd\n55G0WoSVFr0TT6KffQpxZA8ZGTE3cC71jmEmOrYQrr2SYPhSkvLKU5/j+HjAnd8fZ9+zo2zubeLa\natnUIKVOHAJG4XkncvsF5PMWA302riu56MISa/pj0iSho9yOFDK+xarhLFs2+NhWilKK6arknh3t\n3YKbL8/xsfcW+eCNBTqKZ88S+i2XWEsCgUIWbr7IelPPNJwtzp7ftGEYhmEYxmmk5TK0dh3P7T5G\nJGxi7TIVlvCjCgOPfZPVf/4JpC0gDknmash8gee+fDe9H7qGsQf30/j6HQsXixPCVDKpB+nL96H8\nhM73rWbnjKCYUZS/8TfMBwL/kXtYc/Mgx6ciCqRkGuMcLG5DpRJ/NiQzNEz8f/53nK4s6Xm3YYuU\nuarNOfIgB9a8hxWHfsze2WHKBYeNfSF/8aX9fPdH4zSa7TyfO743wTtvHaYwONBOPTohTdu7H73d\nDtOzMaWcRmlBnIAlLY6Ph5SKFrFy2LQxz48fi5meTentFliWpKPDpasQs6pf8fReqLdSZmoWf/L1\nmMGOlFsucxnsXnr2Yr6asOtAyIGRiDQV9Hfb3HBpFs998XVkpTSP72iyc3+IlPCOzRnO2+Ajlotw\nXoF8RvKp9wme2JMyPgcZFy7bIinmzBr3S2GCAMMwDMMwzlq2bdPb303QDKhUQzbFz9LX2IXcmgeV\nQKxI/RIjoxGNoy3SBI78139efJFCHnnLzVRDD8uBluhA5z1kPs/UzoQ16yp4nTl6vvxnVD//e2QI\nCC++gb7nHsDJF5ksbiO1XKZ7L2RlvJ/srTeS3v9jUr+MrS1SJcjOHYJSB0c6LmPdX36axm/+Ad9/\nsotv3jmC0guT4vGpiLu+e4TPfKbIWDOPkO0dgDgBEHieIJ+zCEIo5CXFTEwjshFCMD2bUCpaoH3W\nDQQcr8TMWNDb7aK1oNK06S1GDK+QPLk9IlewCGLBM/sSxqZTPnyDx5O7EybnU1xbUKmEHDraPFVp\nRwiBtCTfvr/BxefluP19Pj+6v8LOfQFhrFg54PKea0t0lW2U0nzpH2Z4ZHvr1Ge7//EG11+W42Pv\n73zNfv+WFFy6ZWE6q5TmyT0xU/OKwV7J1jX2axZ0/LQxQYBhGIZhGGc9P+vjZ33QRaL5PFZ9EjTE\nvevQfonezRC/713s/cX/bfEP2jbyZz5EpW8zaIGb1vDSkJrbw1wzS2F+lENzK7js5qtIBjqoXHM9\nOgzI+RH+4e3ITe8gSj1SoXHCmPnSEM01fRSrszSf2U20aQ2em7IncxXbgj2M660UPvMJRv/3P2fL\nf/hf+T+u3oHb6fPv71pLLWyvxE/PxDz86BQDG/N0pJP4qsmkM0Qq2g0DXEfguO2JbSu2KbgBcQxR\npJicSenvtujqcqgph0olpbtTA4IoFkSppKcYU8hbxKkiaLarFU3Oaf76zoBUWySRalcW0hbYLkTt\nMwZaa5RSBIHg4Wda7Dg0Rb0a0qoHAOw9HPHcwZDf+HgvO/cFiwIAaDdVu/fRBu/YlOHc9Uvr/r9a\nE3MpX/9ewJHxdmUgIWDdCotffq9PPmN2B57P3BHDMAzDMH56CEHaMUS0chvR8Da0Xzr1lNPdyYa/\n+0v8X7wdfc0NqFveg/q9PyL5tc8DAq1h3ZFvI3M+ldgl46R0HnqcPQcjqqVVeDLG/eWPcfjBI6wQ\nx4k3XYBVmwEUemyagWP34EZVam4PzQ1XUrfyBAoGijVimUPWKzhxFZEtwH0/5LnqEPX8APrZ3Xz1\nk8f5o9/u4V1Xt8ueds48y4ftf+KS8n6umP0mPxt8lfPDh9ofUYLvLlT8aYQCIWX74HCkiSJNUxXw\nXEkUp6SqfdRY0/4/SyjiRNFsRMSndRXWwqajO0dnX55cyUdIgeu7i1bStdJorUmTlCSFQkcez3dO\nPT8yEfPd+yrsPBAs++tJU3hyd2vZ516tf743PBUAQLuE6v6RlG/d++Y0PnurMzsBhmEYhmG8bTil\nAlv/4HNs310lKA6eelxrTefkdjITe/BLNjOWoNazBmv1mvYLPI9QuuTcBPvydxBHNZr5QfQDT7Gy\n90kOfW8HpaHDNFavIpXD1N0unK19DMt5VLNGS+eY7d3I5t3fIchsBQTNyKJvQ4meXB/7fnSYlR/o\nof/8q/kvlx2m+pO9hM4KOmd2UVl/Ce7hpxjomUPwDM84mzk6qujtlniOIIwkYdBCCoEgbf9TtA/9\nCqDZSsllLRxb4zspQmmmpwJq8y0cb2ECr1JFvRpgWZJM1gGtadZDMsUMcSsmjtodhnOlDK1aiFaa\nJEkpdReYHJk9dZ2jYxHlwsJ1n0+9DiX8p+dTDoymyz53YDQlSjSubdKCTmeCAMMwDMMw3laEFGy5\n94+Z2ngTzfIqhE4pzh+guO8BrMoMTimL3YgIuzYws2Iz59gWOTchET4FOYdtB4j9e0jcPuSxowzW\n97P/q19h+t1rKZ03yVBmJ7HI0DjSonvAwhrZiRgQpIHL1NobSWaOk1k/SF91D+GKPqZya8jIp5jQ\nfazqajJWG+L8m85nzO8m5/TQMX+Q2uYbiXc/Q7HDZWX3RgQWxycSujsklgXzcxHZvItLk8nZPCsH\n26vuSaKoVBIsS9KZTyh4EcdnBLOTVZIowXYXcuaV1sRRSkxKHCV4GQchJQKwXRut2/sJuWK7ERmA\nSjW2v7ixmOdINq7xeGzH0hV/KeCCja99KlAj0CfOTSwVRpo4Nr0Dns/cDsMwDMMw3naE1vQ+9o0T\nLXmB0zrrWq0KXTiM4VIsBJzTWUG26qhCDo0kDGP8VFAa24W7ukw4NUe2O0drLqB7bB/eoUcobNnC\n2B/fQc8vXUMydogVF8QcHnNx3/kuwtIq4l/4X/D+2x8z+vFfZXDmOIUVWfbIPrqtiB31MkOdw7hH\nn6Pa2ctU8RL6amMU84q9mfWEKXSVFMcnYa6Sks1Y2LakXmkxkjr4bsBgv4dOUuJYnUoTmptXdGXg\nqSfniFrtswBRK8LLtlOQVKrQqUZYApDEUYrtWMSBADSu72LZAiklftYjChLQoJLFK/Dnrve57tI8\nO/YFPL1ncVrQFRdmueB16EOwoseit0MyObd0m6G/S5I9O1ofvKFMEGAYhmEYxtuKEBIxuAb93Fw7\ncfy05rzS97EFCKfdiXdNT8SAPU+y5wnSjVfgBzOEs7OIqTEaTz+H7PJp7jqOU84Rph7R+AzVx3cT\n7Zkh3bmX+Se6SY8coyMISZsdJDmfxjtuobr5Rla9d4rkwON412xk/C++ytz5HdQqCteRTAVZhjM+\ntVwvk3OCfXMul2SrjEUdZHwLKRRCauYrMUJCNudQnW+RJprAkzRbMWLfblZMTrBh00b2N4aYrjlU\n6rB9Z/O0u6FP9STQul1dB6XBhjQReL5D1ApBtCf/+VJ7FV+c1q63Vmlfz3Hg0vNy3HJVESkFv/YL\n3fz48Tp7D4UIKTh/vc/lF2Zfl2o9tiW48jyHbz8YLtoRyHhwzYWuqRC0DBMEGIZhGIbxtiOv/QDp\noR0QRQsPWhKvo0DcDFFXXsWANUKfVQdATI+Rad1NdUZT9muo53Ywv7/GxH1TrPuFq6juOkp+RZZ4\nzCWaajL948cBmHt4J/FohczGFdjFDqxV50CS0ohtjvRdxqqLJLNuluCXf50wtmikDsVMhKMj0nIP\nc4HPSNWhFWV4xLmESGeQETQamjBUSClpNFLSVCOEIE01MoW9+xr0DG8k/9RDbFyxjtzIPp5qrCfG\noW+ozNjRORAsOvgrhECh0ArSVCFtgW0L8kWfRj1qB08nU4fS9oq7lPDOSxyUKnLBxgznrFpYcrcs\nwY2XFbjxssIb8Svlum0uhZzgiT0xtYamoyi5bKvNltVnPp/wdvaiQUCr1eLzn/88MzMzhGHIZz/7\nWW644QYA7r//fj71qU/x3HPPve4DNQzDMN66zHeFcbaRPYNw+68jvvVlUCnStnBLBdJEkXauoGJ3\nMFSo4QiFnhyH555FyQKjX3mMSReEbeH1FEnrMcHoDDpOSaOE1tgcjbE6xCkUBIXBMrNHK8SNCJEc\nJ/TzKJUQhD5xdiU9ZU2S2hwrDWNJsC1FKRsxUD9IPbQ5FAwxX0lwPIvZsIALTM4oYiXadfslRGGK\n7YDtSHI5Bz9jESeanh6byQ2X8I9P9vHJtQ+yK1xDlDrkCu30Hy/j4Z6o7KO1Rp0IJDTt3RGtBdJq\nV02ybAt5YvU/TRRx2F5uX79S8qF3Ft+U3+Fytm102LbRTPpfihcNAu655x62bt3Kpz/9aUZHR/nk\nJz/JDTfcQBiGfOlLX6Knp+eNGKdhGIbxFma+K4yzkRzYgP3zv4Le/gBqaoJQ2jjbLoRsmZWZOlpp\n1PHj6Pu/D0pReXIfaT3gZAZ8a7JBfmWZw//yNAA6VUw+PU0w0z4Q233+Orx1g5TjEPmLv8z+uTXI\nVoGu+DjNtJ8kLpJlnLGwAy0sBJo4FWglKR17iqPlG8m5MVMxdHQIWi2FrxSF2jGmvWFsWxBFiihU\ndHRKiiWHckeWoX5NZaxG1o1pDKxDKBvh2GzunmfPbBd+1qN3ZRcgFqXJSKFJ0xTHEYSBwnEltmWR\nKvC9dlWfKIyJTgQAfZ0W777SeyN/ZcZr6EWDgPe85z2n/n1sbIy+vj4AvvjFL3L77bfzp3/6p6/f\n6AzDMIyzgvmuMM5KQpB0nYO4rBPZmIQ0JkESP/0YenwUGnWYmQQgqkdM7ZxecomoFhBX23XoWxMh\nlp+g0/Yhg+zG1WTWFMgNnsdEYQhHFjlaKfP0pEtHZ4rjWkyGHVQaNvl4im6nzoF0JfWWhT+8iqzM\nMKTnGbHKCK0Y6IbCwWeY8AYZUoc54q+h1WqX6azXBX0DBRwbekshxekxeksWz7pZHAmPJ9vwHUlH\nLmXv3oBMzqNVD2nWA7TW2K6N6zkIKejvzzIyUiebc0mihKu22rz/Kp+5Wsr9T8XUGjalguRn39lB\nFLw+Nf+N199LPhNw2223MT4+zhe/+EUOHTrEnj17+NznPmf+YjcMwzBOMd8VxllHCHSuizTXdeoh\nqxKRjhxDTU+2a+VPNZl4YpKkvrQGZTS/uPpNGi5UymkcGsXvXoVYsw5fR2SkZmY2QeHiOBLHFtRD\niRYWxZLNxh3/QveaS9jNZYhykVVOg/rIDKv7i9RCh6yn8MePEmzYSDYXIwJBT7dDqxETRQm2nSXr\npQhhY3d2kcYpji2JI810M0OjBf1dUK+2KHcVsByLNFXEYUzYighdm1wxw+RUwNDKPBsGUi7bLOku\ntTsZdxQsPnCtderzlQo2U8v3BHtdRLHiO/fMsvdQCyFgyzlZbr2uE9syh35fiZccBPzd3/0du3fv\n5rd/+7cZGBjgd3/3d1/WG/X0vDGHQl4vZ/P4zdjfHGbsb46zeew/DV7tdwWc3b9DM/Y3x2s+9p7r\n0Fddw77/+Acc+6tvEMy8jJnuyUpDEqjVqB6YZ3B1ixnLYk51kKYxadI+tOp6cFH5IA/NbGEqLDL/\nxH4KgaD3yvPRQpKrjzPx/cfY8PGNPL7fw1Yh8py1DA1YzCSrSJuKJIFSh0d1roVrCxqBxXQFtqzO\nMTJpIy2BpTTzdc3kVEw5b5Em6kTNf3A8hyRO2o2/ooSgEZIt+FQqIRsuL7D5nBeurflC9z4IFVNz\nKV1li6wvz/i6lyJOFF/447088Wz11GNPPFvn4LGI3/u367Hkyw8EzuY/86+FFw0CduzYQVdXFwMD\nA2zevJlGo8H+/fv5rd/6LQAmJyf52Mc+xte+9rUXvM7UVO21GfGboKencNaO34z9zWHG/uY428d+\nNnutvivg7P2+ONv//JmxL1X6zGeYfGw/wT0PLTwoJdJ3Uc0XDgwGrhggqMPEXY+z+tYN+FEThYXn\nJURRSivS5DKKOJUIAUpZVH/204w7eTqdGXS1gtOcJfKKuEHEqn4FoaC1+lw8mVKPBXEMSaJJEs2a\nQYFlgUxgti6RwkJYDo1GQi5nE4SCaiXg0DGX9ERlnyRu71rYrk0ctLsBp6lCpZpGLeLr329Sqba4\neGN7ujg5p9hzRJHLwoXrLPr7i8vee6U0d/wkYseBhPk6FHOwebXFh67zXvGq/XfvnVkUAJz0wOPz\n3HHXKFdfUnpZ1zvb/8y/Fl40CHj88ccZHR3lC1/4AtPT0yiluPvuu0+dEL/xxhtf0l/qhmEYxk8v\n811h/DSSvseGr/4F09+8i/rjz2BlfLo+8j6yW9ZTufchxr70P6jd98iiPgMAnVs6sTMuSUWho4SZ\nJw7inHMtHU5MX7ek2ZTMzMbkfIeRzBBxpEFC3NFPrZWjKx1H5rOkzXn6btrMwcinrxwyUc9QbUBH\nJj11gDdNIQxTtm6z2DMGqWp39U1SQcaO6ezw6O8WTM1BEivGJ1M83yGJUsJWjJCC1Sscsp5g++4I\nx5FksjbVakKiBN9+MKWQEew4lPLsAUVwoqLq/U+nfOw9Ed35pfftzgcjfvLMQupUtQGP7EyBkI/c\n+Mq6du09dOazBzv3NV52EGC8hCDgtttu4wtf+AK33347QRDwn/7Tfzr1l7phGIZhgPmuMH56Ccui\n5yPvpecj7130ePmGKynfcCXVh59g5HO/jU5S3LxLYbiABqrjMbUdxwE4+q1n2LLtflZdMkTG6eDY\ncQuVgps0UMImSSL6cy0CXAbrT1NWTXZmz2dDr0f2uV2ct0owIc6n4Csm5y2O1SxK+YhsJkOvnKLh\neziORRBqNBrv6D6qa1dRzLa4YGOOINTM1QApEGiU0tQq7Um1EHDxeQ7nDPts3RDz8F1HcLu2EgYJ\nWiuCBP7xxzHVul5USWh8VvO336vz2Q/ai1b3k1Sz8+DiDsIn7T6c0go1Ge/MuwFjMyk/eSZhel6R\n8QTnr7fYtsF5wR0EcybglXnRIMD3ff7sz/7sjM/ffffdr+mADMMwjLOP+a4w3q6Kl1+EGlyDU53A\nyjhUJ1KaY/NEMw0ApG8RVWrtXQRRJchkKeTz2LbEyjiAZkPnLOfIw+wQ5zObHWYOcFpNGn4eZ+UG\nMoRE2sG1U/pKcCS0mKulKKlZn5uia1WRWdWJSjQgyB7fj2cNEqeSJG037dJa43oOpbxNJiuZGm+S\nLzis7Id1K9sB+9phh+FLa/xEaxoFh1ZLo5SiUtfEYYrtWFjWQnB/fCr9/9u78zi7qjLR+7+1pzOf\nU3MlqSSVkHkgJMHIjKIypfHVi4Bc9crVt+37SkOrfdUXh9t6u/3c7n7x029Ptz+ILbytEulGaecJ\nQVAQImEKIQlJyFzzXGc+e++13j9OUkmlqpIUGSrVeb5/wd777POcTW3WevZe61m8tEOxbtmR7mS+\naBjOH/Nq5JDhPPQPa1oa7XH37+sM+dbPSwweNUpn296QvkHD2pUpntk0jD7m1K4Dl6yZ3sMpp4o8\nphFCCCGEOAVOLMbQtk56XzzA4Ja2kQQAQFdCki0paD9AYqidILCYOwPmOG3UJkJqnDz95TiBXV25\nN0zX06NmUJsMKf7maeK5DoJEHQC2ZYh4mqSVJ51QzPXfoKbBA9elEDqEBixbUQotLNumPx9hMKfI\n5qtzAFJxhzmtKVLpGHVNKebNz7BsSXLUE/74gtk0bPoZgYYF81zQYKofJ/DDkQnFh+WPGaWTiClq\nkuM/mc8koD4zcdfz1y/4oxIAgFDDxtd8Llqe5J1X1OAetQ5YxFPc+PY6Vi4eZ0ySOCFJAoQQQggh\nTkFh63FWw9YQrYvxxr/+HqdtFxhNY6JMPtVK0i4QdYoke3ZRdlOUQxtba1AWKuaRa72Q6N7N+G4c\nR1XH6GPg0vZ/p6nG8K6GV0nHQ4phhI4+Dz8AS0Hf8qvJlmz6CjGKZYuDXZpcXhNqTRAYsrkA17Ox\nHAc/HP1UXrkOjckSkajLUNFm1QVl4l5AqVBdTyAM9MixERcWzRnd4XdsxYULxn/Sv/ICh6g38dCd\n9l497vbBHLz6Rsj/+f6ZfOHOVv7gmlpuekcdX/pEKx94T/PE114c10mXCBVCCCGEEGMF/WOr1hyt\nZ1M30RkRcjvbKM2EzqEYZV/T3qO5IL+bFr+LwL2M0qAiEgd0yEA+TmpWA0O/bafyrjSqbChUXMJy\nAdo7qF07CJlaPFVhR0+aviGFparj/XM+tPda7G8vMHNmklBb9PUV8Ms+Pd1FolEb3zeUKyGeM7rj\n7Qz1Erv2GtRLFqVCyNrFedLNF9C2v59XthRQiSiOW+3kr10aoaVxbKf+hss8ADa/ETKYNWQSiuXz\nbW660jvudXLHzx0ASESr37N0YZylC+PHPY84OZIECCGEEEKckhNPTC11ldn/b8+RurIPx0kTlBTx\nTIroz37Ag4k7+PiyASJeIzG7QtSNYnKDkHHpeGoryt2A/8E/IjQWq3Y9wt5l17DM2wfKIbQ9LB0Q\nagdlaUplQ6WsGRoO6eos0dQYw3MVjm0RYOFGXGK2ZmAwxLEVhcCjUKkQ90IilSHUnl1Yq5eSTFiU\n8gHNlTbqi7t5aeG17NxZwA9DmmsdLlzg8P7rU/T15cb8Vksp1l8e4bpLDLmiIRFVuM6Jr9EFLRZd\nA2MnFc9qsFg+f3SGMJzXPLcNhvKGZAzWLVE0HGeokRhLrpYQQgghxCnwZjSe+CAD+T1dNHjDpP12\nHNsiWeqh/PJWwmKOUMVIhQNEjY+vLdqDegbKKXSygQNPbUMXi9hoBrxmktk38FRAxYpSctMQBnie\nQmtFLhtgKShVFH4lpL2zBJbC9SyMMtgOlMsa11U0NTgE2qFzwCPdtZ3Y3q0ULrmWIAxJpl2aTBfZ\njiy77UXUlw6w9uI6IhGbXFHz9jUu1gkW6HJsRU3SOqkEAGD95R6L5lijUqqGjOKmK0Z/14FuzTd+\nbnh6i+HVPfDsVnjg54bt+8cfTiTGJ0mAEEIIIcQpqFt/zUkdV7O8kVi+j/5CnKgdYP+P/87AKx28\nb+hR8l0DNDsDzAj24BAQjzqE2pD6zKcoJBqp3fRT0naWaDhI8L2HyakkI58MdAAAIABJREFUQ9Fm\nir7NwYEoyoRobbAdhRd1GcxqlIJSSWMphW1bGAOeA7GozdyWCI5T7QbmgigFFSe3cC3l0KY+VsKq\nFHhX/8N0N1yISsTJFPYTT0VxXIfBrGbj66e/LGcsYvGx90T50A0eb1/rcNMVLp+6PcbiuaMHrjz5\niqFnIKBcrFAuVKiUKgznNU9tNmMmLouJSRIghBBCCHEKZt/zx9jp45epTC6fQ9M1F2MP95PzGpnR\n+wKVrbtw0i4N5Q4yA7tIOGV8X1EbyzEn2seK/LPUNMdYduNcnLoUdf5e1PKLKO9vY2BHO6GyaRuI\nExqbQtHguTB/drUkaCqh8GIOtm0deopuiEYsZtTCzCaLec0+rn1o6I2yiGa7aTnwGxIqS9TVXJd+\nHtPdTy45k1luH/3DinS+jXgyQiRi89hzecLw9He4LaW4aJHLTVdEePtaj8gxE4lLFcPre32MNli2\nhXIUxkCl5HOgS9PZL0nAyZIkQAghhBDiFFjRCBc++32wx+9WKc9hxVfuILOwmf5YC62fuJbof/so\nQc5n/j3/lfLBDmpy+4lkuzDDgySCQcJf/hitLaywxFP1NxNtqce1DL4dQ7seA0WPVw9m2NaZxlLg\nB4a6Gpv6FHieTSbjYFkW9dEChAHDQ2WWL01QKGtm1ARkYgGzMiVcOyQeDjMz3E+iPEBjf7XSkVcY\nZOPl/zeeFdBc3svG/GLmD7+ArSs4nsNAX4nfvlI+m5cZreHhJw1ezCOejBKJOigMgR+iFPiVACXr\nhp00SQKEEEIIIU6RV5th1if/cMwcYTvmsfwrH8ZNeJhCluCRHxDrqK4kvPDP78BVPm7aJUjVo4OQ\ndPYg5uXnGf7KfRQHyxw0LQSWhR1xsJVF0D9EYe6FPB97B/v7k4BCWQrfN3ieRa7iYNuKmfUWmZjm\nD2c+xlXWb1mzKkUs5jKUVXh2UI3ZMdTFylwQbMOlui1SHKASwGP2DZSSM2iM5tjcVUdWJ1nkb6Up\nlsOyLILQsPNAcDYvMT9/Adr6bWzHxrIUrueQSMXwPBu/EqC1prlWsoCTJdWBhBBCCCFOg9n//Y+I\nzKhj8JHvERQqxFrqmfWfriC9ZBZ6904CL03/k0/RcOMlNN/6NuzCIKVnniBwklDXTClbQed8ig9u\nAMB//Amia6/mkhU2beUZzI4OoIOQzovfB9bhajmGeFRRKiiUMviBTU1Gk45V+Pzyx4gEJZY67bRH\nS3SVkmgU4VEFeBIqz0r/xZF/Nyh2tMfpzXksmlVE93byy/7V2PiUtEvWZAj9EDfinNJT91AbntpU\nZNd+HwMsmO1yzboYtj3+SYsV2NE2drtSikjcI58rgWLUwmfi+CQJEEIIIYQ4TRo/eAuNV67A3b0R\n5ToQBgSvvIDONDK8bSsLbpyN21hD+OwvKA3nyHYME712PWE0Qax9J8W9+9Fv7AcFevfruL37UPHF\n9OVcFlu9hAf3M7TwtpHvi0QU8ZjCaXSIZzsIapoBi0poY8XjmMEcEatCtNSDHyQxBtoHXBbFqk/x\nC4FHaBS2qo6l35mfwSuDKRwrJN/Vw6P9i8Bo/rP6LjvNAorao1jIEom5mFATBOCcZPWfw7Q2fP27\nw7yyozKy7eXtFV7f6/N/3ZbGHqfqUM8Q5Evjf49tWyil0GdgjsJ/ZJIECCGEEEKcTq3L8FsWol5/\nHsoFzLJ3QtMckut66bn3f6Je2IopVygTIX7F28n8HzcQf/Vpcq9vQfUUUJEIJu/T/1ov9ff+FcN3\n/r+kIhXCwMDvnqL2muspRNN4LjiOhSmXSe55jcW9P6N31bvpSSxgsBAll24g7Q4R+IZuXUelolGW\nReHQUH5joHM4wsO5G3hbdBMBNr8YXgdAuQK7Cmlm0ca11hMMqxp+rG+gXPSplH2a6jM89UKOrbsU\nMxssghBqUxZXXuQyo/44q34BG18tjUoADtuyq8KzL5e4cm1szL66JDj4dHbkqJQDLFuRSMdJZeKE\nWmO0wXPlLcBkSBIghBBCCHG6OS5mxeWjNnl1DTT/2Vco79xMkCtQP28ulgXevq2Eb+xi+I02Op7u\nQOeLAPjZCio7wMUHv8vghdcy9KvnKWzdz/w5P2TP1XePnDf63BM0fPsvabyhmWLfcnL1Cykf7KS3\nfhZpdjMYxOnXKQwKpUAbRbGs6M8qDvTa+P4svlVej8ECZaG1IQgAyyUolNlgv5c8CfyyT3aggNaG\nMDTE4i49gz49g+GhCkSarXsDPnBdlIWzJ+5i7tznT7xvvz9uEpDL+7Tv7SObOzIPIT9UpFKqEI1G\nQEFjzfGTDzGaJAFCCCGEEKfKaCgOgQkgkgInOu5hTiyDtWgNhZ98BzvXA3tfJ9/WxdC+Prqf66KS\nL8PhYS0aBnYNUvzmkyT+/FLyfoLU7Bhm6AAArgqo84aYmdpH+8FuCoN1lAoGO9dP4vWXKK9Yhyrl\n2daeplyr8SIOrguua9GZi9E7qNHaoDWAgzEGE2jC0GAMYDvsKs4gN1wCBkf9jsAPsawj9WWMMSil\nGMrBr1/wj5sEHG+RMXuCfvxPnsqSK4Q4roPWGh1WFwYb6stRSQRYlsWy+dKtnQy5WkIIIYQQp6Kc\nhVwnKqiOszG5HohlIDWL8WbPWrEkzrr1vHrThzHFHLocYsIxh4ENyihy29uYXeygp1JAJ9PUpDWX\nNuwkZlfw7BCz/lLKm95B3vMpffMh7BVbwUpjB6uwdEhv1mJ3dw9LV82svnlwFY6tqM9YDAyNrvAT\nhAaOGlo/3kRby1J4UYfhgeJI5/9oB7tD/MBMuFLwRUs8nttcIjxmgV+l4MJF3pjjCyXNlt2aaDyK\nUgpjDDrUlEtljDYoo3nLihjrL4+M+31ifFIiVAghhBDizTIash0jCQCAQkNxAPK9E34s2trChc98\nn/TFa8ZPAABCaFo3h2idS9rxSTQlcW7+EN6KC8l4RbxDi30pyyJ9zTr6563D3rODaPtO1CWXk8ge\npL/o8st9sxjsL4xEF+pq59x1FenkMR31oxIA19YE5bFrAcSSEQJfUykFGF3tkB+dCDj2uLnPiJUL\nPa66OIpz1FN/x4ar1kZZvWRsR/67vyrga2vkO5RS2I6NF60mDO9YF+HD6+MTVhYS45M3AUIIIYQQ\nb1ZxEBWOneSqgHC4m7B3EGfuApQ19rmrm05x+RMP8ern/5r99z4wZn+0MU7dikYGd3XhJzJ4qxsx\nWjPQspJ6XcS2jvTY/XlLeG3WJVzwZy3MbN9I34VrKLb/hO9uXUR/KUYsUT1WKYge9bC92rGu7jP6\nyPkUMH+WxVXLEjy5qUhnrybQCi/i4rgWg335kWN1qKlojRdxAaiUA17dUWL10ui4bxKUUrz/+hRr\nlkZ4ZXsZA1y0JMKSeWPfAlR8w44J5hDYtk1djc36q5Lj7hfHJ0mAEEIIIcSbpSdeMEsN9aAe/wmF\nbAn7XbcRXXfVuMfN+OTHSRa2s/uRV6gMFrE8h/oVzVzwnhV0Prcd5SbY+6+/Y8b6t1DpHebx7HWk\nvDILa/pYWt8HQG9mITUFzYEF13HJ5XG6/QF+0L+O37cPAJDKVCfbxiLgHOr9+YFhKFsdk1MT19Qm\nAnqGbYyyqMtYZGptyrbLf3lPlNxQmb97OI/va4LQYNsWYVD9rFKKwA8ILAsdhnTu6eOrO+GiZSk+\n84fNE9buX9zqsbh1bMf/aBXfUKyMX/pTKcXb1yWIeDKw5c2QJEAIIYQQ4s3ykph8D4pxOqpD/dhB\niXgMgk0/xW9pxZ01d+xxSlG64HIW3xYQb65BORZ+tkjPS7vo29yLu3Qp1sH9BC86RGY3AJCtRNjc\n00zc8Yl7IXuzDWgs6pIFOsImoo7PmtW1qEqezTsNi5bWkopDMl79SmPAVZoVLQGZuOHCVs3OPo90\nzh0VWiW02DvgYuWKROMe1qGa/MYYwlBTLlbfghiqw4L62ntH3ii8tGWYXz0b59rL02/68iZiihn1\nNvs6xo6Zqs9YXH9F6k2f+3wnqZMQQgghxJvlxSE6tpNrcll4/dWRf3fCEv7PN0x4mvrb38/+rbBj\nw0be+N7v2fuTzRx84gDD+wuU93Sw6LpWen6xicritSOfCY3Nq30zeL53PvpQl05ZkFdJSnYCjcVV\nl9Xy7msSYHk4libU4AdQqUDBt5nTbLF2gcaxYbg0frewULF5o8fFduxR4/IdxyYScdFagwYUpOsz\nR10Ew+PPDE3mao6hlOLK1REio3MTHBuuWB2ZcPKxODF5EyCEEEIIcSrSszGWB5Uc9LZjBnth+2YY\nOGpicBDgHWfki1KKhV//G/Z/+n+Q3/QylaEibjLKBe9bztxrlzHUlkVrxbO5VaM+N1R0cANNLKpQ\nSpH0B2iM9WKF0FOeQ0MyYG1DOwdej9HrpKmvHd1p7s7ZLGyqjrk3TNyh7h4cf0iOZVuEYTjyG2zX\nqU4oOHR4pTLRrOeTd9mqKFFP8dyrZfqHNZmExdrlHpevGr8Mqzg5kgQIIYQQQpwKpSDVDDQTPvoA\nVn54/OMixy9hacWizPvf99L3//wvMokCidm1hJWQ7t/vZc+vdtHzma/SlRs9Cda2IZMwtHdXmFUP\nSwovkIm5dLszSUeKNEcH0U6c1X2/5KXozcDoQvyBPvxkH6J2SDkY+zagUAzpG9Bjth/+oEJhMARh\nABpiyQSlXAFjDI5j8Vdf76JSMcye4bL+6hQzGo8/D2A8a5ZGWLNUSoCeTjIcSAghhBDidJnROv72\nRBK17C0ndYq6T99Dt1nAq/+2i1ce3ExnX5rOT/89B5veOuo4YwzGGEolTVO9IlvQ6GgSFYS4nsWM\nxDCupXFMQH1xP66t4Zi5C+nIkc790KBPoTj6yb3vG9q7AuLx8VfxCoNwZA6ACQ1BEFTLd8Yi2I5F\nf97m9T0V9rT5/PaFAn/37T66eydeMVicPfImQAghhBDiNLFu/Aj821ehp7O6hgBALAEXLMNeccVJ\nnUNZFrPu+gjc9ZGRbS0V+O7GCqpYBGXhde4lteslKqsvZahxHpWsplzWbI6t5GJ3B7NoY0A1otBY\nYQXf8mjK+DSlArqyCQDiXsgFjUfKm+YLhi37KjgOWBZEPIUfGIolqEtAPgv+UTmC1ppSoXRkwTBd\nTQQAHNchVZcimogS+AHFXIlyoUxnT8CGnwzyyTsaT/FKi1MlSYAQQgghxGmiHBfe/xnM5ifgwA5w\nXNTydTBnVXXW7ps0lIcL/vZu7Od/h3E97GK1Tr9unY/9Z/8bNWsmvYMW7eUkpdwqrolsJWoXUSaE\njv10N1zE0jklLKUYKESwlCIZCfHD6gD+Yhn291RrHPmHqp6WjyrNuXi2oiVjeOJFH8tS1RV7ixX8\nyqGDTfWtwGG24xBNVMfsO65DIhMn9EMCP+DVnSVe3l5g9dL4m74e4tRJEiCEEEIIcTrZDmrNdbDm\nutN2ylf/9WlqX3qOeR+7jszqC7A8h9zOdvY/9AT+D79F7s7P45crRCIOFe1xMGimRhUpapvh1GJa\n39aE4xgCbQi0RaAtCr5Nb85hxcwy+9oDhgrjTwxOxQyXLIH7v1cgNzh2YTSoDk0adQnc0cOHLMsi\nmoiQGwwIQ8Pjv8tKEjDFJAkQQgghhDjHRbe/xPI//yD1ly0b2ZZcOIv08rm89P89jz/UQdzJkEk6\ngKIrbCQfZumvxHEdmyWmkyIZ/NAi1Ec6+4G2eKPHY3B44io+rU2GqGfo6J54YTStj8wtsOxqh/9Y\njufguA5+pUJbt39kGJGYEpIECCGEEEKc42Ysb6B23dhx9PHWJuZeu4LCrtdoveStBLbBtTWDeZe8\nXUMhcAgKhnWpfko6wVAhNaYUaK5i43gWx04aPiziVjvr0YiC7Nj9SsFFiz36hhXFwMaORsFAxQ/H\nnDIS9wh8n2hESQIwxSQJEEIIIYQ4x82/diWW7h13X2pxC4lwHp6do2RClJtguFLBTdhkIj5d5Tgu\nIZSKHByaMc4ZDHVpC9sKRr0lANDa8NKOkHJJsWSeR0dvcWxsLQ5OMoPxFUdX7rdsi1KxWglIh5rQ\nD7Esi0g8yvIF41cbEmePlAgVQgghhDjHRTOpCfeFpTJNLQ7JJ39AS/tGkk6OefEeXF0gZvlE7CIG\nUGiccXp+jmUILJflCyMkIkce3etQ45dDsnnYuM2QSMdZvcTDPeoRcutMhyULknQOjH2qb9sWCkO5\nUMYv+0dtV9x2Y+2bug7i9JE3AUIIIYQQ57ggPQt7YB8Woxft0qGmXDOD1gNP0F4eoKFuNiYcJJHf\nQVfsStCKhelujAHleUTcECtQVMLqk3jLMtQkQiKuQRub1Us9nnulSKEEgT/6u3YchLtvruFgh8/O\ngxXmzU6yeLbh35+ZYCExqonAsdIJhefKc+ipJv8FhBBCCCHOdY6HCRX45ZFNQVh9CzB34CU8XaKh\nJcJOfw7lBx8g8drTePEEWR2ndfAFdDaLcj1q40UsG+bW5klFfWZkfOIRg21BIqIZKtkUCnpMAgDV\nMqXDecOCuR43XJ7kqotTWJYi6k4ctj6qapAXd9BaU98YZ9MuCzP+FARxlkgSIIQQQggxDVh+Bbvr\nAFZ/F9ZAD17nbmL9Bw/tdIg01aJrm+n97TbUUB9esZ+mRJ6+xALCYjV5MEYBiqgb0piuoBQcLuxj\nW9XyoTXJ8SfsZhLVp/jHWr1w/ERAa025dNQwIGURT0WpWHF+s8Xi2e3SDZ1KcvWFEEIIIaaBIN0I\nBqz8MFZuEEtXy3oawHgRep7fycyuFwn378PP5okP7KIhViBv12HyeQqBxUAhhq00obFwLQ1UFwgz\nBkINqUjI4jnjf//SuYqIeyQJ6Bv0+def9PHjX/UQ0wPE3SMlRMMwpJAro4MjbxQiMZdUKkLnwUEM\nim0H1agViMXZJXMChBBCCCGmgaBpEWH7VuxSDnVoLI0BTDxFWAno39JB7aoSicYEvTSQmjOD9j6D\nbSfI6TjFShTP0TiWRqnD3X8AhTaGQsliXr3P/CUWGM22fYahPKQSsHSO4sZLjjw7fm1ngQce2Udn\n75En/c0NOaKZDBXtUin7o8qDWpYiU5ugVKhweBzQYN6iPxvSXHOmr5wYjyQBQgghhBDTQSROdl83\nyeULsMoFMAYTTWKMZviZpxnc1Yu7q5PYombyd3yRgUqMSuCDl6THbcG2IeH59AzZ1CVCQnOkU+8H\nCpShohTaKG68xOZdFxuyBUjGwXOOvAEwxvDoL/pHJQAAXb0BK+sKdJcToxIApRSNszIA2I41si/i\nGlKxM3e5xPHJcCAhhBBCiGlizw9eI7/xJcKyT6gVYV8PuSd/y55HNqEHsnT+3QasS68gEoHOoTjx\nSJnAh7bkCvzAQinFvg5o63UoB0cG8isFiZhiuOSwb6i63XUUdWk1KgEA6O7z2bWvNG58uw+UWb4o\nSTwVwXZtIlGXRCaG1od6/sqgrOr5WhsM8bELC4uzRN4ECCGEEEJME07LPF78n/9O08UtxOoTVIZK\ndL5wAF3SEPMgCBhcdyORIIoXsWiI+QRbX6ar+a0MFBRDebh2cQev9TfTqAyhqVYZypcViWg1GciW\nqpV7JlrQNwwNeoLKPlob2noDHNfFcY8kGaViQCFXQqFobqmtTkg+A9dHnDx5EyCEEEIIMU1k3nUl\nJjB0bTzI3p++Tvsz+6oJABCvjYKvKadmkivZhIGhYjzqX/0puSL05xwiDng2NKQCCCtoHZIrW2hj\nc3g9L21GjeYZY2aTxwVzo+PuiyUiGMslnnDJ1ERwvWpXUykFykKbENe1sSzY023xL4/BUGFy1yAM\nDbl8eOTtgnhT5E2AEEIIIcQ00f2NhyfcVzIO7qwUab8TP1+mx15JXOXoufy9aBNS8hVGQ1uljkTM\n4DqKWJglcFPkKxG0VoAh5hqsCd4CQLVD/9531vDA93rpHzxSEcj1bFIN9biuTeBrSoUK9Q0xQg39\nfSVsxyY/eKhUqQbHtdjT7vOzTR63X33iDr3Whg0/6GLT5hyD2YCGOpcrLk7z3usaqkmGmBR5EyCE\nEEIIMU3kXtg84T6dD2lc3ESsazuD0dnV8f/FenRtM3FXMzSsCY1NMfQItY1rhbi6xNz0EBHbB1Vd\nK6AhHpAvc9whPxe0xvhfn1nAdVelWbkkQX1zhrmLZ5NIV2f6WraF47m07R8kFndIJl2iUYvQGIwx\nI4uIaW3Y0x7Q1nvi3/7gI5388Ff9tHdXKJYM+9vKfOeHPXzvZz2Tvo5C3gQIIYQQQkwbuhJMvDOf\noxjOxGuaD14UFcKBLptV6V5i0XqiBUOprHAyBh0GJMmiTBHLcWiI56mYOIODmh9tsyhUbDJxw9IW\nzVsW6pH5Ab98JsszL+Xp7g/IpByWzY+w4sJGwr1jn8RblsJ2HHq7cmTq4qSTLrnhMpWKj6NtIp5N\nPltGWTF6hqGl4Tg/rRDy7EvDRBJRbNtBKUUYhvjlCj96fID3XteA48iz7cmQqyWEEEIIMU3YNemJ\n9zXW4C2eC/EEaqCbSqFMabjAQJgiCBUrG3qwbZgRz1JjZ7EISTl5ADLRgO6ekJd3WwwXLYJQ0Ze1\n+N12mxd3V7uLT2zM8cgvhzjQGVCuQHdfwFOb8vz+pf4JY3I9h0o5IJFwSCVdvIiDCUOMMaTTNs0z\nE8RjinlNx//d+9pKVEwE1/OwbAtlKRzXIRKPUgngt5tyk7+Y5zlJAoQQQgghpomZn/lvE+6bcfVS\nYpkoQxWHmleeoC7lM+RH2F+ciQ4BY8jEAtJuntmxXookGIrOBKB/2OKNjrHdQoPi9bZqtaBnXy4Q\njrPCb1d3Cb/ij91BdYKx49gYrQk1OK5NuRwQakO5okkkXFbOs6lJHv939wxqbMces92yLJyIx4Gu\n47whEeOSJEAIIYQQYppoevfVzLt5Lco+qgunoOGt81n47hVU+vLUdmwhHjOU8hVyRYuhvEXPoMWw\nU8+c+DBRJ6BAioqKExiXsg+vHYwSYuE4CuuY3uFwQdE3FNI/NH5HOwwNxfzYdQO01hitydTH6O4q\n09FZJhZTFAsVlFL091eoy8ANbznx7x4Y1hNO/rVsi3hMurSTJXMChBBCCCGmCTsSZf4tb2Xeuy+i\n/anX8bNl6le1kFnYTKgsSjv2olLPk4nm2Z2OUCpqUOD7ASVfMc/bQ0gDvTQBhmIFdhxM0pv1que3\nIRKx8H1DpVItPTqUC/irB4fB9lBWGXPMjGHPhVjMJQzDkY66MQajq8OB8rkQYyCbDcgPFwh8KBV9\nojGP5pTBPon+e1PdxF1Wz7V527oTvEoQY0gSIIQQQggxTahYirKbJGZC5ly7YtS+YuDiugo1sB+V\niTJcADA4KmTV7C4KqoaMW6DH12ijyBVh47YU5qiBIdVFwhSuC2GoCAJNfrhMdT6yTTQeoZgb/dR/\n+YIoixa7/H4b6GNWGFCWwoxsMuSzPpZjUykFRGMeEfvkav1felGcx5/Lsadt7LCjq9fFaayVLu1k\nybsTIYQQQohpJFj+Nsq4o7aVQ4ed//Aj/FKF0ms78KNpCgcOYtmG2pRmUX2ONbUHwXLwQ5tSYLF5\ntz0qAYAjqwQrpbAsw2B/gcG+/Mh+27bJZKpvDZJxi3UrY3z05lpuWGdx02WKuU3VcygLLFthHTW2\nqFwKUbaFZSmwFBHXsGzOyf1my1J87NY6Vi6K4B3q72eSFrfdkOa/vLtukldQgLwJEEIIIYSYXmpn\nMjTjUsKffBs7Gad0sJeBre2EpRJ+YYDaixbxb7EPcNm2h9jceg8aGx+HmK0JQodB6nBsRVOtYm/n\n6FPbR829LeZ9BnrGVt1ZtzLO5RfWsGhBBr9cHNl+8WLFxYthwxOw+5jzGmMol30sy0IpRSRicdF8\nqJu42NEYMxpc/vSORvoGfXIFQ0uzi2PLImFvlrwJEEIIIYSYZmLLlvPLtV/kjZ+/wsFfvUy+rQ3L\n86ldtZAXmq8nVzOX5H+6nUTCo6M3ZPdwI7EwxxC1+CoKQF3KoA4N31EKXJdRT+7zufK4311fazNv\ntkdNevxnye+5DBbO0tWJwcYQ+CGFXBm/XC0tZDuKW672eNeaN/fb62tcWmd5kgCcInkTIIQQQggx\nDc2cFefBdz6AXRzmioFf0B+fxebUFQAsqo1izZ5HrMulUNDsG4hT483Gj9SOfL61IWTFzJDf7XRp\nGxjdJaxP+OwtFMZ8Z1OtxdVroseNKxGD299usa8z4J9/WCJXOJJo1KYVn7sjhqzrNfUkCRBCCCGE\nmIZmNzm0tKRob4MnvVtHtjc1xZg1K4YVrWBZCmXZaOXS4TfREK2W+bQw1MQNCQ+uX1Vha1tIx6CN\nMdCU0aycHbCoPs6vNpbZ3xVgK5jf4nDTVTFikZN7At86w+Ev/kiq9pyrJAkQQgghhJiGWmoDFi2I\nU1cfoaeniNFQVxclU+MR9TQeZZTy0GG1jKZjVYfjuJahIaFJVOf3Ylmwck7IyjmjVwJbucBjxQUu\ng9lqGc90Uh7f/0ciSYAQQgghxDRkKbi4tcRGHSWZzBzaaoi6hrpYiWJJUy4HDPQVWTzPZVlzBWVB\nTdSMWRBsIkopatMy9v4/IkkChBBCCCGmqVk1mnctGebFAy6V0MVzNLMSwxQqFpt7a8hmfRbPc1kz\np0R98uRq8ovzgyQBQgghhBDTWCrucOVCzZb9eYaK8NLBDEM5i862Ia5a5fC2i2yUkgRAjCZJgBBC\nCCHENGfbiovmVxcQK1cqBCEkYpEpjkqcyyQJEEIIIYT4DyTiKaT7L05EpnkLIYQQQghxnpEkQAgh\nhBBCiPOMJAFCCCGEEEKcZyQJEEIIIYQQ4jwjSYAQQgghhBDnGUkChBBCCCGEOM9IEiCEEEIIIcR5\nRpIAIYQQQgghzjOSBAghhBBCCHGekSRACCGEEEKI84wkAUIIIYQQQpxnJAkQQgghhBDiPOOc6IBi\nscg999xDX18f5XKZO++8k6VLl/K5z32OIAhwHId7772XxsbGsxHNN+0mAAAH/UlEQVSvEEKIc5C0\nFUIIMb2cMAn49a9/zcqVK/nYxz5GW1sbH/3oR1m9ejW33XYb69ev56GHHuLBBx/ks5/97NmIVwgh\nxDlI2gohhJheTpgErF+/fuSfOzo6aG5u5ktf+hKRSASA2tpaXnvttTMXoRBCiHOetBVCCDG9nDAJ\nOOz222+ns7OT++67j3g8DkAYhmzYsIE//uM/PmMBCiGEmD6krRBCiOlBGWPMyR68bds2PvvZz/LD\nH/4QrTWf/exnmT9/PnfdddeZjFEIIcQ0Im2FEEKc+05YHWjLli10dHQAsGzZMsIwpL+/n8997nO0\ntrbK/9SFEEJIWyGEENPMCZOATZs28cADDwDQ29tLoVDgmWeewXVd/uRP/uSMByiEEOLcJ22FEEJM\nLyccDlQqlfjCF75AR0cHpVKJu+66i/vvv59yuUwymQRgwYIFfPnLXz4b8QohhDgHSVshhBDTy6Tm\nBAghhBBCCCGmP1kxWAghhBBCiPOMJAFCCCGEEEKcZ85IEvD73/+eyy67jF//+tcj27Zv384HPvAB\nPvShD3HnnXdSLBYBePbZZ3nPe97DzTffzCOPPHImwpmUycQOYIzh9ttv5x/+4R+mItxRJhP7v/zL\nv3DLLbfwvve9j4ceemiqQh4xmdj/+Z//mVtuuYVbb72Vp556aqpCHjFe7FprvvrVr3LppZeObAvD\nkC984Qt88IMf5LbbbuP73//+VIQ7ysnGDtPjXp0odjj379WJYj/X7tXTSdqKqTGd2wqQ9mKqSHsx\nNc5ke3Hak4D9+/fz4IMPsnbt2lHbv/KVr3DPPffw7W9/m9bWVh599FGCIOBLX/oSX/va13jooYd4\n5plnTnc4kzKZ2A975JFH8H3/bIc6xmRiP3DgAI8++igPP/ww3/nOd/jGN75BNpudosgnH/tPf/pT\nNmzYwNe+9jX+8i//kjAMpyjyiWO///77mTlzJkdPufnNb35DsVjkoYce4pvf/CZf/epX0Vqf7ZBH\nTCb26XKvjhf7Yef6vTpe7OfavXo6SVsxNaZzWwHSXkwVaS+mxpluL057EtDY2Mg//uM/kkqlRm2/\n7777WLVqFQB1dXUMDg7y2muv0drayowZM4jFYvzt3/7t6Q5nUiYTO0B/fz8/+tGPuP322896rMea\nTOwtLS1s2LABx3HwPI9oNEoul5uKsIHJxb5x40auuuoqPM+jrq6OlpYWdu3aNRVhAxPH/qEPfYgP\nfvCDo7bV1tYyPDyM1ppCoUAikcCypm5E3mRiny736nixw/S4V8eL/Vy7V08naSumxnRuK0Dai6ki\n7cXUONPtxWn/i4rFYti2PWb74RJxhUKBH/zgB9xwww20tbXhui6f+MQnuP322/nxj398usOZlMnE\nDnDvvffyqU99atzPnG2Tid2yLBKJBABPP/00tbW1zJw586zGe7TJxN7b20tdXd3IMXV1dfT09Jy1\nWI91otiPtnr1ambNmsU73/lOrr/+ej796U+fjRAnNJnYp9u9eqzpdK8e7Vy7V08naSumxnRuK0Da\ni6ki7cXUONPthXMqwT3yyCNjxnrdfffdXHXVVeMeXygU+PjHP85HP/pRFixYwPbt2+no6GDDhg2U\nSiVuvvlmrrjiCmpra08lrLMS+/PPP49t26xdu5a9e/ee8XiPdqqxH/byyy/z13/919x///1nNN6j\nnWrsjz322Kj9Z7PC7WRjP9amTZvo6Ojgscceo6+vjw9/+MO87W1vw/O8MxHuKKcauzFm2tyrx5pO\n9+pEpuJePZ2krZgef3/nUlsB0l5IezF50l5M7n49pSTg1ltv5dZbbz2pY4Mg4M477+Smm27i5ptv\nBqC+vp4LL7yQWCxGLBZj0aJFHDhw4Kz8oZxq7I8//jhbtmzhtttuo7+/n0qlwpw5c3jve997JsMG\nTj12qE6i+uIXv8h99913Vp/snGrsTU1N7NmzZ+SYrq4umpqazkisx5pM7ON58cUXueyyy3Ach+bm\nZmpqaujq6mLOnDmnMcrxnWrs0+VeHc90uVcnMlX36ukkbcW5//d3rrUVIO2FtBeTJ+3F5O7XU0oC\nJuPrX/86b33rW0f9wDVr1vA3f/M3lMtllFLs27eP2bNnn62QTtp4sd9zzz0j//zoo4/S1tZ2Vv5I\nJmu82MMw5POf/zx///d/f05e78PGi/3SSy/lwQcf5O6772ZgYIDu7m4WLlw4hVGevNbWVn72s58B\nkMvl6OrqorGxcYqjOjnT5V4dz3S5V8czXe7V00naiqkxndsKkPbiXDJd7tfxTJf7dTxv5n497SsG\nP/nkk3zjG99g9+7d1NXV0djYyAMPPMCVV17J7NmzcV0XgEsuuYS77rqLxx9/nH/6p39CKcWtt97K\n+9///tMZzhmN/bDDfyh33333VIU+qdhXr17Nn/7pn7JkyZKRz3/mM58ZmVR1Lsd+11138a1vfYsf\n/ehHKKX45Cc/yWWXXTYlcR8v9r/4i79gx44dvPjii6xdu5Z3vOMd3HHHHXz5y19m586daK358Ic/\nzB/8wR9Mi9g/8pGPTIt7daLYDzuX79XxYl+0aNE5da+eTtJWTI3p3FaAtBfTIXZpL6Ym9jfTXpz2\nJEAIIYQQQghxbpMVg4UQQgghhDjPSBIghBBCCCHEeUaSACGEEEIIIc4zkgQIIYQQQghxnpEkQAgh\nhBBCiPOMJAFCCCGEEEKcZyQJEEIIIYQQ4jwjSYAQQgghhBDnmf8fmcOYFvVGzu4AAAAASUVORK5C\nYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "32_DbjnfXJlC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Wait a second...this should have given us a nice map of the state of California, with red showing up in expensive areas like the San Francisco and Los Angeles.\n", + "\n", + "The training set sort of does, compared to a [real map](https://www.google.com/maps/place/California/@37.1870174,-123.7642688,6z/data=!3m1!4b1!4m2!3m1!1s0x808fb9fe5f285e3d:0x8b5109a227086f55), but the validation set clearly doesn't.\n", + "\n", + "**Go back up and look at the data from Task 1 again.**\n", + "\n", + "Do you see any other differences in the distributions of features or targets between the training and validation data?" + ] + }, + { + "metadata": { + "id": "pECTKgw5ZvFK", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "49NC4_KIZxk_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Looking at the tables of summary stats above, it's easy to wonder how anyone would do a useful data check. What's the right 75th percentile value for total_rooms per city block?\n", + "\n", + "The key thing to notice is that for any given feature or column, the distribution of values between the train and validation splits should be roughly equal.\n", + "\n", + "The fact that this is not the case is a real worry, and shows that we likely have a fault in the way that our train and validation split was created." + ] + }, + { + "metadata": { + "id": "025Ky0Dq9ig0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Return to the Data Importing and Pre-Processing Code, and See if You Spot Any Bugs\n", + "If you do, go ahead and fix the bug. Don't spend more than a minute or two looking. If you can't find the bug, check the solution." + ] + }, + { + "metadata": { + "id": "JFsd2eWHAMdy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "When you've found and fixed the issue, re-run `latitude` / `longitude` plotting cell above and confirm that our sanity checks look better.\n", + "\n", + "By the way, there's an important lesson here.\n", + "\n", + "**Debugging in ML is often *data debugging* rather than code debugging.**\n", + "\n", + "If the data is wrong, even the most advanced ML code can't save things." + ] + }, + { + "metadata": { + "id": "dER2_43pWj1T", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "BnEVbYJvW2wu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The code that randomizes the data (`np.random.permutation`) is commented out, so we're not doing any randomization prior to splitting the data.\n", + "\n", + "If we don't randomize the data properly before creating training and validation splits, then we may be in trouble if the data is given to us in some sorted order, which appears to be the case here." + ] + }, + { + "metadata": { + "id": "xCdqLpQyAos2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 4: Train and Evaluate a Model\n", + "\n", + "**Spend 5 minutes or so trying different hyperparameter settings. Try to get the best validation performance you can.**\n", + "\n", + "Next, we'll train a linear regressor using all the features in the data set, and see how well we do.\n", + "\n", + "Let's define the same input function we've used previously for loading the data into a TensorFlow model.\n" + ] + }, + { + "metadata": { + "id": "rzcIPGxxgG0t", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "CvrKoBmNgRCO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Because we're now working with multiple input features, let's modularize our code for configuring feature columns into a separate function. (For now, this code is fairly simple, as all our features are numeric, but we'll build on this code as we use other types of features in future exercises.)" + ] + }, + { + "metadata": { + "id": "wEW5_XYtgZ-H", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "D0o2wnnzf8BD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, go ahead and complete the `train_model()` code below to set up the input functions and calculate predictions.\n", + "\n", + "**NOTE:** It's okay to reference the code from the previous exercises, but make sure to call `predict()` on the appropriate data sets.\n", + "\n", + "Compare the losses on training data and validation data. With a single raw feature, our best root mean squared error (RMSE) was of about 180.\n", + "\n", + "See how much better you can do now that we can use multiple features.\n", + "\n", + "Check the data using some of the methods we've looked at before. These might include:\n", + "\n", + " * Comparing distributions of predictions and actual target values\n", + "\n", + " * Creating a scatter plot of predictions vs. target values\n", + "\n", + " * Creating two scatter plots of validation data using `latitude` and `longitude`:\n", + " * One plot mapping color to actual target `median_house_value`\n", + " * A second plot mapping color to predicted `median_house_value` for side-by-side comparison." + ] + }, + { + "metadata": { + "id": "UXt0_4ZTEf4V", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # 1. Create input functions.\n", + " training_input_fn = lambda: my_input_fn(\n", + " training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(\n", + " training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(\n", + " validation_examples, validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # 2. Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zFFRmvUGh8wd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "outputId": "3dbb9e90-6082-4c44-f871-81bae6759911" + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_model(\n", + " # TWEAK THESE VALUES TO SEE HOW MUCH YOU CAN IMPROVE THE RMSE\n", + " learning_rate=0.00001,\n", + " steps=100,\n", + " batch_size=1,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 226.06\n", + " period 01 : 224.69\n", + " period 02 : 223.30\n", + " period 03 : 221.93\n", + " period 04 : 220.56\n", + " period 05 : 219.21\n", + " period 06 : 217.90\n", + " period 07 : 216.56\n", + " period 08 : 215.23\n", + " period 09 : 213.92\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VPW9BvD3zJbZk1mzsqOIyqpp\nRRRZBMJiKQLRqui11NoWVJTWrWhrtSqx6lUWkVrE5bZFIypW3ChSoS0qBJF9X7POJJNtJiHbuX/M\nzMmcbATIJHPC+3ken2ROzpz5TU4SXn/bVxBFUQQRERGRgqi6ugFEREREZ4sBhoiIiBSHAYaIiIgU\nhwGGiIiIFIcBhoiIiBSHAYaIiIgUR9PVDSCKZQMGDEDPnj2hVqsBAPX19UhPT8fChQthNBrP+brv\nvPMOMjMzmx1fs2YNHnnkESxfvhxjxoyRjldXV+Pqq6/GhAkT8Oyzz57z67bXiRMn8PTTT+Po0aMA\nAIPBgHnz5uH666+P+mufjWXLluHEiRPNvidff/015syZg7S0tGbP+fTTTzureefl1KlTGDduHPr0\n6QMAEEURTqcTv/3tb3HppZee1bWef/55pKSk4Cc/+Um7n/Phhx8iOzsbb7311lm9FlFnYYAhOoO3\n3noLSUlJAICamhrcf//9ePXVV3H//fef0/U8Hg9ee+21FgMMACQnJ+Mf//iHLMB8+eWXsFqt5/R6\n5+LXv/41pk2bhuXLlwMAduzYgTvuuAOffPIJkpOTO60d5yM5OVkxYaU1arVa9h7WrVuHuXPn4rPP\nPoNOp2v3dRYsWBCN5hF1KQ4hEZ0FnU6Ha6+9Fnv37gUAnD59Go8//jgmTpyISZMm4dlnn0V9fT0A\nYN++fbj55puRkZGBadOmYdOmTQCAm2++GXl5ecjIyEBNTU2z1xg+fDi+/vprVFVVScfWrVuHkSNH\nSo9ramrw1FNPYeLEiRg7dqwUNABg+/btuPHGG5GRkYHJkyfjP//5D4Dg/9Ffc801ePPNN3HDDTfg\n2muvxbp161p8nwcOHMCQIUOkx0OGDMFnn30mBbklS5bguuuuw49//GOsWLECY8eOBQA8/PDDWLZs\nmfS8yMdnatfTTz+N2267DQCwbds2zJgxA+PHj0dmZiZOnjwJINgTNX/+fIwZMwa33XYbCgoKznDH\nWrZmzRrMmzcPd9xxB7KysvD111/j5ptvxn333Sf9Y//JJ59g6tSpyMjIwO23344TJ04AABYvXoyF\nCxdi5syZWLVqley69913H1auXCk93rt3L6655ho0NDTgxRdfxMSJEzFx4kTcfvvtKCwsPOt2T548\nGdXV1Thy5AgAYPXq1cjIyMDYsWPxwAMPoLq6GkDw+/7MM8/ghhtuwCeffCK7D639XDY0NOAPf/gD\nRo8ejZkzZ2Lfvn3S637zzTeYPn06Jk+ejEmTJuGTTz4567YTdTiRiFp18cUXi/n5+dLj0tJS8dZb\nbxWXLVsmiqIovvrqq+Jdd90l1tbWilVVVeKMGTPEDz74QKyvrxcnTZokfvTRR6IoiuL3338vpqen\nixUVFeKWLVvE66+/vsXXe++998SHHnpI/PWvfy09t6KiQhw3bpz47rvvig899JAoiqK4ZMkS8Y47\n7hBPnz4t+v1+8cc//rG4YcMGURRFcerUqeI//vEPURRF8f3335de6+TJk+Kll14qvvXWW6IoiuK6\ndevE8ePHt9iOe+65RxwzZoz4xhtviIcOHZJ9bf/+/eKVV14pFhUVibW1teIvf/lLccyYMaIoiuJD\nDz0kLl26VDo38nFb7brsssvENWvWSO83PT1d3Lx5syiKovjRRx+J06dPF0VRFN9++23x1ltvFWtr\na8WSkhJxzJgx0vckUlvf4/D3eejQoeLRo0el8wcNGiT+5z//EUVRFHNzc8UrrrhCPHbsmCiKoviX\nv/xFvOOOO0RRFMWXX35ZvOaaa8Ti4uJm1/3444/FW2+9VXr80ksviU8++aR44MABccKECWJNTY0o\niqL45ptviu+//36r7Qt/XwYOHNjseHp6unj48GHx22+/FUeMGCEWFBSIoiiKjz32mPjss8+Kohj8\nvt9www1idXW19Hjp0qVt/lxu3LhRnDBhglhZWSlWVVWJM2fOFG+77TZRFEXxxhtvFL/++mtRFEXx\n6NGj4gMPPNBm24k6A3tgiM5g9uzZyMjIwLhx4zBu3DhcddVVuOuuuwAAGzduRGZmJjQaDfR6PW64\n4Qb8+9//xqlTp+D1ejFlyhQAwKBBg5CSkoKdO3e26zWnTJmCf/zjHwCA9evXY8yYMVCpGn9dv/zy\nS9xyyy3Q6XQwGo2YNm0aPv/8cwDABx98gEmTJgEArrjiCqn3AgDq6upw4403AgAuu+wy5OXltfj6\nzz33HG699VZ89NFHmDp1KsaOHYu//e1vAIK9I+np6XC5XNBoNJg6dWq73lNb7aqtrcX48eOl6ycm\nJko9TlOnTsWJEyeQl5eHrVu3Yvz48dBoNLDZbLJhtqby8/ORkZEh+y9yrkzv3r3Ru3dv6bFer8eI\nESMAAP/+97/xwx/+EL169QIAzJo1C19//TXq6uoABHuk7HZ7s9ccPXo09uzZg9LSUgDAF198gYyM\nDFitVpSUlOCjjz5CWVkZZs+ejR//+Mft+r6FiaKI1atXIzExEb1798aGDRswefJkJCYmAgB+8pOf\nSD8DADBixAjExcXJrtHWz+W3336L6667DiaTCXq9XrpXAOBwOPDBBx/g8OHD6N27N55//vmzajtR\nNHAODNEZhOfAlJSUSMMfGk3wV6ekpATx8fHSufHx8SguLkZJSQksFgsEQZC+Fv5HzOl0nvE1R44c\niYULF6K0tBQff/wxfvWrX0kTagGgoqICzzzzDF544QUAwSGlwYMHAwA++ugjvPnmm/D7/WhoaIAY\nUe5MrVZLk49VKhUaGhpafP24uDjMmTMHc+bMQXl5OT799FM8/fTTSEtLQ1lZmWw+jsPhOOP7aU+7\nzGYzAKC8vBwnT55ERkaG9HWdToeSkhKUlZXBYrFIx61WK/x+f4uvd6Y5MJH3reljn88ne48WiwWi\nKMLn87X43DCj0Yirr74aGzduxBVXXIHy8nJcccUVEAQBixcvxsqVK/Hkk08iPT0dTzzxxBnnE9XX\n10vfB1EU0b9/fyxbtgwqlQoVFRX44osvsHnzZunrtbW1rb4/AG3+XJaVlcHtdsuOhz399NN45ZVX\ncOedd0Kv1+OBBx6Q3R+irsAAQ9ROdrsds2fPxnPPPYdXXnkFAOB0OqX/2waA0tJSOJ1OOBwOlJWV\nQRRF6R+L0tLSdv9jr9VqMWbMGHzwwQc4fvw4hg0bJgswbrcbP/3pT5v1QBQWFmLhwoV49913MXDg\nQBw7dgwTJ048q/dZUlKCvXv3Sj0gVqsVmZmZ2LRpEw4cOACLxYKKigrZ+WFNQ1FZWdlZt8vtdqNv\n375Ys2ZNs69ZrdZWX7sjORwObN++XXpcVlYGlUoFm812xudOnDgRX3zxBXw+HyZOnCjd/6uuugpX\nXXUVAoEAFi1ahD/96U9n7MloOok3ktvtxvTp0/HQQw+d1ftq7eeyre+t0+nEY489hsceewybN2/G\nPffcg2uvvRYmk6ndr03U0TiERHQW7rzzTmzfvh3ffPMNgOCQQXZ2Nurr6xEIBPDhhx/iuuuuQ1pa\nGpKSkqRJsjk5OfB6vRg8eDA0Gg0CgYA0HNGaKVOm4M9//nOLS5fHjRuHd999F/X19RBFEcuWLcNX\nX32FkpISGI1G9O3bF3V1dVi9ejUAtNpL0ZLq6mrce++90uROADh+/Dh27NiBK6+8EsOGDcPWrVtR\nUlKCuro6fPDBB9J5LpdLmvx58uRJ5OTkAMBZtWvIkCHweDzYsWOHdJ3f/OY3EEURQ4cOxYYNG1Bf\nX4+SkhJ89dVX7X5fZ2PkyJHYunWrNMz197//HSNHjpR63toyZswYbN++HevXr5eGYTZv3ownnngC\nDQ0NMBqNuOSSS2S9IOdi7Nix+Pzzz6WgsX79eqxYsaLN57T1czls2DBs3rwZVVVVqKqqkoJTbW0t\nZs+ejaKiIgDBoUeNRiMb0iTqCuyBIToLZrMZP//5z7Fo0SJkZ2dj9uzZOHnyJKZMmQJBEJCRkYFJ\nkyZBEAS88MIL+N3vfoclS5bAYDDgpZdegtFoxIABAxAfH4+RI0fi/fffR0pKSouv9YMf/ACCIGDy\n5MnNvnbLLbfg1KlTmDJlCkRRxOWXX4477rgDRqMRo0aNwsSJE+FwOPDwww8jJycHs2fPxssvv9yu\n95iSkoJXXnkFL7/8Mp566imIogiz2YxHHnlEWpl00003Yfr06bDZbJgwYQIOHjwIAMjMzMS8efMw\nYcIEXHrppVIvyyWXXNLudun1erz88st48skn4ff7odVqcd9990EQBGRmZmLr1q24/vrrkZKSguuv\nv17WaxApPAemqaysrDN+D5KSkvDUU0/hV7/6FWpra5GWloYnn3yyXd8/s9mMyy67DPv378fQoUMB\nAOnp6fj4448xceJE6HQ62O12PP300wCABx98UFpJdDYuu+wy/OIXv8Ds2bPR0NAAh8OBJ554os3n\ntPVzOWbMGGzcuBEZGRlwOp247rrrsHXrVmi1WsycORP/8z//AyDYy7Zw4UIYDIazai9RRxPEyIFo\nIqKztHXrVjz44IPYsGFDVzeFiC4g7AMkIiIixWGAISIiIsXhEBIREREpDntgiIiISHEYYIiIiEhx\nFLmM2uNpedlkR7DZjPD5AlG7Pp073pvYxPsSu3hvYhfvTfu4XJZWv8YemCY0GnVXN4FawXsTm3hf\nYhfvTezivTl/DDBERESkOFEdQsrKysK2bdtQV1eHu+++G2PGjMHDDz+M48ePw2Qy4eWXX0Z8fDzW\nrl2LN954AyqVCpmZmZg1a1Y0m0VEREQKF7UAs2XLFhw8eBCrV6+Gz+fD9OnT4fF4YLPZ8Pzzz2P1\n6tXYunUrRowYgaVLlyI7O1vasnr8+PFISEiIVtOIiIhI4aIWYNLT0zF48GAAwQqyVVVV+PLLL3Hv\nvfcCCNZSAYD//ve/GDRoECyW4ESd4cOHIycn56zrghAREdGFI2pzYNRqNYxGIwAgOzsbo0aNQm5u\nLr766ivMnj0b999/P0pLS+H1emG326Xn2e12eDyeaDWLiIiIuoGoL6Nev349srOzsXLlSsyaNQt9\n+vTBvHnzsGzZMrz66qu49NJLZee3Z2Ngm80Y1RncbS3boq7FexObeF9iF+9N7OK9OT9RDTCbNm3C\n8uXL8dprr8FiscDpdCI9PR0AcM0112Dx4sUYPXo0vF6v9JyioiKpBH1rorl23uWyRHWfGTp3vDex\nifcldvHexC7em/bpkn1gKioqkJWVhVdffVWakDtq1Chs2rQJALB792706dMHQ4YMwc6dO1FeXg6/\n34+cnBxceeWV0WoWERFRt7dx4z/bdd5LLz2PvLzcVr/+8MMPdFSTOlzUemDWrVsHn8+H+fPnS8cW\nLVqEZ599FtnZ2TAajVi0aBH0ej0WLFiAOXPmQBAEzJ07V5rQS0RERGcnPz8P69d/htGjx53x3Pvu\nW9Dm15999oWOalaHU2Q16mh2u7FbL3bx3sQm3pfYxXsTu6J5b37zm/uwd+9ulJWVYcKEScjPz8P/\n/u8yPPPMH+DxFKGqqgo//enPMXLktZg37+d44IEH8eWX/4TfX4kTJ44jN/cU7r13AUaMGIkpU8bh\n44//iXnzfo709B8iJ2crSktLsWjRi3A6nfjDHx5DQUE+Bg0ajA0b1uP999d16HtpawhJkbWQiIiI\nlOCdDYfw7b6iZsfVagH19efWf5B+iRuZY/u3+vWf/GQ21qx5B3369MOJE8ewbNlr8PlK8IMfXIVJ\nk6YiN/cUHnvsYYwcea3seUVFhfjTn17Gli3/wYcfvocRI0bKvm4ymfDSS6/glVcW46uvNiAlJQ01\nNaexYsUq/Pvfm/DOO387p/dzrhhgIhRXlWDvsT0w1JuRZEyEXhPX1U0iIiI6ZwMHXgYAsFis2Lt3\nN9auXQNBUKG8vKzZuYMHBxfQuN1uVFZWNvv6kCHDpK+XlZXh+PGjGDRoCABgxIiRUKs7t74TA0yE\nT4/9E//J/1Z67NDbkGxKQrIpESnmJCSbkpBkdEGr1nZhK4mISCkyx/Zvsbeks4b3tNrgv1dffPEp\nysvLsXTpaygvL8fPfja72bmRAaSl2SVNvy6KIlSq4DFBECAIQkc3v00MMBGm9Z+My1MvxsGC48jz\nFyDfX4hdxXuxq3ivdI4AAS6jAymhYJNsSkKKOQlugxNqFauLEhFR11KpVKivr5cdKy0tRXJyClQq\nFf71rw2ora0979dJTU2TVjt9882WZq8ZbQwwEcxaE65PuQZDrEOkY5U1fuSHwkyevxB5lQXI9xfg\nu8AufOfZJZ2nFtRINLoiQk0ikk2JcBocUAks+k1ERJ2jV68+2L9/H5KTU6RtTEaPHouHH34Ae/bs\nwpQpP4Lb7cbrr//5vF7n6quvxccfr8UvfzkHw4ZdAas1viOa325chdREe7r1RFFEeU2F1EuTXxkO\nOAU4XV8jO1er0iDJFAwzkb02dn1Cp3e3KR1XVMQm3pfYxXsTu7rDvSkvL0NOzlaMHj0OHk8R7rvv\nl/jrX9/r0NfgKqQOJggC4uOsiI+zYqD9Yum4KIooqS6VemzCoabAX4iTFfKNgvTqOCSZEpFiSkSy\nOUkKOFadhcGGiIhintFowoYN6/HXv74FUWzAPfd07qZ37IFpIhqpuEFsgLeqBPn+AuRVFkoBpzDg\nQb0oHzM0agzSvJrkcMAxJcGsM3Vom5SoO/wfS3fE+xK7eG9iF+9N+7AHpoupBBXcRifcRieGuC6X\njtc31KOoyhuaVxMMNnn+AhwpO4bDZUdl17DozNIQVIopKdRr44ZBY+jst0NERNTlGGC6kFqlDs2J\nSZQdr62vRUHA0zh5OBRw9vsOYb/vkOxcW1xC8Brmxjk2SaZExKl1nflWiIiIOhUDTAzSqrXoYUlB\nD0uK7Hh13WkUBAqRX1nYOIHYX4g9Jfuxp2S/dJ4AAQ6DHcmmRKSGemtSTElINLq41JuIiLoFBhgF\n0Wvi0NvaE72tPWXHA7UB5IXCTL6/QAo4O717sNO7RzovvNQ7JRRogh+TuSKKiIgUhwGmGzBqjeif\n0Af9E/rIjlfUVCKvMjivJq8yP7iPTWieTSS9Ok7auybFlCwFHE4cJiLqvmbOvAFvvrka7733DoYN\nG47LLx8sfS0QCOD2229CdvZHrT5/48Z/YvTocVi37iOYTGZcd92Yzmi2hAGmG7PozBhg748B9sZt\nrBvEBpRU+yKCTfDj8YqTOFp+XPZ8q84S0VPTuDJKx/k1RETdxuzZ/3PWz8nPz8P69Z9h9OhxmDz5\nho5vVDswwFxgVIIKToMDToMDg12XScdrG+pQFPA0Czb7fAexz3dQOk+AAKfBHhFokpBqToKLpRSI\niGLCT396K55++nkkJSWhoCAfjzyyAC6XG1VVVaiursb99/8Gl17auCL2j3/8PUaPHoehQ4fht799\nEDU1NVJhRwD4/PNPkJ29Gmq1Cr1798NDD/0WL7ywCHv37sbrr/8ZDQ0NSEhIwIwZN2HZspewc+cO\n1NXVY8aMTGRkTMG8eT9HevoPkZOzFaWlpVi06EUkJSWd9/tkgCEAwR2DU83JSDUny45X1VWHVkLl\ny4LNDu9u7PDuls7TCGokmtxIMSUjNdRTk2pORkJcPOfXENEFa82hf2B70c5mx9UqAfUN57YN2zD3\nINzYf2qrXx81agz+/e+vMGNGJjZt+hdGjRqDfv0uwqhRo7Ft27f4v/97A3/843PNnvfZZ5+gb99+\nuPfeBfjnPz/H+vWfAQCqqqrw/POLYbFYMHfuXTh8+BB+8pPZWLPmHdx55134y19eBQB8910Ojhw5\njFdeWYmqqircccfNGDVqNADAZDLhpZdewSuvLMZXX21AZuYt5/TeIzHAUJsMGj36xvdC3/he0rHI\nUgp5lY2hJt9fiNzKfHxbKH9+cuQwVKjHxqg1dsG7ISLq/kaNGoMlS/4XM2ZkYvPmf2HevPvx97+/\nhb/97S3U1tZCr9e3+Lxjx45g6NArAADDhl0hHbdarXjkkQUAgOPHj6KsrLTF5+/btwdDhw4HABgM\nBvTu3RcnT54EAAwZMgwA4Ha7UVZW1iHvkwGGzlprpRTCOw7LJg1XFuBo2XEcKTsmu0a8zipfDWVO\nQpIxETq1tpPfDRFR9NzYf2qLvSXR3Im3b99+KC72oLCwABUVFdi0aSOcTjcee+xJ7Nu3B0uW/G+L\nzxNFQKUK9pg3hHqHamtr8cILWVi16q9wOJx48MH5rb6uIAiI3Nu/rq5Wup5a3TjFoKMKADDAUIeJ\n3HF4aMSOw+GN+aRhqFDPzd6SA9hbckA6T4AAl9ERXAllSkSKObgiysWK3kREZ2XEiGuwYsUyXHvt\ndSgt9aFfv4sAAP/615eoq6tr8Tk9e/bCvn17MXr0OOTkbAUABAJ+qNVqOBxOFBYWYN++vairq4NO\np0N9vbwUziWXXIY33vgLZs/+HwQCAeTmnkJaWs+WXqpDMMBQ1LW2MV94/5rgTsMFyA0NRX0X2Inv\nPI1jxuGK3n0cabCrHVLPDefXEBG17LrrxuAXv/gpVq36G6qrq/DUU7/Dl1+ux4wZmVi//nN8/PHa\nZs/JyJiCRx/9Ne6775cYPHhosLc9PgHp6T/Ez352O/r3vwi33DIbL7/8AhYvfhX79+/Dyy8/D5PJ\nDAAYMmQoBgy4BHPn3oW6ujr84hfzYDBEr9wNizk2wQJbXUsURZTVlAfDTGW+NIE4P1CEugb5/zXo\n1XqkmIPFLlNC+9gkm5Jg0Zm7qPUXJv7OxC7em9jFe9M+LOZIiiEIAhLi4pEQF4/LHAOk4/UN9Wgw\nnsbuE4dDw1CFyK8swLHykzhSJt+/xqI1h8onRBa+TIRB0/LENSIiUh4GGFIEtUqNJEsitG4jhmKQ\ndLzp/jX5/gLkVRbigO8QDrRQ+DK8GV8w2CRy4jARkUIxwJCitbZ/TbjwZV5lYSjUBMPN7uJ92F28\nTzpPgACXwSH12ISXfLu5MR8RUUxjgKFuqbXCl5W1fuSHQ03EBOIdnl3Y4dklnRdZ+DI4xyYRKeYk\n2PU2rogiIooBDDB0QTFrTbjI1hcX2fpKxyI35suvLJCKXuaHPkbSqbRIDg0/hTfmSzYnIl5n5Yoo\nIqJOxABDF7y2NuYrqS6VhqDCoeZUZR6OV5yUXcOoMUTsOJyIZFMiks1JMGtZ0ZuIKBoYYIhaESx8\naYfTYMcg56XS8fqGeniqvLIhqDx/AY6UHcPhsqOya4Qreod7bJJNSUg2uaHniigiovPCAEN0ltQq\nNZJMiUgyJWK4e7B0vKa+FoWBolCoaZxn07SiNwA49DZ5jShzEtxGF7Qq/koSEbUH/1oSdRCdWose\nllT0sKTKjlfVVaMgPK+mshC5oeXeu4r3YlfxXuk8laCC2+Bs3MPGHCyp4GQpBSKiZhhgiKLMoNGj\nT3wv9Imo6A0AFTWV0r41kXvYFASKsD3ivHApheAQVCJLKRARgQGGqMtYdGZYdP1xsa2/dEwURfhO\nl0rDUOGVUfn+QpysyJU936DRS0u8kyOGojhxmIguBAwwRDFEEATY9TbY9TZc7hwoHa9vqIe3uqRx\nNVRouffRsuM4UnZMdo2WJw4nQq+J6+R3Q0QUPQwwRAqgVgU31ks0ujAsspRCfS0KA55gfShpRVRr\nE4ftTYpfcuIwESkX/3IRKZhWrUWaJQVplhTZ8ciJw3mVjcUvd3r3Yqe3ycRho0tW+JITh4lICRhg\niLqh9k0czpdqRRX4C5GD76XztCotkk1uaal3eK4NJw4TUaxggCG6gLR34nC41+ZEaxOHw5OGTYnQ\nW/s3fRkioqhjgCG6wLU5cbiquLE2VGgCcbOJw9vlE4eTI5Z8c8dhIooWBhgiapFapUaiyY1Ek7vZ\nxOGCgEeqEeWt9eK4L7fFicN2vU0WaFLMSUg0uqFTazv77RBRN8MAQ0RnRavWooclBT1CE4ddLgs8\nngpp4nB+xK7Def4C7C7eh93F+6TnCxDgMjikCcPhISm3wQm1St1Vb4uIFIYBhog6RGsThytr/civ\nbKwNFV7uvcOzCzs8u6Tz1EJwqXi4pya8f43TYOeKKCJqhgGGiKLKrDXhIltfXGTrKx0TRRHlNRWy\nTfmC5RSCH7cV7ZDO5YooImoJAwwRdTpBEBAfZ0V8nBUD7RdLxxvEBviqS2VDUHn+lldE6dV62cZ8\n4Z4bi87c2W+HiLoAAwwRxQyVoILDYIfDYMcg56XS8WYrokIb8x0rP4kjZcdl1zBrTdKmfJETiI1a\nQ2e/HSKKIgYYIop5ra6IaqhDUcDTrPjlgdLDOFB6WHaNhLh4KcyEJxAnmRIRp9Z19tshog7AAENE\niqVVaZBqTkaqOVl2vLruNAoDRVIJhXCvzZ6S/dhTsl86T4AAh8Eu9dSEK3u7DU5oudSbKKYxwBBR\nt6PXxKGXtQd6WXvIjgdqA8j3F4UCTYHUc7PTuwc7vXuk8wQIcBkdSDYGe2mSQpOIE40u7mFDFCMY\nYIjogmHUGtEvoTf6JfSWHa+oqQyVTwgGmvB+NjsCu7HDu1s6r7HHJhhokoxuJIcCjo5DUUSdigGG\niC54Fp0ZA+z9McAurxFVUVsZ3MMmUIgCfxHy/eEeG3lVbwFCaNdhN5JMwXIKyaZEJBrd0GviuuIt\nEXV7DDBERC0QBAFWnQVWu0UWbIBgj024lybfXyR9vqt4H3ZF7DoMBMspJJnc0nBUuMfGwDpRROeF\nAYaI6CwFq3qbcZGtn+x4ZY0fBYGiULAJDkUV+Auxp3g/9hTvl52bEBcv9dQE59gkIsnI5d5E7cUA\nQ0TUQcw6E/rr+qB/Qh/Z8fDk4QJ/cDgqv7IQBYEi7C05gL0lB2TnxuussmAT7rUxaY2d+VaIYh4D\nDBFRlLU2ebiqrio0tybcYxP8vKXK3ladJRRm3EgyNs6zMetMnfhOiGIHAwwRURcxaAwtFsCsqqtG\nYaAI+aGJwwWh3psDvkM44DtuU0VKAAAgAElEQVQkO9esNUX02CRKK6TMWgYb6t4YYIiIYoxBo0dv\na0/0tvaUHQ9v0CfvtSnEodKjOFh6RHauSWtEz4QUOHUuKeAkmxJZK4q6DQYYIiKFaG2Dvpr6GhQG\nPE2Gogqwz3MYIuQ9NhatOVROIVgIM7gLcSKMnGNDCsMAQ0SkcDq1Dj0sqehhSZUdj7fFYdeJI1Kw\nCe883FKtqHidJRhozIlSaYUkUyKXe1PMimqAycrKwrZt21BXV4e7774bGzZswO7du5GQkAAAmDNn\nDkaPHo21a9fijTfegEqlQmZmJmbNmhXNZhERXRB0mpaDjaxWlFTdu+XJw7a4BFmPDYtgUqyIWoDZ\nsmULDh48iNWrV8Pn82H69Om46qqr8MADD2DMmDHSeYFAAEuXLkV2dja0Wi1mzpyJ8ePHSyGHiIg6\nVmtDUVV11dKmfMHK3oUtFsEEAIfeLs2rSTEnSTsPs1YUdZaoBZj09HQMHjwYAGC1WlFVVYX6+vpm\n5+3YsQODBg2CxWIBAAwfPhw5OTkYO3ZstJpGREQtMGj0La6KCtQGQr01of9CQ1G7ivdiV7G8pILT\nYEdKaG5Ncri6t9EFrYozFqhjRe0nSq1Ww2gMTgrLzs7GqFGjoFar8fbbb+P111+Hw+HAY489Bq/X\nC7vdLj3PbrfD4/G0eW2bzQiNRh2tpsPlskTt2nR+eG9iE+9L7OqYe2NBLyQ2O1peXYGT5fk4WZaH\nU2X50uc7vPIimCpBhWSzG2nxyegRn4Ie8cnoYU1BksUNjSp6f8tjHX9vzk/UI/H69euRnZ2NlStX\nYteuXUhISMDAgQOxYsUKLFmyBMOGDZOdL4riGa/p8wWi1Vy4XBZ4PBVRuz6dO96b2MT7Ers64964\nhWS4E5JxRWjUXxRFlNdUNs6tkT4WIreiAF+f2i49Vy2okWh0yXprkk2JcBkcUAmqqLa7q/H3pn3a\nCnlRDTCbNm3C8uXL8dprr8FisWDEiBHS18aOHYvf//73mDhxIrxer3S8qKgIQ4cOjWaziIgoSgRB\nQHycBfFxFlxiv0g6LooiSk+XNQ5DhebZFIQ+RtKoNEg0uuRDUaYkOAy2bh9sqP2iFmAqKiqQlZWF\nVatWSRNy77nnHjz44IPo0aMHvv76a1x00UUYMmQIFi5ciPLycqjVauTk5ODRRx+NVrOIiKgLCIIA\nmz4BNn0CLnUMkI43iA3wVZfJemqCnxchtzJfdg2dShsqfCkPNnZ9AgRB6Oy3RF0sagFm3bp18Pl8\nmD9/vnTsxhtvxPz582EwGGA0GvHMM89Ar9djwYIFmDNnDgRBwNy5c6UJvURE1L2pBBUcBhscBhsu\ndw6UjjeIDSiu8knBJk/6WIgTFbmya8SpdbJQkxLazyZeZ2Ww6cYEsT2TTmJMNMcNOS4Zu3hvYhPv\nS+zqjvemvqEe3qriZkNRhQEPGsQG2bkGjV7qpYnssbHqzF0ebLrjvYmGLpsDQ0RE1JHUKjUSTW4k\nmtwYikHS8fqGehRVeaXdhsP/HSs/iSNlx2XXMGmNUphJiQg2rOytLAwwRESkeGqVWupliVTbUIei\ngEfauya8+/Dh0mM4VHpUdq5Fa5ZWQjUOR7FOVKxigCEiom5Lq9Ig1ZyMVHOy7HhNfQ0KAkXSbsPh\nycMHfIdwwCcvgBmvs8p2HE4OlVNgnaiuxQBDREQXHJ1ah56WNPS0pMmOS3WimgxFtVonKqL4ZTjY\nsE5U52CAISIiCmm9TlQV8v1FsuKX+f4C7Cnejz3FjXWiBAiw621IMcsnD7NOVMdjgCEiIjoDg8aA\nvvG90LdJnSh/bUC+43BlcFXUTu9e7PTK60S5DA5px+GLA71gbohnnajzwO8aERHROTJpjeif0Af9\nE/rIjlfUVMr2r8mvLESBv1CqE/XpseB5AgS4jI5gb43R3VgA0+CElj02bWKAISIi6mAWnRkWnRkX\n2/pJx4J1oiqQ7y9EhVCKg4UnpDk2RYFd2BHxfCnYGBsnDQeHolwMNiEMMERERJ0gWCfKivg4a3Aj\nO1twI7vIYJPvD/bUhD/fEZBX9o4cikqKWBGVdAEGGwYYIiKiLhQZbJoWwAxX9i6QJhAXyYaipGuE\ngk1jqAnWjOrOwYYBhoiIKAa1Vdm7vKaysacm0DjH5nvvbnzfJNg4DfZgmDG5u9WqKAYYIiIiBYkM\nNgPs/aXjoiiiorYyuMQ7IB+Oai3YJEXsOqy0YMMAQ0RE1A0IggCrzgKrvXmwqaz1I99fgDx/YcRw\nVCF2evdgp3dP4zUgwGGwy0JNksmNJKMbuhjboI8BhoiIqBsTBCG0Kqo/Lrb1l30tvNy76QTiFoON\n3hbaeTgJSUY3ks2JXRpsGGCIiIguUC0t9wbkwSZyVVRLG/RdkTgEd152S2c3nQGGiIiI5NoKNo2B\nJjgUZdVZuqSNDDBERETULuFgc1GTYNMVVF3dACIiIqKzxQBDREREisMAQ0RERIrDAENERESKwwBD\nREREisMAQ0RERIrDAENERESKwwBDREREisMAQ0RERIrDAENERESKwwBDREREisMAQ0RERIrDAENE\nRESKwwBDREREisMAQ0RERIrDAENERESKwwBDREREisMAQ0RERIrDAENERESKwwBDREREisMAQ0RE\nRIrDAENERESKwwBDREREisMAQ0RERIrDAENERESKwwBDREREisMAQ0RERIrDAENERESKwwBDRERE\nisMAQ0RERIrDAENERESKwwBDREREisMAQ0RERIrDAENERESKwwBDREREisMAQ0RERIrDAENERESK\nwwBDREREisMAQ0RERIoT1QCTlZWFm266CTNmzMDnn38uHd+0aRMGDBggPV67di1mzJiBWbNm4d13\n341mk4iIiKgb0ETrwlu2bMHBgwexevVq+Hw+TJ8+HRMmTMDp06exYsUKuFwuAEAgEMDSpUuRnZ0N\nrVaLmTNnYvz48UhISIhW04iIiEjhotYDk56ejpdeegkAYLVaUVVVhfr6eixfvhy33HILdDodAGDH\njh0YNGgQLBYL9Ho9hg8fjpycnGg1i4iIiLqBqAUYtVoNo9EIAMjOzsaoUaNw4sQJ7Nu3D5MmTZLO\n83q9sNvt0mO73Q6PxxOtZhEREVE3ELUhpLD169cjOzsbK1euxIIFC7Bw4cI2zxdF8YzXtNmM0GjU\nHdXEZlwuS9SuTeeH9yY28b7ELt6b2MV7c36iGmA2bdqE5cuX47XXXkMgEMCRI0fw61//GgBQVFSE\n2267Dffccw+8Xq/0nKKiIgwdOrTN6/p8gai12eWywOOpiNr16dzx3sQm3pfYxXsTu3hv2qetkBe1\nAFNRUYGsrCysWrVKmpC7fv166etjx47F22+/jerqaixcuBDl5eVQq9XIycnBo48+Gq1mERERUTcQ\ntQCzbt06+Hw+zJ8/Xzq2aNEipKSkyM7T6/VYsGAB5syZA0EQMHfuXFgs7FYjIiKi1glieyadxJho\ndruxWy928d7EJt6X2MV7E7t4b9qnrSEk7sRLREREisMAQ0RERIrDAENERESKwwBDREREisMAQ0RE\nRIpzzgHm2LFjHdgMIiIiovZrM8DceeedssfLli2TPn/88cej0yIiIiKiM2gzwNTV1ckeb9myRfpc\ngdvHEBERUTfRZoARBEH2ODK0NP0aERERUWc5qzkwDC1EREQUC9qshVRWVob//ve/0uPy8nJs2bIF\noiiivLw86o0jIiIiakmbAcZqtcom7losFixdulT6nIiIiKgrtBlg3nrrrc5qBxEREVG7tTkHprKy\nEqtWrZIe//3vf8e0adNw7733wuv1RrttRERERC1qM8A8/vjjKC4uBgAcPXoUL7zwAh566CFcffXV\n+OMf/9gpDSQiIiJqqs0Ac/LkSSxYsAAA8NlnnyEjIwNXX301br75ZvbAEBERUZdpM8AYjUbp82++\n+QZXXXWV9JhLqomIiKirtBlg6uvrUVxcjBMnTmD79u0YOXIkAMDv96OqqqpTGkhERETUVJurkO66\n6y5MnjwZ1dXVmDdvHuLj41FdXY1bbrkFmZmZndVGIiIiIpk2A8x1112HzZs34/Tp0zCbzQAAvV6P\n3/zmN7jmmms6pYFERERETbUZYPLy8qTPI3fe7du3L/Ly8pCSkhK9lhERERG1os0AM3bsWPTp0wcu\nlwtA82KOb775ZnRbR0RERNSCNgPMokWL8OGHH8Lv92PKlCmYOnUq7HZ7Z7WNiIiIqEVtBphp06Zh\n2rRpyM/Px/vvv49bb70VqampmDZtGsaPHw+9Xt9Z7SQiIiKStLmMOiw5ORm/+tWv8Mknn2DixIl4\n6qmnOImXiIiIukybPTBh5eXlWLt2LdasWYP6+nrcfffdmDp1arTbRkRERNSiNgPM5s2b8d5772HX\nrl2YMGECnn32WVx88cWd1TYiIiKiFrUZYH72s5+hd+/eGD58OEpKSvD666/Lvv7MM89EtXFERERE\nLWkzwISXSft8PthsNtnXTp06Fb1WEREREbWhzQCjUqlw//334/Tp07Db7Xj11VfRq1cvvP3221ix\nYgVuvPHGzmonERERkaTNAPPiiy9i1apV6NevH/75z3/i8ccfR0NDA+Lj4/Huu+92VhuJiIiIZNpc\nRq1SqdCvXz8AwLhx45Cbm4vbb78dS5YsQWJiYqc0kIiIiKipNgOMIAiyx8nJyRg/fnxUG0RERER0\nJu3ayC6saaAhIiIi6gptzoHZvn07Ro8eLT0uLi7G6NGjIYoiBEHAxo0bo9w8IiIioubaDDCffvpp\nZ7WDiIiIqN3aDDCpqamd1Q4iIiKidjurOTBEREREsYABhoiIiBSHAYaIiIgUhwGGiIiIFIcBhoiI\niBSHAYaIiIgUhwGGiIiIFIcBhoiIiBSHAYaIiIgUhwGGiIiIFIcBhoiIiBSHAYaIiIgUhwGGiIiI\nFIcBhoiIiBSHAYaIiIgUhwGGiIiIFIcBhoiIiBSHAYaIiIgUhwGGiIiIFIcBhoiIiBRHE82LZ2Vl\nYdu2bairq8Pdd98Nl8uFrKwsaDQa6HQ6PPfcc7Db7Vi7di3eeOMNqFQqZGZmYtasWdFsFhERESlc\n1ALMli1bcPDgQaxevRo+nw/Tp0/H4MGDkZWVhR49emDJkiV45513cPvtt2Pp0qXIzs6GVqvFzJkz\nMX78eCQkJESraURERKRwUQsw6enpGDx4MADAarWiqqoKL774ItRqNURRRGFhIa644grs2LEDgwYN\ngsViAQAMHz4cOTk5GDt2bLSaRkRERAoXtTkwarUaRqMRAJCdnY1Ro0ZBrVbjq6++QkZGBrxeL370\nox/B6/XCbrdLz7Pb7fB4PNFqFhEREXUDUZ0DAwDr169HdnY2Vq5cCQAYNWoUrr32WvzpT3/CihUr\nkJqaKjtfFMUzXtNmM0KjUUelvQDgclmidm06P7w3sYn3JXbx3sQu3pvzE9UAs2nTJixfvhyvvfYa\nLBYLvvjiC4wfPx6CIGDixIlYvHgxhg0bBq/XKz2nqKgIQ4cObfO6Pl8gam12uSzweCqidn06d7w3\nsYn3JXbx3sQu3pv2aSvkRW0IqaKiAllZWXj11VelCbmLFy/G3r17AQA7duxAnz59MGTIEOzcuRPl\n5eXw+/3IycnBlVdeGa1mERERUTcQtR6YdevWwefzYf78+dKxxx57DE888QTUajX0ej2ysrKg1+ux\nYMECzJkzB4IgYO7cudKEXiIiIqKWCGJ7Jp3EmGh2u7FbL3bx3sQm3pfYxXsTu3hv2qdLhpCIiIiI\nooUBhoiIiBSHAYaIiIgUhwGGiIiIFIcBhoiIiBSHAYaIiIgUhwGGiIiIFIcBhoiIiBSHAYaIiIgU\nhwGGiIiIFIcBhoiIiBSHAYaIiIgUhwGGiIiIFIcBhoiIiBSHAYaIiIgUhwGGiIiIFIcBhoiIiBSH\nAYaIiIgUhwGGiIiIFEfT1Q2IJUW+AL47UgKTToVUpxlGPb89REREsYj/Qkf4+L/Hsen7fOmx3RqH\nNJcZqS4T0pzBj8kOE7QadlwRERF1JQaYCDeN7Y/hA5Ow76gXpzx+5Hoq8f3hYnx/uFg6RyUISLQb\nkOYyI81lQmroozPBAJUgdGHriYiILhwMMBGMei2u/0FPDOljk45VVtUi11MpBZpTHj9yvZXILw7g\n232Nz9VpVUh1hgKN04RUtxlpLjPiTboueCdERETdGwPMGZgNWgzoacOAno2hRhRFlJSfxilPJXK9\nfpzyVOJUkR8nCitxNL9C9nyLUYtUpynYY+M2I9VpQorTBEMcv/VERETniv+KngNBEOCI18MRr8eQ\n/k7peF19Awp9VU16bCqx70Qp9p0olV3DGa+X5tekuoIBJ8luhEbN+TVERERnwgDTgTTq0DCS04Qf\nDGw8Xl1ThzxvINhj4/GHPlbiu0NefHfIK52nVglIchgb59c4gx8d8XoInF9DREQkYYDpBHqdBn1T\nrOibYpUdL/fXyObVBHttgv99LXu+unF+TcTEYYuR82uIiOjCxADThawmHawmOwb2tkvHGkQRxWXV\nwXk1oWGoXI8fxwoqcDivXPb8eJNOGn4Kf0xxmhCnVXf2WyEiIupUDDAxRiUIcCUY4EowYNhFLul4\nXX0DCooDjROHi4IBZ88xH/Yc80nnCQBcNoNs4nCay4REmxEqFYehiIioe2CAUQiNWhUMI26z7HjV\n6TppJVRuxFLv7Qe92H6wcX6NVqNCitOENFdksOEybyIiUiYGGIUzxGnQPzUe/VPjpWOiKKLcX4OT\noeXdjaui/DheIF/mbTVqQ3NqzEhzcxiKiIiUgQGmGxIEAfHmOMSb43B5H4d0vL6hAUW+KpwMDT8F\nh6Eqsfe4D3uPRwxDCYDbZkQPaX6NGT3c3G2YiIhiBwPMBUStUiHZEaznFLnMO3IY6lREuNlaEsDW\n/R7pvDitOjRZOLgSqkdoKMps0HbBuyEiogsZAwy1OgzlqzgtrYYK99YcL6jAkSaroRLMOtmE4TSX\nmUUviYgoqhhgqEWCIMBu1cNu1WNwP/luw+HVUCdDE4dPFlVi19ES7DpaIp2nEsKb8oUmDYfm2Dis\n3JSPiIjOHwMMnZXI1VBXRRz3V9dKw0+5oXBzyuNHntePb/YWSecZ4tTSpOEe0qZ8Zhj1/FEkIqL2\n478a1CFM+uZFL2Wb8oXn1ngqcTi3DIdOlcme77DGhSYLm1kbioiIzogBhqKmtU35auvqpdpQkeHm\n+8PF+P5wsXSeWiUg2WFCj9Dy7kv7u2DRqWCzxHEYiojoAscAQ51Oq1GjV5IFvZIssuPlgRrkhsLM\nyVDBy3DxS6AQ2HgYAGCM08hqQoU/GvVcDUVEdKFggKGYYTXqYO3dpDZUgwhPaXDvGl+gFgeOl+CU\nx4+DuWU40GQYym6NC+5b42ysD8XVUERE3RMDDMU0lUpAot2IRLsRLpcFHk9wJ+Ga2nrkFfuDOw17\nG+fXNB2GCq+GSo0oo5DqNsMZr+emfERECsYAQ4qk06rRO8mK3klW2fHKquBqKGljvtAwVJ7Xj2/3\nNZ4Xp1XLa0O5TEh1m2E1sjYUEZESMMBQt2I2aHFJLxsu6dW4GkoMr4byNtaFOuWpxInCChzNl2/K\nZzXpGit5u0xIc7M2FBFRLGKAoW5PEAQ4EwxwJhgwtH+TTflKAlIvTXg1VLPaUABcNkNjsAntOOy2\nGaBWcX4NEVFXYIChC5ZGrZJ2CY4UWRsqt6hxKGr7QS+2H/TKnp/iMAZXQbkbdxxOMOu4zJuIKMoY\nYIiaaK02VJm/JrRvTePE4TyvHyeKKoHdjc836TVIdQbn1Ejza5zcbZiIqCPxLypROwiCgARzHBLM\ncbi8j0M63tAgoqi0qsnE4TMs846oD5Xs4G7DRETnggGG6DyoVAKS7EYk2Y24MuJ4eJl3eCO+1pZ5\nq0PLxCM35EtzmeHgMm8iojYxwBBFwbks80ZE0cs4nRppzmCoSY1Y6m3hMm8iIgAMMESdqs1l3qFe\nmnC4OVZQgcN58mXe8SZdRG9NcPJwsoPLvInowsMAQ9TFZMu8L2qyzLs4IBuCyvVUYvcxH3Yfi1jm\nLQDuBIN8fo3bDHeCASoVh6GIqHtigCGKURq1KrjnjFu+zDtQXYe8iCGoU57gBn3bDniw7YBHOk+r\nUSHFYWrssQkt9Y43cZk3ESkfAwyRwhj1GvRPi0f/NPky79LKGtlOw+HhqOOFFbLnmw3aZtW8U50m\nGOL454CIlIN/sYi6AUEQYLPEwWaJw+V9G5d51zc0oMhXFQw1EZOH958oxb4TpbJrOOP1TZZ5m5Bo\n5zJvIopNDDBE3ZhapUKyIzjRN/0St3T8dE24mrd8fs13h7z47pA34vkCkh3GZvvX2K1xHIYioi7F\nAEN0AYrTqdEn2Yo+yfJl3uX+psNQjbsORzLEaaRAc0lvO+INGqS6zDAbtJ35NojoAsYAQ0QSq0kH\nq8mOgb3t0rEGUYS3tEqaLBwON0dyy3HoVBk2bs+Vzk0w66Q5NeFeG1bzJqJoiGqAycrKwrZt21BX\nV4e7774bgwYNwiOPPIK6ujpoNBo899xzcLlcWLt2Ld544w2oVCpkZmZi1qxZ0WwWEZ0FlSDAbTPC\nbTNi+MUu6XhtXT3yiwMoq67HviNe5HqDAWf30RLsPloinScAcCUYkNpk4nCizcD5NUR0zqIWYLZs\n2YKDBw9i9erV8Pl8mD59On74wx8iMzMTkydPxv/93//h9ddfx7x587B06VJkZ2dDq9Vi5syZGD9+\nPBISEqLVNCLqAFqNGj0TLXC5LBjUq/H3VVrm7Q3uMhzutWlazbvp/JpUZ/AjyygQUXtELcCkp6dj\n8ODBAACr1Yqqqir87ne/Q1xcHADAZrNh9+7d2LFjBwYNGgSLxQIAGD58OHJycjB27NhoNY2Ioqi1\nZd7lgVqpdEJuaIl3sFaUfH5NnE4drObtlPfYWI1aThwmIknUAoxarYbRaAQAZGdnY9SoUdLj+vp6\n/PWvf8XcuXPh9XphtzeOt9vtdng8nhavGWazGaHRRG9M3eWyRO3adH54b2JTe+6LG0D/3g7ZsYYG\nEUW+AE4UVOBYfjmOF5TjREEFThRW4EiTMgpWkw69k63omWRBrySr9LlRz4nDbeHvTOzivTk/UZ/E\nu379emRnZ2PlypUAguHlwQcfxFVXXYURI0bgo48+kp0viuIZr+nzBaLSViD4A+XxVJz5ROp0vDex\n6XzvixpAH7cJfdwmYEgygGAZhcKSQGjfmlCPjcePnYe8+D5imTcAOKxxjUUvQ8NQyQ4jtFH8nxyl\n4O9M7OK9aZ+2Ql5UA8ymTZuwfPlyvPbaa9IQ0SOPPIJevXph3rx5AAC32w2vt/EPUlFREYYOHRrN\nZhFRjNOoVaFQYsYPBjYel/avCQ9FhTbm+/5wMb4/XCydpxIEJNoNstVQqS7WhyLqTqIWYCoqKpCV\nlYVVq1ZJE3LXrl0LrVaLe++9VzpvyJAhWLhwIcrLy6FWq5GTk4NHH300Ws0iIgVrbf+ayqpaaV5N\n5HLv/OIAtu5vXh8qGGhC4cZpgs3CjfmIlCZqAWbdunXw+XyYP3++dCwvLw9WqxWzZ88GAPTr1w+/\n//3vsWDBAsyZMweCIGDu3LlSbw0RUXuYDVoM6GnDgJ426ZgoivBVnJYmC4dDTV5x8/pQkRvzpTqD\ne9ekOk2wmnSd/VaIqJ0EsT2TTmJMNMcNOS4Zu3hvYpPS7ktDgwhPaZU0DHUqtH9NYUkVGpr8OTQb\ntMFA4zJJK6NSnCZYjMoINkq7NxcS3pv26bI5MEREsUalEpBoNyLRbsQVAxqPhzfmy/P6pV6bPK8f\nB06WYv9JeeFLq1Eb6qUxI8VlQorDyFIKRJ2MAYaICI0b8/VMlP8f3+naehREBJvgx5YreltNOtkQ\nVIozONfGxKXeRB2OAYaIqA1xWjV6JVnQK6lJsKmpR35JY09NONzsPe7D3uM+2bnxZnmwSXWakeI0\nwajnn2Cic8XfHiKicxCnU6N3khW9k+Qroqpr6pBfHGgSbCqx55gPe47Jg43NEifvrQl9NMTxTzPR\nmfC3hIioA+l1mhaXeledrkNesR95nsihKH+z4pcAYLc2DTZmpDiN0Ov4J5sojL8NRESdwBCnQb+U\nePRLiZcdD1SHgo00cTi4n82uIyXYdUQebBxWPVJd8t6aFIcJcTruOkwXHgYYIqIuZNRr0D81Hv1T\n5cHGX13bOAQV0WvTdNdhAHDG65tNHE52mDrzbRB1OgYYIqIYZNJrcVFaAi5KS5Adr6xqGmwqWww2\nAoAkhwmJNkPjzsNOM5IcRmjUqk5+N0QdjwGGiEhBzAYtLu6RgIt7yINNRaCmcQ+bULjJKw4gv9iP\n7yIKYKpVAtw2A1JdZqRF9Ni4bQaoVQw2pBwMMERE3YDFqMOAnjpZOQWn04zDx0uQ56kM7Tjc2GOT\nXxzA1ojna9QqpDiMjbsOhwKOPV4PFetEUQxigCEi6qYEQUC8SYd4kx0De9ul4+E6UafCgSZUUiHf\n68eJokrZNeK0aqmXJk0qq2BGglnHApjUpRhgiIguMIIgwG7Vw27VY3A/h3S8oUGEp6xKCjThCt8n\nCitwNL9cdg2TXhOqExUsgJnmUladKFI+BhgiIgIQqhNlMyLRZsSwi13S8br6BhT6qoKBJrRB3ymv\nHwdzy3DgVJnsGuFyCqkRQ1Gp3JyPooA/UURE1CaNWiVV48bAxuM1tfUoKAmEqno3hpuWyik4rHFI\ncZqlYJPmMiPZYYROyz1s6NwwwBAR0TnRaVsugBnedVgqpxCaRLzzSDF2HpEv9XbZDLKemlSXCUl2\nLvWmM2OAISKiDtXarsPSHjaRq6I8ldh+0IvtB+VLvZPsRmnycGqo58adYIBKxYnDFMQAQ0REnaKl\nPWxEUUS5v0YKNHmhoahTof1svt3X+HytRoVkh1HeY8Ol3hcsBhgiIuoygiAg3hyHeHMcLmuy1Lu4\nvFqqEXUqNByVV+zHiUl3HngAAAp1SURBVMJKAIXSuXE6NVIcXOp9oWGAISKimCMIApzxBjjjDRjc\nzykdb2gQ4SmtCu44HFrm3dpSb2OcJlRGobG3JsVlgpVLvbsFBhgiIlIMlUpAot2IRLsRw1tZ6i31\n2nj9OJRbhoNNl3obtUh1mSM26At+btTzn0Ql4d0iIiLFky31jlBbV4/84kCojEJjr01LS71tlriI\nPWyCE4dTHCbE6bjUOxYxwBARUbel1bS81Lu6pg553gByI/avyfX6setoCXYdLZGd64zXI80VCjSh\nkJTsMEKrYbDpSgwwRER0wdHrNOibYkXfFKvseKC6NtRTI++x+e6QV1bVWxCARJtRtuNwitOERJuB\ne9h0EgYYIiKiEKNei4vSEnBRWoLseLm/Brle+cZ8eR4/CkoC2LbfI52nVglIdoT3sGncnM8Vzz1s\nOhoDDBER0RlYTTpYTToM7GWTjomiiNLKGmkYKtxrk+cNLvvG3iLpXJ1GhWRHY42ogf2cMGtV3MPm\nPDDAEBERnQNBEGCzxMFmicPlfSKqeosiSsqqpYreeRFDUscLK4InbTwMAIjTqpHiDPXYhFZDpTpN\nsFvjuIfNGTDAEBERdSCVIMCZYIAzwYCh/Rv3sKlvaICntBq5nkqUVtXh4PGS0B42lTiaXyG7hl6n\nRoozuAoqJaK6t83CYBPGAENERNQJ1CoVkuxGJNmNcLks8HiCoaWuviG4OV/Eaqg8rx/HCypwJE++\nOZ8hTt0YakIb86U4LsxgwwBDRETUhTTq4PyYZId8D5vw5nx5EUNRecUBHCuowOFmwUaDFGewTlSK\n0xz6aOrW5RQYYIiIiGJQ5OZ86Ze4peN19Q0oLAk0rooKfTyaV4HDuc3LKYR7aVKlOlEmxJuUH2wY\nYIiIiBREo1YFl2i7zLLjdfUNKCgJSJOGw+HmSG45DjUpp2DSaxqHoSI+WhUUbBhgiIiIugGNWoU0\nlxlpLjMwsPF4bV0w2OR6K5HnDUjBpqU6USa9JtRTY5aFG6sp9gpgMsAQERF1Y1qNCj3cZvRwy3ts\nwnWiIoehcr1+HDxVhgNNgo3ZoJUCTeQE4q6s7M0AQ0REdAFqrU5UTW19qMfGLxuOOnCyFPtPlsrO\ntRi1GDkoGZlj+ndm0wEwwBAREVEEnbblYHO6th4FxU2HoipRUl7dJe1kgCEiIqIzitOq0SvJgl5J\nljOf3AlYMpOIiIgUhwGGiIiIFIcBhoiIiBSHAYaIiIgUhwGGiIiIFIcBhoiIiBSHAYaIiIgUhwGG\niIiIFIcBhoiIiBSHAYaIiIgUhwGGiIiIFIcBhoiIiBSHAYaIiIgURxBFUezqRhARERGdDfbAEBER\nkeIwwBAREZHiMMAQERGR4jDAEBERkeIwwBAREZHiMMAQERGR4jDARHj66adx00034eabb8b333/f\n1c2hCFlZWbjpppswY8YMfP75513dHIpQXV2N66+/HmvWrOnqplCEtWvX4kc/+hFuvPFGbNy4saub\nQwD8fj/mzZuH2bNn4+abb8amTZu6ukmKpunqBsSKb775BsePH8fq1atx+PBhPProo1i9enVXN4sA\nbNmyBQcPHsTq1avh8/kwffp0TJgwoaubRSGvvPIK4uPju7oZFMHn82Hp0qV47733EAgEsHjxYowe\nPbqrm3XBe//999GnTx8s+P/27i6kyb6B4/h3ty+ITkklC1kKrgNRezUPMq2DiqAOhN5W5uooCI8K\ni4ZlK+pkQRBh9EIFsggtgyIqoyhDaEVQSIwsCg8yX5a4UtFpm3sObovbu+e5iadHL6+n3+dsF9c1\nfn8Y22/X/8/1r6qip6eHHTt20NTUZHQs01KBGefz+Vi1ahUAdrudL1++MDg4iNVqNTiZFBUVMX/+\nfABSUlIYHh4mEokQExNjcDJ5//49796904/jNOPz+Vi6dClWqxWr1crRo0eNjiRAamoqb968AaC/\nv5/U1FSDE5mbppDG9fb2TvgwpaWl8enTJwMTyTcxMTEkJiYC0NjYyPLly1VepgmPx4PL5TI6hvxN\nR0cHoVCIXbt2UV5ejs/nMzqSAOvWraOzs5PVq1dTUVHB/v37jY5karoD8x9oh4Xp58GDBzQ2NnLp\n0iWjowhw48YNFi5cyJw5c4yOIv/G58+fqa2tpbOzk+3bt/Po0SMsFovRsX5rN2/eJDMzk4sXL9LW\n1kZ1dbXWjv0CFZhxGRkZ9Pb2fn8dCASYOXOmgYnkr1paWjh79iwXLlwgOTnZ6DgCNDc38+HDB5qb\nm+nu7iY+Pp7Zs2dTXFxsdLTfXnp6OosWLSI2NpasrCySkpLo6+sjPT3d6Gi/tRcvXlBSUgJAbm4u\ngUBA0+G/QFNI45YtW8a9e/cA8Pv9ZGRkaP3LNDEwMMDx48c5d+4cM2bMMDqOjDt58iTXr1/n6tWr\nbNq0icrKSpWXaaKkpISnT58yNjZGMBhkaGhI6y2mgezsbFpbWwH4+PEjSUlJKi+/QHdgxi1evJj8\n/Hy2bNmCxWLB7XYbHUnG3blzh2AwyO7du78f83g8ZGZmGphKZPqaNWsWa9asYfPmzQAcPHiQP/7Q\n/1WjORwOqqurqaioIBwOc/jwYaMjmZolqsUeIiIiYjKq5CIiImI6KjAiIiJiOiowIiIiYjoqMCIi\nImI6KjAiIiJiOiowIjKpOjo6KCgowOl0ft+Ft6qqiv7+/p9+D6fTSSQS+enzt27dyrNnz/6buCJi\nEiowIjLp0tLS8Hq9eL1e6uvrycjI4MyZMz99vdfr1QO/RGQCPchORKZcUVERDQ0NtLW14fF4CIfD\nfP36lUOHDpGXl4fT6SQ3N5fXr19TV1dHXl4efr+f0dFRampq6O7uJhwOU1ZWRnl5OcPDw+zZs4dg\nMEh2djYjIyMA9PT0sHfvXgBCoRAOh4ONGzcaOXQR+R9RgRGRKRWJRLh//z6FhYXs27eP06dPk5WV\n9cPmdomJiVy+fHnCtV6vl5SUFE6cOEEoFGLt2rWUlpby5MkTEhISaGhoIBAIsHLlSgDu3r1LTk4O\nR44cYWRkhGvXrk35eEVkcqjAiMik6+vrw+l0AjA2NsaSJUvYsGEDp06d4sCBA9/PGxwcZGxsDPhz\ne4+/a21tZf369QAkJCRQUFCA3+/n7du3FBYWAn9uzJqTkwNAaWkpV65cweVysWLFChwOx6SOU0Sm\njgqMiEy6b2tg/mpgYIC4uLgfjn8TFxf3wzGLxTLhdTQaxWKxEI1GJ+z1860E2e12bt++zfPnz2lq\naqKuro76+vpfHY6ITANaxCsihkhOTsZms/H48WMA2tvbqa2t/cdrFixYQEtLCwBDQ0P4/X7y8/Ox\n2+28fPkSgK6uLtrb2wG4desWr169ori4GLfbTVdXF+FweBJHJSJTRXdgRMQwHo+HY8eOcf78ecLh\nMC6X6x/Pdzqd1NTUsG3bNkZHR6msrMRms1FWVsbDhw8pLy/HZrMxb948AObOnYvb7SY+Pp5oNMrO\nnTuJjdXXnsj/A+1GLSIiIqajKSQRERExHRUYERERMR0VGBERETEdFRgRERExHRUYERERMR0VGBER\nETEdFRgRERExHRUYERERMZ1/AX8YjXf4ycVNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "I-La4N9ObC1x", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "Xyz6n1YHbGef", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(\n", + " training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(\n", + " training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(\n", + " validation_examples, validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "i1imhjFzbWwt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_model(\n", + " learning_rate=0.00003,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "65sin-E5NmHN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 5: Evaluate on Test Data\n", + "\n", + "**In the cell below, load in the test data set and evaluate your model on it.**\n", + "\n", + "We've done a lot of iteration on our validation data. Let's make sure we haven't overfit to the pecularities of that particular sample.\n", + "\n", + "Test data set is located [here](https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv).\n", + "\n", + "How does your test performance compare to the validation performance? What does this say about the generalization performance of your model?" + ] + }, + { + "metadata": { + "id": "icEJIl5Vp51r", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 33 + }, + "outputId": "d08b8a27-59ed-4077-f7d9-44fe71aee781" + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "#\n", + "# YOUR CODE HERE\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_test_input_fn = lambda: my_input_fn(\n", + " test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = linear_regressor.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Final RMSE (on test data): 221.42\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "yTghc_5HkJDW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "_xSYTarykO8U", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 33 + }, + "outputId": "c4017954-7b73-4b96-9a96-cd8fbc53a7e3" + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_test_input_fn = lambda: my_input_fn(\n", + " test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = linear_regressor.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Final RMSE (on test data): 221.42\n" + ], + "name": "stdout" + } + ] + } + ] +} \ No newline at end of file