From 1cbeb37a231429c8316d0321fcc5784c2384e1bc Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sat, 23 Feb 2019 21:02:29 +0530 Subject: [PATCH 01/11] Created using Colaboratory --- intro_to_pandas.ipynb | 1873 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1873 insertions(+) create mode 100644 intro_to_pandas.ipynb diff --git a/intro_to_pandas.ipynb b/intro_to_pandas.ipynb new file mode 100644 index 0000000..0068618 --- /dev/null +++ b/intro_to_pandas.ipynb @@ -0,0 +1,1873 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "intro_to_pandas.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "YHIWvc9Ms-Ll", + "TJffr5_Jwqvd" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "JndnmDMp66FL" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "hMqWDc_m6rUC", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "rHLcriKWLRe4" + }, + "cell_type": "markdown", + "source": [ + "# Intro to pandas" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "QvJBqX8_Bctk" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Gain an introduction to the `DataFrame` and `Series` data structures of the *pandas* library\n", + " * Access and manipulate data within a `DataFrame` and `Series`\n", + " * Import CSV data into a *pandas* `DataFrame`\n", + " * Reindex a `DataFrame` to shuffle data" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TIFJ83ZTBctl" + }, + "cell_type": "markdown", + "source": [ + "[*pandas*](http://pandas.pydata.org/) is a column-oriented data analysis API. It's a great tool for handling and analyzing input data, and many ML frameworks support *pandas* data structures as inputs.\n", + "Although a comprehensive introduction to the *pandas* API would span many pages, the core concepts are fairly straightforward, and we'll present them below. For a more complete reference, the [*pandas* docs site](http://pandas.pydata.org/pandas-docs/stable/index.html) contains extensive documentation and many tutorials." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "s_JOISVgmn9v" + }, + "cell_type": "markdown", + "source": [ + "## Basic Concepts\n", + "\n", + "The following line imports the *pandas* API and prints the API version:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "aSRYu62xUi3g", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "bd9801ba-d2f7-412b-ed5d-a6c1a81f75f1" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import pandas as pd\n", + "pd.__version__" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "u'0.22.0'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "daQreKXIUslr" + }, + "cell_type": "markdown", + "source": [ + "The primary data structures in *pandas* are implemented as two classes:\n", + "\n", + " * **`DataFrame`**, which you can imagine as a relational data table, with rows and named columns.\n", + " * **`Series`**, which is a single column. A `DataFrame` contains one or more `Series` and a name for each `Series`.\n", + "\n", + "The data frame is a commonly used abstraction for data manipulation. Similar implementations exist in [Spark](https://spark.apache.org/) and [R](https://www.r-project.org/about.html)." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "fjnAk1xcU0yc" + }, + "cell_type": "markdown", + "source": [ + "One way to create a `Series` is to construct a `Series` object. For example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "DFZ42Uq7UFDj", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 87 + }, + "outputId": "79018fea-62e9-499d-f746-8422771ec5b6" + }, + "cell_type": "code", + "source": [ + "pd.Series(['San Francisco', 'San Jose', 'Sacramento'])" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 San Francisco\n", + "1 San Jose\n", + "2 Sacramento\n", + "dtype: object" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "U5ouUp1cU6pC" + }, + "cell_type": "markdown", + "source": [ + "`DataFrame` objects can be created by passing a `dict` mapping `string` column names to their respective `Series`. If the `Series` don't match in length, missing values are filled with special [NA/NaN](http://pandas.pydata.org/pandas-docs/stable/missing_data.html) values. Example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "avgr6GfiUh8t", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 141 + }, + "outputId": "b8277c1c-bc1a-4c6c-fb21-97039766216c" + }, + "cell_type": "code", + "source": [ + "city_names = pd.Series(['San Francisco', 'San Jose', 'Sacramento'])\n", + "population = pd.Series([852469, 1015785, 485199])\n", + "\n", + "pd.DataFrame({ 'City name': city_names, 'Population': population })" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulation
0San Francisco852469
1San Jose1015785
2Sacramento485199
\n", + "
" + ], + "text/plain": [ + " City name Population\n", + "0 San Francisco 852469\n", + "1 San Jose 1015785\n", + "2 Sacramento 485199" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "oa5wfZT7VHJl" + }, + "cell_type": "markdown", + "source": [ + "But most of the time, you load an entire file into a `DataFrame`. The following example loads a file with California housing data. Run the following cell to load the data and create feature definitions:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "av6RYOraVG1V", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + }, + "outputId": "abef6251-6615-49d3-faba-8005917f5b8c" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "california_housing_dataframe.describe()" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
count17000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.000000
mean-119.56210835.62522528.5893532643.664412539.4108241429.573941501.2219413.883578207300.912353
std2.0051662.13734012.5869372179.947071421.4994521147.852959384.5208411.908157115983.764387
min-124.35000032.5400001.0000002.0000001.0000003.0000001.0000000.49990014999.000000
25%-121.79000033.93000018.0000001462.000000297.000000790.000000282.0000002.566375119400.000000
50%-118.49000034.25000029.0000002127.000000434.0000001167.000000409.0000003.544600180400.000000
75%-118.00000037.72000037.0000003151.250000648.2500001721.000000605.2500004.767000265000.000000
max-114.31000041.95000052.00000037937.0000006445.00000035682.0000006082.00000015.000100500001.000000
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms \\\n", + "count 17000.000000 17000.000000 17000.000000 17000.000000 \n", + "mean -119.562108 35.625225 28.589353 2643.664412 \n", + "std 2.005166 2.137340 12.586937 2179.947071 \n", + "min -124.350000 32.540000 1.000000 2.000000 \n", + "25% -121.790000 33.930000 18.000000 1462.000000 \n", + "50% -118.490000 34.250000 29.000000 2127.000000 \n", + "75% -118.000000 37.720000 37.000000 3151.250000 \n", + "max -114.310000 41.950000 52.000000 37937.000000 \n", + "\n", + " total_bedrooms population households median_income \\\n", + "count 17000.000000 17000.000000 17000.000000 17000.000000 \n", + "mean 539.410824 1429.573941 501.221941 3.883578 \n", + "std 421.499452 1147.852959 384.520841 1.908157 \n", + "min 1.000000 3.000000 1.000000 0.499900 \n", + "25% 297.000000 790.000000 282.000000 2.566375 \n", + "50% 434.000000 1167.000000 409.000000 3.544600 \n", + "75% 648.250000 1721.000000 605.250000 4.767000 \n", + "max 6445.000000 35682.000000 6082.000000 15.000100 \n", + "\n", + " median_house_value \n", + "count 17000.000000 \n", + "mean 207300.912353 \n", + "std 115983.764387 \n", + "min 14999.000000 \n", + "25% 119400.000000 \n", + "50% 180400.000000 \n", + "75% 265000.000000 \n", + "max 500001.000000 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "WrkBjfz5kEQu" + }, + "cell_type": "markdown", + "source": [ + "The example above used `DataFrame.describe` to show interesting statistics about a `DataFrame`. Another useful function is `DataFrame.head`, which displays the first few records of a `DataFrame`:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "s3ND3bgOkB5k", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 202 + }, + "outputId": "d101f31f-8a8d-495c-a367-4bbba2333bb7" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.head()" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
0-114.3134.1915.05612.01283.01015.0472.01.493666900.0
1-114.4734.4019.07650.01901.01129.0463.01.820080100.0
2-114.5633.6917.0720.0174.0333.0117.01.650985700.0
3-114.5733.6414.01501.0337.0515.0226.03.191773400.0
4-114.5733.5720.01454.0326.0624.0262.01.925065500.0
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "0 -114.31 34.19 15.0 5612.0 1283.0 \n", + "1 -114.47 34.40 19.0 7650.0 1901.0 \n", + "2 -114.56 33.69 17.0 720.0 174.0 \n", + "3 -114.57 33.64 14.0 1501.0 337.0 \n", + "4 -114.57 33.57 20.0 1454.0 326.0 \n", + "\n", + " population households median_income median_house_value \n", + "0 1015.0 472.0 1.4936 66900.0 \n", + "1 1129.0 463.0 1.8200 80100.0 \n", + "2 333.0 117.0 1.6509 85700.0 \n", + "3 515.0 226.0 3.1917 73400.0 \n", + "4 624.0 262.0 1.9250 65500.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "w9-Es5Y6laGd" + }, + "cell_type": "markdown", + "source": [ + "Another powerful feature of *pandas* is graphing. For example, `DataFrame.hist` lets you quickly study the distribution of values in a column:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "nqndFVXVlbPN", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 397 + }, + "outputId": "aee3b8a1-8a14-4078-b0e6-aacc48b700c8" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.hist('housing_median_age')" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[]],\n", + " dtype=object)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFZCAYAAABXM2zhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X1UlHX+//HXMDAH0UEEGTfLarf0\naEmaa5l4U0Iokp7IVRPWdU3q6Iqtlql499WTlajRmmZZmunRU7GNtofcAjJxyyRanT0uuu0p2VOr\neTejKCqgSPP7o9Os/FRguP1Az8dfcTEz1+d6H+3pdQ1zYfF6vV4BAAAjBTT3AgAAwPURagAADEao\nAQAwGKEGAMBghBoAAIMRagAADEaogVo6cuSI7rjjjkbdxz//+U+lpKQ06j4a0h133KEjR47o448/\n1ty5c5t7OUCrZOFz1EDtHDlyREOHDtW//vWv5l6KMe644w7l5ubqpptuau6lAK0WZ9SAn5xOp0aO\nHKn7779f27dv1w8//KA//elPio+PV3x8vNLS0lRaWipJiomJ0d69e33P/enry5cva/78+Ro2bJji\n4uI0bdo0nT9/XgUFBYqLi5MkrV69Ws8++6xSU1MVGxur0aNH6+TJk5KkgwcPaujQoRo6dKheeeUV\njRw5UgUFBdWue/Xq1Vq0aJEmT56sgQMHatasWcrLy9OoUaM0cOBA5eXlSZIuXbqk5557TsOGDVNM\nTIzWrl3re42//e1viouL0/Dhw7V+/Xrf9m3btmnixImSJI/Ho5SUFMXHxysmJkZvvfVWleN/9913\nNXr0aA0cOFDp6ek1zrusrEwzZszwrWfZsmW+71U3hx07dmjkyJGKjY3VpEmTdPr06Rr3BZiIUAN+\n+OGHH1RRUaEPPvhAc+fO1cqVK/XRRx/p008/1bZt2/TXv/5VJSUl2rhxY7Wvs3v3bh05ckTZ2dnK\nzc3V7bffrn/84x9XPS47O1vz5s3Tjh07FBERoa1bt0qSFi5cqIkTJyo3N1ft2rXTt99+W6v179q1\nSy+88II++OADZWdn+9Y9ZcoUrVu3TpK0bt06HTp0SB988IG2b9+unJwc5eXlqbKyUvPnz9eiRYv0\n0UcfKSAgQJWVlVft47XXXtNNN92k7Oxsbdq0SRkZGTp27Jjv+3//+9+VmZmprVu3asuWLTp+/Hi1\na37nnXd04cIFZWdn6/3339e2bdt8//i53hwOHz6s2bNnKyMjQ5988on69eunxYsX12pGgGkINeAH\nr9erxMREST9e9j1+/Lh27dqlxMREhYSEyGq1atSoUfr888+rfZ3w8HAVFRXp448/9p0xDho06KrH\n9e3bVzfeeKMsFot69OihY8eOqby8XAcPHtSIESMkSb/97W9V23ew7r77bkVERKhDhw6KjIzU4MGD\nJUndunXzna3n5eUpOTlZNptNISEhevjhh5Wbm6tvv/1Wly5d0sCBAyVJjzzyyDX3sWDBAi1cuFCS\n1KVLF0VGRurIkSO+748cOVJWq1WdOnVSRERElYhfy6RJk/Tqq6/KYrGoffv26tq1q44cOVLtHD79\n9FPde++96tatmyRp3Lhx2rlz5zX/YQGYLrC5FwC0JFarVW3atJEkBQQE6IcfftDp06fVvn1732Pa\nt2+vU6dOVfs6d911lxYsWKDNmzdrzpw5iomJ0aJFi656nN1ur7LvyspKnT17VhaLRaGhoZKkoKAg\nRURE1Gr9bdu2rfJ6ISEhVY5Fks6dO6elS5fqpZdekvTjpfC77rpLZ8+eVbt27aoc57UUFhb6zqID\nAgLkdrt9ry2pymv8dEzV+fbbb5Wenq7//Oc/CggI0PHjxzVq1Khq53Du3Dnt3btX8fHxVfZ75syZ\nWs8KMAWhBuqpY8eOOnPmjO/rM2fOqGPHjpKqBlCSzp496/vvn97TPnPmjObNm6c333xT0dHRNe6v\nXbt28nq9KisrU5s2bXT58uUGff/V4XBo0qRJGjJkSJXtRUVFOn/+vO/r6+1z1qxZ+v3vf6+kpCRZ\nLJZrXinwx7PPPqs777xTa9askdVq1bhx4yRVPweHw6Ho6GitWrWqXvsGTMClb6CeHnjgAWVlZams\nrEyXL1+W0+nU/fffL0mKjIzUv//9b0nShx9+qIsXL0qStm7dqjVr1kiSwsLC9Ktf/arW+2vbtq1u\nu+02ffTRR5KkzMxMWSyWBjue2NhYvffee6qsrJTX69Wrr76qTz/9VDfffLOsVqvvh7W2bdt2zf2e\nOnVKPXv2lMVi0fvvv6+ysjLfD9fVxalTp9SjRw9ZrVZ9/vnn+u6771RaWlrtHAYOHKi9e/fq8OHD\nkn782Ntzzz1X5zUAzYlQA/UUHx+vwYMHa9SoURoxYoR+8YtfaMKECZKkqVOnauPGjRoxYoSKiop0\n++23S/oxhj/9xPLw4cN16NAhPfbYY7Xe56JFi7R27Vo99NBDKi0tVadOnRos1snJyercubMeeugh\nxcfHq6ioSL/+9a8VFBSkJUuWaN68eRo+fLgsFovv0vmVpk+frtTUVI0cOVKlpaV69NFHtXDhQv33\nv/+t03r+8Ic/aNmyZRoxYoS+/PJLTZs2TatXr9a+ffuuOweHw6ElS5YoNTVVw4cP17PPPquEhIT6\njgZoFnyOGmihvF6vL8733XefNm7cqO7duzfzqpoec0Brxxk10AL98Y9/9H2cKj8/X16vV7feemvz\nLqoZMAf8HHBGDbRARUVFmjt3rs6ePaugoCDNmjVLN910k1JTU6/5+Ntuu833nrhpioqK6rzua83h\np58PAFoLQg0AgMG49A0AgMEINQAABjPyhidu9zm/Ht+hQ4iKi+v+Oc2fO+ZXd8yufphf3TG7+jFt\nfpGR9ut+r1WcUQcGWpt7CS0a86s7Zlc/zK/umF39tKT5tYpQAwDQWhFqAAAMRqgBADBYjT9MVlZW\nprS0NJ06dUoXL17U1KlT1b17d82ePVuVlZWKjIzUihUrZLPZlJWVpU2bNikgIEBjx47VmDFjVFFR\nobS0NB09elRWq1VLly5Vly5dmuLYAABo8Wo8o87Ly1PPnj21ZcsWrVy5Uunp6Vq1apWSk5P19ttv\n65ZbbpHT6VRpaanWrFmjjRs3avPmzdq0aZPOnDmj7du3KzQ0VO+8846mTJmijIyMpjguAABahRpD\nnZCQoCeeeEKSdOzYMXXq1EkFBQWKjY2VJA0ZMkT5+fnav3+/oqKiZLfbFRwcrD59+sjlcik/P19x\ncXGSpOjoaLlcrkY8HAAAWpdaf4563LhxOn78uNauXavHHntMNptNkhQRESG32y2Px6Pw8HDf48PD\nw6/aHhAQIIvFokuXLvmeDwAArq/WoX733Xf11VdfadasWbry9uDXu1W4v9uv1KFDiN+fcavuw+Ko\nGfOrO2ZXP8yv7phd/bSU+dUY6gMHDigiIkI33HCDevToocrKSrVt21bl5eUKDg7WiRMn5HA45HA4\n5PF4fM87efKkevfuLYfDIbfbre7du6uiokJer7fGs2l/7xYTGWn3+25m+B/mV3fMrn6YX90xu/ox\nbX71ujPZ3r17tWHDBkmSx+NRaWmpoqOjlZOTI0nKzc3VoEGD1KtXLxUWFqqkpEQXLlyQy+VS3759\nNWDAAGVnZ0v68QfT+vXr1xDHBADAz0KNZ9Tjxo3T/PnzlZycrPLycv3f//2fevbsqTlz5igzM1Od\nO3dWYmKigoKCNHPmTKWkpMhisSg1NVV2u10JCQnas2ePkpKSZLPZlJ6e3hTHBQBAq2Dk76P293KE\naZcwWhrmV3fMrn6YX90xu/oxbX7VXfo28rdnAcC1TErf2dxLqNGGtJjmXgJaGW4hCgCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QA\nABiMUAMAYDBCDQCAwQg1AAAGC6zNg5YvX659+/bp8uXLmjx5snbu3KmDBw8qLCxMkpSSkqIHHnhA\nWVlZ2rRpkwICAjR27FiNGTNGFRUVSktL09GjR2W1WrV06VJ16dKlUQ8KAIDWosZQf/HFF/rmm2+U\nmZmp4uJiPfLII7rvvvv09NNPa8iQIb7HlZaWas2aNXI6nQoKCtLo0aMVFxenvLw8hYaGKiMjQ7t3\n71ZGRoZWrlzZqAcFAEBrUeOl73vuuUcvv/yyJCk0NFRlZWWqrKy86nH79+9XVFSU7Ha7goOD1adP\nH7lcLuXn5ysuLk6SFB0dLZfL1cCHAABA61VjqK1Wq0JCQiRJTqdTgwcPltVq1ZYtWzRhwgQ99dRT\nOn36tDwej8LDw33PCw8Pl9vtrrI9ICBAFotFly5daqTDAQCgdanVe9SStGPHDjmdTm3YsEEHDhxQ\nWFiYevTooTfeeEOvvPKK7r777iqP93q913yd622/UocOIQoMtNZ2aZKkyEi7X49HVcyv7phd/bS2\n+TXl8bS22TW1ljK/WoX6s88+09q1a7V+/XrZ7Xb179/f972YmBgtXrxYw4YNk8fj8W0/efKkevfu\nLYfDIbfbre7du6uiokJer1c2m63a/RUXl/p1EJGRdrnd5/x6Dv6H+dUds6uf1ji/pjqe1ji7pmTa\n/Kr7R0ONl77PnTun5cuX6/XXX/f9lPeTTz6pw4cPS5IKCgrUtWtX9erVS4WFhSopKdGFCxfkcrnU\nt29fDRgwQNnZ2ZKkvLw89evXryGOCQCAn4Uaz6g//PBDFRcXa8aMGb5to0aN0owZM9SmTRuFhIRo\n6dKlCg4O1syZM5WSkiKLxaLU1FTZ7XYlJCRoz549SkpKks1mU3p6eqMeEAAArYnFW5s3jZuYv5cj\nTLuE0dIwv7pjdvXj7/wmpe9sxNU0jA1pMU2yH/7s1Y9p86vXpW8AANB8CDUAAAYj1AAAGIxQAwBg\nMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAA\nGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYLbO4FAA1lUvrO5l5CtTakxTT3\nEgC0QJxRAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDB\nCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAbj91EDTcT035ct8TuzARNxRg0AgMFqdUa9fPly7du3\nT5cvX9bkyZMVFRWl2bNnq7KyUpGRkVqxYoVsNpuysrK0adMmBQQEaOzYsRozZowqKiqUlpamo0eP\nymq1aunSperSpUtjHxcAAK1CjaH+4osv9M033ygzM1PFxcV65JFH1L9/fyUnJ2v48OF66aWX5HQ6\nlZiYqDVr1sjpdCooKEijR49WXFyc8vLyFBoaqoyMDO3evVsZGRlauXJlUxwbAAAtXo2Xvu+55x69\n/PLLkqTQ0FCVlZWpoKBAsbGxkqQhQ4YoPz9f+/fvV1RUlOx2u4KDg9WnTx+5XC7l5+crLi5OkhQd\nHS2Xy9WIhwMAQOtS4xm11WpVSEiIJMnpdGrw4MHavXu3bDabJCkiIkJut1sej0fh4eG+54WHh1+1\nPSAgQBaLRZcuXfI9/1o6dAhRYKDVrwOJjLT79XhUxfwgNc+fg9b2Z68pj6e1za6ptZT51fqnvnfs\n2CGn06kNGzZo6NChvu1er/eaj/d3+5WKi0truyxJPw7b7T7n13PwP8wPP2nqPwet8c9eUx1Pa5xd\nUzJtftX9o6FWP/X92Wefae3atVq3bp3sdrtCQkJUXl4uSTpx4oQcDoccDoc8Ho/vOSdPnvRtd7vd\nkqSKigp5vd5qz6YBAMD/1Bjqc+fOafny5Xr99dcVFhYm6cf3mnNyciRJubm5GjRokHr16qXCwkKV\nlJTowoULcrlc6tu3rwYMGKDs7GxJUl5envr169eIhwMAQOtS46XvDz/8UMXFxZoxY4ZvW3p6uhYs\nWKDMzEx17txZiYmJCgoK0syZM5WSkiKLxaLU1FTZ7XYlJCRoz549SkpKks1mU3p6eqMeEAAArUmN\noX700Uf16KOPXrX9rbfeumpbfHy84uPjq2z76bPTAADAf9xCFIBPS7jNKfBzwy1EAQAwGKEGAMBg\nhBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGHcmQ61wxyoAaB6cUQMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABgssLkXAADAlSal72zuJdRoQ1pM\nk+2LM2oAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYLX6HPXXX3+tqVOnauLEiRo/\nfrzS0tJ08OBBhYWFSZJSUlL0wAMPKCsrS5s2bVJAQIDGjh2rMWPGqKKiQmlpaTp69KisVquWLl2q\nLl26NOpBAUBz4TPAaGg1hrq0tFRLlixR//79q2x/+umnNWTIkCqPW7NmjZxOp4KCgjR69GjFxcUp\nLy9PoaGhysjI0O7du5WRkaGVK1c2/JEAANAK1Xjp22azad26dXI4HNU+bv/+/YqKipLdbldwcLD6\n9Okjl8ul/Px8xcXFSZKio6PlcrkaZuUAAPwM1BjqwMBABQcHX7V9y5YtmjBhgp566imdPn1aHo9H\n4eHhvu+Hh4fL7XZX2R4QECCLxaJLly414CEAANB61ele3w8//LDCwsLUo0cPvfHGG3rllVd09913\nV3mM1+u95nOvt/1KHTqEKDDQ6teaIiPtfj0eVTE/4OeDv+/115QzrFOor3y/OiYmRosXL9awYcPk\n8Xh820+ePKnevXvL4XDI7Xare/fuqqiokNfrlc1mq/b1i4tL/VpPZKRdbvc5/w4CPswP+Hnh73v9\nNfQMqwt/nT6e9eSTT+rw4cOSpIKCAnXt2lW9evVSYWGhSkpKdOHCBblcLvXt21cDBgxQdna2JCkv\nL0/9+vWryy4BAPhZqvGM+sCBA1q2bJm+//57BQYGKicnR+PHj9eMGTPUpk0bhYSEaOnSpQoODtbM\nmTOVkpIii8Wi1NRU2e12JSQkaM+ePUpKSpLNZlN6enpTHBcAAK1CjaHu2bOnNm/efNX2YcOGXbUt\nPj5e8fHxVbb99NlpAADgP+5MBgCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYLA6/T5qAEDLNSl9Z3MvAX7gjBoAAIMRagAADEaoAQAwGKEG\nAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEao\nAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMR\nagAADFarUH/99dd68MEHtWXLFknSsWPH9Lvf/U7JycmaPn26Ll26JEnKysrSb37zG40ZM0bvvfee\nJKmiokIzZ85UUlKSxo8fr8OHDzfSoQAA0PrUGOrS0lItWbJE/fv3921btWqVkpOT9fbbb+uWW26R\n0+lUaWmp1qxZo40bN2rz5s3atGmTzpw5o+3btys0NFTvvPOOpkyZooyMjEY9IAAAWpMaQ22z2bRu\n3To5HA7ftoKCAsXGxkqShgwZovz8fO3fv19RUVGy2+0KDg5Wnz595HK5lJ+fr7i4OElSdHS0XC5X\nIx0KAACtT42hDgwMVHBwcJVtZWVlstlskqSIiAi53W55PB6Fh4f7HhMeHn7V9oCAAFksFt+lcgAA\nUL3A+r6A1+ttkO1X6tAhRIGBVr/WERlp9+vxqIr5AUDtNeX/M+sU6pCQEJWXlys4OFgnTpyQw+GQ\nw+GQx+PxPebkyZPq3bu3HA6H3G63unfvroqKCnm9Xt/Z+PUUF5f6tZ7ISLvc7nN1ORSI+QGAvxr6\n/5nVhb9OH8+Kjo5WTk6OJCk3N1eDBg1Sr169VFhYqJKSEl24cEEul0t9+/bVgAEDlJ2dLUnKy8tT\nv3796rJLAAB+lmo8oz5w4ICWLVum77//XoGBgcrJydGLL76otLQ0ZWZmqnPnzkpMTFRQUJBmzpyp\nlJQUWSwWpaamym63KyEhQXv27FFSUpJsNpvS09Ob4rgAAGgVLN7avGncxPy9pMCl2/qpzfwmpe9s\notUAgPk2pMU06Os1+KVvAADQNOr9U99oGJyxAgCuhTNqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAM\nRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAA\ngxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYA\nwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMFtjcC2gKk9J3NvcSAACoE86oAQAwGKEG\nAMBghBoAAIMRagAADFanHyYrKCjQ9OnT1bVrV0lSt27d9Pjjj2v27NmqrKxUZGSkVqxYIZvNpqys\nLG3atEkBAQEaO3asxowZ06AHAABAa1bnn/q+9957tWrVKt/Xc+fOVXJysoYPH66XXnpJTqdTiYmJ\nWrNmjZxOp4KCgjR69GjFxcUpLCysQRYPAEBr12CXvgsKChQbGytJGjJkiPLz87V//35FRUXJbrcr\nODhYffr0kcvlaqhdAgDQ6tX5jPrQoUOaMmWKzp49q2nTpqmsrEw2m02SFBERIbfbLY/Ho/DwcN9z\nwsPD5Xa7a3ztDh1CFBho9Ws9kZF2/w4AAIA6asrm1CnUt956q6ZNm6bhw4fr8OHDmjBhgiorK33f\n93q913ze9bb//4qLS/1aT2SkXW73Ob+eAwBAXTV0c6oLf50ufXfq1EkJCQmyWCy6+eab1bFjR509\ne1bl5eWSpBMnTsjhcMjhcMjj8fied/LkSTkcjrrsEgCAn6U6hTorK0tvvvmmJMntduvUqVMaNWqU\ncnJyJEm5ubkaNGiQevXqpcLCQpWUlOjChQtyuVzq27dvw60eAIBWrk6XvmNiYvTMM8/ok08+UUVF\nhRYvXqwePXpozpw5yszMVOfOnZWYmKigoCDNnDlTKSkpslgsSk1Nld3Oe8kAANSWxVvbN46bkL/X\n/mt6j5pfygEAaEgb0mIa9PUa/D1qAADQNAg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiM\nUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABgssCl2\n8sILL2j//v2yWCyaN2+e7rrrrqbYLQAALV6jh/rLL7/Ud999p8zMTBUVFWnevHnKzMxs7N0CANAq\nNPql7/z8fD344IOSpNtuu01nz57V+fPnG3u3AAC0Co0eao/How4dOvi+Dg8Pl9vtbuzdAgDQKjTJ\ne9RX8nq9NT4mMtLu9+tW95wPMh72+/UAADBBo59ROxwOeTwe39cnT55UZGRkY+8WAIBWodFDPWDA\nAOXk5EiSDh48KIfDoXbt2jX2bgEAaBUa/dJ3nz59dOedd2rcuHGyWCxatGhRY+8SAIBWw+KtzZvG\nAACgWXBnMgAADEaoAQAwWJN/PKuhcXtS/3399deaOnWqJk6cqPHjx+vYsWOaPXu2KisrFRkZqRUr\nVshmszX3Mo20fPly7du3T5cvX9bkyZMVFRXF7GqhrKxMaWlpOnXqlC5evKipU6eqe/fuzM5P5eXl\nGjFihKZOnar+/fszv1oqKCjQ9OnT1bVrV0lSt27d9Pjjj7eY+bXoM+orb0/6/PPP6/nnn2/uJRmv\ntLRUS5YsUf/+/X3bVq1apeTkZL399tu65ZZb5HQ6m3GF5vriiy/0zTffKDMzU+vXr9cLL7zA7Gop\nLy9PPXv21JYtW7Ry5Uqlp6czuzp47bXX1L59e0n8vfXXvffeq82bN2vz5s1auHBhi5pfiw41tyf1\nn81m07p16+RwOHzbCgoKFBsbK0kaMmSI8vPzm2t5Rrvnnnv08ssvS5JCQ0NVVlbG7GopISFBTzzx\nhCTp2LFj6tSpE7PzU1FRkQ4dOqQHHnhAEn9v66slza9Fh5rbk/ovMDBQwcHBVbaVlZX5LvlEREQw\nw+uwWq0KCQmRJDmdTg0ePJjZ+WncuHF65plnNG/ePGbnp2XLliktLc33NfPzz6FDhzRlyhQlJSXp\n888/b1Hza/HvUV+JT5rVHzOs2Y4dO+R0OrVhwwYNHTrUt53Z1ezdd9/VV199pVmzZlWZF7Or3l/+\n8hf17t1bXbp0ueb3mV/1br31Vk2bNk3Dhw/X4cOHNWHCBFVWVvq+b/r8WnSouT1pwwgJCVF5ebmC\ng4N14sSJKpfFUdVnn32mtWvXav369bLb7cyulg4cOKCIiAjdcMMN6tGjhyorK9W2bVtmV0u7du3S\n4cOHtWvXLh0/flw2m40/e37o1KmTEhISJEk333yzOnbsqMLCwhYzvxZ96ZvbkzaM6Oho3xxzc3M1\naNCgZl6Rmc6dO6fly5fr9ddfV1hYmCRmV1t79+7Vhg0bJP34llVpaSmz88PKlSu1detW/fnPf9aY\nMWM0depU5ueHrKwsvfnmm5Ikt9utU6dOadSoUS1mfi3+zmQvvvii9u7d67s9affu3Zt7SUY7cOCA\nli1bpu+//16BgYHq1KmTXnytKYqYAAAArElEQVTxRaWlpenixYvq3Lmzli5dqqCgoOZeqnEyMzO1\nevVq/fKXv/RtS09P14IFC5hdDcrLyzV//nwdO3ZM5eXlmjZtmnr27Kk5c+YwOz+tXr1aN954owYO\nHMj8aun8+fN65plnVFJSooqKCk2bNk09evRoMfNr8aEGAKA1a9GXvgEAaO0INQAABiPUAAAYjFAD\nAGAwQg0AgMEINQAABiPUAAAYjFADAGCw/wdkB5RjykY3PgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "XtYZ7114n3b-" + }, + "cell_type": "markdown", + "source": [ + "## Accessing Data\n", + "\n", + "You can access `DataFrame` data using familiar Python dict/list operations:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "_TFm7-looBFF", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 104 + }, + "outputId": "87231f5f-9096-4419-d689-a6a307fb7186" + }, + "cell_type": "code", + "source": [ + "cities = pd.DataFrame({ 'City name': city_names, 'Population': population })\n", + "print(type(cities['City name']))\n", + "cities['City name']" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 San Francisco\n", + "1 San Jose\n", + "2 Sacramento\n", + "Name: City name, dtype: object" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "V5L6xacLoxyv", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "outputId": "e204a8f0-227d-4bc5-94ff-b4a3a9c8020f" + }, + "cell_type": "code", + "source": [ + "print(type(cities['City name'][1]))\n", + "cities['City name'][1]" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'San Jose'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "gcYX1tBPugZl", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 127 + }, + "outputId": "bb14876c-e323-498d-e682-4e6b7c2ddde8" + }, + "cell_type": "code", + "source": [ + "print(type(cities[0:2]))\n", + "cities[0:2]" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulation
0San Francisco852469
1San Jose1015785
\n", + "
" + ], + "text/plain": [ + " City name Population\n", + "0 San Francisco 852469\n", + "1 San Jose 1015785" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "65g1ZdGVjXsQ" + }, + "cell_type": "markdown", + "source": [ + "In addition, *pandas* provides an extremely rich API for advanced [indexing and selection](http://pandas.pydata.org/pandas-docs/stable/indexing.html) that is too extensive to be covered here." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "RM1iaD-ka3Y1" + }, + "cell_type": "markdown", + "source": [ + "## Manipulating Data\n", + "\n", + "You may apply Python's basic arithmetic operations to `Series`. For example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "XWmyCFJ5bOv-", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 87 + }, + "outputId": "69b3d9a6-9281-4560-8326-ace46139db59" + }, + "cell_type": "code", + "source": [ + "population / 1000." + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 852.469\n", + "1 1015.785\n", + "2 485.199\n", + "dtype: float64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TQzIVnbnmWGM" + }, + "cell_type": "markdown", + "source": [ + "[NumPy](http://www.numpy.org/) is a popular toolkit for scientific computing. *pandas* `Series` can be used as arguments to most NumPy functions:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "ko6pLK6JmkYP", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 87 + }, + "outputId": "9d4c8247-a27d-4eac-b25b-c475ea5ecd1d" + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "\n", + "np.log(population)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 13.655892\n", + "1 13.831172\n", + "2 13.092314\n", + "dtype: float64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "xmxFuQmurr6d" + }, + "cell_type": "markdown", + "source": [ + "For more complex single-column transformations, you can use `Series.apply`. Like the Python [map function](https://docs.python.org/2/library/functions.html#map), \n", + "`Series.apply` accepts as an argument a [lambda function](https://docs.python.org/2/tutorial/controlflow.html#lambda-expressions), which is applied to each value.\n", + "\n", + "The example below creates a new `Series` that indicates whether `population` is over one million:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Fc1DvPAbstjI", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 87 + }, + "outputId": "7e5dc837-7ecf-4825-a2c8-107a7181dec9" + }, + "cell_type": "code", + "source": [ + "population.apply(lambda val: val > 1000000)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 False\n", + "1 True\n", + "2 False\n", + "dtype: bool" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "ZeYYLoV9b9fB" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Modifying `DataFrames` is also straightforward. For example, the following code adds two `Series` to an existing `DataFrame`:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "0gCEX99Hb8LR", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 141 + }, + "outputId": "e473f9fb-a63d-416d-f939-7a1533568d7d" + }, + "cell_type": "code", + "source": [ + "cities['Area square miles'] = pd.Series([46.87, 176.53, 97.92])\n", + "cities['Population density'] = cities['Population'] / cities['Area square miles']\n", + "cities" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation density
0San Francisco85246946.8718187.945381
1San Jose1015785176.535754.177760
2Sacramento48519997.924955.055147
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density\n", + "0 San Francisco 852469 46.87 18187.945381\n", + "1 San Jose 1015785 176.53 5754.177760\n", + "2 Sacramento 485199 97.92 4955.055147" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 15 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "6qh63m-ayb-c" + }, + "cell_type": "markdown", + "source": [ + "## Exercise #1\n", + "\n", + "Modify the `cities` table by adding a new boolean column that is True if and only if *both* of the following are True:\n", + "\n", + " * The city is named after a saint.\n", + " * The city has an area greater than 50 square miles.\n", + "\n", + "**Note:** Boolean `Series` are combined using the bitwise, rather than the traditional boolean, operators. For example, when performing *logical and*, use `&` instead of `and`.\n", + "\n", + "**Hint:** \"San\" in Spanish means \"saint.\"" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "zCOn8ftSyddH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 141 + }, + "outputId": "1f6ade20-a41b-4f97-b9fa-10584b426881" + }, + "cell_type": "code", + "source": [ + "# Your code here\n", + "cities['Is wide and has saint name'] = (cities['Area square miles'] > 50) & cities['City name'].apply(lambda name: name.startswith('San'))\n", + "cities" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityIs wide and has saint name
0San Francisco85246946.8718187.945381False
1San Jose1015785176.535754.177760True
2Sacramento48519997.924955.055147False
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "\n", + " Is wide and has saint name \n", + "0 False \n", + "1 True \n", + "2 False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "YHIWvc9Ms-Ll" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "T5OlrqtdtCIb", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 141 + }, + "outputId": "bdcd30d7-1b56-41fe-bb04-76cc76c7e653" + }, + "cell_type": "code", + "source": [ + "cities['Is wide and has saint name'] = (cities['Area square miles'] > 50) & cities['City name'].apply(lambda name: name.startswith('San'))\n", + "cities" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityIs wide and has saint name
0San Francisco85246946.8718187.945381False
1San Jose1015785176.535754.177760True
2Sacramento48519997.924955.055147False
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "\n", + " Is wide and has saint name \n", + "0 False \n", + "1 True \n", + "2 False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "f-xAOJeMiXFB" + }, + "cell_type": "markdown", + "source": [ + "## Indexes\n", + "Both `Series` and `DataFrame` objects also define an `index` property that assigns an identifier value to each `Series` item or `DataFrame` row. \n", + "\n", + "By default, at construction, *pandas* assigns index values that reflect the ordering of the source data. Once created, the index values are stable; that is, they do not change when data is reordered." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "2684gsWNinq9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "6a9f066d-9031-40d7-e757-ce1414bbf238" + }, + "cell_type": "code", + "source": [ + "city_names.index" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RangeIndex(start=0, stop=3, step=1)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "F_qPe2TBjfWd", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "d5fb533e-4af1-4672-b9be-046cd9c25ab2" + }, + "cell_type": "code", + "source": [ + "cities.index" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RangeIndex(start=0, stop=3, step=1)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "hp2oWY9Slo_h" + }, + "cell_type": "markdown", + "source": [ + "Call `DataFrame.reindex` to manually reorder the rows. For example, the following has the same effect as sorting by city name:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "sN0zUzSAj-U1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 141 + }, + "outputId": "d0322ce9-b058-4f54-b11e-95d35d3e20db" + }, + "cell_type": "code", + "source": [ + "cities.reindex([2, 0, 1])" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityIs wide and has saint name
2Sacramento48519997.924955.055147False
0San Francisco85246946.8718187.945381False
1San Jose1015785176.535754.177760True
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "\n", + " Is wide and has saint name \n", + "2 False \n", + "0 False \n", + "1 True " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "-GQFz8NZuS06" + }, + "cell_type": "markdown", + "source": [ + "Reindexing is a great way to shuffle (randomize) a `DataFrame`. In the example below, we take the index, which is array-like, and pass it to NumPy's `random.permutation` function, which shuffles its values in place. Calling `reindex` with this shuffled array causes the `DataFrame` rows to be shuffled in the same way.\n", + "Try running the following cell multiple times!" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "mF8GC0k8uYhz", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 141 + }, + "outputId": "58d07058-0188-400e-d08c-d35590e074da" + }, + "cell_type": "code", + "source": [ + "cities.reindex(np.random.permutation(cities.index))" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityIs wide and has saint name
1San Jose1015785176.535754.177760True
0San Francisco85246946.8718187.945381False
2Sacramento48519997.924955.055147False
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "\n", + " Is wide and has saint name \n", + "1 True \n", + "0 False \n", + "2 False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 21 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "fSso35fQmGKb" + }, + "cell_type": "markdown", + "source": [ + "For more information, see the [Index documentation](http://pandas.pydata.org/pandas-docs/stable/indexing.html#index-objects)." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "8UngIdVhz8C0" + }, + "cell_type": "markdown", + "source": [ + "## Exercise #2\n", + "\n", + "The `reindex` method allows index values that are not in the original `DataFrame`'s index values. Try it and see what happens if you use such values! Why do you think this is allowed?" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "PN55GrDX0jzO", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 171 + }, + "outputId": "cc6495e8-83ab-4c10-c8fb-2f3650ed05ae" + }, + "cell_type": "code", + "source": [ + "# Your code here\n", + "cities.reindex([0, 4, 5, 2])" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityIs wide and has saint name
0San Francisco852469.046.8718187.945381False
4NaNNaNNaNNaNNaN
5NaNNaNNaNNaNNaN
2Sacramento485199.097.924955.055147False
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469.0 46.87 18187.945381 \n", + "4 NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN \n", + "2 Sacramento 485199.0 97.92 4955.055147 \n", + "\n", + " Is wide and has saint name \n", + "0 False \n", + "4 NaN \n", + "5 NaN \n", + "2 False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 22 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TJffr5_Jwqvd" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "8oSvi2QWwuDH" + }, + "cell_type": "markdown", + "source": [ + "If your `reindex` input array includes values not in the original `DataFrame` index values, `reindex` will add new rows for these \"missing\" indices and populate all corresponding columns with `NaN` values:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "yBdkucKCwy4x", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 171 + }, + "outputId": "14fa2073-d33e-4cad-f952-ff7ee0e05755" + }, + "cell_type": "code", + "source": [ + "cities.reindex([0, 4, 5, 2])" + ], + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityIs wide and has saint name
0San Francisco852469.046.8718187.945381False
4NaNNaNNaNNaNNaN
5NaNNaNNaNNaNNaN
2Sacramento485199.097.924955.055147False
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469.0 46.87 18187.945381 \n", + "4 NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN \n", + "2 Sacramento 485199.0 97.92 4955.055147 \n", + "\n", + " Is wide and has saint name \n", + "0 False \n", + "4 NaN \n", + "5 NaN \n", + "2 False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 23 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "2l82PhPbwz7g" + }, + "cell_type": "markdown", + "source": [ + "This behavior is desirable because indexes are often strings pulled from the actual data (see the [*pandas* reindex\n", + "documentation](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html) for an example\n", + "in which the index values are browser names).\n", + "\n", + "In this case, allowing \"missing\" indices makes it easy to reindex using an external list, as you don't have to worry about\n", + "sanitizing the input." + ] + } + ] +} \ No newline at end of file From c2db7d40051f7a17e7b8c364d7516b86d5becf0f Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sat, 23 Feb 2019 21:09:01 +0530 Subject: [PATCH 02/11] Created using Colaboratory --- first_steps_with_tensor_flow.ipynb | 1651 ++++++++++++++++++++++++++++ 1 file changed, 1651 insertions(+) create mode 100644 first_steps_with_tensor_flow.ipynb diff --git a/first_steps_with_tensor_flow.ipynb b/first_steps_with_tensor_flow.ipynb new file mode 100644 index 0000000..2f0a0b5 --- /dev/null +++ b/first_steps_with_tensor_flow.ipynb @@ -0,0 +1,1651 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "first_steps_with_tensor_flow.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "ajVM7rkoYXeL", + "ci1ISxxrZ7v0" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4f3CKqFUqL2-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# First Steps with TensorFlow" + ] + }, + { + "metadata": { + "id": "Bd2Zkk1LE2Zr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Learn fundamental TensorFlow concepts\n", + " * Use the `LinearRegressor` class in TensorFlow to predict median housing price, at the granularity of city blocks, based on one input feature\n", + " * Evaluate the accuracy of a model's predictions using Root Mean Squared Error (RMSE)\n", + " * Improve the accuracy of a model by tuning its hyperparameters" + ] + }, + { + "metadata": { + "id": "MxiIKhP4E2Zr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The [data](https://developers.google.com/machine-learning/crash-course/california-housing-data-description) is based on 1990 census data from California." + ] + }, + { + "metadata": { + "id": "6TjLjL9IU80G", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "In this first cell, we'll load the necessary libraries." + ] + }, + { + "metadata": { + "id": "rVFf5asKE2Zt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ipRyUHjhU80Q", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll load our data set." + ] + }, + { + "metadata": { + "id": "9ivCDWnwE2Zx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "vVk_qlG6U80j", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We'll randomize the data, just to be sure not to get any pathological ordering effects that might harm the performance of Stochastic Gradient Descent. Additionally, we'll scale `median_house_value` to be in units of thousands, so it can be learned a little more easily with learning rates in a range that we usually use." + ] + }, + { + "metadata": { + "id": "r0eVyguIU80m", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 435 + }, + "outputId": "a4b00c48-500e-45ce-eeca-0ebe541ad62d" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))\n", + "california_housing_dataframe[\"median_house_value\"] /= 1000.0\n", + "california_housing_dataframe" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
4616-118.133.821.03941.0655.01897.0670.04.9343.9
10609-120.537.319.01548.0319.01227.0309.01.873.3
9855-119.736.811.05112.01384.02487.01243.02.175.9
3384-117.933.731.01120.0296.01718.0268.02.8140.3
9011-119.035.329.03480.0608.02007.0541.03.378.7
..............................
10617-120.534.68.02482.0586.01427.0540.03.1120.4
8849-118.734.38.04983.0754.02510.0725.06.9276.5
5112-118.133.836.01665.0291.0721.0294.04.7250.7
3882-118.033.834.01654.0285.0905.0292.04.6214.6
6999-118.333.940.01917.0438.01021.0383.02.2175.0
\n", + "

17000 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "4616 -118.1 33.8 21.0 3941.0 655.0 \n", + "10609 -120.5 37.3 19.0 1548.0 319.0 \n", + "9855 -119.7 36.8 11.0 5112.0 1384.0 \n", + "3384 -117.9 33.7 31.0 1120.0 296.0 \n", + "9011 -119.0 35.3 29.0 3480.0 608.0 \n", + "... ... ... ... ... ... \n", + "10617 -120.5 34.6 8.0 2482.0 586.0 \n", + "8849 -118.7 34.3 8.0 4983.0 754.0 \n", + "5112 -118.1 33.8 36.0 1665.0 291.0 \n", + "3882 -118.0 33.8 34.0 1654.0 285.0 \n", + "6999 -118.3 33.9 40.0 1917.0 438.0 \n", + "\n", + " population households median_income median_house_value \n", + "4616 1897.0 670.0 4.9 343.9 \n", + "10609 1227.0 309.0 1.8 73.3 \n", + "9855 2487.0 1243.0 2.1 75.9 \n", + "3384 1718.0 268.0 2.8 140.3 \n", + "9011 2007.0 541.0 3.3 78.7 \n", + "... ... ... ... ... \n", + "10617 1427.0 540.0 3.1 120.4 \n", + "8849 2510.0 725.0 6.9 276.5 \n", + "5112 721.0 294.0 4.7 250.7 \n", + "3882 905.0 292.0 4.6 214.6 \n", + "6999 1021.0 383.0 2.2 175.0 \n", + "\n", + "[17000 rows x 9 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "HzzlSs3PtTmt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Examine the Data\n", + "\n", + "It's a good idea to get to know your data a little bit before you work with it.\n", + "\n", + "We'll print out a quick summary of a few useful statistics on each column: count of examples, mean, standard deviation, max, min, and various quantiles." + ] + }, + { + "metadata": { + "id": "gzb10yoVrydW", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + }, + "outputId": "4f38a84c-d36b-48cf-cdc7-1411b5fc6d5f" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.describe()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
count17000.017000.017000.017000.017000.017000.017000.017000.017000.0
mean-119.635.628.62643.7539.41429.6501.23.9207.3
std2.02.112.62179.9421.51147.9384.51.9116.0
min-124.332.51.02.01.03.01.00.515.0
25%-121.833.918.01462.0297.0790.0282.02.6119.4
50%-118.534.229.02127.0434.01167.0409.03.5180.4
75%-118.037.737.03151.2648.21721.0605.24.8265.0
max-114.342.052.037937.06445.035682.06082.015.0500.0
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "count 17000.0 17000.0 17000.0 17000.0 17000.0 \n", + "mean -119.6 35.6 28.6 2643.7 539.4 \n", + "std 2.0 2.1 12.6 2179.9 421.5 \n", + "min -124.3 32.5 1.0 2.0 1.0 \n", + "25% -121.8 33.9 18.0 1462.0 297.0 \n", + "50% -118.5 34.2 29.0 2127.0 434.0 \n", + "75% -118.0 37.7 37.0 3151.2 648.2 \n", + "max -114.3 42.0 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income median_house_value \n", + "count 17000.0 17000.0 17000.0 17000.0 \n", + "mean 1429.6 501.2 3.9 207.3 \n", + "std 1147.9 384.5 1.9 116.0 \n", + "min 3.0 1.0 0.5 15.0 \n", + "25% 790.0 282.0 2.6 119.4 \n", + "50% 1167.0 409.0 3.5 180.4 \n", + "75% 1721.0 605.2 4.8 265.0 \n", + "max 35682.0 6082.0 15.0 500.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "id": "Lr6wYl2bt2Ep", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Build the First Model\n", + "\n", + "In this exercise, we'll try to predict `median_house_value`, which will be our label (sometimes also called a target). We'll use `total_rooms` as our input feature.\n", + "\n", + "**NOTE:** Our data is at the city block level, so this feature represents the total number of rooms in that block.\n", + "\n", + "To train our model, we'll use the [LinearRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor) interface provided by the TensorFlow [Estimator](https://www.tensorflow.org/get_started/estimator) API. This API takes care of a lot of the low-level model plumbing, and exposes convenient methods for performing model training, evaluation, and inference." + ] + }, + { + "metadata": { + "id": "0cpcsieFhsNI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 1: Define Features and Configure Feature Columns" + ] + }, + { + "metadata": { + "id": "EL8-9d4ZJNR7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In order to import our training data into TensorFlow, we need to specify what type of data each feature contains. There are two main types of data we'll use in this and future exercises:\n", + "\n", + "* **Categorical Data**: Data that is textual. In this exercise, our housing data set does not contain any categorical features, but examples you might see would be the home style, the words in a real-estate ad.\n", + "\n", + "* **Numerical Data**: Data that is a number (integer or float) and that you want to treat as a number. As we will discuss more later sometimes you might want to treat numerical data (e.g., a postal code) as if it were categorical.\n", + "\n", + "In TensorFlow, we indicate a feature's data type using a construct called a **feature column**. Feature columns store only a description of the feature data; they do not contain the feature data itself.\n", + "\n", + "To start, we're going to use just one numeric input feature, `total_rooms`. The following code pulls the `total_rooms` data from our `california_housing_dataframe` and defines the feature column using `numeric_column`, which specifies its data is numeric:" + ] + }, + { + "metadata": { + "id": "rhEbFCZ86cDZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Define the input feature: total_rooms.\n", + "my_feature = california_housing_dataframe[[\"total_rooms\"]]\n", + "\n", + "# Configure a numeric feature column for total_rooms.\n", + "feature_columns = [tf.feature_column.numeric_column(\"total_rooms\")]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "K_3S8teX7Rd2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** The shape of our `total_rooms` data is a one-dimensional array (a list of the total number of rooms for each block). This is the default shape for `numeric_column`, so we don't have to pass it as an argument." + ] + }, + { + "metadata": { + "id": "UMl3qrU5MGV6", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 2: Define the Target" + ] + }, + { + "metadata": { + "id": "cw4nrfcB7kyk", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll define our target, which is `median_house_value`. Again, we can pull it from our `california_housing_dataframe`:" + ] + }, + { + "metadata": { + "id": "l1NvvNkH8Kbt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Define the label.\n", + "targets = california_housing_dataframe[\"median_house_value\"]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4M-rTFHL2UkA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 3: Configure the LinearRegressor" + ] + }, + { + "metadata": { + "id": "fUfGQUNp7jdL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll configure a linear regression model using LinearRegressor. We'll train this model using the `GradientDescentOptimizer`, which implements Mini-Batch Stochastic Gradient Descent (SGD). The `learning_rate` argument controls the size of the gradient step.\n", + "\n", + "**NOTE:** To be safe, we also apply [gradient clipping](https://developers.google.com/machine-learning/glossary/#gradient_clipping) to our optimizer via `clip_gradients_by_norm`. Gradient clipping ensures the magnitude of the gradients do not become too large during training, which can cause gradient descent to fail. " + ] + }, + { + "metadata": { + "id": "ubhtW-NGU802", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 139 + }, + "outputId": "46cea246-4e75-472e-c0df-89e62a847964" + }, + "cell_type": "code", + "source": [ + "# Use gradient descent as the optimizer for training the model.\n", + "my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0000001)\n", + "my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + "\n", + "# Configure the linear regression model with our feature columns and optimizer.\n", + "# Set a learning rate of 0.0000001 for Gradient Descent.\n", + "linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + ")" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-0IztwdK2f3F", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 4: Define the Input Function" + ] + }, + { + "metadata": { + "id": "S5M5j6xSCHxx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To import our California housing data into our `LinearRegressor`, we need to define an input function, which instructs TensorFlow how to preprocess\n", + "the data, as well as how to batch, shuffle, and repeat it during model training.\n", + "\n", + "First, we'll convert our *pandas* feature data into a dict of NumPy arrays. We can then use the TensorFlow [Dataset API](https://www.tensorflow.org/programmers_guide/datasets) to construct a dataset object from our data, and then break\n", + "our data into batches of `batch_size`, to be repeated for the specified number of epochs (num_epochs). \n", + "\n", + "**NOTE:** When the default value of `num_epochs=None` is passed to `repeat()`, the input data will be repeated indefinitely.\n", + "\n", + "Next, if `shuffle` is set to `True`, we'll shuffle the data so that it's passed to the model randomly during training. The `buffer_size` argument specifies\n", + "the size of the dataset from which `shuffle` will randomly sample.\n", + "\n", + "Finally, our input function constructs an iterator for the dataset and returns the next batch of data to the LinearRegressor." + ] + }, + { + "metadata": { + "id": "RKZ9zNcHJtwc", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(buffer_size=10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "wwa6UeA1V5F_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** We'll continue to use this same input function in later exercises. For more\n", + "detailed documentation of input functions and the `Dataset` API, see the [TensorFlow Programmer's Guide](https://www.tensorflow.org/programmers_guide/datasets)." + ] + }, + { + "metadata": { + "id": "4YS50CQb2ooO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 5: Train the Model" + ] + }, + { + "metadata": { + "id": "yP92XkzhU803", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We can now call `train()` on our `linear_regressor` to train the model. We'll wrap `my_input_fn` in a `lambda`\n", + "so we can pass in `my_feature` and `target` as arguments (see this [TensorFlow input function tutorial](https://www.tensorflow.org/get_started/input_fn#passing_input_fn_data_to_your_model) for more details), and to start, we'll\n", + "train for 100 steps." + ] + }, + { + "metadata": { + "id": "5M-Kt6w8U803", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = linear_regressor.train(\n", + " input_fn = lambda:my_input_fn(my_feature, targets),\n", + " steps=100\n", + ")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "7Nwxqxlx2sOv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 6: Evaluate the Model" + ] + }, + { + "metadata": { + "id": "KoDaF2dlJQG5", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's make predictions on that training data, to see how well our model fit it during training.\n", + "\n", + "**NOTE:** Training error measures how well your model fits the training data, but it **_does not_** measure how well your model **_generalizes to new data_**. In later exercises, you'll explore how to split your data to evaluate your model's ability to generalize.\n" + ] + }, + { + "metadata": { + "id": "pDIxp6vcU809", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "outputId": "89194691-5a67-44c2-b693-7ba9fe7589a4" + }, + "cell_type": "code", + "source": [ + "# Create an input function for predictions.\n", + "# Note: Since we're making just one prediction for each example, we don't \n", + "# need to repeat or shuffle the data here.\n", + "prediction_input_fn =lambda: my_input_fn(my_feature, targets, num_epochs=1, shuffle=False)\n", + "\n", + "# Call predict() on the linear_regressor to make predictions.\n", + "predictions = linear_regressor.predict(input_fn=prediction_input_fn)\n", + "\n", + "# Format predictions as a NumPy array, so we can calculate error metrics.\n", + "predictions = np.array([item['predictions'][0] for item in predictions])\n", + "\n", + "# Print Mean Squared Error and Root Mean Squared Error.\n", + "mean_squared_error = metrics.mean_squared_error(predictions, targets)\n", + "root_mean_squared_error = math.sqrt(mean_squared_error)\n", + "print(\"Mean Squared Error (on training data): %0.3f\" % mean_squared_error)\n", + "print(\"Root Mean Squared Error (on training data): %0.3f\" % root_mean_squared_error)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Mean Squared Error (on training data): 56367.025\n", + "Root Mean Squared Error (on training data): 237.417\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "AKWstXXPzOVz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Is this a good model? How would you judge how large this error is?\n", + "\n", + "Mean Squared Error (MSE) can be hard to interpret, so we often look at Root Mean Squared Error (RMSE)\n", + "instead. A nice property of RMSE is that it can be interpreted on the same scale as the original targets.\n", + "\n", + "Let's compare the RMSE to the difference of the min and max of our targets:" + ] + }, + { + "metadata": { + "id": "7UwqGbbxP53O", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 87 + }, + "outputId": "e6d0eed7-7299-4fc4-94b8-a33a2e999217" + }, + "cell_type": "code", + "source": [ + "min_house_value = california_housing_dataframe[\"median_house_value\"].min()\n", + "max_house_value = california_housing_dataframe[\"median_house_value\"].max()\n", + "min_max_difference = max_house_value - min_house_value\n", + "\n", + "print(\"Min. Median House Value: %0.3f\" % min_house_value)\n", + "print(\"Max. Median House Value: %0.3f\" % max_house_value)\n", + "print(\"Difference between Min. and Max.: %0.3f\" % min_max_difference)\n", + "print(\"Root Mean Squared Error: %0.3f\" % root_mean_squared_error)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Min. Median House Value: 14.999\n", + "Max. Median House Value: 500.001\n", + "Difference between Min. and Max.: 485.002\n", + "Root Mean Squared Error: 237.417\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "JigJr0C7Pzit", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Our error spans nearly half the range of the target values. Can we do better?\n", + "\n", + "This is the question that nags at every model developer. Let's develop some basic strategies to reduce model error.\n", + "\n", + "The first thing we can do is take a look at how well our predictions match our targets, in terms of overall summary statistics." + ] + }, + { + "metadata": { + "id": "941nclxbzqGH", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 294 + }, + "outputId": "3d87d750-bada-4ae8-ea6e-024847c871e8" + }, + "cell_type": "code", + "source": [ + "calibration_data = pd.DataFrame()\n", + "calibration_data[\"predictions\"] = pd.Series(predictions)\n", + "calibration_data[\"targets\"] = pd.Series(targets)\n", + "calibration_data.describe()" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean0.1207.3
std0.1116.0
min0.015.0
25%0.1119.4
50%0.1180.4
75%0.2265.0
max1.9500.0
\n", + "
" + ], + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 0.1 207.3\n", + "std 0.1 116.0\n", + "min 0.0 15.0\n", + "25% 0.1 119.4\n", + "50% 0.1 180.4\n", + "75% 0.2 265.0\n", + "max 1.9 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "id": "E2-bf8Hq36y8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Okay, maybe this information is helpful. How does the mean value compare to the model's RMSE? How about the various quantiles?\n", + "\n", + "We can also visualize the data and the line we've learned. Recall that linear regression on a single feature can be drawn as a line mapping input *x* to output *y*.\n", + "\n", + "First, we'll get a uniform random sample of the data so we can make a readable scatter plot." + ] + }, + { + "metadata": { + "id": "SGRIi3mAU81H", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "sample = california_housing_dataframe.sample(n=300)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "N-JwuJBKU81J", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll plot the line we've learned, drawing from the model's bias term and feature weight, together with the scatter plot. The line will show up red." + ] + }, + { + "metadata": { + "id": "7G12E76-339G", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 361 + }, + "outputId": "ec51b770-665b-4f37-c673-2fa7d5979fdf" + }, + "cell_type": "code", + "source": [ + "# Get the min and max total_rooms values.\n", + "x_0 = sample[\"total_rooms\"].min()\n", + "x_1 = sample[\"total_rooms\"].max()\n", + "\n", + "# Retrieve the final weight and bias generated during training.\n", + "weight = linear_regressor.get_variable_value('linear/linear_model/total_rooms/weights')[0]\n", + "bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + "\n", + "# Get the predicted median_house_values for the min and max total_rooms values.\n", + "y_0 = weight * x_0 + bias \n", + "y_1 = weight * x_1 + bias\n", + "\n", + "# Plot our regression line from (x_0, y_0) to (x_1, y_1).\n", + "plt.plot([x_0, x_1], [y_0, y_1], c='r')\n", + "\n", + "# Label the graph axes.\n", + "plt.ylabel(\"median_house_value\")\n", + "plt.xlabel(\"total_rooms\")\n", + "\n", + "# Plot a scatter plot from our data sample.\n", + "plt.scatter(sample[\"total_rooms\"], sample[\"median_house_value\"])\n", + "\n", + "# Display graph.\n", + "plt.show()" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFYCAYAAACoFn5YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8FOW9B/7P7ia7m5ANuavcCoab\nyl2kiiICQcRWxcpFI7ReqvaI/dnWHmy91mrrUU491h57+VGpSuVXbOzhRVstSAGLCKgEAthCSLAF\nwiW7ySaby96yO78/0l02m5nZmc3MZnbzef9ldmdnn0lwvvM8z/f5PiZBEAQQERFRWjL3dwOIiIgo\neQzkREREaYyBnIiIKI0xkBMREaUxBnIiIqI0xkBORESUxrL6uwHJcDrbdDt3YWEu3O5O3c6fKrwO\nY+F1GAuvw1gy4Tr0vobSUofke+yRx8nKsvR3EzTB6zAWXoex8DqMJROuoz+vgYGciIgojTGQExER\npTEGciIiojTGQE5ERJTGGMiJiIjSGAM5ERFRGmMgJyIiSmMM5EnyB0NodHfCHwxpei4l55U6JvZ1\nX6BLs/ap5Q+GcMrZjlONbZJtbOsMyLYvcpwv0JWKJhMRpS3dKrvt3bsXDz/8MMaMGQMAGDt2LL7+\n9a9j1apVCIVCKC0txerVq2G1WrFp0ya88cYbMJvNWLp0KZYsWaJXs/osFA5jw7Y67K91otnjR1G+\nDVPHlmLZ3NGwmNU9F8Weq8njh91qBmCCPxASPa/Udy++7mJU7Tgefd1mtcBkArz+EIr70L4IfzCE\n1nY/BufZYMuWLnoQCofxu78ew65DZ+ELdAdou9WMmRMvwtI55ajacRzVRxvR3BaA2QSEBfRqX/w1\nlhbmYFJ5cZ/aT0SUyXQt0Tpjxgy88sor0Z+///3vo7KyEgsXLsRLL72EqqoqLFq0CK+++iqqqqqQ\nnZ2NxYsXY/78+SgoKNCzaUnbsK0OWz89Ff25yeOP/lxZMbZP5/IFwrLnlfruoydacLKxPeY8Idnz\nKKX2oWXDtjr8dV9Dj9d8gTC27WvAsZOtPdoYFsTbF3+NjW5v0u0nIhoIUtrF2bt3L+bNmwcAmDNn\nDnbv3o2amhpMnDgRDocDdrsd06ZNQ3V1dSqbpZg/GML+Wqfoe/trXaqGseXOJXZeueMbnO2ir/el\nfcD5B4cmjx8CzgfdDdvqeh2b6HpONcq3cX+tC22dAc1+v0REA4WuPfK6ujp84xvfQGtrKx566CF4\nvV5YrVYAQHFxMZxOJ1wuF4qKiqKfKSoqgtMpH+AKC3N1rWsrVZz+jKsDzW1+0ffcbT5YrNkoLRmk\n6DvkziV2XgCSx0d6t0rOo7R9vkAXDtY3ib53sL4JD9yWA7v1/D+fM64ONHukrydRE91tPrQFwpr9\nfo1IbtODdMLrMBZeh3H01zXoFshHjhyJhx56CAsXLsTJkyfx1a9+FaHQ+R6VIIjf2qVej6X3DjNS\nu6uFgiEUOWxoEglYhQ47QoGg4p3Z5M4ldl4AksdH5puVnEdp+xrdnXC6vaLvuVq8qP9nE8oKc6Ov\nhYLd8/pS12OCfDAvdNjhsJo1+/0ajdy/q3TC6zAWXodx6H0N/bL72QUXXIAbb7wRJpMJI0aMQElJ\nCVpbW+Hz+QAA586dQ1lZGcrKyuByuaKfa2xsRFlZmV7N6hNbtgVTx5aKvjd1bIlsIpiac4mdV+74\noaV5is+j1OA8G4rybaLvFTrsGJzX871E1zOsTL6NU8eWwJFr1ez3S0Q0UOgWyDdt2oTXXnsNAOB0\nOtHU1ISvfOUr2Lx5MwBgy5YtmDVrFiZPnoxDhw7B4/Ggo6MD1dXVmD59ul7N6rNlc0ejYvowFOfb\nYTYBxfl2VEwfhmVzR/fpXCYAdqsFdqtF8rxS3/34V6f1eN1utSDHZoEJybcvmYeWZXNHY97lQ2G3\nnn/PbrVg7uVDo20scnQ/AJhN3e8X59t6tC/+GssKc5L+/RIRDQQmQclYdhLa29vx3e9+Fx6PB8Fg\nEA899BAuueQSPProo/D7/RgyZAief/55ZGdn4y9/+Qtee+01mEwmLF++HDfffLPsufUevlByfqVL\nspSIPReAhOeV+u7Y10tK8lD/z6Y+te981roL7jYfCh12TB1bknApmD8YgrPFCwgCSgtzRduYY8uC\n198l2b7IceUji9HWKj7En04yYegQ4HUYDa/DOPpzaF23QK4nIwRyo9PyOrR8aFGLfw9j4XUYC6/D\nOPozkOuatU6ZwZZt6ZHYRkRExsFSWURERGmMgZyIiCiNMZATERGlMQZyIiKiNMZATkRElMYYyImI\niNIYAzkREVEaYyAnIiJKYwzkREREaYyBnIiIKI0xkBMREaUxBnIiIqI0xkBORESUxhjIiYiI0hgD\nORERURpjICciIkpjDORERERpjIGciIgojTGQExERpTEGciIiojTGQE5ERJTGGMiJiIjSGAM5ERFR\nGmMg15k/GEKjuxP+YKi/m0JERBkoq78bkKlC4TA2bKvD/lonmj1+FOXbMHVsKZbNHQ2Lmc9PRESk\nDQZynWzYVoetn56K/tzk8Ud/rqwY21/NIiKiDMOuoQ78wRD21zpF39tf6+IwOxERaYaBXAet7X40\ne/yi77nbfGhtF3+P8+lERKQWh9Z1MDjPhqJ8G5pEgnmhw47BebYer2X6fLo/GEJrux+D82ywZVv6\nuzlERBmFgVwHtmwLpo4t7TFHHjF1bEmvYJap8+mZ/oBCRGQEvJvqZNnc0aiYPgzF+XaYTUBxvh0V\n04dh2dzRPY7L5Pn0yANKk8cPAecfUDZsq+vvphERZQz2yHViMZtRWTEWt80ulx1WVjKfXlaYq3dz\nNZfoAeW22eUcZici0gB75DqzZVtQVpgrGbQi8+lixObT00WyCX9ERKQOA3k/i8yni4mdT0+3jPZM\nfUAhIjIaDq0bQGTefH+tC+42HwoddkwdW4Jlc0enNGFMy+xytQl/RESUHAZyA5CbT1+/tVb3jHa9\nHhbkHlCIiEgbDOQGEplPj0hVwphey9+UJvwREVHyOEduYKlIGEvF8rdECX9ERJQ8BnIDS0XCGLPL\niYjSGwO5gSnNaO8LZpcTEaU3BnKDU1ohLlmpeFggIiL9MNnN4FKRMMbsciKi9MVAnibiM9q1xOxy\nIqL0xUCegfzBEM64OhAKhlQFZD0fFoiISB+6BnKfz4cvf/nLePDBB3HVVVdh1apVCIVCKC0txerV\nq2G1WrFp0ya88cYbMJvNWLp0KZYsWaJnkzKGWBW2HoVd2vwocnDbUCKiTKdrIP/FL36BwYMHAwBe\neeUVVFZWYuHChXjppZdQVVWFRYsW4dVXX0VVVRWys7OxePFizJ8/HwUFBXo2K63JVWHL1H3NiYhI\nmm7dtPr6etTV1eG6664DAOzduxfz5s0DAMyZMwe7d+9GTU0NJk6cCIfDAbvdjmnTpqG6ulqvJmUE\nqT2+1289lrH7mhMRkTTdAvkLL7yA733ve9GfvV4vrFYrAKC4uBhOpxMulwtFRUXRY4qKiuB0igcj\nkq/CdqDWhSYWdiEiGnB0GVrfuHEjpkyZguHDh4u+LwiCqtfjFRbmIitLv6zq0lKHbufuizOuDjS3\niQfk1o7uYXaxKm0lBTkoH1kMuzU9cxuN+vdQi9dhLLwOY8mE6+iva9Dlzr5jxw6cPHkSO3bswNmz\nZ2G1WpGbmwufzwe73Y5z586hrKwMZWVlcLlc0c81NjZiypQpCc/vdnfq0WwA3X8Ip7NNt/P3RSgY\nQpHDJtrzLnTYMam8CNv3n+713qTyYrS1emHMq5Jn5L+HGrwOY+F1GEsmXIfe1yD3kKDL0PrLL7+M\nd955B2+//TaWLFmCBx98EDNnzsTmzZsBAFu2bMGsWbMwefJkHDp0CB6PBx0dHaiursb06dP1aFJG\nSFSFrXL+WF2rwBERkfGkbKz1m9/8Jh599FFs2LABQ4YMwaJFi5CdnY1HHnkE9957L0wmE1auXAmH\nI/2HV/QkV4UttrCLxZqNUCDIwi5EInyBLjS6O1n8iDKCSVA6MW0geg9f9PcQj9gacbXHGOE6tMDr\nMJZ0v47I8s2D9U1wur09lm+mY62FdP97RGTCdfTn0Hp6Zj9lKLk14vE3GVZhI1KPtRYoE6XfI2gG\nk1ojvmFbXX83LSP5gyE0uju5xn6AkFu+yVoLlM7YIzeIRDeZ22aXcy5PI2pGPihztLb7RZdnAudr\nLXCUi9IR71oGoeQmQ9rgyEf/6c9RkMF5NhTl20TfK3TYMThP/D0io2OP3CAiNxmpNeL9fZNRkoCX\nDjjy0T+MMAoSWb4ZO0ceMXVsCf/ulLYYyA3CCDeZhDuqZcAwNIdX+4dRkswiyzcP1jfB1eLtsXyT\nKF0xkBuI3BpxPQ2kHdWMPvKRiYw0ChKptfDAbTmo/2dT2o8wEQEM5IYSW9AllcPYUsE6FArjYH2T\n6GfSdRjaCCMfA40RR0Hs1iyOvFDGYCA3oFSuEZftLR1zobU9IPpeOg9D99fIx0DFURAifTGQD3By\nvaXW9gAK8mxwi2TMp/MNuL9GPgYqjoIQ6Sv9spVIU3JLcory7ZgytkT0vUy4AUdGPtL9OtLBsrmj\nuaEPkU7YIx/gbNkWTB5Tgm37Gnq9N3lMMe6YNwYWs4nD0NQnHAUh0g8DOcEk8zpvwKQl7hFApD0O\nrfcDI9X4busMoPqoS/S9A8eaom3UYhjaSNdNRJQp2CNPISMVV4m05dMjjWjROTPdSNdNRJRpGMhT\nyEjFVeLbIkarzHQjXTcRUaZhdyhFjLSFolxbYmmRmW6k6840nKogIoA98pQxUnUrubYAQGGeDZeP\nL9UkM91I150pOFVBRLEYyFOkP6tbxW+GIteWgjwrfnDPFXDkWjX5br2uO1N2Y0sGpyqIKBYDeYr0\nR3UruZ6bVFumjy9LGMTVBFGtr3ug90aNtAEJERkDA3kKpbrGt1zPLZm2JBtEtbzugd4b5VQFEcVj\nIE+hVBZX8QW6Evbc1LYl2SCq1XWzN8oNSIiot8wfi+xnYpnFfSmuojRT2e1J3HNT0xYtss/7WlRG\nSW8000WmKsRkQv17IlKPPXKNReaPrdkWvLOjHkdOuDWZy1U7rF2Yr23PzQhDuuyNduM2rEQUi4Fc\nI7GBVizQ9HUuV+2wtt2apWmSmRGCKLfD7Mb690QUi0PrGokEWrFAFyuZIijJDmtruXWkUYZ0uR3m\nedyGlYgAlT3y2tpanDhxAhUVFfB4PMjPz9erXWlFaaU0ILlh6GSHtbXuufV1SFeLtd/sjRIR9aQ4\nkL/++uv405/+hEAggIqKCvz85z9Hfn4+HnzwQT3blxYSVUqLlcwwdF+HtbXaOjLZIKrH2m9uh0lE\n1E3xXfRPf/oT3n77bQwePBgAsGrVKuzYsUOvdqWVSKBVIplhaD2GtftSp1vtkG7stIOA8/P7G7bV\nqf5uIiLqSXGPfNCgQTDH9J7MZnOPnwcyuSSsCLvVgmsmXZT0XK5WmcqprozGtd9ERPpSHMhHjBiB\n//3f/4XH48GWLVvw7rvvory8XM+2pZXzgbY7a91sAsICUJhnxSUji1A5fwxybdlJnz+ZYW2xOelU\nV0YzwrI1IqJMpjiQP/XUU3jzzTdxwQUXYNOmTbj88stx55136tm2tBIfaHNsWfD6uzRPxlIyNxwK\nh7Fm4yHsqmno0eteNOvilPeOjbBsjYgokykO5BaLBXfffTfuvvtuPduT9mIDrVY7iKkl1ev2+rpS\n3juWm3YYP6JA0+8iIhqIFAfySy+9FCaTKfqzyWSCw+HA3r17dWkYJUduTvrICTcKHVY0twV6vadn\n7zh+ft+abQEgYNfhszhywj2gdi8TM5C3ZCWivlMcyI8cORL970AggN27d+Po0aO6NCrTSd24tbih\ny89J+3HlZRfio8Nne703qbxIt2ASO+2wbvPRHt8/0HYvizXQt2QlIm0kVaLVarVi9uzZWLt2Le6/\n/36t25SxpG7ci6+7GFU7jmtyQ080J105fwxy7VnR3nFBng2DcrJxsL4JO/af1j2YHD3hFn19IGaw\nD/QtWYlIG4oDeVVVVY+fz549i3PnzmneoEwmdeM+eqIFJxvbe70OqL+hJ6pHnmvL7pGUt/mTk9he\n3dDru0OhMBbMGKFpD50Z7OdxWR4RaUVxIN+3b1+Pn/Py8vDyyy9r3qBMJXfjbnC2i76e7A192dzR\nyM2xYlfNack157ZsCwbn2XCwziV6jg8OnNa8h84M9vP4UENEWlEcyJ9//nk925Hx5G7cYUH8M8ne\n0C1mM+5bNBELZwyXnfdu9vgkN3mJtCnaQw8LWHDF8D710Ll72Xnp+FDjD4ZwxtWBUDA0oP5WREaX\nMJDPnj27R7Z6PJZpVUbuxi2lrzf0RGvOt+6TrkQX74P9Ddhe3YDiPvbQuZd2t3R6qOmR29HmR5GD\nSXlERpIwkK9fv17yPY/Ho2ljMpmSMq7x9Lyh+4MhyWF1MfE9dCC5hCzuXnZeujzUMCmPyNgSBvKh\nQ4dG/7uurg5ud3fWcSAQwHPPPYf33ntPv9ZlmMgNet8RJ9zt0j3zwjwbLh9fqusNXc2ObWL6mpDF\n3cvS46GGSXlExqd4jvy5557Drl274HK5MGLECJw8eRL33HOPnm3LOJEb900zR+LptR+jpb13YZaC\nPCt+cM8VuleFS2aoPxYTsrRj5IcaJuURGZ/iCa5Dhw7hvffew/jx4/HOO+9g7dq18Hq9erYtYzly\nrZg+vkz0venjy1JS2lVua9ThZXkozrfDZALMEukRRk3IIm3JbdHLfwNExqC4R261dgeXYDAIQRAw\nYcIEvPDCC7o1LNMZYX5Urg1dIaF7nfnHJ7B9/+lenzVaQhbpI52S8ogGKsWBfNSoUXjrrbcwffp0\n3H333Rg1ahTa2tr0bFtGUzo/qmcdbrk2WMxAWWEuKuePhcViNnxCFunHCA+dRCTNJAiCxCrm3lpa\nWpCfn48//elPaG5uxg033IALL7xQ9Fiv14vvfe97aGpqgt/vx4MPPojx48dj1apVCIVCKC0txerV\nq2G1WrFp0ya88cYbMJvNWLp0KZYsWSLbDqdTvweI0lKHrudXqq91uLW+jv7a2MMof4++yoTr8AdD\nsFizEQoE074nngl/D4DXYSR6X0NpqUPyPcU98qVLl+KWW27Bl770Jdx8880Jj9++fTsmTJiA++67\nDw0NDbjnnnswbdo0VFZWYuHChXjppZdQVVWFRYsW4dVXX0VVVRWys7OxePFizJ8/HwUFA3uLy74s\n+dGjcIeRE7IoNWzZFpSWDEr7Gy5RplEcyB999FG89957uPXWWzF+/HjccsstmDt3bnTuPN6NN94Y\n/e8zZ87gggsuwN69e/HMM88AAObMmYO1a9di1KhRmDhxIhyO7qeNadOmobq6GnPnzu3LdaU1uSU/\n1Uedkkt+WLgjM3GbUyKSoziQX3755bj88svx+OOP4+OPP8amTZvwgx/8AHv27JH93O23346zZ8/i\nl7/8Je6+++5o4C8uLobT6YTL5UJRUVH0+KKiIjid4kEsorAwF1lZ+t3Q5IYwUuGMqwPNbeJLfprb\n/Pj9B8fx/yydAoulZ3Bes/GQaC8+N8eK+xZN1LXNeurvv4dW1F5HKBTG2j9+hj2Hz8DZ4kVpQQ6u\nnHAR7rnpsl5/+1QaqH8Po+J1GEd/XYOqbUw9Hg+2bt2Kv/zlLzh58iSWLVuW8DO/+93v8I9//AP/\n+Z//idjpeKmpeSVT9m53p/JGq2SEuZpQMIQih/Qa722fnoQZQo8hdn8whF01DaLH76o5jYUzhqdl\nb84Ifw8tJHMd67fW9ngwa3R7sWnncXR6A/1WUW0g/z2MiNdhHP05R674sf7ee+/Fl7/8ZXz22Wf4\nxje+gffeew/f/va3JY8/fPgwzpw5AwC45JJLEAqFMGjQIPh8PgDAuXPnUFZWhrKyMrhc50uFNjY2\noqxMfI11pvAHQ2h0d8IfDIm+L7fGO2J/ravH55UU7shkiX6nen1WL4kqqhmprUTUvxT3yL/61a/i\nmmuugcXSu1e3Zs0a3HfffT1e+/TTT9HQ0IDHH38cLpcLnZ2dmDVrFjZv3oxbbrkFW7ZswaxZszB5\n8mQ88cQT8Hg8sFgsqK6uxmOPPdb3KzMgNZnoy+aORqevCx8dPit6rviqWum4m5YW+pLd39eVAWqp\nmetmRTUiUkpxIJ89e7bkezt37uwVyG+//XY8/vjjqKyshM/nw1NPPYUJEybg0UcfxYYNGzBkyBAs\nWrQI2dnZeOSRR3DvvffCZDJh5cqV0cS3TKMmE91iNmPFgnE4esKtKDgP1MIdfcnuT9VmIKFwGGs2\nHsKumgbFDwwD9cGMiNRTNUcuRWxe22634yc/+Umv13/zm9/0eu2GG27ADTfcoEVTDCuZzSds2RZM\nGl2C7dW9577FgrNc4Q6tM5+NkEndlw09UrkZSDIPDAP1wYyI1NMkkMvtV07d1A6VRoZ9a451Bxuz\nqXsr0dj9wOPFVmqLFO7Ispg0HT5O9XC0mMhDRKArnPTwc6qGrvvywMCKakSkhCaBnBJTO1Qa34uL\n7Ac+qbw44bBvbOGO+Mznvg4f9+fe1PEPEYUOK2xWC3yB3olfiYafUzV03ZcHhnTY5pSI+h+rhKSI\nXCZ6/FCpXC/uYH2z4oxlrTOf+3q+vmaHRx4imjx+CACa2wKiQRxIPPys5u/RF1rsHhapqscgTkRi\nNOmRjxw5UovTZDylQ6VaDftqPXyc7Pm0GI7v9Afx4cEzou/ZrRYMsmfB3eZXNfyciqFrznUTkd4U\nB/KGhga88MILcLvdWLduHd5++23MmDEDI0eOxA9/+EM925iWxJLBlA6VajXs29fzxF+DmvPFfvad\nD+r7PBy//v1jkr3vQDCEx5ZPg/XfbVQaHFM1dL1s7mjk5lixq+Y057qJSHOKA/mTTz6JO++8M5p1\nPmrUKDz55JNYt26dbo1LR0p6n4k2INGqF5fseeSuIdH5xD7b4QuKfo9cslfkQcAxOAf+YAhH/tUs\neZ2FDhtK+zD0rPeGMBazGfctmoiFM4ZzrpuINKc4kAeDQcybNw+vv/46AOCKK67Qq01pTatkMK2W\nki2bOxphQcBHh85Ge7R2qwWCICAUDosObctdQ6LhaLHPSpHL1o88CJQW5mDM0MFobgtInmf8iMK0\nCIzcQY6I9KC61npkqdmxY8fg92d22U+1tFybLDbsm8xSMovZDLPJ1GNY2hcI4a/7GmAymXo9XCi5\nBqnhaLnPilGSrd/o9qLR7YXdaoYvEO51DrvVgjvm90/dcSIiI1AcyFeuXImlS5fC6XTipptugtvt\nxurVq/VsW9ppbfdL9kCTXZsc24tLZimZPxhC9dFG0ff21/beElVpQptY71Lus2LUZOsD4rUKrpl0\nEXJt/beK0giFcYhoYFN8B7zyyiuxceNG1NbWwmq1YtSoUbDZWCYyIhQOY/MnJ6OFW+IVOuzIsWWh\n0d2Z1E0/md5+KBzGbzcflRyWbvL4sW7zUdx94/hoj74vCXJyn7VbLci1ZaGlXTqzXO5BIBAM4coJ\nF+BArUvxFIGejFAYh4gIUBHIDx8+DKfTiTlz5uB//ud/cODAAXzzm9/E9OnT9Wxf2tiwrU60lGpE\nrj0LP3z9k6Rv+sks/dqwrQ67JDZdifjo8Fnk2rNQWTE22rucVF6M7ftP9zpW6dpssWS4ayZd1Ods\n/Zxsi+IpAr31Z2EcIqJYirsOzz33HEaNGoVPP/0Uhw4dwpNPPolXXnlFz7alDbnestkEDCsdhJON\n7dFCJpGb/oZtdYq/Q21hEV+gS/F8dfVRJ9ZtOYon1uzB93+1BwfrmzC8LA9FDhvMJqA4346K6cMU\nr82umD4Mxfn2Xp9NVNhErkjLpNHFOFjfJPpeqrf15BajRGQkinvkNpsNI0eOxIYNG7B06VKMHj0a\nZg4hApDvLYcFoMPbJfqemgQ4tUvJ3B7l89XNbf4eowlNnu65/munXIQvjr8Aw8ry4Mi1wh8MoalV\nfmqgr2uz47PiSwpyMKm8GHOmDsUOiRGPVG/ryS1GichIFAdyr9eL9957D1u3bsXKlSvR0tICj8ej\nZ9vShtyQcEGeFS3t2tz01VQiK8yXblM8qXn9D2vOYOeBMyjKtyHXno0ObwDutoCiqYH4ZDilSWHx\nDwLlI4vR1uqFPxgyzLae3GKUiIxEcSD/zne+gzfffBPf/va3kZeXh5/97Ge46667dGxa+pDtLY8p\nwcH6Jk1u+mp6u3ZrlmSb4okF8djXIz30CDXzwckmhUUeBOzWLLTBWKVOjdQWIiLFgXzGjBmYMWMG\nACAcDmPlypW6NSodyfWWLZY6TW/6SguL9G5TpGcdjGaPTyovknzQSETJ1ICWSWFG2tYzVW3h8jYi\nSkRxIL/00kt77DtuMpngcDiwd+9eXRqWbuR6y2pv+lrdvKXaFH/++PXpSiWaGtCyQI7c9fQHvdvC\n5W1EpJTiQH7kyJHofweDQXz00Uc4evSoLo1KZ2K9ZaU3/WRu3kqCfnyb4n9efN3FOHqiBQ3Odslh\ndjGJpgb0SgozUqlTvdrC5W1EpFRSj/bZ2dmYPXs2du3apXV7Mlqi5Vfx+23LLVMLhcNYv7U2umTs\niTV7sH5rLULh3mVME6nacRwnG9UFcSDx1IAWe3EPRFzeRkRqKO6RV1VV9fj57NmzOHfunOYNGqjU\nDkNr1WNLtAZeEBCTtR6UrcwWj0lhyeHyNiJSQ3Eg37dvX4+f8/Ly8PLLL2veoIFKzc1bSdDX4nsF\nAN+9fQouHjpYdG49ntj7RkpQSxdc3kZEaigO5M8//zwAoKWlBSaTCYMHD9atUQONPxhCoCuMQodV\ntC56/M1bSdAfpvC75YJGkcMeDeKA9Hxw/Nx+QZ4NU8aWoLJijKES1NIFRzKISA3Fgby6uhqrVq1C\nR0cHBEFAQUEBVq9ejYkTJ+rZvowWHwBtVvEb9LgRBT1+1rLHpkXQiB/md7d3V4qrO9WKp+6aDovZ\nbKgEtXTAkQwiUkpxIP/JT36Cn//85xg7tnv+9e9//zt+9KMf4a233tKtcZkuPgDG7urlD4SigX33\n4bM4esIdzWAHgHEjCvGRyIYEkAUJAAAgAElEQVQoyfTYEgUNuSF1uWH+k43tWP9+LVYsGK+qPVIG\n0ppqjmQQkVKKA7nZbI4GcaB7XbnFwhtLsuQCYK49C+NHFOBA3flNQiLJbEf+5YbX34Vmjx/2fwd6\nfyCEonz1PbbYwCgWNCKZ8XLL4RLtQb7/mAtL54Z67TuuJjgN5DXVHMkgokRUBfItW7Zg5syZAIC/\n/e1vDOR9IBcAm2U2PDnl7Ij+d6QHf/WEC7F8wTjZoBgbPLMsJsnAGBs0lGTGD86zoSDPBrdEPfnW\n9kA0US/ZgMw11URE0hQH8meeeQbPPvssHn/8cZhMJkyZMgXPPPOMnm3LaHLz3GodOdEi+Z5Y8My1\nZ+NkY3v0GLHAqHQ5nC3bgiljSyT3Yi/KPz9nn0xAltuONZnqcEREmUZxIB85ciRee+01PdsyoMgl\nmaklt7ZYLHhKPTzsr3VGA6Oa5XCVFWNQd6q1x8NBRGTOPtlyrXLbsRppTfVAmr8nImNRHMh3796N\nN998E21tbRCE8yXAmOyWvPNJZs4+9cylMtXlgqeYJo8f6zYfxd03jleVGW8xm/HUXdOx/v1a7D/m\nQmt7oNecfbJFTuS2YzXCmuqBPH9PRMagamj9wQcfxIUXXqhnewaUSGZyKBTG9v2nkz6PVKZ6okQ0\nMR8dPotcexYqK8aqWpZmMZuxYsF4LJ0r3jPNsWVhcJ4VLe2J18nHktuO1Qhrqjl/T2px9Ia0pjiQ\nDx06FDfffLOebRmQ/MEQDtY3JT5QRHGCTPVk5+EjQ91a7NoW22MVC+JA4oBs1DXVWu/uRpmNozek\nl4SB/OTJkwCA6dOnY8OGDZgxYwayss5/bPjw4fq1bgBI1Gu+asIFyLFl4UCtC+42PwodNkweXYyK\n6cNRlG+XDRRy8/AXFeXiTHOn6Odih7r7umtbfI81VqIHkQgjramOfVhhTXRSg6M3pJeEgfxrX/sa\nTCZTdF78V7/6VfQ9k8mEv/71r/q1bgCQ6zUX59tw5/yx2Ljzc0S2gjeZAIvFjLLCHEVP8VK92UWz\nLsZTv96jqCRsorXMUjeorlAIez5rFP1MYZ4NT901HY5ca8JriA2e/RUYxR5WJpUXG3r+noyDozek\np4SBfNu2bQlPsnHjRixatEiTBg008iVSS7Fx5+eyT/GJ5tvEerNA90jA5NElonPzauae5W5QHx0+\nh0BQfFvV1g4/vP4u2UAeCoexZuMh7Kpp6NNQpBZzkmIPK9v3n8bwsjzRQG6E+XsyDo7ekJ4Uz5HL\n+cMf/sBA3gdyveanX9sr+pl9RxoRCgs4WOdKGOQigSwv14p3Pqjv0ascXpanenvSWHI3KKkgDgCF\nDlvCHmtfhyK1mpOUe1jp8AYxZ9pQHKxrMtT8PRkLd7QjPWkSyGOXo5F6UnPAje5O6af49kCPIixi\nQa73pixm+ALhHp9p8vgxZ9pQLLhieMIeq1jPNtmEuvEjChN+V1+HIrWak5R7WGlp92PBFcOxdM7o\nfp+/J+PijnakJ01SJU2RCVzqk8hcdHyQVGN/rQv+YHfp1kgga/L4IQA9gnisg3VNsgEoUnP9iTV7\n8P1f7cETa/Zg/dZahMLh6A1KjN0q/s/LbrXgjvnygVTJUGSEPxhCo7szet2R1+QeBGKPTUTu7xDp\nTcX/7YjiLZs7GhXTh6E43w6zqTvZs2L6MI7eUJ9p0iMnfSRT/S0S5EpkSptKfUZqji5Rz1ZqaiAs\nCNi2r3fp1msmXYRcm/w/PbmefkFe97C83NC5lnOS7E2RFoy0+oIyCwO5wS2bOxqdvi7RLUvFRHqI\ncqVNpT4jRukQt9TuaWaTKan133LBs8MbxNvb62A2AX/dJz69cNvsck3nJI26lp3SD3e0I61pEsjz\n8vK0OA39W/xc9IoF4/D3fzZLFlSJFekhOmRKm0p9Royanm38DaqvPZBlc0cjN8eKLXv/Fd3pDQD8\nXWFsr26AxSw+pRN5wNCqFx35e9w2u9yQvSlWCiMa2BQHcqfTiXfffRetra09ktsefvhh/PznP9el\ncQON3FDx1LGlkjuMRditFgiCgFA4LFva1JZtRrArrKhXqUW2bbI9EIvZjBU3XoJdNQ09AnlEKCye\nZBl5wOhrL9rolbiM3j4iSg3FgfyBBx7AuHHjMHToUD3bM6DJz0VL7zAW4QuE8Nd9DTCZTHj4jsuj\nAav6qBPNbX6YTUBYAAbZszD+C0WonD8GubZs2Tb19/ywmimCiMgDRl9HBBLlBsT2hAGkvFfMSmFE\nBKgI5Lm5uXj++ef1bMuApmQuOnaHsZb2QDQwix3vC3RFA1mgK4S/HTgTPba5LdBjc5RE+nN+uDDf\nhoI8G9ztyoN5/ANGMiMCcn+P6qPOHmv4bVYLAAG+QBjFKeoVs1IYEUUoDuSTJ09GfX09ysvL9WzP\ngKV0Ljqyw9jxhlb89+8OSB7v9vhhCoexfusxfFhzRvQ4pTf8/sy2tVuzMGVsieS0gt1qwSB71r/r\n0Gv3gCH392hu8/doT+ywf6p6xawURkQRigP5zp078frrr6OwsBBZWVkQBAEmkwk7duzQsXkDh5q5\naFu2BRcPHSx7fGG+Db9654jsvHoyy7C0Dg5KErXkphWumXSRLg8Ycn8PqZGQWHr3ilkpjIgiFAfy\nX/ziF71e83g8sp958cUXsW/fPnR1deGBBx7AxIkTsWrVKoRCIZSWlmL16tWwWq3YtGkT3njjDZjN\nZixduhRLlixRfyVpTu1cdKLjASRcR67VDT8SjHNsWfD6uxQFVDWJWhazuce0Qmt7AEUxO6dZzGbN\nHzDkfr+Jgjigf6+4v3MXiMg4VO1HXldXB7fbDQAIBAJ47rnn8N5774kev2fPHhw7dgwbNmyA2+3G\nrbfeiquuugqVlZVYuHAhXnrpJVRVVWHRokV49dVXUVVVhezsbCxevBjz589HQUGBNleYRuTmosV6\nrnLHK0kS6+sNPzYYN3nOJ9MVOayYNq5Mdp5YbaKWxWyOTisk6n1rtRxL7Pc7qbwIB+ubEi7rS0Wv\nmGvbiQhQEcife+457Nq1Cy6XCyNGjMDJkydxzz33SB5/xRVXYNKkSQCA/Px8eL1e7N27F8888wwA\nYM6cOVi7di1GjRqFiRMnwuFwAACmTZuG6upqzJ07ty/XlZbE5qKzLCbZnqvYzmZNrT4MG1Igu458\n9pSL+nzDjw/Gscl0sYVZ4oNqXxK15Ib3tV6OJZUbsH5rbcJqe6noFbNSGBEBKgL5oUOH8N5772HF\nihVYt24dDh8+jPfff1/yeIvFgtzc7htuVVUVrr32Wnz44YewWru3rSwuLobT6YTL5UJRUVH0c0VF\nRXA6EwwJF+YiK0u/G1ZpqUO3cyfiC3Shy+NH+cg82K1ZWLPxkGjPNTfHivsWTYx+BlkW/HHncXz6\nj3NwtnhRWpCDwXnSgXywIwcXXjC4T+08WN8ke8yuQ2dRU+eCq9WH0oIcXDnhItxz02VodHvR3Cad\nqGWxZqO0ZFD0NaV/DyW/q2QNi/nvh5ZORW6OFXsOn4GrxQubNQuAAJ8/hNLC89dpsfR8eNDz39Ww\nxIdopj///9ASr8NYMuE6+usaFAfySAAOBoMQBAETJkzACy+8kPBzW7duRVVVFdauXYvrr78++rrU\njmlKdlJzuzsVtlq90lIHnM423c4vRaw3Oam8WDJY7qo5jeunD8XGnZ9Hh7ZjNbq9aHR7YTGbRAun\n7Ko5jXlThyie047X6O6E0+2VPcbr74LX3xVtz6adx9HpDXSXT3VIJ2qFAsHo30Dp38MfDGFXjXhi\n366a01g4Y7imvdVFV4/EwhnDJdeRNzd39Di+v/5daY3XYSy8DuPQ+xrkHhIUB/JRo0bhrbfewvTp\n03H33Xdj1KhRaGuTb/TOnTvxy1/+Er/+9a/hcDiQm5sLn88Hu92Oc+fOoaysDGVlZXC5XNHPNDY2\nYsqUKUqblTHE5oy37z8teby7zYf17x9LWINdqvpZk8eHp9d+/O/EMfVD0MluX6p1+dSI/liOFT/M\nb7TlXizdSjQwKA7kzzzzDFpbW5Gfn48///nPaGpqwgMPPCB5fFtbG1588UW8/vrr0cS1mTNnYvPm\nzbjllluwZcsWzJo1C5MnT8YTTzwBj8cDi8WC6upqPPbYY32/sj5I9Q1Qbs5YaqlTQZ4VR/7V3Kfv\njdRuT2btc5bFhFx7tupArlX51HhcjnUeS7cSDSwJA/nf//53XHrppdizZ0/0tZKSEpSUlODzzz/H\nhRdeKPq5d999F263G9/61reir/3Xf/0XnnjiCWzYsAFDhgzBokWLkJ2djUceeQT33nsvTCYTVq5c\nGU18S7VQOIw1Gw9hV01DSm+Acr1JqaVOHd4u+LvE9xePZbdaROuUi1Gz9nnDtjrJcrFFDis6/V2i\n+59rVT41Xjovx9L6wZGlW4kGloSBfOPGjbj00ktFN0YxmUy46qqrRD+3bNkyLFu2rNfrv/nNb3q9\ndsMNN+CGG25Q0l5daXkDVHNzlutNFjlsmDymBLsPn+21A5gSMyde2GMr0cGDpMudKh2ClhtBKMyz\n4em7r8AfP/qnoqCabJEZtcvxjEiPnjNLtxINPAkDeWSYe926dbo3pj+pvQFKBWqlN+f4z0v1JqeN\nK8Vts8txsM6luGcdMXPChbhj3hhYzOZoz9diNuGJNXtFHwSs2RZFQ9ByIwgtHX60dgSwbO5ohMIC\nDtS60NLhR5FGQTXR7zedlmPp0XNm6VaigSdhIF+xYgVMJvF9nwHgzTff1LRB/UXpDTBRIEl0c5b6\n/OLrLgYg3ptsdHtVz0Xn2CyonD82+vCQZTFh675TqD7aqLg3D/R+4AiFw9j88QmYTIDYAgNBAF5+\n+wAG5VjR4Q3A3R5AQZ4Vk8qLNJmiUBL89CglqzWtHhzjMVeAaOBJGMgffPBBAN3LyEwmE6688kqE\nw2F89NFHyMnJ0b2BqaL0BigXSG6bXZ7w5vzOB/WygSi+NxkKh/GLjYdVX4/XH8LGncejwS2+3WJ8\nge7NWC4eOliyEI0gCLLZ9EB3QZjmtkD055b2ALbvPw2LxdynOdpMGjbW6sExXqpyBZgRT2QcCQN5\nZA78tddew69//evo69dffz3+4z/+Q7+WpZiSG2CiQHLtpItkb87OFq+iQBTbm1z/fi1OOTtEP5NI\n5Jzd/y1fZAfozpD/798dQFG+Dbn27B7JbJEHDrs1+Zt2X4NtJg0b5+VaYbOaZRMCgeSG3/XMFQiF\nwli/tZYZ8UQGonj52dmzZ/H5559j1KhRAIATJ07g5MmTujWsPyybOxpWaxZ2HzwjOq+bKJDAZJLt\n1UMQVAUifzCEagUBWErknAAS1l0HzmfIN3n8kkP5aufpxdqTbLDNpGHjjTuPiwZxQPmDo9RDkZ65\nAmv/+Bkz4okMRvEj9Le+9S3cdddduPLKKzFz5kxUVlZGh90zQWQI89N/nIO73Y/Bg3rP60YCiZhC\nhx2lBTmYOrZU9P2pY0tQWpgr+/nYQBQKh/HbzUfR2hFM+poi55RrN9DdE0+FvgbbyKiJGKXDxv5g\nCI3uTviDyT+Q9JVcgLZbLVg0q/thWXZPdM/5hzQpkdEdLYfT9xyW3tu+P3+nRAOZ4h55RUUFKioq\n0NLSAkEQUFhYqGe7Ui5+CFNsXlfJ8LvcsKbFbFY8f7lhWx12JajalkjsOSWz4seUYP8xV6/XpahZ\nly7XHrUic7KLZkknBcoxUpEUuQAdCIbQ3hlEri1bdgTCZAI2f3ISlRVjUtb+1nY/nC3iZXnTbWqD\nKJMoDuQNDQ144YUX4Ha7sW7dOvz+97/HFVdcgZEjR+rYvNRQM4SZaP4x0bCmkvlLufYoYbdacP0X\nv4CbrhqR8HsXzRqFp1/7WHFW/JUTLkD9KQ8anO0IC929+SGlgzB62GAcqmv+97m759g7vEG0tPv7\nNEcrNSf7zL1XoL0zqHjY2EhFUpROESTaE317dQMsZlPK2j84z4bSghw0itTYT7epDaJMojiQP/nk\nk7jzzjujBV1GjhyJJ598MiPWl6tJolI6/yi1BErJ5+XaAwCRkXCTRPnWQfYsrLjxErS1nr/hxn9v\nji0LXn+X7CjB8LI8dPq6egR+QRB6JMGFBeBUYwfGjyjEc/d9scc1aZHZrMWcbKqy3ZVer5rM8mVz\nRyMUCuODA6dF/9apzNa3ZVtw5YSLsGnn8V7vGb16HlEmUxzIg8Eg5s2bh9dffx1A937jmSKZJKq+\nrlWW+3yiDUkK8qz42sLx+OnvD4q+727zw+3xi/5xI+vJY3u4k8eUYN7lQ3HgWFOvUYJOXxc+P+NB\nXk4WSgty8cPXPxH9zkhAib2mvv6OEs3JKg1geme7JzNsrzSz3GI2Y8GMEdghseQv1UPa99x0GTq9\ngbSpnkc0ECgO5ADg8XiixWGOHTsGv19dkRKjMlqdblu2BeNGFErubNbSEUCRQ/7hozDf1qNHHukt\nbv74RI914E0eP7bta0DF9GE9etRZFhN+99dj2HXofGlYa5YZAYliMvEBRap3qqaXrtWcrN7Z7skM\n26vJLDdStn4kZyRdqucRDQSKA/nKlSuxdOlSOJ1O3HTTTXC73Vi9erWebUupSI/iYH0TXC1eXXsa\nSoJZdrZ0ApMJwPb9DZgypgR/3dd7D+6pY0tgt2ahDb17i1JF+uJ71Ou31vY6t1QQB84HFLnKdVU7\njqvqtWo1J6vng1pfh+2VjFoY7UEz0iYmthGd5wt0odHd2S8Pt6r2I7/11lsRDAZx5MgRzJ49G/v2\n7ZPcNCXdRHpID9yWg/p/Nunyx1BTh/1wfZPkecICsH3/aVw3bQiGl+X1SDwbWpoXLfcK9O4tipVV\nBXr2cJNJtosElPVba0V7p0dPtIgWmAGke61azsnqVSQlVUVq0m1DGKKBInJfP1jfBKfb2y8rYhQH\n8vvuuw+XXXYZLrjgAowe3X3z6Orq0q1h/cVuzdKtp6F0CDZRslvE7kNn4Q+e7yWHBeBkYzuqdhzH\nw3dcriogx/ZwlXx/YZ4NrR09M9Llvq/BKb7laaJeq1ZzsnoVSUnVsHc6bQjD8q00kBhhRYziQF5Q\nUIDnn39ez7ZkNDVDsImS3c6fU3yoe3+tC82tXqzZ9JniZWWxPdxE31/k6N6q1Ovv6nGzbmrtVL2v\neqJeq9ZzsloPCad62NvIQ9pGWqtPlApG2f9BcSCfP38+Nm3ahKlTp8JiOd+wIUOG6NKwTJNoCNbZ\n4oU1y5xwW1Mlmjw+3P9fW+GXKAEKdA/DCwJQlN+7h5vo+6eNK4Uj1wpHrrXH67IFTACIxXKpXmuk\nV+cYnBNtk1EDGIe9uxmhZ0KUSkbZ/0FxID969Cj++Mc/oqCgIPqayWTCjh079GhXWlEylCgX5KzZ\nFrz89gE0t3Vv+Tl1TAmWzTsfHJo8PvVtkgniADB76lAsuGK4ZJuXzR0NQRB6ZK3brRbMnHihZICS\newAwm00IiXTL43ut8b260sIcTCovNnSvLp2GvfVilJ4JUSoZZUWJ4kBeU1ODTz75BFarNfHBA4Sa\noUS5IOcLhKLBMlIatq7Bg6fumo7bZpej2ePDz6oO4qxI9nYyrp5wYcLSnhazGXfOH4fF143uXgIm\nCChVULc7EuQ/PHimRynXSBC3ZZkRCIV7bUgTEd+ra3R706ZXZ+RRA70ZpWdClEpGWVGiuIszYcKE\njFk3rpVI0Gny+CHg/FDihm11vY4NhcMICwLs1vO/cpvVDJvEMrOTje1Yt+UobNkWFOXbEQxJ97BN\n6K7yZrUk3v2kyGHD8gXjFPdubdkWDCvNw7Ayh6J/lBazGbfNLscgu/gzor8rjPzc7F4b0gCJe3Xc\nlMO4Em0oxPKtlKmWzR2NiunDUFaYA7MJKM63o2L6sJROrSnukZ87dw5z585FeXl5jznyt956S5eG\nGZ3aocQN2+qwLW5ddqLh7w9rzsBiNqPi8mGyWeQzLimFyWTCx/9oTNjuyaOLdX9KTJT13toR7LUh\nTaLPsVdnbEbpmRClWiqWLieiOJB/4xvf0LMdaUdN0El2E5TIxhihcBiFDiua2wK9jjGbALstCx8c\nEC9lGq9i+nDV7UgkPkdAada9mmx99uqMj0l/NJDpuXQ5EcWBfMaMGXq2I+2oCTpK14VL+bDmDMwS\nm4aHBWDv3xP3xIHuIZ+ifHvS7YgXCoex/v1a7D/mQkt7AMX5NowfUYg75o9VlHUf/8DDXl16Y9If\nUf8wZhpwGogEHTHxQWdwng2FjuSTBMMC0BWSWIgNKN4fPJlg6A+G0Oju7DU/HQqH8cPXP8X2/afR\n0t49UtDk8WPX4bP47qsfIiwImHf5UBRLzJsC4r3syHxTcb4dZhNQVpiT8vkm6ptI0h+DOFFqqNo0\nhXpSOpRoy7Zg/BeKJDdB0VtxTDa90qpbiTLy12891qPkaixfIByzEcuVWLf5qOi1iz1YxPfqykcW\n99j8hYiIemIgl5FoB68cWxYqLh+Gm2aO7FXlLF7l/DGornUq7j2rYcs2i1Z5u3bKRbjxi1+I7mam\npuqWXHGP22aX40CtK2G7InPgd984Hrn2LM6dEpEqLPerDAO5iEQ7eFUfbURzWwBmU/ewd2yPV0qu\nLRvXTLoo6Wptcq6edBHMJlOPQHn15CG46aoR0SAttZkJ0Ht9dqKM/GsnD0FLe+I5/9g5cKVzp+lY\nEIaItMVyv+owkIuQ6o3G7+AVKVSmtBSl2FD85DHFMAE4cKxJdQU3i7m7Qtsd88ZE129HAuWwIQVw\nOtsAqF8qlygjH4KgKCs9fg5cScGUdC4Iw94DkTZY7lcdBvI4vkCX6h28IhKVooyd/42vljb/ik58\n75d7RD9nNgFDSgah09cFd7sfgwdZMX5EAZbOHYNAMISukACLWTpQql2fnSgjv7QwV1FWulxynVjQ\nS9cyn+w9EGknXe8D/YmBPI7bIx30pHbwin7230FxcJ5NsmcWCofxzgf1vW76Hx2SToQTBOD+my7t\n/sFkQlG+HRt3HseP3vxUUeBQuz5byTKw2NGF5jYfrFnd3xsIhkU3Yom9fqmgl64FYdh7INJOut4H\n+hMDeZzCfOmgF5kTl1KQZ8PmT07iYJ1LMsDK3fSlZGcBP606GD1nrj27xxB/5ByhsIAV14/r9flk\n1mcnysgXWzMMIOHQcqIkunQrCMPeA5G2WBhKPQbyOHZrlmTQG1qaJ7nkCgAG5WRje/X5MqzxPbNO\nfxc+PHhadZsCXYj+o27y+CXnpnfsb0AoFMKKBeN7vae26pbS4h7xw/lyT8pKgl66FYRh74FIWywM\npR4DuQipoHc+a92J5jZ/j6z1SeXFOFjfJHq+SJD6/96vhS9BffW+EATgbzVncfxMG/73u3N7vJds\n1a2+7OgVPw+uJOjF/+5LCs5nrRsRew9E2mO5X3UYyEXIBb3Y13NsWdH1463tfuzYL97bdrf54Gzx\n4sgJd0raf6qxA//vxkNYfO3Fvd5LxVabUvPgi2aNShj00q0gDHsPRNpjuV91mFIrQ6rUZOR1R641\n+n6ibRwhCPI7mF1airyc3s9VEiXWE9pz+Ey/bfsptb3rxp2fKy5rG/kd263Gf9aMLyvbH9sYEmUi\nlvtVxvh3yTSRqGdWWpgr2Ru1Wy346oLxyLVlY+2f/44PYzLYpZLrzADkBundbf5+mZ9NNA/+zL0z\nov+dKUNm7D0QUX9iINeQ3LyOxWyWDPTXTLoIubZs+IMh/ONf4sPvZlP3HHhRvh3jRhRgd4K67aUF\nOSmfn/UHQzje0CqZjOdu86HZ41Nc1hboXtff6O5Mi+CYimkLIqJ4DOQaivTMbpo5Eqca2zGsLA+O\n3PO7niVK4Gj2+CSDoADgu7dPwcVDBwMAjp5wy1ZWm37JBSkLfPFz4lLL9KzZFrz89gG42wI9lubJ\nnfNgfROcbi+LrGQAVr4j0gcDuYYSVfiSG4L1B0P4465/Sp67yGHHxUMHR49PVFntk7+fRSDQpTrw\nJXOzjV8bLkhMB/gCoeimMYmKpiRTZIWBwphY+Y5IXwzkGpIKPl5fF5YvGBcNLpEhWH8whDNNHdj6\n6UnU1LnQ3BaQPPek0cU9glN8ZbVsiwmBrvMR1NniUxX41O6OFnsOqTnx89MBNnT4gqJL78SKpqgt\nssJAYWysfEekLwZyjcgFn12Hz+If/2rGtHFl0QAcCTyJNh6JqLh8WI+f4+u2v/z2AdEHAaWBT6pa\nHCB/s5VbGx6ZDnDkZuPptZ+IHiNWNEVtkRUGCuNi5Tsi/bG7ohG5+W0AaG4LYOunp/Cbd49g/dZj\n0eVZShTn21GUbxd9z5ZtgTXLDLdEbz4S+IDum2qju7PH90eWh0lVrNtf65Jdxia37C4yHRDJ2Bcj\nVjQl0VK+2OMTBQo9luBFfo/9tbwvnSh5KCOivmGPXCNb9ynbZ/yjw2dVrw2fOrYEACSztxNVF8vL\ntWL91troCICa72/y9O4Bx89FKymIoqZoipoiK6kskcohfPVY+Y5IfwzkGvAHQzhY51J8fKJd1CKK\n822YMqYEwVAI3//VbrS0B1AsEjwSBb6NO4/3eE/p90f87x8O4YmvXQ6L2SwayBZf111BTm5tuNqS\ni5HXD9Y3wdXilTw+lYGCQ/jqsfIdkf4YyDUg1ytM1swJF6Jy/li88Fa1orlrqRrli2aNwtOvfdyn\ntpxyduBHb1Zj3IgC2UAmVxBFKmPfHwyhqbX3SEPk+Aduy0H9P5tkN21JRaDgXG/yWDebSF8M5BqQ\n6xWqVRyzl/f6rcdk565jg4dUjfJGd6fih4whJbk47eoUfa/B2Y72TvHzxLYl0TB25JhQOBwd7pcb\nprZbsxKeMxWBgrucJY+V74j0pWsgr62txYMPPoi77roLy5cvx5kzZ7Bq1SqEQiGUlpZi9erVsFqt\n2LRpE9544w2YzWYsXboUS5Ys0bNZmpPrFdqyzfAHle149sjSyRg9vCDaUz1QKz1c3ywydx1pS6RG\neRvkHzLMpu7M8qJ/BwG2Xh0AABp+SURBVL7JFxfjJ2/XiH5fWADc7UHR95IJZFoOU6ciUHCut+9Y\n+Y5IH7pl6HR2duLZZ5/FVVddFX3tlVdeQWVlJdavX48vfOELqKqqQmdnJ1599VW8/vrrWLduHd54\n4w20tLTo1SzdSG2c8ZOHrsHVEy5M+PnifHs0iAPdPcAWmYzewXlWRcEj8pAhZvaUIXj+/ivx3H1f\nRGXFWIy40CGZCGc2AYV52aLvqQ1kemWa67nBgtzvkXO9RNSfdOuRW61WrFmzBmvWrIm+tnfvXjzz\nzDMAgDlz5mDt2rUYNWoUJk6cCIfDAQCYNm0aqqurMXfuXNHzGlX8um4IAkr/HVTuunE8cuxZ2F/r\nQpPHJ/r5+GCQaLh+6hjlwSNRDfgIR64VQ0vzRIfzh5bm9Zojl2p7Iuk6TM25XiIyIt0CeVZWFrKy\nep7e6/XCau2uPV5cXAyn0wmXy4WioqLoMUVFRXA6xXtrRhcKh/HOB/Wi876RIN/s8eH9T09iz2fn\nouVK7VYzgqHuKm9F+XbYsi2yw/UA0OHrwr/OeXBh0aBeVdFa2/1wDM6JvqZm6Pnxr07Dc2/uw6nG\njpjPA+XD8hVlpysxOM+GQodVtICNkYepOddLREbUb8lugkRBbqnXYxUW5iIrS78baGmpI6nPrdl4\nSHTeNzfHivsWTQQADBsC7D3ijAZxAPAFwvhg/xl8sP8MygpzcOWEi3DPTZfhoaVTcfy0B8dPe3p9\n18f/aMTH/2hEjs2CeVeMwN1fuhRvvPsP7Dl8Bs4WL0oLus9z54JxaO0IojDfhlJrFob1OlNv08Zd\ngFONx6M/h8LAjurTyB9kx8N3XI7Wdj/+ecaDkRflqw66oVAYa//4Gbwi5VoB4OrJQzBsSEGP15L9\ne+hJye8xnhGvIxm8DmPhdRhHf11DSgN5bm4ufD4f7HY7zp07h7KyMpSVlcHlOp/U1djYiClTpsie\nx+0Wz6zWQmmpA05nm+rP+YMh7KppEH1vV81pLJwxPJrEJnUcADS6vdi08zg6vQHcNrscLW3iQ/ER\nXn8If/rwc9TUOnsMiUfOs2Xvv+APhFTVTpdq34cHGtDW4cfBOlfSBVHWb60VHWWwWy24ZtJFuOmq\nET1+/8n+PYyG12EsvA5jyYTr0Psa5B4SUlqOaubMmdi8eTMAYMuWLZg1axYmT56MQ4cOwePxoKOj\nA9XV1Zg+fXoqm6UJpaUola4531/rgtPdKbuRSqxTEsvUfIFQtAzr1k9PYcO2OtnzyLWvuc2P7dUN\nPUq7KjlnhFyS2yB7Fm6bXc4KaUREKul21zx8+DBWrFiB//u//8Obb76JFStW4KGHHsLGjRtRWVmJ\nlpYWLFq0CHa7HY888gjuvfde3H333Vi5cmU08S2dKK0PLndcLHebDzCZUOSwJjwW6F5GpkRfaqdL\nZbQrzTSXf9jxs+42EVESdBtanzBhAtatW9fr9d/85je9Xrvhhhtwww036NWUlJBLTsu1ZyHLYkp4\nXKxChx2lBTmYNq4s4bEAYIKyYN7s8cHp7sSwMvGHJVu2BZPKi7F9/+le70mVdlWaac612ERE2uM4\npoYWX3cx8nJ6PxudbGzvMfwcu+ZcSmRJ17K5ozF7ykUJv3tYWZ6iNgoAflp1EOu31iIU7plwFqm2\ndrC+CQBg+ncPvMhhw5ypQ1CsYgczMVyLTUSkPQZyDW3YVo92b5foe7HDz5FlTM/d90X86L4vYs60\nob0KyUSWdFnMZiz84hcgt2HZFy8tw+NfndajIE2OTTooSs1tR6qtRXrMkQUEufYsVM4fqyoIS231\nKVU4h2uxiYiSw1rrGkmmpKot24KLigdh6ZzRmDNlCGAyobQgR9U2pQBw7GQLqnYcx7K5o6NrnEcO\nL8SvNx5C9VEnmtsS10iXS0Q75ezA+vdrUTl/bPRzsevIF826OLrFapbFJLvVJ9diExFpi4FcI8mU\nVFW6v7Ut24JJo0uwvVp8WVhzW6BHnfKywlwMyrGismIsrp08BE+/9rHo/Hns3HaibPr9x1xYOndM\njyCcl5uNjTs/x9Ov7Y22P9eerWi3NtbdJiLSBofWNZIoG12spGrsULbUcq7IvHXNse7eslTmOCCe\nPV5akKM4m75AZp67tT0QzSqPBOGNOz/v1X653dqSraFORETSGMiTIDb/K5fINbwsLzosHXsOJRuH\nRIJ9ZD25VOY40HO9upJ2xc5t27ItmDK2RPLcRfk9E9rk2q+0bURE1HccWlch0VB47KYazW0+FAyy\nYcrYElRWjOlV6ERJAZnBeTZVwVIqe1zpZh+VFWNQd6pVtFcdn9CmtLBNorYREVHfMJCrkGgPbTWJ\nXHIJbNZsC/Jys9Ha7pdMcBMjtYRLabssZjOeums61r9fi/3HXGhtD6AoXzzoJ0rAU9o2IiLqGwZy\nhRINhUeyvwFliVxyhWF8gRD+8LfjEITuOXGx4XS71YJcWxZa2v2KdyFT0i6L2YwVC8Zj6dyQbNCX\na//wsjx0+rq41ScRUQowkCukxx7ai2ZdjA8PnoZPZCewjw6dEX094uqJF2LxdaN1W8KlJOjLDdl3\nhQQuLyMiSgEGcoX0KC/a3hmAXyJYywVxoLtCW38v4ZIbsreYweVlREQpwKx1hfQoL6p0AxUxNcea\nDLOcK/JAwZ43EVHqMZCroHV5UbmHg0T0WM4lVVa1v89FRETSOLSugh7lRRfNuhheXxeOnHDD3eaH\nNdsCXyBx8MsfZEWOTZs/n9iyukmjS1Bx+TAU5dtVXaPSanVERKQNBvIkaDE3HR/wCh1WXHHJBTh2\nqkVRIG9pD+CHr38iGSR9ga5o/fNEgVhsWd326gZsr25AscpAnGiJHhERaYuBXCP+oPxyrXjxAa+5\nLYC9fz+n6jvFgmTkAeFgfROcbm/CHnGiCm1qArGaJXpERKQNBvI+6q6FfgwHal1oaVc2lKy2vCkA\nFDpsEMICWjoCvd6LDZJyPWKxKQGlFdqUBGI9lugREZE8BvI+CIXD+OHrnyra7StWs8enqmIbAIwb\nXiDZY2/y+NDs8aEo3y75gPDhwTOoPtoId1ugx8OG0gptSgKxHkv0iIhIHrOP+mD9+7VJ7fa1dV/v\namiJLJgxXHap2tZ9p2R7xL5ACM1tgV67rCnNnFcSiPVYokdERPIYyJPkD4aw/5hL8v1mieVh/mAI\nB+ukPyemON+OC4sHYVJ5seQxB+uakGPLUrUuPfKwEbusTorSQKz1Ej0iIpLHofUktbb70dLee746\nomCQTbQH63R3qh5WjwTRiunDsX3/adFj3G0+eP1dmDKmBH/d16DovLHD5ZFldc0eH7Z+ehIH65uT\nqpWuxxI9IiKSxkCepMF5NhTLzC1PievBxi43k1Kcb8Ok8mLJIFqUb5f8zsjQt8x25ZKfibBlW3BR\n8SCsWDBedRZ+vP4uH0tENFAwkPfB+BGF2HX4bK/Xh5flobJiTI/X4rPJxUwZU4I754+TDKJyO45N\nHVsCAKiRGe4X+4xUkGYgJiJKDwzkKsX2rJs8ftitZgAm+AMhDM6zYuqYElTOH9tj6ZnS5WaR3rRc\nEJXbcayp1Se7lKwgzwpPR4BbixIRZRAGcpXie9aRXcpmTrgQKxaME+3hKl2rXXOsCUuuC0XPIdYz\nl5uDllv+VZxvx1N3TYfX38V5ayKiDMJAroJcz/roiRbR41vb/dFscqVrtYsH2xPWKxfrtScaenfk\nWuHItSq9XCIiSgMM5CoorVwmtnFIrj07YSCPJJ/1pV55ZLj8YH0TXC1eDqMTEWU4BnIVlFYuEwvE\nTR4/hpflodPXhSaPT/T8kYS1vtQrjwy9P3BbDur/2cRhdCKiDMdArkKioWtbtkV2+L3T14Wn7pqO\ndm9Qcq22XMKamnrldmsWs86JiAYABnKV5LLGgcTD715/l+xabdYrJyIiNRjIVUpUuUxNIE4mYY3D\n5EREFIu11pMUCcLxgVWLjUNYr5yIiJRij1wHiYbfE2G9ciIiUoqBXAdaBWKWSSUiokQYyHXEQExE\nRHrjHDkREVEaYyAnIiJKYwzkREREaYyBnIiIKI0xkBMREaUxBnIiIqI0xkBORESUxhjIiYiI0hgD\nORERURpjICciIkpjDORERERpzDC11n/84x+jpqYGJpMJjz32GCZNmtTfTSIiIjI8QwTyjz/+GP/6\n17+wYcMG1NfX47HHHsOGDRv6u1lEROlPEJT/nOx7fT1PjglobwcAmKBBexK2Ve495efp2VYvYMpB\nfzBEIN+9ezcqKioAAOXl5WhtbUV7ezvy8vJS35hnnkH+vgPnf9bqH7LSf5wqvtMk9zlrFgb7gzLn\nkfl+6PM/jymZ82RbUBDokm6fqvbEn0aD37PS353FjMKuUFLfr1lbezUvie8wm1AUFlLzb0Kz/2dE\njjMBxUIf2prs/yNqjlV4npJebUtPpf3dAA3kPPlDeL/5rZR/ryECucvlwmWXXRb9uaioCE6nUzKQ\nFxbmIitL/f7eCXV1AWvWwNbQoP25+4G1vxsAACaT9M8K38vW6DxatSfZ78gyQlvljjXF/myS/Jwl\n7mfd2qPzecwy7xmtrXI/m5Qcm4bXlRbfEfuzxYK8mxcir9SBVDNEII8nJHi6dLs7dfvu0vp6uI6f\n7vli/M1O6r1exyb/j0NA385TWuqA09mW+n/0GoteR5rjdRgLr8NYMuE6oteg03WUyjwgGCKQl5WV\nweVyRX9ubGxEaWk/DbTYbBBKSvrnu7VktwP2YOLjiIgorRli+dnVV1+NzZs3AwA+++wzlJWV9c/8\nOBERUZoxRI982rRpuOyyy3D77bfDZDLh6aef7u8mERERpQVDBHIA+O53v9vfTSAiIko7hhhaJyIi\nouQwkBMREaUxBnIiIqI0xkBORESUxhjIiYiI0hgDORERURpjICciIkpjDORERERpzCQk2qGEiIiI\nDIs9ciIiojTGQE5ERJTGGMiJiIjSGAM5ERFRGmMgJyIiSmMM5ERERGmMgfzffvzjH2PZsmW4/fbb\ncfDgwf5ujqQXX3wRy5Ytw2233YYtW7bgzJkzWLFiBSorK/Hwww8jEAgAADZt2oTbbrsNS5Yswe9/\n/3sAQDAYxCOPPII77rgDy5cvx8mTJ/vzUuDz+VBRUYE//OEPaXsdmzZtws0334yvfOUr2LFjR1pe\nR0dHBx566CGsWLECt99+O3bu3IkjR47g9ttvx+23346nn346euyvf/1rLF68GEuWLMEHH3wAAGhr\na8P999+PO+64A/feey9aWlpS2v7a2lpUVFTgt7/9LQBo8jeQuv5UX8ddd92F5cuX46677oLT6UzL\n64jYuXMnxo0bF/053a4j0rbFixfja1/7GlpbW41zHQIJe/fuFe6//35BEAShrq5OWLp0aT+3SNzu\n3buFr3/964IgCEJzc7Mwe/Zs4Xvf+57w7rvvCoIgCD/5yU+Et956S+jo6BCuv/56wePxCF6vV/jS\nl74kuN1u4Q9/+IPwgx/8QBAEQdi5c6fw8MMP99u1CIIgvPTSS8JXvvIV4Z133knL62hubhauv/56\noa2tTTh37pzwxBNPpOV1rFu3Tvjv//5vQRAE4ezZs8KCBQuE5cuXCzU1NYIgCMJ3vvMdYceOHcKJ\nEyeEW2+9VfD7/UJTU5OwYMECoaurS/jZz34mrFmzRhAEQfjd734nvPjiiylre0dHh7B8+XLhiSee\nENatWycIgqDJ30Ds+lN9HatWrRL+/Oc/C4IgCL/97W+FF154IS2vQxAEwefzCcuXLxeuvvrq6HHp\ndh2//e1vhWeffVYQhO5/51u3bjXMdbBHDmD37t2oqKgAAJSXl6O1tRXt7e393KrerrjiCvz0pz8F\nAOTn58Pr9WLv3r2YN28eAGDOnDnYvXs3ampqMHHiRDgcDtjtdkybNg3V1dXYvXs35s+fDwCYOXMm\nqqur++1a6uvrUVdXh+uuuw4A0vI6du/ejauuugp5eXkoKyvDs88+m5bXUVhYGO1FezweFBQUoKGh\nAZMmTepxHXv37sWsWbNgtVpRVFSEoUOHoq6ursd1RI5NFavVijVr1qCsrCz6Wl//BoFAQPT6U30d\nTz/9NBYsWADg/N8oHa8DAH75y1+isrISVqsVANLyOrZv346bb74ZALBs2TLMmzfPMNfBQA7A5XKh\nsLAw+nNRUVF0GMtILBYLcnNzAQBVVVW49tpr4fV6o/9zFBcXw+l0wuVy4f9v7+5javz/OI4/T51C\nIanOSe5WyWpYhahVNqYNJf/EhtMfmNu5iRG1hk10Dv2BrDFsjFkSU83cWzS5WWtrCX+42zhtpVZD\npjqnz++Pvp1pcu9XXbwf/12fz3XO9X51Ve9zXefsfIYOHep4XGeez8ednJzQ6XSO2449zWKxsG3b\nNse2FnO8efOGT58+sWrVKhYtWsS9e/c0mSM+Pp6amhri4uIwmUykpqYyePBgx/zP5PDy8qKurq7H\natfr9fTv37/L2O+eg/r6+m7z93QONzc3nJ2dsdvtnDlzhrlz52oyx8uXL3n69CmzZ892jGkxh9Vq\n5c6dOyQnJ7Nx40aampr6TA5p5N1Qffxba2/cuEFBQQHbt2/vMv61un92/P/t4sWLhIWFMXLkyG7n\ntZIDoKmpiUOHDmE2m0lLS+tSi1ZyFBYW4ufnx/Xr1zl58iRbtmz5obq6G+9rfzt/4hz0Zia73U5q\naiqRkZFERUV9Ma+FHFlZWaSlpX1zHy3kUErh7+/PqVOnCAoK4siRI93u87XH/ui+v0IaOWAwGKiv\nr3ds19XV4ePj04sVfV1paSmHDx/m6NGjDBo0CDc3Nz59+gRAbW0tBoOh2zyd452vANva2lBKOa5c\nelJJSQk3b95kwYIFnDt3jtzcXE3m8PLyIjw8HL1ez6hRo3B3d8fd3V1zOSoqKoiJiQEgODiYlpYW\nGhsbHfNfy/H5eGeOzrHe9Lu/Sz4+Pl0+sNebmdLS0hg9ejRr164Fuv9f1Zdz1NbW8uLFCzZv3syC\nBQuoq6vDZDJpLgeAt7c3ERERAMTExPDs2bM+k0MaORAdHc3Vq1cBqK6uxmAwMHDgwF6u6kvv379n\n7969HDlyhCFDhgAd77901n7t2jViY2MJDQ2lqqqKd+/e0dzcTEVFBZMnTyY6OporV64AHe/3TJ06\ntVdy7N+/n/Pnz5Ofn8/8+fNZs2aNJnPExMRw//592tvbaWxs5OPHj5rMMXr0aCorK4GO24fu7u4E\nBgZSXl7eJUdkZCQlJSW0trZSW1tLXV0dY8aM6ZKjc9/e9LvnwMXFhYCAgC/y97SioiJcXFxYv369\nY0xrOYxGIzdu3CA/P5/8/HwMBgOnT5/WXA6AadOmUVpaCnT0CX9//z6TQ1Y/+092djbl5eXodDp2\n7NhBcHBwb5f0hbNnz5KTk4O/v79jzGw2k5GRQUtLC35+fmRlZeHi4sKVK1c4fvw4Op0Ok8lEYmIi\ndrudjIwMXr16haurK2azmWHDhvViIsjJyWH48OHExMSwdetWzeXIy8ujoKAAgNWrVzNhwgTN5Whu\nbiY9PZ2GhgZsNhsbNmzAx8eH7du3097eTmhoqOPW6KlTpyguLkan05GSkkJUVBTNzc1s2bKFpqYm\nBg8ezL59+xg0aFCP1P7o0SMsFgtWqxW9Xo/RaCQ7O5tt27b91jl49uxZt/l7MkdDQwP9+vVzXFQE\nBgayc+dOzeXIyclxXHjMmDGDW7duAWguR3Z2Nrt37+bt27e4ublhsVjw9vbuEzmkkQshhBAaJrfW\nhRBCCA2TRi6EEEJomDRyIYQQQsOkkQshhBAaJo1cCCGE0DBp5EIIIYSGSSMXQuMKCwu/OX/79u3v\nLi2anJxMWVnZnyxLCNFDpJELoWF2u53c3Nxv7nPixAnH2slCiL+PvrcLEEL8uvT0dKxWK0uXLmXO\nnDnk5eUxYMAAvLy8yMzMpKioiPLycjZv3kxWVhYvX77k2LFjuLq6Yrfb2bt3LyNGjPjucd68ecPq\n1asZO3YsQUFBLF++nD179lBdXQ1AZGQkKSkpAOTm5lJSUoJerycoKIiMjAxqa2tZuXIl0dHRlJeX\n4+npSWJiIoWFhVitVg4cOEBwcDDZ2dncv38fV1dXjEYjFoulV75/XghN+SOrmgshesXr169VbGys\nslqtatq0aer9+/dKKaXMZrPKyclRSik1ffp09erVK6WUUgUFBcpqtSqllDp8+LAym81KKaVMJpO6\ne/fuN48TEhKinj9/rpRSqri4WK1YsUK1t7crm82mkpKS1IMHD1RFRYWaN2+eam1tVUoptW7dOnXh\nwgXH41+8eOGoqbO+gwcPqszMTNXU1KTCwsKUzWZTSil16dIlR61CiK+TK3Ih/gKPHz9m3Lhxju/l\nnjJlCnl5eV/s5+3tzdatW1FK8fbtW8LDw3/4GB4eHgQEBABQWVlJVFQUOp0OZ2dnJk+eTFVVFc7O\nzkRERODi4uKoo6qqioiICDw9PR3rBBiNRiZOnAiAr68vNTU1eHh4EBsbi8lkIi4ujjlz5uDr6/tb\nPxch/gXyHrkQfyGlFDqdrstYW1sbKSkp7Nq1i9OnT5OcnPxTz9nZnIEvnrvzeF8bB3B2du4y9/m2\n+m/Jh4MHD5KZmQmAyWTiyZMnP1WjEP8iaeRCaJiTkxM2m43x48dTXV3Nhw8fACgrKyM0NBToaLo2\nm43m5macnJwYPnw4LS0t3Lx5k9bW1l86blhYGGVlZSilsNlsPHz4kNDQUMLCwnjw4AFtbW0A3Lt3\nz1HH97x+/ZoTJ04QGBjI0qVLiYuL4+nTp79UnxD/Erm1LoSGGQwGvL29WbNmDStWrGDJkiW4urri\n6+vLpk2bgI5101etWoXFYiEhIYGkpCT8/PxYtmwZqampXL58+aePO2vWLCoqKli4cCHt7e3MnDmT\nSZMmARAfH8/ixYtxcnJi3LhxJCQkUFNT893nNBqNPH78mKSkJNzd3fHw8GDt2rU/XZsQ/xpZxlQI\nIYTQMLkiF0IAHbe209PTu51LT08nJCSkhysSQvwIuSIXQgghNEw+7CaEEEJomDRyIYQQQsOkkQsh\nhBAaJo1cCCGE0DBp5EIIIYSG/Q/NKvxMYceLIAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "t0lRt4USU81L", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This initial line looks way off. See if you can look back at the summary stats and see the same information encoded there.\n", + "\n", + "Together, these initial sanity checks suggest we may be able to find a much better line." + ] + }, + { + "metadata": { + "id": "AZWF67uv0HTG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Tweak the Model Hyperparameters\n", + "For this exercise, we've put all the above code in a single function for convenience. You can call the function with different parameters to see the effect.\n", + "\n", + "In this function, we'll proceed in 10 evenly divided periods so that we can observe the model improvement at each period.\n", + "\n", + "For each period, we'll compute and graph training loss. This may help you judge when a model is converged, or if it needs more iterations.\n", + "\n", + "We'll also plot the feature weight and bias term values learned by the model over time. This is another way to see how things converge." + ] + }, + { + "metadata": { + "id": "wgSMeD5UU81N", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(learning_rate, steps, batch_size, input_feature=\"total_rooms\"):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " input_feature: A `string` specifying a column from `california_housing_dataframe`\n", + " to use as input feature.\n", + " \"\"\"\n", + " \n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " my_feature = input_feature\n", + " my_feature_data = california_housing_dataframe[[my_feature]]\n", + " my_label = \"median_house_value\"\n", + " targets = california_housing_dataframe[my_label]\n", + "\n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column(my_feature)]\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda:my_input_fn(my_feature_data, targets, batch_size=batch_size)\n", + " prediction_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False)\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + "\n", + " # Set up to plot the state of our model's line each period.\n", + " plt.figure(figsize=(15, 6))\n", + " plt.subplot(1, 2, 1)\n", + " plt.title(\"Learned Line by Period\")\n", + " plt.ylabel(my_label)\n", + " plt.xlabel(my_feature)\n", + " sample = california_housing_dataframe.sample(n=300)\n", + " plt.scatter(sample[my_feature], sample[my_label])\n", + " colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)]\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " root_mean_squared_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " predictions = linear_regressor.predict(input_fn=prediction_input_fn)\n", + " predictions = np.array([item['predictions'][0] for item in predictions])\n", + " \n", + " # Compute loss.\n", + " root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(predictions, targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " root_mean_squared_errors.append(root_mean_squared_error)\n", + " # Finally, track the weights and biases over time.\n", + " # Apply some math to ensure that the data and line are plotted neatly.\n", + " y_extents = np.array([0, sample[my_label].max()])\n", + " \n", + " weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0]\n", + " bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + "\n", + " x_extents = (y_extents - bias) / weight\n", + " x_extents = np.maximum(np.minimum(x_extents,\n", + " sample[my_feature].max()),\n", + " sample[my_feature].min())\n", + " y_extents = weight * x_extents + bias\n", + " plt.plot(x_extents, y_extents, color=colors[period]) \n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.subplot(1, 2, 2)\n", + " plt.ylabel('RMSE')\n", + " plt.xlabel('Periods')\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(root_mean_squared_errors)\n", + "\n", + " # Output a table with calibration data.\n", + " calibration_data = pd.DataFrame()\n", + " calibration_data[\"predictions\"] = pd.Series(predictions)\n", + " calibration_data[\"targets\"] = pd.Series(targets)\n", + " display.display(calibration_data.describe())\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kg8A4ArBU81Q", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Achieve an RMSE of 180 or Below\n", + "\n", + "Tweak the model hyperparameters to improve loss and better match the target distribution.\n", + "If, after 5 minutes or so, you're having trouble beating a RMSE of 180, check the solution for a possible combination." + ] + }, + { + "metadata": { + "id": "UzoZUSdLIolF", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "train_model(\n", + " learning_rate=0.00001,\n", + " steps=100,\n", + " batch_size=1\n", + ")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ajVM7rkoYXeL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "id": "T3zmldDwYy5c", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 957 + }, + "outputId": "9f0813e1-930d-4fca-975a-479c7abc7ecd" + }, + "cell_type": "code", + "source": [ + "train_model(\n", + " learning_rate=0.00002,\n", + " steps=500,\n", + " batch_size=5\n", + ")" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 225.63\n", + " period 01 : 214.42\n", + " period 02 : 204.04\n", + " period 03 : 194.97\n", + " period 04 : 186.60\n", + " period 05 : 180.53\n", + " period 06 : 175.00\n", + " period 07 : 172.26\n", + " period 08 : 169.21\n", + " period 09 : 167.45\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 115.8 207.3\n", + "std 95.5 116.0\n", + "min 0.1 15.0\n", + "25% 64.0 119.4\n", + "50% 93.2 180.4\n", + "75% 138.0 265.0\n", + "max 1661.6 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean115.8207.3
std95.5116.0
min0.115.0
25%64.0119.4
50%93.2180.4
75%138.0265.0
max1661.6500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 167.45\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FFX3wPHv9k0nlRAiBBICKEWK\nCiLSgglFRUFAFHsXAbH8RFGwYW+g2Avoq6CoNAUEkVew0EGkGEINJKT3zfb5/ZE3K9GU3ZBkU87n\neXxkszNzz85smTlz7z0qRVEUhBBCCCGEEEIIIRqY2tsBCCGEEEIIIYQQomWSpIQQQgghhBBCCCG8\nQpISQgghhBBCCCGE8ApJSgghhBBCCCGEEMIrJCkhhBBCCCGEEEIIr5CkhBBCCCGEEEIIIbxCkhJC\neFHnzp05ffq0t8Oo1k033cQ333zzr7/Pnz+fxx577F9/z8jIYPTo0XXW/uTJk1m+fHmt158/fz59\n+/YlKSmJpKQkEhMTmT17NqWlpR5vKykpiezsbI/WqWr/CSGEaBo6d+7M8OHDXb8jw4cP59FHH8Vk\nMp3Vdr/88stK//7NN9/QuXNnfvrppwp/N5vN9O7dm0ceeeSs2nXXiRMnuOuuu0hMTCQxMZExY8aw\nfv36BmnbEwsWLKh0n2zZsoVu3bq5jtuZ/zUVJ0+epHPnzhXOYa677jr279/v8bZeeeUVvvjiC4/W\nWb58OZMnT/a4LSE8pfV2AEKI5qV169asWrXK22FUkJiYyLPPPguA1Wpl+vTpvPXWWzz44IMebWfN\nmjX1EZ4QQohG7tNPPyUyMhIo+x25//77effdd7n//vtrtb2srCw++OADxo8fX+nzbdq0YdWqVQwZ\nMsT1t59++onAwMBatVcbDz74IFdeeSXvvPMOAHv27OHGG29k9erVtGnTpsHiOBtt2rRp8r/dGo2m\nwmv4/vvvuffee1m7di16vd7t7TzwwAP1EZ4QdUJ6SgjRCFmtVp555hkSExMZOnSo64QAYNeuXVx9\n9dUkJSUxcuRIfv31V6Asm37JJZcwd+5crr/+eqDs7s6yZcsYM2YMl1xyCZ988olrO0uWLCEpKYmh\nQ4cyY8YMzGYzAKmpqVxzzTUkJCTwwAMP4HA4PIr95MmTnHvuuUDZ3Z6pU6fy6KOPkpiYyMiRIzl0\n6BAAhYWFPPTQQyQmJjJs2DC+/vrrKreZnJzMuHHjGDRoELNmzcLhcDB16lQ+/PDDCsv069cPu91e\nbXx6vZ4JEybwyy+/1BhH586deffdd0lMTMThcFTo2bJo0SJGjhxJUlISd999N7m5uXWy/4QQQjRu\ner2egQMHcuDAAQAsFgtPPPEEiYmJjBgxgueff9713X/w4EEmTpxIUlISV155JZs2bQJg4sSJpKWl\nkZSUhNVq/VcbvXv3ZsuWLRV69X3//fcMGDDA9fhszhUWLVrE5ZdfzsCBA/n+++8rfZ3Jycn07NnT\n9bhnz56sXbvWlZx58803GTRoEGPGjOG9995j6NChADzyyCMsWLDAtd6Zjz05h9mxYwdjx45l+PDh\njB8/ntTUVKCsx8j06dMZMmQI119/fa17nH7zzTdMmTKFG2+8kRdffJEtW7YwceJEpk2b5rqAX716\nNaNHjyYpKYkbbriBEydOAGW9MGfNmsW4ceMqnFsBTJs2jY8++sj1+MCBA1xyySU4nU5ee+01V8+T\nG264gYyMDI/jHjlyJGazmSNHjgBVn8898sgjPPfcc1x++eWsXr26wnGo6n3pdDp56qmnGDx4MOPG\njePgwYOudrdu3cpVV13FyJEjGTFiBKtXr/Y4diGqIkkJIRqh999/n5SUFFauXMmqVatYu3atqxvn\nE088wa233sqaNWu44447mD17tmu9/Px8unbtymeffeb6W0pKCsuWLWPBggW8+uqrOBwOtm/fzhtv\nvMHChQvZsGED/v7+vPHGGwC8/PLL9O/fn/Xr13PjjTeyc+fOs3otP//8M5MmTWLt2rVcdNFFLFy4\nEIDnn38etVrN6tWr+eqrr5g/fz7JycmVbmPLli18+umnrFmzhm3btvHTTz8xevToCj0y1q1bx2WX\nXYZWW3MHMJvN5rq7UFMciqKwdu1aNBqN62+7d+/mww8/dMUUFRXFK6+8AtT9/hNCCNG4FBQUsGrV\nKnr16gXAwoULOX36NN999x3ffvst27dvZ9WqVTidTmbMmMH111/PmjVreOaZZ3jggQcoLi5m7ty5\nrrv4ld3t1uv19O/fnx9//BGA4uJiDhw44GoTan+ukJeXh1qtZuXKlTz66KO8/vrrlb7OSy+9lKlT\np7Jo0SIOHz4MlPWGVKlUJCcns3DhQpYuXcrSpUvZvXu3W/vO3XOY4uJi7r77bmbMmMG6deu44YYb\nmDZtGgBff/012dnZrFu3jvnz57N582a32q7ML7/8wpNPPsnDDz8MwP79+5k4cSKvvPIKaWlpPP74\n47z11lusWbOGwYMH88QTT7jW/e9//8t7773HTTfdVGGbiYmJbNiwwfV43bp1JCUlcfjwYdasWeM6\nVsOHD+e3336rVdwOhwO9Xl/t+RzAb7/9xtKlSxkxYoTrb9W9Lzdt2sQvv/zCd999x2effcb27dtd\n673wwgvMnDmT77//nrfffrtRDuURTZckJYRohH766ScmTZqEXq/H19eXK6+8kh9++AGAZcuWuX5c\n+vTp47pzAGUX28OHD6+wrSuvvBKA8847D4vFQk5ODhs2bGDkyJG0bt0agGuvvda1/e3btzNy5EgA\nevToQceOHc/qtcTGxtKtWzcAzj33XNLT012v8YYbbkCtVhMSEsLw4cNdMfxTYmIiPj4++Pj4MGjQ\nIHbv3s2gQYM4ceKE607B+vXrXXFXp7i4mM8//9y1n2qKY/Dgwf/axsaNG0lMTCQ0NBSAa665xtXz\noq73nxBCCO+bPHkySUlJDBs2jGHDhtGvXz9uv/12oOw3Yfz48Wi1WoxGI5dffjm//PILJ0+eJDs7\nm1GjRgHQvXt3oqKi2Lt3r1ttjho1ypV8X79+PUOGDEGt/vvUvbbnCna7nauvvhooOzdIS0urtP2X\nXnqJ6667jpUrVzJ69GiGDh3qmpNgx44dXHDBBYSHh6PVat2eS8rdc5gdO3bQunVrV8+Q0aNHc+LE\nCdLS0ti+fTvDhw9Hq9USHBxcYYjLP6Wnp/9rPonnn3/e9XxMTAwxMTGux0ajkf79+wNlCYuLLrqI\n9u3bA2W/9Vu2bHH1yOzZsychISH/anPw4MHs37+f/Px84O+kRGBgILm5uaxcuZKCggImT57MmDFj\n3Npv5RRFYcmSJbRu3ZqYmJhqz+cA+vfvj8FgqLCN6t6X27ZtY9CgQfj5+WE0GiskM0JDQ1m2bBmH\nDx8mJibGdTNGiLogc0oI0QgVFRXx3HPP8eqrrwJlXTR79OgBwMqVK1m0aBElJSU4nU4URXGtp9Fo\n8Pf3r7CtgIAA13NQliEvKipi3bp1rrsLiqJgs9mAsjtAZ27jbMevlrdfHkN5l9aioiKmT5/uisti\nsVQ5+dSZP/oBAQFkZWVhMBgYPnw4q1atYty4cWRlZXHhhRdWuv7atWvZsWMHADqdjuHDh7vubNQU\nR6tWrf61vdzcXCIiIlyPAwMDycnJAep+/wkhhPC+8jklcnNzXUMPynvm5ebmEhQU5Fo2KCiInJwc\ncnNzCQgIQKVSuZ4rvzANCwursc0BAwYwa9Ys8vPz+e6777jnnns4evSo6/mzOVfw9fUFQK1W43Q6\nK23fYDBw6623cuutt1JYWMiaNWuYO3cu0dHRFBQUVPh9K0/S18Tdc5jCwkJSU1Mr/B7r9Xpyc3Mp\nKCiocG4RGBhISUlJpe3VNKfEmcftn4/z8vIqvMaAgAAURSEvL6/Sdcv5+vpy8cUXs3HjRvr06UNh\nYSF9+vRBpVIxf/58PvroI55++mkuuOACnnzyyRrn53A4HK79oCgKcXFxLFiwALVaXe35XFUxVve+\nLCgo+Nf5Tbm5c+fy9ttvc/PNN2M0GpkxY0aTmjRUNG6SlBCiEYqIiOCWW275V/Y/IyODWbNm8dVX\nX9G1a1eOHTtGYmJirbZ/1VVX8X//93//ei4wMJDi4mLX4/K5EupaREQEb731FvHx8TUuW1BQUOHf\n5T+yo0aN4rnnniMgIIDExMQKd5DOdOZEl2cTR7mwsDDXHRAo63JafoLZUPtPCCFEwwsJCWHy5Mm8\n9NJLvP3220DVvwmhoaEUFBSgKIrrAjA/P9/tC3idTseQIUNYtmwZx48fp1evXhWSEvV5rpCbm8uB\nAwdcPRUCAwMZP348mzZtIjk5mYCAAIqKiiosX+6fiY7y33BP4oqIiKBjx46VVq8KDAyssu26FBoa\nyq5du1yPCwoKUKvVBAcH17huYmIi69atIy8vj8TERNfx79evH/369cNkMvHCCy/w8ssv19jj4J8T\nXZ6puvO56l5XVe/L6vZtWFgYjz/+OI8//jibN2/mvvvuY+DAgfj5+bndthBVkeEbQjRCw4YN46uv\nvsLhcKAoCgsWLODnn38mNzcXX19fOnbsiN1uZ8mSJQBV3iGoytChQ/nhhx9cPzbr16/nvffeA+D8\n889n3bp1AOzcudM1qVNdGzp0KIsXLwbKupLOnTuXffv2VbrsDz/8gMViwWQysWnTJvr27QvAxRdf\nTH5+Pp9++mmFLob1FUe5wYMHu042ABYvXsygQYOAhtt/QgghvOPmm29m165dbN26FSj7TVi6dCkO\nhwOTycTy5csZNGgQ0dHRREZGuiaS3LlzJ9nZ2fTo0QOtVovJZKpxcuZRo0bx/vvvk5CQ8K/n6vNc\nwWw2M3XqVNcEiADHjx9nz5499O3bl169erF9+3Zyc3Ox2+0sW7bMtVx4eLhrgsTU1FTX3EqexNWz\nZ0+ysrLYs2ePazsPPfQQiqJw/vnns2HDBhwOB7m5ufz8889uvy5PDBgwgO3bt7uGmCxevJgBAwa4\nNXfVkCFD2LVrF+vXr3edn2zevJknn3wSp9OJr68vXbp0qdBboTaqO5+rSnXvy169erF582ZKS0sp\nLS11JUNsNhuTJ08mMzMTKBv2o9Vqq7wZJISnpKeEEF42efLkCpMoPvPMM0yaNImTJ08yatQoFEWh\nW7du3Hjjjfj6+nLppZe65jN45JFH2LlzJ5MnT2bevHlut3neeedx1113MXnyZJxOJ6GhoTz55JMA\nPPTQQzzwwAMsX76cnj17cvHFF1e5nTOHRQB07drV7ZJT06dP58knn3TdJRk4cCCdO3eudNmLL77Y\nNUv14MGDGThwIFB29yApKYkff/yRPn36uNXu2cRRrkePHtxxxx1cd911OJ1Ounbtypw5cwDP9p8Q\nQoimx9/fnzvuuIMXXniBpUuXMnnyZFJTUxk1ahQqlYqkpCRGjBiBSqXi1VdfZfbs2bz55pv4+Pjw\nxhtv4OvrS+fOnQkKCmLAgAF8++23REVFVdrWhRdeiEqlqnTOpPo8V4iKiuLtt99m3rx5PPPMMyiK\ngr+/PzNnznRV5JgwYQJXXXUVwcHBXHbZZa7qWuPHj2fKlClcdtllnHvuua7f1y5durgdl9FoZN68\neTz99NOUlJSg0+mYNm0aKpWK8ePHs337dhISEoiKiiIhIaHC3f0zlc8p8U8vvvhijfsgMjKSZ555\nhnvuuQebzUZ0dDRPP/20W/vP39+f8847j7/++ovzzz8fgAsuuIDvvvuOxMRE9Ho9ISEhzJ07F4CH\nH37YVUHDE9Wdz1WluvflkCFD2LhxI0lJSYSFhTFo0CC2b9+OTqdj3LhxrqGvarWaWbNm4ePj41G8\nQlRFpZw5mEsIIZqY999/n7y8PNfM2UIIIYRoWNu3b+fhhx+uUHVCCCHcJX1uhBBNVm5uLl9++SXX\nXnutt0MRQgghhBBC1IIkJYQQTdLixYsZO3Yst99+O+ecc463wxFCCCGEEELUggzfEEIIIYQQQggh\nhFdITwkhhBBCCCGEEEJ4hSQlhBBCCCGEEEII4RVNsiRoVlblZX/ORnCwL3l5pjrfblMm+6Qi2R8V\nyf6oSPbHv8k+qai57I/w8ABvh3BW6uMcAprP8W3K5Bh4nxwD75Nj4H1yDCpX3fmD9JT4H61W4+0Q\nGh3ZJxXJ/qhI9kdFsj/+TfZJRbI/mjc5vt4nx8D75Bh4nxwD75Nj4DlJSgghhBBCCCGEEMIrJCkh\nhBBCCCGEEEIIr5CkhBBCCCGEEEIIIbxCkhJCCCGEEEIIIYTwCklKCCGEEEIIIYQQwiskKSGEEEII\nIYQQQgivkKSEEEIIIYQQQgghvEKSEkIIIYQQQgghhPAKSUoIIYQQQgghhBDCKyQpIYQQQgghhBBC\nCK+QpEQVLDYHmXkmLDZHlcsUmaz8kZLFkfQCLDaHW+u4u32LzcHJzCJOZhXXuL2qtlWX8bjrn9up\nq+0KIYQQQgghhGh+tPW14S1btjBt2jQ6deoEQHx8PLfddhsPP/wwDoeD8PBwXnrpJfR6PStWrGDh\nwoWo1WrGjx/PNddcU19h1cjhdLJkQwq7krPILbQQEmigV3w4E4bGoVGX5XCsdjvPLNrBycySCusa\ndCqsNqXSddzdvsPp5IsfD/Hr3nTMVicARr2GAd0juerSWIpNVoL8DRh0miq3NW5wR5ZuPFLta3An\nnrPdb75GHSWlVvKKrNXGIIQQQgghhBCiZaq3pATAhRdeyLx581yPZ86cyaRJkxgxYgSvvvoqS5cu\nZcyYMbz11lssXboUnU7HuHHjGD58OK1atarP0Kq0ZEMK67efdD3OKbS4Hk9KiAfg2UU7/5WQALDY\nlCrXcXf7SzaksGHHqQrrmK0Oftxxil/2pmOxOl0X+E5FqbBs+bb+OpFPamZxta/BnXimXdun6h31\nD5VtJ6fQ4lYMQgghhBBCCCFapga9Zb1lyxaGDRsGwJAhQ/jtt9/Ys2cP3bt3JyAgAKPRSO/evdm5\nc2dDhuVisTnYlZxV6XO7krOx2BwUmaycyiqudJmq1nF3+0UmKzv/yqxye2arE4W/L/B/3Zte6XJV\nxedpPGarvcpYzlTddmqKoSXKXbmeIzOeQnE63V5HlX4E7c9LwG49u8YVBYrSoTSvVquXWFXsTTdQ\nalOdXRy1VGpR+GyNmeRU996bDe3UaTMvvHWE1LRSb4fSaDicCv/5Jo0lKyr/vhKiqcvOL2Xe0j84\nmlbg7VCEEEKIJqlee0qkpKRw1113UVBQwJQpUygtLUWv1wMQGhpKVlYW2dnZhISEuNYJCQkhK6v6\nC9zgYF+0Wk2dx6vR68gtslT6XF6RGY1eR1GJDafi3vbK1wkP8wMgPbuk2u0XWZ3kFrl/0Vk+vOOf\nqorP03jyCi20CQ+oMY7qtlNTDE1NuBv7ozoOUym7H3sBp91B+MIXULkxlEVxOChesRKlKI9Wra5F\n5VP7fWfOz6KoNA9jcAQBHr4WRVH4Y59CrgnOD9QBZ78/PG3/rS/z2ZVsp0dnX8LDG9d7qKDQxvPz\nj3IyvZRJY9s36L5prOx2J+8sOsX6nzO5qHew7BMa9jMjGkaJ2c7ulGzmfrKVWZP74GvUeTskIYQQ\nokmpt6RETEwMU6ZMYcSIEaSmpnLDDTfgcPx9h1xRKr9yrurvZ8rLM9VZnOXCwwNwWG2EBBgqDDso\nFxxgxGG1EaBXo1ZVfeFf2TpZWUUAlJqsBPnpyS/+d+IhOMBIgF5NSIDeo8REZaqK75/xOGyOal9v\ncKDBtWx1qttOTTE0JeHhAWcd9+kPFmPNziNq+m1k5/x7CFBl1Ie2oyvIxtH5IrKLnVBcyxgUJ+Sc\nAFSY1YGYPXwtaQVacosNhPvZcZRawP/s94cntu63sfVPCzFt1JzX3tGo3kM2u5Pn/peQGDuqNedE\nahpVfN5gtTl586NUNm3JoUucH/fdck6L3yd18R3SGEhipaL2kQGMvrg9q349zgerDjBlbHfUKu/0\nJhNCCCGaonobvtG6dWtGjhyJSqWiXbt2hIWFUVBQgNlsBiAjI4OIiAgiIiLIzs52rZeZmUlERER9\nhVUtg05Dr/jwSp/rFR+GQachwFdP23B/t7ZXvo7D6eTz9ck89cm2ShMS5csG+Orp3dn9127UV95b\npKr4yuMpV9PrNerdy1lVt52aYmhJnFYbp9/5FLWPkda3TnRvJYcd7R8bUTRa7N0uPbsASrLBaQff\nUNDoPVrVaocjuXo0aoW4sLMcQlILWflOvv2vBaMerks0olE3nhN+RVF479NUdu0toH+fVky6Ksrb\nIXmd2eJg7huH2bQlhx5dA5j9QBx+vvXaMU8IrxpzSUd6dgpjd0o2a7ac8HY4QgghRJNSb0mJFStW\n8OGHHwKQlZVFTk4OV199NWvXrgXghx9+YODAgfTs2ZO9e/dSWFhISUkJO3fupG/fvvUVVo0mDI0j\noW80oYFG1CoIDTSS0De6QjWKx27oTXTEv7uOG3SqStcpnwSysp4E/1x2wtA4hvZpWyHhUNUF2IDu\nkZXG+tgNvWt8DZ683trtNwPnRPgTEmA4q+02JznfrMaalkH45KvRhbo3kav60HZUpgIcnS8C38Da\nN+6wgSkH1FrwDfN49ZQcA3anio4hVgxaN8cv1RG7Q+E/a8xYbTBuqIGQwMZVvWXF2kzWb8ohPtaf\nqbe1R92IEibeUGJy8OQrKezZX8SAC0N5bHosRkPLTESKlkOtVvHgdX0JDjDw9X8Pc+B47ebtEUII\nIVoileLOeIlaKC4u5sEHH6SwsBCbzcaUKVPo2rUr//d//4fFYiEqKornnnsOnU7HmjVr+PDDD1Gp\nVFx//fVcccUV1W67Prq//rNbrcXmoKDY4iq/WZkik5WjaQX4++lpG1bWO+Gf61hsDma9/3vlQyT8\nDcy55QICfP9919pic5CVZwKVipBAA8s2HWVXcjZ5RWaCA4z0ig9zldesKlZ3XkN1y9amq/E/t+NJ\nDI3d2XS9VhwO9g66BktqGj1/W44+qnXNK9mt6Je9BjYr1qtmgPEs5lAoOAmWQgiIAh/PKtvkmtT8\nke5DgMFB77ZmynslN1RX9FW/WPhph40LumqZONxY7+15YtvufJ6bf4TgIB0fvt4HnA3fi6QxKSyy\n89SrKRw+buKSC4N5ZmY38vLcG6bUEsjwjcahvo5BeHgAv+06yQuf78TPqGX2zRcSHGCol7ZE5ZrL\nZ6wpk2PgfXIMvE+OQeWqO3+ot/60/v7+vPPOO//6+8cff/yvvyUlJZGUlFRfodSKQachIti32mUC\nfPX0iKs4bOHMdSw2B0dOFZBbxVwLBSUWSi32SpMSBp2G6Ii/D9ykhHjGDoqt9AK/qljdeQ21WdaT\n7dTVdpu6vO9/wnzkBOGTxriXkAA0f21FVVqMvdugs0tIWE1lCQmtEYxBHq3qcMKhbAOgEB9upaGH\nSSen2tm4w0ZYkIoxgxrXyf2xVBOvvnsMnU7Fo1NjCQ81kJXVcpMSufk25rx8iNQ0MwkDQ7nrxnZo\ntY2rV4sQ9S0uOojxQ+L44sdDvLP8Tx66thdajXwOhBBCiOrIIN964HA6WbIhhV3JWeQUWlCryiox\n/lNwgJEgf/cvtOQCv2lSFIW0+R+DWk2be25wbyWbBc2+TSg6I45zB5xN41B8uuzfAZF4mlU4ka+j\n1KYmOshGgMH9EqZ1obhU4YsfLKjUcF2SEaO+8QyLyC+wMXfeEcwWJw/d04HYmJb9uczMtjD75RRO\nZ1oYnRDOzROjW/wwFtFyJfSNJuVUAdsOZvL1fw8zYWgnb4ckhBBCNGqSvq8H/5xDoqpKHS150seW\npGDjb5j+/IuQyxMwdmzn1jqaA7+ispjKEhIGn9o3bi4AuxkMgaDz7MLZZFVxIk+HQeMkJqRhewAo\nisKXP5opLFEY0U9Pu9aN53NitTl57s0jZOVYmXRVGy7uG+ztkLzq1Gkzjz6XzOlMC9eMjuSWayUh\nIVo2lUrFTSO6EBniy9qtqez4K9PbIQkhhBCNmiQl6pjF5mBXclalz6lVZTeqZdLHliV9XtmQpagp\nN7m3gsWEZv8vKAZfHF37175hpxNKMgEV+Ls3ZKScokBylgEFFXFhVhq6F/5vf9rZd8RBXLSGwX10\nDdt4NRRF4c2PjpN8uIRB/UMYNzrS2yF51fGTpcx6PpmcPBuTx0Ux6eooVFIKUQh8DFruvaobep2a\nj74/QEZu3ZcyF0IIIZoLSUrUsYJiS5VzSCgKPDjhfJ65/SImJcSjUcvub+6KtuyiaMsughIuwfe8\neLfW0ez/BZXNguO8gaA7i3kUTGeWAPXswj6jWEu+WUOor50wP0ftY6iF0zlOlv9swdcIky4zoG5E\nF7lfrTzNpi15dInz456b2rXoC/DkIyXMeiGZ/EI7t193DlePbNkJGiH+qW24PzcmdaHU4uCtb/di\nsTXsd6kQQgjRVMhVcR0L8jcQElj5hWRIoJGObYNkyEYLkjb/f70k7rvZvRVKi9Ec/B3Fxx9H5wtr\n37DD+ncJUD/PSoDaHHA4W49apdAprGEnt7TZFT5ba8bugPHDjAT5N56vqF+25vHFsnTCQ/X835SO\n6HWNJ7aGtu+vIma/dAiTycF9t7Zn5LDwmlcSogXqf14kQ3q15WRWCZ+t/Yt6KngmhBBCNGkt96y6\nnhh0GnrFV36CLnNItCwlf/5FwYZfCejfm4ALerq1jmbfJlR2a1nFDe2/q7K4rTgTUMA/AlSefcyP\n5OixOVXEBNsw6hr2BPq7X62kZzvp301L99jGMw/voaMlzPvwGEaDmsemxdIqsPEMKWloO/cW8NRr\nKdjtCg/c3YGhA0K9HZKoRH6hDautYSenFZWbOKwTHdoE8Mufp/l5T5q3wxFCCCEaHUlK1CGLzUFm\nnokxAzuQ0Dea0EAjaplDosVKn/8JAFH33eLeCqZCNMlbUXyDcHbqW/uGXSVAfcDgWQnQ/FI16UU6\n/PROolvZah9DLRw4ZmfTbhsRwSquGNh4yn9m51p5bt7hsovwuzrQPvosJh5t4n7bkcdz846AAo/c\n17HFT/LZGDmdCsvXZnD7A3/y3qep3g5HADqtmrvHdMPPqOU/6w5x7HSht0MSQgghGpXGcyuyCTuz\nBGhuoYWQQAO94sN58tYLKTZp4hkeAAAgAElEQVRZCfI3SA+JFqb08HFyV63Ht3sXAgdd5NY62r3/\nReWwY+sxGDS1/GhWKAHa2qMSoM7/TW4JEB9eVsq2oRSZnCxeZ0GjhuuTjOh1jWOuhlKzg7nzDpNX\nYOeWidH07elZkqc52fhbDvM/PI5ep+bRqbF07xrg7ZDEP+QV2Jj3wTF27ysiKFBLwqXSi6WxCAvy\n4fbLz+ONr/aw4Ns/eeKmC/D3abk9roQQQogzSU+JOnBmCVAFyCm0sH77SZZtOkJEsK8kJFqg9LcW\ngqIQNfVm9yZDLM5DnbIDJSAEZ2yv2jfsKgEa5HEJ0JP5Okw2NW0CbQQZG67bt1NRWLzOQnGpwugB\netqGN47Pi9Op8Mb7xzh6opTLBoUxenjLnTdhzU9ZzPvgOD5GDXMe7CQJiUZoxx8FTH/iALv3FdG7\neyCvP9mVLnH+3g5LnKFHbCijL44hu8DMB6v245T5JYQQQghAkhJnrboSoLuSsyudbbt8mIfMxN08\nWU6dJmfpdxjjYggeMcStdbR/bETldGDvMRTUtbwodzrOKAEa4dGqpTYVx/J06DQKHUOstWu/ljbv\nsXHwuIMu7TVccn7juXP42ddpbNlVQPeuAdx+3TktttLGsjUZvPtpKgH+Wp5+uBOdY/28HZI4g9Xm\n5IPPU3nm9cOYSh3ccm102bwnQY3nsyT+duUlHTgvJpg/Dufw/W/HvR2OEEII0SjI8I2zVF0J0Lwi\nMwXFFiKCy+5YVzXMY8LQOCkP2oycfvc/KHYHbabchMqN46oqzEZ9ZDfOoHCcMd1r33B5CVC/cI9K\ngCoKHMrW41RUdA4105Ade9KyHKzabMXfR8XE4Y2n/OeGzTl8uzqDNq0NPHR3B7TaxhFXQ1IUhcXL\n0/lyxWlCg3XMebAT0W2M3g5LnCH1VCmvvHuU4yfNRLcxMuPOGDq086yHlGhYarWKO644jzkfb+Pb\nTUfoGBXIuTEh3g5LCCGE8Cq5Ej5L1ZUADQ4wEuT/93NVDfNYsiGlgaIV9c2Wk0fWZ9+gbxtJ6FVJ\nbq2j2fMTKsWJo+cwqG1yymEFU25ZCVBfz8aRZ5doyDVpaeXjIMK/4XrvWG0Kn60x43DCxOEGAnwb\nx9fR/uRi3l54An8/DY9NiyXAv+XlbhVF4eMlp/hyxWlah+t59pF4SUg0IoqisOanLB586iDHT5q5\nbHAYLz/RRRISTUSAr557xnRDrVLx7op95BVVfmNDCCGEaCkax1VAE+ZuCdDaDPMQTU/GB1/gNFto\nc/dk1LqaL2ZVeRmoj+3FGdIGZ7uutW+4OIOyEqCtPSoBaneW9ZJQoRAfZvFkXsyztmKzhYw8hYHn\n6+ga0zgu/E9nWnj+zcMoKDx0T0faRra8C3GHU+GdRams/CGTtm0MPPtIPK3DG081lJausNjOC28e\n4d1PU9Hr1fzfvR25+4Z2GAzyc96UxLYNYsLQOIpMNt5e/id2h5RvFUII0XI1jiuBJq681Oeu5Gzy\niswEBxjpFR9WoQSoJ8M8RNPkKCom4+Mv0YaFEH7tlW6to/ljAyoU7D2HeZRMqMBaApai/5UADfRo\n1aO5eqwONTHBVnz1DTfp2t7Ddn7ba6dNmJpRF+sbrN3qlJgcPPvGYYqKHdx9Qzt6tMDJHO12hfkf\nHePn3/Po0M6H2TPiCAqUuQkaiz8OFPHG+8fIzbfRrYs/026LISykcXx+hOeG9Ykm5VQBWw9ksnTj\nYSYO6+TtkIQQQgivkKREHdCo1UxKiGfsoFgKii2VlgAtH+aRU0li4p/DPETTlLFwKY7CYqJnTkHt\nU/MddlXOKTQn9uMMOwdn2/jaNaoo/+slAQREelQCtMii5lSBFh+dk3bBttq1XwsFxU6+/NGMVgPX\nJxrRNYL5GhwOhVfeOcrJdDOXD4/gssFh3g6pwdlsTl5+5yhbdxXQOdaPx++Pxc9XfiIaA7td4Ytl\naXy7OgOVCq4fG8WYEa3RNGTdXlHnVCoVN43oQmpmMT9sSyWubRB9u3g2SbEQQgjRHEh/zzpk0Gmq\nLAHq7jAP0TQ5S82cfu9zNIH+RNw4zq11NHs2AGA/f5hHyYQKzPllJUCNQaDzcXs1RYG/svSAivgw\nCw11beN0Knz+gwWTGa681EBkaOP4Cvp48Ul2/VlInx6B3DihrbfDaXBmi4Nn5x1m6/+qjcx+IE4S\nEo1EeoaZmc/9xTffZxARpue5mZ0ZOypSEhLNhFGv5Z6rumPQafjo+wOczjV5OyQhhBCiwTWOK4IW\nYsLQOBL6RhMaaEStgtBAIwl9oysM8xBNU9biFdizc4m46Rq0gf41Lq/KPIHmVDLO1h1QIjvWrtEz\nS4D6eXZ37VShlmKLhtb+doJ9G24s88adNlJOOjivo4b+3RrHRe+an7L47scs2rU1MuPODi3uYq/E\n5OCpV1PYs6+Ivj0DmTU9Fh+jJEm9TVEUfvolhxlzDpJy1MTg/iG8Oqcr8VKStdlpG+bHjSM6Y7Y6\neOvbvVisMseUEEKIlqVxXBW0ENUN87DYHFUO/RCNm9NmJ33BItRGA5G3XevWOto9PwJn2UvClF2W\nmPCwBKjFruJojh6tWiE2tOFmfT+R4WD171YC/VSMH2ZE1QjKf+7eV8j7/0klMEDLY9Ni8fVpWZ+9\nwmI7T72SwuHjJi65MJhpt8W0yPKnjU2JycG7n55g05Y8fIxqpt8ew6D+UjayOet3biQpJwvYsPMU\ni9Ye5LbR5zaK70ghhBCiIUhSwgvKh3kAOJxOlmxIYVdyFrmFFkICDfSKD2fC0Dg0tS0P6SFJiJyd\nnG/XYD11mta3TkQXVvOFgyr9COrTR3BGdUKJaF+7Rs+iBGhKth6HUjZsQ99A3wBmq8J/1phRnHDt\nZQb8fbx/sn0y3cxLC46iVquYeV9HIsJa1rwuufk25rxyiNRTZoZdEsrdN7Vrcb1EGqODKcW89t4x\nMrOtxMf6cf/tMURGtKz3Zks1YWgnjqYX8du+DOKiWzGkV8sbSiaEEKJlkqSEly3ZkML67Sddj3MK\nLa7HkxJqN/mhu0mGxpAQaeoUp5P0Nz9BpdUQedf1bqygVOwlUVu1LAGaU6Ihq0RLoNFBmwB77dv3\n0LL/WsguUBjSR0f8Od7/2ikstvPsG4cxlTqYfnsMXeJqHnLTnGRmW5jzcgrpmRZGJYRzy8Ro1JKQ\n8CqHU+HrVadZsiIdRYFrRkcy/oo20nOlBdFp1dwzphtPfrKNL9YnExMZQIc2nlVUEkIIIZoi718d\ntGAWm4NdyVmVPrcrOZuxg2I96rngaZKhPhIi1WmOPTLy1mzEnHKMsIlXYGgbWePy6rRDqLNO4Din\nK0poLe+ClZcA1XlWAtThhEPZelQoxIdZaj1qxFO7km1sO2AnOkJNUj/vly+02Z288OYRTmdaGDc6\nssV1i0/LMDP7pUNk59oYO6o1110dJd3EvSwrx8rr7x9jf3IxocE6pt8RQ7fOLa8krYDQICN3XHEu\nry3Zw4Jv/2T2zRfg7yNleYUQQjRvkpTwooJiC7mVlAgFyCsyU1BscQ3zcIcnSQZ3EiJ1pbn2yFAU\nhbR5H4NKRZt7bnBnBTS7f0RBhaPn0No2CsWny/7t71kJ0ON5Osx2Nee0suJvUGrXvodyC50s3WBB\nrysr/6nVePfiV1EU3l2Uyv7kYvr3bcW1Y9p4NZ6GdvxkKXNePkR+oZ3rx0YxdlTNiTRRv37dnseC\nT05QYnLQr08r7rmxHQH+8tPcknXrEMoVl3Rg+eajvL9yP9Ou6YFaEodCCCGaMTnz8aIgfwMhgQZy\nKklMBAcYCfJ3fxyxp70u3EmIRLvdevUaukdGQyn87xZMfxwg5PIEfOJialxenXoAdW4ajpjuKMG1\nvBg054Pd4nEJ0GKLitR8HQatk5hgW+3a9pDDqfCftWbMVpiQYCA82PsJqOVrM/lxcw6x7X2ZdmtM\nixqycOhoCU+9mkJxiYPbr4tm5DDPKraIumW2OPjw85Os35SDQa/mnpvakTAwVHqt/M+LL77Ijh07\nsNvt3HnnnXTv3p2ZM2dit9vRarW89NJLhIeHs2LFChYuXIharWb8+PFcc8013g69Tlw+IIbDpwrY\neySH7349xuUDOng7JCGEEKLeeP8qoQUz6DT0ig+v9Lle8WEeDXFwJ8lwpvKESGU8TYhUp6ZkicXW\ndEufpc3/CIA2U26qeWGns6yXhEqFo8eQ2jXodEBxZlnvCA9KgCoKHMo2oKCiU5gVTQN96tdvs3Es\n3UnPTlou6Or9/OfWXfks+uoUIa10zJzaEYOh5Xz97furiNkvHcJkcnDfLe0lIeFlh4+beGDOQdZv\nyqFDOx9ent2F4ZeGSULif37//XcOHTrEkiVL+OCDD5g7dy6vv/4648eP57PPPmP48OF8/PHHmEwm\n3nrrLT755BM+/fRTFi5cSH5+vrfDrxNqlYrbLz+XkEADyzYdZd+xXG+HJIQQQtSblnNW3khNGBpH\nQt9oQgONqFUQGmgkoW80E4bGebQdT5MMdZkQqY6nyZKmomjbHop+20nQ0Ivx696lxuXVx/9EXZCJ\ns+P5KEGV7/cambJBcYBvmEclQE8XaSkwawjzsxPm1zBJoKNpDtZttRIcoGLcEIPXL7aOnjDx2nvH\n0OlUPDo1ltBg789t0VB2/VnIU6+lYLU5mXFXB4Ze4lm1FlF3nE6F5WsyeOSZv0jLsHDFZRG88Fhn\notsYvR1ao3LBBRfwxhtvABAYGEhpaSmzZ88mMTERgODgYPLz89mzZw/du3cnICAAo9FI79692blz\npzdDr1MBvnruGdMdtVrFu8v3kVto9nZIQgghRL3w/u3LFk6jVjMpIZ6xg2IrnQTS3ckhy5MMZw6T\nKFdVkqE88bErOZu8IjPBAUZ6xYd5nBCpTl0OUWlM0ud/AkDUfbfUvLDTgWbPBhSVGnv3WvaSsJeX\nANV5VALU6oDDOXo0KoW4MGvt2vZQqaVs2AbApMuM+Bq9m5DIK7Axd95hzBYnD9/bgdgY9+dpaep+\n35HPK+8eRQU8MiWWvj2DvB1Si5Wbb2PuvL1s251Hq0AtU2+LoVc3qaxQGY1Gg69v2ed06dKlXHrp\npa7HDoeDzz//nHvvvZfs7GxCQv6eqDYkJISsrMp75jVVHaMCmTisE/9Zl8zby//k/yb1RttQ3d2E\nEEKIBiJJiUbCoNNUmNSyNpNDeppkqCkhUlevy9NkSWNn2pdM/vpN+F94PgEXnV/j8uoje1AX5eCI\nvwACgmvXaEl5CdAIj0qAHs7WY3eqiAu1YNTW/+SWiqKw9CcLeUUKwy/U0bGtd4+vxerk+fmHyc61\ncd3VUfTvU8v93wRt/C2H+R8eR69T8+jUWLp3lWoO3rJ9TwHzPzxOYbGdPj0CmXJLe1oFSkWFmqxf\nv56lS5fy0UdlQ+UcDgcPP/ww/fr1o3///qxcubLC8ori3ndccLAvWm39fDeFh9f952xCYhdSs0v4\nedcpVv1+gtvHdK/zNpqT+jgGwjNyDLxPjoH3yTHwjCQlGqnaTA5Z2yTDPxMida0hemQ0pLQ3PwEg\naurNNS/ssKP94ycUtRZ7t0G1a7CWJUDzStVkFOvw1zuICrLXrm0P7ThoZ3eynfaRaoZf6N0hEoqi\n8OZHx0k+YmJw/xDGjmrt1Xga0tqNWbz7aSq+Phoevz+OzrF+3g6pRbLanCz68hTf/ZiFVqti2u2x\nDOoX6PXhTE3Bpk2beOedd/jggw8ICCg7sZs5cybt27dnypQpAERERJCdne1aJzMzk/PPrzlRnJdn\nqpeYw8MDyMoqqpdtTxwSy6ETeazYdISoEB8u7Npyvs88UZ/HQLhHjoH3yTHwPjkGlasuUSNJiUbI\nZLGz+Y+0Sp+rrJLGP52ZZHB3+Ed9aogeGQ3FfDSV3JXr8T0vnqAhF9e4vDplJ6qSfOxd+oNfLbrO\n17IEqFOB5CwDoBAfbqUhikxk5zv5ZqMFox6uSzSi8XJliy9XnGbz1jy6xPlxz03tWsyF4PI1GXzy\n5SkCA7TMeSCODu1aznCVxuTEqVJeffcox0+aiW5jZMadMVzYp7WcpLihqKiIF198kU8++YRWrVoB\nsGLFCnQ6HVOnTnUt17NnT2bNmkVhYSEajYadO3fy6KOPeivsemXUa7n3qu48vXA7H68+yDkR/rQJ\nlWSjEEKI5kGSEo3QF+uSMVudlT5XPjlkTT0bajP8o77Vd4+MhpC+YBE4nURNvaXmi1y7De3ejSga\nHY5ul9auwVqWAD2Rp6PUpqZtoI1AY+XvpbrkcCh8ttaMxQbXJRoIDfLumOfNW3NZvDydiDA9j0zp\niE7X/MdgK4rClytOs3h5OiGtdDz5UCeZQNELFEVh7cZsPl58EqtNIXFwGDdPiG5R1V7O1vfff09e\nXh7Tp093/S0tLY3AwEAmT54MQGxsLHPmzOGBBx7g1ltvRaVSce+997p6VTRHUWF+3DyyC+8s38db\n3/7JrBv6YNTLaZwQQoimT37NGhmLzcHBE3lVPt/K3+DW5JC1Gf4hqmc+lUH2lysxdmxH8MiaJ6zU\nJG9FVVqE/byB4OPveYO1LAFqsqo4nq9Dr3HSIaRhJrdcu8VKaoaTvl209O7s3bHyyUdKmP/hcXyM\nah6bFktQCxi7rygKC788xfK1mbQO0zPnwU5ERjTNSWSbssIiO29+fJxtuwvw99Mw4872XNS7lbfD\nanImTJjAhAkT3Fo2KSmJpKSkeo6o8biwa2tSThawfsdJFq35i9svP7fF9AITQgjRfMmtm1qw2Bxk\n5pmw2Oq+vGJ1JTQBurQPrnHog8XmYFdy5TOQ70rOrpe4W4Ijr32EYrPT5t4bUWlqGH5is6D582cU\nnQHHeZfUrsFalABVFDiUbUBRVMSFWamnudwqSEm1s2G7jdBAFVcN9u6FcHaulefmHcZuV3jgrg60\na+t+75KmyulUeOfTVJavzaRtGwPPzoyXhIQX/HGgiPtnH2Db7gK6dfHn9ae6SkJC1IvxQ+OIbRvI\n7/sz+GnXKW+HI4QQQpw16SnhgYYYElFdCU2jXsOk4Z1q3EZ1iQ13h3+Iimw5+Zx4fwn6Nq0JHTuy\nxuU1B39HZTFh7zEEDLXY13YLmHI8LgGaWawhr1RDiI+dcL/6Tz6VlCp8/oMFlRquTzJi1Hvvjl2p\n2cGzbxwmv9DOLddG06dH8y9/6XAozPvwGD//nkeHdj48MSNOqjo0MJvdyRffprNsTQZqNVw/Noox\nI1p7fU4V0XxpNWruvrIbcz7exhfrDxETGUjHKCkvK4QQoumSnhIeKB8SkVNoQeHvIRFLNqTUWRvl\nJTQrc0mPNvgaar7gKE9sVCY4wOjW8A9RUcZHS3CYSom8ezJqfQ3HwFqKZv9mFL0Pjq41T4ZZqeLM\nsv/7t3a7BKjNASk5etQqhU7hVnfnxKw1RVH4aoOZghKFpIv0tIv03uSlTqfC6+8f41hqKZcNDmN0\nQuWfoebEZnPy0oIj/Px7HvGxfjz9cCdJSDSw9Awzj85N5tvVGbQONzB3ZmfGjoqUhISodyGBRu68\n4jycToW3l+2luNTm7ZCEEEKIWpOkhJsackjEhKFxJPSNJjTQiFoFoYFGEvpGu11Cs7rERq/4sCZb\n+cJbHMUlZHy0GH1YMOGTxtS4vGb/r6is5rJhG/paTDRoLQZrEeh8weD+pG1Hc/XYHGraB9vw0Sme\nt+uhjdtL2XvYQWxbDUP6ePdi+LOv09i6q4AeXQO4fdI5zX6MtcXiZO68w2zZVUD3rgHMeSAOP1/p\n+NZQFEVhwy85zJhzkJRjJgZfHMKrs7sQ31GqIYiGc16HEK4c2IGcQgvvrdyHU6n/730hhBCiPshZ\nrJsackhEXZTQLE9g7ErOJq/ITHCAkV7xYW4nNsTfMhd9jaOgiNinpqPxrSHJYC5Bc+BXFKMfjs79\nPG9MUaAoo+zf/q3dLgFaYFaTVqjFV+fknFb1f8csI9fJf1YX42OASZcZUHvxzvCGzTl8uzqDqNYG\nHrqnA1pt805ImErLhqnsTy6mT49AHr63I/oWUF2ksSgx2XlnUSqbt+bh66Pm/jtiuLRfiLfDEi3U\n6ItjOHyqkL1Hclj1yzGuuKSDt0MSQgghPCZJCTdVN9dDfQ2JOJsSmnWR2BDgNFs4/e5/UPv7EXP3\ndeTXcL2v2bcZld2K/fwE0Ok9b9CcBw4LGFu5XQLUqUBylh5QER9upr7zA3a7wmdrzFhtcONII60C\nvHdBvO+vIt5eeAJ/Pw2PTY/F3695f6UVFtt5+tUUUo6ZuLhvK6bfEYNOKwmJhnIwpZhX3z1GVo6V\n+Fg/ZtwRQ+twGQ4nvEetUnH75efy5MdbWb75KB3bBtKtg/vzEAkhhBCNgZzNuqmpDokoT2w01vga\nu6wlK7Fl5dD6pmvQtaphIjFTEZq/tqD4BuKI7+t5Y04HFGeVzSHhQQnQUwVaSqwaIgNstPJxet6u\nh7771UpatpPBfX3oEee9JEB6poUX3jqCgsLD93QkqnUthso0IXkFNh5/IZmUYyaGXhLKjLs6SEKi\ngTgcCktWpPPY88nk5Fq55vJI5j4SLwkJ0Sj4++i456ruaDQq3luxn5wCs7dDEkIIITwiZ7QeONu5\nHkTTotjtpC9YhMpoIPL2a2tcXvPnz6gcNuzdB7tdwrOCkqwzSoC6d7Fvtqk4mqtHp1aIDbV63qaH\nDh6z8/NuG+HBKq4b4b3Z3ktMdua+cZiiYgd3Tm5H967uz73RFGXlWHnsuWROnDIzalg4997UTiZT\nbCBZOVYefzGZxcvSCQ7S8dTDnZh0VRQajex/0Xh0aBPItcM6UVxq4+3lf2J31H+CWgghhKgrzbuv\ncx2TIREtS87yH7CmphFx83h04TV0hy3JR3NoG4p/MM643p43ZrdAae7/SoC6Pz79ULYep6IiPsxC\nfb8Vi0xOvlhnQaOG6xONGPTeyWk6HAovv32Uk+lmrrgsguGXhnkljoaSlmFmzsspZOVYGTuqNddd\nHdXsJ/JsLH7ZlseCT05gKnXQv28r7rmxXbMfIiSarsG92nLoVAG/78tgyY8pXHdZvLdDEkIIIdwi\nZ1e1cDZzPYimQXE6SZ//CSqthjZ3T65xee0f/0XldGDrMQTUtcgOFJ85uaV7F/vZJRpyTFqCjA5a\nB9g9b9MDiqKweJ2F4lKFKy7REx3hvWTch1+cZPe+Ivr2DOSG8W29FkdDOH6ylCdfOURegZ3rx0Yx\ndlSkt0NqEUrNDj78/CQ/bs7BoFdz703tGDYwVJJBolFTqVTcmNiF1Ixiftx5krjoIC46t7W3wxJC\nCCFqJMM3hKhE/tqfKU0+QujVIzBEt6l+4cIc1Id34gwMw9mhp+eNWYvL/vOgBKjdWdZLQoVCfLjF\n3SIdtbZ5j42Dxx3Et9MwsJf3yn9+/2MWqzdk0T7ayIw7OjTrIQwpR0uY9UIyeQV2bpsULQmJBnL4\nuIkHnzzIj5tz6NjOh5dndyHh0jBJSIgmwaDXcM9V3TDoNXyy+iCnsku8HZIQQghRI0lKCPEPiqKQ\nNv8jUKloc++NNS6v3fsTKsWJo+dQUHv4kaplCdBjuXosdjXtgm346eu3Nn1atoOVm634+6i4drgB\ntZcuznb/WciHX6QSFKjl0amx+Pg036FT+5OLeeKlQ5hMDu69uR2jEtyf+FTUjtOpsGxNBo888xdp\nGRauTIzg+cc6E92meU+gKpqfNqF+3DqyKxabgwXf7sVsrd+edEIIIcTZkqREE2SxOcjMM2GxObwd\nSrNUuHkbJbv3EzxyCD6dqq/5rsrPRH3kD5zBrXG2P8/zxko9LwFaZFFzskCLUeukXasaapSeJZtd\n4bM1FhxOmJBgINDPO18ZqWmlvPT2ETRqFY9M6UhEWPOterD7z0KefPUQVpuTGXd2IGFg854zozHI\nzbfx1GspLPzyFP5+GmbPiOOmCdHodPITKZqmvl0iGN73HNJzTHyy+iCKUr/JayGEEOJsyJwS9cxi\nc9TZpJgOp5MlG1LYlZxFbqGFkEADveLDmTA0Do2nd+hFldLnfwxA1H0317is5o8NqFCw9xzm9lwQ\nLk5HWcUNlRr83bsTriiQnKUHVMSHl006WZ9WbLKSkevkkp46zu3gna+LwiI7z75xGFOpk+m3x9Al\nzt8rcTSELTvzefmdo6iA/7s3lgvOD/J2SM3ett0FvPnRcQqL7fTpEciUW9rTKtB7Q5SEqCvXDInl\naHohWw9k0im6FcP6RHs7JCGEEKJSkpSoBxabg9xCM+t3nOSPlOw6SyAs2ZDC+u0nXY9zCi2ux5MS\nZJbtulC8Yy+Fm7cROKgffj26VrusKjcdzfF9OEPb4ozu4nlj5SVA/SJA7d5HMa1QS5FFQ4S/nRDf\n+u0p8+cRO7/utREZqmb0AH29tlUVm93JC28dISPLyjWjIxnU3/3KJE3Nz7/n8sYHx9Dr1MycGkuP\nZl7m1NusNicLvzzF9z9modOquG1SNCOHhcvcEaLZ0GrU3D2mG3M+3sriHw8RExlAbFtJdAohhGh8\nJClRh87syZBTaKnw3NkmECw2B7uSsyp9bldyNmMHxUp50jqQVt5LYqobvST2/AiA/fwEt+eCcKlF\nCVCLXcWRXD0atUJsqNWz9jxUUOxkyXozWg1cn2RAp234CzVFUXhnUSr7k4vp37cVE8fUMOFoE/bD\nxmze+fQEPkYNj98f26x7gzQGJ06V8so7Rzlxysw5UUZm3BlDzDlSUUk0P8EBBu684jxeWbKbBcv+\nZPbNFxDo650ksxBCCFEV6fNfh8p7MvwzIXGmXcnZtZoLoqDYQm4V280rMlNQXPaczDdRe6aDKeT/\n8DP+fXsQ0K93tcuqslLRnPwLZ0R7lDaxnjdWXgI0wP0SoIdz9DicKjqGWDFo6298sFNR+GKdBZMZ\nrhhooE2od5Jdy9ZksmFzDnExvky7NQZ1M620sXxtBm8vOkGAn5anH+4kCYl6pCgKqzdk8dBTBzlx\nykzSkDBeeryLJCREs61Y1a4AACAASURBVHZuTAhjBnYkr8jC+yv24XTK/BJCCCEaF+kpUUeq68lw\npvIEQkSwZyfBQf4GQgINlSY8ggOM+Pvq+Hx9ssw3cRbS31wIQNTUW2rswq09m14SljNKgOrd66Kf\na9KQWawlwOAgKrB+Z1L/704bh1IdnNtBw8XdvfMVsXVXPp8uPUVosI6Z93XEYGh+72FFUfhy5WkW\nL0snpJWOOQ/GcU6Ue5OdCs8VFtl58+PjbNtdgL+fhhl3teeiXq28HZYQDWJU//YcPlXAH4dzWPHL\nUcYM7OjtkIQQQgiX5nem7yXV9WQ4U3CAkSB/zysHGHQaesWHV/pcr/gwlm066uqlofD3cJElG1I8\nbqslMh8/Sc6ytfic24mgYQOqXVaVcRR1+mGcbWJRWsd41pCi/N1Lwj/SrYSGw1k+uaVCfLjV4xyI\nJ1IzHHz/m5VAPxUTEoxeGV9/9ISJ194rm1vh0amxhAQ3v67GiqKw8KtTLF6WTkSYnmcfiZeERD36\nY38h0584wLbdBXTr4s/rT3WVhIRoUdQqFbeNPpewICMrfznG3iM53g5JCCGEcJGkRB0p78lQk17x\nYbWe+2HC0DgS+kYTGmhErYLQQCMJfaMZM7BjtfNNyFCOmqUvWAROJ1FTbqr+QlxR0O7+Xy+JnsM8\nb6hCCVCjW6ucyNdhtquJDrITYHB63qabLFaFz9aacTrh2uEG/H0aPiGRm2/j2TcOY7aUVdro2L75\ndat3OhXe/TSV5WsyaRtp4NlH4omMaL4lTr3JZney6KtTzHklhcJiG9ePjWLOg50IbYaJLiFq4u+j\n4+4x3dBoVLy3Yh/ZBaXeDkkIIYQAZPhGnSnvyXBmdYwzhQYa6RUfxoShcbVuQ6NWMykhnrGDYiuU\nGc3MM9U434Snw0VaEuvpLLKXrMTQ4RxCLk+odllV+mHUmcdxRHdGCT/Hs4ZqUQK0xKriRJ4Og8ZJ\nTEj9Tm657GcL2fkKg3vriG/X8F8NFquT5+cfJiev7OKxX5/mdyfb4VB486PjbPwtl5hzfJj9QJyU\nn6wnaRlmXnv3GCnHTERGGLj/jhjiO/p5OywhvKpDm0AmDY9n0Zq/eHvZnzxyXR90Wrk/JYQQwrsk\nKVGHyhMOu5KzySsyExxgpEdsCAl9z+H/2bvPwKiqtIHj/+mT3juEkEbvYFkRpCjYQUAQRRcUXAXs\nXfdVV9e6LopgXxQVFMWGCog0CyLSewgJJJCeSS9T773vhxAEmSQTmEkmyfl9SjJn5p47Lfc+9znP\nExpodFt3DINOc1qQoal6E2ezXKQjKXhnKYrNTsydt6DSNPwaKYqCdtdaAKSzyZKobwHq71oLUEWB\n9GIDCiqSI6x48rhxV7qdPw446BSh5vILW/4qsqLUnawfPlrLJX8L5borolp8Dp5mt8v8950sft9e\nTmqiL/+8Nxl/P/EV7G6KorBhUynvLjmOxSoz4qJQZk7tjI+P6E4kCADD+8WSkVPBb/sK+HT9YaZd\n1q21pyQIgiB0cOKI2I0aymSoZ7VLTv9+rhrL0jiX5SLu5Kl9P1eOsgqKPlyOLiaS8IlXND72yH7U\nJblIXXqhhDazPWV9C1CNDnxcawFaWKWlwqIhzNdBhJ/nluCUVsp8vt6KXgs3jjWi1bT8so1l3+Tz\n6x9l9Ejx485b4lulloUnWa0yLy48ws59lfTu7s9jc5PESbIH1NQ6eOvD4/z6Rxm+Pmrum5XAxRe4\n9nkThI5CpVIxbUw3jhVWsWFHLilxQVzQK7q1pyUIgiB0YCIo4QF/zWSQZJll6zM82hnDWZbGuS4X\ncYeW2PdzUbhoGXKtmU4P/QO1oZEMAUXGumklikqF1G9k8zd0WnHLpvfbLtW1AFWrFFLCPbdsQ5YV\nlq6xYLHB9aMMRIa0/Gvyy5ZSlq0oICpcz8OzE9HpWv994U61Zol/v5bJgfRqBvUN5ME7EzHo29c+\neoODh6uZ904WxSU2uiX5ce+sBKIiRJaYIDhj0Gm4c3wf/vXBVj5YnUbnSH/iIkQ7YkEQBKF1iKBE\nC1i2PuO0LIb6zhgAU0enumUbTWVptJaW2PezJVXXUPC/T9GGBBFx4/hGx6qz9yOb8pAT+6EEuVYP\n4qTTWoC6dtCXWaLHLqtICrNi1Hmup/y6bXaO5sn0TdZwXs+W/zpIz6zh9f9l4+uj5rG7kwhqZ/UV\nqqod/GteBhlHa/nb4GDumZUg1m+7mSQpLP++gM++yQfg+muiuf7qGDStkPEjCG1JdKgvt17Zg4Vf\n7WPhV/v45y2D8TGIw0JBEASh5Xn06NhisTB69Gi+/PJL8vPzmTZtGlOnTuXuu+/GZqu7+rtixQom\nTJjApEmT+Pzzzz05nVZhtUst2hmjPkvDGwISLb3vzVX08VdI5ZVE3XYDGr9GCoHKEprd60GlxtG3\nmVkSigLVBXU/B7jWArTcrKagSoefXiIuyNG87TXD0XyJNVtsBPurmDSy5dt/FpfYeP71TCRJ4f5/\ndCU+rn21xCyvsPPPl9LJOFrLyItCue/2riIg4WZFJiv/fCmdT7/OJzRExzMPp3LDuFgRkBAEFw3q\nFsllQzpTUFrL+6vSUBTPBcEFQRAEoSEePUJ+8803CQoKAmD+/PlMnTqVpUuX0qVLF5YvX05tbS0L\nFy7kgw8+4KOPPmLx4sWUl5d7ckotrqLa2mRnjPbKm/ddttooePtj1H6+RE2/vtGx6qN7UFea0PU+\nHwKauT7dXAaSDXxCQNt0C1D5RHFLUEiNsKH20LmV2aqw9AcLigJTxxjxNbbsSZzZIvHc/EzKKx1M\nn9KJgX2CWnT7nlZcYuOxF9LJzrFwxagIZk/vIk6U3WzTH2Xc+2QaBw/XcOHgYOY93YOeqSL9XBCa\na+IlSaR2CmJbWhHf/pbV2tMRBEEQOiCPBSUyMzPJyMjgkksuAWDLli2MGlXXsWDEiBFs3ryZ3bt3\n06dPHwICAjAajQwcOJAdO3Z4akqtor4zhjPtvTOGN++76fPvsBeaiLx5AtrgwIYHSg60ezagqDUY\nzr+seRuRHVBTVFdDwi/CpbscL9dRa1cTG+ggyCg3b3suUhSFLzZYKa1UGDVER1Jcy2bVSLLCvHey\nyDpuZswl4Vw52rXnpq3IL7Tw+Avp5Bdaue6KKG6b2gm1p6JLHZDZIrFgUTb/eesokqQw++/xPHhH\nV9HJRBDOklaj5s7xfQgLNPL1L0fZllbU2lMSBEEQOhiPBSVefPFFHnnkkZO/m81m9Pq6QoJhYWEU\nFxdjMpkIDf3zynNoaCjFxc7T/duq+s4YznhLZwxP8dZ9VxwO8hcuRmXQEz3rxkbHqjN3oqouQ0oZ\ngjowpHkbqjGBItcFJFxoAWq2q8gu06HTyHQN9Vxxy+1pDnamO+gSreay81q+/efHy3PZuquCfj0D\nuG1q53bVaSM7x8zjL6RTXGLjxutimTYxrl3tX2vLzKrl/qfTWPdrCYnxPrzyZHdGDwsXz7EgnKNA\nPz13TeyLQafhve8PkF1Q1dpTEgRBEDoQj1xa+vrrr+nfvz+dO3d2entDaxZdXcsYEuKLVuv+E9qI\niAC3PybAnOsH4Ouj5/d9+ZjKzYQH+3BB7xhmXN0Ljca715if63Pijfue+8m3WLNzib/9BuJ6d21w\nnOKwU73/JxStjuDhlwOuPx8OSy1lRaVo9EZCOsejaqLTiKIo/JqmICswpKua2HDPvBcLSx189XMN\nRoOKuTeEERl6bl8BzX1/fLcmn69XFxEf58ML/+xLgH/7ubqdllHF/718mMoqB3fPTGLSNZ1ae0pe\nwR3fq7Ks8OnXObzz0VEcDoUbxndi5rSu6NtgpxZP/Z8RhHPVOdKfWdf0ZMEXe5n/xR7+ectggttx\nNqcgCILgPTxyRrBx40aOHz/Oxo0bKSgoQK/X4+vri8ViwWg0UlhYSGRkJJGRkZhMppP3Kyoqon//\n/k0+fllZrdvnHBERQHGx564MjLsogcvP63xaZ4zS0hqPbc8d3PWceNO+K7LMoefeBI2GkOlTGt0/\nzcHNaKsrcPQcSolZTYQ/rj8f5dkASD4RmEqa3teiag0FFUZCfCSMsgVPJAxJksKC5WYsVoWplxlQ\nSeZz2k5z3x/7DlXx8huH8ffT8MicrljMZizms9++NzmQXs1z8zOpNUvMnh7PJRcGefT7pK1wx3dI\nabmd+e9lsftAFcGBWu6+LYH+vQOpKPfu709nPP1/pqWIwEr7NSAlguuGJ/LFT0dY8OVeHp46AJ0H\nLgIJgiAIwqk8EpR49dVXT/78+uuvExcXx86dO/nhhx+49tprWbNmDRdffDH9+vXjiSeeoLKyEo1G\nw44dO3jsscc8MSWvUN8ZoyPyln0vX/sr5rRMwiZegSE+ruGBdhuafT+haPVIvYY2byPWKrDVgM7P\npRagDgkyTHpUKoWUCKsrDTrOypo/bBwrlBnUTcug7i3bejO/0MKLC44A8PDsRGKimi762Vbs2l/J\nC68fwSEp3Hd7AkPPa2YxVKFBW3eVs2DRMSqrHQzqG8icGV0IbmdtYwXB21xxQRfyTLVs3l/A+yvT\nmHl1T7FEShAEQfCoFsudnjt3Lg8//DDLli0jNjaWcePGodPpuP/++7n11ltRqVTMnj2bgICOfQXG\napdOyygQ3EdRFPLmLwIgZvYtjY7VHPodlaUGR59LwOjXnI1AdWHdzwFRLrUAPVqqxyapSQix4avz\nTDu2zByJdVvthAaquO6Slk3Hral18O/5mVTXSMz+ezy9u7efz/iWneX8582jqIB/P9aTbl1FqrM7\nWG0yH36ey8p1xei0Kmbe2InLR0aIEyNBaAEqlYq/X96NorJafj9QSFyEH1demNDa0xIEQRDaMY8H\nJebOnXvy5/fff/+M28eOHcvYsWM9PQ2vJ8kyy9ZnsDO9mNJKK6GBBgakRjB5ZDKaJuoRCK6p+m07\nNTv2ETL2Eny7JTU80GZBs/9XFL0RqeffmrcRc2mzWoBWWtTkVmrx0cnEh9ibty0X1VoUlqyxoFLB\nTWOMGA0td2InSQovv3mU3Hwr146JZPSw8Bbbtqf98nspr76XhU6r5rG7Ehl6Xni7SM1vbdk5Zv77\n9lGO5VroHGvkvtsTSOjc+llWgtCR6LQa5lzXh2c+3MYXPx0hJsyPgQ0UrhYEQRCEcyXOdr3EsvUZ\nrN2WQ0mlFQUoqbSydlsOy9ZntPbU2o2TWRJz/97oOM3B31DZzEg9h4Lex/UNyA6oKXa5BaisQHqx\nHlCRGmHFE10jFUXhs3UWKqoVxlygp0tMy2bfvLf0OLv3VzG4XyDTJjWyXKaNWfOTiXnvZmE0aHjq\ngWT69mykrazgEkVRWLmumAf/lcaxXAtjR4Tz8v91FwEJQWglQf4G7prQF71OzbvfHuBYoQi6CoIg\nCJ4hghJewGqX2JnuvOLgznQTVrvUwjNqf6p37afylz8IvPg8/Af0bnigtRbNwd9QDH5I3S9o3kZq\nipvVAjSvQku1TUOUv50QH7l523LRlv0O9mZKJMaqGTmoZdfir1xXxOoNJhI6+XDfrK5oPBF1aQXf\nrinizcXHCPDT8q+HUuie3HTdEKFxlVUOnn/9CO8uOY7BoOaRuYncPi0eg178ixKE1hQfFcDMq3pi\ntUvM/2IPFTWea1ctCIIgdFziiM8LVFRbKa20Or2trMpCRbXz2wTX5b/+AQCxd81odJxm/6+o7Fak\n3sNA14z6AA4LmMtAowefpgsdWhwqjpbq0aoVksI9c5BXWCrzzc9WfAwwdYwRdQsGBXbuq+R/S3MI\nCtTy6F2J+Pi0/fooiqLw2Yp8Fn2aQ0iQjmcfTiGpi7iKf65276/knv87yNZdFfTpEcCr/+rB+QOC\nW3tagiCcMKhbJOOHJVJaaWXBl3uwOzwTRBcEQRA6rhYrdCk0LMjfQGiggRIngYmQACNBLdwnvL7Y\nZkBQM5YueDFz+hHKVm3Ab2BvAv42qJGB1WjSfkfxCUBKHeL6BhQFqk4Ut/R3rbhlhkmPpKjoFm5F\n74HzdYdDYckPFmwOuPlSIyEBLRd/PJ5r5j9vHkGjUfHo3CQiw9t+8UdFUfjw81y+Xl1ERJiepx9M\nISay7e9Xa7I7ZD75Kp+vVxeiVsPNk2K5dkxUiwbPBEFwzVUXdiHPVMOWA4UsXp3GrVf2EIVnBUEQ\nBLcRQQkvYNBpGJAawdptOWfcNiA1vMW6cPy12GZEiA99k8LafLHNvAUfABA7d3qjB1GafT+jkuzY\n+4wFbTOWOtiqwV4DetdagJpqNJhqtAQaJaIDHK5vpxlWbraRWyxzXk8t/VJa7mNeWVXXaaPWLHPv\nrAS6JTWjc4mXkmWFd5ccZ/UGE3HRBp56IIXwUH1rT6tNyy2wMO/tLDKza4mJNHDv7QmkdG377xVB\naK9UKhXTL+9OUVktv+0rIC7cj8sv6NLa0xIEQRDaCRGU8BKTRyYDdTUkyqoshAQYGZAafvLvLaG+\n2Ga9ojLzyd+njk5tsXm4k/VYLiVf/YBP9ySCL7244YE1FWjSt6L4BSMnD3R9A6e2AHUhS0KS4bBJ\njwqFbhFWV5Iqmu1QtoOfdtqJCFYxbljLXc2322VeXHiEwmIb118TzbALml7G4u0kSWHBomw2bi4l\noZMPTz6QTHBgy9bmaE8URWH9r6W8t/Q4FqvMyItCuW1q53axvEcQ2ju9TsPcCX15ZvE2lm/MJDrM\nlwEpoiOHIAiCcO5EUMLN6pc+BPkbmpXhoFGrmTo6lQnDk87q/ueqqWKbE4Ynteh83CX/zY9BkoiZ\nMx1VI9ke2n0/oZId2PuOAE0zPhbNbAGaVabD6lATH2zDT6+4vh0XVdXKfPKjFY0abhxrxKBvmfRa\nRVF488NjHEiv5qIhwUy+JqZFtutJdofMvLez2Ly9nNREX564J5kAf/GVebZqah289eFxfv2jDF8f\nNffdnsDF57f9wJUgdCTBJzpyPP/xdt759gCP3zSITpGi2K8gCIJwbsQRtpv8delDaKCBAakRLi99\nODWYERnS8sXzXCm22RrzOhe2IhPFn36DoUscYdeMbnhgVRnqw9uRA8KQE/u5voFmtgCttqrIKddh\n1Mp0CbG7vh0XKYrCsrVWqmoVrhqqp3NkywWRvlpVyIZNpSR39WXurQltvi6A1VqX9bFzXyW9u/vz\n2NwkcTX/HBw8XM28d7IoLrHRPdmPe2cltItaI4LQEXWJDuDWq3ry5tf7mP/FHp64ZTCBvmJJmyAI\ngnD2RFDCTf669KGk0urS0odzDWa4i7cV23SHwneWolhtxNx5Myptw2917d4NqBQZR7+RoG7GiWd9\nC1D/qCZbgCoKpJsMKKhICa/LZHC3TXvsHMySSOmsYfiAlltisGVHOR9/kUdYiI5H5ya1+TaOZrPE\nv+dnsv9QNQP7BPLQ7MQ2v0+txSEpLPsmn89W5AMw+ZpoJl0dg0bTtoNWgtDRDekeSd7Qrnzz61EW\nfrmXB6YMQKcV35OCIAjC2RH/QdygqaUPVrvU4H3rgxkllVYU/gxmLFuf4aHZOldfbNOZliy26S6O\n8koKFy9HFxVO+KSrGhynqihGfWQXcnAkckLvZmygeS1A86u0VFo0RPg5CPNr+P1wtvJNEt/+asPP\nCFMvM6BuoaroR7JrmfdOFnqdmsfuSiI0uG3XW6iqdvDkfw6z/1A1Fw4O5pG5IiBxtopMVuY+uotP\nv8knNETHMw+nMmVcrAhICEI7cc1FCQzpHsnhnAo++uEQiuL+JYmCIAhCxyAyJdzgbJc+eFsdh78W\n2wwP/rP7RltT+P5nyDW1xN0/C7Wx4SwPzZ4NqBQFR79RdcswXNHMFqA2Bxwp0aNRKSSH21zdBZfZ\nHQofr7bikODmy40E+rXMSbSp1Mpz8zOx2WUenp1IYpe2tbznr8or7Dz1ymGycyyMuCiU2X/vIk6g\nz9Kvf5Ty5uLj1Jol/jY4mDtuicffT/y7EYT2RKVSMePKHhSXm/l1bz5xEX6MOS++taclCIIgtEHi\nKNENznbpg7fVcfhrsc2khDCqKswttn13kWrNFL73CZrgQCKnXdfgOFVZAZqsvcihscide7i+gVNb\ngBoCmhyeWWLAIatIDrdi0Lr/StK3v9ooKJW5qK+OXokt85G22mSefmU/JWV2pk2M5fyBwS2yXU8x\nldp48uXD5BVaGTsinJk3dm7zdTFag9ki8d7SHNb/WoLRoObRu7sxpK9vo614BUFouwwnOnL8a/FW\nPtuQQUyYL32Twlt7WoIgCEIbI/KS3eBslz7UBzOcCfY3YHPIjS798BSDTkNkiC9GfduMWRUv+QpH\nWQVRMyaj8Ws4qKPZvR4Aqf+oJrMdTjqtBWh0k8PLatUUVmvxN0jEBTpc20YzHDjqYNMeO9Ghaq4e\n2jKFxmRZ4fX/ZXHwcBUjLgpl/OVRLbJdT8kvtPDY8+nkFVoZf3kUs24SAYmzkXG0hvufTmP9ryUk\ndvHhP09258rR0SIgIQjtXEhAXUcOrUbNW9/sJ7e4urWnJAiCILQxIijhJpNHJjN6cCfCAo2oVRAa\nYOBvvaMZd3HXBu/TWDCj1urgyf/9wRPv/s7StelIsuypqbcrstVG/lsfo/b1IWrG5AbHqUpy0Rw/\niBwRjxyb4voGTrYADQVt48U/5RPFLUGhW4TN5biHqyprZD790YJWAzeNNaDTtszJ37IV+WzaWk6/\nXkHccXN8mz7pPJ5r5vEXDlNcYmPq+BimTYxt0/vTGmRZ4atVBTzy3CHyC62MGxvJC493Iy666Ra5\ngtCQl156icmTJzNhwgTWrFkDwIcffkivXr2oqak5OW7FihVMmDCBSZMm8fnnn7fWdDu8rjGBzLii\nBxabxGvL91BV6/6lioIgCEL71TYvhXuh+qUP4y5O5JMf0zmYXcpv+wpIyy5lYLfIBrtp/LWOg16n\nwWKTsNjqMiRc7eIh1DEtX4k9v4jo229CF9rwkgLtrnUAOJqRJSE77M1qAXqsTIfZriYuyE6Awb1B\nJVlR+GSNlRoLjB+uJya8ZWqP/PJ7KZ+tKCAqXM+/H+2F3WZpke16QmZ2LU+/cpiqaokZN3Ti6ksj\nW3tKbU5pmY3X3stmz8EqQoK03HVbAv17Bbb2tIQ27vfff+fw4cMsW7aMsrIyxo8fT21tLSUlJURG\n/vk5ra2tZeHChSxfvhydTsfEiRO59NJLCQ5u28vJ2qrze0aRZ6rh29+yWPjVPh6Y0h+tJ1pNCYIg\nCO2OCEq42Zc/Z7JpX8HJ30urbKzdloOsKNx0abczxmvUaiYMT2JYv1hsdgdvfr3/ZEDiVK1R+LKt\nUSSJ/DcWo9LriL79xgbHqYqyUecdRo5ORIlOdPnxa4pyTrQAjW6ydWitTUV2mQ69RqZrqPuvGP28\n0076cYkeCRou6tsyHS8OZdbw+qJsfH3UPH53EsFBOoqL22ZQ4uDhap59NQOzRWb23+MZPUysgW6u\nrbvKeX1RNlXVEoP7BTJneheCAtt29xXBOwwZMoS+ffsCEBgYiNlsZtSoUQQEBPDtt9+eHLd79276\n9OlDQEBdbZ+BAweyY8cORo4c2SrzFuDai7uSV1LD9kPFfLzmELeM7S6yzwRBEIQmiaCEG1ntEr/t\nzXd62297C5h0SfJpQQVJllm2PoOd6cWUVloJ9jdQVu09hS/bmtLv1mE9epyIadehj24gk0FR0O5a\nC1DXccNVDguWsqITLUBDGh2qnFi2oaAiJdyKu1u35xRJrPzNRoCviimjjS1ywFdksvL865lIksKj\ndyXROc7H49v0lN37K3n+9SM4JJl7ZyVw8flNt3QV/mS1ySz+LJdV64vRaVXMvLEzl48MFycegtto\nNBp8fev+1y1fvpxhw4adDDycymQyERr65+c3NDSU4mLnHa2ElqFWqbjtyp4Ul2/n5935xIX7c+mQ\nzq09LUEQBMHLiaCEGxWX1WKxOU/Tt9gkistq6RT554HVsvUZJ5dmAA0GJKDxLh7OWO0SFdVWgvwN\nHSK7QlEU8l5/H9RqYu64ucFxqoIjqAuzkOJSUSJdbF2mKFB1IvvFP7rJ5R5F1RrKzRpCfR2E+7m3\nUKnVrvDxaguSDDdcasDf1/MngmazxHPzM6modDDzxk4M6N120/P/2FnOy28eBeChOxM5b4BI826O\n7Bwzr7x9lOO5FjrHGbn/9q506dR2A1SCd1u7di3Lly9n0aJFLo1XFNe6G4WE+KLVeub/YkRE0x2Z\nOoKnZv6N+177iWXrD9MtMYxB3VuuILJ4DVqfeA1an3gNWp94DZpHBCXcqakrhafcbrVL7Ex3/YpO\nY108TvXX7IvQQAMDUiMarGnRXlSs24T5wGHCxo/FmNDJ+SBFOVlLQurXjPReWzXYa9H7B2Mz+Dc6\n1C5BRokBtUohJdz9xS2/+dlKcbnC8AE6unXx/MdXkhX++85RsnMsjB0RzhWj2m7dhV+2lPLqu1no\ntGoenZtIP1H7wGWKorBqfTEfLMvF7lC4fGQEt1wfh0Hffr9ThNb1yy+/8NZbb/Hee+85zZIAiIyM\nxGQynfy9qKiI/v37N/nYZWW1bpvnqSIiAigurvLIY7dFs8f35sUlO3nxw608Pm0wseF+Ht+meA1a\nn3gNWp94DVqfeA2cayxQI44o3Sgi2Aej3nngwKjXEBH85xXFimorpZUNZ0YE++tRqyAs0MjowZ1O\nFsRsSn32RUmlFYU/C2UuW5/RrH1pSxRFIW9+3ZW0mDl/b3CcOjcdtek4UnxPlLA4Fx9chuq6LAm/\n6KYzK46U6rFLKhJC7PjoXLtq56rdhx1s2e8gNlzNFRe2TPvPjz7PZdvuSvr1CuC2qW03BffHn03M\neycLo0HNk/cni4BEM1RU2nlufibvLsnBaKwL6My6qbMISAgeU1VVxUsvvcTbb7/daNHKfv36sXfv\nXiorK6mpqWHHjh0MHjy4BWcqNCYpNogZV3THbJWYv3wP1WZ7a09JEARB8FIiU8KNDDoNF/WJZt32\n3DNuu6hP9GmZ39yrmgAAIABJREFUDkH+BkIDDZQ4CUyEBRr5v78Pxmx1NGv5RWPZF+25UGbVlp1U\nb9tD8GXD8O3RQPBGkdHsXoeCCqlvM7IkzKUg2cEnFK3BB2g46llhUZNfqcNXJ9Mp2L0HX2VVMp+v\nt6DTwk1jjWhboP3n2p9NfPNDEXExBh68oysaTdusGfDtmiIWfZpDgL+GJ+9PIamLqMviql37K5n/\nXhZlFQ769gjg7tu6EBrSMgExoeNauXIlZWVl3HPPPSf/dv7557NlyxaKi4uZOXMm/fv356GHHuL+\n++/n1ltvRaVSMXv27AazKoTWcUGvaHJNNXy/OZs3v97Hvdf3Ex05BEEQhDOIoISbTRmVgkqlqls+\nUWUlJMBAj/gQxg9LOm2cQadhQGrEaTUl6g1IDSfAV0+Ab/MO/hvLvmjPhTLz578PQOzc6Q2OUR87\ngLo0HymhL0qIi2tbZQfUmEClabIFqKxAenFdzY9uEVbUbjx/l2WFpT9YMFth0kgDUaGeP6Dbl1bF\nWx8dw99Pw+N3JeHn2/a+KhRFYfl3BSz9Kp+QIB1PPZBMfBsu0NmS7A6ZJV/m8c3qIjQauHlSHNeO\niUTtzje2IDRg8uTJTJ48+Yy/z5kz54y/jR07lrFjx7bEtISzNH5YInmmGnYeNrF07WGmXZYqCuMK\ngiAIp2l7ZxpeTqNWM3V0KuMu7srSHw+Tll3Kb/sKSDtWdkZth/olGTvTTZRVWQgJMDIgNdzlpRp/\n1Vj2RXMLZbYVNXsOUrFxMwEXDcZ/UB/ng2QZze71KCo1Ur8Rrj94dZHLLUBzynXU2NTEBNgJ8nFe\n7PRsrd9u50ieTJ8kDef38vxHNr/QwosLj6BCxcNzEomJMnp8m+6mKAofLc/jq1WFRITpefrBFGIi\n29/73xNyCyzMezuLzOxaYiIN3Hd7AsldPb8WXBCE9kmtUjHz6p48//EONu7MJS7cj1GDGqj9JAiC\nIHRIIijhIV//cpTf9hWc/L2+tgPA1NGpwJ8BjAnDk9zSKaOp7Iv2uHQj73UXsiSy9qCuKEZKGogS\nGO7aA9stYCkHjaHJFqAWu4qsMh06tUJimM3lubsiO1/ih99tBPmpuH6U59t/Vtc4+PdrmVTXSMye\nHk/vbm0vFVqWFd5dcpzVG0zERhl4+sEUwkPFkoOmKIrC+l9LeW/pcSxWmZFDw7htaid8jO3ve0MQ\nhJZl1Gu5a0Jfnlm8lU/WHiY61JdeXUU7ZkEQBKGOWNjnAU3VdrDaT28TadBpiAzxdUvQYPLIZEYP\n7kRYoPGsCmW2JebDWZSt3IBf/54EXnye80GyhHbPBhS1BkffS1x7YEU5WdwS/6hGu6ooChw26ZEV\nFUnhNtwZ97FYFT7+wYKiwNQxBnyNng1IOBwK/3nzKLkFVq4dG8noi10M4HgRSVJY8H42qzeYSOjk\nw78fSRUBCRfU1Dp45a2jLHg/G7VaxX23JzB3RhcRkBAEwW3CgozMua4vajW8+fU+Cko90wVFEARB\naHtEpoQHtGZtB3dnX3iz/IWLQVGInTujwQwCdeZOVFWlSKnngX/jGQ8n2arAXgt6f2iiBaipRkNJ\nrZZgo0SUv6O5u9CoLzdaKa1UGDVYR3Inz35UFUXhf58cZ/eBKob0D2LaRBe7k3gRu0Nm3ttZbN5e\nTkpXX/55bzIB/uIrrikH0qt59d0siktsdE/2495ZCUSGi6UugiC4X3KnIG4Z253/fX+Q15bv4Ymb\nB+Fn1LX2tARBEIRWJo7YPcAbajvUZ1+0V9acfEq+XIlPaiLBY4Y5HyQ50O7ZiKLR4ugz3LUHVmSo\nKqz72b/xgpgOuS5LQoVCaoS1sYSKZtueZmf7IQfxUWrGnO/5K/0r1xXXZRd09uHeWQlo2lhBQ6tN\n5qWFR9ixt5Je3fx5/K4kfHzaZzDOXSRJ4fNv8/n827qsoMnXRDPp6pg222VFEIS24aI+MeSZali1\n5Rhvfr2PeyaJjhyCIAgdnfgv4AH1tR2caa+1HVpa/psfoTgkYubcgkrt/G2sPrwNVW1FXZaEb6Br\nD1xbCnJdC1C0jQePskr12CQ18SF2fPVKc3ehQSUVMl9ssGLQwY1jjB4/Sdy+p4JFn+QQHKjlsbuS\n2lzKvtks8cy8DHbsrWRA70D+eU+yCEg0ochk5YkX01m2ooCwUD3PPJzKlHGxIiAhCEKLmDA8if7J\n4RzIKmPZuozWno4gCILQykSmhIe40lnDapfa/RILT7AXl1D8yTfoO8cSeu0Y54McNrT7fkLR6pF6\nXezaA8sOqHWtBWiVVU1OhRYfnUx8sL2Ze9AwSVJY8oMFqx1uuNRAeLBn44bHcs288tZRNBoVj85N\nIiKsbdVfqK5x8My8DNKP1HLhoGDunZWATidirY359Y9S3lx8nFqzxEVDgrnjlvg22fJVEIS2S62u\n78ixnXU7coiN8GPEgLa3bFAQBEFwD3Ek6iGN1XaQZJll6zPYmV5MaaWV0EDDGe1CTyWCF6creO9T\nFIuVmDtvRq1z/hbWHPoDlbkaR+/h4NN4XYiTXGwBqiiQXqwHVKSEW3Bn1umPW21kF8gM6KZlUHfP\nfjwrKu0891omZovMfbcnkJrUtto+llfYefqVDLJyzFzyt1DmTO8irvQ3wmyWeG/pcdZvKsVoUDNn\nehdGDg31eEcXQRAEZ3wMdR05/rV4G0vWpBMd4kOPBNGRQxAEoSMSQQkPc1bbYdn6jNPadjprFwrN\nD150BI6KKoo++AxdRBgRk692PshuRbP/FxSdEannRa49sN3scgvQvEotVVYNkf4OQn3lZu5BwzJz\nJdZutRMaqGLCJQaPniza7TIvLDhCocnG5Guiufj8tnUgaCq18eTLh8krtDJ2RDgzb+yMuo3VwWhJ\nh4/WMO/tLPKLrCR18eXe2xOIiza29rQEQejgwoN9mHNdH17+ZCdvfL2PJ24eTFRo+62HJQiCIDjX\nMc9sW1Fj7UK3pxVTVWs7+Xt98KKk0orCn8GLZes77vrLosWfI1XVED1rKmqj85oPmoObUVlr6wIS\nBp+mH1RRoPpEccuAxluAWh0qjpTq0aoVksOcd1g5G7UWhaU/WFBRV0fCx+C5E2xFUXhj8THSMmoY\nel4Ik6+N8di2PCG/yMrjL6STV2hl/OVRzLpJBCQaIssKX60q4NHnDpFfZGXc2EiefzxVBCQEQfAa\nqZ2DuXlsN2osDl5bvodai/uWRAqCIAhtgwhKtLBG24VWW3ly0R8sXZtOrdXeYPBiZ7oJq13y5DS9\nklRroeCdpWiCAoi8eYLzQVYzmgObUAy+SD0udO2Brae0ANU3vtQjo0SPJKtIDLWhd1OekaIofL7e\nQnm1wmXn60mI8ewSnS9XFrLxt1JSuvoyZ0aXNpW+fzzXzOPPp1NksjF1fAzTJsa2qfm3pNIyG0+/\nksGHn+cR6K/jqfuTueX6Tui04mtfEATvcnHfWMac15mC0lre+mY/kuy+LERBEATB+4nlGy2ssXah\nAOXVNtZuy6HW4mg4eFFloaLa2q5bfjpTvPRrHKXlxN5zG5oA58EDzYFNqOwWHAPHgM6F1quK/GeW\nRBMtQAvKFYqrtQQaJGICHc2dfoP+OOBgT4ZEYqyaUYM926/99+3lfPxFHmEhOh6Zm4RB33ZOUDOz\na/nXKxlUVjuYMaUTV18W2dpT8lp/7CxnwfvZVFVLDOkfxOy/xxMU6Nn3liAIwrmYdEky+SW17Mks\nYdn6jNOWswqCIAjtW9s5I2mjrHaJorLak5kNjbULPVVadhmhgc5PqkMCjAT5u3DC3Y7INjsFb32E\n2sdI1K1TnA+y1KBJ24zi44/U7TzXHtjFFqCSDDuOKoBCaoS1sRUezVJUJvP1T1aMepg6xujRZQhH\nsmt59d0sjAY1j9+dRGhw2zlJTcuo5v9eOkxVjYM7/x4vAhINsNpk3v7oGM+/fgSLRWbmjZ15dG6i\nCEgIguD11GoVt1/Ti9hwP9Zuy+GnXbmtPSVBEAShhYhMCQ9prEhlfVvQ7WnFlFU3lDFh5cJe0Wza\nV3DGbQNSwztcF46SL1dhyyskauYN6MKCnY7R7P8FlcOGfcCloHWhtaVkd7kFaHaZjhordA6y429Q\nzmYXzuCQFJastmBzwLSxBkICPBcjLC2z8dz8TGx2mYfnJNI1vu1k2ew5UMlz849gd8jcOzOBiy9o\nW0U5W0p2jplX3j7K8VwL8XFG7ru9K106uVBTRRAEwUv4GLTcNbEvzy7exsdr0okK8aV7l8aLTwuC\nIAhtn8iU8JDGilTWtwt9asYQgv2dnzwH+xsYPaQzIwbGERZoRK2CsEAjowd3OhnU6CgUSSJ/wQeo\ndFpibr/J+aDaSjSHtqD4BiGnDHbtgWuKT7QAjWy0BWiNTcXxch2+ekgIdV8BrlWbbeQUywzpqaV/\nqueuZFutMs+/foSSMjvTJsZy/gDnQR1vtHVXOc++mokkKzw0O1EEJJxQFIWV64p48F9pHM+1cPnI\nCF76Z3cRkBAEoU2KDPZh9vjeACz8ai9F5eZWnpEgCILgaSJTwgMa67CxM93EhOFJAJitDgakhLNh\nZ94Z42qtDv71/lZCAw30TQpj9ODOhAYaO1yGBEDZyg1YjhwjYuo49LHO6z5o9/2MSnJg73sJaFx4\nW5/aAtTY8Em6okB6sQEFFQMSVGjcVF80/ZiDjTvshAerGD/Mc0txZFnhtf9lkZFVy8ihYYwb23jd\nDG/y6x+lvPpuFlqNmkfmJtK/V2BrT8nrVFTaWfB+Ntt2VxLgr+HBGV0Y0r/tBJ0EQRCc6RYfwrQx\n3fhgVRrzl+/h8WmD8DGIQ1ZBEIT2SnzDnwWrXaKi2kqQv8FpkKCxDhullRY+/uEQacfKTi7r6Bzp\nT43ZTnm1Fb1Og8UmYbHVnf2WVFrZsDMPjUbdIYs+KYpC3vxFoFYTc+fNzgdVl6M+vA0lIBQ5aYAr\nD3pKC9DoRluAFlRpqbBoCPdzEBuqp9h5rKlZqmsVPvnRiloNN40xYtB7ro7Ep1/ns3lbOT1T/fnH\nzZ3bTKeKtT+beGPxMXyMah6/O5meqY13RemIdu2vZP57WZRVOOjXM4C7bu1CaIgLy5YEQRDagGH9\nYskprmbtthzeXrGfuyb0Fe2fBUEQ2ikRlGiGxupEOCTlZKCisQ4bBr3mtDoRJZVWSiqtjBgYx4j+\nsby2fM/JgMSp6jMsOlqmRMXGzdTuTyf02sswJsY7HaPduxGVLGHvO6LRZRgnnWwBGgB6vwaH2STI\nLNGjUSkkh9uAcz/hUxSFZessVNYoXHmRns5Rnns9f9pcyuffFRAVoefh2YltphXktz8WseiTHAL8\nNTx5XwpJCW2n/kVLsDtklnyZxzeri9Bo4OZJcVw7JlIcrAuC0O5MHplMwYmOHJ9tyGDKqJTWnpIg\nCILgASIo0Qz1dSLq1deJOHSsnFqL/bRARf+UcNZtd71y9J6MEkb0j3VbG9Cmsjm81V/nnT//fQBi\n5/zd6XhVZQnqzJ3IQRHICX2b3kAzWoAeKdHjkFUkhVkxat1T3PK3vQ4OHJVI7qThkoGeqyORllHN\nwvez8fXR8PjdSQQGtI2P+vLvCljyZR4hQVqeeiCF+DhRF+FUuQUW/vv2UY5km4mJMnDfrASSuzYc\nWBMEQWjLNGo1/7i2N//+aBtrth4nLtyPi/vFtva0BEEQBDdrG2cqXqCxOhHHi6pP/lwfqBg5KI7R\ngzuxM91EWZWFkAAj3eKD2eykmwbUBR1QqRrMsHC1DWhj2RwatfdeKXc27wuVEjpt2UnQ6KH49nK+\ndEWzZz0qRcbRbyS4sn+1JXUtQH3DGu3QUW5WU1Clw18vERfkONvdOk1+icSKX6z4GmHqZQbUHlpK\nUWSy8sKCI0iywmN3dKVzrPef2CuKwsdf5PHlykIiwvQ8/UAyMVHG1p6W11AUhXW/lvDekhysNpmR\nQ8O4bWonfIxtJ+AoCIJwNnyNf3bk+PCHQ0SF+pLaWdTOEQRBaE9EUMJFjdWJcGb34RKenXk+E4Yn\nnbzyD3DoWFmDQYeIYB8GpEaclo1Rz9U2oA1lcwBeXZPC2bzlb5YBEDt3utP7qMoLUR/dixwSjRzf\ns+mNnNoC1De8wWHyieKWoJAaYcMdWfF2h8LHq604JJg21kiQv2cCRGazxL9fy6Si0sHMGzvTv7f3\nF4eUZYX3luawan0xMVEG/vVgCuGhojZCveoaB299eIxNW8vx9dFw/z8SGHqe6EIiCELHERXiy53j\n+/DfZbtY8OVe/nnLYCKCvT/gLgiCILimWWdG6enprF27FoDKykqPTMhb1deJcFX9cguDTkNkiC8G\nnQaDTsOA1Ain4+uDDpNHJjN6cKezagPaVNcPq91NrSPczNm8w4rziM8+RFF8Mvr+vZ3eT7N7PSoU\npP6jQeXCW7mmqK7IZRMtQI+X66i1q4kNdBBolJu1Lw35bpONghKZv/XR0jvJM7FASVZ45e2jHDvR\nFvKKUc7fa95EkhQWvp/NqvXFdOlk5N+PpIqAxCkOpFdz31NpbNpaTvdkP+Y93V0EJARB6JB6dAlh\n6qWpVJvtzP9iD2are7IYBUEQhNbn8tnRBx98wHfffYfNZmP06NG88cYbBAYGcuedd3pyfl6jPqDg\nLIvBmYaWW9QHF05d1jEgNfzk3zXqui4bp2ZYuFoTorFsjubWpGhJzuY9YNt6ALYOvITznMxbVZKH\n5tgB5PBOyHEuZIDYzWCpAG3jLUDNdhXZZTr0GpnEUFvzd8aJA0cd/LrbTlSomquHeq7954ef5bJ9\nTyX9ewVw6w2dPLYdd7E7ZOa9k8XmbeUkd/Xl/+5NJsBfJG9BXbDms2/zWf5t3XKvKdfGMPGqaDQa\nUcxSEISOa8SAOPKKa1i3I4d3VuxnrujIIQiC0C64fAbw3Xff8dlnn3HLLbcA8NBDDzFlypQOE5QA\n5wEFX6P2tJoS9RpabuFq0KE+w6I5Guv64WpNitbw13kHlRWTdHgvxRFx1Pbq43Temt3rAHD0H91o\nS0/gRAvQE7U8/BtuAaookF6sR1ZUJIdb0bphuX5ljcynP1rQauCmsQb0Os8cPP34s4kVa4qIizHw\nwB1dvf7k1WqTefmNI2zfU0nPVH8evzsJXx9RHwHqaoLMeyeLtIwaIsL03DsrgR4poiWq0DxFJisB\nflp8xOdKaGemjE6moLSG3ZklfPFTJpNGNJ1JKgiCIHg3l4MSfn5+qE8pJKhWq0/7vSNwFlDQalQn\nCjQ6z3wA550wzibo0JTGsjlcrUnRGv467/7bN6JCYceQkQzoFnHGvFXFx9DkpiNHJaBEJza9AWtl\nXaaEofEWoMU1GsrMWkJ8HET4nftSF1lR+ORHKzUWGDdMT2y4Z57/vQerePujYwT4a3j87mT8fL07\n28Bslnju9Uz2pVUzoHcgD89OxGDoWN8lDfllSylvfXiMWrPM0PNC+MfNnb3+9RS8S1pGNcu/K2D7\nnkpGXhTK3FsTWntKguBWGrWaf4zrzbMfbmfVlmPEhvtxUZ+Y1p6WIAiCcA5cPtqNj49nwYIFVFZW\nsmbNGlauXElSUpIn5+a1/hpQaCjzwdOdMJwFO5paHuKt6ueXtvUw3dK2UxkWRdL1Y5zOW7vrRJZE\nv1EuZEnIUF0EqMCv4RagdgkyTHrUqrrilu5ojPHLLjvpxyS6d9EwtJ9n2n/mFVp46Y0jqFDx8OxE\nYiK9MxumXnWNg2fmZZB+pJYLBgVz36wEdDoRkDCbJd5depwNm0oxGtTMndGFEReFovJQhxahfVEU\nhb0Hq/j8uwL2pdVl7nVP9uOqSyNbeWaC4Bl+Rh13n+jIsXh1GlEhviR3CmrtaQmCIAhnyeWgxP/9\n3//x4YcfEhUVxYoVKxg0aBA33nijJ+fWpjjLfPBUJ4zGgh0OSWH0oE5c/bcEzFZHs2pStKb6LJQj\nG7/BJMv0eux2Rl/W/YxxqoIjqAuOIMcmo0QlNP3ALrYAPVqqxyap6Rpqw0ennMOe1Mkpkvh+k40A\nXxVTLjV45OSyusbBv1/NpLpGYu6MLvTqFuD2bbhTeaWdp1/JIOu4mUsuDGXOjC5ev8ykJRw+WsO8\nt7PIL7KSnODLvbcnECvaoQouUBSFbbsrWP5dAelHagHo3yuAiVdFe/33gSCcq+hQX+4Y35t5y3bz\n+pd76jpyRIj3vSAIQlvkclBCo9Ewffp0pk933p5ROF1TnTAmDE8662BBQ8GOQ8fKqbXYzwhUtBX2\nkjJKl36NPi6aqIlXnDlAUU7PkmiKZIeapluAVlrU5FVq8dXJdA62n+30T7LaFZb8YEGSYcpoAwG+\n7s8EcDgUXnrjKHmFVsZfHsXIoWFu34Y7mUptPPWfw+QWWBlzSTizburc4YuTybLC16sLWfpVHpIE\n4y+P4obxMei0InNEaJwkK/y2tYwvvy8kK8cMwPkDgphwVTQpXRteoiYI7U2vhFBuGJ3Ckh/Tmb98\nL/+9d3hrT0kQBEE4Cy4HJXr27Hna1V6VSkVAQABbtmzxyMTaOk91wmgs2HFqwU13ZWW0pML3PkG2\nWIm5Yxpq3ZlvTXXeYdTFx5A6dUcJd6G7RE0R0HgLUPlEcUtQkRphwR3nySt+sVJUpjCsv47uCe6v\nB6AoCu8uPc7eg1WcNyCImybEun0b7lRQZOXJ/xymyGTj2rGR3DIprsMvSygps/Hae9nsPVhFSJCO\nu2/rQr9ega09LcHL2R0yP20u5cuVheQXWlGrYNgFIVx3RTRdOvm09vQEoVWMGtSJPFMNG3bm8twH\nf3DHNT3RuaNStSAIgtBiXD5jSktLO/mzzWZj8+bNHDp0yCOTag881QmjsWCHM/VZGfX39dblHI7K\nagrf/wxteCgRN1x75gBFQXMiS0Lq70KWxMkWoMZGW4DmVmiptmmIDrAT7COf7fRP2pPh4Pd9DmLD\n1Vz5t4aXi5yL79YWs2ajiYTOPtwzM8GrMw6O55l56j8ZlJbbuWFcDJOuju7wAYktO8tZ+H42VdUS\nQ/oHMWd6FwIDRDFLoWFWm8y6X0x8taoQU6kdrUbFpcPCGH95FDFiqY8gcMPoFMqqrOxKL+bNr/dz\n5/jeaDUi60wQBKGtOKsjYb1ez/Dhw1m0aBGzZs1y95zaBU91wmgs2OFMWZWFj344xKFjZR4ptuku\nRYuXI1VW0+nROah9zjzIVh8/iLo0D6lLb5SQ6MYf7LQWoFENFsO0OFQcLdWjVSskhtnOdRcor5L5\nbJ0FnRZuHGNEq3X/yff2PRV88GkOIUFaHr87CR+j9wWY6h3JruXpVzKorHYwfUoc11zWcKHRjsBq\nk/lgWQ6rN5jQ61TMuqkzY0eEd/ggjdCwWrPE6g3FrFhTREWlA71exVWjI7h2bBThoZ4JegpCW6TV\nqLljXC/e+GY/uw6b+N/3B5l5VU+vDtoLgiAIf3I5KLF8+fLTfi8oKKCwsNDtE2pPPNEJo7FghzN6\nnYbf9hWc/N0bl3XIZgsF7y5FE+hP5C0TnQyQ0exah6JSIfUb2fQDutgCNMOkR1ZUpIRb0Z/jub0s\nKyxdY8VshYkjDESHuT/gk51j5pW3jqLVqnhkbpJXn5SkZVTzzLxMzBaJO26J57LhDdf06Aiyjtfy\n37ezOJ5nIT7OyH23dxXp9kKDKqsdfL+2iO/XFlNTK+Hro2bClVFcdWkkwYGe6eQjCG2dTqvhienn\n8+gbv7LlQCF6rZpbLu+OWgR+BUEQvJ7LQYnt27ef9ru/vz+vvvqq2yfUHpzaqrOhdqF/HVf/d2d/\n+ytnwQ5fo/a0mhJ/ct5J4lyLbbpT8acrcJhKiblrOtpA/zNuV2fvQ11RhJQ4ACUoovEHU2SoLgRU\ndVkSDTDVaDDVaAkySkQHOM5xD2DDdjuZuRK9EzVc0Nv9qfjllXaem5+J2SJz/z8SSE303mJ2ew5W\n8fz8TGx2mXtmJjDsgtDWnlKrURSFleuKWfxZLnaHwhWjIrh5UhwGvfdkKQneo7Tczoo1hfywwYTF\nKhPgr2Hq+BiuGBWBn69Y4iMITTEatNwzsR8vf7KTX/bkY9BruGFUishIEwRB8HIuH+U8//zznpxH\nu9BYq85Ti1o6G9cvJRwVsOuwqcllFvXtM08Ndmg1qhOP+Wegont8MJtOyZI41bkU23Qn2e4g/40P\nURsNRN92g5MBEprd61FUahx9L2n6AWtLQHbUtQDVOM8kkGQ4bNKjQiE1wtrQ6g6XZRdIrP7dRqCf\niutHGd1+8GO3y7y44AhFJhtTro1h6Hnee5K/dVcFL79xBAV46M5Ezh/YcD2P9q6i0s7ri7LZvqeS\nQH8tD87owpD+Qa09LcELFZmsfLWqkHW/lGB3KIQG67hhfAyXDQ/HaGj9wLEgtCW+Ri33Te7Hi0t3\nsnZbDka9luuGJbb2tARBEIRGNBmUGD58eKMnWRs3bnTnfNq0hlp1wulLJZyNW78997THcnbfv2ZR\nGHSa04IKfw1UAKQdK3N7sU13KvlqNbbcAqJunYIu/MyTbfWR3airSpBShkBAEyfj9S1A1Y23AM0q\n1WF1qIkPtuGnd55J4iqLTWHJaguKAlMvM+Dn496AhKIovPHBMdIyahh6XgjXX9NEPY1WtOmPMua9\nexSNRsVjc5Po34G7SezaV8n8/2VRVuGgX68A7ro1gdBgkXYvnC4338IXKwv4+fdSJAmiwvWMvyKK\nkReFodOJbBpBOFsBvnoemNKfFz7ewXe/ZWHUa7jigi6tPS1BEAShAU0GJZYuXdrgbZWVlQ3eZjab\neeSRRygpKcFqtXLnnXfSvXt3HnroISRJIiIigpdffhm9Xs+KFStYvHgxarWa66+/nkmTJp3d3rSQ\nhpZdNNSq89QOGMXlZnYcKnJ5WzvTTYy7uCtf/3LUaQbGX7Mo/hqoaKj+RN/ksFZfuqHIMvkLPkCl\n1RD9j5vOHCA50O7ZgKLW4ujjQu/x6hMtQP0abgFabVVxvEKHUSvTJcR+bjsAfLXRSkmlwshBOlI6\nuz+9+ssD8usIAAAgAElEQVSVhWzcXEpqoi9zZnTx2hTUdb+U8MYH2RiNah6/O5meqWcuw+kI7A6Z\nJV/k8c0PRWg1Km65Po5rLosUxdaE0xw9Vsvy7wrYvL0cRYFOMUYmXBnFxeeHotGI94oguEOwv4EH\nbujPC0t2sHxjJgadhlGDXGgnLgiCILS4Js+i4uLiTv6ckZFBWVkZUNcW9Nlnn2XVqlVO77dhwwZ6\n9+7NzJkzyc3NZcaMGQwcOJCpU6dy+eWX89///pfly5czbtw4Fi5cyPLly9HpdEycOJFLL72U4GDv\nS/tubHlGY606SystfPzDIdJOdMBozrX5sioLS388fNbFKv+sP1FMSWVdX3tZgd2Hi9GoVa3ahaNs\n9UYsGVmET7kGQ9yZGQDqjB2oaspxdL8Q/JpIe7fXgrXxFqCKAunFBkBFSoSVc+0WtuOQnW1pDjpH\nqRl7gfuLTm7eXsbHX+QRHqrjkblJXluH4Pu1Rby3NAd/Pw1P3Z9CUkLrLglqLcdyannihUMcyTYT\nE2Xg/tu7dtjnQnBuX1oF7350hO176gL6iV18mHhVNOcPCBaBK0HwgPAgHx6YMoAXluxgyY/pGHQa\nhvaNae1pCYIgCH/h8qXdZ599lk2bNmEymYiPj+f48ePMmDGjwfFXXHHFyZ/z8/OJiopiy5YtPP30\n0wCMGDGCRYsW0bVrV/r06UNAQAAAAwcOZMeOHYwc6UKXhRbW2PKMCcOTGmzVadBrGqzt0JSQAANp\n2aVOb3OlWGV9/QlJktmwMw/5RESktMrWql04FEUhb/77oFIRc+fNZw5w2NHu3Yii0SH1HtbUg0HV\niU4wjbQAza/UUmnVEOHnIMxXOqf5l1TIfLHBil4HN40xuv3qZmZWLa++m4XRoObxu5MICfLO1P/l\n3xWw5Ms8QoK0PHl/SofsKKEoCut+KeF/n+RgscqMGhrGrVM7eXW7VqHlKIrC3oNVfP5dAfvS6ooR\n90jxY+JV0QzoHei12U+C0F5Eh/rywOT+vLh0B++vOohBr2FI98jWnpYgCIJwCpeDEnv37mXVqlVM\nmzaNjz76iH379vHjjz82eb8pU6ZQUFDAW2+9xfTp09Hr664oh4WFUVxcjMlkIjT0z1oBoaGhFBc7\nXwZRLyTEF63W/Qf8EREBDd5msTnYk1ni9LY9mSXcPqEfF/WLY8UvR864/VwOOvulRrJh+3Gnt5VV\nWdDodUSEN96JwWJzsD+rzOltdXP3wah3/lZo7Dk5F8U//krtnoPETBxL/IV9zrjdun0jVnMV+iGj\nCIpv/KqGpdxElcOMITCUQCcZF1BX++FoloJWA+d30+GjP7vMhoiIACRJ4c2vSrDYYOZ1QfRIce/V\n8OISKy8s2IfdrvD8Ez0ZMtD72mkqisLbHx5hyZd5REUYePXZvnSO7XhZAZXVdl5akM7GTSb8/TQ8\nfXcPRl0sDnZP5anvEG+nKAqb/ihh8WfHOJheBcB5A0O4eVI8/Xt7XyagILRnnSL9uW9yf17+ZCfv\nrNiPXqumX7L3/W8VBEHoqFwOStQHE+x2O4qi0Lt3b1588cUm7/fpp59y8OBBHnzwQRTlz4ULp/58\nqob+fqqysloXZ+26iIgAiourGry9qKyW4jKz09tM5WYys0q4+sJ4as220zpgdIsPZnMjWRIqIDTQ\nSL+UsBPdN0pO3ndAajjjLu7K7vSiBotVSjZ7o/N2de7OunA09Zyci4PPLAQgdOZNZ27DbkX/+4+g\nM1DV9TyqGpuDIkNJNqDCqgttcL4HCg3YJS0p4VaqKxw4a57alPrnY/XvVjKO2+mfqqVbnMOtz5HV\nKvP4C+mYSm3ccn0c3boaPPYanC1ZVlj0SQ7frysmJsrA0w+kYNRJXjdPTzuQXs28d45iKrXTI8WP\nZx7pjUbV9OexI/Hkd4i3kmSF37aW8cX3BWTnWAA4f2AQE6+M5sLzoikurmrzz0lHDTQJbVvXmEDu\nmdSP/y7bxcKv9nHvpL70SPDeblaCIAgdictBia5du7JkyRIGDx7M9OnT6dq1K1VVDR9Y7du3j7Cw\nMGJiYujRoweSJOHn54fFYsFoNFJYWEhkZCSRkZGYTKaT9ysqKqJ///7ntlceEORvaHB5Rn0nC2et\nOgEONdABIyzQwN0T+xIR4otBp8FqlxjeLxZUKiKCfU4uy+ibHM6GHbln3H9AarhLxSpdmXtLqtq6\nm6rNOwga+Tf8+nQ/43ZN2u+orDU4+o4AQxNX30+2AA1vsAVoaa2aomotAQaJ2EDHOc39SK7E2q12\nQgJUTBxhcGvqtSwrvPZeFpnZtYwaGsa1Y7zvirskK7zxfjbrN5WS2MWPJ+5J9NqlJZ4iSQrLVuTz\nxXd1wcYp42KYeGU00ZFGiovPvXiq0DbZHTI/bS7ly5WF5BfW1e8ZdkEIE66MJj6u4y1rEgRvlNo5\nmDkT+jB/+R7mf7GX+6f0J/n/2bvvwKbKvYHj3+x070WBtrQUZRcUAWUKiAwBQUBQrxtfcc97XVe9\net3g5LoHgooWRAQRZAmKqEBZMltGC3SvdGWdc94/SmtHmqalbTqezz9ATnL6JC1pnt/5jUgxqlkQ\nBMHdXA5KPPvssxQUFODr68vq1avJy8tj3rx5dd5/586dnDlzhscff5ycnBxKS0sZNmwY69atY8qU\nKaxfv55hw4bRr18/nnjiCUwmExqNht27d/PYY481yZNrSgadps5JFjWDA65OwEiID6FzqA+SLPPF\nhqO1GmjOGNmNxC3H2XusvJylokllUJUGm0299paQ/tanAHS6+6baB61laA7+gqL3QLpwqPMTVY4A\n1YJnkOO7yHAsxwAoxIdY62o34ZKSMpkv1pdf+Zx7hREPQ9PWgn+5Mp3fdhXQq4c3827o0upqzW12\nmdffP8n2nQXERXvyxvP9sFrM7l5Wi8rMtrDw/ZMcSSkhJEjP/bdHc2H3jjlpRChnscps2JrDyh8z\nycmzodWoGDs8iGkTwokIdf/YZUEQqusdE8QdU3qz6NsDLPx6L49cm0BUuMj+EQRBcCeXgxIzZ85k\nypQpTJw4kauuuqre+8+ePZvHH3+cOXPmYDabeeqpp+jduzePPvooy5Yto1OnTkydOhWdTseDDz7I\nLbfcgkqlYv78+ZVNL1ubvydZ5FQrsagvOFDf4+pqoHkktYC0rL8LDSqaVPaNDWpwc8rGrr2plf51\nlIIN2/Ae1B+fSxJqHdcc2o7KasaeMBb0Rucnc2EEaGqBjjKbms5+NnwMcqPXrSgKn6wqJL9IYdwl\nemI6NW0gZ8tvuSSuziA81MAj87uh07auSRsWq8wri8qnBvSM9+bxe2Px89WRnd1xghLbduTx7uep\nlJbJXDYogDtu6IKXZ9OPgRXahtIyiR83Z7NqfRaFJjt6vYpJY0KYMj6M4MCmn8YjCELTGRAfwq2T\nLuSD7w/y2rI9PDp3AJH19OcSBEEQmo/Ln6gfffRR1q5dy7Rp07jggguYMmUKo0ePruw1UZPRaOS1\n116rdfsnn3xS67bx48czfvz4BizbPRyVZ7iSZeDscRabRNJRx409z2Q77nywLyUPi01yOcPBYpMo\nLLYwfURsg9fe1M6+/SkAne5xkCVhLkFz6DcUoxdSj8HOT1RtBKjj1MtSq4rUfB16jUx0oPW81v3n\nITt/HLAQHaFmzMVNW65wOLmYdz5JxdNDw+P3xuLr3bo2umVmif++mcKBw8Uk9Pbl0fndMBhaV9Ck\nOZWVSby/NI0t2/MwGtTcfUsUo4YGtrpMFqFlmIrtrNmQxZoN2ZSUSnh6qJk+MYzJY0Px8+1YpUyC\n0JYN7hWOxSbx2Y9HePWrJP41d4DD/lqCIAhC83N59zNw4EAGDhzI448/zh9//MGqVat4+umn2bFj\nR3Our1WqWZ5xPo8rLLaQ56DXA/ydGVFTfpGZwmJLvWuQZJllm5JrlYXMGh2HRt3ym0rziTTyvt+A\nZ694/EbVLs3QHPwFlc2Cvd/loHNypbHaCNBwhyNAFQWO5hhQUNE92ML5JB5kF8h8+7MFT6OKuVcY\n0aibbjOalWPhhbeOI8sKD98ZQ+eIerJDWlhxiZ3/vJ7C0ZQSLhngx4PzYtDpOk5A4ujxEha+f5KM\nLAtx0Z7cPy+aTmGt63sktIy8Ahur1meybnMOZouMj7eGOdMimHB5iMiYEYQ2akT/SCw2ma82HuOV\nL/fwr+sGEOgr3uMFQRBaWoM+SZlMJjZs2MCPP/5IWloas2bNaq51dRjOmlBW9JCoydXmlHWVhQAN\nLv9oCumLFoMs0+mem2tfZS4rQnP4dxRPX6T4i5yfyFII9jIw+ILecWAms1hLQZmGIE87wV5So9ds\nlxSW/mjGaoNbp/oReJ6NMqsqLZN4/o0UTEV2br+uC/17+TbZuZtCocnGMwuSOZFaxoghgdx9cxQa\nTcfIDpBkhZVrM/ly5VlkGaZdGca10yJaXVmN0Pyycix8uzaTjdtysdkVAv11XDstgnEjgjEaWj7b\nTBCEpjXu4i6YrXZWbjvBK1/t4Z9zB+DnJUqwBEEQWpLLQYlbbrmFY8eOMXbsWO644w4GDBjQnOtq\nkyrKJBpSGuGsCWVkiHe1nhIVPI1atPVsDp2VhSQdzWH6iNgWLd+wpmeR8/X3GLt1JWDCqFrHNQe2\nopJs2PpcCRonKdCKfK6XhAq8HU+nsEmQkqNHrVLoHnx+zS1/3GElLUvmogu1DO7r0WSj/CRZYcF7\nJ0g9Y2bC5SFcOTqkSc7bVHLzrfz71WOcSbcwbmQw867rgroJM0Ras9x8K69/cJIDh4sJ8NNx321R\n9O3ZugJGQvM7nW5mxQ8ZbN2RhyRBWLCeqyeEM+rSwA6VLSQIHcHkodFYrBJrf0/lta/28MicBLw9\nRDmWIAhCS3E5KHHDDTdw2WWXodHU3sh+8MEH3HbbbU26sLbEWZmEXVLqDVTU1YRyxshuPL94d63A\nRFpWMcs2JdfKdqgaFHFWFuJq+UdTSn9vCYrNTsT8f6Cq+TNUUojm6J8o3gHIsbWbX1a/b069I0CP\n5+qxySq6BVox6uqogXHB0TQ7W3bZCPJTMW1E03bR/+zrM+zaZyKhty83z+7cpOc+X5nZFv79yjEy\nc6xMuSKUf8yM7DD9E37fXcDbn5yiuETi4v5+3HVTFL4+IjW/IzmRWso3qzPYsasARYHOEUamTwpj\n2KDADpMpJAgdjUqlYsbIWMw2ic27z7Dw6708NLs/Hgbx/i8IgtASXH63HTFiRJ3Htm3b1qGDEs6m\nZ5SabfX2c6irEabFJlFqtjn8mlWzHRwFRfrGBtVZFuJq+UdTseUWkP35CvQRYQRNn1DruHb/FlSy\nhK3vKNA4+ZGUbFCae24EaLDDuxSWqUkv0uGll+ns7/i1c0VxmcKX6y2o1HDdFUaM+qbbjKzfksP3\n67Po0snIg3fEtKqNTtrZMp5+NZm8Ahuzp0Ywc3J4hwhIWCwynyw7zbotOeh1KuZd34UrRgZ3iOcu\nlDucXEzi6gx27TMB0C3KgxmTwrkkwb/DZAm1Ji+//DK7du3Cbrczb948+vTpwyOPPIIkSYSEhPDK\nK6+g1+tZtWoVn332GWq1mpkzZ3LNNde4e+lCG6VSqZg7Nh6LVWL7gQzeSNzH/TP7uaUpuCAIQkfT\nJCFgRWn81ei2zlmZRNUMB1f6OdRshOlqtoOjoMjmpLN0CfV2GJRIiA9u0V+ymR99hVxmJvxfd6HW\n10iHLMpDnbwb2TcYOaav8xMVZ/L3CNDa6dPyueaWAPEhFhq7j1AUha83mjGVKEwYqqdreNO9VvsO\nFfH+0lR8vbU8dk8sXp6t58POidRSnn41GVOxnRtnRjJlfJi7l9QiTqaVsuC9k6SdNRPV2cgD82Lo\nGunh7mUJLUBRFPYdLCJxTQYHDpe/X1/Y3YsZk8JJ6O0rglJusmPHDo4dO8ayZcvIz89n2rRpDBky\nhDlz5nDllVeyYMECEhMTmTp1Ku+88w6JiYnodDpmzJjB2LFj8ff3d/dTENootUrFTRMuwGKT2HUk\nm3e+3c/dV/cV/YQEQRCaWZMEJTryBzdngQNHGtLPwcOgxddLR2FJ7Sv+FdkOzoIiJWU2Rg2IZF9y\nbrWykIpykZYgFZeQ+ckytIH+hMyZWuu4dt9mVIqMvd9oUDt5TWylYDE5HQF6ukBHiVVNhK8NP6Pc\n6DX/dsDOX8cl4jprGDWg6WpKz2SYefmd46hQ8ehd3QgPbblslfocSSnhPwuTKS2T+L8bujJupONM\nlPZEURTWbMhm8TdnsNkVJl4ewg0zI9GLfgHtniwr7NxbSOLqDI6dKAUgobcvMyaF0zPe282rEy6+\n+GL69i0PUvv6+lJWVsbvv//OM888A8CoUaP4+OOPiYmJoU+fPvj4+AAwYMAAdu/ezejRo922dqHt\n06jVzLuqF28t38/+47m8v+ov7pjayy1TywRBEDoKUSx3npxNz3DElX4Oklw+nurX/RmYrY4nR1Rk\nO2Tll9YZFCkotnDFxV2YOSquwQ04m0rW4uVIhUV0fvT/0HhWH7OlKsxCfWIvsn8YclSvuk+iKFCU\nUf53H8cjQMtsKk7m69BpFLoFWhu93oxcme+2WvA0wrVjDU2Wtl1UbOf5N1IoKZW4+5aoVrXx2Xeo\niBfeTMFqk7n31mhGDAl095KaXYHJxtsfn2LXPhO+3loeuSWKi/o5DnYJ7YckK2z/I5/lP2Rw6rQZ\ngEsG+DFjYjhxMV5uXp1QQaPR4OlZ/jsyMTGR4cOH88svv6DXl/cRCgoKIjs7m5ycHAID/36/CgwM\nJDvbcZC+qoAAT7Ta5vldGBLi0yznFVzXVN+Df98+hGc+2MGuo9ks3ZjM/bMHiFIuF4n/B+4nvgfu\nJ74HDSOCEufJ2fQMR2r2c3A0sWPZpmQ27jrj8PFGvYbL+kZUZjv4eRsI8NGTV1R7I+7vbag8b0s2\ntawgmy1kvLcUtbcXoTfOrHVcs3czKkXB3v9yUDm5AmEuBLu5fASorvbzUBQ4lqNHVlT0CDLT2LiL\nza6wZJ0ZuwTXjTfi79M0V0XsdoVX/neC9EwL064MY/SlQU1y3qawc28hL79zHAV4+P+6MXhg+097\nTjpg4s0PT1JgstOvlw/33BJNoL/ost6e2ewyP2/PY8UPmaRnlZd2DR8cwPSJ4aJUpxXbsGEDiYmJ\nfPzxx4wbN67y9rpKRl0tJc3PL22S9dUUEuLTZBOahMZp6u/BHVf15LVle9iy6zTICtePi+/Q2cGu\nEP8P3E98D9xPfA8ccxaoaZKgRHR0dFOcps1yND3D06h1OM6zIsOhrokdU4d1q7McA8DToGH6iNjK\nNEKDToOXh+OghJeHrkGZEY0ZaersPLZvV2PLziXirhvR+lX/IVTlpaM5dQA5KBK58wV1n0yWoaRi\nBKjjHgc5JRrySrX4e0iEejvOLHHFmu1W0nNkhvTW0ie2aeJ1iqLwwdI09h8q4pIEP66b3qlJztsU\nfv0zn4Xvn0CjUfHYXbH0792+x17abDJLlp9l1fostBoVN86MZPK4UHHlqx2zWGU2bM1h5Y+Z5OTZ\n0GpVjBsRzNQrw4hoReVTQm3btm3j3Xff5cMPP8THxwdPT0/MZjNGo5HMzExCQ0MJDQ0lJyen8jFZ\nWVn079/fjasW2hsPg5b7Z/bj5S+S2JJ0BoNOzcxRcSIwIQiC0MRc3nmdOXOGl156ifz8fD7//HO+\n/vprBg0aRHR0NM8++2xzrrHVczQ9Q6tRnQs6/B2o6BsbyKiESCw2ieU/pzic2FFmtjvtUZFfZK1W\n/uFsQkep2YbFJtUbYKgrQHLXzLrHczoKYFQ9T35BKXM//xAPnY6QW2bVfs32bgI4lyXh5Jd7adUR\noLWvZtvl8iwJFQrxwRanp3Lm0Ek72/bYCA1QcdWwptusrP4pm/U/5xDT1YN7b4tuNRvgjdtyWfTp\nKQwGNU/cF9eqykmaw5l0MwveO8Hx1DI6hRl44I4YYqNaPntIaBmlZRJrN2Xz/U9ZFJrs6PUqJo8N\nZcr4UIICHI8SFlqPoqIiXn75ZT799NPKppVDhw5l3bp1TJkyhfXr1zNs2DD69evHE088gclkQqPR\nsHv3bh577DE3r15ob7yMOh6c1Z+XvtjNuj/SMOq1TLksxt3LEgRBaFdcDko8+eSTzJ07l08++QSA\nmJgYnnzyST7//PNmW1xbU7NMoiJQkWcys2HXafYl57Al6Sx+3nrMVrvDcxxOza+zHAMgwMdQrfzD\n+YQOS739K6DukaaeHnqmXhpd7b51BTBmjY6rdp7uR/fiVZjHgb5DOb4/nzlhIZXnUOWcRnP6MHJo\nFEqEk6abkvXvEaBejhsvnsjTY5XURAdY8dQ3bgpMUanMVz9Z0KjLyzb0uqYJHOzaV8iny04T4Fc+\nacPD2DombfywMYsPlp7G20vDUw/E0b0d19IrisKGbbl89MVpLFaZMcOCuPnazq3meyE0LVOxndU/\nZfHDxmxKSiU8PdRMnxjG5LGh+PmKEp224ocffiA/P5/77ruv8rYXX3yRJ554gmXLltGpUyemTp2K\nTqfjwQcf5JZbbkGlUjF//vzKppeC0JR8vfQ8NDuBF5bs4rtfTmDQaRh/SVd3L0sQBKHdcDkoYbPZ\nuPzyy/n000+B8u7YQv0MOg2bk86wefffPSIKiutuxJhfZCEswBNwfJ8BPUKqZT44a7RZs3+FI86m\nd+w4kM6Vg7pU+3p1BTAkSWZfSm75jYpMws7NSGo1ewaMwFBj4oh2zwbAhSyJ4ixAAe9Qhz0niixq\nzhRq8dDJdA1wnC1SH1lR+OonC8VlClOG6YkMaZrN6qnTZbz27gm0WhX/uieW4MDWcXV2+ZoMliw/\ni7+vlqcf6k5U5/ZbT19cYmfRZ6n8trMAL08Nd98Sw6UXB7h7WUIzyCuwsWpdJuu25GC2yPh6a5l7\ndSeuHB3SqsbuCq6ZNWsWs2bVzrCruChS1fjx4xk/fnxLLEvo4AJ8DDx8bXlg4uvNyRj0GkYlRLp7\nWYIgCO1CgwrnTSZTZR3dsWPHsFhcH4XZUTnb9Dui16lJz6vdhEujhhEJkbXGeTprtFnRv8IZZ5kW\nOQVltUpF6nouScdyKDwXbIk+fpDAvEyOXDiQYt8ASqtMHFFlnkCdnoIcHosS5iT90VplBKih9lQE\nRYGj2XpARXywmcZWRfyyx8bhUxIXRGm4rH/TXEktMNl4/o0UyswyD90R0yoyERRFYemKsyxfk0lw\noI5nHu5OpzBj/Q9so/46UsTrH5wkJ89Gz3hv7rstmpCg1hEYEppOVo6Fb9dmsnFbLja7QqC/jjnT\nOjF2RBBGgwhGtGYnT57s8P2ohLYnxN+Dh69N4MWlu1my7ghGnYYhvcPdvSxBEIQ2z+WgxPz585k5\ncybZ2dlMnjyZ/Px8XnnlleZcW5vjqM+Cs02/Iza77PB2Py8D14yMQ6NW1/o6jhptJsQH1wpgODyv\nk0yLYH8Pl0tFCout+HsbyC8yM2DnZhRUJA0cCVTJ2FAUtHs2AueyJOqiKFDsfAToGZOWIouGMG87\nAZ6OX7P6nM2WWP2rFW8PFbPHGlA3QeMqq03mxbeOk51r5dqpEVw6yP1X5mVZ4eOvTrNmQzYRoQae\nebh7u92g2+0KX69KZ/maDFDBtVMjmD4pHE0r6eUhNI3T6WaWr8lg6448ZBnCQvRcfWU4oy4NRKdr\nmqk5wvm76aabqmU3LFq0iDvvvBOAp556isWLF7traYLQaBFBXjw4qz8vf5HER2sOodepGdgj1N3L\nEgRBaNNcDkoMHjyYlStXcvToUfR6PTExMRgMons5OO+z4OdtKN+sF7sWmJDq2F8XFFvIM5nZnHTG\n4dep2WjT1ekZzjItBveOcLlUJNDXSN+4II5+t4XQzDRSYvtQEFg+LaMiY0N1Nhl11imkyB4oIV3q\nXlQ9I0AtdhUncvVo1QqxQY3L1rHaFJb8aEaSYfZYAz6e57+RURSFdz45xZGUEoYPDuCaye6/eiLJ\nCos+TWXTL7l0iTTy9IPd2+34y8xsCwveP8nRlBJCg/Xcf3s0F8S17waeHc3xU6Ukrslgx64CFAW6\ndDJy9cQwhg0KRKMRgafWxm6v3jtpx44dlUEJV8d3CkJr1DXMh/tn9uPVr/bw7nd/cc8MDX26tZ5x\n34IgCG2Ny0GJAwcOkJ2dzahRo1i4cCF79uzh7rvv5qKLLmrO9bUJdfVZgPJml/3jg6v1lGiMAB8j\nG3adrnaeml+nZqNNV9WVaXHz5F7k5ZVU3q++UpFZo+PY9vJ/Adh78SiCfKtkbChKZS8Jqf/ouhfj\nwgjQ5Bw9kqIiPtiCvpGTO1f9YiEzX2FYfx0XRjfN+M/E1Rls3ZFPfKwX82+KcvvIMLtd4Y0PT/LL\nH/nERXvy5ANx+Ho3zXNtbbbuyOO9z1MpLZO5bFAAd9zQVfQSaEcOJxeTuDqDXftMAMRGeTJjUjiD\nEvxazUQbobaa74FVAxHufn8UhPMVG+nHvTP6svCbvby9Yj8PzOxHj67uz44UBEFoi1zeoTz33HO8\n+OKL7Ny5k/379/Pkk0/y7LPPdsj0y6rlE0DdfRbONXicPiKWwyfzHfaKcFXf2ED2Jec4PJZUo5Fk\nQzkaaWrQadBoamcPOCsVKUv6C8+Df+E9/BIeeHJGtYwNddoh1LlnkLr2QgnsVPdi6hkBmluiIbtE\ni69RIsLH8QST+uxPsfPbfjsRwWomDm2aMobtO/P54tt0QoL0/OuubujdnEJutcm8sug4O/eauLC7\nF0/cF4enR/vbpJeVSby/JI0tv+VhNKi555YoRg4NFBuedkBRFPYeLCJxdQZ/HSkGoGe8NzMmhdO/\nl4/4HrdB4nsmtDcXRAUwf1pv3lq+n9cT9/Hw7AS6dfJ197IEQRDaHJeDEgaDgejoaJYtW8bMmTOJ\ni4tDre5YtbuOyjQu6BrgsJwBIM9kZsm6IxxOzSfPZMGgU6MoCla7gkGnxmJz3gtBpYLAc5v+UQmR\nbOFTDy0AACAASURBVEk66/B++VUaSZ4PVzIt6gpgAJx9q7x2uPO9N+Nb9TyKjGbvRhRUSP2cZEnU\nMwJUkuFYjh4VCvHBFqeDO+pSWCzz9UYzWg1cd4UBnfb8PyQnnyjhjQ9PYjSoeeyebvj7ubc8osws\n8cJbx9l/qIj+vXx49K5u7bLp39HjJSx8/yQZWRbioj15YF40Ee24eWdHIcsKf+4tZPnqDI6dKA/k\nJvT2ZcakcHrGi3KctqSwsJDffvut8t8mk4kdO3agKAomk8mNKxOEptM3Nph5V/Xif98dYOHXe3hk\nzgC6hIr3KkEQhIZwOShRVlbG2rVr2bBhA/Pnz6egoKDDfahwVKbx64EMjHo1ZmvtAINBr+HXAxmV\n/64ahPDy0BHir+VMdgmOKmsDfQzcN7MfIf4eGHQaLDbpvEZ/NrWaAYzSw8kUrN+K90V98Rk8oNp9\n1af+Qp2fiRTTD8XfSTOoyhGgYQ5HgJ7K12G2q+nib8Xb0PB6ZFlW+GK9hVIzTB9pIDzo/DfquflW\nXnjrODabwr/ujiG6y/kFhs5XSamd/yxM4UhKCZck+PHgHTHtrvGfJCusXJvJlyvPIstw9YQwZk+N\nQKdtX8+zo5Fkhe1/5JO4JoPUM2YABg/0Z8bEcGKj3fv/SmgcX19fFi1aVPlvHx8f3nnnncq/C0J7\ncdEFodxsu5CP1hzita+SeHTuACKC3D95SxAEoa1wOSjxwAMPsHjxYu6//368vb156623uPHGG5tx\naa2L89GeDb/anmeykIeFziFenM4uqXV8QI8QOof8HWlvyOhPR1NAmlv6258B0Omem6un6MoSmr2b\nUFRq7M6yJKwl50aAepQ3uKyhxKoirUCHQSsTHWCrdz2OXoMtu20kn5boFaNhSJ/z761gtkj8980U\n8gps3Dgzkov7+5/3Oc9HocnGMwuSOZFaxvDBAdx9czTaJsgEaU1y8628/sFJDhwuJtBfx723RdP3\nQrG5actsdpmft+ex4odM0rMsqNUwYkgg0yeE0SXSw93La7Pc8Xugps8//9wtX1cQ3OHSPhFYbBJL\n1h/l1a/28M+5AwjxF+9hgiAIrnB5ZzZo0CAGDRoEgCzLzJ8/v9kW1Ro5G4dptUkM7R3OkdSCyj4L\nPbr681uVLIm6lFnsjEroxL6UvHrHeTrr52CxSeSZzGzYmca+lNxa0zk0zVhqYz51mtyV6/Do2R2/\nyy+tdkx9Yh9qUw5S3EXgE+j4BIoCxZnlf/cJqzUCVFHgaLYBBRXdgy04aHVRqa5JKEN7xbB2hxVf\nLxUzxxjPu7ZZlhXe+PAUx0+VMWZYEFdd4d5xYLn5Vp5+NZnT6WbGjQhm3vVd2l0DwN93F/D2J6co\nLpEYlODH/Buj8PVpn407OwKLReanrTms/DGT3HwbWq2KcSOCmXZlGOGhYrJTYzmbBtWcvwccKS4u\nJjExsfICxldffcWXX35JVFQUTz31FMHBtcv0BKEtGz2gMxabxDebU3j1qyT+OXcgAT7i/UwQBKE+\nLn+i79mzZ7WNnEqlwsfHh99//71ZFtbaOBuHGeBj5PoregBUa4B5JDW/zn4TFfKLLFwxqCszR3ev\n96qWo34OWo2q8gNoza9VczpHc0lftBhkmU533VgrS0K7bzOKWoO974i6T1A5AtTP4QjQjCIthWYN\nwV52gr0kp2txPAnlLAeSQ1FkLdeOM+Dtcf6b9S++PcuOXQX06uHN7dd3cWsDt8xsC/9+9RiZ2Vau\nGhfKjbMi21VDOYtF5uNlp1m/JQe9TsW867twxcjgdvUcO5LSMom1m7JZtT4LU5EdvV7F5LGhTBkf\nSlBA0zSe7cjqmwbVkp566ikiIyMBOHHiBAsWLOD1118nNTWV559/noULF7boegShJVx5SRRmi8T3\n20/y6rlSDl9P8d4mCILgjMtBicOHD1f+3WazsX37do4cOdIsi2qNXC2fqNpnoW9sEJvraE5ZoaIf\nREPGeVa97xcbjjpcU1XnO53DGWtGNjnLvscQ04XAyWOqHVMn70ZVnI+9x2DwqqO0QZaqjACtnW1g\nlSAlV49GpRAXbHW6lrpKbDz1UVisWob31xLf5fyvrG/ZnsvyNZlEhBp4ZH43t/YyOJ1u5ulXj5Gb\nb2PWVeHMmhLRrjbrJ1JLWfDeSU6nm4nqbOSBeTF0FSn9bZKpyM7qDVn8sDGbklIJTw81MyaFM2lM\nCH6+7m0O2144KzNszt8DdUlLS2PBggUArFu3jvHjxzN06FCGDh3KmjVrWmwdgtDSpg6LwWKTWP9n\nGgu+2sMjcxLwNIr3OUEQhLo0aoem0+kYMWIEH3/8MbfffntTr6nVclY+4ciYi7rUG5So2Q8CXK8F\ndt7n4m9NNZ3DkYz3v0Cx2oi48x+oNFXWKtnQ7t+CotEh9R5e9wkqRoB6hTgcAZqSq8cuq4gLsmDU\nOm9u6ajERqcJxKANwS6XMKjn+XfDPnSsmHc+TcXLU8Nj98bi6+2+8oETqaU8/VoypiI7N86MZMr4\nMLetpakpisLqDdks/uYMdrvCxDEh3HBNpNtHrQoNl5dv5bt1Waz/OQezRcbXW8vcqztx5egQvDzb\n31QYd3JWZticvwfq4un599f6448/mDFjRuW/21PwVBBqUqlUzBodh9kqsXXvWRZ+s5cHZ/XHqBcl\nh4IgCI64/O6YmJhY7d8ZGRlkZmY2+YJaM2fjMB0J9DUSVEfJh1oFIxIiqwU0GloL7OwDaFXNNZ3D\nnl9I1uJEdOEhBM+YUO2Y5uhOVKUm7D0vA886GhFKVijNKx8B6hlU63B+mZrMIh3eeolOfvZ611Oz\nxEat0uOpj0ZRJHS6NAL9Ehr+JKs4m1HGi28dR5YVHv6/GDpHuG/85JGUEv6zMJnSMok7bujCFSND\n3LaWplZgsvHWR6fYvd+Er4+Wu2+O4qJ+fu5eltBAWTkWPvsmndU/ZWC3KwQF6JgzrRNjRwS1yxG1\nrUF9ZYYtPaVJkiRyc3MpKSkhKSmpslyjpKSEsrKyFl2LILQ0lUrFDVf0wGqT2HEwkzcT93HfNf3Q\nu6nxrCAIQmvmclBi165d1f7t7e3N66+/3uQLagtcKbWQZJnlP6dQYnY8KWLQhWHMHFU92NDQWmBn\nH0CrcpSN0RQyP16GXFpG50fuQG2oUi9ps6I5sBVFq0fqdVndJyjOpK4RoPK55pagEB9ixZWejTVL\nbLz0sahVWkosxxney/e8XoPSMoknXjqMqdjOvOu70K9X7QkhLWX/oSL++2YKVpvMPbdGMXJI7YBO\nW5V0wMSbH56kwGSnfy8f7r4lmkB/kfLalpxON7N8TQZbd+QhyxAWoufqCeGMGhrY7sbTtjYNmdLU\nEm677TYmTJiA2Wzmrrvuws/PD7PZzJw5c5g5c2aLrkUQ3EGtVnHzxAvLM1uP5bBo5QHuuroPWmcd\nuwVBEDogl4MSL7zwAgAFBQWoVCr8/MSVS2dqBhgqaNQqdFoVOw5mcux0QWUmhF1SGlwL7OwDKECQ\nr/PykvMhFZeQ8dFXaAP8CJk7rdoxzdHfUZmLsfcZCcY65nRbS8BSVOcI0NR8HWU2NZG+NnyNssvr\nqniuuw+rUWQfUBUwrL/xvF4DSVJ47d0TnEgtZeKYEMaPcl9Wwq59hbz8znFkGR7+v24MHujeMaRN\nxWaTWbL8LKvWZ6HVqLhxViSTx4a2uwki7dnxU6Ukrslgx64CFAW6dDJy07XR9L3AA41GfB9bSkPL\nDJvTiBEj+OWXX7BYLHh7l5fPGY1GHn74YS67zEnAWhDaEa1GzR1TevPm8n3sS8nl/e8PcsdVvcTv\nN0EQhCpcDkrs3r2bRx55hJKSEhRFwd/fn1deeYU+ffo05/raJGe9HiRZQbKW90aomgkxZmDnRtUC\nO/oA2jcuiDEDOxPoa2y2K2NZS75FKjAR+fAdaLyqrMtqRnNgG4reiNRzqOMHVxsBGl5rBGipTcWp\nAh16jUxMoPPmljVp1GqG9Ixl96EyfL3g3lnh+J9n34dPl51m934TlwwI4KZZnc/rXOdj+858Fr53\nErUGHrs3loTe7svWaEqn080seO8EJ1LLiAw38MC8GLpFtVzdu3B+Dh0rJnF1Brv3mwCIjfJkxqRw\nBiX4ERbmS3Z2kZtX2LE0tMywOZ09+3dPJZPJVPn3bt26cfbsWTp16uSOZQlCi9Np1dx1dR8WLtvD\nzsNZfKJTc9OEC1GL3iqCIAhAA4ISr732GosWLSI+vryM4ODBgzz//PMsXbq02RbXVrna66HC7iPZ\nTB4a3ahaYHd8AJUtVjLeW4Lay5Owm6qn4GoO/4bKWoa9/xjQ1zElwVxQPgLU6Ae66vdRFDiWbUBR\nVMQFW9A28KmUWRSWrjMDcP14D/y9z++1WLclm9UbsunSycgzj/SkrNQ9ddCbfs3lnY9PYTCoefze\nWHr1qKNPRxuiKAobtuXy0RensVhlxgwP4pZrO4t+A22AoijsPVhE4uoM/jpSDEDPeG9mTAqnfy8f\n0cSwFWjIRKfmMnr0aGJiYggJKc8uU5S/mxWrVCoWL17srqUJQosz6DTce00/XvkyiV/3Z2DUaZkz\ntrt4vxQEQaABQQm1Wl0ZkADo2bMnGo3YPDjiaq+HCnlFFsos9vOqBW7JD6A536zGlplD+P9dj9a/\nytV6Symag7+iGDyRLhjs+MGyBMXnRoB61R4BmlWsIb9MQ6CHnRAvqUHrUhSFxM0W8osUxg7S0S3y\n/H4+9x008f6SNHy9tTx+byzeXlrKSs/rlI3yw8ZsPliahreXhqceiKN7TB0lMW1IUbGd/32Wym+7\nCvDy1HDPrTEMvSjA3csS6iHLCn/uLSRxdQbJJ8r/MyT09mXGpHB6xp//dBuhfXnppZf47rvvKCkp\nYeLEiUyaNInAwEB3L0sQ3MbDoOWBWf156YvdbNx9Gr1ezYwRsSIwIQhCh9egoMT69esZOrQ8JX/r\n1q0iKFGH+no91KRWlf+iak21wHVR7HbS3/kMlUFP+O1zqx3THPwVlc2CfeB40NXR5b00BxTJ4QhQ\nmwTJuXrUKoXuIdaaVR312nXYzp6jdqLC1YwdpK//AU6cSTfz8qITqNUqHr2rG2EhLdu1vsKKHzL4\nPPEs/r5ann6oO1Gd68g+aUMOHCni9fdPkptvo2e8N/fdFk1I0Pl9v4TmJUkKv/6Zz/I1GaSeKc9E\nGjzQnxkTw4mNFqU2gmNTpkxhypQppKen8+233zJ37lwiIyOZMmUKY8eOxWh03wQjQXAXbw8dD83q\nz4tLd7N2RypGvZbJQ6PdvSxBEAS3cjko8cwzz/Cf//yHxx9/HJVKRf/+/XnmmWeac21t2qzRcez4\nK4PisvpHWcoKlFns+HjqW00tcF1yV23AcuoMof+YgT4s+O8DZcVoDv2G4uGDFD/I8YPtFSNAdQ5H\ngJ7I02OT1MQEWvHQKQ5OULecApkVWywY9TD3CiOa82ggVVRs5/k3Uygplbjnlii3XAFWFIUvvk0n\ncXUGwYE6nn6oO5HhbfsDvN2u8PWqdBLXZKBSwZxpEVw9Mfy8vldC87LZZbZsz2PFD5lkZFlQq2Hk\nkECunhBGl8i2HyATWkZERAR33nknd955J9988w3PPfcczzzzDDt37nT30gTBLfy8DTw0O4EXl+7i\n263HMeo0jL24i7uXJQiC4DYuByWio6P56KOPmnMt7Uqp2U6puf6ABECQr6Faz4jWUAvsiCLLpL/9\nCWg0RPzf9dWOaf7ahkqyYetzBWjrGOFYUjECNLTWCFCTWc1ZkxZPnUwXf8djVOsiSQpL1pmx2GDu\nFQaC/Bo/astuV3h50XHSMy1cPSGMUZe2/LhNRVH4+MvTrN6QTXiogWceiiM02D2ZGk0lI8vCwg9O\ncjSlhNBgPfffHs0FcSLdv7WyWGR+2prDyh8zyc23odWqGDcymGnjwwgPbds/i0LLM5lMrFq1ihUr\nViBJEvPmzWPSpEnuXpYguFWQn5GHrk3gxSW7+XLjMQx6DcP7ieavgiB0TC4HJX777TcWL15MUVFR\ntWZVotGlY6ezipFdvNjfNzao1WZGVFWw4RfKDqcQNGMChq6Rfx8oNaE58geKlz9y3EDHD64YAaqr\nPQJUVuBIth5QER9ipqEXztf9biUtU2bgBVoG9KgjIOICRVF4f0kqBw4Xc8kAP+Ze3fIfDiRZ4d3P\nUtmwLZcukUaefrA7gf6Nf06twdYdeby7OJUys8ywSwKYd31XvDxb7895R1ZaJrF2Uzar1mdhKrJj\n0KuZPC6UKVeEEhQgSmyEhvnll19Yvnw5Bw4cYNy4cbz44ovVelMJQkcXFuDJQ7P789IXSXy29jB6\nnZrBPcPdvSxBEIQW16DyjTvvvJPwcPFm6YrOod6oVdQZmFCpIMDbgJeHjn0puWxJOkugr4GE+BBm\njY5Do2781f7moCgKZ9/8GICI+f+odky7/2dUsh1b35GgcfAjpShQnFH+d+/aI0DPFGopsWoI97Hh\n7yE3aF3JaXY27bQR5Kvi6hHndwX3+5+y+GlrLt2iPLjvtugWnyFutyu88eFJfvkjn9goT556IA5f\nn/MbZ+pOpWUSHyxJY8tveRgNau69NYoRQwJFQ69WyFRkZ/VPWazZmE1pmYSnh4YZk8KZNCYEP9+2\nHRQT3OfWW28lOjqaAQMGkJeXxyeffFLt+AsvvOCmlQlC6xEZ4s0Ds8qncnz4/SEAEZgQBKHDcXnH\nExkZyVVXXdWca2lXfDz1RIZ4k5ZVXOtYZIgXd1/dh3V/prF595nK23NNlsrmmHPGuOdqksUmVWZt\nVFW0fRcluw8QMH4knj1iqxzIR528C9knELlbf8cnNReA3eJwBKjZpuJEnh6dWiE2yNqgtZaUKXyx\n3oJKBXPHGzEaGr/Z/XNPIZ8uO0OAn47H7olt8bGUVpvMq/87wZ97CrmwuxeP3xvXprMJjh4vYcF7\nJ8jMttI9xpP758UQIdL+W528fCvfrcti3ZYcLFYZX28t103vxPhRIW36509oHSpGfubn5xMQUH26\nzunTrjWCFoSOIDrclwdm9mfB13v4YNVB7HaFy/pGuHtZgiAILabeoERaWhoAF110EcuWLWPQoEFo\ntX8/rEsX0ZinLo/fMIDnF+/mTHZ5KYdaVR4Rf/yGASiKin3JOQ4fl3Q0h+kjYlu0lEOSZZZtSibp\naDZ5JguBvgYu7RfJ5CFd0ajVf2dJ3H1jtcdp929BJUvY+40GtYP1VowAVTkeAXosR4+sqIgPttCQ\np6soCt9sMlNYonDlED1R4Y1/rU6mlbLgvRPodCoeu6dbi6epl5klXnzrOPsOFdGvlw//vKtbiwdF\nmookK6xcm8mXK88iyzB9Yhizp3RCqxXZEa1JZraFb9dmsvGXXOx2haAAHXOnd2Lc8GAMhtaVpSW0\nXWq1mvvvvx+LxUJgYCDvvfceUVFRLFmyhPfff5+rr77a3UsUhFYjNtKPh2YnsGDZHj7+4RB2WWZk\n/8j6HygIgtAO1BuU+Mc//oFKparsI/Hee+9VHlOpVGzcuLH5VtcGVc80UDF/Wm80ahVnskvw8dTR\nKcQbRYHjZwrJM1kcniPXZCbPZCYiyKvF1r1sU3K1Eaa5Jgurth2ntMzKVcE2TNv+wHfYILwTelfe\nR2XKQX08CdkvFDmqj+MTOxkBmlOiIbdUi59RIszHtaagFXb8ZWd/ikRspJrRAxufXl5QaOO/bx7H\nbJF5+M4Y4mJa7jUHKCm189zrKRxOLmFQgh8P3RGDTle+Kaz6s9Sae41UyMmz8saHJzlwuJhAfx33\n3hZN3wt93L0soYq0s2Ws+CGTrTvykGUIC9Fz9YRwRg0NrPy5E4SmsnDhQj799FNiY2PZuHEjTz31\nFLIs4+fnxzfffOPu5QlCqxMT4cvD1ybw6ld7WPzjEex2mTEXiYt/giC0f/UGJTZt2lTvSVauXMnU\nqVObZEHu1tiNYNVMg1yTBaNeDaiwWCUMeg2gYLbKGPVqFAUsNhm1qrzdgiMbdp3m+nE9muQ51cdi\nk0g6mu3wWNLRHAYuXQFAp7tvqnZMs3cTKkXB3n80OOqBYbdCaa7DEaB2uTxLQoVCfIilZpsJpzLz\nZL7basHDANeOMza694PVJvPi28fJzrUyZ1oEQy8KqP9BTajQZOPZBckcTy1j+OAA7r45Gq1W5TBr\npbX2GqmwY1cB73x6iuISiUsS/Ljzpih8vdtuP4z25vipUhJXZ7BjdwGKAl0ijcyYGM6lFweg0Ygs\nFqF5qNVqYmPLy/0uv/xyXnjhBR599FHGjh3r5pUJQuvVNcyHR+cO4NUvk/hiwzHsksL4S7q6e1mC\nIAjNqkl2DStWrGjzQQlJkvliw9EGbwQrghjr/khlc9LZytvNVrnK3yWHtzubzrEvOZeiy6yUWezN\nfqW8sNhSZ9aGcvIUheu24DWgNz6XXlR5uyo/A/XJA8iBEchdejo+cXFm+Z/eYbVGgJ7M02Oxq4kK\nsOKld3FMCeXNIJf8aMZmhznjjAT4NG6TrigK73xyiiMpJQwfHMCMSS3bVCov38q/X03mdLqZscOD\nmHdDVzTngiuOslbc3WukLhaLzMfLTrN+Sw56vYo7bujCuBHBopllK3HoWDGJqzPYvd8EQFy0JzMm\nhXNxf78Wb+QqdDw13wciIiJEQEIQXBAZ7MWjcwfwypdJfL05GZtdYvKlMe5eliAIQrNpkqCEUtfl\n/jbk4+//atBGsGZmRFPLNZn598d/UFhsrRUgaeq0fj9vA4G+BofPY9DerUB5lkTVD5iavZtQoWDv\nP6bWNA2gfASotQh0nmConsJfbFFzulCLUSvT1d/WoLWu2W7lbI7M4F5a+sY1/sc3cXUGW3fk0yPW\ni/k3RbXoJjorx8JTrxwjM9vK5HGh3DQrsvLr15e10tK9Rpw5dqKYJ144xJl0C9GdPXhgXjRdIj3q\nf6DQrBRFYe9fRXyzOoODR8sb7faM9+aaSeH06+UjAkaC24ifPUFwXXigZ3lg4oskvt12ApskM21Y\nN/H/SBCEdqlJghJt/Q3SYpPYcSDd4bGaG8HKzIgakzOaQ0Fx+TSKigCJrCioVSqXsjkaErgw6DQk\nxIdUC8oA+BTmEfXXLjwuiMV/7LDK21W5Z9CkHUIO6YLcqXvtEyoKFFWMAA2rFrRQFDiSrQdUxIdY\n0DQg0eHwSTtb99gICVBx1fDGT3L49c98vvg2nZAgPf+8qxv6FqylP5Nu5t+vHiM338bMq8KZPSWi\n2v8fZ1kr+UVmCosthAZ4ttRyHVIUhdUbsvn8mzPY7AqTxoRw/TWRLfo6CrXJssKfewpJXJNB8olS\nABJ6+zJjUjg9473dvDqhI0pKSmLkyJGV/87NzWXkyJEoioJKpWLLli1uW5sgtAWh/h7881zGxOrt\np7DbFa4ZFdvmP3cLgiDUJIq+Kd8IZheUOTxWsREM8jNWy4xwR+bz9v0Z1UpBHGVzVGRw7D6SRV6R\nlUAfPQN6hNZbhjJrdBxQHoTJLzIT4GNkwpEkVLJMxF03oaryWO2e8uam9n51ZEmYC0CygNG/1gjQ\nsyYtRRYNod52Aj2l2o+tQ1GpzJc/lQcxrrvCiEHXuG9A8okS3vzoJEaDmsfvjcXfr/FNMhvqZFop\nT7+WTKHJzj9mRjJ1fFit+zjLWgnwMdYa1drSCgptvPXxKXbvN+Hvp+Oum7oysK+fW9fU0UmSwq9/\n5pO4JoO0M2ZUKhgy0J/pk8KJjXJvAEvo2H788Ud3L0EQ2rwgP2N5j4mvkvjxj1Rsdplrx3ZHLQIT\ngiC0IyIoQflGMMTfg6z82oGJio1gzTp/Z/0gGqOi6aW/t4H8YsdXyqsGJKqqms3x5cZjbNr1dwZH\nXpG1MsviurF1N87UqNXMGRPP9BGxFBZb8Cwt5vArm9FFRRJ01ZjK+6myTqE+eww5LAYlolvtE1WO\nAFXXGgFqsas4nqdHo1aIDbI6ezmqURSFr36yUFymcNVlejqHNq58ISfPyn/fPI7NpvCvu7sR1bnl\nSg2OppTw7MJkSkol5l3fhfGjQhzer66sFYCE+GC3lm7s3l/IWx+dosBkp38vH555tDeyvelLlwTX\n2OwyW7bnseKHTDKyLKjVMHJIIFdPCBNlNEKrEBkpxhkKQlMI8DHwyJzywMTG3aexSTI3jO8hAhOC\nILQbTRKU8PZu26nBBp2Gwb0jWLXteK1jCfHBAHXW+TcVBXhodn86h3rz7Kd/NqhPRUU2h5+3ge37\nHZehbN+fwTUj41wq5QgN8CTtnQ+RLVYi7rwBlfbcj4mioN2zAQB7/8srH1OtVMScfW4EaChoqv94\npeTqkWQV3YMtGLSuR3V+2Wvj8CmJ+K4ahiU0LrPBbJF44c0U8gtt3DQ7kov7t9zV/QOHi3j+jRSs\nVpl7b41i5NAgp/d3lLWSEB9ceXtLs9lkPl9+lu/XZ6HVqLhpdiSTxoQSFKAnO1sEJVqaxSKzfmsO\n3/2YSW6+Da1WxbiRwUwbH0Z4qHszaQRBEITm4eel55FrE3jtqz1s3XsWuyRz84QLRdNiQRDaBZeD\nEtnZ2fzwww8UFhZWa2x57733smjRomZZXEu6eXIvSsusDjeCuYXmOuv8G+Lu6X14f9VfWGxyrWOB\nPka6Rfo5vVJu0KkdPtbf24Cft4Hs/NJq0z2qMlslsvNL6Rzq4/B4VfYCE5mfJWKICCH4mkmVt6sy\njqPOPInUqTtKaFSt0ZXxnTx4aJwfaq0OlWdgtXPmlWrIKtbiY5Do5Guvdw0VzuZIfP+LFW8PFdeO\nNTTqqoAsK7z+/kmOp5YxdngQk8eG1v+gJrJrXyEvv3McWYaH7oxhyMD6x47WzFpp7ukrzqSdLWPB\neyc5mVZGZLiBB+bF0E2UBLhFSanEj5uzWbU+C1ORHYNezeRxoUy5ojxAJAiCILRvPp56Hp6TwIJl\ne9h+IAO7JHPrpJ5oG9KgSxAEoRVyOSgxb948evTo0W7TMTWaujeCzur8XeXvrScu0o9h/TrVAitx\nAwAAIABJREFUm5pf15Xyw6n5nM4qqfVYLw8dBp0Gqb4pKC5u6DM/+Rq5pJRu/74btfHclVdFqewl\nIZ3LkqhZ0jLuQgMaNWw7LjEs+O9fkJIMR7P1gEJ8iNXVZWCzKyz50YIkw6wxBny9GvdLd+mKs/ye\nVEjvC7y5/bquLdYg6red+Sx47yRqNfzrnm4M6NOw7IyKrBV3UBSFn7bm8tGXaVitCmOHB3HztZ0x\nGlrH5I+OxFRkZ/VPWazZmE1pmYSnh4ZrJoUzaWwovj6iAk8QBKEj8TLqeGh2Agu/2csfh7KwSwp3\nTOklAhOCILRpLn+i9fT05IUXXmjOtbQKjjaCzrIXaj/ecTZDQbGVZz/9k37dg7l8YCR7juXWmZrv\n6Eo5wBMf7HD4NUvNNiw2ia17zta5LqNeQ4h//XXmUmkZmR9+icbfl663zSK/rPy5qM8cRZ2ThtS1\nJ0pQZK3RlT076UmIMnIk3cqqnaUMSpAqgyypBTrMdjWd/Wz4GBxncjiyapuVzDyZy/rp6BnTuM3X\npl9zWfFDJhFhBh65sxtabcsEJDb/msvbH59Cr1fz+H2x9O5Rf4ZKa1FUbGfRZ6ns2FWAt5eG+27t\nypCL6s/wEJpWXr6VleuyWL8lB4tVxtdHy3XTOzF+VAheniI4JAiC0FF5GLQ8MLMfbybuY/fRbN5e\nsZ/503qj04rfDYIgtE0u7/T69etHSkoKsbGxzbmeVqtm9oJep3HYePKyvuUjHpOO5pBrMlc7lmuy\nsGnXGYb2DuefcxPIyi8jNMADSVawS0qt8ZhVAyRZ+aVORkWWTw/Zl5Jb5/oH9wpzqQQge+m32PML\n6fTAbWi9vaCsCBQZzd6NKKiQ+o4Gqo+uVKtg9iAfZEXhy99N5BfZK0dXllhVpObrMGhkogNdb255\n4Lid7ftthAepmXRp41LTDx4t5n+fpuLlqeHxe2Px8W6Zq8prN2Xz/pI0vL00PHl/HPHdvFrk6zaF\nA4eLeP2Dk+Tm2+gZ7839t0cTHChKA1pSZraFFWsz2fRLLna7QlCAjrnTOzFueDAGg7gSJgiCIIBR\nr+Xea/rx9or97EvJ5c3Efdw1va9bG2ILgiA0lsu7tG3btvHpp58SEBCAVqvtcHPGa2YveHvqWbnt\nuMMeFBq1mslDo3n64z8dTtLYfiCDHX9lICugorzJZX2jO709dRj0jgMhAT5GUBSnfS/GXtSl3uco\nW6ykv7sEtacHYTfPqrxdnXoIdV46UnRflIDyMZZVS1qG9/Cgc6COrUdKSc2zE+RbPrFEUeBotgEF\nFXEhFrQu7qcKi2WWbTCj1cB14w3oGpHdkJFl4aW3jyMrCo/cGUNkuLHB52iMb9dmsPibs/j5ann6\nwTiiu7SN/gt2u8KyVeksX5OBSgVzpkVw9cRwNKKBVotJO1vGijWZbP09D1mG8FADV08IY+SQQHQ6\nEYwQBEEQqjPoNNwzvQ+Lvj3A3pRc3vhmL/fM6ItRL0r7BEFoW1x+1/rf//5X6zaTydSki2kLqmYv\nOGtGWGaxU1DHaE/4e6RoRReIitGdFeetaeW2E3WOBE2IDyYkwLPOvhdBvkYCfevflOck/oAtPYvw\nedehC/Q/t9BzWRIqNVK/UZX3rShp+XXfGaYN8KHMKrNiV3Hlegw6DRkmLYVmDUGedkK8HK+9JllR\n+PInC6VmmDZCT0RQwyP+JaUS/30zBVOxnTtu6ELfnr4NPkdDKYrCl9+m883qDIICdDzzcPcWC4Sc\nr4wsCwvfP8HR46WEBuu5//ZoLohr2xN12pKUU6UsX53Bjt0FKAp0iTQyY2I4l14cgEYjgkKCIAhC\n3XRaDfOv7sN73/3FrqPZLFi2l/uu6YenUQQmBEFoO1x+x4qMjCQ5OZn8/HwArFYrzz33HGvXrm22\nxbUFjnpQSLLMuj9SUamgvt6TNSUdzWH6iFgMOk3lqE0Pg7bOkaRGvYapw7o57XvRNy6o3ikOiiSR\nvugzVHod4fPmVt6uPrkfdWE2UuwAFN/gao+ZNTqOARESPkaFxJ1F6PR6xvQuzxaxSeUjQNUqhe7B\nrpdt/LzbxrE0iZ7RGi7t2/Dxn5Kk8Nq7J0g7a2bSmBCuGBnS4HM0lKIofPLVGb7/KYvwUAPPPBRH\naHDbGM348295vPd5KmVmmeGDA7j9uq6iX0ELOXi0mMTVGSQdKA/uxkV7MmNSOBf39xMj3gRBEASX\naTVq7pjaiw9XH+L3g5m8tiyJB2b1x8vYuDHqgiAILc3loMRzzz3Hr7/+Sk5ODl27diUtLY2bb765\nOdfmVhUBgcaMY1y2KZnNSXU3nXQmv8hMnsnM5qQzlaM2/b0NDstAAKw2ieJSK54GrYOpHQY8jTr2\nHstmy+4zBPoaSIgPcVgikrd6I5YTaYRcNw19ePlGXpEkNPs2oag12PuOrPW1NbKNC0IUFLWO4YN7\nM3mssfK1OpalxyariA2yYNS5FplJy5T44TcrPp4qZo0xNmpKxifLTpN0wMSAPr7cOLtzgx/fUJKs\n8O7iVDZszaVLJyNPP9SdQP/W/yGgtEzi/SVp/PxbHkaDmntvi2LkkCB3L6vdUxSFvX8V8c3qDA4e\nLc8s6hnvzTWTwunXy6fFJsMIgiAI7YtGrea2ST3RalT8uj+DV75I4sHZ/fHxFH2hBEFo/VwOSuzf\nv5+1a9dy/fXX8/nnn3PgwAF++umn5lybW0iyzLJNyZUBAWcbeUdqTqVoqAAfIxt2nWbz7jOVt9UV\nkKi4f8V0jpp9L9b9kVotOJJrsjgsEVEUhbNvfQJqNRF3/qPydtvBP1EX5SHFDwJvB9MXijMBUHmH\nEWr8u5ljQZmajCIdXnqJSD+7S8/bYlVYss6MLMO14wx4ezZ8c/bj5mzWbMimS6SRB++IafZ+CHa7\nwhsfnuSXP/LpFuXBvx/o3iZGNB5JKWHheyfIzLHSPcaT++fFEBHaNjI72ipZVvhzTyGJqzNIPlkK\nwIA+vkyfGE7PeFEqIwiCIJw/tVrFTRMuRKtR8/Oes7z8RRIPXZuAn5cITAiC0Lq5vIPS68vf0Gw2\nG4qi0Lt3b1566aVmW5i7LNuUXK0Eoq6NPDjOpqg6laIx+sYGsi85x+X7V/RvqMqg0+DnbahzGkfV\nEhGAwo2/UnbwGEHTxmOMPpddINmx7FiHotFi7zOi9kksxWAtBp0nGP4edymfa24JCvEhVlyNC6zc\naiGnQGHkAB09ujZ8Y7/3LxMfLE3D11vL4/fE4unRvCUIVpvMq/87wZ97Crkgzosn7otr9WUPkqzw\n7Q+ZfLnyLIoC0yeGMXtKpxYbk9oRSZLCL3/ks/yHDNLOmFGpYMhAf6ZPCic2qm00QRUEQRDaDrVK\nxQ1X9ECnUbNh12leWrqbh69NIMBHXHwQBKH1cnn3FxMTw9KlS7nooou46aabiImJoaioyOljXn75\nZXbt2oXdbmfevHn06dOHRx55BEmSCAkJ4ZVXXkGv17Nq1So+++wz1Go1M2fO5JprrjnvJ9YYzrIc\nqm7ka2ZT+Hsb6B8fzJwx3atNpXDF39M3DAzoEcKohEi2OCn98PfWU1hsxc9bT0L34MqSjZqcBUfy\ni8yVIzsVReHsmx8DEHHXjZX3USfvQinKR7pwKHjWaBSpKJVZEniHw7mUc4tNIiVbTalNTSdfG35G\n2aXXYM9RG38ctNM5RM2VQxoezT+dbublRSdQq1X88+5uhIU07y9es0XixbeOs/dgEf16+vDPu7th\nNLTugEROnpU3PjzJgcPFBAXouO+2aHpf4FP/A4VGsdlkNv8/e/cdHlWd9n/8feZMSzLpHUJIp/ei\ngEgvCigqCqKuqKuuunZ9trvo/vbZde31sSzKyqqgoCIoTRAEQUAI0kkhCSGkZ1Imk2nnnN8fISGB\nSVNCAvm+rmuva53MOfNNJmTm3HN/78/2Mj5fU0hBkROdDsaPDuH6qyPp0c2no5cnCIIgXMIkSeLm\nycno9TrW7jzBPz/cw5M3DyEsULz+CILQObW6KPH0009TUVFBQEAAX331FaWlpdx7771N3v+HH34g\nPT2dZcuWYbVaue666xg1ahTz58/nqquu4sUXX2T58uXMnj2bN954g+XLl2MwGJgzZw5TpkwhKCjo\nvHyDbdHShXxxeQ1GvY51u3PP2V7x7d48Mk5W8NSC4U0OnDxbdIgvv791KDVOT323hdOtNFnUCPE3\nMSAxlP0ZpZTbnOzPLEWWM7xuLWmuONJwy0fVzlRsP+4naOqV+PY5XeDwuNAf2AwGI0q/secuvMYK\nihPMQWAw1xdpjubauHLMaDweJ3sOHCNxfHyLW17KKlU+3eTEqIdbppvRtzFtoNLm4e+vZGKvUXj4\n7p70SW7fVvhqu8L/ezmDoxnVjBgcyBP3xWPs5HGNO/ZYeXPxCWzVCpcNCeT+O3oSYOn820wuRk6n\nyvrvSli5tpBSqxu9XmLa+DCuuyqy3YtlgiAIglBHkiRuHJ+IQdaxant2fcfE2cPZBUEQOoMWr0wO\nHz5M3759+eGHH+pvCwsLIywsjKysLKKiorweN2LECAYOHAhAQEAANTU17Ny5k6effhqACRMm8N57\n7xEfH8+AAQPw96/91Hbo0KHs3buXiRMn/uJvrq2au5A3GmReWpaK1eZucktCbpGNjzakMX9K7TaP\n1LQSyqocoJ2J/mzI6VYwGuRGQ4iaS9EwGWS27Gt5RkRL52m45SP/1fcB6PbgHfVfl9N2I9XYMI6c\ngtPnrIt8VYHqYpB0YIkAzmx5mXjFSPSyzPbd+8jOPYWmKl7jTetPpWp8tN6BwwU3TTIREdy2i3u3\nR+VfbxynoMjJDTMi231QY3mFm6eeS+N4Tg1jLwvmobviOvXWB4dT4f2leazfUoLRKHHfr2KZMi5U\nDFNsB9V2hTWf5LD085NU2jyYjDqumRrBtdMiCAkWe3kFQRCEC0+SJK67MgG9Xsfn3x3n2Y9SeWLe\nYKJD/Vo+WBAE4QJqsSjxxRdf0LdvX958881zviZJEqNGjfJ6nCzL+PrWVmOXL1/OlVdeybZt2+pn\nU4SGhlJcXExJSQkhISH1x4WEhFBc/PMHRf4SzV3IO1wKDpcC1M5NaEpqegk3TUyuHzh5PK+C55bu\n83rfcpuzfhtFQw1TNMoqHZiMMpqmkV9m9/6YZ82I8Hae2jQOM0NSzmz5qN5/hIrNO/AfMxzLsAG1\nB7mdyAe/QzOYMQ2fQFWV0vjBqotBU8AvAnT6+i0vPWOiiYmO5FRhMdm5p5pdV52NP7rJOqUyMElm\nZN+2fXKvaRrvLMnl0DEbo4YFMf+6bm06vq3KrC7+9vJRsnNrmHxlKL/5VWy7D9L8JbJO2Hnh7Szy\n8p3Exfjw2L1x9Ogu2jbPt8oqD6s2FPH1xmLsNQq+PjI3zoxi5pSIi2LoqSAIgnDpmzU6DoOs45Nv\nM3j2o1SenDeY7uFiyLIgCJ1Hi++a//jHPwKwZMmSn/UA33zzDcuXL+e9995j6tSp9bdrmvcr+6Zu\nbyg42Be9/vzv4Q8P9+e3Nw3B18fIDwfzKSmvITTQh7LKGpTWjUegwuZCNhoID6utQoeFWYhYd4wi\na8059w0NNOPn74N/oA9mY+On4uGbh+Fwefi/FfvZ9GNus49prXI0ekxv57FWOgkOMDV6nBPv/BeA\nvn95gLDw2k4V584dOJ12TKOvQjL7Em4+cy6PswZrkRWd0URIbE8knY78kmqqahQmXNkfRVHYuWd/\nq9aVfsLF+l02QgJ13HdTGH4+beuS+PjzXL7ZWkpKooVnft8fH3P7zXQoKHLw1POHyct3cNM13Xnw\n14mdtttAVTWWr8rj/xYfx+3RuOma7tx7ewImY/tsMQkP75pzKUpKnXz8eS4r1+bjcKoEBRq47cZY\nrru6GxY/UYxoqKv+jjRF/DxaLy0tjfvvv58FCxZw6623kpmZyVNPPYUkScTFxbFw4UL0en2nmUsl\nCJ3Z9MtiMeh1fLghrb5jIjZS/D0SBKFzaPHd82233dbsBdgHH3zQ5Ne2bt3KW2+9xb///W/8/f3x\n9fXF4XBgNpspLCwkIiKCiIgISkrOpE0UFRUxePDgZtdktXrvGPglwsP9KS6uHdw5e0wcU4d356MN\n6Rw8XtLqggRASIAZxeWuPxfAwMRQr90XxeUOHnz+W0L8jQztFcHssfHY7O5G8yV+Sitq8TGD/c99\nzLPpgaqKGuruUXEkk4LP1+MzqC/qgP61xzprMO7aBCZfKnsMJRwan7P8BKCh+oRTUloNgOJWuGxI\nX3x9zKQePEpV9Znnpql11Tg13lhmR1Nh3mQTdls1dluL32a93fvKefP944QEGfif++OwVdmxNT9z\n9WfLK3Dw1+fSKbW6WTA3lmumhlJS0obFXkDlFW5eXZRD6sFKAgP0PHhnT4YNDKSyorpdHq/hv5mu\noqDIyedrC9m0rRSPRyM02MAt13djypVhxMQEUlxcRc35//N00eqKvyPNuVR+HheisGK32/nb3/7W\nqBvz+eef55577mHcuHG88cYbrFmzhkmTJnWauVSC0NlNGhaDLEssWXuM5z5O5bG5g4mPDmj5QEEQ\nhHbWYlHi/vvvB2o7HiRJ4vLLL0dVVbZv346PT9Pt4FVVVfzrX/9i8eLF9W8ORo8ezbp167j22mtZ\nv349Y8eOZdCgQfz5z3+msrISWZbZu3dvfXdGR/piaxbbDxa0+ThvEZ1zJyZx7EQ5uUXeL2bLqlx8\n8+NJtu3Px+mqHXQ5JKU2iaM18aLeHrMpdUMp5edfJl7T+CZlFAc2pjN3YhLGI98juR14hk4Do7nx\ngQ0jQI1n3pA6FQNxsbFUVNo4dCyzxXVpmsaKb52UVWpMHmEgsXvbOhyyc+28+HY2BoPEHx9KJLQd\n9+tn59pZ+EIGFZUefnVjN359a3ynvaDYe6CCVxflUFHpYUj/AB66qydBgYaOXtYlIzevhhVfF7J1\nZxmqClERJq6/OpLxo0Mw6Dv3oFNBuBgZjUbeffdd3n333frbcnJy6mdVjR07lo8++oiwsLBOM5dK\nEC4G4wd3xyDreO/rIzy/NJVHbxpMUvfAjl6WIAhdXItFibpPKRYtWsS///3v+tunTp3Kfffd1+Rx\nX3/9NVarlUceeaT+tn/+85/8+c9/ZtmyZXTr1o3Zs2djMBh4/PHHueuuu5AkiQceeKD+zUVHaS4a\ntCFJAn8fA1V2NyEBjec1NORRNOwOd4vnq5tZUTfAUlFUgiwmrLamCxOj+0c1GQvqzbJNGfyw6QA3\nH/yRspBIDkQlc+DHk5gUBzeX7UAzW1B6jWx8kKaB7XSBxv9MBKiqQVqxEUmScFfnE2wxep1d0dCe\nox5S0zz0jNIxdWTbCgrlFW7+99XjOJwqT94fT2Jc+02QTjtezd9eysBWrXDPrT24amJ4uz3WL+F2\nqyxZfopVG4rQ6yXunBfDjMnh6DrxvIuLSWaOneWrC9i5txxNgx7dzcyZEcWYEcHIbUyKEQSh9fR6\nPXp947coKSkpbNmyhdmzZ7N161ZKSko61VwqQbhYjBkQjV7W8e6qw7ywdB+P3DiQXrHBHb0sQRC6\nsFZvfi4oKCArK4v4+HgATpw4QW5u07MO5s6dy9y5c8+5/f333z/ntunTpzN9+vTWLqVdOd0Kx/Mq\nvCZwnE3TQC9LjO4fxc1TUpB1EqUVjvrtF3Waixptzv7MMgYmhTZK3GgoNMDEbdN6tRi7Waeu2DJo\n7xZkVSV12PjaFA0g8uSPSEYX7iFTQH9WsaDGCooLzMGgP9NBcapCj80lE2lxM/6Kbsy6LJIKm/Oc\n779OSbnKZ5udmAxwyzRzmy7qXG6Vf7x+nOJSF/Ovi2b08PZ78Tx4rIq/v5yJy6Xy0F09mTCmfVM9\nfq7cUzW8+HY22bk1dI828dg98ST0FFFf58PhNBvLVxeQerASgKR4X+bMjGLEoEBR8BGEDvK73/2O\nhQsX8tlnnzFy5EivM6g6ci4ViJkhnYF4Dlpn5jh/QkN8+deSH3np0/385c6RDE6JOC/nFs9BxxPP\nQccTz0HbtLoo8cgjj7BgwQKcTic6nQ6dTtcptlmcL4qi8tE3aaSmFVNW6UQnNZ+yUaesysX3BwvI\nKayixumhrNJZv/1i7sQkZJ2u2ajR5lirHEwd0YPjpyq9bv0YkhLe6m0bUFscqSkooc+hXVQGBJOZ\nUju7I0jnZKwhB485ADV5eOODGkWAnukWcHokssqM6HUaiWEuoDa9pKn8a0XR+HCdA6cb5k81ERrY\n+pZ3TdN4/b0c0jKrGTcqhDkzvcfQng97D1Tw7OvHUVV44r54RrVj8ePn0jSNDVtKWbQ0F5dLY+q4\nMO6Y1x2zqf2GfXYFmqax71AVy1cXcDit9t9bv14W5syMYlBf/0473FQQuoro6GjefvttoHZmVVFR\nUaeZSwWXzsyQi5l4DtomKcqfB64bwBufH+Tpf+/kt9f3Z2Bi2C86p3gOOp54DjqeeA68a65Q0+qi\nxOTJk5k8eTLl5eVomkZwcOe7WPsl3lt1qNEwylZ82NLIyeIzwwQbbr+4bVrvZqNGmxPsbyYkwMxT\nC4azZN1RUtNLqbK7CW1mq0hzAi0mRhzegV7xsG/oeFS59iL2Gv8cjJJKzYBx6OSzfiXqIkAtkaA7\n87X0EiOKJtErzImxFdfC63e5OFGoMrSXnmG92zbr4NNVBWzdaaV3kh/3L4htt4vDHT9aefHtbHQ6\n+P2DCQwb2Pn2WFbaPLy5OIedeyuw+Mk88uvYTlk4uZioqsau1ApWfFVARnbtxcrQAQHMmRlFn2QR\nmSYIncWrr77KwIEDGT9+PJ999hnXXnttp51LJQgXi0FJYTw0ZwCvrzjAaysOcN/s/gxN6ZxbVgVB\nuHS1uiiRl5fHs88+i9VqZcmSJXz66aeMGDGCuLi4dlzeheF0K/xwMP+8n3fLvlMgScyfnMzciUlo\nmsb3BwrqZ0fUMel1OD3nRnwMSQlDUVWWrEvnaE4ZNrubYIuJgUmh9V0YbSHb7aSkfo/d18KxvrUd\nEWGyg0l+p6iULZhShjW6v8dZAzVlIBvB58ye3dJqmZJqPQFmhSh/T4uPm3lSYeNuNyEBEtePN7Vp\nzd/vsvLxF/lEhBn53W8TMBraZ6jg5u2lvLYoB6NRx58eTqR/787XcnXwaBUvv5tNqdVNv14WHrk7\njrCQ9hv0ealTFI1tu6ys+LqA3DwHkgSjhgcxZ0aU2AYjCB3s4MGDPPvss+Tl5aHX61m3bh1PPPEE\nf/vb33jttdcYPnw448ePB+h0c6kE4WLTPz6UR24cxCvL9/Pm5we555q+jOwT2dHLEgShC2l1UeIv\nf/kLt9xyS/1MiLi4OP7yl7+wZMmSdlvchVJhc1JcXnPez6tq8O3ePGSdxPzJKdw4IZEjOVbyS+xo\ngE4Cs1GPUQ9Oj1q/ZSQ0wMSg5DA0TeOJN7Y3KmJYbU6+3ZsHwG1Te7VpPUX/+RS5pgb73JsJCvHH\nWuVgbkgueknDNHIq6Bq3PFQX5NT+H0tk/XBLRYW0EiMSGr3CnbTUtGB3aHy4vvaC75ZpZnxMre9y\nSDtezauLsvEx6/jjQ4kEBbRPmsTab4t5e0kufr4yTz2aREqiX7s8zs/l8WgsXXmKz74uRJJg/nXR\nXD8jClnMNvhZ3G6Vb78v47M1BRQWu9DpYPzoEK6/OpIe3ZpOFBIE4cLp37+/1/cXy5cvP+e2zjSX\nShAuVr17BvP43MG89Ok+3v7yEB5FZXT/6I5eliAIXUSrixJut5tJkyaxePFiAEaMGNFea7rgAi0m\nwoN8KLKe/8IEQGpaCbPHJvD7t7ZjqznTWaBqYHd6sDvP/DdAUkwQmgabThcfvNmSmgeaxvwpKa3q\nmFDsDgre+Qg50J9pz9zLJLMP1QX5RG3ZjOofBgmDGh/grMJlqwCDHxjPtLBnWw04PTpig1z4Gb3v\ncXG6FSpsTgL8jHyy0U2FTWP65Ubiols/86CkzMU/X8vE49H4nwcS6BnTPheLn68p5INP8wgM0LPw\n8STienSuT8gLipy89E4WacftRIYZefTeeHp1sqLJxcLhVNiwpZSV6woptbrR6yWmjQ/juqsiiQxv\nWwePIAiCIFxqkmICeWLeEF5Yuo9Fq4/gUTSuHNSto5clCEIX0OqiBEBlZWX9fv709HSczrYnSnRG\nJoPM5f2j+XLr8XY5v7XKwX/WHGlUkGjOzsOFtPQhuKrBt6mnkGUd8yentHjO4o++wFNWTrdHfo3s\nb0EG/HJ2IGkansGToGFhQ9PAVlj7//3PdEnYnBInyw2Y9So9g8+NOFVUlWWbMuqHhQb5RYEWS88o\niUnDW9/lUONQ+N9XM7FWeLhzXky7zHbQNI2lK/P55MsCQoMNPP1EMt2jzS0feAFt3lHKO0tyqXGo\nXHl5MPfeFouvjxhm2VbVdoU1m4pZtb6ISpsHs0nHtdMiuGZqBCHBYvuLIAiCINSJjw7gf+YP4fml\n+1i85ihuj8qkYTEdvSxBEC5xrS5KPPDAA9x0000UFxcza9YsrFYrzz33XHuu7YK6c1Y/7DUuUtNK\nsFY5CPY3Myg5FAnYl15af9uAxBB2HMzH6W79JMwgi4kjOdY2rac1yR9Q24Vxw7jEZlM4VJebgreW\noPMxE3nXPACk8kJ0WQdQg6NQY/s2PqCmDBQX5uAIHKcjQDUN0kpMaEgkhzmRvTRnLNuUUT/MUyeZ\n0dTuaHg4dvIwSzeFtWoOhqpqvPJuNlknapg6LoyZU87/sCVN03h/WR6r1hcRGW7kmSeTiQjrPJ+U\n22sU3l5ygu9+sOJj1vHw3T0ZP6pzxpJ2ZpVVHlZtKOLrjcXYaxT8fGVunBXFzCkRBFjaVI8VBEEQ\nhC4jNtK/vjDx4YY0PIrKtJGxHb0sQRAuYa1+Zx4fH891112H2+3m6NGjjBs3jj179jBq1Kj2XN8F\n41ZUJg+LYdboOGqcHgItpvoL/Tnja7cj1N2ml3VtStIwGmTKqtqnq8Ra5aDC5mwyihN+dfrMAAAg\nAElEQVSg8NOvcJ0qJOyueRhCgwCQf9qEhIZn0KTauM86qqc+AtQvIgaH1QFAfpWeSodMuJ+HUD/l\nnMdwuhVS04pP/5eEnykRSZKpdqbjVhz1P6+Wujr+u+IUO1MrGNDHn7tv6XHekzYUVePtD06w4btS\nenQzs/DxpE71afmxzGpeejuLwhIXKQm+PHJPPNERnadgcjEotbpYubaI9VtKcLpUAvz13HpDN66a\nGC46TQRBEAShFWLCLfxu/hCe+ziVZZsy8CgqM0bFdfSyBEG4RLW6KHH33XfTr18/IiMjSUqqjaL0\neFq3HaEzq9tysD+zlGJrDSEBJoakhDeK2zQZ5EYX/XMnJqEoKlv2nfLa0aCTajsLQgJMGPUy+WXt\nk4kOtbGhgRbvF62KqrLsmzQi//EOvjqZxX596P1NGvMG+yKfOIwaGoMac9awzOpi0FSwRKLTGwAH\nLg8cLzUiSxpJYS6vj1Vhc1JWWVt48THEoNf54fQU4VbOdIi01NWxaVspn68pJDrSxJP3xaPXn9+C\nhMej8dp72Xz3g5WEWB/++ngyAf6d4xNzRdX47KsClq7MR9Ngzswo5l4Tfd5/BpeygiInn68pZNP3\npXg8GqHBBm69oRtTrgzDZGqf1BZBEARBuFRFh/rx+1uG8tzHqazYchy3R+XaK+LbLZpdEISuq9VX\nZEFBQfzjH/9oz7V0iIZbDgBKK50tfqov63TcNq03SFJ9EkZDVw7uhsutciS7lPyy9p27MSQlrMmL\n/GWbMji+bC1JZUUc6TeSk/hw8seTTC5LowfUzpJo+MLicUCN9ZwI0MxSIx5VIinMiUnvfV9JoMVE\nSICJCpsJsyEaRa3B7jrR6D7NdXUcTrPxf/85gcVP5k8PJ+J/ntvrXW6VF97KYldqBb2T/PjzI4n4\n+XaOgkRJmYuX3snmcJqN0GADj9wd1ykjSTur3LwaVnxdyNadZagqREeYuP7qSMaNDsGgF8UIQRAE\nQfi5IoJ9+d3pwsSX32fjVlTmjEsUhQlBEM6rVl+VTZkyhS+//JIhQ4Ygy2cugrt1u3in8jbectBY\na2Y1zJ+cjKyTGsyhMNE7NhgN2H6woJ1WXSvYYmJY78YdHQ053Qqpx4qYsHsTqiSxb9g4AJKMFfRw\n5uEJ74kWnXjmgIbDLRtEgFrtOgptBiwmhe4BTXfGmAwy/RMi2XcsBE1TqXZmAmrjNTfR1VFQ5OSf\nr2eiofHk/Ql0jzq/AycdToV/vn6cnw5VMbCPP394KAGzqXO08e/YY+XNxSewVStcNjSQBxb0PO8F\nmUtVZrad5V8V8MOecgBiu5uZMyOK0SOCkWXxZkkQBEEQzoewQB9+f8sw/vVxKmt+OIHbo3LzpGRR\nmBAE4bxp9dXPsWPHWLVqFUFBQfW3SZLE5s2b22NdF0TDLQdna82sBllXm3wxe2w8H21I52hOGd8f\nLGgxOaM5ZqOMy60QZDFic7hxeRmoGWQxsvDOEfj7Nj0LocLmxO/AAcJKTpGeMoiKoNqBkTf6ZwFQ\nmjSWoIYvJi4buKobRYAqqkZaiQnQ6BXuornXHk3TcDm7oZNU3MpJFO3cLSveujqq7Qp/fyWTKpvC\nfb+KZWCf89shUHv+DI6kVzNicCBP3BeP0dDxn547nArvfXySDd+VYjRK3PerWKaMCxUv8K1wOM3G\n8tUFpB6sBCAp3pc5M6MYMSgQ3S/5xycIgiAIglfB/iZ+f3r45Tc/nsSjaNw6NQWdeN8iCMJ50Oqi\nxE8//cTu3bsxGjvPUMBfqm7LQamXwkRzsxrO9sXWrEadEa1NzoAzRYhgfzNDUsKYNSaOTzZmcPSE\n1WtBAmB474hmCxJQ+72NSN0MwL5hEwDoa7TS32zliCeM7j0bdFg0EQF67BTUuHV0D3Tjb2rc9XC2\n7/e7OZqjktxD5tarEln2jcrRE1asVc767+3srg5F0XjhrSxO5juYNTWCqePDmn2Mtqqs8vDMixlk\n5ti5YmQwD/86rlPMaMg6YeeFt7PIy3cS18OHx+6No0c3n45eVqemaRr7DlWxfHUBh9NsAPTvbWHO\njCgG9vUXxRxBEARBaGeBFhNPzh/CC0v3sTk1D49HZcFVvcUHAoIg/GKtLkr0798fp9N5SRUlTAaZ\nISnhXpM0vH2q73Q3TuGou62pLSCt4WfW88dbhxIe7IvJIPPRN2l838zWD7NRRtM0FFVF1um8rgnA\ntXc/4bmZ5MT1pjS8G6AxJ6C2SyIjcgQJDb+30xGg+ATD6QhQu0viSJ6GUVaJD/E+3LJOfonCqm0u\n/Mwwf6oJi1nHXTP7Nrm2Ou8tPUnqwUqGDQzg9pu6t+Gn1rKycjcLX0gnN8/B5LGh/Ob2WOQOftFU\nVY3V3xSxZPkpPB6NWVMiuG1ONwydoHOjs1JVjV2pFSxfXUBmTm33zbCBAcyZGUXvJEsHr04QBEEQ\nupYAXyNP3jyEF5ftY9uBfDyKyl0z+7QY+S4IgtCcVhclCgsLmThxIomJiY1mSnz44YftsrALpe7T\n+/2ZpZSU13j9VL8uoSM1rZiySmejhI7mtoC0hrXKidEgYzLIrSpwOFwKG/fkoQE6SfK6Jlmn49Rr\n7wMg3zaPUM1MjCuPXqYKckwxTJp++ZkTNogAxa92i4emQVqJCVWDpDAXzc0KdHs0/rvWiUeBX11l\nJsDvzJ3PTi1paM2mYr7eWExsdzOP3Rt/XgsGRSVO/vp8BgVFTmZODueOeTEdXsW3Vrh5bVEOqQcr\nCQzQ8+CdPRk2MLBD19SZKYrG1l1lfPZVIbmnHEgSjBoexJwZUST0bHpLlSAIgiAI7cviY+CJeUN4\n6dN9/HC4ELeicu81/dDLojAhCMLP0+qixG9+85v2XEeHqZsLsWCWkR8PnsLio6d7uH+jim9zCR03\njEtscgtIawRZTPXbRNpS4Nh+oACHS/G6pmsjVSo2bcd/1FCuv28mM1wezGvfhgqInnItWsNqdoMI\nUHS1vw5FNpnyGpmoIAj3U2jOqm0uCspUxgw00C+hdb9O+w5V8u+Pcgnw1/OnhxPx9Tl/QyfzChws\nfD6dkjI3N86M4ubropts7W+pk+N82bO/gtfey6Gi0sOQ/gE8dFdPggIN7fZ4FzO3W+Xb78v4bE0B\nhcUudDqYMCaE666KFFtcBEEQBKGT8DXreeymwby6fD97jhXz5ucHuW92/45eliAIF6lWFyVGjhzZ\nnuvoMIqqsnRjOtsPFlLjrE2XMBt1jB4Qzc2TkvEoWosJHU1tAWmN3j2D6y+Im5txcbaGBYmz1zTs\nky8BiH7wDgB8CtIwVBSg9OyPFhx15s5eIkDdCmSUmtBJGkPjdNirml7D4SwP3+93ExWiY9YVrdvW\nczLfwXNvZqHTSfzhwQQiwlo3t6M1ck7WsPD5dMorPdw2pxvXXx3l9X7Ndb6cz/ZDl1tlyad5rP6m\nGL1e4s55McyYHN7hXRudkcOpsGFLKSvXFVJqdWPQS0yfEMZ1V0We198RQRAEQRDODx+TnkduGsTr\nK/azL6OE11bsZ+G9ozt6WYIgXIS6fPbgsk0ZbNyT1+g2h0tl0548dJLE5GExLSZ0zJ2YRI3D0+ws\nCG9MBh3zpyQ3+O+mZ1y0lnoil4qvNuI7oDeB4y4HTUX+aSOaJKEMmnjmjpoGVedGgB4vM+JWJBJC\nXPiZzU0WJSqrVZZucKCX4dbpJgytGCBZafPw91cysdcoPHJ33HmdCZCeVc0zL2Zgq1a459YeXDUx\nvMn7Ntf5Mn9yynlZT+6pGl58O5vs3Bq6R5t4/N544mPFtoOzVdsV1mwqZtX6IiptHswmHddOi+Ca\naZGEBIluEkEQBEHozEwGmYfmDOSNzw+yP7OUJ175jjuv7k1MuJj7JAhC63XpokRLMxz2Hitm1ui4\nFhM6ZJ2OW6f14khOGWVVzQ+FbOjyflH4mhpfeNXNstj60ymc7qYTL4wGHS4vXx/501bQNLo9dAeS\nJKHLOoCuvAglYQhaYIMLdZcN3NVgPBMBWuHQkV9pwNegEhPkBsxeH1vVND5e76TaAbPHGYkOa3nr\ng9uj8uzrxykocjJnZhTjRoW0eExrHTpWxd9fycTpVHnwrp5MHBPa5H2be87rOl9+yVYOTdNYv6WE\n95aexOXSmDoujDvnxWAyiX2WDVVUulm1oYg1m4qx16j4+crcOCuKmVMiCLB06T9LgiAIgnBRMehl\nfnv9AD7ckMaWfad4ZvGP3Dg+kUnDY0RkqCAIrdKl3/23NMPBWuWkxulpVUKHySAztFdEm7ocpo7o\ncc5tsk7HrNFx7D5S2GRRwmTQMap/JJtT8xvdbqmyEndwN+akOIKvmgCqgrx/E5qkwzNw/Jk7NowA\ntUSBJKFqkFZc2ybfK9yJ26OQX1KN4lbOuUj/LtVNWq5CnziZKwa2/Gm2pmm8/UEuh9NsjBoexM2z\no1s8prVSD1byz9czURV4/L54Rg8Pbvb+zT3ndZ0vTQ3nbEmlzcObi3PYubcCi5/MI3fHMmpY8+vp\nakqtLlauLWL9lhKcLpXAAD23zYhi+oTw8zpbRBC6MrdbJedkDVERJix+XfplXhCEC0Qv67h9em/G\nDonh5aWpfLwxnf3HS7nz6j4E+4ttmIIgNK9Lv1tpaYZDsH/tEMq67oXUtBKsVQ6vCR0Ac8YncOxE\nOSeLbGgtPHZogImQgMadCHWzDnYfKaSi2t3kscN6RXDLlF7oZbnRmqYc3YukKET/dgGSTocucy+6\nylKU5BHg36AzoVEEaO0LxckKPdUuHVEWF199f7R23kKVkxD/xvMWThYpfL3dhb+vxNzJpiaHSDa0\ncl0RG7eVktjTl4fvijtvMxV27LHy4lvZ6HTw+wcTWpVm0dxzXtf58nMcOFLFK//OptTqpn9vCw//\nOo6wkEsnPveXyi9y8sWaQjZ9X4rHoxEabOC2Od2YPDZMdJEIwi9U41A4llnN4WM2DqfbSD9ejcut\nMXFMCA/eFdfRyxMEoQu5rH80f7vLwPtrjrI/s5SnFu1kwVW9GdYroqOXJghCJ9alixItzXAY2iu8\nvktg/uQUbhiX2Gxaw/LNx8ktsrXqsQcmhp5zjo83prPprPkWZzMbZeZPSa5PDalbk5/TzpHnn0Tf\nPYrQ66aD4kH/07doOj2eAePOnMBLBKjDLZFdZsSg00g9dLSZpJFk/rvWgaLCvCkm/H1bvpjclVrO\nB5/mERJk4A8PJZy3C9DNO0p5bVEORoOOPz2cSP/e/q06rrnnvGHnS2t5PBpLV57is68LkSS45fpu\nXHd15HmNOL2YncirYcVXBWzbaUXVIDrCxPVXRzJudAiG5rJmBUFoUqXNw5F0W30R4niOHfV0Y50k\nQVwPH/omW5jezGwdQRCE9hJoMfHwnIFsTs1j2aYM3vj8IFcMiObmycn4mLr0pYcgCE3o8n8Z5k5M\nQtO0s9I3ZEYPiDqnE8JkkIkI9sXpViiy2hsVJ1qaT1FHAjRgf2YpH32TVt+B4HQrbD+Q39LhXDEw\nutEciro1nXx2MarDSfR9t6Ez6NGl7UKqLsfTexT4NeggOCsCVNMgvcSIqkkkhNTwxRrvwzpT00qQ\ntB4Ul2uMG2Kgd8+Wf3WyTth56Z1sDAaJPz6USGjw+ekcWLe5mLeX5OLrI/PUo0mkJPq16fjWdr60\nJL/IyUtvZ5GeZScy3Mhj98S3eS2XqsxsO5+uzmfn3goAYrubmTMjitEjgpFlUbARhLYoKXNxOM1W\n+790G7l5jvqv6WWJlAQ/+qZY6JtioXeSH36+Xf6lXRCEDiZJEhOGxtC7ZzDvfHmYbQfyOZZr5e6Z\n/UiKabmzVRCErqXLv3ORdTpumdKL38wZzJGMYtA0woN9vX5ibne6+WhDOkdzyrBWuRpFSVbYnK2K\n8qzb1nF24kOx1Y7D1fRgyyCLkeG9I7xeOHsqbRS+/wn6sBDCb74WPG70+zejyQaU/mMb3PHcCNCS\naplSu54gs4JBtTU5b6Gq2ocfjyh0C9Nx9aiWiwvWCjf/+2omDqfK/zwQT2Lc+Ume+GJtIf/5JI8A\nfz0LH0/6WYkWZ3eZNNX50pzN20t5e0kuDqfKuFEh3HNrDzETATicZmP56gJSD1YCkBzvy5yZUQwf\nFCiiUAWhFTRN41Sh80wRIs1GUcmZAcpmk45Bff3rixDJCX6YjKLrSBCEzik61I8//WoYK7dl8fWO\nHP7x4R5mjopj1pg49LL42yUIQq0uX5SoYzbqm4wvqpv1sG1/Pg6XUn97460NiQRZjJTbWp++AWcS\nH2hhNsNvbxhAQnRtZdnpVhpdTBf9ZzlKpY2YP/wWnY8Z+ch2pJoqPP3Ggs/pbQ2NIkBrh1t6VMgo\nMSKhkRLuRJa8z1uQJCN+pngMerh1uhl9C/GfTpfKP17NpKTMza03dDsvwx41TWPZynyWfVlAaLCB\nhU8kExPtPR2kteq6TNqi2q7wzn9P8N0PVnzMOh6+uyfjRzWd9tEVaJpG6sFKlq8u4Eh6NQD9e1uY\nMyOKgX39WzV3RBC6KkXVyMmtadQJUVHpqf+6xU9m5JBA+iZb6JNiISHWt8W/wYIgCJ2JXtZxw7hE\nBiSE8u6qw6zans3BrDLumdWXyBARly4IgihKtMqyTRnNpmrUFRaGJIfxbeqpNp277HTiQ3iQD2aj\n3KjoUcdslOkeZqkvjqSmFVNW6SQkwMTQuEB6vfsRcoCFiNvngNuJfPA7NIMJpd8VZ05SHwFqAVNt\n8SW7zIhT0dEz2IWvUQO8z1vwMyYAemZfaSIypPmqtqZpvP5eDulZdsaPDuH6qyPb9PNo6pyLl+Xx\n5foiIsONPP1EMpHhF36S88Gjlfz12SMUlrhISfDl0XviiYrouhOlVVVjxx4rK1YXkpljB2DYwADm\nzIyid5LIJxcEb9xulYxse30R4miGDXvNmS650GADYy8Lru+EiIk2iy4jQRAuCSk9gnj6zpF8uCGN\nHYcK+Ov7u7h5UjJXDuomPsAQhC5OFCVa0JpZEWWVtYWF+VNSyMirbPWwS6idMbFu1wnmT0lhzIAo\nNnoZdDlmQBQmg8xH36SdM4Ty1JIvSCwpI/qhO9AHWJAPfofkqMYzcAKYTlefNbVBBGhtkaDKqeNk\nhR4fg0ps0Jmkj7oZG98fKMDhUjDrozHIAQRY7Azv49Pi9/PJlwVs22Wld5If998e+4tfZBRV450l\nuazfUkJMtJmFTySdt9kUbVnDZ18VsGxlPqoGc2ZGMfea6C77aaWiaGzdVcbKtUfJzrUjSTB6eBA3\nzIgioaf4xEMQGmqYjJGeXcPhY5W43GfymbpFmhg93FJfhIgIM4o354IgXLJ8zXruntWXQUmhfLD2\nGP9Ze4yfMkpZcHVvAnxFapkgdFWiKNGCCpuzyTkLdUxGmUCLCVmn43e3DOXx17fhdDc9H6IhVYNv\nU08hyzrmTUpGkiSvcZzeiiM6RWHw3s149AaCb78JXA7kQ9vQjD4ofUafuWON9XQEaAjoTWgapBUb\nAYnkMAcNt/TJOh2SJOFwKcg6P8yGGFTVxYmiI/ztPz48tWA4ss57t8S2XWUsXZlPRJiR3/82AYOh\n8f3O3nbSEkXReHVRNt/9YCUh1oenHksiMMDQ4nHnU0mZi5feyeZwmo2IMBMP3hVL/16tS/q41Ljd\nKt9+X8ZnawooLHYh62DCmBCuvzrqF2+lEYRLRWXV6WSM050Qx094ScY4XYDok2whOPDC/k0TBEHo\nDEb2iSSpeyCLvjrCvowSnlq0izuv7s3AxLCOXpogCB1AFCVaEGjxPmehKTa7C1crCxIN1W0BaWoA\nY2mF/ZziSFJaKv5V5RwYPIYksx+BR7YjuWrwDJkCxtMXifURoHJ9BOipSj1VTpkIi4cQ38ZrPVP8\n0OFnTASg2pWJhkJukY2Pvknntqm9zll/2vFqXluUg4+5NqKzYfHA27aTumJLUwUOt1vlhbey2Jla\nQa9EP/7yaOIFnyi/40crbyw+QbVd4fJhQTz1eF+cDkfLB15iHE6F9VtKWLm2iLJyNwa9xPQJYdx1\nSyJ6nbvlEwjCJaxRMkaajdxTTSdjjLksCkdNTQeuVhAEofMICTDz+LzBbNidy4otmbz86X4mDO3O\nTROS2jyAXBCEi5soSrTAZPA+Z6Eh1+kOgIhg3zYXMepYT8+WiDid/HH2AMZzzqupDPlxM4pOR87Y\nqQQZFOQj29HMfii9Lj9zoK3odARoFOhknB6J42VG9DqNpNBz11iXIuJrTEDWmalxn8KjVtV/fV9a\nyTkvFiVlLv7xaiYej8b/PJBAbPfG2zzOnslxdvLI2ZxOlX++nsm+Q1UM6OPPHx5MwMd84V6cHE6F\n9z4+yYbvSjEaJe67PZYpV4YS4G+guAsVJartHr7eWMzqDcVU2jyYTTqunR7BNVMjCQkyEB5uprhY\nFCWErkPTNE4VODmcbuPwsdqhlOckY/Tzp2+y92QMf4seh6hJCIIg1NNJEtNGxtKnZzDvrjrMt3vz\nOJJt5Z5r+hIXFdDRyxME4QIRRYkmNNxqMGd8AkdzrJwsrvZ632B/M4GW2oGHrSlitHQOb84+b3zm\nIYKtRRztO5zeI5LxSduB5HbiGTQRDKf35Lkd4CgH2QQ+tQkYGaVGFFUiJcyJ0cuzH2gxEeQXiaSF\n4VFsONyNZ1yUVzvriydQu1/6769kUl7p4c6bYxg2sHH2dHMzOeq6QxoWOKrtCn9/JYMj6dUMHxTA\nk/cnYDRcuMio4zl2Xnw7i7wCJ/GxPjx2b3yX25pQUelm1YYi1mwqxl6j4ucrc9M1UcyYHEGARfzJ\nELqOtiRj9O1lIb6HSMYQBEH4OWIj/XlqwXCWbz7Ohh9z+fsHe5g9Np6rLusphv0KQhcgrjDO4m2r\nga/Z0GRBAmBISlijC+u5E5NQFJUt+06hak0e1uw5vJk7MQmA1GPFDP1xExoSPrfP4/pRkcgrl6L5\nBqCkjKi9s6aBraD2/1siQZIos8sU2/QEmBSiAzxeH8Nml5ClHiiqQrUrE2j8DYQ0KJ6oqsbL72aT\nnVvD1PFhzJwcfs75mpvJ0bA7BKDS5uGZFzLIzLFzxchgHv513AV7g6+qGqu/KWLJ8lN4PBqzpkZw\n2w3dzpmLcSkrKXOxcm0h678rweXSCAzQc9uMKKZPCMfXR7RRCpc+kYwhCILQcQx6mZsnJzMwMZRF\nXx1mxZbjHMgs5dcz+xIW1PKwdUEQLl6iKHEWb1sNmtqKoZNgWK8IxgyIxulW6osKsk7HbdN6gyTx\n7d5z0zQaMup1jBkQVV9waI6s0zF/cgpTpWKOF+UROGMSl902Hnn3V0iKG/eA6SCfnuXgqgK3vT4C\nVFHrhltqpIQ78TbcXVE0PlznQFV1mM15lNec+303LJ78d8UpdqVWMLCPP3fP7+F1Ynxz21kadodY\nK9wsfD6dE3kOJl0Ryn0LYpEv0Jt9a4Wb1xblkHqwksAAPQ/d1ZOhAwJbPvASkV/k5POvC/j2+zI8\nikZYiIHZ0yOZfGVYo9ZzQbjU1NScTsY43QWRfrxaJGMIgiB0sH7xITxz12X8Z+1R9hwr5q/v7+LW\nKb24vF+k+BssCJcoUZRooDXxnw2pGuw+WsTuo0WYjTJjBkQxb1Jy/fDG+ZOTkXW1aRpNFTZcHpWf\nMkqQZV2jwY/NJVUUv/kfAGIeugOqK5DTdqP5BaEmDq29g5cI0ByrAYdHR49AFxaT9/aNDbtd5BSo\nDEnRM29KEl98b2DH/nzKq52E+JsZkhJWXzzZuLWUz9cU0i3SxJP3xzfZ0dDcdpa6AkdRiZOFz2eQ\nX+RkxuRw7pwXc8E+fdyzv4JXF+VQWeVh6IAAHryzJ0FdZBr+ibwaVnxVwLadVlQNoiNMXD8jknGj\nQjDoRTFCuPS0JRmjb7Kly/wtEARB6GwsPgbun92f7QcL+O+GNN5dfZifMku4bVov/Mzib7MgXGpE\nUaKB1sR/NsXhUti4Jw9JkuqHN9Z1Nlw5MJqn3tvd5LFlVa76i/a5E5OaTaqo2v0TVTv2EjhxNH4D\neqP/YSWSquAeNAHk00+nvQwUd30EaLVLIrfcgEmvEhfifTBhZp7CN7vdBPtLjBuiUOPUMXtcEtOG\nx1Dj9DQqjhw8VsVbH5zA4ifzp0cSsfg1/2tUv+0krQRrlYPgBgWOU4UO/vpcOiVlbubMjGL+ddEX\npArucqss+TSP1d8Uo9dL3HlzDDMnh3eJCnxGVjXLvypg594KAHrGmLlhRhSjRwRfsO4UQbgQ6pIx\nDqXZONJCMkbvJL8LnvAjCIIgNE2SJMYMiCa5RxD/XnWYXUeKSD9Zwa9n9KFPXEhHL08QhPNIvANr\n4OcmZzSUmlZ8zvDG8GBfQltx3tS0EhRVa7Tl4+ykivzXFgPQ7cE7oKoMXcZe1IBQ1PhBtQeoHrCX\n1EeAahqkFZvQkEgOcyJ7+QDc7tD4aJ0DTdMot6fz1/et6KTaTpAQfyNDe0XUFxbyi5w8+/pxNDR+\n90AC3SJbHgJZV5w5O+o052QNC59Pp7zSw603dOOGGVEtnut8yM2r4cW3s8k+WUNMtJnH7o0jPta3\n5QMvcoeOVbF8dQH7DtWmqSTH+zJnZhTDBwWKffHCRa8uGaOuANFsMkYvC8nxfmJ7kiAIwkUgIsiH\n390yhK935LByWzbPLd3HtJE9uP7KRNHZKQiXCFGUaKC5rQY9IizYHR7KKh00N7uyrKpxOkVL5210\nbKWDfWklXr+WmlbC1eEK5d9sxTJyMP6XDUH//QokTcUzcCLoThdBzooALajUU+GQCfPzEOannHNe\nTdP4dJODcptGjSsPh8cKUD+gs2EXx7WjE/j7KxnYqhXuXxBL/97+zX4/Z2sYdZqRVc3TL9ae6+5b\nYrh6UkSbzvVzaJrGus0lvL/0JC63xrTxYdwxNwaT6dJ9QdM0jdSDlSxfXcCR9Nphrf17W7hxZhQD\n+vh3ic4Q4dJUl4zRsAjRMBnD33I6GeN0J4RIxhAEQbh4yTods8bE0y8+lHdXHVOPIxgAACAASURB\nVGLdrlwOZdVGh8aEWzp6eYIg/EKiKHGW5rYaeBSNYqudlz/9ibIql9fjQ/xNXqM9z5y36fkSBoOO\nclvTSRV5ry4GoNtDdyBVFKHL+gk1KAI1rn/tnc6KAHUpkFlqRJY0ksK8r3fXYQ/7MxTAhsNzqqkf\nC3uPlXBsH+TlO7lmagRTrgxr8r4tOZxm4/+9nIHTqfLgnT2ZeEXozz5Xa1XaPLz5fg47Uyuw+Mk8\nek9PLh8W1O6P21FUVWNnajkrVheSmWMHYNjAAObMjKJ3knjxFi4+brdKepa9fiaESMYQBEHoehK6\nBbDwjpEs25TO5n2neGbxj9w4PpFJw2PQiQ9aBOGiJYoSZ2lqq0Ht1yAmwp+hvSKa7HoYkhLuNdqz\n4XmXrDvG9oMF59zH5VYx6XU4Peo5X4txV1G97lt8+6UQOGE08tZPkDQNz6BJIOkaR4D610aAHi81\n4lElEkOdmPXn9ncUWVU+3+LEqNcorspo9udyMlPCWW5j+KAAfnVT92bv25x9Byv5x+uZKIrGY7+J\nZ8yI4J99rtY6cKSKl9/NpqzcTf/eFh7+dRxhIcZ2f9yOoCgaW3eWseKrQk7mO5AkGD08iDkzo7rE\nFhXh0tEwGeNQWm0yhttzVjLGiNqBlP16WQgPFckYgiAIXYHJKPOr6b0ZmBjG+2uO8PHGdPZnlnDn\njL4E+5/7waAgCJ2fKEo0oeFWg7PNnZiEqmlsP1CAw1W7JaIufaO5aM+6RI054xPYm1Zcf2yj+3gp\nSACMObwNVJVuD92JzlqAnHMQNbQ7ao8+pw9sEAFqtFBeo6OgyoDFqNA90HPO+Zxuhdc+rcDtMWJz\nZgLeOykAHOVGnOUmYrubeeye+J89DHHn3nKefysLCfj9bxMZPqh9Yzc9Ho2lK0/x2deFSBLcekM3\nZl8VeUkOc3S7VTZ9X8rnXxdSWOJClmHimBCuvzqK7tEtz/0QhI5Wl4xRtx1DJGMIgiAIzRmcHMYz\n3S7j/a+PsD+zlKcW7eT26b0Z3rv9twQLgnB+iaJEGzSM6bx1Si9uHJ9EsdUOkkR4kI/XDgkARVUb\nJWoEWoxeCxLehAaYGR6mI+j/tmJKiCX46gnI3y0FwDN4Uu279bMiQNXTwy1BIyXchbdr8Fc+Kcbu\nsOD0FONWypp8fHe1npoiH0xmiT89nIiPj/fvsSVbdpTx6qJsjAYdf3wokQF92jaPoq3yCx28+E42\nGVl2IsONPHZPPCmJfu36mB3B4VRYv6WElWuLKCt3Y9BLTJ8QxnVXRRIRJj4tEDqvkjIXh47VzoJo\nORnDgp/vz/vbIwiCIFy6Av2MPDxnIJtT81i2KYM3vzjImAFRzJ+cgo9JXOYIwsVC/GtthbOLCg1j\nOmMiWr64XrYpo9F2j3Jb010JDQVZjDy1YDhl/3qdQreH6AduR2fNRz55FDWiJ1r06a4Mexmobjym\nYMqqFKoUGbtbR7cANwHmczsvDmW5KCy1oKgO7K6cRl+rS93QSeB26LDn+6HTSTz1aNLPvshdv7mE\nt5acwNdH5i+PJtGrHYsDmqaxeXsZ7/w3F4dTZfzoEO6+pQe+P7OY0llV2z18vbGYVRuKqLIpmE06\nrp0ewTVTIwkJEp8gC53L2ckYh9JsFJeKZAxBEAThl5MkiQlDY+jdM5h3vjzM9wcKOHainLtn9SU5\n5tKdHyYIlxJRlGiFs4sKZ8d0QuMuioYdE1V2Fz8eLfpZj1tZ7cJWUELxks8wRkcSesPV6L/7CGjQ\nJaF40OwlOD3w95VZVDp0XDNtPGhuegY7gMZv7G12jU++caFpKtWuTKBx0ULT4Ml5gwn0NfPMC1lU\nqk4euTuOvsk/r7Nh5bpCFi/LI8Bfz8LHk9p1rkG1XeGd/57gux+s+Jh1PHpPHFdefmnlWFdUulm1\noYg1m4qx16j4+crcdE0UMyZHEGAR/5yFzkFRNbJza/h2RwW79pZypIVkjIRYX2T50ttWJQiCIFw4\n0aF+/OlXw1i5LYuvd+Twzw/3MmNUHNeMiUMvi0K3IHRm4iqmBU63QmpasdevpaaVMHtsPF9szTqn\ni2LO+ASWbz7OnqPFre6MOFuwvxnXJ1+g1jiI+sNvka156PIzUKMS0SLja+9UXYSkqXyys4K8UgeT\nxl6GLMt898M+CnN19UUTqP20ctlGB7Ya0MkFKGr1OY8ZEmAmNtKf/30li8JiJzfOjGLcqLZf2Gua\nxidfFrB0ZT6hwQYWPpFMTDvONjiaYeOld7IpKnGRkujHo3fHERVx6WxfKClzsXJtIeu/K8Hl0ggM\n0POrmVFMGx9+yXWBCBefhskYh47ZOJZ5bjLGlZcH0yfZQr8UC91FMoYgCILQDvSyjhvGJTIgIZR3\nVx1m9fZsDmWVcvesfkSFiIHfgtBZiaJECypsTsqaiPC0Vjn4aEN6oySNui6KYyfKyS2y/aLHHtrD\nj5L/+RR9SBDh869Fv/VD4HSXBIC7Bs1RTkGFwndpNcTFdKN7VASnCorIzj1FVYWZG8Yl1ndubD/g\n4XCWQlKMTIA/bNxz7mMOTg7lvY9PcTjNxoQx4cybHd3mdWuaxn8+yWPluiIiw4w8/WQykeHtUyBQ\nVI0VqwtY9mU+aHDjrChumhWNXn9pXPDkFzn5/OsCvv2+DI+iERZi4LqrIpk0Nky0twsdpi4Z41Ba\nbTzn2ckY3aNqkzEuGxZGbLReJGMIgiAIF1RKjyCevnMkH25IY8ehAha+v4t5k5IZN6ibeD0ShE5I\nFCVaEGgxERJgotRLYSLY38SR7FKvx+UVt70goZNqt0+EBJgZkhLGlcd2kFdRRczv7kNfnoeuKAel\ney+08B6nI0ALkYAPt1cgy3qGD+6HR1H4Ye8BoLZoUmFzEhHsS36pwpdbnfiaYf5UExbfJCSpttvD\nWuUg2L/2MU1OfzZtyycpzpc/PdKLqip7m74HVdV4+7+5rN9cQvdoE08/kUxocPvEbxaXunj53WwO\np9kIDTbw6D1x9OvVvgM0L5QTeTWs+KqAbTutqBpER5q4/upIxo0KwaAXxQjhwmopGSO+hw99Umq7\nIPo0SMYID/enuLiqA1cuCIIgdFW+Zj13z+rLoKRQPlh7jA/WHmN/RikLrupNgN+lGQ0vCBcrUZRo\ngckgMyQlvNFMiTpGvUx+mfcuClXzenOzNOCJeYNJ6B6IQfHw0+MPorP4EXH7jei3fwyAMnhi7Z1P\nR4DW4EOBDYYM6I2vj5nUA0exVdcWEoL9zQRaTLg9Gv9d68SjwG3TzQRaai9q509O4YZxifWzMPYd\nqOLZN44TGmzgDw8lYjbLVLXhekJRNF57L4ctO8qIj/XhqceSCApon6GL23+08ubiE1TbFUYNC+K+\n22PxvwRmKmRkVbN8dQE7UysA6Blj5oYZUYweEXxJRpkKnVPDZIzDx2yczG+QjKEXyRiCIAjCxWNk\nn0iSugey6Ksj7Mso4alFO7nj6j4MSgrr6KUJgnDaxX8VdwHMnVibctGwq8DXrG92e0ZdisXZDLKE\nW/FesQjxNxMTYaHC5sT9+WrcxaVE/3YBxqpT6EpPosT2QwvphqJ4qCk5iVmv8cxnJzD7BNIrMY7y\nyioOHcuoP9+QlDBMBpnPtzgpKFUZPUBP/8TGT7nJIBMR7EvWCTsvvXMmsrOtCQ5ut8oLb2exc28F\nKYl+PPVoIn6+5//Xy+FUWPTxSb75rhSTUcf9C2KZPDb0om/FO3SsiuWrC9h3qLYKlJLgy5yZUQwf\nFHjRf29C56ZpGnkFTg63kIzRL8VCnxSRjCEIgiBcfEICzDw+bzAbdueyYksmryzfz4Qh3blpYlKj\nAfWCIHQMUZRoBVmna9RV4GPS88zi3c0e0z3c4rVo0VRBAsDHJPPM4t1Yy+3csuTf+BgMhN95I/KP\ny9GQUAbVdkkcOJjB4GhYc8BOUZXKjJH9kSSJ1P2HAI3Q09s/5k5M4qcMF9t+chMRLDHrCu9zHcrK\n3fz9lUycLpXfPZBAQs+2DQJyOlX++Xom+w5VMaCPP394MAEf8/n/A5+ZY+fFt7I4VegkPtaHx+6N\nb9fhme1N0zT2HqhkxVcFHEmvHTrav7eFG2dGMaCPvyhGCO2iLhnj8Ol5EIfTbFRWNU7GuGxIIH1E\nMoYgCIJwCdFJEtNGxtI3LoR3Vh3i29Q8juRYueeavsRFBXT08gShSxNFiTao6yoostqbHH4JMLp/\nFL+ansLyzcfruyuMBhmHS2n2/CeLay9Mk9N+wq+ijIMDR6Pu3s+E8gKqu/dD8fv/7N15eJT1uf/x\n9+yTZDJZJ5N9zwQS9kVAQRRUQFxQUCpKta3LqdpNu5zT9rR6PG1PW6uttf3VYt1rRXGpsioCLihb\nCFsC2RcSskz2zExmf35/hAQiYd/D/bourktmJs98ZybBPPdzf+9PDHg8DIsN0NUTZPkOB8Oy04mO\niqC8qhaXs4vHvjERS1QoWo2K1z6sZFdpLIqixt5VxrJPwlk4IxuN+tBVTo83yP/9uYLWdh93zU9k\n8viTy3N29QT41Z8qKC51MH6UmR8/lIled2avogaDCh982Mxrbx/AH1C4eVYcd96aiO4MP8+5Egwq\nbN7ewbIVjVTW9AAwfpSZBTfEMyzbdJ5XJ4aavmSMvgLEvnIHPW5JxhBCCHFpSokz8Yu7J/D2J5V8\nuHU/v3qlgHnTMpgzKU3+/yfEeSJFiVNwrOGX0WYDsy9LQVFU/d0V9S0O/rxs1zGLEv3bPZQgY7et\nJ6BWs3Pcldzcso2ARsUvCkz49m3ivulR2Cwqlm5xoNIaGJM/DLfHS8Guvfh8XvQ6DQadhn9+VErB\n3jB0Gi09vho8PZ2s3dY7p6AvJlRRFJ59oYayKhdXXR7NrddbT+p96HL4eeLpcsqrXFwxMZLv3Zd+\nxocwtnf6eOb5anYUdRNp1vLde9MZO+LirGYHAgqfbW7j7RVN1DW4UangiomRzJ8bT0aqxFSJM+NE\nkjH6hlLm2UySjCGEEOKSo9Nq+NrMHEZmxvCPFcW8/Ukluypaue+GPGIjQ8738oS45EhR4hQca/il\ny+3jly9sJdpsYExOLApQWNJCp9N3zGP2zZ9Irywmuq2JkuHjGW31kqh1sd6ZQGMglDRdgOxYhbp2\nP5+W9nDl5AnodFq2bN2Bx+slxtw72NLjC1BYoqDTROALdODxN/U/T2FpS39M6NJ/N/D5lnaG54Tx\n4N2pJ3Vi0t7p47Eny6itdzNjagwP3pN6xgcxbtvZyZ9fqKGr28/4UWYe/mbaWRuceTZ5fUHWb2zl\n3ZVNNLV40WhgxhXR3Hp9PEkX8fYTcWHo7PKxt8zZP5Syav+JJWMIcaErLS3lwQcf5J577uGuu+5i\n69atPPXUU2i1WkJDQ/nd735HREQEzz//PKtXr0alUvHwww8zffr08710IcRFIj8jmv/51iReXr2P\nghI7v3hhC7ddlcX0sUmopWAvxDkjRYlT9NXhl33bM9ze3rOB1i4PHxfUH/c4ahVMHZ1AUWUbrZ1u\nxm1bj4KKXeOn8zNzFT5Fxbvd6QDcMcmMWqVi2TYnSfFW0pITaLK3UlG9Hzg02HJ3hZNgIAEFH05P\n5YDn64sJLSl1s/T9Rqyxen7yUOZJbYWwt3r55ZNlNDR5mDvTwjfvSD6j7W5eX5BX3qpnxVo7Wq2K\nb92RzNxrLBfd1Vy3J8CaDS38e3Uz7Z0+dFoVs6+O5ZY5VuJiB5/vIcTx2Fu9vVsxjpGMkZ/bW4CQ\nZAxxsXK5XDzxxBNMmTKl/7bf/OY3PPnkk2RmZvK3v/2NpUuXMmfOHFauXMkbb7yBw+Fg0aJFTJ06\nFY1Gvu+FECfGFKLjwXkj+GJPI6+vLePVD0v5sriJb8wZRkJM2PlenhCXBClKnKLDh1/aO3r445s7\njjszYjDTxySyeNYwXl9byt531xPXtJ+KrJGMSg5i1bpZ40iiNWBkYoYRW7ye7TVu9jb4WHDDaILB\nIFu27xow2NLjU1ixEVQqNQ53GQr+Ac8XFW6k2e7nz/+oITREzQ8fysAT8OHxqU9o+vCBJjePPVmO\nvdXL/LlW7rw18YwWC2rre3jquSpq6twkJxh55IH0i25rg9PlZ+XHdj74qJluRwCjQc282XHceJ31\npFNNxKXt8GSMvj9fTcYYkx9OniRjiCFGr9ezZMkSlixZ0n9bVFQUHR0dAHR2dpKZmcnmzZuZNm0a\ner2e6OhokpKSKC8vJzc393wtXQhxEVKpVFwxMoH8jOjeLdAldn75whZuuDyd6yenodXI/1uFOJuk\nKHGaDDoNeq2a9m7v8R98mEiTngnD4vo7LhbOyOaz//sVALsnTuen4dV4FTXvd6eh08BtE8LxBxSW\nbunmsjF56HQGkswefnLHCCJMhv6Cwjsb3Ng7FOKiHbTXdR7xvLlJ0fzhr9UEAgqTpxp4bsUO2ro8\nRJsNjLVZjhiEebiauh4e/0MZ7Z1+7pqfyPy58Sf1mo9FURTWbGjhxTfq8PoUZl0VyzcWJmMwXDz/\nE+jo8vHBh82sWmenxx3EFKZh4U3xzL0mjnCT/KiJ4+tPxig52AlxjGSMfJuJDEnGEEOUVqtFqx34\n7+ZPf/pT7rrrLsxmMxERETz66KM8//zzREdH9z8mOjoau90uRQkhxCmJNBl46JaRbC+189qHJbz3\nWRVb9zZzz5xhZCVFnO/lCTFkyZnSGRBhMmDQHz9do0+kSc/D80eSFGvqLwD0FBYRWlzE/lQbozLU\nxGg9LO9OoSNo4IbRYcSGa1i1y4FPHUpmehpGbZDMGD8a9aEugl3lfjbt8ZMYq+bh2yy8/Uly//aS\nqHAjIzJiKPwyQEeXnzHj9ew50Nj/ta1dnv4ZGX2DMA9XXuXk8afKcTgD3LsombnXxJ3OWzZAV7ef\nv7xUw5bCTkxhGh55II1J404uBeR8amnz8t7qJj76tAWvVyHSrOW2G+OZfZWFkBBpIRZH5/UFKT+B\nZIw8m4m8HEnGEJe2J554gmeffZbx48fz29/+ltdff/2IxyjK0WO3+0RFhaLVnp1/my2W8LNyXHHi\n5DM4/4bCZzDLEs7UcSm8tKKY1V9W8+vXCrhhaiaL5wwnxHDhnz4Nhc/gYiefwcm58H+qLgJeX4Bg\n8Pi/CPVxe/386uWCAd0Jdc+8APR2SfwkvIaeoIbljlQiQ9RcPyqMzp4AH+11M3vGlahUKnIsHvo6\nyTy+APub3Lz5sYJOC3fOMmLQHdpe0unwEB6q5+nnaqipc3Lt9BgqHUcO6YSBgzD7FJc6+N8/luPx\nBHn4G2nMnBZz6m/WV+za282fllTT1uFjxDAT378vnZgo/Rk7/tnU0OTmnVVNbNjYhj+gEBut45Y5\nVmZOi5UWejGonp4A+yqc/UUIScYQ4sSVlJQwfvx4AC6//HI++OADJk+eTFVVVf9jmpqaiIs7dtG8\nvd11VtZnsYRjt3eflWOLEyOfwfk31D6D26dnMjojipdWl/DBZ5V8sbOexbOGMSrrzP0ufKYNtc/g\nYiSfweCOVag5q0WJr07Obmho4Mc//jGBQACLxcLvf/979Ho977//Pi+//DJqtZrbb7+d22677Wwu\n64wJBIMsXVdOwT47Xn/wuI/vi/08fBjm2m116Ov2k/rRZzQmpDHSpidS4+XdrjS6g3q+OSEco07N\nvzZ3kpaSit4YhiXMT0xooP/5t5fY8Xoz0GnMpCZ0YIk61D1h0GmIiwrlpTfr2Lqjk9F54dwyN5af\nP18x6Br7BmHGHTzGjqIufvPnCgIBhUceyOCKy6LOwDsHfr/C6+8e4L3VTajVcNf8RObNsZ7xBI+z\noaauh3dWNvL55naCCiRYDcy/Pp4rp0Sd8UhUcXHrT8Y4WISoqnX1J+2oVZCeEtLbBSHJGEIcV2xs\nLOXl5WRnZ7N7927S0tKYPHkyL774It/5zndob2+nubmZ7Ozs871UIcQQkpsaxf98cyIffFHNqk21\n/PGtnUzOt/K1mTmYQy+OC2lCXOjOWlFisMnZzzzzDIsWLWLOnDk89dRTLFu2jHnz5vGXv/yFZcuW\nodPpWLBgAddeey2RkRd++/7SdeWDxoIezdGaKZTX3wKgZtpMHgjfjzOoZaUjhfQYLVNzQqht9bGt\nNsBNs3Lw+Xzs3ruPYXHp/c9v1CYQojfj9bexs6KcpetcA7ZgrP20NwEiKd7Ajx7MQKtTEW020Nrl\nOWItUeG9saIAn37Zwq/+VIEK+MlDWUwcc2b20jU0uXnq79WUV7mIjzPwg/vTsWVe+NON95Z28fxr\nlWwu7J3VkZ4cwvwbrEyZEHVRFFPE2defjHHwzxHJGFmSjCHEidizZw+//e1vqa+vR6vVsmbNGh5/\n/HF+/vOfo9PpiIiI4Ne//jVms5nbb7+du+66C5VKxWOPPYb6KHORhBDiVOm0Gm69MouJw6y8tGov\nm4qa2FPZxh0zc5icb5WuRiFO01krSgw2OXvz5s08/vjjAFx99dW88MILZGRkMHLkSMLDe9s5xo0b\nx/bt25kxY8bZWtoZ4fEFKCy1n/ZxwjtbSSkqwJWUTJbNSLjGx5udGbgUHXdMNgPwr83djB+Vj0Gv\nZ/P23ZRUVOPz+dhV3oJGHYZRl0ww6MXlrQYGbsHYU9LN316txRSm4WffyyIstPcjH2uzDFpQ6YsV\n/XRTG888X41Op+a/vpvFqOGnvy9KURTWf9HGktf24/YEueryaO6/M+WCnrugKApFpQ6WLW9kZ1Fv\nG5YtM5QFN8QzYXSE/E/oEtafjHFwKGVJhZPG5kOFvsOTMfJsJrIlGUOIEzZixAheffXVI25/4403\njrht8eLFLF68+FwsSwhxiUuJM/GzxRNYW1DHO59WsGR5MV8WNfL1WbnERoac7+UJcdE6a0WJwSZn\n9/T0oNf3tjnFxMRgt9tpaWkZdHL2sZytIVUnM5Ckrrl70E6DkzWmYANqRaFg5BV8P6yWroCONc5k\nJmYYybHq2VbtpitoZlJaMi1tHZRWVAOwq6KV1i4fZmPvhHGnt6I//rO9241Gr8PjVfP7v1YBKn79\nsxGMGnGo++Th28cSGqJn054GWjp6iI0MYfKIBL55Yz4r1jbxxyXVhIVqePKxkYwYdvodEg6nnyf/\nWsbaT5sJC9Xwi0eHcd1V1tM+7tmiKAqbCtp45c1adu/tAmD8qEgW357K+FGRUow46FIa4hMIKJRX\nOdhZ1Nn7p7iTjk5f//0R4VqmTY5hdH4EY/Ijyc40oZVkjEvqe+REyPshhBAXN7VaxXUTUxiXE8sr\na0rYU9XGz/+xmVuvzOKa8ckykFqIU3DeBl0ebUL2iUzOPhtDqk52IMmbH+477ecMdXQyrHgbnREx\n5I8zE6ru4p+d6QTUWm6bGI4voLBsm4PLL59GUFHYVLCLvnenrctNZGgWKoz0+A7gDx5ae1S4ka4O\nN7/4XRld3X4euieVlHjNEa9v3hXpzLkshU6Hpz9W9KU3KnnxjXrMJi1//N9RRJk57UEt+8odPP33\nappbvNiywnjk/nSsFsMFOQAmGFTYtL2Dt5c3UlnbA8CE0WYW3JDA1Mnx2O3dtLQ4zvMqLwxDfYjP\n8ZIxYqMHJmOMGWWhtfXQ90Z7m3yfDPXvkZM1VN4PKawIIQTERobwg9tHs6moiX99XMYbH5exubiR\ne+YMJyXOdL6XJ8RF5ZwWJUJDQ3G73RiNxv4J2XFxcbS0tPQ/prm5mTFjxpzLZZ00jy/ArorW0z7O\nqMLP0AQD7Js4jYfDD9Ae0LPWmcTsUWHEmjSs3OUgITkTc7iJ4tJK2jo6+782VB+Lihj8AQduX/2A\n447OjuGZ52uob/Bw86w4rrky9qhr6BuEqSgKS99v4I33GoiO1PHYD7OxZZ3eL9CBoMKy5Y28+X4D\nKHDbjfEsvCkBzQV49djvV/hscxtvr2ykvsGDSgVXTIxk/tx4MlJDj38AcdHrS8YoKulmb5lz0GSM\nvq0YeTYTcbGGAV8vV0aEEEKIS4tKpWLKiHjyM6N54+MyNhU18T8vbWXO5FRuvDwd3VmKHxZiqDmn\nRYnLL7+cNWvWcPPNN/Phhx8ybdo0Ro8ezc9//nO6urrQaDRs376dn/70p+dyWSet0+Gh7TS3bhjc\nLvL3bMIZZiZvYjRGdQNvdKQRGqLrjQB1BfikXOG6Gdk4XT3sKDrUmaFW6dGpU1GUAE5vBRzsnzDq\nNUwdlUBXg5GdRS1MGG1m8W1Jx12Loii8/FY9/17dTFysnsd/mEN8nOG4X3cs9lYvf1xSTXGpg9ho\nHd+/L5383Avv6prXF2Td5628u6qJ5hYvGg3MmBrDrXOsJCUYz/fyxFkkyRhCCCGEOBPMoXruvzGf\nyXnxvLpmH8u/qGHrPjv3zM4lN/XMJNcJMZSdtaLEYJOzn3zySf7zP/+TpUuXkpiYyLx589DpdDz6\n6KN861vfQqVS8dBDD/UPvTzXPL7AgK0MRxNhMhw1veJ4VPSWEEbs3IjO52XPlJn8R0QTLX4D652J\n3HNlOAadmtc3dTJm1Gg0Gg1bd+zB7w/0f73JkI1KpcXpqSSoHFpDmFFLWDCCt9bXk54cwiP3Zxw3\nFSIYVPj7a/tZs6GFpHgDj/0wh9jo04s3+mJbO399qRanK8CUCZE8eHcqprDztlNoUG5PgDUbelNJ\n2jt96LQq5sywMG923BFXwMXQYG/1UlTazd5SJ0Wl3dQ3HPrZ0WpV5GaH9RchcrMkGUMIIYQQJ2dU\nVgxP3DuJdz6t5ONtdfz29UKuGpPIgquyCTVeWL8LC3EhOWs/HUebnP3iiy8ecdvs2bOZPXv22VrK\ncQWCQZa8t5uNO+tp6/IQbTYw1mZh4Yxs/AGFToeHEIOWHo+/v2BxtPSKYzGH6ehy+tB53Yzc8Tk9\nxlCGT7GgV9l5pzudlFgDl2eHUNPio94TxVSrhf0HGqmtb+w/hkGXhEZtwutvxRtoGXD8xsYALxfU\nE2nW8l/fzTxuqkUgoPDsCzVs+LKN9JQQfvloNpHmU78a7PYE+Mfrdaz9xa9dogAAIABJREFUrBWD\nXs1D96Qyc1rMBTUU0unys2KtneVrm+l2BDAa1MybHcdNs6xEyZXwIeOryRjFpQ7srd7++7+ajJGT\nGYZeJ8kYQgghhDg9Rr2WRdfYmJRn5aVV+9iw4wA7ylu467pcxtks53t5QlyQpGQHLF1XPqDA0Nrl\nYe22OkpqO3C5fbR2eVCrIKhAdLiecblxLLgqE4Bt+5rpcHiPdugBxtksfLmngdztmzF6eiiacjX3\nRrXQ6A/hc1c8P7m6t0PkrQIXE8aPx+f3s6VwT//Xa9UmQnSJwKH4zz4BjxrngTBUKvjxQxnHvdrv\n8wV56u/VbCrowJYVxn9/P+u0uhkqalw89bcqDjR5yEwN4ZEHMi6o7Q8dXT4++LCZVevs9LiDmMI0\nLLwpnrnXxBFukh+Di10goFC9v4fiUkdvN0SZk65uf//94SYNk8ZGkJfbO5QyIzX0gpxtIoQQQoih\nISsxgl/eM5FVm2r44Itqnn1nNxNyLSy61kakSbpyhTjcJX825vEFKCwdPIJ0f/Oh6fl9e83bur39\nBYxF19i4fnIaP/zrRoLBwY4AKhVEhhkYY4slqCj4enyMLvwUr07PsKkJaFXtvN2VzsSsULKtenbW\neRk+YgxGg4GCncU4Xb0JECo0hOqzAMhN72JTceDQ2vwqHAfCUIIqQuOdFNY0MDzn6FtgPJ4gv/1L\nJYV7uhgxzMRPv5N13K6KowkGFT74sJnX3j6AP6Bw86w47rw1Ed0FctW5pc3Le6ub+OjTFrxehUiz\nlttuTGD2VbGn/JrF+XeyyRjJicYLqmNHCCGEEEOfVqPmxisymDAsjpdW7WNbiZ3i6nZun5HNtFEJ\n8ruJEAdd8kWJUx1a+fmuBuZNy+CDjVVHLUgAaNXQ7vCwcdcBvH6F4fu2EebspmzC5dwT006dL5QC\nr5XfTDSjAMnZebTbo+jq7qa4rLL/OKH6dDRqA6gauWtWGiFGD58U1hMIgLMhjKBPgzHajd7so7C0\nhRsvTx+w3aSPqyfAr/5UQXGpg/GjzPzowUwM+lMrILR1+HjmH9XsLOom0qzle/emM2aE+ZSOdaY1\nNLl5Z2UTG75owx9QsMTomTfbysxpMaf8esX5c7rJGEIIIYQQ50tCTBg/uXMcnxTW89aGCl5atY9N\nRY3cPXsY1mhJeRPiki9KnOrQSrc3wGtrSthX23HMx/kONjR4/QqqYIAx2zbg12jJvTIJtcrBW12Z\nXDfSRGSomi7MVHZGAPDF1p0oSu9Jl14Ti14bgz/QjdNbi8OVyKyJKawrqMfVHIq/R4vO5MUY4wag\ntcvNL1/YQqfDO2A+hssV5H+eLqe8ysXlEyL5/v3p6LSndoK+dUcnz75QQ5fDz/hRZh7+ZtppzaM4\nU2rqenh7RSMbt7QTVCDRauDW6+O5ckrUKb9Wce51dvkoLnOwt9Q5eDJGagh5OZKMIYQQQoiLg1ql\n4upxyYzOjuW1D0vZUd7CL17Yws1TM7huYgpajfyeKi5dl3xR4lSHVgLsrWmn0+k74cdnle0ioquN\nmtETWBTnoMprokIdx7dGhtHhCrBsn0J2jhpLmIeAzwWAWmUgVJ+GovhxeiuICjcScXAfmsYVhrdL\nh8bgJyzexeEdYH1zLvrmY7h7guzaGqSmzs2MK6J58J60U9pT7/UFeeXNelZ8bEenVXHvomSun2k5\n7+1nZVVOli1vZEthJwDpySEsuCGeyRMij5tAIs6/5hZPfxHieMkYw7JNhMrWGyGEEEJchKLNRr4z\nfyTbSuz888MSlm2oYEtxE/dcP4z0+Auj41iIc+2SL0oALJyRTWiIno07D9De7SYq3EioUTtgpsRg\nupw+okwG2h0n0GWhBBm7bT1BlZqcq5JRqzy81ZXJ/ElmDDo1b213kW7LocftYVdNycFCST1h+ixU\nKg0OTzlBxctYWzIGnYbN2ztordeh0gYxJTlRHaO4GvSpWL3Sgc+j5vqZFr51RzLqUzhRr63v4ann\nqqipc5OSaOSRB9JJTzl/LWeKolBU6mDZ8kZ2FnUDYMsKY8HceCaMNp/3QokYnKIo1DW4+wsQe8uc\nkowhhBBCiEuGSqVi4rA4hqdF8eb6cj7f1cATL29j1sRUbp6WMWDrtRCXAilKABq1mvvmjWTOZSl0\nOjxEmAxoNSqWriunsNR+1K0d0WYjo7JjWL+9/rjPkVa1j5jWRuqHj+RriR5KPWa6zVYuzw6husUH\nkblotRq+LNhJV0cLD986kv2N4TS3mfD67ZjDXIy1JbNwRjaVNS6e/ns1Br2aaTNCqG7x0tblRq9V\n4/EPHHAR8Kpx1JkI+tXMnhHNvYuST/pkXVEU1mxo4cU36vD6FGZfHcs9tydjMJyfE0VFUdi+u4tl\nyxvZV+4EYOTwcBbcEM/IYSYpRlxgjpeMYTZpmTQuon8opSRjCCGEEOJSYArR8c3rhzM5z8rLq/ex\nekstBaXNfH32MPLTo8/38oQ4Z6QocRiDTkNc1KEr/4uusTF/ehavrinhiz2NRzx+rC2WhTOyQVH4\nZMeB/j3vR1AUxm1dB0DOjFQgyLKuTO64rrdFa12Fjsy8eBqa7FTV9hY4fvVKKeHGXPQ6P9+93UJ8\nTCoGnYa2Dh+/fqYCry/ITx7KZNK4SDy+3vkWG7+yxoBHTXedCSWgJjrJxz0LU076hL2r28+zL9aw\ndUcnpjANj/xHGpPGRp7UMc6UYFBh0/YO3l7eSGVtbyrJhNFmFtyQQG5W2HlZkzhSXzJG31DKYyZj\n2EwkJ0gyhhBCCCEuXXnp0fzPtybx/udVrNmynz+8sYMrRsazcEYOphCZmyWGPilKHIdBp+Eb1w8j\n1KilsLSlf3tHX0FCo1Yz67JUNhQeOOoxEusqsDbVYs+2cWtqkCJPJOHJCWTF6dla7SY+YwKBQIBN\n23cDoEJLmD4TRVFo6S5h454oFl1jw+MN8ps/V9Da7mPxgkQmjTtUHNhX2z7gOf1uDY66MJSgmhCL\ni5nT4066FWzbznYe//1e2jt9jBwezvfuTSMmSn9SxzgT/H6Fzza38fbKRuobPKhUMPWyKG693kpG\nqkwsPt9cPQH2lfdGc+4tc1Ja6cR/eDJGgqF/KKUkYwghhBBCHMmg03Db1dlcNtzKi6v2snF3I7sr\nWll0rY2Jw+LkAo4Y0qQocQI0anV/10Tf9o7DT/CPl+Axbtt6ALJmpAPwnjOTb80MxxdQ2NcdT0pM\nCDuKSuh29G5FCNVnoFbrcXn3Ewg6KSwNcMu0TP7yQi3lVS6uviKaW+ZY+4//1VhTf4+G7noTBCHU\n2vv4hTOyT/j1+vxB/vVuA++tbkKthsULErl5tvWcD4z0+oKs+7yVd1c10dziRaOBGVNjuPV6K0nx\nxnO6FnFIXzJG9f4mtu1so7q2Z/BkjNyDyRgXQCqLEEIIIcTFIC0+nP++ewIfbt3Pe59V8bd/F/Hl\nnkYWz8ol2iy//4qhSYoSJ+Gr2zsOv31UVgzrB+mWsDTtJ3l/Ge1p6UzL0rDDHU3OsCSiwjSs3ecj\nKS2bzm4He/aVA6DXWtBro/AFuvD4GwBo73bzz3fq2bi1gzybiW9/PXVAtfTwoojPqcVxIAwUCEtw\nkZCkZvGsXDTqE5v/cKDJzdPPVVNe7SIpwcj37k0jJ+Pcbo3ocQf4cEML/17TTHunD51WxZwZFubN\njpOr7OdBXzJGcYmD4jKHJGMIIYQQQpxFGrWaOZPSGGez8MrqEnZWtLLv+c0smJ7F1eOSUEvXhBhi\npChxhlwzIWXQosTYg10SOTMzAPhcncvdByNAu0OHEaVSsblgF8FgEK3aSKgujeDB+M8+Wm8oKz5q\nxWrR85OHMtF9JYmgL9Z05YZGnA29BYSwRCd6k78/reN4FEVh/RdtLHltP25PkKuviOa/vjscp7Pn\nlN+Tk+Vw+ln5sZ3la5vpdgQwGtTcMsfKjdfFERUhV9vPhb5kjOLSQ9sxjpaMcfllcViiVZKMIYQQ\nQghxFlijQvnh18bw+a4Glq4r558flbK5uIm75wwjKVbmqYmhQ4oSZ0i02UjMV7ZwRLU2kVmxB1dS\nEsNsBnb4rIzIs6LXqvio3EhUUjQVNXU02lsBFSH6bFQqNU5PBYriA3q3YnTW6wkNUfOz72ZhDh/8\nI4szRuFqcKBSKYQnOomL1zLWFn9C2zacLj9/e2U/n29pJzREzSP3pzNtcjShoVqczjPy9hxTR5eP\nDz5sZtU6Oz3uIKYwDV+7OYHrZ1oIN8m36NnUl4xRVNrdW4QoddLlGDwZI98WTnpKSH8yhsUSjt3e\nfb6WLoQQQggx5KlUKqaNTmRUVgz/XFvGtn3NPP7iFm6Yks71U9LQauTikLj4yRnfGdLXrbB2W13/\nbWMKerskMmZmoKDiczK5LyuEmlY/urjReLxeCnYWARCiS0GrDkWrbcOs7aG9G0x6I421IaAo/PDb\nmaQkhRzxvIFgkN/8fS8FW9yo1JBo8zI2L5Y7rrURahj48Xp8gSNmYuwrd/DUc9XYW73kZoXxyAPp\n52yLREubl/dWNfHRpy14fQqRZi233ZjA7KtiCZEtAGeF1xekrNLZ3wmxr9yJ2yPJGEIIIYQQF7II\nk4EH542gsNTOax+V8t7nVWzd18zdc4aRnRRxvpcnxGmRosRJGuzEvk9fV0JhqR1fXQM5JTsIJlrJ\nGW7iy544Zk5NBKCoK57QWD1fbtuJ2+NFq47AqIsnEOxBpdTxy29MoL3Twx/+uh+P2819dyYzdoR5\n0PU88ddidm73otIomJKcuIIBNu7pIcSoZdE1NqC3cLF0XTmFpXbaujxEmw2Mzo5F2xPOW+/3xoje\nflM8t9+Y0H8V/GxqaHLzzsomNnzRhj+gYInRM2+2lZnTYjDopdp7Jh2ejFFc6qCsyjV4Mkauibwc\nScYQQgghhLiQjbVZyE2N4u1PKlhfWM9vXi1gxvhkbr0ykxCDnNqJi5N8556gwU7sx9os/bGgHl+A\nti43gUAQRVEYXfAJaiVI0lUZKCoVlZHDuM2iZ9cBhdDYDJpb2iirqu2N/zRkoihBnJ4KAm43zh4f\nr77ZRG29m9lXx3L9zLgj1qMoCm/8u+FgQSJIeLIDjeHQFe/C0hbmT8/CoNOwdF35gA4Oe6uXfxd1\n4u9xEhut4wf3Z5BnM53197Cmroe3VzSycUs7QQUSrQbmz43nysnRaLVyNf5M6OjysfewoZSSjCGE\nEEIIMbSEGrUsnpXLpDwrL6/ex8cFdRSW2Vl8XS7XWMLP9/KEOGlSlDhBXz2xb+3ysHZbHYqioFKp\nKCy198+TCHF2k1u8FU9kBBkjIvjSm8A10+Lx+hWaNTbUwSCbCnYBEGbIRK3S4fLWEFBcADy5pJyK\n0gCj88O5d1HKEWtRFIVXlx3g3VVNqLUBTMlONPrggMe0d7v7OzoKS+39t3u7dbiaQlGCKkxRAf7v\n5/nERJ7dq+OllU7eXtHIlsJOANJTQlgwN57JEyLPeczoUCPJGEIIIYQQlyZbSiSPfWMiy7+oYeWm\nGv60bBcfFdQxKiOacTYLsZFHbv0W4kIkRYkT4PEFBpzYH27j7kbc3sCA20bt+AxtwE/i9AwCag3d\nyflEhWnYUm9Aa45kz75yOrq6MWit6DSR+AIdePxNvc/VqaeiKUC4WcWPvp1xxHaKYFBhyT/3s3p9\nC4lWA3prB53ugQUJgKhwIxEmA50OD21dHpQguJpD8HYZQKUQanWhj/ASUAJHfO2ZoCgKRSUOli1v\nZGdx7zBEW1YYC+bGM2G0WeYUnIKvJmMUlzpoafP13280qBk7wszwnDDyc8PJzgiVZAwhhBBCiCFM\np9Vwy5WZTBwWx78+LmNvdRvFVW28sa6cVKuJcTYL420WEmPD5PdvccGSosQJ6DuxH8xXCxJ6t4v8\nXV/gM4WRMzGOjd5ELh8VS0dPkB7TcBxOF3v2lWHUhWLUphBUfDg9VQD4XFpcTSGo1EGiUr1odQP/\n4QgEFJ59sYYNX7SRnhzCL3+YzcotVQM6OPqMtcVi0GmIMBkI1Rg5UKUj6NOgMfgJS3Ch0QeJNvcW\nLs4kRVHYvruLZcsb2VfeG90xang4C26IZ8Qwk/xjeBICAYWqWldvJ8RJJmMIIYQQQohLR3KciR/d\nMRatUcfaTdVsL7Wzt7qd2iYH731WhTUqhHG5FsbZLGQkmFHL7+TiAiJFiRMQYTIQ/ZW4z6MZsesL\n9D4vcdfk4Nfq0GWOQK9Vsb0tDiVEx+bC7Xh9QSJCslCp1DjcZSj4CHjVOA+EAhCW6MRxcKBmXFTv\nbT5/kKefq+bLgg5smaH8/PvZhJu0hw3XbKG9201UuJGxtlgWzsgmGFRY9XEL9SVGlCAYotyExPSm\ndMChwsWZEAgqbCro4O0VjVTV9gAwcUwE8+fGk5slOcon4kSTMfJt4Qy3hUkyhhBCCCGEGCAq3MhV\nY5K4akwSLrefXRUtFJTa2V3ZyqpNtazaVEtUuIGxObGMt1mwpUaiUUtnrTi/pChxAgaL++xj1Ktx\ne3tPHLU+LyN3fE7AaCBrSiJbgimMt0VT36nCHZJGTV0D9Q3NhOrSUKtC8Pob8Qc7CQZUOOrDUIJq\nQq0udKEBosMN/V0MHm+Q3/2lku27uxgxzMRPv5PVH5mpUatZdI2N+dOzBqSCtHX4eOYf1ews6iYy\nQsuocVoOdLtp72ZA4eJ0+f0Kn25u452VjdQ3eFCpYOplUcyfayU9JfS0jz+USTKGEEIIIYQ4W0KN\nWibnxzM5Px6vL0BRVRvbS+3sKG9h3fZ61m2vJ8yoZUxOLONsFvLTo9GfoQuWQpwMKUqcoME6EkZl\nx+Dq8bF5bzMAw/dsJsTtwjIjF79Oj2X0SAD2K1n4fAG27tiDThOJQWfFH3SRk9pDYRk4G0IJ+jQY\notwYIrxAb9yPQaehpyfAr56poKjEwbiRZn78UOagsZkGnaa/q2Lrjk6efaGGLoef8aPMfOebaUSY\ndceMMz1ZXl+QdZ+38u6qJppbvGg0MGNqDLdebyUp3nhaxx6qTiQZo68LQpIxhBBCCCHEmaI/eJF1\nrM2CPxCkdH8H20vtbC+1s3F3Ixt3N2LQaRiZ2Tskc1RWLKFGOVUU54Z8p52gwzsS2rrcrN22n13l\nLf1bOtR+P6O3f0pQpyNrajK79OmMSAynvMOIWxNF4a499LgDmI298Z893goWzxpDdalCh8uPLsxH\nSKwbo17DFSPjWTgjm26HnyeeLqesysWUCZH84P50dNqjt1d5vEFeeauelR/b0WlV3HdnMnNmWPpb\n/A8vXJyqHneADze08O81zbR3+tDrVFw/08K82VYsMfrTOvZQ09ziGTCUsr5xYDLGsBwTw3PCJBlD\nCCGEEEKcM1qNmrz0aPLSo1l0rY2qhi62l9gpKLWzraT3j0atYnh6FONsFsbmWIgIk9/zxdkjRYkT\n8NUOg/WF9awvPDDgMbZ9BZicnVimZuELCSFlwki8AQW71kZrWyclFdWE6XNRq7Q4vdUkxGrYuKmb\nqnI/aclGvnNfFgajBktkCAadho5OH4//oZzquh6uviKah+5JO+YQw5q6Hp56roraejcpiUYeeSD9\njG6fcDj9rPjYzvKPmnE4AxgNam6ZY+Wm6+KIjJAr+oqiUHfA3T+U8qvJGCFGScYQQgghhBAXFrVK\nRVZiBFmJESy4Kov6FmdvB0WJnT2VbeypbOPV1SVkJ0cw3maRqFFxVkhR4hgCwSBL15VTWGqnrctD\ntNnAqOxYdpYNjAdVBYOMLdiAolGTMT2V8vBssiNC2dcVixs9mwo2o9fEo9OY8frb8QeauXbUGJ7+\nf9VEmrX87HvZA7oMWtq8/PL3ZRxo8jBnhoV7FyWjVg9ekFAUhdXrW3hpaR1en8Lsq2O5Z2HyoFs8\nTkVHp4/3P2xm9Xo7Pe4gpjANX7s5getnWgg3XbrfPgOSMUoc7C0bPBkj3xZOns0kyRhCCCGEEOKC\nplKpSLaYSLaYuOmKDOwdPRSW9nZQlNd1UlbXKVGj4qy4dM8qT8DSdeUDhlu2dnlYv73+iMdllu8i\norOV2MtS8ZtMpE0YQbdHRbMqlZKyajo6/YQbkggGvbi8VQS8av7yj1o0GhWPPpiOovbj8Wkw6DQ0\nNHv45e/LsLd6uWWOlcULEo/6g97V7efZF2vYuqOTcJOGR/8jjcvGRp6R197S5uWf75Tz/poDeH0K\nURFabr8pgVnTY/uHbF5KvL4gO/Z08MWW5kGTMSwxeq4cIckYQgghhBBiaLBEhnDdZalcd1kqnU4v\nhWX2waNGbRbG5UrUqDh1UpQ4Co8vQGGpfdD71Cr6BxSiKIzdth5FpSL9qnQaLbkkGvWUONNw9Pgo\n3FNKmH4YoMLprSTgD+A8EI7fG2TS5QZeXru7vwsjyxrDls+9tHf6WXRLAgtuiD/qie2u4i7+uKSG\n9k4fI4eH871704iJOv29Xgea3LyzoolPvmzDH1CwxOi5ZY6VmdNiLqntBk5XbzLG3rKjJ2P0FSAk\nGUMIIYQQQgxlEWH6o0eNbq5l1eZaIk363gKFzYItJRKt5tI5dxCnR4oSR9Hp8NDW5Rn0vuChc1NS\nq/cR29JA9OhEAtFRJI7Jo6VHT0swlvLyPejUSWjURty+A/j8XTgOmAh41cSlBCltaeo/TlOzn4rt\nDpSgmm/ekcyN18YN+tw+f5B/vdvAe6ubUKvh67clcvMs61G3d5yomroeli1v5Iut7QQVSLQauOdr\n6YzND0WrHfoVz44uH3sPG0pZvX9gMkZGaijjR0eRnqKXZAwhhBBCCHHJOiJqtLqN7SWDRI1mxzIu\nV6JGxfFJUeIoIkwGos2G/nSNw8WYDYzKimFXeSvjtq4DIP3qTBypw4nUaqn1ZNHa1sbk3CRqan0E\nFScubz2u5lACbi26cC9eo4u+U31/j4buehMEIS7Nx3VXxQy6pgNNbp5+rpryahcJcQZ+8EA6ORlh\np/U6SyudLFveyNYdnb2vIyWEBTfEM3l8JPFWM3Z792kd/0KkKAr2Vi/FpQ6KSh3sPUYyRn5uOLlZ\nYYSGaLBYwofk+yGEEEIIIcSp0Os0jM3pTeg4Imp0TyMb9/RGjY7IjGa8RI2Ko5DviKMwHMzyPXym\nRJ+xNguLrrHRqN9MbWMNkcOtKIkWInNzqXdH0uYLYefuPWz3ZqDXgk+pxdOux9ulR2P0E2Z10bcr\nw+fU4jgQBgqExbsIGH10OjwDojsVRWH9xjaW/HM/bk+QGVdEc++ilFOe7aAoCkUlDpYtb2Rnce9J\ndm5WGAtuiGf8KPOQm4VwoskYeTYTeTaTJGMIIYQQQghxko4WNbq91E5BSe8fiRoVg5GixDEsnJEN\nQGFpC+3dbqLCjYy1xfbf3vzXlwFIuzqDYFY+PpWGWn8au4pL6eyMRauBOVNUvPyem56WMFTaIKZE\nJ6qD57tehxZnQ2+nQ1iiE73JT1S4kQjTofkETpefv72yn8+3tBMaouaRB9KZNin6lF6PoigU7Ori\n7RWN7Ct3AjBqeDgLbohnxDDTkClG9CVj9HVBSDKGEEIIIYQQ585Xo0YPtDgpONhBIVGj4qukKHEM\nGrWaRdfYmD89i06HhwiTAcPB/VDOXXtxb9yCOTMGdWYSuoxsqryJNHV4qKzowaCLZkSWhqQoP86m\nUFApmBKdqLW9gwq8XTqcjaGgAlOiE11Y70nzWFts/3PsLXPw9N+rsbd6GZYdxg/uTz+lgYqBoMKm\ngg7eXtFIVW0PABPHRLBgbjy2rNPb/nEh8PqClFU6+7sgBkvGmD4ymrwckyRjCCGEEEIIcQ6pVCqS\nLCaSjhc1GmdiXK6FSXlWrId1jYuhT4oSJ8Cg0wzYTgFw4M8vApA6IxNt7khcQT37ffFsKdyJXpuI\nTuvnuvE6fvG7apSgirBEB1pjAABPpx5XUwhqDSRke3HjH9CFEQgoLFveyJvvNwCw8KZ4brsx4aSv\n5vv9Cp9ubuOdFY3UN3pQq2DqZVHMn2slPeXi/UE/PBmjqMRBebUkYwghhBBCCHExOGbUaHNv1GhG\ngpnJ+VYuGxY3oItcDE1SlDgFPWXVtK9cjyklAvOYLPzJ6VS7UymtOoDHaUGlgq/PDuXp5ypp6/Cx\neEEibn0XhaUtHKgN4moORW+A//2xjdTkkAFdGM0tHv64pJq9ZU4sMXq+f186eTbTSa3P6wvy8Wet\nvLuqCXurF40GZk6N4da5VhKtxrP0rpw9fckYfdsxBkvG6JsHMTwnjAhJxhBCCCGEEOKC99Wo0cIy\nO5uKmyiubqOqoYs3Pi4jLz2ayXlWxtkshBjk9HUokk/1FDT85WVQFFKuyiSYPYLOYDhtwUjUngCg\ncM1EHctX11FR42LG1BhumWMFrKidJsq3NRIVoeXxH+aQktS7b6qvC2Pjlnb++nItrp4Al0+I5Nt3\np2IKO/GPqMcdYM2GFt5f00R7px+9TsX1My3Mm23FEnNxDJE5XjKG7mAyRl8Roi8ZQwghhBBCCHHx\nCjVquWJkAleMTKDT6WXL3iY2FzdRVNVGUVUbr6wpYUx2LJPzrIzMikGrkcH0Q4UUJU6Sp66B1ndW\nEhJnImrycPzWFMpdqWi8booqFNLi1bQdaOXLbR3k2Uz8x9dTAHh12QHeXdWEJUbP4z/KISHuUBtS\njzvA86/Xse7zVowGNQ9/I40ZU6NPeO6Bw+lnxcd2ln/UjMMZwGhQc8scKzddF0dkxIXdNdCXjFFU\nemg7Rmu7JGMIIYQQQghxqYoI03PthBSunZBCU7uLzUVNfFncxNZ9zWzd10yYUcv43Dim5FvJSYlE\nLfPiLmpSlDhJDf/vVRR/gJSrMwnmjKTRH0tAbeSDda0YdJAd52bJK41YLXp+8lAmGrWKv7+2n9Xr\nW0i0Gnj8RznERh/qWqiodvGH56poaPKQlRbKDx5IJyn+xLZYdHT6eP/DZlavt9PjDmIK0/C1eQnM\nnWk5qQ6Lc+mryRjFZQ66HYH++80mLZPHR5KXYyIv10R6siRjCCFnnIf+AAAgAElEQVSEEEIIcamy\nRoVy09QMbrwinZqmbjYVNbF5bxOf7jzApzsPEBVuYFKelcl5VlLihk6i4KXkwjxzvUD57K3YX38P\nQ1QIMVeOwBubTJUriR27u/D44OrR8NI/awgN0fCz72URFqrh2RdrWL+xjfTkEH75aHZ/50IwqPDv\nNc28/s4B/AGFebPjWHRrIjrt8bsA7K1e3lvdxNpPW/D6FKIitNx+UwKzroolxHhhbWXweIOUVTn7\nZ0KUDJKMMW5kRH8RIineIP+QCCGEEEIIIQZQqVSkx5tJjzdz+9XZlNS282VxEwUlzazeXMvqzbUk\nxoYxOc/KpDwrFokYvWhIUeIkNC75F4rHS/KcPIK5o6n1JeLoDlJe4yM/XcWydysIBBV++u0M4uMM\n/OG5Kr7c1kFORij//YNswk29b3dbh49nnq9mZ3E3URFavntvOmPyzcd9/gNNbt5Z0cSGL1sJBHpP\n6G+ZY2XmtJgLZkvD8ZIxkhOM/Vsx8mymi2bWhRBCCCGEEOLCoFarGJ4ezfD0aBZfZ2NXRSubiprY\nWdHCO59W8s6nlWQnRTA538qEYXGYQ+Wc40ImRYmD3F4/ze2u/hSMr/J3dtP80pvoTHrirh2HMyqV\nAy4LH33WRlS4ip3bauns8nPfnSkMt5n4vz9Xsn13F/m5Jn723SxCDg5j3Lqjg2dfqKXL4WfCaDMP\nfyPtuGkRNXU9LFveyBdb2wkqkBRv4Na58Vw5KRqt9vx2FUgyhhBCCCGEEOJ80Wk1jM+NY3xuHC63\nj4KS3gSPfTXtlNd38q+1ZeRnRDMpz8rYnFiMejkFvtBc8p9IIBhk6bpydlW0Ym/vIdpsYKzNwsIZ\n2WjUh7oPml9+i4DDRcqcXILDx1DpTWH7TieKAv7OFmrrepgzw8LVl0fzv38sZ88+B2NHmPnJQ5kY\nDGo83iAvv1nPqnV2dFoV992ZwpwZscfcqlBa4WTZika27ugEID0lhAU3xDN5fCQa9bkvRvQlYxSV\n9M6CkGQMIYQQQgghxIUi1Khj2uhEpo1OpL3bw5a9TWwqbmJXRSu7KlrR69SMy7EwKc9Kfka0JHhc\nIC75osTSdeWs3VbX//fWLk//3xddYwMg4HLT+LdX0YZosV4/gY6ITCobw6iu6yQurIdNG1sZkx/O\nwpvieewPZZRWupgyPpIf3J+OTqempq6Hp56rorbeTUqSkUcfyCAtefA9ToqisGefg2XLG9m1txuA\n3KwwFtwQz/hR5nM6byEYVKit76FYkjGEEEIIIYQQF5GocAOzLktl1mWpNLQ6ewdkFvcWKTYVN2EK\n0TFxWByT861kJUVIgsd5dEkXJTy+AIWl9kHvKyxtYf70LAw6DfbX38Xf0U3KzCwYOYHynhS+2NJN\nVFiQTRv3k5xg5L47U3jsD+VU7+/hqsujefgbaajVsPJjOy8trcPnV5gzw8Ldtydh0B954q4oCgW7\nuli2vJGSCicAo/PCWXBDPPm552aKbCCgUFnrorjUQfHBoZSd3f7++yUZQwghxLlSWlrKgw8+yD33\n3MNdd93Fd7/7Xdrb2wHo6OhgzJgxPPHEEzz//POsXr0alUrFww8/zPTp08/zyoUQQlxoEmLCuOXK\nTOZNy6CyoYvNRU1s2dvE+sJ61hfWE2M2Mjm/N8EjyWI638u95FzSRYlOh4e2Ls+g97V3u+l0eIgN\n09H4lxdR6zTE3zSFhjAbm7YHUQIBdu+sJtyk4dt3p/DrZyqob/Qw++pY7rszBYczwLMv1rB1Ryfh\nJg0//EYal42NPOJ5AkGFTds6WLaiker9PQBMHBPBgrnx2LLCzurrP14yRnycgTEjzJKMIYQQ4pxy\nuVw88cQTTJkypf+2Z555pv+//+u//ovbbruN/fv3s3LlSt544w0cDgeLFi1i6tSpaDSydVAIIcSR\nVCoVWYkRZCVGsHBmNnur29lU3ERBqZ0VX9aw4ssaki0mpuRbuWy4lZgI4/le8iXhki5KRJgMRJsN\ntA5SmIgKNxJhMtD69nK8TW0kTk1HGTuJPW3xVFZ109nQRNAX4L670/jT8zU0t3i5ZY6VxQsS2VXc\nzZ+er6G908eo4eF87940oqMGTnz1+xU+3dTGOysbqW/0oFbB1MuimD/XSnpK6Fl5vX3JGH2dEMdL\nxsgbFoPd3n1W1iKEEEIcjV6vZ8mSJSxZsuSI+yorK+nu7mbUqFEsW7aMadOmodfriY6OJikpifLy\ncnJzc8/DqoUQQlxMNGo1IzJjGJEZw2JfgJ3lLWwqamJ3ZStvbajgrQ0V2FIiexM8cuMwhcjA/rPl\nki5KGHQaxtosA2ZK9Blri0WvhoY/LkGlUZEw/wqq9cPZ+HkPflc3rU1d3HlLAi++UU97p49FtyRw\n8+w4XnmrnvdWN6PRwNdvS+LmWXGoDxtK6fUF+fizVt5d1YS91YtGAzOnxnDrXCuJ1jNbievo9FFc\n1luAOGoyRq6JvBxJxhBCCHHh0Gq1aLWD/4ryyiuvcNdddwHQ0tJCdHR0/33R0dHY7fZjFiWiokLR\nas9OJ4XFEn5WjitOnHwG5598BueffAanJjkxkrlXZtPt8rJx5wE2bK+jqLKV0v0dvP5RKeOHWZk+\nNpmJ+dbjJnjIZ3ByLumiBMDCGdkA7KpopaWjh6hwI2NtsSyckU378rW4axuxTkwhMH4an5aa6e7o\nYn95I1ddHs0HH9npcvj55teSGTfKzE9/XUZFjYuEOAOPPJBOdsah7Rc9PQHWfNLC+2uaaO/0o9ep\nmDvTws2zrVhiTj8396vJGMUlDg40STKGEEKIocPr9VJQUMBjjz026P2Kogx6++Ha211neFW9LJZw\n6S48z+QzOP/kMzj/5DM4M8ZnxzA+O4a2Lnf/cMzNRY1sLmrEoNcwLsfClHwrw9OjBiQ2gnwGR3Os\nQs0lX5TQqNUsusbGA/NDqKhuJcJkwKDToCgKB/7wN1BB4u1TKSKf4hIX+8vqGZ4dyubtHbg9Qb59\ndwoatZofPr4PtyfIjKkx3LsomRBj7wl/t8PPyo/tLF/bjMMZIMSo5pY5Vm66Lo7IiFPvTAgGFeoa\n3P1bMYpLJRlDCCHE0LZ161ZGjRrV//e4uDiqqqr6/97U1ERcXNz5WJoQQoghKNpsZM7kNOZMTqPe\n7uhN7ihq4suiRr4sasQcqmPicCuT861kJpzbpMSh5JIvSvQx6rXERR2a5dD58ee4ymqJHZ2Ae9Is\nPirQ0FzbSLRJoaLahc+v8O27U9hZ1M3GrR2Ehmh45IF0pk3qbSPt6PTx/ofNrFpnx+0JYgrTcMe8\nBK6facEUdvJve38yxsFOiL1lDrodgf77zeGSjCGEEGJo2717N8OGDev/++TJk3nxxRf5zne+Q3t7\nO83NzWRnZ5/HFQohhBiqkiwm5k83ceuVmZTXd7KpqImt+5r5uKCOjwvqiIsMYVKelasmpmLSqdCd\npa2CQ5EUJY6i4cm/ApC4cDqfdNioKm/H7+yixRMAlYo75iXy1ge9cyGGZYfxg/vTiYs1YP//7d17\nVFV1+sfx94EDIveLHPCSN8JAVNRyyls1pc6MuvL3c8y8gDNTWUY6VmPJkFO2clQcmmp0nMmypQt1\npNRf2pTalFmuQM1sGMVbOFiIXAW5KZcD+/cHehKl0hQ2eD6vf1ps9jnn2c/5dtw85/v9PqdreGdb\nPh9+WkRNrUGAn5VJ4zoy6u4OjtkTV+JCZ4wLRYhLO2MEB7kzsK+fYyaEOmOIiMiN4uDBgyQmJpKT\nk4PVamX79u0sXbqUwsJCunbt6jivU6dOTJw4kZiYGCwWC/Pnz8fFRbMCRUSk+VgsFsK7+BPexZ/J\nI8LJyCpmz6F89n9VyLupJ3g39QSuLhY6B3vRPdSX7h196BHqS+dgL6yu+jeqKRbjShZgtjLNsUbn\n4rU/5an7ODxhBgERNnxf+wuvfBjKf//zX+y1dtysLtwx0I9dexp6pU+8ryMTxoaSV1jNpvfz+STt\nNHV1DUWD8aNDuGdY0BUtm7isM0bWWex1l3TGOL8pZe9e3tdlH4ofovVQjSkfjSkfjSkfl1NOGrtR\n8tHWN+9qrvfgRnl/2zK9B+bTe2A+vQfmqaqxk555mpOnz3I46zTf5Fdgr/v2S2Wrqws32bzp3tGH\n7qENhYqOHTwv25PiRqU9Ja5S7pKGXuidJt/NW8e78s3RLGqq7Xh4uGALcueT3SUEB7nzxPTueLZ3\n4ZXXT5D6eQn1BnQObcf4MaHceXsgVut3z1y4uDPGofOdMYyLOmP07OZJZC91xhAREREREWntPNyt\n3N47hLHnC0P2unpOFVVyIq+cE7llZOWV801+OVm5ZY7HuFtd6BrSUKRoKFb4Ehro2ah7ozNQUeIS\nlf8+yJm9h/DtGUjOkCmkpuRztqwSDw8XMOCbnCqGDvJn5J0deGdbPp//uxSAHl3b88sxodxxqz+u\nlwwiwzAoKKpptCnlpZ0xIs/PgIg63xmjvTpjiIiIiIiItElW14aCQ9cQH+6M7gRArb2ek4UVjkLF\nibxy/nuqjMycUsfj2rm70u2iQkWPUF+CA9rjcgMv1VdR4hK5ia8AEPrAPSzd7cvpnOO4WaGqqh6P\ndi78z89tHD9xlvkvZQIQcbMXE8aGMrDvt7utXm1njPAenripM4aIiIiIiMgNy83qQo+OvvTo6AsD\nOgNQU1tHdkEFWeeLFCfyyvkq+wzHss84Hte+nbWhSBHqQ/eOvvQI9SHIz+OG2VNQRYmLnDv6FcWf\n/huvzn4cuO3XHEj+BgsGtXYItbXDo50L72wrACC6tw8TxoYSdYs39fWQeeLbzhiHjlVQUdlEZ4zz\nRQh1xhARERERERF3N1fCOvsR1tnPcayqxs43+RWO2RRZeeUc/rqEw1+XOM7xbu/WaNlH91AfAnza\nZvMDFSUukrvwJTAg+IERvPLeWWqraoCGokJeQcNyi58M8OO+UTYMAw4dq2DDe3lNdsa4rZ9fw54Q\n6owhIiIiIiIiV8jD3Uqvm/zpdZO/49jZKjtf55dzIq+ME7kN/z2YVczBrGLHOb5e7pfNqPDzbmfG\nJVyVVlOUWLhwIenp6VgsFhISEujXr1+Lvn7FsUxOf/QF7W3efNA9lqL3C7BYwDCgvMJO1C3ehAa7\nk5NXzfykTNM7Y4iIiIiIiIhz8PSwEtktgMhuAY5jFedq+TqvcaHiP8dP85/jpx3nBPi0a1So6B7q\ng49n6/p7tVUUJfbu3cvXX39NSkoKx48fJyEhgZSUlBaN4eCcFzHqDfzGj+D/tje8iYYB3l6uVFTW\nkXG0goyjjTtjRPXyJjLcG1+fVpFGERERERERcRLe7d2I6hFIVI9Ax7Gyyprze1M0FCqy8sr48qsi\nvvyqyHFOkK9Hwyaa54sU3UJ98PIwr9tjq/hrOi0tjREjRgAQFhZGaWkpFRUVeHt7t1gMFXsP0C6g\nPa+7/i/1dd92xqiurnfsBaHOGCIiIiIiItJa+Xq50y8siH5hQY5jJeXVF82maChYfHG0kC+OFjrO\nsQW0p3uoD71u8ufO6E5YXVuuEUOrKEoUFRURFRXl+DkwMJDCwsIWLUqUPzqbUrzJ2F9Nnwhv+kf5\nEhmuzhgiIiIiIiLSdgX4tCPAJ5gB4cEAGIZBcdn5QsVF7Un3Hi5g7+GCbzuEtJBWUZS4lGEY3/v7\ngABPrNbrO1shMvZ/qa6uY+dz/uqMcZHgYB+zQ2hVlI/GlI/GlI/LKSeNKR8iIiJiNovFQpCfB0F+\nHtx6iw1o+Bu8sLSKsooauoe27P1KqyhK2Gw2ioq+XeNSUFBAcHDwd55fUnL2uscQcbMvhYXlFBdX\nXPfnbquCg30oLCw3O4xWQ/loTPloTPm4nHLS2I2SDxVWREREbjwWiwWbf3ts/u1b/LVbxbqEoUOH\nsn37dgAyMjKw2WwtunRDRERERERERFpeq5gpMXDgQKKiopg0aRIWi4Xnn3/e7JBEREREREREpJm1\niqIEwJw5c8wOQURERERERERaUKtYviEiIiIiIiIizkdFCRERERERERExhYoSIiIiIiIiImIKFSVE\nRERERERExBQqSoiIiIiIiIiIKVSUEBERERERERFTqCghIiIiIiIiIqZQUUJERERERERETKGihIiI\niIiIiIiYQkUJERERERERETGFihIiIiIiIiIiYgqLYRiG2UGIiIiIiIiIiPPRTAkRERERERERMYWK\nEiIiIiIiIiJiChUlRERERERERMQUKkqIiIiIiIiIiClUlBARERERERERU6goISIiIiIiIiKmsJod\nQGuwcOFC0tPTsVgsJCQk0K9fP7NDajZ79uxh9uzZhIeHA9CrVy8efvhhnnnmGerq6ggODuZPf/oT\n7u7ubNmyhdWrV+Pi4sLEiRO5//77qa2tJT4+nlOnTuHq6sqiRYu46aabTL6qH+fYsWPExcXx61//\nmpiYGHJzc685D0eOHGH+/PkA3HLLLbzwwgvmXuRVuDQf8fHxZGRk4O/vD8BDDz3E3Xff7TT5WLJk\nCV988QV2u51HH32Uvn37OvX4uDQfO3bscNrxce7cOeLj4zl9+jTV1dXExcURERHh1OPDmTnTPURr\ndenn06hRo8wOySlVVVUxduxY4uLiGD9+vNnhOJ0tW7bwxhtvYLVa+e1vf8vdd99tdkhOp7Kykrlz\n51JaWkptbS2PP/44w4cPNzustsFwcnv27DEeeeQRwzAMIzMz05g4caLJETWv3bt3G7NmzWp0LD4+\n3nj//fcNwzCMl156yVi7dq1RWVlpjBo1yigrKzPOnTtnjBkzxigpKTE2bdpkzJ8/3zAMw9i1a5cx\ne/bsFr+G66GystKIiYkx5s2bZyQnJxuGcX3yEBMTY6SnpxuGYRhPPfWUsXPnThOu7uo1lY+5c+ca\nO3bsuOw8Z8hHWlqa8fDDDxuGYRjFxcXGXXfd5dTjo6l8OPP4eO+994wVK1YYhmEYJ0+eNEaNGuXU\n48OZOds9RGvU1OeTmOPPf/6zMX78eGPjxo1mh+J0iouLjVGjRhnl5eVGfn6+MW/ePLNDckrJyclG\nUlKSYRiGkZeXZ/zsZz8zOaK2w+mXb6SlpTFixAgAwsLCKC0tpaKiwuSoWtaePXu49957AfjpT39K\nWloa6enp9O3bFx8fHzw8PBg4cCD79+8nLS2NkSNHAjBkyBD2799vZug/mru7O6+//jo2m81x7Frz\nUFNTQ05OjuNbsgvP0RY0lY+mOEs+Bg0axKuvvgqAr68v586dc+rx0VQ+6urqLjvPWfIxevRopk+f\nDkBubi4hISFOPT6cme4hzHeln0/SvI4fP05mZqa+nTdJWloagwcPxtvbG5vNxosvvmh2SE4pICCA\nM2fOAFBWVkZAQIDJEbUdTl+UKCoqajRgAgMDKSwsNDGi5peZmcmMGTOYPHkyn332GefOncPd3R2A\noKAgCgsLKSoqIjAw0PGYC3m5+LiLiwsWi4WamhpTruNaWK1WPDw8Gh271jwUFRXh6+vrOPfCc7QF\nTeUDYM2aNUybNo0nn3yS4uJip8mHq6srnp6eAGzYsIE777zTqcdHU/lwdXV12vFxwaRJk5gzZw4J\nCQlOPT6cmTPeQ7Q23/X5JC0rMTGR+Ph4s8NwWidPnqSqqooZM2YwZcoUFbVNMmbMGE6dOsXIkSOJ\niYlh7ty5ZofUZmhPiUsYhmF2CM2qe/fuzJw5k1/84hdkZ2czbdq0Rt8ofNf1X+3xtu565KGt52bc\nuHH4+/sTGRnJihUrWLZsGQMGDGh0zo2ejw8//JANGzbw5ptvNlqj7Kzj4+J8HDx40OnHx/r16zl8\n+DBPP/10o/iddXyI3jczXfz5JC3rnXfeoX///m12j7EbxZkzZ1i2bBmnTp1i2rRpfPzxx1gsFrPD\nciqbN2+mU6dOrFy5kiNHjpCQkMCmTZvMDqtNcPqZEjabjaKiIsfPBQUFBAcHmxhR8woJCWH06NFY\nLBa6du1Khw4dKC0tpaqqCoD8/HxsNluTeblw/MK3QLW1tRiG4fh2sK3z9PS8pjwEBwc7pmxd/Bxt\n1eDBg4mMjATgnnvu4dixY06Vj127dvH3v/+d119/HR8fH6cfH5fmw5nHx8GDB8nNzQUgMjKSuro6\nvLy8nHp8OCtnu4dorS79fJKWtXPnTj766CMmTpzI22+/zfLly0lNTTU7LKcSFBTEgAEDsFqtdO3a\nFS8vL4qLi80Oy+ns37+fYcOGARAREUFBQYGWk10hpy9KDB06lO3btwOQkZGBzWbD29vb5Kiaz5Yt\nW1i5ciUAhYWFnD59mvHjxzty8MEHHzB8+HCio6M5cOAAZWVlVFZWsn//fm677TaGDh3Ktm3bAPj4\n44+5/fbbTbuW623IkCHXlAc3Nzd69uzJvn37Gj1HWzVr1iyys7OBhv02wsPDnSYf5eXlLFmyhNde\ne83RXcKZx0dT+XDm8bFv3z7Ht7FFRUWcPXvWqceHM3O2e4jWqKnPJ2lZr7zyChs3buStt97i/vvv\nJy4ujiFDhpgdllMZNmwYu3fvpr6+npKSEs6ePav9DEzQrVs30tPTAcjJycHLy0vLya6QxdBcQ5KS\nkti3bx8Wi4Xnn3+eiIgIs0NqNhUVFcyZM4eysjJqa2uZOXMmkZGRzJ07l+rqajp16sSiRYtwc3Nj\n27ZtrFy5EovFQkxMDPfddx91dXXMmzePEydO4O7uzuLFi+nYsaPZl3XVDh48SGJiIjk5OVitVkJC\nQkhKSiI+Pv6a8pCZmclzzz1HfX090dHR/P73vzf7Uq9IU/mIiYlhxYoVtG/fHk9PTxYtWkRQUJBT\n5CMlJYWlS5fSo0cPx7HFixczb948pxwfTeVj/PjxrFmzxinHR1VVFc8++yy5ublUVVUxc+ZM+vTp\nc82fo201H87Ome4hWqOmPp8SExPp1KmTiVE5r6VLl9K5c2e1BDXB+vXr2bBhAwCPPfaYY/NlaTmV\nlZUkJCRw+vRp7HY7s2fPZvDgwWaH1SaoKCEiIiIiIiIipnD65RsiIiIiIiIiYg4VJURERERERETE\nFCpKiIiIiIiIiIgpVJQQEREREREREVOoKCEiIiIiIiIiplBRQkREREREms3Jkyfp06cPsbGxxMbG\nMmnSJH73u99RVlZ2xc8RGxtLXV3dFZ8/efJk9uzZ82PCFZEWpqKEiLB58+bv/f0nn3zCmTNnvvec\n2NhYUlNTr2dYIiIicoMIDAwkOTmZ5ORk1q9fj81m429/+9sVPz45ORlXV9dmjFBEzGI1OwARMVdd\nXR3Lly9n3Lhx33nOqlWrmD9/Pv7+/i0YmYiIiNyoBg0aREpKCkeOHCExMRG73U5tbS3PPfccvXv3\nJjY2loiICA4fPszq1avp3bs3GRkZ1NTU8Ic//IG8vDzsdjvjxo1jypQpnDt3jieffJKSkhK6detG\ndXU1APn5+cyZMweAqqoqHnjgASZMmGDmpYvIJVSUEHFyCQkJ5OTk8OCDDzJ69GjWr19P+/btCQoK\nYsGCBWzZsoV9+/YxZ84cFi1aRFZWFm+88Qbu7u7U1dWxZMkSunTp8oOvc/LkSR577DF69epFeHg4\n06dPZ+HChWRkZABwxx138MQTTwCwfPlydu7cidVqJTw8nHnz5pGfn8+jjz7K0KFD2bdvHwEBAdx3\n331s3ryZnJwcXn31VSIiIkhKSmL37t24u7sTEhJCYmIi7u7uzZpDERERuXJ1dXX861//4tZbb+Xp\np5/mr3/9K127duXIkSMkJCSwadMmADw9PVmzZk2jxyYnJ+Pr68tLL71EVVUVo0ePZvjw4aSmpuLh\n4UFKSgoFBQXce++9AGzdupWePXvywgsvUF1dzdtvv93i1ysi30/LN0Sc3KxZswgMDGTBggUsXbqU\nVatWkZycTMeOHVm1ahVTpkwhODiYpKQkbr75ZsrKynj55ZdJTk7mrrvuYu3atVf8WsePH+fxxx9n\nxowZbN26lZMnT/KPf/yDtWvX8tlnn7F3716+/PJLPvjgA9auXcu6desoKSnhn//8JwBZWVlMnjyZ\nTZs2kZWVRXZ2Nm+++SZjx45l48aNlJaWsnbtWlJSUli3bh0jR46kqKiouVInIiIiV6i4uNixp8S0\nadOw2Wz88pe/JCsri2effZbY2Fj++Mc/UlFRQX19PQADBw687HnS09MZOnQoAB4eHvTp04eMjAyO\nHTvGrbfeCoDNZqNnz54ADB8+nLS0NOLj49mxYwcPPPBAC12xiFwpzZQQEQAOHTpEVFQU3t7eAPzk\nJz9h/fr1l53XoUMH5s6di2EYFBYWMmDAgCt+DT8/P8dNQnp6OoMHD8ZiseDq6sptt93GgQMHcHV1\nZdCgQbi5uTniOHDgAIMGDSIgIIAePXoAEBIS4rhZCQ0N5dSpU/j5+TF8+HBiYmIYOXIko0ePJjQ0\n9JryIiIiItfuwp4SFysvL8fNze2y4xdcuBe4mMViafSzYRhYLBYMw8DF5dvvWy8UNsLCwnjvvff4\n/PPP2bZtG6tXr27y/kZEzKOZEiLSpAv/yF+straWJ554ghdffJE1a9YQGxt7Vc958c3Fd91UfNdx\n4LINri7+2TAMAP7yl7+wYMECAGJiYjh8+PBVxSgiIiItw8fHhy5duvDJJ58ADTMily1b9r2PiY6O\nZteuXQCcPXuWjIwMoqKiCAsL48svvwQgNzeXrKwsAN59910OHDjAkCFDeP7558nNzcVutzfjVYnI\n1VJRQsTJubi4YLfbHdMfKyoqAEhNTSU6OhpoKCDY7XYqKytxcXGhc+fOVFdX89FHH1FTU/OjXrd/\n//6kpqZiGAZ2u529e/cSHR1N//792bNnD7W1tQCkpaU54vgh2dnZrFq1irCwMB588EFGjhzJkSNH\nflR8IiIi0vwSExN57bXXmDp1KvHx8Y6lGd8lNjaWyspKpk6dyq9+9Svi4uLo0qUL48aNo6SkhClT\npvDyyy/Tt29fAG6++WYWL15MTEwM06ZNY/r06Vitmiwu0irIzTMAAAE/SURBVJro/0gRJ2ez2ejQ\noQNxcXE88sgj/OY3v8Hd3Z3Q0FCeeuopAIYNG8aMGTNITExk7NixTJgwgU6dOvHQQw/xzDPPsHXr\n1qt+3Z///Ofs37+fyZMnU19fz4gRIxxrQceMGcPUqVNxcXEhKiqKsWPHcurUqR98zpCQEA4dOsSE\nCRPw8vLCz8+PmTNnXnVsIiIicv106dKFTz/9tMnf9e7dm3Xr1l12/NIlHUePHgXAarWSlJR02fne\n3t6sXLmyydd46623rjZkEWlBFuPCnGcRERERERERkRakmRIict1kZ2eTkJDQ5O8SEhKIjIxs4YhE\nRERERKQ100wJERERERERETGFNroUEREREREREVOoKCEiIiIiIiIiplBRQkRERERERERMoaKEiIiI\niIiIiJhCRQkRERERERERMcX/A/7pzi8ucwrOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "M8H0_D4vYa49", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This is just one possible configuration; there may be other combinations of settings that also give good results. Note that in general, this exercise isn't about finding the *one best* setting, but to help build your intutions about how tweaking the model configuration affects prediction quality." + ] + }, + { + "metadata": { + "id": "QU5sLyYTqzqL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Is There a Standard Heuristic for Model Tuning?\n", + "\n", + "This is a commonly asked question. The short answer is that the effects of different hyperparameters are data dependent. So there are no hard-and-fast rules; you'll need to test on your data.\n", + "\n", + "That said, here are a few rules of thumb that may help guide you:\n", + "\n", + " * Training error should steadily decrease, steeply at first, and should eventually plateau as training converges.\n", + " * If the training has not converged, try running it for longer.\n", + " * If the training error decreases too slowly, increasing the learning rate may help it decrease faster.\n", + " * But sometimes the exact opposite may happen if the learning rate is too high.\n", + " * If the training error varies wildly, try decreasing the learning rate.\n", + " * Lower learning rate plus larger number of steps or larger batch size is often a good combination.\n", + " * Very small batch sizes can also cause instability. First try larger values like 100 or 1000, and decrease until you see degradation.\n", + "\n", + "Again, never go strictly by these rules of thumb, because the effects are data dependent. Always experiment and verify." + ] + }, + { + "metadata": { + "id": "GpV-uF_cBCBU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Try a Different Feature\n", + "\n", + "See if you can do any better by replacing the `total_rooms` feature with the `population` feature.\n", + "\n", + "Don't take more than 5 minutes on this portion." + ] + }, + { + "metadata": { + "id": "YMyOxzb0ZlAH", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 121 + }, + "outputId": "0983a3a9-9c9b-487f-c37d-80b3f302e642" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "train_model(\n", + " learning_rate=0.00002,\n", + " steps=1000,\n", + " batch_size=5,\n", + " input_feature=\"population\"\n", + ")" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 225.63\n", + " period 01 : 214.62\n", + " period 02 : 205.24\n", + " period 03 : 196.42\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ci1ISxxrZ7v0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "id": "SjdQQCduZ7BV", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "train_model(\n", + " learning_rate=0.00002,\n", + " steps=1000,\n", + " batch_size=5,\n", + " input_feature=\"population\"\n", + ")" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From 84ee547e9c28baa93a6483f6f7efd83634d3772b Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sat, 23 Feb 2019 21:20:09 +0530 Subject: [PATCH 03/11] Created using Colaboratory --- synthetic_features_and_outliers.ipynb | 1109 +++++++++++++++++++++++++ 1 file changed, 1109 insertions(+) create mode 100644 synthetic_features_and_outliers.ipynb diff --git a/synthetic_features_and_outliers.ipynb b/synthetic_features_and_outliers.ipynb new file mode 100644 index 0000000..8832a01 --- /dev/null +++ b/synthetic_features_and_outliers.ipynb @@ -0,0 +1,1109 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "synthetic_features_and_outliers.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "i5Ul3zf5QYvW", + "jByCP8hDRZmM", + "WvgxW0bUSC-c" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4f3CKqFUqL2-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Synthetic Features and Outliers" + ] + }, + { + "metadata": { + "id": "jnKgkN5fHbGy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Create a synthetic feature that is the ratio of two other features\n", + " * Use this new feature as an input to a linear regression model\n", + " * Improve the effectiveness of the model by identifying and clipping (removing) outliers out of the input data" + ] + }, + { + "metadata": { + "id": "VOpLo5dcHbG0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's revisit our model from the previous First Steps with TensorFlow exercise. \n", + "\n", + "First, we'll import the California housing data into a *pandas* `DataFrame`:" + ] + }, + { + "metadata": { + "id": "S8gm6BpqRRuh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "9D8GgUovHbG0", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import sklearn.metrics as metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))\n", + "california_housing_dataframe[\"median_house_value\"] /= 1000.0\n", + "california_housing_dataframe" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "I6kNgrwCO_ms", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll set up our input function, and define the function for model training:" + ] + }, + { + "metadata": { + "id": "5RpTJER9XDub", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(buffer_size=10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "VgQPftrpHbG3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(learning_rate, steps, batch_size, input_feature):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " input_feature: A `string` specifying a column from `california_housing_dataframe`\n", + " to use as input feature.\n", + " \n", + " Returns:\n", + " A Pandas `DataFrame` containing targets and the corresponding predictions done\n", + " after training the model.\n", + " \"\"\"\n", + " \n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " my_feature = input_feature\n", + " my_feature_data = california_housing_dataframe[[my_feature]].astype('float32')\n", + " my_label = \"median_house_value\"\n", + " targets = california_housing_dataframe[my_label].astype('float32')\n", + "\n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(my_feature_data, targets, batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False)\n", + " \n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column(my_feature)]\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + "\n", + " # Set up to plot the state of our model's line each period.\n", + " plt.figure(figsize=(15, 6))\n", + " plt.subplot(1, 2, 1)\n", + " plt.title(\"Learned Line by Period\")\n", + " plt.ylabel(my_label)\n", + " plt.xlabel(my_feature)\n", + " sample = california_housing_dataframe.sample(n=300)\n", + " plt.scatter(sample[my_feature], sample[my_label])\n", + " colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)]\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " root_mean_squared_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " predictions = np.array([item['predictions'][0] for item in predictions])\n", + " \n", + " # Compute loss.\n", + " root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(predictions, targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " root_mean_squared_errors.append(root_mean_squared_error)\n", + " # Finally, track the weights and biases over time.\n", + " # Apply some math to ensure that the data and line are plotted neatly.\n", + " y_extents = np.array([0, sample[my_label].max()])\n", + " \n", + " weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0]\n", + " bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + " \n", + " x_extents = (y_extents - bias) / weight\n", + " x_extents = np.maximum(np.minimum(x_extents,\n", + " sample[my_feature].max()),\n", + " sample[my_feature].min())\n", + " y_extents = weight * x_extents + bias\n", + " plt.plot(x_extents, y_extents, color=colors[period]) \n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.subplot(1, 2, 2)\n", + " plt.ylabel('RMSE')\n", + " plt.xlabel('Periods')\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(root_mean_squared_errors)\n", + "\n", + " # Create a table with calibration data.\n", + " calibration_data = pd.DataFrame()\n", + " calibration_data[\"predictions\"] = pd.Series(predictions)\n", + " calibration_data[\"targets\"] = pd.Series(targets)\n", + " display.display(calibration_data.describe())\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % root_mean_squared_error)\n", + " \n", + " return calibration_data" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FJ6xUNVRm-do", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Try a Synthetic Feature\n", + "\n", + "Both the `total_rooms` and `population` features count totals for a given city block.\n", + "\n", + "But what if one city block were more densely populated than another? We can explore how block density relates to median house value by creating a synthetic feature that's a ratio of `total_rooms` and `population`.\n", + "\n", + "In the cell below, create a feature called `rooms_per_person`, and use that as the `input_feature` to `train_model()`.\n", + "\n", + "What's the best performance you can get with this single feature by tweaking the learning rate? (The better the performance, the better your regression line should fit the data, and the lower\n", + "the final RMSE should be.)" + ] + }, + { + "metadata": { + "id": "isONN2XK32Wo", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE**: You may find it helpful to add a few code cells below so you can try out several different learning rates and compare the results. To add a new code cell, hover your cursor directly below the center of this cell, and click **CODE**." + ] + }, + { + "metadata": { + "id": "5ihcVutnnu1D", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 957 + }, + "outputId": "702f13d4-400d-41ba-ef08-e18cc0c3e024" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] / california_housing_dataframe[\"population\"])\n", + "\n", + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\")" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 212.78\n", + " period 01 : 189.70\n", + " period 02 : 169.02\n", + " period 03 : 152.11\n", + " period 04 : 139.88\n", + " period 05 : 133.41\n", + " period 06 : 131.23\n", + " period 07 : 130.94\n", + " period 08 : 131.69\n", + " period 09 : 132.96\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 200.3 207.3\n", + "std 93.0 116.0\n", + "min 44.2 15.0\n", + "25% 163.8 119.4\n", + "50% 197.1 180.4\n", + "75% 225.5 265.0\n", + "max 4433.4 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean200.3207.3
std93.0116.0
min44.215.0
25%163.8119.4
50%197.1180.4
75%225.5265.0
max4433.4500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 132.96\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FOX2wPHv9k3vCQSSQIDQQYpI\nkQ4mFKUKigIq1861i+WiXsvPfrk2rFcU9KooIgjSBaQpGkBUWuhJCKT3ZOvM74/IXtEk7EKSzcL5\nPA/Pw25m5n0zM9mZPe+Z82pUVVURQgghhBBCCCGEaGBab3dACCGEEEIIIYQQFycJSgghhBBCCCGE\nEMIrJCghhBBCCCGEEEIIr5CghBBCCCGEEEIIIbxCghJCCCGEEEIIIYTwCglKCCGEEEIIIYQQwisk\nKCGEF7Vt25ZTp055uxu1uuGGG1i8ePFf3n/99df5xz/+8Zf3s7OzGT16dJ21P3XqVJYuXXrO67/+\n+uv07NmTlJQUUlJSSE5O5oknnqCystLjbaWkpJCXl+fROjXtPyGEEL6hbdu2DB8+3HUdGT58OI8+\n+igVFRXntd3PP/+82vcXL15M27Zt2bBhwxnvWywWunfvzsMPP3xe7borPT2d2267jeTkZJKTkxk7\ndizr1q1rkLY98eabb1a7T7Zv306nTp1cx+2P/3xFZmYmbdu2PeMe5rrrrmPv3r0eb+tf//oXn376\nqUfrLF26lKlTp3rclhCe0nu7A0KIC0tMTAzLly/3djfOkJyczP/93/8BYLPZuOeee5g7dy4PPPCA\nR9tZtWpVfXRPCCFEI/fRRx/RpEkToOo6cu+99/LOO+9w7733ntP2cnNz+c9//sOkSZOq/XnTpk1Z\nvnw5gwcPdr23YcMGgoODz6m9c/HAAw8wZswY3n77bQB2797N9OnTWblyJU2bNm2wfpyPpk2b+vy1\nW6fTnfE7rFixgjvvvJPVq1djNBrd3s79999fH90Tok5IpoQQjZDNZuOZZ54hOTmZIUOGuG4IAHbt\n2sX48eNJSUlh5MiRbNu2DaiKpl9++eU8++yzXH/99UDV6M6SJUsYO3Ysl19+OR9++KFrOwsXLiQl\nJYUhQ4Zw3333YbFYAMjIyODqq69m2LBh3H///TidTo/6npmZSYcOHYCq0Z677rqLRx99lOTkZEaO\nHMnBgwcBKCkp4cEHHyQ5OZmhQ4fy5Zdf1rjNtLQ0Jk6cyMCBA5k9ezZOp5O77rqL999//4xlevfu\njcPhqLV/RqORyZMns3Xr1rP2o23btrzzzjskJyfjdDrPyGxZsGABI0eOJCUlhdtvv52CgoI62X9C\nCCEaN6PRSP/+/dm3bx8AVquVxx9/nOTkZEaMGMHzzz/v+uzfv38/11xzDSkpKYwZM4bNmzcDcM01\n15CVlUVKSgo2m+0vbXTv3p3t27efkdW3YsUK+vXr53p9PvcKCxYs4Morr6R///6sWLGi2t8zLS2N\nrl27ul537dqV1atXu4Izb7zxBgMHDmTs2LG8++67DBkyBICHH36YN99807XeH197cg+zY8cOJkyY\nwPDhw5k0aRIZGRlAVcbIPffcw+DBg7n++uvPOeN08eLFzJw5k+nTp/Piiy+yfft2rrnmGu6++27X\nF/iVK1cyevRoUlJSmDZtGunp6UBVFubs2bOZOHHiGfdWAHfffTfz5s1zvd63bx+XX345iqLw73//\n25V5Mm3aNLKzsz3u98iRI7FYLBw5cgSo+X7u4Ycf5rnnnuPKK69k5cqVZxyHms5LRVF46qmnGDRo\nEBMnTmT//v2udn/88UfGjRvHyJEjGTFiBCtXrvS470LURIISQjRC7733HocOHWLZsmUsX76c1atX\nu9I4H3/8cWbMmMGqVau45ZZbeOKJJ1zrFRUV0b59ez7++GPXe4cOHWLJkiW8+eabzJkzB6fTSWpq\nKq+++irz589n/fr1BAYG8uqrrwLw8ssv06dPH9atW8f06dPZuXPnef0umzZtYsqUKaxevZrLLruM\n+fPnA/D888+j1WpZuXIlX3zxBa+//jppaWnVbmP79u189NFHrFq1ip9++okNGzYwevToMzIy1q5d\nyxVXXIFef/YEMLvd7hpdOFs/VFVl9erV6HQ613s///wz77//vqtPsbGx/Otf/wLqfv8JIYRoXIqL\ni1m+fDndunUDYP78+Zw6dYpvvvmGr776itTUVJYvX46iKNx3331cf/31rFq1imeeeYb777+fsrIy\nnn32WdcofnWj3UajkT59+vDtt98CUFZWxr59+1xtwrnfKxQWFqLValm2bBmPPvoor7zySrW/54AB\nA7jrrrtYsGABhw8fBqqyITUaDWlpacyfP59FixaxaNEifv75Z7f2nbv3MGVlZdx+++3cd999rF27\nlmnTpnH33XcD8OWXX5KXl8fatWt5/fXX2bJli1ttV2fr1q08+eSTzJo1C4C9e/dyzTXX8K9//Yus\nrCwee+wx5s6dy6pVqxg0aBCPP/64a93vvvuOd999lxtuuOGMbSYnJ7N+/XrX67Vr15KSksLhw4dZ\ntWqV61gNHz6c77///pz67XQ6MRqNtd7PAXz//fcsWrSIESNGuN6r7bzcvHkzW7du5ZtvvuHjjz8m\nNTXVtd4LL7zAI488wooVK3jrrbca5aM8wndJUEKIRmjDhg1MmTIFo9GIv78/Y8aMYc2aNQAsWbLE\ndXHp0aOHa+QAqr5sDx8+/IxtjRkzBoCOHTtitVrJz89n/fr1jBw5kpiYGACuvfZa1/ZTU1MZOXIk\nAF26dCExMfG8fpdWrVrRqVMnADp06MDJkyddv+O0adPQarWEh4czfPhwVx/+LDk5GT8/P/z8/Bg4\ncCA///wzAwcOJD093TVSsG7dOle/a1NWVsYnn3zi2k9n68egQYP+so2NGzeSnJxMREQEAFdffbUr\n86Ku958QQgjvmzp1KikpKQwdOpShQ4fSu3dvbr75ZqDqmjBp0iT0ej1ms5krr7ySrVu3kpmZSV5e\nHqNGjQKgc+fOxMbG8uuvv7rV5qhRo1zB93Xr1jF48GC02v/dup/rvYLD4WD8+PFA1b1BVlZWte2/\n9NJLXHfddSxbtozRo0czZMgQV02CHTt2cOmllxIVFYVer3e7lpS79zA7duwgJibGlRkyevRo0tPT\nycrKIjU1leHDh6PX6wkLCzvjEZc/O3ny5F/qSTz//POun7do0YIWLVq4XpvNZvr06QNUBSwuu+wy\nEhISgKpr/fbt210ZmV27diU8PPwvbQ4aNIi9e/dSVFQE/C8oERwcTEFBAcuWLaO4uJipU6cyduxY\nt/bbaaqqsnDhQmJiYmjRokWt93MAffr0wWQynbGN2s7Ln376iYEDBxIQEIDZbD4jmBEREcGSJUs4\nfPgwLVq0cA3GCFEXpKaEEI1QaWkpzz33HHPmzAGqUjS7dOkCwLJly1iwYAHl5eUoioKqqq71dDod\ngYGBZ2wrKCjI9TOoipCXlpaydu1a1+iCqqrY7XagagToj9s43+dXT7d/ug+nU1pLS0u55557XP2y\nWq01Fp/640U/KCiI3NxcTCYTw4cPZ/ny5UycOJHc3Fx69epV7fqrV69mx44dABgMBoYPH+4a2Thb\nP0JDQ/+yvYKCAqKjo12vg4ODyc/PB+p+/wkhhPC+0zUlCgoKXI8enM7MKygoICQkxLVsSEgI+fn5\nFBQUEBQUhEajcf3s9BfTyMjIs7bZr18/Zs+eTVFREd988w133HEHR48edf38fO4V/P39AdBqtSiK\nUm37JpOJGTNmMGPGDEpKSli1ahXPPvsszZs3p7i4+Izr2+kg/dm4ew9TUlJCRkbGGddjo9FIQUEB\nxcXFZ9xbBAcHU15eXm17Z6sp8cfj9ufXhYWFZ/yOQUFBqKpKYWFhteue5u/vT9++fdm4cSM9evSg\npKSEHj16oNFoeP3115k3bx5PP/00l156KU8++eRZ63M4nU7XflBVldatW/Pmm2+i1WprvZ+rqY+1\nnZfFxcV/ub857dlnn+Wtt97ixhtvxGw2c9999/lU0VDRuElQQohGKDo6mptuuukv0f/s7Gxmz57N\nF198Qfv27Tl27BjJycnntP1x48bx0EMP/eVnwcHBlJWVuV6frpVQ16Kjo5k7dy5JSUlnXba4uPiM\n/5++yI4aNYrnnnuOoKAgkpOTzxhB+qM/Fro8n36cFhkZ6RoBgaqU09M3mA21/4QQQjS88PBwpk6d\nyksvvcRbb70F1HxNiIiIoLi4GFVVXV8Ai4qK3P4CbzAYGDx4MEuWLOH48eN069btjKBEfd4rFBQU\nsG/fPlemQnBwMJMmTWLz5s2kpaURFBREaWnpGcuf9udAx+lruCf9io6OJjExsdrZq4KDg2tsuy5F\nRESwa9cu1+vi4mK0Wi1hYWFnXTc5OZm1a9dSWFhIcnKy6/j37t2b3r17U1FRwQsvvMDLL7981oyD\nPxe6/KPa7udq+71qOi9r27eRkZE89thjPPbYY2zZsoW///3v9O/fn4CAALfbFqIm8viGEI3Q0KFD\n+eKLL3A6naiqyptvvsmmTZsoKCjA39+fxMREHA4HCxcuBKhxhKAmQ4YMYc2aNa6Lzbp163j33XcB\nuOSSS1i7di0AO3fudBV1qmtDhgzhs88+A6pSSZ999ln27NlT7bJr1qzBarVSUVHB5s2b6dmzJwB9\n+/alqKiIjz766IwUw/rqx2mDBg1y3WwAfPbZZwwcOBBouP0nhBDCO2688UZ27drFjz/+CFRdExYt\nWoTT6aSiooKlS5cycOBAmjdvTpMmTVyFJHfu3EleXh5dunRBr9dTUVFx1uLMo0aN4r333mPYsGF/\n+Vl93itYLBbuuusuVwFEgOPHj7N792569uxJt27dSE1NpaCgAIfDwZIlS1zLRUVFuQokZmRkuGor\nedKvrl27kpuby+7du13befDBB1FVlUsuuYT169fjdDopKChg06ZNbv9enujXrx+pqamuR0w+++wz\n+vXr51btqsGDB7Nr1y7WrVvnuj/ZsmULTz75JIqi4O/vT7t27c7IVjgXtd3P1aS287Jbt25s2bKF\nyspKKisrXcEQu93O1KlTycnJAaoe+9Hr9TUOBgnhKcmUEMLLpk6dekYRxWeeeYYpU6aQmZnJqFGj\nUFWVTp06MX36dPz9/RkwYICrnsHDDz/Mzp07mTp1Kq+99prbbXbs2JHbbruNqVOnoigKERERPPnk\nkwA8+OCD3H///SxdupSuXbvSt2/fGrfzx8ciANq3b+/2lFP33HMPTz75pGuUpH///rRt27baZfv2\n7euqUj1o0CD69+8PVI0epKSk8O2339KjRw+32j2ffpzWpUsXbrnlFq677joURaF9+/b885//BDzb\nf0IIIXxPYGAgt9xyCy+88AKLFi1i6tSpZGRkMGrUKDQaDSkpKYwYMQKNRsOcOXN44okneOONN/Dz\n8+PVV1/F39+ftm3bEhISQr9+/fjqq6+IjY2ttq1evXqh0WiqrZlUn/cKsbGxvPXWW7z22ms888wz\nqKpKYGAgjzzyiGtGjsmTJzNu3DjCwsK44oorXLNrTZo0iZkzZ3LFFVfQoUMH1/W1Xbt2bvfLbDbz\n2muv8fTTT1NeXo7BYODuu+9Go9EwadIkUlNTGTZsGLGxsQwbNuyM0f0/Ol1T4s9efPHFs+6DJk2a\n8Mwzz3DHHXdgt9tp3rw5Tz/9tFv7LzAwkI4dO3LgwAEuueQSAC699FK++eYbkpOTMRqNhIeH8+yz\nzwIwa9Ys1wwanqjtfq4mtZ2XgwcPZuPGjaSkpBAZGcnAgQNJTU3FYDAwceJE16OvWq2W2bNn4+fn\n51F/haiJRv3jw1xCCOFj3nvvPQoLC12Vs4UQQgjRsFJTU5k1a9YZs04IIYS7JOdGCOGzCgoK+Pzz\nz7n22mu93RUhhBBCCCHEOZCghBDCJ3322WdMmDCBm2++mbi4OG93RwghhBBCCHEO5PENIYQQQggh\nhBBCeIVkSgghhBBCCCGEEMIrJCghhBBCCCGEEEIIr/DJKUFzc0sJC/OnsLDC2125oMk+bhiyn+uf\n7OP6J/u4YTSG/RwVFeTV9s9Xbm71Uweer8ZwbC52cgy8T46B98kx8D45BtWr7f7BZzMl9Hqdt7tw\nwZN93DBkP9c/2cf1T/Zxw5D93HjJsfE+OQbeJ8fA++QYeJ8cA8/5bFBCCCGEEEIIIYQQvk2CEkII\nIYQQQgghhPAKCUoIIYQQQgghhBDCKyQoIYQQQgghhBBCCK+QoIQQQgghhBBCCCG8QoISQgghhBBC\nCCGE8AoJSgghhBBCCCGEEMIrJCghhBBCCCGEEEIIr5CghBBCCCGEEEIIIbxCghJCCCGEEEIIIYTw\nCr23OyB8l9XupLjMSkigCZNBR2mFjcycMppHBxLkbzyvbVntTnKLKkFViQrzx2TQVbu8n0lPcbkN\nVJWQQBOVVscZ70WF+QO4tv3H//9xm39uXwghhBBCCCFE/au3oMT27du5++67adOmDQBJSUn87W9/\nY9asWTidTqKionjppZcwGo18/fXXzJ8/H61Wy6RJk7j66qvrq1uiDjgVhYXrD7ErLZeCEivhwSas\ndifllQ5UQKuBZlGB/GNad4z62k+x6rblZ9aTW1iJ1a4AYDZq6du5KdcOrTqXFq4/xM4DORSU2s7a\nV50WdBoNNqeK2agFNFhtTsKDTXRLimLioEQWbTxyRvvdkqKYPKQ1Oq0kEgkhhBBCCCFEfarXTIle\nvXrx2muvuV4/8sgjTJkyhREjRjBnzhwWLVrE2LFjmTt3LosWLcJgMDBx4kSGDx9OaGhofXZNnIeF\n6w+xLjXT9Tq/xHrGzxUVMnLK+L8FO3nypl6eb+tP27PYFNbvOIFWowE4Y/mzcSrgRHVt54/trEvN\n5EB6ERk5ZX95H2DKsCS32xFCCCGEEEII4bkGHQrevn07Q4cOBWDw4MF8//337N69m86dOxMUFITZ\nbKZ79+7s3LmzIbslPGC1O9mVluvWsidyyyitqDmbwZNtAew8kMPOAzluL++OE7ll1b6/Ky0Pq91Z\np22JuqFUWjhy31PkL13j3gplRVQs+wBNftZ5NOqE4hNgLT3nTdgcsDfbREGF9zJwDmY4+PCbSkor\nlLMv7INUVWXp6mzemp/u7a6Ii0heUSWvLfqlxuuJEEIIIWpXr5kShw4d4rbbbqO4uJiZM2dSWVmJ\n0VhVayAiIoLc3Fzy8vIIDw93rRMeHk5ubu1fVMN+rxMQFRVUf50XwF/38cm8cgpKrTUsfSZFhVKb\nQmJC9cfJk20Bbj2u4SlFrf79wlILOqOBqMiAOm+zOnIuu0dVVX6e9k/yPltOSELTs+431VJB+Tcf\n4yjIJqR9TwznsJ9VRaH4+H7s1lICQoLxP4dtWO0q3+1TKa6A5pEGoqI0Hm/jfP20p5L/fF2GRgMB\nQQFEhdf9x783z+OKSifPvrKfjdvyiGvmR0REIFptw+/nhiCfF41LcbmNnw/l8Z+lv3HHmI7e7o4Q\nQgjhc+otKNGiRQtmzpzJiBEjyMjIYNq0aTid/xt5VtXqvw3W9P4fFRZWEBUVRG7uuY9airOrbh87\n7U7Cg0x/eWSjOloNBBm1NR4nT7YFEB5UFdCqy+CEVlN9YCIsyIzTZm+Qc0zOZfedmPMeWZ8tJ7Bn\nF8Jum177fnM6MHw7H21BNsYegygKaQGe7mdVheIMsJWBKZhyNZByD7dhd8LuLDNlNh3Ngu0EaW2c\nJe5a57bvsfPFeitGPdw02ozWWVnnffDmeXwyx8pzrx8m44SFjm0DeeD2luTnX5ij1o3h80KCImdK\njA2mXXwoqfuySevejKQ4efxUCCGE8ES95RHHxMQwcuRINBoN8fHxREZGUlxcjMViASA7O5vo6Gii\no6PJy8tzrZeTk0N0dHR9dUucJ5NBR7ekKLeWbRZV+ywcnmwLoHvbaLq3rdtzo1lUYLXvd0uKlFk4\nGpn8r9dy4uV3MMbF0mbey2hNtczwoiroty1Gm30MZ3wHTAOu8rxBVYWSrKqAhDEAgpuBxrORd4cT\nfjlZFZBoGmyndaTN002ct407bXz+rRU/E9w23o/WcRfWpEu7fivhwaf2k3HCwqihUfzz/jaEBhu8\n3S1xEdFoNIwf2AqAL7877NbgihBCCCH+p96CEl9//TXvv/8+ALm5ueTn5zN+/HhWr14NwJo1a+jf\nvz9du3bl119/paSkhPLycnbu3EnPnj3rq1uiDkwe0pphPZsTEWxGq4GIYBOBfnpOf9fSaiAuumr2\njXPZVvPoAEyG/52aZqOOIT2aMXlIa9fy4UGmc+q7Tqv5vR0zw3o25x/Tuv+p/ar3Jw9pfU7bF/Wj\nbNdvHLnnn2gDA0iaPwdDZHity+t2rUN37FeUqHgc/Sai0Xj4UaeqUJYN1mLQ+0FInOcBCaUqIFFq\n1dEkyE5SAwckVFVlxTYry7bYCAnQcOcEf+JjLpxAm6qqfLXyFM/8+xBWm8LMGxP423Vx6PUX5iMb\nonFr3SyEXh2acDCzmF+PFHi7O0IIIYRP0aj1FNIvKyvjgQceoKSkBLvdzsyZM2nfvj0PPfQQVquV\n2NhYnnvuOQwGA6tWreL9999Ho9Fw/fXXc9VVtY9q5uaWNooU1gvd2fax1e6kuMxKSKAJk0FHaYWN\nzJwymkfXniHhzrasdie5RZWgqkSF+f8la+H08n4mPcXlNlBVQgJNVFod+Jn0FJRaWLU9g4MZRRSW\nWgkJNNKtTSQTBrWirMLuaqem9huSnMu1s544xd5R07HnFZI0fw6hQy+vdXlt2o8Yti9DCYrAnnIz\nmAM838fluVX/dCYIawFaz84J5+8BiWKLjphAB+2irQ0akFBUla82Wtn2q4PIEA23jvMjPLh+C2w2\n5HlssTqZ+0E6W34sJCLMwKw7E0lKbJj6L97WGD4vfP3xjfraf+UOlbte3kBcdCCP33ipa8Yo0XAa\nw9/HxU6OgffJMfA+OQbVq+3+od6CEvVJghIN40LYx94MNrjrQtjP9cVZXsG+sX+jYk8a8U/eR5Ob\np9S6vDbzAPqN/wWjP7YRt0BQVUaFR/u4Ir8qS0JrqApI6Dx7FMCpwK8nzRRZdET/HpBoyHqLTqfK\np2ut7EpzEBup5ZaxZoL863/Gj4Y6j7NzrTz/+hGOZVbSrnUAs+5MJCzk4nlcozF8XkhQonpRUUH8\n37wf+GFPNreN6Uiv9jH10o6oWWP4+7jYyTHwPjkG3ifHoHq13T94b246IRqAyaAjuppMC9H4qYrC\nkb8/TsWeNKKuH0fM366tdXlN/gn0mxaCVo998HWugIRHLEW/ByT0EJpwTgGJ305VBSQiAxo+IGGz\nq3zwjYVdaQ5aNNVyxwS/BglINJRf9pbwwFP7OZZZSfKgSJ6a1eaiCkiIxm/s5S3RaTV8tfkoTuXC\nnHpXCCGEqGsXzt2qEOKCkvncXApXbST48ktJ+L+H0NSWCl1WiGH9x+B04Oh/NWpUnOcNWkurCltq\ntBAaD3rPHkFSVNiTbaKwUkeEv4MOMQ0bkKi0qry7tJJ9x5y0S9Bx61g//EwXRvq4qqp8vSabJ/91\nCItF4fbp8dw2LR6DXi5honGJDvOnf9dYsgsq2PrrKW93RwghhPAJckcnhGh0chcu4+Tc+ZgS42n9\nzvNoDbXMGGGtxPDtAjSWMhyXjkSJa+95g7ZyKM4ENL8HJMwera6osOeUiYIKPeH+Djo2adiARGmF\nwptfVnI0S+GSNnpuHG3GaLgwAhJWm8Ir7x3jg89OEBKs5+mH2nDFwEhvd0uIGl3ZtwUGvZalW45i\ndzjPvoIQQghxkZOghBCiUSndvotjs/4PXWgwSfP/jT4spOaFnQ4MGz9BW5KHo0M/lHa9PW/QXgnF\nGYBaNcuGwd+j1RUV9mabyK/QE+bnpGMDZ0gUlCi8saiSrDyFPp30XJdsQq+7MAISufk2Hn3uAJt+\nKCQp0Z+XH29Hu9bVT+MrRGMRFmRiaI/mFJZa2bDzhLe7I4QQQjR6EpQQQjQaluOZHLzpAVBV2rz7\nAn6tEmpeWFXQb1uMNucYzviOOLtf4XmDDisUpYOqQHAzMHn2hVdRYX+OibxyPaFmJ52aWNA14Kdq\ndkFVQCKvSGVoTwMTBpvQNmREpB79dqCUB57az5HjlQzrH8EzDyURHubZIzVCeMvI3gn4mXQs//44\nlVaHt7sjhBBCNGoSlBBCNAqOkjLSpt2Lo7CYhGcfIvjyS2tdXrdrHbpjv6JExeO4fEJVLQhPOO2/\nByScENQUzLVkZFRDVeFAjpGcMj0hZiedmjZsQCIjx8ncRRUUl6mM7mdkZF9T7XU3fISqqqz4Nocn\nXjpIeYWDW6fGcccN8RgMcrkSviPQz0Byr3jKKu2s/SnD290RQgghGjW5yxNCeJ3qcHD4tkewHDxK\nzM3XEn39+FqX16b9iH7PZpSgiKqZNjycJQPFAUXHQbFDQBT4hXnWXxUO5BrJLjMQbHLSuamFhqy5\neCjTwVtfVlJhhauHmBjc48LIILDZFd6Yd5z3/ptJUKCepx5MImVw1AURbBEXn+E94wjyN7Dqx3TK\nKu3e7o4QQgjRaElQQgjhdelPvkLxxu8JGdqP+MfvqXVZbeYB9D8uRzUFYB86DUye1YBAcVZlSDht\n4BcO/p4VTVRVSMszcqrUQJDJSZcGDkj8dsTBe0stOJwwNcVM704XxpSYeQU2/vF8Guu3FtC6RVX9\niA5JUj9C+C4/k55RfVpgsTlZ8f1xb3dHCCGEaLQkKCGE8KqcBYvIfv8z/Nq1ovWb/4dGp6txWU3+\nCfSbFoJWX5UhERTuWWOqUlXU0mEBcygExoAHo/CqCofyjJwsMRBo/D0gUXN361zqPjvzv7Gg1cCM\nK810bVPLrCQ+ZG9aGQ8+tZ9DRysY3C+cZx5OIjL8wsj+EBe3wd1iCQ828e3OTApLrd7ujhBCCNEo\nSVBCCOE1xZu2c+wfL6GPCCNp/r/RBdUyMl5aiGH9R6A4cPS/GjUqzrPGVBWKT4C9AoxBVXUkPAxI\nHM43cqLEQIBRoUusBUMDBiQ277bx6VorJiPcOs6PtgkXRkBi1YZcHn8pjZIyBzOubc7fb0rAZJRL\nk7gwGPQ6xvRrid2hsGzrUW8E8EwVAAAgAElEQVR3RwghhGiU5M5PCOEVlYeOcejWh9HotLR5/yVM\ncbE1L2ytwLB+ARpLOY5LR6HEtfeoLVVVofQk2EqrpvwMaeZxQOJIgYHMYgP+BoWuTSsxNlBAQlVV\n1my3seQ7G0H+Gu6c4EeLpg0YDakndrvCmx8e552PMgjw0/PP+9sweni01I8QF5y+nZvQJNyfzb+c\nJLuwwtvdEUIIIRodCUoIIRqcvaCItOn34iwupeXLswnqdUnNCzsdGDZ+irYkD0eHfihtL/OsMVWl\nPDsdLEWgN0NInMczdRwrNJBRZMTPoNA11oKxgZIUFFVl6SYbq7fbCA/WMHOiH00jfT8gUVBk57EX\nD7J2Uz6J8X689HhbOrcP8na3hKgXOq2WcQMScSoqSzdLtoQQQgjxZxKUEEI0KMVm59AtD2E9mkHT\nv99I5MRRNS+sKui3LUabcwxnQkec3a/wvMGKfCrzT4HOCKHxoPXsS/2xQgPHC42Y9QqXxFow6VXP\n+3AOnIrKwrVWNu+20yRcy8yJfkSG+v5H9oHD5Tzw5H4OHC5nQO8wnn2kLdGRJm9364JhsTqZ92km\nN937CydOWrzdHfG7Hm2jiI8JZPvebDJyyrzdHSGEEKJR8f07XCGEz1BVleOPvkDpth2EjRxM84du\nr3V53a516I79ihIVj6PfBI8zHKgsgPIctAYjhCaA1rMUh/RCA8cKGj4gYXeozP/GQup+B/ExWu6Y\n4EdIoO9/XK/blMfsF9IoLrFzw6Rm3HNzC0wm3/+9Gotf95Vyz+P7WLY2B38/HYEBvp9Vc6HQajRM\nGNgKFVj83WFvd0cIIYRoVC6MSmlCCJ9w6t3/kvvJEvw7tyPxtafQaGv+Qqo98CP6PZtRgiOqZtrQ\neTj1paUYSk+BRkdIQjsKSxwerZ5RpOdIgRGTvuqRDbOhYQISFpvKB8stHMp00iZOx42jzJiMvl1n\nwe5QmPdpJqs25BEYoOP+21pyScdgb3frglFR6WTBFydYvTEPrQbGjYhh8pimUjC0kenUMpykuFB2\nH87nUGYxrZuHeLtLQgghRKMgdyyi3lntTnIKK7Dand7uivCiwrWbyXjqVQwxkSR9OAedv1+Ny2oz\nD6D/aTmqKQD7kGlg8vesMWsZlJyoyqwIjUdvqrmt6pwo1nM434RRVxWQ8GuggERZpcrbiys5lOmk\ncysdf7vS9wMSRcV2/vnyIVZtyCOhuZmXHmsnAYk6tOu3Eu5+bC+rN+YR18zM87PbMu3qZhKQaIQ0\nGg0TBiYC8OV3h6sK8AohhBBCMiVE/XEqCgvXH2JXWi4FJVbCg010S4pi8pDW6GoZIRcXnoq9Bzl8\nxz/Qmoy0+XAOxqbRNS6ryT+BftNC0OqxD7kegsI9a8xeAcUZgKaqqKXBs4BEVomeg3kmDLqqRzb8\nGyggUVSq8O6SSrILVS7toOfqISZ0Wt8OSBw8Ws4Lbxwhv9BO356h/H1GAmaTPFJQF8rKHXyw8ATr\nt+Sj08Gkq5owcVQTDAb5bG3M2jQPpUurCH45nM+eYwV0ahnh7S4JIYQQXidBCVFvFq4/xLrUTNfr\n/BKr6/WUYUne6pZoYPbcfNKm34tSXkHrd58nsGuHmhcuLcSw/iNQHDgGXosa2dyzxhwWKEoH1KqA\nhDHAo9VPluhJyzVh0KpVAQljwwQkcosU3vmqksJSlYHdDFx5udHnp8bcsDWft+an43CqTJ0Yy7gR\nMT7/OzUWP+4q4u0FGRQW20mM92PmTQm0jPcwm0h4zfgBifxyOJ8vvztCxxbh8nchhBDioidBCVEv\nrHYnu9Jyq/3ZrrQ8JgxshckgI6YXOsVi5eBND2I7cYpms24jfPSwmhe2VmBYvwCNpRx7r9Eoce09\na8xhqwpIqAoEx4LJsykmT5XqOJBrRK9V6RpbSUADBSRO5Dp5d4mFskqVEX2MDO1p8OkvKQ6HyvzP\nM1m+LpcAfx0P3dKCHl3k2fm6UFLqYO6H+1i3KQe9XsN142MZmxKDXu+758vFKD4miF7to/lxXw47\nDuTSs13NmWNCCCHExUCCEqJeFJdZKSixVvuzwlILxWVWosNkZO9CpqoqR+9/mrIdvxAxfgSxd8+o\neWGnHcPGT9CW5OHo0A+l7WWeNea0Q9FxUBwQ2ATMoR6tnlOmY3+OCb0WusZaCDQ1TEDiSJaT97+u\nxGqDCYNM9O3iYTHPRqa4xM7Lbx/lt/1lxMWaefjvicTGmL3dLZ+nqirbUot49+MMSkodJCX6M/PG\nBOKaefZokmg8xvVPJHV/Ll9tPkK3pEh5pFEIIcRFTYISol6EBJoIDzaRX01gIizITEigyQu9Eg0p\n69X3yf9qFYE9utDy5dk1j/6rCvqti9HmHMeZ0Aln9ys8a0hxVmVIKHbwjwR/z2pQ5Jbp2JttQqeF\nLk0tBJkUz9o/R/uOOZi/woJTgSnJJrq39e2ARNrhUh56+gC5+TYu6x7C3TNa4Ocn2VDnq7DYzrsf\nZ/DDjiKMBg0zZyQyqE+Iz9cbudjFhPtzeZembNqdxbbfTtG/S6y3uySEEEJ4jQQlRL0wGXR0S4o6\no6bEad2SIuXRjQtcwbJ1nHjxbYzNmtBm3ktozTUHoXS71qI7/htKdAKOfuOrZsxwl6pUBSScVvAL\nh4Aoj/qZV/57QEJTFZAINjdMQGJXmp1P1ljRauDGUWY6tPTtj+JNPxTw5ofpWG0KU8Y1ZcKoJmjl\nS/N5UVWV734o4P1PMikrd9IhKZA7b4yna6cocnNLvd09UQeu6teCbb+d4ustR+ndoQkGvWRLCCGE\nuDj59p2waNQmD2kNVNWQKCy1EBZkpltSpOv9s7HanRSXWQkJNEkQw4eU7d7LkbufQBvgT9KCVzBE\n1VxdXntgO/o9W1CCI7EPmgI6D7IFVKVqlg1HJZhCIDAGPKjFkF+uY88pExoNdG5qIaSBAhLbfrWz\neIMVkxFmXOlHYjPfPbedTpWPFp1g6eocAvx13H9bIpde4tmjM+Kv8gpsvL0gnR2/lGA2abn5ujhS\nBkdKoOcCEx5sZkj3Zqz5KYONP59geM84b3dJCCGE8AoJSoh6o9NqmTIsiQkDW3kUXJCpRH2XLSub\ngzfch2K10ebDOfi3rzkApc3Yj/6nb1DNAdiHTAWTBzVGVBVKssBWDsbAqsKWHgQkCiq0/Jb9v4BE\nqF/9ByRUVWV9qp0V39sI9NNw8xgzzaN9NyBRUuZgzttH2b23lGZNTLz4eBf8zU5vd8unqarKus35\nfLgwk4pKha4dgrjjhniiI+VxtwvVqD4JfLc7i+XbjtG/S1PMRrktE0IIcfGRq18jcqFmBpgMOo+K\nWspUor55LjgrKkm78X7s2XnEPXEPYcP717isJi8T/ebPQavHPvh6CPKgDoSqQulJsJaAwR9CmnsU\nkCis1PLbqarii52aWAlroIDE8q02Nu60Exak4daxfkSF+W6A7VhGBc+/foTsPBs9uwZzz80tSYjz\nl8cKzkNOnpU3P0xn995S/P203HlDPEP7R/j0TCzi7IL8jSRfGsfXW4+xNjWTK/u28HaXhBBCiAYn\nQYlGQDID/udin0rUV88FVVE4ctfjVPy6n6gpY2lyy3U1L1xaiGHDx6A4cAy8FjWyuWeNleeApQj0\nZgiJ86gGRVGlll9PmlHVqoBEuH/9j+wrisoX6638uNdBdJiGW8b6ERbUeI/l2Wz9sZDX5x3HalOY\ndFUTJl/VVB4rOA+KorJqQy4fLcrCYlXo0SWY26bFExlu9HbXRANJ7hXP+p0nWLU9ncHdmhHo59tF\nb4UQQghPSVCiEWjIzIDGPgJ/sU8l6qtZIpkvvkXhig0E9e1BwrMP1Ty6a63AsH4BGks59l6jUeLa\ne9ZQRR5U5IPOCKHxoHX/HC62/C8g0bGJlYiA+g9IOBwq/11t4ZfDTppHa7n5Kj8C/X3zC7xTUflk\ncRaLV2RjNml56M5EeveQ+hHnIyvbwtwP0tmbVkZggI67pyUwsHe4ZEdcZPxMekb1SWDh+kOs3H6c\nqwe5V3dJCCGEuFBIUMLLGiozwFdG4C/mqUR9NUskb9E3nHztA0wt42j97gtojTWM8jntGDZ+grYk\nD0eHy1HaXuZZQ5WFUJYDWv3vAQn3P74KylR+OWnGqULHGCuRDRCQsNpUPvzGQlqGk1bNtNw02g+z\nyTe/bJaVO5jzzjF2/VZC02gTD/89kfhmft7uls9yKirL1+TwyVdZ2OwqvXuEcsv1cYSFyAj5xWpw\nt6qCl9+mZjK8ZxyhF/C1TgghhPizxvNt9CLlTmZAXTg9Ap9fYkXlfyPwC9cfOq/tWu1OcgorsNrr\n5kve6alEq3OhTyXaUOdCXSr98WeOPvAMuuBAkj78N4bwGkbOVQX91sVoc47jTOiEs/twzxqylFTV\nkdDoIDShKlPC3T5atWzap+JUoH20lajA+g9IVFhU3llSSVqGkw4tddw8xncDEuknKnnw6QPs+q2E\n7p2DefGxthKQOA8ZJyp59NkDfPj5CcxmHQ/c3pKH7kyUgMRFzmjQcVW/FtgcCsu2HfN2d4QQQogG\nJZkSXtYQmQH1MQJfn5kX5zuVqK/ytSwRa0YWB2c8iOpUaP3uC/i1aVHjsrqda9Ed/w0lOgFHv/Ee\n1YHAVgYlJ6rWCY0Hvfv7ocyqYXeWGYcC7aJtxATVf0CipFzhnSUWTuUr9GirZ/IwEzqdbwYkvt9R\nyGv/OY7FqjBhVAzXjotFJ/UjzonDobJkVTYLvz6Jw6EyoHcYM66NIzhILsOiSr/OTVm5PZ1NP2eR\n3Cue6FAJ/gkhhLg4yN2Ql53ODPhjHYHT6iozoD7qNNRn7YNznUrU1zXEuVBXnKVlpE27B0d+IQnP\nPUzIgJofxdAe2I5+7xaU4Ejsg6aAzoMRYXslFGdU/T+kORjcv0kvt2nYneWHQ9HQM1FDoMbhfrvn\nKL9Y4Z2vKskvUbm8q4ExA4xofbA+gKKofLb0JF8sO4XJqOWB21vS79Iwb3fLZx1Nr+CNecc5kl5J\nWIiB26bF0aub1OMQZ9LrtIzrn8g7X+9h6eYj3HxlR293SQghhGgQEpRoBOo7M6CuR+AbqvaBp1OJ\nXgh8IUtEdTo5dMc/qDxwhJibJhMzfWKNy2oz9qH/6RtUcwD2IdPA5MHxdFihKL1qCtCQ5mAMdHvV\nCltVhoRd0ZAUaaVltB+51Z+ydeZkvpN3l1goKVe5opeBKy4z+mTBwvIKJ6+8d5TU3SXERBp5+O+J\ntIi7uP4O64rdofDFslMsXnEKpxOGXB7BTdc0I8BfLr2iepe2j2bFD8f5YU82I3on0DzK/c89IYQQ\nwlfJnVEjUN+ZAXU9An+xz5BRn3whSyT9qVco/nYrIYP6EP/Pe2tcTpOXiX7zF6DVYx8yFYI8GGl3\n2qDoOKhOCIoFU7Dbq1baNfycZcbm1NI60kpsSP1nSBw/6eS9ryuptMKYAUYGXOKb0zlmnrTw/OuH\nOXHKSteOQdx3a0uCA+UycS4OHi3njXnHST9hITLcwB03JNCtk/vnsbg4aTUaxg9I5NVFv/DVpiP8\nfUIXb3dJCCGEqHdyt9mI1GdmQF2OwPta7QNf1FizRHI+Xkz2e5/il5RIq7efQ6Ov4SOktADDho9B\nceAYOAU1opn7jSiOqgwJxQGBMeDnfpr7HwMSrSKsNG+AgERauoMPvrHgcMC1w030bO+bBQt/+rmI\nf797jEqLwpiUaKZOaOaztTC8yWpTWLj0JEtXZaOokDI4kqkTm+Hv17iCi6Lx6tIqgtbNQ9h1MI/D\nWcW0ig3xdpeEEEKIeiVBiYuEpyPwVruTk3nlOO3OvyznS7UPRN0p2fITxx99AX14KG3mz0EfXENa\nsbUCw/qP0FjKsfcajRLXzv1GFGdVQMJpA/9I8I9we1WLo+qRDatDS2K4jbjQ+g9I/HLIwcerLGg0\nMH2kmU6tfO8jVVFUFi0/xadLTmI0arj3lhYM6B3u7W75pH0Hy3hj3nGysq3ERBm584YEOrcP8na3\nhI/RaDRMGJDIC5/sYvF3R3jw2m7e7pIQQghRr3zvDlqcl7ONwJ8xq0aplfCg6mfV8IXaB6LuVB4+\nzsGbZ4FGQ5v3X8Kc0Lz6BZ12DBs/QVuSh6Pj5Shtay6A+ReqUlXU0mEBcxgEVD81bHWsDg0/nzBj\ncWhpEWYjPszufrvnaPseO1+st2LUw02jzbSO872P08pKJ6/+5xjbdxUTFWHk4ZmJJCY0vgydxs5i\ndfLfL7P45tuqwiVXDo9myvimmE0SoBXnpm18GJ0Sw/ntSAF7jhXQsYUECoUQQly4fO8uWtQrd2fV\nOJfMi8ZaI0HUzlFYTNr0e3EWl9LylX8SdFkNo3aqgn7rYrQ5x3EmdMLZbbj7jagqFGeCvaKqfkRQ\nE3CzSKTVUfXIhsWhJSHMRovw+g9IbNxpY9kWG/5muHmMH/ExvndOZ2VbeP71I2RkWejULpAHbmtJ\nSLBvPnriTb/sK+XND46TnWejWRMTM29KoF1rKU4ozt+EAa347UgBi787TIeEMJ8snCuEEEK4Q4IS\nwuVcZtXwKPOixEp4cPWZF6JxUuwODt36MNYj6TS9czpRk0bXuKxu5xp0x39DiU7A0W88aNw8vqoK\nJSfAVgbGAAhu5nZAwuaE3VlmKu1a4kJttKjnDAlVVVn5vY1vU+2EBGi4ZawfTSJ87zze8Usxc945\nRkWlk9HDopg+qTl6vXzh8URFpZP5X5xgzcY8tBoYPzKGyWOaYjT43vkgGqeEJkH0bBdN6v4cdqbl\n0aOt+9ljQgghhC+RoIRwqY9ZNdzNvBCNj6qqHP/HC5Rs+YmwlEE0f+TOGpfV7v8B/d6tKMGR2AdN\nAZ2bI+6qCmWnwFoCej8IiXM7IGH/PSBRYdfSPMROYrjd3VXPiaKqfLXRyrZfHUSGaLh1nB/hwb71\nBVRVVRavyOa/i7PQ6zTcNSOBwf3cr9shquz8tZi35qeTV2AnobmZmTcm0LplgLe7JS5A4/q3ZMeB\nHL7afIRubSLRaiV4KIQQ4sIjQQnhUtezapxL5oVoPLL/8ym5H3+Ff8ckEl9/Ck0NmS3ajH3oU1eg\nmgOxD5kGJg8CV+W5UFkIOhOExrudXXE6IFFu0xEbbKdVhK1eAxJOp8qna63sSnMQG6nllrFmgvx9\nKyBRaXHyxrzjbEstIiLMwMMzE+WLtIfKyh188Fkm67cWoNPB5KuaMGF0Ewx63zoXhO9oGhFAv85N\n2fLLSb7fc4p+nZt6u0tCCCFEnZOghHCp61k16iPzQjSMom+3kP7kKxiiI0ia/290AdUfJ01eJvrN\nX4BWj33I9RAU5n4jFflQkQdaQ1VAQuve+eVwwi8nzZTZdDQNstMmsn4DEja7yoKVFvYdc9KiqZa/\nXeWHn8m3RitP5Vh5/o3DHM+00CEpkAdvb0loiNSP8MT2XUW8syCdwmIHiQl+zLwxgZbx8vkl6t+Y\nfi35Yc8plm45ymUdYtDrJAgmhBDiwiJBCXGGupxVo64zL0TDqNh/iEO3/wON0UCbD+dgjI2pfsHS\nAgzrPwbFgWPQdagRzdxvpLIIyrJBq4ewBLcf93AoVQGJUquOJkF2kqLqNyBRaVV5f1klR7MU2iXo\nmD7SjNHgWwGJn/eU8K+3j1JW7mTEkChuvKaZjOx7oLjEzn8+yWTLj4Xo9RqunxDL2JQYdDrfOg+E\n74oIMTOoWzPWpWby3c9ZDO1Rw+xHQgghhI+SoIQ4wx9n1dAZDTht9nN+xKKuMy9E/bPnFZA2/T6U\nsnJavf0cgZd0rH5BawWG9QvQWMuxX3YlSvO27jdiLYXSrKpHNULjQWd0azWnAr+eNFNi1REd6KBt\nPQckSisU3l1iIStP4ZI2eq69woTeh76IqqrK0tU5fPTFCbQ6DXfeEM+wAZHe7pbPUFWVbT8V8e5/\nMygpdZDUKoCZN8YTF+vn7a5dFF588UV27NiBw+Hg1ltvpXPnzsyaNQun00lUVBQvvfQSRqORr7/+\nmvnz56PVapk0aRJXX321t7teL0b3acHm3SdZtu0Yl3duisko108hhBAXDglKiGqZDDqiIgPIzS09\nr+3UZeaFqF+K1cbBGQ9iy8ii2QO3EnFVDVN6Ou0YNvwXbUk+jo79UZJ6ud+Irbxq6k80VQEJvdmt\n1U4HJIotOqICHLSLttZrQKKgROGdJZXkFan06aRn/CCTTxWYs1oV5n54nM3bCwkPNTDrzkTatpL6\nEe4qLLbzzkfpbN9ZjNGo4cZrmjFqWDQ6HzoHfNkPP/zAwYMHWbhwIYWFhYwbN44+ffowZcoURowY\nwZw5c1i0aBFjx45l7ty5LFq0CIPBwMSJExk+fDihoaHe/hXqXHCAkSsujWPZtmOs25HBqD4tvN0l\nIYQQos5IUELUqz9mXhSXWQkJNEmGRCOkqipHH3yGsp92Ez42mdh7/1bDggr6rV+izU3H2aIzzm7D\n3G/EXgnFGYAKIfFgcO95fKcCv50yUWTRERngoH2Mlfr8bphdUBWQKC5TGdrTwIg+RjT1GQGpYzl5\nVp5/4whH0ytp2yqAWXcmEh4q9SPcoaoqG7cVMO+zTMrKnXRICmTmjfE0jXEveCbqxqWXXkqXLl0A\nCA4OprKyku3bt/Pkk08CMHjwYObNm0fLli3p3LkzQUFBAHTv3p2dO3cyZMgQr/W9PiX3imf9zkxW\n/pDOoG7NCDDL37UQQogLgwQlRIMwGXRS1LIRO/nGh+QvWkFA904k/uuxGr+E63auQXd8D0p0Cxx9\nx7s9WwYOKxSlg6pAcDMwBbq1mqLCnmwThZV6IvwddKjngERGtpP3llZSboHR/YwM7uHeoyWNxa/7\nSnn5raOUlDm4YmAkf5vSHINB6ke4I6/AxtsL0tnxSwlmk5Zbro8jeZBMwegNOp0Of/+q68WiRYsY\nMGAAW7ZswWis+nuMiIggNzeXvLw8wsPDXeuFh4eTm1v9jE9/FBbmj15fP8HxqKigetnuaZOGJfHB\n8r1s+vUU00Z2qNe2fFV9HwNxdnIMvE+OgffJMfCMBCWEuMgVrFhP5nNzMcbG0Gbey2j9qh8V1u7/\nAf3erSjBkdgHXQs6Nz8+nPbfAxJOCGoK5hC3VlNU2HPKREGFnnA/Bx2b1G9A4lCmg3nLLNgccPUQ\nE707+c4opKqqLF+Xy4cLM9FqNNw2LY7kQVHe7pZPUFWVtZvymf95JhWVCl07BnHH9HiiI6UQr7et\nW7eORYsWMW/ePK644grX+6qqVrt8Te//WWFhRZ3078+iooLO+5HHs+nVNorFG40s3XSYvu2jpWD0\nnzTEMRC1k2PgfXIMvE+OQfVqC9RIUEJ4zGp31vmjGPWxTXF25b/s58jfH0fr70fS/H9jjK6+EKI2\nYx/6n1agmgOxD5kGJjezXhQHFB0HxQ4B0eDn3pShigr7sk3kV+gJ83PWe0DityMOPlppQVVhaoqZ\nrm1856PRalN4e0E6G7cVEBqsZ9adibRv414mysUuO9fKmx+m88u+Uvz9dNx5YzxDL4/wqcd1LlSb\nN2/m7bff5j//+Q9BQUH4+/tjsVgwm81kZ2cTHR1NdHQ0eXl5rnVycnK45JJLvNjr+mcy6LiqX0s+\nWn2A5duOc90VSd7ukhBCCHHefOfOW3idU1FYuP4Qu9JyKSixEh5soltSFJOHtEanPbcU8frYpnCP\n7VQuaTfci2Kx0mbey/h3rP7mVpObgX7zF6DTYx9yPQS5F1hAcVZlSDht4B9R9c8Nqgr7c0zklusJ\nNTvp1MSCrh5PhdR9dhaus6LXwQ2jzbRN8J2PxbwCGy+8cYRDxypo09Kfh2YmEhHmW4+ceIOiqKxc\nn8tHi7Kw2hR6dg3mtmnxsu8aidLSUl588UU+/PBDV9HKvn37snr1asaMGcOaNWvo378/Xbt2Zfbs\n2ZSUlKDT6di5cyePPvqol3tf//p3acqq7cfZ+PMJknvFERkqM8IIIYTwbb5z9y28buH6Q2dM75lf\nYnW9PtdClrVtc8owGQGqL84KC2k33If9VC5xs+8iLHlg9QuWFmDY8F9QHDgGXYca0cy9BlSlqqil\nwwLm0KosCTdGn6sCEkZyyvQEm510alq/AYnNu20s+c6Gnwn+dpUfLZr6TpbOngOlvPTWUYpLHAy5\nPIJbp8ZhlPoRZ3XilIW5Hxxn38FyAgN03D69BQN6h0l2RCOyYsUKCgsLueeee1zvPf/888yePZuF\nCxcSGxvL2LFjMRgM3H///cyYMQONRsOdd97pKnp5IdPrtIztn8h7y/aydMtRZoyW2hJCCCF8mwQl\nhFusdie70qovILbll5PnlOlQ2zZ3peUxYWAreZSjHqiKwpF7nqDil31ETr6SJrdPrX5BSzmGbxeg\nsZZjv+wqlOZt3WxAheITYK8AU1BVHQk3AxIHco1klxkIMjnp0tSCvp6+Y6uqypof7azZbiPIX8Ot\nY800jfSNc01VVVZtyOP9TzMAuPm6OEYMiZQv1WfhVFSWrcnh06+ysNlV+vQI5Zbr4wgN8Z3aIReL\nyZMnM3ny5L+8/8EHH/zlvZSUFFJSUhqiW43KZR1iWPnDcbbtOUVK7wSaRcqUv0IIIXyXBCWEW4rL\nrBSUWKv9mcXmxGJzAp5lOtS2zcJSC8VlVpmxox6cePkdCpd/S1Dv7rR44dHqv8w67Bg2foK2NB9H\nx/4oSZe6t3FVhdIssJWCIaBqpg03AxIH84ycKjUQWM8BCUVV+XqTjc277YQHa7h1rB+Rob6RYWC3\nK7z7cQbrNucTHKTnwTta0qnthT8yfL7ST1TyxrzjHDxaQUiwnrtvjqNvTzcfQxKiEdJqNIwbkMjr\nX/7Kkk1HuHN8Z293SQghhDhnEpQQbgkJNBEebCK/hiDCn7mT6VDbNsOCzFJVvB7kLV5J1ivvY0po\nRuv3XkRrrGaUWFXQb/0SbW46zhadcXYb5t7GVRXKssFSDHozhDR3a8pQVYVD+UaySgwEGJ10bWqh\nvhJknIrK5+uspO530KX/hYkAACAASURBVCRcyy1jzYQE+kZAoqDQxgtzj5B2pILEBD8entmKqAip\ngVAbh0Plq5Wn+HzZKRwOlQG9w5hxbRzBQXLpE77vktaRtIoNZkdaLkdPltCyabC3uySEEEKcE9+4\nGxdeZzLo6Jbk/hSDpzMdznWb3ZIi5dGNOlaa+gtH738aXXAgSQtewRARWu1yup1r0KXvQYlpgaPv\neLcCCwBU5EFlAeiMEBoP2rMfP1WFw/lGThQbCDAqdI2tv4CE3aEy/xsLqfsdxMdouXOin88EJPYf\nKuOBp/aTdqSCgX3CefaRthKQOIuj6RXMemY/n3x1kuBAPY/elci9t7SUgIS4YGg0GsYPbAXA4u8O\ne7k3QgghxLmTuzPhtslDWgNVWRCFpRZCA01UWB2uRzf+yN1Mhz9vMyzITLekSNf7om5YM09y8KYH\nUB1OWn/wPH5tWla7nPb/2bvvwKiqvP/j7+kz6b330KQjoIBKlxULYENBiuDaEJ7VdVddd3/us+vu\no66u666wNqSIqBQVQQEboNKld0IIpPeeTJ97f38MIGUyGWCSmSTn9Y/Ee3NzkslM5nzu93zPse2o\nj2xBCo3GNmwyqDx8iTBWQWM5KDUQlgrK5j9PluFUlYaCWg0BGok+8Sa0LRRImCwS81ebyS5w0DlZ\nxYzb9Oi0baMHwzc/VPDeh/lIsszM+5O4/eZo0T/CDZtNYsWXJXy2tgSHA0bfFMmD9yUSGCD+3Ant\nzzWp4fRIC+fw6WqO5lZzTapYliQIgiC0PeJdmuAxlVLJ5NFdLthp49MfTl6we8ZZnlY6uLqmqJDw\nLkdDI1nTnsReUUXq358hdPggl+cp84+i/nktsj4I28ipoPNwmzlzLTSUgELlrJBQedY48HS1hrwa\nLQaNs0JC20KvRg0mmbmfVnGq0EGvTBVTfqVHrfb/Sb3NLjH/owK+2VRBcJCK3z2WTu/uojzbnayc\nRuYuzCW/0Ex0pJZZ01Po21P8zIT27a5hmRw+vYtPfzjJH6f2F6GlIAiC0OaIUEK4LBab44LwwFuV\nDjqNSjS1bAGyw0H2rD9iOnaSmAfvJXbGRJfnKcrzUf+0AlRqbCOnQJCHd9ssDVBX6FziEZYCas/6\ngORWa8it1qJXOwMJnVr29Fu6LDX1Eu+sMlFWLTOwu5p7R+pQKf3/DXt1rY1/zMvhWHYjackGnpud\nQWy06LHSFItV4pNVRaz+ugxJhltGRDHtnkQMBhFwCu1fenwI/btEszurnH3ZFfTr7PlSS0EQBEHw\nByKUEDzikCSWbch2ufWnqHTwX/l/+w+1320mZNggUv/6tOuT6qvQbPwQJDv24Q8gRyZ6dnGrEWrz\nAQWEJoPGs8qKvGoNp6q06NQSfRPM6FsokCivkXjncxPV9TK3DAlkdH/axB3ErJxG/jEvh8pqGzde\nF84TM1LQ68RzqilHshqYuzCX4lILcTE6npiRInYkETqcCUMz2HOinM9+zKFPZhTKNhC+CoIgCMJZ\nLRpKmM1mbr/9dmbNmsXgwYN55plncDgcREdH8+qrr6LValm9ejWLFy9GqVQyceJE7r333pYcknCF\nlm3IvmCZxsVbf4pKB/9TtnQVJe8sRd8pjU5vv4RC7eLpbm5E8/0HKCxGbNePQ0rq6tnF7WaozQNk\nZyChDfTo0wpq1ORUadGpzgQSmpYJJArLHby7ykyDSWbsYC333xJMRUVDi3wtb/r+p0reXpKH5JCZ\ndm8iE26JaRNBii+YzA6WflrE2g3lANwxJoYH7kxAp2sbzUsFwZsSowIZ0iOOLYdK2HG0lME94nw9\nJEEQBEHwWIu+e3vrrbcIDQ0F4D//+Q+TJ0/mo48+IjU1lZUrV2I0Gpk3bx6LFi1iyZIlLF68mJqa\nmpYcknAFLDYHe7PKXR7bm1WBxXZpo0vBt+q27iL3Dy+hDg+lywdvoA51cefYbkOz6SOU9ZXYe9yE\n1GWgZxe3W6EmF2QJQhJB59ld6cJaNdmVOrQq55INQwsFEjlFDv77qYlGk8zdw3WMHqj1+4m93S7z\n3tJ85i7MRadV8qenOnHn2Fi/H7evHDhaz1MvHOWr78tJiNPxf3/owsz7k0QgIXRo429MR6VUsOqn\nHOwOydfDEQRBEASPtdg7uJMnT5Kdnc3w4cMB2LFjB6NGjQJgxIgRbNu2jf3799OrVy+Cg4PR6/Vc\ne+217Nmzp6WGJFyh2gYLVXWut/f0ZOtPoXWZT+Vz4uFnQaGg0/uvok9LuvQkWUK9ZSXK8jwcab1x\n9Bvt2cUdNmcgITkgKA70oR59WlGdmhMVOjRnAokAbcsEEkdP23l3lQmrHSb/SseQ3p413fSlmjob\nf37tBGu/LyclUc+rL3Sjn2jO6FKj0cFbi/P486snKK+ycvdtsbz+v9fQrVOQr4cmCD4XFWZgeL9E\nymvM/LS/yNfDEQRBEASPtdjyjVdeeYX/9//+H6tWrQLAZDKh1WoBiIyMpLy8nIqKCiIiIs59TkRE\nBOXlru/Iny/8zDKB6GixbrilRUcHExxqIDrcQFm16ZLjUWEGMtMi0bfU1gkeMFvtVNdZCA/R+XQc\nV8Nbv8u26lq2zPwtjupaer/3fyTfMczleeYfVmHNO4IqKZPgcdNcL+24iGS3U3P6FA7JRkB0IoEx\nLsIOF06Xy2SVy2jVMLy7itCAlplAbj9gYuGXDSiV8OTkcPp21V9w3B9fL45l1/P837Moq7AwfEgU\nzz/ZjYA23JyxJX/G23ZV8uq8E5RVWMhMC+QPv+lKt07+95i2Bn/8XRb8w+1D0vjpQBGrt55mSK94\n0eNJEARBaBNaZAa3atUq+vbtS3Jyssvjsuz6LmlT//9i1dVGoqODKS+vv+IxCs07/2fcOzPS5daf\nvTMjqa814YtHwl3zTZWy7ZRxe+t3WbLZyZryPzQeP0Xc41PR3zbG5XVVR7eh3r0JKTQay5D7MLoI\nmy4hS1CdC3YTGCIwEoLRgzGX1qs4WqZDrYTecWasjRLljVfy3bm39aCNzzZa0GnhoTsMJEbYKC+3\nnTvuj68Xm7ZW8tbiPGx2mQfuSuDu22JpbDDS6P+tL1xqqZ9xfYOdhcsK2LilCpUK7h8fz123xaJR\n43ePaWvwh99lEYr4r9BALTcPSOarbbls2F3A2EGpvh6SIAiCIDSrRUKJTZs2kZ+fz6ZNmygpKUGr\n1RIQEIDZbEav11NaWkpMTAwxMTFUVFSc+7yysjL69u3bEkMSrpK3tv70puaab3YksiyT98Jr1P20\nk7AxQ0l+frbL85R5R1DtWodsCMI2chroPNgxQ5agJt8ZSOhCISgWPOh1UNbwSyDRJ8FMkM77a5xl\nWWbDLhtrt1kJMih4eLyepBj/vjPocMgsXlHImm/KCDCo+P2sNAb08WwZTEezY08N7yzJo7rWTmZq\nALNnppCWLBrqCoI7t1yfwsY9hazdnsuwvokE6NtmBaEgCILQcbTIX6o33njj3L/ffPNNEhMT2bt3\nL19//TXjx4/nm2++4aabbqJPnz786U9/oq6uDpVKxZ49e3j++edbYkjCVVIplX619WdzzTfvHpbZ\nocpWSxcso2zxSgzdO5M5728oVJd+74ryfNSbV4Bag23EFAgKa/7Csgx1RWBrBG0QhCR4FEiUN6g4\nUqpDpYDe8WaCWyiQ+HKLlU17bIQHK3h0goHocP+ukKmrt/Pa26c4eLSepHg9z83JIDFO3/wndjC1\ndTbmf1TA5p3VaNQKptydwIRbYlGpRONPQWhOoF7D2EEpfPpDDut35nHX0AxfD0kQBEEQ3Gq1+HzO\nnDk8++yzLFu2jISEBCZMmIBGo+Hpp5/moYceQqFQ8MQTTxAcLMpC/Zm/bP3pSfNNfxhna6jZuJW8\nP7+OJjqSLov+hSrQxfddX4Vm44cgObCPmIQcmdj8hWUZ6ovBUgeaAAhN8iiQqGh0BhJKBfROMBOi\n934gIUkyKzZY2HnETky4gkcmGAgP9u9A4lSekZfezKG80sp1/UL5za/T2nT/iJYgyzJbfq7mvQ8L\nqGuw0zUzkCdmpJCc4EFFjyAI54zun8x3uwr49ud8RvVPIjRQ6+shCYIgCEKTWjyUmDNnzrl/L1y4\n8JLjt9xyC7fccktLD0PwIYvN4fXqitAgHREhOipdBBPhwXpCg3Re+Tr+zpSVw8nH/oBCo6bzgtfQ\nJbnYm97ciOb7D1BYjNiuH4eU6OHSlsYyMNeAWg+hyaBoftJfZVRxuESH4kyFRGgLBBJ2u8zSr80c\nOOkgKUbJw+MMBAX49x30n3ZUMXdhLlarzP3j47n3jjiUSv8ec2urqrHx7pI8duytRatVMPP+JG4d\nHY1K/JwE4bLptCpuH5LG0m+z+Grb6Q63pFEQBEFoW8RCQ6FFQgNo2UaUOo2Kfl2iXTbf7NclqkMs\n3bBVVpM17Skc9Y1kzvsbQf17XXqS3YZm01KU9ZXYew5F6jLQs4s3VoCxElRaCEsBZfM/z2qjkkNn\nAolecWbCDN4PJCxWmUVfmcnKd5CZqGTm7Qb0Ov+dtDokmaWfFvH5ulIMeiXPzUnn+n4eLJvpQGRZ\nZuPWKhZ8XECj0UGPrkE88WAK8bFiWYsgXI1hfRP4emcem/YWMmZgMlGhouJIEARB8E8ilOjAWnr3\nipZuROmPzTdbi2SxcuKh32PJKyThqYeJvNNFtZEkod6yEmV5Po603jj6jvLs4qZqZ5WEUn0mkGj+\nZaLGpORgiR5Zhl7xFsIDvB9IGM0y81ebyC2R6J6uYtpYPRq1/wYS9Q12Xn/nFPsO1xMfq+MPczLE\nMoSLVFRZeWtxHnsO1qHXKXl0ajJjhkWJKhJB8AK1Ssn4G9N5/6ujrN5ympm3XuPrIQmCIAiCSyKU\n6MBaMjRojUaU/tZ8s7XIsszpZ/+Php37iLjjZhKfftjleao9X6PKO4IUm459yJ0eLb/AXOfsI6FQ\nQViqs1KiGbUmJQeKnYFEzzgLEQGOy/2WmlXXKPHOKjMllRL9u6q5b7TOr5se5haYeOnNk5SWW+nf\nO4SnHkkjMEC83J4lyzLf/lDJouUFmMwSfXsE8/j0FGKiOsayK0FoLYN7xLFuRx5bDhYz9voU4iMD\nfT0kQRAEQbiEf3eGa+MsNgdl1UYsNu9P0q5Wc6HB1Y7Zk0aU3nK2+WZHCCQAiuctpmL5lwT27U7G\nG39G4aKqRXV0G+qjW5FCo7ENmwQqDybE1gaoK3SGF2EpoG5+glhn/iWQ6BFnITLQ+7/rlbUSc1eY\nKKmUuLGPhvvH+HcgsXVXNc/9/Til5VbuuT2O5/8nUwQS5ykps/Dn17J564M8FAoFs2ek8sJvO4lA\nQhBagFKp4M6bMpBl+PzHHF8PRxAEQRBcEu+UW0BLL4vwBk9Cg6SruL5oRNkyqtdtouCleWjjY+m8\n8HWUhkvX3SvzjqDatQ7ZEIRt5DTQebBkwGaE2nznv0OTQdP859RblOwv1uOQoXushagWCCSKKx28\nu8pMXaPMmOs0jLlei8KDHUB8wSHJfPx5EZ9+VYpep+SZWekMHhDu62H5DUmSWbehnCUri7BYJQb2\nDeWxqclEhItdAQShJV3bJYr0+BB2HS/ndEkdaXEhvh6SIAiCIFzAP2bI7czZZRGVdRZkflkWsWxD\ntq+Hds7Z0MCVKwkNLq4KOduI0pWO0ojS2xoPHuPk7D+h1OvovOifaGOjLjlHUZ6PevMKUGuwjZgK\nQR40VbSboSbfuQVoaCJomy/vbbAo2V+kxyHBNTEWYoK8H0jkFjuYt9JEXaPM+KFafjVI57eBRKPR\nzkv/OcmnX5USG63l5T92FYHEeQpLzPzx5Szmf1SARqPgqUfS+MOcDBFICEIrUCgU3D0sA4DPfhDV\nEoIgCIL/EZUSXtYavRS8wVu7V7irCunIjSi9zVpawYkHn0YyW+g8/1UCe3W79KS6SjQbPwRJwj5i\nEnJkQvMXdlihJg9kBwQngK75O2gNFgX7i/TYJegWYyU22PuBRFaenYVfmbHbYdLNOgZco/H61/CW\n/CITL72ZQ3Gphb49gvnto+kEB4mXVgCHQ2b1N2V8sqoIq01myIAwHn4gmbBQ/308BaE96p4WwTWp\n4Rw6VcXxvGq6pojQVBAEQfAf4p2zl3myLCImPKCVR+XaxaFBWJCObqnhTLgp3eNrNNcssyM2ovQ2\nyWTmxIzfYi0uJen52YSPHX7pSeZGNBs+QGExYrt+HFKiB41KJbszkJDsEBQLhuarKhqtCvYXG7BJ\nCrpGW4gLtl/+N9SMA9l2PlxvRqGA6bfq6Znpvy9TO/bW8O/3TmMyS9w5NpYH7k5AJXaOAJzNPucu\nzCX7lJHQEDVPPpwsqkcEwYfuGpbB3z/Yzac/5PCHKdf6beWZIAiC0PH477v9Nqot9VI4u3vFhJsy\n+PjbLI7lVbPtUAnH86rp1yWa2RP7uf18T6tCzjaiFC6fLEnkPPkXGvcdIWri7cQ/Mf3Sk+w2NJuW\noqyvwt5zKFKXgc1fWHJATa6zUiIgCgIim/0Uo9VZIWFzKOgcZSE+xPuBxI7DNlZssKBVw8zb9XRK\n9s+XKEmSWb66mGWrS9BqFfz20TRuuj7C18PyC3a7zOfrSli+ugS7Q2bY4AhmTkoiRFSPCIJPZSaE\n0q9zFHtPVLD/ZCV9O126BFAQBEEQfEG8S/Qyby2LaE2rfsphy6GScx+frXYIMGiZcENak5/XlqpC\n2qrC19+jas23BF/fj7RXnr/0zpYkod6yEmV5Po603jj6jm7+orIEtXlgt4AhHAJd9/44n8mmYF+R\nHqtDSadIC4mh3g8kNu2xsmazlQA9PDzeQEqs/z1XAIwmB2+8d5qf99USE6XludkZpKeI33OAnFwj\ncxfmcirPRESYhsempTCwb6ivhyUIwhl3Ds1g34kKPvshh96ZkShFtYQgCILgB0Qo0QLaUi8Fd9UO\n2w8VM/a65CaDFH+uCrHYHG1+yUjlqq8pev09dCmJdJr/KkrdpU0BVbvXo8o7ghSbjn3IndDcG0xZ\nhtoCsJmc/SOC4pr9HPN5gURmpIWkMO8GErIss26ble932QgNVPDIBANxkf7Zg7ewxMxLb56ksNhC\nr2uC+d1j6YQEi5dRm03i3SWn+HBlHpIEo2+K5MH7EsVWqILgZ5KigxjUI45th0vYebSUQd3jfD0k\nQRAEQRChREs4uyyiLfRScFftUFFjclvt4I9VIW1hO1ZPNOw5RM5Tf0EVHEiXD/6FJvLSfg+qo1tR\nH9uGFBqNbfgkUDXzdJZlqCsEa4Nzh42QxOYDCbszkLDYlaRHWEn2ciAhyTKfb7Kw9aCdqFAFj95p\nICLEPx+nXftr+de7pzCaJMaNiWHavYmoVOIuY9bJRuYuzCW/yEx0pJZZD6bQt4fYclAQ/NX4m9LZ\nebSUVT+dYkDXGNQq/3zNFQRBEDoOEUq0oLbQS8FdtUNUmKHZagd/qwpprvFmW2ApKOHEjKeRbXYy\nF7yGoUvGJeco8w6j2rUe2RCMbdQ00BrcX1SWoaEELHWgMUBocrOBhMXu7CFhtitJC7eSGm67mm/r\nEnaHzMffWtiXZSchSskjE/QEB/jfm2NZlln5ZQkfrypGo1bwm4dTGT64+R4c7Z3FKvHxqiLWfF2G\nJMNdtyVwz63RGAz+GcAKguAUE2ZgaN8ENu4pZPPBYob3TfT1kARBEIQOToQSHZy7aodBPeObrXbw\np6qQtrIdqzuORiMnHvwttvJKUv76O8JGDLnkHEV5HurNK0GtwTZyCgQ2v2sGjeVgqgaVDkJTQOF+\n8m+1w/4iPSabkpQw7wcSVpvM4rVmjuU6SItX8utxBgw6/6s6MJkdvPl+Ltt21xAVoeG52Zlkpvl3\n0NgajmQ1MHdhLsWlFuJidMyekcLwGxMoL6/39dAEQfDAHUPS2HKgmNWbTzGkRxxaP//bKAiCILRv\nIpQQmqx2mHlHD6qqGj26hj9UhbT1xpuyw8HJJ/6E8UgWMdPuJvah+y45R1FXiWbjUpAk7CMmIUck\nNH9hYyUYK0CpgbAUULp/82l1wL4iA0abkuQwK+kRtmZbVVwOk0Xm/TUmThVJdEtVMf1WPVqN/wUS\nxWUWXnrzJPmFZnp0DeJ3j6cTFqLx9bB8ymR2sPTTItZucIZ/48bEMPnOBHQ6/6twEQShaWFBOkYN\nSGLd9jw27CnklutTfD0kQRAEoQMToYTQZLWDqo2tM/XnxpueyP+/udR88yMhN15Hyou/v3SnDXMj\n6g0foLAYsQ0aj5TowXIUUw00lIJSDeGpoHI/qbY5nBUSRpuSxFAbGV4OJOqNEu+uMlNUIdG3s5pJ\nY3So/bAvw95Ddfzz7VM0Gh3cNiqaB+9LQq32v3G2pgNH6pi3KI+yCitJ8Xpmz0yla2agr4clCMIV\nGnt9Kpv2FrF2ey7D+iZg0Im3hIIgCIJviL9AwgU7VcSEB2CxOSirNhIc2kyfAj/jj403PVX+yWpK\n3lqCPiOFTu++jFJz0VPTbkOzcSnK+irsPYchdR7Q/EUt9VBf5FyqEZYCqkt37zjf2UCi0aoiIcRG\np0irVwOJqjqJd1aZqKiRGdxLzV3DdCiV/jXRl2WZVetL+XBlEUqVgtkzUhl1U8fuH9FodLB4eQHf\n/liJUgl33xbLxHHxaDVtK7QUBOFCQQYNt1yfwuc/5vD1zjwm3HRp/yJBEARBaA0ilOjAXO1UEaDX\n0GiyUl1vJTrcQO/MyDa1c4W/Nd70ROWPOzn97P+hCguhywdvoA67aOcCSUK9eQXKinwc6X1w9B3V\n/EWtjc6tP1E4Awm13u3pdgkOFOtpsKqID7bROcq7gURplTOQqG2QGTVAw9jB2ksrQXzMbHEwb2Ee\nm3dWExmu4ZknMuiS0bErAXYfqOWtxXlUVttISzIw+6FUMlP9dwmUIAiX5+YBSXy/K5+vf85nZP8k\nQgLch9eCIAiC0BJEKNGBudqp4vylD2XVpja3c4U/Nd70hPl0AUfvnQOyTOf5/0Cfcem6XtXu9ajy\njyLFpmMfPKHZXTOwmaA2H5CdTS017ieRZwOJeouK2GAbXaK9G0jklzp49wsTRjPcfoOWEf39701v\nabmFl9/M4XSBiW6dAnnmiQzCQztu/4j6BjsLPilg09Yq1CoF90+I565bY9Go20Y4KQiCZ/RaNbcN\nSePj706wdlsu94/q7OshCYIgCB2QCCU6KHc7VVysrexccT5/aLzZHHttPVnTnsRWVUPaq38iZMil\nSzJUR7eiPrYNKTQa2/BJoGrmKWu3QE0eyBKEJIEuyO3pDgkOFuupM6uICbLTzcuBRHaBnQVrzFjt\ncO9IHYN6+t9E/8CROl596xQNjQ5+NTyKhyYndejJ9/bdNbyzJI+aOjud0gKYPTOV1KS2tZRLEATP\nDe+byDc789mwp4AR1yYS6+d/OwVBEIT2R4QSHZS7nSou1hI7V5zfx6IthR3eItvtZD/2B8zZp0l/\ncgbRD0y45Bxl7mFUu9YjG4KxjZoG2mYmhg4b1OSC7IDgeNCHuD9dgoMlemrNKqID7XSLsXg1kDiU\nY2fJOjOyDFNv0dOns3+93MiyzJpvy1i8rBClUsHj01MYMyzK18PymZo6G/OX5rPl5xo0agXT7k1g\n3JhYVH7YiFQQBO/RqJXcOyKTt784zLLvs/mfe3r7ekiCIAhCB+NfswSh1bjbqeJi3ty5wlUfi35d\nottU3wpvyH3hn9T9sJ2w0Tdxzcu/p6LKeMFxRVke6i0rQa3BNnIKBIa5v6BkdwYSkh0CY8AQ7vZ0\nhwSHSnTUmFREBdq5JtaCN3tO7jpqY9l3FtQqePAOPV1T/OulxmKV+O+iXH7cXk14qJpnnsigWyf3\nVSXtlSzLbN5ZzfylBdQ12OmaGcjsmakkxbvvQyL4r7IKC4eONzD0+ogOv2uM4JmB3WLYuKeQfdkV\nHDhZSe/Mjt3gVxAEQWhd/jVTEFqNu50qLubNnStc9bFoa30rrlbpwuWULVqB4ZpOZP73byhUF/5s\nFXWVaDYtBUnCNmIyckSC+wtKDueSDYcVAiIh0P3dfkmGw6U6qk1qIgLsdPdyIPHTPiurfrRi0MGv\nxxlIi/evSpjySisvzz1JTq6JLhkBPPtEBhHh/tfnojVU1dh4Z0keO/fWotUqmDkpiVtHRaPys11R\nBM+UlltY+VUJG7dU4nBAUry+wzdrFTyjUCiYfHMX/nfhTj7+/gTd08JRt7FtwQVBEIS2S4QSHdil\nO1Wc3X3DRk2DhaiwX3bf8AZ3fSzaYt+KK1G7aTu5L/wTdVQEXRb/C1XQRRMGcyOaDR+gsBixDRqP\nnNhM0zFZcja1tJtBH+asknBDkuFIqY4qo5pwg50eXgwkZFnmm502vtlhJThAwaMT9MRH+dfjeeh4\nPa/+9xR19XZG3xTJI1OS0XTArS1lWWbjlioWfFJAo9FBz25BzHowlfgY71RECa2rpMzCp1+VsHGr\nM4xIjNNx37h4EUgIlyU5JoiR/ZL4fk8B3+7KZ+z1qb4ekiAIgtBBiFCijbua3gxN7VRx9pqZaZHU\n15q8NlZ3fSxaom+FvzGdOEX2o8+iUKvovOA1dEnxF55gt6LZ+CGK+irsvYYhdb608eUFZNm57afN\nCLpgZx8JN00hJBmOluqoaFQTZnDQM86Ct26ESbLM6h+t/LTfRkSIgkcnGIgK85/JvizLrP2+jPc/\nLkChgEenJvOr4VF+ty1payivtPLW4jz2HqpDr1Py6NRkxgyLQimqI9qckjILK790hhGSBInxOibe\nEc8N14WLahfhioy/KZ0dR0tZveU0g3vEEealpZuCIAiC4I4IJdoob/ZmuHinirMf67Vq6r04Znd9\nLLzZt8If2SpryJr2JI76RjLmvkjwgIsaiUkS6s0rUVYU4Mjog6PPKPcXlGWoLwJrA2gCISTRbSAh\ny3CsTEd5o5pQvYNecWavBRIOSWb5dxZ2HbMTF6HkkQl6QoP8J5Cw2iRe+vdx1n5fSmiImmdmZdC9\nS8frHyFJMt/+VmElrgAAIABJREFUWMHi5YWYzBL9eobw+PQUoiM75tKVtqz4TBix6bww4r474hki\nwgjhKgUZNNw1NIMPvj7Oio0nefiO7r4ekiAIgtABiFDCj7mrgmiLvRnc9bHwZt8KfyNZbWQ//AyW\n3EISnnyIqLvGXnKOavd6VPlHkWLTsQ+a4DZgQJahoRTMtaDWQ2gyKJoOAWQZjpVrKWtQE6J30Cve\ne4GEzS6zZJ2Zw6ccpMQqeXi8gQC9/0yKKqqsvDIvh+xTRjqlBfDs7AyiIjreJLykzMK8RbkcOtZA\nYICKOTNTGXFDRIesFGnLikvNvLe0kPUbS5EkZ8+IiePiGDJQhBGC9wztk8CmfYVsO1zCiH6JdEoK\n9fWQBEEQhHZOhBJ+qLkqiNbszeAuGLmSpSO/9LEop6reQkTwL99beyTLMqefe4n67XsIv30Uib97\n9JJzLHs2oT62DSk0BtvwSaBq5mlprABTFah0EJYCbipjZBmyyrWU1msI1jnoHW9G7aVAwmyRWfiV\nmewCB52TVcy4TY9O6z8ToyNZDbz63xxq6uyMHRnL9Inx6LT+U8HRGiRJ5qvvy1n6aREWq8TAvqE8\nNjW5wzb2bKuKS82s+LKEH7ZVIUmQnOAMIwYPEGGE4H1KpYIHbu7CSx/uYel3Wfy/aQPE8i5BEASh\nRYlQwg81VwXRGr0ZHJLEe6sOsmV/4SXByNkxXs3SEVmWkWXnf9uzkrc/pOKT1QT26U7GG39BcdHP\nR5l7GMuPXyAbgrGNmgpag/sLGqugsRyUmjOBRNNPYVmGExVaius1BGm9G0g0mGTmf2Eiv0yiV6aK\nKb/S+9XWg+s3ljP/o3xkGR6alMSDkzKoqGjw9bBaVWGxmbkLczmW3UhwkIonHkzjxuvDRXVEG+Iq\njPj1lHR6dtGLSaLQojonhTGoRyzbD5ey+WAxQ/s0swuUIAiCIFwFEUr4GU+qIFqjN4O7YAS44qUj\nF1+3qt7q98tOrlT11z+Q/7f/oImPofPCf6IK0F9wXFGWh3rLStBosY2cAoFh7i9oroWGElConIGE\nStPkqbIM2ZVaiuo0BGod9Ekw463VMTX1Eu+sMlFWLTOwu5p7R+r85m6tzSbx3tJ8vv2xkpAgNb97\nPJ1e1wR3qIm4wyGz+ptSPv68GJtdZsiAMB6ekkxYSNO/L4J/KSo1s2JNCT9uq0KSITlRz33j4hnc\nP4zY2BDKy73Z7UcQXLt3eCf2ZlWwctNJ+neNJlAvXkMEQRCEliFCCT/jaRVES/ZmcB+MlDdZ3dDc\n0pGOtCWo8XAWJ5/4E0qdli4LX0cbF33BcUVdBZpNS0GSCBj3EJagZu5CWeqhrtDZOyIsFdRNB0+y\nDDmVGgprNQRoJK8GEuU1Eu98bqK6XmZYPw133Kj1mwl/VY2Nf8zL4fjJRjJSDDw7O4OYqPbbPNWV\n3AITcxfkkn3aSFiImkemJDN4QLivhyV4qLDEzMo1Jfy43RlGpCTqmXgmjBCVEUJrCw/WcccNaazc\ndJIvfjrF5Jvb140DQRAEwX+IUMLPeFoF8Utvhgqq682EB+vp1yXKK70ZqurMLr8+QFW9haZWXFTV\nmSmvNpIUE+zyeEfZEtRaVkHW9KeQjCY6zf8Hgb27XXiCqQHN9x+gsBixDZqAOv0acHfn02p0bv2J\nAkJTQKNv8lRZhlNVGvJrtQRoJPommNB6KZAoLHfw7iozDSaZsYO1jBqg8ZtA4vjJRl6Zm0N1rY2h\ng8KZNT0Vna7j9I+w22U+W1vCijUl2B0ywwdHMGNSEiFB4iW+LSgsdi7T+OlMGJGa5AwjBl0rwgjB\nt24ekMxP+4vYsKeQoX0TSIrueDsXCYIgCC1PvGP1M57uUKFSKpk8ugt3D8u87GaTzfluV36TxyKC\ndciyTFW99ZJjMvDvlQea7C/R0stOrqTxprdJJjMnZv4Oa1EpSc/NIuLWkReeYLei2bQURUM19l7D\nkTr3d39Bmxlq8wDZucuG1n1ok1utIa9Gi+FMhYTWS8/wnCIH7682YbHC3cN1DOntP2W83/1YwTsf\n5iM5ZB6cmMi4X8X4TVjSGk7mGpm7IJfT+SYiwzU8Ni2FAX1Et/y2oLDYzPI1xWzeUY0kQ1qSgYnj\n4rhehBGCn9ColUwa3Zk3Vhzgo2+z+P2kfh3q9VUQBEFoHSKU8EOXUwWh06i8Ul1wdkJv0Kk5cLKy\nyfN6d4pCpVS4DE3AfX+JltoStLndSlqLLMvkPP0ijXsOEXnPrcTPmXHhCZKEevNKlBUFODL64Ogz\n0vWFzrJboTYXZAlCEkHnugLlrNxqDaertejVzkBCp/ZOE9Gjp+0sXmvGIcHkX+m4tqt/BBI2u8SC\njwtYv7GCoEAVTz+WTt8eIb4eVqux2SSWrS7m83XO7SFvHhrJ9IlJBAa0jyVQ7VlBsZkVF4cR4+O4\nvp8IIwT/0zszit6ZkRw4Wcnu4+UM6Bbj6yEJgiAI7YwIJfxQS1ZBXOziCX1YkI7qBtdLLACG9o5H\nq1HhcEjsz66kqt71uU31iLhvZCckWWbrwRLMVgcAeq0KWZZxSNIVhQjN7VbSWor+NZ+qVV8TNKA3\n6a/+6cK7SbKMatc6VPlHkeIysA+aAO7uNjlsUJMLkgOC4kDv/s53fo2aU1VadGqJvglm9F4KJPZm\n2fjoGwtKBcy4TU/3dP94yaiptfGP/+Zw9EQjqUl6npudSVxMx+kfkXWykTcX5FJQbCYmSsus6Sn0\n6UCBTFuVX2RixZoSNu+sRpYhLdnAfePiua5fqAgjBL82aVRnDp+qYtmGE/TKjGw3/Z8EQRAE/+Af\nMwzBJW9VQbhz8YTeXSCh16qY+9nBc9UIXZLD2H6k1OW51fVmymtMaNXKC0IVlVKJUqE4F0gAmK0O\nvt9diEKhuOwQwV+aZ1au/pbC195Bm5xA5wWvodRpLziuOroN9fHtSGEx2IZNApWbp57kgJo8kGwQ\nGA0BEW6/dkGNmpOVOrSqM4GExjuBxNaDNj7baEGnhYfuMJCR6B9vQk+ccvaPqKy2MWRAGHMeSkWv\n84+xtTSLReLjVUWs+aYMSYZbR0Uz5e4EDPqO8f23VfmFJpavKWHLz84wIj3FGUYM7CvCCKFtiI0I\nYMx1yazbnse67blMuCnD10MSBEEQ2hERSnRg7ib0rpitjnNhQmWdhcojpei1SsxW6ZJztRoVbyzf\nR3W99YLlFHaHfMUhgqueEf7QPLNh7yFynvxflEGBdFn8OpqoC0MEZe4hVLvXIxuCsY2cBtqmG1Ui\nSc5AwmEBQwQERLn92oW1arLPCyQMXggkZFlmwy4ba7dZCTIoeHi8nqQY/5j0bthSyduL87A7ZKbe\nk8CdY2M7zPrmw8frmbcwj+IyC/ExOp6YkUKPru6X9Ai+5TKMGB/PdX1DO8zvrdB+3DEkjW2HSli7\nPY8besUTHWbw9ZAEQRCEdkKEEh2Yuwk9QESIjpp655IOo8V+QXXDL1y/sb44wDhbjTG6f9Jlhwju\neka0dPPM5lgKSzgx42lkq43O771CQLcL+34oyvJQb/4U1BpsI6dCoJtlGLIEtflgNzmXawTFul3i\nUVyn5kSFDo1Kpk+CmQCtdwKJL7dY2bTHRniwgkcnGIgO9/0uFna7zKLlBXz1XTmBASqefSSN/r07\nRjNHk9nBkpVFrNtQjlIB438Vw6QJCR1qd5G2Jq/QuUzjbBiRcSaMGCjCCKEN02vV3DuiE++tOcLy\nDdk8cVcvXw9JEARBaCdEKNGBuZvQR4bo+ffTwykoqsFql/jz+ztdXsNqczCkZxzHcquprrcQHqw9\nE2BcWj2xN6uCO4akXXaI0FzPiJZonukJR6OREw/+FltZJSl/+S1ho2684LiirgLNpqUgS9iGTUaO\niG/6YrIMdYVgawRtEAQnuA0kSurVHC/XolbK9Ik3EeiFQEKSZFZssLDziJ2YcAWPTDAQHuz7iW9t\nnY3X3j7FoWMNJCfoeW5OBgmxbqpN2pH9h+uYtyiP8korSfF6Zs9MpWtmoK+HJTQht8DEijXFbN1V\n4wwjUn9ZpiHCCKE9GNQ9lo17C9mdVc7h01X0SHO/vFAQBEEQPCFCiQ6sud0wQoN0WMMDsNgcboIE\nHTqN8tz8WZJxGUiAsxLCZLFfVojgSc+Iy9mtxFtkSSJnzgsYD2cRPeVOYn896cITTA1ovv8AhcWI\nbdAE5ITOTV9LlqG+GCz1oAmA0CS3gURpvYpjZVrUSuiTYCZId/WBhN0us/RrMwdOOkiKUfLwOANB\nAb6fROXkGnl5bg7llVauvzaU3zyUhsHgH0tJWlKj0cGi5QV892MlSiXcc3scE++IQ6PxfUgkXCq3\nwMTy1c4wAiAzNYD7xscxoI8II4T2RaFQ8MDoLvx10c989G0Wf5l5HWqVeF0SBEEQro4IJdohV70X\nmuLJhN5deKFVq9i4t+jcxzUN1ia/1tlKiMsJETztGdFau5WcVfDSPKrXbyLkxoGk/v3ZCycediua\njUtRNFRj7zUcqXN/t9dqLMsHcw2o9RCaDIqm3+CVNag4WqZDdSaQCNa5DoAuh8Uqs+grM1n5DjIT\nlcy83YBe5/uJ1I/bq5i3KBerVWbynfHcfVtch2gKuGt/LW9/kEdltY20ZANzZqaSkdqyfVGEK5Nb\nYGLZ6mK2XRBGxDOgT4gII4R2KzUumGF9E9i0r4gNewoZMzDZ10MSBEEQ2rjLCiWysrLIy8tj9OjR\n1NXVERIitqDzJ+56LzS11aan249eHCRoNc5tPIurjB6P7/xKCE9DhMvpGdEau5UAlC9bQ/G8xegy\nUuj0zssoNec9jSQJ9U8rUFYW4Mjoi6PPSPcXa6zA1FgGKi2EpYCy6TClolHF0VIdKgX0ifdOIGE0\ny8xfbSK3RKJ7uoppY/Vo1L6dTDkcMktWFvLF12UEGJT87n/SGdg3zKdjag31DXbe/7iAH7ZVoVYp\nmDQhnjtvjUWjFnch/c3pfCPLV5ewbbczjOiU5gwj+vcWYYTQMdw5NIOfj5XxxeYcBnWPJSRQ2/wn\nCYIgCEITPA4lFi1axJdffonVamX06NH897//JSQkhFmzZrXk+ITL0FzvBXeam9CfH14s+fo4Ww+V\nNDuesCAtdY3WSyohzq/kaC5EaG6JSWvvlV6/Yy+nn/k7qrAQuiz+F+rw85otyjLqXWtRFRxDisvA\nPmi822UYmKqhsQylWosUmgrKpp+OlY0qDpfoUCigd7yZEP3VBxJ1jRLvrDJTUinRv6ua+0brUKl8\nO6Gqa7Dz+tun2H+knsQ4Hc/NySQpvv33j9i2u5p3l+RTU2enU3oAs2ekkpokOtv7m1N5RpavKWH7\n2TAiPYD7x8dzbS8RRggdS3CAlgk3ZbD02yxW/nCSmbde4+shCYIgCG2Yx6HEl19+yfLly5k+fToA\nzzzzDPfff78IJfyEJ70XPJnAnx8YNOV4XnWz11EqoE+nKMYMTCYiRI9Oo8IhSXz0XdZlVXKAZ0tM\nWoM5t4ATM38Hskznd1/BkJl6wXHV0a2oju9ACovBNmwSqNw8vcx1zj4SChWhad2orrM3eWqVUcWh\n8wKJUMPVBxKVtRLvfG6isk7mxj4axg/VovTxpOp0vpGX38yhtMLKgD4hPPlwOoEB7bt/RE2djfc+\nzGfrrho0agXT7k1g3JhYn4dDwoUuDiM6pzsrI0QYIXRkw/sl8MO+QjYfKGZ430QyEkT1rCAIgnBl\nPA4lAgMDUZ43cVQqlRd8LPjG2RDBanNc9lab53O19OOGPoncMTjlgsCguW1Ez5Jk+GFfERq18lyV\nxpVWcni6xKQl2esaODH9t9ira0n7x/OE3DjwguPK3EOod69HNgRjGzkNtG7u7lsbnDttKJQQloJa\nZwDqXZ5abVSeCyR6xZkJ80IgUVzp4N1VZuoaZcZcp2HM9VqfT6y27KzmzQW5WKwSE8fFcd+4+Hbd\nP0KWZX7aUc38j/Kpb3DQrVMgs2ekktgBqkLaklN5RpatLmbHnloAumQ4w4h+PUUYIQgqpZIHbu7C\nKx/t5aPvsnh+an+fh9uCIAhC2+RxKJGSksLcuXOpq6vjm2++Ye3atWRmZrbk2AQ3XIUIOq3S5c4X\nTW21eT5XgcHqn3IwmqwXBAbuejy4crZKw/nvq6vkaK2eEReT7XZOPv48pqwcYh+eRMyUuy44rijL\nRb35U2SNDtvIqRAY2sSVAJsRavOd/w5NBk3TJfo1JiUHS/TIMvSMtxAecPWBRG6xg/dWmzBZYPxQ\nLUP7+nYdsEOS+eizIj5bW4pep+TZJzIY1L9994+oqrby9pJ8ft5Xi06r5KFJSYwdFY2qHYcwbU1O\nrpHlq4vZsVeEEYLgTteUcK67JoadR8vYerCEG3u72fpaEARBEJrgcSjxwgsv8MEHHxAbG8vq1avp\n378/DzzwQEuOTXDDVYjQlOZ6L1zO0g93PR5cOVulAVxVJYcv5f3lDWo3biV01A2kvPDkBccUdRVo\nNi4FWcI29AHkCDdvyOxmqMkDWXYGEtrAJk+tNSs5UOwMJHrEWYgMcFz195GVZ2fhV2bsdph0s44B\n12iu+ppXo6HRzuvvnGbvoTriY3Q8NyeDlMT220dBlmU2bK5iwScFGE0OenYL4okHU4mLcR8YCq0n\nJ9dZGbHzbBiRGcj94+Pp2yNYhBGC0ISJIzqx70QFK384ybVdognQi43dBEEQhMvj8V8OlUrFjBkz\nmDFjRkuOR/CAuxBBr1URoFNT02DxuPeCp9tunnVxj4ewIB1Gix2z9dKJc1iQDqtdIjRQ6/EuGv6k\n7IOVlL7/CYauGXT6799RqM4Ld0wNaL7/AIXVhG3wBOQENz9nh/VMICFBcALogps8te5MICHJ0CPW\nQlTg1QcSB7LtfLjejEIB02/V0zPTt28a8wpNvPRmDiVlFq7tFcJTj6QRFNh+38iWV1p5a3Eeew/V\nYdAreWxaMjcPjWrXS1TakpO5RpZ9UczP+5xhRNczYUQfEUYIQrMiQvTcNjiVz386xZqtp7hvZGdf\nD0kQBEFoYzyeBXTv3v2CN2cKhYLg4GB27NjRIgMTmuYuRLDaHDw/tT9atdLj3guXs+0muO7x8OkP\nJ11WTxgtdv78/k4iQnQE6DUuv4YvdtHwRO2POzj9x1dRR4TRZfG/UAUH/XLQbkWzcSmKhmrsvYcj\nderf9IUcdqjJBckOQbFgaHp5Qr3FGUg4JOgeayE66OoDiR2HbazYYEGrhpm36+mU7NvJ/7bd1fxn\nfi5mi8Tdt8Uy6c6Edrt0QZJkvvmhgsXLCzFbJPr1DOHx6SlER4rt8/zBydPOyoizYUS3ToHcNz6e\nPt1FGCEIl+OW61P46UAx3+0qYGifBOIjm64EFARBEISLeTw7OXbs2Ll/W61Wtm3bxvHjx1tkUIJ7\nzYUI0WEGjyf5Zxtl9s6MZOPeokuOuwsMzu/xcHH1hFajwmx1nKueqKyzUFlnITkmCKPZ7tNdNDxh\nyj5N9qPPoVAp6bzgNXQpib8clCTUP61AWVmAI6Mvjt4jm76Q5IDaXHDYICAKAiKbPLXBomR/kR67\nBNfEWIjxQiCxaY+VNZutBOjh4fEGUmJ9F/5IkswnXxSzYk0JOq2S3z2ezg0Dw302npZWXGbhv4ty\nOXSsgcAAFXMeSmXEkAgx2fUD2acaWba6mF376wBnGHH/+Hh6izBCEK6IRq1i0qjOvPnZQT767gS/\nndhHPJcEQRAEj13RLVOtVsuwYcNYsGABjzzyiLfHJDTDXV8HT6sOXDXKTI4JotFkO7f044Y+Cdwx\nOMWjMZ1fPVFebeTfKw+4XM5hNNt54cEBmCx2n+yi4QlbVQ1Z05/CUVtPxn/+QvB1fX85KMuod61F\nVXAMKS4D+6Dx0NQbL1mC2jywW8AQDoHRTX7NRqviXCDRLdpKbPDVBRKyLLNum5Xvd9kIDVTwyAQD\ncZG+2y2n0ejgjfdOsWt/HbFRWp6bk0Fasn/2ELlaDklm7fflLP20CItV4rp+oTw6NYWIMN/28BDg\nxKlGln1RzO4DzjDims7OMKLXNSKMEISr1bdzFD3SIzh8qop9Jyro16Xpv3mCIAiCcD6PQ4mVK1de\n8HFJSQmlpaVeH5DgmYsrEy636sBVo8zKOgsjrk3kVwOTCQ3SkZQQRnm5660qm6LTqNBqVG57VJgs\ndr9tailZbWQ/8iyWU/nEz5lB1D23XXBcdXQrquM7kMJisQ2bBKomnkKyDLUFYDOBLgSC4poML+pM\nMvuK9NgkBV2iLcSF2K/ue5BlPt9kYetBO1GhCh6900BEiO8CiYJiMy+/eZLCEgt9egTz20fTCQlq\nn/0jCorNzFuYy7HsRoKDVDwxI40brwsXE14fuziM6N4liPvGx9OrW5B4bATBSxQKBZNHd+aF93fy\n8fcn6JkRgUbtfzceBEEQBP/j8cxg9+7dF3wcFBTEG2+84fUBCZ5x1dfhcpZsNNUo80B2JRNHdLqq\nCobL7VHhL2RZJvf5V6jfupvwW0eQ9OzjFxxX5h5CvXs9ckCIc+tPrb6pC0FdIVgbQBsEIYlNBhJG\nq4LtR2RsDiWdoywkXGUgYXfIfPythX1ZdhKilDwyQU9wgO8CiZ/31fCvd09jMkuMvyWGqXcnolK1\nv0mgwyHzxdelfLKqGJtd5sbrwnlochJhIaI6wpeychpZvvrCMOL+8fH0FGGEILSI+MhARg9I4uud\n+azfkccdN6T7ekiCIAhCG+BxKPHSSy+15DiEK3R+XwdPXe5uG1cypqtdXuILJe8upfyjVQT06kbG\nf/6KQvnLZF5Rlot686fIGh22EVMgMNT1RWQZGkrAUgcaA4QmNRlImGzOJRsWB3SKtJAYenWBhNUm\ns3itmWO5DtLilfx6nAGDzjcTL0mSWfllCR+vKkarVfDUI2kMHRThk7G0tNwCE2++n8vJXCNhIWoe\nnZrCoP5NNzMVWl7WSWfPiD0HRRghCK1t3A3pbDtcylfbcrmhVzwRIU0E+IIgCIJwRrOhxLBhw9y+\nidu0aZM3xyO0gLPNLM9WU7RGJcPVLi9pbdXf/kT+X/+NJjaKLoteRxVgOHdMUVuOZuNSkCVsQx9A\njohv+kKN5WCqBrUOQlNA4bpKwWxTsK9Ij8WhpHeKggjN1QUSJovM+2tMnCqS6JaqYvqterQa30y+\nTCYH/55/mh17a4mO1PLc7AwyUv1zuc7VsNklPvuqlJVflmB3yAwfEsHM+5MIbqdLU9qC4yedyzT2\nHnKGET26ng0jmt6CVxAE7zLo1NwzLJMFa4+yfGM2j43v6eshCYIgCH6u2XfPH330UZPH6urqvDoY\nwbtcNbPs1yWa+0Z2avFKhqtZXtLajEdOcHLWH1HqtHRe9Dra+JhfDpoa0GxYgsJqwjb4TuQEN6GK\nsRKMFaDSQGgqKF1/v2b7mUDCriQ9wkrXBD3lrlfTeKTeKPHuKjNFFRJ9O6uZNEaH2kdLJIpKzbz8\nZg75RWZ6dgvid4+lE9oOlzCcPG1k7oJcTheYiAzX8Pj0FPr3bqJ6Rmhxx7IbWL665FwY0bNbEPeN\nE2FEW5eVlcWsWbN48MEHmTJlCj///DOvv/46arWagIAA/vGPfxAaGsr8+fNZv349CoWC2bNnM2zY\nMF8PvcMb0iuOTfsK2Xm0jBH9quma0n53WhIEQRCuXrOhRGLiL1shZmdnU11dDTi3Bf3b3/7GunXr\nWm50wlVx1czy7MetVclw8fKSi6s2fM1WXknW9KeQGo10evdlgvp0P++gFc3GD1E0VGPvPQKp07VN\nX8hUAw2loFRDWGqTDTAtdueSDbNdSWq4ldRwG3Dlpa1VdRLvrDJRUSMzuJeau4bpUCp9E0jsPlDL\n6++cxmhycPvoaKZPTEKtbl+l8labxPLVxXy+rhRJgjHDoph2byKBAb7/Xe6IjmU3sOyLYvYddjbk\n7dnN2cCyZ1cRRrR1RqORF198kcGDB5/7fy+99BKvvfYaGRkZvP322yxbtoyxY8eydu1aPvnkExoa\nGpg8eTI33ngjKpV4TvqSUqHggZu78OLiXSz9Nos/zxiISum7/kaCIAiCf/O4zvhvf/sbW7ZsoaKi\ngpSUFPLz85k5c2aT55tMJp577jkqKyuxWCzMmjWLbt268cwzz+BwOIiOjubVV19Fq9WyevVqFi9e\njFKpZOLEidx7771e+eY6MnfNLPdmVXD3sEyvVTJ4EjS4q9rw1RsVyWzhxMzfYy0sIfGZx4i4ffR5\nByXUm1egrCzEkdEPR+8RTV/IUg/1Rc6lGmEpoNK6PM1qh/1Fekw2JSlhVtLCbVc1/tIqiXc+N1Hb\nKDNqgIaxg7U+WS8vyzKfrS1l6WdFqFUK/uehVEbcENnq42hpx082MndBLgXFZmKitDzxYAq9u4f4\nelgd0rHsBj75opj9Z8KIXtcEc9+4OHqIMKLd0Gq1vPfee7z33nvn/l94eDg1NTUA1NbWkpGRwY4d\nO7jpppvQarVERESQmJhIdnY2Xbt29dXQhTPS40O4sXc8mw8Us2lvEaP6J/l6SIIgCIKf8jiUOHjw\nIOvWrWPq1KksWbKEQ4cO8e233zZ5/saNG+nZsycPP/wwhYWFzJw5k2uvvZbJkyczduxYXn/9dVau\nXMmECROYN28eK1euRKPRcM8993DzzTcTFiYaxV0Nd80sq+p+aWZ5JY0yz7qcoMFd1cbk0V2u6Otf\nDVmWOfX0izTsPkDkXWNJ+M1D5x9EvWstqoJjSHGZ2AeNa7JZJdZG59afCoUzkFC7rnqwOmB/sQGj\nTUlSqI30CFuTl/REfqmDd78wYTTD7TdoGdHfdRDS0kxmB3MX5LJ1Vw2R4Rqem51Bp/RAn4ylpVgs\nEh99XsSab8uQZbhtVDQP3J2AQS/uxLa2oyeclRH7jzjDiN7XBHPf+Hi6dwny8cgEb1Or1ajVF75F\nef7555kyZQohISGEhoby9NNPM3/+fCIifmmiGxERQXl5udtQIjw8AHULbVUZHS2CsfM9elcf9mSV\n88XmU4xlde/AAAAgAElEQVS9MaNVdt8Sj4HvicfA98Rj4HviMbg8HocSWq1z0mOz2ZBlmZ49e/LK\nK680ef6tt9567t/FxcXExsayY8cO/vKXvwAwYsQIFixYQHp6Or169SI42PnAXXvttezZs4eRI0de\n0TckOLlrZqlQwNc/5zN5dOerqlLwNGjwpGqjtZdyFP37fSo/X09Q/96kv/anCyoMVEe2oDq+Ayks\nFtuw+5tcioHNBLX5gOxsaqlxHe7YHHCgSE+jVUliqI3MSOtVBRLZBXYWrDFjtcO9I3UM6umbng0l\nZRZennuS3AIz3bsE8fvH0wkLbV/9Iw4dr2fewjxKyizEx+qYPSNVTIB94EhWA8tX/xJG9OkezMRx\nIozoaF588UXmzp1L//79eeWVV1z2vJJludnrVFcbW2J4REcHU15e3yLXbsvG3ZDOJ9+fYP7nB5h2\nS7cW/VriMfA98Rj4nngMfE88Bq65C2o8DiXS09NZunQpAwYMYMaMGaSnp1Nf3/wP+/7776ekpIS3\n336bGTNmnAs3IiMjKS8vp6KiwuVdDuHquNuWU5Jh455CVEqFyyqFs8sxgkMNlxw7/5zmggaA8moj\nVfUtuwXp5apa8x2F/3gbbWIcnRe8ilL/y50b5emDqPd8jRwQgm3kVNA20e/BboGaPJAlCEkCrevJ\nkc0B+4v1NFhVJITY6HSVgcShHDtL1pmRZZh6i54+nX2z08O+w3X88+1TNDQ6GDsymhn3J6JRt5/1\nwiaTgw9WFrJ+YwVKBYy/JYZJ4xPQ6drP99gWHMlyVkYcOHomjOgRzH3j4rmmswgjOqLjx4/Tv39/\nAIYMGcKaNWsYNGgQp06dOndOaWkpMTExTV1C8IGR1ybyw75CfthXxLC+iaTGibuHgiAIwoU8ntH8\n9a9/paamhpCQEL788kuqqqp49NFHm/28Tz75hKNHj/L73//+gjsYTd3N8OQuR/iZCawoi3Fv9sR+\naLVq1m8/jSRdenx/dgXjh3ciLjIQvVaNwyGxYM1hth8qprzGRHSYgUE945n8q67UNdoID9Gh1zp/\nZYorGqmqbzpoWL7pJNsPFWOyONyOMSrMQGZa5LnrtrSaXQfJefJ/UQUFcP2adwnpnnbumL3gJMat\nn4JWR9Ddj6GKTnB5DYfVQs3pbCTZQVB8OoYI12+AbXaZH4/JNFggPRr6Z2hRKFyXrnryu7xln5HF\naxtQqxQ8OTmcnp1avgz2YrIs8/HnBby9OAeVUsFzc7pw+xg3W6T6EU9fL37eW8Urc7MoKbOQlhzA\nH37TlR5dRe8IT3jrNXnfoRoWfpzL7gPO/gED+4YzY1IqvbuLHU6g4/7ti4qKIjs7m07/n737Doyq\nTPs+/p0+6b33Qui9CUgVBKWqFMVFBAsuyO66RX0eV3bddRddd9X3UVk7CDZQERAFkaZUIfSAEEKA\nFJKQMunTz3n/GBISMgkTSCX35x/InMyZK0NI5vzmuq87MZETJ04QExPDbbfdxvLly1m8eDEGg4HL\nly+TmNg2t57uqNQqJbPHJfGfz4/yydZU/ufBfq0y/0gQBEFou1y+Epw5cyZTp05l4sSJTJky5bqf\nn5KSQkBAAGFhYXTt2hW73Y6Hhwcmkwm9Xl/9bkZwcDAFBQXV97t8+TJ9+vRp8NwGQ6Voi3HRiJ6h\nbNp7wemx/GITv/n3zupZEJIss/1QdvXxywYjG3als+XnC5gtUq2ZEXa7jL+X8+UhWo2KHYfqdmg4\n0yshgLISIy3xL2nJuczJe36NZDLTacWrmEPDq7+HFCX5aDa/D5KMddT9mPECZ99fkg0MF8BuAY9g\nyu1ulDv5PJsEx3P0lJpUhHhaifayUOPbvBZXvpd3HbWw7icLbjp4dIqeEB8L+fmWxj4FN8Vslnhr\nxUV2/WzA31fD04vi6Zzg0S7+H7ryHFdU2lixOputuwpRKmHGpFBmTA5Fo1G0i6+xtTXFz+STZ8r4\nfH0OKafLAejT3TEzokuiozNC/Du0jZbQlghFUlJSePnll8nOzkatVvP999/zwgsv8Oc//xmNRoOP\njw///Oc/8fb2ZubMmfzqV79CoVDw17/+FaXY5aHN6R7rT/+kIA6l5rP/VB5Duoe2dkmCIAhCG+Jy\nKPHMM8+wadMm7rnnHrp06cLUqVMZM2ZM9XKMayUnJ5Odnc1zzz1HQUEBlZWVDB8+nO+//56pU6ey\nZcsWhg8fTu/evfnzn/9MaWkpKpWKw4cP87//+79N9gV2dA3NlgCQuToLQq91/kLOZHG0WVw7M6K+\n5SENdbsoFY7H9G+mLUjrY680kvrw77Hm5hP1l9/hN2741YPGcjTbV6GwGLEOvQc5vJ6aJLtjyYbd\nAu4B4BHo/LEkOHElkAj2tNEl+MaXbMiyzJYDVrb8bMHLXcGCaXrCAlt+wOLlAjMvvZnO+QwjnRM8\neHpRPP6+t878iINHS3h7ZQZFxVZio9xYPD+G+JiWW1LU0aWcKWN1jTCibw9vZk4JrQ4jhI6nR48e\nrFq1qs7tn3/+eZ3b5syZw5w5c1qiLOEmzBqTyPH0QtbsSKNPYiBuutZZfigIgiC0PS7/Rujfvz/9\n+/fnueee48CBA2zYsIG//vWv7N+/3+nn33///Tz33HPMnj0bk8nEkiVL6NGjB8888wyrV68mPDyc\nadOmodFo+MMf/sAjjzyCQqFg0aJF1UMvhZvX0GyJa1WFD9eTfPoyk4fGVgcKR1ILMJSZ8PPS0yXa\nlz0pufXeV5LhT/f3IT7Cp8WGW8qSRPpvllB54jRBs6cR+viDVw9aLWh2fIyi3ICt12ikhH71ncQx\n1NJmAr0veDhfsmGXICVXT4lJRaCHjS7B5hsOJCRZZsNPFnYds+LvrWDBNDcCfVv+HcATv5Tx7/+e\np7Tcxp0jA3l0diQaza3xTmRpuY0PP8vix31FqFUKZt8Txj13haJWi9bilpBy2tEZcfLM1TBi1tQw\nOifcWju4CILgWK551+BoNuy5wLf7LjJ9VEJrlyQIgiC0EY2KqUtLS9m6dSubN28mMzOTWbNm1fu5\ner2e//znP3VuX758eZ3bJkyYwIQJExpTitAINcODolIT15/a0bDicgt//fAg/bs4lnLcNzKBknJz\n9VZfv1wsoqjM+dKCAG9diwYSAFn/+i+G73bgNbQ/Mf985upaVklCvXsNysJs7Al9sfca7fwEsuzY\n9tNaCTov8ApzukWoJMPJXB0Go4oAdxvdQswob/Da1i7JrNlqJvm0jdAAJY9P1ePj2bJBgCzLbNya\nz4rVWSgVCp54KIrxo4JatIbmtC/ZwDsfZ1JSaiMxzp3F82OIjqh/uKvQNGRZJuV0Oas3XA0j+vX0\nZtaUMJJEGCEIt7S7bothz4kcthzMYHivMEL8RUeaIAiC0IhQ4pFHHuHs2bOMGzeOJ554gn796nlH\nWWhzVEols8cmcd/IBPINlfy/L487Xc6h0ygxW13rljCU117KUXP3jH6dg+vtzOibFNSigUTBl9+S\n83/L0cVFkfjuyyi1V5YcyDLqg9+iyjqDFJaA7bapToMGZBnKLoGlHDQe4B3RYCBRZFTj726je+iN\nBxJWm8yqTSZOnrcTHaLksaluuOtb9p17s0Xi7ZUZ7NxbhK+3mqcXxd8yOx4Ul1h595NM9iUXo9Uo\nmDszgsnjglGpRHdEc6oKIz5fn8OpVEcY0b+XNzOnhJEUL8IIQegIdBoVs8Z0Ytm6FD7bdpbfzejd\n2iUJgiAIbYDLocRDDz3E7bffjkpV94Lyvffe47HHHmvSwoSmp9OoiAz2qnc5R//OwextYOmFM1Xb\nf9YMGmaNSUSSZfaeyMVkcey+odeqGNYztMVmSACUHTjK+T++iMrbk6QVr6Hx960+pjq1B1XqASS/\nEKwj7gelk6BElqE8D0wloHYDnyhQ1O1WkGQ4laejsFKNn5uN7jfRIWEyy3y40cS5bDudolTMm6hH\np23Zi+WCIgsvv5lO2oVKOsW588yT8QT4OZ8d057Issyunw28/2kmZeV2unbyYNG8GCJC69n2VWgS\nsixz4rRja08RRgiC0L9zEF2ifTl+rpBjaQX0TnQ+n0kQBEHoOFwOJUaOHFnvsV27dolQoh1xNgui\nb1Ig04bHczg1vzpIcIWhzERJublWp4RKqeRX4zozY1Qi+YZKUCgI8nVr0Q4Jc+Ylzj7yJ2S7ROK7\nL+PWKbb6mPLCCdSHv0d298Y6eg5o67korSwAYxGodOAbBU4muksy/JKno6BCja+bnR6hZlQ3uMqi\n3Cjz/nojmZcleiao+NV4fYvPNjh5poxX/nueklIbY24PYMGcKLS3wPyI/EIzS99I5+DREnRaJY/O\njuSuMUEobzQ9Eq5LlmVO/OKYGfHL2QrAEUbMmhpGpzgRRghCR6VQKJg9Lom/fniQz7edpVusPxp1\n+/89IwiCINy4Jhl93NBuC0LbU3M5R9UsCJ1Ghdlqh0ZOnPDz0lfPkrhWVWdGS7OXlZP60O+wFRqI\nWfosPiMGVx9T5F1AvecrZI0O65g54OHj/CSVRVCRD0oN+EaDsu5/FVmG05d15Feo8dHb6RlquuFA\norhM4p11Ri4bZAZ1UzN9jA5VC14wy7LM5h0FfPBZJgCPPRjFXWMC2/1e8rIss213IR+tyaa8wk7P\nrl4snBtNaLDz71nh5smyzPFTjjDidJojjBjQ2zEzIlGEEYIgAJFBnozpF8HWQ1n8kJzJ3bfFtHZJ\ngiAIQitqklCivV+4dFQ6japWh0NJudnlHTiq9E0KbNEOiOuR7XbSFj6H8Uw6IfNnETJ3evUxRUk+\nmp2fgixjHXE/sl89+6SbSqA817GkwzcGVHW3vpRlOJOv5XK5Gm+dnZ5hNx5I5BbaePNLI4YymZF9\nNUy+Xdui/6esVol3P85k665CvL3U/GlhHD06t/8dcC4XmFn2UQbHTpbh7qbi1w9FM25kgPh51Uxk\nWeboyVJW1wgjBvbxYdaUMBJixTA7QRBqmzo8jv2n8vhmzwWGdA/Fz0uExYIgCB2V2CRaqObjqSPA\nW+d0CKa/l47enQI5nlZYa8lHS86IcEXG316nZNsefEYNIfqvT109YCxHs20lCosR69B7kMPrqdtc\nBqXZjtkRPjGgrjtLQZYhNV9LbpkGL52dXmEmbrTzNDvfzvsbCimtkLlriJY7Bmha9KK50GDhX2+l\nk5peSXyMG88+mUBQQPueHyFJMlt+LOCjNdmYzBL9enrz3FNdUWJt7dJuSbIsc+xkGWs3pXHil1JA\nhBGCIFyfh17D9FEJrNh0mi93pvHY5O6tXZIgCILQSkQoIVTTaVT1DsHs1zmI2WOTMI+211ryUcVs\ndX57S7r88Vry3vsMt6R4Et5eikJ95dvbakGz42MUFcXYeo9BSqhn5xhLpWPrTxTgEw2aurMmZBnO\nFmjJKdPgqb0SSNzgl5t+yc4HG4yYrXDfKB1De9XtyGhOp9PK+ddb6RhKbIwc4s+v50aj07bvdb05\neSbeWpHByTPleLir+M0jMYwa6k9wkJ78fBFKNCVHZ0QZq9fncOacozNiUF8fZk4JIyFGhBGCIFzf\n7T3D2HEkm30n8xjVN4JOkb7Xv5MgCIJwy2mSUCI2NrYpTiO0MrskIckyeq2yehnH9XbNsEsSq7en\ncSQ1n6JSM/7eOvomBTFrTCIqJ4Mhm0vp7oNc/N+XUfv70umjV1F7X9m+UrKj3rUGZWE29oR+2HuO\ncn4CqwlKMgDZscuGtu5FlSzDuUItl0o1eGjt9A43caP5yy8XbHz0nQm7BE9M9yUxzHZjJ7pBW3YW\n8N4nmUiyzPz7I5k0LqhdL2uwSzLfbr3MJ2svYbHIDO7rw+NzovH3bdmgpyOQZZkjKaWs3pBL6pUw\nYnBfHxbMTcDPu5WLEwShXVEqFTw4Nol/fnyIT35IZcncgWIAsSAIQgfkciiRnZ3Nyy+/jMFgYNWq\nVaxZs4ZBgwYRGxvL3/72t+asUXDRzXYrrN6exvZD2bVuM1ns1Rern25NrRU+dIn2Q61W8OPRnOrP\nLyw1szU5i0qTjTnjOzdYR1N1VxjPXeTsY0+DQkGnD15BHxPpOCDLqA9+hyr7DFJYArbbpoCzC2+b\nGUougiyBdwTo6s5TkGVIL9KQVaLBXSPdVCBxJNXKp1sc24bOn6RnSC838vPLbuxkjWS1Sbz/aRZb\ndhbg5anij0/E0atb+76SzMox8eaHFzlzrgJvTzWL50cybKBfuw5Z2qLqMGJ9DqnplQAM7udYphEX\n7U5QkFeLfR8LgnDrSIz0YUj3UPadzOWn45cY1SeitUsSBEEQWpjLocTzzz/Pgw8+yPLlywGIi4vj\n+eefZ9WqVc1WnOCapuhWKKu0kHz6stNjR1ILsEsyOw5fDSwKS83sScmt93x7U3I5k2FwWkdTdlfY\nDCWkzn0Ke0kZca//Fa/BfauPqU7tQZV6AMkvBOuI+x2DK69lt0JxBkh28AwFvfPdOC4YNGQWa3G7\nEkhobzCQ2HvCytodZnRaeGSyG/ERLbfUxVBi5V9vpXM6rYLYKDeefTKekKD2O1jMbpdZtzmP1etz\nsNpkbh/kx6OzI/HxFt0RTUmWZQ6fcIQRZ887wojb+vsyc3IocdFimYYgCDdvxugEDp/NZ+2P6Qzs\nEoyHXvwcFwRB6EhcDiWsVit33HEHK1asAGDgwIHNVZPQSKu3p9WaA1HVrQAwe2xSg/etCggOnc6n\nuNzi9HOKSk0cTS1odF311XEz9dYkWW2kLXgWc3oGYYvmEjRzUvUx5YUTqA9/j+zujXXMQ6CtOx8C\nyXYlkLCCRxC4+zt9nAtFGi4aHIFEn3ATOnXjt8CVZZntyVa+22fB003BY1P1RAa3XCCRml7By2+m\nU1Rs5fZBfiyaF41e13Z2TWmsC5mVvPlhBucuVuLno2bBnGgG9xNrkZtSVRjx+foc0kQYIQhCM/L1\n1DFlWCxf7DjHup/O8+Cdrr8WEARBENq/Rs2UKC0trW6JPnv2LGZz3V0ahJZltto5kprv9NiR1ALu\nG5nQ4NKIawMCZ3w8tRjKb/zfumYdDdW7+3gO04bH4667/relLMtcfO5lSncfxG/CKCL/Z1H1MUXe\nBdR7vkLW6LCOmQPuTpYnSBIUZ4LdDG7+4B7o9HEuGjRcMGjRqx0dEjcaSGzcY2HnYSt+XgoWTHMj\nyK/l5m1s21XI26sykOwyD82IYNqE4Ha7tMFqk1j7bR5fbszFZpcZPcyfebMi8fIUM3ubiizLHDru\n6IxIu+AII4b092XmlFBio0QYITSNCxcuiHlUQi3jBkTx07Ecth/JYmSfcCKDPVu7JEEQBKGFuHxl\ntGjRImbOnMnJkyeZPHky8+bN46mnnrr+HYVmVVJupsjJFp4AhjITJQ2ECQ0FBDV5uN1cG2XNOhqq\n12Sx89kPqS6dM+/9z8j/+GvcuycR/8bfUFxZ9qEouYxm56cgy1hHPoDsF1r3zrIEJZlgMzqWa3iG\nOJ01kVms5nyRFt2VQEJ/A4GEJMms2WZm52ErwX4KFk1vuUDCZpN575NM3lx+EZ1WyZ+fSuSeu0La\nbSBx7kIlf/rbaT5fn4OPt5o//y6B3zwSKwKJJiLLMgePlvD038/wj/93jrQLlQwZ4Mvrf+vK04vi\nRSAhNNq8efNqfbxs2bLqvy9ZsqSlyxHaOLVKyeyxnZBlxwwrWW7871xBEAShfXL51fxtt93GunXr\nSE1NRavVEhcXh07Xftej3yp8PHX4e+sodHKh7+elx8ez/n+jhgICAH9vHb0TAzl29vrBhVIBUj2v\nH2rW4eOpw89LS1GZ86UipzMMmK32Brs7irftJuOF19EEB5D00WuoPK5cLBnL0GxbhcJixDr0XuSw\nhLp3lmUozQZrBWg9wSvcaSCRVaLmXKEOrcqxZMNN0/gXRzabzCffmzh+zk5ksJLHprjh6d4ygUBx\nqZVXlp3nVGo50RF6nl2cQFhw+/z/arFKrF6fw7rNeUgS3DkqkLkzInB3a7/LT9oSWZZJPlbC6vW5\nnLvo6IwYOsCXmVPCiIl0a+XqhPbMZqu9q9D+/ftZuHAhgLjgFJzqGR9An8RAjqYVcPD0ZQZ1DWnt\nkgRBEIQW4HIokZKSQn5+PqNHj+a1117j6NGjLF68mAEDBjRnfR2esx0qrr2tb1KQ0yUYfZMCG7y4\nbzDQ8NTxf38YTdalYnYeznZy79pG9o3AYrE7HX5Zsw6dRkWXGH/21jMk01BmpqTcTLCf83dlK0+n\nkfbr51BoNXRa8Sra8CsvWKwWNNs/RlFRjK33GKSEvnXvLMtQlgPmMtC4g0+k00DiUomatIKbCyTM\nFpkV35pIzbSTEKFk/iQ39LqWCSTOXajkpTfPUVBkZUh/XxY/EoObvn1ewJ9OK+fN5RfJzjETEqhl\n4cPR7X63kLaiqjNi9YYc0i8aUShg2EBfZkwWYYTQNK7tyqoZRLTXji2h+c26I5GU84Ws2ZFG74RA\ndDc6WVoQBEFoN1wOJV588UVeeuklkpOTOXHiBM8//zx/+9vfWLlyZXPW12E526Gid6dAFMDRswW1\ndq2YPioecMxuMJSZ8PPS0zcpkFljEht8jIYCjf5dgvDx1FHWQHABEFBj5wwAN736unXMHteJw6n5\nmCz2OudrqLvDWlBE6tzfI5VXkPD2Ujz7dHcckOyod61BWXQJe0I/7D1HOf+CKy6DqRjUevCJAkXd\nZRQ5pWpSC3RolDK9w024axsfSFSaZN7fYORirkS3OBUP3aVHo26ZF+A79xby348ysNpkHrw3nPsm\nts/lGmazxCdfX2LjD44dYSaODeLBe8PbbbjSlsiyzIGjJaxZn0N6hiOMuH2QHzMmhxIdIcIIofm0\nx59FQssL8XNn/KBovt13ke/2X+SeEfGtXZIgCILQzFwOJXQ6HbGxsaxevZqZM2eSmJiIspHbNwqu\nc7ZDxfZDtTsWrt214r6RCXW6Kqo467gAqgOD+oKEhoKLoT1CmTO+c63zXa8OAHedhtt7hTWqu0My\nWzj7yJ+wZF4i4o8LCJgyznFAllEf/A5V9hmksERst01x2v1ARQFUFoJKC77RTrcHzS1TcyZfi1op\n0zvciEc9gUR9zyVAaYXEO+tM5BZK9O+sZtZYHSpV878Qt9tlPvoim2+2XMbdTcWfFsYyoLfz7U3b\nupTTZby1IoPcy2bCQ3QsmhdDtyQx8Oxm1RdGzJwcSpQII4RmUFJSwr59+6o/Li0tZf/+/ciyTGlp\naStWJrR1E4fEsDcll00/Z3B7rzCCfMXPKEEQhFuZy6GE0Whk06ZNbN26lUWLFlFcXCxeVDQTVwdQ\nVqm5u8W1yx6cdVxUdTaolEpUSmWtIMFNp8ZotmGzX70gbyi4UDkJppzVca3rhSE1ybLM+T+9SPnB\nY/hPvZPwpx6tPqY6tRtV6gEkv1CsI2Y5DRswGhxdEko1+MY4/rxGXpmK05e1qJXQO9yEp65uIHG9\n57KwROKdr40Ulsrc3lvD1BFalC3wzmBpmY1/v32eE7+UERmm59nF8USEOtkCtY0zGu2s/DKbzTsK\nUCrgnrtCmDU1DJ1WhJ83Q5ZlDhxxLNM4fyWMGD7YjxmTRBghNC9vb+9awy29vLx46623qv8uCPXR\na9XMGJ3AuxtO8fm2syy+r1drlyQIgiA0I5dDid///vesXLmSp556Ck9PT9544w0efvjhZiyt47re\nAMprVe1u4SwIcNZxUbO7oopapWDroaxaF9zDekcweUh0neCivg6IxmjMOXPeXEHhl9/h0a8H8a8u\nqW4BVp4/jvrwFmR3b8fWn1onF+KmUsccCYXKEUio6u4kkl+u4pfLOlRK6BVmwksnOa2joedydN8E\n3l1norRC5s5BGu4crG2RVuXzGZUsfSOd/EILg/r68NtHY9vlAMijKaUs+yiD/EILURF6npwXQ1K8\nR2uX1a5J0tUw4kJmjTBicihR4SKMEJrfqlWrWrsEoR0b3DWEnYezOXK2gJTzhfSIC2jtkgRBEIRm\n4nIoMWjQIAYNGgSAJEksWrSo2Yrq6BoaQOlMfXMYGuq4qNldAc4vuDfsSqfSaKkOL1zpgGis652z\n6LvtZC19C214CJ0+/DdKN0fwoMi7gHrvWmSNzhFIuDsZfmgph9Isx+wI32hQ132OCipUnMrToVI4\nAglvvfNAoqHn8vCZSk6dM2I0w9QRWkb00brwld+8XT8X8ebyi1gsMvdPDWPG5FCUyva1Zrui0sby\nz7PZtrsQlQpmTA5lxqRQNBrRHXGjJEnm5yPFrFmfy4UsI0oFjLjNj+mTRBghtKzy8nK+/PLL6jcw\nPv/8cz777DNiYmJYsmQJgYGBrVug0KYpFApmj0vihRUH+WzrWV6Y74daJX43CIIg3IpcDiW6detW\n651fhUKBl5cXP//8c7MU1pE1NMfBmfrmMDTUcVGzu6Ix4YWrGpq74KqK46dJX7wEpbsbgW8sRfbz\nA0BRchnNzk9AlrGOfADZL7Tuna2VUJwJKBxDLTV1L8YKK1SczNWhUEDPMBM+9QQSUP9zqVZ6I9ni\nMEnwwDgdA7rW7cRoanZJ5pOvLvH1pjzc9EqeXRzH4L6+zf64Te3g0WLeXplJUbGV+Gg3npwfQ1x0\n04ZeHYkkyfx8uJg1G2qHETMmhxEZ1v6W8wjt35IlS4iIiADg/PnzvPrqq7z++utkZGTwj3/8g9de\ne62VKxTauugQL0b1iWDHkWy2Hcpi/KDo1i5JEARBaAYuhxKnT5+u/rvVamXv3r2cOXOmWYoSnM9c\n6N0p4MruG4Uu7bLR4JafNborXA0vXHG9uQuusuTmkzr3KewmM3tmPMLJHwvwP7KfoQmezKzYisJi\nwjr0XuSwhLp3tpmgOAOQHYGEtu4ygKJKJSl5VwMJX7f6Awlw/lxqVH54aBNQKODB8Vr6JjV/IFFW\nbuPVd85z9GQZYSE6/mdxfLt797u03MYHn2by034DarWC2feEcc9doahbaIeSW40kyew/XMyaDTlc\nzJK6rU0AACAASURBVDKhVMDIIf7MmBRKhAgjhFaUmZnJq6++CsD333/PhAkTGDp0KEOHDuXbb79t\n5eqE9uKeEfEc+CWP9bvPc1u3kHp36BIEQRDaL5dDiZo0Gg0jR47kww8/5PHHH2/qmgQanrkwfZRr\nXQgNdVzU7K5wNbxwhaszLBpirzSR+vDvsebls3/Y3aSEOu5XXlbBoKw9KLVl2HqPQUro6+TOFkcg\nIUvgFQ66usPUDEYlKbmOi7UeoSb8rhNIQN3nUqsKxF0bB0gkxRjomxTr0td2My5mGVn6xjny8i30\n7+XNU4/H4uF+Q/+FW83eZAPvfpxJSamNTnHuPDk/RmxDeYMkSWbfIUcYkZHtCCNGDfFn+uTQdjno\nVLj1uLtfDbMPHDjA9OnTqz8W24MKrvJ003DviHhWbUnlqx/TmT+xa2uXJAiCIDQxl69ovvzyy1of\n5+bmkpeX1+QFCbU5m7nQmNkOruxy4Wp4ca1rl2g0xTIQWZJI/91fqDz+C+d7D+ZYv5EAKJFY7H+K\neG0Z+yyRdO8ynDpRid0GxRdBsoFnCLjVXdJQbFRyIkePLEOPMDP+7tcPJKpUPWeHT4MshQM2usQZ\nmD8xxuVz3Ki9yQbe+OAiJrPE9EmhPDAtrF3NjygusfLux5nsO1SMVqNg7swIJt8ZjKodfQ1tRVUY\nsXpDDplVYcRQf6ZPEmGE0LbY7XYKCwupqKjgyJEj1cs1KioqMBqNrVyd0J6M7BPBzqOX2H0ih5F9\nw0kIb59bXguCIAjOuRxKHDp0qNbHnp6evP76601ekNC0nHVcABSWmKq3//Tx1DkNL4b1DmfykLrr\nN+tbojG6b8RNLwPJ/vc7GDZuQzegN1sHTwWFApCZ63OWvvpCjpv8eKcogb9XWAjW1vj2lexQchHs\nVnAPBPe6U7pLTFcDie6hZgLc7S4+iw5KhQJf9xhkyYqnOzw6xYOo4Oad5WCXZD77+hJffZuHXqfk\n6YVxDBng16yP2ZRkWebH/UV88GkW5RV2unbyYNG8GHHxfAMkSWZfcjGrv7kaRowe5ggjwkPE8ym0\nPY899hh33303JpOJJ598Eh8fH0wmE7Nnz2bmzJmtXZ7QjiiVCmaP7cTLnx7h0x9See6hAS2y5bYg\nCILQMlwOJZYuXQpAcXExCoUCHx+RUrcnOo2KAB99dZhQWGpGqQBJBn8vLb07BTG2fySTh8ZWBxWR\n4b5kXSqmsKSy1lKR+pZo2O3STS0DKVi7iUuvf4AuJoLE9/6F71enKSw1M8kzg7Gel7ho8eT/inrg\n7eVe+1yyBCUZYDODmx94BNU5d6lJyfEcPXYZuoeYCfRoXCAhSTJrfzSz74SNQB8FC+5xw9+7eaeA\nV1TaeO3dCxw6XkpIkJb/WZxATGT7WepQaLDw9soMko+VotcpeezBSCaMDmpXHR5tgV2S2ZdsYM2G\nXDIvmVAqRRghtA8jR45k9+7dmM1mPD09AdDr9fzpT3/i9ttvb+XqhPamc7Qfg7uF8POpPPacyGF4\nr/DWLkkQBEFoIi6HEocPH+bpp5+moqICWZbx9fXllVdeoWfPns1Zn9CErg0TJNnxZ1GZhR2Hs9lx\nOJuAK10P00fF8966E+w5ll2rG2La8Ph6l2gcP1dEr8RAdhzOrnOsoWUgAGXJxzn/h7+j9PYk4I2l\nqP196ZsURMXJQzzgk06BTce/CnthlNUMq3kuWYaSTLAaQecNnqFXuitqnNt8JZCQoFuImSDPxgUS\nNrvMZz+YOZpqIzxQyePT9Hi5N28gkXnJyNI30snJM9Onuxe/XxCHl2f7mB8hyzLbdhWyfHUWlUaJ\nXl29WPhwNCFBYjhZY9glmb0HHWFEVo4jjBhzJYwIE2GE0A5cunSp+u+lpaXVf4+Pj+fSpUuEh4uL\nSqFxZoxK4MjZfL7aeY7+ScG469vH70VBEAShYS7/NP/Pf/7DsmXLSEpyDB08deoU//jHP/jkk0+a\nrTih6TQ076Gmqq6HMxnFZF4ur3O70WRrcInG2P6RqJSKBmdY1KktK4ez8/+IZLWx695H+GVrLv4H\nDEyIsTPe/zRGWc1/inqh8vRhbM1zyTKUZoOlArSe4B1RJ5AoNys4dkmPTYIuwWaCGxlIWKwyH31n\n4vRFO7FhSh6d4oabrnnf6f/5SDH/770LGE0S99wVwoP3hbeb2QuXC8wsW5HBsVNluOmV/HpuNONG\nBIihdo1gl2T2HjCw+pscsnPMjjDi9gBHGBEsgh2h/RgzZgxxcXEEBTm612RZrj6mUChYuXJla5Um\ntFP+3nomDYll7U/pbNhznvvv6NTaJQmCIAhNwOVQQqlUVgcSAN26dUOlanhoodB41w6PbCoNbfvp\nTHZ+udPbT2cY8PPSUlRmqXPMz0uH3S5x38gEp7uGOGMvryD1od9hKyhi98hpnAqKA0BXWcTIgsOg\nBGnMbBZ6RNQ+lyxDeS6YS0HjBj6RdQKJCouCY5fcsEkKOgeZCfVqXCBhNMt88I2R85ckusSomHu3\nHq2m+S6uJUlmzYYcVm/IRatV8PsFsQwf7N9sj9eUJEnm+50FrPwiG5NZon8vb554KJpAf21rl9Zu\n2CWZPQcMrKkRRtxxJYwIFWGE0A69/PLLrF+/noqKCiZOnMikSZPw928fP9OEtmv8oCh2H89h26Es\nhvcOJyKw7rbfgiAIQvvSqFBiy5YtDB06FICffvpJhBJNqL7hkbPGJKJS3vxSgYa2/XRGkp3fXlRm\nZkCXIIp+qdt1UWGy8pcPD7pcu2y3k7bwOYynz5E2YDgnezu+t3yUZp4OOI6H0sYqYy+mhsQTfG2w\nUZEPRgOodeATDYraj1NpUXD0kh6rpCApyEyYt82lr7tKWaXEu+tMXCqQ6NNJzQN36lCrmi+QqDTa\nef29Cxw8WkJwoJZnn4wnLtq1HVZaW06eiTeXZ3AqtRxPDxW/nRPDyCH+ojvCRXZJZvfPBr74Jofs\nXDMqFYwdHsB9E0UYIbRvU6dOZerUqeTk5PD111/z4IMPEhERwdSpUxk3bhx6vViGJDSeRq3i/js6\n8X9fHeezran8YVYf8ftGEAShnXM5lHjhhRf4+9//znPPPYdCoaBPnz688MILzVlbh1Lf8EiA2WOT\n6rubyxra9tOZqiGY15JlOHhNIKHXKjFZJEwWx/aartae+eIblGzdjX7oQLb3u9tRp8LGnwKOE6Q2\n8UVpHFvKAxh17a4dlYVQWQAqLfjGgLJ2YFFpvRJI2JV0CjQT3shAoqhU4p11RgqKZYb0VHPvSF2z\nDmfMyK7k6RdPk51jpmdXL/74RBzeXm1/naxdktn4w2U+/foSFovM4H4+LJgTjZ+PprVLaxfsdpld\nB4r48pvcq2HEiACmTwwV8zeEW0pYWBgLFy5k4cKFfPHFF7z44ou88MILJCcnt3ZpQjvVOzGAHvH+\npKQXcTi1gP6d6w64FgRBENoPl698YmNj+eCDD5qzlg6roXkPR1ILuG9kQpMs5bi67Wft3TecCQv0\nIDu/wqXzSpLk9PaGas//dB2573yMPjGWxLeX4rfmJIZSI4v9TxGnLWdHRRjrymII8L5m1w5jMZTn\ngVINvtGOP2swWh0zJCx2JQkBZiJ8GhdI5BVJvPO1kZIKmTsGaLhriLZZ34FJPlbC6+9doKLSzpQ7\ng3loRgSqZuzIaCqZl4y8uTyD1HMVeHup+c38KIYO9BXvVrmgKoz4YkMul/IcYcS4EY5lGsGBIowQ\nbj2lpaVs2LCBtWvXYrfbWbBgAZMmTWrtsoR2TKFQ8MAdnVhy4QCrt5+lZ7w/2iZc8ioIgiC0LJdD\niX379rFy5UrKyspqDasSgy5vXkPzHgxlJkqu7RS4QSqlktljk6rnPbjp1JRWmnl7/SlyCipqBRT5\nRZUun9dSz3V/fbWX7k3mwrNLUfv5kLTydfSBvvTtFEj0ue301RdyzOTP8uIkQFF71w5zKZRdAoXK\nEUioas8rMF0JJMw2JfH+FqJ8GxdIZObZeXe9kUoTTBqmZXT/5puHIMsyX27M5bN1OWg0Sn77WAyj\nhgQ02+M1FbtdZt3mPD5fn4PNJjN8sB+PPBCJj7fojrgeu11m189FrPkml5wrYcSdIwO5b2KICCOE\nW9Lu3bv56quvSElJ4c477+Sll16qNZtKEG5GWIAH4wZGsfnnDDYfyGDKsLjWLkkQBEG4QY1avrFw\n4UJCQ0Obs54OqaF5D35e13QKNAGdRlUdFKzble60I8Jir6eFohGc1W46n8nZx54BhYLED15BHxsJ\nwIOhuWhzL5Fl9+JNQ3d8vd1r79phqYCSbMcwS98oUNdei2y2OZZsmGxKYv0tRPtZG1VrWpaND78x\nYbHBjDE6buvRfBfZRpOdNz64yL5DxQT6a3jp+Z4E+DTbwzWZ8xmVvLn8IukXjfj5aFjwUBSD+/q2\ndlltnt0u89P+Ir74Jpecy2bUKoUII4QO4dFHHyU2NpZ+/fpRVFTE8uXLax1funRpK1Um3ComD41l\nX0ou3+27yNAeoQQFebV2SYIgCMINcDmUiIiIYMqUKc1ZS4fV0LyHWp0CTcguSXy69Sw/Hr10/U++\nQdfWbisuJfWh32E3lBD3n+fxvq0fAMrzx9Ac3Yrs7oPPuEdYYtfV3mnDaoSSTMfffaJAU7vzomYg\nEeNnIbaRgURKuo1Vm0zIMsyZoKd3p+ab55Bz2czSN86RmW2ie2dP/vjrODoleJGfX9Zsj3mzrDaJ\nLzfm8tW3udjtMGaYP/Puj8TTo+3PvWhNdrvMj/sdMyOqw4hRgdx3twgjhI6hastPg8GAn59frWNZ\nWa7NNxKEhrjp1MwYncD7G39hzY5z/CUxuLVLEgRBEG7Ada8qMjMdF4MDBgxg9erVDBo0CLX66t2i\noqKar7oO5Oq8hwIMZSb8vPS1OwWa2Ortaew4nN0k59JqFAzrEcbxc0X11i5ZbaQteBbTuYuEPjGH\noAemAmDLPof73q+RNTqsY+ag9faj1ksKmxmKM0CWwDsStJ61Httig2OX9BitSqJ9Gx9IJP9iZfVW\nM2oVPDxZT+fo5rvQPpJSyn/ePk9FpZ2JdwTx8KxI1Oq2PYMh7XwFb3x4kYxsE4H+Gn49N5p+PdtB\nW0crsttlftxXxBcbc8m9EkaMHxXIfRNDCQoQW6QKzcdktnPoWCl7kg1kZBl5/qnEVh2aqlQqeeqp\npzCbzfj7+/POO+8QExPDxx9/zLvvvsu9997barUJt47buoey40g2yacvcyw1n3A/sauLIAhCe3Pd\nK7C5c+eiUCiq50i888471ccUCgXbtm1rvuo6kGvnPdTqFGhiDQ3WvBFDe4QyZ3wXzFa709plWSZj\nyb8p3XUA3ztHEPXck9glic3fJzMhfxN2JP5b3gvPQyXMGhN0dRtRuxWKL4JsB68w0HvXelyLHY7l\nuFFpVRLpYyXO30pj5izuOmph3U8W3HTw6BQ3YsOa5/mWZcccho+/vIRKpWDx/BjG3N6250dYrBKf\nr8th/eY8JBnGjwrkoRkRuLuJQWL1sdkcYcSX314NIyaMDuTeu0UYITSf6iDioIFDJ0qwWBy/q6Mj\n9GhaOfR87bXXWLFiBQkJCWzbto0lS5YgSRI+Pj588cUXrVqbcOtQKhQ8OC6JFz86xOufH+Yv8wbi\noRdzjgRBENqT64YS27dvv+5J1q1bx7Rp05qkoI6u5ryH+i7yb1ZDgzWvpdeqsFjtaDUqTBZ7neNR\nwZ48OK5zndpryvtwNZc/+hK3bp1IeOtFFCoVG74/yh25P+CutrGsqCv7jZ5QcxtRyeYIJCQbeASD\nW+3WX6sdjl/SU2FREuFtJSHA4nIgIcsyWw5Y2fKzBS93BQum6QkLbJ6LbZPZzlvLM9h9wECAn4an\nF8WTFO/RLI/VVE6nlfPmhxfJzjUTEqhl4bwYenUV63TrY7PJ7NxXyJcbc8nLt6BWO8KI+yaGEugv\nwgih6RlNdg4dL2HvweJaQUREqI6hA/0YNtCP6Ah9q++Go1QqSUhIAOCOO+5g6dKlPPPMM4wbN65V\n6xJuPbGh3ky9PZavd53no02n+fW0Hq3+/S8IgiC4rkl61deuXStCiSZklyRWb0/jSGo+RaVm/L11\n9E0KYtaYxKtdBDehocGaVfy9tHSLD6BHrD9BPnpCAjxYtyudI6kFFJWZ8PXQ0ScpkNljOzVYU/4P\nu8n4y6uog/xJWvEaKg93zJWVDMv5gSC1iTUlcewxXh2eeiS1gPtGxKIrzwK7BdwDwCOw1jltdjie\no6fcoiLM20pioOuBhCTLbPjJwq5jVvy9FSyY5kag780/p87k5Zt56Y10LmQZ6ZLowdOL4vHzabvv\n3pjMdj756hLfbnN00UwaG8SD94Wj14nuCGdsNpmde6+EEQWOMOKuMUHce3eICCOEJlcVRBw6nsHe\n5MKrQUSYjqED2k4QUdO1tYSFhYlAQmg2E4fEkppdSvKZfHYdz2FE7/DWLkkQBEFwUZOEEjW3CBVu\n3urtabWGXhaWmqs/nj325rdT02lUuOs1TkOJ8EB3IgI9SD6Tz+5jOew+lgNAZLAHf36ov8vLS+yS\nxNpVOwn/6xIUCiXbJs7l9OlSZoUGoNm1hihVKTsqwlhfHlPrfuWVJhQlmSCbQe/r6JKowSY5Aoky\ns4pQLytJjQgk7HaZ1dvMHDptIzRAyeNT9fh4Nk8gcfxUKa/89zzlFXbGjwrkkdmRaNTN81hN4cQv\nZby14iJ5+RbCQ3Q8OT+Grp08r3/HDqgqjPhiYy6Xr4QRd98RxD13iTBCaFpVQcSeg8UcrtkR0YaD\niIa0lzqF9kmpVPD72f1Y/MoOPt2aSqdIH8IC2nZnoiAIguDQJKGEeKHRdBqa93AktYD7Ribc9FIO\ns9VOhdHi9FhuYSWXCirr3J51uYJ/rDzMC/MHOV2ica0v1h0mcOlLaMwmto5/gDTvMM4mZzK0ZD+d\nK89xyhbI8uIk4Or3jkoBT44NQCubQeftmCNR43vLLsGJHD2lZhUhnjY6B7keSFhtMqs2mTh53k50\niJLHprrhrm/671tZlvnmh8t8tDobpVLBr+dGc+fIwOvfsZVUGu2s/CKb73cWoFTAPXeFMGtqGDpt\n2w1QWovVJrFzbxFfXgkjNGoFE+8I4p67QwjwE2GE0DSMJjvJx0rYm1zM4eMlWKxXg4hhA/2YdGck\nnm72dvF798iRI4waNar648LCQkaNGoUsyygUCnbu3NlqtQm3pmA/dx6a0Jm315/k3Q2neO6h/qhV\n4veZIAhCWyf29GtjGpr3YCgzUVJudikUqJpH4aZTYzTbanU2lJSbMZQ5DyWkBppeMi+XU1xuxtez\n4WnuxnIjXi//C+/SIpIHjSWtc18AJntm0LkyHbtvKId0o7Dn5VXfRwHMG+5D93ANaDzAO9xpIFFi\nUhHsaaNzsNnlQMJklvlwo4lz2XY6RamYN1GPTtv0L+jNFollKy7y034Dfj5qnl4UT5fEttttcCSl\nlGUrLlJQZCUqQs/i+TF0ihPvKl3LapPYsccRRuQXijCipTTXTJ22qL4gIjJMz9CBvgwdcLUjIijI\no01vIVzT5s2bW7sEoQMa1DWElPNF7D6ew9qf0pk5unl2MRMEQRCajggl2piG5j34eenxuU4gUDWP\n4vCZyxSVWVAqHEFDQI25FK7MlKjPx1vO8OS9veo9Lssy6X/6B0GZ6aR16kXy4LEADHXL436fdAps\nOswDpnNfSBA2paZ6C9S5t/sxNFGHrNaj8IkCxdV3NuwSpOTqKTapCPSw0SXYjNLFTKHcKPP+eiOZ\nlyV6Jqj41Xh9s2zDmV9o4aU3z5F+0UhSvDvPLIrHv41esJZX2Fi+OpvtuwtRqWDmlFCmTwxFoxHv\nJtVktUns2O3YTaM6jBgbxL13hbTZf9tbQXPP1GkrqoKIPQcNHDlRWieIcCzNcGvlKm9OREREa5cg\ndFCzx3bibGYxm3/OoHucP91j/Vu7JEEQBKEBTRJKeHq23XeD2xudRkXfpKBaMyWq9E0KvO47htfO\no6jqfLh2LkV9j3E9F3LLMFvt9daR89ZHVKzfTFF4NDvGzQKFkm5aAwv8fqFCUvOueSBPBgbW2gLV\nWpKHp1QMKh0K3xioceEhyXAyT4fBqCLA3Ua3ENcDieIyiXfWGblskBnUTc30MTpUrt65EVLOlPHK\nsvOUltkYOzyAx38V1WYv8A8cKebtlZkYSqzER7vx5PwY4qKv33nTkVhtEtt3F/LVt3nkF1rQahRM\nGuuYGSHCiObX3DN1WpPReCWISK4bRAwb6MvQWyCIEIS2QK9V8/iU7vxz1SHe33iKv80fhJe7+Pkt\nCILQVrkcSuTn5/Pdd99RUlJSa7Dlb3/7W5YtW9YsxXVUs8Y4Wg2rugj8vHR0ivRlWI/QBgOBhuZR\nVDmSWsC04fHIsoxWo8RilRpVW3GZud4lJIZNO8la+hbasBBKnn0Ge1oFEeoKfheQAsDrhT0I7xVX\nq36dtQSdVAxKDfhGg/LqMUmGk7k6iirV+Lvb6B7qeiCRb3AEEoYymZF9NUy+Xdvka7BlWea7bfl8\n+HkWCgUsmBPF+FGBbXKtd2mZjQ8+y+Sn/QbUagUP3hvOtAkhzdI10l5ZrRLbdhey9rurYcTkccFM\nuysEf9+2u2vKraQlZuq0tPqCiKhwPUMHiCBCEJpLXJg3946I54ud51j+3WkW39ezTf5+FgRBEBoR\nSixYsIDOnTuLdswWUNVFMG14HJ/8kMrhM/nsP5XH/lN56LVKhvYM44E76m7F2dA8iiqGMhOf/ZDK\nnpTcG6qtviUkFSdOc+7JP6PU6+i04j/07J6E9ofj3Jm7Dw+ljZXGXoT36lkduABgKoHyXEcQ4RsD\nqqsXfpIMp/J0FFaq8XOz070RHRLZ+XbeXWei3Chz1xAtdwzQNPkLEYtV4p2VGWzfU4SPt5qnF8bT\nLantdQzJssze5GLe/TiT0jIbSfHuPDkvhihxEVStKoz46ttcCoqsjjDizmCmTRBhREtrqpk6ra06\niDho4EiKCCIEobWMHxxNyvkijqYVsPNINqP7RbZ2SYIgCIITLocS7u7uLF26tDlrEa6xbtd59qXk\n1brNZJHYfigbpUJRZ3tOV2ZFeLlrOXWh8IZrcraExJJXwNmH/4BkMtPp/Vfw6NkFrGZm2vaiVJoo\n7jySaX1H176fuQxKsx2zI3xjQH21rVKS4fRlHQUVanz1dnqEmnB1eHb6JTsfbDBitsB9o3QM7dX0\nF5UFRRZefiudtPOVJMa688yT8W1yK0hDiZV3P85k/6FitBoFD8+KYNK44GZZwtIeVYURX27MpdBg\nRatVMOVOR2eEn48II1rDzc7UaU1Go52Dx0rYe9DA4ROlWG1Xg4hhA/0YOsBXhIGC0MKUCgWPTurG\nkg9+5vPtaSRF+RIR1PbeQBAEQejoXA4levfuzblz50hISGjOeoQrrrcUY9exS04HwV1vVkRJhfNd\nN65Hr1Vxe6+w2p0OgGQ0cXbe77Hk5BH5v0/id9cokOyof1qNsigHe+IA3AbeUWsnDSwVUJIFKMAn\nGtT66kOyDGcua7lcrsZHb6dHmOuBxC8XbHz0nQm7BLPH6+jXuekvLE+llvOvZemUlNoYPcyfBXOi\n29z2mbIs8+P+Ij74NIvyCjvdkjxZNC+a8BD99e/cAVitElt3OTojqsKIqeMdnRG+IoxoVTc7U6el\niSBCENo+Py8d8+7uyptrT/DOhlM8P7c/GnXb+lkiCILQ0bkcSuzatYsVK1bg5+eHWq0W+4w3s+st\nxTBbJcxWx/Gag+CqQoPDZ/IpKjOjABrY5fO6/L20dInxZ/Y4x3KRwhJTdWeGLMukP/UCFUdPEThz\nEmGL5oIso/55I6pLZ5HCO2EbPKl2IGE1QUmmoyqfaNBebcWWZTiTryWvXIO3zk7PMBNqF6/3j6Ra\n+XSLY4nH/El6usY27cYysizz/c4C3v80E1mGRx6IZOLYoDa3PrWgyMLbKzM4dLwUvU7JYw9GMWF0\nIErRHYHFKrH1p0LWfifCiLas7kwdPX2TAusEoq2lKoio2jWjOoiI0DNsgAgiBKEt6pcUxKi+Eew8\nks0XO8+1+6G5giAItxqXr9z++9//1rmttLS0SYsRrrqRbTurBsHNGpOIXZI5mlpAcbm5elvQxlIA\nv5vRm7BAD6db9A0/sp2iDT/gNbgvsS//LwqFAtWJH1GlJSP5h2EdMat6cKXZaqe8rBx/ey4KWQLv\nCNBdbaGUZUgt0JJbpsFLZ6dXIwKJvSesrN1hRqeFRya7ER/RtO+AWK0S732SyQ8/FeLtqeaPv46j\nZ1evJn2MmyXLMlt3FbJidRaVRone3bxY+HA0wYFtt929pVisEl9tzOaj1RcpKrai0yqZOiGYaeNF\nGNEW1dyZp+bytNZUabRz8GgJe5NFECEI7dWsMYmcyTCwNTmLHnH+9EoIbO2SBEEQhCtcDiUiIiJI\nS0vDYDAAYLFYePHFF9m0aVOzFdeRNdTGXJ+qQXBbD2Wx43B29e3yDbZKBPm5EeTn7nSLvvOfbiRx\n86fooiNIfP8VlDotyvRjqI9uRfbwwTr6V6DRYZckVm9PIz2zgCdGeKHwUnEgS0n/Pl5UXWbIMqQV\naMkp1eCpvRJIuHANIssy25KtbNpnwdNNwWNT9UQGN+3FS5HBwr+WnefMuQrio9145sn4Nnehf7nA\nzLIVGRw7VYa7m5JFD0dzx/CANtfF0dIsVokffixg7Xd51WHEtAnBTJ0Qgq+3CCPaOp1G1apDLRsM\nIqqWZoSLIEIQ2gudRsWCKd15cWUyH377Cy88Mhgfj7Y3D0oQBKEjcjmUePHFF9mzZw8FBQVER0eT\nmZnJ/Pnzm7O2Dm/WmERkWWbPiVxMFjsAOo0SFGC21N3K089Lj5tOfd1tQV01oGsI+cVGDp+5XOv2\n4NwMRv+wBqtOT+cP/o0mwBdFbjrqfV8ja/RYx8wBd28AVm9PY9+JbJ69259ALxVrD5Wx8VgFA5Yr\nKQAAIABJREFUY4sc74bKMpwr1JJdqsFDK9Er3IQrb4rKsszGPRZ2Hrbi56VgwTQ3gvyadrbDmXMV\nvPxmOoYSKyNu82Ph3Bh0urYzP0KSZDbvKGDVl9mYzBL9e3nzxEPRbXLoZksyWxxhxNebroYRs++L\n4s7hvviIMEJoQFUQseeggaMpV4OI6Ag9Q0UQIQjtXnSIF9NHJfL5trN88O0pfjejN8oOHuALgiC0\nBS6HEidOnGDTpk3MmTOHVatWkZKSwg8//NCctXV4KqWSB8d1ZvqoRPKLjSDLBPm589WP5+odBGc0\n2667Lej1+Htp8XDTkvxLHpv2Xqg1k8KzzMCEjStQSnY2T5hLp/AIFMV5aHZ+BoB11APIviGAY8nG\nqfR8nrrTjwg/Dd+nVLDxWAXgWGpy74gEssv0ZJVocNdI9A4zonUhkJAkmS+2mzlwykawn4LHp7nh\n59W0YcEPPxXw7seZSHaZh2dGMGV8cJvqPLiUZ+Kt5RmcSi3H00PFbx+KYeRt/m2qxpZmtkhs+bGA\nr7/Lw1BiRa9Tcs9dIUwdH0xigj/5+WWtXaLQBlUa7Rw4Wszeg8UiiBCEDmDsgEhSzheSkl7EtuQs\nxg2Mau2SBEEQOjyXQwmt1vHuq9VqRZZlevTowcsvv9xshQlX6TQqImtsYdXQIDibXa53FkVDsyWG\n9Qhl5phEjGYb3x/MrLX8o4raYmbCNytwryxn94gpVPTsja/KjOaHVSisJqzDpiOHxld/fkmZidmD\n3IkP0rI7tZI1B65eFBrKTKTlqygwaXHTSPQON6F14bvRZpP55HsTx8/ZiQxW8thUNzzdmu5C3GqT\n+PCzLDbvKMDTQ8UfnoijT3fvJjv/zbJLMhu3XObTry9hscrc1t+Xx38V1aG3sDRbJLbsLODrTbkY\nSmzodUruvTuEqeND8PZq2oGnwq2hZhBxJKUUW40gYthAP4YO9CMyTOxWIwi3IqVCwSMTu/GXD37m\ni51pdI72JTqkbc2JEgRB6GhcfsUeFxfHJ598woABA5g3bx5xcXGUlYl3HltDQ4PgVErqnUUxsm8E\nY/tHsjU5k+PniuoEGiqlEq1GxfG0gjr3VUgSd3z/GYEFOZzseRspvYcxIdEHj12foagswdZnLFJ8\n76t3kGUCFIUEh+s4fNHEij2ltTouBvbuSoHJA71aok+4CZ36+oMvzBaZFd+aSM20kxChZP4kN/S6\npgskikus/GtZOr+crSAmUs+zTyYQGtx25kdkZht5c/lFUtMr8fZS85tHoxg20K+1y2o1zsKI+yaG\nMOVOEUYIdVVU2jl4rG4QEROpZ+gAEUQIQkfi46Fl/sSuvP7Fcd795hTPzx3Q6gN1BUEQOjKXX7m/\n8MILlJSU4O3tzbfffkthYSELFixoztqE66hvENy04fEYTTZOZxgwlJnrBA9zxnfBbLU7nWxf31ak\ng/duIu78KbKiEtkzYiruOgWjDD+htORg7zSAys7DKDFUOs6nVkJZDiprObnlCt7eWVyrQ6N75wQ6\nd0psVCBRaZJ5b72RjDyJbnEqHrpLj0bddIHE2fOO+RGFBitDB/iy+JEY9Lq28QLFZpNZtzmP1Rty\nsNlkRtzmxyMPRHXYC2+zWeL7H/P5+rs8iktrhBHjQ/D27JjPieBcRaWdg0eL2ZssgghBEGrrlRDo\neKPmUBZrtqcxZ3zn1i5JEAShw7ruK/hTp07RrVs39u/fX31bYGAggYGBnD9/ntDQ0GYt8FZXXzhw\nI6p2uqjautPPS8tt3UOZPa4T7rra7f1VgYbZaueyoRI3nRqj2YabTl1n+UfnUwfpc/hHin0D2XLX\nr5BUSma7nybKkkOmLpxtZZ05/P7P1duFzhvpT7cgGdR6gqKjGNVXVb3UpF+PJLp16YxO5Viyoddc\nP5AorZB4Z52J3EKJ/p3VzBqrQ6VqukBi+55C3v4oA5tdZs70cO65K6TNzGY4n1HJmx9eJD3DiJ+P\nhiceimJQX9/WLqtVmM0Sm3fms26TCCOE+jUURDh2zfAjQgQRgiAAM0YncDrDwI4j2fSI86dvUlBr\nlyQIgtAhXfeV/Lp16+jWrRvLli2rc0yhUDBkyJBmKexWd22A4O+to29SUHU3w424duvOojILe1Ny\ncdermT02qd7HLyw1V8+bqBpyWRVKhGWdY8T2tZh0bmyaMg+L3p0pnhf+P3v3HR5lme9//D3zTM+k\nzKSQQhJCCb0EKdIlFLGABQFFUbC33XWPu3s8e9zj2d2zP1113bOWPbq6iLIWFBsg0pv0EorUUEIC\n6WVSJtPneX5/DAlJSIVACvfrurwuSWbmudPn/sz3/n6ZGJRLhsfMa4XJlJ3JqX7ckd009ItUKHNB\naNcEJLWm+qhJRpGKPEcwOklmcJwLYzMCieIymfe+cVJcrjB2sJY7xutarVO2z6ew6IvzfL+ukCCT\nxL8/3o0bBoW2ymNfKa9P5svleXy9Mg+/H1LHhrNgThzmoOtv8+1y+1m9sYhvVuVTVu7DaFBzz+3R\nTJ8aJcIIAbgYRGzbY+PAkYrqIKJbVyOjh4eJIEIQhHppNYExoX/4aC8f/nCcbjEhWILbz7FNQRCE\n60WTz+h/+9vfArB48eIWP/irr77Kvn378Pl8PPHEEwwcOJDf/OY3+P1+IiMjee2119DpdCxbtoyP\nPvoItVrN7NmzmTVrVss/kg6mboBQXO6u/nfdAKE53F5/g6NA004UMn5wLJFhxupqjLrXrzpeUVLh\noaTCQ3yUGU1+HhNWLkaFwprbHqQsLJIxxjzmhGZQ5NPzevEgyuSLAcGE3kbuGRZMsd3P/2228+sH\nVFRN0Cx26slz6NFKgSMbpmYEErnFfv7xrYvySoWpI3VMHaFttQqGsnIvr7+bweHjduJjDbzws+7E\ndmkfm5aTGZW8vTCTrGwXEVYtT89PJGVA+2m2ea243H5WbQyM9iyvCIQRsy6EEcEijLjuVTp87N5f\nxva9IogQBOHyxUWamZPak3+tSeeDFUd5/t4hYkyoIAjCNdbkM/t58+Y1uhH8+OOP6337zp07OXny\nJEuWLMFms3HXXXcxatQo5s6dyy233MIbb7zB0qVLufPOO3nnnXdYunQpWq2We+65hylTphAW1nlL\n1BsLEPanFzFzQo8WH+VoqBcEQEmFm5f+ubu6GuPOcd0bvH4VV0kp969ajMvlIPpPL+B2xtDPlcfj\nluNUyhpeLR5MqXzx1YRh3fTMGx1CudPPX1aVUFDhp9DmQKeVcGPmdIkerVoJBBK62oFEfUdYMnP9\nvL/MidMNd4zXMX6IrkWfj8acyXTwyttnKCz2MHJoKL94pBtGY9v3j3B7ZJZ8l8t3q/KRFZg2MYJ5\n98Rhagdru5Zcbj8/bCji21WBMMJkVDNrejTTp4gw4npXK4g4XIHPXyeIGG4hLloEEYIgtMzElDgO\nnynhwKkiVu/O4paRiW29JEEQhOtKk8/wn376aQDWrVuHSqXixhtvRJZltm/fjtHY8Oz24cOHM2jQ\nIABCQkJwOp3s2rWL3//+9wBMnDiRhQsXkpSUxMCBAwkODoxjGjp0KGlpaaSmpl7xB9deNRYg2Cpc\nlNnd9TawbEyoWd/gKFAAhYvVGCXlrgavD6CS/YxYughXVgYlN9/CDQ/dzcTVe5lacBiAvxYPINsX\nBICkVtEnWsvjE8JwexXeWGMjr9yPQSfxt6WHCA2LYMyIFBTZx8A4N0E1soWGjrCk9Ezi45VufH64\nb4qeYX1bb9zllp0lvLMoE49HYe5dMcy8LRq1uu1fETl20s7bCzPJyXfTJVLHM/MTGdj3+hpR5nT5\nWbWxkG9XFVSHEbNnBMKI6/HYihBQFURs22Pj4JEaQUS8kdHDRBAhCMKVU6lULLi1D/+1cDdfbz5D\nnwQLSTHXX4WiIAhCW2nymX5Vz4h//vOffPDBB9Vvnzp1Kk899VSD95MkCZMpsLFeunQp48ePZ+vW\nreh0gV1peHg4hYWFFBUVYbVaq+9ntVopLGz8VfyOzqjXEGrWUWr3XPI+S7CBUHPLzzPqtVKDo0Dr\nSksvorFt+Jgty4nPSudst76s7jWBw4u28h+hu1CrfbxT0o9jnotjKLuFa3h2UhiyAn9bZyOr2AeA\ny+OnS1QUo0ek4PF6Wbt5J3k9g2sdTanvCMvm/ZWkHXUhSSoeutXAgB6tsxn1+xUWL83mu9UFmIxq\nfvXzJIYPaftqHJfbz9/eP8XS5dkATJ8Sxdy7Y9rN5I9rweny88OGQr5bVUC53YfJKDFnRjS3izDi\nulXp8LFrfxnbRRAhCMI1EmzS8eht/fjLkgP8Y9kRXlowHINO/A0SBEG4Fpr92zYvL4+MjAySkpIA\nyMrK4ty5c03eb926dSxdupSFCxcyderU6rcrSv09BRp6e02WC1UEkZEd65Vkv19m4fIj7DycW28g\nATBmcCxdYy9vs/zs7BRMRh07D+dSaHPS2Geyoff1P7idAYe2Uxwezfpp96GXZO5XdqB22FnhSWa7\ns0v1bePCNPxiqgWNpOJfuxycyvcSGWbA7vQRGRHBuJFD8fl8rNuyk5LSMg6d9vDETCMGnQaXx8eh\n08W1rq2TIjDpklCQ+flcK0OSW1Yt0pCyci8vvXaUvQdKSYgz8vJ/DiAxvnUe+0qkHbLx8pvp5Oa7\nSIgz8h+/6M3Avu2j0ea14HD6+fr7bD77+hxlFT7MQRIPz01k1vSuV+WYRkf7fdERXcnnuMLuY+uu\nIjZuLWT3AVt1j4ieSUGkjo3kpjGRJMS1/c9teyC+lwXh6uifZGXaiARW7c7is3UnWXBr37ZekiAI\nwnWh2c/8n3vuOebPn4/b7UatVqNWq6ubYDbkxx9/5N133+WDDz4gODgYk8mEy+XCYDCQn59PVFQU\nUVFRFBUVVd+noKCAIUOGNPq4NpuDyMhgCgsrmrv8NlXVM2H1nnNsTMuu9zbhIQZSkiOYPiqB8zml\nlz0m9M4x3ZiUEktGThkfrz5BSUX94UeVqqkbKiAuM50xW5bhMJr5YfoCZJ2OX1p/opvOzvrKWD4r\nja2+X2SwxPPTLJj1at7fXIqsD+WPj/bDLyu8vzKT8TfegN8vs27LLoptZQAUlTo5fbaYULOeM9ll\nFNic1Y+n10Rj0iUgK14qXeloGUhhob9FH3t9zp5z8MpbZ8gv8jBscAjPPZaEyeBv0+8dh9PPx19m\ns3pTEWoVPHBPPNOnhKPTqjvM9/SVcDr9rNxQyHer86mw+zEZJe69M4bbJ0cSZNLgcjpxOZt+nJbo\nSL8vOqrL+Rw3VBGRlGBk9DALo4eH1WhA27Y/t+1Fe/heFqGI0JndPaE7xzJt/HgolwHdwxneJ6qt\nlyQIgtDpNTuUmDx5MpMnT6a0tBRFUbBYLI3evqKigldffZVFixZVN60cPXo0q1ev5o477mDNmjWM\nGzeOwYMH8+KLL1JeXo4kSaSlpTUZdnQU9Y3drE+YWcd/zR+GyaC5ojGhdXs06HVNBxqKAr++dwhh\nJfmcnvlfyGo1q29/CHtIGI+GnWCwoYT9LiuLSnvBhUMfoUY1z99sIcwk8enOcnacdgEugk1aUkf0\nZvzoYfhlmfVbd1FUYqu+liVYz+rdWRw6XUxJjTGkBm1XjNpYZNlDhfs4lmAu6whLXdt223hrYSZu\nj8zsGdHMmRHT5v0j0n4q4/8+yqKoxEtiVwPPLkhk1IjoNt9kXAtVYcS3q/KxV/oJMtUOI4Trg73y\nYrPKpoMIQRCEa0sjqXl8Rj9+v2gPH/1wnO4xIYSHit9JgiAIV1OzdwLZ2dn8+c9/xmazsXjxYr78\n8kuGDx9Ot27d6r39ypUrsdlsPPfcc9Vve+WVV3jxxRdZsmQJsbGx3HnnnWi1Wp5//nkeeeQRVCoV\nzzzzTHXTy46uobGbdZXaPSzZcAqjXmL9vouVFC0dE1r3ei5PoNLAoFPj8sj13scaYiDBBKfuewGd\n28X6qfeSH5PIHeazTAzKJcNj5q2S/sgEQhGTTsW/3WwhKkTDd/vtrDvqqH6srCKZE4VG1Cis27qb\ngqKSWtcyGbRs3J9T/W9FAZM2Eb22C37Zhd19HFnxkJLctcUVIjX5ZYVPv87h65X5GPRq/v2Z7tx4\nQ+0jMfVN/Lia7JU+Pvz8PBu2lSBJMGdGNDNvj0araTps6ugcTj8r1wcqI6rCiPvujOG2yVEEma6f\n3hnXs8aCiDHDLYwaJoIIQRDaj5jwIOZOTmbRD8d5f8VRfnNfSpu/qCEIgtCZNTuU+N3vfsf999/P\nhx9+CEC3bt343e9+x+LFi+u9/Zw5c5gzZ84lb6+6f03Tpk1j2rRpzV3KVdHam9TGxn7WZ/vhPAwN\nVDY0Z0xoY9cLMmgZ3DOMXUfzL3lfSvcwsp58AXdmNpHPLuCMpi9j9HnMDs2g0GfgteJBuJXAt4lO\no+IXUyzEW7WsO1rJd/vt1Y/TJTKcYSmBYzcDY1zkJhrxuQ3YKlxYgg0M6hnOwZM116ciSNcdnSYc\nn1yJ3XUCa4iGlOSuzEnt2dSnq0H2Sh9vvHeW/YfLiYnS88LPupMQd3FKTEMTP5pbjXI5du0v5b2P\ns7CV+eieaOTZBYkkJXT+s/EOp5/v1xWwbE0B9ko/5iCJuXfFcOskEUZcD6qCiG17bBw6ejGI6J5g\nZPRwC6OHhREjgghBENqpcYNi+OlMMftOFPL9zkymj+7W1ksSBEHotJodSni9XiZNmsSiRYuAwMjP\nzuBqbVIbG/vZkKrKhrqaMya08TGjbmaM6UawScv+9KLqoCClVzgjV35O8c40LLdPwvTEQ/T5aDWP\nW45TKWt4rXgQZXLgGIWkhmdSw+jVRcfO004+23nxuEFUuJXUsSNQq1X0jnQSYVaYOzmZmRN6VAc9\nZXY3m6r7aagx63uilcLw+Suwu9NJSbbw2PT+VxQIZWU7efmtM+QVuBk6MIRfPt7tkukN9U38aEk1\nSkuUlXv54NPzbN1tQ6NR8cDMWO6c1gVJ6tyvtjQURtw2OQqTUYQRnZm90seutEBFhAgiBEHoyFQq\nFQ9N68OZnHK++zGDfokWesRdP82oBUEQrqUWHeQuLy9HpQpsqE6ePInb3bJNd3t0tTapoWY91hA9\nxS0MJup9rCA9Rn3jX6rGrmcJNmANMVwSFJR88CnnlizHNKgv3f/398iVJTwXcRgFeKN4ANm+IABU\nKnh0fCgDu+o5mOVi1XFf9fSOCGsYqeNGIKnV2AoziO4VXX1dvVaqDlJCzXoswTpsFX6C9MlopWC8\n/lLs7lOATGbelfVU2LHPxpsfZOJyy8y8rQv33RWLVKfUsrFqkuZUozSXoihs31PKPz45R3mFj+Qe\nQTy7IIH4WGPTd+7AKh2BMGL52othxP13x3LrpEgRRnRiVUHE3kNn2XOgBP+FbFUEEYIgdHRmo5bH\np/fj1U/3896yI/z+4RFNPh8TBEEQWq7Zv1mfeeYZZs+eTWFhIdOnT8dms/Haa69dzbVddVdzk6rX\nSqQkR9YKPJpi0En1VkvY7G5+/+Fu+iZauW9KMpJadclRk8aul5IcUet2URYTttWbOfc/b6KNjiT5\nw78g4cG45VNUKh/vlPTjuOdiI9MHbgxhZHcj6Xke/m9jKWMGx5Icb+FMnocRw4aikSTyc85wx40R\njX4+esZFcOysBY06CI+vmErPGaqGk9oq3E1Wg9RHlhU+/y6XL5fnodep+dVTSYwZXn8T1sarSZqu\nRmkOW5mX9xZnsSutDJ1OxYJ747htctQlAUlnUhVGLFtTQKUjEEY8MDOWW1MjMYowolOqsNc4mnGs\n/GIQkXihWaUIIoRWkJ6eztNPP838+fN54IEH8Hq9vPDCC2RmZhIUFMSbb75JaGgoy5Yt46OPPkKt\nVjN79mxmzZrV1ksXOpHeCRZuHZXI9zsy+deadB6b3q+tlyQIgtDpNDuUSEpK4q677sLr9XL8+HEm\nTJjAvn37GDVq1NVc31V1tTepc1J74pcVNu/PbrDJZU2jB0Zz8lwZ5wrsl7yvpMLDtsN57Dyah1Yj\n4fb4LzlqUtWLodYRjeSIS3o0OI6kc/qZF1HrdSQvegNdRCja1R+gcpThGTIZQ140+kO5uL0ydw01\nM7GvicxiL39bZ8Pjh0OnSviPh0ZxJD8Inwz7D/3EkfRM0o40fPSlpFymuDQejVrB7c3H4c2s9X5L\nsKHFEzcqHX7+9/0M9h4sp0uEjhd+1p1u8Q1/vZqqJrmSiR+KorBpewkLPz+PvdJPv2Qzzy5I6NQb\ns0qHjxXrCll+IYwINoswojOrsPvYtb+U7XtK6w0ipt/cFZ3G17aLFDoNh8PBH//4x1rPMb744gss\nFgt/+ctfWLJkCXv37mXUqFG88847LF26FK1Wyz333MOUKVOqp34JQmu4Y2wSR8/a2HEkjwHdrYzq\nH930nQRBEIRma3Yo8dhjj9G/f3+6dOlCz56BTa7P17GfgF7NTSqApFZz8/B4NqZlN3gblQqsF8KD\nO8cl8dI/dzf6mH4Z/BeqKeoeNZHU6kuOaNSt9PAUFJH+0C+RHU56fvAqQQOS0W78F2pbHv5ew1EG\njEedfxK3V2ZqfxPTh5jJL/Px19U2nJ5AsqKotBzJN+GTYdvuA5zJOl/veqrkl8i8942TskqF6PAK\njp2rHUhA7WqO5jif6+KVt06TnedmcP9g/u2JJELMjX87N7eapKWKSjy8+3EW+w6VY9CrefyBeG6+\nKaLTduqudPhYsbaQZWsKcDhFGNGZNRZEBKZmWIiJCvyejIw0XhejbYVrQ6fT8f777/P+++9Xv23j\nxo38/Oc/B6hupL1jxw4GDhxYPbVr6NChpKWlkZqaeu0XLXRaGknNEzP68dKHe1i8+gQ94kKJCuvc\nRzIFQRCupWaHEmFhYbz88stXcy3X3NXapNYUatYT3kDwYQ3W89zswUSGGdFrJQpsjhY3x4RLj5pU\nHdFwe/0U2BzV4YTsdHHy4V/hycmn6wtPY71lIpqd36HOOYU/LhnfiNtw+2T2pxcytpeRe0eGUFLp\n5/XVNspdgZGiocFmpkwYjV9Rc+jI4epAoqH1nMv384/vnDhccPtYHeOHdGHJhoomqzkas+dAKX/9\nx1mcLpk7pkUxb2Zcs5tHNreapDkURWHtlmI++uI8DqfM4P7BPP1QAlERVxZmtVeVDh/L1xSwfG0h\nDqefELOGeffEcktqJEaDCCPaUmtOD2ooiOiRaGL08LBaQYQgXC0ajQaNpvZTlOzsbLZs2cJrr71G\nREQEL730EkVFRVit1urbWK1WCgsbn3xlsZjQaK7O76zIyM4x0rwju1pfg8jIYJ6eOYi/frafRT8c\n55VnxiJJnX+s9+UQPwdtT3wN2p74GrRMs0OJKVOmsGzZMlJSUpCki3/MY2Njr8rCrpXW3KTWp7Hg\nY2jvSLpGmqv/fbnNMeseNal3okivCIZ//RGVaYcJv+dWYn62AOmnzUin9iFbY/GNmw1qibIyB4lh\nMH9MCHaXzBurSyi2B3YlweYgpkwYhV6vI8ZUwcfHMhpdT3mljoXLXXh8MHuSnpH9tQBNVnM0RJYV\nlq7I47Nvc9HpVPzy8W6Mv9Ha9B1raE41SXPkF7r5+6IsDh2rwGSUeGZBApPGhlc3gu1M7JU+lq8t\nYMXaAhxOmRCzhgdnxTJtoggj2lprTQ8qt/vYnVbK9r31BxGjh1mIFkGE0MYURSEpKYlnn32Wv//9\n77z33nv069fvkts0xWZzXJX1RUYGi2qhNna1vwYDEsIY2a8Lu47ms/C7n7hzXPerdq2OSvwctD3x\nNWh74mtQv8aCmmaHEidOnGD58uW1zmmqVCo2bdp0RYtra621SW1Mc4OPy2mOCZceNalvoojt74uw\n7VqLedggkl57EenMATQH16MEheFNfQC0gfuH6X08OTEMj1/hr2ts5JQGdifmIBNTJ4zCZDSQZHGy\nZe9J1Crq7ZVhCTaQU6jhs7UuFAXmTTMwuFftb7Wakzmaw+n087cPzrJrfxmR4TpeeLY73RMvv99H\nS69fRZYVVm0sZPHSHFxumWGDQ3jywQTCLbrLXkt7Za/0sWxNAd+vqxlGxDBtYoQII9qJK5ke1FgQ\nMWZEGKNuEEFER9WalTPtSURERPU48rFjx/LWW29x0003UVRUVH2bgoIChgwZ0lZLFDo5lUrFvKm9\nOZ1dxvLtZ+nXzUpyvOhfIgiCcKWaHUocPHiQPXv2oNN1vs0XXN4mtblP/FoSfFwMMAqbXTFR86hJ\nfRNFeqQfZPiutVSGWun33p+RSs6h2fEtis6Ad9I8MF5IrbxOdJU5+FUq3lpnI6PIC0CQycjUCaMI\nMhnpEe7mx73HG+2TkRAVzyerPWgkmD/dQO+EKxuflZPv4pW3znAux8WAPmZ+9WQSoSHaK3rMy5Gd\n5+KdDzM5drISc5DEcw92Y/yNlk5XHVFhDxzT+H79hTAiWMNDswNhhEHfeTY4Hd3lTA+qCiK27bHx\n0/GK6iCiZ7cLRzNEENGhtVblTHs1fvx4fvzxR2bOnMmRI0dISkpi8ODBvPjii5SXlyNJEmlpafz2\nt79t66UKnZjJoOHx6f15+ZN9/GN5YExokOHaPycRBEHoTJq9WxwwYABut7vThhItcblP/JoTfNQN\nMHRaNUs3neF4pg1bhRu9LrDJ8Hj9l1RcuL1+zmSX1epLEZWXxcS1S/Bo9ay8fT5DPA60Oz4DlQrv\nTfejhEYFbuhzQ2kWKDKExhEXp6HYVYzDrTBt4mhMJhMRBjthOm+DGyG1CvolJnM2JwyjHh6dYaRb\nzJVtYvcdKuON987icPqZPiWKh2Y3v39Ea/HLCsvXFPDZNzl4vAqjbgjj8QfiCQvtXE9CKuwXKyOc\nLpnQEA3zp8dwswgj2qXmTg8qt/vYlVbK9j02Dh2rQA60hxFBRCd0JZUz7c3hw4f585//THZ2NhqN\nhtWrV/P666/zpz/9iaVLl2Iymfjzn/+MwWDg+eef55FHHkGlUvHMM89UN70UhKulZ9cH0iHdAAAg\nAElEQVRQZoxJ4rutGXy86gRP3tG/071AIQiCcC01O5TIz88nNTWVHj161Oop8cknn1yVhbVn1+KJ\nX80A49Hb+9WqygBqVVz4ZZlP16VXV1eoVaAoEFRRys0rPkIt+1lz2zxCu0cTtecLVF433rGzULp0\nw+31U1FRSbg/D5Xih+AYJGMocyeH8uB0I5uPynhlDSdOnmLxgWOEmfXY7PVvhHSaWLILwgg2qXji\nTgMxEZe/kVUUha9X5vPJ1zloJBU/fySRiWPCL/vxLldWtpO3F2ZyMsNBaIiGXzwWz+hhlmu+jqup\nvKoyokYYMeeOGKbdFIle3/FfXe2sGutBE2I0sO+And1p2fUEERZGDwujS6QIIjqTy6mcac8GDBjA\n4sWLL3n7m2++ecnbpk2bxrRp067FsgSh2u2jEzlytoQ9xwsY2D2csYNi2npJgiAIHVazQ4knn3zy\naq6jw7hWT/zqHg2pW2VR8//rhiSyAhqPm1uWLyLIUcG2cdMpSOrFq2EHUDvL8aVMwZs4gCXr0knP\nLOLJ8WZUoRrSctQMHhSKBLh9KvadUuOV1Rw6ms6BIycAGgwkjNoEDNpoLMEqnrrbSHjo5W9mnS4/\nby/MZPveUsItWl54tjs9k4Iu+/Euh8+n8M0PeXyxPA+fT2H8jRYeuS+ekOArO4rSnpTbfSxbnc/3\n6wpxuWXCQjTce2cMN08QYURHULcHjexX4bVr8VRoKXVq+ceBwNt7JpkYPUwEEZ1dcytnBEFoHZJa\nzePT+/HSwj18sjadXl1D6WIVP2OCIAiXo9k7rBEjRlzNdXQYV/uJX0uPhtQbkigyk9Z8TkRRDkcH\njCRvfCq/jzxMuNuGP3k4/v7jWLL+JNsOZvObW6xEh2r4/qCdr/bZmVyk5p6JyRzMMeDwwumMjOpA\non4qTLok9JoIDHovP5sVSqj58je0eQVuXnn7NJnnXfRLNvPrp5Ku+TGJjCwHby3MJCPLiTVMy5MP\nxjN8SOdpZFVe4WPZmtphxH13iTCiI7pleDfOnPJy9LgDZ7kaCJQPi4qI609jlTN1myELgtA6IkKN\nPHhzb95bdoT3lh3ht/NuQCPGhAqCILRY53nZ9xq5mk/83F4/i1efYPvhvOq31TwaUl+jzPpCkpHb\nV5F05gjZXXsy4p3/YkHBNnRncvDHJeMbfhtun8xPpwr5+WQLiRFaNh138NU+OwCHM8romWzA4VUT\nZnCyfe/hBtcbFqTH50tAK1kIMnr49f2hBJsu/4/xgSPl/OXdDOyVfm5JjWTBvXFoNdfuj7vXK/Pl\nijy+XpmH3w+Tx4Uzf04cQabO8WNSXuHju9X5rFwfCCMsoRrm3hXL1AkRIozoQMorfOxMK2X7Xhs/\nVR/NkOgWb2DMCAvjR1qJihAb0OtNY9ObajZDFgShdY3s14XDZ4rZdjiPb3/M4J6berT1kgRBEDqc\nzrHbuoYu94lfY5M6alZHNDRxY+uh3HqrJ+qGJL2P7iVl3yZKwyLYPethppcfRndmP7I1Ft+42aCW\nKCutZM4wI71jdOw+42TxjnIAdFotw1JScHglzmZlsWXXwer+FHVZg00kRg3kbK5Cz65qHr7dAiqZ\nApujxWPoXB4fS1fk8vX3hUiSimfmJzB5fESz798a0s9U8vaHmZzLdhEZruPphxIYMiDkmq7haikr\n9/Ld6gJ+2FAVRmiZe/eFMEInwoiOoDqIuDA1o6pHRK+kixURIogQmjt+WhCE1jV3SjInz5fxw85M\n+nez0Lebta2XJAiC0KGIUOIytOSJX3OOY9TtCVEfl8ePyxOY31e3sWZVSBKdk8H4DV/h0hv5YfoC\nBuqKCDp6jAopCOmmuUhaPSgK4WobUQkGDp938/6WMhQFtBoNk8ePxGoJJf10JjvTDgGB/hR1qdBg\n1CZzNldhYA+J+6bq+GrzyRZPI/HLMp+sOcnadWXYSzRIWoXxE41MHHvt/pi7PTKff5vDstUFyApM\nmxjBg/fEYTR2/FcV6wsj7r87likijOgQysq97EorC1REiCBCaIaWjJ8WBKH1GPUaHp/Rn5f/tY/3\nVxzlD4+MxGzsXBO6BEEQriYRSlyGqid+00d343yBna5RZoJN9Y9KbWpSR2ONM5tS1VhzTmpPNAX5\nxHzwMaCw5tZ5dI2WeMxyhEpZwx/y+9NvRz5zJ4WAPR/JU05hJby9oRS/DBqNxKRxI4mwWsjIOlcd\nSNSkVoECWMzB6KWeOFxaRvTTcE+qniUbTl7WNJKFy9JZvbocv1uDZPBhjq1k/9kylmyQrsn4uqPp\ndt7+MJPcfDfRUXqeWZDAgN4df5RcabmX71bl88OGItyeQBjxwMxYJo8XYUR711gQMWa4hVEiiBCa\noTnjpwVBaF3dY0O4c1wSX20+w4crj/Hs3QPFmFBBEIRmEqHEZWhuM8rmTOporHFmU6oaa1olmb7/\neAuno5I9t8xGSormOWsaCvBG8UByfEG404uYPSIUjasEJD3W+ATGD9Fw6HQJKYOHEBVhpaKsmK27\nDtR7LUWBx24fwtrdekrtChNStEwfq8Pjky9rGsm+n0pZtbIS2adBF+rGFOlEpW76fq3B5fbzr6U5\nrNwQWPf0qVHcf1dsh++rUFru5dtV+ay6EEZYw7Q8OCsQRui0Hftj68yqgohte2wcPnExiEjuHpia\nIYIIQRCEjuGWkYkcyShh/8kiNh/M4aYhcW29JEEQhA5BhBKXoanqhyqFNkeDPSKqAoXGGmc2xRJs\nIMQgcfrRF3CmnyFk3iwywgfy3+H7MKn9vFXSj+OewNSIlK5qNK5iUGshLAFJ0jInNZk+ffSUuzWE\nm7zcGK9ly86GmniGsXK7jkqXwtQRGqaO1KFSqVo8jURRFFasLWTRF+eRZTBFOdCHeZq8X2s5dKyC\nv3+YSX6Rh7gYPc8uSKRPT3OrX+daqhtGhFu0PDgrjsnjw0UY0U6VlXsv9IgoFUGEIAhCJ6FWq3j0\n9n68tHA3n687SXLXMGIjru1Ic0EQhI5IhBIt1JzqB42kqq6kaEjVpI7GGmc2JSU5gvz/9xZlG7cT\nmjqaxBef4t+/epdwyc1nZd3Z6ewCwI3dDcy9MQRFJaEKSwRJi1+Gw3mBQCIiyEe/Lh7UqvrXIqnN\nKP4eVPoVHJ5M1qWVUWyvv9FmfR9j9efOI/Pux1ls2l5CaIgGc0wlDsXT5P1aQ6XDz8dfZrNmcxFq\nNdx9axfm3BHToTftpWWBMOKHjYV4PArhFi0PzY5j0jgRRrRHtYKI4xXV/VqSu1f1iLAQGV7/MTBB\nEAShY7CGGJh/Sx/e+eYw7y07wosPDrumk8QEQRA6IhFKtFBzKgPW7TvfZMhQc1JHzcaZJeUu6ukt\nWU2lAuuFxpqp2QfJ+ufnGHt3p+c7f8Sw6xtCpQrW2mNZYU8AYHC8nkfGh+L2gT4qETQ6ZAWO5Oux\nOTWEm3z06+JGfeHYY90mnmFBkShyIooClZ7TeP0luMupVRnSv7uVLQdyL1mryaBBIwUeuKjEwytv\nneF0poNeSSZ+9XQ33vnuEI6Cxj83rWHfoTL+76Msim1eErsaeHZBIj2TOu4rF7YyL9/+kM+qTRfD\niJmzo5k8LhytCCPaldJyL7vSStm2p5QjNYOIHkGMHhYmgghBEIRO6IbeUYwfHMuWgzl8tfk0907q\n1dZLEgRBaNdEKNGAhkZ4NlUZYNRrGq2Q0GvVjBkUU2tSR82O6Weyy3j98wP1BhMq4FdzhtA9LhTX\njr2cePF1NNYwEj94HXn/GtS5p8jSx/Fxdk9ARXIXLU9NDMMnw6YMNTfHGgKBRJ6eEocGq9FH/+iL\ngUTdtfyUAUtWO1GQsbtP4pPLaq1n3/ECjmfayCmqrPdjPVdgZ8mGUwyOj+HVv2dQXuEjdWw4T8yL\nZ+nmU5wrsF9yn/goc6uNr6uw+/hwyXk2bitBkuDeO2K4+7YuHfYVC1uZl29+yGf1xkI8XoUIq5aZ\nt0UzaawII9qT0nIvO/eVsn2vCCIEQRCuV/dN6kX6uVLW7DnHgCQrA7qHt/WSBEEQ2i0RStTRVBPL\nxo5bpCRH4HT7Gm1c6fbKqFWqekdl6rUS3eNCGww9rCEGuseFImee49QTL6CS1Jx9+heUbNzIbfpT\nZPlDePl8L2RUJFg1/HyKBbUK3lxnI7dCzYThfk6XmCh2aLAY/ZcEEjXtOy7z9SY3Wg0UVxzHJ18a\nINjsHmz2S49fVFEU2LjVxtfn7aCCx+6P55bUiEabYzpcPnx+BekK99i70kp5b3EWtjIfPRJNPPtw\nAt3iO2Y3+pLSQGXE6k0ijGivGgsixgwPY9QNIogQBEG4nuh1Ek/M6M//fLyXD74/xh8eHkFIkPg7\nIAiCUB8RStTRnCaWdY84WC4cp5iT2hOfX2mycWVj0yWaCj3UFRUcf+iX+MsqyH/iKcp85dwXfIoC\nn4FXCgdQLqvoEiLxbzdbMGhVvLepjMPZHiQVHM3XUe7REGbwMyDaVe/GX1EU1u/18sMOD8FBah66\nRcvfv/VSXN6iTyOKDI4CI55yLcFmid8807163GZLm2O2RFm5lw8+Pc/W3Ta0GhUPzIzlzmldkKSO\nN5arpNTLNyvzWLO5qDqMuOf2aFLHiDCiPagKIrbtsXH0hL06iOjdI4jRwwMVERFW8QRUEAThepUY\nHczMCT34YuMpFq48xi/uGSTGhAqCINRDhBI1NKeJpV4r1TriUPeIh6SmycaVTW28Gwo9Zo1N5NQD\nP8edcY6oZx7iYEQkTxr3Ypc1vFY8iDJZj8Wk5vlpVkKMEh9tK2NPhgsVMGHUDZR7DIQY/AyIuRhI\n1DymotOoWbHNw6Y0L5ZgFS88HI5Gcba4EafsVWHPDcLv0qA3ybz8n32J62Ksfn9LmmM2l6IobNtj\n4/1/nafc7qN3jyCeWZBAfKyx6Tu3MyU2D1//kM/aC2FEZLiOe26LZuJYa4c9etJZlJYFmlWKIEIQ\nBEFojqkj4jmSUcyh08Ws33eeycPi23pJgiAI7Y4IJWpo6Sv4eq1Ub7AwJ7Unfr/M5gM51ZuWmpra\neNcXeug0as7++k9UbN+H5daJhMy9jYe3fIwC/LV4IDm+IMx6Fc/fbCXCLPHV3go2n3ACcOMNg+ga\nF0uw3s+gGBca9aXHVCzBeqzBPSkuDSLKouKJO41YQuD0WQd3jksCaock/ZPC2Hoo75KPz+eUsOcE\nofjV6II93HaLpVYgUfV5a6wapKVNLktKvfxjcRa79peh06l4+N6u3Do5EqmhsyntVFUYsWZTEV7f\nhTDi9mgmjhFhRFsSQYQgCIJwudQqFY/c3o//+uduvth4mj4JFrpGdexR5IIgCK1NhBI1tNYr+JJa\nzbyb+4BKxca07Eve39yNd83QI/e9f1H46beYBvah+8vPY9j8MWq1n7dK+nHcE4ZBo+K5qRZiLRrW\nHXWwI8OHWgXjRgwhMSEes+5iIAF1j6mocLvjKfYHYTJ4eOruUFbsOMWhT4sptDmr+2r8/pER2B2e\n6sqQjFx7rWaV7lIdjoJAABER7+WmsZYGO043dgSmuRRFYeP2EhZ+dp5Kh5/+vc08Mz+BmC6GZj9G\ne1BY7OaDT86xZvPFMGLW9GhuGi3CiLbSWBAxZriFUcPCRBAhCIIgNEuYWc/Dt/XlzaWHeG/ZEX73\n0DB0rThlTBAEoaMToUQNrf0K/tzJvZDUqivaeAPY1v7IuT/8DW2XCJLffxnDrqWonRXsCR7KzuxQ\nNBI8OzmM7pE6fkx3UOAL5n8eSyG9QEOJ20SQzs/gWBdVy699TEWNWd8LrRSK11+O05vFd9sstcKU\nmn01alZv/OeDQ/nTx2mcL7BjzzfiKdMjaRSeXtCVMcMa/3w1dgSmOYpKPPzfR1mk/VSOQa/miXnx\nTJ0QgboDVUcU2zx8vTKfdVsCxzSiIgKVESKMaBsNBRF9egYxepgIIgRBEITLN6RnBKlD49iQls0X\nG0/xwNTebb0kQRCEdkOEEnW0xiv4Va504w3gOHqS00//J2q9jl4LXycofT1qWz7+5BH0GTqNRNt+\npg/Q0C9WT1qmiw0nZV54oAfnyoyUuLUE6eRagQRcPKaiQsKs741GMuPx2aj0nELlVjiQ7q93LVsP\n5ZJ2ogBbhae6euJndw3m1XcyKClzkBBn4Lc/70GXyOb3hGjoCExDFEVh7eZiFn1xHqdLZkj/YJ56\nKIGoiJb3oWgrRSWBMGLtliJ8PoWYLgbuviWKm0aHo9F0nFClM7CVVU3NEEGEIAiCcHXNntiTE1ml\nbEjLZkD3cIb0jGjrJQmCILQLIpSoozWChLpauvGGQDVDydlc8h76JXKlg57vvUKY8yTq3NP4u/bG\nN/xWlm44RWovNUMTDRzNcfPuplJ8flhzyElwWCgmrczgGCe6OssPNeuxBAfh8yYhqU24fUU4PBmA\nQqhZR6m9/r4aLo8flycQWBSXu1n1Yy7Lv6nE5VQYO8LCMwsSMOivXjliXoGbv3+UxU/HKjAZJZ5d\nkEjqWGuH6WRdVOLhq+/zWPdjMT6fQpfIQGXErBmJ2GyVbb2860bNIOLICTtKzSBiuIVRN4ggQhAE\nQWh9Om1gTOgfPtrLwu+P8YdHRhB2Gc29BUEQOhsRSjTgcoKEptScdNFQ0FHVgPLg0RzGLHqL6Lw8\nimfOYmSCGulQGnJ4HL6xs3H7FOIMlYxLNnGm0MPb6wKBxOB+yQSHRWPQ+Bkc60ZXz1fY7lChVfdG\nUWtwefNwerOq35fSK4JDp4sbHWkK4C670D9Ckbn/7lhm3hZ91cIBWVb4YUMhi5fm4PbIDBscwpMP\nJhBu6Rgbx/rCiFm3xzBhlBWNRoVGHNW46optHn7YUBg4mpEugghBEAShbXSNMjMntSefrE3nnyuO\n8ss5Q1B3kBdXBEEQrhYRSrSCpsKGupMuqo4+zEntiaSuvSFdsuEU6/acY9Kaz4jOyyS9dwrennHo\nDm1ECQrDO/EB0OrwFuUwIdlAjs3H/66x4fIpDOzTi8H9e1Nhr6RXVxd6zaUNH3OL/Lz3rROPV0N0\neBn5pQW4fdQ6piJJpxocAaoo4Cw04i7Vo1LLmOMcjB8TetUCiew8F28vzOT4qUrMQRJPz+/GuJGW\nDlEdUVgcCCPW/1iMz68QHaVn1u3RjL/RKo5pXAO2Mi879l44miGCCEEQBKGdSB0ax09nAmNC1+w+\nx7SRCW29JEEQhDYlQokr0Nywofaki4uNI/1+mZtHJFSHGVUNKIfu2UCvEwfIi06k4NZJ/NpylEpF\nizLhfrRGMzhtmOVSbJV+/rK6BLtboX9yD1IG9sFe6WDPvjSm9ht8yXrP5Hh592snflmNw5NJQVkp\ng3tFMPmGrlhDDNWBSlX/jEOniykqdWIJ1lPp8uJwKFTmBuFzalDr/JhjK4mK0DV7KkmLPrd+hWVr\nCvj82xw8XoXRw8J47P54wkK1rX6t1lZQ5OarlflsqBlGTI9mwo1WJEmEEVdTQ0HEwL4hjBgSwqhh\nYR2mwkYQBEHonFQqFQ/f2pf/Wribrzafpm+ihcTo4LZeliAIQpsRocQVaChsAJg7ORmoO+mits0H\ncti0P4cws54hyYFwIHTfHkbsXE1FcBg/3TGT/4g6jgK8UTyA+eoQolxlUJELKomt5yRsDpk+PZO4\nYXA/Kh1O1mzewY19rZdUbJzI8vHBd078sgqH5zQefzHuctiYlo2kVlWvFy721XhippHTZ4sJNev5\n4Jt01q+rRPGp0Zo9BEU7UKkvbypJUzLPO3n7w0xOZTgIDdHw3GPxjBpmadVrXA11w4iYC2HEeBFG\nXFVVQcS2PTaOnbwYRPTtdbFZZZ/kcAoLK9p2oYIgCIJwQUiQjkdv68sbXxzkvWVHeGn+cPR1m4AJ\ngiBcJ0QocZkaCxv2pxcxc0IPNJKKxatPNNifoarTv83uZmNaNgU7D5K6dgkerY7td9zPvyWewaj2\n81ZJPwr10YTpfVCeDSo1hCVw61g9fn0kYRHxOJwudu9L48a+1ksmhRw65eNfq1zIClR6TuL1l9a7\n3prhgtvrx1fuxqjXsHpTAZvXu1B8aqxxXghyYA25/KkkDfH5FL75IY8vluXh8ytMGGXl4fu6EmJu\n39+mBUVuvvo+nw1bL4QRXfTMnh7NuJEijLhaSkq97NxnY9ue0uogQqWqPTVDVEQIgiAI7dmA7uFM\nHR7Pmj3n+Gz9Sebf0qetlyQIgtAm2vdurx2rGqtZH1uFizK7m3X7zrP9cF6zHi/IXsbQJe8i+X1s\nvn0ej/XJxyq5+bSsBzudXbh3eDg6ezaggtB40BrJL9cQFhGPVi0zMNrBpPsHXlK1sOuIly83uNFK\nUOY4gVe+9NXiqvVGWUzVR1LSThRQXO7BVWTAZTOglhTGTjDy1L2DsDs8rTKVpKYzmQ7e/jCTjCwn\n1jAtTz6YwPAhoa32+FdDQZGbpSvy2LCtGL8fEUZcZY0FEWMu9IiwiiBCEARB6EBmTujB8UwbWw7m\nMCDJyrA+UW29JEEQhGtOhBKXKdSsxxqir7cKwhJswKjXNFhJUZfG62Ha8kUEVZZzYNIMHpsoEeet\nZF1lHDvVvZg5NoIpvZRAl8nQeNAFkVeuIb1Qh1atMCTORZDu0r4OG9M8rNjqwWSA+bfpefc7D8Xl\nl17fEmyo7gtRdSRF9quozAnC59RW9484klvGtz9qah31uFJer8wXy/P4emUesgyTx4Uzf04cQab2\n+62ZX+hm6fd5bLwQRsR20TNrRjTjRogworU1FET07WVm9LAwEUQIgiAIHZpWo+bxGf35w6I9fPjD\ncSLDjKK/hCAI1532u/Nr5/RaiZTkyHqnVKQkR+B0+xqspKhFkUld8zmRhdkc6zecwaOtxHnz8MYm\n03vIXfxPkITefg5kP4TEgj6Y/AqJ44U6JJVC3ygHQbraG2FFUfhhh4f1e72EBql44i4jXazqRtdb\ns9GmzyVRmROE7FOjDfISFF2J6kJRRH1HPVqi5qSSzCwXb3+YybkcF5HhOp6en8CQ/iGX9bjXQn5h\noDJi4/ZAGBEXrWfW9BjGjrQgqUUY0VpKbB527Ctl+14RRAiCIAidX2xEEPNv7cP7y47y+uf7+dW9\nKSKYEAThuiJCiStQ1U9hf3oRtgpXrbGaPr/SYCVFTSN2rKH76cPkxHUnfEYK483n8FtjkcfPIUqt\nAttZkH1gjgZDGHkVao7l6/H5fHy/aQfLZFetiR+yrPD1Zjc7fvIRERoIJKwhavyyjKwoGHRqXB4Z\nAINOYszA6OqPo8zuJve8TGW+GRQVhnAnBqubmtM3ax71aImak0qKS90oFUGUFmhBgVtSI5k3Mxaj\nsX02eMorCIQRm3ZcDCNmz4hhzAgRRrSWxoKIMcPDuHGoCCIEQRCEzuvGftH4/QoLvz/G65/v59f3\npZDQRQQTgiBcH0QocQWqplTMnNCj+tX/qgoCSU2DlQlVeh3bx9C9GygLDafinqk8asmkQjKjS50H\nknQhkPCCKQJMVgrtEsfy9Xh9PtZu3klxaRlA9TVmT+zFZ2vdHEj3ERuh5vE7DQSbAqNJl2w4xYZ9\n2bWu7/L4UalUSGo1fllhxepiKvOCQK0QFGNHZ/ZdsuYwsx6PT8bt9VdXV9T92OtTdSzE65Bw5Acj\neyXUWj/jJ5h5fG58iz7v10puVRixvRhZhrgYPXOmxzBahBGtoiqI2LbHxvFTlSKIEARBEK5rYwbG\noCjw4cpjvP75AX59XwrxUea2XpYgCMJVJ0KJVqDXSkRZTLi9fgpsDkLNejSSCkVRMOgkXB7/JfeJ\nzjnLTeuX4tYZODXzbn4Wk4VLpUNz6wIwmMCWCX43GK0QFElRpcTRfD1+v5/1P+6i2FZ7gkbaiWIq\n7F1Jz5JJilXzyHQjarVMgc3RaH+L/elF3Dwskbf/mcWBIxWYg1WoreVIerne2zvcPl76524swTqC\njDocLi8l5W6sIfpaFRs1ub1+9h0rxFFgxF0a2GTqLS6M4S7Ol3qrA472IjffdaEyogRZhq4xBmbP\niGb0cBFGXKlim4cde0vZvreBIOIGC9YwbVsvUxAEQRDaxNhBMSgoLFp5nNc+289v7kuhqwgmBEHo\n5EQo0QpqHk2o2qCbDFrOFdjrvX1weQk3f/8RKkXB+cwj/LzreVSyGvWUB1FCI6EsC3xO0IeCuQsl\nTg1H8gKNKNf/uIvCYlutx1Mh4fV0Iz1Lpk+ixAPTdHzz48nq9YSadZTaPfWupbDIwwt/Sqeo2MsN\ng0L4+aMJrNh5lrQThZRUuFGrAqNLq459VAUsJRUeSiouPmZxubu6YqNuI8ydaSWc/UmH7JNQ6/wE\ndXGgMQYe53KPg1wNdcOI+NhAGDFqmAgjrkTjQYSFG28IE0GEIAiCIFwwblAsigKLfjjOq5/t5zdz\nU+gaKYIJQRA6LxFKtIKqowlVisvdDfaS0Htc3LLsQ4zOSkrn3c9tSUWonR6842ajRCZAeTZ4KkFn\nhpBYbE6Jw3n6wOjDSAcrPJW1Hk+FBrOhNxp1EP27q3nwFgNfbDxZaz0NBRKeCi2OfBOK7OWe26O5\n784Y1GpV9ZEUSafFWRkIDf629BAuT9ONO2s2wqx0+Pnoi/Os3VIMqDFYXRisLlQ1CilqTv5oK7n5\nLr5ckcfmGmHEnBkxjBoWhlqEEZelKoioOpoBgSCiX7KZ0cNEECEIgiAIjRk/OBZFUfho1Ynqiok4\nEUwIgtBJiVDiClVNrGgOlSyTuupTrCX5RMy7mzFjtahLS/ANvRk5cQBU5IG7HLQmCO1KqUvipzwD\nigIDY9xYTbX7VKhVOsz6PkhqA25vPkcz8/hsfQQHTza+HkUBV7EBV4kBSQPPP5nEqGGWWh9Tmd1N\nj25mNIrc/EkiQEm5izPZZZSVqPjgk/MU27x062qk5wDYd6bsktsP6hneZkc3cvJdfLk8jy07SpAV\niI8zMGe6CCMuV7HNw/a9pWyvE0T07y2CCEEQBEFoqQlD4lCAjy8EE7+eO5S4iAnPmc8AACAASURB\nVKC2XpYgCEKrE6HEFSqzu5u9YR+1dQWJZ48TPH4kyROjURdm4O89En+/MVBZCC4baAwQGk+ZS8Oh\n3EAgMSDajdUUOO5QNSkj7UQFfm8SarUOpzcHl/c8Di9sTMtubAnIfhWVeSZ8lVp0BoVX/qMPSfGB\nP3B1j6FEWowM6hHOneO6N2uSCIAiq/jv/03HU65DpYY5d0Qz87Zo1GpYskEKTN8ov3gs5ODJQiS1\nqt5eFECzG2m2RHaei6XL89iyMxBGJMQZmD0jhlE3iDCipRoLIqqOZlhCRRAhCIIgCJfjpiFxKAos\nXn2xYiJWBBOCIHQyIpS4QqFmfbM27H0P72TQga24Y+MY8fAYpPxj+Lv2xjfsVnCWgKMIJB2EJVDu\n0VYHEv2j3YQHXWyUKanVjBvYg6OnnTj94PBk4fbl1bpW1Ya/Lr9bjT0nCNkroTF5iUv2ExttqH5/\n3WMoBTZn9b+bmiQCF46DFBhR/GokvY+gaAdykBmtJhA2zJ2cjN8vs3F/TvX6Sio89faiqK9PR0ON\nNJsrOzdwTOPHC2FEYtdAGHHjUBFGtERRyYXxnXWCiAF9LlZEiCBCEARBEFrHxJQ4FEXhX2vSefWz\n/fz73BRiwkUwIQhC5yFCiSuk10oNbtjjo8w4XD6MRw8zbtO3+IODGfnH+9Hn/4QcHodv7Gy8jlK0\njnwUlQZVWAIVXh0Hcw34FejXxU1EUO3JHafO+Vi4woXHBw73Gdz+okuuW18g4bFrAuM+ZVVg8kWE\ni3In1U0mGzuGsj+9iN8/Mrz6/20VLsLMeoKMWhwuL0UlHhyFRjwVOlApGCOc6C1uVKraPSbcXj+H\nThc3eI2q20H9fToaaqTZlOxcF18sz2XrLlt1GDFnRgwjRRjRbEUltZtVQiD8EkGEIAiCIFx9qUO7\noijwydp0Xv000PxSBBOCIHQWIpRoBVVHKqo27JZgAynJEcxJ7UnlyUzS3/wtiqSm7/97kuCin1DM\nFlwT5rJt/xnGJvqpcCu8u7mYxEQjsfG98cvQN8pNlLl2IHH4tI/Fq1woCtw7RceSDRW4yy9dT3iI\nnkE9wjl0uoTiMheuEgPOYgOoFIKiK9GFeIHaTSYbO4ZSXO6izO6pboBZdZxCp1GzaUcxH3x6Ho9D\nRjIEqiMk3cVxojWnazR2jZq3ayogqRleNOZ8rosva4QR3boamX1HNCNTRBjRHI0FEWOGW7hxaBhh\nIogQBEEQhGti0g1dkRWFz9advFAxMZRoa9tPLxMEQbhSIpRoBT6/wuQbujJ9dDecbl91/wOfrYyM\nR55HLrfT/b+fwuo8iqIz4k2dx6afchif6MfjU/jrmhJKPUYGRiTh9UPfLh66BNcOJPYe87JknRuN\nBPOnG+idoCH9fP0VGinJkcydnIyt3MPf3j/LwWI7ao2foLhKNHq5xu0iqjf3TR1DWb07k/m39EOv\nlYiymCgp9fLG4rPs3l+GTqsiIt6Dz+BAVWevXzP4aOwazQ1ImjNCtCqM+HGXDUWBbvFG5syIYURK\nqAgjmlAVRGzbY+PEaRFECEJH4XT6OZfr4ly2i3O5Tior/cyfE0eQSfyZF4TOZMqweBQFPl9/klc/\nTePf5w6liwgmBEHo4MSzlSvQWN8D2evj1BMv4D6TRcwjM4kNyQW/Gu/E+3HrjIyJD4QOb60rxeY2\nMPWmURj0enbsPcB5i8zcyb2qeyf8eMDDt1s8GPXw6Awj3WICRyEmpsTh98scOl1ySYVGdp6Ll986\nTXaumwF9zHTvp3A0y3vJ7WrqFR9G8ZH8ej/WrYfykCSJ+yb1ZMuOUhZ+fp5Kh58Bfcw8PT+RjYcy\nWbfXccn9agYfjR11aW5A0tgI0XM5Tr5cnsfW3RfDiHvviGH4EBFGNKaoxMP2vTa27ykVQYQgtHOV\nDh8nTldyLscZCCByXJzPdVFYXHv0s1aj4vYpUSKUEIROaOrweFAUPt9wilc/Cxzl6NLIizWCIAjt\nnXi2cgUa7HugKIxau5TyrXuwTBlD90ESKpcD7/g5KNZoNCUZIMHfN5ZyvkLLzTeNwmjQs3PfIU5m\nnONkBng8fu6fmszm/TJrdnkINql44k4DUVYVn65LrxWE9O9uZVjvKBK7BBNs0rH3YBl//UcGDqfM\njKlRPDgrDklS4fb6KSx1gqIQaTEhqdWXBCsNkRVYvyuH7Ztd5OX6MejVPDEvnqkTIlBfmJ4BBB6n\nwo01+GJAU1NjR12qNDe8qHIu28kXy/PYticQRiQlBCojRBjRMBFECEL7VunwcS7HVf3f+RwXWdlO\nim3eS25rDdMyuF8w8bEG4mONdI01kNjVIAIJQejEpo5IQFbgi42nePXTQPPLxqpIBUEQ2jPxjOUy\nNdb3oOKTryhc8w2mfr3ofXs31K4SfDdMQ+6aDLazqJFZss9BepHEzTeNwmQ0sHv/YdLPZFY/xrbD\neRzNMIISiTVExZN3GQkPVfPpuvRLgpAtB3LZciAXa7AeozeUIz950GpU/OKxRG4aFQ4Eqjq+2nz6\nkqoORVFYv6/xMaKKAp4yHY4iI2Wyn8H9/j97dx7d1H3n//95r3ZZsi3Z8m4DBgyExZg1QDYIZJk0\n+0JCk+mSNp0mzbQzzbT95uQ3c+bb36+dNp1Op512mmYmbSZpWtK0TUmnLQkJSQiQBMIWSIPZvduy\nLa/ade/vDy22LNuYFGMD78c5HGRxJV/JsvDn5ff7/XHy0Kem4MkzD3Osjq7H/x6OQVUzZlMMNx9i\nLOFFXWO8MiIZRlRW2Ljr5mKWLcxBGdpHIlJBxPZdXdQOCiLmz3GyckmuBBFCTIC+/kHhQ2Mg1YLR\n2ZUZPuS5TCyrcVGYb6K81Ep5iZWyYiuOLPmvXIiL0XXLK4BEMPGLvXxlwyIKcm0TfFZCCHHm5CeZ\nj8jbFRi2sqD85IdUv/Jb1Hw3l3x2FaZgK7FZy4nNWgZdp0CLgqMQsnq45spKsuw2du8/xIdHTwy6\nFwW7eRro+cQ0P6WFPeTlzBg1CNE1qDtsINIXxmZX+Po/zGL6lIHEfKSqDqt59IGRsbCKv9VGNGBC\nUXXsRX4+/+lZeNzpgcTQ+x9pq8+k5GyKkYwWXtQ1Bnh+UzM7dnfFw4gpA5UREkak83YkKiJ2jxBE\nLM4lN1uCCCHGW29fMnwIJAKIeBDh684MH/LdJmrmZScqH6yUl9ooK7aSZTfg8Tjxensn4BEIISaj\n65ZXoOs6v3r9GI8/t4evbFiER4IJIcR5RkKJM5Rsd9hzuI2htQCujhbW/fHnaKoB5fbLsIVbCZdU\noS+6FrrrIRYGex5Bcz5TppURjKrsff/PfFB7fNC9KGSZZ2A2uojG+ugLHebQCROhyLQRB0DGwip9\nTVloYQNGW5TCmVHKSgbmLowWZgTDsWGv13UIdZkJtNtAVzBlRbAX+vG4LeQ6rWnHnq3dMoYzOLw4\n1RAPI3a+NxBG3H1zMUuqJYwYbLQgYtXSXJYvkiBCiPHS0xsdCB4GVUB09UQzjvXkmVk0PzvVdlFe\nYqWsxIrd9tHeL4UQF6frL52Cpuv8+o3jqVaOfAkmhBDnEQklztDQioAkq7+P61/6KeZIiJ5b17G6\nMsLRsJN/P1jKV6YdocABWF2ELIXsb7ISjKpMdYWptwcG3YuKw1KFyZBNJNZNX+gIoNHZE0tVCwwd\nABnpN9LfbEfXVCy5IWyeAL1B0naoGG03i+HEwiqBNjsRvxFF1bAX+jE5IyjK8DMd/tLdMk7nVEOA\njZua2bm7C4DpU+ysv7mYJdXZEkYkpIKIXT5qj8cHjqoKLJjjZKUEEUKcdd09kfTgIRFEdA8TPhTk\nm1m8YFD4UGqlrMiKTcIHIcRZcsOKqeg6/ObN46nhl/k5EkwIIc4PEkqcgZEqAtRolGv/93/I7vHh\nvexSbrvUSFvUyr91LuATq3MpcMCpLoXiaUXsb7YRiKhU5IaZ4opQvnYmBlVhz+FOIuGpGA0OwtFO\n+sPHIFGLYTEbUu0LyQGQug4hn4VAuxUUsBf6seTEp68P3aHidNt9JqXus8MKusKUaWaU7B56g5ER\nd+w43f2PtlvG6Zys9/P8phZ2vhcPI2ZMjYcRixdIGAHQ1h5i5+4uduyWIEKI8aDrOt090Yzgob4x\nSE9fevigKPHwYWZ1dqrqIVn5YLVI+CCEGH8fWzkVXdf57bYTiYqJReTlWE9/QyGEmGASSpyB7r5Q\n5sJb17nytRcobj6Jd/YcbrrBRa9m5PGOau5c5aG6wsr7DSF+tSfKDdZ4IFGeG2aaO155YFBUrl8+\ng1ONftq7IRT14g+fGPbzJ7cBDYVivPZaHwGfAcWo4Sjux2gbaMOoqcoHoM3nzwgzRhILqfS32ImF\njFisCg9/agq3/NUUGpq6Rh1ICWe+W8bpZIQR0+zcfXMxi+ZLGDFaELFqqYvli3LIkSBCiDOi6zpd\nPdH4oMkh1Q+9fektbooChR4Ls2Zkpc18KC2ySPgghJhwN66ahq7Di2+d4Nu/2MNXNyzCnS3BhBBi\ncpNQYoximsbmXfWoSnx7zKSa3VuZ9eEeuopLuXbDVDRF5bvt87lqcSErZtg42hrmv7b1cdVlKwhE\nDJTmRKhMBBIAXp/GEy8G8PVCMNJMIFKf8blDkRjPbD7M4Tof3o4IgRYH4YCByqlWZlcr1DaG8fXG\ncDmtVM/MQ9d1Hnvy7bRdNu64qhKIb9k5OFjRdQh2Wgh2WAGFVctyeeDeCrId8ZfG6QZSJo1lt4xQ\nJDZqwHGizs/zL7XwdiKMmDktXhlxsYcRySBi+y4fR04MBBHVlzhZuUSCCCHGStd1fF3xtou6xDab\nyeqHvv708EFVoLDAwpyZjrSZD6XFVixmdYIegRBCnN5Nl01D03U2bT/Jt5+Lt3JIMCGEmMzGNZSo\nra3lwQcf5JOf/CT33nsvzc3NfOUrXyEWi+HxeHj88ccxm81s2rSJp59+GlVVueuuu7jzzjvH87Q+\nko2vHWXrnvStM6cdfZ/lO/9EvzOHFZ9egM0MP+icw5y5Zaydm0V9Z4Qfvt7LFasuxZWbQ6EjzIy8\ngUCi0RvjJy8G6QvoXLPMyCvvtRHIHMSOxWRgx8EWIn4j/U0OdE3FnBOiZnkW9147K22x/+s3jg27\nywbEd8G4YkEx//jULgCiQQP+VjuxUKLiorCfv14/OxVIQDxI8Pr8oCh4cm0jVj2MtltGcjhocjtS\nl9PM7CluNqybid1i4kSdn42bmnlnTzcAVZV27rrp4g4j2tpD7NjdxY7BQYQqQYQQY6HrOp1dkdQO\nF3VNgUQAEaTfnxk+FBVYmDvLQXmJjYpEy0VJkYQPQojz182XxSsmXtpxkm//It7K4XJ+tHZaIYQY\nb+MWSvj9fr7+9a+zYsWK1HXf//732bBhA9dffz3f/e53eeGFF7jlllv44Q9/yAsvvIDJZOKOO+5g\n3bp15ObmjtepnbHhZknktzWw5uVfEjGZWfDZS8nPhnedi3HnlXBzjYO2nijff7WHlcuXk+fKpb+3\nndmVtlQgcbwpxn9vChAKw+1XWVi5wERH3/AtELquE/RZCHjjKbe9wI8lN8z+Yx3cGYmlqhnGsguG\nx2XH7bDQeFIh2GkBFMw5Iez5AfJdA/MfYprGE789wJZ3TxEMawBYTCqXLSjm7qtnYlCH/2F9uMqK\n4bYL3XGwhXf2d2AOZdPUEF8kVFXaue2GQqZOMZPrtF50gcSoQcRSF8trJIgQYjBd1+nwJSofGuPB\nQ7wCIoA/oKUdq6pQXGhh/hxnqu2iotRGSaEFk0nCByHEhUVRFG65fBo6Or/fcYpvJ7YLlWBCCDEZ\njVsoYTabefLJJ3nyySdT173zzjv88z//MwCrV6/mqaeeYtq0acyfPx+n0wnAokWL2LNnD2vWrBmv\nUztjQ3eXsPd1c/1LP8MYjeLYcDklhSrRWZdSPX8l1b3N9IfhZzsDLF2yDE+eC39vB9fOt6QCiT+f\njPL0H4LENPj4dRZqquILzeFaIGaW5vDqa72Ee80oBg1HycD8iKE7W4xlF4yuTp22o3aCPTqqUcNe\n2I8pKz6wbcF094gVFwChiMar7zWiA/eumzWm5264oCQaNBDssBLpNwEx3HkqD943lQ9bW3lh5wd0\nbh5oO1m/ZsaIAciFoK09xCvbunj59RaODg4i5sYrIi5dlEu2U7qsxMVN13W8HWHqEy0XyeChvilI\nIJgePhgMUFxgpXpuIngoscUrHyR8EEJcZBRF4dbLK9F1+N+dp+K7ctxTI8GEEGLSGbfVjtFoxGhM\nv/tAIIDZbAYgLy8Pr9dLe3s7brc7dYzb7cbrHf63/RNl8O4SxkiY637/M7L6e9DXLmFRdRaR0llo\n8y+D3kZ0RaXHVMDlly0gpFnIt0eYW2lNBRJ7Dkf4xSshVAU+/TErc6YOPEdDWyAiYYV//c+ThHvN\nGKxRHCX9qMaBgRZnsstGjt3Kpj918MctXjQdZlSZ0LJ66fZHyXVYyLKZOHCsg9f3NuHOttA3XB9J\nwo73m7nzqhljGmA5OChJDyPAYI1iywviKjLyQUtrWnvM0LaTC0lbe4jtu+LDKiWIEGKApum0d4YT\nlQ/x4CE5+yEYSg8fjAaF4iIL5cXxioeyEisVJVaKCi2YjBI+CCEExIOJ266IBxN/ePsUjye2C839\niDujCSHEeJiwlY+u62d0/WCuRGWAx+M8q+c0mlXVpWx68yirX9lIQVsjgQWzWbc2nw6Lh5Jr76Sn\n6ThRDf59i4+SygqKCy3UNzbTqXZwxdx5GAwqr77bz3Mvh7CaFf7+XjezpppH/Hxt73fxj//yAV09\nEWZWWfBqXShDfs5eVV1CWUnukOtK2bTteNp1Eb8Bb4ud43u9lBXb+NrfVrFwXi7BcBRfT4gX3zjK\nH3acTB1/uq1Dg2GNqKJSNobn35ljw2m203RCyQgjjPYoigK+3igHjrYPe/sDxzr43O02rObze5He\n3Bpk63YvW9/y8ucjvQAYVFi60MWayzxcfmk+uTnSmjGezuX7xcVqrM+xpuk0twU5WefnZH0/J+r8\nnKzzc6qhP6PywWRUqCizM7U8/mdaRRZTK+yUFdswXqThg7yWhRBnQlEUbr+yEl3X+eM7dfFg4p6a\nj7xluxBCnG3ndKVnt9sJBoNYrVZaW1spKCigoKCA9vaBBWlbWxsLFy4c9X58Pj8ejxOvt3e8Tznl\nxhUVWJ95FvfR9/GXl7Ju/RR6jU5s191DT9MJYjGdH2zponhaNcWFHuoam3lj53vouk4gEKEwdyp/\n3BnGYVP47M1W3FkhvN7Mxb+u6/zhVS9P/bIBRYHP3VfO2ivcPL/VlLGzxY0rKjKegxtXVOAPhOO7\nbHSH0Loc9HmNqIrGzdcWcNvHCgmGQzQ0dWExGYhFYrxzsPmMnw+fr58s4+gzH46e6GfjpmZOHYyH\nL0PDiKQch3nEIKTNF+DYyY4x7QAy2bR6B2ZEHD05UBGxcG5yRkS8IiL5WvZ6gxN8xheuc/1+cTEa\n7jmOaTpt7eHUVpsNyaGTzUHC4fQA2mhUKCuyUl4ab7soS7ReFBVYMBiGvtdo+Hz94/yIJqfJ8FqW\nUESI84+iKNxx1XR0Hf70bl28lWPDInKyRv4FmRBCnCvnNJRYuXIlmzdv5uabb+bll1/m8ssvp7q6\nmscee4yenh4MBgN79uzh0UcfPZenNSa+Fzfj3vQi5tICln96DtizsK67Dz3Uia5rPPt2H54pCygp\nKqChqZU3E4EEwJ4PjaCHcTkVPneLDY9r+N/uhSMaT/xPHa9t7yQn28hXHqzkkioHwIg7WwwWisTo\n7AkS03T6uxW6T2SjRVWc2QpfebCSA3WtfP3pd9O2Cl1dUzriHIqRWM0GPLm2Ef89GUbs3t8DwOyZ\nWRSUx6ht9RKKxDKOXzAjj7f2N6dttZqkKmCznD9VEvEgwseOXV2jBhFCXEhimk59k5/9B7sSO17E\nh042NAcJR9K/sU1GhbLEoMnkNptlJVaKPMOFD0IIIc4WRVG4c/V0NF3n5V31qYqJbAkmhBATbNxW\nRwcPHuRb3/oWjY2NGI1GNm/ezHe+8x2+9rWvsXHjRkpKSrjlllswmUx8+ctf5v7770dRFB566KHU\n0MvJonf3AU58+esYnFnM+/g8TA4bkSvXo2l9KHqMF3b7UdyzKSsppLGljdd37kZLBBJ281TQC3Bn\nw0O328h1Dh9ItHeG+dYPj3P0hJ8ZU+189QuV5LvT/5MYbmcLSN9ys90Xwu+1Ee6xAjpWdxCDO8jz\nb31IQ9vAbxaTMxtimj7iHIqRrJpfNGwocuREPxt/18x7B+JhxJyZWdx9SwnzZztQFAV/KMovXqnl\nwzofvt5QquJjdU0pb+4bvlpD0yEQiuK0T97/MEcLIlYtdbFsUW7aNqtCnK9iMZ0Wb2ggeGiOz35o\nbA4SiaaHD2aTQlmxlfJS26DKBysFHgsGVcIHIYSYCIqisH7NDHQdXtkdDyb+YUMN2ZP45ywhxIVv\n3FZK8+bN45lnnsm4/qc//WnGdddddx3XXXfdeJ3KXyTU0MyRTz+CHo0y+9OXYs+zEl11K7pJR4lF\n+fXuXvrts5laWkxzq5fXt+9C0zRAIcs8HbPRDfj5/G3uEQOJD2r7+PaPjtPdE2X1Kjefu68Ci3ns\nvdLJLTcjfUb627LRoyoGSwx7oR+jNV6ZMDiQGOzA0Q4WTM9j696mUT+HAmk7YgxWe7yf5zcNhBGX\nVDlYf3NxKoxIsluM3P+xSwhFYmkVH6FIDLfTTGdvOOPzup2WSdnzmAwitr/bxbFTA0FEzbxsVi7J\nlSBCnNdiMZ3mthD1TYFEABFvvWhoCRIdEj5YzCoVpTZmVDopyDMkAggbBflmCR+EEGISUhSFu6+e\nga7rbHmvge/8Yi+P3CPBhBBi4siqaRSxvn5qP/F3RNs7qbx7Oe6pWUQXrUPLdkA0yOuHg3RbZ1JZ\nXkKLt4Ot23cR0zRAxWGZicmQQyTWw9JL+nFnF2Tcv67rbH69nf96rh5dh/vvKeOGtZ60hfzphCIx\ndn/gpb/ZTrjXDOhY8wJY3SHGcje+3iBrl5RzpKGbBu/wwYWqwLI5hdx77Szsg1opao/F2zT2vD8Q\nRtx9czHzhoQRQw2t+LCYDCyaVZCxBSnAolmeMe3ycS60tA1URCSDCINBgghx/opG4wMn65sSfxKz\nH5paQkRj6eGD1aIytcyWmvmQbL3w5JlRVWVSzDoQQggxNoqicM/ameg6vLqnge/8Yh//cM/CSV2Z\nKoS4cMkKagR6LMaxBx8j8OejFF09n9IaN9FZy4kVl0E0QEBxcCxcyPSp5bS1d/LaW+8QjcVQMOCw\nzMJocBDTulh6ST8b1s3MuP9IROPJn9fzypsdZDuMPPL5acyfc+ZtK1t3tHPyfQt6TMVgiZJV5Mdg\n0U5/wwSzyYDDZiIQio54jKbD2x+04rCb2LC2isPH4m0aew/Gw4i5s5JhxEdvu0lWXwwd5jm0KuNc\nGzWIWJrLshoJIsTkF4lqNLeG0oKH+uYgzSOED9Mq4oFDsvWivMRKvjsePgghhLgwKIrChnUz0dDZ\nuqeR7/xyH/9wTw0Om+wGJoQ4t2Q1NYL6//cHdG3ZRm71NGZcXUKsfA6xmfMh0o9udnIiOI3pUy14\nO3y8uu0dotEYCiac1lkYVDuzpmjce20RdmvmU9zpC/PtH53g8LF+KitsfPULlRTkn1mLQldPhCef\nrWfH7i5QFGz5ASyusVVHDBaJxujsDY5ppsSOPR3U7jvC/g/ivw2dN9vB+pv+sjAiyaCqYxrmeS4k\ng4jtu3wcPxWIn9+gIGJ5TS5OCSLEJBSJaDS1JtoumoKp1ovmtiCxITNmbVaVyim2VMVDvALCRr7b\ndEbVWkIIIc5fiqJw77oq0GHr3sZUK4cEE0KIc0lWVsPwPvciLU88i63cw5xbp6MXVhBdsCoeSJiy\nOBqeRlu/hXDIz5ZtbxOJRlEVCw7LLAyqFY+7j8/cVIg6zA/2h4/1863/OI6vO8IVl7p48BNTsFjG\nPj9C13XeesfHk8/V09sXY/aMLIqnR9h3ovsjPdaYBn96p55ch5muvsyZDgDRgIFAhxWf30QjvfEw\n4uZi5s06+wNJRxrmOd6a20Ls2OVjx24JIsTkMXT+SlI4otHUEhwIHprjFRDNbSG0IYVSdpvKjKlZ\nacFDeYmVPJeED0IIIeLBxMevqULXdV7f18R3frmXR+6WYEIIce7IKmuInh27Ofm1b2LMzmLuPXMw\neAoJL70Gov3oRivHopU09lrIMse4tCJGe1MRew73EYtORVXMFHt6+NJdwwcSr7zZzk+erUeL6Xzy\nrlJuurbgjBYFnb4wP36mnl37urGYVT51dym9dLHv6MiBhAJcVVPC/mMdI279eaS+iwUz8jJ2wEiG\nEVF//D8lmzPGVx6oYuHcHEKRGG0+/4RWNPylRgsili3KZtZMGyUF9vP28YnzV3JHnfc+9NLeHsVm\nsOC2Z+E022loCtLSFsrYQjfLbqCqMmtg3kNi9oM7V8IHIYQQo1MVhXuvnYUOvLGviX/95T4euWch\nWVYJJoQQ409CiUGCJ+o58tmvAjDnnvlYSzxEVtwAWgDdYOZkbDoNPVbsJo3qkiBmg8qqudP54FiA\nQAxuWGVizeKSjPuNRDWe+kUDf9rajiPLwJf/ZhoL52aP+bx0Xee1tzp56pcN+AMx5s128NAnp/Da\ngVO8urtx1NtesbCEDeuq+PDUuyMe09UXYnVNGdsPNBPTMsMIoz2C1R3k+iuKmT/HyXNbatlb66Wz\nJ5S2I4dBHXvFx0RJBRG7fByvSw8iVi11sbjayR/ePcmrHxzhV2+ff49PnJ9CYY3G5iB1TQEamoLs\n3N9OS2sYLWIFFHqAViJAN44sA7NmZMXnPRRbU7MfXDlGCR+EEEJ8ZKqicN+1s9B1nTf3N8dnTNy9\nELsEE0KIcSahREK0q4fav/4SMV83M+5aSM4MD5EVN6KrUXTVRJ0+nVM971U21AAAIABJREFUduwm\njYUlAcwGOFwX5We/DxKNwT3rLCyZk/mm3dUd4ds/Os6fj/QzpczK174wnaKCsc+P8HaE+c+n69h7\nsAebVeVv/rqcdVfkE4lp7K31nvb2B4938tyWIzR3+kc8xuW0YlAg1D98GGGyx1g1r4j1a2akth9N\n6ugJpT7esLZqzI/rXGpuDbJjd1dGELFofjYrl7hYVpOTas14bkvteff4xPkjFNJoaA4OzHxI/Gn1\nhtCHVD4oqoLRFkM1xzCYYxgsGvl5Rr75+WVYzfLWLYQQ4uxTFYW/vm42mg5vHWjmXzfu48vrJZgQ\nQowv+ck2of35lwgeO0XpmlkULS4huvyv0C0qKAYalemc6HJgS1ZIGOHA0SjP/imIosAnbrAyrzLz\nqTxyIj4/osMXYeWSXB6+fwpWy9haATRN5+U32nn6+UaCIY2aedl8/hMVePLiWzV1d4dGbMcYrLMn\nyL7a9lGPKcnO4YmfNdNbH58RYbRHsOUFMdrik/FcDjP3XjuLaEwfMQjZW9vO7VdOnzStDmcSRCSF\nIrHz5vGJyS0QjCUqH4I0NCVCiMYgbR3hjPAh22nkkipHqu3CmQ1PbT4IBj1jcG1vMEpPf1hCCSGE\nEONGVRQ+ef1sdF1n+/st/OvG/YlgQv7vEUKMD3l3Sci7cTW2xj14Km3EqlejZWeBotJkqOSoz4nV\nGA8kLEaddw5F+NVrIcxG+PTHrMwoz3waX9vewY+friMa07nvjhJuvb5wzKXVzW0hfvSzUxz8sI8s\nu4GH75/C6pXutNvnOCy4sy2n3TUjx2Gmq2/4YyJ+A8EOK2/WhoAQBUUqAVN3KoxICoRj/PqNY6yu\nKR0xCPH1BunuC03IkMqkZBCxfZePE0OCiFVL40GEI2vkl3x338hBz2R4fGLyCQRi1DfHg4dk60V9\nU5C29syhsTnZRubOclBeYqOi1EpZiZXyYis52em/fQpFYmzaZR72e9vltJLjOLOdeoQQQogzpSoK\nn7p+Duiw/WAL330+XjFhs8jSQQhx9sk7S4LVdxLHDDvRqiXECgsBhVbDNGp9uViMGgtLgliNOlv3\nhPn9W2HsVnjgZhvlhem/OY9GdX72fAP/u8VLlt3AVx+YyuIFOWM6h5im84dXvfz8102EwhrLanL4\n3H0VuHMzS+YsJgM1VZ60VoPh1MzM58CxjrQFTjKMiAYG2jRseUGuuKwIRbHz1oFmguGBYCIYjrFl\ndwMxTR8xCJmoxVJTa5Adu7rYsXsgiDAaFBYvGKiIGC2IGGy0oEcWgxc3fyCWFjzUNQZpaA7i7cgM\nH1w5RubPcVJREg8eKkptlBVbyXaO7XU42vd2TVW+VOsIIYQ4J1RV4VN/NQdNh52HWvjuxn38vQQT\nQohxIO8qCbFpC9CtVjSHFYB24xT+7HNjNsQDCYtR4w87wry6O0JOlsLnbrVR6E4ffNjdE+E7Pz7B\nwQ/7KC+x8rWHKykptI7p8zc0B/nhT0/x4dF+nA4DD31qKpctc41aXbF+zQwg3lrg6w1iTixWQuEY\n7mwrNVX58QGNhvgciJHCiGRlxPb3W/jGA8vZW+tNCyWS9tZ6WTDdzZv7WzL+7Vwuls5mEDGYLAZF\nvz9GfTJ4SLRe1DUG6PBFMo515ZiovsQZDx5KbPHKhxLrWdk6duj3tss58P0shBBCnCuqqnD/DXPQ\n0Xn7UCvffX4ff3+XBBNCiLNL3lGSzGa0bAdoUTqN5Rz0eQYCCYPGr18PsfP9KPm5Cp+7xYY7Oz2Q\nOH7Kz7/8x3G8HWGWL8rhi/dPxWY7/SI2FtP53eZWfvliM5GozmXLXNy/oYzc7NMPFDKoKhvWVnH7\nldPp7gulfpOfvJxcRM8tKeT1Lj++Ng3IDCOSguEYz26uHbGFoasvzIFjnZR5suj1h+npj6SFH+Mp\nGURs3+XjZP2QIGKpi2ULP1oQMZQsBi8O/f4o9cmKh0EVEMOFD3kuEwvnOilPBA8VpVbKiq1n5fU2\nkuG+tyUUE0IIMRFUVeEzN1wCOrz9QSv/9qv9/N2d1RJMCCHOGnk3SQr1ghal21jCAV8RJoOe2PZT\n4+cvh9hXG6UkX+WBW6w47emBxJtvd/LDn50iHNbZcGsxt99QhKqefn7EqYYAP/jvUxw75Sc328jn\n7qvg0sW5YzvdSCxtsTJ41kGOw0J3X4iGxgi/+d9WDh3uA2DhPCdXX5HLb9+pxdebWQkBcKK5Z9RZ\nFV19Ybr64iXrLoeFBTPyxm27zMaWYHz7zt1d4xpEDCaLwQtLb188fOh6r5cPDnelWi983ZnhQ77b\nRM287ETlQ2LmQ4mNLPvEff2Hfm8LIYQQE0FVFe7/2Bw0XefdP7fxvV/t5+/uqpbBy0KIs0LeSZJs\nbryRXA61OzGqOtXFAUyKxk9/H+TDUzGmlajcf6MNm2UgbIjFdJ55oZHfbW7DblN55G+nsXTh6UOF\nSFTjN39o5YWXWojGdK5a6ebTd5eNqew7pmlsfO0oe2u9dPaEcGdbqKnypH6T/8tXj7DjvU7a6g1E\nA/H7WzQ/m/U3F1NVmQXA4RYv2w9mtmBAPHRYOa9oxH8fzNcXYuueRgyqcta2yzxdELG8Jocs+/i/\nbGUxeH7p6YtS3xjfZnOg9SKArzuacawnz8yi+dmUJ2c+JCog7GOobBJCCCEuVgZV5bM3XgIQDyae\n38+XJJgQQpwF8i6S4AsYONSehVGF6pIgBjSeeDHAyWaN2VMMfOKvrJhNA4FET1+U7/74BPs/6KW0\nyMLXHp5OWfHA/IihlQxJx076+Y+nTnGyIUCey8TnP1GRNggzFInh9flBUfDk2jJ+S//cK7Vs3duU\n+rijJ8SW3Q3ouo63Ncb2nX1EA/E2DmNWBJs7yPT5jlQgAXDPuireq20jGNYyngdFAaNJ5erFpew9\n0j6mbUf/0u0yU0HEri5ONqQHEcldM85FECEmv+6eCPXNQeob47tc1DfFg4junszwoSDfzOIF8fDh\nklkucpxQXmwdU1uVEEIIITIlgwlNh90ftvHvvzrAl+6sxmKW/1uFEB+drPQSorqC3aQzpzAEsSg/\nejFIU7vGwplG7rnGgtEwEEicrPfzLz84Tmt7mCXV2Xzps9NSJd4jVTLcenklG3/Xwksvt6FpsOYy\nNzddl0eRx5663S9ePcKO95tTYYHVbGDV/CLuvnomAM9tOcIb+5rSzlvXIRow8vuXegj2GQAjpqwI\n1rwgRmu8RWNoaGC3GLlsQcmwAx01Hd7Y28TaJWV8/8urefjxrfhG2FI0afB2mSOFMUM1NgfZsTsz\niFhSPTCsUoKIi5Ou63T3RjOCh/qmID29meFDYb6ZmdXZlJfYKE8MmywttmKzDrz+PB4nXm/vuXwY\nQoi/UG1tLQ8++CCf/OQnuffee1PXb9u2jc985jMcPnwYgE2bNvH000+jqip33XUXd95550SdshAX\nBYOq8sCNl4Cus/uwl39/YT9fvLNa2l2FEB+ZrPoSPFkxPFkBOns0nvhtgPZunRXzjdx2pSVtPsT2\nd3384KlThMIad91UxPqbitP+feNrR9MW+x09If60rZlNv+0lFFBQjTHcFSH+3NXD3v85Tl4itNB1\nndfea0w7p2A4xqvvNaZ24Ni6Z+DfdR2ifiOBDiuxYPzLODSMSBocGiStXzODWEzjjX1NaHrm87G3\ntp3PmQ0snn36bUddTisOu4nnttQO21aSnDcxbBBhlCDiYqXrOl098ZkPydaLZAjR25f+GlYUKPRY\nmDU9KxU8lJfYKC22YLXID0FCXGj8fj9f//rXWbFiRdr1oVCIn/zkJ3g8ntRxP/zhD3nhhRcwmUzc\ncccdrFu3jtzcsc1nEkJ8NEaDygM3zUX/3SHeq/Xy/RcO8Ld3LJjo0xJCnKdkBThIa2c8kOju17l6\niYnrV5hTgUBM03nuN0385g+tWC0qX32oMmMoZSgSY2+tN/WxrkGgw0rIZwEULLkhbPkBdBWC8VmR\nqfYLi2nkQZF7DrelzmOkMCK/LIrdodM5zABLl9Oa2pkjyaCqXLusgtf3NmUcD/Egw9cTStuNoqMn\nOOyxNVX5vLjtREYYs2V3A709Gm5TDtt3+TjVEL99MohYtdTF0oW5EzpIUIw/XdfxdUczgof6piB9\n/emvVzURPsyZ6UgFD+UlVkqLrFgsZ3+YqhBicjKbzTz55JM8+eSTadf/+Mc/ZsOGDTz++OMA7N+/\nn/nz5+N0OgFYtGgRe/bsYc2aNef8nIW42BgNKp+7eS4//t0h9iSCif/7Nysn+rSEEOchCSUSWjs1\n/uMFP/4gfOwyM6sXmVP/1tcf5btPnGTvwR6KCyx87eFKKkptGffR3RdKzWCI+A34W+1oEQOqKYa9\n0I/JPvyOFwChSOZ8h6TO3jDoEBmlMiKoA6HhF/c1VfmpkrrB7RU5DsuIO224nFZc2RZ6uzU2rK3i\nlsun8ewrtew93EYoEi+tSLaX3HJ5Jf/03++kbhsLq4R7TUR6zfyp1g/4MRoVli7MYeWSXAkiLlC6\nrtPZFUlUPqS3XfT7M8OHogILc6sclJcOtF2UFFmxmCV8EOJiZzQaMRrTf0Q5ceIEH374IV/84hdT\noUR7eztutzt1jNvtxuv1MhqXy47ROD7/B3k8znG5XzF28jU49x67/1K+9T+7eOdQCw89vpWPXzub\nKxeVYRjDTnRifMj3wcSTr8GZkVAi4VhDjGAI7rrawvK5ptT1dY0BvvmD47S0hVg0P5u/e2DqiNtQ\n5jgs5GZZaDyuEuq2ADoWVxBbXhDlI66zdB1suhVfs4lgf/yHqJHaNILh+MdWs4FwJIbLaaWmKj/e\nqjHCrIvqmfkZbSMQDzKsZiPJLvwXt53g7YOtGZ9PURT6/GG87RFCvRYivWZi4cQPe4qOKSvCvTdV\ncPWqAgkiLhC6rtPhiwxUPKRmPwTxB4aEDyoUF1qYP8dJebGV8tKB8ME8SnWQEEIM9c1vfpPHHnts\n1GN0fZh+xCF8Pv/ZOqU0Mrtm4snXYOLc/1ezybGbeG1PI//2iz38asthbrtyOtXT81LVvuLckO+D\niSdfg+GNFtRIKJGwYr6RRbOMWAdt+bnzPR/f/69TBEMat99QyD23loya+v65tp+WWjuhfh3VHCOr\n0I/RNnJ1xGBWsyEVKkB6m0ZXqjIijDUvlBFGDJVlNfLovYvwuOypConnttQO215x9eJS1i4pY29t\nO77eYFqQkTS0LSUpFlZ59XUfO7dG6G7Ojl+ZCCJMzjDmrAj5LivXXlUgw4/OQ7qu094ZGRI8xKsf\nAsH0yh6DAYoLrFRf4kwFD+UlNkoKLZgkfBBC/IVaW1s5fvw4jzzyCABtbW3ce++9PPzww7S3t6eO\na2trY+HChRN1mkJctIwGlbuvnsld18zmp797nx0HW/j+CweYWZbDHVdNZ2aZzHkRQoxMQokERVGw\nJsYuaJrOL3/XzK9easFiVnnk89NYtdQ14m37/VF+trGRLds6UFWYPddEl95LKDq2QAJg5fwiALYf\naKGvS0lr01hWk8OdNxay83ADe4+0090XI8dhpqsvPOx9dfaGQFHSWjaGCxUA9h1p54t3LODGlVMJ\nhKLD7poxuC0lFlIJ95kI95rREhURPYYwJaUGumI9mLMiKINuPrh1RExOmqbT3hkemPcwaPZDMJQe\nPhgNCsVFlnjVQ4k11XpRXGjBZJTwQQgxPgoLC9myZUvq4zVr1vDss88SDAZ57LHH6OnpwWAwsGfP\nHh599NEJPFMhLm6Fbjv3f+wSrl1ewW/eOM6+o+1889k9LJyRz21XVlLmcUz0KQohJiEJJYbo98f4\n3pMn2L2/h8J8M197uJKp5fYRj9+1r5snnqmjwxdharmNhz89hbePNLBl99gCCbfTwqJZHu5aPZ39\nh/rY16/T0hgvLV26MId7bimmoszKxteOcuBYB919YXIdFhbMyOP9Y+3xeRND6Dp87/l9LJpVwPo1\nM9JChaE6ekL841O7UruADK6QSOrr1aEvi+52NRVEJCsi3AU63/ziIrIdxkR7SDudPUFyHGZqZuYP\ne39iYmiajrcjTF1jkIbmQGr2Q0Pz8OFDSZGFilIbZandLqwUF1gxGqUMUwgxvg4ePMi3vvUtGhsb\nMRqNbN68mR/84AcZu2pYrVa+/OUvc//996MoCg899FBq6KUQYuKUeRz87R0LONLQxQuvH2Pf0Xb2\nH21nxbwibrl8Gvk5mbPZhBAXL0UfSwPmJOP19o5Lr05Dc5B/+cExGltCVM918vefm0a2Y/jcpqcv\nylO/aOCNnZ0YDQp33VTErdcXEdM1Hnvy7WGHRw61al4RH7+mikMf9vPL3zVz9EQ8jFhWk8M1a1zM\nq8rBYjJktF4klRc4qG/rG/VzrFlciq7pI279OdTqmhLuu3Y29U0B9n/g5+U3WqlvTOy6oeiY7NFU\na4ZigLVLytiwtgqAmKbx3JYj7Kttp6tv+G1BRaaz/VrWNJ3W9jANTYF4AJGoemhoDhIKDwkfjApl\nRVbKSqxUlFoTAYSN4gILBsOFEz5Ib9/4k+f43JgMz/P5PrxrvJ6/yfC1udjJ12DiDfc10HWdA8c6\n+PUbx2jw9mM0KKyuKeOGlVPItptHuCfxUcn3wcSTr8HwZKbEGBw50c8/PX6EQFDj5usKuO/20hEX\nZTt3+3ji2Xq6e6LMmGbn4U9PSe3G0ekbuSoBQFHA7bSycGYeMz0F/D//cpSjJ+NhxKWLc3AWhDnh\nbeFHL53CnW1hwYx89h8ZvvXCH4ywuqaEA8c6RgxBdrzfkjarYjSxkMoft3Sw5U976emOJxgmo8Ky\nmhwuXZxDXXcHB0904OuNDDt7YuNrR9m6Z2BoZnJuBZAKLsTZE9N02rwh6priwUNdY4CGpiANLUHC\n4fQEymRUKC1OBA/Fia02S60UeS6s8EEIIYQQk4uiKFTPyGd+ZR5vf9DCi9tO8MruerYdaOK6ZRVc\ns6wcq1mWJEJczOQdIKGpJYTBoPD3D0zl8kvdwx7T1R3hJz+vZ+fuLswmhU/cVcqN6wrSFnWjbbPp\ndlr44p0LqK+P8tv/beWFkycAWLEkl/U3FbP9w3q27G5OHd/RE0pb5A/V2Rvi2mUVrK4p5R+f2jXs\nMacLJIabERFQNErKjHxm/UxmVVqw25IzIfLTthQdPCtitLkVe2vbuf3K6TJb4iOKaTotbaGB4KE5\nXvnQ2BwkHEkPH8wmhbLiZOVDvPWiosRKgcciW3MJIYQQYsKoqsLKecUsnV3I6/sa+f2Ok7z41gle\n29PAjaumceXCEowGqawV4mIkoUTClSvcXHGpa9hti3RdZ9s7Pv7ruXp6+2LMnpHFFz49hdIia8ax\nFpOBmipPRruFrkNRlot//89Gjp2KV0asXJLLXTcVM6XMFl/Ubxp+Ua8qDNt6oQCb363j9qtmkDdC\nEDKc4YKI5IwIszOMKSuC3WXlipV59HYHMh5fgStzxsZocyt8vUG6+0LD3k4MiMXi4UNdUyARQMQr\nIBpbgkSiQ8IHs5IIHGyDWi9sFOSbJXwQQgghxKRlMqqsW1LOZfOLeXlXPX96t46fv1LL5nfruPWK\nSpZfUogq24gKcVGRUGKQ4QKJDl+YJ56pZ9e+bixmlc9sKOP6NR7UURZ+yZaG5NBHi2Yn0GFl+5Eg\nigKrluZy543xMCJptEX9SLMgNB227m3CYFCHDUJgYKvRkYOIMGZnBNOQXTN8vUF8PaExv0BGqxBx\nOa3kOCxjvKcLXzSq09yWaLloCuLtqOfI8V6aWkNEh4QPFrPKlLJBwUOxjYpSK54886ivQSGEEEKI\nycxmMXLzZdNYXVPK73eeZOueRp586QP++HYdd1xVyfzKvGF/NhdCXHgklBiBruu8+lYHP/1lI/5A\njPlznDz4iQqKCk6/uDaoKvdcPZMpufk8v6mZuoYQiqJx2TIXd95YlJo/Mdhoi/q8bAtzK928tb95\n2IBib207/3z/0tRlX28Ql9NKZYGL+rooh08GM4KImgVOCotVdhwa/j5dTiuubEtGpcRIRqoQgYt3\nW9BIVKO5NRQfMplovahvDtLcEiIaS3/SrRaVqeU2KkriFQ8VpfHdLvLdEj4IIYQQ4sKVnWVmw9oq\nrllSzotvnWDnwRa+96sDVJXncsdV05lRmjPRpyiEGGcSSgyjrT3Ej56uY/+hXmxWlc//dQXrrhxb\nWqvrOu/u6+b53zVzvC6AojBqGJE0+qLew9rFZby5r3mYW8arGvr8ETasrWLZzFLe2NnOvvf7eHl3\nPFBQVQNZuTEUW5CCIgOL5+SndsQwmdVh51bUVOVjNRs5k7mxgytEksHI0GGYF6JIRKOpNUR9U2Kb\nzcRWm81tQWJDRnrYrCqVU2zx4KEkPvth4fx8FD0s4YMQQgghLlr5uTY+87FLuG5ZBb9+4xj7j3Xw\njWfeo2ZmPrddUUmpxzHRpyiEGCcSSgyiaTovv9HO0883EgxpLJqfzec/UUG++/TbFem6zrt7u9m4\nqZkTiTBi5dJc7r6pmPJRwojBRlvUR2P6iHMj7EYbL2/18c57J2lojm/faTIqLF+Uw6olLpZU56Aa\nGXZA5Ya1MzGoylkJEgyqyoa1Vdx+5fRhP9f5LhLRaGwJDgQPTUHqmwI0t4bQ0nfaxG5TmTE1i/KS\ngaGT5SVW8lymjHDL47Hi9UbO4SMRQgghhJicygocfPHOamrru3jhjWPsPdLOvqPtrJxXxC2XVZKX\nkznTTQhxfpNQIsHXHeG7T5zg4Id9ZNkN/O39U7hqpfu01RGaNhBGnKyPVyY43FEMTj9teoBtf46y\nvjhelXA6oy3qDSpplRSxkEq410y4z4QvbKD+UCtmU3oQYbOlBwLDDZocjyBhpGGY54twRKOxOT14\nqG8M0tIWymh1sdsMVFXGw4fyknjwUF5qxZ2bGT4IIYQQQoixqSrP5f98fBH7j3bw6zePsf39Ft75\noJU1i8q4YcUUnPbT/9JQCHF+kFAi4c23Ozn4YR/La3J44L4K3LmmUY/XNJ139nbx/KYWTtbHKyMq\nphjpohODJf5r846eUCpE2LC2asznMtyiXtd1Vswq5dCBEEeOhogE4yGHaoBlNTlctszFkgWZQcRf\n8jkvdKHw4PBhoPWidZjwwZFlYNaMrIHgIfHHJeGDEEIIIcS4UBSFhTPzWTA9j52HWnhx2wle3lXP\ntgNNXLesgnVLy7GaZTkjxPlOvosTbri6gOpLnEwps426yNQ0nXf2JMKIhgCqAldc6uLm6wv4z5f2\nYejRMm6zt7ad26+cfsYVCLquU9cYZMduH9t3+WhsjrdumEwGauZncflyN5fWuD5yEHGxCIU0GlqC\n1DcG0lovWr0h9GHCh9kzHQPBQ6LtIjfbKOGDEEIIIcQEUFWFVfOLWTankNf3NvLSjpP8dtsJXt3T\nyI0rp3LlwhKMhtNXJQshJicJJRKMRoWp5SNXCmiaztt7unh+UzOnGoKoCly5ws2dHyuitNhKm88/\n4paevt4g3X2hMVUiJIOI7bt87Ng9EESYTQqXLs5l5ZLceGuGVYKIoYKhGA1NmW0XbR3hjPAh22Hk\nkipHettFiZUcCR+EEEIIISYlk1Fl3dJyLltQzOZ369i8q56fv1LLy7vquPXySpZdUogqP8cJcd6R\nUOI0kmHExt81U9cYDyOuWuHmjhuLKC0aGLQz2paeLqeVHMfIW4meLohYtTSXxQskiEgKBGM0NMd3\nuBjcdtHWHs44NifbyNxZjrR5D+XFVnKyR2/PEUIIIYQQk5PNYuSWyytZs6iM3+84yda9jfzkpQ/4\n4zt13H7ldOZXnn4unBBi8pBQYgSaprPzvXhlRCqMWOnmjo+lhxFJo2/pmZ/RupEWROzy0dgyEESs\nWJzLSgki8AcGVz4MhA/ejszwwZVjZP4cZ9q8h/ISG9lOeYkLIYQQQlyIsrPMbFhXxbql5by47Thv\nH2rle7/az6zyXO64ajrTS3Mm+hSFEGMgK7YhNE1n5+4uNr7UTP2gMOLOG4soKRx9C6LRtvSEQUHE\nu4mKiGQQYb64g4h+f4z6pkBG60V7Z+Y2ma4cE9WXOCkbFDyUlVjJdshLWQghhBDiYuTJtfHZG+dy\n3fIp/PqNYxw41sH/98x71MzM5/Yrp1OSnzXRpyiEGIWs5BI0TWfHbh/Pb2qhvimIqsLqVfHKiNOF\nEUnDba9pNqqcagiwY1fXsEHEqqUuFi3IviiCiH5/lPqmIHWNwUQAEa9+6PBlhg95LhPVc52UFw8M\nmywvseLIkpesEEIIIYTIVF7g4Et3VlNb38ULrx9j75F29h1tZ9X8Ym65bBru7LH9TC+EOLdkhZfw\nypvt/Ph/6lFVWJMII4rHGEYMZTaq+Ptgy9ZWtu/y0dQ6KIhYksuqJRd2ENHXH00FD3WDKiA6u4YP\nH2rmZQ+qfIj/ybLLS1MIIYQQQpy5qvJc/s+9i9h3tJ3fvHGctw408/ahVq5eXMoNK6bisMlsMSEm\nE1n5JSyY4+TOG4tYvSqP4oKRh1KORNd1TjUE2L6rix0jBBGLq7OxWi6cIKKnLxoPHhoDabMffN3R\njGM9eWZq5mVTUWpNBBDx6ge7bGcqhBBCCCHOMkVRqJnpoXp6PjsPtfDituNsfreeN/c3cd3yKVyz\npByLWX4OFWIykFAiobjQyoZbS87oNrquc7I+wI7dIwQRS10sXnD+BxE9vdFUxUNdYseLhqYgXT3D\nhw+LF8QrHyoS8x7Ki63YJHwQQgghhBDnmKoqrJpfzLI5BWzd28Tvd5zkt28e57X3Grhp1VQury7B\naFAn+jSFuKhJKHGGBgcR23f5aB4URKxcksvK8ziI6OqJpAUPLd4Ix0/109ObGT4U5sfDh4pSWyKA\nsFJabL1gW1KEEEIIIcT5y2Q0cM3Sci5fUMyf3qnj5V31PPNyLZvfrefWKypZOqcAVbYRFWJCSCgx\nBskgYvsuHzt2d6WCCItZPe+CCF3X6eqJD5xsaAokAoj4/IeevvQQ24JdAAAV30lEQVTwQVGgIN/M\nrOk5lBVbqSiNt12UFlvOi8cqhBBCCCHEYDaLkVuvqGTN4jJ+v/0kr+9r5IlNh/jjO6e4ceU0Zpbl\nkJ1lnujTFOKiIqHECE4XRKxa5mLR/MkbROi6jq87OhA8NAepb4zvdtHXH0s7VlGgyGNh1oys1MyH\nihIb1fPy6e31T9AjEEIIIYQQYnzkZJn5+DVVrFtWzovbjvPOoVZ++Nv3AcjOMlPuyaKswEGZx0F5\ngYPivCxMRmnzEGI8SCgxSFoQsauL5raBIGLV0nhFxGQLInRdp7MrkhgyORA8NDRnhg+qAkUFFuZW\nOeLBQ2KrzZIiKxZz5pus1Wqgt/dcPRIhhBBCCCHOrYJcGw/cOJfrl09h14etNLT10+Dt49BJH4dO\n+lLHqYpCUZ6dMk8W5YPCCpfTgiJtH+I8FY1p9PSH8fWG6OoL4esNoWk6axaXndNZKxJKJNQe7+d7\nT55Mq4hIBhGL5+dgsUxsMqrrOh2+SGqHi3gAEQ8i/IEh4YMKxQUW5s12Ul6c2GazNB4+mE2S8Aoh\nhBBCCDFYeUE8ZEjyB6M0tvfR0NZHvbc/8XcfTe39vPvnttRxdouRsgIH5R4HZQXx6orS/CysZllm\niYmj6zqBUBRfbwhfImzo6g3R1RdOXdfVG6KnP4w+zO1nlucyrTj7nJ2vfLckeNvD9PVHJzyI0HWd\n9s5IPHhIhA71zfH5D/6AlnaswQDFBVaqL3FSXpoIH0pslBRaMEn4IIQQQgghxEditxqZWZbLzLLc\n1HWartPRHUwFFA2JsOJIQxe19V2p4xTA47JR7nFQmqysKHDgybXJME3xF4vGNLr7wqlgYXDIkKx2\n8PWFCEe0Ee/DaFBxOc3MLMsh12nB5bTgcljIdVooctupKHSew0ckoUTKqmUuVi1znbPPp2k67Z3h\njLaL+qYgwVBm+FBSaGXh3IHgobzUSnGhRXrbhBBCCCGEOAdURcGTa8OTa6OmypO6PhSJ0dQ+UE3R\n0NZHfVsf79V6ea/WmzrOYjJQ6slKtX6UJeZWZFlNE/FwxCSj6zr9wShdw4QNqct9YXpHqG5Iyrab\nKHLZM8KGwZezrMZJ1XYkocQ40zQdb0c4o+2ioTkzfDAaFEqKLIl2i/i8h/JiK8WFVozGyfOiEUII\nIYQQQsRZTAamFWenlbvruk5XX5iGZEjh7aOhrZ9TLb0cb+pJu70720KZJz6noqwgi3KPg0K3/Zz2\n9IvxFY1p8XChb6CFoiujtSJEODpydYPZqJLrtFDszo2HDBlhg5lch+W8fN1IKHGWaJpOW3s4Y95D\nQ3OQUHhI+GBUKC2yxCseEvMeyktsFHksEj4IIYQQQghxnlMUJb5YdFqYX5mXuj4a02jp8A9UVCT+\nPnCsgwPHOlLHGQ0KJXnpO4CUFTjIke1KJ4VINIY/GMUfiuIPRgmEBi5HUWhs7UkLHnr9kRHvSwGc\nWWaK87JwOeNBQ67DjMthSX3sclqwWyZXdcPZJKHEGYppOm3e0EDbRaL1oqElSDicXkhjMiqUJgdN\nDmq7KPJYMBguzBeUEEIIIYQQYnhGgxoPGgocMHfg+l5/ODWjot7bR6O3j0ZvP3VtfWm3z7abUkFF\nMqwoybdjMk6e3QEnO13XCYZjaUGCPxQlkAwZMi5HEpdjqcvR2GgNFAPMJhWXw0JpflZ6dcOgv3Mc\n5vOyuuFsklBiBDFNp9UbGhg2maiAaGwOEo6kvwjNJoWyYitlg4KH8hIrhR4LBlXCByGEEEIIIcTI\nnHYzc6aYmTNlYMadpum0dQVSMyoavPG/Pzjp44Mh25UWum2UeRwU5mURDkcxGlSMBgVD4u/4xypG\nNX7ZkLoucYw6cEzq39Sht49/PNHDOjVNj4cFgwOFQZf9wQiBUAx/KJJRxZC8rI8tU0gxGlTsViN2\nq4m8HFv8ssWIzWJMv2wxUl6Sg6JpuBxmbBdwdcPZJKFEQk9vlJffaKeuMb7rRWNLkEh0SPhgVgaC\nh2T1Q6mNgnyzhA9CCCGEEEKIs0ZVFYrcdorcdpbMLkhdHwhFafT2p1o/GrzxP80d/nNzXoqC0ahg\nVDODD4OaGWKMHISk396UqBYIhEeoXkgEC8Fw7IzP2WI2YLcYyXVYKM7Pwp4IE5JBwsiXTdgthjOq\nRPF4nHi9vWd8jhczCSUS3tjZyc9/0wSAxawypcyWCCAGQoiCfDOqhA9CCCGEEEKICWKzGJlRlsOM\nspzUdbqu09kTwpplwdveSzSmE4tpRGM60cTfMU0buBzTiKSOSRynacQGHx/TiGrxjweuj183+L5j\niduGwpG0+4lpZ1iOMAJFIVWJUJBrSwsNbIkqhYHLpoHKhVQFgwGDenG3R0x2EkokXHNlPtMq4lUP\n+W4JH4QQQgghhBDnB0VRyMux4vE4yZokg/M1XU+FGTFtINQYHHwMDUJ0Xc+oWLCYDRPeMiLGl4QS\nCRaLyrzZzok+DSGEEEIIIYQ476mKgmpUMBmlSkGMTl4hQgghhBBCCCGEmBCTplLiG9/4Bvv370dR\nFB599FEWLFgw0ackhBBCCCGEEEKIcTQpQol3332XU6dOsXHjRo4dO8ajjz7Kxo0bJ/q0hBBCCCGE\nEEIIMY4mRfvGzp07Wbt2LQDTp0+nu7ubvr6+CT4rIYQQQgghhBBCjKdJEUq0t7fjcrlSH7vdbrxe\n7wSekRBCCCGEEEIIIcbbpGjfGErXR9/T1uWyA+DxyG4Z402e43NDnufxJ8/x+JPn+NyQ51kIIYQQ\nF5JJEUoUFBTQ3t6e+ritrQ2PxzPi8T6fH4/Hidfbey5O76Ilz/G5Ic/z+JPnePzJc3xuTIbnWUIR\nIYQQQpxNk6J9Y9WqVWzevBmAQ4cOUVBQgMPhmOCzEkIIIYQQQgghxHiaFJUSixYtYu7cudx9990o\nisI//dM/TfQpCSGEEEIIIYQQYpxNilAC4JFHHpnoUxBCCCGEEEIIIcQ5NCnaN4QQQgghhBBCCHHx\nkVBCCCGEEEIIIYQQE0JCCSGEEEIIIYQQQkwICSWEEEIIIYQQQggxIRRd1/WJPgkhhBBCCCGEEEJc\nfKRSQgghhBBCCCGEEBNCQgkhhBBCCCGEEEJMCAklhBBCCCGEEEIIMSEklBBCCCGEEEIIIcSEkFBC\nCCGEEEIIIYQQE0JCCSGEEEIIIYQQQkyI8y6U+MY3vsH69eu5++67OXDgwESfzgXr29/+NuvXr+f2\n22/n5ZdfnujTuWAFg0HWrl3Lb37zm4k+lQvWpk2buOmmm7jtttt4/fXXJ/p0Ljj9/f184Qtf4L77\n7vv/27v/mKrqP47jzxt4RRQFf1wcEU5QMdFQFJeomalr1pZmlIhe/2ksc23ZzHXz162pbDjz1zQx\nrWVXwauEtZa/0DRtKrZwV7xplpIJ/kATUwKke7nfP5qkC0z5audyez3+43DPh9fhbpwXb845kJaW\nxv79+42OFFBOnjzJyJEjWb9+PQDnz5/HarWSnp7O66+/Tm1trcEJRb3EeOos/kGdxljqO8ZTJ2q6\nZjWUOHz4MGfOnMHpdLJgwQIWLFhgdKSAdOjQIX788UecTidr164lMzPT6EgBa9WqVbRr187oGAGr\noqKClStXkpOTQ3Z2Nrt37zY6UsDZsmULXbt2xeFwsGzZMv1cvo+qqqqYN28egwYNqt+2fPly0tPT\nycnJoUuXLuTl5RmYUNRLjKfO4j/UaYyjvuMf1ImarlkNJQ4ePMjIkSMBiIuL47fffqOystLgVIEn\nOTmZZcuWAdC2bVuqq6vxer0Gpwo8p06d4qeffuLJJ580OkrAOnjwIIMGDaJNmzZYLBbmzZtndKSA\nExERwdWrVwG4du0aERERBicKHGazmTVr1mCxWOq3FRYWMmLECACGDx/OwYMHjYonqJf4A3UW/6BO\nYyz1Hf+gTtR0zWoocfny5dve3Pbt23Pp0iUDEwWmoKAgQkNDAcjLy+OJJ54gKCjI4FSBJysrC5vN\nZnSMgFZaWkpNTQ1TpkwhPT1dv8A9AM8++yznzp1j1KhRTJo0ibfeesvoSAEjODiYkJCQ27ZVV1dj\nNpsB6NChg86BBlMvMZ46i39QpzGW+o5/UCdqumCjA/w/fD6f0REC2q5du8jLy+Ojjz4yOkrA+eyz\nz+jbty+PPPKI0VEC3tWrV1mxYgXnzp1j8uTJ7NmzB5PJZHSsgPH5558TFRXFhx9+yIkTJ5g5c6bu\nJ/6X6Bzof/SeGEedxTjqNP5Bfcd46kRN16yGEhaLhcuXL9d/XF5eTqdOnQxMFLj2799PdnY2a9eu\nJSwszOg4AWfv3r2cPXuWvXv3cuHCBcxmM507dyYlJcXoaAGlQ4cO9OvXj+DgYGJiYmjdujVXrlyh\nQ4cORkcLGEVFRQwZMgSAnj17Ul5ejtfr1V8qH5DQ0FBqamoICQnh4sWLt93aIf8+9RL/oM5iLHUa\n46nv+Ad1oqZrVrdvDB48mB07dgDgdruxWCy0adPG4FSB5/r16yxcuJDVq1cTHh5udJyAtHTpUj79\n9FM2bdrEiy++yNSpU3XyfgCGDBnCoUOHqKuro6KigqqqKt3fd5916dIFl8sFQFlZGa1bt9bJ9wFK\nSUmpPw/u3LmToUOHGpzov029xHjqLMZTpzGe+o5/UCdqumZ1pURSUhIJCQmkpaVhMpmw2+1GRwpI\nW7dupaKigmnTptVvy8rKIioqysBUIvcuMjKSp59+mpdeegmA2bNn89BDzWoW6/fGjx/PzJkzmTRp\nEh6Ph3feecfoSAHj2LFjZGVlUVZWRnBwMDt27GDRokXYbDacTidRUVGMHTvW6Jj/aeolxlNnEVHf\n8RfqRE1n8ukGSBERERERERExgEZoIiIiIiIiImIIDSVERERERERExBAaSoiIiIiIiIiIITSUEBER\nERERERFDaCghIiIiIiIiIobQUEJERERERB6Y0tJSevfujdVqxWq1kpaWxvTp07l27dpdr2G1WvF6\nvXf9+gkTJlBYWNiUuCLyL9NQQkREREREHqj27dvjcDhwOBxs3LgRi8XCqlWr7np/h8NBUFDQA0wo\nIkYJNjqAiDRdYWEh77//Pi1btmTYsGEUFRVx4cIFPB4PY8aMIT09Ha/XS2ZmJm63G4DHH3+cadOm\nUVhYSHZ2Np07d6a4uJjExETi4+MpKCjg6tWrrFmzho4dOzJ79mxKSkowmUw8+uij2O32RvPk5+dT\nUFCAyWTi4sWLxMbGkpmZSYsWLXA4HGzbtg2v10tsbCx2u53Lly/z6quv0qNHD7p3786UKVMaPc6l\nS5cSFRVFWVkZYWFhLFmyhDZt2rB161bWr1+Pz+ejffv2zJ8/n4iICJKSkkhNTaWuro6MjAzefPNN\nAGpqahg/fjypqamUlJRgt9vx+Xx4PB6mT5/OgAEDsNlsWCwWTp48SUlJCampqWRkZNz/N1BEROQ/\nKjk5GafTyYkTJ8jKysLj8fDHH38wd+5cevXqhdVqpWfPnhw/fpx169bRq1cv3G43tbW1zJkz5299\np7q6mjfeeIOKigq6dOnCjRs3ALh48WKDHUBE/IeGEiLN3LFjx9i9ezdOp5O2bdvy3nvvUVNTwzPP\nPMPQoUNxuVyUlpaSm5tLXV0daWlppKSkAHD06FGWLFlCq1atSE5OJjk5GYfDgc1mY/v27QwcOBCX\ny8W2bdsA2LRpE9evXycsLKzRPMXFxezcuZNWrVoxadIk9u3bR6dOnSgoKGDDhg2YTCYyMzPZvHkz\nw4cP59SpUyxbtozY2Ng7Hqfb7Wbp0qVERkYyY8YM8vPzGTVqFNnZ2eTl5WE2m1m3bh2rV6/GZrNR\nVVXFsGHDGDx4MB9//DGxsbG8++673Lhxg82bNwMwf/58JkyYwOjRo/nhhx+YOnUqu3fvBuDs2bNk\nZ2dTVlbGc889p6GEiIjIfeL1eikoKKB///7MmDGDlStXEhMTw4kTJ5g5cyb5+fkAhIaGsn79+tv2\ndTgcDfadAwcOEBISgtPppLy8nBEjRgCwbdu2BjuAiPgPDSVEmrmuXbsSHh6Oy+Vi3LhxAISEhNC7\nd2/cbjcul4tBgwZhMpkICgpiwIABFBcX07t3b+Li4ggPDwcgPDycfv36ARAZGUllZSVxcXFERESQ\nkZHB8OHDGT169B0HEgBJSUmEhoYC0K9fP06dOsXp06f55ZdfmDx5MgBVVVUEB//546ddu3b/OJAA\n6NatG5GRkfVf4/jx43Ts2JFLly7x8ssvA1BbW0t0dDQAPp+PpKQkAIYOHUpOTg42m41hw4Yxfvx4\nAFwuF0uWLAEgPj6eyspKrly5AsDAgQMBePjhh6msrMTr9eqyURERkSa6cuUKVqsVgLq6OgYMGMAL\nL7zA8uXLmTVrVv3rKisrqaurA6g/j9+qsb5z8uRJ+vfvD4DFYqnvFo11ABHxHxpKiDRzLVq0AMBk\nMt223efzYTKZGt0O/O2X7Fs/9vl8tGzZkpycHNxuN3v27CE1NZXc3FwsFkujeW4WiZtrAJjNZp56\n6inmzp1722tLS0vr8/+Tm2vdegxms5nHHnuM1atXN7jPzbXj4uL48ssv+fbbb9m+fTvr1q1j48aN\nf/vewF/fx5tDk4a+voiIiNybm8+UuNX169frb/FsSEMdobFe4/P5eOihvx6Xd7OPNNYBRMR/6EGX\nIgEiMTGR/fv3A39eieB2u0lISKBv374cOHCg/rkJhw8fJjEx8a7WLC4uZsuWLSQkJPDaa6+RkJDA\nzz//fMd9XC4X1dXV+Hw+ioqKiI+PJykpiX379vH7778DsGHDBo4cOXJPx3f69GnKy8sB+O6774iP\nj6dPnz4cPXqUS5cuAX9eorlr166/7fvFF19QXFxMSkoKdrud8+fP4/F4SExM5JtvvgHg+++/Jzw8\nnIiIiHvKJSIiIk0TFhZGdHQ0X3/9NQAlJSWsWLHijvs01nfi4uLqu8X58+cpKSkBGu8AIuI/dKWE\nSICwWq3MmTOHiRMnUltby9SpU4mOjiYqKoqioiImTJhAXV0dI0eOpH///nf1b7JiYmJYuXIlTqcT\ns9lMTExMg5dS3qpHjx68/fbblJaW0r17d4YMGUJQUBATJ07EarXSsmVLLBYL48aN49dff73r4+vW\nrRuLFy/mzJkztGvXjrFjxxIaGsqsWbN45ZVXaNWqFSEhIWRlZTW4r91ux2w24/P5yMjIIDg4mDlz\n5mC328nNzcXj8bBw4cK7ziMiIiL/v6ysLObPn88HH3yAx+PBZrPd8fWN9Z0xY8bw1VdfkZ6eTnR0\nNH369AEa7wAi4j9MPl2TLCL3SX5+PgcOHGDRokX3dd2b/30jNzf3vq4rIiIiIiLG0phQRO5JQUEB\nn3zySYOfe/7555u87pEjR1i8eHGDn0tLS2vyuiIiIiIi4r90pYSIiIiIiIiIGEIPuhQRERERERER\nQ2goISIiIiIiIiKG0FBCRERERERERAyhoYSIiIiIiIiIGEJDCRERERERERExhIYSIiIiIiIiImKI\n/wHeUkzBVzLk/wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i5Ul3zf5QYvW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "Leaz2oYMQcBf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 957 + }, + "outputId": "988eacf6-7d53-4bdc-fc05-6a70209da274" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] / california_housing_dataframe[\"population\"])\n", + "\n", + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\")" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 212.74\n", + " period 01 : 189.66\n", + " period 02 : 169.02\n", + " period 03 : 152.31\n", + " period 04 : 139.81\n", + " period 05 : 133.58\n", + " period 06 : 131.77\n", + " period 07 : 131.04\n", + " period 08 : 131.07\n", + " period 09 : 131.49\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 192.5 207.3\n", + "std 88.8 116.0\n", + "min 43.4 15.0\n", + "25% 157.6 119.4\n", + "50% 189.5 180.4\n", + "75% 216.6 265.0\n", + "max 4235.5 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean192.5207.3
std88.8116.0
min43.415.0
25%157.6119.4
50%189.5180.4
75%216.6265.0
max4235.5500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 131.49\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGX68PHv9PSQTiBACJBQpBcF\nRGpIAH0BaYpi+aGrAisoiGUFRVlUUNcG2F1wdxWNSlOqgCAiGpooJQQCSSghvU2mn/ePgRE0kEHI\nTMr9uS4vyZlT7nPOlHPu89zPo1IURUEIIYQQQgghhBDCw9TeDkAIIYQQQgghhBD1kyQlhBBCCCGE\nEEII4RWSlBBCCCGEEEIIIYRXSFJCCCGEEEIIIYQQXiFJCSGEEEIIIYQQQniFJCWEEEIIIYQQQgjh\nFZKUEMKLEhISOHPmjLfDuKx77rmHL7/88k/T33zzTf7xj3/8aXpOTg4333zzNdv+hAkTWLFixV9e\n/s0336Rbt24kJyeTnJxMUlISzzzzDBUVFVe8ruTkZPLy8q5omUsdPyGEELVDQkICiYmJrt+RxMRE\nnnrqKYxG41Wt97PPPqt0+pdffklCQgKbN2++aLrJZKJLly488cQTV7Vdd2VmZvLggw+SlJREUlIS\nI0aMYOPGjR7Z9pVYtGhRpcdk586dXHfdda7zduF/tUV2djYJCQkXXcPccccdHDhw4IrX9corr/DJ\nJ59c0TIrVqxgwoQJV7wtIa6U1tsBCCHqlqioKFavXu3tMC6SlJTEP//5TwAsFgvTpk1j4cKFzJgx\n44rWs3bt2uoITwghRA338ccf07BhQ8D5O/LII4/wzjvv8Mgjj/yl9eXm5vL+++8zduzYSl+Pjo5m\n9erV9O/f3zVt8+bNBAUF/aXt/RUzZsxg+PDhvP322wDs27ePu+++mzVr1hAdHe2xOK5GdHR0rf/t\n1mg0F+3DN998w+TJk1m3bh16vd7t9UyfPr06whPimpCWEkLUQBaLhblz55KUlMSAAQNcFwQAe/bs\n4dZbbyU5OZmhQ4fyww8/AM5s+o033si8efO48847AefTneXLlzNixAhuvPFG/v3vf7vWs2zZMpKT\nkxkwYACPPvooJpMJgKysLMaMGcOgQYOYPn06drv9imLPzs6mbdu2gPNpz8MPP8xTTz1FUlISQ4cO\n5ciRIwCUlJTw2GOPkZSUxMCBA/niiy8uuc60tDRGjx5N3759efrpp7Hb7Tz88MN88MEHF81zww03\nYLPZLhufXq9n3LhxbN++vco4EhISeOedd0hKSsJut1/UsmXp0qUMHTqU5ORkHnroIQoKCq7J8RNC\nCFGz6fV6+vTpw8GDBwEwm83Mnj2bpKQkhgwZwosvvuj67j906BC33XYbycnJDB8+nG3btgFw2223\ncerUKZKTk7FYLH/aRpcuXdi5c+dFrfq++eYbevfu7fr7aq4Vli5dyi233EKfPn345ptvKt3PtLQ0\nOnbs6Pq7Y8eOrFu3zpWceeutt+jbty8jRozg3XffZcCAAQA88cQTLFq0yLXchX9fyTXMrl27GDVq\nFImJiYwdO5asrCzA2WJk2rRp9O/fnzvvvPMvtzj98ssvmTJlCnfffTfz589n586d3HbbbUydOtV1\nA79mzRpuvvlmkpOTueuuu8jMzAScrTCffvppRo8efdG1FcDUqVP58MMPXX8fPHiQG2+8EYfDwb/+\n9S9Xy5O77rqLnJycK4576NChmEwmjh07Blz6eu6JJ57ghRde4JZbbmHNmjUXnYdLvS8dDgfPPfcc\n/fr1Y/To0Rw6dMi13Z9++omRI0cydOhQhgwZwpo1a644diEuRZISQtRA7733Hunp6axatYrVq1ez\nbt06VzPO2bNnM3HiRNauXcvf/vY3nnnmGddyRUVFtGnThv/85z+uaenp6SxfvpxFixbx6quvYrfb\nSU1N5fXXX2fJkiVs2rSJgIAAXn/9dQBefvllevbsycaNG7n77rvZvXv3Ve3L1q1bGT9+POvWreP6\n669nyZIlALz44ouo1WrWrFnD559/zptvvklaWlql69i5cycff/wxa9eu5eeff2bz5s3cfPPNF7XI\n2LBhA4MHD0arrboBmNVqdT1dqCoORVFYt24dGo3GNW3v3r188MEHrpgaNWrEK6+8Alz74yeEEKJm\nKS4uZvXq1XTu3BmAJUuWcObMGb7++mu++uorUlNTWb16NQ6Hg0cffZQ777yTtWvXMnfuXKZPn05Z\nWRnz5s1zPcWv7Gm3Xq+nZ8+efPvttwCUlZVx8OBB1zbhr18rFBYWolarWbVqFU899RSvvfZapft5\n00038fDDD7N06VKOHj0KOFtDqlQq0tLSWLJkCSkpKaSkpLB37163jp271zBlZWU89NBDPProo2zY\nsIG77rqLqVOnAvDFF1+Ql5fHhg0bePPNN/n+++/d2nZltm/fzpw5c5g5cyYABw4c4LbbbuOVV17h\n1KlTzJo1i4ULF7J27Vr69evH7NmzXct+9913vPvuu9xzzz0XrTMpKYlNmza5/t6wYQPJyckcPXqU\ntWvXus5VYmIiO3bs+Etx2+129Hr9Za/nAHbs2EFKSgpDhgxxTbvc+3Lbtm1s376dr7/+mv/85z+k\npqa6lnvppZd48skn+eabb1i8eHGNLOURtZckJYSogTZv3sz48ePR6/X4+fkxfPhw1q9fD8Dy5ctd\nPy5du3Z1PTkA5812YmLiResaPnw4AO3atcNsNpOfn8+mTZsYOnQoUVFRANx+++2u9aempjJ06FAA\nOnToQFxc3FXtS4sWLbjuuusAaNu2LadPn3bt41133YVarSY0NJTExERXDH+UlJSEr68vvr6+9O3b\nl71799K3b18yMzNdTwo2btzoivtyysrK+N///uc6TlXF0a9fvz+tY8uWLSQlJREWFgbAmDFjXC0v\nrvXxE0II4X0TJkwgOTmZgQMHMnDgQG644Qbuv/9+wPmbMHbsWLRaLT4+Ptxyyy1s376d7Oxs8vLy\nGDZsGADt27enUaNG7N+/361tDhs2zJV837hxI/3790et/v3S/a9eK9hsNm699VbAeW1w6tSpSre/\nYMEC7rjjDlatWsXNN9/MgAEDXH0S7Nq1i+7duxMREYFWq3W7Lyl3r2F27dpFVFSUq2XIzTffTGZm\nJqdOnSI1NZXExES0Wi0hISEXlbj80enTp//Un8SLL77oej02NpbY2FjX3z4+PvTs2RNwJiyuv/56\nmjVrBjh/63fu3OlqkdmxY0dCQ0P/tM1+/fpx4MABioqKgN+TEkFBQRQUFLBq1SqKi4uZMGECI0aM\ncOu4nacoCsuWLSMqKorY2NjLXs8B9OzZE4PBcNE6Lve+/Pnnn+nbty/+/v74+PhclMwICwtj+fLl\nHD16lNjYWNfDGCGuBelTQogaqLS0lBdeeIFXX30VcDbR7NChAwCrVq1i6dKllJeX43A4UBTFtZxG\noyEgIOCidQUGBrpeA2eGvLS0lA0bNrieLiiKgtVqBZxPgC5cx9XWr57f/vkYzjdpLS0tZdq0aa64\nzGbzJTufuvBHPzAwkNzcXAwGA4mJiaxevZrRo0eTm5tLjx49Kl1+3bp17Nq1CwCdTkdiYqLryUZV\ncTRo0OBP6ysoKCAyMtL1d1BQEPn5+cC1P35CCCG873yfEgUFBa7Sg/Mt8woKCggODnbNGxwcTH5+\nPgUFBQQGBqJSqVyvnb8xDQ8Pr3KbvXv35umnn6aoqIivv/6aSZMmkZGR4Xr9aq4V/Pz8AFCr1Tgc\njkq3bzAYmDhxIhMnTqSkpIS1a9cyb948YmJiKC4uvuj37XySviruXsOUlJSQlZV10e+xXq+noKCA\n4uLii64tgoKCKC8vr3R7VfUpceF5++PfhYWFF+1jYGAgiqJQWFhY6bLn+fn50atXL7Zs2ULXrl0p\nKSmha9euqFQq3nzzTT788EOef/55unfvzpw5c6rsn8Nut7uOg6IotGzZkkWLFqFWqy97PXepGC/3\nviwuLv7T9c158+bNY/Hixdx77734+Pjw6KOP1qpOQ0XNJkkJIWqgyMhI/u///u9P2f+cnByefvpp\nPv/8c9q0acPx48dJSkr6S+sfOXIkjz/++J9eCwoKoqyszPX3+b4SrrXIyEgWLlxIfHx8lfMWFxdf\n9O/zP7LDhg3jhRdeIDAwkKSkpIueIF3owo4uryaO88LDw11PQMDZ5PT8Baanjp8QQgjPCw0NZcKE\nCSxYsIDFixcDl/5NCAsLo7i4GEVRXDeARUVFbt/A63Q6+vfvz/Llyzlx4gSdO3e+KClRndcKBQUF\nHDx40NVSISgoiLFjx7Jt2zbS0tIIDAyktLT0ovnP+2Oi4/xv+JXEFRkZSVxcXKWjVwUFBV1y29dS\nWFgYe/bscf1dXFyMWq0mJCSkymWTkpLYsGEDhYWFJCUluc7/DTfcwA033IDRaOSll17i5ZdfrrLF\nwR87urzQ5a7nLrdfl3pfXu7YhoeHM2vWLGbNmsX333/P3//+d/r06YO/v7/b2xbiUqR8Q4gaaODA\ngXz++efY7XYURWHRokVs3bqVgoIC/Pz8iIuLw2azsWzZMoBLPiG4lAEDBrB+/XrXj83GjRt59913\nAejUqRMbNmwAYPfu3a5Ona61AQMG8OmnnwLOpqTz5s3jt99+q3Te9evXYzabMRqNbNu2jW7dugHQ\nq1cvioqK+Pjjjy9qYlhdcZzXr18/18UGwKeffkrfvn0Bzx0/IYQQ3nHvvfeyZ88efvrpJ8D5m5CS\nkoLdbsdoNLJixQr69u1LTEwMDRs2dHUkuXv3bvLy8ujQoQNarRaj0Vhl58zDhg3jvffeY9CgQX96\nrTqvFUwmEw8//LCrA0SAEydOsG/fPrp160bnzp1JTU2loKAAm83G8uXLXfNFRES4OkjMyspy9a10\nJXF17NiR3Nxc9u3b51rPY489hqIodOrUiU2bNmG32ykoKGDr1q1u79eV6N27N6mpqa4Sk08//ZTe\nvXu71XdV//792bNnDxs3bnRdn3z//ffMmTMHh8OBn58frVu3vqi1wl9xueu5S7nc+7Jz5858//33\nVFRUUFFR4UqGWK1WJkyYwNmzZwFn2Y9Wq73kwyAhrpS0lBDCyyZMmHBRJ4pz585l/PjxZGdnM2zY\nMBRF4brrruPuu+/Gz8+Pm266ydWfwRNPPMHu3buZMGECb7zxhtvbbNeuHQ8++CATJkzA4XAQFhbG\nnDlzAHjssceYPn06K1asoGPHjvTq1euS67mwLAKgTZs2bg85NW3aNObMmeN6StKnTx8SEhIqnbdX\nr16uXqr79etHnz59AOfTg+TkZL799lu6du3q1navJo7zOnTowN/+9jfuuOMOHA4Hbdq04dlnnwWu\n7PgJIYSofQICAvjb3/7GSy+9REpKChMmTCArK4thw4ahUqlITk5myJAhqFQqXn31VZ555hneeust\nfH19ef311/Hz8yMhIYHg4GB69+7NV199RaNGjSrdVo8ePVCpVJX2mVSd1wqNGjVi8eLFvPHGG8yd\nOxdFUQgICODJJ590jcgxbtw4Ro4cSUhICIMHD3aNrjV27FimTJnC4MGDadu2rev3tXXr1m7H5ePj\nwxtvvMHzzz9PeXk5Op2OqVOnolKpGDt2LKmpqQwaNIhGjRoxaNCgi57uX+h8nxJ/NH/+/CqPQcOG\nDZk7dy6TJk3CarUSExPD888/79bxCwgIoF27dhw+fJhOnToB0L17d77++muSkpLQ6/WEhoYyb948\nAGbOnOkaQeNKXO567lIu977s378/W7ZsITk5mfDwcPr27Utqaio6nY7Ro0e7Sl/VajVPP/00vr6+\nVxSvEJeiUi4s5hJCiFrmvffeo7Cw0NVzthBCCCE8KzU1lZkzZ1406oQQQrhL2twIIWqtgoICPvvs\nM26//XZvhyKEEEIIIYT4CyQpIYSolT799FNGjRrF/fffT5MmTbwdjhBCCCGEEOIvkPINIYQQQggh\nhBBCeIW0lBBCCCGEEEIIIYRXSFJCCCGEEEIIIYQQXlErhwTNza182J8rERLiR2Gh8RpEUzPJ/tVu\nsn+1V13eN5D9q+2uxf5FRAReo2i841pcQ1Smrr93agM5B94n58D75Bx4n5yDyl3u+qHetpTQajXe\nDqFayf7VbrJ/tVdd3jeQ/avt6vr+eZMcW++Tc+B9cg68T86B98k5uHL1NikhhBBCCCGEEEII75Kk\nhBBCCCGEEEIIIbxCkhJCCCGEEEIIIYTwCklKCCGEEEIIIYQQwiskKSGEEEIIIYQQQgivkKSEEEII\nIYQQQgghvEKSEkIIIYQQQgghhPAKSUoIIYQQQgghhBDCKyQpIYQQQgghhBBCCK+QpIQQQgghhBBC\nCCG8QuvtAGoKs9VOcZmZ4AADBp3G2+FcFbPVzum8cuxWe5X7YrbayS2qAEUhIsQPgOIyM74GLblF\nRsoqbDSPDkKv07imV5ht+Bq0FJdbXMsZdBrnugqNoFIR0cAXg05DqdFC9tkyYiIDXOuoC8dYCCGE\nEEIIIcTVq7akxM6dO5k6dSqtWrUCID4+nvvuu4+ZM2dit9uJiIhgwYIF6PV6Vq5cyZIlS1Cr1Ywd\nO5YxY8ZUV1h/Ync4WLYpnT1puRSUmAkNMtA5PoJxA1qiUdeuhiQX7UupmdDAS++L3eHg02+PsH3/\nGUwWOwAaNWg1KsxW5U/rVqvB4QAV8MdXDTo14cE+5JeYMFkcrmk6jZpyk801v0atwuFQavUxFkII\nIYQQQghx7VRrS4kePXrwxhtvuP5+8sknGT9+PEOGDOHVV18lJSWFESNGsHDhQlJSUtDpdIwePZrE\nxEQaNGhQnaG5LNuUzsbUbNff+SVm19/jB8V7JIZr5Ur2ZdmmdL7ddfKiaXYH2B1/TkiAMyEBf05I\nAJitDk7mGf80zWx1/GH9SpVxCSGEEEIIIYSoPzz6mHrnzp0MHDgQgP79+7Njxw727dtH+/btCQwM\nxMfHhy5durB7926PxGO22tmTllvpa3vS8jBb7R6J41q4kn253LyeVNuOsadYc/PZNe5hyn855Jqm\nKslDu/m/UFZ48czmEig5CUrlyaRLcShwOFdPTumVl9Fs3mVh7Y/mK17uWvt2Wz6Ll2SiXOG+12bZ\np028+NZRTmRXeDsUcc7xLCMvvnWUoyeMVc8s6qS8ogreSPmFk7ll3g5FCCGEqJWqtaVEeno6Dz74\nIMXFxUyZMoWKigr0ej0AYWFh5ObmkpeXR2hoqGuZ0NBQcnMvf8McEuKHVnv1fRJo9DoKSiu/uSos\nNaHR64gI97/q7XjC6bxyt/fldF45BSXev6m82mMcERF4jSOqGfY99QJnvlxHozFDiIgIRFEUjFuW\nYs8+QmCfZLTn9tths1Jw5DAAYREBqFTu5xgPn1I4XaIQ6K8jIsL95fanm1m9vYz4ZrqrPv5Xs/zu\nXwpZtOQEUeE+REQEolKpriqWa6063psnz1Qw55V08gos3DaymVff/3X1s3eeu/u3cetZXnwjDZPZ\nwa3DmtSa41Jb4qwtio0W9qbn8f6KX5k0vJ23wxFCCCFqnWpLSsTGxjJlyhSGDBlCVlYWd911F3b7\n70/FL/V0052nnoWFV/9EKiIiELvFSmiggfxKbtBDAn2wW6zk5pZe9bY8wW61u70vdqud0KDK5/Wk\nqznGERGBtebcXAnjgSNkL/mSwHbxaG7sSW5uKeqsg+iyjmBvHE+hNgzO73fJKXDYISCKvLxyt7dh\nsqr4NcsXrRrCDUaqyAG6VJgV3vvCiFoNw3pqr+r4X835yy+0MOulQ6hU8PB9TcnLq1lPJ6vjvZlX\nYOEfL6aRV2DhnnGNiW18dcf/atTVz9557uyf3a7wccpJVqw7i49BzeOT44hvrq8Vx+VanD9Jalws\nLjqI1k0bkHowh7QujYlv4pnyUyGEEKKuqLbyjaioKIYOHYpKpaJp06aEh4dTXFyMyWQCICcnh8jI\nSCIjI8nLy3Mtd/bsWSIjI6srrIsYdBo6x0dU+lrn+PBaNULElezL5eb1pNp2jD0ha+4boCi0fukx\nVBoN2G1odq1FUamxd036fUZrBZiKQGMA39BLr/APFAXS8vQ4FBUtwy3or+Dwr/reTFGZwqBuOmIi\nvXPebDaFlxdnUFxi495xMbRuGeCVODypqNjKMwuOcDbPwu0johmeFOXtkOq14hIrc15NZ8W6szRu\naGD+rARu6Co3ofWZSqXi1r4tAPjyu6P1qqRMCCGEuBaqLSmxcuVKPvjgAwByc3PJz8/n1ltvZd26\ndQCsX7+ePn360LFjR/bv309JSQnl5eXs3r2bbt26VVdYfzJuQEsGdYshLMgHtQrCgnwY1C2GcQNa\neiyGa+VK9mXcgJYM7NoYnwvuSjVqMOgqbwZ/fpCMyl416NQ0DvfDR//728lHrybAR3vR/Bq1ClUt\nP8bVqWjLDoq37CCoTw8iBvcBQHP4J9SlBTjiu6MEn0vWKQqUnXH+OzAKrqB0IbdcQ4FRSwNfO1EB\nNreXO3TCxs7fbDQKVzOwu97t5a61pSknOZRezo09Qhg60PuJtepWUmbjmZePcCrHzMghUYy5paG3\nQ6rXjh438tjzh9l/sJQenYOZP6s1TRr5ejssUQO0bBxMj7YNScsu5teMAm+HI4QQQtQq1Va+MWDA\nAGbMmMG3336L1Wrl2WefpU2bNjz++OMsW7aMRo0aMWLECHQ6HdOnT2fixImoVComT55MYKDnmoZq\n1GrGD4pnVN8WFJeZCQ4w1Nqn9xfui0avw26xXnJfNGo1dyQmMLpfS3KLKkBRiAjxA6C4zIyvQUtu\nkZGyChvNo4PQ6zSu6RVmG74GLcXlFtdyBp0Gs9VObqERVCoiGvhi0GkoNVrIPltGTGSAax21+RhX\nF8VuJ+v510Glosmsqc4+EkzlaH7ZjKL3wdZxwO8zm0ucLSUMgaB3v6WAzQ7peXpUKoX4cLPbuYwK\ns8Jn35pRq+G2RANajXf6b/ghtZBV688SE+3DpHua1rh+JK61cqOd519NJ/OkiaEDI5gwulGd3+ea\nbNP2fN5ekonNrjB+ZDSjhjVErZbzIX5355DW/HzgDF98d5R2zUNRy+dVCCGEcEu1JSUCAgJ4++23\n/zT9o48++tO05ORkkpOTqysUtxh0GiLP3ZTXdgadhohwf7fqhg06DTERF9/Ynj8OgX76y07/4+sG\nnYaYyIsTSoF+etrE/l5eUFeO8bWW9/nXVBxMJ3zsLfhflwCA9pfNqKwmbN2GgOHccVMcUJYDqCDg\nyprxHyvQY7GriQ2x4Kd3v3nxym1missUkq7X0zjCO8mkk6dNvPnBCXwMamZObo6vT91OapnMdua+\nlk76cSMDbgxj4u0xkpDwEqvNwUefnmTNplz8fDU8PiWWrh2CvR2WqIGaNwrm+rZR/Hggh12Hc+ne\n2jOlqEIIIURt59EhQYUQf2Y3VpA9fzFqHwMxMx90Tss/gzrtZxyBYdjje/w+c3keOGzgFwYa98so\nik1qTpVo8dM5aBpidXu5g8dt/HTARuMINQO76dxe7loyme28tOgYJrODSfc0rfPN5S1WBy++ecxV\npjLpnqbyRN5LCs/157FmUy5NG/vw8uwESUiIyxrepzkatYqvth7D7nB4OxwhhBCiVpCkhBBedubd\n/2I9k0vDB+5A38jZ+sH03XJUigN712TQnGvQZLeAMR/UWvAPd3v9DgXScg2AivgIM+7e31aYFT7/\n1ozmXNmGxgtlG4qisHhJJlknTQwbGEGf693v1LM2Ot+R574DpXTvFMzU+2LRSELCKw6llzH92UMc\nPFJO7+4NePEfCURH+Xg7LFHDRYX40adDNGcKjPyw/4y3wxFCCCFqBUlK1DNmq52zhUbMVnvVM4tq\nZzmbx+m3lqANDyV68t0AqE4ewX78EI6GcThiEn6fuTQHUJxlGyr3P7rZRTrKLWqiA6008HX/yd2K\nrWaKyxUSe+hpFO6dcol1W/LY+mMh8S38uXtcY6/E4Cl2h8Jr72Xw895iOrYLZMZDzdFqJSHhDeu3\n5DHrpSMUl1i5a0xjpj9Y90uGapr58+czbtw4Ro0axfr16wFYunQp7dq1o7z89yGQV65cyahRoxgz\nZgyff/65t8K9yC29m6PTqlmxPQOrTVpLCCGEEFWptj4lRM1idzhYtimdPWm5FJSYCQ0y0Dk+gnED\nWqJRS27KW06+8i4OYwVNZk1FE+APDjvaXWtApXL2JXG+HwFLGVhKQecHhiC3119hVXG8UIdOoxAX\nZnF7uQMZNn4+aCMmQs2Art4p20g7Vs4H/8smKEDLYw85L/LrKodDYdFHJ9j+cxFtWvnzxJQ49Lq6\nu781lcXq4KU3D7Nq/RkCAzRMf6A5Hdu5/3kT18aPP/7IkSNHWLZsGYWFhYwcORKj0Uh+fv5FQ4Yb\njUYWLlxISkoKOp2O0aNHk5iYSIMG3h2iNSTQwMAuMaz9KZMte0+S2K2JV+MRQgghajpJStQTyzal\nszE12/V3fonZ9ff4QfHeCsttZqu9zo3cUZF2jNz/rcCnZSwR40cAoD6Siro4F137nphDzg3/qChQ\neq4ZcEBDt4cAVRRIy9XjUFQkhJlw97AZTQqfb/Ju2UZJqY2XF2dgdyg88kAs4aHeG4a0uimKwnv/\nzWLT9gJaNvfj6Wkt8THUjfd4bZJXYGH+wmMcyTAS19SXx6fEERlu8HZY9VL37t3p0KEDAEFBQVRU\nVDBw4EACAwNZtWqVa759+/bRvn1714hdXbp0Yffu3QwYMKDS9XrSkBuasmXvSVb/cJw+HaLx0cvl\nlhBCCHEp8itZD5itdvak5Vb62p60PEb1bVFjb/Qv1cJjytjO3g7tqmXNfRPsdpo8/TBqnRbMFWj3\nbULRGTD0GkqZ8dyMFQXO/iR8QkDnfk372TINhRVaQnxtRAa4X66zYquZknKFIT31RHuhbMNZxnCc\n3HwL40dG06kOP6lWFIWln59k7eY8msX4MPuRlvj51szPYl326+FSXl6cQXGJjaT+Udw7LhqDXlqq\neItGo8HPzzniUEpKCjfddFOlQ4Xn5eURGvp7PzOhoaHk5lb+W3ehkBA/tNrq+ZxFRDjjjABu7d+K\n/607xA8HzzJuUMLlFxTXzPklCgWkAAAgAElEQVRzILxHzoH3yTnwPjkHV0aSEvVAcZmZghJzpa8V\nlpooLjPX2KE6L9XCw89Xz4jesd4L7CqVbE+laOM2Ant2oUFiHwA0+7egMhuxdU5E7R8IxlLnSBvl\nuc4+JAIi3F6/1Q7p+QbUKoX4CIu7jSv47ZiN1EM2YiLV9PdS2UbKqjPs+bWErh2CGDWsoVdi8JTP\nVp1h+dqzNG5o4NnprQgMkK9kT1IUha835vLRsmxUKrhvfAx33xZHXl6Zt0MTwMaNG0lJSeHDDz90\na35FcW+o48JCY9Uz/QUREYEXDcXdu20kK7ce5YtN6fSIjyDA1zvfqfXJH8+B8Dw5B94n58D75BxU\n7nKJGnkUVA8EBxgIDaq8GXJIoA/BATWzifLlWnj8+OvpWttZp+JwkPncawA0mT0NlUqFqiQfzeGd\nKAEh2Nv0/H3msrOgOMA/0jnqhpuOFeix2lU0C7Hiq3PvQt1oUkjZ7CzbuD3R4JVRH3bvL2bZytNE\nhOmZel9snR4Kc8XaHD5dfpqocD3PzmhFg2C5YfEks9nB6++f4INPsgkM0DJnRiuGDYpE5W4GT1Sr\nbdu28fbbb/Pee+9V2koCIDIykry8PNffZ8+evajPCW/zNWgZ1rMZFWYba3ae8HY4QgghRI0lSYl6\nwKDT0Dm+8qfsnePDa2zpxuVaeOQVVVBcVvlrNV3+V2sx7j9E2MhkAjq2BUCzay0qhx1bl8GgOXdz\naq0AUxFoDOAb4vb6iyrUnC7R4a930KSB1e3lln/nLNtIul5PwzDPvyfO5pn517vH0WhUzJzUvE63\nGli7OZd/f3aSsBAdcx5rVaf7zKiJzuaZefKFw3y3o4D4OD9ent2adgnSzLKmKC0tZf78+bzzzjuX\n7bSyY8eO7N+/n5KSEsrLy9m9ezfdunXzYKRVG9ClMSGBBr5Nzaaolv5mCSGEENWt7l71i4uMG9AS\ncPYhUVhqIiTQh87x4a7pNdH5Fh75lSQmwhv41tgWHpfjqDCR/eIiVAY9MU9MAkB1+hia7EM4Ipvh\naNoOONcMuexc55aBUW53bulQIC3XeVziI8y429Dg12M2dh220SRKTT8vlG1YrQ4WLM6grNzOQ3c1\npWVzf4/H4Cmbt+fzzsdZBAVqeXZGK6Iiat/7uDbb+1sJr7ztfK8l3hTG/Xc0QScjndQo33zzDYWF\nhUybNs017frrr2fnzp3k5uZy//3306lTJ2bOnMn06dOZOHEiKpWKyZMnX7JVhbfotBr+X+9Ylqw9\nzKofjjNhsPQtIYQQQvyRJCXqCY1azfhB8Yzq26LWjGJxvoXHhX1KnNetTVSNj78yZz74FMvJM0RP\nugtDk0bgcKDd9Q0KFw8Bai7Od7aUMASCPsDt9WcV6TBa1TQKshLs43BrGaNJIeX8aBuDfLxStvHh\np9mkZxjp1yuUxL5hHt++p2z/uZC3PjxBgL+GOTNaEhPtfsel4uooisLytTn8J+UUao2Kh+5uyuC+\n4d4OS1Ri3LhxjBs37k/Tp0yZ8qdpycnJJCcneyKsv6x3+2jW7Mxk695TJPVoSmQDX2+HJIQQQtQo\n8nionjHoNESG+NWaG/pxA1oyqFsMYef6xDh/v/zzgTP8b2Madod7N941gTW/kNNvfoQ2JJjov98L\ngProbtSFOTjiOqGENXbO6HBQnpMJqCAgyu31G60qjhfq0GscNA+1uL3cV9+ZKTUqJN+gp2GY578S\nvttR4Bp94sEJTetsTX/qvmL+9W4GBoOaWY+0JLZJzexcti6qMNl5eXEGSz8/RYNgHXMfj5eEhPAY\nrUbNyD5x2B0KK7ZleDscIYQQosaRpISo0c638OjQwvn03HGuz8bcIhMbU7NZtindi9FdmVP/eh97\naTmNHrkfbXAgWExo936LotFh6zzo9xmNuThsVvALA417fQ0o58o2FEVFy3AL7uac9h+1sfuwjaZR\navp28XzZRubJChYvycTPV83MyXEYDHXzK+mXAyXMX3gMjUbF09NaEh9Xd8tTappTOSYe/+dhfkgt\nom18AC8/05qEFnL8hWd1bxNJk8gAfvztDCdzZXQXIYQQ4kJ18w5A1Clmq51fjuZX+tqetLxaMQpH\nxdETnF2agqF5EyLvGgWA5tetqExl2K/rA35BzhltFjAWoNbpwd/9J7k5ZRqKKjSE+tmI8HfveJRX\nKHyx2YxWA7cler5sw1hh56W3jmG2OJjyf81oFFU3SxkOHilj3hvHUIAnp7Sgbbz75Tji6qTuK+ax\n5w6TddLEsIERzJnRihAZ5UR4gVql4tab4lCAr6S1hBBCCHER6VNC1HiXG4WjsNREcZmZyJCa3RQ+\ne95bKDY7TZ6aglqvg9JCNAd3oPgFYW/b+/cZy84ACv5RTSm1uJcztNrhaJ4BtUqhVbjF3T4xXWUb\nN/fWExXq2fykoii89dEJTuWYGZ4cSc+u7o8uUpscPW5k7mvpWG0OZk6Oo9N1Qd4OqV5wOBQ+X32G\nZStOo9OqeHhiM/r3rrt9lYjaoUOLMFo2DmZ3Wi7HTpUQ10i+D4QQQgiQlhKiFjg/CkdlQgJ9avwo\nHKU791K4ZjMB3ToQMnQAANo961A5bNg6DwbtuRINcxlYykDnhyEo1O31H83XY3WoiA214KtT3Frm\nl3Qbe9JsNGuopm9nzz85/nzlSXaca04/YVRjj2/fE05kV/DsK0eoMDmYdn8s13e+9NCG4topN9p5\n8a1jfLr8NOGheuY9lSAJCVEjqFQqRvWNA+DLrUe9HI0QQghRc0hSQtR450fhqEzn+PAa3Wmnoihk\nPvcvAJrMnoZKpUJ19gSaE7/hCI/B0bz9+Rl/HwI0oKHbnT0WVag5U6rDX28nJtjm1jJlF5RtjBvk\ng9rDZRsHj5Sx8KNjNAjSMv3B5mg0da9jy5NnTDz78hHKyu1Muqcpfa53P8kk/rqsUxXMfP4QP+8t\npkObQF6e3ZoWzWp2KypRvyQ0DeG65qEcOF7IweMF3g5HCCGEqBGkfEPUCuMGtAScfUgUlpoIb+BL\nhxZhruk1VcHKDZTv+Y3QWwYR2K0DKA60qWsAzg0Bei4vWFEAdgv4hoDOvb4VHAoczjUACgkRFtzN\nLXy1xUxZhcItN3q+bKOo2MrLizNAUZj+UHNCG9S9+v7TOSaeWXCEohIb998Rw6A+MsqDJ+zYVcgb\n75/AZHYwPDmSCaMa18mEl6j9bu0bx68ZBXyx9Rj/aBZSZ0ccEkIIIdwlSQlRK5wfhWNU3xYUl5lp\nERtGaXGFt8O6LIfZQvYLC1HptMQ8OQUA9bF9qPNPYo9tjxLR9NyMNijPdSYo/CtvEVKZzEIdFVY1\njYOsBPm4NzTqviM29h6xERut5qZOnk0I2O0Kr7yTQUGRlUn3xnFdQqBHt+8JBYUWZi04QH6hlQmj\nGzF0YKS3Q6rz7A6FT746xRdf52DQq5n+YCw39pCWKaLmim0YRNeECHYdzmVveh6dW7n/vS+EEELU\nRVK+IWoVg05DZIgfPvqan0/L+fdnmDNPEnnPGHxiY8BqQbtnA4pG6+xL4ryys6A4wD8S1O7tV7lF\nxYlCHXqNg+ZhFreWKTMqfLnl3GgbXijb+GT5KX49VMb1nYO5fWSMR7ftCcUlVp55OZ1TZ0yMuaUh\ntw5t6O2Q6rzSMhv/fO0oX3ydQ1SEnpeeTpCEhKgVRvaJQ6WCL7cew+Fwry8gIYQQoq6SpIQQ1cBW\nWMyp1z9EExxIo6kTAdAc+B5VRSn2Nr0h4Fynh9YKMBWBxuAs3XCDokBargEFFa3CLWjd/BR/ea5s\nY2gvPREhnv3o/7SniC++ziE60sDfJ8bWuebKZeU25ryaTvZpE+OGN+b2EdHeDqnOy8g08thzh9jz\nawld2gfx8uzWNIvx9XZYQrilUbg/va5ryMnccnYezPF2OEIIIYRXSVJCiGpw6o0PsReV0GjqRHSh\nDaC8GM1v36P4BmC/ro9zJkWB0nOdWwY2xN2xPM+Uaik2aQjzsxHub3drmb1pVvalO8s2+nT0bNnG\nmbNmXn//BHqdiscmNcffr+Z2TPpXVFTYef5f6WRkVjC4XzhTJraoc0mXmmbbjwU8Me8wOXkWxtzc\nkKemtiDAv+a3nhLiQsNvbI5GrWL5tmPY7O6V4AkhhBB1kSQlhLjGTCeyyflwGfomjYi6dywA2j0b\nUNmt2Dolgu7cEKbmYrBVgCEQ9P5urdtidw4BqlYptAq3uJXHKDU6+HKLGZ0Wbkv0bNmG2eJgwaJj\nGCvsPHBXU5o3rVsjIZjNDv75xlHSjhnp1zOUB+5sIgmJamS3K3z0aTavvnscjVrFE1PiGH9rIzQe\nLkUS4loID/alX+fG5BaZ2PbLaW+HI4QQQniNJCWEuMayX1iIYrXR5MnJqA16VHnZaDL24QiNxtGi\nk3Mmh93ZlwQqCIhye91H8/TYHCqah1rw0VVdh6woCl9uNlNuwlm20cCzH/n3/5vFscwKEm8KY0Dv\nMI9uu7pZrQ5eWniM3w6X0bNrA6b8XzOP99NRnxSXWHn2lSOsXH+Wxg0NzJ/Vmuu7NPB2WEJclZt7\nxaLXqVm5PQOL1b2Wb0IIIURdI0kJIa6hsl37KVi5Af/O7QgdPhgUpfIhQI15zlE3/MJAo3dr3YVG\nNTllOgL0dhoH29xaZu8RG78ctRPXSM2NHi7b2Lgtj43b8olr5st9dzTx6Lar2/mRRPb8WkLXDkE8\n8kCsDD9ZjdIzypnx3CFXR6nzZ7UmJtq9oXOFqMmC/fUkdmtCcZmFb3dnezscIYQQwiskKSHENaIo\nCpnPvQZA09nTUKlUqE/8ijo3E3vTtihRzZ0z2ixgLHCOtOEf7ta67Q5IyzMACgmRFtx5IH9h2ca4\nQT6oPVhWkJFp5L3/ZOHvp2HmpDj0urrzVWN3KLzxwXF27i7mutYBPDYpDp27vY2KK7bp+3yeeiGN\n/EIr40dGM3NyHH6+datfElG/JV/fFD+Dlm92nMBoci/hLIQQQtQlciUtxDVSuHYLZT/vIyS5H4HX\ndwabFe3u9ShqDbYuSb/PWHYGUCCg4e8tJ6qQWaSjwqomJthGoKHqDtEUReGLzWaMJhjWS0+4B8s2\nyo02Xlp4DItVYdr9sURFGDy27eqmKArvLM1k64+FJLTw56mHW2DQy9dodbDaHLzzcSZvfngCvV7N\nP6a2YMwt0VIiI+ocfx8dQ25oSrnJxvqfM70djhBCCOFxcjVdD5mtds4WGjFL/eo147BYyZr7Bmg0\nxDw1BQDNwR9QlRdhb90TAkOdM5rLwFIGOj9nB5duKLeoyCzUYdA6iA21uLXMnjQb+8+VbfT2YNmG\nw6Hw+vsnyMm1MPrmhnTrGOyxbVc3RVH48JNsNmx1lqTMeqQFvj7yxL46FBRZmT3/CGs359EsxocF\nsxLo2qHuvJeE+KNBXZsQ5K9n3c9ZlBjd+54XQggh6goZQ60esTscLNuUzp60XApKzIQGGegcH8G4\nAS3RqCU/dTXOfvwF5owsIu8Zg2/LWKgoRfPrVhSDP/b2fZ0zKcq5VhK4PQSookBargEFFa3CzbhT\nJVBS7uCr78zoz4+24cGyjeVrc/h5bzEd2gRy24hoj23XE/731WlWb8ylSSMfnnm0Ff5+8vVZHQ6l\nlzF/YQaFxVZu7BHC5Hub4mOQ5I+o2wx6Dbf0iuW/G9L4ZscJbhvYytshCSGEEB4jd6L1yLJN6WxM\nzSa/xIwC5JeY2ZiazbJN6d4OrVazlZRx6tX3UAf403j63wDQ7v0Wlc2CrdMA0J/rkK+iAOwW8A0B\nrXud9J0u1VJs0hDubyPcv+qWLYqikHK+bKO3nrBgz33E9x8s5b9fnCIsROfs+LEONbP/4uszpKw+\nQ3SkgWdntCIoUBIS15qiKKzdnMusl45QXGLl7rGNefSBWElIiHqjb6dGhAf7sGn3SQpKTN4ORwgh\nhPAYSUrUE2arnT1puZW+tictT0o5rsLpNz/CVlhMo7/fgy4sBFXBKdTpu3E0iMTRsqtzJocNynOd\nfUj4R7i1XosNjuXr0agUWoW715x392Ebvx2z06Kxhl4dPFe2UVBo4ZV3MlCpYcZDzWkQ5NmRPqrT\nqg1n+c8Xp4gI0zPnsVaENqg7+1ZTWKwOFn6UyTsfZ+Hrq+aZ6S0ZkRyFyoOtfITwNq1GzfAbm2Oz\nO1i5PcPb4QghhBAeI0mJeqK4zExBibnS1wpLTRSXVf6auDxz9hnOvP8J+ugoGt53+7khQNeiQsHW\ndQiozz3lLTsLigP8I52jbrghPd+AzaGieZgFg1apcn5X2YYOxg0yeKxsw2ZTWLA4g+ISG/eMjaF1\nywCPbNcTNmzN48NPsgkJ1jJnRksiwtwbvlW4L6/Awj9eTOPb7/OJa+rLy7Nb06FtkLfDEsIrerZr\nSHSYH9//coYzBUZvhyOEEEJ4hCQl6ongAAOhQZWPghAS6ENwQN0ZIcGTsl9aiGK2EPPkJNS+Pqiz\nDqLOycDeOB6lUUvnTNYKMBWBxuAs3XDDmSKFs2VaAg12GgdVPUScoih8vslMhRlu7m3waNnGxykn\nOZReTu/uDRg2yL1WILXB1h8LWLwkk8AADc/OaEV0lHslN8J9vx4uZfqcQ6RnGOnXK5R5TyUQGS7f\nRaL+UqtV3HpTHA5FYfm2Y94ORwghhPAISUrUEwadhs7xld8wdo4Px6CTuu0rVf7LQfK/WIPfdQmE\n3ToE7Da0u9ehqNTYuyY7Z1IUKL2yzi3tDtidoQAKCREWdxZh1yEbBzLstIzR0LO95/o7+CG1kJXr\nz9I42sDke5rVmeb2P+4q4vX3j+Pro+GZ6a1o2tjX2yHVKYqisGrDWZ5ZcIRyo43774jh4YnNZHhV\nIYAu8RE0axjITwfPkplT6u1whBBCiGonV4D1yLgBLRnULYawIB/UKggL8mFQtxjGDWgpw4ReIUVR\nyHzuNQCazp6GSq1Gc3gnqtIC7Ak9UILPJYBMxWCrAEMQ6P3dWveJQh3lZmjSwEqAwVHl/MVlDpZv\nNWPwcNnGyTMm3vrwBD4GNY9PisPXt24ktnbvL+aVtzPQ69TMeqQFLZr5eTukOsVsdvDae8f58JNs\nggK0PPdYPEMHRtaZhJYQV0ulUjGqbxwAX26V1hJCCCHqPulCvh7RqNWMHxTPqL4tKC4zExxgQKtR\nyTChf0HRxu8p/WEXwYNuJOjG7mAqR/PLFhS9L/YO/Z0zOexQfhZQQUCkW+stM6vIKtLhp4fYEGuV\n8yuKQsq5so1R/Q2EBnnmnJnMduYvPEaFycGjf4ulSR1pSfDr4VJeeusYajU89XCLOtU/Rk2Qk2vm\npYXHyMisID7Oj5mT4wgLkX46hPijdrGhtG7agF+O5pOWVUR8kwbeDkkIIYSoNnLXWQ8ZdBoiQ/ww\n6DQyTOhfoNhsZD3/OqjVNH36YQC0+zahspqcCQnDuSfrxjznqBv+4aCp+sZLUSAt14CCii7NVWjc\n+HSmHrJx4LidVk009LzOMzlGRVF4e2kWmSdNDB0YQZ8bQj2y3ep2+Gg5/3ztKA4HzJwcR/s2gd4O\nqU7Z+2sJM547REZmBYP7hjP38XhJSAhxCSqVilv7tgDgy++OoihVd3YshBBC1FaSlKjHZJjQvyb3\nkxWY0o8TMX44vvFxqIpyUB/5GUdQOPaEHs6ZbGYw5oNaB35hbq33VImWErOGCH8b0SFVN2UvLnOw\n/Dtn2cbYgQaPNX9ftyWP73YUEB/nxz3jGntkm9UtI9PI8/9Kx2Jx8OgDsXTtEOztkOoMRVH48psz\nPP+vdExmB5PuacpDdzdFp5OfHyEup2XjYDq1DCctu5hfMwq8HY4QQghRbeSqsB6TYUKvnL2snOwF\n76D286XxjAd+HwJUUZydW7qGAM1x/j8gClRVf8zMNhXHCvRo1Aotwy1Vzn9+tA2TBW7p47myjSMZ\n5XzwSTaBARoemxSHTlv7v0KyTlXw7MvpGCvs/P2+ZvTs5t4IKaJqFSY7CxZn8HHKKUIa6Pjn4/Ek\n3hTu7bCEqDVG3uTsW+KL747ikNYSQggh6qjaf0ch/jIZJvTKnV60FFteAdGT7kIfGY761BHUp9Nx\nRLfA0TjeOZO5FCxloPMDg3slAOl5euwOFXGhFgzaqi88fz5o4+BxO/FNNNzQzjNlGyVlNhYsysBu\nV3j0geaEh9b+pvenz5p5ZkE6JWU2HpzQlH493WvVIqp2KsfE43MPsyO1iLbxAbw8uzXxLdzr7FUI\n4dQkMoDr20aRmVPGrsOVt2wUQgghajtJStRjMkzolbGcPsuZt/+DLiqchg/eCQ47mtQ1KCoVtq5D\nnMN9KsrvrSTcHAI0v1xDbrmWIIOdRkG2KucvKnWw4txoG2MHeaZsw+FQeO3d4+TmW7hteDSd2gVV\n+zarW16BhWcWHKGw2Mq9tzVmcD95gn+t/Ly3mMeeO0zWKRPDBkUwZ0YrGgTrvB2WELXSiD7NUatU\nfLX1GHZH1SMyCSGEELWNJCXqucsNEyoulj1/MQ6TmZjHHkTj54s67WfUJXk4WnZDCYlyzlSRD3YL\n+IaA1qfKddodkJanR4VCfIS5yhzGhWUb/6+PgZBAz3yEP199hj2/ltClfRCjb27okW1Wp8JiK7MX\nHCE338L4kdH8v8FR3g6pTnA4FJatOM28N45iszmYel8z7hvfBK1WhvsU4q+KCvGjT8dozhQY+eHX\nM94ORwghhLjmZEjQek6jVjOqbwtu6hANKhURDXylhUQljAeOkPfZanxbtyB83C1grkC7bxOKzoCt\n4wDnTHYblOeBSgP+7g0BerxAh9mmpmkDCwGGqss2fjpg49AJOwlNNVzvobKNPb+WsGzFaSLC9Ey9\nPxa1unbfYJaU2Xj25SOczjFz69CoOpFkqQnKjXZef/84P+8tJiJMz+NT4mjRzM/bYYlaav78+eza\ntQubzcYDDzxA+/btmTlzJna7nYiICBYsWIBer2flypUsWbIEtVrN2LFjGTNmjLdDrxb/r3dztu8/\nw8rvM7ihbcM60Z+PEEIIcZ4kJeoxu8PBsk3p7EnLpaDETGiQgc7xEYwb0BKNWi54LpT5/OugKDSZ\nPQ2VRoNm92ZUlgpsXZLAN8A5U3kOKA4IaPh7h5eXUWpWk1Wsw0froFmItcr5C0sdrNxmxkcPYzw0\n2kZuvoV/vZuBRqNi5qTmBAXU7q+McqOd515JJ/OkiWEDI7hzVCOPjVpSl2WdrODFt45xKsdMhzaB\nTH+wOUGBtfu9Irznxx9/5MiRIyxbtozCwkJGjhxJz549GT9+PEOGDOHVV18lJSWFESNGsHDhQlJS\nUtDpdIwePZrExEQaNGjg7V245kICDQzs2ph1P2WxZe9JErs18XZIQgghxDUjd5712LJN6WxMzSa/\nxIwC5JeY2ZiazbJN6d4OrUYp2rKDku9+JOim62nQryeqkjw0h3eiBIRgb32DcyZrBZiKQWtwlm5U\nQVEgLVcPqIiPsKCp4pOoKAqff+vZsg2r1cGCRccoLbNz3/gYWjav3Z0Umsx25r6WztETRgbeGMb/\n3R4jCYlrYEdqITPnHuZUjpkRyZHMfrSlJCTEVenevTuvv/46AEFBQVRUVLBz504GDhwIQP/+/dmx\nYwf79u2jffv2BAYG4uPjQ5cuXdi9e7c3Q69WQ29oho9ew+ofjmOyVN3/kBBCCFFbyJVjPWW22tmT\nVnlP3nvS8hjVt4WUcQCK3U7W86+DSkXTWVMB0Oxai0pxYO2aBBqtM8NQetq5QIB7nVueLNFSatYQ\nGWAj1M9e5fw7f7NxONNO62YaerT1zMf2o2UnOZJhpF/PUAb3rd2dQFqsDl544xiH0su5sUcID93T\ntNaXoXib3aHwyVen+OLrHAx6NTMebE7vHjKcqrh6Go0GPz9n6U9KSgo33XQT33//PXq9c8SfsLAw\ncnNzycvLIzQ01LVcaGgoublVj1AREuKHVls9v28REe6NuPSX1g3c2q8l/1t/mB8OnmXcoIRq21Zt\nVp3nQLhHzoH3yTnwPjkHV0aSEvVUcZmZghJzpa8VlpooLjMTGSL14HmfrabiYDrh427Br108qtNH\n0WQfxhEVi6NJW+dMpmKwmcAQBPqqWxOYbCoy8vVo1Qotwyo/Bxe6qGxjgGfKNrb+WMCaTbk0bezD\ng3c1rdUtCqw2Z4uPXw6W0qNzMFPvi0UjCYmrUlpm41/vHmfPryU0jDTwxJQ4msX4ejssUcds3LiR\nlJQUPvzwQwYPHuyariiV979zqel/VFhovCbx/VFERCC5uaXVsu7zereLYuW2Y3yxKZ0e8REE+Mqo\nNhfyxDkQlyfnwPvkHHifnIPKXS5RI+Ub9VRwgIHQIEOlr4UE+hAcUPlr9YndWEH2/MWofQzEzHwI\nHA60qWtQuGAIUIfd2ZcEKghwbwSH9Dw9dkVFXJgFfRVpQUVR+GyjGbMVht9koIEHyjYyT1aw6N+Z\n+PqomTk5DoOh9n5N2O3OoUxT95XQqV0gMx5sLiNBXKUjGWU89twh9vxaQtcOQSyYlSAJCXHNbdu2\njbfffpv33nuPwMBA/Pz8MJlMAOTk5BAZGUlkZCR5eXmuZc6ePUtkpHudDNdWvgYtQ29oRoXZxpqd\nJ7wdjhBCCHFN1N67DXFVDDoNneMjKn2tc3y4lG4AZ975L9acPBo+eCf66EjU6btQF+XgaNEZJayR\ncyZjnjMx4R8OmqqfWOWVa8gr1xLsYyc6sOqa4B9/s5GWZadNrIbubaq/YVNFhZ35C49htjj4+8Rm\nNG5Y9bCmNZXDobDw3yf4IbWItvEBPDGlBTqdfOVdja0/FvDgjD3k5FkYc0tDnnq4BQH+0uBOXFul\npaXMnz+fd955x9VpZa9evVi3bh0A69evp0+fPnTs2JH9+/dTUlJCeXk5u3fvplu3bt4M3SMGdGlM\nSKCBb1OzKSqrurWdEEIIUdPJ1WQ9Nm5AS8DZh0RhqYmQQB86x4e7ptdnlrN5nF64BG14KNGT7gKL\nCe2+b1G0emydBjlnshOKP+YAACAASURBVJnBmA9qHfiFVblOmwOO5OpRoRAfYa6y64mCEgerPFi2\noSgKb310gpNnzAxPiqRn19rbP4CiKLz33yw2by+gVXM//jG1Ra1u8eFtdrvCks9Psmr9Wfx8NTzx\n9ziu71z3RjgQNcM333xDYWEh06ZNc0178cUXefrpp1m2bBmNGjVixIgR6HQ6pk+fzsSJE1GpVEye\nPJnAwLpfw6vXabildyxL1x5m9Q/HuXOw9C0hhBCidpOkRD2mUasZPyieUX1bUFxmJjjAIC0kzjn5\nyrs4jBU0nT0VTYA/mt3rUZnKsXUaCH7nLnrLcpz/D4gCVdU3vBkFesx2Nc1CLP+fvfsMjKrMGjj+\nnz7pvfeQBJBeRBGRYlTYtaAIKOIquror4Ooqlt117fu6Kro2UNeKogICIhYUAUFERKqICCEkIb1M\n2qRNu/e+HwIsymQSYCYzQ57fJ5I8c++ZZBLmnvuccwjSu659VhSFpevayzauuchAWLDnL6g/XVvD\nd9sb6JsdxIzJSR4/n6coSvsF9Bdfm0hPDuCff80iMEC8rk9Vg9nOM68Usnd/M0kJBp7650ACjZ03\nZxWEUzVt2jSmTZt2wuffeuutEz43YcIEJkyY0B1h+ZTzByTwxdZiNu4u55IRqcSEixIqQRAEwX+J\nW4cCBp2G2IhAkZA4oi2vgJr3VmLMSidm+iRoqkPzy3coQWFIfUe1L7I2ga0ZdIFg6PzOnNmipqxR\nS4BOJjXc3un6r7e1crBE4qx0DcP7eD53+MvBZhYuLSU8VOv3fReWrqrk4y+qSYo38NDcLEKCRe71\nVB0sbOGeR/ezd38z5wwN46kH+pCWIhrgCoK3aTVqJo3OQJIVPv620NvhCIIgCMJpEUkJQfiN4sdf\nAFkm5YG/oNJq0e5cg0qWcAy5GLS69hGgR3dJhHQ+AlRWIK9GD6jIibai6eS3rrZR5oMvmwgwwNXd\nULbRYLYz7+VCFBnu/nMGkRF6j57Pk1Z+UcXijyuIi9bzyD3ZhIeKzvSnat2mWv7xRB619XauuyqR\ne2dlih0nguBDRvSNIzkmmC17KymrafZ2OIIgCIJwykRSQjhlVrtEdX0rVvuZs5Xb/O02Gtd+S8h5\nwwi/aDSqqiI0xT8jR6cgpw9oX9RaC5INAiJB23kjyLJGLc02DXEhdiICZZdr5aNlGzaFSRd4vmxD\nkhWefbWIugY7M65OpH8f/63HXr2+hoVLy4iK0PHIPdlE+XFyxZvsDplX3y3mpbcOo9er+ccdvbj6\n0njUYoyqIPgUtUrFVWMyUYCPNondEoIgCIL/EvuaexCrXXJL7whJllmyPp9deTXUma1EhhoYkhPD\ntPFZaNT+m+dSZJniR58DIPXBO1GhoN2+GgDH8CMjQCV7+8QNlQaCnE8vOZ7FrqKwTo9WrdArytbp\n+i0/OcgvlRjS28Cwbijb+OCjcn76pYkRQ8KYNKFrI0190frNtfx3UQlhoVoemZtNXIwYaXsq6hrs\nPL2ggP35LaQlG7lvTi8SYsX3UhB81aBeUfRKCmVnXg2FFWYyEkK9HZIgCIIgnDSRlOgB3J1EWLI+\nn7XbS499XGu2Hvt4em6O2+LubrUrVtO69wBRV00kaGBf1Id2oa4rR0ofiBKT0r6opRoUGUISQO06\nsaMocNCkR1bayzb0neSBahtlPt1sJcAAM68Iw25pddMzc27b7gaWf1ZFfKyBv9yc5vEyEU/Z/EM9\n8988THCQhofvziIpwX/HmHrT/vxmnppfSH2jnfNHRDB7ZipGgyjXEARfplKpmHxBL576YBfLNx5i\n7jVDvB2SIAiCIJw0/72tLXTZ0SRCrdmKwv+SCEvW55/0sax2iV15NU6/tivP5LelHHKbhdJ/L0Bl\n0JN8/yywW9Hu+gpFo8Mx9OL2RfZWsDS2l2wYOx+HaGrRUNuqJdwoERficH1+RWHJWgs2O1w5xkB4\niGcvBiurrTz/+mH0OhX3zsogKNA/85Pbdjfwn9cKMRjUPHhXFumiCeNJUxSFL76u4Z9PHqTRbOfG\nqUnc9ad0kZAQBD/RJy2CfhmR7Cuq55eiOm+HIwiCIAgnzaNJCYvFQm5uLitWrKCiooLrr7+e6dOn\nc8cdd2CztW9lX7VqFZMnT2bKlCl8+OGHngynR3J3EqGx2Uqt2er0a/VNFhqbnX/N11W+vhhbeRXx\nN1+DITkBzc/fomprQjprFASFtW97aKpsXxwc12lzS4fUvktChUJOjLWz5Xy3x86hMpl+mRqG9vZs\ngsBml3l6QQEtrRK3zkglI9U/L+R//NnM0wsK0WhUPHBnFtkZQd4Oye/Y7DLz3yrm1XdLCAzQ8NDc\nbK6YEOe3u2YEoae66oJMAJZ/U4CiuB45LQiCIAi+xqNJiZdffpmwsDAAXnjhBaZPn877779PWloa\ny5Yto7W1lfnz5/P222/z7rvvsnDhQhoaGjwZUo/T2Gylzk1JBEmW+XJbCR31u4sIMRIW7H/15/ba\nespffAttRBgJt8+ElgY0+75FCQhB6nd++yJLIzgsYAgFfecXvwV1emySmrQIO4F6128QTQ0yn222\nEWiEq8d5ftrGa++VUFDcRu4FUVw4Osqj5/KUfXnNPPFiAQrwt9t7cVZOsLdD8jumOhv/+Hce676t\npVdaIE8/2JuBff230akg9GQZCaEM6x1DQbmZ3fkmb4cjCIIgCCfFY0mJQ4cOkZ+fz9ixYwHYunUr\nF154IQDjxo1jy5Yt/PjjjwwYMICQkBCMRiNDhw5l586dngqpRwoLNhAZ6jxRcLJJhCXr8/l6Zxly\nB9fYQ3KiT6uBpreUPfsacnMLiXfdgjYsBO3Or1BJDhxDLgKdAWQJWqoAVfsuiU6YLWrKzVoCdTKp\nEXaXa4+VbTjayzZCgzxbUbVuUy1rv6klMzWAW65L8ei5PCW/sIXHn8vHIcncOyuDwf1EY7eTtXd/\nE3c/sp/8wlbGjYrkX3/LITba/xKKgiD8z6TRmahUsOKbAmSxW0IQBEHwIx67AnryySe5//77j33c\n1taGXt8+oi8qKoqamhpMJhORkZHH1kRGRlJT47zUQDg1Bp2GITnOp0ScTBLBVRmIWgXjhiQybXzW\nKcfpLW2HDlPz7nIMGSnEXj8ZVU0JmqI9yJGJyJmD2he11LQnJoKiQaNzeTxZgQM1ekBFToy1w10l\nR23+0U5BucyAXhqG5Hi2bKOwuJX/LiomKFDDPbMy0ev8r6XM4dI2Hnk2H6tV5s5b0jl7cOe9PYT/\nURSFVWuqeGjeQVpaHdxyXQq335SGQe9/rwVBEH4tKTqI8/rFU1bTwtZ9Vd4ORxAEQRC6zCNXQStX\nrmTw4MGkpDi/E9tRvWNX6yAjIgLRak//jnxMzJm3Vdlic1BvtmKxOY49vzlThxAYoOf7vRWYGtqI\nDg/g3P4J3HRZPzQa9QmPjQg1YNT/+qVRYWqhrqnjUo9rJ5xFfHT31vS74+e3fdYrKA6Jfk/eS2xi\nBK3fLEQCgnMno40Nw2Fto766HrXOQGRqOqpOppUcKFdosSlkxEB2quvvR1Wtg8+3NBMcqOLWq6MI\nC/71a9qdr8+mZgfPvLoPm13hsfv7MqCf98s2Tvb5FZe18uiz+TS3SPz9jt78LjfeQ5GdPl/822Kx\nSDz5Uh5fbawmMlzHY/f3Y1C/sFM6li8+P3cSz0/wV1ecn8H3+6pYuamAs/vEotWIhKMgCILg+zyS\nlNiwYQMlJSVs2LCByspK9Ho9gYGBWCwWjEYjVVVVxMbGEhsbi8n0v9rH6upqBg8e3Onx6+tPf1Ri\nTEwINTVNp30cX/HbsZ8xEQEM7BV1bOznpFHpTByRQmOzlbBgAwadhrq6FqePdTYyVLJLRIYYnDa5\njAgxItns3fr9dMfPr2nrLqpWfkXw2YPQjDqXum3foas4jJTaj3pDLFSbobEYUJADYzDVtrg8Xptd\nxd6SAHRqSAxqxdWmH1lRWLC8DZsdpl6ox9bWSk2be5/fUYqi8O+XCiirsDD593HkZOi9/to/2edX\nbbLy9yfyqGuwc8t1KZw9KMjrz6Ejvvi3parGyr9fKqCopI2cXkHcOyuDqAj1KcXpi8/PncTz69ox\nBN8UHR7A2MFJrNtZyqY9FYwbkuTtkARBEAShUx5JoT/33HMsX76cpUuXMmXKFGbNmsV5553Hl19+\nCcCaNWsYPXo0gwYN4qeffsJsNtPS0sLOnTsZPny4J0I64/127Gd1fdsJYz8NOg2xEYEnlGx0ZWSo\nu8pAfIWiKBQ/+hwAqQ/eiUpyoN25BkWt+d8IUFsz2FpAFwR612/CFQUO1uiRFRVZ0VY6+3Z8u9tO\nYbnMwF4aBmd7tmxj5RdV/LCrkQF9Q7j2ykSPnssTauttPPj0QWrr7fxhSiK/u9D561BwbvdeM3Mf\n3U9RSRsXj43m8XuziYrQezssQRA85NLz0tDr1KzaXIjNT8d0C4IgCD1Lt+3ru/3221m5ciXTp0+n\noaGBSZMmYTQaufvuu7n55puZOXMms2fPJiRE3IE5Wacz9vNkHjttfBa5w5OJCjWiVkFUqJHc4cl+\n2UuibtVXtOz6mcjLLiJ42AA0v2xG1dqI1HckhESCIkPzkZrckPhOR4DWtGioa9MSESARG+z6TWBN\ng8znW2wEGeEqD0/b2Lu/iUXLyokM13HXn9LRdNbkwsc0mO08NO8gVTU2pl4ez5UTfbdkw9coisLy\nzyp59D/5WKwys25M5bY/pKLzw14igiB0XViwgYuGp9DYbGP9zjJvhyMIgiAInfLsLVrakxFHvfXW\nWyd8fcKECUyYMMHTYZzRujL2MzYi8LQfq1GrmZ6bw+QxvX5VBuJvZKuNkv97CZVOS/LfZ0OrGc3e\nTSjGIKT+Y9oXtdaBZIOASNC6nkpgl+CgSY9apZATY3WZv5BlhcVfWbA74NqLjIQEeu4Csa7exjOv\nFKJSwz2zMggPdd2k09c0tzh45Jl8yiqsXHFJLNdckeDtkPxGW5vEi28eZsuOBqIidNw7K5OcXt3b\n80UQBO+ZcE4qX+8s47MtRVwwKJFAo8ff7gmCIAjCKRO3zM4ApzP281Qe21EZiL+oemsptpJyYmdO\nxZiWjHb3OlQOG45BF4LeCJIdWk2g0kBQ56UCBXV67JKatAg7ATrXzVo37bZTVCEzKEvLIA+WbTgc\nCvNeKaTB7OCGqcn0yQr22Lk8oa1N4rH/5FNU0sYlY6O5YWqSR3eUnEnKKi3c968DbNnRwFk5wcx7\nsI9ISAhCDxNk1DHx3FRaLA7WbCv2djiCIAiC4JJISpwBTqffw5nWK6IzjvpGyp9/A01YCEl33Iyq\nthz1oV3I4XHIWcPaF7VUt5dvBMeC2vXzb7SoqTDrCNTJpITbXa6trm8v2wgOUHHVWNe7L07XouVl\n/HKwhVFnh3Nprn/1YLBaZR5//hB5Ba2MPS+SW2ekiIREF23b3cC9j+2npNzCpbkxPDI3m/Aw/9oh\nIwiCe+QOSyE0UMeX20owt9q8HY4gCIIgdEgkJc4Qv+33EBsR0OV+D2dSr4jOlD3/BlJjE4l33Iw2\nPBTt9tWoUHAMnwhqNdhbwdIIWiMYw10eS1bgQHV7cqF3jBVX7RqOlm04JJg8zkBwoOcusrdsr+fj\nL6tJijcw+8Y0v7qgt9tlnpxfwL68ZkYOD2fOzDTUftYHwxtkWWHxynL+74UCHA6FO25J4+bpKWi1\n4nsnCD2VQa/h0vPSsdokPt9y2NvhCIIgCEKHRJHhGeK3/R56pUfR1NjW+QOdPNZfe0V0xlJUSvVb\nS9GnJBI3cyrqkn2oq4uQknujJPRqH6HRVNm+OLjz5pYlDTpa7WoSQu2EBcgu136z287hSpnB2VoG\nZnnu166s0sKLbx7GoFdz7+xMAgL85+focCg880ohu/aaGTYwlL/emo5GIy6qO9PSKvHca4Vs/9FM\nTJSe++dkkpnmvIeMIAg9y5jBSXz5Qwnrd5Zx8dkpRIYavR2SIAiCIJxA7JQ4wxzt92DU//rC12qX\nqK5vdTmJw997RXSm9In5KHYHKX+fg1qrRrvjSxSVGmnYkUarlgZwWMAQCnrXF3VtdhWH63XoNDKZ\nka63xVbVyaw+UrZxpQfLNixWiafmF9BmaZ+0kJoU4LFzuZskK7zwRhFbj4wuvWdWJjqt+PPUmeKy\nNu55bD/bfzQz6KwQ5j3URyQkBEE4RqdVc8X5GTgkmVWbC70djiAIgiA4JXZKnOEkWWbJ+nx25dVQ\nZ7YSGWpgSE4M08ZnoVH3nIu+5h0/UffJVwQN6Ufk5Reh2bcZVXM9jj4jUUKjQZaguRpQQXCcy2Mp\nCuTVGJAVFX2irbjK4ciywpK1x5VtBHjmzr+iKLz6TgnFZRYmjo/hgnMjPXIeT5BlhVcWFrNpaz19\nsoL42+2ZGPQ957V5qr7bXs+LbxzGYpW5cmIc101O9LuRr4IgeN7I/nGs3nqYb/dUMuGcNOIjReJS\nEARB8C3inf8Zbsn6fNZuL6XWbEUBas1W1m4vZcn6fLefqyu7MbxBURSKH30OgNQH70RlaUHz0wYU\nfQDSwHHti1pqQJEgKBo0rhsDVjdrqG/TEBngICbI9XPduKu9bGNIjmfLNtZsNLFhSx3ZGYHMnJbk\nsfO4m6IovLm4lLWbaslMC+CBO7MIMJ6ZO3XcRZIV3vmwjKcXtN/1nHtbBn+YkiQSEoIgOKVRq7ly\ndCayorByU4G3wxEEQRCEE4idEj7OapdOqc+DxeagtLqJXXk1Tr/+7Z4KJo3OJNBw+i8BX9+NUb/6\na5q3/UjExHGEnDME7dZVqOxW7Gf/HgwB4LBCWx2odRAY5fJYdgnyTQbUKoXsGJvLthNVdTJffG8j\nJFDFlWM8V7aRX9jC6++XEhKsaS970Hn/e95V760o57O1NaQkGXnormyCAkVCwhVzs4P/vFrI7p+b\nSIg1cN+cTNKS/adMRxAE7xjWO4a0+BB++KWa353bRGpciLdDEgRBEIRjRFLCR53Khb7VLlFntrB2\newk/F9VTXd9xo0uLTeKDr/K4+dKzTjvWo7sxjjq6GwNgem7OaR//dMg2OyX/ehGVVkPy3+egqq9E\nfXA7cmg0cs7Z7bUYzUeaW4bEg8r1Bf2hWj12WUVmpI0AndLhOuk30zaCPFS2YW528NSCQiRJ4a5b\nM4iJ0nvkPJ6w7NNKln9WRUKsgYfvziY0RPw5cqWwuJV/v1RAtcl2rBFoUKD4ngmC0DmVSsXkMZk8\nu+RHVnxTwJ1TBnk7JEEQBEE4Rryj9VEnc6F/fAKj1mzt8jn2F9djtUun1djSapc63I2xK8/E5DG9\nvNo4s/rd5VgLS4idOZWAzFS06xaiUo6OANWAtQlsLaALAn2wy2M1tKmpbNIRpJdIDre7XLtxp53i\nKpmhvbUM6OWZXzNZVnj+tSJqam1cMymBwf1DPXIeT1j6cSnvrSgnJkrPI/dkExnuumSmp9u4pY4F\nCw9jsylMvTyeaZcniFGpgiCclH7pkfROCWfPoVoOljaQnex67LUgCIIgdBf/2efdg3R2of/bng3H\n9404GfVNVhqbf/2Yk+0L0dhspa6D89Y3WU44fndyNDZR/uxraEKCSLrrFtRleagrDiEnZiEnZoMi\n/2aXRMcXefKR5pag0DvGhqvrwcra7inbWPZpJTt/MjOkfyhTLo332Hncbc1GEy+8foiIMB2PzM3y\nq90d3c3hUHjzg1Kee60IjVrF327P5NpJiSIhIQjCSWvfLdELgOUbDqEoHe/2EwRBEITuJHZK+KCu\nXOjHRrR3z3aVwOhMRIiRsOD2i+ZT7QsRFmwgMtTgNCFy/PG9oeLFt3DUN5L8tznoIkLRfPsOikqN\nY9iE9gRESy1IdgiIBK3rOIvrdbTa1SSG2gk1yh2uO1q2Iclw9XgDgUbPXDzu3mtm8ccVxETpufPW\ndL+5SN24pY5X3ikmPLQ9IZEQZ/R2SD6rwWxn3suF/HygmeQEI/fPySQpQXy/BEE4dVnJYQzqFcWP\nh2r5ubCO/pmu+ygJgiAIQncQOyV80NELfWd+e6HvKoHRmSE50cdKK051SodBp2FITkynx+9u1tIK\nKt9YjD4xjvg/XoPmwA+ozSbk7OEo4XHtyYjWGlBpIMh5/Ee12lQcbtCh18hkRtpcrt2ww05Jtcyw\n3lr6Z3om51dTa+PZ/xai0ai4Z1YGocH+kVv8fkcDL7xRRGCAhmcfHUBKkmjQ2JGDhS3MfWQ/Px9o\n5txh4Tz1QG+RkBAEwS2uvCATgOUbC5DFbglBEATBB4ikhA86mQt9VwmM46XEBhMVakStgqhQI7nD\nk5k2Pgs4+XKR35o2Povc4ckdHt8bSv+9AMVqI/n+WajVMpo9X6PojDgGjW9f0Fzd3uQyOLa9t0QH\nlCNlG4qiIjvahtZFjqWiVuLLrTZCg1RM8lDZht0hM+/lApqaJW6+NpnsjCCPnMfdduxp5JlXCtHr\n1Pzzr1nk9BKd3zuydpOJfzyRR12DnRmTE7l3VgYBAWIqiSAI7pEaF8I5Z8VxuKqJnQdObaelIAiC\nILiTf9xi7YGOXtDvyjNR32QhIsTIkJzoEy70jyYwjm+Kebyo0P89ziEpTseLnky5iDMatZrpuTlM\nHtPrlMaXulvLnl+oXbGawP69ibpqIpodq1HZ2trLNoxBYG8FayNojWB03eirqklLg0VDVKCD6KCO\nkzOSpLD4KyuSDFM8WLbx9pIy8gpaGTMykkvGRnvkHO62d38TT80vQK2Gf9zRi969/COR0t3sDpk3\n3i/lyw0mgoM03H9rOkMHhHk7LEEQzkCTzs9g2y/VrPimgCE50T4xvlsQBEHouURSwkedzIW+swTG\nOf3jGdUvjshQ47HHadQ4TS64qy+EQadxmbzoDoqiUPzocwCkPngn6qZaNAd+QAmJROp9TvvWh6Yj\nzS2DXTe3tEmQX6tHrVLIjra5WsrXO+2UVssM76PlrAzP/Fp9830dn6+rISXJyJ//kILKVUA+4sCh\nFv71/CFkGf72l0z69xE7JJypq7fx9MuF7M9vIT05gPvmZBIf671+LIIgnNniIgM5f2AC3/xYznd7\nKxk9MNHbIQmCIAg9mEhK+LiuXOg7S2AkJ4ZTU9PU5XN0tNvCm30hTkXDV5to+m4HYbnnE3r+2WjW\nL0KlyNiHXgIaLbTVg8MChjDQu/6+HqrV45BV9IqyYtR1XHdbYZJYc6Rs44oLPHMhWVLWxoK3iwkw\nqrlvViZGg+//TAoOt/Los/nY7DL33JYp7vp34JeDzTy9oID6Rgejz4lg1o2pfvHzFQRPy8vLY9as\nWdx4443MmDGDQ4cO8eCDD6JSqUhPT+fhhx9Gq9WyatUqFi5ciFqtZurUqUyZMsXbofuFy0el893e\nSlZ9W8i5Z8Wj04rdEoIgCIJ3iP+BziBHExinkkTwxb4QJ0txOCh5/AVQq0l94C+oyvPRlB1AjstA\nTukLstTeS0Klau8l4UJ9q5qqJh3BeomkMEeH6yRJ4YMjZRtTL/RM2UZbm8STCwqw2mTm3JTmFw0P\nS8raeOSZfNosEn+5OZ1zh7kuk+mJFEVh9foa/vlUHo1NDmZek8Rfb00XCQnhtJmbHKzZaKKlteO/\nXb6utbWVxx57jJEjRx773Lx587j11ltZtGgRCQkJrF69mtbWVubPn8/bb7/Nu+++y8KFC2loaPBi\n5P4jMtTI+KFJ1JqtbNhd5u1wBEEQhB5M7JQQAN/rC3Eqat5fiSW/iJjrryIgKw3tZwtQUOEYPrE9\nEdFcA4oEQbGg0XV4HEmGPJMBUOgda8PVtM31O+yU1cic3VdL33T3/zopisL8tw9TVmHl8otjOW94\nhNvP4W4VVRYempePudnBbTekMmZkpLdD8jk2u8yr7xSzfnMdocFa5t6WwYC+orRFOD1tFolP1lSz\n8osq2iwyer2KsSP9c+SjXq/ntdde47XXXjv2ucOHDzNw4EAARo8ezfvvv090dDQDBgwgJKT992fo\n0KHs3LmT8ePHeyVuf/O7kWls/LGcz74rYvTABIx68bZQEARB6H7if58zhNUuuSWZ4At9IU6F1NxC\n6bz/og4MIOnuW1Hn70TdUI2UNQwlMgEcVmira09GBLq+SC5u0NFmV5MUZifEIHe4rtwk8dUPNsI8\nWLbx2doaNm9roG92ENdfneSRc7hTTa2Nh+blU99o56Zrkrl4jH804+xONbU2nppfQH5RK73SArlv\nTiYxUXpvhyX4MbtDZs0GEx9+Wkmj2UFosJZrr01k9Aj/TQhqtVq02l+/RcnJyWHjxo1MmjSJTZs2\nYTKZMJlMREb+73lGRkZSU+N6okRERCBaV6OUTkNMjH8lF2OAq8Zm8cGaA3z3SzXTcnt7O6TT5m8/\ngzOR+Bl4n/gZeJ/4GZwckZTwc5Iss2R9PrvyaqgzW4kMNTAkJ4Y5U4d0+RjHJzQAv9wpUbHgHRym\nOpLu+TP68GC0G9ahaPU4Bl/opLllx1VLLTYVxfU6DBqZjEhbh+skSeGDNUembVxoIMDg/rKN/fnN\nvL20lLBQLXP/nIFW69uNLesb7Tw07yA1tTamX5nAZRe7LpHpiX76pYl5LxdibnYwflQkt16fikEv\nquiEUyPJCpu21vHBRxVUm2wYDWquuSKByy+OPSPHyN533308/PDDrFixghEjRqAoJ/b6cfa536qv\nb/VEeMTEhHS5l5MvOb9fHJ9sKmD5+oMMy4omLMh/k6T++jM4k4ifgfeJn4H3iZ+Bc64SNSIp4eeW\nrM//VYPKWrOVtdtLCQzQM2lUeoePs9ol6swW1u4oZU++iTqzFYNeAyhYbDJRR5Ib08Zn+fyoMFt5\nFZWvLEIXH0P8n65D89NGVNYWHINzISAErE1gbwF9EOiDOzyOokBejQEFFdkxVlz1/Fq73U65SWbE\nWZ4p26hvsDHv5UIUGeb+OYPICN9+k2hucvDQvINUVFmZ/Ps4plyW4O2QfIqiKKxaU807H5ahUsGt\nM1KYMC7aLyao6pZYXwAAIABJREFUCL5HURS2/2jmvRVlHC61oNWquOyiWCb/Po6w0I5L0/xdQkIC\nr776KgCbNm2iurqa2NhYTCbTsTXV1dUMHjzYWyH6pQCDlivOz+C9r/JYvvEQN/2ur7dDEgRBEHoY\nkZTwY1a7xK4859tUv99bwcQRKRh0ml/thNBqVMd2Vvx2BKjFJh3799HkBsD03BzPPQk3KH3qFWSL\nlbR7/oxGakOzfwtKUDhS3/NAkbs8ArSySUujRUN0kIPoIKnDdWU1Emu32QgLVnH5aPeXbUiywuPz\nfqG23s71Vyf6/BjNllaJR549SEmZhd/nxnDdVWK03PGsVpn5bx9m09Z6IsK0zL0tk7NyOk6OCYIr\n+/KaeXdZGfvzW1CrYPyoSKZdkUBs9Jk/QvaFF15g4MCBjB07lhUrVnDFFVcwaNAgHnjgAcxmMxqN\nhp07d/L3v//d26H6nbFDEtm4u4xv91QwdnASmYmh3g5JEARB6EFEUsKPNTZbqftNYuEoU0MbdWYL\nX+8q+1VpR6BRR0l1c5fPsSvPxOQxvXy2lKP15zxMH35KQN8soqdeivbbpahkCfvQi0Grg5YakO0Q\nEAnajt+02xztI0A1KoWs6I7LNhySwuKvrMhHpm14omxj8coKdvzYwNmDw7hyYpzbj+9ObRaJx5/L\np+BwG7mjo7jpmmRx9/84ldVWnnypgKLSNnr3CuLeWb6/60XwTUUlrSxaXs6OPWYAzhkSxvSrEklN\nCvByZJ6xd+9ennzyScrKytBqtXz55ZfMnTuXxx57jBdffJHhw4czduxYAO6++25uvvlmVCoVs2fP\nPtb0Uug6jVrNdRfl8OT7u3jvqzz+8YdhqMXfckEQBKGbiKSEHwsLNhAZajhhxwNAdHgAa3eU8vXO\n/435qjVbna51pb7JQmOz1WebXxY/9jwoCin/vAO1qRhN8T7kmFTktP4g2aHFBCoNBMW4PE5+rQGH\nrCIr2opR23FN8tptNspNMuf009Inzf2/Ptt2N7Ls00oS443c8cc0n77At9pknnixgP35LYw+J4I/\n35CK2tWokh5m114zz75aSHOLxCVjo7l5ejI6VzVBguBEZbWVD1aWs2lrPYoCZ+UEc/3VifTJOrN3\n2/Tv35933333hM8vW7bshM9NmDCBCRMmdEdYZ7TeqRGM6BvLD79U891PlZw/UJThCYIgCN1DJCX8\nmEGnYUhOzK96Shw1vG8cW/dWnPY5IkKMxxpg+pqGDVswf7OV0DHnEn7BOWhXvwJw3AjQKkCB4FhQ\nd7zTo65VTXWzlhCDRFKoo8N1pdUS67bbCQ9Wcfn57v+eVNVYef71IvQ6Ff/6Wz+CAjtv2OYtdofM\n0wsK+OmXJkYMCeMvN6ejEQkJoL3ef/lnlby3ohyNRsXsmankjhZTSISTU99o58NPKvlqowmHpJCR\nGsCMyYkM6R/q08lKwb9NHZfF7oMmlm08xNCcGAKN4m2iIAiC4Hnifxs/N218FtBeZlHfZCEixMiQ\nnGguOTeNz78rOu3jD8mJ9snSDUWSKHn0OVCpSP3nHagLdqOuq0DKGIQSnQy2VrCaQWsEY3iHx5Hk\n9uaWoJATY+uw5YRDUli89kjZRq4Bo5vLNmx2macWFNDSKjF7ZirZmcE+27VXkhT+898iduwxM6R/\nqF9MBukubW0SDzyxj41bTERF6Lh3diY5mUHeDkvwIy2tEiu/qOKTNdVYbTLxsQamX5nAqLMjxE4k\nweMiQ438fmQaH20q5JPvCpk2PtvbIQmCIAg9gEhK+DmNWs303Bwmj+lFY7OV4EA9KzcV8PhbP5zW\ncaNC25MbR5MevqZk4Qra9h8ietplBGanov34ORSNDseQi9rHaDQfaW4Z4rq55eF6HRaHmuQwOyEG\nucN1a7fZqDDJnNtfS+9U9//avP5eybG+DL58V12WFV568zBbtjdwVk4w983ORKcTJQkAZRUW/v1S\nAaUVFvr1DmbubRmEn8GTEAT3stpkVq+vYflnlTS3SESEablxWhK5o6NF0k/oVhPOSWXTngrWbi9l\n9MBEEqNFYlUQBEHwLJGUOEMYdBpiIwJ5f22e03KO40WHGjC56C3xx9/3ZVifWJ/cIQEgtbaR9/Dz\nqI0Gku+9Dc3eTajamnEMHAdBYdBWDw4LGMNA13EvjGaripIGHQatTEZkx80tS6ol1m2zExGi4rJR\n7i/bWP9tLV99U0tGagB/vC7F7cd3F0VR+O+iEjZsqSM7I5AH7uiFwSASEgA/7Grg+deLaG2TmXp5\nElMujRUXkkKXSJLC15trWfxxBbX1dgIDNMyYnMjvc2MwGnzzb7BwZtNpNVx7YTYvrviJD9Yd5K6p\ng0TJkCAIguBRIilxBnE1IvR4fTMi2LynEtlJywK1Cgb0ivLZhARA5SuLsFbUkHjnH9GH6tF8vRkl\nIATprPNBlqC5un13RFBsh8dQFMgzGVBQkRNtRdPBtbXDcWTahtI+bcPdZRuFxa28+m4xQYEa7p2V\niUHvmxf5iqKwcGkZX24wkZ4SwIN3ZREQ4Luvke4iywpLVlWwdFUler2KO29J5+rL03y29EbwHYqi\n8P2OBt5bUU5ZpRW9TsWVE+O4cmIcIcHiv2bBuwZnR9MvI5KfC+vYfdDEkBzXzaIFQRAE4XSIdz5n\nEFcjQo+3r7CBxOggSmtaTvhaUkwwIYG+O7LQVm2iYsE76GOjSJh1Pdqdn6GSHNiHXAQ6PTRVgiK1\nJyQ0HW+drzBrMVs0xAQ5iAqSOlz31TYblbUyIwdoyXFz2UZLq4OnFhRisyvMvS2N+FjfbCgKsPjj\nCj7+spqkBAMP3Z1FcJD409HS6jjWWyM2Ws/9czLJSPXNKTWCb9mzz8y7y8vJL2xFrYaLx0Yz9bJ4\nosS4WMFHqFQqpudm8+AbP/DBuoP0y4hE78M3KwRBEAT/Jq4szgBWu0Rjs5UAg7bDEaHHq2+ycMeU\nEbz2yT7KapqRlfYdEkkxwfzjD0NP+fxhwQaP77Aom/cqcmsbOU/fj7atFk3RT8hRSciZg9pLNtrq\nQKOHwMiO43WoOFSnR6NWyIp2UbZRJbF+e3vZxqVuLttQFIUX3zhMZbWVyb+P4+zBHTfj9LaPVley\ndFUlcTF6HpmbLfokAMVlbfz7xQIqqq0M6hfCXX/KIFTc3RY6kV/YwqLl5fy4r30nzfkjIrhmUgJJ\n8UYvRyYIJ0qICiJ3eDJf/lDClz8Uc9moDG+HJAiCIJyhxLtoPybJMkvW57Mrr4Y6s5XIUAOBRl2n\nSYmIECMx4QE8ctMImlptlFY3kxx78jsknJ1/SE4M08ZnoVG7vwyh9cAhat7/GGN2Bskzr6LpgxeA\nIyNAUUFTVfvC4DhQdXz+/Fo9kqwiO9qKQet87ObxZRvTcg0Y9e4t21j5RTVbdzXSv08w105KdOux\n3enzdTW882E5URE6Hr0nW9zJBTZvq+elNw9jscpcOTGO6yYninGogktlFRbe+6icLdsbABjcL4QZ\nk5PolS521gi+7fJRGWz5uYrPthxm1IAEIkNFAk0QBEFwP5GU8GNL1uf/qqllrdlKrdmKRq1CctYw\n4ojjx3yGBOrpm97xroKTPf/Rj6fn5pzSMV0pefwFkGVSHvgLcv5PqE2lSGn9UGLT2sd/2ltAHwT6\n4A6PUduioaZZS6hBIjHU0eG6NT/YqKyTOW+AjuwU9/6a7D3QxKJlZUSG67j7TxloNL55QbtuUy2v\nvVdCeKiWR+7JJjbad8tLuoMkK7y3vJyPVldhNKi5Z1YG5w2P8HZYgg8z1dlYsqqC9d/WIsuQnRHI\njKuTGNg3xNuhCUKXBBi0XD2mF29+/gtLv87nz1f093ZIgiAIwhlIJCX8lKumlq4SEqP6x7tlzKer\n8+/KMzF5TC+3lnI0bvqBxnWbCRk1nPCxI7B8+hKKWotjyCWgyMftkuh4BKgkQ55JjwqFnBhrh5NC\niysl1u+wExmq4tJR7t0ZUNdg55mXC1GpaR8ZGeabpRDf/lDHgrcPExyk4eG52T1+e7m52cGzrxby\n489NJMQZuH9OJqlJAd4OS/BRTc0OVnxeyefrarDZFZISDMy4KolzhoaJKQaC3zlvQDwbdpfxwy/V\njB1cT580kYwVBEEQ3EskJfxUV5taHi8yxMCMS3q7pbTC1fnrmyw0NluJjXDP1mRFlil57HkAUv95\nB9pfvkNpbkDqNxpCIqClBmQ7BESCtuO7+UX1OqwONSnhNoINzhM3dofC4q8sKEfKNgxuLNtwOBSe\neaWQBrODmdck0Te74x0d3rRtdwPPvVaE0ajmobuySEvu2RffBYdbeXJ+AdUmG8MHhXLnLekEBYo/\nncKJLFaJT7+q4aPVVbS2SURH6rjmikTGnhfpszuiBKEzapWK6y7K4bGF23l/bR4PzTzbIyWagiAI\nQs8l3ln7qbBgQ4dNLY16DRbbiRMlhvaOcdvuBVfnjwgxEhbsvq3+tStW07r3AFGTJxKUlYRm5Yeo\nAkOQ+l8Akh1aTKDSQFDHI8uarWpKGnQYtTLpEfYO13251UZVvcKogTqykt3767FoRRn78poZOTyc\nyy7qeFypN+3+2cxTCwrRatT8444ssjKCvB2SV23YUsvLbxdjsytMuzyeqZcnoBb9I4TfsDtk1n5T\ny9JVFTSYHYQEa5h5TRITxsWg14mLN8H/ZSSEcv7ABL7dU8GGXeVcOCzZ2yEJgiAIZxCRlPBTBp2G\nITkxv+rpcNR5A+IJDjSw+cdy6pssRIQYGZIT7Zayja6c//ieFadLbrNQ+sQCVAY9yffNRrtrLSrJ\njmHUVVj0RmgsBZT25pZq5+dUFDhQowdU5MRY0XRwjXC4UmLDTjtRoSp+f557yza27Kjn4y+qSYwz\nMGdmmk9u4d6X18wTLx5CBfzt9kzOyvHNnRzdweFQWLi0lE/X1hAYoGbubRk+PSFF8A5ZVvj2h3re\n/6icqhobRoOaqZfHc8UlcQQGiPGJwpll8phe7DhQzcpNBYzoG+vT48MFQRAE/yKSEt3MneMzjyYZ\nduWZTkg+xMeFMXFEikdHdbo6v7tUvv4BtooqEmbfgDFAQlOwCzkiHl2/c6Ciur3BpdYIxrAOj1Fu\n1tJk1RAb7CAy8MQdJPDbsg2jW8s2yiotvPjGYQx6NffOzvTJi5WDhS08/lw+kqRw3+xeDOoX6u2Q\nvKah0c7TLxeyL6+Z5AQj99+e2eN7agi/pigKO38ys2h5OUUlbWg1Kn5/YQxXXxrvs31iBOF0hQXp\nueL8TBavO8hH3xTwhwl9vB2SIAiCcIYQSYlu4onxmRq1mum5OUwe0+tXyQerXaLC1ALgtr4OJ3N+\nd7HX1lP+4ttoI8JImHMj2u+XAEdGgKpU0HykuWVIx80trQ4VBbV6tGqFrKiOe3B88b2N6nqF8wfp\n6JXsvudgtco8vaCANovMnbek+2R/hqKSVh59Nh+rVeauP2Vw9uCOEzxnuryCFp6aX0BtvZ1zh4Xz\nl5vSCPDBJJLgPb8cbGbR8nL25TWjUsHYkZFcMymBuJiePZ1G6BnGD01i4+4yNu4uZ8zgJNLixSQZ\nQRAE4fSJpEQ38eT4TINOQ2xEIJIs8/7avPbER5OVyJDTT3yczPndreyZ/yI3t5Dy+D3oGw6jrj6M\nlNwHJT4TS301OCztOyR0HZ/7oEmPpKjIibai7+DVXlQhsXGXnagwFb9zY9mGoii88m4xh0stTBgX\nzZiRpzZ61ZPKKiw8/Ew+zS0St9+cxqgRPber+tpvTLy6qARJUpgxOZGrfhfnk2U2gnccLm3jvRXl\nbNvdCMDZg8O47qpEn0w0CoKnaDVqpl+UwzOLd/Pe2jz+dt1Q8XdSEARBOG0iKdENumt8picTH92t\nLb+I6ndXYMhMJWb65WhXv4yi1iANmwCyREttKajUENRxw0hTiwZTi5Ywo0RCiMPpmqNlGyhwTa4R\ng859b66+2ljLhu/qyM4I5KZrfK8pWFWNlYfmHaTR7ODWGSmMHxXl7ZC8wm6Xef2DUtZsMBEcpOGu\nP2UwpH/PLV8Rfq3aZOWDlRVs3FKHokDf7CCuv9p3p+cIgqf1S49kWE4MO/Jq+H5fFSP7xXs7JEEQ\nBMHPnVRSIi8vj+LiYnJzczGbzYSGijfuXdEd4zO7mvg4nZ4W7uyH0ZnS/3sJJImUf9yO7tB2VM31\nOPqehxIaBU2VKJKjPSGhcV6/7ZDbd0moUMiJsXZU3cHqLTZqGhRGD9aRmeS+55Rf2MJr75cQEqzh\nnlmZ6HysA39tvY2Hnj5Ibb2dG6YmMXF8x5NLzmR19TaeXFBI3qEW0lMCuG92JvGxYhu+AA1mO8s+\nreTLr004JIX05ABmXJ3I0AGh4s6w0ONNG5/FnoJaln6dz+CsaAIM4h6XIAiCcOq6/L/I22+/zaef\nforNZiM3N5cFCxYQGhrKrFmzPBnfGaE7xmd2lvioM1v4elcZOw9UU9dkIzJEz9DesV0q7fBEPwxX\nzN/vpP6LDQSfPYiIMcPRrHoexRCINHBse8lGWx0avREpsONyiKI6PVaHmrQIG0F6xemawgqJb3bZ\niQ5T8buR7ivbaGp28NSCQiRJ4a+3ZhAT5VsdyhvMdh6ad5Aqk41pl8czaUKct0Pyin15zTy9oIAG\ns4MLzo1g1g1pGAy+lTwSul9Lq4MPVpaz6stqLFaZuBg9069M5PwREWIcrCAcER0ewMRzUlm1uYjP\nthzm6rG9vB2SIAiC4Me6/A78008/ZenSpYSFtTfBu/fee9mwYYOn4jqjHB2f6cypjs+02iWq61ux\n2tunSRxNfDgTEWJkzfYS1m4vpa7JBkBdk42120v5YN3BTs91tCyk1mxF4X9lIUvW55903J1RZJmS\nR58DIPWhv6Lbsx6V3Ypj0HjQGaGpEoCg+NT28g0nmqxqShu1BOhkUsPtTtfY7EfKNoBpFxnRu6ls\nQ5YVnnutiJpaG9MuT/C5MoCmZgePzMunrMLKFRNimXZFgrdD6naKovD5uhoefDoPc7ODmdckcect\n6SIh0cPZ7DKr1lQx9Y9bWbqqEqNBza0zUnjxX2dxwbmRIiEhCL8x8dw0okINfPlDMVV1rd4ORxAE\nQfBjXd4pERQUhPq4u+JqtfpXHwuuuWt8pqtdC0NyYn7VU+Kogb0i2fJzpdPjffdTJVPGZnWYGOmu\nfhhH1a36ipbd+4i8/CJCMqJRf7YUOSwGOXs4WJvA3gr6YAwhEWBpOuHxsgIHqvWAipxoC5oOXqKr\nt9gwNShcMFhHZqL74l/+WSU7fzIzpH8oUy7zrTrb1jaJx/6TT1FpGxPGRXPDlKQetw3dapN59d1i\nvt5cR2iIlrl/zmBAX9E9vieTJIUN39Wx+ONyTHV2ggI1TL8ygcsujsVoEJNXBKEjBp2GaeOzWbBy\nLx+sO8idUwZ5OyRBEATBT3U5KZGamspLL72E2WxmzZo1fP755/TqJbbrdZW7xme6ambZUeJj1IB4\nvt5V7vR4FptETX0rybG/vjA72j/CZpc83g/jKNlqo+SJ+ah0WpLvn4V2+2pUioJ92G9GgAZ3XG5Q\n1qil2aYhLthORKDsdE1BucSm3Xaiw1VMdGPZxu6fzXywsoKYKD133pLuU3dWrVaZfz1/iIOFrYwb\nFckt16X0uIRETa2NJ18q4NDhVrLSA7lvTibRkb5VWiN0H0VR2LqzkfdWlFNaYUGnVXHFhFhuvT4L\nm9Xi7fAEwS8M6x1Dn9Rw9hyq5cd8E4Oyor0dkiAIguCHupyUePDBB3nnnXeIi4tj1apVDBs2jOuu\nu86TsZ2RTmd8Zld2LUzPzeGy89JpssmE6NWEBOoprWl2eVy7438X7852Yhj0aiy2Ey/w3dUP46iq\nt5ZiKykn/k/XEahpQV1ZgJyYjZKUDS01INshMAq0zs9pcagorNOjVSv0irY5XWOzKyw5UrZxjRvL\nNkx1Nv7zahEatYq5t2UQGuI7Tb/sdpl/v3SIfXnNnDc8nNk3pvlUwqQ77PmliWdeLsTc7GD8+VH8\n6foU9D7WfFToPj/90sS7y8o4WNiKWgW5F0Qx7fIEoiP1hIXqqKkRSQlB6AqVSsX0i3J4+M1tLF53\nkLPSI9Fpxd9WQRAE4eR0+cpJo9Ewc+ZMZs6c6cl4BBe62sxyV14NdU1WIkPaSzsmjc7AqNdgsUlO\nHzv/o5+ONb10thOjI6faD8MZe10D5c+/gSY8lMTZf0Cz+V0UlRrHsAkg2aHFBGoNBDq/C6MocLBG\nj6yoyI62ou8grM+32DA1KowZoiMjwU2xO2SeXlCAubl9tGZOZpBbjusODofCvFcK2f1zE8MGhnLn\nreloND0nIaEoCqvWVPPO0jLUahV/uj6FS8ZG97hdIkK7Q4dbWbSsjN0/t5d+jRwezvQrE0lOMHo5\nMkHwX8kxwYwfmsTaHaV8tb2E352b5u2QBEEQBD/T5aTEWWed9as38iqVipCQELZu3eqRwIQTdTbF\nY+32kl+VaRxf2jFqQDzrdpQ5Pe7RppeSJLPnUK3TNUa9hkCDloZm6yn3w3Cl/Pk3kBqbSHnoTgw1\nB1Cba5F6n4MSHguNpYACQXHtiQknTC0aalu1hBkl4kMcTtcUlEl8u9tOTIR7yzYWLikjr6CVC86N\nYMI439m6KskKz79exA+7GhnYN4R7Z2f2qDtYFqvE/LeK+faHeiLCtNw7O5M+WcHeDkvwgvIqCx98\nVMG3P9QDMOisEK6bnEh2hu8kEAXBn10xOoPv91XxyeYiRvaLJyJEjFYWBEEQuq7LSYn9+/cf+7fN\nZmPLli0cOHDAI0EJzh2d4uG0mWVWFHvyTU4ftyvPxCM3j0ClUrHzSFmG03UHTTQ2d1T2IPH364eh\n16qd9sM42oPiVHplWIpKqX77QwypScRdeyma1fNRdEYcA8eBrQWsZtAawRjm9PEOGQ6a9KhQ6B1j\nxdlNcKtdYfFaC6jgmlwjOq177pRv2lrHZ+tqSEkyctsNqT5zB16WFV5+u/2CvE9WEH/7S2aPKleo\nqLby5EuHOFxqoU9WEPfMyiQyXOftsIRuVldvY8knlaz9xoQsQ1Z6IDMmJzKon29NxREEfxdk1DF5\nTCYLvzjAsg353HJZP2+HJAiCIPiRUyp81+v1jBkzhjfffJNbb73V3TEJLnTUzHLckCQ27HS+E6K+\nyUJzq43puTlcMDCBB9/c5nRdY7ON8GAD9c3Od2LEhAeckHBwNQ1E08XpLKVPvIRid5D89zno9m9G\nZbPgGDYRDIFQX9C+KCQep9kGoLBOj01Skx5hI1CvOF2z+jsbtY0KY4fqSHdT2UZJWRsL3i7GaFBz\n36xMn+nUrygKb35Qyrpva+mVFsgDd2b5TGzdYedPjTz7ahEtrRITxkVz07XJPWqHiADNLQ5WfF7F\nZ+uqsdkUkuINXHdVIucOC/eZxKEgnGlGD0xkw+5ytvxcxdghSWQnh3s7JEEQBMFPdDkpsWzZsl99\nXFlZSVVVldsDElzraIqH1S65LO042pAyJiKQqA7WRYYaGZgVxddOkhsd9Y9wNQ1kem5Op8+nafse\n6j5ZS9DQ/kRdMBDNpwuQQ6KQeo8ASz04rO07JHTOm4OaLWrKGrUE6GRSI+xO1xwqldj0o53YCBUT\nznVP2UZbm8STCwqwWGXumZVBko/UpCuKwqLl5Xy2robUJCMP3p1FUGDPSEgoisLyz6p4/6NytBoV\ns2emkjvad8ppBM+zWmU+XVvNR6uraGmViIrQcc30BMaNiupRvVQEwRvUahXX5ebwf4t28N5XeTx4\nw9k9rqmyIAiCcGq6nJTYsWPHrz4ODg7mueeec3tAQtf8doqHq9KO4xMKna1r3+GgOmEnhrP+EV2Z\nBuKqlENRFEoebX8Npf7zTrQ716BSZBzDLjkyArQGVOr2XhJOyAocqNEDKnrHWHD23sdqV1iy1oJK\n1T5twx1lG4qisGBhMWUVVi67OJbzhkec9jHdZdmnlaz4vIqEOAMPz80mNNh3poB4UlubxPNvFLF1\nZyNRETrum5Mp+gX0IA6HwtpNJpauqqS+0U5wkIYbpiYxcXwMBr3YJSMI3SUrOYyR/eLZ8nMl3+wp\nZ+zgJG+HJAiCIPiBLl+xPPHEE56MQ3CDjko7fptQcLWuo50YznQ2DaSx2epy/Gn95+tp3r6HiInj\nCE0JQrMuDzk+Ezm5DzRXgiJBcCxonL9MSxu1tNg0xIfYCQ84cWQpwGebbdSaFcYN05EW754dA5+v\nqznWq+EPV/vOG65Va6p4/6MKYqL0PHpPNhFhPaOHQlmFhSdeOkRZhZX+fYK5+88ZhIf2jOfe08my\nwuZt9XzwUQUV1VYMejVXXxrPpAmxBAX2jIScIPiaKeN6sfNgDSs2FnB2n1iCjOLvsSAIguBap+/a\nxowZ47IGd8OGDe6MRzgNxycUNHodks3uNKHQlcTDb3diONPZNJCjJSPOyDY7Jf/3EiqthuS/zUK7\n/RMUVEdGgFqhrR40egiIcvr4FotCUZ0enVqhV5Tz5pz5JQ4277ETF6nmknPcU7axP7+Zt5aUEhaq\nZe5tGWjd1DDzdK3ZYOKtxWVEhut45J5soiPdN13El23d1cDzrxXRZpG57OJYbpiSJLbp9wCKorD7\n5yYWLSujoLgNjQYmjo9hymXxPSYZJwi+KjzYwOWj0vnw60Os/KaQ6y7uvJRTEARB6Nk6TUq8//77\nHX7NbDa7NRjBPQw6DTHRQdTUNHW6rrPEQ2eP70rJiDPV7yzHWlhC3E3TCJJqUDfWIGUNQ4mIh4bD\n7YuC45w2t1QU2FmkICsqcmKsODuN1aawZF37JI5rcg1uKdtoNNuZ93Ihigx3/ymDqAjfuPDfsKWW\nV94tJjRYy8Nzs0iIPfNHscmywuKPK/jwk0r0ehV/vTWdC86N9HZYQjc4cKiFRcvL2Lu/GZUKLjg3\ngmsmJfaI131Pk5eXx6xZs7jxxhuZMWMG27Zt49lnn0Wr1RIYGMhTTz1FWFgYr7/+Ol988QUqlYo5\nc+YwZsxkxAM1AAAgAElEQVQYb4fe4100PIVvfqxg/a5SxgxOJDlWjGMWBEEQOtZpUiIp6X/b0/Pz\n86mvb5/zbrPZePzxx1m9erXTx7W1tXH//fdTW1uL1Wpl1qxZ9OnTh3vvvRdJkoiJieHpp59Gr9ez\natUqFi5ciFqtZurUqUyZMsVNT+/MdDrjN93NWSnIwKwoxg1JwmqXnMbnaGyi7D+voQkJInHODLTf\nvI2iM+AYnAvWJrC3gj4YDCFOz1nToqGyAcIDJOKCHU7XfLrZRp1Z4cLhOlLdULYhyQrPvlpEbb2d\nGZMTGdDXeWzdbcv2el58/TCBARoenptFSmKAt0PyuJZWB//5bxE79piJi9Zz35xMMlJPPbkm+Ifi\nsjbeX1HO1l2NAAwbGMp1VyWKn/0ZqrW1lccee4yRI0ce+9wTTzzBvHnzyMzM5JVXXmHJkiVMnDiR\nzz//nMWLF9Pc3Mz06dM5//zz0Wh6RoNfX6XVqLn2wmye+/BH3l+bxz3XDhGTbwRBEIQOdbno9vHH\nH2fz5s2YTCZSU1MpKSnhpptu6nD9119/Tf/+/bnlllsoKyvjpptuYujQoUyfPp2JEyfy7LPPsmzZ\nMiZNmsT8+fNZtmwZOp2Oq6++mosuuojwcDFK6rfcMX7T3Y4vBakzW1i7vYQ9+SY27CzrML6KF99C\nqm8k+e9zMJb9iMraimPIRWAMhNpD7YuCnTe3tEuQb9KjVkFOtNXplNCDJQ6++8lOfKSai0e4ZzfD\nkpUV7PmlibMHh3HlROexdbcde9pHX+r1ah78a1aPuDg7XNrGky8VUFFtZXC//2fvPgOjKrMGjv+n\np/ceUklClQ4C0gVFUQGpIlhXUdDd14q77ipYVrFXLKi4IE1pFkSaICACUhRCS4eQPsmkZ+q974dI\nIKQwIWWS8Py+rJmZe++ZvUMy99znnOPO47OjcL9KmnlerXL1JlZ/m8XOvQVIMnSOcWXW5FC6xok7\nr+2ZVqtl8eLFLF68uOoxb29vCgsLASgqKiI6Opr9+/czdOhQtFotPj4+hIaGkpSURKdOnRwVuvCX\nHh196RXjxx9Jen4/lcuALq3jb6cgCILQ+tj9bf7YsWNs2rSJWbNmsWzZMuLj49m6dWudr7/55pur\n/jsrK4vAwED279/PggULABg5ciRffPEFUVFRXHPNNbi7V9557tOnD4cPH2bUqFFX+p7arcaO32xO\nOo2KHUcy2HEks+qx2uIzpWeS/fkqtKFBBE29AdXWT5FdvbB1GQTl+SBZwMUX1LUvxU4t0GK2Keke\npsBFK9d43miWWb3NhFIB08fomqTnw8E/i/jmh2wC/bT8/f6IVjHi7NjJEl77MAWlEp79v47EdWz/\nkyZ+PWDggyVnMJokbr85kBm3h6BqBedCaB5FxRbWbsxh0448rFaZ8FAnZk4KoV9PT3HH9SqgVqtR\nq6t/RfnXv/7FzJkz8fDwwNPTkyeeeILPPvsMH58LpVs+Pj7k5eXVm5Tw9nZBrW6elRT+/q1jFV1r\n8fCUnsx9bQdrfknh+msjcdI1fxJZnAPHE+fA8cQ5cDxxDhrG7r8OWm3lHWeLxYIsy3Tv3p2FCxde\ndrvp06eTnZ3Nxx9/zL333lu1H19fX/Ly8tDr9bV+oRCqu5Lxmy1Z5mFvfOdeXYRsMtPhmTloT+xE\nIdmw9L2x8oVlelCqwcWv1v0UGZVkFqtx0Uh0ClaRn1/zNT/8asJQUlm2ERbY+Peck2fi3c/S0KgV\nPD03GjdXx9+VP5VUyn/fS0aS4J9/j6Z7p/b9S89mk1m+LpP1m3Jw0il5ek4Ug1rRGFahaVVU2Phu\nSy4bfsrBaJII8NNyx8Rghl7rI5JQV7kXX3yRDz74gL59+7Jw4cJae17Jcs1k9aUMhvLmCA9/f/fL\n9nK62miAGweEsfG3Myz94TgTh0U36/HEOXA8cQ4cT5wDxxPnoHb1JWrsvsKKiopi+fLl9OvXj3vv\nvZeoqChKSi7/f/aqVas4efIkTz31VLUvC3V9cbDnC0VT3eVoSxmsLH0ZBSV1j99UaTX4+1XeLbfZ\nJBZvOMa++CzyCivw83Lmmo5+PDihO67OzdOc0Z74NGkp5K//CY/e3YgZ24uKdR+hCo3Gve9ASs4l\nYULGPTgcp1pKdyRJ5vCxys/GtbFKlEpFjfMXn2zit2OldAhQM2Ocb6ObW5rMEvNeTqC0zMYzj8Zx\nbb+WXXpa2+fzdFIJL7+bjMUi8eIz3Rg2qPYETltgz7+/wiILL79xgoN/FNIhxJlXnu1GVHjrXxXS\nln63XInmeH9mi8SGTZksXX2WwmILXp4aHro7mtvGBqPVtGx5mjh/rdPp06fp27cvAIMHD+b7779n\n4MCBpKamVr0mJyeHgIAAR4Uo1GLcoAj2xmezaf9ZrusRTIBX++99JAiCIDSM3UmJF154gcLCQjw8\nPPjhhx8oKChg9uzZdb4+Pj4eX19fgoOD6dKlCzabDVdXV4xGI05OTlVfHAICAtDr9VXb5ebm0qtX\nr3pjaYq7HG0tg2Wz2PBxr3v8ps1sqXo/K7YlVCvzyDNU8PPBdPYezWBIj5Bm6UFxufisJjNHH/8v\nACHPzKVsx3qUQEXPGyjPzIHiAlA7U2LWUVLLeTlj0FBcoSXYw4JsMgPVz5/RJLN4bTlKBUwepaHQ\nUNro9/TR/86SkFzK9UN8uba3W4t+Xmr7fJ7NqODfCxMoK7fxfw9E0iVG16Y+wxez599fyplyXv0g\nhbx8M/17efKPv0Xi6iy1+vfc1n63NFRTvz+bJPPLbwWs2pBFXr4ZZycld0wI5tYxATg7qygqLGuy\nY9lDnD/79uEIfn5+JCUlERMTw7Fjx4iIiGDgwIEsWbKERx99FIPBQG5uLjExMQ6JT6idk1bNlJEd\n+fS7E6zensijk3o4OiRBEAShlbE7KTF16lTGjx/PuHHjuO222y77+oMHD5KRkcGzzz6LXq+nvLyc\noUOHsnnzZsaPH8+WLVsYOnQoPXv25N///jfFxcWoVCoOHz7Mv/71r0a9qfbI3vGb9ZVRGM1Ss/Wg\nuFx8FTt+peS3w3iNHopXkAplWja26F7IPiFgSKl8oXtQrSNAKywKzhg0aFQS0T7mWo///V9lG6P7\nawgLaPwqmp9/zWfLL3qiwp15YGZYo/fXWFk5Rua/kURJqY0594S3+/GXO/fm89H/zmK2yEwfH8yU\nW4NaRS8PoenIsszvfxTx1bpM0jOMqNUKbrshgEnjgvBwd3yZlOBY8fHxLFy4kIyMDNRqNZs3b2bB\nggX8+9//RqPR4OnpyX//+188PDyYOnUqM2fORKFQMH/+fJQOavws1O3aLoHsOJzBkUQ98an5dI/y\ndXRIgiAIQiti9ze/efPmsWnTJiZOnEjnzp0ZP348o0aNquoRcanp06fz7LPPMmPGDIxGI8899xzd\nu3dn3rx5rF69mpCQECZMmIBGo+GJJ57g/vvvR6FQMHfu3Kqml0J1tY3f7B3nV/U4QFGpiYJaVitc\nrK4eFNC4PhR1xTd1aCQnRv8TVCrCnnkI9R8bkFWayokbFQawmsDJCzQ1l3TKMiTkaZFkBZ18TdQW\n0ukzVvbFWwn2UzKmCaZtpKWX88nSs7g4q3hqTjQ6rWO/4ObqTTz/RhKGIgv33dGBMcPabsnG5Vit\nMl9+fY6N2/JwcVby5MPR9O/l6eiwhCZ2/HQJy9Zkcjq5DKUCrh/iy7Txwfj7Nk95mdD2dO/enWXL\nltV4fNWqVTUemzVrFrNmzWqJsIQrpFAouHNMHAu+/J2V2xJZcJ83apVIHgmCIAiV7E5K9O3bl759\n+/Lss89y4MABvvvuO+bPn8++fftqfb2TkxNvvvlmjceXLFlS47GxY8cyduzYBoR9dbp4/GZdiQNn\nnRovNx2G0roTE4YSI0WlJgK8XaqSEG4uGjbsTm3UuNG64sv53xqMyWfwn3U7bqazKIylWHuOujAC\nVKEEt9prgHNLVRgq1Hg7Wwlws9V4vsIk8/V2E0olTB+tQ61q3N30snIbr32Yitki88RDEQQH1D4F\npKUUFFqY/0YSeflm7rw9hFvHtN9a6cIiC69/lMqJhFLCQpyY90g0oUFOjg5LaEKpZ8v5am0mh48V\nAzCwrxczJgYTFiJqzAWhvQsPdGdEr1B2HMlg+6Fz3Dgg3NEhCYIgCK1Eg9bIFhcXs23bNn766SfS\n09OZNm1ac8Ul1EOnURHg7VLtMZsksWJrAkcS9RSW1l7icJ63uxNuLlpWbEuoSkLotCqM5gsX/Y0Z\nN3pxfLaSUjLe/BSlqwuhD01DtfcrZBcPbF2vg7I8kG3gFlg5deMSFhsk5etQKmTi/M21VXbw/R4T\nhaUyYwZo6NDIsg1Zlnn/8zSyck3cfnMgA3rXbLjZkopLrMx/I5GsXBOTxgUy+ZYgh8bTnBKSy3ht\nUQr5BguD+nnx6L0RODs378QYoeVk5RhZuSGL3fsNAHTv7MasSaFXxShbQRAumDgsmgMnc/h2TyoD\nuwbi6ebYxL8gCILQOtidlLj//vtJTExkzJgxPPTQQ/Tp06c54xIawCZJvPDlQdJz7Wvu2DvOjw27\nU6r1f7g4IXGx+ko97JG1aClWfQGhTz+ES/pBFJIVS+8xgFRZuqHSgnPt/RFS8rVYbAqifcw4a2pO\nZTl1xsr+41ZC/JSM7t/4Zd/fbs5l/5Eiund2Y8bEkEbvrzFKSq0seDOR9Ewjt4z2587bHRtPc9q6\nS8+nX6Uj2WRmTQ5h4k2BKGrLQAltTkGhhW++z2LrLj02G0RHODNrUig9u7mLcywIVyE3Zw0Th0Xz\n1ZYE1v6Swn3jujg6JEEQBKEVsDspcddddzFkyBBUqpoXp4sXL+aBBx5o0sAE+63Ylmh3QiIswI0J\nQ6N4/vMDdr3+4lKPhjJn5pD1yXI0Qf4ETxyOatdSJN8OSJHXQFF65Yvcam9uWVihJKtEg6tWooOX\npcbz5UbpQtnGmMaXbVTWuGfg7anhidlRqBq5v8aoMNr4z2vHSDlbwehhvtx3R4d2eQFnsUh8tuIc\nW37R4+aq4onZUfTq7uHosIQmUFZuZf2mHL7fmovZLBMcqOPOiSEM6uclGpYKwlVuRK9Qfvkjkz3H\nshjeO4SOIaJvkCAIwtXO7i5Dw4cPrzUhAbB79+4mC0homJJyM4dO1T5tozblRisFRcbLNsM8z9vd\n6YqXV5577WNko4kOTz+E7vh2AKz9bgJzGVjKQesGOrca20kyJOTpAJk4fxO1XcOs2FRMUanM6P5a\nQv0bt8y/oNDCmx9Xzrl/8uEovDw1jdpfY5jMEv99L5n4U8UMG+jNQ3eFt8uERF6+iX+/lsiWX/RE\nhjnzxnOdRUKiHTCZJdZvyuGhecdZuzEHNxc1D98VznsvduW6Ad4iISEIAkqlghmjYwFYsTUBSa65\nElIQBEG4ujTJ3DVZ/EFpcTZJYvXPSRw6lUdxef09JC5mKDGCQoGPh458OxITF48bbYiy+NPov/kB\n566xBPQNQ7nvILaI7sj+HSqbW6KoXCVRi7OFGsotSkI8LHg6STWeP5lmZddhY2XZRr/GJRBsNpk3\nP07FUGTlnmmhdI2rmSRpKRarxOuLUog/VcqwQX78/b4wVO3wIu5EQilvfpxKQaGFYQO9mXN3BDqd\n6MLeltlsMtv35LP62ywKCi24uqi4a0oIN48KEOdWEIQaOoV7M6BLAAdO5vLrsSyG9mi/JYqCIAjC\n5TVJUqI93slt7Vb/nFStJ4S9vN2d8Pdypnecf63bO2lVmC22WseN2kuWZdJffBdkmfB/zkFzdDuy\nUo21z41QpgfJAi6+oK7ZB6LcrOCMQYNWJRHtUzPZUmGS+Wa7CZUK7hija3SZxVdrMziRUMqgvl7c\ndoPjJlvYbDJvf5LGoaPF9O7uwfynulBUWOaweJqDLMts+jmPL1adAxnum96BW8b4i98fbZgkyfx2\nqJAV6zLJzDGh1SqYNC6QCWMDcXNtkj8vgiC0U1NHxvBHkp61O5PpGxeAi5P4nSEIgnC1En8B2qBy\nk4U9R7OuaNvzKx8mDI2mwmjl1FkDhhJTVRJiwtBoSsvNtY4btVfRzt8o3n0AzxGD8PGzoMgsxtp9\nGDi7QH5W5aQNF78a28kyJOh1yLKCGD8T6loO/+0uE0VlMrePciPE/4rCq7LvUCEbfsolJFDHI/dF\nOOziWJJkPvjiDL8dKqRbJzfmzY1Gq2lfd5dNZomPl55l594CPNzVvPTPboQFiekabZUsy/x5ooSv\n1mSSfKYclQrGjvRjyq3B+Hg5rvxJEIS2w8fDiVsGRbJuVwrf/ZrK9OtjHR2SIAiC4CAiKdEGrdia\nWOe0DAB3Zw3X9QrBYrbyR2I+hhIj3u5O9IjxZVjPEJZtOc3RJD0FxSa83bUM7BbEjDGxuOgqLyZc\ndFf+sZCtVtJfeAcUCsKevA/V8e+Rnd2wdR8GpTmADK4BoKx5QZpTqqawQoWPixV/15rv70Sqld9P\nWungr+SWYW4YCuxr7lmbzBwj73+Rhk6r5Om50bg4aPykLMt88lU6O38rIC7ahWf/3rHdLXfP1ZtY\n+GEKKWcqiIlyYd7caLp08iIvr8TRoQlX4ERCMe9/lsSxk5Xnb+i13twxIZjgQCcHRyYIQltz44Aw\ndh/NZPuhcwztGUKonxgTLAiCcDVqkqREZGRkU+xGsIPJYuPUmYJ6X9O7kx9zJ/ciL6+EySNsFBQb\n2XYwnaNJenYczqj22oISM3vjs3FxUjNjdFyNYxWVmhq0aiJv9Q9UnE7Bb/pteFSkoLBZsPQaB7IV\nTCWgdganmp22zTZI0mtRKmTi/Mw1BnKUG2W++dmEqgmmbZhMEq99mEJ5hcQ/HoggooPzFe+rMWRZ\nZsnqDLbs1BMV7sx/HovB2UHJkeZy9GQJb3yUQkmpjeuH+PLgrLB2twrkapGeWcGK9VnsO1QIQO/u\nHsycFEJ0RMMn8wiCIABo1CqmXx/L+2uPsXJbAk9M6yVK+gRBEK5CdiclMjIyWLhwIQaDgWXLlvH1\n118zYMAAIiMjeeGFF5ozRuEiRaUmDCX1N7Y8nmLAaLYCoNOo2HEkgx1HMuvd5khCHpOGd0SnUVU1\n0TySkEdBsQkfDx294/yZNioGlbLuC0pbWTkZb3yM0tmJsPvHozq8Bsk7CCmqFxSmVb7IvfYRoCn5\nWqySgo6+Jpw0NRunfrvLRHGZzE2DtAT7XfmFuyzLfLzsLGfOGRk70o8Rg3yveF+NtXJDFt9vyaVD\nsBPPPx7TrmrwZVnmu825LP0mA6VSwexZYdw4wk982WyD9AVmVm3IYsev+UgydOvkzvTxQXTv7O7o\n0ARBaAd6xfjRPdqH+JQCDifo6dupkbWZgiAIQptj9y3L//znP4wfP75q0kZUVBT/+c9/mi0woXae\nbjp8POof0WkoMWL4a7KGyWLjSMLlR4bmF5soKq3c5nwTzfxiE/Jfz207eI7VPyfVu4/sj7/CkqMn\naPaduKQfAMDa72YwFYHNBE5eoKm5KsFQoSS7RIOb1kaop7XG88dTrBw8ZaVDgJKRfRtXr771l3x2\n7i0gJsqF+6Z3aNS+GmPdj9l88302gf5aFjwZg6dH+6nDN5psvPVJGl9+nYGnh4YX58UydqRoaNnW\nFJdaWbLqHHOeOc72PfmEBjvxzKPRfPx6b5GQEAShySgUCu64PhaVUsHqnxMxW+ouTxUEQRDaJ7uT\nEhaLheuvv77qwqJ///7NFpRQN51GRe+4+u8ieLs74eKkJtdQTp6hnAI7Rn8qFeCsU9ebxDiSoMdU\nx5cFc46erI+WofH3JfSWfijzzmIL64IcEAZluaBQglvN6RY2CRLydIBMnL+ZSydglhtl1uy4ULbR\nmBGZyWnlLF6RjpuriqcejkLjoDKCH7fnsmxNJn4+Gl54KhYf75pTSNqqrFwTz7x8mj0HDHSOceWN\n5zvTOcZxY1aFhqsw2vjm+ywenhfPd1ty8fLU8Oj9Ebz9Qheu7e0lkkuCIDS5YF9XxvQLQ19k5KcD\nZx0djiAIgtDCGrRevLi4uOoLaWJiIibT5S92hStXV0+H82M69xzNqrXhpYuTmsff+YU8QwU+Hjp0\nWiVGs1TvsSQZKkxWKkzWOpMYhhIjRaUmArxr1pBnvPEJUnkF4c/9Hd2pXchK1V8jQPNAlsAtsHLq\nxiXOFmqosCgJ9bTg4VQzxg1/lW3cPEhLsO+Vl22UlFp5bVEKNpvMYw9GEuBX/2qT5rJtt57Fy8/h\n5aFm/pOxDoujORw6WsTbn6ZRVm5j7Eg/7rujAxq16B/RVlisElt/0fP199kUFVvxcFNz3x0hjB3h\n57AEntB+paWliX5UQjW3XhfJb8ez+fG3M1zXPRhfT9E8VxAE4Wphd1Ji7ty5TJ06lby8PG699VYM\nBgOvv/56c8Z21bpcTweVUsmM0XFMGBrNyq0J1cZ6ujipSc+9MJUi345VEgDeblo83SovkH08dLVu\n5+3uVPWai5WfTiZv5bc4xUYR1NMPxdGjWLteB86uYMgBlRacfWpsV2ZWcNagQauSiPKp2ScjPsXK\noVNWwgKVjGhE2YYkybz7WRq5ejPTbguizzU1G222hN37C1j05VncXFXMfzKW0KD28YVLkmTWbsxm\n5YYs1CoFj94XwaghjuvVITSMTZLZvb+AleuzyNWbcdIpmT4+mNtuCGh3jVeFlnXvvfeyZMmSqp8X\nLVrEnDlzAHjuuedYunSpo0ITWiFnnZrJIzry+caTrN6RxJwJ3R0dkiAIgtBC7E5KDBw4kA0bNpCQ\nkIBWqyUqKgqdrv3c5W1Nzvd0OO98Tweg2oQMF52a+2/pWrWiwlmn5oUvf691nzqtErNZomYLyUrl\nJitrf0lm2qgYesf5Vzv+eb3j/GqdwpH+0nsgSYTPewD1yV+RdS5/jQDNrnyBW83mlrJcWbYhoyDW\n38SlN9TLjTJrzk/bGO3UqLKNtRuzOXS0mF7d3JlyW/AV76cxDhwp5N3P0nB2UjL/iViHTfxoauUV\nNt77LI39R4rw89Ewb240MVFipFtbIMsyB/8sZvm6DM6cM6JWK7h1TACTxgW2qx4nguNYrdV7BO3b\nt68qKXG+P5UgXGxQ9yB2Hsng4KlcTp4x0CXC29EhCYIgCC3A7qREfHw8eXl5jBw5krfffps//viD\nRx99lH79+jVnfFedy/V0OD8h42I6jYoAbxdy6+kfYbbUnZCoPK5UlYg4Xx5yJEGPocSIt7sTveP8\nqh6/WNGu/RRt/xWPIf3x9SpDkW/CMuBWkC1gKQetG+hq9hTILlFTZFTh62LF37VmCcr6X0yUlMvc\nPFhLkO+VLx3/83gxKzdk4eej4bEHoxqV3LhSf8QX8/pHqahVSv79fzF0jGwfIxTPZRl59YNkMrJM\ndO/sxhMPReElLmbbhBMJpSxbk8GppDIUChh5nQ/Txwe3q3IiwfEu7T9ycSJC9CYRaqNUKJgxJo6X\n/neQFdsSmH9v/3qnfgmCIAjtg91JiZdeeolXX32VgwcPcuzYMf7zn//wwgsviOWXTayo1HRFPR1s\nksTmA2dRKCpXIVzKx12HLMsUXGac6PnEx4zRcUwa3rHWnhbnyZJE+ovvAhD+9xmokrcieQYgxfQG\nQyqgqFwlcQmzFZLztagUMrH+NeM5lmzl8Gkr4YFKRvS58otcfYGZtz5JQ6VU8NTD0Xi4t/zIzRMJ\npbzyQTIK4F9/j6ZLbPto+rj/SCHvLk6jwihx2w0B3DUlFJVKXGS0dmnp5Xy1NpNDR4sBGNDbkxkT\nQ9rNyh2hdROJCMEeUcEeDO0ZzK4/s9hxOIPR/cIcHZIgCILQzOy+StPpdERGRrJ69WqmTp1KTEwM\nSpG9bnLnR342pKcDVJZ87DiSWed+nXVqOkd411qWcbGLEx/nV2DUJX/tj5QfT8B30s14lieiQMbS\n7yaoMIBkBRdfUNecLJGcr8MqKYjxNeGkrp5BKauQWbvDhFoFY66VsdokVMqG17VbrBKvf5RKcamV\nB+4MI65jy5cUJKSU8dI7SdhsMs880pEeXT1aPIamZpNkVm/I4psfstFqFTz2YCTDBtbsFyK0Ltm5\nJlZuyGT3fgOyDF3j3Jg1OURMRhGaVVFREb/99lvVz8XFxezbtw9ZlikuLnZgZEJrd/uwjvx+Ko8N\nu1MZ0DUQD5f2M6VKEARBqMnupERFRQWbNm1i27ZtzJ07l8LCQvGlohmcH/nZkJ4O9ZV8nJdXWMEz\nM/sCcCQhr84GmPUlPi5mKzdy7tWPUOi0hN81BuWpLdhC45ADwyE/uXLShkvN0aUF5UpyStW46WyE\nelprPL9up5GSchmFMpM3V52r0eTTXv/7OoOE5DKGDfTmplF+dm/XVNLSy3nx7SRMJonHH4qiX0/H\nNNdsSqVlVt7+NI3Dx4oJ9NMy75FoosLbRylKe1VYZOHr77PZ+oseq00mKtyZmZNC6N3dQ9y1Fpqd\nh4cHixYtqvrZ3d2dDz/8sOq/BaEuHq5aJgyJYuX2RNbvSuHusZ0dHZIgCILQjOxOSjz++OMsXbqU\nxx57DDc3N95//33uueeeZgzt6mVPT4eLx4XWV/Jx4fUS2fmlVWUZyzafZm98do3X1ZX4uPSY+Z+t\nwJyVQ/Dcu3DJOIisUGLreyOU5gDyXyNAqycRbFJlc0uQ6eRvvrT3JUeTrPyRaMNqK6WkvDIpU1eT\nz/rs3l/Axm15hIU48fDd4S1+8XUuy8jzbyRRWmbj0fsjuK5/22/UdeZcBa9+kEJ2rone3T147MFI\n3N1avhxGsE9ZuY1vf8rh+625GE0SQQE6ZkwM5rr+3igd0FdFuDotW7bM0SEIbdjIPqHs+jOTXX9k\nMqJXKBFBIpElCILQXtl9VTFgwAAGDBgAgCRJzJ07t9mCutqdH/lZW0+H2saF9ojxw9tde9l+ER+s\ni6df5wCmjYrh3ps74+KktquZ5aXHDFaZueWjJWh9vOgwphvK0zuxdhqI7OwKhXrQOIOuZqnCGYMG\no340EeQAACAASURBVFVJB08L7jqp2nOlFTJrdhgBiTJzSo1t62ryean0zAoWfXkWJ52Sp+dG46Rr\n2ZGGOXkm5r+RSHGJldmzwhh1XdsfjfnrAQPvf3EGk1li0rhA7pgY4pCGocLlmcwSP/2cx5qN2ZSW\n2fD2VHP31FBGD/VDrRbnTGhZpaWlrFmzpuoGxqpVq1i5ciURERE899xz+Pm1/Co2oe1Qq5TcMTqW\nN1b9wfKtCfxzZh+xwksQBKGdsjsp0bVr12p/DBQKBe7u7uzfv79ZAhOotadDbeNCdxzOICzA7bJJ\nicJSc7VVB/Y0s6ztmNHbNqI0VpA3+XZ0KfuQtc7YeoyAkrpHgJaZFaQXatCpJSJ9asa5fqeJsgqo\nMJ9Dko01nq+vyed5FUYbr32YitEk8eTDUXQIdqr3/4+mpi8w89zrieQbLNwzNZSxI2uWr7QlNpvM\nV2sz2PBT7l9JnigG9W37qz7aI5tNZsev+az6Not8gwUXZxUzJ4UwbrR/iyfmBOG85557jtDQUABS\nU1N56623eOeddzh79iwvv/wyb7/9toMjFFq7rpE+9O3kz6HTeew7nsOg7jWbZwuCIAhtn91JiVOn\nTlX9t8ViYe/evZw+fbpZgrqaXVwicWmSoL7eEeVGC8N6BrHrz5olGZe6eNXB5ZpZXnpMT0MuXeP3\nU+jlh1eMMwpLAdZ+N4FkApsJnLwqV0pcRJbhdJ4OGQWxfibUl7SG+DPRyh+JldM20vUGjCU147hc\nrwtZlln05VnOZRm5dUxAi5dMFBZZeP71RHL1ZqaPD2b82MAWPX5TKy6x8ubHqRw9WUJIoI5nHokm\nLFRMaGhtZFlm36FClq/LJCPbhFajYOJNgUy8KVCU1wgOl56ezltvvQXA5s2bGTt2LIMHD2bw4MFs\n3LjRwdEJbcW0kTEcTc7n651J9Ir1w1knfrcJgiC0N1f0m12j0TB8+HC++OILHnzwwaaO6apUW1nG\npQ0e6+sdUVBiIq6DN7v/zKaWiaDV2LPq4LxLjznw100oZYnEYdfzD6dMLK4+SDF9oTAVFEpwC6ix\nj6wSNcVGFf6uVvxcbdWeKy2XWbezctrGHTc4se1Qw5p8nrfp5zz2HDDQOcaVu6aEXvZ9NaWSUivz\n30wkM8fEhLEBTL2tbd/JST5TzsIPUsjLN9O/lyf/+Fskri7ibntrc/REMcvWZpKUWo5SCTcM92Pq\nbUH4eosu9ULr4OJy4W/MgQMHmDx5ctXPYhm+YC8/L2duHhjBt3tS+WFvGlNG1iwzFQRBENo2u5MS\na9asqfZzdnY2OTk5TR7Q1aq2soxLGzzWNy5UAXy28SRKReXKhPrYO2Hj0mMGZ6QQlXKcrJBIRvVR\noVLImPrciKqiAGTpr+aW1T9SJquClHwtKqVMjF/Nso11O02UVsjcNkRLgLfSriaflzqdXMaSVRl4\nuKt58uGoFq2dL6+w8cLbSZw5Z2TsSD/umhLapr9s7/g1n4+XnsVilZk+IZgptwSJxoitTFJqGV+t\ny+TP45VLiq7r78UdE0MIDWrZciVBuBybzUZ+fj5lZWUcOXKkqlyjrKyMiooKB0cntCU3XRvOnqNZ\nbPk9naE9QwjyEZOfBEEQ2hO7kxKHDh2q9rObmxvvvPNOkwd0NaqvLOPSUou6xoVKcvX/rc/lVh1c\nrOqYv59l0J7K5bZ5I4cy1VlPhjYIv5BIKEwDlRaT2pMiQ3m10pPkfC1WqbJsQ6euHtwfCRb+TLIS\nGaxkaC8NUH+Tz9oUFVt4fVEKkiTzxENRLXqX2Giy8dI7SSSlljPqOh8euDOszSYkrFaZL1efY+P2\nPFycVTw1J7JdjDFtTzKyjKxYn8neg4UA9OrmzsxJoXSMFF/OhdbpgQce4Oabb8ZoNPLII4/g6emJ\n0WhkxowZTJ061dHhCW2IVqNi2qgYFm2IZ9X2RP5vSk9HhyQIgiA0IbuTEq+88goAhYWFKBQKPD3F\nBUtTqa8s49JSi2mjYrDZJI4k6iksNaOAWss1lMrKFRPnL+hNZhs+HpdfdVCbaaNicPttLwE56STF\n9WRStwokFPiMnghllatlfk60sunw/mqlJ2MGdiK3VI27zkaIh7XaPkvKJdbtNKFRw/TRTjXuxl+u\n1wWATZJ5+9M08g0W7rw9hB5dWm5cmNki8eoHKZxMLOO6/l7MuTeiza4oMBRZeOOjVE4klBIW6sQz\nj0QTEijuurcW+gIzX3+XxfY9+UgSxEa5MHNyaIt+3gXhSgwfPpw9e/ZgMplwc3MDwMnJiaeeeooh\nQ4Y4ODqhrenbyZ8uEd4cTc7nzyQ9PWPE9BZBEIT2wu6kxOHDh3n66acpKytDlmW8vLx4/fXXueaa\na5ozvqtCfWUZF5danO87cTQ5n8JSM1q1ErNVqrENVFZTPDm9F9Ghlckje1Yd1EUymvD9ZhU2lQrN\n9b0IUuVy2iWWcBcXKCkkvUjBVzszq16fX2xix5EsAjp0Ra2R6eRvqjaMQ5Zl1u0wUWaE8UO1+Hsr\naznq5a3+Nos/T5TQr6cHt9/cco0lrVaZNz5K5c/jJfTv5cn/PRDVZkdknk4u47UPUygotDConxeP\n3heBs5PoH9EalJRaWfdjNj9uz8NskQkN1jHz9lCu7ePZZlfkCFeXzMwLfxeKi4ur/js6OprMzExC\nQkIcEZbQRikUCmaMjuX5L35n5fZEukb6oLm0c7YgCILQJtmdlHjzzTdZtGgRcXGV/Q1OnDjByy+/\nzPLly5stuKtFfWUZF5daXNp3oq6EBICnm4YOAW5V29rT1LIuW//9EX56Pcf7DOHOMAMVkooP0wKZ\nn5+Ji1bBV3sLa2zTs2ssao2OEHcTbrpLyjYSrRxNthEVomTIX2UbDfXbwXy++T6bQD8t//hbZIut\nUrBJMu9+lsbvfxTRs6t7i/ewaEpbftGzeHk6kk3mrikhTBgbKC52WwGjycYPW/NYvymH8gobfj4a\npo8PYcRgH1QqcX6EtmPUqFFERUXh7185Hlm+qOGRQqFg6dKljgpNaKNC/d0Y1TeUbQfPseX3s4wb\nFOnokARBEIQmYHdSQqlUViUkALp27YpKJe6oNpWaDR51dA73ZsLQaKD+vhO1KSy18MKXv9eY4NFQ\nZbkFeKxfj1HnTPjIjrircllZFM2wa7xx1UIx7iRlZVXbxsvTna5xHSktK8fDuwy4kBCpUbZxBRfB\nuXoTL7x5Go1awVNzo3FzbZnxYJJUOXZ0zwEDXWJdeebRaLSatneXxmKRWLw8na278nFzVfHEQ1H0\n6ubh6LCueharxLZd+Xz9XRaFxVbc3VTcMy2Um0b5t8nPmSAsXLiQb7/9lrKyMsaNG8ctt9yCj4+P\no8MS2rgJQ6LYfyKHH/aeYXD3YLzd7WvcLQiCILReDUpKbNmyhcGDBwOwa9cukZRoJJPFVq2sYsbo\nOCYMjWLF1kROnSlgb3w2p84a6B3nz8jeoXX2nahLbRM8Gir9zcVoTRUcHX4js/3zyLU68TuRvNDd\nlYIyGxWu7jVKTwb17YlSqeTEqVOM6XKhf4Usy6zdYaLcCBOGafHzaviFltki8dqHqZSUWplzTzgd\nI1qmyZ8sy3y24hw/78knJtKFZ/8Rg5Ou7X3+8w1mXvswhYSUcqLCnZk3N5pAf/GFzpEkSWbPAQMr\n1meSk2fGSadkyq1BjL8xUIxiFdq08ePHM378eLKysli/fj133nknoaGhjB8/njFjxuDkVH/vmoSE\nBObMmcM999zDzJkz+fvf/47BYAAq+1v16tWLF198kc8++4yffvoJhULBI488wvDhw1vi7QkO4uKk\nYdLwjny56RTf7Ejiwdu6OTokQRAEoZHsTkosWLCAF198kWeffRaFQkGvXr1YsGBBc8bWbp3vDXEk\nIa9aY8hpo2LYsDuVvfHZVa89n1gwW6x19p24nIsneDSEMTWdklXrKfXyZcBQX9QKAyuKOjJ5sCca\ntYJNh4xMHutWrfSkU8cI/H29ST2bQQcfRbVjHkmwcizZRnSIkut6XlnZxucrz5F8ppybRwcxeqjv\nFe2joWRZZtmaTDb9nEd4qBP/eTymTV4snkgo5fVFKRQWWxk+yIeH7wpHpxN34B1FlmUOHyvmq7WZ\npKVXoFYpGHe9P5NvCcLL88r+fQhCaxQcHMycOXOYM2cO33zzDS+99BILFizg4MGDdW5TXl7Oiy++\nyKBBg6oee++996r++5///CdTpkwhPT2dH3/8kVWrVlFaWsqMGTMYMmSIuGnSzg3pEczOIxnsO5HD\niN6hxIV5OTokQRAEoRHsTkpERkby+eefN2csV41Le0OcTzzYJJmjSfpat9lzNJsQP1eg4UmJSyd4\n2Cv9lQ+QLVbUU2+mv7uekyZPynxC6RvpRGKOGYWzB7q/xnQBnDhTQu9rumCxWHCmgCkXTfkoLpNY\n/4sJrRqmXWHZxo5f89myU09kmDNPPBRDcXF5g/dxJb75Ppv1m3IICdSx4MlYPNxaplykqciyzI/b\n81iy+hyyDPff0YFxo/1F/wgHOpVUyrI1mZxIKEWhgBGDfJg+IVisWhHapeLiYr777jvWrVuHzWZj\n9uzZ3HLLLfVuo9VqWbx4MYsXL67xXEpKCiUlJfTo0YM1a9YwdOhQtFotPj4+hIaGkpSURKdOnZrr\n7QitgFKh4M4xcby87BArtibw3D392+wELEEQBKEBSYnffvuNpUuXUlJSUq1ZlWh02TD19YY4cjqP\nwjJzrc9JMpzLK6ODvytlFVYMpSactEqM5rqbXZ538QQPe5UcPIrhh+249u7O4D5K5CLYaOvGHdd6\nIMkySUXOTBsVC4BKqWTG6DiOZmopqNAQ7VNBeOfoqn3Jssyav8o2Jg6/srKNtPRyPl52FhdnFU/P\niULXQqUT327OYeWGLAL8tCx4KrbN3cE2mSU+XnqWnXsL8HBX89ScKLp3EqMkHeXMuQqWr8vk9z+K\nAOjfy5M7bw8hooOzgyMThKa3Z88e1q5dS3x8PDfccAOvvvpqtd5U9VGr1ajVtX9FWbp0KTNnzgRA\nr9dX61Ph4+NDXl5evUkJb28X1Orm+Rvi7y9+v7YUf393Rp3M5eeD6RxOzuemwVFVjwuOJc6B44lz\n4HjiHDRMg8o35syZQ1BQUHPG0+4VlZrq7A1RV0LiYpn6MiQZvNy0uDpryMgru+w2F0/wsIcsy6Qv\neAeAyPvHoio6jq1jbx6+pj/qilxsWk9uGhJabRt9mYqCCg0eTjbCvKonSg6ftnI8xUbHUBWDezT8\nor6s3MZrH6ZiNss8/mgEwYH11yE3lc078/hydQY+XhoWPBmLn4+2RY7bVHL1JhZ+mELKmQpio1x4\nem50m3sP7UWu3sTKDVn88lsBsgxdYl2ZNTmULrFujg5NEJrN3/72NyIjI+nTpw8FBQUsWbKk2vOv\nvPJKg/dpNps5dOgQ8+fPr/X5i2+a1MVgaJ5Vdv7+7uTllTTLvoXa3TIwnL1HM/nfxhN07uBJVLiP\nOAcOJv4dOJ44B44nzkHt6kvU2J2UCA0N5bbbbmuSgK5mnm66OntDKBWVKyLqc/75wlIzhaW1JzHO\nr2D0dneid5xfVXmFvQwbt1N66CjeY4fjbUtDVmux9hiJuiIHFEpUHoHVXm+VIFGvRYFMJ38TF1cF\nVJVtaGDaaF2DyzZkWeaDJWfIyjUx8aZAru3dMnWjO/fm88mydDzc1Sx4KpaggLa1rP7oiWLe+DiV\nklIbo4f68sDMMDHBwQEKiy2s+SGbzTv0WG0ykR2cmTk5hD7XeIjyGaHdOz/y02Aw4O3tXe25c+dq\njsC2x++//06PHj2qfg4ICCA1NbXq55ycHAICAq5o30Lb4+Wm47brovh6RxIbdqfw2J1iuosgCEJb\ndNmkRHp6OgD9+vVj9erVDBgwoNqSyrCwsOaLrh3SaVTVGkNe7HIJCXvJMrz40GB8XTUNbm4pmS2k\n//cDFGoVERP7oig8ibXnKJAqQJbALRCU1T82aQVaTFYl4V5mXLUX3oQsy3zzs4kKE9w+QoevZ8Mv\nir/bnMu+Q4V07+zGnbeHNHj7K/HbQQPvf34GF2cV85+IoUNwy6zMaAqyLLPhp1y+WpOBUqngobvC\nuGG4n7gAbmHlFTa+3ZzDd5tzMZokAv203DExhKHXeou6Z+GqoVQqeeyxxzCZTPj4+PDJJ58QERHB\nV199xaeffsrtt9/e4H0eO3aMzp07V/08cOBAlixZwqOPPorBYCA3N5eYmIYl4oW2bXS/Duz6M5Md\nRzIYPyIWd61IwAuCILQ1l01K3H333SgUiqolkZ988knVcwqFgu3btzdfdO3ApWM/gaqVC0cS9BhK\njHi7O9Gjow9Hk/OvaLrGpXw8nOgU4Y1eX0quobzasS8nd+kaTGnnCJw1AbfiRGQXT2yxfaHkHKh0\n4Fz9LkSJScm5IjVOaokIb0u15w6dsnIi1UZMBxWDrml4c8jjp0tYuiYDb08Nj8+OQqVq/ou5Q0eL\neOuTNLRaJc89FkNUeMuMHG0KRpOND744w6+/F+LtqeHpuVF0jhHlAS3JbJFYveEcX65Oo6TUhpeH\nmlmTQxkz3BeNWnxRFq4ub7/9Nl9++SUdO3Zk+/btPPfcc0iShKenJ998802928bHx7Nw4UIyMjJQ\nq9Vs3ryZ999/n7y8PMLDw6teFxISwtSpU5k5cyYKhYL58+ejVIp/a1cTtUrJjDGxvLX6T95eeZhn\nZvRG28AbMoIgCIJjKWR7CjAvY8OGDUyYMKEp4rFLU9ToNHetT31jP1V/fWG6NGGxYltCrSsoGmpU\n31DcXHT8+mdGnceujbWohD8HTwCrlT5v3o2TIRXLdZORvD3AUgFe4aC9cJEry3A4w4kSk4oewRX4\nuFzoJVFUKvH68nJsEjw5w6XBqyQMRRaemH+SohIrLz4dR9e46hfXzXH+jp4s4aW3k1Ao4bnHYujm\nwIaQDX1/WTlGXv0ghbMZRjrHuPLUnGh8vFpvU872Vmtns8ns3FvAqm8z0RdYcHFWMmFsILeMCcDZ\nqX19OW5v5+5S4v3Ztw97zJo1i2XLllX9PHr0aObNm8eYMWMadfzGaq7z294/O63dss2n2XEkg1F9\nQpl5g5i+4iji34HjiXPgeOIc1K5JekrUZ926dS2alGgL6hr7CTBjdGX3cZ1GVW1MZ20rKGI7eLLv\nRE6dxwn2ccFslape3zvOD1mW+W53Sr3Hrk3me19gMxQR9o9ZOBlSkfw6IAVHQEkm6NyrJSQAMorU\nlJhUBLpZqyUkZFlmzV9lG5OuoGzDZpN546NUDEVW7pkaWiMh0RxOJZXyynvJyMA/H+no0IREQx06\nWsTbn6ZRVm7jplH+3Ds9VNyVbyGyLHPgSBFfrc3kXJYRjVrBHRM7MHakT5sbHSsITe3SsrHg4GCH\nJySE9mvaqBiSs4r5+XAG3aJ86B3r7+iQBEEQBDs1ybfmJlhs0a7UO/YzQc+k4R1rLac4P1pz0vCO\nVSsoABLPFdZa1uGkVfHs3f1QKRXVXv/vxfvqOHZencc2pWeS8/kqtKFBdOisgmKw9h0LZbmAorKX\nxEWMVgWpBVrUSpmOvtVjO3jKyok0G7FhKgZeQdnG8nWZnEgoZWBfL267sfkbliWfKefFt5MwWySe\nnhtN7+4ezX7MpiBJMms3ZrNyQxZqlYJH74tg1BBfR4d11Yg/VcKyNRkkpJSjVMDoYb5Muy2YLp18\nRXZcEGohetsIzUmrUfH0zH489s4vfLHxJC/c74G3e9tqUi0IgnC1apKkhPiiUV19Yz8NJUaKSk3V\nVkhc6tIVFHU1xhzSIxgXXeUpPP/6XEN5nX0p8otNdR773KuLkM0Wwu8bh7o4E1vkNcguzlBeBi5+\noKo+SjJJr8UmK+jkZ0J70aeoqFRiwy8mdBqYen3Dp23sP1zI+k05BAfqePS+iGb/bJ05V8GCNxOp\nMEo89kBki033aKzyChvvfpbGgSNF+PlomDc3mpgoV0eHdVVIPlPO8rWZHIkvBmBQPy9mTAxpUw1R\nBaElHDlyhBEjRlT9nJ+fz4gRI5BlGYVCwc6dOx0Wm9A+RQR7MH1UDMu2JLD4++M8Ob23aC4sCILQ\nBoj1xc3AzUWDTqvCaLbVeM7b3alqRYO9aivr6B3nx4ShUTUaWTrr1HWOFlUqKp+/VOkfx8lf/xMu\n13Qm0LcY2arG2nMklOsrJ224+lV7fV6ZCn2ZGk8nG0Hu1qrHz0/bMJph8kgdPh4NKyHIyjHy3udp\naLUK5s2NxsW5eWvxM3OMLHgzkZJSG3PvCWfowLYxSuxclpFX308mI9tE985uPPlQFJ4erbd/RHuR\nmWNk5fos9hwwANCjizszJ4cQK5JBglCrn376ydEhCFehEb1DiU8t4Eiinh/3neGWwZGODkkQBEG4\nDJGUaAYbdqfWmpAA6B3n1+AxnZeWdbi5aNmwO4XnPz9QrZHlhKHRpGYW1zlaVJKhwmTF3eXCqgdZ\nlkl/4V0AImcOR2k6i/Wa4SAZAbmybENxIblglSAxT4sCmTh/ExcvZPj9pJWT58s2ujfso2UySbz2\nYSrlFRL/+FsEER2cG7R9Q+XqTTz/eiKGIit/m9GB0cP8Lr9RK7D/cCHvfpZGhVFi/I0BzJoc2iJT\nSa5mBQYzq7/PZtsuPZIEMZEuzJwUQs9ubaPMRxAcJTQ01NEhCFchhULBvTd3Ie2LA2zYnUrnCG9i\nQj0dHZYgCIJQjyZJSri5ibGD59XXT8JJq2LC0Ogr3vf5so5Lp3Scb2S54/A5bFLd2/u462qs0ijc\nsouSfYfxGjUIH1UWstYdW2wfKMtGUjujL1fjqbJVJVJSC7SYbUoivM24ai9kPwpLJL7dVVm2MW20\nrkFlF7Is88lXZ0k7V8GNI/wYMbh5+yIUGMw8/0YS+gILMyeFMG508/etaCybJLNqQxZrfshGq1Xw\n+OxIhl7bNlZ2tFWlZVbW/ZjDxu25mM0yIYE67pwUwqC+XqJkTRAEoRVzc9bw4K1deW3FET797jjz\n7x2Ai5O4DycIgtBa2f0bOi8vjx9//JGioqJqjS3/8Y9/sGjRomYJri2qr5+E2WKjtNxc1QfiStSX\n9KgvIQHQM8a32ghSyWIl/aX3QKUi8pZuKCwZWHqNQzYWIMvw7qYc4tNTq1Zi3HxdHBlFapw1EuFe\nlqr9Xly2MWWUDm/3hpVtbN2Vz45fC4iJdOH+Ozo0aNuGKiq2MP/NJLJzTUy+JYhJ44Ka9XhNobTM\nylufpHEkvphAfy3PPBJNZFjdPUmExjGZJDZuz2XdjzmUldvw9dYwbUYwo67zFatSBEEQ2ohO4d6M\nGxzJD3vTWLr5FLNv6yYSyoIgCK2U3VfHs2fPplOnTmI55mV4uunw8dDV2mzySvpJQGUi4nwyob6k\nR1283bS4uWg5mpzPziOZVUmGkel/YEw+Q8CUsbhbMpB8gpGCI1CU5bLzdDnH0suBypUY2w9l4B/S\nCY1OQZy/EdVFeYcDJ6ycOmMjLlzFtd0alnBJPlPOZ8vTcXNV8dScKDSa5htlWVZu5YW3kkjPNHLr\nmABmTAxutmM1lbT0cl79IIWcPDO9u3vw2IORuItRk83CapXZtlvP199lYyiy4Oaq4u6podw0yh+d\nVoxYFQRBaGvGD4nk5JkCDpzMpVuUD0N7hDg6JEEQBKEWdl/duLi48MorrzRnLO2CTqOqc1pGQ/tJ\n2CSJ1T8ncSQhr6p3RI+Ovnh76OxOTCiAThHe7DueU/VYfrGJX35NInLFx2hdXYgY7A9mPdY+NyKX\n66kwS6w/VH2kYeeYKDQ6F/xdzXg7X1iSYSiR+G63CSdt5bSNhtyFKCm18tqHKVhtMvMeiCTAr/lG\nd1VU2Hjh7WRSzlZww3A/7p0e2urvmOw5UMAHX5zFZJaYNC6QOyaGoBJdxJucJMnsPWhgxbossnJN\n6LRKJt8SxISxAbi6iASQIAhCW6VSKpl9azeeX/I7K7YmEhPqSbCvaE4sCILQ2tj9jbtnz54kJyfT\nsWPH5oynXahrWsb5x+21+uekGr0jdhzJrLZK4XK83LUknDXUeLz3oZ2oS4oJ+tsEnMx6bOFdkV2d\nURhNrD9USqnpQomOq4szvbp3wmgy4e1VAlQ2oZRlmW+2V5ZtTL2+YWUbkiTz7mdp5OrNTLk1iL49\nmq8Jlcks8d/3k0lILmPYQG8enBXWqhMSNpvMB58ns2rDOZx0SubNjWZg37YxqrQtkWWZP46X8NWa\nDFLOVqBSwU2j/JlyaxDenmKaiSAIQnvg5+XM3WM78fG3x/nku+M8O6sfGrVY/SYIgtCa2J2U2L17\nN19++SXe3t6o1WoxZ7wel07LuHhkp70a0zviYlFBHhxO1Fd7zLWkkB5HdlHm6kGHzmpk2Vo5ccNY\niKTUcjSz+uSQa3tfg0at5vjJU4yMDa96fP9xK6fP2ugcoWJA14bdUV73Yw6HjhbTs5s708Y3XxmF\nxSLx2ocpxJ8qZWBfL/5+f2SrXm1QXGLljY9TOXayhNAgHfMeiSYspHknkVyNTieX8dXaDOJPlQIw\nbKA30yeEEBzQfKt1BEEQBMcY0CWQ46kF7D6axdpfkpl+fayjQxIEQRAuYveV5EcffVTjseLi4iYN\npr05Py3jSlxJ74jauLqo0WkUmCwXVj4M2LcZtc1K+fX90dnKsHa9DhSVx1J6BNMzVqpaoREeGkyH\nkECycvIIcLNUJVcuLtuYMqphZRtHTxSzcn0mvt4aHn8wqtmSBDabzFufpnH4WDF9rvHg8dmRrbpR\nYXJaOQs/TCEv38yQa315aFYHXF0alswS6peeUcHydZnsP1IEQN8eHtx5ewhR4aJxqCAIQns2Y3Qc\nieeK2PJ7Ol0jfejRsXknfQmCIAj2szspERoaSlJSEgZDZSmA2WzmpZdeYtOmTc0W3NWsvoaZDbH7\nz2yUF61S9M3LJO7kYQx+gYy51glJ54Qtrg9U6EHnDlrXqjKTYymFDOjdHZvNhtKcx+S/HpdlIenj\nnQAAIABJREFUma+3mTBZKsd/ejWgbENfYObNT9JQKhU8NScaD/fmqdmXJJn3Pk9j36FCund24+m5\n0a16uebPv+bz8f/OYrXJ3DEhmIfvjSU/v9TRYbUbuXoTq7/NYufeAiQZOse4MnNSCN06uTs6NEEQ\nBKEF6LQqZt/WjZeXHeTzjSd44b4BV9R8XBAEQWh6dl8RvvTSS/z666/o9XrCw8NJT0/nvvvua87Y\nrmr1NcxsKOl8uYcsM2jPDyiQ8bixF85qCUPsUJyNhYACs84fHRfKT07maMgp1RLmaeT6uIiq/e07\nbiUh3UaXSBX9u9ifVLBYJd74KJXiEisP3NmBTh2bp9mULMt8siydXfsMxHV05V+Pdmy10xOsVpkl\nq8/x4/Y8XJxVPD03kn49PVG24hKTtqSo2MLajTls2pGH1SoTHurEzEkh9Ovp2ar7igiCIAhNLyLI\nnckjYli1PZHPNp7ksak9UYq/BYIgCA5n9xXlsWPH2LRpE7NmzWLZsmXEx8ezdevW5oztqndxw8z8\nYmOj9xd25jQd0pPIi+zIhGuUnLO6kq304hrZyndHStmdfIjecf5MGxVDqVlNTqkGF41ElO+FHhMF\nxRLfX2HZxtKvMzidXMbQa725aZR/o99PbWRZZsmqDLb8oicq3JnnHuuIs3PrLIEwFFl4fVEKJxPL\nCAt14plHogkJdHJ0WO1CRYWN77bm8u1POVQYJQL8tNwxIZihA31adU8RQRAEoXmN6deBE2kFHE3O\nZ8uBdMZeG375jQRBEIRmZXdSQqvVAmCxWJBlme7du7Nw4cJmC0y4sGLh1sGRPP/FAQpLzVe8L4Vk\nY9CejUgKBTHj4lAqYKMljjsDFOSX2vjxaClmG1UrM2I79QQUxPkbOX8NJ8syX2+vLNuYPkaHp5v9\nqw/2HCjgh215dAh24uG7w5vtLvXK9Vl8vzWXsBAnnn88ptWOdDydXMZrH6ZQUGhhcD8vHrkvAmen\n1pk8aUssFonNO/V880M2xSVWPNzV3Hl7CDcM90OjaZ2rZQRBEISWo1AouO/mLjz/xQHW/pJMp3Av\nooI9HB2WIAjCVc3uK7aoqCiWL19Ov379uPfee4mKiqKkpKQ5YxP+UmGyUtSIhARApxMH8SnIIe+a\naxgeDocrfOnZOxKNSsHXv5dgvmjgRpHZlTKzkmB3C17OF0Z9/BZvJfGvso1+ne2/2E/PrODDJWcr\nx1s+Et1sF99rN2bzzQ/ZBAXomP9kLJ4erXOs45adehYvT0eSZO6aEsqEsQGilKCRbJLMrt8KWLkh\ni7x8M85OSu6YEMytYwJa7UoZQRAEwTE8XLX87ZauvLn6Dz757jjP39MfZ13rvIkhCIJwNbD7N/CC\nBQsoKirCw8ODjRs3kp+fz+zZs5szNuEvjW16qTab6L9vCxa1hgE3d8AqKzjg3IV7I5w4nWXm99QL\npSFuLs7EduyISiER7XshEZJfJPH9HhPOuoaVbVQYbbz2YSpGk/T/7N15QFVl/vjx9z135XIv+w4i\nuwoK7mZaqanZnqlZZlNNM9O0zHxraqrpV1NN3/lO2+zZTNlum2WbrZZmZZqmoqigAgrKvsPd13N+\nf6AggoiKgvC8/vMu5z7nXoH7fM5n4d5fJ5MQe3rKEz5bXcsb71cSEablsXvTCAvpfwEJr1fmhTfL\nWP19A6ZANff+OpmcLHF15lQoisLm7S288UElZRUuNBoVV8yOYt6lMaetiaogCIJw9stKDuPiSYl8\nsekgb35dyC8uy+zrJQmCIAxax/3WXlBQQGZmJhs3bmy7LSIigoiICEpKSoiJiTmtCxROvOmlXivh\n9rZnOIzO/Y5Ah5WWqRNICINVtnguujAWWVZ4a1PHsa6TxmWj0ahJDnNwaPon8qGyDY8XrjtG2Ybb\n66fF5ibYpG8bG6ooCv957SDlVS4umxnJlImhJ/kOdG/1unpefKuc0GANj/0+naiI/tdNu77Rw1NL\n9lNU4iA5MYAH7kzpl+s8m+TvtbJsRSV799mRVDBjajjXXhlLZLiur5cmCIIgnAXmnp/C7gNNbNhV\nTVZyGJOzxHdaQRCEvnDcoMRHH31EZmYmzz33XKf7VCoVkydPPuZzn3rqKbZu3YrP5+PWW29l1KhR\n3Hffffj9fiIjI3n66afR6XSsXLmS1157DUmSuOaaa1iwYMGpndUAdGTTyyarC7NRS4vd2+Vj3V6Z\nGeOHsGFHJVJTEzm53+E0mjh/ZgQ2WYNlSBZxIRr21qsoa/S1PS9pSBzxMVG4HBbiU9pT3n/c6aO4\n3E9msppxR5Vt+GWZ5d8Us62wjkaLm7AgfVuzzFVr61m3qYlhqYH87Jr40/CuwLqNjTz36kHMJjWP\n3JPeLxtF5u+18vR/Smix+Lhgchi3/SwRvV70NzhZJQcdvPF+Jbk7WwNqk8YGc/3cOIbEB/TxygRB\nEISziUYtceuVWTz6ymaWrdpLanwwUSHib4kgCMKZdtygxIMPPgjAsmXLTujAGzdupKioiOXLl9PU\n1MTcuXOZPHkyixYt4uKLL+Zvf/sbK1as4KqrrmLJkiWsWLECrVbL/PnzmTVrFiEhISd3RgPMkRkI\nh5teltfaiAoN4OGXNuHyyJ2eY9Cp+fnlWeQV1jJy41dofV64aCJBAfCuPYXZY0JRVBJpGanMHK9m\nW2E9dpefiWNGosgyUzMkDldnNLTIfLr+2GUby78p7pDB0WBxs3pLOQ31fr5f4yLIpOHe25LRanp/\nE75pWzP/eLGUAIPEI79LZ2hC//oioSgKn62u49V3y1EU+MWiBC65MFL0jzhJVTUu3v6oinWbmgAY\nOdzEDfPiyThNo2UFQRCEgS861MjPZg9j6acFPP9xPn9YPBaNWlw4EARBOJOOG5S44YYbut1Evf76\n613ePmHCBLKzswEICgrC6XSyadMmHnvsMQCmT5/Oyy+/THJyMqNGjcJsNgMwduxYcnNzmTFjxgmf\nzEDSVQaC0aDF7vTQZPUQFqTH6+sckDisptGOXHKAYQWbsYZHctG5Jiq9RsIyhxGgVdGkBOO1epl3\nQSqXn5tEQbUWp6InOcyDSd/6ecuKwvLVrWUbi2brCQrs+Efa7fWzrbCu02vLPhXfr3Xgl1Xc8+sk\nIsJ6P51+U24jz/ynBJ1W4uG700hNMvb6a5wKt1vmv68f5NsfGwkO0vD725LJGmbu62WdlRqbvbz3\nSRVff1+P3w8piQHcMD+enCyzCPAIgiAIp2zyyBh2lTTwY34NH60rYf601L5ekiAIwqBy3KDE7bff\nDsDq1atRqVScc845yLLMhg0bCAg49pVptVqN0di6UVyxYgXnn38+P/zwQ9to0fDwcOrq6qivrycs\nLKzteWFhYdTVdd7oHik01IhGc+od9SMj++8mcelHOztlIBzZ6LK7ppcuj58/v/ITk3/4DElRiJ6T\niVojsdqTwYJhgVQ0+Xj22xJqm10YdBrCw0KYMXUyVpuNbdUHGHN5Fmq1xNcb7eyr8DN2uJ6LpoZ2\n2gBW1dtptHZch6KAvdqIz6vi2qvjuPCC3i/b2L6rmQf/nI+kgicfHsm4nNPTq+JkVdW4+OPT+RTu\ntzEiw8yf/5B1Uv0j+vP/z95wvPOz2ny89UEZ760sx+WWSYgL4JeLk5g+JRJJ6t/BiMH+2Z3txPkJ\nwuCzePYw9lVY+GLjATKTQslMCjv+kwRBEIRecdygxOGeES+99BIvvvhi2+2zZ8/mtttuO+4LrF69\nmhUrVvDyyy8ze/bsttsVReny8ce6/UhNTY7jPuZ4IiPN1NX1z5Gmbq+f9XkVp3SMgF27SDywl5bE\noUwdFcBOVyjjJqUgqVS8+aOFmqbWyRpuj5+xo0YCsG7Tduobm3A4Pcwen8byVQ6MBrh8ipr6elun\n1/B7/YSZO04FcTUY8Dm0GIP9XDErotff48L9dh55ugi/rHD/HSkkxmn61eeYl2/hr8+XYLX5mXl+\nOL+6fggqxUNd3YmNdO3P/z97Q3fn5/bIfL6mjg8+r8Zm9xMarOXmhQnMmBqORqOioaHz/8X+ZDB/\ndgOBOL+eHUMQBpoAvYZbr8zi/5ZtZemnBTz284kEGUXjZEEQhDOhx0Vz1dXVlJSUtP374MGDlJWV\ndfucdevW8d///pelS5diNpsxGo24XK3jJ2tqaoiKiiIqKor6+vq259TW1hIVFXWi5zGgtNjcNJ7k\n+E8AlSwz+YdPUVCReVkaCip2BGWRFqNna6mLPdXtG+TMYamEBJvZu6+U+sbWWv3cvfW8/bULjw/m\nXtC5bOOww1NBDvPaNbgaDUgaP7NmBfX6zO+Sgw7+9LdiPB6ZR+4dwfic4F49/qlQFIUPv6jmT38r\nxumUue1nidxx01C0WlGX2lN+v8JX39Vzxx/yef29ChQFfrYgjv88kcXsaRFoNP07O0IQBEE4uyXH\nBnH1+Sm02Dy8/NnuHl0oEwRBEE5dj3eNd911FzfddBNutxtJkpAkqa0JZlesVitPPfUUr776alvT\nynPPPZdVq1Zx5ZVX8tVXX3HeeeeRk5PDQw89hMViQa1Wk5ub2+1xB4Ngk56wIH23JRqHGXQSRr2W\nJqsbk1GL1eElfW8uEfVVWEcOJ2WojrWOeGaeH4fHp/DOESNAzYFGcjIzcDhd5O7c3Xa7wxlMaZXM\nqFQ1YzI6/hc5evTn4akgP+1s4GCxFpVKYcZMEzfMSe+ld6NVWaWTR/9ajN3h539+MZTpUyL7zdVM\np8vPklcOsH5zM2EhWn5/ezLD00x9vayzhiwr/Li1mbc+qKSyxo1Op2LepdFcNScaU2DvBrYEQRAE\noTsXTUokv7SRHfsaWLO1nJnjh/T1kgRBEAa8Hn/jnzlzJjNnzqS5uRlFUQgN7b6O//PPP6epqYm7\n7rqr7bYnnniChx56iOXLlxMXF8dVV12FVqvlnnvu4ZZbbkGlUnHHHXe0Nb0cTI7e7I9Oj2DN1uOX\ncEQEB5A+JITthfU029xofR4mbliFT61h0qUJOGQ19qQsQoxqPt5mo8He3hxz0rhs1Go1m7dvw+tt\nHQ0qqfQE6IZgNMC86e3TNvyyzFuri9pe58jRnwsuSGPrej+K7OSXixO4ZEbvZrpU17p59JliLFYf\nt94whGnnhvfq8U9FVY2LJ57dz8EKFyPSA/n97SmEBmv7ellnje35Ft5YUcm+Aw4kCS6aFsE1l8cQ\nFipSZgVBEIQzT1Kp+MVlmfzxpZ94d20xGUNCSIwefN9LBUEQzqQeByUqKip48sknaWpqYtmyZbz3\n3ntMmDCBpKSkLh+/cOFCFi5c2On2V155pdNtc+bMYc6cOT1f9Vnq6MADdD1lY0xGJHIPUwYrG+yU\n19nb/j1y2w+Y7C14powmPEzLx64ULswOo8Hm54sd7bX4yYnxxEVHUl5Vw4HyqrbbjboUQOLqaXrM\nRqltjX96dQtlte3PPzz6E8BSaWD/ASczpoRx8fT2co7eUN/o4ZFnimhs9nLTwnjm9PLxT8WWvBb+\n/kIpDqefSy6M5KaF8adl9OlAVFBo4d8vFrNzd2u2y9SJoVw3N5a4aEMfr0wQBEEY7EJMen5x2Qj+\n8d4Onl+Zzx9vnIBed+oN1gVBEISu9Tgo8fDDD3P99de3BRWSkpJ4+OGHWbZs2Wlb3EBxrMDDwhlp\nLP+muNOUjdVbyjH08I+ffMRU0ACHlTFbvsEdYGTqrEiqfQHEj85Eq1ax/CcLHn/r4/Q6LRNGZ+H1\n+diUu7Pt+XpNNFq1mfQhMDq9/b/GW18XdghIHOm7HxupLdGRlBDArxYn9uqIxuYWL488XURtvYfr\nrorlyouie+3Yp0KWFVZ8Ws07H1eh1aj4zS1DmTGl/2Rv9GdllU7e+rCKjVubARgzMojF8+JIGdq/\nRroKgiAIg1t2agQzxyeweks5b68p4qaLh/f1kgRBEAasHgclvF4vF154Ia+++ioAEyZMOF1rGnCO\nFXjwywo7iuu7fI7rcAThBIzftBqd14N2Vg6GAA3rGcZlQ43sq/WypbS9P8XY7EwMej1b8vKxO5zA\nobINbQLgY8EMU1twwe31s62o6zX63RJNB7UYDBL33ZGMXt97WQIWm49HnimissbN3IujWXB5TK8d\n+1TYHX7++WIpm7e3EBmu4/47UkhNEhvq46lv9PDOR1WsXd+ArEDWMDPXXhnDyOEiJVYQBEHonxZM\nS6PwYDPf51UyMjmM8cMHdyN2QRCE0+WEushZLJa2zWpRURFu98lPiBgs3F4/2wrrurxve2E9Tbbe\neQ9DGmsZsWsTjtAwZk0NY7c7hHHnpSHLCtur2z/m6Ihw0pMTaWxuYXdR+zSVQF0KKpWa5PhGwoND\n2m5vsblptnUeZ6n4wVYZCIqKO25OJLYX0+7tDj+P/62YgxUuLrkwkhvmx/VqBsbJKqt08sS/91NZ\n42bUCDP33JpEcJDoH9Edi83HB59V8/maOrw+hSFxBq6fF8elsxK6HDMrCIIgCP2FViNx65VZPPbq\nZl79Yg9JsWYiggP6elmCIAgDTo8vbd9xxx1cc8015Ofnc/nll3PzzTdz9913n861DQjdjfdstrsJ\nMXXd0K+n5RuHTVr/OZIiM/TiYSBJ7IsYSWyolm/3OrD71Zw7MgZJkjhnXDaKovDjlh1to670mmg0\najPBJge3zU3ocNxgk57wIH2H2xQF7DVGZK+a9OFapk4IO6G1dsfl9vO//yimuNTBjKnh3HJdQr8I\nSPy4tYn7Ht9LZY2bK+dE8cjv0kRAohtOl5/3Pqnitvt38fGqWkKCtfzmlqH8/U8jmDQmpF98poIg\n9G+FhYXMnDmTN954A2jN2LznnnuYP38+N954Iy0tLQCsXLmSefPmsWDBAt57772+XLIwAMWGB7Jo\nZgYOt48XPinAf2TdrCAIgtArehyUSE5OZu7cudx8880MHTqUq666iq1bt57OtQ0Ih8d7diXMbGBM\nekSX900eGc2QKBPSob2bpAJTQNeJLbHl+0guKcCREM+w7GA2emKZOj4em0vmw1wbO/c1snBGGhNz\nhhEcZGJPcQkNTc2HjmsgQDsEWfFice5n+TfFONw+apscuL1+9Fo1YzI6Npd0N+vx2nQEBin8792Z\nJ/nOdObxyjzx7/3sKbYzdWIot9+UiCT17ebVLyu88X4FTy0pQVHgd7cmcdM1CajVYlPdFa9P5vM1\ntdz2QD5vfViFRi3x82sTePb/MpkxJRx1H3+egiCcHRwOB48//jiTJ09uu+3dd98lNDSUFStWcMkl\nl7BlyxYcDgdLlizh1VdfZdmyZbz22ms0Nzf34cqFgei87FgmDI+iuLyFT9aX9vVyBEEQBpwel2/8\n8pe/JCsri+joaNLS0gDw+XynbWEDxeFN/ZE9JQ4bkxHBwhlpSJKK9Tur2/pIGHQSRWUtHaZqyArY\nnD6GRJlwuHw0WV2Emg0YdRIT3vkMgOzLU3ArGnxp2QToJJZtaMHuVnB6XDQ7FNJTU7A7nGzftbft\nuIG6ZFQqCbt7H16ng9VbHPywoxK3R25ryDl/WgoA2wrrqan24qwzoDfAPx4ZiU7bO92ofT6FZ/5T\nQl6BlQmjg/mfXyT1+QbWavPx9xdK2bbLQnSkjgfuTCFpiOgf0RW/rLBuUyPvfFhFTb0Hg15i4RUx\nXHFRNMYA0bFcEE43v19hX6mDvAILO3Zb2X/Ayb23JTNmZFBfL+2k6HQ6li5dytKlS9tuW7t2Lb/9\n7W8B2qZ7/fjjj4waNaptlPjYsWPJzc1lxowZZ37RwoClUqm4cc4w9lda+GRDKSOGhjIsMbSvlyUI\ngjBg9DgoERISwl/+8pfTuZYBa+GM1iDOtsL6tmDC4YCEWpJQqVQdGlu6PHKHgMSRHC4ff7xpPC12\nDygK0rffU15bjn9UGrFJJr72JXF+ZhhljV6+29vaxDLUbKDOFYRKJeG2VhFk1NBo9aHXxKBRm/H4\nGvD6mzq8PnQc+7loZgYXjk7k/v8tRJJ8PPw/6USEdp0BcqL8ssI/lpaweXsLOVlm7r0tGY2mbwMS\npWUOnnh2PzV1HsaOCuLuXyVhCjyhFiyDgqIobMmz8OYHFRwod6HRqLhsZiTzLoshRJS3CMJpoygK\nVbVu8vKt5BVY2LnbhsPZ+ndEpYLUJCMRYWfvz6BGo0Gj6fg7t6Kigu+//56nn36aiIgIHnnkEerr\n6wkLay8hDAsLo66u6z5Oh4WGGtFoTk+wNDJSNO/ta6fzM7j/ZxN44LkfeOmz3fzr3umYjV2X4A52\n4ueg74nPoO+Jz+DE9HiXNWvWLFauXMmYMWNQq9v/mMfFxZ2WhQ0kakli0cwM5l2QSovNTbBJj/5Q\nhkF3jTC70mhx8e43xew52ERLo43r3vwnRo2GSZclYpWMxI8bBcCbGy3IrS0jOHdsBha3hnCjjwsm\nR3PphAhy97Tw3jcaZMWLw3Og29fM3VvHVVNT+PdLB2mx+LjxmniyhvXOD5osKzz3ygHWb25mRHog\nD9yZgk7be1M8Tsa6TY0seeUgbo/M/MtiuPaq2D7P2uiPCgptvPF+BbuL7KhUMH1KGNdeGUtURO8E\nqwRB6KjF4mXHbis7CqzkFVipa2hvQhwdqWPqxFByssyMHG4myDTwgqiKopCcnMydd97Jc889x/PP\nP09mZmanxxxPU5PjtKwvMtJMXZ31tBxb6JnT/RlEmLRcMSWJj9aV8NdlW7h97kjRI+ko4ueg74nP\noO+Jz6Br3QVqevytZe/evXzyySeEhLRPZlCpVHz77bentLjBRK9VExXaMf2/u0aYXR5Dp2b9rmoA\ncvLWE9jSiHRuJgEhejzjp5EaGsD2Mg/FNV7CgwyMGx5DZHQisqKQHulBpQKtWmJTgR6VSsHu3odC\n92U4jVY3r79XTv5eG+eMC+HKi3pnJJaiKCx9s4xv1jeSlmzkobvSMOj7LtXf71d4/b0KVn5VS4BB\n4oE7U5g0NuT4TxxkSsscvPF+JVt3WACYOCaYRXPjGJogOpILQm9yu2UKimytJRkFVkoOOtvuMwWq\nOXd8CDmZQWRnmomJGvjBwIiIiLZx5FOnTuXf//4306ZNo76+fWx1bW0to0eP7qslCoPAZZOTKCht\nYmthHd9tr2TamPi+XpIgCMJZr8dBiby8PDZv3oxOJ1LVetPhRpgNJxCYANA77Yzd/A1eg4HzZsVR\n6g8hODAIjU/hzQ3NhJj1ZKeGkZ01nFqbitRwNwZN6xWk77Z5KatRCA1y0FTddJxXAp9Nw6q1jcRG\n6bnz5qG9clVAUVoDAF+urWdogoE/3p3Wp70HWixe/vp8KTt3W4mP0XP/nSkMiROb7CNV17p55+Mq\nvt/YiKJAZoaJG+bHMTzN1NdLE4QBwS8r7D/gYEeBle35FvYU2/H5Wn9vazUqskeYyckyk5MZRFJi\nwKDL4Dr//PNZt24d8+bNIz8/n+TkZHJycnjooYewWCyo1Wpyc3N58MEH+3qpwgAmSSp+dXkmj7z8\nE2+vKSI9IZj4SPF3UBAE4VT0OCgxcuRI3G63CEp0w+31dyrPOJ7uGmEe3dRyWGIIPx7Kkhi3eQ16\nj4vgi0ejNWopDR/JZJ2Kj3KtNNhlwM3uCg9D0rSY9H4SgluzIWoaZb7c6MEUoOK3C8L59McEthXW\n02hx0VXSq98jYasORKtVcd8dyQQaeydw8O4n1Xz0ZS3xMXoevScdcx+mGu8rdfDkkv3UNXiYOKa1\nyaZoztiuucXLe59W89W39fj8CsmJASyeF8eYkUEibVUQToGiKFTXuskraC3J2LnHis3e3hciOTGA\nnMwgcjLNDE83odf1bWnbmbRr1y6efPJJKioq0Gg0rFq1imeeeYY///nPrFixAqPRyJNPPonBYOCe\ne+7hlltuQaVScccdd7Q1vRSE0yUsyMDNl4zg2Q928vzKfB762fhea/wtCIIwGPV4J1hTU8OMGTNI\nTU3t0FPizTffPC0LO5v4ZZnl3xSzrbCORou7bWrF4UaWx9NdI0yfX2kLdADsPdiE72A5WTs24AkJ\nZuTUaLZ4Y5gwJoF6q58vdrY2yJQkiXPGjkJRFIaY7dQ1uzEZdbzztQefH6aPk7E4nMy7IJV5F6RS\n1+TgHyt2dCglUWSwVwWiyCpuuSGh1yZPfPxlDe98VEVUhI5H700nJLjvmrF980MD/339ID6/wqK5\nscy7NKbPx5D2F3aHn4+/rOGTr2txuWWiI3VcPzeOKRNDxXt0gk4mYCkMTBarj527rWw/VJJRW9/e\nFyIqQsfkca0lGaNGmAkyD7y+ED01cuRIli1b1un2f/3rX51umzNnDnPmzDkTyxKENmMzIpk+Jp61\n2yp4d20xi2cP6+slCYIgnLV6/I3n17/+9elcx1lt+TfFHTIdjp5acTzdNcJUS3ToQzEmIxLV2y+i\nlmWSLk7HK2nQZOSgUatYvtmC99AQj+wR6QSZTRQU7uPTL/fRbHMTakpAkePwyQ28/tU+AAw6NVNG\nxbBgeiqBBm1bUEJRwFEbgN+tRhfspsHbBESe8nv15do6Xn23gvBQLY/dm05EWN9k3nh9Mq+8U8EX\n39QRaFRz/6+SGJcd3Cdr6W88Xpkv1tSx4rNqbHY/ocEabrwmngvPC0erGTxXanvDqQYshbOf2yOz\nu8jW2pwy38L+o/pCTB4XQk6WmezMIGIidSL7SBDOIgtnpFFY1sw3uRVkJYcxJv3UvycJgiAMRj0O\nSkycOPF0ruOs1d30jG2F9cy7ILXDldHurph21QjzaJcGOdi7byf+hGiG5kSwUZ3C2NQwdle62Vra\nGlAINpvIGp6G3eFk+669+Px+JJUB2R+Dggebq33ahsvjZ83WCgrLWiirtbXd7rHo8Fj0qPU+jJHO\nLs/lRK1d38Dzy8oIMmt49N70PmvM1tTi5akl+9lTbCcx3sADd6YQG23ok7X0J36/wtr1DbzzcRUN\nTV6MAWoWz4vj0pmRfdqA9Gx2qgFL4ezjlxVKDzrZnt+aCbG7yIb3UF8IjUbFqBFmcjJNiup0AAAg\nAElEQVTNZGeaSRlqHHR9IQRhINFp1dx6ZRaPv7aFlz/bzZ9uCSLUPPCbzgqCIPS2wZsb2ku6m57R\nZHXRYnMTFWrslSumiqJQ8Xhr6uqYq9LwG8zEZ49ClhXe2tQ+duaccdmoJYlNuTvx+VtTJwJ1KahU\nEnZ3aZfTNirq2gMSPpcaR20AKkkmMM6BSup4Lidj/eYmnn35AKZANY/dm0ZCbN8EAfYU23hqSQlN\nLV6mTAjhjpuHEmAY3BtuRVHYuLWZNz+opKLajU6rYu7F0cy9OLpPe32c7U40YCmcvapr3a3NKQss\n7Nzd3hcCDveFaG1OOSLdhF4vMmQEYSBJiDRx7Yw0ln1VyNJP8rn32jGixFEQBOEEiR3HKepuekao\n2dDWC6I3rpg2fbYG29YdhE3KIHhIEHvDskgKM7C6wE5FU2ugIS05kejIcA6UV1FeVQOAQROLRm3C\n7avH62/u8tjyoS6Xsl+FvdIIiorAWDtqrdzpXE7UlrwW/v5CCXq9xMN3p/Vab4oToSgKX31Xz4tv\nliPLCjdeE8+VF0UN+lTpHbutLFtRQXGJA0mC2RdEcM0VMYSHioa2p6qnAUvh7GOxtfaFOFySUXNE\nX4jIcB3njG0tyRg13ExwUN/1zBEE4cyYNiaeXSWNbCuq5/ONB7js3KS+XpIgCMJZRQQlTlF30zPG\nZESg16p75Yqp7PFS9ud/o9KoSTk/Bn9oLDHDk7C6ZD7Obc1yMOh1jMsegcfr5adtu2gN1Adg0MYj\nKx6cngPdvoaigKPaiOxTYwhzoTW1Z1QcPpcTtaPAwlNL9qNWq3jorjQyUgJP+BinyuOVWfpGGavX\nNWA2qbnn1mRysoLO+Dr6k32lDpa9X0FefmuGzZQJIVw3N474GFHG0lt6GrAU+j+PV2ZPkY3t+a2B\niP0HHSiHArmBRjXnjAtpK8mIjdIP+mCnIAw2KpWKmy8ZQenLP/HRuhKGDw0lLV70qRIEQegpEZTo\nBd1Nz4DeuWJatvQd3AcqiLkwi4CIQKzp4zDoJN5d34Ld0/rteHxOFnqdjk25O3G6XCREmmixDD2i\nbMPf7Wu4mvR47Vo0Ri+GcBfQ2ghzanZs27mciN1FNv7vX/tRgAfvTCUz48zP8a5v9PDUkv0UlThI\nSQzg/jtTiIoYvJvBiioXb31YyYYtrRkzo7PMLJ4XT2qSuGLf23oSsBT6J1lWKClzsqPAQl5+a18I\nj/dQXwi1iqxhJrJHmMnJCiI1SfSFEAQBTAFafnlZJk+/vY0XVubz6M0TMRrE12xBEISeEL8te8Gx\npme4vX4aWhwE6DUnfcXU4/Px5PM/cMFfl6LV60maEkOROo7EUDOVzT6+K2zt5B4XHUnK0ATqGpoo\n3FfKxZOHYtTG8c0WP6ga8cvNhAfpMejUVNQ7Or2O16HBVW9Ao5UxxzoIC9IzfGgoi2alY9SfePrx\nvlIH//uPYrw+mfvuSGH0yDOfmbBrr5WnnyvBYvUx7dwwfv2zRPS6wVnPXd/o4d2VVaz5oQFZhvRk\nI4vnx5M9wtzXSxvQjhewFPqP2no32/Ot7N1XxubtjVht7UHcpCEBbZkQmRkm0fhVEIQuDR8ayqXn\nJvHphlJeX7WHW6/IEplTgiAIPSCCEr3o8PQMvyzz1urCDk0tjQZtl0GJ410x/fPrucR/sRKDy0HU\nnCww6lENzwYgv0GPooBarWbS2FHIsszGrTs4f3QsHq+OjXleZNmHpKngnKwYFs1Kx+bw8sDzGzu8\nhuxVYa9qvVL+218mMizV1OV0kJ46UO7k0b8W4XTJ3P2rJCaNCTmp45wsRVH4dHUdry4vR6WCXyxK\n4JILIwflFwOrzccHn1fz+Zo6PF6F+Fg9118dxzljQwbl+3GmdTfuV+hbVpuPXXusbC9oLcmorm3/\n/RweqmXG1BBGZ5oZNcJMSLDoCyEIQs9cOTWJ3Qca+Wl3LVnJYZyXHdfXSxIEQej3RFDiNOiqqWWD\nxc2QKBMOl6/HV0ytDg+W4oPM2b4eX7CZ9KnxbNMmMzIhlJ/2O5kwKos6uwqHEoLZFMi+/SWMONRE\n8qddOjSShN1Tgs/lZMMuJ0aDhnkXpBJm1tFobW3MpihgqwpE8UtEDPEwMSf8lDZNFdUuHn2mCJvd\nzx03J3LepLCTPtbJcLtlnnvtAN9vbCI4SMN9t6f0SdlIX3O5/Xz6dR0fflGDw+knPFTLtVfFMv3c\ncNRqEYw403oy7lc4vTxemT3F9taSjAIr+0rb+0IYAyQmjQkmOzOI6efFYND6RNBOEISTopYkbr08\ni0de+Ym3vi4iLT6Y2PAz309LEAThbCKCEr2su6aWDpePP940Hqfb16MrpuW1NsZv+BK17CdlThpW\ntYHECTm4fQrLN1v5RYyDK84bxtbyADweN0X791PX5MCgjcOgDcTtq8Mnt7Qd73BTzcCA9qCEs86A\n36VBa/YQmyidUkCitt7NI08X0Wzx8cvrE5h5XsRJH+tkX/+JZ/dTctBJRoqR++5IGXRTJLw+mdXf\nN/DuyiqaLT7MJjU3LYzn4hmR6LSDs3RFGJxkWeFAufNQc0oLBUU2PJ72vhAj0k2MzjKTnRlEWpKx\nLVgXGWmkrs7a3aEFQRC6FRESwI1zhvPfj/N5fmU+/++G8Wg14m+wIAjCsYigRC87XlNLp9vXoyum\nflkm77P1pBduR4kNJ250NNtDR5AZZODDrVZaHDLxkSYK6/QoqPhu03ZqmxyoVQHoNXHIsgen52Cn\n169rduJweQHwWLW4mw1IOj+B0Q6cbj1ur/+kAhONTR7++HQRDU1ebpgfxyUXRp3wMU7F9nwLf/1v\nCTa7n1nnh/PL64egHUSbcFlW+OGnJt76sJKaOg8GvcSCy2O48qJoAo2iXEAYHGrr3a1jOg+VZFhs\n7ROEhiYYyM4MIudQX4gAg/i5EATh9Jk4IppdJY38sKOK97/bx7UXpvf1kgRBEPotEZToZSajDr1O\nwuWRO913ImMAl68pwvjK6wCMuiyVKsVMxvjh1Fl9fLnLTmxEIFafEYtbTWVVNZXVtYAKoz4FlUrC\n5i7pNG0jxKSnscVJg8WN3yNhrzaCSsEUa0clQZPV3aNJIEdrsXh55Jliauo8LLg8hqsviTmh558K\nRVH46Msa3lhRiaRWcduNicy+4MxmaPQlRVHI3WnhjfcrKS1zolGruPTCSOZfFiPq4IUBz2b3sXOP\ntS0QUVVzVF+IKWFkZwaRnWkmVPw8CIJwhl0/M4Pi8ha+2lxGZlIY2anhfb0kQRCEfkkEJXrZR+v2\ndxmQAMhODetRszu310/Np2uZUlmCbng8oWnh1CTmEK5Rs/ynJrx+UBSJvTVqNGqZDVt2AGDQxKKR\nOpdtHOZw+/jnip2oFLBVBoKiIjDWjlrfut4TCZocZrP7eOxvxZRXubh8dhTXXRV7Qs8/FU6Xn2df\nPsCGLc2Eh2r5/e0pDEsdPHWbe4ptLFtRSUGhDZUKpk0O49qrYomOHLwjT4WBzeuV2bvPTl6Blbx8\nC/tKHciH+kIEGCQmjA5uK8mIj9GLvhCCIPQpvU7NrVdk8edlW3jpswL+9POJJ/w9SxAEYTAQQYle\n4vb6qWt2kru3tsv71ZKK7UV1rN1WSZhZx9hhUSyckYZa6lxi0NxkJ+vrj1BUKkZdmkIRUSSPSKSg\n0k3ugdYrgWlp6UhqDT9t34nD5UatMmLQxiHLbhxHlW2oJfDL4PL4URSwVxuRPWr0IW50Zm/b4443\nCeRoTqefx/9eTMlBJ7OnRXDzwvgztgkoq3Rw/5/3UlbhIjPDxO9vSx40mQEHyp28+UElm7e3Bp7G\n5wRx/dVxJA0RjRSFgeVwX4jDmRAFhTbch4K+ajUMTzeRnWkmJ9NMenKgaOIqCEK/MzTGzPxpabyz\npogXP9vN3dfkIImAqSAIQgciKHGK/LLM8m+K28Z/Ksd8nEKTrTUA0Gj1sHpLObKisHjWsE6P9X3y\nBSHN9QRPTEYXacaYMxa/rPD2xtbma/ExUSQNiae2vpGColJayzaSD5VtlMJRZRv+IxI33C06vFYd\naoOPwCgnAGFB3U8CcXv9nTI83G6ZP/9rH4X7HUybHMati4ecsYDE5u0t/OulUmx2P5deGMlNCxPQ\naAb+H/jaejdvf1TFdz82oigwIj2QG+bHMyJ98E0XEQau+kYPeflW8gos7NhtpcXS3hdiSLyB0YfK\nMbIyTAQEiL4QgiD0f7PGJ1BQ2siOfQ189VMZcyYl9vWSBEEQ+hURlDhFR4//PBEbdlazYFpah+wE\nn8VGzd+XgkHH8IuSKTIkkRITyup8OxXNPjRqNZPGjkKWZTZuPVS2oY07VLZR22XZRtuxnWqctQGo\n1DKmWDuo4N6Fo0mJD+4yQ+LogEtYkJ4xGZFcfV4KTy0pJX+vjcnjQrjz50ORpNMfFJBlhfc+read\nj6rQ6SR+e8tQpk8Z+PWZzRYvKz6tZtXaenx+haEJBhbPi2dcdpBITxfOenaHj117bG0lGZVH9IUI\nC9Ey7dwwcrLMZI8IIixkcGRDCYIwsKhUKn5+yQj++PJPvP/dPoYlhpAcG9TXyxIEQeg3RFDiFHQ3\n/rMnXB4/dU0OEqLMbbdVLXkNX2MzQy8egc9kIm7iaKwumY+22QDIycrAFGhk5+4imi3W1rINTeyh\nso2yY76W7Fdhq2rttxAY40DSKoSZDccMSEDngEuDxc3Xm8vZ8L2TinI/Y0cFcfetSWckZdru8PPP\nF0vZvL2FyHAdTzw0krDgjo/pKqPjbOZw+vl4VQ0rV9XicstER+i4bm4c500KPSNBIEE4Hbw+mcJ9\n9tZsiN1Wivfb2/pCGPStfSGyR7SWZCTEGUTgTRCEASEoUMcvL8vkr8u38/zKfB65aQIBevE1XBAE\nAURQ4pR0N/6zx474wu2uqKZ66Vvows3EnzsE/6iJqI0GPtlix+FRCA0OYkR6ClabnR0FhRw9bQP8\nSCravuAfpihgrzKi+CQM4U60ga3p0EaDBs0xAgpdBVwUBRzVRpqtfrKGmbjvjpQzMne7rMLJE8/u\np7LGTfYIM/f8OpnUFDN1da3lLMfK6DhWz47+zuOVeffjcl595wAWm4/gIA03zI9n1gXhYs65cNZR\nFIWDFS7yCizk5VvJ39veF0KSICM1kJxMMzlZQaQnBw6KUixBEAanrOQw5kxK5MtNB3nz60J+cVlm\nXy9JEAShXxBBiVMQbNITFqSn4SQDE3qtBIqC2+tHr1VT/tR/UFxuhl4xDFVEFEpMAopaj0MFpgAn\nk8dnI0kSG7fuwC/LGLTxaCTjobINC3AoxnFUUMLVYMDn0KIJ9GIIa19rWa2N5d8Us2hmRqe1HR1w\nURRw1AbgserQGHz86sY49LrTv0H+cWsT/3rxAC63zFVzolg8L75TZkZXGR2H/93VufVXflnhuw2N\nvPNxFXUNHowBEovmxnLZrCgCDGd/5ocweNQ3eg41p7Swo8BK85F9IeIMbc0ps4aZMYq+EIIgDCJX\nn5/CngNNbNhVTVZyGJOzztwYdUEQhP5KBCVOgV6rZkxG5En3lFCp4JGXNxMWpGeSzk7iis8JTIwg\nekwcvmFjQZJ4eV0T6/dYGJ6WRERYKPsPlFNVW3+obCMO/6FpG4cnbPiPnkbq1uFqNKDRyQTGODg6\nE3pbYT3zLkjtVO5wZMBFUcBZF4CnRY9a72PIcB/R4QEndc495ZcV3v6wkvc/q0Gvk7jn10lMnRjW\n6XHdldAc69z6G0VR+GlbC29+UElZpQutRsV1cxOYMz2MIJP4ERX6P7vDT/7e1gkZeQUWKqraA5qh\nwRoumBxGTqaZ7Ewz4aG6PlypIAhC39KoJW69MotHX9nMslV7SY0LIipUTM8SBGFwEzueU3R4YsW2\nwnqarC5CzQZGp4ejAHlFDTRZXYSY9AQGaHG4vDRa3ei0Em6PjOtQCnNDiwvpw5dBUUienYwSm4wc\nFkFJk4r1eywYAwyMHjkct8fDlrx8QEWgPgWVSoXDXQLInYMRgN+rwlYegFoNxhg7krrzbJAmq4sW\nm7vTH8QjAy6uBgPuZj2Szo8pwc74zHgAapscp6V/g9Xm4+8vlLJtl4WYKD0P3JnC0ISugyDdldAc\n69z6k117rCxbUUHhfgeSCmaeF87CK2MZMSy8rTxFEPobn0+hcL+9rSSjqMSOfOh3kEEvMS47iJzM\nIHKyzAwRfSEEQRA6iA41csPsDF78dDfPryzgD4vHolGL8kxBEAYvEZQ4RWpJYtHMDOZdkNqpyeKC\naR0bL7q9fuqanfzj3e24PZ62YyQe2ENCeTHGjGhCMiLxpo9EQcXSNa0ZABNGj0Sn1bJh83Zcbg8G\nbTxqyYjb2162cTRFBntlILJfRfgQNypj14ELnVZNsEnf5TEWzkhjd76HXY0eJK2fxOFexmXFoSgK\nDy3deFr6N5QcdPDks/upqfe0NtL8VRKmwGP/N+2uhCbUbDjmufW1fQccvPl+Jdt2tX5+k8eFsOjq\nOBJiDX28MkHoTFEUyipd5OVb2VNcSu7OZlzuI/pCpAQeKskIIj3FKHqfCIIgHMe5I2PJL2nkx/wa\nPlpXwvxpqX29JEEQhD4jghK94FhTH/RadYer9Bq1ii83HaTR2h6QUMl+zvnhcxSViuGXpuMeMgJV\noJnccoVqi48hcdEMTYilpq6B4tIy1FJge9mG9+Ax1+SsC8Dv1qAL8uA3OFF1EZA4ns/X1LMrz0NE\nmJZ7bk8leYiJ97/bd9r6N6zb2Mizrx7A41FYcFkMC6+KRX2cKRPdldCMyYjod6UblTUu3v6wih9+\nagIge4SZxfPjSE8O7OOVCUJHDU2H+0JY2VFgoamlvS9EfKy+NRPiUF+IQGP/+jkTBEE4GyyePYzi\niha+2HiAzKRQMpM6l6kKgiAMBiIocQpOdOrD8m+K2bCrusNtwwu2ENZYQ/iERNQxoZA6HEXSsuKn\nWjQaNRPHjMIvy2zcugNQEahL7lC20RW3RYu7RY9a58cY1bmPRIfHevxdljh8/X09L79dTmiwhj/9\nPp3YaMNp69/g9yu8/l4FK7+qJcAg8cCdyUwaG9Lj53dVQjMmI6Lt9v6gscnD8k+qWf19PbIMqUON\n3DA/jpwsMadc6B+cTj+79h4OQlgpq3S13RcSpOH8c0LJyQxi+nmxqBRPN0cSBEEQeiJAr+HWK0by\nlze2svTTAh77+USCjKLvjiAIg48ISpyCY0198MsKN8we1uGxXW3oNR43EzauQtFqSJudinXoKEw6\nPc2qEGqbyxiXk0WgMYC8gkJarDYM2gTUkhGXt+aYZRt+t4SjxgiSQmCcHdVxsqjDgjqXOHy/sZH/\nvHYQs0nNo/e2BiTg9PRvaLF4eea/JezaYyM+Vs8Dd6aecAlDdyU0fc1m9/HhFzV8uroWj0chLlrP\n9fPimDwuRNTZC33K51MoKrGTl28hr6C1L4Tf33qfXicxdlRrT4iczCAS49v7QkRG6KmrE0EJQRCE\n3pASF8Tc81NY8e0+Xv5sN7+dl410nCxRQRCEgUYEJU5Sd1kD322rAEVh0ayMtoyJrjb0o3O/w+iw\nkXBhGp6wCEwZ6aANJCAwlKSECIanJ2Ox2ti5u+hQ2UYssuJmfKaPdXmdX1fxg60yEBQVgTF21Lrj\n12xkp4Z12MBv3NrMP18sJcCg5pF70kmMb28wGWzSo9epcXn8nY7TXW+KYykusfPkkv3UN3qZNCaY\n3/4i6ZTGAx5dLtOX3G6Zz9bU8sHnNdgdfsJDtSxcFMuMKeGdRpoKwpmgKArlla7WTIjdVnbtseJ0\nHeoLoYK0lEByRpjJzjIzLDVQ9IUQBEE4Q+ZMSmR3aSM79jXw8ue7+fmlI5DEhQtBEAYREZQ4Sd1l\nDcgKrN1WiVottfVZOLoho9HWQk7ud6hMBhIvSMafPR5FUoM5Bq1aw6SxOUgqFRu37kCWFYIMrdM2\nMhItaDVg0Elt0ztUh17TXmNE9qrRh7rQmb2d1jUkyoTd2ToBRFK1PmfHvgbeWl3Iwhlp5OVb+et/\nS9BpJR6+O5XUoV1t8DtP8DgZa9Y18Pyyg/j8CovmxjLv0pgBcWXA51NY80M9yz+upqnFiylQzY3X\nxHPxjEj0OrHJE86sxmYvOwosbSUZjc3tvxfiovVMO7e1L8TI4SYCjeLPgSAIQl+QVCpunzuKZ97Z\nzoZd1WjUEjfOGSYyKgVBGDTEt9CT1N3Uh8OO7LNwdEPGCRu/Quvzkjp7GPWmaEIiYpANoUgaPRXN\nGnR6PQ5rA163nQBtPGopgMhQO6ZAD99srejwOgrgbtbjtenQBPgIiHB1uD88yEB2WjgzxyXw1eYy\nvtteiXwotnC45KSuxs+G711IEjz421SGp5k6nU+Lzd0WCDnasXpTHM3rk3n57XK+XFtPoFHN/b9K\nYlx2cLfPORvIssKGLU289UEVVbVu9DqJ+ZfFcNWcKLHZE84Yp9NPfqGNHQVWthdYKKto/10QZNZw\n3qTQtikZkeGiblkQBKG/CNBr+N3CHJ5+exvf51Wi1UgsmpkuAhOCIAwKYrd0krqb+nDY0X0WDjde\n3LUml2G7t6CNCiJqXDyO0eOwuhS+zLdw+XlxlDTq0EgKM0cZyIiYwH8/dBNiUnH7vHAef7W40+v4\nnGqcdQZUapnAWHuHxpY3X5JBaZWNHcX1rM2toKtkBJ9TzXdrHUgqiT/8JoVRI8xdnk+wSU/4MQIx\nXfWmOFpjs5enn9vPnmI7QxMM3H9nKrFR/XNkZ08pisL2fCtvrKhg/0EnajXMmR7BNVfEEhqs7evl\nCQOc33+oL8ShTIi9+2xtfSF0OhVjRrZmQmRnmhmaEDAgspEEQRAGqkCDlnuvHcNTb+WyZms5WrXE\ngumpIjAhCMKAJ4ISp2DhjDT8ssJ32yraMg+OFGruuFFXSxLzLkgl8LHHkRSFjEszqAlNJjwsnLd+\naCG/WiFjuBZZUZER4UalKLy/1oOiwLWz9Fhszk4BAdmnau0jAQTG2pE07QuRVLCvwsL3ee0TP45e\np8+lxlYRiCLDL26M7TZr4VTGb+4ptvHUkhKaWrxMnRjKHTcnYtD3j2aUJ2vvPjtvvF/Brj02AM4/\nJ5Rrr4o76wMtQv+lKAoV1e625pT5e604nO19IVKTjGRnmhmdFdTaF0IrSoYEQRDOJqYALfccCkx8\n+dNBNBqJq89P6etlCYIgnFYiKHEK1JLUOmVDUVi7rbLT/V1t1Ku/+oHYfbsxpUZgzIgmcNwYDtR7\nWVfkJDEuhianlhCDn2izj0/Xe6htUpiSreGnPfs7NdZUFLBXGVH8EgERTrTGjg0o4yICyS9pOub6\n/W7pUEBCRXSyl+nnRh73nE90/KaiKKz6tp6X3ipHlhVuuiaeKy6KOquj/mUVTt78oJJN21oAGJcd\nxPVXx5Gc2D+abAoDS1OLlx0F1rbeEA1N7X0hYqP1nH9OaybEqOFmTIHiV7ogCMLZLjhQx73XjuHJ\nN3P5dEMpWrWKy6ck9/WyBEEQThvxDbYXLJqVgVotHXejrvj9tPztPygqSL9sGJaETIL1Aby1ugGN\nWsOksaNQoZAR6eZgtZ/vtnkJD1Zh95SxNrdzdoKr3oDPqUUb6CE8zo/T3ZoJIakgKTaImy4ezh9f\n+qnLNfs9EtZyE4pfwhjl4PzJUT0ao3ki4zc9XpkXlpWx5ocGzCY19/46mezMoB68o/1TXYOHdz6u\n4tv1DcgKDE8LZPG8OLKGdV3uIggnw+X2k7/Xdqgkw8KB8iP6Qpg0TJ0Y2laSERUhsnKEgauwsJDb\nb7+dm266icWLF/PAAw+Qn59PSEgIALfccgvTpk1j5cqVvPbaa0iSxDXXXMOCBQv6eOWCcOpCzXp+\nf90Ynngzlw/XlaDVqJkzKbGvlyUIgnBaiKBEL+jpRr1+xee4dhcTNTYeOT6a4MxMftznpKjGy8TR\nIzEYDAwN9aCVZN5e7UJR4PKpal79orbTsTw2Da4mA1q9zKUXh7J4TjoOl4/yWhsJUSZShoZTXtnc\nYUrHYbJXhe1QQCIiwcv086OOmelwLMcbv1nf6OHJJfspLnGQMjSA++9IOWs3UC0WL+9/XsMX39Th\n8ykkxhtYPC+O8TnBZ3XGh9A/+P0KxaUOdhRY2J5vpXCfHZ+/tc5Kp1UxOstMdmYQo7NEXwhh8HA4\nHDz++ONMnjy5w+2/+93vmD59eofHLVmyhBUrVqDVapk/fz6zZs1qC1wIwtksPNjA7xe1Zky8u7YY\nrUbiwnEJfb0sQRCEXieCEr2ou4263+Gi/Kn/IGk1JF+Uji9zLB5F4oMtVlKHRDEsLYkArZ/EUC+f\n/uChrkkhKszGK18U02zzdDyWR8JRHQgqhXtuS2ZSdjgAZqOOEUlhR71yxw2M7FNhLTch+yTSR6h5\n/K6cHmVInIhde608/VwJFquPaeeG8eufJZ6V4zCdTj8rv67l4y9rcLpkIsN1LJoby3nnhKEWG0Ph\nJCmKQmWNm7z81kyInXtsOJytpVcqFaQONZJzKBAxPC0QnegLIQxCOp2OpUuXsnTp0m4fl5eXx6hR\nozCbWzPWxo4dS25uLjNmzDgTyxSE0y4qJIDfX9camHjz60LUahXTRsf39bIEQRB6lQhKnCE1S9/E\nW1XLkOmpaFNSIH4IvoBI7r0+mQO2MBxeFcMiPRyo9vP9Ni86rZe95XuAjlkOigz2qtY+EFFJHkaP\nOPbVoBabG7envc+E7D8UkPCqMYS68Oi7Hu95shRF4dOv63j13dZSk5uujeeKWWdf/wivV2bVt/W8\n92k1FquPILOG66+OY/YFEaJxoHBSmi1edhZY2X6oJKO+sb0vREyUnqmTQhmdaWbkcDNmk/i1LAga\njQaNpvPPwhtvvMErr7xCeHg4Dz/8MPX19YSFtQfjw8LCqKur6/S8I4WGGtFoTk+j5chIUc7X1wbi\nZxAZaeb/bp/CH55bz7JVewkLMXLhhP5byjEQP4OzjfgM+p74DE6M+PZ7BnjrGia5uK4AACAASURB\nVKh89jW0ZgMJ05LxZYwCtQ6NOQJ3sx6HV02M2YtR4+c/X7lQUGiwFnF0QALAURuA361GF+zmgnPD\nu81yCDbpCTHpabK5UfxgKw9E9qjRh7gxRLiwOOCNVXu56ZLhqKVT22y73TLPvnqAHzY1odYoGGNs\n/FBcjF1qYeGMtFM+/pnglxW+/7GRtz+qoq7BQ4BB4rqrYrl8VhQBAWf3pBDhzHK7ZfILW8d05uVb\nKS13tt1nNqmZMiGE7MzWcZ3RkWdnWZMgnGlXXnklISEhjBgxghdeeIFnn32WMWPGdHiMonQxCuso\nTU2O07K+yEgzdXXW03JsoWcG8mcQoFbxu2tyePrtbfxz+TacDg+TMqP7elmdDOTP4GwhPoO+Jz6D\nrnUXqBFBiTOg4m9Lke0Okq/KRJU2AiU4HMwxOH1qSpu0aCWF1HAPn/3gpr5FweWtwSfbOh3H3aLD\nY9Gj1vu4eHbocftAaNQqAgxqGi1grTDhd2vQBbkJiHRyOHlh/a5qDHo1188adtLnV1Pn5skl+yk5\n6ERt8GGKtSNpFRos/rbxoYtmZpz08U83RVHYvL2FNz6opKzChUaj4vLZUcy/NIYgs/gREY7PLyvs\nK3WQl29hd/E+du624PO1bo60GhU5mea2kozkIaIvhCCcjCP7S8yYMYNHH32Uiy66iPr6+rbba2tr\nGT16dF8sTxBOu8RoM79bOJpn3tnG0k8K0Kglxg07/uQ0QRCE/k7suHrI7fUfd9pEV5xFJdS+8SEB\nUWaiJyfjS80CbSCK1kRRjQ5ZUTEs0kVZjZ91eV78shunt/OkDZ9LjaM2AJUkExjn4JJzRnabfeD3\ny/zp1S1U1DqwVQbid2nQmj0Yo9sDEoet31nN/GlpJ9VbYvsuC399vgSb3U9QpA8p2IbqqGVtK6xn\n3gWpvd67ojfk77WybEUle/fZkVQwY2o4114ZS2S4rq+XJvRjiqJQVetmR4GV7fkWdu2xYXe094VI\nSTSSnWlmdJaZYWmms7KniiD0N7/5zW+47777GDJkCJs2bSI9PZ2cnBweeughLBYLarWa3NxcHnzw\nwb5eqiCcNsmxQdx9zWj++s52/vvxLu68ehQ5aRF9vSxBEIRTIoISx+GXZZZ/U8y2wjoaLW7CgvSM\nyYjscUlC2f/+C/x+kueko6SNBIMRzDFUWiQaHRqCDT5C9D5e+qB17J/ds5+jyzZkvwp7lREUFYGx\ndqLCdQSbuk/5fuGjnRyssWGvCsTn0KIN9BIY4+gUkABwefzUNTtJiDT1+H1RFIUPPq/hrQ8qkdQq\nblgQw2d5e+gqcbbJ6qLF5u52WseZVnLQwRvvV5K70wLApLHBXD83jiHxAX28MqG/arF42bH7UElG\ngZW6hvYGtNEROqZMCCU708y0KbF4Pa5ujiQIwvHs2rWLJ598koqKCjQaDatWrWLx4sXcddddBAQE\nYDQa+ctf/oLBYOD/s3fn4VWV5/7/32utPQ+Z54RAAgRIICEgAk4oguAsoqKo/dr29JxTbU8Hh/b4\n9dtzbK+2x6G1dTqtdvhZqxVFVKwzReqMIpAAAQIkBMg873levz922CEkTAok4P26Lq7srLWHZw8h\nWfd6ns99++23881vfhNFUbjtttsSoZdCnK7G5Sfz/WvLeej5Kh57aTPfu6acsqKDg86FEOLUIUWJ\nI1i2emdiCQJApyt41EsSXB+to+ed90kqTiN1WjHh0ROIWVJZ9t4+UnMmYDBEefntj3nbmEdnr4NA\nuIXoQcs2dB18LbZ4OGVaAKMjQmVJzmFnHQTDUT7e1Iy32UbYa8RgC2PP9Q5ZkBjwQEfJ74/yyJ8b\n+HhdD+mpRu66tZjRhRY+rq+n0xUcdP1Up+WIRZSTpbktyHMvN/HeJ90ATJ7o4KbF+UwYax/mkYmR\nJhiMsXWHh401Lqpr3NTv6c+FcNg1Zp+RwtTSJMpLneRk9X++U5KNtLdLUUKIL2Py5Mk8/fTTg7Yv\nWLBg0LaFCxeycOHCkzEsIUaMCYWpfPeacn77QjWPvFjND66rYEJh6nAPSwghvhApShxGMBxlQ+3Q\nKd5HWpKgx2Ls+elvASi+ZALRknIwmnlxnQtXJI1cs5n1m7bS3B7BYbZjMYVRtHb84YH3E+g2JwoL\n+UUwbULBoCyJg5eWtHZ62bdDI+wxYbBGcOR5By2pOJDFpJF5lLMYmloD/M8jdextClBa4uDObxeR\nkmwEoLIkc0ABZ7/KkoxhX7rR1RPmhVebeee9DqJRKC60cvM1+VSUOU+57iDixIjGdOoafImZEFt3\neAbkQpRPclJe6qSi1EnRaJu0hRVCCDGsysak8Z2rJ/PIi5v4zQvV3L5kKuMKkod7WEIIccykKHEY\nvZ4gXUOc+YcjL0nofPktfNVbyZyai33KeMK5owlbM9jR0sxZM8fQ3euiZns9DnMZAKFYAxXj03l3\nfWPiPsI+A4EOCwaTzs/vnMjoPMeAg/uDl5akOk3YLCYaaiHkMsVDJ/MGZzwcbGZp1lEVDT7b2Mtv\nnqzH549x6bxMbrmuAIOh/8Bsf7FkQ20H3e4AqU4LlSUZRwzkPJG8vggvvdHK399pJxiKkZtl5sar\n85h9RoqEDX7F6bpOS3uIqi3xmRCbtrnxePtb6BYXWqkoi8+EmDTOgdksuRBCCCFGlvKxGXz7qsk8\n/tJmHnphI3dcX0lRbtJwD0sIIY6JFCUOI9lhJi3JfMxLEmKBIPt++RiKQWXMghIiJRXEDBa6ghYm\nTZwEwCefV2M25KOpFgLhZoKBLuZNn4mmKmyobae9MxTPkQCyi4Ks29HK2FED18kOXloSYl+dSrDb\ngmaK4sj3ohzFBIWLjtDrOhbTeeHVFp57pRmTUeF73xrN+bPTB11PU1WWzith8ZyxXygU9HgKhmK8\n/o92VrzegscbJTXZyNevz+fCczIGFFLEV4vLHWHTVjdVNS6qaty0dfTnQmSmm5g1PYWKUidTJjpJ\nTjIO40iFEEKIozOtJJN/vaKU36/cwq+XbeTOGyopzJZsFSHEqUOKEodhNmpfaElC6x+fI9TYQv55\nRYTHlmBKzeTxVe0UFKWTmp7F9l276e6O4LTkEI358Yf3kZ5kIS3JwuI5Y+lyBanf7EePqlgzffj0\n0KAci6GWlgS6zAS7LajGKI4CD6p25JyI/Y97KF5flN/+YTefbewlM93Ej75TzNjRh1/qYTZqwxZq\nGY3q/OODTp5f2Uxndxi7TeNr1+ZxydwsOdP9FRQMxXMh4ksyXNTv8SfiU+w2jdnTUxJLMnKyzLKU\nRwghxCnpzEnZRKIx/vj3rTz43EZ+tLSS/GMIMBdCiOEkRYkjONYlCeHOHpoe/jOazUjeBeNRplTy\n8U4/tW0wsTKHYCjI+k3bsZkmout6X7cNnYrx6bywZicfbWqma5+JaMCC0RnCnNJ/JvfAHIuDl5YE\nuswEOq2oxijOAg+q4eiCKw9XXNnb6OeXj9bR3BqkotTJD/+tiCTnyPzI6LrOR+t6eHZFE02tQUwm\nhasvyWbRxdk47CNzzOL4i8Z0du/xx2dCbInnQoT7ciEMBoWyCQ4qSpOoKHNSLLkQQgghTiNnTc4l\nEtX5/97YxgN9hYncdAnyFkKMfCf0aK22tpZbb72VW265hZtuuonm5mbuuusuotEomZmZPPDAA5hM\nJlauXMlTTz2Fqqpcd911XHvttSdyWMfkWJckNP3mD0TdHoovn0RsQhlhg40X1nUwa/qZGDSNqurN\njMkcR0ePhWC4iRRHlMqSAnRd5x+fNxJyGwn2WFBNUezZA1t4HphjceDSkkCPCX+HFcUQw1HgRTUe\nuSChKjBnat4hiysfr+vm4T82EAjGWHRxNjdenYemjcwDuKotLp5e3sSuBh+qCgvOz+C6y3NISzUN\n99DESdDSFkzMhKjeOjAXYswoKxVlTipKkygdL7kQQgghTm/nVeQRjsR45p1aHvjbBn5847QR1ZJd\nCCGGcsKKEj6fj5/97GfMnj07se3hhx9m6dKlXHzxxfz6179m+fLlXHXVVTz22GMsX74co9HINddc\nw/z580lJSTlRQ/tCjmZJQqBuD61PvYA53UbqWePRSibz0kYvqRm55OVksq+5le113TgtOWSmKnzt\n4nzSk8cC8H+f+JhoSMXbYgNFx5E7uGPGwTkWEwtTWf1hJ/42G4oWw1ngQTPGjur5zKnM5+aLJgza\nHo3pPLuiiRWvt2Ixq9zx70WcfebIbDG1o97LX5c3Ub3VDcA5Z6Zyw6Jc8rIPvRxFnPpcngibt7mp\n2hIvRLS2988mykgzMrMyhYoyJ1MmOUmRXAghhBBfMRdOLyASjYehP/C3DfzoxmlkJFuHe1hCCHFI\nJ6woYTKZePLJJ3nyyScT29auXcu9994LwAUXXMCf/vQnioqKmDJlCk5nPJBn2rRprF+/nrlz556o\noZ0we3/5KESiFC0sQSubSqtPYc32EJdeVEYkEuXT9VuwmcahKLB0voW8jPiMi7ZuH529ITxNTtAV\n7DleNPPg4oLNYkBRdJ5dVcuG2naaG2P4Wm0omo6jwINmOnJBYv8MiaXzxg/a5/ZE+PXv69m4xU1O\nlpkff6eY0QUj75fYvuYAv/3DHtZ81AFA5eQkblqcR/ERsi7EqSkUjrFth4eqmnghom6PL5ELYbNq\nzJyWnFiSkSu5EEIIIQQLziwkHImx4r06HvzbRn504zRSnUMHtAshxHA7YUUJg8GAwTDw7v1+PyZT\nfEp9eno67e3tdHR0kJaWlrhOWloa7e0DAxxPBe5PN9L92mqchSnYZ0yAUcUsW9VLxeRJWC1mPq+q\nIRrOwGg0M7MUCnP6l4BYTBq+VhuxkIY5JYgpKTzkY+xt83Dvn9bR3OUj5DHgbbaDCo58D4YhihhD\nOdQMifo9Pu57tI7WjhDTy5P4wb+OwW4bWVkMHV0hlr3SzOoPOonpUDLWzs2L85g8URKmTyexmE79\nXj/VfR0yttZ6CIX7ciE0hdISBxWl8SUZY8fYRuyyIiGEEGI4XXbWGMKRGK9+tDsxYyLZLktbhRAj\nz7Adder60LkHh9p+oNRUGwbDl281mZl5fA5mdV2n9pePAFB86UQMU86gujFMk9/OwuLRdPX0Urur\nHYd5IigBbr6iAKetf1r5a+92EHKb0CwRrJn+wz5Wc5ePsLevIKGAI8+DwRJFVSE2RF1CVQEdMlKs\nzJqcyzcuL0PTBq4LeXtNK/c9UkswFOPr14/m6zeMRh1BAYC9rjBPv7CHFa81EgrrjBll49++VsQ5\nM9NP67Pix+vzOVId+PyaWwOs29jNZxu7+byqm153JLFv7Bg7Z0xNZcbUVCrKkrFahqfN7LH4Kr13\npyN5fkKI08VV5xYRicZ4Y+0eHnxuA3fdUInTJoUJIcTIclKLEjabjUAggMViobW1laysLLKysujo\n6Ehcp62tjalTpx72frq7fV96LJmZTtrb3V/6fgC6Xl1Fz9oqMqbkYD+znHB6Nv9c42PW9Gnous4n\nn2/GaixC13UmFbkJeAMEvAEAauu8/PnZvaiGvhyJIxxjR/wanqZ4krIjz4vRFg/1G6ogATCnIo8F\nZxYmAjq7urz99xXR+csLjbz6ThtWi8qPv1vMzMoUOjs9QLzt6OHCPY+0/8vyB6L8/Z02Xn6zFZ8/\nRma6ieuvzGXOWWnkZCcdt/dvJDqen8+RyGy1sOb95viSjBo3LW39nWTSU43MPSedilIn5ZOcpCT3\nF/A8bh+eEf6ynO7vnTy/U9vxeH5S1BDi1KEoCtecP5ZwJMaqz/fxq+c2cufSSuwWyVwSQowcJ7Uo\ncdZZZ/HWW29x5ZVX8vbbb3PuuedSUVHBPffcg8vlQtM01q9fz913330yh/WlxIIh9v78ERRNZfTF\nE4mWVKBY07j0wnIaeszUN+zB53ZiNprJyXDzjUtHJ27rckd44PE6YjGdc8+3sqmx97CPFQlouBsd\noIM9z4vR3n822WyMz34IhuPVCatZY/bkHG64cDyaqhIMR2nr9iUKCD2uMA/+bz1btnvIzzXzn98Z\nS35uPCAyGouHI22obafTFSTFYaJyfAZL55egqeqA/V2uIGlJZipLMlkydxya+uW7G4QjMd75ZwfP\nv9pCrytCksPAN67PY8EFGZiM0j3hVBQOx9i20xtv1Vnjpq7Blyik2awqZ1b25UKUOsnLkVwIIYQQ\n4nhRFIUb5o0nEo2xZmMTv162kTuur8RqHlnLdIUQX10n7H+jzZs3c99999HY2IjBYOCtt97iwQcf\n5Mc//jHLli0jLy+Pq666CqPRyO233843v/lNFEXhtttuS4RengrannqB4J5G8s4ejWlaJVFHCj1q\nBnt6TBi1GGeMcbJ5s5nsNIUfXJeD1rcsIhrT+c2Tu+noCnPDVblcdUkmP/+Lh31tHoZawBINqnj2\n2SEG9lwfJkdkwP79xYj9/MFoIgzw2VW1rN/eRpc7RJrTxJiMdDZ+GqGzO8zMacn8xzfHYLP2z3RY\ntnonq9btS3zf4wnx7oYmdja6+MktZwza3+kKJr5fOq/kC7+WsZjO+2u7+dtLTbR2hLCYVZZckcMV\nC7IHjE+MfLGYTsM+f184pYuaHR5Cof5ciPJJyUwab6O81Mn4IrvkQgghhBAnkKIo3LRgAuFojA83\ntfDQC1X88LoKLCYpTAghht8J+59o8uTJPP3004O2//nPfx60beHChSxcuPBEDeWEifS4aHzoD2gW\nA6MuLiM6toxP9ujsi0bJSFf4eN0mOtvTURUDN1xkwWDoP/Ba/moLGza7mDYliWsuy+G51TvY2+YZ\n8nGiIRX3Pgd6TMWW7cPk7A/CTHWY8IeiBELRQbf754ZGtu/ppqmjf7lL8z7Ytd4HusKNV+dx9SXZ\nA/IjguEoG2qHDhrd2+bh6be3s6Wua8j9G2o7WDxn7DEv5dB1nc+rXTzzYhO79/kxGBQum5fJ4sty\npKXjKaS9M0TVlvhMiOqtblwH5EIU5luoKIvPhCgtcVA4KuW0niIvhBBCjDSqovD1iycRieqsrWnl\n4eXVfO/aihOyBFcIIY6FlEe/hKbf/olor5uiSyaglE+nI2xiVa3COWemsbephd0NCmajgZwMN1mp\n1sTyiS3bPCxb2Uxmuonvf2sM4WjskIWAaLivIBFVsWb5MCeHEvvOnpzDgpmF/NcfPx3ytjGdREFC\n18HfZiXYa0ZRY6QU+rl8QeagQMteT5BOV3CouwNgY20nbl9oyH3d7gC9niBZqUffmrOm1sNfX2xk\n6454nsYFZ6dx/ZW5ZGVI26qRzuuLsGmrJ7Eko7m1/3OTlmLkgrPTqChNYsokJ2kpUlwSQgghhpuq\nKvzLZZOIRGN8vr2dR1ds4j8WT8F4HALkhRDii5KixBcU3NNI65+ew5xqJeeiCqIFY3n+Ax9nVMwm\nHInw+cbdmI1FRGI+6lt2cM+TdXS5gjjNFpq3W9A0hbtuLcLpMNDW7aNriEJALKzg2WdHj6hYM/xY\nUuLFgPQkC5UlGSyZO45IVCctyXzYQkIsouBpshMNGNBMUex5XjDFaO/2UZA1cKlMssNMisNEj2fo\nwoPLFyLVYabbM/jxUp0Wkh1HV0zYvdfHMyuaWFflAuDMymSWLspjdIH1qG4vTr5wOMb2Xd74TIga\nFzvrfcT6lghZLSozpibHwylLnRTkWiQXQgghhBiBNFXl364o47EVm6ja1cnjL23mtqunYNAkt0sI\nMTykKPEF7f3lY+jhCGMWlhGbPB2/5sSUmofFbOKzjTUo0Tx0RccXrCOqRwiEIugx2FdrIBqCaTNM\njCuKd9FIdpgHFRZiEQV3o4NYWMOSFsCSFuTcihwWnjkah9WIPxjB7QvzwpqdQxYI9tvfrUOPqhid\nIezZPpT9v3OGOGg0GzUqx2fw7oamIe8vPclC+bh03l3fOGhfZUnGEacAtrQFee6VZt77pAtdh9IS\nBzdfk8fEcY7D3k6cfLrelwuxJd4ho6bWQzAUzy7RNJgwzh4PpyxzMm6MfcDyJCGEEEKMXAZN5dZF\nk3n4xXhh4vevbOHfryo7LoHlQghxrKQo8QV4Nmym65W3cRQkkzZ3OtHMPLzmPMaOSaGzu4c9e6KY\nNDP+cCNRvT/Pwd9uJRo0YEoK0RsLEAxHMRu1eCGgJDMRFhmLKngaHcRCGubUAJb0AIoCC88czap1\ne1lf206vN3yo4QHx5RrBXhP+tvjMA2umH3NKMFGHsJg0MlOGnpWwdH4JOxtdQ2Zc7J+hoakKG2o7\n6HYHSHX2z9w4lJ7eMC/8vYW313QQieqMGWXlpsV5TJuSJGfUR4D97V3DIYVttT6qt8aXZPS6+nMh\nRuVbqJjkpLw0ickTHFglfFQIIYQ4ZRkNGt+5egq/faGKz2vb+cPft/Kty0oHLe0VQogTTYoSx0jX\ndfbe+xsAii6dSGxSJTFrJru6ktB1nU/X12HS8onEvATC/bMNgi4jwV4zmimKLctHj4cB+QtL5o4j\nGo2xZn0TnkY70aCGKTmINSOQKCT8/C/r8AUHB1oOGmMMfG1WQi4zihbDnuvDaBvYrePsKTmHnNWg\nqSo/ueUMnl21g421HfR4g6QdUHjQVJWl80pYPGcsvZ5gos3oULy+KK+82cqr77QRCMbIzjRx46I8\nzj4zVX7pjQAuT5jfv7CDLds8uHsUYuH+9zE12cj5s9OoKHNSPslJWqppGEcqhBBCiOPNbNT4j2vK\n+fXzVaytacWgKXz9kkmocsJICHESSVHiGPW8+U/cn24kvTQL5/kziSRn0hDMxh9WyXYEUSI5gI4/\nVE+a04QvGMHr1vG12kDVsed5UdTB+QuaqnLd+SW8tzpANBDD5Axhy/InChK6zlEVJGLhvvyIoAHN\nHOHC+XaSnE427uigyx0k1WlmUmEqi84bO+Tt958xT3aYufmiCVx3wbhDFh7MRu2QoZahcIw3/tHO\n8tda8HijpCYb+D/X5XPhuekYDTI1cLiEIzFq+3Ihqmrc1NZ5ifegNYCiY7SHMdjCnHdmBv929QSZ\nxSKEEEKc5iwmAz+4toIHn9vIh5taMGoqNy+QvwGEECePFCWOQSwcYc/PfgOqwugrJhMZO4WAJYc9\nLWbMWozNWzyEIxpzzzAwY1I5yQ4zz63aycqXXaAr2HO8aKb4mvyD8xfC4Rj3PVZHR3uM/FEafqsP\n/RjHF/YZ8Dbb0KMqpqQg9mw/iy+YTFaqjUXnFfPsOzvY1tDFR5tb2Lanm8qSzMTMh2gsxrLVO9lQ\n206XK0hakjmx/1i6aUSjOu9+1MlzLzfT2R3GZtW4aXEel87LxGKW6f4nm67r7GkMUFXjorrGzZbt\nHgLB+GdQVcFii4I5jNEeRrNEE0WwXa1dhCIxaRMmhBBCfAVYzQZ+uKSCB57dwJqNTRg0lRvmjZfC\nhBDipJCixDFo/+sKgrv3kTu7EPOsWUTsaWztSUdHwaL7WLslQl6GyoKZZgyagq7rtNQZiIU1UrIj\naEnhIfMXIhGdX/2ung2bXUwvT+IbN+Zyzx87j3pcug7BHjP+dgtAonVoqtOM1Rzv7vH6J7v5aHNL\n4jadrmAiw2LpvBKWrd6Z+H6o/Uceg84n63t4ZkUTjc1BTEaFRRdns+jibJwO+ZidTB1dIaq3uqna\nEi9E9ByQC1GQa6Gi1ElFmZOsbI2fPvXZkMWvL9LeVQghhBCnLrvFyO3XT+X+Zzew6vN9GAwq154/\nVgoTQogTTo4Wj1LE5aHxwd+hmQ0UXD6VaOF42pV8egMGUi0RXnnTi6rCDfPjBQmAV99p45PPeykt\ncXD394vx+kODlkFEYzoP/3E3azf0MmWSkztvLQZFP2xbzgPpMfC12gi5TShaDEeeF4M1vszDbjVw\n758/pct96PvZUNvB5WeNYUNt+yH3L54z9rBnzKu3unl6eSM7632oKlw0J4PrrsghXTIITgqfP8rm\nbW6qa9xsrHHR2NzfjSU12cCc2WmUlzqpKHUOeE+C4egh28keS3tXIYQQQpwenDYTd9xQyX3PrOfN\ntXswGVSuOrd4uIclhDjNSVHiKDU/9hSRbhejF5SgnTGLsC2T2s4kNEVn+3Y3vV6dBTNN5GXGD95r\naj385YVGUpIM3P7vRdgtBuyWgS93LKbzu6f28P7abiaOs/Of3y3GbIrnLRyuLed+0ZCKt8lONKSh\nWSI48ryohvh5b6fNwL527xGfV7c7wL42D11DHJju33+oM+a7dvt4+sVGqra4ATh7Rgo3LMojP8dy\nxMcVX1wkolNb500syait8xKLr8jAYlaZXp5ERWkS5aVOCvMthzzDcXDXlwMdTXtXIcTIdWA+kPws\nCyGORbLdxJ03VPI/z3zOyg93Y9BULjtrzHAPSwhxGpOixFEI7muh5Ym/Ykq2kHv5mcSyC9nhLyAS\nU3AoftZuDpGfqXLhGUYg3v7ywf+tR9fh9m8XkZZiHHSfuq7zp+f2ser9TopHW7nn++OwWvr/cDxc\nW06AiM+Ap8mGHlMxJQexZfpRDsiP9AWOHIoJ8TPiBVmOYzpj3tgS4NkVTXy0rgeAijInN12dx7gi\n+1E9pjg2uq6ztykQD6fc4hqUCzG+yE55qZOpZUmML7YdU5Do/mVEx9LeVQgxch0uH0hTJWRYCHF0\nUp1m7uybMbHivTqMBpUFZxYO97CEEKcpKUochX33PYYeDDP6yknoFTPwmHJp6TBjN0Z57R03Wt+y\nDU1TiEZ1fvX7erp7wyy9OpesLI1gODroTNUzK5p4bVU7o/It/NcPx2O3Ddx/qLacU4pTibhsvPpm\nByhgy47nRxwsGju6mMzKkgycNtNRnTHv7A7x/MoWVr3fQSwG44ps3Lw4j/LSpKN9KcVR6ugM8u6H\nnVT3dcno7g0n9uXnmKkoi8+EmDzBOeizcyyOpb2rEGLk+7L5QEIIsV9GsjVemHh2A8tW78SgqVw4\nvWC4hyWEOA1JUeIIvNXb6FzxJvY8JxmXn0MkNZfNPdmAzu56Ny6vzsJZekfE6gAAIABJREFUJnIz\n4gdyf3u5ic3bPOQVaKxtqOPNzYPPVC3/ewsvvtZKbpaZ/759PGaLQlu3b9ABoaaqA9pyoiv8/i/7\nWF/diWLQceT250ccK1WBOVPzEmfED3fG3O2JsOL1Fl7/RzuhsE5+rpkbr85j1rQUCT86Tvz+KJu3\nexJLMvY2BRL7kpMMnDcrlfJJSVSUOclIO/5ZHYdr7yqEODUEw9Ej5gMJIcSxyEq1ccf1U7nv2Q08\n804tRoPKeRV5wz0sIcRpRooSh6HrOnvu/TXoOkWXTyZaUkFTrIBARMNKkE+qghRkqsydHl+e8emG\nHl58rRW7Q8Fr7sLvjs9WOPBMlTOWwjMrmshMN/GT28fy5rr6I06zNWgKL727h9WrPIQCKgZrBHtu\nf37EFzGnMp+bL5qQ+H6oM+Z6DF5+o40Vr7fi80dJTzVy/VW5XHBWOpomxYgvIxLR2VHvjYdTbnGx\no95LtK++ZDapzJqexsRxVipKnYwusErxRwhxRL2e4BHzgeQcpxDiWOWm27mzrzDx1BvbMGgKZ03O\nHe5hCSFOI1KUOIzef3yI++P1pE7IxLlgDgFHDju7UjBpMd5+txdNhesvii/baGkL8ts/NGA0KqQV\n+vFEBhcM1nzYRXuDh9RkA/feMY7VVXuOaprtQ3/Zxocf+CGmYk4JYs3080WPUdMPKHwMxWzUSHNa\nWfV+B8+vbKa7N4LDrnHLknwunpuJyShrkr8IXdfZ1xygaoub6q1uNm9z4w/05UIo8aUw5aXxmRAT\niu3k5SXT3u4e5lELIU4lyQ6zdNQRQpwQ+ZkO7uhrF/rH17Zi0FTOnJQ93MMSQpwmpChxCHokwt6f\n/hoUGLNoKpExk9jqK0RHoXmfmx63zsWzTeSmawRDMe5/vA6fP8r/WZLDqxu2Dbq/oMtId4sRRYvh\nLPCwauNuqnd1DvnY+6fZGjWVZ19q4sP3AvH8iBwv5qTwkLc5GmdNzuHmBRMOmRkQi+l8+Gk3z77c\nTEtbEItZ5drLc7hyQfaXyi34qurqCVO91RUvRNS46erpf+/yss3Mme2kojSJKZMc2G3yoyiE+HKk\no44Q4kQqzHZy+/VTefC5DTyxsgaDpjKtJHO4hyWEOA3IkdAhtD+3Ev/OPeTMKMB8/hx6jLl0eS2Y\nCPHRej+jslQu6Fu28Ydn9lK/x8+889K5eG42H+yqHzCFNuQ24muxoag6jnwv7nD0sO0+u90Bmtt9\nPPNCK+uqXKiGKPY8HwbLF8uPsJg0zinPPWT6uq7rrN/k4q8vNrF7rx+DpnDJhZlce1kOKcmDO4eI\nofkDUbZs9/SFU7rY09ifC5HkNHDOmalUlDkpn+QkK0POWAohjj/pqCOEOJGKcpP4wbVT+dWyjfzv\ny5v57uIplI/NGO5hCSFOcVKUGELU46XxvsdQjRqjrp1FJHcs1a48NEVnzQeu+LKN+WY0VWHV+x2J\ntp7fuCGfF/+5Kx5K2SfsNeBttoECjnzvgMKCqsBQTTJsBiv3PdxAS1uIsgl23OZ23EO0+DzU7Q9k\nNCj84l9nkXKIabvbdnp4enkTNbUeFAXmzE7j+itzycmSg+YjiUb7cyGqatxs3+VJ5EKYTAqVk+Md\nMvbnQqiq5EIIIU6s06mjTm1tLbfeeiu33HILN910U2L7+++/z7/8y7+wfft2AFauXMlTTz2Fqqpc\nd911XHvttcM1ZCG+EsYVJPP9a8t56PkqHl2xme9dW07ZmLThHpYQ4hQmRYkhND/+NOHOXgrnjUOd\neTa7Y6OIxDR62jx09kS55CwTOekadQ0+nvzrXuw2jbtuLeal9+sGTJsN+wx4muz9BYmDOmUMVVAI\nuY00tZuJRkJMKDUSsHbgdg9u+QlgNKgEw7HDPpdIRCcUHlzQaNjn55kVTXy2sReAMyqSuPHqPMaM\nkg4Mh6LrOo0tQaprXFTVxHMhfP7+XIixY2x9RYgkJo6zY5T8DSHEMDnVO+r4fD5+9rOfMXv27AHb\ng8EgTzzxBJmZmYnrPfbYYyxfvhyj0cg111zD/PnzSUlJGY5hC/GVMaEwle8uLue3y6t5ZHk1P7iu\nggmFqcM9LCHEKUqKEgcJtbTT8ru/YHSayV1yPsG0MdT3pGMgwvufeSnMVjl/mhGvL8L9j9cRCuvc\n8e0xpKQYBrRii/g1PI120OMFCaMtMuix0pxmKsZnUL2zky5XgJjLgbfFgMWsMmOWie1tLTBE1qHZ\nGC9GHKkgAZCWNDDcrK0jyHOvNLPmoy50HSaOs3PzNfmUlji+2At2muvpDVO91U3VlnghorO7Pxci\nN8vMuTOdVJQ5mTLRicMuP05CCHE8mEwmnnzySZ588skB23/3u9+xdOlSHnjgAQCqqqqYMmUKTqcT\ngGnTprF+/Xrmzp170scsxFdNWVEaty6azGMrNvGb5dXcvmQqmZnO4R6WEOIUJEdRB2m87zFigRDF\nl5cTm3IGNd5CFHQ+/jTebWPJPAsK8Ns/NNDaHmLxpdnMmJpMW7cvkXgeCWh4Gh2ggz3Xh9E+uCAB\nMG1CJkvnldAxI8ivf1/P1hYfuVlmvvsvo/jDm5sOOcZw5MjFiP32h5v1uMK8+PcW3lzTQSSiM7rA\nwk2L85leniTtJg8QCA7MhWjYd0AuhCOeC7F/SYbkQgghxIlhMBgwGAb+iVJfX8+2bdv43ve+lyhK\ndHR0kJbWP208LS2N9vZ2hBAnx9RxGfz7lZP535c389DzGzGajRSmSytzIcSxkaLEAXw1O2h//jVs\nOQ4yrrmITutoelw2XF1+WtojXHq2iZx0lRdfa+Gzjb2UT3Jyw6I8IN6KLcVhorMzgqfRjh4DW44P\nk7P/zPqBGRAWk4au6+zc7eGBx3fT1hFi8iQ7YybGePLNano8Qy/ZgCPnSACoKsyZms/ls4t47uUm\nXnmrjUAwRnaGiRsW5XHuzNQTknEQDEdPqXXM0ajOrt0+qvqWZGzf6SUSjb/AJqNCRVl8OUZFqZMx\noyQXQgghhssvf/lL7rnnnsNeR9eP/AsyNdWGwXBifj/JWeLhJ+/Bybcw04ndbubBZ9Zx7x8+oaw4\nnRsXTmSKBGAOG/k5GH7yHhwbKUocYO+9vwJdZ8yVFUTGl7PZVYCqx/hgrSu+bKPSyKatbp5d0UR6\nqpEf/NsYtL6DVLNRY3xOGrurfOhRFVuWb0D7ToWBxYRAKMrr77bx0vNeolFIzQ2zL9JI45bj81wK\nMpwk6cl85z+34vJESE4ycPM1+cyfk47RcPyzDqKxGMtW72RDbTtdriBpSWYqSzIP2fFjuOi6TlNr\nMD4TYouLTds8+PzxzA1FgbGjbYmZEBPHOzBJLoQQQgy71tZW6urquOOOOwBoa2vjpptu4rvf/S4d\nHR2J67W1tTF16tTD3ld3t++EjDEz00l7+xBrLsVJI+/B8JlYkMRPbpnB62v38mlNC3c//iGlY1JZ\ndG4xY/OTh3t4XynyczD85D0Y2uEKNVKU6NO75hN6319Hyrh0nFdcRF1sNFEMVFX1oChw/XwLPb1h\nfvX7ehQV7vh2ESlJ/e0y2ztDrP8kih5VsWb6MacMnOlw4LkbXQd/u5VgjxlF1bHnecER4Xicg9d1\nCLlMbKpTqIo0YbOqLF2Uy2Xzs7BaTtzMhWWrdw4I+ex0BRPfL51XcsIe92j0uMJs6uuQUVXjoqOr\nv1iUnWninJmpVJQ6mTzRSZJDfiSEEGKkyc7OZtWqVYnv586dy1//+lcCgQD33HMPLpcLTdNYv349\nd9999zCOVIivrsJsJ//vmzP5pGofL79fz5b6Lmp2f0752HQWnVvM6Bw5cyyEGJocgfXpeuFlUGD0\nkpkE8yfR4M7E6wqypzHIZeeYSE9S+H/319PrivCNGwqYOK4/GLK7N8xPHqiloyvM1Zdm8XHDTgKH\nWH0Riyh4m+1E/AZUUxRHnhfNdPQZEUNRFYjGIOw14u+wEAtpoOikZEe4/64KMlNPbPZBMBwdEPJ5\noA21HSyeM/akLuUIBmPU7PAkwil37/Un9jnsGmedkUJFabxdp7Q+FUKIkWfz5s3cd999NDY2YjAY\neOutt3jkkUcGddWwWCzcfvvtfPOb30RRFG677bZE6KUQYniMzUvm9iVTqd3bw4r36qje1Un1rk6m\nl2Ry5blFFGRKuLoQYiApSvQZfWkZ+QU+zPMuZINvDIoOH6x1MTpHZc5UI08938i2nV7OnpHCZfMy\nE7fr7g3x/f+uwdUbw5IWYEPzbgKhoYsMEb+Gp9mOHlExOkLYc3woR7E6wGRQCR0i3DIj2UJzcwR/\nh4VowADomJKCWNMDaCYdncHtQI+3Xk+Qrr6Qz4N1uwP0eoIntDVdNBbPhdgfTrltp5dIJD43xWhQ\nqCh1Jlp1FhVKLoQQQox0kydP5umnnz7k/tWrVycuL1y4kIULF56MYQkhjkHJqBR+tLSSmoZuXnqv\njs9r21lf286ZpdlceU4ROWmnbttiIcTxJUWJPuqMczCPyaMrZQI9HifbtruIRWNcP9/GJ+t7WPl2\nG/m5Zm67ZXQiUdjri/LDn8YLEuaUIJb0AD2eoe8/2GvC12YFHSwZfiypQRQFLCb1kEWM/WZPyWbt\nljYCoYEFhkhAo36fRsRnAcDoCGHNCCRmXqQ6B7YDPVGSHWbSksyJ7iMHOhFj0HWdfU1+3v2gnaoa\nN5u2uvH6+nMhigqtiXDKieMdmE2SCyGEEEIIcbIpikLZmDRKR6dSvauTl96vY21NK59ubeWsyTlc\ncXYRmSnW4R6mEGKYSVFiP4uVaMYotnoKCfjC7Njl54pzTIQDIR79UwNmk8pdtxZjtcaXIfgDUX76\n0A56umPxmQmZfobqfqTHwNduJdRrRjPoZBWFCalBUp0WKksyiOk6qz9vPOSwRmU5uOiMQt7b0JzY\nFg2p+DsthN0mAAzWMNaMAAbrwKLF/nagJ5rZqFFZkjkgU+J4j6HXFWbTNjdVW+LZEO2d/etjsjJM\niSUZUyY5SXLKx1oIIYQQYqRQFIWKcRlMGZvOhtp2Xn6/ng83tfDJllbOrcjjstmjSUuyDPcwhRDD\nRI7e+kRs2azrGk0opvHxZ52MyVWZMUnlx7/YiT8Q4wf/OobC/HglNxiK8ctH6qjd5cPkDGHLHrog\n4TSZadppJBIwkJyi8osfTSA9zTSgZWY0FkOP6fxzY9OQrT59gQgOq5G0JDPtXSH8nRZCvSZAQTNH\nsGYEMNojg2534RmjWDJ37HF+lQ5tydxxQDxDotsdSBRd9m8/VsFQjK21HqpqXFTXuKnbMzAX4vyz\nMpg4zkp5aRK5kgshhBBCCDHiqYrC9AlZVI7P5NOtrbzyQT1rNjTyQXUz51fmcems0Sdllq8QYmSR\nokSfvb0mAhED9bs9BPxRllxl5Ym/7mVvY4CL52Zy3qw0AMKRGA88XsemrW7OqEiiW2ula4glGzbF\nSu8eO5FAhLNmpPDdb4zGYo7PGDgwX0FTVRacWciaDU1DjqvbHaCjO4jBl0RvfQh0BdUYjRcjHOEh\niyEpDhP/vrgcd69/8M4TRFNVls4rYfGcsQOKLkcrGtOpb/D1dchws22Hh3BfLoTBoDBlUrxNZ0Wp\nk6LRNnKyk6TVjhBCCCHEKUhVFWaV5TBjUhYfbW7h1Q93s2rdPt7b2MSF0wu4eNZoHFbjke9ICHFa\nkKJEH7MWw+cOUrPNy2Vnm1hf1cU/P+6ipNjG15fkAxCN6jz0xG4+r3ZROTmJu24t5oV/xgYsW9D1\neH5ET7sZRYnw9evzuXx+ViKHYiiHymTQY4Dfzj2/2IXPH0M16FjS/ZiSQkMWI/arHJ+BxWRgOA7Z\nzUbtqEMtm9uCVNe4qNriZtM2Nx5v//KTeC5EPJxy0ngHZrPkQgghhBBCnE40VeXc8jxml+XwfnUz\nf/9oN2+s3cO7GxqZf8YoFpw5CptFihNCnO6kKNGnvS3IP94LUJSnkp0U4v/97z6cDo07vl2M0agS\ni+k8+qcGPl7XQ2mJgx/dFt++ZO44otEYG3Z00OMKEe124O80kNR32ymTjtya7OBMBl2HUK8Jf6cF\nPapiNMWwZvgxpwSP2K1jVJaDpfNLjsdLctwEw1F6PUFUNLbv8CWWZLR29OdCZKabmDUthYoyJ1Mm\nOklOkl9AQgghhBBfBQZN5YLKfM6ZksOaDU289vFuXv1oN//4fB8LZhYyb3oBVrMctghxupKf7j51\nTVHMRrjsLAO/eKiWaFTnh/9aRGa6CV3XeeKve1nzcRfji2zc872xmM0q0ViMZat3Ur2rk67uMP7W\nJEI+lbFjrPzotrFkppuO+vGXzB2Hruu8v7ab9r0asbCGpsFlC7Oobmmgxze4s4XFpGEzG+j2BEmx\nm5laksHSeePR1JExq8AXiPD75bVU17hxdytEgxoQn+Jht2nMmp6SaNeZm2U+7GwSIYQQQghxejMa\nNObPGMV5FXmsXr+P1z9p4KX36njns71cMms0F0zLPykh7kKIk0uKEn0uP8fEvBlGHvpdHe2dIa6/\nKpepk5PQdZ2nnm/krTUdjBll5Sc/HJfowLFs9U5WrdtH2GfA2+xEj6qYkoJUzLQfU0FC13Wqazys\n/zBG6x4TqgoXzUlnyZV5RPQw7/++dsjbhcJR7r55OiaDeswZDidCLKZTv8efmAmxabubWBTACOgY\nrBEMtghnT0/j29dNRFOlCCGEEEIIIQYymzQunjWa8yvzeeezvbz12R6ef3cnb326h8vOGsN5FXkY\nDSPjJJwQ4suTokQfg6bw+jstbNjsYtqUJK69LAeA515p5pW32sjPNfNft4/DYY+/ZMFwlPXb2wl0\nm/G3x1sY2bJ8mJJDVO/qJBiOHlWRoHaXl6dfbGTztnha5nmzUrn+qrxER4lgWB0ybwIg1WkhM8U6\nrMWI1vZgPJxyi4tN29y4Pf25ECZrDMUSwmiLYLBGEktPGrq6iURjaKpUuoUQQgghxNCsZgNXnFPE\n3OkFvPXpHlat28cz79TyxtoGLj9rDGdPycWgSXFCiFOdFCX6bNziYtnKZjLTTXzvW2NQVYWX3mjh\n+ZUtZGeauPeO8aQckHPQ1ulnb61GyG1C0WI48rwYrPED8m53gF5P8LCBj3sb/TzzUhNr1/cCML08\niRuvzqOocOBtDs6bOFBlScZJL0i4PRE2bXMnChGt7f25EBlpRs48J74kIzfPwC+fXccQXU6P6vUR\nQgghhBACwGE1snjOWObPGMUbnzSwen0jT725ndc/aeCKs4uYXZaDKjNwhThlSVGiz9r1PRg0hTtv\nLSLJYeD1f7TzlxeaSE818tM7x5Oe2r8co6UtyIOP7yHkNqFZIjjyvKiG/sPvVKflkD2W2ztDPPdK\nM2s+7CSmw8Rxdm5anEfZhEMHYi6ZOw6ADbUddLsDpDotVJZkJLafSKFwjG07vVRtiS/J2NXgQ+97\nqjarxszKZCrKkigvdZKX3Z8LEQxHDzvDQ3pQCyGEEEKIY5FkM7Fk7ngumlHI6x83sGZjI398bSuv\nf9LAlecUccbELFTJKBPilCNFiT63XFfANZflkJ5qYvUHnTz5zF5Skgzce+d4sjL6D6DXb+rloSd2\n4/FGKR5noEvpGdSec6gZDC53hOWvtfDG6nYiEZ1R+RZuXpzHGRXJRwx41FSVpfNKWDxnLL2e4AnN\nj4jFdHbv9cdnQtS42FrrIRSOVyEMmkJpiaMvnDKJcWNsaNrQYx9pMzyEEEIIIcTpIdVp5saLSlg4\ns5BXP9rNB9XN/O6VLRR81MCic4uYOj5DAtSFOIVIUaKP2axiNpv44NMuHvtzAw67xn/fMZ78nHhe\nhK7rvPhaK8++1ISmKdz29UIuODuNZat3HnYGg98fZeU7bbzyZiv+QIzMdBM3XJXLebPTjjno0WzU\nTsiSh7aOeC5Edd8/lyeS2De6wEJFaXwmRGmJA6vl6IsJwznDQwghhBBCnN7Sky3ccvFELp5VyMoP\ndvPJlhYeWbGJMTlOFp1XzOSiNClOCHEKkKLEAT7b2MNvntyNxaLyXz8cx+gCKxAvLPz2j7tZu76X\n9FQjd91WTEmxHeCQMxjC4Rhvrenghb+34HJHSHIaWLoojwXnZ2A0Dm8gj8fblwuxJV6EaG7rX2KR\nnmpk7tlplPcVIlKTjYe5p8M7mTM8hBBCCCHEV1N2qo1vXV7KpbNH88oH9Xy2rY2Hnq9iXH4yi84r\nZtLo1OEeohDiMKQo0Wfzdjf3P16PQVP5v98bx7iieNGhsTnA/zxax77mAGUTHNzx7aIBgZcwcAZD\nNKbz/idd/O3lZto6QlgtKtdflcsV87MSrURPtvD+XIgaF1U1bup2+4j15UJYLSozpiYztSy+JCM/\nx3zcK8onaoaHEEIIIYQQ++Vl2Pn2VZO5tNXNy+/Xs3FnBw/8bQOTRqey6NxixhUkD/cQhRBDkKJE\nnw8/7UYB/vO7xZSWOAD4dEMPv/3Dbnz+GJfPz+Jr1+ZjMAx9wK7rOp9t7OWZFU3saQxgMChcflEW\niy/JJjnpi882+CJiMZ0d9R7WfNBKdY2bLbVuQqF4FULTYOJ4B+WlTipKnYwvsh8yF0IIIYQQQohT\nTWG2k/+4ppy6Jhcvv1/H5voutjZ8zpTidBadV8SYnKThHqIQ4gBSlOjzjRsKWHJlLilJRmIxnWUr\nm3l+ZQsmk8L3vzWGObPTDnnbmloPTy9vZNtOL6oCc89J5/orc8lMNx3yNsdbe2coPhNii5vqrW5c\n7v5ciFH5Fqb2Lccom3BsuRBCCCGEEEKciorzkvjhkqnU7u3hpffq2FTXyaa6TirHZ7Do3GIKshzD\nPUQhBFKUSDAaVFKSVLy+CA89sZvPq11kZZj48XeKKSoceulB/R4fz6xo4vNqFwAzpyVz46I8RuVb\nT/h4vb4Im7Z6qKqJt+psau3PhUhLMbJwbjYTxloon5REWsrJnakhhBBCCCHESFEyKoW7llaytaGb\nl96vY8OODjbu6GDGpCyuPKeI3HT7cA9RiK80KUocoGGfn/seraO5LcjUMic/+LcikhyDX6LmtiDP\nvdzEe590AzB5ooObFuczYeyJ+w8tHI6xvc7bF07pYmd9fy6ExRzPhSif5KSizElBroWsrCTa290n\nbDxCCCGEEEKcKhRFoXRMGpNGp7KprpOX3qvn061tfLatjdllOVxxThFZKSf+xKIQYjApSvSp2uLi\nfx6tIxCMcfUl2Sy9Om9Qy87u3jDPr2zmnfc6iEahuNDKTdfkM7XMedzDIXVdp2GfP9Gqc8t2D8FQ\nDABVhZKxdqaWxZdkjC+yHzLrQgghhBBCCBGnKArlYzOYUpzO+toOXv6gjo82t7C2ppUZE7MYneMk\nO81GbpqN9GQLBm14u+YJ8VUgRYk+n2+KL8G489YizjpjYNsgry/CS2+08vd32gmGYuRmmVl6dS5n\nnZGKqh6/YkBHV6gvEyLeJaPXdUAuRJ6lL5wyibIJDmzD1MlDCCGEEEKIU52iKEyfkEllSQafbW3j\n5Q/q+aSmlU9qWhPX0VSFzBQrOWk2stPiX+OXbSTbTcf9pKQQX1VSlOhzy3X53LgoD7O5vxoaDMV4\n/R/trHi9BY83Smqyka9fn8+F52Qcl5kJXl+UzdvjMyGqtrhobOnPhUhNNnL+7DTKS52UlzpJTz15\noZlCCCGEEEJ8FaiKwszSbGZMzKKxw0trl4+Wvn8HXj6YxaSR3VekOLBokZ1qw2qWQywhjoX8xPRR\nVQWzOV5oiEZ1Vn/YybJXmunsDmO3adx8TR6XXpg1oGhxrMKRGLW7vIklGTvqvcTiKzKwmFWmlydR\nUZZERamTUXkWqb4KIYQQQghxEqiqwqgsB6OG6Mjh9oVo7fIPLFZ0+2hs99LQMjjDLdlhIifVRk56\nvEiRkx4vXGTIchAhhiRFiQPous7Hn/fwzItNNLUGMZkUrr4km0UXZ+OwH/tLpes6exoDiQ4ZW7Z7\nCAQPyIUotieWZIwvtmE0yH9SQgghhBBCjCROmwmnzcS4guQB22MxnS5X4IBihZ+WLi8tXX5q9/aw\nfW/PgOtrqkJGipWcVGt8lkW6jZzU+HKQFIcsBxFfXVKU6LN7r49H/7SHXQ0+VBUWnJ/BdZfnkHaM\nyyY6u0OJmRDVNS66e/tzIfJzzUwtjYdTlk1wYrdJLoQQQgghhBCnIrWvyJCRYmVycfqAfaFwlLbu\n+OyK1m4fLZ3x2RUtnT6qunywq3PA9c0mra9A0Z9dsX+mhSwHEac7+YT3efPdDnY1+DjnzFRuWJRL\nXrblqG7n80fZst1N1RY3VTVu9jUHEvtSkgycNyuVir5CREaa5EIIIYQQQghxujMZNQqyHBQMsRzE\n4w/HZ1d09hUs+mZaNHZ4aWgdYjmI3ZQI2DwwwyIzxSrLQcRpQYoSfW5Zks/Vl2STlWE+7PUiEZ3a\nOi/VNfEOGbV1g3Mh9i/JKMyXXAghhBBCCCFEP4fVyLj8ZMblH7QcRO9fDnJwhsVQy0FURSEzxTKg\nWDEqL5lwIIzVbMBmMWA1G7CaNTRVihdi5JKiRB+LWcNiHrycQtd19jUF2Ni3HGPztgNyIRQYV2yn\nYpKTijInJWPtkgshhBBCCCGEOGaqopCRbCUj2crkooH7wpEord3+g7qDxAsX1bs6qT5oOcjBzCYN\nmzlepNj/1WrWsFmM8a8DtvcXNPZvs5g0Odl6GonpOuFwjFAkSjgSIxSJEQrHL5uMGgWZ9pP6fktR\nYghd3SGqt/YvyejuDSf25eeYKS+Nd8iYPNGB3SYvoRBCCCGEEOLEMRo0CjIdFGQOvRxkf7FCV1Xa\nO734gxH8wQi+A776AhF6PUFaOn3EdP2YHl9RwGoaumBhMxuwWjRs5niB4+Dr7L+e0aBKYWMIuq4n\nCgPhSIxwJJq4vL9QEIr0FRDC/dfbX1BI3DYcHbAvvm1g4SHcdzkSPfz7/5NbzmBMTtJJegWkKJHQ\n0hbktVVtVNW42dvUnwuR5DRw7sz+XIjMdMmFEEIIIYQQQowMDqt9YAnBAAATyElEQVQRR34yY/OT\nycx00t4+OJfiQLquEwxH8Qej8aJFYGDxIlHQCBxQ0Dhge0evH38weszj1FTlgCUlAwsW+7ebjRqK\nAgfWTHT0/Rf2X0I/4Ap6/+7Ehv7L/V/0gwox+gH3t//SgMdN3FYfcD/9Yxn6NkaThssTHFRUCB+y\nUBA7wiv3xSgKmAwaRoOKyahiNRtItpswGdS+bX37DCpGQ//lZLuJ/IzBxa8TSYoSfV56o5W3/9mB\nyaRQOTk+E6KizElhvhVVlYqeEEIIIYQQ4tSnKAoWkwGLyUCq8/B5eocSi+kEQv0zMOIFiyi+YPio\nih097iChE3QwPlL1FwBUTAYNu9WYKAjs375/n9GoDthnMqgYjdqA2++/zv7Cw4EFBpNRRVOVU2Zm\nihQl+ty0OI+556RTXGjFaJRcCCGEEGI41dbWcuutt3LLLbdw0003sWHDBu6//34MBgMmk4kHHniA\ntLQ0Vq5cyVNPPYWqqlx33XVce+21wz10IYQ47amqgs1ixGYxQvKRrz+USDQ2sGARiBAIx2dgKPQd\nTA/8QvwYWzngct93icv9GxO3of/GA+9n/+WBB+6KcojHP+gxBt5H/76MDAcet79/lkJfweBUKRAM\nhxFTlPjFL35BVVUViqJw9913U15eflIf3+kwMMExYl4OIYQQ4ivL5/Pxs5/9jNmzZye2/fnPf+b+\n++9n1KhRPProozz//PN87Wtf47HHHmP58uUYjUauueYa5s+fT0pKyjCOXgghxNEwaCpOmwmn7fRa\nHp+Z6aTdIAWIYzEipgR8+umnNDQ0sGzZMn7+85/z85//fLiHJIQQQohhYjKZePLJJ8nKykpse/jh\nhxk1ahS6rtPa2kpOTg5VVVVMmTIFp9OJxWJh2rRprF+/fhhHLoQQQohjNSKKEh9//DHz5s0DYOzY\nsfT29uLxeIZ5VEIIIYQYDgaDAYvFMmj7e++9x8KFC+no6OCKK66go6ODtLS0xP60tDTa29tP5lCF\nEEII8SWNiPUKHR0dlJWVJb7f/0eFwzF06mdqqg2DQfvSj5uZ6fzS9zGSyfM7tcnzO3Wdzs8N5Pmd\n6k7l53feeedx7rnn8uCDD/LEE0+Qn58/YP/ByepDOV5/QwzlVH5tTxfyHgw/eQ+Gn7wHw0/eg2Mz\nIooSBzvSHxXd3b4v/RhH0y7nVCbP79Qmz+/UdTo/N5Dnd6o7Hs9vuP7Qeuedd5g/fz6KorBgwQIe\neeQRKisr6ejoSFynra2NqVOnHvZ+jsffEEM53T87pwJ5D4afvAfDT96D4SfvwdAO9/fDiFi+kZWV\nNeiPiszMzGEckRBCCCFGkkceeYStW7cC/3979x4c093Hcfy9TUSEkLhsTKoMQbShIcS4q2JcOkVJ\nJdJs2xljqmpaBm3UZasifWLUXcVlptUQEmm0Oq0SSum49BITsaVaUpWUuJcgyGafP4w8VNJHdTnO\n5vP6Lye7J59fdiWf/frtCeTk5NC4cWPCw8PJzc3lwoULXLp0iezsbNq1a2dwUhEREfknHoqdEp07\nd2bBggXExMTgcDiwWq0VvnVDREREPNv+/ftJSkqioKAAb29vNm7cSEJCAtOmTcPLywtfX19mzpyJ\nr68v48aNY/jw4VgsFl577TX8/bVlVkRExEweiqFEREQEYWFhxMTEYLFYsNvtRkcSERERg7Rs2ZKU\nlJQ7jq9Zs+aOY3379qVv374PIpaIiIjcBw/FUAJg/PjxRkcQERERERERkQfoobimhIiIiIiIiIhU\nPhpKiIiIiIiIiIghNJQQEREREREREUNoKCEiIiIiIiIihtBQQkREREREREQMoaGEiIiIiIiIiBjC\n4nK5XEaHEBEREREREZHKRzslRERERERERMQQGkqIiIiIiIiIiCE0lBARERERERERQ2goISIiIiIi\nIiKG0FBCRERERERERAyhoYSIiIiIiIiIGKJSDiUSExOJjo4mJiaGffv2GR3H7WbOnEl0dDRDhgxh\n06ZNRsdxu+LiYnr16kVmZqbRUdxu/fr1DBgwgMGDB7Nt2zaj47jVpUuXGD16NDabjZiYGHbs2GF0\nJLc5dOgQvXr1YuXKlQAcP34cm81GbGwsb7zxBteuXTM44b0rb20vv/wycXFxvPzyy5w6dcrghP/O\nX9d3044dOwgNDTUolfv8dX3Xr19n3LhxREVF8dJLL/Hnn38anND8PL1TmIGn9x6z8OR+Zgae3CHN\nwpO77v1W6YYS3333HUePHiUtLY0ZM2YwY8YMoyO51e7du/nll19IS0tj+fLlJCYmGh3J7RYvXkyt\nWrWMjuF2586dY9GiRaSmppKcnMyWLVuMjuRW69ato3HjxqSkpDBv3jyP+bd3+fJlpk+fTseOHcuO\nzZ8/n9jYWFJTU2nUqBEZGRkGJrx35a1t7ty5DB06lJUrV9K7d28+/PBDAxP+O+WtD+Dq1assXbqU\nevXqGZTMPcpbX3p6OoGBgWRkZNC/f39++OEHAxOan6d3CjOoDL3HLDy1n5mBp3dIs/DUrvsgVLqh\nxK5du+jVqxcAISEh/PnnnxQVFRmcyn0iIyOZN28eADVr1uTKlSs4nU6DU7nP4cOH+fXXX3nqqaeM\njuJ2u3btomPHjtSoUQOr1cr06dONjuRWgYGBnD9/HoALFy4QGBhocCL38PHxYdmyZVit1rJje/bs\noWfPngD06NGDXbt2GRXvXylvbXa7nT59+gC3P6ZmVN76AJKTk4mNjcXHx8egZO5R3vq2bt3KgAED\nAIiOji57nsq98fROYQae3nvMwpP7mRl4eoc0C0/tug9CpRtKnD59+rYnSO3atU2//fhWXl5e+Pn5\nAZCRkUG3bt3w8vIyOJX7JCUlER8fb3SM+yI/P5/i4mJGjhxJbGysaV/IVuSZZ57hjz/+oHfv3sTF\nxfHWW28ZHcktvL298fX1ve3YlStXyl7Q1qlTx7Q/Y8pbm5+fH15eXjidTlJTU3n22WcNSvfvlbe+\nvLw8Dh48SL9+/QxK5T7lra+goIDt27djs9kYO3asqYdKDwNP7xRm4Om9xyw8uZ+Zgad3SLPw1K77\nIFS6ocRfuVwuoyPcF5s3byYjI4OpU6caHcVtPv30U1q3bs1jjz1mdJT75vz58yxcuJD//Oc/TJw4\n0aOen5999hnBwcFkZWWxYsUK3n33XaMjPRCe9Bje5HQ6efPNN+nQocMdb30wu/fee4+JEycaHeO+\ncblcZVtLmzVrxpIlS4yO5FE88d+7WXhi7zGLytDPzMCTO6RZVNau6w7eRgd40KxWK6dPny77+OTJ\nk6Z/3/Bf7dixg+TkZJYvX46/v7/Rcdxm27ZtHDt2jG3btnHixAl8fHyoX78+nTp1MjqaW9SpU4c2\nbdrg7e1Nw4YNqV69OmfPnqVOnTpGR3OL7OxsunTpAkCLFi04efIkTqfTI/9Hy8/Pj+LiYnx9fSks\nLLzj7QFmN3HiRBo1asTo0aONjuJWhYWFHDlyhPHjxwM3fj/ExcXdcRFMM6tbty6RkZEAdOnShQUL\nFhicyNwqQ6cwA0/tPWbh6f3MDDy9Q5pFZeq67lbpdkp07tyZjRs3AuBwOLBardSoUcPgVO5z8eJF\nZs6cyZIlSwgICDA6jlvNnTuXTz75hPT0dJ5//nlGjRrlUb/wunTpwu7duyktLeXcuXNcvnzZo96L\n1qhRI3JycoAbW8irV6/usT+kO3XqVPZzZtOmTXTt2tXgRO6zfv16qlSpwuuvv250FLcLCgpi8+bN\npKenk56ejtVq9aiBBEC3bt3KrgbucDho3LixwYnMzdM7hRl4cu8xC0/vZ2bg6R3SLCpT13W3SrdT\nIiIigrCwMGJiYrBYLNjtdqMjudWXX37JuXPnGDNmTNmxpKQkgoODDUwldyMoKIg+ffowdOhQACZP\nnswjj3jO3DA6Opq3336buLg4SkpKeOedd4yO5Bb79+8nKSmJgoICvL292bhxI7NmzSI+Pp60tDSC\ng4MZNGiQ0THvSXlrO3PmDFWrVsVmswE3Lu5n1seyvPUtWLDAY17YVPTcnDFjBhkZGfj5+ZGUlGR0\nTFPz9E5hBuo9Ip7fIc3CU7vug2Bx6Q1HIiIiIiIiImIAjdBERERERERExBAaSoiIiIiIiIiIITSU\nEBERERERERFDaCghIiIiIiIiIobQUEJEREREREREDKGhhIiIiIiI3Df5+fm0bNkSm82GzWYjJiaG\ncePGceHChbs+h81mw+l03vXthw0bxp49e+4lrog8YBpKiIiIiIjIfVW7dm1SUlJISUlhzZo1WK1W\nFi9efNf3T0lJwcvL6z4mFBGjeBsdQETu3Z49e/jggw+oWrUq3bt3Jzs7mxMnTlBSUsLAgQOJjY3F\n6XSSmJiIw+EAoEOHDowZM4Y9e/aQnJxM/fr1yc3NJTw8nNDQULKysjh//jzLli2jbt26TJ48mby8\nPCwWC48//jh2u73CPJmZmWRlZWGxWCgsLKRJkyYkJiZSpUoVUlJS2LBhA06nkyZNmmC32zl9+jSv\nvvoqzZs3p1mzZowcObLCdc6dO5fg4GAKCgrw9/dnzpw51KhRgy+//JKVK1ficrmoXbs2CQkJBAYG\nEhERQVRUFKWlpYwYMYLx48cDUFxcTHR0NFFRUeTl5WG323G5XJSUlDBu3DjatWtHfHw8VquVQ4cO\nkZeXR1RUFCNGjHD/AygiIlJJRUZGkpaWxsGDB0lKSqKkpITr168zdepUnnjiCWw2Gy1atODAgQOs\nWLGCJ554AofDwbVr15gyZcodfefKlSuMHTuWc+fO0ahRI65evQpAYWFhuR1ARB4eGkqImNz+/fvZ\nsmULaWlp1KxZk/fff5/i4mL69+9P165dycnJIT8/n9WrV1NaWkpMTAydOnUCYN++fcyZM4dq1aoR\nGRlJZGQkKSkpxMfH89VXX9G+fXtycnLYsGEDAOnp6Vy8eBF/f/8K8+Tm5rJp0yaqVatGXFwc27dv\np169emRlZbFq1SosFguJiYmsXbuWHj16cPjwYebNm0eTJk3+dp0Oh4O5c+cSFBTEhAkTyMzMpHfv\n3iQnJ5ORkYGPjw8rVqxgyZIlxMfHc/nyZbp3707nzp356KOPaNKkCdOmTePq1ausXbsWgISEBIYN\nG0a/fv34+eefGTVqFFu2bAHg2LFjJCcnU1BQwIABAzSUEBERcROn00lWVhZt27ZlwoQJLFq0iIYN\nG3Lw4EHefvttMjMzAfDz82PlypW33TclJaXcvrNz5058fX1JS0vj5MmT9OzZE4ANGzaU2wFE5OGh\noYSIyTVu3JiAgABycnIYPHgwAL6+vrRs2RKHw0FOTg4dO3bEYrHg5eVFu3btyM3NpWXLloSEhBAQ\nEABAQEAAbdq0ASAoKIiioiJCQkIIDAxkxIgR9OjRg379+v3tQAIgIiICPz8/ANq0acPhw4c5cuQI\nv//+Oy+++CIAly9fxtv7xo+fWrVq/d+BBEDTpk0JCgoq+xoHDhygbt26nDp1iuHDhwNw7do1GjRo\nAIDL5SIiIgKArl27kpqaSnx8PN27dyc6OhqAnJwc5syZA0BoaChFRUWcPXsWgPbt2wPw6KOPUlRU\nhNPp1LZRERGRe3T27FlsNhsApaWltGvXjiFDhjB//nwmTZpUdruioiJKS0sByn6P36qivnPo0CHa\ntm0LgNVqLesWFXUAEXl4aCghYnJVqlQBwGKx3Hbc5XJhsVgqPA7c8SL71o9dLhdVq1YlNTUVh8PB\n1q1biYqKYvXq1Vit1grz3CwSN88B4OPjw9NPP83UqVNvu21+fn5Z/v/n5rluXYOPjw9PPvkkS5Ys\nKfc+N88dEhLCF198wffff89XX33FihUrWLNmzR3fG/jf9/Hm0KS8ry8iIiL/zM1rStzq4sWLZW/x\nLE95HaGiXuNyuXjkkf9dLu9mH6moA4jIw0MXuhTxEOHh4ezYsQO4sRPB4XAQFhZG69at2blzZ9l1\nE7777jvCw8Pv6py5ubmsW7eOsLAwRo8eTVhYGL/99tvf3icnJ4crV67gcrnIzs4mNDSUiIgItm/f\nzqVLlwBYtWoVe/fu/UfrO3LkCCdPngTgxx9/JDQ0lFatWrFv3z5OnToF3NiiuXnz5jvu+/nnn5Ob\nm0unTp2w2+0cP36ckpISwsPD+fbbbwH46aefCAgIIDAw8B/lEhERkXvj7+9PgwYN+OabbwDIy8tj\n4cKFf3ufivpOSEhIWbc4fvw4eXl5QMUdQEQeHtopIeIhbDYbU6ZM4YUXXuDatWuMGjWKBg0aEBwc\nTHZ2NsOGDaO0tJRevXrRtm3bu/ozWQ0bNmTRokWkpaXh4+NDw4YNy91KeavmzZszceJE8vPzadas\nGV26dMHLy4sXXngBm81G1apVsVqtDB48mDNnztz1+po2bcrs2bM5evQotWrVYtCgQfj5+TFp0iRe\neeUVqlWrhq+vL0lJSeXe12634+Pjg8vlYsSIEXh7ezNlyhTsdjurV6+mpKSEmTNn3nUeERER+feS\nkpJISEhg6dKllJSUEB8f/7e3r6jvDBw4kK+//prY2FgaNGhAq1atgIo7gIg8PCwu7UkWETfJzMxk\n586dzJo1y63nvfnXN1avXu3W84qIiIiIiLE0JhSRfyQrK4uPP/643M8999xz93zevXv3Mnv27HI/\nFxMTc8/nFRERERGRh5d2SoiIiIiIiIiIIXShSxERERERERExhIYSIiIiIiIiImIIDSVERERERERE\nxBAaSoiIiIiIiIiIITSUEBERERERERFDaCghIiIiIiIiIob4L+OHKiFY/XdTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ZjQrZ8mcHFiU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Identify Outliers\n", + "\n", + "We can visualize the performance of our model by creating a scatter plot of predictions vs. target values. Ideally, these would lie on a perfectly correlated diagonal line.\n", + "\n", + "Use Pyplot's [`scatter()`](https://matplotlib.org/gallery/shapes_and_collections/scatter.html) to create a scatter plot of predictions vs. targets, using the rooms-per-person model you trained in Task 1.\n", + "\n", + "Do you see any oddities? Trace these back to the source data by looking at the distribution of values in `rooms_per_person`." + ] + }, + { + "metadata": { + "id": "P0BDOec4HbG_", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 392 + }, + "outputId": "ce279ad5-1029-400e-8b02-4a4d63d5cf67" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "plt.figure(figsize=(15, 6))\n", + "plt.subplot(1, 2, 1)\n", + "plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAFlCAYAAACp5uxjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt4W9WdL/yv7rIt+SJHys2hkDsl\nV2MoJA3k4kDDFOqWJFCf0OGU0s4b6EOfFwppmsLQ6ZQCHU5LD512MqQwlJy6NX1yMs/wNmlIYFKa\nBBK7ufQS46SFxLlYthXbsqUteWu/fzhSfNHWzXtLWvL380ebyNK+LOL901rrt37LoCiKAiIiohwx\n5voCiIhofGMgIiKinGIgIiKinGIgIiKinGIgIiKinGIgIiKinDLn8uReb29Gn6uoKIbP16/x1YwP\nbLvMsN0yx7bLXKG1ndvtjPu6kD0is9mU60sQFtsuM2y3zLHtMjde2k7IQERERIWDgYiIiHKKgYiI\niHKKgYiIiHKKgYiIiHKKgYiIiHKKgYiIiHKKgYiIiHIqp5UVtCCFZXT7JZiMBjS1eLH/6Fmc7Qhm\nfLzyEiNmTS1HZVkxqjwOBEMyXE47LvkldPdJuPHaiXAUW3G23Y8qjwPOYuuw6yhz2AAg9mebZXBB\nWm9/aNRn4t3H0M+keu/Rz2RyjHym1/0UWjsRiS5pIDp06BAeeeQRzJo1CwAwe/ZsfOlLX8Ljjz8O\nWZbhdrvx/PPPw2q1YufOnXj11VdhNBqxfv16rFu3TrcLlyMRNOxtRdPJdnT1hjQ77qW+CN5v6QLQ\nFffn//fdD2N/NhqAKe4SzKwqw/HWTnT2SLBbjQAMkEIyXKU2LJxZiZYz3TjX0YeIMviZqW4HvvmF\naljN5th9NLd40dUjwVVqw+LZbtyzciZMxvgd1nifKbZb0BcIwdcbSukY+SyTNsnlcYlobAzJtgo/\ndOgQXn/9dbz44oux177xjW/glltuwZo1a/DCCy9g0qRJqKurw2c/+1k0NjbCYrFg7dq1+PnPf47y\n8nLVY2daa87tduKH/+cI9hw+m9Hn88E0jwNPf/FGbN/TEvc+amuqUF87O+5n1T6TyjHcbmfG7Z4t\nmbSJ3scVod3yFdsuc4XWdprWmjt06BBWrVoFAFixYgUOHDiAo0ePYv78+XA6nbDb7aiurkZTU1Pm\nV5xAMDSA5havLsfOljavH53dAdX7aG7pgBSWR70uheWU713tGPks0f2N5X70Oi4RjV1Kc0Stra34\nh3/4B3R3d+Phhx9GIBCA1To4z1FZWQmv14uOjg64XK7YZ1wuF7zexA/MiorijIr6ne/oQ1evlPbn\n8klEAc5dklTvw9cbhMlqgXtCybDX07l3tWOofSvJB4nuT+1+snXcfG63fMe2y9x4aLukgejqq6/G\nww8/jDVr1uDMmTP4whe+AFm+8u1RbWQvyYgfAGRc3ryirAgupw2dPeIGI6MBmFJuU72PCqcdcig8\nqlsuh+WU7z3eMfK9q5/o/tTaJBvHzfd2y2dsu8wVWttlPDQ3ceJE3HHHHTAYDLjqqqswYcIEdHd3\nIxgczEy7ePEiPB4PPB4POjo6Yp9rb2+Hx+PR6PKHs1vNWDzbrcuxs2Wq24HKsiLV+1g8e0LcjC6b\nxZTyvasdI58lur+x3I9exyWisUsaiHbu3ImXX34ZAOD1etHZ2YnPfe5z2LVrFwBg9+7dWLZsGRYu\nXIjjx4+jp6cHfX19aGpqQk1NjW4Xfs/KmaitqYLLOToVOluMBqDKU4Ll1VNQWWqHAYDdaoLdaoLR\nAFSW2rGyegqq3CUwGq58ZppnMGtu6H1Ultpjn6mtqcI9K2eqnnf0Z2yY5nHA5bSlfIx8lkmb5PK4\nRDQ2SbPm/H4/HnvsMfT09CAcDuPhhx/GtddeiyeeeAKSJGHKlCl45plnYLFY8Jvf/AYvv/wyDAYD\nNmzYgLvuuivhyceSNRf9bHRNyC/3fYCmls6MjpeKYpsRKxZPw5J5Yq8jEqmrn0/riERqt3zDtstc\nobWd2tBc0kCkJy0CETD4YNn809/D5w9rdWmjGA3Ad798EzwVxZoeN9uLKwvtH3a2sN0yx7bLXKG1\nnVogEr6yAjDY+9AzCAGDE9rR3o4WuLiSiGhQQQSiIpsZRsNgSrRetJ7QbtjbOmxxZWePFPv7WBZt\nEhGJpiC+egekAV2D0NJ5kzSd0ObiSiKiKwoiEJU5bKgs1W7YbNixSyzYcPscTYfLuv0SulTWAfl6\ng+j2i7s+iogoXQURiNJZW5Ou6tluzZMIyhw2uFQCp9ZzUURE+a4gApEciUBRFNgs2t5OlacE9au1\nn6/h4koioisKIlmhYW8r3jrSptnxnEVm1Fw7EfW1s3TLYIvOOTW3dMDXG0SF047FsydwcSURjTvC\nB6J0qlGnauHMCboGIQAwGY2or52Nu2+dwU3aiGhcE35oLtHEf6Z+d/wCtv+2RdNjqrFZTPBUFDMI\nEdG4JXwgSjTxPxbv/OEcXtt9EnIkovmxiYhEIYVltPv6dV1WIvzQXHTiX+vdWiMKsK+pDSajgQtM\niWjcyWb1F+F7RACwdvl0TKoo0uXYXGBKRONRtPpLZ48EBVeqvzTsbdX8XAURiBrfPo0LvoAux+YC\nUyIab7Jd/UX4QKRH1txQVouJC0yJaFzJdvUX4QORHllzQ+VwlwwiopzIdvUX4QNRmcMGq8YVFYaS\nwhEOzRHRuJLt6i/CZ80BgMGg37FdThuH5oho3Mlm9RfhA1G3X0IwpN9an+o52hc9JSLKd9ms/lIQ\nQ3N6bQEx1V2Mtcun63JsIiIRZKP6i/CBSM8tINq8/WjYe0qXY4932VitTURiEH5oDhgcy5QjCt5p\nbtN8p9Z3mtsARUH96tm6FkEdL7K5WpuIxFAQv/kmoxG33zBNl+3CIwqwr/mcLquJx6NsrtYmIjEU\nRCAC9J0rAoCmk+0cRhqjbK/WJiIxFEwgsllMkEL6Pci6ekNcTzRG2V6tTURiKJhA1Nsfgj84oOs5\nTEYdFyyNA9lerU1EYiiYQHS23a/7Odp1Kqw6XmR7tTYRiaEgsuYAwFls0fX4RgNQ5XHoeo7xIJur\ntYlIDAUTiHb87q+6Ht9gAP7z939jmvEYZXO1NhGJoSCeqFJYxl/P9ep6DjmCtNOMuWhTXTZWaxOR\nGAqiR9Ttl3ApSxlXh//SjjuXXA1nsVX1PVy0SUSUuoJ4KibKxtLaJX8I/7jtfWzf0wI5Er/YKhdt\nEhGlriACkc1iwoKZE7J2Pp9fPbBw0SYRUXoKIhABwC0Lp2T9nPECCxdtEhGlp2ACkSkHa03jBRYu\n2iQiSk/BBCJ3RTH0ygNQK6gQL7Bw0SYRUXoKImsuymw0IKRDCW61Q6oFFi7aJCJKXUEEIjkSwWu7\nTiI0oMM+EAAqS21YMKMSx051pRRYuGiTiCh1BRGIGva24vcnLuh2/LlXVWD9yllYvxJpBZbook0i\nIlInfCBKlC6tBZvZiHdPXMBfPvJxUSoRkQ6Ef6J29QTRqZIurQVpYHDRKhelEhHpQ/hAtOfwmaye\nj4tSiYi0JXQgksIyjp3qzOo5uSiViEhbQgeibr+k67BcPFyUSkSkLaEDUZnDBrs1u7fARalERNoS\nPmsOyE5tH6MBuHXxVC5KJSLSmNA9om6/BCmUncSBiALcfsM0pm4TEWlM2KeqHIlg13sfwZClYqdG\nA7Dr/TOqexBxN1YioswIOzTXsLcV+5rPZe18EQXY19QGk9GA+trZsde5GysR0dgI+aQMhgZ0raaQ\nyNB1RFJYxitv/oW7sRIRjYGQPSJfj/rmc7qfuzeIrp4g9jW3oelkO7p6Q3Hf19zSgbtvncEMOyKi\nJITsEVWUqm8+p/u5nTbsOXwGew6fVQ1CABe+EhGlSshAZLeaVTef09usqvKUqjlw4SsRUWpSCkTB\nYBC1tbX49a9/jfPnz+O+++5DfX09HnnkEYRCg72CnTt34u6778a6devwq1/9SteLBgY3n6utqUJl\nqR1GA1BZaseUCfpuuWC3mnD7jdNSGhbkwlciotSkNEf0r//6rygrKwMAvPjii6ivr8eaNWvwwgsv\noLGxEXV1dXjppZfQ2NgIi8WCtWvXYvXq1SgvL9ftwuNtPue9FMCTL7+n2zk/uWAyJlWWwFVqUy0t\nVDkka46IiJJL2iM6deoUWltbsXz5cgDAoUOHsGrVKgDAihUrcODAARw9ehTz58+H0+mE3W5HdXU1\nmpqadL3wqKGbz+383WndzjPN48A9K2fCZjGpDgsumTcJ33nwJtTXzmbqNhFRipL2iJ599ll861vf\nwo4dOwAAgUAAVqsVAFBZWQmv14uOjg64XK7YZ1wuF7ze7KRXD13Ho2cB1P7gAAZkBSbj4LBgRFHw\n++MXELxc2cFuNaHIZoLZlKUVtkREBSJhINqxYwcWLVqEadOmxf25oihpvT5SRUUxzObM5lHcbicA\nYOuO49hz+GxGx0iHrzcIk9UC94QSAICj2BYLQgAQDMl460gbSopteLBuvu7XMxbRtqP0sN0yx7bL\n3Hhou4SB6O2338aZM2fw9ttv48KFC7BarSguLkYwGITdbsfFixfh8Xjg8XjQ0dER+1x7ezsWLVqU\n9OQ+X39GF+12O+H19kIKy3j3aFtGx0hXhdMGORROet53j57Dmhun5W2iQrTtKD1st8yx7TJXaG2n\nFlQTTmT84Ac/wBtvvIFf/vKXWLduHTZu3IglS5Zg165dAIDdu3dj2bJlWLhwIY4fP46enh709fWh\nqakJNTU12t/FCN3+7C1snXtVRSy4JDov1w8REaUn7coKX/3qV/HEE0+goaEBU6ZMQV1dHSwWCx59\n9FE88MADMBgMeOihh+B06t+dLHPYEmawacVqMeLzq6/Ul0t0Xq4fIiJKT8qB6Ktf/Wrszz/72c9G\n/fxTn/oUPvWpT2lzVSmKZrDpPUe0dN4kFNuuNFWi83L9EBFReoTPMb5n5UxMKNOvBzLN40D9kN7Q\n0POOXFBbW1PF9UNERGkSsujpUAOygkgktSy9dN308Yl44NPXxl0TFG9BLXtCRETpEz4Qdfsl+BIU\nH82Uy2nF36+Zm3Rh6tAFtURElD7hh+aiiQNaC4YiCEhh7rpKRKQz4XtEeiUs9EsD+H//9+8BDK8f\nx9I9RETaKoinat2ya2Cz6HcrI3ddlcKyUD0l0a6XiMYX4XtEANDtD0EKR3Q/T3OLF6EBGcdbu3DJ\nL8GV5z2loXX4unoGr3fpwqm48+ar8vJ6iWh8Ej4QyZEIfrzjRFbO1dkj4b//cH7Y36NDgvW1o1O8\nc61hb+uwIcvOHgk7959GfyCUl9dLROOT8F+Lt/+2BW3evpxeQ3NLR94Ne0lhGc0t8Sug5+P1EtH4\nJXQgksIymj/oSP5GnXXlYX051sMjIlEIHYi6/RIu+bVfQzRSskSI8hJb3tWXS5TWznp4RJRPhA5E\nZQ4bKnVYQzTUTR/34Jmv3JzwPIvysL5cop1kWQ+PiPKJ0IHIZjFhwYxK3Y5vAFC3bDrKHTbVh/o0\njwP1tbN0u4axiFcP765l01kPj4jyivBZc7U107Cv+Zwux7aajbEhrOjDu7mlA109QZQ5rFg8awLq\nV8/O21ToePXwqqaUF9RGW0QkPuEDkavUjkqd9iQyDIkvIhc5ZT08Ispn+flVPg02iwmzqsp1OXYw\nFBmVXRZ9qIsShIiI8p3wgQgAli+eostxhw7NAfqUymH5HSIa74QemouWsNl/VJ85IjmiQI5EIEcM\no0rljLW0T7zyO/lcLoiISC9CB6KRJWy0JkcUvL67BSVFllGlcsZa2ide+Z18LhdERKQXYb96Jyph\no6WmFi+aTrbH/VmmpXJYfoeI6AphA1GiEjZaksIRdKnsAJtpqRyW3yEiukLYQKTXzqxxz1Viift6\npqVyWH6HiOgKYQORzWLC3KsqsnKuhTPjV2/ItFQOy+8QEV0hdLLC51fPxoE/XkBE0fc8t9/4MVgt\nZjS3dMDXG0SF047FsyeMqVTO0EoNWh2TiEhEQgcik9EAi9mo++6sRTaz5lUVRK7UQESkJWGH5oDB\nSf9QFrYIf+PtUwD0qarASg1ENN4JHYiylbDwl4986O0PsQICEZEOhB6ai07667moFRhcbPrUtvfQ\n7Q+xAgIRkcaEf5LWLZuedAdVLVzyh6DgSgWEhr2tup+TiGg8ED4Q+ftDuicrxMMKCERE2hA+EBXZ\nzDDk4LysgEBEpA3hA1FAGoDOy4jiYgUEIiJtCB+ITMZc9IeGV0BItKcQ9xsiIkpM6Kw5APjb+Z6s\nnMdoABRlcGvyaAWERHsKAeB+Q0REKRA+EEkD2elpTHQV45G1C4ZVQNi+p0V1TyEA3G+IiCgFwn41\nlyMRbN/Tgtd2tWTlfP7+8LAglHhPIe33MIriUB8RFRphe0R67846Um8gjG6/BE9FMaSwjNNt3ap7\nCnX1SlBUMiii2XaeiuK0zs+txYmoUAkZiIKhgazszjpUZakdjmILtu9pQXOLF509UmzeaCSX0wZF\nUeJuqJdpth23FieiQiXkV2lfT3Z2Zx1q8ewJ2LH/r9hz+Cw6L59bbfuJxbPdqJ7jUT1OsgKnI4ff\nuLU4ERUyIXtEFaU2lDts8GVhQamr1IZrr6rAHTd9DP/8H4dV32cwAK44ewqls9+Q2vDbisVTk24t\nnu5QHxFRvhAyENmtZiyaPQH7mtp0P5evR8K7Jy7gj3/rwiX/6KG2qMUzJ+DBu64b1ttJd78hteE3\nOaLAVWqL9cSG4sJaIhKdkENzAFBfOwvTPA7dzxMdfUsUhADgw4u9cV9Pdb+hRMNvx1o7sWCGttuV\nExHlC2EDkcloxJP312Dpgkm5vhQAgK9XUq09l0rKdbdffd7L1xtEbc001NZUobLUDqNhMHmitqaK\nW4sTkfCEHJqLMhmNWPLxSXj32IVcXwosZiOsI7ajSCflOrrJn9rwm6PIgtrrq3DnkqsRkAa4tTgR\nFQyhAxEAVHkcMBrUM9i0ZjICcpxdJ6RwBJv/7RA+uWByLNCkk3KdaJO/YrsZ337l/bhlhIiIRCfs\n0FyUs9iKiVnMGJMjg8EonmBIjm2al0nK9T0rZ44afpvmceBMux+dPRI35iOigiR8IAKAWVeVZfV8\n8XpEQzW3dMB7KZA05Xokk9GI+trZ+M6Dn8B3v3wTnry/Bv3BsOo5uH6IiAqB8IFICss4caoz15cx\njK83CCiDKdfxJEu5jmbaBaSBtIMZEZFohA9E3X4pbikdPdmtiZMEKpx2uCuKsXi2O+7PU025jiYw\nqJ2D64eIqBAIH4jKHDZUOCxZPecnrvMkDEYLZrhgs5jizvmkk3IdTWCIh+uHiKhQCJ81Z7OYUFxk\nhc8ffy5FC3arCaGwHCvTs2LxVPx383nV99fWTANwZc4nneoKI0WDVjqlgoiIRCJ8IJLCMvoC+gSh\ncocVNXM9qFs2Hf7+UCyQSGFZdc1PZakdrlL7sNeicz6Z0CKYERHls6SBKBAIYNOmTejs7IQkSdi4\ncSPmzp2Lxx9/HLIsw+124/nnn4fVasXOnTvx6quvwmg0Yv369Vi3bp3uN9Dtl5KW38mE2Qg8/cUb\n4Sy2AgCKbVeaKtGaH72GzMYSzIiI8lnSQLRv3z7MmzcPDz74INra2vDFL34R1dXVqK+vx5o1a/DC\nCy+gsbERdXV1eOmll9DY2AiLxYK1a9di9erVKC8v1/UGyhw2VKr0TsZiIAL833f/is+vmhV34zkO\nmRERaSNpILrjjjtifz5//jwmTpyIQ4cO4emnnwYArFixAtu2bcM111yD+fPnw+l0AgCqq6vR1NSE\nlStX6nTpgyV03njnFPwBfbLm9h5pg9FgiLvxHIfMiIi0kXLW3L333ovHHnsMmzdvRiAQgNU6OGRV\nWVkJr9eLjo4OuFyu2PtdLhe8Xn13UY2W0JHC+tX3aTrpTbhwNNXq2rmUStFVIqJcSTlZ4Re/+AX+\n/Oc/4+tf/zqUIftjK/H2yk7w+lAVFcUwmzN7gDvLinAsCwtZfb0STFYL3BNKdD+X1mQ5gm3/+Ucc\nPHEe3ksBuMuLcNO8yfjindfBpFaniFS53c5cX4Kw2HaZGw9tlzQQnThxApWVlZg8eTKuvfZayLKM\nkpISBINB2O12XLx4ER6PBx6PBx0dHbHPtbe3Y9GiRQmP7fP1Z3TRbrcTp/7WiXZfIKPPp6PCaYMc\nCsPrjb/fUD7bvqdlWEJFuy+AnftPoz8QijvcSOrcbqeQ/wbyAdsuc4XWdmpBNenX4sOHD2Pbtm0A\ngI6ODvT392PJkiXYtWsXAGD37t1YtmwZFi5ciOPHj6Onpwd9fX1oampCTU2NhrcwXJnDhnKHVbfj\nR1XPcac07JZvw1+ZFF0lIsqFpD2ie++9F9/85jdRX1+PYDCIJ598EvPmzcMTTzyBhoYGTJkyBXV1\ndbBYLHj00UfxwAMPwGAw4KGHHoolLujBZjFh8awJ2Nd8TrdzWEwGLJ03CVJYVg1G6ew5lE3JNtrr\n9ktMByeivGBQUpnM0UmmXc5od1WORPD0z97HWW+fxlc2XGWC4DJy+CuqtqYqp8NfUljGlq0HVRfd\nfufBT2iSYCGF5XGRNVhoQyTZxLbLXKG1XcZDc/nMZDTi/6mbp/t51PYAyufhL73r1MmRCLbvacGW\nrQfxjZ8exJatB7F9TwvkSJI9MoiIRhA6EAGDc0UWkyEr5xoZXFIZ/sqleEVX71o2XZNFt9HUeW7Y\nR0RjJXytuR37TyMsZ2d0ceTcSnSbhnjDX1pt0zCWoa94i26rppSPuaufrCd4960zCnqYjoi0JXQg\n6pfC+N0x9SrYWhsZXDKpOZdqYNEyCULrOnVMhCAiLQkdiF7/bQuCoezNwxTbzTCPGAZMteZcuoEl\nOvQVFR36ApDzNUDZ6AkS0fghbCCSwjKaTupbQmikM+1+NOxtHRYIUq05l05gyfehr1xUHyeiwiVs\nsoL3UgBSOPsZWkf+4kVv/+giq4lqzqWbXZfvSRBA/ESIdHafJSKKErZHhBwtf/L5JTy17T3UzPWk\nPF+T7pyKCENfrD5ORFoRtkfkriiG1Zyby7/kD6WVqhwNLPHECyx6rwHSkgjVx4kovwkbiGwWE26e\nNzGn16C2aHVk3blMAotoQ1/5VmuPiMQh7tAcgA23zcHpc7040+7PyflHDqslyoxLd0fXfB/6iqah\nO4qt2LH/dN7V2iMicQgdiExGI568vwb/q+Eo/vShL+vnHzmsliwzLpPAovUaoLEaGWxtViOCoStJ\nI/mUZk5EYhD+K6vJaMT0qbnZOGruVeWxP6eaGSf6nMrI0j5Dg9BQua61R0TiELpHBAx+Qz/4p4s5\nOfe7Jy7gLx/5sHi2GysWTy34agOJgu1IhXLPRKQ/4QPR9j0foONS7tbVRIei5IiS9ynXY5UoDX2k\nQrlnItKf0ENzUljGH1o6kr8xC461dmLBjMq4P8u3lOtMJUpDH6lQ7pmI9Cd0IOr2S7iUB1UGgMGh\nqNqaaUKlXKcrURq63WoqyHsmIv0JPTRX5rChwmlFV+/okjvZVuG0w1Vqz+uUay2opaHXLbsG/v5w\nQd4zEelL6EBks5gw92Mu/P7EhVxfChbMcMUewPmWcq2lROubim2WHF8dEYlI6KE5AKhfPQtGnTdo\nrXDYMNmVOLDU1kzT9yLyjOhp6ESUP4QPRDaLadQeQVr7+DXl+ObfX49KlYn6ytLBYTk9sHQOERU6\noYfmAGD7b1sQGtC3Eve7xy+iyGbJ6h48Wu7QSkSUz4QORFJYRlOKCyzHqrmlA08/cGPsz6nUixuL\nfN6hlYhIS0IHom6/hO6+cFbO5esNwt8fQn3tbNy55GqcbfejyuOAs9iq+bnyfYdWIiItCR2Iyhw2\nuLKUvl3htMNRbMX2PS1pD5dFK1Wnmtqc7kZ6REQiEzoQ2SwmzJvuwn8f1T99e/HsCdix/3Tc4TI5\nouC+2+aM+kym8zwi7NBKRKQV4We9a+ZmZ3O8pfMnqQ6XvdPchtd2/QVyZHgl6pGVqqOBK9nOriLt\n0EpENFbCB6KPTXRC52VEAICnf3Y4bg8FACIKsK/5HLb/tiX2WqrbQqiJ7tDqctpgAOBy2lg6h4gK\nkvCByFlsxaQki02zZV/zOfzH5Z5RKvM8qTAYhv8/EVGhET4QAcBElz6LSTPxdvM5NOxtTVipOpV5\nnkyH9YiIRCN8IJLCMj680JfryxgmOiSX6TxPOsN6rLxARKITOmsOyK+tIKK6eiV0+yXcs3ImIoqC\n3x+/gGBoMFDYrSYoigI5ElHNnEtlWK+yzM7KC0RUEIR/YpU5bLBa8us2XE4byhw2mIxGGA2GWBAC\ngGBIxltH2hIOsaUyrMehOyIqFPn1BM9QZETadK4tnu2GzWJKaYht5NBadPHrgpkTVI494fLnM8/I\nIyLKJ8IPzXX1BJGL5265w4pL/uEVHexWE5bOnxRLsU42xPbarpM4+ZEPXT0SKpxWlBRZ0R8Mx/4+\nzeNAfzAMX680rK5dZ3dwTJUX0q30QESkJ+ED0Z4jo6th681uNWLT/1iMX+49hdPnLuFS3wDKSiyo\nnu3GvatmxeZoElVIsFpMwzb06+oNDStVFP37isVTcPuNVw0LGplWXpAjEWzdcRzvHm3jvBIR5Q2h\nnz5SWMbRD7JTfXuoYCiCzVsPoemDDlzqGwAAdPeFse9y6nZUogoJQGpbVxw71TWq55Jp5YWGva3Y\nuf8055WIKK8IG4jkSAQ/33UyKwVP41Gblho5RxOtkFBZaofRMLiJ3tJ5kxAMpTavpbb4Nd5xE1Ve\nGGulByIivQg7NNewtxXvntC/2Gm6unqGz9GYjEbU187G3bfOiM3LAMBfPvKplgwaSm2oLd5xE833\nsKI3EeUrIXtEwdCA6rf7XLNZTaMCx8jkgMRDdsPFG2obmmlns5jgqShOmnQw1koPRER6EbJH5OtR\n/3afa+EBGXJkcP4n0TYQ0SG06G6v5Q4bSooscbPkosayfXg0+GW61Tkz7YhIL0IGoopS9ayxXJMj\nwP/5bQse+PTHk273HW9oLdEDf6zbh9+zciaKi6x49+i5lLc6H0vwIyJKhZCByG41q367zwcH/3QR\nn73l6pS2+44OrUWN/HuUFtsYDcDuAAAgAElEQVSHm4xGPFg3H2tunJZy72aswY+IKBlhv9Les3Im\nVlRPzcvtEeSIgmdf/0Na20AkK16q1bYSAFKeV2KmHRFlg5A9ImDw2/19t83BgCxjfxa2Ck+XtzuI\nCqcNvt54i05tseSAVIe+crF9ODPtiCgbhO0RRRlz2CWymhM33zWTnXFf7wuG8cY7p2JBKJXipbnY\nPpyZdkSUDUIHIiks4w8fdOTs/BPK1TfkMxqADbfNQW1NFezW4UEiGIpgz+Gz2L7ng7T2HVqxeCpW\nVE9NeRHrWOUi+BHR+CPs0BwwOHTU3RfO2fnPdfSr/myq24Fyhw133zoDTSfbh20FEfWHlg74VOZ2\nEu07tGBGJWprpsFVatc9GIxMM08l046IKB1CB6Iyhw1lJZacBqN4TEYDvv75hQAGg6VPpQzRpT4p\nbhVvYPS+Q1GdPRL2NZ+DyWTMStZauhUciIjSJfTQnM1iQnWKFQqySVEU9AcHe0CJ5llcTjsWz4q/\n79CCGS4A+bPvUKqZdkRE6RI6EAHAPatmwpxnKdxDs+KSzbPUr56N2poquJyD7zdevpdjpzrx810n\nVRftppuyTUSUr4QPRI1vn8ZAajsqZM3QrDggcaXs6NDXwss9o8vVgdDZI+HdExdgt8b/T8SsNSIq\nFCnNET333HM4cuQIBgYG8JWvfAXz58/H448/DlmW4Xa78fzzz8NqtWLnzp149dVXYTQasX79eqxb\nt07Xi0+04DJbrGYDDAYDpPCVbR2iWXHAYPWBZPMsUljGsVa17L/43T2tstZYQ46Ici1pIDp48CA+\n+OADNDQ0wOfz4bOf/Sxuvvlm1NfXY82aNXjhhRfQ2NiIuro6vPTSS2hsbITFYsHatWuxevVqlJeX\n63bx3X4p5/Xmqud40PKRD1J4dMLByNI7auV7Ei0cDYVlLJk3CSc/uqRp1hpryBFRvkgaiG644QYs\nWLAAAFBaWopAIIBDhw7h6aefBgCsWLEC27ZtwzXXXIP58+fD6RxcxFldXY2mpiasXLlSt4svc9hg\ntRgQCudmbM5oAG6/cRoO/fFi3J+nWn0gWdWE+26fAwCa9lxYQ46I8kXSr74mkwnFxYMP0sbGRtxy\nyy0IBAKwWq0AgMrKSni9XnR0dMDlcsU+53K54PXqP2xmUBm6ygaL2QiX0z7m6gOpLBzVMmuNNeSI\nKJ+kvI5oz549aGxsxLZt23DbbbfFXleU+L0RtdeHqqgohtmc2YPV7XbifEcfQgOpbbmth1A4gqIS\nO5YunIqd+0+P+vnShVNQNSW1ocmH1y9GcZEVB0+cR8elACaUF+GmeZPxxTuvg8mk7VCZyWpBV5wa\neMBgL85ktcA9oUTTcxYCtzt+ySZKjm2XufHQdikFov379+MnP/kJ/v3f/x1OpxPFxcUIBoOw2+24\nePEiPB4PPB4POjquTLi3t7dj0aJFCY/r86lXJkjE7XbC6+2FHJZRVmzFpb74C0b15iq1Qw6FcefN\nV6E/EBpVfeDOm6+C19s77DOJkgPqll49aouGrq4+Ta/Z7XZCDoXhcqoPBcqh8KjrHu+i/+YofWy7\nzBVa26kF1aSBqLe3F8899xxeeeWVWOLBkiVLsGvXLnzmM5/B7t27sWzZMixcuBBbtmxBT08PTCYT\nmpqasHnzZm3vYgSbxQRHsSVngWho5trIrDgA6OwOxgJKqskBagkNWhrrbq1RzLgjIi0kDURvvvkm\nfD4fvva1r8Ve+973voctW7agoaEBU6ZMQV1dHSwWCx599FE88MADMBgMeOihh2KJC3qRwjL6pQFd\nzxFPucOKmrke1C27Bu2+/tiD2GYxxa0Nt3i2G4qi4K0jbbFj5Do5YCw15JhxR0RaMiipTOboJNMu\nZ7S72u7rxzd+ehDZvIEKhw3fur8Gbx78MO6DeGQ2WpTdaopb+LSy1I7vPPiJrPUoRnb1M+nVbN/T\nEvcea2uqCjbjrtCGSLKJbZe5Qms7taE5ob++ljlsKHNYs3rO6+e68ebBD+PuIfTz37bgd8fOxf1c\nvCAE5L5UT7rZeMy4IyKtCR2IbBYTFs6MXzRUD5Ndxahbdo3qg/jg8QsIhtLL4hOtVI+WW5YTEQGC\nByI5EkFfIHtbQARDMlrPdKs+iKUMUsmLbCaYTQZIYRntvv6871Fw11Yi0prQ+xE17G3F4ZPZqzXn\n80v4QeMxGA2AVjNrZ719+PYrh9EfDAsx8a9Vxh0RUZSwgSiXBU8jKkHIZjEOK36aqjPt/tif1bLp\n8ilVmru2EpGWhA1EieYqssUAQMFgzbmIAhhUqg1N8ziGBZtURAummk2GvEuV5q6tRKQlYQORo9gK\nm9WYdnKAlqIdo2gPKXotdqsJobAc6ymsXT4dDXtP4Z3mNtXe1EjRif89R87mbXHSbCy+JaLCJ2wg\n2rH/dE6DEHClJzRSid2MzRuq4R6SFn3fbXMARcG+5vjp3SNVOO0ospkTpkoP3WKCiEhU+TcbnoJg\naCDnG+IB6nNFvl4J1suVFoaKbgs+dKfWaR5H3GMsmFmJgDTAVGkiKnhC9oh8PbmdH3I5bVg4sxLH\nTnXGLRxaVmJDkW1008abWxk6B9TZI8V6WUc/8AKKknCfIqZKE1EhELJHVFGqvpZFb0vnTcI/f/km\n3Hf7XNU9hHx+Cd9+5X1s39MCOTJ6+HBoNYNocFowoxLAlV5WV28I+5rPodhuiXsOpkoTUaEQMhDZ\nrWYsyGJFhSir2YC7lw/2ZqSwjHtWzowNtY0UTSpo2Nua9LhSWMaxU51xf9YXCGNF9dRhw3m1NVVM\nlSZdibLAmgqDkENzAFB7fRX2NbUlf6OGQgMKvv3K++j2h4alUd+55Go8te09XPKP3o5i/9FzWDp/\nMia51Ou5JUpFv+SXcPsN07B+xUymSpPuWFmdckHYQOQqtaNSZf5ET9FgMzSNuvb6qrhBCACkcARP\n/+x9VCb4hY6WzUk0F8RUacqGkdXj82m5ABUuYb/i2CwmzLs8r5JLzS0dKLKZYbMkbspEQ3XRsjnx\ncC6IsoWV1QuDiMOqwvaIACCksrVCNsXSqFNcqNrc4o27/qcQyubkUxkiSl8qldXZK89fIg+rChuI\npLCM5g9yv5aowmkHDAaEUqy83dkj4bVdJ/E/75g77B+HyGVzRP4FoCtSGSKm/CXysKqwTwmvrz/n\nlRWAwaEzd3lRWunkvz9xQTWbLt2N6lIV7a4HQ9pvrR79BRi5UWAqGYOUPzhELC7Rh1WF7RGpVhjV\n+7SX/8d1eeisbtl0dPslLJg5Ia0svmyV6BnZW3FXFGHBjErNeivJfgFYhkgshTBEPB6JPqwqbCBy\nlxfBbjWpbsGtFwXA1+9ZhI9NdmLH/r/iqZcPoatHQoXTimkex+C+Qr0SyktssFlNuNDVH/c42frH\nMbK73u4LaNpdF/0XgIYTeYh4PBN9WFXYoTmbxYSbrpuY9fO6nDZMn1qGHfv/Omw4qqs3hDPtfiyY\nUYlnvnwTvvuVm/DU/7wBLqc17nGy8Y8jG9117thamPQaIiZ9iD6sKmwgAoDVNdOyfs4ZVaUAoPqA\nP3aqK/Yt0mYxoXqOJ+77hv7j0CvdMpXeyliJ/gtAVCiGVnoRrQqLsENzwOCiVpfTiq7e+ItJ9fDh\nhZ60hqOi/wiaTnrh65VQ4bShes5gRpne2WbZ6q6nM6+gluLN1O/R2CaUDpGHVYUORDaLCXM+VoED\nJy5m7ZztPgkmoyHtB3w0t2JojoXe6ZbR3srQc0Rp2VtJ5RdALeiuXT4djW+fZur3EEyHp7EQsQqL\n0IEIAEym7GfPtXn7Un7AqwUbWY6oFjrVMttsZG9lQvmVrDmtJfoFUGuHkx9dGraNukhrH/Qi8noQ\nokwIHYiksIwTp7qyfl6b1YQVi6deDiZdqsNRCZMFPuhAt0p9umTZZukM2Yzsrcy4uhK93YEU71Qb\nidqhzeuP+/p4Tf1mOjyNR0IHom6/pFpsVE9b//OP8PUOVuBeMHMCaq+vgqvUPuoBkWguqdsfQrnD\nBl+chAG14b2xDNlEeyt2qxm9adyrFhK1g/out+Mz9Zvp8DQeCT3gXOawwZyDO+jqDcUqCOxrasO+\n5ra431ITpTa7Su1YNDv+nkpq8zeiVjBI1A5GlZHV8Zr6zXR4Go+EDkQAkGKJN12prclJltpcXzsr\n5XTLREM2TSe9eV3CI1E7THU74r4+XlO/mQ5P45HQQ3NtHfHnF7It0ZBJotTmdNItEw3ZdPVK+Pmu\nk7h/RCHVdOmZLqzWDley5lhSJopldmi8MSiKkuIGBtrzejObrXC7nbhwsRs/ajyGY6ezn6wwUmWp\nHU/eX4OANKD6EB/rQ14Ky9iy9WDCjQBra6qSZlW53c5R7Z7NdGFR1xHFaze95XubpCoXbVcoCq3t\n3G5n3NeF7RE17G3NiyAEAGazAU//7L1YAkO8h/hYc/sTrQmKyjSrKpvpwmrtIOLaB72xTWi8EHKO\nKBgaUJ0vyYWLXYFhCQx6JRDcs3ImlsybpPrzTMr2iF4+nojEJ2Qg8vWoz5fkCz0e4iajEffdPgeV\nGmZVZaMeHRFRIkIGoopS9RTXfKHXQ1zrrCqmCxNRrgkZiOxWs+rDOF/o+RDXssou04WJKNeETVaI\nPnTfaW5DWM5Z4p8qPR/iY62yOzIbi+nCRJRLwgYiAJAjCgbyLAjZrSZ8csFk3LNypmbpt2rHSTer\nSo5EsHXHcbx7tG1Umrao5eOJSHzCBqKGva3Y19SW02sY3Bp84HIvwoa5V1Xg86tnw2YxarIuJ9n6\nnnQDXbI0baYLE1EuCBmIcp2+bTMbsXThZHx+1SwMyMqoYLB9T4sm63LUAoeiKDAYDGkFOlZ1JqJ8\nJWSyQq7Tt6WBCIwGA0xGY6wXMXTbby3W5SQ6zrvHL6RV/FQKyzjd1q1alUHLDD+9tj0nosIlZI8o\nmr6dqNyN3kb2IqLDZKGBiCZl/BOt7wmG4j/kR17TyKE9oyH+tgtaZPhxV1EiypSQgSiavp2o3I3e\nokGlssw+7AFc4bTCZjXFDRbpPPCj63vSCbYjA93IoT21qoJaZPhxV1EiypSwX1WvrKXJzYLLaFAZ\nuUdQV29ItceSzgM/0foeuzX+f7boNUlhGWfbe1WH9owGwICxrT8aimWCKNc4JCw2IXtEwJW1NHcu\nuRqPvPi7rJ9/8eVN7dQewHarCSV2M3y9UsbrctTW90QUBXuPjM4YXDirEm+8cwrNLd6EPSkFwGP3\nLsL0qWWaJCgkKxPk9fXDajExLZw0xyHhwiBsIIrKRS00R5EZ96ycic7uoOoDOBSWsXlDddwHcKpp\n12oLV+XIYLLEyAClKEpKw5Uup12zIAQkHka0Wkz4YeOxcf2QKJTtHPIRh4QLg9CBSI5E8ObBD7N+\n3v7gAPqDAwkfwBVOO9xDsumAzL+9jVzfEy9AAcCWrQdTun6tqz4k2qIiGJJjQ5Xj7SHBb+v64pKE\nwiH0b0PD3lYc/FN71s8bUYCz7f6067SNnE8a65YRQ1PHEw2PAYDhck26u5ZN16V0z8j6dy6nDXZr\n/IfAeJk30vq/Nw3HyvGFQ9geUaJvQ9ngqSgCkPq2znp/e0vUO3M5bfja+oVwlxehakq5Ljs+juyl\nhQYieOrl9+K+N500dlHx27r+ko1IsHK8OIQNRF09wZyuI5IvL8hJVIB06NxAKt/e9NrBtaTIgsmV\nxVkZDor20qSwPG4fEtEFxHr+96bE/+ZZOV4swgaiPYfP5Ozc5SWWWJp0t1+CyWhAuy+AKo8jlkww\ncm5gwcwJqHBa0dUbGnU8rR7M96yciZMfXcKZdv+w18+0+9GwtzWr8zLj8SEx9L975+UFxPHWbhV6\nIM4mVo4vDEIGomBoAMdOdebs/NVzPXjjnVNoOtk+LLAYDcBUtwMzq0qxr+lc7PXOHgn7mtowzeOI\nG4i0ejAPyAr6g+G4P4sOB6UrGmyLbGYEpIG0Mr/G20NiZAZXvCoWQOEG4lwY65YolB+EDES5rDVX\n5SmBAYj7TT+iDPY+znX4R38QQH8wjBWLp+DYqS5dHsypDP9VpXis6Lf7aLCNlgeqTCPzazw9JBLN\nCRkNg2u3XAUeiHOJlePFllIgamlpwcaNG3H//fdjw4YNOH/+PB5//HHIsgy3243nn38eVqsVO3fu\nxKuvvgqj0Yj169dj3bp1ulx0LmvNBYLJK3/Lkfiv+3ol3H7jVahbNh1n2/2o8jjgLLYOe89Y1pxo\nOXmr9u0+kxTs8fCQSPQlQFG0XUBMVGiSBqL+/n780z/9E26++ebYay+++CLq6+uxZs0avPDCC2hs\nbERdXR1eeuklNDY2wmKxYO3atVi9ejXKy8s1v+hc1prr6pVUa7YlYzEb8f+99yFOnOoata4EwJjX\nnGg1L5NKRiIzv4ZLmLVYqu0CYqJCk/QJZ7VasXXrVng8nthrhw4dwqpVqwAAK1aswIEDB3D06FHM\nnz8fTqcTdrsd1dXVaGpq0u3Co+tWKrI86ety2uByWpO/MQ4pHME7zefjrivRas3JyPU8mdSTS7Ym\nCeA6jZHSXVNGRFck7RGZzWaYzcPfFggEYLUOPowrKyvh9XrR0dEBl8sVe4/L5YLXm/hbdUVFMczm\nzH5BJ00swyOfvx7tXf144J9/m9ExMvGJeZNhNhmxc/9p1fd8bJIT7b5+BKTUFm0eO9UJRaWbdexU\nJ75ydxHs1tSn8x75/PUIhgbg65FQUWob9Vm325nw886yIrgritDuC6i+Z0J5EWZcXZnWdYkuWbs9\nvH4xiousOHjiPDouBTChvAg3zZuML955HUwmodeOj1mytiN146HtxvwUUXuAqr0+lM/Xn9E53W4n\nvN5eyJEIfvzr4xkdI1NLr5sIT0UR+gMh1ay5B/7uWjypspgzHu+lgOpwX8elAE79rTOjORYzgN7u\nAIYuX422XTILZlQmHPpcMKNy1LELWartVrf0aqy5cdqweb6urr4sXGH+SrXtaLRCazu1oJpRICou\nLkYwGITdbsfFixfh8Xjg8XjQ0dERe097ezsWLVqU2dWmqGFvK5pbs5fG7XLa4Cq1j8oGG7qOyFls\nhRSWUe6w4pJ/dKq22nEVRVFdY1RkM6Pd15/VrLPoUF7TSS+6eqW4WXMU33hIziDSUkaBaMmSJdi1\naxc+85nPYPfu3Vi2bBkWLlyILVu2oKenByaTCU1NTdi8ebPW1xuTixI/3X0hNL7dintXzRq2TbgU\nliFHFFiHBIm5V5WnXAcvOrcQrwdSbDfj26+8n/WimSODbSbriIiIUpE0EJ04cQLPPvss2traYDab\nsWvXLnz/+9/Hpk2b0NDQgClTpqCurg4WiwWPPvooHnjgARgMBjz00ENwOvUb20xlQl1rckTBW0fa\nYDAYUF87e1QFhTKHFY4iC/qDYfiGrL0ZyW41IRSW464jGrr4s9huHlYlIRfVq4d+ux+Zak5EpAWD\nkspkjk4yHft0u504e+4Stmw9mJO1RK5SG762dgH2/eEc9jWN3qBOTVmJBdWz3bh7+Uz4+0NxexlD\nKxl8+5X3495fZakd33nwE6o9k0RrkQptzDlb2G6ZY9tlrtDaTtM5onyQaM2M3rp6JDy57X0YDel9\nrrsvjGOnOmE0GqAAOPpBx6ght2gPpN3Xn3bRTO5/Q0QiEjYQAYMT6n/6WxfOdWSWfTdWarXEEuns\nkfDWiG2+4w25ZVIlgbtVEpGIhP6a3B8cgL8/fpFPEQ3dMC7dBZLJ9r8ZDxvREZGYhOwRyXIE2/e0\n4PBf2tFTQIFo5JBbOtWr9d7viIhIL0IGom3/+ceczA3pbeSQWzrVq7lbJRGJSrihOSks4+CJ87m+\njGFK7GaUO6wwYDCj7dZFk7Fk3iRUlqb38FerSRZNYEi0foe1zohIVML1iLr9EryX1Gug5YLdasKT\n998QNxW7qyeIPYfPDNuDaNGsystZc52a7ks03jaiI6LCIFwgKnPY4C5PXJAz23y9EgLSwKg5GJvF\nhMmVJbjv9rlx1/asWz78NSkso7M781I+42kjOiIqHMIFIpvFhJvmTU5Y/TrbUpmDiVd/LPqaHBlM\nvtBq/Q9rnRGRSISbIwKA/3H7HNit+fNNf6xzMFrtRUREJCIhA1F3XxhSKLfrYqKJCdFN56SwjHZf\nv+p6HbWfc/0PEY13wg3NAUBFqXqqcrZ88++vx9QJDphNhrhldeqWTYe/PwRHsRU79p9WHXbTev1P\nojpzRET5SMhAZLeac1ZnLspht8BmMWH7npa4ZXV+d+wcpFAENqsRwVBk1M+BwbI7Wq3/YZ05IhKV\nsE+oe1bORG1NFXLxjK0staHMYUs4rBYMRaBc/v94osNuWq3/4TwTEYlK2EBkMhpx960z4LBl/xYW\nz3bDZjHBeymQ8Z5I0WE34EpQrSy1w2gYPveUCs4zEZHIhByai+r2S+gJxO9x6MFoAG5dPBVrl0/H\n9j0taDrZjkw3cyp32GLDbmNd/8M6c0QkMmF7RMDg4tY0twQaE0UBbr9hGhrfPo09h8+iqzeU8bFK\niiyjgk0qpXziic4zxZNsnilZth8Rkd6E7hEBg2nU2dpi1lVqR5HNrDoMlo7+YDg2RzRWiTYJVJtn\nYnIDEeULoQNRt19C9gbmBh/qAWkg43mhoXy9kqap2enWmeMmekSUL4QORGUOGywmIBujSjd9fCLq\nlk2HyWhIeQ1TucMKowFxh/C0Ts1OZ54pWXLD3bfO4BokIsoa4cdgsjEsZzYBB/90EU/++0G88c4p\nLJxZmdLnevpCmPsxV9yf6ZWanco8UyrJDURE2SJ0IOr2SxjIQm8oeo6u3hD2HD6Lkx9dSulzFU47\n6lfPyrvU7LEkNxARaU34oTlHkRn+wEBWz9vW0Z/S+xbPnoBimyXvUrMzSW4gItKL0D0im8WE6tkT\ncn0ZwxhUej25SM1OZKyLaImItCJ0jwgA7rt9Lg6euIAcF+MGALicNnxt/UK4y4s061Xo1XvhJnpE\nlC+E7hEBgw/Uhz43P8vnjL+MtnqOG1Vuh+YPdD17L5n21IiItCJ8jwgA9hzJbhXuWxdNhtFoTHnN\nzlix90JEhUz4QCSFZZz8qFu345uMg/M0vl4JLufw9TvZDgzcApyICpHwgcjr60doQL/6ChazCU/d\nfwMC0sCogMPAQEQ0dsIHIhj0LXsaCssISAMMOEREOhE+WcFdXgS7Vb9hMS7wJCLSl/CByGYxYen8\nSbodv9huhtmUzc0miIjGF+EDEQDcuypaRkf7nsuZdj+32yYi0lFBBKJoevN3HrwJ3/rC9Zpvlsft\ntomI9CN+ssJlciSCN945haYWr+YVubndNhGRfgomEP3irQ/w1pE2XY7NhAUiIv0UxNCcFJbx7vEL\nuh2fFamJiPRTED0i76UAghpVPa1ylyAgyVkp3UNERAUSiKBoNyvU0R3Es/9wc9xKCkREpL2CGJpz\nVxTDbtXmVoIhGd19IVakJiLKkoIIRDaLCUvmT9bugBr2sIiIKLGCCEQA8PlVs7Bk3tgrLNitJriZ\npk1ElDUFE4hMRiPuu30OXE7rmI6zZP4kDskREWVRwQQiYHCIrnqOJ+PP260mGDC4OJaIiLKjoAIR\nMLit9srrp0JlN++EgiEZbx1pY205IqIsKrhAZDIasW75TJQ7Mh+iY205IqLsKbhABADdfgldvaGM\nPx+tLUdERPoryEBU5rCNKWmBteWIiLKnIAPRWJMWWFuOiCh7CqPETxz3rJyJiKLg98cvxOrQ2a0m\nLJk3ETAYcPSDTnT1BGG7vM14KCyzthwRUQ4UbCAyGY3YsHoO1i2fCa+vHzAY4C4vivV01i2X0e2X\nYkNw0T+zJ0RElF0FG4iibBYTqjzOuK8P3eiOm94REeWG5oHou9/9Lo4ePQqDwYDNmzdjwYIFWp+C\niIgKiKaB6L333sOHH36IhoYGnDp1Cps3b0ZDQ4OWpyAiogKjadbcgQMHUFtbCwCYMWMGuru74ff7\ntTwFEREVGE17RB0dHbjuuutif3e5XPB6vXA4HHHfX1FRDLM5s+QAt3v0vA+lhm2XGbZb5th2mRsP\nbadrsoKSZF8fn68/o+O63U54vb0ZfXa8Y9tlhu2WObZd5gqt7dSCqqZDcx6PBx0dHbG/t7e3w+12\na3kKIiIqMJoGoqVLl2LXrl0AgD/+8Y/weDyqw3JERESAxkNz1dXVuO6663DvvffCYDDgqaee0vLw\nRERUgDSfI3rssce0PiQRERUwg5Iso4CIiEhHBVl9m4iIxMFAREREOcVAREREOcVAREREOcVARERE\nOcVAREREOSXUxnjc60hdS0sLNm7ciPvvvx8bNmzA+fPn8fjjj0OWZbjdbjz//POwWq3YuXMnXn31\nVRiNRqxfvx7r1q1DOBzGpk2bcO7cOZhMJjzzzDOYNm1arm8pa5577jkcOXIEAwMD+MpXvoL58+ez\n7ZIIBALYtGkTOjs7IUkSNm7ciLlz57Ld0hAMBvHpT38aGzduxM033zy+204RxKFDh5Qvf/nLiqIo\nSmtrq7J+/focX1H+6OvrUzZs2KBs2bJFee211xRFUZRNmzYpb775pqIoivIv//Ivyuuvv6709fUp\nt912m9LT06MEAgHl7/7u7xSfz6f8+te/Vv7xH/9RURRF2b9/v/LII4/k7F6y7cCBA8qXvvQlRVEU\npaurS7n11lvZdin4r//6L+Xf/u3fFEVRlLNnzyq33XYb2y1NL7zwgvK5z31OeeONN8Z92wkzNMe9\njtRZrVZs3boVHo8n9tqhQ4ewatUqAMCKFStw4MABHD16FPPnz4fT6YTdbkd1dTWamppw4MABrF69\nGgCwZMkSNDU15eQ+cuGGG27AD3/4QwBAaWkpAoEA2y4Fd9xxBx588EEAwPnz5zFx4kS2WxpOnTqF\n1tZWLF++HAB/X4UJRB0dHaioqIj9PbrXEQFmsxl2u33Ya4FAAFarFQBQWVkJr9eLjo4OuFyu2Hui\nbTj0daPRCIPBgFAolOeTpA4AAAJISURBVL0byCGTyYTi4mIAQGNjI2655Ra2XRruvfdePPbYY9i8\neTPbLQ3PPvssNm3aFPv7eG87oeaIhlJYmShlam2V7uuFbM+ePWhsbMS2bdtw2223xV5n2yX2i1/8\nAn/+85/x9a9/fdi9s93U7dixA4sWLVKd1xmPbSdMj4h7HaWnuLgYwWAQAHDx4kV4PJ64bRh9Pdq7\nDIfDUBQl9u1sPNi/fz9+8pOfYOvWrXA6nWy7FJw4cQLnz58HAFx77bWQZRklJSVstxS8/fbbeOut\nt7B+/Xr86le/wo9//ONx/29OmEDEvY7Ss2TJklh77d69G8uWLcPChQtx/Phx9PT0oK+vD01NTaip\nqcHSpUvxm9/8BgCwb98+fOITn8jlpWdVb28vnnvuOfz0pz9FeXk5ALZdKg4fPoxt27YBGBw27+/v\nZ7ul6Ac/+AHeeOMN/PKXv8S6deuwcePGcd92QlXf/v73v4/Dhw/H9jqaO3duri8pL5w4cQLPPvss\n2traYDabMXHiRHz/+9/Hpk2bIEkSpkyZgmeeeQYWiwW/+c1v8PLLL8NgMGDDhg246667IMsytmzZ\ngr/97W+wWq343ve+h8mTJ+f6trKioaEBP/rRj3DNNdfEXvve976HLVu2sO0SCAaD+OY3v4nz588j\nGAzi4Ycfxrx58/DEE0+w3dLwox/9CFOnTsUnP/nJcd12QgUiIiIqPMIMzRERUWFiICIiopxiICIi\nopxiICIiopxiICIiopxiICIiopxiICIiopxiICIiopz6/wEQ0VXTnLl6YAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "jByCP8hDRZmM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "s0tiX2gdRe-S", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 392 + }, + "outputId": "46806066-85a8-48c9-8f09-9fb6b92e130f" + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize=(15, 6))\n", + "plt.subplot(1, 2, 1)\n", + "plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAFlCAYAAACp5uxjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt4W9WdL/yv7rIt+SJHys2hkDsl\nV2MoJA3k4kDDFOqWJFCf0OGU0s4b6EOfFwppmsLQ6ZQCHU5LD512MqQwlJy6NX1yMs/wNmlIYFKa\nBBK7ufQS46SFxLlYthXbsqUteWu/fzhSfNHWzXtLWvL380ebyNK+LOL901rrt37LoCiKAiIiohwx\n5voCiIhofGMgIiKinGIgIiKinGIgIiKinGIgIiKinGIgIiKinDLn8uReb29Gn6uoKIbP16/x1YwP\nbLvMsN0yx7bLXKG1ndvtjPu6kD0is9mU60sQFtsuM2y3zLHtMjde2k7IQERERIWDgYiIiHKKgYiI\niHKKgYiIiHKKgYiIiHKKgYiIiHKKgYiIiHKKgYiIiHIqp5UVtCCFZXT7JZiMBjS1eLH/6Fmc7Qhm\nfLzyEiNmTS1HZVkxqjwOBEMyXE47LvkldPdJuPHaiXAUW3G23Y8qjwPOYuuw6yhz2AAg9mebZXBB\nWm9/aNRn4t3H0M+keu/Rz2RyjHym1/0UWjsRiS5pIDp06BAeeeQRzJo1CwAwe/ZsfOlLX8Ljjz8O\nWZbhdrvx/PPPw2q1YufOnXj11VdhNBqxfv16rFu3TrcLlyMRNOxtRdPJdnT1hjQ77qW+CN5v6QLQ\nFffn//fdD2N/NhqAKe4SzKwqw/HWTnT2SLBbjQAMkEIyXKU2LJxZiZYz3TjX0YeIMviZqW4HvvmF\naljN5th9NLd40dUjwVVqw+LZbtyzciZMxvgd1nifKbZb0BcIwdcbSukY+SyTNsnlcYlobAzJtgo/\ndOgQXn/9dbz44oux177xjW/glltuwZo1a/DCCy9g0qRJqKurw2c/+1k0NjbCYrFg7dq1+PnPf47y\n8nLVY2daa87tduKH/+cI9hw+m9Hn88E0jwNPf/FGbN/TEvc+amuqUF87O+5n1T6TyjHcbmfG7Z4t\nmbSJ3scVod3yFdsuc4XWdprWmjt06BBWrVoFAFixYgUOHDiAo0ePYv78+XA6nbDb7aiurkZTU1Pm\nV5xAMDSA5havLsfOljavH53dAdX7aG7pgBSWR70uheWU713tGPks0f2N5X70Oi4RjV1Kc0Stra34\nh3/4B3R3d+Phhx9GIBCA1To4z1FZWQmv14uOjg64XK7YZ1wuF7zexA/MiorijIr6ne/oQ1evlPbn\n8klEAc5dklTvw9cbhMlqgXtCybDX07l3tWOofSvJB4nuT+1+snXcfG63fMe2y9x4aLukgejqq6/G\nww8/jDVr1uDMmTP4whe+AFm+8u1RbWQvyYgfAGRc3ryirAgupw2dPeIGI6MBmFJuU72PCqcdcig8\nqlsuh+WU7z3eMfK9q5/o/tTaJBvHzfd2y2dsu8wVWttlPDQ3ceJE3HHHHTAYDLjqqqswYcIEdHd3\nIxgczEy7ePEiPB4PPB4POjo6Yp9rb2+Hx+PR6PKHs1vNWDzbrcuxs2Wq24HKsiLV+1g8e0LcjC6b\nxZTyvasdI58lur+x3I9exyWisUsaiHbu3ImXX34ZAOD1etHZ2YnPfe5z2LVrFwBg9+7dWLZsGRYu\nXIjjx4+jp6cHfX19aGpqQk1NjW4Xfs/KmaitqYLLOToVOluMBqDKU4Ll1VNQWWqHAYDdaoLdaoLR\nAFSW2rGyegqq3CUwGq58ZppnMGtu6H1Ultpjn6mtqcI9K2eqnnf0Z2yY5nHA5bSlfIx8lkmb5PK4\nRDQ2SbPm/H4/HnvsMfT09CAcDuPhhx/GtddeiyeeeAKSJGHKlCl45plnYLFY8Jvf/AYvv/wyDAYD\nNmzYgLvuuivhyceSNRf9bHRNyC/3fYCmls6MjpeKYpsRKxZPw5J5Yq8jEqmrn0/riERqt3zDtstc\nobWd2tBc0kCkJy0CETD4YNn809/D5w9rdWmjGA3Ad798EzwVxZoeN9uLKwvtH3a2sN0yx7bLXKG1\nnVogEr6yAjDY+9AzCAGDE9rR3o4WuLiSiGhQQQSiIpsZRsNgSrRetJ7QbtjbOmxxZWePFPv7WBZt\nEhGJpiC+egekAV2D0NJ5kzSd0ObiSiKiKwoiEJU5bKgs1W7YbNixSyzYcPscTYfLuv0SulTWAfl6\ng+j2i7s+iogoXQURiNJZW5Ou6tluzZMIyhw2uFQCp9ZzUURE+a4gApEciUBRFNgs2t5OlacE9au1\nn6/h4koioisKIlmhYW8r3jrSptnxnEVm1Fw7EfW1s3TLYIvOOTW3dMDXG0SF047FsydwcSURjTvC\nB6J0qlGnauHMCboGIQAwGY2or52Nu2+dwU3aiGhcE35oLtHEf6Z+d/wCtv+2RdNjqrFZTPBUFDMI\nEdG4JXwgSjTxPxbv/OEcXtt9EnIkovmxiYhEIYVltPv6dV1WIvzQXHTiX+vdWiMKsK+pDSajgQtM\niWjcyWb1F+F7RACwdvl0TKoo0uXYXGBKRONRtPpLZ48EBVeqvzTsbdX8XAURiBrfPo0LvoAux+YC\nUyIab7Jd/UX4QKRH1txQVouJC0yJaFzJdvUX4QORHllzQ+VwlwwiopzIdvUX4QNRmcMGq8YVFYaS\nwhEOzRHRuJLt6i/CZ80BgMGg37FdThuH5oho3Mlm9RfhA1G3X0IwpN9an+o52hc9JSLKd9ms/lIQ\nQ3N6bQEx1V2Mtcun63JsIiIRZKP6i/CBSM8tINq8/WjYe0qXY4932VitTURiEH5oDhgcy5QjCt5p\nbtN8p9Z3mtsARUH96tm6FkEdL7K5WpuIxFAQv/kmoxG33zBNl+3CIwqwr/mcLquJx6NsrtYmIjEU\nRCAC9J0rAoCmk+0cRhqjbK/WJiIxFEwgsllMkEL6Pci6ekNcTzRG2V6tTURiKJhA1Nsfgj84oOs5\nTEYdFyyNA9lerU1EYiiYQHS23a/7Odp1Kqw6XmR7tTYRiaEgsuYAwFls0fX4RgNQ5XHoeo7xIJur\ntYlIDAUTiHb87q+6Ht9gAP7z939jmvEYZXO1NhGJoSCeqFJYxl/P9ep6DjmCtNOMuWhTXTZWaxOR\nGAqiR9Ttl3ApSxlXh//SjjuXXA1nsVX1PVy0SUSUuoJ4KibKxtLaJX8I/7jtfWzf0wI5Er/YKhdt\nEhGlriACkc1iwoKZE7J2Pp9fPbBw0SYRUXoKIhABwC0Lp2T9nPECCxdtEhGlp2ACkSkHa03jBRYu\n2iQiSk/BBCJ3RTH0ygNQK6gQL7Bw0SYRUXoKImsuymw0IKRDCW61Q6oFFi7aJCJKXUEEIjkSwWu7\nTiI0oMM+EAAqS21YMKMSx051pRRYuGiTiCh1BRGIGva24vcnLuh2/LlXVWD9yllYvxJpBZbook0i\nIlInfCBKlC6tBZvZiHdPXMBfPvJxUSoRkQ6Ef6J29QTRqZIurQVpYHDRKhelEhHpQ/hAtOfwmaye\nj4tSiYi0JXQgksIyjp3qzOo5uSiViEhbQgeibr+k67BcPFyUSkSkLaEDUZnDBrs1u7fARalERNoS\nPmsOyE5tH6MBuHXxVC5KJSLSmNA9om6/BCmUncSBiALcfsM0pm4TEWlM2KeqHIlg13sfwZClYqdG\nA7Dr/TOqexBxN1YioswIOzTXsLcV+5rPZe18EQXY19QGk9GA+trZsde5GysR0dgI+aQMhgZ0raaQ\nyNB1RFJYxitv/oW7sRIRjYGQPSJfj/rmc7qfuzeIrp4g9jW3oelkO7p6Q3Hf19zSgbtvncEMOyKi\nJITsEVWUqm8+p/u5nTbsOXwGew6fVQ1CABe+EhGlSshAZLeaVTef09usqvKUqjlw4SsRUWpSCkTB\nYBC1tbX49a9/jfPnz+O+++5DfX09HnnkEYRCg72CnTt34u6778a6devwq1/9SteLBgY3n6utqUJl\nqR1GA1BZaseUCfpuuWC3mnD7jdNSGhbkwlciotSkNEf0r//6rygrKwMAvPjii6ivr8eaNWvwwgsv\noLGxEXV1dXjppZfQ2NgIi8WCtWvXYvXq1SgvL9ftwuNtPue9FMCTL7+n2zk/uWAyJlWWwFVqUy0t\nVDkka46IiJJL2iM6deoUWltbsXz5cgDAoUOHsGrVKgDAihUrcODAARw9ehTz58+H0+mE3W5HdXU1\nmpqadL3wqKGbz+383WndzjPN48A9K2fCZjGpDgsumTcJ33nwJtTXzmbqNhFRipL2iJ599ll861vf\nwo4dOwAAgUAAVqsVAFBZWQmv14uOjg64XK7YZ1wuF7ze7KRXD13Ho2cB1P7gAAZkBSbj4LBgRFHw\n++MXELxc2cFuNaHIZoLZlKUVtkREBSJhINqxYwcWLVqEadOmxf25oihpvT5SRUUxzObM5lHcbicA\nYOuO49hz+GxGx0iHrzcIk9UC94QSAICj2BYLQgAQDMl460gbSopteLBuvu7XMxbRtqP0sN0yx7bL\n3Hhou4SB6O2338aZM2fw9ttv48KFC7BarSguLkYwGITdbsfFixfh8Xjg8XjQ0dER+1x7ezsWLVqU\n9OQ+X39GF+12O+H19kIKy3j3aFtGx0hXhdMGORROet53j57Dmhun5W2iQrTtKD1st8yx7TJXaG2n\nFlQTTmT84Ac/wBtvvIFf/vKXWLduHTZu3IglS5Zg165dAIDdu3dj2bJlWLhwIY4fP46enh709fWh\nqakJNTU12t/FCN3+7C1snXtVRSy4JDov1w8REaUn7coKX/3qV/HEE0+goaEBU6ZMQV1dHSwWCx59\n9FE88MADMBgMeOihh+B06t+dLHPYEmawacVqMeLzq6/Ul0t0Xq4fIiJKT8qB6Ktf/Wrszz/72c9G\n/fxTn/oUPvWpT2lzVSmKZrDpPUe0dN4kFNuuNFWi83L9EBFReoTPMb5n5UxMKNOvBzLN40D9kN7Q\n0POOXFBbW1PF9UNERGkSsujpUAOygkgktSy9dN308Yl44NPXxl0TFG9BLXtCRETpEz4Qdfsl+BIU\nH82Uy2nF36+Zm3Rh6tAFtURElD7hh+aiiQNaC4YiCEhh7rpKRKQz4XtEeiUs9EsD+H//9+8BDK8f\nx9I9RETaKoinat2ya2Cz6HcrI3ddlcKyUD0l0a6XiMYX4XtEANDtD0EKR3Q/T3OLF6EBGcdbu3DJ\nL8GV5z2loXX4unoGr3fpwqm48+ar8vJ6iWh8Ej4QyZEIfrzjRFbO1dkj4b//cH7Y36NDgvW1o1O8\nc61hb+uwIcvOHgk7959GfyCUl9dLROOT8F+Lt/+2BW3evpxeQ3NLR94Ne0lhGc0t8Sug5+P1EtH4\nJXQgksIymj/oSP5GnXXlYX051sMjIlEIHYi6/RIu+bVfQzRSskSI8hJb3tWXS5TWznp4RJRPhA5E\nZQ4bKnVYQzTUTR/34Jmv3JzwPIvysL5cop1kWQ+PiPKJ0IHIZjFhwYxK3Y5vAFC3bDrKHTbVh/o0\njwP1tbN0u4axiFcP765l01kPj4jyivBZc7U107Cv+Zwux7aajbEhrOjDu7mlA109QZQ5rFg8awLq\nV8/O21ToePXwqqaUF9RGW0QkPuEDkavUjkqd9iQyDIkvIhc5ZT08Ispn+flVPg02iwmzqsp1OXYw\nFBmVXRZ9qIsShIiI8p3wgQgAli+eostxhw7NAfqUymH5HSIa74QemouWsNl/VJ85IjmiQI5EIEcM\no0rljLW0T7zyO/lcLoiISC9CB6KRJWy0JkcUvL67BSVFllGlcsZa2ide+Z18LhdERKQXYb96Jyph\no6WmFi+aTrbH/VmmpXJYfoeI6AphA1GiEjZaksIRdKnsAJtpqRyW3yEiukLYQKTXzqxxz1Viift6\npqVyWH6HiOgKYQORzWLC3KsqsnKuhTPjV2/ItFQOy+8QEV0hdLLC51fPxoE/XkBE0fc8t9/4MVgt\nZjS3dMDXG0SF047FsyeMqVTO0EoNWh2TiEhEQgcik9EAi9mo++6sRTaz5lUVRK7UQESkJWGH5oDB\nSf9QFrYIf+PtUwD0qarASg1ENN4JHYiylbDwl4986O0PsQICEZEOhB6ai07667moFRhcbPrUtvfQ\n7Q+xAgIRkcaEf5LWLZuedAdVLVzyh6DgSgWEhr2tup+TiGg8ED4Q+ftDuicrxMMKCERE2hA+EBXZ\nzDDk4LysgEBEpA3hA1FAGoDOy4jiYgUEIiJtCB+ITMZc9IeGV0BItKcQ9xsiIkpM6Kw5APjb+Z6s\nnMdoABRlcGvyaAWERHsKAeB+Q0REKRA+EEkD2elpTHQV45G1C4ZVQNi+p0V1TyEA3G+IiCgFwn41\nlyMRbN/Tgtd2tWTlfP7+8LAglHhPIe33MIriUB8RFRphe0R67846Um8gjG6/BE9FMaSwjNNt3ap7\nCnX1SlBUMiii2XaeiuK0zs+txYmoUAkZiIKhgazszjpUZakdjmILtu9pQXOLF509UmzeaCSX0wZF\nUeJuqJdpth23FieiQiXkV2lfT3Z2Zx1q8ewJ2LH/r9hz+Cw6L59bbfuJxbPdqJ7jUT1OsgKnI4ff\nuLU4ERUyIXtEFaU2lDts8GVhQamr1IZrr6rAHTd9DP/8H4dV32cwAK44ewqls9+Q2vDbisVTk24t\nnu5QHxFRvhAyENmtZiyaPQH7mtp0P5evR8K7Jy7gj3/rwiX/6KG2qMUzJ+DBu64b1ttJd78hteE3\nOaLAVWqL9cSG4sJaIhKdkENzAFBfOwvTPA7dzxMdfUsUhADgw4u9cV9Pdb+hRMNvx1o7sWCGttuV\nExHlC2EDkcloxJP312Dpgkm5vhQAgK9XUq09l0rKdbdffd7L1xtEbc001NZUobLUDqNhMHmitqaK\nW4sTkfCEHJqLMhmNWPLxSXj32IVcXwosZiOsI7ajSCflOrrJn9rwm6PIgtrrq3DnkqsRkAa4tTgR\nFQyhAxEAVHkcMBrUM9i0ZjICcpxdJ6RwBJv/7RA+uWByLNCkk3KdaJO/YrsZ337l/bhlhIiIRCfs\n0FyUs9iKiVnMGJMjg8EonmBIjm2al0nK9T0rZ44afpvmceBMux+dPRI35iOigiR8IAKAWVeVZfV8\n8XpEQzW3dMB7KZA05Xokk9GI+trZ+M6Dn8B3v3wTnry/Bv3BsOo5uH6IiAqB8IFICss4caoz15cx\njK83CCiDKdfxJEu5jmbaBaSBtIMZEZFohA9E3X4pbikdPdmtiZMEKpx2uCuKsXi2O+7PU025jiYw\nqJ2D64eIqBAIH4jKHDZUOCxZPecnrvMkDEYLZrhgs5jizvmkk3IdTWCIh+uHiKhQCJ81Z7OYUFxk\nhc8ffy5FC3arCaGwHCvTs2LxVPx383nV99fWTANwZc4nneoKI0WDVjqlgoiIRCJ8IJLCMvoC+gSh\ncocVNXM9qFs2Hf7+UCyQSGFZdc1PZakdrlL7sNeicz6Z0CKYERHls6SBKBAIYNOmTejs7IQkSdi4\ncSPmzp2Lxx9/HLIsw+124/nnn4fVasXOnTvx6quvwmg0Yv369Vi3bp3uN9Dtl5KW38mE2Qg8/cUb\n4Sy2AgCKbVeaKtGaH72GzMYSzIiI8lnSQLRv3z7MmzcPDz74INra2vDFL34R1dXVqK+vx5o1a/DC\nCy+gsbERdXV1eOmll9DY2AiLxYK1a9di9erVKC8v1/UGyhw2VKr0TsZiIAL833f/is+vmhV34zkO\nmRERaSNpILrjjjtifz5//jwmTpyIQ4cO4emnnwYArFixAtu2bcM111yD+fPnw+l0AgCqq6vR1NSE\nlStX6nTpgyV03njnFPwBfbLm9h5pg9FgiLvxHIfMiIi0kXLW3L333ovHHnsMmzdvRiAQgNU6OGRV\nWVkJr9eLjo4OuFyu2PtdLhe8Xn13UY2W0JHC+tX3aTrpTbhwNNXq2rmUStFVIqJcSTlZ4Re/+AX+\n/Oc/4+tf/zqUIftjK/H2yk7w+lAVFcUwmzN7gDvLinAsCwtZfb0STFYL3BNKdD+X1mQ5gm3/+Ucc\nPHEe3ksBuMuLcNO8yfjindfBpFaniFS53c5cX4Kw2HaZGw9tlzQQnThxApWVlZg8eTKuvfZayLKM\nkpISBINB2O12XLx4ER6PBx6PBx0dHbHPtbe3Y9GiRQmP7fP1Z3TRbrcTp/7WiXZfIKPPp6PCaYMc\nCsPrjb/fUD7bvqdlWEJFuy+AnftPoz8QijvcSOrcbqeQ/wbyAdsuc4XWdmpBNenX4sOHD2Pbtm0A\ngI6ODvT392PJkiXYtWsXAGD37t1YtmwZFi5ciOPHj6Onpwd9fX1oampCTU2NhrcwXJnDhnKHVbfj\nR1XPcac07JZvw1+ZFF0lIsqFpD2ie++9F9/85jdRX1+PYDCIJ598EvPmzcMTTzyBhoYGTJkyBXV1\ndbBYLHj00UfxwAMPwGAw4KGHHoolLujBZjFh8awJ2Nd8TrdzWEwGLJ03CVJYVg1G6ew5lE3JNtrr\n9ktMByeivGBQUpnM0UmmXc5od1WORPD0z97HWW+fxlc2XGWC4DJy+CuqtqYqp8NfUljGlq0HVRfd\nfufBT2iSYCGF5XGRNVhoQyTZxLbLXKG1XcZDc/nMZDTi/6mbp/t51PYAyufhL73r1MmRCLbvacGW\nrQfxjZ8exJatB7F9TwvkSJI9MoiIRhA6EAGDc0UWkyEr5xoZXFIZ/sqleEVX71o2XZNFt9HUeW7Y\nR0RjJXytuR37TyMsZ2d0ceTcSnSbhnjDX1pt0zCWoa94i26rppSPuaufrCd4960zCnqYjoi0JXQg\n6pfC+N0x9SrYWhsZXDKpOZdqYNEyCULrOnVMhCAiLQkdiF7/bQuCoezNwxTbzTCPGAZMteZcuoEl\nOvQVFR36ApDzNUDZ6AkS0fghbCCSwjKaTupbQmikM+1+NOxtHRYIUq05l05gyfehr1xUHyeiwiVs\nsoL3UgBSOPsZWkf+4kVv/+giq4lqzqWbXZfvSRBA/ESIdHafJSKKErZHhBwtf/L5JTy17T3UzPWk\nPF+T7pyKCENfrD5ORFoRtkfkriiG1Zyby7/kD6WVqhwNLPHECyx6rwHSkgjVx4kovwkbiGwWE26e\nNzGn16C2aHVk3blMAotoQ1/5VmuPiMQh7tAcgA23zcHpc7040+7PyflHDqslyoxLd0fXfB/6iqah\nO4qt2LH/dN7V2iMicQgdiExGI568vwb/q+Eo/vShL+vnHzmsliwzLpPAovUaoLEaGWxtViOCoStJ\nI/mUZk5EYhD+K6vJaMT0qbnZOGruVeWxP6eaGSf6nMrI0j5Dg9BQua61R0TiELpHBAx+Qz/4p4s5\nOfe7Jy7gLx/5sHi2GysWTy34agOJgu1IhXLPRKQ/4QPR9j0foONS7tbVRIei5IiS9ynXY5UoDX2k\nQrlnItKf0ENzUljGH1o6kr8xC461dmLBjMq4P8u3lOtMJUpDH6lQ7pmI9Cd0IOr2S7iUB1UGgMGh\nqNqaaUKlXKcrURq63WoqyHsmIv0JPTRX5rChwmlFV+/okjvZVuG0w1Vqz+uUay2opaHXLbsG/v5w\nQd4zEelL6EBks5gw92Mu/P7EhVxfChbMcMUewPmWcq2lROubim2WHF8dEYlI6KE5AKhfPQtGnTdo\nrXDYMNmVOLDU1kzT9yLyjOhp6ESUP4QPRDaLadQeQVr7+DXl+ObfX49KlYn6ytLBYTk9sHQOERU6\noYfmAGD7b1sQGtC3Eve7xy+iyGbJ6h48Wu7QSkSUz4QORFJYRlOKCyzHqrmlA08/cGPsz6nUixuL\nfN6hlYhIS0IHom6/hO6+cFbO5esNwt8fQn3tbNy55GqcbfejyuOAs9iq+bnyfYdWIiItCR2Iyhw2\nuLKUvl3htMNRbMX2PS1pD5dFK1Wnmtqc7kZ6REQiEzoQ2SwmzJvuwn8f1T99e/HsCdix/3Tc4TI5\nouC+2+aM+kym8zwi7NBKRKQV4We9a+ZmZ3O8pfMnqQ6XvdPchtd2/QVyZHgl6pGVqqOBK9nOriLt\n0EpENFbCB6KPTXRC52VEAICnf3Y4bg8FACIKsK/5HLb/tiX2WqrbQqiJ7tDqctpgAOBy2lg6h4gK\nkvCByFlsxaQki02zZV/zOfzH5Z5RKvM8qTAYhv8/EVGhET4QAcBElz6LSTPxdvM5NOxtTVipOpV5\nnkyH9YiIRCN8IJLCMj680JfryxgmOiSX6TxPOsN6rLxARKITOmsOyK+tIKK6eiV0+yXcs3ImIoqC\n3x+/gGBoMFDYrSYoigI5ElHNnEtlWK+yzM7KC0RUEIR/YpU5bLBa8us2XE4byhw2mIxGGA2GWBAC\ngGBIxltH2hIOsaUyrMehOyIqFPn1BM9QZETadK4tnu2GzWJKaYht5NBadPHrgpkTVI494fLnM8/I\nIyLKJ8IPzXX1BJGL5265w4pL/uEVHexWE5bOnxRLsU42xPbarpM4+ZEPXT0SKpxWlBRZ0R8Mx/4+\nzeNAfzAMX680rK5dZ3dwTJUX0q30QESkJ+ED0Z4jo6th681uNWLT/1iMX+49hdPnLuFS3wDKSiyo\nnu3GvatmxeZoElVIsFpMwzb06+oNDStVFP37isVTcPuNVw0LGplWXpAjEWzdcRzvHm3jvBIR5Q2h\nnz5SWMbRD7JTfXuoYCiCzVsPoemDDlzqGwAAdPeFse9y6nZUogoJQGpbVxw71TWq55Jp5YWGva3Y\nuf8055WIKK8IG4jkSAQ/33UyKwVP41Gblho5RxOtkFBZaofRMLiJ3tJ5kxAMpTavpbb4Nd5xE1Ve\nGGulByIivQg7NNewtxXvntC/2Gm6unqGz9GYjEbU187G3bfOiM3LAMBfPvKplgwaSm2oLd5xE833\nsKI3EeUrIXtEwdCA6rf7XLNZTaMCx8jkgMRDdsPFG2obmmlns5jgqShOmnQw1koPRER6EbJH5OtR\n/3afa+EBGXJkcP4n0TYQ0SG06G6v5Q4bSooscbPkosayfXg0+GW61Tkz7YhIL0IGoopS9ayxXJMj\nwP/5bQse+PTHk273HW9oLdEDf6zbh9+zciaKi6x49+i5lLc6H0vwIyJKhZCByG41q367zwcH/3QR\nn73l6pS2+44OrUWN/HuUFtsYDcDuAAAgAElEQVSHm4xGPFg3H2tunJZy72aswY+IKBlhv9Les3Im\nVlRPzcvtEeSIgmdf/0Na20AkK16q1bYSAFKeV2KmHRFlg5A9ImDw2/19t83BgCxjfxa2Ck+XtzuI\nCqcNvt54i05tseSAVIe+crF9ODPtiCgbhO0RRRlz2CWymhM33zWTnXFf7wuG8cY7p2JBKJXipbnY\nPpyZdkSUDUIHIiks4w8fdOTs/BPK1TfkMxqADbfNQW1NFezW4UEiGIpgz+Gz2L7ng7T2HVqxeCpW\nVE9NeRHrWOUi+BHR+CPs0BwwOHTU3RfO2fnPdfSr/myq24Fyhw133zoDTSfbh20FEfWHlg74VOZ2\nEu07tGBGJWprpsFVatc9GIxMM08l046IKB1CB6Iyhw1lJZacBqN4TEYDvv75hQAGg6VPpQzRpT4p\nbhVvYPS+Q1GdPRL2NZ+DyWTMStZauhUciIjSJfTQnM1iQnWKFQqySVEU9AcHe0CJ5llcTjsWz4q/\n79CCGS4A+bPvUKqZdkRE6RI6EAHAPatmwpxnKdxDs+KSzbPUr56N2poquJyD7zdevpdjpzrx810n\nVRftppuyTUSUr4QPRI1vn8ZAajsqZM3QrDggcaXs6NDXwss9o8vVgdDZI+HdExdgt8b/T8SsNSIq\nFCnNET333HM4cuQIBgYG8JWvfAXz58/H448/DlmW4Xa78fzzz8NqtWLnzp149dVXYTQasX79eqxb\nt07Xi0+04DJbrGYDDAYDpPCVbR2iWXHAYPWBZPMsUljGsVa17L/43T2tstZYQ46Ici1pIDp48CA+\n+OADNDQ0wOfz4bOf/Sxuvvlm1NfXY82aNXjhhRfQ2NiIuro6vPTSS2hsbITFYsHatWuxevVqlJeX\n63bx3X4p5/Xmqud40PKRD1J4dMLByNI7auV7Ei0cDYVlLJk3CSc/uqRp1hpryBFRvkgaiG644QYs\nWLAAAFBaWopAIIBDhw7h6aefBgCsWLEC27ZtwzXXXIP58+fD6RxcxFldXY2mpiasXLlSt4svc9hg\ntRgQCudmbM5oAG6/cRoO/fFi3J+nWn0gWdWE+26fAwCa9lxYQ46I8kXSr74mkwnFxYMP0sbGRtxy\nyy0IBAKwWq0AgMrKSni9XnR0dMDlcsU+53K54PXqP2xmUBm6ygaL2QiX0z7m6gOpLBzVMmuNNeSI\nKJ+kvI5oz549aGxsxLZt23DbbbfFXleU+L0RtdeHqqgohtmc2YPV7XbifEcfQgOpbbmth1A4gqIS\nO5YunIqd+0+P+vnShVNQNSW1ocmH1y9GcZEVB0+cR8elACaUF+GmeZPxxTuvg8mk7VCZyWpBV5wa\neMBgL85ktcA9oUTTcxYCtzt+ySZKjm2XufHQdikFov379+MnP/kJ/v3f/x1OpxPFxcUIBoOw2+24\nePEiPB4PPB4POjquTLi3t7dj0aJFCY/r86lXJkjE7XbC6+2FHJZRVmzFpb74C0b15iq1Qw6FcefN\nV6E/EBpVfeDOm6+C19s77DOJkgPqll49aouGrq4+Ta/Z7XZCDoXhcqoPBcqh8KjrHu+i/+YofWy7\nzBVa26kF1aSBqLe3F8899xxeeeWVWOLBkiVLsGvXLnzmM5/B7t27sWzZMixcuBBbtmxBT08PTCYT\nmpqasHnzZm3vYgSbxQRHsSVngWho5trIrDgA6OwOxgJKqskBagkNWhrrbq1RzLgjIi0kDURvvvkm\nfD4fvva1r8Ve+973voctW7agoaEBU6ZMQV1dHSwWCx599FE88MADMBgMeOihh2KJC3qRwjL6pQFd\nzxFPucOKmrke1C27Bu2+/tiD2GYxxa0Nt3i2G4qi4K0jbbFj5Do5YCw15JhxR0RaMiipTOboJNMu\nZ7S72u7rxzd+ehDZvIEKhw3fur8Gbx78MO6DeGQ2WpTdaopb+LSy1I7vPPiJrPUoRnb1M+nVbN/T\nEvcea2uqCjbjrtCGSLKJbZe5Qms7taE5ob++ljlsKHNYs3rO6+e68ebBD+PuIfTz37bgd8fOxf1c\nvCAE5L5UT7rZeMy4IyKtCR2IbBYTFs6MXzRUD5Ndxahbdo3qg/jg8QsIhtLL4hOtVI+WW5YTEQGC\nByI5EkFfIHtbQARDMlrPdKs+iKUMUsmLbCaYTQZIYRntvv6871Fw11Yi0prQ+xE17G3F4ZPZqzXn\n80v4QeMxGA2AVjNrZ719+PYrh9EfDAsx8a9Vxh0RUZSwgSiXBU8jKkHIZjEOK36aqjPt/tif1bLp\n8ilVmru2EpGWhA1EieYqssUAQMFgzbmIAhhUqg1N8ziGBZtURAummk2GvEuV5q6tRKQlYQORo9gK\nm9WYdnKAlqIdo2gPKXotdqsJobAc6ymsXT4dDXtP4Z3mNtXe1EjRif89R87mbXHSbCy+JaLCJ2wg\n2rH/dE6DEHClJzRSid2MzRuq4R6SFn3fbXMARcG+5vjp3SNVOO0ospkTpkoP3WKCiEhU+TcbnoJg\naCDnG+IB6nNFvl4J1suVFoaKbgs+dKfWaR5H3GMsmFmJgDTAVGkiKnhC9oh8PbmdH3I5bVg4sxLH\nTnXGLRxaVmJDkW1008abWxk6B9TZI8V6WUc/8AKKknCfIqZKE1EhELJHVFGqvpZFb0vnTcI/f/km\n3Hf7XNU9hHx+Cd9+5X1s39MCOTJ6+HBoNYNocFowoxLAlV5WV28I+5rPodhuiXsOpkoTUaEQMhDZ\nrWYsyGJFhSir2YC7lw/2ZqSwjHtWzowNtY0UTSpo2Nua9LhSWMaxU51xf9YXCGNF9dRhw3m1NVVM\nlSZdibLAmgqDkENzAFB7fRX2NbUlf6OGQgMKvv3K++j2h4alUd+55Go8te09XPKP3o5i/9FzWDp/\nMia51Ou5JUpFv+SXcPsN07B+xUymSpPuWFmdckHYQOQqtaNSZf5ET9FgMzSNuvb6qrhBCACkcARP\n/+x9VCb4hY6WzUk0F8RUacqGkdXj82m5ABUuYb/i2CwmzLs8r5JLzS0dKLKZYbMkbspEQ3XRsjnx\ncC6IsoWV1QuDiMOqwvaIACCksrVCNsXSqFNcqNrc4o27/qcQyubkUxkiSl8qldXZK89fIg+rChuI\npLCM5g9yv5aowmkHDAaEUqy83dkj4bVdJ/E/75g77B+HyGVzRP4FoCtSGSKm/CXysKqwTwmvrz/n\nlRWAwaEzd3lRWunkvz9xQTWbLt2N6lIV7a4HQ9pvrR79BRi5UWAqGYOUPzhELC7Rh1WF7RGpVhjV\n+7SX/8d1eeisbtl0dPslLJg5Ia0svmyV6BnZW3FXFGHBjErNeivJfgFYhkgshTBEPB6JPqwqbCBy\nlxfBbjWpbsGtFwXA1+9ZhI9NdmLH/r/iqZcPoatHQoXTimkex+C+Qr0SyktssFlNuNDVH/c42frH\nMbK73u4LaNpdF/0XgIYTeYh4PBN9WFXYoTmbxYSbrpuY9fO6nDZMn1qGHfv/Omw4qqs3hDPtfiyY\nUYlnvnwTvvuVm/DU/7wBLqc17nGy8Y8jG9117thamPQaIiZ9iD6sKmwgAoDVNdOyfs4ZVaUAoPqA\nP3aqK/Yt0mYxoXqOJ+77hv7j0CvdMpXeyliJ/gtAVCiGVnoRrQqLsENzwOCiVpfTiq7e+ItJ9fDh\nhZ60hqOi/wiaTnrh65VQ4bShes5gRpne2WbZ6q6nM6+gluLN1O/R2CaUDpGHVYUORDaLCXM+VoED\nJy5m7ZztPgkmoyHtB3w0t2JojoXe6ZbR3srQc0Rp2VtJ5RdALeiuXT4djW+fZur3EEyHp7EQsQqL\n0IEIAEym7GfPtXn7Un7AqwUbWY6oFjrVMttsZG9lQvmVrDmtJfoFUGuHkx9dGraNukhrH/Qi8noQ\nokwIHYiksIwTp7qyfl6b1YQVi6deDiZdqsNRCZMFPuhAt0p9umTZZukM2Yzsrcy4uhK93YEU71Qb\nidqhzeuP+/p4Tf1mOjyNR0IHom6/pFpsVE9b//OP8PUOVuBeMHMCaq+vgqvUPuoBkWguqdsfQrnD\nBl+chAG14b2xDNlEeyt2qxm9adyrFhK1g/out+Mz9Zvp8DQeCT3gXOawwZyDO+jqDcUqCOxrasO+\n5ra431ITpTa7Su1YNDv+nkpq8zeiVjBI1A5GlZHV8Zr6zXR4Go+EDkQAkGKJN12prclJltpcXzsr\n5XTLREM2TSe9eV3CI1E7THU74r4+XlO/mQ5P45HQQ3NtHfHnF7It0ZBJotTmdNItEw3ZdPVK+Pmu\nk7h/RCHVdOmZLqzWDley5lhSJopldmi8MSiKkuIGBtrzejObrXC7nbhwsRs/ajyGY6ezn6wwUmWp\nHU/eX4OANKD6EB/rQ14Ky9iy9WDCjQBra6qSZlW53c5R7Z7NdGFR1xHFaze95XubpCoXbVcoCq3t\n3G5n3NeF7RE17G3NiyAEAGazAU//7L1YAkO8h/hYc/sTrQmKyjSrKpvpwmrtIOLaB72xTWi8EHKO\nKBgaUJ0vyYWLXYFhCQx6JRDcs3ImlsybpPrzTMr2iF4+nojEJ2Qg8vWoz5fkCz0e4iajEffdPgeV\nGmZVZaMeHRFRIkIGoopS9RTXfKHXQ1zrrCqmCxNRrgkZiOxWs+rDOF/o+RDXssou04WJKNeETVaI\nPnTfaW5DWM5Z4p8qPR/iY62yOzIbi+nCRJRLwgYiAJAjCgbyLAjZrSZ8csFk3LNypmbpt2rHSTer\nSo5EsHXHcbx7tG1Umrao5eOJSHzCBqKGva3Y19SW02sY3Bp84HIvwoa5V1Xg86tnw2YxarIuJ9n6\nnnQDXbI0baYLE1EuCBmIcp2+bTMbsXThZHx+1SwMyMqoYLB9T4sm63LUAoeiKDAYDGkFOlZ1JqJ8\nJWSyQq7Tt6WBCIwGA0xGY6wXMXTbby3W5SQ6zrvHL6RV/FQKyzjd1q1alUHLDD+9tj0nosIlZI8o\nmr6dqNyN3kb2IqLDZKGBiCZl/BOt7wmG4j/kR17TyKE9oyH+tgtaZPhxV1EiypSQgSiavp2o3I3e\nokGlssw+7AFc4bTCZjXFDRbpPPCj63vSCbYjA93IoT21qoJaZPhxV1EiypSwX1WvrKXJzYLLaFAZ\nuUdQV29ItceSzgM/0foeuzX+f7boNUlhGWfbe1WH9owGwICxrT8aimWCKNc4JCw2IXtEwJW1NHcu\nuRqPvPi7rJ9/8eVN7dQewHarCSV2M3y9UsbrctTW90QUBXuPjM4YXDirEm+8cwrNLd6EPSkFwGP3\nLsL0qWWaJCgkKxPk9fXDajExLZw0xyHhwiBsIIrKRS00R5EZ96ycic7uoOoDOBSWsXlDddwHcKpp\n12oLV+XIYLLEyAClKEpKw5Uup12zIAQkHka0Wkz4YeOxcf2QKJTtHPIRh4QLg9CBSI5E8ObBD7N+\n3v7gAPqDAwkfwBVOO9xDsumAzL+9jVzfEy9AAcCWrQdTun6tqz4k2qIiGJJjQ5Xj7SHBb+v64pKE\nwiH0b0PD3lYc/FN71s8bUYCz7f6067SNnE8a65YRQ1PHEw2PAYDhck26u5ZN16V0z8j6dy6nDXZr\n/IfAeJk30vq/Nw3HyvGFQ9geUaJvQ9ngqSgCkPq2znp/e0vUO3M5bfja+oVwlxehakq5Ljs+juyl\nhQYieOrl9+K+N500dlHx27r+ko1IsHK8OIQNRF09wZyuI5IvL8hJVIB06NxAKt/e9NrBtaTIgsmV\nxVkZDor20qSwPG4fEtEFxHr+96bE/+ZZOV4swgaiPYfP5Ozc5SWWWJp0t1+CyWhAuy+AKo8jlkww\ncm5gwcwJqHBa0dUbGnU8rR7M96yciZMfXcKZdv+w18+0+9GwtzWr8zLj8SEx9L975+UFxPHWbhV6\nIM4mVo4vDEIGomBoAMdOdebs/NVzPXjjnVNoOtk+LLAYDcBUtwMzq0qxr+lc7PXOHgn7mtowzeOI\nG4i0ejAPyAr6g+G4P4sOB6UrGmyLbGYEpIG0Mr/G20NiZAZXvCoWQOEG4lwY65YolB+EDES5rDVX\n5SmBAYj7TT+iDPY+znX4R38QQH8wjBWLp+DYqS5dHsypDP9VpXis6Lf7aLCNlgeqTCPzazw9JBLN\nCRkNg2u3XAUeiHOJlePFllIgamlpwcaNG3H//fdjw4YNOH/+PB5//HHIsgy3243nn38eVqsVO3fu\nxKuvvgqj0Yj169dj3bp1ulx0LmvNBYLJK3/Lkfiv+3ol3H7jVahbNh1n2/2o8jjgLLYOe89Y1pxo\nOXmr9u0+kxTs8fCQSPQlQFG0XUBMVGiSBqL+/n780z/9E26++ebYay+++CLq6+uxZs0avPDCC2hs\nbERdXR1eeuklNDY2wmKxYO3atVi9ejXKy8s1v+hc1prr6pVUa7YlYzEb8f+99yFOnOoata4EwJjX\nnGg1L5NKRiIzv4ZLmLVYqu0CYqJCk/QJZ7VasXXrVng8nthrhw4dwqpVqwAAK1aswIEDB3D06FHM\nnz8fTqcTdrsd1dXVaGpq0u3Co+tWKrI86ety2uByWpO/MQ4pHME7zefjrivRas3JyPU8mdSTS7Ym\nCeA6jZHSXVNGRFck7RGZzWaYzcPfFggEYLUOPowrKyvh9XrR0dEBl8sVe4/L5YLXm/hbdUVFMczm\nzH5BJ00swyOfvx7tXf144J9/m9ExMvGJeZNhNhmxc/9p1fd8bJIT7b5+BKTUFm0eO9UJRaWbdexU\nJ75ydxHs1tSn8x75/PUIhgbg65FQUWob9Vm325nw886yIrgritDuC6i+Z0J5EWZcXZnWdYkuWbs9\nvH4xiousOHjiPDouBTChvAg3zZuML955HUwmodeOj1mytiN146HtxvwUUXuAqr0+lM/Xn9E53W4n\nvN5eyJEIfvzr4xkdI1NLr5sIT0UR+gMh1ay5B/7uWjypspgzHu+lgOpwX8elAE79rTOjORYzgN7u\nAIYuX422XTILZlQmHPpcMKNy1LELWartVrf0aqy5cdqweb6urr4sXGH+SrXtaLRCazu1oJpRICou\nLkYwGITdbsfFixfh8Xjg8XjQ0dERe097ezsWLVqU2dWmqGFvK5pbs5fG7XLa4Cq1j8oGG7qOyFls\nhRSWUe6w4pJ/dKq22nEVRVFdY1RkM6Pd15/VrLPoUF7TSS+6eqW4WXMU33hIziDSUkaBaMmSJdi1\naxc+85nPYPfu3Vi2bBkWLlyILVu2oKenByaTCU1NTdi8ebPW1xuTixI/3X0hNL7dintXzRq2TbgU\nliFHFFiHBIm5V5WnXAcvOrcQrwdSbDfj26+8n/WimSODbSbriIiIUpE0EJ04cQLPPvss2traYDab\nsWvXLnz/+9/Hpk2b0NDQgClTpqCurg4WiwWPPvooHnjgARgMBjz00ENwOvUb20xlQl1rckTBW0fa\nYDAYUF87e1QFhTKHFY4iC/qDYfiGrL0ZyW41IRSW464jGrr4s9huHlYlIRfVq4d+ux+Zak5EpAWD\nkspkjk4yHft0u504e+4Stmw9mJO1RK5SG762dgH2/eEc9jWN3qBOTVmJBdWz3bh7+Uz4+0NxexlD\nKxl8+5X3495fZakd33nwE6o9k0RrkQptzDlb2G6ZY9tlrtDaTtM5onyQaM2M3rp6JDy57X0YDel9\nrrsvjGOnOmE0GqAAOPpBx6ght2gPpN3Xn3bRTO5/Q0QiEjYQAYMT6n/6WxfOdWSWfTdWarXEEuns\nkfDWiG2+4w25ZVIlgbtVEpGIhP6a3B8cgL8/fpFPEQ3dMC7dBZLJ9r8ZDxvREZGYhOwRyXIE2/e0\n4PBf2tFTQIFo5JBbOtWr9d7viIhIL0IGom3/+ceczA3pbeSQWzrVq7lbJRGJSrihOSks4+CJ87m+\njGFK7GaUO6wwYDCj7dZFk7Fk3iRUlqb38FerSRZNYEi0foe1zohIVML1iLr9EryX1Gug5YLdasKT\n998QNxW7qyeIPYfPDNuDaNGsystZc52a7ks03jaiI6LCIFwgKnPY4C5PXJAz23y9EgLSwKg5GJvF\nhMmVJbjv9rlx1/asWz78NSkso7M781I+42kjOiIqHMIFIpvFhJvmTU5Y/TrbUpmDiVd/LPqaHBlM\nvtBq/Q9rnRGRSISbIwKA/3H7HNit+fNNf6xzMFrtRUREJCIhA1F3XxhSKLfrYqKJCdFN56SwjHZf\nv+p6HbWfc/0PEY13wg3NAUBFqXqqcrZ88++vx9QJDphNhrhldeqWTYe/PwRHsRU79p9WHXbTev1P\nojpzRET5SMhAZLeac1ZnLspht8BmMWH7npa4ZXV+d+wcpFAENqsRwVBk1M+BwbI7Wq3/YZ05IhKV\nsE+oe1bORG1NFXLxjK0staHMYUs4rBYMRaBc/v94osNuWq3/4TwTEYlK2EBkMhpx960z4LBl/xYW\nz3bDZjHBeymQ8Z5I0WE34EpQrSy1w2gYPveUCs4zEZHIhByai+r2S+gJxO9x6MFoAG5dPBVrl0/H\n9j0taDrZjkw3cyp32GLDbmNd/8M6c0QkMmF7RMDg4tY0twQaE0UBbr9hGhrfPo09h8+iqzeU8bFK\niiyjgk0qpXziic4zxZNsnilZth8Rkd6E7hEBg2nU2dpi1lVqR5HNrDoMlo7+YDg2RzRWiTYJVJtn\nYnIDEeULoQNRt19C9gbmBh/qAWkg43mhoXy9kqap2enWmeMmekSUL4QORGUOGywmIBujSjd9fCLq\nlk2HyWhIeQ1TucMKowFxh/C0Ts1OZ54pWXLD3bfO4BokIsoa4cdgsjEsZzYBB/90EU/++0G88c4p\nLJxZmdLnevpCmPsxV9yf6ZWanco8UyrJDURE2SJ0IOr2SxjIQm8oeo6u3hD2HD6Lkx9dSulzFU47\n6lfPyrvU7LEkNxARaU34oTlHkRn+wEBWz9vW0Z/S+xbPnoBimyXvUrMzSW4gItKL0D0im8WE6tkT\ncn0ZwxhUej25SM1OZKyLaImItCJ0jwgA7rt9Lg6euIAcF+MGALicNnxt/UK4y4s061Xo1XvhJnpE\nlC+E7hEBgw/Uhz43P8vnjL+MtnqOG1Vuh+YPdD17L5n21IiItCJ8jwgA9hzJbhXuWxdNhtFoTHnN\nzlix90JEhUz4QCSFZZz8qFu345uMg/M0vl4JLufw9TvZDgzcApyICpHwgcjr60doQL/6ChazCU/d\nfwMC0sCogMPAQEQ0dsIHIhj0LXsaCssISAMMOEREOhE+WcFdXgS7Vb9hMS7wJCLSl/CByGYxYen8\nSbodv9huhtmUzc0miIjGF+EDEQDcuypaRkf7nsuZdj+32yYi0lFBBKJoevN3HrwJ3/rC9Zpvlsft\ntomI9CN+ssJlciSCN945haYWr+YVubndNhGRfgomEP3irQ/w1pE2XY7NhAUiIv0UxNCcFJbx7vEL\nuh2fFamJiPRTED0i76UAghpVPa1ylyAgyVkp3UNERAUSiKBoNyvU0R3Es/9wc9xKCkREpL2CGJpz\nVxTDbtXmVoIhGd19IVakJiLKkoIIRDaLCUvmT9bugBr2sIiIKLGCCEQA8PlVs7Bk3tgrLNitJriZ\npk1ElDUFE4hMRiPuu30OXE7rmI6zZP4kDskREWVRwQQiYHCIrnqOJ+PP260mGDC4OJaIiLKjoAIR\nMLit9srrp0JlN++EgiEZbx1pY205IqIsKrhAZDIasW75TJQ7Mh+iY205IqLsKbhABADdfgldvaGM\nPx+tLUdERPoryEBU5rCNKWmBteWIiLKnIAPRWJMWWFuOiCh7CqPETxz3rJyJiKLg98cvxOrQ2a0m\nLJk3ETAYcPSDTnT1BGG7vM14KCyzthwRUQ4UbCAyGY3YsHoO1i2fCa+vHzAY4C4vivV01i2X0e2X\nYkNw0T+zJ0RElF0FG4iibBYTqjzOuK8P3eiOm94REeWG5oHou9/9Lo4ePQqDwYDNmzdjwYIFWp+C\niIgKiKaB6L333sOHH36IhoYGnDp1Cps3b0ZDQ4OWpyAiogKjadbcgQMHUFtbCwCYMWMGuru74ff7\ntTwFEREVGE17RB0dHbjuuutif3e5XPB6vXA4HHHfX1FRDLM5s+QAt3v0vA+lhm2XGbZb5th2mRsP\nbadrsoKSZF8fn68/o+O63U54vb0ZfXa8Y9tlhu2WObZd5gqt7dSCqqZDcx6PBx0dHbG/t7e3w+12\na3kKIiIqMJoGoqVLl2LXrl0AgD/+8Y/weDyqw3JERESAxkNz1dXVuO6663DvvffCYDDgqaee0vLw\nRERUgDSfI3rssce0PiQRERUwg5Iso4CIiEhHBVl9m4iIxMFAREREOcVAREREOcVAREREOcVARERE\nOcVAREREOSXUxnjc60hdS0sLNm7ciPvvvx8bNmzA+fPn8fjjj0OWZbjdbjz//POwWq3YuXMnXn31\nVRiNRqxfvx7r1q1DOBzGpk2bcO7cOZhMJjzzzDOYNm1arm8pa5577jkcOXIEAwMD+MpXvoL58+ez\n7ZIIBALYtGkTOjs7IUkSNm7ciLlz57Ld0hAMBvHpT38aGzduxM033zy+204RxKFDh5Qvf/nLiqIo\nSmtrq7J+/focX1H+6OvrUzZs2KBs2bJFee211xRFUZRNmzYpb775pqIoivIv//Ivyuuvv6709fUp\nt912m9LT06MEAgHl7/7u7xSfz6f8+te/Vv7xH/9RURRF2b9/v/LII4/k7F6y7cCBA8qXvvQlRVEU\npaurS7n11lvZdin4r//6L+Xf/u3fFEVRlLNnzyq33XYb2y1NL7zwgvK5z31OeeONN8Z92wkzNMe9\njtRZrVZs3boVHo8n9tqhQ4ewatUqAMCKFStw4MABHD16FPPnz4fT6YTdbkd1dTWamppw4MABrF69\nGgCwZMkSNDU15eQ+cuGGG27AD3/4QwBAaWkpAoEA2y4Fd9xxBx588EEAwPnz5zFx4kS2WxpOnTqF\n1tZWLF++HAB/X4UJRB0dHaioqIj9PbrXEQFmsxl2u33Ya4FAAFarFQBQWVkJr9eLjo4OuFyu2Hui\nbTj0daPRCIPBgFAolOeTpA4AAAJISURBVL0byCGTyYTi4mIAQGNjI2655Ra2XRruvfdePPbYY9i8\neTPbLQ3PPvssNm3aFPv7eG87oeaIhlJYmShlam2V7uuFbM+ePWhsbMS2bdtw2223xV5n2yX2i1/8\nAn/+85/x9a9/fdi9s93U7dixA4sWLVKd1xmPbSdMj4h7HaWnuLgYwWAQAHDx4kV4PJ64bRh9Pdq7\nDIfDUBQl9u1sPNi/fz9+8pOfYOvWrXA6nWy7FJw4cQLnz58HAFx77bWQZRklJSVstxS8/fbbeOut\nt7B+/Xr86le/wo9//ONx/29OmEDEvY7Ss2TJklh77d69G8uWLcPChQtx/Phx9PT0oK+vD01NTaip\nqcHSpUvxm9/8BgCwb98+fOITn8jlpWdVb28vnnvuOfz0pz9FeXk5ALZdKg4fPoxt27YBGBw27+/v\nZ7ul6Ac/+AHeeOMN/PKXv8S6deuwcePGcd92QlXf/v73v4/Dhw/H9jqaO3duri8pL5w4cQLPPvss\n2traYDabMXHiRHz/+9/Hpk2bIEkSpkyZgmeeeQYWiwW/+c1v8PLLL8NgMGDDhg246667IMsytmzZ\ngr/97W+wWq343ve+h8mTJ+f6trKioaEBP/rRj3DNNdfEXvve976HLVu2sO0SCAaD+OY3v4nz588j\nGAzi4Ycfxrx58/DEE0+w3dLwox/9CFOnTsUnP/nJcd12QgUiIiIqPMIMzRERUWFiICIiopxiICIi\nopxiICIiopxiICIiopxiICIiopxiICIiopxiICIiopz6/wEQ0VXTnLl6YAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "kMQD0Uq3RqTX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The calibration data shows most scatter points aligned to a line. The line is almost vertical, but we'll come back to that later. Right now let's focus on the ones that deviate from the line. We notice that they are relatively few in number.\n", + "\n", + "If we plot a histogram of `rooms_per_person`, we find that we have a few outliers in our input data:" + ] + }, + { + "metadata": { + "id": "POTM8C_ER1Oc", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "344c1c9e-6a9e-4fb3-b069-2547ed7a9a12" + }, + "cell_type": "code", + "source": [ + "plt.subplot(1, 2, 2)\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAFKCAYAAAA5TzK7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGtRJREFUeJzt3X9M1Pfhx/HnwXG70N5Vjt01celM\n7ZKSNfwYoaMc0pUqa8rmvi4WCwTX5suSklLbLreqI05dDC1oWawdq53OSTQqSrfKTAOk+6Jz4epi\nLyHYxNh2zcKwhbsFivKjnMr3D7ObWAU8zyK8X4//ePPheL/f5Jn7fNpr35bx8fFxRMQIcTM9ARH5\n6ih4EYMoeBGDKHgRgyh4EYMoeBGDWGd6AtMVDJ6b8pqkpET6+4e/gtnc/rQX/2XaXrjdjut+b069\nw1ut8TM9hduG9uK/tBf/NaeCF5HJKXgRgyh4EYMoeBGDKHgRgyh4EYMoeBGDKHgRgyh4EYMoeBGD\nKHgRgyh4EYPMmv9abrr+t+b/YvI6u9Y+GpPXEbmd6B1exCAKXsQgCl7EIApexCAKXsQgCl7EIApe\nxCAKXsQgCl7EIApexCDTCv7MmTMsWbKEvXv3AhAOh/H5fDzxxBM89dRTfP755wA0NzezfPlyioqK\nOHTo0IRrS0pKKCsro7u7G4DTp09TXFxMcXExGzZsuBVrE5GrTBn88PAwmzZtIicnJzJ28OBBkpKS\naGpqorCwkJMnTzI8PEx9fT27d+9mz549NDQ0MDAwwJEjR3A6nezfv5+Kigrq6uoAqK6upqqqigMH\nDnD+/HmOHTt261YpIsA0grfZbOzYsQOPxxMZa29v50c/+hEATz75JIsXL6azs5PU1FQcDgd2u53M\nzEwCgQB+v5+CggIAvF4vgUCAsbExenp6SEtLAyA/Px+/338r1iciV5gyeKvVit1unzDW09PDX//6\nV1auXMnPfvYzBgYGCIVCuFyuyDUul4tgMDhhPC4uDovFQigUwul0Rq5NTk4mGAzGak0ich1R/eex\n4+Pj3HvvvTz33HP89re/5c033+Tb3/72l6653s9OZ+xqSUmJX+kZYZMdyDdbzIU1xIr24rKogv/6\n17/Ogw8+CMCiRYt4/fXXeeSRRwiFQpFr+vr6yMjIwOPxEAwGSUlJIRwOMz4+jtvtZmBgIHJtb2/v\nhEeGa5nO6Z+x/KNO57Ta25nb7Zj1a4gV0/Yi5qfHPvzwwxw/fhyADz74gHvvvZf09HS6uroYHBxk\naGiIQCBAVlYWubm5tLS0AJef/bOzs0lISGDhwoWcPHkSgLa2NvLy8qKZiojcgCnf4U+dOkVtbS09\nPT1YrVZaW1t59dVXqa6upqmpicTERGpra7Hb7fh8PsrLy7FYLFRWVuJwOCgsLKSjo4OSkhJsNhs1\nNTUAVFVVsX79ei5dukR6ejper/eWL1bEdJbx6TxA3wamc0vmdjtY6jsck9832/8XV6bdxk7GtL2I\n+S29iMxOCl7EIApexCAKXsQgCl7EIApexCAKXsQgCl7EIApexCAKXsQgCl7EIApexCAKXsQgCl7E\nIApexCAKXsQgCl7EIApexCAKXsQgCl7EIApexCAKXsQgCl7EIApexCAKXsQg0wr+zJkzLFmyhL17\n904YP378OPfff3/k6+bmZpYvX05RURGHDh0CIBwO4/P5KCkpoaysjO7ubgBOnz5NcXExxcXFbNiw\nIVbrEZFJTBn88PAwmzZtIicnZ8L4F198we9+9zvcbnfkuvr6enbv3s2ePXtoaGhgYGCAI0eO4HQ6\n2b9/PxUVFdTV1QFQXV1NVVUVBw4c4Pz58xw7duwWLE9ErjRl8DabjR07dnzpOOft27dTWlqKzWYD\noLOzk9TUVBwOB3a7nczMTAKBAH6/n4KCAgC8Xi+BQICxsTF6enpIS0sDID8/H7/fH+u1ichVpgze\narVit9snjH3yySecPn2axx9/PDIWCoVwuVyRr10uF8FgcMJ4XFwcFouFUCiE0+mMXJucnEwwGLzp\nxYjI5KY8LvpaXnnlFdatWzfpNdc7lPZa49M5wDYpKRGrNX56E4yByU7gnC3mwhpiRXtx2Q0H39vb\nyz/+8Q9+/vOfA9DX10dZWRmrVq0iFApFruvr6yMjIwOPx0MwGCQlJYVwOMz4+Dhut5uBgYEJr3n1\nI8PV+vuHp5xbLP+os/14YdOOSJ6MaXsR0+Oi7777bt59910OHjzIwYMH8Xg87N27l/T0dLq6uhgc\nHGRoaIhAIEBWVha5ubm0tLQA0N7eTnZ2NgkJCSxcuJCTJ08C0NbWRl5eXpTLE5HpmvId/tSpU9TW\n1tLT04PVaqW1tZXXX3+defPmTbjObrfj8/koLy/HYrFQWVmJw+GgsLCQjo4OSkpKsNls1NTUAFBV\nVcX69eu5dOkS6enpeL3eW7NCEYmwjE/nAfo2MJ1bMrfbwVLf4Zj8vl1rH43J68wU025jJ2PaXsT0\nll5EZi8FL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQ\nBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYpBpBX/mzBmWLFnC3r17\nAfj00095+umnKSsr4+mnn44c9dzc3Mzy5cspKiri0KFDAITDYXw+HyUlJZSVldHd3Q3A6dOnKS4u\npri4mA0bNtyKtYnIVaYMfnh4mE2bNpGTkxMZ27p1KytWrGDv3r0UFBTwhz/8geHhYerr69m9ezd7\n9uyhoaGBgYEBjhw5gtPpZP/+/VRUVFBXVwdAdXU1VVVVHDhwgPPnz3Ps2LFbt0oRAaYRvM1mY8eO\nHROOc96wYQOPPfYYAElJSQwMDNDZ2UlqaioOhwO73U5mZiaBQAC/309BQQEAXq+XQCDA2NgYPT09\npKWlAZCfn4/f778V6xORK0wZvNVqxW63TxhLTEwkPj6eixcvsm/fPpYuXUooFMLlckWucblcBIPB\nCeNxcXFYLBZCoRBOpzNybXJycuSxQERunSmPi76eixcvsnr1ah566CFycnL485//POH71zuU9lrj\n0znANikpEas1PrrJRmGyEzhni7mwhljRXlwWdfC/+MUvWLBgAc899xwAHo+HUCgU+X5fXx8ZGRl4\nPB6CwSApKSmEw2HGx8dxu90MDAxEru3t7Z3wyHAt/f3DU84pln/U2X68sGlHJE/GtL2I+XHRzc3N\nJCQk8Pzzz0fG0tPT6erqYnBwkKGhIQKBAFlZWeTm5tLS0gJAe3s72dnZJCQksHDhQk6ePAlAW1sb\neXl50UxFRG7AlO/wp06dora2lp6eHqxWK62trfz73//ma1/7GitXrgTgvvvuY+PGjfh8PsrLy7FY\nLFRWVuJwOCgsLKSjo4OSkhJsNhs1NTUAVFVVsX79ei5dukR6ejper/fWrlREsIxP5wH6NjCdWzK3\n28FS3+GY/L5dax+NyevMFNNuYydj2l7E/JZeRGYnBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9i\nEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQ\nBS9iEAUvYhAFL2KQaQV/5swZlixZwt69ewH49NNPWblyJaWlpbzwwguMjY0Bl8+cW758OUVFRRw6\ndAiAcDiMz+ejpKSEsrIyuru7ATh9+jTFxcUUFxezYcOGW7E2EbnKlMEPDw+zadMmcnJyImPbtm2j\ntLSUffv2sWDBApqamhgeHqa+vp7du3ezZ88eGhoaGBgY4MiRIzidTvbv309FRQV1dXUAVFdXU1VV\nxYEDBzh//jzHjh27dasUEWAawdtsNnbs2DHhOOcTJ06wePFiAPLz8/H7/XR2dpKamorD4cBut5OZ\nmUkgEMDv91NQUACA1+slEAgwNjZGT08PaWlpE15DRG6tKU+PtVqtWK0TLxsZGcFmswGQnJxMMBgk\nFArhcrki17hcri+Nx8XFYbFYCIVCOJ3OyLX/eY3JJCUlYrXGT39lNymWZ83PlLmwhljRXlw2ZfBT\nud7hszcyPp0DbPv7h6e8JpZ/1Nl+2qhpJ6ZOxrS9iPnpsYmJiYyOjgLQ29uLx+PB4/EQCoUi1/T1\n9UXG//PuHQ6HGR8fx+12MzAwELn2P68hIrdWVMF7vV5aW1sBaGtrIy8vj/T0dLq6uhgcHGRoaIhA\nIEBWVha5ubm0tLQA0N7eTnZ2NgkJCSxcuJCTJ09OeA0RubWmvKU/deoUtbW19PT0YLVaaW1t5dVX\nX2Xt2rU0NjYyf/58li1bRkJCAj6fj/LyciwWC5WVlTgcDgoLC+no6KCkpASbzUZNTQ0AVVVVrF+/\nnkuXLpGeno7X673lixUxnWV8Og/Qt4HpPIO53Q6W+g7H5PftWvtoTF5nppj23DoZ0/Yi5s/wIjI7\nKXgRgyh4EYMoeBGDKHgRgyh4EYMoeBGDKHgRgyh4EYMoeBGDKHgRgyh4EYMoeBGDKHgRgyh4EYMo\neBGDKHgRgyh4EYMoeBGDKHgRgyh4EYMoeBGDKHgRgyh4EYNEdZjk0NAQa9as4fPPPyccDlNZWYnb\n7Wbjxo0A3H///fzqV78CYOfOnbS0tGCxWHjuuef43ve+x7lz5/D5fJw7d47ExETq6uqYN29ezBYl\nItcWVfB/+tOfuPfee/H5fPT29vLUU0/hdrupqqoiLS0Nn8/HsWPHWLhwIe+88w4HDhzg/PnzlJaW\nsmjRIhoaGvjud7/LT3/6UxobG9mxYwcvvfRSrNcmIleJ6pY+KSkpcvrr4OAg8+bNo6enh7S0NADy\n8/Px+/2cOHGCvLw8bDYbLpeLb3zjG3z00Uf4/X4KCgomXCsit15Uwf/gBz/g7NmzFBQUUFZWxurV\nq3E6nZHvJycnEwwGCYVCuFyuyLjL5frSeHJyMn19fTe5DBGZjqhu6Q8fPsz8+fP5/e9/z+nTpyMn\nxf7H9c6nvNb4dM+yTEpKxGqNj2a6UZnsQL7ZYi6sIVa0F5dFFXwgEGDRokUApKSk8MUXX3DhwoXI\n93t7e/F4PHg8Hj755JNrjgeDQRwOR2RsKv39w1NeE8s/6mw/bdS0E1MnY9pexPz02AULFtDZ2QlA\nT08Pd9xxB/fddx8nT54EoK2tjby8PB566CGOHj3K2NgYvb299PX18a1vfYvc3FxaWlomXCsit15U\n7/BPPvkkVVVVlJWVceHCBTZu3Ijb7Wb9+vVcunSJ9PR0vF4vACtWrKCsrAyLxcLGjRuJi4tj5cqV\nvPTSS5SWluJ0OtmyZUtMFyUi12YZn+5D9Aybzi2Z2+1gqe9wTH7frrWPxuR1Zoppt7GTMW0vYn5L\nLyKzk4IXMYiCFzGIghcxiIIXMYiCFzGIghcxiIIXMYiCFzGIghcxiIIXMYiCFzGIghcxiIIXMYiC\nFzGIghcxiIIXMYiCFzGIghcxiIIXMYiCFzGIghcxiIIXMYiCFzGIghcxSFRHTQE0Nzezc+dOrFYr\nzz//PPfffz+rV6/m4sWLuN1utmzZgs1mo7m5mYaGBuLi4lixYgVFRUWEw2HWrl3L2bNniY+P55VX\nXuGee+6J5bpE5Bqieofv7++nvr6effv2sX37dv7yl7+wbds2SktL2bdvHwsWLKCpqYnh4WHq6+vZ\nvXs3e/bsoaGhgYGBAY4cOYLT6WT//v1UVFRQV1cX63WJyDVEFbzf7ycnJ4c777wTj8fDpk2bOHHi\nBIsXLwYgPz8fv99PZ2cnqampOBwO7HY7mZmZBAIB/H4/BQUFAHi9XgKBQOxWJCLXFdUt/b/+9S9G\nR0epqKhgcHCQVatWMTIygs1mAyA5OZlgMEgoFMLlckV+zuVyfWk8Li4Oi8XC2NhY5OdF5NaI+hl+\nYGCA3/zmN5w9e5af/OQnXHkI7fUOpL3R8SslJSVitcZHN9koTHYC52wxF9YQK9qLy6IKPjk5me98\n5ztYrVa++c1vcscddxAfH8/o6Ch2u53e3l48Hg8ej4dQKBT5ub6+PjIyMvB4PASDQVJSUgiHw4yP\nj0/57t7fPzzlvGL5R53txwubdkTyZEzbi5gfF71o0SLee+89Ll26RH9/P8PDw3i9XlpbWwFoa2sj\nLy+P9PR0urq6GBwcZGhoiEAgQFZWFrm5ubS0tADQ3t5OdnZ2NNMQkRsU1Tv83XffzWOPPcaKFSsA\nWLduHampqaxZs4bGxkbmz5/PsmXLSEhIwOfzUV5ejsViobKyEofDQWFhIR0dHZSUlGCz2aipqYnp\nokTk2izj03mAvg1M55bM7Xaw1Hc4Jr9v19pHY/I6M8W029jJmLYXMb+lF5HZScGLGETBixhEwYsY\nRMGLGETBixhEwYsYRMGLGETBixhEwYsYRMGLGETBixhEwYsYRMGLGETBixhEwYsYRMGLGETBixhE\nwYsYRMGLGETBixhEwYsYRMGLGETBixhEwYsY5KaCHx0dZcmSJfzxj3/k008/ZeXKlZSWlvLCCy8w\nNjYGQHNzM8uXL6eoqIhDhw4BEA6H8fl8lJSUUFZWRnd3982vRESmdFPBv/HGG9x1110AbNu2jdLS\nUvbt28eCBQtoampieHiY+vp6du/ezZ49e2hoaGBgYIAjR47gdDrZv38/FRUV1NXVxWQxIjK5qIP/\n+OOP+eijj3jkkUcAOHHiBIsXLwYgPz8fv99PZ2cnqampOBwO7HY7mZmZBAIB/H4/BQUFAHi9XgKB\nwM2vRESmFNXpsQC1tbX88pe/5O233wZgZGQkcsZ7cnIywWCQUCiEy+WK/IzL5frSeFxcHBaLhbGx\nsUnPiE9KSsRqjY92ujcslmfNz5S5sIZY0V5cFlXwb7/9NhkZGdxzzz3X/P71DqS90fEr9fcPT3lN\nLP+os/20UdNOTJ2MaXsxWQdRBX/06FG6u7s5evQon332GTabjcTEREZHR7Hb7fT29uLxePB4PIRC\nocjP9fX1kZGRgcfjIRgMkpKSQjgcZnx8fNJ3dxGJjaie4bdu3cpbb73FwYMHKSoq4tlnn8Xr9dLa\n2gpAW1sbeXl5pKen09XVxeDgIENDQwQCAbKyssjNzaWlpQWA9vZ2srOzY7ciEbmuqJ/hr7Zq1SrW\nrFlDY2Mj8+fPZ9myZSQkJODz+SgvL8disVBZWYnD4aCwsJCOjg5KSkqw2WzU1NTEahoiMgnL+HQe\noG8D03kGc7sdLPUdjsnv27X20Zi8zkwx7bl1MqbtxWTP8PqknYhBFLyIQRS8iEEUvIhBFLyIQRS8\niEEUvIhBFLyIQRS8iEEUvIhBFLyIQRS8iEEUvIhBFLyIQRS8iEEUvIhBFLyIQRS8iEEUvIhBFLyI\nQRS8iEEUvIhBFLyIQRS8iEGiPnlm8+bNvP/++1y4cIFnnnmG1NRUVq9ezcWLF3G73WzZsgWbzUZz\nczMNDQ3ExcWxYsUKioqKCIfDrF27lrNnzxIfH88rr7xy3YMpRSR2ogr+vffe48MPP6SxsZH+/n5+\n/OMfk5OTQ2lpKY8//ji//vWvaWpqYtmyZdTX19PU1ERCQgJPPPEEBQUFtLe343Q6qaur429/+xt1\ndXVs3bo11msTkatEdUv/4IMP8tprrwHgdDoZGRnhxIkTLF68GID8/Hz8fj+dnZ2kpqbicDiw2+1k\nZmYSCATw+/0UFBQA4PV6CQQCMVqOiEwmquDj4+NJTEwEoKmpiYcffpiRkZHIkc/JyckEg0FCoRAu\nlyvycy6X60vjcXFxWCwWxsbGbnYtIjKFmzo99t1336WpqYldu3bx/e9/PzJ+vfMpb3T8SklJiVit\n8dFNNAqTHcg3W8yFNcSK9uKyqIM/fvw427dvZ+fOnTgcDhITExkdHcVut9Pb24vH48Hj8RAKhSI/\n09fXR0ZGBh6Ph2AwSEpKCuFwmPHx8cjdwfX09w9POadY/lFn+2mjpp2YOhnT9iLmp8eeO3eOzZs3\n8+abbzJv3jzg8rN4a2srAG1tbeTl5ZGenk5XVxeDg4MMDQ0RCATIysoiNzeXlpYWANrb28nOzo5m\nGiJyg6J6h3/nnXfo7+/nxRdfjIzV1NSwbt06GhsbmT9/PsuWLSMhIQGfz0d5eTkWi4XKykocDgeF\nhYV0dHRQUlKCzWajpqYmZgsSkeuzjE/nAfo2MJ1bMrfbwVLf4Zj8vl1rH43J68wU025jJ2PaXsT8\nll5EZicFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQ\nBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYpCbOj32Zr388st0dnZi\nsVioqqoiLS1tJqcjMufNWPB///vf+ec//0ljYyMff/wxVVVVNDY2ztR0RIwwY7f0fr+fJUuWAHDf\nfffx+eefc/78+ZmajogRZuwdPhQK8cADD0S+drlcBINB7rzzzpma0gT/W/N/Mz2FL5ntB1zKzJvR\nZ/grTXWI7WQnYl7pz3X/E4vpzAnT3TMTaC8um7Fbeo/HQygUinzd19eH2+2eqemIGGHGgs/NzaW1\ntRWADz74AI/Hc9vczovMVTN2S5+ZmckDDzxAcXExFouFDRs2zNRURIxhGZ/q4VlE5gx90k7EIApe\nxCC3zb+Wu1mmf0x38+bNvP/++1y4cIFnnnmG1NRUVq9ezcWLF3G73WzZsgWbzTbT0/zKjI6O8sMf\n/pBnn32WnJwco/fiSnPiHf7Kj+lWV1dTXV0901P6Sr333nt8+OGHNDY2snPnTl5++WW2bdtGaWkp\n+/btY8GCBTQ1Nc30NL9Sb7zxBnfddReA8XtxpTkRvOkf033wwQd57bXXAHA6nYyMjHDixAkWL14M\nQH5+Pn6/fyan+JX6+OOP+eijj3jkkUcAjN6Lq82J4EOhEElJSZGv//MxXVPEx8eTmJgIQFNTEw8/\n/DAjIyOR29bk5GSj9qO2tpa1a9dGvjZ5L642J4K/mqn/pvHdd9+lqamJ9evXTxg3aT/efvttMjIy\nuOeee675fZP24lrmxD+008d04fjx42zfvp2dO3ficDhITExkdHQUu91Ob28vHo9npqf4lTh69Cjd\n3d0cPXqUzz77DJvNZuxeXMuceIc3/WO6586dY/Pmzbz55pvMmzcPAK/XG9mTtrY28vLyZnKKX5mt\nW7fy1ltvcfDgQYqKinj22WeN3YtrmRPv8KZ/TPedd96hv7+fF198MTJWU1PDunXraGxsZP78+Sxb\ntmwGZzizVq1axZo1a7QX6KO1IkaZE7f0IjI9Cl7EIApexCAKXsQgCl7EIApexCAKXsQgCl7EIP8P\nfIzt3Nflkr4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "9l0KYpBQu8ed", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Clip Outliers\n", + "\n", + "See if you can further improve the model fit by setting the outlier values of `rooms_per_person` to some reasonable minimum or maximum.\n", + "\n", + "For reference, here's a quick example of how to apply a function to a Pandas `Series`:\n", + "\n", + " clipped_feature = my_dataframe[\"my_feature_name\"].apply(lambda x: max(x, 0))\n", + "\n", + "The above `clipped_feature` will have no values less than `0`." + ] + }, + { + "metadata": { + "id": "rGxjRoYlHbHC", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "4f3db186-0a2d-4f47-fcb3-809bc90e38d9" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"rooms_per_person\"]).apply(lambda x: min(x, 5))\n", + "\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFKCAYAAADScRzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFxdJREFUeJzt3X9MVff9x/HX5ccNYbu0XnqvG4u1\nybJFM5mG2DohNEWhiSTL6CwWiDaZrJkpLjbBKtOta2JSUUfDMKQudkSi0bLeNY6ZRkhbTNp5y9Ld\nhOnSpNU/FuIPuNfhj/Fj3JH7/WP53tnVcqncH+97eT7+0sO993w+H7g+PefAwRGJRCICAAAmZaV6\nAAAA4IsRagAADCPUAAAYRqgBADCMUAMAYBihBgDAsJxUD+BegsE7cXutRYvyNTY2EbfXW4hYw/lj\nDeODdZw/1jA+4r2OHo/rCz+W8UfUOTnZqR5C2mMN5481jA/Wcf5Yw/hI5jpmfKgBAEhnhBoAAMMI\nNQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwz+duzgPux\ntfW9VA9hVl0t61I9BABpiCNqAAAMI9QAABjGqW8gSayfmpc4PQ9YxBE1AACGEWoAAAwj1AAAGBbz\nGvXg4KB27Nihb33rW5Kkb3/72/rxj3+sXbt2aWZmRh6PR4cOHZLT6VRvb6+6u7uVlZWlTZs2qba2\nVuFwWC0tLbp69aqys7O1f/9+LVmyJOETAwAgE8zpm8kee+wxdXR0RP/+s5/9TA0NDdqwYYNeffVV\n+Xw+1dTUqLOzUz6fT7m5uXr66adVVVWlgYEBFRQUqK2tTR988IHa2trU3t6esAkBAJBJ7uvU9+Dg\noNavXy9JqqiokN/v19DQkIqLi+VyuZSXl6eSkhIFAgH5/X5VVVVJkkpLSxUIBOI3egAAMtycjqgv\nXbqkbdu26datW9q+fbsmJyfldDolSYWFhQoGgwqFQnK73dHnuN3uz23PysqSw+HQ9PR09Pn3smhR\nvnJysuczr8/weFxxe62FijVcGNLh85wOY7SONYyPZK1jzFA/8sgj2r59uzZs2KDh4WE9++yzmpmZ\niX48Eonc83lfdvvdxsYmYj5mrjwel4LBO3F7vYWINVw4rH+e+VqcP9YwPuK9jrNFP+ap78WLF6u6\nuloOh0MPP/ywHnroId26dUtTU1OSpJGREXm9Xnm9XoVCoejzRkdHo9uDwaAkKRwOKxKJzHo0DQAA\n/itmqHt7e/Xb3/5WkhQMBnXjxg398Ic/VF9fnySpv79f5eXlWrlypS5cuKDbt29rfHxcgUBAq1ev\nVllZmc6ePStJGhgY0Jo1axI4HQAAMkvMU9/r1q3Tzp079e677yocDuvll1/W8uXLtXv3bvX09Kio\nqEg1NTXKzc1Vc3OzGhsb5XA41NTUJJfLperqap0/f1719fVyOp1qbW1NxrwAAMgIjshcLhonWbzP\n+3M9Zn7SZQ3T4V7a1lm/13e6fC1axhrGh6lr1AAAIHUINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBg\nGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADD\nCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhG\nqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBC\nDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYNicQj01NaXKykq99dZbunbtmrZs2aKG\nhgbt2LFD09PTkqTe3l5t3LhRtbW1evPNNyVJ4XBYzc3Nqq+v1+bNmzU8PJy4mQAAkIHmFOrXXntN\nDzzwgCSpo6NDDQ0NOnnypJYuXSqfz6eJiQl1dnbq2LFjOn78uLq7u3Xz5k2dOXNGBQUFOnXqlLZt\n26a2traETgYAgEwTM9SXL1/WpUuX9MQTT0iSBgcHtX79eklSRUWF/H6/hoaGVFxcLJfLpby8PJWU\nlCgQCMjv96uqqkqSVFpaqkAgkLiZAACQgXJiPeDAgQP6xS9+odOnT0uSJicn5XQ6JUmFhYUKBoMK\nhUJyu93R57jd7s9tz8rKksPh0PT0dPT5X2TRonzl5GTf96T+l8fjittrLVSs4cKQDp/ndBijdaxh\nfCRrHWcN9enTp7Vq1SotWbLknh+PRCJx2f6/xsYm5vS4ufB4XAoG78Tt9RYi1nDhsP555mtx/ljD\n+Ij3Os4W/VlDfe7cOQ0PD+vcuXO6fv26nE6n8vPzNTU1pby8PI2MjMjr9crr9SoUCkWfNzo6qlWr\nVsnr9SoYDGrZsmUKh8OKRCIxj6YBAMB/zXqNur29Xb///e/1u9/9TrW1tXr++edVWlqqvr4+SVJ/\nf7/Ky8u1cuVKXbhwQbdv39b4+LgCgYBWr16tsrIynT17VpI0MDCgNWvWJH5GAABkkJjXqP/XT3/6\nU+3evVs9PT0qKipSTU2NcnNz1dzcrMbGRjkcDjU1Ncnlcqm6ulrnz59XfX29nE6nWltbEzEHAAAy\nliMy1wvHSRTv8/5cj5mfdFnDra3vpXoIaa+rZV2qhzCrdPlatIw1jI9kXqPmzmQAABhGqAEAMIxQ\nAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQa\nAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QA\nABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYA\nwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMNyYj1g\ncnJSLS0tunHjhv71r3/p+eef17Jly7Rr1y7NzMzI4/Ho0KFDcjqd6u3tVXd3t7KysrRp0ybV1tYq\nHA6rpaVFV69eVXZ2tvbv368lS5YkY24AAKS9mEfUAwMDWrFihU6cOKH29na1traqo6NDDQ0NOnny\npJYuXSqfz6eJiQl1dnbq2LFjOn78uLq7u3Xz5k2dOXNGBQUFOnXqlLZt26a2trZkzAsAgIwQM9TV\n1dV67rnnJEnXrl3T4sWLNTg4qPXr10uSKioq5Pf7NTQ0pOLiYrlcLuXl5amkpESBQEB+v19VVVWS\npNLSUgUCgQROBwCAzBLz1Pf/q6ur0/Xr13XkyBH96Ec/ktPplCQVFhYqGAwqFArJ7XZHH+92uz+3\nPSsrSw6HQ9PT09Hn38uiRfnKycm+3zl9jsfjittrLVSs4cKQDp/ndBijdaxhfCRrHecc6jfeeEMf\nf/yxXnzxRUUikej2u/98ty+7/W5jYxNzHVZMHo9LweCduL3eQsQaLhzWP898Lc4faxgf8V7H2aIf\n89T3xYsXde3aNUnS8uXLNTMzo6985SuampqSJI2MjMjr9crr9SoUCkWfNzo6Gt0eDAYlSeFwWJFI\nZNajaQAA8F8xQ/3RRx+pq6tLkhQKhTQxMaHS0lL19fVJkvr7+1VeXq6VK1fqwoULun37tsbHxxUI\nBLR69WqVlZXp7Nmzkv7zjWlr1qxJ4HQAAMgsMU9919XVae/evWpoaNDU1JReeuklrVixQrt371ZP\nT4+KiopUU1Oj3NxcNTc3q7GxUQ6HQ01NTXK5XKqurtb58+dVX18vp9Op1tbWZMwLcba19b1UDwEA\nFiRHZC4XjZMs3uf9uR4zPx6PS99v/kOqh4Ek6GpZl+ohzIr38/yxhvFh6ho1AABIHUINAIBhhBoA\nAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAA\nGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDA\nMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACG\nEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADMuZy4MOHjyov/zl\nL/r3v/+tn/zkJyouLtauXbs0MzMjj8ejQ4cOyel0qre3V93d3crKytKmTZtUW1urcDislpYWXb16\nVdnZ2dq/f7+WLFmS6HkBAJARYob6ww8/1Keffqqenh6NjY3pqaee0tq1a9XQ0KANGzbo1Vdflc/n\nU01NjTo7O+Xz+ZSbm6unn35aVVVVGhgYUEFBgdra2vTBBx+ora1N7e3tyZgbAABpL+ap70cffVS/\n/vWvJUkFBQWanJzU4OCg1q9fL0mqqKiQ3+/X0NCQiouL5XK5lJeXp5KSEgUCAfn9flVVVUmSSktL\nFQgEEjgdAAAyS8xQZ2dnKz8/X5Lk8/n0+OOPa3JyUk6nU5JUWFioYDCoUCgkt9sdfZ7b7f7c9qys\nLDkcDk1PTydiLgAAZJw5XaOWpHfeeUc+n09dXV168skno9sjkcg9H/9lt99t0aJ85eRkz3VoMXk8\nrri9FpDJ0uG9kg5jtI41jI9kreOcQv3+++/ryJEjev311+VyuZSfn6+pqSnl5eVpZGREXq9XXq9X\noVAo+pzR0VGtWrVKXq9XwWBQy5YtUzgcViQSiR6Nf5GxsYn5zeouHo9LweCduL3eQsSbeuGw/l7h\n/Tx/rGF8xHsdZ/t3Nuap7zt37ujgwYP6zW9+owcffFDSf6419/X1SZL6+/tVXl6ulStX6sKFC7p9\n+7bGx8cVCAS0evVqlZWV6ezZs5KkgYEBrVmzJh5zAgBgQYh5RP32229rbGxML7zwQnRba2urfv7z\nn6unp0dFRUWqqalRbm6umpub1djYKIfDoaamJrlcLlVXV+v8+fOqr6+X0+lUa2trQicEAEAmcUTm\nctE4yeJ9OoHTPPPj8bj0/eY/pHoYSIKulnWpHsKseD/PH2sYH6ZOfQMAgNQh1AAAGEaoAQAwjFAD\nAGAYoQYAwLA535kMQObb2vpeqocwqz+2/SDVQwCSjiNqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAw\nQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYR\nagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQ\nAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAzLSfUA8B9bW99L9RAAAAZxRA0AgGGEGgAAwwg1\nAACGEWoAAAwj1AAAGEaoAQAwbE6h/uSTT1RZWakTJ05Ikq5du6YtW7aooaFBO3bs0PT0tCSpt7dX\nGzduVG1trd58801JUjgcVnNzs+rr67V582YNDw8naCoAAGSemKGemJjQvn37tHbt2ui2jo4ONTQ0\n6OTJk1q6dKl8Pp8mJibU2dmpY8eO6fjx4+ru7tbNmzd15swZFRQU6NSpU9q2bZva2toSOiEAADJJ\nzFA7nU4dPXpUXq83um1wcFDr16+XJFVUVMjv92toaEjFxcVyuVzKy8tTSUmJAoGA/H6/qqqqJEml\npaUKBAIJmgoAAJknZqhzcnKUl5f3mW2Tk5NyOp2SpMLCQgWDQYVCIbnd7uhj3G7357ZnZWXJ4XBE\nT5UDAIDZzfsWopFIJC7b77ZoUb5ycrLnNa67eTyuuL0WgNTi/Tx/rGF8JGsd7yvU+fn5mpqaUl5e\nnkZGRuT1euX1ehUKhaKPGR0d1apVq+T1ehUMBrVs2TKFw2FFIpHo0fgXGRubuJ9h3ZPH41IweCdu\nrwcgtXg/zw//JsZHvNdxtujf149nlZaWqq+vT5LU39+v8vJyrVy5UhcuXNDt27c1Pj6uQCCg1atX\nq6ysTGfPnpUkDQwMaM2aNfezSwAAFqSYR9QXL17UgQMHdOXKFeXk5Kivr0+/+tWv1NLSop6eHhUV\nFammpka5ublqbm5WY2OjHA6Hmpqa5HK5VF1drfPnz6u+vl5Op1Otra3JmBcAABnBEZnLReMki/fp\nhHQ4zcOvuQRi+2PbD9Li/WxZuvybaJ35U98AACA5CDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBih\nBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1\nAACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYlpPq\nAQDAXH2/+Q+pHkJMXS3rUj0EZBiOqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj\n1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYfxSDgCAKVtb30v1EGL6Y9sPkrYvjqgBADCMUAMAYBih\nBgDAMK5RA0AcpcP11a6WdakeAr6EpIT6lVde0dDQkBwOh/bs2aPvfve7ydgtAABpL+Gh/vOf/6y/\n//3v6unp0eXLl7Vnzx719PQkerefkQ7/wwUA4F4SHmq/36/KykpJ0je/+U3dunVL//znP/XVr341\n0bsGANwDBy/pJeHfTBYKhbRo0aLo391ut4LBYKJ3CwBARkj6N5NFIpGYj/F4XHHdZzJ/MB0AsDDE\nu1VfJOFH1F6vV6FQKPr30dFReTyeRO8WAICMkPBQl5WVqa+vT5L0t7/9TV6vl+vTAADMUcJPfZeU\nlOg73/mO6urq5HA49Mtf/jLRuwQAIGM4InO5aAwAAFKCW4gCAGAYoQYAwLCMDfUrr7yiZ555RnV1\ndfrrX/+a6uGkrU8++USVlZU6ceJEqoeStg4ePKhnnnlGGzduVH9/f6qHk3YmJye1Y8cObd68WbW1\ntRoYGEj1kNLa1NSUKisr9dZbb6V6KGlncHBQ3/ve97RlyxZt2bJF+/btS8p+M/KXcli4bWkmmJiY\n0L59+7R27dpUDyVtffjhh/r000/V09OjsbExPfXUU3ryySdTPay0MjAwoBUrVui5557TlStXtHXr\nVlVUVKR6WGnrtdde0wMPPJDqYaStxx57TB0dHUndZ0aGmtuWxofT6dTRo0d19OjRVA8lbT366KPR\nX0JTUFCgyclJzczMKDs7O8UjSx/V1dXRP1+7dk2LFy9O4WjS2+XLl3Xp0iU98cQTqR4KvoSMPPXN\nbUvjIycnR3l5eakeRlrLzs5Wfn6+JMnn8+nxxx8n0veprq5OO3fu1J49e1I9lLR14MABtbS0pHoY\nae3SpUvatm2b6uvr9ac//Skp+8zII+r/xU+gIdXeeecd+Xw+dXV1pXooaeuNN97Qxx9/rBdffFG9\nvb1yOBypHlJaOX36tFatWqUlS5akeihp65FHHtH27du1YcMGDQ8P69lnn1V/f7+cTmdC95uRoea2\npbDk/fff15EjR/T666/L5UrOvYEzycWLF1VYWKivf/3rWr58uWZmZvSPf/xDhYWFqR5aWjl37pyG\nh4d17tw5Xb9+XU6nU1/72tdUWlqa6qGljcWLF0cvxTz88MN66KGHNDIykvD//GRkqMvKynT48GHV\n1dVx21Kk1J07d3Tw4EEdO3ZMDz74YKqHk5Y++ugjXblyRXv37lUoFNLExMRnLm1hbtrb26N/Pnz4\nsL7xjW8Q6S+pt7dXwWBQjY2NCgaDunHjRlK+ZyIjQ81tS+Pj4sWLOnDggK5cuaKcnBz19fXp8OHD\nBOdLePvttzU2NqYXXnghuu3AgQMqKipK4ajSS11dnfbu3auGhgZNTU3ppZdeUlZWRn57DYxbt26d\ndu7cqXfffVfhcFgvv/xywk97S9xCFAAA0/hvKQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAw\nQg0AgGGEGgAAw/4P1DJKJgyt6msAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "WvgxW0bUSC-c", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "8YGNjXPaSMPV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The histogram we created in Task 2 shows that the majority of values are less than `5`. Let's clip `rooms_per_person` to 5, and plot a histogram to double-check the results." + ] + }, + { + "metadata": { + "id": "9YyARz6gSR7Q", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "811c9a20-df19-456f-aed2-7d083e543b2d" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"rooms_per_person\"]).apply(lambda x: min(x, 5))\n", + "\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFKCAYAAADScRzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFxdJREFUeJzt3X9MVff9x/HX5ccNYbu0XnqvG4u1\nybJFM5mG2DohNEWhiSTL6CwWiDaZrJkpLjbBKtOta2JSUUfDMKQudkSi0bLeNY6ZRkhbTNp5y9Ld\nhOnSpNU/FuIPuNfhj/Fj3JH7/WP53tnVcqncH+97eT7+0sO993w+H7g+PefAwRGJRCICAAAmZaV6\nAAAA4IsRagAADCPUAAAYRqgBADCMUAMAYBihBgDAsJxUD+BegsE7cXutRYvyNTY2EbfXW4hYw/lj\nDeODdZw/1jA+4r2OHo/rCz+W8UfUOTnZqR5C2mMN5481jA/Wcf5Yw/hI5jpmfKgBAEhnhBoAAMMI\nNQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwz+duzgPux\ntfW9VA9hVl0t61I9BABpiCNqAAAMI9QAABjGqW8gSayfmpc4PQ9YxBE1AACGEWoAAAwj1AAAGBbz\nGvXg4KB27Nihb33rW5Kkb3/72/rxj3+sXbt2aWZmRh6PR4cOHZLT6VRvb6+6u7uVlZWlTZs2qba2\nVuFwWC0tLbp69aqys7O1f/9+LVmyJOETAwAgE8zpm8kee+wxdXR0RP/+s5/9TA0NDdqwYYNeffVV\n+Xw+1dTUqLOzUz6fT7m5uXr66adVVVWlgYEBFRQUqK2tTR988IHa2trU3t6esAkBAJBJ7uvU9+Dg\noNavXy9JqqiokN/v19DQkIqLi+VyuZSXl6eSkhIFAgH5/X5VVVVJkkpLSxUIBOI3egAAMtycjqgv\nXbqkbdu26datW9q+fbsmJyfldDolSYWFhQoGgwqFQnK73dHnuN3uz23PysqSw+HQ9PR09Pn3smhR\nvnJysuczr8/weFxxe62FijVcGNLh85wOY7SONYyPZK1jzFA/8sgj2r59uzZs2KDh4WE9++yzmpmZ\niX48Eonc83lfdvvdxsYmYj5mrjwel4LBO3F7vYWINVw4rH+e+VqcP9YwPuK9jrNFP+ap78WLF6u6\nuloOh0MPP/ywHnroId26dUtTU1OSpJGREXm9Xnm9XoVCoejzRkdHo9uDwaAkKRwOKxKJzHo0DQAA\n/itmqHt7e/Xb3/5WkhQMBnXjxg398Ic/VF9fnySpv79f5eXlWrlypS5cuKDbt29rfHxcgUBAq1ev\nVllZmc6ePStJGhgY0Jo1axI4HQAAMkvMU9/r1q3Tzp079e677yocDuvll1/W8uXLtXv3bvX09Kio\nqEg1NTXKzc1Vc3OzGhsb5XA41NTUJJfLperqap0/f1719fVyOp1qbW1NxrwAAMgIjshcLhonWbzP\n+3M9Zn7SZQ3T4V7a1lm/13e6fC1axhrGh6lr1AAAIHUINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBg\nGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADD\nCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhG\nqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBC\nDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYNicQj01NaXKykq99dZbunbtmrZs2aKG\nhgbt2LFD09PTkqTe3l5t3LhRtbW1evPNNyVJ4XBYzc3Nqq+v1+bNmzU8PJy4mQAAkIHmFOrXXntN\nDzzwgCSpo6NDDQ0NOnnypJYuXSqfz6eJiQl1dnbq2LFjOn78uLq7u3Xz5k2dOXNGBQUFOnXqlLZt\n26a2traETgYAgEwTM9SXL1/WpUuX9MQTT0iSBgcHtX79eklSRUWF/H6/hoaGVFxcLJfLpby8PJWU\nlCgQCMjv96uqqkqSVFpaqkAgkLiZAACQgXJiPeDAgQP6xS9+odOnT0uSJicn5XQ6JUmFhYUKBoMK\nhUJyu93R57jd7s9tz8rKksPh0PT0dPT5X2TRonzl5GTf96T+l8fjittrLVSs4cKQDp/ndBijdaxh\nfCRrHWcN9enTp7Vq1SotWbLknh+PRCJx2f6/xsYm5vS4ufB4XAoG78Tt9RYi1nDhsP555mtx/ljD\n+Ij3Os4W/VlDfe7cOQ0PD+vcuXO6fv26nE6n8vPzNTU1pby8PI2MjMjr9crr9SoUCkWfNzo6qlWr\nVsnr9SoYDGrZsmUKh8OKRCIxj6YBAMB/zXqNur29Xb///e/1u9/9TrW1tXr++edVWlqqvr4+SVJ/\nf7/Ky8u1cuVKXbhwQbdv39b4+LgCgYBWr16tsrIynT17VpI0MDCgNWvWJH5GAABkkJjXqP/XT3/6\nU+3evVs9PT0qKipSTU2NcnNz1dzcrMbGRjkcDjU1Ncnlcqm6ulrnz59XfX29nE6nWltbEzEHAAAy\nliMy1wvHSRTv8/5cj5mfdFnDra3vpXoIaa+rZV2qhzCrdPlatIw1jI9kXqPmzmQAABhGqAEAMIxQ\nAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQa\nAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QA\nABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYA\nwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMNyYj1g\ncnJSLS0tunHjhv71r3/p+eef17Jly7Rr1y7NzMzI4/Ho0KFDcjqd6u3tVXd3t7KysrRp0ybV1tYq\nHA6rpaVFV69eVXZ2tvbv368lS5YkY24AAKS9mEfUAwMDWrFihU6cOKH29na1traqo6NDDQ0NOnny\npJYuXSqfz6eJiQl1dnbq2LFjOn78uLq7u3Xz5k2dOXNGBQUFOnXqlLZt26a2trZkzAsAgIwQM9TV\n1dV67rnnJEnXrl3T4sWLNTg4qPXr10uSKioq5Pf7NTQ0pOLiYrlcLuXl5amkpESBQEB+v19VVVWS\npNLSUgUCgQROBwCAzBLz1Pf/q6ur0/Xr13XkyBH96Ec/ktPplCQVFhYqGAwqFArJ7XZHH+92uz+3\nPSsrSw6HQ9PT09Hn38uiRfnKycm+3zl9jsfjittrLVSs4cKQDp/ndBijdaxhfCRrHecc6jfeeEMf\nf/yxXnzxRUUikej2u/98ty+7/W5jYxNzHVZMHo9LweCduL3eQsQaLhzWP898Lc4faxgf8V7H2aIf\n89T3xYsXde3aNUnS8uXLNTMzo6985SuampqSJI2MjMjr9crr9SoUCkWfNzo6Gt0eDAYlSeFwWJFI\nZNajaQAA8F8xQ/3RRx+pq6tLkhQKhTQxMaHS0lL19fVJkvr7+1VeXq6VK1fqwoULun37tsbHxxUI\nBLR69WqVlZXp7Nmzkv7zjWlr1qxJ4HQAAMgsMU9919XVae/evWpoaNDU1JReeuklrVixQrt371ZP\nT4+KiopUU1Oj3NxcNTc3q7GxUQ6HQ01NTXK5XKqurtb58+dVX18vp9Op1tbWZMwLcba19b1UDwEA\nFiRHZC4XjZMs3uf9uR4zPx6PS99v/kOqh4Ek6GpZl+ohzIr38/yxhvFh6ho1AABIHUINAIBhhBoA\nAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAA\nGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDA\nMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACG\nEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADMuZy4MOHjyov/zl\nL/r3v/+tn/zkJyouLtauXbs0MzMjj8ejQ4cOyel0qre3V93d3crKytKmTZtUW1urcDislpYWXb16\nVdnZ2dq/f7+WLFmS6HkBAJARYob6ww8/1Keffqqenh6NjY3pqaee0tq1a9XQ0KANGzbo1Vdflc/n\nU01NjTo7O+Xz+ZSbm6unn35aVVVVGhgYUEFBgdra2vTBBx+ora1N7e3tyZgbAABpL+ap70cffVS/\n/vWvJUkFBQWanJzU4OCg1q9fL0mqqKiQ3+/X0NCQiouL5XK5lJeXp5KSEgUCAfn9flVVVUmSSktL\nFQgEEjgdAAAyS8xQZ2dnKz8/X5Lk8/n0+OOPa3JyUk6nU5JUWFioYDCoUCgkt9sdfZ7b7f7c9qys\nLDkcDk1PTydiLgAAZJw5XaOWpHfeeUc+n09dXV168skno9sjkcg9H/9lt99t0aJ85eRkz3VoMXk8\nrri9FpDJ0uG9kg5jtI41jI9kreOcQv3+++/ryJEjev311+VyuZSfn6+pqSnl5eVpZGREXq9XXq9X\noVAo+pzR0VGtWrVKXq9XwWBQy5YtUzgcViQSiR6Nf5GxsYn5zeouHo9LweCduL3eQsSbeuGw/l7h\n/Tx/rGF8xHsdZ/t3Nuap7zt37ujgwYP6zW9+owcffFDSf6419/X1SZL6+/tVXl6ulStX6sKFC7p9\n+7bGx8cVCAS0evVqlZWV6ezZs5KkgYEBrVmzJh5zAgBgQYh5RP32229rbGxML7zwQnRba2urfv7z\nn6unp0dFRUWqqalRbm6umpub1djYKIfDoaamJrlcLlVXV+v8+fOqr6+X0+lUa2trQicEAEAmcUTm\nctE4yeJ9OoHTPPPj8bj0/eY/pHoYSIKulnWpHsKseD/PH2sYH6ZOfQMAgNQh1AAAGEaoAQAwjFAD\nAGAYoQYAwLA535kMQObb2vpeqocwqz+2/SDVQwCSjiNqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAw\nQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYR\nagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQ\nAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAzLSfUA8B9bW99L9RAAAAZxRA0AgGGEGgAAwwg1\nAACGEWoAAAwj1AAAGEaoAQAwbE6h/uSTT1RZWakTJ05Ikq5du6YtW7aooaFBO3bs0PT0tCSpt7dX\nGzduVG1trd58801JUjgcVnNzs+rr67V582YNDw8naCoAAGSemKGemJjQvn37tHbt2ui2jo4ONTQ0\n6OTJk1q6dKl8Pp8mJibU2dmpY8eO6fjx4+ru7tbNmzd15swZFRQU6NSpU9q2bZva2toSOiEAADJJ\nzFA7nU4dPXpUXq83um1wcFDr16+XJFVUVMjv92toaEjFxcVyuVzKy8tTSUmJAoGA/H6/qqqqJEml\npaUKBAIJmgoAAJknZqhzcnKUl5f3mW2Tk5NyOp2SpMLCQgWDQYVCIbnd7uhj3G7357ZnZWXJ4XBE\nT5UDAIDZzfsWopFIJC7b77ZoUb5ycrLnNa67eTyuuL0WgNTi/Tx/rGF8JGsd7yvU+fn5mpqaUl5e\nnkZGRuT1euX1ehUKhaKPGR0d1apVq+T1ehUMBrVs2TKFw2FFIpHo0fgXGRubuJ9h3ZPH41IweCdu\nrwcgtXg/zw//JsZHvNdxtujf149nlZaWqq+vT5LU39+v8vJyrVy5UhcuXNDt27c1Pj6uQCCg1atX\nq6ysTGfPnpUkDQwMaM2aNfezSwAAFqSYR9QXL17UgQMHdOXKFeXk5Kivr0+/+tWv1NLSop6eHhUV\nFammpka5ublqbm5WY2OjHA6Hmpqa5HK5VF1drfPnz6u+vl5Op1Otra3JmBcAABnBEZnLReMki/fp\nhHQ4zcOvuQRi+2PbD9Li/WxZuvybaJ35U98AACA5CDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBih\nBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1\nAACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYlpPq\nAQDAXH2/+Q+pHkJMXS3rUj0EZBiOqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj\n1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYfxSDgCAKVtb30v1EGL6Y9sPkrYvjqgBADCMUAMAYBih\nBgDAMK5RA0AcpcP11a6WdakeAr6EpIT6lVde0dDQkBwOh/bs2aPvfve7ydgtAABpL+Gh/vOf/6y/\n//3v6unp0eXLl7Vnzx719PQkerefkQ7/wwUA4F4SHmq/36/KykpJ0je/+U3dunVL//znP/XVr341\n0bsGANwDBy/pJeHfTBYKhbRo0aLo391ut4LBYKJ3CwBARkj6N5NFIpGYj/F4XHHdZzJ/MB0AsDDE\nu1VfJOFH1F6vV6FQKPr30dFReTyeRO8WAICMkPBQl5WVqa+vT5L0t7/9TV6vl+vTAADMUcJPfZeU\nlOg73/mO6urq5HA49Mtf/jLRuwQAIGM4InO5aAwAAFKCW4gCAGAYoQYAwLCMDfUrr7yiZ555RnV1\ndfrrX/+a6uGkrU8++USVlZU6ceJEqoeStg4ePKhnnnlGGzduVH9/f6qHk3YmJye1Y8cObd68WbW1\ntRoYGEj1kNLa1NSUKisr9dZbb6V6KGlncHBQ3/ve97RlyxZt2bJF+/btS8p+M/KXcli4bWkmmJiY\n0L59+7R27dpUDyVtffjhh/r000/V09OjsbExPfXUU3ryySdTPay0MjAwoBUrVui5557TlStXtHXr\nVlVUVKR6WGnrtdde0wMPPJDqYaStxx57TB0dHUndZ0aGmtuWxofT6dTRo0d19OjRVA8lbT366KPR\nX0JTUFCgyclJzczMKDs7O8UjSx/V1dXRP1+7dk2LFy9O4WjS2+XLl3Xp0iU98cQTqR4KvoSMPPXN\nbUvjIycnR3l5eakeRlrLzs5Wfn6+JMnn8+nxxx8n0veprq5OO3fu1J49e1I9lLR14MABtbS0pHoY\nae3SpUvatm2b6uvr9ac//Skp+8zII+r/xU+gIdXeeecd+Xw+dXV1pXooaeuNN97Qxx9/rBdffFG9\nvb1yOBypHlJaOX36tFatWqUlS5akeihp65FHHtH27du1YcMGDQ8P69lnn1V/f7+cTmdC95uRoea2\npbDk/fff15EjR/T666/L5UrOvYEzycWLF1VYWKivf/3rWr58uWZmZvSPf/xDhYWFqR5aWjl37pyG\nh4d17tw5Xb9+XU6nU1/72tdUWlqa6qGljcWLF0cvxTz88MN66KGHNDIykvD//GRkqMvKynT48GHV\n1dVx21Kk1J07d3Tw4EEdO3ZMDz74YKqHk5Y++ugjXblyRXv37lUoFNLExMRnLm1hbtrb26N/Pnz4\nsL7xjW8Q6S+pt7dXwWBQjY2NCgaDunHjRlK+ZyIjQ81tS+Pj4sWLOnDggK5cuaKcnBz19fXp8OHD\nBOdLePvttzU2NqYXXnghuu3AgQMqKipK4ajSS11dnfbu3auGhgZNTU3ppZdeUlZWRn57DYxbt26d\ndu7cqXfffVfhcFgvv/xywk97S9xCFAAA0/hvKQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAw\nQg0AgGGEGgAAw/4P1DJKJgyt6msAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "vO0e1p_aSgKA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To verify that clipping worked, let's train again and print the calibration data once more:" + ] + }, + { + "metadata": { + "id": "ZgSP2HKfSoOH", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 957 + }, + "outputId": "950f33e9-b453-4064-89e6-79b8bd3d2612" + }, + "cell_type": "code", + "source": [ + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\")" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 212.82\n", + " period 01 : 189.06\n", + " period 02 : 166.82\n", + " period 03 : 147.16\n", + " period 04 : 131.59\n", + " period 05 : 119.67\n", + " period 06 : 112.17\n", + " period 07 : 110.49\n", + " period 08 : 109.52\n", + " period 09 : 109.22\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 187.6 207.3\n", + "std 48.4 116.0\n", + "min 45.8 15.0\n", + "25% 156.7 119.4\n", + "50% 187.7 180.4\n", + "75% 214.0 265.0\n", + "max 413.3 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean187.6207.3
std48.4116.0
min45.815.0
25%156.7119.4
50%187.7180.4
75%214.0265.0
max413.3500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 109.22\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VPXZ//H37NlDJgsQEEJYwioE\nUFlEtoQE1IoFQRHU1qf9ddFqtbXWh2p9tLi00ip1X6hLLShaVGQXrTvKIm5gjBsJa/aFJDOTmfP7\nY2RKyEISkkwmfF7XxXVxZs5yn3NmMufc5/u9vybDMAxERERERERERDqYOdgBiIiIiIiIiMipSUkJ\nEREREREREQkKJSVEREREREREJCiUlBARERERERGRoFBSQkRERERERESCQkkJEREREREREQkKJSVE\ngigtLY2DBw8GO4wmXXHFFbz44ov1Xl+2bBn/+7//W+/1Q4cOcd5557XZ9hctWsRLL73U6uWXLVvG\n2LFjyc7OJjs7m6ysLG655Raqq6tbvK7s7GwKCwtbtExjx09EREJDWloamZmZgd+RzMxMbrrpJqqq\nqk5qvc8991yDr7/44oukpaXx+uuv13m9pqaG0aNHc+ONN57Udptr7969/OxnPyMrK4usrCxmz57N\n5s2bO2TbLfHAAw80eEy2bt3K8OHDA+ft2H+hIj8/n7S0tDrXMJdeeimff/55i9d1zz338K9//atF\ny7z00kssWrSoxdsSaSlrsAMQka6le/furFmzJthh1JGVlcWf/vQnANxuN9deey33338/v/nNb1q0\nnvXr17dHeCIi0sk9/fTT9OjRA/D/jvz617/m4Ycf5te//nWr1ldQUMBjjz3GvHnzGny/Z8+erFmz\nhqlTpwZee/3114mJiWnV9lrjN7/5DRdccAEPPfQQALt27eLyyy9n3bp19OzZs8PiOBk9e/YM+d9u\ni8VSZx/Wrl3LL3/5SzZs2IDdbm/2eq6//vr2CE+kTailhEgn5Ha7uf3228nKymLatGmBCwKAnTt3\n8sMf/pDs7GxmzZrFu+++C/iz6WeffTZLlixh4cKFgP/pzurVq5k9ezZnn302//jHPwLrWblyJdnZ\n2UybNo3rrruOmpoaAPLy8rjooovIyMjg+uuvx+v1tij2/Px8hg4dCvif9vzqV7/ipptuIisri1mz\nZvHll18CUF5ezm9/+1uysrKYPn06L7zwQqPrzMnJYe7cuUyePJnFixfj9Xr51a9+xeOPP15nnnHj\nxlFbW9tkfHa7nfnz5/POO++cMI60tDQefvhhsrKy8Hq9dVq2PPXUU8yaNYvs7Gx+/vOfU1xc3CbH\nT0REOje73c6kSZPYvXs3AC6Xi5tvvpmsrCxmzpzJnXfeGfjbv2fPHi6++GKys7O54IILeOuttwC4\n+OKL2b9/P9nZ2bjd7nrbGD16NFu3bq3Tqm/t2rVMnDgxMH0y1wpPPfUU559/PpMmTWLt2rUN7mdO\nTg4jR44MTI8cOZINGzYEkjN///vfmTx5MrNnz+aRRx5h2rRpANx444088MADgeWOnW7JNcz27duZ\nM2cOmZmZzJs3j7y8PMDfYuTaa69l6tSpLFy4sNUtTl988UWuuuoqLr/8cu6++262bt3KxRdfzDXX\nXBO4gV+3bh3nnXce2dnZXHbZZezduxfwt8JcvHgxc+fOrXNtBXDNNdfwxBNPBKZ3797N2Wefjc/n\n469//Wug5clll13GoUOHWhz3rFmzqKmp4euvvwYav5678cYbueOOOzj//PNZt25dnfPQ2OfS5/Px\nf//3f0yZMoW5c+eyZ8+ewHY/+OADLrzwQmbNmsXMmTNZt25di2MXaYySEiKd0KOPPkpubi6vvPIK\na9asYcOGDYFmnDfffDNXXnkl69ev56c//Sm33HJLYLnS0lKGDBnCM888E3gtNzeX1atX88ADD7B0\n6VK8Xi/btm3j3nvv5cknn2TLli1ERUVx7733AvCXv/yF8ePHs3nzZi6//HJ27NhxUvvy5ptvsmDB\nAjZs2MBZZ53Fk08+CcCdd96J2Wxm3bp1PP/88yxbtoycnJwG17F161aefvpp1q9fz4cffsjrr7/O\neeedV6dFxqZNm5gxYwZW64kbgHk8nsDThRPFYRgGGzZswGKxBF776KOPePzxxwMxJScnc8899wBt\nf/xERKRzKSsrY82aNaSnpwPw5JNPcvDgQV599VX+/e9/s23bNtasWYPP5+O6665j4cKFrF+/nttv\nv53rr7+eyspKlixZEniK39DTbrvdzvjx43nttdcAqKysZPfu3YFtQuuvFUpKSjCbzbzyyivcdNNN\n/O1vf2twP8855xx+9atf8dRTT/HVV18B/taQJpOJnJwcnnzySVatWsWqVav46KOPmnXsmnsNU1lZ\nyc9//nOuu+46Nm3axGWXXcY111wDwAsvvEBhYSGbNm1i2bJlvP32283adkPeeecdbr31Vm644QYA\nPv/8cy6++GLuuece9u/fzx/+8Afuv/9+1q9fz5QpU7j55psDy/7nP//hkUce4YorrqizzqysLLZs\n2RKY3rRpE9nZ2Xz11VesX78+cK4yMzN57733WhW31+vFbrc3eT0H8N5777Fq1SpmzpwZeK2pz+Vb\nb73FO++8w6uvvsozzzzDtm3bAsvddddd/P73v2ft2rU8+OCDnbIrj4QuJSVEOqHXX3+dBQsWYLfb\niYiI4IILLmDjxo0ArF69OvDjMmbMmMCTA/DfbGdmZtZZ1wUXXADAsGHDcLlcFBUVsWXLFmbNmkX3\n7t0BuOSSSwLr37ZtG7NmzQLg9NNPJzU19aT2pX///gwfPhyAoUOHcuDAgcA+XnbZZZjNZpxOJ5mZ\nmYEYjpeVlUV4eDjh4eFMnjyZjz76iMmTJ7N3797Ak4LNmzcH4m5KZWUlzz77bOA4nSiOKVOm1FvH\nG2+8QVZWFvHx8QBcdNFFgZYXbX38REQk+BYtWkR2djbTp09n+vTpjBs3jp/85CeA/zdh3rx5WK1W\nwsLCOP/883nnnXfIz8+nsLCQc889F4ARI0aQnJzMJ5980qxtnnvuuYHk++bNm5k6dSpm838v3Vt7\nrVBbW8sPf/hDwH9tsH///ga3/+c//5lLL72UV155hfPOO49p06YFahJs376dM844g8TERKxWa7Nr\nSTX3Gmb79u1079490DLkvPPOY+/evezfv59t27aRmZmJ1WolLi6uTheX4x04cKBePYk777wz8H5K\nSgopKSmB6bCwMMaPHw/4ExZnnXUWffv2Bfy/9Vu3bg20yBw5ciROp7PeNqdMmcLnn39OaWkp8N+k\nRExMDMXFxbzyyiuUlZWxaNEiZs+e3azjdpRhGKxcuZLu3buTkpLS5PUcwPjx43E4HHXW0dTn8sMP\nP2Ty5MlERkYSFhZWJ5kRHx/P6tWr+eqrr0hJSQk8jBFpC6opIdIJVVRUcMcdd7B06VLA30Tz9NNP\nB+CVV17hqaee4siRI/h8PgzDCCxnsViIioqqs67o6OjAe+DPkFdUVLBp06bA0wXDMPB4PID/CdCx\n6zjZ/qtHt380hqNNWisqKrj22msDcblcrkaLTx37ox8dHU1BQQEOh4PMzEzWrFnD3LlzKSgo4Mwz\nz2xw+Q0bNrB9+3YAbDYbmZmZgScbJ4qjW7du9dZXXFxMUlJSYDomJoaioiKg7Y+fiIgE39GaEsXF\nxYGuB0db5hUXFxMbGxuYNzY2lqKiIoqLi4mOjsZkMgXeO3pjmpCQcMJtTpw4kcWLF1NaWsqrr77K\nL37xC7755pvA+ydzrRAREQGA2WzG5/M1uH2Hw8GVV17JlVdeSXl5OevXr2fJkiX07t2bsrKyOr9v\nR5P0J9Lca5jy8nLy8vLq/B7b7XaKi4spKyurc20RExPDkSNHGtzeiWpKHHvejp8uKSmps4/R0dEY\nhkFJSUmDyx4VERHBhAkTeOONNxgzZgzl5eWMGTMGk8nEsmXLeOKJJ7jttts444wzuPXWW09Yn8Pr\n9QaOg2EYDBgwgAceeACz2dzk9VxjMTb1uSwrK6t3fXPUkiVLePDBB/nRj35EWFgY1113XUgVDZXO\nTUkJkU4oKSmJH//4x/Wy/4cOHWLx4sU8//zzDBkyhG+//ZasrKxWrf/CCy/kd7/7Xb33YmJiqKys\nDEwfrZXQ1pKSkrj//vsZNGjQCectKyur8/+jP7Lnnnsud9xxB9HR0WRlZdV5gnSsYwtdnkwcRyUk\nJASegIC/yenRC8yOOn4iItLxnE4nixYt4s9//jMPPvgg0PhvQnx8PGVlZRiGEbgBLC0tbfYNvM1m\nY+rUqaxevZrvvvuO9PT0OkmJ9rxWKC4uZvfu3YGWCjExMcybN4+33nqLnJwcoqOjqaioqDP/Uccn\nOo7+hrckrqSkJFJTUxscvSomJqbRbbel+Ph4du7cGZguKyvDbDYTFxd3wmWzsrLYtGkTJSUlZGVl\nBc7/uHHjGDduHFVVVdx111385S9/OWGLg+MLXR6rqeu5pvarsc9lU8c2ISGBP/zhD/zhD3/g7bff\n5uqrr2bSpElERkY2e9sijVH3DZFOaPr06Tz//PN4vV4Mw+CBBx7gzTffpLi4mIiICFJTU6mtrWXl\nypUAjT4haMy0adPYuHFj4Mdm8+bNPPLIIwCMGjWKTZs2AbBjx45AUae2Nm3aNFasWAH4m5IuWbKE\nzz77rMF5N27ciMvloqqqirfeeouxY8cCMGHCBEpLS3n66afrNDFsrziOmjJlSuBiA2DFihVMnjwZ\n6LjjJyIiwfGjH/2InTt38sEHHwD+34RVq1bh9XqpqqripZdeYvLkyfTu3ZsePXoECknu2LGDwsJC\nTj/9dKxWK1VVVScsznzuuefy6KOPkpGRUe+99rxWqKmp4Ve/+lWgACLAd999x65duxg7dizp6els\n27aN4uJiamtrWb16dWC+xMTEQIHEvLy8QG2llsQ1cuRICgoK2LVrV2A9v/3tbzEMg1GjRrFlyxa8\nXi/FxcW8+eabzd6vlpg4cSLbtm0LdDFZsWIFEydObFbtqqlTp7Jz5042b94cuD55++23ufXWW/H5\nfERERDB48OA6rRVao6nrucY09blMT0/n7bffprq6murq6kAyxOPxsGjRIg4fPgz4u/1YrdZGHwaJ\ntJRaSogE2aJFi+oUUbz99ttZsGAB+fn5nHvuuRiGwfDhw7n88suJiIjgnHPOCdQzuPHGG9mxYweL\nFi3ivvvua/Y2hw0bxs9+9jMWLVqEz+cjPj6eW2+9FYDf/va3XH/99bz00kuMHDmSCRMmNLqeY7tF\nAAwZMqTZQ05de+213HrrrYGnJJMmTSItLa3BeSdMmBCoUj1lyhQmTZoE+J8eZGdn89prrzFmzJhm\nbfdk4jjq9NNP56c//SmXXnopPp+PIUOG8Mc//hFo2fETEZHQExUVxU9/+lPuuusuVq1axaJFi8jL\ny+Pcc8/FZDKRnZ3NzJkzMZlMLF26lFtuuYW///3vhIeHc++99xIREUFaWhqxsbFMnDiRf//73yQn\nJze4rTPPPBOTydRgzaT2vFZITk7mwQcf5L777uP222/HMAyioqL4/e9/HxiRY/78+Vx44YXExcUx\nY8aMwOha8+bN46qrrmLGjBkMHTo08Ps6ePDgZscVFhbGfffdx2233caRI0ew2Wxcc801mEwm5s2b\nx7Zt28jIyCA5OZmMjIw6T/ePdbSmxPHuvvvuEx6DHj16cPvtt/OLX/wCj8dD7969ue2225p1/KKi\nohg2bBhffPEFo0aNAuCMM87g1VdfJSsrC7vdjtPpZMmSJQDccMMNgRE0WqKp67nGNPW5nDp1Km+8\n8QbZ2dkkJCQwefJktm3bhs1mY+7cuYGur2azmcWLFxMeHt6ieEUaYzKO7cwlIhJiHn30UUpKSgKV\ns0VERKRjbdu2jRtuuKHOqBMiIs2lNjciErKKi4t57rnnuOSSS4IdioiIiIiItIKSEiISklasWMGc\nOXP4yU9+wmmnnRbscEREREREpBXUfUNEREREREREgkItJUREREREREQkKJSUEBEREREREZGgCMkh\nQQsK6g77ExcXQUlJVZCiOXXoOHccHeuOo2PdcXSsO057HuvExOh2WW9HOf4aoq3o8x18OgfBp3MQ\nfDoHwadz0LCmrh+6REsJq9US7BBOCTrOHUfHuuPoWHccHeuOo2Pd8XTMg0/nIPh0DoJP5yD4dA5a\nrkskJUREREREREQk9CgpISIiIiIiIiJBoaSEiIiIiIiIiASFkhIiIiIiIiIiEhRKSoiIiIiIiIhI\nUCgpISIiIiIiIiJBoaSEiIiIiIiIiASFkhIiIiIiIiIiEhRKSoiIiIiIiIhIUCgpISIiIiIiIiJB\noaSESBfk8ng5XFJFUVk1H+cW8s3+Mlweb4uWbe78J7Ouk93Wscs3d11tuX+tEeztB4vL4+VA4ZFT\nbr9FREREpGnW9lrx1q1bueaaaxg4cCAAgwYN4n/+53+44YYb8Hq9JCYm8uc//xm73c7LL7/Mk08+\nidlsZt68eVx00UXtFZZIl+b1+Vi5JZedOQUUlbvqvGcxm5g8qieXZAzCYq6fjzx22eJyF84YB+mD\nEpk/bUCD8zc3jobWdbLbOn55h90CGNS4fcQ3sq7GtnnVvPQW7VtrteXxDSV19rvChTP61NhvERER\nEWmedktKAJx55pncd999genf//73LFiwgJkzZ7J06VJWrVrF7Nmzuf/++1m1ahU2m425c+eSmZlJ\nt27d2jM0kS5p5ZZcNm/Lb/A9r89gy479mM1mFmQMOuGyReWuwHRD87ckjuPXdbLbOn75Gvd/n743\ntq7GthkRbmf2xJQW7V9rtOXxDSWn6n6LiIiISPN06GOqrVu3Mn36dACmTp3Ke++9x65duxgxYgTR\n0dGEhYUxevRoduzY0ZFhiXQJLo+XnTkFJ5xvR05BvSb0TS27M6ewRU3uT7Suiir3SW2ruft57Lqa\nWub9Tw+0e5eCtjy+oeRU3W85tRSWVnPfqo/Ze7A82KGIiIiEpHZtKZGbm8vPfvYzysrKuOqqq6iu\nrsZutwMQHx9PQUEBhYWFOJ3OwDJOp5OCgqZvOOLiIrBaLXVeS0yMbvsdkHp0nDtOS4/1gcIjFFe4\nTjhfSYULi91GYkJks5YtqaipN39r4yipqKHC7TupbTV/P/+7rqaWKSytbtH+tUZbHt9Qcqrud2eh\nv9cdo6Law0e5hSz91w5uXJCubkkiIiIt1G5JiZSUFK666ipmzpxJXl4el112GV7vf5+KGYbR4HKN\nvX6skpKqOtOJidEUFFScXMByQjrOHac1x9rr8eKMdtSrJXG8uGgHXrenzvqbWjYuOqze/K2NIy46\njGi7+aS21fz9/O+6mlomoVt4i/avNdry+IaSU3W/O4P2/HutZEdd/XrGMGF4D9799CAbP8xj5ll9\ngx2SiIhISGm3dH737t2ZNWsWJpOJPn36kJCQQFlZGTU1NQAcOnSIpKQkkpKSKCwsDCx3+PBhkpKS\n2isskS7LYbOQPijxhPONHpSIw1a3pVFTy6YPSqg3f2vjSB+UQHSE/aS21dz9PHZdTS0zbnjPFu1f\na7Tl8Q0lp+p+y6nn4ukD6RblYPVb33CouOrEC4iIiEhAuyUlXn75ZR5//HEACgoKKCoq4oc//CEb\nNmwAYOPGjUyaNImRI0fyySefUF5ezpEjR9ixYwdjx45tr7BEurT50waQMbY38TGOeu9ZzCamjU5m\n/rQBJ1g2DLMJ4mPCyBjbu9H5mxdHw+uaP20A08f0Isz+35vSMLsZn2Hg9flavP4wu4UwuwUTjcfd\nWEw/Pn9Yi/evNdry+IaSU3W/5dQSFW7j//1wBJ5aH/9YtwdfM1p9ioiIiJ/JaE5/iVaorKzkN7/5\nDeXl5Xg8Hq666iqGDBnC7373O1wuF8nJydxxxx3YbDbWr1/P448/jslkYuHChfzgBz9oct3HN0lV\nt4KOoePccU72WLs8XsoqXVjMJvYVHCE6wkZyYlSznkwfXTY2ynHST7KbWtezm3MaHCkkY2zvZo/K\ncOz6gWbFfXxMHf25bsvjG0pcHi8Wuw2v23NK7XewqPtG49rruCQkRHHLw++y88tCLstOY8qoXu2y\nHWmcrlOCT+cg+HQOgk/noGFNXT+0W02JqKgoHnrooXqvL1++vN5r2dnZZGdnt1coIqcch81CUlwE\nAPGx4a1eti3jONaJRmWYM7l/s25cj19/c+Juy/1rjWBvP1gcNguJCZH6kZYuy2QysXBGGnv2lvL8\n67mM7J9AXHT9VmsiIiJSl0pEi0iHK6t0UdxIocqSihrKKk88uoaISGcTF+1g3tT+VLu8PL3hi2YV\n7xYRETnVKSkhIh0uNsqBs4G6F+AfleFodwwRkVBzzshkBvfpxke5hXy453CwwxEREen0lJQQkQ6n\nURlEpKsymUxcPnMwNquZf27KobLaE+yQREREOjUlJUQkKJozKoPL4+VwSRUujzeIkYqItEz3uAgu\nnJRKRZWHFa99GexwREREOrV2K3QpItIUi9nMgoxBzJncv95oFF6fj5VbctmZU0BxuQtnjIP0QYnM\nnzYAi1m5VBHp/DLP6M3W3Yd499ODnDW0OyNS44MdkoiISKekq3sRCaqjo1Ec22Vj5ZZcNm/Lp6jc\nhQEUlbvYvC2flVtygxeoiEgLWMxmfjRzMBaziafW76HaVRvskERERDolJSVEpFM50XCh6sohIqGi\nT/doZo7rS1G5ixff/DrY4YiIiHRKSkqISKei4UJFpCs5f0IKPeMj2LI9n9z8smCHIyIi0ukoKSEi\nnYqGCxWRrsRmNXPFzMEALF+3G0+tWnuJiIgcS0kJEelUNFyoiHQ1A3t3Y9ro3hwoquKVd78Ldjgi\nIiKdipISItLpNGe4UBGRUPLDyanExzhY9/535B2uDHY4IiIinYaGBBWRTqep4UJFREJRuMPKZdmD\n+etzu1i+djf/e9kYDXEsIiKCWkqISCfW0HChIiKhakRqPOOH9eDbgxVs+jA/2OGIiIh0CkpKiIiI\niHSQSzIGEh1hY/VbX3OopCrY4YiIiASdkhIiIiIiHSQq3MalmYNw1/p4ct0eDMMIdkgiIiJBpaSE\niIiISAc6Y3ASowYksGdvKW99fCDY4YiIiASVkhIiIiIiHchkMrEoK41wh4WVW3IpqXAFOyQREZGg\nUVJCREREpIPFRTu4aOoAql21PLPxC3XjEBGRU5aSEiIhyuXxcrikCpfHG+xQRESkFc4ZmUzaad3Y\n+WUh274oCHY4IiIiQWENdgAi0jJen4+VW3LZmVNAcbkLZ4yD9EGJzJ82QGPei4iEELPJxBUzB3Pz\nEx/wz41fMKRvHFHhtmCHJSIi0qF0ByMSYlZuyWXztnyKyl0YQFG5i83b8lm5JTfYoYmISAt1d0Yw\n++x+lFd5WPnal8EOR0REpMMpKSESQlweLztzGm7iuzOnUF05RERC0IwzT6Nv92je+fQgn35TFOxw\nREREOpSSEiIhpKzSRXF5w1XaSypqKKtUBXcRkVBjMZv50azBmE0mnlz3BTXu2mCHJCIi0mGUlBAJ\nIbFRDpwxjgbfi4sOIzaq4fdERKRz69M9mpnj+lBUXsOLb34d7HBEREQ6jJISIiHEYbOQPiixwffS\nByXgsFk6OCIREWkrP5iYQg9nBK9tyyd3X1mwwxEREekQSkqIhJj50waQMbY38TFhmE0QHxNGxtje\nzJ82INihiYjISbBZLVwxczAGsHztbjy1vmCHJCIi0u40JKhIiLGYzSzIGMScyf0pq3QRG+VQCwkR\nkS5i0GndmDa6F1t27OPV975l9qTUYIckIiLSrtRSQiREOWwWkuIilJAQEeli5kzujzPGwavvfUf+\n4cpghyMiItKulJQQERER6UTCHVYuy0rD6zNYvm43Pp8R7JBERETajZISIiIiIp3M6f0TGDesO98c\nqGDTtrxghyMiItJulJQQERER6YQumT6QqHAb/37zaw6XVgc7HBERkXahpISIiIh0KnfffTfz589n\nzpw5bNy4kQMHDrBo0SIWLFjANddcg9vtBuDll19mzpw5XHTRRTz//PNBjrrtRUfYWZA5EHetjyfX\n7cEw1I1DRES6Ho2+ISIiIp3G+++/z5dffsnKlSspKSnhwgsvZPz48SxYsICZM2eydOlSVq1axezZ\ns7n//vtZtWoVNpuNuXPnkpmZSbdu3YK9C23qrCHd2frZIXZ9VcTbHx9g0sjkYIckIiLSptRSQkQa\n5PJ4OVxShcvjDXYoInIKOeOMM7j33nsBiImJobq6mq1btzJ9+nQApk6dynvvvceuXbsYMWIE0dHR\nhIWFMXr0aHbs2BHM0NuFyWRiUVYaYXYLK7bkUlLhCnZIIiIibUpJCRGpw+vz8ezmHBY/+j6/f/h9\nFj/6Ps9uzsHr8wU7NBE5BVgsFiIiIgBYtWoV55xzDtXV1djtdgDi4+MpKCigsLAQp9MZWM7pdFJQ\nUBCUmNubMyaMi6YOoNpVyz835QQ7HBERkTal7hsiUsfKLbls3pYfmC4qdwWmF2QMClZYInKK2bx5\nM6tWreKJJ55gxowZgdcbq6vQ3HoLcXERWK2WNonxeImJ0e2yXoC5GWns+LKQHTkF5ByoYOLp6sbR\nkPY8B9I8OgfBp3MQfDoHLaOkhIgEuDxeduY0/KRxZ04hcyb3x2Frn4t5EZGj3nrrLR566CEee+wx\noqOjiYiIoKamhrCwMA4dOkRSUhJJSUkUFhYGljl8+DCjRo064bpLSqraJebExGgKCiraZd1HXZox\nkJsfL+GBVbtI7hZGVLitXbcXajriHEjTdA6CT+cg+HQOGtZUokbdN0QkoKzSRXF5w/2VSypqKKtU\nX2YRaV8VFRXcfffdPPzww4GilRMmTGDDhg0AbNy4kUmTJjFy5Eg++eQTysvLOXLkCDt27GDs2LHB\nDL3d9XBGMHtSP8qPuHluS26wwxEREWkTaikhIgGxUQ6cMQ6KGkhMxEWHERvlCEJUInIqWbt2LSUl\nJVx77bWB1+68804WL17MypUrSU5OZvbs2dhsNq6//nquvPJKTCYTv/zlL4mO7vrNZbPOPI0Pdh/i\n7U8OcNbQ7gzr5zzxQiIiIp0kiN2wAAAgAElEQVSYkhIiEuCwWUgflFinpsRR6YMS1HVDRNrd/Pnz\nmT9/fr3Xly9fXu+17OxssrOzOyKsTsNiNvOjmUO47cltPLl+D7ddeRYOu/42i4hI6FL3DRGpY/60\nAWSM7U18TBhmE8THhJExtjfzpw0IdmgiIgL07RFN9ll9KCyr4cU3vw52OCIiIidFLSVEpA6L2cyC\njEHMmdyfskoXsVGODmsh4fJ4O3ybIiKh6AcTU9ieU8DmbXmcOSSJ/r1igx2SiIhIqygpISINctgs\nJMVFdMi2vD4fK7fksjOngOJyF84YB+mDEpk/bQAWsxp0iYgcz26zcEV2Gnc9u5Pl6/ZwyxVnYLPq\n76WIiIQe/XqJSNCt3JLL5m35FJW7MICichebt+WzUtXlRUQaldYnjqnpvdhfeIRX3/s22OGIiIi0\nipISIhJULo+XnTkFDb63M6cQl8fbwRGJiISOuVP6Exft4NX3viO/oDLY4YiIiLSYkhIiElRllS6K\nGxiCFKCkooayyobfExERCHdYuSwrDa/P4B/r9uDzGcEOSUREpEWUlBCRoIqNcuCMcTT4Xlx0GLFR\nDb8nIiJ+IwckMG5od77eX87m7fWHdBYREenMlJQQkaBy2CykD0ps8L30QQkahUNEpBkuzhhIVLiN\nF9/8ioLS6mCHIyIi0mxKSohI0M2fNoCMsb2JjwnDbIL4mDAyxvZm/rQBwQ5NRCQkxETYWZAxELfH\nx5Pr92AY6sYhIiKhQUOCikjQWcxmFmQMYs7k/pRVuoiNcqiFhIhIC501tDvvf36Ij78q4u1PDjDp\n9ORghyQiInJCaikhIp2Gw2YhKS5CCQmRk2DU1uJzu4MdhgSByWTisqw0HHYLK1/LVaFgEREJCUpK\niIiIdAE+t4dDT6xkZ/pMPjj/p8EOR4LEGRPGRVP6U+Wq5ZlNOcEOR0RE5ITUfUNERCSEGT4fxS9v\nIv+uB3B9tw9zuJ2kCWnBDkuCaEp6L7Z+fojtXxSw/YvDjElLCnZIIiIijVJLCRERkRBV9tYHfDbr\ncr76xf/i3neQnpP6c8Zvzqb7iLhghyZBZDaZuGLmYKwWM89szOFIjSfYIYmIiDRKLSVERERCzJFP\n9pC35O+U/+d9ABLH9KHv9BTCeibgGno25UMn4vV4VZ/lFNYzPpILzk7hhf98zcotufx41pBghyQi\nItIgJSVERERChGvvPvLvfoiiF9cBEDu4J6kz+hHZJ57atHE8W5TM1rfKKV77H5zRDtIHJTJ/2gAs\nZjWMPBVlndmHD3cf5u2PDzBuaHeGpjiDHZKIiEg9ukoRERHp5DxFpXx38z18PGkORS+uI7JPAsOv\nPIMRP04nfPI03BdcyzMl/Vi7o4CicheGAUXlLjZvy2flltxghy9BYrWY+dGsIZhNJv6xbg8utzfY\nIYmIiNTTrkmJmpoaMjIyePHFFzlw4ACLFi1iwYIFXHPNNbi/H67s5ZdfZs6cOVx00UU8//zz7RmO\niIhISPFWVbP/3sf5eMIFHHrsX9i7RZJ2yUjSfz6WmGln4znvKmrHz8Zlj2JnTkGD69iZU4jLo5vR\nU1XfHtFknXUahWU1/Putr4MdjoiISD3t2n3jwQcfJDY2FoD77ruPBQsWMHPmTJYuXcqqVauYPXs2\n999/P6tWrcJmszF37lwyMzPp1q1be4YlIiLSqRm1tRSseJl99zyC51Ah1pgIUn8wlJ5n9Yae/fCM\nnoGR1Dcwf1mli+JyFwAjetupdhvkHvYXNyypqKGs0kVSXERQ9kWC74KJ/djxRQGbtuVx5pDupCbH\nBDskERGRgHZrKfHVV1+Rm5vLlClTANi6dSvTp08HYOrUqbz33nvs2rWLESNGEB0dTVhYGKNHj2bH\njh3tFZKIiEinZhgGxWu38MnU+Xx7wxK8pWWcljGIM66fQM9ZY/FmLMKT9T91EhIAsVEOzhwQyeLz\nnfx6hpOLz4oOvBcXHUZslKOjd0U6EbvNwhUzB2MYsHzdbmq9vmCHJCIiEtBuLSXuuusu/vCHP7B6\n9WoAqqursdvtAMTHx1NQUEBhYSFO53+LLjmdTgoKGm5+KiIdw+XxUlbpIjbKocr9Ih2oYutO9t5+\nH0e2fwJmMz0m9KPv1BRsPZKoHTkNT+ooMDfwnfRU46g8zP87x5+I+ODral7YXhl4O31Qgr7LQlqf\nOKaMSuaNj/az9r3v+MHZ/YIdkoiICNBOSYnVq1czatQoTjvttAbfNwyjRa8fLy4uAqu17gVWYmJ0\nI3NLW9Jx7jgdfay9Xh9PvPIZ7396gILSahK7hTNueE9+fP4wLJauXRNXn+uOo2NdX8WnOexZvJTD\nr74OQEL6afSd3o+I3gk4zszAPmoSJpu93nK1NVUcOZyPu6IEAFtkDBt3u9mwq4yiSi9JcafOd1ia\nZ+6UAez6qohX3v2WMYOT6JUQGeyQRERE2icp8cYbb5CXl8cbb7zBwYMHsdvtREREUFNTQ1hYGIcO\nHSIpKYmkpCQKCwsDyx0+fJhRo0adcP0lJVV1phMToykoqGjz/ZC6dJw7TjCO9bObc9i8LT8wfbik\nmpff+pqqajcLMgad1Lo7c+sLfa47jo51Xa59B9n3l4cpfP5V8PmIGdidfjNSiU5JwDt4HK7hk3A5\nIqDUBbj+u6DXDUcKoKbMP20Nh6gkPPZIpo6FCSP7YrHb8Lo9OGwWiouPtGncSiyFrogwK4tmpHHf\nCx/zj7W7+f3CMZjNpmCHJSIip7h2SUr87W9/C/x/2bJl9OrVi507d7JhwwYuuOACNm7cyKRJkxg5\nciSLFy+mvLwci8XCjh07uOmmm9ojJBFpgsvjbbJy/5zJ/VuVTPD6fKzcksvOnAKKy104YxykD0pk\n/rQBWMx6ciunptrScvYvW86hJ1ZiuNxE9HbSL6Mf3YYkYfQfjXvkNIiMrb+grxaOFEJ1sX/a4oCo\nJLBHgem/N5YOm4XEhEglgKRBowYmcOaQJD7YfZjXtueTeUbDrVpFREQ6SruOvnGsq6++mt/97nes\nXLmS5ORkZs+ejc1m4/rrr+fKK6/EZDLxy1/+kuhoPYER6WjHVu4/3slU7l+5JbdO64uicldg+mRb\nX4iEGl91DYeWP8f+ZcvxllVgj48m5YI0ktJ74eszmNpRmRhx3RtY0AtVRVBdBIYBZps/GeGIqZOM\nEGmuBRmD+PzbEl548yvSByaQ0C082CGJiMgprN2TEldffXXg/8uXL6/3fnZ2NtnZ2e0dhog0ITbK\ngTPGQVEDiYnjK/c3tytGe7W+EAk1htdL4fOvsu/PD+M+cAhrVBgp5w6m1/g+kJyCJ30GRveUBhb0\nQVUxVBX6/2+2QmQChMcpGSEnJSbSziXTB/Loms95cv0erps/CpM+UyIiEiQd1lJCRDq3tD5xvPvp\nwXqvH63c39KuGO3V+kIkVBiGQenmt8lfsozqL77GZLfSe+oAep+TgqVHT7zpmfhOG1I/wWAYUFPq\nrxvhqwWTGSKTIMLp/38Tajwm8kptFHsMnLZ23DkJeeOGdef9zw/xyddFvPvpQSaO6BnskERE5BSl\npIRICDvZApLHJxrC7P51uNxenDFhpA9KYP60AUDLu2K0pPWFSFdTuf0T8v60jIr3d4DZRPez+tJ3\nWj/sPb8f3rN/ev3hPQ0DXOX+ZITXDZggIh4iEhoeCvQYrloTe0ts7C+3YmACq4Ezrv32T0KfyWTi\nsqw0Fj++lRWvfcnw1HhiI+uP8iIiItLelJQQCUFtVUDy+ERDjdsLwMThPViYlRZIdLSmK4bDZiF9\nUGKd9R91tPWFSFdTnfst+XfeT8la//CezhG9SMnoR8RpiXiHT8I9eBxYj7vxMwxwV8KRw1D7fRIv\nPA4iEsHS9M+02wt5JTb2ldvwGSbCrD5SnG6G9wvjmMGtRBoUHxvG3Mn9+eemHP658Qt+Pnu4unGI\niEiHU1JCJAS1RQHJphINe/aW1plubVeMo60sduYUUlJRQ1x03dYXIl2F+1Ah+5Y+QsGzL4HXS3Rq\nIv1mpBLTPxHv4HG4h58Djga6K7mP+JMRnmr/tCMWohLB0vQTa48X8sts5Jfa8BomHBYffZ1uekTX\nYjahG0tptqmje/HB7kNs+6KArbsPMW5oj2CHJCIipxglJURCTEWVm+17Tr6AZEsSDa3timExm1mQ\nMYg5k/ufVDcTkc6qtrySgw8+xcFHnsVXXUN4z26kZKbiHNodo3+6f3jPqG71F/TU+JMR7kr/tD3K\nP6KGNazp7flgX5mNvFIbtT4TNouPfnFuekbXYtEou9IKZpOJK88dwi1PfMgzG3IY1LsbzpimP4ci\nIiJtSUkJkRBxtMvGtj2HKa10NzhPSwpItiTRcLJdMRw2i4paSpfic7k5/PQL7P/rY9SWlGHrFknq\nzOH0GPv98J7pmRhxDTxxrnX5a0a4yv3Ttgh/MsLW9PfD64P95Vb2ltjx+ExYzQapTje9Yj1KRshJ\nS4qLYP70ATy1/guWr93Nr+ePwqzWNiIi0kGUlBAJEcd32WhISwpItjTRcKKuGCdbdPNkBHPbcmox\nfD6KVm8g/64HceftxxLhoG92Gr0m9sWUnIJndCPDe3o9/mREzfddo6xh/hE17JFNDu/pM+BAuZXv\nSmy4vWYsZoOUODe9u3mwKhkhbWjyyGQ++rKQj78q4vUd+5g+pnewQxIRkVOEkhLS5XTFG9Sm6j8c\nq6UFJFtS86Gxrhhen49nN+ecdNHN1mirgp8iJ2IYBuX/2Uren+6j6rMcTFYLyeek0mdKPyw9kxsf\n3tNXC1VFUFUMGP5aEZFJ4Ig+YTLiUIWVb0tsuGrNmE0Gfbq5Oa2bhy7yZ006GZPJxI9mDuYPj3/A\n86/nMjQljp7xkcEOS0RETgFKSkiX0ZVvUJuq/wAQF+VgzODEFheQbE3Nh+O7YrRF0c3WCua25dRx\n5OPd5N2+jPK3PwCTicSxfUiZ3g9Hr+6ND+/p80F1kT8hYfjAbIXIRAjr1mQywjDgcKWFb0vsVHvM\nmEwGvWM99Onmxq5fbGlnsVEOLstK44HVn/LYms/5/cIxWNU/SERE2pkucaTL6Mo3qE3Vf+gWZeeP\nPz6D6IjWjy/f2poPrRkqtK0Ec9tyaqj5Np/8ux6g+KWNAMQN7UlKZiqRfRPxDpuEe8j4Bob39EF1\nCRwpBMMLJgtEdfcP8Wlq/ObOMKDwiIVviu1UecyYMEiO8dA3zoPDarTnborUMXZwEuOH9eC9zw6y\n9r3v+MHZ/YIdkoiIdHFKSkiX0NVvUJuq/zB2cNJJJSRORmuHCg31bUvX5iksZv/fHufw0y9geGqJ\n7BtP6oz+xA5Kwpt2Fu4Rk+sP72kYUFPmrxvh8/gTEJGJEO6s34riuMWKqyx8U2yj0m0BDHpE+5MR\n4TYlIyQ4Ls0cyJ69Jbz8zreM6B9Pv54xwQ5JRES6MCUlpEs4FW5QW1L/oaO0dqjQUN+2dE3eI1Uc\nfPifHHjwaXxHqghLiiElI5X4ET0xBozCPXJ6/eE9DQNcFf7hPb1uwORPREQm+LtsNMIwoLTazDfF\ndspd/mREUlQtKXFuIuxKRkhwRYTZuPLcIfxlxUc8tuZzbrniDOwhnNgXEZHOTUkJ6RJOhRtUi9nM\nnMn9OWdkMhgGiXERQW/9cbJDhYbqtqVr8XlqKXh2NfuXPoqnoAhbbAT9LhhKjzNPw+jbxPCe7kqo\nPAy1Nf7psG7+1hEWW5PbK/s+GVFa4/+MJkT6kxFRDiUjpPMYmuIkY2xvNm/LZ9UbX7EgM7S7QYqI\nSOelpIR0CV39BjWYRTxPNJpJMFtwdMbWIxI6DMOgZM1r5N15P65v8jCH2eiTOZBek1IwJ6dQO3oG\nRo8G+tN7qv3JCM8R/7Qjxp+MsDad/CyvMfNtsY3iav9PrzOiln5OD9EOX1vvmkibmDu5P599U8zm\n7fmMHJjAsBRnsEMSEZEuSEkJ6TK68g1qMIp4NjcR0poRPNpKMLctoa383W3k3X4fRz76HJPFTM8J\nKfSZloq1VzLeUZl4+gytP0pGrcvfTcNV4Z+2R/qH97SFN7mtSpeJb0vsFB7x/+R2C/fSz+kmNkzJ\nCOnc7DYLPzl/KH96ajtPvLqb2648k4iwplsCiYiItJSSEtJldNUb1GAV8WxpIqS1I3i0hWBuW0JL\n1edfkrdkGWVb3gUgYVRvUjJTCTutO7WnT8MzYHT9wpRet7+AZU2Zf9oaDlFJ/qREU9ty+5MRhyst\ngImYMC/94tzERSgZIaEjpUcM509MYfVb3/DMphx+ev6wYIckIiJdjJIS0uV0tRvUYBTx7Oqjmcip\nx5V/gPy7H6TohXVgGMQO6k6/GalEpXb3D+85eDzYjhvFxlfrH9qzutg/bXF8n4yIqt+K4hjVHhPf\nldg4WGEFTETZvfRzenBGeJtaTKTTOnd8X3blFvH+Z4dIH5jIGYOTgh2SiIh0IUpKiHRywSjieSqM\nZiKnBk9xKQeWLefQ8ucw3B4iezvpNyOV2MHd8Q0eh3v4ORB2XIsHnxeqiqC6yD9MhtkGUYngiG0y\nGVFTa2JviY0D5VYMTETYfPRzukiIVDJCQpvFbOYn5w/lj098wFPr9zCwdyzdukABaRER6RyUlBDp\n5IJRxPNUGM1EujZvVQ2HHl/Bgfv/gbe8EkdCNCnTh5AwqhfGgJF4Rk6HqLi6Cxk+qCr2JyQMr39I\nz8gECI9rMhnhroW9pXb2lVsxDBPhNh8pcS6SopSMkK6jhzOCi6YO4J+bcli+dg/XXnQ6Jn3ARUSk\nDSgpIRICmlvE80QjZTRXVx/NRLouo7aWwufWkH/PI3gOHMYaFUbqeYPpOb4PRp/vh/d09jxuIQNq\nSv11I3y1YDL7C1hGOP3/b4THC3mlNvLLbPgMEw6rj5Q4N92jazHrXk26oGmje/FRbiGffF3Efz7a\nz5T0XsEOSUREugAlJURCwImKeLbHkKFdeTQT6XoMw6B0w3/Iu+N+ar78BrPdSu9p/TntnH6Yex8d\n3jP1+IXAVe5PRnjdgAki4iEioX6xy2PU+iC/1EZemQ2vz4Td4qNvnJueMUpGSNdmMpn48awh3Pz4\nVlZs+ZIhKXF0V1c+ERE5SUpKiISQxop4tseQoV11NBPpeio++Ii8Py2j8sNdYDbRfVxf+k5Pxdar\nF970DDx9htXtfmEY4K70D+9Z+30XpfA4fzLC0vhwh14f7CuzsbfURq3PhM1skBLvIjmmFkvrcn8i\nIScu2sHCGWk8/PJnPLbmc268dHSrk98iIiKgpIRIyGvvkTIcNguxUQ4lJqTTqc75mrw77qd0w38A\niD89mZTM/oT36UHtyKl4Boyp3+LBXQVHDoGn2j/tiPUXsbQcN/LGMbw+OFBu5btSOx6vCavZoJ/T\nTa9YD9ZOeC/m8ng5UHgEr8er76u0i7OGdmfnlwV8sPsw697fy3kTUoIdkoiIhDAlJURCXHuOlNEe\n3UJETpb7wGH2/eVhCla+Aj4fMf0T6ZfVn+gBPfAOPRv3kPFgO64Yq6fG3zLCXemftkf5h/e0hjW6\nHZ8BB8utfFtiw+01YzEZ9I1z0zvWQ2e816/zfa1w4YzW91Xaz8IZaeTklfLS298wIjWevj2igx2S\niIiEKCUlREJce46U0R7dQkRaq7asggP3P8nBx/6FUeMivGc3+s1IJW5YT3xpZ+EeMbn+8J61bn8y\nwlXun7ZF+JMRtsYTdT4DDlf4kxE1tWbMJoPTurk5rZsHeydMRhyl76t0pKhwGz+eNYSlz+3isTWf\nc/MVY7FZO/EXREREOi0lJURCXHuNlNHe3UJEmstX4+LQP55n/31P4C0txx4XSd/zBtJ9dC98A0bh\nGZkB0ccN7+n1wJFCqCnxT1vD/CNq2CMbHd7TMKDgiIVviu1Ue8yYMOgV66FPNw8Oq9HOe3ly9H2V\nYBieGs/U0b14fcc+Xnzza+ZPGxjskEREJAQpKSHSBcydksoXe0vZV1CJzwCzCXolRjF3SuqJF25E\ne3YLEWkOw+ul6MV15N/9EO59B7FEOEiZmUbyxL6Y+qbhSc/EcCbXXchXC1VFUFUMGP5aEZFJ4Ihu\nMhlRVGXhm2IbR9wWTBj0jPHQN85DWCdPRhyl76sEy7wpA/j8m2I2fpDHqAEJpPWJO/FCIiIix1BS\nQqSTaU2RulVvfE3e4crAtM+AvMOVrHrj61Y3227PbiEiTTEMg7LX3yXvT8uo3p2LyWah1zmpnDa1\nH5ajw3v27F93IZ8Pqov8CQnDB2YrRCZCWLcmkxEl1f5kRIXLAhh0j/KQ4vQQbguNZMRR+r5KsDjs\nFv7n/KHc8fQOHluzm/+78kzCHbq8FBGR5tOvhkgn0doide3VbLu9uoWINKXyo8/Iu/0+Kt7dDiYT\nSWecRt/p/XH06UXtqAw8fYeB6Zjvg+GD6hJ/Vw3DCyYLRHX3D/Fpavx7U1pt5ptiO2U1/s9xYmQt\nKU43kfbQSkYc1RW/rzk5OfziF7/giiuuYOHChXz44YcsXboUq9VKREQEd999N7GxsTz22GOsX78e\nk8nEVVddxeTJk4Md+imnf3Is547vyyvvfsuzm3O48tyhwQ5JRERCiJISIp1Ea4vUlVW6Gnw6ClBc\nfnLNtudPGwD4kxslFTXERYeRPigh8LpIW6n5ei/5dz1A8SubAYgb2oN+MwYQ0a8HtadPxT1wbN3h\nPQ0DasrgSAH4PP4ERGQihDvrDwN6jLIaM98W2ymp9s8TH1FLP6eHKIevXfevI3Sl72tVVRW33XYb\n48ePD7x2xx138Je//IXU1FQeeughVq5cycyZM1m7di0rVqygsrKSBQsWcPbZZ2OxhF4SJtSdPzGF\nj78q4p1PDpI+MJHRgxKDHZKIiIQIJSVEOoGTae0QG+UgzG6mxl3/pspht5xUs22L2cyCjEHMmdyf\nskpXYF1FZTXERjlC8umrdC7uw4Xs/+tjFPzz3xi1XqJT4knJ6k/soJ54h52Ne8iEusN7Gga4K6Cy\nALwuwORPREQm+LtsNKLCZebbYhtFVf554sL9yYiYsNBPRhx19Ps6YVg/wsKtxEX6QvY7arfbefTR\nR3n00UcDr8XFxVFaWgpAWVkZqampbN26lUmTJmG323E6nfTq1Yvc3FzS0tKCFfopy2ox8z/nD+XW\n5R/y5Po9DOgVS0ykPdhhiYhICFBSQqQTOPkidQ33mW9LXp/Bc1u+5OOviigud+GMaV73EpGGeCuP\ncODBZzj48DP4qqoJ6x5Lv8xUnKcn4xt0pn94z/Cougu5K6HyMNTW+KfDuvlbR1hsjW7niNvEt8V2\nCo74f+5iw7z0c7rpFt51khEAPsNgz7deXt/u5uv9PlKSfVw9N3TrSFitVqzWupcoN910EwsXLiQm\nJobY2Fiuv/56HnvsMZxOZ2Aep9NJQUGBkhJB0ishkrlT+rPitS/5x7o9XD1nBKZGarqIiIgcpaSE\nSCdwMkXqyipduNzeBt9ze7wn1X3j2DoXx8fW3O4lIsfyuT0cfvoF9v/tcWqLSrDFRpB64TC6n9Eb\no/9IPKMyINpZdyFPtT8Z4Tnin3bE+JMR1sa/F1UeE98V2zlUaQFMRDv8yYi4cF9jdS9DkqfWYMcX\ntfxnh5tDJf56GGl9LFwyKwZoONEZqm677Tb+/ve/M2bMGO666y6effbZevMYxolrgsTFRWC1tk8L\nksTE6HZZbyi5JHsIn39Xwke5hez6poTMs/p26PZ1DoJP5yD4dA6CT+egZZSUEOkETqZIXXtW3T++\nzkVDGute4vo+IaJuHgJg+HzsX/kqn//vPbi+24cl3E7fGQPpNSkFU9/B1KZnYsQfN7xnrQuOHAZX\nhX/aHukf3tMW3uh2ajwmviuxcaDCCpiItHvp5/QQH+HtUsmIqhqDdz/x8PYuDxVVBmYzjB1sZfJo\nG8kJFhIT7RQUdK2kxBdffMGYMWMAmDBhAq+88grjxo3jm2++Ccxz6NAhkpKSmlxPSUlVu8SXmBhN\nQUFFu6w71CzKHMTNeSU8vPoTejnDSezW+He2LekcBJ/OQfDpHASfzkHDmkrUKCkh0kkcX6QuNtLB\nqGYUqWuvqvtN1bk41vHdS+qMIqJuHgKUvbmVvD8to+qTPZisFnqenUKfqalY+/RreHhPr9tfwLKm\nzD9tDYeoJH9SohGuWhN7S2zsL7diYCLC5iPF6SIxsmslI4rKfLz5kYcPPvPgroUwO0wdY+Ps0210\ni+7a36+EhARyc3MZMGAAn3zyCX379mXcuHEsX76cq6++mpKSEg4fPsyAAaFX2LOriY8N49LMQTy2\nZjePr/mcGxaMxmzuQl9EERFpU0pKiHSgploPWMxm5k8bgNfrY9f3dRs+zi3EYjad8Ia+pVX3m9OK\noak6F8c6vjVGa0cRka7nyCd7yFvyd8r/8z4AiaN70zejP2F9e1Gbnll/eE9frX9oz+oSwACL4/tk\nRBSNZRbcXsgrsbGv3IbPMBFm9ZHidNM9qrZLJSPyDnl5fYeHj3NrMQyIjTKRNcrGuGE2whxdaEe/\n9+mnn3LXXXexb98+rFYrGzZs4NZbb2Xx4sXYbDZiY2NZsmQJMTExzJs3j4ULF2IymfjjH/+IWcnP\nTmH8sB7s/LKQ7V8UsOHDvczs4G4cIiISOpSUEOkAzW09sHJLLq/v3B+Ybu4NfUOjZDSUbGhJK4am\nuoUc69jWGCczioh0Ha69+8i/60GK/r0egG5p3emX1Z/oAb1wj5iCe8AYsBzz8+PzQlURVBf5R9cw\n2yAqERyxjSYjPF7IL7ORX2rDa5hwWHz0dbrpEV1LV3kge7R45Rs73Hy1z1+YMznBzJTRNkYNtGKx\ndJEdbcDw4cN5+umn672+YsWKeq8tWrSIRYsWdURY0gImk4nLstL4Mr+Mf7/5NSP6xdM7KerEC4qI\nyClHSQmRDtCc1gNtcUPvsFmaLGrZ3DiOJjYa6xYCEB9TvzXGyY8iIqHMU1TC/nuf4PCTz2N4aok8\nLY5+MwbQbWgy3qETiZzJyMEAACAASURBVDoni8Iyz38XMHxQVexPSBhe/5CekQkQHtdoMqLWB/vK\nbOSV2qj1mbBZfPSLc9MzuhZLF3lAXltrsP244pWD+liYOtrGwNMsGs1AQkZ0hJ0fzRzMvas+5tE1\nn7P4srHYrF3kiyoiIm1GSQmRdtbcZEN739CfKI7Zk1JZ/dbXdVpRjByYwPQxvfjoy6JAt5DTB8ST\nMaY3zpiwekmS9iy6KZ2Xt6qaQ48+y/77n8JXeQRHQjQpmakkjOyFMfhM3COmQHgUJnsY4PG3hqgp\n9deN8NX6u3BEJkGEs253jmO34YP95Vb2ltjx+ExYzQapTje9Yj1dJhnRUPHKMYOtTPm+eKVIKBo5\nIIFzRibz5q79vPT2N8yd0v/EC4mIyClFSQmRdtbcZEN739CfKI5/bcrhnU8PBl4rKnexZfs+Msb2\n5vafnNWskTTaq+hmWzu2NYi0nlFbS8G/XmLfPY/gOVyENTqMlB8MoedZfTAGjMQzcjrExP93fsPw\nF688UuAvZokJIuIhIgHMDX82fAYcKLfyXYmN/8/enQe2UZ77Hv+OpJFsWbblNXHiTYnjLGR1FpKQ\njcQOYWtoS4FCe4BS2nNCz7m3p7fLLS0tFAocynLZWkqBsLVNSSmltGwGghNIQhJnD3EWsniJd9ny\nJmk0mvvHOI7teJFjyZLt9/OX5UjjV7KteJ55n9/jVQ0YDRrZCV7S7Qoj5YJrvctP0W6F7YcUvIoe\nXrkiT2bprJEfXimMDjesyuHzU/W8vf0Us3KSmJRuD/eSBEEQhAgiihKCEGKBFhtCfULf1zrsNguH\nTzt7fNzZ3RyB7tIYaOjmUOopU+OSWeO5elGmmAwyAJqm4Xz7I8p+/STuL05jsMhkrJpI+jIHhuzJ\n+kSNpPGdHwDeZhq+OAnu9nGM0Ql6McIo9/g1/BpUNZk46ZTx+AwYJI1Mu5cMu0KE1LYGrbRKZVOx\nwt7O4ZUXy1x8kUz0CAyvFEavKLOJb181jQdeLeYPbx3il7cuINoi/gQVBEEQdOJ/BEEIsYEUG86e\nuO87XkdtQ1tQT+j7WseUrAS2dtol0dlAW0cCDd0Mh54yNd7c/AWtbV4xGSRArm3FlN77OC3FB8Bg\nYOyiLLJWTcSUlY1vzmrUcd1+Vr2t0FIFShs+0MMrbSlgNPd4fE2D6mYjJ51m2hQDkqSRHq+Qafdi\nHgH/Y50Lr1Q4Xq4CkJZs4NJREF4pjG6T0u1cfnEW/9p2ig0fHuOWy6eEe0mCIAhChBjQn3hHjhzh\n9OnT5Ofn43K5iIuLC9W6BGHEUP1+NE0jymzE7dVPQqLMRhbPGHteseHsCf13vxrN8ZN1QT+h720X\nwzVLHZScdga1daRz6GYgI0hDTUwGGZzWw8co+/VTNBRuBiBp1jiyC3KIdqTjm52Pkj29ax6E4oaW\navA267fNNhIyHDib1B6Pr2lQ22LkRL2ZVsWAhMa4OIWsBAWLSQv10wu5jvDK3QpV9fokjdwMIyvm\nyuSK8EphlLhmqYP9X9RRtLeC2ZOSmZ2THO4lCYIgCBEg4KLE+vXreeutt/B6veTn5/P0008TFxfH\nunXrQrk+QRj2Nnx4jA92lXf5nNurYpCkXlsGosymoE2p6F4Q6G0XQyhaRwYygjTUxGSQC+Mpq6T8\nN89Q+9pboGnE5aTguCyH2Enj8c1cgXfSvK7jPX1evRjhcem3ZSvYUkG2YoqyQlNTl+NrGtS3GjlR\nL9PsNQIaY2P1YkS0PPyLEa1uja37FTZ3D6+cIzMuRRTBhNHFZDRw+1XTuOfFHax/+zC/um0Bsdae\nd00JgiAIo0fARYm33nqLv/zlL9x8880A/OhHP+KGG24QRQlh2AjH1fpwXp3vqyDQ0+jQUGRBBDKC\ndKiIySAD43M2UvHkeqqe34Dm8WIdZ8dx2UTsF43Hf9ESvNMuAbnTa6Yq0FIL7vZsElOUPlHDHNPj\neE9Ng4Y2Ayfqzbg8ejEi1eYjO8GL1Tz8ixH1Lj9FexS2H9TDKy2yHl65ZJZMggivFEax9FQbX142\ngdc+Os5L75aw7prpYqeQIAjCKBdwUSImJgZDpyubBoOhy21BiFThvFofzqvzAy0I9JcFMdCiTqS1\nSwyXySDh5m9zU/X8BiqeXI/a2IQ5MYbstZNJyctAm7IApX2857kHqNBaC631gKZnRcSkgiW2x2IE\nQGN7MaLBrb/myTF6McJmGf7FiNJqPS9i31Effg3iYyRWXyyzUIRXCkKHy+ZnsvdoLbtKath6sJLF\n09PCvSRBEAQhjAIuSmRmZvLkk0/icrl47733+Ne//sXEiWLWtBD5wnm1PlxX5wdTEOi+i+JCizqR\n2C7R026QS2aN4+pFmUO6jkikqSq1r/2T8oeewXumClOMBceVUxi3qH285+z8LuM98fuhrQ5a60Dz\ng8EEMSkQZe+1GFHfrLGvwkJ9m/5fT6LVhyNRIdbiH4qnGDKapnH4lF6MOFbWHl6ZZGBFnszsXBMm\nEV4pCF0YDBK3XTWNu57/jFffP8LkjASS4qPCvSxBEAQhTAIuStx111289NJLjBkzhjfffJO5c+dy\n0003hXJtgjBo4b5aH66r88EsCFxoUSdUBZnBtOH0tBskfZydmpqm/h88QmmaRkPhFsp+/QRtJV9g\nkE2kr5hAxooJGBw9jff0Q1sDtNSApoJkBNsYfcSn1HORqtkjcdJpprZFA0zYo1UciV7io4Z3McLn\n0yg+4uPjYoXK9vDKSRlGLs2Tyc0U4ZWC0JcUezQ3rprEC28f5rl/HuL/fH0OBvE7IwiCMCoFXJQw\nGo3ceuut3HrrraFcjyAEVSRcrQ9FVkN/glUQGOyOi2AWZILZhtNTpsZo1LRzH2X3PUHT9t1gkBiz\nIIOsVRORHQ58eZehpk08t+tB08DdqBcj/IpegLAmgzUJDD1/L1u9ejGiutkISCTZID22jQTr8C5G\ntHk0Pt2vsGWvgqulPbxysonleTLjRXilIARsycw0dh+tZc+xWgp3lrF6fka4lyQIgiCEQcBFiWnT\npnW56iNJErGxsWzfvj0kCxOEYIiEcMP+shpCIVgFgcEWdYJZkImk0Mzhru3YScoeeArnvz4CIPGi\nsWSvzsE6MQPfnHyU7Bnndj1oGniboLkGVA8gQXQixCTrLRs9HV+ROOWUqWwyARI2s4ojUWFyVjS1\ntcO3IFHv8rO5PbzS0x5euXyOzNLZIrxSEC6EJEnccvkUfv7cdjZuOs5FjkTGJ8eEe1mCIAjCEAu4\nKHH48OGOj71eL1u3bqWkpCQkixKEYImkcMOhvjofjILAYIs6wSrIhLsNZ6TwVtZQ/sjvqfnTm6Cq\nxDqScFyWQ9yUdNQZK/Dmzu863tPbAs1V4HPrt6Psem6EUe7x+G6fxGmnzBmXCQ0Jq+zHkeghOUZF\nkhi27Qxl7eGVezuFVxYskFk4XYRXCsJgxcWYuXnNFJ58fT9/eOsQd35zLiajKPIJgiCMJgEXJToz\nm80sX76c559/nu985zvBXpMgBFU42iciQTAKAsEq6gy2IBMJbTjDmc/VTOVvX6LymVfxuz1Ej40j\ne3UOiTM6jfc0dwqZU9qguRqUFv22JU4vRph6LkJ5fXC6wUy5y4SmSUTLfrITPKTa1N4yLyOeCK8U\nhKGTl5vCJTPG8sn+Sv7xyUm+vGxCuJckCIIgDKGAixIbN27scruyspKqqqqgL0gQgi0c7RORZLAF\ngUgo6kRCG85w5Pd4qX5pIxWPPYfP2YjZbiXryumkzmsf7zlzBUTHnnuAzwMt1eBpD/40x+jjPeXo\nHo+vqFDaIFPWKOPXJCwmP9kJXsbE+jAM03N2n6pRXOLj490KlXXnwitX5MlMFuGVghAyN+bncvhU\nA//ceoqZOUlMHBcf7iUJgiAIQyTgosSuXbu63LbZbDz22GNBX5AghIoIN7wwkVDUiaQ2nOFA8/up\ne+Ndyh78Ld7SCozRZrLX5DLukmyYNBPf7Hy0uORzD1C9eoClu1G/bYoGW6pelOiBzw9lDTKljTKq\nX8Js9JOV4CUtbvgWI9o8Glv3K2w+G14pQd5kE8vnyKSnip8vQQi1aIuJb181lf/5427+8I9D/PLW\nBVjM4ndPEARhNAi4KHH//feHch2CIES4cBd1ImHHRqTTNI3Gj7dRdu8TtB46gmQyMm5JNpkrJ2Kc\n0D7eMzn93AP8PmiphTYnoIHR0l6MsNFT34Xqh/JGmdMNMj6/hGzQyE7yMC7Ox3BtARfhlYIQOSZn\nJrB6QQbvflbKXzYd45urJ4d7SYIgCMIQ6LcosXz58j63q27atCmY6xEEQehRJOzYiGQt+z6n9N7H\ncW3ZAZJESt54sgtyME904JtzGcq4nHOFBr8KrXXQVqdP1zDIYEsBS3yvxYgzLhOnGswoqoTJoOFI\n9DI+XsE0TM/by6pVNu1W2HtED6+Mi5HIXyCzSIRXCkJYfWXZBA6cqOej4nLm5CQzfUJSuJckCIIg\nhFi/RYk//vGPvf6by+UK6mIEQRg8j6KO6JP2cO/YiDTuk2WUPfAU9W++D0DClFSyL5tEzKRMfLNX\noThmdhrv6Ye2emipA00Fg1EPsIxO6LEY4deg0mXipFPGqxowShpZCV7S4xWG44+WpmmUnNKLEUdL\n9fDKse3hlXNEeKUgRATZZOT2q6bxqxd38vy/Puee2y7GFt3zxB9BEARhZOi3KDF+/PiOj48dO4bT\n6QT0saD33nsvb7/9duhWJwhCr7oXH1S/nw0fHmP3kRrqXR4S4yzMyU3h+pU5GA3D9HK20Cultp7y\nR/9Azct/RfOp2DITcFw2ifiLMlBnLMebu+DceE9NA3eDnhvh9+lFiphUsCaeK1h04tegukkvRrh9\nBgySRobdS4ZdYTi2ePtUjd1HfGwq7hZeOUdmcpYIrxSESJM5Jpa1Sxy8XvQFr7xXwr+vnR7uJQmC\nIAghFHCmxL333ssnn3xCbW0tmZmZlJaW8q1vfavX+7e1tfGTn/yEuro6PB4P69atY8qUKfzoRz9C\nVVVSUlJ46KGHMJvNvPnmm7z44osYDAauu+46vva1rwXlyQnCSNRb8UHTND7YVd5xvzqXpyMY8sb8\n3HAtVwgytaWVymde5cxvX8bf0kpUSizZBRNJmpOBf9oleC9acm68p6aBx6UXI1QvIIE1CazJ+i6J\nbjQNalqMnKg306YYkNAYH6+QaVewmLShfaJB0ObR2HpAYfOec+GVcyabWCHCKwUh4l2+MJO9x2v5\n7PNq5kyq4uJpY8K9JEEQBCFEAi5K7N+/n7fffptvfvObvPzyyxw4cID333+/1/t/9NFHTJ8+ndtv\nv53y8nK+9a1vkZeXx4033sjll1/OI488wsaNG7nmmmt46qmn2LhxI7Isc+2111JQUIDdbg/KExSE\nkWbDh8e6TKE4W3yI6uUS9u4jtXx1+cQR2coxmvgVHzWv/o3yR57FV1uPHBeN45ppjLk4C6bMR5lx\nKVjbx3tqGnib9WKEz61/LjpBL0YYz98GrWlQ12rkRL1Mi9eIhEZanEJWgkLUMCxGOJv08MptB86F\nVy6brYdXJsaJXUOCMBwYDQa+fdU0fvn8Dl5+t4TcDDsJsWL8syAIwkgUcFHCbDYDoCgKmqYxffp0\nHnzwwV7vf8UVV3R8fObMGcaMGcP27du5++67Abj00kt5/vnncTgczJgxg9hY/Y/pvLw8iouLWbly\n5QU9IUEYyZpavew6XNPjv7m9ao+fdza5aWz2iByGYUrTNJxvfUDpA0/hOVGKIUomMz+H9GUOmDQL\ndfYqtPiUcw/wtkJLNSit+m1LvJ4bYTL3cGxwtunFiCaPEdAYY1PITlSIlodfMaKsWuXj3Qp7OodX\nzpdZNEOEVwrCcDQmwcr1K3N46d0Snv/X5/z3dbNEu5UgCMIIFHBRwuFw8OqrrzJv3jxuvfVWHA4H\nTU1N/T7uhhtuoLKykt/97nfceuutHcWNpKQkampqqK2tJTExseP+iYmJ1NT0fNJ1VkKCFZOp61Xf\nlJTYQJ+KMAjidR46nV9rVfXz/D8OsmVvOc5mz4COk2yPJn2cnVa3j4Q4C1HmgH/tR41I/bmu3bSN\nkv/7Gxp37kcyGkhblEXmqolET52GZenVmNKyO+7rc7fQUlWGt7kBAHOsnZjUDExRPRejalwaB0s1\natvfxtMT4aIMA3HRFiB0VyOD/Vprmsb+Y17+taWZQ194ARifauKKS2JYNDMak2n0nsBE6s+1IAzE\n8tnj2HOsln3H6/iwuJxVc9P7f5AgCIIwrAR8dnLPPffQ0NBAXFwcb731FvX19Xz3u9/t93F//vOf\n+fzzz/nhD3+Ipp278tb54856+3xnTmdrl9spKbHU1PRfIBEGR7zOQ6f7a/3HwiNdWjZ6EmU29rhb\nwiIb+V8PfyTCL3sRiT/XrQePUPrrJ2n86FMAkmeNI3t1DpacCah5q2kdN4lWSYKaJvB59Z0RnvZp\nSLIVbKl4ZSveJhW6FY8b3QZO1ptxtumF3SSrD0eigs3ix9MMNc2he17BfK19qsae9vDKM+3hlTnp\nRlbkyUzJMiJJKk5nCJ9MhAvlz7UodghDSZIkbrl8Cj//w3Ze++gY07ITSEuKCfeyBEEQhCAKuChx\n3XXXsXbtWq688kq+9KUv9Xv/AwcOkJSURFpaGlOnTkVVVWJiYnC73URFRVFVVUVqaiqpqanU1tZ2\nPK66uprZs2df2LMRhBHIo6jsPtL37iGAxTPGYpAkdh+pxdnkJiHWgtlkpLT63InZSA+/HO7jUD2l\nFZQ99Dvq/vo2aBrxk1JwrJmEbXImvtn5KNkz4WwxSVWgtRba9IlImKL0iRrmmB7HezZ5DJysl6lr\n1d/2E6L1YkRclH+onl5QtHk0trWHVzaeDa/MNbE8TyZDhFcC0OBSsEQp4V6GIASN3Wbh39ZM4bdv\nHOAPb33OT7+ZJwrrgiAII0jARYkf//jHvP3223z5y19mypQprF27lpUrV3a0Y3S3c+dOysvLufPO\nO6mtraW1tZWlS5fy7rvvsnbtWt577z2WLl3KrFmz+NnPfobL5cJoNFJcXMxPf/rToD1BQRjuGps9\n1Lt6b9lIsFmYO+Xc7ocrFmbyyrtH+KKigTO9PG6khV8O93GoSn0DFY8/T/X619C8CjHj7TguyyF+\negb+mZfinTz/XEClX9WLEa31gAZGs16MsMT2WIxo8UqcrDdT06K/3cdHqTgSvdijh1cxont4pVmE\nV3bh82ns2t9IYVEtxftcTJscx69+lBPuZQlC0Myfksrui8aw7WAV/9x6ii9d4gj3kgRBEIQgCbgo\nMXfuXObOncudd97JZ599xptvvskvf/lLtm3b1uP9b7jhBu68805uvPFG3G43d911F9OnT+fHP/4x\nGzZsYNy4cVxzzTXIsswPfvADbrvtNiRJ4o477ugIvRQEAeJtFhLjLNT1UGCw28z88lvzibWaUf1+\n/lh4hC37zvQaennWSAu/7G0iCUT2jhC11U3Vc3/izJPrUZtasCTFkF0wleS8LPwXLUa5aOm58Z5+\nP7TVQWsdaH4wmPQAyyh7j8WIVkXiVL2ZqmYjIBFr0YsRCdH+nu4escprVD4uVth91Iffr4dXrpov\ns2i6jDVqGD2REKmoclNYVMemT+twNvoAyHFYufn6zDCvTBCC7xsFuZScbuAfn5xk5sQkssfGhXtJ\ngiAIQhAMKPHO5XJRWFjIO++8Q2lpKddff32v942KiuLhhx8+7/MvvPDCeZ9bs2YNa9asGchSBCFk\nIq0FwCIbmZOb0mOmxLwpqcRazXgUlVfeLeGTA5UBHTMhNop428gYrdZXe0uk7gjRfD5qNrxF+cPP\noFTWYLJZmHDVFMYuztbHe868FKztf2xrfmhr0Md7aipIRrCN0Ud8SufvEHArEqecMmeaTIBEjFnF\nkaiQZFWHTTFC0zSOnFb5qFjhaKleYBuTaGBFnkxermlUh1cCeLx+tu5yUlhUx8ESvT3LFmPkyvwU\n8pcmkZ1hjcisFEEYLGuUzG1XTuU3f97Ds/84xC9umY85wt7fBUEQhIELuChx2223cfToUQoKCvj3\nf/938vLyQrkuQRhykdwCcP1KfRv2ubyIKObkJnPtign8sfAIxSXV1Dd5Az7enNzkiDtRv1B9tbdE\n2o4QTdNoePdjSu9/CvfRExjMJjJWTiR9mQNp8izU2fnnxntqGrgb9WKEX9ELENZksCaB4fzvnccn\ncdopU+EyoSFhlf1kJ3pIiRk+xYiO8MrdCmdqewqvHCZPJEROnG7l/aI6Pt5aT2ubXqyZMTWWgqVJ\nXDzXjlkWbSzCyDctO5H8uekU7ipj48fHI3o3nCAIghCYgIsS//Zv/8aSJUswGs//Y/jZZ5/l9ttv\nD+rCBGGoRXILgNFg4Mb8XL66fGKXXRyBTOXoLKlToWWk6Ku9JZJ2hDR9tofSex+neec+MEiMvTiD\nzPwc5JzJ+PIuQ0vJ0O+oaeBtguYaUD2ABNGJEJOst2x041Wh1ClT7pLxaxJRJj/ZiV7G2HzDphjR\n5tHYdlBh8+5z4ZWzc02smCOTMWZkFM8uVEuryubt9RQW1XH8lD55KiFe5vKVyaxamkxaamT8fAvC\nULp2xUQOnqyncGcZs3OSmZad2P+DBEEQhIgVcFFi+fLlvf7b5s2bRVFCGNaGSwuARTZ2XPUPdCrH\nWQunpXLz5VMBqGt0R0x7ymD11d4SCTtC2o58Qemvn6ThvSIAkqaPJfuySUTlTkCdsxplfO65TAhv\nCzRXg69Nvx1l13MjzoZcdqKoUNYoU9Ygo2oSFqOfrEQvY2N9GIZJMcLZ5GfLXoWt+8+FVy6dLbNs\nlIdXaprG50dbeL+olk93OvF6NQwGWDAnnvylyeTNiMNoHCbfZEEIAbNs5NtXTeO+l3bx3D8/51e3\nLcAadf77pCAIgjA8DChTojeapgXjMIIQNsOpBeCs/qZydFdy2smvX95Fq1uJuPaUweqtvSWcO0K8\nFVWUP/x7ajb8A/x+4hxJOC6fROzUbHyzV6E4Zp0b76m06cUIpUW/bYnVJ2qYzr8K7vNDeaNMaYOM\nzy8hG/04ErykxfowDpNvY0WNyqZO4ZWxVolV82QWzRjd4ZUNjQoffVpPYVEtFVX67/bYVAv5S5O4\n9JIkEu3ipEsQznKkxXH1Jdn8fcsJXn3/KLdfPS3cSxIEQRAuUFCKEqO9z1cY/oZLC0Bnfa25J85m\nBWez0nE7ktpTBqu39pZw8DU2cebJ9VT+4c9oHg/WsXFkX5ZDwqws/DNX4J284NzOB58HWqrB0x5I\naI7RixFy9HnHVf1Q4TJx2mlG8UuYDBoTEr2Mj1eGRTFC0zQOHPPwxodtHBHhlR1Uv8aeAy4KN9ex\nY08DqgqySWLZwgQKliUzLdeGYbhsfRGEIXbloiz2Ha9l68FK5kxK5vIUMb1NEARhOApKUUIQhrtI\nbwHoSV9rHohIak8ZrM7tLUPN7/ZQtf41Kh5/HrXBhTnBStbVM0hdkIV/2mKU6UvB3F5sUL3QUgvu\nBv22KRpsqXpRovtxNTjjMnHKKeNVDRgNGtkJXtLtCqZhUIxQVY3dHeGV+k6QieONXDpXZnKWEcMo\nLWpX13r4YEsdH2yuo86pFwuz06MpWJ7EsoWJ2GLEf8+C0B+T0cC3r5rG3S/s4KV3S7h41vhwL0kQ\nBEG4AOKvHkFoF8wWgKEaK9p9zfExFpzNgbd0ANS7IrM9ZbjQVJXav75N+f/8Fm9FFUarmezLJ5O2\nJBtpynyUWSvPjff0+/RiRJsT0MBoaS9G2OieSunXoKrJxEmnjMdnwCBpZNq9ZNgVhkP9yO3R2HpQ\nYfMehcZmDUmCi6dHsegiadSGVyqKn892N/L+5lr2HWpC0yA6ysDqFckULE1iYrZV7DwUhAFKS4rh\na5fm8Or7R/jNK7v4r69OH/YtiYIgCKNNUIoS2dnZwTiMIIRVMFoAhnqsaPc1R1tM3LN+R8AtHQAW\nszEi21MinaZpNH74CaW/fpK2z48hyUbSlztIXzEBw+RZqHPy0eJT9Tv7VWitg7Y6fbqGQdYDLKPi\nzytGaBpUNxs56TTTphiQJI30eIVMuxfzMCgjNzT52bxXYdsBBbe3PbxylszS2TJTcuKpqWkK9xKH\n3OnyNgo317Hp0zqamvXWlamTYshfmszi+XaiLKOzSCMIwbIybzyfn3JSfKSGv378BdddOnImTAmC\nIIwGAf+JW15ezoMPPojT6eTll1/mL3/5CwsWLCA7O5t77rknlGsUhCE1mBaAcI0V7bzmYLR0CH1z\n7thH6b1P4N6xGyRInTeerPxJmCdPwTdnNb7UTP2Omh/a6qGlDjQVDEa9GBGd0GMxorbFyIl6M62K\nAQmNcXEKWQkKFlPkhwlX1LaHVx45F1556VyZxaM0vLLNrfLJDieFRXWUHNfbVuJiTaxdk0r+0mTS\n06LCvEJBGDkkSeK2K6dS5Wzlne2nmZAWx7wpqeFeliAIghCggIsSP//5z7npppt44YUXAHA4HPz8\n5z/n5ZdfDtnihPAZqvaDkSRUY0UD+V50vs+5lo4a6lweDJLeCtAbb/tjg9G+MdJ/blqOnWT7D/4H\n247PALBPSWXCmlyip0xEzes03lPT9LyIlhq9ZUMy6AGW1kT94040DepbjZyol2n2GgGNsbF6MSJa\njuxihKZpHC1V+ahY4cjp9vDKBInleWbmTh594ZWapnH0RCuFRbVs3u7E7fEjSTBnehwFy5KYNzse\neTgEgQjCMBRtMfF/b1nADx4r4rl/fc74lBjSks7P6REEQRAiT8BFCUVRWLVqFevXrwdg/vz5oVqT\nEEZ9tR8IfQv2WNFAWkH6uk/nlo7GZg//b+O+kE0XGeq2laHmra6l4tE/UPXy69j8fqwZdiZekYua\nOY5XmhxYoufy9fTJ7cWIRr0YoXoBCaxJYE3Wd0l0omnQ0GbgRL0Zl0cvRqTafGQneLGaI7sYoaoa\ne4762FSsUFHrmKc5+QAAIABJREFUB2DieAMr8sxMyR594ZWuZh8fb63ng821nCpzA5CSZOaaNUms\nXJJESpI5zCsUhNEha2wct14xhd/9/SBPvr6fn/3bPKItw6DvTRAEYZQb0Du1y+XqCOE6evQoHs/A\nAvWEyNdX+8H/+vrccC0r7ALZARDssaKBtIL0d5+zRZBYqzmk00XC1bYSampTM2d++wqVz7yCv82N\nJdnGxMsnYZk6njebs3m/ajwKRpKO1nPtJY3I7jrw6SelRCfoxYiz4z87aWwvRjS49dc9OUYvRtgs\nkV2McHs0th1UKOoUXjlrkokVeTKZoyy80u/XOHC4ifeL6thW3IDPp2EySiyeZyd/WTIzp8ViFKM8\ne3Xy5EmRRyWExIKpY/iiwsV7O0p54e3D/Mfai0SArCAIQoQLuChxxx13cN1111FTU8PVV1+N0+nk\noYceCuXahCHWX/uB2+sb4hWF30B2APQ1onNypn1AX9ft9fXbCqJ/3Nt9as5rFwnmdJHOQtW2Ek5+\nr0L1y3+l4rHn8NU5keOimbDmIhLmZfJeWyb/qMqkVdOLDTmpMtfOsyI3l+sPtsTruRGm86+Ou9wG\nTtbL1Lfpb72JVh+ORIVYi3/IntuFaGz2U7SnU3ilCZbMklk2WyYpfvjvhBmIOqeXD9tHeVbVegFI\nT4sif1kSKxYlEh93fhFqtLr11ls7Wj4Bnn76adatWwfAXXfdxUsvvRSupQkj3LUrJnLyjIudh6t5\nNy2ONRdnhntJgiAIQh8CLkosXLiQN954gyNHjmA2m3E4HFgsIrF/JOmv/cDp8oy6GbL97QDovoOi\n84l/vcuNxayfjG89UEnJaWfALQ2Vda29TtA42woC9Pr9qnN5ePndEm69YkrH1wrGdJGe1Lvc/a51\nuIwb1fx+6v/+HmX/81s8p8oxRslkrZ7EuGUO/JPnce++eI679CtuGYkmvpJnY1amHlioyjEYY8eA\n6fwAw2aPxEmnmdoW/TfIHq3iSPQSHxXZxYgz7eGVxaM8vNLn09i1v5HColqK97nwa2AxG1i5JImC\nZUlMnhgjrsT2wOfrWsjetm1bR1FC0yJ7V5AwvJmMBv7jmun8cv0ONm46TvbYWKZkJYR7WYIgCEIv\nAj7HPHDgADU1NVx66aU8+uij7Nmzh//8z/9k3rx5oVyfMIT6az9IiLPQ1NgWhpWFR187AIpLalD9\nGvuO1Z63g+Lsif8r75bwyYHKjscE0tJwdmfG3uN1va6rcytIb98vgE8PVGKNMp33tQYzXaQnhTtL\nA1prpGss2k7pfU/Quv8wktHAuEuyyFg5EeOUWahzCtDsqTjajtBUcoZr8mwsmBCFQZIoOePlVEs0\nqxdnnXfMVq9ejKhuNgIScRa9GJFgjdxixNnwyk3FCiXt4ZWpCRIr8szkTTYhj6LwyooqN4VF+ihP\nZ6N+gp3jsFKwNJklFydgjR5eO4CGWvdCTedChCjiCKEWb7PwH2un89CfdvO7vx/gF7cuICF2ePx/\nJAiCMNoEXJS49957eeCBB9i5cyf79+/n5z//Offcc4/YfjmC9NV+MCc3mSiziaYwrCtcEx362jlS\n3+Tho+Lyjts9FRwOn3b2+NjeWho8inpeIaMnnTMg+hv/Ger2CY+isq+PAsrMnKSIb91oLD7I4R8+\niKtoOwAps8eRtXoSlilT8OWtxpfaXmxQFW5YYOOGGSkYJDhVp/D+IQ/W+HiuXzmpyzHbFIlTTpnK\nJhMgYTOrOBIVEq1q90mgEUOEV+o8Xj9bd+mjPA+WNANgizFy5aoUVi1NwpE5PHb9RCJRiBCGWm6G\nnetW5vCnwqM8/cZ+fnxjHibj6Go5EwRBGA4CLkpYLBays7PZsGED1113HTk5ORhGQKq+0FWocgcu\nRLgnOvS1c6S3MZtb9p3hmqUOmluVgCdxnH2exSXV1Dd5e11PYqyFvMldJ6FcvzKHNrev10JGqNsn\n+ircAOTPTe9yO5JGhnpOl1P24G+p+9s7ANhzU3CsmYR1Wg7qnAKU9Cn6eE+/Cq210FqPAQ1MZpSo\nJKJNZr6ZE9Xlebh9EqedMmdcJjQkrLIfR6KH5JjILUa4vRrbD+jhlQ2dwyvnyGSOjeyCUjCdON3K\n+0V1fLy1ntY2fYfIjKmxFCxN4uK5dsyy+P9uoBobG9m6dWvHbZfLxbZt29A0DZfLFcaVCaNJ/tx0\nTlS42Haoig0fHOOm1cM3fFkQBGGkCrgo0dbWxttvv01hYSF33HEHDQ0N4o+KEShUuQMXYqB5DsHW\n186RngoSAG6vyh/fP8o3L5sc8CSO7s+zJ5IE//u6WaSn2Lp83mgw8I3LJvP5qfoeCxqhbp/oq3CT\nFBdFYlx73kIEjQxV6pxU/L/nqX7xNTTFhy3dTvaaSdhnTcA3ayXKhNn6+E6/v70YUQeaHwwmPcAy\nyo4sSaTGnDum1wenG8yUu0xomkS07Cc7wUOqLXKLEY3NfjbvVdi6f/SGV7a0qmzeXk9hUR3HT7UC\nkBAvc/nKZFYtTSYtVWz1Hoy4uDiefvrpjtuxsbE89dRTHR8LwlCQJImb10yhtKaZD4rLmDAujkXT\nx4Z7WYIgCEInARcl/vu//5uXXnqJ73//+9hsNp544gluueWWEC5NCKdg5w4M1IXmOQT7BLennSMz\nJyay93hdrzsEDp/S2zYCGcHZ1/PsLDE2ihR7dI//ZpGN5E1ODdm4z550LggF8jwjYWSo2tpG5e9f\n5czTL+NvbiEqOYasgotImT8BdcYyvJMXgknWCxCt9dBSA5oKkhFsY/QRn1LXny9FhdIGmbJGGb8m\nYTH5yU7wMibWR6ROgzxTp+dF7C7xofrBFi1x+SKZRdNlYqIjdNFBpGkanx9t4f2iWj7d6cTr1TAY\nYP7seAqWJZE3Ix6jceS/DkPh5ZdfDvcSBAEAi9nI9748g3te3MGL7xwmPdVGRqqt/wcKgiAIQyLg\nosSCBQtYsGABAH6/nzvuuCNkixKEweY5BEtvO0e8bx3qtWWiodlDY7MnoFaY/tofzuqvuBDKcZ+d\nn3dPOx5mT0pm5dzx7D1a1+PXDvfIUL/io/bPf6f84d+jVNdhslnI/tJUxi6agDZjMXHLr6C2SQVN\ng7YGvRjhV/QChDUZrEn6zolOfH4oa5ApbZRR/RJmo5+sBC9pcZFZjNA0jaNlKh8XKxw+pbcmpCRI\nrJhjZu6U0RFe2dCo8NGn9RQW1VJRpf/OjU21kL80iUsXJ5KYcP4IV2Fwmpub2bhxY8cFjD//+c/8\n6U9/Iisri7vuuovk5OTwLlAYVcYkWvn2ldN44vX9PPX6fu66ZR7WKDHCVxAEIRIEXJSYNm1al5Aq\nSZKIjY1l+/btIVmYMLpdSJ5D5xPcYLd2dN858vWCXHYdqcbtPX+KwtmWiUBaYfp6ngBJnXaB9CXY\nbTe9tVtomsYHu7oWhD7YVU7+vHTuvf3iHr92f6NmQ5V5oWkazn99SNn9T+H+4jQGi4nMVTmMW+7A\nMG0BvlkrISYeLNFQWwHNNaB6AAmiEyEmWW/Z6PK6QHmjzOkGGZ9fQjZoZCd5GBfnIxKz01RVY+8x\nPbyyvEb/WZ0wTg+vnOoY+eGVql9jzwEXhZvr2LGnAVUF2SSxbGECBcuSmZZrwxCJVaQR4q677mL8\n+PEAnDhxgkceeYTHHnuM06dPc9999/Hoo4+GeYXCaDMnN4UrF2Xxz62n+MNbn/O9r84Y8e+DgiAI\nw0HARYnDhw93fKwoCp9++iklJSUhWZQgXEieQ32Tm8r6Vj7Zf6bP7IJgFCysFhNLZo4LqGWir1aY\nvp7n4ulj+eZlk3uc0tHb+oPVdtNbu0WUuefX62xBqKev3d+o2VBkXri2FVN67+O0FB8Ag0Tawkwy\n83MwTp2FOicfn32MfkdvCw0nTkFbi347yq7nRhi7Xj1T/XDGZeJUgxlFlTAZNByJXsbHK5gisBjh\n9mpsP6iweY+Cs6k9vDLHxPI8maxREF5ZXevhgy11fLC5jjqnAkB2ejQFy5NYtjARW0zA//UJg1Ba\nWsojjzwCwLvvvsuaNWtYvHgxixcv5p///GeYVyeMVl9eOoETZ1zsOVbLP7ee4urF2eFekiAIwqh3\nQX+ZybLM8uXLef755/nOd74T7DUJAtB7nsO+43U9nuBqGjzwyi48yrndC51bO65fmRPUsMVgtUz0\ndJxLZo3j6kWZXdY1VGGRfbVbuL1qj5/va8dDf6Nmg9m60fr5MUrvf5LGwi0AJM0YS/ZluURNm9p1\nvKfSBs3VoLTgA1TZRoMWhy06Fovx3Hr8GlS6TJx0ynhVA0ZJIyvBS3q8QiROOu0eXimb4JKZenhl\nsj0CqydBpCh+PtvdyPuba9l3qAlNg+goA6tXJFOwNImJ2VYxknKIWa3n3g8+++wzrr322o7b4nsh\nhIvBIPHdL13EPet38EbRFzjGxjJ9QlK4lyUIgjCqBVyU2LhxY5fblZWVVFVVBX1BgnBWby0Jfyw8\n0uu0is4Fic52H6lFVf18tLui43ODzaIIVsuET9XIn5vO1YuzafP4iLdZSB9np6amqcv9ghEW6VFU\nahraQNNISbD2uN5Acy4662/HQ6hHzXrKKin/zTPUvvYWaBpxE5JwXJ6LbXoOat7qc+M9fR5oqQaP\n/tpqspWPj6v887PSLoWe6y7NobbFzEmnjNtnwCBpZNi9ZNgVetksElZn6vS8iOJO4ZVrFsosnjHy\nwytPl7dRuLmOTZ/W0dSsF82mToohf2kyi+fbibJE4DdslFBVlbq6OlpaWti9e3dHu0ZLSwttbW1h\nXp0wmsVazaz78gzuf2UXz7x5kF/cMp/kXsKkBUEQhNALuCixa9euLrdtNhuPPfZY0BckCN11b0k4\neyJbXFLd4xjMntQ3udl9tLbHfxts2OKFtkz0tfOhu8GGRap+P3/+4Cif7K/s2O0QZTaweEYaX181\nqctOi77aLaLMxh53S/S34yFUo2Z9zkYqnlhP1Qsb0DxerGlxONZMwj57AursfJSJ7eM9VUUPsHQ3\n6A80RYMtlT8VlZ9X6DlW6eejIzKy2YKExvh4hUy7gsXUS99QmGiaxrEyfZLGaAuvbHOrfLLDSWFR\nHSXH9dabuFgTa9ekkr80mfS0qDCvUAC4/fbbueKKK3C73Xzve98jPj4et9vNjTfeyHXXXdfv448c\nOcK6deu45ZZb+MY3voGiKPzkJz/h1KlTxMTE8PjjjxMfH8+bb77Jiy++iMFg4LrrruNrX/vaEDw7\nYbhzpMVxU0EuL75TwlN/O8BPv5mHbBJFTEEQhHAIuChx//33A9DQ0IAkScTHx4dsUYLQl7MnuM2t\nXrYdqg7oMfYYC87moQ9b7MsfC4/2OkXkf319bpf7DjYscsOHx7oEVAK4vX4+3FWOQZK67LToM+di\nxlgMknTBOx6ClXnhb3NT9fwGKp5cj9rYhCXBStbaKaQsmIB/5jKUKQvBZAa/D5oqoc0JaGC0gC0V\nzDY8Pn+XQk/GuDHMumgyifZ4/H4/qTYv6XEe3G43aBYgMv5YVf0ae4/6+LhYoaxTeOXyPDPTRnB4\npaZpHD3RSmFRLZu3O3F7/EgSzJkeR8GyJObNjkeOxICPUWz58uVs2bIFj8eDzaaPX4yKiuKHP/wh\nS5Ys6fOxra2t/OpXv2LRokUdn/vLX/5CQkICDz/8MBs2bGDnzp0sWrSIp556io0bNyLLMtdeey0F\nBQXY7faQPjdhZFg2axzHK1xs2XeGV947wq1XTA33kgRBEEalgIsSxcXF/OhHP6KlpQVN07Db7Tz0\n0EPMmDEjlOsThB55FJWjZY0B3392bjL7jtUOadhid2cDKm1WM3/ddIyP91T0eL/dR2pxe31dPjeY\nsMi+dlkAFJfUnLfToq92C6PBEPQdD4HSVJXav7xF2UPPoFRWY7KacVw5hbRL9PGeyvRlYLGCX9Uz\nI9rqQfODQdYDLKPi9TYOzhV6xo1JYfb0KSQn2vFrGsdPlrLv0BFmOuI4fNoZ0vyOgXB7NT47qFDU\nKbxyZo6RFXnmER1e6Wr28fHWej7YXMupMjcAKUlmrlmTxMolSaQkiVGekaqi4tx7nMvl6vh4woQJ\nVFRUMG7cuF4fazabefbZZ3n22Wc7PvfRRx/xX//1XwBcf/31AGzdupUZM2YQGxsLQF5eHsXFxaxc\nuTKoz0UYmSRJ4hsFuZRWNbN53xkmjo9n2azefy4FQRCE0Ai4KPHwww/z9NNPk5urX1E9dOgQ9913\nH6+++mrIFicIvekv98AiG1B8/m4n09KQhC12171Nw2I29DhK9Cxnkxuny9Pll7Ov3QvWKBMmY+9X\nx/t7rZxNnvN2WvTXbhGsHQ+B0jSNhvc3U3b/k7SVfIFBNpK+YgLpKyZimD6/fbynXS9AtNZBSy1o\nqt66ETMWohM6ihEdTFauzF9CYkICACdLy9l78AiNTc1EmY18cqCy466DzR8ZjMZmP1v2Kmw9oNDm\nGR3hlX6/xoHDTbxfVMe24gZ8Pg2TUWLxPDv5y5KZOS0WoxjlGfFWrlyJw+EgJSUF0H+Pz5IkiZde\neqnXx5pMJkymrn+ilJeXU1RUxEMPPURycjK/+MUvqK2tJTExseM+iYmJ1NT0XoQVhO7MspE7vjyd\nu9fv4JX3SshIteFIiwv3sgRBEEaVgIsSBoOhoyABMG3aNIzGkXt1Tohs/eUe/Po7F+NV/F1Opgca\nthiM0aFwfkBlXwUJ0Hc+JMRZaGrsGgR3/cocSk43UFrd3OXzpdXNbPjwGDfm5/a45r5eK/3rWbrs\ntOh+jMEUH4LxGjbt3EfZfU/QtH03SBJj5qeTlZ+D6aLZ+njPhLH66JU2p54b4feBZNB3RliT9I87\naXQbOFlvxtlmJDEhhtLySvYcLMHZ6OplBecMNn9kICrrVDbtVig+3DW8ctEMGdsIDa+sc3r5sH2U\nZ1WtnheTnhZF/rIkVixKJD5O7ucIQiR58MEH+fvf/05LSwtXXnklV111VZcCwkBpmobD4eB73/se\nTz/9NM888wzTpk077z79SUiwYgpRdkBKSmxIjisE7kK+Bykpsfzom/P55R+28rs3D/Lo/14+JDso\nRyrxexB+4nsQfuJ7MDADKkq89957LF68GICioiJRlBjlgnXSfiH62jmwZGYadtv5QXeBhi0Gc/Rm\nf60TPZmTm0yU2URTt8/7VI1Wt9LjY3YfqUFV/ew7Xnfemvt6rQDyJqdgkY1Bfd7BOFbb0ZOUPfAU\nzrc/AiDxojFkXzaJ6Ium6eM9x2TrxQh3o16MUL2ApBcirMn6LolOmjwGTtbL1LXqb3sJ0T6yEjw0\nVNZh0LwYJL0gNDnTztZOuyQ6C3X+iKZpHC/TixGfn2wPr7RLLM8zM2+Ehlf6fBq79jdSWFRL8T4X\nfg0sZgMrlyRRsCyJyRNjxPjIYWrt2rWsXbuWM2fO8Le//Y2bbrqJ8ePHs3btWgoKCoiKGlggaXJy\nMvPnzwdgyZIlPPHEE6xYsYLa2nMhxtXV1cyePbvP4zidrQN/MgFISYk9b2qSMLQG8z3ISIrmmiUO\n/rb5BPe/sJ3vXzcbg9iRNWDi9yD8xPcg/MT3oGd9FWoCLkrcfffd/OpXv+LOO+9EkiRmz57N3Xff\nHZQFCsNLME9eB+NCx0z2d/U/GKM3zxrIeE0JWJE3vtf193WsOpenz3Gn16/MQdO0btM3jCyeMbbj\n6wXzeQ/mWN7KGsof+T01f3oTVJXY7AQca3KJnZWLOqcAJaM9iMzTpBcjfHrOANEJejHC2PVqeotX\n4mS9mZoW/e0uPkrFkejFHq3vWLn9mhlcviCjo1AFUHLaOaT5I6pfY98xH5uKFcqq9XU5xhlYMcfM\ntAkjM7yyospNYZE+ytPZqGeo5DisFCxNZsnFCVijRdF7pEhLS2PdunWsW7eO1157jXvvvZe7776b\nnTt3Dug4y5YtY/PmzXz1q1/l4MGDOBwOZs2axc9+9jNcLhdGo5Hi4mJ++tOfhuiZCCPdlYuz+aLC\nxd7jdbyx5Qu+smxiuJckCIIwKgRclMjOzua5554L5VqEYSKYJ6+DEYoxk4Mdvdldf60TnZllQ599\n8n0dyyCBv4ddy53XfFPBZK5dkUNNQxtoGikJ1o7nEsznfaHH8rmaOfP0i1T9/o/43R6iU2NxrJlE\nwtyJqLNXoUyco+9+8LZCSzUo7Vc7LXEQk6pP2+ikVZE4VW+mqtkISMRa9GJEQrT/vHiJ7oWq3naW\nBDt/xOPV2H5IoWh3e3glMHNie3hl2sg7Kfd4VDZtraOwqI6DJXobki3GyJWrUli1NAlH5tBOwBGG\nhsvl4s033+T1119HVVW++93vctVVV/X5mAMHDvDggw9SXl6OyWTi3Xff5Te/+Q333XcfGzduxGq1\n8uCDDxIVFcUPfvADbrvtNiRJ4o477ugIvRSEgTJIErdfPY171u/krU9P4UiLY86klHAvSxAEYcQL\nuCixdetWXnrpJZqamrr0bIqgy9El2CftgXy9/goOwQxdbGz29FpAqHcNfOt+f60TnXkUf68jQfs7\nVk8FCTi/3cAiG0lPsZ13v8GOHB3MsfweL9UvbaTisefwORsxx0eTdeV0UhdOwD9zOcrURXrBwecG\nVzl42zM1zDZ9vKep6xZwtyJxyilzpskESMSYVRyJCklW9bxiRG8udBdOoFwtenjlp/vPhVcuniGz\nfM7IDK88cbqV94vq2Ly9nuYWfafOjKmxFCxN4uK5dszyyHvO4eDzaRw60sRnuxuZkmtnyfzwnpxv\n2bKFv/71rxw4cIDVq1fzwAMPdMmm6sv06dN5+eWXz/v8448/ft7n1qxZw5o1awa9XkEAsEbJrPvy\ndH798i7+8NYh7rp5PmMSRcFUEAQhlAbUvrFu3TrGjh0byvUIEe5CTl4vJHuitxaRa5ZOoLnVG7Ic\ni3ibhahepmNYzMZ+t+739FyvX5mD6tf4eHd5r8WDznoaCXpWTyfLM3OS2Hu0hvom73n3D7TdYDAj\nRy/0WJrfT93f3qHswd/iLTuDMUome00uaUsnwozFKDOW6+M9fV5oLANPexClbNV3Rpi7/Zz5JE47\nZSpcJjQkrLKf7EQPKTGBFyPOCsUuHIDKOj8f7/ayq1N45WUXyyyeOfLCK1taVTZvr6ewqI7jp/Rd\nLUmJZi5bkcyqpcmkpYoQuWDweP3sPehiW3EDO/Y0dhR9Kmu9zJ9tHfK8n86+/e1vk52dTV5eHvX1\n9bzwwgtd/v3+++8P08oEoW+ZY2K5ec0Unn3rEE/+bT8/++Y8LOaRt3tNEAQhUgRclBg/fjxf+tKX\nQrkWYRgYyMnrYLInemsR2bKvAo/XH+Ici4GfHPb3XC+bn8FHxeUBHaunkaBn9XayPNhxp33twhho\ny0J/xzKbDDRs2krZvU/QeugIksnA+KXZpF+ag3HGfHyzVoHNDqoCTWf0qRqg74iISQVzTJfxnl4V\nSp0y5S4ZvyYRZfKTnehljM034GJET89lsLtwNE3jeLnKpuJz4ZXJdokVc8zMmzqywis1TePzoy28\nX1TLpzudeL0aBgPMnx1PwbIkVq9Mx1nf3P+BhD61tqns2tfItl0NFO934fboRdTEBJmc8QZaaeaL\ntlP87NnKsOT9nHV25KfT6SShffTuWWVl/e8eE4RwWjR9LMcrGvmwuJwX3znM7VdPE6G7giAIIdJv\nUaK0tBSAefPmsWHDBhYsWNBldnhGRkboVieE3EB3MQzk5PVCsyf6ahE5u4MhVDkWjc0ePO1BkN15\n21+rnk5S//zBUT7Yda7ocHZ9mqZxU8Fk4m0WkgLMluhtJGhn3U+Wg9FuEMyWhd6OdVWSl5Lr1+Ha\nsgMkSM0bR9bqXOTps1DnFOjjPf0qNFdBaz2ggdGsj/e0xHUpRigqlDXKlDXIqJqExegnK9HL2Fgf\nkRCYfja88uNihdL28MrsNAMr8sxcNMLCKxsaFT76tJ7ColoqqvSf8bGpFvKXJnHp4kQSE/S8D5Nx\n5DznodboUtixp5FtxQ3sPdSEz6dvu0obY2Fhnp2Fc+3sOF7W4/sQDG3ez1kGg4Hvf//7eDweEhMT\neeaZZ8jKyuKVV17h97//PV/5yleGfE2CMBA3rJrEqcomth2qYsK4OPLnib95BUEQQqHfosTNN9+M\nJEkdORLPPPNMx79JksQHH3wQutUJITOYXQyBnLwOJntiIBMrgp1jcSFtDB5F5ZP9PY+Q/GR/Jdeu\n6H8sZ2e9jQTtSzDaDYLZstD9WFG11VQ//AyH33wfgITJKWSvycU6o32851gHaH59mkZrnf6xwaQX\nI6LsXYoRPj+UN8qUNsj4/BKy0Y8jwUtarA9jBEQTeLwanx1SKNqjUO/SwytntIdXZo+g8ErVr7Hn\ngIvCzXXs2NOAqoJskli2MIGCZclMy7WJcXqDVFvvZXtxA9uKGzhU0tzR/uXIjO4oRGSMi0KSJDyK\nyrPv1PZ4nFDk/QTi0UcfZf369UycOJEPPviAu+66C7/fT3x8PK+99tqQrkUQLoTJaOA/rpnOPet3\nsOHDY2SNjWVSuj3cyxIEQRhx+i1KfPjhh/0e5I033uCaa64JyoKEoTGYCRqBnLwOJjhxIBMrBhrC\n2J8LaWOoaWjrGLPZndurUlnfQtaYuC7FnDqXu8f7Z6TaBhWmGIx2g2AGhxoaG2l95FlOvfI6mk/F\nlmHHcXkucXNyUWcXoGRO0+/YWg+tNfouCckItjH6iE/pXJVB9UOFy8RppxnFL2EyaExI9DI+XomI\nYkT38EqTERbPMLF8jnlEhVdW13r4YEsdH2yuo86pAJCdHk3B8iSWLUzEFhNwV6DQg/JKN9t26YWI\nYydaOz4/JSeGhXl2Ls6zM7aHPI5ghtUGi8FgYOJEfaTiqlWruP/++/nxj39MQUHBkK5DEAYjMS6K\nf187nd/8eQ9Pv3GAX94yPySjoQVBEEazoPz1+Prrr4uixDASrAkafZ28DiY4cSC7CgYawhiIAbcx\naH2nV76vgLhtAAAgAElEQVSzvZTvfumijmLO1Yuz+cXzn9HQfH4wZavbh08NIA0zwqnNLVQ+8ypn\nfvcK/pZWopJjyL5sEkkLclBnrULJydMLDu5GfXeEX9FvW5PBmqSP/mzn1+CMy8Qpp4xXNWA0aGQn\neEm3K5gi4Fy/qt7PpuJz4ZUxUbD6YjOXzJCxWUfGTgFF8fPZnkYKi2rZe6gJTYPoKAOrVyRTsDSJ\nidlW0Wt9gTRN42RpG1vbCxGl5XrB0miEWRfFsjDPzoI5dhLtcp/HCWZYbbB0/5lIS0sTBQlhWJqS\nlcC1Kybyl4+O8du/H+T/3DAbUyRUwwVBEEaIoBQltH5OyoTIMhRX1AYbnNi9MGCWjT3uRhhoCGN/\nzmZsfHX5xIDbGFISrL1O7AA4WtqAR1E7jtHm8dHYQ0ECzr3+6YN/KkEXSP6IX/FR8+rfKH/kWXy1\n9cixUTiumcaYS3LQZi5HmbIITDJ4m6C5BlQPIEF0IsQk6y0bZ4+lQVWTiZNOGY/PgEHSyLR7ybAr\nhHGgAKC/531RrhcjDp0Nr4yXWJ5nZv4ICq8sLW+jcHMdmz6tx9WsT4SZOimG/KXJLJ5vJ8oyctpR\nhpLfr1FyvIVtuxrYXtxAVa3+fmCWJRbMiWdhnp15s+KJtQX+X3Qww2pDRRSuhOHssgUZHK9oZFdJ\nDRs3HeeGVZPCvSRBEIQRIyhFCfGHRuTrfEI5VFfUBhOc2L1FxGaVeWPziQEdayAhnn1lbPhUjWpn\na6/HschG8ial8OnBqh6P3dDs6VLoGYrX/0LGsPYmkPwRTdOo/0chZQ88jedkKQaLicyCHMYvz4GZ\nl+CbvgyiYsDbAs5y8LWHeEbZ9WKE0dzx9TQNqpuNnHSaaVMMSJJGerxCpt2LOcydAapfY/8xH5t2\nK5RWdQuvdBhHRIZCm1vlkx1OCovqKDneAkBcrIm1a1LJX5pMelpUmFc4PPl8GgdKmti2q4HPdjfg\nbNSLPNZoA8sWJnBxnp050+OIjrrw39dghtUGw+7du1mxYkXH7bq6OlasWIGmaUiSxKZNm8KyLkG4\nEJIk8a0rplJR28J7O0qZMC6OBVPHhHtZgiAII4Jo/h3hejuhnDUpmQ93nT+iMphX1IIRnNi5RSTQ\nY11IiGdvGRslpxtodSv9HufG1ZMpPlrT426J7oWGUF7RHEyAaW/6yx9xfbKT0nsfp2XvISSjgbTF\nWWSsysE08+x4zwRQ2sB5ChT9JBdLrD7e03TuddE0qG0xcqLeTKtiQEJjXJxCVoKCxRTe3Vger8Zn\nnysU7e4aXrk8z4xjBIRXaprG0ROtFBbVsnm7E7fHjyTBnOlxFCxLYt7seORI6JUZZjweP3sOuthW\n3MCOPY20tOq7auJsJvKXJbEwz87MqbHIcnBe287vuUazjOpVwrpD4p133gnb1xaEUIi2mLjjyzP4\n1Us7eeFfhxmfYmN8cky4lyUIgjDsiaLECNfbCeWquePJn5c+JFfUghmcGMixBhri2VfGRml1c0DH\nsVpMLJk5LuBCw0CuaA5k18NgAkx7+prRFlOvr80Xm/fy+XNP0PTxVgCSZ6aRfdkkzDNn6+M9E9PA\n54HGUvC0zxKRY8CWCnJ0x3E0DepbjZyol2n2GgGNsbF6MSJaDm8xoqfwykXt4ZUpIyC8sqnZx8db\n6yncXMupMj3LICXJzDVrkli5JImUJHM/RxC6a2lV2bWvkW27Gije78LTXqhMTpRZsTiRhXPtTJ1k\nwxjCXTUW2UhKcgw1NQOZ4RN848ePD+vXF4RQGJccw21XTOXpNw7w1Ov7+fnN84i2iD+nBUEQBiMo\n76I2my0YhxGCrK+T7T1H67j39ouDMv4xklxIiOdARpD2dZyBFBoC2UUy0F0PrR4fW/ZVDGjN3XX/\nmvE283mBnLGueuZvfY9JJbtpQiM+JwnH5ZOJmXV2vOcEUBVwVYC7QX+QKUqfqGE+d0VJ06ChzcCJ\nejMuj16MSLX5yE7wYjWHtxjRPbzSGgWrF8hcMtM87MMr/X6NAyXNFBbVsm1XA4pPw2SUWDzPTv6y\nZGZOiw3pCfNI1OBS/j97bx4W13nffX9mZ4YZmGEAsYl9kQBJLFqQLGRZErZsZ7Ebx27duG/SNI/b\n+MnjtOmbPk9ep33TpnUdt2mbxXHjLHbcLE6UxHYSO66wLQtLRgubhJAArSCQgIEZZoZh1nOePw4a\nbYAAgVh0f65L1yXmzJxzn3OGYe7v/ft9vxxsGuZAo4sjbZ6oWW3aMgMb11qpqrAKM1CBYAmxdkUy\nO9dn8vuDXfzgd8f57IOl4vdbIBAIboIpixIDAwO88cYbDA8PX2Vs+eSTT/Lcc8/NyeAEN8dUDS1v\ndUzcXDITE8/pRJBOtp+ZtKtMVvkx3aqHn+7umNBsc6oGptce80pBwjA6QsWhdyg9uh9NJIIpNY7c\n+wqJqyhCqqghlFlCIBgk4jiPUfKgQgaNAcxJoLfAFV/YhsfECJdfuT6JsYoYYTbMnxghyzKne8fM\nK89cYV5ZrmftSi163eL+wjnoDPLOWJTnJWPFjNQYdmyxs3VjAvFxk6c7CK5mYDBIfaOL+gYXJzq9\nSGNv3dwsI1UVihCRkRYjJioCwRLlY1tzOXvRTUPHAL8/0MW9VVnzPSSBQCBYtExZlHj88ccpKioS\n5ZiLiIUYETfX3OicjQbtdaaV04kgvbSfK6/dte0Vs9Gu4g+Gp1XxEQhFONHlnHB/1jGD08mYqMpE\nGwqyqvl9yhveRR8MoLOZyL0nn9jyXPQb7iacX0lEkmhrPUFBgoRJp2JoJEL7oI715dloNJfH6far\nOTukY2hU+ehJMIXJSQhhMYwvptwKIhGZls4w7zYGo+aVWSmKeWVp7uI2rwyHZRqOKlGejUfcSDIY\n9Gq2bbZTs8VOUV6smDRPg/MX/BwYEyJOnvUBita2Ij+WqkpFiEhOXHqfqwKB4Ho0ajWPf7SUr/zw\nILveO0V2ioWV2QnzPSyBQCBYlExZlDCZTDz99NNzORbBLLMYIuJmm8nO2RSj5e9fPDRuK8R4rRem\nGO1VnhKXuHTt5sJU8hJO9/QqPm7UgrIiy3bD+33tPlRShBVth1l7YDexI240Jj1Z96zEtiGb47Yy\nVt5/P5JOD6NOQq4+Vi2DYZ/ErsMj7G33EZbgjEupHvEGVJx16nGMKB85VmOEnIQg8THzJ0YEQjKH\n2kK8f2SAAWcEFVCaq2Fr5eI3r+zt8/N23SDv7huMpjzk55ioqU5k8wYbJuPiPr9bhSzLnO4apb5B\nESLOX1B8NzQaKCuxUFVpZX25FVu8qDIRCG5H4mP1fPbBVTzz40aef/0Yf/fJdSTEiYQigUAgmC5T\nFiXWrFnDqVOnyMvLm8vxCGaZhRYRdyuYisBwbSvEeK0XWo1qTHQY/9rNhqnkRCaWtrjpVblMViES\no9fwaM2N89Sj+xj2k336GBv2/x6bsx+VTkPGtjzS78zDv7KKyJqtlJotil+EuwukMLIk8cvDI+xu\n8xEMX27B6Djv4+gFPYM+LaAizqCIETbT/IkRHp9iXrnviGJeqdPCxtIx80rb4jWvDAQl6htc1NY5\naD2hvNfNsRru357E9mo7OZlLp01rLolIMu0nR6KtGQODSquLXq9iQ0U8VZVW1q6OxxwrjO0EAgHk\np8fzh9sL+PHuDp57tZW/ebRCpBUJBALBNJnyt6q6ujpefPFFbDYbWq12SeaMTyflYLEwG7Gci41r\nz9loUCokxuPaVohrWy8munYzMdS8khtVWcTotdOqcpmsQmTz6lRMhhuv5Bp0GjbKg2h3vUTKhXOg\nVpGyYTkZ2/PpSVmJdM+D6M1WCLhh6BREgoCKEXUc/+fnnXiDl8UIs8nI6uJCcrOXM+hTYdZHyEkI\nkWCKMF/dAn1DEu81KeaV4chl88qP3GUjMOqbn0HNAme6fOzeO8je+qFo5OSqlRZqqu1sqLSin6W4\nyaVMKCzResJLfYOLA00uht1KdYnJqGFLlY2qSivlpXHEGJb2Z6dAIJgZ2yrSOd07zAfH+vjZ2508\ndk/RfA9JIBAIFhVTFiW+853vXPeY2+2e1cHMF3NZhr9QmM1YzsXCpXPud/qmbX453n6uZCaGmlcy\nlSqL6Va53ExVzGjHac794zfJ2F0HgL10Gdn3FHI2IZv/TtlAzd3rIDwKzjMQVkrYMdrAlIhWUmOI\nOYc3GMBkjGHVygIKcjJRq9V4PF4qc9SkxsnzIkbIssyZXol3rzCvtMer2HqFeWWcWcPA6K0f280w\n4otQd2CI2r2DnDqnCCq2eB07709ke3UiqcnC1+BGBAISTa1u6htdHGoexjeqvD/i47TcfWciVZVW\nSleYxYqnQCC4ISqVij/ZuYLu/hHebeohNy2OO1alzvewBAKBYNEwZVEiPT2dkydP4nQqZnrBYJCv\nfvWrvPnmm3M2uFvFbJThCxYuc2H4eTP7nEqVBUy/ymUmVTHB3j66n30ex89/i0qWsWTbyL2viEBe\nHu6Ku8nIXUEeAXB3Q2ismsAQB7HJoNUrP2qgckUqQ4FYivKy0Gg0uD1emo+1k79MTVrZrf8dkiSZ\no6ci7GkM0rVEzCtlWeZ45wi1dQ72HXISDMqo1bCuLJ6aLXYqVsWj0Sy+87qVjPjCHGoZpr7BRVOr\nm+BYdU+SXc/2zXaqKq0U5ceKSFSBQDBtDDoNT/xBKX//4mF+9FY7y5PNZC6zzPewBAKBYFEwZVHi\nq1/9Kvv27cPhcJCZmUl3dzd/+qd/OpdjuyXcbBm+YOEzF4afN7PPqVRZZFxzrOlUuUzl+WGXmwvf\nfomL3/spciCIaZmFnHsLCeZn8kN3HgfPJfHQci33LeuB4JgXh94M5mTQXjbxCkWg26UjLbuUFFmF\nd8RHS1sHZ7vOk5YYy0NbK6Y87tngknnl3qYQg24ZFVCSq+GuCj3ZqepFmTThcofYs3+I2r0Oei4q\n75uUZAM7qu3ctSmBBJt+nke4sHENhzjYNEx9o4sjx91ElIIIMlJjlMSMSiu5mcZF+d4QCAQLi2U2\nE5/5UDHf+OURvvWro/zdp9YRGyOMcAUCgeBGTFmUOHr0KG+++SaPPfYYL7/8Mq2trezevXsux3ZL\nuNkyfMHiYC4MP2+0z4k8SuYzqlXyB+j74c/p/cYPiQy70VuNZH14FYayHH49ksOe/lQSLDo+s8HM\nhtywIkjoTEplhP7y70FYgvMuHd3DOiKSinAoyOEjJzh5pgtJVlafu/u97Npz+pZUG10yr9x/NITP\nD1qNYl65pVxP8iI0r4xIMs2tbmrrBjnU7CISAZ1WxZYqGzVbEikuNC/Kao9bRb8jEDWqPHFyhLG3\nJHlZJqoqrWyoiGd5mnF+BykQCJYkZQWJfGhTNr/df5YXftPG/3poNWohegoEAsGkTFmU0OuV1bhQ\nKIQsy5SWlvLMM8/M2cBuFfM5QRTcOubC8HOifUYkiZ/UdkQ9SmwWPSuyEni0pgCTQTcvUa1yJILj\nl2/S87XvEOztQ2PUkXNfEcuqC3jNm8kbAxnExOj5o41mthQZ0apVdA2GiEtOx2q1c8kQIiJBz7CO\nLpeOsKQiEgnR3nmKpmOniEjXJ2rMdbVR35DE3qYgh68wr6xZr+OO1TospsUnRvQ7Arz9/iBv1w0y\n6AwBkJ1hpOZOO1uqEkTiwyR0945Fdza6OH1OMQlRqWBlgVkRIsrjSU4Un+cCgWDueWBzDmcuuDly\napDf7jvLRzbnzPeQBAKBYEEz5W+4OTk5/PjHP2bt2rV86lOfIicnB4/HM5djuyXMxwRRMLdMlqIy\nF4af1+7zWo+SIU+Q/a0XaewYYPPqVB7Zln/LolplWWb4nX10/9O3GD1+EpVWQ8adOaRvK0Bddgej\nKzZz6GfH+HCllu3FsRi0Ki4Oh/l1o5czg/APn7GBSkVEggtuLedcekIRFVq1jHuol9/uaSZ8qR5+\nHOai2kiWZc5ckNjTEOTYJfPKOBV3VuhZN2ZeuZgIhSQONg9Tu9dBS5sHWQZjjJq7tyZSU20nL9sk\nWgvGQZZlTp31RSsiLrW2aDUqykvjqKq0sr4sHmu8KJ0WCAS3FrVaxeMfKeErPzzEa++fITs1jtV5\n9vkelkAgECxYpixKfOUrX2F4eJi4uDh+97vfMTg4yOOPPz6XY7tl3KoJ4u3IrYxZXQgpKpN5lPiD\nkasMVGe7cuPaa+1tbKX7H7+B54NGUMGytelk1RSgLdtAuGw7EbMVvW+Qpz5kRa+BoZEIP633sq9z\nlIgM2yrT0Wk19A5rOevUEYyo0ahksmxBkmP9/P9vtk4qSMDsVhtJkkzr6QjvNlw2r8xcpuauysVp\nXtndM0pt3SB79g/h9ioRlCsLYtlRncimdVYRPzkOEUnmRKc3WhHhGFKqSQx6NRvH/CEqV8cTaxLX\nTiAQzC9mo44n/qCUf3q5ke++foy//dQ6kq2ibUwgEAjG44aiRFtbG8XFxdTX10cfS0xMJDExkTNn\nzpCSkjKnA7wVzEVp/+3OfAgECyFFZTKPkktc2dIwG5Ub117rzNAw1Yd3Yz50EICElUlk7yzCWF5O\nuKKGsC0VRp0w2AlSBFmGVw66eee4j9CYxqBSqYg1J3Cwy4g/rEatklluDbLcGkKvgX7njc8TZqfa\nKBiSOXiFeSVASY6GrZV6chaZeeWoP8K+Q05q9w7SfmoEgDiLlo/uTGZHdSIZqTE32MPtRygkceS4\nh/pGFwebhnF7FAEn1qRh68YEqiqtlJXEYTAsvnYdgUCwtMlOieOxuwv54ZsneO5XR/nSY5XoxfdL\ngUAguI4bihKvvvoqxcXFPPfcc9dtU6lUbNy4ccLXfu1rX6OhoYFwOMzjjz/OqlWr+OIXv0gkEiEp\nKYlnn30WvV7P66+/zksvvYRarebhhx/m4x//+M2d1QyZi9L+25VbLRAslBSVeLMBm0XPkCc44XNm\no6XhyqqIn797kncbezCNuNl8sJaVrQdRyxLmTCu59xYxnJVNXdJ6tty1GU3QA4MnQQqBSkU4xs5X\nf3aSnqHLAkN2RhprSoqIjzMTCMukx4fItIYwaOWrznMiLxaABIuBiqKkm6o28vgk9h0Jse/IZfPK\nqlItdy4y80pZluk846N2r4O6A078AQmVCspL46jZYmdtWTw67eI5n1uBPxCh6aib+kYXh1uG8Y0q\nlTHWOC33bE2kqsJKyQqzuG4CgWDBU70mjVO9bva29PLyW+386f0rF5WYLhAIBLeCG4oSX/rSlwB4\n+eWXp7Xj+vp6Ojs7eeWVV3A6nTz44INs3LiRRx99lHvvvZevf/3r7Nq1iwceeIBvf/vb7Nq1C51O\nx0MPPURNTQ1Wq3VmZySYd+ZDIFgoKSoGnYZY4+SixM20NFxbFaHXqZG8PtY2vceaxr3owiEMibHk\n3ltIqCibH3lyOXAxmTV6LeU97VhjAFRgTIDYRIaGg/SOCRLL05axpqSIBGs8kiTRefoc95WbSU+8\nfvV+Mi+WO0pT+MQ9RTO+x/1Oifeaghw+vrjNKz3eMO99MERtnYNz5/0AJNn1PLDTzrbNdpLsIsrz\nSrwjYQ41K9Gdza1ugiFFBEtO1LOjWmnNKMyLRbPI2nQEAoHgj2sK6OrzsK/1Innp8WwtT5/vIQkE\nAsGC4oaixGOPPTapovujH/1o3MfXrVvH6tWrAYiLi2N0dJQDBw7wla98BYC77rqLH/zgB+Tk5LBq\n1SosFgsAFRUVNDY2sm3btmmfjGBhMB8Cwc2kqMym70UgFMHnD036nJtpabiyAkUdCVPQXE/lwbcx\n+kfQWgxk15RgLM/hVV8u7/SnUZASw//ZbiY/WY8ky0T08WgsyaDREwhFCAQjFOakkZebR2KCFUmW\nOXW2m5a2DgwaiT/ZumHCsUzmxTLdFp2oeWVjkLbTEWQU88ot5TrWFeswLBLzSkmSaW33UrvXQX2D\ni1BYRqtRsWmtlR1bElldbBGT6isYcoU42KT4Q7Se8HDJomR5egxV5YoQkZNpFKuKAoFgUaPTavjs\ng6X8/YuH+fHuDpYvM5OXFj/fwxIIBIIFww1Fic9+9rMA1NbWolKpqKqqQpIk9u/fj9E4sWGPRqPB\nZFImnrt27WLLli28//770WhRu93OwMAADoeDhISE6OsSEhIYGBh/lV2wOJiuQDAbooBBp2FNQSLv\nNPRct21NgX3c/c6F78WNPCXuKE2ZcUtDtAJFlsjvaGH9B28R5x5CbdCy/J4CEjbl8VYwhzccy0lJ\niOHJzRZK05Vrffisn9caPXzukRzsKi2v1HZwbiBMbk4uG9ZWAnC2u4eWYx0Me7wAVK3NmPR+zIYX\nyyXzyj2NQc5dvGxeubVCz6q8xWNeOegM8s5YlGefQ6mSyUiNYccWO1s3JhAfJxIgLnGxP8CBRkWI\naD81gjzWFZSfY6KqwkpVhZV04a0hEAiWGInxRh7/SAlff6WZ537dyt99ah1xJlExJxAIBDAFUeKS\nZ8T3v/99vve970Ufv/vuu/mLv/iLGx6gtraWXbt28YMf/IC77747+rgsy+M+f6LHr8RmM6HVXj35\nSUqy3PB1gptnqtf5jjXpvF53epzH08hIU1pzIhGJH/zmGPWtFxhwjZJkNVJVmsqffrgEjWb6ooDJ\nOP4fd5NRP+64X3j16Li+Fyajns88sGraxwewxBtJshnpd45ety3JGsPn/7iSGP3UQm+uHfMFxwjG\n1qN8bN8bJA30gkZN2h1ZpN2Vz15VDq86szFZjHxqq4V1Ocqk7lhPgF82eDjrCGM0aMnLtvOT3WfB\nlMHG9UkAdPdcpPlYO36/j0AwTLJt+vchY0rPukwgKFPX5OP3+0foH1KWx8tXGLjvDjOFWbpbvjI+\nk8+PcFjig8ND/Oa/L1DfMIQkQYxBzX07Uvjw3SmUrogTK/yMVcF0+dj7gYP3Puig87QieqnVsKYk\nnjs3JlJdlUhKshAiZhvxd1EgWFiU5CTw4JZcfrX3NP/52jH+6pE1tywdTCAQCBYyU44EvXjxImfO\nnCEnJweArq4uuru7J31NXV0dzz//PN/73vewWCyYTCb8fj8xMTH09fWRnJxMcnIyDocj+pr+/n7K\nysom3a/T6bvq56QkCwMDnqmeimCGTOc6f3hjJr7R4HWl/R/emBndx09qO64SBfqdo7xedxrfaHDa\nZpiBUIQPjvSOu+2DIxe4f0PmVav4gVCEfS3XV1UA7Gvp5d71y2dctbE6zz6u10JpTgLHO/tBpSLJ\napx0/9de65EjJzj3j9/gQ3VKokZSeRrZdxfQGJPNt9y5hGNi+dgmM3fkG1GrVZweCLLrsJcTFy57\nW1gsZvYcDWOx52IBei/209TazqDTBSjmlP/nExXRsQ0Njczo/CdjXPPKEi1byvUsS1ADARyOG6d6\nzCbT/fzo7fPzdt0g7+4bxDmsJEHk55ioqU5k8wYbJqNyXx0O75yMdzFwydzzQKOL+gYXvX3KPdVq\nVVSujqOqwsq6svgrKkhCDAxM3vYkmB5z+XdRiB0Cwcy5b2MWp3vdNJ908Ou9Z3hoa958D0kgEAjm\nnSmLEp///Of55Cc/SSAQQK1Wo1aroyaY4+HxePja177Giy++GDWt3LRpE2+99RYf/ehH+e///m+q\nq6tZs2YNTz31FG63G41GQ2Nj46T7FSwOblTaP9tmmNP1sZhL34trvRasZgOmGC0fHLvIu02KcBKj\n13DHqhT+cHvBpKsk/nPnOf/Mdxh69S0ArAWJ5NxbyBl7Nv/gzmNwNI77K83ctdKETqOixxniVw1e\nmroun1u8xcyakiKyl6fhCUHfwCBNrSfodwxddSyXN4Beq56TlJKBMfPKQ1eYV+5Yp2PzmsVhXhkI\nStQ3uKitc9B6QhEbzLEa7t+exPZqOzmZIrUnEpE53umlvkFpzRh0KiJDjEHNxrVWNlZYuXtbOqO+\n66uIBAKB4HZBrVLxZx9ayd+/dJg36s+RkxpHZVHSfA9LIBAI5pUpixI7duxgx44duFwuZFnGZrNN\n+vw33ngDp9PJ5z//+ehj//zP/8xTTz3FK6+8QlpaGg888AA6nY4vfOELfPrTn0alUvHEE09ETS8F\ni5+JYlYnEwWG3NMXBabrY3Ezxpg34lpB5q1D3bzbeHVVhj8Y4e2GHlQq1bhVIYGBIc59+T/o/9Eu\n5FCY2PR4cu4tJH79Knaritl9Xsv6Uj33lJqI0alxeCK82uThg1P+aI++JdbE6pIicjPTUalUDAw6\naW49wYV+x3XHm43zHo8zvYpfxLEx88qEOBV3LiLzyjNdPnbvHWRv/RAjPqXNZNVKCzXVdjZUWtHr\nFr6gMpeEQhItbR7qG1wcah7G7VUqR8yxGu66I4GqCitrSuIw6NVjj2sZ9U22R4FAIFj6mGJ0/M8H\nV/HVHx3m+79rIz1pHSkJQtwWCAS3L1MWJXp6enjmmWdwOp28/PLL/OIXv2DdunVkZ2eP+/xHHnmE\nRx555LrHf/jDH1732M6dO9m5c+fUR72EmM3kh8XEZKKASgVvHerm0R2TVxFcyWQRleOlXUz3+TO5\nTwadhnizgZbOiY1bmzoGrqoKifhGufjdH9P4nZcJe0aIsZvIuruExE3FRCpqCGUVs9U/TLVnAI1K\nYng0wi8Pu3mv3UdY8Ykk1mhkdXEBednLUavVDLmGaW5t5/yFvknHezOpIFcynnnl8mVq7lok5pUj\nvgh1B4ao3TvIqXPKDNoWr2Pn/Ylsr04kNXl2hZvFxqg/QuNRN/UNLhqODDPqV+6xLV7LzrsSqaqw\nUlJkQatd2PdZIBAI5pOMZDP/z70reOE3bXzrV0d56k+m7jklEAgES40pf/p9+ctf5o//+I+jokJ2\ndjZf/vKXefnll+dscEuZuUh+WExMJgpIMrzb2INGPX4VwURMFlE50+ff7H0a9gYY8gQn3D7kCTDs\nDZBo1uP46av0fP0FQv2D6MwG8j5azLLqFUgV2wjlV0LIC0OnQQqjUqn4VYOH3cd8BMJKaYQxxsCq\nFf6S/QkAACAASURBVAUU5Gai0WhwuT20HGvn3PkL4x7bZjYwPBK44XWaKsGQzOHjYd5rCuIYVsZU\nnKNha4We3DT1gjZ9lGWZ450j1NY52HfISTAoo1bDurJ4arbYqVgVj0azcMc/17i9YQ43D1Pf6KK5\n1U1o7D23LEnP3VuVxIzC3NgFLzgJBALBQmJjSQqne9283XCeF988weMfKVnQfysFAoFgrpiyKBEK\nhdi+fTsvvvgiAOvWrZurMd0WvPLOyXGTH4BpmzwuVh7Zlk8kIvFecy/SOKEr0/WWmG5E5VSeP9X7\nNFElRbzZQIJFP6EwkWDWI+/dR+uz38F/ugu1QUvm9nzStxdC+VbCKzeBFIDhcxAJAiow2QnpbNQe\n308gLGPQ6yldkUdRfg5ajQaPd4SWYx2c6TrPRFk29rgY/vaTaxkNhG+6Ssfrk9l3JMi+IyFG/KBR\nw4YSLXdGzSsXLi53iN113bz2Zg89F5WqnZRkAzuq7dy1KYEE2+0b1zbkDHKgaZj6Bhet7R6ksUqc\nzPQYqioVISJ7uVF8gRYIBIKb4JFt+Zy76OHg8X5yU+O4e33mfA9JIBAIbjnTqhNzu93RL6CdnZ0E\nArfWJX+pMNsmj4sVjVrNPesz2dM0fmrGVAwnxxMDJvKxmIiJnj+V+6TVqCatpDDoNFQUJY9bEZJ6\n/hT3NNdy7vQpVBoVqRszWb6jAG1lNXF33s+QawS8vRD2Ky8w2sCUCBodBuCONRkM+oysLMhFp9My\n4hvlUFsH53t7CAQjJMTFYIrR0t1/fQpEeWEiFpMey01kpA+4xswr2xTzSqNBMa+8Y7WOuNiFK0ZE\nJJnmVje1dYMcanYRiYBOq2JLlY2aLYkUF5pv2xX/C/2BaGJG+6nL6SuFuSaqKq1sqLCStkxEdwoE\nAsFsodWo+YsHSvnKi4d45d2TxJsNbCheNt/DEggEglvKlEWJJ554gocffpiBgQE+/OEP43Q6efbZ\nZ+dybEuWuUx+WGhM5sUQCEUIhiVsE1QSTGa8GJEkflLbSXOHA6c3gNWsp7wgkUdrCmet/WUq96m2\n4fwNKyke2ZaPJMvsP3oRfzBCguMCG+t/z/LTxwFIXJVC9s5C9JUbCJftIGw04hk4D76xOD9DHMQm\ng1YREMIS9AzryMpdTbqkwh8I0NR0HMdAH2UFdp58YBNeX4h4s+EK0WRqLS1T4cyFCO81Bmk9ddm8\ncku5jvUL3Lyy3xHg7fcHebtuMJoMkZ1h5MH706koNWGOvf16eWVZpqvHryRmNLg4e15JxlCroHSF\nmY2VVtaXW0lMuH0rRgQCgWCusVkMPPnQav7lZ0288Js21GoV61Ykz/ewBAKB4JYx5W/hOTk5PPjg\ng4RCIU6cOMGdd95JQ0MDGzdunMvxLUnmMvlhoTCZFwNw1baJVqUnMl6MSBJ//+LhqyoAXN4g7zb1\ncrLHzd9+cu2UhIkbmVfe6D4ZDdopVbxo1Go+UVPERwvMnH36OUZ/+98gy8TlJJB7fxG9qbnsXlbF\njqo1aHwOcPYRAtCbFTFCFzN23tDr1tLl1BOSVGjVMrkJQRJNASpSU4g3Z0XPw2TQRccynZaWiZAk\nmWNnIrzbcNm8Mj1JxbZKPavytWgWaGVBKCRxsHmY2r0OWto8yDIYY9TcvTWRmmo7edkmkpPjGBjw\nzPdQbxmSJNN5xhetiLjQr7y/tVoVa9fEUVVhY11ZPHGW20+kEQgEgvkiJzWOv3q4jH99pZn/fO0Y\nKmCtECYEAsFtwpS/dX7mM5+hpKSEZcuWkZ+vTCzD4fCcDWwpM93kh8XIZF4MwFX/j4xjKLE82Tzh\nav5PdneM25IA0N3v5Se1nTx2d9GEY5uqeeWN7tNoIDylipewc5jeb75I3w9eQQ4GMaVYyLm3iOGc\nbL7tyeeiL5EHrHrUzrOgAnQmrOnZuMaiEyUZLri1nHPqCEbUaNQy2bYgGdYQWjWABpNh8sqa6ba0\nXCIUljl0ybzSNXafVMN4RnvpHQrS1pXEqvx8lIEvHLp7RqmtG2TP/qFoTOXKglh2VCeyaZ2VGMPi\n/x2bDpGIzLEOL/UNLg40uhhyKZUiMQY1d6yzUlVppWJVPCbj7XVdlhKyLDMwGORYu5e2Ti+ri21U\nr4+b72EJBIJpkJcerwgTP2/mP18/hlqtoqIwab6HJRAIBHPOlEUJq9XK008/PZdjua2YblLEYmJy\nL4YBZHki+8XL+PxhwhEZzTUFD4FQhKZOx6Svbe5w8PBd+ROKO9MxGZ3sPoUj8qSVFBatTO+3XuTC\nt14k4vZisBnJemA1mjV5/NSdS9tICh+qsPC5IiNatYoeZ5jk5VnojHHoYi1IIx76PFrOOnUEwmrU\nKplMa5Dl1hDjndq1lR83Ezfr9cnsOxpiX0swal5pt45w+sIpJFnxuBjysKDMWUf9EfYdclK7dzDq\nhxBn0fLRncnsqE4kI/X28kIIhiRajnmob3RxsMmFdyQCgDlWw7bNdqoq4llTEodet3D9PwQTI8sy\nPRcDtLV7Odbhoa3Di2MoFN3uG5WFKCEQLELyM+L5y4+v4d9+3sJ3Xm3liQdXUVaQON/DEggEgjll\nyqJETU0Nr7/+OuXl5Wg0lyc4aWlpczKwpc50kyIWE5N5MQx5AkxBk4hWGsSbDVddn2FvAJd34ohN\nANdIYEJfjumajE52nzRqxq2kUEkSG7taOHHnPxC6OIDWpCfn/hWkbl2Be2U1/9+eMDWrLTxWHItB\nq6JvOMyvG700nPXzj/8jnySjinMOmaPdRkZDalQqmYz4EJnWIONFmF9b+WGz6Ik16vH5Q9OOMR1w\nSextCnLwCvPK7Wt1rCvW8LWftCDJ19/X+TRnlWWlFaF2r4O6A078AQmVCspL46jZYmdtWTw67e0z\n6R4djdBwVEnMaDjixh9QWm0SrDru3ZZAVaWVkkLzbR1vuliJSDJd50eVSogOL8c6vLg9l6sV48xa\nqiqtFBeaKSk0s7Y8maGh8SvKBALBwqZwuZXPf3w1//aLFp579Sj/8w9WsTpPCBMCgWDpMmVRor29\nnd/85jdYrdboYyqVij179szFuG4bZlpWv5CZzIshwWJAluUJIzIvYTUbeOtQN0dOOq6aWD9QnYt9\ngn1fPsbEvhwzNRmd6D5dVUnhHiW3u53Kvb/DNthHWKsmY2suGduLUFVuJbxyI/qAl39M7sekV+Mc\nifCzA17e7xglIisxnWF1LIe6Y/CFZFSoSIsLkWULYdBOrORcW/kx5AledX2nEjd79kKEPdeaV5aN\nmVfqVfQ7fQvKnNXjDfPeB0PU1jk4d16p3Eiy63lgp51tm+0k2W8fY0a3J8yh5mHqG520HPMQCivv\nlZRkAxvHEjMKcky3baLIYiUcljl1zkdbh4dj7V6Od47gG41Et9ttOrZU2SguNFNcaCYjNeaqeFYh\nPAkEi5uiTBtPPrSG//hFC9/61VE+97HVrMq1z/ewBAKBYE6YsijR0tLCoUOH0Otvny/7gpkxuReD\n0hs53rYriTXqeLexJ/rzlRPrifZ9+RgT+3LMtsnopUqKnbEjtPzNt4g92QEqFSnrMkjbUch+bQ4H\nl2/kgcJM8HSjlSKE1WpeOejmneM+QmNzjPSUZKrXr6LDYQJkspNgmXEUo27yspLJKj+u5dqKBkmW\nOXZaESPOXlBW1DOS1Wyt0LH6GvPKhWDOKkkyre1eavc6qG9wEQrLaDUqNq21smNLIquLLQvWcHO2\ncQwFOdjk4oMGF23tXi7ZsmRnGKmqVDwiMtOvnqQKFjaBoETn6RGOdXhpa/fSfmqEQFCKbk8dE5mK\ni5RKiOREvbi/AsESZ2WWjf/10Gr+Y9cRvvnLozz50GpKchLme1gCgUAw60xZlCgtLSUQCAhRQjAl\npuKZcWmbfmySHAhGSIiLYXVeAkdODY673/ePXOCZv1ASXxrbBxjyBFCpQJbBfk3Cx3hMJpisyLSO\n84rJGe08y/mnv4Xz93uIBezFyWTvLOKIJZfnPTnkpCTwB/ka8F4kFIE97aO81uBGUqnRaDQk2m2s\nXbMSm9UKyCSaQsTrPBQvt+IZvnGfy2SVH9dyqaLBZjFy+HiYPVeYV67M1rC1Qkdeumbcic58mrMO\nOoO8Mxbl2edQKkAyUmPYscXO1o0JxMfpbrCHpUFvnz+amNFx2hd9vCgvlg0VVqoq4klddnv5Zixm\nfKMRTpwca8Vo93LyjI9w5PLv/PL0GErGqiBKCs0k2MTfXoHgdqQ4O4HPfWwV39h1lG/88ghPPrSa\n4mwhTAgEgqXFlEWJvr4+tm3bRl5e3lWeEj/+8Y/nZGCCxc14XgwAg8N+4s2Gcbdd6SGxp6l33P36\ngxF+/vZJPv2h4ujrjQYto4HwlH05rhVMFFFEZl/rRU50OafkvxC8OEDPv36XgZ++BpKEJctKzn0r\nOJ+aw9PDecRZkvjsnWYyEnSEIjLvtPl4rdmLx6+sfCbZ4ygvXUFKstIjajeFON5xkt8d62bIHSDJ\nZmR1nv2G45isguFarOZYDp9QU390JGpeub5Yy53lOlLs079uc2nOGg7LNBxVojwbj7iRZDDo1Wzb\nbKdmi52ivNglv0osyzJnu0epHxMiunqUNhW1GlavtFBVaWV9eTx2MVldFLg9YY53eqOVEGe6fNEK\nF7UKcjJN0SqIlQVmEckqEAiilObY+dzHVvHNXx7hG7uO8OTH17AyyzbfwxIIBIJZY8rfev78z/98\nLschWKIYdBrs8TETRnBe6UNw6f/xZgM2i35C34kTXU4CochVPg8W09QnZlcKJi+/1c7+1ovRbTfy\nXwi7vVx47iX6vvsTJH8AY7KZnHsLid+4iu9eWI5Da+cP77GQn6xHkmTqOny83uRlcEQRI+y2eMpK\nVpCeqmSP9w8MsH2Vkbc+6LyqCqHfOTqlZIvJKhguoVYZMGhTQEri7UNhIIw/1I8xxkkEG0m2qYkK\nt8KctbfPz9t1g7y7bxDnsGLil59joqY6kc0bbEs+slKSZDpOj0SFiL4B5XdAp1Wxriyeqgora8vi\niTOLCetCZ8gZVASIMVPK7jFRCUCrUVGYF0tJkVIJsSLfvOTf2wKB4OZYlWvniQdX8a1fHeU/drXw\nlx9fQ1GmECYEAsHSYMrfbNevXz+X4xAsYaYTwQnKRHtFVsJVYsGVOD0Tp2tMl/Yu57iPX+e/EAjS\n/9Iv6Pn37xNxudHHxZB1fynJW0qIVN5NJKOA+7rPkWpRlj4Pn/Xz6wYPF4YV0whrnIWy0iIy01MB\nuNA3QPOxdgaHnGzKWz+tRJBrubaCwWo2EGvUMTKqIxi0o9PYABU6bRjXSDeB8AAgMRqC2sNKdOZ0\nIj1n25w1EJSob3BRW+eg9YSSFmCO1XD/9iS2V9vJyVxaRrDXEg7LHGtXojsPNA7jHFZiHWMMajav\nt1FVaaWiNA6jmLQuWGRZpm8gGBUg2jq8XOy/XL2k16tYvdISrYQoyI3FoL99UmEEAsHssCY/kc8+\nWMpzv27l339xhL98eA2Fy6ffeioQCAQLDbHcJphTphvBeYlHawpoaO8nEJKu22Y1G2bFWHEqSRxJ\n8TEM/vr3nH/mOwTPX0Bj1JG9s5DUbSuhcgeh3NXgHwLXWVItcMGj4mf1Lo52jwIQZ45lTUkR2cvT\nUKlU9DuGaG49wcUBxTPDHhcDsnxTyRZXVjC4PH56HTrebwnj9UroNJCepKK6TMsr77QQCC+cSM8z\nXT527x1kb/0QIz5FvFm10kJNtZ0NlVb0uqU7aQsEJVqOualvdHGoeRjviHL+FrOG7ZvtVFVaWV1s\nWdLXYDEjyzLnL/ij8ZxtHV4GnaHodpNRQ+XquLFKCAu5WcbbKppWIBDMHeUFSfz5R0t5/rVW/u0X\nLXzhkTLy0+Pne1gCgUBwUwhRQjCnzDSC02TQkWwz0d3vvW5brFE3KxPoSRMlzAZUhxs59sy38bV1\notKqSa/OJmPHCtTrthIp2gAhDwyfU16gjQHzMlKTY/mz1CDP/LSV7KwscrOXo1apGHS6aGptp/di\n/1XHKS9MJMlmuulki1BYprFd4r1GGHApJf9XmlcOuEZxesa/D0O3MNJzxBeh7sAQtXsHOXVOMWu0\nxevYeX8i26sTSU2e+xSP+cI3GqGhZZgPGl00HXXjD1xq6dFxZ1UCVZVWVhaYRZTjAiQiyZzrHo1W\nQbS1e3F7w9HtcRatkoxRaKakyExmhvG2SYIRCAS3nsqiJB7/SAnPv3aMr7/SzBf+sIy8NCFMCASC\nxYsQJQRzykyjJAOhCD5/aNxtPn8o6ilx6bkz8TiYyI8hqa+be3e/zZnjbaCC5Ip0Mu8pRL++mnBp\nNREpAJ7zgAwaA5iTQG8hEJZwDPpxhy1sv3MzKpUK57Cb5tZ2unuVVpQYvYZgKHKVSaRGrZ402QKg\n3+kb9/y8ozIfHA3xfksI76iMRg3rirVsvca8crL7oAJ+XXeGx+4pxGSY/SQLWZY53jlCbZ2DfYec\nBIMyajWsK4unZoudilXxS3YiPuwOcah5mPpGFy1tHsJhpb0ndZmBqgolujM/24RaTGAXFKGwxKmz\nvmgVxPFOL77Ry1VbdpuOLVU2SgqVloz0FMOSN14VCAQLi7Urkvkfssx3X2/j668089d/WE5Oatx8\nD0sgEAhmhBAlBDOe1E+FmUZJTl5hoXhKTGageSmx4kbndqUfQ6T7PHcc2s3ytiYAbEVJ5NxbSMyG\njUTW3EVYqwJfH8gSqHUQmwQx8URkmV+8ewafHEfW8gw0Gg2RkJ9h5wXqm0/i9PixxykixAPVOXh9\noevGc60vRKLVyKrcBCRZ5qkX6q87P6cb9jaHONgWIhSGGD1sq9SxeY2OePP1ZeKT3QdJhgNtfbSc\ndLB5deoNEz+missdYs/+IWr3Oui5qNzLlGQDO6rt3LUpYclGHDqGgtQ3uDjQ5KKt3RtNWMjJNEaF\niOVpMWISu4AIBCQ6To9EPSHaT3kJBi/Hc6YuM7BprTlaCZFk1y/o+xcIRbjgGCFyhXgrEAiWHutX\nLkOSZV74TRv/+rNm/vqPyshOEcKEQCBYfAhR4jYmIkk3nNTPBjOJkpxKhcVkBpqPbMuf0rlp1Go+\nvsbOhtpfMfjjX0Mkgjkjnpz7iojbVEm4vIZwbCyMOCAYAZUGzClgtIJKTSgCv2/2Yk9fSYpWi3fE\nR0tbB6fPnWd7ZTpf/cyG60SR8aoRrk22yMu285+/bOHta87v3UYnp7oHGfYYkQGbRcWWMh3rS3TE\n6CefJD2yLZ+IJPNeU090onwl/mBkSokfkxGRZJpb3dTWDXKo2UUkoiRHbKmyUbMlkeJC85KsCui5\n6Ke+wUV9o4uTZ3zRx1fkx1JVYWVDhZWUJdyastgY8UU4cfKyH8TJMz7Ckcu/FFkZMRQXWpR4zkIz\nCdbZryCaC676TPcESLDMzWe6QCBYOFQVpyBL8L3fjgkTf1hOVoplvoclEAgE00KIErcx003FmCkz\niZK8UYUFMKmBZkSSebexJ/rYeOcW8Y5w4fn/4uLz/4XkGyUmMZbsewpIqF6DVHE3oYQk8DnA6wWV\nWqmMMNpBrSYswXmnjm6XDos1Ft/oKA0tbZw804Uky9HxbVmdSpLNNOXVyiuTLa48P53GikGbik5j\nweWBtEQV29bqWZ2vnXLvukat5p51y6+6LuPR2D4wbePLfkeAt98f5O26wajhX3aGkZo77WypSsAc\nu7Q+amRZ5kzXqBLd2eiKxj1qNLCmxEJVhZX15dZFM5ld6rg94agAcazDw9mu0agwp1ZDbpaJksKx\neM4C86KNXL1Vn+kCgWBhsbE0BUmW+cHvjvMvP2vi//2jcjKXCWFCIBAsHhbnNy/BTTPTVIxr9zGd\nto/pRklOVmExOOyfsL1jyO2nucMx7ramDgcPbszE/fPX6fm3Fwg7nOjMBnIeKEZXkc/vpRWkpZRy\nh1GDynsRUIHJDqZEUGuISNDj1NHl0hGWVGhUEoeb22g/dZaIdHVSyKA7wN/+4BD2GVSgON0BhtxB\n9JokYnQpaNRGAEIRF4HwBT6xs5hlCdOf8MabDdgnqEC5xNAUI1dDIYmDzcPU7nXQ0uZBlsEYo+bu\nrYnUVNvJyzYt6BL36SJJMu2nRqIVEf0OxVBUr1Oxvjyeqgora9fEY1mkE9qlxKAzSFv75XjO7l5/\ndJtWq2JFwVgrRqGZorzYJRG3Ohuf6QKBYPFyx6pUJEnmh2+e4F9+1swX/6icjGTzfA9LIBAIpoT4\n9nybMtNUDLh1bR+TVVhM1t4Rb9bj8o5zbrKEraGe4y/9M+HuXjQGLVk1BcTdkc9vAvlcMGTzQKWV\nrESQwkFUJpsiRmh0RCS44NJyzqUnFFGhVcvkJARJMvl5/fc91wkSVzLZauV4ws7IqExDZxirqQzQ\nIcsSgfAA/tBFJHkUe1wMVkvMjK7pZBUol1CrwGiY+KOhu2eU2rpB9uwfiiYQrCyIZUd1IpvWWYkx\nXJ74zKVfya0gHJZpPeGhvtHFwSYXzmHlfE1GNVuqbGyosFJeGocxZvGd21JBlmUuDigiRFuHh2Md\nXvoGgtHtBr2aNcUWigvNFBeZKciJxaBfeq0MN/OZLhAIlgbVa9KQgRffPMGzP2vii39UTnqSECYE\nAsHCR4gStykzTcWAW18iPF6FxaTtHQWJHDk1eNW5pXWfpGrfGyT3nyeiVpG2KYuMmiL2aAo4rM7i\nwxsSeDhVMV6sPzXKno4Qf/loETq1hovDWs46dQQjajQqmSxbkIz4EMoc+8aT/EtcuVo5nrBTnJ1C\nnDGdQ8fDhMKgUWsYCfTiD/chy5eTSCYzCJ0Kj2zLx+cPs7/14rjbJRlGA2EspstGlKP+CPsOOand\nO0j7qRFAiUH86M5kdlQnkpF6tUhyq4SruSAQkGg+5qa+wcWhlmFGfBEA4sxadmyxU1VhZfVKCzrd\nwj6PpYokyZy/4FdaMdqVSogh1+XfD5NRw9o1cVFPiNwsE1rt0qnYmYib+UxfqHR0dPDZz36WT37y\nk3ziE5+IPl5XV8ef/dmf0d7eDsDrr7/OSy+9hFqt5uGHH+bjH//4fA1ZIJh3tqxJQ5JkfvRWO8/+\ntIkvPlpBWmLsfA9LIBAIJkWIErcxRZm2cSemk016F1KJ8GTtHRqNIpzYB3rZsO8NMrs6AEhak0rm\nziIMG6oZyKzE2tvPX2cqE+qWLj+/avTSPRRGo1ZxbhCGAkb8YTVqlcxya5Dl1hB6zcTjGPL4kccx\nkYSrVyuvFHY06lj8/lSOdtpQqcLYLCru3WxhxfIQr70PTR0anJ7QlAxCp4JGreaxe4o40eUcd2XV\nHmcg3mxAlmU6z/io3eug7oATf0BCpYLy0jhqtthZWxaPTjv+xHyx9baP+CI0HBmmvsFF41E3gaBS\n+ZKYoGPrpgSqKq2sLDBP2b9DMHtEIjJnu0c51uFRqiE6vXi8kej2+DgtG9dao54QmRnG2/I+zTTp\naKHi8/n4h3/4BzZu3HjV44FAgO9+97skJSVFn/ftb3+bXbt2odPpeOihh6ipqcFqtc7HsAWCBcHW\n8nQiksyPd3eMCRPlpNqFMCEQCBYuQpRYRMxGKfy1K9gxYzPsQDBCQtyNJ70LqUR4svaOBwpMJD//\nOpb9+1AhY823k31vEcaNVUirtxLWyFgDw9gyY2i/GORXDR46+y4ZNKZRsWoFvSOxqJBJjw+RaQ1h\n0I6vNlw5jgHXKP/+82aGPMHrnndptTIQitDYPjBmXpmCTqPEd4WlEXSaQf7qjwrJWh7LwIBn2gah\nU8Wg01AxwQSmJCuR3XsGqa1zcO680oufZNfzwE472zbbSbJPHuW5kISryXC5QxxsGqbx6BkaWlzR\n9IW0ZQY2rrVSVWG9zhdjsbejLAZCYYlTZ30ca1cqIU6c9DLqv9welZigo2JjfNQTIi3FsKS8S26G\nmSQdLVT0ej0vvPACL7zwwlWPP//88zz66KM8++yzALS0tLBq1SosFsXUr6KigsbGRrZt23bLxywQ\nLCS2V2YgyTI/re3kaz9t4n8/WsGyBNHCJRAIFiZClFgEzGYp/LUr2P6gsuJ4R2kKn7in6IYTrYVY\nInxle0do0EXvN75P/4u7iAuFiE2LI+feQsybKpErdhAxxcCoE8LgHIWX6oY4el4REJanLWNNSREJ\n1nhkWSY1LkSWLUTMBGLEeOPISDJTUZQ84WqlWqXm3UYf4VAhZsNl80p/6AJhyYNaBd7R7AnPbza5\nqsLD7ScGE5qAiTde8xEKj6DVqNi01sqOLYmsLrZMefV5IQlX1zIwGFQSMxpcnOj0RhMYcrOMVFUo\nQkRGWsx1k9zF3I6y0AkEJNpPj9DWrvhBdJwaIRi6/DuXtszAHevN0UqI5MTF14Zwq7hSINXodUSC\noUUrnmm1WrTaq7+inDlzhhMnTvDkk09GRQmHw0FCQkL0OQkJCQwMjC+KXsJmM6HVzs11SUoSiQfz\njbgHl3n03mJMJgPff72Vf3mlmac/u5nUW9DKIe7B/CPuwfwj7sH0EKLEImC2SuEnW8E+0eWa9HXD\n3gCWeOOCLRGO+Pz0fe8nXPj2S0Q8IxhsRrLvKcZ+5xqkihokq00RI0ZHQaMnFGPnn3e14XAHSVuW\nRFnpChITrEiyzNmu83xkfRwJsTM7l/FWK1flJpEYl8k/vujD45PRqA1XmVde4pKw4w+G6Xf65nRF\nXqNWc09lNuoRM2+fHqR3KASEyUiNYccWO1s3JhAfN7OEj4UkXJ2/4FcSMxpcnDrnA0ClghX5sVRV\nWrlvRwZadWjSfSy2dpSFzIgvwomTl/0gTp4dITLWjaFSQVa6keIiRYAoLjRjixexqtPFoNOQlKhU\nWy0lnn76aZ566qlJnyNP1D93BU6nb7aGdBVJSZYld80XG+IeXM8dxcl4PPn8/N2T/O9v1/HFRytI\nthrn7HjiHsw/4h7MP+IejM9kQo0QJRY4s1kKP90V7GtXh5NsRlbn2Xloa270+DdbInyz5fByhVI6\nUgAAIABJREFUOMzAK7+h59n/JNTvQBurJ/fDK0nZVoq0tobwsgwYHVL+qbUQmwQxVpyuUTR6M/ds\nrWRZkh2As909tBzrwOP1cl9ZFcTObDX/ytXKcxf8tJxU03giQktHiBg93FWpw+HuZm9L13WvLSuw\n88v3TnHk1CADztE5WZEPh2UajipRno1H3EiyklCwbbOdmi12ivJib6ocfr6FK1mWOd01GhUizl9Q\nWlA0GigrsVBVaWV9uTU62U1KimFgYGJRYrG0oyxUht0h2jq9tLV76Tg9SucZb9R3Ra2GvCwTxUVK\nJcSKfLOIVBWMS19fH6dPn+av//qvAejv7+cTn/gEn/vc53A4LkdA9/f3U1ZWNl/DFAgWJDs3ZCLJ\nMrv2nOLZnzTyN49WkDiHwoRAIBBMF/Htb4Ezm6Xw013BvnZ1uN85etXq8M14HdxsObwsyzh/v4fz\n//Qt/KfOodZrWL4tj/QdxajWbSecWQgBJ/gcoNKAORmMCaBSM+xX0+Ozcc9dmwDo7rlI87F2nMNu\nAOxxN7+a39UXYU9DiCOnZGQ5gtWsYme5jg3FOmIMKiJSLnqddJ2wI8kyb8/Rinxvn5+36wZ5d99g\nNNoyP8dETXUimzfYMBlnb2J9q3vbI5JM+8kRRYhodDEwqLTk6PUqNlTEU1VpZe3qeMyx0//IW8jt\nKAsRx1BQScboUISIS6IQgF6nYmXBWCtGkZmivFgRpyqYEsuWLaO2tjb687Zt2/iv//ov/H4/Tz31\nFG63G41GQ2NjI1/60pfmcaQCwcLkvqosIpLMr/ee5ms/beJvHq3AHj+zeHGBQCCYbYQoscCZzVL4\n6axgT3V1eKaTsYnK4X3+MI/dwNvCc6CZ7q/+B96Go6BWkbJhOZn3rESzfiuRvNUQ8sCoQ6kFNyWC\nyQ5qDZ6AmrNDOgZ9ytve73Pz9v4WBp1Xt67MdDVfkmWOn4mwpzHI6V7FmC8tUc1dlTrW5GvRaC5X\nH4xn0gnw1Av14+57pivygaBEfYOL2joHrSe8AJhjNdy/PYnt1XZyMudmMj2ZCelsEQpLtJ7wUt/g\n4kCTi2G3IrSYjBq2VNmoqrRSXhpHjOHmjrvQ2lEWErIsc7E/oAgQYyJEn+OyyWuMQU1ZiUUxpSyy\nULVuGe7hkXkcsWCx0NrayjPPPENPTw9arZa33nqLb37zm9elasTExPCFL3yBT3/606hUKp544omo\n6aVAILiaD2/KRpZkXn3/DF/7qVIxkRAnhAmBQDD/CFFigTPbpfBTXcGey9XhyQSP/a0Xae9yjls1\n4Ws/xfl/+hau3XUA2EuXkbWziJiNWwivWE9EGoXAEKBSqiJiE0GtZSSo4uyQnoER5e0eHxMhJyGI\nxaBiqM9MU4f/plbzQ2GZhhNh3msK0u9U6tJXZGm4s0JHQYZm0laIK4Wdfqdv1q75mS4fu/cOsrd+\niBGf0rC/aqWFmmo7Gyqt6HXKdZ3rNInZNun0ByI0tbqpb3BxuMWNb1Q5t/g4LXffmUhVpZXSFeYJ\no0pnwny3oywkJEmmu9evCBAdii+Ec/hy64s5VsO6svhoJUTOchNa7eX3v0EvTEEFU6O0tJSXX355\nwu3vvPNO9P87d+5k586dt2JYAsGi5yObc4hIMr/ZfzZaMWGz3L7iukAgWBgIUWIRMJul8FNdwZ7L\n1eHJBA+4vmUh2NvH+X/5Txw//y1IEnE5NnLuLSJ28yYipXcQVksQGqt2iIlXfCM0enwhFecG9PR5\nNYAKi0ERI2xGCUUnuLnVfJ9fZv/REO+3hPD4ZNRqWLtCy9YKHamJ05+o3uw1H/FFqDswRO3ewaih\noy1ex877E9lenUhq8uXXL6Y0iRFfmEMtw9Q3uGhqdRMMKsJPkl3P9s12qiqtFOXHTjkdZCYspajF\n6RCJyJzp8l2uhOjw4h2JRLdb47RsWmulZMyYMjPdiHoO74NAIBAIbp4HqnOQZJnffXBuTJgox3ob\nV/0JBIL5R4gSi4CJhIRAKMLg8I0TGmayGn4zq8PXHu/anyebfF9Ja0sXZ/a/ieOHryAHgpiWmcm+\ntwjrlrVE1mwlbNRDcAQkwGCB2GTQGvCHVJwb1HHBowVUxOoj5CSEsJsijFe0MN3V/MFhib3NIQ4e\nCxEMEzWv3Lxah9Uy8wn9TK65LMsc7xyhts7BvkNOgkFFHFlXFk/NFjsVq+Kvahu5xEJPk3AOhzjY\npBhVHj3hiaYzZKTGUFVpparSSm6m8aYMOafDrWhHWQiEQhKdZ3xRAeJ4pxd/QIpuT7LrWbs6PpqO\nkbbMcMvugUAgEAhmB5VKxR9syUWSZd6s7+JrP1GEidu5HVEgEMwvQpRYRFyaPEckiZ/UdtxwlXu8\n1fCygkRkoKXTccMV8mtXhxOtRkqybdxVnk4gFLluUnbt8WwWPbFGPT5/6LpjTTT5BtCEQ5Qe2U/F\noXcYCIyij48h+yOrSLyrDKl8O+H4OAh6IRgCXaxiYqkzEgir6BrQ0evWIqPCpJPITgiQFDu+GDFd\nuvoi7GkMceRkGFlGMa8s07GhRDGvnAnXCjaXrvmRU4M4XKMTrsi73CH27B+idq+DnouKuJOSbGBH\ntZ27NiWQYNNPesyFmCbR7whQ36gIESdOjkQTGvKyTFRVWtlQEc/ytPl1C5/tdpT5xh+I0H5yJFoJ\n0Xl6hGDocqRieopBieYsMlNcYCY5UXxhFQgEgqWASqXioTvzkCSZtw52R1s54mIn/v4gEAgEc4UQ\nJRYhU13lHu95bzf0XLWvyVbIr1wdHnL72XesjwOtF9jT1DuumHHt8YY8QYY8wXGPdWmS3dg+wJBH\nmVSrJInCE42sq38Ls3cYTYyOzPuKSNleirx2B+HkVAi4FUFCG6OIEXozwQh0O3T0uHVIsooYrUR2\nQpBl5vBNixGSLHPirGJeearnsnnl1godZQXacasQpsJk7ROP7ijk8Y8ZOfV/2Xvz+Lru8s7/fba7\n6y7aLMmWLNmWZFvyItmOZSd2nMXETgoJW4CUzoR2mA4wtPP7dabT6dBSShdamE4JBGhTIBQaCIQl\naaEEnMSJs9hOLO+bbMeL9v1Kurrbueec+eNIV/v1lSyv+b5fL78Iusv5nnOvru7z+T7P53Ohd8KO\nvGFaHD4+yK5Xetl/KIxhgKZKbG0IsX1rPiurfFm1zt8oaRKWZdHSFreFiMYwb1+MAbY/6YpKny1E\n1AVEITyPDEdTnDwzPOIHMcS5i9F0F4okweJF7rQfxMpKH8GR2FSBQCAQ3HpIksTDdy3DNOHXbzXz\nxe8f5H88UoffI4QJgUBwbRGixE1Gtrvcme53ucdOxqkpvHSwNaMQMpvjjR5rVPD43i9P0fxvu9n4\n+r+T19uBpMosvLOCwruW49y8HWPREkgO2YKE4gRfAThy0E2Jlj6NlrCGYUk4FZPFuUmKclJc6Vi7\nnrJoPJ3i5cYknSPmldVlCtvqNSpLM5tXZsPlhCWXQx0zwOxJ8MKrvbz4ai89fbapYPkiN9vvzGNr\nQ+6sYy5n410x30aYlmVx7kI03REx2uWhKhJ1tX4a1gW5bW1AFMPzRHhQ5+RoPGdThAvNsXQHiizD\nsnKP3QlRlcOKSu+cIlMFAoFAcPMiSRIfvmeZHUl+oIUvff8g/+MjdeQIYUIgEFxDxDfQm4xsd7kv\nZyaZ6bGTyUYImc3xxh9LP3qSTd9+jFV7G0GCBesXUnxvNRdL65G3brITNZKDIGu2gaUrQMqSaA1r\nNIc1UqaEpphUhJIU56RQrtCjcTrzynUj5pUlczCvnI5srmdSN3ntzX52vdLD4RNDWBa4XTLv2pbP\n9i15LC33zFkYyca7Yj6NMA3T4uSZkejOxnBaWHE6ZDaN+EOsWx3A67n1PBquNT19SY6fHknGaBqi\ntX3sd1JTpREBwkdNlY+qpV7cLnHNBQKB4J2OJEk8cm8lpmXxUmMr/+cHh/jvH6nD5xYbBAKB4Nog\nRImbjGx3ubM1k5zusZPJRgiZzfFCOS6cnR2c+cNv0P9zO9Ytd0Uhi3dWw/rNyCvXUSnpYAyDpICv\nCNxBDEumbUDlUr8D3ZRQZYsluUkWBvQZxYhsd/r7Bk1eOaiz74ROUrfNK7fVa2ysUYAkAd9lTytr\nMl3P7p4k//TUJd46GCE8aBfv1Us9vOvOAjZvCCLJ9uOTKfOKOhculyZxpUaYum5y5OQQexvD7D84\nwOBQCgCvR2Hbplwa1gVZW+PH6byxkj5uJizLor0rwYnTY50QXT1j41Iup0xdrT8tRFRWeNA0cb0F\nAoFAMBVJkvjN7VVYpsXuQ2186Qd2x4TXJYQJgUBw9RGixE1GtgkNme43HZkSNbIRQrI9nmd4kHcd\ne57Tf/0SGCY5ZUEqdlbj27oZY+VGLMUEMw7IdmeEOw9TkmkfVLnYr5E0ZBTZojyUZFFQR52hxsp2\np795xLzy8Ih5ZcAncd9GjfUrFJ577Rxf/P78R2ZOvp6WCckhB4kBB0ZcZdeFfpwuieACHcsVwwjF\naItJ/PiVHg5lYVCaDZnSJOZqhBmLGxw8NsjeA2EOHBkgGrM9OIJ+lfu25dNQH6RmuQ9tphdNkBHT\ntGhui490QgxxoilC/0AqfbvPq3BbXSDdCVFR5pmz54lAIBAI3nnIksRH76vGtCxeOdxud0x8eC0e\nIUwIBIKrjBAlbkIut8ud6X5rK/NG0jd6Mz52lNFOg9olebx8qG3K7ePFjMnHC/qceN0a0bhOpGeA\njcdeY/n+l5CTSdwFXsp3VBHatgFj1R12vKeRBFMCTx548jAllc4hlQv9GomUjCxZlAWTlAZ1Ltck\nkGmn/8P3VI6YV+qca7Vd/iabVz61q+mqRWY6NYW1lfk8/2oHiUEHySGHfd5YFBUrVCzVONnZgSSB\nNHLsF2dhUDrbtUwe2ZmNEWZkOMWbhwbY2xjm0LHBdHJDYb6De7fYoxlVS70oV2ry8Q7EMCzevhRN\nd0KcPBMhMmykbw8FVO64LZTuhCgtcWVldCoQCAQCwUzIksR/2LEcw7R47WgH/+fpw/zBh9bicYmS\nQSAQXD3EJ8xNSKZd7mzv98FtmccaRjsNGk930TeUZLTUkSUwLcgbt1Of6XiaadD2nWfo+ME3McMD\nOPxOyn6jhsJ76jDX3GnHexoJW5BwhcCbjyVrdEUULvQ7iOkykmSxKKBTFkziyOIdO/NOv0TjKYNL\nbVG6w3bxXDViXlk1zrzyakZmDkVSvPxGH/tfMRhqzQFAVk2CRSk2bQjwyI5lfPab+7JODbkaEZ6X\n64wxDZlfvtTN3sYwx04NpdMbShe6aKizhYiKMvcVm4G+00jqJmfPRzl+2u6COHV2mHjCTN++IN/B\nhrVjnRBFhU5xjQUCgUAw78iSxMd2rsA04Y3jHfzfHx7i///QWtxOUTYIBIKrg/h0eQcw3W74dD8b\nz+ROgxHDfsyR/1i9NG/GHXqnplAQcNH7s1/R+rdfI3GpDcWpsvi+Skq2r8Zat41U/gIw4rYg4fSD\ntxBLcdAzrHC+z0FUl5GwKPHrLA7pOFVr2mNNx+SdfgkFp1qIU1uAZTroDpskU704nb3k+HJYtmjZ\nhOJuviMzTdPi2OkIu17pYe+BMHrKQlUkNq0Psm1ziLJSByG/C6em0NUfnTeD0vHMJkVjulEcIymj\nRzT6+zx88n+eSCc4LKvw0FAfpKE+yMJiV9brFtjjLqfPDac7Ic68PYyeGnufLyx2UlOVQ0213QmR\nnyuc0AUCgUBwbZBlid95YAUWFnuPd/J/f3iY/+/hNUKYEAgEVwXxyXITkskvIWVYVxzhmE2855Fz\nfSR0Y9pjDLy8l+a//ArRY6eRFJmSO8opvW8l8oa7MBYuHhEj4uDw2WKE6qIvqnC+TyOSVACLohxb\njHBr2YsRo4zu9PcPWTjVIpxqAZKkYFkGcb2deKoTy0oynIRdbw0AE0cgZhOZmYm+/iQvvtbHrj09\ndHbbBoQLi51s35LPnZtzCfqnzmjOp0EpZO+tMZmH71rKQNjgrUODDPRKGAn7oyIhmays8tFQH2Rj\nfZCCPFEoZ0tkOMXJMyOmlKcjnLsYxRxphJAkKC91p7sgVlT5pn1/CAQCgUBwrRgVJkzTYv/JLr78\no8P8t4fX4MqmbVUgEAhmgfhUuQmZyS/h9KUw0bh+xUaI2cR7TrdDP3zkJM1/+RUG9+wHoKCuhMU7\nVqBtuhNj8XIMa0SM0NzgXYCleQjHZM53OhhM2GJEoS9FeSiJxzF7MWKUrn4IeCoxdHuEwDSTxPRW\nEqluwJhy/8kjENmaiU5HKmVx4OgAL+zp5cDhAUzLjr68+448tm/No3qpN2PL/XwalMLsUjQsy+LM\n+Sh7D4TZ2ximvTMBaCgK1NXmsHl9iA1rAwREsZwV/QM6J0ZSMU6cjnCxNZbuMFEUWFbhpWbED2JF\npRevR3wcCwQCgeDGQpFlPv7ulZgWvHWqiy//6Aj/7YNrcDpEpLRAIJg/xLfgm4xMXQzNXZH0f1+J\nEWI2u/Xjd+jjF1to+Zuv0/ez5+3bqvJZvLMazx1bSS1bhSGlwIqD6gRvITh8DMQVznc7CMftP2r5\nXluM8DnnJkaYlsXpi7Z55dkWA/DgcenE9XaGYp34vRqJyFRBAqYXWMabdvYNxgn4HNRVzmwI2t4Z\nZ9eeXl56rTediLCswsP2LfncsTGEx539H+8P3b0Mj9vBa4fb0makayrzkIBDWRqUQnbeGKosc6Ip\nwr5GW4jo7bdjSF1OmU3rg2yqD1K/OoDXI758XI7u3iTHm4bscYzTEdo6x35/HJqUHsOoqfJRtdSL\nyymuqUAgEAhufBRZ5j+/eyWWaXGgqZvHfnyE3/vA6nn1sxIIBO9shChxk5FNF8N45mKEmM1ufV1V\nPvLgIBf//pt0/fMzWHoK30I/5fdX4992O0Z1PSlVAlKgOOx4T6efwYTChXaNvpj91sv1pKjI1clx\nmjMeKxOplEVjU4rdjTqdffZzVJWOmFeWeUmm/AxEynE7Vf78yTezHslQZJkP3b0Mw7Q41NRDOJLg\nyLleFOVsuvskkTTZeyDMrj09HDtlC0Jej8ID9xRwz5Y8Ksqy952YfOyPP7SKnbeVThnF+cBlDErH\nM9N7xTKhsz3FV755gSMnIgyNiDU+r8Jdt+fSUB9kTY0fp0NEd86EZVm0dSbSXRDHmyJ09ybTt7td\nMnW1/rQQsazcg6aJ6ym4ekRjBi1tcVra7X91q/NYVS18XgQCwfygKjK/+2ANX//ZMQ6e6eErPz7C\n771/NQ4hTAgEgnlAiBI3GbP1HJiLMSOMdQo0nu6mbygxIXWjviyHLUde5vAnvos5HMWV66F8Ry25\nd2/AqGkg5XHala+s2GKEK0gkKXOh00HPsP2WC7oMKvKSBFxzEyOicYs3jum8elhncNhClqGmAu5a\n76SieGy8YLyh52xHMp5+8SwvNY5FcY52n4T7DbSkj5ff6GM4ahf0tct9bN+az8b64LwV83MxKB3P\n+PeKZYI+rJGMaOjDGpgSr7UOEAqo7Lgrn4b6IDXVOaiqSHOYDtO0uNQa40ST3QVxoilCeDCVvt3n\nVdhYF2BltY+aqhzKS90oiriWgvlnMJKyxYe2OM1tMZrb7f8e7XIa5XxznFXVS6/TKgUCwa2Iqsh8\n4qFavvbTYxw628NXf3KUT79/FZoqhAmBQHBlCFHiJmO2ngOzMWYcz+R4T7dTxeVQ6PruT+j64ydo\n6+lD8zqoeHAlhdvr0Gs3kwgEUCQTkOwxDU8uUV3hQpeDrogCSPidBhW5SUKeuYkRfYMmew7p7D2u\nk9TBqcGC3AhdA5d47XiEk80ze2mMH8m43AjE5NEHy4DkkIPEgINfN8WAGKGAxo4H8rlnSz7FhbO/\nxlebRMIipAa52BpBj6pg2UWyrBksq3bxsfdWULXEiyyL4nkyqZTF25eiY54QTZG0AAUQCmjccVso\n3QmxqNglrqNg3rAsi/Bgiua2OC1tMft/2+M0t8UZGCeGjZIX0lhbk0NpiZtFxS4WlbjYuK6QoaHo\ndVi9QCC4lRkVJh7/6VGOnOvl8Z8e41PvXYWmim5AgUAwd4QocRMyXXHtcakTPCVGuZwR4uVwagoF\nQTf9P3+Bi3/7daJnLyI7FMruXUbJfaux1t7BgC8Xn1smrqd46WyCfsPH/bfn0dztpGNIBSR8DoOK\nXJ1cj0EGn8cZaemy/SIOn0lhWhDwSrzrNo2Wnou8dLA5fb9MXhqThZZRsaZ3ID5lHGIgkqB3IEEq\nrpAYcJIc0kaKegvNp/Ox95WxttZPbsB1Q81U9vUn2XdwgL0Hwhw7PTSS7qDhcJsongT5CyQ2rsnl\nw/dUztoAdSZmEzd6o5HQDdp7holFdS41x+1OiKYIp88OE0+MCWcLChx2J0RVDiurfRQVODIalgoE\n2WBZFj19ut3xMDp60WaLD+NFMLATWgrzHVSu8bOo2GULECUuFhW7pvWscbkUhoau1ZkIBIJ3Epoq\n86n31vKVn9jCxNd+epRPCmFCIBBcAUKUuAmZrrhWFWkk+vHyXQCzYfCNAzR//jGGDx1HkiWKN5VR\nuqMGZcOdGCWlgIHTsPj18WF+fniYlORg1Yoy9jfbKRMezaQiN0G+d/ZihGVZnJpgXgnFeTLb6jXW\nVqnEEjr/9q2uaR+byUvDqSnkBVwzRmUORQxeeX2ASLMfPW7/gZU1A0cgidOfxOORefHE2zyz98pS\nTuaL9q5EOjGj6dxw+udVSzw0rAtSt8qP6jBAkigIuudNOJhr3OiNQCSq848/PsOxU0MMhSVScSXd\nSQJQWuKaEM+ZnyuiTwVzxzAturoTEzoeRv0fxotfALIMxQuc1C73UVriprTERWmJi5IFLpzOG/v3\nSiAQvHPQVIVPv28Vjz1zhMPnevnGs8f4xEO113tZAoHgJkWIEjcxk/0FJgsVV1J8Rk+cofmvvsrA\ni68BkL+qiPL7V6Bt2opRVokhm1gYvHUhwQ/3DTCcUqldvoLqpYtRFIXI8DB1ZRIlAWvWYsSoeeXL\njTodI+aVlSPmldVlCqZl8fSLZ3jrVBfhSHLa57icl8bkqMyegQT//nIHe3ZH6e4wMUyQZRlHThJH\nIInqTqXPI540iCdtkeRKUk4mM77jIBOWZXGpNW4LEQfCXGiJASBLtrfFpnVBbqsLEgqqPP3iWR5/\n7txVEQ1mEzd6vRmKpDh5JpLuhDh3IToSz6kBForTQHWnWLcqyH9+f+U7Lvb0Zu52uZHQUyYdnYm0\n8DAqPrR2xNFTE5OFVFViYZEz3fFQOtL1ULzAKXYbBQLBTYGmKnz6/av58jNHOHimh288e5w/+U8N\n13tZAoHgJkSIErcYszFCnI5ESwetX/oGPT/6OVgWgSW5lN+/HO/WLUjVq9AtEzDBmUOfkcO39hxl\nZXUVyysr0FSVyHCUwyeauHCphds+vhFJyn4tsYTFG0d19oyaV0pQX62yrV5jYcFYofT0C2cu66mR\nyUtjvF+EoUskB5wkBh1YKZkIJqrTwJ+bRPIkcbskJEkikYRQjpNoIpUWJMYzl5STUabrOLh9zULe\nvaksLR6YpsWZ81H2Huhnb+MAHV220amqSqxf46ehPsSGtQH8OWO/0k/tarpqokHmuNHuOV+L+aJ/\nQE+nYpxoGuJiSzx9m6JIOD0GOHRUTwrVlUIaWWpXLIzL/c4pCG/mbpfrSSJp0tYxNmoxajbZ3hXH\nmPTx4HTIlC20Ox4WjfwrLXGxIN8pzFAFAsFNj0NT+L0PrObLPzpMY1M3n3tiL4/urMbvER2GAoEg\ne4QoIQBA7wvT/pUn6fz201hJHU9RDhU7q/HfvQmzqo6UU7UTNTQv+ApJKW76+xTe98A9aJpGNBbj\nwOETnD1/CdOyyPNnb7A5al6577hOYsS88s46jS1rNUI5EwujTMXweDJ5afSEY3S0msQHvKSitucF\nsoUjkMAZSKI4x0ZNErq9u7m5togdG8v47Df3T/ucM3VmZLMDPV3HwXN73iYynGB1aQl7D4TZ1xim\nL2y767ucMrdvCNKwLkj9qsC08+SZRYO5CyijDEQSMybA9A4m5pT4ciV09STSqRjHmyK0d46tzaFJ\n1C63RzFqqnMI5Up89tv7saZ5nrmm1dys3EzdLteDWMygpWPiuEVzW5zO7sRIp80YHrfCsnJvuuNh\nVHzIz3UIE1SBQHBL49QUfv8Da/jGs8c4dKabP+8c5BMP1bK0JHC9lyYQCG4ShCjxDseMxen45g9o\n/8q3MYaGcQbdLH7vCvLv3YCxcgOGd6Q4U10EFpbTNyzTOqBxKayRMiVkWefNQ8dpOncBwxybjc7G\nYLOly2D3QZ3DTbZ5pd8rce9tGptqNdzO6b/ED0QS9GWIQw35nKxbXjCtl0Zza4xde3p56fVeIhEv\nAIorhTOQxJGTRMqwMdzY1M2H7l42Yxzr5M6MbHegE7pB4+kxXwzLBD2qokc0fvKjIX5snAHsyMm7\n78ijoT7Amho/Dm3mxRqmyXefPz2jaDAfhbfbqaZjYicjS/btVwvLsmjrSIx0Qdj/unvHxnjcLpn6\nVX7bE6Lax9Jyz4R2+IRuZP06TuZWGnO42sLVzcRQJDXm9dA+FrfZ06dPua8/R2VllS8tPtgdEG5C\nAVWYnwoEgncsTofCpz+wmpePdPC9X57kC99r5JF7K9lWt1B8NgoEgssiRIl3KFYqRc+Pfk7LF7+B\n3tGN6tGoeGA5RffVY61qIBUMggQoDvAVYqg5XBzK4XiLiW5IqLJFRW6S4pwEnZeSdPkcWRlsWpbF\n6Yu2GHGm2e5zLhoxr6yrUlEv084c8DlnLChzPBp//Fv15AXc6Z/F4gavvxlm154eTp21TSD9PpWq\n5RodsV4UZ3bRpPGkwcBwcsY41skiTLY70HbKRxJ9WCM5pKEPa2nDRUkxWbxE4bffv4SaKl/Wrd5P\nv3iW1491zHi7Q1PmFBM7nlgiNa0gAbZQEUukyJmn1k3DtLjUEkt3QZxoikyIRczxKWy4TKdpAAAg\nAElEQVSsD1AzkoxRXupGybAznSlWdyYx7VYcc8gk8N2KHSOWZTEwErM5ZjgZo6UtTniGmM01NTlp\n4WE0bnP8iJRAIBAIxpAliYfvraIw4OQfnj3Od3/VxNnWQf7Djup3jMgtEAjmhvh29Q7DsizCv3qF\nlr/+KrGm88iaQuldS1h432qovx2jYIEtRsgaeAswnQE6hjQu9GskDQtFgsWhJIsCOvbfl6lJINP9\n4UkZFgebUuxu1OnoHWdeWadRvVjJWkXPVFAORXW+8C+NrK3MZ11FCS++2ser+/uJxU0kCepq/Wzf\nmsf6tQFk2S7eG0930zc0c+fFpIs3IY61byhO0Otk7SQR5nI70O/eXE53b5ymc3H2HhggfC6QFiJk\nzUDz6Th8OorLQMlxUL3Mk7Ugke14y5US8DnJzXHQNzTVaDQ3x3lFokcqZfH2xWjaD+LkmeEJ8Yi5\nQY0tG0PpdIxFJa5Z78JMF6ubSUy7FcccMgl8l+sYuZGxLIvefj09cjE+bjMyPNUPZkG+g3Wr/fa4\nRfFYzKbXI75ACwQCwVyoKc/lzz62gcd/eow3jnfQ3DXEp967igW5t47QLRAI5hchSryDGHrzMM1/\n+RiR/YdBkijasIjSnbWoG+/AKC61++4lBbz5mK4QXREHF7o04ikZWbKoLoYcOUI0Fsc0naCMfWmf\nyWAzlrB445jOnkNj5pV11Srb6jQWFc7tS/9o4ThZUDANidaLFuePDPJM0u6KKMhz8OB9edx9Rx4F\neRN37kfFlO89f5rXMnQWALgcCgUhD4os86G7l2EYJgfP9NAfSXDkbA+KLKV3zWfagTZ1idaLJv/5\njw4Tj8jY6g8oDhMtJ4nDpyM7zAlpJeFIclY71pcbbwFIJI0r3gV3agr11YXTikP11QWz2hFJJE3O\nnB/mxIgnxKmzwySSYx0sRYVONtYHqanysbLKx4ICxxW3go6P1VUcGkZSn3HNt+qYw1w6Rm4kDNOi\nqyc54vUQm+D7EItPjdksKnCmRaxFI50PC4ucuJw39nkKBALBzUiu38Uf/WY9P3jxDC81tvLn33mT\n//TASuqqCq730gQCwQ2IECXeAcTOnKflrx+n/5e7AcirWcDinctxbt6CUbYUQ1VAksGTh+XOozuq\ncb7FQUyXkbBYGNBZ5E/w/JsXee1wa1bt6/1DJi8dSPDmCYNkyjav3LpWY2vdVPPKuWIBlgWpmEpi\nwIEeGR19sPCGDH7vt5axbnXwsq38j96/HLdL5WBTD72D8Wnvt3lVUbpIe/rFs7x0sC192+Rd8/E7\n0EZSRo9oJCMaRnzs101xpXD4dDSfjuYyMWeYIgll6DqYzt8g0+73KLmzMCHNxGy7DUaJxQxOnRvm\n+OkhTjRFOHM+SmpcXGLpQldagFhZ5SMvdPUcvJ2aQkG+l+7uoRnvcyuPOcz1NbyWpFIWHd2J9KjF\naNdDa3ucpD4pZlORKClyThi3WFTiomSBEy2DD4tAIBAI5h9Nlfmtd1WztMTPP//yNF/5yVF2NpTx\nvq1LbtrRR4FAcHW4qqJEU1MTn/zkJ3n00Uf56Ec/Snt7O3/4h3+IYRgUFBTwxS9+EYfDwXPPPcd3\nvvMdZFnm4Ycf5oMf/ODVXNY7hmR7F63/5x/p/sFzYJr4y0OU71yO787bSS1ZjuFwABJ4comrIVoH\nZHp7PUR1BQmLYr/O4pCOS7V4ateZrNrXW7oMdjcmOdiUAiRMM4mi9rB8icRv3LF0Xv4IPf3iWX61\nt5XEgIPkYA6mbhfkssPA6U/i8CdRNYvyxc6MgsQo43fN+wbj7HqrmcNne+kfShDKcVJfPWacebld\n8/dtXUJ7RxJH3M/AhThmcnQX1kL12CKEw6sja2PF1EyCBEzsOhgVIXwejZ/tOT+tv0Gm3e9R6qry\nAejqj16RYeP465ZpdGcwkuLkmUi6E+Lti9G0H4UsQUWZh5XV9ijGikrfDTezf6uOOUD2r+G1IKnb\nMZvjPR9a2uK0dyZIGRPFB4dDSnc7jJlNuigqEDGbAoFAcKOxubaY0sIcHv/pUf597yXOtw3yXx6s\nxe8VsaECgcDmqn37j0ajfP7zn2fTpk3pnz322GM88sgj7Ny5k7/7u7/jmWee4aGHHuLxxx/nmWee\nQdM0PvCBD7B9+3aCweDVWtotT2pgiPav/TOdTzyFGU/gLvRSsbOawN2bMCtXkfKM7Oq6QqRcuTz7\nZh+KWyYYCGBZFrFIL1tXOPGNJGBkU4hfaIfdjWPmlYYZI653kDR6AYvdB0FVrCuav0+lLPYd7Ofn\nPx8gOuAHJJAsHP6RKE/XWJTnXIpFp6ZQnOflt+5bzsN32wKA26kSS6RIGRaKPP2uuWWBEVdo6YZP\n/++T9PTajv2yrOAJGEjuBPmFEoPxLL0rRrizrtgeFZlksuh0KMSTY7PxkwWiyeMtoykZeX4nayrz\nsSyLzzyxd9qOl7mkS0we3ekL65xoGkpHdF5qHes+URWJqqVeaqrtLojly3zTRpreSNzsYw7ZMNP4\n1dUgFjdobR9vNmmLD53diSnmqR63zJJyzzizSdvvoSBPxGwKBALBzURpoY8//Y8b+ObPT3DwTA+f\ne/JNPvFQLcsWithQgUBwFUUJh8PBE088wRNPPJH+2b59+/jc5z4HwF133cW3vvUtKioqWLVqFTk5\nOQDU19fT2NjI3XfffbWWdstiJpJ0PvlD2r78LYzwIA6/k8UP1FLwrg0YK+ox/CMf/E4/eAsI6272\nnTHIK7KL2AvNrRw+3sTAUIRwz6K0gDBz+7pEJOrl738Qpzts/2TJQpnz7WcZjPZMufdc5+/bO+N2\nlOdrvfQPpAAFxTkuynOap7vSYlFVJHYdaJnSjfDQliXk+p30DCRIjUR3JiMaljHSAeI02LA2h9tv\ny+W2NUFklbS48edPvplxrGI8sgQ7b1uMIss8tatpQkE8XpAYz/jrO373e1RYCfic/Pjlc9N2vKQM\nA1VRZp0uYVn2XP/xprFOiPausXN0OCRWr8hJd0JULvHidNx8LZs3w5jDjUZkODUuXtP+19aZoLN7\nmuQcn8LySt+I2eRY50NuUBNRcgKBQHCL4HGp/Nf3reKX+y7xzMvn+Jt/aeRDdy/jnnWLxGe9QPAO\n56qJEqqqoqoTnz4Wi+Fw2K1aeXl5dHd309PTQ25ubvo+ubm5dHdnTg8IhTyo6sSCs6AgZ55WfvNh\nGQat3/9Xmj77ZWKX2lBcKuU7qlj4wDqkNRtJ5oRAklA8fvxFZQykPBxrsegaAKcLmls7OHT8NP0D\ng+nnPHy2hwe3LaMoz0tOwE1ByE1Xf2zkVgWnWoBLLUKWHfQOQMMqF/ff4cPpSPK7X5gqSIA9f684\nNAryvZc9p0TC4OU3evjXX7Vz8OgAAD6vykP3F3Pw0kUGk9FpH1cQdLFpVQm//e4aFGV2xW88maJ/\nMEHI7+S7vzg5pXj/9f4WerrAGggwcC6OZdrPL8kmDn+CssUakivBucE+Bg/30G8U89vvrmFRiX2/\n29cs5Lk9b2e1lvygm6XleQAcOdeb1WOmu76LJp3fTM+1+2D7hP8/KlZ43A4+/tCq9M8ty+JiS5RD\nxwY4fNz+19UzVmR6PQqb1+eypjbAmpog1Ut9c57lH/96uBxXd6Qjm8+P3//Iumu6ppsBy7IID+ic\nb45ysTnKheZhLlyKcqElSm/f1GSWvFwH69YEqSj1Ul7mYfEiD+VlHkIB0cJ7NXgn/10UCAQ3JpIk\nsbNhMeXFfv7h2WM8tesM59oGeXTHcpyOm7/zUCAQzI3r9q3asqxZ/Xw8/f0TC9KCgpyMRnW3KpZl\nMbD7DZr/4jFiJ88iKTILt1Sw6P5VSGs3kVxQjCTLvN2j88N9g+hqig1ri3B53AB41SQ/+uU+evrD\nU567Oxzn9760O71jvmpJLi82duNSF+BUC5EkBcsyKMyN8PH3FJLrl4E4iaRBbs7M8/dGUs/4Wp2/\nFGXXnl5efqMvHQNZu9zH9q35bKwP4nTIaLuG2PXWVFHi9toiPnqfnYXd1zec9XWcPB6R63cyHLdH\nMCwD9GG7G0If1njpbAQAWQWHP4Hm0/EFLApCLlq6BmHktLv6Yzy3522isWS64+Tdm8qIxpITdts9\nLpXmrsiUNTXUFjM0EKOrP0p3WgzKzOWu72yea5RXD7WxojifM+einGiKcLwpwuBQKn27P0dl07qg\nHc9Z7aNskXuCj0c4nP3rMMp0r0c2XRtzZbafHyowNBDjnfSJMxqzOX7cwv7vGEORqZ07BXkO6lf5\n0+MWi0ZGL8oXh6Zc61QyQfc03ROCK+Nq/l0UYodAILhSViwO8dmP3cbXfnaUfSc6aemK8Mn31lKc\nd/mNK4FAcOtxTUUJj8dDPB7H5XLR2dlJYWEhhYWF9PSM7ax3dXWxdu3aa7msm5LIoeM0/8VjDL1+\nACQorF9I2f01aLdtxigpw1JVwjF4ck8flwYcrKlZTXlpCQCJeISNSxTcqs4PjZmLVAt7x/ylA30s\nXrCEkLsECwnTSiLLXayphN/cPtG8ci7z98NRgz37+nhhTy9nL9hiQyigseOBfO7Zkk9x4URviEyt\n9HMpWp9+8eyE9Xb3JdNCRCqqjiR6gKwZtlGlT5/gX5HQoSc8fWrH+JGK6UwFVUUaKcAnnstvv7uG\nvr7hrNI0Rlm9NDfjyEo2zzXqj5GKqaRiKuGYyh8daErfnhfS2NoQSidjLCp2zXvL5eTXYyZT1WyY\ni0fGOxnTtOjuTU4ym7TjNqfEbEqwoNDJikrfOM8HNyVFTtwuca0FAoFAkJlQjpP/+Ug9T794lhcO\ntPD577zFb9+/gvXLC6/30gQCwTXmmooSmzdv5vnnn+fBBx/kV7/6FVu2bGHNmjV85jOfYXBwEEVR\naGxs5I//+I+v5bJuKuLnm2n5wuP0/esuAELLCyjfuQLX7ZvteE+HExQN3ZXPl39xntKyGt7TsBBJ\nkuju7efQsVMk4xG2VW28bFKDKvtxacVoSoD+QSjOV9i8Sqa8WCIvsGTGIi+b+XvLsjh5Zphde3p4\n7c1+kkkLWYYNawNs35pH/arAjC7685kYMGriaeqS3Q0RcZCKKYB9bMWZSgsRssNElmyxZjIz+TxM\nFxk52VRwunMZHT3J9Bo5NZmEbqaNLA+f7SGhn+CR7ZV4nNo095/6XJYJqbhKKjYmRIyKMGALMWWL\nnbzn7oXUVPkozHdc1bnPy5mqZutJcq27LW42DMOioysxzmzSjtts6YiTTE6N2SwuclI6ruOhtMRN\n8QInDhGzKRAIBIIrQFVkfnN7FUsX+nny30/xtZ8dY8dtZbx/m4gNFQjeSVw1UeLYsWP8zd/8Da2t\nraiqyvPPP8+XvvQl/uiP/oinn36akpISHnroITRN4w/+4A/4nd/5HSRJ4lOf+lTa9FIwht7dS+vf\n/RPd//ITrJRBTmmAxTuX479rM6nyagy3x54p8BYQV0Kc6pLZensJsizTFx7g0LHTtLR3AvYO52ih\nPF5A6BuMYyHhUHJxasWosl0468YgyVQ7v//IejQsIHOqRSbRIDyos/v1Pna90kNrh71jX1To5N4t\nedy1OZfcUPaz5aPFfUI35hRv2doe54XXujl/VMNIuMfW70rh8NnxnYpj4u7w5YeLJpJtCkim9IOZ\nRB7dMHn5YFs6saBvKMnrxzpobOrmjtXF0xbg795UQWuLzsFjAySjKkZ8TIABO1ZVc6dQPSlUdwpZ\ntdD8OrffFpwSTXo1ug9mNlWdXuCZifnstriZ0XWTts5EWnRobovT3B6nvWOamE1NSo9a2J0P7nTM\npqoKAzKBQCAQXD0aVhZRWuDjqz89xi/3X+Lt9kE+8WDNTR27LRAIsueqiRK1tbV897vfnfLzb3/7\n21N+tmPHDnbs2HG1lnJTY0SGaf/G9+j4xncxo3Hc+R4W31dF6N4GzMpaUj4/SDJ48kk48rgUdtI2\nqGIhEY1GOHD0FBdbJpoYji+URwWEBxqW8MJbUV49nEKSHFiWRTLVS1xvx7Ci5Pld5AZcDA1k70kw\nWmgbpkXj0QF2vdLL/kNhDAM0VWJrQ4h7t+SzbImboWgSr292Be5sd8Mty+L8pRh7D4TZ2ximuW1k\n5EJSUD16WoiQ1dlKD+CaFNM5SnXZ7KJtRwv+nMA4kWQakQfgM0/snfY54kkjXYD/xsYlnDwTSadj\nnL8UHRExXICF4jTSAoTqNpCVqefeNxSnOxyjOM9z1bsPMo2YZCvwzFe3xc1EPGHQ2p6guX1MfGhp\ni9PRNTVm0+2SqShzjyRcuNOjFwX5jgl+IAKBQCAQXEsWFvj40/+4nm/94iQHTnfzZ0++yScerKWq\ndHbfpQQCwc2HsI+/QTGTOt3f+wmtf/cEqb4wms/JkvfWULB9PeaKtRihPJAkcOeRdObRPOCitVPD\ntCRcqkl5bpIXz5+ZIkjARG+H/iGTPYd09h7TSegyoBDXO0ikOjCt5ITHuBzqrMz9unoSvPBqLy++\n2ktPn20cWb7IzfY789iyMRePR+bpF8/yzy/NrcjNZjfcNC1OnxtOCxFdPfY5OTSJ2+oCNNQHuRju\n4ZWjrbM4s6lsXlWELEnpjpNRB+k3jnVw+lL/Zc9rssBSEHKzemnehMeM76bo6o9O21FgpiRSUXsM\n49mfDPKjp46kb1NVieplXlZW+Vi2xMOhC22caw/TP5QglONkOG4ST04VJSwL/v6Hh/C6HRNMOae7\n3lfaRTEXT5LJzFe3xY3IcNSYOG4xYjw5+r4ej8+rUL3Ma3c8jIvZzAuJmE2BQCAQ3Ji4nSqffKiW\n5/c388zuc/ztUwd5+K6lbN9QKv52CQS3MEKUuMGwTJO+f91FyxceJ3GxFcWpsHh7JcU71sKq9RgF\nRSNiRC66K5+WITctXRqGJeFUTBbnJinKSSFLmb0d2roNdjfqHDyTwjQhxwNJo51wpA2LiTv+LofC\nQ1sqslq/rpvsPzTArld6OHxiCMuyd2bftS2f7VvyWFruSf9ReWpX05xb7DPthjee6mFZQSEHDg+y\nvzFMeNBOi/C4ZbY2hNhYH6Su1p8244smAkQSCRqbpo8ynQkJyPVPNNl8/51L+d7zp3ntWMeszmuy\nwNLVH8v4mIDPSSjHSXevPuIFYXtCmPq4ol2yWFHpYW1NgJXVPiorvKiqfaxnXj9P31CSkE+joaaI\nR7ZX8rM952f0F+kbStI3NLXwBfv99dCWCn625/y8dFFk40mSifnotrjeDA6laB4xmBwvPvSF9Sn3\nDQVUVq3ISSddjIoPgRxVfIETCAQCwU2HJEns2FhGRXEOX3/2OD948awdG7pzOW6nKF0EglsR8Zt9\nAzGwZz/Nf/EY0aOnkBSJks2LWXT/KuS6jZjFpSDL4AqQchfQGvHS3KKRMiU0xaQimKTYn0IZV/9N\nbvv3ex1c7IB/ejZBU7MtPCzIlbljjYLfM8z//VHztJ4JSd0gEp1aDI2nuTXGrj297H69j8GILQIs\nX+Zl+9Z8Nm8I4nJO3OG+0hb7ybvhlgl6VEMf0ggPq/x149sA+H0q927No6E+yOoVOWjjjPkmdydI\nZO8Zked38vsfWE1ByDNlnacu9c/qvLK9FpZl0dIWt0cxmiK0nfAQi42tWJItNK8+MoqRorBA47O/\nu3bC8b7369O8eGCsK6Q/ovP6sQ5cToWP3FM5cszurNI+0s8xFOepX5/h9VkKMTMxKu5sXV0MkkRB\n0D2rrov56La4FliWRX9YH2c2OTZ2Mfo7NJ6CPAd1tf5xZpO2COHzio9xgUAgENx6VJeF+OyjG/jG\ns8d481QXLd0RPvXeVZTki9hQgeBWQ3ybvQEYPnaalr/6CgO7bY+AgjXFlN1fg2NjA8aiJZiqCs4c\nDHchbVEvl1oc6KaEKlssyU2yMKBPECMmo8oylzo0dh9M0t5jGzcuXaiwtU7l8Lnz/HSPXYTKkt2q\nP5mZdpdjcYPX3wyza08Pp84OA7YI8OB9hdyzJY/SEveUx4xypS32AZ+TgMdJZ4eJHtHQh7V0aoTq\nsLj3jnxu3xBiRaVvxjn5yd0Js8Hj0lhUOGbIOjq2kEyZsz6vma6FZUFnl84zP2+juSXJyabhCcWq\nP0clr9RiMDWM5UiiOEzGb4zXLy+eUIAndIPXj04d5wF4/WgHH9y2jEfurWLr6mL+9FtvZnUdwI70\nOnWxb9rbZuvhMF+pGVfabTGfmKZFT18yLTiMmk22tMWJxiZ2JUkSFBU4qV7mndD1sKjIhdt9Y4gp\nAoFAIBBcK0I5Tv7HR+p4Zvc5fvVmM5//zlt87P7l3LZiwfVemkAgmEeEKHEdSTS30fI3X6P3J78E\nILgsj/IHVuC+YzPG4mUYDhdoXkxvIe2xHC62aSQNGUW2KA8lWRTUUTPUafGExRvHdfYc0hmIWEgS\nrK1S2VanUbpA4aldTbxwYKwon2yIN8r43WXLsjhzPsquV3p4dX8/sbhdCNfV+tm+NY/1awNomRY1\nwlxb7MODOvsPDrD3QJgLJ9xYI+EYsmbgyLGNKu/dtIAdt+UT8DlnFCQydSdkw3BMJ6EbqIo0oYgO\n5ThwzmB6OdN5jV6LnoEERtwew9CjKqm4CqbEM5fsdebnapSVq8SsKEkpTn6eRn11Ae++fQU/fOEs\npy71j/hDTF+Ad/dHiSfNKccH2xyzuz/KosIcCkIe8mZ4baZjeVloQpfEeGbr4TBfqRnzGRubLYZh\n0dGdoKU9PsFssqU9TmLSdVcUKC50sWZlTrrzYVGxi5IiF06HiEATCAQCgWAUVZH58D2VLF0Y4Fu/\nOMk3nj3OudZBPnjXUtRMu3ICgeCmQYgS1wG9N0zbY9+k68kfYekpvCV+yndWE7h7M6mKagyPD1QX\npreQzkSQC+0aiZSMLFmUBZOUBnUy1VfhIZM9h23zyngSHBpsWauxda1Grt/+8M5UlMuSPcaQO664\nHYqk2P1GCz/791YuttipFQV5Dh68L4+778ijIC/7KE+YXYt9V0+CfY0D7G0Mc/JMJN3NsaTMjTto\nMGQMEdFj5PqdeFxujpzt4eWDbRl32TN1amRDOJJgIJJg14GWCecwk+/CdOeVSJg0vT3MiaYIA5e8\nhLtd6W4PsIUW1ZcimCfxJx9fwyvHmtPHkoG+obGC/Xd+Y+UUk8mEbtA7YEelqorEL/ZezHxSI20W\nmV6b0kIf0XhqQvfBQ1uWcOpS/xV7OFyN1IxMUatzRU+ZtHcmxnU+xGhpj9PakSCVmhqzWVI0cdxi\nUYmL4kKXiNkUCAQCgWAWbFheyMJ8L4//9Ci/fquZ8x2DfOLBWkI5N75XlEAgyIwQJa4hRjRG5z99\nn/avPokRieIMuSm/r4a87RsxKmtJ+YOgOLC8hXQlg1zodBLTZSTJYlFApyyYxJHhFWvrGTGvbBo1\nr5S4e53GplUaHtfEAihTUW5Z8N8/vJbyYj9n3o7x5ScusvdAGD1loSoSm9YH2b41n9Urc64oQjBT\ni31Le9xOzDgQ5tzFKGDXzMuXeWlYF6ShPkhhvv1HaLQYf37/JV462JZ+/ky77Jk6NfL8TlYvzePI\nud4ZuwVCOS7cTnXGItrlUPC61AmdC7/RUMGBIwOcGPGEOHs+SsoYK2IVhzkunjOVjiY1JEDJrmC3\nI1hNntrVNGEEwuPSJiRnTLfeguDYuE2m1yZlWFO6D+bDw+FGS81IJExaO0a9HmLpDoj2rgTmpIYT\nl1OmvNQ9yWzSTaGI2RQIBAKBYN4oyffyJ/9xPU/++yn2n+zic0++yScerKG6LHS9lyYQCK4AIUpc\nA6xUiu4fPEfrl/4BvasX1etgyXtWsOBd6zBXriWVWwiyhuUtoCeVy/kuJ1FdRsKixK+zOKTjVKef\nrbAsizPNBi816jRdGjGvDEncWe9gXbU6425spqLc73Jx+HCcL3+9jc5ue+d/YbGTh3YuZP1qL0G/\nlvW5Z4qIHN9iHx6K09dncuDwIP/tT07R0m53YygKrK3JoWFdkNvqgoQCU4/t1BQCPidHzvVOu4bp\ndtkzd2oU8Mi9VSR0g+8+f3ra0YS6qnxiidSMRXRSN/j0Q6u51JLkYnOCA68N8+PvH02PyMgyLFns\noabKx8oqH0sr3Hzhqbdm7DbAsrIu2KcbgbjcKMbtq4omXJ9M4w+KzBRxYD48HK5XasZwNEXTueER\nw8mxxIuu3uQUjxWvR6FqiXec2aQtRIiYTYFAIBAIrg0uh8rvvqeGpSUBfvjSWb74/UN8YNtS7rtN\nxIYKBDcrQpS4iliWRf8vd9PyV18hfu4SskOh9O6llOysQ1pdj1G4EGQVy5NPn5XP+R4nkaQCWBTl\n2GKEW5tejDAMi0NnUuxu1GlLm1fKbKt3sLxcQb7Mh/LkotyyQB9WSQ446Y9qXDjSgdMhc/cdeWzf\nmkf1Ui+FhX66u4eyOvdsDAsN0+L02WG7I6IxTHevLYA4HBIb6wM0rAuyfnUgq3SBueyyX66QdmoK\nH7t/OR6XOmPHwPgi2tQl2w8ipkJC44//4nz6WKoqsbzSFiBqqnxUL/VOMS7M1G1QEPLMWLAHfU6S\nKZOEboycz+y8Mm6vLeLDI8kbk8l2/GE+PByudmrGYCRlezyMdD6Mmk329k9Nlgn6VWqqfSNdD+60\n4WTQL2I2BQKBQCC43kiSxPYNpSwuyuHrzx7jhy+d5VzrAL/9wAoRGyoQ3ISI39qrxNC+g1z6/JcZ\nbjwGskRRQyllO1ch12/AXFiBpahY7jzCUj7n+90MJmwxotCXojyUxOOYXoyIJyz2Htd5Zbx5ZaXK\nnfUaZQtmV7R96O5lRIZM3nhzkIFuGcuwxYJl5R62b83njo0hPHN0/J/JsNA0LFaWFLGvcYB9B8MM\nDNppEh63wtaGEA3rgtTV+qdEiM7EaCeG26nOepc9UyE9vsNjuvtYlkVfv05QCXKpY5BUTMXUx3Ua\nqLCmJifdCVFW6iKW0DMW65lEEkWWZyzYo4kUn/3mfnL9TqrLQrPyysjNcfLR+1BTK28AACAASURB\nVKpnlWyRiSv1cLjSjgvLsugfSI2MWsTGYjbb4+n32njyczVuqwuxIF+zUy5GPB/8PvHRKBAIBALB\njU5VaZA/e3QD33j2OAeaumnpGea/vreWhQW+6700gUAwCyTLmi4E8sZm8m59QUFO1jv4V5vo6XO0\n/NVXCf96DwB5tQtY/EANzo0bMcqWgeoATy6DcgFv93sIx+0CNd9rixE+5/QvxxTzShU21mhsWauR\nF5hdQZlImuw9YEd5Hjtl+wx43DJbG3J51535VJRNX1Rme50TusFnntibFggsE/RhDT2ikYpqmIa9\n0xzwq2ysC9KwLkjtcl9WqR2jTNeJMZNvwr3rF2Wd3DBTh8cHty2lvTPJiaYIx0/bnhB94bEddlmx\nUFwp/CFYu9LPx99XhdOhzCniMqEbKA4NI6lPEDDGnssu2B3a9CkfrhnSP6bjrvqF3Leh9JqkU8yG\nTGM/YIsPPX263fEwLuWiuS3OcHRqzGZhviM9bjEqPCwqduFxKzfU58etjrjW146rea0LCnIuf6cb\nmKt5XcT7+/oiXoPrz/V6DQzT5Mcvv80v913Cock8unM5DSuLrvk6bgTE78H1R7wG05Pp+4PYDpwn\nEq0dtH7pH+j50b+BaeGvCFH+wAq8WzZhVFTb8Z6uIEPqAs6HPfTF7Euf60lRkauT45w+qrGtx+Dl\nRp3GceaVd63T2DyNeeXlOH8pyq49vbz8Rl+6cKtd7mP71nw21gfnLYpwIJKgpz9JckSI0Ie1dKqE\nrJrcszWXuzcXUL3MO2cTwJl8E6ZLh5iNr8Ho81oWGAmF1n64eLKPZ38cITmuASHoV9m8PkhNtd0J\nsaDQwVA0OaWInkvEpVNTKMj3TvkwG9/Z0d0f5cvPHMlafIDJyRm2iHP4TDe7G1uzEkuuJWOmnRbt\nnfEJHQ+jAkQ8MfF3RpaheIGTVSty0maTpSUiZlMgEAgEglsdRZZ5+K5lLC3x882fn+QfnzvBuZZB\nPnTPMhEbKhDcBAhR4gpJhQdp/+qTdHzzB1iJJJ4iHxU7qvHf04CxtMaO93T6GdYKOT+YQ8+wfcmD\nLoOKvCQB11QxYtS8cnejzukR88rCkMS2egf11SraLKIEh6MGe/b18cKeXs5esFMsQgGNHQ/kc8+W\nfIoL5888sH9AZ//BMK+/1U/4bf+YEOEwcPh0NJ9OYYHGx3+z7Ip25TNFR0bjKf700fXEEqlZ7f7r\nusnJsxFeeLmfoX4vqbgK5th1Vh0WWxpyWbU8h5VVPkoWOKd4C0yeYbwaEZdgF+wOTZlxTCORNLi9\ntohTl8IzJmfMJqnkWqCnTDo6E2mfh9Huh9aOOPqkmE1VlVhUNNLtMGo4WeyiaIFzVt02AoFAIBAI\nbi3WVReysMDH4z89yguNLVzotGNDc/2u6700gUCQASFKzBEznqDzW0/T9ti3MAYjOAIuyt+zivz7\nbsOoWoXhzwWHj5ijkPNDAbp6FEDC7zSoyE0S8kwVI67UvHIUy7I4eWaYXXt6eO3NfpJJC1mGDWsD\nbN+aR/2qAIoyP2Z9XT0J9jba0Z2nzg6n0wpCuQoxaRiHT0cZ1wVSX118xWMClzO1jCVSl/U1iCcM\nms4Nc3wknrPp3DBJ3QLsdA9ZM1BzxuI5NYfFRz+4YlZ+CVcz4jJTUkWu38VH76tOr2FycsZsk0rm\nk0TSpK1jTHRobrdNJzu6EhiTmj5cTpnFi8bGLUbNJhfkO+ft/SsQCAQCgeDWoijXw2d+az3f+eUp\n9p7o5HNPvsl/eU8NK8pzr/fSBALBDAhRYpZYhkHPM7+g9W+/TrK9C9WtUXF/NQt2rMOqWUsqrwg0\nNwnnAs5HgnT0qoCEz2FQkauT6zGYrC3EExb7RswrwyPmlWsqVbbVaZQVZV8chgd1dr/ex65Xemjt\nsIvVokIn927J467NueSGHFd+/pZFS1s8LUS8fSkG2HP7Kyp9NKwLsrEuQF6uNsH/YC6jFDMxl+jI\n4ajBqbO2H8TxpgjnLgyni2BJgsWL3Cxf5uXQxVZixJEnRbDOJZLyakZcZptUMZ3ocTXFklFiMcPu\nemgfS7toaU/Q2Z2YErPpcSssK/emRYfR0Yv8XAfyHMd7BAKBQCAQvHNxOhQ+/u6VLF0Y4AcvnOFL\nTx/ifVuXcH/DYpGiJRDcgAhRIkssy2Lghddo/svHiJ1+G0mVWXRnBYseWAur12EuKAXNRdK1gAuR\nEO19GhYSHs2kIjdBvneqGDEQsc0r3zg6Zl55xxqNrbMwrzRMi8PHB9n1Si/7D4UxDNBUia0NIe7d\nkk9Nte+KCzvLsjh7IcqPf9HNS692pQUPVZGoq/XTsC7IbWsDBAPahMddaUTkTGRTkA8M6pw4E+HE\niCnl+eZYuhiWZTthZGWVj5VVOayo9KZjR5/aFZ+3SMrZRFxezthxOuaaVDGfYslQJJU2mBwzm4zR\n0zc1ZtOfo7Kyypf2erA7INyEAiJmUyAQCAQCwfwiSRL3rFtkx4b+7Bg/fvlt3m4b5HceWInHJUog\ngeBGQvxGZkHkwFGa/+IxhvYdBAkWrF9E2QO1KOs2YC5aApqLlKuQC9F8Wjs0LEvCrZmUhxIU+qaK\nEe09BrsP6hw8ncIYZ165qVbD686uOOvqSfDCq728+GpvugAsX+Rm+515bNmYS84VRhoapsXJMxH2\nHgizrzGcPobTIbNpnZ2YsW51AK8ncwF9pRGRMzG5IPc5XRT5AoRbnXz6f5+gpT2evq+mSqyo9FFT\n7aOmykfVUi9u1+xjOefCQ1sqiMZTnLrYTziSmPJ8M6Vz/NeH6y773JkiTTMxG7EERgS5wVTabNLu\nerBFiPA0MZt5IY01NTmUpscu7BEMf474uBEIBAKBQHBtWbYwwGcf3cA/PHecg2d6+PPvvMmn3ruK\n0kIRGyoQ3CiIKiEDsbMXaPnC1+j/xYsA5K4oZPEDK3Ft2oixuArT4cZwF3AxVkBLpwPTknCqJuWh\nJAtyUoxvULAsizMtdpLGqYv23EBBSGJbnYN1y7Mzr9R1k/2HBtj1Sg+HTwxhWeB2ybxrWz7bt+Sx\ntNxzRTvOum5y5OQQexvD7D84wOCQXXB6PQrbNuXyrruKWVKq4XReXzNBy7Lo6k5S6MylRNMId0e4\n2KdzkQSQwOWUWVtjG1LWVOewrMKDQ8tuzXMt9CczndiwqaaIj2yvwjPOEHOmdA6P28FDt5dnday5\nCD/TiS9rK/O4Z20ZB48N2sLDuMSLyPDUlI8F+Q7WrfbbwkOxm9ISFwuLXZcVqgQCgUAgEAiuJX6v\ngz/40Fp+uudtfv7GRf7yn9/iP+yoZnNt8fVemkAgQIgS05Ls7KH17/6R7qd+BoZJTlmQ8gdW4Ltz\nI0bFSgyXB8OdT0tiAZe6nBimhEMxWRxKUuyfKEYYhsXhs7Z5ZWu3bfi4pMQ2r1xRkZ15ZXNrjF17\netn9eh+DEVsoWL7My/at+WzeEMTlnHsRGIsbHDw2yN4DYd46PEAsbq8x6Fe5b1s+DfVBapb70FT5\numXumqZFc1ucEyOmlMdPR+gfGBsP8HoU1tT4WLUih9Ur/Cwp81yxEeKVdnhMJza8dqwDt0tNp1tk\nSufYe6ydnbeVXhXDScO06OrRqcwvRIvncP7SMF09Ov92NMYz3z8x4b6yDMWFTmqqfGNdDyUuFhY5\nr+h9JxAIBJejqamJT37ykzz66KN89KMfpb29nf/1v/4XqVQKVVX54he/SEFBAc899xzf+c53kGWZ\nhx9+mA9+8IPXe+kCgeAGRJYl3n/nUpYU+/mnn5/kn/7tJGdbB/nIPZUivUsguM4IUWIcxlCE9q9/\nl45/+B5mLIG7wEv5jiqC927EqFyF4fFjuvNo1Yu42O0iZUposkV5XoISf4rxMcjxpG1eueeQTv/Q\niHnlMpU76zUWZ2FeGYsbvP5mmF17ejh1dhgAv0/lwfsKuWdLHqUl7jmf51AkxVuH/197dx4V5X3/\nC/z9zD4wG/uOKAoquOEScImJ0WZrkjax0Syk57bH2zT1dLlJfrVmMb+TXM8xt23ya5smqd1Ss5Em\npjXN4haNJoomoqio4ILKvi8zwOzP/WMWZmBAQOEBfL/O4cisfJnBme/zmc/ShsKiVhw72e6dOgHE\nRquw4kZPaUZGejjkEjUZdLlElF/u9E/GOFVmCfqkPsKowKL5JkydEo6K1macr2tGhbkJHRfVsKli\nMGnCZADS9SgY6CjQ/hpONrZ2XXXDSadTRE19YLNJz/dVNVb/c+6jUAhIjFN7+z1o/Q0nE+PUUA4w\ny4SIhp8oiujscqHd7ESb2Yl235fF6T/PbHEib340bllkknq5Q9bZ2Ynnn38eeXl5/vNefvll3H//\n/bjjjjvw1ltv4W9/+xvWrl2LV155Be+//z6USiVWrlyJFStWwGQau787EQ2vORkxeDYmHK9sPYm9\nR6twqdaMx76TjSgjx4YSSYVBCS+31YYTN98Pe3U9VHo1Uu/NRuxt8+GaOgsuQyTcmkjUuuJQ3hQO\nh0uAQiZiYqQdSUYHAoOroZpXLprpaV4Zber/4E4URZwt78SufY348nALuqxuCAIwJ9uAFTdGYd5s\n45Ajuc2tDhw+6pmYcbLU7J88kZKkQe4cTyBiYqp2QOUfQ2nK2B+Hw42z5Z3+AMTpsxZYbd1jRGOj\nVZg3y4isDB2mZ+qQEKuGIAh4e1cZvj5X47+er/QBgD8bQQoDnW7RX8PJaJN2wA0n7Y7uMZsXK7tw\nsaIT9Q121IQYs6lSCf6Mh+5mkxrEx3DMJpEUXC4R5o7u4IIvqBAYcGgzO2EOuMzpEq94v3q9akwH\nJVQqFTZv3ozNmzf7z9uwYQPUas/rYkREBEpKSlBcXIwZM2ZAr9cDAHJyclBUVIRly5ZJsm4iGhvi\nIsLw1CNz8Y/PSnGwpBb//fev8aO7s5A1kWNDiaTAoISXIIiISNFCOzMD8bfnQMyaA2d0AkS1EfVi\nAs43h8PukkEuiJgQYUey0YHA4/GaJk+/iCJv80qdVsBtuUosnHHl5pVmixNfHGzGrv2NuFTpadAY\nE6XCPbdGYdniKMREDW2UZ229DYeKWlFY1IrS8x3+6ROTJ4YhN8eE3BwTkhIGHhV2udx4e1dZr6aM\nq5ZNhlw28GCJ1eZC6bkOfyZE2fkOOJzdm+ykBDWyMvTe6Ri6kL//QLMRpDDQ6Rb9NZzMzU7otf4u\nqwtVNVZ/w0lfBkRdgw3uHscoMrkIk0mO2dNM/gAEx2zSYFzr4OP1wu5w985iMDvRZnaEzGro6HT1\nGpMbSphWDoNegZjoMBj1Chh0Chj03V9GvQJ6nedfg16BlGQjGhstw/8LDxOFQgGFIniLEhbmyRxz\nuVx4++238ZOf/ASNjY2IjOw+iIiMjERDQ+j3Bp+IiDAoFMPzNx0Tox+W+6WB43MgvbH0HPzqfy3A\nZwcv4k//OonfvncMD6zIxL3Lpoz5972x9ByMV3wOBodBCS9BqcKkp74PUamEOz4VotqAJiTgXKse\nVqcMMkFEismOFJMDKu/rlCiKOFfpwt4hNK90u0WcLLVg175GFB5phcMpQiEXkDfPhBU3RmPmdP2g\nyydEUcTlKisKizwZERcrugAAMgGYnqFDbo4JN+SYhhzk+OtHJSGbMgL9ZyZ0dDpxqqwDp8rMOFVm\nwflLnf5P8AUBSEvReppSZugwbYqu12jRUAaajSCFwUy3CNVwMistCgumpGDnvsagsouGJnuv+9Pr\n5Jg6RQer24qatnbIVW7IVS4IChGiAESlhuE7y9OG7Xel8aeviTCDDT6OB55SCTfazY7uIIOl/6yG\nwCyvvsgEQKdTIMKoxIRkrSewoOsOLvQMMuj1ikFnyY3XMbsulwv/9V//hdzcXOTl5eGjjz4Kulwc\nQISnpaVzWNYmVd8l6sbnQHpj8TmYNyUakQ/l4I//OoG3d5Ti46/KceuCVNw8Jwlq1dgLTozF52C8\n4XMQWn+BGgYlfATAlTYNolyFFlk8zraZ0OWQQYCIJKMDqSYH1ArPZsflFlF81okvihyoDGheuTRH\nhelXaF7Z3GLH5195siLqGjwHmUkJaqxYEo2lCyNhMlz5gDyQ2y3i3MVOFB7xZETU1HkO1BVyAXNn\nGpCbY8L82UYYB3m/PdkcLhSerAl5Wc/MhNY2B06dteBUqQUlZRZcquzyfxIolwPpaeGeUowMHaZN\nCUd42OD/DAeajSCVK40WFUURbWYnKqutiJRHIF2nxsXWLtSV2fHvbzrw7/eLg+4v0qTEzGl6T8mF\nN+shOUEDo0EJm8OFpzcXQiPrHbSQOmuExp6+JsIA0pZFXQsutwizJXQfhvZemQ0DL5VQKgQY9Aok\nxqm7sxf8QQZlUEaDQa+ALkzOjKUh+tWvfoUJEyZg7dq1AIDY2Fg0Njb6L6+vr8fs2bOlWh4RjVGT\nEg147n8twPbDl7H7SCXe23MOnxRewq0LUrAsJxlaNQ+ZiIYT/4f5CDI0hU3FhSYlOuxyCBCRYHBg\nQoQDGm8wwmoXcbjEgX0BzStnTpbjphxVv80rnU4RR060Yff+JhwpboNbBNQqGZYtjsKKG6OQmR4+\nqE+1XC4Rp8osKCxqxaGiVjS1eCZRaNQy5M0zIS/HhJyZRv9oRpvDhfqWzqtKw26z2NDQ2hXyssZm\nG3Z8UY/KKgdKSs2oqu0OFKiUArIydchMD0dKsgqzs4ww6oaWqRFoMNkIUvCNFr33xkm4VNWBtnYR\ndfV2/GlLpWfcZo0VZkvvMZux0SrkzDAgI92AqAgZkhM8AYj+AjejOWuExpbRXBYVSmCphDkguNBm\ndsBscQWVTAyuVEIGg17pL5UILIsIldWgUcvGbWbCaLJt2zYolUr89Kc/9Z83a9YsPP3002hvb4dc\nLkdRURHWr18v4SqJaKzSaZW4b2k6bl2Qil3fVGDXN5X44IsL+LTwMpbPS8aK+SkI11zdh3xEFBqD\nEl4uN3CixvPpepzOgbRIB7RKz+61zeLGl8UOHDzpQJcNUA6weWVNnRW79jdhz1dNaGnzjPKcPDEM\nK5ZEY/ENEQjTDnxzb3e4cfyUGYVHWnH4WKv/gFYXLsfNiyKRm2PCrCwD1Kru9VxtGnZgTblRp0aM\nSYu65i64HTI4uxSer0453E45/nrBk0WhUcswJ9uArExPJsTEVA227r+Ao2UXseesDf85cu1Swa+U\njTCS3G4R9Y12VHp7PlR6Aw8V1Vb/mFUfmQDExaoxbYrOn/GQkqhFUkL3mM3BpH2N9qwRGjukDHD1\nLJXoWRYRKqthSKUSuuA+DD1PD6VUgq69kydPYtOmTaiqqoJCocD27dvR1NQEtVqN/Px8AEB6ejqe\ne+45PP744/jhD38IQRDwk5/8xN/0kohoKHRaJb6zZBJuXZCKz4sqsf1wBbZ9dRE7vq7ALXM9wQlD\n2NV/wEZE3QRxIAWYo0zPg7VrVbfT3CmDWiEiXOV5SGqbXNh71IGiM93NKxfP6r95pc3uRuERzyjP\nk2c8TcbCw+S4KS8StyyJwsTUgW/ou7pcKDrRjsKiVhw53uY/uI0wKnCDt1FlVqYeij56V7y9qyxk\nJsHyecn9pmEHBjOa2mzQKTWIDjOguUnE5cs2iK7uDbsgcyMhUYlbF8cjK0OPtBRt0BSHoa5hMEay\nIZ/LJaK23uZtNtnlbzZZWWuF3d5jzKZcQEK8GikJ3SUXKYlaJMSpobrCmM3B/k2PxOM8XrHur5uv\nFChUgCvKoMELa24Y8P+xoFIJ779uUYGqGktQVkPg5YMplfAFEIw9SiX0enlQycT1WioxnH/XY715\n13A+LnwtkRafA+mNx+fAZndhz9EqfHb4Mto77FApZbh5ThJuXZAK0yj84Gc8PgdjDZ+D0NhTYoAi\nw9ye5pUVLuwJbF5pErA0R4V5/TSvLL/ciV37m/DFwWZ0dHpulz1VhxU3RuOGHFNQBkN/2i1OfHOs\nDYVFrTh2st0/lSIuRoVv3eQJRGRMCr/iJnuoadgul4hX3y/FgSPN3mwINVrcMlTA069Ao5VDoXFC\nVNoQGSPHDTMjsfqWKSGzHkYqFVytlF/zT28dDjeq62yewIO32WRFjRU1tbZeB04qpeAfrenLekhJ\n1CAuRt1nwOhaG01ZIzR29VcWNTM9CmazC1VmW3DGgqW7ZCIwyGDpGFypxKQJ3oaPemV3qUSIrAaN\nhqUSREQ0ctQqOW67IRXLcpKwr7ganx66jO2HK7D7SBWWzkrE7bmpiDQMfJodEfXGoESAkxec2HnI\n7m9eOTFRhpvmqDB9UujmlZ1dLuw/1Ixd+5pw7qKnm3eEUYnb7ozGLUuikRA7sOhpU4sdh4o8gYiS\nUjPc3ozk1CQNcud6AhFpKdpBbcQHmoZtd7hxrrwTJaWeyRhnznV4U6K1AACZ0gWlzg6F1om4eDk2\n/ng+BEEYUGbCWOh1YLW5UFVj82c9+MZt1tX3HrOp1cgwaYLWG4DQ+ksvYqJVg56Ucq35eljctzSd\nYxzpivylEv6mj90lE7Z2LQyOaDQ022CziRDcMsAtw9ayDmwtONnv/fpKJUwGJVIStb36MCQn6SGI\njqDzlFfIGiIiIhoNVEo5ls9LwdLZSfjqRA0+KbyE3UWV2HusCotnJuCO3AmIMWmlXibRmMSghJfd\nIeLvH1sBEZiZ7m1emdD7oE4URZw514Fd+xrx1detsNndkMmA+bONWHFjFHJmGIPKF/pSU2dFoTcQ\nUXa+w39+xqQw5M71jO5MjBt61LWvPgOiG1ALYfhsdzNKz1Xi7IUOfzYGACTEqdBsNUOhdUKhdUKm\n7L6s3Qq0d9gRGxE2oGDCaOp10NHp9I/WDByzWd/Ye2KFLlyOzMnhSEnUesouvFkQURHKUf8J7XBk\njdDo53KLsPgyFiyhJ0kEjbO0OOF0XimNQQ5FQKlEqB4M/pIJnadkIjxc3m+AjumMREQ01ikVMtw0\nJwmLZyagsKQOHx+8iC+OVWN/cQ3ysuNwZ14a4iO5FyMaDAYlvFRKAT+5Twt9mBCyeWVruwN7DzRj\n175G/3SJ+Fg1li+Jws0LIxEZ0X/DG1EUcamyC4VHWnGoqA0XKz2TLGSCp8wjb64JC+aYEB15bRrn\n+NKwdxyqgrNL7m9M6bLK0QoBH56thyAAE1O0mJ6hw/RMHaZN0UGrlXlryh297jPapB1UIEGKCRlt\n7Y6AZpNW//fNrb1/nwijAjN8Yza9Uy6SEzUw6hWjPvhA45tvqkRQUMESeDp4usRgSiX0OgUmpQaX\nSoSaLmHUs1SCiIioLwq5DItnJiAvOw5fn67Hfw5ewlcnanHgZC0WTIvDt/MmIClGJ/UyicYEBiUC\nTEwMPkh2uUUUl7Rj174mHD7WCpfL02TtxtwILF8SjaxMXb+9HdxuEWfLO1F4pAWFRW2orfcEMxQK\nAfNmGZCbE4H5s40w6K/d09DS5sCpMgtOlVlQUupEW6Wx+0JBRFS0HEvmRSN7qh5TJ4eHHDXZVyAh\nNzth0IGE4eh1IIoiWlod/lKLCl+zyWor2i3OXtePiVJhTrbBH3TwBSF04fzzp+EniiK6rO6Axo4O\ntJtdaLc4gps9BgQgBjNVwqjvUSrRY1wlSyWIiIiGj1wmQ25WPBZMj0NRaQM+OnARh07V4dCpOszN\njMFdC9OQGje2GwQTDTcelYVQ32jD5182YfeXTWhs9nzCnpasxYqlUVhyQyT0ur4fNqdTxKkyMw4e\nacXho23+T+g1ahkWzTchd64JOTOMgxoHeqW1niqzoKTMglOlFlTXdZdKqJQCsqfqkDk5HKnJKszO\nMsEQfuX5yn0FEn5wVxaamzuucOtgV9PrwO0W0dhs9wcfKv0BiC50doUYsxmjRubkcH/WQ0qiBkkJ\nGmg17K1A185ASiWCxlkOqFTCE6w06hVIiFN3T5cIkcHgK5m4UqkEERERjRyZIGDe1FjMzYxB8bkm\nfHSgHEdKG3CktAGzJ0fjrkVpmJhgkHqZRKMSgxIBik604T87G3CspB2i6Gls+K2borFiSRTS08L6\nTGO2O9woLmlH4ZFWHD7WBkuHZ/qGLlyOZYujkJtjxKwswxXHQF6JKIqorrV5AhDer4am7p4IWo0M\nOTMMmJ6hQ1amDukTwob0yWhfgQS5fOjr76/XgcslorbBFlRuUVHdhaoaG2z24OCDXA4kxmkwa3pw\n1kNivGbAE06IAtkdbjQ224MmR4QaVznYUgmtRgaDPqBUwt+Lofd0CZZKEBERjQ+CIGD2lGjMmhyF\nkvJmbDtwEcfONeLYuUZkT4zEXYvSMCXZJPUyiUYVBiW8bDY3/u/L5+EWgamTw7HixmgsnG+CRh36\nU/bOLheOHG/DoaJWHDne7k+3jjQpcfuySOTONSErQzegppd9cbtFXK7q8pZieIIQre3d5Ql6nRw3\n5BiRlaHH9Ewd0pK1V/XzerrWTRN9Yza7m012oaLaiuo6W69PklVKAYnx3RkPvnGbCbGaERuzSWNP\n71IJX2DBO13CHBxwGGiphCAA+vDgUgm9XgFjQFBBH1gywVIJIiKi65ogCMieFIWsiZE4c7kVH31V\njpPlzThZ3oypqSbctTANUydE8AMJIjAo4adWy/D8LzOg18mRkhh6nE+72YnDx1pReKQVxafM/gPp\n+Fg18rwTM6ZMDOu3z0R/nE4RFy53+rMgTpVZ0NHp8l8eaVJiyQ0RnkyIDB2SEjRD/lnDyWZzo7K2\nO/Dgy4Coqbf5x536aNQypKVou4MP3nGbsaNgzCZJL7BUojtjIVQWw9BLJaIjNdCoEdyHQRc8XYKl\nEsPL5nBxlC0REY1LgiBg2oQITJsQgbOVrfjowEWcvNCMM5ePYXKSEXctSkP2xEgGJ+i6xqBEgOkZ\nvTvkNjbbcfhoKw4eacWpUgvc3uOdtGQtcud6ekSkJmmG9EJid7hx9kKHvydE6bmOoE9t42PVuCHH\nk3ExPUOHuBjVqHrB6uxy+cdrVtR0+ZtN1jfZe6W368LlyJgUHtBs0hOI1BPvmQAAG0JJREFUGAtj\nNunacTjcvXou9BpX6ZsuYXbB3OEcdKlEcB8GZcjGj9qAUgmOqZSOy+1GwefncLSsAc3tNkQa1JiT\nEYNVyyZDLmOmCRERjS9Tkk34P/fPRnlNOz76ylPW8dJ7xUiL1+OuRWmYPTma+2K6LjEoEUJ1nRWF\nRzwZEWfLO/3nZ6aH44YcE3JzjEiI0wz6fru6XCg93+HvCVF2oSPoU92UJI0/ADE9Q4eoK4wZHSnt\nFicqq61o+caMM2Wt/mkXTS29x2yaDApkZeq8zSa7MyCMBo7ZHG8CSyWCyiIsjuBRlgEBhy7rwEsl\nDHoFkhM13RkLuuBpEr4gg16nuOp+LSSNgs/PBU36aWq3+U8/uDxDqmURERENq4kJBvx05UxcrjPj\nPwcu4khpA37/wQkkx+hw16I0zM2MgYz7ZrqOMCjhJYoiPtpZj937m3C5ygoAkMmAmdP0yJ1rwoI5\nxkEHCcwWJ06ftfgzIS5c6vSXL8gEIC1V6+kH4Q1CXMvRoIMliiJa2pyorO4KaDbp+Wo39x6zGR2p\nxJxsg7fcorv0or/JJDS6+UslLM6+J0n0KJkYTKlEfKy6R1lE6OkSOp2CpRLXAZvDhaNlDSEvO1rW\niPuWprOUg4iIxrXUOD0e++4MVDV24OODnlGir/7rJBKiwvDthWlYMC2WmYN0XeARpJfdIeKtrdUQ\n3cD82Ubk5pgwb7YRhkEcZDe3OnDaN56zzIxLlVb/ZQq5gIxJ4f4AxNTJOoSHjfyGO3DMZnfDSc/3\ngf0rAM8n1nExamRMCkNKohbTM00w6IDkBM01G2lKw8fhcIfuw9DHKEtLh9NfntQfX6nExBRtr7II\ng07Zq/GjllMlKIQ2iw3N7baQl7WYrWiz2K5po10iIqLRKik6HP/7rizcs2giPj54CQdLarH5o1P4\n95fluDNvAvKy4qG4iil4RKMdgxJeapUMr23KhkYlg3YAB9yiKKKhye6filFSZkFNXfcGW6USMGOa\n3l+OkTEpHGr1yL2YuNwi6hts/mwHX7PJyhprr2kDcrmnf8WMaXqkBGQ+9Byzydp76fhKJUKXRThC\nZjUMplRCr5cHlUr07MPgy2ow6FkqQdeGUadGpEGNphCBiQi9BkadWoJVERERSScuMgw/uHMa7l6U\nhk8KL2H/8Rr87ZMz2PblRdyRNwGLZyRAqeA+jMYfBiUCRBiVfV4miiKqam04VWpBSZkZp8osaGzu\n7qkQppVh7kyDPxMiPS1sRF40HE43autsqKgJCD5UW1FVa4WjR2q9UiEgKd47XtMbeEhJ0CA+Ts0X\nuBHmcovo6HChzewIWRZhswtoaOoKymTo+XyGopALMOgViItR9yqLCDVdgqUSJBW1Uo45GTFBPSV8\n5mREs3SDiIiuW9EmLR65bSq+vTANnx66jH3F1diyvRT/OXARt92QiqWzEqHi+ySNIwxK9MHlFnG5\nsisoEyKwt4JBp0DuXJN/POeEFO2wHtzZ7G5U13YHHjxBiC7U1tvgCq66gEYtw4RkrSf4kKDxN5uM\njVHzAHSY9CyVCGz8eNWlEjoF0gJKJXxlEb5SicAeDSyVoLFk1bLJADw9JFrMVkToNZiTEe0/n4iI\n6HoWadDgoRUZ+HbeBGw/XIHPj1binV1n8fHBS7htQSpumpMIjYqHczT28a84QEVVF7453o5TZWac\nPtsR1GMhKkKJG3Mj/JkQyQlDGwN6JV1dLv90i0pv4KGi2or6xt5jNsPD5JgyMbxXs8noSBVkDD4M\nmSiKsHqnSvQui3D0ymoYTKmELlwePFWiR+NH3+mJaSY47FaWStC4JpfJ8ODyDNy3NB1tFhuMOjUz\nJIiIiHow6tS4f9lk3J6bih1fV2D3kUq8t+ccPim8hBXzU3BLTjLCNDyso7GLf71eNrsbv3jutD/r\nICFWjdwcE6ZnejIhYqNV1zQIYbY4ezSb9Ey9CCwJ8TEaFJieofNnPCQnapGcoEGEkWM2B8LtFmEJ\nLJW40nSJIZZK9Jok0WOU5WBKJWKi1WhosF/tr040JqiVcja1JCIiugJ9mAr3LU3HbTekYtc3ldj5\ndQU+3HcB2w9dxvJ5yVg+LwUxUi+SaAgYlPBSq2T42Q/TIMiA6VN0iBzk+M9QRFFEa7vTP+HCF3io\nrLaitb33mM2oCCVmZXmaTaYkdpdfSDkqdDRyON29yiGCGz8Gn7ZYBlYqoVHLYNR3l0oEZzAoYdDL\nYdArWSpBRERERJIJ1yhxz+KJ+Nb8FHxeVInthyuw7auL2P51BWakR0OnliNCr0aEXoMIgxqRejVM\nOjW0ah5T0OjEv8wAS3Ijh3Q7URTR1OLwBx4Cp11YOnqP2YyNUmHuTIO33EKLlEQNkhI0kowIlVpQ\nqUSfGQzB0yU6uwZZKpGggV4nh1GvDGr82DOrgaUSRERERDRWaNUK3JmXhuVzU7D3WBV2fF2Bb07X\n9Xv9SL3aG7DwfEUaNN3f6z2BC37oRiONQYlBcLlF1DfaUekLPARMvOg5ZlMm85SAZGXqvM0mvcGH\neM2IjgYdab5Sie6MBUdwVsNVlkrERqt7T5K4ylIJIiIiIqKxSq2S49YFqbh1QSrC9RqUlTehxWxF\nS7sNLWYbms2ef1vMVrSYbahq7Oj7vpTyoCBFhMGbceE7rVdDp1UycEHXFIMSITidImrqA5tNer6q\na62wO4IPoBUKAUnxan/gwddwMiFWDeU4+OQ9sFTiYpUTFRXt/WY1DLZUYkKKNii4ENybQenPagjT\nslSCiIiIiKg/YRolkqLDkRQd3ud1bHYXWiw2tLRbAwIWvgCGJ3BR29zZ5+0Vcll3xoXBF8AIzrjQ\nh6sg496dBohBCS9RFPGnNytQUmpBdZ2115hNtUrmDThovc0mPf0e4mPUkMvHxn84X6lEr2yFoD4M\nvmaQLrSbHYMulUiKV3uDC90BhVBZDSyVICIiIiIaeWqVHPGRYYiP7LvJtMPpQovFjpZ2a0DAojvj\notlsQ1lFK/r6LFIuE2DSqf09LXw9LgLLR4w6FeQyHhMQgxJ+DqeIQ0VtsNldSE8L9zab7B61ORrH\nbLrdIiydroCMhdClEuaAxo+DKpWIUgdlMMTHhUEhdwf1ZTDoFdCHK8ZMYIaIiIiIiPqnVMgRa9Ii\n1qTt8zpOlxttFntQhkV38MJz+kJVO86JoY8/BAGewEVgnwudGmEaBcI0Ss+/akXQvwxijE8MSnip\nlDL8+TfZEARIVibgcLqDAgghezAEZDUMplTC0LNUQtd3yURfpRIxMXo0NJiH4TcnIiIiIqKxRCGX\nIcqoQZRRA8AY8jput4i2DntQhoW/XMRbPnKp1owL1e0D+plqldwfoAhXe4IXWt9pb/BCq1EgXKPs\nEdBQQqOWs6RklGJQIsC1zIQQRRFWmzvkuMre0yWcAy6VADylEsaAUonuEonucZX6gGCDWsWIIhER\nERERjSyZTPBnQQCGkNdxiyIsnQ5PoMJiQ5fViU6bE51WBzq83/vO67A60Gl1otVsQ3VDR5/lI6EI\ngD+AERisCOtxXrhGCW1AdoYvwKFSssfdcGFQYoB6lkr0KpkIEXDo2RQzFIVcgF4XXCoRmMHQM6uB\npRJERERERDReyAQBhnAVDOEqTIB+wLdziyKsNhc6bZ5ARac/mOEJaPi/73Feh9WJupYu2OyuK/+Q\nAHKZAK3am5Hhz8pQ+jM0fGUnURFh6OywQS6XQS4TPF9yAXJZH6fl3vNkMsjlAhQB38tlwnURCGFQ\nIkDhkVZcuNwZMsgw2FKJ1GRtj7IIRYjGj32XShAREREREVFoMkHwZzj0UT3SL5fbjS6by599ETKg\nEXh+QPCj2WyDwzmwLPerJRMCAxdCcLCj5+kewQ5FH4GP3t9335c+TIm8rHgo5COXbc+ghJfN7sav\nX7vQa+pGUKlEUB8GZa+sBpZKEBERERERjX5ymQw6rQw6rXJIt3c4XUFBiw5vQEOjVaG1rQsutwiX\nyw2XW4Qz4HvP+SJc7j5Ou7znud0hvw+8L7vTDZfLAbcYeLvBFLWElhyjw8SE0OU2w4FBCS+1Sob/\n98xUdHS6WCpBREREREREfVIq5DDq5DDq1EHnSz0cQBTFfoIdwYEPZ0Cww+0NfmhUCqTFD7yM5loY\nNUGJjRs3ori4GIIgYP369Zg5c+aIr2Fiat+zeomIiIiIiIhGM0EQoJALUMgBDC0JZMSNiqDE4cOH\ncenSJRQUFOD8+fNYv349CgoKpF4WEREREREREQ2jUdEA4eDBg1i+fDkAID09HW1tbbBYLBKvioiI\niIiIiIiG06gISjQ2NiIiIsJ/OjIyEg0NDRKuiIiIiIiIiIiG26go3+hJFPvvGBoREQaFQh50XkzM\nyDbjuF7xcR45fKxHDh/rkcPHeuTwsSYiIqKxYFQEJWJjY9HY2Og/XV9fj5iYmD6v39LSGXRa6g6n\n1ws+ziOHj/XI4WM9cvhYj5zhfKwZ7CAiIqJraVSUbyxatAjbt28HAJSUlCA2NhY6nU7iVRERERER\nERHRcBoVmRI5OTnIysrC6tWrIQgCNmzYIPWSiIiIiIiIiGiYjYqgBAA88cQTUi+BiIiIiIiIiEbQ\nqCjfICIiIiIiIqLrD4MSRERERERERCQJBiWIiIiIiIiISBIMShARERERERGRJBiUICIiIiIiIiJJ\nMChBRERERERERJIQRFEUpV4EEREREREREV1/mClBRERERERERJJgUIKIiIiIiIiIJMGgBBERERER\nERFJgkEJIiIiIiIiIpIEgxJEREREREREJAkGJYiIiIiIiIhIEmM6KLFx40asWrUKq1evxvHjx6Ve\nzrhWVlaG5cuX480335R6KePeiy++iFWrVuG+++7Djh07pF7OuNXV1YWf/exnePjhh/G9730Pe/bs\nkXpJ457VasXy5cuxdetWqZcybh06dAi5ubnIz89Hfn4+nn/+eamXNO5xLyI9vm+ODnyNl9a2bdtw\n9913495778XevXulXs51qaOjA2vXrkV+fj5Wr16N/fv3S72kMUMh9QKG6vDhw7h06RIKCgpw/vx5\nrF+/HgUFBVIva1zq7OzE888/j7y8PKmXMu4VFhbi7NmzKCgoQEtLC7773e/iW9/6ltTLGpf27NmD\n7OxsrFmzBlVVVfjBD36Am2++WepljWuvvvoqjEaj1MsY9xYsWIDf/e53Ui/jusC9iPT4vjl68DVe\nOi0tLXjllVfwwQcfoLOzE7///e9x0003Sb2s686HH36IiRMn4vHHH0ddXR2+//3v47PPPpN6WWPC\nmA1KHDx4EMuXLwcApKeno62tDRaLBTqdTuKVjT8qlQqbN2/G5s2bpV7KuDd//nzMnDkTAGAwGNDV\n1QWXywW5XC7xysafO+64w/99TU0N4uLiJFzN+Hf+/HmcO3eOmyQaV7gXkR7fN0cHvsZL6+DBg8jL\ny4NOp4NOp2OWnEQiIiJQWloKAGhvb0dERITEKxo7xmz5RmNjY9ATHRkZiYaGBglXNH4pFApoNBqp\nl3FdkMvlCAsLAwC8//77uPHGG7mxGmarV6/GE088gfXr10u9lHFt06ZNWLdundTLuC6cO3cOjz76\nKB544AF89dVXUi9nXONeRHp83xwd+BovrcrKSlitVjz66KN48MEHcfDgQamXdF268847UV1djRUr\nVuDhhx/GL3/5S6mXNGaM2UyJnkRRlHoJRNfMrl278P777+Ovf/2r1EsZ9959912cPn0aTz75JLZt\n2wZBEKRe0rjzr3/9C7Nnz0ZKSorUSxn30tLSsHbtWtx+++2oqKjAI488gh07dkClUkm9tOsC9yLS\n4fumdPgaPzq0trbiD3/4A6qrq/HII49gz5493NOMsH//+99ITEzEX/7yF5w5cwbr169nj5UBGrNB\nidjYWDQ2NvpP19fXIyYmRsIVEV0b+/fvx2uvvYY///nP0Ov1Ui9n3Dp58iSioqKQkJCAadOmweVy\nobm5GVFRUVIvbdzZu3cvKioqsHfvXtTW1kKlUiE+Ph4LFy6UemnjTlxcnL80KTU1FdHR0airq+PB\nwjDhXmR04PumtPgaL72oqCjMmTMHCoUCqampCA8P555GAkVFRVi8eDEAYOrUqaivr2c52QCN2fKN\nRYsWYfv27QCAkpISxMbGsoaTxjyz2YwXX3wRr7/+Okwmk9TLGde++eYb/ydqjY2N6OzsZO3fMHn5\n5ZfxwQcf4L333sP3vvc9PPbYY9ysDpNt27bhL3/5CwCgoaEBTU1N7JcyjLgXkR7fN6XH13jpLV68\nGIWFhXC73WhpaeGeRiITJkxAcXExAKCqqgrh4eEMSAzQmM2UyMnJQVZWFlavXg1BELBhwwaplzRu\nnTx5Eps2bUJVVRUUCgW2b9+O3//+93zzHwaffPIJWlpa8POf/9x/3qZNm5CYmCjhqsan1atX46mn\nnsKDDz4Iq9WKZ599FjLZmI3TEgEAli1bhieeeAK7d++Gw+HAc889x9KNYcS9iPT4vknkyZK79dZb\ncf/99wMAnn76ae5pJLBq1SqsX78eDz/8MJxOJ5577jmplzRmCCILIImIiIiIiIhIAgyhERERERER\nEZEkGJQgIiIiIiIiIkkwKEFEREREREREkmBQgoiIiIiIiIgkwaAEEREREREREUmCQQkiIiIiIho2\nlZWVyM7ORn5+PvLz87F69Wo8/vjjaG9vH/B95Ofnw+VyDfj6DzzwAA4dOjSU5RLRCGNQgoiIiIiI\nhlVkZCS2bNmCLVu24N1330VsbCxeffXVAd9+y5YtkMvlw7hCIpKKQuoFENHQHTp0CH/84x+hVqux\ndOlSFBUVoba2Fk6nE/fccw8efPBBuFwubNy4ESUlJQCA3Nxc/PznP8ehQ4fw2muvIT4+HidOnMCs\nWbOQmZmJnTt3orW1FZs3b0Z0dDSefvpplJeXQxAETJs2DRs2bOhzPVu3bsXOnTshCALq6uowadIk\nbNy4EUqlElu2bMGnn34Kl8uFSZMmYcOGDWhsbMSPf/xjZGRkYMqUKXj00Uf7/D1ffvllJCYmoqqq\nCnq9Hi+99BJ0Oh0++eQTvPnmmxBFEZGRkXjhhRcQERGBnJwcrFy5Em63G2vWrMETTzwBALBarVi1\nahVWrlyJ8vJybNiwAaIowul04vHHH8e8efOwbt06xMbGoqysDOXl5Vi5ciXWrFlz7Z9AIiKi69T8\n+fNRUFCAM2fOYNOmTXA6nXA4HHj22Wcxffp05OfnY+rUqTh9+jTeeOMNTJ8+HSUlJbDb7XjmmWd6\n7Xe6urrwi1/8Ai0tLZgwYQJsNhsAoK6uLuQegIhGDwYliMa4kydPYvfu3SgoKIDBYMBvfvMbWK1W\n3HHHHViyZAmKi4tRWVmJd955B263G6tXr8bChQsBAMePH8dLL70ErVaL+fPnY/78+diyZQvWrVuH\nzz77DAsWLEBxcTE+/fRTAMB7770Hs9kMvV7f53pOnDiBHTt2QKvV4uGHH8a+ffsQExODnTt34q23\n3oIgCNi4cSP++c9/4uabb8b58+fxP//zP5g0aVK/v2dJSQlefvllxMXF4cknn8TWrVuxYsUKvPba\na3j//fehUqnwxhtv4PXXX8e6devQ2dmJpUuXYtGiRfj73/+OSZMm4b//+79hs9nwz3/+EwDwwgsv\n4IEHHsDtt9+O0tJSPPbYY9i9ezcAoKKiAq+99hqqqqpw9913MyhBRER0jbhcLuzcuRNz587Fk08+\niVdeeQWpqak4c+YM1q9fj61btwIAwsLC8OabbwbddsuWLSH3OwcOHIBGo0FBQQHq6+txyy23AAA+\n/fTTkHsAIho9GJQgGuMmTpwIk8mE4uJi3HvvvQAAjUaD7OxslJSUoLi4GHl5eRAEAXK5HPPmzcOJ\nEyeQnZ2N9PR0mEwmAIDJZMKcOXMAAHFxcbBYLEhPT0dERATWrFmDm2++Gbfffnu/AQkAyMnJQVhY\nGABgzpw5OH/+PC5cuIDLly/jkUceAQB0dnZCofC8/BiNxisGJABg8uTJiIuL8/+M06dPIzo6Gg0N\nDfjhD38IALDb7UhOTgYAiKKInJwcAMCSJUvw9ttvY926dVi6dClWrVoFACguLsZLL70EAMjMzITF\nYkFzczMAYMGCBQCApKQkWCwWuFwupo0SERENUXNzM/Lz8wEAbrcb8+bNw3333Yff/e53eOqpp/zX\ns1gscLvdAOB/Hw/U136nrKwMc+fOBQDExsb69xZ97QGIaPRgUIJojFMqlQAAQRCCzhdFEYIg9Hk+\ngF4H2YGnRVGEWq3G22+/jZKSEuzZswcrV67EO++8g9jY2D7X49tI+O4DAFQqFZYtW4Znn3026LqV\nlZX+9V+J774CfweVSoWZM2fi9ddfD3kb332np6fj448/xtdff43PPvsMb7zxBt59991ejw3Q/Tj6\ngiahfj4RERENjq+nRCCz2ewv8Qwl1B6hr32NKIqQybrb5fn2I33tAYho9GCjS6JxYtasWdi/fz8A\nTyZCSUkJsrKyMHv2bBw4cMDfN+Hw4cOYNWvWgO7zxIkT+PDDD5GVlYW1a9ciKysLFy9e7Pc2xcXF\n6OrqgiiKKCoqQmZmJnJycrBv3z50dHQAAN566y0cPXp0UL/fhQsXUF9fDwA4cuQIMjMzMWPGDBw/\nfhwNDQ0APCmau3bt6nXbjz76CCdOnMDChQuxYcMG1NTUwOl0YtasWfjyyy8BAKdOnYLJZEJERMSg\n1kVERERDo9frkZycjC+++AIAUF5ejj/84Q/93qav/U56erp/b1FTU4Py8nIAfe8BiGj0YKYE0TiR\nn5+PZ555Bg899BDsdjsee+wxJCcnIzExEUVFRXjggQfgdruxfPlyzJ07d0BjslJTU/HKK6+goKAA\nKpUKqampIVMpA2VkZOBXv/oVKisrMWXKFCxevBhyuRwPPfQQ8vPzoVarERsbi3vvvRdNTU0D/v0m\nT56M3/72t7h06RKMRiO+853vICwsDE899RR+9KMfQavVQqPRYNOmTSFvu2HDBqhUKoiiiDVr1kCh\nUOCZZ57Bhg0b8M4778DpdOLFF18c8HqIiIjo6m3atAkvvPAC/vSnP8HpdGLdunX9Xr+v/c4999yD\nzz//HA8++CCSk5MxY8YMAH3vAYho9BBE5iQT0TWydetWHDhwAL/+9a+v6f36pm+888471/R+iYiI\niIhIWgwTEtGg7Ny5E//4xz9CXvbd7353yPd79OhR/Pa3vw152erVq4d8v0RERERENHoxU4KIiIiI\niIiIJMFGl0REREREREQkCQYliIiIiIiIiEgSDEoQERERERERkSQYlCAiIiIiIiIiSTAoQURERERE\nRESSYFCCiIiIiIiIiCTx/wEAoovYuK0TzgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "gySE-UgfSony", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "1fc45ed5-71f8-4481-93ac-142075ed37a4" + }, + "cell_type": "code", + "source": [ + "_ = plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt8E+eZ9/2bGWlGkiXbkiwDPhBO\nNiQFg41DCAkhELOUbNOlG3IoT9Ltpk27m03f7vPZHreHHJ60Td+8b59sn6dvt5s3aZOmtOmSd/lk\nP59taSiEHIGAjYEkYANJONhGtiXbkiWNpJHeP8QISZ4ZzUgzlmTf37/AkuYgzX1d933d1/W7qGQy\nmQSBQCAQCISSQpf6AggEAoFAIBCHTCAQCARCWUAcMoFAIBAIZQBxyAQCgUAglAHEIRMIBAKBUAYQ\nh0wgEAgEQhlgKuXJh4cDhp/D6bTB7w8Zfp5SQO6tcpnJ90furTIh9zY9eDwO2ddm/ArZZGJKfQmG\nQe6tcpnJ90furTIh91Z6ZrxDJhAIBAKhEiAOmUAgEAiEMoA4ZAKBQCAQygDikAkEAoFAKAOIQyYQ\nCAQCoQwgDplAIBAIhDKAOGQCgUAgEMqAkgqDTDd8TMB4kEeNnQNnNq4uTe48gVAUF71BNNXb4bCx\nsu/lYwKG/SFMRuLgowIWNlSDNTMYD/JgaAqXhoOwV7FgrSzODYzB648ASMJhZREIRxGPJ2Ey03Da\nWVRZWXhqrQCAjwbHcWl4Es5qC4REAq5qCzw1VoT5OAQhgZ7+YYwFInA6rIgJAuICYGFpNLjtEJJJ\n0BTgD/Jw2jmMjodxcTiEKosJ46EoaAChSAwL5lWjrtYKmqJxwRtAdRULigKGRoJIgoKVM8E7FkKD\nuwqRaBzesQgsrAnBSR6gKVBJChPBCIJ8FBRoVFnMaJ5rx9JmNy4MT+DjgQBsVhNMJgrVNha+AI+L\n3gBYE4OW5lqMB6IIhqNw11jAx5NwWBkMjoYxx2nFZV8YJobBkvk14BgGNosJJobCwMgkjn84CiER\nRzSahImhEOZjqLJwWNRUg1g0jgveIMJ8DAxNIRxNIBIDzAA4Cw0zEoiBhpWjUWWzoNZhgXckiFg8\nDppiQDMAz8dh4UzgTCb4AmHEEwkwDA2TiQYSQCKRQE21Fa4qDpG4gAgfx8h4GAyVRLXNijgEJAWg\n2sZhwbwq+IMxTEzyCEcTmF9fhSqLGcNjYYSjCYxP8mAoCi1N1YjEkpgMxzB/jgMJJMFH4rBYzBj2\nTyImJBGOxAEkwZhouB0WDI6GwJoo1DmtWNrsAs1QYCgK/gCPeqcV45MxnD7vwy0rG+B0WNB7Zhgs\na0KtncOIPwyvP4x59XaEwjE01tkQE5I4d2kC7moOdbUWJBJIP8/DY2EgmQRDU/jgYz/MJgZznFbY\nrGbUVLEI83FYORPCfBw1dg7RmIAPB8ZBMzTGJniE+DiumWtHQ509/R4AGA/yWZ/LHeu5Y46PCelr\n8Tht6b9JjeFINI6L3gBi8QTMJjr9/kJtgtz7cq9f6+eV3pf5HvH7Ev9dyH2I3180LoBl1H8neiB3\nL3qd/+ipy9h79CK6Vjdh9bI5uhxTCSqZTCaV3nDo0CF89atfRUtLCwCgtbUVX/ziF/GNb3wDgiDA\n4/HgqaeeAsuyeOWVV/D888+DpmncfffduOuuuxRPPh1KXR6PA0OXx/HSvjPo6RuGb4KHq5pDe6sH\n92xaAobWL0ggJBKS5/nMLQvx5Is9uDQcRCIJ0BTQ4KnCkqYanDgzmn7vypY6JJNJvHNyCJFoIuvY\nFADFH4pAmIHQFJBIAhQFKFsqgDOnxjIfS6Q/584Y6wCyxqfTwcJmTU1k+CvjjTPT8NSmJqmZY3j7\nrYvw+/1n8c7JIYR5IeucN7XNw2dva5G0JXI2Idf2iO/rPu2FLxBNX7/LkZpUhyIxVZ9XOk/me0Yn\neFhYGgAFPirAVc3hppWNuOPG+arvY1VLHRIS9oozU7iprUH2O9GD3OvhWAZAEpFoIus3F8/v8Tg0\n+ZtLvkl8798OTfn7//jSDWh0VRV17UpKXaoc8m9+8xv89Kc/Tf/t29/+Nm655RZs3boVP/nJTzB3\n7lxs27YNn/nMZ7Br1y6YzWZs374dL774Impra2WPPV0O+V9+exR7j1yc8lpXZxN2dLXqdq6de/sk\nz2O3mhAMx3U7D4FA0EZXZxMASI5PNTTX23HBG1Q8vpQtkbMJue+Xe5/a86k5j5pzaL2PQo6lB1rv\nRatDfuDJfbKvPfetTaqPI4Xu0pmHDh3CbbfdBgDYuHEj3nnnHfT29mLFihVwOBywWCzo6OhAd3d3\nYVesI5FoHD19w5Kv9fSNgI8Jkq9phY8JsuchzphAKC09fcPoPu0t+PMXFZwxAHSfHp5iS5RsQqbt\nUXqfHGo/L75P7TmkbGIh1wdIfyd6UMy9qOHoqctFvV4MqvaQz5w5g7/7u7/D+Pg4Hn74YYTDYbBs\nag/U7XZjeHgYIyMjcLlc6c+4XC4MDyt/aU6nzXCN0cGRSfgCvORr/kAEDGuGp664EES+8xAIhNLi\nC/B5Q95K5PuoP8BPsSVqbU8htkPt58X3AVB1DimbWKhtk/pO9EDt9eTei9LKNJMD/35M+fUTg/jk\n+iWqjqWVvA55wYIFePjhh7F161ZcuHABn/vc5yAIV2cdchHvPJFwAJiW7hvOGitcDg6jE1N/QKfD\nAiEa0yV0LsQE2fMQCITSwppoVFlM8AWiBX0+Xw6H08FNsSVKNiHT9hRiO9R+XnwfAFXnkLKJhdo2\nqe9ED9ReT+a9aAlZb1gxDyfP+hRfL+aeigpZz5kzB7fffjsoisL8+fNRV1eH8fFxRCIRAMDly5dR\nX1+P+vp6jIyMpD/n9XpRX19f8EXrhYU1ob3VI/lae2udbtl4nJmRPY/dOquS2QmEsoOiKKxskR6f\namiqtyu+3rHUM8WWmBgKNotZ8v2ZtkfJdsih9vPi+9SeQ8omFnJ9gPR3ogfF3Isa8mVTG5ltzTz6\n6KOPKr3hlVdewZtvvomOjg4MDw/jhRdewObNm8HzPJYtW4Zf/vKX6OjowC233IKnn34a27ZtQzwe\nx9NPP41//Md/BMfJp9OHQoXNVrVQVcVhQX0Vwnwc48Eo+GgcrmoLbloxF/dsWgKaonQ713ULnJLn\n+cr2FThx1odgKIokUpmjjfVV6FjqQWAyln7vjcvnYME8B4ZGJxEXsufj+l0lgVA50FRqZapmmLIm\nGkJCeh0rCEl88VPXgaap9Ph0Oji4ay2IxoT0eOPMNOa5bTCb6CvZx6kx/Hd/dR1CfBxDvlDW2OTM\nNDa0N+De21qm2JLf/bkfx/pHkEtzvR3/8JnlWe8XbcdYgEc4KqTv2+VgUVdrhZmhsq4n13bJ2Z7M\n92W+J8LHYWEZmBgaiUQSrmoLNq+Zj7++ZaGkTZQ6/joZe6X0nehF7vVwV+5FEJJwS9x7VRWnyd90\nXleP/UcvTfn7//jSDai2skVde1WVvE/Mm2UdDAbxta99DRMTE4jFYnj44Ydx7bXX4pvf/CZ4nkdD\nQwN+9KMfwWw2449//COeffZZUBSF++67D5/+9KcVL2y6sqzF81RyHfLuN85hf8/AlHOtXuoBH43j\no8EJBCMC7ByD5rkO3LRiHtzVHA4cG8TB9+WTECgK+No9q1BrZ9N1yCzL4L8Oymcwfm5LK+JxAR97\ng2Cv1OWaGEpVHbKFNeHI6cuYCEbBC6kQjcfJgo8mMDYpnfw2123BX96wUNc6ZBNNIZEEqm1mDPvD\n6TrkSETAeCgheR3lTFOdFXOcVoSjCXw0NIEQL30PJhqwsBSCkanDfq7bghqrGWcvBRDXsN9axdH4\nwl9+AmNBftrqkEfGQhgdj2DpNS5cM8eBMB8HQ1P4wQtHMTY51fC6qy144sEbJOuOAaiuQ3bUWPFB\nvzdvHTIfE/DdZw5KhlUzr0Xqc6WqQ25qqM1rkyu1DllrlrWIEXXIRZU9Gcl0O+RKRWlwW1gGkejU\nTEIx5V9IJLDz1T4cODYAqcWDlHHIZ0we+8L12P3Gh0XVdWcaxRo7h8d+eVh2f89dzeGJB9fmHeRS\ngg+5AzRfveZ3/u0gBn3G5zbohYVlcHPbvPT1K/12+XBXW/D9z3fi8V+9W9CzJmLkmJOrh00C6O0f\nkb3vzPFQjCaB2nvz+kP49i8OSu470xTwwy+tRf2VyUC5MBNspRyF3psRizglh0w2NyuA8SAPn4yh\nkTKQQCrl/84Ni8GZGdy/ZRlAUdjfPTUEo7RnJFXn195ah91vfJj12ugEn/6/mrpDIZHAywfOpo1i\njZ3FWFA+nOQL8BgP8lkGLHOgmBhqipG1WcyYDEfhD0ThdLBoba7Flhvm4/VjA1mRBvHaBSGBm9rm\n4bJOiYY0BdgsJrAmuuBEIiXc1RyWzXfis5tbYeOuDmOlZyUf/kAEF71BxWdt7XVz0H9xHP5ABE6H\nBe2tdWnRjengpX1npjx7f5YILYq4q7OvUerzWp5dtdTYObiq5ROt1CpjEUpDsRO3QiEOuQJQGtxy\n+AORLCe2o6sFDE2hp29E0ZiKjm7b+kUAMOX929YvwiPPTlWwEd8rTgKUyDWKSs4YSGWHigZMaqDY\nLOYs0YbRCT7ru/IFojj4vhcH35evQ93fMyC5JVAoiWSq/rzRUwVzOIaYTAxYVGSSY57LBj4uwB/g\n4XJwWL7Ijc5WD+bPdUhuexTyrIg4HRY01dsVP99/cQxtS+rQtboJrmrLtIUmAe31sLV2Ft//fGfW\n96RUr6vm2VVLvkntdH5vBO1M18QtF+KQKwClwS0XRsydhTM0jR1drbhzw2LJEIzcjPCxL1yPYCiW\nfr/XH5JdQeVOAqQoRGSgvfVqtqbUQCnnUrNLw5OKrys5YwvL4Dt/sxoMTcM3EcHeIxdw/OwoXj82\nMCVUm/mbrWqpU1w1ytHeWgeHjcXKljrsk/n86ASfjrTc/xdLNZ+jGLSu/icmowjz8bRDVvq8mmdX\nK+JkN98kmFBeTOfELRfikMuU3L0LqcF908oGTIakQ3Zys3DOzEgaHbUzQqUVGGtmYLcpZyDmM6qc\niQYfTyUkWVgmnS0JFK4YVKlEogIGRiaxpLEW+3suTQm15/7u4m+2aXUjujqb0prFUjA0UGvn4A/w\nUxyFmrzYAz2XgGQSOza3GhrCy0Tr6j93UjrdYeR8k2BCeTLdE7dMiEMuM5T2LnIHd1NDLYYuj4Oi\n8oeildAyI1RarUeiAl5+7Uxqz1oGJaMoJhWNB3k4XVUwJZNZBqyY/dFK5Ye/7kajpwoRXr38am//\nKJ548AbcuWExXthzCu+cnJplf2t7I7bfukQyY1aqVCeXRDIV5mcY2tAQXiZKz54UuZPSUoWR5SbB\nhPKklPv/xCGXGflWqrmDW49ZuJKj801EcO7SOBY11qSPu239Qrx5fFAyVH7g2ABAUVf2rKeunPIZ\nRYeNhcPGSmZFFrM/WsnkC3vnMjoRgW8ignnuKjxw+7WosphTE7wr+9DtrR5sW79Q8nnROukxIoSn\nlNkqFSla1eK+ErofzTspJWFkQj5Kuf9PHHIZUczeRa6jVlMCJKLk6CgK+L9+dyxrpR4MxcDLZHcn\nkkjvMW65vlm1UVVjFLWukGYze49exP1/sXTKhM1uY7H7jXN45NnDktmjWic9eobw1GS2Kk1A77o1\nf4lK5ueH/SGAouCptU5b2J1QGZRq4kYcchmhx96FXBayWALkqubQttiNrs7mdJaskqMTk44yV+p3\nblic12gf6LmE/d2XJHuTMjSNOzcsxi0rG7LEGNSwbf1ChCJxnPrYD3+AB5UnS1mKW1bNhYlhcKxv\nBL4AD9ZEIapFCaMCOH5mFPxGIWurod5pm9K2TioCo2XSo2cIT0tmq1QYWG1oOLfsbrpKWgiVgzhx\nu2PdgiliTkZCHHIZocfeRb4s5NEJPl3ik+ksM2eEvomIrKMTV+r5jLaUI08Lleztx7G+EYwF1RtD\nqYnGuuVzYTLTOKChXImigC3XX4P9PZdAUakEJoeNBccyGBipHEGQfEhN4NRGYMRnofv0cN6uOjaL\nCSZGvTyiXKRmOjNbS1XSQqgcSlWHTKaDZYSSaHqm4eNjArz+ECLR7EQfrVnIoiF6ad+Z9IzwiQdv\nwNfuXSXbqk409NvWL8La6+aAVmmLe/pGEOJjePxXR7C/+xL8QR7JnGtQQjSioxNXP/fWySGYaApd\nnU1wV1tAU6maZc4s/1i7HBz2Hrkw5VgDI6EZ1QSk1s5NmcAp5gpc+V0zURMzuOAN5v3tAFyZiPXh\nu88cxLd/cRDffeYgdu7tg5BI5L02v8S1AVfHgZaet2p7FBNmN1L2Ro2dKpaZY4FmCPdsWoLT58ey\nhC6AlOH73Z/7r2RUp2ZtHqcVbYvd6VmbbyJSUMJT5gqEMzNY1FijsFLnsOfweRw/OwrfBA/WTIOP\n5dd+9gci+PWevin3JXUNfEzA4MgkhJiQ/r+cET2WkVE8HuQRjSfwyLOHZa9jYUM1jp8dlXyNMzPo\nWOrBiTM++CUcgF6YGBpxwVi97GXXOLXlCgDYc/g8dmxunbKCzIeaFWy+VamW6FAxq5fhsXDJSloI\nlQGpQyakCUXiCIZikq+9dWIoK7PZ6w9nGbW9RwtLdso1REr7iDaLOaseVnTGFjblOClIh7qdDg6n\nPpbvMeoLpDKD9/dcSmcE11ZxWNWaUoVSY0TrnTbwMUFxf/t4/wiigvTazx/gcfsN1+Czt7VieCyM\nf3vlPVyUyXC2sgzCMoltSlCAKmdc77TC6w9rPj6Q6raz/dZFEn9XzhXY3zOAyUgcvWfylz1lks+R\nqTVwajNbCwk5i068+7RXduVPJC0JQGnrkEnIukwQQ3qPPHdYdnWmpFsdCEVxXKMhFZEyRPdsWpIV\nCnZXW7CxoxHBkPS1WVkGjz2wBhtWNUi+vmy+E+OT0hMNAKit4rD36MWrYaIk4A+mVKF+vvskXNXS\nhlK8djF8CQBtS+pkzyPnjDOPxZkZNHnsePwLN+Cph9bBU2tJh+YpAHaLqSBnDKgLAwNALCbAwkoP\nz3zbBHwsgR+8cDQrJCxyz6Yl2NjRKHuMwx94VUU8MsnnyNSGo6Weua7OpqzM1kJDzqITV9IVJ5KW\nBOBqJEkKUoc8S9AaJswkX1OAfEgZoriQRNfqJtyxbgHCfBx2G4vfvtoHf1DaqfqDUew5dB73f7IV\nDENLamCfOu+XXbmuWOKSnVBcHJ7EvDrpGemKxU78es9pnPrYB18gilo7i6XNtRru/iq53wMfEyAI\nCTz+hRsQjQm46A3i8ClvqtbaYPzBKOY6rRiKTl0lN3rssqF/EblVI0PT2HJ9s2SjkULJ58jUhqPV\nZLYWsnrJl1uRmdxIIJA65FmO2mQsC0sjEp26elHTFCAXCoCremptndz+XDKZxFsnhxSP+dbJISQB\n3L9lqWSdqNxD3lxvx5br5+ONY4Oyxx4aCaHJU4VQJA5/kEe1zQwrZ8Y7Jy9nrejGglEc+sALhgby\nRYarbSwC4ShcOTWGmd/B6ASPWjuL9pY63HHTAhw/I73/bARDEiHr5no7vvO5Dux67Vw6I95hMyMc\njUs2sJDa86qxc3AXILBSV8PhE4tcOHnWr1v9eKaBU7M3XEglgpITpwB8dXsbmurlW+IRZh+kDnkW\nk08dyWnnsHqZB4lkUlL0X1S4Uls/6q7m8PefWZ5uJp6ZCCO3P2dh1c0K3z45hFPn/eiQSLLJLa2q\nueLodmxuRVxIprSVZcL1SaRWyo0eG4IRCuOTMcUQeD5nTFPARCi1om5b7MrqJ/zrPafxdsbkYywY\nxf6eAbzWM6A65GwUk+EYkkkK92xaAiGRxLG+EcUENKlVI2dm0LbYrbm71cg4DzPD4IkHb9CsCqfG\nwKnZGy5k9VJj5+B0sJLhale1BR6SxEXIoVQ65MQhlwFKs/5aO4tHH7geDhsLIZEAnaFbXVd7Ncsa\nmGr0WLN0JyibxYyf/8fJKauQuJCUXanL7V9L4VMIl8o95AwNrGqtyxtKvTSsvlZYLH+S2hMVE89E\nZ0vTVDqDXW7lWGpnDKR6Q7+45zQsHKMq7Ox0cIjGBPAxIcugdHU2F9Rusvv0MO5Yt0Dz5/IZOC2Z\nrVpWL6IISIiXfn6NCEEa0dSeUBqmW4ecSiblKk6NJ1er2AikNJHLkVwFJZGuzqYpmaPigF+8wI3A\n+NSwpvi63WbG7jc+zDJcNotJcv+xq7MJXaub8O1fHNTN8birLXjiwRumGF6phgairOOPf9Odd39U\nLRQFfP/z12PvuxcU968B+TaWRkGhOAef2RVL8X1mCtFYckr4l48J+O4zBwsqk6u1sxgPRmXLjeTG\nnJKj8vpDss8eTQE//NJayb3hfI5PblxZWAY3t83TLPSgZE9KJSahF5ViKwuh0HszYnLl8chvj5AV\ncpmgZdYvztosrAlSj1jmrC4zSabeacWTv+mWPH9P3zDWXlcvu1KX279WwheI4OS5UZgZGvPn2vFf\nB8+j+7QXvkAULgeLZfOdYFkGJ86OpvdqlzbXonlOFQ6evKxZEjOXGhsLu8WEO25aAIYBXu+V3wOf\nTmcMFL/aVuOMAYCPpc4khn9DkTju37K0KF3wsWA065jA1UhIbg05YNzecL7Vi9Kqu8piwp0bFuvq\nKOVC7oKQUOyARig/SjW5Ig65TDBizyL3oaqxs2ljmsvoBI8nXuiWLbURAyn0FUlNioKsmtfVzwA/\n+4+Tkq/5AlG8/V52W8DMhKzmOQ58PFTcbH1sMoqv//ydoo4x03j75BBOn/ejvdWTrlW+OgnksLS5\nFh97g5o6TPX0jWDb+kXY/ca5KV2l7tm0xLC94Xwo5WaMTvDpjlh6oOT883VAI5QfpZJXZR599NFH\nDTt6HkIh+ZpAvaiq4qblPHphYmhUWc0wMfkHbr57+92f+7H3yEWEr+yfqVkFxq/U6VpYBolEEhzL\nIC4k00lS07G/kUwC48EomuvtMDM0+GgcrmoLYnGh6FWzHKyJhmDUwcuMMC/g3MAEIlEBO7pasWFV\nA25eMQ9dnc1Y3FiD21Y3I8THcN4byDvpAoBINA7feASv9w6mnzXxHMFwDL39I+m/ZzIejGLDqob0\ns37dAifCfBzjwSgi0Ticdg43Lp+Lz97WAppSr5ctYjLReOe9IclzA6lJ5sqMmnU+JsA3EYHJRMuO\nP7kx55uI4D/f/lj6PAA+GgwgzMexYpFb831MF5VmK7Wg5d74mICdr/apemYLvRY5yAp5hqJV1zoX\nG2fC1+9dhZ/9xwnV4Vxx9UwX0IFJislwDI/87fUYn4xiMhLDUzt7VJ2/EKIqQ8Bq0es7MBIxWcrE\nUNh79GJWeK5tsRu1VdKZybkkk8DhDy5LvqaUBZ6bAc7QdCp7XEigpz/1ueNnRsDQVEGhQs7MoG2J\nfKLg8bM+8DEBJoYqOjxp5Ux5f3OjZRcJ+lBKpS7ikCscuaQDrY3mcxkL8ohEBfhVGGQglaT0z/d3\ngI8m8NTvjhV83kx8AR6/33cmb0KWSDk5wHK6Fjl8gQiGx8LY330xK+Na7AimBbn7HZtM5QZIbZVI\n7Q2/tO/MlGspJlTYtbpJ1iGLxlVUiCvmnGE+nvc3J1rZlYEeXfcKhWxoVChCIoFndp+Q7Z6jJP+m\nhkyxETW4qi1o9DiwqLEGToc+DyxnpvHWySFNYid6MFu2+ZJJ4AfPHymo/EktNVWpOm8ppJTR9OzE\nJCQS2HvkgqxMqNNhgZUz6XLOGjsHl0O5X+50a2UX0g2LoNx1jyh1ESTJl3RQTBYtALQtcWsSG8l8\nUFcvLfy8mVAa9w1tFhMmI/H8b8xDwthGTNOGy8FiZYsHPB+fkkAnojZbu1CklNMsLIObVsydUkGg\nd6gwd7WdS3trHcJ8XJdzpjqF1Ss+99OllV3p5VflAFHqIqhGS6N5QUigu28E45PakjW6VjcBkHow\nOdgsZkyGY/AH+LTaVuaDes+mJQiGYjj4vrQTyIeFZXDjinl4TWP3Ks5Mo9ZRJZkhLOZgGNz1sKxI\nJAGGpvC5rUths5oVRU/0Qmoflc8pl4tEBVAUNcU56BkqVBojNAVsaG9Mi+HIqXhpPac4BrpPpzLN\nxe9iurWyS5UhLDIThFHU6KobAXHIFYialYS7xoKX9p3B8bOjmNDojN3VFriqLemBdeeGxVnlWCaG\nws69/TjWN4KxII/jZ0fBMGfSM3CGpvE3W5eh74JfVVJQJmuvm4O/2boMdXV2HO/X5kDGglH8073t\n2HP4Y/T0jyIQisFVzeHa+U7ceeti/OCFI4Y7pHJiLBjNMsS3tM3D959719Bz3tw2F+99OIbRiYji\n+6QSnPQsfVIaI8kksOX6ZgDQVcUrt3TRypkQ5uPT6phK2ct3Jq3MSR0yQTVqVhLFdI9qW+LCywfO\nyj6MO/f2ZSXKSM3ATQyFKqu6LN1M+i6MYXgsjLo6u+aQe6091cLxvQ/9CIZicNo5rFxShx1dLRgd\njxSV5FbJHD2Vkrv0OG0FNZVQS3O9HRtWNeANBQEWEblwsF6hQqUx4qpWHiOZKl6FkClYMh2rqkxK\nmSFc6pW5npTqXohDrkDyrSQAFFXy1HdhPCvsm/kw3rlhseIMXGzXuOfw+YIkMH0BHo88exgepxXL\nF7lw2+pGHOsfhT8QAUUph5ytFlPWREHsp8zQFO7csFhTN6yZhD/I47v/7yF0LvVgZUudZIMSPbjg\nDeL/3HlMVa16bjg4M8yph0BOMWNEScUrEo3D6w+VbTi2VBnCpVyZ600p74U45Arlnk1LYLOyeKt3\nYMpKIt9qMNV6kcNkJCYphymn0tR9ehjLFzhlndroRASPPvcuxoI8CtBxSJME4PWHse/oJXR1NqW7\nC9ltLP79tTM4eGIoKxmJNdHw1FowOCJ93eIKUakmdaYTCMWwv2cAjZ6qVJ9lidaONE3BxjEIhgtP\njJNq5CGFGA5WCg0Wu5JTWm0rjRF/gJ+ykhSv8/jZUQz7w2Ubji1VL99Srsz1htQhEzTD0DQe3LYC\nW9c0T1lJKM2SOZbGt/5bBxiKwiMa9xN9AR7/suuEogCCKAKhV8sScUYqDgAzM7WpQjSewKUR+S5Q\n/iCPR547jGXznfpcVAWjJIm5/+93AAAgAElEQVSZSCQR0iFLXQkxHLxt/SJ4/SHsefdC3u0PJZQS\niJTkaLWuJCspHFuKDOFS1u7qTSnvhTjkElNsRqKUwL7SLJmPJvB67yDu3rikoBBuEsU5WwvLwMaZ\n4A/w4FgGQFKxaUXmjLQY9bGxYLTgrO9Kg6YLL90yWtDEyjIQEkk88uwhjE7wsjXC+UKDWpJutI4R\nrfXR5RaOLUUv31KtzI2glPdCHHKJMDqLb9v6RXjz+ICkszvQcwlIJg3dT5Tj5rZ5WYbi9/v6FWtF\nM2ekxaqPzRbKuY7aH4xmrYhlIy15QoN6rFjVriQrNRw73b18S1W7awSkDnmWYXQILBiKTqn/FEkk\ngf09A7htdSM2djTiQM8lw1ZG4gLIVX31gWZoOr3iPX52VPHzmTPSGjuHWjsnq41MMI5cYY91y+cA\nFIW3jg+q3jcG1Gt8K4UG9Vqxql1JlnM4tpxqfkuxMjeKUt0Lccg6onZwTEcITMmIiBzrH8UTD94A\nJJOGySc2eqrw8F+vyPpOxO8pGhMUV7w3Lc9Wc+LMDFa1zuzELM5MpXsYlwqGTpWQ+QN8emWwbf0i\n+MbDAEXBU2sFZ2bAxwS8dXxQ07HVTvyUQoNaVqxqxmS+lWQ5hmPLueZ3ulfmRjLd90Icsg5oHRxG\nhcByjU++Ol7fRARDvknQNAULy6ju6qSFTGGE3O+p1sHBbKIlOy15ai24b8vSKd/fnRsW4/Vjl8pa\ncSuVxW7BwgYHjpxSv+e9saMRd29cgmdeeQ/d/SPGXWBeKHz/89dPEbWw1TsAXNVIngzHNK2OOTON\nKotJsjadplL5CS4VoUE1K1YtY1KN0xav5/jZUYyMhUsejq2kJDOCeohD1gGtg0PvEJic8dl+6yII\niaRsSDoJ4MkXuzUZVa34JngMDAexsKFmyvfkD8ivjm9c0SBpHIOhaFk7Y5eDwz/evRKeWit+v69f\n1WdoCmj02HHPpsVgTQwe+NR1eO9/v1GylbKQSOLDgXEsvcaV9RvkPmfVVWZNx43GE2if78RBCV3t\nDasasGXNfFWhQTUr1p17+/KOSS1OWwxhfvlOK85+NFrScGylJZkR1FM+BXQVipYONeLKAoCu3URE\nRzc6wSOJq8Zn12vncP9fLMWGVQ0K12+sd0sCeOKFo/jes4dUZ0g3eaqwdd0CyS41Vq64OWR9rUW3\nrlBStC1xo8ljB4C8++MiiWRKVONXfzyNQCgK33gYtQ6LgVeZn6d3nZjSQSz3ORufjGk6ZjIJnP7Y\nh+Z6O9zVHGgqJdPa1dmEHZtbUe+0qX72t9+6CM319nSWNk2llMK237pI9ZiUGzcv7Tsje14La9J0\nnXIU04lJTYSNUJmQFXKRaNGVzpyJr2qpw6bVjei9okJVaAhMyfgcOeXFHesWYMfmVjAMnRa9n26S\nUK5/zWVgZBJ//+N9WaL8DE0jGo/jyRe7C74Ohga8Y8oay8XyzskhmBgat6xs0FxSdvDkZRw8WT6l\nWZmrSjFrv1j8wRj8wRg2tqtfEUux67VzWUpw4qRm12vn0LW6Ke+YrLFzJVll6rH3W85JZoTiIA65\nSArRlR6d4PHnHBUqOcOUb39LaUIwFozi6//Pm7h5ZSP++pZFWL7Qhaf//bjqe1ObEas34jlzJTsf\n/+URDPrkBUDkEOtypyPUzccS2HvkIk597Df+ZNNET98IgqGoYr14bRWLsckoaqtY3Ng2D3w0jt7+\nEdlJyfGzPty9qUWT0xPHQr4exnesW5B3TJaqlEmPvd9yTDIj6MOscshGlAgUo5mbq0KVidqZdI2d\nk20fBwDROLDv6CXN5SlAamX7lTtX4N9eeU/ys04HBwpJzQ0ktPLm8UEcOeXFWLCw85SiLndARsaz\nEvFNRHDqvPyX6LSbsWKxC8fP+jAWjOLoKS/aFrvx8F+vwGO/OiL5GS1OL3cs1NhZ2WfBH4ggzMfz\nOqxSrDL13PvNbPWYyobn0LF0+lo8EoxhVjhko0sECtfMlTdKamfSnJlR1VWpkL1il8OC6xa4sH5l\ng6RxW700tQ+utasUQ1MQNCy9I1HBkAxwEdZEIRrXNxRQisiCUdTYWYwrTIbGJ2N4PaPDk9cfxt4j\nFyEkkrLdpUSnp2aSnDsWlCZm4nHzCTtwZgarWurwZwlhnFUtbkNWmUasykXN+GK04wnyTHed96xw\nyEaXCOipmQtom0nzMQGT4cJXqBRS3W2CEhrG4moin3ELReJ4+2T+lnsi1TYzll7jRN957f2S9YYC\nEBNmkPc0gPaWOhw/OyobfpabfBw/M4q2xW7JGveVLW7FFp8iWuVSM0O2+YQd5H51o54GPVflpOzJ\nWEpV5z3js6wj0bjqLOhiEYvIpZquSyG336Mli3I8yBfl1JKApDNurrenHa444XjiwRvwwy+txRMP\n3oAdXa1gaBpxIYlPrmlGrV1939fxySi23bwQP/jSjVh7XX3B164HFF2cNjdrnrlLE5pK1Ubv2Nwq\n+wwr4ZuI4JZVDejqbIK72pKVVU0BeTOc+ZiAc5fGFZPjnPbsbO3ckK3UmBSP3StT693bP6qrXci8\nFi22QC4TW0tlB6EwCsnA14MZv0L2T5Reh1arLqqWmXSNnYNLYQ85H3KJW6FIHHEhCUZmyibOILtP\nezWfO/Me+i+Oa71kXSl2f9liZuBymHHZFzZsZVUqkklgy/XNYGg6/awePTWsWro0CeB/v3wC7a0e\nPPaFNQiGounf/bvPHJT8TE/fCLatX4Tdb5xLr07knlF3tQXf/3znFAETNZQqqUuNLci3OqtUbe1K\nQXnCM0z6IReDs7r0JQJadVG1ZFFyZgYdS+s17+OKqBH3lzIQNos5q+xEC22LXWnpTK2lQSKfuMaJ\n98ogk3kiFMdEyNiWhaXC6eDS40N8hu9YtwCPPHdYdYKdVCjV6w8pOpTfvtqHtzK2QOQiGO2tdXDY\nWDhs6qMzIqUqHVJjC/KFo0nZk7GMB3mFnu9Te2XryYwPWVtYk64iHMUgFz6T4p5NSyRDfVKr6ns2\nLcGm1Y2wsOrvxeXgsLG9Ae5q6cHrdFjA0BQ++MiHX//p9JTwTSHOuKaKRXO9HcfPjuLbvziIf9l1\nXLb9ntJ1d3U24e//ejlcDu2GmKCeEB/H7/efweDoZDoMarOYZB0gZ5Y3J5mhVNGhSFFrZ/HeRz7J\n12gqteevNBbUUshWkp4ohdLzhaNLfe0zHStnkrVLNFW8OJESqo4ciUTwqU99Cg899BBuvPFGfOMb\n34AgCPB4PHjqqafAsixeeeUVPP/886BpGnfffTfuuusuwy5aK5XYFkzLqpqhady3eSnuunUJhv0h\ngKJg42j83787jiFfCEmkDNlclw3/dG8b4gLSx8uVGBThY3F881/f0S1b2GnnsGKJC68fu9qMQOvq\n2GyisWKxOx26W9nimdGNJkpNJCpgf/cl7O++lBZpiQuC5GSsud6OB/7yWjz+y3clQ/eZERelCFAw\nEkNURjI0CeBr967CosYaXZyOkXah0OxcteHoSrRplUKYj8vavUQy9XohURk1qHLIP//5z1FTUwMA\n+OlPf4odO3Zg69at+MlPfoJdu3Zh27Zt+NnPfoZdu3bBbDZj+/bt2Lx5M2praw25aK1UclswLd1G\nODODpisNAHbu7csS0UgCGPSF8MfDF7OyMG9few1GJyJ4/0NfVmlUMKxvGLa1uRqH3y9OhSoWT+DA\nsQGcG5jA9z/fia7VTcQhTxOZYVMpQpE4XA71odRch8KaU81N5JwxkCrD08sZA+rtQqZzzUex2blq\nw9GVbNPKHaW8HFfGNo4R5H1Czp49izNnzuDWW28FABw6dAi33XYbAGDjxo1455130NvbixUrVsDh\ncMBisaCjowPd3YVLHBqFlpCxVorRpjXiWvKFvaLxOB557jC+9rO3rvzNOPUMzkzj0AfDikpPWrjg\nDWLnq31wVVtkQ+6E6SVTkEMKUSRHHCOZmfuPPrAGNi7/mDQqHCtnF4REAjv39uG7zxzEt39xEN99\n5iCe2X0ire0tRbHZuVrD0UbatNmKmJcjRcdSj6Hfdd4V8o9//GN873vfw+7duwEA4XAYLJtarrvd\nbgwPD2NkZAQulyv9GZfLheHh/LWDTqcNJpPxD5LH4zDs2IKQwHP/+R4OnhzE8FgYnlor1i6fhwfu\n+AQYuRRlHZG6t8GRSVnNan8gAoY148nnDxeclKUVI5x979lRPHR3O2rsyj2fCdNDXa0Vixe4saDZ\niQQonDw7gpGxMOpqrVjzibkAgEeeOyw5RhjWDL9Ckpi7xoKb2hoMGVORaBz+CR7Oag4WNtscPrP7\nxJTkqlfeOAcAeHDbCsljyTUUOX52FF++0zrlHFI8fHc7bFYWB08Opr/D6bIpRtrKUqPl3v7+zpU4\nNzCBj4YmkEik5HcXzK3G39+5EqyK37BQFI+8e/durFq1Cs3NzZKvJ2XSH+X+novfr12XWCsejwPD\nwwHDjp+7B+v1h/HKG+cQCkcNL9B31FxtBQcgK6zmcsiHvcbHJvHR4ISh12Y0/gkeJ/u8uOg17rcl\nqGf5Ihd+8XJvKlQb4OG0s1j7ibnYsbkFLx84l7W1kDtGhJgg+7zW2ll8/2864bCx8Pn0kyPNF1rm\nYwLe6pXeDnmrdwBb1zRPWSl5/SEM+8OSnxkZC+PsR6Oqt5+23bQAW9c0Z4Wj9bx/KYy2laVE673t\n3NuHcwNXbWQiAZwbmMDPX+4t2q4rTQwUHfJrr72GCxcu4LXXXsPQ0BBYloXNZkMkEoHFYsHly5dR\nX1+P+vp6jIxcLbL3er1YtWpVURddCZSqL6loTI6fHYXXH4aFpZFMAtFYIm1YVrbUYZ+ELGB7ax28\n/nDFSzu6qi3Yc+h80ZKXpWqgMVOgqVQvY1HoQ8QXiOLtk0P4+HIAgzK63uIYAYCl852Sam+dy+oN\nSaDJV1pUSK2v3uVIWvJHCPpRyn7TivGPp59+Gi+//DJ+//vf46677sJDDz2EdevWYc+ePQCAP/3p\nT1i/fj1WrlyJEydOYGJiApOTk+ju7kZnZ6chF1xOGNWXNN9+tGhMvFdm45FoAnwskbVnhWRStmyq\nqd5uaE/g6cDKMTh9ofA6ZLMJmOu0EmdcJBvaG3H3phYck1G9ujQ8Kfsd+yYieHHPaXz3mYN45+QQ\nLCwDC8voVtokh5ocC6XSLDnnSsqRZgal7DetORj+la98Bd/85jfx0ksvoaGhAdu2bYPZbMY//dM/\n4Qtf+AIoisI//MM/wOGYuXsRInrPiNVkaKrV9n375GX8+O9uxC0rG4BkEp4riR9CIoH/fPujlGRk\nCbog6cVFDf2VpYjFgSGZ8OJsR02zjZoqFh2tddjR1aLYQEUJmkaWAIjYQOSm5XNx35alhjkwtavf\nQlocknKkyqeUwiuqHfJXvvKV9L9/+ctfTnn9k5/8JD75yU/qc1UVgt59SdUIxisZk0wiUQGPPHcY\n48FolmPPPUchcGYa61bMQ2//sKxsJgVgfds8HPpgCLxCKUsxUDCuEcBsxsTQiMaVqwXGJ6N4573L\noGkKn7llsawBU0KuP/Wp82OajqMVtQZXyrnetLIBd9w4X/bYpByp8illv+kZL51pNHrNiNXuWygZ\nk1xEeUPRsQtCQjYLVAs3tc3DfZuXYmN7Ix559rCkU0wC6Lq+GSzLFDUBUFqtEWdsDCFeAGem82bH\nR6IC/nz0EiiKkjVgheDLWKWWooe5eB4p59rUUKsqOYjs/1Y2pYp0EIdcJHrNiNWG0ZSMST56+kcU\n+9o6bGYEQjHZ12uqWFx/bX36ofTUWsGxjGyv4h+8cAQ3rZgLG8cgxGuvz3ZYTQgoCJRwZhp1NRZc\nGjE+W58gT0/fMB77wpor/04ZMLOZBp+n7lwuoY4C8IfDH8NE0zjWP1JU+zs5h67F4E6nc53u/rsE\naUoV6SAOWSeKHbRa9i1EoyFmWatlPBgFa6LBx6caSqedwz/f34Enf9MtfQ12Do8+cL1Exqv8OpWP\nJbCve2ovXLUoOWMgpdxFnLExROMJrFs+F6fPj8E3EVGMRvgCPIKhWNqA/W7/GRxQoaDW6LFL1sIn\nksCBnsGsv+Vu3+RzXPnyMQo1uJFoHF5/CFbOVFCXKTlK1X+XoMx0RzqIQy4TtOxbiMbky3da0Xdu\nBD/ffVJVkpNZIQy5epkHdhuLZfOdWYk2ma87bGyWIfRNRHRT3yoEkiFtHA6bOeUMGAq/3tOHw+9f\nlnXKopygkEjg9/v68Uav8iSMM9O4uW0e7tq4GC/tO4sDPZdU/5bdp4chJJI4fkZ55awmHyN1LeoM\nrugwe8+MYHgskl7du3VynGqvl5BipkYSiEM2GC0Pzj2bliCRTOLtE0PpMLCFZZBMJiEkEmnBAvF4\nHtYEu9WMSZW601EZZ8yZaMSEBL77zEGMTvCwsDQACtGYkA7lbb91EX695xR6+kcwFozCaTcbKrdJ\nKC0TkzE8/qt3VbXZbG/1pBuV7O/JHxGpsphAURQYmsaW65s16ZH7AnzW+0XHlUwm8d82LwVgTB1p\nrsMUJxB6OM5S1r1WApk2z8RQ0xpJmG7HTxyyQRQSgmJoGjRFZe3JiokzSQA0RWUdr8bOYXQ8jPFJ\n+X1fNfDxBA5kGFJx1buqxY1P3XgN5rrt+MEL3VmG2R8s7pwic51WLFvgTK14ZDK2CaVhdEK+L6xI\nU30Vtt+6SHU5HpASDRGd2J0bFsNdQIZ2Lm+dGML2W5eAMzMFiXoooebeinGcel/vTEFNH3ajIgml\n2kIgDtkgCglBKQ38zFWzeLx8RszlYJFIQnUz+VyO9Y/iWP8oGFq+RKVYovEEKIpCUoVUCSlzKj8u\neiex67Vz6FrdpLkW+cgpL+5Yt0CXDO1IVMDwWBhNHrvudaRqSg2LcZylrHstZ6RsqJzN0zuSUKot\nBJItYABqlICkUBr4cpnMSiy7xqWYVa0Wo5wxcDUE6ZdphpFJTRULu5XMIcuNnr4RWDmTrLKVHGPB\nKB597l0kk0ls7GiAhb1qTDkzhab6KrirubTS3Nrr5igeLxpLJVwB0FUxS0m1S6QYx0kUvqaiJeIC\n6KugVaj91gNi3Qyg0BCUlhpjJZx2Du1L65BIJEBRgMpeH2XP2GQU9U6L7r2aCcUhtl5sW1KnuT+1\nP8jjz0cvobnenjXp5GNJXPROYu11c3D7jdfAU2sFABw7I93Gk6GBn+9+Lx1eXNVSh02rG9HbP1p0\nHamaUsNiHSdR+MpGrQCSiJ6RhFJuIRCHbACFhqCUBj5NpzqO5KPWzuLRB67Hf779EfbllI7MBLz+\nSKkvYVai1ISj1p7KZ7hl5TzNDlnk0rB04tjB9y+j74IfHUtT9e/rVsyTbJoiJJAeb6MTKSff1dmE\nJx68QZekHNExKmVZFwNR+MpG6+JEz0hCRUhnEtRTjPTaPZuW4PT5sSmZrWqcMQBctyDVl7r7tFf9\nBRMIeUgC6GipQ7dEE4lJPoYf/vooJsOFb48olT1lJoF99rYW0BSF7tPevEmA4r6iHquZq6WGK3H2\no1Hd65BFiMJXCiUb2lxvRygSNyySQKQzZyCFhqDiQhKhSP4MZveVLOuxAA9/gAd3Zf/t7ZNDOHLK\ni6iE+IdekJaFsw8KQLXdjFs7GvDGsYGsvAI+mshbGqUHooPd0dUKQUjkLbEyIrxoYU3p4xnRFpJw\nFSUbGheShkYSiHTmDKPQEJSavZNaO4vvf/56LLrGjYsDY3hxz+ksMQ8jnTEAVNtMGJuU3sd1WBlc\ne40LfRfHC87uJpQfiSTwWs8gGj02Q5P8lBAdbI2dU6XJXlPFwcoRE1epKNlQhoahkYRSbSGQLGuD\nEUNQan9MNRmdE5NRhPmrDvHU+cL7AheCnDMGgEBYwOFTw8QZz1AuDZdOqlTcv1Ob8OMP8nj8V+9i\n594+CGr3fAiGk6/fey5abWglQ6aPCpRCno0zM1jZUieZuCKSmVigNRuRQKhUxP07LQk/WutHZ6ok\nYzlQSXrdRBikjCj1g5PIs0GbmVigV6kUgVAuuKs5tC124/hZn+T+nVLSDWumJSVi8wlHhPgYdr7a\nj1Mf++APRMvaWVQqlaTXXaprJQ5ZAj1/DC0zbiGRwM5X+/D6MelkFZoCNqxqyEosKKYdI4FQjrAs\ng67OZmxbv0g2k1kq6Wbp/Fq8I9EYBZBP8Arxcfz21T4cOe3N0mYvZ2dRiVSSXncpr5U45Bz0+jEK\nWWXvfFVZnD8JYMua+VM+n2mcfBORdMY1HxNAgWREEyqLwZEQvvPMIcUaX6mkGwA4fd6vqn5UHJ9v\nHh9Q7FhWbs6iUqkkvW4iDFJGFPtjiCviPYfPZzlXpRm3kEhg595+HJBZGYvUVLGSWaNxIYlbVjZg\n7XX1YM0m1FSxGB4L4eLwJH71h9OKxyQQjKSYErl8q1Sp6JPa+tHcKJgc5eYsKpVK0usmwiBlRKE/\nRu6KmJLplSA1435p3xlVCkdjwSge/9W7aFvsRldnM6rsHH7z6mm8ldF4gr5yXrIqJpQD4nNot5gQ\njBQmeZo7ZpSiT2rqR0N8HG8ez98mEig/Z1GplFJsQytEGKSMKPTHyJ1xy+lH5864tYqoj07w2N8z\ngP09A2m1oEwKccRWlkI4Sjw4wThCfOH647ljJl+OR7760d++2qcYps6kbbGLZF3rRCXpdRNhkDJC\n64+hxanmzriLKVvKdcaFQpwxwWiKidiIWtmA+hwPOQlKPiaoqtvnzDTqnTYcPzuK13oG0qvwh+9u\nL/xGZjmVpNddqmslDlkCrT+GFqeau8omZUsEgjJVVnN6zBSS45G515xvrHImGp3L6mEy0zggkQNi\ns7LYdtOC4m9qFlNJet3Tfa3EISug9sdQcqr0lfaHrmrpVXa+sqVK0I02MRTigraL5Mx0VpkJgSBH\nKBIDHxPyioLIZVKLe821dg5tS9xwOljJxhSsmcaPvrwWVs6M7z5zUPJaDp4cxNY1zWW7stMTIpIy\n/RCHrANKTnVDeyO2XN+s+FBvW78QoUgcpz72wxfINjTl7owBaHbGt7Y34DPrF+GR5w4TiU1CXvwB\nPr3y1ZLjkbvX7A/yOHBsAHartNm7ZWUDau0WeP0h2VX0yFhYNut6pjiwUgsjzWaIQ9YJpX1nuYd4\nygzewYEz0eANbg5RaigqFXokznj2wjIUYomkbPJjJrkrXzU5Hkp7zcFwHI2eKkR4QfLzSqvwulrr\nlKzrmebAKklRa6ZBHLJOFJIEsHNvf1a5kz9Q3D5ytc2E9tZ6nDg7Cl+AB4WUmEi5ceDYIHol+uoS\nZg9RDVGV3JWvmrGWb694MhzDYw+skVQCU1qFr10+b8q5ZpIDqyRFrZlI5U3fyhw1nUmERAK/3nMK\nB3ry1x5rYSIUx63tDXj8i2vQ0VJXls4YSGl152suTyAAQEdrHbatXyT5mtxY42MCojEBNXb5fsXj\nwVTHNLmxes+mJejqbIK72gKaAtzVFnR1NuGBOz6R1a0onwNT29GoXFCTNEcwDrJCLgEv7TuTt7l6\noTz5YjdcDgsGfaVrk0cg6EVP3wgeGTqkKgScGzpmzfLvdVUrC37EhSS6VjfhjnUL0qtoE0Phuf98\nD2/1XkqHppfOd6rK+q6U/eVKUtSaDgKhKC56g2iqt8Nhk5/g6QVxyDqTb+BpFQLRfv4EccaEGUMS\nV0PA4Ugc921ZqlqcRymLX07kR2k/WCo0/fbJIVhYJq2Ul4nTYYHdZsbOvX0Vs79cSYpaRhKNx/GD\nF7pxaTiIRDJV7dLoseM7n+sAazLObc56h6zXzFVtYgfpX1w8rIlCNF6uAXmCUbx1cggffOxDx9L6\nKeNKaaLLmWlYORPGg1HZ8kMRuf1gIZHE8TPa8h7aW+uw+40PK25/uZIUtYziBy9044I3mP5/Iglc\n8Abxgxe68dgDaww776x1yHpnRqpN7CBCIMVhZogznolYWAZ8TIDdakYgFJN9ny8QlRxXShPdWDyB\n79y/EuyVOma5ibeSUz/WNwK/zP4pHxVw0/K5OHV+LMuBbVu/CI88e0jyM+WcIFVJilpGEAhFcWk4\nKPnapeEgAqGoYeHrWeuQC82MlFpRa8lMVAoJdbS40N3vK/ieZgMxjTXPhPKno6UOOzYvwf/3+kf4\n4KNRVZ/JHVf59j49eRItAWWnPjbJo9bOSpbquaotuG/L0vQxRNugVM9cCV2kKklRSwk+JmBwZBLC\nFXGZfFz0BmX1HxLJ1OvXLnDpfJUpZqVDLiS1X2lFrVXOTy4kFBcqKyOTQCgWmgK6+0fw/sd+yX1Y\nOXLHlR57n0pO3eWwoG2xSzIZM/P4meOcJEiVliybHeDhcqiLgjbV2xWPm+/1YpiVDrkQPVylFfWd\nGxZrGnhyzdXl5PoAoLHOhksjU5O1bri2Hoc+8Mp+jkAwClHWtabKjPFJ+TCzEuJKRIszBqTHVbF7\nn/mc+j2blsBht+Ct3gFVxycJUqWl0Cgoa2bA0IAgkRPI0KnXjWJWOmStM1c1K+pCBp4YEgqEojhx\ndlRxX/nLf7Ucr/cOoKdvBL5ABLVVHG5sm4fbb5iPM5fGp2VP2kQDM1xEjKASh82M9hY3tqy5BoHJ\nKJ7c2aPp88VqtEuNKz32PvMp7j24bQW2rmmWPL7UdpbRCVKVUk413RQjcOKbiEg6YyDlpI3capiV\nDlnrzFXNirqQgZebWi+Hu9oCT60V92xaAkFIoKc/lWDy7geXMT4RwYrFbrxWZF0zTQNrltXj4Pvy\nq22bxYSJkD4tHwmVTSAUw+u9Q/hwMIjJsHaRFy3OmDPToCgK0ZigalwVs/epxqnnHj9fgqgRCVIz\nTa5TbwqJgorsPSrd6AdIJR8audUwKx0yoG3mqmZFXcjAy02tl0OcJOzc25e1hzXsD2PYHwZrAhia\nglDEkqPGZsZnu1rR0z8iWb/JmmjijAlTUPP85lJbZUY4Kqjq9nXT8rmSCVNGo8WpqwmN6p0gNZPk\nOo2g0P17PiYolrcl1f43OCgAACAASURBVIivF8GsdchaHKiWFbXagaeUWi/izqiZVArBRONAsarV\n/mAMv/tzP2IysZobV8zFyTxhdULlQV1pDzqdWDkzxmT2nDPblbYtdqGrsxlA+Wb8lkL7udhzzoYw\nd6H79/l0IvhYgoSsjUTtQNd7L0gptR4AvviX12L1svr0gzM6Ll9CoRfvvHdZ8u8MnVqBr2ypw76j\n+upvE0rLdDtjzkwjEpOPtCSSgMNqgoVl0HtmBK/1DJRtOJaPCTinkL9hVGlToeHY2RbmLsRm59OJ\n4MwUCVmXA3rvBTXV22UTW2gKWLHYnXX8UgqKCAlg39FLuLV9HtZep7zPTCAo0d7iwaH3pSd+IoFw\nHIHwVaddbuHYXMcmN46NKm0qNBw728LcmTabYc0QorG8NpszM2hbUpfVhS8To3UQZt60yGDUdHNS\ng8PGwmaRng/ZLKYpSjBiCKaUvH5sEIeIMyYgNWlsqNO+8jt9YQwcW5jZKZfuSaJjG53gkYR8gppR\npU1KtkDunDOtK5UWODODeXVVqn+LW1Y2yL6WSADDY2G9Lm0KZIVcIviYADNDSb5mZmjwEqoy29Yv\nRCgSx9HTXlUJMXpTTJkKYWaRSKZ6CmulmJ7f5aBuFYnGZR1b5v630drPWsOxasLcTYZdbWURiSon\nr05GCqu5VwNxyCViPMhjLCj9w44Fo1mGJzdE5qzm4HIwiAkCRsd5UEXWdBIIhVCoGEihlIO6lX9C\n3rElAXzt3lVY1FhjeLKU1i00ohqmHp5Xdsj5Xi8GErIuEeIAkYKigD3vXoCQSK2Cc0Nkvgkeg74Q\n1nxiHr5276ppT8whEPTExqlzXuWgbuWslh+3LodlWpxxJmq30AoJc89WFjbUFPV6MRCHXCKUBkgi\nCezvvoSX9p1R3Ps58sFlNNXbZQ2E0dDSEXcCQRMhXnn/kqaAjR2NZdH+z8KaKtax3bNpCbo6m+Cu\ntoCmUmWVXZ1NZfG9lhOidKYUDE0R6cyZiqi8deDYgGTIuadvBLesbJANkY2MhRHm47L1doWitja1\n0WMvSBiCQNBCIglsub55Sv9jvWtp1R6zUvsFz/a2imoZD/JIyKToJJLJ0tYhh8NhfOtb38Lo6Ch4\nnsdDDz2EZcuW4Rvf+AYEQYDH48FTTz0FlmXxyiuv4PnnnwdN07j77rtx1113GXLRpURPQ8DQNLas\nmS8re+kPRIBkUnbvp67Wiho7l2UgfIEIKBS3p5zPGburOaxqqUMimcRlfwjREiSYEWYPLgeX3uM0\nopZW6zEr3bGVq8hKuZCv61dJ65D379+P5cuX48EHH8SlS5fwwAMPoKOjAzt27MDWrVvxk5/8BLt2\n7cK2bdvws5/9DLt27YLZbMb27duxefNm1NbWGnbx04nUoG1b7EZXZzNc1ZaCB2SNnYPTwcIXmKoH\nXGtn4XHaZFfAndfOSRuEHV2tuGPdAlz0BnHo1GW8fmywoOuhacBhVe7e89XtbXj9+CD2E5EQQg4U\nitWMm0rHUk96fBlRS1voMYljm5mUsktXXod8++23p/89ODiIOXPm4NChQ3jssccAABs3bsRzzz2H\nhQsXYsWKFXA4HACAjo4OdHd3Y9OmTQZd+vQiNWj39wxgf88A3EXM0jkzg6hMC6VoPAHOzEiEyDjY\nLGa8+/4Q/vD2R3BVp/4/GY7CH4iCNdOy7cPysbG9EbG4gNd7hyRfpynAyplk97UJsxs9nbGFZbBu\nxVxsW78QXn9I8bkrVKayFNKXhPKnVNsSqveQ7733XgwNDeFf//Vf8bd/+7dg2ZRwhdvtxvDwMEZG\nRuByudLvd7lcGB5WNtpOpw0mk/EPu8fjKOrzkWgcx8+Oyr4uzqhtVhYPbluh6djjQR6hiHQafSgS\nB2tlUWPn8NXPrkYkGod/gsfuA2fwX29/lHX+zPBKoTXKixqq8dD2Vbg4EpB1yIkkMDDGE01rAqyc\nCXarCSNjEUBHTWyKAr73hbW4boETL/zXB/j+s4fTUSmlWlqGNcNTV5X1d3HMOKs5WNip5m5wZBI+\nmdpouWMWa0/KGXJvV/nqZ1djPMjjo8EJLJhXPS2lYaod8u9+9zt88MEH+PrXv57V8UKu+4Warhh+\nf0jt6QvG43FgeDhQ1DG8/hCG/fnVWd7qHcDWNc2aZtQffOST3e9NJIHeD4Zw7YKrE51wKIq3e4tr\ntSjHuYEJ/GzXMfSdH1N83//8bbchoUlCZbFqiRt3bVyCF/90Gt198h1ytOJyWFBrofHff3IAg76r\nNkJJy93psECIxtJjXe2+sBAT4HLI1+dmHhPQx56UK+TermKk7rfSxCCvQz558iTcbjfmzZuHa6+9\nFoIgoKqqCpFIBBaLBZcvX0Z9fT3q6+sxMnJ1UHq9XqxataqoCy8X1OpIF6IklE/Tut5phdcfgt1m\nxu43PsSRU16MTWrvP6uWN3sHEFeh10qcMeGd9y7jaJ8X0Zi+T4PNYsK3f3FQU6Qnd29P7b5wKfcL\nCeVLqXS/87r6I0eO4LnnngMAjIyMIBQKYd26ddizZw8A4E9/+hPWr1+PlStX4sSJE5iYmMDk5CS6\nu7vR2dlp2IVPJ2p1pAtRvHHYWDR67JKv2SwmPPmbbnz7FwfxtZ+9jb1HLmIsaJwzBoBoPElUvwiq\n0cMZOx1cui62yVOFC95gXmcs1sC7qzl0dTZh2/pF8PpD4GNC3n3hQCiafi9QPvW5fEzIui5CaVB+\nfoYN/X2oZJ7YciQSwXe+8x0MDg4iEong4YcfxvLly/HNb34TPM+joaEBP/rRj2A2m/HHP/4Rzz77\nLCiKwn333YdPf/rTiiefjvCIXmGYqyGMEYxORCTf09XZVNDsKRqP4wcvdOPScKolI02lnHEwbJxE\nmxIkHE2YTh75206wJgZ73j2PN3sHNU0IN7TPg5lhskKLy+Y78dZJ6RwIAHDaOYwFp4Yh1ZQ0GhHW\nLZe2iCRkncLrD+Fbvzgo+/qTX15bVHa9Usg6r0M2kkpyyCJ8TIBvIoK9Ry/i+JnRKRl44gAqpF45\nEIriojeIeqcVT/6muySJUxaWQV2NBReHJ6f93ITZyc1tc2FhTQWJ21hYBpHo1BWLhaURiaoLeWuZ\nSEvZk2K1CXbu7ZO890In+IVCHHKKQCiKf/zpm5KLEgrA0//HzVO68Wm9FjmIUpdGODODee4q3P8X\nS8FvnDoQi5ntOmwsrl3ggtcfUkxgMZKbVszFX928AP/9f71VUNkUgaCVt44PFdySUcoZp1Cv61po\neZMeK1tSdlV+hPm4bIQweeX1YhyyEkTLWiOZ+zxSwu65jSDEZICX9p1RfQ6lxhNGIe7F3XtbC0IR\nQVY6jkDQmySgejWrlmhMwLrlc9P7wrV2eQMqJmNqRY+xrqYtImF6sXImWZ1+UYfBKMgKWSUhPo7f\nvtqHU+f9srNhvWa7SpmfRlBtM+P7n78eDhsLIZHAHw5/rGkP2V1txujE9LbiIxCUqLVzuH/LUgAp\np2flTHj8V+8W3H5QDEs7aqzp/+sx1gtti2iEljchRZiPK5aiGrlCJg45D2JY6s3jA1mzeKk0eDWz\nXbXJAFLqXJORmO4rCQCYCMXw/B9O4YFPXYvdb3yIAz3aZDeJMyaUG8uucaYdVb3TBj4myCZ7KZU3\n5YalPU4r2ha7sbG9UZexrrXsqlwSwGYyqUkOLZnpb2Hp0mpZz3Zy69FyyZwNK892OU0/pJSA/csH\nzhq2au7uH8HJ//UmKIr0VCSUBgvLwMaZZJWztBxnx+YWANkObHSCh4WlAVCIxgRVcoi549/rD2Pv\nkYsQEvJNX7SWP2qRaSxVfexsIy6TQBOTkTnWC+KQFVAKS4lkzoY5MwObxSw5SG0Wc0GhpUwBe3GA\nvnl8UDKZxcRQqkQ95IjGkyAFT4RScXPbPNyxbgEeee5wUfX2N7fNg40zA5jqwMQIU0dLHf5m6zLF\n0KPS+D9+ZhRti93YL9GpTVzZqg0ry3WP4mMCRsdDWf+v1ASwSgqxD4+FZRNahUTq9SYZ7YhiIQ5Z\nAaUQtEjmbJiPCZgMSxuSyXAsnQhWKOLA3bZ+EZ741bsYypHzLMYZEwhGQAHg8pQg0RSwfmUDNrY3\nYnwyivECnbGFZXDTirnpiauSA+vuH8FHl99Fh0K4N98WVFdnMxiGnrKy3X7rIuzc26c5rCxOvoVE\nQvLzeoXJp5OKDLHnqwQ2sFKYOGQF1EhmZu7zjAd5+CXaKALAWJAveMCIs0vrlXDeH975CN6x/Nra\nBEKpUZNBnUgC3X3DOHBsALVVLFiZ/bt8RKICKIpKG/p8E2qfQrhXSCSw5/B5UDJNM5wOC1zVlqy2\np031djhs7JS6Yq1hZbmwtCAkdAuTTxeVGGL3OG2ydewWloHHwEkPccgKKCVcWFgGN7fNy9rnKTRj\nUo7c/S8CYaYSCKUSA4vVaVeb0yH3GZGX9p2RDEeLtLfWwcRQU1aybUvq0NtfeFhZMUx+1oe2JXXY\n3z21D/l06W5rCT1XaoidMzNYu3wuXuue+vuvXT6ntP2QZzu5CRe1dg7LrnFix+aW9D6ViB5C9ZkP\nvJFJXARCuSOX6aqEbyKCYX8ITfUOcGYmr4wmkAr3Do+FwZquZtDKORKaBjasasQ9m5ZI90iXcJaZ\n58kXJcsbJl/dBIampr1PbyGhZz2rTqYdJWUQAyEOOQ9yCRdyiAOj+/Qw/AEeTgeHjqWevAMm94F3\nOliEeCIyT5i9WFgGDE1pGgdJAP+y63jaWXx2cyuO9nkVw+asmcHTvz8GfyCa1sKWW1UnE8CW65sR\nF5LyTlume5uaKFm+KJsYJldrj/SikNCz3hFDo8hd9fMxAW/0Spd+vtE7iHs2tRj2nROHrJLMbGc1\niNVDaquIch94n8xeNIEwWxifjKkeP5nkOot1K+Zh31H5lWskKqSrFkYneLx1ckh2D9HjtKLGzimu\n/uREJdREyTgzg5UtdZLXu7LFnf68VntUDIWEnoVEAi8fOIvJiLRGQTm0tpRb9a+5th6CzI8oJJIY\nGA5iYUONIddUpmlulUshcnpqyqsIhNmG2UTlTWi1Kmhg9/SNgI8JsqrWnJm+UpcshfSn1i6fl7U/\nLYW7msPG9oaC2znKXW+pFAIKkfcU7WDupMbCMrq1tiy2XaWcrf6vdz5W/JyY72AEZIWsI4UmMYwH\neZK0RSDkoKaML6wQihb3ho/1j0i+bmEZTExKG1dRC/v0+bGsvdoH7vgEfL7JPPkiHuzoai2o9paP\nCbLXe6x/FNtvLa50shC0hp6V7KCNM+HODYuLKnkyuqnHeW9Q8bMLG6o1X7NaiEPWkUKTGGrsnKZ2\ncQTCbKDYck/WzADJpOyYHJ+MgVYoa8rUwhadKsNcNfj5FLYKCSuXYyKU1mRVpXsopvxTRI9SKsVr\nDPCY67RO0XkAgCZPlWE61gBxyLpSXBIDkawkEPQmX+mT3H7vqoz9WjnnoTXhs9jrLWUilBZ5TyPv\nYbqaevzz5zrw1G97cdEbRBIp69xUb8d3PtdR8LWrgThkHeHMjKo6wdxQ1niQBy/b15VAIBQCHxUQ\n5uMFdU7TsjjXuhJWCmXrUTppBFomH0beg14RhHzXaLdyeOyBNQiEolmiL0ZDHLJOiPsaoiiAWPrg\nztjfkNv72LZ+oSoBAwJhplFtpbG4yQm7zYz3PxyDbyICQJ9yT1d1ajWWu7qrrmLzamX39o/iLp33\na9XufWpZjU43aicfRt2DnqtvNdfImhm4ayyp7Y9pgEomDRTmzMPwcMDwc3g8jmk5T65cnsjG9gbc\nv2WZ4nu6OpsAQPI1hoas0DmBMFOwsAxu/MQctLd68D9f6tXFIXd1NmXtKWZK0Mr1RhahKeCHX1o7\nxfkUY0+Uxr/U3ud0N2QwwlYacQ9av0dA+d6krtFIDW6PxyH7Gil70oF8cnd8TMi797Ft/SI010/t\nIEKcMWE2EIkK2N8zgJ6+YdlyIi3MdVmxbf3CrL+JqzuHjUV7q0fx83rv1+Yb/1KlO+L1lrpetxiM\nuId7Ni1BV2dTwWVlaq6xkPJVPSAhax1QW6en9J7/v70zD2/qvPL/V/dK98qyZEveAGNTFttAwAaD\nISwhBIclyZTWzQIJhf4ySdN20vTpzNNMyhB+WWa6JenkmU6nM01o6GSS0tAhv8lD20xJCCQlbEkw\nm2nANlkAY/AieZElXUlX+v0hrtByNy1XluT38xfolXXv1dV9z3vOe8732Ic8kp2iKAooNjFwpNCS\njkAYDViDDpxPvb8rp9ecCFfsbjz50geSXo1SK9NEWygqkY3Z07mK0n52qvdsNDW4iUFOA2r3NeTe\ng2BQUp0rEACmT7KBpnSKurwEQjZRZi1AV69L9fvF9JqtZhZePw+n25/QseXKYfx8EDc3TMDCmRXY\n19qF9gsDGHByki0UrWYWc+vK8N17k8uyzdbs6Vwmdj9bLsycCKO5eCIGOQ2ozSqUe0+xmYUO0sks\n5y4OQKe1sjmBkGa6+9QbYwCwmtk4vWZhzzdRgywQ6dXwgQB++04HDp3uDtf9Gxkai2ZVYFXTJJQU\nGcEa6Lh9Socz1Dji0+4hPL5pvug+YqaypzO9t5wryNUnf/e++ao/p9jMwmZhRB0kq5nVdPFEDHKa\nUJOxJ/ee/kGPrLkdGOaIOSbkHFJ1vlLM+IItTq+5x+GS7WusRKRXs3NfZ5xOtMfL493j3dDTdFhh\nSypk+Vn3MJ769Yd46q8XhI1yprKnY48jeO0bVtamnGgUS64ZfaUws8erfjHHGmgUGPWAiEE2FehJ\n+8VcQE2dntx7is0sSiRWZQBgK2Jlw9oEQq7DGihsWFULINogFLB6FJuVS5WksFlYeH08hl1etJ7r\nkXzf8fbe8LMptwDo6h3BK2+dw/23zQSgXjkqVSGR2OMIXnvnpUE8cX9TWoyyltnFWqIUZnYMcaqM\nHR8IYMfb7ZLbLL3XtLPJHnKOoKZOT+w9rIHGvOkVkgIGJqMefQPxUm4EQr7g50MdgnQ6HU6098I+\n7AWj14EPQLL7jhpGPD48uf1DWM2sbGKkfZgLG8rQe6WN8vsnu0FTFO5aPi3hBKBkJDXlPMCLPU7s\neLs9XF6ZCumQpRwNlPbobUUshgeV58+d+zqx//hlyXHOF0TvgBtV5fEVMekge5c8Y5D1zTWoKi8U\nHbvUM0K0rgk5QzJtE/kAsL/1MvYd6wpHgrz+YErGGAA83gCCgKyBBYASCxv2WufWlcm+NxAE9rd2\n4bdvtyfcCSkZlLz24x3ipVOJ4PH6Ey7NyhaEPXoxGuvKYGSUfU+1Xfe8vuRyGdRADHIW4eeDcHPa\n3WwCQUsMtA6VZSbYzEzKjSFGg8a68rA3u755GgqNypP42QsO2CzikorpzJ4WvHYpBp3elI3/lf6R\njCwutCLV+mSlRY+Az6/dj5uErLMEPhDAK3vOEflMQs7i44O4nGBWdTZgZCgsrZ8QNXHvevcTjHiU\nF8eOYQ6LZo3HIZFyxHRqTwteu1R9tiATmgxh2d/OPsnE0VwozUp1j16pEYmAln0HiIecJezc1yn6\nUBMIBG1ZPGs8vrpqOmiKAufj8Wn3IPYdU9eMwmYxYsOq2rQqR0mxYWWtqJofkJrxF/aNewc8ku8Z\nzcYWiZKsOphc2DsS0g85x1EqIVC7d0EgENLPqfN2uDg/3jjwCY639yYUpZoxyapJG0YxaIrCE/c3\nYcfb7Tje0YdBpxclRak1bVCae1iGwk0x0YN8Zn1zDbx+Hn8+0T0qxycGWUPUlhCo3bsgEPIdI0Nl\nPHnRMezBb99uV6WCR+lC4j0hgxvEwbYrOHvBEX6uY7On013PS1MUNq2ZgXXN2kt6AgDnDUCn06VU\n8pRtNc1y50NTFG6cMU7WIF/qcWLm5BJNzm1MG2StfyhqSwjU7l0QCPnOaFQSWM0szl5wqHrv/Jnj\nYaAQtb0k9lxrXc+bTOmUGGrmnmT1m7Otplnt+VjN8n2PlcZTYUzuIfOBAHbsbcfWbUfwDy8cwdZt\nR7Bjbzv4QPomg0S6u6jduyAQCOmH0VOqI1QPfXkWzkkY7+PtfRh2edHjcGHH3o5R6RaUKGrmnmQz\nrEerY1Kq53O5b0T2c5TGU2FMGmStfyicj8cnXYOSq06xH7iQsm/TcPVFIBDiueJwQ43DRlM6vPZ2\nu+Rz3T/kwZPbP8DmF47gvePi2dDZWM+7vrkGKxorJb+DZDKsk2k3qSWJ1FgHFYrolcZTYcyFrLVs\nrRUbEqF04lq+Uj/wQDCIIReRxiQQMo2avuN8IIh9H12U3ecW5D2ltEyysdWisC9dUMDgzUOfxY0n\nk2Gdbe0mHUPqz2d6tVX2s5TGU2HMechqexcnQ6znLfVQiv3ABdF7NRMDgUBIP6yBQomFvVa6xII1\nSE2PyXtI2VzP+42W+rSVbwl702KMxndgK1J/PoyBlrzDumvjWjHmPGSt+pLKed6UDggGIVmiwPl4\nWdH7WFgDBc5HLDeBkE68/gAeXzcHjJ6C18fjye0fir/Px2PJ7PE4d2EAjmEPigvlda8jyeZ6XppO\nX/kWa6Axp7YsrrMWAMypLc34d2Bk9KrbXw46pTvrBa+Nk37IaSKdfUkjkfO8gwAevXcupk4sBmug\nwfl49A+6wj/4QSeXUBen0mIjrtpdxJsmECIoLWIxe2opTnb0YWAk8a2fEosR5daC8DMqt3DftGY6\nAET1axZ7r1AmVZJgq8XRJF0Z3HJe5migtv0lrzCxKo2nwpgzyEDqfUkFIsum5DzvEosRUycWQ0/r\n8Mqeszje0YcBpxel19LuW5ZNhc1sgMPpU3XcXJQnJBC0hDFQeOL+BXBzfvz5hHS3HjkiF+RqF+6C\n4ZJ67/K5lVizcJKsKFA21eimC87H40RHn+jYiY5+3H2Ldi0MpVAr4PKxQgncxxccmFCmTbenMWmQ\nU1XWkapnm1tbhndEQjSNdWXQ0zr8439+hIs9zvDrkfWLZhOr2iATCIRovL4ALvU4UVVhTrimn9IB\nyxsnxi3IxRbuS+dUYu3iSXGfIbfIj6255Xw87EMe7D12Cac6+yRrYnPZWCea1JXJa1WKADB6+dQq\npfFUGJMGWSDZ0IyU4Efz/IlY2VQl+lDu2NsRZYwjOd7ei2AutschELKI5147gdIiFiajISGDHAwC\naxZUxxlOsYV7VaUVvb3D4fdEGhKlRX7kQj72/CIX5+uba7JKUCMZ1ObqZJt4CABUWOVtgtJ4Koxp\ng5wMcslbJzv68YOHbox7KDkfjxPt4uEbAEShi0BIE/1DHPqHOFRXmOHy+OEY9sCgl0+ClOqUFGls\nYxfucoZEapEfu5AX43h7H3g+gP3Hr4fdpRT+shm1IX8p58bt8WPjmumjEhkwKbTdVBpPBWKQE0Rt\nKCbyoRx0chiQycK0mhlQOiSU2EUgEKRxefx44v4mDDo5/GzXKXA+6ecvNplTzNjOmGTDfauuG0O1\nsrgCahvI2Ic9OC6x95qqTkKmUcrVkftODrZdwcef2zFvekXGveUCVt4sKo2nAjHICZJM2VQBq4fV\nLF0a0VhbBpqmRFeTggiBlMgIgUCIxzHsgZvzgzHQsrKYS2aPj9s7FjO2B9uu4Fh7D1bfOBmrmyYm\nLC6ktoGMVaaEKh2CGpncq1XK1ekdcMt+J/Zh76hEBnocbsXx0uICTY5NDHKCJFI2FbnSlnrIqivM\n2HBt5c3zgbi2ai3LpsLp8qKA1WPQyeEH/3UMXj+pdyIQ5IhcHEstoEuLWGxaMz3K+5Lz2jzeAHYf\n+AR9DlfCKlRqG8jMrSvDqc6+tOskpLJXm6oRj83VEc6l9VyPZL1vJJmODFTY5I2t0ngqEIOcBGrL\npuT2jGxmFnPryrBhZW34vafO92PQ6YXVzKKhpjT8sJiuhUgYA02MMYGggsjFsfQCujwpT/bImSvQ\nXRP7iUXKaMot5IGQKtb1rGxd2nUSEg2xA9olXKnZS48k01KbvEIoUmk8FVQZ5GeffRbHjh2D3+/H\nN7/5TdTX1+Oxxx4Dz/MoLy/Hc889B4ZhsHv3brz88sugKArr1q3DPffco9mJjyZqyqbk1LesZgZP\nPbAAFlOokcSOve1RP1CHk8P+1i7QlC7qYenqE8/SJhDyHaktGx1CwhvCeGmE0RBY31wDPhDEifY+\nDIxwYZGOlmVT0eNwRT2/ajxZuflYzmiKLeQbppVgZVM1SoqM4QTQpfXj4XT70H5hAANOLmmdBIFk\n9fuTMeLC8eTmRTV76ZFkWmozq/eQjxw5go6ODuzcuRMOhwNf+cpXsHjxYmzYsAG33347nn/+eeza\ntQstLS34xS9+gV27dsFgMODuu+/GqlWrYLVqJ8Q92kiVTfGBAF7dc04ySWtoxAs354fFxCT0sDiT\nUB8iEHIdHYCFM8fhyF+uxo01zSzH2sWTUWxm4eb84Ym7f9CDYjMLPa0LRZ86++BwcrCaGdRPsyEQ\nDOLJl47GeX5KnqwUUrXMkcgt5PlAAK++fQ6HTneHG1ewBgqLZo3HhlV14ShZMiTT6CEZI67Go1a7\nlx5JpuVGBxXm2cERb9iZSjeKd3nBggVoaGgAABQVFcHtduPo0aN4+umnAQArVqzA9u3bMWXKFNTX\n18NisQAA5s2bh9bWVjQ3N2ty4tnMzn2dOBjRwDyWyBVfIg/LxHJt1GEIhGzGamaxrrkGZpMBred6\nYR++/rx8+HEvTp+3Y9GscWieV4Xf7evAqfP9YYNgMhqi6v8HnF68e7w76vMFz4/nA9i0ZkbYqB44\neVm1ZrxULbMYYgt5oblMJJwvgENtV2Ay6lNKakomETUZI67Go5Y7l9IiFg3TSnHqvD0lBcWUUdKE\n0FAzQtEg0zQNkyn0xe/atQs333wz3n//fTBMaIVQWlqK3t5e9PX1oaSkJPx3JSUl6O1NLDSRD6gJ\nyUSu+IrNLFiGhscb3x/UYKBQbGajVp4EwljD4eTww//6CI115WioKcW7x6OlMT1eHu8evxz3ulCT\nrJb3TlxGIAisBvZShQAAIABJREFUXlCNu5ZPw8r5VXjiV0fh5ZUnYJuFTakxjVxzmePtvXEeaSKJ\nVsno9ydqxNV61PLnUo4NK+tGXaFM6T5qGT5XHQfZu3cvdu3ahe3bt2P16tXh16UUptQoT9lsJuj1\n2n/h5eUWzY8h0N03ErWCj6Wqwoy/uWsOGCb01Xu8fkj1u+a8Afz+8OegJJI8CISxguBtSbdETJ1A\nMGSU3ztxGQUsDUCnyhgDgNvL438/uIgH1s4CTSd2jqE5QzpMah/mQDMGlJcVgucD2P77MzjS1o3e\nATfKrQVYNHuC4nEfWdcIUwGDI23d6Btwo0zi7yLnyqVzJmL3gU/iPmvpnEpUVUZvRcrNe45hT/j8\n1Z5LleSVJI9aO+DvG5EdLyg0hq8l3agyyAcOHMAvf/lL/OpXv4LFYoHJZILH44HRaMTVq1dRUVGB\niooK9PVdL2jv6enB3LlzZT/X4dC+SUJ5uSVK6k5reB+PEot0UsilHif+4/WT4RBOj8MFNxfvHQu8\neegzGJncEAIgELQmU21HpZ7JCluoG1SPwxV1Lm7Oj90HPkG/w5WwwlRozmAkjXKJhQXv9aG3dzgu\nAbTH4cbuA5/A5fYqhrVblk7G7Quro7xPu/268YmdK9cungSX2xtXTbJ28aS4OVVu3rNZjOHzV3su\n6SYRO8D7eJTKhNVjryWZc5FCcSk3PDyMZ599Fi+88EI4QWvJkiXYs2cPAOCtt97CsmXLMGfOHJw+\nfRpDQ0MYGRlBa2srmpqakj7pXEUIychxvL0PnC/0wBebWZRKNM4WEAtnEwiEzNNYV44tm+bDXGAQ\nHT/YdgWPv3gYO/a2gw+oWzywBhrzplfIHlPIwJYLCwtzitKxKmwmVQsGIQntBw/diB99YxF+8NCN\n2LCyTnSfXG7ekwqLJ3IumYQ10Jg1rUR0bNa0Ek3PV9FDfvPNN+FwOPC3f/u34dd+8pOfYOvWrdi5\ncycqKyvR0tICg8GA733ve3jwwQeh0+nw7W9/O5zgNdZY31wDl8ePQxKJXZFJEXpal7AYPoFASJ4J\nJSbUVBfh/ZNXVAlTRPLhx1exdPb4pBSm5PZG1zfXwMfzONx2Fd5rnreRobG0/rqSWDKJVulAbROe\ndLW1zQaOfSy+8Dn2cS/uXzNTs+MqGuT169dj/fr1ca//+te/jnvttttuw2233ZaeM8thaIrCpjXT\nce6CQyKEcz0BZOe+TskuUAQCIf10212wD8vLI0rhGOKAYFCV6paQzCSUXkmVAwlJm23n7fD5ArCa\nGcyYZMPGNdOjyp2SyZbOJKm2tc0W+gfdGPH4RcdGPH70D2onnZkbvbwyDOfjr+0RJR8qlgvhjHh8\neP2983BxfpI5TSCMApwvmLB3DADltgKU20yK21IA0D/kgX3IEy4H6h/iEMT1BLWd+zoBIG58wOnF\nkb9cxRsRCVWCd91QUyZ6rEzX6sqRraFotZz51J7SeCoQ6cwI0i0VJ4Rq3j/VHbUP7PEGwi3GSKia\nQMgdmmaOA2ugI8Kz8b2NI3nrw4to+6RfdOx4ex/WLpksuy/csmwK3jjwaXhOslmYa60lfXAMp67i\nNVqMdmmTHEUKoh9K46lADHIEyUrFSUFTFO5aPg2t53pEE7POXnCguNCAwRFf8idNIBAyxtplUwFE\nh2f/83/P4qiIihgAnOrsl+3edKnHKbsvvOPtjqhcFPuwF/ZhL1Y0VmLNwklRPdf7B11ZaeAi0Uof\nO51QtEQdqsrxlI6t2SdnEWpC0OnIYBRj0MnBIVHO4BjmYNRQF5VAyEfMBXqUWFhQOmS0JLC0yIgy\na/TeIWug8aWlkyX/ZmAkJNcphs1iRFWFGSUSVRZWC4uzn4uHR0+dt4elQXfsbcfWbUfwDy8cwdZt\nRxLK8M40SuH7bGCiQo2x0ngq5LU14AMBbHvjNA6e7FJcjWmVwWg2MWCv9TSOxWZh4fWKJw8QCARx\n/HwAP3xoUbjf8evvnsfZCw7YhzkUmxgMu73gNbBHjXVlMDJ6xFaglhQZJetWS641kNgfoyImfJ7F\nxEgqV424fOAkursJc9LeY5fSGtXTkmSbXGQaNyc/JyuNp0Jee8g793WGivVVrMaEDEYxks1g5Hw8\nfvt2u6gxBoAZk2xwOEm4mkBIBI83gNPn+7Hngwv44X99hENtVxAMBrF41ng8fOfstBtjxkBhRWOl\n5D6tUg3uhlV1WNlUhdIiIyhdyNNe2VQV/rz1zTVY2VQV5+1LGWMgNCcVsHpNonpaocbpyQa8Cj8g\npfFUyFsPOdHVWKJ6r3JJCZENuKXUd4wMjbtumYYzn9kx4CRdnAiERPjVHz+O+r992ItDbVfg86fX\nCFEU4PMFcOp8P2i6E4+saxR9n1wNbuR+c6/DBeh0KLcWhKN0SrkmYjTWlcHN+UelLjlZsr1sS0Cn\nkH6vNJ4KeWuQkwlBqylsV5OUoKYBt9fHw+vj0VBTij+f6JZ9L4FAUMeHZ9NbRihsxQrRNVMBgxaR\nPWOlGlw+EMDr752XnDfkck0AoLiQwdCIFzYLi3nTQ3/n56XrobPJwAkk0+RiNDDo5QPHSuOpkLcG\nOZnVmJrCdqVMbLUNuG0WFns+uIC28+IlEQQCQTsoXaiZRKIcaevG7QurJY2HlKqV0rwhN18ZGRpC\n/4fIRjS5YuAiyQU1r3KbCRR1fTEWCU2FxrUibw1yKj9WqYdKPgzei5sbJgA6naoG3ANOTjTRg0Ag\naEdpEYtNq6fjX3adSurv+wbccdE1pZpatdtnUvOVx8uHQ9mxhjwXDFwk6VDzykQNs4HWgRNZsek1\nLHkC8tggA6HVmKmAwcGTl9PyY5ULg/cPcXhi+4cosTCS/Y0j0TAvgEAgSNAwrRQ11VYYJSoflCiz\nFoSja2pratVun8UbVxYjHp/oeUYa8lyUq1Srjx1JpmqYB50cOJ94+ITzBTXdm89rg0xTFB5qqY9r\n8yWGmlWXXFhJQK6vKYFAGF1One9HZ9dQUsYYABbNnhCeH9QICXE+Hl5/ADaJ9orC9pkw/9y1fFrY\nuHp9PJ7c/qHoecTmwSRj4HKNdAs3SVGgoA2hNJ4KeW2QBeR+rImuuqZPskl2cYrEyNAoNOrhGOZQ\nVMiQTGoCIQvoH+KSkqtlDRRuapiAB9bOgt0+gmGXF8ckEsjEJC9ZCQGTObWlksleuZa0pSWZrGHu\nHXApjls0ks8cEwZZDjWrrlijLdQLyoWlvT4eWzbOA2OgUcDq8Y//+SHRrSYQchTOF4DuWkbVjr3t\n+Ohsj+Qi2y4ieSnMFUaGhtfHh7fPgsGg7PyTTB5MNutEJ0smW0/2ODyK41Mr03KoOMa0QVa76oo1\n2sLDteiGcWi/6JAMRZVHdDyRerAIBEJucLy9Dy++cVrxOdYBOHauR3Ss0KjHlo3zwpm6W7cdkTzW\nXcunJZS0lQs60cmSyRpmvV4+cUtpPKVja/bJOYCaVVexmZU02h2XBjGnpkxSFk8wxpyPx4rGieAD\nwZDY/LUHa/okKw63Jd4knUAgZB77kAdHVWxXBYIhj1oMxzAHxkCDNdDocbhUeX2RSVsFrB5uzg8/\nHwyXQglkao91NMhkiVd5sTGl8VQY0wZZzapLyWivbKoGTVOiK1ixFWvDtFKsbKpGSZERXh+Pjz9z\nSHaDIRAI2UOxmYF9WD6cqYQwr/CBAPZ8cAE6HRAUWZHHen16Woe9xy5Jer+5ohOdCpkq8erqld9D\n7up14Qvji9N6TIExbZDVrLqUjHZJkVGy7GDH3va4Fev+45eho3SgdDocb+8lxphAyBEaa8tw5jMH\nehzu5D/j2ryyY2+7rA5BrNen5P3KOQ72oeyT0UyGdNQwq2H6JGtK46mQ2xsLaUAQdpcSflcSjhd+\nEEImd2SYWmrFeuj0lXALMgKBkN1YzUxoTri1BuYCg+q/MzI0SovYuHlFbm6gdMCKeROjvD6597ee\n6wXn42Wb4wQB/OmDC1nbkjFRYufadMMofK7SeCqMaQ8ZULfqkgqVtCybih6HeFNwuRWrWgF5AoEw\nutjMLJ56YAEsJgY79rbjk8tDce8xF+jhdMe35LupYYLovNI/KL13HAwCaxZUqxYWsQ9zeHXPOdx/\nxwzZxNF3j1+GnqZyfi85E1zqcSqOz5xcosmxx7xBFpCrVY412maTAW8c+BRPvnRUMptRjYiIGFYz\ng0GnF3o9BZ9M+zUCgaA982eUw2JiZL1U1kBjwYwKnDpvF+30FDuvyM0NJUXxGcNKc8nBtisoMOrR\nsmwqDpzsklSZOt7emxd7yVpTVWFOaTwViEFOAMFoi+0Nx2Yzyu1PGyWkNUuLWMycYsOhU1eIMSYQ\nMgxNAQa9UCfMYsYkG1qWTQWgVJHBYc3CSVjXXKtqbzPRjGG59wscb+/DzQ0TJI0xEPKm82EvWWuU\nRD+0EgUBiEFOGLmV8kdne7B2yWQwBhqDTi78MMeGuoPBIN451hX39yajAe+fVC6rIBAI6YM1UJg1\npQQbV08HY6Cw4+0OnP3cjkNtV3D2ggONdeVoWTZFsSIjEfnKRDOG1zfXwOXxS6oEOoY9gE6HEgmJ\nTgAosbBjSt1LgPPx6O4bAe/jVUUHPr8yqDhOsqyzBLmV8oDTi8f+/RB0FODxBlB6LZT99IML4HT5\nwg+ti/PBzfE4+7kDA04ONosRDTWlONEuLiZAIBDSQ3WFGSMeHxxDHKxm9lq0yofj7X34/MowTEYD\nLkbsIUZGv6S81BlJZN0mmjFMUxQ2rZmOcxcckouCcmsB5k2vkPSkG+vKRzVcnWkFsaiy02EOJRZ1\nQikffizfPvfDj3s1M8j0U0899ZQmn6wCl0t7fefCQjatx9HrKRw+cwVuTjwxiw8E4edDYSM3x+OT\ny0Pw+gNYNGs8dDrgtXc68Nu9Hei4OAiTUY/G2nI8fOdsnOzsR8el+IQRAoEQj55Krp+xgdbh4a/M\nxsr5VfB4/Tj9qT3caMLN8RgaEZ8rBp1e/E3LbOgNNPoG3OC8frAMDT2tw6fdwzhy5gr6Bj24YbIN\nlE69kpOeplBYYIA+VuVD4r19gx7RxLKl9ePRWFuOGybbMOLxobvfFZ6HjAyN5XMrce+ttbLnlu65\nUoAPBPDaOx3Y8XY7/nDocxxO8rtKlNfe6cDejy6F52phPnZzftRPLZX8u8ICGu+d6JYc37CqBlZz\n8uIghYXSUYq8Ncicj4d9yIMiixFeLj4DMlnkHgopBp1eLJ9bif9+93zcD+RijxNtn/bjzKeOtJ0j\ngZDvPPOtxRh2eXGpdyShv3NzPP58shunzvfj/OUh8CqtOuf1Y1nDBNy2dCqa6spgH+Lwafdw3OJb\nabJPlRsm2+Dm/Bh0esF5/SgpMmJp/Xisb64BpQvpGzRMK8PKpmrcOLMCK+ZV4c7l09BYW65o/LQy\nyMkaRimEuV2vpyQXMpyPx46320UdJ2E+lvrbAtaAPx7+XPL4995ap2oBJYWcQc67kHWsOla5rQAN\n00rTque6vrkGPB/Auycui6rsxOIY9qDX4ZLce77Uk9ikQiCMZSrLTOADQTTPr8KRvyS3zZNo9UOs\ncta5C+IL6OPtfVi7ZDLcnF+T0KzaUDdroFFVYUnrsZMhnQpiiWh1p9KMYlBBrIn0Q06AWEWbHoc7\n7XquNEVhzcJJsko7kdgsRkCnk/yBEAgE9Qw5OWx+4Qgo7aKdcURmP8tN9v1DHjy5/QMMOr2aNnfI\npv7HcnvD6ezSlIhWdyrNKELXQYnqkbMGStPEuLxS6lJajXG+9AlyFJtZWM3q0t8b68pQbi2QVNIh\nEAjqcXpCz3Eye8hqsZoZUeU+ALKqWEAouTOI6wZj575O7U50FOEDAezY246t247gH144gq3bjuCV\nt86hu38kPNfKfVeJdGlKdG5Xq7AofTzxslOp19NFXnnImeyZyRpoNNaKd3qKZMns8eEVMmnBSCDk\nBg3TSnDHosmiXp+auuBI8qW5QyxiHuv+1i7sb+0KV5isb65JS5emZOb2ZJtRXO6VV+q63OvElEpS\n9qRIJntmAsCGVXXouDQomVhSWsRi05rp4XDV2qVTcOYTO646XJqu7gkEQmqc+XQA962U3gOOneyL\nC1nJRjHpdgayATmPFYgOJ6ejS1Myc3vkfjvNGMB7faoWAEpbi/YhDlMqVZ96QuSVQc5kz0wgdMOf\n/OsFePrXH4oaZaHuT0hGeP/U5XCJBYFAyF6UjGhschVjoLHlxcOiz7fNYkQBq5fUvU+WTNf1RiLn\nsUYiRAdS7dKUytzOGmiUlxWit3dY1bGUtha13HrMK4MMxK/GyqzXs6wjSdePWTDKO95ux/GOvmvJ\nHNErwNjQDoFAyG7kImqxc4cgpyu12DYZ9fjH//xQMTNYLYlkG2uFWq3+yIVNqolomeqHXFluBk0B\nvMjtpCkdKsuJlrVqYleu0yaXYnjwev9SLX7MIRWdGVjXHG/klUI7BAIh+2iYVhK3UOcDAWx74zQO\nnuyKmjtalk2VbqdI6USVv3g+oEr7WsxxSCTbWCvU7qOnc6swU/2QWQONZXMq8a5IftCyORM0jUbk\nnUEWEFZjRkaPyECFlj9msRWg2tAOgUDQnqryQtRWW/He8S7ZPI5T5/uxY2971EJdau5wunySnmJA\n4iD7j1/G4TNXoiR2I48l5Ti0LJuStrpeNchFEiM91v4hj+jfa7FVmImSryDE75vU6+kibw2yGOks\nUldLsm0YCQRC+ukbdGPzxvlAMChbIRH2ZANBrFlQjQJWLzl3fPDx1aTORQhxizkFUsbf5fGrzjZO\nZVtOTSQx0mO1D3mw96OLoi0ocw3Ox+P9k+LSme+f7Ma9zXWaecljyiBnsixKINESCQKBoB0ebwA7\n3m7HX98xA51dQ1HhZDHeOx4q47GaGQw4xWUl01UxITgFoX+LG/+znzsUs43TsS2XSCSRNdCYUFqI\nTWtmjGqiWbro6nOK7h8DoX3lrj4npk7Qpuwpr4RBlEhXkXqirG+uwcqmKpQWGUHpgGKTQZPjEAgE\nZY6d64HL44fL41N8r2BspYxxOhGcAvmOchxmTLKJjgnhYcGY9g9xSQmUpCKwJISTc9UYA+rKnrRi\nTHnImS6LEohNRihgQ1mXJIxNIGQezhfAr9/8S9Y9f5FOgZwXfN+qOhQY9aLZxslsywleraW4AMDo\nRBKzCUuBvFlUGk+FMWWQgcylzosRmYxAwtgEwuhxotMOI0MlpQtgM7MYcHLQ6dIr3xnpFMg5DiZW\nL5lt3D/oUm1M+UAgXK454PSi4lojnpZlUzIqsJRt6CAvkq40ngpjziAnkjqv1X4I5+OxtH4CnC4f\n2i86YB/WPhxGIBBiSXxirbAV4PFN8+Hm/Njz4UXsb+1K+SxsZhbzZ5RHOQVqHAexbGMlRStBoMRs\nYvDMb1qj9tAjG/GMRiQxW/B45dv1Ko2nwpgzyAJyqfNaFd4LjboPnr4Cjze0D8Pox9Q2PoGQNXh9\nPBbdUIGzFwZU7xEvmj0BjIGGm/OHJBkpXdhoWi1swvuLVjODpx5YAIspulFNsjW3rIHG3NoyvHMs\nfqFQYKTDAiWMRDcjILQIePrBheF/53rWdKJMVBD+UBpPhTFrkOVItVZZyrPeua8z7kHx+omUJoGg\nFYVGGi4PL1o9ajBQOPv5AAZGvGBoHby8fPy5qqIQgWAQW7cdiVqoP/3gAjhdPhSbWfzolWOKmduR\nNM2oiDPGkSRTcyt1FZF91+W6FtmHPHC6vBkR4chG3Jy8B6w0ngpj2j3jfDx6HK6orMFUMgzF2pHt\n2NsOPhAgil0EwijAGvS4ea54JwDOG8DASMgzFoyxXACsb8CDP7z/aVz28hsHPg1nFj/+tXmorjCH\nezVTupAYyf/9P02oKi+Mer26woy7b5marksNXZOPx8mOvpQ+o9jMhPeJ8yFrOlEGFaIlSuOpMCY9\nZLmQdCoZhnKe9cr5VUSxi0BQCaPXwetPPWPKPszB6+OjErgoSiepoBWQCVgJ20yxRGYvM3o9nn5g\nIYZdXlzqcaKqwgyLicGOve1RDWgCQeBijxOv/KkdG9dMT5vBS4cyYGNt/u8Ty9E/5E5pPBXGpIcs\nV6eXbK2ykmddwOo17RJCIOQTJlaPRbPGpeWzDp+5GpVNLWWMBRJN9RIW6pFYTAxmTi6BxcTIzg0H\n267g8RcPhyNpahCL7AnIzV9qqK4wY8OqzOhhZyuzppSmNJ4KY85DVlOnl0yGoZJn7eb8pNSJQFDJ\nwIgPa5dMRgGrV9SdTjdSh5Iqk1IqBVLyWu3DXlU5KmqSTRNVBjQyNDgfD2shi8UNE/CVmyZnrGNU\ntmKW2dNXM54Kqgxye3s7Hn74Ydx///3YuHEjuru78dhjj4HneZSXl+O5554DwzDYvXs3Xn75ZVAU\nhXXr1uGee+7R7MSTRU1IOplaZTUNtNc31yAYDEZlWRsZGk0zy3D49FVJuTYCYaxhoAE+EMS6FTWK\nutNaU3qtnWogGMQ+kexlpVIgtXr2Snr6apNNxeavubWlCAI42dEfNae1LJsSTkirqrSq7hmcz3Qp\nfAddvcOYWmnV5NiKBtnlcuGf/umfsHjx4vBr//qv/4oNGzbg9ttvx/PPP49du3ahpaUFv/jFL7Br\n1y4YDAbcfffdWLVqFaxWbU48WdQYzmRKDtSqgH111XTcfUsNegfcQDCIYjOLl//3rKwxpnSAQa8D\n5wvCyFAIBuWzJAmEXMfHA0+89AFKi1jMqS3DinmVONx2VXIfVyusZgZP3N8Ei4kBHwjAbGJx8ORl\n2Ic8KCpkMOMLNrQsmyL7GWq91sgcldhKjUQUuOTmr3tuia8AMbFEyjeSC1flDfKFq6NokBmGwbZt\n27Bt27bwa0ePHsXTTz8NAFixYgW2b9+OKVOmoL6+HhaLBQAwb948tLa2orm5WZMTT5ZE5DMTLTlQ\n61mHxNhN2LmvE63nehSFQQJBgPMFMaHEhG67S/X5EAi5Tv8Qh33HulBdYc64MQZCGbWDTg4WEwOa\novDA2lkYcnpw+PQVDI54cfQvV3GysxdL6ifgvltrJcO91+eGXklP2WYxwnwtASw2LL2icWLCyaZi\n81cmWhfmOkqRDC0lVxUNsl6vh14f/Ta32w2GCcXRS0tL0dvbi76+PpSUlITfU1JSgt7e7CzzSSYk\nrUa1KxHP+rV3OkSL9+W46iDGmDA2SaS2N50EAfxs16nwXu3235+Ja1zv8Qaw71gXKJ1Ocg84cm54\nZc85HGq7EveexroyvHHgE9GwNB8Ijmk5y0xSrSD8oTSeCikndQWDEo2cJV6PxGYzQa/XPr2+vNwS\n99p375sPj9cPxxAHWxELIyP+VfB8ANt/fwZH2rrRO+BGubUAi2ZPwANrZ4GmpZMfqmTOx+P141Bb\n4j1UM5nYQiAQQghGkWH0+FCm9/HJzj588645knOJwGNfWxCeU/oG3Ci7Nqd8dc10fOef3xX9mzOf\n2nHj7Al489BncWNL51SiKk0hVLG5Ml9Qe23mIofCOKvZ95SUQTaZTPB4PDAajbh69SoqKipQUVGB\nvr7rBek9PT2YO3eu7Oc4MuDxlZdbZBMV9ACGB92QeseOve1RK9Yehxu7D3wCl9urSrVLjEu9Tk3V\nXggEgjg0pUMwGJRc3LIykpKHTl2WFYXoG/Dg/Gf9qkLCLUsn4/aF1VGRtE8vOtDrEK9x7RtwY+ms\ncfB6/XGRvbWLJ+HS5YGUFbXKyy1p+ZxsRMkOROIekW/L6R7xpZT8JmfMkzLIS5YswZ49e/DlL38Z\nb731FpYtW4Y5c+Zg69atGBoaAk3TaG1txZYtW5I+6WwgmVZmauBJOjWBMCrcPLcSJ9p74HDGT7qs\ngcL37p2LH7/SKlr6NOj0wlYkrVdts7BxoWO5ra7Y/VylhNOSImPclpie1qVFd58PBLDtjdM4eLIr\nrfr9uUhdtXy0QWk8FRQNcltbG5555hl0dXVBr9djz549+OlPf4rNmzdj586dqKysREtLCwwGA773\nve/hwQcfhE6nw7e//e1wgleuolVf0D+f6k711AgEggpoKqS+VXKtdGlF40S8K9GhyecPwGigJY1i\nSZERN84eLxo2BoB508vDRjeZBjVqE04jDXlsBC9R3X2BVPX78wmLiYGJoeASqTk3MZSs9niqKBrk\n2bNn45VXXol7/de//nXca7fddhtuu+229JxZFqCmRCoWpeQvzsfjVGdqWrMEAkEdfABYMns8Nl2T\np+R8vOwzXW4zyRrFb7TUg+N8cVoCS+rHRyWFJmvgEkk4TVcET6tI4GiRattczsfDLbFt4faF+hJo\n9X2MOaWuREikRErtijgdWrMEAkE95y4MRP1/+iSbZJYza6CjjKJ9yINiM4PG2pBRpGkqTkugPKb5\nQioGLpFKjXRF8LSKBEaiVW/5SOTm4ETo6h2GVE5yMDjKwiBjHbUrVqkVMc8HsGnNjPDralV7CARC\neugf8qB3wI0/n7wcnqyNTMgocF4+HM4WnmmaorC+uQZ8IIgT7X0YcHI4db4fNN2JR9Y1Aggt1qti\nyl8Eo+P18SkbODX1wslE8LT8HDG06i0vhlxU4rv3zVf9OT0Oj+L4VPEGYimTNwZZqxWYmhXrsMuL\nj872iP79eycuAzodNqwMiQbIed3VFWY4XT44nMRYEwjp5MXdZ6K6LQnh5qWzx4t2W9rxdnuUXKcw\nuZsKGLQsnRz1XjGjwyape50IiUTwMvE5YmRqb1ouKtF6rhcer/qqFg8nn2WtNJ4KOW+QM7UCE1ux\nCsc+drYXAxLlEIEgsL+1CzR1XTRAzut2efx44qWjGFRIvScQCOrp6hsRff1sTDg71NO8I7SQFuFI\nWzduX1gd3o8edHLY8+FF7I9IFJOLfqVq4GJJRuRI6nNMBQwOnryc0udEksm9abmwu32Yw3+8fgr3\nNU9TZROUamC0rJHJeYM8mtmBsceWQ/gBAqEfz13Lp0V53QDQP+iB2cSgqJAlBplASCNSe4KxIeSd\n+zqjjGsCFE6DAAAZo0lEQVQsfQNu2Ic82H+8KyyDSUn0azQyNEysHgNOLi0GToxkdPelPuehlnrc\n2lgZ1cc5FTKxNy2gtBW476OLoBBUZRPmTCvDq+iQHdeKnDbIalZgYn+TjtC23LHFcAx78Mqeczh3\nwRHlyd+2sArbdp/Bp92DGHD6JENdBAIh/UTWDqt5psusBdj70cWocLaUyIjXx2PLpvlg9JTmQhtC\nBE/olSx3PLE5UIs6ZC33pmNR08BDrVdeWlyAQiONEU+8dnqhkUZpcUHK5ytFThtkNSswQcIy3aHt\nRLOlGQMdldkpePKxPyBijAkEdRSyNPhgMPzMsAyFErMxoQYsJqMhPEGreaabZo7D0TZ1OgI2ixHl\n1oKMlAypmd/k3qNFpFHLvWkxhC0/sQx6IDGv/NmHl+D7/3EYTvf1vWdzgR7P/M1imb9KnZyWYBFW\nYGLErsCEH1z/EIcgrv/gdu7rTPuxxQgGiaElENKFiaEwwvFRC1jOG0i4G9qI2wfOF/KE5J5pSges\naKzE2mVTVS/EtTA6Urz2Tofo/PbaO9dDr1Jz4I69HbKRRuH7SYb1zTVY2VSF0iIjKF2ot/TKpqq0\nh+6BUNh905rpKFVpE+Rg9DQWzRoPqzkUtreaGSyaNR6Mxr0XctpDVrsC0yK5QG2PUwHORzpDEAjp\nQkxFKRkGnBwGnRxKi4343f5OOF3iuRvLGydi0+rpsBQXgGVoyVaQOh1QotF+sRScj8fB0+Je4cHT\nV3D3LddbP4px6FQ3OL/495nqXm+69rjVki6vPDZiMOD0ZiQ3KacNMqAuy1Cr5IL4Y7MY8fhEw86U\nLrVuTTO/YMXHnw8ov5FAIKjGZjGCMVB44lcfiHrXRobGTQ0TYoyr+INs0OuwecM8VJabM6ps1Tvg\nllwgeLw8egfcYPSU5BzI+QNg9BS8IkY5XXu9mezDLGYTls6pxNrFk1T9/Wgql+W8QVazAtMquSD2\n2E6PDz98+Zjoe1NtnbiqqRqX+0ZI9jWBkEZMRj3+4YUjkh2eTKwedy2/Xi7jGOIk8zx8/iD+7f+1\nYf6M1JKhEk48VWp1Gwyi2MzCZmFgHxYvz9RJZIpnMuyeLsRsQlWlVXWHpkEnJ5mtbR9Kb3Z4LDlv\nkAXkVmBaJxfoaR32HruE1nM9Emvn1DxkHYB/ff00GL3EU0MgEBKitIiFyWjAxR6n7Psc10Lawtxi\nK2JRImPYHM7kk6GSTTwtt5lglKjOMDJ0WNpzxhdKJBOefP4Abm2qxon23rTVIY82yXrlxWYW1LWm\nJLHoKKQ1OzyWvDHISqSrgF4MNfXIqXjIwp96/WQfmkBIFR2Av2mZhf9444zie4sLmfAEzAcCeOXN\nj+HilJOckgltJpvpzBpoLKmfgH3H4uunl9SPD5/DhlW1aG3vFQ1v2yxGfOuuBvT1OfOyH3IieH28\nqDEGQkbaS5pLpI5WyQVKtYuUDqgsK4TL45NcVRMIhORg9ZRkQpIUNgsLxqBXlS3t8frx+nvnRUuD\n5LAnmJuS6r7lfbfWgtLp0HquF45hDjYLi3nToxsrmFgDbmqYIBkpNDL6jO71ZivnLsrn6py7OICm\n6RWaHHvMGGSBdP/glGoXA0HgUu8IqivMxCATCOkmiV2cwgIDyq0Fqpq8eLyBUJOYQDChtqnWQjah\n0GaqiadqHQ4tI4X5gk5hT15pPBXGnEFON2q7N424fVgxbyJOdvTBMczBajZgxO2HlydhaAIhWYRk\nLCNDg/Py0KnI1XB5fPjdvg6MeNQnSJ5o70uo6cvcBHNT0pV4quRwZLoMKReZPKEopfFUyGlhkGxA\nSBhTwj4cSg4R5oogdMQYEwhpotCox3fvrldMOAZCe7P7j1+OS4Ji9dLT4cAIFxaJUKK6wowNK2tV\nvTd8bJl5RItMZ8FwE2Mcj5uT7wylNJ4KxENOA9fDQL2ynnJr+/WQl1R3KAKBkDj2YQ4lRUZV0Sqp\nigcjS6OwQC+6tVRiMaJhWkmUhnX4765558VmBo21Zdiwqi6pkqfRCCdHllgRriFVA6Z2PAWIQU4D\nkWGgV/ackywtIBAI2mAtZFFuM6lSz5MKaQ+O+MAYxCdbwTBazMa4FoUty6bA6fKlHP7VMpwcW9ss\nVmK1dM5ErF08Ka1ta3ORAkb+O1caTwVikNMIa6Dx13fMgMmox/H2PtiHPKr2tAgEQmo01JSCNdBx\nXiYjyOd6eZQUGdFQU4qTHb2SCZbeaxK3RoaG18dHealCi8LbF1bHGUwTa0jbtaQz8VSqtjkQDEaV\nSfUPcdh94BO43F7N29ZmOz0Ot+K4Vh2fiEFOM5Gr3E+6BvHT107Ivj9VSU0CgQDcMrcSgLiXCYSy\nmAtYfXj/T67nMRBS6Nqyab5ot6ZcKg2Sqm02MuJesNbSkLlAhU3e2CqNpwIxyBrBGmhMnVisuKdF\njDGBkDo0HW1gIo0mHwhg77FLYS/RZmFQXWGG0+WTzJwecHJg9FROGya52mYp+c9Um0nkA6OZ1DW2\nNws0Ri5zkjVQWD63EiUWdZmbBAJBHCNDo9wq7bXEth20D3txsceJ+poSyczpdDVVGE0S7dkO5Md1\np8woJnURg6wxkf1AdQgZYsZAgfMFcPp8H1jD6AUpiDI2YTRId87Q0gh5yFjkvMS283aYC8T3fnOx\nqUIscv2djRKJSflw3alSbi2Q/H6UFn+pQkLWGhO5p/XqnnM4GJGBHUos8YKmdDDoKXBeHjYLi9pq\nKzouDSS8uk2Erf9nPiaWmWEf8uCPRz7Dhx9fhU+7SAyBECYQAMqLjegd9KT0OSUWBvOmV8iWBcl5\nifZhDvbh+LHqCnNeKFfJNdVZWj8eOp0u6RaF+QxroLG0fjzeEdEGl1v8pQNikDPI2QsO0df5QBC8\nl8fS2eOxcc10sAYaO/a2q9bNTRSbmcXEslDP1gmlhfj6X83CptUz0PZJP37xP22Kf19ZbsLl3vje\nsQSCWvx8AOy1SFEyRD4rcsgpYEklVLo8fvj5IOg8iB/K1TbTFJV0i8J8595ba68tWHpDNe6W6523\ntIQY5AyhZj/n7IXrouaRD5J92AMd0pcAJibrxxpozJ5aKtnGTeCWxkp8dVUddu7rROu5XlEPg5A7\nGGjAp9y8KO0MjnixeNb4qIiRgJL3vHT2eNx/xwxV9bJyXqLU85RPiU1Ktc25lDGeSUZLYjQP1oC5\ngdx+joAwEQDXfxA/eOhG/Pgbi7D8WllHqsjJ+glt3MTHKKxsqsJXr6kQbVhZhx9+YxH+8cGFqCzT\n9oEuLWLBqFg63n3LVE3PI9/Q6YBv39mgmEtAKbxhQokJpUVGULrQvZpaWQSbgsykzWLEfavqrudX\n6EKRmxXzJuLJBxaiVOJZKbGw2LhmekLiFZF5HKFzNGJFY6XkMSITmzgfjx6HC9xorFrSCJHKTI5M\nf2/EQ84Qcit1AbEMR+EHsWFVHWiaCguOFJsZLK6fAM7rx8mOfjiGPbCaWcz4gg133zIVbo7H3o8u\n4tR5e/j9amT9Ytu4Wc0MZk4uwYZVtXHiB6yBRlW5GT/4+iK89OZfcPBUcgpl42wFGBzhwp45y1BY\nUl+JtYu/AK+PR7GZVVRAs5oZLGuoxL5jl3K+q9aNN1TAZDTgVOf1++ri/KJ9bFOhxGLElAlFkiHd\n0iIW3727AQWsHj985Zio3CtNAZs3zQOjp6NCn8//5iPZWt/GujKYWL2kFyL1rMybXp7w5Cjl7Uht\nCzXWlUFP67Bjb3ucoMYj6xoTOjaBkAjEIGcQIQz9/qlu0clVLsNRbFIR9nzuuYWPm9CsZmDTmhlx\nknlKJBuquePGLyRlkCkK2PK1JjB6Cr0OF6DTodxaELefJddcHQAaa8tgMYWSfLTae9caI0PjpoYJ\n4f09bkXo3nn9ATz50geqP2ec1YirA8oJU411oe9Myvg11pWjqsICAGiaIf698gHg9wc/w4aVdeHQ\np8frl2xVSOmA5XMro/bixMKmWug6xx5H7hhSghqmAgYtSycnfQ4EghzEIGcQwdi1LJuK377djrMX\nHNeaiaufbGInFSWDm6k9opIiI0pVCPvHEggAv3unAw9+8Ybw5C+GXHP16gozNqwKyf2tb65BIBjE\nodNXUvYotVRRY/QUzAUGDDi5cGQjNgoh3DvOx6tqmgCEIgVPPXgjfre/U9JDjTT8gDrj17JsKt4/\nFd8hSfi7SHUnx5B0vkQQwJqFynrJmdjDkzqGXKnUkbZu3L6wmoR+CZpADPIoYGL1ePCLNyTsvUbC\nBwLY9sZpHDzZFQ6pNdSUYeX8KpQUGZOeMKS0bwWvTQrWQKOhpkzUCCglip294ADn4xXPOTbRzVrI\nYm5dGTasrA2fG01R2LhqOu65pQa9Dhd8/gB+8T+nEw5jz6stw/EOcS9PpwMWzxqPcxcG0D+UXOmO\n1cLi8U3z4eb8ivdfzXaHQGNtKMpy1/JpONzWLfq9m1g97lo+Leo7UzJ+TpcXnEp1J1uRdGZzSYLC\nE5lYUMYeQy4Bs2/AnTcJX4TsgxjkUSSVyUYspLa/tQv7W7tQqtKIqv1c4f9SovOCET/ZEfIqBM9S\nOI+WZVOx/Q9/QauEgXNc6xWt9F0k4jWxBjrscSuFsasrzHB5/HEdfJ586QMJo8LitoXVWN9cA/uw\nBz95tTXh8p2+ATfcnF/1/Y9cjEgtAiIjBXIGdMAp/n3L/R7lyoesZhZefyC8qDIyepkwePYLT8hd\na5m1gChZETSDGOQcRC6kBqgzool+rpzofKwRF8K8DdNKw8d/4Isz8ZdfHBINIycq15foQkYwZkKZ\nVuyCYX1zDfx8UHVi0YjHhye3fxiOHtzUMEFURECORCf2yMWIfciDvccu4VRnv2SkQM6oyH3fUlEb\nOS/dxfnx5EsfRCU+jUZv33Qhd62LZk/I+gUFIXchBjkHUatRm2jnFllVoyHx2kw5I37qvD1cLuJ0\n+bB49njRkPb0SVZV55cssZ610PUn0ujQFBQTixgDDY+XD4eBhYVP8/yJWNlUJZmsJ0ayE7sg5rJp\n9fRw0pdYpEDOqIh5qWq2KqS/Dz7q+xASn0ajjjNdSC0oHlg7C3b7yCifHSFfoZ966qmnRuvgLpf2\n5SmFhWxGjpNJ9HoKh89cgZuTn/w5rx831U9AoYRebyKfS+kAfyCI2VNKQEWIq9uHPPjDoc9FP8/D\n+eEY5vC7/Z34w6HPMejkUGYtgIHWwcPxMDI09DSFz7qHcfjMFfQNenDDZBsonU6T+6anKRQWGMAa\naBQWGKBXkGKidDrUTy3F8rmVWDhzHI6d64FbxOAOjfjwyJ31WLWgCgNOL0bcvmuJWEYsmT0OUyqL\nMDTiA+f1o6TIiKX14/HNOxvgdvvScj1S13HDZBvcnB+DTm/Usdc310TdQwB47Z0O7P3oUvjeuzke\nn1wegpvzo35qafz3MaMCre29or8Vx7AHy+ZUQk9TiueYrURe6031E3DH4i+gsbYcZrMx7+YTgXyc\nKwWy6doKC6UjY8RDzkHUJvkkEwqWUzXa39oFmtJFhcHlQqMsQ8dpd9uHvVjRWAmvLxA1lmyYPROw\nBhqMnoJDIjEsMqnp6xLJerGlabHtArVA7Z57olsVrIEGY6DHROITUbIiZJLcWrYSwqxvrsGXlk1F\naZFR8j3JJNCsb67BisZKSXWm4+19UapFci0mpTjZ2S+p6x37+dmCnNJa7MJHTN1HSfFHS0UopWPL\nbVVEqsdFIvd9kMQnAiE5iIeco9AUhYda6nH7wupQks81Va5UE2hoisKahZPw7vHLouNiOr9i+23T\nJ1lxWEJZyyGjf20f9uCTrkGUlZnjxlIpE0uVRPdk1ZJImZlW159MAliiiU+jee8IhFyBGOQcJ5zk\nk4QqlxSJTtBioVEAOHfBIfEZLHQ6iI7pADz32glU7DmHhmmlYWOfTG10utEic1hNmVmyteFqSXax\noSbxSetzJxDyCWKQ84h07XclO0HHHl9OjxiAbAeeHoc7ajzR2mgtSLd6lNq922RqwxMlmcWG1PcR\nuT+eiXMnEPIFYpAJoqTDG1TzGUrtJVvP9UIns5+dSFlXukjXwkfN3m2xmU2qNjxRUllsSH0fyda1\nEwhjFWKQCaKkwxtU+gxh7JOuQTz32gnRz5Dbb871vrVqtgbUGO10Xn86s4ozfe4EQq5DNnEIsqSj\nH6jcZ7AGGlMnFsv0plWf3ZxryGWoC1sDiWR3Zxu5fO4EwmhADDJh1JEzTPOmlysarVxmfXMNVjZV\nobTICEoHlBYZsbKpKhzWV2O0s5VcPncCYTQgIWtCVhC731xmLYjKso4cyyVdZCXUbA3ksi50Lp87\ngZBpdMFgUKOOr8pENqDXivJyS0aOMxrk47UJpVvTJpdieNAtOpYPtazJ3LtcuX6xa8uVc1ciH585\nAXJtmaG8XLrve9o95B/96Ec4efIkdDodtmzZgoaGhnQfgpDHCPvNRkaP2MdnrMsY5vL15/K5EwiZ\nIq0G+YMPPsDnn3+OnTt34vz589iyZQt27tyZzkMQCAQCgZCXpDWp6/Dhw1i5ciUAYNq0aRgcHITT\n6UznIQgEAoFAyEvSapD7+vpgs9nC/y8pKUFvr7gwAIFAIBAIhOtommWtlC9ms5mg12uf4CG3iZ7r\nkGvLXfL5+si15Sbk2kaXtBrkiooK9PX1hf/f09OD8nLp1nwOhyudhxclm7Lr0g25ttwln6+PXFtu\nQq4tM8gtDNIasl66dCn27NkDADhz5gwqKipgNse30SMQCAQCgRBNWj3kefPmYdasWbj33nuh0+nw\n5JNPpvPjCQQCgUDIW9K+h/zoo4+m+yMJBAKBQMh7RlWpi0AgEAgEQgjSXIJAIBAIhCyAGGQCgUAg\nELIAYpAJBAKBQMgCiEEmEAgEAiELIAaZQCAQCIQsgBhkAoFAIBCyAE21rDPN0aNH8d3vfhe1tbUA\ngLq6Onz961/HY489Bp7nUV5ejueeew4Mw4zymSZGe3s7Hn74Ydx///3YuHEjuru7Ra9p9+7dePnl\nl0FRFNatW4d77rlntE9dkdhr27x5M86cOQOr1QoAePDBB3HLLbfk5LU9++yzOHbsGPx+P775zW+i\nvr4+b+5b7LXt27cvL+6b2+3G5s2b0d/fD47j8PDDD2PGjBl5cd/Erm3Pnj15cd8EPB4PvvjFL+Lh\nhx/G4sWLc+++BfOII0eOBL/zne9EvbZ58+bgm2++GQwGg8F//ud/Dv7mN78ZjVNLmpGRkeDGjRuD\nW7duDb7yyivBYFD8mkZGRoKrV68ODg0NBd1ud/Cv/uqvgg6HYzRPXRGxa/v+978f3LdvX9z7cu3a\nDh8+HPz6178eDAaDQbvdHly+fHne3Dexa8uX+/bHP/4x+OKLLwaDwWDw0qVLwdWrV+fNfRO7tny5\nbwLPP/988M477wy+/vrrOXnf8j5kffToUdx6660AgBUrVuDw4cOjfEaJwTAMtm3bhoqKivBrYtd0\n8uRJ1NfXw2KxwGg0Yt68eWhtbR2t01aF2LWJkYvXtmDBAvzsZz8DABQVFcHtdufNfRO7Np7n496X\ni9d2xx134KGHHgIAdHd3Y9y4cXlz38SuTYxcvDYAOH/+PDo7O3HLLbcAyM15Mu8McmdnJ771rW/h\nvvvuw8GDB+F2u8Mh6tLS0pzrz6zX62E0GqNeE7umvr4+lJSUhN+TC72oxa4NAF599VV87Wtfw9/9\n3d/Bbrfn5LXRNA2TyQQA2LVrF26++ea8uW9i10bTdF7cN4F7770Xjz76KLZs2ZI3900g8tqA/Hje\nAOCZZ57B5s2bw//PxfuWV3vIkydPxiOPPILbb78dFy9exNe+9rWolXswD1VCpa4pV6/1y1/+MqxW\nK2bOnIkXX3wR//Zv/4bGxsao9+TSte3duxe7du3C9u3bsXr16vDr+XDfIq+tra0tr+7ba6+9ho8/\n/hh///d/H3Xe+XDfIq9ty5YteXHf3njjDcydOxfV1dWi47ly3/LKQx43bhzuuOMO6HQ6TJo0CWVl\nZRgcHITH4wEAXL16VTE8mguYTKa4axLrRZ2L17p48WLMnDkTANDc3Iz29vacvbYDBw7gl7/8JbZt\n2waLxZJX9y322vLlvrW1taG7uxsAMHPmTPA8j8LCwry4b2LXVldXlxf37d1338U777yDdevW4b//\n+7/x7//+7zn5vOWVQd69ezdeeuklAEBvby/6+/tx5513hns0v/XWW1i2bNlonmJaWLJkSdw1zZkz\nB6dPn8bQ0BBGRkbQ2tqKpqamUT7TxPnOd76DixcvAgjtAdXW1ubktQ0PD+PZZ5/FCy+8EM5gzZf7\nJnZt+XLfPvroI2zfvh0A0NfXB5fLlTf3Tezannjiiby4b//yL/+C119/Hb/73e9wzz334OGHH87J\n+5ZX3Z6cTiceffRRDA0Nwefz4ZFHHsHMmTPx/e9/HxzHobKyEj/+8Y9hMBhG+1RV09bWhmeeeQZd\nXV3Q6/UYN24cfvrTn2Lz5s1x1/SnP/0JL730EnQ6HTZu3IgvfelLo336sohd28aNG/Hiiy+ioKAA\nJpMJP/7xj1FaWppz17Zz5078/Oc/x5QpU8Kv/eQnP8HWrVtz/r6JXdudd96JV199Nefvm8fjweOP\nP47u7m54PB488sgjmD17tugckg/XZjKZ8Nxzz+X8fYvk5z//OSZOnIibbrop5+5bXhlkAoFAIBBy\nlbwKWRMIBAKBkKsQg0wgEAgEQhZADDKBQCAQCFkAMcgEAoFAIGQBxCATCAQCgZAFEINMIBAIBEIW\nQAwygUAgEAhZADHIBAKBQCBkAf8fjrTVDNAwXbsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file From 16a0c7037bc37a1d715e70d58440a696f712ea07 Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sun, 24 Feb 2019 00:31:12 +0530 Subject: [PATCH 04/11] Created using Colaboratory --- validation.ipynb | 1618 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1618 insertions(+) create mode 100644 validation.ipynb diff --git a/validation.ipynb b/validation.ipynb new file mode 100644 index 0000000..33da779 --- /dev/null +++ b/validation.ipynb @@ -0,0 +1,1618 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "validation.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "4Xp9NhOCYSuz", + "pECTKgw5ZvFK", + "dER2_43pWj1T", + "I-La4N9ObC1x", + "yTghc_5HkJDW" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zbIgBK-oXHO7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Validation" + ] + }, + { + "metadata": { + "id": "WNX0VyBpHpCX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Use multiple features, instead of a single feature, to further improve the effectiveness of a model\n", + " * Debug issues in model input data\n", + " * Use a test data set to check if a model is overfitting the validation data" + ] + }, + { + "metadata": { + "id": "za0m1T8CHpCY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As in the prior exercises, we're working with the [California housing data set](https://developers.google.com/machine-learning/crash-course/california-housing-data-description), to try and predict `median_house_value` at the city block level from 1990 census data." + ] + }, + { + "metadata": { + "id": "r2zgMfWDWF12", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "8jErhkLzWI1B", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "First off, let's load up and prepare our data. This time, we're going to work with multiple features, so we'll modularize the logic for preprocessing the features a bit:" + ] + }, + { + "metadata": { + "id": "PwS5Bhm6HpCZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "# california_housing_dataframe = california_housing_dataframe.reindex(\n", + "# np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "J2ZyTzX0HpCc", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "sZSIaDiaHpCf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For the **training set**, we'll choose the first 12000 examples, out of the total of 17000." + ] + }, + { + "metadata": { + "id": "P9wejvw7HpCf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + }, + "outputId": "630140cf-b2d3-4746-b2dd-9484f8d19781" + }, + "cell_type": "code", + "source": [ + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_examples.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean34.6-118.527.52655.7547.11476.0505.43.81.9
std1.61.212.12258.1434.31174.3391.71.91.3
min32.5-121.41.02.02.03.02.00.50.0
25%33.8-118.917.01451.8299.0815.0283.02.51.4
50%34.0-118.228.02113.5438.01207.0411.03.51.9
75%34.4-117.836.03146.0653.01777.0606.04.62.3
max41.8-114.352.037937.05471.035682.05189.015.055.2
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 34.6 -118.5 27.5 2655.7 547.1 \n", + "std 1.6 1.2 12.1 2258.1 434.3 \n", + "min 32.5 -121.4 1.0 2.0 2.0 \n", + "25% 33.8 -118.9 17.0 1451.8 299.0 \n", + "50% 34.0 -118.2 28.0 2113.5 438.0 \n", + "75% 34.4 -117.8 36.0 3146.0 653.0 \n", + "max 41.8 -114.3 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1476.0 505.4 3.8 1.9 \n", + "std 1174.3 391.7 1.9 1.3 \n", + "min 3.0 2.0 0.5 0.0 \n", + "25% 815.0 283.0 2.5 1.4 \n", + "50% 1207.0 411.0 3.5 1.9 \n", + "75% 1777.0 606.0 4.6 2.3 \n", + "max 35682.0 5189.0 15.0 55.2 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "JlkgPR-SHpCh", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 294 + }, + "outputId": "8944c5a6-30e1-4de1-d3e4-206e963835b5" + }, + "cell_type": "code", + "source": [ + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "training_targets.describe()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean198.0
std111.9
min15.0
25%117.1
50%170.5
75%244.4
max500.0
\n", + "
" + ], + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 198.0\n", + "std 111.9\n", + "min 15.0\n", + "25% 117.1\n", + "50% 170.5\n", + "75% 244.4\n", + "max 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "id": "5l1aA2xOHpCj", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For the **validation set**, we'll choose the last 5000 examples, out of the total of 17000." + ] + }, + { + "metadata": { + "id": "fLYXLWAiHpCk", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + }, + "outputId": "3cfcc3e5-434c-4014-f357-35ec1fe0cf25" + }, + "cell_type": "code", + "source": [ + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_examples.describe()" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean38.1-122.231.32614.8521.11318.1491.24.12.1
std0.90.513.41979.6388.51073.7366.52.00.6
min36.1-124.31.08.01.08.01.00.50.1
25%37.5-122.420.01481.0292.0731.0278.02.71.7
50%37.8-122.131.02164.0424.01074.0403.03.72.1
75%38.4-121.942.03161.2635.01590.2603.05.12.4
max42.0-121.452.032627.06445.028566.06082.015.018.3
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 38.1 -122.2 31.3 2614.8 521.1 \n", + "std 0.9 0.5 13.4 1979.6 388.5 \n", + "min 36.1 -124.3 1.0 8.0 1.0 \n", + "25% 37.5 -122.4 20.0 1481.0 292.0 \n", + "50% 37.8 -122.1 31.0 2164.0 424.0 \n", + "75% 38.4 -121.9 42.0 3161.2 635.0 \n", + "max 42.0 -121.4 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1318.1 491.2 4.1 2.1 \n", + "std 1073.7 366.5 2.0 0.6 \n", + "min 8.0 1.0 0.5 0.1 \n", + "25% 731.0 278.0 2.7 1.7 \n", + "50% 1074.0 403.0 3.7 2.1 \n", + "75% 1590.2 603.0 5.1 2.4 \n", + "max 28566.0 6082.0 15.0 18.3 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "id": "oVPcIT3BHpCm", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 294 + }, + "outputId": "2d5409fa-4e11-4973-85da-2b8f7629fda6" + }, + "cell_type": "code", + "source": [ + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "validation_targets.describe()" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean229.5
std122.5
min15.0
25%130.4
50%213.0
75%303.2
max500.0
\n", + "
" + ], + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 229.5\n", + "std 122.5\n", + "min 15.0\n", + "25% 130.4\n", + "50% 213.0\n", + "75% 303.2\n", + "max 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "metadata": { + "id": "z3TZV1pgfZ1n", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Examine the Data\n", + "Okay, let's look at the data above. We have `9` input features that we can use.\n", + "\n", + "Take a quick skim over the table of values. Everything look okay? See how many issues you can spot. Don't worry if you don't have a background in statistics; common sense will get you far.\n", + "\n", + "After you've had a chance to look over the data yourself, check the solution for some additional thoughts on how to verify data." + ] + }, + { + "metadata": { + "id": "4Xp9NhOCYSuz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "gqeRmK57YWpy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's check our data against some baseline expectations:\n", + "\n", + "* For some values, like `median_house_value`, we can check to see if these values fall within reasonable ranges (keeping in mind this was 1990 data — not today!).\n", + "\n", + "* For other values, like `latitude` and `longitude`, we can do a quick check to see if these line up with expected values from a quick Google search.\n", + "\n", + "If you look closely, you may see some oddities:\n", + "\n", + "* `median_income` is on a scale from about 3 to 15. It's not at all clear what this scale refers to—looks like maybe some log scale? It's not documented anywhere; all we can assume is that higher values correspond to higher income.\n", + "\n", + "* The maximum `median_house_value` is 500,001. This looks like an artificial cap of some kind.\n", + "\n", + "* Our `rooms_per_person` feature is generally on a sane scale, with a 75th percentile value of about 2. But there are some very large values, like 18 or 55, which may show some amount of corruption in the data.\n", + "\n", + "We'll use these features as given for now. But hopefully these kinds of examples can help to build a little intuition about how to check data that comes to you from an unknown source." + ] + }, + { + "metadata": { + "id": "fXliy7FYZZRm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Plot Latitude/Longitude vs. Median House Value" + ] + }, + { + "metadata": { + "id": "aJIWKBdfsDjg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's take a close look at two features in particular: **`latitude`** and **`longitude`**. These are geographical coordinates of the city block in question.\n", + "\n", + "This might make a nice visualization — let's plot `latitude` and `longitude`, and use color to show the `median_house_value`." + ] + }, + { + "metadata": { + "id": "5_LD23bJ06TW", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 499 + }, + "outputId": "35b9c046-72c6-4745-e060-9c642aa39534" + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize=(13, 8))\n", + "\n", + "ax = plt.subplot(1, 2, 1)\n", + "ax.set_title(\"Validation Data\")\n", + "\n", + "ax.set_autoscaley_on(False)\n", + "ax.set_ylim([32, 43])\n", + "ax.set_autoscalex_on(False)\n", + "ax.set_xlim([-126, -112])\n", + "plt.scatter(validation_examples[\"longitude\"],\n", + " validation_examples[\"latitude\"],\n", + " cmap=\"coolwarm\",\n", + " c=validation_targets[\"median_house_value\"] / validation_targets[\"median_house_value\"].max())\n", + "\n", + "ax = plt.subplot(1,2,2)\n", + "ax.set_title(\"Training Data\")\n", + "\n", + "ax.set_autoscaley_on(False)\n", + "ax.set_ylim([32, 43])\n", + "ax.set_autoscalex_on(False)\n", + "ax.set_xlim([-126, -112])\n", + "plt.scatter(training_examples[\"longitude\"],\n", + " training_examples[\"latitude\"],\n", + " cmap=\"coolwarm\",\n", + " c=training_targets[\"median_house_value\"] / training_targets[\"median_house_value\"].max())\n", + "_ = plt.plot()" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAHhCAYAAAA2xLK+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xec3VWd+P/X+ZTbprdk0jupJJSQ\nhBBaCCkIIsgqRZTV3fVnd3dF3VUerq6u7vLgqw99iOt+97uIIixqqBKqoUkJ6ZDek8lkJtNnbr+f\ncn5/3Gk3cyeZNBDu+/l4wGNyy+dz7p3knPM+5X2U1lojhBBCCCGEKBjGe10AIYQQQgghxLtLggAh\nhBBCCCEKjAQBQgghhBBCFBgJAoQQQgghhCgwEgQIIYQQQghRYCQIEEIIIYQQosBIECDOiltuuYXf\n/va3Ax5/+OGHueWWW4773p/97Gd861vfAuBTn/oUW7duHfCadevWsXjx4hOWY/PmzezYsQOABx54\ngJ/85CdDKf6QLF68mCuvvJLly5dz2WWX8clPfpKXX355SO/dt28fa9euPWNlEUKID4rvfOc7LF++\nnOXLlzNz5szeenb58uXEYrGTutby5ctpaWk57mvuueceHnroodMpco6pU6dy9dVXs2zZMi677DI+\n+9nPsnHjxiG9t3+bJcTZZr3XBRAfTDfeeCMrV67ktttuy3n88ccf58Ybbxzyde6///7TKsfKlSu5\n8MILmTZtGp/4xCdO61r53H333cydOxeAN954g3/6p3/ia1/7Gtdee+1x3/fCCy/gui4XXXTRGS+T\nEEK8n333u9/t/Xnx4sX8x3/8R289e7KeeeaZE77mH//xH0/p2sfzm9/8htraWrTWPPPMM3z+85/n\npz/96Qnr/P5tlhBnm8wEiLNixYoV7Nixg7q6ut7HDh8+zPbt21mxYgUAv//971mxYgVLly7ltttu\no76+fsB1Fi9ezLp16wC49957ufzyy/nIRz7C66+/3vuaZDLJV7/6VZYtW8bixYv593//dwAeeugh\nHn/8ce6++27uu+++nBmGI0eO8JnPfIZly5Zx7bXX8thjj/WWcdGiRfz617/muuuu49JLL2XVqlVD\n+swXX3wx//Zv/8Z//Md/oLXG932++93v9pbrzjvvxHEcVq9ezS9/+Ut+/etf86Mf/QiAn//85yxb\ntowlS5bw2c9+lq6urpP9yoUQoiDcfvvt/PjHP2bFihVs2LCBlpYWPvOZz7B8+XIWL17Mfffd1/va\nqVOn0tjYyJo1a/j4xz/OPffcw4oVK1i8eDFvvfUWAN/85je59957gWyb87//+7/cdNNNLFq0qLeO\nBvjP//xPLr74Yj760Y/y29/+dkiz0UopVqxYwT/8wz9wzz33AENvswZrQ4Q4UyQIEGdFcXExS5Ys\n4fHHH+997Mknn+Sqq66iuLiY1tZWvve973Hffffx3HPPMXbs2N5KOJ89e/bwq1/9ipUrV7Jy5Up2\n7tzZ+9xDDz1EPB7nmWee4dFHH+WRRx5h3bp13HLLLcyePZs777yTv/7rv8653l133cW8efN49tln\n+eUvf8n3v/99Dh8+DEB7ezuGYfDkk0/yz//8zye1hGjBggVEo1H279/P888/z7p16/jjH//I008/\nzdatW1m1ahWLFy/m6quv5pOf/CTf/OY32bJlC7/97W9ZuXIlzz33HJlMhgceeGDI9xRCiEKzZcsW\nnnrqKS644AJ+8YtfMHr0aJ555hnuv/9+7rnnHhoaGga8Z9u2bcyZM4enn36aW2+9lV/84hd5r712\n7VoefvhhVq5cyQMPPEBjYyO7d+/mv//7v3n88cd58MEHhzTD0N/ixYvZvHkzqVRqyG3WYG2IEGeK\nBAHirLnxxht58skne//8xBNP9C4FqqqqYv369dTW1gIwd+7cnFmDY61du5aLLrqI6upqTNPkwx/+\ncO9zn/70p7n33ntRSlFWVsaUKVN6O/T5OI7D66+/zq233grAqFGjmD9/Pm+++SYAruv2lnPmzJkc\nOXJkyJ/ZMAwikQixWIxly5axcuVKbNsmGAxy7rnn5v2Ms2bN4qWXXqK4uBjDMDj//POP+10IIUSh\nu/zyyzGMbBfm29/+NnfddRcAY8aMoaamJm8bUFRUxJIlS4Dj1+3XXXcdpmkyfPhwqqqqaGhoYO3a\ntcybN49hw4YRDAb56Ec/elLlLS4uxvd94vH4kNusobYhQpwq2RMgzpoFCxaQTqfZvHkzhmGQTCZZ\nsGABAJ7n8dOf/pTVq1fjeR7xeJwJEyYMeq3Ozk5KSkp6/1xaWtr784EDB/jRj37Evn37MAyDxsbG\n4+476OjoQGs94HptbW0AmKZJJBIBsp163/eH/JlTqRStra1UVlbS1tbGv/7rv7Jt2zaUUrS0tPCp\nT31qwHuSySQ//OEPWbNmTe9nveKKK4Z8TyGEKDRlZWW9P7/zzju9o/+GYdDc3Jy33u5f5x+vbi8u\nLu792TRNPM+jq6sr557Dhw8/qfIePnwY27YpKSkZcps11DZEiFMlQYA4awzD4Prrr+ePf/wjpmly\n/fXX947crFq1itWrV/PAAw9QWVnJ7373u5xZg2OVlpYSjUZ7/9ze3t778/e+9z1mzpzJz3/+c0zT\n5Oabbz5uuSoqKjAMg87Ozt5KvaOjg6qqqtP5uAA8++yzjBs3jtGjR3PXXXdhWRZPPvkkgUBg0M1n\n999/PwcOHOCRRx6hqKiIH//4xxw9evS0yyKEEIXgzjvv5FOf+hS33HILSikuvfTSM36P4uJiEolE\n75+bmppO6v3PPvss8+bNIxAIDLnN+vGPfzykNkSIUyXLgcRZdeONN7J69Wr+9Kc/5Yx0tLa2MmrU\nKCorK2lvb+fpp58mHo8Pep3zzz+f9evX09bWhud5PPHEEznXmj59OqZp8tprr3Hw4MHeytqyrJzg\noeexRYsW8fDDDwNw6NAh1q1bx8KFC0/rs65Zs4a7776br3/9673lOueccwgEAuzYsYONGzfmLVdr\naysTJ06kqKiI+vp6Xn755ZzGRgghxOBaW1uZNWsWSikeffRRksnkGa9DZ8+ezZo1a2hrayOTyfQm\nkziRnuxA999/P3//93/fW96htFnHa0OEOBNkJkCcVePGjWPYsGG9P/e49tpreeqpp7j66qsZM2YM\nX/3qV/nc5z7Hj370I4qKigZcZ/r06dx8883ccMMNlJeX86EPfYhdu3YB8LnPfY4f/vCH3HvvvVx1\n1VV88Ytf5Kc//SnTp09nyZIl3H333dTV1eVM8X73u9/l29/+No888gi2bfP973+fESNGHHcvQT53\n3nknwWCQeDzOiBEj+MEPfsDll18OZPcqfOMb3+CRRx5h7ty5fOMb3+Bb3/oWs2fP5sorr+RrX/sa\n9fX1fOUrX+HLX/4yy5YtY+rUqXzzm9/kS1/6Er/61a+44447TvYrF0KIgvKVr3yFL3zhC5SXl3Pz\nzTfz8Y9/nLvuuosHH3zwjN1j9uzZ3HDDDdxwww2MGDGCa665hl/96leDvv7222/HNE1isRiTJk3i\nv/7rvzj33HOBobdZx2tDerLsCXE6lNZav9eFEEIIIYT4S6a1RikFwEsvvcRPfvKTIc8ICPGXSJYD\nCSGEEEIcR1tbGwsWLKC+vh6tNU8//TTnnXfee10sIU6LzAQIIYQQQpzAQw89xP/8z/+glGLixIn8\n4Ac/OCMJJYR4r0gQIIQQQgghRIGR5UBCCCGEEEIUGAkChBBCCCGEKDDvSopQ1/Vob3//5ratqIi8\nb8svZX9vSNnfG+/nstfUlJz4RQXg/dxevJ///knZ3zvv5/JL2d8bZ6q9eFdmAizLfDduc9a8n8sv\nZX9vSNnfG+/nsous9/PvUMr+3ng/lx3e3+WXsr+/yXIgIYQQQgghCowEAUIIIYQQQhQYCQKEEEII\nIYQoMBIECCGEEEIIUWAkCBBCCCGEEKLASBAghBBCCCFEgZEgQAghhBBCiAIjQYAQQgghhBAFRoIA\nIYQQQgghCowEAUIIIYQQQhQYCQKEEEIIIYQoMBIECCGEEEIIUWAkCBBCCCGEEKLASBAghBBCCCFE\ngZEgQAghhBBCiAIjQYAQQgghhBAFRoIAIYQQQgghCowEAUIIIYQQQhQYCQKEEEIIIYQoMBIECCGE\nEEIIUWAkCBBCCCGEEKLASBAghBBCCCFEgZEgQAghhBBCiAIjQYAQQgghhBAFRoIAIYQQQgghCowE\nAUIIIYQQQhQYCQKEEEIIIYQoMBIECCGEEEIIUWAkCBBCCCGEEKLASBAghBBCCCFEgZEgQAghhBBC\niAIjQYAQQgghhBAFRoIAIYQQQgghCowEAUIIIYQQQhSYIQUBqVSKJUuW8Mgjj9DQ0MAdd9zBJz7x\nCe644w6am5vPdhmFEEK8T0h7IYQQ7w9DCgJ+8YtfUFZWBsBPfvITPvaxj/HAAw9w9dVXc999953V\nAr7bOuOKhnaF673XJYFEymfXwQzt0b+AwgghxBAUUnshhBDvZ9aJXrB371727NnDFVdcAcB3vvMd\ngsEgABUVFWzduvWsFvDd0pWEV7cHaOgwcH1Fadhn2kiPCya473pZfF/z++djbNyeoTPmEwnB9IlB\nbvtQMeGgrOASQvxlKpT2QgghPghOGAT8+7//O3fddRePPfYYAJFIBADP83jwwQf5whe+MKQb1dSU\nnEYxzy6tNX98weNwW99jXUmDdfsMhlUFqal5d8v/wBOtvLQ21fvnRArWb0sTDFj8w18PP+nr/SV/\n9yciZX9vSNnFqSiE9uJEpOzvjfdz2eH9XX4p+/vXcYOAxx57jPPOO48xY8bkPO55Hl//+tdZsGAB\nF1988ZBu1NwcPfVSnmX7mwwOtwQAlfO4r2HjHofzJwVpaoqyt1HRGjMoDWumjvQxzsKgvO9r3twU\ny/vcph1xdu5pp7LshLFbr5qakr/o7/54pOzvDSn7e+P93hgVSntxPO/3v39S9vfG+7n8Uvb3xplq\nL47bm3zppZeoq6vjpZdeorGxkUAgQG1tLY899hjjxo3ji1/84hkpxHutI2FwbADQI5mGWNLn0TU2\nR9r7XvfOQZ8lcxwqi/Wg1/W1Zt02h12HXJSCaeMszp9mY6j89wJIO5po3M/7XCIFjS0eZcUmr21O\nsb/ewzRh9uQAs88JDHj9vsNpfv98jLa2NCNqLK5eWEI4JMuJhBBnXqG0F0II8UFx3CDgJz/5Se/P\nP/vZzxg1ahQtLS3Yts2Xv/zls164s23nYdh6yKA9pkkmHayAiW3ndpJLwpqn1/ocaTdzHm/qMnh1\nm8X185y81/a15jerkmzc2benYO02l+0HPG5bHkINEggEA4rKMpN4auBehNIixYgak1+ujLJtf7/r\nbs1w6QVBbrqqqPexF9+K8YfnOkmm+oKUDdtTfPHWKqorhj6TIIQQQ/FBby/Eu8dxNJ6vCckeOCHO\nqpPuDT744IOk02luv/12ACZNmsS//Mu/nOlynXWb9ileetsgldF4no9pKlwXMoaHYShMSxGJKCbX\nery+08x7jYZ2g464orwodzbA15rHX0ywbksGwzJyOvzrtzvMmmhx3lQ77zUNpbhoVpD6Jhf/mEmG\nQEDx21Vxth9wc67p+fDa5jQXTgsyYZRFOuOz6tVoTgAAcKjB4fEXu/jMjZUn81UJIcQp+aC0F+Ld\n0dru8vvnu9hzyMF1NWNH2CxbWMTMKaH3umhCfCANOQj40pe+BMCNN9541grzbvE1rN+l6Yw6eF5f\nR9k0FQHbQGuFHTCpjPiMqvBxBkkQ5PqK1DETATsPZnj0hRgHG7rTejpgWiZWIPtVa2D7QWfQIABg\nyYIwAG9tSdHY4vWmK23p8GntzN5QK43Rb1OC48CmnWkmjLJYszlBa3v+tKL76zLZ78DXvPl2giNH\nHUpLTC6fW0QwIKMuQojT90FqL8TJaW53eW1DHNeDOdNCTBkbHNL7XE/zy993sL++r1Hdvi/DkWaX\nL95iMH5U35LXzbvSvLE5TVunR2mxweIFMGP8mf4kQnzwFeS6kM441Lf4OQEAgOdpMvjEo0mCoQBa\nh9hzRDGsHA41DbxORZFPTWnfNdIZzUOrohxtzV3T77keylCYVnZGQQ2y/wCgsR027FHEnQjTpgVp\nW9eBm/AHXT6Uo+c1J3htV8zl5w+1sftgpvexl9+Kc8cN5UwZJyMuQgghTt5zr0f540tRYolsG/j8\nG1Eunh3hUx+pOGEb9vrGRE4A0KMz6vPS2gR3dAcBa95O8fBzMVI9zVeTx+5DLVx3WYQlCyJn9PMI\n8UFXkEO/vq8HBAA9PC/7XDyaIpV0qGuG+dNMQlbu6y1DM2usi9nvG3x1Q3JAANB7Tzf7uFIwfUL+\n2Gt7HTy4Gjbszu5X2F5nUlpdTlFZBDt4zMzBsUuFLLhgWraSnD87TE1F/iVMk8YE+N0znTkBAEBD\ni8vvnulE68E3OgshhBD5NLY4PPliV28AANkZ6lfWJ3hlXXwI7x/8UMy2zuxzWmte3pDqCwB67uPC\n65tTOK60X0KcjIIMAgCO19c1TQMNpJIZNDBrvMGy8zNMrnUZXuYxYZjHktkOc8bndvgHy+oDoNEo\nYN4Mm9mT+4KAjKN54+0Ub7yd5rV3NIn0sWUxCYdtfN8fGAh0s0y49IIQ40ZkrxsMGFxzWQlFodyR\nl3EjbT68uIRdBzL5LsP+eoe9h/I/J4QQQgzmzxsSxJP5G9Z3dqXyPt5fecng3ZHS4uxzsYSmsSX/\n+tzGVp/6pnf/cE8h3s8KcjlQWRFUlEB7nvSwvuejNViWied64HvsqIe2pM24WphQ7RCy81d0Y2oH\n/zqHVZp8ZHGYOVOs3mnRP29K8ae30rR2ZoMHw0xRVBIkXJS7JMcOWGit8b2+IGPWZJuSIhPLhDnn\nBJgxMTdF6OUXFTNhdID12xxa21OMHGZz1YJiTEORGWS0xPez6VCFEEKIk+EeZxTeGWTmvb/LL4rw\n6obkgE5+OAgLz8vukwsGFKGAQSozsJ0K2lBSNIRls0KIXgU5E2CZivMmKY5dU6O1znb8uynT4FAL\nvLwV9rYE2d4Y5MWdYRo68y+1uWBGkHPGDQwEKkoNPvORYs47x+4NAA42ujz5arI3AIBsABLrTOJk\ncitB3f0/3/exAiajam3+5oZSrpgbAqV4eUOa3z4dH7CecuyIAH93cy1/c1MV11xWSjBgYFmKsSPy\nzygMrzSZOUn2BAghhDg50ycFBz1Ac7A2p79gwOCvbyhjyjgbs7uJHTXM4qZlpczobpcCtmJKnjYW\nYPJYm6qTOEhTCFGgMwEAV8xR7K7zOdgESqnuAMDHc/s65eGwjX/MV5R0TLYeCTK8NIFxzKCDoRSf\nvamUR/4UZ/chB8eB0bUWVy8IM6Y2txJc806aZJ4ZUq0hmUhjB/ru66Td3rX62tdEIja7Djo89FyC\naLwvkNmyJ8NNSyJcOP342RiWLyrhcKNDR7TvswYCcOX8YmxbRlKEEEKcnNnnhLhwRpi1W5I5j08Y\nZbPskqGdbjpxdIA7/7qK+qMuqbRmwmgb08xtk/5qaRHRhGb3QQfPzx7fOXVCkI8vlU3BQpysgg0C\nlFJ8crnFv/x3Ci/PChjDAO37DK8dWLF0pUyOtFuMrhy4/jAcMrhgZpiRw4OMGW4wZWz+EZBEavDp\nUd2vPE7GJdrZt6lKGQZNbZrn3kznBAAA8RSsXpvm/GmB455KPGNSiC9/oprVa2I0t7uUFBlcPDvC\n+TOkEhVCCHHylFJ89mOVjB8VZce+NK6nGTcywDWXllAcyT973t+uA2n+vCFBR9SnotTgsrlFAwIA\ngOKwyZduLmX7Poe6Rpfh1SZXLayitTV2Nj6WEB9oBRsEAIRsg6XzLZ5d4+L3dLxVNoNPSRgmTAzn\nrYQAnDyBQ1uXx2+fTrHviJfdV2DAlLEZPnlNmHAod560tsoE8p82HDB94tEUnueRiKZ7ZwGUUtgB\ni2AQjrTm3wB1+KjH0VaPEdXH/9WOHxXg03JomBBCiDPEMBQrLi1lxaUn9741byd5aFVnzsbit3en\nuf3aMi6YER7weqUUMyYFmDEp0HtfIcTJK8g9Af0tviDAHdcEuWCazcTRJuNrTZbONfnm7WEmj8k/\nih+2PUZXDOyEr1ydYm+915t5yPVh+wGPR14cuO7n8gtDjKoZ+PWPHm7ytdsijC7PEO9K9QUAhiIY\nDqCUYuJIE3uQ35xpQcCSClEIIcRfHq11Tipq39c8/0ZsQGahWFzz/BtxSVstxFlU0DMBPaaPM5k+\nbuB05dThaTqSBvF033Om0kyqcbCPeXlb1GNPXf48x7vrPDKOJtBvvX04qPjbG4pZ9VqKgw3ZgGL8\nSIsPXRKivNTkCx8vpaHF5eEXUhxpAV8rLBNqqxRJR2FFwoQtjet6OP2OLZ440qSq/MRTr0IIIcS7\n5WB9msf/1M6+ujSGAVPGhfirayrxXKhryD+zfajBoTPqU14qbZoQZ4MEAcdRHtEsmpSkPlZMc7uD\nbcGYCocRZQM7+7G4Jp1/dQ/JjB4QBABUlpl84pqiQe8/otriKx8vYu9hnyOtHr4Pr7wDTV0ACtMC\n0zIxDEU6kWF4lcF1lw2cOu3huppX13fR2eUxbVKYaRMHf60QQghxJrR3uvzsN4056T+bWmPUNzl8\n6fbh2BZ520/bUtgysy3EWSNBwAkUBTWXjIbm5uMfdjKi2qSm3KC5Y+BmgeGVBkXhgRWZ42re3ObR\n2JrNznPBZIMxw3PX+SilmDzGZPIYk/ufcUhlBk6NBoMWC2eZXHNxkGAgf4W5c3+S+/7QzOGj2Zo2\nYLUzZ3oRn79tuFSyQgghzppnXu3Ie8jXgcNp1m+JMWlsgG17Bx5UOWlMgKJIwa9aFuKskX9dZ4ht\nKebPsrGO+UYDNiw8N9B7PkCPeMrn/z3l8vQan417fNZs8/nPJxxWvjz4ib2tXYMc8qUVwyqtQQMA\n39f85rGW3gAAIOPC2nfi/P6Z1iF+QiGEEOLkHR3klF+AhiaHm5aWMGp47pKfsbUWNy0tPdtFE6Kg\nyUzAGbRkXpDisGLDToeuuKai1GD+TJvzzhm4wXj1Bp9DTcccVoZi3Q6fEeVpFs7JzfW/bb9HPOnj\ne5BJZUgnMyjDIFQUIBgMUFU2+Gj+ui1xDtTnDy627U7mfVwIIYQ4E4qLBh9vLI6YjKkN8M9/W8Or\n6xO0dnjUVJosuiAis9RCnGUSBJxhC84NsODcwAlfd+honhyjZM8BeHGjw8Wz+2YPnnzN4Y0tHn53\nzBAIBbACFq7jkYgmKQm4TB1TNui9OqL5NywDpNL5yyGEEEKcCZfNLWHN5hjJY87HKS81WbIwO9of\nsBVXLRh8j1wPX2s2bk9z+KhDWbHBJefL+TZCnCoJAt4jzuCzo3TFfKIJTWmR4uBRj7e29wUAPQzD\nIBAyCARtWtrjrNkJF50DZp4Bl4tmRXj0OYNofGCHf/SIEwcsQgghxKk6Z0KYWz5UxdOvdNDQnG38\nxtQGuHFpBVUV+VNx5xNNePzXHzrZfdChp0l8eX2KL99uU3Hi+EEIcQwJAo6xp87h1U0Zmtt9ImHF\nrEkWNy0tPuP3GVkNTR0DH/c9H1N5vZmEtu7zBw8YNBimQbAoxB+ejXK0s5JrL3IHBAIVZTaLLizh\nmVc76Z9yubLMZMVl5WfmAwkhhBCDWHxxGYvmlrBxWwLbUsyZFhn0MM7BrHwhxq6DuWmEjjS7/Oqx\nFr56a9mAvXdCiOOTIKCfnQcdHliVoCvR99ieQx5pt5OrLjTYsDVOOqOZN7uIYOD09lRfs8Bi6/4M\njtd3Ha01mbTDrAkWoUE2+eZj2SapdIb9TQavbgFbpxlbazJmeN+v99brqqiptNmwLU4i4VFbE2DZ\nolImjZM0oUIIIc6+gG0wf86pDar5vmb3wfx723YfSLO/3mXi6KHPKgghJAjI8fKGTE4AAKCBF9+K\nsfqVGA1HsxXQo891sGRhCWUVYZrafcqLFZfMCQ44B+B4isMGf/shi/tWpemKZ+/jZlzG1yo+urhv\njeO5kwze2Orlnw3ovp3WGsM08TyfN7b5NNansC2YMsbiK5/IXkspxdJFZSxdNPjeASGEEOJUbduX\n4dVNKZrbPIojBrOn2Fw5N3xGRuh9nc1ql4/nQywh+9uEOFkSBPTT0JJ/A20yDfGuvj+3tLs8vKqd\nojIHO5RdU//mOw63Lg8zbsTQv9LRwy3++VMm67dnaGn3qa0Oc95UG6NfhTlmmMmCmT6vv+PhHVPH\n9VSsTsaltCJCIp7piQtwXNi23+V/Huvg1qWy7l8IIcTZ8/buNA88FSPee6SOz55DLp1RzQ2LT3/B\nvmUqRg+z2BYbOBtQW2MxbYK0c0KcLAkC+gkFFTAwF7/WGv+YHrjW2VSdPUFAY5vPE6+k+NLHB5/q\ndD3N06+n2HXIJZWBkdUGV1wQYN7M4KDvAfjQxTaTRxls2OWxdb+P64EyugOAtEMwaBEI2fieTzKe\nW0Fu2ZMitsiiWA5cEUIIcZa8vCHVLwDI0sBbW9NcvSBEccTM+76TsWRBhMNNDl2xvnY6YMHShWUn\nNRMvhMiSIKCfqWMtjjQPHGXwHA83zzyk7+cGBgcaPBrbPGor81d2v1mVZNOuvk1NTW0+B454fOZ6\nxdja4/8qpo41mTrWJJbwuft3LumUB1pTXB7CtrPvNUwDx82dzYgnNR1RX4IAIYQQZ4XWmsaW/Mtx\nuuKarfsc5s86/SBg5qQg/99N5byyPklLh0txxOCimWFWXFFBc3P0tK8vRKGRIKCfaxeFaOvy2bbf\n7V2DX1YEdS3xvK83rdxKzfUgnc5/qu++epete50Bj3fENC9vyHD7NUP7VYSDCu37ZFIOruuRSjqE\nIjYl5dm1/246NwgYXmUybJCgRAghhDhdSinCAciT8A7TgKrSMzcINWlMgEljZOmPEGeCBAH9WJbi\n0x8uYv8Rlz11LuUlBrMnW/yf+1Js35O7Y9gwDYKRUM5jI6sNRg/P3+HeU+fiDHJm19G2wQ/zOtY7\nezJ0tMbxut/i4eNkXHzPp6g0jNdv2ZJScMl5EZkmFUIIcVZNmxCgoTU14PHxIy0mjZGsPUL8JZIg\nII8JIy0mjOz7au768jj+8zckBvNsAAAgAElEQVR17D6QwvOgssKmI2WT9vo6/OEAXHZBANPI3+Eu\njgzeEQ8Hc59zXM26XZqWLogEYO5UKOs+dv2VjaneAKC/VCLDonNN9tsm7V0+ZcWKOefYfHRJKS0t\nsZP5+EIIIcRJuf6KCB1Rn637MmS6J73HjTD5+NIiyd8vxF8oCQKO4Wt456DJ4VYTT0N1ic+SC03+\n5mM1Oa+ra3T58+YMbV0+JRHF/FkBpo4bfLRj3owAL6/P0NiWu25SAbMm9v0aOuM+D78EDW19r9m8\nD1Zc5DN9nMHR1vzrLj1PU1Ou+PBluRuTh1r5ZhzNpr2ajAMzxkNliewhEEIIMTS2pfibG0o4cMRl\nT12G6nKT2ecEMJTiaKvL27sdQkHF/Fknl05bCHH2SBBwjNVbbHY39H0t9W0mR6M+y2ZnR+V7+Non\nFndo6/BpaIaumEcm43PulPyZfixLcdOSEI++mKK+OduRj4Rg7nSbyy7oe8/qTbkBAEA0CS+9DVPH\naIpCio48+59MA2oqTq3j/s4+nz9t1HR0Txj8eQucP9ln6VwlIzhCCCGGbPxIi/HdM+laa373fJy1\nW9Mk09nnV69Ncf3lYc6bevyseEKIs0+CgH4Otyr2Ng5c09/YBpv2Wyyc6nLgSIY/PBfNObrcsAw6\nopq6RpdPXaeYMTH/pqUpY2z+8RMWm3Y6RBOa2VMsKkv77qe1pq4pf9maOmB3vWb6RJv65oHrgSaO\nsph0CqclxpI+z63XRPtteUhl4M3tmmEVcP5kCQKEEEKcvFc3pnl1Qzon8XZzu88jq5NMHR8YsBRW\nCPHukjUf3VwPNh0KUlxsUlpiEAmDZfVVXS1Rg4yj+dXjXTkBAIDv+nieRzwFr25KH/c+pqG4cHqA\nKy4M5gQAvdfKn1yot4wfvizCpDE2dsDEsi0sy6Sq3OJjSyOnNGq/fhc5AUAPrWFn3XEKI4QQQhzH\n1r2ZPCfvQFuXz2ubBm4iFkK8uyQI6PbG3hBH232aGhO0NiexLEUkbOB178K1DHh1fYK2uElpZTFl\nVSUUlUUwjOxXqL1sVdfSPvRMP8dSSjGyKv9zlSUwdYxiw06ne7mQgVIKZRh0JRQvbRjkPPUTSDuD\nd/QTUkcLIYQ4RamBx+70Sg6STlsI8e6RIAA42qF4fWOc3Ts7aWxIUH84zo6t7XR1OYRDinTaZXSV\nx6b9iqLSCIFQADtoEy4KUVpVjGEYaJ2t0IrCp/eVXnZutsPfX9CGi2dkj01/c4uDM/C4AbbsdWjr\nPPkAZOyw/KckA3RETz2gEUIIUdhqq/K3h5YJU8bJamQh3mvyrxB4aaNLW2vukEUm43OkLsbEyWUE\nTJ+KsENH3Byw5MayLcIlIZLRFAqYPeX08iHXVhrcsdTnje3QHoOwDedNhrHDspVpa2f+7ECJFOyu\n85hflrvEKJH0ee71GIk0TB1nM31i7masc0aDZWhcP/dz+Z5PR5dPc4dPTbnEikIIIU7O4nlhdh9y\naWrPbbdmTbaZNu74B36tfSfOaxvjdHR5VJaZXHphMefPiJzN4gpRcCQIAI62ZpfSBEIWppkd1Xcy\n2Ww/ra0pTFOx+7CPp/Ovubcsk5Jik4Xnhbhybijva05GScRg6YX5nysOKzqiA0fubROGVyre2uaw\n57Df/ZjHph2ttLRlP99zr8Psc4L87Y1lmGb2s/haoX0Px9EY3WccaF/jej5oONqmqSk/7Y8khBCi\nwAyvNPnbG4p54a0UR5o8bFtxzjiLFQvDx33f6je7eHhVO+nuWe8D9bBtT4pbr6vgsrklx32vEGLo\nJAgA8DWRkiCW3TeKbgct0kmHRNzBDtrsaghQWp4dIU+lXFynb2Sjoszgyx8tpziS/7Tgodh12GfD\nHuiIQVEIZo2H8ycPHIGfNcnicNPAhZYTR5n8+R2fzXtyl/A4aQvIBgGeDxt3pPnjqzGWX1LMG29n\niCY0lvJxHT1glqMoDGOHS/YGIYQQp2ZEjcXtHyo+8Qu7+b7mxTWx3gCgRyqjefHNGIsuKO4dsBJC\nnB4JAgAzaGP5uR14pRSBkEU6mSGdSVNRXoxp+ti2jW2bxKIZHCfb4b7kXPu0AoAtB3yeehNS/Sq9\nA43Z9J2XnpsbCCxdECSW1Gze5RBNZM8HGD/S5NzJFo+/NnANvxWwsB0LJ9O3cXjTjgzrdsZJZMCy\nDdAKJ+1iBczejc4AM8cblBbJUiAhhBDvjqOtDnWNeTa+AXVHM7R3eVSVS9dFiDNB/iUBgYAJyYGP\nG4ZBIGTjpF0M5eK6EAgYGKZBKGyB9pg5XlFdDvevStPalT3Ma9ZEk4XnDtw/kI/WmrU7cwMAyKYK\n3bgHFkzX2FbfdQylWDw3SFOnItPgo5WiPWnwxvb811dKYdq5QUBDq4vZL2YxLYPisjCm7xIIGhSF\nYNo4k2Xz5a+HEEKId09R2CQcUiRTA5e9hoMGoaAMTAlxpkgvD7CP8y1oHzSKRMIjGfcwTYVpmkTC\nBrdcbhFL+Pz+T07vaYig2d/g0xXXrLi4b5Ow72vW7tTsO+KjyW70XTBD4fnQ3JH/3u0xqGvWTByh\n8DW8vV9xqEWxvwE6YgEMKxs5JNPZ/5SRLW+eT3HMH3ODE8/1iXYkqK4K8/VbA9i2wpCTgoUQQpyi\nLfs9tu7XpB3N8ArFotkGRaETd+BLi02mTQixcfvAkbmpE4KnnYFPCNFHggDAdx0810RrjWn1jeB7\nrkcimsQO2qTSHo7jk0n7hCMmJWEYN9zg/z7RPwDI0ho27HK5/HyTSMjA15rfv+Sz5UBfZ3z7QZ+9\nR+DmxQZBG5J58ilbJpREstdbtc5kZ31P5WdSXJKdwejq7EvmbygDj9woQGuNm8k9Q0DlWU/pe5pk\nymPjXk17DErCmoumKoK2BANCCCGG7rm1Lq++7eN1N0c7Dml2Hfb55DKLsiEsMb3tukpiiWZ2H8w2\njErBOeOC3HZt5dksthAFp+CDgCPNLjt2tNPRla2tDMPACpgEIwFM08RxPAzLJBQO0dGexOuu1cbW\naLTWA1Kf9eiKw57DPrMnG2w7oHMCgB576mHDLhhfC5v2DrzG2GFQU2aw+4hiZ/3AznggaBEKW6SS\n3dmNbEXKzwYNkK04J4ww8VImqYwiEjLYss/NWfffn+P6PLuu7z6b9mo+slAzukZGXoQQQpxYe9Tn\nre19AUCPhlZ4aaPP9YtO3J5UV1j809/Vsm5rgoYmh9HDbS6YGRnSElshxNAVdBDguJr/90hHbwAA\n4Ps+mZSPYZj4tgY0ShlEwhaGoTANmDjc5/JZPkpBKKCIJvIfthXtXtO4t37wkxFf2OgTCBhYZjZ7\nT08HfnQ1rLgo+/OBJgXkr/xs2+wNAsYMUyycFWD7QQ90dl3/5ReV8dq6DrYecPE9CB5O4AxyuPCx\nFWxrF7ywEe5YOmjxhRBCiF5v7/NJpPM/d7g5/6BZPoahmHdu0RkqlRAin4IOAv68IUFdY/4eseu6\nmHYQw1QYJvjaoLI6zKUzPOZP68nCo5gy2qC5I//Jumu2+sybphlk4L37PgrVc+Kwymb7KQ6kGV1h\nUBqx2VvvsXV3hvZOME1FqChAIND3a+sJGoI2zJtuMHOCxcwJVvdzmv9+tJM/b0j2jcoYNobh4fu5\nlbFhQKR44BkHh5uhpdOnukxmA4QQQhyfeZzBelNSewrxF6Wgg4CW9vyddwDf9bO5iLXOHiCGYtwI\nm/nTckf1r1lo8/Y+j1jimAsY0NwJ63Z4zBxvsGGXxs0zCNKT71ip7L18DV2pAM+vTbJ5j0s8BalM\n9jUOkE67lJSFCYVt0Brb9Jg4QjF/hsnsSblpStdtd3h5XerYW2JaBrg+PXFAOKiIlEYwrYFpTj2f\nQWcOhBBCiP4uOMfgz+/4dB3bJgLjayUIEOIvSUEHAdUV2U5vMBxAGYpMysHvGTJXABqUIhDM5s+v\nLh0YNNiWoqrcJJbqe04p1bu0Jp6CiSMN5s/QvLVd4/S7hGEojH7DJkoptNYYpoFlGzS1Z5cc9T8Y\nRfuQiGcIBE3SSQfDVASKQpjWwAhj+4HBeu+KBbPDjKw2sC2YNzPIQy9qDhwd+MraChheIRW3EEKI\nE4uEDBZfaPDcW7nLgiaPUiy+8NTP0xFCnHkFHQRUVAQpq1a9JwWHi33SyQyJrmS2I28YhIsswiET\n388ur8mnpkxR1zRwuYxpwIQR2Q708nkm08f6bD2g2dcArTGFYagB6/AV2U6/ZZu4jk++W7oZj+bG\nKKlEBu37HK1XdMSqKIn4jK3pe50/+EQHaQeunNu3/OeSmZrWLoj2y8oWCsCCGcjpjEIIIYZs3jSL\niSN81u3wybgwpkYxZ7IhbYkQf2EKNghIO5rn13m9AQBkMwOFIkG0r3EdD9PKdsZNO5vvPzPIwPol\n55rsa/DpiOU+Pm2sYtKovuuPqzUYVwvbDsIjr2nybvZV2Udd5zg9eCBcHMAOWsQ6kmjf5+D+dlbZ\nVXz8UpeK7hPaJ4wy2bQ7f6HbYtl9CD1ByORRBrcu9lm7K5vZqDgM50+CscNlL4AQQoiTU11msHz+\nwPZDa9heb3CgySTtQHmRZvY4j6qS/INs/bPdCSHOrIINAtZu92iLDnxcKYUdzHb6i4qDVFQGjz1q\na4CR1Qa3LrF59W2PxlafgK2YNEpx9dz8X++kEdkzANw8/XyFwnE8XMfvLk82r78yFH73pgLTyh5Y\nZpomqlIRbU/gZnxiKc0Tb1l88koXpeCSOQGee8slnsi9kRUwiaYtXt7sc+FURUn34Su1lQbXLTjB\nhxVCCCFO0Zu7TTbtt9Ddg2ANHXC41WDZeQ7DyvpaW9eDI10msYzC14qw5VNd7FMWOlGLLIQYqoIN\nAvIdztXDMBTFpWGCQYtg0CKdyVY6w8sGr3zGDDO4dcnxR80dV2Mo2HJQ4Xr5hzW0r4l2JLEtmDjK\npClq4ZM9wMzzfFzHw7D67mPbJqGwTTrpYJnZEf43d5pcPM3DMhXDhoVoOJrBdX1QYFsmgZCFUorn\n13m8vgWmj1V8eJElmRuEEEKcNfEU7KjvCwB6RFMGmw6YLJ2TnbnWGg60W8QyfW1dNGOS6DCYUOFS\nHJRAQIgzoWCDgMmjFK9szj8abwcsikuDeJ7GcTwScY/qMsXYKpfB8vUfz646j5c3Ohxp8bFMKC0y\n8Twb0xwYNISDmvPPz6b5XP22iVZ9dzRNA9M0sG1FOtMzU6AIhQN4nk9JiUU6ozjQAheT/WAjqy3a\n88x4aK3RGmJJWLtTE7A9PnRxwf51EEIIcZbtPWqSzORvQ1uife1hV0oRy/M6z1e0xA2Kg8dfLiuE\nGJqCXfA9qsakpMTGDpqY/TL0GIaitDxIIGBhWQb1dVEyGY8jzS4P/AkOHD25EYj6Zo/fPJVg844E\nLS0pWjs9Dh31SMZTA3L1A0wba3DtJUHiGZOGtvzXtG2DSROKKCvLdto9z6esIoJpKiJhRTQFv/6T\nwR/XKmZPsSk6Jv2/1rr35OMeO+t8PF9GV4QQQpwdIXvwNsYy+p5LOIMfkJkZZBZdCHHyCnLod18j\nPL0WHN8kGDTRAY3vabTvEykOYFlGNoe+Uihl4Lk+lm3SmdC88jaMv3po99Fa8z+PdXH0aF+etHQy\nQzASJBQJEu2IU1pR3Ls5d3gFXDorOxXaGjeZON7CMCAW8zja7PZukHJdjR0wGV4TAlI0JR2S8QxN\nzQbDasJoFA3t2f/2HvGorjQpSmlSKZ/2qI/WmmPjj1gSMg6Eg6f//QohhBAAR1p9Gls1E0YoJtXC\nhv0ebbGBqUJHVvY1SrY5tGBBCHF6Ci4I8H340yboiOfm5zcthWVZ2LbZmwrUdbMdZjfTl0XocCtE\nExrTyJ6yGwoMPiqxdkuKuiMDz09PJ9LYAQutNUVGknGjI1SXwbyp2U74jqMBHNtmWHX22tWVNuVl\nLjv3pNAaAoHsBI5hGlSWB4l2OXS1J+lsS1FWFsLrN1OaciDZkX19JGgQcTJE4wPLWlECwcDJfZdC\nCCFEPrGEzx9edtnboHHdbNs2fZzBvOnwxk5FZ7JnIYIGz2P3wQy2r5g3XVEZgZa4T8o9drGCpiKc\n59RNIcQpKbggYMdhaOrI33HPLs8xu3/WpJLZw8O0YfSOwmuteeA5l6NtPqYBY4crls+3GV45cGXV\nxu0DT+vtkYylCEYC+K7LRy/te7wjYVDfaXPsVGh5mcWI4TaNTU7vMiDoy+FvmApPa3zPJx7Pv14y\nkVZEIhbRuJPzuKHgvMkGhuRgE0IIcQY88orLzrq+UftkGjbs8gkHHD62EF7eavDOfognPDLde9wO\nNGg64rDsIsWYcpcjnRbx7qVBtuFTVeRTEZGZACHOlIILAhKD98t7O/q+n11n72Q8lKFw0hn8iJ3N\n0OP6HGzsG4nYflDTHnX4/A0BAnZuJ/pI82An9oLnefiuj3PMSEdTfGDmhB5lpSZamRQV2X1lRpOM\nOyjDoKjEJhZzsGyrt1I9VsoxmD/dYH+jTzwJ5cXZAOCScwvur4IQQoizoKXTZ++R/J31nXU+1yzQ\nNDQ5tHfkPqeBTXs1i2b5FIUNJle7xDMK14eSYHYGXghx5hRcz2/6WPjzNk08NbCjrVR2BgAgk3bR\nvo9lG8SSDqaVpqw8QDQxcJS9sU3z5laPy87Lfp1aa576c4KOuMIKWKCzswx+92ZcrTWqu6M/subY\nX8HgoxzhsIV3bGq1qJM9R8DXaE/T0Z6kqqZ40GsoBZfOsbjukuwUrW0x4NRiIYQQ4lS1delBD9dM\npMHxoKkj//PxFPzyiQwfWWQzcZQp6UCFOIsKLq4uCsGcCWCogRWLaWaX/biOh+t42EGLjuYYvq/x\nXJ+wctBe/gqpLdo38v70a0mefi2F6yuUyh70ZVomRr9hDKWyJyouvqhvJ25ju2LPYUVdg8/hoz5t\nHX7v/gQA55hK1XV96g9HsYMmyjCIRzPEo2kS3ct9smlAc8s7sgoqisFQioCtJAAQQghxRo2uUZQU\n5X+uqkQRsCBo539ea019s8tDz6c40OCRcSQIEOJsKbiZAIAr50BlCew8rElmwPcVnTGfWMLD9XxS\niQzptEs6kT1RTHWvu/e1ZrC0ZaVF2Q6+72s27hi4GRjAMAw8x8M04IJZET58WYTa6uyvoLFT8cKW\nIIl+h6NkMuB4muFVoNCknb7nXNenqTGBFbDx/ey8gutmDxOL2B4zJyr2Nii6En3lLYtoFs3Qcvy6\nEEKIsyYSMpg9weC1LbnLUi0TLpxqoJTCMjyUMrEsI5uAw8129n3Px0k6tOsA//m4Q02VzdTRsGK+\nIQdaCnGGFWQQADBnYva/LM2WvQ73PtyV97U9h3pNGGEQT+sB+wqqy2DBDIP12zPsOuTSkv8yKEMx\neVyAGxYXc8743FycWw5ZOQFAj2RSM6o4wzm1Lg+8bJLxLTxPE406ZByfQCB7mnA07eA6HkqBh8Gy\nCyCZ1uxoCHCkOU3A1GQyHpt3Q0MLXDTNxDKlQhVCCHHmLZlrsn13nLrGDK4LxcUml1wYYf6MIL6G\n9rhJUXEAw1DdZ9doEvEMmZSLYZq4jotpGXTG4a2d4GufDy8cmFpUCHHqCjYIONb0CTaVFTZt7cdk\nzjEN7KBNRQksX2AzcZTPK5s9jrTo3uxASy60+M3TSbbv79kvYGLZBr7n5xwIFrA0E4d5VJcP7Hx3\nJvKvzPK1Ip0B0wDfyXDkqIPvZ0fzTcvAsrJLeiw7O5oSigR7R0vCQVh6UYBX1iV44jWPzn6pQTfu\n1tx2tUlZUcGtCBNCCHGGeR5sPZhd8z95pObBP3aw+0Cm9/mODp/X1kWZM8Wkri2IHeobCFNKYVmK\nUNgiEU13z2x7vXv0AHbWZQe2wkEZvBLiTJEgAHBczdE2n6vmh3j2DUUi4aE1GJaBZZlUlBh8+NIA\nrgfVZYrPXm/T1qmxLEVNucFTr6X6BQBZSikM08gJAjpa4zz4SCtPvXCUZVdUc8tHRvY+FxhkfSRA\nOKBpj/ocadK4/dZHeq6Hb2uCIQvDMLCDFqGwTXGob9mS72teWJ8bAAAcbtY895bHX10pQYAQQohT\nt78Rnlmnae3KtjsvbARlVDJldvawzXhXiqb6Dlo7ff70ZgK7LJT3OrZtEgiZxDIOSqmcPW3RJLRF\nNaMkCBDijCnoIEBrzfNrXTbv8WjtglAAxo0MEgloosns9OSUsSbXXl7O/Y938IcXHVIZqCqF886x\nuPqi7Ne3rz5/Xn6lFIZh4DoOyViCzqY2ADq7XB5d1ci40WEWzq0AYGyVR0O7wbF7DiqKfKbUejzx\nuiaVOfYO4Do+ppVNZWpZ2fJksxBlO/fb9jk0tOb//AePZjcOy+ZgIYQQp8L14PHXfY62ZJekAli2\nSThi42QUkUiAUCiAHbQ4vLeFzTszTJ7ukS8vSU+b6bs+hqF6z8EBKAlDLOayanuGsmKD+eeGsSxp\nu4Q4HQUdBLz6tseLG73e8wFSmWzHeOoYxRdv6hupuP/JKFv2943ot3bB6nUu2/elqSrRtHd6aJ0/\n005tucv6t+rRfm6GA8eFN9Z19AYBs8e6RJOKvUct0q4CNFXFmkvOSWMY0NA2eIYEz9XZDES2wvPA\n9frKmnaP8z4/m5BUqlEhhBCnYuMen/qGVG8AAH0Z9krKgoSCAVJpTUlpmHBRgGTK5Uh9nPJhZQPa\nTM/ziXUmegOAcHEQ3d2c+W6Gnz3QQbp7xe7zr8e55ZpSpk7I3V8nhBi6gg4C3tnXFwD0t++I5s0t\nDnvrPRrbfI626ezyIKNv5EIDh45qduzJ7hJWpsIO2DmVmmlCSTA9IADokUj1VZpKwaJpDnPGuuxv\nMSgKwIThHj0DIdZxVu2YZncGI626X9tXhtmTA1SVZgOXY42uUXJKsBBCiFO2cWcmJwDo4ToeqYRD\nUVG2jUmloagkhOsmicU9ipIpApFwznsSsTS+p1EGREpCmKZBIOBTZDq8vSX3YIH6Jpf/faaLb/9d\n9dn7cEJ8wBX0gvBoIn/n3PHgydcybNzl0dCi8f3sacL91/dDX+pQAO1pPDe3IvQ8iHklg95/9IiB\n6yJLIprZYz0m1fYFAAATavN31pUBwZCNaSpCYZNwxCKe8vG6Aw/bUlxyrjEgJ3NlKVxxnmRaEEII\nceoGO50espt7K4o1kUi2q1E9rAjLzo49jq92mTzCp7JYY+CTiKdJJjKEi4OUV5cQKsqO8F822yDW\nEct7/cONLmu3JM/wJxKicBT0TEBFkaIjmi8Q0KTzrL/Xmpw19P4xI/za09Cvs60MRXOXYsq0Gg7W\nRUGDk0yjtWbMyBDXLxs25LJecb7BvkaPuqZ+11cQClnZA8mUoqUxSihikwla3P9Mhk9fk61EF8yw\nGFbus2G3TyKlqSxRLJxlUFla0DGgEEKI01Rdpth7OP9ztqmoKFV0JsC0oKwkwCGVbUvPGWsyd3o2\ngHj8Dc3mfQbFZZGc95uG5q0tGTrSAQJhyCSdAfeIxgcPQoQQx1fQQcD5U03qml2OGcBHMfg6+p4g\nQGuN7x5T+ajc2YEeSR0mXJx9baQkzOgaxec/UUtleWDIZbVMxV9dbvJ/n1GkMxoUBAJm7xkG2c3A\nikQsQ1FRgJ0HMrRFbWpqsu+fONJg4kjp9AshhDhz5kyxWLvNJd+q12lTQr1LWYsiFpYNtp19YFil\nSTLtc6ARpo2GhjZFU/8VP1oTj7l0ZHxQFuFiE8MwScX7DuqJhBSzp+bPNCSEOLGCDgLmTbdwXVi3\n06OlQxMJZTvL2/Z5OAMHHHIoUxEMB0inMvTEDIaZv5Pten21o8agNabw9ckvxakoUUwZbbC3Mc+h\nYolsgQ3DoPVoFDMY4MnXPKZOHPBSIYQQ4oyYPt7msvN9/rw50zugphRMnhBi+jkRsk2kwrYNPM8j\nnXZBKVa+6oMy6Upkz8EZXa05fzIk04rDTR5NrQ5ev8QWSikCIZt0sm+f3dxZIYZXFXQ3RojTUvD/\nehaea7Fglkk8mU0RaluK36R9Nu8ZuNEpWwlZvT/7vk9VbRntTV2MHmbSGjPxjhkN0b4mk8xdW5RI\nal5dH+XmaypPurxLL/B56i040JTt8HuuTyqZobMt0fsa19cYWrP3iE9Diyu/ZCGEEGfN9ZcFGTU6\nyKZdLmgYPzZEeZmF1tCVMNA6O3CVSrp43TPoh4+kKK0oArKZ6g42ZZcJ3bEM7vnf3ACgh2Ea1FQH\nKY/4zJ4S5OqFRe/ehxTiA0j6h4ChFCXdSxG1hgtn/f/s3XmMZMd94PlvRLwr77qrurv6Yl88xEsU\nKZEUrVuibMuybHg8NmyPbQwMrBfCLLAL24vFYoHB/GN4F2vYwIwxM4Zn1iNjNLZnLMuSrNOSKIki\nJd5Uk+y7u/qouyrvfEdE7B8vK6uqq4rdzUMS1fEBCDYzqzJfZTUjXkT8jiI9aVlaNSwvdgcdev1A\nbar+k9c0Ftxz9wi/9RHBP3434ZtPJ2wslJClKTrLtrxnku4ccvRqSiH8s0cM/+ufNAlCj7ibofXW\nmEiTabQR/Ncvd/i1D+5cASjTliePpyyuGsaGJA/c7uMpVzHIcRzHuX73HYSJkZDFliLRkm4MjbZk\nuZUvAKy1XJ5ZL1OXJlvnxZkFOHXJEnh5mezt/MIHy9x37FW6azqOc93cImCDJIOvvxwxW1eEZcHu\nMkxPF5m50KLV1ltqGq91BU6Mh7WGkSGfQlkg4nwVEAQKiLBG025srmBweP/rq23sk9Fpbb35tybP\nVUiNJU0yzs8pGm1FdZsNk9klzae+2OXi/Ppg+90XUn79oxHjw65ykOM4jnN9hIB9Q5rpqubbJ0PO\nLSnWChBaa1mab7O0sH5ibU3e9V5563ONBRabcHhaMjO/dX6bHBHcc9jdtjjOG8Vlim7w9PmA2brH\nxvZZBsWuPeUdu+oqJUk1xKnl6RMWIRWFQkChEKBUnrhbGSpv+p67jka8667Xd4z5f/5OFXtVyVJr\nLVma5ddqwWhLt2d44dFyE6cAACAASURBVNz2r/H3j8WbFgAAM/OGz3wzfl3X5jiO49xc0szy2HMp\nn388QSUt3nWox/6RlKX5FqdeXuTUK1e1rheQxJvDbn0PDkzAhx/wufMWxcY0u7Ga4GMP5+WwHcd5\nY1zXkrrX6/GzP/uz/O7v/i4PPvggv/d7v4fWmvHxcf7oj/6IILj+Kjc/zubq2+9+SyUplT3arc3H\nl2shQpWCpd62LG7TkAugUPQ5vD9ESTh6IOJj76ttaof+WpQixXve7vGV7/YGCck60+sNzQQYrWk3\nu9TbEtj8szXbhjOXt+Y9AJy5rGl1DeWCWyM6jnNjbpb5wll3aUHz6a+mzG3obL9nTPMrHw747vfa\nLC9uzosLQo9qrUDvqkXAkT2wazSfd37joyGnL2pOXdKUCoIHbvMIfLcAcJw30nXd5f27f/fvqNVq\nAPzJn/wJv/qrv8pf/dVfsX//fv7mb/7mTb3AH6ZtQuv7BMXC5ptoISEs5DX6J4cspQj8HSJoykXJ\n7/3LSf7335niFz889IYNZKWCHOz65/kJ679OIQRxLyVLMuYXtpY6ijN2rICUpDs/5ziO82pulvnC\nWff5xzcvAAAuLVo+/52U4dEyU9MjVIeKVGoRIxP5fxcrBUZqknIEo1V44Bh84uHNc+OhacVH3hnw\n7rt8twBwnDfBNRcBp0+f5tSpU7z3ve8F4IknnuADH/gAAO973/t4/PHH39QL/GEaKW2/CihHMD5k\nKZZ8glARRh6lcojvewgst+2FobJk/9T2r3tgkn6i0xtrdDigPFxiaKLK8ESV2liFsJjvsq31D7DW\nslTf+nONVAV7xrf/9QsB7Z5rwOI4zo25meYLJ7fSMJy7sn0S7/lZgybvZl+pRQyNlpiYqlAseSgl\neOjOkP/lFwX/888JPvqAdEUpHOeH7JqLgD/8wz/kD/7gDwb/3e12B8e5o6OjLCwsvHlX90N2x3RC\nKdx8PCmF5a4D8La9lsCXhJFPEHqDHIHpMcst/Zv/n3mnYN/Exu+FW3bBR9/5+ga2Rsswu5ihN3Rj\nsdby1ClJVAhQKj8R8AOPUrWIH3mI/mAqhKSwTQ6yFIJj+7ePBjMIvv3C9qFCjuM4O7mZ5gsnF6d2\nS8PNNWkGcwsZzWZKkhi6nYzF+Q6ddkIQSpablnrrxirlGWP5/Le7/N9/2eBf/4c6f/a3TZ55qXPt\nb3QcZ4tXzQn4u7/7O+655x727t277fPWXv//vOPjlRu7sh+B8XGYGLM8fRpW2xD6cGyP4NZpAVQQ\nfsL3XtIs1C2eglrB8p67PSYmosH3/95By3MnU+ZWDHsnFLcd8HZMKr6W+eWUv/gfSxw/1aPTs+zb\n5fPBByt89JEaz59KuLK8deCTUhAVQlqNDp6flzS9744S4+N5cvLJixkX5g27RgTVqkCqFGss1uYn\nAELmYUUrLfFj8Tv7cbiG18pd+4/GW/na38putvliJzfbtY+OWvbvWuH8la0lP6USmP7cAgzmwlYz\nxfMVz522PH/asn+X5KcfjLjtwLVLf/77v17in7633jV4cdVwYXaJ3/3lUe69rXjD1//j4mb7e/Pj\n4q187W+EV10EfP3rX2dmZoavf/3rzM7OEgQBxWKRXq9HFEXMzc0xMTHxai8xsLDQfEMu+Ifh3umr\nH6mwsNDkzmkYjTSf/lrK5VnNZWM5dQaO7VP82qMRfj/kZ89w/g+kLC6+tmsw1vL//mWd0xfXB9YL\nV1L+y2eXwaR0Mh9rwRiTT679vAAh87KlVlvwLe9+e4n7jxkuXGzyme/CuTnQRiCEpRxaRsbLeFKQ\nxBmNZjwozayk+ZH/zsbHKz/ya3it3LX/aLzVr/2t7GadLzZ6q//9e63X/s7bBPPL0N1QWE4p0Ei8\nbTbBpMwbh1lrMFZw5pLm//tCm996VDBc3jlAYWFV88Tz7S2PtzqWf/jGKtNjb80T7Jv1782P2lv9\n2t8Ir7oI+OM//uPBn//0T/+UPXv28Mwzz/DFL36Rj3/843zpS1/ikUceeUMu5MedsXBh2eOfnoGV\nVobph+akGbx4RvPZb8X8wnujN+z9nnsl4czF7ZqMwZMv9Hj/gz5GazZWCc0XAxajTb+tumD3ZIgU\nhi89A6eviA1fK2j2BFKCHypKlYBSNWTuchNrLW876PoEOI5z/dx8cfO671aPobLgWy9knLlkSY1A\neXKQm7adLNOkmR3kATTa8ORL8JH74fQlzYU5y2hVcMctEtWvpvfSmZTODhWs55ddHpvj3Kgb7rrx\nyU9+kt///d/n05/+NLt37+bnf/7n34zr+rEyuwpfOV6k3lWUhuG2aonVlZjTJ1dZO+E+MaOx1m4J\n/Vltar7xVI9mxzBclbz3vohS4do32HNL2Q79EqHeMuwdt9jtxjzLoC275ymWm5bvnIkwoeToIWi2\nNLPzyeC6jQFrNPW6xvMEI2NFSLrcfdiVB3Uc5/W5GeeLm9WhacX3T4Lw4VpFYPNTbEsQSMbGiySJ\nodmIqbct/+nzMScv2kG1Pt8T7Jn0efsRyeiQ7IetynzDa0OeXDFyScWOc6OuexHwyU9+cvDnv/iL\nv3hTLubHkbXw2HGod9dv3JWSjI4ViOOMmfMtAHqxxZj8CHTNy+cSPvWFNssbqvM8dTzhN3+uzL6p\nV4993D3hIQRsF0Y7XFU8c9KiTb7jb6xFkCcBS5WHBAkp8HyPF85klBckE2MBpZJHoaDwfcGFi+vb\nKbVagNfW9GKDkIJO5vPF78Mn3v3aPjPHcW5uN+t8cTNLtWXmOvK+rc1z0Ky2jI0X8X2F7ysCX3Ly\nUpteotAmQ0jA5k3Izl9OWGpFHNmtGBopkJn13jhxJ0Frw+23XDufwHGczdx27zVcXlXM17d/rlZb\nL7szOSI3dTK01vK5xzqbFgAAc8uGz36ze833vfNwwOG9Wwe1MIB33RXSaBt0ZvKdEMsgP0BnBgSE\nxQAvUCSpYHk55dSZNssrecOWasUjCvNr9TxBoeARhpK4m6H72y9nZyHTN1a1wXEcx7lJ2e03rdae\nNMb0u9xbglAwMVUkitb3If1AUaoWKFdCqsMFfF+BEIQFD2Msaao5cVGgbV7wQoh8o6tYDvmp+0o8\n+uAbF47rODcLtwi4hm6680ck+zf9hRAeunPzDfvckubsDh15j59J+d7xZNvn1ggh+O2fL/P22wIq\nJYHvwf4pj1/6YIl7joUsN7aPf7TWgsnDkpQnSdOMpJeSZbCwmNJoaoyxVKv54Fup5NWLfF+CsGht\n8HyVNwzbmpLgOI7jOFv4nmD36PbP9e/92T0Kdx8LmdpVIYq2bnJ5Xj7fKiUplEIgP+UOQo9eJ8n/\n66qoH6EU+/cWkdKFAznOjbrhnICbze6hjJdmobvNPbvJNHccVDz4Np/bDm7+KM2r7orAf/tqj04M\n77l3c/TkCy81+daTy3R7hgN7C/z6T09ggDixVMsS2c85WKzv/OLa5KcBaZwhhKC50qYyVMTzBL4v\n6CUQ9zSVimKoFqxfr7EkGZRKgjSG77xoeN/b19/TcRzHcXbyU3cJFuqW1db6Y3ZD7P7MAiw1E0Yn\nw21v2j1PDMJgpRSEkU+aaoJA0euYfE7dZuprtFxSsOO8Fm4RcA3FwHJkNzx/Lq+2sybyDO+5zzBZ\nLWz7fbvGFJ5i5yYqqeW7L2Y8fJc/qI7wt5+b5a8/e4U4yUe5x55Y4clnVvk//tUhhir5rom1lpfO\nZSyuaozO6/pv7UMg8gpBNt/ZV75Hp51QrkYkab5jkySWJEuxI3lIU6ed4YceNtZIKcg0PPYipMby\n6P1uEeA4juO8ur0Tkt/4sOHJlyw/OGdZbdktm2GdnqXY7lGqbJ07PU9SrQbU6/mumxAiD1ewebhQ\nXhHPIOXmE/qJEQm4hYDj3CgXDnQd3n0r3D0dM17OGCpopodTHrylx2RVs1CHLz0Nf/e44KvPQr1f\nwlgIwUht549XSMHCquXCbD5wLa8mfPbL84MFwJpXTnf49N/PAnmC1H/8+y5//vc92p18dyXPC9g8\n+AmRv7/nKaQQKCUxmSYIBCAwBipVj147JY01q/WEdkejpMBai9xQ1u34OUucutwAx3EcZ2fWWk7O\nZJyeyXjkTsFodefT8ImyJvA2PylEvvsfBJIoyuegLNMEkUeWZiglWFls0270aDW6ZFker7p7FB65\nx+UDOM5r4U4CroMQcGwq5dhUuunxVy7BF58SdOK1nXLBiUuWjz1gmR6HB++K+MzXt+vqK5FS4iko\n9zdDvvH4CvXG9kH4J87kK4vPfyfm+NmtRwtGW4RYL09qLYMKQaafHyCVZGwsHyiNhTgxGG0xVlOv\n5+8rFHi+wuj1RUWjA/Mrlr0T7jTAcRzH2WpmLuNvv9bj/BWNsTBUFlQrCmv9bU6q4fAey3JsuLic\nl9Nb27hao5QgSTK6rYTUE8Rxitkw9Vlj6XUS7n+b4tF3eoNGnY7j3Bh3EvAaWQuPv7RxAZCrdwTf\nfjl/7EPvjPjAAwUCXwyqGUgl8cM8GffALsnESH8QfJX3WhsbT13cuRui7cdc2n6zMN+XYAVGW6y1\nlCt+Xm2h/zXNZkaS5XkGAGEoMamhWPTotNcXO4UAht/ajUwdx3GcN1i7B197Dv76MfjLr1guLuYb\nTACrLcvMbIYntm5sTY/BfUclhcAipUBuE9IadzMay/kGWpZZsFtnSGtguKgZrbrbGMd5rdz/Pa/R\nfB1mV7Z/7soS9NJ8Z+MX3l/kD36zwvSUTxD6hFGAlJLpccHHH1lPCn7PQ8MMVbc/mDl2SwmA5FWq\n9Vjym3+d6rzmcuizMYOqWI5YXOyRZYZuN2N4yGdsrEBmBIWiwlpLWAiwFvSG0qCHdkO54P6aOI7j\nOLnlJvyXr+UbYScuCawKqI2WKZTW5zRroRIZjk4LShHUSnDnLYJf+aBCScHhyQxfbY0XiuOMuSut\nzaFEOxSn2KkCn+M418eFA71Gov/PdiGP4qoqZpOjPr//G3njriuLhpGK5O23eoNW6ADDtYCf+8gk\nf/3ZK3R76+E4tx0p8csf3wXAnjG5Y2t0IQRSSoLIw/e9/CKMQQhBuRZhrKTZzOj1NOWKolzyWFqM\nSdO8z4Dn5X8VklhjLURBvgD42IPumNVxHMdZ99gPYLGxeW6QUlAsh3kpz7WJ0Vh+4yMeaWaRkk1z\n3p4Rw/23JBy/5LHaUYCl006Zu9La1An41eQJwY7jvFZuEfAajdfyhKRLS1uf2z0K4VUlkIUQ3HXI\n565DO7/mJz46ye1HS3zjO8t0Y8Mt+4p85H1jBH4+0L3vvoDzs5rlxvoAKYBCyadSDel2EtrtLM83\n8CRCSWojxU3vkaYWKQSLCzFKClotQ6eTUSoFeQxmN6MQwG8+ClPDCsdxHMfZaHabeQ9AeYqwENDr\n5NV9OokkzeyOMfu37s44MpUxV5esNjSf+kKHON3mC7fJMJYSPv6ISwh2nNfDLQJeIyHg3bdbvvAU\nNDrrA9xo2fJTd1gyDT84nzfcun0fFK9zrDp2qMyxQ+VNj2ltefZURqcHv/yhkKdfzlhYMWgr6dqQ\n0fESQgisLdJqxFw4t0K5WiAIt//1riynJImmWvVYXs1o1XssXKqTpilSSuxohW5XwvBr/ngcx3Gc\nn1Di1TbgN9ywdzKPf3zS8LGHdt5QUhJ2Dxt2DwvefbfHN5/NNjWqnJ5QXJwHsyEeVsj8hPvF85K3\nH3k9P4nj3NzcIuAG9VJBkkE5shycgl9/v+WpU5Z2D2pFuO8wnJ2D//EdWG7li4PvvGR5+2F49x03\n/n4vnc/43HdS5pbzgbVUgPtv9fjEeyP+89cjSmp9cBVCUKlFTEyVWZxvEUbVbV8zzQy+L+j0bH/x\nYPthTYIs09RXm/zlV2v8wrstbzvowoEcx3GcddNjsFDf+niWanrdFCkFXuChlOD5M4Z33g4TQ9c+\nWf7ogyFH93k8dzIj03DLbsmlFY+WFhhjiHspQgqiKM89uLCAWwQ4zuvgFgHX6QcXJN8/49FLQCrJ\n1CgcmdRIYZkaExwcSwn9vCPiPz4lSLVAKTDG0uoJvnPcMl6DY9PX/55xYvnMN1OWNoT/tLvwzWcz\neloh1PaDarEcoi+3yJIMY/KkYT/wUEpirSVLNWkKQSCw1tDrpIPKRdZaslhjgM89mZdyiwK3EHAc\nx3Fy73kbzK9aLi2tzw3GGNIkIyoGg2o/Whs6PcmffSbj0QcsD9x27VuOQ3sUh/asz21zT+T/llJS\nKIabvnabpsOO49wAtwi4Dv/0TMZXnvNQKt9tz2LDqbZlblkwMhQSp3D8ss/0UMITL1kM+QIAQEpL\nlhkyI3hpxm67CEgzy+yyoVoU1Mrr56xP/GDzAmCNsXD2UkZtYvvrzQdGSxxn6CxvtR53U/zQw/O9\nwWltEmfE3WTwfWtlTK2xtBtdvOEyT520PPwaTjAcx3Gcn0ylAvza++HZ05aZRcvpi4aVVgZCDMJQ\nszQvMmGMoRsLvva05q5D6oY3lY5Ow3Nn1suPrhHA4T1v0A/kODcptwi4hl4CT54wjI/6BKFAAElq\naLYMq6sp2JTJCZ9mW3JqIcSQsLFmkOh37I17Kb1kayDll7+X8NQrmqW6JQzgyB7JJ94TUC1JOvHO\n16WEJcs0nrf1NKDbSfsNv/KGYVbnrduTXoa1FqXW+wUkccpaLSOxoaxRa7VLbbhML9ny8o7jOM5N\nzlNQ8A2vnNO0ewIp+3ORAOUJlK9I+xtRQkK9Dd9/OePhO70NjS37gag7lAAFOLwb7jsCT5+CtT6W\nSlqmRy0LyzATwfj4m/qjOs5PLLcIuIaXLwqKJS9vvtUXBgqvJkliTbOZsWtSEfqSOBUUC4p6urmg\nv5R5QdHlhmFja4ZvP5/yle9lgx2OOIEXzxriNOF3Ph5xYJdCimzLDgjA9ITg0moPWSn2Xz/X7aYs\nzrUZ3NhfVchUZ3ZwSiGEQEjIEo3y8l4B1lisNQgpsVimx17Pp+c4juP8JHrqpR6f/nJMN85LUfuB\nR6EUIsibVHq+xAsUOlsva/21pw2PH0+ZGMrnnqWGxJLnGLz/XsFYbetGmRDwkXfArfvg5RlodQwX\n5g2nrwjOXBF84znDU6da/Ow7LZ5y8UGOcyPcIuAamqm/aQGwRilBpayYm89oti1RCKQ772hIBZdm\nY1rdiHIh/5rnTultb/DPXDacuaQ5tk9ybL/kpXObewOMVOCRuzySVPMX/1inVA2RUhL3MhbnmnS7\nCaVyAcjzATa5qtRaVIxoxm2M1ijPQypJGqcUqwHVYn4U6ziO4zhrnjsR86kvdEj65TwtlribYIyh\nXC1iTd7FXimJ8gSmP4V1k7yR5kozn4ekMkgpWW3lOQa//VFDMdw632YGVuIAWfIoRXCoalluQJJA\nu53x4rmEgm/4yP2urLXj3AjXaeMaSoWddxbWInGkEoN76yzb2sxLSlBKEceGVy4LLi5L2rGg2dm+\nIYo2cHkp31359Y+E/NQ9HtPjgolhwT1HFL/+aMjUqGLflMf/9sseftxg5swSly+sksSaYqkw2NnP\n4zI3vI8QGGMHjylPIZUkLAYEYd5oTABRIRycYDiO4zjOmm8/Fw8WABulcUaWrXfxtcYONsbWQmM3\n2jg1za/Cd49vfU1t4J9eKXJh2aPeBm0FYSiZGJGM1Cy1Wt4n5+QVN1c5zo1yJwHXUA6379ALsHeo\nyeqywpOSNDOEytKLN3+9EBCGalDF4JWFIqdXJFjDxG7FUqOxpQ+K78H+Sdn/s+BnH/J5+bzgwqyh\nWhJMbeiSWCpI/tWvVOjGhn/732PmVvJBV2uNTjRZpgkLfv4eIl+wQD74WmuRUhBGPr1OQqlSQCmJ\n9BRRKaTRETxxAt517Pq6NzqO4zg/+RZWdp4XsyTD9/t5Z6zPM1Lm85YQ67kAV09+S82tc83XTxS4\nuGiJ+zlyUlpKBcFoDapFQatjKBQk3bYP6C3f7zjOztwi4BpuGU+ZWVKs9ja3APaVZvdoxrDf4lS7\nytFdPdptxWLdI03NoO15EEiklKSpJoxUP5HX4nmSQjli7z7LhfPNTa99ZFqydzIfROPU8p8/3+Pk\nhfXQoW89l/FLHwg5sGv96FNJQaeV0Gub/iC7/npGGyanh2is9gbHshtZ29+xkfngHBYCfF8hJTx9\nWnHHvoxK4fV/lo7jOM5bX7kgWFjZ/rmo4A+aifkePHDvMHFsWFhMmLm0udKEvKrGZ5oJ5lYFEzWL\nEGAMXJjP8+XWGAPNtkVJwUhVUAwtxkrCUOIWAY5zY1w40DV4Eu6cWqFWSFDSoIShEqUcGO3ghwHV\nqkfgGQqBZayqEQKCQBFFHlHkDXY/0lhz4MBa8648RtL3YGQkYO+EIvRhqAzvuFXxqx9ar4X82W/F\nvHJ+c+7A7LLhM9/sbQrzWa5rFlbzO/yrTxbSRKOUpDa89U7eWEuvEwMWa8APPKyxmH48ZzcRHJ9x\nf00cx3Gc3J1Hgm0fj4o+I+MlwijfXywVPYJAUql4HDxQ4MD+cFCYQik4erRMpZw/ICUsdEL++xMB\nn3nSZ7EhuLAkNy0ANur0LAhIsrwfgedJ6h0XEuQ4N8KdBFwHzxccnuygDVgr8NSGajvSp1bM6yNP\nDRnGK4aF5tXJSZZKRVEbWr+5T1JLIRIgJYcPRuzeZakW4YFjEG4YX09f3H5nY2bOcnJGc3Rf/ius\nliWV4vZ5BsqTSCVQngRhMdoOFidxJ84TuDyJlIKJXWUunUuJIoXvy/zkwEUDOY7jOH0femfEworh\nyePpoPpPoegzvmcIqSRB6GF0wq5Jj9n5jGbHsH+3x+6pCOlJrlzuMTFRoFIJKESKl0+0KBR8fF9h\ngcuriq+9KDi6e+edfW3AE4ZM56cDvhJ87QeK99+hqRXdpOU418MtAq5DEIWQGvKcps2DS2p8xqsZ\nSliKAYwPW1a6oHW+I68UhIHA9yOszeP1rbV4niVNQWeG52fWE3BPX7H8zAOWfeP9Ov7bJF+tXUVj\nww1/MZIcO+Dx/eNbv0Gq9XhMKQRpprESjNF0W3mgpRCCciXA9z1GxysUiwHGWAJPc9veneM/Hcdx\nnJuLEIK776gwG0s6rQQ/kBRK65tcYajYNVGiUlGUQs3zJyyvnEnZP+1RKvrcflvAWsxQGCr27yvR\nbG+eWxebgluMRQqLsVt3+H0FK3WD7yvCfg+f5Qa8eFHx8NFsy9c7jrOVi/O4DuNDRbbdDrcW6SmE\nyP/84jmYrwtKRUmlLKhWBOWS3FRi1Nq8cZfJ8pdcXU1YWWqxNN+ivtphpWn5zvH1agq7xrb/FQ2V\n4Y6Dm9dwB/eWCCN/UNBHCAgLPuVqkYUrTdJUE8f54GiModvuISR4vspv+PtHuFEpP4qQUnBwKj+h\ncBzHcZw1Y1VLGEqqw4VNCwDIQ3s8X7HWi3LPVF6cYuZyRrdrEGJth79fpW7b+v4CrGD/+NbTAIFl\n73Cbdk8grKUYSTwPKhWPiwtu08pxrpc7CbgO5aLHcEFS71o2Di/aSqQQXF60fO8HkswKpMwoRJax\nMX9Lz4AkNVhj8X1JmkEh0Jw/U19/vmtY6rVQskA3VhRCeM+9PpfmNY3O+usoCQ/c7lMI89e/vCw4\ndUXwwgXL0FiZNNVkicYL8kRkay1pnNFY7WxayyhPYXV/EPYl3W4K1qIGXYgtd+93A6rjOI6z2dSQ\nZc+o4cLC1tr8hUgigDSD5TpEAdQqkkZLo7Uh8iSd1KI1qMCSZls32aSwTNYMd+/P+CebMFcPSLSk\nFGoOT3bYPxZTKYKKO7RllaaR9PDp7FB623Gcrdwi4DrVCpJSYGjF+X10KQBPSf7mW3B2bn233hho\ndzRqRTAysl5RyNg88TZOLe1ORqmYnwqUygHt1obMJwuL812EKANwZK/Hv/iZAt9+PmWpbihGgrsO\nezxwe76z8rUXFMcvSDKTLwiigiFLNWmq8xwA+p2BlaDTSjctTMLQZ3zUp9WzCKHwPMnlmVVGJ6tI\nmfc+OD9r2TP6Jn6wjuM4zlvSuw5lLDUkni+JCgKtBUlqqfaTfdPM0orBIBiqSnqJpRtbpMjDdzo9\nS6Ascc9wdU+a6VHD9Kill6TceyDG2jwPQMn8lBtguJSwmATsLy1xolOlHitK0dbXchxne24RcAM8\nJRnaEBqzUIeZxe0Hm05XM2y9QQ6AAMJQEgSCbtdQb2iGd8HIeIlOO9lc0tNAo5MRBfmv58Autakc\nqLWWV85rvnvccG5BUygFg7rMUkrK1ZB2M6ax0qFcLRBEHjo1eL7E9xVxL+s3DIOVhua++4Y4N5PS\n7WRYC43VDkHgkaWGS0tv+MfoOI7jvIUZC199TvHKJUmqAQxRTzA57lEtK9J+SL7AkmYCrfOeNkNV\nw0rd0ktFXgJUw1LdkhmBFHn8fymCPSOGh49lm3oKCLHeoHONJy0XmkNMlHoIKYm7mkcf6DfFcRzn\nmlxOwOuw3IJMbz/YGGPR2pJlliSBJGWQGByGEqUEcQqep9izv8bddw+xf39psMPxZ/8geP7U1tpo\nxlr+61dS/tPnE46fzei0EpbmW7QavcHXSCkpVUKshW47Jkmyfgk1RaEUUhmKBouGJDbMXIzZMxWg\nPIUfSOJuRrcdY4xFuLHUcRzH2eCJE5IXLyjSDfNfL7bMLWQIYQc367K/a6+UQEpBsaAYHZEYBErm\nz6/tfxkr0EZw74GM996R4fe3KAPfQ+8QlWpQaCO40B7GmpSj+yUjFXdb4zjXy/3f8jrsHYNStH38\noZSCJBUkaX6EqTWsdVNXShAEguV6vl2SppZ6C4ZGIu65ZwTflyhP8amvZJyf25wU9d0XM549ublv\nABZazZg03ZpAlWWGTrOXhyOx9v6KQmm9DqnOQHoSa8AYQZqkdDt5laEDk6/ts3Ecx3F+Mm0Mgd2o\nF1va/YaVkM91oQ+hD80OgGSkosAKekk+J+oN05ZFcPaqHANPKXo63Nr/Rks6WUQpMqx2QxptH99z\nu1aOcyPcIuB150EThQAAIABJREFUKIZw67Rlu8pBhcLWZKmNg50U0OnknYXjWCOkotGC1abh8JEK\n1oLve/z7z6T8x88b2t38m0/O7LAlYqHbyU8OrLX0uhtKhYq8RKg1ZnC06vkKP1QolS8+jAGtNcOj\nEdZYslRTKxruvsUlWTmO4zjr4h1KVwObknylFJSKgsDP56U0M3jKYkW++YXNT8uv9dpdU2A1LtFN\nfeLMo5WGLMZVNB4SS7udsJyWWGm8UT+h49wc3CLgdfrA3ZZH7jBMDVuqRctQGYpFhbXQbmd0Ohlx\nrDd199XaEoagfJ84ziiEkolRhZQCIRVJBmEgEVKQZoaFhuDf/oPk1MV0EGu5rf5btFsx7ebm8CCj\nDZ1mQqveHTwuEIyMFigUPHS/SlAp0GAs1hiWG5bPfddVB3Icx3HWDZe23xwyxuB7FmPzMCAhLIWw\nHxZkYaSsCXyDIM8r6PY0jUayaX4c2qbRV+hBR0csJ1UW4xr1pIyxCmOg3jIsn7xIqXUJJdymlePc\nCLcIeJ2EgIdug3/xAcP/9NOGOw8CCIzJm4UZk+94xLFByjxXIArzAdEYQa+XMTYWUCkrhmsSIQRJ\nAsMjAaYfCFmqhLQ6GX/+uYyLS+yY82SMYXG2wdzFVYw2GJN/f5bqQVfHbiclSzXWGCanIqb3VQDL\n4lJeOejSTBNjDUHkY7GcvASd2A2sjuM4Tm5XLUVnW8NP282EizNtIL/xVxIKgUFYjfIs1aKmqOLB\nAqFeT9Da0u3mu1vlyHDn/q2vO140ZHrrPKSkYWrEknkFHn7ujyjb5hv8kzrOTza3CHiDXVnZ/g49\nyyyBbygVBIGfZ0t1uxlT4wGT43l8fqmQNzwxJj9GxVoqlRBjYNdkgajgE6d5B+DNCwFLmmQszTWp\nr6w3FDDarH+dGHwpcTdlaChgfKKEtbBaT2m1MoxOQYUMjVWoDBWxxtJoa5bqbhHgOI7j5BaXExbn\nWnTaMWmSEfdSVpfbLC+0mJ3t0utleNJQjAxSwFAxphgKCoGFNGbEq2+awnRmODSp+fBdKePVrfNN\nJbJk6Vrobf6PIH/t0aqlVpaMts6TfOOzfOkZwzbrE8dxtuFKhL4BVruSC8s+nVQiA0G5aGht07DE\nmrxCQpIYLs/GaG1ptPK8gDwUCAJfYqwh7mn8QFGqRkgJhVJebjRNU3zfp1wS7BnJd1pePtsjibcf\n9ayxiKu6Mfa6KWdPr7JYCQgKAVIKqlWfThvGdkX0OglCQJJofGkZG/K3fW3HcRzn5uOpfB7ZlHvW\npw1cudjm4fsL/QhVSzHohwkZ6IoCe+R5TvSODL7HWJDCMF7becMp9POSoFfzPdgfzgIwlV3kK3MB\n57+S8i8/LFx1O8e5BrcIeA20gefOwMVF8iZdQUCxlN8oFwp5PwB/VbNS3xxPb4xhZdUwv5AQ90Ns\nerFheTVjbMRHZ3ljr2LBZ3UlASRC9OMp+0GV3WaMP5I3Cvu1jwQIAf/Xn3WuvsQt1voVAGhtEEaw\nutJjzJfURksAlMqSdjsliDykFAShx3AhpRC4kdRxHMfJvesOn8eeSWh1tz7nKclyXdNsaSplhSdN\n3i9AQ72rCD2DSA3d7vrGlRBw/KKHJ+F9d27e0FpswDOn4HJdUyoIDk2LTVWAjLEcefpT+demVaaj\nZa5kIxy/mHDHXhfs4Divxi0CblCm4b89Bmdn1wchIWImxw17doVAHspTq0hWG2ZQ1ixNDWfPb5/V\nm2UWbewg9l4IQZxohMybrZw/ucitd04gpUD5CmstFkU7huGyYN+Ux4unty/XIOT6dXq+JEvNpq7B\nzUbCcH8RIKXo5y3kJxZBoPjET732z8pxHMf5yVOrKD74QMhnvhlvKt1ZKPmUqxHdTka9ZaiU8yIZ\npv9F9a7iQKXFxWSSMPKpImi1Mnw/v1k/tyB5+ULKlWUoFyAKBF95VtCJ1+NZryxY7r9dUC7l32Oe\neZrlv/wiwaNHODH1fubmygilefxlyR17f5ifiuO89bhFwA16/KXNCwDIE4DnF1NGhrxBaVDflxQL\neXfgLLP0ejuX9YlCSaNpB5V/tLEEYT54+oFHUAg4e6pOZbiQ36RrgxdGPHHS49F7Mx59KGJ2UbN4\n1cmDUmpww++HinIlZMRvcn5O5icY5CE/zWZMpRJibd7gzOaV2xiqCPZPub8ijuM4zmYP3R1wplFG\nSUGWWRotDWK9NPalOcueyTx6P1QZ5Ugzv+pTiWd5oX0rAGGYV8XTJs+Fa3QFf/1NBtXqPGWxUuY5\ncn2NNrx03vKOQzHm+edJ/82/xrZSTlwepzF6FN1KGK+AChTgkgMc59W4O7wbdHFx+8eNgeWVjD2D\n/gCWu/Zn7K5qPv89S8tuH1ITRYIkWz+yTBJDr2dQSvYrKECxElFfbCOVxGhLqRJSKgfMrlrmVgVn\nVorccXeZZicj68ZcuNjBeiFRwcf0a/57gQdCsHdS8Iv3L/HtE0W+/XIRKQXt/k6MlJJ+QSGMsdxz\ni2C7HgiO4zjOzaubCB4/W2RyYv2mf1xbFpczGk1DEHq0e/mpszGGUGkkljS1PL56jE6/grVY62Fj\nLQaL0XawAIB+g01jEL7YdIK9fH6F7v/ze/DM04PH4o5AKYHvS7SBoYLELQIc59W5gLkb9Gq3xEKu\nNw6rFTT3HcjYPWq5Y19eDu1qYSiYnIgAS5pqOt2MRjPFmHw3XkpBluUhRVExQKcGFShK5bx7Yqbh\nyy8EnJr1WekoMkIoVJjcO0alVsAPPMLIp1gOUf3k4E4qGa8ZHr27xa17enh+Pognccbtu1YR/esv\nR5YHjroFgOM4jrPZiYWAbra5IaZSgpEh1c9jE/05yrJYlyhhWFiVjJZT4mTjd62FwK6/xpZkXpsX\nuNik08VuWAAApOXh/qJCkFrFcGVrw07HcTZzi4AbtGd0+8elhIlRReBZioHm1ol4MJi96zZ4751Q\nK4NSEAaCiTGP248WGB2SDNckSknabY0xFjMY8PI+AsZAoRzSbPaoDRUol73+2CnoJFcPdAI/UJsG\nUiEESuW/6qEojzmKAnjHoWSwU2MtvONQh4dvbQF5EzTfnRM5juM4V1ntbH+D7fuSSllijMX3BGma\n0Yx90kzgy4yRSsbt+zLGh9Z26AVef56REjxPUiyHWxYCV29HVS+8uKnEqClVaL3/43lX4tQiBewf\ndacAjnMt7jbvBj10G1xcsJyb35AYDExNeJRL+cA4VU0ZLq7H5wsBuyd9Vm2A1gKl2HC0mXdUHK4J\n6g1Lr7fhKDQzJEnebbhZ75JlhuHhAkEgiWODNptCMAfWknrjeGP1BUEx0LzjQH3wWCnKr9EaS+Dn\n13Noqkc7LXKrq6rgOI7j3KBqWbC4ZDmwV9HtJ/TG+BwY75KKkG6s2D+l0ZllueXhKUEqLErmIT+e\nlycYW2PpdrJBWOyaIh32v/xVrBAIa8n23kLnF38L/4F3kl1O8TyBsIJbxpIdrtBxnDVuEXCDfA/+\n+XvgK88Lzi1IpITRYY+RofW78VasgM3VeuabCiHkYNdjI2Pz04FaNaDb7Q1OA9aqLujM0OuklKsR\n1kq0tnieQEmL2fpyAJvasPcf4f6DLYaL6wuDejcYfO2BCY2vLH7Bsn9ME6eSKLjBD8dxHMf5iTdU\n1LS2nEKDwFApSXZPSNJUoqrgdVOkNUShYKXuoa1ACpiesCy3oBBCnOS9BzINpZJPo5GiraE2HHBo\nLEV5gl5iGalAR46Q/ps/pf78kxB3Sd/+MPgBgbUUIoExgtGqRrl9LMe5JrcIeA2Uglv3S8JquO3z\nQvcgbkFYZqEheGXW5/KKxAhDMQLf2zg65cm3UliklHheXlFooyTOBmXWjDHEscZamB41XFje+v5p\nqun18pv9fBdFUClJwvFxZmKPveEcqx3F989XUErgKcs7dl0CIjqx4IvPeHSfgINTgo89YCkX3pjP\nzXEcx3nrOzqRcHlVUW8ZFhdTokgyOuJRjRI8TzE6HNCutygon7GxNrXFE1yo3kMzDiiFeUiq7+en\n0UJKShF0YqiU823/Tie/mS8WPBIki6sSJcAPDSIA6UnSe9615bqkkihlieOM589JRsqWPaPWNQ1z\nnB24RcBrNFXNuNjwSfXW7YYhu4S3NMMVuZ8vn9lNvKH6TxxDrWIIg7XHLAJIdX7KcOygx/mZlJVm\nXjEh6aXE/a6MOjOkqcFow1hZU/QtvY6hl4BSkihSFAJYWo3pdrN+gpakXJYcPhCCkMxloySZ4YVz\nBdomQIiEyWrGkRf+hnhiHy/XPkg3ya/t1CXDpx+T/PaH3CDqOI7j5FZbmu8900QphedJWu2My1fy\nU+z3vF2SZiVmVzwyBe890CBsNZlrFJDCEvkWYTVYxS27Us4vFPA8i+4YsAJPCSoVj+XllDQzLHU8\nMm3JgAuLikJomRi3m8qGAsSJJdN5/sDFRctSWxGFil3Dhve/LaVa/JF8VI7zY80dmL1GoQf7ainq\nqqo/w2KFQ94FhNUUerMk2eaBylhob2jwm+/UWwqyRxAIlFJ8+AHD3UcM77tf8qGHAw4fyLsRe57E\naM3PTP+ATrPNd16SdHp5edI0NXTaKednOnQ6Wb+iQr5waDY1s7NxP0RIciWZxKsNMTTsUygqxqZH\nOf22f4a/MIM5/tzg2pQSzC5bTl5xKwDHcRwn9+eftxRLAYWih/IlQehRqoQEvuKbz2iW6yY/Mhce\niVbI2hAHRtrUihm+Z+mmCiU1BV8TBNCNAQRpZjHWIoQgCASFwtZ9ym4MrdbmvjtpZmm08hN0o/N/\np6nFIri8ovj6cf/N/kgc5y3JnQS8DnuHM2pRyvxcA2MFVdlkj5pD9hcGQ16HsbDJQlzd9H1pZsEY\npLKUgpTxUpta0OOpi/lAFQVw7IBE27zKT/U+SZIKGj2PyWKL20ZXSVLB3509tql2sjZ5V+BEb66K\nYLTl5NmEVivjvnsqFAJDLxGMjfi02xrlKbrV3cwfeh+3nniWb/vvp9lM8QNFlmouLXkc3e3KhTqO\n4zjgBz5RKJmc8AZlPZeXNSvG0KtnxEke5iOF5dTKKCbqIAtQjWJ6WUCqJaUgJQMkeUPNKMzLe1pD\nP0E4r2rX7W6t8jMcZTTaAisEWkOrYzEGtDaDUNiNrqxIFhuCsaqbxxxnI7cIeJ2qoWEkPIcwWzsC\nGyAzWw9bPGW4d888ntwcZrOr2iHrJZxdGmJ3rU0nk0S+IQoltx4JefJ5zSP7rgCwf6iFFAbL5uSs\nq49I1wghOD/T4+D+iMlRSa2o6aU+1bIikBm+snSH9jAuHmdkNMTzJcuLHSyWyHf1lh3HcZxctSqZ\nGA+oNzTdnkFJGKopSkXJuTTve+N5Ag/NcjeAeJjpGvhSE5OH7GRastLxKYSaNBMUi/1FQL+oRam4\nucLdRuM1y7FyzOMnPOrdfI7NMku3kw4Kaqz1xgHQRlDvuEWA41zNhQO9XlJhg9K2T62kFVbSrc+N\nlBJ8tTXOvua3uad6FoFltlEAaymqLmApRoJySVKaHAMgVJqH9sxufVMLgQ+jQ/m/12ht0BouX+mh\nJISeRQhLqSxRyiAEWOlxoVXFxE2CQJCkGY3lDvNL6db3cRzHcW5KI8Me7eef5baVb/Cg9yQP6G8R\nvPQtOu2EKJIEvmS4JqiVNFJBQ5cQ/fw3AIEg0RIEDJcyAs8gBXhe3mAs8gwPHY1R27TnHC4Z7tqn\nOThh+OcPJYxEMfXVhGYjIcvyr1dKEEXrm1el0LBnZKdaeo5z83InAW8AXZ2GLEFm3cFjRgWY2i4q\nC4bE5GE9SQqVMOO23U2W2z7L7ZBCoNldy2/0pwp1VAqBTGllEWGWUvQSJJZl6fPxdyfM9SapiCYj\nYo537Znn6YVdg0RegF3jlnfdBsWCoNW1zMzCd1+ATiu/kfdVnodgAayl3bIUI58k6xHV53k8vZeX\nXu6ye9owMlriwkqX4xfh4z/cj9RxHMf5MSVOPsexQxGz6h00qBEQM1mbY+TKE1zZ9RBKpIS2w1TF\nEIaSWmQQCLSRCGEQWBo9n+FCShTCaM3SigXaauJYcGxfytEpgzApz5xTLNTzcty7hw3vOpoNGllK\nCb/0sOWlywE/OBvT7AiaPYkXqE29eA5P6S0lr63FFbxwbnpuEfBG8CP0+K3Y9gLoHkgfUxon6UQM\n1ySd/k26wLKrajkxV2OhGWCRgOXsYpnRQouSF3B0WNM1ERZBnCkkGYGCo2NNAmkIPcvp1kEqpZhS\nb5n33N7hhYUxstSSZZrdUwHFQhuAckFw20GICooTl0a4MlPnwP4Ia6GXCpSAY3sT6j3J6krG8VcC\nXrHTeL6m1cgo1zyCSDFUcuFAjuM4Tm7PlM9JdesgHDUhZIZ9TOzyya5cYGxvhUuXYor7JSdnQ3bd\nIsBmdHURTxqkUHgSwsCiDdSbGuFBt2NRSqBNfnd+ZLfh8C7Dalvgq63lqtux4OSsB57PbQcNx6ZS\nLixYXrpkqXcMhcBycNJw74H1sKLnz8JzZ2ClDcUQjuyGR+7IFxSOc7Nxi4A3ipSYyuTgPzMDL14O\n6WxoqGIRXG4EdHr5wLfWDL3RC1htD7G8HGPvkPhSkxlFagRxJgg8jS8MAQkl1SH0QkSvSz0ag0wx\nUUlY6UaAotmDbiIpBOtHn5PDhnMLisNHhykVLUlmafdgeiwhkJbVrsGsLPH9pWkAglCRpIYsSXnk\nnQWEjoHoh/AhOo7jOD/uGtHUlnw0gEXG2RtcoNkNmM+G+PQXljh8sEVZZGgUXRkSKIs1gmohz6Nb\nXDG8/HKbI7cGWJs3r6xE6/OXEDBc3hoWdHlV8eSZYMMcG3J+0ePhIz0+tmv7ENbnzsCXnoZU54uM\nVhfmV6EbWx59x+v8UBznLcitfd8kMyv+pgXAOoGSkCQGnRmstRhtEVJQrfg8fbaMMBoFWCuYa1VA\na3QrryvqkRKpjMrKeWJZxvMse4dbg1c3Gs7MF0g35FMVAkMxSEmNpBsLupmkWsxbtFsE1ULK/loT\nJfKBd2xEEoSSobLh+8926RpXXs1xHMfJ9XbYFDJ4pFGNi91REi25MCuYGoopez1qfpvxYBUh8hv/\n2UXN0qrluRMQFAIW57t5U0xjefmi4sz8zrcn1sILF4Mtc2yjp3h+ZudW98+fXV8AbPTyRWh3t/kG\nx/kJ5xYBb5I02znY0FrodA3NtqHTNRhjsMYSRpJ2T9BKJEpqLAJjoat9xttnuNSs4SdNRnqXUDqh\nWj9HQcQU/fXKRBZoJz4XltbPTZUwvH3fKtbkJwBnL8FqR+Y9DATEqaDoawqBwffgjsOKQwcilNU0\nW3D2fPJmflSO4zjOW4int79jVqRcknvR1mOoqpic8KlMTbCc5mWyI9mj27OcvSx5+ZzgsWcs7S74\ngSJN802oLIP5huRLzwacX9h+Hl3pCJZa29++LLUU2TZFhYyBldbWxwE6seD8wjV+aMf5CeTCgd4k\n4+WMkwsBxm4dxJJ0/WgzTfOKCWGQ11oOAoGne0wUM5a6ZQIf2knAebOLlo4gy9i//CzCGgqNWbLx\nu/DE1qoHrZ6HsXnWQdE2qZYs+8faZLJCuST4/9m78yDLrrvA899zzt3e/nKvrKqsVSWVpNJily0b\n4R1ovAHNAIPDTcMMA8xAxDDRQQdBhAk6Jmamo2GADv5o2vQMHdF09BgDxqZNA8abbNnGi3aVttqz\nqnJf3363c878cbOyKpVZJSHLqirpfCIkpe577777Xry4Z/ud329uSRN6kkaQk+ZlrBmw5+AwocoZ\nGzIY6fPQ85JaM9wxzanjOI7zxjQQZZTN0GLrKnFVt7mUVkkSy9QuxbGDdYRQtPIaNdVDCs3z04JM\nS6wtMuRZW1S2DwKJ2WjKrC3CZ//mMZ9DIwlvvR2aVXj0pObsjCHVgraWNJvRllo5UEyE7ZQIVAgo\nhdCNtz/mKctI7dX5bhznVuIGAd8jQxXDZD1jprV1aTLNDJ1OjqfYmK0Q5Lkl8C1ZVtwMx8o9fC/g\nWPg8s2YPs70yoT5EPWnhyZSlaB/j3bMok6CtR41V3pR8gyeCt3HEO8uCnSA2VSIxILQpQ3aZLPcZ\nq1aZHQjKYZGlYX45x2Y+99bO88LyPpRS5Eja/YQ0l6SZpTlcYveYAnbO1+w4juO8sciwjNSayLSJ\nKeHZDCUNvWCESlUzNqqZGjM0y4LUgEHR0RVI+swsX+l2XM7pb42lWo8QolgJuEwbwbdPwjPTUA0y\nzs5cPeHVo9vJ2TtV3TIQGK5qdiptIwTcNglLre2P7RuDiaHv8ktxnFuQGwR8D90/lVANLUtdRZwJ\nltYtk80+99yboZSl3VecmfOZWQkwxhYVEqVlf7PNsh6hK2tYIxAyYLrtMdWw5CXBYvMoNS9GdlaZ\nLK9ipcft9Xn2tz/BSAkW7BjfUO8m8Cy58VnJmozINUbrKVp2WOjVKQWSlb5gj7/I+eUyF/WejasW\nrHU9tLF4qigytnfMFVhxHMdxCgaLJqAvikmuVPhFus2NhBe7Gjm1UvF3IFNSU2z6PbtY3lwdv1wU\nDIoMdkpJggB6PcNVDyFEMXvf6srLb7BpbTWh3ghoNEIAqqHm2J5rh6+++55iE/ALMzBIBZ6y7BuD\nD771u/9OHOdW5AYB30NSwO0TKbdPQJJZnpvTjNavzKiPNTT1ssYY6MWSZj0kHeT4UlPOuvT9Cutr\nIRaQSoEXEdkErUqsVA5SFQGRyskszIy9lSPrn8LGZcZLS9xVPg/UURI6XpN+LAlMQkl5QB0pLdbC\noysHtl13P5OceGqFWqNIJ3rn3gEQvjZfmuM4jnNT0xshojvl2ZdSMFROECLEIinJAYHMODcreHS6\nvvk85UkiJZBCUKl4KAmVEvT7xXm11mgNWWZQSiKVLJJZ2K2TUjKLuW0yxLMJd0zmVMJrT1pJCR98\nAN7Rg+kly2gdJodfne/EcW5FLtj7NWKsYaS2PaQm9OGefX3ee3gOIST1MAEBkR2A9cBTJBkIDBk+\nMs+o6lWmsz3k1REGlAFLX1SId9+BXVlEAkNee/M9pLC05RhPn/W4sOgDFq3BkzvfLGcv9ZFKMTZe\n5vZ9llrkKqo4juM4BbvDXrfLpBRkNkBrgUCQaJ+SSnlhvgJsdOJtsRfO8xRRSSGlQCnwPYnZ2BiQ\nZ5osM5j8yux/ECl40VuP1TQfeovgzQey6w4ArlavwD0H3ADAcdwg4DWSanvN6oTNimZXtc9wdpHJ\n+gCBQClDXa8yEa3hK4MvYyazc2grqOoWfRMy2x9CJQNyEZLj0ylNENuAPDP0ZJPqYB6sJTcSg8dC\nOsT8uocUBkXGocntG4o7nZTZ2T5KScLQo1oPKQWuWJjjOI5TUOr6ne3UBKS6KIbZz3yUhLv25Rht\nsabI1FMUuDQYU5yr2CBcvP7yhuFeJ0V6xUEpBZVqwMhohVK5CEOSAu484Nonx3ml3CDgNeLJ68yc\nCANKcXdwikOjXayFiu2hpCYiYXejjxeEjMklAtMnI2RYrHE+30O9NY22korXY1WM8IU9v4jOc/q5\nT22wQrV1ifWehwGUlEgVUQo0hyZzmlHGykrMYJAzGOSsrSXMzRdrsf1+jjGWOPdJcxc15jiO4xTu\nm0qu+ZiUkOSCOFWkuShSUVNkwPO8rSFEJrebM/9SFh1/zxMEAfR7GVoXoUAASsmNFQhBuRIQhIq3\nHJUc3ffddWPSDE5ckDw/I9Au/4XzBuN6d6+RciDppoJMv3gGxRISI7KE0WyOmewI6/2A26MOuR8R\nZx5lP6FZ8jBeFWnWWFST1JM5Vvxh+sEw5e4iojrGAI9WXicfm2Ly5OfR+/dQCducPddn/wFBrEMC\nX1KPimqKZ2cta+sZa+tXqitKqfADTZZopLB4SmwUV3Gbgx3HcRw4Oql5fjann3qbLUPRubesrSZg\nfUabgl4SUgszslywGlcolQxpVhTIzDZSZV/OBhQGAm2KaJ9uJyeODVIJSmUPrS0CQakkMFqQZZZ9\nu0N+/F16W4rQf4zHzkienFZ042Ig8chpw9uO5BzZ7do7543BrQS8RoQQDJU9wrwHdmPmg5wyXSIS\ngrVZtAy40BlmKWkwECWkEOwqdRhPzlHxM1IT8LS4l6rfZzy7SLOckHgVAt3DCkVJxORGEPtNQtuj\nk4UgBHeNtjkx7VMpSbTJ8JQlkIbnzu18o/N8D2s1oQ/1yFAvbQ8bchzHcd64fuRNMWmaAQYhLNYa\nFub7LC6mzMzEtHsQZx6ZFsx1KvSTooiXEALlSTy/6Lz3uylpnOL7MIgt3a6m2ylGBsqTxb6B0NvY\nLAy1ahH+k2vxXQ0AppcE3zrtbQ4AANZ6kq8+59Ppv/LvxXFuJW4Q8BoKlGSsWWXX3HcY6p5jJLlE\nrTdHafYFopnn6YzfTq2UE+uAjhrFJ8NXhqpeZ6+apd9LmTeT1OhgylU8BaHMwCsWdHKjMNoyLyag\n2sAawylzO6iAldWc3Ei6rYRmZGgGhiSHoabH3j0heyZDwqC4oQohyJKcCzMxdT/mOpFMjuM4zhtQ\nri1LSzFZalFK4PuKXZNldu8p0+9rFhZTcm3opgFznSr9eGvqTykFxhjy3LKymtIfaLrdHGNASIHn\nSXxfIsTG//uSMFQMEksUCpSEU/OKb54O+OoJQ3fwj2uoTs4qcr39Nf1EcOKi22fgvDG4cKDXmheQ\njhygdu7bhN1FpDWk5RFW9z1AUptA9U2xEdjL8MlQWUygB+xRl8i8JhWvR47Pev0AJoVK3mLgN8it\nYikpE6mEga3gpT3WvXFWGOZCNyBJYiSG4ZJhKLQ8dR4mxgJ2TYR4GxuvRkd8ZuYSZi710LkhSSzn\nZiz377+xX5njOI5zczEaxsbKlCuKsWpM6GnW+wFKFckput2MVttQGpMYrVlcyjfbGigGAVoXq8zG\nwKWZmCyz+J5CSPAChefJzdl+peTGvgCDFwg8JfjGqY3U1XPwlB/xloMphydeXmB/kr2yxxzn9cQN\nAm6E5i5ceG+RAAAgAElEQVTm73w/3qCNMDlZeWhzt1ScewyX+vgSchNQG1xCAtJotCwxUopJVQWE\noMEqXp7SKo+SEWCkz6HGGpmtcKlyJ6fFnURY4kyChTxLWe36/McvBWgDeW544fSAiTGf0ZEAz5NM\nTgScObmCFxQ/jbm1G/g9OY7jODelVizZO26IAoMVPknuIYRmotohSSL6/ZQ4MfT6UApBa4tSdrNT\nr/WVzEAAaWIQUpDnuqghEEmCwOPyU4QoVqmlBKsNIgq2XE+cSZ6Y9tk3unPF4BdrVq4d9z9Sd3sC\nnDcGFw50A5QCH09J8lKdrDK8OQAYZArQ7G+sA2CFQgsfKyUWQa+xhyptlO4h0ewenGYl3E1KGRBo\nLVhPykwv+jxZfR8EHp3YY7WlGR6WrKxpZBCCkJspQEslj7mFlEFczJ4EgWJyssTwWA0Az/1CHMdx\nnBdZ6PmUSxLlKTwliEJJo+aTmhIT9Zh7DhQZhJbXYbCRTOhy59xaS5pqpNoejmOBKPIIQ7/o9G88\nRcmixoC1IOzO+9S6ieLs4ssL5bn/gGaosv08k03DXXvdPjjnjcF18W4AIQSNUkTkeygpwBqMzqmr\nNofqywjyy08k90pY6dHz6gQKov4K4VNfR0rBbO1OWuEkUKRWa/V9lnsel1Z8Aq+Iv5xdsrTXE24/\nENEYKm3bSCWExPMkq6tX1j9Hx6qMjVfwPMHU6Gv2tTiO4zi3gExDrOUO7QlUygIjQs6uNADNUF3Q\n7Rcz66VSURQsCASBL1FSEkaKSsWjUvU3z5Om+WZlYCGK+P8ihail18uYX8pot9Mdr02bl7c3oFqC\nDxzPuGO3plkxDFcNd0/lfOgtGcr1jJw3CBcOdIMoJamXI5J+i8z0EVdNXkirSa0EIRC9FvF6G//A\nLg7qM6jBGnqoQmotwcnHyA49AEFIe+Cx1lMsrIcYayj5hlbs024nvOOBCr1EEgaWXn/7DEet6qE3\ncjVrbdHWQ0oYGVK85143I+I4juNc0Ukkxu7cU7ZAGEjGhnKefW7ArvGQVgeUguEhj1IMcQJhoOh0\nMzxPEkWKNDX0+8UEWJ5bOp2UatXH8yXGCIyFNMlJk2LVetDPaDTCLe8d+YaDY/nL/hwjVfgn97/8\n5zvO640b795AxmjybPDiKugIAQEZOk7JPvHHJP/t0+Tf+RqeTlFJBz0ySaedM7R6kspf/AFrHcFM\nq0KuJcYKet2MCwsSY+DwwSrdxMMi6XYTOu3B5gzLZZ4SlKJiqbU/MGzs1WKiKSmFOI7jOM6myLdY\na4lTuLhgOH0hZ25Zk2VFGk8pYbhWbO71VVEdeKihCPytG4MrFY8wVAghCAKJ54nN2H9rodfLEGJj\nFcAUtQLCyCeM1Ea60CutpxKWo5MZpWCnK37l1jqGFy4Y2jtMoDnOrc6tBNxA/ThnMRkiMT4SS0UN\naPqd4iaIRQY+5X/6U+hnniQ98QTmrvuQ/Q7aK9FdTsj23EH4tT9GPfY1grs/ROhfLrcuWVnXTI5o\n1uMyQkCWGfoDi5QwP9Ni7/46Wkt8H8qR4fAew+lZTbd/5aZajdxNz3Ecx9mq5FkWVi3CxEwNZ3gC\nVnseM4uKaiUgzzS1qqRaLUJTm3UYGfLItSW5KopHIBAbQf+X56akvDJQ0NqSZxrPV3h+Eb4qpcXz\nPOJBTpoadg0bhiqKyVrC1MirV/I3zSyfflhzaqYY7JQjOLrP8KMPFnsgHOf14CUHAYPBgN/4jd9g\nZWWFJEn4lV/5FarVKr//+7+P53mUy2V+53d+h0aj8Vpc7+vGIIXpdpnMXIkDGpiI1HhMRGuAxcNg\nmuOU3nwc0+tiTz+LkJbADpgYLHKmcjvh3R+isnyKNDPUyoZGTZImUK1CvWR4/PkuB/ZHGCPQRlCu\nFKE+y0sD9u2NqFUVU6M55Uiwf0LzzLniJxH5hrv2uGVSx3FeHtdWvHEYA8OlHocnYgJV9N73DkNr\n4PPktCHWEa1uysSIAAyjQ4rAN7S7ckutgKuXwdNUY+0Oefv7OY2mQglQPsSGzRoC/RgOj1s++FbJ\n0tKrNwAA+MzXNE9fVVCzH8NjJy2+0vzIg27+1Hl9eMlf8pe//GWOHTvGL/7iLzIzM8PP//zPU6lU\n+N3f/V0OHTrExz/+cT75yU/yS7/0S6/F9b5uLPbUlgFAQdDRFZq6QyRihDX4uo/wfYJDt5GXa2Se\nj590CbIWC/MWdeiHOHj6s8SxQVUER3etUS3VqJcht7BrVPD8Cz3uvrNKFAmsgWYzZHGhx8JyzuSE\nYqXjUyllVCONrxSjNcM9UxkTTZcmzXGcl8e1FW8c3zltOTx+ZQAAoCQMlTOO7JI8dSFkdiHn6P6i\nk9HNPDxl6cdXzmEtmxuLjbEbm4oVvf6VzrwxFikEUSAYbcDFBUu5BIMYopJCCMvc6qvfTvViy+mZ\nnc978pIl19atBjivCy85CPjgBz+4+ffc3BwTExP4vs/6epHGstVqcejQoe/dFb5OxdnONxCLop9H\nRP4AlSV4duOGGEQkXYt3dIrg3FM0hcf+z/9bnvup3+HcxPeB0Fyal4weChkq51QqitwISoHgwF6P\nlfWc0SbMzBuqVcXQcESuBa2WYajp0R0YyqHhp98+oBy9hl+E4zivC66teOPwVEbgbe8kCwGV0JBn\nKdZaZpcs1VqxqVcbwUhVI4CRalEj4MySR24kSgq8yCMKFcrLabczrLUYbZDKZ6hmKJckeW6ZGres\n9z3WWzlaW3z50oOAXix4bs6jl0pKvuXIRMbQdeoErHct/eQa5xpAnBbZhRznVvey17Q+8pGPMD8/\nz8c//nF83+dnfuZnqNfrNBoNfu3Xfu17eY2vS+I6Ny5JDllOczC7eSxd63L+j77AsT/835j7ziWG\npypUJocZ+tJf8MyxH2Xu6Q7DY1WSXDJcicFKWrqKFxiOjGsePSnZNw4myxF+iO95CCmQ0uJ7lrWu\nolrSbgDgOM53xbUVr3/hdTbfWixSWEolj9Onltk1WcEAkS944LaEREOqBa2+YKRuWGoJLscFCSEo\nlxSt9Xhjtl1iNLTahnIoEBLWWhY/Ap1bTG5p9UCba7eni23B109FdJMrK+/Tyx4PHE7Yf409BKMN\nQaMCrd72x4ZquIQZzuuGsC9OFXMdzz33HL/+67/O8PAwv/qrv8rx48f57d/+bSYnJ/nZn/3Z7+V1\nvu6cmc85u7D9BhSQMOnNoP0KAkuQ9Wh0LxLMnOHE//1Zpv7Xn2T95ALizNN4734ns0+2mXnfT/PF\npwL2TA1x/1HJRLTOSPscj8u3Mjz/NONHR3hyboSJSo9qmDDdGaPdVyAsQ1VLGCoWVwXfd6TH/bfV\ntuV+dhzH+cdwbcXr24mzXUze2TGf/sXViMdPeaz3NKdOLHP49iYHDg9TCiH0LHuGk8v1MTEW5lcV\nM8v+lnMsLw/I8yubhKMQxkZgtS3wPUsY+iwupUgByvd45zHJD79l5znNv/wHy/nF7ccnmvDRd3HN\n9u4vvtjn89+JtxwTAn7snSU+8KBbBnBeH15yJeDEiROMjIwwOTnJnXfeidaab33rWxw/fhyABx98\nkM9+9rMv+UZLS53v/mpvkLGx2qt+/TUJzUjRiotqwAC+NNRUlzwoNs5ZIA6baCR7/LPsevA20laf\nfHGV3omLjL3PQw01OLanxxcf98nyjN3xGZpPfAt16QLD39dk+Et/Rvnun2O03mBXPM1SeJhd+hJt\nswc/VIzUDOsDhbWWSLS4OJNTCv3rXPlr53vxvb9W3LXfGLf6td/KXq22Am7d9uJW//293GsfrcCz\nMwET9a0FuzoDj7lWBCJndXEAQJwIPGkxVjLIBL1EbmaekwJG65r5VYU2RYffWotSCnPV7H6ew/SM\nIQxhfMSj3bH4viSJNcqHkzOGu3d3MFZQCq68Ls1hbrXMTtnQF9YtL5wfMFLdOQveO++xZJnkufOG\nTgyNCtx7SHL8toylpVc3acYb5Xdzs7nVr/3V8JKDgEceeYSZmRk+9rGPsby8TL/f58iRI5w+fZrb\nbruNp59+mv37978qF/NGIgQcGNZ0EkM3KSoihrJPmm1/bhbWaQ0dJhyeJt8/Rfbnn0PYFG/uHOZU\nn5Hqgxw7kLKQwKA2xOH1Z2mvD7jvkX/LcmWI0CRMMEPZjxlincx2GaorhIR0o+pjrWToDDx8T980\ngwDHcW4drq1441ASTi+UaA98hioZShjasc+ltRKVMszNp8SxQQgo13wCX+B5kGbQjeWW9NOBD82q\nYaVddNSzzJJlWwMU0txitMVaQRhI0tSgpMUPihCflTZ8+tESBslIVXP37oy9w3oj3fbOBCDEdcJy\nheAHjyve92ZJrsFX1141cJxb1UsOAj7ykY/wsY99jI9+9KPEccxv/dZv0Ww2+c3f/E1836fRaPCv\n//W/fi2u9XWpFlpqYXEjavWunZc/D8qkS20W/uATHP4nd7LwcIzVKek3H0dIQTmwHKutshqPQGOE\nIdWhdX6GkfsPsXhxiYNmjksvtDl8fJHHuRffF1RLmjT3KQVQ9/rMdyqUohSXwM9xnH8s11a8sRyd\nyJnpRaytlDGmqAg80rRcnMlYmO0wOdWg0VAoJQk2atj4Hiyue1gr2NXMNuraWLK8aAMDZVjpbJ0J\ns7YoTKZNMRDo9AABzaGAXs8SJwYEm9n2FtsenYHkfeGA4YpltKa5tLZ9JWCkqhkqX3sQkG3sXSj5\nELiMoM7r1Ev+tKMo4vd+7/e2Hf/TP/3T78kFvZHJ68wy2FaLS597gvq+YaJGRHl3FUYmyRaWGKSG\nlbzOveOznOjtYf6O97B/9QmC2VnM7AXOd25nVJ2h9f98kbWzR+Hv/g21j/wC2Y//AlIWFR5vb66w\nNKhxYb1CoiWTjczd+BzHedlcW/HGcsdewd99qsP+fSXKZUWWWZ47mfL0U6scu2+MJBd4KmT3hGKQ\nFJtppbD0+hqBIs1g31hGJGLeMdVi3UxweNzwB582gA9cnsa35JkhTzVRPUBKQbkkyTKL70OSQhBs\nTbc9yCSn5n3edjjlvn0pnVjSGlx5TjnQ3LcvY6cmN8vhqZmQC8semYHhquXAaMZtYzss0zvOLW6H\nbT3OjRIFwY5Ll6K9xsz/+YfEiy1MpunOrVIda5CvtCEzXPr9P+IjB05wPptgfinhfOVedFAhHK4i\n8wT19a+z8sXvUPnpf0r35EX0cpfws3+CuHAKay2jpXU8BYHKEVmf/voSf38i4NSiCwtyHMdxdmJ5\nx1sijk7lTNb6lOlS8lN+/Mf3sn9fhJSKsVFFp2cIPMMgKVYDQl/S6WmM8Hj0BckL5yw11eNgOE06\nGFAqB0Qlj6ikiCJFFHkEftFVGR728TyB70vaHcMgtlTKkijc3pXppUVrOlyxvP+eAfdOJexpJhwc\nHvDDxwbsbu6cGeihFyKevuCx1oVuHy4uCR49F3Buxc2KOa8/bhBwE/E9RbUUYZZWsLnGphnxY08x\n/y//d9onzhdPUlB7+3Hs0fvw0x7VeyfoP32JPKiwklRYnE/pdeDry4fI9xwgqISohUWqk03EHXfR\nONTEZBYx6FJ9+FPsqawwWWmDEPRiyR3ZM9xRvsTxsQt86QmYWXU/EcdxHOcKay0LbctoLacUWOpV\nyaF9Pm+/NyDybZEJKIChqmJ1LacWGbQ2KGEIAtCm2B8wPOTzyCmPmVYJqxNsZ5Z6tDVBvxCCMPJo\nNjzqdR8hBKutogOf55Ydp/OB8lUbhM/PpHzpK0t85rNzfPIzC3z8z9Z5+tT2QgALLcHMisJcFZlr\nbVEb4IU5NynmvP64Ht5NJgp8hkaarPz6v2L+n/0SS7/8a6RPPgOA36yw72c/hFetwj0PEP7gu5l4\n614a3/8mOj3Bvt0eCIuf9jgbHeNT4T8jN5JdBwLG3nY70eEpKgd3oaJiWbR+/js0RFHIJ8kEpxcr\n9AdQWZ9hLGjz1oNt/vZxN/vhOI7jXNHPLPEOCXJ8ZamFKUIIPAWeZ/A8ycWFIrtOoAyH8hdQQrC+\nnmKRNJsB35puoq0gUjn3TaxsO6+UguGRiCQ1zC7k5Fe99+rygOnzHRbm+2RZMTgIPcORiSJ8p9XT\n/Oe/7nLqQk6uiwHI2Us5/9/fdllY2fohnpnxuVbJgfXuy9sUbC0stWClU/ztODczNwi4CQVDTaZ+\n5ecpN0KE74ES1O7Yy22//CNU9o8DYKXCjE4xdOwQh9/cwLTWqZQku8Z8jpVeYK5f5tn5GtkP/Bj7\n3rEb2xxheDBNfvAudr33TqKJBrWaYPDw11nuBjx+cZjlbon5bBhlMsLeKlPNHp5vEfGtmULLcRzH\nefUl18mQ6UtDu5OhtcZTAp1DN4aF5YwwMIR5B5n38T2JNpahhsdy26OdFykPh0rpjudNUsPMfP6i\nWXpLPNDkmaHbyViY6zNUznnb4YSRatED/8ojMSut7Uk3Wl3LVx7dWgfAu04//+UkBjo5I/gvX1H8\nyZc9/uRLHp98WHFx+aVf5zg3ipvmvUlVj9/HXf/mf0HPzGDynNKu4c30ZEZIJBojYP6JOUY/+hbW\n7UFIEnxfElfG6XZyohC6OqD3lg8zkS5SXp1jfWgX3s/9c3bPneGJ+3+Ju77173jh8XkulHYBEIni\nBixNjpAwOaRRnQXy6NbOYe44juO8OtR1HhMYTp3s4vkSbXyEhHpVst6Gfj9noXo/t81/lYXag/T7\nIVEkqEaGgQ1JrYdGEQSCTjtDeQLPU/jKEidg7NaeeDzI6HYSolIRJpQkhiGvz/6RK/Obrc7Osf8A\n7Rdl5Jsc0pxe9NgpsWijfO3zACyswxeeUgySjXbawsyq4HOPCT767pyyqzLs3ITcSsBNTAdl/F1j\nlCZHtgwA8lIdz2SofID98E8Sj+0nr4wzHp+jESZ41hIPcqb2+szZ3bT9STydwOIlvLEJ8sYuqrft\nYayW8/xtP0mjUfwMGrLDveWzAOTSp0eV0XoO0v1MHMdxnEKtJPB2bBYsVa9Pzesx6Of0BjA6EuKp\n4vlDtWIg0I4mwKQoafCV4YGpVVayOsv9iIu9JkJYVpb7LC30WFvpUQoMoQdcTheqNb1uwupiD50b\n8vxKZ36ptTUGZ6h+7SFLs7r1Qxye0EzUt3f2A8/QrOU8fCZAXyNe6KnzcnMAcLVWX/D4WdeGOjcn\ntxJwM1OKuDaO1RqpU6yQpGGNwCbIPCPDp7aniUUyIpbwkhb37ioTrl7A8/ayb1zR8kbJEk08yAhy\nje33qI8M00+nkMLA6C7kzCr70uc5Pr5AIHNyFTBfvg1Q5FqQN/be6G/CcRzHuUlIIRgqGZZ7GosC\nBAJNIDNKKuPNR+GhExKlFI2qxVqoVzRCGNa7krXoDoY86HYzvJqkk3h8+xQcnhhjzQzjqaIjbi0M\nBprpmZSx8QpBAEmcszDTQV/V8de5wfeLzn45vNIRtxaO3lFjJaswiC3z830WF4pKxkM1yXveGr3o\nc8EPHUt49Lzh/HJxvkY559DEgHJoiDOfr56OeM+RZFvhsP72fcabevG1H3OcG8kNAm5imReS55ZS\nZwEv7WOkh6lZBrVxAtumH41SyS6RWMOd5jnWyzVKep5PnDzKgw+UqZUNvSRkPlbktVH04ipLn3uM\n0f/+B8jCKtJoqqEmnHmOd5/5HOU3v5ne4buZrR4lVk0kOQoJXnCjvwrHcRznJuLJjLo3IDMeFoEn\ncpQsZsmHGzC5u0KWWxpVi9aWfcMpxnhUqx7zizFhENAMBuwaq7HaGqfdzbgQ1ajVwLxoR208yMgy\nje8rwsij0YxYXe5vPn65P16J4PgRS5pbpIAnZ0osdj3GJ4snTO2rcfFCm6TV5gMPlhltbu8CBT4c\nnMjYNdzDV1uvoxxkjNcF5+c1WpXRwGQ9ox5ZatG2U21qlF/BF+w4rwE3CLiJaSNozD2Dl1+ZRgj7\nq/TSAd2hKQyWXEWUeksMnnmC6Mi9fPPsLg7ct5d6TWGwICH0Ybp0F6PqIVY/8XdMfeAYbV1CDE0A\nmvGn/it4ltapaVaO/xxCChQ57TTg6O4b9/kdx3Gcm5MnPYQo6su8mLES5Xk883yPo4d8RpqCcgSX\nVhS5hqXFAVobxiYz1tqC0aZCKc3ifI8wrFEtK8bGQpaWiul1a9kcBACE4ZWuixDQHC0T+YK9Qxl/\n9U3BaqeoYFwq50zt8TYjWqUSHDhY54H9HsOV7ZuFL+ulltDbOewn8jSPnQkIK0WQ/7nlgL3NjPsO\nJpyek3TirSsEIzXDmw5d+70c50ZygWo3sfLaxS0DACi2K5Xac7CyhLSWKO/TbsHC47P0Rcibu1+i\nWffwlcYaKKscJSyJLNP+gY8ydNsoph8T5W18ZSgvn9u82XnLM/iXTpIYj9iUODgsqEYux5njOI6z\nled5eGrnecSzCwHPvdCl3y8y+jxzKuPJU4L1vkevZ/B8RTywrPV9Ls3laAvDQ5I8t7TWYqJIMjFx\nZWpdyq1Vge3GSoGQUB8qEUU+KI/ptYBLy0VoTqcPi8sZ56YHW67NIphvX3/+s+Rfu9MusEhxpV3M\njeD8qk9fe3zgeM6+MU3oWyLfcmjC8KG3aAJXYsC5SbmVgJuYF3d3PK50RrRwmrg9oFTpczEbx56a\nIfjUX1I7spugM4NpTOCJDGNgLOpS9QZUKzmld+5n4T99gvr/+D/RHwimPvV/bZ5XAOM1gRqVxX4B\nx3Ecx7mGclTm7FyfRiXHV9BPBOcWAh49U8YPLEms6ceWQQKrLRgb16ytpSgJvifwymXKac5qS1Gr\neAwPW5KkaHsqFZ9SSTEYaEplH8+7PAiwVEJDrRlRqYWbqwMASimCwJCmVzb3rrfz4hyl6+U02mqk\nLFjoFnsEXizOJJVaQLpl/7BgoePxln05U2OGQWqQoliFd5ybmRsE3MSsCoDejo9FSRvVBeGXqT3y\nOebOzGG1of5jH8D++R8jVzLEv/x1FnoN3jQ6jTUZIs2xD76X3fFn6D3zOFPP/tGWc4qJKbxDd72s\nfMiO4zjOG1ucKT77nTr1ck6zopld8emnRWdbKUG9JjY65IJcQ7utyTKDlIbmUICHplyVICWVSk49\n9VldKUKA8txgLSgli5l+wJOWI5Oa3sAjFTvn3AxChVKCJNEYYzEG2t18cxAgsEzUr1PoAAh9iRIC\nY+2W9jDVgktLklRu3yenr5o3K7ltdM4twoUD3cRMY2LH41p6hNUS5fYC6WqLYOks8aU22coy0enH\nuX2fJv/AB1n6959gJOpQsV3WzQhKGGbrd9Nf7BCuXtx60koN9a4PI1w6UMdxHOdluNxBXm77nJ6L\nNgcAl+2bCqnWfIaGik68FFCqeExMNvF9hY67ZLkljXNmFyxCetTrxXN7vZwsK8JuTJrwpgMpP/bW\nhPfcnVEKrx2mao3F8yXlir8ZQtQfmI0QIsveoYyR6+wHuGx3w6cWSgappJ9I1roKtCKVO9fMqUdu\n9dy59biVgJuYKTWwSoHWm6VLrBBI3wMpUL0uXsey/O1prLWMHG4iOh2CQ3fQ6Qc0vv9u9tZbWHza\ng4iyP4ySIdNfucQdf/XbqG9/Abu2hChXUcffg5xwqUAdx3Gcl6ccwnBdsNqVmyMCnRu0tpTLknLZ\n48A+j4WllKEhRRgGVKze2NhruHPS8PSsz8JCQqUcYLQhjlO6XY/p6SvZf9o9y1g1Y3yjps2xfYan\nL1heXNTLGovRkKU5UdnH8yVCWDItmZ3p88EHYLLx8jrrQgiaZZ/mVZl9rIWVQc5CZ2ucTz3SHB7d\nudKx49zM3CDgJiZMBmEJdI7VurjJen7xX2OIF9aJ9gyz/PQalaky1oPlp6YJO5a9b76P8ac/z7OL\n/4LbxixpZln3R2nma9R/819gVpfwf+AnbvRHdBzHcW5Rz89IepmH8q50xqUUKGMYHwsQQqAUjAz5\nXJo1NBsCnUkyYzHaMNcfZr1niGNQEqxNmbnQZ/ZSjFISdXW8/1X9/fGGJZCaOFOIjcVra9isHaC1\nxZgiTaj0FULAwqplbsmyu/nKP68QcHwq5vSSYaWnMBYaJc3hsYxgozdlLSy2Jet9xXgjZ6jskms4\nNy83CLiJmVITay1CefCiLAw6SemtxFQ6CeWJCN3XLD22SLI8YPxtLcJ2laWvfQ17ocKlX/gVyrbF\n6Ys1HhxdQdxxlLn/998z9Zv/CpSPNQaLQQi1rQCK4ziO47yYtfDUtCTXW9sMIQRBoKiUroSWBoFA\nSpib6XPoQIlWD5Tv0Yo9ur0eQSBYXRmgc1104K1GCIHQBqkku0dg366t77Nv1PDsBbEZknS5tIA2\nBm2K2gRSFmsFRhcPPvS0ZLENb7vdMLxzVM9LkhJun0g333N61efJmYhMC3xpaPcFy21Z1E6QAbub\nOQ8eSVAu0ta5Cbmf5U1M1yfR5dFtx22es/TQCcbecRfl4TIqioiXE0xsyfuapJ3Q/vTn8ZRkX+tx\nDmbPMtSU7B2O+fyFQ/RkDfmjP4V96iHi3ir9ziKDzhKD7jJpsnNGIsdxHMe5LNOw1t25C6E1xMnW\nsJs8M6ysxHiexVhBHGssYDJNueSRppow8otOvS0688ZY6mV475sU8kUTVO+82yBFsXn48gDAWEu+\nsRogRLE6IKQgywxKCowVnJzz+KtvK7pbM4e+IqeWAp5fDFkfePRSxXrsk6Pw/eJacyO4sOrz14+H\nGAOnZgWPnZGsdr7793acV4NbCbiZCUF84G34Z7+NXJpGKEW23mHlO6epHNpFbTQEY9BpURRsMF9k\nEhosG+JLa4zcPQw6JWBAY+F52uXb2TMesJ5U2TtUo3fhDO3/9kUaP/wOAKzJyeIOQij8oHQjP7nj\nOI5zE1MSAs8SZzuvHntXxe/EsWFxvoc2lulLKZVamSS1BIEhKoWkqUFIgTEGz1N4viKJM8JIsnsy\n5NEz8PBzgqGK5d6Dhsg3/MOzliwxxGlRBEwpiTEWC1fCkwTo3IItViKUEvi+ZLVjeehZwYePXz9L\n0GWvdgUAACAASURBVPXkGmZbHi/elyClIAosaXbl2Hpf8h8+5zHIBCD4hxcsRyYNP3i/3jENqeO8\nVtwg4GbnBWRHvp9Sfw3VXkCVYOrdRzYfjldblIYF/ZkrL+lPL4MSrL+wCFgqJ89StW3C2/czVJL0\n8waJhLN7f4LRf/dz1N77NuRV1UzyrO8GAY7jOM41KQlTo4ZnLm5fDShFgiAojqep4eyZDpaiIz47\nl7DX8xkMNDrXIKDbLZLuD/oZQhSz934oiOOc+TXwPEG3k7PWUUXV4czS61+JtTfaYozG9yVKCYSU\nWL31moQQIARSFtcxvy45vexx2+grGwisDSRxvnPtAfmiw54n6KcWsbGBIc0Fz1xU1EqW7zvqsgo5\nN44LB7oVCEG69x50prcsieZxSuu5c5R3RfgVhRqq0Xz/28FAUIuIl/v0znc5/3/8R+h12LPwdQ40\n1vFNzMCWSXKPo//ze1j+T5/Z8nbWuJuS4ziOc33vuktzcFyj5EYFXyySnEE/Zn4+5sKFHo8+ssJ6\nK6cxVEJtFPzqdovY/3Y7xxpI0yIDntwInPcDhacUvi9ZW+4jAM+XdFoDWq2Y3Gzvukjgv3vQcN8h\ngRQ7d20ERehQo6GQEha6HskrXAwo+VsrB1/NvuiwFAJpss1Kx5edW3RdMOfGcisBtwg9eoDFR09R\nHSnjVSL0IKF16gLJ4irKV5T31qn96IcpHT1A66FHSDsxbGyGSpfWyeZmKR8+SlfH1GnTt3UyI+js\nuZ38r/9my3u5WgGO4zjOSwk8+NG35syuCubWinCdb59WnJuB1ZU+xoAf+lTrIZ6viEoe62sxvW6K\n8hTWQpzkGGPwfUWa5Phh0fnXmUB5ivZ6n+Vlychoibjv0evEyB3aKGNhcV0wNQYnpne+XqmKDQfW\nCHRuybRguSvY07T0E8OTp4tm875DUCtfvx2shpbhsma5t70blb9oYBEEUK4oevHW2J+rQ4Yc50Zw\ng4BbSJZLlv7hyW3HLTD1P7yf8g+9m+5si9JIjf7M2ubjo8d2YdcSBpUxSt1lamnKeng7Ruf0R6YY\n/rF3bTmf55dxHMdxnJdj97Bl93Ax6fSt01CuhpSr2yv6SikplTz6vXQzNCaJc3xPYYzBWEs5CvE8\nRRgq6s2QXjsm7qUk1SJk1Q8Ua0sdGiPb0/ucmQNtLY2KodXb2om/vB8ABFmmsSh6PYMdsXzrOcNX\nn7Z0NkoTfP0EvP1Ow7vvu/5A4K5dMU/PRqwNFCCwttgL0Ltq07GUlnKQM5NuDx0arrn0oc6N5aZ8\nbyHhvcd3PB5NjjP69mOUukuoQXvLAADAClg7tULymf+KCSLGuqcYlUsMB11Ea5l88gAAUnr4Uc3t\nB3Acx3FekfHG9Tu2QgrsRlir0aZI4WkMeW6JSj5RySNLc2p1j3JJkWWaNNX0ujFQhNqkaU6abJ9G\nn1kRfONZ6PQMYmMjsFTgB5KotJECWwAIPE8QJ9DqGr74+JUBAEAvhq8+ZTk1c/3Q2HJgeWD/gLdM\nDTg6ETMaxSSpoZias4S+ZbRhabf1tlSq5dBy30EXeuvcWG4l4BZS/uBPoVtrKJkiGw1skqAvTDP0\n5ruLnMpY/Hh7is/WySVsvszuikcwc5rurjuIpMVLUtLyEMlSj0f6+7ljMue2mrspOY7jOK/MA7dp\nzsxLBunWOUZBkTknSw2eJxESdGrIsqLN8XxJrR4hBOyaDPF9xdLCAGshz3KMiZASsqTYRzDoJfiB\nt1nbRiqx+fcgAaU0pbKH1jAYZGRZsQrheZIwkqQphDLj778jSbIX7SKmSIF64pzlyJ7rf14hYLSq\nGUVzYBj2jxqeuijJjARrqXqGqSnNRA3m1z2SDIaqlvsPGvaNuZUA58Zyg4BbiLCa+vt/CJFftdb4\n9rch4zZkxTH/wD7Ul79B9rm/Q/3h71F98x10HnoMgLlvniMY+wLhL9+N/IeHKY/fjjq6i13Tf89X\nho+z1otQMuHg2PYbouM4juO8lFoJ3nlnzheeDjaPeRsd9MEgK3rNFP8flhRKSbxAUi77KCUJQ4nA\nsrQw4OJ0GyhSYAupiPsp/Y0VgSzV3HvQcGrOI9NiW6FLrS3WQhAopBT0+zlaZzQaPkIopM2Ynrf0\nE4HyJHm2fQLslcTsj9cNP3i3Icvhr78FXz8JcQqlAI7syfnJB8HbOamQ47zmXDjQraS7uHUAACAV\nWVjDbuQqzkWAV68S/MRPEn7yU0z+8k9vPtXzPVaemEV11+j/6V8y0j6JEIJGPMdPhH9Frg0n59y4\n0HEcx3llrIVTCwFhoDb/UUoipcDzFGC50l+XjO+qMDZWplLxiaIiZKc/0FycbqO1Js801XoJow3t\ntaIWzuUsQkrJYlXhJSrdK1WE/2htSVNDr5ezsp6zvlG0S10jWf/EsGBpHf7uEfj01+HLTxShQi/H\n33wHnpkuBgAAgxSeOgd//+jLe73jvBZcj+9Wkvd3Pq48cj/CywasehPFIQnp8G6ysQRZCtn/z99D\ndOwQs3/+MJx8Ft3pE+4eZz6vsCfXNEWbnxh6iL8fvGvn93Acx3Gcl9DuCxZbO88vFhtz2czus5G6\nfxspBTrXqEBRa5SISgHWWurDFUAw6MdYa5lesIzUDDMrO6QM3dgTULyPQClBnlu63Qxj7OZxIQRS\nCfZOVcAaVldT+n3N7hFoVgX/+YvQT66c9/mL8OPvgF1D1/4OBimcndv5sTNzkOXgu96XcxNwP8Nb\nyXXCB3M85r2DzAaHN4/5StOiSe1T/4UR7zxGZ+x92wT4EcpPScb3M/TQJ8AaVL9NdbfPPcmzwG3f\n+8/iOI7jvC69OE/+1a6etY9CQa0qN8KFINeWOLYkCCb3j2x7XRD6pElOqRzR7wyYXzEoaRmuh6y2\nryoeZixJnIOAWi3cOFY8pvWV51lrEcKiVJHdR0iPvXs8KrLP++4x/NlXxZYBAMBKBx5+Gn7qOvNl\n3f61Vwx6cTFIcIMA52bgwoFuJf7OWXtSLflG/n08Ze9jkF0JNqyJFikhuj7MTO0u/HqVxpCiXLaE\nx47S/uJDZF/8W6y1yDzFzxMOpSeu3C0dx3EcZydGE1x6itKzn6d84m8Jz34T0W9RL1vGGzu3IcZa\nPE9ircUYw/paUkxCqaKSb+BLKmVJnu1cwevqYlthudhzMLNUrAbkWU6eabJMk8QZWlu67ZQ0ydH6\nygbky6sRVxPAoF+8pzbQHI5Y7UoW1nf+6DMroK+zda5ZhWbl2o9Vomu/1nFeS24QcCupTmC9rXeP\nzCrOZ1PEslgmjXOJNlBNlznQeYrAtxihSP0yamUWUSoRxm3Kgcb72z8n68ak3Rg8D5UNKJsW8szj\nN+bzOY7jODc/a4nOfINw7hm83jJqsE6wco7S6YeRSYe79mTblgOMseS5xfOLGH4pJWHkcfp0Z0vn\nXilBtbp9mlxrQ5Ze6XlfvaLw3HmNkMXgwhqz5a17vYw41ggBnifxfbUlBMna4lxZZjGm2K/QGly/\nayQ2/7Uz34M79+382N37i3Bdx7kZuJ/irUT5MHQQWxlnRQ9zKR3nycFRZvJdVz1J4MfrHG19jXK6\nRsn0CUoevspRl84iazVEGhO8/8Pw9vchlETVqzAygchikmgIdfKbN+wjOo7jODc31Z7HW5/Zfjzp\nEMw/j68scVLMvue5KWbnU7PZ4YZiL4AfeESRx9ra1tgZX1oEGp0brLVobUgGW1P1XD1w0Nps7C8o\nBheeJ656zBarDIHa3ERcKvnb9iJYC0ZbohA8Ydk3BhPNnT//npGX7si/73545zEYb0IpLM713vvh\nHXdf/3WO81pyUWm3GqmgOs659YjODhUIAcbj80RmQCpLVPJVemqKRrIE43v4/9m78yBNj/rA89/M\n53zvt+7q6vs+dEvoaCQECCOEAYFtbDAz9jjs2ViHY8yGZ8fgWMfaDkf4j1mHY9fY4XBsrD3r8Y7H\nXmAxgwcEBoQsARJIQrfU91HdXff5Xs+VmfvHU0dXV1WrJbWk7lZ+IhR0v8dTWW8X9eQv85e/n5ga\nQScZ4aYNODtvxz/3EtJ1EY5D6gSQzmNa8zinn0NtufEt/uYsy7KsK53TGEesc0hNdubo7jf4riFe\nI6tncfK+OGkXjqTVyjh19ByVesC2HV20OoqZ8SZpZhYO9Upcf+V0JY0z3IXEemMEWpuFHP88EBBC\nLZUIdS6YsTuuICx4dNop8rynggB6alBxFY4D99wA3/wxNM+LUXqrcO8l3BqFgPfeCPfeAJnKy4K+\nShEjy3rL2SDgKlULFY14dRAQ6Bab0+MApG6BQtogcwTFqZO0S104qcHLOhR0A8d3Kf0P/47sO/8A\nx48S3/I+HCU5sfWD7Bo5YoMAy7IsaxUjvfWfc1yqRdjcqzk6uvoepbI8N18ulOWUUhL6mvGxFuNj\nLSbH2hSrBTIt8vQeY9BagcjLXBtjSJOUrv4KhYKg09akiUZlGqUUvp+PLSy4GJ03IVsMDgAQLOwW\n5Kk/vu8iEBQKgk2DEteBGzbldT33b4aBGjx5FDoR1Ctwx558Zf9SdWJDlORnAV6tlKllvdVsEHCV\n2tqV0oglc9HyP6GrY3YlLxIQg1YErUkmi9uJE0EjlQx3HWSf8wyer3AbU8hiQtI1SP2ue4gOvYJP\nSlqugd+LGD30Nn53lmVZ1pUq7duJN3EEJ1lZttoAqp632H3fdRlTDUkzyvcMjGEhNWjxIHA+OQ9C\nwexssnSNudmIKNZ4gYfrOWQL3XyzTGEw+L5HvbcC5JPqjZsKjIzERO2U2ckm/UN57U4hBUHg0mrl\n1/Z8h3rdo1R0aLTyFKFC0cPzHAJPs2e7h+MI+kspheU+Z3RX4f5bX/tnNNfSfO0HihMjhjiBgW64\nfZ/krgN22mVdOexP41XKc+CmoZiR+YzO2WFc1WFzcpS6ngGjIUtxEEybGgXZpt23m24aZEEPMp5A\nYNCdNvNhlb6eAWT/LFJlOEJSV+Nk4TqlDSzLsqx3Ni8g3nwrwfAzyKyDlhKRZWgnRBkJxvDDwx7N\nWILIz9AKkVfmKRTcpTKdnicohvDi8ZVleJTS+AtpPZAHAUIIat3lFa+LIkO56OC5ktSV+L5DuxVR\nKod5/r+E3p6A6emYJFZo5VCrhriuYnpW4Xn5TkW1LBHCUA8Vu3oS3ihjDP/wXcXJ0eWUqZEp+MYT\nmlKouGGHbRlsXRlsEHAVkwI2lmNKzUeR2eqixAJDt5kiDrtxdABjp6CrAFkGSlOKJjnObrSj2dQ1\nh4dGGqh1JmgPbkfGLdzABgOWZVnWSqrcS7RxHzKay2f4nSbO2DDhj79KtOEAp2cfXPUeIQSeJ5DC\n4PsSoVN+/IMxsmx1SdGlRmICWDhQnKUKKcVSx+DFwKJadYlihRf4NOc61BeaiiFAGcHNN5R5/uUW\n8/MpeoMhDCSOVCidBxyvHOowPgIH90u8oTdeL+Xl05pTo6vPTKQZ/OSwtkGAdcWw1YGudtJBFypr\nPpW6IX6tgOdokFA48jTlaAapEzCQJXlDsePRAPPV7YwWd6CQzHTvRVV6GJuJWeN3s2VZlvVOZgxi\n9iRTkcchuY9DYi8z4UbU5t3oco3w3AvsiF9Y863FQPAbH874xK0tnnlyZM0AwHGdPF1IG4xe3DVw\nMBpUZpbOFZSKDlIK4kSB0RiTnws4/5pCCKIUbryujBSglcJxBJ6fnzmIOinGwNQcfPNJzYsn3/hN\nb2zarNvbc659kU5qlvUWs0HA1U4I0oE9GLlyU8cAUX0DWroExEycmIGN2/GSJkIplB9wVm6kQEKc\nuZzztpB6RcbD7Zz29hFpD2MMX3/OdjWxLMuyztOa5LDazmSwBeMXMX6R0WAHh7wb0b1DCGAnx9Z8\naynQuA6AoK/bw3EdXM9FOnn5Ttd3CcL8cK8R4Dj52QEvWD6MrJXB9wWDgyFzczGjZxp0WilRJ8V1\nHLI4BvIKRaiEmZkUITSbN4UEQR5ctOZTGrMxndZyCaM0g2eOvvEgYKBbrNtGoFa0h4OtK4cNAq4B\nWf8uOjvuIi7WSb0CcaHO/MBeGv27cXWKpyNuOvn/UR/qQpe7UGmKOnWK9PQwVTNNlgpwPTyd0nZq\nxNpjTlVpJAFBKDg5bn9MLMuyrNxwu4jwfKRcTtuRErQXcLa0B4BKsFZLXcPOQY3Whv/7aw2m5par\n9kgpcVyHIPTyXQAW6v4vpP50WitTXvt7fZIo5dCL08SdlDRJUZnC9T2kgO6aw/6hJvfvHObs2Qbt\npkIpSFOFlIY4zkiS1WMcmcqDgRWjNoZzU5pTYwqlX30lf/8WydbB1ZN9z4Vb9tj7qXXlsGcCrhFp\n9yZiZ6E6g3AxCALVQWJAZdDdj3Ac0IYsE6QvvUBp8xBpuoUgEJS9CIxG6hQQNLICp2Z8XE/y0pjP\ntv7VZw4sy7Ksd54OBZw1FrSlgJniFrYCXVs3sD/KOD0paceCWtGwc1Bx2w7FD5+LGB5dK0iALM0n\n8ouEFAvnAc5foTecPjHH9NTCfUmAyQzFso/ne3iepKvucuS04URxI0MbfUYnEzqRJpgx7NhZZ+PG\nAkeONFd9/UYH/ubb8Av3QrUIJ0cVDz2hGB43aJNX+bnnBod37V1/+iSE4NP3OUvVgaKF6kB37pf2\nPIB1RbFBwDVCOD5ID6FTXLNyGUPELczemxDGIAA1PgpA4pbxpU8lTNDCIxM+JT0H9BCnLu3Mpys0\nBJ7NYbQsy7JyFy13LyTDOx6gZ8d+3i8zkgw6iaAcmqUuu1Oz66fcGHPh3xebgBmSJMX3PbJUMTe/\nvDDleg6VWpFWI8L3XaQrKZUcZpuS9nTC3r0FTp2Yo6unxPCZBtu3VymVHCpVj8b8yk7E0pGMTsP3\nnoX7bzN86ZGMqbnl58em4es/VHRXBDuG1p/QV0uSf/VBSTta7hOw2BvBsq4Udl/qGiGEQIbV1U9o\njeN7CCnAKIgispPHaQc9jG55N4dmuhkqN2hnDpkWOFoBhpmmS+CB52qq4dorNpZlWdY7jxTrLwy5\nZEz3XocWDi+cgidegXOThvPnv4O960+eL2yopbVBa00QejSmW6hMEbVXlvEMCj4Iges7xFFKoRQy\nPWfItERlhlMn50jilPmZNlKAFIJ2x9DXF573dcFx5VJ34bOT8PhLakUAsKiTwFOHL+3sQDEUdFeF\nDQCsK5LdCbiGyEIdhETHTdApMu0gswhXpQg0ZBnZ0Vdo+T2cPPBzTJs6zXlJlrVwBDTSkIAmUQKt\n1KVaMDhCcePQGr3fLcuyrHekvjBlPPJX7QhoA5vTY8zGJf72u9sYmYbFGp9PHoWP32WoFuG2/QHf\nezLixNmV9xbpCMLSwqFgY1BKk0YpjuegjcBxHbIsAQxSSqQj8AIPx3GAxUpCBiEFrbYmCH2arTZT\nk4p2s4M2ee+BTEEn0oShQ7nikST5hP78ACRKDXON9YOdZsfukFtXPxsEXGNkWF3eEVAZZT3N2ZEG\naQat0Rkm/fcwc+8tBIFk0MCRkzDb9sBxQDpkuo/MCLrKCldkbO1K8exPiWVZlrWgWg5J54aZ8YeW\nc4OMoVePUOuM04q7GZk+P0IQnJ2C7zxr+JmDeVrMgQN1Jpst2q14YaXfp6uvRBh6jJ6dI8syQFIo\n+wgESpmFvgEOpWqIWcgbWpy4K2XIUkVYzHe+00STpBqBIO7EaGUQKqFSr9GJ8wpDZ0/PUCqX0Dpb\namC2qNE2HDonkQ5otXrVv16yK/vW1c9O765ljkurtJ2nTho6iYSagBqgIekYSoGiqw7d5ZRXxitk\nBrqKAb3FjK6Cor9i8OwZJsuyLOsCG5JzDKbDtP06Qgp81caNW3iNSUbjoTXfMzwhiFND4MF022No\nWzdaabQxOAslQjGGsOARdfJmX1oB5OcCVJbvDKhMs1iIX8o8DchxHKQj8sm+EERRRhzlOw1ZmmGU\nJs3ynP84UiSJYmy0zdBmn3LFo9lYDgTycwj5WQbPkyRmuV8BQLUEB697YzfHM+OK8RnDzo2Svr43\ndCnLet1sEHCtMoZs5DBadbin6GIqLrOxz8Nn91AsBziOJEolhVBRdFO0yWsnHz+XcfMuYQMAy7Is\na12qewuFE4/jyUm0H+DEbaRWxG6Zbx7bseZ70iz/L/AgXThqJh258nCiEPkZNlia6BtjUKlamJwL\nVKoRMi8rqrUhiTKCUCwEB4IsM7QaCSrTGG2QSJTOuw0XCy7tdkqWKTzPRWWKWjWk2YhJkgzHWTkt\nEkLgunKpOpHnwifukQz2XPqRSmPgySOC42OCVgSNpmJqOiOONcUQbj8wzwN32IPD1lvPBgHXqOiH\nX6Pz0NeR7QbagNy4merPfZr7tx/m60d2UKoUwHfoCSMCVzNYadFMQ0YnJKzb69CyLMuyQNU2EA3d\ngD95BK/TwABZoYt0ww3URjwm1jhQ21eD0sJZ3N6KodFZ/ZpyqNl3wPCNH2R5zVGTp+MopZHu8sRb\nZRotDW7eeYwsUyRxRrHk0mpE5KcD8gDC8SVID+k4OI5AZYbJsSZpqqhVXYwGP/A5eXiCeneBcr2C\nXqcfQJrB5Cyw9dI/q+88J3nmuIClFmKSUtVBzUa0I8UjT0dIXB64y7vYZSzrsrPVga5B6cs/Jv7K\n/0vJV1QGa1QHqwTz48R/+X8QSsO7+04yNZORKUNVT+FnLYq+puDl7dSLnt0FsCzLsi4u699Fe9/9\ntLe/m/au99LZex+m1s+tOw2eu3ISHbiG23abpSMEt+5QlIKVr5HCcGCT5kMHQ/7XX6twYIsgSzO0\nNnlnYXd53VIIQZZkKJVvKWSpwvVcjDF02nkakOs6aKUpFAuUSgX8wOPM8CxzM23mZ2PSOCONM2Zn\nIowxBKHP7HSHcvmC9dEL6pZOzV/6ZzTXgleGzw8Aco4rKZSWJ/2vnLJV+Ky3nt0JuAZ1vvifKPWW\nlzotCiHwyyHCSUi/+WUKD/wb9iRNzrbqFAoRgWoTa4lwMrYMOgxW7S8jy7Is6xJIB1VfeQbglp1Q\nDA0vnoJmJ2+6deM2w44Ny6/Z1GP46LtSnj3hMNuG0IOKF/HSc7M8/kNFT93l/jsrnBqD1kV6VWql\ncRwnDxQciTGGNM4wWiOlxPM9lFYUiiFaazrtlPHxFhgw2jA83GJoSxdz023kQge0iXNzVLrLRJHK\ne+tccGi4XLz0j+fYqCBK107zcc/b2WhFi/0QbEqQ9daxQcA1yMkiZDFc9bhX8Ilffgn/gZTthTEm\nsiqDpRYOmi45z7H5LrbVOmSpA/7bMHDLsizrmrB3I+zdePHU0sG6YfCWfNX+saca/N1Xp2mdV3rz\nmZfbDA6VaUWrt6YXqwMtHthdrO9vzMIZgsygpQIBjuPgeJK4mSy8B8o1n+ZcQhznO+BzM52la8Vx\nRt2VGJORKb1iI6C7AgcPXHoSRSmAPDFp9eT+/Ov21KQNAKy3nE0HugZd7HCRSRWl00/idOYoZPME\n8Uz+uFYUXSCZ5W8f8fnLb3qMzrxFA7Ysy7LesZQyPPQv8ysCAICpWUXSjrnwnJrWeikNiDXud4v5\n/EobsjRDCIExeTAggKDoEXc0jitxPWfh6gYh8z+F5WBh9V/gOJIgdCiVPTYPCH72XpdS4dKnTrs3\nGvprawdDSZwHQIEHd+y3ObjWW88GAdegLFn7F47RhvnxhM5D36U2eYT7n/tD+P63oTVPe6LBnuo5\nBisRB6/LqFfgiz8MiNM1L2VZlmVZlyRKNVMtxVRL0U700ir+omPDMcOja99sRicStg3kZT5VpsjS\njCzJMCpPn/GDixymNSAWUoQWdwp6Bqt5VaBUUSoHdPWVSWKF60kwAs93kELSbi2OR+C6Dl3dBSr1\nEql5bQkUUsAHbtT0VZd7DQgMQqV4JmHHkOSXP1rh1r02McN669mfumtQu+96/ObLeIWVvxzbEy2i\niSZ01yg5RapkdLSgMHqS67ITRN5BYu1RKsDeLYqZBnzzGZcHb7cdgy3LsqzXbrqtmY+WJ/2N2FD2\nDT2l5fQXzwUpQa/uyYUj85KaazXsko5ECoG+IKjIV/4XmomRlxyVUlAo+fiBS7sV4/oSA/i+S6sZ\nE4QBadKmd6DG3FSTsFrEW+iUuXj9+Y7kB4c9Brtiaq/hXMDGXvjX79e8MmxoxrC1zzDYJTAmRAhB\nX1+BiYnGpV/Qsi4TGwRcg/p+87Mcvf9D9F3XT6G3hFGa+dPzTDw3QXmrz8zDh9l+2xOkUQK1Almp\nC9VuY4DIBACEPmzuN4zPOIANAizLsqyVWhF85XGXqYZAG3AduHVHxt3780lzJ10ZACxqJhB4hkqQ\nBwHbNgbs2ORz9HSy6rXddY+RqTWiA6Do5yk/qxnMQg6+MQYpBUKIpUDCZJru/irN+QilFGHBZWaq\nhco0nVbM/GwbN/SXggDXWU6a6CSCF4Yd7t772gpoOBKu27o6WLGst5MNAq5B0nUpHryFke8+QTKf\ngga34lLeWkBXu4lnTpDMNMnaHeSufZhKnaTYx7yuM6crS9dxXSgGFz/YZVmWZb3zaA1/+z0370a/\nIFPwoyMeUZLygZsM7XVSUwGi1FDJ15wQQvDJB7r4qy9NMTG9vOi0Zcjjur0lxn68OjgAqJUF77vd\n55++n5BkLJ29FTJPAcrSDNdz8TwHrTXzsx2kKylWQwQCKWBseJqN23pJ45R6T5Gx0zM4C6VFjTFo\nrRk/16BWH1z6ukfHPGolyfWbrsx82WMn23zju+OMTSRUKi733tnNXbfV3+5hWVcgGwRco9zP/THO\n/i9T+6e/QWYJxnVJ7vskycGPUTj5q6RZinPbu5FbdkJ7nnZ5E7EooFmusDDfgpu223KhlmVZ1kpP\nHxMrAoDzvTjsct+N6UX7Tl6QwcP+nQX+4N8N8u0fNphraAZ7Xd5/V4WxKc1jzyQka8y3B3oc7r7J\n58vfaZFpges5IMTC2QGFyhRSShxXkiX5n+MopVItkKUaR2iidsr8bAfPd6j3VJg8N0etr0inTKtO\nDAAAIABJREFUmdDTXyJJBI7rMDPVoqunBIDSkueGHQLXsHvwytopf/7lef70/zrF1MzyB/bUc3N8\nZmKIjz8w8DaOzLoS2SDgGtVREnX/p+jc/6kVj0sg/M3/EeeuTciwkC/nRC3E1AnktptxhEEZmGkI\nqqFg34Yr6xecZVmW9fY7ObF+XRGlBaMzUC0LGuvsBgTu6lSYcsnlEz/VteKxzYOSm/b4/PjFlbsB\n5YKgf7DIobOCLDMorZFS4LgSpTQqyxewlMo7CaexyvsIKI3K8nr8szN5A4K4E7FvfxdRJrnxjo0U\nix5Pfv8sWZri+yGlaoGxkVm6eko4Dvi+wCA4NeVecUHAPz40viIAAEgSw0MPT/DAfX0Evq0HYy2z\nQcA1yqxRk3hR+d47kXIajEF0GjhPPkZNO7Q2XU+c+iQpbO0ybNp1ZW51WpZlWW+vSuHiz3/vZY9f\nuCuh6BvaF2TzhC5Uw0vPh//lj1Xorbd5+XhKO9YY6RPWSpyYDjkxbdi8q5ckVnkX4cyQxBlZqmjO\ntZGOzCfuVZ/WfLKQ4qNwXYdKNWBqIqMxF7G9x2Eq7ebo8Zi4FDO0qczkaJNte0pobfBcF98XBL5Y\nyuXvrNME7O2itOHEcHvN50YnEp55YZ47b7VpQdYyGwRcowquIcpW/4Jyspja7CsIRyPGziBffArI\ne4PVRl5ky423A2sfwrIsy7IsgPfsV7w0LFmrCZYjNeWS4OvP+nz0loSGa4hSgyHfAaiF4jUdim1H\nhnp3gTtqBaY7LsPT51e+E/iBh+u5aGXwjcHz8hKfpUpIqeozPxuB0YSFAM8TeL4hDFxEV5H5uRjH\nc3jk8Q4f/0jE+Jjk2LFZbrixl9HRFlrnpUir9ZBqxUVrw2KLgqJ/ZZ2ZkwJ8b+2VfimhXLK9CKyV\nbBBwjeotGTrZhYGAoev0ExR+8pU131O+SLlly7Isy1pUDOG2nRlPHXNZGQgY9myG/m7DS6ccjIFq\nKKmubmJ/SR5/SfPo84ZWnrmDECl+YCiWV7a1X4wphBD4gUuWaYzx8DyPsKCYnmjg+S5+4DIx2mT/\n9VWSJCUoBhhtmJmLKYWa+bbA8xzOjURobRg9M0dQ8BjYkNcElTIvPyox7Oy7snbLhRAc2F1mbGJ6\n1XO7thU5sKf8NozKupLZIOAa5TmwpaaJZcDM2DRuZ5auxglqzZfICgV0p7Pi9abag7P75rdptJZl\nWdbV5t7rDDiGw2cMSQKVIuzYCLWFInNdFcPjhyDNoL8G+zYvT9YvxfiM5uFnDfF56UTGQBxlOK4k\nCJenMPnOwvLKvOtKEiFQShMWPMqVkKidIIC4lTI70yaO8hQijQYER4YljiPo7S+hlEClCsdzSBKF\n4yyvorsO3LwpZlvflVc441c+tZHxyZiXDreWPo2NGwL+zS9ssiVJrVVsEHANcx3om/gJAy8+ijDL\nv6ycoUGSsTFUM88dNH6Iufl94NqtAMuyLOvS1Spw1/XrP/+95wRSSsDw9DH4xLsNpeDSrv3MMVYE\nAOeL2glpklEsB/nq/Br9AoRkRZUgMKhMk6aK2ekOSWIQUqBihV/wmJh1yLIMISRCLlxPCDrNDtXq\nchAQuIYd/VfWgeBF1YrHH35uD4/9aIaTZzp0VV3uf28fQWAPBFur2SDgWqYysuPPrggAAKSUuBu3\nk6UOJizB3tthcOvbNEjLsizratVbUsxEq3PNkxRGpzTbtxU4eaqDEJLhSfjuM4aP3fnq100VtOOL\n9BnoZLSbMVI2qfUUqdRW5htlmcZoQ6YNaZJhBPiBn9f/1wY/9MhUilb5PbG7v8rYZEoWa0pVj+Z8\nvNR1WC80HFvUU1Y4rzKnPjKsOHw6w/cEdx5wqZbfukm4lIJ77+rm3rfsK1pXKxsEXMPk3Bg0ZtZ+\nThrMB34R3JV5lUrDmRkXY2BTd4ZrFw8sy7KsdQxUDPORRrGyadi5SRjsD5FSsGdniZcPN3Fdh+EJ\ngdJm3Ul0ksF3npWcmhC0I4egoImjDKUMznkT8SzLUJnCOJKZiRZSCooLWwy+LxBIzp2axfNcStWQ\nNFXUuko05zoUywGu5wJ5Tn+hFCKEYGayjXQEg5tKeI5hakyitUY6ghefneCm2wbRStNbXGd7AtDa\n8Hf/HPP8UcVCg2K+/3zKh+/yufM6u9tuXVlsEHANM34BHBfU6m1L43hEjz+CGj2LqNYo3PsAp5oV\nXh7xacT5qs5LI4p9gwk7+q7MbU/Lsizr7eU6sHdAM9U0vDzikGTQ6DgIx8NfmLMXQkF33WO+qclU\n3p5mvSDg609Kjo4sP+l5Do4jmZ/tkGQG33dJkozWXAdjyFN9XMncVIuu7gK+LwhDB61ciiWX5nxC\nz0CZYjmf6Lu+pL+7myzTaLW809CcbRO1E7TWTI636O0tUKqXyOKMeleRsTOzNFu9tNuap2KHXYNq\nRVCy6JGfpDxzeOXue7MNDz2ecGC7Q6V4aStrxhhmGxrfE5QKdjXOenPYIOAaZsrdiL6NmNFTq57r\nnBuj9chXl//+2Hc4fte/p9F/09Jjzdjh2TMBtYKmp2zLhlqWZVmrSQHTTYeTEwHnVwryPaiW8sZc\n5bLDfFPTVwdvnZnH6AycHF89sZZSUCh6zE63yZKM1ny0ouOwzjRJnFGrLa+0O66g3l2kOZ8wM9mi\nUAooVQqUqwW0NkSLzQuModOMSKJ04a+GViOlUvHRmWJgsAxCIh1Jq5XfBycbgj/9Yszd10nuvH7l\nbvqRM2sfFm604YkXM37qdn/N58/34xc6fPuHTYZHUzxXsHurz6ceqNHXbads1uVlw8trnHfrB8mq\n/UtVAgyCqKOZ/sGTK184OcLWJ/56VS/3VElOTNktTMuyLGtt7Vjw7LDPhT0DkhQ6cf7nNNUUA8Pt\ne9bP8z87JcjU2hVspJP3JIijZClX/3xaaZRauVil0vzvaZzRaSUImQckSZQSRylgSOJ0KQBgocCQ\nygzDx6eYHZ/l1NFxtDE4riRL811xIQRT8/CVhyOeP7qyTGh2kY3zNHv1vgKvnIj4L1+b5dhwSpJC\nq2N45pWY//OLMyh1ZfUlsK5+Ngi4xslaD53bf5boup8i3nEH7Rs/xPgTL6DT1b+pqhOHqI2/tOrx\ndI2mY5ZlWZYFcHTcJUrXnk4kaR4A1PyYn323YdcGmG9pHn9J88wxTXbexLa/ZpBi7Ynu4oFeL1h/\nUWp8PKLTye9tnVbC2EgDACFFHiQsBAVZpug0OgwMVdmwuY6zcPhNa43jSYzRNGbzxgRRO2FqdJae\n/jIjZ/MzdmmiaDcTohSeeHFlELChd+3PwXPhwPZXX8l/9Mk2zc7qz+DE2ZQfPttZ4x2W9frZvaV3\nAiHJNuwBwKgMs85ShUTjJK1Vj1dCmwpkWZZlrU1d5BZhtGFHd5vrb5IYY/jWk4ZnjhraCzsE33/B\n8MHbBHs2STb3wVC34czUyoUnYwxRJ59sCyEQC7n4xpil1gBh0UdrmJ9P0SrjxJFptDY4jszLgwqQ\njkBliuZMG6Nh5Ow0W7b3M7CpzpkTkxhtCCsF4s7K3YY4VgyUC8xMt5gcmwOcpU3zuebKb/6+2zxO\nnNOcm1z5+M27HbYOvnrH3pnG+h/m2NSV1ZzMuvrZnYB3GOG4uJu3rflcp76JmaGVDcOqoWJ3//qV\nECzLsqx3ts1dGa5cewV/Z3/K9Zvz554+YvjhS8sBAMDELHzjR4Y4zV/zsTs0USdFL0QWaapozkd0\nWinSyVN5HEcu/SelwHEl9d68G26WGUaHZygHKdfvDSmV8rXOIPRQmWZ6bJ5OOwEMrbl8IOVagUIx\nz9VXSUq9u7AwujzY8H0HIyAIQ8bOzZOmy3n/4QX192tlya89GHDvTS67Nkn2b5N84l6Pn//ApTVH\nqF2klGhv3a7bWpfXq/5EdTodfud3foepqSniOOY3fuM3uOeee/id3/kdTp06RalU4gtf+AK1Wu2t\nGK91GRQ++DNk505jZqaWHwxCyvd9iK39MNVUGKC7pLluKOYiu6+WZVmAvVe8k/VWDdv7Uo6MeZx/\nLqC7pLhx8/Ii0qFhc+GxMwBmGvDUIcO7rxeUQrhxa8L3n9cIIFtI4ZFOvgPQaXby3H+TnxPwA4+w\n6ON6y6vs77mjxM6NRQBGxjO+9I0W7WbE3FTzvK8q0NnCtaWgf6jOiVdG6bQSugYqy2cAhCBNNGmc\nNx0TxiDIdxi01mRuie++6PPe/fFSxaNaSfLgvZfYEe0Cd99S5IWjMZ1o5Qe1ZYPL3bcUX9c1Xy9j\nDN94ZJbHn20yN6/oqbvc/a4KHzho/z98rXD+4A/+4A8u9oJ//ud/plAo8Ed/9Efcfffd/PZv/zau\n6xJFEX/+539OkiTMzs6yY8eOi36hdvvqXU0ulYKrdvxrjd3p6cfbewNogyiVcbftpvixX6R0171s\n7FLsHkjZPZCyqSsjeBsXHq61z/1qYcf+9ihdahvVK9TlulfA1Xu/uNp//t7I2DfWFQU/z+kv+Yat\nvSl37ogpnFcM58eHDHOrM04BGOoV7NiQBxB7t7hMzSpGZwXSkTieA8YwMzFPlqqlFCCjDSrLMNpQ\n68l3ArTKuG5rSnGhrGalJNFKcezkedsPAoQjqHYVqHaVAHA9h/mZNirTlKsFjNHEnRQ/8EEIEIIs\nzVCZxgtdiuWA7t4CXb0lZtuSTMOm7teXOnv+Z9/f41IrS6ZnFfMtTeDD/u0Bv/RgjVrlrb0hf/mh\nab700DTTs4p2pJmazXj+UJswkOzeFq4a+9Xmah/75fCqP1E//dM/vfTnkZERBgYGePjhh/nsZz8L\nwKc+9anLMhDrreVu2kb5X/362z0My7KuEfZe8c5jDIw0JPORJNOCwNPctDWhu7jYaRdePiM4N+0g\npaFU0CzN4M8jBWzpX/nYp38q5JNKc+yMplgQ/ON3WkycXaPnjYE0yei0Y4LAY3q8xWNPpHziw8ur\n1QN93lLlHykFSEEap2zctmnpNfk8Pw9CiiWfqXGNXwiQQiIExFFKlmm80KNUKVCrh1QqyxHOuWkH\ndl6enP27bylx8KYiY1MZhUBSr776WYLLLUk0P3i6gb7gnytT8OiP5/nQe2oruihbV6dLDis//elP\nMzo6yl/+5V/yW7/1W/zLv/wLf/zHf0xvby+///u/T71efzPHaVmWZV0F7L3inWN41mG6szxBzRKH\nTiKBjFpo+MbTLifG89KeAFI41Osps7MrJ/O7NsKujasnlK4j2bs1X9F31jlzAGA0TI/PIxB0mjEk\n+SHkxUl9b13gCIORDjrTSAy7b9i49DzkVYAWewfMTreX0pAAhJALKUgGAfiBRxCsnJgn65Q2fb2k\nFGzoe/tycc9NJIxNrV1EZHQyZb6pqFftGYWrnTBrFdxdx8svv8znPvc5kiThs5/9LB/5yEf4i7/4\nCxqNBp///OffzHFalmVZVwl7r7j2tRPNE4dTsjV6Y3WVBVFH8q2nVqfHuA70lVMmZxS+C7s3u3zs\nngKee/FJ9D98fYL/56uTaz4npSRYSI9I2gmVsuQ3f7VnaZK/uS+kvx4wMZ0yPid46OmVaUlpmjFy\naob56fzBvExo/pwjJa6/MNkVgoFNNbQylMsutXph6RrbB+AX3nPt1FqZmUv5t59/mUZr9T9wf4/H\nX/1vBwj8a+f7fad61TDuhRdeoKenhw0bNrB//36UUkgpuf322wG45557+LM/+7NX/UITE403Ptq3\nSV9f5aodvx3728OO/e1xtY/9ana57hVw9d4vrvafv9cy9qmWIFNrr1Q324rjwwpYncaSKdjQLfjk\n3YuTfsXsTHPV6y501w0+f//fBdkaDbekI3EcJ5/0h7BhYDm1p+SDzBKmplIkMFiFB2+D//rdjOmG\nIEsV0xMNola+C2CMIUsVjpuPffF/EQIpoNVISKKMxmy+Q1CtBYSuZmdfzMTE6zsTcKX+3OzfGfKj\n51Yf4jiwK2R+IYq6Usd+Ka72sV8OrxrGPfnkk/z1X/81AJOTk7TbbT7+8Y/z6KOPAvDiiy+yffv2\nyzIYy7Is6+pk7xXvLHnRiLUTCVy53jO519P3thhKbj5QXmrsBXnKTFAMCIrB0qTf9SUfPFikGsBA\nWdBbkivSfgC6K/DT79IMHxvn3MmppQAAwPEcjDZ5nwABSIFcCDCUMiRRniKjNTTn2mztSXnv/pgt\nPddeP51f/fk+bjlQxF+I9cJAcOdNJX75Z/re3oFZl82r7gR8+tOf5nd/93f5zGc+QxRF/N7v/R4H\nDx7k85//PF/60pcoFov8x//4H9+KsVqWZVlXKHuveGcpB4ayb2gmq9N4qqFmQx1OTazeCXClYefA\na58wR4lhuuVS7a6SxinaaIIgQEiBUnqpr0DoS/ZsDimGF08vevGEIiiGZEmG1hqBwPVcpCvzqkNK\nUfALOE7+PRhtlncFFrSaKUePt2jPS2o3C8rFays9plJy+Q//dojjwxEnh2P27AjZNHh1VzGzVnrV\nICAMQ/7kT/5k1eNf+MIX3pQBWZZlWVcfe69459lczxiedRcCAYEjDfVQM1jR9JXg7LRieGp54iww\nHNis2ND92vcCDp3KmG3maT5+6K94TkqBXkhdH+pzKFzCPPXcRJ6uduG1IE8BUrFCK72U1iakWNGL\nACDTguEJGJ7QnJmAX/2wIPCvvYo5OzaH7Ngcvt3DsN4E9mi3ZVmWZVmvWeDCrt6MViyIs3x3YPEM\nrevAx96V8fxpzeiMxHFgW79i1+ByADAypXnpdJ51c9NO6Kmuv5JeKealOtcqZbL4WCGA99zir0r/\nWXPsF5msG2MICy5Ga7Ioo6fHJ1KrIwvHWb7G2Un4/oua+25xSFJIFRSDvPSoZV2pbBBgWZZlWdbr\nVgoMa/Uuchy4ebuG7SvTf4wxfPNJw9NHIV2oQvmjQ3DwgOaGnS5nZj0SJSh6mu29KQXPsH1IsnVQ\ncHJkdRRQKQi2DrocvMFn//ZLK6t5w06Pp19JOb/DMYDWmjRNkY7P3e/byEvPTWKyiB1DIafHzFI1\nJMeVq9KDzkwYvvx9GJ7Iv69KEQqeoRBAXw3u2geFYO2oYGrecHIMBup5B+afHEoIfcGNe3wcW4/f\nepPYIMCyLMuyrLfMS6cMPzq0clU/TuGxF2Ay9giLyyk6402XWzZ1qBXgwfcEfPE7MSNT+RulgF2b\nJP/+l3poNtqvaQy37vP5m681MDiIhUm2VpokThBCYIyh2UzYd30vjz18mk9+UPDgewK+/ZTi8BmD\nlKt3LY6eNSBSlMp7FLQ6Dq4r0drwyjAcOQu/+D5Dpbg8qVfK8J8favPcsfwzEBhUmjI52kJrw1Cf\nw4PvLXLjHpuLb11+NgiwLMuyLOtNFacJaZqiMaSpxHd94nTlRDpTMDal2FpcfqyVOBydDLhtc8SW\nAYf/6VMFnnw5Y66l2dzvsH+bQyF0aL6OSo9JojBG5XUSDWRZhkDgOA5aG2bnMgY3VBjcUMaRgk39\nDh+6UzA8qYiT1dcTQiAdiecJEBC1U4zJAwFjYHQGHn0B7r/N8OyRjCgxTLUcnjm+3JTLIJCeT7Wn\nzOxEg3MTin/4VottG12qpbe+c7B1bbNBgGVZlmVZb5p21CFK4qW/bxmAT7w745+eKNCKVk5s1+pf\nOtfOJ9FCgOsI7rr+4ik/xhhmGuB7UC6sn0ojBGhtYDHFR543FgN9ffnqe1+vx3W7fBodKAaSD9xi\n+JfnNM3O8sulzAMAyK/pBw6Fkk/UTnGc5WDn6DnN84ciRqfyFCnHAS/wKFyQT+WHHq4ryTLNzLzm\n0acjPvKe0kW/b8t6rWwQYFmWZVnWm0IptSIAWNRf19xzfcqhUZ+5ec3MfD75LxfdpQn/kteQEv/M\nUcUPXlCMTIHrwrYBwYfvcuivr07fuW6Hy3NH0rUvJKBeD4mjjN0bDH//iODsZJ7CtKHb4SMH4b/9\nwBAnICSr0oOMNriuREpQmUIrgxe4zM4bZqaXz0goBaqdIh1JEC4HN1IKitUQlRlajQ7PHlV85D2X\n/jlY1qWwQYBlWZZlWZeV0pAo0Nk6k2xgy4DGq/pkyjA1ozh8UtPbpdEXBAFdRXVJVXaOndX8tx8o\nooWYQyVwaNhw+HTELdszPnFfBfe8ij437fV57ki6dtUhA4dfmeH9txd56pWQmeby+4YnYablUClq\nsvVaHgiBWPhPpZo4zlDKYMzab0jjbEUQoDJFay6iq7+CENBMJV99LObj99izAdblc211trAsy7Is\n621jDIzMKmaHh2mePc3ZGYeZuLRmac9FriMY6HW55fp8gutItfRcNczYN7BGAv4anjyklwKAFWMS\nLo88nfGfvjK79NijP2nzxe8qwlJIUAwJigFSnNeNWEjajYSona4IABY1O4JwnUo/QuQr+cYY0jTD\nL7gIAVmaEbXXDorOT4MyxtBpxmSpImonFMsh0nF4+qhcM13Ksl4vuxNgWZZlWdZl0RodZmPjBJ7U\nSJUyFB9j1N/GXHkT9aC14rWRWtmoq+AZZo1L3YuolxwqAWyspRyf8GhEksDT7B7IKPprT4Qb7fUn\nyNKVPHuow+mRBCnhSw+nSEcQBA5xrNAa/KJP0l4OOFLtMDG//vfaVRF0lfLKP3rhSwsBnucghCCJ\nM+JOhuM6BKFL1MkQEtbcDDCQpXmDsqid0JrLDxzoTOP6Dp12TKFe4PvPp9xz4+oGZ2+X6bmM06MZ\nG3odPNeWMr3a2CDAsizLsqw3THcaFNUkcfcgkeODyvCSFkPzR+m4FbTvIYXBGOgon9lk5UFXIfMG\nXL5IKQfQVzY8/EqB2c7ygd1Tkx7v2h4zVFcXfvmF0ptrBwI608QJvHI84eFnFEMbq5RrIb7vkCaK\nxnzEyJl5nCDvFiykoFBwqRXW/36rRfjQbZKXTin+63c0XuDgeQ4YiDoJzbkIyCf33kK34b66w/j0\nyrEXAujECp0ppCPwfAfXk2SpxnElAtDKEEcZT76iuOfGfLfg0Sdb/OTlNp1YM9Tv8aF7qgz0XFqf\nhDdqrqn50ncjjp1t0Imhry54136P+++06UpXExsEWJZlWZb1xjVHyYr15YR+xyUt1ADo6oySOLvw\npGaiJQiclE3FSZSRtLKQubSE0gK04fh4iBGa0VlvRQAA0E4lz5/x2VDrrDon8K59ksNnNJ0LUoLS\nJCNq5w/Wqw613hLdfcsBiOc7dPfmKUsjZ+bRjqarr8rWQcHd1wuOjhimL0gJKhcM79qd//nAVoe0\n06HdBMeRaGMwejkY0UqTCUG9DL/+MwHf+XHK8bOKTBk29Tt0dRd47iRLnY7DIoRFn5nxBpXuIkpp\njMkbmXkLLZn//hsz/PNjjaUdiFeOx7x0NOKzv9THUP+bu1NgjOG/fDPiyPByMDMxa/jmEwmlguDu\nK2inwro4eybAsizLsqw3xBiDkpK1TvCmfglfxFSLIa4jqfkRBVfhOZrQzegOmtT9JkmWp/xMzgoC\nzzDZXHuKMtOWTDRWP7dzSPLgux0qocYYg1aauJMwP5U3EdiyweWmfSGV6tqr1ZVamJf6lIJi6HDw\ngKQYwMfugm0DBs8xuNKwudfw0Tugp5q/TxtDbx7r5BN2vcZuhFZs6IYkMXzyvpDP/VKJ/+VXyvzc\nfQVOToilAGCR57v0DFaRUtJs5DsKvb0BN++STMykPPZUiwu/zOhkxtcfuUj+0mVyZFhx7OzqnRit\n4SeH1j8Ibl157E6AZVmWZVlvkMGIddYVHReCACkMcRqvihOEgKITkWZ1hCOplzO29WjOTK2XYy5W\nTYAX3bTL4YYdgv/8tSbPvtKh2dYIAds3enzmI1XiTOL5azfd8jyJEAaVaYrVkB8dM8RZQrkiOHij\nwACehA0V8FxoRZqvP644MaJpJh6Op9CZXnUIWmcZrU7G07Pw8rGIO28I+Ln7iggheHkY1mt2LKRk\nbrqNzgz1uk+1EnDXgYhvPdak1V67ytCpkUs7RP1GnJvMz1Cs5WLnMqwrjw0CLMuyLMt6gwRIF8zq\nFWKUQoVl3NmT+FoSOyWMXDkRD11F4Gak2mGw26GnnNJVVnRmVwcWtVDRX12vNmdes/9XPl5l+r1F\nnj0c0VV1uHFPvsqfKUPR13TS1YFAEiuSWOG4DjOTDYSo8LUfZHQiQ73m8MF3u3iuYLRpGKoa/u7b\nGcfPLU96HcdBCkmaZktHEwSaTnu5I3AnhkeeitnU73LXDQHhRTJntNIIYejtC9myrcqu/gRHCsJg\n/SQO/zUezu1Eim8/Ok27o7npujL7dr56Q7Jtgw6eA+ka/9T1ik0wuZrYfy3LsizLst4QIQR4hTVL\ngWqRpwmJLKKg25SzmVUlclIlSZXEdwzCyS9y3VBCOVg50/Rdzb4NKfIS5rrddZf331Hm5n0F5MIb\nXAd2DyrSVJEkaqnkpjGG2ZnlJflWIwYEN+4PuG6H4eTJOb74UEwrljRiyStn9YoAYOlzkIJKyWFT\nn2RjL0SdbNVrjIHnj+Yr9vs3w2D32lOxes3nhpv62LajRikw7N2QX+vuW0sM9Ky9hrtvR/jqH8yC\nx5+e43/+wyP8zZdG+eJ/H+cP//cT/OlfnUatt82yYNuQy+4tq4Mo34M79r81B5Oty8MGAZZlWZZl\nvWFuoRvteGjyhXADKCRaekizPBl2TUbWTomy5SlIIwmQUuI7GrnQvKunbHj/3oi9Awkb6yk7+hLe\nu6fD9r7VE+tLdXIMDp/RtNsZnY6i0UhpNhLGRxqMnlnOpx/aWML34PhZuH6Px9YtJaYnmvzjt5rM\ndQTz66TwAAz2OvzWLxbZOrB+pBKn+UTbkfDg3T710vLEWwD1imBog0foGwaqGXfuiKkV8tf4nuTn\nH6jTU1+eiEsJN+8r8Imfql/S59CJFH/75RHGp5Zz+JPU8OiP5vjqQxOv+v5feiDk9v0u3VVJ4MHm\nAckn7g24zQYBVxWbDmRZlmVZ1hsmpcQv95O0Z9FqMTfd4OoUT6/MVa87czzd3MRgOIMWuV9FAAAg\nAElEQVQRLmOdKkU/QwpDwY0QC+cLSqHhlq2XJ8+9HcO3fuIw31menBsDSaaZme4sPSYkbNtRJ4o1\nc/Pw1GHNrQd8Tp9u02om/OTFhH3bXGDtYKQU5tffudnje0/Fa+6ODPUuT7/2b3X5tQ/B00cNUQJD\n3bBnkyHTHbSBYI2Z2ruuL7FvR8j3nmjQjjW7t4bcvK+w6oDxeh7+wQxjk2sf4n32lQY/+9P9F31/\nGEg+86ECtXqZM+fmKRUE8hK/tnXlsEGAZVmWZVmXheN4hOVetErQrSmcpIFco3a/IzQbghlGoy6+\n9pWTVLsibru1RrEcsK06B3Rd9rE9c1ysCACWxywpV0PiToqUgltv788bXxmJrPtMTCh2bEiod5eY\nnmpx+HB+XqCnBlNzK6/lOXDTzjyAuWm3x3U7XV44ujJYGOqTfOCOlRWKAg8O7l99rYspFx0++v5L\nW/m/UDtaI6F/QRxf+uFe3xNUijap5GplgwDLsizLsi4bIQSOG+CUujHJ3Krn8ymmoOjESCH4vXue\nZ24q5m8e3scDH6jS3ffmNJzqXGRDoVjy6NlXZ8vWKo6TBwqOI3AMVKo+rU6KH7ioJCNqZhw/Kbjj\nQJlSqDgzbtAGuitwx36HG3fms3chBL/28Qrf/GGHo6czUmXYPOBy/8GQWvlVZvhvsluvr/KPD00Q\nrTHh37rp0s8VWFc3GwRYlmVZlnX5uSFaBkgds7j+np8VEBghSfFxpeZMz63s9Z/iP5Sf568f282e\nzUNvynC6K+s/19MdMHBBk63F7BbXEcTKQZsEJBhtyGJDOxH8+oMep8Y07Qh2bZIrqvNkytCK4EMH\nC3z0PVdWqsyOLQXe/a463/3+zIrHhwZ8Hvxg79s0KuutZoMAy7Isy7LeFKLUT9Y4h8N51YCEJKJA\nhyKuyJhx+ki9IslAPwfHR1CNEK9y8Zz01+OGrYYXT2tGZ1amr3gu1Ourp0OLufxKGZTwiTsdPM8j\nIUVIQZRKhMhLZp5PG8O3fpTxwgnNXBMqJTiwVfLhu1ycSylr9Bb59X+9kc0bAp55sUknVmwZCvnY\nB3vZOGh3At4pbBBgWZZlWdabQoZlmnE/TjqPT4JGElNgTnaTKUmvGmUmK1FKZhBSsHV7geMvNbmu\nL8J4l3cy6jrw4B2aR1+Cs1MCrWGgbghLHtkFjc6MMSgt0NrgOxqjIUsVnu9RrBYIQp/ZpqbRgkpp\n5Xu/9eOMR55dDnpmGvD9FzTaZDx496tXzzFa5SVUpXvJB31fDykFH/tgHx/7YN+b9jWsK5sNAizL\nsizLetNUqjWmRv9/9u47yu7jOvD8t+oXX36dAxqNRESCQWDOSSSVLVmWzKFlW9JKa61sr9bjMJqR\nZ3zOeNZx7fXujHd0pGN7pdVYtmVLNk1JVCIpUswZRCJy6Ebn8PIvVu0fD0Cj2Q3mBLE+50gk33v9\ne/V+jYNXt+rWvU1m3F4QEqUFKoVyNM6qYCeptRGATDBHMz9MPCIQc8fQvetf0vWjWPPIzpg40bxj\ng00uc+aDqsUsvPfidldfDUgBzTDi2THJRNVCCEEcaxotRaulyGagq2xz9HgAop0i5Pku9fkmGsF3\nHnO54nyHwVKMbbVTgHYeWr6R2a7Dilsv0Xju8hP7iXnFvuOaIBJkbMU5ndP0dHpIv/iS7oNhvFwm\nCDAMwzAM43UjhKDQHGegsZeWVQQ0ubSKpRMiXPrTEQQg0EgpUKvWkOgprLCOdrPtmp1n8ORzMT98\nbIqJ2Xa1mx89HnH1+Q43XbL84eL5eso//bDJ5LxASMFQr8VNlzis6wx49oALQhDHpxr+0gqg2kiZ\nmk7xMx6V2QZCClKlaTVCdh+SFHtLHJx2WNMdUfZi5hvLj7XSgLmapr9raRBweEry6EGfMF2Ylo02\nilwajTA80EB6L97J1zBeLhMEGIZhGIbxurI7B2G6QjGZWfR4XRTorh8CKVEIml4ntvbJTO1FVo+g\n3BxpYYCkc/WSa85WU+64P6R2WuOuagN+8FjMQLdky5rFqTf//MM57rynShS1V+pt12Z0MsfIpMcF\nW/JEydLJeZzA6FiM1oo4StFodApoiIKI6oniR63EYte4j1AWQ0MOk5Mhzebi0qCFbLsJWHucigd2\naqbmoZCrUw0Ewrc4PfsnTB12z/awonPcBAHG68IEAYZhGIZhvK7sfBl7tEXLLSCFJsXCSVt0tQ6e\nqhzU8juoWWXWTt2LwxxKlLGEQM4eQFs2aWlo0TUfejZZFACcFCfw9N50URDwwwcqfPN784tel0QJ\nteka48LCPxzhFs5UmlQQRynNeoglLZI4JYmT9uHgZrTodc3YIZt3WJnxmJhoMDcTnMrr3zQs8V3B\nXE3x9bs1YzMKrTWWpdu7JQXo7c8ueue5IEMrguVOEjRaKfc8FjBfU3QUJNdf4pPLvLmlR42ziwkC\nDMMwDMN4XVnVcey4ST5eOmvXQN3vYaxjC5nKOKoVMdmzhu5oHLwMApCVUeJsF9LJnPq5MDpzU6vg\nec89+FR92depVFGv1olCD/cMJUSDIKI628JxLXr6C8zPNGg1WwgEWi1+n5MBjWUJenqyNGoxrpVy\n7mqL91/VnnL96MmUw6MxadLekRASHKf9nJ8JKJYWDkRLqbGspelQB0civnJHjcnZhfMHj+4I+MQH\ni6wefPHDx4YBYNq8GYZhGIbxulJeHs3yB2JDO89o9ztw7RRR7qTRsZIn3GupOgtdg2USkNQniOsT\naN2e+K7oPfOqd2/H4unNyHhyhldC1AzoLGqy7tIDvWEQMzXWwHEtyl05LLv9Tz/TnmjnC4t7CySn\nNeK1bUG5M0PR13zoWgf7RBOyJ/dEpwIAaBcCisKEKEyYnY3QeiGw6M40yWSXpgLdcW9zUQAAMDmr\nuOOeMxxIMIxlmCDAMAzDMIzXlcp3k+aXb0KVZgt0yVlyIsC3Qxq969l7RLHDvWjh52V7pVzHLZJm\nu8HVxZtt1g4uncb0dQquecfi1fD0zJsG2K7L5Vsk150b019OsYTGsTSWSKnXIjq6s/StKJ2a+Fu2\nRaGcQwAXvKPr1HXiRBM8ryuxZQmm6+0xHptI+fr3WwTB8tWD4jglSRStVjuSKHkB21YGS84DzNdS\nDo3Gy17jwGhMpb789Q3j+Uw6kGEYhmEYr7tg5Tb8o09gNaYRgBIWYbZMs3Mh199Ck7VCtCoSygL3\n1S/k6tzTRF7+1Gt00mq/Vgo++X6fe5+CXQcDlNKsPFHtp/S82v25rMN8FC4Zk+M6CFswMZ1w0zrN\n6p6YegCWhO8+Iak3l+9V4NiCbZf2USxniBNNkkIzWPyaJNEkiQYEf/2vTXYdStEIhBAopUCDPC3V\nR6t2P4LeQkI502TkWJ07x2D9cMBlWz3kiUZjSrX/txydglIvEPEYxmlMEGAYhmEYxutO+wVa669D\n1iaJ5kZRmTzKzSx5XSuAtYMpiRZscI5wf3wZF/jTp12ofaBWCEHGk/zS+wtMTb1wYsOFW3I88qxF\n2ApQiUJIge06ZPIZKtPz3PdEk+svzmJZgsKJIfV3wOHJpdeypebGKwocnfOo1DmVvnN6Y6+TK/pR\nmCJ0cqJ3wMLzUkqUUiilkLI9diEllgWt2Qo/errFybn8w9sjtu+L+NSHClhS0FGUDA/YHBxZmuK0\natCmXDBJHsZLY/6kGIZhGIbxxhACVexD9axZNgDQGg5Pe6zMzbHKHqVXzjAedi6+hOW+7E66m1cJ\nhIBiV4lST5lSd5lcKUfUCoiDkLHplMPHF6fYXLpeMdS9eMldoNm6SlHKgVLtiX6zqWg0FM1mO50n\nTRXVakK9HtNsRIsPCpymHQgsrNrbtqSnBA9vbyEsC8d1cFwHy7F4Zm/EfU8GJ26h4F1XZSnlF9+D\nUr79+PPvTa2Zcsd9Df76X2r8/ffrjE6e+XyE8fZidgIMwzAMw3hD2V6BZquJbS2eZI9WfIa7YtAp\nnWoGKaHLqzNSzTNUrAMS6b38Drqb1mVIGxPUWh6O5wKaqBUSNAIsx8FxBLns4smzY8PPXpHy1AHN\n+Hw7RWhtn2bTkGa+qXl0n0162vxeKQgCTZomzM60cC3Nb3xY8udff4GBaZBSYLk2jmvj0QLLxpIL\na7QW7U7GO/bH3HBxO3A6b73H537B4sdPtJivKcoFyTXv8Nl3XPDlO2OiWNPXKVnXr7jjvgaTMwv3\n+YndIR95Z55Lzj1TSVTj7cIEAYZhGIZhvKGkZXPX9k4Gy00GOiJSJTg65XL/cwWuWFelpfM8WlvD\nxzY10U3NXbv7uf3yaYo5F+lkX/wNnqej5HDx+XnufbhKUG+delwIges5rBty6O9aWlrTseDSDUsT\n8KerkjRt5/s/37o+za/cbOHYAq01mYxFjCCJ04VWxLTTiCxb4uc8hBB0l6BSX0gPWnS/pGSutvix\ngR6b2961UNf0H+6JeXr/wlhHpxVP7gUhchQ7FM1aQJKkNFrwvYeabNvkYlkvb0fF+OliggDDMAzD\nMN5Qx6cVu0dcth9xlzz3zLE80s8RtBKebKxl/2yRJE3YPVHk8g2vfNL6P/18P1IKfvJ4jShSSFvi\neC5r1+T46M1naBJwBrN1wXIBAECYSBxbcHRS84MnIbV9cgVBmiqiICYKErTWpGlKrtBO33EsuHSj\nYPtzElj+1K/rnPmzHxhJeWZf2j4wLNrBzcm0oDRN8X0Xy5bMz9TRSjM2rXh2f8SFG1/f3YD9RwJ+\n8GCNsamYrC+5YFOGW68unjrk/EolqaYZaHIZgfUqr/V2ZoIAwzAMwzDeUJPzEC+fKk+1aeGpmCRO\n2TPVgXQlaSo4VslyiWphv8KmuLYl+PRt/Xz853p56JkWs5WUzrLNlRdkTtXwf6ly3pkr8PiuJk40\ndz4C01U4GSxYlsTPumiVQpIyMODgZSy6yzabhlK2rpHMztvsOhQte93hgeU/+HNHUr7+g4jkRKq/\n1rq9y+BYSCnRCipzDUodOTI5j2atfbbgXx5IOTiZ8L7LrRcMMF6pvYcD/vvXp5mrLvyi9xwKmZpN\n+KUPdr3AT55ZqjT/+pOQXYdSag1NR0Fw4Qabmy99+edEDBMEGIZhGIbxBlvdD77Lkrr6AEorWo0U\ny5ZMtfJsKNZoZLKgFTKsQLb8qt7bsSXXXrS0AdfLsXkoZeeIYra+OHXHlpoNAyn37LDQjk1fnyRJ\nNK1WTLOZIoSgUM5R8OFT71ZkPUlPT56pqXauzzUXujy+K2a2ujjIyPhw0WaP5yZcEgWdmZT+UorS\nmu88FNM67T6e3AWIghgv47YPHwtNtdLAddopT9KSRMrmyb2aZpCyflBxfEpRyMLVF3j43qufUH/v\nJ7VFAcBJD29v8K5ri/R2vvzOxt+6N+ShHQsHmyfmNN9/JAYBt1xqzji8XCYIMAzDMAzjDVXOS7oK\nMaMziyfRWmtUolGpIpN3sW2L0XmfgWLAqq4muUOP0NpyC7wOq77zTcFIxSVMIONoVpZjRqcFO0cs\nqk1BR15z6wUxGa99SPiGcyMe3OswMS9RWlDKKs4dSohSyUjFJZNpj9FxwPMspAyp1xO0hkQ4/NV3\nA379g4vHUMhKPvpOn+88GHJsXKGBgS7JhVt8jjaKBJX2/TqIpnc+wYvrjM8uvyshpSAMIlDt+4kQ\nKFshBPhZ79TK+Z6jiid2hugTlYoefjbmozf7bBh++ZP00x2fXH5Ho9nSPLWrxa1Xv7zrNwPNzkNL\nKxtp4AePBNy4zcZ+pdtEb1MmCDAMwzAM4w13+WbJ39+TIKVsN9DS6lQAICR0drYr4bRii55CwJzq\nwArryNoUqtj7mo5lrGqxe8IjTheCkmNzNscnU8Ko/djYvOav75a8+8KItQOa3pLmZy6OmK4KghgG\nOzVSwB1P+jz/vICUglzOoV5PkFIgpaDRsqk2Unp6Fo9l02qHjatsjoylxAkMD1rcvz9HKz49YBJM\n1hwy+MDy3YNBEIcxWmmk1X7PJFbky7nnTZYFliVJVHvVfrqi+df7Q37jdhv5KoKtjHfmKvTl4suf\nrI/PplQbyz+XKsl/+K8z/MlvvLZ/Ln7amT4BhmEYhmG84c5bK+kva+IwIQpikjBtr1gDhaJ/aqVa\na6i2HLSSkMbIoPqi1w4jzQNPB9z/VEArfOEOulrD4Rl3UQAAgJB0lOxTk3bLkli25K7tCyvYQkBP\nSbOyW2NJaEWC+ebyUyvHsXBdgedZJy4vODK5/CFgIQSrB23WD9uMVVxa8fKTZsdzWFRy6Hkf7OT9\nlJbEsix0mi5ZLdenve6kYxOKfUfPcGjjJTp3/dI+EADDAw6XbH35FZ56ypLM0nPkQPt+BanL/iNL\nu0IbZ2aCAMMwDMMw3nBSCj5wtcNA1+LV5mzeoaOrPYFUSqM1RMrBV/X2hHXfM4j9T4FefgL94DMB\nf/Q3Vf7+By2+8cMWf/g3Fe59IjjjOGqhoBouPx1yHTi9+Ey7qo1k18gZJvq2xrXOFHRo+np9Bgc8\nclmJSjRDPS8+DUuW/5gAKC1OdVBe9LjSpEqdCqTyBR/LFkTh0l2DNFGLmpad1Apf4I1fgg/eVOLy\nC7J4p2X9DPU5fOwDna+oOlAhK8kvH1cAYNmS7z9YfwUjffsy6UCGYRiGYbwpVg9Y/PrPSZ7el7J3\nVBMol0zORoiUnKfIeorD4xJle1zX/BbJfAV59BB696NEj97D5HwnXLUNff55CCE4PpVwx49bNE9b\nEJ6vab59f4uVfRbrhpbmoVuinbxz5qn7YkLAVHX5Up6OBQMdKQcnl07uPVdQzDu0QigUBJW5gO2H\nLc5Z/cI7FYOlhP1TaulOBVDyE1xb0wjS0/oL6IUeBkJTKOdAwtxkleFBh3wRZqrguSC1Yqq6NHe/\nuyzYsubVnQmwLMFnbuvh0EjIrv0BpYLk8gvzL7sS0+muucDim/edeYfi9ahy9NPMBAGGYRiGYbxp\nwkhx9EiF6cmIAI+BNX24noOyNB2liGI2oae2g2phNbMD11DMPErHcz/Ga06gH3iIx/74ixQu38a6\nv/wvPPSstygAOPUeMTy2M1o2CMi6mnImZa61dEoURu10oec7b2jpAdWTNgwkzDZswkQQp5Ak7R2F\nYh5sqx0oxAg6ulyePqzY87cR/Z0ea3oSpuY1x6YFcSLoLikuPkexslsz3BFzcNpFn3bWIO+mbOiP\nKeQs6q2U9HkpPbYj6eguE4UJk8fmUEnKLZcX2bbFZmJOU8zCzLzgq98VzJ1Wjchx4OoL3NdsQr1m\nyGPN0GtTueeKC3z+8d4qUi6kNJ3qhxCnvO/6l9fv4e3OBAGGYRiGYbwpDo8E/LevjDE6sbAandlV\n5YLLV9HZU6AR+JzTH9DZl2HWHkZJh/lN1+JWxsiN76W4qszIPYeo3v8oR77wJwQf/I9nfK8znQ0Q\nAtb3ROwYEzRPy72PIr1ocgzt/Pmcq+gsLv8eO8dc9k+4YAk8C1ytEULjOeJUCozjaBIlcBybIGhh\nWZLJimSi4hIEijhuT+arLYvJecnPXJawZSCi6CuOVyxSJSj4CloN/uGuFtMziiRSiBN5/9A+A1Ao\n+lRm6sydKD/q+xaHjqdcspVTaUjFnORXPpjlvqcipiuKXEZw0SaHrete3S7A60UKwYev9/ine6NT\nnxUgiRO2rtb0d781x/1WZYIAwzAMwzDeFP9w5/SiAACg1QjZ9+wo179rI3EqODrtcc6QQ09ynAln\nGGyXxtBWcuN7ke7CRLD60BMM3tbkTFOb/q4zV6TpyCouX93i6JxDmAgyjkIoxb2zLiePT2qtyXkp\nt1+1fOnL+ZbgwKRLqhdW0Nur1ALfjtFCEqcWllBkPUEQpFiWpJTTaCkIQnAcQXxa2n49EDxxQGKp\nmH2jCa0QekrQkU34yRN1mqcfdUgVTt4mk3XJ5FwsS7YPBNsW0pJoIbnvyQjXafCzN+UX7ku3xUdv\nfoFk+7eYqy/02bzG5kvfrDNX1XiO5t+8J8OWdWfPZ3irMEGAYRiGYRhvuHozZe/h1rLPzU43mJoO\n6ej0iWJopC5dchpfNQisPFGpDw3k169g8ycdnvv/HiWp1Lh4VcSTox5Hxhbnja/olVx/0QunpDgW\nrOuO0VqTJCE6jfk3V1gcnc0TJoI1vSm5F7jEsVmHRC2fQqO1ZqijwXTdoxa0p17lvMXMbEKtpSmd\n2FmQUmDbnOr+C3BwDCanFnYkak0Ai1g7LCoPqiGNEnJ9hXbJ1VQRNGMcd/Hq+PZ9ET9zvcZ6Fbn5\nb7auks2//8SraxpnmCDAMAzDMIw3gVIadYYCNFq1n4/i9gHWJ0c6WDV8HEeHBORpFQYZ3/Quund/\nn/q6DWz81QJHfnCY/Kp+/uc++PYDAYePtxtzrRqwefeVPhn/xSvxKJUSNudR6cJq/4p8Ey9bxrKW\nTpm0hmogidPlzw6c5IiIklND5wVhYtFoaTQC29KkqSRN2gd5tQYpJbatSZL2BVvLFjYSuL5N2AyR\n1sLnisKENFE4jqRWaZEuU1qoWle0Qk0+e/YGAcZrwwQBhmEYhmG84Yp5m7XDPjv3Npc8V+rMki/6\nACglGJnzUMMQiQypglg7zK+5krlv3cO68+bZt/E6evvOQ1gWhRzcdkvuFY0pCmqLAgAArWKiVoVM\nvmvR4/Mtwd5Jj7mWBQg8K8WxNHG6dHLd4QcUZJ3Icsm5DvWmRZxqPFeSKpirxEhp4Zw4jLuwI6AI\nwuWr4Tiug+1ZtGotvKwPGmxb0FMSDPbAQ+PL77J0FC0yvgkADNMnwDAMwzCMN8kHb+6kq2PxeqTr\n2azd1L/QLAywLUlL5KmTJ1IOINGuR7xmM7Wh85k/MELvB659VWPRWpMmyzebUmlEmi6k3qQKdo75\nJyoKtccZphauq7Hk4i2BDr/BmtIsUkBWtohTcG2NJRQD5YhqNaGr0yaKEhxHcvK8q5SCnrIgjs5U\nElPj+R6ZQoYkjnE8m94ej54+j4NTLgNre8gWFnfXEsBFm12sV1Cn/41UbaR860dVvvyP8/zdd6uM\nTp6pK7LxapidAMMwDMMw3hRbN+b4wq8O8f/+S5Xx2RTPdxk+p5ti+bSOshqKecEIq1H69GmLgGIH\n9b2HyHZ1oqT9Klc29Qvm9OgTzcmU1ozNp/TlqvTloRnbTNazpLq9I9BbaCGTEB1HdMoKq0pzpKLE\nyXSf4zM2q3tDomaMbSksyyFNNKWijSXBdSStE+U+g0RiW4IkXVql6GSqj+u5NGst/JxHoWxTKgiO\nHE/BslmztoOxY7MEsSDraS7bZPPuq19+t9430rGJiC//Y4Xx6YXg57EdLW57d5FLtprDv68lEwQY\nhmEYhvGmGej1+Pynevjbh3OkzztYa0lIUs35g02UfN6URWvCH92L97HraMxlkdHyVXteOoGVJNjT\nR0gzBZJSz8Iz0sKyXLTWzNVDLKlPHRLOuQk5J+bgXBmlJQrBls4JOid2kQ0q6FAQZspUejdSaVqs\n6IxxbFjXPcUz0wM4riRKBMW8JAgFJ3t+CQGpkrgZm6S+eCVcKUUSpydeJ7BtSTbnMjkVIhGoNEVI\nQSJsnFyetJUQA0fnBNWmppR76+4E3HlvY1EAAFBrar7zkwYXbfFfUbdhY3kmCDAMwzAM400lBFy5\ntslPDmSRp9KANFprunIRA50hQaII1UJ5nvTgQdz6NPnz16N/eBR3/gjsfZBkZo7qgUmOfGcXsquT\nzvfeRM/PfwDpOiTzVRACu7S4qZSqVRB7H6VwfBeOCkFaxKUequsvRWVL2E4WIQSNMCFKl+4WZN2U\nrmyLqUYOV6YoN8t8z0b85+5G5nL4rXnS6QNsbtZxypfhegIZR4zN2+RyEinFksntyf/WSlMoOEhL\nEsUprUaCYPFrhZBYtkRpQaUl8XybZivF8+xF1z06ofn2Qwm3v3NxmtBbRao0h0aXT/0ZnUjYczhi\ny9rXpvGYYYIAwzAMwzDeAtb0aboK8zxwIEMtcPBsxdbBefJ+O+3F0jHgoeOYdPt29J3fYsV//iwT\nh+a4Nv8M8Wg38eBavI4O+ntz9Fy6mh1/+E9U//5rjP7R/4W2fVQzQLo2+W3nMfibv0I9aDL/6G7k\nmlV4526ldOgwKj9M58gT5FRKcd+jNC/7MI7XPmgcp2coZwRk7AStNUIoGolLxivQKA9RqI1CNo/f\nmkdbNuvrjzPlbObRuTXYjiROBCu6QqbrWSxLo5Smp0tSb0AQpvT0+Agp0bqdBhTkU2amm2Qtl2Y9\nQqWKcncWrcF2LaIYMr5gfi7BtiVBsLi78eFxTZRoXLsdHMxWEn70aIvpuYR8VnLFBRnOWfkmBgkv\nsNBv9gBeWyYIMAzDMAzjLUFKzbbhyrLP+S64c4cJd+wl050l+3ufwDm6j57Dj6NrVayJMcThfcQr\n1jF/4fV0ju9g+Pd/jYn/+6us/sx72f37/0Aw1SSNbSo/eoDqI0+jLQsr46EaLewN64h/99/RNf8s\n0xtvQB99lJycxp2fJEglYn6CfBIQ9W4i9QtLxpcoQRgLZhs+5WxIqn0svw+3No2DAAFxqQfmZ7h7\nZA2eIxCpIutCVy5hfB5sS9DTKbFtST6rqdYBYbXPAKSaMBJkMjbdPVkyGYvJ8QZBK6RvRZm52QDP\ncwFNPts+uxCFMep5Oxdx0u5D4NpwdDzmy/80z+TsQnDzxO6AD99U4Jptb/zZAUsK1q5weLK69ID2\nyj6bjavfmjsYZytTHcgwDMMwjLcE3zlzV1/HtuldtYqhd99E10WXkS2vwDu2D6oVxIkDvTIKcA7t\nJPvco0z1bkV6Hv2/+lEq+ycZ/v1P4F+2GeKEzd/6U2TWoXDrtaz87ldY+a9/Renn3kX9T/+C+fNv\nxQ+mCOeqJP2rqB3YR2N+jj3eeTycv5nqyAyFsR2LxpYqmG54aC1oRjZxPSRMHUYz65lPchztvgRl\nu2DZkM1zbuE478rczzWFZ7h8fYVG2J6O+R5YJ+r+27agkGvfj5N5/+6JObDrWrruYk0AACAASURB\nVEgp6BvIMzjciWVJHMcCAZ4DSoFKNWm8dOeiv1OQOZFR8+37G4sCAGj3JfjBw03i5AUaH7yOPnBD\ngYGexWvUxbzkPdfmlj0PMF9XfPuhhK9+L+Yb9yQ8d+xM1ZSM5zNBgGEYhmEYbwm2ZZFxliYpSCnI\nee3HhZQI24bxw4jJY0teKwB77AjSdlC5AqOFc0lHx+jIQend14KGw3/4Fc696/8hCVNaTpmoeyXe\nB95Lxy+8H/XIIzgqJu4cQNk++8qX0xAlLqr+kF51nMnudzBZdZFRuw5/nAjGqlkqLZ8MDRAS79B2\nXBnh+5KRnouZ3j9DtTDcHp9lsc3aTlHWWe1PolLNyGyWjAeus3iSa9uQzcDJpr8nS3sK0W6m1j5L\nwIk0JFCpotFMmJhOiOMU210cVHkOXHWe1e4orDVHjy+ffz8xk7Jj//LlUl9vgz02v/OJDt5/fY7L\nz/d55+VZfucTnVy0ZWlloIlZxV9/J+GBHYo9RzVP7Vf87Q9T7t+eLHNl4/lMEGAYhmEYxltGIeNS\n8F1cW+JYEt+16ch62NbiCa2oziA4w2p1FCCEZu8xSVOUyA6UseOAjnN6AdDHj6OqdVb/8jVoLBQW\nsXaxrrqatN5EF8o4OQ+KRRK/wBF7PbFwWd3ciZRwpHQJ6uA+js7leHa8g9FKHoAuZuiUM6x0pyFN\nkVox468kuOMugnoEcbRozFLFHJ30yWUlGb993FecFgcI0U6DymehkGv/txDtSqbpiQVvKQRKabRu\nBwHjkwmNRkoap9i2hbQWLljOw7mr21M/AbxQoR3bevMy8HMZi/dfV+CTHyrz0VuL9HYun71+z1OK\n6edlj8UJPLRTEUZvzk7G2cQEAYZhGIZhvGUIIch6Dh25DJ35DKXM0gAAQA2eg3KWrxSjCmWUFqRa\nkLWaWF1diDikEbe7EPdfu5nZr92BM7SC5NChk+9Mavs4l19CqSDxLE2cKdGZi4hwOO6sppjM4KgQ\n15esivdwdf1fuV7fzXqxD4AsTc619jDZfxHZ6nEiZSOFJp2cxKnPYh/ciTytI3FVFaiL4qkGYWKZ\neffJib/rQMZv7wCoExk8Wp/4Gd0OAvIFr33YOEood7YPC2u1MBmersB8feE+rz3DAeChPptz1731\n8+9Hp5c/qD1fh+0Hz3yI22gzQYBhGIZhGGefcjfJirVLHlaOR7z2PILUQRe6yTzzEN65GxHZLEmt\nBq5F8Zx+wkPHkSpm7rO/SfN/fOPET0t0oQxKU4sKNJ0yjqOxZcqE7EMj0bSX4ueGLsIRirJV4QL5\nFFvFdlZ6E5RFlbrXQ4E6Ngk2EVYuT2FyL7I2h1WbA0AjSIqDbFsr2dwfUPDSUz0COPGK57OthR2A\nk4QQKAVSQiZrgRb4GQfbsZASVq/K4fvtC0sBu45Kdo8IUgUfvDHHcP/iVfZyQfL+M+Tfv9XIF5jF\nuqb0zYsyQYBhGIZhGGcdISTx5e8h3HwxabmHNFcg6RsmvPQmosFzONQaQMYN5r7yLQpZhcqV6avv\nZ+V7L6J5fA4rn0VMTaJHjtP48t+QTs+gtcZq1Yn27qLy6E4mJlISJcl7ilDmmN8/QSJc0iimVRpk\ne/ctpArqbgfr2U2hZGPLFCUsFJqBcC+zTZ/oIx9j3/C7EWjSKCb1y0S9m8gODnP+KljXnXDFmibn\ndIeU/ISTAcDzdwaU0sSxao/ztM0RrTWOY5HxJWGzTv1EdZ1SwWJgIMPmzSWyWQtpWzx20OF7Tzl8\n/X6bVuzw2x/v5OduznPNtgzvvirL5z/ZwYWb/Dfot/jqrOpbPlDpKcO5a8wU98WYO2QYhmEYxlnJ\nyXUQbL2a1i230Xrvxwmu+xla/Rs42FqBH9WR/+532PJvP4BIFU7SonV4ioF3nsfoXc/Qdeul7P3b\nR9upNNMzBP98JyCoN1OqA5vouOF86l/7Jo3II1WabH2M/X/+Tbj3+3RmAnjyEXzR4rHiu/DjGmMd\n55G0WoSVFr0TT6KffQpxZA8ZGTE3cC71jmEmOrYQrr2SYPhSkvLKU5/j+HjAnd8fZ9+zo2zubeLa\natnUIKVOHAJG4XkncvsF5PMWA302riu56MISa/pj0iSho9yOFDK+xarhLFs2+NhWilKK6arknh3t\n3YKbL8/xsfcW+eCNBTqKZ88S+i2XWEsCgUIWbr7IelPPNJwtzp7ftGEYhmEYxmmk5TK0dh3P7T5G\nJGxi7TIVlvCjCgOPfZPVf/4JpC0gDknmash8gee+fDe9H7qGsQf30/j6HQsXixPCVDKpB+nL96H8\nhM73rWbnjKCYUZS/8TfMBwL/kXtYc/Mgx6ciCqRkGuMcLG5DpRJ/NiQzNEz8f/53nK4s6Xm3YYuU\nuarNOfIgB9a8hxWHfsze2WHKBYeNfSF/8aX9fPdH4zSa7TyfO743wTtvHaYwONBOPTohTdu7H73d\nDtOzMaWcRmlBnIAlLY6Ph5SKFrFy2LQxz48fi5meTentFliWpKPDpasQs6pf8fReqLdSZmoWf/L1\nmMGOlFsucxnsXnr2Yr6asOtAyIGRiDQV9Hfb3HBpFs998XVkpTSP72iyc3+IlPCOzRnO2+Ajlotw\nXoF8RvKp9wme2JMyPgcZFy7bIinmzBr3S2GCAMMwDMMwzlq2bdPb303QDKhUQzbFz9LX2IXcmgeV\nQKxI/RIjoxGNoy3SBI78139efJFCHnnLzVRDD8uBluhA5z1kPs/UzoQ16yp4nTl6vvxnVD//e2QI\nCC++gb7nHsDJF5ksbiO1XKZ7L2RlvJ/srTeS3v9jUr+MrS1SJcjOHYJSB0c6LmPdX36axm/+Ad9/\nsotv3jmC0guT4vGpiLu+e4TPfKbIWDOPkO0dgDgBEHieIJ+zCEIo5CXFTEwjshFCMD2bUCpaoH3W\nDQQcr8TMWNDb7aK1oNK06S1GDK+QPLk9IlewCGLBM/sSxqZTPnyDx5O7EybnU1xbUKmEHDraPFVp\nRwiBtCTfvr/BxefluP19Pj+6v8LOfQFhrFg54PKea0t0lW2U0nzpH2Z4ZHvr1Ge7//EG11+W42Pv\n73zNfv+WFFy6ZWE6q5TmyT0xU/OKwV7J1jX2axZ0/LQxQYBhGIZhGGc9P+vjZ33QRaL5PFZ9EjTE\nvevQfonezRC/713s/cX/bfEP2jbyZz5EpW8zaIGb1vDSkJrbw1wzS2F+lENzK7js5qtIBjqoXHM9\nOgzI+RH+4e3ITe8gSj1SoXHCmPnSEM01fRSrszSf2U20aQ2em7IncxXbgj2M660UPvMJRv/3P2fL\nf/hf+T+u3oHb6fPv71pLLWyvxE/PxDz86BQDG/N0pJP4qsmkM0Qq2g0DXEfguO2JbSu2KbgBcQxR\npJicSenvtujqcqgph0olpbtTA4IoFkSppKcYU8hbxKkiaLarFU3Oaf76zoBUWySRalcW0hbYLkTt\nMwZaa5RSBIHg4Wda7Dg0Rb0a0qoHAOw9HPHcwZDf+HgvO/cFiwIAaDdVu/fRBu/YlOHc9Uvr/r9a\nE3MpX/9ewJHxdmUgIWDdCotffq9PPmN2B57P3BHDMAzDMH56CEHaMUS0chvR8Da0Xzr1lNPdyYa/\n+0v8X7wdfc0NqFveg/q9PyL5tc8DAq1h3ZFvI3M+ldgl46R0HnqcPQcjqqVVeDLG/eWPcfjBI6wQ\nx4k3XYBVmwEUemyagWP34EZVam4PzQ1XUrfyBAoGijVimUPWKzhxFZEtwH0/5LnqEPX8APrZ3Xz1\nk8f5o9/u4V1Xt8ueds48y4ftf+KS8n6umP0mPxt8lfPDh9ofUYLvLlT8aYQCIWX74HCkiSJNUxXw\nXEkUp6SqfdRY0/4/SyjiRNFsRMSndRXWwqajO0dnX55cyUdIgeu7i1bStdJorUmTlCSFQkcez3dO\nPT8yEfPd+yrsPBAs++tJU3hyd2vZ516tf743PBUAQLuE6v6RlG/d++Y0PnurMzsBhmEYhmG8bTil\nAlv/4HNs310lKA6eelxrTefkdjITe/BLNjOWoNazBmv1mvYLPI9QuuTcBPvydxBHNZr5QfQDT7Gy\n90kOfW8HpaHDNFavIpXD1N0unK19DMt5VLNGS+eY7d3I5t3fIchsBQTNyKJvQ4meXB/7fnSYlR/o\nof/8q/kvlx2m+pO9hM4KOmd2UVl/Ce7hpxjomUPwDM84mzk6qujtlniOIIwkYdBCCoEgbf9TtA/9\nCqDZSsllLRxb4zspQmmmpwJq8y0cb2ECr1JFvRpgWZJM1gGtadZDMsUMcSsmjtodhnOlDK1aiFaa\nJEkpdReYHJk9dZ2jYxHlwsJ1n0+9DiX8p+dTDoymyz53YDQlSjSubdKCTmeCAMMwDMMw3laEFGy5\n94+Z2ngTzfIqhE4pzh+guO8BrMoMTimL3YgIuzYws2Iz59gWOTchET4FOYdtB4j9e0jcPuSxowzW\n97P/q19h+t1rKZ03yVBmJ7HI0DjSonvAwhrZiRgQpIHL1NobSWaOk1k/SF91D+GKPqZya8jIp5jQ\nfazqajJWG+L8m85nzO8m5/TQMX+Q2uYbiXc/Q7HDZWX3RgQWxycSujsklgXzcxHZvItLk8nZPCsH\n26vuSaKoVBIsS9KZTyh4EcdnBLOTVZIowXYXcuaV1sRRSkxKHCV4GQchJQKwXRut2/sJuWK7ERmA\nSjW2v7ixmOdINq7xeGzH0hV/KeCCja99KlAj0CfOTSwVRpo4Nr0Dns/cDsMwDMMw3naE1vQ+9o0T\nLXmB0zrrWq0KXTiM4VIsBJzTWUG26qhCDo0kDGP8VFAa24W7ukw4NUe2O0drLqB7bB/eoUcobNnC\n2B/fQc8vXUMydogVF8QcHnNx3/kuwtIq4l/4X/D+2x8z+vFfZXDmOIUVWfbIPrqtiB31MkOdw7hH\nn6Pa2ctU8RL6amMU84q9mfWEKXSVFMcnYa6Sks1Y2LakXmkxkjr4bsBgv4dOUuJYnUoTmptXdGXg\nqSfniFrtswBRK8LLtlOQVKrQqUZYApDEUYrtWMSBADSu72LZAiklftYjChLQoJLFK/Dnrve57tI8\nO/YFPL1ncVrQFRdmueB16EOwoseit0MyObd0m6G/S5I9O1ofvKFMEGAYhmEYxtuKEBIxuAb93Fw7\ncfy05rzS97EFCKfdiXdNT8SAPU+y5wnSjVfgBzOEs7OIqTEaTz+H7PJp7jqOU84Rph7R+AzVx3cT\n7Zkh3bmX+Se6SY8coyMISZsdJDmfxjtuobr5Rla9d4rkwON412xk/C++ytz5HdQqCteRTAVZhjM+\ntVwvk3OCfXMul2SrjEUdZHwLKRRCauYrMUJCNudQnW+RJprAkzRbMWLfblZMTrBh00b2N4aYrjlU\n6rB9Z/O0u6FP9STQul1dB6XBhjQReL5D1ApBtCf/+VJ7FV+c1q63Vmlfz3Hg0vNy3HJVESkFv/YL\n3fz48Tp7D4UIKTh/vc/lF2Zfl2o9tiW48jyHbz8YLtoRyHhwzYWuqRC0DBMEGIZhGIbxtiOv/QDp\noR0QRQsPWhKvo0DcDFFXXsWANUKfVQdATI+Rad1NdUZT9muo53Ywv7/GxH1TrPuFq6juOkp+RZZ4\nzCWaajL948cBmHt4J/FohczGFdjFDqxV50CS0ohtjvRdxqqLJLNuluCXf50wtmikDsVMhKMj0nIP\nc4HPSNWhFWV4xLmESGeQETQamjBUSClpNFLSVCOEIE01MoW9+xr0DG8k/9RDbFyxjtzIPp5qrCfG\noW+ozNjRORAsOvgrhECh0ArSVCFtgW0L8kWfRj1qB08nU4fS9oq7lPDOSxyUKnLBxgznrFpYcrcs\nwY2XFbjxssIb8Svlum0uhZzgiT0xtYamoyi5bKvNltVnPp/wdvaiQUCr1eLzn/88MzMzhGHIZz/7\nWW644QYA7r//fj71qU/x3HPPve4DNQzDMN66zHeFcbaRPYNw+68jvvVlUCnStnBLBdJEkXauoGJ3\nMFSo4QiFnhyH555FyQKjX3mMSReEbeH1FEnrMcHoDDpOSaOE1tgcjbE6xCkUBIXBMrNHK8SNCJEc\nJ/TzKJUQhD5xdiU9ZU2S2hwrDWNJsC1FKRsxUD9IPbQ5FAwxX0lwPIvZsIALTM4oYiXadfslRGGK\n7YDtSHI5Bz9jESeanh6byQ2X8I9P9vHJtQ+yK1xDlDrkCu30Hy/j4Z6o7KO1Rp0IJDTt3RGtBdJq\nV02ybAt5YvU/TRRx2F5uX79S8qF3Ft+U3+Fytm102LbRTPpfihcNAu655x62bt3Kpz/9aUZHR/nk\nJz/JDTfcQBiGfOlLX6Knp+eNGKdhGIbxFma+K4yzkRzYgP3zv4Le/gBqaoJQ2jjbLoRsmZWZOlpp\n1PHj6Pu/D0pReXIfaT3gZAZ8a7JBfmWZw//yNAA6VUw+PU0w0z4Q233+Orx1g5TjEPmLv8z+uTXI\nVoGu+DjNtJ8kLpJlnLGwAy0sBJo4FWglKR17iqPlG8m5MVMxdHQIWi2FrxSF2jGmvWFsWxBFiihU\ndHRKiiWHckeWoX5NZaxG1o1pDKxDKBvh2GzunmfPbBd+1qN3ZRcgFqXJSKFJ0xTHEYSBwnEltmWR\nKvC9dlWfKIyJTgQAfZ0W777SeyN/ZcZr6EWDgPe85z2n/n1sbIy+vj4AvvjFL3L77bfzp3/6p6/f\n6AzDMIyzgvmuMM5KQpB0nYO4rBPZmIQ0JkESP/0YenwUGnWYmQQgqkdM7ZxecomoFhBX23XoWxMh\nlp+g0/Yhg+zG1WTWFMgNnsdEYQhHFjlaKfP0pEtHZ4rjWkyGHVQaNvl4im6nzoF0JfWWhT+8iqzM\nMKTnGbHKCK0Y6IbCwWeY8AYZUoc54q+h1WqX6azXBX0DBRwbekshxekxeksWz7pZHAmPJ9vwHUlH\nLmXv3oBMzqNVD2nWA7TW2K6N6zkIKejvzzIyUiebc0mihKu22rz/Kp+5Wsr9T8XUGjalguRn39lB\nFLw+Nf+N199LPhNw2223MT4+zhe/+EUOHTrEnj17+NznPmf+YjcMwzBOMd8VxllHCHSuizTXdeoh\nqxKRjhxDTU+2a+VPNZl4YpKkvrQGZTS/uPpNGi5UymkcGsXvXoVYsw5fR2SkZmY2QeHiOBLHFtRD\niRYWxZLNxh3/QveaS9jNZYhykVVOg/rIDKv7i9RCh6yn8MePEmzYSDYXIwJBT7dDqxETRQm2nSXr\npQhhY3d2kcYpji2JI810M0OjBf1dUK+2KHcVsByLNFXEYUzYighdm1wxw+RUwNDKPBsGUi7bLOku\ntTsZdxQsPnCtderzlQo2U8v3BHtdRLHiO/fMsvdQCyFgyzlZbr2uE9syh35fiZccBPzd3/0du3fv\n5rd/+7cZGBjgd3/3d1/WG/X0vDGHQl4vZ/P4zdjfHGbsb46zeew/DV7tdwWc3b9DM/Y3x2s+9p7r\n0Fddw77/+Acc+6tvEMy8jJnuyUpDEqjVqB6YZ3B1ixnLYk51kKYxadI+tOp6cFH5IA/NbGEqLDL/\nxH4KgaD3yvPRQpKrjzPx/cfY8PGNPL7fw1Yh8py1DA1YzCSrSJuKJIFSh0d1roVrCxqBxXQFtqzO\nMTJpIy2BpTTzdc3kVEw5b5Em6kTNf3A8hyRO2o2/ooSgEZIt+FQqIRsuL7D5nBeurflC9z4IFVNz\nKV1li6wvz/i6lyJOFF/447088Wz11GNPPFvn4LGI3/u367Hkyw8EzuY/86+FFw0CduzYQVdXFwMD\nA2zevJlGo8H+/fv5rd/6LQAmJyf52Mc+xte+9rUXvM7UVO21GfGboKencNaO34z9zWHG/uY428d+\nNnutvivg7P2+ONv//JmxL1X6zGeYfGw/wT0PLTwoJdJ3Uc0XDgwGrhggqMPEXY+z+tYN+FEThYXn\nJURRSivS5DKKOJUIAUpZVH/204w7eTqdGXS1gtOcJfKKuEHEqn4FoaC1+lw8mVKPBXEMSaJJEs2a\nQYFlgUxgti6RwkJYDo1GQi5nE4SCaiXg0DGX9ERlnyRu71rYrk0ctLsBp6lCpZpGLeLr329Sqba4\neGN7ujg5p9hzRJHLwoXrLPr7i8vee6U0d/wkYseBhPk6FHOwebXFh67zXvGq/XfvnVkUAJz0wOPz\n3HHXKFdfUnpZ1zvb/8y/Fl40CHj88ccZHR3lC1/4AtPT0yiluPvuu0+dEL/xxhtf0l/qhmEYxk8v\n811h/DSSvseGr/4F09+8i/rjz2BlfLo+8j6yW9ZTufchxr70P6jd98iiPgMAnVs6sTMuSUWho4SZ\nJw7inHMtHU5MX7ek2ZTMzMbkfIeRzBBxpEFC3NFPrZWjKx1H5rOkzXn6btrMwcinrxwyUc9QbUBH\nJj11gDdNIQxTtm6z2DMGqWp39U1SQcaO6ezw6O8WTM1BEivGJ1M83yGJUsJWjJCC1Sscsp5g++4I\nx5FksjbVakKiBN9+MKWQEew4lPLsAUVwoqLq/U+nfOw9Ed35pfftzgcjfvLMQupUtQGP7EyBkI/c\n+Mq6du09dOazBzv3NV52EGC8hCDgtttu4wtf+AK33347QRDwn/7Tfzr1l7phGIZhgPmuMH56Ccui\n5yPvpecj7130ePmGKynfcCXVh59g5HO/jU5S3LxLYbiABqrjMbUdxwE4+q1n2LLtflZdMkTG6eDY\ncQuVgps0UMImSSL6cy0CXAbrT1NWTXZmz2dDr0f2uV2ct0owIc6n4Csm5y2O1SxK+YhsJkOvnKLh\neziORRBqNBrv6D6qa1dRzLa4YGOOINTM1QApEGiU0tQq7Um1EHDxeQ7nDPts3RDz8F1HcLu2EgYJ\nWiuCBP7xxzHVul5USWh8VvO336vz2Q/ai1b3k1Sz8+DiDsIn7T6c0go1Ge/MuwFjMyk/eSZhel6R\n8QTnr7fYtsF5wR0EcybglXnRIMD3ff7sz/7sjM/ffffdr+mADMMwjLOP+a4w3q6Kl1+EGlyDU53A\nyjhUJ1KaY/NEMw0ApG8RVWrtXQRRJchkKeTz2LbEyjiAZkPnLOfIw+wQ5zObHWYOcFpNGn4eZ+UG\nMoRE2sG1U/pKcCS0mKulKKlZn5uia1WRWdWJSjQgyB7fj2cNEqeSJG037dJa43oOpbxNJiuZGm+S\nLzis7Id1K9sB+9phh+FLa/xEaxoFh1ZLo5SiUtfEYYrtWFjWQnB/fCr9/9u78zi7qjLR+7+1pzOf\nU3MlqSSVkHkgJMHIjKIypfHVi4Bc9crVt+37SkOrfdUXh9t6u/3c7n7x029Ptz+ILbytEulGaecJ\nQVAQImEKIQlJyFzzXGc+e++13j9OUkmlqpIUGSrVeb5/wd777POcTW3WevZe61m8tEOxbtmR7mS+\naBjOH/Nq5JDhPPQPa1oa7XH37+sM+dbPSwweNUpn296QvkHD2pUpntk0jD7m1K4Dl6yZ3sMpp4o8\nphFCCCGEOAVOLMbQtk56XzzA4Ja2kQQAQFdCki0paD9AYqidILCYOwPmOG3UJkJqnDz95TiBXV25\nN0zX06NmUJsMKf7maeK5DoJEHQC2ZYh4mqSVJ51QzPXfoKbBA9elEDqEBixbUQotLNumPx9hMKfI\n5qtzAFJxhzmtKVLpGHVNKebNz7BsSXLUE/74gtk0bPoZgYYF81zQYKofJ/DDkQnFh+WPGaWTiClq\nkuM/mc8koD4zcdfz1y/4oxIAgFDDxtd8Llqe5J1X1OAetQ5YxFPc+PY6Vi4eZ0ySOCFJAoQQQggh\nTkFh63FWw9YQrYvxxr/+HqdtFxhNY6JMPtVK0i4QdYoke3ZRdlOUQxtba1AWKuaRa72Q6N7N+G4c\nR1XH6GPg0vZ/p6nG8K6GV0nHQ4phhI4+Dz8AS0Hf8qvJlmz6CjGKZYuDXZpcXhNqTRAYsrkA17Ox\nHAc/HP1UXrkOjckSkajLUNFm1QVl4l5AqVBdTyAM9MixERcWzRnd4XdsxYULxn/Sv/ICh6g38dCd\n9l497vbBHLz6Rsj/+f6ZfOHOVv7gmlpuekcdX/pEKx94T/PE114c10mXCBVCCCGEEGMF/WOr1hyt\nZ1M30RkRcjvbKM2EzqEYZV/T3qO5IL+bFr+LwL2M0qAiEgd0yEA+TmpWA0O/bafyrjSqbChUXMJy\nAdo7qF07CJlaPFVhR0+aviGFparj/XM+tPda7G8vMHNmklBb9PUV8Ms+Pd1FolEb3zeUKyGeM7rj\n7Qz1Erv2GtRLFqVCyNrFedLNF9C2v59XthRQiSiOW+3kr10aoaVxbKf+hss8ADa/ETKYNWQSiuXz\nbW660jvudXLHzx0ASESr37N0YZylC+PHPY84OZIECCGEEEKckhNPTC11ldn/b8+RurIPx0kTlBTx\nTIroz37Ag4k7+PiyASJeIzG7QtSNYnKDkHHpeGoryt2A/8E/IjQWq3Y9wt5l17DM2wfKIbQ9LB0Q\nagdlaUplQ6WsGRoO6eos0dQYw3MVjm0RYOFGXGK2ZmAwxLEVhcCjUKkQ90IilSHUnl1Yq5eSTFiU\n8gHNlTbqi7t5aeG17NxZwA9DmmsdLlzg8P7rU/T15cb8Vksp1l8e4bpLDLmiIRFVuM6Jr9EFLRZd\nA2MnFc9qsFg+f3SGMJzXPLcNhvKGZAzWLVE0HGeokRhLrpYQQgghxCnwZjSe+CAD+T1dNHjDpP12\nHNsiWeqh/PJWwmKOUMVIhQNEjY+vLdqDegbKKXSygQNPbUMXi9hoBrxmktk38FRAxYpSctMQBnie\nQmtFLhtgKShVFH4lpL2zBJbC9SyMMtgOlMsa11U0NTgE2qFzwCPdtZ3Y3q0ULrmWIAxJpl2aTBfZ\njiy77UXUlw6w9uI6IhGbXFHz9jUu1gkW6HJsRU3SOqkEAGD95R6L5lijUqqGjOKmK0Z/14FuzTd+\nbnh6i+HVPfDsVnjg54bt+8cfTiTGJ0mAEEIIIcQpqFt/zUkdV7O8kVi+j/5CnKgdYP+P/87AKx28\nb+hR8l0DNDsDzAj24BAQjzqE2pD6zKcoJBqp3fRT0naWaDhI8L2HyakkI58MdAAAIABJREFUQ9Fm\nir7NwYEoyoRobbAdhRd1GcxqlIJSSWMphW1bGAOeA7GozdyWCI5T7QbmgigFFSe3cC3l0KY+VsKq\nFHhX/8N0N1yISsTJFPYTT0VxXIfBrGbj66e/LGcsYvGx90T50A0eb1/rcNMVLp+6PcbiuaMHrjz5\niqFnIKBcrFAuVKiUKgznNU9tNmMmLouJSRIghBBCCHEKZt/zx9jp45epTC6fQ9M1F2MP95PzGpnR\n+wKVrbtw0i4N5Q4yA7tIOGV8X1EbyzEn2seK/LPUNMdYduNcnLoUdf5e1PKLKO9vY2BHO6GyaRuI\nExqbQtHguTB/drUkaCqh8GIOtm0deopuiEYsZtTCzCaLec0+rn1o6I2yiGa7aTnwGxIqS9TVXJd+\nHtPdTy45k1luH/3DinS+jXgyQiRi89hzecLw9He4LaW4aJHLTVdEePtaj8gxE4lLFcPre32MNli2\nhXIUxkCl5HOgS9PZL0nAyZIkQAghhBDiFFjRCBc++32wx+9WKc9hxVfuILOwmf5YC62fuJbof/so\nQc5n/j3/lfLBDmpy+4lkuzDDgySCQcJf/hitLaywxFP1NxNtqce1DL4dQ7seA0WPVw9m2NaZxlLg\nB4a6Gpv6FHieTSbjYFkW9dEChAHDQ2WWL01QKGtm1ARkYgGzMiVcOyQeDjMz3E+iPEBjf7XSkVcY\nZOPl/zeeFdBc3svG/GLmD7+ArSs4nsNAX4nfvlI+m5cZreHhJw1ezCOejBKJOigMgR+iFPiVACXr\nhp00SQKEEEIIIU6RV5th1if/cMwcYTvmsfwrH8ZNeJhCluCRHxDrqK4kvPDP78BVPm7aJUjVo4OQ\ndPYg5uXnGf7KfRQHyxw0LQSWhR1xsJVF0D9EYe6FPB97B/v7k4BCWQrfN3ieRa7iYNuKmfUWmZjm\nD2c+xlXWb1mzKkUs5jKUVXh2UI3ZMdTFylwQbMOlui1SHKASwGP2DZSSM2iM5tjcVUdWJ1nkb6Up\nlsOyLILQsPNAcDYvMT9/Adr6bWzHxrIUrueQSMXwPBu/EqC1prlWsoCTJdWBhBBCCCFOg9n//Y+I\nzKhj8JHvERQqxFrqmfWfriC9ZBZ6904CL03/k0/RcOMlNN/6NuzCIKVnniBwklDXTClbQed8ig9u\nAMB//Amia6/mkhU2beUZzI4OoIOQzovfB9bhajmGeFRRKiiUMviBTU1Gk45V+Pzyx4gEJZY67bRH\nS3SVkmgU4VEFeBIqz0r/xZF/Nyh2tMfpzXksmlVE93byy/7V2PiUtEvWZAj9EDfinNJT91AbntpU\nZNd+HwMsmO1yzboYtj3+SYsV2NE2drtSikjcI58rgWLUwmfi+CQJEEIIIYQ4TRo/eAuNV67A3b0R\n5ToQBgSvvIDONDK8bSsLbpyN21hD+OwvKA3nyHYME712PWE0Qax9J8W9+9Fv7AcFevfruL37UPHF\n9OVcFlu9hAf3M7TwtpHvi0QU8ZjCaXSIZzsIapoBi0poY8XjmMEcEatCtNSDHyQxBtoHXBbFqk/x\nC4FHaBS2qo6l35mfwSuDKRwrJN/Vw6P9i8Bo/rP6LjvNAorao1jIEom5mFATBOCcZPWfw7Q2fP27\nw7yyozKy7eXtFV7f6/N/3ZbGHqfqUM8Q5Evjf49tWyil0GdgjsJ/ZJIECCGEEEKcTq3L8FsWol5/\nHsoFzLJ3QtMckut66bn3f6Je2IopVygTIX7F28n8HzcQf/Vpcq9vQfUUUJEIJu/T/1ov9ff+FcN3\n/r+kIhXCwMDvnqL2muspRNN4LjiOhSmXSe55jcW9P6N31bvpSSxgsBAll24g7Q4R+IZuXUelolGW\nReHQUH5joHM4wsO5G3hbdBMBNr8YXgdAuQK7Cmlm0ca11hMMqxp+rG+gXPSplH2a6jM89UKOrbsU\nMxssghBqUxZXXuQyo/44q34BG18tjUoADtuyq8KzL5e4cm1szL66JDj4dHbkqJQDLFuRSMdJZeKE\nWmO0wXPlLcBkSBIghBBCCHG6OS5mxeWjNnl1DTT/2Vco79xMkCtQP28ulgXevq2Eb+xi+I02Op7u\nQOeLAPjZCio7wMUHv8vghdcy9KvnKWzdz/w5P2TP1XePnDf63BM0fPsvabyhmWLfcnL1Cykf7KS3\nfhZpdjMYxOnXKQwKpUAbRbGs6M8qDvTa+P4svlVej8ECZaG1IQgAyyUolNlgv5c8CfyyT3aggNaG\nMDTE4i49gz49g+GhCkSarXsDPnBdlIWzJ+5i7tznT7xvvz9uEpDL+7Tv7SObOzIPIT9UpFKqEI1G\nQEFjzfGTDzGaJAFCCCGEEKfKaCgOgQkgkgInOu5hTiyDtWgNhZ98BzvXA3tfJ9/WxdC+Prqf66KS\nL8PhYS0aBnYNUvzmkyT+/FLyfoLU7Bhm6AAArgqo84aYmdpH+8FuCoN1lAoGO9dP4vWXKK9Yhyrl\n2daeplyr8SIOrguua9GZi9E7qNHaoDWAgzEGE2jC0GAMYDvsKs4gN1wCBkf9jsAPsawj9WWMMSil\nGMrBr1/wj5sEHG+RMXuCfvxPnsqSK4Q4roPWGh1WFwYb6stRSQRYlsWy+dKtnQy5WkIIIYQQp6Kc\nhVwnKqiOszG5HohlIDWL8WbPWrEkzrr1vHrThzHFHLocYsIxh4ENyihy29uYXeygp1JAJ9PUpDWX\nNuwkZlfw7BCz/lLKm95B3vMpffMh7BVbwUpjB6uwdEhv1mJ3dw9LV82svnlwFY6tqM9YDAyNrvAT\nhAaOGlo/3kRby1J4UYfhgeJI5/9oB7tD/MBMuFLwRUs8nttcIjxmgV+l4MJF3pjjCyXNlt2aaDyK\nUgpjDDrUlEtljDYoo3nLihjrL4+M+31ifFIiVAghhBDizTIash0jCQCAQkNxAPK9E34s2trChc98\nn/TFa8ZPAABCaFo3h2idS9rxSTQlcW7+EN6KC8l4RbxDi30pyyJ9zTr6563D3rODaPtO1CWXk8ge\npL/o8st9sxjsL4xEF+pq59x1FenkMR31oxIA19YE5bFrAcSSEQJfUykFGF3tkB+dCDj2uLnPiJUL\nPa66OIpz1FN/x4ar1kZZvWRsR/67vyrga2vkO5RS2I6NF60mDO9YF+HD6+MTVhYS45M3AUIIIYQQ\nb1ZxEBWOneSqgHC4m7B3EGfuApQ19rmrm05x+RMP8ern/5r99z4wZn+0MU7dikYGd3XhJzJ4qxsx\nWjPQspJ6XcS2jvTY/XlLeG3WJVzwZy3MbN9I34VrKLb/hO9uXUR/KUYsUT1WKYge9bC92rGu7jP6\nyPkUMH+WxVXLEjy5qUhnrybQCi/i4rgWg335kWN1qKlojRdxAaiUA17dUWL10ui4bxKUUrz/+hRr\nlkZ4ZXsZA1y0JMKSeWPfAlR8w44J5hDYtk1djc36q5Lj7hfHJ0mAEEIIIcSbpSdeMEsN9aAe/wmF\nbAn7XbcRXXfVuMfN+OTHSRa2s/uRV6gMFrE8h/oVzVzwnhV0Prcd5SbY+6+/Y8b6t1DpHebx7HWk\nvDILa/pYWt8HQG9mITUFzYEF13HJ5XG6/QF+0L+O37cPAJDKVCfbxiLgHOr9+YFhKFsdk1MT19Qm\nAnqGbYyyqMtYZGptyrbLf3lPlNxQmb97OI/va4LQYNsWYVD9rFKKwA8ILAsdhnTu6eOrO+GiZSk+\n84fNE9buX9zqsbh1bMf/aBXfUKyMX/pTKcXb1yWIeDKw5c2QJEAIIYQQ4s3ykph8D4pxOqpD/dhB\niXgMgk0/xW9pxZ01d+xxSlG64HIW3xYQb65BORZ+tkjPS7vo29yLu3Qp1sH9BC86RGY3AJCtRNjc\n00zc8Yl7IXuzDWgs6pIFOsImoo7PmtW1qEqezTsNi5bWkopDMl79SmPAVZoVLQGZuOHCVs3OPo90\nzh0VWiW02DvgYuWKROMe1qGa/MYYwlBTLlbfghiqw4L62ntH3ii8tGWYXz0b59rL02/68iZiihn1\nNvs6xo6Zqs9YXH9F6k2f+3wnqZMQQgghxJvlxSE6tpNrcll4/dWRf3fCEv7PN0x4mvrb38/+rbBj\nw0be+N7v2fuTzRx84gDD+wuU93Sw6LpWen6xicritSOfCY3Nq30zeL53PvpQl05ZkFdJSnYCjcVV\nl9Xy7msSYHk4libU4AdQqUDBt5nTbLF2gcaxYbg0frewULF5o8fFduxR4/IdxyYScdFagwYUpOsz\nR10Ew+PPDE3mao6hlOLK1REio3MTHBuuWB2ZcPKxODF5EyCEEEIIcSrSszGWB5Uc9LZjBnth+2YY\nOGpicBDgHWfki1KKhV//G/Z/+n+Q3/QylaEibjLKBe9bztxrlzHUlkVrxbO5VaM+N1R0cANNLKpQ\nSpH0B2iM9WKF0FOeQ0MyYG1DOwdej9HrpKmvHd1p7s7ZLGyqjrk3TNyh7h4cf0iOZVuEYTjyG2zX\nqU4oOHR4pTLRrOeTd9mqKFFP8dyrZfqHNZmExdrlHpevGr8Mqzg5kgQIIYQQQpwKpSDVDDQTPvoA\nVn54/OMixy9hacWizPvf99L3//wvMokCidm1hJWQ7t/vZc+vdtHzma/SlRs9Cda2IZMwtHdXmFUP\nSwovkIm5dLszSUeKNEcH0U6c1X2/5KXozcDoQvyBPvxkH6J2SDkY+zagUAzpG9Bjth/+oEJhMARh\nABpiyQSlXAFjDI5j8Vdf76JSMcye4bL+6hQzGo8/D2A8a5ZGWLNUSoCeTjIcSAghhBDidJnROv72\nRBK17C0ndYq6T99Dt1nAq/+2i1ce3ExnX5rOT/89B5veOuo4YwzGGEolTVO9IlvQ6GgSFYS4nsWM\nxDCupXFMQH1xP66t4Zi5C+nIkc790KBPoTj6yb3vG9q7AuLx8VfxCoNwZA6ACQ1BEFTLd8Yi2I5F\nf97m9T0V9rT5/PaFAn/37T66eydeMVicPfImQAghhBDiNLFu/Aj821ehp7O6hgBALAEXLMNeccVJ\nnUNZFrPu+gjc9ZGRbS0V+O7GCqpYBGXhde4lteslKqsvZahxHpWsplzWbI6t5GJ3B7NoY0A1otBY\nYQXf8mjK+DSlArqyCQDiXsgFjUfKm+YLhi37KjgOWBZEPIUfGIolqEtAPgv+UTmC1ppSoXRkwTBd\nTQQAHNchVZcimogS+AHFXIlyoUxnT8CGnwzyyTsaT/FKi1MlSYAQQgghxGmiHBfe/xnM5ifgwA5w\nXNTydTBnVXXW7ps0lIcL/vZu7Od/h3E97GK1Tr9unY/9Z/8bNWsmvYMW7eUkpdwqrolsJWoXUSaE\njv10N1zE0jklLKUYKESwlCIZCfHD6gD+Yhn291RrHPmHqp6WjyrNuXi2oiVjeOJFH8tS1RV7ixX8\nyqGDTfWtwGG24xBNVMfsO65DIhMn9EMCP+DVnSVe3l5g9dL4m74e4tRJEiCEEEIIcTrZDmrNdbDm\nutN2ylf/9WlqX3qOeR+7jszqC7A8h9zOdvY/9AT+D79F7s7P45crRCIOFe1xMGimRhUpapvh1GJa\n39aE4xgCbQi0RaAtCr5Nb85hxcwy+9oDhgrjTwxOxQyXLIH7v1cgNzh2YTSoDk0adQnc0cOHLMsi\nmoiQGwwIQ8Pjv8tKEjDFJAkQQgghhDjHRbe/xPI//yD1ly0b2ZZcOIv08rm89P89jz/UQdzJkEk6\ngKIrbCQfZumvxHEdmyWmkyIZ/NAi1Ec6+4G2eKPHY3B44io+rU2GqGfo6J54YTStj8wtsOxqh/9Y\njufguA5+pUJbt39kGJGYEpIECCGEEEKc42Ysb6B23dhx9PHWJuZeu4LCrtdoveStBLbBtTWDeZe8\nXUMhcAgKhnWpfko6wVAhNaYUaK5i43gWx04aPiziVjvr0YiC7Nj9SsFFiz36hhXFwMaORsFAxQ/H\nnDIS9wh8n2hESQIwxSQJEEIIIYQ4x82/diWW7h13X2pxC4lwHp6do2RClJtguFLBTdhkIj5d5Tgu\nIZSKHByaMc4ZDHVpC9sKRr0lANDa8NKOkHJJsWSeR0dvcWxsLQ5OMoPxFUdX7rdsi1KxWglIh5rQ\nD7Esi0g8yvIF41cbEmePlAgVQgghhDjHRTOpCfeFpTJNLQ7JJ39AS/tGkk6OefEeXF0gZvlE7CIG\nUGiccXp+jmUILJflCyMkIkce3etQ45dDsnnYuM2QSMdZvcTDPeoRcutMhyULknQOjH2qb9sWCkO5\nUMYv+0dtV9x2Y+2bug7i9JE3AUIIIYQQ57ggPQt7YB8Woxft0qGmXDOD1gNP0F4eoKFuNiYcJJHf\nQVfsStCKhelujAHleUTcECtQVMLqk3jLMtQkQiKuQRub1Us9nnulSKEEgT/6u3YchLtvruFgh8/O\ngxXmzU6yeLbh35+ZYCExqonAsdIJhefKc+ipJv8FhBBCCCHOdY6HCRX45ZFNQVh9CzB34CU8XaKh\nJcJOfw7lBx8g8drTePEEWR2ndfAFdDaLcj1q40UsG+bW5klFfWZkfOIRg21BIqIZKtkUCnpMAgDV\nMqXDecOCuR43XJ7kqotTWJYi6k4ctj6qapAXd9BaU98YZ9MuCzP+FARxlkgSIIQQQggxDVh+Bbvr\nAFZ/F9ZAD17nbmL9Bw/tdIg01aJrm+n97TbUUB9esZ+mRJ6+xALCYjV5MEYBiqgb0piuoBQcLuxj\nW9XyoTXJ8SfsZhLVp/jHWr1w/ERAa025dNQwIGURT0WpWHF+s8Xi2e3SDZ1KcvWFEEIIIaaBIN0I\nBqz8MFZuEEtXy3oawHgRep7fycyuFwn378PP5okP7KIhViBv12HyeQqBxUAhhq00obFwLQ1UFwgz\nBkINqUjI4jnjf//SuYqIeyQJ6Bv0+def9PHjX/UQ0wPE3SMlRMMwpJAro4MjbxQiMZdUKkLnwUEM\nim0H1agViMXZJXMChBBCCCGmgaBpEWH7VuxSDnVoLI0BTDxFWAno39JB7aoSicYEvTSQmjOD9j6D\nbSfI6TjFShTP0TiWRqnD3X8AhTaGQsliXr3P/CUWGM22fYahPKQSsHSO4sZLjjw7fm1ngQce2Udn\n75En/c0NOaKZDBXtUin7o8qDWpYiU5ugVKhweBzQYN6iPxvSXHOmr5wYjyQBQgghhBDTQSROdl83\nyeULsMoFMAYTTWKMZviZpxnc1Yu7q5PYombyd3yRgUqMSuCDl6THbcG2IeH59AzZ1CVCQnOkU+8H\nCpShohTaKG68xOZdFxuyBUjGwXOOvAEwxvDoL/pHJQAAXb0BK+sKdJcToxIApRSNszIA2I41si/i\nGlKxM3e5xPHJcCAhhBBCiGlizw9eI7/xJcKyT6gVYV8PuSd/y55HNqEHsnT+3QasS68gEoHOoTjx\nSJnAh7bkCvzAQinFvg5o63UoB0cG8isFiZhiuOSwb6i63XUUdWk1KgEA6O7z2bWvNG58uw+UWb4o\nSTwVwXZtIlGXRCaG1od6/sqgrOr5WhsM8bELC4uzRN4ECCGEEEJME07LPF78n/9O08UtxOoTVIZK\ndL5wAF3SEPMgCBhcdyORIIoXsWiI+QRbX6ar+a0MFBRDebh2cQev9TfTqAyhqVYZypcViWg1GciW\nqpV7JlrQNwwNeoLKPlob2noDHNfFcY8kGaViQCFXQqFobqmtTkg+A9dHnDx5EyCEEEIIMU1k3nUl\nJjB0bTzI3p++Tvsz+6oJABCvjYKvKadmkivZhIGhYjzqX/0puSL05xwiDng2NKQCCCtoHZIrW2hj\nc3g9L21GjeYZY2aTxwVzo+PuiyUiGMslnnDJ1ERwvWpXUykFykKbENe1sSzY023xL4/BUGFy1yAM\nDbl8eOTtgnhT5E2AEEIIIcQ00f2NhyfcVzIO7qwUab8TP1+mx15JXOXoufy9aBNS8hVGQ1uljkTM\n4DqKWJglcFPkKxG0VoAh5hqsCd4CQLVD/9531vDA93rpHzxSEcj1bFIN9biuTeBrSoUK9Q0xQg39\nfSVsxyY/eKhUqQbHtdjT7vOzTR63X33iDr3Whg0/6GLT5hyD2YCGOpcrLk7z3usaqkmGmBR5EyCE\nEEIIMU3kXtg84T6dD2lc3ESsazuD0dnV8f/FenRtM3FXMzSsCY1NMfQItY1rhbi6xNz0EBHbB1Vd\nK6AhHpAvc9whPxe0xvhfn1nAdVelWbkkQX1zhrmLZ5NIV2f6WraF47m07R8kFndIJl2iUYvQGIwx\nI4uIaW3Y0x7Q1nvi3/7gI5388Ff9tHdXKJYM+9vKfOeHPXzvZz2Tvo5C3gQIIYQQQkwbuhJMvDOf\noxjOxGuaD14UFcKBLptV6V5i0XqiBUOprHAyBh0GJMmiTBHLcWiI56mYOIODmh9tsyhUbDJxw9IW\nzVsW6pH5Ab98JsszL+Xp7g/IpByWzY+w4sJGwr1jn8RblsJ2HHq7cmTq4qSTLrnhMpWKj6NtIp5N\nPltGWTF6hqGl4Tg/rRDy7EvDRBJRbNtBKUUYhvjlCj96fID3XteA48iz7cmQqyWEEEIIMU3YNemJ\n9zXW4C2eC/EEaqCbSqFMabjAQJgiCBUrG3qwbZgRz1JjZ7EISTl5ADLRgO6ekJd3WwwXLYJQ0Ze1\n+N12mxd3V7uLT2zM8cgvhzjQGVCuQHdfwFOb8vz+pf4JY3I9h0o5IJFwSCVdvIiDCUOMMaTTNs0z\nE8RjinlNx//d+9pKVEwE1/OwbAtlKRzXIRKPUgngt5tyk7+Y5zlJAoQQQgghpomZn/lvE+6bcfVS\nYpkoQxWHmleeoC7lM+RH2F+ciQ4BY8jEAtJuntmxXookGIrOBKB/2OKNjrHdQoPi9bZqtaBnXy4Q\njrPCb1d3Cb/ij91BdYKx49gYrQk1OK5NuRwQakO5okkkXFbOs6lJHv939wxqbMces92yLJyIx4Gu\n47whEeOSJEAIIYQQYppoevfVzLt5Lco+qgunoOGt81n47hVU+vLUdmwhHjOU8hVyRYuhvEXPoMWw\nU8+c+DBRJ6BAioqKExiXsg+vHYwSYuE4CuuY3uFwQdE3FNI/NH5HOwwNxfzYdQO01hitydTH6O4q\n09FZJhZTFAsVlFL091eoy8ANbznx7x4Y1hNO/rVsi3hMurSTJXMChBBCCCGmCTsSZf4tb2Xeuy+i\n/anX8bNl6le1kFnYTKgsSjv2olLPk4nm2Z2OUCpqUOD7ASVfMc/bQ0gDvTQBhmIFdhxM0pv1que3\nIRKx8H1DpVItPTqUC/irB4fB9lBWGXPMjGHPhVjMJQzDkY66MQajq8OB8rkQYyCbDcgPFwh8KBV9\nojGP5pTBPon+e1PdxF1Wz7V527oTvEoQY0gSIIQQQggxTahYirKbJGZC5ly7YtS+YuDiugo1sB+V\niTJcADA4KmTV7C4KqoaMW6DH12ijyBVh47YU5qiBIdVFwhSuC2GoCAJNfrhMdT6yTTQeoZgb/dR/\n+YIoixa7/H4b6GNWGFCWwoxsMuSzPpZjUykFRGMeEfvkav1felGcx5/Lsadt7LCjq9fFaayVLu1k\nybsTIYQQQohpJFj+Nsq4o7aVQ4ed//Aj/FKF0ms78KNpCgcOYtmG2pRmUX2ONbUHwXLwQ5tSYLF5\ntz0qAYAjqwQrpbAsw2B/gcG+/Mh+27bJZKpvDZJxi3UrY3z05lpuWGdx02WKuU3VcygLLFthHTW2\nqFwKUbaFZSmwFBHXsGzOyf1my1J87NY6Vi6K4B3q72eSFrfdkOa/vLtukldQgLwJEEIIIYSYXmpn\nMjTjUsKffBs7Gad0sJeBre2EpRJ+YYDaixbxb7EPcNm2h9jceg8aGx+HmK0JQodB6nBsRVOtYm/n\n6FPbR829LeZ9BnrGVt1ZtzLO5RfWsGhBBr9cHNl+8WLFxYthwxOw+5jzGmMol30sy0IpRSRicdF8\nqJu42NEYMxpc/vSORvoGfXIFQ0uzi2PLImFvlrwJEEIIIYSYZmLLlvPLtV/kjZ+/wsFfvUy+rQ3L\n86ldtZAXmq8nVzOX5H+6nUTCo6M3ZPdwI7EwxxC1+CoKQF3KoA4N31EKXJdRT+7zufK4311fazNv\ntkdNevxnye+5DBbO0tWJwcYQ+CGFXBm/XC0tZDuKW672eNeaN/fb62tcWmd5kgCcInkTIIQQQggx\nDc2cFefBdz6AXRzmioFf0B+fxebUFQAsqo1izZ5HrMulUNDsG4hT483Gj9SOfL61IWTFzJDf7XRp\nGxjdJaxP+OwtFMZ8Z1OtxdVroseNKxGD299usa8z4J9/WCJXOJJo1KYVn7sjhqzrNfUkCRBCCCGE\nmIZmNzm0tKRob4MnvVtHtjc1xZg1K4YVrWBZCmXZaOXS4TfREK2W+bQw1MQNCQ+uX1Vha1tIx6CN\nMdCU0aycHbCoPs6vNpbZ3xVgK5jf4nDTVTFikZN7At86w+Ev/kiq9pyrJAkQQgghhJiGWmoDFi2I\nU1cfoaeniNFQVxclU+MR9TQeZZTy0GG1jKZjVYfjuJahIaFJVOf3Ylmwck7IyjmjVwJbucBjxQUu\ng9lqGc90Uh7f/0ciSYAQQgghxDRkKbi4tcRGHSWZzBzaaoi6hrpYiWJJUy4HDPQVWTzPZVlzBWVB\nTdSMWRBsIkopatMy9v4/IkkChBBCCCGmqVk1mnctGebFAy6V0MVzNLMSwxQqFpt7a8hmfRbPc1kz\np0R98uRq8ovzgyQBQgghhBDTWCrucOVCzZb9eYaK8NLBDEM5i862Ia5a5fC2i2yUkgRAjCZJgBBC\nCCHENGfbiovmVxcQK1cqBCEkYpEpjkqcyyQJEEIIIYT4DyTiKaT7L05EpnkLIYQQQghxnpEkQAgh\nhBBCiPOMJAFCCCGEEEKcZyQJEEIIIYQQ4jwjSYAQQgghhBDnGUkChBBCCCGEOM9IEiCEEEIIIcR5\nRpIAIYQQQgghzjOSBAghhBBCCHGekSRACCGEEEKI84wkAUIIIYQQQpxnJAkQQgghhBDiPOOc6IBi\nscg999xDX18f5XKZO++8k6VLl/K5z32OIAhwHId7772XxsbGsxHNN+0mAAAH/UlEQVSvEEKIc5C0\nFUIIMb2cMAn49a9/zcqVK/nYxz5GW1sbH/3oR1m9ejW33XYb69ev56GHHuLBBx/ks5/97NmIVwgh\nxDlI2gohhJheTpgErF+/fuSfOzo6aG5u5ktf+hKRSASA2tpaXnvttTMXoRBCiHOetBVCCDG9nDAJ\nOOz222+ns7OT++67j3g8DkAYhmzYsIE//uM/PmMBCiGEmD6krRBCiOlBGWPMyR68bds2PvvZz/LD\nH/4QrTWf/exnmT9/PnfdddeZjFEIIcQ0Im2FEEKc+05YHWjLli10dHQAsGzZMsIwpL+/n8997nO0\ntrbK/9SFEEJIWyGEENPMCZOATZs28cADDwDQ29tLoVDgmWeewXVd/uRP/uSMByiEEOLcJ22FEEJM\nLyccDlQqlfjCF75AR0cHpVKJu+66i/vvv59yuUwymQRgwYIFfPnLXz4b8QohhDgHSVshhBDTy6Tm\nBAghhBBCCCGmP1kxWAghhBBCiPOMJAFCCCGEEEKcZ85IEvD73/+eyy67jF//+tcj27Zv384HPvAB\nPvShD3HnnXdSLBYBePbZZ3nPe97DzTffzCOPPHImwpmUycQOYIzh9ttv5x/+4R+mItxRJhP7v/zL\nv3DLLbfwvve9j4ceemiqQh4xmdj/+Z//mVtuuYVbb72Vp556aqpCHjFe7FprvvrVr3LppZeObAvD\nkC984Qt88IMf5LbbbuP73//+VIQ7ysnGDtPjXp0odjj379WJYj/X7tXTSdqKqTGd2wqQ9mKqSHsx\nNc5ke3Hak4D9+/fz4IMPsnbt2lHbv/KVr3DPPffw7W9/m9bWVh599FGCIOBLX/oSX/va13jooYd4\n5plnTnc4kzKZ2A975JFH8H3/bIc6xmRiP3DgAI8++igPP/ww3/nOd/jGN75BNpudosgnH/tPf/pT\nNmzYwNe+9jX+8i//kjAMpyjyiWO///77mTlzJkdPufnNb35DsVjkoYce4pvf/CZf/epX0Vqf7ZBH\nTCb26XKvjhf7Yef6vTpe7OfavXo6SVsxNaZzWwHSXkwVaS+mxpluL057EtDY2Mg//uM/kkqlRm2/\n7777WLVqFQB1dXUMDg7y2muv0drayowZM4jFYvzt3/7t6Q5nUiYTO0B/fz8/+tGPuP322896rMea\nTOwtLS1s2LABx3HwPI9oNEoul5uKsIHJxb5x40auuuoqPM+jrq6OlpYWdu3aNRVhAxPH/qEPfYgP\nfvCDo7bV1tYyPDyM1ppCoUAikcCypm5E3mRiny736nixw/S4V8eL/Vy7V08naSumxnRuK0Dai6ki\n7cXUONPtxWn/i4rFYti2PWb74RJxhUKBH/zgB9xwww20tbXhui6f+MQnuP322/nxj398usOZlMnE\nDnDvvffyqU99atzPnG2Tid2yLBKJBABPP/00tbW1zJw586zGe7TJxN7b20tdXd3IMXV1dfT09Jy1\nWI91otiPtnr1ambNmsU73/lOrr/+ej796U+fjRAnNJnYp9u9eqzpdK8e7Vy7V08naSumxnRuK0Da\ni6ki7cXUONPthXMqwT3yyCNjxnrdfffdXHXVVeMeXygU+PjHP85HP/pRFixYwPbt2+no6GDDhg2U\nSiVuvvlmrrjiCmpra08lrLMS+/PPP49t26xdu5a9e/ee8XiPdqqxH/byyy/z13/919x///1nNN6j\nnWrsjz322Kj9Z7PC7WRjP9amTZvo6Ojgscceo6+vjw9/+MO87W1vw/O8MxHuKKcauzFm2tyrx5pO\n9+pEpuJePZ2krZgef3/nUlsB0l5IezF50l5M7n49pSTg1ltv5dZbbz2pY4Mg4M477+Smm27i5ptv\nBqC+vp4LL7yQWCxGLBZj0aJFHDhw4Kz8oZxq7I8//jhbtmzhtttuo7+/n0qlwpw5c3jve997JsMG\nTj12qE6i+uIXv8h99913Vp/snGrsTU1N7NmzZ+SYrq4umpqazkisx5pM7ON58cUXueyyy3Ach+bm\nZmpqaujq6mLOnDmnMcrxnWrs0+VeHc90uVcnMlX36ukkbcW5//d3rrUVIO2FtBeTJ+3F5O7XU0oC\nJuPrX/86b33rW0f9wDVr1vA3f/M3lMtllFLs27eP2bNnn62QTtp4sd9zzz0j//zoo4/S1tZ2Vv5I\nJmu82MMw5POf/zx///d/f05e78PGi/3SSy/lwQcf5O6772ZgYIDu7m4WLlw4hVGevNbWVn72s58B\nkMvl6OrqorGxcYqjOjnT5V4dz3S5V8czXe7V00naiqkxndsKkPbiXDJd7tfxTJf7dTxv5n497SsG\nP/nkk3zjG99g9+7d1NXV0djYyAMPPMCVV17J7NmzcV0XgEsuuYS77rqLxx9/nH/6p39CKcWtt97K\n+9///tMZzhmN/bDDfyh33333VIU+qdhXr17Nn/7pn7JkyZKRz3/mM58ZmVR1Lsd+11138a1vfYsf\n/ehHKKX45Cc/yWWXXTYlcR8v9r/4i79gx44dvPjii6xdu5Z3vOMd3HHHHXz5y19m586daK358Ic/\nzB/8wR9Mi9g/8pGPTIt7daLYDzuX79XxYl+0aNE5da+eTtJWTI3p3FaAtBfTIXZpL6Ym9jfTXpz2\nJEAIIYQQQghxbpMVg4UQQgghhDjPSBIghBBCCCHEeUaSACGEEEIIIc4zkgQIIYQQQghxnpEkQAgh\nhBBCiPOMJAFCCCGEEEKcZyQJEEIIIYQQ4jwjSYAQQgghhBDnmf8fmcOYFvVGzu4AAAAASUVORK5C\nYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "32_DbjnfXJlC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Wait a second...this should have given us a nice map of the state of California, with red showing up in expensive areas like the San Francisco and Los Angeles.\n", + "\n", + "The training set sort of does, compared to a [real map](https://www.google.com/maps/place/California/@37.1870174,-123.7642688,6z/data=!3m1!4b1!4m2!3m1!1s0x808fb9fe5f285e3d:0x8b5109a227086f55), but the validation set clearly doesn't.\n", + "\n", + "**Go back up and look at the data from Task 1 again.**\n", + "\n", + "Do you see any other differences in the distributions of features or targets between the training and validation data?" + ] + }, + { + "metadata": { + "id": "pECTKgw5ZvFK", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "49NC4_KIZxk_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Looking at the tables of summary stats above, it's easy to wonder how anyone would do a useful data check. What's the right 75th percentile value for total_rooms per city block?\n", + "\n", + "The key thing to notice is that for any given feature or column, the distribution of values between the train and validation splits should be roughly equal.\n", + "\n", + "The fact that this is not the case is a real worry, and shows that we likely have a fault in the way that our train and validation split was created." + ] + }, + { + "metadata": { + "id": "025Ky0Dq9ig0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Return to the Data Importing and Pre-Processing Code, and See if You Spot Any Bugs\n", + "If you do, go ahead and fix the bug. Don't spend more than a minute or two looking. If you can't find the bug, check the solution." + ] + }, + { + "metadata": { + "id": "JFsd2eWHAMdy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "When you've found and fixed the issue, re-run `latitude` / `longitude` plotting cell above and confirm that our sanity checks look better.\n", + "\n", + "By the way, there's an important lesson here.\n", + "\n", + "**Debugging in ML is often *data debugging* rather than code debugging.**\n", + "\n", + "If the data is wrong, even the most advanced ML code can't save things." + ] + }, + { + "metadata": { + "id": "dER2_43pWj1T", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "BnEVbYJvW2wu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The code that randomizes the data (`np.random.permutation`) is commented out, so we're not doing any randomization prior to splitting the data.\n", + "\n", + "If we don't randomize the data properly before creating training and validation splits, then we may be in trouble if the data is given to us in some sorted order, which appears to be the case here." + ] + }, + { + "metadata": { + "id": "xCdqLpQyAos2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 4: Train and Evaluate a Model\n", + "\n", + "**Spend 5 minutes or so trying different hyperparameter settings. Try to get the best validation performance you can.**\n", + "\n", + "Next, we'll train a linear regressor using all the features in the data set, and see how well we do.\n", + "\n", + "Let's define the same input function we've used previously for loading the data into a TensorFlow model.\n" + ] + }, + { + "metadata": { + "id": "rzcIPGxxgG0t", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "CvrKoBmNgRCO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Because we're now working with multiple input features, let's modularize our code for configuring feature columns into a separate function. (For now, this code is fairly simple, as all our features are numeric, but we'll build on this code as we use other types of features in future exercises.)" + ] + }, + { + "metadata": { + "id": "wEW5_XYtgZ-H", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "D0o2wnnzf8BD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, go ahead and complete the `train_model()` code below to set up the input functions and calculate predictions.\n", + "\n", + "**NOTE:** It's okay to reference the code from the previous exercises, but make sure to call `predict()` on the appropriate data sets.\n", + "\n", + "Compare the losses on training data and validation data. With a single raw feature, our best root mean squared error (RMSE) was of about 180.\n", + "\n", + "See how much better you can do now that we can use multiple features.\n", + "\n", + "Check the data using some of the methods we've looked at before. These might include:\n", + "\n", + " * Comparing distributions of predictions and actual target values\n", + "\n", + " * Creating a scatter plot of predictions vs. target values\n", + "\n", + " * Creating two scatter plots of validation data using `latitude` and `longitude`:\n", + " * One plot mapping color to actual target `median_house_value`\n", + " * A second plot mapping color to predicted `median_house_value` for side-by-side comparison." + ] + }, + { + "metadata": { + "id": "UXt0_4ZTEf4V", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 131 + }, + "outputId": "56c5f486-9f60-478c-8e22-a285c83e38cc" + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # 1. Create input functions.\n", + " training_input_fn = # YOUR CODE HERE\n", + " predict_training_input_fn = # YOUR CODE HERE\n", + " predict_validation_input_fn = # YOUR CODE HERE\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # 2. Take a break and compute predictions.\n", + " training_predictions = # YOUR CODE HERE\n", + " validation_predictions = # YOUR CODE HERE\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "error", + "ename": "SyntaxError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m44\u001b[0m\n\u001b[0;31m training_input_fn = # YOUR CODE HERE\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ] + }, + { + "metadata": { + "id": "zFFRmvUGh8wd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 627 + }, + "outputId": "3004b22a-c334-4535-8f30-313e57efe7d1" + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_model(\n", + " # TWEAK THESE VALUES TO SEE HOW MUCH YOU CAN IMPROVE THE RMSE\n", + " learning_rate=0.00001,\n", + " steps=100,\n", + " batch_size=1,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 226.06\n", + " period 01 : 224.68\n", + " period 02 : 223.29\n", + " period 03 : 221.92\n", + " period 04 : 220.55\n", + " period 05 : 219.21\n", + " period 06 : 217.86\n", + " period 07 : 216.53\n", + " period 08 : 215.20\n", + " period 09 : 213.88\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl80/X9B/DXN1dzpzmbHtwoKHLb\nCaLIITf+GALVqegcc24DFWXzGro5T+rUqYDIHEPdhXaoOPFi6AQ3dFBEjnKfvZPeTVrapt/fH0m/\nybctpWDTJuX1fDx80HzyzTff9NvCy8/1FkRRFEFEREQURxRdfQFERERE54oBhoiIiOIOAwwRERHF\nHQYYIiIiijsMMERERBR3GGCIiIgo7qi6+gKIYtmAAQPQs2dPKJVKAEAgEEB6ejqWLl0KvV5/3ud9\n6623kJGR0aJ9/fr1eOihh7Bq1SqMHz9eaq+trcWVV16JyZMn45lnnjnv922vkydP4qmnnsKxY8cA\nADqdDosWLcK1114b9fc+FytXrsTJkydbfE+++uorLFiwAGlpaS1e89FHH3XW5X0nubm5mDhxIvr0\n6QMAEEURDocDv/rVr3DppZee07mee+45pKSk4Ac/+EG7X/Pee+8hKysLb7755jm9F1FnYYAhOos3\n33wTbrcbAFBXV4d7770Xr776Ku69997zOp/H48Frr73WaoABgOTkZPzzn/+UBZjPPvsMZrP5vN7v\nfPziF7/ArFmzsGrVKgDArl27cNttt+HDDz9EcnJyp13Hd5GcnBw3YeVMlEql7DNs3LgRCxcuxMcf\nfwyNRtPu8yxZsiQal0fUpTiERHQONBoNrr76auTk5AAATp8+jUcffRRTpkzBtGnT8MwzzyAQCAAA\n9u/fjxtvvBFTp07FrFmzsGXLFgDAjTfeiPz8fEydOhV1dXUt3mPEiBH46quvUFNTI7Vt3LgRY8aM\nkR7X1dXhiSeewJQpUzBhwgQpaADAzp07cf3112Pq1KmYPn06/vOf/wAI/h/9VVddhTfeeAPXXXcd\nrr76amzcuLHVz3nw4EEMHTpUejx06FB8/PHHUpBbvnw5rrnmGnz/+9/H6tWrMWHCBADAgw8+iJUr\nV0qvi3x8tut66qmncMsttwAAduzYgTlz5mDSpEnIyMjAqVOnAAR7ohYvXozx48fjlltuQWFh4Vnu\nWOvWr1+PRYsW4bbbbkNmZia++uor3Hjjjbjnnnukf+w//PBDzJw5E1OnTsWtt96KkydPAgBefvll\nLF26FHPnzsXatWtl573nnnuwZs0a6XFOTg6uuuoqNDY24oUXXsCUKVMwZcoU3HrrrSgqKjrn654+\nfTpqa2tx9OhRAMC6deswdepUTJgwAffddx9qa2sBBL/vTz/9NK677jp8+OGHsvtwpp/LxsZG/Pa3\nv8W4ceMwd+5c7N+/X3rfr7/+GrNnz8b06dMxbdo0fPjhh+d87UQdTiSiM7r44ovFgoIC6XF5ebl4\n8803iytXrhRFURRfffVV8Y477hDr6+vFmpoacc6cOeK7774rBgIBcdq0aeL7778viqIofvvtt2J6\nerpYVVUlbtu2Tbz22mtbfb9//OMf4gMPPCD+4he/kF5bVVUlTpw4UXz77bfFBx54QBRFUVy+fLl4\n2223iadPnxZ9Pp/4/e9/X9y8ebMoiqI4c+ZM8Z///KcoiqL4zjvvSO916tQp8dJLLxXffPNNURRF\ncePGjeKkSZNavY677rpLHD9+vPj666+Lhw8flj134MAB8fLLLxeLi4vF+vp68Wc/+5k4fvx4URRF\n8YEHHhBXrFghHRv5uK3rGjRokLh+/Xrp86anp4tbt24VRVEU33//fXH27NmiKIrin//8Z/Hmm28W\n6+vrxdLSUnH8+PHS9yRSW9/jpu/zsGHDxGPHjknHDx48WPzPf/4jiqIo5uXliSNHjhSPHz8uiqIo\n/vGPfxRvu+02URRF8aWXXhKvuuoqsaSkpMV5P/jgA/Hmm2+WHr/44ovi448/Lh48eFCcPHmyWFdX\nJ4qiKL7xxhviO++8c8bra/q+XHLJJS3a09PTxSNHjoj/+9//xNGjR4uFhYWiKIriI488Ij7zzDOi\nKAa/79ddd51YW1srPV6xYkWbP5eff/65OHnyZLG6ulqsqakR586dK95yyy2iKIri9ddfL3711Vei\nKIrisWPHxPvuu6/NayfqDOyBITqL+fPnY+rUqZg4cSImTpyIUaNG4Y477gAAfP7558jIyIBKpYJW\nq8V1112HL7/8Erm5ufB6vZgxYwYAYPDgwUhJScHu3bvb9Z4zZszAP//5TwDApk2bMH78eCgU4V/X\nzz77DDfddBM0Gg30ej1mzZqFTz75BADw7rvvYtq0aQCAkSNHSr0XANDQ0IDrr78eADBo0CDk5+e3\n+v7PPvssbr75Zrz//vuYOXMmJkyYgL/97W8Agr0j6enpcDqdUKlUmDlzZrs+U1vXVV9fj0mTJknn\nT0pKknqcZs6ciZMnTyI/Px/bt2/HpEmToFKpYLVaZcNszRUUFGDq1Kmy/yLnyvTu3Ru9e/eWHmu1\nWowePRoA8OWXX+KKK65Ar169AADz5s3DV199hYaGBgDBHimbzdbiPceNG4d9+/ahvLwcAPDpp59i\n6tSpMJvNKC0txfvvv4+KigrMnz8f3//+99v1fWsiiiLWrVuHpKQk9O7dG5s3b8b06dORlJQEAPjB\nD34g/QwAwOjRo5GQkCA7R1s/l//73/9wzTXXwGAwQKvVSvcKAOx2O959910cOXIEvXv3xnPPPXdO\n104UDZwDQ3QWTXNgSktLpeEPlSr4q1NaWgqLxSIda7FYUFJSgtLSUphMJgiCID3X9I+Yw+E463uO\nGTMGS5cuRXl5OT744AP8/Oc/lybUAkBVVRWefvppPP/88wCCQ0pDhgwBALz//vt444034PP50NjY\nCDGi3JlSqZQmHysUCjQ2Nrb6/gkJCViwYAEWLFiAyspKfPTRR3jqqaeQlpaGiooK2Xwcu91+1s/T\nnusyGo0AgMrKSpw6dQpTp06VntdoNCgtLUVFRQVMJpPUbjab4fP5Wn2/s82BibxvzR+XlZXJPqPJ\nZIIoiigrK2v1tU30ej2uvPJKfP755xg5ciQqKysxcuRICIKAl19+GWvWrMHjjz+O9PR0PPbYY2ed\nTxQIBKTvgyiK6N+/P1auXAmFQoGqqip8+umn2Lp1q/R8fX39GT8fgDZ/LisqKuByuWTtTZ566im8\n8soruP3226HVanHffffJ7g9RV2CAIWonm82G+fPn49lnn8Urr7wCAHA4HNL/bQNAeXk5HA4H7HY7\nKioqIIqi9I9FeXl5u/+xV6vVGD9+PN59912cOHECw4cPlwUYl8uFH/3oRy16IIqKirB06VK8/fbb\nuOSSS3D8+HFMmTLlnD5naWkpcnJypB4Qs9mMjIwMbNmyBQcPHoTJZEJVVZXs+CbNQ1FFRcU5X5fL\n5ULfvn2xfv36Fs+ZzeYzvndHstvt2Llzp/S4oqICCoUCVqv1rK+dMmUKPv30U5SVlWHKlCnS/R81\nahRGjRoFv9+PZcuW4Xe/+91ZezKaT+KN5HK5MHv2bDzwwAPn9LnO9HPZ1vfW4XDgkUcewSOPPIKt\nW7firrvuwtVXXw2DwdDu9ybqaBxCIjoHt99+O3bu3Imvv/4aQHDIICsrC4FAAH6/H++99x6uueYa\npKWlwe12S5Nks7Oz4fV6MWTIEKhUKvj9fmk44kxmzJiBP/zhD60uXZ44cSLefvttBAIBiKKIlStX\n4osvvkBpaSn0ej369u2LhoYGrFu3DgDO2EvRmtraWtx9993S5E4AOHHiBHbt2oXLL78cw4cPx/bt\n21FaWoqGhga8++670nFOp1Oa/Hnq1ClkZ2cDwDld19ChQ+HxeLBr1y7pPL/85S8hiiKGDRuGzZs3\nIxAIoLS0FF988UW7P9e5GDNmDLZv3y4Nc/3973/HmDFjpJ63towfPx47d+7Epk2bpGGYrVu34rHH\nHkNjYyP0ej0GDhwo6wU5HxMmTMAnn3wiBY1NmzZh9erVbb6mrZ/L4cOHY+vWraipqUFNTY0UnOrr\n6zF//nwUFxcDCA49qlQq2ZAmUVdgDwzROTAajfjJT36CZcuWISsrC/Pnz8epU6cwY8YMCIKAqVOn\nYtq0aRAEAc8//zx+/etfY/ny5dDpdHjxxReh1+sxYMAAWCwWjBkzBu+88w5SUlJafa/vfe97EAQB\n06dPb/HcTTfdhNzcXMyYMQOiKOKyyy7DbbfdBr1ej7Fjx2LKlCmw2+148MEHkZ2djfnz5+Oll15q\n12dMSUnBK6+8gpdeeglPPPEERFGE0WjEQw89JK1MuuGGGzB79mxYrVZMnjwZhw4dAgBkZGRg0aJF\nmDx5Mi699FKpl2XgwIHtvi6tVouXXnoJjz/+OHw+H9RqNe655x4IgoCMjAxs374d1157LVJSUnDt\ntdfKeg0iNc2BaS4zM/Os3wO3240nnngCP//5z1FfX4+0tDQ8/vjj7fr+GY1GDBo0CAcOHMCwYcMA\nAOnp6fjggw8wZcoUaDQa2Gw2PPXUUwCA+++/X1pJdC4GDRqEn/70p5g/fz4aGxtht9vx2GOPtfma\ntn4ux48fj88//xxTp06Fw+HANddcg+3bt0OtVmPu3Ln44Q9/CCDYy7Z06VLodLpzul6ijiaIkQPR\nRETnaPv27bj//vuxefPmrr4UIrqAsA+QiIiI4g4DDBEREcUdDiERERFR3GEPDBEREcUdBhgiIiKK\nO3G5jNrjaX3ZZEewWvUoK/NH7fx0/nhvYhPvS+zivYldvDft43Sazvgce2CaUamUXX0JdAa8N7GJ\n9yV28d7ELt6b744BhoiIiOJOVIeQMjMzsWPHDjQ0NODOO+/E+PHj8eCDD+LEiRMwGAx46aWXYLFY\nsGHDBrz++utQKBTIyMjAvHnzonlZREREFOeiFmC2bduGQ4cOYd26dSgrK8Ps2bPh8XhgtVrx3HPP\nYd26ddi+fTtGjx6NFStWICsrS9qyetKkSUhMTIzWpREREVGci1qASU9Px5AhQwAEK8jW1NTgs88+\nw9133w0gWEsFAP773/9i8ODBMJmCE3VGjBiB7Ozsc64LQkRERBeOqM2BUSqV0Ov1AICsrCyMHTsW\neXl5+OKLLzB//nzce++9KC8vh9frhc1mk15ns9ng8XiidVlERETUDUR9GfWmTZuQlZWFNWvWYN68\neejTpw8WLVqElStX4tVXX8Wll14qO749GwNbrfqozuBua9kWdS3em9jE+xK7eG9iF+/NdxPVALNl\nyxasWrUKr732GkwmExwOB9LT0wEAV111FV5++WWMGzcOXq9Xek1xcbFUgv5Morl23uk0RXWfGTp/\nvDexifcldvHexC7em/bpkn1gqqqqkJmZiVdffVWakDt27Fhs2bIFALB371706dMHQ4cOxe7du1FZ\nWQmfz4fs7Gxcfvnl0bosIiKibu/zz//VruNefPE55OfnnfH5Bx+8r6MuqcNFrQdm48aNKCsrw+LF\ni6W2ZcuW4ZlnnkFWVhb0ej2WLVsGrVaLJUuWYMGCBRAEAQsXLpQm9BIREdG5KSjIx6ZNH2PcuIln\nPfaee5a0+fwzzzzfUZfV4eKyGnU0u93YrRe7eG9iE+9L7OK9iV3RvDe//OU9yMnZi4qKCkyePA0F\nBfn4/e9X4umnfwuPpxg1NTX40Y9+gjFjrsaiRT/Bfffdj88++xd8vmqcPHkCeXm5uPvuJRg9egxm\nzJiIDz74FxYt+gnS069AdvZ2lJeXY9myF+BwOPDb3z6CwsICDB48BJs3b8I772zs0M/S1hBSXNZC\nIiIiigdvbT6M/+0vbtGuVAoIBM6v/yB9oAsZE/qf8fkf/GA+1q9/C3369MPJk8excuVrKCsrxfe+\nNwrTps1EXl4uHnnkQYwZc7XsdcXFRfjd717Ctm3/wXvv/QOjR4+RPW8wGPDii6/glVdexhdfbEZK\nShrq6k5j9eq1+PLLLXjrrb+d1+c5XwwwEUpqSpFzfB/0ARPchiQkKDVdfUlERETn7ZJLBgEATCYz\ncnL2YsOG9RAEBSorK1ocO2RIcAGNy+VCdXV1i+eHDh0uPV9RUYETJ45h8OChAIDRo8dAqezc+k4M\nMBE+Ov4v/Kfgf9Jjh9aGZKMbKQY3kg1JSDG64dI7oVbw20ZERGeXMaF/q70lnTW8p1arAQCffvoR\nKisrsWLFa6isrMSPfzy/xbGRAaS12SXNnxdFEQpFsE0QBAiC0NGX3yb+SxxhVv/puCz1IhwsPIF8\nXxEKqgux27sPu737pGMUggIunSMUbJKC4cbohlNnh0JgbUwiIupaCoUCgUBA1lZeXo7k5BQoFAr8\n+9+bUV9f/53fJzU1TVrt9PXX21q8Z7QxwEQwqg24NuVqDDWH96GpqqtGga8Q+dVFyPcVSl8X+oux\nM+K1aoUKbr2rRY+NNSGx01MpERFduHr16oMDB/YjOTlF2sZk3LgJePDB+7Bv3x7MmPF/cLlc+NOf\n/vCd3ufKK6/GBx9swM9+tgDDh4+E2WzpiMtvN65CaqY93XqiKKL8dAXyfYXIry5EgS8Ybgp9Rahv\nbJAdq1UmINngRooxKfinwY0UoxsmjTFqn6G74oqK2MT7Ert4b2JXd7g3lZUVyM7ejnHjJsLjKcY9\n9/wMf/3rPzr0PbgKqYMJggCrNhFWbSIG2QdK7Y1iI7w1JdLwU76vEPm+IpyoOoVjlSdk5zCqDdLw\nU0qotybZkASdStfZH4eIiOic6fUGbN68CX/965sQxUbcdVfnbnrHHphmopGK6xsbUOz3hEJNaCiq\nuhDe2tIWx1oTEpFsDM6tCQacJLj1SdAo1R16TfGoO/wfS3fE+xK7eG9iF+9N+7AHpoupFSqkGpOR\nakyWtZ8O1KHQV4T8UG9NQejrfSUHsK/kgHScAAFOnV3qrUkODUO5dA4oFZ27bI2IiCgWMMB0oQSl\nBr3MPdDL3EPW7qv3S2GmwBcKN9VF2OXZg12ePdJxSkGJJL0zNPwUmjhscMOus3JFFBERdWsMMDHI\noNajf2If9E/sI7WJoojKuipp+Ekaigr9GUmjUMMdCjMpxvDEYbPGxBVRRETULTDAxAlBEGBJMMOS\nYMYltoul9kaxEaW15aHl3ZFDUQU4WZUrO4dBrQ+FmeTQxOHgn1qVtrM/DhER0XfCABPnFIICDp0N\nDp0Ngx2XSu2BxgCKa7zhUFNdiDxfIQ6XH8Oh8qOyc9i1VmleTWoo4CTpnZxfQ0TUjc2dex3eeGMd\n/vGPtzB8+AhcdtkQ6Tm/349bb70BWVnvn/H1n3/+L4wbNxEbN74Pg8GIa64Z3xmXLWGA6aaUCiWS\nDUlINiRhJIZK7acDdREb8xUEA051IfaU5GBPSU749RHzayKHomxaK4ehiIi6kfnzf3jOrykoyMem\nTR9j3LiJmD79uo6/qHZggLnAJCg16G3uid7mnrL2qrpqqbcmv7pAmmPTfH5NeGM++fwao9rQmR+D\niIjO4Ec/uhlPPfUc3G43CgsL8NBDS+B0ulBTU4Pa2lrce+8vcemll0nHP/nkbzBu3EQMGzYcv/rV\n/airq5MKOwLAJ598iKysdVAqFejdux8eeOBXeP75ZcjJ2Ys//ekPaGxsRGJiIubMuQErV76I3bt3\noaEhgDlzMjB16gwsWvQTpKdfgezs7SgvL8eyZS/A7XZ/58/JAEMAAJPGiAG2/hhgCxcdC86vKUNe\ndaG0IirPV9jqxnwWjQkpxuRQCYVkpBrccBu4fw0RXdjWH/4ndhbvbtGuVAgINJ7fNmzDXYNxff+Z\nZ3x+7Njx+PLLLzBnTga2bPk3xo4dj379LsLYseOwY8f/8Je/vI4nn3y2xes+/vhD9O3bD3ffvQT/\n+tcn2LTpYwBATU0NnnvuZZhMJixceAeOHDmMH/xgPtavfwu3334H/vjHVwEA33yTjaNHj+CVV9ag\npqYGt912I8aOHQcAMBgMePHFV/DKKy/jiy82IyPjpvP67JEYYOiMgvNr7HDo7BjqHCS11zc2oMhX\nLJVSaPozp/QgckoPSscJEODU26VN+VKMyUhh4UsioqgaO3Y8li//PebMycDWrf/GokX34u9/fxN/\n+9ubqK+vh1bb+sKN48ePYtiwkQCA4cNHSu1msxkPPbQEAHDixDFUVJS3+vr9+/dh2LARAACdTofe\nvfvi1KlTAIChQ4cDAFwuFyoqKjrkczLA0DlTK1RIM6UgzZQia69pqJHPrQkFm2/8e/BNxP41aoVK\ntsw71ZCMZGMSLBoz59cQUbdyff+ZrfaWRHMn3r59+6GkxIOiokJUVVVhy5bP4XC48Mgjj2P//n1Y\nvvz3rb5OFAGFIvh3cGOod6i+vh7PP5+JtWv/CrvdgfvvX3zG9xUEAZF7+zc01EvnUyrDi0I6qgAA\nAwx1GJ1Kh36JvdEvsbfUJooiKuoqkde0KV91cI5Nga8Ip6ryZK83qPTS3JpkgxupoT91XOZNRHRO\nRo++CqtXr8TVV1+D8vIy9Ot3EQDg3//+DA0NDa2+pmfPXti/Pwfjxk1EdvZ2AIDf74NSqYTd7kBR\nUSH2789BQ0MDNBoNAoGA7PUDBw7C66//EfPn/xB+vx95eblIS+vZ2lt1CAYYiipBEJCYYEFiggWD\n7AOk9kBjAN6aEuRF7l9T3foyb5vWihSDG/1dPWERgku+3Xon1JxfQ0TUqmuuGY+f/vRHWLv2b6it\nrcETT/wan322CXPmZGDTpk/wwQcbWrxm6tQZePjhX+Cee36GIUOGBfcfsyQiPf0K/PjHt6J//4tw\n003z8dJLz+Pll1/FgQP78dJLz8FgMAIAhg4dhgEDBmLhwjvQ0NCAn/50EXS66BUoZjHHZlhgq2vV\nBeqkMgqRc2wq6+T3RIAAl94RLqEQqhPlZH2oTsffmdjFexO7eG/ah8UcKW5ozlAfqrrOhxp1Jfbl\nHZNqQ+X7ClHk341vPOEZ/ipBCRfrQxERdXsMMBQXjBoD+jjdcArhit5N82sKqotCRS/PXh+qqbcm\n2RDssUlMsHDiMBFRHGKAobgVOb/mEru8PlRZbbmsp6Yp1DSvD6VVapFiTJL11qQY3TBpjJ39cYiI\n6BwwwFC3oxAUsOtssLdSH8pbU4J8X7jHpqC6EMcrT+FohXxjPqPaIOutCYabJOjV+s7+OERE1AoG\nGLpgKBVKJBlcSDK4MByDpfb6xgYU+z0oqJYPQ7W2IioxwSLVmGrqrXEbkpCg1HT2xyEiuqAxwNAF\nT61QIdWYjFRjsqz9dKAOhb4iqcemaTiq+Y7DAGDX2qShqJRQj02SwQW1gr9iRETRwL9dic4g4Qwr\novz1NSj0Ny31Dg5DFfiKsNubg93ecEVvhaCAU+eQhp+SQ8UvnTo7l3oTEX1HDDBE50iv1qGvpTf6\nWnrL2qvqqkO7DUfMsfEVoshf3GKpd5LBJRuGSjG4YdUmcqk3EVE7McAQdRCTxgiTpj8utoYrejct\n9Q7vNhwchir0FSGvukD2+gSlRlre3dRbk2xww6wxcqk3EVEzDDBEURS51PvSiFIKjWIjSmvLZDWi\nCnxFOFmVi+OVJ2XnMKj1UphJMYbn2OjV0duim4go1jHAEHUBhaCAQ2eHQ2fHUOcgqb2hsQHFfq9s\nmXe+r/UaUYkJlmCYMYaGogxuuA0uaLgiioguAAwwRDFEpVBJFblHRrTXBepQ6CuW1Ycq8BVhX+kB\n7Cs9IB0nQIBDZ5Pm1jT12rhYI4qIuhkGGKI4oFFq0NOchp7mNFm7v94f3pivafJwdSF2efdil3ev\ndJxSUCIpokZUSmiTPpuWNaKIKD4xwBDFMb1aj/6JfdA/sY/UJooiKptWRPkKZRv0tagRpdSEV0NF\nTB42a0ycOExEMY0BhqibEQQBlgQTLAkmDLRdJLUHJw6XS700TcNQuVX5OFF5SnYOg0ovza0JTx5m\nKQUiih0MMEQXiODEYRscrdSI8tR4g700TauifIU4Un4ch8uPyc7RVEohOHk4GGpM1n6d/VGIiBhg\niC50SoUSbkMS3IYkjHANkdrrAvUo8hdLvTVN+9g0L6UgbBdg11qRbAxX9GYpBSKKNv7tQkSt0ijV\n6GFKRQ9Tqqy9pqEGBb5wKQVvnQcnyvKw27sPu737pOOCpRTsUjXvpureXBFFRB2BAYaIzolOJS+l\n4HSa4PFUhUspRNSHyvcVoci/W1ZKoWlFVDDUNO1jkwSHzs4VUUTUbgwwRNQh2iqlUNAs1BRIK6J2\nSceqFSok6V0R5RSCAcfGGlFE1AoGGCKKmshSCpfYLpbaRVGUVkQV+IpCwaYQhb5i5Fbny86hUWqQ\nrG8KNOE5NokJFi71JrqAMcAQUacTBAF2nRV2nRWXOS6R2hvFRnhrSkOhplCaa5NXnY8TVfKl3jqV\nVppb0zTPJsXohknN4pdEFwIGGCKKGQpBAZfeAZfeIasRFbnUO3I46njlKRytOCE7R7j4ZTjYJBuT\nYFQbOvvjEFEUMcAQUcyLXOodqb6xAcV+T4v5Na0VvzRrTLIhqOCybxd0Klb1JopHDDBEFLfUChVS\njclINSbL2usCdSj0F6OgOjy/psBXhANlh3Gg7LDsWGtCYngoKrQ5n9uQhARW9SaKaQwwRNTtaJQa\n9DSloadJXvyytqEWBb7iFnNsmlf1BgC71oYUY8QwlMENt94JtVLdmR+FiM6AAYaILhhalRZ9LD3R\nx9JT1h5Z1Ts4xybYc7Pbm4Pd3hzpOAECnPrw5nwpoWDj0jug4q7DRJ2Kv3FEdMFrrao3gNDmfOEh\nqGCwKcQu/x7s8uyRjgtOPnbKQk2yIQlOnZ27DhNFCQMMEdEZBDfnM+LiiIKVoiiisq6qRagp8BWh\n0FeEnRGvVwlKJBlc8qXeBjfsOis35yP6jhhgiIjOgSAIsCSYYUkwt9icr+x0eXhjvupwqMmrLpCd\nQ61QI9ngktWJatp1mHvYELUPAwwRUQcQBAE2rRU2rRWD7AOl9kaxEaW1ZbJQkx+qGXWyKk92Dq0y\nAe6mwpcRtaIsGjODDVEzDDBERFGkEBRw6Oxw6OwY7LhUag80BuCtLZX2sGkKNiercnG88qTsHDqV\nrsX8mhSjGyaNsbM/DlHMYIBLletIAAAgAElEQVQhIuoCSkWwKneS3olhGCy1NzQ2oNjvlUJN0/ya\nYxUncLTiuOwcRrWhRSmFZEMSDGp9J38aos7HAENEFENUChVSjG6kGN2y9vpAPYr8nvDk4VBJhdZ2\nHbZoTEg2uNHXkYZEhU0qhMldh6k7YYAhIooDaqUaaaYUpJlSZO2nA3Uo8hVLwSbfV4iC6iLsLzuE\n/WWHZMcmJlhaFMBMNrigVWk786MQdQgGGCKiOJag1KCnOQ09zfJdh2saalGrrkJO3rGI4agi5JQe\nRE7pQdmx1oREqZemqVYUyylQrItqgMnMzMSOHTvQ0NCAO++8E5s3b8bevXuRmJgIAFiwYAHGjRuH\nDRs24PXXX4dCoUBGRgbmzZsXzcsiIur2dCotejqcsIpOWbu/vgaF/uD+NZHDUftKDmBfSbicgoDg\nqqpwj02wqrdbnwQNyylQDIhagNm2bRsOHTqEdevWoaysDLNnz8aoUaNw3333Yfz48dJxfr8fK1as\nQFZWFtRqNebOnYtJkyZJIYeIiDqOXq1DX0tv9LX0lrX76v2yScNN5RT2lORgT4m8nIJdZwtX9Q79\nl8Q6UdTJohZg0tPTMWTIEACA2WxGTU0NAoFAi+N27dqFwYMHw2QyAQBGjBiB7OxsTJgwIVqXRkRE\nzRjOUk6h+aqob7178a13r3Rc8zpRkcGGdaIoGgRRFMVov8m6deuwfft2KJVKeDwe1NfXw26345FH\nHsGXX36J3bt34+GHHwYA/P73v0dycjJuuOGGM56voSEAlYr1RYiIuoIoiqg4XYXcinycqijAqcqC\n0Nf58NXXyI5VCgq4TS70MKcgzZKMHpZk9DCnwG1yQcU6UfQdRD0Wb9q0CVlZWVizZg327NmDxMRE\nXHLJJVi9ejWWL1+O4cOHy45vT54qK/NH63LhdJrg8VRF7fx0/nhvYhPvS+yK7r0RkKRIRZI1FZdb\ngy2iKKKirjJimXe45yavshDIDb9aKSjh0juknpqmISnHBVIAk7837eN0ms74XFQDzJYtW7Bq1Sq8\n9tprMJlMGD16tPTchAkT8Jvf/AZTpkyB1+uV2ouLizFs2LBoXhYREUWBIAhITLAgMcHSok5U+ekK\n2VBUvq8QhaGvI8kLYIb/c+jsLIBJMlELMFVVVcjMzMTatWulCbl33XUX7r//fvTo0QNfffUVLrro\nIgwdOhRLly5FZWUllEolsrOzpeEkIiKKf4IgwKpNhFWbiEvtA6R2URRRWlsenjgc+q/1ApgqJOmb\nBxtW9r6QRS3AbNy4EWVlZVi8eLHUdv3112Px4sXQ6XTQ6/V4+umnodVqsWTJEixYsACCIGDhwoXS\nhF4iIuq+BEGAXWeFXWfFZY5LpPZgAcxQsKkuQr6vCIW+QhT6i5FbnS87h1qhhrtFj02wsjeDTffW\nKZN4O1o0xw05Lhm7eG9iE+9L7Opu96ZRbIS3prTFiqgivwcNjQ2yYzVKDdyt9NjYtIkxUdm7u92b\naOmyOTBEREQdRSEo4NI74NI7MNQ5SGpvFBvhqSmR5tRI82yqC3CyKld2jgSlBu5moSbFkITEBEtM\nBBtqPwYYIiKKawpBIVX2Huq8TGoPNAbgrSlpto9NEXKr8nGi8pTsHFqlFsmhoajIgMNgE7sYYIiI\nqFtSKoIrmpIMLgzDYKk90BiAp8aL/GbB5kRVLo5VnpSdQ6fSwq0Pl1JoCjYWjZnBposxwBAR0QVF\nqVDCHeppidTQ2IBiv7dFj82JqlM4VnlCdqxOpWux1DvZ4IZZY2Sw6SQMMERERABUChVSjG6kGN2y\n9vrGBhT7PS1KKhyrOIGjFcdlxxpU+uAQlFTdOxhsTBpjJ36SCwMDDBERURvUChVSjclINSbL2usD\n9Siu8aKgWr6PzdGK4zhScUx2rFFtkPXWXCL2ga7eDKPG0JkfpVthgCEiIjoPaqW61WBTF6hHkd/T\nYoO+w+XHcKj8aPCgg8E/TGpjs/k1wZIKBrW+kz9N/GGAISIi6kAapRo9TCnoYUqRtdcF6lDoL0ZB\ndREqxDIc8ZxCga8IB8uP4GD5EdmxZo2pxfyaZEMS9GpdZ36UmMYAQ0RE1Ak0Sg16mtLQ05Qm28ju\ndKCuxR42Bb4iHCg7jANlh2XnsGjMrfTYuKBTXXjBhgGGiIioCyUoNehl7oFe5h6y9tqGWqnHJjLY\n7C87hP1lh2THJiZYWvTWJBtc0Kq0nflROhUDDBERUQzSqrTobe6J3uaesvaahtpWe2xySg8ip/Sg\n7FhrQqKstybFkIQkvQtaVUJnfpSoYIAhIiKKIzqVFn0svdDH0kvW7q+vQaG/qFmPTSH2lRzAvpID\nsmPtWmuz3pokuA0uaJSazvwo3wkDDBERUTegV+vQ19IbfS29Ze2+en+L3poCXyH2lOzHnpL90nEC\nhGCwMcqDTZLeBY1S3cmf5uwYYIiIiLoxg1qP/ol90D+xj6y9ut7XoremwFeE3d4c7PbmSMcJEODQ\n2WShJhhsnFB3YbBhgCEiIroAGdUGXGTti4usfWXtVXXVLXprCnxF+Na7F99690rHCRDg1NtxhXsk\npvae2NmXzwBDREREYSaNESaNERdb+0ltoiiiqr46oscmvEnfkWblFDoLAwwRERG1SRAEmDUmmG0m\nDLD17+rLAQAouvoCiIiIiM4VAwwRERHFHQYYIiIiijsMMERERBR3GGCIiIgo7jDAEBERUdxhgCEi\nIqK4wwBDREREcYcBhoiIiOIOAwwRERHFHQYYIiIiijsMMERERBR3GGCIiIgo7jDAEBERUdxhgCEi\nIqK4wwBDREREcYcBhoiIiOIOAwwRERHFHQYYIiIiijsMMERERBR3GGCIiIgo7jDAEBERUdxhgCEi\nIqK4wwBDREREcYcBhoiIiOIOAwwRERHFHQYYIiIiijsMMERERBR3GGCIiIgo7jDAEBERUdxhgCEi\nIqK4wwBDREREcYcBhoiIiOIOAwwRERHFHQYYIiIiijsMMERERBR3GGCIiIgo7jDAEBERUdxhgCEi\nIqK4E9UAk5mZiRtuuAFz5szBJ598IrVv2bIFAwYMkB5v2LABc+bMwbx58/D2229H85KIiIioG1BF\n68Tbtm3DoUOHsG7dOpSVlWH27NmYPHkyTp8+jdWrV8PpdAIA/H4/VqxYgaysLKjVasydOxeTJk1C\nYmJitC6NiIiI4lzUemDS09Px4osvAgDMZjNqamoQCASwatUq3HTTTdBoNACAXbt2YfDgwTCZTNBq\ntRgxYgSys7OjdVlERETUDUQtwCiVSuj1egBAVlYWxo4di5MnT2L//v2YNm2adJzX64XNZpMe22w2\neDyeaF0WERERdQNRG0JqsmnTJmRlZWHNmjVYsmQJli5d2ubxoiie9ZxWqx4qlbKjLrEFp9MUtXPT\nd8N7E5t4X2IX703s4r35bqIaYLZs2YJVq1bhtddeg9/vx9GjR/GLX/wCAFBcXIxbbrkFd911F7xe\nr/Sa4uJiDBs2rM3zlpX5o3bNTqcJHk9V1M5P54/3JjbxvsQu3pvYxXvTPm2FvKgFmKqqKmRmZmLt\n2rXShNxNmzZJz0+YMAF//vOfUVtbi6VLl6KyshJKpRLZ2dl4+OGHo3VZRERE1A1ELcBs3LgRZWVl\nWLx4sdS2bNkypKSkyI7TarVYsmQJFixYAEEQsHDhQphM7FYjIiKiMxPE9kw6iTHR7HZjt17s4r2J\nTbwvsYv3Jnbx3rRPW0NI3ImXiIiI4g4DDBEREcUdBhgiIiKKOwwwREREFHcYYIiIiCjunHeAOX78\neAdeBhEREVH7tRlgbr/9dtnjlStXSl8/+uij0bkiIiIiorNoM8A0NDTIHm/btk36Og63jyEiIqJu\nos0AIwiC7HFkaGn+HBEREVFnOac5MAwtREREFAvarIVUUVGB//73v9LjyspKbNu2DaIoorKyMuoX\nR0RERNSaNgOM2WyWTdw1mUxYsWKF9DURERFRV2gzwLz55puddR1ERERE7dbmHJjq6mqsXbtWevz3\nv/8ds2bNwt133w2v1xvtayMiIiJqVZsB5tFHH0VJSQkA4NixY3j++efxwAMP4Morr8STTz7ZKRdI\nRERE1FybAebUqVNYsmQJAODjjz/G1KlTceWVV+LGG29kDwwRERF1mTYDjF6vl77++uuvMWrUKOkx\nl1QTERFRV2kzwAQCAZSUlODkyZPYuXMnxowZAwDw+XyoqanplAskIiIiaq7NVUh33HEHpk+fjtra\nWixatAgWiwW1tbW46aabkJGR0VnXSERERCTTZoC55pprsHXrVpw+fRpGoxEAoNVq8ctf/hJXXXVV\np1wgERERUXNtBpj8/Hzp68idd/v27Yv8/HykpKRE78qIiIiIzqDNADNhwgT06dMHTqcTQMtijm+8\n8UZ0r46IiIioFW0GmGXLluG9996Dz+fDjBkzMHPmTNhsts66NiIiIqJWtRlgZs2ahVmzZqGgoADv\nvPMObr75ZqSmpmLWrFmYNGkStFptZ10nERERkaTNZdRNkpOT8fOf/xwffvghpkyZgieeeIKTeImI\niKjLtNkD06SyshIbNmzA+vXrEQgEcOedd2LmzJnRvjYiIiKiVrUZYLZu3Yp//OMf2LNnDyZPnoxn\nnnkGF198cWddGxEREVGr2gwwP/7xj9G7d2+MGDECpaWl+NOf/iR7/umnn47qxRERERG1ps0A07RM\nuqysDFarVfZcbm5u9K6KiIiIqA1tBhiFQoF7770Xp0+fhs1mw6uvvopevXrhz3/+M1avXo3rr7++\ns66TiIiISNJmgHnhhRewdu1a9OvXD//617/w6KOPorGxERaLBW+//XZnXSMRERGRTJvLqBUKBfr1\n6wcAmDhxIvLy8nDrrbdi+fLlSEpK6pQLJCIiImquzQAjCILscXJyMiZNmhTVCyIiIiI6m3ZtZNek\neaAhIiIi6gptzoHZuXMnxo0bJz0uKSnBuHHjIIoiBEHA559/HuXLIyIiImqpzQDz0UcfddZ1EBER\nEbVbmwEmNTW1s66DiIiIqN3OaQ4MERERUSxggCEiIqK4wwBDREREcYcBhoiIiOIOAwwRERHFHQYY\nIiIiijsMMERERBR3GGCIiIgo7jDAEBERUdxhgCEiIqK4wwBDREREcYcBhoiIiOIOAwwRERHFHQYY\nIiIiijsMMERERBR3GGCIiIgo7jDAEBERUdxhgCEiIqK4wwBDREREcYcBhoiIiOKOKponz8zMxI4d\nO9DQ0IA777wTTqcTmZmZUKlU0Gg0ePbZZ2Gz2bBhwwa8/vrrUCgUyMjIwLx586J5WURERBTnohZg\ntm3bhkOHDmHdunUoKyvD7NmzMWTIEGRmZqJHjx5Yvnw53nrrLdx6661YsWIFsrKyoFarMXfuXEya\nNAmJiYnRujQiIiKKc1ELMOnp6RgyZAgAwGw2o6amBi+88AKUSiVEUURRURFGjhyJXbt2YfDgwTCZ\nTACAESNGIDs7GxMmTIjWpREREVGci1qAUSqV0Ov1AICsrCyMHTsWSqUSX3zxBZ588kn07dsX//d/\n/4cPPvgANptNep3NZoPH42nz3FarHiqVMlqXDqfTFLVz03fDexObeF9iF+9N7OK9+W6iOgcGADZt\n2oSsrCysWbMGADB27FhcffXV+N3vfofVq1cjNTVVdrwoimc9Z1mZPyrXCgR/oDyeqqidn84f701s\n4n2JXbw3sYv3pn3aCnlRXYW0ZcsWrFq1Cn/4wx9gMpnw6aefAgAEQcCUKVOwY8cOuFwueL1e6TXF\nxcVwuVzRvCwiIiKKc1ELMFVVVcjMzMSrr74qTch9+eWXkZOTAwDYtWsX+vTpg6FDh2L37t2orKyE\nz+dDdnY2Lr/88mhdFhEREXUDURtC2rhxI8rKyrB48WKp7ZFHHsFjjz0GpVIJrVaLzMxMaLVaLFmy\nBAsWLIAgCFi4cKE0oZeIiIioNYLYnkknMSaa44Ycl4xdvDexifcldvHexC7em/bpsjkwRERERNHA\nAENERERxhwGGiIiI4g4DDBEREcUdBhgiIiKKOwwwREREFHcYYIiIiCjuMMAQERFR3GGAISIiorjD\nAENERERxhwGGiIiI4g4DDBEREcUdBhgiIiKKOwwwREREFHcYYIiIiCjuMMAQERFR3GGAISIiorjD\nAENERERxhwGGiIiI4o6qqy8glhw4WYZ3vzwOi06FVKcRaU4j9Fp+i4iIiGIN/3WOkH3Qi0+3n5K1\n2cwJSHMakeo0IM1pRA+nEW67HiolO6+IiIi6CgNMhBsm9sf0q/tiz8Fi5HqqkevxIddTjW+PlODb\nIyXScUqFALddjzSnEWlOQ6i3xgC7WQtBELrwExAREV0YGGAiKAQB/dMSYUlQytqra+qRW1wthZo8\nTzVyvT7keXz4KuI4XYISqQ55qElzGWHQqjv3gxAREXVzDDDtYNSpMbCXFQN7WaW2RlFESUWtPNR4\nfDiaX4nDeRWy11tNCdIQVFroz2S7AWoVh6GIiIjOBwPMeVIIApyJOjgTdRh+kVNqr29oREGJTzYE\nlefxYc/RUuw5Wip7fZJNhx4uY7i3xmmE3aKFgsNQREREbWKA6WBqlQI9k0zomWSStVfX1Eu9NHkR\n4aagxA/kFEvHJWiUSHMYZKEmzWWEUcdhKCIioiYMMJ3EqFNjQE8rBvQMD0OJooiSytoWoeZ4YRWO\n5FfKXm8xamRDUGlOI1IceqhVyuZvRURE1O0xwHQhQRDgsOjgsOgwrL9Dam8INKKwxI9cTzVOhYag\ncj3V2HusFHuPlUa8Hkiy6qVQk+o0oofLAEeijsNQRETUrTHAxCCVUoE0V3DoaFREu7+2vkVvTa7H\nh8JSP7Yf8EjHJaiVSHEYZENQaU4DTHpN538YIiKiKGCAiSN6rRoX90jExT0SpTZRFFFWdVo2aTi3\n2IeTRVU4VtByGKpHaPgpzcXVUEREFL8YYOKcIAiwmbWwmbUY0q/ZMFSpX1oFdaq4Gnmeauw5Voo9\nEcNQSoUAt02PVKcBPVxGaX6NzZzATfmIiChmMcB0UyqlQgojkZqGoYI9NcFem1OeauR5ffg6YjWU\nLkElbcTX1GuT6jRAl8AfGSIi6nr81+gC09owlGxTvuLwUNThvAocypVvyuewaGXzanq4jHBZdVAq\nOAxFRESdhwGGzrgpX119AAUlfpySyigEA843h7345rBXOk6lVCC1adKwqyncGGExcNIwERFFBwMM\nnZFGrUQvtwm93PJN+Sp8dcG5NcXBZd65xT7kl/hwoqhKdpxZrw4t7Q5PHE6xG6BRc+8aIiL6bhhg\n6JxZDBpYDDYM6m2T2gKNjSguqwnOqSmulopf5pwoQ86JMuk4ae8alxE9IpZ5s4QCERGdCwYY6hBK\nhQLJdgOS7QakD3RJ7TWnG5Dn9SE31FsT7LXxoXB/MbbvD78+QaMMzqmRNuQLzrHRs5I3ERG1ggGG\nokqXoEL/VAv6p1qktqa9a8Jza4IB53hBFY7kyfeusZkTpNVUl/RzwJKghNuuh0rJScNERBcyBhjq\ndJF71wyNKKHQopJ3KOB8e6QE3x4pwcZtJwDI965hJW8iogsTAwzFjLYqeZ8qrkZFTQP2HysJllLw\n+pDn9bWo5J3qMIRWRAWDTarTCDNXQxERdTsMMBTzjDo1LullhdNpwqiBwWXeorR3jQ953mqpRtSJ\nwiocbVbJu2k1VGqzSt5aDX/8iYjiFf8Gp7gkCAIciTo4EnUYdlHLEgpNFbyb/my+GgoAnIlaaYfh\npmreSVYd59cQEcUBBhjqViJLKFyBJKm95nQD8kPDTrkRk4d3HvJi56HITfkEuG2G0PCTQQo4drOW\ntaGIiGIIAwxdEHQJKvRLtaBfxGooILgpX15EJe88aUiqutnrlUh1RA5DBefXGHVc5k1E1BUYYOiC\n1rQp36URm/I1iiK85TXhYSivD7keH47mV+Jwnrw2lMWoCfbSOMK9NSkOAxK42zARUVQxwBA1oxAE\nuKx6uKx6DL84XBuqviE4v6apLlReaOLw3mOl2HusVDpOAOCy6mRLvFOdBha9JCLqQAwwRO2kVinQ\nwxXcJTiSvzY4vyYy2OR6qpF90IPsgx7pOJVSgRSHHqmOYF2opp4bqymB82uIiM4RAwzRd6TXqtA/\nzYL+afLdhpuKXuYWh5d653t9OFlUDewNv96gVQX3rwkVvWyq7M0yCkREZ8YAQxQFgiAg0ZiARGMC\nLutjl9obG0UUl9e0mDh8KK8CB3Pl82uayihEzq9JthugVnEYioiIAYaoEylCZRDcNj1GDgi319UH\nUFDibzEM1VRGQXq9ICDJppNWQqU5jUh1GeFgGQUiusAwwBDFAI1aiV5uE3q5W5ZRaOqtkf70VqOg\nxI//RVbzViuREhp6itycj2UUiKi7YoAhimFGnRoDeloxoKdVahNFEaWVp1v01pwsqsKxgtbLKMh2\nHHYYkKDhMm8iim8MMERxRhAE2C1a2C3yat4NgUYUlfplc2taK6MgAHAm6lpU806ycZk3EcUPBhii\nbkKlVISKVrZeRiEy1JypjEKyPXIYKhhuuMybiGIRAwxRN9daGQVRFFHpq0Ou14e84vCKqHyvD6eK\nqwEUScfqE1QtSihwmTcRdTUGGKILkCAIsBgTYDEmYFBkGYVGEZ6KmuDeNU1zbLw+HM6rwKFmy7yt\npuAy74t6WmEzqpHqMCLZroeGZRSIqBNENcBkZmZix44daGhowJ133onBgwfjoYceQkNDA1QqFZ59\n9lk4nU5s2LABr7/+OhQKBTIyMjBv3rxoXhYRnYFCISDJqkeSVY+RAyLLKASQ7/WHh6G8wT93Hy3B\n7qPhZd6CALiseqQ5DNIcm1SHgfNriKjDRS3AbNu2DYcOHcK6detQVlaG2bNn44orrkBGRgamT5+O\nv/zlL/jTn/6ERYsWYcWKFcjKyoJarcbcuXMxadIkJCYmRuvSiOgcqVVnXubtq2/EvsOe4HBUaLn3\njoN+7JCVURDgthmQ5jIEdx12GpHmMMDG/WuI6DxFLcCkp6djyJAhAACz2Yyamhr8+te/RkJCAgDA\narVi79692LVrFwYPHgyTKfgX44gRI5CdnY0JEyZE69KIqIMYdWr06WlCkjlBahNFEeXVdcjzNhW8\nDO5dkxeaSBwpQaMMBppQqEl1GpDmMMBs0HDiMBG1KWoBRqlUQq/XAwCysrIwduxY6XEgEMBf//pX\nLFy4EF6vFzZbeAzeZrPB4/G0ek4iin2CIMBqSoDV1KyMgijCW1GLvKZK3t5gb82JwioczZfvX2PU\nqUOhJjwMleo0wMCJw0QUEvVJvJs2bUJWVhbWrFkDIBhe7r//fowaNQqjR4/G+++/LzteFMWzntNq\n1UOlit5EQafTdPaDqEvw3sSm9t6XJJcZgy5yydoaAo3IDwWZEwWVOFFYiROFVTiYW44Dp8plx9ot\nWvRym9Er2Rwa0jIjLckIrYbrEc6EvzOxi/fmu4nqb/2WLVuwatUqvPbaa9IQ0UMPPYRevXph0aJF\nAACXywWvN7wXRXFxMYYNG9bmecvK/FG7ZqfTBI+nKmrnp/PHexObOuK+6JQCBqaaMTDVLLWdrg+g\noMQnDUM1TRzOPlCM7APF0nECAKdVF55b4zSEJg7roVJe2BOH+TsTu3hv2qetkBe1AFNVVYXMzEys\nXbtWmpC7YcMGqNVq3H333dJxQ4cOxdKlS1FZWQmlUons7Gw8/PDD0bosIooTCWolervN6O02y9r9\ntfWh4afw/JrWNuZTKgS47XrZpOFUpwGORB0nDhN1A1ELMBs3bkRZWRkWL14steXn58NsNmP+/PkA\ngH79+uE3v/kNlixZggULFkAQBCxcuFDqrSEiak6vVeOitERclBZeqSjbmC+0Eioy5CAn3GOjUStC\nE4eNoTk2wa8TjZw4TBRPBLE9k05iTDS73ditF7t4b2JTLN+XRlFEaUVtKNiEQ01BiQ8NAflffQat\nSrYaqulroy5+Jw7H8r250PHetE+XDCEREXU1hSDAkaiDI1GHYRGFLwONjSgqrZFWQgXn2PhwKK8C\nB5vtOGwxakLDT0Yp1KQ49Jw4TNTF+BtIRBccpUKBFIcBKQ4D0geGV0XV1QdQUOIP72ETCjh7j5dh\n7/Ey2TkcFm2o6GWwtybFYUCy3QC16sKeOEzUWRhgiIhCNOrWdxz21zYgv8TXYg+bbw578c3h8MRh\nhSAgyRZeEdW0f43LylIKRB2NAYaI6Cz0WhX6p1rQP6KiNwBU+urCw1De8KqoghI/th+ILKWgQIpd\n32JjPrtZy4nDROeJAYaI6DyZDRqYDRpc0ssqtYmiiLKq08gNhZn80PyafK8PJ4urARRJx2qbSik4\nI1dFGWHWqxlsiM6CAYaIqAMJggCbWQubWYsh/SJKKTSK8FTUtFjmfbywCkdaKaWQ5my+1NsAPUsp\nEEkYYIiIOoFCISDJqkeSVY8RFzul9oZAIwpL/eGil6G9aw6cLMf+k/JSClZTQqjgZTjYJNsNSFBH\nr7QKUaxigCEi6kIqpQJpTiPSnEYASVL76bpAaOKwT7Yqas/RUuw5Wiod11YpBaLujAGGiCgGJWiU\n6JNsRp9keSkFX229bCVUnseHXE91q6UUUl1GuEPhJsURDDfORB0UCs6vofjHAENEFEcMWjUu7pGI\ni3u0XUoh1+NDYakPJwvlu72qVQokR9SICpZVMMBm0bJGFMUVBhgiojgnCAIsxgRYjAkY1Nsmtdvt\nRhw46kGeJ7gKKjdimffJIvmKqASNEil2Q0QZBdaIotjGAENE1E0pFAIcFh0cFh2GRpRSaGwU4Smv\nke9h4/XhZFEVjhXIV0TpE1Sy2lApoXBj1ms6++MQyTDAEBFdYBQKAUk2PZJsLVdEFZXVIN8r33X4\ncF4FDjWrEWXWq0NhxhjRY8Ol3tR5GGCIiAhAcEVU05yYyBpR9Q1NNaJ8oXATHIraf6al3qHaUE3D\nUCx+SdHAnygiImqTWi2ieRgAAAsOSURBVKVEzyQTeibJa0S1WOodCjd7jpViz7FS2bEOi7ZFjahk\nux5qFfewofPDAENEROflTEu9/bUNwZ6ayKreXh92HSnBriMl0nGCALiseqTJemyCe9iolCx+SW1j\ngCEiog6l16rQP82C/mny4pdV/jppNVR+xATiHQf92HEwXPxSqRDgtgWLX6Y4wiUVXNzDhiIwwBAR\nUacw6TUY0FODAT3lxS8rpKrePuQ367WJpFYpkGzTI6VpVZTDiBSnAQ7uYXNBYoAhIqIuIwgCEo0J\nSGy2h40oiiitPC2bW5Pn9aFAquodplErgnvYOAyhcBOcZ2MzJ3APm26MAYaIiGKOIAiwW7SwW7QY\n0i9iDxtRhDe0h01+RLDJDVX2jqTVKMMroiLCDTfn6x4YYIiIKG4oBAEuqx4uqx7DLwrvYRNobISn\nvFaaV9MUbo4XVuFIfsvN+VKchvDk4dDqKLOBm/PFEwYYIiKKe0qFAm6bHm6bHiMHhNtbbM4XCjdH\n8ypxuNnmfEadWuqpCa+MMsKo4+Z8sYgBhoiIuq0zb87XiMJSv7TUOz80afjgqXIcOCXfnM9i0ET0\n1DRtzmeAXst/QrsSv/tERHTBUasU6OEyoofLKGs/XR9AYYlfNnk43+tDzoky5Jwokx0r23VYqhXF\nXYc7C7/LREREIQlqJXq5Tejllu86XFvXgIISP3I91VJvzZl2HbabtdKmfCnSrsMGJKi563BHYoAh\nIiI6C61GdeZdh0vk82vyvD58e6QE30buOgzAmaiTAs3Avg6YNAqWU/gOGGCIiIjOk16rQv9UC/qn\nyncdrq6pj+ipCffafHPYi28Oe/HBf08ACJdTSI2YY5PiMMDNcgpnxQBDRETUwYw6NS7ukYiLeyTK\n2itDuw5X1jbgwPFSKdxkH/Qju1k5BZdVFy5+GRqOcll1DDYhDDBERESdxGzQwGzQwOk04YoBwX1s\nIssp5EdU9s73+lBQ4sf2iNcrFQKS7frw5nwXcJ0oBhgiIqIu1FY5hbKq0/ICmF4f8kuCjyM1rxPV\ntIdNd64TxQBDREQUgwRBgM2shc2sxWV97VJ7oyiitKJWNmk4z+NDQUnrdaKS7YYWc2zsZm3cl1Ng\ngCEiIoojCkGAI1EHR6IOQ/tH1IlqFOGtaFknKs/jw4lmdaISNEqpAGbkkm+rKX4KYDLAEBERdQMK\nxdnqRAXn1zT12pwsqsKxAnmdKF2CqpUCmAZYDLFXAJMBhoiIqBuT14kKB5vmdaKags3R/EoczpPX\niTJoQ8EmtCqqaT8bs77rCmAywBAREV2A2qoTVVTqDw4/RYSbQ3kVONisAKZJr8aYwcnIGN+/sy+f\nAYaIiIjC1CoF0lxGpDWrE1VXHwgVwPRFFMCsRmllbZdcJwMMERERnZVGrUTPJBN6JpnOfnAn4HZ+\nREREFHcYYIiIiCjuMMAQERFR3GGAISIiorjDAENERERxhwGGiIiI4g4DDBEREcUdBhgiIiKKOwww\nRPT/7d1bSFTtAsbx/3xqiKmlkoWYknYRakfzItMKsoKCpOOYOXUVhHRRWCSWWRSBQhClWFGBGOGU\ndqSyA2UIaQWFhWQHkcg8FU6peWp0vovPwr72/mjvti3X7vndzWKt4XlhmHlmvS/rFRExHRUYERER\nMR0VGBERETEdFRgRERExHRUYERERMR2Ly+VyGR1CRERE5D+hOzAiIiJiOiowIiIiYjoqMCIiImI6\nKjAiIiJiOiowIiIiYjoqMCIiImI6KjCD7N+/H6vVSlJSEk+ePDE6jgySk5OD1WplxYoV3Lhxw+g4\nMkh3dzcJCQmcO3fO6CgyyKVLl1i6dCnLly+nrKzM6DgCfPr0iU2bNmGz2UhKSqK8vNzoSKbmbnSA\n4eLBgwe8fv0au91ObW0tGRkZ2O12o2MJUFlZycuXL7Hb7TgcDpYtW8bChQuNjiUD8vPzGTVqlNEx\nZBCHw0FeXh4lJSV0dnZy+PBh5s2bZ3Ss39758+eZMGECaWlpNDc3s379ekpLS42OZVoqMAMqKipI\nSEgAIDw8nI8fP9LR0YG3t7fBySQmJoYpU6YA4OvrS1dXF319fbi5uRmcTGpra3n16pV+HIeZiooK\nZs2ahbe3N97e3uzdu9foSAL4+fnx/PlzANra2vDz8zM4kblpCmnA+/fvv/kw+fv78+7dOwMTyRdu\nbm54eXkBUFxczJw5c1Rehons7GzS09ONjiF/U19fT3d3Nxs3biQ5OZmKigqjIwmwZMkSGhoaWLBg\nASkpKWzfvt3oSKamOzD/hnZYGH5u3bpFcXExJ0+eNDqKABcuXGDatGmMHz/e6CjyL3z48IHc3Fwa\nGhpYt24dd+7cwWKxGB3rt3bx4kWCgoI4ceIENTU1ZGRkaO3YT1CBGRAYGMj79++/vm5paWHMmDEG\nJpLBysvLOXLkCMePH8fHx8foOAKUlZXx5s0bysrKaGpqYsSIEYwbN47Y2Fijo/32AgICmD59Ou7u\n7oSEhDBy5EhaW1sJCAgwOtpv7dGjR8TFxQEwadIkWlpaNB3+EzSFNGD27Nlcv34dgOrqagIDA7X+\nZZhob28nJyeHo0ePMnr0aKPjyICDBw9SUlLCmTNnWLVqFampqSovw0RcXByVlZX09/fjcDjo7OzU\neothIDQ0lKqqKgDevn3LyJEjVV5+gu7ADJgxYwaRkZEkJSVhsVjIysoyOpIMuHr1Kg6Hg82bN389\nlp2dTVBQkIGpRIavsWPHsmjRIlavXg3Azp07+eMP/V81mtVqJSMjg5SUFJxOJ7t37zY6kqlZXFrs\nISIiIiajSi4iIiKmowIjIiIipqMCIyIiIqajAiMiIiKmowIjIiIipqMCIyJDqr6+nqioKGw229dd\neNPS0mhra/vh97DZbPT19f3w+WvWrOH+/fv/TVwRMQkVGBEZcv7+/hQWFlJYWEhRURGBgYHk5+f/\n8PWFhYV64JeIfEMPshORXy4mJga73U5NTQ3Z2dk4nU4+f/7Mrl27iIiIwGazMWnSJJ49e0ZBQQER\nERFUV1fT29tLZmYmTU1NOJ1OEhMTSU5Opquriy1btuBwOAgNDaWnpweA5uZmtm7dCkB3dzdWq5WV\nK1caOXQR+R9RgRGRX6qvr4+bN28SHR3Ntm3byMvLIyQk5LvN7by8vDh16tQ31xYWFuLr68uBAwfo\n7u5m8eLFxMfHc+/ePTw9PbHb7bS0tDB//nwArl27RlhYGHv27KGnp4ezZ8/+8vGKyNBQgRGRIdfa\n2orNZgOgv7+fmTNnsmLFCg4dOsSOHTu+ntfR0UF/fz/w1/Yef1dVVcXy5csB8PT0JCoqiurqal68\neEF0dDTw18asYWFhAMTHx3P69GnS09OZO3cuVqt1SMcpIr+OCoyIDLkva2AGa29vx8PD47vjX3h4\neHx3zGKxfPPa5XJhsVhwuVzf7PXzpQSFh4dz5coVHj58SGlpKQUFBRQVFf3scERkGNAiXhExhI+P\nD8HBwdy9exeAuro6cnNz//GaqVOnUl5eDkBnZyfV1dVERkYSHh7O48ePAWhsbKSurg6Ay5cv8/Tp\nU2JjY8nKyqKxsRGn0zmEoxKRX0V3YETEMNnZ2ezbt49jx47hdDpJT0//x/NtNhuZmZmsXbuW3t5e\nUlNTCQ4OJjExkdu3b5OcnExwcDCTJ08GYOLEiWRlZTFixAhcLhcbNmzA3V1feyL/D7QbtYiIiJiO\nppBERETEdFRgRERExHRUYERERMR0VGBERETEdFRgRERExHRUYERERMR0VGBERETEdFRgRERExHT+\nBMTUiu7Dyp1RAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "I-La4N9ObC1x", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "Xyz6n1YHbGef", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(\n", + " training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(\n", + " training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(\n", + " validation_examples, validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "nExiPQa4s6OD", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "i1imhjFzbWwt", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 748 + }, + "outputId": "f5a183d3-8892-4488-9626-30dcff1bce1e" + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_model(\n", + " learning_rate=0.00003,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 207.48\n", + " period 01 : 191.36\n", + " period 02 : 178.10\n", + " period 03 : 168.56\n", + " period 04 : 163.70\n", + " period 05 : 162.57\n", + " period 06 : 161.22\n", + " period 07 : 160.90\n", + " period 08 : 161.53\n", + " period 09 : 162.31\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FOXax/HvlrRNNqQ3eq8hoQQp\ngnRCk14EIihFpQiKip6D7VVRUFF6laoekYgICFJEJIiAEAgBEkB6CemN9DLvHxz3iEAIkM3sJvfn\nurxkd6f8du8N3HlmnhmNoigKQgghhBBWRKt2ACGEEEKIByUNjBBCCCGsjjQwQgghhLA60sAIIYQQ\nwupIAyOEEEIIqyMNjBBCCCGsjl7tAEJYsrp161KlShV0Oh0ABQUFBAUFMX36dAwGw0Nv99tvv2Xw\n4MF3PL9hwwbeeOMNFi9eTIcOHUzPZ2dn07p1a7p27cpHH3300PstrsuXLzNjxgwuXLgAgIODAxMn\nTqRz585m3/eDWLhwIZcvX77jMzl48CCjR4+mUqVKd6zz008/lVa8R3L16lU6depE9erVAVAUBQ8P\nD/7973/ToEGDB9rWp59+ip+fH0899VSx1/nhhx8IDQ1l7dq1D7QvIUqLNDBC3MfatWvx8fEBIDc3\nl5deeoklS5bw0ksvPdT24uPjWb58+V0bGABfX1+2bNlyWwPzyy+/4Ozs/FD7exivvPIKffr0YfHi\nxQBEREQwcuRItm3bhq+vb6nleBS+vr5W06zci06nu+09bN26lQkTJrB9+3ZsbW2LvZ2pU6eaI54Q\nqpJDSEI8AFtbW9q2bUtUVBQAOTk5vPXWW3Tr1o3u3bvz0UcfUVBQAEB0dDRDhw4lODiYPn36EBYW\nBsDQoUO5fv06wcHB5Obm3rGPpk2bcvDgQbKyskzPbd26lTZt2pge5+bm8v7779OtWzc6duxoajQA\njh49Sv/+/QkODqZHjx7s378fuPUb/eOPP86aNWvo3bs3bdu2ZevWrXd9n2fOnCEgIMD0OCAggO3b\nt5saufnz5/PEE0/Qt29fli5dSseOHQF4/fXXWbhwoWm9vz++X64ZM2YwYsQIAI4cOcKAAQPo0qUL\ngwcP5sqVK8CtkagpU6bQoUMHRowYwY0bN+5TsbvbsGEDEydOZOTIkcyaNYuDBw8ydOhQJk+ebPrH\nftu2bfTq1Yvg4GCefvppLl++DMC8efOYPn06AwcOZNWqVbdtd/LkyaxYscL0OCoqiscff5zCwkI+\n++wzunXrRrdu3Xj66aeJjY194Nw9evQgOzub8+fPA7Bu3TqCg4Pp2LEjL7/8MtnZ2cCtz/3DDz+k\nd+/ebNu27bY63Ot7WVhYyP/93//Rvn17Bg4cSHR0tGm/hw4dol+/fvTo0YPu3buzbdu2B84uRIlT\nhBD3VKdOHSUmJsb0OCUlRRk+fLiycOFCRVEUZcmSJcrYsWOVvLw8JSsrSxkwYICyceNGpaCgQOne\nvbuyefNmRVEU5fjx40pQUJCSnp6uHDhwQOncufNd9/fdd98p06ZNU1555RXTuunp6UqnTp2U9evX\nK9OmTVMURVHmz5+vjBw5UsnJyVEyMjKUvn37Krt371YURVF69eqlbNmyRVEURfn+++9N+7py5YrS\noEEDZe3atYqiKMrWrVuVLl263DXHpEmTlA4dOiirV69W/vzzz9teO336tNK8eXMlLi5OycvLU154\n4QWlQ4cOiqIoyrRp05QFCxaYlv3746JyNWzYUNmwYYPp/QYFBSn79u1TFEVRNm/erPTr109RFEX5\n8ssvleHDhyt5eXlKUlKS0qFDB9Nn8ndFfcZ/fc6BgYHKhQsXTMv7+/sr+/fvVxRFUa5du6Y0a9ZM\nuXjxoqIoivLFF18oI0eOVBRFUebOnas8/vjjSmJi4h3b/fHHH5Xhw4ebHs+ZM0d57733lDNnzihd\nu3ZVcnNzFUVRlDVr1ijff//9PfP99bnUr1//jueDgoKUc+fOKX/88YfSqlUr5caNG4qiKMqbb76p\nfPTRR4qi3Prce/furWRnZ5seL1iwoMjv5Z49e5SuXbsqN2/eVLKyspSBAwcqI0aMUBRFUfr3768c\nPHhQURRFuXDhgvLyyy8XmV2I0iAjMELcR0hICMHBwXTq1IlOnTrRsmVLxo4dC8CePXsYPHgwer0e\ne3t7evfuzW+//cbVq1dJSEigZ8+eAPj7++Pn50dkZGSx9tmzZ0+2bNkCwK5du+jQoQNa7f9+XH/5\n5ReGDRuGra0tBoOBPn36sGPHDgA2btxI9+7dAWjWrJlp9AIgPz+f/v37A9CwYUOuX79+1/1//PHH\nDB8+nM2bN9OrVy86duzIf/7zH+DW6EhQUBCenp7o9Xp69epVrPdUVK68vDy6dOli2r63t7dpxKlX\nr15cvnyZ69evc/jwYbp06YJer8fV1fW2w2z/FBMTQ3Bw8G3//f1cmWrVqlGtWjXTY3t7e1q1agXA\nb7/9xmOPPUbVqlUBGDRoEAcPHiQ/Px+4NSLl5uZ2xz7bt2/PqVOnSElJAWDnzp0EBwfj7OxMUlIS\nmzdvJjU1lZCQEPr27Vusz+0viqKwbt06vL29qVatGrt376ZHjx54e3sD8NRTT5m+AwCtWrXCzs7u\ntm0U9b38448/eOKJJ3B0dMTe3t5UKwB3d3c2btzIuXPnqFatGp9++ukDZRfCHOQcGCHu469zYJKS\nkkyHP/T6Wz86SUlJVKhQwbRshQoVSExMJCkpCaPRiEajMb321z9iHh4e991nmzZtmD59OikpKfz4\n44+MHz/edEItQHp6Oh9++CGzZ88Gbh1Saty4MQCbN29mzZo1ZGRkUFhYiPK3253pdDrTycdarZbC\nwsK77t/Ozo7Ro0czevRo0tLS+Omnn5gxYwaVKlUiNTX1tvNx3N3d7/t+ipPLyckJgLS0NK5cuUJw\ncLDpdVtbW5KSkkhNTcVoNJqed3Z2JiMj4677u985MH+v2z8fJycn3/YejUYjiqKQnJx813X/YjAY\naN26NXv27KFZs2akpaXRrFkzNBoN8+bNY8WKFbz33nsEBQXx7rvv3vd8ooKCAtPnoCgKtWrVYuHC\nhWi1WtLT09m5cyf79u0zvZ6Xl3fP9wcU+b1MTU3Fy8vrtuf/MmPGDBYtWsQzzzyDvb09L7/88m31\nEUIN0sAIUUxubm6EhITw8ccfs2jRIgA8PDxMv20DpKSk4OHhgbu7O6mpqSiKYvrHIiUlpdj/2NvY\n2NChQwc2btzIpUuXaNKkyW0NjJeXF88+++wdIxCxsbFMnz6d9evXU79+fS5evEi3bt0e6H0mJSUR\nFRVlGgFxdnZm8ODBhIWFcebMGYxGI+np6bct/5d/NkWpqakPnMvLy4saNWqwYcOGO15zdna+575L\nkru7O0ePHjU9Tk1NRavV4urqet91u3Xrxs6dO0lOTqZbt26m+rds2ZKWLVuSmZnJzJkz+eSTT+47\nkvHPk3j/zsvLi379+jFt2rQHel/3+l4W9dl6eHjw5ptv8uabb7Jv3z4mTZpE27ZtcXR0LPa+hShp\ncghJiAfwzDPPcPToUQ4dOgTcOmQQGhpKQUEBmZmZ/PDDDzzxxBNUqlQJHx8f00my4eHhJCQk0Lhx\nY/R6PZmZmabDEffSs2dPli1bdtepy506dWL9+vUUFBSgKAoLFy5k7969JCUlYTAYqFGjBvn5+axb\ntw7gnqMUd5Odnc2LL75oOrkT4NKlS0RERNC8eXOaNGnC4cOHSUpKIj8/n40bN5qW8/T0NJ38eeXK\nFcLDwwEeKFdAQADx8fFERESYtvPqq6+iKAqBgYHs3r2bgoICkpKS2Lt3b7Hf14No06YNhw8fNh3m\n+uabb2jTpo1p5K0oHTp04OjRo+zatct0GGbfvn28++67FBYWYjAYqFev3m2jIA+jY8eO7Nixw9Ro\n7Nq1i6VLlxa5TlHfyyZNmrBv3z6ysrLIysoyNU55eXmEhIQQFxcH3Dr0qNfrbzukKYQaZARGiAfg\n5OTEuHHjmDlzJqGhoYSEhHDlyhV69uyJRqMhODiY7t27o9FomD17Nm+//Tbz58/HwcGBOXPmYDAY\nqFu3LhUqVKBNmzZ8//33+Pn53XVfLVq0QKPR0KNHjzteGzZsGFevXqVnz54oikKjRo0YOXIkBoOB\ndu3a0a1bN9zd3Xn99dcJDw8nJCSEuXPnFus9+vn5sWjRIubOncv777+Poig4OTnxxhtvmGYmDRky\nhH79+uHq6krXrl05e/YsAIMHD2bixIl07dqVBg0amEZZ6tWrV+xc9vb2zJ07l/fee4+MjAxsbGyY\nPHkyGo2GwYMHc/jwYTp37oyfnx+dO3e+bdTg7/46B+afZs2add/PwMfHh/fff5/x48eTl5dHpUqV\neO+994r1+Tk5OdGwYUNOnz5NYGAgAEFBQfz4449069YNW1tb3NzcmDFjBgCvvfaaaSbRg2jYsCHP\nP/88ISEhFBYW4u7uzrvvvlvkOkV9Lzt06MCePXsIDg7Gw8ODJ554gsOHD2NjY8PAgQMZNWoUcGuU\nbfr06Tg4ODxQXiFKmkb5+4FoIYR4QIcPH+a1115j9+7dakcRQpQjMgYohBBCCKsjDYwQQgghrI4c\nQhJCCCGE1ZERGCGEEEJYHWlghBBCCGF1rHIadXz83adNlgRXVwPJyZlm2754eFIbyyR1sVxSG8sl\ntSkeT0/jPV+TEZh/0Ot1akcQ9yC1sUxSF8sltbFcUptHJw2MEEIIIayONDBCCCGEsDrSwAghhBDC\n6kgDI4QQQgirIw2MEEIIIayONDBCCCGEsDrSwAghhBDC6kgDI4QQQpQxe/b8XKzl5sz5lOvXr93z\n9ddff7mkIpU4aWCEEEKIMiQm5jq7dm0v1rKTJ0/Fz6/iPV//6KPZJRWrxFnlrQSEEEIIcXezZ88k\nKuokbdsG0bVrd2JirvP55wv58MP/Iz4+jqysLJ59dhxt2rRl4sRxvPzya/zyy89kZNzk8uVLXLt2\nlRdfnEqrVm3o2bMTP/74MxMnjiMo6DHCww+TkpLCzJmf4eHhwf/935vcuBGDv39jdu/exfffby21\n9ykNjBBCCGEm3+7+kz+i4+54XqfTUFCgPNQ2g+p5MbhjrXu+/tRTIWzY8C3Vq9fk8uWLLFy4nOTk\nJFq0aEn37r24du0qb775Om3atL1tvbi4WD75ZC4HDuznhx++o1WrNre97ujoyJw5i1i0aB579+7G\nz68Subk5LF26it9+C+Pbb//zUO/nYZm1gZk1axZHjhwhPz+f5557jq5duwIQFhbGmDFjOH36NACb\nNm1i9erVaLVaBg8ezKBBg8wZ654Ss5K4EXsNH+29h9OEEEIIa1G/fkMAjEZnoqJOsmnTBjQaLWlp\nqXcs27hxIABeXl7cvHnzjtcDApqYXk9NTeXSpQv4+wcA0KpVG3S60r2/k9kamAMHDnD27FnWrVtH\ncnIy/fr1o2vXruTk5LB06VI8PT0ByMzMZMGCBYSGhmJjY8PAgQPp0qULLi4u5op2Tz9d3M3+mEOM\navAUQT5NSn3/QgghypbBHWvddbTE09NIfHy62fdvY2MDwM6dP5GWlsaCBctJS0tjzJiQO5b9ewOi\nKHeODv3zdUVR0GpvPafRaNBoNCUdv0hmO4k3KCiIOXPmAODs7ExWVhYFBQUsXryYYcOGYWtrC0BE\nRAT+/v4YjUbs7e1p2rQp4eHh5opVpE5V2uJgY8+X0eu5kHpZlQxCCCHEo9BqtRQUFNz2XEpKCr6+\nfmi1Wn79dTd5eXmPvJ+KFStx+vQpAA4dOnDHPs3NbCMwOp0Og8EAQGhoKO3atePy5ctER0czefJk\nPv74YwASEhJwc3Mzrefm5kZ8fHyR23Z1NZjlVuSenkam2I3mo7CFLD+5hhldpuFhcLv/iqLUeHoa\n1Y4g7kLqYrmkNpbLXLVp1syfDz44Q40a1XByssfT00j//r154YUXOHs2igEDBuDn58u6dauxtdXj\n6uqIo6OdadnkZEdsbfV4ehrRaDR4ehpNy3l6GnFysicvz44+fXqwc+dWXnxxHC1atMDFxaVUv28a\n5W7jRCVo165dLFmyhBUrVjB16lSmT59OlSpV6NixI7t372bz5s1ERkbyr3/9C4DPPvsMPz8/hgwZ\ncs9tmnPYzdPTyLojP/Ldn1uo7OTHS83GY6ezNdv+RPGV1pCreDBSF8sltbFcZaE2aWmphIcfpn37\nTsTHxzF58gt8/fV3JbqPohois57EGxYWxuLFi1m+fDmZmZmcP3+eV155BYC4uDhGjBjBpEmTSEhI\nMK0TFxdHYGCgOWPdV4fKbYnJiGV/zB+sPbWOZxsNR6uRS+YIIYQQfzEYHNm9exdff70WRSlk0qTS\nveid2UZg0tPTGTZsGKtWrcLd3f2O1/8agcnOzqZ3795899136HQ6+vfvT2hoKEbjvbsuc4/AxMen\nk1+Yz9yjyziXeoHu1TrTq0ZXs+1TFE9Z+I2lLJK6WC6pjeWS2hSPKiMwW7duJTk5mSlTppiemzlz\nJn5+frctZ29vz9SpUxk9ejQajYYJEyYU2byUFr1Wz1j/ED4+PI9tF3fh6+hFM291R4aEEEIIcYvZ\nz4Exh9IYgfnL9Zs3+OTIfAqVQl5q+gJVnSubbd+iaPIbi2WSulguqY3lktoUT1EjMHJix334Ofnw\nTMNh5BcWsOT4alJy7rz4jxBCCCFKlzQwxeDv0YA+NbuTmpvG0uNryC149PnzQgghhHh40sAUU+cq\nT/CYTzMupV/hy6hv73qVQiGEEMJaDBzYm8zMTNauXcWJE8dvey0zM5OBA3sXuf6ePT8DsHXrZn79\n9Rez5bwXuZljMWk0Gp6qN4D4rASOxEXg6+hD9+qd1I4lhBBCPJKQkFEPvE5MzHV27dpO+/ad6NGj\n6EbHXKSBeQA2Wj3j/Ecy84+5bLmwHR9HL5p4+asdSwghhDB59tnhzJjxKT4+Pty4EcMbb0zF09OL\nrKwssrOzeemlV2nQoJFp+Q8+eIf27TsRGNiEf//7NXJzc003dgTYsWMboaHr0Om0VKtWk2nT/s3s\n2TOJijrJypXLKCwsxMXFhQEDhrBw4RwiIyPIzy9gwIDBBAf3ZOLEcQQFPUZ4+GFSUlKYOfMzfHx8\nHvl9SgPzgIy2TjzfeBSfhi9kzalv8HBwo7JR7l4thBDiThv+3MLRuMg7ntdpNRQUPtypCE28/Olf\nq9c9X2/XrgO//baXAQMGExb2K+3adaBmzdq0a9eeI0f+4KuvVvPBBx/fsd727duoUaMmL744lZ9/\n3sGuXdsByMrK4tNP52E0GpkwYSznzv3JU0+FsGHDtzzzzFi++GIJAMeOhXP+/DkWLVpBVlYWI0cO\npV279gA4OjoyZ84iFi2ax969uxk8eNhDvfe/k3NgHkIlox+jGgwltzCPxcdXkZojU+GEEEJYhlsN\nTBgA+/b9yuOPP8Gvv/7MCy+MZtGieaSm3n027cWL52nUKACAJk2amZ53dnbmjTemMnHiOC5dukBq\naspd14+OPkVgYFMAHBwcqFatBleuXAEgIKAJAF5eXty8ebNE3qeMwDykAM9GPFkjmE3nf2Jp5Gqm\nNHkOG52N2rGEEEJYkP61et11tMSc14GpUaMmiYnxxMbeID09nbCwPXh4ePHmm+8RHX2K+fM/v+t6\nigJarQaAwv+ODuXl5TF79ixWrfoad3cPXnttyl3XhVvniv59fkt+fp5pezrd/27AXFKTYGQE5hF0\nrdqBIO8mXEy7zFfR38nMJCGEEBahVavHWbp0IW3bPkFqagoVK1YC4NdffyE/P/+u61SpUpXo6CgA\nwsMPA5CZmYFOp8Pd3YPY2BtER0eRn5+PVquloKDgtvXr1WvI0aNH/rteJteuXaVSpSrmeovSwDwK\njUbD8HoDqeZchT9iw9l5aY/akYQQQgieeKKDaZZQcHBP1q37ipdemkDDho1ITEzkxx833bFOcHBP\nTp6MZPLkF7hy5RIajYYKFVwICnqMMWOeZuXKZQwbFsLcubOpWrU6p09HM3fup6b1AwICqVu3HhMm\njOWllybw/PMTcXBwMNt7lFsJ/MPDDOul5qQz6/BcUnPSGOv/NAGeDc2UrnyTS29bJqmL5ZLaWC6p\nTfHIrQTMrIKdkecbj8JGq2fVqf9w7WaM2pGEEEKIMk0amBJS2ViRpxsMJbcgl0URK0nPLZmzrIUQ\nQghxJ2lgSlATL396Ve9Kck4KSyPXkFd49xOlhBBCCPFopIEpYcHVOtHMK4DzqRf5JnqDzEwSQggh\nzEAamBKm0WgYUX8wVYyVOHDjMD9f2at2JCGEEKLMkQbGDGx1NjzXeCQVbJ3Z+OdWTiREqR1JCCGE\nKFOkgTETF7sKPNd4JHqtjpUnv+b6zRtqRxJCCCHKDGlgzKiqc2VC6g8muyCHxcdXcTM3Q+1IQggh\nRJkgDYyZNfMOpHu1ziRmJ7HsxBryZWaSEEII8cikgSkFPap3JtDTnz9TLrDu9EaZmSSEEEI8Imlg\nSoFWo+XpBkOo7OTH/phD/HJ1n9qRhBBCCKsmDUwpsdPZ8lzjUTjbGtlwdgsnE0+rHUkIIYSwWtLA\nlCJXexfG+Y9Ep9Wx4sRX3MiIVTuSEEIIYZWkgSll1StUYXi9gWQXZLPo+Cpu5snMJCGEEOJBSQOj\nghY+TelatQMJWYl8EfklBYUFakcSQgghrIo0MCrpXaMbAR4NOZNyjm/P/iAzk4QQQogHIA2MSm7N\nTBpKRSdf9l07wN5rv6sdSQghhLAaenNufNasWRw5coT8/Hyee+45PD09mTVrFnq9HltbWz7++GPc\n3NzYtGkTq1evRqvVMnjwYAYNGmTOWBbDXm/Hc/6j+PjwPELPbsLL4EF9tzpqxxJCCCEsntlGYA4c\nOMDZs2dZt24dy5cvZ8aMGaxcuZJZs2axdu1amjRpwrfffktmZiYLFixg1apVrF27ltWrV5OSkmKu\nWBbH3cGVcY2fRouGL058RWxmvNqRhBBCCItntgYmKCiIOXPmAODs7ExWVhafffYZlStXRlEUYmNj\n8fHxISIiAn9/f4xGI/b29jRt2pTw8HBzxbJINSpU46l6A8jKz2Lx8ZVk5mWqHUkIIYSwaGY7hKTT\n6TAYDACEhobSrl07dDode/fu5YMPPqBGjRo8+eST/Pjjj7i5uZnWc3NzIz6+6FEIV1cDer3OXNHx\n9DSabdv30tuzA6lKMpuid7LmzDf8q91EdFrzvUdrpUZtxP1JXSyX1MZySW0ejVnPgQHYtWsXoaGh\nrFixAoB27drRtm1bPvnkE5YuXUrFihVvW744s3GSk803QuHpaSQ+Pt1s2y9KF99OnI+/SmRsFIt/\n/5rBdfqqksNSqVkbcW9SF8sltbFcUpviKarJM+sspLCwMBYvXsyyZcswGo3s3LkTAI1GQ7du3Thy\n5AheXl4kJCSY1omLi8PLy8ucsSyWVqPlmYZP4efow69X9xMmM5OEEEKIuzJbA5Oens6sWbNYsmQJ\nLi4uAMybN4+oqCgAIiIiqF69OgEBAURGRpKWlkZGRgbh4eE0b97cXLEsnr3enucaj8LJxpFvz/zA\nmeQ/1Y4khBBCWByzHULaunUrycnJTJkyxfTcm2++ybvvvotOp8Pe3p5Zs2Zhb2/P1KlTGT16NBqN\nhgkTJmA0lu/jgh4Oboz1f5q5R5eyLHItrzafhJfBQ+1YQgghhMXQKFZ4CVhzHje0pOOS+68f4qvo\nUHwMXrzSfAIOege1I6nKkmoj/kfqYrmkNpZLalM8qp0DIx5Na78WdKzclhuZcaw48bXcM0kIIYT4\nL2lgLFy/Wj1p4FaXU0mn2Xhuq9pxhBBCCIsgDYyF02q0PNtoGD4GL3ZfCWP/9UNqRxJCCCFUJw2M\nFXDQO/B842dw1Bv45vT3nE0+r3YkIYQQQlXSwFgJT4M7Y/xHoKCw7MQaErKS1I4khBBCqEYaGCtS\nx7UWg+v0JSMvk8XHV5KVn612JCGEEEIV0sBYmbYVW/JEpTbEZMSy6uR/KFQK1Y4khBBClDppYKzQ\ngFq9qOdamxOJUfxwbpvacYQQQohSJw2MFdJpdYxuNBwvgwe7Lv/K7zGH1Y4khBBClCppYKyUwcbA\n842fwUHvwDfR33Eu5aLakYQQQohSIw2MFfM2eDKm0QgKUVgauZrErGS1IwkhhBClQhoYK1fPrTYD\naz/JzbwMlkSuIjs/R+1IQgghhNlJA1MGPFGpNW0rtuLazRhWn/pGZiYJIYQo86SBKSMG1X6SOq61\nOJ5wks3nt6sdRwghhDAraWDKCJ1Wx5hGI/B0cGfHpV84dCNc7UhCCCGE2UgDU4Y4mmYm2fNVdCgX\nUi+pHUkIIYQwC2lgyhgfRy+eaTicgsIClsjMJCGEEGWUNDBlUEP3ugyo3Zv03JvMP7aMtNx0tSMJ\nIYQQJUoamDKqQ+XH6Vq1A3FZCcw/tpzMvEy1IwkhhBAlRhqYMuzJGsGm6dULI1bKNWKEEEKUGdLA\nlGEajYbBdfrQ3DuQC2mXWBa5hrzCfLVjCSGEEI9MGpgyTqvR8nT9Ifh7NCA6+SwrT35NQWGB2rGE\nEEKIRyINTDmg0+oY3XA4dVxqEhF/gq+iQ+VqvUIIIayaNDDlhI3Ohucaj6SacxUO3jhC6NlNKIqi\ndiwhhBDioUgDU47Y6+0ZH/Asfo4+/Hp1P1vklgNCCCGslDQw5YyjjYGJgWPwcHDnp0u72Xlpj9qR\nhBBCiAcmDUw5VMHOmRcDx+JiV4GN57ay79oBtSMJIYQQD0QamHLK3cGNSYFjcbJx5JvT33M49pja\nkYQQQohiM2sDM2vWLIYMGcKAAQPYsWMHMTExjBo1ihEjRjBq1Cji4+MB2LRpEwMGDGDQoEGsX7/e\nnJHE3/g4ejEhcDR2OjtWn/qGEwlRakcSQgghisVsDcyBAwc4e/Ys69atY/ny5cyYMYPPP/+cwYMH\n8+WXX9KlSxdWrlxJZmYmCxYsYNWqVaxdu5bVq1eTkpJirljiH6oYK/FCwDPoNDqWn1jLmeRzakcS\nQggh7stsDUxQUBBz5swBwNnZmaysLN5++226desGgKurKykpKURERODv74/RaMTe3p6mTZsSHh5u\nrljiLmq5VGec/9MUKgqLj6+K40K0AAAgAElEQVTkUtoVtSMJIYQQRdKba8M6nQ6DwQBAaGgo7dq1\nMz0uKCjg66+/ZsKECSQkJODm5mZaz83NzXRo6V5cXQ3o9TpzRcfT02i2bVuqJzybY+eo5bPfl7Pw\n+Are7fgylSv4qR3rDuWxNtZA6mK5pDaWS2rzaMzWwPxl165dhIaGsmLFCuBW8/Laa6/RsmVLWrVq\nxebNm29bvjgXV0tONt+dlT09jcTHp5tt+5aspn1thtcdyJfR6/m/3Z/zcrPxeDi4qx3LpDzXxpJJ\nXSyX1MZySW2Kp6gmz6wn8YaFhbF48WKWLVuG0XgrxBtvvEHVqlWZOHEiAF5eXiQkJJjWiYuLw8vL\ny5yxRBFa+QUxsPaTpOamM/foMlJyUtWOJIQQQtzBbA1Meno6s2bNYsmSJbi4uAC3ZhvZ2Njw4osv\nmpYLCAggMjKStLQ0MjIyCA8Pp3nz5uaKJYqhQ+XH6VG9C4nZScw7uoybuRlqRxJCCCFuY7ZDSFu3\nbiU5OZkpU6aYnrt+/TrOzs6EhIQAULNmTd555x2mTp3K6NGj0Wg0TJgwwTRaI9TTo1pnsvOz2X0l\njAURy3mxyXM46O3VjiWEEEIAoFGs8I5+5jxuKMcl/0dRFL6KDuX3mD+o5VKdCQGjsdXZqpZHamOZ\npC6WS2pjuaQ2xaPaOTDCumk0GobVG0ATr8b8mXKBZSfWkl+Yr3YsIYQQQhoYUTStRsuoBkNp4FaX\nU4mnWX3qGwqVQrVjCSGEKOekgRH3pdfqGesfQs0K1QiPO85/ojcUa7q7EEIIYS7SwIhisdXZ8kLA\nM1Q2VmR/zCE2/LlFmhghhBCqkQZGFJuD3oEJAaPxNnix+0oYP138We1IQgghyilpYMQDMdo68WKT\nsbjbu7Llwg5+ubJP7UhCCCHKIWlgxANzsavAxMCxONsaCT27id9jDqsdSQghRDkjDYx4KF4GDyYF\njsWgd+CrqPUci4tUO5IQQohyRBoY8dD8nHyYEDgaW50NK05+TVTiGbUjCSGEKCekgRGPpJpzFZ5v\nPAqNRsOSyNWcS7modiQhhBDlgDQw4pHVca3FmEYjKFAKWHR8BVfSr6kdSQghRBknDYwoEf4eDRhZ\nfwjZ+TnMP7ac2Iw4tSMJIYQow6SBESWmuU8ThtTtx828DOYeW0ZiVrLakYQQQpRR0sCIEtW2Ykv6\n1uxBSk4q844tJS1X7rYqhBCi5EkDI0pcl6rt6Vq1A/FZicw/tpzMvEy1IwkhhChjpIERZvFkjWDa\nVWzFtZsxLIxYQXZ+jtqRhBBClCHSwAiz0Gg0DKrThyDvplxIu8zSyNXkFeSpHUsIIUQZIQ2MMBut\nRktI/UE09mjI6eQ/WXHyawoKC9SOJYQQogyQBkaYlU6r49mGw6jrWovjCSdZG7WeQqVQ7VhCCCGs\nnDQwwuxsdDaM8x9Jdecq/BEbzvozP6AoitqxhBBCWDFpYESpsNfbMT7gWfwcfdh77Xc2n9+udiQh\nhBBWTBoYUWoMNgYmBo7F08Gd7Zd2s/PSHrUjCSGEsFLSwIhSVcHOyKTAcbjYVWDjua2EXTugdiQh\nhBBWSBoYUercHVx5MXAsTjaOrDv9PYdvHFU7khBCCCsjDYxQhbejFxMDx2Cvt2N11DoiE06pHUkI\nIYQVkQZGqKaysSIvNH4WvUbH8hNfcib5T7UjCSGEsBLSwAhV1XSpxjj/kSiKwuLjq7iYdlntSEII\nIayANDBCdfXd6/BMw2HkFuSx4NgXXL95Q+1IQgghLJxZG5hZs2YxZMgQBgwYwI4dOwBYs2YNDRs2\nJCMjw7Tcpk2bGDBgAIMGDWL9+vXmjCQsVBMvf4bXH0Rmfhbzji0jPjNR7UhCCCEsmN5cGz5w4ABn\nz55l3bp1JCcn069fPzIzM0lMTMTLy8u0XGZmJgsWLCA0NBQbGxsGDhxIly5dcHFxMVc0YaFa+TYn\nOz+b0LObmHdsKS81fQFXe/keCCGEuJPZRmCCgoKYM2cOAM7OzmRlZdGpUydeeuklNBqNabmIiAj8\n/f0xGo3Y29vTtGlTwsPDzRVLWLgOlR+nV/WuJGYnM+/YctJzb6odSQghhAUy2wiMTqfDYDAAEBoa\nSrt27TAajXcsl5CQgJubm+mxm5sb8fHxRW7b1dWAXq8r2cB/4+l5Z05RekI8+oJNAVvO/MySkyt5\nu/1LGGwdAKmNpZK6WC6pjeWS2jwaszUwf9m1axehoaGsWLGiWMsX5yZ/ycmZjxrrnjw9jcTHp5tt\n+6J4git2JSk9nf0xh3hv91wmBo6hoo+71MYCyc+M5ZLaWC6pTfEU1eSZ9STesLAwFi9ezLJly+46\n+gLg5eVFQkKC6XFcXNxt58iI8kmj0fBUvf409WrMudSLLItcS35BvtqxhBBCWAizNTDp6enMmjWL\nJUuWFHlCbkBAAJGRkaSlpZGRkUF4eDjNmzc3VyxhRbQaLSMbDKWBe11OJZ3mk/1LySnIVTuWEEII\nC2C2Q0hbt24lOTmZKVOmmJ577LHHOHjwIPHx8YwdO5bAwEBee+01pk6dyujRo9FoNEyYMOGeozWi\n/NFr9YxtFMKS46sJvx5JYnoKzweMwtlWviNCCFGeaZTinHRiYcx53FCOS1qm/MJ8NlzcxK8XD+Bu\n78b4gGfxcZRDjZZAfmYsl9TGckltike1c2CEKCl6rZ7xLZ6mR/UuJGYn8emRBZxNPq92LCGEECqR\nBkZYDY1GQ8/qXRhRfzDZBTnMP7aMw7HH1I4lhBBCBdLA/E1yeg7RF5PUjiHuo5VvcyYEjEav1bPy\n5NfsuPRLsabfCyGEKDukgfmbH/ad59V5YRyKilU7iriPem61ebnZeFzsKvDDuW18c+Z7CgoL1I4l\nhBCilEgD8zedm1fGwU7P8i1R/HktVe044j4qOvnyavOJVHTyZd+1AyyNXE12fo7asYQQQpQCaWD+\nppKnE68/HURhocLc0OPEpWSpHUnch4tdBV5q+gL13epwIjGaz48uJjUnTe1YQgghzEwamH9oWs+L\nEd3qcDMrj8+/jSAjO0/tSOI+HPT2vND4GVr7BnEl/RofH55PTIYcBhRCiLJMGpi7aB9YkeDHqnAj\nKZMFGyLJLyhUO5K4D51Wx7B6A+lVvRvJOSl8emQBZ5LPqR1LCCGEmUgDcw8D29ekWV1Poi+nsHpb\ntMxysQIajYbu1TsxssFQcgvymH9sOYduhKsdSwghhBlIA3MPWo2GMb0aUN3Xmd9O3GDL/otqRxLF\n1MKnKRMDR2Ors2H1qW/46eLP0oAKIUQZIw1MEexsdLw4sDHuzvZ8H3aBAydvqB1JFFMd11q83HQ8\nrnYubD6/na+jv5Np1kIIUYZIA3MfFRxtmTI4AAc7PSu2RnHmSorakUQx+Tn58GrziVQ2VmR/zCEW\nHV9Jdn622rGEEEKUAGlgiqGihyPj+zVCUWD+hkhikzLVjiSKqYKdM1OaPE9D93pEJZ3hs/DFpOTI\nNX6EEMLaSQNTTA2ruRHSre6t6dXrI7iZJdOrrYW93o7n/EfyuN9jXL15nY8Pz+fazRi1YwkhhHgE\n0sA8gHYBfvRsVZXY5Czmf3ecvHyZXm0tdFodQ+v2p0/N7qTkpDL7yCKik86qHUsIIcRDeugG5uLF\niyUYw3r0a1eDoHpenLmaysptUTK7xYpoNBq6Vu3AMw2eIr8wjwURX3Ag5rDasYQQQjyEIhuYZ555\n5rbHCxcuNP35rbfeMk8iC6fVaBjdsz41Kzpz4GQsP+y7oHYk8YCa+zRhYuBY7HV2rI36lq0Xdkoj\nKoQQVqbIBiY/P/+2xwcOHDD9uTz/hW9ro2PSgMZ4utiz6beL/BYp51NYm9quNZjabALu9q78eGEn\nX0atl2nWQghhRYpsYDQazW2P/960/PO18sbZYMuUQQEY7PSs2hbN6cvJakcSD8jH0YtXmk+kirES\nB24cZmHECrLy5QaeQghhDR7oHJjy3rT8k6+7IxP7+wO3plfHJGaonEg8KGdbI1OaPo+/R32ik88y\n+8gikrPlWj9CCGHpimxgUlNT+f33303/paWlceDAAdOfBdSr6sqo7vXIyM7n8/URpGXmqh1JPCA7\nnS3j/EfSrmJrrmfc4OPD87mafl3tWEIIIYqgUYo4mSUkJKTIldeuXVvigYojPj7dbNv29DQ+1Pa/\n33uezfsvUqtiBV59KhAbvc4M6cq3h61NcSmKws9X9vL9nz9ir7NjTKMQ6rvXMdv+ygpz10U8PKmN\n5ZLaFI+np/GerxXZwFgqS2xgFEVh2eZTHDgVS4v6Xox7siFaOeRWokrrBz487jirT31DoVLIU3UH\n0NovyOz7tGbyF7HlktpYLqlN8RTVwBR5COnmzZusWrXK9Pibb76hT58+vPjiiyQkJJRYwLJAo9Hw\nTI961K5UgUNRcWwMO692JPGQmno15sXAcTjo7fkqej2bz28v17PuhBDCEhXZwLz11lskJiYCcOHC\nBWbPns20adNo3bo1H3zwQakEtCY2eh0T+/vj5erAlv2XCDsu51FYq5ou1ZjabAIe9m78dPFn1kSt\nI78w//4rCiGEKBVFNjBXrlxh6tSpAGzfvp3g4GBat27N0KFDZQTmHowGW14aFICjvZ41P50m6mKS\n2pHEQ/I2ePJK84lUc67CoRvhLDj2BZl5Ms1aCCEsQZENjMFgMP350KFDtGzZ0vRYplTfm7ebgUkD\nGqPRwPzvT3A9QaZXWyujrROTm4wjwLMRZ1LOMTt8IUnZcs0fIYRQW5ENTEFBAYmJiVy+fJmjR4/S\npk0bADIyMsjKkt9Ei1KnsgvP9KhPVs6t6dWpGTK92lrZ6mwZ02gEHSo9TkxGLB8fns/l9KtqxxJC\niHKtyAZm7Nix9OjRg969ezN+/HgqVKhAdnY2w4YNo2/fvvfd+KxZsxgyZAgDBgxgx44dxMTEEBIS\nwrBhw5g8eTK5ubf+Ud+0aRMDBgxg0KBBrF+/vmTemQVo1dCHvo9XJyE1m3nfHSc3Ty5Vb620Gi0D\n6zzJwNpPkp57k8/CF3MiIUrtWEIIUW7ddxp1Xl4eOTk5ODk5mZ7bt28fjz/+eJEbPnDgAF988QXL\nli0jOTmZfv360apVK9q1a0f37t2ZPXs2Pj4+9O3bl379+hEaGoqNjQ0DBw7kyy+/xMXF5Z7btsRp\n1PeiKArLt0Tx+8kbNK/ryfN9G8n06odkKdMOj8WfYNXJrylQChlSpy+PV2x5/5XKMEupi7iT1MZy\nSW2K56GnUV+/fp34+HjS0tK4fv266b8aNWpw/XrRM2yCgoKYM2cOAM7OzmRlZXHw4EE6deoEQIcO\nHfj999+JiIjA398fo9GIvb09TZs2JTw8/EHfo8XSaDSM6l6PupVdOHw6nu9+Pad2JPGIAj0bMbnJ\ncxj0Dvzn9AZ+OLeNQqVQ7VhCCFGu6It6sWPHjlSvXh1PT0/gzps5rlmz5p7r6nQ600nAoaGhtGvX\njn379mFrawuAu7s78fHxJCQk4ObmZlrPzc2N+Pj4IkO7uhrQm/FKt0V1fA/r7XGteHXuXrYduEzN\nyq50a1mtxPdRHpijNg/D07MRVbxf48O9C9hx6RcylHTGt3gaG52N2tFUYSl1EXeS2lguqc2jKbKB\nmTlzJj/88AMZGRn07NmTXr163dZsFMeuXbsIDQ1lxYoVdO3a1fT8vY5cFeeCYcnJmQ+U4UGYc1hv\nUn9/3l9zhIWhx7HTamhY/cE+y/LO0oZcdTgwJfAFlkSu4rfLh4lNS2Sc/0gcbQz3X7kMsbS6iP+R\n2lguqU3xPPQhpD59+rBixQo+//xzbt68yfDhwxkzZgybN28mOzv7vjsOCwtj8eLFLFu2DKPRiMFg\nMK0XGxuLl5cXXl5et11TJi4uDi8vr+K+N6vi5Wpg0gB/tFoNCzdGcjX+ptqRxCNysnVkUuA4mnj6\n82fKBT49spCELLn2jxBCmFuRDcxffH19GT9+PNu2baNbt268//779z2JNz09nVmzZrFkyRLTCbmt\nW7dm+/btAOzYsYO2bdsSEBBAZGQkaWlpZGRkEB4eTvPmzR/xbVmu2pVcGN2zPlk5BcxZH0HqzRy1\nI4lHZKuz4dlGw+lUpR2xmXF8cng+l9KuqB1LCCHKtCIPIf0lLS2NTZs2sWHDBgoKCnjuuefo1atX\nkets3bqV5ORkpkyZYnruo48+Yvr06axbtw4/Pz/69u2LjY0NU6dOZfTo0Wg0GiZMmIDRWLaPCz7W\nwJv4lCw27D3PnNDjTBveFDsbuXu1NdNqtPSv1Qt3ezfWn/mBz8MX82yj4fh7NFA7mhBClElFTqPe\nt28f3333HSdOnKBr16706dOHOnXqlGa+u7KmadT3oigKK7dGsy8yhqZ1PBnftxFarUyvLoq1HDM+\nHn+SFSe/Jr8wn8F1+tCuUmu1I5mVtdSlPJLaWC6pTfEUdQ5MkQ1MvXr1qFatGgEBAWi1dx5t+vDD\nD0sm4QMqCw0MQH5BIZ99G0HUpWS6tajMkI61S2W/1sqafuAvpV1hUcRK0vNu0qlKO/rW7IFWU6wj\ntlbHmupS3khtLJfUpniKamCKPIT01zTp5ORkXF1db3vt6lW5lPqj0uu0TOjXiA/WHmH7oSt4uTjQ\noWkltWOJElDVuTKvNJ/Iwogv+PnyXpKyUxhZf0i5nWYthBAlrchfCbVaLVOnTuXNN9/krbfewtvb\nmxYtWnDmzBk+//zz0spYphnsbZgyKACjwYYvd57h+LlEtSOJEuLh4MbUZhOo5VKdo3HHmXtsGTfz\n5MaeQghREopsYD777DNWrVrFoUOHePXVV3nrrbcICQnhwIEDZeqeRWrzdHHgxQGN0eu0LPrhBJdj\nZVixrHC0MTAxcCzNvAI4n3qRT48sID5TmlQhhHhU9x2BqVmzJgCdOnXi2rVrPP3008yfPx9vb+9S\nCVhe1KxYgbG9GpCTW8Cc0OMkp8v06rLCRqtnVMOn6Fq1A3GZCXxyZD4XUi+rHUsIIaxakQ2M5h83\nHfT19aVLly5mDVSeNa/nxaD2NUlOz2FOaATZuflqRxIlRKvR0qdmd4bW7U9GXiazwxey7vRG0nPl\nYoZCCPEwHmhaxD8bGlHygh+rQrsAPy7H3mTpplMUFt7/1grCerSt2JKJgWPwsHdj77X9vPP7THZc\n/IXcgjy1owkhhFUpchq1v78/7u7upseJiYm4u7ujKAoajYY9e/aURsY7lJVp1PeSX1DInPURnLyY\nTOfmlRjWWf1r71gCS6hNSSkoLCDs+gG2XdjFzbwMXO1c6F2jG0E+TaxuunVZqktZI7WxXFKb4nno\n68Bcu3atyA1XrFjx4VM9grLewABkZufz4ZdHuJaQwbDOtencvLLakVRnKbUpSVn5Wey4tIfdV8LI\nL8ynspMf/Wr1oq5bLbWjFVtZrEtZIbWxXFKb4nnoBsZSlYcGBiAhNYv31xwhPTOXSQMaE1jLQ+1I\nqrKk2pS0pOxkNp/fzqEb4QA0cq9H31o98XW0/JPly3JdrJ3UxnJJbYrnoe9GLdTlUcGByQMbY6PT\nsuSHk1y6IV/2ssrN3pWRDYYyrfmL1HapwYnEaD44OJv/RH9Hao7UXQgh/kkaGAtX3deZsb0bkptX\nwJzQCJLSstWOJMyoinMlJjd5jucbj8LL4Mm+6wd558BMtl3YRU5BrtrxhBDCYkgDYwWa1fVkcMda\npNzMZU7ocbJyZHp1WabRaPD3aMC/W7zE0Lr9sNPasuXCDt79fRa/X/+DQqVQ7YhCCKE6aWCsRNeg\nynRoUpErcTdZsukkBYXyj1hZp9PqaFuxFe+0eo3gap3IzM/iy+j1fPTHHKISz6gdTwghVCUNjJXQ\naDQM61KbRjXcOH4uka93ncUKz78WD8Feb0/vGt14u+WrtPRpzvWbN5gfsZz5x5Zz7WaM2vGEEEIV\n0sBYEZ1Wywt9GlHJ04lfwq+x87DcEbw8cbV3IaTBYF4Pmkw919pEJZ3hw0Of81XUelJyUtWOJ4QQ\npUoaGCvjYKdnyqDGVHCyZd3PZzl6Jl7tSKKUVTL6MTFwDOMDRuPr6M3+mD949/dZbDm/g+x8uYeW\nEKJ8kAbGCrk52zNlYAA2NlqWbD7JhZg0tSOJUqbRaGjoXpc3WkxheL2B2Ovt2XZxF+8cmMlv1w5S\nUFigdkQhhDAraWCsVFUfI88/2Yi8vELmhh4nMVWmV5dHWo2W1n4teLvla/So3oWc/By+Pv0dM/74\nnBMJUXKelBCizJIGxooF1vZgaOfapGbk8nlohEyvLsfs9Xb0rN6Fd1pNo7VvC2Iz4lh0fCXzji3j\nSnrRtwQRQghrJA2MlevSvDKdmlXiWnwGCzeeIL9ApleXZxXsnBlefyD/avESDdzrcjr5T2b+MZc1\np9aRnJ2idjwhhCgx0sCUAU91qk1ATXdOXkji651n5LCBwM/JhwkBo5kYOAY/Jx8O3jjCuwdmsenc\nT2Tly+FGIYT1kwamDNBqNTzXpyFVvJ3Yc+w62w9dUTuSsBD13erwetBkQuoPxtHGke2XdvPO7zPZ\ne3W/nOgrhLBq0sCUEfa2eiYPDMDVaMe3v/zJ4eg4tSMJC6HVaGnp25y3W75K7xrdyCvMY92ZjXxw\naDbH40/KiJ0QwipJA1OGuBrtmDywMXa2OpZtOcW563JxM/E/tjpbgqt14p1W03i8YkvisxJZErma\nOUeXcClNRu2EENZFGpgypoq3kRf6NCS/oJB5oceJTc5UO5KwMM62Rp6q259/t3gJf4/6nE05z6zD\n81h58msSs5LVjieEEMWie+edd95RO8SDyszMNdu2HR3tzLr90uDtZsDZYMMf0fEcPh2Hfw13nA22\nasd6ZGWhNpbEydaJ5t5NqO1SnesZN4hOOkvY9QPk5OdQxVgJG51NsbYjdbFcUhvLJbUpHkdHu3u+\nJg3MP5SVL1V1X2cMdnoOn47nj6g4GlZ3o4LTvb8I1qCs1MbSuDu40dqvBV4GDy6mXuZkUjT7Yw6h\n1+qpbPRDqyl6oFbqYrmkNpZLalM8qjUwZ86cYciQIWi1Who3bsy5c+eYNGkS33//PeHh4bRr1w6t\nVsumTZv417/+RWho6K1LpDdsWOR2pYEpnpoVK+BqtOOPqDgORcVRt6oLbkZ7tWM9tLJUG0uj0Wio\n6OTL4xVbYq+342zyBY4nnORI7DFc7CrgbfBCo9HcdV2pi+WS2lguqU3xFNXAmO0cmMzMTN577z1a\ntWpleu6TTz5h3LhxfPnll/j6+rJt2zYyMzNZsGABq1atYu3ataxevZqUFLngVklpF+DHmN4NyM4t\n4JNvjnH6spzjIO7NVmdD16odeKfVazxRqQ2J2cksO7GW2eGLuJB6Se14QghhYrYGxtbWlmXLluHl\n5WV67tKlSzRu3BiAtm3b8ttvvxEREYG/vz9GoxF7e3uaNm1KeHi4uWKVS60a+vBC30bk5xcy+9sI\nTpxPVDuSsHBGWycG1+nD9MemEuDZiPOpF/nkyAK+OPElCVny/RFCqE9vtg3r9ej1t2++Tp06/Prr\nr/Tt25ewsDASEhJISEjAzc3NtIybmxvx8fFFbtvV1YBerzNLbgBPT6PZtq2WYE8jHu6OfLjqEHO/\ni2Ta081p2chX7VgPrCzWxpJ5YqRR1QlExZ9lzbHvCI87TkTCSbrXak//Bt1xsnO8tZzUxWJJbSyX\n1ObRmK2BuZtp06bxzjvvsGHDBlq0aHHXC2gV56JayWacGuzpaSQ+Pt1s21dTVQ8DkwcFMDf0OB+u\n+oMxvevTsoGP2rGKrSzXxtJ54MOUgBcIjzvOpnPb2HLmZ3af309wtU4MCOxKSpLcnsASyc+M5ZLa\nFE9RTV6pNjC+vr4sWbIEgLCwMOLi4vDy8iIhIcG0TFxcHIGBgaUZq1ypX9WVqUMD+ezbCJZtOkVe\nXiFtA/zUjiWsgFajpbl3IAGejfj16m/8dHE3G/7cwt7r+6nhXA1fgzc+jl74OHrj4eB239lLQgjx\nKEq1gZk7dy6NGzemffv2bNiwgT59+hAQEMD06dNJS0tDp9MRHh7Ov/71r9KMVe7UqliB155qwqfr\njrFyWzS5+YV0alZJ7VjCStho9XSu8gQtfZuz/eJu9l0/wKEbt5+3ptfq8TZ44uvojY/BG9//Njae\nDu7otOY7/CuEKD80ipluhHLixAlmzpzJtWvX0Ov1eHt788orr/Dee++hKArNmzfnjTfeAOCnn37i\niy++QKPRMGLECJ588skit23OYbfyNKx3Lf4mn3xzjNSMXAa2r0mPllXVjlSk8lQba+Lu7kjUlUvc\nyIjlRkYcMZmxpj/nFubdtqxOo8PL4IGPoze+hltNja+jN14GD/TaUv19qlyQnxnLJbUpnqIOIZmt\ngTEnaWBKTmxSJh9/c5SktBx6t65G37bV73m9D7WVt9pYi3vVpVApJDk7hZiMWGL+0dzkFNx+/Qut\nRoung4dppOav5sbL4IltMa8ILO4kPzOWS2pTPBZzDoywPN5uBl4f3pRP/nOMzfsvkpNXwJCOtSy2\niRHWQ6vR4u7ghruDG4086pueVxSFlJzU/zY1scRkxHEj89b/YzPjIP6EaVkNGjwc3EwjNT4GL3wd\nvfF29MJOZ/23xxBCPDxpYAQeFRyYNrwpn3xzlB1/XCE3v5ARXeuglSZGmIFGo8HV3gVXexcauNc1\nPa8oCmm56XeM1sRkxBKZcIrIhFO3bcfd3hUfx1snDt86gfjWnx301nu1aSFE8UkDIwBwNdoxbXhT\nPv3mGHuOXiM3r4BnetRDp5WZJKJ0aDQaKtg5U8HOmXputW97LT335h2jNTcyYjmZGM3JxOjblnWx\nq3BrtOZvjY2voxcGG0Npvh0hhJlJAyNMnA22vDasCZ99G8H+EzfIzS9kXO8G6HXSxAh1GW2dMNo6\nUdu15m3PZ+RlcuO/zcytEZs4YjJiiUo6Q1TSmduWdbY1mpqZv8+MMto6leZbEUKUEGlgxG0c7W2Y\nOiSQOaHHORwdR15eAVZUrVIAACAASURBVOP7NcLGjFc+FuJhOdoYqOlSjZou1W57Pis/+47G5kZG\nLGeS/+RM8p+3Letk42i6fo2vwZvqFapQ2VhRrmMjhIWTWUj/IGeG35KTV8D8DZGcvJBEg2quTOrf\nGDtbdZsYqY1lsqa65BTkEvvfUZobmXGmE4kTspJQ+N9fhY42Buq51qaeW23qu9XB1d5FxdQPz5pq\nU95IbYpHplE/APlS/U9efiGLfzjB0bMJ1K5UgSmDAnCwU2/QTmpjmcpCXXIL8ojLjOd6xg3OJp8j\nKuksyTkppte9DV7/bWZqU9ulJvZ6OxXTFl9ZqE1ZJbUpHmlgHoB8qW6XX1DI8i2nOBQVRzUfIy8P\nCcTJQZ3rckhtLFNZrIuiKMRmxhOddJaopDOcSTlH7n+vXaPT6KhRoappdMaSDzeVxdqUFVKb4pEG\n5gHIl+pOhYUKq7ZFsy8yhkqejkwd2oQKjqV/DQ6pjWUqD3XJL8znQuql/zY0Z/+/vXuPb6q++wD+\nOcnJtWnTpm1SeqFQCi3lTrkq6Jw455z6DIEitpNnPnvcizmnQzfGhujYfFbUPXvhfaAbwyk42FSG\ngrqBskcoCMilBUqRS+8Xml7SNM31+SNpSAuUFJrmpP28Xy9eSU5OTn95fZPy6e9yDs63VviHnKJE\nLUYZMjHaMBLZcaMQr4kLc2svGgy1iVSsTXAYYHqBH6rLc3s8ePvjU/jnwQokGbR4fOFEGGL693wb\nrI00Dca6WBxtONlY5u+hCRxuMmoTMNowCqMNozAyNgPqMJ6XZjDWJlKwNsFhgOkFfqiuzOPxYPOu\n0/iw6DwS9Go8cd8kJMZq+u3nszbSNNjr4vF4UGetx/HGUzhhLkWp+bT/UgkyQYbhMeneQBM/EkOj\nU/t1uGmw10bKWJvgMMD0Aj9UPfN4PNj6+Vm8u/sM4qJVeHzhRAyJj+qXn83aSBPr0pV3uOk8Tpi9\nvTPnWy4ON2lFDbLiMjHaMArZhpGI1xhC2hbWRrpYm+AwwPQCP1TB2V50Hu/sLEOMVoGlCychzRj6\nk4GxNtLEuvSszWHFSXMZTjSWouRCt+EmTQKyDaO8q5viRvT5ZRBYG+libYLDANML/FAFb+fBCmz4\nqBRRahE/yZuI4UNiQvrzWBtpYl2C5/F4UNfegOONpTjReAql5rJuw01Dfb0zo5Aec/3DTayNdLE2\nwWGA6QV+qHrn/45W440PjkOlkOPR+RMwKi10J/xibaSJdbl2LrcLZ1rO+wPNuZZy/3CTxj/cNBLZ\nhlFIuIbhJtZGulib4DDA9AI/VL2373gt1m4tgVwu4Ef3jseYYaEZ12dtpIl16TuBw03HG0+h0Wb2\nP5eoiff3zowKcriJtZEu1iY4DDC9wA/VtfnyVANefvcoAAFLvjMWEzMT+vxnsDbSxLqEhsfjQX17\nA477lmqfMp+GzdUBwDvcNCxmKEb7TqY3NDoVctmll/pgbaSLtQkOA0wv8EN17YrPNOKFLUfgcnvw\n33ePwdRsY58en7WRJtalf3QON3X2znQdblIjKy7TPyE4QRMPgLWRMtYmOAwwvcAP1fUpLW/C7/96\nGB0OF773rdG4cdyQPjs2ayNNrEt4WB1WnDSf9s2fKcWFgOGmBN9w0+Sho6FzxcKoTYAoC991zOhS\n/N4EhwGmF/ihun5nqlvwu01fos3mRMHtWbhlUkqfHJe1kSbWJfy8w00X/L0zpeYy/3AT4B1yMmoS\nkBRlwpCAfww24cPvTXAYYHqBH6q+UV5nwfMbD6HF6kDe1zNx+7Sh131M1kaaWBfpcbldONtSjgvu\nOpyqPY/qtlpUt9XC5rJ12a8z2HQGmiQGm37D701wGGB6gR+qvlN9oQ3Pvn0ITRY7/mP2cNx1wzAI\ngnDNx2NtpIl1ka7A2ng8HjTbW1BtqUV1W40v1NRdOdhoEzFEa/SGG10SkrRGBps+xO9NcHoKMPwk\nUsgMiY/CsvxcPPf2Iby7+ww6HC7Mu3nEdYUYIro2giAgVqVHrEqP0fGj/Ns9Hg+aOppR01YXEGy8\n4aamrRaH6o/69/UHmyiTN9zokrw9NpqEy66CIgolBhgKKWOsBsvun4xnN36JD/eeh93hxn1zRkLG\nEEMkCYIgIE4dizh17GWDTWegqfEHG+/9QwHH6BJsAufYMNhQCDHAUMgZYtRYdv9kPLfxEP55oAId\nDhcWfzMbMhlDDJFUBQabnPgs//buwSYw3HQPNnJBDqO26+Th5CgTEhlsqA8wwFC/0Ecp8bNFk/H8\npi/x7yPVcDjdePDO0RDl13etFyLqX1cLNlWX6a2pvkKwCZw8zGBDvcUAQ/1Gp1HgiYWT8PvNh1FU\nUgu7w4Uf3DMWCpEhhijSBQabMVcINp1zbALn2wSSC3KYtIlIivJNHo7yzrFJ1MQz2NAlGGCoX2nV\nIpYumIg1W47g0KkGvLDlCH44dxxUCv5yIhqIego25o6mLkNRnT02VW01XY7RGWxSdMlIi/b+S9Wl\nQKvQ9PfbIQkJ6TLq0tJSLFmyBIsXL0Z+fj7279+P3/3udxBFEVqtFqtXr4Zer8e6deuwfft2CIKA\nhx9+GDfffHOPx+Uy6shnd7jw8rvHcOT0BWSlxeKReeOhUfWcp1kbaWJdpCsSa3OlYFPdVgu7y95l\n33h1HFKjU5CmS0ZqdDLSolOgV8ZExErHSKxNOITlPDBWqxUPPfQQhg0bhqysLOTn52Pu3Ll47rnn\nkJGRgVdffRUymQx33HEHfvzjH2Pjxo2wWCxYtGgRtm3bBrn8yn+RM8AMDE6XG394vxhfnKxHRnIM\nHlswAVFqxRX3Z22kiXWRroFUG7fHjXprA8otVahorUJ5ayUqLFWwONq67KdTRCEtOgWpvt6a1OgU\nJGriIROkNVQ9kGoTSmE5D4xSqcTatWuxdu1a/7a4uDg0NTUBAJqbm5GRkYGioiLMnj0bSqUSBoMB\nKSkpKCsrQ1ZW1pUOTQOEKJfhoXvGQLHtBPYU1+DZtw7hJwsnIkarDHfTiEhiZIIMpigjTFFGTDFN\nBHBxfk2FpTPQVKOitRLHG0txvLHU/1qVXOkffkrVpSAtOhlDokw8KV+EC1n1RFGEKHY9/PLly5Gf\nn4+YmBjo9XosXboU69atg8Fg8O9jMBhQX1/fY4CJi9NCFEM3Z6KnxEd9b9niaXjlb0ewfc9ZPL/p\nMFY9NBPx+suPbbM20sS6SNdAr40RMRiFtC7bLPY2nDVX4GxTOb4yl+OsuRxnWs7hq+az/n3kMjnS\nYoZgWFwahsemYXhcGtJjU6FRqPut7QO9NqHWr/Fz1apVePHFF5Gbm4vCwkK89dZbl+wTzIiW2WwN\nRfMAsFsvXObfNBxupwsf7S/HT9fsxuP3TURCtxDD2kgT6yJdg7k2JlkyTIZkTDdMBwDYXXZUWmpQ\nYan0DkFZqlDZUo2zTRXYhT0AAAECEjXx3vk0uhT/vJpopa7P2zeYa9MbkrmUwMmTJ5GbmwsAuOGG\nG7B161bMmDEDZ86c8e9TW1sLo9HYn80iCRAEAXlfz4RSIcc/Pj+L3/7lIJ5YOAkmgzbcTSOiAUAp\nV2K4fiiG6y9eWNbldqHWWu8fguochjpYdwQH647499MrY/zzabwThlMQr46LiMnCA1m/BpiEhASU\nlZUhMzMTR48eRXp6OmbMmIE//vGP+NGPfgSz2Yy6ujpkZmb2Z7NIIgRBwNybMqBSyLDl06/w278c\nxOMLJyIlse//+iEiksvkSNYlIVmXhGlJkwF4RwEu2MyosFShorUS5a1VqLBU4diFEzh24YT/tRpR\ng1TdkIAJwykwaRN5vpp+FLJVSMeOHUNhYSEqKyshiiJMJhMee+wxrF69GgqFAnq9Hs888wxiYmKw\nYcMGbN26FYIg4NFHH8XMmTN7PDZXIQ18H39Rjrc/OQWdRoGleRORnhTN2kgU6yJdrE3fabVbfENP\nlf5VUHXtDV32UchEJEcN8Q09eScMp+iSoJRfujCBtQlOWJZRhxIDzODw2eEqrP/wBNQqEY8tmICZ\nE1NZGwnid0a6WJvQsjltqLTU+ENNRWslqtpq4fK4/PsIEGCKMl48V41vFVR6som1CQIDTC/wCy8t\ne4trsO4fx6EQZVj+n9OQZuCZN6WG3xnpYm36n9PtRHVbnXf4yTcMVWGpQke3k/CpRBU0cjWiFFpo\nRQ20/lsNtKIWUQpNl+2d+6lFteTOaRNKDDC9wC+89Bw4WY9X3zsGl9uDOVNSMe/mEVDy0gOSwe+M\ndLE20uD2uNHQfsE/n6bCUoV2lxXNNgusjnbYXLagjyVAgEZUXxJsLh+AtNAqLu6jkCkibuIxA0wv\n8AsvTWeqW/DGBydQWW/BkHgt/uvbORg+JCbczSLwOyNlrI10BdbG5Xah3WlDm9MKq6MdVmc7rA5r\nl9u2bo+tDivanO1wup1B/0xRJnbr1bkYci7X2+MPRaImbJOTGWB6gV946YrWa/Da5sP45EAFZIKA\nu24chjtnpkOUD57uVCnid0a6WBvp6qva2F0OWAOCz+WCTuD2dke7Pyh5EPx//2q5KqCXp2sAyjJk\nYrRh1HW/l8uRzHlgiK6HWili0W2jMHFkAl7fdhzv/fsMjpxuwH99OwdD4qPC3Twion6nlCuglOsR\nq9L36nVujxsdrg5YAwKNP/BcIQy1OaxoaL8Am6Wqy7GKL5zAL6b/pC/fVlDYA9MN/2KRrsDaWG0O\n/OXjU9hTXAOFKMP8r43A13NTIYuw8d2BgN8Z6WJtpCuSa+Nyu7oEG4M6DnpVaIb02QNDA45WrcD3\n78rBpJEJ+POOk3jrk1M4dKoBD945GoaY/ruWCRHRYCOXyRGt1IXkEgu9wckDFNGmZBux6sFpmDAi\nHsfPmbHi9X34/Fh1UNfUIiKiyMUAQxFPr1PhkXnjsfiObLg9Hqz7x3G8/O4xtFrtV38xERFFJA4h\n0YAgCAJumpCM7PQ4vPGPEhw4WY9TFc1YfEc2JmYmhLt5RETUx9gDQwOKMVaDny6ajAW3ZMJqc2DN\n5iP404fH0d4R/LkSiIhI+hhgaMCRyQR8c/pQPLl4KtKMOnx2uBor39iH0vKmcDeNiIj6CAMMDVip\niTqseGAK7pyZjgstNhT+5SDe2VkGh9N19RcTEZGkMcDQgCbKZbj35hH4eX4uEuM02F50Hr9a/wXO\n10bm+ReIiMiLAYYGhcwUPZ7+z2m4ZVIKKuvbsGr9F9i25yxcbne4m0ZERNeAAYYGDZVSjoLbs/CT\nBROg0yqw5dOv8Nu/HESt2RruphERUS8xwNCgMzYjHqsenI5po404XdmClW/sw85DlTz5HRFRBGGA\noUFJp1HgB/eMxUN3j4FCLsOGHSfxv389DHNrR7ibRkREQWCAoUFteo4Jv3pwOsZmGHDsq0Y8+XoR\n9h2vDXeziIjoKhhgaNCLi1bhsfkTUHB7FhwuN159rxivvncMlnZHuJtGRERXwEsJEMF7KYJbJqUg\nZ1gc1v2jBPuO16G0vAnf+9ZojM2ID3fziIioG/bAEAUwxWmx7P7JuPfmDLRaHfjdO4exYcdJdNh5\n8jsiIilhgCHqRi6T4c6Zw7DigSlISYzCzkOVWPnHfSirbA5304iIyIcBhugKhpqi8eQDU/DN6UNR\nb27H/7x5AFs+PQ2niye/IyIKNwYYoh4oRDkW3JKJn90/GfExamzbcw6/Xv8FKuot4W4aEdGgxgBD\nFIRRabF4+nvTcNOEZJyvs+BXf9qP7UXn4Xbz5HdEROHAAEMUJI1KxOI7svHIvPHQqhV4Z2cZVr99\nCPVN7eFuGhHRoMMAQ9RLEzMTsOrBacjNSkRpeROefGMfPjtcxUsREBH1o5AGmNLSUsyZMwdvvvkm\nAOCRRx5BQUEBCgoKcNddd2HFihUAgHXr1mHevHmYP38+Pv3001A2iahPRGuVWPIfY/H9b+dAJgj4\n04cn8MKWo2hus4e7aUREg0LITmRntVqxatUqzJw5079tzZo1/vs///nPMX/+fJSXl+ODDz7Axo0b\nYbFYsGjRIsyaNQtyuTxUTSPqE4IgYObYJGQNjcXr247jy7IGlK0rwgPfzEJuljHczSMiGtBC1gOj\nVCqxdu1aGI2X/iL/6quv0NraivHjx6OoqAizZ8+GUqmEwWBASkoKysrKQtUsoj5niFFj6cKJWDRn\nJDocLrz092NYu7UEVhsvRUBEFCoh64ERRRGiePnD//nPf0Z+fj4AoKGhAQaDwf+cwWBAfX09srKy\nrnjsuDgtRDF0PTSJidEhOzZdHynX5r47cjBrchr+9+2D2FNcg1OVzXg0bxImjEoMd9NCTsp1GexY\nG+liba5Pv18LyW6348CBA3jqqacu+3wwEyHNZmsft+qixMRo1Ne3huz4dO0ioTZqGfDT+yZi2+fn\nsPXzs/jla59jzpRUzLt5BJSKgTksGgl1GaxYG+libYLTU8jr91VI+/fvx/jx4/2PjUYjGhoa/I9r\na2svO+xEFCnkMhnunjUcywtyMSRei0++qMDTf9qPM9Ut4W4aEdGA0e8B5ujRo8jOzvY/njFjBnbt\n2gW73Y7a2lrU1dUhMzOzv5tF1OeGD4nBysVTcduUNFRfsOI3fz6A9/59hpciICLqAyEbQjp27BgK\nCwtRWVkJURSxY8cOvPDCC6ivr8fQoUP9+yUnJ2PBggXIz8+HIAh46qmnIJPx9DQ0MCgVctw3ZyQm\njkzAG9tK8N6/z+BwWQMe/HYOUhKiwt08IqKIJXgi8OxboRw35LikdEV6baw2J97+pBT/d6wGADAy\nVY8ZOSZMyTYiWqsMc+uuXaTXZSBjbaSLtQlOT3Ng+n0SL9FgpVWLePDbOcjNMuKj/edx8nwTTlU0\n461PTmHMcAOm55gwaWQC1Ep+LYmIroa/KYn62cSRCZg4MgHm1g7sP16LvSW1OHL6Ao6cvgClKMPE\nkQmYnmPCuIx4iHIOpxIRXQ4DDFGYxEWr8I1pQ/GNaUNR02hFUYk3zOw7Xod9x+sQpRaRm2XEjBwT\nRqXFQiYTwt1kIiLJYIAhkoAkgxb3zBqOu28chvO1FuwtqUFRSS0+O1yFzw5XIVanxLTRJswYY0K6\nKRqCwDBDRIMbAwyRhAiCgPSkaKQnRWP+1zJRWt6EvSW1OHCyDh/tL8dH+8thMmgxfbQRM8YkIcmg\nDXeTiYjCgquQuuHMcOkazLVxutw49lUj9pbU4MtTDbA7veeSSU+KxowcE6aNNiEuWhWWtg3mukgd\nayNdrE1wuAqJKMKJcpl/8q/N7sShUw0oKqlF8ZlGbKppxTv/KkPW0FhMzzEhN8sInUYR7iYTEYUU\nAwxRhFErRcwck4SZY5LQarXji5P1KCquwYnzTThxvglvflSKcRnxmDHGhAmZCVAN0GswEdHgxgBD\nFMGitUrcMikFt0xKwYVmG/adqEVRcS2+LGvAl2UNUCnkmDQqATNyTMgZZuCybCIaMBhgiAaIeL0a\nd0xPxx3T01HZ0IaikloUldRgb3Et9hbXQqdRYGq2EdNzTMhM1UPGlUxEFMEYYIgGoJSEKMy9KQPf\nmT0cX1W3oMh3fpmdhyqx81AlDDEqTB9twvQcE9KMOi7LJqKIwwBDNIAJgoARyXqMSNYj7+uZOHG+\nCUXFtThQWocPi87jw6LzSE6IwvTR3p4ZYxyXZRNRZOAy6m64tE26WJu+43C6cOR0I4pKavBl2QU4\nXd5l2RnJMZieY8K0bCP0uuCWZbMu0sXaSBdrExwuoyaiLhSiHLlZicjNSkR7hxMHS+uxt6QWJWcb\n8VVVCzb+8xRGp8d5l2WPMkKr5q8KIpIW/lYiGuQ0KhE3jhuCG8cNQXObHV+cqMPekhqUnDWj5KwZ\nG3aUYsKIeEzPMWH8iHgouSybiCSAAYaI/PRRStyam4pbc1NR19SOfSW1KCqpxYHSehworYdaKUfu\nqERMH2PC6PQ4yGVclk1E4cE5MN1wXFK6WJvwqaizYK8vzFxosQEAYrQKTM02Yc6MdCgFIFqr4Hlm\nJIbfGelibYLT0xwYBphu+KGSLtYm/NweD05XNvuXZVvaHV2e16jkiNYoEa1VQKdRIFrrvX/x1ndf\no4BOq4BKIecS7hDid0a6WJvgcBIvEfUJmSBgZGosRqbGYuGtI3H8nBmnq1tR02BBq9Xh/ddux4Ua\nG1zuq/9tpBBl3lCj6RZwrhCAtCqRgYeIADDAENE1EuUyjMuIx9enD7vkL0mPx4P2Dqcv0DjQarX7\nAo69S9BptTpgsTpQ3diGc7Xuq/5MuUzwBZsr9fB4e3eitQrotEroNCLn6RANUAwwRNTnBEGAVq2A\nVq2AKcjXdDhcXQOO1Q5Lu6Nr8PGFngstHaiob7t6OwBo1eIlQadr+AnsAVJCITLwEEUCBhgikgSV\nQg6VXoMEvSao/Z0u96UBxx90HLAE3G+12lFrtiKYGX8alYhYnRL6KCVidSrodUroo1TebTrfbZQK\nGhXn7xC53R4IAsLyXWCAIaKIJMpliNWpEBvkGYPdbg/abD317njvN7fZ0Wyxo/qCtcfjKUWZN9zo\nVIiN6hpuOsOOXqeETqPghTNJcjweD+wON9rtTrR3ONHe4fLd+v7ZL//Y1uGEtcMJm90Fa4cTHXYX\nRqfH4Yn7JvX7e2CAIaJBQSYTfMNGSgBRV93f6XKj2WJHU1sHmi12NFs60GSxo7nNd+t77nRlc489\nO3KZgJgo5WXDTWyU71anQkyUgvN1KChOlzsgXPiCRvcgYvfe9weODiesHS7YAvZzX8MiZLlMgEYl\nQqOSwxSngUYpYmyGIQTv8uoYYIiILkOUyxCvVyNer+5xP7fbg1arvVu46UCTryenM/iU11lwxnXl\nZbMCvOfSuVy4CRzOitUpoRB5NuRI4/F44HR50OFwocPugtXpQWVN8xUDSPeeDltAT4jDefUJ790J\nANQqEVqVHLHRKgxJEKFReoOIN5CI0CgD7vsee18j+l8rymWSGTplgCEiug4ymeALHSoAVz5nhcfj\nQZvNGRBuvD073YNPXVM7yussPf5MrUq8GG4Cwk734BOBp/kKO2/QcMNm9waNDocLNocLdrv3tnNb\n1+fcsDmcvm1udNid6HC4ffs7fduurccDAJQKGTQqEVq1AvF6zcXQoRT9vSHdg4fGHzpEqJVyqJTy\nATeUyQBDRNQPBMG7BFynUSAlsed9bXanL9x0oLnNfrFXxxd2Op+72jwdmUyAKBMgl8sgygWIchnk\nMu+tKA/YLrv4+NLnZRB92+TygOdkAY8v93zA9s6fe/F5376yi+2SyXr3n6vH44Hd6e4SJjrs3cJG\nMM8FBhGHCza7K6jJ3j0RACiVcqgUcqgVckRrld5J6r5tKoUMhlgt4HZfMXB09npoVHIOLV4BAwwR\nkcSolSLUBhEmg7bH/RxOtz/QNLddOk/H4fLA1uGA0+XtVXC5PHC63bB2OOFyuS9uD+Kkg6EmCLg0\nHAUEHEEQYHd2DSTX22oB8IYKX7DQa5VQKr2hwx82AoKIUiH392Z0fy5wm1K8+jALz8R7/UIaYEpL\nS7FkyRIsXrwY+fn5cDgcWLZsGc6dO4eoqCisWbMGer0e77//PtavXw+ZTIYFCxZg/vz5oWwWEdGA\noBBlSOhh6Xmw/0l6PB643B5/wHG6PL6A0zXkdD52ddnnMs8HvLZz+8Vj++53vtbd9bGr22ObwwWX\nzQmX2wOVQga1Ug697mKPhlrRNUx0blN2fy4wiPieUwQRNEi6QhZgrFYrVq1ahZkzZ/q3vfPOO4iL\ni8Pzzz+PTZs24YsvvsDMmTPx0ksvYfPmzVAoFJg3bx5uu+02xMbGhqppREQUQBAEX08HoAInCFNk\nCNnAmlKpxNq1a2E0Gv3bdu7cibvvvhsAkJeXh1tvvRWHDx/GuHHjEB0dDbVajcmTJ+PgwYOhahYR\nERENACHrgRFFEaLY9fCVlZX47LPP8OyzzyIhIQErV65EQ0MDDIaLa8gNBgPq6+t7PHZcnBZiCJcR\n9nT1Swov1kaaWBfpYm2ki7W5Pv06idfj8WD48OF4+OGH8fLLL+O1115DTk7OJftcjdnc88z768GJ\nVdLF2kgT6yJdrI10sTbB6Snk9evarISEBEydOhUAMGvWLJSVlcFoNKKhocG/T11dXZdhJyIiIqLu\n+jXA3HTTTdi9ezcAoLi4GMOHD8eECRNw9OhRtLS0oK2tDQcPHsSUKVP6s1lEREQUYUI2hHTs2DEU\nFhaisrISoihix44deO655/Cb3/wGmzdvhlarRWFhIdRqNZYuXYoHH3wQgiDghz/8IaKjOS5IRERE\nVyZ4IvBc06EcN+S4pHSxNtLEukgXayNdrE1wJDMHhoiIiKgvMMAQERFRxGGAISIioojDAENEREQR\nhwGGiIiIIg4DDBEREUWciFxGTURERIMbe2CIiIgo4jDAEBERUcRhgCEiIqKIwwBDREREEYcBhoiI\niCIOAwwRERFFHAaYAM888wzy8vKwcOFCHDlyJNzNoQCrV69GXl4e7r33Xnz00Ufhbg4FsNlsmDNn\nDv72t7+FuykU4P3338fdd9+NuXPnYteuXeFuDgFoa2vDww8/jIKCAixcuBC7d+8Od5MimhjuBkjF\nvn37cO7cOWzatAmnT5/G8uXLsWnTpnA3iwDs3bsXp06dwqZNm2A2m/Gd73wH3/jGN8LdLPJ55ZVX\noNfrw90MCmA2m/HSSy9hy5YtsFqteOGFF/C1r30t3M0a9P7+979j+PDhWLp0KWpra/HAAw9g+/bt\n4W5WxGKA8dmzZw/mzJkDABgxYgSam5thsVig0+nC3DKaOnUqxo8fDwCIiYlBe3s7XC4X5HJ5mFtG\np0+fRllZGf9zlJg9e/Zg5syZ0Ol00Ol0WLVqVbibRADi4uJw8uRJAEBLSwvi4uLC3KLIxiEkn4aG\nhi4fJoPBgPr6+jC2iDrJ5XJotVoAwObNm3HTTTcxvEhEYWEhli1bFu5mUDcVFRWw2Wz4wQ9+gEWL\nFmHPnj3hbhIBFhfQ8QAABMJJREFUuPPOO1FVVYXbbrsN+fn5+NnPfhbuJkU09sBcAa+wID2ffPIJ\nNm/ejDfeeCPcTSEA7777LiZOnIi0tLRwN4Uuo6mpCS+++CKqqqrw3e9+Fzt37oQgCOFu1qD23nvv\nITk5Ga+//jpOnDiB5cuXc+7YdWCA8TEajWhoaPA/rqurQ2JiYhhbRIF2796NV199FevWrUN0dHS4\nm0MAdu3ahfLycuzatQs1NTVQKpVISkrCDTfcEO6mDXrx8fGYNGkSRFHE0KFDERUVhcbGRsTHx4e7\naYPawYMHMWvWLABAdnY26urqOBx+HTiE5HPjjTdix44dAIDi4mIYjUbOf5GI1tZWrF69Gq+99hpi\nY2PD3Rzy+f3vf48tW7bgnXfewfz587FkyRKGF4mYNWsW9u7dC7fbDbPZDKvVyvkWEpCeno7Dhw8D\nACorKxEVFcXwch3YA+MzefJkjBkzBgsXLoQgCFi5cmW4m0Q+H3zwAcxmMx599FH/tsLCQiQnJ4ex\nVUTSZTKZcPvtt2PBggUAgF/+8peQyfj3arjl5eVh+fLlyM/Ph9PpxFNPPRXuJkU0wcPJHkRERBRh\nGMmJiIgo4jDAEBERUcRhgCEiIqKIwwBDREREEYcBhoiIiCIOAwwRhVRFRQXGjh2LgoIC/1V4ly5d\nipaWlqCPUVBQAJfLFfT+9913H4qKiq6luUQUIRhgiCjkDAYDNmzYgA0bNmDjxo0wGo145ZVXgn79\nhg0beMIvIuqCJ7Ijon43depUbNq0CSdOnEBhYSGcTiccDgeefPJJ5OTkoKCgANnZ2Th+/DjWr1+P\nnJwcFBcXw263Y8WKFaipqYHT6cQ999yDRYsWob29HY899hjMZjPS09PR0dEBAKitrcXjjz8OALDZ\nbMjLy8O8efPC+daJqI8wwBBRv3K5XPj444+Rm5uLJ554Ai+99BKGDh16ycXttFot3nzzzS6v3bBh\nA2JiYvD888/DZrPhW9/6FmbPno3PP/8carUamzZtQl1dHW699VYAwIcffoiMjAw8/fTT6OjowF//\n+td+f79EFBoMMEQUco2NjSgoKAAAuN1uTJkyBffeey/WrFmDX/ziF/79LBYL3G43AO/lPbo7fPgw\n5s6dCwBQq9UYO3YsiouLUVpaitzcXADeC7NmZGQAAGbPno233noLy5Ytw80334y8vLyQvk8i6j8M\nMEQUcp1zYAK1trZCoVBcsr2TQqG4ZJsgCF0eezweCIIAj8fT5Vo/nSFoxIgR2LZtG/bv34/t27dj\n/fr12Lhx4/W+HSKSAE7iJaKwiI6ORmpqKj799FMAwJkzZ/Diiy/2+JoJEyZg9+7dAACr1Yri4mKM\nGTMGI0aMwKFDhwAA1dXVOHPmDABg69atOHr0KG644QasXLkS1dXVcDqdIXxXRNRf2ANDRGFTWFiI\nX//61/jDH/4Ap9OJZcuW9bh/QUEBVqxYgfvvvx92ux1LlixBamoq7rnnHvzrX//CokWLkJqainHj\nxgEAMjMzsXLlSiiVSng8Hnz/+9+HKPLXHtFAwKtRExERUcThEBIRERFFHAYYIiIiijgMMERERBRx\nGGCIiIgo4jDAEBERUcRhgCEiIqKIwwBDREREEYcBhoiIiCLO/wPVpPZyiM/bNgAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "FqDp_hEWs3XB", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "65sin-E5NmHN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 5: Evaluate on Test Data\n", + "\n", + "**In the cell below, load in the test data set and evaluate your model on it.**\n", + "\n", + "We've done a lot of iteration on our validation data. Let's make sure we haven't overfit to the pecularities of that particular sample.\n", + "\n", + "Test data set is located [here](https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv).\n", + "\n", + "How does your test performance compare to the validation performance? What does this say about the generalization performance of your model?" + ] + }, + { + "metadata": { + "id": "icEJIl5Vp51r", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "34e6ecdd-eaf3-4923-c807-1f826a2a1ebc" + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "#\n", + "# YOUR CODE HERE\n", + "#california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_test_input_fn = lambda: my_input_fn(\n", + " test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = linear_regressor.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Final RMSE (on test data): 221.39\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "yTghc_5HkJDW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "_xSYTarykO8U", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "e74f1da0-9441-4d95-ef2c-40aba5d77f85" + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_test_input_fn = lambda: my_input_fn(\n", + " test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = linear_regressor.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Final RMSE (on test data): 160.71\n" + ], + "name": "stdout" + } + ] + } + ] +} \ No newline at end of file From b32576a544f513ee5fbb060ed78ef5b4b494b459 Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sun, 24 Feb 2019 00:45:34 +0530 Subject: [PATCH 05/11] Created using Colaboratory --- feature_sets.ipynb | 1602 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1602 insertions(+) create mode 100644 feature_sets.ipynb diff --git a/feature_sets.ipynb b/feature_sets.ipynb new file mode 100644 index 0000000..c941205 --- /dev/null +++ b/feature_sets.ipynb @@ -0,0 +1,1602 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "feature_sets.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "IGINhMIJ5Wyt", + "pZa8miwu6_tQ" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zbIgBK-oXHO7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Feature Sets" + ] + }, + { + "metadata": { + "id": "bL04rAQwH3pH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objective:** Create a minimal set of features that performs just as well as a more complex feature set" + ] + }, + { + "metadata": { + "id": "F8Hci6tAH3pH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "So far, we've thrown all of our features into the model. Models with fewer features use fewer resources and are easier to maintain. Let's see if we can build a model on a minimal set of housing features that will perform equally as well as one that uses all the features in the data set." + ] + }, + { + "metadata": { + "id": "F5ZjVwK_qOyR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "As before, let's load and prepare the California housing data." + ] + }, + { + "metadata": { + "id": "SrOYRILAH3pJ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "dGnXo7flH3pM", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jLXC8y4AqsIy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1213 + }, + "outputId": "14c3a87f-19ff-4eaf-e7f0-e44869f13224" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.5 28.7 2644.8 540.4 \n", + "std 2.1 2.0 12.6 2160.6 418.4 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1466.8 298.0 \n", + "50% 34.2 -118.5 29.0 2130.0 436.5 \n", + "75% 37.7 -118.0 37.0 3150.0 650.0 \n", + "max 42.0 -114.3 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1434.2 502.1 3.9 2.0 \n", + "std 1141.0 381.4 1.9 1.2 \n", + "min 3.0 1.0 0.5 0.1 \n", + "25% 795.0 282.8 2.6 1.5 \n", + "50% 1169.5 411.0 3.5 1.9 \n", + "75% 1721.0 606.2 4.7 2.3 \n", + "max 35682.0 5189.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.528.72644.8540.41434.2502.13.92.0
std2.12.012.62160.6418.41141.0381.41.91.2
min32.5-124.31.02.01.03.01.00.50.1
25%33.9-121.818.01466.8298.0795.0282.82.61.5
50%34.2-118.529.02130.0436.51169.5411.03.51.9
75%37.7-118.037.03150.0650.01721.0606.24.72.3
max42.0-114.352.037937.05471.035682.05189.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.7 -119.6 28.3 2641.0 537.1 \n", + "std 2.1 2.0 12.6 2226.0 429.0 \n", + "min 32.5 -124.3 1.0 15.0 3.0 \n", + "25% 33.9 -121.8 18.0 1446.0 293.0 \n", + "50% 34.3 -118.6 28.0 2122.0 429.0 \n", + "75% 37.7 -118.0 37.0 3153.0 647.0 \n", + "max 41.9 -114.6 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1418.4 499.2 3.9 2.0 \n", + "std 1164.3 392.0 1.9 1.0 \n", + "min 8.0 2.0 0.5 0.0 \n", + "25% 778.8 278.0 2.6 1.5 \n", + "50% 1161.0 403.0 3.6 2.0 \n", + "75% 1720.0 602.2 4.8 2.3 \n", + "max 28566.0 6082.0 15.0 27.1 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.7-119.628.32641.0537.11418.4499.23.92.0
std2.12.012.62226.0429.01164.3392.01.91.0
min32.5-124.31.015.03.08.02.00.50.0
25%33.9-121.818.01446.0293.0778.8278.02.61.5
50%34.3-118.628.02122.0429.01161.0403.03.62.0
75%37.7-118.037.03153.0647.01720.0602.24.82.3
max41.9-114.652.032627.06445.028566.06082.015.027.1
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 206.9\n", + "std 115.9\n", + "min 15.0\n", + "25% 119.8\n", + "50% 179.5\n", + "75% 264.0\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean206.9
std115.9
min15.0
25%119.8
50%179.5
75%264.0
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 208.2\n", + "std 116.1\n", + "min 15.0\n", + "25% 118.8\n", + "50% 181.9\n", + "75% 267.7\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean208.2
std116.1
min15.0
25%118.8
50%181.9
75%267.7
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "hLvmkugKLany", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Develop a Good Feature Set\n", + "\n", + "**What's the best performance you can get with just 2 or 3 features?**\n", + "\n", + "A **correlation matrix** shows pairwise correlations, both for each feature compared to the target and for each feature compared to other features.\n", + "\n", + "Here, correlation is defined as the [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient). You don't have to understand the mathematical details for this exercise.\n", + "\n", + "Correlation values have the following meanings:\n", + "\n", + " * `-1.0`: perfect negative correlation\n", + " * `0.0`: no correlation\n", + " * `1.0`: perfect positive correlation" + ] + }, + { + "metadata": { + "id": "UzoZUSdLIolF", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 375 + }, + "outputId": "2781436e-7725-4532-a03a-ed01c06e9d92" + }, + "cell_type": "code", + "source": [ + "correlation_dataframe = training_examples.copy()\n", + "correlation_dataframe[\"target\"] = training_targets[\"median_house_value\"]\n", + "\n", + "correlation_dataframe.corr()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_persontarget
latitude1.0-0.90.0-0.0-0.1-0.1-0.1-0.10.1-0.1
longitude-0.91.0-0.10.00.10.10.1-0.0-0.1-0.1
housing_median_age0.0-0.11.0-0.4-0.3-0.3-0.3-0.1-0.10.1
total_rooms-0.00.0-0.41.00.90.90.90.20.10.1
total_bedrooms-0.10.1-0.30.91.00.91.0-0.00.00.0
population-0.10.1-0.30.90.91.00.9-0.0-0.1-0.0
households-0.10.1-0.30.91.00.91.00.0-0.00.1
median_income-0.1-0.0-0.10.2-0.0-0.00.01.00.20.7
rooms_per_person0.1-0.1-0.10.10.0-0.1-0.00.21.00.2
target-0.1-0.10.10.10.0-0.00.10.70.21.0
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms \\\n", + "latitude 1.0 -0.9 0.0 -0.0 \n", + "longitude -0.9 1.0 -0.1 0.0 \n", + "housing_median_age 0.0 -0.1 1.0 -0.4 \n", + "total_rooms -0.0 0.0 -0.4 1.0 \n", + "total_bedrooms -0.1 0.1 -0.3 0.9 \n", + "population -0.1 0.1 -0.3 0.9 \n", + "households -0.1 0.1 -0.3 0.9 \n", + "median_income -0.1 -0.0 -0.1 0.2 \n", + "rooms_per_person 0.1 -0.1 -0.1 0.1 \n", + "target -0.1 -0.1 0.1 0.1 \n", + "\n", + " total_bedrooms population households median_income \\\n", + "latitude -0.1 -0.1 -0.1 -0.1 \n", + "longitude 0.1 0.1 0.1 -0.0 \n", + "housing_median_age -0.3 -0.3 -0.3 -0.1 \n", + "total_rooms 0.9 0.9 0.9 0.2 \n", + "total_bedrooms 1.0 0.9 1.0 -0.0 \n", + "population 0.9 1.0 0.9 -0.0 \n", + "households 1.0 0.9 1.0 0.0 \n", + "median_income -0.0 -0.0 0.0 1.0 \n", + "rooms_per_person 0.0 -0.1 -0.0 0.2 \n", + "target 0.0 -0.0 0.1 0.7 \n", + "\n", + " rooms_per_person target \n", + "latitude 0.1 -0.1 \n", + "longitude -0.1 -0.1 \n", + "housing_median_age -0.1 0.1 \n", + "total_rooms 0.1 0.1 \n", + "total_bedrooms 0.0 0.0 \n", + "population -0.1 -0.0 \n", + "households -0.0 0.1 \n", + "median_income 0.2 0.7 \n", + "rooms_per_person 1.0 0.2 \n", + "target 0.2 1.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "id": "RQpktkNpia2P", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Features that have strong positive or negative correlations with the target will add information to our model. We can use the correlation matrix to find such strongly correlated features.\n", + "\n", + "We'd also like to have features that aren't so strongly correlated with each other, so that they add independent information.\n", + "\n", + "Use this information to try removing features. You can also try developing additional synthetic features, such as ratios of two raw features.\n", + "\n", + "For convenience, we've included the training code from the previous exercise." + ] + }, + { + "metadata": { + "id": "bjR5jWpFr2xs", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jsvKHzRciH9T", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + "\n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g3kjQV9WH3pb", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "varLu7RNH3pf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Spend 5 minutes searching for a good set of features and training parameters. Then check the solution to see what we chose. Don't forget that different features may require different learning parameters." + ] + }, + { + "metadata": { + "id": "DSgUxRIlH3pg", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 765 + }, + "outputId": "339025a6-796c-4339-bdd4-2bf6f28c2b93" + }, + "cell_type": "code", + "source": [ + "#\n", + "# Your code here: add your features of choice as a list of quoted strings.\n", + "#\n", + "minimal_features = [\n", + " \"median_income\",\n", + " \"latitude\",\n", + "]\n", + "\n", + "assert minimal_features, \"You must select at least one feature!\"\n", + "\n", + "minimal_training_examples = training_examples[minimal_features]\n", + "minimal_validation_examples = validation_examples[minimal_features]\n", + "\n", + "#\n", + "# Don't forget to adjust these parameters.\n", + "#\n", + "train_model(\n", + " learning_rate=0.001,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=minimal_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=minimal_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 229.44\n", + " period 01 : 221.78\n", + " period 02 : 214.23\n", + " period 03 : 206.78\n", + " period 04 : 199.46\n", + " period 05 : 192.28\n", + " period 06 : 185.26\n", + " period 07 : 178.41\n", + " period 08 : 171.75\n", + " period 09 : 165.32\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VOXZx/HvrEkmmZmsk0xIyEYg\nLCFsYV9EBAKIiiAoirS1tq+VatVWa6vdtFaxahVBXKAubRVN0boiUhdAJCyBJJANQlizz2QjC9nO\n+0ckFYEwAww5CffnurwuJjNzznPye47c3GfTKIqiIIQQQgjRjWi7egBCCCGEEO6SAkYIIYQQ3Y4U\nMEIIIYTodqSAEUIIIUS3IwWMEEIIIbodKWCEEEII0e3ou3oAQqhZv3796N27NzqdDoDW1laSk5N5\n6KGHMJlM573ct99+m/nz55/287Vr1/Lggw+ycuVKJk+e3PHzxsZGxo4dy7Rp03j88cfPe72uOnz4\nMI899hiFhYUA+Pj4sGTJEq666iqPr9sdK1as4PDhw6f9TtLS0rjtttuIiIg47Tvr1q27VMO7IEeP\nHmXKlCnExMQAoCgKwcHB/Pa3v2XAgAFuLeupp54iPDycm266yeXv/Oc//yE1NZU33njDrXUJcalI\nASPEObzxxhuEhYUB0NTUxD333MOLL77IPffcc17LKy8v55VXXjljAQNgt9v58MMPTylgvvjiCywW\ny3mt73z88pe/5Nprr2XlypUAZGRksHjxYj755BPsdvslG8eFsNvt3aZYORudTnfKNnz88cfceeed\nfPrppxiNRpeXc99993lieEJ0KTmEJIQbjEYjEyZMICcnB4ATJ07wu9/9junTpzNjxgwef/xxWltb\nAcjNzeXGG28kJSWFa6+9lk2bNgFw4403UlRUREpKCk1NTaetY9iwYaSlpdHQ0NDxs48//phx48Z1\nvG5qauLRRx9l+vTpXHnllR2FBsCuXbu4/vrrSUlJYebMmWzZsgVo/xf9+PHjef3115k9ezYTJkzg\n448/PuN25ufnk5SU1PE6KSmJTz/9tKOQe/7555k0aRLXXXcdL730EldeeSUAv/71r1mxYkXH9777\n+lzjeuyxx7jlllsA2LlzJ3PnzmXq1KnMnz+fI0eOAO2dqF/84hdMnjyZW265hZKSknMkdmZr165l\nyZIlLF68mKVLl5KWlsaNN97I3Xff3fGX/SeffMLVV19NSkoKt956K4cPHwZg2bJlPPTQQ8ybN49X\nX331lOXefffdrF69uuN1Tk4O48ePp62tjWeeeYbp06czffp0br31VkpLS90e98yZM2lsbOTAgQMA\nrFmzhpSUFK688kruvfdeGhsbgfbf+1/+8hdmz57NJ598ckoOZ5uXbW1t/OlPf+KKK65g3rx55Obm\ndqx327ZtzJkzh5kzZzJjxgw++eQTt8cuxEWnCCHOqm/fvkpxcXHH66qqKuXmm29WVqxYoSiKorz4\n4ovK7bffrjQ3NysNDQ3K3Llzlffee09pbW1VZsyYoXzwwQeKoihKZmamkpycrNTW1ipbt25Vrrrq\nqjOu79///rfywAMPKL/85S87vltbW6tMmTJFeeedd5QHHnhAURRFef7555XFixcrJ06cUOrq6pTr\nrrtO+fzzzxVFUZSrr75a+fDDDxVFUZR33323Y11HjhxRBgwYoLzxxhuKoijKxx9/rEydOvWM4/j5\nz3+uTJ48WXnttdeU/fv3n/JeXl6eMmLECKWsrExpbm5W7rjjDmXy5MmKoijKAw88oCxfvrzjs999\n3dm4Bg4cqKxdu7Zje5OTk5XNmzcriqIoH3zwgTJnzhxFURTlH//4h3LzzTcrzc3NitPpVCZPntzx\nO/muzn7HJ3/PQ4YMUQoLCzs+n5iYqGzZskVRFEU5duyYMnz4cOXgwYOKoijKqlWrlMWLFyuKoijP\nPfecMn78eMXhcJy23I8++ki5+eabO14/++yzyiOPPKLk5+cr06ZNU5qamhRFUZTXX39deffdd886\nvpO/l/79+5/28+TkZKWgoEDZvn27MmbMGKWkpERRFEV5+OGHlccff1xRlPbf++zZs5XGxsaO18uX\nL+90Xn755ZfKtGnTlOPHjysNDQ3KvHnzlFtuuUVRFEW5/vrrlbS0NEVRFKWwsFC59957Ox27EJeC\ndGCEOIdFixaRkpLClClTmDJlCqNHj+b2228H4Msvv2T+/Pno9Xq8vb2ZPXs2X3/9NUePHqWiooJZ\ns2YBkJiYSHh4OFlZWS6tc9asWXz44YcAbNiwgcmTJ6PV/m93/eKLL1i4cCFGoxGTycS1117L+vXr\nAXjvvfeYMWMGAMOHD+/oXgC0tLRw/fXXAzBw4ECKiorOuP4nn3ySm2++mQ8++ICrr76aK6+8kjff\nfBNo744kJycTEhKCXq/n6quvdmmbOhtXc3MzU6dO7Vh+aGhoR8fp6quv5vDhwxQVFbFjxw6mTp2K\nXq8nICDglMNs31dcXExKSsop/333XJno6Giio6M7Xnt7ezNmzBgAvv76a0aNGkVUVBQAN9xwA2lp\nabS0tADtHanAwMDT1nnFFVeQnZ1NVVUVAJ999hkpKSlYLBacTicffPAB1dXVLFq0iOuuu86l39tJ\niqKwZs0aQkNDiY6O5vPPP2fmzJmEhoYCcNNNN3XMAYAxY8bg5eV1yjI6m5fbt29n0qRJ+Pr64u3t\n3ZEVQFBQEO+99x4FBQVER0fz1FNPuTV2ITxBzoER4hxOngPjdDo7Dn/o9e27jtPpxGq1dnzWarXi\ncDhwOp2YzWY0Gk3Heyf/EgsODj7nOseNG8dDDz1EVVUVH330ET/72c86TqgFqK2t5S9/+QtPP/00\n0H5IafDgwQB88MEHvP7669TV1dHW1obynced6XS6jpOPtVotbW1tZ1y/l5cXt912G7fddhs1NTWs\nW7eOxx57jIiICKqrq085HycoKOic2+PKuPz8/ACoqanhyJEjpKSkdLxvNBpxOp1UV1djNps7fm6x\nWKirqzvj+s51Dsx3c/v+68rKylO20Ww2oygKlZWVZ/zuSSaTibFjx/Lll18yfPhwampqGD58OBqN\nhmXLlrF69WoeeeQRkpOT+eMf/3jO84laW1s7fg+KotCnTx9WrFiBVqultraWzz77jM2bN3e839zc\nfNbtAzqdl9XV1dhstlN+ftJjjz3GCy+8wA9/+EO8vb259957T8lHiK4gBYwQLgoMDGTRokU8+eST\nvPDCCwAEBwd3/GsboKqqiuDgYIKCgqiurkZRlI6/LKqqqlz+y95gMDB58mTee+89Dh06xNChQ08p\nYGw2Gz/60Y9O60CUlpby0EMP8c4779C/f38OHjzI9OnT3dpOp9NJTk5ORwfEYrEwf/58Nm3aRH5+\nPmazmdra2lM+f9L3i6Lq6mq3x2Wz2YiNjWXt2rWnvWexWM667ospKCiIXbt2dbyurq5Gq9USEBBw\nzu9Onz6dzz77jMrKSqZPn96R/+jRoxk9ejT19fU88cQT/PWvfz1nJ+P7J/F+l81mY86cOTzwwANu\nbdfZ5mVnv9vg4GAefvhhHn74YTZv3szPf/5zJkyYgK+vr8vrFuJik0NIQrjhhz/8Ibt27WLbtm1A\n+yGD1NRUWltbqa+v5z//+Q+TJk0iIiKCsLCwjpNk09PTqaioYPDgwej1eurr6zsOR5zNrFmzePnl\nl8946fKUKVN45513aG1tRVEUVqxYwcaNG3E6nZhMJmJjY2lpaWHNmjUAZ+1SnEljYyN33XVXx8md\nAIcOHSIjI4MRI0YwdOhQduzYgdPppKWlhffee6/jcyEhIR0nfx45coT09HQAt8aVlJREeXk5GRkZ\nHcv51a9+haIoDBkyhM8//5zW1lacTicbN250ebvcMW7cOHbs2NFxmOutt95i3LhxHZ23zkyePJld\nu3axYcOGjsMwmzdv5o9//CNtbW2YTCYSEhJO6YKcjyuvvJL169d3FBobNmzgpZde6vQ7nc3LoUOH\nsnnzZhoaGmhoaOgonJqbm1m0aBFlZWVA+6FHvV5/yiFNIbqCdGCEcIOfnx8/+clPeOKJJ0hNTWXR\nokUcOXKEWbNmodFoSElJYcaMGWg0Gp5++ml+//vf8/zzz+Pj48Ozzz6LyWSiX79+WK1Wxo0bx7vv\nvkt4ePgZ1zVy5Eg0Gg0zZ8487b2FCxdy9OhRZs2ahaIoDBo0iMWLF2MymZg4cSLTp08nKCiIX//6\n16Snp7No0SKee+45l7YxPDycF154geeee45HH30URVHw8/PjwQcf7LgyacGCBcyZM4eAgACmTZvG\nvn37AJg/fz5Llixh2rRpDBgwoKPLkpCQ4PK4vL29ee6553jkkUeoq6vDYDBw9913o9FomD9/Pjt2\n7OCqq64iPDycq6666pSuwXedPAfm+5YuXXrO30FYWBiPPvooP/vZz2hubiYiIoJHHnnEpd+fn58f\nAwcOJC8vjyFDhgCQnJzMRx99xPTp0zEajQQGBvLYY48BcP/993dcSeSOgQMH8n//938sWrSItrY2\ngoKC+OMf/9jpdzqbl5MnT+bLL78kJSWF4OBgJk2axI4dOzAYDMybN48f/OAHQHuX7aGHHsLHx8et\n8QpxsWmU7x6IFkIIN+3YsYP777+fzz//vKuHIoS4jEgPUAghhBDdjhQwQgghhOh25BCSEEIIIbod\n6cAIIYQQotuRAkYIIYQQ3U63vIy6vPzMl01eDAEBJior6z22fHH+JBt1klzUS7JRL8nGNSEh5rO+\nJx2Y79HrdV09BHEWko06SS7qJdmol2Rz4aSAEUIIIUS3IwWMEEIIIbodKWCEEEII0e1IASOEEEKI\nbkcKGCGEEEJ0O1LACCGEEKLbkQJGCCGEEN2OFDBCCCFED/Pll/916XPPPvsURUXHzvr+r39978Ua\n0kUnBYwQQgjRgxQXF7Fhw6cuffbuu+8jPLzXWd9//PGnL9awLrpu+SgBIYQQQpzZ008/QU7OXiZM\nSGbatBkUFxfxt7+t4C9/+RPl5WU0NDTwox/9hHHjJrBkyU+49977+eKL/1JXd5zDhw9x7NhR7rrr\nPsaMGcesWVP46KP/smTJT0hOHkV6+g6qqqp44olnCA4O5k9/epiSkmISEwfz+ecbePfdjy/ZdkoB\nI4QQQnjI25/vZ3tu2Wk/1+k0tLYq57XM5AQb86/sc9b3b7ppEWvXvk1MTByHDx9kxYpXqKx0MnLk\naGbMuJpjx47y8MO/Zty4Cad8r6yslL/+9Tm2bt3Cf/7zb8aMGXfK+76+vjz77Au88MIyNm78nPDw\nCJqaTvDSS6/y9debePvtN89re86XFDDf4Whwcqz4MOG6SDQaTVcPRwghhLgg/fsPBMBstpCTs5f3\n31+LRqOlpqb6tM8OHjwEAJvNxvHjx097PylpaMf71dXVHDpUSGJiEgBjxoxDp7u0z3fyaAGzdOlS\ndu7cSUtLCz/96U8JCQlh6dKl6PV6jEYjTz75JIGBgbz//vu89tpraLVa5s+fzw033ODJYZ3VuoOf\ns6V4GwODEliYMBd/L2uXjEMIIUTPMP/KPmfsloSEmCkvr/X4+g0GAwCffbaOmpoali9/hZqaGn78\n40Wnffa7BYiinN4d+v77iqKg1bb/TKPRXPJ/+HusgNm6dSv79u1jzZo1VFZWMmfOHAYPHszSpUuJ\njIzk+eef5+233+bWW29l+fLlpKamYjAYmDdvHlOnTsXf399TQzurWbFTOd5WS2ZpDo+mPc38vteS\nHDpUujFCCCG6Da1WS2tr6yk/q6qqwm4PR6vV8tVXn9Pc3HzB6+nVK6Ljaqdt27aetk5P89hVSMnJ\nyTz77LMAWCwWGhoaeOaZZ4iMjERRFEpLSwkLCyMjI4PExETMZjPe3t4MGzaM9PR0Tw2rU/5eVn47\n6efc2G8OrUorr2W/xctZr1PT5PkqWQghhLgYoqJiyMvLpa7uf4eBrrjiSrZs2cTdd9+Bj48PNpuN\nv//95Qtaz9ixE6irq+OOO24jI2MXFsulPWqhUc7UJ7rI1qxZw44dO3jyySfZuHEjf/7zn4mNjWX5\n8uV89NFHZGVl8Zvf/AaAv/3tb9jtdhYsWHDW5bW0tKLXe/ZYW+nxcl7Y9gbZ5fswG3358YibGBM5\n3KPrFEIIIbqLqqoq0tLSmD59OqWlpSxevJh169ZdsvV7/CTeDRs2kJqayurVqwGYOHEiEyZM4K9/\n/SsvvfQSvXqdev25K/VUZWW9R8ba3NKGyc+b5sYmtHhzx6Db+OroFv5T8AnPbHmFjbbtzO97HX5G\nX4+sX3TuUh0zFu6RXNRLslGvnpBNS4vCe+99wMqVL6EobfzsZ7+46NsUEmI+63seLWA2bdrEypUr\neeWVVzCbzXz22WdMnToVjUbD9OnTWbZsGUOHDqWioqLjO2VlZQwZMsSTwzqrN/+7j00ZRVw9NppZ\nY6LQ67RMjhzPgKB+vJH9NjvLMsivKuCmfnNJChnYJWMUQggh1ECv1/OnP/2ly9bvsXNgamtrWbp0\nKS+++GLHCbnLli0jJycHgIyMDGJiYkhKSiIrK4uamhrq6upIT09nxIgRnhpWp8Yn2gkwe/GfzYU8\n+voOjpa1Hz8MNYVw7/A7uC5uJg0tjbyU9RqvZb9FfbNnOkFCCCGE6JzHzoFZs2YNy5YtIyYmpuNn\nd911F0899RQ6nQ5vb2+WLl1KUFAQ69atY9WqVWg0Gm655RauueaaTpftybabj583y9fsYnNWMTqt\nhusmxJAyqjc6bXutV1xXyuvZazhcexSr0cLN/ecxMCjBY+MR/9MTWq49keSiXpKNekk2runsENIl\nOYn3YvNk6Ccn1e79Fby2Lpfq403E2C3cNqs/4cHt5760trWy/tCXfHJwA61KK2PtyVwfPxsfvbfH\nxiVkh1cryUW9JBv1kmxc01kBo/vDH/7wh0s3lIujvr7JY8v29fWivr6JsEAT4xPtVB0/QdYBJxsz\nijHotcSGW9BptcQHxJIYPIDCmkNkO/PYXrKLcL8wgn2CPDa2y93JbIS6SC7qJdmol2TjGl9fr7O+\nJ0+j7oSfj4HbZw/kzjmJmLx0vP3Ffh7/ZzqlzvZzXyLM4dw/4ufMiJ5CdVMNy3a/zJq8d2lsOdHF\nIxdCCCE6N2/ebOrr63njjVfZsyfzlPfq6+uZN292p98/eRO7jz/+gK+++sJj4zwbeRaSC4b3C6Fv\npJV/rM9ne24Zv1+9jbmT4pgyIgK9Vs/VsdNJDB7A6zlvs/HYN2Q78lg0YAF9/GPOvXAhhBCiCy1a\n9AO3v1NcXMSGDZ9yxRVTmDmz80LHU6SAcZHZZOSO6wYxPKeUf6zP583/7mNnfjk/mtUfm78PUZZI\nfj3iLj4q/IwNh7/ib+kruSJyHNfEzsCoM3T18IUQQlwmfvSjm3nssacICwujpKSYBx+8j5AQGw0N\nDTQ2NnLPPb9iwIBBHZ//85//wBVXTGHIkKH89rf309TU1PFgR4D16z8hNXUNOp2W6Og4Hnjgtzz9\n9BPk5Ozl739/mba2Nvz9/Zk7dwErVjxLVlYGLS2tzJ07n5SUWSxZ8hOSk0eRnr6DqqoqnnjiGcLC\nwi54O6WAcdPI/qH06x3A6+ty2bWvgt+v2sb8yXFMGtoLg87AdX1mMjhkIG/krOGLI5vZ68jl1v4L\niLFGdfXQhRBCXGJr93/IrrKs036u02pobTu/a2iG2hK5vs/VZ31/4sTJfP31RubOnc+mTV8xceJk\n4uLimTjxCnbu3M4///kaf/7zk6d979NPPyE2No677rqP//53PRs2fApAQ0MDTz21DLPZzJ133k5B\nwX5uumkRa9e+zQ9/eDurVr0IwO7d6Rw4UMALL6ymoaGBxYtvZOLEKwDw9fXl2Wdf4IUXlrFx4+fM\nn7/wvLb9u+QcmPNg9TWy5PpEbp89AL1Owxvr83nqrd1UVDcAEGuN4sHkXzA5cjzl9Q6e2rmC9/Z/\nTHNbSxePXAghRE/XXsBsAmDz5q8YP34SX331X+644zZeeGEZ1dXVZ/zewYMHGDQoCYChQ//36ByL\nxcKDD97HkiU/4dChQqqrq874/dzcbIYMGQaAj48P0dGxHDlyBICkpKEA2Gw2jh8/fsbvu0s6MOdJ\no9EwZmAYCb0DeG1dLpkFDn63ahs3TolnwmA7Rp2RefHXkBQ8iDdy3uazw1+yx5HDrf0X0NsS0dXD\nF0IIcQlc3+fqM3ZLPHkZdWxsHA5HOaWlJdTW1rJp05cEB9t4+OFHyM3N5vnn/3bG7ykKaLUaANq+\n7Q41Nzfz9NNLefXVfxEUFMz99//irOvVaDR898YsLS3NHcvT6f73/MKLdfcW6cBcoACzF3fPG8yP\nZvZHo4FXP8nlmXcycNY0AhAfEMtvRt7DxF5jKK4r5cmdz/PhgfW0SDdGCCGEh4wZM56XXlrBhAmT\nqK6uolev9n84f/XVF7S0nPnvn969o8jNbb9bfnr6DgDq6+vQ6XQEBQVTWlpCbm4OLS0taLVaWltb\nT/l+QsJAdu3a+e336jl27CgREb09tYlSwFwMGo2G8YPtPHLbKAbGBLLngJOHV23j66xiFEXBW+/F\ngn5z+PmQ27EaLXxycANP7nieY8eLu3roQggheqBJkyZ3XCWUkjKLNWv+yT333MnAgYNwOBx89NH7\np30nJWUWe/dmcffdd3DkyCE0Gg1Wqz/JyaP48Y9v5e9/f5mFCxfx3HNPExUVQ15eLs8991TH95OS\nhtCvXwJ33nk799xzJ//3f0vw8fHx2DbKnXi/50LbeoqisDGjiLc+38+JplaG9AlmcUo/rH7tN+Np\naGlk7b4P2FK8HZ1Gx8yYq5ja+wp0Wt05lizkzpXqJLmol2SjXpKNa+ROvG640LsjajQaosMsjO4f\nypGy4+wpdLI5s5hAixe9gn0x6AwMDhlIlDmCvMr9ZFZkk+3IJ84/Gj+j30Xckp5H7lypTpKLekk2\n6iXZuKazO/FKAfM9F2tSmbwNjBkUhtlkJKvQwbacMo6V15HQOwAvow6bKYQx9hFUnagh25nHluLt\nGLR6oi290Wg0F2FLeh7Z4dVJclEvyUa9JBvXSAHjhos5qTQaDbHhFkb2t3G4tLa9G5NVTIi/D+Hf\ndmOG2AYR4Wcn17mPjIq95FXuo49/DL4G34syhp5Ednh1klzUS7JRL8nGNVLAuMETk8rXx8DYRDsm\nbwNZBxykZZdS7KgjISoAo0FHmK+N0fYROBsryXbms6VoO146L6IsEdKN+Q7Z4dVJclEvyUa9JBvX\nSAHjBk9NKo1GQ1wvKyP6hXCopL0b8/WeEkIDfLAH+WLUGRlmG0yYyUZuZT4Z5XvYX3WAPv6xmAye\nO4u7O5EdXp0kF/WSbNRLsnGNFDBu8PSkMpuMjE+042XQkXXAwdbsUsoqG0iI8seo1xHuF8Yo+3DK\n6x3kOPPZUrwNX4MPvc3SjZEdXp0kF/WSbNRLsnGNFDBuuBSTSqPREB/hz7B+NgqLathT6OSbPSXY\ng0yEBprw0nkx3JZEiCmYHGc+u8uzOFB9iL4BcfjovT06NjWTHV6dJBf1kmzUS7JxjRQwbriUk8pi\nMjJ+sB2DTktmgYNv9pbiqGmkX2T7uTG9/OyMDBtGSX1ZezemaDsWox8RfuGXZTdGdnh1klzUS7JR\nL8nGNVLAuOFSTyqtRkPfSH+Gxodw4Fg1WQecbM0uoVewH7YAH7z13iSHDiXA258cZx7p5Zkcrj1G\nfEAs3pdZN0Z2eHWSXNRLslEvycY1UsC4oasmldW3vRuj0UDWgfYTfKuPn6BvpD8GvY5Icy9GhA6l\nqK6EHGc+W4t34O9lJdw37LLpxsgOr06Si3pJNuol2bhGChg3dOWk0mo1JEQFkBQXzP5vuzHbckqJ\nsPkR4u+DyeDDyLBhmI1msp15pJdlcKyuhL4BcXjpjF0y5ktJdnh1klzUS7JRL8nGNVLAuEENk8rf\nz4sJg8NRFIXMAgdfZ5VwvKGZfpH+6PVaoiyRjAhN4ujxoo5uTJBPIHbf0C4dt6epIRtxOslFvSQb\n9ZJsXCMFjBvUMql0Wg0DogNJjA1i39EqMgscbM8to3eomSCrNyaDiVFhwzEZfMh25LKjdDeldWXE\nB8Rh7KHdGLVkI04luaiXZKNeko1rpIBxg9omVYDZi4lJdlpaTnZjimk40ULfSH/0Oh0x1iiGhiRy\nuPYo2c580kp2YvMJJtTX1tVDv+jUlo1oJ7mol2SjXpKNa6SAcYMaJ5VOq2VgTCADowPJP9LejdmR\nV0603Uyg2Rs/oy+j7SMw6gxkO/LYXroLR4OTeP84DDpDVw//olFjNkJyUTPJRr0kG9dIAeMGNU+q\nQIs3E5LCOdHcSmaBg82ZxTS3tBEf4Y9epyXOP4akkEEcqjlMtrO9kAnztWEzBXf10C8KNWdzOZNc\n1EuyUS/JxjVSwLhB7ZNKr9OSGBtEQm9/cg9XkVHgYFd+ObHhFvz9vDAb/RhjT0an0bHHkcu2knSc\njZXE+8d2+26M2rO5XEku6iXZqJdk4xopYNzQXSZVsNWHCUl26k+0kFngYFNGMa1tCvERVvQ6HfEB\nsQwOHsDBHtSN6S7ZXG4kF/WSbNRLsnGNFDBu6E6TSq/TkhQXTJ8IK3mHK9m938Hu/RXEhVuw+nlh\n8TIz1p6MVqNlbw/oxnSnbC4nkot6STbqJdm4RgoYN3THSWXz92HC4HCONzSRdcDJpsxiAOJ6nezG\nxDE4eMAp58aEmkKwmUK6eOTu6Y7ZXA4kF/WSbNRLsnGNFDBu6K6TyqDXMiQ+hNhwCzmHKtm9r4LM\nAw769LJi8TVi8TJ3nBuz15HHttJ0nA3dqxvTXbPp6SQX9ZJs1EuycY0UMG7o7pMqNMDEhMF2qo+3\nd2M2ZhSh0WiIC7f879yYkIEcrO5+3Zjunk1PJbmol2SjXpKNa6SAcUNPmFQGvY5hfUOICjP/rxtT\n4CCulxWrrxGLsXt2Y3pCNj2R5KJeko16STaukQLGDT1pUoUFtndjauq+PTcmowj47rkxp3ZjtpWk\nq7ob05Oy6UkkF/WSbNRLsnGNFDBu6GmTyvhtNybG/m03Zr+DjIIKYk9eqfSdbky2U93dmJ6WTU8h\nuaiXZKNeko1rpIBxQ0+dVKEKVOTHAAAgAElEQVQd3ZjmjiuVFAX6fL8bU3NEtd2YnppNdye5qJdk\no16SjWs6K2A0iqIonlrx0qVL2blzJy0tLfz0pz8lMTGRBx98kJaWFvR6PU8++SQhISG8//77vPba\na2i1WubPn88NN9zQ6XLLy2s9NWRCQsweXb4aZBY4eG1dLpW1J4i0+XHbrP70DjUD0NrWyvpDX/LJ\nwQ20Kq2MChvOvPjZmAymLh715ZFNdyS5qJdko16SjWtCQsxnfc9jBczWrVtZtWoVL7/8MpWVlcyZ\nM4dRo0YxadIkZs6cyT//+U+OHTvGkiVLmDNnDqmpqRgMBubNm8c//vEP/P39z7psKWAuXH1jC2s+\n38emzGJ0Wg2zxkRx9dho9DotAMeOF/NGztscqT2G1WhhYcJcBgX379IxXy7ZdDeSi3pJNuol2bim\nswLGY4eQ7HY7U6dOxWAwYDQaefHFF/n73/9Ov3790Gq1HD16lPz8fKxWKw6Hg9mzZ6PX68nNzcXL\ny4uYmJizLlsOIV04g17L0PgQ4r69b0zGfge79lV0PFPp5Lkxeq2+40ql9idcd925MZdLNt2N5KJe\nko16STau6ewQkt5TK9XpdJhM7YcdUlNTmThxYsfr1tZW/vWvf3HnnXdSUVFBYGBgx/cCAwMpLy/v\ndNkBASb0ep2nht5pxdfTTA4xM3JwL/7+4V4+3XqIR1/fwbwp8Sy4qh8GvZZFodcxKT6Z5dteI61k\nJ/nV+/npiJsZFp7YJeO9nLLpTiQX9ZJs1EuyuTAeK2BO2rBhA6mpqaxevRpoL17uv/9+Ro8ezZgx\nY/jggw9O+bwrR7QqK+s9Mla4fNt6C66IY2CUP69+ksuaz/L5evcxfjSrP9FhFnywcE/Sz/js8Jd8\nXLiBxzet6JJzYy7XbNROclEvyUa9JBvXdFbkaT254k2bNrFy5UpefvllzOb2QTz44INERUWxZMkS\nAGw2GxUVFR3fKSsrw2azeXJY4iwGxQTxyG2jmDQknKPldTz62k7WbiyguaUNnVZHSvQUfp18N73N\nvUgr2cmjaU+RVZHd1cMWQghxGfJYAVNbW8vSpUt58cUXO07Iff/99zEYDNx1110dn0tKSiIrK4ua\nmhrq6upIT09nxIgRnhqWOAcfLz2LUxK478YhBJi9+HDLIf702nYKi2sACPcL45fDlzA7djrHm+tZ\nmfkqr2evob7Zc10xIYQQ4vs8dhXSmjVrWLZs2Skn4xYVFWGxWPDz8wMgLi6OP/zhD6xbt45Vq1ah\n0Wi45ZZbuOaaazpdtlyFdGk0nGjhnS8L+HLXMbQaDTNG9+aacTEY9O11b9HxEt7IWcPh2mNYjWZu\nSphLYvAAj41HslEnyUW9JBv1kmxc0yWXUXuSFDCXVvZBJ3//OBdHTSPhwb7cNqs/MXYL0H7fmM8O\nf8XHhZ/RqrQyMmwYN8Rf45FzYyQbdZJc1EuyUS/JxjVdchm1J8ll1JdWiL8PEwbbaWhqIavAwabM\nIppb2oiPaL+Lbx//GJJCBnGo4y6+O7GZQgi9yHfxlWzUSXJRL8lGvSQb18ijBNwgk+rMDHotSXHB\n9I30J+9wFRkFDnbmlRNtNxNo9sZs9GOMfQQGrYFsRx7bSndR0eAg3j8W40W6b4xko06Si3pJNuol\n2bhGChg3yKTqXIi/DxOS7DSeaCXzgIPNmcU0NbfSN/LM3Zi0kp2EXqRujGSjTpKLekk26iXZuEYK\nGDfIpDo3vU7L4Lgg+kX6k3/kO92YMDOBljN3Y8rrHcQHXFg3RrJRJ8lFvSQb9ZJsXCMFjBtkUrku\n2N+HiYPDaWxqJbPAweasYk40txIfYcWgP7Ubk/NtN8bmE0yo7/nd50eyUSfJRb0kG/WSbFwjBYwb\nZFK552Q3JqG3P/lHqskocLAjr5yos3Rjtl9AN0ayUSfJRb0kG/WSbFwjBYwbZFKdn2CrDxMGh3Oi\nuZWsgvZzYxqbWugb4X9KN+ZwzdGOc2Pc7cZINuokuaiXZKNeko1rpIBxg0yq86fXaUmMDaJ/VAD5\nR6vILHCwPa+cqFA/gr7txoy2j8CoNZLtyP22G1NBfECcS90YyUadJBf1kmzUS7JxjRQwbpBJdeGC\nrN5MSAqnuaWtoxvTcKKF+Mj2bkzc97oxW0t2EOITTNg5ujGSjTpJLuol2aiXZOMaKWDcIJPq4tDr\ntAyKDWJAdAD5R9q7MTtyy+gdaibI+p1ujM74nXNjOu/GSDbqJLmol2SjXpKNa6SAcYNMqosryNLe\njWlpbSOzwMHXWcXUNTbT9zvdmCG2RA650I2RbNRJclEvyUa9JBvXSAHjBplUF59ep2VQTBADowPJ\nP1pNVoGD7Tmdd2PK6su/vVLJ2LEcyUadJBf1kmzUS7JxjRQwbpBJ5TmBFm8mDrbT0qqQecDB15nF\n1DWcoRtTe5QcZz5pJTtP6cZINuokuaiXZKNeko1rpIBxg0wqz9LptAyMCWRQTCD7jlWTWeBgW04p\nvW1+BFt92rsxYWfuxgSY/SQbFZJ9Rr0kG/WSbFwjBYwbZFJdGoEWbyYm2Wn9thuzOauE4/XN9I20\nYtTrz9iNsZttBOgDu3ro4ntkn1EvyUa9JBvXdFbAaBRFUS7hWC6K8vJajy07JMTs0eWL0xUUVbP6\noxyKHfUEW7350cz+JEQFANDa1srnRzbxYeF6WtpaGGYbzPy+12E2+nXxqMVJss+ol2SjXpKNa0JC\nzGd9Tzow3yNV8aUXaG7vxrS10X5uTFYJNfVN9Iv0/7YbE83QkEGUNJaypyKXrcU7CPD2x+4bikaj\n6erhX/Zkn1EvyUa9JBvXyCEkN8ik6ho6rZYB0YEMjgti/7H2K5XSskuJCPElxN8HP6MfswZOQmnW\nke3IY2dZBkePF9PHPwZvvXdXD/+yJvuMekk26iXZuEYKGDfIpOpaAWYvJgwOR1EUsgqcfL2nhJq6\nJvpG+uNvNRGqD2O4bQjHjheT48znm+IdmI1mIvzs0o3pIrLPqJdko16SjWvkHBg3yHFJ9SgsrmH1\nxzkcK68jyOLNL24aSq8AHwDalDa+Lkrj3f0fcaK1if6BfVmYMJdA74AuHvXlR/YZ9ZJs1EuycY2c\nA+MGqYrV42Q3BiCrwMHnO45QWdtI38gAjAYdUZZIksOGUlJXRo4zny1F2zAZfIg095JuzCUk+4x6\nSTbqJdm4RjowbpCqWJ0OldTy+vo8Cotq8PczcmtKAkP6BAOgKApbS3by730f0NDSQLx/LDcn3ECI\nKaiLR315kH1GvSQb9ZJsXCMdGDdIVaxO/n5eXDc5nqbGZrIOONm6t5TSynr6RvrjZdQTaQ5nZNgw\nyhsc5Djz+bpoG0adkShLpHRjPEz2GfWSbNRLsnGNnMTrBplU6mX28yYiyMSwviEcLKlhzwEnX2cV\nE2z1ITzIhI/em+G2JEJ9beRW7iOjfC+5zn3EWqPxM/p29fB7LNln1EuyUS/JxjVSwLhBJpV6nczG\n4mtk/GA7PkY9ewqdpGWXcrS8jn6R/nh76Qn3C2O0fQSVjVVkO/PYUrwNHVqiLb3RarRdvRk9juwz\n6iXZqJdk4xopYNwgk0q9vpuNVqOhT4SVkQk2jpTWsqfQyebMYqy+RiJtfnjpvRhqG0wvPzt5lfvI\nrMhmryOXGGsUFuPZj6kK98k+o16SjXpJNq6RAsYNMqnU60zZ+PkYGJtox+JrZM8BJ9tzyzhQXEPf\nCH9M3nrCfG2MsSdT01RLtjOPr4u2oShtxFqjpBtzkcg+o16SjXpJNq6RAsYNMqnU62zZaDQaYuwW\nRg8Ipaiijr2FlWzKLMLX20DvMDNeOiNJIYOItkSSX1lAliOHzPK9RFki8PeydsGW9Cyyz6iXZKNe\nko1rpIBxg0wq9TpXNiZvA2MGhhFk9WZvYSU788rJP1JFfIQVXx8DNlMwY8NHUt9cz15nHluKttPU\n2kysNRqdVncJt6RnkX1GvSQb9ZJsXCMFjBtkUqmXK9loNBqiQs2MHRRGWWUDewqdbMwowqjXEmO3\nYNQZSAweQB9rDPurCtnjyGF3eRYRfr0I9Pa/RFvSs8g+o16SjXpJNq6RAsYNMqnUy51sfLz0jOxv\nwx7kS/bBStL3VbC30EmfXlbMJiPBPoGMDR9JU2sTex15bC3eQX1zA3H+MeilG+MW2WfUS7JRL8nG\nNVLAuEEmlXq5m41GoyEixI9xg+04axo7ujEajYbYcAtGnZ4BQf3oFxBPQXUhex257CjdTbhvGME+\ngR7ckp5F9hn1kmzUS7JxjRQwbpBJpV7nm42XQceIBBuRNj9yDlWye38FGQUVxIZbsPp5Eejtz1j7\nSNqUNvY6ckkr2UnNiRr6+Mdi0Oo9sCU9i+wz6iXZqJdk4xopYNwgk0q9LjQbe5AvE5Ls1Na1P45g\nU2YxLa0KfXpZMer1JATGMzAogcLqw+x15rGtJJ0wXxs2U/BF3IqeR/YZ9ZJs1EuycY0UMG6QSaVe\nFyMbo17H0L4hxIVbyDtcScZ+B+n55USFmQk0e+PvZWVseDJaNB1FjKPBSR//WIw6w0Xakp5F9hn1\nkmzUS7JxjRQwbpBJpV4XMxtbgIkJg8NpaGohq8DB5sxiGptaiI/wx6jX0zcgjsHBAzhUe4RsZx5p\nJTsJ8QkizNd2Udbfk8g+o16SjXpJNq7prIDx6K1Ily5dyoIFC5g7dy7r168H4PXXX2fgwIHU1dV1\nfO79999n7ty53HDDDbzzzjueHJIQHXy89Cya1o8HFg4lxN+HT7cd4fert5F3uBKACHM4vxq+hGtj\nZ1DfXM9LWa+zes8/qW063sUjF0II4bEzFLdu3cq+fftYs2YNlZWVzJkzh/r6ehwOBzbb//4VW19f\nz/Lly0lNTcVgMDBv3jymTp2Kv7/ck0NcGv16B/DHH43kvU0HWL/9CE/8axeTh/Vi3qQ4fLz0TIue\nzOCQAfwj5x12lmWQV7mfG/pey3BbEhqNpquHL4QQlyWPdWCSk5N59tlnAbBYLDQ0NDBlyhTuueee\nU/6nn5GRQWJiImazGW9vb4YNG0Z6erqnhiXEGXkZdCy4Mp7fLBpOeLAvX6Qf43er0thzwAFAmG8o\n9w7/GXPjZ3OitYm/7/0XL2W9TvWJmi4euRBCXJ481oHR6XSYTCYAUlNTmThxImbz6U8BrqioIDDw\nf/fcCAwMpLy8vNNlBwSY0Os9d7OxkBB5WrFaeTqbkBAzwwfaWfNZPqmf7+PptzO4Krk3t10zED+T\nkQW2mUyKH8HK7f8gs3wvBdUHWDz0BiZFj76suzGyz6iXZKNeks2F8fhNLjZs2EBqaiqrV6926fOK\nopzzM5WV9Rc6rLMKCTFTXl7rseWL83cps5k+IoL+kVZWf5zDhu2H2Z5dwq3T+zG0bwg6fLhj0G1s\nPpbGewUfsWLb63yxfysLE+YS6B1wScanJrLPqJdko16SjWs6K/I8ehLvpk2bWLlyJS+//PIZuy8A\nNpuNioqKjtdlZWWnnCMjRFfpHWrmoVtHMHdSLHWNzSxbm8XK/+yhpr4JrUbLxIgx/HbkffQP7EuO\nM59H055i07FvaFPaunroQgjR43msgKmtrWXp0qW8+OKLnZ6Qm5SURFZWFjU1NdTV1ZGens6IESM8\nNSwh3KLXaZk1Jpo//HAkceEWtuWU8dDLaaRll6IoCkE+AdyZdBu3JNyAVqPlrbx3WbbrZcrrHV09\ndCGE6NE0iivHbM7DmjVrWLZsGTExMR0/GzVqFGlpaezevZvExESGDBnC/fffz7p161i1ahUajYZb\nbrmFa665ptNle7LtJm099erqbNraFDbsPMrarwpoamljSJ9gFk3vR4C5/T4FVSeqeStvLVkVORi1\nBq6Jm8GkiLFoNR5tdHa5rs5FnJ1ko16SjWs6O4TksQLGk6SAuTypJZuyynpe/SSX3MNV+HjpufHK\nPowfbEej0aAoCjtLd/P2vv9Q11xPrDWKmxNu6NE3wFNLLuJ0ko16STau6ayAkTvxfo/cHVG91JKN\nr4+BMYPC8PfzYm+hkx155RQcq6ZvpD++3gbC/eyMto+gsrGKbGceW4q3odNoibb07pHdGLXkIk4n\n2aiXZOMaeZSAG2RSqZeastFoNETbLYwZGEaxo549hU42ZhbjY9QTbTfjrfdiqG0wvfzs5FXuI7Mi\nm72OXGKsUViMPevSSTXlIk4l2aiXZOMaKWDcIJNKvdSYjY+XntEDQgnx9yH7oJOd+eXkHqokPsIf\nPx8DYb42xtiTqWmqJduZx9dF21CUNmKtUT2mG6PGXEQ7yUa9JBvXSAHjBplU6qXWbDQaDb1DzYwb\nFEZ5VWN7NyajCINOS2y4BS+9kaSQQURbIsmvLCDLkUNm+V56W3rh72Xt6uFfMLXmIiQbNZNsXCMF\njBtkUqmX2rPxNupJTrDRK8SP7INOdu2rIOuAkz69LFh8jdhMwYwNH0ldcz3Zzjy+KdpOQ0sjcf4x\n6LWeu7O0p6k9l8uZZKNeko1rpIBxg0wq9eoO2Wg0GnoF+zI+0U7V8RPsOdDejQGI62XFS28gMXgA\n8f6xFFQXsteRy47S3dh9Qwn2Ceri0Z+f7pDL5UqyUS/JxjVSwLhBJpV6dadsvAw6hvezERVmJvdQ\nJbv3O9i9v4JYuwV/Py+CfAIZGz6KNqWNbGceaSU7cTZWEu8fg0Fn6Orhu6U75XK5kWzUS7JxjRQw\nbpBJpV7dMZuwQBMTBts53tBM1gEnmzKKaW5tIz7CilGvJyEwnkHBCRyqOUK2M4+tJTsI8g7E7hva\n1UN3WXfM5XIh2aiXZOMaKWDcIJNKvbprNga9jiHxIfSJsJJ/pIqM/Q525JYTafMjyOqN1cvCWHsy\nBq2BHGc+O0p3c+x4MXH+0Xjrvbt6+OfUXXO5HEg26iXZuEYKGDfIpFKv7p6Nzd+HCUl2Gpta2XPA\nweasYmrqm+gb4Y/RoKePfwzDQhI5eryYHGc+3xRvx9dgItKvFxqNpquHf1bdPZeeTLJRL8nGNVLA\nuEEmlXr1hGz0Oi2D44IYGB3I/mPVZB1w8s3eEsICTYQFmvAz+jLKPhyrl5lc5z52lWexv6qQWGs0\nvgZTVw//jHpCLj2VZKNeko1rpIBxg0wq9epJ2QRavJmYFI5WA3sOOPlmbynFjjr6RvrjbdQTZYlk\nZNgwyuoryKnMZ0vRNvRaPVHmSNXdAK8n5dLTSDbqJdm4RgoYN8ikUq+elo1OqyEhKoBhfUM4VFrL\nnkInmzKL8PczEhHih4/BhxGhQwj1tZFXuZ/Mir3sdeQSbemNxUs9jyPoabn0JJKNekk2rpECxg0y\nqdSrp2Zj8TUyPtGOr7eBPQedbM8t50BRDfERVnx9DIT7hTEm/OTjCPLZUryNlrYWYq1R6FRwA7ye\nmktPINmol2TjGilg3CCTSr16cjYajYa4XlZGDwilyFHP3kInGzOK8TLoiLG3P45gSMggoi292Vd5\ngD2OHHaVZ9HLL5xA74AuHXtPzqW7k2zUS7JxjRQwbpBJpV6XQzYmbwNjBoZiC2h/OGT6vgr2FDqJ\nCz/1cQRNrU1kO/L4png7x5uOE+cfg0Gr75IxXw65dFeSjXpJNq6RAsYNMqnU63LJRqPREGkzMz7R\njrP2fw+HbGtTOh5HMDAogYTAvhRWH2KvM49tJemEmkKwmUIu+Xgvl1y6I8lGvSQb10gB4waZVOp1\nuWXjZdQxIqH9cQR5h9tvgLczr4yoMDOBFm8CvP0ZGz4SDRpynPlsK02nrL6cPv4xeOmMl2ycl1su\n3Ylko16SjWukgHGDTCr1ulyzCQs0MTEpnIamFrIOONmcWczxhmbiI6x4GfT0DYgjKWQQh2uPdtwA\nz+plIdw37JLcAO9yzaU7kGzUS7JxjRQwbpBJpV6XczYGvZakuGD6RwV8ewM8B2nZJYQF+hIaaMJs\n9GOMPRmTwYccRz7pZZkcrD1CH/8YfPQ+Hh3b5ZyL2kk26iXZuEYKGDfIpFIvyQaCrN5MTLIDJ2+A\nV0JpZT3x394AL8YaxYjQoZTUlZLjbL8Bnpfei97mCI91YyQX9ZJs1EuycY0UMG6QSaVekk07nVZL\n/6hAhsaHcKikhj3fHlbyN3sREeKLr8HEyLBhBPoEkufcR0b5HvIq9xFrjcLP6HfRxyO5qJdko16S\njWukgHGDTCr1kmxOZfU1MmFwOD5eevYWOtmeW8bBklriI/wxeRuINIczKmwEzhNVHd0YgBhr74v6\nOALJRb0kG/WSbFwjBYwbZFKpl2RzOo1GQ59eVkYOCKWooq79kuvMInyMeqLtZnz0XgyzDSbCL5z8\nygKyHNlklu8lyhKBv5f1ooxBclEvyUa9JBvXSAHjBplU6iXZnJ2vt4ExA8MItvqQc9DJzvxy9h50\nEtfLisVkJMzXxhh7MvUt9WQ789hStJ2Glkbi/GPQX+DjCCQX9ZJs1EuycY0UMG6QSaVekk3nNBoN\nvUPNjBsUhqPmBHsLnWzKKEJR+PYGeEYSgwcQ7x9DQfVB9jpy2VG6G7tvKME+Qee9XslFvSQb9ZJs\nXCMFjBtkUqmXZOMab6Oe5AQbvW1+5B6uZPd+B+n7yttvgGf2JsgnkLHho2hT2sh25pFWshNnYyXx\n/jEYdAa31ye5qJdko16SjWukgHGDTCr1kmzcYw/yZcLgcOobm9tvgJdRTF3jyRvgGUgIjGdQcAKH\nao50FDJB3oHYfUPdWo/kol6SjXpJNq6RAsYNMqnUS7Jxn0GvJalPMAm9/dl3tJqsA0627i0lPMiE\nLcCE1cvCWHsyBq2BbGc+O0p3c+x4MX38Y/DWn/1/HN8luaiXZKNeko1rpIBxg0wq9ZJszl+w1YeJ\nSeEoQNYBJ1v2llBW2UC/3u03wOvjH8OwkESOHi9uv+S6eBu+BhORfr3OeQM8yUW9JBv1kmxcIwWM\nG2RSqZdkc2F0Oi0DogMZEh9MYXEtewqdbM4qJtDsTa9gX/yMfoyyD8fqZSbXuY9d5Vnsryok1hqN\nr8F01uVKLuol2aiXZOMaKWDcIJNKvSSbi8Pq58WEJDs+xvYb4G3LKeNQSS19I9tvgBdliWRk2DDK\n6ivIqWy/AZ5eqyfKHHnGG+BJLuol2aiXZOMaKWDcIJNKvSSbi0er0dAnwsrI/jaOlh9n78FKNmYU\n4eOlJyrMjMngw4jQIYT62sir3E9mxV72OnKJtvTG4mU+ZVmSi3pJNuol2bhGChg3yKRSL8nm4vP1\nMTB2UBiBFm/2HqwkPb+cnEOV9OllxWwyEu4Xxhh7MjVNtWR/e25MS1sLsdYodN/eAE9yUS/JRr0k\nG9dIAeMGmVTqJdl4hkajISrMzLjEMCqqG9sfR5BRBBoNceEWvA1eDAkZRLSlN/sqD7DHkcOu8ix6\n+YUT6B0guaiYZKNeko1rPFLAHDx4EH9///Md0wWRAubyJNl4lrdRz8j+oUSEfHsDvH0V7NpXTrTd\nQoDZC5spmLHhyZxobSLbkcc3xds53nScQfa+NDe2dfXwxRnIPqNeko1rOitgOn0k7Q9/+MNTXq9Y\nsaLjz7/73e/OueKlS5eyYMEC5s6dy/r16ykuLmbRokUsXLiQu+++m6am9vDef/995s6dyw033MA7\n77xzzuUKITxneL8Q/vzjUUxMsnO0vI5HX9/BW//dx4mmVrz13szvey33Dv8ZYSYbG499w32fPEJW\nRXZXD1sIcZnptIBpaWk55fXWrVs7/qwoSqcL3rp1K/v27WPNmjW88sorPPbYYzz33HMsXLiQf/3r\nX0RFRZGamkp9fT3Lly/n1Vdf5Y033uC1116jqqrqAjZJCHGhTN4GfjCjP7+6aSghVh/Wbz/Cw6vS\n2HvQCUCsNYpfj/wFM6KvoupEDSszX+WVPf+g+kRNF49cCHG56LSA+f4NrL5btJzr5lbJyck8++yz\nAFgsFhoaGkhLS2PKlCkATJ48mW+++YaMjAwSExMxm814e3szbNgw0tPTz2tjhBAXV/+oAP5020hm\njOqNs+YET721m1UfZXO8oRmDVs/VsdNYOu03xFqj2FWWySNpf2Xzsa20KXJISQjhWZ0WMN93rqLl\nu3Q6HSZT+82vUlNTmThxIg0NDRiNRgCCgoIoLy+noqKCwMDAju8FBgZSXl7uzrCEEB5kNOi4YXIf\nHl48gt42P77OKuGhV9LYnluGoihEWsO5Z9gdLOg7B0WBN/PW8rf0lZTUlXb10IUQPZi+szerq6v5\n5ptvOl7X1NSwdetWFEWhpsa1VvGGDRtITU1l9erVTJs2rePnZzsEda5DUwABASb0ep1L6z8fISHm\nc39IdAnJpuuEhJgZMiCM974q4M1Pc3nhvT2MGhjGHXMHE2qzMtc2jckJI1mdvoZtR3fz2Pa/Mad/\nCnP6Tz+vp1yLi0P2GfWSbC5MpwWMxWI55cRds9nM8uXLO/58Lps2bWLlypW88sormM1mTCYTjY2N\neHt7U1pais1mw2azUVFR0fGdsrIyhgwZ0ulyKyvrz7nu8xUSYqa8vNZjyxfnT7JRh0mJYST0svDq\nJ7mk7S0hq6CCuRNjmTS0F1qNjsV9FzIkIIm3898jde9HbCrczk39ric+ILarh37ZkX1GvSQb13RW\n5GkUV1oe56G2tpaFCxfy6quvEhQUBMDDDz/MiBEjuPbaa3n00Ufp168fs2fPZvbs2fz73/9Gp9Nx\n/fXXk5qa2mmB5MnQZVKpl2SjLm2KwsaMIv79ZQF1jS306WVlcUo/eoX4AdDQ0sgHB9ax8eg3KCiM\nCx/JdXEzMXXyXCVxcck+o16SjWvOu4A5fvw4qamp/OAHPwDgrbfe4s033yQqKorf/e53BAcHn3XB\na9asYdmyZcTExHT87PHHH+ehhx7ixIkThIeH85e//AWDwcC6detYtWoVGo2GW265hWuuuabTDZIC\n5vIk2aiTzsvAsjW72JFbhk6rYcbo3sweG43h28O8hdWH+FfuvymqK8Fs9OOG+GsZZhvs1jl14vzI\nPqNeko1rzruAuffee1JeoNcAACAASURBVOnVqxf33XcfhYWFLFiwgL/97W8cPnyYtLQ0nnnmGY8M\n+FykgLk8STbqdDKX3fsr+Mf6PJw1JwgN8OHWlAT6RwUA0NrWyobDX/HxwQ20tLUwKKg/C/pdR6B3\nQBePvmeTfUa9JBvXdFbAdHoV0pEjR7jvvvsA+PTTT0lJSWHs2LHceOONp5y3IoQQQ/oE8+iPRzF1\nRCRlVQ08+eaujkuudVod06Ov5Lcj76FvQB/2OHJ4JO0pvjiyWS65FkKcl04LmJOXQQNs27aN0aNH\nd7yW9q8Q4vu8jXpuuiqeh2793yXXv3lpK9/sKUFRFGymEO4acjuL+s/HoNGTuu99ntzxPEdqi7p6\n6EKIbqbTAqa1tRWHw8Hhw4fZtWsX48aNA6Curo6GhoZLMkAhRPcTY7fw8A9GMH9yH5paWnn5w2ye\nXrObssp6NBoNo+0jeHj0L0kOHcbh2qMs3fEc7+3/mKZWeTaMEMI1nV5GffvttzNz5kwaGxtZsmQJ\nVquVxsZGFi5cyPz58y/VGIUQ3ZBOqyVlVG+G9wvhjfV57Dng5OFV27h2fAzTkiMxG/34wcAbGRU2\njDfz1vLZ4S9JL8vkpn7X0z+ob1cPXwihcue8jLq5uZkTJ07g5+fX8bPNmzczfvx4jw/ubOQk3suT\nZKNOruSiKArbcsp4c0M+NfXNRIT48YMZCcSGWwBoam3i48IN/PfIRtqUNpJDhzE3/mrMRr9Olys6\nJ/uMekk2rjnvq5CKijo/Lh0eHn7+o7oAUsBcniQbdXInl+MNzbzzxX42ZRajAa4cHsH1E2Px8Wpv\nBh+pLeJfuakcrj2Kr97E9fFXMypsuJxzd55kn1EvycY1513AJCQk8P/t3Xl4lPW98P/3PTOZTDJJ\nJvsy2XdkSYCwhU0UcUNFQAURbK/nd7o8nvZUr9qn1tZqS4/94fFcp09rj7Xa/lSsgrKKCIIgCEog\n7CSQPQSy7/s6mfn9EQ91xRlIMt8kn9d/QJx8c73vGz7Ofc/9jY+PJyQkBPjqZo6vv/76IC7TeTLA\njE3SRk3X0iX/UhOv7c6nurGTAF9PVi9KYUrKwN8zdoedg+Wf8m7Jbnr7e0kJSOLB1GWEen/zc6fE\n15NzRl3SxjnXPMBs376d7du309HRweLFi7nrrru+sPGiu8gAMzZJGzVda5c+m52dRy6y80gZ/XYH\nU1NCeGhRCgG+ngA0djexMX8rOQ15eOgM3BF3C7fE3IheN3T7oI02cs6oS9o457q3EqiqqmLr1q3s\n2LGDyMhIlixZwqJFizCZTIO6UGfJADM2SRs1XW+XyvoOXt+dR0F5CyajnvsWJLJgSiQ6TcPhcHCq\n7hxvF2yjrbcdqzmcVeOWE2+JHcSfYPSSc0Zd0sY5g7oX0jvvvMPzzz9Pf38/x48fv+7FXQsZYMYm\naaOmwehidzg4dKaStz8qpqvHRqLVj+/cPo6o0IGbeDv7OtlWvItPKo+ioTE/KpO7E27Hy+Ce/4ka\nKeScUZe0cc51DzCtra28++67bNmyhf7+fpYsWcJdd91FaGjooC7UWTLAjE3SRk2D2aWlvYe39hVy\n7MLAvkq3zxzYV8noMXDZqKi5lDfzNlPTWYu/p4UHUu4lPWTCoHzv0UjOGXVJG+dc8wBz+PBhNm/e\nTE5ODrfeeitLliwhJcX9z2eQAWZskjZqGoouZ4vrWf9BPg2tPYQGePHwbamMjxu4/67PbmNP2Ufs\nubgfm6OfySETuT9lCf6elkFdw2gg54y6pI1zrutTSHFxcaSnp6PTffWhvb///e8HZ4UukgFmbJI2\nahqqLt29NrYdKmXv8cs4HDB7Yjgrbk7C19sIQHVHDW/mbaG4pRST3sSSxDuYGzkTnXbVB4yPKXLO\nqEvaOOeaB5hjx44B0NTUREDAF3eNLS8vZ9myZYO0RNfIADM2SRs1DXWXi9WtvLYrn7KaNny8PFi5\nMInMCeFomobdYedIZTZbi3fSZesmwRLLg6nLsfqED9l6RhI5Z9QlbZxzzQPM8ePHeeyxx+jp6SEw\nMJCXXnqJ2NhY3njjDf7617/y8ccfD8mCv40MMGOTtFHTcHTpt9vZd7ycLYdK6O2zc0NsAA/fnkpY\nwMCGsy09rWwqfJeTtWfRa3oWxS7g9tib8dB7DOm6VCfnjLqkjXOueYB56KGH+O1vf0tiYiL79u3j\n9ddfx263Y7FYeOqppwgLCxuSBX8bGWDGJmmjpuHsUt/cxRt7Czhb3ICHQcc9c+K4bUYMBv3AZaNz\n9efZmL+Npp5mQr2DeTB1OSkBicOyNhXJOaMuaeOcqw0wV71YrNPpSEwcOPkXLlxIRUUFDz/8MC+8\n8ILbhhchxNgV7O/FT+5L44dLJuDlaWDzwRJ++2o2xRUtAEwKHs+vZv6Um6LnUtfZwP899RL/uPAO\nHX2dbl65EGKwXXWA+fL+IxERESxatGhIFySEEFejaRozbgjj3783k/npVsrrOnh2/Qne2JNPV48N\nk8GT+5Lv4WfTfkSkTwSfVmWzNut5jtecxsXHXgkhFObS7fqyoZoQQhVmkwffvWMcTzw0lfAgb/af\nrOBXrxzlRH4dALF+0fx82r9xb+KddPf38P/lvsl/n/07DV2Nbl65EGIwXPUemEmTJhEUFHTl1w0N\nDQQFBeFwONA0jQMHDgzHGr9C7oEZm6SNmlTo0mez835WGTuPXMTW72BKcjAPLUoh0G/gSb31XQ28\nlbeFvKZCjDoP7kq4jQVRc0b9vkoqtBFfT9o455pv4q2oqLjqC0dGRl77qq6DDDBjk7RRk0pdqho6\neG13PgWXmzEZ9Sy/MZGbpkSi0w3sq5Rdc4rNhTto7+sg2jeSVeOWE+Mb5e5lDxmV2ogvkjbOGdS9\nkFQgA8zYJG3UpFoXu8PB4bNVvL2/iM4eGwmf7asU/dm+Su19HWwt3ElW9XE0NG6OnsfihFvx1Bvd\nvPLBp1ob8U/SxjlXG2D0zzzzzDPDt5TB0dnZO2SvbTZ7Dunri2snbdSkWhdN04gN92VOWgTN7T3k\nlDRy6EwlvX12kiIteHl4kh4ygURLHCUtF8lpyCO75hRh3iGEege7e/mDSrU24p+kjXPMZs9v/DMZ\nYL5EDip1SRs1qdrFZNQzLTWUBKsfBZebOVPcwLELtUQEmwn19yLYK4jZ1pkAnG/M51j1SWo760j0\nj8NT/81/aY4kqrYR0sZZMsC4QA4qdUkbNaneJSzAm/npVvr7HZwraeTTnGpqm7pIjrbg7WkkNTCJ\n9JAJXG6r5HxjPp9WZuNt8CLK1zriP3mpepuxTNo4RwYYF8hBpS5po6aR0MWg1zEhPpD0pGAuVreR\nU9rI4bNV+JmNRIf64OfpS2bENHyNPuQ3FnG67hx5jYXE+kXjZ/zma/CqGwltxipp4xwZYFwgB5W6\npI2aRlIXfx9P5qVFYDZ5kFvaSHZeLYXlLSRFWvD1NhLnF83MiKm09LRyvjGfTyqP0d3fTYIlDsMI\n/Mj1SGoz1kgb58gA4wI5qNQlbdQ00rroNI3ESAuZE8Kpbeokp7SRg6cr0TRIsPrh7eHFlNA04v1i\nKGm+SG5DHseqTxLsFUiYOdTdy3fJSGszlkgb58gA4wI5qNQlbdQ0Urt4mwzMHB9GVIgPeZeaOF1U\nz8mCOmJCfQn0MxHiHcwc60w04EJjAdk1p6hoqyTBEoeXweTu5TtlpLYZC6SNc2SAcYEcVOqSNmoa\nyV00TcMabGZ+egSd3TbOlTRy6GwVTW09JEVZ8DJ6kBqYxJTQSVR2VHOhsYDDlUfx0BmI9Y1Cp7m0\nG8uwG8ltRjtp45yrDTDyILsvkYcLqUvaqGk0dSkqb+G1D/KoqOvA19uDFTcnkTkhHE0beJLv0eoT\nbCl6j46+TiJ9IngwdTnxlhh3L/sbjaY2o420cY48yM4FMhWrS9qoaTR1CfQzMT/dislTT+7FRrLz\n6ii43EyC1Q9fbyNRvlYyrdPp6OvkfGM+R6qyae1tJ8ESh4few93L/4rR1Ga0kTbOkUtILpCDSl3S\nRk2jrYtOp5Ec5c+sCWHUNXdfucnX1u8g0eqHl4cnaSETSA1IorT1Eucb8siqPo6/0Y8Ic7hSz44Z\nbW1GE2njHBlgXCAHlbqkjZpGaxdvkwczx4cRE+pDQXkzZ4oaOHqhhohAb0IDvAk0BTDHOgOjzoO8\nxgJO1J6lpKWMeEssZg9vdy8fGL1tRgNp4xwZYFwgB5W6pI2aRnuXiCAz89Ot2Prt5JQ08WluNVUN\nHSRGWjCbjCT5xzMtbDK1XfVcaCzgk8qj4HAQZ4lB7+abfEd7m5FM2jhHbuJ1gdxYpS5po6ax1OVS\nTRvrP8inuLIVL089y+YnctOUSHS6gZt8T9WdY1PBu7T0thLmHcLK1KWkBCS5bb1jqc1II22c47ab\neAsKClixYgU6nY60tDSKi4v58Y9/zNatWzl58iTz589Hp9Px7rvv8uSTT7Jp0yY0TWPChAlXfV15\nB2ZskjZqGktdLD6ezE2LwN/XkwsXmzhZUMeZ4gbiwn0J8DURYQ5jtnUGPf29nG/IJ6v6BA1djSRY\n4vDUG4d9vWOpzUgjbZxztXdghuz9zc7OTtauXUtmZuaV33v++ef5/ve/zxtvvEFERAS7du2is7OT\nP//5z7z66qusX7+e1157jebm5qFalhBCXBedprFgciT//v1ZZE4Ip6y6jbWvHecfewvo7LbhZTDx\nQMoSfjbtR8T4RnK0+gS/zfoPPqk4it1hd/fyhRg1hmyAMRqNvPzyy4SG/vPR22VlZaSlpQEwb948\nPvnkE86cOcOkSZPw9fXFZDIxdepUTp48OVTLEkKIQWExG/ne3eP52crJhAZ4s+9EOb98JYvsvFoc\nDgexftH8bNqPuT95CXaHnTfzN/NfJ/9CZXu1u5cuxKgwZAOMwWDAZPri47ZTUlI4ePAgAIcOHaK+\nvp76+noCAwOvfE1gYCB1dXVDtSwhhBhUN8QF8tv/NYN758XT0WXjxW05/Nc7Z6ht6kSn6VgQPYen\nZj3OlNA0Slou8vvsP7Ct6H16+uXygRDXwzCc3+znP/85zzzzDFu2bGHGjBl83f3DztxTHBDgjcEw\ndDvDXu2mIeFe0kZN0gX+n3vTuGNuAi9uPsvpgjp+/bdjPLAohWULkggx+PKLqP/Nycoc/nZyA3sv\nHeB0/Vn+V8ZKMqyThnRd0kZd0ub6DOsAExERwUsvvQQMvANTW1tLaGgo9fX1V76mtraWyZMnX/V1\nmpo6h2yNcme4uqSNmqTLP3kAP146key8Wt76sJA3duWx79gl1tyayrjYAKI9Ynly2mPsuriPDy8d\nZN2h/2ZyyETuS76HAJP/oK9H2qhL2jjnakPesD6k4I9//CMHDhwAYMuWLdx8882kp6dz7tw5Wltb\n6ejo4OTJk0ybNm04lyWEEING0zRm3BDGv39vJjdPjaS6oZPn3jrFK++dp7WzF6PeyJLEO/jF9EdJ\ntMRxui6HtUefZ//lQ/Tb+929fCFGjCF7DkxOTg7r1q2joqICg8FAWFgYjz/+OGvXrsXhcDBt2jR+\n8YtfALB7927+9re/oWkaq1ev5p577rnqa8tzYMYmaaMm6XJ1pVWtvLY7j0s17ZhNBu6/KYm5aRHo\nNA27w05W1Qm2Fe2kw9ZJtI+VleOWEec3OBtESht1SRvnXO0dGHmQ3ZfIQaUuaaMm6fLt+u129p+s\nYOvHJXT39pMUaeHh21KJCvUBoL23g61FO8mqPo6GxrzITO5JvA0vg9d1fV9poy5p4xzZjdoF8nAh\ndUkbNUmXb6fTNBKtFmZPjKCxrefKBpHdfQPDjLfRk/SQCaT4JwxsENmYR1bVCQI8LUSYw655g0hp\noy5p4xzZC8kFclCpS9qoSbo4z8vTwPRxocRH+FJY3sLZ4gaycqsJ8fciIshMkFcgc6wz8NAZPtsg\n8gylrZeI97u2DSKljbqkjXNkgHGBHFTqkjZqki6uCwv0Zv5kKwA5pY1kna/hUk0bSZEWfLyMJPkn\nkBE6mZrOuisbRDocuLxBpLRRl7RxjgwwLpCDSl3SRk3S5doY9DrGxwWSkRpKRV0HuaWNfHymEoNe\nR1yEL76eZqaHTSHcHEphcwnnGs5zqvYcVnMYQV6B3/4NkDYqkzbOkQHGBXJQqUvaqEm6XB8/byNz\nJoUT4u/FhbImThXWc6qwnugwH4L8TFh9wpljnUG3rZcLjflkVR93eoNIaaMuaeMcGWBcIAeVuqSN\nmqTL9dM0jZgwX+alW2nv6iOntJFDZ6tobu8hOWrgJt+JweOYEDSOS63lnG8s4EhlNmYPbyJ9Ir7x\nJl9poy5p4xwZYFwgB5W6pI2apMvgMXromZIcwg2xAZRWtXKupJHDZ6vwN3sSFWLG32QhM2I6Zg8z\neU0FnKo7R0FTEbF+0fgafb7yetJGXdLGOTLAuEAOKnVJGzVJl8EXZDExP92Kyagnt7SR7LxaCi43\nk2D1w8/sSbwlhhnhU2nsbrpyk2+fvY8ESyx63T/3iZM26pI2zpEBxgVyUKlL2qhJugwNnU4jOcqf\nWePDqG3qIvdiEx+fqcTW7yDR6oePpzcZYenE+EZS3HKRnIYLHK85RYhXMKHeIYC0UZm0cY4MMC6Q\ng0pd0kZN0mVoeZs8mDk+jOhQXwouN3OmuIFjF2oJD/ImNMCbMO8Q5lhnYnfYOd9YQHbNKaraq0nw\njyPIz0/aKErOG+dcbYCRrQS+RB7vrC5poybpMny6emxsP1zKh8fLsTsczLghlJULk/H3GfhLvqK9\nig35WyhpKcOk92Rl2j1MtUz9wmUloQY5b5wjeyG5QA4qdUkbNUmX4Xeppo3XP8inpLIVL089y+Yn\nctOUSHS6gQ0ij1Rls63ofTptXUT6RLAydSkJljh3L1t8jpw3zpEBxgVyUKlL2qhJuriH3eHg4OlK\nNh0opqvHRly4L9+5fRyx4QN/4bf1trO7Yi8HSo8AMCtiGvcm3vm1n1YSw0/OG+fIZo4ukOuS6pI2\napIu7qFpGvERfsxNi6ClY2CDyI/PVNLR1UdSlAWzp4kFKTOI9ozlUlv5Z59WOoZJbyLaN/KaN4gU\ng0POG+fITbwukINKXdJGTdLFvUxGPRmpoSRHWSiuaOFcSSOf5lQR5GciKSYAk92b2REzMHuYKWgq\n5kx9DrkNeUT7WvH3tLh7+WOWnDfOkZt4XSBv66lL2qhJuqijz9bPrqxLvHekDFu/nanjQrn/xgTC\nAgZ2sm7paWVr0ftk15xEQ2OOdQZ3J96Oj4fZzSsfe+S8cY7cA+MCOajUJW3UJF3UU9PYyfo9+Zy/\n2IRBr3HHzFgWZ8Zi9Bj4NFJhUzEbCrZR3VGD2cObexPvZFbENHQu7HQtro+cN86RAcYFclCpS9qo\nSbqoyeFwkF/Zxl+3nqW5vZdgi4lVt6QwOTkYgH57Px+VH2Zn6V56+3uJ94thRepSon0j3bzysUHO\nG+fITbwukOuS6pI2apIuatI0jRsSg5mWHIzd4SC3tJGs8zVcrGolIdKCr5eRBEscM8On0tzTcuUm\n3/a+DuL9YvHQe7j7RxjV5LxxjtzE6wI5qNQlbdQkXdRlNnvS22NjQnwgGamhVNV3kHuxiYOnK3HY\nHSRY/TAbvZkamkaiJY7S1jLON+STVXUcX6PPVXe6FtdHzhvnyE28LpC39dQlbdQkXdT15TYOh4Oj\nF2rYuL+IlvZeQvxNPLQohbTEgctKfXYb+y99zK6L++iz95FoiWNF6lIifSLc9SOMWnLeOEcuIblA\npmJ1SRs1SRd1fbmNpmlEhfhwY7oVW7+d3NImjuTWcKmmjUSrH75eniT5xzM9bCqNPc1XLit12bqI\nt8TioTO48acZXeS8cY68A+MCmYrVJW3UJF3U9W1tyuvaeWNPAQWXmzEadCyeHcftM2LwMAx8Gim3\nIY+3C7ZT39WAxejLsuS7yQhNl8tKg0DOG+fIOzAukKlYXdJGTdJFXd/Wxs9sZM6kcMICvMm/3MyZ\nonqOXaghPHBgp+tQ72DmWmei0+nJayrkZO0ZilouEucXhY9sSXBd5LxxjtzE6wI5qNQlbdQkXdTl\nTBtN04gO9WF+upVeWz85pY0cya2hvLadRKsFHy9PUgISmR42mfquBi40FnC48ii9/b3E+cVgkMtK\n10TOG+fIAOMCOajUJW3UJF3U5UobD4OOSQlBTEkOpry+g9zSRg6eqUDTIMHqh4/RzLSwyUT5RlLS\nUkZuQx7Z1acIMPkT7h0ql5VcJOeNc2SAcYEcVOqSNmqSLuq6ljYWH0/mTIogxN+L/EvNnC5qIDuv\nlvCggctK4eZQ5lpnogF5jQUcrz1Naesl4vyiMcuWBE6T88Y5MsC4QA4qdUkbNUkXdV1rG03TiAnz\n5cZ0Kz29dnJKG/g0p5rK+g4SrX74eHmSGpjE1LB0ajrqyGsq5JOKo9gc/cT7xaDX6Yfgpxld5Lxx\njnwKyQVyZ7i6pI2apIu6BqtNWXUbb+zJp7iyFU8PPffMjWPRtGgMeh0Oh4NTdefYXLiD5p4WgkwB\n3J+yhEnB4wfhJxi95LxxjnwKyQUyFatL2qhJuqhrsNr4+3gyNy2CID8TeZeaOV1Yz/H8WqzBZkL8\nvYgwhzHHOhOHw8H5xgKya05xqbWceEss3h5eg/CTjD5y3jhHLiG5QA4qdUkbNUkXdQ1mG03TiA33\nZV66le7efnJKGvkkp5rqxk4SrRZ8vTwZF5jMlNBJVHXUDFxWqszC7rATJ5eVvkLOG+fIJSQXyNt6\n6pI2apIu6hrKNqVVrbyxp4DSqlY8jXrunRvPwoyoK5eVjtecZkvRe7T2thHiFcT9KfcyISh1SNYy\nEsl54xy5hOQCmYrVJW3UJF3UNZRtAnw9mZceQYCvJ3llTZwqrOdkYR2RwWaC/b2I9IlgjnUmffY+\nLjQWcqz6JJXtVcRbYvAyyGUlOW+cI5eQXCAHlbqkjZqki7qGuo2macSF+zE/3Upnj42ckkYOn6um\ntqmTpEgLPiYT44NSSQ+ZQGV79cDeShVH0aEj1i8anaYbsrWpTs4b58glJBfI23rqkjZqki7qGu42\nJZWtrN+TT1l1G16eeu6dm8DNGZHodQOXlY5Wn2Br0U7a+zoI8w7hgZR7GReYPGzrU4mcN86RS0gu\nkKlYXdJGTdJFXcPdJsDXk/lpViw+A5eVThbWc6qgnsgQM8EWL6J8rcyxzqCnv5cLjQUcrT5BTUct\n8ZZYTAbTsK1TBXLeOMdtl5AKCgpYsWIFOp2OtLQ0srOzefzxx9m+fTsffPAB8+fPx2Qy8corr/Ds\ns8/yzjvvEBYWRlxc3FVfVwaYsUnaqEm6qMsdbTRNIz7Cj7lpEXR09ZFT2sjhc1XUN3eRGGnB12Ri\nYvA4JgbfQEV71cBlpcqj6HV6Yn3HzmUlOW+c45ZLSJ2dnfzgBz8gLi6O1NRUVq9ezbJly3j++edJ\nSEjgL3/5CzqdjjvuuIOf/OQnbNiwgfb2dlatWsXOnTvR67/5I3dyCWlskjZqki7qUqFNUUULb+zJ\n51JNO16eBpbNT2DBFCt6nQ67w86Rqmy2F+2iw9ZJhDmMFSlLSQ5IcOuah4MKbUaCq11CGrJR12g0\n8vLLLxMaGnrl9wICAmhubgagpaWFgIAAjh49yrx58zAajQQGBhIZGUlRUdFQLUsIIcQwSoq08Ovv\nTOehRSkA/GNvAWtfPU5RRQs6Tccc60x+nfkz5lhnUN1Ryx9O/YVXczfQ0iP/uIurG7IBxmAwYDJ9\n8Zrmk08+yb/+679y2223ceLECZYuXUp9fT2BgYFXviYwMJC6urqhWpYQQohhptNpLMyI4vffn8Wc\nSeFcqm3n2fUn+Pv7F2jt7MXHw8yqcffx04x/Jdo3kuyak/w26z84cPkT+u397l6+UJRhOL/Z2rVr\neeGFF8jIyGDdunW8+eabX/kaZ65oBQR4YzAM3VMdr/aWlXAvaaMm6aIuldqEhMAT3w3ifGkDL24+\ny+GzVZwurOfhO2/g1llxhIRMYFrCDewtPsSGc9t5p3A72XUn+JeMB0kJHn2XlVRqMxIN6wCTn59P\nRkYGALNnz2bHjh3MmjWL0tLSK19TU1PzhctOX6epqXPI1ijXJdUlbdQkXdSlapsQHyO/XDOV/Scr\n2HaohP/efJadn5Sy5tZUEqx+TPWfSvLMFLYVvU9W9XF+te8/yIyYzpLEO/A1+rh7+YNC1Taqccs9\nMF8nODj4yv0t586dIzY2llmzZnHgwAF6e3upqamhtraWpKSk4VyWEEKIYabX6Vg0LZpnvzeLzAnh\nlFW38e+vH+fVXXm0d/Xha/RhzfgHeGzq/ybSJ4IjVdn8Jus5Prp8WC4rCWAIP4WUk5PDunXrqKio\nwGAwEBYWxmOPPcZzzz2Hh4cHFouFZ599Fj8/P9avX8+OHTvQNI1HH32UzMzMq762fAppbJI2apIu\n6hpJbfIvNfHG3gIq6jowmwzctyCReelWdJpGv72fQxVZvFe6hy5bFxHmMO5LvmdEPwRvJLVxp6u9\nAyNP4v0SOajUJW3UJF3UNdLa2Prt7D9RzrbDpXT39hMf4cfqW1OIj/ADoK23nR0lH/Bp5TEcOJgc\nMollSYsJ8gr8lldWz0hr4y7yJF4XyMOF1CVt1CRd1DXS2uh0GomRFmZPjKC1o5ec0kYOnamkpaP3\ns4fgeTEpeDwTg26gsr2avKYCDldm0e+wE+cXg143dB/uGGwjrY27yF5ILpCpWF3SRk3SRV0jvU1e\n2cBlpcr6Dny8PFh+YwLz0qzodBoOh4PsmlNsK9pJS28bgaYAliXdxeSQiWia5u6lf6uR3ma4yDsw\nLpCpWF3SRk3SRV0jvU2wvxfz062YPPVcKGviRH4dZ4oaiAwxE2TxItIngjnWmTgcDvIaCzlRe5ri\nlotE+0Yq/2mlkd5muMg7MC6QqVhd0kZN0kVdo6lNU1sPmw4UcyS3GoDMCWHctyCJAN+Bf+BqOuvY\nVPgu5xvy0Wk6tY2YSwAAGAlJREFUboyczZ3xi/D28HLnsr/RaGozlOQmXhfIQaUuaaMm6aKu0dim\nqKKFf+wtoKy6DU8PPXfNjuXW6TF4GAaeCpJTf4FNhe9S19WAj4eZJYl3MCtimnKbRI7GNkNBBhgX\nyEGlLmmjJumirtHaxu5wcPhsFZsPFtPW2Ueovxcrb0kmPTEITdPos9v46NIhdpXto7e/lxjfKB5I\nWUK8JdbdS79itLYZbDLAuEAOKnVJGzVJF3WN9jad3X1sP3yRfSfKsTscTEoIYuXCJCKCzAA097Sw\ntWgnx2tOAzAzPIMliXdg8fRz57KB0d9msMgA4wI5qNQlbdQkXdQ1VtpU1Hfw1ocFnL/YhF6nsWha\nNHfPicPLc2C3nKLmUt4p2E55eyUmvSd3xN/Cgqg5GHTDupvOF4yVNtdLBhgXyEGlLmmjJumirrHU\nxuFwcKqwng37Cqlv6cbPbOT+BYlkTgxHp2nYHXY+qTzKjuIP6LB1EuodzH3JS5gQlOqW9Y6lNtdD\nBhgXyEGlLmmjJumirrHYprevnw+OXWLnkTJ6bXYSrH48tOifT/Pt6OvkvZI9HKo4ggMHk4LHszzp\nbkK8g4Z1nWOxzbWQAcYFclCpS9qoSbqoayy3aWzt5u2Pijh2oRaAuZMiWL4gEYvZCEB5WyXvFG6n\nqLkUg6ZnYcyN3BZ3M55647Csbyy3cYUMMC6Qg0pd0kZN0kVd0mZgk8h/7C2kvK4dL08998yJZ2FG\nFAa9DofDwcnaM2wp2klzTwv+nhaWJi0mIzR9yJ/mK22cIwOMC+SgUpe0UZN0UZe0GdBvt/Px6Uq2\nfFxCR7eNiCBvHlyYzMSEgctGPf297Cn7iA8vHcRmt5FoieeBlCVE+VqHbE3SxjkywLhADip1SRs1\nSRd1SZsvau/qY9uhEj46VYHDAZOTglm5MInQAG8A6rsa2Fz4Hmfrc9HQmBc5i8UJt+LjYR70tUgb\n58gA4wI5qNQlbdQkXdQlbb7e5dp23txbQP7lZgx6jdtmxLA4MxaTceBj1ecb8tlU+C41nXWYDd7c\nlXAbcyNnDurTfKWNc2SAcYEcVOqSNmqSLuqSNt/M4XCQnVfL2x8V0djag7+PkQduSmLm+DA0TcNm\nt3Gg/BN2lX5Id38PkT4RPJByL0n+8YPy/aWNc2SAcYEcVOqSNmqSLuqSNt+up7ef97PK2HX0ErZ+\nO8lRFlbdkkJs+MA/nC09bbxbvIus6uMATAubzNKkxfh7Wq7r+0ob58gA4wI5qNQlbdQkXdQlbZxX\n19zF2/uLOFFQhwbcONnK0vkJ+HoPfKy6tKWMtwu2c6mtHKPeyO2xN3NzzHw8rvFpvtLGOTLAuEAO\nKnVJGzVJF3VJG9flXmzkrQ8LqazvwNvTwNL5CSyYYkWv02F32MmqOsH24vdp7+sg2CuI+5LvZmLQ\nDS5/7FraOEcGGBfIQaUuaaMm6aIuaXNtbP12PjpZwbbDpXT12IgMMbNqYTI3xAUC0NnXxfsX93Kw\n/FPsDjvjg1K5L+luwsyhTn8PaeMcGWBcIAeVuqSNmqSLuqTN9Wnt7GXLwRIOnanEAUxLDeGBm5MI\ntngBUNVRwzsF28lvKkKv6bkpei63xy3Ey2D61teWNs6RAcYFclCpS9qoSbqoS9oMjovVrfxjbwHF\nFa14GHTcMTOGO2bF4umhx+FwcKYuhy1F79HQ3YSf0Zd7E+9keviUq37sWto4RwYYF8hBpS5poybp\noi5pM3gcDgdZ52t4+6MiWtp7CfLzZMXNyWSkhqBpGr39fXx46QB7yj6iz24j3i+WB1KWEOMX9bWv\nJ22cIwOMC+SgUpe0UZN0UZe0GXxdPTZ2HiljT/YlbP0OxsX4s+qWFKJCfQBo6Gpia9F7nKo7h4bG\nbOt07k64HV+jzxdeR9o4RwYYF8hBpS5poybpoi5pM3RqGjvZsK+QM8UN6DSNm6ZGcu+8eMwmDwDy\nG4t4p3A7VR01eBlMLI6/lfmRmeh1ekDaOEsGGBfIQaUuaaMm6aIuaTP0zhY38Na+QmoaO/Hx8mDZ\n/ATmp1vR6TT67f0cqsjivdI9dNm6iDCHcX/yElIDk6SNk2SAcYEcVOqSNmqSLuqSNsPD1m/nw+Pl\nbP+klJ7efmJCfVi1KIWUaH8A2nrb2VGym08rs3HgYErIJP5l5groNLp55eqTAcYFcsKrS9qoSbqo\nS9oMr+b2HjYfKOaTnGoAZo4P4/4FiQT6DXys+lJrOW8XbKe0tQwPnYGbo+dza+wCTE587HqskgHG\nBXLCq0vaqEm6qEvauEdxZQtv7i2gtKoNo4eOuzLjuG1GNB4GPXaHneM1p9lRupvGrmb8jL7cnXA7\nsyIyBnW369FCBhgXyAmvLmmjJumiLmnjPnaHg0/OVbH5QDGtnX2E+JtYuTCZyUnBaJqGb4CRDSd3\n8mHZAXrtfUT5WFmefDcpAYnuXrpSrjbA6J955plnhm8pg6Ozs3fIXtts9hzS1xfXTtqoSbqoS9q4\nj6ZpxIb5Mj89Elu/nfMXm8g6X0NJZStxEb5EhvoTaYxiZngG7X0dXGgs4Gj1CSraq4jxjcLs4e3u\nH0EJZrPnN/6ZvAPzJfJ/LOqSNmqSLuqSNuqorO/grX2F5JY2otdpLJ4bz6KpkVc+dl3WeplNhTso\nabmIXtOzIHoOd8QtxMvg5eaVu5dcQnKBnPDqkjZqki7qkjZqcTgcnC6sZ8P+QuqauzGbDCyZG8+C\nKZEY9DocDgcna8+yrfh9Grub8PEwszj+VuZYZ1x5fsxYIwOMC+SEV5e0UZN0UZe0UVOfzU5WXi0b\n9ubT1dNPRJA3D9yURFpiEJqm0dffx/7Lh/igbD89/b1EmMNYnnQ3NwSluHvpw04GGBfICa8uaaMm\n6aIuaaOukBBfissa2H6olAOnK3A4YEJcACsWJhMVMrDtQEtPG++VfMCRqoHnx0wMGsfSpLsIN4e6\nefXDRwYYF8gJry5poybpoi5po67Pt6moa2fj/iJyShvRNLgx3cq98xLwMw886O5yWyWbC9+lsLkE\nnaZjXmQmd8bfgo+H2Z0/wrBw2wBTUFDAI488wne/+11Wr17Nv/3bv9HU1ARAc3MzkydPZu3atbzy\nyivs3r0bTdP40Y9+xI033njV15UBZmySNmqSLuqSNur6ujZnixvYuL+QqoZOvDz13JUZxy3TovAw\n6HE4HJytz2VL0U7quxrwNnhxZ/yiL+yvNBq5ZYDp7OzkBz/4AXFxcaSmprJ69eov/PkvfvELHnzw\nQQICAvjJT37Chg0baG9vZ9WqVezcuRO9/puDyAAzNkkbNUkXdUkbdX1TG1u/nYOnK9l+uJT2rj6C\nLSbuvymJaakhA/fH2G0cLP+E3Rf30WXrJsw7hKVJi5kYdAOaprnhJxlaVxtghuyxf0ajkZdffpnQ\n0K9eqyspKaGtrY20tDSOHj3KvHnzMBqNBAYGEhkZSVFR0VAtSwghhFCWQa9jYUYUv//BLG6dHk1T\nWw8vbsvh//3HSUqrWvHQGbgl5kaenvV/mB+ZSV1XA385+yovnH6FyvZqdy9/WA3ZAGMwGDCZvn5/\nh9dff/3KOzL19fUEBgZe+bPAwEDq6uqGallCCCGE8swmD1YuTOZ3/zKTqSkhFJa3sPa147y84zyN\nrd34Gn1YkbqUX0x/lBsCU8hrKuTZY//FW3mbaettd/fyh4VhuL9hb28vJ06c4JseAOzMFa2AAG8M\nhqG75ne1t6yEe0kbNUkXdUkbdTnTJiTEl4mpYZwrqueVd3M4klvNiYI6lt+UxLIFSaSHJJMW9yin\nqnJZf3ozhyuPcqLuDMvH38EdyTfhofcYhp/EPYZ9gMnOziYtLe3Kr0NDQyktLb3y65qamq+97PR5\nTU2dQ7Y+uWasLmmjJumiLmmjLlfbhFs8efKhqXySU8WWgyW8tSefXZ+WsvzGRDInhhPtEcvPM37C\nocos3i/ZyxtntrI7/yBLkxaTHjJxxN4f45Z7YL7JuXPnGDdu3JVfz5o1iwMHDtDb20tNTQ21tbUk\nJSUN97KEEEIIpel0GvPSrPz+B7O4a3YcHd02/rbzAr977TgFl5vR6/QsiJrDM5n/h5ui59LY08zL\nOev5v6de4lJbubuXP+iG7FNIOTk5rFu3joqKCgwGA2FhYfzpT3/iT3/6ExkZGdx5551Xvnb9+vXs\n2LEDTdN49NFHyczMvOpry6eQxiZpoybpoi5po67BaNPQ0s3mg8Vkna8BICM1hPtvSiLUf2D/pJrO\nOrYWvce5+gtoaMyMyOCehNuxePpd9/qHizzIzgVywqtL2qhJuqhL2qhrMNsUV7awYV8hxRWtGPQa\nt0yL5q7MOLxNA3eJ5DUWsrlwB5Ud1Rj1Rm6LvYmbo+djHAH3x8gA4wI54dUlbdQkXdQlbdQ12G0c\nDgfHLtSy6UARDa09+Hp7cO+8BOanR6DX6bA77HxaeYwdJR/Q3tdBgKc/9ybdSUZoutL3x8gA4wI5\n4dUlbdQkXdQlbdQ1VG16+/rZk32ZnVll9PT2ExlsZsXCJCbGBwHQZevig4sf8dHlQ9gc/cT7xbI8\n+W7iLTGDvpbBIAOMC+SEV5e0UZN0UZe0UddQt2lp72HLxyUcPluFA0hLDOKBm5KwBg/sn1Tf1cC2\novc5VXcOgOlhU1iSeAcBJv8hW9O1kAHGBXLCq0vaqEm6qEvaqGu42lyqaWPj/iIulDWh0zQWTLGy\nZG48vt4DG0UWNpWwuWgHl9sq8NB5cEvMfG6JWYDJ4Dnka3OGDDAukBNeXdJGTdJFXdJGXcPZxuFw\ncLqonrf3F1HT1IW3p4G758SxMCMKg37g/pij1SfZUbyLlt42LEY/7km8nRnhU9Fpw/60lS+QAcYF\ncsKrS9qoSbqoS9qoyx1tbP129p+s4N3DpXT22AgN8OKBm5KYkhyMpml023rYe+kA+y4dpM9uI8Y3\niuXJd5PkHz+s6/w8GWBcICe8uqSNmqSLuqSNutzZpr2rj+2HS/noZAV2h4NxMf6sXJhMTNjAsNDY\n3cT24l0crzkNwJSQSdybtJhgr8CrveyQkAHGBXLCq0vaqEm6qEvaqEuFNlUNHWzcX8TZ4gY0YE5a\nBMvmJ+DvM3D/S2lLGZsKd3Cx9RIGTc9N0fO4Le5mvAxfv1HzUJABxgUqHFTi60kbNUkXdUkbdanU\nJre0kQ37C6mo68DTQ8+dmbHcNj0ao4ceh8PB8ZrTbC/eRVNPM74ePtydcBuZ1unDcn+MDDAuUOmg\nEl8kbdQkXdQlbdSlWpt+u51DZ6rYeqiEts4+Av08ue/GRGaOD0PTNHr7e9l36RB7yvbTa+8j0ieC\n5Ul3kxo4tHsXygDjAtUOKvFP0kZN0kVd0kZdqrbp7LaxM+sie7MvY+t3kGD1Y+XCZJIiLQA097Sw\no/gDsqqPAzApeDzLk+4mxDtoSNYjA4wLVD2ohLRRlXRRl7RRl+pt6pq7eOdAMcfzagGYcUMo9y1I\nJNgysFHkpdZyNhXuoLillEifCJ6c8diQrONqA4xhSL6jEEIIIUasEH8vHrl3IgWXm9mwr5BjF2o5\nVVjPrdOjuXNWLDF+UTw29YfkNFxAp+ndskZ5B+ZLVJ+KxzJpoybpoi5po66R1MbucJCVW83mgyU0\ntfVgMRtZOj+BuZMi0OmGdiPIq70D495H7AkhhBBCaTpNY/bECJ793iyWzI2nq9fGq7vy+M2r2Vy4\n2Oi+dbntOwshhBBixPA06lkyN57ffz+T2RPDuVzbzn9sOM36D/Ldsh65B0YIIYQQTgvw9eRf7hrP\nwowoNh8spqO7zy3rkAFGCCGEEC6Lj/Dj8ZVT3Pb95RKSEEIIIUYcGWCEEEIIMeLIACOEEEKIEUcG\nGCGEEEKMODLACCGEEGLEkQFGCCGEECOODDBCCCGEGHFkgBFCCCHEiCMDjBBCCCFGHBlghBBCCDHi\nyAAjhBBCiBFHBhghhBBCjDgywAghhBBixNEcDofD3YsQQgghhHCFvAMjhBBCiBFHBhghhBBCjDgy\nwAghhBBixJEBRgghhBAjjgwwQgghhBhxZIARQgghxIgjA8znPPvss6xYsYKVK1dy9uxZdy9HfM5z\nzz3HihUrWL58OXv27HH3csTndHd3c8stt7BlyxZ3L0V8zrvvvss999zDsmXLOHDggLuXI4COjg5+\n9KMfsWbNGlauXMmhQ4fcvaQRzeDuBaji2LFjlJWVsXHjRoqLi3nyySfZuHGju5clgKysLAoLC9m4\ncSNNTU0sXbqUW2+91d3LEp958cUXsVgs7l6G+Jympib+/Oc/s3nzZjo7O/nTn/7EggUL3L2sMW/r\n1q3Ex8fz05/+lJqaGr7zne+we/dudy9rxJIB5jNHjhzhlltuASAxMZGWlhba29vx8fFx88rE9OnT\nSUtLA8DPz4+uri76+/vR6/VuXpkoLi6mqKhI/nFUzJEjR8jMzMTHxwcfHx/Wrl3r7iUJICAggPz8\nfABaW1sJCAhw84pGNrmE9Jn6+vovHEyBgYHU1dW5cUXif+j1ery9vQHYtGkT8+fPl+FFEevWreOJ\nJ55w9zLEl5SXl9Pd3c0Pf/hDVq1axZEjR9y9JAEsXryYyspKFi1axOrVq/n5z3/u7iWNaPIOzDeQ\nHRbU8+GHH7Jp0yb+/ve/u3spAti2bRuTJ08mOjra3UsRX6O5uZkXXniByspKHn74YT766CM0TXP3\nssa07du3Y7Va+dvf/kZeXh5PPvmk3Dt2HWSA+UxoaCj19fVXfl1bW0tISIgbVyQ+79ChQ/zlL3/h\nlVdewdfX193LEcCBAwe4fPkyBw4coLq6GqPRSHh4OLNnz3b30sa8oKAgpkyZgsFgICYmBrPZTGNj\nI0FBQe5e2ph28uRJ5s6dC8C4ceOora2Vy+HXQS4hfWbOnDl88MEHAOTm5hIaGir3vyiira2N5557\njpdeegl/f393L0d85g9/+AObN2/m7bff5v777+eRRx6R4UURc+fOJSsrC7vdTlNTE52dnXK/hQJi\nY2M5c+YMABUVFZjNZhleroO8A/OZqVOnMmHCBFauXImmaTz99NPuXpL4zPvvv09TUxOPPvrold9b\nt24dVqvVjasSQl1hYWHcdtttPPDAAwD86le/QqeT/191txUrVvDkk0+yevVqbDYbzzzzjLuXNKJp\nDrnZQwghhBAjjIzkQgghhBhxZIARQgghxIgjA4wQQgghRhwZYIQQQggx4sgAI4QQQogRRwYYIcSQ\nKi8vZ+LEiaxZs+bKLrw//elPaW1tdfo11qxZQ39/v9Nf/+CDD3L06NFrWa4QYoSQAUYIMeQCAwNZ\nv34969evZ8OGDYSGhvLiiy86/d+vX79eHvglhPgCeZCdEGLYTZ8+nY0bN5KXl8e6deuw2Wz09fXx\n61//mvHjx7NmzRrGjRvHhQsXeO211xg/fjy5ubn09vby1FNPUV1djc1mY8mSJaxatYquri4ee+wx\nmpqaiI2NpaenB4Camhoef/xxALq7u1mxYgX33XefO390IcQgkQFGCDGs+vv72bt3LxkZGfzsZz/j\nz3/+MzExMV/Z3M7b25s33njjC//t+vXr8fPz4z//8z/p7u7mzjvvZN68eXz66aeYTCY2btxIbW0t\nCxcuBGDXrl0kJCTwm9/8hp6eHt55551h/3mFEENDBhghxJBrbGxkzZo1ANjtdqZNm8by5cv54x//\nyC9/+csrX9fe3o7dbgcGtvf4sjNnzrBs2TIATCYTEydOJDc3l4KCAjIyMoCBjVkTEhIAmDdvHm++\n+SZPPPEEN954IytWrBjSn1MIMXxkgBFCDLn/uQfm89ra2vDw8PjK7/8PDw+Pr/yepmlf+LXD4UDT\nNBwOxxf2+vmfISgxMZGdO3eSnZ3N7t27ee2119iwYcP1/jhCCAXITbxCCLfw9fUlKiqKgwcPAlBa\nWsoLL7xw1f8mPT2dQ4cOAdDZ2Ulubi4TJkwgMTGRU6dOAVBVVUVpaSkAO3bs4Ny5c8yePZunn36a\nqqoqbDbbEP5UQojhIu/ACCHcZt26dfzud7/jr3/9KzabjSeeeOKqX79mzRqeeuopHnroIXp7e3nk\nkUeIiopiyZIl7N+/n1WrVhEVFcWkSZMASEpK4umnn8ZoNOJwOPje976HwSB/7QkxGshu1EIIIYQY\nceQSkhBCCCFGHBlghBBCCDHiyAAjhBBCiBFHBhghhBBCjDgywAghhBBixJEBRgghhBAjjgwwQggh\nhBhxZIARQgghxIjz/wOpUeq/eJ7GMAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "IGINhMIJ5Wyt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "BAGoXFPZ5ZE3", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 627 + }, + "outputId": "53fb0fc0-2f91-4d5e-a736-16a953e91d02" + }, + "cell_type": "code", + "source": [ + "minimal_features = [\n", + " \"median_income\",\n", + " \"latitude\",\n", + "]\n", + "\n", + "minimal_training_examples = training_examples[minimal_features]\n", + "minimal_validation_examples = validation_examples[minimal_features]\n", + "\n", + "_ = train_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=minimal_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=minimal_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 165.31\n", + " period 01 : 123.14\n", + " period 02 : 116.94\n", + " period 03 : 116.18\n", + " period 04 : 115.53\n", + " period 05 : 114.89\n", + " period 06 : 114.28\n", + " period 07 : 114.03\n", + " period 08 : 113.09\n", + " period 09 : 112.79\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4U1X+BvD3JjdplibpDk2RpUUR\nAVmkjgjIDmUbF5ZRFjfUGQVFZcblN+Do4Ia7KKDgCAqzKAwqqIgioqAjCkUEZVEptLSF7k2ztVnO\n74+0IYVSWtosbd/P8/QhuTf35pucIq/nnHuuJIQQICIiImpBFOEugIiIiKixGGCIiIioxWGAISIi\nohaHAYaIiIhaHAYYIiIianEYYIiIiKjFkcNdAFEk69atGzp27AilUgkA8Hg8SE9Px/z586HT6c77\nvO+++y6mTp16xvb169fj4YcfxmuvvYZhw4b5tzudTlx55ZUYPXo0nn766fN+34bKzs7Gk08+iays\nLACAVqvFnDlzMHLkyKC/d2MsXboU2dnZZ3wnO3fuxKxZs9ChQ4czjvnkk09CVV6THD9+HCNGjECX\nLl0AAEIIJCQk4K9//SsuueSSRp3r+eefh9lsxg033NDgYz744AOsW7cOq1evbtR7EYUKAwzROaxe\nvRrt27cHAFRVVeG+++7D66+/jvvuu++8zldYWIg33nijzgADAMnJyfjwww9rBZgvvvgCRqPxvN7v\nfPz5z3/G1Vdfjddeew0AsHfvXtx0003YtGkTkpOTQ1ZHUyQnJ7eYsHI2SqWy1mf4+OOPMXv2bGze\nvBlqtbrB55k3b14wyiMKKw4hETWCWq3G4MGDceDAAQBAZWUlHnnkEYwZMwZjx47F008/DY/HAwA4\nePAgrr/+emRkZODqq6/G9u3bAQDXX3898vLykJGRgaqqqjPeo1+/fti5cyccDod/28cff4yBAwf6\nn1dVVeHxxx/HmDFjMHz4cH/QAIA9e/bguuuuQ0ZGBsaNG4dvvvkGgO//6AcNGoS3334bEydOxODB\ng/Hxxx/X+TkPHz6M3r17+5/37t0bmzdv9ge5V199FUOGDME111yD5cuXY/jw4QCAhx56CEuXLvUf\nF/j8XHU9+eSTmDFjBgBg9+7dmDRpEkaNGoWpU6ciJycHgK8n6t5778WwYcMwY8YMnDhx4hwtVrf1\n69djzpw5uOmmm/DMM89g586duP766zF37lz/P/abNm3ChAkTkJGRgRtvvBHZ2dkAgFdeeQXz58/H\n5MmTsWrVqlrnnTt3Lt58803/8wMHDmDQoEHwer148cUXMWbMGIwZMwY33ngjTp482ei6x40bB6fT\niSNHjgAA3nnnHWRkZGD48OG4//774XQ6Afi+96eeegoTJ07Epk2barXD2X4vvV4v/v73v2Po0KGY\nPHkyDh486H/f7777Dtdeey3GjRuHsWPHYtOmTY2unajZCSI6q4suukjk5+f7n5eVlYnp06eLpUuX\nCiGEeP3118Xtt98uXC6XcDgcYtKkSeL9998XHo9HjB07VmzcuFEIIcSPP/4o0tPTRUVFhfj222/F\nyJEj63y///73v+LBBx8Uf/7zn/3HVlRUiBEjRoi1a9eKBx98UAghxKuvvipuuukmUVlZKWw2m7jm\nmmvE1q1bhRBCTJgwQXz44YdCCCHee+89/3vl5OSISy65RKxevVoIIcTHH38sRo0aVWcdd999txg2\nbJh46623xK+//lpr36FDh0T//v1FQUGBcLlc4s477xTDhg0TQgjx4IMPiiVLlvhfG/i8vrp69Ogh\n1q9f7/+86enpYseOHUIIITZu3CiuvfZaIYQQa9asEdOnTxcul0uUlJSIYcOG+b+TQPV9xzXfc58+\nfURWVpb/9b169RLffPONEEKI3Nxccdlll4mjR48KIYT4xz/+IW666SYhhBCLFy8WgwYNEsXFxWec\n96OPPhLTp0/3P3/55ZfFwoULxeHDh8Xo0aNFVVWVEEKIt99+W7z33ntnra/me+nevfsZ29PT08Vv\nv/0mvv/+ezFgwABx4sQJIYQQCxYsEE8//bQQwve9T5w4UTidTv/zJUuW1Pt7uW3bNjF69GhhtVqF\nw+EQkydPFjNmzBBCCHHdddeJnTt3CiGEyMrKEvfff3+9tROFAntgiM5h5syZyMjIwIgRIzBixAhc\nccUVuP322wEA27Ztw9SpUyHLMjQaDSZOnIivv/4ax48fR1FREcaPHw8A6NWrF8xmM/bt29eg9xw/\nfjw+/PBDAMCWLVswbNgwKBSn/rp+8cUXmDZtGtRqNXQ6Ha6++mp8+umnAID3338fY8eOBQBcdtll\n/t4LAHC73bjuuusAAD169EBeXl6d7//ss89i+vTp2LhxIyZMmIDhw4fj3//+NwBf70h6ejoSExMh\nyzImTJjQoM9UX10ulwujRo3yn79du3b+HqcJEyYgOzsbeXl52LVrF0aNGgVZlhEbG1trmO10+fn5\nyMjIqPUTOFemc+fO6Ny5s/+5RqPBgAEDAABff/01fve736FTp04AgClTpmDnzp1wu90AfD1ScXFx\nZ7zn0KFD8fPPP6OsrAwA8NlnnyEjIwNGoxElJSXYuHEjysvLMXPmTFxzzTUN+t5qCCHwzjvvoF27\ndujcuTO2bt2KcePGoV27dgCAG264wf87AAADBgxAVFRUrXPU93v5/fffY8iQIdDr9dBoNP62AoD4\n+Hi8//77+O2339C5c2c8//zzjaqdKBg4B4boHGrmwJSUlPiHP2TZ91enpKQEJpPJ/1qTyYTi4mKU\nlJTAYDBAkiT/vpp/xBISEs75ngMHDsT8+fNRVlaGjz76CHfddZd/Qi0AVFRU4KmnnsILL7wAwDek\ndOmllwIANm7ciLfffhs2mw1erxci4HZnSqXSP/lYoVDA6/XW+f5RUVGYNWsWZs2aBYvFgk8++QRP\nPvkkOnTogPLy8lrzceLj48/5eRpSV3R0NADAYrEgJycHGRkZ/v1qtRolJSUoLy+HwWDwbzcajbDZ\nbHW+37nmwAS22+nPS0tLa31Gg8EAIQRKS0vrPLaGTqfDlVdeiW3btuGyyy6DxWLBZZddBkmS8Mor\nr+DNN9/EwoULkZ6ejscee+yc84k8Ho//exBCoGvXrli6dCkUCgUqKirw2WefYceOHf79LpfrrJ8P\nQL2/l+Xl5UhKSqq1vcaTTz6JZcuW4ZZbboFGo8H9999fq32IwoEBhqiB4uLiMHPmTDz77LNYtmwZ\nACAhIcH/f9sAUFZWhoSEBMTHx6O8vBxCCP8/FmVlZQ3+x16lUmHYsGF4//33cezYMfTt27dWgElK\nSsKtt956Rg/EyZMnMX/+fKxduxbdu3fH0aNHMWbMmEZ9zpKSEhw4cMDfA2I0GjF16lRs374dhw8f\nhsFgQEVFRa3X1zg9FJWXlze6rqSkJKSmpmL9+vVn7DMajWd97+YUHx+PPXv2+J+Xl5dDoVAgNjb2\nnMeOGTMGn332GUpLSzFmzBh/+19xxRW44oorYLfbsWjRIjz33HPn7Mk4fRJvoKSkJFx77bV48MEH\nG/W5zvZ7Wd93m5CQgAULFmDBggXYsWMH7r77bgwePBh6vb7B703U3DiERNQIt9xyC/bs2YPvvvsO\ngG/IYN26dfB4PLDb7fjggw8wZMgQdOjQAe3bt/dPks3MzERRUREuvfRSyLIMu93uH444m/Hjx2PF\nihV1Xro8YsQIrF27Fh6PB0IILF26FF999RVKSkqg0+mQmpoKt9uNd955BwDO2ktRF6fTiXvuucc/\nuRMAjh07hr1796J///7o27cvdu3ahZKSErjdbrz//vv+1yUmJvonf+bk5CAzMxMAGlVX7969UVhY\niL179/rP85e//AVCCPTp0wdbt26Fx+NBSUkJvvrqqwZ/rsYYOHAgdu3a5R/m+s9//oOBAwf6e97q\nM2zYMOzZswdbtmzxD8Ps2LEDjz32GLxeL3Q6HS6++OJavSDnY/jw4fj000/9QWPLli1Yvnx5vcfU\n93vZt29f7NixAw6HAw6Hwx+cXC4XZs6ciYKCAgC+oUdZlmsNaRKFA3tgiBohOjoad9xxBxYtWoR1\n69Zh5syZyMnJwfjx4yFJEjIyMjB27FhIkoQXXngBf/vb3/Dqq69Cq9Xi5Zdfhk6nQ7du3WAymTBw\n4EC89957MJvNdb7X5ZdfDkmSMG7cuDP2TZs2DcePH8f48eMhhEDPnj1x0003QafT4aqrrsKYMWMQ\nHx+Phx56CJmZmZg5cyYWL17coM9oNpuxbNkyLF68GI8//jiEEIiOjsbDDz/svzLpD3/4A6699lrE\nxsZi9OjR+OWXXwAAU6dOxZw5czB69Ghccskl/l6Wiy++uMF1aTQaLF68GAsXLoTNZoNKpcLcuXMh\nSRKmTp2KXbt2YeTIkTCbzRg5cmStXoNANXNgTvfMM8+c8zto3749Hn/8cdx1111wuVzo0KEDFi5c\n2KDvLzo6Gj169MChQ4fQp08fAEB6ejo++ugjjBkzBmq1GnFxcXjyyScBAA888ID/SqLG6NGjB/70\npz9h5syZ8Hq9iI+Px2OPPVbvMfX9Xg4bNgzbtm1DRkYGEhISMGTIEOzatQsqlQqTJ0/GzTffDMDX\nyzZ//nxotdpG1UvU3CQROBBNRNRIu3btwgMPPICtW7eGuxQiakPYB0hEREQtDgMMERERtTgcQiIi\nIqIWhz0wRERE1OIwwBAREVGL0yIvoy4srPuyyeYQG6tDaak9aOen88e2iUxsl8jFtolcbJuGSUw0\nnHUfe2BOI8vKcJdAZ8G2iUxsl8jFtolcbJumY4AhIiKiFocBhoiIiFocBhgiIiJqcRhgiIiIqMVh\ngCEiIqIWhwGGiIiIWhwGGCIiImpxGGCIiIhamW3bPm/Q615++Xnk5eWedf9DD93fXCU1OwYYIiKi\nViQ/Pw9btmxu0Gvnzp0HsznlrPuffvqF5iqr2bXIWwkQERFR3V54YREOHPgJgwenY/ToscjPz8NL\nLy3FU0/9HYWFBXA4HLj11jswcOBgzJlzB+6//wF88cXnsNmsyM4+htzc47jnnnkYMGAgxo8fgY8+\n+hxz5tyB9PTfITNzF8rKyrBo0YtISEjA3/++ACdO5KNXr0uxdesWvPfexyH7nAwwREREQfLu1l/x\n/cGCM7YrlRI8HnFe50y/OAlTh3c96/4bbpiJ9evfRZcuacjOPoqlS99AaWkJLr/8CowdOwG5ucex\nYMFDGDhwcK3jCgpO4rnnFuPbb7/BBx/8FwMGDKy1X6/X4+WXl2HZslfw1VdbYTZ3QFVVJZYvX4Wv\nv96Od9/993l9nvPFABOg2FGCgoJ8JEnJ4S6FiIioybp37wEAMBiMOHDgJ2zYsB6SpIDFUn7Gay+9\ntA8AICkpCVar9Yz9vXv39e8vLy/HsWNZ6NWrNwBgwICBUCpDe38nBpgAG498it0FP+CpgQsQrdaH\nuxwiImrhpg7vWmdvSWKiAYWFFUF/f5VKBQD47LNPYLFYsGTJG7BYLLjttplnvDYwgAhxZu/Q6fuF\nEFAofNskSYIkSc1dfr04iTdAoi4eXuHFUUt2uEshIiI6LwqFAh6Pp9a2srIyJCeboVAo8OWXW+Fy\nuZr8PikpHXDo0M8AgO+++/aM9ww2BpgAXYwdAQBZDDBERNRCderUBYcOHYTNdmoYaOjQ4fjmm+2Y\nO/dOaLVaJCUlYeXKFU16nyuvHAybzYY775yFvXv3wGg0NbX0RpFEXf1EES5Y3W52lx1/2f4ousV2\nxT197wjKe9D5C1WXKzUO2yVysW0iV2toG4ulHJmZuzB06AgUFhZg7tw78a9//bdZ3yMx0XDWfZwD\nE0Cn0iHF2B7HLDnwCi8UEjuoiIiI6qLT6bF16xb861+rIYQXd98d2kXvGGACfLAjC8UlGjijK3HC\nVgBzdPtwl0RERBSRZFnG3//+VNjen10MASy2KlgKfVcfZVmOhbkaIiIiOhsGmACpZiO81hgAQFY5\nJ/ISERFFKgaYAF1TTBCOaCiEzCuRiIiIIhgDTICkWC0MuijAHoMTtpOwuxzhLomIiIjqwAATQJIk\ndOsUi8pyIwDgWEVOmCsiIiIKjsmTJ8Jut2P16lXYv//HWvvsdjsmT55Y7/Hbtn0OAPj444348ssv\nglbn2TDAnObizrH+eTBHOQ+GiIhauZkzb0bPnpc26pj8/Dxs2bIZADBu3EQMGTIsGKXVi5dRn+bi\njnHwfuZbTfAIr0QiIqIW5tZbp+PJJ59H+/btceJEPh5+eB4SE5PgcDjgdDpx331/wSWX9PS//okn\nHsXQoSPQp09f/PWvD6Cqqsp/Y0cA+PTTTVi37h0olQp07pyGBx/8K154YREOHPgJK1eugNfrRUxM\nDCZN+gOWLn0Z+/bthdvtwaRJU5GRMR5z5tyB9PTfITNzF8rKyrBo0Yto377py5QwwJzmwo4xkNxR\nkN3ROFqeDSFEyG9QRURErcP6Xz/EnoJ9Z2xXKiR4vOe3EH7fpF64ruuEs+6/6qph+PrrrzBp0lRs\n3/4lrrpqGNLSLsRVVw3F7t3f45//fAtPPPHsGcdt3rwJqalpuOeeefj880/9PSwOhwPPP/8KDAYD\nZs++Hb/99ituuGEm1q9/F7fccjv+8Y/XAQA//JCJI0d+w7Jlb8LhcOCmm67HVVcNBQDo9Xq8/PIy\nLFv2Cr76aiumTp12Xp89EIeQTqPTqJCSqEeVxQi724ECR1G4SyIiImowX4DZDgDYseNLDBo0BF9+\n+TnuvHMWli17BeXl5XUed/ToEfTs2RsA0LfvZf7tRqMRDz88D3Pm3IFjx7JQXl5W5/EHD/6MPn36\nAQC0Wi06d05FTo5vLmnv3n0BAElJSbBarXUe31jsgalDWooJ+XkmqOPycLQ8G+10ieEuiYiIWqDr\nuk6os7ckmPdCSk1NQ3FxIU6ePIGKigps374NCQlJWLBgIQ4e/BmvvvpSnccJASgUvhEHb3XvkMvl\nwgsvPINVq/6F+PgEPPDAvWd9X0mSEHh3Rbfb5T+fUqkMeJ/muQUje2DqkGY2wWvzTeTlPBgiImpp\nBgwYhOXLl2Lw4CEoLy9DSkoHAMCXX34Bt9td5zEdO3bCwYMHAACZmbsAAHa7DUqlEvHxCTh58gQO\nHjwAt9sNhUIBj8dT6/iLL+6BPXt2Vx9nR27ucXTo0DFYH5EBpi5pKUYIuwGSUPJKJCIianGGDBmG\nLVs2Y+jQEcjIGI933vkn7rtvNnr06Ini4mJ89NGGM47JyBiPn37ah7lz70ROzjFIkgSTKQbp6b/D\nbbfdiJUrV2DatJlYvPgFdOrUBYcOHcTixc/7j+/duw+6dbsYs2ffjvvum40//WkOtFpt0D6jJJqr\nLyeEgnkL8sREA04WWDD35e2Quv4PXl0Jnh+yEFFKddDekxqmNdx+vjViu0Qutk3kYts0TGKi4az7\n2ANTB4UkoYvZCGe5AQIC2RYuaEdERBRJGGDOoqvZdOrGjrwvEhERUURhgDmLtBQT70xNREQUoRhg\nzqJLshGSSwOlR4csy7Fmu+yLiIiImo4B5ix0GhnmBD3cFhMqqqwocZaGuyQiIiKqxgBTj1SzEe4K\n352pOQ+GiIgocjDA1KP2PBguaEdERBQpGGDqkWY2wmszQhIK9sAQERFFEAaYeiQn6KFVR0GqNOF4\nRR5cHle4SyIiIiIwwNRLIUlINRtRVWaER3iQY80Ld0lEREQEBphzSjMb4bWaAABHOQ+GiIgoIjDA\nnEPgRN4jnAdDREQUERhgziHVbISo0kLp0fDO1ERERBEiqAHm8OHDGDlyJNasWQMAcLlcmDdvHiZP\nnoybbroJ5eXlAIANGzZg0qRJmDJlCtauXRvMkhpNr1EhOV4Pt9WE0soylFWWh7skIiKiNi9oAcZu\nt2PhwoUYMGCAf9u7776L2NhYrFu3DuPGjcOuXbtgt9uxZMkSrFq1CqtXr8Zbb72FsrKyYJV1XlLN\nRrgtNfNg2AtDREQUbkELMGq1GitWrEBSUpJ/2xdffIHf//73AIA//OEPGDFiBPbu3YtevXrBYDBA\no9GgX79+yMzMDFZZ58U3D8YXYI5YOJGXiIgo3OSgnViWIcu1T5+bm4uvvvoKzz77LBISEvC3v/0N\nRUVFiIuL878mLi4OhYWF9Z47NlYHWVYGpW4ASEw01Hqe3tOMtz81AUJCrj33jP0UOvzuIxPbJXKx\nbSIX26ZpghZg6iKEQJcuXTBnzhwsXboUr7/+Oi655JIzXnMupaX2YJWIxEQDCgsram3TKgCNHAVl\nlRG/lRzDiZNlUCqCF6CobnW1DYUf2yVysW0iF9umYeoLeSG9CikhIQHp6ekAgEGDBuHXX39FUlIS\nioqK/K8pKCioNewUCRQKCV2SjagsM8LldSPXmh/ukoiIiNq0kAaYq666Ctu3bwcA/PTTT+jSpQt6\n9+6Nffv2wWKxwGazITMzE/379w9lWQ2SlmKE11azHgznwRAREYVT0IaQ9u/fj0WLFiE3NxeyLGPz\n5s147rnn8MQTT2DdunXQ6XRYtGgRNBoN5s2bh1mzZkGSJMyePRsGQ+SNC6aZTfBmBlyJ1GFgmCsi\nIiJqu4IWYHr27InVq1efsX3x4sVnbMvIyEBGRkawSmkWqWYjhFMPhVfNO1MTERGFGVfibSCDTo12\nsTp4rSYUOYpRUWUNd0lERERtFgNMI6SlmOCqWdCOvTBERERhwwDTCL47U/sm8mZxRV4iIqKwYYBp\nhLQUE7w2EyDAeTBERERhxADTCCmJekQpNFC6DDhmyYZXeMNdEhERUZvEANMISoUCXZINqCw3otJT\nhXzbyXCXRERE1CYxwDSS78aONfNguKAdERFRODDANFJq4ERezoMhIiIKCwaYRkozmyAc0ZC8sm9F\nXiIiIgo5BphGMurVSIzRQthicMJeALvLEe6SiIiI2hwGmPPgW9DOCAA4ZskJczVERERtDwPMeUgz\nm3hnaiIiojBigDkPaSmnJvJyHgwREVHoMcCchw6J0VBDA4UrGke5oB0REVHIMcCcB1mpQOf2BrjK\njbC7HSi0F4W7JCIiojaFAeY8paWY4LH67kx9hOvBEBERhRQDzHlKNZsC5sFwIi8REVEoMcCcp7QU\nI4TDAEkouSIvERFRiDHAnKeY6CjEG3QQdhPyrCfgdFeGuyQiIqI2gwGmCdJSjHBZTBAQyK44Hu5y\niIiI2gwGmCbw3ZnaN5GXd6YmIiIKHQaYJkgLmMjLeTBEREShwwDTBB3bRUP26qBw63C0PBtCiHCX\nRERE1CYwwDSBf0E7ixEVLiuKnaXhLomIiKhNYIBporQUIzwV1cNInAdDREQUEgwwTZRmNkHYqify\nch4MERFRSDDANFFaiglemwmSUPDO1ERERCHCANNEsYYoxBm0gMOIHGsuqjyucJdERETU6jHANINU\nswkuiwle4cVxa264yyEiImr1GGCaQVez0b8ezBFO5CUiIgo6BphmkJoSeGdqzoMhIiIKNgaYZtCp\nnQFKjxYKj4ZXIhEREYUAA0wzUMkKdGpnhNtiQlllOUqdZeEuiYiIqFVjgGkmqWYTPFauB0NERBQK\nDDDNJC3FyHkwREREIcIA00zSzCZ4bUZASOyBISIiCjIGmGYSZ4xCjE4HyWlETsVxuL3ucJdERETU\najHANBNJkpBmNsFlMcLldSPXmh/ukoiIiFotBphmlBawHkwW58EQEREFDQNMMwqcyJtl4Yq8RERE\nwcIA04w6tTNA4dJD8qh5JRIREVEQMcA0I7VKiY7tDPBUmFDkLEFFlTXcJREREbVKDDDNrNaCdryx\nIxERUVAwwDSz2vNgOIxEREQUDAwwzcy3oJ0JEFyRl4iIKFgYYJpZgkkDo0YPqdKAoxU58ApvuEsi\nIiJqdYIaYA4fPoyRI0dizZo1AICHHnoIEydOxMyZMzFz5kxs27YNALBhwwZMmjQJU6ZMwdq1a4NZ\nUtD5FrQzwmUxocpThXzbyXCXRERE1OrIwTqx3W7HwoULMWDAgFrb77//fgwbNqzW65YsWYJ169ZB\npVJh8uTJGDVqFGJiYoJVWtClpZjw408mAMdxpPwYUqKTw10SERFRqxK0Hhi1Wo0VK1YgKSmp3tft\n3bsXvXr1gsFggEajQb9+/ZCZmRmsskIizcw7UxMREQVT0HpgZFmGLJ95+jVr1mDlypWIj4/HggUL\nUFRUhLi4OP/+uLg4FBYW1nvu2FgdZFnZ7DXXSEw0NOl4g1EL6T8GSF4VcmzHm3w+OoXfZWRiu0Qu\ntk3kYts0TdACTF2uvvpqxMTEoHv37li+fDleffVV9O3bt9ZrhBDnPE9pqT1YJSIx0YDCwoomn+eC\nRANOWI3IVZzAsbyT0Kl0zVBd29ZcbUPNi+0Sudg2kYtt0zD1hbyQXoU0YMAAdO/eHQAwfPhwHD58\nGElJSSgqKvK/pqCg4JzDTi1BWooRnoqa9WBywlwNERFR6xLSAHP33XcjJ8f3j/nOnTtx4YUXonfv\n3ti3bx8sFgtsNhsyMzPRv3//UJYVFGlmE7zVK/Ie5Yq8REREzSpoQ0j79+/HokWLkJubC1mWsXnz\nZsyYMQP33nsvtFotdDodnnrqKWg0GsybNw+zZs2CJEmYPXs2DIaWPy6YlmKE18YVeYmIiIIhaAGm\nZ8+eWL169Rnbx4wZc8a2jIwMZGRkBKuUsEiM0SJapYe3So+jFt+CdgqJ6wYSERE1B/6LGiSSJKFr\nigkuiwkOtwMF9qJzH0REREQNwgATRKkB68HwztRERETNhwEmiNJSTLwzNRERURAwwARRl2QD4IiG\n5FXiKAMMERFRs2GACSKNWkaHRCO8NhPyrCfgdDvDXRIREVGrwAATZGkpJrgrTBAQOGY5Hu5yiIiI\nWgUGmCBLM3M9GCIioubGABNkvom81SvyWnglEhERUXNggAmydrFa6JXRkFxaZJVnN+hmlURERFQ/\nBpggkyQJadUL2lldNhQ7S8JdEhERUYvHABMCaQEL2h3hgnZERERNxgATAqkBC9pxPRgiIqKmY4AJ\ngdRkI2A3AkKBrHIGGCIioqZigAkBbZQMc4IBwm7EcWseqjyucJdERETUojHAhEia2QRPhQle4UV2\nBRe0IyIiagoGmBBJSzFyHgzFKr18AAAgAElEQVQREVEzYYAJkTRzwJ2pOQ+GiIioSRhgQqR9vA4a\nKRqSW8MeGCIioiZigAkRhSQhzWyC22JCWWU5Sp1l4S6JiIioxWKACaHA+yLxxo5ERETnjwEmhAJX\n5M3iirxERETnjQEmhFLNRnjtJkBInAdDRETUBAwwIaTTqGCOM0I4DMi25MLtdYe7JCIiohaJASbE\nUs1GeCpi4BZuHLfmhbscIiKiFokBJsS6Bk7k5XowRERE54UBJsRSzVyRl4iIqKkYYELMnKCHBgZI\nHjV7YIiIiM4TA0yIKSQJXZJNcFeYUOwsgaWqItwlERERtTgMMGHA+yIRERE1DQNMGPhW5OU8GCIi\novPFABMGvom8JkBwRV4iIqLzwQATBtFaFdrHGAGnAccqjsPj9YS7JCIiohaFASZM0sxGuCtMqPJU\nIc92MtzlEBERtSgMMGFSex4Mh5GIiIgagwEmTAIDDK9EIiIiahwGmDBJSdBD7TUCXplXIhERETUS\nA0yYKBQSUpNN8FSYcNJeCJvLHu6SiIiIWgwGmDDifZGIiIjOz3kHmKNHjzZjGW0T58EQERGdn3oD\nzC233FLr+dKlS/2PH3nkkeBU1Iakmo3w2kwA2ANDRETUGPUGGLfbXev5t99+638shAhORW2IUadG\nksEEOPU4asmGV3jDXRIREVGLUG+AkSSp1vPA0HL6Pjo/aWYT3FYTHG4nTtoLw10OERFRi9CoOTAM\nLc0vLcUIbwXnwRARETWGXN/O8vJy/O9///M/t1gs+PbbbyGEgMViCXpxbUGa2QTvjlMr8l5pTg9z\nRURERJGv3gBjNBprTdw1GAxYsmSJ/zE1XYckPVQuI+BVsgeGiIiogeoNMKtXrw5VHW2WUqFAl/Yx\nOGo1Il9xEg63E1pZE+6yiIiIIlq9c2CsVitWrVrlf/6f//wHV199Ne655x4UFRWd8+SHDx/GyJEj\nsWbNmlrbt2/fjm7duvmfb9iwAZMmTcKUKVOwdu3aRn6Eli81xQiPNQYCAscsOeEuh4iIKOLVG2Ae\neeQRFBcXAwCysrLwwgsv4MEHH8SVV16JJ554ot4T2+12LFy4EAMGDKi1vbKyEsuXL0diYqL/dUuW\nLMGqVauwevVqvPXWWygrK2vKZ2pxuppNXJGXiIioEeoNMDk5OZg3bx4AYPPmzcjIyMCVV16J66+/\n/pw9MGq1GitWrEBSUlKt7a+99hqmTZsGtVoNANi7dy969eoFg8EAjUaDfv36ITMzsymfqcVJTTHB\na+OVSERERA1V7xwYnU7nf/zdd99h8uTJ/ufnuqRalmXIcu3TZ2Vl4eDBg5g7dy6effZZAEBRURHi\n4uL8r4mLi0NhYf3rocTG6iDLynpf0xSJiaGdoJyYCLQzxMJSpcUxaw4SEqJ5yfpZhLptqGHYLpGL\nbRO52DZNU2+A8Xg8KC4uhs1mw549e/Diiy8CAGw2GxwOR6Pf7KmnnsL8+fPrfU1DVvgtLQ3enZsT\nEw0oLKwI2vnPpkt7A3ZXmFChPoGfs48iSZcQ8hoiXbjahurHdolcbJvIxbZpmPpCXr1DSLfffjvG\njRuHiRMn4q677oLJZILT6cS0adNwzTXXNKqIkydP4siRI/jzn/+MqVOnoqCgADNmzEBSUlKt4aiC\ngoIzhp3aAt6ZmoiIqOHq7YEZMmQIduzYgcrKSkRHRwMANBoN/vKXv2DQoEGNeqN27dphy5Yt/ufD\nhw/HmjVr4HQ6MX/+fFgsFiiVSmRmZuL//u//zuOjtGxpKSZ4/3dqHszl7fuFuSIiIqLIVW+AycvL\n8z8OXHk3NTUVeXl5MJvNZz12//79WLRoEXJzcyHLMjZv3oxXXnkFMTExtV6n0Wgwb948zJo1C5Ik\nYfbs2W1ykbwLkqIhV8UAQoGjlmPhLoeIiCii1Rtghg8fji5duvgveT79Zo5vv/32WY/t2bNnvQvh\nbd261f84IyMDGRkZDS66NZKVCnRuZ0K2zYjjinxUeaqgVqrDXRYREVFEqjfALFq0CB988AFsNhvG\njx+PCRMm1LpiiJpXWooJR/NN8EaXIbsiF11juoS7JCIioohU7yTeq6++Gm+++SZeeuklWK1WTJ8+\nHbfddhs2btwIp9MZqhrbjDSzEZ6KWABAVjmHkYiIiM6m3gBTIzk5GXfddRc2bdqEMWPG4PHHH2/0\nJF46t1SzCcJmAsArkYiIiOpT7xBSDYvFgg0bNmD9+vXweDz44x//iAkTJgS7tjYn1hCFWI0JDpcG\nR8qPQQjBBe2IiIjqUG+A2bFjB/773/9i//79GD16NJ5++mlcdNFFoaqtTeqaEoMfKkywqE6itLIM\ncZrYcJdEREQUceoNMLfddhs6d+6Mfv36oaSkBCtXrqy1/6mnngpqcW1RmtmEzJ9ioIw7iazybAYY\nIiKiOtQbYGouky4tLUVsbO1/SI8fPx68qtqw1BQjvDtPrch7WbveYa6IiIgo8tQbYBQKBe677z5U\nVlYiLi4Or7/+Ojp16oQ1a9Zg+fLluO6660JVZ5vRqZ0BCmcMICTemZqIiOgs6g0wL774IlatWoW0\ntDR8/vnneOSRR+D1emEymbB27dpQ1dimyEoFOrUz4bjdgGzFcbi8bqgUDZprTURE1GbUexm1QqFA\nWloaAGDEiBHIzc3FjTfeiFdffRXt2rULSYFtUZrZBK81Bh7hwfGKvHMfQERE1MbUG2BOv4Q3OTkZ\no0aNCmpBVH1jR96ZmoiI6KwatJBdDa5JEhppZqM/wHBFXiIiojPVO7liz549GDp0qP95cXExhg4d\n6l9gbdu2bUEur22KM2pgUseg0q1mDwwREVEd6g0wn3zySajqoNN0NZvwY4UJxXIhyisrYIoyhLsk\nIiKiiFFvgElJSQlVHXSatBQTfjgQA2VsIY5ajqF3Ys9wl0RERBQxGjUHhkKn5kokAFwPhoiI6DQM\nMBGqU/toSI4YQPBKJCIiotMxwEQolaxEx8RYeB0GHLPkwOP1hLskIiKiiMEAE8HSUozwWk2o8rqQ\nZzsR7nKIiIgiBgNMBOuawnkwREREdWGAiWCpAQvacR4MERHRKQwwESzeqIFBjgU8MlfkJSIiCsAA\nE8EkSUJXcww8VhMKHEWwumzhLomIiCgiMMBEON9E3uphJM6DISIiAsAAE/ECF7TjPBgiIiIfBpgI\n17m9AZKdVyIREREFYoCJcGqVEhfEx0E49ThqyYZXeMNdEhERUdgxwLQAaWYTPBUmOD2VOGErCHc5\nREREYccA0wLUmsjLeTBEREQMMC1BKlfkJSIiqoUBpgVINGkQLcUCXiV7YIiIiMAA0yJIkoSuKbHw\nWE3It52Ew+0Id0lERERhxQDTQtTcF0lA4JjleLjLISIiCisGmBaCd6YmIiI6hQGmhejc3gjYaq5E\n4o0diYiobWOAaSGi1Ep0iIuDqNQiqzwbQohwl0RERBQ2DDAtSJrZBI81Bja3HYWOonCXQ0REFDYM\nMC1I4IJ2nAdDRERtGQNMC5KWwjtTExERAQwwLUpSjBY6EQd4Fcgq50ReIiJquxhgWhBJktA1OQYe\nmxG51hOo9FSFuyQiIqKwYIBpYWrui+SFF9lc0I6IiNooBpgWpquZd6YmIiJigGlhOicbIaoXtMti\ngCEiojaKAaaF0UbJSDElQFRpkFV+jAvaERFRm8QA0wJ1TTHCazXBUlWBEmdZuMshIiIKuaAGmMOH\nD2PkyJFYs2YNAGDPnj244YYbMHPmTMyaNQslJSUAgA0bNmDSpEmYMmUK1q5dG8ySWoVUc+B6MLyc\nmoiI2p6gBRi73Y6FCxdiwIAB/m0rV67EM888g9WrV6Nv37549913YbfbsWTJEqxatQqrV6/GW2+9\nhbIy9irUp9aKvJwHQ0REbVDQAoxarcaKFSuQlJTk37Z48WJccMEFEELg5MmTaN++Pfbu3YtevXrB\nYDBAo9GgX79+yMzMDFZZrUK7OB00njhASLylABERtUly0E4sy5DlM0//1Vdf4YknnkBqaip+//vf\n46OPPkJcXJx/f1xcHAoLC+s9d2ysDrKsbPaaayQmGoJ27ubSvVMi9tsMOK7MRUycBiqlKtwlhURL\naJu2iO0Sudg2kYtt0zRBCzBnc9VVV2Hw4MF47rnnsHz5cqSkpNTa35CrakpL7cEqD4mJBhQWVgTt\n/M3lgkQ9fjwWA3e0BXuyDqGLqVO4Swq6ltI2bQ3bJXKxbSIX26Zh6gt5Ib0K6bPPPgPgWxJ/zJgx\n2L17N5KSklBUVOR/TUFBQa1hJ6pbmtkEL9eDISKiNiqkAeaVV17BgQMHAAB79+5Fly5d0Lt3b+zb\ntw8WiwU2mw2ZmZno379/KMtqkbokGyFqrkTiPBgiImpjgjaEtH//fixatAi5ubmQZRmbN2/G448/\njsceewxKpRIajQbPPPMMNBoN5s2bh1mzZkGSJMyePRsGA8cFz0WnkdHekIASlxpHeGdqIiJqY4IW\nYHr27InVq1efsf0///nPGdsyMjKQkZERrFJara4pJnxrNaFUVYiyynLERJnCXRIREVFIcCXeFqz2\ngnY5Ya6GiIgodBhgWrC0lIAAw3kwRETUhjDAtGDJ8TpEueMBAc6DISKiNoUBpgVTSBJS28fB6zAg\nu+I4PF5PuEsiIiIKCQaYFi7N7LsvksvrQq4tP9zlEBERhQQDTAvnmwfju/qI82CIiKitYIBp4VLN\nvDM1ERG1PQwwLZxeo0I7fSKEW0YWJ/ISEVEbwQDTCnQ1x8BrjUGhoxjWKlu4yyEiIgo6BphWIC3F\nGLCgHYeRiIio9WOAaQV8d6b2TeTlPBgiImoLGGBaAXOCHuqqeADgPBgiImoTGGBaAYVCQpekeHgd\nehy15MArvOEuiYiIKKgYYFqJmvsiVXoqccJWEO5yiIiIgooBppXomhK4HgyHkYiIqHVjgGklUs28\nMzUREbUdDDCtRLRWhURtEuBR8s7URETU6jHAtCJdzSZ4bCacsBfA7nKEuxwiIqKgYYBpRWom8gLA\nsYqcMFdDREQUPAwwrUhawI0dOQ+GiIhaMwaYViQlUQ9VZRwA4AivRCIiolaMAaYVUSoU6JKYAK9T\ni6zybAghwl0SERFRUDDAtDI182AcbgcKHEXhLoeIiCgoGGBamTSuB0NERG0AA0wrk2o2wmurWZGX\nAYaIiFonBphWxqhXI0GVBHgVvDM1ERG1WgwwrVBaSgw8NiNyrfmo9FSFuxwiIqJmxwDTCtXMgxEQ\n+LHwp3CXQ0RE1OwYYFqhrikmeEvbAULCqp//jbWHP0AVe2KIiKgVYYBphVIS9ZCd8TDmDUU7XRK2\nHf8aT33/ErJ4VRIREbUSDDCtkKxUoHOyEQW5Ubj30tkYdsEgFNiL8PzuJdjw2ydwe93hLpGIiKhJ\nGGBaqTSzEQJA5qESTL7w95jb94+I08Rg87GteGbXK8i15oe7RCIiovPGANNKpXdPgqxU4O3Nh/D6\nhp9g1nTE/11+HwaaL0euNR+Lvl+MzUe3wuP1hLtUIiKiRmOAaaU6tzfi0VvSkWo2YufPJzF/xbf4\n6bcKTLt4Mu689BZEq3TYcOQTvJi5DCftheEul4iIqFGUjz766KPhLqKx7PbgXVGj10cF9fyhZNCp\nMahXMqLUSuw7UoKdP59EfrENgy++EEM6XoHSyjL8XHII3+R9D41Sg47GDpAkKdxln1VrapvWhO0S\nudg2kYtt0zB6fdRZ97EHppVTKCSM/V0nPHZrOtLMRnx3oAAL3tiJg0esuKXHNMzqOQNqpQprf/kA\nr/zwBoodpeEumYiI6JzYA3Oa1pqKa3pjNGoZ+7JK8G11b8zQ7t0w+ILLUeAoxIGSw/hf/vcwqg3o\nEG2OuN6Y1to2LR3bJXKxbSIX26Zh2ANDAHy9MRm/64hHb0lHWoqvN2b+GzvxS5YDf+x1M2Z0nwpA\nwpqDa/H6vlUor6wId8lERER1Yg/MadpCKg7sjdmfVTM3xo4RPS7BoAsuQ671BA6UHMa3+bsQp4mF\nObp9uEsG0DbapiViu0Qutk3kYts0DHtg6AyBvTFdU0z4/qBvbsyRoy7c3ec2TLnoalR5XXjzp3/i\nzf3/hM1lD3fJREREfgwwbVxyvB4PTe+H64d3hbPKg6Xv78drH/yMfnHpePjye9HF2BG7C/biiZ3P\nY3/RgXCXS0REBIABhuDrjRl9eUc8duvl6Jpiwq6DBZi/YieyswXu63cnrk4dC6vLjmU/rsQ/D6yD\n0+0Md8lERNTGMcCQX/s4nb83ptLlwbL39+P1D37GFYkD8WD6PUiJTsY3+d/hye9exOHS38JdLhER\ntWEMMFRLTW/M32+9HF07mLDrUCHmv7ETuTkKPND/bmR0Go4SZxle3vM61v2yAVUeV7hLJiKiNogB\nhurULk6Hh6b1w/UjLkSVy4PXPvgJyz84gCHth2PeZbORpEvAFzk78PT3L+GoJTvc5RIRURvDAENn\npVBIGJ1+AR679XJcGNAbU5gXhYf6z8WwDoNw0l6I53cvxcYjm+H2usNdMhERtRFBDTCHDx/GyJEj\nsWbNGgBAfn4+br75ZsyYMQM333wzCgt9NxHcsGEDJk2ahClTpmDt2rXBLInOQ7s4HR6c3g83BPTG\nvLHhMEalZGBu3zsQE2XCJ0c/x7O7XkWuNT/c5RIRURsQtABjt9uxcOFCDBgwwL/tpZdewtSpU7Fm\nzRqMGjUKK1euhN1ux5IlS7Bq1SqsXr0ab731FsrKyoJVFp0nhSRhVPoFeGzW5biogwm7DxdiwRs7\nUZpvwMPp9+LK5HQct+bhme8X49NjX8ArvOEumYiIWrGgrcQrSRImTJiAQ4cOQavV4tJLL8XAgQPR\nrVs3KBQKHD9+HIcPH4bJZEJxcTEmTpwIWZZx8OBBREVFoUuXLmc9N1fiDZ9orQpX9kqGXqvC/iPF\n+O5AAU4WV2LyZQNxUXwnHCz9BT8W/YSDJb+ga0wX6FX6Zntvtk1kYrtELrZN5GLbNEx9K/HKwXpT\nWZYhy7VPr9PpAAAejwf/+te/MHv2bBQVFSEuLs7/mri4OP/Q0tnExuogy8rmL7paYqIhaOduLaaN\nvQRD0zti8Ts/YPfhQhw+XoY/XnspXhi7AG9mvoNvcnbj6e9fxvTe12J016ugkJqns49tE5nYLpGL\nbRO52DZNE7QAczYejwcPPPAArrjiCgwYMAAbN26stV8Icc5zlJYGb1n7xEQDCgt5E8OGUAG4b8ql\n2Lr7ONZ9+Rue++du9L0wATeOuQYXG7vhnUPv+8JMViamd5+MOE1sk96PbROZ2C6Ri20Tudg2DVNf\nyAv5VUgPP/wwOnXqhDlz5gAAkpKSUFRU5N9fUFCApKSkUJdF50khSRjZ/wL8/dbL0e2CGOz5pQjz\n39gJV1F7/N/l96Fn/MU4WPoLntj5Iv6Xv6tBAZWIiOhcQhpgNmzYAJVKhXvuuce/rXfv3ti3bx8s\nFgtsNhsyMzPRv3//UJZFzSApVoe/TOuL6aMugsvjxfKNP2P1R8dwQ+o0TL94CgCBNQfexev73oKl\niv/XQURETSOJIP0v8f79+7Fo0SLk5uZClmW0a9cOxcXFiIqKQnR0NAAgLS0Njz76KD755BP84x//\ngCRJmDFjBn7/+9/Xe+5gdruxW6/pCsocWPnRARzKKYNeI2PaqItwYRcV/nlwHQ6X/YZolR7Xd7sO\nfZN6Neq8bJvIxHaJXGybyMW2aZj6hpCCFmCCiQEm8nmFwBeZuVi37TdUujzo0zUBM8ZciL1lu/HB\nbx/D5XWjf7s++MNF10Cn0jXonGybyMR2iVxsm8jFtmmYiJoDQ22DQpIw4rIOeGzW5bi4Ywx++LUI\nf/vH99CUd8VD6feis7Ejdp38AY/vfAE/FR8Md7lERNTCMMBQUCXFaPHnG/pixuiL4PYIrPjwZ7y7\n6QRu7XYrJqZmwOqyYeneN/Gvg/+F0+0Md7lERNRChPwyamp7FJKE4f06oFdqPFZ+fAA//FqEwzll\nmDaqO/7SvxtWH3gXX+ftxMGSXzCz+1RcGJsa7pKJiCjCsQeGQiaxujdm5uiL4PEKvPHhAaz/pAi3\nd7sDozsNQ4mzFC/veR3//WUjqjyucJdLREQRjAGGQkohSRjWrwMWzroc3TvFYu9vxXjszd1IsPfB\n/f3uRKI2HltztmPR9y/jmCUn3OUSEVGEYoChsEiI0WLe9X0wc0w3eITAPz46gI2fleNP3e/E0A4D\nccJegOd2L8GHRz6F2+sOd7lERBRhGGAobBSShGF9U7Dw1lO9MQtX7oG58nLc3ed2mNRGbDq6Bc/t\nehV51hPhLpeIiCII14E5Da/NDw8hBL78IQ/vfPErKqs8uDQtHn8Y2RlbTmzGt/m7IEtK9EnugSho\nEK2KhkEdDYNKj2h19WN1NPSyDkpF8G7ySXXj35nIxbaJXGybhqlvHRhehUQRQZIkDO2bgp6pcVi1\n6SB+/K0Yvxwvxw0jBqN3rx545/D72JX3Y/3ngASdSgtDdcCJVkdXP9afCj3VwcegjoZW1kKSpBB9\nQiIiak7sgTkNU3H4CSHw5d48vLP1VG/MjWO6IeUCHY7mnUCFy4aKKisqqqywuqyoqLKhwmWFtXpb\nhcsKm+vcdyxXSAoYVNGIVuv9ocdQHXp8PTu1g0+UUh2CT9/y8O9M5GLbRC62TcPwVgKNwF+qyFFU\n7sBbmw7ip6Ol0EbJGNTbDJVCgkGnqv5RI1p76nGU6tTwkcfrgc1tPxV0qqz+4OMPPdVhx1plhdNT\nec561ApVQM+OPqCHJzD4+Hp3olV6yIq20cHJvzORi20Tudg2DcMhJGqREkxa3P+HPviqujfms++y\n6329WqWAQauGQadCtE7lf+z7aYcYrQoX6NQwxPq2aaNk/xCSy+OC1XUq1FQE9OZYa/Xw2JBrzW/Q\nlVFaWQtDQO9OdPXQVU0A0qv0iFbpEa3WQy/roFKqmuV7IyJqCxhgKKJJkoQhfVJwRY/2gKzEseNl\nsDpcqLBXocLu8v04fI+t1Y9zi2xwub3nPLdSIVUHHV8PjsEfeqJg0EUjRqfGBVoVDKZTvT0KhQQh\nBJyeyureHFtAD481YGjrVBgqtBdD4NwdnVFKNaKrg41epfOFm5qgo9adCjzV+/UqXZvp5SEiOh3/\n60ctQpRKicREA6IaMOdWCIFKl8cfcKyOgLBTHXwCQ1CxxYnjhbZznlcCoNeqag1b+f7UIFprhEmn\nQgedCgaj2r9fJSvgFV7YXY5TvTjV4cbmssHqsvv+rLL5n+fbTsLlbdhKxBqlBtEqHfTq08ONHtHV\nIUhf3csTrdJDJ2t5pRYRtQoMMNTqSJIEjVqGRi0jMUbboGNcbu+pUHNaD4/Vv+3U9pMl9gb0qQBR\namXtHh6dCgadDgatCdFaFdppZOiiVdBrZERrVdBrVFCrFHB5XbC57LC6bLC6bLBV+cKN1VUTdGz+\n/TaXHbkVeXALT4M+q07W+nt4anp19OrTenwCeoF0Ki0UEpeMIqLIwgBDBEAlKxBriEKsIapBr/d6\nBazO6mGrmrDjqLuHp8JeheyTFfB4GzZfXlZK0GtU0Gt9wUavUUGviYJeGw29RkaiVoXOGhX0MTX7\nZOg0MpSyF3Z3Tejx9eycGYJObSt2lsIrzj3UVnN5emC4ia7u5dGrdEiuiIfHKUEra6GTtb4/VVpo\nlFG8TJ2IgoYBhug8KBQSjDo1jDo1AP05Xy+EgLPKUyvs2J0u2Bxu2AL+tDpdsDvdsDlcsNiqkF9s\nQ0OvE5QA6DRydfBRQa+VodfEQq9JhF6jQnxNIDKqEK1RQadRQqnyQigr4fQ6qoexAgJPdRCqGd6y\nuewosBedOZ/nt7PVI/kCjUoLnayBTtZBK2ugU2nPCDunP+ZQFxGdCwMMUQhIkgRtlAxtlIyk2IYf\n5xUCzko3rNWhxu6sCTwu/7bAAGR3umF1ulBiccLtafgKCVFqJaJrenu0Bug1sdBpVIjVyrigpjco\nVoYuSoYc5QGUVfAqKlEpHFBovCgoLYXd7YDd7YTd5YDD7ah+7oDD5UB+paXB83pqqBUq6FS66nBT\nd/Cpea6rFYQ0iGLvD1GrxwBDFMEUkgSdRgWdRgU0cD4P4OvxqXJ7qwOO+9SfztqB5/T9BWUOOAus\nDX4fWSnBoFNDo1ZDr9VDH+XrATJpZKRoVL4eoeo5PlFqCQqVGwrZDaF0odJbCYfLfir4uO1wuJy+\n0BMQfsoqy5FvO9mgK7lOfW8KX+iRtXX2/JzeM+Tbd6qXiL0/RJGPAYaoFZIkCVEqJaJUSsQZG3es\n2+MN6OlxVw9r1T3cZXO44XR5UGGrwokSe4OHu4BTvT46jQp6TYxvqEsrw6RRwVzTG2TwhSBdlBKy\n2gtJ6YJX4YLTc6q3x+62w3Faz4/D7fA/L6ssh6uRdzTXKKP8vT++3h2df/Kzv7cn8LGsg16lRZQy\nihOeiUKEAYaIapGVChj1ahj1Dbt1Qs2Kor7hLo9/KMvX23Oqp6fWtoDnhWUO5FQ17AoqAJAkQBcl\nB0xyNkGniYdeq4JRIyO5pufHcGoStDoKkGQ33MIJh6cSdld16AkIO4FDXja3HXaXA4WOIlR6qhpe\nW/W8n5pQ45/To9JBX93roz9te00wUilUHPYiagQGGCJqFr7hLt8VUY3l9nhhr3T7JzDXBJ86nwcE\noxJLJdyec19JVUNWKnyhRusLOdGaaOg0MdBpZBg1KrSvDjw6Y/WfNUNfsgtVohJ2twM2/7CXA/aa\nx9U9QXaXAza3Aw6XHaWV5Q1asdlfm6Q8LeDUHXTqCkhc0JDaIv7WE1HYyUpFwFVdjVPl8pzR02M9\nLeycHoQae4UX4LvUXlcTcKJk6DTR0GtioNOoYIiS0b5mOMwgVwc5FdRqAShdcKMSDo8TdpfdH3Bs\npwWfmkBkddlQ4Chq0CXuNdRKdZ09O7E50XBVCsgKJWSF7PuRZMgKJZQKGSopYHv1j7J6m+q0Y5Q1\nzyUle4ooIjDAEFGLpjOMlZ0AAAz6SURBVFYpoVYpG7yGT43Th7wCQ0/Nnw6nuzoAnQpC5xN+lIrq\n3qmomjk/Rug0cdBpfMNe/p6faNn/OqXaA4XSBbeiCs7q4a6aHp+6e4HsKHGWIted38hvsPHkgOCj\nrBWClP7Ao1LUDj21gpL/+ZnB6szX+LarFGrERBmhV+k4z4gAMMAQURvVlCGvmnV9asKO/fSgU+l7\nHLjdXul7XNzIS9wlANoo+VTvT82cn+phr+Tq3h6dXoZeI0MTpYRS5YaQXYiNU6O0rAIe4YHb64Fb\nuH1/et2+n1rPa/YH/pzrmJptHlS6KmudI1iUkhIxUUaYokyIjTIhJsqEmCgjYjQxvj+jTDCpjbyS\nrA1ggCEiaqTAdX1gatyxNZe420/r2fGHoUr3acHI5Z8flF9iQ5Wr4UNLNZQKCbKsgEqpgKyUICsV\nUMkKyEolZKUKKqUEpX+b7zUqpQKyrIBaqYBeqYAsS5AVvm2+433nOXVe32tUSgUUCglKJQDJA0kp\nIEleoOZH4YVX8sIrPLUC0LmCU5W3CuWVFpRWlqO80oKs8mM4cpZL6yVIMKijq8NNQMiJMiFWY4Kp\neluUsvFDlhQ5GGCIiEIo8BL3xg57Ab4Jz/5enTp6eAJDkReA3eGC2+OF2+2Fy+OFxyPg8nhRWb3d\n5RaNmgjdXJQKyR+WaoUgpQIqWQlZqfE/l5W+78yoV+OC6CjExKph0qugjKqCUDlh91hRVll+2o8F\nebYTyP7/9u41Nopyj+P4d3d2ttt2t91SrcqpcKCchABekRciqImoiSYSQW2trL4yMRxfaNDYVLEa\njUlJTIxCUKMmpMZQBa9R8RKtaWJREw2aRrxwiMcKpSDbdtvtXmZmz4vd3oTWcrBMR36fZLOzT5+Z\n/qdpyo9nnmcm0TVhDcWB4vGjOMPbodHgUxIo1pyfGUoBRkTEQwKGn/LSIOVTWOY+vMT9z+RyOWwn\nR9ZyRt4t2ykEHAfLzoecfAAaDT3DbVahz8i242BZo/tYf+hjj+w3vk8ylSVb+F6W5Uz51oWhoEE0\nXEQ0fA7RyD/5R2kRi8NByquChEocfGYKOzDEoJUYCTe96T7i6T7i6V4ODHZPeGzTb44PN2MCTkVR\nOeVFZZQFI5qX4wIFGBGR05zP5xu5tDST2IUglLUdMlmbvsEMvYk0vQNp4gMZ+gbS9A5k6B3It3Uf\nTU56vOKiANFwOdFwFdFwEQsjQaLhIkpLfBihNARSWEaSRDZxzIjOT73/mfC4fp+f8mDZsaM4weG5\nOfmgY2q5+19KP00REZmRDL8fIwhFGFBsMqssBOdM3N+yHfpGAs1osBn3OZHm4O+TB53SUIBoZDbR\n0n9yZriIf0WKKCsLECzO4AumcQJDZH1J+rP94y5Z/ZLoYn//fyc8btgsHb1cVRrBzoI5ZnWW6Q9g\n+s3jbo++m4WvFbaN0e3TbYm7AoyIiPwtBAw/leUhKstDk/bLWnYh6GQKozmFkJPI0DeYDzvx/jS/\nHR6c9Djh4ijR8FlEI0HmhYsoLzUpLrUJhDJgprCNIVK5ARLZBPF0H73pXnqSh+kaOAC//5VnPmp8\n4DHHbeeXox8/IA1//ZiANOZ4xzumaQSImGFXVn0pwIiIyGnFDBicES3mjD95QGo6a4+/TJVI0zs4\nZnsgw5G+IboOT/wAVB8hIiURouF5RCNFzAmbhEt8lEVNUukUfiOHz3Dw+Rz8Rn6VVn61lk3O55Dz\n2YCN47NxyL8sxyJbWJ2VdbLH3R7uk7SGxvWfDvPL57Jh6b+n5diTUYARERE5jiLToKqihKqKkkn7\nDaUt+gbzc3LihZGcP1666o4n+e8JPOn9WEbhlb8rtGn4Mc3Ce8BPMGDk2wN+Sgrv+XY/pmEUlsj7\nMAK5/Gs4OBkOfv9oiMJvjyx3pxCgHGxy2Ng5i2zOOiZALYjOO4nz+v8pwIiIiJyE4XsCnT1r4qAz\nfPPD4dGbUEkRh38fIFtY3p7NFt4th4xl51d/WQ4ZK9+Wf9kj/ce2p5JZslaajGWf0B2iT5TPZ2AG\nTEzDT9A0RsJTeEEl/GP6vu9EFGBERESm2dibH55TWTrlJe4nynYcMtnR5e3HDUBj222HbNYeCU/Z\nKYQmqxCyMlb+btRHelN/+XlMhQKMiIjI34Th91Nc5Gfy2T1/DzNr0b+IiIjIFCjAiIiIiOcowIiI\niIjnKMCIiIiI5yjAiIiIiOcowIiIiIjnKMCIiIiI5yjAiIiIiOcowIiIiIjnKMCIiIiI5yjAiIiI\niOcowIiIiIjnKMCIiIiI5/hyuVzO7SJEREREToRGYERERMRzFGBERETEcxRgRERExHMUYERERMRz\nFGBERETEcxRgRERExHMUYMZ44oknqK2tpa6ujm+//dbtcmSMTZs2UVtby9q1a/nwww/dLkfGSKVS\nrFq1itdff93tUmSMt99+mxtuuIE1a9bQ1tbmdjkCDA4OcvfddxOLxairq6O9vd3tkjwt4HYBM8WX\nX37JL7/8QmtrK/v27aOxsZHW1la3yxJg9+7d/PTTT7S2thKPx7nxxhu55ppr3C5LCrZu3Up5ebnb\nZcgY8XicLVu2sHPnTpLJJM888wxXXnml22Wd9t544w3mzZvHhg0bOHToEHfccQe7du1yuyzPUoAp\n6OjoYNWqVQDU1NTQ19fHwMAA4XDY5cpk2bJlnH/++QCUlZUxNDSEbdsYhuFyZbJv3z5+/vln/eM4\nw3R0dHDppZcSDocJh8M89thjbpckQEVFBT/88AMA/f39VFRUuFyRt+kSUsGRI0fG/TLNmjWLw4cP\nu1iRDDMMg5KSEgB27NjB5ZdfrvAyQzQ3N9PQ0OB2GfIHXV1dpFIp7rrrLurr6+no6HC7JAGuv/56\nDhw4wNVXX826det44IEH3C7J0zQCMwE9YWHm+fjjj9mxYwcvvfSS26UI8Oabb3LhhRdy7rnnul2K\nHEdvby+bN2/mwIED3H777Xz66af4fD63yzqtvfXWW8yePZsXX3yRvXv30tjYqLljJ0EBpqCqqooj\nR46MfO7p6eHMM890sSIZq729nWeffZYXXniBSCTidjkCtLW18euvv9LW1kZ3dzfBYJCzzz6b5cuX\nu13aaa+yspKLLrqIQCDAnDlzKC0t5ejRo1RWVrpd2mnt66+/ZsWKFQAsXLiQnp4eXQ4/CbqEVHDZ\nZZfxwQcfANDZ2UlVVZXmv8wQiUSCTZs28dxzzxGNRt0uRwqeeuopdu7cyauvvsrNN9/M+vXrFV5m\niBUrVrB7924cxyEej5NMJjXfYgaYO3cue/bsAeC3336jtLRU4eUkaASm4OKLL2bx4sXU1dXh8/lo\nampyuyQpeO+994jH49xzzz0jbc3NzcyePdvFqkRmrrPOOotrr72WW265BYCHHnoIv1//X3VbbW0t\njY2NrFu3DsuyeOSRR9wuydN8OU32EBEREY9RJBcRERHPUYARERERz1GAEREREc9RgBERERHPUYAR\nERERz1GAEZFp1dXVxZIlS4jFYiNP4d2wYQP9/f1TPkYsFsO27Sn3v/XWW/niiy/+n3JFxCMUYERk\n2s2aNYuWlhZaWlrYvn07VVVVbN26dcr7t7S06IZfIjKObmQnIqfcsmXLaG1tZe/evTQ3N2NZFtls\nlocffphFixYRi8VYuHAh33//Pdu2bWPRokV0dnaSyWTYuHEj3d3dWJbF6tWrqa+vZ2hoiHvvvZd4\nPM7cuXNJp9MAHDp0iPvuuw+AVCpFbW0tN910k5unLiJ/EQUYETmlbNvmo48+YunSpdx///1s2bKF\nOXPmHPNwu5KSEl5++eVx+7a0tFBWVsaTTz5JKpXiuuuuY+XKlXz++eeEQiFaW1vp6enhqquuAuD9\n999n/vz5PProo6TTaV577bVTfr4iMj0UYERk2h09epRYLAaA4zhccsklrF27lqeffpoHH3xwpN/A\nwACO4wD5x3v80Z49e1izZg0AoVCIJUuW0NnZyY8//sjSpUuB/INZ58+fD8DKlSt55ZVXaGho4Ior\nrqC2tnZaz1NETh0FGBGZdsNzYMZKJBKYpnlM+zDTNI9p8/l84z7ncjl8Ph+5XG7cs36GQ1BNTQ3v\nvvsuX331Fbt27WLbtm1s3779ZE9HRGYATeIVEVdEIhGqq6v57LPPANi/fz+bN2+edJ8LLriA9vZ2\nAJLJJJ2dnSxevJiamhq++eYbAA4ePMj+/fsBeOedd/juu+9Yvnw5TU1NHDx4EMuypvGsRORU0QiM\niLimubmZxx9/nOeffx7LsmhoaJi0fywWY+PGjdx2221kMhnWr19PdXU1q1ev5pNPPqG+vp7q6mrO\nO+88ABYsWEBTUxPBYJBcLsedd95JIKA/eyJ/B3oatYiIiHiOLiGJiIiI5yjAiIiIiOcowIiIiIjn\nKMCIiIiI5yjAiIiIiOcowIiIiIjnKMCIiIiI5yjAiIiIiOf8D+SA47GitcgGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "RidI9YhKOiY2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Make Better Use of Latitude\n", + "\n", + "Plotting `latitude` vs. `median_house_value` shows that there really isn't a linear relationship there.\n", + "\n", + "Instead, there are a couple of peaks, which roughly correspond to Los Angeles and San Francisco." + ] + }, + { + "metadata": { + "id": "hfGUKj2IR_F1", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 365 + }, + "outputId": "9080437a-4169-4f52-ec7f-7a02a007f3f4" + }, + "cell_type": "code", + "source": [ + "plt.scatter(training_examples[\"latitude\"], training_targets[\"median_house_value\"])" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt8E/ed7/2ZGWlGliVfZMtcbO62\ngXAzhhASQgOOKUm22dLNhZRNsknTbfdp06dnT9v0kmwuPc2z3c3Zvrrp9rS7OUlDk7JNDzkPT85u\nWwKBkAuXBGwwJIBtaAIYg2VbtiVLGkkz8/whJCR5ZjQajWRp+L1fr90SazQzkmbm+/vePl9KkiQJ\nBAKBQCAQJhV6sk+AQCAQCAQCMcgEAoFAIBQFxCATCAQCgVAEEINMIBAIBEIRQAwygUAgEAhFADHI\nBAKBQCAUAZbJPLjH45vMw5uK6mo7vN7AZJ+G6SDfa/4g321+IN9rfjDqe3W7nYqvEQ/ZJFgszGSf\ngikh32v+IN9tfiDfa34oxPdKDDKBQCAQCEUAMcgEAoFAIBQBxCATCAQCgVAEEINMIBAIBEIRQAwy\ngUAgEAhFADHIBAKBQCAUAcQgEwgEAoFQBEyqMEih4CMCPCNBQJJQxlkw4A3CbmNwpm8M4UgUfETE\nqoVT4Koswyf9o+gbHEddVRmqHBzc1XZwVga+QBgXBvxoqHPAaWc1HXPUz6OMs2BwJIhhHw+aAv50\ncQyXRgIot1lRX1OOjz8ZQtcZL8pYoHX+FFx/3VSM+Xn84YNPMDAYgrPcApalQFMMGuockCQJJz/x\noqqcwx03zsawj0f/sB8XLo/j04FxxfOxMsAsdzkqKmywcxa4K8swZ3olqhws3NV2hCMCus95caZv\nBCc/9aKxvhK3rZ6NmsqyCZ+p0sGBszKKfzOaQhyjkCR/HgDweAMARcFdVZb3z/fppVHsOnwBY74Q\nvP4wBFHEwplVOHV+FP3DIZSX0XDarbg0xAMA5k21Y8HsWjQ1VOK94/349JIPn1k2De3Xz0o51/5B\nP9491of+oXEcOzuS+PuN17lR5WARFSmMhyKorbAhHIliep0Tbatm5/Wz6sVs1xuhdKAkSZLUNjh0\n6BC++c1voqmpCQDQ3NyML3/5y3jssccgCALcbjeee+45sCyLN954A1u3bgVN07j33ntxzz33qB48\n30pdgijit2/14P3jlxAKC7r2wVpoWC0UAiEBEgCaAurdDjz+YCtYy8T1jCCKeG1PLzq7PRga43P8\nBJMPZwWe+/rNeOO9T9DZ7cHwGA9XBYdlTbWgABztGUz8bXmzG5vbGsHQxgRekr/LfB0jE26307Dr\nNP3a4KwUooIEQYy9bmMZrFkyFffd2mT45xsN8Pjb5983dJ+rF9Zg84YF+NbP3oeo+hRRZnqtHU8+\ntFL2Xio0xXC9GYGR1yzhKkZ9r2pKXZoM8m9+8xs8//zzib99//vfx2c+8xncfvvt+MlPfoKpU6di\n06ZN+MIXvoDt27fDarXi7rvvxquvvoqqqirFfef7otm2uxu7D1/Iy75n1DnwzJdWFfSYk4WFiRkO\nLbSvbMCW9mZDjqv0XRp5jEwY+XDTem3k4/M98uM90GkzVaGAnPerdC8VmmK43oyAGOT8UAiDrGvZ\nd+jQIdx6660AgPXr1+PAgQM4duwYlixZAqfTCZvNhtbWVnR0dOg7YwPgIwI6uz1523+fxw9fIFzQ\nY04WWo0xAHR2D4KP6ItGJKP2XRp1jEKSzbXR2e0x9PN9emk0L8YYyN0YA8AFmXup0JjteiOUJpri\nRL29vfibv/kbjI6O4tFHH0UwGATLxvKoNTU18Hg8GBwchMvlSrzH5XLB41F/AFVX2/OmD9o/OI7h\nPIaMRQnwhUXMnXV1tdM/OI5hX+mHqXPB6wuBYa1w15bntB+179KoY2hFbUWrlWyujWEfb+jn+89D\n5w3ZT76QZO6lQlNM15sRGHHNEiaS7+81o0GePXs2Hn30Udx+++04f/48HnzwQQjC1dWiUsQ7QyQc\nAPI6kUSICHBVcHnL49IU4GTplBCGEBHgcubvmKVAtdMGIRzJObSj9l0adQwtGBWmyubacDk5Qz/f\n4lkVeN2QPeUHSuZeKjTFcr0ZAQlZ54eiCFlPmTIFd9xxByiKwsyZM1FbW4vR0VGEQiEAwOXLl1FX\nV4e6ujoMDg4m3jcwMIC6urqcT14vnJXB8mZ33vZf755YbZ3vY04WFobSvO3y5lpDKlPVvkujjlFI\nsrk2lje7Df18s6ZWQvsvmB1G7LdB5l4qNGa73gilSUaD/MYbb+DFF18EAHg8HgwNDeEv/uIvsHPn\nTgDAm2++ibVr12LZsmU4fvw4xsbGMD4+jo6ODqxcuTK/Z5+BzW2NuHVFPWys/puJs9AotzGJBw9N\nxYpQHn+wVfGY7SsbUFPB6T5mMcFZgZ98Y82Vz2QDTQE1FTa0rajHrSvqU/7WvrIBm9saDTv21e8y\nf8coJMmfhwLAWWkwSXegjWVw64r6vHy+H/9fqw3f5+qFNfjJ/70mJ6M8vdaueC8VGrNdb4TSI2OV\ntd/vx7e//W2MjY0hEong0UcfxcKFC/Hd734XPM9j+vTp+Pu//3tYrVb88Y9/xIsvvgiKonD//ffj\nz//8z1UPXqiwilwfMsdS+F9vncWnl0cRigKVdgat86dg5QI3+ocCeetD7j3vxcGPL8M7Hi3AJ5dn\n9UI3ptWUkz5kDeQj/DdZfci5dgBYKKDKyeKWlukpfcj/8noXOnoGM7z7KlNcHG6/YRbaV89FODi5\nxVxylHofMglZ54eiaHvKJ5N50WRqcTD6pkzvcWStNPiImPN+s+Uzy6bioduvK/hxSxUzPdwEUcS2\nXd3o7BnEqD+MaieHBbOqcfe6eQhHBFQ6OLy+74yi0ZZr/+EjAh7/twMY9mVnWNtXNuCbX1xhmu+2\nmDDTNVtMFMIgT343fgFIN65qLQ4dpz0QRAldvcYKXry2pzflQadmjI3o7VQiwIsY8AZKdvVP0Ed8\nQdh1Zgij/jBYC40AH8H+E5dw+pw3cY1vbmuEKEnYnySmExcskQvdDo+FsjbGQKyVKBSevCgRgVCM\nmNogKynvrF9er9gSNezjsbejL/HfQ2N8wpDqFQfItj85nyGLw6cGcPjUAFxOFq3z60pOhYigjwkL\nwujVBWH6NX7/hvm4Z11jIpReWc4iyEcRFaSUnDcA7D6sr6XK6wvBO8ab+wFEIGSJae8HPiLglZ2n\nsf/EpcTf4g8eQZQUW6JoCrIygJ3dg7jrlnm6vMpRP5/Xnmg9DPvCOS80CKWB1gVh8jXOWRlMqy1X\nlZLkIwK6zgzpOqdqpw3VFRx8o0Fd7ycQzIjpXCNBFLFtdzeeeOFgijFOpqt3CEvn1ci+pqTJ6/WF\nMOrXZ1QrHRy4HCq98wlRITI/WheE6dd43KseGuMh4eqC9rU9vVntV47lzbWwsab1BwgEXZjOICc/\nRJTw+kJoXzkjpT2JvtK7QSv0cFQ7bYmqWH1MWu2cKrksNAilQaWDg0tDG16104YyzoILAz6c7R/N\nKCWpdb8A4CizkFYiAiEDplqiag3NVTttcFXYsKW9GYIgYm/nxYRnrOQh5yIOMOrnEQrnr6JaKcyu\nhWonl+NCg1DscFYGS+bV4O3Oi6rbsRYa3/3l/ozXanwRV1dtx/Jmd8ZWKpoCnnroegiiRIoJCQQV\nTOUhaw2hxY2rWg6MpmKSfkas6CsdXF6FQvQaYwAYD0Xw+r4zEMTCt2AR8k88hXPgRL/iNjaWAUMD\n/cMBTQvH5GhRXExDTXzHbrOgprIMdVd6+gkEgjym8pDjITSlcLXLyaF1vjthXNUMuCQB376vBXPr\nK3N+iMRl+YpxLGMoLJLirkkmn0IU6dXV6bBWOutZ4cnRIoamcdct83D41IDifsKRKAJ8FHbOMkEU\nhUAgXMVUBlnN8K1ZPBX3b5yf8sBTM+CuCpshxjhOfBHQ2T0Iry8E1sqoPggpAGtbpuHEmeGCTJDK\npYqcoI8AH8G2XT049ekwvL6wYT3vcbSkcMIaxWkoxO6J5c21E6JFo34eI37lXuRwFNi2qxscy+Bo\n9yBG/LGK7TXL6nHnjTNJ2x2BcAVTGWRgouGrdl59iEQFKUUUQ82AL53nMtQ4MTSNLe3NuOuWefB4\nA/jn7V2qBrmhzoGHbluYkP384csfIJrHYujkvCAhv8T749/r6k+5BozoeU/GyHa7lQtq8aU/WwQA\nGBoNpXjzZZwlYx3DoY8vQ0jaYGiMxxvvnkUgGCaRGQLhCqYzyMmGLx4aszCUYj9l3IB3nPYk9KZF\nCeg6M4Rtu7sNF87grAxYK6P6oKQo4KHb54OPCImHXj6NMWBEFTlBK5nCyEZFKzKlcIDYgAstEq7d\n50fxu729sgp2QT6asY5BUNiARGYIhKuYNlbEWZlEEYlaP2XcgC9rqgVwdZWf3nNpJJUODlUqxk+S\ngB9tPYInXjiIbbu7IQj5L7hKLnQb8AZIb3Ke0BJGNqoVTW2koI1l0L6yAa0aR0KOjkewt6NP9h7K\npWhxmLTdEQgJTOchp6P2AIyvzgGgq1d+Wk0+VvCclUFLc22KRGc6yQ+9cB7d45orecG7183Ftt3d\niqpMBGMY9fOqHitgbLQiPYVT5YgNlNiyoQl2zopf7zyV0/7j98fSRvXrWYmqctJ2RyDEMb1BVsuj\nJXsimbYxOre6pb0JvRdGcX7An3Hbrl598oRq1LvL8Tefvw61lbEoQvr0K6PzmYQYWvKtufS8p5Oe\nwinjLAjy0YT05XGd0pdxvL4QhsdCCPH6BkW0GPhZCYRSx/QGudLBodrJyk6kqXJcXZ0r5drylVtl\naBpPPrQS23Z1o6Pbg9HxiOK2I1em84SjxoWu+zzj2He0PzFqMlMUgTw0jSFTvnXNYvmpSrliYSjs\nPnIhJQIyf2Z1zkVf1U4bdh8+jwMfXVbcRmkBMnd6Bba0N+V0fALBTJg+FslZGZSXsbKvlZdZU6qt\n5TDSW5GDYWhY0kfoyGCkMY4Tl0DUGkUg5E6lg4PLKX89VjtY3L9xfl5SBHJ1FPtPXALH5naspY01\nGQdMyBnjenc5fvJfbiHpEAIhCdPfDXxEQCAk730GQpFE8VJccaimwpZ3zd144dS2Xd0ZdbfzSdzY\nqmkSk+prY+GsDFrn18m+tmJBXV4Wf2oRkGwlXW0sk3J/tK9o0HX9hngBkQIUKxIIpYTpQ9bq3h+f\nyA/LtUsZ/XBMn8882cSNrVo/dr4jBNciar3y+cDIfmQ7Z8EPHlgBd1VZoirfxtJZG/ahsRAuDQVQ\nblGY5kIgXIOY2iALooidH5wDRcVaidKR8/7i7VKAfklDXyCMCwN+NNQ54LRfDU9m6j8tNMnGdnNb\nIwRRiikpjfOoKufQkkcjcS1TiMVfMlr6kbUy7OPB0FTK+crdW1r44YsHsWxeDankJxCuYGqD/Nqe\nXuxVmXCj5P2le7JaW4DC0Sie/XUH+jx+iFKsmKXe7cDjD7ZCkihNk6gKAWelcfPSaQljG/+8x3o8\n8PrDoAB4/Ty6egfB0BR5YOaJ5MVfvo9jpJb67iMX8MBn50MQRbyy87QmYRE5PN5gXiv586kRTiDk\nA9MaZLW8GU0BtyyvV/T+0j1ZrS1Az/66I6WNSZSA8wN+PPvrDnz9C4uLIkwNAHxEBEVRCSOb/nnj\nDg9pfTIP6WHyynIWXhX9aTW6eofArxfw+r4z2H/iUs7nZnQlv94FNYEw2Zj26sw0yWnj9TNkb85M\nLUBKCla+QBh9Hvme4j6PHwxNodIhX107GXSc9oCPCJqUo9Q+N6E0iIfJn3xoJb61uQVf+fNFuvfl\n9YXg8QYMi/gYXcmvpsxHIBQzpvWQM01yUqoc1tICJBdmvDDgV+wvFSVgwBtEeZlVdSpOIRn28Xjl\nj6fwZzfNzui5k8ETpU+611hRbtW9ryoHB1CUYREfIyv5SU89oZQxrYest7dYbwtQQ50DtELBKE0B\nddVlGBwJZD7xArL/o8vYfeSC4ueNQ1qfSp90r1FNiCYTAT6KvR2ZrxuttDTVGGYkSU89oZQxrUEG\n9PUW6zXkTjuLerdD9rV6twNBPgo+orMcNY8c6xnE0nk1qtskf24yfKI4UftdtKQlsiEUFrC38yLs\nNv1edjJG3hWkp55Qypg2ZA3oay8RRBGSJMHGMolZtTaWwU1LMksaPv5gq2KV9YA3ZNjnMhKvj8eN\ni6eoVqPfsXoWKZQpUrT8Lkb2ISczHoxgfWs9jl0ZyaiXYz1DuGedYIiXnI+eelKtTSgUpjbIcbJp\nL3ltTy/eOpI6tSYUFkAnVSUrwVoseOZLq2T7kN1VZSlGvliodnIIBNUHA/QPjuP3vYNk+EQRoqUj\nwMg+5GRG/Dw2Xj8Dm26eg+/84n2EdUaAhsdCONs3irn1lYYYPKOEV8gilFBorgmDrBWjCkKcdhYL\nZ7tS/sZZGaxZMnWCsZ9sWue7MWd6peIAgHj+mxTKFB9ar1ej+5DjxEPAo35etzEGAIoC/vtvjxpm\n8IwSXtHb/kgg6OWaWOZpzXvmsyBEEEVIAGxJYv6shQZrmZyfgKaAthWxXuxM+W9BlEihTBGSzfW6\nua0R65dPVyw81MPSxlgxVhlnQS67FSXkpT0pHhnTG6bW0/5IIOSCqT3kbENOaqG9XAtCXtvTiz1p\n3nE4KkLDoCfDYSjg2a+sBgBEBQkMrZ7/liSq4OMpCZnJ5nplaBoPbFwAUBT2dhgTpVmzZCoEUcTv\n9vQaWphVDFEXve2PBEIumNogZxtyyteQBbXVdnzgDQVjq01VoYCnf/Uh+LCQskhRyn8DIMMnipBs\nr1dBFEFR0DUMQo7ntnWirtqeok5nBMVg8PK5OCcQlDBtyFpvyCkfYxi1VLkWsiFKEGOFanJhQqed\nxdz6yittWle/o0KOpyRoJ5vfJR6lMcIYAzEJVqONMRArNJxsgzeZM9IJ1y6m9ZD1hpyigoT2FQ24\n86bZCPJRQ1od8lXl6nJysNssuOAZz3lfnd2D2LR2Dna8+yfFEH8hJxQRtKH1dzG6Fzmf2G3Wori2\nCj0mk0AwrUHONuSklm/OlXxVubbOj53fS78/iQMnLue0L68vhG27elKGBciF+As1oYiQHZl+l3z1\nIueDsXEevkA4JWUyGZBFKKHQmDZknW3IKd+C9JvbGjHNlb0hqyy3gqZi4iQ2NnbOVQ4W65dPT3iu\nn18zJ+fzq3ZyOPXpsOxrpKq0uNHSRaCmYFVsjI5H8PRLH2Lb7m4IojHh9VzIpVqbQMgG0xpkALh7\n3VzMSNKYpilgRp0Dd6+bm7JdIVocooKEcDT7/dA0jRsXTcV/+/IqtDTVoqqcxag/jK4zQ3htTy/C\n0Sh+f/CTnM9vwcxqeH3ygy9Ia1NxIogitu3uxhMvHMT3//UgnnjhoKIRU1ugFhqapkBRgFqrsddP\nJjQRrj1MbZC3v30W55OmMMXnE7/2VupNblT/sZqnojdk6PXxeP/EJXz3fxzAwY8uY2Q8nOLBf+tf\n9uOdY/pn0tZUcGhf2YAvbmgmGsAlRrZRneQCMAoAZ83t9q+p4LD6uilZv89hY/DMl1bhttWzM25L\nojOEawnT5pDVvN59Ry8CFIUt7U1gaDrnFgct/c5qx+CsNG5cPBVdvYMYVvBSlQJ34yF12ctMLJ7n\nwpb2ZgiiCLvNKnt+pKo0v+jRStajKpeeE9354XndPcmrr6vDX92+EOGIgIMfZ1e/4AtEwVpofGXT\nEoTDURw+NaA4lrQYWqAIhEJhWg9ZzSMVJWBvR1/Ck8i1xUHJU9m2qzuxjdox1i6bjgc3LsB/ubcl\nJ8UjPRz6aAB8RMBre3plW1hm1DlIVWmeyCbknE4uUZ24ulbHqQHd537q3AgAIMhnvyCsdrKodHBg\nmNgC4ZkvrUK1wqKXRGcI1xKmNchailiSw2F6+2wzeeKvvHk68YDNdAx3VVnBC29CYQF9Hp/iZwiE\noogKxTc20gzkUkiod8ygIIp4ZecpPPE/D2E0oH8m8og/jOGxECodHCrLsxvDWF7GpixynXYWKxaQ\nnl8CwbQhay2tRsnhML0tDlo8cYamsKW9OeMxOCuDBTOr8f4J/TlhPYyNRxR7pEnIMD/kOshEj6qc\nIIr44cuHDRPz2H3kAh747HwsnOXKKmwdCEUm5IVJzy+BYGKDDMRuckEQse/oRdlJRnKKQNn22WoR\n/Uh/wKYfIzmHeNe6eQU1yDaWwbEzQ4qvk5BhfjBCKzlbI7Ztd4+hylpdvYPg1zfi3rbGrAzy8BiP\nUT+PhqS/kZ5fAsHkBhkAGIZWFIo2QhEoW088meRisKExHlUOFvNnVOZ0PtmyelEdjqsY5KXzXOTB\nmAeM0ErOxojxEQFHuwdzPu9khq4YVn8ou9C31ULDoSD6QYRnCNcyps0hA1dzdEo1MuPBiaEzPWQa\nbaf0gE3OIQKxvNyhk4WRN6QpYP3y6diwcqZqO1b7yhkFOR8zotYGp1bkZ7dZYGG0l/dpEa4Y9fMY\nMbiXnKaAMs4C/7h8hbQS4aiIHe+eNfRcktE6bpVAKDZM6yFr0e71+nl4RoJoUJgFnLwvNQ8k02g7\nuZweHxHQcVp/lWuu3HDdFGxcNRNlnEXRU6upsMFVYZuEsytttI793NzWiNPnRiaEkc8P+PHanl7Z\niWR6cdit4FgGobBxRkqUYlXW9XXOrN/b2T2IUDi3lr10sh23SiAUG6Y1yJomLEnAT393FK3z62Rv\n2mxv8FhfM6WY00s27KN+XrHnuBAcPzuEgx9dhquCI/3HBqN17GdUkBBQCPcaMRM4+Xr7f985a6gx\nBoCqciscdhbf++X+rN/r9YXgHeMNfQBlO26VQCg2TGuQtU5YGvaFFW/abG9wpZxevN802bAvnluT\n60fMCX8w5p0MjfEYGuMxo86BQChKKlxzJJvq6VwLu5QiN+m1CZXlVvhyaHFSooyz4nd7uhPXUjZU\nOzlUV3DwjQYNOZdcq9YJhGJAk0EOhUL43Oc+h6997Wu48cYb8dhjj0EQBLjdbjz33HNgWRZvvPEG\ntm7dCpqmce+99+Kee+7J97mrku2EpfSbNsBH8F5Xv6Zt5Y6d/CCVM+z7jl7U+lEKQiAUxZMPrTRs\n5OS1SjZGtoyzoNLByqpUZeolVovcpF9vo+PGG2MACEWiOKCzI8DC0LCxFvgMOhcjqtYJhMlGU2Ll\nF7/4BSorY9W/zz//PLZs2YJt27Zh1qxZ2L59OwKBAH7+85/j5ZdfxiuvvIKtW7diZGQkryeuhc1t\njZhRp54fjpOubrRtV49iiC9bfWullbtSEdhk4PWFEOSjZKpNjmgR7IhHTH748oeKkpFq6QI1QZFC\nzj32+sLQWzd12RvEL14/Ztg0J71CKQRCMZHRIJ85cwa9vb1Yt24dAODQoUO49dZbAQDr16/HgQMH\ncOzYMSxZsgROpxM2mw2tra3o6OjI64lrQS1Hl07yTctHBMVRhLFtJ/YvK5FJOKRYqHJwKZ9fqUqV\nVLCqo0WGNb26PplMCnGZQrOekWDGNI1R5Lqe/P3+Twyb5pSr/C2BUAxkDFn/wz/8A/7u7/4OO3bs\nAAAEg0GwbKyHsKamBh6PB4ODg3C5XIn3uFwueDyZV+nV1XZYLPm7UfoHxzU/nNYsm46G6VWJ96kV\nXC1rrktsmwlnZRlsnEVW87eMs2D9igbsPXIeQX5yDVyVk4Or2o5/23ECXb0eDI6G4K4qw+rF0/Cl\nOxcBAF76Px/h4Il+eEaCKa8xjLkrWN3u7KqIH713OexlLA6e6MfgSBC1Sd9VRBDRpdD3XVNpwz//\n13Wqi73Ytakcmq2uLgdrpRCO5H+1Z8QRus4M4at3lcHGqj+KQuEovGM8qis4xW3VvnezX6PpZHvN\nErSR7+9V9S7YsWMHWlpaMGOGfC+qJMnfkkp/T8frDWjaTi/BQBg0pe6J0hRQ73bgjhsa4PH4IIgi\nfpM0FCIdG8vgL9bOgcejLfvFRwRIknxYThRFbFzZgEMn+ifdIF8c9OPBZ3aCj1w91wFvEG+8exaB\nYGxxkpyXTH7NzBWsbrdT82+dzKY1s3H7qhkpRVfDw+MY8Abg8coXMnnHQrhwcQRhlVynEBHgcioL\nikRCYUQKYIxpGii3WeAL5Na6NDgSxJlPhhTzu9l2Oih979cSeq9ZgjpGfa9qRl3VIL/99ts4f/48\n3n77bVy6dAksy8JutyMUCsFms+Hy5cuoq6tDXV0dBgevqgANDAygpaUl5xPPlSAfzRgWjs9I3v72\nWWxpb8Zre3qxr1O54OrmpdNg57QXp4/6eYTC8gaZj4h4+Y+nChZiVEPpHAGg47QHlEJ8klSwKiOn\nOpWrQlcmDevtb58xxHPNhCgC5TZrzgY502fW08qkpvalZ9QlgVAoVC3LT3/608S/f/azn6G+vh6d\nnZ3YuXMnPv/5z+PNN9/E2rVrsWzZMjzxxBMYGxsDwzDo6OjAD37wg7yffCYqHRxcTlZTv29n9yDu\nvGm2qlgHZ6Wxae2crM+hRqX9qtNgOcN84PXxig95UsGaHRaGyrnvO55f7jjtgdfHo9rJoXW+G3eu\nmY3H/sf7hp+zEiEdoxfTaWpQloo1spWJiIYQSoGsr8RvfOMb2LFjB7Zs2YKRkRFs2rQJNpsN3/rW\nt/DII4/g4Ycfxte//nU4nZOfw1Ar9EhneCyECwN+VeMdjorwZ9nPmc05FCusVfkyIRWs2aE0d9rO\nWXDnmuwWe/GoRfx/X9vdA74A4eo4RrRTHfz4suIc6FxmPqeTy6hLAqFQaI69fuMb30j8+1e/+tWE\n12+77TbcdtttxpyVgWh9PFU6WDTUOVQ9alcW1dVxBFGEKEkFK7TJB0rhagBY2lhDQn8aUfP4AnwU\n3/3F+7h56fSMXptSGLfQjh5rpVHGMRjx52aYlcLQRgzgAIhoCKF0MHWsho8IONajLSS8vKkWTjuL\n1vl1yts0u7O+cV/b04s9R/pK1hgD6vnl9hUNiq8RUhn186r1AqGwmNFrUzMuBrX0aoaPiChjrYbt\nr7N7MKWdzqhWJiM9bQIhn5jaIGd6AMapd5djy4bYyvzudXPR4C5PeZ2hKbS1Ts9aSrKQIg35REnA\nhAyfyI5KB4cqh/zYwWTSDVMPJMkmAAAgAElEQVQyWjTaC0kobJwKmJxx3NzWiPaVDaipsIGmMvdp\ny0FEQwilgmm1rIHYjWhjaUUPj6JiAyZCfBSv7enF5rZGbH/7LC54UtskBFECTdNZF38U28NTDYWR\n0QCU28aI4EJ2cFYGy5tqsVelih9QL5TTqtGuFbXfXQsjBspyyhnHbGY+p5NcUa1WmU6uYUKxYGqD\nHEM5ARpvl47nsAQV0QY9uSajH575JNNDuaWxBucHxsnwiRzZsqEZvX1jsoVdcdS8tmw12jMx1WVH\n/7B+PQCXk4PXxxuiOqdmHNVamdKRq6huaapF24p6HOsZItcwoWgxtUEe9fPgsxg519kziFEFbWE9\n7T1GPzzzSbnNgvGQchvL59bMRn2tA6N+HmVXlMeigoRrTAApZxiaxpMPrcS23T3Yf7w/RYglTiav\nLW5Eksd82m0WVSOfTk2FDUvmueAPRHIyyIvmVOOdY/oGTMSpdnBYscBtmHGUK3p760gf2lc24Ed/\nfQPpQyYULaY2yNl6qKP+MKocHLwyRR56c03JD8+hsVDW7y8UasYYAKa6ymFhKOw+coH0cuYIQ9N4\n4LPzcdctc7FtVw9OferFiJ/X7LUxNI27bpmHzyybDkgS3NV2WBgKv9l1GvtPXEb4ipFnrRRqK8sQ\n4oXE/pfOc6FtRT32HOnDgY8uqRbsqeG60vu8dF5NTga5ysHi6S9dD6c9c25dC1oqqknPPKFYMbVB\nztZDdVXYsLSxBns7+ia8pjfXFM+B3XnTbDz54qG8jcLLNzvePQsAZAC8gdg5K778ueuyUo9SCsdK\nAI6fGUY4IoK1xBZH4YgIPixgWVMt2lc0wFVhA2dl8MrOUxnz2JlobKjE5rZGBDIs5DKxckGdYcYY\nIGMYCaWNqQ0ykF14L+6dMDSVsr0RuaYgHy1ZYwwAnd0eRY1y0suZG9nkR5XCscmEo2LK63s7+sDQ\nFDa3NeKVN08bMov7g5MDcNituGed/vuijLNAkiQIomhYhMWo3mUCYTIwvUGWq9K0MNQVL2Oi0U32\naC8M+NFQ5wBrZTA0Gsop78TQVM4VrZPJsI+H0swQ4nkUhlza6Dq7ByEIYs6ecTL7j1/CTYum6H5/\nkI/irSN9oCjKsAhLJq1vsmgkFDOmN8hyqLVSJIcEh8Z42FgakhQL/+nJmcb3d+SUp2SNMRDLGUqS\nJKtiRjyPwpBLG92wL4ROjSI5WgmFBXg16MRnwugIi1xUjFRUE0oB0xtkNVF5uVBhekgwueglnjOV\nJAl/uWG+puOn769UaWmqRff5UVmDTDyPwpBLG11VuXyxYq44ynJX6somwqIl355L7zKBMJmY3iAr\n6f4Kgoj1rQ2JKlXOymgOCb5//BLuXteY8SYvNaUuG8tgzZKpkIAJ/ZqiJMnm3WfUOYjnAf1j/bJ5\nXy5tdC3NtejqHTS0J561UrCqDB7RipYIi55pTdnk5gmEYsDUBlnNIO7tvJjIp9lYGjctmYZbWxs0\nhQRDYQGekSAa3A7V7YpdqSue03Y5OSyYVY0tG5pg52Iezz3rrhoKAHjihYOy+wiEru1+ZL1j/fS+\nb3NbI4KhKN4/oa3VqKbCllKsaGS0ZnlTHVgDfngtERalhXUgFMUDG+cTD5hgCkxtkLUaxFBYxJ4j\nfZBESXtIUKnCKYmiV+qigO9sbsHc+soJD7Rk72LAGyCtJAooGQpAvRVM7/sYmsb9G+fj5KfDilPJ\nqsqtWN7sRvvKGYlWp2A4goMajbgWaAp4YON8MDQF1kIhHNVXIWFjaYgZKq3VFtb7T1zC6XPeSe2H\n1xsdIRDSMbVfoyYqL8fRnkEsbazNuJ2NZeDWYICKfRYya6EnGGM+IuDCgA8XPP7EgAMizi9PJhEK\npQERet8Xh7My6lPJ5tfhgY0LMK2mPPHbfvcXB+DPsWc4mbqqMnBWGpyVgahhcapEfDGsNuEq08J6\nsmYbC6KIbbu78cQLB/H9fz2oONeZQNCKqQ0yZ2U0Gdg4Xn8Y7SsasL61XnHCEQCsuq5O80p4c1sj\nblo8VfM5FBI+IuLl359EgI9CEEW8uus0/vZn7+LJlz7Eky9+gL/92Xv4za7TsDCUIWPwzIbesX5G\njAPctHYubKz87dvVOwQ+IoCPCBjwBtA/6Ic/aJwxBoBL3iBe29OLodEgotrVaRVRW4hoXVhrWcwY\nSTzKMTTGQ8LkLQwI5sHUIWsgNq9XTnlLDgqxqtGN189QfQ/Pa7/pGZrGAxvn4/Q5b1GGrg+dHMCx\nM4NwV9knFG2FwkKiT5S0kkxErwiFEeIV/kAYvILs5fBYCFv/eAo950cwPMaj3Jaf27zjtGfCqFK9\nqKU+tBazFTJ9okWi81pdqBL0Y3qD7KqwoUZjHldCTKyg0sHB5WQVc3QfnhqA3XYKWzY0a8pZcVYG\nLU21ExSVioVQWFQdTNDZ7cFdt8wjrSRp6BWhMEK8Qs2oSwAOfnQ58d9GhqqTGfbxqDCg7QnIvBCJ\nL/w6Tnsw7JO/lwuZPiESnYR8YOqQNZBdHremgksYmgWzXIrbiVKsSjub0FQpi4IM+/hEGDVe7HWt\nG+M4m9sa0b6yATUVNtBUrKq5fWVDxsiB3vfFKZb6hF/94aQh+8m0EIn3Fj/7ldVYo5ACWtpYU7Dr\nktRVEPKB6T1kQNvqGgCWN7sTN/SWDU3o6PYgpDK+UWtoio8IOGawSlIhcTk58oBRQK8IhRHiFXev\nm4tTn3rRNziupeg/L/iCuedsbSyDTWvnatqWszJ46I4FKLNZEmp6NBVbJHecHgAkSXPkKheIRCch\nH5jeQwauPvyWNckXeNlYZoJ3YuesuHnpNNX9ai3AKfZ+5EwsbSQPmEwUOnIgiCKe/XUHLngmzxgb\nRTgiwB/QLsEZv5+XzqsBEDPGADA6HsHezov44cuHC1LpnGuUg0BI55rwkAHAFwjHVtAy2DkL7rpl\n3oRV9ea2RkQFEW8rCPJrDU2VcRZUOliM+HPX/Z0MPpNhYWIk10pPp15hkPj384dD51Tz/qWEnhAv\nHxHQdWZI9rXzA35s292DBz6rTd5WL0Sik2A0pjfI8V7BfZ0XEyvpdEb8vGwRBkPToCjl/qdMoSlB\nFPHvb/Vg//F+3YPgiwGmADJceg1UqZKtMEj60BOVy1KRmxZNwenzoxgaC+k+73zQ0pR97nfUz6sW\nah7tHsSmm+ckijTzaSiJRCfBKExvkF/b04u9Heoj5+RW6IIo4pU3T+PdY/2y77GxNDatnZPx2HuK\ntLJaK6yFgruqLO/H0atcVYroaZlJ/36yDVPXVNjwwG0LEI4I+Obz72V9zvkk24i7IIrY+eF51W28\nfh5Pv/QhRvzmX9wRzIOpr04+IiiGqZNJ93QFUcQPXz6Md472Kz74QmER/kAk52MXO8uaavJ+jFyV\nq0qNbIVBjBhSEr/Gz13y5bSffLD/+CUEeO2tWbFFduaFrtdPBDsIpYWpDfKon1fsJY7T2jRR3GLb\nrm5N+bkyTjnAoOXYpcCHJwfzLglohHJVKZFty0w2RYGOMgtYy9V4to1l0LaiHpvbGiGIIra/c0b/\nieeJUFjAv+/q1rRtLosTMy7uCObC1AY5LvChBE0Bf3X7gpQwFh8RNA9yVzMUmY5dSuTbw9BioOIy\nkGZ4oKr1ENttFliYqwaVjwgIR0VUK1xLNAVQFFDt4NDgLoc/GE0Z9BAKC6ApCgxN47U9vfj0UnEW\ngp0659X02+bSsWDGxR3BXJjaIGcS4a93O+C0pz7oRv285mroSFTZY8x07FIkXx6GmoFqaarB6/vO\nmE7Af3NbI2bUTRzfeX7Aj9f29KYMLnjqxQ8QUJBrXbWwDs88fD2e/tL1CCqEfTtOe+ALhHHk1GXZ\n14sBb5L4jBrZDoxJxoyLO4K5MHVRlyCKkCRJdjxcuc2CRz63AHxESMkfVzo4zVKbVov6emZzWyNE\nScL+45dUBUZKhXxKAippZYuShLdMWOwVFSQEQvI1CJ3dgxAEMTGvG0Di+rGxDPiwAI6NXbOHPh5A\nz4VRLJhZrXjNDvt4bP3DKXj9yjUPk42W1idfIIwLA34smlONd45lP0py2ZXF3bVSyU8oPUxtkF/b\n06uoHz0eiuLplw6jJu2m1CpkT1PIOIKRoWncv2E+7lnXCI83gN8f/BQHPy7dQi/WysBhN0a7OB25\nnk4AeOKFg7Lbl7qAv1roddgXUkyblNssaGmsSbmOhsZ4vH/iEmwsrdhe11HkSnFqspfhaBTP/roD\nfR4/RCl27znKLLDQFEbGMy8y4ve4JEnXTCU/oTQx7bJQa/FHen6UjwhYv7w+oxhGcp4vE5yVQUOd\nE4987jq0r2xAZXl+jFq+CYUF7Hj3T3k9RrLilZmLvdRCr1XlnGLaZHiMx+lzo7KvlXKve/uKBsXX\nnv11B84P+BM6AqIE+INR+IIRUADU1mQUgG/evRR33TIPRxUWJaTYi1AsmNZDzrb4o7PbA38ggp4L\nsZF18ZCgElFByjp8G/cCI1ER+46q90YXK4X0TNUmGsW89dItmuOsDJY11cr2qS9tqsGJM0Oynzum\n+Fa6CxE5aipscFXYZF8b8YcUOx6EK+sPNVvqqrDBXW0n05kIJYFpPeRsiz+Gxngc/PhyYth4ppyv\nWs5LrWiEjwg4fqa4w4dqFNIzVSv2innrZwtyHvlCKcZioSnFz728qVZ3UVOxsnSeS3GB9+pObe1Q\nivu+Egon05kIpYBpDXK+x9PJyWYmV8bKVQQLooitfzhZ0v3JhX54bVo7BzaFaEUphxr5iKAYQj3a\nM4RNa+fIDi7YsqG5KMYuGsmNCuMU+YiAP/XLh+e1Eg+Fqz0PyHQmQrFg2pA1EKvcPX1uxFARfpoC\nblleLzvRRU3+cXNbI3748uGSHwhQ6IeXPxABrxCtKOVQY6YQqj8QURxcEBP5kLCvs09Wn52z0qCo\nqzllG8tg9aIp6OodLMrF4M9fP47rr5syodo51oKovzI8PRSuVMlPpjMRigVTG2S11hK9rFo4RXaK\nTCb5x3BUKDljbKFjoX+vj5+0h5daHlnJWy+FiVFaP5fc4AKGpmPXoCSltEbFWbtsOu66ZR483gBA\nxbTIOSuDbUx3xu6ByWA0EJGtdlb7jrSwdJ4r5Tog05kIxY6pDfLwWEj3zayE1UpBEMUJfYuqbSxj\nIRztlh8VV8xEReDRu5agjLVM2sMrm0HwpTQxyogB95tvbURv31hKO1C924G7180Fa4lV9qds39aI\nQCiK/Sey7+F1OVnMrHNiw6oZeP5/dYFXEcXRS3rBoNYWxDg0FRtUUe3gUF5mRdeZIbzdeXHCdUCm\nMxGKFebpp59+erIOHshiKLkedrz3J3zSb6yY/rnLfgT5KJbMTR26YLHQOPDRJQRlFJWqHCxGx4sv\nVKgFCRLWLJkOSwFGMCoxr74CI/4wxoMR8BEBrgob1iyZis1tjaCT5hD+9q0e7D58IfEbBHkBZy+O\nyf5eWikv5/J2nV43uxpBPopRfxh8OKr4uZR4bU8vjvYMJqYlSQDGxsMIhQXZzytJEk5+MoxPdAyY\nYGgKfj6Kt470QVCaY5ojfDiKm5dMQ3nZ1bbA62ZXY9QfwrnL2qJL376vBSKAY71Dhl4HpUQ+r9lr\nGaO+1/Jy5Roc03rIfERAV2/21cxWBqApWtUDkGv9UfV4mmrRpdDGUuy819WPL97aXDDvODncbGGo\nCR7vjYum4osbmmFPG+yhZ6ThZJNLCFX983rwmaXT4L7Szx3ntT29siFuLfhDUSCkfSKTHtJTEPGI\nx0d/8moa0eiqsKGhzoGXfn9S9vVivQ4IhDimNch6RehvXDINZy+O4cLAuOI2SsVEd6+bi9PnRiaE\nEDffGsu76n0YTiaiCPQN+jF3WmVejyMXbrbbrCl597giVZnNMkFZqZT7TOMh1Hi7nBbDrPZ5h8Z4\nPPnShykqdFFBynmEY75JD9WnF0lqef/oeNiQ66AU6hAI5sO0BllvQcgHHw/o7kHe/vbZFAMiSrFh\nAc/+ugPjwdINIfkLEG6Xq1BX+u3kPB09xV/Fgp7ct5brO7nKv31Fg+4pSYVgfWtq50I2YxZtLIOb\nlkyFJEn46e+OKnrTWq6DUqpDIJgP015hevuQtQyBkCu6UXuAnB/wF2W7iVbmTI95x/makpPtjFs5\ncZJS7jONL0biojRaxl1mc313dg+ijLMUraCIu9qGLe1NiApS4vrKJsJl5yyQJOCtI32q95mW60DP\nb0EgGIVpPWQgte9waCxkyD5vWjx1wkp+1M8jHBWL2gPRS73bDrvNgm27u/PmNWSbXlDydEqxzzSX\n3He8H7mz26M6MtTrCyHIR7OqWC4kHm8If/uz98BZmcT1tbSxFtVOVtNC1uvjcbRbuV4kOXSvRinW\nIRDMhakNcnrRzPOvd+HiYED3/lxOFg9snA+GpieEtqqdLDiWMcWYxWS++ueLVQVPjJiSk216QcnT\nKcU+U725b0EU8du3enDgRObRnlUOFpUOLmGQjpwagFfjzO9C4Q9G4Q/GisaGxnjs7ehDQ125JoOs\npu8dHy6R3gImRynXIRDMgWlD1sDVECsA1FTaMKOuPKf9tc6vSzzg00Nbw75wSRpjtalVNRU2VJaz\nql6DEeFrtfDrjDrHBPnITJ5O8sSoYkevxnJ8tKiWa46zWhLCGJvbGlPaioqZ/kHlwspkysusit9h\nfLiEFojeNWGyMaWHrKViNxviRSNxQ6AW2rKxDFgLjbFA8Q6DTyYqSJhWa0e/TORgeXMtgny0IF6D\nWrg5PlmrFDzebNEjEJJtzj3Ix/q3OSuDbbu6ccGjzdBNNoJG7ZE+zzga3OUAJl6nC2ZWaT6eEWIt\nBEIumNIgZ1Oxq4TLyeHrX1gMiQJYhoa72p7Il6qFtviwgAc/24wX/uOkpt7JYiDMR7Fu+TQc7RnC\nqD8MV0WqMSxE9bJauJm5IuFpVqO8ae0cBEJRnPrUixG/ukwpHxFwtm80q+t5ZDyS+O46FQZalDoX\nB8exvrUeXb1D8PpCYK0MAAnvn7iEU+e8mmseSrEOgWAeMhrkYDCI733vexgaGgLP8/ja176GBQsW\n4LHHHoMgCHC73XjuuefAsizeeOMNbN26FTRN495778U999xTiM+QQrbegxLLm2tx4OPLsoVMajlP\nigJe+I+ToGntK/zJZsgXBgUKf//VG2WNYSG9hnRZQzO3och9NiXhk/RtKQqQNK74aAoo4yxXhjUU\nV+7YKEQJWLNkKu5d34hXdp5OkQfNpuahFOsQCOYh4xNt7969WLx4MV599VX89Kc/xY9//GM8//zz\n2LJlC7Zt24ZZs2Zh+/btCAQC+PnPf46XX34Zr7zyCrZu3YqRkZFCfIYU9AqCADFjGs9TSoBi+4Na\nzlOUYhKGpWKM43R0exCOCAhHRXjSWps2tzXKjgIshNdg5jYUuc/2/olLsnOe07fVaoyB2DXpD0aw\n88PzoDMrchYFjI4TjbfCnT7nlX09m5qHUqpDIJiHjB7yHXfckfh3f38/pkyZgkOHDuGZZ54BAKxf\nvx4vvfQS5syZgyVLlsDpjFUztra2oqOjA21tbXk6dXlymRDzyB0LsWJBHQDgiRcOym4Tb39IV+Uq\ndUbHI/jOL/YjHImtJDgrhTVLp+OLtzZNmtdg5jaUbD5brlGfmgoOu49cwN6OPt37yAeshYLdZpX1\n2q0WGkKWRZJHezyor3Wo1jx4vAGwVoZ4voSiRHMO+b777sOlS5fwy1/+Eg8//DBYlgUA1NTUwOPx\nYHBwEC6XK7G9y+WCx6P+EKmutsNiMf6mWLOsHm/IeBlqUBSwbtUsVDo49A+OY9inJEsYAiwMfr//\nk5Ibp5iJuDEGAD4iYc+RPtjLWHz1C0sTf28o4Pmo/Q5eXwgMa4W7NrfKeS243ZlbZrIlm8+mtq0W\nVi6cUpSymbXVdvQrFJjxYQFtK2fgxJlBDI4EUV1hww2LpuLEmUHFQRMfnhrEV+9aDnd1GQa8wQmv\ncyyD5//3cQyNhFBbXYYbF0/Dl+5cBGYSB6fki3xcs4T8f6+aDfJvf/tbnDx5Et/5zncgJcXLJIXY\nmdLfk/F69fcEq3HHDQ3oOH1ZVY86nem15QgHw/AEwwjzUXBWOjHgPZ3f/PFjHD6Z2wPOxtK4YdEU\nHDxxCXykeF3sXQc/xZ/dMHNSvAkhIqDaIS8OUeXgIIQj8HiMneaVjtvtzMsxhIgAl1O5WC75s6lt\nq4VFs6vx5qFzOZ1vPrioUu3tqrDh8zfNwrqlUxMznQFgbp0D/7LjhOx7QmEB//JaJxbPdWHPkYnR\ngCAvJCZAebxBvPHuWYwHePzlhonzzUuZfF2z1zpGfa9qRj2jQT5x4gRqamowbdo0LFy4EIIgoLy8\nHKFQCDabDZcvX0ZdXR3q6uowOHi1gnNgYAAtLS05n7wetr99Nitj7Ciz4O/+akXiv3e8e1bRGAMx\nvetkb1IPobAIGlRWucDJgL+SU26oc04Q3M+3AD9nZVBeJm+Qy8usJR1y5KwMWppq8ZaM4Whpqpkw\nSWxpY62ukHNNhQ2zpjh1p3EmC7vNgh++/GFK2+J4MJxRKOTgx5dx64p6tK9sSFRKVzk4jI6HZcdG\nvn/8Eu5e11jS1xLBPGQ0yIcPH0ZfXx8ef/xxDA4OIhAIYO3atdi5cyc+//nP480338TatWuxbNky\nPPHEExgbGwPDMOjo6MAPfvCDQnyGFPTk2yrL2UTFrpb3qxlj+kr1qxY729kziHB0ci0ya6HBWSn4\ngsr5ulBESJHOrHayKC9jEQhF8lr5zEcEBELy/dyB0NXe2lJF6ZdP/nu8uvpYj76IzPLmWjjtrKLx\nL0YYGhOmfGWzmDjaM4Qf/fUNiZqH8WAE/+3XR2S3DYUFeEaCaHA7cj5vAiFXMj4977vvPgwPD2PL\nli34yle+gieffBLf+MY3sGPHDmzZsgUjIyPYtGkTbDYbvvWtb+GRRx7Bww8/jK9//euJAq9CoqfK\num8wgFd3det+fzKrFk7BM4+sgsvJZty2GFpQwlERc+vVxRP2HOmboEp2fsCf98pndSlDfsKAiVKC\njwg4ptATfKxnKFENHK+uznY4SaXdmlIJX+SBmBRy7VAYGgtheCyUqJS2WjI85oo9TEW4ZsjoIdts\nNvzTP/3ThL//6le/mvC32267DbfddpsxZ6YTvVXW+7v6cV9bU05V2jaWwf0b58POWdA6v64ohfzT\noQDctqoBx3qHFLc5fW5Y076Mrnwu5ZGKmdCim1zp4HQVY7EWGj/88g1w2mOLQjXjb1Z2Hz6PBzYu\nAAC4q+2wsfI1ITaW0SytSSDkG9OVF+oduxgRJLz8h1OwMJSu9wPAzUunJQQdNq2dA85a/F+vBODn\n//sj1W28fm0yoHJjEXMh00hFAHkZB1kItOgm643W3LxsWsIYA7lHfUqRrjPDieuCszK4ack02e1u\nWjI15wVkvsaSEq49TCmdubmtEZIk4b2ufvBZFF8d+vgynHYrNq2di3eP9WmufnaUWXD9groUoQx/\nIJJz4Veh8Ieiiq/RFFBZbtVklPPhtcpJGbY01UCUJDzxwsGSVe/SUtSVKVrjcrKwl1kxMBxI1CLY\n2NjnF0Qx8V3kEvUpVdJ7jr94axNoikLHaQ+8Ph7VTg6t8zOPZFTDzCpyhMnBlAYZACiKQrnNAj6S\nXe6t47QH/kAkq1YkfzCKrjNDYJjexM3osFvBWumsFgTFiCTFplxpKQjKh5SmnCjJ6/vO4K08joPM\nJ8mV6UpXWFSMi7MoDztYs3gq7t84H6/vO5PSURAKi9hzpA80RSW+C7X9mBXWyuCft3dNMJRGitvk\neywp4drDlAY5/UbJhmEfj4MfX876fek34453/1TyxhiIhbT5qDChjaS8zIpAKHLF28i/AH+8QCfA\nR/BeV7/sNsWs3iU3PzvAy4c493X2A6Bw/4bmjFOwjpySv1aPnBpI+S42tzXio0+G0D84UTCjGJnm\nsqN/WL9OQSgsJEZTpt+bRkwn06K0BoDoYROywnQGOVeZQZpCTlKYnd2DuPOm2UWpjKSXY91D+Mev\n3TTBu8jUh5yPPuVtu3oUZwAX8xD59EVipqrpfZ0XYWVi0YH0CAEADI2GEI4IiqkErz+c8l1EBQlD\nIyGDPk3+aZ5ZiUVzXei4soAxgo7THnxm2XS4q8pyvh7V8vLDYyG8uvM0Tp3zklA2IStMZ5BzLWDJ\nVZfa6wvhwoDfVEU0vmAk8XBPNnbpk5ni6M2tJRtwYKJ3wUcEnPpUueK72skVZeW13kVix2lPwsvl\nrAxqKm0p32ulQ721Lj6ggY8IOH3OO+k979lw4qwXP/rrG7B4tgs/3d5lyD6HfTyeevED2esx28Wj\nWl6eYxm8r3PaFOHaxnQGOZcClnp3OUJ8NKfil2qnDQ11DlMV0ZTbLAlDp+XBpTW3Ft+Xw27Fjnf/\nlDA0HBubZRsKi6hJeniO+nl4VTzLBTOrizI0qHeROHyl1zq+6En/XjP1sfcPB7Dzw/Po7PaU3LUY\nj3bMmV6Rc9QqmeS+eSAWytezeNSTly/mlAqhODCdQeasDOw2q64HUJ9nHA115UAOD6+Wpho47ayp\nimiaZlTCwlApal1KDy4tuTULQ6U8BDmWSQlDJ/87+eF51y3zFBc6NpbBFzc0513OUw96F4lV5WzK\nQihbL/vwqct459ilzBsWIfGKfQtDwc5ZVDsB9NLZPQhBELG382Lib9l4s3L5/fkzq3DghPx3Xswp\nFUJxYDqDzEcEjAf1K2B5vEHctGgK9n+UfWEXcFURaXNbIwRRwtudfSUvBHTjoimavV4tghe7j1xI\n2ZdSTjiZuDFXrDpeMhU73j1blC0onJXB0nk1KQ9+LSyf704sKrL1smkaOHFWm6BLMRKv2N+2uzsv\nxhgAhn0hdCoIpmjxZuU6AIDYPGYzitkQ8o/pKgwyhTUzwUdEfPSp/IDzONNr7XCWyd+oHac98AXC\nYGgaD3x2Pm5aPEX3uZt+6UgAACAASURBVBQLlXZlxaj0oe+VDu5KyHkirJVBGWfRlU+NG/PNbY1o\nX9mAmgobaCo2PKF9ZQMkIEXeM19ynnppXzkjq+3ra+3Y0t6U+G81IRE5RDFz4VixMqPOgc1tjfAF\nwjh8aiCnfalNVqwsZxXD/tmI3MRrKeK5fjUxm2KJ2hCKE9N5yEaIIIxmyM1dHFRuxxjxh/H0Sx9i\nxYKYd3bH6tl4/7g+b7tYsFiojF5vahhOOSQwOh7WlU+NexdKXskTLxyUfV+x5O1cFTbUZHFdLphV\nneLZZ5uzrKngIElSSRrlQCiCbbu60dkzmLPeu5oudiAUVZTUzMWbVWtVIxDUMJ1BLgYRBK8/5p0F\nQ1Hc29YIVwVX0lXXrNWCaqfyXOLkB9eon1ccXcmHBUCSdC2Y0r2L5ArvAW8gywVD4cn2ujzaM4S7\n16VOs0p/0LNWBuGoAFHm6y7jLGieWSU7F7jYGRrjsw7v6yEcVbbWuXizcovGyV4QEkoD04WsAeCO\n1TMn+xQAAO+fuIRnfvUBOEvp3oyclYargkN5mXyLTfpc4koHhxqF0KqrwgZ3tV2TVjhnoUHhakha\nzbvQogtdDKSH26tU2pbkQqbxB/2P/voGrF40FaGwvDEGgAuecYR4AeuXT1f8PYqVK91aBYWz0ikp\nECO82eRQNoGgBdN5yADQrxJSLjQxrzIMhs59rNxkwEdEvP72Gc1zidU8wbjXES9429fZJ9vO4nJy\neOrh6xHko5q8Cy3HLAbSPacyzoIfvvyhrgKg0+fU6xwAYP+JS6h2WLGksRad3R74AvkpjjIao1qc\nssHGWvD4gy2GiIYQCHoxlUGOt7yoeR6ThdXCQNBQTVyMqOXyhsb4CSHhTDm0eMEbJEk2NNk63w2n\nnYXTziYm6WQyzKWUt0sOt+tZSIz6ec0hf68/gneOykuNEq4yOh4GJIkYY8KkYgqDnK4MlUnBaDLg\nwwKWNdagq3eopIbFA7FCNYqSn+NOU7F8ZTJac2hbNjSDYWhZI5qt2pdSsdfQaKioc3h6FhKVDg6V\n5VaMjmsbi0mIMdVlxyUVfex/3t5VNK1yhGsTSpImr0vW4/EZsp9tu7snXYTjpkVTcPr8iKLnQl8x\naKVmjIGYUte4Si/oj7+6OqeiKTkxD6XftH1lQ0bBBiPH4rndTsOuUzWGRoM4fW4E82dWoaayLOP2\nv9jRhQ9PyffQmoUqB4ux8XDOIWyaBtYvr8c96+fh2V934PyAX3V7LddYMVOoa/Zaw6jv1e12Kr5W\n8svAXIdJGAFNARxnwTOP3ICbFk+V3UYsUWMMAPNnVsPllI86uAzQj04vflH7Td/r6keAV8+FxkVM\nirUnOZlwNIqnXvoA3/3lAfzP/zyJ7/7yAB7/t4PwKYjbCKKIbbu70X1+pMBnWliqHRwef2AF/ss9\nS3Pe19ql0/CXG+aDtVjw5EMrsX75dFSWK0fR0nvrCYRCUfIGOddhEkYgSsDejj7sePcsHr5jAdpW\n1MOmII5Rity5ZjaWNdbKvtaapCZlFGq/aSgs4N93dcu+xkcEXBjwaRYxKQbiHlvcCxSlmAb1f/3Z\ne9i2uxtCWhn1b9/qwe7DFzA6XhoFWnrx+nn83YuH8PzruQ+WOHHWC18gjAFvAFFBwgMbF+Bb97VA\nqZg7G1EQAsFISj6HrCYEUlNhw8ypDnR26wvtWRkKEUG7XxsXoaApSpMcZKnwzK8+RE0Fhxl1DowH\nIxjx53cGcqWDU+x7BoBT57wpld3JIWq1YqdhXwiekSAa3A7Dz1kPvkAYfR758KkgYoI0KR8R8P7x\n0tSmVmJaTRkWzalBZ/cghsZSx0Mq9bNny9BYCE+99AFG/eFE+mLT2jmKz41iapUjXFuUvIecSaou\nl1xQGcdg1cI6UBr7Ir1XHviTHULPB0NjPM4P+LGsqRb/z1dW40d/fQO2tDfnpfglJkGovFb0XpmC\nFCc5RK2GJAE//d1RWc9zMriQ5BkrkezVe0aCWS/0XBUcWhSiG8XAqC8IAHj8wda8dkeM+MMp6Ysd\n7/6JSFwSio6S95AB9UrVF//jpO79jgWi+OCkdi3daqcNgiiW3Ki7bOjqHcK96xvz+sDiIwKCvLJk\nYpVD/xSkYV+4aGbTNtRl9tSHx0LweAMxVa5IdmFq1kJBEkUc6y3e4q9AOBYJGA9GMkrWGkln9yCe\neWRV4t/F3ipHuDYwhUGWa3mxMBS27erGoY8LpyO9vLkW7xzNv+TfZFIIKcpRP48RlRzpeDCK1/ed\nScxI1lNDUAwa16yGY9N0rB1neIwHa80uGhGOSgj7S6M16sjpAVQXUGJ2eCwEfyBsiMRlMY78JJQm\npjDIcZIFF7bt7i6IHi4QE/KP5aXm4qkXDxXkmJNFIfJrZZxFdSg9HxU1zUhW69UtBo1rjzezopwg\nIvHZ+Mjkh9nzRTgqwVpAzUyKBhz2WIg8+bmRDUa21xEIgAlyyHIUuhWqqaEKd90yD/6AvklGpUQh\n8mtBPqqp9zRerKeUC2xtdivqOBdF4Y7W4oRrhGFfKPNGBiGKwOv7zkz4e1wZTks1fim11xFKA1N5\nyHEK3Qp18OPL6D7vxbImt2p1cCnDWWmsWTqtIPm1+ICKTLn45BnJgHwukGF6J0XjWksYs8xErXFG\nUOiOtCOnBrDp5jlw2tmsvV21RX8xpEMIpYkpDbIRM5GzZdgXxt6OPsyoc5jSIPMRET3nRwtyLK2j\nCtVmJMcfhoXWuM7mwd7nGc/LORC0MRaI4KmXPsDKBXWICAL2dV7V/I57u4B88Z/aor8Y0iGE0sSU\nBnkyZyIHQhGsXz4d+z+6BN6gPspi4fyAH7/Z1Y0HNy7I+7GSDWl6f2octRnJcQo9mzYexoyj9mC3\nWtQzRhRKV92tVBjxh1WfE0rertqivyjSIYSSxJQ5ZEEUIUkSWKbwObrhMR4bV83EtzYvU92uVLOH\nB05cKojaVfLs36cevh6rr5uCmgpO98zaQsymzRTGTP/e3u1Sn8JEjPHko6TalUn/gISrCXowpYf8\n72/1YM+RvrztX60CmGMZVDo4hKPq3vFX7rwO//p/Ps7D2eUXPiKmqF3ls+VDEEW8vu9MIvxb7WSx\netFUbNnQBDtnNfRYRqAWxhweC+Fs3yjm1leCszLgIwJ6LqjrUWvJo2vFWcbAFzSPelyhUPN2S2nk\nJ6E0MJ1B5iMC9h/P7/zXm5dOxcGPBxBWaUOJDTqnFVtVTp0fQUUZjbFgCYa1JakgLR/p4d9hXxj7\nT1yC3WaZdFEPOTJJfv733x5NfE/rl9dnNLYLZlfj/S5jpDJFqVRjMpOLmrdb6HQIwfyYLmTt8QYM\n08BNh6aAW1fUY+OqWYgoGNrwFY+RszKorbIp7mvf0YvwlaAxtrGxS2bb7p68tnyohX8PfXwZQ6NB\nQ45jJJyVQXmZvPyjdOX/4t/T7sPn4bCpr4fnz6hC+8oG5PqMZy1UxglZxcZkt/HSFLB++XRN3m4h\n0iGEawPTGeQsZkFkzWdapuMvN8yHq8IGl0p/q8NuxSs7T6F/UF34oRRzhJIk4cmXPsS+TvmUQHqu\nNLmvM5sez+GxkKIH6QtE8N1fHsBTL32AcLR4DA0fERAIaVPG6jozjCXzalS3mTe9EqfPjeTcDhSO\nSpi8qef6mGyp8VuW1+OBjQuIwAehoJguZP3Osfypcx0/M4wAH8Hr+87CF5B/8C5vrsWOd/9UMJWw\nQsFaKISjEvhI7MmulEOPF8HUVNpSJjDFPGsKfFjQFN7efUS9Ql6UYlXfz/66A898aVUuH02VUDiK\nAW9AUzgym/73YV8It69eioMfXZZdmDnKLPjl//cRzg/IT4PKhmoHi9HxsCaxlWsV6sr/c+WQB06u\npwBAwtiErDGVQeYjArryKKTv9YXwo62HcWl4YrjUxtK4eel008pnltssmnSRqxwcKh3chPxvchoh\nU49nNr9jn8cPXyAMp93YSUHxHHnXmSF4vEFNi4hs+t8pAP/6xkeyxthCU3hsSyuefumD3D7EFVqa\natHbN2aIcTcrEoDvbG5JFN1lQ/r4z2wXnwRCHFNdIflW6LJaaFljDMRG+8WLO8w47cmrcUhBOCpA\nECVN0qVyrUBAdr+jKMXGGBpNfEEx4A1qzpGrtcKkI0rKwiBRUcI//OaIYR5tKCLge/cvxwwN06Wu\nVVxODs5y+UVdplRL+vjPUFhEKCwQOU1C1pjKQ863QpekkojjIyI83gD2mnDak8NGIyJoG27gD0bx\n6s5TmgyqkqJRtp6mljGG2ZCLLOLEVhgOZZwFfZ7xrGoGxkPGtSgdOHEZ5TYrvn1fC775/HuG7ddM\nBPgonnrxgxSPFkDGTgKtuvlETpOgBVMZ5HwrdIWj6o/UsCCqhlrXLJmCjatm4ae/O1pS8pqCKIGi\ntAdTTp0b0aTpHe/xTO9l5qwMljbWYm9H5l7yqS47WCujOc+rhVxkEeVaYUb9PL73rwdzPq9c6Owe\nxOLZrkk9h2LExtIJjxZITacAyKi6pjWaQ+Q0CVowlUEGUj2UYV/I0OpSVUEQKw3WwqjenHesno1p\nNeVonV83KbKeegmGJVDQ7rGNjodx46Kp2H9CvYe2pakmRfgj2QNpX9GQ0SAzNIXmmRV44oWDhvZC\nGyGLmCzjqXVYRj7x+kJw2otPTGUymTetHGf65dMGnd0exYhYsrdbxllQ6WAx4te2+CQQ1DBVDhm4\n6qE8+dBKPHLHQkP3rZbTc1eVwV1VptgOVVNhg6si1pe8ua0RDXXlhp5bvsnmYe5y2nD3urmwKUwz\noilgfWs9JECxl9lRZkWm8bjTa8ux7+glw3uhjZZFzCa3nC+qnTZUKORIr1WUjDEADPt4xQiP1xfC\n8FgI23Z344cvf5jRGANETpOgDdMZZEEUEzfKi/950tB9qzldFwfHIYiSpge5LxDBxRKa9ENTwIKZ\n1Zq3X95ci3BEBB+W96olCVjfMh3HeuTD+53dgxnbdKa67BgPyj8IlYrFsmFzWyPaVzagrrpMt362\n3P5qKmygKaCyvLDeaktTDQa8xSemUqxUlLNgFeKH1U4bdh+5kFLIlQyT9JygKWBGnQN3r5ubpzMl\nmAnThazT222MRE2sQJSAV3eexiOfi3nlcvq28faId45eLKme0Hq3Aw/evgBdZwdlVdCoK55scg9n\nVJAUw76uChtAUap5Wkix9yttE+SjGBtX9mByzdfFIy1fvasMZz4Zyjk/HRUktK9owJ03zcaon0ck\nKuIf/70j0detxFSXHZeG1QVmtCDB+OI3MzOq4vUunedSrBXhLDT4JB37eL/89rfPFqXcK6G4MJVB\n1lrxmC9OnvMiKkiK+rbbdneXVO4YABrc5Xj8wVawFgtuXjpd9vxvWFiHO1bPgjtJPpChoVhgt7y5\nNhHeV8rTuqvtWDizGu8r5KHHxsOocnDwykziMTJfZ2MtORl2tR5VlqWhptdmYxl8/4FW/Pg3HRlV\n3zJxrGcIn18zBwwNCKWn2Fo02FgGn2mZjrcVhH94haEypMqaoAVThazz3YeciTF/ODGqLV3fdrIX\nC3p59C+WgLXE1m3JYVcKsYeTjWVw6OMB/PP2Lry+7wyEpDBCepg2OeyrJU/7xQ3N4Kzyl6irwoaW\n5lrV908WyX2raj2q8XnZSqmQm5dOA2thEAzlLg86PBbChQE/McY5wocFMDStWCuihNIYRwIhGVN5\nyPnuQ85EtZNV9Mwme7GgFzbJsCWHXX+3pzfFe5VrCck0DSeej+047YHXx6PayaF1vjsR3t/x7llQ\nlHxl1/LmWty5ZjZOfeLFZW8AohTL19W7Jy9flz4Bq9rJIsBnzmVXOzg0NVSh58LIle/hauh/aDSk\nqWgoExQFfHBqAJXlVoyOaxN5uRbINmJAUcDezj4sa6qVHfFqY5lEC1UypMqaoAVTGWQj+pAr7BaM\nBfR5JOyVHlo5JnuxoJftb5/Bw3csmCCQMK4wREEuNJfcAiRH3OYm216lWgAby2DNkqkQJQnf/cWB\nlIffZOfr5MZFasHr47Fp7ZxEz3LywqWMs6i222lFlGITxqa77SVhkJdfKULryzFUrwZrobF60RS0\nzKuF3WbBC//xccb7U5SAvR19uHVFPdpXNkyoFZEkCW/JGOrJjtoQSgNTGWRgolKSlaEV8zpyLG92\n49DHl3WNcAwEI+AjguyNl2/Rknxx6lMvtu3uSekJVntoJRdUpQt+pJNuwOJetiBKikUz5TYLRFFS\nHd4xGfm6XFISce8peeES/+7CUVHVGFPIbmrY8GhI1zkWEo6lUeXg0NkzlNfjhKMi3jnWj3eO9aOm\ngoPdZtW8YO7sHsSzX1k9IfojiCIoipIt6iQQMqHJIP/jP/4jjhw5gmg0iq9+9atYsmQJHnvsMQiC\nALfbjeeeew4sy+KNN97A1q1bQdM07r33Xtxzzz35Pv8JJIdJPSNBPLftCLIZBcvQFGory3BBR1vS\nWDCqWt2bvliocnCYP6sKNEXh/ePGDKI3mv+/vXMPbKO+8v13ZqQZWZb8kC0nfuQdO4YkjuM4CXlB\nnqSwZZsuLAFvAm0p23sL3baXtrRACXShFLjbsrS0ZdmmtLAp6abbbHu3u4GQAHm/7MR5EDsPyMOJ\n45dsS5Y0kka6f8gjS/LMaEYaPT2fvyCWZ34e/eZ3fuf8zvkem53F8Xb5DTv49pNbdrajua0LfXYP\nLGYaDTPKZEsOHm/vEUzWAoJG+2ibtOFLNMs6umuPHBI5kgj3noTC3oyeFJUtVeo4J6tXuKoEgONJ\nbBIjRO9gUIN+QpkJ3f0uwbBzOH12Fm/8+TS+9Fc3R8yzWMc0Som1qU0nmTy2bCWmQT548CDOnTuH\nrVu3wmaz4fOf/zwWLVqEpqYm3HHHHfjxj3+Mbdu2Yd26dXjttdewbds26PV63HPPPVizZg2KiopS\n8XeMgtFToHUk7C5l9aj7T92I+TKKUWwSP0MGhF9WHUXg9f88Hdf9UoHZqEe/gmSUuTWl+I+PLkac\nr/XZPdh59Cr8gQA2rJkBQNqA9Q+xKBJRPyIJiLa+5In3vC7aGFoKGCyZU4m7Fk2MqfwldSRhoCnk\nG3ToG2TBDIuleLycoPekJOxdac2Hi/VlZW6CFKzXD9abHmnZIZcXRkb4HDia5vYenPl0L5bWVYxS\nh4t1TBMLobmYKV2jMnls2U5Mgzx//nzU1dUBAAoKCuByuXDo0CE8++yzAIAVK1Zg8+bNmDJlCmbP\nng2z2QwAaGhoQHNzM1auXJnE4UsT3LmJexdCxGuMAcBkpGXtFPmX1ePz4Ruv7lW1kYDacH6/pKEx\nMjr0O0YSkdYtm4pvvSbcwGD/yU787fJghrWUAbOYDaibZhEMS8s5S+U9TqU7eKEQ+p/2XITT5Yl5\nJi11JLG0rjxiEwYI98qVihqEjLqdRVE+g/qaUtx92zRs/q8zigyyVvYkjc2ubHPj9vglW4nGi9hx\njtr3iYdMHlu2E9MgUxQFozG409u2bRtuvfVW7N27FzQdlOErKSlBd3c3enp6YLGMiNdbLBZ0d6e/\nzEeqQ5PadNmccLJeGBl5KkzP/eZYRhtjAHCxHBprx+FDgS5W0YaG0VO42mUXDYu6PRy6bU5UlZkl\nDRjvNVIUGdQkH3SDkJHYxOhJLJtTgXuWT8WWne2KdvCJdHjiGd3pacQDpkgywmMS8p6kWnd6vBye\n2NAAj4/DwJAHJ8734Ol/PSg7cYwiCSybMx4HTt8Alw1h6zRRbGZAENJ5EkKombegxlyUc494ws2p\nGNtYRnZS186dO7Ft2zZs3rwZt99+e+jfxQyeHENYXGyETpe8L+96z1DMDk1qwnr9+OOeT/GN+xti\nfnbAwYr2w80k/AFg5YJJKDQbcPDUdfT0u1BalIdbZpXjS3fNBEWRqAr7/FCMBLpiSz6s1mAU5dF7\n58KYR4te9+v3z8OAg8Wxs1145Z3mmGN98WtLMa2yGG9sPym4gzfm0Xh43WzB373eM4Q+Ee/IZneD\novWwlsbWH//6/fPg9vhgG2RRXMDAIKa/GIbb40NPvwu7j18DQUCwIYqlgMHm/z6LyzfskopxYnD+\nAChKB4+CaFG6SGcjjqX1lfBxfvxl/6eKfs9md8NHEKAIUvb3LoYac5F/x6LhOD82//k0Dp66ju5+\nF6xR71wqxpbNiD1XtZA1a/bs2YNf/vKX+Nd//VeYzWYYjUa43W4YDAbcuHEDZWVlKCsrQ0/PSCJG\nV1cX6uvrJa9rsyWvpIH1cujud6EoX4f+ocSFFeTS0taFi5d64WJ9grtPfmfa2ausP266IAmgyEBh\n3ZLJuGPBhIhddV/f6A2F3yP9rP0eH7q77aH/56/b3e8CAgFYi43o6xsapXAVi5ICAxiCwNVr/dh3\nQrhL1L4T13DHggmCO3jOy8FiFlcO4zzeiHHHQgfAPuCC1G8o+RvdHg49A/LvL0RLW5fo35hJ1Eoo\ntCWLkgIG9dWlcDhZtLR1AVCWwU7rKWx6fT9sdk/CZ6qJzkWr1Sz682i1wC6bS/axjBpjy2aknqvS\n64gR0yDb7Xa89NJLePPNN0MJWosXL8aOHTvwuc99Du+++y6WLVuGOXPm4KmnnsLg4CAoikJzczOe\neOKJhAevlOiEA0ak41Cy6LOzeGbzEfQ7WMlm50Xm7Oi8U2k1wWwMjlVOosq1HkfMn8+YOHK0wfn9\ngi0Y/YGAoPCCGHXTS8AM90WOp5dxrBB6MsJwcnXXy0uMuN6b+Oa138Fi0czxKTd2Sri1vhz3rqjG\n6U96UraRbqguxYN31OI/930SMeeUbJjdHk6wp3I8Z6rJmotqhJvT8Z6MJWIa5L/85S+w2Wz4xje+\nEfq3H/3oR3jqqaewdetWVFRUYN26ddDr9Xjsscfw0EMPgSAIPPLII6EEr1QSvcglkqQVL3zJTqiu\nlvPD4/VHLIQ2mWd/6cRk0OG7G+aG/l/OudONGB2FbthcmDFx5P/FEkSCms/yWT0vGDhPpJex0Bnw\nkjkVuGvRRNHfiRcldctqGGMg+PffvXwaDp7pzMjEropSI+5cOAkUSaB2sgUHT3cl9X6MngzWDJ/r\nwaUbRxRVEwBBIRuLOSiSI5Q30dLejbsWTxaNlkkhlY8QL1KVDUpKBZMxNo0gRCCVWU9RqB3aYL0c\nnnrjYMaF5JSKN2QSvPa0UJnDumVT4HB6Ixab3gEXvv2LA6LXW1o3Hg9+phYUSar2fTF6Ek8+0Ahr\nUR4YPSXaxGN1Y5UsjyV841FVUZSUEFyXzYnvvX4wpfNixdwKrGiowtO/OpzCu8pHTwFeLigl6vZ6\n4WIzcNcwzPzaUiyvrwJDk3jut+L5DUUmGgOO+MPY8SRfiYVWpd63kgIDnnt4oeIEr7FUh5wRIets\nIlP1orPVGAPBXT7H+SNKkHgvdm/rdbAeLmKxKSnMgylPB4dLONy4t7UTBlqHptU1qn1frNePp391\nGCXD4+C1rOPdwSdaQyqHQhMDmiZDDSZSQeuFXgwpUclJMXwLazFRmEyBJIALHYM4evY4iszS9e58\nLX28YWw156La4eZUvCdjjZwyyIUmBsVmWnYpiEZsegdZtJwTVk0SOzN78X8vwnd+fgBDIl2K+POq\nWGIaSo8bwo8INq6tVU0tKVn4FEi6qkHvIIveM8kNA48F/IERwRaldcvpLg3Sws2ZTU7JqjB6CrWT\nLLE/qCEbgoDsbkMt7T1gvRzyaD2+/2Cj6Od6B93oG3RLtmBcMns8VjdWQUYlxig+PH4Nb73bBh1F\nRLTAzCS6bc6MPMfVSC5K2jCGt/FUC14t8LmHF+KHf38Lnnt4IZpW12gKWxlCTnnIANC0phrH2roU\nqXNpiBMIBM/05IQRwxNDCk2MZD3pzqNXsHFt7XCrxQCOt/egf4iFJWzH7nT7sOuY8mYcfEceiiQy\nVzlIpK1kNCUFDOqml+J4exdsjthdmm65uQznrg6idzDzm0iMReTIuqZCmlILN2cmObctMjJ6LJtT\nkbb7y1tms4fCfBr1NaWyPhu+2DB6CnXTxX+v9UIfnKwXW3edR+v5YDOJwnwaddMsoYXnapcjobaD\nvMeeiViL8iS9/yJTsNQsEAiAIgnkG2OXyTE6EhvW1qJuekno9zUyCzlntXzlQe8giwBGjmK27jqf\nmkFqpI2cM8isl8OKuZW4dU55Wu6fzQlcQjTUlKJpdTUWzxof87N10ywRiw1fiiSEze7GlvfOhRYe\nIBga391yLbTwVJWZQCaww1ESHkwHep3468cfE/CNObpjlJMBgE5HYPuei9jd3CH7mEFDfYpNeqya\nV4mV8yphMTMgECyP4isWpIhVK5ypG0wNdciZkHV0mKcojm4/iVJekgeP159xZVfxUmk1omlN8Hxp\n49oZOPNpn+RCv7pxQsT/WwoMomHrYjODs5f6BK/DJ76YjTQqrSZc6RIWGyFJSMpIxtv1KRUMOFhF\nGdZyjmCcbg7HJFpT0joipVKy2QjfjIYc1k5X2pwGAAIgEEAwWsafTMg8oVCtVlgjO8kZDzk6zJOO\n0gnW45cM02Yb06uKQmdWOopAfp5404ySAgaWAkPEv0klbdVOLBYVRwn3bL91f714aDeGbTEadNBR\nmXmIwGeYq0kA4lm/BAF8b2MjxhfnqXrPXIOXZeCPSuLJRel3eLDrWAfeP9ahOOwsNS/SucFMRoKZ\nxmhywiArUT1KJn12Fm7Wh6oyaXF13kTQEiHLTKD1XG/oBdy667xkMwzWy4XC1eEv7/qV07G6sQol\nBQaQRFCAYHVjFe5fUyNr4XG5faJecKzz5Stdjow9d5ParCRCsciCbTEbMN5ixFfWzVL9nrmEWATB\nQFOqbKBihZ2l5kU6pCk5vx9bdrbjqTcO4nuvH8RTbxzElp3t4OLpcKIRk5wIWWeSIMiB0zdif4gA\nvr2+HlMrC/H7XecE+/5mAjYHi4sdA6gqM6G5Tbp+dcjlQ7+DxV8OXhLMDhWqCZYjUlBoYsDEUZPM\nk+66TynWr5yOb5fHXwAAIABJREFUQCCAfSc7VZN4vXmycGMG/pmOtxihJwGtCEEZrIeDyZD4cikn\n7JxJtcJa7+PUkhMGWUpgIhOxmA2YWlkIRk+haU0NCJLAvtbrGVmq9fI7x0HrSHhiiFgEALy9ow3N\nYSIi0S9v9CLELzDNbd2w2VkUmxk0zLBGLDweLwd/QPjepIweyek6d5MjK0iRQS1ltYyxxUzj/jU1\noGlKsIwMCHpgDbVlOKQJhCimR4X1pdjMwOPlIiJK0fC1wukWtklG7+OxJreplJwwyFKScJlIuAdI\nkSQ2rJmBzy2Zgq+/ujfNIxMmljHmuXBtQPDfY728QokvfJLesbPd8HiFra4/AJRbjLjeJ958Ifrc\nLdkLgpIaUrWPWuZUl2L7nouhMrIiU2QZGc89y6drBlkhaqXCDbm92LT5iKza4nTXCquZYJaK2upc\nICcMMgCsWzYVe05cy0gvk6fIRKOxtmxU6Mnu9GTEGXiiDAwJC1f0DbrRbXOiqixSVF0qHAYg5gar\npMCA726ch5e3NOOqyPn2jInBlqGpWhCUhPjUPmo5d3UAV7tGngNfRkZRZMS9//DBBdXuqSFNQb4e\ndqcXjJ4abtEYXJ+yIfSbSOe0aLTQtzxyxiA7nB54MtgY03oSz35pQai3MAB4fD4895tj6Ogeyrn6\n5XACAP55W2uEAZQOh3VDThOyuTWl+PO+TwSNMUUCeh2FA6c60XbZBqNBH1E+lYwFQWmIT23t9Y4u\n4U1J+L1ZL4cznwqXm2moz+CQF4X5etFjiUzOcVCrGUUyQt+5Ss7ECpJRRhIPYmU2y+rKI4wx5/fj\nW6/tx9UcN8Y80WUfUt5hn52VNFJmox4r5lZg3bIpoi865w82v+BLTsRqmdUUW5AT4guH0VNg9Ort\nicXmUfi9BxwsBp2xJTg11GNgyCsauROaF5lUYiRWJaEkwUzpezGWyRkPOVPOkTkuuCzyCUclYaHR\ncN56t020RWEu09LeHbPTk8XMIBAICBplkgDsTi9aL/SC9foTDvmqmfSlNMTHejm4Pck3juH3LjQx\nKMjXY1DkeEEjtYR/N5l4zqpGgpmaoe9cJ2c8ZM7vx5A7/YsM76Xw2b8zp1pGdVNhvRyOt/emfnAZ\nQO8giwEHC0ZPwcAI7wcNjA4NM8oEf8Y/195BFvtPdYKhEwt10XoKJhk60XJQWkPaN+iW1TAiUcLv\nzegpzBN5thqpJ/y7yWQNaz7BLJ7QcqbVVmcyOWOQt+46jwOnZNQAp5i9J67jrR1nIwrpg2HDsak1\nTBJAHqMD6+VwvUf4zPN6zxDWLZsaCpURBBLStJbC7eGwfc9F1a63fuV0rJxXCUPYRsFAUwgEAqPE\nFHbG0ckqFrfWl8cMLzatrkZFqSa/mGoMNIWSAkbwu4mVU3G1y54RIex44PsLrGioTCj0rdZYMuU4\nQIicCFk7WR/2nOhI9zAE8QcwKtM1VmvCbIQiIau/rz8Q3JB4fJxoDbE/AHT2OkKhsosdA3j5neOC\nn2U9HJbMGo+zl/tDIgpGg07wzJgiCXACN1UzsYQiSZBRtcVuD4f3j3WAIEbaQbJeDq3ne8QuE+e9\ngftX1QCrIBlepMhgguH3f3UInb2xm1ZoqMOimeNw78pqwe9G6py1d5DF05uPRBx/ZUKpUKwSQqEQ\nfN20EqxunABLgSGlnnEmHgcIkRMG+XfvtYMVqVXNFMIXfUZPob66FO8fy8xNRDxwfmBBbRkOn41d\n3/qTf2/FpHEmyc/w5+uMnsLUykLRDYylwIANa2cAGDFCOooYfvlGlI5mTCzCAQEFK0Ddc2Qn68Xe\n1uuCPwufA8lQl/P7EdGPOpZRfuqBRvzDK3sSanGpIZ9Fs8aJfidyxI0yoVSI9XLoG3Rj59EraL3Q\nK2nchEqdhMrwUkG2lF1lvUFmvRw+FukalEmEL/qsl4PLnXsJXa0Xe1FhNeJat7hQBxBsgCDWBIGn\nsnRED1xu+UW4QY1ORAGAtsu2pCeWbHnvnGiJS/gcSIa6nKXAAJORxpad7bI8AYfTqxnjFPLzP57G\ngMMj+J0wegp100pkyeimo1Qo3MOMnrNCxo31cqJyu81t3SkdfzaVXWWOrx4nAw7pEplModjMhBbL\nJ//lAPbL0bzOMtweDpWl+aiySjfXkEN0aDme8ovwRJRUJJawXk60pSQQnAO84Wf0FIwG8e5Z8TC3\nJqjUJTcxyGSkweizfgnIGvodHsnvJLp9qRh9g6kvFQpPOBMjvIRQal3us7MpHX82lV1lvYccDP8o\n71maaowGfWixzGWOftyNZXPGY8jti+kFi1Fsokd5rGqUXyRbtH/AwYq2lAQAF8uF6tRZL4chlzob\nScuwBvi6ZVOw6VeHBT+zt/U61i2bCuNwZjvn9+PFf2vO+Pcml4n2zqT6h4fD0FTCER0lErJyJV7D\nI0B5jE5Ua55P7EwV2VR2lfUGGQACIs0H0oHYJHTkiDxmLAIAPjohfFYrl3m1ZYKLhJxFxO704GqX\nA1VlpgghFiD5ov2xwtBO1octO89h4+0zYhpvJXzj3jmosprQZXOKegJuD4ct77Xjy5+9GQCw5b12\nUbEUjdQQnbuQCi2FeJKb5OY7RLRNZX2SSZsu1jfq/UwWaimOpYKsN8jBjN10j2IEsUnY78j8sHo6\nuGXmOJy7MiDpscpZRDw+H57/bTM6uh3wB4Ibo4rSfPz9X8+EtSgv4qVLlmg/o6dQO1G4/SHP8fYe\n3LtiuqpnyHn0SKtKKSnOY21d2DicANdyTt0Mbw3lCHln/Nw/drYbNpFQqmd4YxrPHI4nuUnuXI1u\nmyrm7ZcUMCn3SjOppaUUWW+QkxH6SEZJUrGZAUEgp0qdEoXRk3jwM7UApMt0xBYRjvNj49rg7z//\n2+YIj88fAK52D+HpXx1OarkI6+XQbXMCBAFrUR7uX1ODI203RDtU2Rws+gbdKC/JV80b6rK5UFKY\nB4IIwM2K11eyXj+6+12gdaS2QRShZLg0p/VCX2jhvnlKEfYkGPURwmjQjZLa5aM4dy2ejE2bDwt+\nT/GGWeNNborluZcUjDZu0l6pNeVeaaa0tIxF1htkF6u+e3zT5CIcP9erqrRlwwwrOM4vK4syHRBQ\nr8WcXJbWlQMYbYzDQ9MARBeRD49fAwgCdy2ejI5u8fBrMkocOL8fv3v/HPafvB7q4GOgKSyZPR6L\nZo3Hhy3CpU9AUBBk4+0zsG7ZVOxtvRb6/XipKjOB9XL4wa+Pwhmrt3IgIHm+N9YxGvS4e/k0rGio\nAgIBWIuNGHCwSTHIV7oc2Lrr/Kg5yfn9+PP+T+EWCf3FG2YdcLCiDkGs0r/1K6cjEAhg38nOUBUB\noyfRUGPF391eAyMzOkExE73SdLe0jEXWG+RCE4MCow6DTvWM597WxDKgG2vL0HqhJ9R9itETOHvZ\nltGlThRFwMept0IbaEq0/AcAKq1GBAIBPPXGwVAYur66FAEAJ871hP5txsRi0fMrfwDY3dyBAQcr\ny7ioVeLAejm8taMN+6NC07wAyKp5lai05qNDpCVk6/lesCs4OJwesAkaYwB46XctGHKy6B+Snl8G\nmoK12Ii+QbdmjEW40uXAYz/bB4/XjyIzgxkTCrFyXhUKjPqkNOUQmpPRESEeiiSwfG6FLIMWnW/B\n+f3YceSK6EYsltdNkSSIKMEb1uvHgdM3kJ+nF9zoZotXmklkvUFm9BRummTBoY8zo+E6SQAnw4wx\nALDeQESf2kxELWPM93wOBAKSwicd3U50hNUr9w6yoz4f0quOkUX/aaddloefqACIVC1mOMfauvHV\nz8/CD99qlhyHWufIYoY/msWzx4PRU9h59EpC98t1+Llms7M4eKYLB890JU26NXpOSoWVOX8A/gAk\nj104vx9vbD+JfSc6IvIt/IEAdjeLv4+xvO5Eankz3SvNJLLeIAMAQSTpbYkDfwCyS0lyMWz4lb++\nGTMmWsD5/fAHgA9bOhL+G30xNDn77SzGW4y43ictSJJoiYOY5zJqPA4PfvaHVjA6Eqxv9Nj5caSy\nQ9mt9eX4m1un4Wq3AydUluwcCyTrPY2ek1JhZWAkKVDM+InlWxhoYSNOEsBt9bG9bsl2qYNuXOwY\nwNTKQs0DTpCsVwVgvRxOXczOzkkBAH9z65R0D0NV8vOCpQw+LoDGGqsqC1ksjWxaT+I7f1ePCWUm\nSU8mnrM3t8eHLpsTdoVla4NOn6Axjh7HPcunYrwlud5DpdUIWkdh068OYdOvDmeFkM5YIXpOFpoY\nFJnEy4H6h8RFNaS8WLE8hQCAtQsmxkx25DP4hSAI4P++cxxPvXEQW3a2j2qioiGfrPeQBxwsHBl8\nNiuFxcyguqow3cNQDZIALAVMSLqxd5BNSRTA7fHjvw5cxrNfWgC704NLN+w4evYGTn/SH3cyCR+e\nbr3Qi26bC4UmOuHMZKFs1H/ffQGdMTz7eCEJoNJqwvSqAsVeuJ4CMrQhTlZjoCl4vJzonGT0FOZW\nl4omf5IEAZNRWOEtHn30YlPsEiTO78cfPrwAp0gGf3hL1EzUh84mst4gF5oYGGkqdnZpBjLk9uKl\nLcdBksHGAJlEXFnXBIE/fHAhYjFRwxiLdWkKp6U9qI9rNtKYNaUEs6aUKFIjiiY69JeoMS4y0Xj6\nC40RYgisl8O+k+pn7wIArSPw/MO3wGSk8dQbBxX/fkmhMWkbhbGIgaawtK4c65ZNgcPplZyTdy+f\nho9OXBOMDHH+AN7e0YYH77hJUYMKsW5s+Xn6mO+G3KMankzTh84msj5kzegpTK0wJ+Xaap1MM3oS\nVWX5o85x3B4/Asg8YwzEVwLl9wdwTERQXgyjQRfSpl41rxIr50X2TF3RUDmqVlMIXh83vN9pvE3V\n5UoF8iyotUqGGYGgQXe4IrN0u/tdkpnoieDjAuD8AXTbnIqTxsZZDLDZtbaMakDrSCyoLcPjTXNx\n923TYGT0Meekw+mVPKY5eKZLMDwspdeu1wkv9U63V7I3sNJ3Acg8fehsIus9ZADYsLYW331duRcQ\ni+VzK7CkrhzP/eaYot8jiaBBs5gZ1E4sxv1raoI61hmeaa0GSsvPbp9XiVtmlUd4DH+7fMSzHXCw\nktmhPBYzgx2HL8dsCSeHWKG/YhODgSE2Iuwox4vg649DBBIPH9AUAY9AhnyRicGOI1fi6rncZXOr\nMbScQ2kYnwTg8flxtK0Lh892yRaoKTQxKDYxokpdgHh4eP3K6TDm0dh34prM1qPsqMqD8MhSXGHw\nDNOHToRoTYRkkxMGWQ0IBMOKA0OeiIW2/XK/4mvNv2kcPr9sSsjIxLPLzCRIAjAZ9RgcUr8Os3aS\nZVRJRHiZRKGJgUVCDpLHaNBHhMoTOc+SCv2VFBjw9Bca4WJ9EZuIdcumYM+Ja5IZ9q3ne8CGZcha\ni42ioUS5CBljIBiKlLOREUIzxqOhdSQsBQw6++RHDvivVekZK6OnUDupCAdkdISLDg9TJImH183G\nHQsmKG49KiRRWze9VFSOVUxroG56SdaHq4WexZI5lbhrUewEuETI+pA1oI58ZgBA9YQiPLa+Hk9/\noRFNq2tAkSSqykyKrkPrCGxcWxMRlkpGM/pU4g8ALrf6xhgAJpUXSP6c0VOomVAk+Zl5M6yinZPC\nW8LJJVarRrORjvh+Ob8fW947F7PcLTqs7vFyqhi/+bXWyDD/3Ao4k/R9jVU8Pj+GVHqmcubkzZOK\nZV2Lb8UYflQDxNd6NLzFIt8mcndzR6hyIhpLAYNV8ypRUhA06HyFw4lz3diysx1O1hcxJrlE/y3p\nQOhZ/GnPRcE2pmqSEx6yWvKZhz/uwuGPI0NLtJ6SlVTEUzuxeNQOKhnN6FNNMt6NilJ557ur50/A\nwTPiZ9Mej0/Ug45XDITPfm290IuefpdkpvbWXedHqXYJER1WNxt1qiS9zZxswYbbZ4S89gEHiw8y\nVKI1WyEIwK6SGmCf3Y3ufheqrOKb/akV0hvV8HH97D9Owun2wmb3iHpysWQspaJ4TrdXUHnuWo8T\nFEli1jQLPmy5HprLfXYPdh69ir2t18B6/LKPj+LpRJUM7E4Pjp2NTwQlUahnnnnmmaRcWQZOpzr1\nkP5AAO8evqyaFrOL5XDx2iBcrA+VpfmKMgxv2Fw4eLoTPQNu3Dy5GCRBQEeR6Blw4+K1QZVGmBsE\npQAroaNIsF4OfYNu6HQkdFTky/f/DlzCp9ftotfp6neL/sxSwGB+bRkYWjfqumKwXg42O4u5NVb8\n7ZoZaJhWgjsXTcLcaivIKBEa1htsa+iSaOrAU1qYhxMXekOfVasX8fHzvTjy8Q24PBzqppWA1lM4\ncLpT1pg00sOJ893oGRxZI8Lh/H78fvcFWe0xAwAGnV64hkPHLpZD22UbXKwPs6eWhD5HEgRmTy3B\nbfUVWDq7fNR87ht04//tvyR4D7eHAxklm8kzOORBZ69T0GHh1f/C19PwMUXzzvvnsPPo1dC8lft7\nasH5/Xjn/XPY8l67aFUF6/Fh6exy5OcJl57JIT9f/Dw6Jzxkh8ublFrXlvYe3LV4smLvVuisaP3K\n6fB4fQn3Cs4l+h0e9A26sbulQ3RXzHo5nDgX//m7w+XBps1HZO224zk36ui2y5objbVWnIsjH0Eu\n0XMuVQpgGvHBe5HA6PNkuREXKcQ8OSEZS9bLwePlRNe5onzpBDO5G0sp7zIRaU61kJOYmeyEtZww\nyDuPJWfhsdndcLE+5Bl0QBzhZn4i6SgCW3edx+lPbEkYZfZCANhx+FLEJiXasAw42ISUpdjhNohy\nEmqEZAf/tOci7EMsVtRXwMP5QesoWIuCrQ75/suxYPQkzl3px0ASmhNEc+TjLty1eHJEiLJv0A0y\nweQxjeTA18+HdzpTIwFUzlFNMPehHS3netDv8IjKa9bXlKKlvTvhWnypMUnl2SSqQS8Huc893k5b\ncsl6g8x6ubhKO+RQZGKQx+jQbYuvJpOfSDuPXdW8FQECAFov9An+jN/MyM2ylovYblvqhdzd3BGR\nsWygSehIUrZCHOv1qxaejsXAkAff+fl+LJ1TjvtWVePu26bh7R1t2Jegx6URP8VmGjaR+ds7GFl2\n1DfoViXXJJYnx/n9+MGbRyPC4uFtRKPVxNqv9CdskKXGJJVnk4oyKjmljsvmBqNlySTrDXIyM5hr\nJxVjYMgT92JabDYgj9FldclTshF7ycN3xQ0zylTb0PBZqdG7bSXzKLhwZa67yfr8eP9YBwiCwN23\nTcPZy1pkRopky7uKGWP+3uFVImp14orlyW3ZeU70jNrI6PDExnmwFuWFyjadIlUMao1JqtFKsr1S\nQHpDUGSi8cyX5mPqpBJ0d4vnsqhB1pc98Q9SbQw0haY11QkVZc6tKYWL9Yku9ASA+unJT1bIZMwi\nurzhu+L1K6ej0qpOuIqhKcHddrLmUTppae9Gd78rq0vuUkE6O675AyNVIqyXQ+sFZY1ySgoYTCgz\nwWJmQmVvf71sqqRuO+vlcLxdPKrYZ2dB68iIsk2bI7HjFgNNIRAIwMl6RUua1q+cjtWNVRElfKsb\nqxRp0CuFL7ECIFoa1lhbFiF5m0yy3kNm9BSMBr3qJUVL68phZPSgikkYaFK0W4oQ4U0EfFxAtLC+\nMF+H1iztVKUWM6cW4+Cp0SVNc6pLQo3Vt7zXjus9ydVVTmUrxFTRN8gCgUDWl9zlMhbzSHMHpdG+\n8ZY8bPrigpAXywuBVFUUSXpyAw4W/RJJWgQB7DhyBU2rq0GRJExGGnqKgDeBnuluD4f3j3Vg38lO\nsB5OMMmSIkk0ra7B3bdNi1uDXi5CCZz11aVYOa8SJ871xt2UJlGy3iCzXg4Op3qLDS8Cz38JjJ7C\n4tnl2HVMnupRUX5kEwGKDLYkFDLIDheXkTrWqeTTayJJUcORia27zot2vokHfuESShCJSISyu0Eg\ny/tVE8DOY1dQX12K92XOX43Ukp+nD2m1K9Ur8Poidaz5Oc23DBUzaCYjDUbCyQgEgnkTFEmgaXVQ\n9jcRYxwOXzollWQplAmuNkIJnO8f68AtN48TVOJLFVkfslYjnMJTbjHipf99S0ili+f+VdVYNa8S\njD724+ofimwiwHo5UdUkX1av9uIYaAoEgMJ8GvNrrZAq/xXrKLT/1A3FPYjlUJhPiyaI8Dv05x5e\niBf+/hbcVl+h6r2TgdScDASAj050ou1y/7Ci0kgo0FpkSOEoNcS40uUIqT9JKWoJ0TcY2RuZ8/ux\nZWc7HnlpF773+kE88fpBvPVu2yjFrO17LsqK+LW096B3wCUqkqEG8SjpJYpUAufBMzfwnV/sx7tH\nr8hqaqM2soRB2tvbsX79epAkibq6Oly/fh1f/epXsW3bNnz00UdYtWoVKIrCn/70JzzxxBPYtm0b\nCILAzJkzJa+rhjCITkfiwKnrocL4RHC4vPBygVFF6CRBoG5aKdbMn4CG6lLMnGTByQu9oupdAQBz\nppUCkC64z1XMRj3mTC9Bv4PFhY7BuLxMHxdA7YRCVb1jAAgEAhhy+wQFGXh0FIn8PD1mTbUgQBC4\ndH1QtlJbqpEzrkGnF5PLC/C1u+uwdHY51i6cgM4+Jy7fiF2ypZF8Bhwe3FZfAR1F4ubJxXCxPtgG\n3TE7gRWZaPzV4skhwRteWGNoOPvf7eHw6XU7dhy+hJ1Hr+LA6U7csLlwvL1b1nrpYn3Yf+o6BpNY\nrqeG0IZSYq3JnD+AT67bRwmS5OczqtgsKWGQmC6f0+nEP/7jP2LRokWhf3v11VfR1NSELVu2YNKk\nSdi2bRucTidee+01vPnmm3jrrbfwm9/8Bv39yRNC4GH0FBpmlKl2PbEdG9+k+7U/nsQv/nQarE98\nh3ngVCecw4kauZgsFAub3YODZ7pCOrDxYsqnUZgv/0UlEPT+THniJzGs14+dR6/K0qSlSBJf+Xwd\n/unRpbjl5nGKxpJp8Ek8ZcVG/OHDi9jbqpVBZQrh7Qr5KM33vzA/5u/VTbPIql/m/IjQplZSQjjk\nTq73yleipFK7Wu6a3NzWnXLvPaZBpmkab7zxBsrKRozeoUOHsGrVKgDAihUrcODAAZw4cQKzZ8+G\n2WyGwWBAQ0MDmpubkzfyMNavnI6V8ypFC9uVINbLkz9zkDOZ3R4Ov3uvHcBw55aJ8oTicwVSQaRH\nTKKW0ZPYd7JTdr9gkgCefKABT3+hEbRI79dwjp7tgl3mbnf7nos4eOYGBpLQ7QpQ9rzixeZgcaVr\nEL/YfhIfxNkFSiMxaJEQKK2nYIrK4t32wYWY11vRMCFkyJQkhKVivsnFaNDhB28ewfdePyjY4zkZ\nyD0a4FtTppKYSV06nQ46XeTHXC4XaDo4gUpKStDd3Y2enh5YLJbQZywWC7q7U1N/S5Ek7l9VDZ+P\nw9GzXXCy8X+hQkXo8ajnnL1sA+vlwOgp3L+mBsfauxRlamczcqO7JoMOjTdZ8UHL9VE/Ky0yKGof\n6A8Apjw6WGYmY9PU7/Dgmc1HMK9WWk7T7fElvY5cryfBpmBu/PCtlqTfQ2M0jJ6Ej/OLtsrkN/D3\nrpweVAZkdDh7SVgwJ5wX3joKry+YRV83rQSFJlqWeEemnL5QJCJqoRNpmaqU9Sung+P8+PD4NdHn\nURyWAZ8qEs6yDojU6Yr9ezjFxUbodIlnsXGcH9/8yQf4RKIBgVwWzhqPqorIdn/Xe4bQZ1e2U7LZ\nWVC0HtbSfADA4rpK7FKp6F9NEu3HK0RpoQE9A+INH3gYWgeDQbi+T2ntbGkhg2mTS8B6OJAkZGWv\n2xzBBcCYR+PhdbMFPxPPd68Uj8eP2dNLcfXGoKSIhEb2MbfGKmtDt+9UZ0hNzWJmZG0qPb4RWdjd\nLdcwudwsyyCXFeeh8aZxOPrxDfT0u1BalIebp1hSHjkRW3daL/TiK3fnwUAnrwiI4/wwmwyg9cI9\nnQFgaX3lKFtgtZqTNiYgToNsNBrhdrthMBhw48YNlJWVoaysDD09I8XmXV1dqK+vl7yOzaZObelb\n77apYowB4ODJa/B4fBFeE+flYDErq+UsNhvAebyhesC/WTYF+1s7Ms5L1lGk6iGimglF6BmIfUbZ\nZ3fj4MnR3jEAxZ2KDLQO9gEXumxOxaVk+05cwx0LJgiWOBQX5in+7pUSAHAySfKvGumDAPDpNeV5\nNPFuAAcdHlRZ83E1qk1iNHXTSnDPrVNx16JJ6Owbwv8cuoIT7eLtTVNNd78Lh090YGplYdLKjrbs\nbBfVHDDQFBbPHo+7Fk2MqOe2Ws2qKHVJGfW4Dl0XL16MHTt2AADeffddLFu2DHPmzMHJkycxODiI\noaEhNDc3o7GxMb4RK4D1cmhpUy+kyHdhCU/6UVqOAIyWezMyOiyty7wyGo/Pj4bqUlWvec/yaVjd\nWBXzTL8on0lYH5fH7vSA9XIoNDEoMilT1RHLGwCChl7pd6+hAQDjLUbVSjLlYHOw+N/rZmHtwokQ\nOyZmdCTuvGVSKEn1xX9rwaEzN1I6zlgQAF5+53jSzpSljiAL8/V48X8twoY1M1Lag5kn5h1PnTqF\njRs34o9//CN++9vfYuPGjXj00Uexfft2NDU1ob+/H+vWrYPBYMBjjz2Ghx56CF/84hfxyCOPwGxO\nrnsPDKvODKkf5ovOtl63bAoWzxqPIhmZtmJybyPScJmTdc3oKTx4R62qmeAu1geO88MTQwO8emIh\nLGZh42mgle2MB4a8GHCwwc2Twg0GrReW0+QZLenHoMqaL7roaWiQBPB/7puT8sz8HUcuY91yCdlM\nnx/P/vowfvDmUew8ejVm0iSjJ1VJllUCf6bLnynLqYhQglQCnN3pDUmZpgMiIOewN0mo4f6zXg5P\n/ssB1boB8RAAnv3SfJSX5kdIrNF6UrLZBEkAP/naUkntU9bL4c3/PotDZ26oOuZ4MNAUfvK1pfjD\nhxdUkY20mBnUTbcIJmqJ3V9oUVg5rxLnrgzIatLOc+uc8di4thac349vvbYfDpe8F4t/BkLhsfAw\nVbg8IQCUv5VoAAAgAElEQVRs/ssZHPlYaxyiMRoCwIKbynD4466ESv/iYeJ4M270DSWcKPjIupkY\nV5KPAQeLf9p6QqXRRUKSI/2WxZTxSgoMeO7hhaqFr1kvh6feOCh4DCV1r1SErLNeOpPRU5hTbVWU\nkSuHAIB/3tYKo0EfYRRidX7yB4CrXQ7cNNki+hlGT+HLn70Jx9q64FNJki5eWE/QyPAefaJGeU51\nKQ4oaPUXbYwNNIUls8fj87dOxaZfHVZ0749OdILW6xAIBGQbY2DkGcSS62P0FEoKDREbNIok4hIN\nIYiE+pZoZDgkCRz6OD3nspc7EzcaBprCO7vOo2+QhV5GGWG8+P3AI5+fBbeHw8vvHBf8jNr9kNPd\nWUqKrJfOBIBb68qTct3eQVaRhwYEPWSGJmMWlDvdPnBpNsYAQOtJFJqYkCDBj7+2BEYmvn3ahDIT\nls4eL7t2WAi3hwNBEHA4vXF1KWpu68beVnneOQ/f91oOfD06L3oSlzGGZoxzHbUrF1KN28OF5rhH\nQgRJDfQ6ElMrC0WP8qJLUfkOTVJrbKzPrF85HSsaKlFsYkCkqLOUHLLeQwYASkosOdUQwPO/bRbs\nZhLO1S5HykNZQvCGITwc+7Nv3orrvUP4p3eOw+ZgZRsPp9uH/zmceGnX3tbrWLtgoqQAvhjxZKja\nHCx+8OYRwe8rXKgfQEI1yXoS8A6rJqUDk0EHhzt952NjBVpHJt2I5QrBssvgGxHLaxXq0DS3xop1\ny6bC4fSg0MRARxGCn4momhm+Tuv5HtgcLIpMNOqmWST1CFJF1p8hA0Fj8s2f7k3IM0sWqxurBIvc\n+x0s/s/P9qVhRKNZMms8zl62CU7gtst9eHGLcCgpGr6hhBpJduUWI66LNJ6QojBfn5CiFv99hV7a\nC73otrlQbKYxrtiIjy/HLwdLIH3GWEMjmnwDlXRpTLkUmWjMqS6BjiRxXKD9IUWSoqVKBjoorGMp\nYEYdMfKEr8Ni1xFbq3m0M2SZMPrguWMmtphrae/B3bdNG3Uu8ZeDmdFwwkBTIUECYCSzMRAIgCAI\nRR5hoYnGgEplTPEYYwC4aVIxWs71xDzrF4P/vqKT3PrsnoQTB9NtjEkic1Sacpls2XhlijEGgsp5\nH7Zcx4QyE559aEHI45Wj1c1H0XoHWVG9AP695vwB7G0VblgjtlankgyK9SbGfauqQyVFyS5HURIh\nF6pxjUeKM9XsO9kZOiuVy9zq0rQ20jDQFDasrcWcaeIJdbGw2d3otjkz/vuJB7nGWKQJVlrgdZcJ\nAPmG7PAf0mmMDTSFzy6dgtvmVmSUZrVcrnQ58IcPL6Cs2BhhGJVodQvBr8O/e69d9BhMSo8gVeSM\nQR7pZXsLXvjKLSjMT97Le9vcylF1qWK1ekLa2AMO8Z1csjHnUaGuSItnjQcrEuZXEv430FQw3LOm\nJq0iGkvrymFkdCASOAcqNhsAgkjo5c9UaD0hq6d3piScLW+owNK68TAb9QggWBNbUWpM+oYh3Xas\n2BR/7bKBpnDfmhm4b2U1Ftw0TsVRpY7jAh33Eu2ax3eVOnvZJvqZIlPqtaujyY4tpwKYYZEHpVmO\njJ5EWbFR8PzBQFPweLlRZxp33zYtlAglVscrlEYfDMUQYL2pX/n+/q5ZsBbnIY/RYWDIg7OX+uIO\nxVrMDGonFaNpTTWMTHARWb9yOjxeHz46Ebv0yWKmMeT2xR1eDofRk1i3bApYL4dzVwfivk51VSEK\n82lYCpIrl5kOiAAh2TZU8nfTUKZ1/uoArnaNyED22T1ACrS+07kfWXiTFYtmleOVf2+N6/f7HR48\n9Px7IBCA2+OHgQ4mmCW5gZKq2BzsqDInqVIlOcytKQ02npF4p2snFac1XA3koEEGgh6okjpUAHj0\nb2ZhamUhHv/FgYjfNeXp8IMv3wKPxxdxpgEEJwk/afh0+Zb2nlEJCUJ4fel57d/877OYO8MaykJk\nFCpi8RSbGGz64vwIARQ+EerE+V5Z17hpkgU6HYEPjysrUxKC9frhcHrB+QMxvVsDTSEQCID1+ked\n9x08cwPHz3ejtDAPQG4ZZNbnR5HMjkDRPP3gPDz/22NIZfLwtRiazLlGvoHCF//qJrAef0Ln/eFR\nr0zTzpdDkYkW9FSj11ixxhATykxwun2j1mHW6xet3GD0JJrWVKv/xygkJw0yFcfhyc5jV9G3++Io\nQ+5w+fCTrcfx7JcWxLhnMGQe7jUL7bZYL4e2S31pS67ptbMRu8x4M9MHhli4WF+EQeZrdGOhIwGd\njsS+U50w0GTc4hrR0HoK//ed2C0Gw/9mobu6PX5c7R6SJdSfTZQUGFA7qRD7TipXiLvU6UipMQbG\nXgLakJvDtg8uoml1DYwGnWKnIleYWy0szhG9xpqMemzf84mgE+TjAqPW4e17zotuUHycH//x0UXc\nv6o6raVPOWWQOb8f/7azHR+1CGfRSXHivHj/0atdDtidHkk5TJ5wrzl6bOH1cdmOULG+3EQonx/w\nDb8Yau7gX3z7GG70x277KJchlxer5lfh/SOJS4pmAnNrSlE3rSQug3ziYg8oAkillk2ys8Jvq6/A\nyQu9SW+vqYSW9h7ctXgyKGKM7UaGmVBmQtMa6V7I4WusmBNEkQh9hvVyMRM1OT+w61gHSIJIei9m\nKXLKIG/ddR4fNCs3xrEIILYcphi84MaOI1dUl/dMJ9Fn4+lMVONR0xgDgM3hgY8LoKLUiGs96rQK\nTRWMnkS+QYd+hyfCc+iP0/i0tMs7hlCTSqspplKeXkfCG6frfsfCibhvVTXe3tEWUfqXTvoG3bja\n5cCAM3NKklKFgSZRPaFQ8Gf8Osrnvni8PtB6HaxFebKcILlrU3Nbd1pLn3LGILNeDsfOJq9Zg9KO\nJ9GTIdNLEMSaPDDDzTR4b6UkTDgkHIoksqb+UgkfZukmyuvz4xv31oPWkRGegysDxXOA4Dwz5elh\ns7OhDcQ9y6di2wcX0dLeg95B4c1WvO+VyTDyXL5wZy3yDDo0t3Wn3Vum9aTi9qFqQZIE8hkd7K70\ntGJ0e/yjvNRYRpWhSSydXY77VlWPClPLPUILp88+OqEsleSMQR5wsEnt6fmjLcextK4cq+dVwVJg\niLmDip4MmX4etmT2+GEhkMjzGF6WLo/RwcWOTmzjX5hjZ7tzzhhnM7SeCnkP4Xh8mWmQWa8fT26s\nC7XC5MfNhyT7Bt3YeewqWs+PqDjNmFikqJFJONOrisLCmyNnk7/+r49x+Gx6mkIAgJfz45k3lTVV\nUQu/PwBHmoxxOEfPduGuxZNhNtIxjSrr8eP9Yx1ovzIAp9sbUhusm16KE+eUawkU5QsnlKWKnDHI\nhSYGxSZ90oyy1+fH7uYO7G7uiPAShRIAWC+H5rb0vdRyIQBYCsRLufgFi282IXSGHs8uVCP5BIZ3\ngHyoj0+ASWYUKRGK8mlYo8QgeBg9hfKSfGy8fQbYFZEtMNsu2+I6KnngM7WC93ngjtq0GmS/H7JK\nlMoKGfTa2YjyTqNBB2eCWuWZsKnud3jwzOYjqK8pxfF2ed9F+NFG7yAb9/FgXXWJZFJusskZg8zo\nKcyrHZcS48DLSwIYlQDA+f14e0eb6v2Z1YbRk3jygcZRXpTYeYwQdqcHx84q34UyehIEQcDt4WAY\nLrsK1nkzcHs4DGkNEBKG9QXn4cfDdeZMjD7e6WbuDKusBTB6fsZbm5rHCItvJKrUlKpjmx47O8pw\nJ2qMU41U0p7NEb9RlXN9IQx6Aqcv9mHP8esxmwMli5wxyECwTs3u8uDQ6dTscMO1T3lP5C+HLkkm\niGSKnvCSunJUWU1x/S4fpj7y8Y24GjnwhqGhphQPfqYWtJ5Cd78L/3XgEg6dyUwPLhsJn4fpMMYW\nM41+uwex7lyUr0fT6vhqQNevnA6X26c4Kaujx4Gp5aMTiP5y8NO4xsGTqlc7m4Q+xBhXHF8DGbko\nXWfd3gDc3uCGTMrpSiY5ZZApkkTTqhocOdOVEqNns7vRN+jG7pYONLd1yfKKb6uvwKKZ4/DDt2PX\nyypByc781jnjcf+q+Ivgf/f+OexSoZFHc3sPzl89iIJ8BkNuH2wZVH4ylikrzoPH40X/UPweF60n\nYDToZb0TBoaK2wuhSBIb1s7AmU97FR1X2QbcQJRBZr2cbFEbjcR58DM1OHS2Gy3t3XGJ1cSipIBB\n3bQStF7oQ5/dDQLKjXRzWzdunVMBa1Ge6uMTIqcMMgC4WF/KPFC9jsT/HL6EPTJkIoFgS8GmNTXo\nHVC3PAdQtjNvvdCHrbvOS56Bi52jsF4O+08mrqzFM+j0YdCZ/lCbjgIyNN8p5XTZXJhQZkL/kHTJ\nkRQeb0C2qEpnn1t2nb8QjJ4Cw+gABQZZ6F7xKPxlM+UWIzw+DjY7C70u9UcaP9pyfNhoWtB6oU91\nozy3xoqm1TWh9eyPez5RHIHrs7PY9KvDsBQwWDKnEnctmpjUEHbOGeRCEwOLmVZ8hrt09njsP9Wp\nyJizXr9sYxz8PAcfF4hrjGqGuvsdHsFwjJwG4N02p6SYhzlPn7ayiXjJN+i0c+sonG4vVsytCHoX\nwyVHydznfnJtEHXTS+P6XdbLYVDhYm7MG32GnMfo0n6kpKcAkky+cWT0JJ58sBEUSYSS/n70drOs\nTRRJAAtuGoeDKhwv9Q6y+OhEZ3ADqJJBLimIlC3m8w42rq3B8fZuxXrugeFx/mnPRThdnqSGsHOm\n2xMPo6fQMKNM8e99dvFk3Dq3QvBnjTNKwOgTLyTuHxZNVzpGayGTlEWiJaqrCp8x3TvIhibhzqNX\n8a3X9uJ7rx/EU28cjNnHuWZCYcbXXEfjS7UmZBZgs7NYu2Ainnt4IV74yi1YODO5nYPMxvg7HA04\nWDhZ+eENiiQEQ5CpjK6JsXDmeLzyD8uw6YuNGG9JXpiU9frxhw8vRGTgO93yN9IGhoLFLBzRUNKe\nlmfI5cWKhspQBz1DnBr7RSYaT3+hEU2ra0KeLOvl0GVzgiJJLK4rj+u6PNFrptrknIcMBBM9AoEA\n9p3sDIldGGhyuKHA6DeupCAoA/l3q2ugI0kcO9sFm8ODYhONebVluHVOBY62JX62FC43KSSUzjc8\niKZ7IDlnq3z/z7Jio/wG4Ge6RLWnKZLAsfaepIw1mcTbASkbubWuHD5/APtjJEHxc5X3LjbcXoPj\n53pExWPyDbq4KwsIABVxJhgCfMkjA5vMDGm9TnjHWGgKtlEVigDROgIUCbg84hY7XNyEIOLTZ19Y\nOw6MnsKkcQX4xy8vxJb32rHvZCc8CuaopYBBv51FkYmBwUDhWrdw4tSHLcEyTjFRIDH8AeCDlmuY\nUGYS/M71OgqcQgGafgeLtfMn4N4V00V0qhkYDXoMubywOVjRzmODQ56Qxr5QxG9OdSmqyvIjuogp\nIXzNTAY5aZApcqSshkcqzBouAymkjfrWu22qjGvm1OKI6/L3emtHW8wFMhnwIgyAsgbgOkp4sdHr\nCHASCxYAjLPk4UafS/lgNVRh7cKJKCvOg9Ggk5QUjJZGNTJ6LK0rFywxWjYnGFkS+llZkQFdMSRN\nrUWxhXakYPQU6mtKZZfJsB6/4kWV8wfgiXGqsWxORWjtMBoovLTluOLmJBPHm0P/TZEkNq6txd3L\np+N377Xj7GUb+uwsCvNpDDo9gpnWJQUG/PNjy3H1Wj8KTQwGHCy+9/pBweMG/hWOt8FM+LGGHLEW\nAkBBvl6wMiN6AwgIr8Wsl0N3vwuv/P644GaA1lMwDUdbojUSegdZ7DrWgZXzKlFdWYi9rdfhFRFn\nJ0nhTHah/vZqkpMGWUmjgwllplEykOGTgvVyaD2vjtfX0tYzqsYNCIobqEWxicHcmhK0XxlAR/eQ\n7HM/vgG4HJEFj9ePJbPGhxYIi5lB7cRiydKTIhONxtoy3LN8Kp7/bXNMjWIN9SkpMMBSYIhQpuob\ndGPn0SsRi6pY21A5LUaFlN4e/clHkuPy+PxgvVxCRrlpdTXOXx2QNa8sBcKL6oCDFd24x+qvvvDm\ncaEkSX7t+MFDC2F3etDS3o03/yf2pr7Smi+YbGZkdHjoszdHJFtK9V8vNDHwDI9ByXutlL7hY417\nV1bLEmuxFBhQN82C3QLNf4T6xgOj684ZPYUqqwkNM8oE/363h8P2PZ/g7tumidqAE+d68dzDC/GZ\nhRPw+C8PCX5GrKxMbJxqkZMGWYm353T74OMCouceSq4VCz7ZKbzGbfW8KsXXF2sWX2Si8cyX5sNo\n0GHrrvMxS4ncHi7kKShpAG4pMGDD2hkAEPEiHmvvFtxt0zoST26ch5LC4JnY019oxJad53C8vQf9\nQyzo4QYBiZ7fkQRQYKTRPyQeOi0U2aGPBaIXk5AC1tpaycx6nlgtRsU8Gj0FSB27DQx5Eg4DUiQZ\nnFfvtaPlXA/6HR7QFAGPgAcktqgWmhiUxGm8bm+sEsy+NRtpLJw5Hn/e/6nkdQkAjzfVS94jnv7r\njJ5CfXUp3o+jTLGkgAHHcaLlbxYzM8qrBcTFWkKKgBQpu2+8GOuWTcXe1muCG6iW9h7cOqdCdF3l\nw87//O8nY97HQFPDokUGLJlTgbsWTVQ0TqXkpEFWsivsG5Q+E0jmDpNvtab0+mLnJ421ZTAbaWzZ\n2S7LsBpoKsJTkNsAPHxBC48kiOXhenx+vPD2MTTMKAt5ERtvnxE6L+LH0Nk7hP/c+wmOx1EL+oOH\nFmDHocs4c0k82mCgKTTUWAV36OlGLEQWD8VmBvXTS2R5vTxKFNqkPhv9swEHK2mMAcCiUhiQD/He\nu5KXC6Wxfc9F2Yu/1KZUzLjz6HXimUxyNrsEATjdHEwy87jk9l8H4s+On1tjBSB8FMH/XOieUpsF\nJeOWwuH0gBWJZtjsbiAQEF1Xi80GUCSBThmiJEZGhyc2zoO1KA9VFUXo7rYrHqsSctIgK/H2Ck3S\nYuJKrsUTrO/zo88+XC4i8kb02d1wsT7F17eYg8kJ4UL7/O5NSbg+EDYw3kO6+7ZpshqARyMV7gv+\nraNLraIX70njC/DFO2/C0786pMiLLSum8dGJa7LUmu5ePi20Q++zu0W/G7XR6wh4feI3K8pncMfC\nifi3nediXmtBbRny83SiG4t5MyLrL9OlywvIKyVSOwwop1+uGGLGxMf58YHI82b0JKwxNjPrV04H\nx/nx4fFrgs+ieNjbVEqsjRTr5XDinLwjt3BvMPw99wcC2B+RIEthyezxohsbOUZXyQZQ6G/y+Pwo\nFikdLTYbYC02SnrqXTaXrI1KvyMYwUvV+5OTBhkYebFitVSbWx17MRh5SWP31TTQFJ58cB4oksTF\njgG8/M5x0c8W5QdfwuhFoMhEg/VyGHILuxYN/IIbJrTP7956B5yyQ+Aerz+kNBZde6x0Nys33Bcu\nNxpOeEak0pDy6oaJ+I89F2N+jvVwcDi9ob9JKjmEGvZY1bDXtI6MmSXb72AxpcIs+RkgWDP98F/f\nDAAgSEJyoUxk0VOLWKVES2aJL+xqoeQ5iM15zu/H+asDgklaS+rKY64hvPd+TuQaRoM+KYt+rCM3\ngghGKMI7u0W/5xvWzMDfLp+ObpsTIAjBLmJCqD3/orOmGZHSqLk1wXr2FXMrwfkDEY4Lv9Fwun2y\nas6TncQVTc4a5PAXS6wB+YQyE5rWjBR5i3kU/LVurSvH05uPSN53aV05jMPC9VMrCyWNVH2M7O5+\nhxtv72jHJ9cHMTDkGbVzFZrwSkLshSYaO49eifC0hDRc5bxYciMJYmUDiXSNarvSL+md84Qn88RK\nDlnRUIUV9RV44d9aZLWkK8oXP7teNGs8Tl3slfxOis0GVFrNkiUZ+QYK//To4tBZZbwLZSqR8pAJ\nAPcmUbw/kQhB9JynSBKbvjgfW95rR/PwptFiZtAwY3RvcKnxiNX6Drm8CSe2CSG1HljMDL5x75yI\necN3douG0VOoKou9YUwm0WtE+EaU9+zrq0vgDwTw1BsHR1oxTivB6sYJEW1zzUYalVZTzCTAZCdx\nRZOzBpknvAE5H6YsymdQX1OKptXVoEhSVKEqWlrSWmwUNbAkAdw2tzLi5ZQyUhPKTKME9aMXgSKT\nAY/eXadoYVESYp8zvRStF4TPa8U8WSnkRBKEdpxSYXaxBDaefAOFTzvlnesIvVxCIco51SUIBAL4\n8e9PyDLGJQUG1E0vESy7mVBmwobba2JuOPixPfXAPDz3m2MRXhRJAItnl+PBz8wYZbwyYaGUQspD\nDgz/PF7JTDHkvs9KGTmjro7L0A84WNhEarV50SC1IxpS60HDDGvcDWZSjdQakW/Q4YkNDbAWG/GH\nDy/g/ahSp90t10BR5CiFrScfaMDzv21GR7cjNEcpkoA/EAhFDZIdvYkm5w0yEPtMQ6heTUhaUmpy\n31ZfgY23BzOPww1o+ILfN+hGoYnG3OpSNK2pkb04KA39hN+zd1C4BrSqLB+3z5+Aj44Ln4vFUwAf\n/pzFaqvDjSL/nDxeTjSsJmWMjYwO326qx7Obj0qOK1pKT2zMsUpKxBhJWCFEv+fozQrvNUZ7WbRO\nFyqX+eTaIMxGPSqspozzfOUiJRNrLUpOOFDu+xwv8YZipbzVZIZG5WZkZzJSoXebnQU9/H6IGW0h\nB4PW6fDslxbA7vTgapcDVWUm0HpK64ecKoReJKmdl9CXKDW5pXbmiWYVRiPlNQvXmQZDpkVhhsLH\nSWcixlogxMbA6Cl88c7aYfEJec+JEVFIEgt3FuXr8cL/WgwAon8DQ5P47t81YLwlX1ZkIZZiWVE+\njeoJBbjQYUe/g1WUPRr98zxGBxfrE50PZiMdt7ZzJsHLxAptcBbNrlB90VP6PqcSqQ19MkOjamU2\npxM5mxlpoy3uYJiNNG6abAn9fzrzLsaUQRZC6ZcoNbmjy42id+ZqfNFiRv/Re+eO+mysOlOKlK4Z\nFHtp5YQElT4nMcTOeRpvGhe6ntjfsKyuApPGFYheWwip+TDo9ODu26aHXv54skfDf652qDZTEdvE\nfumumejri0/CUIx4F+VUkU5vNROS/OJFzmYmXREINRmTBjncOMX7JUZP7lTtzMXCccY8GuuWTBb9\nPbGXMZ4FQklIUMlzAkb6OvOh3HuWT8W2D6RrSdVc5OTMh2xe2NKB2OaMiqcLQQwyfVHOBW81XcR6\nz9MVgVCTMWWQxTw7MSUbJV9iKnbmUsbs4KnruGPBBMWTTukCkejGI1YZBh+dnlNdGjLuYuML31ip\ntcjlwkudqXi8HHoH3MhjdEl7jtny/WmbOuXIWauy/bx8TBlkMc9u5bxKrG6sSuhLTMXOXMqY9fS7\nEjL6cheIRDcecsuyWs/3gl0xUgYSPj6pkLkai1y2v9SZhsfni8hmJYngUcQr37wtKffTvr/cRmqt\nyvYIxJgxyFKeHS82nsiXmIqduZQxKy3KS0k4LtGNR6L1ykDys2jDX2qK1oPzeLPqpc40opuJ+APA\nlS4Hvv3TPXjqgUbV75fti7JG4mRrBCI5FfkZiBzPjv8S431516+cjtWNVaEm2yUFBqxurFJtZ84b\nMyFumSWsFsQ351arqbbUGORuPEaek7jxFjPusULmajYPZ/QUyktjZ2hriGN3etDRLSy+8GnnIOzO\n+HooyyHR91lDI9WMGQ85FSHlVOzM5WasJkscQWoMcjceSuuVw8n0LFohMkFTOl1c7XKICoP4/cGf\nh5ecaIwwlufNWGXMGORUJnskM1wiN2M1mWFdtTYeseqVhcj0LNpwkrkpyhaqykyiteQkGfy5RiTa\nvBm7jBmDDORWsoeU0U9VCZYaGw+lxj1bsmiB5J91ZwNSmsGTxxeMmVpsJWjzZuwypgzyWEn2yMaw\nrhLjng0bq0xWjEo10ZrBfJb1y19bhoEBV7qHl1Fo82ZsM6YMMk+2ZuDJJZvCuvGQDRurbNwUJQsh\nzWCzkQZNj8nlRxJt3oxttAOJHESNTOhsIJOzaPlNkRC5sCmKB14zWAtTi6PNm7GNZpBzlGSXYGlI\nM1Y2RRrqos2bsY0WM8pRsiGsm+tkw1m3RuahzZuxCxEISHWcTS7d3fIay2vExmo1a88zCajxXLV6\nUmG0OStNvPNGe67JQa3narWaRX+muof8wx/+ECdOnABBEHjiiSdQV1en9i00NLKKXE8i1EgO2rwZ\ne6hqkA8fPoxLly5h69atuHDhAp544gls3bpVzVtoaGhoaGjkJKomdR04cACrV68GAEybNg0DAwNw\nOIR1bDU0NDQ0NDRGUNUg9/T0oLi4OPT/FosF3d3izeg1NDQ0NDQ0giQ1yzpWvlhxsRE6nZbkohZS\nyQIa8aM91+ShPdvkoD3X5JDs56qqQS4rK0NPT0/o/7u6umC1CtfUAYDN5lTz9mMaLbMyOWjPNXlo\nzzY5aM81OaQiy1rVkPWSJUuwY8cOAMDp06dRVlYGk0nr5qKhoaGhoRELVT3khoYGzJw5E/fddx8I\ngsCmTZvUvLyGhoaGhkbOovoZ8re+9S21L6mhoaGhoZHzpFWpS0NDQ0NDQyOI1lxCQ0NDQ0MjA9AM\nsoaGhoaGRgagGWQNDQ0NDY0MQDPIGhoaGhoaGYBmkDU0NDQ0NDIAzSBraGhoaGhkAEnVstZIDi6X\nC9/97nfR29sLlmXx1a9+FStWrAAA7NmzB1/+8pfR1taW5lFmH0LPdenSpfjud7+LS5cuIT8/H6++\n+ioKCwvTPdSsQui5mkwm/PjHP4ZOp4PRaMRLL72kPdc4cbvd+OxnP4uvfvWrWLRoEb7zne+A4zhY\nrVa8/PLLoGk63UPMWqKf7fe+9z34fD7odDq8/PLLktLQ8aB5yFnI7t27MWvWLLz99tt45ZVX8KMf\n/QgAwLIs/uVf/kX1STJWEHquv//971FcXIxt27bhzjvvxNGjR9M9zKxD6Lm+8MILeP755/HWW29h\n7ty5Wt/0BPjFL34R2sy8+uqraGpqwpYtWzBp0iRs27YtzaPLbsKf7SuvvIJ7770Xb7/9NtasWYNf\n/3t1l8UAAAOqSURBVPrXqt9P85CzkDvvvDP039evX8e4ceMAAL/85S/R1NSEl19+OV1Dy2qEnuvu\n3bvxD//wDwCA9evXp2toWY3Qc9Xr9ejv7wcADAwMYOrUqekaXlZz4cIFnD9/HsuXLwcAHDp0CM8+\n+ywAYMWKFdi8eTOamprSOMLsJfrZbtq0CQzDAACKi4tx+vRp1e+pGeQs5r777kNnZyd++ctf4pNP\nPsHZs2fx9a9/XTPICRL+XL/5zW/io48+wssvv4zS0lJs2rQJRUVF6R5iVhL+XPV6PTZs2ICCggIU\nFhbiscceS/fwspIXX3wR3//+97F9+3YAweMBPkRdUlKi9aNPgOhnazQaAQAcx2HLli145JFHVL+n\nZpCzmHfeeQcff/wxvv3tb6O8vBxPPfVUuoeUE4Q/V7/fjylTpuDRRx/Fz3/+c7z++ut4/PHH0z3E\nrCT8uVosFvzsZz/DvHnz8OKLL2LLli144IEH0j3ErGL79u2or6/HhAkTBH+uqSLHj9iz5TgO3/nO\nd3DLLbdg0aJFqt9XM8hZyKlTp1BSUoLy8nLcdNNNGBoawvnz50ONPbq6urBhwwa8/fbbaR5pdhH9\nXDmOA0mSmD9/PgBg6dKl+OlPf5rmUWYfQs/10KFDmDdvHgBg8eLF+POf/5zmUWYfH3zwAa5cuYIP\nPvgAnZ2doGkaRqMRbrcbBoMBN27cQFlZWbqHmZUIPdvx48dj+/btmDRpEh599NGk3FczyFnI0aNH\n0dHRgSeffBI9PT3w+/3YtWsXSDKYo7dy5UrNGMdB9HN1Op247777sGfPHtx99904ffo0pkyZku5h\nZh1Cz7W6uhrnz5/H9OnTcfLkSUyaNCndw8w6XnnlldB///SnP0VlZSVaWlqwY8cOfO5zn8O7776L\nZcuWpXGE2YvQs+3p6YFerw/llCQDrdtTFuJ2u/Hkk0/i+vXrcLvdePTRR7Fy5crQz1euXIldu3al\ncYTZidBzXbRoER5//HF0d3fDaDTixRdfRGlpabqHmlUIPdeioiK89NJL0Ov1KCwsxA9/+EMUFBSk\ne6hZC280li5discffxwsy6KiogIvvPAC9Hp9uoeX1fDP9ve//z1YloXJZAIATJs2Dc8884yq99IM\nsoaGhoaGRgag1SFraGhoaGhkAJpB1tDQ0NDQyAA0g6yhoaGhoZEBaAZZQ0NDQ0MjA9AMsoaGhoaG\nRgagGWQNDQ0NDY0MQDPIGhoaGhoaGYBmkDU0NDQ0NDKA/w+VkV3ahO5QKwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "6N0p91k2iFCP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Try creating some synthetic features that do a better job with latitude.**\n", + "\n", + "For example, you could have a feature that maps `latitude` to a value of `|latitude - 38|`, and call this `distance_from_san_francisco`.\n", + "\n", + "Or you could break the space into 10 different buckets. `latitude_32_to_33`, `latitude_33_to_34`, etc., each showing a value of `1.0` if `latitude` is within that bucket range and a value of `0.0` otherwise.\n", + "\n", + "Use the correlation matrix to help guide development, and then add them to your model if you find something that looks good.\n", + "\n", + "What's the best validation performance you can get?" + ] + }, + { + "metadata": { + "id": "wduJ2B28yMFl", + "colab_type": "code", + "cellView": "form", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 627 + }, + "outputId": "7a0ed47a-fe53-48d1-e7f6-8aa049e0eb86" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Train on a new data set that includes synthetic features based on latitude.\n", + "#\n", + "def select_and_transform_features(source_df):\n", + " LATITUDE_RANGES = zip(range(32, 44), range(33, 45))\n", + " selected_examples = pd.DataFrame()\n", + " selected_examples[\"median_income\"] = source_df[\"median_income\"]\n", + " for r in LATITUDE_RANGES:\n", + " selected_examples[\"latitude_%d_to_%d\" % r] = source_df[\"latitude\"].apply(\n", + " lambda l: 1.0 if l >= r[0] and l < r[1] else 0.0)\n", + " return selected_examples\n", + "\n", + "selected_training_examples = select_and_transform_features(training_examples)\n", + "selected_validation_examples = select_and_transform_features(validation_examples)\n", + "_ = train_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=selected_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=selected_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 226.99\n", + " period 01 : 216.88\n", + " period 02 : 206.83\n", + " period 03 : 196.89\n", + " period 04 : 187.05\n", + " period 05 : 177.35\n", + " period 06 : 167.80\n", + " period 07 : 158.79\n", + " period 08 : 149.62\n", + " period 09 : 140.74\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8jYf7//HXOSd77wRBREiCECNi\nbxKrdmqrqk7d/bT1Lf20tYqiNtWW0vpQatYetQmRIMiwI0H2kp2T+/eHNr8q0hhxTpLr+Xj08XDG\nfd/XOVdO88513/e5VYqiKAghhBBClCNqXRcghBBCCPG4JMAIIYQQotyRACOEEEKIckcCjBBCCCHK\nHQkwQgghhCh3JMAIIYQQotwx0HUBQugzT09PatSogUajAUCr1eLn58eECRMwMzN74vX++uuvBAUF\nPXD/hg0bGD9+PEuWLKFjx47F9+fm5tKqVSu6devG119//cTbLa2YmBimTp3KtWvXADA1NWXcuHF0\n6dKlzLf9OBYtWkRMTMwD70lwcDBjxozB1dX1gWV27tz5vMp7KrGxsXTu3JlatWoBoCgKDg4OfPbZ\nZ9SrV++x1jVr1iyqVq3KkCFDSr3M5s2bWb9+PatWrXqsbQnxvEiAEeJfrFq1ChcXFwDy8/N5//33\nWbp0Ke+///4TrS8xMZHvv//+oQEGoEqVKvz+++/3BZg//vgDKyurJ9rek/joo4/o06cPS5YsAeDs\n2bOMGjWKHTt2UKVKledWx9OoUqVKuQkrj6LRaO57Ddu3b+ett95i165dGBkZlXo9H374YVmUJ4RO\nyS4kIR6DkZERbdu2JSIiAoC8vDw+//xzAgIC6N69O19//TVarRaAyMhIBg8eTGBgIH369OHw4cMA\nDB48mFu3bhEYGEh+fv4D22jSpAnBwcHk5OQU37d9+3Zat25dfDs/P5/JkycTEBBAp06dioMGQFhY\nGP379ycwMJAePXpw7Ngx4N5f9G3atGHlypX07t2btm3bsn379oe+zujoaBo1alR8u1GjRuzatas4\nyC1YsID27dvTt29fvvvuOzp16gTAp59+yqJFi4qX+/vtf6tr6tSpDB8+HIDTp08zYMAAunbtSlBQ\nEDdv3gTuTaLee+89OnbsyPDhw7lz586/dOzhNmzYwLhx4xg1ahQzZswgODiYwYMH8+677xb/st+x\nYwe9evUiMDCQkSNHEhMTA8D8+fOZMGECAwcOZMWKFfet99133+XHH38svh0REUGbNm0oKipizpw5\nBAQEEBAQwMiRI4mPj3/sunv06EFubi5Xr14FYO3atQQGBtKpUyc++OADcnNzgXvv+7Rp0+jduzc7\nduy4rw+P+rksKiriq6++okOHDgwcOJDIyMji7Z48eZJ+/frRo0cPunfvzo4dOx67diGeOUUI8Uh1\n69ZVbt++XXw7LS1NGTZsmLJo0SJFURRl6dKlytixY5WCggIlJydHGTBggLJp0yZFq9Uq3bt3V7Zu\n3aooiqKcO3dO8fPzUzIzM5UTJ04oXbp0eej2fvvtN+WTTz5RPvroo+JlMzMzlc6dOyvr1q1TPvnk\nE0VRFGXBggXKqFGjlLy8PCUrK0vp27evsn//fkVRFKVXr17K77//riiKomzcuLF4Wzdv3lTq1aun\nrFq1SlEURdm+fbvStWvXh9bx9ttvKx07dlR++ukn5fLly/c9FhUVpTRr1kxJSEhQCgoKlDfeeEPp\n2LGjoiiK8sknnygLFy4sfu7fb5dUV/369ZUNGzYUv14/Pz/lyJEjiqIoytatW5V+/fopiqIoP//8\nszJs2DCloKBASUlJUTp27Fj8nvxdSe/xX++zr6+vcu3ateLn+/j4KMeOHVMURVHi4uKUpk2bKtev\nX1cURVF++OEHZdSoUYqiKMq8efOUNm3aKMnJyQ+sd9u2bcqwYcOKb8+dO1eZNGmSEh0drXTr1k3J\nz89XFEVRVq5cqWzcuPGR9f31vnh7ez9wv5+fn3LlyhXl1KlTSsuWLZU7d+4oiqIoEydOVL7++mtF\nUe69771791Zyc3OLby9cuLDEn8sDBw4o3bp1U+7evavk5OQoAwcOVIYPH64oiqL0799fCQ4OVhRF\nUa5du6Z88MEHJdYuxPMgExgh/sWIESMIDAykc+fOdO7cmRYtWjB27FgADhw4QFBQEAYGBpiYmNC7\nd2+OHj1KbGwsSUlJ9OzZEwAfHx+qVq1KeHh4qbbZs2dPfv/9dwD27t1Lx44dUav//8f1jz/+YOjQ\noRgZGWFmZkafPn3YvXs3AJs2baJ79+4ANG3atHh6AVBYWEj//v0BqF+/Prdu3Xro9mfOnMmwYcPY\nunUrvXr1olOnTvzvf/8D7k1H/Pz8cHR0xMDAgF69epXqNZVUV0FBAV27di1ev7Ozc/HEqVevXsTE\nxHDr1i1CQkLo2rUrBgYG2Nra3reb7Z9u375NYGDgff/9/VgZNzc33Nzcim+bmJjQsmVLAI4ePYq/\nvz81a9YEYNCgQQQHB1NYWAjcm0jZ2dk9sM0OHTpw8eJF0tLSANizZw+BgYFYWVmRkpLC1q1bSU9P\nZ8SIEfTt27dU79tfFEVh7dq1ODs74+bmxv79++nRowfOzs4ADBkypPhnAKBly5YYGxvft46Sfi5P\nnTpF+/btMTc3x8TEpLhXAPb29mzatIkrV67g5ubGrFmzHqt2IcqCHAMjxL/46xiYlJSU4t0fBgb3\nPjopKSlYW1sXP9fa2prk5GRSUlKwtLREpVIVP/bXLzEHB4d/3Wbr1q2ZMGECaWlpbNu2jTfffLP4\ngFqAzMxMpk2bxuzZs4F7u5QaNmwIwNatW1m5ciVZWVkUFRWh/O1yZxqNpvjgY7VaTVFR0UO3b2xs\nzJgxYxgzZgwZGRns3LmTqVOn4urqSnp6+n3H49jb2//r6ylNXRYWFgBkZGRw8+ZNAgMDix83MjIi\nJSWF9PR0LC0ti++3srIiKyvrodv7t2Ng/t63f95OTU297zVaWlqiKAqpqakPXfYvZmZmtGrVigMH\nDtC0aVMyMjJo2rQpKpWK+fPn8+OPPzJp0iT8/Pz48ssv//V4Iq1WW/w+KIqCh4cHixYtQq1Wk5mZ\nyZ49ezhy5Ejx4wUFBY98fUCJP5fp6ek4OTndd/9fpk6dyuLFixk9ejQmJiZ88MEH9/VHCF2QACNE\nKdnZ2TFixAhmzpzJ4sWLAXBwcCj+axsgLS0NBwcH7O3tSU9PR1GU4l8WaWlppf5lb2hoSMeOHdm0\naRM3btygcePG9wUYJycnXn755QcmEPHx8UyYMIF169bh7e3N9evXCQgIeKzXmZKSQkRERPEExMrK\niqCgIA4fPkx0dDSWlpZkZmbe9/y//DMUpaenP3ZdTk5OuLu7s2HDhgces7KyeuS2nyV7e3vCwsKK\nb6enp6NWq7G1tf3XZQMCAtizZw+pqakEBAQU979Fixa0aNGC7Oxspk+fzjfffPOvk4x/HsT7d05O\nTvTr149PPvnksV7Xo34uS3pvHRwcmDhxIhMnTuTIkSO8/fbbtG3bFnNz81JvW4hnTXYhCfEYRo8e\nTVhYGCdPngTu7TJYv349Wq2W7OxsNm/eTPv27XF1dcXFxaX4INnQ0FCSkpJo2LAhBgYGZGdnF++O\neJSePXuybNmyh5663LlzZ9atW4dWq0VRFBYtWsShQ4dISUnBzMwMd3d3CgsLWbt2LcAjpxQPk5ub\nyzvvvFN8cCfAjRs3OHv2LM2aNaNx48aEhISQkpJCYWEhmzZtKn6eo6Nj8cGfN2/eJDQ0FOCx6mrU\nqBGJiYmcPXu2eD3/+c9/UBQFX19f9u/fj1arJSUlhUOHDpX6dT2O1q1bExISUryba82aNbRu3bp4\n8laSjh07EhYWxt69e4t3wxw5coQvv/ySoqIizMzM8PLyum8K8iQ6derE7t27i4PG3r17+e6770pc\npqSfy8aNG3PkyBFycnLIyckpDk4FBQWMGDGChIQE4N6uRwMDg/t2aQqhCzKBEeIxWFhY8OqrrzJ9\n+nTWr1/PiBEjuHnzJj179kSlUhEYGEj37t1RqVTMnj2b//73vyxYsABTU1Pmzp2LmZkZnp6eWFtb\n07p1azZu3EjVqlUfuq3mzZujUqno0aPHA48NHTqU2NhYevbsiaIoNGjQgFGjRmFmZka7du0ICAjA\n3t6eTz/9lNDQUEaMGMG8efNK9RqrVq3K4sWLmTdvHpMnT0ZRFCwsLBg/fnzxmUkvvvgi/fr1w9bW\nlm7dunHp0iUAgoKCGDduHN26daNevXrFUxYvL69S12ViYsK8efOYNGkSWVlZGBoa8u6776JSqQgK\nCiIkJIQuXbpQtWpVunTpct/U4O/+Ogbmn2bMmPGv74GLiwuTJ0/mzTffpKCgAFdXVyZNmlSq98/C\nwoL69esTFRWFr68vAH5+fmzbto2AgACMjIyws7Nj6tSpAHz88cfFZxI9jvr16/P6668zYsQIioqK\nsLe358svvyxxmZJ+Ljt27MiBAwcIDAzEwcGB9u3bExISgqGhIQMHDuSll14C7k3ZJkyYgKmp6WPV\nK8SzplL+viNaCCEeU0hICB9//DH79+/XdSlCiEpEZoBCCCGEKHckwAghhBCi3JFdSEIIIYQod2QC\nI4QQQohyRwKMEEIIIcqdcnkadWLiw0+bfBZsbc1ITc0us/WLJye90U/SF/0lvdFf0pvScXS0fORj\nMoH5BwMDja5LEI8gvdFP0hf9Jb3RX9KbpycBRgghhBDljgQYIYQQQpQ7EmCEEEIIUe5IgBFCCCFE\nuSMBRgghhBDljgQYIYQQQpQ7EmCEEEIIUe5IgBFCCCEqmAMH9pXqeXPnzuLWrbhHPv7ppx88q5Ke\nOQkwQgghRAVy+/Yt9u7dVarnvvvuh1StWu2Rj3/99exnVdYzVy4vJSCEEEKIh5s9ezoRERdo29aP\nbt26c/v2Lb79dhHTpn1FYmICOTk5vPzyq7Ru3ZZx417lgw8+5o8/9pGVdZeYmBvExcXyzjsf0rJl\na3r27My2bfsYN+5V/Pz8CQ0NIS0tjenT5+Dg4MBXX03kzp3b+Pg0ZP/+vWzcuP25vU4JMEIIIUQZ\n+XX/ZU5FJjxwv0ajQqtVnmidfl5OBHXyeOTjQ4aMYMOGX6lVqzYxMddZtOh7UlNTaN68Bd279yIu\nLpaJEz+ldeu29y2XkBDPN9/M48SJY2ze/BstW7a+73Fzc3Pmzl3M4sXzOXRoP1WrupKfn8d3363g\n6NHD/Prr/57o9TwpCTB/k5yTQtztGKpqqqNSqXRdjhBCCPFUvL3rA2BpaUVExAW2bNmASqUmIyP9\ngec2bOgLgJOTE3fv3n3g8UaNGhc/np6ezo0b1/DxaQRAy5at0Wie7/WdJMD8zc7r+zl2+yT17b0Y\n6jUAG2NrXZckhBCiHAvq5PHQaYmjoyWJiZllvn1DQ0MA9uzZSUZGBgsXfk9GRgavvDLigef+PYAo\nyoPToX8+rigKavW9+1Qq1XP/w18O4v2bnu5daejszYXkSCYHzyb49umHNlEIIYTQV2q1Gq1We999\naWlpVKlSFbVazcGD+ykoKHjq7VSr5kpU1EUATp488cA2y5oEmL+xMbbms/ZvM8SzP0WKlpURa1ka\n/hPpeWWfkoUQQohnoWbNWkRFRZKV9f93A3Xo0Iljxw7z7rtvYGpqipOTE8uXL3uq7bRq1ZasrCze\neGMMZ8+GYWX1fPdaqJRyOGIoq7Hb9hM3CI5IIKhDbVxc4OeIdUSnXcHcwIygun1o6uwrx8bo0PMa\nuYrHI33RX9Ib/VURepORkU5oaAgdOnQmMTGBd999g9Wrf3um23B0tHzkY3IMzN/YWBhxK/Eus9ae\noV2jKozpMJrTySFsuryN5Rf/R1jieQZ79sPSyELXpQohhBA6ZWZmzv79e1m9ehWKUsTbbz/fL72T\nCcw/ZORpmfXLaW4m3MXW0piXunvh4gKrIn7lSvo1LAzNedGzH02cGpZZDeLhKsJfLBWR9EV/SW/0\nl/SmdEqawGi++OKLL55fKc9GdnZ+ma3btYo1TTzs0ahVhF9N5tj5O+RmqxnZvBM2ppZcSI4iJP4M\n8VkJ1LGpjZHGqMxqEfczNzcu096LJyN90V/SG/0lvSkdc3PjRz4mB/E+hIFGzQttajFxVDNqOFtw\nJPw2n/9wCrs8L8Y3fw9365qcTjjL5OBZnE08r+tyhRBCiEpHJjD/8PdUbG1hTJuGVTAwUBN+JZnj\nF+LJyVIzyr8LliZmXEiJ4lR8GInZSdSxrY2RxrDM6hLyF4u+kr7oL+mN/pLelI5MYJ6CgUZN71Zu\n/He0HzVdLDl2/g6f/3AK+7x6jPd7l5pW1TkVH8bk4FmEJ13UdblCCCFEpSABppRcHS2YMLIpA9q7\nk5VTwPzfwtmyP4nX6o2lj3t3sguyWXJuBasu/kp2QY6uyxVCCCFKNHBgb7Kzs1m1agXnz5+777Hs\n7GwGDuxd4vIHDuwDYPv2rRw8+EeZ1fkochr1Y9Co1fRs6YZvHUd+3BbBiQvxXLyeyohuDfjEz5uV\nEWs5cSeEyNRLDPUaSH17T12XLIQQQpRoxIiXHnuZ27dvsXfvLjp06EyPHiUHnbIiAeYJVHMw5/9G\nNGH3yZtsPHyNhRvDae7txOudX+V44jF2XN/LorM/0KpKc/rX6YWpgYmuSxZCCFFJvPzyMKZOnYWL\niwt37txm/PgPcXR0Iicnh9zcXN5//z/Uq9eg+PlTpnxBhw6d8fVtzGeffUx+fn7xhR0Bdu/ewfr1\na9Fo1Li51eaTTz5j9uzpRERcYPnyZRQVFWFjY8OAAS+yaNFcwsPPUlioZcCAIAIDezJu3Kv4+fkT\nGhpCWloa06fPwcXF5alfpwSYJ6RRq+neoia+dRz4cVsEJyMSiLiRyohuPnzc7N405tjtk0SkRDPc\nexBednV0XbIQQojnbMPl3wlLCH/gfo1ahbboyb6GrbGTD/09ej3y8XbtOnL06CEGDAji8OGDtGvX\nkdq169CuXQdOnz7FL7/8xJQpMx9YbteuHbi71+addz5k377d7N27C4CcnBxmzZqPpaUlb701litX\nLjNkyAg2bPiV0aPH8sMPSwE4cyaUq1evsHjxj+Tk5DBq1GDatesAgLm5OXPnLmbx4vkcOrSfoKCh\nT/Ta/06OgXlKVezNGT+8KS928iA3X8uiTefZsi+F171fo7tbF9LzM5h/ZhlrojaSW5in63KFEEJU\ncPcCzGEAjhw5SJs27Tl4cB9vvDGGxYvnk56e/tDlrl+/SoMGjQBo3Lhp8f1WVlaMH/8h48a9yo0b\n10hPT3vo8pGRF/H1bQKAqakpbm7u3Lx5E4BGjRoD4OTkxN27dx+6/OOSCcwzoFarCGheg0YeDvy4\nPYKQyAQib6QyvFsj/tO0HqsifuVw3HEuJkcy3DuIura1dV2yEEKI56C/R6+HTkvK8pt43d1rk5yc\nSHz8HTIzMzl8+AAODk5MnDiJyMiLLFjw7UOXU5R7v88Aiv6cDhUUFDB79gxWrFiNvb0DH3/83iO3\nq1Kp+Pt3+xcWFhSvT6PR/G07z+YCADKBeYZc7Mz4dGgTBneuQ36BliWbL7B1byqv13udgJqdSMlN\nY27YUn6N3kyeVs7/F0IIUTZatmzDd98tom3b9qSnp1GtmisABw/+QWFh4UOXqVGjJpGREQCEhoYA\nkJ2dhUajwd7egfj4O0RGRlBYWIharUar1d63vJdXfcLCTv+5XDZxcbG4utYoq5coAeZZU6tVdPOr\nzpdjmlPX1ZrT0Yl88UMITnm+fNj0LVzMnDgYe5SpJ+dwOe2arssVQghRAbVv37H4LKHAwJ6sXfsL\n77//FvXrNyA5OZlt27Y8sExgYE8uXAjn3Xff4ObNG6hUKqytbfDz8+eVV0ayfPkyhg4dwbx5s6lZ\nsxZRUZHMmzerePlGjXzx9PTirbfG8v77b/H66+MwNTUts9coF3P8h2c51itSFP4IjWPdgcvkFxTR\nuI4Dg7u6cyThIPtiDgHQsXobersHyrf4loJc/Ew/SV/0l/RGf0lvSqekiznKBKYMqVUqOjd15asx\n/njVsCHsUhJf/RiKc24T3m/yOo6m9uy/eZhpp+ZwNf2GrssVQgghyg0JMM+Bk40pHw1pzPBudSnU\nKnz/ewS/78ngde836FS9LYnZycw+vYiNl7dRoC3QdblCCCGE3pMA85yoVSo6NXFl0pjmeNe05eyV\nZCYtD8MltxnvNn4Ne1M79sYc5OtTc7meEaPrcoUQQgi9JgHmOXOwMeWjwb6MDPREqyj8sC2C3/dk\n8obXG7R3bcWd7AS+CVnIlis7KSh6+JHiQgghRGUnAUYHVCoVHXyrMWlMc+q72RJ+NZlJK8JwyWnO\nO76vYmdiw64b+5lxah4xmbG6LlcIIYTQO2V6FtKMGTM4ffo0hYWFvPbaa/j4+DB+/HgKCwsxMDBg\n5syZODo6smXLFn766SfUajVBQUEMGjSoxPWWl7OQSkNRFA6fu83a/ZfIydNSv5YdQ7rW4mDiPo7E\nnUCtUhNQsxOBbp0wUFfu7x2Uo/b1k/RFf0lv9Jf0pnRKOgupzALMiRMn+OGHH1i2bBmpqan069cP\nf39/2rdvT48ePfjll1+Ii4tj3Lhx9OvXj/Xr12NoaMjAgQP5+eefsbGxeeS6K1KA+UtKRi4rdkZy\n/moKJkYagjp54FT9LqsjfyM1L41qFlUY6f0irpZVn3tt+kI+8PpJ+qK/pDf6S3pTOiUFGM0XX3zx\nRVlstEqVKnTt2hVDQ0OMjIxYunQpy5cvx9PTE7VaTWxsLNHR0VhbW5OcnEzv3r0xMDAgMjISY2Nj\natWq9ch1Z2eX3bfYmpsbl+n6H8XU2IAW9ZxxsDbl/LUUTkclkpZiwEv+XSlS53MxJYpjt0+iAtyt\na6JWVb69f7rqjSiZ9EV/SW/0l/SmdMzNjR/5WJntk9BoNJiZmQGwfv162rVrV3xbq9WyevVq3nrr\nLZKSkrCzsytezs7OjsTExBLXbWtrhoGBpsTnPI2SEl9Z69fZinbNqrNg3VlCIuKZtjKDl3p1oG0b\nP5ad/oXfr+3mYlokbzYfSQ2bajqrU1d02RvxaNIX/SW90V/Sm6dT5gdV7N27l/Xr1/Pjjz8C98LL\nxx9/TIsWLWjZsiVbt2697/ml2aOVmppdJrWC/oz13nihHsfc7fjf3kss/u0cXjVsGNvtdQ4k7CH4\nzmk+3T2NnrW60blGOzTqsgtz+kRfeiPuJ33RX9Ib/SW9KR2dfRPv4cOHWbJkCcuWLcPS8l4R48eP\np2bNmowbNw64d2ntpKSk4mUSEhJwcnIqy7LKBZVKRWufKkx6xR9fDwciY9KY9lM41XJa86rPKMwM\nzdh8dQezQhdxJyte1+UKIYQQz1WZBZjMzExmzJjB0qVLiw/I3bJlC4aGhrzzzjvFz2vUqBHh4eFk\nZGSQlZVFaGgozZo1K6uyyh1bS2PeHuDDq73rYaBR8cueaHbszuN1zzfwc27MjYybTDs1l70xBylS\ninRdrhBCCPFclNlZSGvXrmX+/Pn3HYx769YtrKyssLCwAKB27dp88cUX7Ny5kx9++AGVSsXw4cN5\n4YUXSlx3RTwLqTTS7+axclcUYZeSMDJQM6B9bRxqprE2aiOZBXdxt67JcO8gnM0cdV1qmdDn3lRm\n0hf9Jb3RX9Kb0tHJadRlqbIGGLh3jNDJiAR+2RPN3ZwC6rhaM7hbDfYn7CI04RyGakP61O5Oe9dW\nFe5MJX3vTWUlfdFf0hv9Jb0pHbkadQWiUqnwr+fMpFf8aebpyKXYdL5eeQHX7HaMrjcUI40h6y9t\n4dvQpSRmJ+u6XCGEEKJMSIApp6zNjXiznw9v9G2AiZGGtfsvs2tPIWPrvEEjxwZcSb/G1JOzORB7\nVI6NEUIIUeFIgCnn/LycmPSKP829nbgSl8HMVRG4ZrVjlPcQDNQGrIvezLyw70jKkWmMEEKIikMC\nTAVgZWbE630a8GbfBpgZa1h/4Cq792h5pc6bNHSoz6W0q0w5OYeDscdkGiOEEKJCkABTgTT7cxrT\nop4zV29lMOvni1S7244R3i9ioNLwa/SmP6cxKbouVQghhHgqEmAqGEszI159oT5v9/fB3MSQDYeu\nsWtXES/Xfh0fh3p/TmNmc0imMUIIIcoxCTAVVOO6jkx6xZ/WDVy4cSeT2b9E4pLejuFe96Yxa6M3\nMT9smUxjhBBClEsSYCowC1NDxvSqx3uDGmJlbsSWo9fZsUPLqFqv4uPgTXTalT+nMcdlGiOEEKJc\nkQBTCTSs7cCkMf60a1SV2MS7fLs6GoeUtgzzHIRGpWFt9Ebmn/meZJnGCCGEKCckwFQSZiYGvNTd\niw8H+2Jracz2EzFs265lRM2xNLD3Jjr1MlNOzuZw3PFSXRFcCCGE0CUJMJVMfTc7Jr3SnE5NqnE7\nOZt5a6KxTW7N0LqDUKs0rInayPwzy0jOSdV1qUIIIcQjSYCphEyMDBjezZNPhjbG0dqU3Sdj+X1b\nIUOrv0IDey+iUi8z5eQsDsedkGmMEEIIvSQBphLzrGHLl2Oa082vOgmpOSxcewnLhNYMrjMQtUrN\nmqgNLDjzvUxjhBBC6B0JMJWcsaGGwZ3rMH5EU1zszdh/Oo6tvxfyYtUx1Lf3IjL1ElNPzuaITGOE\nEELoEQkwAgCPatZ8MdqPHi1qkpKRx+L1VzC73ZIXPQagUqn435/TmJRcmcYIIYTQPQkwopihgYaB\nHWrz2cimuDqac+jMbTZvLWSAy8vUs/ckMvUSU4JnczQuWKYxQgghdEoCjHhArSpWfP6SHy+0diMj\nK59lG65iHNuCQbX7AypWR/3GwrM/yDRGCCGEzkiAEQ9loFHTt607E0c1o4azBcfC49m8tZB+Ti9R\nz86TiJToe9OYWzKNEUII8fxJgBElquFsyYSRzejfzp2snAJ+3HwdTYw/A9z7ASpWR96bxqTmpum6\nVCGEEJWIBBjxrww0anq1cuO/L/lRq4oVJy8msHlLIb0dRuJtV5eIlGgmB8/m2K2TMo0RQgjxXEiA\nEaVWzdGCz0Y0JaijB7n5WlZujYFrzelfqy8Av0SuZ9HZH2UaI4QQosxJgBGPRa1WEehfgy9fbk4d\nV2tCo5LYtLmQ7jYj8LKtw8XhnaSOAAAgAElEQVSUqD+nMadkGiOEEKLMSIART8TFzoxPhjVhaJc6\nFGiLWL3jJtrLfvR16wMo/BK5jkXnZBojhBCibEiAEU9MrVLRpVl1vhrjj3dNW85dSWHTZi1drYbd\nm8YkRzHl5GyOyzRGCCHEMyYBRjw1JxtTPhrsy8hATxRF4dddt8iLbsYLNV5AURR+jlzH4nPLSctL\n13WpQgghKggJMOKZUKlUdPCtxqQx/jSoZcfFa6ls2qKlk8VQPG09uJAcyeTgWRy/HSLTGCGEEE9N\nAox4puytTXg/qBEv9/BGo1Lx257b5EQ0pVeN3hQpRfwc8StLZBojhBDiKUmAEc+cSqWiTcMqTHrF\nH18PB6Ji0tm8WUt7kyF42npwPjmSycGzOSHTGCGEEE9IAowoM7aWxrw9wIdXe9fDUKNm8x/xZF5o\nQnfXnhQpWlbJNEYIIcQTkgAjypRKpaJFfRcmj21BM09HrsRmsHWLQmujF6lr8/+nMcG3T8s0Rggh\nRKlJgBHPhbW5EW/28+HNvg0wNdKw7WAi6eG+BFbtQZGiZWXEWpacWyHTGCGEEKUiAUY8V828nJj0\nij8t6jtz/fZdtmxR8NcMoo5Nbc4nR8g0RgghRKlIgBHPnaWZEa/2rs/bA3ywMDNk15FkUs/40q1K\nd7R/TmOWhq8gPS9D16UKIYTQUxJghM40ruPIlFf8aeNThZsJWfy+FfwYSB1rd8KTIpgcPIuTd0Jl\nGiOEEOIBEmCETpmZGPJyT28+CGqEtYURe4+nkBTmS2fnQAoVLT9dXMPS8J9Iz8vUdalCCCH0iAQY\noRcauNszaYw/HRpX41ZSNtt+h8ZF/fGwdic86SKTg7/h8PWTMo0RQggBSIAResTU2ICRAZ78Z7Av\n9lYmHAhOI+F0Izo6BVCoaJkfvJyl4XKmkhBCCAkwQg95u9kxaYw/XZq6kpCSw47fVTQs6Ie3Q50/\nj42Rb/EVQojKTgKM0EvGRhqGdq3LJ8Oa4GRryuGQdOKCG9DBIaD4W3wXnfuR1Nw0XZcqhBBCByTA\nCL1Wt7oNX77cnED/GiSm5LBjuwqvnL7UsfbgYnIUk4Nnc+yWHBsjhBCVjQQYofeMDDUEdfRg5jvt\ncHU058SZDGJO1KOtXQAAv0SuZ+HZH0jJTdVxpUIIIZ4XCTCi3Khbw5bPX/KjT5taZGYVsHuniloZ\nvfC0qUtESjSTg2dxOO6ETGOEEKISkAAjyhUDjZo+bWrx39F+1KpiSeiFu1w6XJdWVgGoVWrWRG1g\n3pllJOWk6LpUIYQQZUgCjCiXXB0t+GxEM4I6epBfUMS+vSqqJvbA09qT6NTLTDk5mwOxRylSinRd\nqhBCiDIgAUaUW2q1ikD/Gnw1pjme1W04fymbqEMe+FsEYKDSsC56M3PDlpKQnaTrUoUQQjxjEmBE\nuedsa8Z/hjZmZIAnigIH9quwux2Al7U3l9OuMfXkHPbfPCzTGCGEqEAkwIgKQa1S0aFxNSa/4k/D\n2vZcupbLhQNuNDMJwFhjxG+XtjIndDHxWQm6LlUIIcQzIAFGVCh2Via8O7AhY3vVw1Cj4fAhFeYx\nnfG2rsfV9BtMO/Ute2MOyjRGCCHKOQkwosJRqVS0bODClLEt8PNy4vrNfM7tr4mvYQDGGmM2Xt7G\nrNOLuJMVr+tShRBCPCEJMKLCsjI34o2+DRjX3wdzE0OOH1VhfKUT3lb1uZ4Rw7RTc9l9/Q+0RVpd\nlyqEEOIxSYARFV6Tuo5MHutPG58qxN4p4My+Gviou2GqMWHz1R18c3oht+7e0XWZQgghHoMEGFEp\nmJsY8nJPbz580RdbS2NOnlCjiu6At6UPMZmxfH1qLjuu7ZVpjBBClBMSYESlUr+WHZNeaU7npq4k\nJBYStq8a3tpumBua8/u13cwMmU9s5i1dlymEEOJfSIARlY6JkQHDutbl0+FNcLYzI/S0msILbfCy\n8OHm3VtMD5nHtqu7KSwq1HWpQgghHkECjKi06rja8OXLfvRsWZPUNIWw/dXwyO+KpaEl26/vZUbI\nfGIyY3VdphBCiIeQACMqNUMDDQPa12biqGbUcLIg/IyG7HOt8DRvSNzd28wMWcDWKzspkGmMEELo\nFQkwQgA1XSyZMKoZ/du5k50FZ/6oiltWF6wMrdh5Yz/TT83lRsZNXZcphBDiTxJghPiTgUZNr1Zu\nfDG6ObWrWRFxwYCMsJbUNW3E7ax4ZoYsYNPl7RRoC3RdqhBCVHoGZbnyGTNmcPr0aQoLC3nttdfw\n8fHh448/RqvV4ujoyMyZMzEyMmLLli389NNPqNVqgoKCGDRoUFmWJUSJqjqYM35YU/adjuW3Q1c4\ne7AKHp4OZDuGsifmAOeSLjDcOwh365q6LlUIISqtMgswJ06c4NKlS6xdu5bU1FT69etHy5YtGTp0\nKN27d2f27NmsX7+evn37snDhQtavX4+hoSEDBw6ka9eu2NjYlFVpQvwrtVpFV7/qNKrjwE87IomI\nSsXkRnPq+MVzOfsMs08vomP1NvR2D8BIY6TrcoUQotIps11Ifn5+zJ07FwArKytycnIIDg6mc+fO\nAHTs2JHjx49z9uxZfHx8sLS0xMTEhCZNmhAaGlpWZQnxWJxsTPlosC8vdfdCpRgQftgF5+RO2Brb\nsv/mYaaenMPltGu6LlMIISqdMgswGo0GMzMzANavX0+7du3IycnByOjeX6v29vYkJiaSlJSEnZ1d\n8XJ2dnYkJiaWVVlCPDaVSkW7RlWZ/EoLfD0cuH7FiMQTfrgb+JKUk8K3oUtYF72ZPG2+rksVQohK\no0yPgQHYu3cv69ev58cff6Rbt27F9yuK8tDnP+r+v7O1NcPAQPPMavwnR0fLMlu3eDq67I2joyVf\nvW7P4TNxLN0YzoVjLtSs7YDiepYDsUeJSI3i9eYjqO9UV2c16op8ZvSX9EZ/SW+eTpkGmMOHD7Nk\nyRK+//57LC0tMTMzIzc3FxMTE+Lj43FycsLJyYmkpKTiZRISEvD19S1xvamp2WVWs6OjJYmJmWW2\nfvHk9KU33q7WfDWmOWv2XuLExXg01xtT1y+BG1ln+fKPObSr1pI+tXtgYmCs61KfC33pi3iQ9EZ/\nSW9Kp6SQV2a7kDIzM5kxYwZLly4tPiC3VatW7Nq1C4Ddu3fTtm1bGjVqRHh4OBkZGWRlZREaGkqz\nZs3KqiwhngkrMyNefaE+7wxoiJWZKREnXLCM64C9kQOH4o4z5eRsIlMu6bpMIYSosMpsArN9+3ZS\nU1N57733iu/7+uuvmTBhAmvXrqVq1ar07dsXQ0NDPvzwQ8aMGYNKpeKtt97C0lLGaqJ88K3jQN3q\nNvz6x2UOnb2F6nYT6jZLIDb3HPPPLKN11eb08+iFqYGJrksVQogKRaWU5qATPVOWYzcZ6+kvfe9N\nxPUUVuyMJDEtFweXXEw8LpCcn4itsQ1DvQZQz95T1yWWCX3vS2UmvdFf0pvS0ckuJCEqG283O756\n2Z9uftVJvmNC7NHGVCtqTHp+BgvP/sCqiF/JLsjRdZlCCFEhSIAR4hkyNtIwuHMd/m9EU6raW3I5\nxBnDq+2wN3LixO0QJgfP4nxShK7LFEKIck8CjBBloHY1a/77kh+9W7mRmWxK7FFfquQ35m5BFovP\nLeeni2vIKii7s+mEEKKikwAjRBkxNFDTr507E0c1o6azNVfPOKOKboO9oTMn74QyKfgbziSE67pM\nIYQolyTACFHGajhbMmFkUwZ1qE1OhjmxRxvhlNOYnIJclp1fxffnfyYjXw7mE0KIx1Hm38QrhACN\nWk33FjVpXNeR5dsjuBSuxtTKGocGUYQlnCM65TID676An3NjVCqVrssVQgi9JxMYIZ4jFzszPhnW\nhOHd6lKUa87NYw2xy2hCflEBP11cw5JzK0jLS9d1mUIIofckwAjxnKlVKjo1cWXKK/40rO1AXKQT\nueda46B25XxyBJNOzOLoreBSXRdMCCEqKwkwQuiInZUJ7w5syKsv1MNIseTmifpYJjelSClideRv\nzD+zjKScFF2XKYQQekkCjBA6pFKpaFHPhSlj/WlZ34WEK47cDWuFvaoGUamXmRI8iwM3j1KkFOm6\nVCGE0CsSYITQA5ZmRoztXZ/3BjXCxtia2GBvzOKbocaAdZc2823oEuKzE3VdphBC6A0JMELokYa1\n7flqjD+dm1Qn5YYDaSEtsCty40r6daaenMOeGwfQFml1XaYQQuicBBgh9IypsQHDutVl/PCmuFjb\nEhfihVGcH4YYsenKdr45vZC4u7d1XaYQQuiUBBgh9JSHqzVfjG5O71Zu3L3tQEpIC2wL3InJjGX6\nqXlsu7aHwqJCXZcphBA6IQFGCD321+UI/vuSH7Uc7bkVVhf19eYYq0zZfm0P00/N40bGTV2XKYQQ\nz50EGCHKAVcnCz4b0YzBnTwoSHEg+ZQ/Vrke3Mq6w8yQBWy6vJ18bYGuyxRCiOdGLiUgRDmhVqvo\n1rwGvnUdWbkzkovnDDG2s8eiTgR7Yg5wNuk8w72CqG3jputShRCizMkERohyxsnGlA9f9GV0Dy80\nWY4kn2qO+d06JGQnMSd0MeuiN5Onzdd1mUIIUaZkAiNEOaRSqWjbsCoN3e35ZU80IRcNMLSyx9o7\nkgOxRwlPimCo1wC87OroulQhhCgTMoERohyztjDmzX4+vNXPB7MiJ5JO+mGS5klKbirzzyxjdeR6\ncgpzdF2mEEI8czKBEaICaOrpiHdNG3794zKHzmpQm9thVz+Ko7dOciE5iiGe/Wng4K3rMoUQ4pmR\nCYwQFYSZiSEvdffmP0Ma42DoQtKpZhgleZGRl8nic8tZcWENdwuydF2mEEI8ExJghKhgvGva8uWY\n5gQ2dyPjmhvZ4S0xK3LgVHwok0/MIjThnK5LFEKIpyYBRogKyNhQQ1BHDyaOaoarZRWSQ5qgueNN\ndkEOP5z/mWXhq0jPy9R1mUII8cQkwAhRgbm5WDFxVDMGtPcgN64WWedaYlroyJnEcCYHf0Pw7dMo\niqLrMoUQ4rFJgBGigjPQqOnZ0o0vX/ajjkM1UkKbQGx98gsLWRmxlsXnlpOam6brMoUQ4rFIgBGi\nkqhib87Hw5owIsALJcmNu2daYpLnzIXkSCYHz+ZI3AmZxgghyg0JMEJUImqVio6NqzH5FX8aVq9O\n6llfim74UKgt4n9RG5h3ZhlJOcm6LlMIIf6VBBghKiE7KxPeGdiQ115ogFGmG5lhrTDKqUJ06mWm\nBM/mj5tHKFKKdF2mEEI8knyRnRCVlEqlwr+eM/XcbFmz7zLHw40xdHDC0D2K9Ze2EJpwlmFeg3Ax\nd9J1qUII8QCZwAhRyVmaGTG2dz3eD/LFKt+NjNCWGGZW42r6Daad+pbd1/9AW6TVdZlCCHEfCTBC\nCAB83O35aow/nRvVJjPCh7xLvqi0hmy+uoNvTi8g7u5tXZcohBDFJMAIIYqZGhswrGtdxo9oirPa\nnYzQlqjTqhOTGcfXp+by+9XdFBYV6rpMIYSQACOEeJBHNWu+GN2cF1rUJfdyA/KimqLRmrDj+l6m\nn5rHjYybui5RCFHJPXGAuX79+jMsQwihbwwN1PRt685/X/KjplltMkJboUquya2sO8wMWcDGy9vI\n1xboukwhRCVVYoAZPXr0fbcXLVpU/O/PP/+8bCoSQugVVycLPhvRlMEdvCiMqU9ehB8arTl7Yw4y\n7eQcIhMv67pEIUQlVGKAKSy8f1/3iRMniv8t39gpROWhVqvo1rwGk8b442XvQWZYC5SEWiTkJPH5\n/lmsjdpEbmGurssUQlQiJQYYlUp13+2/h5Z/PiaEqPgcbUz58EVfXg70QXOnPnkX/TEstOJQ3DEm\nB8/mfFKErksUQlQSj3UMjIQWIYRKpaJNwypMfsWfJq6eZIS1QHurNml5GSw+t5zlF1aTmX9X12UK\nISq4Er+JNz09nePHjxffzsjI4MSJexd8y8jIKPPihBD6y9rCmDf7NuBqvBsL15uSluyCeZ2LhMSf\nITLlEgPrvEAzZ1/5w0cIUSZKDDBWVlb3HbhraWnJwoULi/8thBD+DapQxcaEDQevsj/UArXzDbJr\nXGLFxf9xKj6MIZ79sTWx0XWZQogKRqWUw6NxExMzy2zdjo6WZbp+8eSkN/rp7325HJfOTzsiuZWZ\niGntiygWSRhrjOhTuwdtq7VArZKvnnqe5DOjv6Q3pePo+OhhSYn/N7l79y4rVqwovr1mzRr69OnD\nO++8Q1JS0jMrUAhRMXhUs+a/o/3o27w++VHNyL/agIIC+DV6E9+GLuFOVoKuSxRCVBAlBpjPP/+c\n5ORkAK5du8bs2bP55JNPaNWqFVOmTHkuBQohyhcDjZrerWvx5cv+eJg2IOtsa5Q0F66kX2fayTns\nvL5PLg4phHhqJQaYmzdv8uGHHwKwa9cuAgMDadWqFYMHD5YJjBCiRFXszfnP0Ma81KUR6hvNyLvU\nmKJCQ7Ze3cX0ELkcgRDi6ZQYYMzMzIr/ffLkSVq0aFF8W84sEEL8G7VKRbtGVZky1p+mzj5knWmN\nNtGVuLu3mRmygA2Xfydfm6/rMoUQ5VCJAUar1ZKcnExMTAxhYWG0bt0agKysLHJycp5LgUKI8s/a\nwpg3+jbgnX5NsUhuSl6EH6oCM/bFHGLKyTlEpcjlCIQQj6fE06jHjh1Ljx49yM3NZdy4cVhbW5Ob\nm8vQoUMJCgp6XjUKISoIXw8HPKvbsPHQVfaF2aCpdokklxvMO/Mdrao0p59HT8wMTXVdphCiHPjX\n06gLCgrIy8vDwsKi+L4jR47Qpk2bMi/uUeQ06spJeqOfnrQvV27dO+U6LvsWJrUvgEkGVkaWvOjZ\nD1/HBmVQaeUjnxn9Jb0pnZJOoy4xwNy6davEFVetWvXJq3oKEmAqJ+mNfnqavhRqi9h1MobNR66C\n0xWMXK+gqIrwdfQhqG5frI3lCzOfhnxm9Jf0pnRKCjAl7kLq1KkTtWrVwtHREXjwYo4rV658RiUK\nISojA42ani3daObpxE87bYgKd8bY/QJnCCcq9TIDPHrRokozOWlACPGAEgPM9OnT2bx5M1lZWfTs\n2ZNevXphZ2f3vGoTQlQSznZm/GdIY46Eu7B2vzV5VtdQ1Yjm58h1hMSfYYhXfxxM7XVdphBCj5Tq\nUgK3b99m48aNbN26lWrVqtGnTx+6du2KiYnJ86jxAbILqXKS3uinZ92X9Kx8/rc3mlNXbmDkdhG1\nTSJGakN6uQfQsXobuRzBY5DPjP6S3pTOEx8D8zDr1q3jm2++QavVEhIS8tTFPQkJMJWT9EY/lVVf\nzl1JYuWuSNINr2NcMxLFIJ+aVtUZ5jWQahZVnvn2KiL5zOgv6U3pPPExMH/JyMhgy5YtbNiwAa1W\ny2uvvUavXr2eWYFCCPFPDWs7MPmVFmw85Mzesw4YVI/gBjf5+tRcAmp2JMCtM4bqUv0vTAhRAZX4\n6T9y5Ai//fYb58+fp1u3bnz99dfUrVv3edUmhKjkTIwMGNKlDi3qO7Nihx1xydcwrnWBHdf3EZYQ\nzjDvgbhbu+m6TCGEDpS4C8nLyws3NzcaNWqEWv3gfudp06aVaXGPIruQKifpjX56Xn0p1Bax+9RN\nNh+7BFUiMXCOQYWKdq6teME9EBMD4zKvobyRz4z+kt6UzhPvQvrrNOnU1FRsbW3veyw2NvYZlCaE\nEKVjoFHTo0VNmnk68tNOe6IuVsHI/TwHY49yLvECQ7wGUN/eU9dlCiGekxIP51er1Xz44YdMnDiR\nzz//HGdnZ5o3b050dDTffvvtv648OjqaLl268PPPPwNw6tQphgwZwogRI3jttddIT08H4Pvvv2fg\nwIEMGjSIgwcPPoOXJYSoqJxszfhosC+j27dCfakdBXHupOams+jsD/x0cQ13C7J0XaIQ4jkocQIz\nZ84cVqxYQe3atdm3bx+ff/45RUVFWFtbs27duhJXnJ2dzaRJk2jZsmXxfdOmTeObb77B3d2dJUuW\nsHbtWrp378727dtZs2YNd+/eZejQobRp0waNRvNsXqEQosJRqVS09qmCj7s9a/Y7EXz+3jTm5J1Q\nLiZHMahuH5o6NZIvwBOiAvvXCUzt2rUB6Ny5M3FxcYwcOZIFCxbg7Oxc4oqNjIxYtmwZTk5OxffZ\n2tqSlpYGQHp6Ora2tgQHB9O2bVuMjIyws7OjWrVqXL4sV6YVQvw7K3MjXu1dn/d6t8Eitj0FMZ7c\nzctl+YXVLDm3gtTcNF2XKIQoIyUGmH/+9VKlShW6du1aqhUbGBg88EV3//d//8dbb71FQEAAp0+f\npl+/fiQlJd337b52dnYkJiaWtn4hhMDH3Z7JY1rSuUY78s63Rptux/nkCCYFz+Jw3HGKlCJdlyiE\neMYe60sUnnYcO2nSJBYsWEDTpk2ZPn06q1evfuA5pflePVtbMwwMym4XU0lHPQvdkt7oJ33py7gX\nmxDYyp1561yISb4INSNZE7WRsynhvOY3nKqWJU+OKyJ96Y14kPTm6ZQYYMLCwujQoUPx7eTkZDp0\n6ICiKKhUKg4cOPBYG4uKiqJp06YAtGrViq1bt9KiRQuuXbtW/Jz4+Pj7djs9TGpq9mNt93HIqW36\nS3qjn/StL9YmGv5vWBP2nHJi03EncL1ABJf5aMdketTqQpca7dGoK8cxdvrWG/H/SW9K54lPo965\nc+czLcTBwYHLly/j4eFBeHg4NWvWpEWLFixfvpy3336b1NRUEhIS8PDweKbbFUJULhq1mkD/GjTx\ndGTVTmciLkWguEWw5epOTiecZbj3IGpYuuq6TCHEU3jsayGV1vnz55k+fTpxcXEYGBjg7OzM+++/\nz4wZMzA0NMTa2pqpU6diZWXFqlWr2Lp1KyqVivfee+++M5ceRr7IrnKS3ugnfe+Loigcv3CH//1x\nkXyn8xg4xqFCRZca7elRqytGGkNdl1hm9L03lZn0pnSe6cUc9YEEmMpJeqOfyktfMrPzWbPvMsE3\nL2Dkdh6VSQ4OJvYM8x5IXdvaui6vTJSX3lRG0pvSKSnAyHXphRCVgqWZEWN71+P97p0xj+lMwW03\nknKSmRu2lNWRv5FTmKPrEoUQj0ECjBCiUqlfy47JY1rTpWo38iNaUpRtwdFbwXx1/BvOJl7QdXlC\niFKSACOEqHSMDTUEdfRgwsAuOCcGUBBbh4y8LL4L/4nvw1eRniejfSH0nQQYIUSlVdPFkomj/Bjg\nFYA2sg3aTBvCEsP56sRMjsYFyxfgCaHHJMAIISo1jVpNQPMaTB7emTp53cm/Xo+c/EJWR/3Gt6FL\nic9K0HWJQoiHkAAjhBCAg40pHwzyZWzL7hhe7og2xZkr6deYcnIOO67tpbCoUNclCiH+RgKMEEL8\nSaVS0dzbmWmjO9DKshd5lxpTmGfA79d2MzX4W66m39B1iUKIP0mAEUKIfzAzMWRkgCef9uyB7a0A\nCuOrE5+TwKzTC1kTtZGcwlxdlyhEpScBRgghHsHD1ZovR7XiBbfeFEa1oCjHnMNxx/lSTrkWQuck\nwAghRAkMNGp6tnRj0pDueNztRUGsBxl5d/ku/Ce+O7eStLx0XZcoRKUkAUYIIUrBycaUD4KaMKZZ\nHwyvtEebacvZpPN8dfwbDsedkFOuhXjOJMAIIUQpqVQq/Os5M3VUF1oa9yX/Wj1y87WsidrA7JDF\n3MmK13WJQlQaEmCEEOIxmZsYMirQm48D+mIb1w1tijPXMm8wJfhbtl3dTYGcci1EmZMAI4QQT6iO\nqw1fjmxH72oD0F5pijbfgO3X9zL5xByupF3XdXlCVGgSYIQQ4in8dZDvVwN7Uyu9N4XxNUjMSWR2\n6CJWR8hVroUoKxJghBDiGXCyNeOjID9GNxyIwdXW965yfTuY/x6byZnE87ouT4gKRwKMEEI8IyqV\nihb1XZg6vAd+mgEUxNbhbn4Wy8JXsujMcjnlWohnSAKMEEI8YxamhrzcvT4fdRyEdVxXtBm2XEiJ\n4ItjMzkUe0xOuRbiGZAAI4QQZaRudRsmDe9ET8fBFN5oQH5BEWujNzHj5EJuyynXQjwVCTBCCFGG\nDDRqereuxVd9B1IjrReFyS7czLrJlOA5bLmyS065FuIJSYARQojnwNnWjE8GteSlekNR3/BDm2fE\nrhv7+PLYLC6nXdN1eUKUOxJghBDiOVGpVLSs78K0wX1pxkAK79QgJS+ZOaGLWXlhHdkFcsq1EKUl\nAUYIIZ4zC1NDxnRvyIdth2MZ14GibAuC40/x+dEZhMafQ1EUXZcohN6TACOEEDpSt7oNU4YFEmgz\nFG1cXbILc/jhws/MD/2R1Nw0XZcnhF6TACOEEDpkoFHTp40HX/YcimtKd7QZdkSlR/HFsZn8EXNE\nTrkW4hEkwAghhB5wtjNj/KB2jKw9ClVsIwoKFdZf3sLU4/O5dfeOrssTQu9IgBFCCD2hUqlo5VOF\nrwcF0ahwAIXJLtzOjWNq8LdsjN5BgbZA1yUKoTckwAghhJ6xMDXktR5N+cB/NOa3W6LNN2Jv7B98\nfuQbolOu6Lo8IfSCBBghhNBTnjVsmfJiH7paDkcb70Z6YSpzzyzlx3NryS7I1nV5QuiUBBghhNBj\nhgZq+repyxcBL1E1pRtF2RacTjrNhCMzOHXnjJxyLSotCTBCCFEOuNiZ8dnAzgyt8TKqO17kanNZ\ncXE1s099L6dci0pJAowQQpQTKpWKtg1dmdZ3OA3y+6JNt+Pq3Ut8fnQme64dklOuRaUiAUYIIcoZ\nSzMj3uzRgncbv4ppfFP+X3t3HldVnf9x/HW4l8sugizuuOaCaC6kuGVqmzlabphJNb82K6ds3E1T\nR8tBax5NZbmkZVCJYpmae0piLpUUKgZumIoLkLgCKnB/f+T40HEySy/nXng//+M8Dqf3fXx96Lvz\n+Z57iothceYy/rHx3xw+c8TseCKlQgVGRMRFNaoVyJS+fenkNYCSE1XIuXiUKd/+m/m7lnJBj1xL\nGacCIyLiwtytbvTrEI/5tPoAABhqSURBVM4rdz1NyImOlFzwIPlYMmM3TGX70XSz44k4jAqMiEgZ\nUKWSD6/0foDoak9g5NbhbMkpJm/4N299N4+T50+ZHU/kllOBEREpIwzDoFPTMKZ0/z8anu9OyVl/\nMs6kMW5jLMv2rKO4pNjsiCK3jAqMiEgZ4+dt44VuHZl41zD8fmlJcbHBikMrefnrafz0yx6z44nc\nEiowIiJlVHidIF7r3Y+elf4Kv9TkdMkJ3kmdzZtbP9RYSVyeCoyISBnm5mZwb8t6xHZ/hojiHpSc\nq8Cec7sYt3EqSzK+0lhJXJYKjIhIOeDr5c6z97RnZOTfqHiyFcXFsCprFaO/nsquHI2VxPWowIiI\nlCO1Kvsz+aG+9KvyJG55YZwtyWP6jtm8sfkDThZqrCSuQwVGRKScMQyDThG1mdr9GVoYD1Jyzp/9\nBT8xdmMsi9PXaqwkLkEFRkSknPLysPJk57aMjXqB4DN3UFJisObIakYnTWVntsZK4txUYEREyrlq\nQX6M79GbmBpPYz0Zxll7Hu/tnM20b+ZqrCROSwVGREQwDIOoRmFM+8sg2rj3wn7OnwPn0xm7MZbE\ntDUaK4nTUYEREZHLbO4WHu3YhgkdhlCloDUlJQbrj69h5PqpbD++2+x4IpepwIiIyDVCKvow9oHe\n/F/dZ7GdrkU+ecxMe5/YjXPJK9BYScynAiMiIr+pVd3qTPvLIDp698Ge78/BC+mM+yaWhB2rNVYS\nU6nAiIjIdVktbvSPuoNX7/w7NS5EUVJisCFnLSPWxfLDkQyz40k5pQIjIiI3JMDPi1H3PcSzDQbj\neaY2hW4neT99Dq99PYcTGitJKVOBERGRPyQirArT/jKIzn7RkO9PVnEG4zbG8vGPKzVWklKjAiMi\nIn+Ym5tB78iWTOk8jNrFbbHbDTadWMfwr2LZdjjd7HhSDqjAiIjIn1bB24Nhdz/IC+Ev4HOuDuct\nJ5m7ey6T188m99xJs+NJGaYCIyIiN61htVBiuz/DvQH9MQr8OWrfw/hNU/lo20qKiovMjidlkAqM\niIjcEoZh0KN5C2K7DKc+7bHbDbae+nWstPXnXWbHkzJGBUZERG4pH08bQzr34O/NXsSvoC4XrKf4\naN+HTFw3i+Nn8syOJ2WECoyIiDhEvdAQpnR7mh7Bj+BW6E82e/nHlmnM/fZLjZXkpqnAiIiIwxiG\nwb0RzZjWdQSNLB2w22Hb2a8ZujaWb/anmR1PXJhDC8zu3bvp2rUr8fHxAFy8eJGhQ4fSp08fHnvs\nMU6d+vWLj5YsWULv3r3p27cvCxcudGQkERExgafNncF3/oWRLf5OxQv1KHI/xScH5jF+zSyOntJY\nSf44hxWY/Px8Jk2aRFRU1OVjCxYsICAggMTERLp168b3339Pfn4+06dP58MPPyQuLo558+Zx8qQe\nvRMRKYvCgoJ49b6n6VU1Bst5f3Ite5n87TRmbV7GxSKNleTGOazA2Gw2Zs+eTUhIyOVj69evp0eP\nHgBER0fTpUsXUlNTiYiIwM/PD09PT1q0aEFKSoqjYomIiBPo0jCC1+8eSYTHndjtkFqwgaFrY1m/\ne4fZ0cRFWB12YasVq/Xqy2dlZbFhwwamTZtGUFAQ48ePJzc3l8DAwMvnBAYGkpOTc91rBwR4Y7Va\nHJIbIDjYz2HXlpujtXFOWhfn5exrM+7B/hzM6crUr+LJtmWQeDiOpIP1GdE1hlrBwWbHcyhnXxtn\n57AC87/Y7XZq167N4MGDeffdd5k5cyaNGze+5pzfk5eX76iIBAf7kZNzxmHXlz9Pa+OctC7Oy1XW\nxgsPxnd5gg1701i05wtyPfYwfM0/aOIVxRNt7sPD6m52xFvOVdbGbNcreaX6FFJQUBCRkZEAtG/f\nnr179xISEkJubu7lc7Kzs68aO4mISPnQsV44b9wzkubenTAwSLuQzLA1U1mzK9XsaOKESrXAdOzY\nkeTkZADS0tKoXbs2zZo1Y8eOHZw+fZpz586RkpJCq1atSjOWiIg4CavFwpNtujGu9XCCS26jxOMU\ni499zOgVMzjwO9sLpHwx7Dcys/kTdu7cSWxsLFlZWVitVkJDQ3n99dd59dVXycnJwdvbm9jYWIKC\ngli5ciVz5szBMAwGDhx4eaPvb3HkbTfd1nNeWhvnpHVxXmVhbTZn/kRCxudctJ3EXmQl3DOKJ6Pu\nw8PdtcdKZWFtSsP1RkgOKzCOpAJTPmltnJPWxXmVlbUpLikmbttqvjuZDJYi3AoDeLBWD7o0Djc7\n2p9WVtbG0ZxmD4yIiMgfZXGz8Hjk/b+Olez1KPHMY9HReby8/H0O5Z4wO56YRAVGRERcQuUKAUzo\n8jQP14rBvciPk567mbLtX8xMXs2Fi8Vmx5NSpgIjIiIupX2dCF7vOopmPu0wLMVsv7iWYaveYEN6\nhtnRpBSpwIiIiMtxt7jzdOuejG71EgH2GhR75zL/8FxeWf4RR/JOmR1PSoEKjIiIuKzqFUOY3OVv\n9KoZjbXEi188dzJ5y7+Yk5zExaISs+OJA6nAiIiIy+tSryVTO4+msXckhq2QlIvLGbb8TTZl7Dc7\nmjiICoyIiJQJnlYPnm/Tl2HNX6CCvQpFvseIPziLiV9+yvG8s2bHk1tMBUZERMqU2oHVeK3zELpX\n64kFd7K9fmDi5jf4aOM3GiuVISowIiJS5hiGwf0N2jHlztHU92yG4XGOrRe+YPiy6Xy796DZ8eQW\nUIEREZEyy9fmzZC2j/BCs2fxsQdxscIhPtw/g0lfJpJzMt/seHITVGBERKTMaxBUm392HsbdVe7H\nzc3gmNe3jN/4Lz7+ZitFxRoruSIVGBERKRfcDDcebHQXkzuMpJZHIwzv03xTuIhhS2aybW+W2fHk\nD1KBERGRcqWiRwWGt/srg8KfwJuKXPTPZM6+93ht2Rf8cqrA7Hhyg1RgRESkXIoIbcA/7xrBnSGd\ncbMUk+X9DeOS/s38b1I0VnIBKjAiIlJuWd2s9GtyHxPaDaearS6G3wk2FCQwYvFcftx/zOx4ch0q\nMCIiUu4FeQUypv0zPN5wIJ6GD+cDdjMz413+uWy5xkpOSgVGRETkksiqTflnp1G0CWqHm+0Ch7yT\nGLduOos27dBYycmowIiIiFzBZrER07QnL7d+iRD36hj+2Xx17mNGfvYROzKzzY4nl6jAiIiI/A9V\nfUN5pf3feLh+P2xuHhRW2sW7u95j2tI1nDhdaHa8ck8FRkRE5DcYhkH7Gq14reMoWgRE4uaZzwGf\nNYxdPYPPN+/SWMlEKjAiIiK/w9vdiyea92V45GACLaEYgUdYcyaeUYmfsjMz1+x45ZIKjIiIyA2q\nVaEGEzu+xEO1e2C1uFEQnMr0nTP419Ik8s6cNzteuaICIyIi8ge4GW50rd2eVzuMIty/KW4+p9nr\nvZyXV8zmiy0ZGiuVEhUYERGRP8HP5stzLQfyYvNn8LcGYgQdZNWpOEYvXMiuzF/MjlfmqcCIiIjc\nhNsC6jK5w3Dur3kvFmsJ+SHbeCt1Fm8uTdZYyYFUYERERG6Sxc1C93pdmNhuOPX9GmCpkMdur2W8\nvOwDlm3Zq7GSA6jAiIiI3CKBngEMiXyCZyIex9fqhxG6ny/zPmJMwmJ2HThhdrwyRQVGRETkFmsa\n3JjJHUbQuVonLLYLnKu8hbdS5vDW0i0aK90iKjAiIiIOYLPY6N2gG+Pa/J2a3rWwVMwh3WsxY5bE\nsXBdusZKN0kFRkRExIFCfUIY0fpZHm/8MF4WT9yq7Cbh0GxGfbqE7fv0JXh/ltXsACIiImWdYRhE\nVm5Ok6CGfL57FZuObaag6ibe/XEPdX6M4tG7WlA50NvsmC5Fd2BERERKiZfViwGNH2TavS9T0ycM\nS0AOB/yXMWF5HJ+uS6fgfJHZEV2GCoyIiEgpq1mxGiPueI6/Nh6Ar7sPlqr72HD+E0bO/4wNqVmU\n2O1mR3R6GiGJiIiYwDAMWlW+nSZBjViR+RVfHdpAcY3v+WT/fr7aGcmjnVpRt5q/2TGdlu7AiIiI\nmMjT6sFD9bvxSpuh3OZfH4v/CXJCVzP163hmLP1Rj13/BhUYERERJxDiHcyLLZ9iUNPHqejhj7Xy\nz2x3T2RMYiLLNmVysUiPXV9JBUZERMSJRAQ1ZmLb4TxQ6x6sthLcwlJZlvMpY+JW8cOeHOzaHwNo\nD4yIiIjTcbe4061OV9pUbcmCjKXsYCfnfNczY9te6v5wBwM7N6FqkI/ZMU2lOzAiIiJOKtAzgEHN\nHuVvtz9FkGcQ1pBDHKi4hIlLF/LJ2gzyCy+aHdE0KjAiIiJOrmFgfcZHDaVXve7Y3A2sYbtILljA\nqPjlbEg9QklJ+RsrqcCIiIi4AIubhS41OzKx7UgiQ1vg5nOG4jrf8HHGAibEJ7Pn8EmzI5YqFRgR\nEREX4u/hx+Ph/Rna8jmqelfFGnSE3CormLZ2ETOX7ODE6UKzI5YKFRgREREXVMe/FqNbv0D/Br3w\ncrfhXjODHy2fMWb+UpZuOsDFomKzIzqUCoyIiIiLcjPc6FCtDRPbjaB91TZYvPKx1PuOL48sYvQH\n69mWUXYfu1aBERERcXG+7j483LAXIyNfIMyvJpbA4+TXWsvMrZ8zdf73ZOWcNTviLacCIyIiUkbU\n8KvG8FbP82ijaPw8vHGvvpcD/suY+Nky4tdkcK4MPXatAiMiIlKGGIZB6yotmdB2BF1qdMTieR73\n+ilsPPMFoz5Yy/ofssrEY9cqMCIiImWQl9WTXvW7M7b1S9xWsR6WirkU10/i07QlTJi3mYyDeWZH\nvCkqMCIiImVYZZ9QXmj+FE82iSHAswLuVTPJrbKC11cu593FO/jllGs+dq13IYmIiJRxhmHQPCSC\n8EoNWP1zEqt/Xo9RL5Xtpw+yPT6c+5tFcH/rmtjcLWZHvWEqMCIiIuWEzWKje517aFOlJYl7lrKD\nXeC3keUHD5K8swn9OzWmZYNgDMMwO+rvUoEREREpZ4K8KjGo6eOk/ZLOgowvyK18kPxKx5i58SD1\nUsIZ0LUBNUJ8zY55XdoDIyIiUk6FV2rI2DZD6Vn3fmwedmx1dnLAdyUTF6wmbnUGZwuc97FrFRgR\nEZFyzN3Nyj1hdzEhagStQm/HzfcUHo23sPHEKka9n8RX2w5TXFJidsxrqMCIiIgIFT38+Wv4AIY0\nf4YqPpWxhhzG3mA987evYcIHW/npZ+d67FoFRkRERC6rH1CX0ZEv0rd+Tzw9rNjCfiI3dA1vLPuK\n6Z/vIPdkgdkRAW3iFRERkf9icbPQqUY7WoY2Y8m+FWw6+h0ejb5l+y+H2D4vi/ua30a3qDA8THzs\nWgVGRERE/ic/my+PNOpLu2qtWZCxmJ85DAHZrMg8TPLO24ju1IA7GoWY8ti1Q0dIu3fvpmvXrsTH\nx191PDk5mQYNGlz+ecmSJfTu3Zu+ffuycOFCR0YSERGRP6hWhZoMazWYRxr2wcfmgXuN3RTWWsfs\nr5OYtXSXKZkcdgcmPz+fSZMmERUVddXx8+fPM2vWLIKDgy+fN336dBITE3F3d6dPnz7cfffdVKxY\n0VHRRERE5A9yM9xoW/UObg9uwrLMNWw4vAmPBts4VnwOCC/9PI66sM1mY/bs2YSEhFx1fMaMGQwY\nMACbzQZAamoqERER+Pn54enpSYsWLUhJSXFULBEREbkJ3u7e9LutJ6PvGEKjwNuoUcXDlBwOuwNj\ntVqxWq++fGZmJunp6bz44otMmzYNgNzcXAIDAy+fExgYSE5OznWvHRDgjdXquI1DwcF+Dru23Byt\njXPSujgvrY3zcvW1CQ724/bat5n23y/VTbxTpkxh7Nix1z3Hbrf/7nXy8vJvVaRrBAf7kZNzxmHX\nlz9Pa+OctC7OS2vjvLQ2N+Z6Ja/Uvgfm+PHj7N+/n2HDhtGvXz+ys7MZOHAgISEh5ObmXj4vOzv7\nmrGTiIiIyJVK7Q5MaGgoa9euvfxz586diY+Pp7CwkLFjx3L69GksFgspKSmMGTOmtGKJiIiIC3JY\ngdm5cyexsbFkZWVhtVpZtWoVb7/99jVPF3l6ejJ06FCeeOIJDMPg+eefx8/PteeCIiIi4liG/UY2\nnTgZR84NNZd0Xlob56R1cV5aG+eltbkxTrEHRkRERORWUYERERERl6MCIyIiIi5HBUZERERcjgqM\niIiIuBwVGBEREXE5KjAiIiLiclRgRERExOW45BfZiYiISPmmOzAiIiLiclRgRERExOWowIiIiIjL\nUYERERERl6MCIyIiIi5HBUZERERcjgrMFV577TWio6Pp378/27dvNzuOXGHq1KlER0fTu3dvVq9e\nbXYcuUJhYSFdu3bls88+MzuKXGHJkiX06NGDXr16kZSUZHYcAc6dO8fgwYOJiYmhf//+JCcnmx3J\npVnNDuAsvv32W37++WcSEhLYt28fY8aMISEhwexYAmzZsoU9e/aQkJBAXl4eDz30EPfcc4/ZseSS\n9957D39/f7NjyBXy8vKYPn06ixYtIj8/n7fffptOnTqZHavc+/zzz6lduzZDhw7l+PHjPPbYY6xc\nudLsWC5LBeaSzZs307VrVwDq1q3LqVOnOHv2LL6+viYnk8jISJo2bQpAhQoVKCgooLi4GIvFYnIy\n2bdvH3v37tU/jk5m8+bNREVF4evri6+vL5MmTTI7kgABAQFkZGQAcPr0aQICAkxO5No0QrokNzf3\nqj9MgYGB5OTkmJhI/sNiseDt7Q1AYmIiHTt2VHlxErGxsYwaNcrsGPJfDh8+TGFhIYMGDWLAgAFs\n3rzZ7EgCPPDAAxw5coS7776bgQMHMnLkSLMjuTTdgfkNesOC81m7di2JiYnMnTvX7CgCLF68mNtv\nv50aNWqYHUX+h5MnT/LOO+9w5MgRHn30UdavX49hGGbHKte++OILqlatypw5c0hPT2fMmDHaO3YT\nVGAuCQkJITc39/LP2dnZBAcHm5hIrpScnMyMGTN4//338fPzMzuOAElJSRw6dIikpCSOHTuGzWaj\ncuXKtG3b1uxo5V6lSpVo3rw5VquVmjVr4uPjw4kTJ6hUqZLZ0cq1lJQU2rdvD0DDhg3Jzs7WOPwm\naIR0Sbt27Vi1ahUAaWlphISEaP+Lkzhz5gxTp05l5syZVKxY0ew4csmbb77JokWLWLBgAX379uW5\n555TeXES7du3Z8uWLZSUlJCXl0d+fr72WziBsLAwUlNTAcjKysLHx0fl5SboDswlLVq0IDw8nP79\n+2MYBuPHjzc7klyyfPly8vLyGDJkyOVjsbGxVK1a1cRUIs4rNDSUe++9l379+gEwduxY3Nz0/6tm\ni46OZsyYMQwcOJCioiImTJhgdiSXZti12UNERERcjCq5iIiIuBwVGBEREXE5KjAiIiLiclRgRERE\nxOWowIiIiIjLUYEREYc6fPgwTZo0ISYm5vJbeIcOHcrp06dv+BoxMTEUFxff8PkPP/wwW7du/TNx\nRcRFqMCIiMMFBgYSFxdHXFwc8+fPJyQkhPfee++Gfz8uLk5f+CUiV9EX2YlIqYuMjCQhIYH09HRi\nY2MpKiri4sWLvPLKKzRu3JiYmBgaNmzITz/9xLx582jcuDFpaWlcuHCBcePGcezYMYqKiujZsycD\nBgygoKCAl156iby8PMLCwjh//jwAx48fZ9iwYQAUFhYSHR1Nnz59zPzoInKLqMCISKkqLi5mzZo1\ntGzZkuHDhzN9+nRq1qx5zcvtvL29iY+Pv+p34+LiqFChAm+88QaFhYV069aNDh06sGnTJjw9PUlI\nSCA7O5suXboAsGLFCurUqcPEiRM5f/48CxcuLPXPKyKOoQIjIg534sQJYmJiACgpKaFVq1b07t2b\nt956i5dffvnyeWfPnqWkpAT49fUe/y01NZVevXoB4OnpSZMmTUhLS2P37t20bNkS+PXFrHXq1AGg\nQ4cOfPLJJ4waNYo777yT6Ohoh35OESk9KjAi4nD/2QNzpTNnzuDu7n7N8f9wd3e/5phhGFf9bLfb\nMQwDu91+1bt+/lOC6taty5dffsl3333HypUrmTdvHvPnz7/ZjyMiTkCbeEXEFH5+flSvXp2vv/4a\ngMzMTN55553r/k6zZs1ITk4GID8/n7S0NMLDw6lbty4//PADAEePHiUzMxOApUuXsmPHDtq2bcv4\n8eM5evQoRUVFDvxUIlJadAdGREwTGxvL5MmTmTVrFkVFRYwaNeq658fExDBu3DgeeeQRLly4wHPP\nPUf16tXp2bMn69atY8CAAVSvXp2IiAgA6tWrx/jx47HZbNjtdp566imsVv21J1IW6G3UIiIi4nI0\nQhIRERGXowIjIiIiLkcFRkRERFyOCoyIiIi4HBUYERERcTkqMCIiIuJyVGBERETE5ajAiIiIiMv5\nfwhjqxunzsj+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "pZa8miwu6_tQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "PzABdyjq7IZU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Aside from `latitude`, we'll also keep `median_income`, to compare with the previous results.\n", + "\n", + "We decided to bucketize the latitude. This is fairly straightforward in Pandas using `Series.apply`." + ] + }, + { + "metadata": { + "id": "xdVF8siZ7Lup", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def select_and_transform_features(source_df):\n", + " LATITUDE_RANGES = zip(range(32, 44), range(33, 45))\n", + " selected_examples = pd.DataFrame()\n", + " selected_examples[\"median_income\"] = source_df[\"median_income\"]\n", + " for r in LATITUDE_RANGES:\n", + " selected_examples[\"latitude_%d_to_%d\" % r] = source_df[\"latitude\"].apply(\n", + " lambda l: 1.0 if l >= r[0] and l < r[1] else 0.0)\n", + " return selected_examples\n", + "\n", + "selected_training_examples = select_and_transform_features(training_examples)\n", + "selected_validation_examples = select_and_transform_features(validation_examples)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U4iAdY6t7Pkh", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 627 + }, + "outputId": "93bead89-3580-4ff7-b638-60b734e363c0" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=selected_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=selected_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 226.96\n", + " period 01 : 216.83\n", + " period 02 : 206.78\n", + " period 03 : 196.84\n", + " period 04 : 187.01\n", + " period 05 : 177.30\n", + " period 06 : 167.74\n", + " period 07 : 158.40\n", + " period 08 : 149.26\n", + " period 09 : 140.37\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4jQf/x/H3OSd7yh6CDCRmEBGx\nt1i1UytU0T59qlOftvpUW6Vqt1SN6kSHWkVtVWqGJLYMmwyy9z65f394mh9FxIhzknxf19Xr6hn3\nfX9OvjmXb773UimKoiCEEEIIUYmodR1ACCGEEOJhSQMjhBBCiEpHGhghhBBCVDrSwAghhBCi0pEG\nRgghhBCVjjQwQgghhKh0DHQdQAh95u3tTe3atdFoNABotVr8/f15//33MTMze+T1/vrrrwQHB9/1\n/Pr165k8eTJLly6lc+fOpc/n5+fTpk0bevTowcyZMx95u+V17do1ZsyYweXLlwEwNTVl4sSJdOvW\nrcK3/TAWL17MtWvX7vqZhIaGMm7cONzc3O5aZvv27U8r3mOJjY2la9eueHh4AKAoCvb29vz3v/+l\nYcOGD7WuefPm4erqyvDhw8u9zMaNG1m7di0rV658qG0J8bRIAyPEA6xcuRJnZ2cACgsLeeONN1i2\nbBlvvPHGI60vKSmJr7/++p4NDICLiwu///77HQ3Mn3/+iZWV1SNt71G89dZb9O/fn6VLlwJw8uRJ\nxowZw7Zt23BxcXlqOR6Hi4tLpWlW7kej0dzxGbZu3crLL7/Mjh07MDIyKvd6Jk2aVBHxhNAp2YUk\nxEMwMjKiffv2REZGAlBQUMAHH3xAz5496dWrFzNnzkSr1QIQFRXFsGHDCAoKon///uzfvx+AYcOG\nER8fT1BQEIWFhXdto0WLFoSGhpKXl1f63NatW2nbtm3p48LCQqZPn07Pnj3p0qVLaaMBcPz4cQYN\nGkRQUBC9e/fm0KFDwK2/6Nu1a8eKFSvo168f7du3Z+vWrff8nDExMfj6+pY+9vX1ZceOHaWN3KJF\ni+jYsSMDBgzgq6++okuXLgC8++67LF68uHS52x8/KNeMGTMYNWoUAOHh4QwePJju3bsTHBzM9evX\ngVuTqNdff53OnTszatQobty48YCK3dv69euZOHEiY8aMYfbs2YSGhjJs2DBee+210n/st23bRt++\nfQkKCmL06NFcu3YNgC+++IL333+fIUOG8P3339+x3tdee41vv/229HFkZCTt2rWjpKSEzz77jJ49\ne9KzZ09Gjx7NzZs3Hzp37969yc/P59KlSwCsXr2aoKAgunTpwptvvkl+fj5w6+f+6aef0q9fP7Zt\n23ZHHe73e1lSUsLHH39Mp06dGDJkCFFRUaXbPXr0KAMHDqR379706tWLbdu2PXR2IZ44RQhxX/Xr\n11cSEhJKH6enpysjR45UFi9erCiKoixbtkyZMGGCUlRUpOTl5SmDBw9WfvvtN0Wr1Sq9evVSNm/e\nrCiKopw6dUrx9/dXsrKylCNHjijdunW75/bWrVunvPPOO8pbb71VumxWVpbStWtXZc2aNco777yj\nKIqiLFq0SBkzZoxSUFCg5OTkKAMGDFD27NmjKIqi9O3bV/n9998VRVGUDRs2lG7r+vXrSsOGDZWV\nK1cqiqIoW7duVbp3737PHK+88orSuXNn5YcfflAuXLhwx2vR0dFKy5YtlcTERKWoqEh56aWXlM6d\nOyuKoijvvPOO8uWXX5a+9/bHZeVq1KiRsn79+tLP6+/vrxw4cEBRFEXZvHmzMnDgQEVRFGXVqlXK\nyJEjlaKiIiU1NVXp3Llz6c/kdmX9jP/+OTdr1ky5fPly6fubNGmiHDp0SFEURYmLi1P8/PyUK1eu\nKIqiKN98840yZswYRVEUZeHChUq7du2UlJSUu9a7ZcsWZeTIkaWPFyxYoEybNk2JiYlRevTooRQW\nFiqKoigrVqxQNmzYcN98f/9cGjRocNfz/v7+ysWLF5Vjx44pgYGByo0bNxRFUZQpU6YoM2fOVBTl\n1s+9X79+Sn5+funjL7/8sszfy7179yo9evRQsrOzlby8PGXIkCHKqFGjFEVRlEGDBimhoaGKoijK\n5cuXlTfffLPM7EI8DTKBEeIBQkJCCAoKomvXrnTt2pXWrVszYcIEAPbu3UtwcDAGBgaYmJjQr18/\nDh48SGxsLMnJyfTp0weAJk2a4OrqyunTp8u1zT59+vD7778DsHv3bjp37oxa/f9f1z///JMRI0Zg\nZGSEmZkZ/fv3Z+fOnQD89ttv9OrVCwA/P7/S6QVAcXExgwYNAqBRo0bEx8ffc/tz5sxh5MiRbN68\nmb59+9KlSxd+/vln4NZ0xN/fHwcHBwwMDOjbt2+5PlNZuYqKiujevXvp+p2cnEonTn379uXatWvE\nx8cTFhZG9+7dMTAwwMbG5o7dbP+UkJBAUFDQHf/dfqyMu7s77u7upY9NTEwIDAwE4ODBgwQEBFCn\nTh0Ahg4dSmhoKMXFxcCtiZStre1d2+zUqRPnzp0jPT0dgF27dhEUFISVlRWpqals3ryZjIwMQkJC\nGDBgQLl+bn9TFIXVq1fj5OSEu7s7e/bsoXfv3jg5OQEwfPjw0t8BgMDAQIyNje9YR1m/l8eOHaNj\nx46Ym5tjYmJSWisAOzs7fvvtNy5evIi7uzvz5s17qOxCVAQ5BkaIB/j7GJjU1NTS3R8GBre+Oqmp\nqVhbW5e+19rampSUFFJTU7G0tESlUpW+9vc/Yvb29g/cZtu2bXn//fdJT09ny5Yt/Pvf/y49oBYg\nKyuLTz/9lPnz5wO3dik1bdoUgM2bN7NixQpycnIoKSlBue12ZxqNpvTgY7VaTUlJyT23b2xszLhx\n4xg3bhyZmZls376dGTNm4ObmRkZGxh3H49jZ2T3w85Qnl4WFBQCZmZlcv36doKCg0teNjIxITU0l\nIyMDS0vL0uetrKzIycm55/YedAzM7XX75+O0tLQ7PqOlpSWKopCWlnbPZf9mZmZGmzZt2Lt3L35+\nfmRmZuLn54dKpeKLL77g22+/Zdq0afj7+zN16tQHHk+k1WpLfw6KolC3bl0WL16MWq0mKyuLXbt2\nceDAgdLXi4qK7vv5gDJ/LzMyMnB0dLzj+b/NmDGDJUuWMHbsWExMTHjzzTfvqI8QuiANjBDlZGtr\nS0hICHPmzGHJkiUA2Nvbl/61DZCeno69vT12dnZkZGSgKErpPxbp6enl/sfe0NCQzp0789tvv3H1\n6lWaN29+RwPj6OjI888/f9cE4ubNm7z//vusWbOGBg0acOXKFXr27PlQnzM1NZXIyMjSCYiVlRXB\nwcHs37+fmJgYLC0tycrKuuP9f/tnU5SRkfHQuRwdHfH09GT9+vV3vWZlZXXfbT9JdnZ2HD9+vPRx\nRkYGarUaGxubBy7bs2dPdu3aRVpaGj179iytf+vWrWndujW5ubnMmjWLuXPnPnCS8c+DeG/n6OjI\nwIEDeeeddx7qc93v97Ksn629vT1TpkxhypQpHDhwgFdeeYX27dtjbm5e7m0L8aTJLiQhHsLYsWM5\nfvw4R48eBW7tMli7di1arZbc3Fw2btxIx44dcXNzw9nZufQg2YiICJKTk2natCkGBgbk5uaW7o64\nnz59+rB8+fJ7nrrctWtX1qxZg1arRVEUFi9ezF9//UVqaipmZmZ4enpSXFzM6tWrAe47pbiX/Px8\nXn311dKDOwGuXr3KyZMnadmyJc2bNycsLIzU1FSKi4v57bffSt/n4OBQevDn9evXiYiIAHioXL6+\nviQlJXHy5MnS9fznP/9BURSaNWvGnj170Gq1pKam8tdff5X7cz2Mtm3bEhYWVrqb65dffqFt27al\nk7eydO7cmePHj7N79+7S3TAHDhxg6tSplJSUYGZmho+Pzx1TkEfRpUsXdu7cWdpo7N69m6+++qrM\nZcr6vWzevDkHDhwgLy+PvLy80sapqKiIkJAQEhMTgVu7Hg0MDO7YpSmELsgERoiHYGFhwQsvvMCs\nWbNYu3YtISEhXL9+nT59+qBSqQgKCqJXr16oVCrmz5/Phx9+yKJFizA1NWXBggWYmZnh7e2NtbU1\nbdu2ZcOGDbi6ut5zW61atUKlUtG7d++7XhsxYgSxsbH06dMHRVFo3LgxY8aMwczMjA4dOtCzZ0/s\n7Ox49913iYiIICQkhIULF5brM7q6urJkyRIWLlzI9OnTURQFCwsLJk+eXHpm0rPPPsvAgQOxsbGh\nR48enD9/HoDg4GAmTpxIjx49aNiwYemUxcfHp9y5TExMWLhwIdOmTSMnJwdDQ0Nee+01VCoVwcHB\nhIWF0a1bN1xdXenWrdsdU4Pb/X0MzD/Nnj37gT8DZ2dnpk+fzr///W+Kiopwc3Nj2rRp5fr5WVhY\n0KhRI6Kjo2nWrBkA/v7+bNmyhZ49e2JkZIStrS0zZswA4O233y49k+hhNGrUiH/961+EhIRQUlKC\nnZ0dU6dOLXOZsn4vO3fuzN69ewkKCsLe3p6OHTsSFhaGoaEhQ4YM4bnnngNuTdnef/99TE1NHyqv\nEE+aSrl9R7QQQjyksLAw3n77bfbs2aPrKEKIakRmgEIIIYSodKSBEUIIIUSlI7uQhBBCCFHpyARG\nCCGEEJWONDBCCCGEqHQq5WnUSUn3Pm3ySbCxMSMtLbfC1i8endRGP0ld9JfURn9JbcrHwcHyvq/J\nBOYfDAw0uo4g7kNqo5+kLvpLaqO/pDaPTxoYIYQQQlQ60sAIIYQQotKRBkYIIYQQlY40MEIIIYSo\ndKSBEUIIIUSlIw2MEEIIISodaWCEEEIIUelIAyOEEEJUMXv3/lGu9y1YMI/4+Lj7vv7uu28+qUhP\nnDQwQgghRBWSkBDP7t07yvXe116bhKtrzfu+PnPm/CcV64mrlLcSEEIIIcS9zZ8/i8jIs7Rv70+P\nHr1ISIjn888X8+mnH5OUlEheXh7PP/8Cbdu2Z+LEF3jzzbf5888/yMnJ5tq1q8TFxfLqq5MIDGxL\nnz5d2bLlDyZOfAF//wAiIsJIT09n1qzPsLe35+OPp3DjRgJNmjRlz57dbNiw9al9TmlghBBCiAry\n654LHItKvOt5jUaFVqs80jr9fRwJ7lL3vq8PHx7C+vW/4uHhxbVrV1i8+GvS0lJp1ao1vXr1JS4u\nlilT3qVt2/Z3LJeYeJO5cxdy5MghNm5cR2Bg2zteNzc3Z8GCJSxZ8gV//bUHV1c3CgsL+Oqr7zl4\ncD+//vrzI32eRyUNzG1S8lKJS7iGq6YWKpVK13GEEEKIx9KgQSMALC2tiIw8y6ZN61Gp1GRmZtz1\n3qZNmwHg6OhIdnb2Xa/7+jYvfT0jI4OrVy/TpIkvAIGBbdFonu79naSBuc32K3s4lHCUhnbejPQZ\nQg1ja11HEkIIUYkFd6l7z2mJg4MlSUlZFb59Q0NDAHbt2k5mZiZffvk1mZmZjB8fctd7b29AFOXu\n6dA/X1cUBbX61nMqleqp/+EvB/Hepo9nd3ydG3AuJZrpofM4khB2zyIKIYQQ+kqtVqPVau94Lj09\nHRcXV9RqNfv27aGoqOixt1OzphvR0ecAOHr0yF3brGjSwNymhrE173V4hRHegylRSlgZ+StLT31P\nRkGmrqMJIYQQ5VKnjgfR0VHk5Pz/bqBOnbpw6NB+XnvtJUxNTXF0dOS775Y/1nbatGlPTk4OL700\njpMnj2Nl9XT3WqiUSjhiqKix2++HrhAaeZOhnbyo6aphVdQaYtIuYGZgytD6/fF3ai7HxujQ0xq5\niocjddFfUhv9VRVqk5mZQUREGJ06dSUpKZHXXnuJn35a90S34eBged/X5BiY29hbm3AzNZfP15yi\nbWNnnu86huMpEWy4uIUfzv3CicTTDPMZhJXR/X+gQgghRHVgZmbOnj27+emnlShKCa+88nQveicT\nmH/IKVaYuzKMqzezsLYwYkxPH9zcVKyKXMP59EuYG5rxbP0BtHD0lWnMU1YV/mKpiqQu+ktqo7+k\nNuVT1gRG89FHH3309KI8Gbm5hRW27ppOVjT3ssXQQM2ZSykcPnuT7GwIadUVWzMrzqVEE5Z4koSc\nm9Sz8cJYY1RhWcSdzM2NK7T24tFIXfSX1EZ/SW3Kx9zc+L6vyS6kezDQqOnbxp3m9ez5dmskh8/e\n5OyVNEb39GZyK29WRf7K8aTTnE+/xDDvQTR3bKLryEIIIUS1ImchlaGmgwXvhfgxtJMXufnFLFp/\nmvW7bjDO53kG1+tHgbaAr8+s5NszP5JdlKPruEIIIUS1IROYB9Co1fRqXYdm9ez5dkskRyMTibya\nRkgPbyb7e7Mycg3hiSeJSb/IcO9B+Do01nVkIYQQosqTCUw5udiZM3mUH892qUt+oZbFv51h3c6b\njPcZx8C6fcgrzuer0yv4/uzP5BTl6jquEEIIUaYhQ/qRm5vLypXfc+bMqTtey83NZciQfmUuv3fv\nHwBs3bqZffv+rLCc9yMTmIegVqvo2ao2vnVvHRsTFp1E1LV0RvXw4d2W3qyMWsOxm8eJTrvACJ/B\nNLFvqOvIQgghRJlCQp576GUSEuLZvXsHnTp1pXfvshudiiINzCNwtjXj3REt+CM8lnX7LrJ041la\n1HdgfPdxhKWEsuXyTpae+p4AZz+G1HsGM0NTXUcWQghRTTz//EhmzJiHs7MzN24kMHnyJBwcHMnL\nyyM/P5833vgPDRv+/+EOn3zyEZ06daVZs+b8979vU1hYWHpjR4CdO7exdu1qNBo17u5evPPOf5k/\nfxaRkWf57rvllJSUUKNGDQYPfpbFixdw+vRJiou1DB4cTFBQHyZOfAF//wAiIsJIT09n1qzPcHZ2\nfuzPKQ3MI1KrVXT3r0XTunZ8tzWKiJgkoq+lMaJ7A95u6cOqqF8JvRFeOo1pZOej68hCCCGesvUX\nfud44um7nteoVWhLHu0ybM0dmzCobt/7vt6hQ2cOHvyLwYOD2b9/Hx06dMbLqx4dOnQiPPwYP/74\nA598Mueu5Xbs2IanpxevvjqJP/7Yye7dOwDIy8tj3rwvsLS05OWXJ3Dx4gWGDw9h/fpfGTt2At98\nswyAEyciuHTpIkuWfEteXh5jxgyjQ4dOAJibm7NgwRKWLPmCv/7aQ3DwiEf67LeTY2Aek5ONGW+P\naM7I7vUp1ios33yOdTuSGFd/Av08e5JVmM3ik9/yY+Qa8orzdB1XCCFEFXergdkPwIED+2jXriP7\n9v3BSy+NY8mSL8jIyLjncleuXKJxY18Amjf3K33eysqKyZMnMXHiC1y9epmMjPR7Lh8VdY5mzVoA\nYGpqiru7J9evXwfA17c5AI6OjmRnZ99z+YclE5gnQK1S0dXPjaZedny/LYoTF5KJuZ7O8G4Nebtl\nA1ZG/sqhhGNEpp5nZIMhNLCtr+vIQgghnoJBdfvec1pSkVfi9fT0IiUliZs3b5CVlcX+/Xuxt3dk\nypRpREWdY9Giz++5nKLc2rsAUPK/6VBRURHz58/m++9/ws7Onrfffv2+21WpVNx+bf/i4qLS9Wk0\nmtu282RuACATmCfIoYYpbw1rxuie3mgVhW+2RLJmWxLj60+gt0d3MgozWXTia36OWkd+cb6u4woh\nhKiiAgPb8dVXi2nfviMZGenUrOkGwL59f1JcXHzPZWrXrkNUVCQAERFhAOTm5qDRaLCzs+fmzRtE\nRUVSXFyMWq1Gq9XesbyPTyOOHw//33K5xMXF4uZWu6I+ojQwT5pKpaJT85pMG9eKRu42nL6Uwkff\nhWGZ2Yj/+E3E1dyZA/GhfHL0M6JSz+s6rhBCiCqoY8fOpWcJBQX1YfXqH3njjZdp1KgxKSkpbNmy\n6a5lgoL6cPbsaV577SWuX7+KSqXC2roG/v4BjB8/mu++W86IESEsXDifOnU8iI6OYuHCeaXL+/o2\nw9vbh5dfnsAbb7zMv/41EVPTijuJRW7m+A9PcqynKAr7TyWwes958gq0NPKwZVSPuhxNO8jOq39S\nopTQoWYg/b16Y2Jw//s9iFvk5mf6Seqiv6Q2+ktqUz5l3cxRJjAVSKVS0cHXlWnjAmjiacfZy6lM\n/S4cy4zGTGrxMs7mTvwVd5gZRz/jfNpFXccVQgghKg1pYJ4CWysTXh/alOd7N0ClUrFiRzRrtiYz\nod4L9KjTmdT8ND4/vow1MRsp0MrdSYUQQogHkQbmKVGpVLRr6sL08QH4etkReTWNqd9FYJnRhDdb\n/BsnM0f2xh7k06OfcSH9sq7jCiGEEHpNGpinzMbSmFeHNGVC34YYaFSs2hnD2q0pjK83gW61O5Kc\nl8rnEUtZd34zhdoiXccVQggh9JI0MDqgUqkIbOzMtPEBNK9nT9S1dD7+/jgW6U15vcW/cDC1Y8/1\n/Xx67DMuZVzVdVwhhBBC71ToWUizZ88mPDyc4uJiXnzxRZo0acLkyZMpLi7GwMCAOXPm4ODgwKZN\nm/jhhx9Qq9UEBwczdOjQMtdbWc5CKg9FUTgamciPu2LIziuinps1IUFehKbt58/rBwDoWrsDfT16\nYKgxfGq59JEcta+fpC76S2qjv6Q25VPWWUgV1sAcOXKEb775huXLl5OWlsbAgQMJCAigY8eO9O7d\nmx9//JG4uDgmTpzIwIEDWbt2LYaGhgwZMoRVq1ZRo0aN+667KjUwf8vIKWTVzmjCo5MwNFAzqIMn\nHnWL+TF6Dcl5KTibORLSMBh3q4q7KJC+ky+8fpK66C+pjf6S2pRPWQ2M5qOPPvqoIjbq4uJC9+7d\nMTQ0xMjIiGXLlvHdd9/h7e2NWq0mNjaWmJgYrK2tSUlJoV+/fhgYGBAVFYWxsTEeHh73XXdubsWd\nqWNublyh678fEyMNrRo44WpvztnLqRw/n0zCjRLG+HfH0EjhTEoUh+OPUVRSjFcNDzSq6rf3T1e1\nEWWTuugvqY3+ktqUj7n5/a+RVmH3QtJoNJiZmQGwdu1aOnToUPpYq9Xy008/8fLLL5OcnIytrW3p\ncra2tiQlJZW5bhsbMwwMNGW+53GU1fFVtN4OlrRt7sayDafZfyKOGStOMioogCkd/VkWtpKdV/8k\nMi2KlwPG4GlbR2c5dUWXtRH3J3XRX1Ib/SW1eTwVfjPH3bt3s3btWr799lvgVvPy9ttv07p1awID\nA9m8efMd7y/PHq20tNwKyQr6M9YbG+RNUw8bVu6I5rvfz+ERbsXooBc4mr6Xv+IO897u2fSs05kg\n964YqKvHPTn1pTbiTlIX/SW10V9Sm/LR2ZV49+/fz9KlS1m+fDmWlrdCTJ48mTp16jBx4kTg1q21\nk5OTS5dJTEzE0dGxImNVGn7ejkyf0JrWDZ24nJDJpytOYJHanJd9x2NtZMW2K38wO+wLrmfF6zqq\nEEII8VRVWAOTlZXF7NmzWbZsWekBuZs2bcLQ0JBXX3219H2+vr6cPn2azMxMcnJyiIiIoGXLlhUV\nq9KxMDXkhWca8crgJpibGLJu3yXWbM5grOeLtHUNIC47gdlhC9lyeRfaEu2DVyiEEEJUARV2FtLq\n1av54osv7jgYNz4+HisrKywsLADw8vLio48+Yvv27XzzzTeoVCpGjRrFM888U+a6q+JZSOWRnVfE\nL3+c59CZG2jUKvq1dcezfgE/x6wjvSCDWhauhDR8lpoWLrqOWiH0uTbVmdRFf0lt9JfUpnx0chp1\nRaquDczfTl5IZsWOaNKyCqjtaMHIIA9CM/ZyOOEYGpWG3h7d6F67Exp1xR3orAuVoTbVkdRFf0lt\n9JfUpnzkbtRVjG9de6aNa0W7pi5cS8xm9qozWCT78ULj57AwNGfzpR3MDf+S+Owbuo4qhBBCVAhp\nYCopMxNDnu/dgDeCfbEyN2LTwSus25zNGI8XCHD241pWLLOOLWDHlT1ybIwQQogqRxqYSq6Jpx3T\nxwfQsZkrsUnZzFl1FovkloxvNBozQzM2XdrOvPDFMo0RQghRpUgDUwWYGhswJsiHScOaYWNpzO+H\nrrJ+cw4h7i/QyrkFV7OuyzRGCCFElSINTBXSyN2Wj8e1onOLmsQl5zDvx7OY3WzJuIb/P42RY2OE\nEEJUBdLAVDGmxgaE9PDmP8ObY2dlwrbQa6zZlM2IWuPvODZmu0xjhBBCVGLSwFRRDerYMG1cAN1b\n1iIxNZfPf47EIK454xqOxtzQjM2XtjM3fJFMY4QQQlRK0sBUYcZGGoZ3q8fkUX442ZqxOzyWXzZk\nMsRl3P+mMXHMPLaA7Vf+kGmMEEKISkUamGqgrps1U5/3p3frOqRmFrBoTRTKNV/G+owuvW7MnPBF\nxGUn6DqqEEIIUS7SwFQThgYahnTy4r+j/XBzMGffiXh+3pDBQMfnaO3ckutZccw6tpBtl2UaI4QQ\nQv9JA1PNeLhY8cFz/vRv50FmTiFL1seQf7Exz/mEYGFozu+XZRojhBBC/0kDUw0ZaNT0b+fBB8/5\nU8fZksNnb/Djugz62o3+xzRmt0xjhBBC6CVpYKqxWo4WvD/aj6GdvMjNL+brjRfIimnIGO8QLI0s\n+P3yTuaEfSHTGCGEEHpHGphqTqNW06t1HaY+70/dmtaERSWyam06Pa1G3prGZMcz69hCtl7eJdMY\nIYQQekMaGAGAi505745swfBu9Sgs1vL9lkuknfNhdL1b05gtl3cxO+wLYrPidR1VCCGEkAZG/D+1\nWkX3lrX4eFwAPrVrcOJCMivWptHZbDiBLi2JzY5nVthCtsg0RgghhI5JAyPu4ljDlP8Mb87oIG8U\nReGnHVe4cbIeo7xGYWVkydb/TWOuyzRGCCGEjkgDI+5JpVLRqVlNpo8PoImnHeeupLFibRrtjYcR\n6OJPbHY8s8MWsuXSTopLinUdVwghRDUjDYwok62VCa8Pbcr4vg0w0Kj4dfdVYsM9GeE58tY05spu\nmcYIIYR46qSBEQ+kUqlo09iF6eMDaFHfgZjYDFasTaO1JphAF3/ishNkGiOEEOKpkgZGlJu1hTEv\nD2zMSwMaY2KkYcPe61w+6sEw9xFYG1ndNo2J03VUIYQQVZw0MOKhqFQq/H0cmT4+gNYNnbickMmK\ntWm0UAYR6Pz3NOYLfpdpjBBCiAokDYx4JJZmRrzwTCNeGdwECzNDfj8Qz4UjdRha+9Y0ZptMY4QQ\nQlQgaWDEY2lez4FPxgfQrqlWQVImAAAgAElEQVQL1xKzWbUujabFAwl0bnXbNGaHTGOEEEI8UdLA\niMdmZmLI870b8OazvthYGrH9cAKRB90YVGv4/6YxfzDr2EKuZcXqOqoQQogqQhoY8cQ09rDj43EB\ndGlRk4SUXH5an0aDgv60dm5FfM4N5oQtYvOlHRTJNEYIIcRjkgZGPFGmxgaM6uHNOyOa41DDlD+O\n3uTs/poMcB2GtZEV26/8wexjC7mWKdMYIYQQj04aGFEhvGvbMPX5VvRsVYuk9Dx+/i0dr5x+tHb6\n3zQmfBGbL26XaYwQQohHIg2MqDDGhhqe7VKP90b54WJnxv6IJE7tc6Gf87PUMLZm+9U9zD62kKuZ\n13UdVQghRCUjDYyocF41rflobCv6tnEnLauQXzdlUDu9T+k0Zm74l2ySaYwQQoiHIA2MeCoMDdQM\n6uDJlDEtqeVoweFTyUT86Uwvh2BqGFuz4+oeZh1bINMYIYQQ5SINjHiq6jhbMmVMSwZ28CQnr4j1\nWzJxSe5FgGMrEnJuMjf8SzZe3CbTGCGEEGWSBkY8dQYaNf3auPPhc/54uFgRdi6V8D1O9LAdQg1j\na3Ze/ZOZMo0RQghRBmlghM7UdLDgvyF+BHeuS36hlo3bs7G/0ZMAx1bcyLnJnLBFt6Yx2iJdRxVC\nCKFnpIEROqVWqwgKqM3Hz7eivps1J2PSObbbkS7Wg7E1qXFrGhO2kCuZ13QdVQghhB6RBkboBSdb\nM94e2YKR3etTrFXYsisH69jutHK4NY2ZG/Ylq05ukGmMEEIIQBoYoUfUKhVd/dyYNq4VDd1tOHsp\nk9BdDnS0GIStiQ2bonby6bHPuZRxRddRhRBC6Jg0MELv2NcwZdKzzXiulw8qlYrte3Ixu9qZDrXa\ncTM3ifnhS1h3fjOF2kJdRxVCCKEjBroOIMS9qFQqOvi60sTTjhXbozh5MYUr8dZ0bDOIaP5iz/X9\nnEo+xyifIdSz8dJ1XCGEEE+ZTGCEXrOxNObVIU15oV9DjA017NqXi+ZCB1rZtyYlL5XPjy9jdfRv\n5BcX6DqqEEKIp0gaGKH3VCoVrRs5s+SdLgQ0dOJyXC4HttvgbzAAJzNH/oo7xCdH5xOVel7XUYUQ\nQjwl0sCISsPawpgXn2nEq4ObYmVuxL5DeRSea0MruzakF2TwxYnl/BS1lrziPF1HFUIIUcGkgRGV\nTrN69kwbF0CnZq7EJ+bz13YrfJVncDFz5mD8UaaHzudsSpSuYwohhKhA0sCISsnMxIDRQT78Z3hz\nHKxNOXQ0n8wTrWhl047MwiwWn/yWFedWk1uUq+uoQgghKoA0MKJSa1DHhqnjWhHUqjYpGYXs22FB\nw8JnqGnuSuiNcKaFzuNk0lldxxRCCPGESQMjKj1jQw3BXery/uiWuDmYc+x4PknHWuBv3YHcoly+\nOv0D3575kezCHF1HFUII8YRIAyOqDA8XKz54zp8B7T3IztXy1y4zPLL7UMvcjfDEk0wLnUtE4ild\nxxRCCPEESAMjqhQDjZpn2nrw0Vh/PF2tOHW2kLgjzWhh0YECbQHfnFnF8tMrySzM0nVUIYQQj0Ea\nGFEl1XSw4L1RfgzrWo+i4hIO7jHDNaUXdSxqcyLpNNOPzOPojQgURdF1VCGEEI9AGhhRZanVKnr4\n1+LjcQE0qGND1PkirhxojK9pB4pKivjh3C8sO/096QUZuo4qhBDiIUkDI6o8xxqmvDWsGWN7+aBS\nqTmyzwy7Gz1xt3DndHIk00PncTj+mExjhBCiEpEGRlQLKpWK9r6uTB8fQPN69ly6UsyFvxrQxLAj\nJUoJq6LW8OXJb0jNT9N1VCGEEOUgDYyoVmwsjZk4qAkvDWiMqZEBRw+aYnG1O+7mnkSmxvBJ6Hz2\nxx2RaYwQQug5aWBEtaNSqfD3cWT6hNa0aexMbLyWmH31aaDuBKj4JXo9C08sJzkvRcdJhRBC3I80\nMKLasjA1ZHzfhrwR7EsNC2MijphgdLEzHuZ1iUm7wCeh89l7/SAlSomuowohhPgHaWBEtdfE046P\nxwXQtYUbNxMVIv/0ol5JJwzUBqw5v5HPI5aSmJuk65hCCCFuIw2MEICpsQEje9Tn3ZEtcLI151SY\nCUpkRzzM6nMx4wozjn7G7mv7ZBojhBB6QhoYIW5Tv1YNpj7vT5/AOqSnqzi31wOPgk4YqY3ZcGEL\n88IXk5BzU9cxhRCi2jOoyJXPnj2b8PBwiouLefHFF2nSpAlvv/02Wq0WBwcH5syZg5GREZs2beKH\nH35ArVYTHBzM0KFDKzKWEGUyNNAwuKMXLb0d+W5rJOdOqrC0aodH86tczoxi5tHP6e3RnW61O6JR\na3QdVwghqiWVUkHnix45coRvvvmG5cuXk5aWxsCBAwkMDKRDhw706tWL+fPn4+zszIABAxg4cCBr\n167F0NCQIUOGsGrVKmrUqHHfdSclVdx9bBwcLCt0/eLR6aI2xdoSdhy9xsYDVyjWllCvUR4ZNcLJ\nKsqmlmVNQhoEU9PC5alm0jfyndFfUhv9JbUpHwcHy/u+VmG7kPz9/VmwYAEAVlZW5OXlERoaSteu\nXQHo3Lkzhw8f5uTJkzRp0gRLS0tMTExo0aIFERERFRVLiIdioFHTJ9Cdqc/7U9fNmvNnTck+0QZ3\n4wZcz4pj1rGFbLm8i+KSYl1HFUKIaqXCdiFpNBrMzMwAWLt2LR06dODAgQMYGRkBYGdnR1JSEsnJ\nydja2pYuZ2trS1JS2Wd82NiYYWBQcaP7sjo+oVu6qo2DgyXz6jux7dBlfth6jsj9dajb0IUcu3C2\nXt7F2dRzvNRqNJ62tXWST9fkO6O/pDb6S2rzeCr0GBiA3bt3s3btWr799lt69OhR+vz99lyVZ49W\nWlruE8v3TzLW01/6UJtW3g54OrdixY5ozpxLxdg4AM+WcVzJOMt7u2fRvXYnenl0w1Bd4V8tvaEP\ndRH3JrXRX1Kb8tHJLiSA/fv3s3TpUpYvX46lpSVmZmbk5+cDcPPmTRwdHXF0dCQ5Obl0mcTERBwd\nHSsylhCPxd7alDeG+jK+bwMMVEZEHqyFXXJHLA0s2XF1DzOPfs7ljGu6jimEEFVahTUwWVlZzJ49\nm2XLlpUekNumTRt27NgBwM6dO2nfvj2+vr6cPn2azMxMcnJyiIiIoGXLlhUVS4gnQqVS0aaxC9Mn\ntMbfx5HYS6YkH21FbU1jbuQmMi/8S9Zf+J1CbZGuowohRJVUYXPurVu3kpaWxuuvv1763MyZM3n/\n/fdZvXo1rq6uDBgwAENDQyZNmsS4ceNQqVS8/PLLWFrKfkFROVibG/HSgMYExCSxckc00YfdcKpl\nh7r2Kf649henk84xssFQ6tbw0HVUIYSoUirsNOqKJKdRV0/6Xpuc/CJ+3XOB/acSUGu0ePklEMdZ\nADq6teEZr14Ya4x0nPLJ0/e6VGdSG/0ltSkfnR0DI0R1Ym5iyNjeDZg0rBm2FuacP+qG6fX21DC0\nYW/sQT4JnU9M2gVdxxRCiCpBGhghnrBG7rZMGxdA95a1SE0wI/6QHy7aJqTmp7Hg+Ff8HL2e/OJ8\nXccUQohKTRoYISqAsZGG4d3q8V6IH652VlwKr4nh5fbYGNpzIO4I00PnczYlWtcxhRCi0pIGRogK\n5FXTmg+f8+eZtu5kp5gTf6gFjoVNySjMZPHJb1hxbjU5RRV3XSMhhKiqqs/VtoTQEUMDNQPae+L3\nv5tDXjmhxsK2BrY+UYTeCOdcSjTB3gNo4dhU11GFEKLSkAmMEE9JLUcL/jvaj+DOdSnMtCDuUDPs\ncpqRV5zPN2dWsfz0CjIK5KwEIYQoD5nACPEUadRqggJq06K+PT9sjybyrBpjS2scGp/nRNIZYtIu\nMrhePwKc/VCpVLqOK4QQeksmMELogKONGW8Na8bY3j4YFFkSe7gJ1unNKSopZmXkr3x58htS8tJ0\nHVMIIfSWNDBC6IhKpaJ9U1emjw/A38eJGzFO5Jxoi53KjcjUGD45Oo99sYcoUUp0HVUIIfSONDBC\n6Ji1hTEvDWjMK4ObYGVoTWxoI8wS/UBR82vMb3wesZSbuUm6jimEEHpFGhgh9ETzeg5MGxdA5+Zu\npFxxICM8ENsSdy5mXGHG0c/YefVPtCVaXccUQgi9IA2MEHrEzMSAkJ7evDuyBU6WNsSF+WAU548h\nxmy8uI254YuIzYrXdUwhhNA5aWCE0EP1a9Vg6vP+9GvjTnaCPanHArAp8uJaVhyzwhay+dIOikqK\ndR1TCCF0RhoYIfSUoYGGgR08+fA5fzyd7Ik/Xg/V5VaYqMzZfuUPZh5bwOWMq7qOKYQQOiENjBB6\nzs3RgvdG+TG8az206Q6kHA3AKq8eN3JuMi98MevOb6ZAW6jrmEII8VTJheyEqATUahXd/WvRvJ49\nK3ZEc+a0AUY17LDyjmTP9f2cSjrLCJ8heNvW1XVUIYR4KmQCI0QlYl/DlDeCfZnQryFGBQ4kH22F\neaY3KflpLDzxFT9FrSWvOE/XMYUQosLJBEaISkalUhHYyJlGHrb88sd5jpzVYGBhh03DKA7GH+Vs\nSjTDvAfSxL6hrqMKIUSFkQmMEJWUlZkRL/RrxOtDfbFWO5B0rCXGKQ3ILMhi6anv+e7sT2QVZus6\nphBCVAhpYISo5Jp62TFtfADdWtQm42Idck8HYl7iQNjNE0wPnUfYzRMoiqLrmEII8URJAyNEFWBi\nZMCI7vV5L8QPV3NnksNaoLnRiLziAr47+xPLTv9AekGGrmMKIcQTIw2MEFWIV01rPhzrz4D2nuTH\n1SbnRCBmxU6cTj7H9NB5HIwPlWmMEKJKkAZGiCrGQKPmmbYefDi2FV72rqRENIPrTSjSlvBT1Dq+\nOLGc5LwUXccUQojHIg2MEFVUTXtz3h3VglE9vClJqU1WRBtMC1yJTrvAJ6Hz2XN9PyVKia5jCiHE\nI5EGRogqTK1S0aWFG5+MD8C3dk1STzZBe9kXpUTDuvObmR++hBs5N3UdUwghHpo0MEJUA7ZWJrw6\npCn/6t8Y45zaZEYEYpzjxuXMq3x69HO2X/kDbYlW1zGFEKLc5EJ2QlQTKpWKVg2caOhuy+o95zl4\n2hgDG0eM6kWx+dIOIhJPMarBUGpbuuk6qhBCPJBMYISoZixMDRnXpyGTnm1GjZLaZIQHYphRh7js\nBOaELWLjxW0UaYt0HVMIIcokDYwQ1VQjD1umjQugp58nWTENKIjyx0Brxs6rfzLj2GdcSL+s64hC\nCHFf0sAIUY0ZG2l4tks93h/dElfjOmREtEad4klibjKfRyzl15jfyC8u0HVMIYS4izQwQgg8XKz4\n4LmWDG5fn4IrPhScC8BQa8m+2EN8cnQ+kSkxuo4ohBB3kAZGCAHcugBen0B3Ph7Xiro2HmREBMDN\nuqTlp7Po5NesPPcruUW5uo4phBCANDBCiH9wtjXj7RHNGdOzIdzwIe9MIIaFNThyI4xpofM4kXRG\n1xGFEEIaGCHE3dQqFR2b1WT6+ACau3mRebIV2lhvsgtzWX56BV+fWUVmYZauYwohqrFHbmCuXLny\nBGMIIfSRjaUxEwc14eUBTTHN8Cb3VCAG+XYcTzzF9CPzCE0Il5tDCiF0oswGZuzYsXc8Xrx4cen/\nf/DBBxWTSAihd/y8HflkQgDtveuTdaolRVcbkFdUyIrI1czc/yWp+Wm6jiiEqGbKbGCKi4vveHzk\nyJHS/5e/uoSoXsxMDHmulw//Gd4C20Ifck+2QZ3jwPGEs0wPncfe2INyc0ghxFNTZgOjUqnueHx7\n0/LP14QQ1UODOjZ8/HwrerVoQN45PwovNaa4GNbEbOSzCLk5pBDi6XioY2CkaRFCABgZahjSyYsp\nY/zxMGlE9vG2qNJduJRx6+aQ2y7vprik+MErEkKIR1TmzRwzMjI4fPhw6ePMzEyOHDmCoihkZmZW\neDghhH6r42zJ3Fc78Mv2SNbvN6XY3BmNVxS/X95JROIpRjYYgrtVbV3HFEJUQSqljINZQkJCylx4\n5cqVTzxQeSQlVdzpmw4OlhW6fvHopDb66e+6JKfnsXJnDKev3sC4dgxqh+uoUNG5Vjv6evbEWGOk\n66jVjnxn9JfUpnwcHCzv+1qZDYy+kgamepLa6Kfb66IoCkcjE/l5dwzZmpuY1j1HiWE2diY2DPcZ\nTAPb+jpOW73Id0Z/SW3Kp6wGpsxjYLKzs/n+++9LH//yyy/079+fV199leTk5CcWUAhRNahUKgIa\nOjF9QmvaeDQi50QgxQkepOSls+jE16w4t5ocuR2BEOIJKLOB+eCDD0hJSQHg8uXLzJ8/n3feeYc2\nbdrwySefPJWAQojKx8LUkOd7N+A/w1pim92M/LOBqPKtCb0RzrQjcwm/eVIuxSCEeCxlNjDXr19n\n0qRJAOzYsYOgoCDatGnDsGHDZAIjhHigBnVs+HhcK/o0a0rBmdYUXfMmuzCPb8/+yLLT35OWn67r\niEKISqrMBsbMzKz0/48ePUrr1q1LH8sp1UKI8jA00DCogycfjg2gjtqXvFNtIMuO08mRTA+dx/64\nw3IBPCHEQyuzgdFqtaSkpHDt2jWOHz9O27ZtAcjJySEvL++pBBRCVA1uDhZMHuXHiA7NUS4GUHi5\nEQVFJfwSvYEFx5dxMzdJ1xGFEJVImdeBmTBhAr179yY/P5+JEydibW1Nfn4+I0aMIDg4+GllFEJU\nEWq1iq5+bjSvZ8+Pu2w5ftIBY/dILnCZGaGf0dujG91qd0Sj1ug6qhBCzz3wNOqioiIKCgqwsLAo\nfe7AgQO0a9euwsPdj5xGXT1JbfTT49QlPDqJVbuiyTK8holHFIpBPjUtXBjlM5TaVm5POGn1I98Z\n/SW1KZ+yTqMucwITHx9f+v+3X3nX09OT+Ph4XF1dn0A8IUR15eftQIM6Nqzb58CfJ+0wrBVNHLHM\nDvuCrrU70MejO0ZyATwhxD2U2cB06dIFDw8PHBwcgLtv5rhixYqKTSeEqPLMTAwI6elN60ZOfL/N\nmpspLhh7nWX3tX2cSDrDCO/BeNvW1XVMIYSeKXMX0saNG9m4cSM5OTn06dOHvn37Ymtr+zTz3ZPs\nQqqepDb66UnWpai4hG2hV/n98EVwicHQ+SqoFNq4+DOwbh/MDM0evBJRSr4z+ktqUz6PfSuBhIQE\nNmzYwObNm6lZsyb9+/ene/fumJiYPNGg5SUNTPUktdFPFVGXhJQcftgezfmUqxh7nUVlmomVkSXP\n1h9AM8cmT3RbVZl8Z/SX1KZ8nui9kNasWcPcuXPRarWEhYU9drhHIQ1M9SS10U8VVZcSReHAqQRW\n74mhyPY8hm4XQVVCM4fGBNcfgLWx1RPfZlUj3xn9JbUpn0c+iPdvmZmZbNq0ifXr16PVannxxRfp\n27fvEwsohBD/pFap6ODriq+XHT/ttifstBNGHmc5wRmiUi8wqF4f2ri0kotqClFNldnAHDhwgHXr\n1nHmzBl69OjBzJkzqV9f7iYrhHh6rC2MeWlAY05ccGblTlsyjS9A7Rh+ilpH2I0TDPcZjKOZva5j\nCiGesjJ3Ifn4+ODu7o6vry9q9d0X7f30008rNNz9yC6k6klqo5+eZl3yC4vZ8Ndldp86j2Gds2hs\nkjBQGdDXswddarWXC+D9g3xn9JfUpnweeRfS36dJp6WlYWNjc8drsbGxTyCaEEKUn4mRAcO71aN1\nIye+3WrHjZQL4B7Jbxe3Ep54kpE+Q6llKdenEqI6KPNeSGq1mkmTJjFlyhQ++OADnJycaNWqFTEx\nMXz++ecPXHlMTAzdunVj1apVABw7dozhw4cTEhLCiy++SEZGBgBff/01Q4YMYejQoezbt+8JfCwh\nRFXm4WLFh8/5M7BpO4rPdqA4yZXrWXHMPraQjRe3UaQt0nVEIUQFK3MC89lnn/H999/j5eXFH3/8\nwQcffEBJSQnW1tasWbOmzBXn5uYybdo0AgMDS5/79NNPmTt3Lp6enixdupTVq1fTq1cvtm7dyi+/\n/EJ2djYjRoygXbt2aDQyChZC3J+BRk3v1nVo6e3Aih0OREWdx8jjLDuv/smJxNOM8BlCPRtPXccU\nQlSQB05gvLy8AOjatStxcXGMHj2aRYsW4eTkVOaKjYyMWL58OY6OjqXP2djYkJ6eDkBGRgY2NjaE\nhobSvn17jIyMsLW1pWbNmly4cOFxP5cQoppwtDFj0rPNeL5DezQXOlF8ow6Jucl8fnwpP0etI684\nT9cRhRAVoMwJzD9PT3RxcaF79+7lW7GBAQYGd67+vffeY9SoUVhZWWFtbc2kSZP4+uuv77i6r62t\nLUlJSXh7e9933TY2ZhgYVNyEpqyDhoRuSW30kz7Upb+jFZ386/DNpprsPXcGI48zHIgP5WxqNBNa\nDqNlTV9dR9QJfaiNuDepzeMp13Vg/va411uYNm0aixYtws/Pj1mzZvHTTz/d9Z7yXFcvLS33sXKU\nRY4M119SG/2kb3UJ6V6f5nXt+GG7Ixnm50hzvcTsA0tp4diUofX7Y2VUff7R0LfaiP8ntSmfRz4L\n6fjx43Tq1Kn0cUpKCp06dUJRFFQqFXv37n2oINHR0fj5+QHQpk0bNm/eTOvWrbl8+XLpe27evHnH\nbichhHhYjT3smD4+kE0HnNl5yhmN+xkiOEVkynkG1+9Ha2c/uQCeEJVcmQ3M9u3bn+jG7O3tuXDh\nAnXr1uX06dPUqVOH1q1b89133/HKK6+QlpZGYmIidevKnWeFEI/H2FDD0M51CWjoxHfbnIlNOQu1\nYlgV+SthN44z3Gcw9qa6vzmtEOLRPPS9kMrrzJkzzJo1i7i4OAwMDHBycuKNN95g9uzZGBoaYm1t\nzYwZM7CysmLlypVs3rwZlUrF66+/fseZS/ciF7KrnqQ2+qky1KWkRGF3eCwbDp9FcTuFpkYyhmpD\nnvHsSada7VCryjyfodKqDLWprqQ25fNEb+aoD6SBqZ6kNvqpMtUlOSOPFTuiicw4g2HtKFSGhdSx\nrMXIBkOoaeGi63hPXGWqTXUjtSmfshqYqvlnhxBC3IO9tSlvDPVlQrvuGF7oRHGyC1ezrjPz6AI2\nX9pBUUmxriMKIcpJGhghRLWiUqlo1cCJT57vSKBlEAXRfmgLjNh+5Q9mhH7GxfQruo4ohCgHaWCE\nENWShakhz/VqwFu9e2AV253iG7VJzE1ifsRifo5eLxfAE0LPSQMjhKjWfOrYMG1sG3q69aYoqjUl\nuRYciDvC1MNzOZF4ulzXphJCPH3SwAghqj1DAw2DOnjyYXAP3NKDKLpej8yCHJafWcmyUz+Qlp+u\n64hCiH+QBkYIIf6npoMFk0f6M6pZH9QxHdBm2nI65RxTj8xlb+xBSpQSXUcUQvyPNDBCCHEbtUpF\nB19XZozpRgtNXwovNaawUGFNzEbmhH1JXHaCriMKIZAGRggh7snK3IgX+jXm9W59sbjWjeIUF65l\nXefTowvYeHEbhdoiXUcUolqTBkYIIcrQyN2WT57rQJBTf4piWqItMGLn1T+ZdmQe0akXdB1PiGpL\nGhghhHgAQwMNAzt48tGQPtRK60tRgjsp+aksPPEVK86tJrsoR9cRhah2pIERQohycrU3Z/Jwf0Ka\nDEB9oR0lOVaE3gjno0NzOHojQk65FuIpkgZGCCEegkqlon1TV2aEBOGnGkDRNW9yCwv44dwvfHH8\na5LzUnUdUYhqQRoYIYR4BFZmRozv25g3Og/C8no3tOn2RKef5+Mjc9l1dS/aEq2uIwpRpUkDI4QQ\nj6FBHRumj+5EkMMQii/5Ulyo5reLW5kRuoCrmdd1HU+IKksaGCGEeEyGBhoGtPfko4EDqJXah+Kk\nmtzIu8HssEWsidlEfnGBriMKUeVIAyOEEE+Ii5057w5rzeiGwagvBVKSb8re2ANMPTSXM8mRuo4n\nRJUiDYwQQjxBKpWKtk1cmDGiD37KYIriPckozGTJqe9YfmoVmYVZuo4oRJUgDYwQQlQASzMjxvdp\nwqQOz2IV14WSbGtOJJ/iw4OzORgXKqdcC/GYpIERQogK5F3bhmkju9PLdhjaaw0pKC7mp+h1zD22\nhJu5SbqOJ0SlJQ2MEEJUMEMDNc+082LqM8HUSu2LNs2RK9lXmH5kPlsu7aK4pFjXEYWodKSBEUKI\np8TJ1ox3g9swuv5I1Ndaoi00YOuVXXx8aD6XMq7oOp4QlYo0MEII8RSpVCraNHHh02cH0kIZQvHN\nWqQUJjMvbDGrzq4lrzhP1xGFqBSkgRFCCB2wMDVkfC9fJrULwTKuIyX55hy+eZQpB2ZzPPG0ruMJ\nofekgRFCCB2qX6sG00f0IqjGKLTx9cgtzuXrMyv5Ivxb0vLTdR1PCL0lDYwQQuiYgUZN/7ZefNxn\nJLXS+6DNtCEqI4qPDs3hz2sHKVFKdB1RCL0jDYwQQugJRxsz3h3cnjH1nkMT50tRscLaCxuZcfgL\n4rITdB1PCL0iDYwQQugRlUpFYCMXPh0aTIuSIRSnOJOQH8enoZ+zLmYrRdoiXUcUQi9IAyOEEHrI\n3MSQ8UEt+E/gOCxutEFbaMye2L1MOTCH6NQLuo4nhM5JAyOEEHqsrps1nzz7DL1qhFBy053M4nQW\nnviK5Sd+IrsoR9fxhNAZaWCEEELPGWjUPBNYj6m9xuKW0ZOSHEtOpJ5gyv7ZHImPkPsqiWpJGhgh\nhKgkHGuYMnlgF8Z4jUNzoyEF2gJWRv3CnNBlJOel6jqeEE+VNDBCCFGJqFQqWjd0ZeagkTRXBqPN\nsONq7iWmHprL1ot/oi3R6jqiEE+FNDBCCFEJmZkYMqGHP2/5v/h/7d1ndFVlwvbx/6kpJKQn9C4l\nEDrSQpGmA44oLQgEZsYyDmDhDSUgVVQMyqvPSAQBnUF4gRAUQaWJEIhKNdS8dBBCTQKBAIckpDwf\nxmHBOCoCJ/uc5Pp9O2ft7HXtdbOSi/vee9/4pD9MQb6Jr06uZtK373IyO83oeCJOpwIjIuLGalXy\n542+vXjUbzCFFyuSleRsHasAABivSURBVJ/O9B0zWbBvOTn5uUbHE3EaFRgRETdntZjp2aoOU7s+\nT8UrnSnM9WJrxhZeWD6B3RdSjY4n4hQqMCIiJUSwvxdjn+zGkOrPYc6sxfX8a8xNnc+MrfO0r5KU\nOCowIiIliMlkolW9ikzv+RfaePSj8Ko/xx2HmfjddL46opt8peRQgRERKYG8PKyM6NWR2JbD8bvU\nnIICE6vSVjNh8//l+OWTRscTuW8qMCIiJVjVcmV5vXdfngz5M1yqxJXCDGb8EM+cHxK4kX/D6Hgi\n90wFRkSkhDObTHRrUou3ur9A7bzHKMwpw54rPzB201t8l6Y3+Yp7UoERESklfL3tvPxYJ16KGIZX\nVjh5RbksOrKE17/9gHRHptHxRH4XFRgRkVKmXpVg4p4aTBefARRlB3P+5kmmbJlBwv7V5BfmGx1P\n5K6owIiIlEIWs5lerRoy9ZEXqeRoR9FNC5vTNzJ243RS048YHU/kN6nAiIiUYkF+Xox9/I88U/Nv\n2C5X5zqX+WD/XN7dMp+rudeMjifyi1RgRESEZg9V5O0nnqeV7SmKHL4cvZHKuOS3WHvkO93kKy5J\nBUZERACwWS0Mbt+aiW1eIeh6EwqKCliZtoLxG98j7co5o+OJ3EEFRkRE7lAu0Jcpj/enX/lnMF8t\nx2XO8dbO95i3czl5BTeNjicCqMCIiMh/YTKZ6NigFtMfe4n6dKMoz4Nd2VsYvWEa29L2GR1PRAVG\nRER+mZeHlaGdujCy8Sv4XKtDnvk6nxxZwBub5nDRoQ0ixTgqMCIi8ptqlA9k2h//wh8CBoLDn7MF\nR5n0/XSW7l1PYVGh0fGkFFKBERGRu2I2mfhj04ZM6xRDtfw2FBbCpsx1jFn/DgfTfzQ6npQyKjAi\nIvK7lPX2YFS3J3mh7jA8rlfGYcnk/X0f8O53i3Dk5RgdT0oJFRgREbknDatU5O0ew2jr3RPyvDma\nu5sxSdNYd3i73h0jTqcCIyIi98xiNjOgVVsmtx1JWF4jCsw5rDi9jAnfxHPmcrrR8aQEU4EREZH7\nFlLWh4mPDWRQlWexOILJMp/izZ3vMm/7F+QXaINIefBUYERE5IFpU/sh3nk0hka2zhQVWNh1LZmR\n6+PYfvKg0dGkhFGBERGRB8pus/B8u0cZ02wEZXNqctN2hfnHPuaNDf8gy6ENIuXBUIERERGnqBoc\nxLTuf+Xx0Kcx5fhylgOM/zaOxN2bdJOv3DenFpjDhw/TpUsXFi5cCMDNmzeJiYmhT58+DBkyhCtX\nrgCwcuVKevfuTd++fUlMTHRmJBERKWZ/aNCE6Z3GUMPUkiLTTZIufcXode9y8Hya0dHEjTmtwDgc\nDqZOnUrr1q1vfbd06VICAgJYtmwZ3bt3Z+fOnTgcDuLj4/nnP//JggULmD9/Ppcv6/XUIiIliben\nnZhHejOs/nC8csrjsJ3n7/vjeXdzIo68XKPjiRtyWoGx2+3MnTuX0NDQW99t3LiRJ554AoCoqCg6\nd+7Mnj17iIiIwNfXF09PT5o2bUpKSoqzYomIiIHqV6jE9Mdepp3f45gK7BzN38GYDXGsO6Df+/L7\nWJ12YqsVq/XO0585c4bNmzfz9ttvExwczKRJk8jMzCQwMPDWMYGBgWRkZPzquQMCvLFaLU7JDRAS\n4uu0c8v90di4Jo2L63LVsXnxsR70z27HtLULSbPtY8W5JXx7ZgdjugyhWkiI0fGKhauOjbtwWoH5\nb4qKiqhevTrDhw/ngw8+4MMPPyQ8PPxnx/yWrCyHsyISEuJLRsZVp51f7p3GxjVpXFyX64+NibEd\no9l64hCLD33GRfsxRq97jcY+7fhTy67YLMX6J6pYuf7YuIZfK3nF+hRScHAwLVq0ACAyMpKjR48S\nGhpKZmbmrWPS09PvWHYSEZGSrVX1OszoOprGXh3ABLtzNjJy7Qy2Hj9idDRxYcVaYNq3b09ycjIA\nqampVK9enUaNGrFv3z6ys7O5fv06KSkpNG/evDhjiYiIwawWC8+17kFs8/+Df3418j0v8snxebz+\n9QIuXbtudDxxQaYiJz2Mv3//fuLi4jhz5gxWq5WwsDDeeecd3njjDTIyMvD29iYuLo7g4GDWrFnD\nRx99hMlkYtCgQbdu9P0lzpx207Se69LYuCaNi+ty57FZe2AHX576ikKbA/K8aBfclX7N2mI2mYyO\n9kC489gUp19bQnJagXEmFZjSSWPjmjQursvdx8aRl8OH2z7nSN4uTKYiPG9UZEhELxpWqWx0tPvm\n7mNTXFzmHhgREZG75W33ZES7/rxYfxje+aHkeJ1h9qF43vp6KVccN4yOJwZTgREREZdWr1wVpneN\noXPw45iLbKRZdjIuaTqJO7dS6H6LCPKAqMCIiIjLM5lM9GrYnjc7xFLVGkGRx3WSsj9j1Jcz2Xfq\njNHxxAAqMCIi4jbKepRhdPtohoa/gFdBMDll0ph1aCZvrfuUy9e1rFSaqMCIiIjbaVC+BtO7jOSR\nkD9gxkKadRuvJr1D4o4dFBZqWak0UIERERG3ZDaZ6RPxCK+3G0MVazh4XSXpaiKjvpzFvpNnjY4n\nTqYCIyIibs3f05cx7f/EX+s9h1dBIDk+PzLr0Ezi1izn8rUco+OJk6jAiIhIidCw/EPEdR5Fh5Cu\nmM1wyr6FV5NmsGzbDxQUFhodTx4wFRgRESkxLGYL/SK68lrb0VSy1QHvK2y4lsDolXPY++M5o+PJ\nA6QCIyIiJU6glz9j2z3DM3X/gleRHzllj//rJXirV5B1VU8rlQQqMCIiUmI1rVCXuE5jiAzuhMlS\nQJrHd4xPeo/ErbvIL9CykjtTgRERkRLNarbydMPHmNJmFBVtNaFMFhuvL2H0ynns/fG80fHkHqnA\niIhIqRDsHci4dn/lz3UH44kPuX5HmX0wnrhVX3IpW08ruRsVGBERKVWaV2hAXMdY2gS3x2S7ySnP\nzYzf+D8kbtmtZSU3ogIjIiKljs1iY2DDx5nYeiTlbdUw+V5k4/XFjP78Y3Yfv2B0PLkLKjAiIlJq\nhXkH82rk3xhcZyAeJm9yAw7z4aF43vpiFRev6GklV6YCIyIipZrJZKJlxUa81XEsLYPaYLbnkVYm\niQkbZpL43R5u5mtZyRWpwIiIiAAeFjuDGz3Jqy1HEGqrjMkvg403FjNm+Xx2HdWykqtRgREREblN\nBZ8wJkYOZ2DtKOwmT3KDDjDn8CymrVhD5mUtK7kKFRgREZH/YDKZaFOpGdM6xNI8sCVmjxuc9t3A\nhG9mkZC8j5v5BUZHLPVUYERERH6Bl9WTPzfuTezDLxFiq4A54DybchYx+tOFpBzRspKRVGBERER+\nQ2XfikyMfImoWr2xmW3khaQy99CHTFu+jvQsh9HxSiUVGBERkbtgNplpX6Ulb7aPpUlgM8xe1zjt\nt55J6+ewZNN+cm9qWak4qcCIiIj8DmVs3jzbOIpRzYcTZA3DHHSWzbmLGLNsETsPXaCoqMjoiKWC\nCoyIiMg9qOZXhcntRtC75hPYrGZuhu3jo8NzmPbZN5y/pGUlZ1OBERERuUdmk5lOVSN5PTKWhgGN\nMZe5ypmAdUz+eh6LN6aSm6dlJWdRgREREblPvnYf/tpkACOavECANRhLyGmSby5idGIC2w9oWckZ\nVGBEREQekFoBNZgSGUPP6j2wWiG//G7+cWQebyzbwNnM60bHK1FUYERERB4gi9lCt+odeK3taOr7\n18fsc4WzgWt57et/smhDKjdy842OWCKowIiIiDiBv4cfQ5sOYXijZ/G3BWIJO8m3eYuJXZrIxp2n\ntKx0n1RgREREnKheUG2mRI6kR7VHsdgLya+4i5m7ZvPakm84cS7b6HhuSwVGRETEyWxmK91rdGZy\n65HU9auLpWwWF0LX8VbSJ8xZtZsr13KNjuh2VGBERESKSZBXIC82+wuvdniRAHsg1rBT7LYkMvbT\nBFZv/ZH8gkKjI7oNFRgREZFi1qhcOFPajqRnje7YbGCqvJ+VGQsZu3AVe45mGh3PLViNDiAiIlIa\nWc1WulXrSMvyTVl26EtS2I2jzGY+SDlKrV2tGNQpgvJBZYyO6bI0AyMiImIgP4+yPNNwADHNhhLm\nWQ5r8FlO+K9g8pdLWPTNQRw5N42O6JJUYERERFxADb9qjG/9Cv1rP4WnzY618iGScxIYs2glm3af\nobBQj13fTgVGRETERZhNZtpVas3UtmOILN8Ks5eDwmrbWHx0MZP+XxKH0y4bHdFlqMCIiIi4mDI2\nb56u14uxLV6mqk9VLIHpXCy/lneSEvhgxW4uZecYHdFwKjAiIiIuqpJvBUa1GMqfwp/Gx+6NreIx\n9tk/Y9zS5axIPk7uzdK727UKjIiIiAszmUy0KNeE19qMoWuVjlg98rDU2MXqzETGzV9Xane7VoER\nERFxA55WD56s1Z0JrWKoG1AHi99FblRP4qNdy5i2eBunLlw1OmKxUoERERFxI6HeIbzY5BleaPgn\nAj38sZY7yemgL3n9y+XMX3OAbEee0RGLhV5kJyIi4oYigsOp2/ohvklLZvWJbzBV38/Wa2ls/ySC\nJ5s14ZGmFbFaSu48Rcm9MhERkRLOZrHxWLVOTG49iiYhDTH7XIGHvmXZseVMmL+Z/ScuGh3RaTQD\nIyIi4uYCPP15NmIQh7OOseTg51wIPc2V/PP8T9JxGvzQlP6daxMW4G10zAdKMzAiIiIlRO2Amrza\n8hX6PtQTT7sVe9WDHPRcyYQlq0jceJQbuflGR3xgVGBERERKEIvZQsfKbZnSZjRtyrfA7H0NW53t\nrM9cydiPN/Lt3nMUloDHrrWEJCIiUgL52n0YWK8vkRVbkXDoc06SRp5/Bp/s+pENuyIY2KUeNSv6\nGR3znmkGRkREpASrWrYyI5sPY1C9fvh4eGKrfIRzIauZ9sVq5nyRStbVXKMj3hPNwIiIiJRwZpOZ\n1uWb0zikPqtOrCcp7TvMtVNIuXyKXfPr06NpfR59uDI2q8XoqHdNBUZERKSU8LJ60fuhP9KmwsMs\nPbSCwxyFsptZefwUm/aG0/+RcJrWDsZkMhkd9TdpCUlERKSUKV8mjJeaPMezDaLx9/TDVuEE16ut\nZ/bmtby9ZBenM64ZHfE3aQZGRESkFDKZTDQJjaB+UB2+PpnEupNJmGru5fjVNKYsTqNj3Xr0bFcd\nHy+b0VH/K83AiIiIlGJ2i50eNboxsdVIGoU0wOKbhb3+d2y+uJbYeZvYkHKagsJCo2P+jGZgRERE\nhCCvQJ6PGMyBS4dJPLyCC2FpFAWdZ/Gu02zcVZcBXepQr2qA0TFv0QyMiIiI3FIvsDbjHh7BU7V6\n4GE3Y6/+/8kMXc+MLzYQ/9k+Mi7fMDoioBkYERER+Q9Ws5UuVTrQIqwJK46tZtv5H/AI38bezDT2\n/OMMjzV7iB6tquFhN+6xa6fOwBw+fJguXbqwcOHCO75PTk6mTp06tz6vXLmS3r1707dvXxITE50Z\nSURERO6Sn0dZBodHEdNsKJV9KmINPoutwSbWHE9i7Nzv2ZJ6niKDtiVw2gyMw+Fg6tSptG7d+o7v\nc3NzmTNnDiEhIbeOi4+PZ9myZdhsNvr06UPXrl3x9/d3VjQRERH5HWr4VWN0ixf5/ux2Vh5bw/Uq\nh8jJOc1Hm8+y+0h9/vZkg2LP5LQZGLvdzty5cwkNDb3j+9mzZzNgwADsdjsAe/bsISIiAl9fXzw9\nPWnatCkpKSnOiiUiIiL3wGwyE1mxFZNbj6ZDpTaYPR141PmBDJ8dhuRx2gyM1WrFar3z9CdOnODg\nwYO8/PLLvP322wBkZmYSGBh465jAwEAyMjJ+9dwBAd5Ynfi645AQX6edW+6PxsY1aVxcl8bGdbnv\n2PgyrEI0j19+hIV7PqOMvYwh11KsN/FOmzaN8ePH/+oxd7OWlpXleFCRfiYkxJeMjKtOO7/cO42N\na9K4uC6NjesqCWPjjR/Ph/8ZwGnX8mvFqNgeo75w4QLHjx9n5MiR9OvXj/T0dAYNGkRoaCiZmZm3\njktPT//ZspOIiIjI7YptBiYsLIz169ff+typUycWLlxITk4O48ePJzs7G4vFQkpKCuPGjSuuWCIi\nIuKGnFZg9u/fT1xcHGfOnMFqtbJ27Vref//9nz1d5OnpSUxMDM888wwmk4lhw4bh6+uu64IiIiJS\nHExFRj3AfR+cuW5YEtYlSyqNjWvSuLgujY3r0tjcHZe4B0ZERETkQVGBEREREbejAiMiIiJuRwVG\nRERE3I4KjIiIiLgdFRgRERFxOyowIiIi4nZUYERERMTtqMCIiIiI23HLN/GKiIhI6aYZGBEREXE7\nKjAiIiLidlRgRERExO2owIiIiIjbUYERERERt6MCIyIiIm5HBeY2b775JlFRUfTv35+9e/caHUdu\nM336dKKioujduzfr1q0zOo7cJicnhy5duvDZZ58ZHUVus3LlSp544gl69epFUlKS0XEEuH79OsOH\nDyc6Opr+/fuTnJxsdCS3ZjU6gKvYvn07J0+eJCEhgWPHjjFu3DgSEhKMjiXA1q1bOXLkCAkJCWRl\nZfHUU0/RrVs3o2PJT2bNmoWfn5/RMeQ2WVlZxMfH8+mnn+JwOHj//ffp2LGj0bFKveXLl1O9enVi\nYmK4cOECQ4YMYc2aNUbHclsqMD/ZsmULXbp0AaBmzZpcuXKFa9eu4ePjY3AyadGiBQ0bNgSgbNmy\n3Lhxg4KCAiwWi8HJ5NixYxw9elR/HF3Mli1baN26NT4+Pvj4+DB16lSjIwkQEBDAoUOHAMjOziYg\nIMDgRO5NS0g/yczMvOMfU2BgIBkZGQYmkn+zWCx4e3sDsGzZMtq3b6/y4iLi4uKIjY01Oob8h9On\nT5OTk8MLL7zAgAED2LJli9GRBOjRowdnz56la9euDBo0iDFjxhgdya1pBuYXaIcF17N+/XqWLVvG\nxx9/bHQUAT7//HMaN25M5cqVjY4i/8Xly5eZOXMmZ8+eZfDgwWzcuBGTyWR0rFJtxYoVVKhQgY8+\n+oiDBw8ybtw43Tt2H1RgfhIaGkpmZuatz+np6YSEhBiYSG6XnJzM7NmzmTdvHr6+vkbHESApKYm0\ntDSSkpI4f/48drudcuXK0aZNG6OjlXpBQUE0adIEq9VKlSpVKFOmDJcuXSIoKMjoaKVaSkoKkZGR\nANStW5f09HQth98HLSH9pG3btqxduxaA1NRUQkNDdf+Li7h69SrTp0/nww8/xN/f3+g48pP33nuP\nTz/9lKVLl9K3b1+GDh2q8uIiIiMj2bp1K4WFhWRlZeFwOHS/hQuoWrUqe/bsAeDMmTOUKVNG5eU+\naAbmJ02bNqV+/fr0798fk8nEpEmTjI4kP1m1ahVZWVm88sort76Li4ujQoUKBqYScV1hYWE8+uij\n9OvXD4Dx48djNuv/q0aLiopi3LhxDBo0iPz8fCZPnmx0JLdmKtLNHiIiIuJmVMlFRETE7ajAiIiI\niNtRgRERERG3owIjIiIibkcFRkRERNyOCoyIONXp06dp0KAB0dHRt3bhjYmJITs7+67PER0dTUFB\nwV0f//TTT7Nt27Z7iSsibkIFRkScLjAwkAULFrBgwQKWLFlCaGgos2bNuuufX7BggV74JSJ30Ivs\nRKTYtWjRgoSEBA4ePEhcXBz5+fncvHmTiRMnEh4eTnR0NHXr1uXAgQPMnz+f8PBwUlNTycvLY8KE\nCZw/f578/Hx69uzJgAEDuHHjBiNGjCArK4uqVauSm5sLwIULFxg5ciQAOTk5REVF0adPHyMvXUQe\nEBUYESlWBQUFfP311zRr1oxRo0YRHx9PlSpVfra5nbe3NwsXLrzjZxcsWEDZsmWZMWMGOTk5dO/e\nnXbt2vH999/j6elJQkIC6enpdO7cGYDVq1dTo0YNpkyZQm5uLomJicV+vSLiHCowIuJ0ly5dIjo6\nGoDCwkKaN29O7969+fvf/86rr75667hr165RWFgI/Gt7j/+0Z88eevXqBYCnpycNGjQgNTWVw4cP\n06xZM+BfG7PWqFEDgHbt2rFo0SJiY2Pp0KEDUVFRTr1OESk+KjAi4nT/vgfmdlevXsVms/3s+3+z\n2Ww/+85kMt3xuaioCJPJRFFR0R17/fy7BNWsWZOvvvqKHTt2sGbNGubPn8+SJUvu93JExAXoJl4R\nMYSvry+VKlVi06ZNAJw4cYKZM2f+6s80atSI5ORkABwOB6mpqdSvX5+aNWuya9cuAM6dO8eJEycA\n+OKLL9i3bx9t2rRh0qRJnDt3jvz8fCdelYgUF83AiIhh4uLieP3115kzZw75+fnExsb+6vHR0dFM\nmDCBgQMHkpeXx9ChQ6lUqRI9e/Zkw4YNDBgwgEqVKhEREQFArVq1mDRpEna7naKiIp577jmsVv3a\nEykJtBu1iIiIuB0tIYmIiIjbUYERERERt6MCIyIiIm5HBUZERETcjgqMiIiIuB0VGBEREXE7KjAi\nIiLidlRgRERExO38L6g5xtlMvWIdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + } + ] +} \ No newline at end of file From df73cf3e5d799fa2ae5b2c2211ece93912590ea4 Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sun, 24 Feb 2019 01:26:26 +0530 Subject: [PATCH 06/11] Created using Colaboratory --- feature_crosses.ipynb | 1662 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1662 insertions(+) create mode 100644 feature_crosses.ipynb diff --git a/feature_crosses.ipynb b/feature_crosses.ipynb new file mode 100644 index 0000000..725aed6 --- /dev/null +++ b/feature_crosses.ipynb @@ -0,0 +1,1662 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "feature_crosses.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "ZTDHHM61NPTw", + "0i7vGo9PTaZl" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Feature Crosses" + ] + }, + { + "metadata": { + "id": "F7dke6skIK-k", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Improve a linear regression model with the addition of additional synthetic features (this is a continuation of the previous exercise)\n", + " * Use an input function to convert pandas `DataFrame` objects to `Tensors` and invoke the input function in `fit()` and `predict()` operations\n", + " * Use the FTRL optimization algorithm for model training\n", + " * Create new synthetic features through one-hot encoding, binning, and feature crosses" + ] + }, + { + "metadata": { + "id": "NS_fcQRd8B97", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "4IdzD8IdIK-l", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "First, as we've done in previous exercises, let's define the input and create the data-loading code." + ] + }, + { + "metadata": { + "id": "CsfdiLiDIK-n", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "10rhoflKIK-s", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ufplEkjN8KUp", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1213 + }, + "outputId": "78ad1373-21cb-4437-afbd-6e04382b8422" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.6 2638.3 537.8 \n", + "std 2.1 2.0 12.6 2208.4 421.6 \n", + "min 32.5 -124.3 1.0 11.0 3.0 \n", + "25% 33.9 -121.8 18.0 1453.0 297.0 \n", + "50% 34.2 -118.5 29.0 2124.0 434.0 \n", + "75% 37.7 -118.0 37.0 3137.0 646.0 \n", + "max 41.9 -114.3 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1426.8 499.4 3.9 2.0 \n", + "std 1170.1 383.8 1.9 1.2 \n", + "min 8.0 2.0 0.5 0.0 \n", + "25% 792.0 282.0 2.6 1.5 \n", + "50% 1166.0 409.0 3.5 1.9 \n", + "75% 1718.0 604.0 4.7 2.3 \n", + "max 35682.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.62638.3537.81426.8499.43.92.0
std2.12.012.62208.4421.61170.1383.81.91.2
min32.5-124.31.011.03.08.02.00.50.0
25%33.9-121.818.01453.0297.0792.0282.02.61.5
50%34.2-118.529.02124.0434.01166.0409.03.51.9
75%37.7-118.037.03137.0646.01718.0604.04.72.3
max41.9-114.352.037937.06445.035682.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.6 28.5 2656.6 543.2 \n", + "std 2.1 2.0 12.6 2110.3 421.3 \n", + "min 32.6 -124.3 2.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1475.0 296.8 \n", + "50% 34.3 -118.5 28.0 2139.5 433.0 \n", + "75% 37.7 -118.0 37.0 3177.8 656.0 \n", + "max 42.0 -114.6 52.0 25957.0 4952.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1436.3 505.5 3.9 2.0 \n", + "std 1092.7 386.3 1.9 1.0 \n", + "min 3.0 1.0 0.5 0.1 \n", + "25% 783.0 282.0 2.6 1.5 \n", + "50% 1170.0 409.0 3.6 2.0 \n", + "75% 1726.2 608.0 4.8 2.3 \n", + "max 10493.0 4616.0 15.0 34.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.628.52656.6543.21436.3505.53.92.0
std2.12.012.62110.3421.31092.7386.31.91.0
min32.6-124.32.02.01.03.01.00.50.1
25%33.9-121.818.01475.0296.8783.0282.02.61.5
50%34.3-118.528.02139.5433.01170.0409.03.62.0
75%37.7-118.037.03177.8656.01726.2608.04.82.3
max42.0-114.652.025957.04952.010493.04616.015.034.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 206.3\n", + "std 115.7\n", + "min 15.0\n", + "25% 118.8\n", + "50% 179.5\n", + "75% 263.9\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean206.3
std115.7
min15.0
25%118.8
50%179.5
75%263.9
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 209.6\n", + "std 116.7\n", + "min 15.0\n", + "25% 121.5\n", + "50% 182.2\n", + "75% 267.1\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean209.6
std116.7
min15.0
25%121.5
50%182.2
75%267.1
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "oJlrB4rJ_2Ma", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "NBxoAfp2AcB6", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "hweDyy31LBsV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## FTRL Optimization Algorithm\n", + "\n", + "High dimensional linear models benefit from using a variant of gradient-based optimization called FTRL. This algorithm has the benefit of scaling the learning rate differently for different coefficients, which can be useful if some features rarely take non-zero values (it also is well suited to support L1 regularization). We can apply FTRL using the [FtrlOptimizer](https://www.tensorflow.org/api_docs/python/tf/train/FtrlOptimizer)." + ] + }, + { + "metadata": { + "id": "S0SBf1X1IK_O", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " feature_columns,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " feature_columns: A `set` specifying the input feature columns to use.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.FtrlOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "1Cdr02tLIK_Q", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 748 + }, + "outputId": "28c60be6-754f-4d2f-a402-aa924fe39ff3" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 171.76\n", + " period 01 : 122.72\n", + " period 02 : 118.06\n", + " period 03 : 163.43\n", + " period 04 : 235.03\n", + " period 05 : 252.43\n", + " period 06 : 261.09\n", + " period 07 : 289.46\n", + " period 08 : 250.89\n", + " period 09 : 225.78\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8FHX+x/HXlrRN743eIQRCifQS\nWkKT3kFULKdg5cTzJ3qeDcGTkw7KAYINjYCgIEpvAkLoEGoglfTed3d+fyB7IBASyGY38Hk+Hj4e\nbpmZ9+4nEz75zndmVIqiKAghhBBCVCNqSwcQQgghhKgoaWCEEEIIUe1IAyOEEEKIakcaGCGEEEJU\nO9LACCGEEKLakQZGCCGEENWO1tIBhLBmjRs3platWmg0GgAMBgOhoaFMnz4dnU53z+v97rvvGDly\n5C3Pr1mzhjfeeIPFixcTFhZmer6oqIiOHTvSp08fPvroo3vebnnFxsby4YcfEhMTA4CDgwNTpkyh\nV69eZt92RSxcuJDY2NhbvpMDBw4wadIkatSoccsyv/zyS1XFuy/x8fH07NmTunXrAqAoCl5eXrz5\n5ps0a9asQuv65JNPCAgIYMyYMeVe5scffyQyMpJVq1ZVaFtCVBVpYIS4i1WrVuHn5wdASUkJr7zy\nCkuWLOGVV165p/WlpqaydOnS2zYwAP7+/vz00083NTDbt2/HxcXlnrZ3L/7+978zaNAgFi9eDMCx\nY8eYOHEimzZtwt/fv8py3A9/f/9q06zciUajuekzbNy4kcmTJ7N582ZsbW3LvZ6pU6eaI54QFiWH\nkISoAFtbW7p06cKZM2cAKC4u5u233yY8PJy+ffvy0UcfYTAYAIiOjmb06NFEREQwaNAgdu/eDcDo\n0aNJTEwkIiKCkpKSW7bRunVrDhw4QGFhoem5jRs30qlTJ9PjkpIS3n//fcLDw+nRo4ep0QA4cuQI\nQ4cOJSIign79+rFv3z7g2l/0nTt3ZuXKlQwcOJAuXbqwcePG237Oc+fO0bJlS9Pjli1bsnnzZlMj\nN3/+fLp168bgwYP57LPP6NGjBwD/+Mc/WLhwoWm5Gx/fLdeHH37I+PHjATh8+DDDhg2jd+/ejBw5\nkri4OODaSNTLL79MWFgY48eP5+rVq3ep2O2tWbOGKVOmMHHiRGbNmsWBAwcYPXo0L730kukf+02b\nNjFgwAAiIiJ47LHHiI2NBWDevHlMnz6d4cOHs2LFipvW+9JLL7Fs2TLT4zNnztC5c2eMRiP/+c9/\nCA8PJzw8nMcee4zk5OQK5+7Xrx9FRUVcunQJgNWrVxMREUGPHj149dVXKSoqAq597zNmzGDgwIFs\n2rTppjrc6efSaDTy7rvv0r17d4YPH050dLRpuwcPHmTIkCH069ePvn37smnTpgpnF6LSKUKIO2rU\nqJGSlJRkepyVlaWMGzdOWbhwoaIoirJkyRLl6aefVkpLS5XCwkJl2LBhyrp16xSDwaD07dtX2bBh\ng6IoinL8+HElNDRUyc3NVfbv36/06tXrttv74YcflNdff135+9//blo2NzdX6dmzp/L9998rr7/+\nuqIoijJ//nxl4sSJSnFxsZKfn68MHjxY2bZtm6IoijJgwADlp59+UhRFUdauXWvaVlxcnNKsWTNl\n1apViqIoysaNG5XevXvfNscLL7yghIWFKV988YVy4cKFm147e/as0rZtWyUlJUUpLS1VnnvuOSUs\nLExRFEV5/fXXlQULFpjee+PjsnIFBQUpa9asMX3e0NBQZc+ePYqiKMqGDRuUIUOGKIqiKF9++aUy\nbtw4pbS0VMnIyFDCwsJM38mNyvqOr3/PISEhSkxMjOn9wcHByr59+xRFUZSEhASlTZs2yuXLlxVF\nUZT//ve/ysSJExVFUZS5c+cqnTt3VtLT029Z788//6yMGzfO9HjOnDnKe++9p5w7d07p06ePUlJS\noiiKoqxcuVJZu3btHfNd/16aNm16y/OhoaHKxYsXlT/++EPp0KGDcvXqVUVRFOWtt95SPvroI0VR\nrn3vAwcOVIqKikyPFyxYUObP5Y4dO5Q+ffooeXl5SmFhoTJ8+HBl/PjxiqIoytChQ5UDBw4oiqIo\nMTExyquvvlpmdiGqgozACHEXEyZMICIigp49e9KzZ0/at2/P008/DcCOHTsYOXIkWq0We3t7Bg4c\nyN69e4mPjyctLY3+/fsDEBwcTEBAACdOnCjXNvv3789PP/0EwJYtWwgLC0Ot/t/uun37dsaOHYut\nrS06nY5Bgwbx66+/ArBu3Tr69u0LQJs2bUyjFwB6vZ6hQ4cCEBQURGJi4m23//HHHzNu3Dg2bNjA\ngAED6NGjB9988w1wbXQkNDQUb29vtFotAwYMKNdnKitXaWkpvXv3Nq3f19fXNOI0YMAAYmNjSUxM\n5NChQ/Tu3RutVou7u/tNh9n+KikpiYiIiJv+u3GuTJ06dahTp47psb29PR06dABg7969tGvXjtq1\nawMwYsQIDhw4gF6vB66NSHl4eNyyze7du3P69GmysrIA+O2334iIiMDFxYWMjAw2bNhAdnY2EyZM\nYPDgweX63q5TFIXVq1fj6+tLnTp12LZtG/369cPX1xeAMWPGmH4GADp06ICdnd1N6yjr5/KPP/6g\nW7duODo6Ym9vb6oVgKenJ+vWrePixYvUqVOHTz75pELZhTAHmQMjxF1cnwOTkZFhOvyh1V7bdTIy\nMnB1dTW919XVlfT0dDIyMnB2dkalUpleu/6PmJeX11232alTJ6ZPn05WVhY///wzzz//vGlCLUBu\nbi4zZsxg9uzZwLVDSi1atABgw4YNrFy5kvz8fIxGI8oNtzvTaDSmycdqtRqj0Xjb7dvZ2TFp0iQm\nTZpETk4Ov/zyCx9++CE1atQgOzv7pvk4np6ed/085cnl5OQEQE5ODnFxcURERJhet7W1JSMjg+zs\nbJydnU3Pu7i4kJ+ff9vt3W0OzI11++vjzMzMmz6js7MziqKQmZl522Wv0+l0dOzYkR07dtCmTRty\ncnJo06YNKpWKefPmsWzZMt577z1CQ0P517/+ddf5RAaDwfQ9KIpCgwYNWLhwIWq1mtzcXH777Tf2\n7Nljer20tPSOnw8o8+cyOzsbHx+fm56/7sMPP2TRokU88cQT2Nvb8+qrr95UHyEsQRoYIcrJw8OD\nCRMm8PHHH7No0SIAvLy8TH9tA2RlZeHl5YWnpyfZ2dkoimL6xyIrK6vc/9jb2NgQFhbGunXruHLl\nCq1atbqpgfHx8eHJJ5+8ZQQiOTmZ6dOn8/3339O0aVMuX75MeHh4hT5nRkYGZ86cMY2AuLi4MHLk\nSHbv3s25c+dwdnYmNzf3pvdf99emKDs7u8K5fHx8qFevHmvWrLnlNRcXlztuuzJ5enpy5MgR0+Ps\n7GzUajXu7u53XTY8PJzffvuNzMxMwsPDTfVv37497du3p6CggJkzZ/Lvf//7riMZf53EeyMfHx+G\nDBnC66+/XqHPdaefy7K+Wy8vL9566y3eeust9uzZwwsvvECXLl1wdHQs97aFqGxyCEmICnjiiSc4\ncuQIBw8eBK4dMoiMjMRgMFBQUMCPP/5It27dqFGjBn5+fqZJslFRUaSlpdGiRQu0Wi0FBQWmwxF3\n0r9/fz7//PPbnrrcs2dPvv/+ewwGA4qisHDhQnbt2kVGRgY6nY569eqh1+tZvXo1wB1HKW6nqKiI\nF1980TS5E+DKlSscO3aMtm3b0qpVKw4dOkRGRgZ6vZ5169aZ3uft7W2a/BkXF0dUVBRAhXK1bNmS\n1NRUjh07ZlrPa6+9hqIohISEsG3bNgwGAxkZGezatavcn6siOnXqxKFDh0yHub799ls6depkGnkr\nS1hYGEeOHGHLli2mwzB79uzhX//6F0ajEZ1OR5MmTW4aBbkXPXr04NdffzU1Glu2bOGzzz4rc5my\nfi5btWrFnj17KCwspLCw0NQ4lZaWMmHCBFJSUoBrhx61Wu1NhzSFsAQZgRGiApycnHjmmWeYOXMm\nkZGRTJgwgbi4OPr3749KpSIiIoK+ffuiUqmYPXs2//znP5k/fz4ODg7MmTMHnU5H48aNcXV1pVOn\nTqxdu5aAgIDbbuuRRx5BpVLRr1+/W14bO3Ys8fHx9O/fH0VRaN68ORMnTkSn09G1a1fCw8Px9PTk\nH//4B1FRUUyYMIG5c+eW6zMGBASwaNEi5s6dy/vvv4+iKDg5OfHGG2+YzkwaNWoUQ4YMwd3dnT59\n+nD+/HkARo4cyZQpU+jTpw/NmjUzjbI0adKk3Lns7e2ZO3cu7733Hvn5+djY2PDSSy+hUqkYOXIk\nhw4dolevXgQEBNCrV6+bRg1udH0OzF/NmjXrrt+Bn58f77//Ps8//zylpaXUqFGD9957r1zfn5OT\nE0FBQZw9e5aQkBAAQkND+fnnnwkPD8fW1hYPDw8+/PBDAKZNm2Y6k6gigoKC+Nvf/saECRMwGo14\nenryr3/9q8xlyvq5DAsLY8eOHURERODl5UW3bt04dOgQNjY2DB8+nMcffxy4Nso2ffp0HBwcKpRX\niMqmUm48EC2EEBV06NAhpk2bxrZt2ywdRQjxEJExQCGEEEJUO9LACCGEEKLakUNIQgghhKh2ZARG\nCCGEENWONDBCCCGEqHaq5WnUqam3P22yMri768jMLDDb+sW9k9pYJ6mL9ZLaWC+pTfl4ezvf8TUZ\ngfkLrVZj6QjiDqQ21knqYr2kNtZLanP/pIERQgghRLUjDYwQQgghqh1pYIQQQghR7UgDI4QQQohq\nRxoYIYQQQlQ70sAIIYQQotqRBkYIIYQQ1Y40MEIIIcQDZseOreV635w5n5CYmHDH1//xj1crK1Kl\nkwZGCCGEeIAkJSWyZcvmcr33pZemEhAQeMfXP/podmXFqnTV8lYCQgghhLi92bNncubMKbp0CaVP\nn74kJSXy6acLmTHjXVJTUygsLOTJJ5+hU6cuTJnyDK++Oo3t27eSn59HbOwVEhLiefHFqXTo0In+\n/Xvy889bmTLlGUJD2xEVdYisrCxmzvwPXl5evPvuW1y9mkRwcAu2bdvC2rUbq+xzSgMjhBBCmMl3\n2y7wR3TKLc9rNCoMBuWe1hnaxIeRPRrc8fUxYyawZs131K1bn9jYyyxcuJTMzAweeaQ9ffsOICEh\nnrfe+gedOnW5abmUlGT+/e+57N+/jx9//IEOHTrd9LqjoyNz5ixi0aJ57Nq1jYCAGpSUFPPZZyvY\nu3c33333zT19nnslDYwQQgirVqgv5FzmJZp7NkGjlnsIVUTTpkEAODu7cObMKdavX4NKpSYnJ/uW\n97ZoEQKAj48PeXl5t7zesmUr0+vZ2dlcuRJDcHBLADp06IRGU7W1kQZGCCGE1cotyWP2oSWkFCXT\nLaALI5sMtHSkChnZo8FtR0u8vZ1JTc01+/ZtbGwA+O23X8jJyWHBgqXk5OTw1FMTbnnvjQ2Iotw6\nOvTX1xVFQf1nQ6lSqVCpVJUdv0wyiVcIIYRVyirOZubBBaQUJaMYNOxM3M3ptHOWjmX11Go1BoPh\npueysrLw9w9ArVazc+c2SktL73s7gYE1OHv2NAAHD+6/ZZvmJg2MEEIIq5NWmMHMA/PJLElHn1QX\n95RuKEYVnx//mtySWw9viP+pXbsuZ89Gk5//v++pe/ce7Nu3m5deeg4HBwd8fHxYvvzz+9pOx45d\nyM/P57nnJnHs2BFcXFzvN3qFqJTbjRNZOXMOu1XVsJ6oOKmNdZK6WK/qWpvk/BQ+ObSEfEMuhsQG\nPBM6mCa13Zn+49cUe5+ipn09Xu/wbJUfsqhM1bU2N8rJySYq6hDdu/ckNTWFl156jq+//qFSt+Ht\n7XzH12QOjBBCCKuRkJfE7ENLKDIWYExowgudBxNU1wOAl7oNYeb+ZOK4xIZz23m0cQ8Lp3246XSO\nbNu2ha+/XoWiGHnhhaq96J00MEIIIazClZw4Pj38GSVKMcQH8WqPQTSs4WZ6vbafC0PrDGFN8hds\njv+V5j4Nqede04KJH25arZZ3351hse3LHBghhBAWdyErhtmHFlNsLEYVF8K0PkNval6u6xXSkCaq\n7qAyMv/wSor0xVUfVlgFaWCEEEJY1Jn0c8yN+pxSox5tQhve6D+I2n53nvvwXI8e6HIbUqzOZv7+\nb6swqbAm0sAIIYSwmOOpp1lwbDl6owH7xEeY/uijBHo5lrmMjVbN37uOgUIXYkpO8cvZ/VWUVlgT\naWCEEEJYxOHkY3x2/AuMBnC62om3hgzAx82hXMv6ujsxusFIFIOGDbHric1MNnNaYW2kgRFCCFHl\n9iX+wbKTX2M0qnFP6cL0IRG4O9tVaB1dGjci2K4LaPR8euALSvV6M6V9MA0fPpCCggJWrVrByZPH\nb3qtoKCA4cPLvurxjh1bAdi4cQM7d243W847kQZGCCFEldoeu4+vor9HMWjxTg/jzWG9cXG0vad1\nPdM5AqfiWhTbpjFnd+Veg+RhMWHC4zRv3qJCyyQlJbJly2YA+vUbSLduYeaIViY5jVoIIUSV2Xxp\nB+svb0QptSUwpwdTh3bF3vbe/ynSqNW81uUx3tn7CZe0h/nlZCMimreqxMTVz5NPjuPDDz/Bz8+P\nq1eTeOONqXh7+1BYWEhRURGvvPIazZo1N73/gw/eoXv3noSEtOLNN6dRUlJiurEjwK+/biIycjUa\njZo6derz+utvMnv2TM6cOcXy5Z9jNBpxc3Nj2LBRLFw4hxMnjqHXGxg2bCQREf2ZMuUZQkPbERV1\niKysLGbO/A9+fn73/TmlgRFCCGF2iqKw/sKv/Bq3FaXEjnoFfXhpSEdstPd/B2MvJxfGNhzFlzFf\nsCF+LU39alHby7MSUt+/NRd+4kjKiVue16hVGIz3diH8Vj7BDG0w4I6vd+0axt69uxg2bCS7d++k\na9cw6tdvSNeu3Tl8+A+++uoLPvjg41uW27x5E/Xq1efFF6eydeuvphGWwsJCPvlkHs7Ozkye/DQX\nL15gzJgJrFnzHU888TT//e8SAI4ejeLSpYssWrSMwsJCJk4cTdeu3QFwdHRkzpxFLFo0j127tjFy\n5Nh7+uw3kkNIQgghzEpRFL6P/olf47ZiLHKgSUk/Xh7UqVKal+s61mtGC8f2YFvEp7+vorjk4Z0P\nc62B2Q3Anj076dy5Gzt3buW55yaxaNE8srOzb7vc5cuXaN68JQCtWrUxPe/i4sIbb0xlypRnuHIl\nhuzsrNsuHx19mpCQ1gA4ODhQp0494uLiAGjZ8tqomI+PD3l5lXMvKxmBEUIIYTZGxciXp9ZyIOUA\nxkIdrdQDeGpAG9Tqyr+P0TPtBvF/W2PIdUzk0+0beD18SKVvo6KGNhhw29ESc94LqV69+qSnp5Kc\nfJXc3Fx2796Bl5cPb731HtHRp5k//9PbLqcomOpi/HN0qLS0lNmzZ7Fixdd4enoxbdrLd9yuSqXi\nxrsr6vWlpvVpNP9rVivrFowyAiOEEMIsjIqRZcdXX2teCpzoYD+EpyPM07wAqFVqpnZ4HJXBliua\nA2w4fOuhm4dFhw6d+eyzhXTp0o3s7CwCA2sAsHPndvR3OFurVq3aREefASAq6hAABQX5aDQaPD29\nSE6+SnT0GfR6PWq1GoPBcNPyTZoEceTI4T+XKyAhIZ4aNWqZ6yNKAyOEEKLyGYwGFh1ZxZH0Ixjz\nXOnhMpwJPVqY/Q7S3o4ejGo4FJXayKakdZxPTDfr9qxVt25hbNmyme7dexIR0Z/Vq7/ilVcmExTU\nnPT0dH7+ef0ty0RE9OfUqRO89NJzxMVdQaVS4erqRmhoO5566jGWL/+csWMnMHfubGrXrsvZs9HM\nnfuJafmWLUNo3LgJkyc/zSuvTOZvf5uCg0P5rutzL1RKZY3lVCFz3oL8QbjF+YNKamOdpC7Wy1K1\nKTWUMj/qCy7knsOQ605/3xEMbN+gSjMs+OMbTuceQZtZlw/6PYWTg02Vbv9uZL8pH2/vO99SQkZg\nhBBCVJoSQwmz/1h6rXnJ9mR4rTFV3rwAPN16OI64o3eP4T+bN2Osfn+ri7uQBkYIIUSlKNQX8fGB\nxcQWxGDI9GF8w3H0alXHIllsNTa8GPo4KkVDku53vt9z0iI5hPlIAyOEEOK+5ZcWMHP/IhKL4jFm\n+PFU8/F0bl7DoplqOPszqF5/VNpStqf/zLGLqRbNIyqXWU+jnjVrFocPH0av1/Pss8/y008/kZmZ\nCUBWVhYhISE8++yzDBw4kObNr10V0N3dnblz55ozlhBCiEqUW5LHzP2LyNSnYkwP5Pk24wiu52Xp\nWAD0qtOJk2lnucBZPt+/nnc8x+JVzhtGCutmtgZm//79nD9/ntWrV5OZmcmQIUPYsWOH6fU33niD\nESNGAFC3bl1WrVplrihCCCHMJKs4m4/2LyTXkAlptXi5/Tga13K3dCwTlUrF0yGjeWfPJxT4nePT\njTv558jelXoRPWEZZjuEFBoaypw5c4BrV/ErLCw0nTN+6dIlcnNzadGiYjePEkIIYT3SCjP4YN88\ncg2ZqFLr81qXx6yqebnOycaRp1uORYVCuvvvfPHbKUtHEpXAbA2MRqNBp9MBEBkZSdeuXU1X4lu5\nciXjx483vTctLY0XX3yR0aNHs379reemCyGEsC5X81OY8fs8CpQcNCmN+UePcdTxd7F0rDtq7NGA\n3rXCUNsV8kfeFnYdS7B0JHGfzH4dmC1btrBkyRKWLVuGs7MzJSUlDBs2jA0bNgCQl5fH5s2befTR\nR8nNzWXEiBF88803+Pj43HGder0BrQz/CSGERVzJjOfNX/9DCQXYpTXn49GP4+fpaOlYd2UwGnjj\n14+5nH0F4+UWzBw3hvo13CwdS9wjs07i3b17N4sXL2bp0qU4O1+7GM0ff/xx06EjJycnhg0bBoCH\nhwfNmzfn0qVLZTYwmZkFZsssFxeyXlIb6yR1sV7mqM3l7Dj+c+gz9Kpi7FNa8ma/YWiMxmrzM/Bk\nszG8t382JTVP8e6qrfxrfBiO9lV/kTvZb8rHIheyy83NZdasWSxZsgQ3t/91uCdOnKBJkyamx/v3\n72fGjBnAtXsnREdHU7duXXPFEkIIcY/OZ17ik0OLKaUY57S2/HPgCDxc7C0dq0I8HTyY0Gw4Ko2B\nfN+DLNlwQi5yV02ZbQRm48aNZGZm8vLL/7tz5cyZM0lNTaVWrf/d3Klt27asW7eOUaNGYTAYeOaZ\nZ/D19TVXLCGEEPfgVOo5Fh1fjlEx4pHVnv97dCA6C4xcVIY2viGcTj/H/quHiM7Zz8/73BnYSf5w\nrm7kXkh/IcN61ktqY52kLtarsmpz5Oop/ntqFUZFwTe7C68PjMDe1qwzEMyu2FDCjAOfklqURsnZ\nNrwU0YvmdT2rbPuy35SP3AtJCCHEPfk9/ghLT63EaISaeT34v0F9q33zAmCnsWVS8Dg0Kg029U6w\nZOMR0rILLR1LVIA0MEIIIW5rx5UDfHn2GxSjmvrFvXlt4IN1AbiazoEMbtAPlU0Jpf5RLFx3glK9\n0dKxRDlJAyOEEOIWmy/u5vuLP6AYbGhm6Msr/Xqg1Tx4/2SE1ehMM4/GaNzSiFdO8M3W85aOJMrp\nwftpFEIIcV/Wn93K+isbUEptaaMZyOTwLqjVKkvHMguVSsVjzUbhbOOETc1z7Dx7mr0nkiwdS5SD\nNDBCCCEAUBSF705vZHPCZpQSOzo5DOHJHu1QqR7M5uU6Z1snJjYbDSoF+4bHWfnbKWKTZYKttZMG\nRgghBIqisOrEj+y8ugNjsQM9XUcyrmubB755ua6pZyN61eoGdvkQeIqFa09SUFRq6ViiDNLACCHE\nQ86oGFl65HsOpO3DWKhjoM8YhnUItnSsKjewXji1nGug9U4gXX2RpT+dkYvcWTFpYIQQ4iFmVIws\nPPQ1R7MOYSxwYkTNCfRr0+TuCz6AtGotTwSNwU5ji129MxyLi2XT/iuWjiXuQBoYIYR4SBmMBj49\nsIIzuccx5rsyof7j9GhR39KxLMpH582oRkNQ1KU4NDrBmt0XOH05w9KxxG1IAyOEEA+hUqOej39f\nysWCaJQ8d55u9gQdm9a6+4IPgUf8WhPq2wrFIRObwIss/vEUGTlFlo4l/kIaGCGEeMiUGEr4aO9i\n4oovQq4Xk1tOonX9AEvHshoqlYpRjYfgZe+Bxv8iBdqrLFp3Er1BLnJnTaSBEUKIh0ihvoj39yzk\namks5PjySuhTBNX2sXQsq+OgteeJ5mNRq9Q4Nj7JxZQ0vpWL3FkVaWCEEOIhkVeSz3u755NuSESd\nHcDrHZ+mQYCHpWNZrToutRhYLxy9uhCXxmfYFhXP76euWjqW+JM0MEII8RDIKc7l3T3zyVZS0GbX\n5M3uT1HLx8XSsaxer1rdaOzegFLHJBwC4vliUzTxKXmWjiWQBkYIIR54GUVZ/GvPXPJJxza7Lm/1\nmISfu5OlY1ULapWax5qNwsnGEU2NaEptslmw9gQFRXpLR3voSQMjhBAPsJT8NN7bM5ciVTYO2Q15\np/eTeLnqLB2rWnGzc2V80xEYMOARfIrk7DyWbTyDIhe5syhpYIQQ4gEVm5nIB7/Pp0Sdh1NOM96J\nmIirk52lY1VLwV7N6F6jEwVk4d3sElHnUvnlQKylYz3UtJYOIIQQonIpisLZ9BgWHl2BQV2Ee25L\npvcbhb2t/Mq/H4Pr9+N81iUSuIizvzuRO6GuvwtNartbOtpDSUZghBDiAWAwGjiRco4FB1bz6rb3\nmHd8MQZ1ET75ofyz/2hpXiqBjcaGJ4PGYqO2QVP7JGq7Ihb/eJLM3GJLR3soyU+0EEJUU0X6YvZd\nOcGBhGMklsRgVJcAoBi0qPMCaeXdion9OqPVyN+qlcXP0ZcRDR/l67M/4N/qHPG/B7No3UmmjW0l\n33MVkwZGCCGqkfT8bLacP8yJtNNkEg/qa1eHVfR26Irr09StCV0aB9PA3x1fXxdSU3MtnPjB0zHg\nEc5knONI6glqt/TmwjEV3227wNjejSwd7aEiDYwQQli56KtxbL8YxYW8cxRqU1GpuDYBoNAZb3Ud\nWvs2p2ujZrjJBN0qoVKpGNtkGJdz4kjlON6Brmw5HE/9QFfaNfO1dLyHhjQwQghhZUpKDey9GM2B\nhGMklFzCaJcDgKIFm2JPajvcNeL7AAAgAElEQVQ0pHOtENrUrYNGLYctLEFno+PxoDF8GrUYdZ1j\n2GW0Y8WmaGr4OBHo5WjpeA8FaWCEEMIKJGfmseP8cY6nnSZTHYvKtghUoNiocS4JpIl7U3o2aE0t\nTy9LRxV/auBWl351e/FzzG/UC73MmV11WbDmBG9NbIuDnfzzam7yDQshhAXoDUZOx6Ww+9IxLuSd\no9g+CZVWD/agNtjgrTSklV9zejQIwcnOwdJxxR1E1OlJdMYFLmafo0WoL8f/ULFs4xmeH9wclUpl\n6XgPNGlghBCiimTnFXPgQiwHE46TVHoJxSkNlVoBJ7AxOFLbtjmdarWkbY0maNQaS8cV5aBWqXk8\naDQzDn7KZeN+6tbpxeGzqfz6Rxzhj9SydLwHmjQwQghhJkajQkxSDr9fuMDx9NPkamNRO2WDA+AA\njooHTV2b0r1ea+q61ZC/2KspD3t3xjUZzucnV0GdI7ikteH77Rep4+dM41pykTtzkQZGCCEqUV5h\nKScuprH/SjQX885hcLqK2iEf3ECtqPDSBNLatzmdaoXgpfO0dFxRSUJ8gukc0I49iQcI6ZjMgd+8\nWfzjKf75RKicHWYm0sAIIcR9MCoKccl5HLlwlcOJ0aQYY9C4paByKAEH0Cpaajk0pH2NlrTyC8LJ\nRs5QeVANaziQC9mXOZp1iC5d+rNzVwmL1p3ktTFykTtzkAZGCCEqqKBIz+nLGURdTORkejTFDolo\n3FJReRnQArY40MQthA41W9LEoxG2GhtLRxZVwFZjy5NBY5l1aB6nDTto2SSCY9HZRO64yOieDS0d\n74EjDYwQQtyFoigkpOVz4mI6UTGxxBZdROWWjNo5A1UNBS3grHGjlW9z2vgFU8+1NmqV/MX9MAp0\n8mdIg/58f+5HlJpH8U1pwa9/xFE/0JXQJj6WjvdAkQZGCCFuo7jEwJkrmRy7mMqxhMvk2cShcU9B\n7Ztj+sXpa+9PqH8LWnoH4e/oK5NwBQDdAjsSnXGOE2lnCOtch62b7Fm28QyBXo4EyEXuKo00MEII\n8afUrEKOnk/j2KVUzmfEoLgko3FPRl23EBtAhZr6LvVp4xdMsFcz3O3dLB1ZWCGVSsX4JiP58OB/\n2Jm8nQG9RvPDpgwWrL12kTu5M3jlkG9RCPHQyyssZc2ui+y+dAy1x1U0bilovUsBsFHZ0tyrBSHe\nQTTzbILORi4qJ+7OydaRic1GM+/o5xzM/4XubQew41AKKzZF8+yjQZaO90AwawMza9YsDh8+jF6v\n59lnn2Xbtm2cOnUKN7drf7VMmjSJ7t27s379er744gvUajUjR45kxIgR5owlhBAAGIxGdhxJZO3B\n4+j9TmDbOB0AJxsnQrxb08K7OY3c62Ojlr/1RMU19mhAn9phbL6yjdp+x2kQ2JiDZ1KoH+DK2H7N\nLB2v2jPbXrl//37Onz/P6tWryczMZMiQIbRv355XX32VsLAw0/sKCgpYsGABkZGR2NjYMHz4cHr3\n7m1qcoQQwhxOX87g661nSLE7jk3Dy2jUCk3dG9GvXm/quNSUSbiiUvSv25uzmRc4nHKUYZ3rk7LB\nhu+2XyC4kQ9+rnJ9mPthtj00NDSUOXPmAODi4kJhYSEGg+GW9x07dozg4GCcnZ2xt7endevWREVF\nmSuWEOIhl5pVyLw1x5m9+RcyAjZjExCDm70LzwQ/xuSQSXIGkahUGrWGJ4LGYq+x56fYDYzuF4Ci\nwD8//539p65aOl61Zra9VKPRoNPpAIiMjKRr165oNBq+/PJLHnvsMV555RUyMjJIS0vDw8PDtJyH\nhwepqanmiiWEeEgVlej5YedF3ly5lVP8gl3Do2jsSgiv3YO3O7xGS2+5+Z4wDy8HD8Y0HkKxoYSd\nmT8zZXgQNlo1n204zdpdlzAqiqUjVktmP7C7ZcsWIiMjWbZsGSdPnsTNzY2mTZvy2WefMX/+fFq1\nanXT+5VyFNLdXYdWa74bnXl7O5tt3eL+SG2skzXXRVEUdkbFs+zn4+Q6n8am2WVQG2nh25Qn24wi\nwNnX0hHNyppr8zDp692VmILL7Lj8O8mBx/j4hV68t+wAG/ZdJiO/hJdHt5KzkyrIrN/W7t27Wbx4\nMUuXLsXZ2ZkOHTqYXuvRowfvvPMO4eHhpKWlmZ5PSUkhJCSkzPVmZhaYLbO3tzOpqblmW7+4d1Ib\n62TNdYlJyuGrLWe5nH8B2zpnsLErws3WleGNHiXEuzmqIhWpRdaZvTJYc20eRgNr9eN08nnWR/9G\nE68GvDGuNQvWnGDvsUQSknN5YVgL3J1lXsyNymrAzXYIKTc3l1mzZrFkyRLThNwXXniBuLg4AA4c\nOEDDhg1p2bIlJ06cICcnh/z8fKKiomjbtq25YgkhHgLZ+SUs23iGD77dSbzjduwaHUFrX0qf2mG8\n3eE1WvkEy+EiUeXstXY8ETQWrUrDv/cu4WjmYaaObkWnYD8uX83lvS/+4MpVaTjLy2wjMBs3biQz\nM5OXX37Z9NzQoUN5+eWXcXBwQKfTMWPGDOzt7Zk6dSqTJk1CpVIxefJknJ1lyFMIUXF6g5Eth+JZ\nv+8Ceq/z2LWIAZWRJu4NGdFoEH6Ocil3YVm1XGrwQqtnWHpqFd+eXUtSfjITIwYQ4OVI5PaLzPjy\nME8NaEZbue3AXamU8kw6sTLmHBKVIVfrJbWxTtZSl+MX0/hm6wVSjZexq3MGbAtxtXVheKNHaeX9\ncI64WEttxK0UXQkfbp9PYv5Vmno04smgcZy9nMdn609TXGpgSNd6DOhQ+6H8ub1RWYeQpIH5C9nh\nrZfUxjpZui5J6fms3naBE/Fx2NQ+g8YtFbVKTc+aXYmo0xN77cM7p8DStRF35u3tTFxSKstPfcPJ\n9DP46rz5W4vHKcq1Z+4Px8nIKaZDkC+P922CjRlPWrF20sBUgOzw1ktqY50sVZeCIj0b9sWw5fAV\nVH4XsQm4driokVt9RjUejJ/jg312UXnIPmO9rtfGqBj58eImtsTuRKd14KnmE/Czrcm8NSe4lJhD\n/UAXpgxtgaujraUjW4Q0MBUgO7z1ktpYp6qui1FR2Hs8iR92XiTPNgH7OtEotgW42DozrOFA2vi0\nfOiH3a+TfcZ6/bU2vycd4pvoH1BQGNloMO19Q1m2MZoDp5PxdLHjpeEtqeHjZMHEllFWAyMnnQsh\nqo0L8dl8teUcsRnJ2NWNxs41BZVKTY8aXelXtxf2WntLRxTinnTwb4u3gyefn1jJt2fXkJSfzKT+\n/fH31LFudwwffHmYZx8NIqSBl6WjWg1pYIQQVi8zt5jvd1xg/+lEtP4xOLSMQVEZaOhWj5GNBhPg\n5GfpiELctwZudXmt7QssOb6CnfF7SSlI5clHxuHv6ch/fzrNvMjjjOzRgD6hNWWUETmEdAsZcrVe\nUhvrZM66lOoN/HIwjp9/v4xel4yuXjQGm3xcbJ0Z2mAAbX1D5Bd5GWSfsV5l1aZQX8SKU19zMj36\nz8m9T5CfbcvcH46TnVdClxb+TAhvjFbz4N+zS+bAVIDs8NZLamOdzFEXRVGIOpfG6m3nSS/MwKHe\nORSXq6hVarrX6ES/ur1xkMNFdyX7jPW6W22MipF1FzeyNXYXOq0DTwdPwEtTg7k/HCc2OY/GNd2Y\nPDQYJwebKkxd9aSBqQDZ4a2X1MY6VXZd4lPz+GbLec7EpmMTEINt4CWMGKjvWpdRjQcT6ORfadt6\n0Mk+Y73KW5vfE//gm7NrTJN7H/EOZelPpzl8LhUfNwdeGtECf0/HKkhsGTKJVwhh9fIKS/lxdwzb\njySASwourc9RqsnF0daJoQ0GEOrbSg4XiYdOh4BQvHVepsm9V/OTeWZQf9bv0fHz71d4f+Vhnh/c\nnKC6HpaOWuWkgRFCWJTBaGTn0UTW7rpEgTEXp6bn0TslokdFWI3O9K/XGwetg6VjCmEx1yf3Lj6+\nnB3xe0kuSOXJjuMI8HRk+aYz/Oe7Y4zp1ZCebWpYOmqVkkNIfyFDrtZLamOd7qcu0Vcy+XrLeeLT\ncrAPvII24CIG9NRzrcOoRoOp4RxQyWkfLrLPWK97qc3Nk3t9+FuLx8nJsGHemuPkFpTSo3UgY3o1\nRKN+cCb3yhyYCpAd3npJbazTvdQlLauQ77Zf4NDZVDQuaTg3Ok+xOhtnGycGN+jHI36tUasenF/C\nliL7jPW619oYFSPrLmxka9wuHLU6ngoej4c6kDmRx0lIzSeorgfPDQpCZ/9gTO6VBqYCZIe3XlIb\n61SRuhSXGNi4/wq/HIylVFWAe+MLFOniUaGia40ODKgbjs5GDhdVFtlnrNf91mZf4h98++fk3lGN\nBtPGqy1L1p/i+MV0/D11vDi8Bb7uukpMbBkyiVcIYVGKonDwTArfbb9AZl4hTrXisPe7QJFSSl2X\n2oxqPJiazoGWjilEtdExIPTalXtPruSbP6/cO3lIf9bsimHzwTje/+IQU4YG07iWu6Wjmo00MEII\ns7pyNZevt5zjfHw2Nm4ZeIaeo4AsnLSODK4/mHb+beRwkRD3oKF7Paa1fYFFx1f8b3Jvl2tX7l21\n+Sz//vYoE8Ib07XlgzmXTA4h/YUMuVovqY11ulNdcvJLWLPrIruPJaHYFOEbFEOO7RVUqOgS2J6B\n9cLR2VT/IW5rJvuM9arM2hTqi1h+6mtO3TC5NyNVw4K1J8gv0hP+SE1GdG+AWl39LkMgc2AqQHZ4\n6yW1sU5/rYveYGTb4Xh+3HuZwpISPOolofc6S6lSQh2XWoxqNJhaLg/X6Z6WIvuM9ars2hgVI2sv\n/My2uN2myb2uBDA38jhJ6QW0rO/JM48G4WBXvQ68SANTAbLDWy+pjXW6sS4nL6XzzdbzJKUXoPPM\nwqnhOXKNGTja6Bhcvx/t/dvK4aIqJPuM9TJXbfYlHuTbs2tNk3tbe7Zh0bqTnLqcSQ1vR14c3gIv\n1+ozUV4m8QohzCo5o4DV2y5w9EIaKtsiarSNJV19iTyjis6B7Xm0XgSOcrhICLPrGPAI3g5epsm9\nV2uk8MLwvqzedontUQl/Tu5tQYMarpaOet9kBOYv5C8W6yW1sT6leiO/Ho5n3c6LGBQDAY1TyHc7\nTYmxhNrONRnVeDC1XWpaOuZDS/YZ62Xu2qQVprPo+Aqu5ifT1KMRk5qPY9+xdL7Zch61Gp7o15QO\nQX5m235lkUNIFSA7vPWS2lif9XtjWLc7BjffPBzqR5OlT8NRq2NQ/b50CAiVw0UWJvuM9aqK2tw4\nuddP58PfWjxBcjIsWneKwmI9AzrWZnCXeqit+B5jZTUw8ttFCHFP9AYj245dwaHhCYpr7yFbn06n\ngEd4u/1rdApsJ82LEBbmoLXnby0ep0fNLlwtSOHjQ/OwdcvizQlt8HFz4Kd9V1i07iTFJQZLR70n\n8htGCHFPjpxPo8DlDLgnUMs5kKltJjO2yXCcbB0tHU0I8Se1Ss2whgMZ12Q4RYZi5h39nJjik0yf\n2JbGNd04fDaVj76KIjO32NJRK0waGCHEPdl6+Apa73h0Wh2vtn6euq61LB1JCHEHHQMe4YWQp3HQ\n2vP12R/4JX4TL48KpksLf64k5/LuF38Qk5Rj6ZgVIg2MEKLC4lPzuFhwFpVNKT3rd8RG82DcOE6I\nB9n1K/f6OfqyPW4PS0+uZFTv2owMa0BOXgkzv4riUHSKpWOWmzQwQogK2x6VgMYnDoDe9btYOI0Q\nory8HDz5e5vJNPNszOmMs3xyeCFtgh15YXgLVGoVC9edZMPeGKrD+T3SwAghKqSwWM++i+fQOGfS\nxL0hfs4+lo4khKgAB609z7V44qbJvY6e2fzf+DZ4utixdncMn284Taneuif3SgMjhKiQfSevYnS/\nAkDXGh0snEYIcS9unNxbaChi7tHPidWfYvrEUOoHurD/dDKzvj5Cdn6JpaPekTQwQohyUxSFrUcu\no/FKwNXWheaeTS0dSQhxHzoGPMKL1yf3Rv/Ab4m/8PfRLWkf5MvFxBze++IP4lLyLB3ztqSBEUKU\nW/SVTFJVF1BpDHQObIdGrbF0JCHEfWroXv/myb2nVzI+oi5Du9YjI6eYD1cd5uj5NEvHvIU0MEKI\nctsaFY/WJw4VKjoGPGLpOEKISnJtcu/z1yb3pl+b3NsuxJnnBzdHURTm/XCcXw7EWtXkXmlghBDl\nkpFTxLHEC6gdc2npHYSbXfW/GZwQ4n8ctA63TO519c3lH+Nb4+pky3fbL7B8YzR6g9HSUQFpYIQQ\n5bTjaCJqn1gAugTK5F0hHkTXJ/eObTLMNLk3wXiGtyaGUtvPmT0nkvj3t0fJLbD85F5pYIQQd6U3\nGNl58jJaj6t4O3jR2L2BpSMJIcyoU0C7a1fu1Vyb3Lv16mamjQ2hbWNvzsVl8f7KQySk5Vs0o9ac\nK581axaHDx9Gr9fz7LPPEhwczBtvvIFer0er1fLxxx/j7e1NUFAQrVu3Ni23YsUKNBqZHCiEtTh0\nNoVCXQw2aiNdA9ujsuK71wohKkcj9/q81vYFFh9fzva4PSQXpPL4gDH4ezqyYd9lPlx1iOcGNad5\nPU+L5DNbA7N//37Onz/P6tWryczMZMiQIbRr146RI0fSr18/vvrqK5YvX860adNwcnJi1apV5ooi\nhLhPW6Pi0fjEoVVpaeff1tJxhBBVxFvnyd/bTmbZya85nX6W2YcX8re2T+Dv2YxlG6P5z/fHmBjR\nhK4tA6o8m9kOIYWGhjJnzhwAXFxcKCws5J///Cfh4eEAuLu7k5WVZa7NCyEqSWxyLjE5l1DbF9DG\ntyWONjpLRxJCVCEHrQN/a/E4YTU7X5vce3gengH5TBvbCmcHG347FGeRXGZrYDQaDTrdtV90kZGR\ndO3aFZ1Oh0ajwWAw8PXXXzNw4EAASkpKmDp1KqNHj2b58uXmiiSEuAfbohLQ/nnfI5m8K8TDSaPW\nMLzho4xtPIxC/bXJvSmqs8x4tgPTxrSySCazzoEB2LJlC5GRkSxbtgwAg8HAtGnTaN++PR06XPtl\nOG3aNB599FFUKhXjx4+nbdu2BAcH33Gd7u46tFrzzZHx9nY227rF/ZHaVK28ghIOXLiCplkKddxq\nElq/2W3nv0hdrJfUxnpVx9oM9u5Fw4BafLL3M76KjiSrUSYTWg5Fra76c4LM2sDs3r2bxYsXs3Tp\nUpydrxXqjTfeoHbt2kyZMsX0vjFjxpj+v3379pw7d67MBiYzs8Bsmb29nUlNzTXb+sW9k9pUvV8P\nxmJwu4xapdDR9xHS0m69pLjUxXpJbaxXda6Nj8qfqa0ns/j4Cn4+t5WU7EweDxptlm2V1eSZrWXK\nzc1l1qxZLFmyBDc3NwDWr1+PjY0NL774oul9ly5dYurUqSiKgl6vJyoqioYNG5orlhCinIyKwtYj\ncWi947HT2NHWzzLDxEII6+Oj8+K1tpNp7dMCBctc2M5sIzAbN24kMzOTl19+2fRcYmIiLi4uTJgw\nAYD69evzzjvv4Ofnx/Dhw1Gr1fTo0YMWLVqYK5YQopxOx2SQzhXsbItp798RO42tpSMJIayIg9aB\nSc3HW2z7ZmtgRo0axahRo8r13tdee81cMYQQ9+jGybudA9pbOI0QQtxMrsQrhLhFWlYhx+OuoHFN\np4FbXQKc/CwdSQghbiINjBDiFtuPJqCWU6eFEFZMGhghxE1K9QZ2HY/HxjsBJxsnQrybWzqSEELc\nQhoYIcRNDp5JoUgXB9pSOgaEolWb/XJRQghRYdLACCFucm3ybiwqVHQOaGfpOEIIcVvSwAghTGKS\ncricHY/aKZsgz8Z4OnhYOpIQQtyWNDBCCJNtUfFofWIBmbwrhLBu0sAIIQDIKyzl4NkEtF5JeNi7\n08yzsaUjCSHEHUkDI4QAYPfxRIxu8aA20DmgHWqV/HoQQlgv+Q0lhMBoVNgWFY+NbxwalYaOAY9Y\nOpIQQpRJGhghBCcupZNpTELlkEeId3OcbZ0sHUkIIcokDYwQgm1RCWhk8q4QohqRBkaIh1xKZgEn\nYxPReqTg7+hLA7e6lo4khBB3JQ2MEA+57UcS0HjHg8pI58D2qFQqS0cSQoi7kgZGiIdYcamBXccS\nsfGNx1ZtQzu/1paOJIQQ5SINjBAPsQOnkym2TwLbQkL9WuGgdbB0JCGEKBdpYIR4SCnKtVOntb5x\ngEzeFUJUL/fcwFy+fLkSYwghqtrFxBziMlPQuKZSx6UWNZ0DLR1JCCHKrcwG5oknnrjp8cKFC03/\n//bbb5snkRCiSmyLikfjEw8q6BLY3tJxhBCiQspsYPR6/U2P9+/fb/p/RVHMk0gIYXY5+SUcOnsV\nW58EdFoHWvu0tHQkIYSokDIbmL+eTnlj0yKnWgpRfe06lojichVFW0x7/7bYamwsHUkIISqkQnNg\npGkRovozGI3sOJqAjd/1ybty+EgIUf1oy3oxOzub33//3fQ4JyeH/fv3oygKOTk5Zg8nhKh8xy6k\nk1mahr1TBk3cG+Kj87Z0JCGEqLAyGxgXF5ebJu46OzuzYMEC0/8LIaqfbVHxaH1k9EUIUb2V2cCs\nWrWqqnIIIapAUno+p2NT0bVOwsXWhWCvZpaOJIQQ96TMOTB5eXmsWLHC9Pjbb79l0KBBvPjii6Sl\npZk7mxCikm2PSkDjmYSiLqVTwCNo1BpLRxJCiHtSZgPz9ttvk56eDkBMTAyzZ8/m9ddfp2PHjnzw\nwQdVElAIUTmKSvTsPZmInV88atR0Cmxn6UhCCHHPymxg4uLimDp1KgCbN28mIiKCjh07Mnr0aBmB\nEaKa2X8qmSJtBopDNsHezXCzc7V0JCGEuGdlNjA6nc70/wcPHqR9+/9N+JNTqoWoPq7f98jGVybv\nCiEeDGU2MAaDgfT0dGJjYzly5AidOnUCID8/n8LCwioJKIS4f+fjs4nPyETreRUvB08auzewdCQh\nhLgvZZ6F9PTTT9OvXz+KioqYMmUKrq6uFBUVMXbsWEaOHFlVGYUQ92lbVDwar0QUlYEuge1Rq+RG\n9EKI6q3MBqZbt27s2bOH4uJinJycALC3t+e1116jc+fOVRJQCHF/svKKOXw2BfsW8ajVWtr7t7V0\nJCGEuG9lNjCJiYmm/7/xyrv16tUjMTGRgIAA8yUTQlSKXUcTUZzSMdrm0danNU42jpaOJIQQ963M\nBqZHjx7UrVsXb+9rlxr/680cV65cad50Qoj7ojcY2X40AbuA65N3O1g4kRBCVI4yG5iZM2fy448/\nkp+fT//+/RkwYAAeHh7lXvmsWbM4fPgwer2eZ599luDgYKZNm4bBYMDb25uPP/4YW1tb1q9fzxdf\nfIFarWbkyJGMGDHivj+YEAKOnE8juzgHB9dkAp38qetSy9KRhBCiUpTZwAwaNIhBgwaRlJTE2rVr\nGTduHIGBgQwaNIjevXtjb29/x2X379/P+fPnWb16NZmZmQwZMoQOHTowduxY+vbty+zZs4mMjGTw\n4MEsWLCAyMhIbGxsGD58OL1798bNza3SP6wQD5tth+PReseDSqFLYAe5/IEQ4oFRrlMR/P39ef75\n59m0aRPh4eG8//77d53EGxoaypw5c4BrN4UsLCzkwIED9OzZE4CwsDB+//13jh07RnBwMM7Oztjb\n29O6dWuioqLu82MJIeJT8zgbl4G9fwL2GjtCfVtZOpIQQlSaMkdgrsvJyWH9+vWsWbMGg8HAs88+\ny4ABA8pcRqPRmC6EFxkZSdeuXdmzZw+2trYAeHp6kpqaSlpa2k2HpTw8PEhNTb3XzyOE+NP2qATU\nbqkYNIV08uuAvdbO0pGEEKLSlNnA7Nmzhx9++IGTJ0/Sp08fPvroIxo1alShDWzZsoXIyEiWLVtG\nnz59TM/fOCH4Rnd6/kbu7jq0WvPdhM7b29ls6xb3R2pTPgVFpew/fRVdgwQMwKPNe+LtZr7vTupi\nvaQ21ktqc3/KbGCeeuop6tSpQ+vWrcnIyGD58uU3vT5jxowyV757924WL17M0qVLcXZ2RqfTUVRU\nhL29PcnJyfj4+ODj43PTfZVSUlIICQkpc72ZmQV3+1z3zNvbmdTUXLOtX9w7qU35bT0cTxE52Dum\nUN+1Dg6lLmb77qQu1ktqY72kNuVTVpNXZgNz/TTpzMxM3N3db3otPj6+zI3m5uYya9YsVqxYYZqQ\n27FjRzZv3sygQYP49ddf6dKlCy1btmT69Onk5OSg0WiIiori//7v/8r1wYQQt/rffY+u7aNy6rQQ\n4kFUZgOjVqt55ZVXKC4uxsPDgyVLllC7dm2+/PJLPvvsM4YOHXrHZTdu3EhmZiYvv/yy6bmPPvqI\n6dOns3r1agICAhg8eDA2NjZMnTqVSZMmoVKpmDx5Ms7OMqwmxL2KvpJJUkYuTvUScbBxJMQn2NKR\nhBCi0qmUMiadjBs3jnfffZf69euzdetWVq5cidFoxNXVlbfeegtfX9+qzGpizmE3GdazXlKb8lmw\n5gRH049iW/8EvWt1Z3CDfmbdntTFekltrJfUpnzKOoRU5mnUarWa+vXrA9CzZ08SEhJ47LHHmD9/\nvsWaFyHEnWXkFHHkfBq6wARUqOgc2N7SkYQQwizKbGD+etErf39/evfubdZAQoh7t+NoIop9Nnr7\nDJp6NsLLofxXzhZCiOqkXBeyu06u4imE9dIbjOw6loh9wLXJu11l8q4Q4gFW5iTeI0eO0L17d9Pj\n9PR0unfvjqIoqFQqduzYYeZ4QojyOnQ2hZzCAhw9EnG1cyPIs4mlIwkhhNmU2cD88ssvVZVDCHGf\ntkUloPFKxKjS0zmwHWpVhQZYhRCiWimzgQkMDKyqHEKI+xCbnMuF+CxcWyegV6np4P+IpSMJIYRZ\nyZ9oQjwAtkUloHbKokSbTYh3c1zt5FpKQogHmzQwQlRz+dfve1QjAZAr7wohHg7SwAhRze09nkSJ\nUoTikoifzoeGbvUsHUkIIcxOGhghqjGjorDtSAK2PgkYMdI5sL1c7kAI8VCQBkaIaux0TAYpmQU4\nBCRgq7ahnV8bS0cSQvS2JdAAACAASURBVIgqIQ2MENXYtqgE1K5plKjzaOsbgs7GwdKRhBCiSkgD\nI0Q1lZZVyLELabjUSgJk8q4Q/9/evUdHWR76Hv/ONZP7/QokQAC5hJuAAoJaBbVYQW5ykVR7urq7\nj7W23XR3W/e2uo9du4uutc/qqXraXXd1t7Cp1Gvt8QIqoKggSAAhkAsEyP0yuSeTSTIz7/kDpViV\nomTyzpv8Pmvlj0wmL79ZTzL58T7P+z4yvKjAiFjUrsM14O6hL7qOvPhR5CaMNDuSiMigUYERsaD+\nQJA9R+qIzqnFwGChdp0WkWFGBUbEgvafaKTL34sro5poZzSzMqebHUlEZFCpwIhY0M6iGhxJjfTR\nw9zsWbgdbrMjiYgMKhUYEYs5XdfB6boOkkZ/tHg3R9NHIjL8qMCIWMzOompsni58rgYmJI8jMzbD\n7EgiIoNOBUbEQrp6+tl/opH4UR9fOq2zLyIyPKnAiFjIng9r6Q/1Q3I1Ce54pqdNMTuSiIgpVGBE\nLCIUMthVVENUej399DI/5yocdofZsURETKECI2IRRyua8bb7iRtVhw0bC3KuNjuSiIhpVGBELGJn\nUQ222HZ8di8FaZNI9iSZHUlExDQqMCIW0Njq41hFMymj6wHteyQiogIjYgG7DtVgOPrpja0izZPC\npJTxZkcSETGVCoxIhOvtD/LOh3XE5tQTJMCCEXOx2/SrKyLDm94FRSLc+8cb6Pb348muwWlzMDd7\nttmRRERMpwIjEsEMw2BnUTWOhBZ8tDEzYxrx7jizY4mImE4FRiSCnartoLKhi9SxjYAW74qIfEwF\nRiSC7SyqBpefbncVObFZjE3MMzuSiEhEUIERiVAd3X18UNJIcm4jIUIsHDEPm81mdiwRkYjgNDuA\niHy2t4/UEgiGsKVVEmV3c1XWTLMjiYhEDJ2BEYlAwVCI3YdriEprpsfoYk7WlXicHrNjiYhEjLCe\ngSkrK+Oee+7h7rvvZsOGDdx33320trYC0NbWxowZM/j2t7/NbbfdRkFBAQDJycn88pe/DGcskYh3\n5GQzLR29ZM2upx24Vot3RUQ+IWwFxufz8cgjjzBv3l/eeC8sJj/+8Y9ZvXo1AGPGjGHz5s3hiiJi\nOTuLqrFF+Wi3VzM2MY8RcdlmRxIRiShhm0Jyu9088cQTZGRkfOprFRUVdHZ2Mm3atHD98yKWVdfc\nzfEzraTn69JpEZHPE7YzME6nE6fzsw//+9//ng0bNpz/3Ov1ct9999HY2Mj69etZunTpRY+dnByD\n0+kY0LwXSk+PD9ux5fIMh7F54d0zYAvRn1hJvCOWxZPn43a4zI51UcNhXKxKYxO5NDaXZ9CvQurr\n6+PgwYM8/PDDACQlJfG9732PpUuX0tnZyerVq5k7d+5nnrn5WGurL2z50tPjaWrqDNvx5csbDmPj\n7wvwxv6zxGd78Qd9LBhxHe0tfsBvdrTPNRzGxao0NpFLY3NpLlbyBv0qpAMHDnxi6iguLo6VK1fi\ncrlISUmhoKCAioqKwY4lEhH2FTfQ0xskblQtAAty5pqcSEQkMg16gTl69CgTJ048//m+ffv42c9+\nBpxb+FtSUsKYMWMGO5aI6T7e98gZ20WbUc+klAmkx6SaHUtEJCKFbQrp2LFjbNq0iZqaGpxOJ9u3\nb+fRRx+lqamJ3Nzc88+bPXs2L774ImvWrCEYDPJ3f/d3ZGZmhiuWSMQqr26nuqmbETMaaUGLd0VE\nLsZmGIZhdogvKlzzhjv2V3L0TCv33l5AlDt8i4Tlyxnqc8a//tMx9pfWkjDnbWLd0fyveffjsEf+\nz+FQHxcr09hELo3NpYmoNTCRrDcQoriimZfePW12FBlm2rp6OVjaROroZvqNPhbkXG2J8iIiYhYV\nmAvcNGcUGSkx7DhQRU1Tl9lxZBh5+3AtwVAIV2YVdpud+TlXmR1JRCSiqcBcIMrl4NvLpxIMGWze\nUYYFZ9fEggLBELsO1xCd3EF70Mv0tCkkRiWYHUtEJKKpwFxgT81edjU/z/TxSZRVtfHesXqzI8kw\ncKjcS3tXH+n5TYAW74qIXAoVmAu093ZysPYomZNqcLvs/HHXSbr9/WbHkiFu58FqcPbR4jhNZkw6\nE5LzzY4kIhLxVGAusCj3OtJjUni34V2unxdPp6+f59/STfUkfKqbuiitaiNnfAtBI8iCEXOx2Wxm\nxxIRiXgqMBfwOKP41uz1hIwQla73yEqNZvehGipqO8yOJkPUrqIawCCQdAaX3cXcrFlmRxIRsQQV\nmL8yI3sKszNncLaziulXdWIAm7eXEgppQa8MrJ7eAO8V15OY1UFnsI1ZmdOJccWYHUtExBJUYD7D\nqvFLiXXGsK/tbWYVxHG2oZNdh2rMjiVDzHvH6untC5I8+txi8Wu1eFdE5JKpwHyGeHccy8d/jb5g\nH8Gco0RHOXj+7VO0d/WaHU2GiPP7Hnn8NIbOkBs/gryEUWbHEhGxDBWYzzE3axZXJI+jtK2Uq+cF\n6ekNsm3XSbNjyRBRcraVumYfIye2YmDo0mkRkS9IBeZz2Gw21l6xApfdyfH+d8jNjmJfcQMnzraa\nHU2GgJ1FNWAL0RV9iminh1mZM8yOJCJiKSowF5ERk8aS0Yvp7O8iq+AsNmDLjlICwZDZ0cTCWjr8\nHCr3kjm6g+5gF1dnzSLK4TY7loiIpajA/A035l7LiLhsjrYfZuYsO3XNPrbvrzQ7lljY7sM1hAyD\n6JxzC8MXjphrciIREetRgfkbHHYHd05chQ0b3tj9xMfa+fO7Z/C29ZgdTSyosdXHjv1VxCb20tBf\nxfiksWTFZpodS0TEclRgLkFewiiuH3UNTX4vE+c00xcIsfWNcrNjicWEDIOnXimhLxDiipnnbo6o\nsy8iIl+OCswl+tqYm0mOSuJ4zwHGjoXDJ70cKm8yO5ZYyO5DNZRWtTF9fBJn+44T745jenqB2bFE\nRCxJBeYSeZxRrL1iOSEjhC33KA47bH29nN6+oNnRxAK8bT08s+sUsR4nU6/sxRfoYX72VTjtTrOj\niYhYkgrMF1CQNolZGdOp9dUwZU4nzR1+/vzeGbNjSYQzDIP/eq2E3v4gq28czZ6GPdiwcU3O1WZH\nExGxLBWYL2jVhKXEOKOptB8gOSXE9v2V1Hi7zY4lEeztI7UcP9PKtPxUat0HafR5uX7UNaRGJ5sd\nTUTEslRgvqAEdzzLx32N3mAfGQWnCIZC/PeOUgxDmz3Kp7V0+Nm28yTRUU7mzbWzp2Yv2bGZLBv7\nVbOjiYhYmgrMlzAvezYTkvKp9J8if5KPkso29hU3mB1LIszHU0f+viDLrx/Bi2dfxGFzcPfkdbgc\nLrPjiYhYmgrMl2Cz2Vg3cQVOu5OO5EO4o4Js21mOz99vdjSJIO8eredYRQtTxiRT4XiHjr5Obht7\nMyPjc8yOJiJieSowX1JGTDpLRi+iK9DF6Ctr6PD18/zbFWbHkgjR2tnL02+W43E7mD7bzxFvMeOS\nxnBj7rVmRxMRGRJUYC7DotzryInNoip4nPQR3ewqquF0XYfZscRkhmGweXspvt4At16bzqvVr+Bx\nRPH1SWuw2/QrJyIyEPRuehkcdgfrP9pmwDm6GMMWZPP2UkIhLegdzvYdb+DwSS8T8xIpse3GH+zl\njgm3kxqdYnY0EZEhQwXmMo1JzOW6kfNp629h9PQGztR38tbhGrNjiUnau3rZ+noZUS4H42Z6qWg/\nw8z0qVyVdaXZ0UREhhQVmAFw29hz2wx4o4qJTvDx7FsVtHf3mR1LBplhGGzZUUa3P8CihfHsqttF\nojuetRNXYLPZzI4nIjKkqMAMAI/Tw9orlhM0gqRMKaOnt58/7jxpdiwZZAdKGjlY1sS4UXEcD+0k\nZITYMOkO4lyxZkcTERlyVGAGSEHaJK7MmEZLsJ70/Eb2FtdTWtlqdiwZJB2+PrbsKMPttDNiWhX1\nvkauGzmfyalXmB1NRGRIUoEZQKvGLyPaGU1fejE2l5/NO8oIBENmx5JBsPX1Mrp6+lkw38n+pvfJ\njMng9vwlZscSERmyVGAGUGJUPCvG3UpfqI/s6RXUervYcaDK7FgSZgdLm9h/opExI6M4HtqN3Wbn\n7ilrcTvcZkcTERmyVGAG2LzsOYxPGkurvZLYLC8vvXsab3uP2bEkTLp6+tm8oxSnw0bKpJO093Vw\n65ibyI0faXY0EZEhTQVmgJ3bZmAlTrsT9+gT9IV6+cMb5WbHkjD5wxtldHT3MWdeP8fbixmbmMfi\n3OvMjiUiMuSFtcCUlZWxaNEitmzZAsD999/PbbfdRmFhIYWFhezevRuAl156iZUrV7J69WqeeeaZ\ncEYaFJkx6Xx19I34Qz7SJp7hULmXwye9ZseSAXb4pJe9xQ3kjrRTEtxDlMPNXZPX4rA7zI4mIjLk\nOcN1YJ/PxyOPPMK8efM+8fg//MM/8JWvfOUTz3v88cd59tlncblcrFq1isWLF5OUlBSuaINiUe51\nHGw4Qi2ncCaksfX1MiblJRPl0h+3ocDn7+f3r5XgdED0+GKaunu5c+Jq0qJTzY4mIjIshO0MjNvt\n5oknniAjI+Oizzty5AhTp04lPj4ej8fDlVdeSVFRUbhiDRqn3Xl+m4HEiaV4O3y8vPeM2bFkgDz9\n5knauvoouLqdyu6zTE+bwrzs2WbHEhEZNsJ2BsbpdOJ0fvrwW7Zs4amnniI1NZUHH3wQr9dLSspf\n9ohJSUmhqanposdOTo7B6QzfmYz09PgBOs4Ubu64jtfKd5MwtpLX3newZEE+ozIH5vjD0UCNzeU4\nWNLAO0frGJVncCp0gERPAt+95i4SPOZnM0skjIt8No1N5NLYXJ6wFZjPsmzZMpKSkpg0aRK/+c1v\neOyxx5g5c+YnnmMYf3sjxNZWX7gikp4eT1NT54Adb3H2DeyrPERHahnBmjQe3XaIH66doVvLfwkD\nPTZfRk9vgP/z9CEcjhDkHiLQG2D9hJX0dkJTp7nZzBIJ4yKfTWMTuTQ2l+ZiJW9Qr0KaN28ekyZN\nAuCGG26grKyMjIwMvN6/LHBtbGz8m9NOVvLxNgMhQiRNKuHE2RbeP9Fgdiz5kv646yStnb2Mm1OP\nt7eJBSPmUpA2yexYIiLDzqAWmO9+97tUVZ27sdv777/P+PHjmT59OkePHqWjo4Pu7m6KioqYPXto\nrSWYmjaZmRnT8Lu8uLOq2fbmSXz+gNmx5As6fqaFtw7Xkjmqm8rQh2REp7Fi3NfMjiUiMiyFbQrp\n2LFjbNq0iZqaGpxOJ9u3b2fDhg18//vfJzo6mpiYGH72s5/h8XjYuHEj3/zmN7HZbHznO98hPn7o\nzQuuHr+MkpYy+nLLaD+Uzgt7Krhz8QSzY8kl8vcF+K9XS7A7AxijjmAP2rlrylqidLddERFT2IxL\nWXQSYcI5bxjOecl3a95na+lzOLty6DoxjZ/cNYe8rKFX1sLFzDnjLTtK2VlUw+irT9JgnGTJmMXc\nOmaxKVkijebyI5fGJnJpbC5NxKyBGe7m5cxhXNIYAnG12JIa+P32UkIhy/XHYae0spWdRTWk5jXT\nYJxkdEIut+TdYHYsEZFhTQVmENltdtZfcW6bgdj8Ek43NvP2kVqzY8lF9PYHeeqVEmxuP8Hso7jt\nLu6avEZ32xURMZkKzCDLjM3glrwbCdh78OSV89xbp+jo7jM7lnyO59+qoLHNR9aMcnpDflaMv42M\nmHSzY4mIDHsqMCZYnHcd2bGZ2NIq6XE28cyuk2ZHks9QXt3GGx9UkTSmjjZqKEidxIKcq82OJSIi\nqMCY4sJtBmLGHefd4lpKK1vNjiUX6OsP8uQrJdiiOwlkFBPniuXOSat0A0IRkQihAmOSsYl5LBwx\nj6C7E2d2BVt2lBEIhsyOJR958Z3TNLR2kVJwgqAR5M6Jq0hw64oxEZFIoQJjoqX5t5AUlYh7RAW1\nXQ28/kGV2ZEEOFXbzvb9lSTkn6bb1sL87KuYlj7F7FgiInIBFRgTRTs93DHhdgxbCE/+cf70TgUt\nHX6zYw1r/YHQuauO4lroTyknzZPCyvG6266ISKRRgTHZ9PQpzEifCrEtBJPO8oc3ys2ONKy99O5p\nalvbiJ94HBs27pqyDo/TY3YsERH5KyowEeCOCcuIdnqIyivn4OkqPjzl/dvfJAPuTH0Hr+6rJG5c\nGX22Lm4efQNjE/PMjiUiIp9BBSYCJEYlcHv+Egx7P+68E2zZUUZff9DsWMNKIBjiyZdPQFIdwcQq\ncuNHsGT0IrNjiYjI51CBiRDzc64iP3EMjpQGWmxneXnvWbMjDSsv7z1LdVszMeNO4LK7uGvyOt1t\nV0QkgqnARAi7zc76iStx2BxEjTnBqwdOUt/iMzvWsFDV2MX/e+80seOPE7T1snzcrWTFZpgdS0RE\nLkIFJoJkxWZwy+gbwOXHllPGlh2lWHCzcEs5P3WUdpZQXCOTU67g2hHzzI4lIiJ/gwpMhLkp7ytk\nxWTgzKikxFvBgZJGsyMNaa+9X0llex1ReWXEOmPYMGm17rYrImIBKjARxml3cuekVWAD95hitu4s\noac3YHasIammqYuX3jtF9PijGLYg6yauJDEqwexYIiJyCVRgItDYxNEsHDEPW3QXvvhSXthTYXak\nIScYCvHkKyWQWY4R3c7VWbOYmTHV7FgiInKJVGAi1LL8W0h0J+DKqWBncQmVDZ1mRxpSdhyo4mzn\nWVw5p0n1JLN6wjKzI4mIyBegAhOhop3RrLnidrCHcOYV8/vtJYS0oHdA1DV388I75USNO4rNBl+f\nvJZo3W1XRMRSVGAi2PT0AmakF+BIaOVs/3H2HKk1O5LlhULGub2ORhwHt4/FedczLmmM2bFEROQL\nUoGJcKsnLCPKEYUrt5Rn3immw9dndiRLe+NgNRXdZTgzqhkZl8OtYxabHUlERL4EFZgIlxSVyPJx\nS7A5AgSyjvLs7lNmR7KshlYfz797nKixxThtTu6avBan3Wl2LBER+RJUYCzgmpyrGZs4GkdKA+9V\nHqG8us3sSJYTMgyefOUE5H4Izj5uH7eEnLgss2OJiMiXpAJjAXabnTs/2mbAPbqY3+04RiAYMjuW\npewqqqHCfxRHUhNXJI/jupHzzY4kIiKXQQXGIrJiM7l59A3Y3L00RR/mzYPVZkeyjKa2Hp7dewR3\nXikeh4fCSXdgt+lHX0TEyvQubiE35X2FjOh0nBmVvFhUREuH3+xIEc8wDJ569TjkHgZ7kPUTV5Ds\nSTI7loiIXCYVGAtxXbDNACM/ZOubJWZHinhvHanlZOAD7HHtzMmcyazMGWZHEhGRAaACYzHjksaw\nIGcu9pguPuw8wNGKZrMjRazmdj9/3HcAV04Fie5E7phwu9mRRERkgKjAWNDt475KnDMOZ85JNu86\nSF9/0OxIEccwDJ567RhG7mGwGdw9ZQ0xrmizY4mIyABRgbGgaGc06yYux2Y36Eg9yMt7z5gdKeK8\nc7SOcmMvdo+PG0YtZELyOLMjiYjIAFKBsagZGVMpSJmMI6GV106+R0OLz+xIEaO1s5en97+LM6OK\nzOhMluZ/1exIIiIywFRgLGzdpOW4bG4cI0/wX28cwdBmjxiGwZPbD2OMOoIdB9+cuh6X7rYrIjLk\nqMBYWFJUIivGL8HmDFBh28sHpU1mRzLd3mP1lNv2YHP1sSz/FkbEZZsdSUREwkAFxuIWjJjLyNhR\nOFPr2bLvbXp6A2ZHMk17Vy9bi97EkdzI6LjR3JC70OxIIiISJmEtMGVlZSxatIgtW7YAUFdXx913\n382GDRu4++67aWo6d8ZgypQpFBYWnv8IBnVVzaWy2+zcXXAHNuz0ZX7Ic++Umh3JFIZh8Ns3DhLK\nKcaFm29OW6e77YqIDGFhe4f3+Xw88sgjzJs37/xjv/jFL7jjjjvYsmULixcv5qmnngIgLi6OzZs3\nn/9wOBzhijUkZcdmsjj3euxRfvY07qayodPsSIPu/RP1lNl2Y3MEWTdpBSmeZLMjiYhIGIWtwLjd\nbp544gkyMjLOP/bQQw9x8803A5CcnExbm3ZVHihLxi4iyZWCI+MsT+7aS2gYLejt8PWx5fArOOLb\nmJI0hauyZpodSUREwixsl2c4nU6czk8ePiYmBoBgMMjWrVv5zne+A0BfXx8bN26kpqaGm2++mW98\n4xsXPXZycgxOZ/jO0qSnx4ft2OH0g4V389DO/01D3D4OVczklrljzY404D5rbB7d/CqhjDJi7HFs\nvP4bxEXFmpBseLPq78xwoLGJXBqbyzPo15cGg0F+9KMfMXfu3PPTSz/60Y9YunQpNpuNDRs2MHv2\nbKZOnfq5x2htDd89T9LT42lqsuYUTBpZzE6bzQfeD3hq30tMyC4kPsZtdqwB81lj8/6JGo4H38Tu\nNvgfBWvp6QjRgzXHz6qs/Dsz1GlsIpfG5tJcrOQN+irHH//4x+Tl5XHvvfeef2zdunXExsYSExPD\n3LlzKSsrG+xYQ8aaSbcRZYshlFnOf79dZHacsOrq6WfLsT9hj+7mqrSrmZw2wexIIiIySAa1wLz0\n0ku4XC7uu+++849VVFSwceNGDMMgEAhQVFTE+PHjBzPWkBLjimb9pOXY7CEO+3ezaesBNm8v5fUP\nqjh2upnmdv+QWR/z6127CKWeIc6WzLopS82OIyIigyhsU0jHjh1j06ZN1NTU4HQ62b59O83NzURF\nRVFYWAhAfn4+Dz/8MFlZWaxatQq73c4NN9zAtGnTwhVrWJiVOY09VQc4SRln45/hTJ8HoyoWozwG\nozcGe38caZ5URiRmMCIlnqzUGLJSzn24Xda4AmxfSSUV9j3YDBv/c9YG3A6X2ZFERGQQ2QwL3n8+\nnPOGQ2VesrOvi1fPvEF1Rx0NPi9dgU+/JsMAo8+D4Y/F8J8rN3H2JDJi0xiVmMmI1HiyU2PISo0l\nIcaFzWYz4ZX8xcdj09XTx/3bH8dIqOP6zBtYPeUWU3MNd0Pld2Yo0thELo3NpbnYGhhtEjNExbvj\nuGPC7ec/7w324e1pptHnpcnnpbHHS21nI96eZrqjmiGx+dzzgCqg0gCjPhrjTAyGPwZnIJ7kqBSy\nY9MYlZzJyLQEslNjSE+KxukY3KVU//et1zAS6ki2ZbNy8k2D+m+LiEhkUIEZJqIcbkbEZX/m3kC9\nwT6afF6aeppp8nmp7WqktrOJFkczPReUm9aPPop7wDgVjVEcA72xxNoSSYtOJTsug9Gpfyk3sZ6B\nn9Z5p+QUZxx7sYecfHdeoe62KyIyTKnACFEONyPjcxgZn/Opr/kDvefO3PR4aej2Ut3eQH13E632\nFnqjmoFm/ED1Rx/7vWDURGP0xuAKxJPgSiY9OpVRiZmMTctmRFo8aQke7PYvPh3V6evl6ZPPYIsJ\n8tWcpWTGpl3uSxcREYtSgZGL8jijLlpuzp21aaK6o5Gq9gYafV7aaaXf00yIZto4QxtQ7oM3z4JR\nFg29sUTbEkh2p5AZk05ecibjM3LISY3D4/78H8mf/r8/YMS0kGEbw5IrrgnjqxYRkUinAiNfmscZ\nxaj4HEbF53Bl5ie/9nG5qe9q5HRLPbUdjXj9Xjrd7QQ8XnrxUk8F9SE40gyGF4zeaJyBOGLtSaRG\npZIdn87YlGzGZ2ZTXHeWiuB+7CEP37t2g+kLikVExFwqMBIWF5abOX+17MYf8NPka+Z0Sx1nWuup\n7/LS0teMz9VO0NNEJ010Us4ZH+z1gVFlg5Adm8Ng5ejlJHl0+20RkeFOBUYGncfpYVTCCEYljODa\n0Z/8mj/gp7q9kVPNtVS2NdDQ7aU90IqfDibGzuYr47RRo4iIqMBIhPE4PYxLzWVcau6nvqb7JoiI\nyMd0DaqIiIhYjgqMiIiIWI4KjIiIiFiOCoyIiIhYjgqMiIiIWI4KjIiIiFiOCoyIiIhYjgqMiIiI\nWI4KjIiIiFiOCoyIiIhYjgqMiIiIWI4KjIiIiFiOCoyIiIhYjs0wDMPsECIiIiJfhM7AiIiIiOWo\nwIiIiIjlqMCIiIiI5ajAiIiIiOWowIiIiIjlqMCIiIiI5ajAXODf/u3fWLNmDWvXruXDDz80O45c\n4Oc//zlr1qxh5cqV7Nixw+w4cgG/38+iRYt4/vnnzY4iF3jppZdYunQpK1asYPfu3WbHEaC7u5t7\n772XwsJC1q5dy549e8yOZGlOswNEiv3793P27Fm2bdvGqVOneOCBB9i2bZvZsQTYt28f5eXlbNu2\njdbWVpYvX85NN91kdiz5yK9+9SsSExPNjiEXaG1t5fHHH+e5557D5/Px6KOPcv3115sda9h74YUX\nGDNmDBs3bqShoYG77rqL1157zexYlqUC85G9e/eyaNEiAPLz82lvb6erq4u4uDiTk8mcOXOYNm0a\nAAkJCfT09BAMBnE4HCYnk1OnTnHy5En9cYwwe/fuZd68ecTFxREXF8cjjzxidiQBkpOTKS0tBaCj\no4Pk5GSTE1mbppA+4vV6P/HDlJKSQlNTk4mJ5GMOh4OYmBgAnn32Wa699lqVlwixadMm7r//frNj\nyF+prq7G7/fz93//96xfv569e/eaHUmAW2+9ldraWhYvXsyGDRv4p3/6J7MjWZrOwHwO7bAQed54\n4w2effZZnnzySbOjCPDiiy8yY8YMRo0aZXYU+QxtbW089thj1NbW8vWvf51du3Zhs9nMjjWs/elP\nfyInJ4ff/va3lJSU8MADD2jt2GVQgflIRkYGXq/3/OeNjY2kp6ebmEgutGfPHn7961/zn//5n8TH\nx5sdR4Ddu3dTVVXF7t27qa+vx+12k5WVxfz5882ONuylpqYyc+ZMnE4nubm5xMbG0tLSQmpqqtnR\nhrWioiIWLFgAwMSJE2lsbNR0+GXQFNJHrrnmGrZv3w5AcXExGRkZWv8SITo7O/n5z3/Of/zHf5CU\nlGR2HPnIL37xC5577jn++Mc/snr1au655x6VlwixYMEC9u3bRygUorW1FZ/Pp/UWESAvL48jR44A\nUFNTQ2xsrMrLDltDtwAAA3RJREFUZdAZmI9ceeWVTJkyhbVr12Kz2XjooYfMjiQfeeWVV2htbeX7\n3//++cc2bdpETk6OialEIldmZiY333wzd9xxBwD/8i//gt2u/6+abc2aNTzwwANs2LCBQCDAww8/\nbHYkS7MZWuwhIiIiFqNKLiIiIpajAiMiIiKWowIjIiIilqMCIyIiIpajAiMiIiKWowIjImFVXV1N\nQUEBhYWF53fh3bhxIx0dHZd8jMLCQoLB4CU/f926dbz//vtfJq6IWIQKjIiEXUpKCps3b2bz5s08\n/fTTZGRk8Ktf/eqSv3/z5s264ZeIfIJuZCcig27OnDls27aNkpISNm3aRCAQoL+/n5/85CdMnjyZ\nwsJCJk6cyIkTJ/jd737H5MmTKS4upq+vjwcffJD6+noCgQDLli1j/fr19PT08IMf/IDW1lby8vLo\n7e0FoKGhgR/+8IcA+P1+1qxZw6pVq8x86SIyQFRgRGRQBYNBXn/9dWbNmsU//uM/8vjjj5Obm/up\nze1iYmLYsmXLJ7538+bNJCQk8O///u/4/X6WLFnCwoULee+99/B4PGzbto3GxkZuvPFGAF599VXG\njh3Lv/7rv9Lb28szzzwz6K9XRMJDBUZEwq6lpYXCwkIAQqEQs2fPZuXKlfzyl7/kn//5n88/r6ur\ni1AoBJzb3uOvHTlyhBUrVgDg8XgoKCiguLiYsrIyZs2aBZzbmHXs2LEALFy4kK1bt3L//fdz3XXX\nsWbNmrC+ThEZPCowIhJ2H6+BuVBnZycul+tTj3/M5XJ96jGbzfaJzw3DwGazYRjGJ/b6+bgE5efn\n8/LLL3PgwAFee+01fve73/H0009f7ssRkQigRbwiYor4+HhGjhzJW2+9BcDp06d57LHHLvo906dP\nZ8+ePQD4fD6Ki4uZMmUK+fn5HDp0CIC6ujpOnz4NwJ///GeOHj3K/Pnzeeihh6irqyMQCITxVYnI\nYNEZGBExzaZNm/jpT3/Kb37zGwKBAPfff/9Fn19YWMiDDz7InXfeSV9fH/fccw8jR45k2bJl7Ny5\nk/Xr1zNy5EimTp0KwLhx43jooYdwu90YhsG3vvUtnE697YkMBdqNWkRERCxHU0giIiJiOSowIiIi\nYjkqMCIiImI5KjAiIiJiOSowIiIiYjkqMCIiImI5KjAiIiJiOSowIiIiYjn/HydhrKKFzYpRAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i4lGvqajDWlw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## One-Hot Encoding for Discrete Features\n", + "\n", + "Discrete (i.e. strings, enumerations, integers) features are usually converted into families of binary features before training a logistic regression model.\n", + "\n", + "For example, suppose we created a synthetic feature that can take any of the values `0`, `1` or `2`, and that we have a few training points:\n", + "\n", + "| # | feature_value |\n", + "|---|---------------|\n", + "| 0 | 2 |\n", + "| 1 | 0 |\n", + "| 2 | 1 |\n", + "\n", + "For each possible categorical value, we make a new **binary** feature of **real values** that can take one of just two possible values: 1.0 if the example has that value, and 0.0 if not. In the example above, the categorical feature would be converted into three features, and the training points now look like:\n", + "\n", + "| # | feature_value_0 | feature_value_1 | feature_value_2 |\n", + "|---|-----------------|-----------------|-----------------|\n", + "| 0 | 0.0 | 0.0 | 1.0 |\n", + "| 1 | 1.0 | 0.0 | 0.0 |\n", + "| 2 | 0.0 | 1.0 | 0.0 |" + ] + }, + { + "metadata": { + "id": "KnssXowblKm7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Bucketized (Binned) Features\n", + "\n", + "Bucketization is also known as binning.\n", + "\n", + "We can bucketize `population` into the following 3 buckets (for instance):\n", + "- `bucket_0` (`< 5000`): corresponding to less populated blocks\n", + "- `bucket_1` (`5000 - 25000`): corresponding to mid populated blocks\n", + "- `bucket_2` (`> 25000`): corresponding to highly populated blocks\n", + "\n", + "Given the preceding bucket definitions, the following `population` vector:\n", + "\n", + " [[10001], [42004], [2500], [18000]]\n", + "\n", + "becomes the following bucketized feature vector:\n", + "\n", + " [[1], [2], [0], [1]]\n", + "\n", + "The feature values are now the bucket indices. Note that these indices are considered to be discrete features. Typically, these will be further converted in one-hot representations as above, but this is done transparently.\n", + "\n", + "To define feature columns for bucketized features, instead of using `numeric_column`, we can use [`bucketized_column`](https://www.tensorflow.org/api_docs/python/tf/feature_column/bucketized_column), which takes a numeric column as input and transforms it to a bucketized feature using the bucket boundaries specified in the `boundaries` argument. The following code defines bucketized feature columns for `households` and `longitude`; the `get_quantile_based_boundaries` function calculates boundaries based on quantiles, so that each bucket contains an equal number of elements." + ] + }, + { + "metadata": { + "id": "cc9qZrtRy-ED", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def get_quantile_based_boundaries(feature_values, num_buckets):\n", + " boundaries = np.arange(1.0, num_buckets) / num_buckets\n", + " quantiles = feature_values.quantile(boundaries)\n", + " return [quantiles[q] for q in quantiles.keys()]\n", + "\n", + "# Divide households into 7 buckets.\n", + "households = tf.feature_column.numeric_column(\"households\")\n", + "bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " california_housing_dataframe[\"households\"], 7))\n", + "\n", + "# Divide longitude into 10 buckets.\n", + "longitude = tf.feature_column.numeric_column(\"longitude\")\n", + "bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " california_housing_dataframe[\"longitude\"], 10))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U-pQDAa0MeN3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Train the Model on Bucketized Feature Columns\n", + "**Bucketize all the real valued features in our example, train the model and see if the results improve.**\n", + "\n", + "In the preceding code block, two real valued columns (namely `households` and `longitude`) have been transformed into bucketized feature columns. Your task is to bucketize the rest of the columns, then run the code to train the model. There are various heuristics to find the range of the buckets. This exercise uses a quantile-based technique, which chooses the bucket boundaries in such a way that each bucket has the same number of examples." + ] + }, + { + "metadata": { + "id": "YFXV9lyMLedy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 627 + }, + "outputId": "3ff7bc48-e9c7-4451-df46-8179bbf4158f" + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns\n", + "\n", + "\n", + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 168.68\n", + " period 01 : 142.52\n", + " period 02 : 126.17\n", + " period 03 : 115.13\n", + " period 04 : 107.34\n", + " period 05 : 101.58\n", + " period 06 : 97.16\n", + " period 07 : 93.59\n", + " period 08 : 90.71\n", + " period 09 : 88.30\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYFOf6N/Dv7C6dBSlLE+lWQERF\nRWzYQNDYTTQSNZ5UTTyJiSbvL/WYZnpM1MScJEZNTiyxd41dY0EUwU4RlN57WXbn/cO4ghRBXXaB\n7+e6cl3uzDOz93LPhptnZu4RRFEUQURERNSCSHQdABEREVFTsYAhIiKiFocFDBEREbU4LGCIiIio\nxWEBQ0RERC0OCxgiIiJqcWS6DoBIn3Xu3BkuLi6QSqUAAJVKhYCAALz11lswNTV94P2uW7cOU6ZM\nqbV848aNePPNN/H9998jODhYs7y8vBz9+/fHyJEj8cknnzzw+zZWcnIyPvroIyQmJgIATExMMHfu\nXAwfPlzr790Uy5YtQ3Jycq2fyalTpzB79mw4OzvX2mb37t3NFd5DuXXrFoYNGwZ3d3cAgCiKsLW1\nxf/93/+hW7duTdrXF198AScnJ0ydOrXR22zZsgUbNmzA6tWrm/ReRM2FBQzRfaxevRoODg4AgMrK\nSrzyyiv44Ycf8MorrzzQ/rKysvDf//63zgIGABwdHbF9+/YaBczBgwdhYWHxQO/3IF577TWMHTsW\n33//PQAgOjoaM2bMwK5du+Do6NhscTwMR0fHFlOs1Ecqldb4DDt37sScOXOwZ88eGBoaNno/8+fP\n10Z4RDrFU0hETWBoaIiBAwfi8uXLAICKigq88847CAkJwahRo/DJJ59ApVIBAK5cuYInnngCoaGh\nGDt2LI4ePQoAeOKJJ5CamorQ0FBUVlbWeo+ePXvi1KlTKCsr0yzbuXMngoKCNK8rKyvxwQcfICQk\nBEOHDtUUGgBw7tw5TJgwAaGhoQgLC8OJEycA3P6LfsCAAVi1ahXGjBmDgQMHYufOnXV+zmvXrsHP\nz0/z2s/PD3v27NEUct999x0GDx6McePGYcWKFRg6dCgA4I033sCyZcs021V/fb+4PvroI0yfPh0A\ncPbsWUycOBEjRozAlClTcPPmTQC3Z6L+/e9/Izg4GNOnT0d6evp9Mla3jRs3Yu7cuZgxYwY+/fRT\nnDp1Ck888QTmzZun+WW/a9cujB49GqGhoXjqqaeQnJwMAPj222/x1ltvYdKkSVi5cmWN/c6bNw8/\n//yz5vXly5cxYMAAqNVqfPXVVwgJCUFISAieeuopZGRkNDnusLAwlJeXIyEhAQCwdu1ahIaGYujQ\noXj11VdRXl4O4PbP/eOPP8aYMWOwa9euGnmo77hUq9X4z3/+gyFDhmDSpEm4cuWK5n1Pnz6N8ePH\nIywsDKNGjcKuXbuaHDvRIycSUb06deokpqWlaV7n5+eLTz75pLhs2TJRFEXxhx9+EJ955hlRqVSK\nZWVl4sSJE8XNmzeLKpVKHDVqlLht2zZRFEXxwoULYkBAgFhUVCSePHlSHD58eJ3v9+eff4oLFy4U\nX3vtNc22RUVF4rBhw8T169eLCxcuFEVRFL/77jtxxowZYkVFhVhSUiKOGzdOPHDggCiKojh69Ghx\n+/btoiiK4qZNmzTvdfPmTbFbt27i6tWrRVEUxZ07d4ojRoyoM46XXnpJDA4OFn/99VcxLi6uxrqr\nV6+KvXv3FjMzM0WlUim+8MILYnBwsCiKorhw4UJx6dKlmrHVXzcUl7e3t7hx40bN5w0ICBCPHTsm\niqIobtu2TRw/frwoiqK4Zs0a8cknnxSVSqWYm5srBgcHa34m1TX0M77zc+7Ro4eYmJioGe/r6yue\nOHFCFEVRTElJEXv16iXeuHFDFEVR/Omnn8QZM2aIoiiKS5YsEQcMGCDm5OTU2u+OHTvEJ598UvP6\nm2++ERctWiReu3ZNHDlypFhZWSmKoiiuWrVK3LRpU73x3fm5dO3atdbygIAAMT4+Xjxz5owYGBgo\npqeni6Ioim+//bb4ySefiKJ4++c+ZswYsby8XPN66dKlDR6Xhw4dEkeOHCkWFxeLZWVl4qRJk8Tp\n06eLoiiKEyZMEE+dOiWKoigmJiaKr776aoOxEzUHzsAQ3UdERARCQ0MxbNgwDBs2DP369cMzzzwD\nADh06BCmTJkCmUwGY2NjjBkzBsePH8etW7eQnZ2N8PBwAICvry+cnJwQExPTqPcMDw/H9u3bAQD7\n9+9HcHAwJJK7X9eDBw9i2rRpMDQ0hKmpKcaOHYu9e/cCADZv3oxRo0YBAHr16qWZvQCAqqoqTJgw\nAQDg7e2N1NTUOt//s88+w5NPPolt27Zh9OjRGDp0KP73v/8BuD07EhAQAIVCAZlMhtGjRzfqMzUU\nl1KpxIgRIzT7t7e318w4jR49GsnJyUhNTUVkZCRGjBgBmUwGKyurGqfZ7pWWlobQ0NAa/1W/VsbN\nzQ1ubm6a18bGxggMDAQAHD9+HH379oWrqysAYPLkyTh16hSqqqoA3J6Rsra2rvWeQ4YMwaVLl5Cf\nnw8A2LdvH0JDQ2FhYYHc3Fxs27YNBQUFiIiIwLhx4xr1c7tDFEWsXbsW9vb2cHNzw4EDBxAWFgZ7\ne3sAwNSpUzXHAAAEBgbCyMioxj4aOi7PnDmDwYMHw8zMDMbGxppcAYCNjQ02b96M+Ph4uLm54Ysv\nvmhS7ETawGtgiO7jzjUwubm5mtMfMtntr05ubi4sLS01Yy0tLZGTk4Pc3FzI5XIIgqBZd+eXmK2t\n7X3fMygoCG+99Rby8/OxY8cOvPjii5oLagGgqKgIH3/8Mb788ksAt08pde/eHQCwbds2rFq1CiUl\nJVCr1RCrPe5MKpVqLj6WSCRQq9V1vr+RkRFmz56N2bNno7CwELt378ZHH30EZ2dnFBQU1Lgex8bG\n5r6fpzFxmZubAwAKCwtx8+ZNhIaGatYbGhoiNzcXBQUFkMvlmuUWFhYoKSmp8/3udw1M9bzd+zov\nL6/GZ5TL5RBFEXl5eXVue4epqSn69++PQ4cOoVevXigsLESvXr0gCAK+/fZb/Pzzz1i0aBECAgLw\n/vvv3/d6IpVKpfk5iKIILy8vLFu2DBKJBEVFRdi3bx+OHTumWa9UKuv9fAAaPC4LCgpgZ2dXY/kd\nH330EZYvX45Zs2bB2NgYr776ao38EOkCCxiiRrK2tkZERAQ+++wzLF++HABga2ur+WsbAPLz82Fr\nawsbGxsUFBRAFEXNL4v8/PxG/7I3MDBAcHAwNm/ejKSkJPj7+9coYOzs7PD000/XmoHIyMjAW2+9\nhfXr16Nr1664ceMGQkJCmvQ5c3NzcfnyZc0MiIWFBaZMmYKjR4/i2rVrkMvlKCoqqjH+jnuLooKC\ngibHZWdnBw8PD2zcuLHWOgsLi3rf+1GysbHBuXPnNK8LCgogkUhgZWV1321DQkKwb98+5OXlISQk\nRJP/fv36oV+/figtLcXixYvx+eef33cm496LeKuzs7PD+PHjsXDhwiZ9rvqOy4Z+tra2tnj77bfx\n9ttv49ixY3jppZcwcOBAmJmZNfq9iR41nkIiaoJZs2bh3LlzOH36NIDbpww2bNgAlUqF0tJSbNmy\nBYMHD4azszMcHBw0F8lGRUUhOzsb3bt3h0wmQ2lpqeZ0RH3Cw8Px448/1nnr8rBhw7B+/XqoVCqI\noohly5bhyJEjyM3NhampKTw8PFBVVYW1a9cCQL2zFHUpLy/Hyy+/rLm4EwCSkpIQHR2N3r17w9/f\nH5GRkcjNzUVVVRU2b96sGadQKDQXf968eRNRUVEA0KS4/Pz8kJWVhejoaM1+Xn/9dYiiiB49euDA\ngQNQqVTIzc3FkSNHGv25miIoKAiRkZGa01x//PEHgoKCNDNvDQkODsa5c+ewf/9+zWmYY8eO4f33\n34darYapqSm6dOlSYxbkQQwdOhR79+7VFBr79+/HihUrGtymoePS398fx44dQ1lZGcrKyjSFk1Kp\nREREBDIzMwHcPvUok8lqnNIk0gXOwBA1gbm5OZ599lksXrwYGzZsQEREBG7evInw8HAIgoDQ0FCM\nGjUKgiDgyy+/xLvvvovvvvsOJiYm+Oabb2BqaorOnTvD0tISQUFB2LRpE5ycnOp8rz59+kAQBISF\nhdVaN23aNNy6dQvh4eEQRRE+Pj6YMWMGTE1NMWjQIISEhMDGxgZvvPEGoqKiEBERgSVLljTqMzo5\nOWH58uVYsmQJPvjgA4iiCHNzc7z55puaO5Mef/xxjB8/HlZWVhg5ciSuX78OAJgyZQrmzp2LkSNH\nolu3bppZli5dujQ6LmNjYyxZsgSLFi1CSUkJDAwMMG/ePAiCgClTpiAyMhLDhw+Hk5MThg8fXmPW\noLo718Dc69NPP73vz8DBwQEffPABXnzxRSiVSjg7O2PRokWN+vmZm5vD29sbV69eRY8ePQAAAQEB\n2LFjB0JCQmBoaAhra2t89NFHAIAFCxZo7iRqCm9vbzz//POIiIiAWq2GjY0N3n///Qa3aei4DA4O\nxqFDhxAaGgpbW1sMHjwYkZGRMDAwwKRJkzBz5kwAt2fZ3nrrLZiYmDQpXqJHTRCrn4gmImqiyMhI\nLFiwAAcOHNB1KETUhnAOkIiIiFocFjBERETU4vAUEhEREbU4nIEhIiKiFocFDBEREbU4LfI26qys\num+bfBSsrEyRl1eqtf3Tg2Nu9BPzor+YG/3F3DSOQiGvdx1nYO4hk0l1HQLVg7nRT8yL/mJu9Bdz\n8/BYwBAREVGLwwKGiIiIWhwWMERERNTisIAhIiKiFocFDBEREbU4LGCIiIioxWEBQ0RERC0OCxgi\nIqJW5tChvxo17ptvvkBqakq9699449VHFdIjxwKGiIioFUlLS8X+/XsaNXbevPlwcmpf7/pPPvny\nUYX1yLXIRwkQERFR3b78cjEuX76IgQMDMHLkKKSlpeLrr5fh44//g6ysTJSVleHpp59FUNBAzJ37\nLF59dQEOHvwLJSXFSE5OQkrKLbz88nwEBgYhPHwYduz4C3PnPouAgL6IiopEfn4+Fi/+Cra2tvjP\nf95GenoafH2748CB/di0aWezfU4WMERERFqy7kAczlzJrLVcKhWgUokPtM+ALnaYMtSr3vVTp0Zg\n48Z1cHf3RHLyDSxb9l/k5eWiT59+GDVqNFJSbuHtt99AUNDAGttlZmbg88+X4OTJE9iy5U8EBgbV\nWG9mZoZvvlmO5cu/xZEjB+Dk5IzKygqsWLESx48fxbp1/3ugz/OgWMBUk1OWi8zMNNgJjroOhYiI\n6KF17eoNAJDLLXD58kVs3boRgiBBYWFBrbHdu/cAANjZ2aG4uLjWej8/f836goICJCUlwtfXDwAQ\nGBgEqbR5n+/EAqaanTf242RaJBb0fgmuFh10HQ4REbVwU4Z61TlbolDIkZVVpPX3NzAwAADs27cb\nhYWFWLr0vygsLMS//hVRa2z1AkQUa88O3bteFEVIJLeXCYIAQRAedfgN4kW81fR16AkA2BS3o87k\nERER6TuJRAKVSlVjWX5+PhwdnSCRSHD48AEolcqHfp/27Z1x9eolAMDp0ydrvae2sYCpppOVF3o6\n+uB6fgJicy7rOhwiIqImc3V1x9WrV1BScvc00JAhQ3HixFHMm/cCTExMYGdnh19++fGh3qd//4Eo\nKSnBCy/MRnT0OVhYWD5s6E0iiC1wqkGb027lhkV4bfcHsDdV4P/1eQVSSfOe06P6NdeUKzUN86K/\nmBv91RpyU1hYgKioSAwZMgxZWZmYN+8F/P77n4/0PRQKeb3reA3MPTpYOiHQMQAn0k7j77QzGNC+\nn65DIiIi0jumpmY4cGA/fv99NURRjZdeat6mdyxg6jDaYyQiM85he+Je9Lb3h7HMSNchERER6RWZ\nTIb//Odjnb0/r4Gpg6WRBYa5DEZRZTH+Sj6s63CIiIjoHixg6jHcZTDkhubYn3wYBRWFug6HiIiI\nqmEBUw9jmRHC3UeiUq3EjsS9ug6HiIiIqmEB04D+jgFwMLXDidQzSC1O13U4RERE9A8WMNWUlCuR\nmn33vnmpRIpxXmEQIWJLfPM9oIqIiEjbJk0ag9LSUqxevRKxsRdqrCstLcWkSWMa3P7Qob8AADt3\nbsPhwwe1Fmd9WMBUs/5gPOZ8ehDpuaWaZT42XdGxnQdic67gWl6cDqMjIiJ69CIiZsLHp3uTtklL\nS8X+/XsAAGFhYzB4cLA2QmsQb6OuxsfdGkeiU7HhUDzmTvAFcPv5DuO9wvFp5LfYGLcDC3q/BInA\nuo+IiPTT008/iY8++gIODg5IT0/Dm2/Oh0Jhh7KyMpSXl+OVV15Ht24+mvEffvgehgwZhh49/PF/\n/7cAlZWVmgc7AsDevbuwYcNaSKUSuLl5YuHC/8OXXy7G5csX8csvP0KtVqNdu3aYOPFxLFv2DWJi\nolFVpcLEiVMQGhqOuXOfRUBAX0RFRSI/Px+LF38FBweHh/6cLGCq6dVZga5u1oi6loVrN/PRqUM7\nAICrRQf0tu+ByIzziMw4jz7/PDOJiIioIRvjtuNcZkyt5VKJAJX6wRrh+9v5YoLX6HrXDxoUjOPH\nj2DixCk4evQwBg0KhqdnRwwaNARnz57Bb7/9ig8//KzWdnv27IKHhydefnk+/vprr2aGpaysDF98\n8S3kcjnmzHkG8fFxmDo1Ahs3rsOsWc/gp59+AACcPx+FhIR4LF/+M8rKyjBjxhMYNGgIAMDMzAzf\nfLMcy5d/iyNHDmDKlGkP9Nmr41RCNYIgYPZjtx89vvbAdairPWXhMY9QyAQptsbvhlL18A/BIiIi\n0obbBcxRAMCxY4cxYMBgHD78F154YTaWL/8WBQUFdW5340YCfHz8AAD+/r00yy0sLPDmm/Mxd+6z\nSEpKREFBfp3bX7lyCT163P4D38TEBG5uHrh58yYAwM/PHwBgZ2eH4uLiOrdvKs7A3KOzqzX6dLXD\n6cuZOH05A/263Z7msjGxxmDnIPx18wgO3TqOEa5DdBsoERHpvQleo+ucLdHms5A8PDyRk5OFjIx0\nFBUV4ejRQ7C1tcPbby/ClSuX8N13X9e5nSgCEokAAFD/MzukVCrx5ZefYuXK32FjY4sFC/5d7/sK\ngoDqT1esqlJq9ieV3n2u4KN6BCNnYOowcbAnZFIBfx5KgLLq7uPBQ92GwlRmgj1JB1CsLNFhhERE\nRPULDByAFSuWYeDAwSgoyEf79s4AgMOHD6KqqqrObVxcXHHlymUAQFRUJACgtLQEUqkUNja2yMhI\nx5Url1FVVQWJRAKVSlVj+y5dvHHu3Nl/titFSsotODu7aOsjsoCpi6KdCYb36oCcwnLsj7ylWW5q\nYIpQt2EoqyrH7ht/6TBCIiKi+g0eHIz9+/dgyJBhCA0Nx9q1v+GVV+bA29sHOTk52LFja61tQkPD\ncfFiDObNewE3byZBEARYWrZDQEBf/OtfT+GXX37EtGkRWLLkS7i6uuPq1StYsuQLzfZ+fj3QuXMX\nzJnzDF55ZQ6ef34uTExMtPYZBfFRzeU0I20+gvzOtF5puRILv/8balHEJ88FQm5qCABQqquw6OTn\nyK8owDv9XoOtiY3WYqGaWsPj51sj5kV/MTf6i7lpHIVCXu86zsDUw9TYAI8NcEdZhQpbj93QLDeQ\nyPCYZyhUogpb43frLkAiIqI2jAVMA4L928POygSHzqcgLefuNS+97PzgKu+As5nRuFGYrMMIiYiI\n2iYWMA2QSSWYPMQLKrWIDYfiNctvN7cLAwBsvL7jkV1RTURERI3DAuY+enayRSdnS5y7no2ryXma\n5R2tPOFr2xXxBYm4kH1JhxESERG1PSxg7kMQBEwZ2hEAsPZAXI3mduM8wyARJNgSvxMqtaq+XRAR\nEdEjxgKmETycLNC3mz1upBfh1KUMzXIHM3v0dwxARmkWjqee1mGEREREbQsLmEaaOMgDMqkEGw/H\no1J5d7YlzH0kDKWG2Jm4D+VV5TqMkIiIqO1gAdNItu1MMKK3M3IKK7D/7N3mdpZGcoxwGYwiZTH2\nJR/WYYRERERtBwuYJggPdIW5iQF2/H0DhaWVmuXDXAbD0lCOv5KPIL+i7odkERER0aPDAqYJTI0N\nMFbT3C5Rs9xIaohwj5FQqpXYnrBXhxESERG1DSxgmmhwDyfYW5ng0LnUGs3tAh0D4Ghmj5NpkUgp\nTtNhhERERK0fC5gmkkklmBzsBbUoYv3Bu83tJIIE4zzDIELE5ridOoyQiIio9WMB8wD8O9qiU4d2\nOB+XjStJd5vbedt0QScrL1zKvYorudd1GCEREVHrxgLmAQiCgMeHegGo2dyu+iMGNsXtgFpU6yxG\nIiKi1owFzANyd7RAP297JGUU4dTFu83tXOTOCLDviVvFqTiTfk6HERIREbVeLGAewoR/mtv9eaRm\nc7sxHiGQSWTYlrAHlSqlDiMkIiJqnVjAPARbSxOMCHBGbmEF9kXe1Cy3MbFCsPMA5FXk49CtYzqM\nkIiIqHViAfOQwvu5/dPcLgmFJXeb2410DYaZgSn23DiI4sqSBvZARERETcUC5iGZGsswdoA7yitV\n2FKtuZ2pgQlGuQ1Huaocu27s12GERERErQ8LmEdgcA8nOFib4vD5VKRm351tGdi+H2xNbHAk5W9k\nlmbrMEIiIqLWRasFzLVr1zB8+HCsWbMGAKBUKjF//nxMmjQJM2bMQEHB7ecGbd26FRMnTsTkyZOx\nfv16bYakFbeb23lCLYrYcOhuczuZRIaxnqOgFtXYGr9LhxESERG1LlorYEpLS7Fo0SIEBgZqlq1b\ntw5WVlbYsGEDwsLCEBkZidLSUixduhQrV67E6tWr8euvvyI/P19bYWlNDy9bdP6nud3las3t/BW+\ncLNwwbmsGCQUJOkwQiIiotZDawWMoaEhfvzxR9jZ2WmWHTx4EI899hgA4PHHH8ewYcMQHR0NX19f\nyOVyGBsbo2fPnoiKitJWWFojCAIeH3anud31e5rbhQMANsVth/jPciIiInpwMq3tWCaDTFZz9ykp\nKThy5Ag+++wz2Nra4t1330V2djasra01Y6ytrZGVldXgvq2sTCGTSbUSNwAoFPIH3m5Ir3QcOnsL\nF5PzMbS3yz/Lu+NYhh/OpEQjsTIefZ39H2W4bcqD5oa0i3nRX8yN/mJuHo7WCpi6iKIId3d3zJ07\nF8uWLcMPP/yAbt261RpzP3l5pdoKEQqFHFlZRQ+8fXgfFxyPTsXK7ZfQyckCRga3C61RziNwNjUG\nq6M2wtXAHVKJ9gqw1uphc0PawbzoL+ZGfzE3jdNQkdesdyHZ2toiICAAADBgwADExcXBzs4O2dl3\n79DJzMyscdqppbGxNMbIgA7IK6rAvjN3m9vZm9lhgFNfZJZl42jqSR1GSERE1PI1awEzaNAgHD16\nFABw8eJFuLu7w8/PDzExMSgsLERJSQmioqLQu3fv5gzrkQvr5wq5qQF2nExCQbXmdmHuI2AsNcKu\nxP0oqyrTYYREREQtm9YKmNjYWERERGDTpk1YtWoVIiIiMHbsWBw+fBhTp07F/v378eyzz8LY2Bjz\n58/H7NmzMWvWLMyZMwdyecs+L2hiJMO4Ae6ouKe5ndzQHCNch6BYWYK9SYd0FyAREVELJ4gt8LYY\nbZ43fFTnJatUarz782lk5Jbh/dl90N7WDABQqarE+yc/Q4myBO/2WwAr43YP/V5tBc8Z6yfmRX8x\nN/qLuWkcvbkGpi2RSSWYPMQLalHE+oNxmuWGUkOMdh8JpboK2xL26DBCIiKilosFjBb5edmgi0s7\nXIjPwaUbuZrlfR17wcnMAafTo3CrKFWHERIREbVMLGC0SBAEPD60IwBg3YE4qNW3z9ZJBAnGe4VD\nhIhNcTt0GSIREVGLxAJGy1wd5Aj0dkByZjH+vpiuWd7NpjO6WHXElbzruJxzTYcREhERtTwsYJrB\nxMEeMJBJsPFIAiqUKs3y8V7hECBgU/wOqEW1DiMkIiJqWVjANANri7vN7faeTtYsd5Y7oY9DT6QU\np+FUest7/hMREZGusIBpJmH9XGFhaoCdJ5NRUFyhWT7GIwQGEhm2J+xBpaqygT0QERHRHSxgmomJ\nkQxjB3qgQqnC5mrN7ayM2yG4w0DkVxTgwM1jOoyQiIio5WAB04wG+TnC0cYUR6JTkZJVrFk+0nUI\nzA3MsC/pIIoqixvYAxEREQEsYJqVVCLBlGAviCKw/lC8ZrmJzASj3IajXFWBnYn7dRghERFRy8AC\nppl197RBV1crXIjPwcVqze0GtO8LhYkNjqWeREZplg4jJCIi0n8sYJrZ7eZ2XhAArP3rbnM7mUSG\nsZ5hUItqbInfpdsgiYiI9BwLGB1wsZejv48DbmUV40Ts3eZ2PRQ+8LB0RXRWLOLyExvYAxERUdvG\nAkZHxg/ygKFMgo1H4lFRebu5nSAIGO8VDgDYHLcDLfBB4URERM2CBYyOWFsYY2QfF+QXV2LPmbvN\n7Tws3dBD4YvEwmScy4rRYYRERET6iwWMDo3q6wILM0PsOpmM/GrN7cZ6hkIiSLAlfheq1FU6jJCI\niEg/sYDRIRMjGcYNdL/d3O7o3Wte7EwVGNg+ENllOTiaclKHERIREeknFjA6NrC7I5xszXD0Qipu\nVWtuF+Y2HMZSY+xK3I9SZZkOIyQiItI/LGB07HZzO0+IIrDuYJxmubmhGUJcg1FSVYq9SQd1GCER\nEZH+YQGjB3w9bNDNzQqxCbmITczRLB/SYQCsjNrh4K1jyC3P02GERERE+oUFjB4QBAFTgm83t1t3\n4G5zO0OpAcZ4hKBKXYVtCXt0GyQREZEeYQGjJ1zs5ejv64BbWSU4HpOmWR7g4A9ncyecST+Hm0Up\nOoyQiIhIf7CA0SMTBnnebm53NEHT3E4iSDDeKxwiRGxiczsiIiIALGD0ipXcCCF9XFBQXIndp+82\nt+ti3RHdrDvjal4cLuVe1WGERERE+oEFjJ4Z1e+f5nankmo0txvnFQYBAjbH7YRaVOswQiIiIt1j\nAaNnjA1lGD/QHZVKNTYfTdAsb2/uiH6OvZFako6TaZE6jJCIiEj3WMDooQHdHdHe1gxHL6ThVubd\n5najPUbCQGKA7Ql7UKGq1GGz0WbxAAAgAElEQVSEREREusUCRg9JJRJMGepVq7ldOyNLDOswEAWV\nRTiQfESHERIREekWCxg95eNuDW83K8Qm5iI24W5zu+GuQ2BuYIZ9yYdQWFmkwwiJiIh0hwWMnhIE\nAVOGdoQAYO3Bu83tTGTGCHcfgQpVJXYk7tNtkERERDrCAkaPdbAzR1B3R6RkleBYteZ2QU59YWdq\nixOpp5FekqnDCImIiHSDBYyeGz/QA4YGEmw6koDyyioAgFQixTjPMKhFNTbH79RxhERERM2PBYye\ns5IbIbSPCwpKKrH71N3mdt1tveFp6YaY7Eu4npfQwB6IiIhaHxYwLUBoXxdYmhli9+lk5BXdbm4n\nCALGe40GAGyK28HmdkRE1KawgGkBjA1lGD/IA5VKNTZVa27nbumCnnbdkVR0E1GZF3QYIRERUfNi\nAdNCDPB1RHuFGY5fSMPNas3txnqOglSQYmv8bijVVTqMkIiIqPmwgGkhJBIBjwd7QQSw7sB1zVOp\nbU1sMMg5EDnluTh664RugyQiImomLGBaEB8PG/i4W+PijTzEJuZqloe6DYOJzBi7bvyFUmWpDiMk\nIiJqHixgWpgpwV4QBGDdgTio1Lcv3DU3MEOI61CUVpVhd9IBHUdIRESkfSxgWhhnO3MM8HVESnYJ\njl2429xuiHMQrI2tcPjmceSU5TawByIiopaPBUwLNH7QP83tjiZqmtsZSA0wxiMEVaIKWxN26zhC\nIiIi7WIB0wK1MzfCqL6uKCypxK6Td5vb9bbvgQ7y9ojMOI+kwps6jJCIiEi7WMC0UKF9XGBpbog9\n1ZrbSQQJJniFA7jd3O7OnUpEREStDQuYFsrIUIoJAz1QWaXGpiN3m9t1svKCj00XXM9PQGzOZR1G\nSEREpD0sYFqwIF9HOCvMcTwmDckZRZrlYz3DIEDA5ridUKlVOoyQiIhIO1jAtGASiYDHh95ubrf2\nQJzmlJGTuQMCHQOQXpqJnYn7dBskERGRFrCAaeG83a3h42GNy0l5iEm4e/v0WM9RsDWxwe6kAziR\nelqHERIRET16LGBaAU1zu4PVmtsZmuFFv6dhZmCK/13diEs5V3UcJRER0aPDAqYVcFaYY2B3J6Rm\nl+BoteZ29qYKPN99JiSCBP+NXY2bRak6jJKIiOjRYQHTSowf6A4jAyk2H0lAWcXdp1J7WLphZrep\nqFQpsTz6J+SW5+kwSiIiokeDBUwrYWluhFH9XFBYqsSuU8k11vnb+WJCx9EoqCzCsuifUaos01GU\nREREjwYLmFYkJMAF7cwNsfd0MnILy2usG9phIIKdByCtJAM/xqxClbqqnr0QERHpPxYwrYiRoRTj\nB9VubnfHhI6j4afwwbX8eKy5vIGdeomIqMViAdPKBPk4ooOdOU7EpiMpvajGOokgwcxuT8DdwgVn\nMqKwPXGvjqIkIiJ6OCxgWhmJRMCUf5rbrTsYV2uWxVBqiOe6z7zdI+bGXzieeko3gRIRET0EFjCt\nkLebNbp72uByUh5OxKbXWi83NMecf3rE/HF1Ey6yRwwREbUwLGBaqSeGdYSJkQwrd13BpRu5tdbb\nmSrwfPdZkAoS/BS7GjeLUnQQJRER0YNhAdNKOVib4uWJvhAE4LuNMTUe9niHh6VrtR4xP7NHDBER\ntRgsYFqxzi5W+NfobiivVOGr9dHILqjd/6WHnS8mdhzDHjFERNSisIBp5fp0tccTwzqioLgSX62L\nRnGZstaY4A4DENzhdo+YFTG/QskeMUREpOdYwLQBIwM6IKRPB6TllGLJnxdQqVTVGjPBazR6KHxw\nPT8Bv11ezx4xRESk17RawFy7dg3Dhw/HmjVraiw/evQoOnfurHm9detWTJw4EZMnT8b69eu1GVKb\nNTnYC3262iHuVgF+3HYJanXNAkUiSDCj29R/esScw/aEPTqKlIiI6P60VsCUlpZi0aJFCAwMrLG8\noqICK1asgEKh0IxbunQpVq5cidWrV+PXX39Ffn6+tsJqsySCgNnh3dDFpR3OXsvC7/uv1dEjxgDP\ndZ8JhYkNdicdwPEU9oghIiL9pLUCxtDQED/++CPs7OxqLP/+++8xbdo0GBoaAgCio6Ph6+sLuVwO\nY2Nj9OzZE1FRUdoKq00zkEkwd0J3OCvMcCAqpdZDH4HbPWJe9JsNcwMz/HFtEy7mXNFBpERERA3T\nWgEjk8lgbGxcY1liYiKuXLmCUaNGaZZlZ2fD2tpa89ra2hpZWVnaCqvNMzWW4ZUpPWBtYYQNh+Jx\nIjat1hg7U1s8330mpIIE/41dg+SiWzqIlIiIqH6y5nyzjz/+GG+99VaDYxpz8aiVlSlkMumjCqsW\nhUKutX3rA4VCjkXP9ceC747hl51X4OLUDv6d7e4Z44N5xrPxxfEV+CFmJT4cvgAKMxsdRVw9rtad\nm5aKedFfzI3+Ym4eTrMVMBkZGUhISMBrr70GAMjMzMT06dPx0ksvITs7WzMuMzMTPXr0aHBfeXml\nWotToZAjK6t207fWxkQq4KUJvvj8j/P4cOVpvDGtJ1wdan6Z3I08MbHjGGy4vhWLDizB/F4vwtTA\nVEcRt53ctDTMi/5ibvQXc9M4DRV5zXYbtb29Pfbv349169Zh3bp1sLOzw5o1a+Dn54eYmBgUFhai\npKQEUVFR6N27d3OF1aZ16tAOz47phspKFb5eH42s/NpN7II7DMDQDgORXpqJFTGr2COGiIj0gtYK\nmNjYWERERGDTpk1YtWoVIiIi6ry7yNjYGPPnz8fs2bMxa9YszJkzB3I5p9WaS+8udpg6vCMKSirx\n5bpoFJVW1hoz3iscPRS+uJ6fgDWX17FHDBER6ZwgtsDfRtqcdmur03rrD8Zh16lkeLa3wGtP+MPI\noOY1RpUqJZacW4HEwiSEuA7FY56hzR5jW82NvmNe9Bdzo7+Ym8bRi1NIpN8mDvFEP297xKcUYsXW\ni7Ua3RlKDfD8Pz1i9iQdwLGUkzqKlIiIiAUM/UMiCHg6rCu6ulrh3PVs/LavdqM7c0MzTY+Ytdc2\nIzb7so6iJSKito4FDGnIpBLMneCLDnbmOHguBTv+Tqo15naPmFmQClL8dPE3JBeyRwwRETU/FjBU\ng4mRDP+e7AcbC2NsPJKAYxdqN7pzt3TBLO+pUKqUWH7hF+SU5eogUiIiastYwFAtVnIjvPq4H8yM\nZVi56wpiEnJqjfFT+GBSx8dQWFmEZdE/o1Spvd48RERE92IBQ3VytDHDy5O6QyoVsGxTLG6kF9Ya\nM6RDEHvEEBGRTrCAoXp1dG6HZ8d4o1KpwtfropFZR6O7e3vEqEW1DiIlIqK2hgUMNahXZwWmjeiE\nwlIlvlp7HoX3NLqTCBLM6PYEPCxdEZlxHtsS9ugoUiIiaktYwNB9DevljPBAV2TklWHJhguoUKpq\nrDeUGuA535mwM7HF3qSDOMoeMUREpGUsYKhRJgzyQH8fBySkFuKHLRehUtc8VVSjR8zVTewRQ0RE\nWsUChhpFEATMHNUF3u7WOB+XjdV7aje6U5ja4PnusyCTyPBT7BokFd7UUbRERNTasYChRpNJJXhx\nnA9c7M1xJDoV207cqDXmdo+YaVCqq9gjhoiItIYFDDWJiZEMr0z2g62lMTYfTcTR6NRaY/wU3pjU\n6TEUVRZjKXvEEBGRFrCAoSazNDfCK1P8YG5igF93X8WF+OxaY4Y4B2FYh0HIKM3EDzG/skcMERE9\nUixg6IHUaHS3ORaJabUb3Y3zCoO/whdx+YlYfWkte8QQEdEjwwKGHphXe0s8/5g3lFVqfL0+Ghl5\nNU8V3e0R44azmdHsEUNERI/MAxcwN27ceIRhUEvl30mBiJGdUVSqxFdro1FYUrPRnYHUAM91nwE7\n0zs9Yv7WUaRERNSaNFjAzJo1q8brZcuWaf79zjvvaCcianGG+LfH6P5uyMwvwzcbolFRWbPRnbmB\nGeZoesRsRkz2JR1FSkRErUWDBUxVVc0LL0+evNth9d4eINS2jR/ojiBfBySmFWH5lthaje5sTWzw\ngt/tHjE/x/7GHjFERPRQGixgBEGo8bp60XLvOmrbBEHAjNAu8PGwxoX4HKzafbVWketm4YKn7/SI\nif4F2ewRQ0RED6hJ18CwaKGG3Gl05+ogx9ELadhyLLHWmO4Kb0zuNBZFymIsi/4ZJewRQ0RED0DW\n0MqCggL8/ffdiy4LCwtx8uRJiKKIwsLat80SGRvK8O/JfvhodSS2Hr8BK7kRBvdoX2PMYOf+yCnP\nxV/JR7Ai5lfM7fEMDCQNHopEREQ1NPhbw8LCosaFu3K5HEuXLtX8m6gulmaGeHVKD3y4+ixW7bkK\nS3Mj9PCyrTFmnGcYcsvzcS7zAlZfWouZ3lMhEXhXPxERNU6DBczq1aubKw5qZeytTTFvcnd89vs5\nfL85Fq9P84enk6VmvUSQYEbXx1FQUYizmdGwNrbCOK8wHUZMREQtSYN/8hYXF2PlypWa13/88QfG\njh2Ll19+GdnZtdvHE1Xn6WSJ58f5QKlS45v1F5CeW/N6lzs9YuxNFdiXfAhHbp3QUaRERNTSNFjA\nvPPOO8jJyQEAJCYm4ssvv8TChQvRv39/fPjhh80SILVsPbxs8VRIZxSXKfHl2vMouKfRnbmBGV70\nexpyA3Osu7aFPWKIiKhRGixgbt68ifnz5wMA9uzZg9DQUPTv3x9PPPEEZ2Co0Qb3aI/HgtyQXVCO\nr9dHo7yyZn8h9oghIqKmarCAMTU11fz79OnT6Nevn+Y1b6mmphg7wB0DuzsiKb0IyzbHokpVs9Gd\nq0UH9oghIqJGa7CAUalUyMnJQXJyMs6dO4egoCAAQElJCcrKypolQGodBEHAU6Gd0d3TBrEJufh1\n95Vaje5q9oj5iT1iiIioXg0WMM888wzCwsIwZswYvPjii7C0tER5eTmmTZuGcePGNVeM1EpIJRK8\nMNYH7o5yHI9Jx6ajtRvdDXbuj+Eug5FRmoUfLqyEUqXUQaRERKTvBPE+DzVSKpWoqKiAubm5Ztmx\nY8cwYMAArQdXn6ysIq3tW6GQa3X/BBSWVOKjNWeRmVeGiJDOCPav2ehOLarxy8XfEZV5AT3tumOW\n9zRIBAlzo6eYF/3F3Ogv5qZxFIr6e841OAOTmpqKrKwsFBYWIjU1VfOfh4cHUlNTH3mg1DZYmBni\n1Sl+kJsaYM3eqzh3LavGeokgwVNdH4enpRuiMi9gS/wuHUVKRET6qsEZmC5dusDd3R0KhQJA7Yc5\nrlq1SvsR1oEzMK1DYlohFv8eBVEEXp/qD6/2ljXWlyhL8cXZpcgozcKUTuMwyT+EudFD/M7oL+ZG\nfzE3jdPQDEyDBcyWLVuwZcsWlJSUIDw8HKNHj4a1tbVWgmwKFjCtx4X4bCzZEAMTIyn+X0QvONqY\n1VifXZaLzyO/Q7GyBP/uPxtexp10FCnVh98Z/cXc6C/mpnEaKmCk77333nv1rezSpQvGjh2LAQMG\n4MKFC/j4449x6NAhCIIAV1dXyGS6eQBfaWnl/Qc9IDMzI63un2qytzaFldwIp69k4kJ8DgK62sHY\n8O5xZWpggo5WHjiTHoXjyZFQqVXoaOXB2/j1CL8z+ou50V/MTeOYmRnVu+6+F/Hea/369fj888+h\nUqkQGRn50ME9CM7AtD5bjydi89FEuNibY+G0njAxqlkc3ypKxc+Xf0NGcRY6W3lhlvc0yA3N69kb\nNSd+Z/QXc6O/mJvGeeCLeO8oLCzEmjVrMGHCBKxZswbPPfccdu7c+cgCJBrT3w2DezghOaO4zkZ3\nznInfDLiDfjadsXVvDh8cuYbJBYk6ShaIiLStQZnYI4dO4Y///wTsbGxGDlyJMaOHYtOnXR/DQJn\nYFonlVqNpRtjcT4uG4HeDvjX6K41ThUpFHJkZBZgf9JhbE3YDYkgwcSOYzCofSBPKekQvzP6i7nR\nX8xN4zzwRbxdunSBm5sb/Pz8IJHUnqz5+OOPH02ETcQCpvWqUKrw2f/OISG1EOGBrpg42FOzrnpu\nruRexy8Xf0exsgS97XtgWpdJMJIa6irsNo3fGf3F3Ogv5qZxGipgGrwK985t0nl5ebCysqqx7tat\nW48gNKKajAykmDepOz5afRY7/k5CO3MjDOvlXGtcF+uOeCNgHn6KXYPIjPNIKU7DM75Pwd5UoYOo\niYiouTV4DYxEIsH8+fPx9ttv45133oG9vT369OmDa9eu4euvv26uGKmNkZsa4pXHe8DC1AC/77uG\ns1ez6hxnZdwO/+75PAY7ByGtJAOfnlmCc5kxzRwtERHpQoMFzFdffYWVK1fi9OnTeP311/HOO+8g\nIiICJ0+exPr165srRmqD7NqZ4N9T/GBoIMUPWy/i2s38OsfJJDJM6TQWs7pNhVpU47+xq7Hx+nao\n1KpmjpiIiJrTfWdgPD1vX4MwbNgwpKSk4KmnnsJ3330He3v7ZgmQ2i43Bwu8ON4Hoiji2z8vIDm9\nsN6xvR388Xrvl2Bnaou/bh7BkvMrUFDB88tERK1VgwXMvXd2ODo6YsSIEVoNiKg6Xw8bzBzVBSXl\nVVjw7dF6TycBgJO5Axb0fhn+Cl/E5SfikzNfIy6/9hOviYio5WtUH5g7eKsq6UKQryNmh3eFUiVi\n6aYY/PHX9Vp9Yu4wkRljts90TPAajWJlCb459wP+Sj6CJvZrJCIiPdfgbdS+vr6wsbHRvM7JyYGN\njQ1EUYQgCDh06FBzxFgLb6Num0qrRHzw8ymk55bCs70FXhjrA2sL43rHx+Un4qfYNSisLIK/whfT\nu06Gsaz+8fRg+J3RX8yN/mJuGueB+8CkpKQ0uOP27ds/eFQPgQVM26RQyHEzJQ+/7r6KU5cyYG5i\ngH+N7obunjb1blNQUYifYn9DfEEi7E0V+JdPBJzMHZox6taP3xn9xdzoL+amcR64gNFXLGDapju5\nEUURh8+n4vf911ClEhEe6IpxA90hraPZIgCo1CpsSdiFv5KPwFBigCe7TEJvB/9mjr714ndGfzE3\n+ou5aZyHfhYSkT4RBAFD/Nvj/yJ6Q9HOGDv+TsIXf5xHfnFFneOlEikmeI3Gv3wiIBEk+OXS/7Du\n2hZUqauaOXIiInpUWMBQi+XqIMe7MwPQs5MCV5Lz8d4vZ3A5Ka/e8f52vljQ+yU4mtnj8K3j+Drq\nB+SV191fhoiI9BsLGGrRTI0NMGe8D54Y1hElZUp8/sc5bDueCHU9Z0btzezweu+X0Nu+BxILk/DJ\nmW9wNTeumaMmIqKHxQKGWjxBEDAyoAPeeLInrORG2HQ0EV+vi0ZhaWWd442khpjZbSqmdBqHsqpy\nfHv+R+y9cRBqse5bs4mISP+wgKFWw7O9Jd6b1QfdPW0Qm5iL9385g+u36j5FJAgCBjv3xys9n4el\nkQW2JOzCiphVKFWWNXPURET0IFjAUKtibmKAlyd1x8TBHsgvrsDi385h96nkehvZuVu64o2Aeehs\n5YWY7EtYHLkEt4pSmzlqIiJqKhYw1OpIBAHhgW5YMNUfclMDrDsYh+82xqCkXFnneLmhOeb2+BdC\nXIciuywHn5/9DifTIps5aiIiagoWMNRqdXaxwntP90FXVyucu56N9385g8S0uh8IKREkeMwzFM93\nnwmZRIbVl9fh9yt/Qqmqu+ghIiLdYgFDrZqlmSHmP94DjwW5IaegHB+vOYu/zt6q95SSr203LOw9\nD+3NHXE89RS+jFqOnLL6b80mIiLdYAFDrZ5EImDcQA+88rgfjA1l+G3fNfyw9SLKKupuZKcwtcFr\nveain0NvJBfdwuIz3+BiztVmjpqIiBrCAobaDB93G7w3KwBezpY4fTkT//k1Ejczi+scayg1wPSu\nkzGt80RUqCqwPPpn7Ejcx1utiYj0BAsYalOsLYyxYKo/Qvu6ICO3FB+sisTR6LrvOhIEAUHt++LV\nXi/Cyrgddibuw/LoX1CsLGnmqImI6F4sYKjNkUklmBLshZcm+sJAKsEvu67gp+2XUFGpqnO8q0UH\nLAx4Gd2sO+NS7lUsPrMESYU3mzlqIiKqjgUMtVn+HRV4b1YA3BzkOB6bjg9WRSItp+7ZFXMDM7zg\nNwvh7iOQV56PL88uw7GUk/VeDExERNql1QLm2rVrGD58ONasWQMASEtLw8yZMzF9+nTMnDkTWVlZ\nAICtW7di4sSJmDx5MtavX6/NkIhqsG1ngjen98KwXs5IyS7Bf1ZG4uTF9DrHSgQJwtxH4AW/p2Ek\nNcL/rm7EmsvrUclbrYmImp3WCpjS0lIsWrQIgYGBmmVff/01pkyZgjVr1mDEiBH45ZdfUFpaiqVL\nl2LlypVYvXo1fv31V+Tn8wnB1HwMZBI8OaITXhjnA0EAVmy7hFV7rkJZVfcpJW+bzlgYMA8ucmec\nTI/E52e/Q1ZpTjNHTUTUtmmtgDE0NMSPP/4IOzs7zbJ3330XISEhAAArKyvk5+cjOjoavr6+kMvl\nMDY2Rs+ePREVFaWtsIjqFdDFDu/MDICzwhyHzqXgw9VnkZlXWudYGxMrvNrrRQxw6ouU4jQsjvwG\nMdmXmjliIqK2S6a1HctkkMlq7t7U1BQAoFKp8Pvvv2POnDnIzs6GtbW1Zoy1tbXm1FJ9rKxMIZNJ\nH33Q/1Ao5FrbNz0cbedGoZDj6/m2WLEpBntPJWHRr5GY94Q/An2d6hz/sv1MdE/sjB/P/g/fX1iJ\ncV1D8LjPGEgl2js+9RG/M/qLudFfzM3D0VoBUx+VSoUFCxagX79+CAwMxLZt22qsb8xFkXn1/FX8\nKCgUcmRlFWlt//TgmjM3TwR7ooOtKVbvvYqPVp7ByIAOmDTEEzJp7UlLb3MfvNZzDn6MXY3Nl/fg\nUno8nvaeBrmhebPEqmv8zugv5kZ/MTeN01CR1+x3Ib355ptwdXXF3LlzAQB2dnbIzs7WrM/MzKxx\n2olIV4J8HfH2U73haGOKvWduYvFvUcgpKK9zrLPcCQt7vwxf2264lheHT858g8SCpGaOmIio7WjW\nAmbr1q0wMDDAyy+/rFnm5+eHmJgYFBYWoqSkBFFRUejdu3dzhkVUr/YKc7w9ozf6edsjPrUQ7/1y\nGhfis+sca2pggmd9n8JYz1EoqCjEV1Hf49Ct47zVmohICwRRS/93jY2NxeLFi5GSkgKZTAZ7e3vk\n5OTAyMgI5ua3p9Y9PT3x3nvvYffu3fjpp58gCAKmT5+Oxx57rMF9a3PajdN6+kuXuRFFEYejU/H7\nvuuoUqkRHuiKcQPdIZXU/TfA1dw4/HzxNxQrS9DbvgemdZkEI6lhM0fdPPid0V/Mjf5ibhqnoVNI\nWitgtIkFTNukD7lJSi/C8s2xyMwvQ+cO7fDcWG+0Mzeqc2x+RQH+G7MGiYVJcDSzxzM+EbA3a32n\nR/UhL1Q35kZ/MTeNo1fXwBC1ZK4OcrwzMwC9Oitw9WY+3vv5NC7fyK1zbDsjS/y753MY4hyEtJIM\nfBr5Lc5lxjRzxERErRMLGKImMjWW4cVxPpg6vCNKyqvw+drz2Ho8Eeo6JjNlEhkmdxqLWd7ToIaI\n/8auxsbr26FS190kj4iIGocFDNEDEAQBI3p3wBvTe8JaboTNRxPx1bpoFJZW1jm+t30PvN5rLuxN\nFfjr5hF8FfU9HwhJRPQQpO+99957ug6iqUrr+SXxKJiZGWl1//Tg9DE31nJj9PdxREp2CWITcnHq\nUgY8nCxgY2Fca6zc0Bx9HXohpywXl3Kv4njqaWSUZKKDvD1MDUx1EP2joY95oduYG/3F3DSOmVnd\n1xgCLGBq4UGlv/Q1N4YGUvTpZg9DAynOX8/G8Zh0GBpI4dneAoIg1Bgrk8jgb9cdHdt5IK0kA1fy\nruNoykmUVJXCxcIZhi3wTiV9zQsxN/qMuWkcFjBNwINKf+lzbgRBQEfndujs0g4xiTmIupaF5Ixi\n+HhYw7COx17YmFijv1MAHM3skFR4658ZmVMAgA5y5xb1KAJ9zktbx9zoL+amcVjANAEPKv3VEnJj\na2mC/t4OSMooQmxiLs5czoSXsyWs5LW/hIIgwMncAQPa94O5gRni8xMRk3MZp9OjYGZgCidzh1oz\nOPqoJeSlrWJu9Bdz0zgsYJqAB5X+aim5MTKUItDbAQBun1KKTYOpsQHcHeV1FiRSQQJ3SxcEOfUF\nAFzNj8O5rBhcyL4IW2MbKExtmjX+pmopeWmLmBv9xdw0DguYJuBBpb9aUm4EQUAXVyt4tbfEhfgc\nRF7NQlpOKXzcrWEgq/vmPwOpAbpYd0Rfh54oVZbhSu51nM6IQkL+DTiZO8LSSD+fXNuS8tLWMDf6\ni7lpnIYKGHbivQe7I+qvlpqbvKIKfL8lFtdvFcDeygQvjPOBi/39i5FbRanYHL8Tl3OvQYCAAAd/\njHYPgY2JVTNE3XgtNS9tAXOjv5ibxmmoEy9nYO7Bqlh/tdTcmBjJ0N/HAVUqNc7H5eB4bDrMTQzg\nal/3KaU7LIzk6OPQEx6WrkgtTsfl3Gs4mnoS5VXlcJU7w0Bq0Iyfon4tNS9tAXOjv5ibxuEMTBOw\nKtZfrSE35+Oy8dP2Sygpr4KzwgwTB3uiu6fNfS/WVYtqRGacx9b43ciryIepzAShbsMwyLk/DCSy\nZoq+bq0hL60Vc6O/mJvG4cMcm4AHlf5qLbnJLSzHpqMJOBGbDlEEOjlbYlKwF7zaW953W6VKicMp\nJ7D7xgGUVZXBxtgKj3mEoqe9HySCbhprt5a8tEbMjf5ibhqHBUwT8KDSX60tNylZxfjzcALOx2UD\nAPw72mLCYE+0tzW777bFyhLsuXEAR26dQJWogou8PcZ7haOTlZe2w66lteWlNWFu9Bdz0zgsYJqA\nB5X+aq25uX4rHxsOxeP6rQIIAhDk44hxA91hXcfjCO6VXZaLbQm7EZlxHgDgbdMF4zzD4GTuoO2w\nNVprXloD5kZ/MTeNwwKmCXhQ6a/WnBtRFBEdl4M/D8cjJbsEMqkEw3q1R3igG8xN7n+xbnLhLWyK\n24Fr+fEQIKCfY2+M9kX4mF4AACAASURBVBiJdkb3Py31sFpzXlo65kZ/MTeNwwKmCXhQ6a+2kBu1\nWsTfF9Ox+WgCcgorYGIkQ1g/Fwzv3QFGBg0/XkAURVzKvYrNcTuRWpIOA4kBhnYYiBGuQ2Aiu/9s\nzoNqC3lpqZgb/cXcNA4LmCbgQaW/2lJulFUqHIxKwfa/k1BcpoSluSHGBrljQHdHyKQNX6yrFtU4\nlXYW2xL2oKCyEOYGZhjlPhwDnPpCpoU7ltpSXloa5kZ/MTeNwwKmCXhQ6a+2mJvS8irsPp2MvWeS\nUalUw97KBBMGe6J3Z8V9b72uVFXiwM1j2Jd0EOWqCihMbPCY5yj4K3wf6TOW2mJeWgrmRn8xN43D\nAqYJeFDpr7acm4LiCmw9cQNHzqdCpRbh5iDHpCGe6OZmfd9tiyqLsevGXzia8jfUohpuFi4Y7xUO\nr3bujyS2tpwXfcfc6C/mpnFYwDQBDyr9xdwAGXml2HQkAacvZwIAvN2sMGmIF1wd7v9ogszSbGxN\n2I1zmRcAAN1tvTHWcxQczOweKibmRX8xN/qLuWkcFjBNwINKfzE3d91IL8SfhxNwMTEXANCnqx3G\nD/KAvZXpfbdNLEjGprjtiC+4AYkgQX/HAIS5j3zgh0UyL/qLudFfzE3jsIBpAh5U+ou5qe3yjVys\nPxSPG+lFkEoEDPJzwmNBbrA0r//5IcDtO5Zisi9hc/wuZJRmwlBqiOEugzGswyAYyxre9l7Mi/5i\nbvQXc9M4LGCagAeV/mJu6iaKIiKvZmHj4Xhk5JX9//buNLitq3Ab+KPVsjZLlizb8hZvSZrES5Km\nS5qkLZSy9P9v6JpSEuD9wMB0+ABTlhBaSgcGJmUZBtopUNp5O+kwDaTQFrqFvpClTZouie3ETuI1\n3iTZli0vkiXLku77QYpiZXGkxLaO4uc34zG1ll7xnGs/Pffce6FWyXHnuhJ87oYyaDWzn3UUjoRx\n2PkR/tW1FxNBLwxqPe4qvxPrC9dBIZ/9tO2zmIu4mI24mE1yWGBSwEElLmYzu1A4gveanHjt/S6M\neYPQZ6vwPzeX4fY1RVApZy8jgdAU/tN7AP/u2Y9gOIh8bR42V34BtdYVlz1jibmIi9mIi9kkhwUm\nBRxU4mI2yZmaDuPdj3vx5gc98E+FYDFmYfOGCqxfVQC5fPYyMjY1gbfOvIv3HUcQkSKozFmCe6ru\nQnlO2SVfw1zExWzExWySwwKTAg4qcTGb1Hj903jzcDfe/aQPoXAERVYd7r21AvVV1svOqrh8g3i9\n4y00upsBAKvzanB35edg0+Zd8FzmIi5mIy5mkxwWmBRwUImL2VyZkfEAXn2vC+8fd0KSgKriHDxw\nWyWqi02XfW37aBdebX8DXeM9kMvk2Fh0Ez6/5A4Y1Pr4c5iLuJiNuJhNclhgUsBBJS5mc3X63T78\nfX8HjrW5AQD1VVbce2sFivP0s75OkiQ0DJ3Aax1vYsg/DI0iC58pux2fKtkAtULNXATGbMTFbJLD\nApMCDipxMZu50d43hj372tHaNwYZgPWrCrB5YzmsOdmzvi4cCeM9xxG82fVveKd9yFEb8T8Vn8X/\n1tyG4WHfwmw8pYT7jLiYTXJYYFLAQSUuZjN3JEnC8c5h7NnXgb4hH5QKGT61phh33VwGg1Y962v9\noQDe7d6H/9d7ENORaZQYC7HRvh5rbfUpX0OG5hf3GXExm+SwwKSAg0pczGbuRSISPmhx4R8HujA8\nHkB2lgKfu6EUd64rRZZ69lOvR6fG8EbnXhx2fQxJkqBRZOH6gtXYYL8JJQb7An0Cmg33GXExm+Sw\nwKSAg0pczGb+TIci2HesH/88dAZe/zSMOjXuvmUJNtXZoVTIZ32tTDeNf53Yh0OODzE6NQYAKDOU\nYEPRjVhjq+OsTBpxnxEXs0kOC0wKOKjExWzmn38qhHc+7ME7H/ZiajoMmykb92yqwLrrbJBf4tTr\ns7mEI2G0jJzGe/1H0Dx8ChI4K5Nu3GfExWySwwKTAg4qcTGbhTPmC+Jf75/BvoZ+hCMSyvINuP+2\nSqwsz73guRfLxRMYxSHHhzjk/IizMmnEfUZczCY5LDAp4KASF7NZeIOjfrx6oBMftAwAAK4rM+P+\n2ypRXmiMP2e2XC41K7OuYA1usd/IWZl5xn1GXMwmOSwwKeCgEhezSZ9u1wRe2d+BE10jAIDrl9tw\n76YKFORqk87lorMyxhJssHNWZr5wnxEXs0kOC0wKOKjExWzS72S3B3v2daDLOQ65TIZNdYX4P5tr\nEJ6aTvo9OCuzcLjPiIvZJIcFJgUcVOJiNmKQJAlHW4fwyv5OuEYmoVYpcMNyGzbV21FpN172Pksz\njQQ8OOz46KKzMmvz65GlmP2aNDQ77jPiYjbJYYFJAQeVuJiNWMKRCN5rcuKdj3rhGp4EABTl6bCp\nzo71qwqg06hSeK9Lz8pssN+IYs7KXBHuM+JiNslhgUkBB5W4mI2YLBY9DnzSgwMNDhxtHUI4IkGl\nlOP6ZXm4tb4I1cU5nJVJE+4z4mI2yWGBSQEHlbiYjZhm5jLuC+LQCRf2N/RjwOMHABRatPFZmcvd\npmCmc7MyH6B5+DRnZa4A9xlxMZvksMCkgINKXMxGTBfLRZIktPaOYn+DAx+fHkIoHIFSIcOapXm4\ntc6OZWXmS14Y72JGAh4ccnyEwxfMytyEtfl1nJW5BO4z4mI2yWGBSQEHlbiYjZgul4vXP41DJ1w4\n0OiAwx29a7XNnI1NdXbcUlOIHN3VzspocEPBatzCWZkLcJ8RF7NJDgtMCjioxMVsxJRsLpIkoaN/\nHPsb+vHRqUEEQxEo5DLUV1txa50dK8pzOSszx7jPiIvZJIcFJgUcVOJiNmK6klwmA9M43DyA/Q0O\n9A15AQDWHA021hZiQ60dZkPyF7ULR8JoHj6F9x1HOCtzHu4z4mI2yWGBSQEHlbiYjZiuJhdJktDl\nnMCBxn4caRnE1HQYcpkMtZUW3FpvR02FBXL51c3KLDGW4hb7jYtyVob7jLiYTXJYYFLAQSUuZiOm\nucrFPxXCkZMDONDgwBlX9P3MhixsrC3Exlo7LDmapN+LszJR3GfExWySwwKTAg4qcTEbMc1HLt2u\nCexvdOCDZhcCwTBkAGoqLdhUZ0dtpQVKhTzp9zo7K3PI8SHGguMAFs+sDPcZcTGb5LDApICDSlzM\nRkzzmctUMIwPTw7gQKMDHY5o+cjRq7GhphCb6uzIM2Un/V5nZ2XecxxBy3mzMhuKbkKRvnBePkM6\ncZ8RF7NJDgtMCjioxMVsxLRQufQNerG/0YHDJ1yYnAoBAFYuMePW+iLUV1vnbFZmja0GGmXyh6tE\nxn1GXMwmOSwwKeCgEhezEdNC5xKcDuPj04M40OBAa190oa5Bq4rPyuTnapN+r4vNyihlCiw1V6E2\nbwVqrCtgysqZr48y77jPiIvZJIcFJgUcVOJiNmJKZy4Otw8HGh04dMIFr38aALC81IRN9XasXZoH\nlVKR9HuNBDw47PwYjUMn0O91xn9eaihGrXUlavNWwK4rSOm+TunGfUZczCY5LDAp4KASF7MRkwi5\nTIciONo6hP0N/TjVMwoA0GmUuCU2K2O36lJ6v2G/B8fdLWhyN6NttBMRKQIAsGjMqLWuRI11BapM\n5VDIky9I6SBCNnRxzCY5LDAp4KASF7MRk2i5DIxM4kCTA+83OTE+GZ2VqS7OwaY6O9Ytt0GtSq10\nTE770TJ8Ck3uFjQPn0YgHAAAZCuzscqyHDXWFVhhWYZsAdfNiJYNncNsksMCkwIOKnExGzGJmkso\nHEFDmxv7Gx1o6RqBBECbpcTNKwuwqd6OEps+9feMhNA22hmdnRlqgWcqOtujkCmw1FyJWmt03YxZ\nY5rjT3NlRM2GmE2yWGBSwEElLmYjpkzIZWjUj4NNDhxscmLMGwQAVNiN2FRnxw3X2aBRK1N+T0mS\n0Od1oMndguNDzej1OuKPlRiKUGtdgVrrShTpC9O2biYTslmsmE1yWGBSwEElLmYjpkzKJRyJoKl9\nGPsbHTjeOQxJAjRqBW5akY9b64tQVnDpX5aXMxLw4Lj7JJqGoutmwlIYAJCrMaPGugK11hWoNlUs\n6LqZTMpmsWE2yWGBSQEHlbiYjZgyNZeR8QAONjlxoNEBz8QUAKAs34CbVuajvtqKfHPyp2Ofzx/y\no2X4dGzdzCn4Q2fXzWiw0rIctfF1M8lfiO9KZGo2iwGzSQ4LTAo4qMTFbMSU6blEIhJOdA1jf4MD\nje3DiMR+JRZatKivtqK+yopKe05KN5WcKRwJo220E03uFjQNNSesm6k2VaA2byVqrNchV2Oes890\nVqZncy1jNslhgUkBB5W4mI2YrqVcxnxBNLW70dDuRnPXCIKh6OnT+mwV6qosqK/Kw8py8xWtmQGi\n62b6vU40uZtx3N2Cnon++GMlejtq8lai1roCxXr7nKybuZayudYwm+SkrcC0trbikUcewde+9jVs\n3boVTqcT3//+9xEOh5GXl4df/vKXUKvVeP311/Hiiy9CLpfjwQcfxAMPPDDr+7LALE7MRkzXai7B\n6TBauj1ojBWas4t/lQo5riszo77airpKC3KNV376tCcwGrveTAtaPR3xdTPmLFP8SsDVpgoo5VdW\nmK7VbK4FzCY5aSkwk5OT+MY3voElS5Zg2bJl2Lp1K374wx9i06ZN+PznP4/f/OY3KCgowBe/+EXc\nc8892LNnD1QqFe6//3689NJLMJkufRoiC8zixGzEtBhyiUgSul0TONbmRmO7G72D3vhjZfmG+KGm\n0nz9Fc+c+EMBnBxpRdNQM04Mn4I/5AcAaBQarLQsi62bWQ6tKvl1M4shm0zFbJIzW4G5slqfBLVa\njeeeew7PPfdc/GdHjhzBk08+CQC4/fbb8cILL6C8vBw1NTUwGKIbuWbNGhw9ehSf+tSn5mvTiIhS\nIpfJUF5oRHmhEfduqoB7zI/G9mE0tLtxqtuD7oEJvPZeF8yGLNRXWVFfbcXyUjNUyuRvMJmt1GCN\nrRZrbLUIR8LoGOtC01D0asCfDDbik8FGyGXy6LqZ2NWALdlzv26GKFPMW4FRKpVQKhPf3u/3Q61W\nAwAsFguGhobgdruRm5sbf05ubi6Ghobma7OIiK6aNScbn15bjE+vLYZ/KoQTXSNoaHOjqcON/x7r\nx3+P9SNLpcCq8lzUV1tRU2mBUatO+v0V8ugNJZeaq3Bf9f/C4XOhaagFx90tOO1px2lPO/7W9hqK\n9IXx+zSV6Isy6j5NRFdr3grM5VzqyFUyR7TMZi2UKdykLVWzTVlRejEbMS32XEqLzfjCxkqEwxGc\nPDOCI80ufNjswietQ/ikdQgyGbC8LBc3rizADSsLUGxL7VCTDUbUly8F8EWMTI7iY0cTPnE04fjA\nabx15l28deZdWLLNWFtUg3VFdViZtxRKRfTX+2LPRmTM5uosaIHRarUIBALQaDQYGBiAzWaDzWaD\n2+2OP2dwcBD19fWzvo/HMzlv28jjkuJiNmJiLonyjVm4++Yy3H1zGZzDPjS0u9HQ5sap7hGcPDOC\n//tGC2zmbNRXWbG62oqq4hwo5MkfagIUWJ2zGqtzViNQHUDLSCuOu1vQ7D6Fve0HsLf9ADSKLKyw\nLMPNS1ajQGmfl1O06epwv0lOWtbAXMz69evxzjvvYPPmzdi7dy82btyIuro6PPbYYxgfH4dCocDR\no0exY8eOhdwsIqJ5UWjRodCiw+dvLMPEZBBNHdF1Mye6RrD3o17s/agXOo0SNZUW1FdZsarcAq0m\n+V/LmvPWzXSOnYlfb+boYBOODjYBACyaXFSbKlBlrsBSUwUs2bmXeWci8c3bWUgnTpzAzp070d/f\nD6VSifz8fPzqV7/C9u3bMTU1Bbvdjl/84hdQqVR4++238fzzz0Mmk2Hr1q24++67Z31vnoW0ODEb\nMTGX1E2HIjjd48Gx9uhZTSPj0SsBK+QyLCs1RRcCV1lhNV3ZlXolSYLTN4C+YA+O9Z1E+2gnJmNn\nNQHR07SrzRWoNlWg2lQJa3Yu188sMO43yeGF7FLAQSUuZiMm5nJ1JElC76AXDW1uHGt3o9t17v/L\n4jxd7BTtPCwpNECeYsk4m01EisDpG0CrpwPto51oH+2Cd9oXf54pKwdVpvJooTFXwpZtZaGZZ9xv\nksMCkwIOKnExGzExl7nlmZiKXzyv5YwHoXD0asA5OnX8asDXLTEjS3X5ExkulU1EisDlG0TbaGf0\ny9ORUGiMakOszERnafK1NhaaOcb9JjksMCngoBIXsxETc5k/U8Ewms9ET9Fu7HBjYnIaAKBWyrFi\nSW78asA5+qyLvj7ZbCRJwsBkrNB4oqVmPHjudQaVHlXxQ04VKNDZIJelsvCYzsf9JjksMCngoBIX\nsxETc1kYkYiETuc4GtqiszMO97kZkwq7EXVVVqyusqIoTxefLbnSbCRJwqDfjTZPB9pih5xGp8bi\nj+tVOlSZylEVKzR2fQELTYq43ySHBSYFHFTiYjZiYi7pMeiZREP7MBrahtDaOxa/i7Y1R4O62NWA\nb1ldglGP7zLvdHmSJGHIP4z2+CGnzvhdtQFAp9Si0lSOalM5qs2VKNIXstBcBveb5LDApICDSlzM\nRkzMJf18gWkc7xxGQ5sbxztH4J8KAQA0agUq7UYsLTVjWYkJ5YXGlG5vcCmSJGE44Imvn2kf7cRw\nwBN/PFupQWVOeXwNTbHeDoV8/i4+mom43ySHBSYFHFTiYjZiYi5iCYUjaOsdxbE2N073jaF34Fw2\nKqU8WmhKTFhWakal3Qh1EouBkzHs95yboRnthNs/HH9Mo8hChWkJlpoqUWWqQKmhaNEXGu43yWGB\nSQEHlbiYjZiYi7jy8gzo6B5GW+8oTveM4nTvKPoGvTj7S18hl6HcbsSyEhOWlZpQVZQDjXpurm/q\nCYzG1s9EDzkN+s9dcV2tUKMyZ0n8TKdSQzGU8rTd2SYtuN8khwUmBRxU4mI2YmIu4rpYNr7ANFp7\nR9EaKzXdAxM4+1dALpOhrMCAZaUmLCsxobrYlNKVgWczOjWG9tGu2MLgLgxMDsYfU8tVqMhZEl0U\nbK5AmbEEqmu80HC/SQ4LTAo4qMTFbMTEXMSVTDb+qRDa+sZwuteD1t5RnHFOIByJ/lmQyYBSmyF2\nyMmEpSUm6LNVc7JtY1MTsYvqRQ85OX0D8cdUciXKjWXxNTRLjKVQKebm3ysK7jfJYYFJAQeVuJiN\nmJiLuK4km6lgGO2OMZzuGUVrjwedznGEwuf+TBTn6eJraJaWmJCjU8/Jtk4EvdEZmtjCYIfPFX9M\nKVeizFCCMmMxSg3FKDUUIU9rzegznbjfJIcFJgUcVOJiNmJiLuKai2ymQ2F0Osbja2g6+scQDEXi\njxdatFhWYoqXGrPh4hfVS5V32oeO0a74hfX6vU5IOPfnSqPIQrHBjlJDMUoMRSg1FMOWQaWG+01y\nWGBSwEElLmYjJuYirvnIJhSOoMs5Hl9D09Y/hqlgOP64zZSNpbE1NMtKTFd8Q8rzBUIB9E440DvR\nh56JfvRM9GNwciih1GQp1CjWF6HUWBSfqbFp84QsNdxvksMCkwIOKnExGzExF3EtRDbhSATdLm90\nDU3PKFr7xuLXoQEAizELS0vM0YXBpSbYTNlzdl+lQCiAPq8TvRP96IkVmwHfYEKpUSvUKNHb47M0\nJYYiIW6FwP0mOSwwKeCgEhezERNzEVc6solEonfXPt07itM90YXBvsC5QmPSq+OHm5aVmFBo0c7p\njSKnwkH0TTjQM9EXLzau80uNXIVigx0lsVmaUkMx8rV5C3ptGu43yWGBSQEHlbiYjZiYi7hEyCYi\nSXC4ffE1NK09HozHbkoJAAatKlpoYqWmKE8H+Rzf+XoqHES/14Ge8f5zpWZyEBHp3FoelVyFYr0d\npcaieLEp0NrmrdSIkE0mYIFJAQeVuJiNmJiLuETMRpIkuEYmY2UmWmo8E1Pxx3UaJZbGFwWbUGoz\nQC6f20IDAMFwEP1eZ2w9TXS2xukbOK/UKFGkt6PUcK7UFOry56TUiJiNiFhgUsBBJS5mIybmIq5M\nyEaSJAyN+hMKjXssEH88O0uB6uJooSkvMKC0wACdZn6uCRMMT6Pf65yxULjvglKjlCtRpC+MLxIu\nMRTDfgWlJhOyEcFsBebavtQhEREJTSaTwWbWwmbWYmOtHQAwPBbA6V5P9Fo0vaNo6hhGU8e5eyvl\nmTQoKzBiSYEBZfkGlBUY5uQCe2qFCuU5pSjPKY3/bDo8DYfPFV0kPN6P3thsTfd4b/w5SrkSRbpC\nlBiL4mtqCnX5i+72CAuNMzDnYSsWF7MRE3MR17WSjWdiCu39Y+h2TaDbNY4zromEhcEAYM3RoCxW\naJYUREuNQTs3F9k733QkBEfs8NPZ2RqH14WwdO50cqVMAbu+IGGhcKG+IH6LhGslm/nGQ0gp4KAS\nF7MRE3MR17WajSRJGB4LoHtgAmdcE+h2Rb97/dMJz8s1Zs0oNEaUFRjm7MrB55uOhOD0uuKnc/dO\n9MPhdSI0o9QoYqWm1FCEZQXlMEg5KNQVwKDWz8s2XQtYYFJwre7w1wJmIybmIq7FlI0kSfBMTOFM\nrMz0xMrNuC+Y8Dyz4VypKS2Ifjfp5+bqwecLRUJw+gbOlZrxfvT7nAhFEmeP9CodCnX5sa+C6Hd9\nPvQq3bxsVyZhgUnBYtrhMw2zERNzEddiz0aSJIx6gzjjGo8dfprAmYEJjHkTS02OXp1w6GlJgREm\nvXpOr09zVjgShtM3AK98DKddZ+D0ueD0DmA44Em4Vg0AGNT6c4Um9mXX5UOr0s75domKBSYFi32H\nFxmzERNzERezubhR79S5QuOaQPfARMKp3ABg1Krih53OLhbONWbNWak5P5tgOAiXbxBO30DsywWn\nL1pszpejNiQWG330e7Zybm7bIBKehURERBRj0mfBVJWFuipr/GdjvmB8kXD3gBfdrnEc7xzG8c5z\nZz/ps1XxWZqzMzaWHM2clBq1Qo1SYzFKjcUJPw+EpjAwOQjHjFLj9A7glKcNpzxtiZ8rK+fCQ1E6\nGzRKzVVvn4g4A3Me/heLuJiNmJiLuJjN1RmfDKJnYMZMjWsi4Ro1QPTCe2UzDj2VFRiQl0Spudps\n/KFAbMbGNWPWZgCjU2MXPNecZYrP0hTqCmDX5aNAl48sxfwsaJ5LPISUAu7w4mI2YmIu4mI2c8/r\nn0b3jFLT45rA4Kg/4TnarJmlJjpbk2fOTrhFwnxlMznth2syOksz83DUWPDCf5dFY75g4XCB1ga1\nQMWGBSYF3OHFxWzExFzExWwWhi8wjZ7YAuGza2sGPImlJjtLgbJ8A0pjh55ql+VDBQkq5cLcFds3\nPZkwU3O22EwEvQnPk0EGS3ZuwsLhQl0BCrR5UCnm5wrIs2GBSQF3eHExGzExF3Exm/SZDITQO5h4\nnZqBkcmE84zkMhnyc7Nht+hQaNXBbtWiyKpHQW42VMqFuTO2d9p3wWyN0zcA77Qv4XkyyJCXbZmx\ncDg6a2PT5sUvzjcfWGBSwB1eXMxGTMxFXMxGLP6pEHoHveh2TWDYG0Rn3yj63T74pxKvCyOTATZT\nNuxWXfyryKpDQa4WatXCFJuJoBdOnyu2eDh6SMrlG4AvNJnwPLlMjhvy12DbigfnZTt4FhIREVGa\nZWedu9P22XIpSRLGfEH0u31wuH1wun3x/32szY1jbe7462UA8hKKjRZ2qw6FFh2y5rjYGNR6GNRV\nWGquiv9MkiSMx4rNzENRWcr5uRDg5bDAEBERpYlMJoue1q3PwsolufGfS5KE8clpOGJl5uxXv9uH\nhnY3GtoTi40lRxOfqTlbcAotWmjUc/dnXiaTISfLgJwsA5bnVs/Z+14pFhgiIiLByGQy5OjUyNGp\ncV2ZOeGx8clgwkyNw+2DY3jygrt2A4DFqEmYrbFbdbBbdMjOyvw//5n/CYiIiBYRo1YNY6kay0oT\ni43XP33BbI1j2HfBBfmA6D2hZs7WRIuNFlrNwp9pdKVYYIiIiK4B+mxVfI3NTL7AzGIzCYfbC8fw\nJE50jeBE10jCc0169XmlRoeiPB10AhYbFhgiIqJrmE6jQnWxCdXFicVmMhCCc3jGoajh6PeWMx60\nnEm8B1OO7vxiEz0kZdCm76J3LDBERESLkFajRGVRDiqLchJ+7p8KwTk8OWN9TfT7yW4PTnYnFhuj\nVoX1NYV48PYqLDQWGCIiIorLzlKiwm5Ehd2Y8PNAcEaxGfbBMRT9PjIeuMQ7zS8WGCIiIrosjVqJ\n8kIjyguNl3/yAliYmzAQERERzSEWGCIiIso4LDBERESUcVhgiIiIKOOwwBAREVHGYYEhIiKijMMC\nQ0RERBmHBYaIiIgyDgsMERERZRwWGCIiIso4LDBERESUcVhgiIiIKOOwwBAREVHGkUmSJKV7I4iI\niIhSwRkYIiIiyjgsMERERJRxWGCIiIgo47DAEBERUcZhgSEiIqKMwwJDREREGYcFZoaf//zn2LJl\nCx566CE0NTWle3NohqeeegpbtmzBfffdh71796Z7c2iGQCCAO+64A3//+9/TvSk0w+uvv467774b\n9957L/bt25fuzSEAPp8P3/rWt7Bt2zY89NBDOHjwYLo3KaMp070Bovjwww/R3d2N3bt3o6OjAzt2\n7MDu3bvTvVkE4IMPPkBbWxt2794Nj8eDe+65B3feeWe6N4tinn32WeTk5KR7M2gGj8eDZ555Bq+8\n8gomJyfx+9//Hrfddlu6N2vR+8c//oHy8nI8+uijGBgYwFe/+lW8/fbb6d6sjMUCE3P48GHccccd\nAIDKykqMjY3B6/VCr9enecto3bp1qK2tBQAYjUb4/X6Ew2EoFIo0bxl1dHSgvb2dfxwFc/jwYdx8\n883Q6/XQ6/X46U9/mu5NIgBmsxmnT58GAIyPj8NsNqd5izIbDyHFuN3uhMGUm5uLoaGhNG4RnaVQ\nKKDVagEAe/bsgVbFmgAABQFJREFUwaZNm1heBLFz505s37493ZtB5+nr60MgEMA3v/lNPPzwwzh8\n+HC6N4kA3HXXXXA4HPjMZz6DrVu34gc/+EG6NymjcQbmEniHBfG8++672LNnD1544YV0bwoBePXV\nV1FfX4+SkpJ0bwpdxOjoKJ5++mk4HA585StfwX//+1/IZLJ0b9ai9tprr8Fut+P555/HqVOnsGPH\nDq4duwosMDE2mw1utzv+z4ODg8jLy0vjFtFMBw8exB/+8Af8+c9/hsFgSPfmEIB9+/aht7cX+/bt\ng8vlglqtRkFBAdavX5/uTVv0LBYLVq9eDaVSidLSUuh0OoyMjMBisaR70xa1o0ePYsOGDQCA5cuX\nY3BwkIfDrwIPIcXccssteOeddwAAzc3NsNlsXP8iiImJCTz11FP44x//CJPJlO7NoZjf/va3eOWV\nV/DXv/4VDzzwAB555BGWF0Fs2LABH3zwASKRCDweDyYnJ7neQgBlZWVobGwEAPT390On07G8XAXO\nwMSsWbMGK1euxEMPPQSZTIYnnngi3ZtEMW+++SY8Hg++/e1vx3+2c+dO2O32NG4Vkbjy8/Px2c9+\nFg8++CAA4LHHHoNczv9eTbctW7Zgx44d2Lp1K0KhEH7yk5+ke5MymkziYg8iIiLKMKzkRERElHFY\nYIiIiCjjsMAQERFRxmGBISIioozDAkNEREQZhwWGiOZVX18fVq1ahW3btsXvwvvoo49ifHw86ffY\ntm0bwuFw0s//0pe+hCNHjlzJ5hJRhmCBIaJ5l5ubi127dmHXrl14+eWXYbPZ8Oyzzyb9+l27dvGC\nX0SUgBeyI6IFt27dOuzevRunTp3Czp07EQqFMD09jR//+MdYsWIFtm3bhuXLl+PkyZN48cUXsWLF\nCjQ3NyMYDOLxxx+Hy+VCKBTC5s2b8fDDD8Pv9+M73/kOPB4PysrKMDU1BQAYGBjAd7/7XQBAIBDA\nli1bcP/996fzoxPRHGGBIaIFFQ6H8e9//xtr167F9773PTzzzDMoLS294OZ2Wq0WL730UsJrd+3a\nBaPRiF//+tcIBAL4whe+gI0bN+LQoUPQaDTYvXs3BgcH8elPfxoA8NZbb6GiogJPPvkkpqam8Le/\n/W3BPy8RzQ8WGCKadyMjI9i2bRsAIBKJ4Prrr8d9992H3/3ud/jRj34Uf57X60UkEgEQvb3H+Rob\nG3HvvfcCADQaDVatWoXm5ma0trZi7dq1AKI3Zq2oqAAAbNy4EX/5y1+wfft23HrrrdiyZcu8fk4i\nWjgsMEQ0786ugZlpYmICKpXqgp+fpVKpLviZTCZL+GdJkiCTySBJUsK9fs6WoMrKSrzxxhv46KOP\n8Pbbb+PFF1/Eyy+/fLUfh4gEwEW8RJQWBoMBxcXF2L9/PwCgq6sLTz/99Kyvqaurw8GDBwEAk5OT\naG5uxsqVK1FZWYljx44BAJxOJ7q6ugAA//znP3H8+HGsX78eTzzxBJxOJ0Kh0Dx+KiJaKJyBIaK0\n2blzJ372s5/hT3/6E0KhELZv3z7r87dt24bHH38cX/7ylxEMBvHII4+guLgYmzdvxn/+8x88/PDD\nKC4uRk1NDQCgqqoKTzzxBNRqNSRJwte//nUolfy1R3Qt4N2oiYiIKOPwEBIRERFlHBYYIiIiyjgs\nMERERJRxWGCIiIgo47DAEBERUcZhgSEiIqKMwwJDREREGYcFhoiIiDLO/wfmOZOk2XdV9gAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "0FfUytOTNJhL", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZTDHHM61NPTw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "JQHnUhL_NRwA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "You may be wondering how to determine how many buckets to use. That is of course data-dependent. Here, we just selected arbitrary values so as to obtain a not-too-large model." + ] + }, + { + "metadata": { + "id": "Ro5civQ3Ngh_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "RNgfYk6OO8Sy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 627 + }, + "outputId": "8041b792-a2ac-4562-e2a5-64bf64cb343c" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 168.66\n", + " period 01 : 142.48\n", + " period 02 : 126.16\n", + " period 03 : 115.11\n", + " period 04 : 107.29\n", + " period 05 : 101.59\n", + " period 06 : 97.15\n", + " period 07 : 93.59\n", + " period 08 : 90.69\n", + " period 09 : 88.28\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYFOf6N/Dv7C6w9F4FqVZUsGDE\njg0Ee0tiJMZ4kpNEE48xJ+X9pXtOetNYkhijUZMTe+/G3kUQRVGkCdJ7L8vuvH+oK0gRVNhd+H6u\nK9flzjwzcy/3EG+fmblHEEVRBBEREZEOkWg6ACIiIqKmYgFDREREOocFDBEREekcFjBERESkc1jA\nEBERkc5hAUNEREQ6R6bpAIi0WadOndC+fXtIpVIAgFKphJ+fH95//30YGRk98n43bNiAadOm1Vq+\nZcsWvPfee/jpp58QEBCgXl5eXo7+/ftj1KhR+OKLLx75uI2VlJSEzz77DAkJCQAAQ0NDzJ07FyNG\njGj2YzfFsmXLkJSUVOtncu7cOcyePRvOzs61ttm3b19LhfdYbt++jeHDh8Pd3R0AIIoibGxs8H//\n93/o2rVrk/b17bffwsnJCc8++2yjt9m+fTs2bdqEtWvXNulYRC2FBQzRQ6xduxYODg4AgMrKSsyf\nPx8///wz5s+f/0j7y8rKwq+//lpnAQMAjo6O2LVrV40C5siRIzAzM3uk4z2Kt956C+PHj8dPP/0E\nAIiMjMTMmTOxd+9eODo6tlgcj8PR0VFnipX6SKXSGt9hz549mDNnDvbv3w99ff1G72fBggXNER6R\nRvESElET6OvrY9CgQYiOjgYAVFRU4MMPP0RgYCBGjx6NL774AkqlEgBw/fp1PPPMMwgKCsL48eNx\n4sQJAMAzzzyD1NRUBAUFobKystYxevXqhXPnzqGsrEy9bM+ePRgwYID6c2VlJf7zn/8gMDAQw4YN\nUxcaABAREYFJkyYhKCgIwcHBOH36NIA7/6IfOHAg1qxZg7Fjx2LQoEHYs2dPnd8zJiYGPj4+6s8+\nPj7Yv3+/upBbsmQJhgwZggkTJuCXX37BsGHDAADvvvsuli1bpt6u+ueHxfXZZ59hxowZAICLFy9i\n8uTJGDlyJKZNm4bk5GQAd2ai/vWvfyEgIAAzZsxAenr6QzJWty1btmDu3LmYOXMmvvrqK5w7dw7P\nPPMM5s2bp/7Lfu/evRgzZgyCgoLw/PPPIykpCQDw448/4v3338eUKVOwevXqGvudN28efvvtN/Xn\n6OhoDBw4ECqVCt9//z0CAwMRGBiI559/HhkZGU2OOzg4GOXl5YiPjwcArF+/HkFBQRg2bBjefPNN\nlJeXA7jzc//8888xduxY7N27t0Ye6jsvVSoVPv30UwwdOhRTpkzB9evX1cc9f/48Jk6ciODgYIwe\nPRp79+5tcuxET5xIRPXq2LGjmJaWpv6cn58vPvfcc+KyZctEURTFn3/+WXzppZdEhUIhlpWViZMn\nTxa3bdsmKpVKcfTo0eLOnTtFURTFy5cvi35+fmJRUZF49uxZccSIEXUeb/PmzeI777wjvvXWW+pt\ni4qKxOHDh4sbN24U33nnHVEURXHJkiXizJkzxYqKCrGkpEScMGGCePjwYVEURXHMmDHirl27RFEU\nxa1bt6qPlZycLHbt2lVcu3atKIqiuGfPHnHkyJF1xvH666+LAQEB4u+//y7GxsbWWHfjxg2xT58+\nYmZmpqhQKMRXX31VDAgIEEVRFN955x1x6dKl6rHVPzcUl7e3t7hlyxb19/Xz8xNPnjwpiqIo7ty5\nU5w4caIoiqK4bt068bnnnhMVCoWYm5srBgQEqH8m1TX0M773c/b19RUTEhLU47t37y6ePn1aFEVR\nTElJEXv37i0mJiaKoiiKK1euFGfOnCmKoiguXrxYHDhwoJiTk1Nrv7t37xafe+459edFixaJCxcu\nFGNiYsRRo0aJlZWVoiiK4po1a8StW7fWG9+9n0uXLl1qLffz8xPj4uLECxcuiP7+/mJ6erooiqL4\nwQcfiF988YUoind+7mPHjhXLy8vVn5cuXdrgeXn06FFx1KhRYnFxsVhWViZOmTJFnDFjhiiKojhp\n0iTx3LlzoiiKYkJCgvjmm282GDtRS+AMDNFDhIaGIigoCMOHD8fw4cPRr18/vPTSSwCAo0ePYtq0\naZDJZJDL5Rg7dixOnTqF27dvIzs7GyEhIQCA7t27w8nJCVeuXGnUMUNCQrBr1y4AwKFDhxAQEACJ\n5P6v65EjRzB9+nTo6+vDyMgI48ePx4EDBwAA27Ztw+jRowEAvXv3Vs9eAEBVVRUmTZoEAPD29kZq\namqdx//666/x3HPPYefOnRgzZgyGDRuG//3vfwDuzI74+fnB1tYWMpkMY8aMadR3aiguhUKBkSNH\nqvdvb2+vnnEaM2YMkpKSkJqairCwMIwcORIymQyWlpY1LrM9KC0tDUFBQTX+q36vjJubG9zc3NSf\n5XI5/P39AQCnTp3CU089BVdXVwDA1KlTce7cOVRVVQG4MyNlZWVV65hDhw7FtWvXkJ+fDwA4ePAg\ngoKCYGZmhtzcXOzcuRMFBQUIDQ3FhAkTGvVzu0cURaxfvx729vZwc3PD4cOHERwcDHt7ewDAs88+\nqz4HAMDf3x8GBgY19tHQeXnhwgUMGTIExsbGkMvl6lwBgLW1NbZt24a4uDi4ubnh22+/bVLsRM2B\n98AQPcS9e2Byc3PVlz9ksju/Orm5uTA3N1ePNTc3R05ODnJzc2FqagpBENTr7v0lZmNj89BjDhgw\nAO+//z7y8/Oxe/duvPbaa+obagGgqKgIn3/+Ob777jsAdy4p9ejRAwCwc+dOrFmzBiUlJVCpVBCr\nve5MKpWqbz6WSCRQqVR1Ht/AwACzZ8/G7NmzUVhYiH379uGzzz6Ds7MzCgoKatyPY21t/dDv05i4\nTExMAACFhYVITk5GUFCQer2+vj5yc3NRUFAAU1NT9XIzMzOUlJTUebyH3QNTPW8Pfs7Ly6vxHU1N\nTSGKIvLy8urc9h4jIyP0798fR48eRe/evVFYWIjevXtDEAT8+OOP+O2337Bw4UL4+fnhk08+eej9\nREqlUv1zEEURXl5eWLZsGSQSCYqKinDw4EGcPHlSvV6hUNT7/QA0eF4WFBTAzs6uxvJ7PvvsMyxf\nvhyzZs2CXC7Hm2++WSM/RJrAAoaokaysrBAaGoqvv/4ay5cvBwDY2Nio/7UNAPn5+bCxsYG1tTUK\nCgogiqL6L4v8/PxG/2Wvp6eHgIAAbNu2Dbdu3ULPnj1rFDB2dnZ48cUXa81AZGRk4P3338fGjRvR\npUsXJCYmIjAwsEnfMzc3F9HR0eoZEDMzM0ybNg0nTpxATEwMTE1NUVRUVGP8PQ8WRQUFBU2Oy87O\nDh4eHtiyZUutdWZmZvUe+0mytrZGRESE+nNBQQEkEgksLS0fum1gYCAOHjyIvLw8BAYGqvPfr18/\n9OvXD6Wlpfjyyy/xzTffPHQm48GbeKuzs7PDxIkT8c477zTpe9V3Xjb0s7WxscEHH3yADz74ACdP\nnsTrr7+OQYMGwdjYuNHHJnrSeAmJqAlmzZqFiIgInD9/HsCdSwabNm2CUqlEaWkptm/fjiFDhsDZ\n2RkODg7qm2TDw8ORnZ2NHj16QCaTobS0VH05oj4hISFYsWJFnY8uDx8+HBs3boRSqYQoili2bBmO\nHz+O3NxcGBkZwcPDA1VVVVi/fj0A1DtLUZfy8nK88cYb6ps7AeDWrVuIjIxEnz590LNnT4SFhSE3\nNxdVVVXYtm2bepytra365s/k5GSEh4cDQJPi8vHxQVZWFiIjI9X7+fe//w1RFOHr64vDhw9DqVQi\nNzcXx48fb/T3aooBAwYgLCxMfZnrr7/+woABA9Qzbw0JCAhAREQEDh06pL4Mc/LkSXzyySdQqVQw\nMjJC586da8yCPIphw4bhwIED6kLj0KFD+OWXXxrcpqHzsmfPnjh58iTKyspQVlamLpwUCgVCQ0OR\nmZkJ4M6lR5lMVuOSJpEmcAaGqAlMTEzw8ssv48svv8SmTZsQGhqK5ORkhISEQBAEBAUFYfTo0RAE\nAd999x0++ugjLFmyBIaGhli0aBGMjIzQqVMnmJubY8CAAdi6dSucnJzqPFbfvn0hCAKCg4NrrZs+\nfTpu376NkJAQiKKIbt26YebMmTAyMsLgwYMRGBgIa2trvPvuuwgPD0doaCgWL17cqO/o5OSE5cuX\nY/HixfjPf/4DURRhYmKC9957T/1k0tNPP42JEyfC0tISo0aNws2bNwEA06ZNw9y5czFq1Ch07dpV\nPcvSuXPnRscll8uxePFiLFy4ECUlJdDT08O8efMgCAKmTZuGsLAwjBgxAk5OThgxYkSNWYPq7t0D\n86CvvvrqoT8DBwcH/Oc//8Frr70GhUIBZ2dnLFy4sFE/PxMTE3h7e+PGjRvw9fUFAPj5+WH37t0I\nDAyEvr4+rKys8NlnnwEA3n77bfWTRE3h7e2NV155BaGhoVCpVLC2tsYnn3zS4DYNnZcBAQE4evQo\ngoKCYGNjgyFDhiAsLAx6enqYMmUKXnjhBQB3Ztnef/99GBoaNileoidNEKtfiCYiaqKwsDC8/fbb\nOHz4sKZDIaI2hHOAREREpHNYwBAREZHO4SUkIiIi0jmcgSEiIiKdwwKGiIiIdI5OPkadlVX3Y5NP\ngqWlEfLySptt//TomBvtxLxoL+ZGezE3jWNra1rvOs7APEAmk2o6BKoHc6OdmBftxdxoL+bm8bGA\nISIiIp3DAoaIiIh0DgsYIiIi0jksYIiIiEjnsIAhIiIincMChoiIiHQOCxgiIiLSOSxgiIiIWpmj\nR/9u1LhFi75FampKvevffffNJxXSE8cChoiIqBVJS0vFoUP7GzV23rwFcHJqV+/6L7747kmF9cTp\n5KsEiIiIqG7fffcloqOvYtAgP4waNRppaan44Ydl+PzzT5GVlYmysjK8+OLLGDBgEObOfRlvvvk2\njhz5GyUlxUhKuoWUlNt4440F8PcfgJCQ4di9+2/Mnfsy/PyeQnh4GPLz8/Hll9/DxsYGn376AdLT\n09C9ew8cPnwIW7fuabHvyQKGiIiomWw4HIsL1zNrLZdKBSiV4iPt06+zHaYN86p3/bPPhmLLlg1w\nd/dEUlIili37FXl5uejbtx9Gjx6DlJTb+OCDdzFgwKAa22VmZuCbbxbj7NnT2L59M/z9B9RYb2xs\njEWLlmP58h9x/PhhODk5o7KyAr/8shqnTp3Ahg3/e6Tv86hYwFSTU5aLzMw02AmOmg6FiIjosXXp\n4g0AMDU1Q3T0VezYsQWCIEFhYUGtsT16+AIA7OzsUFxcXGu9j09P9fqCggLcupWA7t19AAD+/gMg\nlbbs+51YwFSzJ/EQzqaF4e0+r8PVzEXT4RARkY6bNsyrztkSW1tTZGUVNfvx9fT0AAAHD+5DYWEh\nli79FYWFhfjHP0Jrja1egIhi7dmhB9eLogiJ5M4yQRAgCMKTDr9BvIm3mqccegEAtsburjN5RERE\n2k4ikUCpVNZYlp+fD0dHJ0gkEhw7dhgKheKxj9OunTNu3LgGADh//mytYzY3FjDVdLT0Qi/HbriZ\nH4+onGhNh0NERNRkrq7uuHHjOkpK7l8GGjp0GE6fPoF5816FoaEh7OzssGrVisc6Tv/+g1BSUoJX\nX52NyMgImJmZP27oTSKIOjjV0JzTbuX6RXhr339gb2SL/9d3PqSSlr2mR/VrqSlXahrmRXsxN9qr\nNeSmsLAA4eFhGDp0OLKyMjFv3qv488/NT/QYtram9a7jPTAPcDF3gr+jH06nnceZtAsY2K6fpkMi\nIiLSOkZGxjh8+BD+/HMtRFGF119v2aZ3LGDqMMZjFMIyIrAr4QD62PeEXGag6ZCIiIi0ikwmw6ef\nfq6x4/MemDqYG5hhePshKKosxt9JxzQdDhERET2ABUw9RrQfAlN9ExxKOoaCikJNh0NERETVsICp\nh1xmgBD3UahUKbA74YCmwyEiIqJqWMA0oL+jHxyM7HA69QJSi9M1HQ4RERHdxQKmmpJyBVKz7z83\nL5VIMcErGCJEbI9ruRdUERERNbcpU8aitLQUa9euRlTU5RrrSktLMWXK2Aa3P3r0bwDAnj07cezY\nkWaLsz4sYKrZeCQWc746gvTcUvWybtZd0MHCA1E51xGTF6vB6IiIiJ680NAX0K1bjyZtk5aWikOH\n9gMAgoPHYsiQgOYIrUF8jLqabu7WOB6Zhk1H4zB3UncAd97vMNErBF+F/Ygtsbvxdp/XIRFY9xER\nkXZ68cXn8Nln38LBwQHp6Wl4770FsLW1Q1lZGcrLyzF//r/RtWs39fj//vdjDB06HL6+PfF///c2\nKisr1S92BIADB/Zi06b1kEolcHPzxDvv/B++++5LREdfxapVK6BSqWBhYYHJk5/GsmWLcOVKJKqq\nlJg8eRqCgkIwd+7L8PN7CuHhYcjPz8eXX34PBweHx/6eLGCq6d3JFl3crBAek4WY5Hx0dLEAALia\nuaCPvS/CMi4hLOMS+t59ZxIREVFDtsTuQkTmlVrLpRIBStWjNcLvadcdk7zG1Lt+8OAAnDp1HJMn\nT8OJE8cweHAAPD07YPDgobh48QL++ON3/Pe/X9fabv/+vfDw8MQbbyzA338fUM+wlJWV4dtvf4Sp\nqSnmzHkJcXGxePbZUGzZsgGzZr2ElSt/BgBcuhSO+Pg4LF/+G8rKyjBz5jMYPHgoAMDY2BiLFi3H\n8uU/4vjxw5g2bfojfffqOJVQjSAImD3uzqvH1x++CVW1tyyM8wiCTJBiZ/x+KJSP/xIsIiKi5nCn\ngDkBADh58hgGDhyCY8f+xquvzsby5T+ioKCgzu0SE+PRrZsPAKBnz97q5WZmZnjvvQWYO/dl3LqV\ngIKC/Dq3v379Gnx97/wD39DQEG5uHkhOTgYA+Pj0BADY2dmhuLi4zu2bijMwD+jkaoW+XexwPjoT\n56Mz0K/rnWkua0MrDHEegL+Tj+NYymmMaD9Ew5ESEZG2m+Q1ps7ZkuZ8F5KHhydycrKQkZGOoqIi\nnDhxFDY2dvjgg4W4fv0aliz5oc7tRBGQSAQAgOru7JBCocB3332F1av/hLW1Dd5++1/1HlcQBFR/\nu2JVlUK9P6n0/nsFn9QrGDkDU4fJQzwhkwrYfDQeiqr7rwcPdBsGQ5kh9iUeRomitIE9EBERaY6/\n/0D88ssyDBo0BAUF+WjXzhkAcOzYEVRVVdW5Tfv2rrh+PRoAEB4eBgAoLS2BVCqFtbUNMjLScf16\nNKqqqiCRSKBUKmts37mzNyIiLt7drhQpKbfh7Ny+ub4iC5i62FoYYkRvF+QUluPQxdvq5cZ6Rghy\nG4ayqjLsS/xbgxESERHVb8iQABw6tB9Dhw5HUFAI1q//A/Pnz4G3dzfk5ORg9+4dtbYJCgrB1atX\nMG/eq0hOvgVBEGBubgE/v6fwj388j1WrVmD69FAsXvwdXF3dcePGdSxe/K16ex8fX3Tq1Blz5ryE\n+fPn4JVX5sLQ0LDZvqMgPqm5nBbUnK8gvzetV1KuwLs/nYFKBL74Zz+YGukDABSqKiw8+zXyKwrx\nYb+3YGNo3WyxUE2t4fXzrRHzor2YG+3F3DSOra1pves4A1MPY7kexg1wR1lFFXacSlQv15PIMM4j\nCEpRiR1x+zQXIBERURvGAqYBAb3awc7SEEcjUmo0t+tl74P2ps64mBmJxMIkDUZIRETUNrGAaYBM\nKsHUoZ5QqkRsOhqnXi4RJJjkFQIA2HJz9xO7o5qIiIgahwXMQ/TqaIsOzuYIj8nCjaQ89fIOlp7o\nbtMFcQUJuJx9TYMREhERtT0sYB5CEARMG+YFANhwJLZGc7sJnsGQCBJsj9sDpUpZ3y6IiIjoCWMB\n0wieTubo28UOCWlFOB+doV7uYGyP/o5+yCjNwqnU8xqMkIiIqG1hAdNI9TW3C3YfBX2pPvYkHER5\nVbkGIyQiImo7WMA0Uo3mdmH3m9uZG5hiZPshKFIU42DSMQ1GSERE1HawgGmCMf1dYSyXYdeZRBSV\nVqqXD28/BGb6pvg76TjyK+p+SRYRERE9OSxgmsBIrodxA91RVqGs0dzOQKqPMe6joFApsDv+gOYC\nJCIiaiNYwDRRQM+6m9v1c+wDB2N7nEkLQ2pxugYjJCIiav1YwDTRneZ2XlCqRGw8EqteLpVIMdEz\nGCJEbI3brcEIiYiIWj8WMI+gV0cbdHA2R8TN7BrN7bytO6OjhSeu5dzA9dybGoyQiIiodWMB8wiq\nN7dbf/h+cztBEDDx7isGtsXuhkpUaSxGIiKi1owFzCO619wuMb0I56/db27X3swZfvY9kVycigvp\nERqMkIiIqPViAfMYptxrbncsrkZzu7EeQZBJZNgZvx+VSoUGIyQiImqdWMA8BhsLQ4zo44Kcwooa\nze2sDS0x1HkA8irycfT2SQ1GSERE1DqxgHlMY/xdYWKoh11nElFYrbldoOswGMuMsD/xCIorSzQX\nIBERUSvEAuYxGcn1MG6AG8oqlNh5MvH+cj1DBLkPR7myHHsTD2kuQCIiolaIBcwTMLRnO9hbGuLo\npRSk5dyfbRnczh82ciscTzmDzNJsDUZIRETUujRrARMTE4MRI0Zg3bp1AACFQoEFCxZgypQpmDlz\nJgoK7rw3aMeOHZg8eTKmTp2KjRs3NmdIzUImlWDK3eZ2m47G3V8ukWGc52ioRBV2xO/TYIRERESt\nS7MVMKWlpVi4cCH8/f3VyzZs2ABLS0ts2rQJwcHBCAsLQ2lpKZYuXYrVq1dj7dq1+P3335Gfn99c\nYTWbXh1t0LGO5na97HrA1cwFEZmXkVBwS4MREhERtR7NVsDo6+tjxYoVsLOzUy87cuQIxo0bBwB4\n+umnMXz4cERGRqJ79+4wNTWFXC5Hr169EB4e3lxhNZs7ze06AKjd3G6S1xgAwJbY3RDvLiciIqJH\nJ2u2HctkkMlq7j4lJQXHjx/H119/DRsbG3z00UfIzs6GlZWVeoyVlRWysrIa3LelpRFkMmmzxA0A\ntramj7zd4J5pOB6RgujbhRjay/nu8h44keGDsJRIJFbGo6+z75MMt0151NxQ82JetBdzo72Ym8fT\nbAVMXURRhLu7O+bOnYtly5bh559/RteuXWuNeZi8vNKHjnlUtramyMoqeuTtxzzVHqcvp2H1zih0\ncDCBvt6dQivYeSTCU69gTfhmtNdzg1TSfAVYa/W4uaHmwbxoL+ZGezE3jdNQkdeiTyHZ2NjAz88P\nADBw4EDExsbCzs4O2dn3n9DJzMyscdlJ19hYGGJkH+c7ze0u3m9uZ29shwFOTyGzLBsnU89pMEIi\nIiLd16IFzODBg3HixAkAwNWrV+Hu7g4fHx9cuXIFhYWFKCkpQXh4OPr06dOSYT1xIXeb2+0+U7O5\nXbD7CBhI9bEn4SDKqso1FyAREZGOa7YCJioqCqGhodi6dSvWrFmD0NBQjB8/HseOHcOzzz6LQ4cO\n4eWXX4ZcLseCBQswe/ZszJo1C3PmzIGpqW5fF6ze3G7HyQT1cjN9U4xsH4BiRQkO3jqquQCJiIh0\nnCDq4GMxzXnd8Eldl6xSqvDBr+eQlV+Ohf/oC0drYwBApbISH5/5CqVVpfio39uwlFs89rHaCl4z\n1k7Mi/ZibrQXc9M4WnMPTFsik0owNcALKrFmczt9qT7GeARCoarCrvgDGoyQiIhId7GAaUY9O9Td\n3K6fY284GTvgXPpF3C5K1WCEREREuokFTDMSBAFPD7/T3O6vas3tJIIEE7xCIELEtrg9mgyRiIhI\nJ7GAaWbujmbo19Uet9KLcO5ahnp5V6uO6GzZAdG5MYjOidFghERERLqHBUwLmDTYAzKpBFuOxaFS\noQRwZ3ZmglcwBAjYGrcbKlGl4SiJiIh0BwuYFlC9ud3BsGT1chfTdvBz6ImU4jScT9e99z8RERFp\nCguYFhLi73a3ud2tGs3txnoEQiaRYWf8flQqFRqMkIiISHewgGkhRnIZxg90R3llzeZ2VnJLBDgP\nRH5FAY4kn9BghERERLqDBUwLGuLrBHtLQxyNSEVaTol6eaBbAIz1jHDg1hEUVRZrMEIiIiLdwAKm\nBVVvbrfxyP3mdoYyQ4x2G4FyZQX2Jh7SYIRERES6gQVMC+vZwQYdXSxwKTYb12/db243qF0/2Bpa\n40TKWWSUZmkwQiIiIu3HAqaFCYKAp4d5AQDWH7nf3E4mkWGc52ioRBV2xO3VZIhERERajwWMBtRo\nbnf1fnO7nrbd4W7miktZUYjLT9RcgERERFqOBYyGTBpyp7nd5uM1m9tN6hACANgauxs6+KJwIiKi\nFsECRkNszA0x0s8ZuQ80t/Mwd4OvbTckFN5CRNYVDUZIRESkvVjAaFBIv7qb2433HA2JIMH2uL2o\nUlVpMEIiIiLtxAJGg6o3t9terbmdnZEtBrXrh+yyHJxMOafBCImIiLQTCxgNG+LrBHsrIxx7oLnd\naLcRkEsNsCfxIMqqyjQYIRERkfZhAaNhMqkE04Z61mpuZ6pvgpGuAShRlOLAraOaC5CIiEgLsYDR\nAr71NLcb5jIQFgbmOJJ8Annl+RqMkIiISLuwgNECNZrbHb7f3E5fqo8xHoFQqKqwM36/JkMkIiLS\nKixgtIS7oxn6edvjVkbN5nZPOfRCOxNHnE8PR3JRqgYjJCIi0h4sYLTIpMG1m9tJBAkmeoZAhIht\nbG5HREQEgAWMVrExN8QoP5daze26WHdEF6uOuJ53E9dyYzQYIRERkXZgAaNlgvu53m9uV3K/ud1E\nrxAIELAtdjdUokqDERIREWkeCxgtU6O53an7ze3amTjiKYfeSC1Jx9m0ixqMkIiISPNYwGihIb5O\ncLjb3C41+35zuzEeo6An0cOu+P2oUFY2sAciIqLWjQWMFpJJJZgacKe53aaj95vbWcotMMxlEAoq\nC3E46YQGIyQiItIsFjBaytfLBp3uNreLrtbcbqTrUJjoGeNg0hEUVhZpMEIiIiLNYQGjpQRBwLS7\nze02VGtuZyiTI9h9JCqUldibcEiTIRIREWkMCxgt5u5oBv+7ze3OXk1XLx/o9BTsDG1wMvUcMkoy\nNRghERGRZrCA0XKTBnveaW4Z7QWJAAAgAElEQVR3LF7d3E4qkWK852ioRBW2x+3VcIREREQtjwWM\nlrM2l2OUnwvyimo2t/Ox7QYPczdEZl9FbH5CA3sgIiJqfVjA6IC6mtsJgoCJXiEAgK18xQAREbUx\nLGB0gJFchgmD7ja3O3l/tsXD3BU9bbsjsTAJ4ZmXNRghERFRy2IBoyMG+9xtbnepZnO7cZ6jIRWk\n2BG3FwpVlQYjJCIiajksYHRE9eZ2G4/EqpfbGdlgULt+yC7PxYmUMxqMkIiIqOWwgNEhvl426Nze\nApFxOYhOzFUvH+02AnKpHPsS/kapokyDERIREbUMFjA6pHpzu/VH7je3M9E3RqBbAEqqSrH/1mFN\nhkhERNQiWMDoGDeHO83tkjKKazS3G+o8EJYGFjh6+xRyyvIa2AMREZHuYwGjgyYN9oSe7E5zu4q7\nze30pXoY6xGIKlUVdsbv03CEREREzYsFjA6q0dzuwv3mdn4OPeFi4oQLGRFIKrytwQiJiIiaFwsY\nHRXczxWmRnrYffYWCu42t5MIEkxgczsiImoDWMDoKEMDGcYPdEfFA83tOlt1QFerTojJj8PVnOsa\njJCIiKj5sIDRYYN9nOBobYTjl1KRUq253QSvYAgQsC1uD5QqpQYjJCIiah4sYHSYTCrB1KFeUIki\nNlVrbtfOxBH9HPsgrSQDexP/1mCEREREzYMFjI7z8bKus7ndeM/RsJZbYW/iIZxJC9NghERERE8e\nCxgdJwgCnh7WAUDN5nam+iaY4/MijGVG+PP6JkTnxGgyTCIioieKBUwr4OpgCn9vByRlFONM1P3m\ndvbGdni5x0xIBAl+jVqL20WpGoySiIjoyWEB00pMGuwBPZkEW47fb24HAF4W7ni+y9MoV1Zg+eVV\nyCvP12CURERETwYLmFaienO7A9Wa2wFAb3sfTPQKQX5FAZZF/oayKr7wkYiIdBsLmFbkXnO7PdWa\n290z3GUwhjj3R2pJOn69sg5VqioNRUlERPT4WMC0IoYGMkyoo7kdcOdm3ykdxqG7TVdcz7uJP69v\nZqdeIiLSWSxgWpnBvnU3twPuvGrgRe/pcDVzwbn0i9idcFBDURIRET0eFjCtjFQiwdSAO83tNlZr\nbnePvlQfr/aYpe4Rczr1ggaiJCIiejwsYFohH887ze0ux+Xg4o3MWuur94j5343NuJZzQwNREhER\nPToWMK2QIAiYPqIj9PUkWLHzGmJTCmqNsTe2wz97vKDuEZPMHjFERKRDWMC0Us52JnhtQjdUKUUs\n3nQZaTkltcZ4WrhhZtdnUKlUYHnkSuSW52kgUiIioqZjAdOK9fC0wcygTiguU+D7DZHIL66oNaaX\nXQ9M9ApBQWURlkX+hlIFe8QQEZH2YwHTyg3yccKEQe7ILijHDxsiUVZRu//LMJdBGOI8AGklGVgR\ntZY9YoiISOuxgGkDxvZ3wxBfJyRlFmPp1iuoUqpqrL/TI2YsfGy8EZMXiz+ub2KPGCIi0mrNWsDE\nxMRgxIgRWLduXY3lJ06cQKdOndSfd+zYgcmTJ2Pq1KnYuHFjc4bUJgmCgBmjOsLXywbXEvOwak+0\n+q3V90gECV7wfhZuZu1xPj0cuxIOaChaIiKih2u2Aqa0tBQLFy6Ev79/jeUVFRX45ZdfYGtrqx63\ndOlSrF69GmvXrsXvv/+O/Hy+cPBJk0ok+Od4b3g6meHM1QxsPhZXa4y+VB+v9HgBNobW2Jf4N06l\nntNApERERA/XbAWMvr4+VqxYATs7uxrLf/rpJ0yfPh36+voAgMjISHTv3h2mpqaQy+Xo1asXwsPD\nmyusNs1AT4o3pvSAvZUR9p5NwqGw5FpjTPVN8JrPizDWM8JfN7biKnvEEBGRFmq2AkYmk0Eul9dY\nlpCQgOvXr2P06NHqZdnZ2bCyslJ/trKyQlZWVnOF1eaZGunjzWk+MDfWx/8O3UTY9dqN7uyNbPFK\njxcgFSRYGbUWyUUpGoiUiIiofrKWPNjnn3+O999/v8Exjbl51NLSCDKZ9EmFVYutrWmz7Vsb2Nqa\n4pOX/fHespNYsesa2rezgLeH9QNjuuN1g1n4/vSv+PnKavx3xNuwMbaqZ48tp7XnRlcxL9qLudFe\nzM3jabECJiMjA/Hx8XjrrbcAAJmZmZgxYwZef/11ZGdnq8dlZmbC19e3wX3l5ZU2W5y2tqbIyipq\ntv1rCzMDKV6b0B0/bIzEp7+exXszeqGdrUmNMZ7yDpjUYQw239yJT48sxoJer8FIz1BDEbed3Oga\n5kV7MTfai7lpnIaKvBZ7jNre3h6HDh3Chg0bsGHDBtjZ2WHdunXw8fHBlStXUFhYiJKSEoSHh6NP\nnz4tFVab5u1uhVnBnVFaUYXvNkQit7C81phhLoMQ4DwQ6SUZ+OXK71CwRwwREWmBZitgoqKiEBoa\niq1bt2LNmjUIDQ2t8+kiuVyOBQsWYPbs2Zg1axbmzJkDU1NOq7WU/t0cMWWoJ/KKKvD9xkiUlitq\njZnUYQx8bLvhZn48/ojeyB4xRESkcYKog38bNee0W1uc1hNFEX8euom/L95G5/YWmD/NF3qymrVt\npVKBxRE/I6EwCUGuwzDWM6jF42yLudEFzIv2Ym60F3PTOFpxCYm0lyAIeHZ4B/TuZIvrSfn4dde1\nWo3u9KV6+GePF2BraI19tw7jZMpZDUVLRETEAobukkgEvDy2Kzo6m+PC9UxsOBxba8ydHjGzYaJn\njPUx2xCVHa2BSImIiFjAUDV6Milen9IDTjbGOHAhGfvPJ9UaY2dkg3/e6xFz9Q8kFd3WQKRERNTW\nsYChGozlenhzmg8sTQ2w/nAszl5LrzXGw9wVL3R9FgqlAssjVyGnLE8DkRIRUVvGAoZqsTKTY/5U\nHxgaSLFyVzSiE3NrjfG1647JHcaisLIIyyJXolTRfL15iIiIHsQChurkbGeCuZN6QBCAJVuvICmj\n9t3yAS4DMcxlENJLM/HLlTXsEUNERC2GBQzVq4urJf4xpivKKpT4fmMksgvKao2Z6BUCX9vuuJkf\nj3XRG6ASVRqIlIiI2hoWMNSgvl3s8czwDigorsT3GyJRXFaz0Z1EkGBm12fgbuaKsIxL2Bm/X0OR\nEhFRW8IChh5qlJ8LAvu6IC2nFIs3X0alQlljvb5UD6/c7RFz4NYRnGCPGCIiamYsYKhRpgZ4oW8X\nO8TeLsAvO69BparZ6M5E3/h+j5gbW9kjhoiImhULGGoUiSBgdkhXdG5vgfCYLPxxKKbWO5HsjGzw\nSo9ZkElkWBm1DrcKkzUULRERtXYsYKjR9GQSzJ3UA862JjgSnoI9Z2/VGuNu3h6zvJ+FQlWF5ZdX\nIaes9iPYREREj4sFDDWJkVyG+dN8YG1mgM3H4nHqSlqtMT623TClwzgUVRZjaeRv7BFDRERPHAsY\najJLUwPMn+YLY7kMq/deR1R8Tq0xQ10GYJjLIGSUZuLnK7+zRwwRET1RLGDokTjZGOP1yT0gkQhY\nujUKiemFtcZM9ApBT9vuiM1PwNpr69kjhoiInhgWMPTIOrpY4OWx3qhUKPHDhkhk5tdsdHevR4yH\nuRsuZkZiR9w+DUVKREStzSMXMImJiU8wDNJVvTvZYvrIjigsVeD79ZdQWFpZY72eVA//7DETdoY2\nOJh0FMdvn9FQpERE1Jo0WMDMmjWrxudly5ap//zhhx82T0Skc4b3dkaIvysy8sqwaONlVFTWbHRn\none/R8yGmG24kn1NQ5ESEVFr0WABU1VV88bLs2fvd1h9sAcItW2TBnugfzcHJKQV4qftUVCqat7v\nYmtkre4R81vUH+wRQ0REj6XBAkYQhBqfqxctD66jtk0QBLwwujO6uVshMi4Ha/ffqFXk3ukRM/1O\nj5jIVchmjxgiInpETboHhkULNUQmleDVCd3gam+K45Fp2HEqsdYYH1tvTO04HkWKYiyLXIkS9ogh\nIqJH0GABU1BQgDNnzqj/KywsxNmzZ9V/JnqQoYEM/5raAzbmcmw/mYDjkam1xgxx7o/h7QcjozQL\nP19eDYVSUceeiIiI6idraKWZmVmNG3dNTU2xdOlS9Z+J6mJuYoA3n/bFZ2svYs2+GzAz1oevl02N\nMRM8g5Fbno+IzMtYG70BL3g/C4nAp/qJiKhxGixg1q5d21JxUCvjYGWEeVN74Os/I/DTtij8e3pP\neDqZq9dLBAlmdnkahRWFuJgZCUu5BSZ6hWgwYiIi0iUN/pO3uLgYq1evVn/+66+/MH78eLzxxhvI\nzs5u7thIx3k6meOVCd2gUKqwaONlpOfWvN/lTo+YF2BvZItDScdw7PZpDUVKRES6psEC5sMPP0RO\nzp333CQkJOC7777DO++8g/79++O///1viwRIus3XywYzgzqjuEyB79ZfQkFJzUZ3xnpGeM3nRZjq\nmWBjzHZczrqqoUiJiEiXNFjAJCcnY8GCBQCA/fv3IygoCP3798czzzzDGRhqtME+Thg/0B3ZBeX4\nYUMkyipq9heyMbTGqz53e8Rc/ZM9YoiI6KEaLGCMjIzUfz5//jz69eun/sxHqqkpxg1ww2AfR9zK\nKMKybVGoUtZsdOdq5oIXvaejSt0jpvYbromIiO5psIBRKpXIyclBUlISIiIiMGDAAABASUkJysrK\nGtqUqAZBEBAa2Ak9PK1xNSEXq/der9XoroetN6bd7RGzNHIlihUlGoqWiIi0XYMFzEsvvYTg4GCM\nHTsWr732GszNzVFeXo7p06djwoQJLRUjtRJSiQSvju8Gd0cznI5Kx5bj8bXGDHbuj5HthyKzNBs/\nX/6dPWKIiKhOgviQlxopFApUVFTAxMREvezkyZMYOHBgswdXn6ysombbt62tabPun4DC0kp8vvYi\nMvLKMGNURwzr5VxjvUpUYfXV/+FiZiR62vXAi97TIREkzI2WYl60F3OjvZibxrG1rb/nXIMzMKmp\nqcjKykJhYSFSU1PV/3l4eCA1tXaHVaLGMDPSx/ynfWFmpIc/DsTg4o2sGuslggShXabB09wdEZmX\nsS1uj4YiJSIibdXgDEznzp3h7u4OW1tbALVf5rhmzZrmj7AOnIFpHRLTC/HlHxFQqkS89YwvOrpY\n1FhfoijFtxeXIqM0C1M7jsfUnkHMjRbi74z2Ym60F3PTOA3NwDRYwGzfvh3bt29HSUkJQkJCMGbM\nGFhZWTVLkE3BAqb1iIrPwaJNlyHXl+LdGb3Rzsa4xvrsslx8c3EJiitLMM//RXQw7KShSKk+/J3R\nXsyN9mJuGueRC5h70tLSsHXrVuzcuRPt2rXD+PHjMXLkSMjl8icaaGOxgGldTl1Jw8rd0bAyM8D/\nhfaBpalBjfW3CpPxQ8TPqFRWYpRrAMa4j4JUItVQtPQg/s5oL+ZGezE3jfPYBUx1GzduxDfffAOl\nUomwsLDHDu5RsIBpfXafScTmY/FwtjXBu8/1gpG85mu6UorT8Nu1dUgvzkJHSy+86D0dpvomde+M\nWhR/Z7QXc6O9mJvGeeSbeO8pLCzEunXrMGnSJKxbtw7//Oc/sWcPb6ykJye4nysCerXD7axiLNly\nGYqqmo3u2pk44vOR76KHjTdi8mLxxYVFSCi4paFoiYhI0xqcgTl58iQ2b96MqKgojBo1CuPHj0fH\njh1bMr46cQamdVKpRCzbFoXwmCz07WKHl8d5Q1Kt47OtrSkyMgtw6NYx7IjfB4kgwaQOYzCkXX92\nhtYg/s5oL+ZGezE3jfPIl5A6d+4MNzc3+Pj4QCKpPVnz+eefP5kIm4gFTOtVqVDim/WXEHu7AIF9\nXfD0sA7qddVzcz33JlZd/RPFihL0sffF9M5TYCDV11TYbRp/Z7QXc6O9mJvGaaiAkdW7BlA/Jp2X\nlwdLS8sa627fvv0EQiOqSV9Pijcm98Dn6y5i//lkWJoYYFTf9rXGdbbqgHf95mFl1DqEZVxCanE6\n/tE9FPZGthqImoiIWlqD98BIJBIsWLAAH3zwAT788EPY29ujb9++iImJwQ8//NBSMVIbY2Koh/nT\nfGBuoo+/DsfifHRGneMs5Rb4V69XMMR5AFJL0vHVhcW4lHmlhaMlIiJNaHAG5vvvv8fq1avh6emJ\nv//+Gx9++CFUKhXMzc2xcePGloqR2iAbc0PMn+qDL/8Mx6+7rsHUSL/OqUSZRIZpHcfD3aw9/ry+\nCSui1mJE+yEY5xHER62JiFqxh87AeHp6AgCGDx+OlJQUPP/881iyZAns7e1bJEBqu9rbm2LuxO4Q\nRWDJlstISC2od6yfQ0/8u8/rsDOywaGkY/jx0goUVPD6MhFRa9VgAfPgkx2Ojo4YOXJkswZEVF0X\nNyvMHtMFZRVKvLPkRL2XkwDAycQBb/d5A7623XAzPx5fXvgBcfmJLRcsERG1mEb1gbmHj6qSJvTr\n6oBXxntDFIGftl/F2gM3avWJucdQJsc/uoViolcIihQl+CHiJxxJPokm9mskIiIt1+Bj1N27d4e1\ntbX6c05ODqytrSGKIgRBwNGjR1sixlr4GHXbVK4C/rvqHFKySuDqYIpXJ3SDnYVhveNv5sVh5dU/\nUFRZjN52PpjeeQrkMoN6x9Oj4e+M9mJutBdz0ziP3AcmJSWlwR23a9fu0aN6DCxg2iZbW1PcTs3H\nugM3cOpKOgwNZPhHSBf07Fj/o9P5FQVYGfUH4gsS4WBkh5e6Pw8HY7sWjLr14++M9mJutBdz0zhP\n9F1I2oAFTNtUPTcnLqdi3YEYKKpUCOzrgslDPCGT1n1FVKlSYmvcbhxJPgkDqT5mdJmGXnY9WjL0\nVo2/M9qLudFezE3jPPa7kIi0zaAeTnj/+T6wtzLC/vPJ+OrPCOQWltc5ViqRYkqHcXjRezpEACuj\n1mHzzZ1QqpQtGzQRET0xLGBIZ7nYmeDDmX3g19kOsSkF+HjVBUQl5NQ7vre9L97u8zrsjexwOPkE\nFkX8goKKwhaMmIiInhQWMKTTDA1keGW8N2aM6ojyyip8vz4SW4/HQ6Wq+8qoo7E93u4zFz3teiCu\nIAFfXFiEm3nxLRw1ERE9LhYwpPMEQcCwXs54b0ZvWJvLsfN0Ir75KwIFxRV1jpfL5Jjt/Rwme41B\nsaIEiy/9gkNJx/ioNRGRDmEBQ62Gu6MZPprlB18vG1xPysfHqy7gRlJenWMFQcCw9oMxr+c/YaJn\njK2xu7Eyah3Kq+q+j4aIiLQLCxhqVYzlenh9cndMC/BCUakCX/0vArvPJEJVz+yKl4U73vX7F7ws\n3BGRdQVfhf2ItJL6u/0SEZF2YAFDrY4gCAh6qj3eea4nLEwMsPlYPBZvuoziMkWd480NTPGG78sY\n3n4wMkqz8FXYjwjLuNTCURMRUVOwgKFWq4OzBT6a5QdvdytcjsvBx6vOIy6l7hdCSiVSTPIag9nd\nZkAAsOrqn9gYsx1VqqqWDZqIiBqFBQy1amZG+pg/1QcTBrkjr7ACX/wRjgMXkuu9YbeXXQ+80+cN\nOBjb4+jtU1gU8TPyK+p/CzYREWkGCxhq9SQSAeMGuGPBM74wlsvw1983sWxrFErL655dsTe2w797\nz0VvOx/EF9zCF+cXISYvtoWjJiKihrCAoTajq5sVPprVFx1dLHAxJgufrr6AW+l1t/KWywwwy3s6\npnYYj5KqUiyOWIGDt47yUWsiIi3BAobaFEtTA/z7WV8E93NFZn4Z/rv2Io5eSqmzMBEEAUNdBmB+\nr1dgpm+KbXF7sOLKGpRVlWkgciIiqo4FDLU5UokEU4Z6Yt6UHjDQk2DNvhv4ddc1lFfWfUnJw9wN\n7/adhw4WHojMvoqvLvyIlOK0Fo6aiIiqYwFDbZaPlw0+muUHDycznLmagYW/hyElu6TOsWb6pnjd\n9yWMbD8UmWXZ+CZsCc6nh7dwxEREdE+zFjAxMTEYMWIE1q1bBwBIS0vDCy+8gBkzZuCFF15AVlYW\nAGDHjh2YPHkypk6dio0bNzZnSEQ12Jgb4t3nemFEH2ek5ZRi4e8XcDqq7tkVqUSKCV7BeLn785AI\nUvx+7S+sv7GNj1oTEWlAsxUwpaWlWLhwIfz9/dXLfvjhB0ybNg3r1q3DyJEjsWrVKpSWlmLp0qVY\nvXo11q5di99//x35+fnNFRZRLTKpBNNHdMRrE7pBIgj4dVc0Vu+9jkqFss7xPrbd8I7f63AydsDx\nlNP4Pvwn5JXznCUiaknNVsDo6+tjxYoVsLOzUy/76KOPEBgYCACwtLREfn4+IiMj0b17d5iamkIu\nl6NXr14ID+fUPLW8Pp3t8NEsP7jYmeB4ZCo+W3sRGXmldY61M7LFW33mws++JxILk/DFhUW4nnuz\nhSMmImq7ZM22Y5kMMlnN3RsZGQEAlEol/vzzT8yZMwfZ2dmwsrJSj7GyslJfWqqPpaURZDLpkw/6\nLltb02bbNz2e5s6Nra0pvn/TBiu2XcH+s7fw6eowzHu6Jwb4ONU5/i37l3Ag9jhWX9qIJZG/4plu\n4zC+yyhIhLZ1exl/Z7QXc6O9mJvH02wFTH2USiXefvtt9OvXD/7+/ti5c2eN9Y3ps5FXz7+KnwRb\nW1NkZdXdG4Q0qyVz8/RQT7S3Mcbv+6/jizUXMKK3M6YN84JMWrsw6WXRC5Y9rfFr1Dr878p2RKXd\nxPNdnoaRnmGLxKpp/J3RXsyN9mJuGqehIq/F/5n43nvvwdXVFXPnzgUA2NnZITs7W70+MzOzxmUn\nIk3x7+aAD2b6wdHaCIcu3sbn68KRXVB3Dxh3c1e86zcPnS074Er2NXwZthi3i1JbOGIiorajRQuY\nHTt2QE9PD2+88YZ6mY+PD65cuYLCwkKUlJQgPDwcffr0acmwiOrVzsYYH8zsg37e9khIK8Qnqy4g\nMja7zrGm+iaY4zsbga7DkF2Wg28uLsG5tIstHDERUdsgiM3UGz0qKgpffvklUlJSIJPJYG9vj5yc\nHBgYGMDExAQA4OnpiY8//hj79u3DypUrIQgCZsyYgXHjxjW47+acduO0nvbSZG5EUcSxyFT8efAm\nqpQqBPdzxcTB7pBK6v43wOWsq1gTvR5lVeUY2K4fpnQYBz1Ji1+xbRH8ndFezI32Ym4ap6FLSM1W\nwDQnFjBtkzbk5lZ6EZZvi0Jmfhk6uljgn+O8YWlqUOfYrNIcrIhag5TiNLiauuAf3WfASm7ZwhE3\nP23IC9WNudFezE3jaNU9MES6zNXBFB++4IfenWwRk5yPT1adx7XE3DrH2hpZ463ec/CUQ2/cKkrG\nFxcWITonpoUjJiJqnaQff/zxx5oOoqlKSyubbd/GxgbNun96dNqSGz2ZBH6d7WAs18Ol2GycvpIO\nAUAHZwsIglBjrFQiRQ8bb5gZmOFK1lWcSw+HAAGeFm61xuoqbckL1cbcaC/mpnGMjeue4QY4A0P0\nSARBwEg/F7z7XC9Ymhlg28kEfL8xEoV1/A9JEAQMatcPb/Z+DRYG5tiVcADLIn9DRkmmBiInImod\nOAPzAFbF2ksbc2NlJkf/bo5IyS5BVHwuzl3LgLujGazN5bXGWhiYo69DL6QWpyM6NwYnUs+isLII\n7c2cYSCt/18Z2k4b80J3MDfai7lpnIZmYFjAPIAnlfbS1tzo60nRt6s99GQSRNy8c0lJX08Kz3Zm\ntS4T6Uv14WffE86mTkgquo3o3BicTDkLlahCezNnyCTN12G6uWhrXoi50WbMTeOwgGkCnlTaS5tz\nIwgCOrpYoHN7C1xJyEF4TBaSMorRzcMK+g+89kIQBDgY22GQUz+Y6ZshvuAWonKicTbtAuQyOdoZ\nO+rUqwi0OS9tHXOjvZibxmEB0wQ8qbSXLuTGxtwQ/t4OSMooQlRCLi5EZ8LL2bzOR60lggSuZi4Y\n2O4pSAUJYvLicCkrCpeyomAlt4StoY1O3OirC3lpq5gb7cXcNA4LmCbgSaW9dCU3cn0p/L0dIIpA\nZGw2TkWlwUiuB3dH0zoLEplEho6WXujn2AflVRW4nnsTFzIiEJufAEdje1gYmGvgWzSeruSlLWJu\ntBdz0zgsYJqAJ5X20qXcCIKALq6W8HQyQ2RcDi7eyEJ6bim83a2gJ6v78pBcJkcP267wte2OvPI8\nROfdxKnU88gszUJ703Za+3JIXcpLW8PcaC/mpnEaKmDYifcB7I6ovXQ1N7mF5fhpx1XE3i6AvZUR\nXpvQDS52Jg/dLiYvFltidyO5KAUyQYohzgMQ6DYMxnpGLRB14+lqXtoC5kZ7MTeN01AnXs7APIBV\nsfbS1dwYGsjg7+0ARZXqziWlK2kwNdJDe/u6LyndY21ohf5OfWFvZIvEomRcy72BU6nnIBEkcDFp\nB6mWPLGkq3lpC5gb7cXcNA5nYJqAVbH2ag25iYjJwsrd0SitqIKLnQmmDPVEN3erh96sq1AqcCzl\nNPYlHkZZVRms5JYY5xGE3vY+Gn9iqTXkpbVibrQXc9M4fJljE/Ck0l6tJTc5BeXYeiIeZ6LSIQLo\n3N4CU4Z6wcPJ7KHblihKsT/xMI7dPoUqUYn2pu0w0SsEHS29mj/werSWvLRGzI32Ym4ahwVME/Ck\n0l6tLTfJmcXYfCwOl+NyAAC9O9li0mAPOFobP3Tb7LJc7Izfh7CMSwCAbtadMd4zGE4mDs0ac11a\nW15aE+ZGezE3jcMCpgl4Ummv1pqbG0l52Hg0DvGphZAIAgb7OGLcQHdYmDz89QK3CpOxNXY3bubH\nQ4AAf0c/hHiMbNFHr1trXloD5kZ7MTeNwwKmCXhSaa/WnBtRFBEek43Nx+KQnlsKfZkEI/1cMPop\nVxjJZQ/d9mrOdWyN24P0kgzoS/QwvP1gjGg/BHJZ7XcyPWmtOS+6jrnRXsxN47CAaQKeVNqrLeRG\nqVLh5OU0bD+ZgPziShjLZRjT3w3DerWDnqzhp46UKiXOpodhd/wBFFQWwVTPBMHuIzHAqW+zPrHU\nFvKiq5gb7cXcNA4LmCbgSaW92lJuKhRKHApLxp6zSSirqIK1mQEmDPKAv7cDJJKGn1iqUFbicNJx\nHEw6igplJeyNbDHec1d2wcwAACAASURBVDR62Hg3y6sJ2lJedA1zo72Ym8ZhAdMEPKm0V1vMTXGZ\nAnvO3MKhi7dRpVShna0xJg/xhI+n9UOLkcLKIuxJOIRTqeegElXwNHfDRK8QuJu7PtEY22JedAVz\no72Ym8ZhAdMEPKm0V1vOTU5BObafTMCpqDSIItDR2RxTArzg1e7hN+tmlGRie9xeRGZfBQD0tO2O\ncZ6jYWdk80Ria8t50XbMjfZibhqHBUwT8KTSXswNkJJVjM3H4nEpNhsA0LODDSYP8YSTzcMfvY7N\nT8DW2N1ILEyCVJBiULt+GO02Aib6D9+2IcyL9mJutBdz0zgsYJqAJ5X2Ym7ui0nOx6ajcYhNKYAg\nAAO7O2L8QHdYmTX81JEoiojIuoLtcXuRXZYDuVSOQNcADHUZCH2p3iPFwrxoL+ZGezE3jcMCpgl4\nUmkv5qYmURRxKTYbm4/FIzW7BHoyCUb0dkawvyuM5Q0XI1WqKpxIOYu9iYdQoiiFhYE5xnoEoq9D\nrya/moB50V7MjfZibhqHBUwT8KTSXsxN3VQqEaei0rDtRALyiipgZCBDiL8rhvd2hr5ew49Pl1WV\n4cCtoziSfAIKVRXamThiomcIulh3bPTxmRftxdxoL+amcVjANAFPKu3F3DSsUqHE4fAU7D6TiJLy\nKliaGmD8QHcM6O4AqaThWZW88nzsjN+P8+nhECGii1VHTPAMhrOp00OPy7xoL+ZGezE3jcMCpgl4\nUmkv5qZxSsoV2HP2Fg6F3YaiSgVHayNMGeIJ3w42D330+nZRKrbF7UF0bgwECOjr0AtjPQJhKbeo\ndxvmRXsxN9qLuWkcFjBNwJNKezE3TZNXVIHtJ+Nx4vKdR6+92pljylBPdHSpvxi5JzonBlvjdiOl\nOA16EhkCXAZhlOtQGMoMa41lXrQXc6O9mJvGYQHz/9u70+C2roJ94I9W29ptydbifWtSJ7EdkrZp\nmqR9hwJvWRq6ppQE+MLAdPgAU5YQujEwZVKWYaCdAkOZ6T8dpoGU0vYFksLQNGmbJpQmduIk3nd5\nky3ZlmXZlnT/HyTLVhb3Kl50FD+/mUxSS5av5jk3eXp07rlJ4KASF7O5Nm7PBP5yrA0fNg0BAGrK\nrbjvjnIU5BoW/L6IFMGp/g/xRtsR+KZGodfocFfJndievwVq5dz9mZiLuJiNuJiNPCwwSeCgEhez\nWZyW3lEcOtqKpm4fFAC2bnDg89vKYDUvfOn1dHgGR7vfwZHOtxAMB2HLsmJn+V3YmLsBCoWCuQiM\n2YiL2cjDApMEDipxMZvFkyQJZ9uGcehoK3qGJqBWKfHxTfn4zK0lMGQtfOm1f3oC/+j4F471nkBE\niqDEVIR7Kj6DWyurmYugeM6Ii9nIwwKTBA4qcTGbpROJSDjR0I+/Hm/D8NgUsjJU+PSWYty5uRAZ\nH3Hp9WDAg9fbDuP0YD0AYHN+Dbbbt6LcXLIsN4uka8dzRlzMRh4WmCRwUImL2Sy9mVAYb33Yi/87\n0Qn/5AzMBi12bivF9mrnR1563T7ahVdb/g+tox0AAIcuD7fl34JbHJug1+hW4Ojpo/CcERezkYcF\nJgkcVOJiNssnEAzh8KlOvHmqG9OhCBw5Oty7owyb1uQuOKsiSRKG0I+/nX8LZwbPIiSFoVaqsTG3\nGtvyb+GsTIrxnBEXs5GHBSYJHFTiYjbLz+efwuvvduDYGTcikoRSpwkP3FGOtcXZV/2e2Vz80xN4\nv/8DvOs+icFA9GaTnJVJLZ4z4mI28rDAJIGDSlzMZuX0jwTwl7db8UFj9NLrDWVW3Hd7GYrsl/9l\ncmkukiSh2deGd90nOSuTYjxnxMVs5GGBSQIHlbiYzcprc4/h0NEWXOyKXnq9ZZ0d92wvg80yt6Hd\nQrlwVia1eM6Ii9nIwwKTBA4qcTGb1JAkCQ3tI/jz0VZ0D/qhVilwx8Z8fHZrCUw6raxcOCuTGjxn\nxMVs5GGBSQIHlbiYTWpFJAknzw/g1WNt8IwGkalV4X9vKcLDd1XBPzYp+3UWmpW52fExGDT65XoL\nqw7PGXExG3lYYJLAQSUuZiOGmVAER8/04o13O+CfnIHFkIFt1U7sqHYmfLT0USRJQouvDe9cNiuz\nAdvyt3BWZgnwnBEXs5GHBSYJHFTiYjZimZwK4cipLvzrvz0IBENQAKgqycb2Ghc2VuZCo154H5n5\nrjQrY9flYZvrZtzs3MRZmWvEc0ZczEYeFpgkcFCJi9mIyWjKwj/eacOxejdaekYBAIYsDbaud2B7\njQv5Nvnlg7MyS4vnjLiYjTwsMEngoBIXsxHT/Fzcngkcr3fj3bP98E/OAAAq8s3YXuPEzWvtyNAu\nfJuC+fzTEzjZ/1+86z6JgUD0cm7OyiSH54y4mI08LDBJ4KASF7MR05VyCYUjON3swbE6N863j0AC\nkKlVYUuVHdtrXChxGGXPpCw0K3Ob6xZUWEo5K3MVPGfExWzkYYFJAgeVuJiNmD4qF49vEsfr+/DO\n2T54x6cAAIV5BuyocWHLOjv0mQvfBXs+zsokh+eMuJiNPCwwSeCgEhezEZPcXCIRCefah3Gsrg91\nLR6EIxI0aiU2r8nFjhoXbii0cFZmifGcERezkYcFJgkcVOJiNmK6llxG/VN491w/jtW5MeiN7iFj\nz87CjhoXtm5wwqzXyn4tzspcHc8ZcTEbeVhgksBBJS5mI6bF5CJJEpq6fXi7zo0PLg4hFI5ApVSg\npsKGHTUurC/NgVLJWZlrxXNGXMxGHhaYJHBQiYvZiGmpcpkIzuD9hgG8fcaNniE/ACDbmIHt1U5s\nq3bCZpa/SR5nZaJ4zoiL2cjDApMEDipxMRsxLXUukiSho38cx+rceP/8AKamw1AAWFeagx01LtRW\n2qBWydsk74qzMgoVavM2YJtry3U/K8NzRlzMRh4WmCRwUImL2YhpOXMJTofwn4uDOFbnRmvvGADA\nqItukrejxgWnVf5MymqcleE5Iy5mIw8LTBI4qMTFbMS0Urn0DvlxvL4P752b2ySvssCMHTUubF6b\nhwyNvE3yorMy7XjH/f4VZmVuQYWl7LqZleE5Iy5mIw8LTBI4qMTFbMS00rnMhCI43TwU3SSvwwsA\nyMpQYUtVdFam2HH1v/Au5Z+ZwKm+/+KdebMy2RkWbLBVoTq3CpWWMqiV6mV5HyuB54y4mI08LDBJ\n4KASF7MRUypzGZrdJK/eDZ9/GgBQZI9tkldlh07mJnmzszLv9Z3CWc8FTIail3ZnqjKxzroG1bYq\nVFnXQqeRv5BYBDxnxMVs5GGBSQIHlbiYjZhEyCUcieBs2wiO17lR1zKMiCRBq1Zi89o87KhxobLA\nLPtjoXAkjBZfO856zqPe04DhYHSWR6lQotJShmrbOmywVcGalb2cb2lJiJANXRmzkYcFJgkcVOJi\nNmISLReffwrvnu3D8bo+DPqiMymOHF10k7z1DpiS2CRPkiS4J/pRPxQtM13jPfHH8g1OVNvWodpW\nhUJjvpDrZkTLhuYwG3lYYJLAQSUuZiMmUXOJSBIau3w4XufGB41zm+TVVtpwe40LVSXyN8mb5Zsa\njc7MDJ1Hk7cFISkMALBkmFFtq8IGWxVuyC4XZt2MqNkQs5GLBSYJHFTiYjZiSodc/JMzONEQvXVB\n79AEAMBqysC2ahe2bXDCas5M+jWDoSDOjzShfug8GoYvIBBfN5OBKusabLBVYb11LXQa3ZK+l2Sk\nQzarFbORhwUmCRxU4mI2YkqnXCRJQnvfOI7V9eLk+UFMzUQ3yVtfZsWOGidqKuRvkjdfOBJG62gH\n6j0NqB86j+HgCIDoupkKSxmqbVWotlXBmpWzxO9oYemUzWrDbORhgUkCB5W4mI2Y0jWXyanoJnnH\n69xodUc3yTPpNLhprR21lTasKbJcU5mRJAl9EwPxMtM53h1/LN/gjF6ibatCkbFg2dfNpGs2qwGz\nkYcFJgkcVOJiNmK6HnLpGfLjWJ0bJ871YyIYAhDdW2Z9qRW1lTZUl1uhl3lJ9qWi62YuoN7TgKaR\nxHUz6203otq2Djdkl0OzDOtmrodsrlfMRh4WmCRwUImL2YjpesolFI6guduH0y0enGn2wDMaBAAo\nFQrcUGhGbWUuaittyLNc234wwVAQF0aaUe9pQIPnIiZCAQDRdTM3xvabWWddC/0SrZu5nrK53jAb\neVJWYJqamvDII4/gK1/5Cnbv3o2+vj5897vfRTgcRm5uLn76059Cq9Xi9ddfx4svvgilUokHH3wQ\nDzzwwIKvywKzOjEbMV2vuUiShF7PBM40e3C62YP2vrH4Y/k2PWorbaittKHUaYLyGj4KCkfCaBvt\nQL3nPOqHGuCZv27GXIoNuVWotq2DbRHrZq7XbK4HzEaelBSYQCCAr33taygpKcGaNWuwe/dufP/7\n38eOHTtw11134Re/+AUcDgc+//nP45577sGhQ4eg0Whw//3346WXXoLFYrnqa7PArE7MRkyrJRef\nfwp1sZmZ851ezIQiAACTXovaCitqK3JxY0m27HsyzTe3buY8znrOo2OsK/6YS++ILgLOXYdCYz6U\nCvnrclZLNumI2cizUIFRPfXUU08txw9VKBT47Gc/i8bGRmRlZaG6uhpPP/00nnjiCahUKmRmZuKN\nN95AXl4ehoeH8bnPfQ5qtRoXL15ERkYGSktLr/ragcD0chwyAECvz1jW16drx2zEtFpyydSqUeIw\nYcs6Bz65uRBlThO0ahX6RwJo7hnFyQsD+Od/utHmHsPUTBgWYwYytfLKjEKhgFFrQIWlFLe5bsY2\n1y3I09kASOgc70GTrxXvuk/hPfcpDAaGoFQokZ1pgeojysxqySYdMRt59PqMqz62bLstqdVqqNWJ\nLz85OQmtNroLptVqxdDQEDweD3Jy5qZIc3JyMDQ0tFyHRUS0aBlaFTbekIuNN+QiEpHQ5h7D6ZYh\nnGn24ExL9JcCQFm+CbUVNtRW5sJl1cm+6sicYcK2/C3Ylr8FwdAULo40od5zHueGL+Ad90m84z6J\nDJUWN+ZE182st924ZOtmiNJFyraLvNonV3I+0crO1kGtTn6aVq6FpqwotZiNmFZ7Lna7CbduLAAA\nuIf8OHW+Hycb+nG+bRitvWN45e02OK163LzOgVvWO1BVkgOV7Eu0jSh02vAJbEU4Ekajpw0fuOvx\nQW8dzgydxZmhs1AqlFhrK8fm/BrclF8NuyE3/t2rPRuRMZvFWdECo9PpEAwGkZmZiYGBAeTl5SEv\nLw8ejyf+nMHBQdTW1i74Ol5vYNmOkZ9LiovZiIm5JNIAuK3Kjtuq7PBPzqC+Nbpu5mz7CF471orX\njrVCn6lGdbkVtZW5WF+ag6wM+X8V5yocuCvfgf91fQL9gUGcjd2n6cJQC84PNeP/nTkEp96Oats6\nbKv4GMxhK1TK5fsfPro2PG/kWajkrWiB2bp1K44cOYKdO3fizTffxPbt21FTU4PHHnsMY2NjUKlU\n+PDDD7Fv376VPCwiomVhyNJg63ontq53YiYUQWOXN36J9omGAZxoGIBKqcDa4mxsrLShtsKGHJO8\n2xooFAo49XY49XZ8suR/MDo1jnPD0fs0NXqbcaTz3zjS+W9olRqUmUtQYSlDZXYZik2Fy7LnDNFK\nW7arkM6dO4f9+/ejt7cXarUadrsdP/vZz7B3715MTU3B5XLhJz/5CTQaDQ4fPowXXngBCoUCu3fv\nxt13373ga/MqpNWJ2YiJuSRPkiR0DfhxunkIZ1o86Brwxx8rshtQW2HDxspcFNkN17Rb71R4GhdG\nmtA52YGzfY3omxiIP6ZRqlFiKkJlrNCUmIqhVV3bJn107XjeyMON7JLAQSUuZiMm5rJ4w6NB1MU+\narrQ6UU4Ev1rOduYgdpKGzZW2LCmKBsadXK3NpjNZnzaj1ZfO5p9bWj2tcHt74eE6M9QK1QoNhXG\nCk05Ss3FyFBpl/w9UiKeN/KwwCSBg0pczEZMzGVpTU6FcK59BGeah1DfOhy/tUGGVoUNpTmxWxvY\nYMj66FmTq2UzMRNAi68dLbFC0zPujhcapUKJYmMhKrPLUGEpQ7m5GJnq5O/WTQvjeSMPC0wSOKjE\nxWzExFyWTzgSQUvPKE43R2dnBn2TAKK3NqgsMMd3A7ZnX/kSarnZTIYm0erriM/QdI/3IiJFYj9L\niUJDPiqyS1FpKUO5uRQ6zbXdSoHm8LyRhwUmCRxU4mI2YmIuK0OSJLiHAzgTWzfT1juG2b+8nVZd\n7KOmXJS5TFAqo+tmrjWbYCiIttFONPva0OJrQ+dYD8Kxm1AqoECBwYmK7DJUWqKzNNyDJnk8b+Rh\ngUkCB5W4mI2YmEtqjE5Moz62aV5D+wimZ29toNOguiK6bmbH5iKMj00u+mdNh6fRNtoZ/8ipY7Qr\nfldtBRRwGRzRq5wsZaiwlMKoNSz6Z17veN7IwwKTBA4qcTEbMTGX1JuaCeNChxdnWoZwpmUYYxPR\nLerVKgVKHCbcUGjBmiILKvLNSe05czXT4Rl0jHVFZ2i8bWgf68RMJBR/3KG3RxcFW0pRYSmHOYMb\ntl2K5408LDBJ4KASF7MRE3MRS0SS0N43hjPNHjT1jKK1ZxQRaXaBrgLFDkO00BRmo7LQDH3m4i+h\nnomE0DnWHZ2h8bahbbQD05GZ+ON5Olv846ZKSxmyM69+s97VgueNPCwwSeCgEhezERNzEVdurhFd\nPV609o6isduHxi4f2vvG4pdpKwAU5BmwJjZDU1logUm3+Euow5EwusZ74ouC23wdCIan4o/bMnPi\na2gqLWWwZuUs8GrXJ5438rDAJIGDSlzMRkzMRVxXymZqJoy2eYWm1T2GUDgSf9xl02NNoSX+sZPF\ncPW7AcsVjoTR43fHFwW3+DowGZpbm5OTmZ0wQ2PLyrmmDfzSCc8beVhgksBBJS5mIybmIi452cyE\nImjvG0NjlxeN3T609I5iemau0Nizs7CmyBL/2MlqXvyeMBEpgl5/X3wNTYuvHROhuXvcWTLMqLCU\nxmdo8nS5112h4XkjDwtMEjioxMVsxMRcxHUt2YTCEXT2j6Ox24embh+ae3yYnArHH7eZM2NlJjpD\nk2vJWnS5iEgR9E0MxAtNs68N/pmJ+OMmrREVllIUmwpRZCxAoTEfWWm+uR7PG3lYYJLAQSUuZiMm\n5iKupcgmEpHQNTiOpi5fvNTM7g4MRG93MFtobii0wGnVLbrQSJKEgcBgdA2NN/qx0+h04vvI09lQ\nZCyI/cpHQZqVGp438rDAJIGDSlzMRkzMRVzLkU1EkuAemoitofGiqduHscDcFUcmnSa2fiYbNxRa\nkJ+rh3IJCs1wcARd473oGutB13j012QoGH+OAop5pSYfRaZCFBhcyFQvfg3PcuB5Iw8LTBI4qMTF\nbMTEXMS1EtlIkoT+kQAaYzM0jV1e+PzT8cf1mWrcMG9RcFGeMb5T8GJ/7tDkMLrHe9A53oPusV50\njfciGE4sNXZdLgqNBSg2RT96KjTmC3GzSp438rDAJIGDSlzMRkzMRVypyEaSJAz5JuOFpqnbB8/o\nXKnIylChIj9aZtYUWlDsMEKtSu4u21cTkSLwTA7HZml60TXeg+7x3oRLuBVQwK7PQ3FsLU2xqQAF\nBhe0K1xqeN7IwwKTBA4qcTEbMTEXcYmSzfBoEI3d0Y+bGrt8GPDOXUKt1ShRkW+OLQrORqnTBI16\naQoNEC01QwFPvNDMlpqp8NwskQIKOPV2FBrzUWQqQLGxAPkGF7SqxW/ydzWiZCM6FpgkcFCJi9mI\nibmIS9RsvONTaIrNzjR2++D2zF1xpFYpUe4yxS/dLs83I0OjWtKfH5EiGAx44oWma6wH3X43pueV\nGqVCGS810dmaAhQYnNAsUakRNRvRsMAkgYNKXMxGTMxFXOmSzVhgGs2x2ZnGbh96Bv3xO22rlAqU\nOk2oLDSjzGlCscMIqylzyfeFiUgRDASGEhYJ94y7E26JMFtqZgtNsakALr3jmkpNumSTaiwwSeCg\nEhezERNzEVe6ZjMRnEFz9ygau71o7PKhc2Ac8/+lMmRpUOwwosRhRLE9+rvVvPSlJhwJR0tNfKam\nFz3+3oQbVyoVSuTrHSg0FqDIFL0CymVwQqNc+KaZ6ZrNSmOBSQIHlbiYjZiYi7iul2wmp0Joc4+h\no38Mnf3j6OgfT1gYDMRKjd2AYocpWmwcRtiWqdT0BwYTFgr3+t0JpUalUMFlcMy7pDs6U6OeV2qu\nl2yWGwtMEjioxMVsxMRcxHU9Z+OfnEHnwHi80HT2j2HIl1hq9Jnq2EzN8peavomBhIXCvf4+hOaV\nGrVCBZfBGS806wsqkDGtR2Yabb6XCiwwSbieT/h0x2zExFzEtdqySabUzBabYocRuctUatwTA+ga\n745vwOf29yEkhROel51hgVNvh0OfB6feAac+Dw69Pa12FV5OLDBJWG0nfDphNmJiLuJiNtH1NJ39\n80vNOAZ9kwnP0WeqURRbSzO7tmYp7vF0qVAkBPdEP7rHeuGNjKDd04O+iQGMTo9d9lxLhhlOvX1e\nubHDobNDp8la0mMSHQtMEnjCi4vZiIm5iIvZXFkgVmo65s3WDHoTS40uQz23UHgZSs38bAIzAfQH\nBtE3MYC+iQH0T0T/7Jsavez7zFrTJcUmOmuj0+iW5LhEwwKTBJ7w4mI2YmIu4mI28gWCM+gc8McK\nzdiCpWZ+scm7xlIjJ5vJ0GS8zMwvNt4p32XPNWmNsVJjhzNWbBz6PBg0+qSPTSQLFZiFr/MiIiJa\nBXSZGtxYnI0bi7PjX7u01HT2j+NCpxcXOr3x52RlqFFsN8TX05Q4jMjNzlr0DSwBIEudhVJzMUrN\nxQlfnwwF0T8xiP6JAfQF5spNo7cFjd6WhOcatQY4dbPFxh5fY2PUGhZ9fKnGAkNERHQFVy41IXQN\nxNbTxH6/2OXDxa65WZHlLDUAkKXORKm5CKXmooSvB0NTGEj4KGoAfRODaPK1osnXmvBcg0Y/76Oo\nuVkbg0a/5Gt/lgs/QroEp1zFxWzExFzExWxWxuTUvFITW1PTPxJIeE5WhgrFdmP8I6jqNXZoIS3Z\njSwXMhWexsD8j6IC0WIzPDkCCYkVQK/RzZUa3VzBMWkNKSk2XAOTBJ7w4mI2YmIu4mI2qXOlUjMw\nEkioCyqlAnnZWXDZ9HBZ9XDZ9Mi36WHP0S3pDS2vZjo8jYHA0CVrbPrhuUKx0amz5s3WzC0iNmtN\ny1psWGCSwBNeXMxGTMxFXMxGLLOlpnPAjxH/NFp7vHB7ApicCiU8T6EA8rJ1cFl1yM+dKzdOqw4a\n9dLe2PJKpsMzGIwVm+g6m2ixGQoMX1ZsstRZ2OLchPsr716WY+EiXiIiohTLylBjTVE21hRlx8ul\nJEnw+afh9kxEfw1PxP98eiSA082e+PcrFECuJSthtsZl08Nh1S3pHbu1Kg0KjC4UGF0JX5+JhBKL\nTWyNzcRM4CqvtLxYYIiIiFJEoVAg25iBbGMG1pXmxL8uSRLGJmLFZjiAXs9csTnT4sGZlnnFBoDN\nkhkvNrO/nFYdMrVL98+8RqlGvsGJfINzyV5zMVhgiIiIBKNQKGA2ZMBsyMCNJTkJj80Vm7lS4/ZM\noK51GHWtwwnPtZoy47M1Tpsuvt4mKyP9//lP/3dARES0ipj0Wpj0Wqydd3k3AIwH5mZs5hebs23D\nONuWWGxyTBmXzdi4rDroMjUr+VYWhQWGiIjoOmDUabGmSIs1RYnFxj85g77YbE2vZwJ9sZJzrn0E\n59pHEp5rMWhjszWJ62z0AhYbFhgiIqLrmCFLg8oCCyoLLAlfDwRDiR9Dxf7c0OFFQ4c34blmvfay\n2RqXTQ+jTruSbyUBCwwREdEqpMtUoyLfjIp8c8LXJ6dC6BsOoNfjR58nEC82l95GAQBMOg22bnDi\nwf+pWMlDB8ACQ0RERPNkZahR5jKhzGVK+HpwOlps4rM1Q9HfR8aCKTlOFhgiIiL6SJlaNUqdJpQ6\nTR/95BWw/HsVExERES0xFhgiIiJKOywwRERElHZYYIiIiCjtsMAQERFR2mGBISIiorTDAkNERERp\nhwWGiIiI0g4LDBEREaUdFhgiIiJKOywwRERElHZYYIiIiCjtsMAQERFR2lFIkiSl+iCIiIiIksEZ\nGCIiIko7LDBERESUdlhgiIiIKO2wwBAREVHaYYEhIiKitMMCQ0RERGmHBWaep59+Grt27cJDDz2E\n+vr6VB8OzfPMM89g165duO+++/Dmm2+m+nBonmAwiDvvvBN/+ctfUn0oNM/rr7+Ou+++G/feey+O\nHj2a6sMhABMTE/jGN76BPXv24KGHHsLx48dTfUhpTZ3qAxDFqVOn0NnZiYMHD6K1tRX79u3DwYMH\nU31YBOD9999Hc3MzDh48CK/Xi3vuuQef/OQnU31YFPP888/DbDan+jBoHq/Xi+eeew6vvPIKAoEA\nfv3rX+OOO+5I9WGteq+++ipKS0vx6KOPYmBgAF/+8pdx+PDhVB9W2mKBiTlx4gTuvPNOAEB5eTlG\nR0fh9/thMBhSfGR00003obq6GgBgMpkwOTmJcDgMlUqV4iOj1tZWtLS08B9HwZw4cQK33norDAYD\nDAYDfvSjH6X6kAhAdnY2GhsbAQBjY2PIzs5O8RGlN36EFOPxeBIGU05ODoaGhlJ4RDRLpVJBp9MB\nAA4dOoQdO3awvAhi//792Lt3b6oPgy7R09ODYDCIr3/963j44Ydx4sSJVB8SAfjMZz4Dt9uNT3zi\nE9i9eze+973vpfqQ0hpnYK6Cd1gQz7/+9S8cOnQIf/jDH1J9KATgr3/9K2pra1FYWJjqQ6Er8Pl8\nePbZZ+F2u/GlL30Jb731FhQKRaoPa1V77bXX4HK58MILL+DixYvYt28f144tAgtMTF5eHjweT/y/\nBwcHkZubm8IjovmOHz+O3/zmN/j9738Po9GY6sMhAEePHkV3dzeOHj2K/v5+aLVaOBwObN26NdWH\ntupZrVZs3LgRWL1eNwAABB1JREFUarUaRUVF0Ov1GBkZgdVqTfWhrWoffvghtm3bBgBYu3YtBgcH\n+XH4IvAjpJjbbrsNR44cAQA0NDQgLy+P618EMT4+jmeeeQa//e1vYbFYUn04FPPLX/4Sr7zyCv70\npz/hgQcewCOPPMLyIoht27bh/fffRyQSgdfrRSAQ4HoLARQXF6Ourg4A0NvbC71ez/KyCJyBifnY\nxz6GdevW4aGHHoJCocCTTz6Z6kOimL///e/wer345je/Gf/a/v374XK5UnhUROKy2+341Kc+hQcf\nfBAA8Nhjj0Gp5P+vptquXbuwb98+7N69G6FQCE899VSqDymtKSQu9iAiIqI0w0pOREREaYcFhoiI\niNIOCwwRERGlHRYYIiIiSjssMERERJR2WGCIaFn19PRg/fr12LNnT/wuvI8++ijGxsZkv8aePXsQ\nDodlP/8LX/gCTp48eS2HS0RpggWGiJZdTk4ODhw4gAMHDuDll19GXl4enn/+ednff+DAAW74RUQJ\nuJEdEa24m266CQcPHsTFixexf/9+hEIhzMzM4IknnkBVVRX27NmDtWvX4sKFC3jxxRdRVVWFhoYG\nTE9P4/HHH0d/fz9CoRB27tyJhx9+GJOTk/jWt74Fr9eL4uJiTE1NAQAGBgbw7W9/GwAQDAaxa9cu\n3H///al860S0RFhgiGhFhcNh/POf/8SmTZvwne98B8899xyKioouu7mdTqfDSy+9lPC9Bw4cgMlk\nws9//nMEg0F8+tOfxvbt2/Hee+8hMzMTBw8exODgID7+8Y8DAP7xj3+grKwMP/zhDzE1NYU///nP\nK/5+iWh5sMAQ0bIbGRnBnj17AACRSASbN2/Gfffdh1/96lf4wQ9+EH+e3+9HJBIBEL29x6Xq6upw\n7733AgAyMzOxfv16NDQ0oKmpCZs2bQIQvTFrWVkZAGD79u344x//iL179+L222/Hrl27lvV9EtHK\nYYEhomU3uwZmvvHxcWg0msu+Pkuj0Vz2NYVCkfDfkiRBoVBAkqSEe/3MlqDy8nL87W9/w3/+8x8c\nPnwYL774Il5++eXFvh0iEgAX8RJRShiNRhQUFODtt98GALS3t+PZZ59d8Htqampw/PhxAEAgEEBD\nQwPWrVuH8vJynD59GgDQ19eH9vZ2AMAbb7yBs2fPYuvWrXjyySfR19eHUCi0jO+KiFYKZ2CIKGX2\n79+PH//4x/jd736HUCiEvXv3Lvj8PXv24PHHH8cXv/hFTE9P45FHHkFBQQF27tyJf//733j44YdR\nUFCADRs2AAAqKirw5JNPQqvVQpIkfPWrX4Vazb/2iK4HvBs1ERERpR1+hERERERphwWGiIiI0g4L\nDBEREaUdFhgiIiJKOywwRERElHZYYIiIiCjtsMAQERFR2mGBISIiorTz/wHheceJGBGbtgAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "AFJ1qoZPlQcs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Feature Crosses\n", + "\n", + "Crossing two (or more) features is a clever way to learn non-linear relations using a linear model. In our problem, if we just use the feature `latitude` for learning, the model might learn that city blocks at a particular latitude (or within a particular range of latitudes since we have bucketized it) are more likely to be expensive than others. Similarly for the feature `longitude`. However, if we cross `longitude` by `latitude`, the crossed feature represents a well defined city block. If the model learns that certain city blocks (within range of latitudes and longitudes) are more likely to be more expensive than others, it is a stronger signal than two features considered individually.\n", + "\n", + "Currently, the feature columns API only supports discrete features for crosses. To cross two continuous values, like `latitude` or `longitude`, we can bucketize them.\n", + "\n", + "If we cross the `latitude` and `longitude` features (supposing, for example, that `longitude` was bucketized into `2` buckets, while `latitude` has `3` buckets), we actually get six crossed binary features. Each of these features will get its own separate weight when we train the model." + ] + }, + { + "metadata": { + "id": "-Rk0c1oTYaVH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Train the Model Using Feature Crosses\n", + "\n", + "**Add a feature cross of `longitude` and `latitude` to your model, train it, and determine whether the results improve.**\n", + "\n", + "Refer to the TensorFlow API docs for [`crossed_column()`](https://www.tensorflow.org/api_docs/python/tf/feature_column/crossed_column) to build the feature column for your cross. Use a `hash_bucket_size` of `1000`." + ] + }, + { + "metadata": { + "id": "-eYiVEGeYhUi", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " # YOUR CODE HERE: Make a feature column for the long_x_lat feature cross\n", + " long_x_lat = tf.feature_column.crossed_column(\n", + " set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000) \n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person,\n", + " long_x_lat])\n", + " \n", + " return feature_columns\n", + "\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "xZuZMp3EShkM", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 627 + }, + "outputId": "b69390f3-744d-4baa-9a62-087f10eed5dd" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 162.46\n", + " period 01 : 134.39\n", + " period 02 : 117.41\n", + " period 03 : 106.10\n", + " period 04 : 98.25\n", + " period 05 : 92.46\n", + " period 06 : 87.92\n", + " period 07 : 84.39\n", + " period 08 : 81.50\n", + " period 09 : 79.19\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd0VWX69vHvKemN9NBDQOmEFnpv\nCU1pYgMRUUcRRcWf5R11bKMyYy8w6qgIODMCAgLSBKQJAjEQem8hENIT0tt+/4geiUAMJZyTcH3W\nYi3O3vvsfZ/cJ4uL59nFZBiGgYiIiEgVYrZ3ASIiIiKXSwFGREREqhwFGBEREalyFGBERESkylGA\nERERkSpHAUZERESqHKu9CxBxZI0bN6ZevXpYLBYAiouLiYiI4Pnnn8fd3f2K9ztnzhxGjx59wfL5\n8+fz3HPP8a9//YvevXvblufl5dGlSxcGDBjAm2++ecXHraiTJ0/y+uuvc+zYMQDc3NyYNGkS/fr1\nq/RjX45p06Zx8uTJC34mW7ZsYcKECdSpU+eC9yxfvvx6lXdVTp06Rd++fWnQoAEAhmEQEBDAX//6\nV5o1a3ZZ+3r77bepVasWd955Z4Xf89133zFv3jxmzZp1WccSuV4UYET+xKxZswgJCQGgoKCAJ554\ngk8++YQnnnjiivaXlJTEv//974sGGICaNWuyZMmSMgHmxx9/xNvb+4qOdyWeeuopbr31Vv71r38B\nEBsby7hx41i2bBk1a9a8bnVcjZo1a1aZsHIpFoulzGdYunQpjzzyCCtWrMDZ2bnC+5kyZUpllCdi\nV5pCErkMzs7OdO/enX379gGQn5/Piy++SGRkJAMHDuTNN9+kuLgYgP3793PHHXcQFRXFrbfeyoYN\nGwC44447OH36NFFRURQUFFxwjLZt27JlyxZyc3Nty5YuXUrXrl1trwsKCnjttdeIjIykT58+tqAB\nsH37dkaMGEFUVBSDBg1i06ZNQOn/6Lt168bMmTMZOnQo3bt3Z+nSpRf9nAcPHiQ8PNz2Ojw8nBUr\nVtiC3EcffUTPnj0ZNmwYn376KX369AHg2WefZdq0abb3nf/6z+p6/fXXGTNmDAC//PILI0eOpH//\n/owePZq4uDigdCTq8ccfp3fv3owZM4aEhIQ/6djFzZ8/n0mTJjFu3Dj+8Y9/sGXLFu644w4mT55s\n+8d+2bJlDBkyhKioKO655x5OnjwJwIcffsjzzz/PqFGjmDFjRpn9Tp48mS+++ML2et++fXTr1o2S\nkhLeffddIiMjiYyM5J577uHs2bOXXfegQYPIy8vj6NGjAHzzzTdERUXRp08fnnzySfLy8oDSn/sb\nb7zB0KFDWbZsWZk+XOp7WVJSwiuvvEKvXr0YNWoU+/fvtx1369atDB8+nEGDBjFw4ECWLVt22bWL\nXHOGiFzSzTffbJw5c8b2Oj093bj77ruNadOmGYZhGJ988onxwAMPGIWFhUZubq4xcuRIY+HChUZx\ncbExcOBAY/HixYZhGMbOnTuNiIgI49y5c8bPP/9s9OvX76LH+/bbb41nnnnGeOqpp2zvPXfunNG3\nb19j7ty5xjPPPGMYhmF89NFHxrhx44z8/HwjOzvbGDZsmLFmzRrDMAxjyJAhxpIlSwzDMIwFCxbY\njhUXF2c0a9bMmDVrlmEYhrF06VKjf//+F63j0UcfNXr37m189dVXxuHDh8usO3DggNG+fXsjMTHR\nKCwsNB5++GGjd+/ehmEYxjPPPGN8/PHHtm3Pf11eXc2bNzfmz59v+7wRERHGxo0bDcMwjMWLFxvD\nhw83DMMwZs+ebdx9991GYWGhkZqaavTu3dv2MzlfeT/j337OrVu3No4dO2bbvmXLlsamTZsMwzCM\n+Ph4o127dsbx48cNwzCMzz//3Bg3bpxhGIbxwQcfGN26dTNSUlIu2O/3339v3H333bbX77//vvHq\nq68aBw8eNAYMGGAUFBQYhmEYM2fONBYsWHDJ+n77uTRt2vSC5REREcaRI0eMbdu2GZ07dzYSEhIM\nwzCMF154wXjzzTcNwyj9uQ8dOtTIy8uzvf7444/L/V6uXbvWGDBggJGVlWXk5uYao0aNMsaMGWMY\nhmGMGDHC2LJli2EYhnHs2DHjySefLLd2ketBIzAif2Ls2LFERUXRt29f+vbtS6dOnXjggQcAWLt2\nLaNHj8ZqteLq6srQoUP56aefOHXqFMnJyQwePBiAli1bUqtWLXbt2lWhYw4ePJglS5YAsGrVKnr3\n7o3Z/Puv648//shdd92Fs7Mz7u7u3HrrraxcuRKAhQsXMnDgQADatWtnG70AKCoqYsSIEQA0b96c\n06dPX/T4//znP7n77rtZvHgxQ4YMoU+fPvz3v/8FSkdHIiIiCAwMxGq1MmTIkAp9pvLqKiwspH//\n/rb9BwcH20achgwZwsmTJzl9+jTR0dH0798fq9WKr69vmWm2Pzpz5gxRUVFl/px/rkxoaCihoaG2\n166urnTu3BmAn376iY4dO1K/fn0AbrvtNrZs2UJRURFQOiLl5+d3wTF79erF3r17SU9PB+CHH34g\nKioKb29vUlNTWbx4MRkZGYwdO5Zhw4ZV6Of2G8Mw+OabbwgODiY0NJQ1a9YwaNAggoODAbjzzjtt\n3wGAzp074+LiUmYf5X0vt23bRs+ePfHw8MDV1dXWKwB/f38WLlzIkSNHCA0N5e23376s2kUqg86B\nEfkTv50Dk5qaapv+sFpLf3VSU1Px8fGxbevj40NKSgqpqal4eXlhMpls6377RywgIOBPj9m1a1ee\nf/550tPT+f7775k4caLthFqAc+fO8cYbb/DOO+8ApVNKrVq1AmDx4sXMnDmT7OxsSkpKMM573JnF\nYrGdfGw2mykpKbno8V1cXJgwYQITJkwgMzOT5cuX8/rrr1OnTh0yMjLKnI/j7+//p5+nInV5enoC\nkJmZSVxcHFFRUbb1zs7OpKamkpGRgZeXl225t7c32dnZFz3en50Dc37f/vg6LS2tzGf08vLCMAzS\n0tIu+t7fuLu706VLF9auXUu7du3IzMykXbt2mEwmPvzwQ7744gteffVVIiIiePnll//0fKLi4mLb\nz8EwDBo1asS0adMwm82cO3eOH374gY0bN9rWFxYWXvLzAeV+LzMyMggKCiqz/Devv/4606dPZ/z4\n8bi6uvLkk0+W6Y+IPSjAiFSQn58fY8eO5Z///CfTp08HICAgwPa/bYD09HQCAgLw9/cnIyMDwzBs\n/1ikp6dX+B97JycnevfuzcKFCzlx4gRt2rQpE2CCgoK47777LhiBOHv2LM8//zxz586ladOmHD9+\nnMjIyMv6nKmpqezbt882AuLt7c3o0aPZsGEDBw8exMvLi3PnzpXZ/jd/DEUZGRmXXVdQUBBhYWHM\nnz//gnXe3t6XPPa15O/vz/bt222vMzIyMJvN+Pr6/ul7IyMj+eGHH0hLSyMyMtLW/06dOtGpUydy\ncnKYOnUqb7311p+OZPzxJN7zBQUFMXz4cJ555pnL+lyX+l6W97MNCAjghRde4IUXXmDjxo08+uij\ndO/eHQ8PjwofW+Ra0xSSyGUYP34827dvZ+vWrUDplMG8efMoLi4mJyeH7777jp49e1KnTh1CQkJs\nJ8nGxMSQnJxMq1atsFqt5OTk2KYjLmXw4MF89tlnF710uW/fvsydO5fi4mIMw2DatGmsX7+e1NRU\n3N3dCQsLo6ioiG+++QbgkqMUF5OXl8djjz1mO7kT4MSJE8TGxtK+fXvatGlDdHQ0qampFBUVsXDh\nQtt2gYGBtpM/4+LiiImJAbisusLDw0lKSiI2Nta2n//7v//DMAxat27NmjVrKC4uJjU1lfXr11f4\nc12Orl27Eh0dbZvm+t///kfXrl1tI2/l6d27N9u3b2fVqlW2aZiNGzfy8ssvU1JSgru7O02aNCkz\nCnIl+vTpw8qVK21BY9WqVXz66aflvqe872WbNm3YuHEjubm55Obm2oJTYWEhY8eOJTExESiderRa\nrWWmNEXsQSMwIpfB09OTBx98kKlTpzJv3jzGjh1LXFwcgwcPxmQyERUVxcCBAzGZTLzzzjv87W9/\n46OPPsLNzY33338fd3d3GjdujI+PD127dmXBggXUqlXrosfq0KEDJpOJQYMGXbDurrvu4tSpUwwe\nPBjDMGjRogXjxo3D3d2dHj16EBkZib+/P88++ywxMTGMHTuWDz74oEKfsVatWkyfPp0PPviA1157\nDcMw8PT05LnnnrNdmXT77bczfPhwfH19GTBgAIcOHQJg9OjRTJo0iQEDBtCsWTPbKEuTJk0qXJer\nqysffPABr776KtnZ2Tg5OTF58mRMJhOjR48mOjqafv36UatWLfr161dm1OB8v50D80f/+Mc//vRn\nEBISwmuvvcbEiRMpLCykTp06vPrqqxX6+Xl6etK8eXMOHDhA69atAYiIiOD7778nMjISZ2dn/Pz8\neP311wF4+umnbVcSXY7mzZvz0EMPMXbsWEpKSvD39+fll18u9z3lfS979+7N2rVriYqKIiAggJ49\nexIdHY2TkxOjRo3i3nvvBUpH2Z5//nnc3Nwuq16Ra81knD8RLSJymaKjo3n66adZs2aNvUsRkRuI\nxgBFRESkylGAERERkSpHU0giIiJS5WgERkRERKocBRgRERGpcqrkZdRJSRe/bPJa8PV1Jy0tp9L2\nL1dOvXFM6ovjUm8cl3pTMYGBXpdcpxGYP7BaLfYuQS5BvXFM6ovjUm8cl3pz9RRgREREpMpRgBER\nEZEqRwFGREREqhwFGBEREalyFGBERESkylGAERERkSpHAUZERESqHAUYERGRambt2tUV2u7999/m\n9On4S65/9tknr1VJ15wCjIiISDVy5sxpVq1aUaFtJ0+eQq1atS+5/s0337lWZV1zVfJRAiIiInJx\n77wzlX379tC9ewQDBgzkzJnTvPfeNN544xWSkhLJzc3lvvsepGvX7kya9CBPPvk0P/64muzsLE6e\nPEF8/Ckee2wKnTt3ZfDgvnz//WomTXqQiIiOxMREk56eztSp7xIQEMArr7xAQsIZWrZsxZo1q1iw\nYOl1+5wKMCIiIpVkzprDbNufeMFyi8VEcbFxRfuMaBLE6D6NLrn+zjvHMn/+HBo0aMjJk8eZNu3f\npKWl0qFDJwYOHEJ8/CleeOFZunbtXuZ9iYlneeutD/j550189923dO7ctcx6Dw8P3n9/OtOnf8j6\n9WuoVasOBQX5fPrpDH76aQNz5vz3ij7PlVKAOU9KbipJiWcINNW0dykiIiJXrWnT5gB4eXmzb98e\nFi2aj8lkJjMz44JtW7VqDUBQUBBZWVkXrA8Pb2Nbn5GRwYkTx2jZMhyAzp27YrFc3+c7KcCcZ+mx\nVfycEM2zEZOp63XpOUEREZGKGN2n0UVHSwIDvUhKOlfpx3dycgLghx+Wk5mZyccf/5vMzEzuv3/s\nBdueH0AM48LRoT+uNwwDs7l0mclkwmQyXevyy6WTeM/TPqQ0fS46utzOlYiIiFwZs9lMcXFxmWXp\n6enUrFkLs9nMunVrKCwsvOrj1K5dhwMH9gKwdevPFxyzsinAnKeJ7020CGrM3pQDHEo7au9yRERE\nLlv9+g04cGA/2dm/TwP16tWHTZs2MHnyw7i5uREUFMSXX352Vcfp0qU72dnZPPzwBGJjt+Pt7XO1\npV8Wk3GxcSIHV5nDbunmZP666h+E+dTnybYTr/uQmFza9Rpylcujvjgu9cZxVYfeZGZmEBMTTa9e\nfUlKSmTy5If5z3++vabHCAz0uuQ6nQPzBzf5NyA8sAWxSbvZnbKPlgHN7F2SiIiIw3F392DNmlX8\n5z+zMIwSHn30+t70TgHmIoaGRbIzaQ+LjiynuX8TzCbNtImIiJzParXyyitv2O34+pf5Imp6BNMx\npB2nsxOIPrvD3uWIiIjIHyjAXMKgBv2xmiwsObqCopIie5cjIiIi51GAuQR/N1+61+5MSl4aG09v\nsXc5IiIich4FmHJEhvbBxeLM8uOrySvKt3c5IiIi8isFmPPMX3+UB99YRU5e6ZSRl7Mnfev24FxB\nFmtPbbRzdSIiItfOqFFDycnJYdasGezevbPMupycHEaNGlru+9euXQ3A0qWLWbfux0qr81IUYM7j\n5mLhTHI2y7eesC3rU68HHk7u/HBiHVmF2XasTkRE5NobO/ZeWrRodVnvOXPmNKtWrQBg0KCh9OzZ\nuzJKK5cuoz5Pn7Z1WP3LKVZui6NP2zrU8HTBzepKVP0+fHt4CT+cWMvwRoPtXaaIiMgl3Xff3bz+\n+tuEhISQkHCG556bQmBgELm5ueTl5fHEE/9Hs2YtbNv//e8v0atXX1q3bsNf//o0BQUFtgc7Aqxc\nuYx5877BYjETGtqQZ575K++8M5V9+/bw5ZefUVJSQo0aNRg58namTXufXbtiKSoqZuTI0URFDWbS\npAeJiOhITEw06enpTJ36LiEhIVf9ORVgzuPiZOHOAU34eF4si346zj2RjQHoXrsza+I2su7UT/Su\n240aLtf3dskiIlI1zT+8hO2Juy5YbjGbKC65shvhtwlqyYhGQy65vkeP3vz003pGjhzNhg3r6NGj\nNw0b3kSPHr345ZdtfP31V/z97/+84H0rViwjLKwhjz02hdWrV9pGWHJzc3n77Q/x8vLikUce4MiR\nw9x551jmz5/D+PEP8PnnnwCwY0cMR48eYfr0L8jNzWXcuDvo0aMXAB4eHrz//nSmT/+Q9evXMHr0\nXVf02c+nKaQ/6N+hHsF+7qzfcZqzqTkAOFmcGNSgP4UlRSw9tsrOFYqIiFxaaYDZAMDGjevo1q0n\n69at5uGHJzB9+odkZGRc9H3Hjx+lRYtwANq0aWdb7u3tzXPPTWHSpAc5ceIYGRnpF33//v17ad26\nLQBubm6EhoYRFxcHQHh4GwCCgoLIysq66Psvl0Zg/sBiMTOyRxjTFu5m/vqjPDysdJitY0hbVp1c\nx+Yz2+hbrwfB7oF2rlRERBzdiEZDLjpaUpnPQgoLa0hKShJnzyZw7tw5NmxYS0BAEC+88Cr79+/l\no4/eu+j7DAPM5tLn/5X8OjpUWFjIO+/8gxkz/oO/fwBPP/34JY9rMpk4/+mKRUWFtv1ZLJbzjnNt\nHsFYqSMwBw8epF+/fsyePRso/UFMmTKFUaNGMW7cOFsKXLRoESNHjuS2225j7ty5lVlShbRrHEiD\nml5s25/I8YRMACxmC0PDIikxSvj+6Eo7VygiInJpnTt349NPp9G9e08yMtKpXbsOAOvW/UhR0cVv\nzlqvXn32798HQExMNAA5OdlYLBb8/QM4ezaB/fv3UVRUhNlspri4uMz7mzRpzvbtv/z6vhzi409R\np069yvqIlRdgcnJyePXVV+ncubNt2Zw5c/D19WXevHkMGjSI6OhocnJy+Pjjj5kxYwazZs3iq6++\nIj394sNT14vJZGJUz4YAzFt7xLa8dWAL6nnV4ZfEWE6eO2Wv8kRERMrVs2dvVq1aQa9efYmKGsw3\n33zNE088QvPmLUhJSeH77xdd8J6oqMHs2bOLyZMfJi7uBCaTCR+fGkREdOT+++/hyy8/4667xvLB\nB+9Qv34DDhzYzwcfvG17f3h4axo3bsIjjzzAE088wkMPTcLNza3SPqPJuFZjOX9QVFREUVERn332\nGb6+vowZM4b777+fxx57jFatfr9ca/PmzXz77be89dZbALz44ov06tWLPn36XHLflfkI8vOH9d7+\nZgd7jqUy5Y7WNA/1A2B/6iE+3PEZTf1uZlLr+yutDrlQdXj8fHWkvjgu9cZxqTcVExjodcl1lXYO\njNVqxWotu/v4+HjWr1/PP//5TwICAvjb3/5GcnIyfn5+tm38/PxISkoqd9++vu5YrZZyt7kav/3A\nHhjWksffXcd3G4/Ro109zGYTgYFtWXumMbvOHiDROEPzoJsrrQ65UHlfZrEf9cVxqTeOS725Otf1\nJF7DMGjQoAGTJk1i2rRpfPLJJzRr1uyCbf5MWlpOZZVYJhV7u1jo0DSIrfsSWbbxCB2aBgMwsO4A\ndp09wMxfvmVKu0cwmUyVVo/8Tv9jcUzqi+NSbxyXelMx5YW863oZdUBAABEREQB069aNw4cPExQU\nRHJysm2bxMREgoKCrmdZ5RrRIwyL2cT89UcpKi4BoL53XVoHtuBY5kl2Je+1c4UiIiI3nusaYHr0\n6MGGDaXXpu/Zs4cGDRoQHh7Orl27yMzMJDs7m5iYGNq3b389yypXkK87PVvXIjEtlw2xp23Lh4ZF\nYsLEoqPLKTFK7FihiIjIjafSppB2797N1KlTiY+Px2q1smLFCt566y3+/ve/M2/ePNzd3Zk6dSqu\nrq5MmTKFCRMmYDKZeOSRR/Dycqx5waFdG/DTrgQW/XScLi1q4uJsIcQjmE4127P5zDa2JWynY812\nf74jERERuSYq7SqkynS9rkI634L1R1m86TjDe4QxtEsoAKl5aby8+R/4uHjzQqf/w8ms+wJWJs0Z\nOyb1xXGpN45LvakYhzkHpiqL6lgPTzcnlm85QVZuIQB+rr70qNOFlLw0forfYucKRUREbhwKMBXk\n5mJlSJdQcvOLWbLpuG35gPq9cbE4s/z4avKK8u1XoIiIyA1EAeYy9G5TG39vV9bEnCIlIw8AL2dP\n+tbrybnCLH6M22jnCkVERG4MCjCXwclqZlj3BhQVGyzceNS2vG/d7ng6ebDq5DqyCrPtWKGIiMiN\nQQHmMnVuHkKdQA827UrgVFLpI8Fdra5EhvYhrziPlSd+tHOFIiIi1Z8CzGUym02M7NkQA5i/7vdR\nmO61OuHrUoN1pzaRlmffh1GKiIhUdwowV6BVQ39uruPDjsPJHIwrDStOFicGN+hPUUkRS4+tsnOF\nIiIi1ZsCzBUwmUyM6t0IgHnrjtie39QhpC0h7kH8nBDN2exEe5YoIiJSrSnAXKFGtX1oc1MAh09l\nEHs4BQCL2cLQhlGUGCUsPrbSzhWKiIhUXwowV2FEz4aYTPDtuiOUlJSOwoQHNKe+d122J+7kZOYp\nO1coIiJSPSnAXIXaAR50bVGT+ORsNu9JAEqnl24NGwjAoqPL7VmeiIhItaUAc5WGdW+A1WJmwYaj\nFBYVA9DYrxFNfG9iX+pBDqYdtnOFIiIi1Y8CzFXy83alX7s6pGbmsyYm3rb8loZRAHx3ZDlV8HmZ\nIiIiDk0B5hoY1Lk+bi5Wlmw6Tk5eEQD1vevSJrAlxzNPsjN5j50rFBERqV4UYK4BTzcnBnWqR3Ze\nEcu3nrAtHxIWiQkTi46uoMQosWOFIiIi1YsCzDXSr31dfDydWbktjvSs0qdSh3gE0blmexKyz7I1\nIcbOFYqIiFQfCjDXiIuThVu7NqCgsITFPx23LR/UoD9Ws5UlR1dSWFJkvwJFRESqEQWYa6hbq5oE\n+7qxPvY0Z9NyAPB1rUGP2p1Jy09nY/zPdq5QRESkelCAuYasFjMjejakuMRgwfrfH/QYWb8PrhYX\nlh9fTV5Rnh0rFBERqR4UYK6x9o0DCQ3xYuu+RI4nZALg6exB33o9yCrM5se4jXauUEREpOpTgLnG\nTCYTo3o1BGDe2iO25X3qdsfTyYNVJ9eRVZBtr/JERESqBQWYStAs1I/mDfzYezyNPcdTAXC1uhIV\n2pe84nxWnFhj5wpFRESqNgWYSjKq5++jMCW/3om3W+1O+LrUYH38ZtLy0u1ZnoiISJWmAFNJ6od4\n0aFpECcSzhG9PxEAJ7OVIWEDKCopYumxH+xcoYiISNWlAFOJhvcIw2I2MX/9UYqKS+/E2yGkLSEe\nwWw+E01CdqKdKxQREamaFGAqUbCvOz1a1yIxLZcNO88AYDaZuSUsEgODJUdX2LlCERGRqkkBppLd\n0iUUZyczizYeI7+gGIBWAc0J9a7H9qRdnMiMs3OFIiIiVY8CTCXz8XRhQEQ9MrILWBldGlZMJhO3\nNowCYNGR5fYsT0REpEpSgLkOBnash6ebE8u3nCArtxCAm30b0dTvZvanHWJ/6iE7VygiIlK1KMBc\nB24uVoZ0CSU3v5glm47blt8S9usozNHlGL9eai0iIiJ/TgHmOundpjb+3q6siTlFSkbp85Dqedeh\nTVArTmTGEZu8x84VioiIVB0KMNeJk9XMsO4NKCo2WLjx9wc9Dm0wALPJzOIjyykxSuxYoYiISNWh\nAHMddW4eQu1ADzbtTiA+KQuAYI8gOoW0JyEnkS0JMXauUEREpGpQgLmOzGYTI3s2xDDg23W/j8IM\natAPq9nK90dXUlhcaMcKRUREqgYFmOssvKE/N9XxYcfhZA7GlT4Pyde1Bj1rdyEtP50Np3+2c4Ui\nIiKOTwHmOjOZTNzWqxEA89YdsV19NCC0N64WV1YcX0NeUZ49SxQREXF4CjB20KiOD60bBXD4VAax\nh1MA8HTyoF+9nmQVZrM6boOdKxQREXFsCjB2MrJnGCYTfLvuCCUlpaMwvet2w8vJkzUn13OuIMvO\nFYqIiDguBRg7qR3oSdcWNYlPzmbzngQAXK0uRIX2Ja84n5UnfrRzhSIiIo5LAcaOhnVvgNViZuGG\noxQWlT7osWvtjvi5+rL+1CZS89LsXKGIiIhjUoCxIz9vV/q2q01KZj4/xsQD4GS2MqTBAIqMYpYe\nW2XnCkVERByTAoydDe4cipuLhSWbT5CTVwRAREgbanoE8/OZaBKyz9q5QhEREcejAGNnnm5ODOxY\nn6zcQpZvPQGA2WRmaFgUBgaLj660c4UiIiKORwHGAfRvXxcfD2dWbosjPSsfgFYBzWjgXY8dSbs4\nkRln5wpFREQciwKMA3BxtnBLtwYUFJaw+KfjQOkN725pOBCA744ss2N1IiIijkcBxkF0b1WTYF83\n1see5mxaDgA3+zakqd/NHEg7zP7UQ3auUERExHEowDgIq8XMiJ4NKS4xWLD+9wc93tIwCoBFR5bb\nHjsgIiJyo1OAcSDtGwcSGuLF1n2JHE/IBKCeVx3aBrXixLk4YpN227lCERERx6AA40BMJhOjejUE\n4Nu1R2zLh4RFYjaZWXR0BcUlxfYqT0RExGEowDiYZqF+NA/1Zc/xNPYcTwUg2D2QzjXbczYnkS0J\nMXauUERExP4UYBzQqF6NAJiV3LvjAAAgAElEQVS39gglv573MjC0H05mK0uP/UBhcaE9yxMREbE7\nBRgHVD/Eiw5NgziRcI7o/YkA+LrWoGedrqTlp7MhfrOdKxQREbEvBRgHNbxHGBazifnrj1JUXAJA\n//q9cLW4svzEGnKL8uxcoYiIiP0owDioYF93erSuRWJaLht2ngHA08mD/vV7kl2Yw5qT6+1coYiI\niP0owDiwW7qE4uxkZtHGY+QXlF591KtON7ycPFkdt55zBVl2rlBERMQ+FGAcmI+nCwMi6pGRXcAP\n0aXPQ3K1uhDVoC/5xQWsOLHGzhWKiIjYhwKMgxvYsR6ebk4s23KCrNzSq4+61eqIv6svG05tJiU3\nzc4VioiIXH8KMA7OzcXKkM71yc0vZsmm4wBYzVYGNxhAkVHM0mM/2LdAERERO1CAqQJ6t62Nv7cL\na2JOkZJRevVRREgbanmEsCXhF85kn7VzhSIiItdXpQaYgwcP0q9fP2bPnl1m+YYNG2jcuLHt9aJF\nixg5ciS33XYbc+fOrcySqiQnq4Vh3cMoKjZYuLH0QY9mk5lbGkZhYLD46Ao7VygiInJ9VVqAycnJ\n4dVXX6Vz585llufn5/Ppp58SGBho2+7jjz9mxowZzJo1i6+++or09PTKKqvK6tw8hNqBHmzanUB8\nUunVRy38m9LAuz6xSbs5nnnSzhWKiIhcP5UWYJydnfnss88ICgoqs/xf//oXd911F87OzgDExsbS\nsmVLvLy8cHV1pW3btsTE6Hk/f2Q2mxjZoyGGAd+uKx2FMZlM3NpwIADfHV6G8etjB0RERKq7Sgsw\nVqsVV1fXMsuOHTvG/v37GThwoG1ZcnIyfn5+ttd+fn4kJSVVVllVWngjf26q48OOw8kcOlU6SnWT\nbxjN/BpzMP0I+9MO2blCERGR68N6PQ/2xhtv8Pzzz5e7TUVGEXx93bFaLdeqrAsEBnpV2r6v1gPD\nWvH0Rxv47qfjvPlIN0wmE+Paj+SZla+z9MRKut/cFpPJZO8yK40j9+ZGpr44LvXGcak3V+e6BZiz\nZ89y9OhRnnrqKQASExMZM2YMjz76KMnJybbtEhMTad26dbn7SkvLqbQ6AwO9SEo6V2n7v1oBnk60\nbhTAjsPJrPr5OK0bBeBJDdoFhfNLYiwr926ibVAre5dZKRy9Nzcq9cVxqTeOS72pmPJC3nW7jDo4\nOJhVq1YxZ84c5syZQ1BQELNnzyY8PJxdu3aRmZlJdnY2MTExtG/f/nqVVSWN7BmGyQTfrj1CSUnp\niNWQsAGYTWaWHF1BcUmxnSsUERGpXJUWYHbv3s3YsWNZsGABM2fOZOzYsRe9usjV1ZUpU6YwYcIE\nxo8fzyOPPIKXl4bVylM70JMuLUKIT85m854EAILcA+lSM4KzOUlsSfjFzhWKiIhULpNRBS9dqcxh\nt6oyrJeSkcdzn/6Mj4cTrz/YCSerhfT8DF7aPBUPJw9e6vQ0ThYne5d5TVWV3txo1BfHpd44LvWm\nYhxiCkmuLX8fV/q0rU1KZj4/xsQDUMPFh151upGen8H6+M12rlBERKTyKMBUYUO6hOLmYmHJ5hPk\n5BUB0L9+L9ysrqw4sYbcojw7VygiIlI5FGCqME83JwZ2rE9WbiHLt5beidfDyZ1+9XqRXZjD6pPr\n7VyhiIhI5VCAqeL6t6+Lj4czK7edJCMrH4Dedbvh5ezJ6rj1ZBZojlVERKofBZgqzsXZwi3dGlBQ\nWMKin46XLrM4Myi0PwXFBfx71ywKiwvtW6SIiMg1pgBTDXRvVZNgXzfWx57m7K83+etWuyPtgsI5\nknGcWfvmUGKU2LlKERGRa0cBphqwWswM7xFGcYnBgvWlD3o0m8yMbTqahj6h/JIYy6Ijy+1cpYiI\nyLWjAFNNtG8SRP0QL7buS+R4QiYAThYnHmw1jiD3AH44uZYN8T/buUoREZFrQwGmmjCbTIzq1RAo\nfcTAbzydPJjYagKeTh7MObiQPSn77VWiiIjINaMAU400D/WjWagve46nsfd4qm15oLs/D7W6F4vJ\nzL93zybuXLwdqxQREbl6CjDVzG+jMPPWHuH8p0Q08KnPvc3upLC4kOmxX5Cal2avEkVERK6aAkw1\nExriTYemQRxPOEf0gaQy61oHtWREo8FkFJxjeuyX5Bbl2qlKERGRq6MAUw0N7xGGxWzi23VHKCou\ne/l077rd6VmnK6ezE/hs1yyKSorsVKWIiMiVU4CphoJ93ekRXovEtFzbZdW/MZlMjLppKK0CmnMg\n7TD/3T+fKvhAchERucEpwFRTw3uEEezrxrItJ1kTc6rMOrPJzL3N76S+V11+Tohm2fFVdqpSRETk\nyijAVFOebk48cXtrvN2d+HrlQWIOlj0fxsXizEPh9+Lv6sv3x35gy5lf7FSpiIjI5VOAqcaCargx\n+bZwnJzMfLJoD4fjM8qs93b2YmL4fbhZ3Zi9fy4HUg/bqVIREZHLowBTzTWo6c3EYS0oLjb4YN5O\nElJzyqwP8QjmLy3vwYyJz3bP5HRWgp0qFRERqTgFmBtAq4YB3BPVmKzcQt75ZgcZ2QVl1t/k25Ax\nTUeTW5THtNgvyMjPtFOlIiIiFaMAc4PoEV6LW7qGkpyRx3tzY8krKHv5dERIG4aGRZKWn870nV+S\nV5Rvp0pFRET+nALMDeTWbg3o1qomJxLOMX3hngvuERNZvw9danYg7lw8X+75muKSYjtVKiIiUj4F\nmBuIyWTinsjGtAjzY9fRFGatOFDmHjAmk4k7Gg+nqd/N7E7Zz9xDi3SPGBERcUgKMDcYq8XMxGEt\nqB/sxYadZ1j00/Ey6y1mCxNajKG2Z002xG9mddx6+xQqIiJSDgWYG5Crs5XHb2tFgI8r3208xvrY\n02XWu1ldebjVeGq4+LDg8PfEJO60U6UiIiIXpwBzg/LxdOGJ0eF4uFqZufwAO4+klFnv61qDh1uN\nx9Xiwld7/8eR9OP2KVREROQiFGBuYDX9PZg8KhyLxcT0hbs5dqbs5dN1vGoxocUYSowSPtk1g8Sc\npEvsSURE5PpSgLnBNarjw4NDm1NQWMz7c2NJTM8ts76Zf2PubDyC7MIcPo79gnMFWXaqVERE5HcK\nMEK7xoHc1f9mMnMKeXdOLOdyyt7orkutDkTV70Nybgqf7PyKguJCO1UqIiJSSgFGAOjbrg4DO9bj\nbGoOH3y7k/zCsveAGRIWSfvg1hzLPMFXe/9HiVFyiT2JiIhUPgUYsRnZqyGdmgVzJD6TTxftoaSk\n7D1ixjQdzU01wtiRtIuFh5fasVIREbnRKcCIjdlkYvygpjSpV4Pth5L5z6qDZW5k52S28mDLewh2\nD2J13HrWndpkx2pFRORGpgAjZThZzUwa0Yo6gR6siYln2ZaTZda7O7kzMfw+vJw8mXvwO3Yl77VT\npSIiciNTgJELuLtaefy2cHy9XJi39gib9ySUWR/g5sfD4eOxmq18sftrTmTG2alSERG5USnAyEX5\nebvyxOhw3FysfPH9PvYeTy2zvr53XcY3v4vCkiKm7/ySlNzUS+xJRETk2lOAkUuqE+jJoyNaYjLB\nxwt2EZdY9h4w4YHNGXXTLZwryGJa7BfkFObYqVIREbnRKMBIuZrU92XC4Gbk5hfz3txYUjPzyqzv\nVbcrfep2JyEnkU93zaSopMhOlYqIyI1EAUb+VMdmwYzu3Yi0c/m8OyeWnLyyN7Ib3mgw4YEtOJR+\nlK/3zytz5ZKIiEhlUICRConsUJd+7eoQn5zNh9/uorDo9xvZmU1m7m12B6He9diaEMP3x1basVIR\nEbkRKMBIhZhMJu7oexPtbg7kQFw6n3+/l5LzRlqcLc481OpeAlz9WHZ8NZtOb7NjtSIiUt0pwEiF\nmc0mHhjajEZ1fNi6L5G5Px4us97L2ZOJrSfgYXXnvwe+ZV/qQTtVKiIi1Z0CjFwWZycLj41sRYif\nOyu2xvHDtrL3gAl2D+TBVuMwY+Lfu2YRn3XGTpWKiEh1dsUB5vjx49ewDKlKPN2ceHJ0OD4ezvxv\n9SGi9yeWWd+oRgPuaXY7ecX5TIv9gvT8DDtVKiIi1VW5AWb8+PFlXk+bNs329xdffLFyKpIqIaCG\nG4/fFo6zs4VPF+/lYFx6mfXtgltza8OBpOdnMC32C/KK8i6xJxERkctXboApKip7T4+ff/7Z9ndd\nKiv1Q7x4ZFgLDMPgw293cjo5u8z6/vV60a1WR+KzzvD57q8pLim2U6UiIlLdlBtgTCZTmdfnh5Y/\nrpMbU4swf8ZFNSE7r4h358SSnpVvW2cymRh98zCa+Tdmb+oBvjm4QMFXRESuics6B0ahRS6mW6ua\nDO/egJTMPN6bE0tu/u8jdxazhQnN76auZy1+Or2VH06stV+hIiJSbVjLW5mRkcHmzZttrzMzM/n5\n558xDIPMzMxKL06qjiFdQknJzGd97GmmLdzN5FGtsFpK87Gr1ZWHwsfzVvTHfHd0GX6uNWgf0sbO\nFYuISFVWboDx9vYuc+Kul5cXH3/8se3vIr8xmUyMjbyZ9Kx8dh5JYcay/UwY3NQ2alfDxYeJ4ffx\n9i/TmLVvDj4uPtzkG2bnqkVEpKoyGVXwpISkpHOVtu/AQK9K3X91l19QzD/+G8OxM+cY0iWUET3K\nhpT9qYf4OPZzXC0uTGn3CCEeQRXet3rjmNQXx6XeOC71pmICAy89WFLuOTBZWVnMmDHD9vp///sf\nt956K4899hjJycnXrECpPlycLUweFU5QDTeWbDrO2u3xZdY38buJu5qMIqcol2mxX3CuIMtOlYqI\nSFVWboB58cUXSUlJAeDYsWO88847PPPMM3Tp0oW///3v16VAqXq8PZx54vZwPN2cmLXyADsOlw27\nnWu2Z2BoP1LyUpm+80sKigvsVKmIiFRV5QaYuLg4pkyZAsCKFSuIioqiS5cu3HHHHRqBkXIF+7oz\n+bZWOFnM/Ou73Rw9Xfak78EN+tMxpB0nMuOYsee/lBgll9iTiIjIhcoNMO7u7ra/b926lU6dOtle\n65Jq+TMNa/nw0K0tKCwq4b25sZxNy7GtM5lM3NVkJDfXaEhs8h7mH1pix0pFRKSqKTfAFBcXk5KS\nwsmTJ9m+fTtdu3YFIDs7m9zc3OtSoFRtrW8KYOyAxmTlFvLuN7Fk5vw+XWQ1W3mg5T2EeATz46mN\n/Bi30Y6ViohIVVJugHnggQcYNGgQQ4cOZeLEifj4+JCXl8ddd93FsGHDrleNUsX1alObwZ3rk5ie\ny/tzd5Jf8PsjBdyd3JjY6j68nb349tBiYpN227FSERGpKv70MurCwkLy8/Px9PS0Ldu4cSPdunWr\n9OIuRZdRVz2GYfD59/vYtDuB8Ib+TBrZEov59/x8MvMU78ZMxwAeb/sXQr3rXbAP9cYxqS+OS71x\nXOpNxVzxZdSnT58mKSmJzMxMTp8+bfsTFhbG6dOnr3mhUn2ZTCbuHdiEZqG+xB5J4euVB8s8F6me\ndx3ua3E3RSVFTI/9kuTcFDtWKyIijq7cO/H26dOHBg0aEBgYCFz4MMeZM2dWbnVSrVgtZh4Z3pKp\nX8ewdsdpfL1dGdol1La+ZUAzRt98K98cXMi02C+Y0u4RPJzcL71DERG5YZUbYKZOncp3331HdnY2\ngwcPZsiQIfj5+V2v2qQacnOxMvm2cF6fFc2C9Ufx83Kha8uatvU96nQhOS+V1SfX88nOr3i0zQM4\nmcv9moqIyA2o3CmkW2+9lS+++IL33nuPrKws7r77bu6//34WL15MXl7en+784MGD9OvXj9mzZwNw\n5swZ7r33XsaMGcO9995LUlISAIsWLWLkyJHcdtttzJ079xp8LHFkvl4uPD66Ne4uVmYs28/uY2Wn\ni4Y1HESboFYcyTjG7H1zdI8YERG5QLkB5jc1a9Zk4sSJLFu2jMjISF577bU/PYk3JyeHV199lc6d\nO9uWvffee4wePZrZs2fTv39/vvzyS3Jycvj444+ZMWMGs2bN4quvviI9Pf3qPpU4vNoBHjw2qhUm\nk4mPF+zmRMLvJ7OZTWbGNb2dMJ/6RJ/dweKjK+xYqYiIOKIKBZjMzExmz57NiBEjmD17Nn/5y19Y\nunRpue9xdnbms88+Iyjo94f1/e1vfyMyMhIAX19f0tPTiY2NpWXLlnh5eeHq6krbtm2JiYm5io8k\nVcXNdWvw4NBmFBQU897cWJIzfr+3kJPFib+0vJdAN39WnviRjfE/27FSERFxNOUGmI0bN/LEE08w\ncuRIzpw5w5tvvsl3333HfffdVyaYXIzVasXV1bXMMnd3dywWC8XFxfznP/9h6NChJCcnlzmvxs/P\nzza1JNVf+yZB3N73JjKyC3h3TixZuYW2dZ7OHkwMn4CHkzvfHFzItvhYO1YqIiKOpNyzI++//35C\nQ0Np27YtqampfPnll2XWv/HGG5d9wOLiYp5++mk6depE586dWbx4cZn1f3JbGgB8fd2xWi2XfeyK\nKu+6c7n27h7UjLyiEhauO8K/Fu3h1b90wdmptL+BePGsx0ReWfs+b238hJHNBzGq2SDM5goNHsp1\not8Zx6XeOC715uqUG2B+u0w6LS0NX1/fMutOnTp1RQd87rnnqF+/PpMmTQIgKCiozIMhExMTad26\ndbn7SDvvmTrXmm4uZB9DOtUj/uw5tu1P5I0vt/DQsBaYf33elh9BPNHmIb7c+zXz9nzP7tMHubf5\nnXg5e/7JXuV60O+M41JvHJd6UzFXfCM7s9nMlClTeOGFF3jxxRcJDg6mQ4cOHDx4kPfee++yC1m0\naBFOTk489thjtmXh4eHs2rWLzMxMsrOziYmJoX379pe9b6nazCYT9w9pys11axB9IIn/rT5UZjSu\nvnddpg74f7Twb8L+tEO8ue19jqQft1/BIiJiV+U+SuDuu+/mlVdeoWHDhqxevZqZM2dSUlKCj48P\nL7zwAsHBwZfc8e7du5k6dSrx8fFYrVaCg4NJSUnBxcXF9liChg0b8tJLL7F8+XI+//xzTCYTY8aM\n4ZZbbim3aD1KoPrKzivkjdkxnE7O5vY+jYjs8PsjBQIDvTibmMGqE+tYdHQ5JpOJYQ0H0adudz0d\n3Y70O+O41BvHpd5UTHkjMOUGmLFjxzJr1izb6379+vHMM8/Qv3//a1vhZVKAqd5SMvL4+6xo0rMK\neOjW5nRoWhqUz+/NwbQjfLHna84VZBEe2IIxTW7D3cnNnmXfsPQ747jUG8el3lTMFU8h/fF/tTVr\n1rR7eJHqz9/HlcdvC8fV2cK/l+xl/4m0C7a52bchz0U8zk01wohN2s3U6A+IO6fnc4mI3Cgu61IO\nDdPL9VIv2ItJI1piGPDh/F3EJ2VdsI2PizePtn6AAfV7k5ybwlu/fMRPp7dU6Eo2ERGp2sqdQmrZ\nsiX+/v621ykpKfj7+2MYBiaTibVr116PGi+gKaQbx+bdCXy2ZC++Xi68+0RPSgqKLrrdruS9zNz7\nDTlFuXQMaccdjYfjbHG+ztXemPQ747jUG8el3lTMFZ8DEx8fX+6Oa9eufeVVXQUFmBvL95uP8+26\nowTUcOPBoc1oVNvnotul5Kby792zOXnuFLU8Qri/xRiCPcq/4aJcPf3OOC71xnGpNxVzxQHGUSnA\n3FgMw2DpzydYsP4oJpOJkT0bEtmh7kWnNAtLiph/aAnr4zfhYnHm7iajaBdc/n2F5Orod8ZxqTeO\nS72pmCs+iVfEEZhMJgZ3DuW1h7ri6ebEnB8P8+G3u8o8duA3TmYrtzcexvjmd2EAX+z5D3MOLqSw\n5OJTTyIiUjUpwEiV0bJRAC/d14Fmob7sOJzMy19u5Uh8xkW3bR/cmmfaP0qIRzDrTm3i3ZjppORe\neDWTiIhUTZaXXnrpJXsXcblycgoqbd8eHi6Vun+5ch4eLhQXFtOpWQhmk4kdh5L5aXcCLk4WGtby\nvmBKydPZk04125OWn87elANsTYihpkcwQe6BdvoE1ZN+ZxyXeuO41JuK8fBwueQ6jcBIlWM2m7il\nWwOeuqM1Hm5OfLOmdEopO+/CKSUXizP3NL2duxqPJL+kgOk7v2TRkeUUlxTboXIREblWFGCkymoa\n6sfL4yNoWr90SumlL7Zx9HTmBduZTCa61u7IlHYT8Xf1Y8WJNXy0499k5OsEOhGRqkoBRqo0H08X\nptzemlu6hpKamccbs39h5ba4i97Mrp5XHZ6NmEyrgOYcTD/Cm9ve41DaUTtULSIiV0sBRqo8s9nE\nsO5hPHlHazxcrfxv9SE+mn/xKSV3JzcebHkPwxsNJqswmw92fMrKEz9SYpTYoXIREblSCjBSbTQP\n9eOl+zrQpF4Nth9K5uUvt3HszMWnlPrV68nkNn/By8mT744s45OdX5FTmGOHqkVE5EoowEi1UsPT\nhafuaMPQLqGkZOTx+qxfWBV98SmlRjUa8FyHx2ns24jdKft4c9v7nMiMs0PVIiJyuRRgpNoxm00M\n7xHGE7eH4+5q5T+rDjFt4W5y8i68mZ2XsyeTWt/PwNC+pOal884v01h/arMeCCki4uAUYKTaatHA\nn5fGd+DmujX45UASL8/YyvGEC6eUzCYzQ8IimRh+Hy5WF745uIAZe/9LXlG+HaoWEZGKUICRas3X\ny4X/u7M1Q7rUJym9dEpp9S+nLjrC0sy/Mc9FPE4D73pEn93BP6M/5Ez2WTtULSIif0YBRqo9i9nM\niB4NeXJ0OK7OVr7+4SDTv9tz0SklX9caPN72IXrX7UZCTiL/2PYBWxNi7FC1iIiURwFGbhgtwvx5\naXwEN9XxIXp/Iq/M2MaJhAtvZmc1Wxl10y1MaDEGs8nMV3v/x38PzKew+MLLskVExD4UYOSG4uft\nytN3tWFQp/okpufy91nR/Bhz8SmltkGteCbiMWp71mRj/M+8HTON5NwUO1QtIiJ/pAAjNxyL2cyo\nXg15/LbSKaVZKw/yyaI95OZfOKUU5B7IU+0m0blmBHHn4nlz2/vsTNpjh6pFROR8CjByw2rVsHRK\nqVFtH7buK51SOnn2wiklZ4sTY5rexpgmt1FUUsQnu75i4eGleiCkiIgdKcDIDe23KaWBHetxNi2X\n12b+wtrt8RedUupcK4Kn2k0iyC2AH06u5f3tn5Ken2GHqkVERAFGbnhWi5nbejfisVGtcHEyM3PF\nAT5dvPeiU0p1vGrxdMRjtAlsyZGMY7y59X0OpB62Q9UiIjc2BRiRX7VuFMBL4zvQsLY3W/ae5ZWv\noolLzLpgOzerKxNajGHUTbeQXZTDhzs+Y9mx1XogpIjIdaQAI3Iefx9XnrmrLVEd6nE2NYfXZkaz\nPvb0BVNKJpOJ3nW78UTbh/Fx8WbJsRVM3/klWYXZdqpcROTGogAj8gdWi5nRfRrx2MhWOFvNzFi2\nn8+W7CWv4MIppTCf+jwX8ThN/W5mb8oB3tz6PscyTtqhahGRG4sCjMgltL4pgL+NjyCsljc/7znL\nKzOiOXWRKSVPZw8mht/HkAaRpOdn8G7MdH6M26gHQoqIVCIFGJFyBPi48ezdbRkQUZeEX6eUNlxk\nSslsMjOwQV8mtb4fN6sr8w4t4vM9X5NblGenykVEqjcFGJE/YbWYuaPvTTw6oiVWi5kvl+3n30v2\nkV9w4X1gmvjdxHMdHqehTyjbE3fyj20fEJ91xg5Vi4hUbwowIhXU5uZAXhofQYOa3mzek8ArX20j\nPunCKaUaLj5MbvMX+tbrQWJuMv+M/oifz0TboWIRkepLAUbkMgTUcOO5MW3p174OZ1JyePWraDbu\nvHCExWK2MKLREB5sOQ6r2cKsfXP4et9cCvRASBGRa0IBRuQyWS1m7up3M48Mb4nFYuaLpfv4fMne\ni04phQc259mIydT1rMWmM9t465ePSMxJskPVIiLViwKMyBVq17h0Sik0xIufdifw6sxo4pMvvA9M\ngJs/U9o9QtdaHYnPOsPUbR/yy9lYXaUkInIVLC+99NJL9i7icuXkFFTavj08XCp1/3LlHLE3Hq5O\ndGlRk9z8InYeSeGnXWfw9XKhXrBXme0sZgstA5oR6ObPruQ9RCfu4EDaYYLcA/FzrWGn6q8NR+yL\nlFJvHJd6UzEeHi6XXKcA8wf6UjkuR+2NxWyiVUN/agd4EHskma37EknJzKNZqB9WS9lBztqeNWkT\n2JK0/Az2px1i85ltxJ07RU2PELydvS5xBMfmqH0R9caRqTcVU16AsV7HOkSqtfZNgqgX7Mn0hXvY\nuPMMx85kMnFYC2r6e5TZLtgjiL+0GsfRjBN8d2Qpu5L3sTt5PxEhbRjSYAD+bn52+gQiIlWHRmD+\nQKnYcVWF3ni4OdG1ZU1y8gp/nVJKwN/blbpBnhds6+tag04h7Qn1qcfp7AT2px5iffxmsgqzqedV\nBxeLsx0+weWrCn25Uak3jku9qRhNIV0GfakcV1XpTemUUgC1AjzYcbh0SintXOmUkuUPU0omk4kg\n9wC61upIsHsgcedOsTf1IBviN1NUUkRdr9o4mR17oLSq9OVGpN44LvWmYsoLMCajCl4KkZR0rtL2\nHRjoVan7lytXFXtzNi2H6Qt2czIxizqBHjx8kSml8xWVFLHp9FaWHl/FuYIsPJ08iAztQ/fanR02\nyFTFvtwo1BvHpd5UTGDgpc8N1AjMHygVO66q2BtPNye6tgwhO7fINqUU4ONKnYtMKUHpM5Xqe9el\nW61OuFicOZx+jF3Je9ly5hfcndyo5RmCyWS6zp+ifFWxLzcK9cZxqTcVoymky6AvleOqqr2xmM2E\nNwogxM+dHb9dpZSRR1gtb1ydLz6qYjVbaVQjjK61O2AYBgfTj7AjaRc7knZRw8WHIPdAhwkyVbUv\nNwL1xnGpNxWjKaTLoGE9x1UdenM2NYdpC3cTl5iFs9VMv/Z1iepYD083p3Lfl5aXztJjP7D5TDQG\nBg2863Nrw4Hc5Bt2nSq/tOrQl+pKvXFc6k3FlDeFpADzB/pSOa7q0pui4hI27jrD4p+Ok3YuHzcX\nC1Ed6tGvfV3cXMo/zwYV5OAAACAASURBVCUh+yyLj65gR9JuAJr5N+bWsIHU8ap1PUq/qOrSl+pI\nvXFc6k3FKMBcBn2pHFd1601BYTE/bo/n+80nyMotxNPNiSGd69O7bW2crJZy33ss4ySLjizjYPoR\nANoHt2ZoWCQBbv7Xo/QyqltfqhP1xnGpNxWjAHMZ9KVyXNW1N7n5RfwQHff/27vz4Lau8+7jX2xc\nsBAgQIAkuIqULFGiSDmSbIuW7LjeYjvxmkauKzUz7/t22rH7RztOx67a2M4y6SjTdrok47QTZyaj\nTCZqZTu2Gy9yEtuSLcmSLYlaqYWbSAJcAG4gwQXLff8ABJKSxQASSVyQz2fGIxmbDvw7l3p8znPv\n5b3DlxibiJBvyebh2yu5fW3xVVfynU5RFJr6L/BG89t0jHjQarRsdt/GVyrvxpq9cFf1Xay5LAaS\njXpJNsmRAiYFMqnUa7FnMzIW4p1D7fzu804mw1Fctlwe3bKMW1YXop2lYTeqRDnWe4K3Wt6jb8xP\nltbAH5Vt4Z6KO8nV5877uBd7LplMslEvySY5UsCkQCaVei2VbAZHJvjfA218dNxDJKpQ4jTx+JYq\n1q0omPXMo0g0wgHvEd5pfZ+hyQAmvZH7Ku/izpIGDLrZm4RvxFLJJRNJNuol2SRHCpgUyKRSr6WW\njW9wjDc+aeXAqW4UBZYV5/HEnVWsrpz9XkmTkUk+7PiEvZc+YCw8ji3bykPL7uXWovXotLP31lyP\npZZLJpFs1EuySY4UMCmQSaVeSzUbj2+UX3/cymdNvQCsKrfx+J3VLC+xzvq+0VCQ99s/5MPOjwlF\nwxQaXTxcdT/1zto5vYbMUs0lE0g26iXZJEcKmBTIpFKvpZ5Ne3eA1/a1cLLFD0B9tYPH7qiivHD2\nht3BiSHebv0tB71HiCpRKvLKeLT6AW7KXz4n41rquaiZZKNekk1ypIBJgUwq9ZJsYs53DPLaR82c\n7xwC4JYaF49uqaLIbpz1fT2jvbzVupdjvScAqLHfxMPVX6HcUnpD45Fc1EuyUS/JJjlSwKRAJpV6\nSTZTFEXhdGs/r+5rob07gFaj4fa1RTx8+zIc1pxZ39s+3MGbze/SNHABgPWuer5adR8uo/O6xiK5\nqJdko16STXKkgEmBTCr1kmyupigKR8/38dq+Frz+IHqdhi+vK+GhhkqspqxZ3xu7hsw7XAp0otVo\naSjeyAPL7sGWPXtvzZUkF/WSbNRLskmOFDApkEmlXpLNtUWjCgdPd/PGx634hsbJMmi5N36fJVPO\ntU+hVhSFY30neavlXXqDPgxaA3eVbebe8i9jNCR3DRnJRb0kG/WSbJIjBUwKZFKpl2Tzh4UjUfY3\nenjzQBtDI5MYs/V85dZy7tlQes07X0PsGjKHvJ/xm9b3GZocxqjP5b6Ku7iztIEs3ewrOZKLekk2\n6iXZJEcKmBTIpFIvySZ5E6EIHxzt4jcH2xgdD5NnNPBQQyVfXleCQX/t2xNMRkJ81PkJe9s/IBge\nw5qVx4PL7mFT8cZrXkNGclEvyUa9JJvkSAGTAplU6iXZpG5sIsx7hy+x90gH45MR7HnZPHz7Mm5f\nW4ROe+1CJhga4/1LH/JBx8eEoiFcxgK+VvUVbnauveoaMpKLekk26iXZJEcKmBTIpFIvyeb6BYKT\nvHPoEr872kkoHKUwP5dHt1SxscY1632WhiaGebvttxzwHCaqRCm3lPBI9YOssq9IvEZyUS/JRr0k\nm+RIAZMCmVTqJdncuIFA7D5L+xpj91kqdZp5/M4q6qsds16dtzfYx/+27OXz3kYAVuYv55HqB6jI\nK5NcVEyyUS/JJjmzFTC6l1566aX5+oPPnz/P1q1b0Wq11NXV4fV6efrpp9mzZw/79u3j7rvvRqfT\n8eabb7Jjxw727NmDRqNhzZo1s35uMDg5X0PGZMqe188X10+yuXG52Xrqlxdw25oiRsfCnG3r59Mz\nPZxu7cdpy8Vp++Izj0wGEze76lhbUEP/+ABNAxf4xHMY70g31Y4ydJHZG31Fesgxo16STXJMpuxr\nPjdvKzDBYJC/+Iu/oLKykpUrV7Jt2zb+7u/+jjvuuIMHHniAf/mXf6GoqIhHH32Uxx57jD179mAw\nGPj617/OL37xC2w22zU/W1ZglibJZu519Y3w6/2tfH6+D4DVlfk8fkc1Ve68Wd93fuAiv25+h/bh\njtj/dNhXssl9C2sdNfNyw0hxfeSYUS/JJjlpWYHRaDR89atf5dy5c+Tm5lJXV8cPfvADXnjhBXQ6\nHTk5Obz11lu4XC78fj9f+9rX0Ov1NDU1kZ2dzbJly6752bICszRJNnMvz5TFLTWF1FU78A+Pc6Zt\ngH2NHi71BCgpMJF3jYvhOXLtNBTfQonFzWBokHP9zRztbeTjrk8ZDgXIz7ZhzjIt8LcRV5JjRr0k\nm+TMtgJz7QtD3CC9Xo9eP/Pjx8bGyMqK/UB0OBz09fXh8/mw2+2J19jtdvr6+mb97Px8I3r9/P1f\n3mwVn0gvyWZ+OJ0Wbqkr4WSzj11vn+XYBR/HL/q4Y10pT31lJe4C8xe+717XJu5dvYlLg138vuUT\n9rUf5neX9vG7S/tY6ajij6puZ1PZl8gxzH57AzF/5JhRL8nmxsxbAfOHXGvnKpkdrYGB4FwPJ0GW\n9dRLspl/RXnZfGtrPSdb+nltXzMfHetk//EuNtcV8/Dtldjzri5EnE4LuaE8Hip7gPtK7uVE3ykO\neI5wzn+Rc/4WfnZ0N+td62hwb6Qyr3zWZmExt+SYUS/JJjmzFXkLWsAYjUbGx8fJycmhp6cHl8uF\ny+XC5/MlXtPb28u6desWclhCiGk0Gg111Q5qq+x8fq6P1/e1sK/Rw4FT3fzRl0p4cFMFecYv3loy\naPWsL1zH+sJ1+Mf6Oej9jEPezzjgPcwB72GKTYU0FG/klqL1ssUkhLgh176S1TxoaGjgvffeA2Dv\n3r1s2bKF+vp6Tp48yfDwMKOjoxw9epQNGzYs5LCEEF9Aq9GwcZWL7/2/W/g/D9ZgNWWx90gHz/3k\nIK/tayE4Hpr1/Y5cO1+tuo/vNjzPM/X/l5tddfQGfbx68X/Z8cn3+enJXZz2nyOqRBfoGwkhFpN5\nOwvp1KlT7Ny5k66uLvR6PYWFhfzTP/0Tzz//PBMTE7jdbv7xH/8Rg8HAu+++yyuvvIJGo2Hbtm08\n/PDDs362nIW0NEk26RUKR9nX6OGtA20Mj05iytHzwG0VbL1vFYHhsaQ+Y2RylMM9RznoOYJntBuA\n/GwbtxWvZ1PxRhy59j/wCSIVcsyol2STHLmQXQpkUqmXZKMOE5MRfne0k3cOtTM6HsZmyWbz2iI2\nry3GlW9M6jMURaFtuIOD3sN83tPIeGQCDRpW5i9nk3sj9QVrMOiufRdtkRw5ZtRLskmOFDApkEml\nXpKNugTHQ7x3uIPfHe0kOB4GYFW5jc11xaxf6SLbkNyZghORSY72nuCg5zDNQ20AmPRGNhbdTIP7\nFkrMxfP1FRY9OWbUS7JJjhQwKZBJpV6SjTpZrLns/aSV/Sc8NF0aBCA3W8etNYVsqXdTWWRJ+syj\nntHeRONvIDQCQLmllAb3RjYUriNX/8VXChZfTI4Z9ZJskiMFTApkUqmXZKNO03PpHQjy8cluPjnp\nZSAwAUCp08TmOjeb1hRiucbZS1eKRCOc8p/lgOcIp/1NKCgYtAZudq2loXgjy21Vcjp2EuSYUS/J\nJjlSwKRAJpV6STbq9EW5RKMKp1r7+fiEh2MXfESiCjqthptXFLC5zk3tMjtabXIFyODEEIe8n3PQ\newTfmB8AV24Bm4o3cmvxeqzZs9/2YCmTY0a9JJvkSAGTAplU6iXZqNMfymU4OMmh0z3sP+Ghq28U\ngHxLNrevLWJznRvXNW4geaWoEuXiYCsHPEc43neCUDSMVqNljWMlDcW3sMaxSu7DdAU5ZtRLskmO\nFDApkEmlXpKNOiWbi6IotHUH2N/o4dOzPYxNRIBY4++WOjfrVzrJSrLxNxga47Oe4xz0HuZSoAuA\nvCwLtxatZ5N7I4VG5/V/oUVEjhn1kmySIwVMCmRSqZdko07Xk8tEKMLn53r5+IR3WuOvnltXF7Kl\nrjilxt+OgIeD3sMc6T5GMBy7Hk21dRkN7o3c7KojW5dc381iJMeMekk2yZECJgUyqdRLslGnG82l\nZyDIxye8fHLSy+BI7O68pU4TW+rc3JZC428oEqKx7xQHvEc4N3ARgBxdDhsK62lw30K5pXTJNf7K\nMaNekk1ypIBJgUwq9ZJs1Gmucok1/vrZf8LL8Ssaf7fUu1lTmXzjr2/Mnzgde3BiCAC3qYgG9y1s\nLLoZs2Fp3IdJjhn1kmySIwVMCmRSqZdko07zkctwcJJDp7rZf8JLl296428xm+uKU2r8Pdt/ngOe\nI5z0nSGiRNBrdNQ7a9nk3sjK/OVoNQt6S7gFJceMekk2yZECJgUyqdRLslGn+cxFURRavQH2n/Dw\n6ZkexienNf7Wu1l/U/KNv4HJET7t/pyDniN0B3sBsOfkc1vxBjYVb8Cekz8v3yGd5JhRL8kmOVLA\npEAmlXpJNuq0ULlMhCJ81hRr/D3XMdX4e9vqQjan0PirKAqtw5c46DnMZ72NTEYm0aBhlX0FDe5b\nWOuoWTT3YZJjRr0km+RIAZMCmVTqJdmoUzpy+eLGXzNb6orZVFuEOTe5AmQ8PBG7D5P3MC1D7QBk\n6bKoyV9BbUENaxw1WLOv/QNU7eSYUS/JJjlSwKRAJpV6STbqlM5cItEop1v72d/o5fjFWOOvXqdh\n3Qond9QVszqFxt/u0R4OeT/nhO80PcG+xOMVljJqC1axtmA1pWZ3Rp3JJMeMekk2yZECJgUyqdRL\nslEnteQyPDrJwdOxxl9PvPHXnpfN7bWxxl9nko2/AL3BPk75znLS38TFwRaiShQAW7aVWscqagtq\nWJm/giyVbzWpJRtxNckmOVLApEAmlXpJNuqktlwURaHFO8z+Ri+Hz041/tZU5LO5rjilxl+IXfX3\nbP95TvrOcsbfxGg4CIBBa2Bl/nLWFtRQW1CDLds6L9/nRqgtGzFFskmOFDApkEmlXpKNOqk5l4nJ\nCJ+d62X/CS/nr2j83VJfTEVh8lf8hdhp2a1DlzjpO8Mp/1m8oz2J58rMbmoLVrO2oIYyS4kqTs9W\nczZLnWSTHClgUiCTSr0kG3XKlFx6+oPsP+Hlk1NehqY3/tYXs2lN8o2/0/nG/JzyNXHSd4YLgy1E\nlNhqT16WJb7VtJpV9hVpu51BpmSzFEk2yZECJgUyqdRLslGnTMslEo1ysqWfj094aZzW+HvzCidb\nUmz8nW48PM7Z/guc8p3llP8sI6FYH45eq+em/GrWOmJbTQt5vZlMy2YpkWySIwVMCmRSqZdko06Z\nnMvQ6CQHT3Wz/4QHrz/W22LONVBf7aB+eQFrltnJzdan/LlRJUr7cEe8EfgsXSPexHMl5uJEMVOR\nVzavW02ZnM1iJ9kkRwqYFMikUi/JRp0WQy6KotDiGeaTk16OXfAxNBrbYtLrNKwqz6d+eQHrlhfg\nsOZc1+f3jw8kipnzA82Eo2EAzAYTtfFipsa+ghz99X3+tSyGbBYrySY5UsCkQCaVekk26rTYcokq\nCu3dAY5d8NF40UdH70jiuVKnmXUrYsVMZbEF7XVcE2Y8PMG5gYuc8p3hlL+J4cnYfzudRscKWxVr\nC1ZTW1BDQa79hr/LYstmMZFskiMFTApkUqmXZKNOiz0X/9A4jc0+jl/w0XRpgHAk9iPTasqifnls\nq2l1pZ3sFE7NviyqROkIdHHSd5ZTvjN0jHgSzxWZChNbTVXWiuvaalrs2WQyySY5UsCkQCaVekk2\n6rSUchmbCHOmrZ/jF3w0NvsZGQsBYNBrWV2RT/2KAuqrC8i3ZF/X5w9ODMW2mnxnOTdwgVB8q8lk\nMLLavoq1BTWsdtxErj65i/ItpWwyjWSTHClgUiCTSr0kG3VaqrlEo7G+meMXfRy/6Etc/RegssjC\nuuUF1C8voLzQfF23H5iMTMa3ms5yyt/E4MQQAFqNluW2KtbGT9N2GQuu+RlLNZtMINkkRwqYFMik\nUi/JRp0kl5jewTEaL8SKmfMdg0SisR+t+ZbsRDFTU2HDoE99q0lRFDpHPInVmfZAR+K5QqOTWkcN\nawtqqLJWotNOfb5ko16STXKkgEmBTCr1kmzUSXK5WnA8xKnWfo5f9HGy2c/oeGwrKNugY80ye6x3\nprqAPNP1XeBuaCLAaf9ZTvnOcrb/PJPR2FZWrj6XNY6V1DpqWONYSYW7ULJRKTlukiMFTApkUqmX\nZKNOksvsItEoFzuHYltNF3z0DIwBoAGqSvISqzMlBabr2moKRUKcH2zhlO8MJ31nGZiI3TJBq9Gy\nwl5Juamcalsly6wVmA2mufxq4gbIcZMcKWBSIJNKvSQbdZJcUuP1j9J40c/xiz4udA5y+SdwgTUn\nVsysKGBlmQ29LvWzjhRFwTPanTirqS3QwfQf8UVGF1XWSqptlVRZK3HmOq6raBI3To6b5EgBkwKZ\nVOol2aiT5HL9RsZCnGyOFTMnW/yJO2fnZuuoXeZg3fIC1lY7rus+TQBmm4HPWs7QPNRGy2AbrcPt\nTEQmE89bssxUWyuptlZSZaukzFwyo4dGzB85bpIjBUwKZFKpl2SjTpLL3AhHopzrGEw0AvuGxgHQ\naGBFqS2+1eSg2JH8NtCV2USiETyj3TQPttEy1EbzUFvi7CYAg9ZAZV5ZvKBZRpW1POlTtkVq5LhJ\njhQwKZBJpV6SjTpJLnNPURS6fKM0xk/Rbuka5vIP6sL83MTVgJeXWtFpr73V9IeyURSF/vFBmoda\naRlqp3mwFe9oD0r8T9OgwW0uim07WWPbTvYcm2w7zQE5bpIjBUwKZFKpl2SjTpLL/BsenaSx2Ufj\nRT+nW/uZCMW2mkw5etZWx7aaapc5MObMvPHk9WQTDI3ROtxOy2BshaZtuINQ/CwnAFu2NbHlVG2t\npMRcPK83pFys5LhJjhQwKZBJpV6SjTpJLgsrFI5wtn0wsTozEJgAQKfVcFOZLdEI7LLlzkk24WiY\nzhHP1LbTYBuB0NT9oXJ02VTmlScagyvzysnRX9+ViJcSOW6SIwVMCmRSqZdko06SS/ooikJH7wjH\n430zbd1TObgLTNxaW0ypI5cVpbbrbgT+oj+zb8yfaAxuHmqjJ9ibeF6r0VJqLo6f7bSMKmsFtmzr\nnPzZi4kcN8mRAiYFMqnUS7JRJ8lFPQYCE7Gtpgs+zrQPEApHE88VO4ysKLWxotTKijIbTmvOnPWy\njEyO0jLUFuujGWrl0nAnYSWSeN6RY0+cvl1traTI5Fry205y3CRHCpgUyKRSL8lGnSQXdZoIRfCP\nhvjslJfznYM0dw0nemcAbOasqYKm1EaZy4xWOzcFTSgS4lKgK94c3EbLYDuj4WDi+Vx9LlXWikRz\ncEVeGVm6uVkhyhRy3CRHCpgUyKRSL8lGnSQX9ZqeTSQapaN3hAsdQ1zoHORC5xBDo1PXhMnJ0lFd\nYk0UNFXFeWRnzc01YaJKlN5gH83xLafmoTZ8Y/7E8zqNjnJLyYyL7FmyzHPyZ6uVHDfJkQImBTKp\n1EuyUSfJRb1my0ZRFPoGx7jQOVXQeP1TqyQ6rYbyQkuioFlRar3uezd9kaGJAK1DUwVNR6CLqDK1\n5eUyFsRXaJZRba3AZXQuqtO35bhJjhQwKZBJpV6SjTpJLuqVajbDwUmaO4cSRU1bdyBxV22AQrsx\nXtBYuanUhis/d86KisnIJG3DHYmznVqG2hmPjCeeNxmMlJlLKLOUUGouptRSgstYkLG9NHLcJEcK\nmBTIpFIvyUadJBf1utFsJkIRWj3DiRWai11DidsdAOQZDTMag8tc5uu6h9MXiSpRvKM98W2nVlqH\nLuEf75/xmiytgRKzm1KLm7L4r25TEYYM6KeR4yY5UsCkQCaVekk26iS5qNdcZxONKnT2jSRWaM53\nDDI4MtVHk23QUeXOSxQ01e48crL0s3xiaoKhMbpGPHSMeOgMeOgc8eAd7Zmx9aTVaCkyuii1uCk1\nuymL/2o0GOdsHHNBjpvkSAGTAplU6iXZqJPkol7znY2iKPiHxmf00XT5RhPPazUaygrNiS2n5aVW\nbOa5vchdKBLCG+yhM+ChI+Chc6SLzhEvk9NuWglgz8lPrNLEtqHc2LKtaeurkeMmOVLApEAmlXpJ\nNuokuahXOrIZGQtxsWuqoGnzDhOOTP0147LlJlZoVpRaKbIb57yIiCpR+sb8dAZixUxHoIvOgGfG\nFYRhqq+mxFIc769x4zI6F6SvRo6b5EgBkwKZVOol2aiT5KJeasgmFI7Q6g0kCpoLnUOMTYQTz5tz\nDTPOdKoossxZH810iqIwPBmIFTPxLaiOEc+M07khdkfuEnPxjC0ot6l4zq9To4ZsMsFsBczcbU4K\nIYQQVzDoddxUZuOmMhsAUUXB0zc6raAZ5NgFH8cu+OKv11JVnMeKslhRU+22XnWTyuuh0WiwZudh\nzc6jtqAm8fhYeIyuke7EKk3HSBeXAp20DV+aei8aCk2uqS0ocwmlFjcmlfXVLDWyAnMFqYrVS7JR\nJ8lFvTIlG//QOBe64gVNxxBdfSNc/otJA5S6zCwvtVJZaKGiyIK7wDQvqzSXhaJhukd74j01nvhW\nlIeJK/pq8rNtM07rLrO4yc+2JbUllinZpJuswAghhFAthzUHh7WI21YXARAcD3GxK376dscgLd4A\nHb1T/St6nQZ3gYmKQgvlhRYqCi2UucxzduVgg1ZPmSV2zZnLokoU31g/nSOeGdtQJ3ynOeE7nXid\nSW+kZNpp3aVmN4VGJzrt3IxNTJEVmCtIVaxeko06SS7qtViyCYWjXOoNcKlnhEs9Adq7A3T2jRKO\nTJ0+rQGKHEbKCy2UF5oTxc1c3YX7WoYmAolVmo4RD10BD71jvhmvMWj1uE3F8TOgYkXN2orljAyG\n5nVsi4E08aZgsRzwi5Fko06Si3ot5mzCkSjd/iDtPQHae2LFTUdvgLGJyIzXOfKyE6s0l4ubfEv2\nvJ4+PR4ep3PEm1il6Qx04RntIaLMHJs1y4LL6KTQ5KLQ6Ez8Y8/Jz9grDM81KWBSsJgP+Ewn2aiT\n5KJeSy2baPz+TomVmp4Al7oDDAdnrnSYcw1UFE2t1FQUWnDm56Kdx6ImHA3TPdqbWKXpD/vpGOxm\nYHwQhZl/Deu1epy5DgqNzliBY3RSaIwVOUZD7ryNUY2kgEnBUjvgM4lko06Si3pJNrHTpwdHJqcK\nmnhx4xsan/G6nCwdZS7ztNUa87w2C1/OZjISom/MR0+wj57RvtivwV56g32MRyauep/FYJ4qakzO\nRJFTkGNflH020sQrhBBiSdJoNORbssm3ZFO/vCDx+MhYiI6eAO09I4n+mtgF+IYSr9HrNJQUmKko\nMse3nyyUOeeuWRggSxe77kyJuXjG45evWxMraProDfYlft8yFLs/1HQ6jY6C+KrNzJUbJ+Ys05yN\nV02kgBFCCLHkmHMN1FTaqam0Jx6bCEXo7L28/TRCe0+Arr7Yr+AFQKOBIrtx2hlQZsqLLJhy5rZZ\nePp1a27Kr57xXCgapi/om1HUTP2+96rPMumN8V4b54xem4JcB3pt5pYBmTtyIYQQYg5lG3RUl1ip\nLrEmHgtHonj9Qdq7A1zqif/TO4LXH+TQmZ7E6xx5OYm+msvbUDZz1rw0Cxu0etzmItzmohmPK4rC\nSGg0UchML2zaAx20DrfPeL1Wo8WRk391r43JicVgTtt9opIlBYwQQghxDXqdljKXmTKXGYht80QV\nhb6BsRk9Ne09AY6e7+Po+b7Ee/OMhsTWU3mhmYoiC07b/DULazQaLFlmLFlmltuWzXguEo3gG/PT\nfcV2VG+wj1P+JvA3zXh9rj5nxjaUy+ikyOjCmevAMMe3Vbhe0sR7BWl6Uy/JRp0kF/WSbBbO5Wbh\n9vgqTWzFZgT/8NXNwuUuM9Vl+diMBoocRorsRhx5OWi16VnxGA0F403EM1dt+sb8V536rUGDPb5q\nc7mwqbHfhNPomJexyVlIKZADXr0kG3WSXNRLskm/Gc3C8ZWabn+QK//iNei1FObnUmQ3UuQwUWw3\nJoqb3Oz0bJZEohH84wMz+msur9wEJqeujFxodPHCbd+alzHIWUhCCCFEGlyrWXhS0XC2uY9ufxBv\nf5Buf5Du/iCdfaNA34zPsJqz4gWNKVbg2I0UO+Z/1Uan1eEyFuAyFlBLzYzngqExesdip367jAXX\n+IT5taAFzOjoKM899xxDQ0OEQiGeeeYZnE4nL730EgArV67kO9/5zkIOSQghhFhQ2QYdpU4LlqyZ\n15hRFIWBwATd/bFixhsvarr9QZouDdJ0aXDG6/U6LYX23BmrNcXxIme+V22MhlwqDeVU5pXP658z\nmwUtYF5//XWWLVvGs88+S09PD9/85jdxOp3s2LGDuro6nn32WT766CPuvPPOhRyWEEIIkXYajQZ7\nXg72vBxWT1uxgdiqTU//VEHT3T+1ctPVN3rVZ1lNWRTHi5rL21JFDiMFaey1mWsLWsDk5+dz7tw5\nAIaHh7HZbHR1dVFXVwfAXXfdxcGDB6WAEUIIIabJNugSZzRNd7l5uNs/OmMryusPcm6WVZvpW1FF\n9tiqjTEns7pKFnS0Dz30EK+99hr33nsvw8PDvPzyy3z3u99NPO9wOOjr65vlE2Ly843o9fN3yeTZ\nmoZEekk26iS5qJdko15zlY3LBTdVXd2HMhGK4OkbobN3hK6+Ebp6R+jsjV2c74tWbfIt2ZS4zJQ4\nzZS6LJTGf++yG9GpcNVmQQuYN954A7fbzSuvvEJTUxPPPPMMFstUgMmeEDUwEJyvIUrXvopJNuok\nuaiXZKNeC5WN2aBlVUkeq0ryEo9NX7WZvhXV3R/kdLOfU83+GZ+h100/Q8qY+LXYbsQ4x1cgvpJq\nzkI6evQomzdvw+V9CQAAB/dJREFUBmDVqlVMTEwQDocTz/f09OByuRZySEIIIcSSMv3+UDVX9NpM\nhiL0DIzFe21mbkt1+a5etckzZdFQW8Q37lq+UMNPWNACpqKigsbGRu6//366urowmUyUlJTw2Wef\nsWHDBvbu3cv27dsXckhCCCGEiMsy6KZdeXiKoigMjU7OODPK2z9Ktz9I/xUX61soC1rAbN26lR07\ndrBt2zbC4TAvvfQSTqeTF154gWg0Sn19PQ0NDQs5JCGEEEL8ARqNBps5G5s5m5qK/HQPB1jgAsZk\nMvFv//ZvVz3+y1/+ciGHIYQQQogMp/3DLxFCCCGEUBcpYIQQQgiRcaSAEUIIIUTGkQJGCCGEEBlH\nChghhBBCZBwpYIQQQgiRcaSAEUIIIUTGkQJGCCGEEBlHChghhBBCZBwpYIQQQgiRcaSAEUIIIUTG\nkQJGCCGEEBlHoyiKku5BCCGEEEKkQlZghBBCCJFxpIARQgghRMaRAkYIIYQQGUcKGCGEEEJkHClg\nhBBCCJFxpIARQgghRMaRAmaaH/zgB2zdupUnn3ySEydOpHs4Ypof/vCHbN26lSeeeIK9e/emezhi\nmvHxce655x5ee+21dA9FTPPmm2/y8MMP8/jjj/Phhx+mezgCGB0d5a/+6q/Yvn07Tz75JPv370/3\nkDKaPt0DUIvDhw/T3t7O7t27aW5uZseOHezevTvdwxLAoUOHuHDhArt372ZgYIDHHnuM++67L93D\nEnEvv/wyVqs13cMQ0wwMDPDjH/+YV199lWAwyH/8x3/w5S9/Od3DWvJef/11li1bxrPPPktPTw/f\n/OY3effdd9M9rIwlBUzcwYMHueeeewCorq5maGiIkZERzGZzmkcmNm7cSF1dHQB5eXmMjY0RiUTQ\n6XRpHplobm7m4sWL8pejyhw8eJBNmzZhNpsxm81873vfS/eQBJCfn8+5c+cAGB4eJj8/P80jymyy\nhRTn8/lmTCa73U5fX18aRyQu0+l0GI1GAPbs2cMdd9whxYtK7Ny5k+effz7dwxBX6OzsZHx8nL/8\ny7/kqaee4uDBg+kekgAeeughPB4P9957L9u2beO5555L95AymqzAXIPcYUF9fvvb37Jnzx5+9rOf\npXsoAvj1r3/NunXrKCsrS/dQxBcYHBzkRz/6ER6Phz/7sz/jgw8+QKPRpHtYS9obb7yB2+3mlVde\noampiR07dkjv2A2QAibO5XLh8/kS/97b24vT6UzjiMR0+/fv5yc/+Qk//elPsVgs6R6OAD788EM6\nOjr48MMP6e7uJisri6KiIhoaGtI9tCXP4XBw8803o9frKS8vx2Qy0d/fj8PhSPfQlrSjR4+yefNm\nAFatWkVvb69sh98A2UKKu/3223nvvfcAOH36NC6XS/pfVCIQCPDDH/6Q//zP/8Rms6V7OCLuX//1\nX3n11Vf57//+b/74j/+Yp59+WooXldi8eTOHDh0iGo0yMDBAMBiUfgsVqKiooLGxEYCuri5MJpMU\nLzdAVmDivvSlL7FmzRqefPJJNBoNL774YrqHJOLefvttBgYG+Ou//uvEYzt37sTtdqdxVEKoV2Fh\nIffffz/f+MY3APiHf/gHtFr5/9V027p1Kzt27GDbtm2Ew2FeeumldA8po2kUafYQQgghRIaRklwI\nIYQQGUcKGCGEEEJkHClghBBCCJFxpIARQgghRMaRAkYIIYQQGUcKGCHEvOrs7KS2tpbt27cn7sL7\n7LPPMjw8nPRnbN++nUgkkvTr/+RP/oRPP/30eoYrhMgQUsAIIead3W5n165d7Nq1i1/96le4XC5e\nfvnlpN+/a9cuueCXEGIGuZCdEGLBbdy4kd27d9PU1MTOnTsJh8OEQiFeeOEFVq9ezfbt21m1ahVn\nz57l5z//OatXr+b06dNMTk7y7W9/m+7ubsLhMI888ghPPfUUY2Nj/M3f/A0DAwNUVFQwMTEBQE9P\nD9/61rcAGB8fZ+vWrXz9619P51cXQswRKWCEEAsqEonw/vvvs379ev72b/+WH//4x5SXl191czuj\n0cgvfvGLGe/dtWsXeXl5/PM//zPj4+M8+OCDbNmyhQMHDpCTk8Pu3bvp7e3l7rvvBuCdd96hqqqK\n73znO0xMTPA///M/C/59hRDzQwoYIcS86+/vZ/v27QBEo1E2bNjAE088wb//+7/z93//94nXjYyM\nEI1GgdjtPa7U2NjI448/DkBOTg61tbWcPn2a8+fPs379eiB2Y9aqqioAtmzZwi9/+Uuef/557rzz\nTrZu3Tqv31MIsXCkgBFCzLvLPTDTBQIBDAbDVY9fZjAYrnpMo9HM+HdFUdBoNCiKMuNeP5eLoOrq\nan7zm99w5MgR3n33XX7+85/zq1/96ka/jhBCBaSJVwiRFhaLhdLSUj766CMAWltb+dGPfjTre+rr\n69m/fz8AwWCQ06dPs2bNGqqrqzl27BgAXq+X1tZWAN566y1OnjxJQ0MDL774Il6vl3A4PI/fSgix\nUGQFRgiRNjt37uT73/8+//Vf/0U4HOb555+f9fXbt2/n29/+Nn/6p3/K5OQkTz/9NKWlpTzyyCP8\n/ve/56mnnqK0tJS1a9cCsHz5cl588UWysrJQFIU///M/R6+XH3tCLAZyN2ohhBBCZBzZQhJCCCFE\nxpECRgghhBAZRwoYIYQQQmQcKWCEEEIIkXGkgBFCCCFExpECRgghhBAZRwoYIYQQQmQcKWCEEEII\nkXH+P8hzJcckb8BLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "0i7vGo9PTaZl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "3tAWu8qSTe2v", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " # YOUR CODE HERE: Make a feature column for the long_x_lat feature cross\n", + " long_x_lat = tf.feature_column.crossed_column(\n", + " set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000) \n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person,\n", + " long_x_lat])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "-_vvNYIyTtPC", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 627 + }, + "outputId": "cb4db75f-a265-4889-b524-28af3dc70b4f" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 162.54\n", + " period 01 : 134.43\n", + " period 02 : 117.41\n", + " period 03 : 106.14\n", + " period 04 : 98.21\n", + " period 05 : 92.35\n", + " period 06 : 87.89\n", + " period 07 : 84.38\n", + " period 08 : 81.54\n", + " period 09 : 79.12\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGXax/HvmUx6Iz30FDqE0IJ0\nCDU0QdqqkEVAXUUEkV3Rd9XFLq6iooDKCijYaNJ7781AaKGlExLSe5+c94/oSEwICZDMJLk/1+V1\nMeecOeeeuRP58TynKKqqqgghhBBC1CAaQxcghBBCCFFZEmCEEEIIUeNIgBFCCCFEjSMBRgghhBA1\njgQYIYQQQtQ4EmCEEEIIUeNoDV2AEMasZcuWNGnSBBMTEwB0Oh1+fn68/vrrWFlZ3fd+V69ezYQJ\nE0otX79+Pa+99hpfffUV/v7++uW5ubn06NGDwYMH8+GHH973cSsqKiqK999/n/DwcAAsLS2ZMWMG\nAwcOrPJjV8bixYuJiooq9Z2cPHmSadOm0ahRo1Lv2bFjR3WV90Bu3rzJgAED8PT0BEBVVZydnfn3\nv/9NmzZtKrWvTz75hAYNGvDEE09U+D0bN25k7dq1rFy5slLHEqK6SIAR4h5WrlyJu7s7APn5+cye\nPZuvv/6a2bNn39f+EhIS+N///ldmgAGoX78+W7ZsKRFg9u/fj52d3X0d737885//ZNSoUXz11VcA\nBAcHM3nyZLZv3079+vWrrY4HUb9+/RoTVu7GxMSkxGfYtm0bL7zwAjt37sTMzKzC+5kzZ05VlCeE\nQckUkhCVYGZmRu/evQkJCQEgLy+PN998kyFDhjB06FA+/PBDdDodAFeuXOHxxx8nICCAUaNGcfjw\nYQAef/xxbt26RUBAAPn5+aWO0alTJ06ePElOTo5+2bZt2+jZs6f+dX5+Pu+++y5Dhgyhf//++qAB\ncPbsWcaMGUNAQADDhg3j2LFjQPG/6Hv16sX333/PyJEj6d27N9u2bSvzc167dg1fX1/9a19fX3bu\n3KkPcl9++SV9+/Zl9OjRfPPNN/Tv3x+AV199lcWLF+vfd+fre9X1/vvvM2nSJAB+++03xo4dy6BB\ng5gwYQLR0dFA8UjUSy+9hL+/P5MmTSIuLu4eHSvb+vXrmTFjBpMnT+ajjz7i5MmTPP7448yaNUv/\nl/327dsZMWIEAQEB/P3vfycqKgqAL774gtdff51x48axYsWKEvudNWsWy5Yt078OCQmhV69eFBUV\n8emnnzJkyBCGDBnC3//+d27fvl3puocNG0Zubi5hYWEA/PLLLwQEBNC/f39efvllcnNzgeLv/YMP\nPmDkyJFs3769RB/u9nNZVFTE22+/Tb9+/Rg3bhxXrlzRH/fUqVM89thjDBs2jKFDh7J9+/ZK1y7E\nQ6cKIe6qRYsWamxsrP51amqqOnHiRHXx4sWqqqrq119/rT7zzDNqQUGBmpOTo44dO1bdsGGDqtPp\n1KFDh6qbN29WVVVVz58/r/r5+akZGRnqiRMn1IEDB5Z5vHXr1qlz585V//nPf+rfm5GRoQ4YMEBd\ns2aNOnfuXFVVVfXLL79UJ0+erObl5alZWVnq6NGj1X379qmqqqojRoxQt2zZoqqqqv7666/6Y0VH\nR6tt2rRRV65cqaqqqm7btk0dNGhQmXW8+OKLqr+/v/rdd9+pN27cKLHu6tWrapcuXdT4+Hi1oKBA\nff7551V/f39VVVV17ty56qJFi/Tb3vm6vLratm2rrl+/Xv95/fz81CNHjqiqqqqbN29WH3vsMVVV\nVXXVqlXqxIkT1YKCAjU5OVn19/fXfyd3Ku87/uN77tChgxoeHq7f3sfHRz127JiqqqoaExOjdu7c\nWY2IiFBVVVW//fZbdfLkyaqqqurChQvVXr16qUlJSaX2u3XrVnXixIn6159//rn6zjvvqNeuXVMH\nDx6s5ufnq6qqqt9//73666+/3rW+P76X1q1bl1ru5+enhoaGqqdPn1a7d++uxsXFqaqqqm+88Yb6\n4Ycfqqpa/L2PHDlSzc3N1b9etGhRuT+XBw4cUAcPHqxmZmaqOTk56rhx49RJkyapqqqqY8aMUU+e\nPKmqqqqGh4erL7/8crm1C1EdZARGiHsIDAwkICCAAQMGMGDAALp168YzzzwDwIEDB5gwYQJarRYL\nCwtGjhzJ0aNHuXnzJomJiQwfPhwAHx8fGjRowIULFyp0zOHDh7NlyxYA9uzZg7+/PxrNn7+u+/fv\n58knn8TMzAwrKytGjRrFrl27ANiwYQNDhw4FoHPnzvrRC4DCwkLGjBkDQNu2bbl161aZx//vf//L\nxIkT2bx5MyNGjKB///789NNPQPHoiJ+fHy4uLmi1WkaMGFGhz1ReXQUFBQwaNEi/fzc3N/2I04gR\nI4iKiuLWrVucOXOGQYMGodVqcXBwKDHN9lexsbEEBASU+O/Oc2U8PDzw8PDQv7awsKB79+4AHD16\nlEceeYSmTZsCMH78eE6ePElhYSFQPCLl6OhY6pj9+vXj8uXLpKamArB7924CAgKws7MjOTmZzZs3\nk5aWRmBgIKNHj67Q9/YHVVX55ZdfcHNzw8PDg3379jFs2DDc3NwAeOKJJ/Q/AwDdu3fH3Ny8xD7K\n+7k8ffo0ffv2xdraGgsLC32vAJycnNiwYQOhoaF4eHjwySefVKp2IaqCnAMjxD38cQ5McnKyfvpD\nqy3+1UlOTsbe3l6/rb29PUlJSSQnJ2Nra4uiKPp1f/wl5uzsfM9j9uzZk9dff53U1FS2bt3K9OnT\n9SfUAmRkZPDBBx+wYMECoHhKqX379gBs3ryZ77//nqysLIqKilDveNyZiYmJ/uRjjUZDUVFRmcc3\nNzdn2rRpTJs2jfT0dHbs2MH7779Po0aNSEtLK3E+jpOT0z0/T0XqsrGxASA9PZ3o6GgCAgL0683M\nzEhOTiYtLQ1bW1v9cjs7O7Kysso83r3Ogbmzb399nZKSUuIz2traoqoqKSkpZb73D1ZWVvTo0YMD\nBw7QuXNn0tPT6dy5M4qi8MUXX7Bs2TLeeecd/Pz8eOutt+55PpFOp9N/D6qq0qxZMxYvXoxGoyEj\nI4Pdu3dz5MgR/fqCgoK7fj6g3J/LtLQ0XF1dSyz/w/vvv8+SJUuYMmUKFhYWvPzyyyX6I4QhSIAR\nooIcHR0JDAzkv//9L0uWLAHA2dlZ/69tgNTUVJydnXFyciItLQ1VVfV/WaSmplb4L3tTU1P8/f3Z\nsGEDkZGRdOzYsUSAcXV1ZerUqaVGIG7fvs3rr7/OmjVraN26NREREQwZMqRSnzM5OZmQkBD9CIid\nnR0TJkzg8OHDXLt2DVtbWzIyMkps/4e/hqK0tLRK1+Xq6oqXlxfr168vtc7Ozu6ux36YnJycOHv2\nrP51WloaGo0GBweHe753yJAh7N69m5SUFIYMGaLvf7du3ejWrRvZ2dnMnz+fjz/++J4jGX89ifdO\nrq6uPPbYY8ydO7dSn+tuP5flfbfOzs688cYbvPHGGxw5coQXX3yR3r17Y21tXeFjC/GwyRSSEJUw\nZcoUzp49y6lTp4DiKYO1a9ei0+nIzs5m48aN9O3bl0aNGuHu7q4/STYoKIjExETat2+PVqslOztb\nPx1xN8OHD2fp0qVlXro8YMAA1qxZg06nQ1VVFi9ezKFDh0hOTsbKygovLy8KCwv55ZdfAO46SlGW\n3NxcZs6cqT+5EyAyMpLg4GC6dOlCx44dOXPmDMnJyRQWFrJhwwb9di4uLvqTP6OjowkKCgKoVF2+\nvr4kJCQQHBys38+//vUvVFWlQ4cO7Nu3D51OR3JyMocOHarw56qMnj17cubMGf00188//0zPnj31\nI2/l8ff35+zZs+zZs0c/DXPkyBHeeustioqKsLKyolWrViVGQe5H//792bVrlz5o7Nmzh2+++abc\n95T3c9mxY0eOHDlCTk4OOTk5+uBUUFBAYGAg8fHxQPHUo1arLTGlKYQhyAiMEJVgY2PDs88+y/z5\n81m7di2BgYFER0czfPhwFEUhICCAoUOHoigKCxYs4D//+Q9ffvkllpaWfP7551hZWdGyZUvs7e3p\n2bMnv/76Kw0aNCjzWF27dkVRFIYNG1Zq3ZNPPsnNmzcZPnw4qqrSrl07Jk+ejJWVFX369GHIkCE4\nOTnx6quvEhQURGBgIAsXLqzQZ2zQoAFLlixh4cKFvPvuu6iqio2NDa+99pr+yqS//e1vPPbYYzg4\nODB48GCuX78OwIQJE5gxYwaDBw+mTZs2+lGWVq1aVbguCwsLFi5cyDvvvENWVhampqbMmjULRVGY\nMGECZ86cYeDAgTRo0ICBAweWGDW40x/nwPzVRx99dM/vwN3dnXfffZfp06dTUFBAo0aNeOeddyr0\n/dnY2NC2bVuuXr1Khw4dAPDz82Pr1q0MGTIEMzMzHB0def/99wF45ZVX9FcSVUbbtm157rnnCAwM\npKioCCcnJ956661y31Pez6W/vz8HDhwgICAAZ2dn+vbty5kzZzA1NWXcuHE89dRTQPEo2+uvv46l\npWWl6hXiYVPUOyeihRCiks6cOcMrr7zCvn37DF2KEKIOkTFAIYQQQtQ4EmCEEEIIUePIFJIQQggh\nahwZgRFCCCFEjSMBRgghhBA1To28jDohoezLJh8GBwcrUlKyq2z/4v5Jb4yT9MV4SW+Ml/SmYlxc\nbO+6TkZg/kKrNTF0CeIupDfGSfpivKQ3xkt68+AkwAghhBCixpEAI4QQQogaRwKMEEIIIWocCTBC\nCCGEqHEkwAghhBCixpEAI4QQQogaRwKMEEIIIWocCTBCCCFELXPgwN4Kbff5559w61bMXde/+urL\nD6ukh04CjBBCCFGLxMbeYs+enRXadtasOTRo0PCu6z/8cMHDKuuhq5GPEhBCCCFE2RYsmE9IyCV6\n9/Zj8OChxMbe4rPPFvPBB2+TkBBPTk4OU6c+S8+evZkx41lefvkV9u/fS1ZWJlFRkcTE3GTmzDl0\n796T4cMHsHXrXmbMeBY/v0cICjpDamoq8+d/irOzM2+//QZxcbH4+LRn3749/Prrtmr7nBJghBBC\niCqyet8NTl+JL7XcxERBp1Pva59+rVyZ0L/ZXdc/8UQg69evxtPTm6ioCBYv/h8pKcl07dqNoUNH\nEBNzkzfeeJWePXuXeF98/G0+/nghJ04cY+PGdXTv3rPEemtraz7/fAlLlnzBoUP7aNCgEfn5eXzz\nzQqOHj3M6tU/3dfnuV8SYO6QlJNMQnwsLkp9Q5cihBBCPLDWrdsCYGtrR0jIJTZtWo+iaEhPTyu1\nbfv2HQBwdXUlMzOz1Hpf34769WlpaURGhuPj4wtA9+49MTGp3uc7SYC5w7bwPZyIO8OrfrNobHv3\nOUEhhBCiIib0b1bmaImLiy0JCRlVfnxTU1MAdu/eQXp6OosW/Y/09HSefjqw1LZ3BhBVLT069Nf1\nqqqi0RQvUxQFRVEedvnlkpN479DFvTh9bgrbYeBKhBBCiPuj0WjQ6XQllqWmplK/fgM0Gg0HD+6j\noKDggY/TsGEjrl69DMCpUydKHbOqSYC5QyuH5rRzbcnlpKtcTwk1dDlCCCFEpTVt6snVq1fIyvpz\nGqhfv/4cO3aYWbOex9LSEldXV5YvX/pAx+nRozdZWVk8//w0goPPYmdn/6ClV4qiljVOZOSqctgt\nVZPIv/d8hKddU+Z0nl7tQ2Li7qpryFVUjvTFeElvjFdt6E16ehpBQWfo128ACQnxzJr1PD/+uO6h\nHsPFxfau6+QcmL9o7uSJr0s7ghMucjEpBB/nNoYuSQghhDA6VlbW7Nu3hx9/XImqFvHii9V70zsJ\nMGUY6TWE8wmX2BS6g7ZOrdAoMtMmhBBC3Emr1fL22x8Y7PjyN3MZ6lu78Yh7Z25lxXHm9jlDlyOE\nEEKIv5AAcxfDPAehVUzYEraTwqJCQ5cjhBBCiDtIgLkLJ0sHejfqTlJuCkdunTR0OUIIIYS4gwSY\ncgxp2h9zEzN2ROwltzDP0OUIIYQQ4ncSYO6w42QUr3xxmLyC4pvx2JrZMKBxHzLyMzlw84iBqxNC\nCCEennHjRpKdnc3KlSu4ePF8iXXZ2dmMGzey3PcfOLAXgG3bNnPw4P4qq/NuJMDcIb9AR0hEMnvO\nROuX9W/SB2tTK3ZHHiSzIMuA1QkhhBAPX2DgU7Rr175S74mNvcWePTsBGDZsJH37+ldFaeWSy6jv\nMLBLY/YG3WTbiSj6dmiIjaUplloLApr2Z92NLeyOPMBjzYYbukwhhBDirqZOncj773+Cu7s7cXGx\nvPbaHFxcXMnJySE3N5fZs/9Fmzbt9Nu/9948+vUbQIcOHfn3v18hPz9f/2BHgF27trN27S+YmGjw\n8PBm7tx/s2DBfEJCLrF8+VKKioqoV68eY8f+jcWLP+fChWAKC3WMHTuBgIDhzJjxLH5+jxAUdIbU\n1FTmz/8Ud3f3B/6cEmDuYGWhZcLAFny76RLbTkQywb/4AVy9G3ZnX/QRDt48in/jXtQzr97bJQsh\nhKiZ1t/Ywtn4C6WWm2gUdEX3dyP8jq4+jGk24q7r+/Tx5+jRQ4wdO4HDhw/Sp48/3t7N6dOnH7/9\ndpoffviO9977b6n37dy5HS8vb2bOnMPevbv0Iyw5OTl88skX2Nra8sILzxAaeoMnnghk/frVTJny\nDN9++zUA584FERYWypIly8jJyWHy5Mfp06cfANbW1nz++RKWLPmCQ4f2MWHCk/f12e8kU0h/MayH\nJ4525uw5c5Pk9FwATE1MGeY5iIKiQraF7zFwhUIIIcTdFQeYwwAcOXKQXr36cvDgXp5/fhpLlnxB\nWlpame+LiAijXTtfADp27Kxfbmdnx2uvzWHGjGeJjAwnLS21zPdfuXKZDh06AWBpaYmHhxfR0cWn\nZPj6dgTA1dWVzMzMMt9fWTIC8xdmpiaM7uXFsm0hbDgSztRhrQF4xL0Te6IOcjz2NAOa9MHNysXA\nlQohhDB2Y5qNKHO0pCqfheTl5U1SUgK3b8eRkZHB4cMHcHZ25Y033uHKlct8+eVnZb5PVUGjKX7+\nX9Hvo0MFBQUsWPARK1b8iJOTM6+88tJdj6soCnc+XbGwsEC/PxMTkzuO83AewVilIzDXrl1j4MCB\nrFq1Cij+IubMmcO4ceOYPHmyPgVu2rSJsWPHMn78eNasWVOVJVVIj3buNHS25uiFWGISi0/cNdGY\n8KjXEIrUIraE7TRwhUIIIcTdde/ei2++WUzv3n1JS0ulYcNGABw8uJ/CwrJvztqkSVOuXAkBICjo\nDADZ2VmYmJjg5OTM7dtxXLkSQmFhIRqNBp1OV+L9rVq15ezZ335/XzYxMTdp1KhJVX3Eqgsw2dnZ\nvPPOO3Tv3l2/bPXq1Tg4OLB27VqGDRvGmTNnyM7OZtGiRaxYsYKVK1fy3XffkZpa9vBUddFoFMb2\n9UZVYf3BUP1yX5d2NLVtTFD8eaIybhqwQiGEEOLu+vb1Z8+enfTrN4CAgOH88ssPzJ79Am3btiMp\nKYmtWzeVek9AwHAuXbrArFnPEx0diaIo2NvXw8/vEZ5++u8sX76UJ58MZOHCBTRt6snVq1dYuPAT\n/ft9fTvQsmUrXnjhGWbPfoHnnpuBpaVllX1GRX1YYzl/UVhYSGFhIUuXLsXBwYFJkybx9NNPM3Pm\nTNq3//NyrePHj7Nu3To+/vhjAN5880369etH//7977rvqnwE+R/Deqqq8sEPQdy4mcb/TepMs0bF\nJ+5eSb7OF+eW0tqxBTM6PF1ldYjSasPj52sj6Yvxkt4YL+lNxbi42N51XZWNwGi1WiwsLEosi4mJ\n4dChQwQGBjJ79mxSU1NJTEzE0dFRv42joyMJCQlVVVaFKYrC+H7eAKw9cEM/Z9fKsTktHZoRknyN\naymh5e1CCCGEEFWkWk/iVVUVT09PZsyYweLFi/n6669p06ZNqW3uxcHBCq3W5J7b3a8/Ep+Liy1d\ng25x6nIckYnZ+LUpvm59cuex/N+e+WyL2kWP5v9CUZQqq0WUVF4aF4YjfTFe0hvjJb15MNUaYJyd\nnfHz8wOgV69efPHFF/Tr14/ExET9NvHx8XTo0OFuuwAgJSW7ymr867DeiO5NOH05jmWbLtLEyQqN\nRsEeJzq4+HAu4QJ7Q07i69K2yuoRf5IhV+MkfTFe0hvjJb2pGINMIZWlT58+HD5cfG36pUuX8PT0\nxNfXlwsXLpCenk5WVhZBQUF06dKlOssqVyMXG3r4uHMzIYvjl+L0y0d6DUZBYVPYDorUIgNWKIQQ\nQtQ9VTYCc/HiRebPn09MTAxarZadO3fy8ccf895777F27VqsrKyYP38+FhYWzJkzh2nTpqEoCi+8\n8AK2tsY1rDa6lxcnL8ez4XA4XVu7YarV4G7tRrf6XTgee5rTcWd5pH7ne+9ICCGEEA9FlV2FVJWq\n4yqkv/p573V2nY7m8QHNGezXGIDk3BTeOvFf7MxsebPbvzDVyH0Bq5IMuRon6Yvxkt4YL+lNxRjN\nFFJNNqKHB5bmJmw5FkF2bvFNgBwtHOjTsDvJuSkcjTlp4AqFEEKIukMCTAXZWJoy9JGmZOYUsONU\nlH754Kb+WJiYsz1iD7mFuQasUAghhKg7JMBUwqAujbG3NmPX6SjSMvMAsDWzoX+TPmQWZLE/+oiB\nKxRCCCHqBgkwlWBuZsKjvTzJLyhi07EI/fIBjXtjY2rNnqhDZOZnGa5AIYQQoo6QAFNJvdvXx83B\nkkPnbnH79/vRWGgtCPAYQK4ul12R+w1coRBCCFH7SYCpJK2JhjF9vdEVqfx6KEy/vFfDbjiY1+Ng\nzDFScg37MEohhBCitpMAcx+6tHTBw92WUyHxRMSlA2Cq0TLcazCFRYVsC99j4AqFEEKI2k0CzH1Q\nFIVxvz/ocd2BPx/o+Ih7J9yt3Tgee5rbWfGGKk8IIYSo9STA3Kc2Ho609XDgUkQKlyKSAdAoGkZ6\nDUFFZXP4LgNXKIQQQtReEmAewLh+zQBYeyCUot9vaOzr3Jamdo05G3+eyPRoQ5YnhBBC1FoSYB5A\nU3dburZ2JTIugzNXiqeMFEVhlNdQADaF7jBkeUIIIUStJQHmAT3WxwsTjcL6Q2EU6oqfSt3SsRmt\nHJpzJeU6V5NvGLhCIYQQovaRAPOA3Bys6NOhAfEpORw+H6tf/qh3AAAbw7ZTA5+XKYQQQhg1CTAP\nwaM9PDA3NWHTkXDy8nUANLVrTEcXHyLTowlOvGTgCoUQQojaRQLMQ2BvY85gv8akZeWz68yfJ+6O\n9BqCRtGwOXQHRWqRASsUQgghahcJMA9JwCNNsLE0ZcfJSDJzCgBws3alm3tn4rLjORkXZOAKhRBC\niNpDAsxDYmmuZUQPD3LydGy540GPwzwHodVo2Rq2i4KiQsMVKIQQQtQiEmAeIv+ODXGys2Bf0E0S\n03IAcLCoR9+GPUjJS+VIzAkDVyiEEELUDhJgHiJTrYbH+nhSqFPZeDhcv3xwU38sTMzZEbGX3MJc\nA1YohBBC1A4SYB6ybm3caeRizbGLcdxMyATAxsyagU36klmQxb7owwauUAghhKj5JMA8ZBqNwti+\n3qjA+oNh+uX+jXtjY2rN3qhDZORnGq5AIYQQohaQAFMF2ns70aKRPeduJHItOhUAC605AR4DyNXl\nsStyv4ErFEIIIWo2CTBVQFEUxvn/+aDHP+7E26thNxwtHDgUc5zk3BRDliiEEELUaBJgqkizhvZ0\nbO7MjZg0zt1IBMBUo2W45yAKiwrZFr7HwBUKIYQQNZcEmCo0tq83igLrDoZRVFQ8CtPVvRPu1m6c\niD1DXNZtA1cohBBC1EwSYKpQA2drevrU51ZiFkcvFj/oUaNoeNQrABWVzWG7DFyhEEIIUTNJgKli\no3t5YqrVsPFIOAWFxQ96bO/cBk+7JpxLuEBkevQ99iCEEEKIv5IAU8Uc7SwY0LkRyel57P0tBig+\nyfdR76EAbArdYcjyhBBCiBpJAkw1GNatKVbmWrYejyA7t/hBjy0cvGnt2IIrKde5knzdsAUKIYQQ\nNYwEmGpgY2nK0G5NyMotZPvJKP3yR70DgOJRmD8utRZCCCHEvUmAqSYDuzSmno0Zu09Hk5KRB0AT\n20Z0cm1PZEY0wQkXDVyhEEIIUXNIgKkm5qYmjOrlSX5hEZuP/vmgxxFeQ9AoGjaF7URXpDNghUII\nIUTNIQGmGvVqXx93RysOBccSl5wNgJuVC93rd+F2djwn44IMXKEQQghRM0iAqUYmGg1j+nhRpKqs\nPxiqXz7UYyCmGi3bwndToCswYIVCCCFEzSABppp1bumCZ307zlxNIDw2HQAHi3r0adSDlLxUDscc\nN3CFQgghhPGTAFPNFEVhfD9voOSDHgc39cfCxIKdkfvJKcw1ZIlCCCGE0ZMAYwCtmjrQzsuRkMgU\nLkUkA2Bjas2gpn3JLMhiX9QhA1cohBBCGDcJMAYyru/vozD7Qyn6fRSmX6Ne2JrasDf6EBn5mYYs\nTwghhDBqEmAMpImbLd3auhEVn8mpkOKnUltozQnwHECeLp+dkfsMXKEQQghhvCTAGNBjvb0w0Sj8\neiiMQl0RAL0aPIKThQOHbx4nKSfFwBUKIYQQxkkCjAG51LOkX8eGJKTmcvDcLQC0Gi3DPQdTqOrY\nFr7bwBUKIYQQxkkCjIGN7OGBuZkJm4+Gk5tfCICfe0caWLtzMu43YrNuG7hCIYQQwvhIgDEwO2sz\nAro2IT27gF2nogHQKBpGeg1BRWVz2E4DVyiEEEIYHwkwRmCwX2NsrUzZfiqK9Ox8AHyc2+Bp15Tg\nhIuEp0XdYw9CCCFE3SIBxghYmmsZ2cODvHwdW45FAMU3vBvlPRSATaHb9Te8E0IIIYQEGKPRr2ND\nnO0t2B8UQ0JqDgDNHbxo49iSa6mhXEm5buAKhRBCCOMhAcZIaE00PNbHC12RyobDYfrlj3oHADIK\nI4QQQtxJAowReaSNG41dbThx6TbR8cV34m1s25DOrr5EZcRwNuGCgSsUQgghjIMEGCOiURTG9fNG\nBdYdDNUvH+E1GI2iYUvYTnRFOsMVKIQQQhgJCTBGpp2nI62a1ON8aBJXo4rvxOtq5UKP+n7czk7g\nZNxvBq5QCCGEMDwJMEZGURQQLPOHAAAgAElEQVTG9it+0OOaA6H6816Geg7EVKNla/hu8nUFhixR\nCCGEMDgJMEbIu4E9nVu6EHYrnaBriQDUM7enX6NepOalcSjmmIErFEIIIQxLAoyRGtPHC42isP5Q\nKLqi4gc9DmraD0utBbsi95NTmGPgCoUQQgjDkQBjpOo7WdOrfX1ik7I5eiEOAGtTKwY26UdWQTZ7\now4ZuEIhhBDCcCTAGLFRvTwx1WrYeCSc/ILiq4/8G/fC1syGvdGHycjPNHCFQgghhGFIgDFiDrbm\nDOrSmJSMPPb+dhMAcxMzhnoMJF+Xz46IvQauUAghhDAMCTBGbli3JlhbaNl6PJKs3OKrj3o26IqT\nhSOHY06QlJNs4AqFEEKI6icBxshZWZgyrHtTsvMK2XY8EgCtRssIr8HoVB1bw3cbuEIhhBCi+kmA\nqQEGdGqEg605e367SXJ6LgBd3DrQwNqdU3FB3MqMM3CFQgghRPWq0gBz7do1Bg4cyKpVq0osP3z4\nMC1bttS/3rRpE2PHjmX8+PGsWbOmKkuqkcxMTRjdy5OCwiI2HQ0HQKNoeNQ7ABWVzWE7DVyhEEII\nUb2qLMBkZ2fzzjvv0L179xLL8/Ly+Oabb3BxcdFvt2jRIlasWMHKlSv57rvvSE1NraqyaqwePu7U\nd7Li8PlYYpOyAGjn1Bovew/OJ14iPC3SwBUKIYQQ1afKAoyZmRlLly7F1dW1xPKvvvqKJ598EjMz\nMwCCg4Px8fHB1tYWCwsLOnXqRFBQUFWVVWOZaDSM7euNqsK6g2FA8WMHRnkPBWBj6Hb9YweEEEKI\n2q7KAoxWq8XCwqLEsvDwcK5cucLQoUP1yxITE3F0dNS/dnR0JCEhoarKqtE6NnfGu6EdQdcSCI1J\nA6BZPU/aOrXiemoYIcnXDFyhEEIIUT201XmwDz74gNdff73cbSoyiuDgYIVWa/KwyirFxcW2yvb9\noJ4e5cNri4+y8VgE7z/fE0VRmNx5DK/sep9tUbvo3bITGqX2npttzL2py6Qvxkt6Y7ykNw+m2gLM\n7du3CQsL45///CcA8fHxTJo0iRdffJHExET9dvHx8XTo0KHcfaWkZFdZnS4utiQkZFTZ/h+Um505\n7b2dOB+axL6TkbT3dsKaenRx68CZ2+fYdekYnd18DV1mlTD23tRV0hfjJb0xXtKbiikv5FXbP9Xd\n3NzYs2cPq1evZvXq1bi6urJq1Sp8fX25cOEC6enpZGVlERQURJcuXaqrrBppXF9vFGDtgVCKfh+x\nGu45GI2iYUvYTnRFOsMWKIQQQlSxKgswFy9eJDAwkF9//ZXvv/+ewMDAMq8usrCwYM6cOUybNo0p\nU6bwwgsvYGsrw2rlaeRqQ7e27txMyOTkpdsAuFo506NBV+JzEjkRe8bAFQohhBBVS1Fr4KUrVTns\nVlOG9RJTc/i/pSeoZ2POe890w1SrITUvjXnHP8JKa8m87nMxMzE1dJkPVU3pTV0jfTFe0hvjJb2p\nGKOYQhIPl3M9S/w7NiIxLZcD52IAqGduj3/jXqTlp3Mo5piBKxRCCCGqjgSYGmxEj6ZYmJmw+WgE\nOXmFAAxq0hdLrSU7I/aRXZBj4AqFEEKIqiEBpgaztTIj4JEmZOYUsPNUFABWplYMbtKP7MIc9kYd\nNHCFQgghRNWQAFPDDfZrjJ21GTtPRZOWlQ9Av8Y9sTOzZV/0YdLy0g1coRBCCPHwSYCp4SzMtDza\n04O8Ah1bjkYAYGZixjDPgeQXFbD0wkrydQWGLVIIIYR4yCTA1AJ9fBvgWs+SA+diiP/9Jn89GzxC\nF7cOhKdH8v3lnylSiwxcpRBCCPHwSICpBbQmGh7r44WuSOXXw+EAaBQNk1pPoFk9T84mXGBD6DYD\nVymEEEI8PBJgagm/1q40cbPh5OXbRMYV31vAVKPlWZ/JuFm5sDfqEIduyqXVQgghagcJMLWERlEY\n368ZAOsOhuqXW5taMd13GramNqy+tpELiZcNVaIQQgjx0EiAqUXaejrSuqkDF8OTCYlI1i93tnTk\nOd+n0Gq0LLv4A1HpNw1YpRBCCPHgJMDUMuP6eQOw9mAodz4lwsOuCVPaPklBUSFLzi8nKSfFUCUK\nIYQQD0wCTC3jWd+OLq1cCY/N4LerCSXW+bq0ZWzzkaTnZ7D4/DK5U68QQogaSwJMLTS2jxcaRWHd\noTAKdSUvn/Zv3Av/xr2Iy7rN0gvfU1hUaKAqhRBCiPsnAaYWcnO0ok+HBtxOzmbD75dV32lMsxH4\nurTjWmooP1xZSw18ILkQQog6TgJMLTWmjxeuDpZsOxHJ/qCSJ+1qFA1PtXkcD7smnIoLYmv4bgNV\nKYQQQtwfCTC1lI2lKS9P8MXWypRVu69x9lrJ82HMTMx4rv1TOFs4sj1iD8dvnTZQpUIIIUTlSYCp\nxVwdrHhpvC+mWg1fb7pEaExaifW2ZjZM952KtdaKH6+u40rydQNVKoQQQlSOBJhazrO+Hc+NakeB\nrojP157ndnJ2ifVu1q48234yGhSWXlhJTGasgSoVQgghKk4CTB3QoZkzfx/SksycAhasPkdaVn6J\n9c3qeRLY5m/k6nJZHLyM1Ly0u+xJCCGEMA4SYOqIvh0aMrKHBwmpuXy+Jpi8fF2J9V3cOjDKayip\neWksCV5ObmGugSoVQggh7k0CTB0yurcnPX3ciYjLYMnGi+iKSt4jZlDTfvRs8Ag3M2/x7cUf0BXp\n7rInIYQQwrAkwNQhiqIwOaAV7TwdOR+axMqdV0vcA0ZRFP7WYjRtnFpyOfkqv1zbIPeIEUIIYZQk\nwNQxWhMNz49uRxM3Gw4Fx7L5WESJ9SYaE6a1nUhjmwYcvXWS3ZEHDFKnEEIIUR4JMHWQpbmWl8b7\n4mRnwYbD4Rw+f6vEegutBc/5TqGeuT0bw7Zz5vY5A1UqhBBClE0CTB1Vz8acl//mi7WFlu+2X+Vi\nWFLJ9eb2TPedioWJBSsv/8KN1NKPJBBCCCEMRQJMHVbfyZqZ49qj0Sgs+vUikXEZJdY3tKnPMz6B\nFKHy9fkV3M6KN1ClQgghREkSYOq45o3q8Y9H25BfoOPTNcEkpOaUWN/KsTlPthpHdmEOi4KXkZGf\naaBKhRBCiD9JgBF0bunKEwObk56Vz6erg8nMKSixvnv9Lgz1GEhSbjJLzi8nX5d/lz0JIYQQ1UMC\njABgYJfGBHRtQlxyNgvXnie/oOQ9YIZ7DqKreyci06NZcflnitSiu+xJCCGEqHoSYITeOH9vurZ2\n5UZMGt9svkxRUcl7xExsNY4W9bwJTrjI+htbDFipEEKIuk4CjNDTKArThrehVZN6BF1L4Kc910vc\nyE6r0fKMz99xt3Zjf/QR9kcfMWC1Qggh6jIJMKIEU62GGWN8aOhizd6gm+w4FVVivZWpJdPbT8XO\nzJZ11zcTnHDRQJUKIYSoyyTAiFKsLEyZPd4XB1tz1uwP5cTluBLrnSwdeL79FEw1WpZf+omI9Ki7\n7EkIIYSoGhJgRJkc7SyYPd4XS3MTvt0SQkhkSon1TewaMbXdRAqLClkSvJzEnKS77EkIIYR4+CTA\niLtq5GrDjDHtAfhy/Xluxpe8B4yPcxsmtBhFZkEWi4OXkVWQbYgyhRBC1EESYES5Wjd1YNqI1uTk\nFd/oLjk9t8T6Po16MKBJH25nJ/DNhe8oKCo0UKVCCCHqEgkw4p66tXFnvL83KRl5fLommOzckje6\nG+09jI6u7bmRGs6qkNVyjxghhBBVTgKMqJCArk0Y0KkRMQlZfLn+AgWFf4YUjaJhcuu/4WXflDO3\nz7ElbJcBKxVCCFEXSIARFaIoCk8MbE6nFi5ciUpl2bYQiu64R4ypiSn/8HkKF0sndkbu42jMSQNW\nK4QQoraTACMqTKNReHZkG5o1tOfk5dusPRBaYr2NmTXTfadhbWrFz9d+5VLSVQNVKoQQoraTACMq\nxczUhJnj2uPuaMWOk1HsORNdYr2rlTPPtX8KjaLh24sric64ZaBKhRBC1Gb3HWAiIiIeYhmiJrGx\nNGX2BF/srM34ac91frsaX2K9l70Hk9s8Tr6ugCXBy0jJTTVQpUIIIWqrcgPMlClTSrxevHix/s9v\nvvlm1VQkagSXepa8NL49ZqYmfLP5MtdvlgwpnVzbM7rZMNLy01kcvIycwty77EkIIYSovHIDTGFh\nyXt6nDhxQv/nOx/yJ+omD3c7pj/WDp1OZeHa88QmZZVYP6BxH/o07MGtrDj+d2EluiKdgSoVQghR\n25QbYBRFKfH6ztDy13WibvLxcmLy0JZk5Rby6epg0jLz9OsURWFc85G0c2rNlZTr/HR1vQRfIYQQ\nD0WlzoGR0CLK0rt9A0b38iQxLZfP1pwnJ+/PkTsTjQlT202kiW1DjseeZkfEPgNWKoQQorbQlrcy\nLS2N48eP61+np6dz4sQJVFUlPT29yosTNcfInh4kZ+RxKPgWSzZcZOa49mhNivOxuYkZz7Wfyse/\nfcmW8J04WTrQ1b2TgSsWQghRk5UbYOzs7EqcuGtra8uiRYv0fxbiD4qiEDikBamZeZwPTeK7HVeY\nOqy1ftTO3tyW6b5T+eS3RawKWUM9c3taOHgbuGohhBA1laLWwJMSEhIyqmzfLi62Vbr/2i43v5CP\nfjxLRFwGj/b0YHRvrxLrr6Xc4Mtz32JmYsY/O0/H3dqtwvuW3hgn6Yvxkt4YL+lNxbi43H2wpNxz\nYDIzM1mxYoX+9c8//8yoUaOYOXMmiYmJD61AUXtYmGl5abwvLvUs2HQ0goPnYkqsb+HQjImtxpFT\nmMOi4GWk5ckvsBBCiMorN8C8+eabJCUlARAeHs6CBQuYO3cuPXr04L333quWAkXNY2dtxssTOmBj\nacrKndcIvlEy7D5SvzMjPAeTnJvCV+eXkafLN1ClQgghaqpyA0x0dDRz5swBYOfOnQQEBNCjRw8e\nf/xxGYER5XJztGLWuPZoTRSWbLxIeGzJk74DPAbQvb4fURkxLL/0A0Vq0V32JIQQQpRWboCxsrLS\n//nUqVN069ZN/1ouqRb34t3Qnn+MaktBYRGfrQkmPiVbv05RFJ5oOYZWDs25kBjC2uub5B4xQggh\nKqzcAKPT6UhKSiIqKoqzZ8/Ss2dPALKyssjJyamWAkXN1rG5C5MGtSAju4AFq4NJz/5zushEY8LT\nPpNoYO3OwZvH2Bd92ICVCiGEqEnKDTDPPPMMw4YNY+TIkUyfPh17e3tyc3N58sknGT16dHXVKGo4\n/06NGN69KfEpOSxce568gj8fKWCptWS671Tszez49cZWzsZfMGClQgghaop7XkZdUFBAXl4eNjY2\n+mVHjhyhV69eVV7c3chl1DWPqqr8b0sIxy/F0aGZMy+MaYeJ5s/8HJ1xi0+DFlOkFjGz4z/wsm9a\nah/SG+MkfTFe0hvjJb2pmPu+jPrWrVskJCSQnp7OrVu39P95eXlx69ath16oqL0URWHKsFa08XDg\n3I1Eftx9vcQ5L41tGzCtXSA6tYivz68gPltOEhdCCHF35d6Jt3///nh6euLi4gKUfpjj999/X7XV\niVpFa6Lhhcd8+PCHIPafjcHRzpzh3T3069s6teRvLUbz09X1LAlexpzOL2BjZm24goUQQhitcgPM\n/Pnz2bhxI1lZWQwfPpwRI0bg6OhYXbWJWsjSvPhGd++tPMO6g2E42JrTo119/fpeDbuRlJvCrsj9\nfH3hO2Z2eAZTE1MDViyEEMIYlTuFNGrUKJYtW8Znn31GZmYmEydO5Omnn2bz5s3k5ubec+fXrl1j\n4MCBrFq1CoDY2FieeuopJk2axFNPPUVCQgIAmzZtYuzYsYwfP541a9Y8hI8ljJmDrTmzJ3TAylzL\n8m1XuBSRXGL9SK8hdHb1JSwtgu9CfpF7xAghhCil3ADzh/r16zN9+nS2b9/OkCFDePfdd+95Em92\ndjbvvPMO3bt31y/77LPPmDBhAqtWrWLQoEEsX76c7OxsFi1axIoVK1i5ciXfffcdqampD/aphNFr\n6GzNi2N9UBRYtP4CUbf/PJlNo2gIbPM3vO09ORt/no2h2w1YqRBCCGNUoQCTnp7OqlWrGDNmDKtW\nreIf//gH27ZtK/c9ZmZmLF26FFdXV/2y//znPwwZMgQABwcHUlNTCQ4OxsfHB1tbWywsLOjUqRNB\nQUEP8JFETdGyiQPPjGxLbr6OT9cEk5T256ieqUbLP9pPxs3KhT1RBzl087gBKxVCCGFsyg0wR44c\nYfbs2YwdO5bY2Fg+/PBDNm7cyNSpU0sEk7JotVosLCxKLLOyssLExASdTsePP/7IyJEjSUxMLHFe\njaOjo35qSdR+fq1cebx/M9Iy81mw+hxZuQX6ddamVkz3nYqNqTWrr23g5M2zBqxUCCGEMSn3JN6n\nn34aDw8POnXqRHJyMsuXLy+x/oMPPqj0AXU6Ha+88grdunWje/fubN68ucT6itxO3sHBCq3WpNLH\nrqjyrjsXD9/E4W3JKVTZeCiUrzZd5u1nu2NmWtxfF2x5zfoF3tr/KZ8c/YYxbQKY0HYkGk2FBg9F\nNZHfGeMlvTFe0psHU26A+eMy6ZSUFBwcHEqsu3nz5n0d8LXXXqNp06bMmDEDAFdX1xIPhoyPj6dD\nhw7l7iPljmfqPGxycyHDGNm9CTHxGZy5Es8HK07x3Ki2aH5/3lY9nJnd6XlWXP6R9Zd3cPHWdZ5q\n+yT25vLLbwzkd8Z4SW+Ml/SmYu77RnYajYY5c+bwxhtv8Oabb+Lm5kbXrl25du0an332WaUL2bRp\nE6ampsycOVO/zNfXlwsXLpCenk5WVhZBQUF06dKl0vsWNZtGUXhmRGtaNK7HmSvxrN53o8T6JraN\n+HDwa/g6t+Vaaigfnv6M6ymhBqpWCCGEoZX7KIGJEyfy9ttv4+3tzd69e/n+++8pKirC3t6eN954\nAzc3t7vu+OLFi8yfP5+YmBi0Wi1ubm4kJSVhbm6ufyyBt7c38+bNY8eOHXz77bcoisKkSZN49NFH\nyy1aHiVQe2XlFvD+yt+ITcrm8f7NGNy1iX6di4st8fHp7I0+xMbQ7aiqyqPeAQxs0heNIlNKhiK/\nM8ZLemO8pDcVU94ITLkBJjAwkJUrV+pfDxw4kLlz5zJo0KCHW2ElSYCp3ZLScnl35RnSM/N5bnQ7\n/FoVnzB+Z29upIaz7OIPpOWn086pNX9v8zesTa0MWXadJb8zxkt6Y7ykNxVz31NIyu/nIPyhfv36\nBg8vovZzsrdg9nhfzM1MWLr5ElejUkpt06yeJ691fYlWDs25mBTCh6c/JzI92gDVCiGEMIRKjbv/\nNdAIUVWauNnywhgfVBW+WHeBmMSsUtvYmtnwQodpDPMYSEpuKgt+W8yhm8cqdCWbEEKImq3cKSQf\nHx+cnJz0r5OSknByckJVVRRF4cCBA9VRYykyhVR3HLsYy/+2hOBoZ86Cl/pSlF9Y5nYhSddYcfkn\nMguy6Ozqy5OtxmKhtShzW/Fwye+M8ZLeGC/pTcXc9zkwMTEx5e64YcOG91/VA5AAU7dsPR7BuoNh\nuDhY8syINjRraF/mdim5qSy79ANhaZG4WbnwdLtAGti4V2+xdZD8zhgv6Y3xkt5UzH0HGGMlAaZu\nUVWVrccj2XA4DEVRGNPXiyFdm+jvE3MnXZGODaHb2Bd9GDONKY+3HMMj9TsboOq6Q35njJf0xnhJ\nbyrmvk/iFcIYKIrCiB4evPtcT2ysTFmzP5SFa8+TmVNQalsTjQljm4/kmXaBaBQTvg/5hR+vrKVA\nV3pbIYQQNZcEGFFj+DRz5q0pXWnr4cD50CT+s+wUN26mlbltB1cf5vrNpJFNA47eOsXHvy0iITup\nmisWQghRVUzmzZs3z9BFVFZ2dn6V7dva2rxK9y/un7W1OboCHd3auqM10XDuRiJHL8RhqtXg3dC+\n1FVy1qZWPOLemcyCTC4lXeFk3G+4Wrngbl3+g0hF5cjvjPGS3hgv6U3FWFub33WdjMCIGkfz+5TS\nK090xM7alDUHQvl8zXkyyvifgZmJKU+2GsffW/+NwiIdSy98z7rrm9EV6QxQuRBCiIdFAoyosVo2\ncWDe1K6083TkQlgS85af5lp0apnbPlK/M690eRE3Kxf2RR/ms7Nfk5Jb9rZCCCGMnwQYUaPZWZnx\n0gRfxvb1Ii0zn49+PMvW4xEUlXFxXQMbd17p8iKdXX0JS4vgw9OfE5J8rfqLFkII8cAkwIgaT6Mo\nDO/uwStPdsTexox1B8P4bE0w6WVMKVloLZjS9kkmtBhNTmEui859y9awXRSpRQaoXAghxP2SACNq\njRaN6zFvih8+Xk5cDEtm3rJTZU4pKYpC30Y9mNN5Og4W9dgWsYdF574lIz/TAFULIYS4HxJgRK1i\na2XGrPHtGdfPm/SsAub/GMSWY2VPKTW1a8yrfrNo59SKKynX+fD054SmRlR/0UIIISpNAoyodTSK\nwrBuTZk7sSP1bMxZfyiMT1cHk55VekrJ2tSKf7R/ilFeQ0nLS+ezs1+xJ+qgPBBSCCGMnAQYUWs1\nb1Q8pdTe24lL4cn8Z/kprkallNpOo2gY7OHPrI7PYmNqza83trL04kqyC3IMULUQQoiKkAAjajVb\nKzNmjmvPeH9vMrIK+Oins2w+Gk5RUekRluYO3rzq9xLN63kRnHCR+ac/Jzqj/AeaCiGEMAwJMKLW\n0ygKQx9pyqsTO+Fga86vh8NZsPocaWVMKdmb2/Jih2cY0rQ/ibnJfPzbIo7EnJApJSGEMDISYESd\n0ayRPfOmdMXX24nLESnMW3aKkMjSU0omGhMe9Q7g+fZTMNeY8dPV9Xwf8gt5OrnttxBCGAsJMKJO\nsbE0Zea49kzwb0ZmTgEf/3yWTUfKnlJq59yauX6zaGrXmFNxQfz3zBfEZcUboGohhBB/JQFG1DmK\nohDwSBNendgJR1tzNhwJ55NfzpGWmVdqWydLB17u9Dx9G/UkNus2888s5EzcWQNULYQQ4k4SYESd\n5d3Qnv9M6UqHZs6ERKbwn+WnCYlILrWdVqNlQotRTG07EQVYfvknfrn6KwVFhdVftBBCCEACjKjj\nbCxNeXGsD4/3b0ZWTgEf/3yODYfDypxS6uzmy9wuM2lg7c6hmOMs+G0xSTmlA48QQoiqJwFG1HmK\nojC4axNendQJRzsLNh2N4OOfz5Y5peRm7cq/usygm3sXojJu8sHpz7mQeNkAVQshRN0mAUaI33k3\nsGfeVD86NnfmSlQq/1l2iktlTCmZmZgR2GYCE1uNp7CogK/Or2DDjW3oinQGqFoIIeomCTBC3MHa\nwpQZY3x4YkBzsnILWVDOlFKPBn78s/MMXCyd2B11gIXnviEtL90AVQshRN0jAUaIv1AUhUF+jfm/\nwM442f85pZSSUXpKqZFtA+b6zaSDiw83UsP54NRnXE2+YYCqhRCibpEAI8RdeNa3Y94UPzq1cOFK\nVCrzlp/iYnhSqe0stZY83W4S45o/SlZhNl+cW8qOiL0UqUUGqFoIIeoGCTBClMPKwpQXHmvHkwOb\nk51byKe/BLP+UCi6opLhRFEU/Bv3Ynan57E3t2Nz2E6WnF9OZkGWgSoXQojaTQKMEPegKAoDu/w5\npbTlWCT//elcmVNKXvZNec3vJVo7tuBy0lU+PPU54WlRBqhaCCFqNwkwQlTQH1NKnVu6cC369yml\nsNJTSjZm1kz3ncoIz8Gk5qXxadAS9kcfkQdCCiHEQyQBRohKsLIwZfrodkwc1IKcvEIWrA5m3cHS\nU0oaRcNQz4HM6PA0VlpL1l7fxLeXfiCnMNdAlQshRO0iAUaISlIUhQGdG/F/gZ1xrWfJ1uORfPTj\nWZLTS4eTVo7NebXrLLztPTgbf56PTi8kJjPWAFULIUTtIgFGiPvk4W7Hm0/50aWVK9dvpjFv+WnO\nh5aeUqpnbs+sjv9gYJO+xOck8t8zX3A05qRcpSSEEA/AZN68efMMXURlZWfnV9m+ra3Nq3T/4v4Z\nY29MtRq6tHTB3tqMczcSOXYxjoLCIlo2qYdGUfTbaRQNrR1b0NimAReSQjibcIHziZdwtHDAxdIJ\n5Y5taxpj7IsoJr0xXtKbirG2Nr/rOgkwfyE/VMbLWHujKAqe9e1o7138VOtzNxIJiUyhrYcjluba\nEtu6WbvSxa0DWQXZXE2+wenbZ7meGoablQsOFvUM9AkejLH2RUhvjJn0pmLKCzCKWgMvjUhIyKiy\nfbu42Fbp/sX9qwm9yckr5LsdVzgVEo+NpSlPj2hNe2/nMreNyYxlU+h2LiZdAcDXuS2Pegfgbu1W\nnSU/sJrQl7pKemO8pDcV4+Jie9d1MgLzF5KKjVdN6I2pVkPnli7Y25hz7nrxlFJega54SklTcprI\nzswWP/eOtHRoxu2sBK6kXOdwzAmSc1NpbNsQS62FgT5F5dSEvtRV0hvjJb2pGBmBqQRJxcarpvUm\n6nYGSzZc5HZKDt4N7Xju0XY42ZcdSlRV5ULiZTaG7SAu6zZajZa+DXsw2MMfG1Praq68cmpaX+oS\n6Y3xkt5UjIzAVIKkYuNV03pjb2NOT5/6JKXnciEsmWMXY2ngbI27o1WpbRVFwc3ald4Nu+Fk6Uhk\nejSXk69yJOYkKiqNbRui1ZgY4FPcW03rS10ivTFe0puKkZN4K0F+qIxXTeyNqVZD5xYuONiac/Z6\nEscvxZGXX/aUEhQHmca2DejdsBvWplaEpUdwMSmE47GnMdOY0cimARrFuO5+UBP7UldIb4yX9KZi\nJMBUgvxQGa+a2htFUfBwt8O3mRMhUakE30jkfFgS7g5WONezLPM9JhoTPO2b0qvhI2gUE66nhHI+\n8RJnbp/D1swGd2tXo7n0uqb2pS6Q3hgv6U3FyDkwlSDzksarNvQmJ6+QH3Zf49jFOADaejoytq8X\nHu525b4vLS+DHRF7OXLrBEVqEY1tGzLKeyitHVtUR9nlqg19qa2kN8ZLelMx5Z0DIwHmL+SHynjV\npt6Ex6az7mAolyNSAE6TmLgAACAASURBVOjS0oXH+nhR36n8E3YTspPYEr6TM7fPAdDSoRmjvIfS\n1K5xldd8N7WpL7WN9MZ4SW8qRgJMJcgPlfGqjb0JiUhm7cEwwmPTURTo6VOfUT0973q10h+iM2LY\nGLqdkORrAHR08WGk1xDc/r+9Ow1u87rPBf5gJQiAxEaCBLgvskiRIr1IckRLchxvsZ3Y8dLIdaTk\nU6Ydpx/ScTtx1XhJ20mvMm2nSzJuO3VnUudmola2Y7ux5eXGC21JlhzFpESREjdxAwgQIAkQAEEQ\nwHs/AAJJbQYokjggn98nCRsP/JxX/Pu8Z9FZ16LZS6zHXNYLZiMuZpMeFjAZYKcS13rNRpIkfN7r\nwSsfDWDME4RSIcOXbyrD13ZWo1CnvuZ7z0/14df9b2HIPwK5TI6dtm24v+ZuGPMMa9T69ZvLesBs\nxMVs0sMCJgPsVOJa79nE4xKOnx3Hr9sH4fGFkadS4O7tFfjqjkpoNcqrvk+SJHRMnMHrA0fgCk1A\nJVfiy+W7cE/Vl6FVXb5ke6Wt91xyGbMRF7NJDwuYDLBTiWujZBONxfHh5w68cfQC/MEIdBol7t9Z\nhTtvLodadfW9YGLxGD4d/x1+M/gupud8yFfm496qO3B7+W1QK1Sr1t6NkksuYjbiYjbpYQGTAXYq\ncW20bOYiMbz3uxG8dXwYobkojHo1HrytBrtabFAqrr4XTCQ2jw9HP8E7Q+8jFJ2FQV2IB2ruxpds\n26BYhc3wNlouuYTZiIvZpIcFTAbYqcS1UbMJhudx5NNhvPvZCCLzcViN+fjG7hrs2FIC+TX2ggnN\nz+Ld4Q/w/sjHmI/Pw6otwtdrv4qbireu6B4yGzWXXMBsxMVs0sMCJgPsVOLa6Nn4AnP436ND+ODz\nMcTiEsqL9Xjk9lq01lmuWZBMz/nw1uB7OOo8ibgUR1VBBR6quw+bzfUr0q6NnovImI24mE16WMBk\ngJ1KXMwmYWJ6Fq99PIhjZ8YhAagvM+DR22uxudJ0zfe5QhP434G3ccrdCQBoNN+AB+u+isqC8utq\nD3MRF7MRF7NJDwuYDLBTiYvZLDU2EcCr7YM4dX4CANBcY8ajt9ehqvTqFzwADPlH8Hr/EfRM9QIA\nbrG24mu198KqLVpWO5iLuJiNuJhNeljAZICdSlzM5soGHIldfbuHkrv6Nljx8O6aL9zVt2eyF6/1\nv4nhmTHIZXLcZr8V91XfBUPetQugSzEXcTEbcTGb9LCAyQA7lbiYzbWdvTCJlzPc1TcuxfH5xBm8\n0X8E7lkP1HIVvlKxG3dV3Y585ZUPmrwUcxEXsxEXs0kPC5gMsFOJi9l8MUmScOq8B6+2D8CR3NX3\njpvK8UBbFQq1V9/VNxaP4ajzJN4afBe+yAx0Si3uqb4Dt5e1QfUFe8gwF3ExG3Exm/SwgMkAO5W4\nmE364nEJx7rG8drHyV191Qrcu70C92y/9q6+kVgEH4x8gneG38dsNAxjngEP1NyDW0tvvuoeMsxF\nXMxGXMwmPSxgMsBOJS5mk7kr7er7wM5qfOXmsmvu6hucD+Gdoffx4egnmI9HUaq14sG6r6KlqOmy\nJdvMRVzMRlzMJj0sYDLATiUuZrN8y93Vdyo8jTcH38Mx50lIkFBTWIWH6u7DJlNt6jXMRVzMRlzM\nJj3XKmAUzz///POr9YPPnz+PvXv3Qi6Xo6WlBU6nE08++SQOHz6Mjz76CHfeeScUCgVef/11HDhw\nAIcPH4ZMJkNTU9M1PzcUiqxWk6HT5a3q59PyMZvlUyrkuKHCiNtvskMGGc4NT+NUrwefdrug16pg\nL9JdcTO8fKUGLcVbcLO1Ff6IHz1TvTg+/hku+Idh15WiMK+AuQiM2YiL2aRHp8u76nOrNgITCoXw\nR3/0R6iursbmzZuxb98+/MVf/AX27NmD++67D//wD/+A0tJSfOMb38DDDz+Mw4cPQ6VS4bHHHsMv\nfvELGI3Gq342R2A2JmazcqYDc/jfoxfw4ecOxOISKqx6PLKnFi1fsKvvoG8Yr/W/id7pAcggw7aS\nG/HtbQ9DPnv1lU6UPbxmxMVs0pOVERiZTIavfe1rOHfuHPLz89HS0oIf//jHePbZZ6FQKKDRaPDG\nG2/AarXC6/Xi61//OpRKJXp6epCXl4eampqrfjZHYDYmZrNyNGolWuqKsLOpFMHZKM5emMTxsy6c\nHZpCiUl71aXXJo0Bt5begmpDFZzBcfRM9eKdvg8xGnBCo9SgKN+8oucs0fXhNSMuZpOea43AXH05\nwnVSKpVQKpd+/OzsLNTqxFJOi8WCiYkJeDwemM3m1GvMZjMmJiZWq1lEtEixMR/f/foW3P+lSrzy\n0QB+3+vB//m/p9Bca8aje668q69MJkOTZTMazZtwytWB98Y+xOcTp/H5xGmY8oz4km0bdtq2wZJv\nvsJPJCJaGatWwHyRq925SueOlsmkhVJ59RUU1+taQ1aUXcxmdRQXF+DGLTacG5rEf73Zjc4+D84M\nTGJXqx3f+moDyq1X/u9+n3UPvtq8G/2TQ/jtwCf4ePgk3rrwHo5c+H/YWtKAr9Tehu1lLV+4lwyt\nHl4z4mI212dNCxitVotwOAyNRgOXywWr1Qqr1QqPx5N6jdvtxo033njNz5maCq1aG3lfUlzMZvWZ\ntSp8/7EWdF2YxCsf9uPjDgeOdjpx29ZSPLSrBubCy28tFRcXwBC34OHqB3Ff+b34vbsTR50n0enq\nRqerGzqVFjtKb0abbQfs+tIsfKuNi9eMuJhNeq5V5K1pAdPW1oa3334bDz30EN555x3s3r0bra2t\n+OEPfwi/3w+FQoFTp07hwIEDa9ksIrpEU7UZW6pMqV192zudONblwlduLsP9O6++q69GmYed9u3Y\nad+O8aALR50n8anzd3h/5GO8P/Ixqgsr0WbfjlusrdAoOfGXiJZv1VYhnTlzBgcPHsTY2BiUSiVK\nSkrwd3/3d3j66acxNzcHu92Ov/3bv4VKpcKRI0fw4osvQiaTYd++fXjwwQev+dlchbQxMZvsuLir\n76/bB+H1L+zqe++OSuTnKb8wl2g8itOebhx1nkC39zwkSFAr1NhmbcVO+w7UFFZy4u8q4TUjLmaT\nHm5klwF2KnExm+yaj8bxUcfCrr76fBXu/1IVvnlvA/zT6d3WnQpP47jzMxx1nsRkOHF6dqmuBG22\n7dhRejMK1PrV/AobDq8ZcTGb9LCAyQA7lbiYjRjmIjG8+9kI3vp0GLNzUZgLNdjTYsOuFtsV58hc\nSVyK49xUH445TqJj4gyiUgwKmQItxU1os21Hg3kT5LKr7xBM6eE1Iy5mkx4WMBlgpxIXsxFLMDyP\nt44P47enRhGOxCAD0FRrxp4WO27cVHTNIwoWC0SCOOE6haOOE3AGXQAAU54RO23b8CXbdljyTav4\nLdY3XjPiYjbpYQGTAXYqcTEbMekKNHjr4wG0dzjQ7/ADAAq0KrQ1l2J3ix32Il1anyNJEi74R3DU\ncQK/c3+OuVgEMsjQYN6ENvsObC3aApU8azs/5CReM+JiNulhAZMBdipxMRsxLc5lbCKA9k4njp4Z\nR2B2HgBQX2bA7hYbtjdaoVGnV4CEo3M45e7EMecJDPiGAAB6lS6xHNu+AzZdyep8mXWG14y4mE16\nWMBkgJ1KXMxGTFfKZT4ax+d9HrR3ONA1OAkJQJ5agVsbrdjdYketvTDtlUfOoAtHHSdwYvwUAvNB\nAEBNYRXa7Dtws7UFGuXVtxrf6HjNiIvZpIcFTAbYqcTFbMT0Rbl4fLP45PQ4Pu50wOufAwCUFemw\nu8WGnc2lKLjKnjKXisaj6PScxTHHSXRPJpZj5ynUuMV6I9rs21HN5diX4TUjLmaTHhYwGWCnEhez\nEVO6ucTjEs4OTeKjDid+f34CsbgEhVyGm24oxp5WG7ZUmyFPswCZDE/hmPMzHHOcxNTcNADApitB\nm30HdpTcDL06vXk36x2vGXExm/SwgMkAO5W4mI2YlpPLTCiCY10utHc4MOZJ3BayFOZhV4sdu7ba\nrnoa9qXiUhznJvvwifMEOie6EJNiUF5cjm3fgc2m+g29HJvXjLiYTXpYwGSAnUpczEZM15OLJEkY\ncPrR3uHAp91uzCWXY2+pMWNPqx031hdBpUyvAJmJBHBy/BQ+cZ7EeHI5tlljwk7bNuy0bYdJY1xW\nG3MZrxlxMZv0sIDJADuVuJiNmFYql3AkipPdbrR3OtE35gMA6PMvLse2oaw4vV16E8uxh3HUcQKf\nuTsQSS7HbjTfkFyO3QjlBlmOzWtGXMwmPSxgMsBOJS5mI6bVyMXhCaK904GjZ8YxE0osx66zF2J3\nqx3bG6zIz0t3OXYYp9ydOOo4gUH/MIDEcuxbS29Bm307Stf5cmxeM+JiNulhAZMBdipxMRsxrWYu\n0Vgcn/d60N7pxJkBb2I5tkqB7Y1W7Gm1oy6D5diOwDiOOU/i0/HfITifOLup1lCFNtsO3LROl2Pz\nmhEXs0kPC5gMsFOJi9mIaa1ymfSH8fFpJ9o7nPD6wwAAm0WL3S12tG0tRWGay7Hn41Gc9pzFUccJ\n9Ez2ppZjbyu5EW32HagqqFg3y7F5zYiL2aSHBUwG2KnExWzEtNa5xCUJ3UNTaO9w4NT5CURjieXY\nN24qwp5WO5qqzZDL0ytAvLNTOO48iWPOz1LLsYs0ZjQVNWKrpRH1ptqcPr6A14y4mE16WMBkgJ1K\nXMxGTNnMJTA7j2Nd42jvcGB0IrEc21yYh11bbdi11YYiY35anxOX4uiZ7MVx52fo8p5DOJYY4VEr\n1Gg0bUJzUSOaLA0w5BWu2ndZDbxmxMVs0sMCJgPsVOJiNmISIRdJknBhfAYfdTjw6VlX6nTsLdUm\n7G6146ZNxWkvx47Go+ifvoAz3m6c8XbDHfKknqssKEOTpRFbixpRUVAm/B4zImRDV8Zs0sMCJgPs\nVOJiNmISLZe5SAyfnXPjow4HekcTy7F1GiV2NpdiT4sd5db0lmNf5A5N4Iy3B12eHvRODyAmxQAA\nBWo9miwN2GppRIN5EzTK9DbfW0uiZUMLmE16WMBkgJ1KXMxGTCLn4vQGE6djn3bCn1yOXWMrxO5W\nG25tLEl7OfZFs9EweiZ7ccbbjS5PD2bmAwAAhUyBTcZaNBU1oNnSCKu2aMW/y3KInM1Gx2zSwwIm\nA+xU4mI2YsqFXKKxODr6vGjvdOD0gBeSBKhVcmxvSCzHri8zZLzyKC7FMTIzhtOebnR5uzE8M5Z6\nzqotQnPyVlOdoQYKuWKlv1JaciGbjYrZpIcFTAbYqcTFbMSUa7lMzczh49NOfNzpwMR0YrJuqVmL\n3a02tDXbYNCltxz7UtNzPnQlbzV1T/UiEosAADQKDRotN6DZ0oAmSwMK1JndwroeuZbNRsJs0sMC\nJgPsVOJiNmLK1VzikoRzQ1No73Tis3MTiMbiUMhlaKwyobW+CK11lrRXMV1qPh5F39QATnu7ccbT\nDW94EgAggwzVhRVosjSiuagR5Xrbqu45k6vZbATMJj0sYDLATiUuZiOm9ZBLYHYen5514eNOJ4Zc\nC9+lrEiHlnoLWuuKUFdWCIU881VHkiTBFXInbzX1oN93AXEpDgAw5hkSE4GLGnGDqR55iuWN/lzN\neshmvWI26WEBkwF2KnExGzGtt1wm/WF09nvR0efB2aEpzEcTxYZOo8TWWgta6i3YWmuBTqNa1ueH\n5kPonjyP054enJ3sSR1roJQrcYOpDs2WRjRbGmDJN1/3d1lv2awnzCY9LGAywE4lLmYjpvWcy9x8\nDD1DU+hIFjRTM3MAALlMhvpyA1qTozM2i3ZZt4LiUhwX/MM44+nBGW83xgLO1HM2XUmimClqRE1h\n5bImAq/nbHIds0kPC5gMsFOJi9mIaaPkIkkSRtwBdPR70dnnwYDDj4v/eBYbNWitK0JrfRFuqDCm\nvWnepSbDU+jy9uCMpxvnpvowH48CALTKfGyxbEazpRFbLJuhU2nT+ryNkk0uYjbpYQGTAXYqcTEb\nMW3UXPyhCE73e9HR70XXoBezc4kN7vLUCjRXm9FSZ0FLnQUG/fJOuY7EIjg/1Y/TyT1nLp7VJIMM\ntYYqNBc1otnSCJuu5KqjPxs1m1zAbNLDAiYD7FTiYjZiYi6JfWZ6R6bR0e/F530euKdmU8/V2ApS\nozOVJfpl3WqSJAmO4DjOeBLHGwz6hiElx3/MGlPyVlMDbjDWQaVYmJvDbMTFbNLDAiYD7FTiYjZi\nYi6XG58MoaPPg44+D3pHfYjFE//MGvVqtNQVobXegi1VZuSpl7fBXSASxNnJczjj6cbZyfOYjSYK\nJrVchc3m+tTcmU3l5cxGULxu0sMCJgPsVOJiNmJiLtcWCs/jzOAkOvu96Oz3IjCbONJAqZCjscqE\nljoLWustKDIsb8+ZWDyGAd8FnEnOnRkPuVPPVRjsqNJXos5QjTpDNcwa06ruO0Pp43WTHhYwGWCn\nEhezERNzSV88LmHA6U+OzngxOhFIPVdWrEvearKgzm6AXL68QsMz602taur3DSISm089Z1AXos5Y\njVpDNeqM1SjT2bJ2zMFGx+smPSxgMsBOJS5mIybmsnxeXxid/R509Htx9sIUorHEnjP6fBW21prR\nWl+E5hoztMvcc8Zk0eLzwXPonx5Ev28IA74L8EcWslIr1KgpTIzQ1BqrUVNYKeSp2usRr5v0sIDJ\nADuVuJiNmJjLypiLxNA9NIWO/sTcmelA4iwluUyGGyoMqbkzpeb095y5NBtJkuCZncSA7wL6fYmi\nZjzoSj0vgwzlehtqL47SGKph0hhX9osSAF436WIBkwF2KnExGzExl5WX2nOmLzE6M7hozxmrMT9x\nvEF9ETZXGKFUXH3PmXSyCc6HMOC7gAHfEPqnBzE0M4pocv8ZADDlGVFnTBQztYZq2PWlkMuWt88N\nLeB1kx4WMBlgpxIXsxETc1l9vuDFPWc8ODM4iblIYs8ZjVqBphozWuuKsLXOctlJ2svJZj4excjM\nGPqnBxNFjW8wddwBkDhdu8aQnBhsrEZVYeWKn+G0EfC6SQ8LmAywU4mL2YiJuayt+Wgc50enU8u0\nJ6bDAAAZgBp7YWJVU11izxmrtfC6s5EkCe7QBPqTxcyA7wLcIU/qeblMjnK9fWFysKEahrzC6/qZ\nGwGvm/SwgMkAO5W4mI2YmEv2SJKU3HPGi85+D86P+BBP/pNuKsjDtsYSVBTpsKncAKspf8WWUM9E\nAsl5NBcwMH0BwzNjiEmx1PNFGjNqF912KtVZedvpErxu0sMCJgPsVOJiNmJiLuIIhufRNTiJjj4P\nOvu9CIYX5rIUalWoLzdiU7kBm8qNqCzRX3P+TCYisXkMz4wmbztdQL9vKLW5HpA4y6nWUIXaZEFT\nVVgBtWJ5K6vWC1436WEBkwF2KnExGzExFzHF4xIC83GcOO1A35gPvaO+1GnaAKBWylFrL0R9sqCp\nsxug1ShX5mdLcYwH3UtGaTzhydTzCpkClQVlS0ZpCtT6FfnZuYLXTXpYwGSAnUpczEZMzEVci7OR\nJAlefxi9o4lipm90GmMTwdTqJhmAsmI9NlUYEqM0ZUZYDCu3J4xvzp8oZnwXMDA9hJHAGOJSPPW8\nVVuUmkNTZ6iGVVu8rncN5nWTHhYwGWCnEhezERNzEdcXZRMKz6NvzI/e0Wn0jfow4PRjPrpQVJgL\n81Bflhih2VRuQHmxftk7BF9qLhbBkH8Y/dOJUZpB3zDCsXDqeb1KhxpDVWq1U0VBOVTylRkhEgGv\nm/SwgMkAO5W4mI2YmIu4Ms0mGotjaHwmOUozjb4xH2ZCC0cR5OcpUGc3pG471doKl30g5aXiUhyO\nwHjqtlP/9AVMzU2nnlfKFLDpSlBWYEe53o5yvQ1leju0quWdIZVtvG7SwwImA+xU4mI2YmIu4rre\nbCRJgmtqFr2j06lbT67JhT1hFHIZKkv02FRuTI7UGGDQ561E0wEAU+Hp1G2nQd8wHMHxJZvsAYBZ\nY0KZ3pYoagoShY1FYxb+9hOvm/SwgMkAO5W4mI2YmIu4ViMbfzCCvjEf+pKjNBfGZxCLL/wasZry\nsanMgE0ViaLGZkn/6IMvEovH4J71YHTGgbGAE6MBB0ZnHJiZDyx5nUahQZm+FOUF9lRxY9OVCrXy\niddNeljAZICdSlzMRkzMRVxrkU1kPoZBpz8xMTi52ml2bmGURJ+vSo3ObCo3oqq0ACrlyu4J45ub\nwVjAgdFAsrCZccAVmoCEhV9vMshQorOiPFnQlOltKC+wo1B99V+Qq4nXTXpYwGSAnUpczEZMzEVc\n2cgmLklweIIL82hGffD4FibnKhVy1NgKUvNo6ssM0Oev/MhIJBaBM+jC6IwDo8nRGkfAiXBsbsnr\nCtUFC7egkkVNcX4RFPKVmdtzNbxu0sMCJgPsVOJiNmJiLuISJZupmbnUPJq+UR+G3TNY/JvHntwt\nuD5566nYoFmVOSxxKQ7v7FRqtGY0OVqzeLIwAKjkSth1ttQoTZk+8ed85cotKxclG9GxgMkAO5W4\nmI2YmIu4RM1mdi6KAYc/VdQMOPyYm184isCgVyfm0ZQbUV9uQGWJHgr56h1FEJoPYTTgTN1+Ggs4\n4Ay6EF10PAKQOCJh8bya8gI7THnGZRVbomYjGhYwGWCnEhezERNzEVeuZBOLxzHiDqRWOvWOTsMX\niKSez1MpUGsvRFVJASpK9Ki06lFq0a5qUROLxzAeci+dMBxwLDmZGwDylfkL82qSq6BKdSVfuGdN\nrmSTbSxgMsBOJS5mIybmIq5czUaSJHh84dQcmt5RH8Y8wSWvUSnlKC/WocJagMoSPSqtBSi36qBR\nr95md5IkwRfxp+bVXLwVNRHyLpkwLJfJUaq1Lh2t0duhV+tSr8nVbNbatQqY9bOtIRERrQsymQzF\nxnwUG/PR1mwDkLjtNOIOYNg1g2F3ACOuAEbcAQw6F4oAGRLLuCtLEkXNxeLGoFOvyJwamUwGY54B\nxjwDmosaU4/PxSJwBJypycJjM06MBZ1wBMeXvN+YZ0gVNJtDVdDGClGiLYZaob7utm1EHIG5BKti\ncTEbMTEXca33bKKxOMa9IQy7ZzDsShQ3I+7AklO4gcRJ3BUlBai06lPFTYlJu2LHIlxJXIrDM+tN\njNTMLEwanp7zLXmdDDKYNUaU6Kwo1VpRqrOiVFuCUp0VOpV21dqXK3gLKQPr/YLPZcxGTMxFXBsx\nG0mSMOmfw7B7BiOuAIaSRc3ipdxA4jTucmtiPs3F4qbcqkeeanWXTwciwcRcGrkffa5hjAfdGA+5\n4Y9cnlOBSo9SnfWS4sYKY55B+J2GVwpvIRER0YYgk8lgMWhgMWhw06bi1OOh8HzyFlRgobgZn8GA\nw7/ovUCpWYuKiyM1yeLGoFu5Wzx6tQ4N5k2J4tK4ULSE5kMYD00kCxoXXEE3xoNu9E0Pond6YMln\naBR5KFlU0JToEn8u0phXff8akbCAISKidU+rUWFzpQmbK02px6KxOBye4JKiZtgdgNPrxolud+p1\nBr0aldaL82oSxY3VlA/5Co6CaFVa1BqqUGuoWvJ4JDYPd2gC4yF3arTGFXRjLODA0MzIktcqZQoU\na4uWjNaU6EqS82zEOUZhpbCAISKiDUmpkCfnxBQASEwWliQJXl8YQ64ARpJza0bcMzg94MXpAW/q\nvXkqBcqtutRITWVJAcqKdFCv8C0otUKVOKSywL7k8Vg8Bm94MlXULC5unEEXMLHw2sQ8G1OqqCnV\nLRQ42hyeZ8M5MJfYiPeMcwWzERNzERezWTmB2fmFVVDJosbhCSG+6FeoTAbYLLpUQXNxz5oC7eW3\noFYrm4tLvceD7kXFjQvjITdmIoHLXl+g1ieLmpIlxY1BXSjEPBtO4s0AL3hxMRsxMRdxMZvVNR+N\nweEJJSYKX7wN5Q4gHFm6g6+pIC9560mfuhXVWG+F13t5QbGaEvNs3JcUN25MhqeW7GMDJOfZXDJ5\nuFRnhWWN59mwgMkAL3hxMRsxMRdxMZu1F5ckeKZnk/NqFpZ2T80sPURSrVKg1JwPu0UHm0ULm0UH\ne5EOVlM+lIrV22H4SiKxCFwhD1zJkZqLxY075EHskuMUrjTPZpOpHoa81TnVm6uQiIiI1oBcJoPV\npIXVpMW2BmvqcX8ogpHkBnzD7hm4p8MYTd6OWkwhl8Fqyk8WNMnCxqJDqUW7aku81Qo1KgrsqLjC\nPBtPcp6Na8lcG9eSeTaluhI8c+tTq9K2a2EBQ0REtMoKtWo0VZvRVG0GkBhZcLn98PrCcHqDcHhC\ncHiDcHqDcHpCcHpDOHV+4f0yABaDBrbkiI29KFHY2Iq00GlWZ4WRQq5AibYYJdpioLgp9bgkSZie\n86UKmlKt9RqfsnrWtIAJBoP4wQ9+AJ/Ph/n5eXzve99DcXExnn/+eQDA5s2b8aMf/Wgtm0RERJQV\n8kVHJrTULTwuSRJ8wQicniAc3lCywAnC6Q1dthoKAAp1atgtWtguFjXJAmeljlC4lEwmg0ljhElj\nRKP5hhX//HStaQHz6quvoqamBk899RRcLhe+853voLi4GAcOHEBLSwueeuopfPjhh7j99tvXsllE\nRETCkMlkMOrzYNTnoTE5YnNRMDwPpzeULGiCqT+fG55Gz/D0ktfm5ykThU1yfo0tWeQUGTQruodN\ntqxpAWMymXDu3DkAgN/vh9FoxNjYGFpaWgAAd9xxB44dO8YChoiI6Ap0GhXqywyoLzMseXxuPobx\ni6M1ydtQDm8QF8Zn0L9ot2EgcZK3zZwoZmwWbfJWlA4lWZhAfD3WtIB54IEH8Morr+Duu++G3+/H\nCy+8gL/6q79KPW+xWDAxMXGNT0gwmbRQKldvGde1Zj1TdjEbMTEXcTEbca10NuV242WPRWNxOD1B\njLhmMOKewWjy0MtRd2KV1GJyuSyxj01pAcqTxyhUWBN/1uSJN2V2TVv02muvwW6348UXX0RPTw++\n973voaBgIcB0osl+gwAACD9JREFUV3RPTYVWq4lcdigwZiMm5iIuZiOutcxGIwc22Qqwybbw+zYu\nSZj0heG4wu2osYnL96exFGpgK0qM1qRuR1l00Oev7hEFwiyjPnXqFHbt2gUAaGhowNzcHKLRhWPP\nXS4XrNbszGYmIiLaKOQyGYqM+Sgy5qOlzpJ6XJIk+IOR1OThi7eiHN4gzgxM4szA5JLPKdSq0LbV\nhm/eUb/WX2FtC5iqqip0dHTg3nvvxdjYGHQ6HcrKyvDZZ59h27ZteOedd7B///61bBIRERElyWQy\nGPR5MOjz0FhlWvJcaMkE4oVl35P+cFbauqYFzN69e3HgwAHs27cP0WgUzz//PIqLi/Hss88iHo+j\ntbUVbW1ta9kkIiIiSoNWo0JdmQF1l0wgzpY1LWB0Oh3+6Z/+6bLHf/nLX65lM4iIiCjH5c56KSIi\nIqIkFjBERESUc1jAEBERUc5hAUNEREQ5hwUMERER5RwWMERERJRzWMAQERFRzmEBQ0RERDmHBQwR\nERHlHBYwRERElHNYwBAREVHOYQFDREREOUcmSZKU7UYQERERZYIjMERERJRzWMAQERFRzmEBQ0RE\nRDmHBQwRERHlHBYwRERElHNYwBAREVHOYQGzyI9//GPs3bsXjz/+ODo7O7PdHFrkJz/5Cfbu3YtH\nH30U77zzTrabQ4uEw2HcddddeOWVV7LdFFrk9ddfx4MPPohHHnkEH3zwQbabQwCCwSD+5E/+BPv3\n78fjjz+O9vb2bDcppymz3QBRnDhxAkNDQzh06BD6+/tx4MABHDp0KNvNIgDHjx9Hb28vDh06hKmp\nKTz88MO45557st0sSnrhhRdgMBiy3QxaZGpqCj/72c/w8ssvIxQK4V/+5V/w5S9/OdvN2vBeffVV\n1NTU4KmnnoLL5cJ3vvMdHDlyJNvNylksYJKOHTuGu+66CwBQV1cHn8+HQCAAvV6f5ZbR9u3b0dLS\nAgAoLCzE7OwsYrEYFApFlltG/f396Ovr4y9HwRw7dgw7d+6EXq+HXq/HX//1X2e7SQTAZDLh3Llz\nAAC/3w+TyZTlFuU23kJK8ng8SzqT2WzGxMREFltEFykUCmi1WgDA4cOHsWfPHhYvgjh48CCefvrp\nbDeDLjE6OopwOIw//uM/xhNPPIFjx45lu0kE4IEHHoDD4cDdd9+Nffv24Qc/+EG2m5TTOAJzFTxh\nQTzvvfceDh8+jP/8z//MdlMIwK9//WvceOONqKioyHZT6Aqmp6fx05/+FA6HA9/+9rfx/vvvQyaT\nZbtZG9prr70Gu92OF198ET09PThw4ADnjl0HFjBJVqsVHo8n9Xe3243i4uIstogWa29vx7/+67/i\nP/7jP1BQUJDt5hCADz74ACMjI/jggw8wPj4OtVqN0tJStLW1ZbtpG57FYsFNN90EpVKJyspK6HQ6\nTE5OwmKxZLtpG9qpU6ewa9cuAEBDQwPcbjdvh18H3kJKuu222/D2228DALq6umC1Wjn/RRAzMzP4\nyU9+gn/7t3+D0WjMdnMo6R//8R/x8ssv47//+7/xB3/wB3jyySdZvAhi165dOH78OOLxOKamphAK\nhTjfQgBVVVXo6OgAAIyNjUGn07F4uQ4cgUm6+eab0dTUhMcffxwymQzPPfdctptESW+++Sampqbw\n/e9/P/XYwYMHYbfbs9gqInGVlJTg3nvvxTe/+U0AwA9/+EPI5fz/1Wzbu3cvDhw4gH379iEajeL5\n55/PdpNymkziZA8iIiLKMSzJiYiIKOewgCEiIqKcwwKGiIiIcg4LGCIiIso5LGCIiIgo57CAIaJV\nNTo6iubmZuzfvz91Cu9TTz0Fv9+f9mfs378fsVgs7df/4R/+IT799NPlNJeIcgQLGCJadWazGS+9\n9BJeeukl/OpXv4LVasULL7yQ9vtfeuklbvhFREtwIzsiWnPbt2/HoUOH0NPTg4MHDyIajWJ+fh7P\nPvsstmzZgv3796OhoQHd3d34+c9/ji1btqCrqwuRSATPPPMMxsfHEY1G8dBDD+GJJ57A7Ows/vRP\n/xRTU1OoqqrC3NwcAMDlcuHP/uzPAADhcBh79+7FY489ls2vTkQrhAUMEa2pWCyGd999F7fccgv+\n/M//HD/72c9QWVl52eF2Wq0Wv/jFL5a896WXXkJhYSH+/u//HuFwGPfffz92796No0ePQqPR4NCh\nQ3C73bjzzjsBAG+99RZqa2vxox/9CHNzc/if//mfNf++RLQ6WMAQ0aqbnJzE/v37AQDxeBzbtm3D\no48+in/+53/GX/7lX6ZeFwgEEI/HASSO97hUR0cHHnnkEQCARqNBc3Mzurq6cP78edxyyy0AEgez\n1tbWAgB2796NX/7yl3j66adx++23Y+/evav6PYlo7bCAIaJVd3EOzGIzMzNQqVSXPX6RSqW67DGZ\nTLbk75IkQSaTQZKkJWf9XCyC6urq8Jvf/AYnT57EkSNH8POf/xy/+tWvrvfrEJEAOImXiLKioKAA\n5eXl+PDDDwEAg4OD+OlPf3rN97S2tqK9vR0AEAqF0NXVhaamJtTV1eH3v/89AMDpdGJwcBAA8MYb\nb+D06dNoa2vDc889B6fTiWg0uorfiojWCkdgiChrDh48iL/5m7/Bv//7vyMajeLpp5++5uv379+P\nZ555Bt/61rcQiUTw5JNPory8HA899BB++9vf4oknnkB5eTm2bt0KAKivr8dzzz0HtVoNSZLw3e9+\nF0ol/9kjWg94GjURERHlHN5CIiIiopzDAoaIiIhyDgsYIiIiyjksYIiIiCjnsIAhIiKinMMChoiI\niHIOCxgiIiLKOSxgiIiIKOf8f3qXUe3DITQuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ymlHJ-vrhLZw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Optional Challenge: Try Out More Synthetic Features\n", + "\n", + "So far, we've tried simple bucketized columns and feature crosses, but there are many more combinations that could potentially improve the results. For example, you could cross multiple columns. What happens if you vary the number of buckets? What other synthetic features can you think of? Do they improve the model?" + ] + } + ] +} \ No newline at end of file From 60f2cb517c1080892ccfc3f7b13f74cdde867e90 Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sun, 24 Feb 2019 01:51:05 +0530 Subject: [PATCH 07/11] Created using Colaboratory --- sparsity_and_l1_regularization.ipynb | 1148 ++++++++++++++++++++++++++ 1 file changed, 1148 insertions(+) create mode 100644 sparsity_and_l1_regularization.ipynb diff --git a/sparsity_and_l1_regularization.ipynb b/sparsity_and_l1_regularization.ipynb new file mode 100644 index 0000000..80333a1 --- /dev/null +++ b/sparsity_and_l1_regularization.ipynb @@ -0,0 +1,1148 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "sparsity_and_l1_regularization.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "yjUCX5LAkxAX" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Sparsity and L1 Regularization" + ] + }, + { + "metadata": { + "id": "g8ue2FyFIjnQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Calculate the size of a model\n", + " * Apply L1 regularization to reduce the size of a model by increasing sparsity" + ] + }, + { + "metadata": { + "id": "ME_WXE7cIjnS", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "One way to reduce complexity is to use a regularization function that encourages weights to be exactly zero. For linear models such as regression, a zero weight is equivalent to not using the corresponding feature at all. In addition to avoiding overfitting, the resulting model will be more efficient.\n", + "\n", + "L1 regularization is a good way to increase sparsity.\n", + "\n" + ] + }, + { + "metadata": { + "id": "fHRzeWkRLrHF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "Run the cells below to load the data and create feature definitions." + ] + }, + { + "metadata": { + "id": "pb7rSrLKIjnS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "3V7q8jk0IjnW", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Create a boolean categorical feature representing whether the\n", + " # median_house_value is above a set threshold.\n", + " output_targets[\"median_house_value_is_high\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] > 265000).astype(float)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "pAG3tmgwIjnY", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1213 + }, + "outputId": "2d862287-ddb0-4f4c-be32-4b041c31700d" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.6 2653.8 542.5 \n", + "std 2.1 2.0 12.5 2190.0 423.7 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1460.8 297.0 \n", + "50% 34.2 -118.5 29.0 2142.0 438.0 \n", + "75% 37.7 -118.0 37.0 3171.2 653.0 \n", + "max 42.0 -114.3 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1442.1 504.5 3.9 2.0 \n", + "std 1174.0 385.9 1.9 1.2 \n", + "min 3.0 1.0 0.5 0.1 \n", + "25% 793.0 282.0 2.5 1.5 \n", + "50% 1180.0 412.0 3.5 1.9 \n", + "75% 1739.0 610.0 4.7 2.3 \n", + "max 35682.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.62653.8542.51442.1504.53.92.0
std2.12.012.52190.0423.71174.0385.91.91.2
min32.5-124.31.02.01.03.01.00.50.1
25%33.9-121.818.01460.8297.0793.0282.02.51.5
50%34.2-118.529.02142.0438.01180.0412.03.51.9
75%37.7-118.037.03171.2653.01739.0610.04.72.3
max42.0-114.352.032627.06445.035682.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.6 28.6 2619.3 532.1 \n", + "std 2.1 2.0 12.8 2155.7 416.2 \n", + "min 32.5 -124.2 2.0 12.0 3.0 \n", + "25% 33.9 -121.8 18.0 1465.0 296.0 \n", + "50% 34.3 -118.5 29.0 2103.0 425.5 \n", + "75% 37.7 -118.0 37.0 3096.2 637.0 \n", + "max 42.0 -114.6 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1399.5 493.5 3.9 2.0 \n", + "std 1082.0 381.0 1.9 1.2 \n", + "min 8.0 3.0 0.5 0.0 \n", + "25% 781.0 281.0 2.6 1.5 \n", + "50% 1143.0 400.0 3.6 2.0 \n", + "75% 1687.2 590.0 4.8 2.3 \n", + "max 16122.0 5189.0 15.0 41.3 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.628.62619.3532.11399.5493.53.92.0
std2.12.012.82155.7416.21082.0381.01.91.2
min32.5-124.22.012.03.08.03.00.50.0
25%33.9-121.818.01465.0296.0781.0281.02.61.5
50%34.3-118.529.02103.0425.51143.0400.03.62.0
75%37.7-118.037.03096.2637.01687.2590.04.82.3
max42.0-114.652.037937.05471.016122.05189.015.041.3
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 12000.0\n", + "mean 0.2\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 0.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count12000.0
mean0.2
std0.4
min0.0
25%0.0
50%0.0
75%0.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 5000.0\n", + "mean 0.3\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 1.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count5000.0
mean0.3
std0.4
min0.0
25%0.0
50%0.0
75%1.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "gHkniRI1Ijna", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "bLzK72jkNJPf", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def get_quantile_based_buckets(feature_values, num_buckets):\n", + " quantiles = feature_values.quantile(\n", + " [(i+1.)/(num_buckets + 1.) for i in range(num_buckets)])\n", + " return [quantiles[q] for q in quantiles.keys()]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "al2YQpKyIjnd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + "\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"households\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"households\"], 10))\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"longitude\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"longitude\"], 50))\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"latitude\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"latitude\"], 50))\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"housing_median_age\"),\n", + " boundaries=get_quantile_based_buckets(\n", + " training_examples[\"housing_median_age\"], 10))\n", + " bucketized_total_rooms = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"total_rooms\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"total_rooms\"], 10))\n", + " bucketized_total_bedrooms = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"total_bedrooms\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"total_bedrooms\"], 10))\n", + " bucketized_population = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"population\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"population\"], 10))\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"median_income\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"median_income\"], 10))\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"rooms_per_person\"),\n", + " boundaries=get_quantile_based_buckets(\n", + " training_examples[\"rooms_per_person\"], 10))\n", + "\n", + " long_x_lat = tf.feature_column.crossed_column(\n", + " set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000)\n", + "\n", + " feature_columns = set([\n", + " long_x_lat,\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_total_rooms,\n", + " bucketized_total_bedrooms,\n", + " bucketized_population,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "hSBwMrsrE21n", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Calculate the Model Size\n", + "\n", + "To calculate the model size, we simply count the number of parameters that are non-zero. We provide a helper function below to do that. The function uses intimate knowledge of the Estimators API - don't worry about understanding how it works." + ] + }, + { + "metadata": { + "id": "e6GfTI0CFhB8", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def model_size(estimator):\n", + " variables = estimator.get_variable_names()\n", + " size = 0\n", + " for variable in variables:\n", + " if not any(x in variable \n", + " for x in ['global_step',\n", + " 'centered_bias_weight',\n", + " 'bias_weight',\n", + " 'Ftrl']\n", + " ):\n", + " size += np.count_nonzero(estimator.get_variable_value(variable))\n", + " return size" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "XabdAaj67GfF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Reduce the Model Size\n", + "\n", + "Your team needs to build a highly accurate Logistic Regression model on the *SmartRing*, a ring that is so smart it can sense the demographics of a city block ('median_income', 'avg_rooms', 'households', ..., etc.) and tell you whether the given city block is high cost city block or not.\n", + "\n", + "Since the SmartRing is small, the engineering team has determined that it can only handle a model that has **no more than 600 parameters**. On the other hand, the product management team has determined that the model is not launchable unless the **LogLoss is less than 0.35** on the holdout test set.\n", + "\n", + "Can you use your secret weapon—L1 regularization—to tune the model to satisfy both the size and accuracy constraints?" + ] + }, + { + "metadata": { + "id": "G79hGRe7qqej", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Task 1: Find a good regularization coefficient.\n", + "\n", + "**Find an L1 regularization strength parameter which satisfies both constraints — model size is less than 600 and log-loss is less than 0.35 on validation set.**\n", + "\n", + "The following code will help you get started. There are many ways to apply regularization to your model. Here, we chose to do it using `FtrlOptimizer`, which is designed to give better results with L1 regularization than standard gradient descent.\n", + "\n", + "Again, the model will train on the entire data set, so expect it to run slower than normal." + ] + }, + { + "metadata": { + "id": "1Fcdm0hpIjnl", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " regularization_strength,\n", + " steps,\n", + " batch_size,\n", + " feature_columns,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " regularization_strength: A `float` that indicates the strength of the L1\n", + " regularization. A value of `0.0` means no regularization.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " feature_columns: A `set` specifying the input feature columns to use.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 7\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.FtrlOptimizer(learning_rate=learning_rate, l1_regularization_strength=regularization_strength)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on validation data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " # Compute training and validation loss.\n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "9H1CKHSzIjno", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 713 + }, + "outputId": "e0bc14e7-cd44-49db-c167-980fcacc3984" + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.1,\n", + " # TWEAK THE REGULARIZATION VALUE BELOW\n", + " regularization_strength=0.0,\n", + " steps=300,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "print(\"Model size:\", model_size(linear_classifier))" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "LogLoss (on validation data):\n", + " period 00 : 0.32\n", + " period 01 : 0.28\n", + " period 02 : 0.27\n", + " period 03 : 0.26\n", + " period 04 : 0.25\n", + " period 05 : 0.25\n", + " period 06 : 0.24\n", + "Model training finished.\n", + "Model size: 790\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlcVXX6wPHPufeyb7JcZBEQEUQx\n9zUVN3A300zJRlttmmzGaqbfT5sprUnHmmmxflOTNZXNaGqGZrmQ+66ImiCIIAiKguwgi7L+/rAo\n817kAJf1eb9e8xrvvc8597nPnNf4eM5zzleprq6uRgghhBCildI0dwJCCCGEEA0hzYwQQgghWjVp\nZoQQQgjRqkkzI4QQQohWTZoZIYQQQrRq0swIIYQQolWTZkaINq5bt25kZGQ0yr7S0tLo0aNHo+yr\nOcydO5fhw4czYcIExo8fz6RJk1i9erXq/URHR/PEE0+o3q5Hjx6kpaWp3k4IUTtdcycghBBN6cUX\nX2TatGkAZGVlMXv2bHx9fQkODq7zPnr16sW///1vU6UohFBJzswI0U7dvHmTV155hfHjxzNx4kRW\nrFhBZWUlAAcPHmTkyJFMnDiR9evX069fv7ueUcjPz2fhwoU1ZzxWrVpV89k777zD+PHjGT9+PPPm\nzePatWu1vv+T/fv3M3Xq1NvemzZtGgcOHCAyMpLp06czadIkJk6cyPbt21XXQK/XM2HCBA4fPgzA\nhQsX+M1vfsP48eOZOnUqMTExABw/fpywsDAWLlzIH//4R44fP05oaOhd67h//35CQ0OZOHEin3zy\nSc33FhcXs2DBAiZOnMjYsWP5y1/+Qnl5uer8hRC3SDMjRDu1evVqMjIy2Lp1K5s2bSIqKorvvvuO\nyspKFi1axGuvvcb27dtJSUmhtLT0rvt7++23cXBwICIigrVr1/Lll18SFRVFYmIiO3bs4LvvviMi\nIoLQ0FCOHj1q9P1fGjp0KBkZGVy+fBmAy5cvk5GRwb333ssbb7zB4sWL2bZtGx9++CG7du2qVx0q\nKiowNzenqqqKBQsWMG3aNCIiIli6dCnPPPMMFRUVAMTFxREWFsZbb71V5zr++c9/ZsmSJWzfvh2N\nRlPT5GzevBl7e3u2b99OREQEWq2WCxcu1Ct/IYQ0M0K0W/v27WPWrFnodDosLS2ZOnUqhw8fJiUl\nhbKyMkaOHAncmjOpqqq66/7279/PnDlzAOjQoQOhoaEcPnwYe3t7cnNz+fbbbykoKGDu3Lncf//9\nRt//JXNzc0aPHs2ePXsA2LVrFyEhIeh0Opydndm8eTNJSUl07tz5jiajLi5fvsyOHTsIDQ0lOTmZ\nnJwcZs6cCUD//v1xcnLi9OnTAFhaWjJ06FDVdRw+fDgA06dPr9nmp/0eOnSIqqoqXn31Vbp37646\nfyHELdLMCNFO5ebm4uDgUPPawcGBnJwcCgoKsLe3r3nf1dW1zvv75Xb29vbk5OTQsWNH3n//fXbs\n2MGoUaN46qmnSE9PN/r+r40fP/62ZmbSpEkALF++HCsrKx577DHGjRvHjh076pTn3//+95oB4Bde\neIFFixbRq1cvCgsLuXHjBhMnTmTChAlMmDCBnJwc8vPza+pj7Hcbq6Otre1t7/9k4sSJPProo6xc\nuZKhQ4fy6quvUlZWVqf8hRB3kmZGiHbKxcWl5i9quDXz4uLigq2tLSUlJTXvZ2dnN2h/AEOGDGHV\nqlUcPnwYd3d3/vGPf9T6/i+NGDGC+Ph4UlJSSElJYciQITXf9/LLL3PgwAFeeeUVFi9eTHFx8V3z\nfPHFF9mxYwcRERF89dVXNc2Rq6srNjY27Nixo+Y/hw4dqpmNUfu7HRwcKCoqqnk/Nzf3tu3CwsL4\n6quv2LZtG7GxsWzevPmuuQshDJNmRoh2atSoUWzcuJHKykpKSkr45ptvGDlyJJ07d6aiooLjx48D\n8OWXX6IoSp32t379euDWX9w7d+5k1KhRHDp0iFdffZWqqiqsra0JDAxEURSj7/+aubk5w4cP5+9/\n/ztjx45Fq9VSXl7O3LlzyczMBCAoKAidTodGU///S/P09MTNza3mDE9ubi4vvPDCbY2dsd9tqI7e\n3t5otdqaOoaHh9f8vn/+859s3LgRgI4dO9KpU6c61VgIYZjcmi1EOzB37ly0Wm3N69dff525c+dy\n+fJlJk+ejKIoTJgwgYkTJ6IoCkuXLmXx4sXY2dnx2GOPodFoUBSF6upqKisrmTBhwm37//jjj3nu\nuedYunQpEyZMQKPR8NRTT9GrVy9u3rzJ1q1bGT9+PObm5jg5ObF8+XJcXV0Nvm/I+PHj+f3vf8/n\nn38OgJmZGTNnzuTRRx8FQKPR8Je//AUrKyt27tzJnj17+Nvf/qaqRoqi8Pbbb7N06VLeffddNBoN\njz32GNbW1netrbE6/vWvf+Wll17C3NycGTNm1Oxr2rRpLF68mI8//hhFUejdu3fN7eJCCPWU6urq\n6uZOQgjRcpWUlNC3b1+ioqKws7Nr7nSEEOIOcplJCHGHBx54gG3btgGwbds2/Pz8pJERQrRYcmZG\nCHGHqKgoXnvtNW7evImNjQ1Lly6lV69ezZ2WEEIYJM2MEEIIIVo1ucwkhBBCiFZNmhkhhBBCtGqt\n/tbsrKzrJtu3o6M1eXm1P2NC3E5qpp7UTD2pmXpSM/WkZuqZsmZ6vfGbEOTMTC10Ou3dg8RtpGbq\nSc3Uk5qpJzVTT2qmXnPVTJoZIYQQQrRqJr3MtHz5cs6cOYOiKLz00ku33dq5YcMGNm7ciEajITAw\nkCVLlqAoCm+++SYnT56koqKC3/72t4wbN86UKQohhBCilTNZMxMZGUlqairr168nKSmJl156qWbd\nltLSUrZu3cqaNWswMzNj3rx5nD59mrKyMhITE1m/fj15eXlMnz5dmhkhhBBC1MpkzczRo0cJCQkB\nwM/Pj4KCAoqKirC1tcXKyorVq1cDtxqboqIi9Ho9Hh4eNWdv7O3tKS0tpbKy8rY1ZYQQQgghfslk\nzUx2djZBQUE1r52cnMjKysLW1rbmvVWrVvHFF18wb948vLy8AGoWYtu4cSPBwcF3bWQcHa1NOnBU\n2/S0MExqpp7UTD2pmXpSM/WkZuo1R82a7NZsQw8afuqpp5g3bx7z58+nf//+9O/fH4Bdu3axceNG\nPv3007vu15S3zen1dia99bstkpqpJzVTT2qmntRMPamZeqasWbPcmu3q6kp2dnbN68zMTPR6PQD5\n+fmcOHECAEtLS4KDgzl16hQABw8e5F//+hcff/yxLGwnhBBCiLsyWTMzbNgwIiIiAIiNjcXV1bXm\nElNFRQWLFi2iuLgYgJiYGHx9fbl+/TpvvvkmH330ER06dDBVakIIIUS7sW/f7jrFrVz5FlevXjH6\n+aJFLzRWSo3OZJeZ+vXrR1BQEGFhYSiKwpIlSwgPD8fOzo7Q0FAWLFjAvHnz0Ol0dOvWjbFjx7Jh\nwwby8vJ47rnnavbzxhtv4OHhYao0hRBCiDYrPf0qu3ZFMGrU2LvGLlz4x1o/X7Hi7cZKq9G1+lWz\nTXk9U66Xqic1U09qpp7UTD2pmXptoWYvvriQc+diKSgoYNy4iaSnX+Xddz/gb397jaysTEpLS3n8\n8acYNmwEzz77FC+88D/s3bub4uIiLl1K5cqVNP7whz8ydOgwJk8ey9atu3n22acYOHAwp05FkZ+f\nzxtvvIOLiwuvvfYyOTmZBAYGsWfPLjZt2taov6W2mZlWvzaTEEII0Rps2HOBE/GZjbrPgYGuzBrT\n1ejnDz00l/DwDfj6+nHpUgoffPAJeXm5DBo0hIkTp3DlShovv7yIYcNG3LZdZuY1/vGP9zh27Ajf\nfPM1Q4cOu+1zGxsbVq78kA8/fJ8DB/bg4dGJsrKbbNiwgc2bt7Fhw5eN+jvvRpoZIy4WXOKmhRMW\n2N49WAghhGjhune/9bgUOzt7zp2LZcuWcBRFQ2FhwR2xvXr1AW7dzFNUVHTH57179635vKCggNTU\ni9xzT28Ahg4d1uTPh5NmxojPYtdSfraMlwe9iLWZVXOnI4QQopWbNaZrrWdRTM3MzAyAnTt3UFhY\nyD//+QmFhYU8+eTcO2J/2YwYmkb59efV1dVoNLfeUxQFRVEaO/1ayUKTRtzrMYjCm0V8d/H75k5F\nCCGEqBeNRkNlZeVt7+Xn5+Pu7oFGo2H//j2Ul5c3+Hs8PTtx/nwcAJGRx+74TlOTZsaIsd7BuNu6\nciDtCGnXrzZ3OkIIIYRqPj6+nD8fT3Hxz5eKRo0aw5EjB1m48HdYWVnh6urKZ5993KDvuffeERQX\nF/PQQw9x5sxp7O0dGpq6KnI3Uy2uVFxi+YH/o4tDZ17o97smP23WGrWF6f+mJjVTT2qmntRMPalZ\n3RUWFnDqVBQPPng/cXFJLFz4O9au/bpRv0PuZqqnPu5B9Nb35EzWWSIzTjHYvX9zpySEEEK0ONbW\nNuzZs4uvvlpLWVk5v/990z5gT5qZu3ig61Tics6zKWkrvfQ9sNLJMLAQQgjxSzqdjtde+1uznc2S\nmZm7cLZyZLzPGK6XFbE1eWdzpyOEEEKIX5Fmpg5CvIPRWzmz/8oRrhSlN3c6QgghhPgFaWbqwExr\nxoMB06iqrmL9+U0G77kXQgghRPOQZqaOgpwD6eUSRFJBCieunW7udIQQQgjxI2lmVJjpPxUzjY5N\nF7ZSWlHa3OkIIYQQjWLmzKmUlJTwn/98ztmz0bd9VlJSwsyZU2vdft++3QCEh4ezf/9ek+VpjDQz\nKjhbOTHeZwyFZdfZelGGgYUQQrQtc+c+Ss+evVRtk55+lV27IgCYMWMGI0eONkVqtZJbs1UK8R7J\nsYyT7E87wlD3gXjaujd3SkIIIYRBjz/+MMuXv4WbmxsZGeksXvxH9HpXSktLuXHjBs8//yI9evSs\niV+2bCmjRo2lT5++/PnP/0NZWVnNopMA33+/nY0b16PVaujc2Y///d8/8/bbb3DuXCyfffYxVlZm\nmJlZ8cADs/ngg5XExJyhoqKSBx6YxYQJk3n22acYOHAwp05FkZ+fzxtvvIObm1uDf6c0MyqZac14\n0P8+Poz+jA0Jm3mu79PyZGAhhBB3FX7hO05nxjTqPvu63sOMrlOMfh4cPJrDhw/wwAOzOHhwP8HB\no/Hz8yc4eBQnT55gzZrVLFv29zu2i4jYTpcufvzhD39k9+7va868lJaW8tZb72NnZ8eCBfNJSrrA\nQw/NJTx8A489Np916z4H4IcfTpGcnMSHH35KaWkpjzwSRnDwKABsbGxYufJDPvzwfQ4c2MOsWXMa\nXAe5zGRERWUVFZVVBj/r6dKde1x6cCH/IlHXfmjizIQQQoi6udXMHATg0KH9DB8+kv37d/O73z3B\nhx++T0FBgcHtUlKS6dmzNwB9+/789Ht7e3sWL/4jzz77FKmpFykoyDe4fXx8HH369APAysqKzp27\ncPnyZQB69+4LgKurK0VFRQa3V0vOzBjx+hdRdLCz5A8P3IPGwJmXmf73EZ+bQPiF7+jp0h0rnWUz\nZCmEEKK1mNF1Sq1nUUyhSxc/cnKyuHYtg+vXr3Pw4D5cXFx5+eW/Eh8fx//937sGt6uuBo3m1t99\nVVW3HkdSXl7O22+/yeefr8XZ2YX/+Z/njH6voij88ikmFRXlNfvTarW/+J7GedSJnJkxws3JmugL\n2Rw9m2HwcxcrJ0J9RlNYdp1tMgwshBCihRo6dDirVn3AiBEjKSjIx9OzEwD79++loqLC4Dbe3j7E\nx58D4NSpKABKSorRarU4O7tw7VoG8fHnqKioQKPRUFlZedv2gYFBnD598sftSrhyJY1OnbxN9ROl\nmTHmwVFdMTfT8tW+JEpvGv4fO9R7FM6WTuxLO8zVIsNNjxBCCNGcRo4cza5dEYwaNZYJEyazfv0a\nnn9+AUFBPcnJyWHr1i13bDNhwmRiY2NYuPB3XL6ciqIoODh0YODAwTz55Dw+++xj5syZy3vvvY2P\njy/nz8fz3ntv1Wzfu3cfunULZMGC+Tz//AKefvpZrKxMt7ahUt3KH2drygWt9vxwlf/uiGf8IC9m\nj/E3GBOTHce/oj/Hv0MXFvb9bbsfBm6uRcZaM6mZelIz9aRm6knN1DNlzfR6O6OfyZmZWkwf1RUX\nB0t2RaVxNbvYYMw9Lj3o6dydxPxkTsowsBBCCNHkpJmphbmZlofG+lNZVc2XuxKMDio9GHAfOo2O\n8AtbuVFxo4mzFEIIIdo3aWbuoo+/Cz19nYhNyeNUQrbBGBcrZ8Z5j6KgrJBtKbuaOEMhhBCifZNm\n5i4UReGhEH+0GoX1exIpK680GBfqMxpnSyf2Xj5EevG1Js5SCCGEaL+kmakDd2cbQgd6kV1wgx3H\nLxmMMdeaMdN/KlXVVWw4v7nR7p0XQgghRO2kmamjqfd2xsHGnK3HUskuMLxi9j0uPQhyDiQhP4lT\nmWeaOEMhhBCifTJpM7N8+XJmz55NWFgY0dG3Lym+YcMGZs2aRVhYGEuXLq05k5GQkEBISAj//e9/\nTZmaalYWOh4c7Ud5RRXr91wwGKMoCg/6T0On0fF14ncyDCyEEEI0AZM1M5GRkaSmprJ+/XqWLVvG\nsmXLaj4rLS1l69atrFmzhnXr1pGcnMzp06cpKSnhr3/9K0OHDjVVWg0yNMiNrp4OnDyfRVxKrsEY\nvbUzod4jKSgrZHvK7ibOUAghhGh/TNbMHD16lJCQEAD8/PwoKCioWVDKysqK1atXY2ZmRmlpKUVF\nRej1eszNzfn4449xdXU1VVoNoigKD4cGoABrdiYYXYhynM9onCwd2XP5IBkyDCyEEEKYlMmamezs\nbBwdHWteOzk5kZWVdVvMqlWrCA0NZcKECXh5eaHT6bC0bNkLNvq42TGyjwfpOSXsOZlmMMZca85M\n//tuDQMnfCPDwEIIIYQJNdmq2Yb+Qn/qqaeYN28e8+fPp3///vTv39/AlrVzdLRGp9PePbCeDD0+\nef6M3kSdz2LLkRQmBfvhaHdnAzbWZTAnsqM4nR7LhRuJ3Out/re1VrU9cloYJjVTT2qmntRMPamZ\nes1RM5M1M66urmRn//yQuczMTPR6PQD5+fkkJiYycOBALC0tCQ4O5tSpU/VqZvLyShot51+rbY2J\n+0f48t/vE1j1dTSPT+5uMOY+n8nEZMTz+amv8DLzwVJnYbJcWwpZy0Q9qZl6UjP1pGbqSc3Ua3Nr\nMw0bNoyIiAgAYmNjcXV1xdbWFoCKigoWLVpEcfGt9Y5iYmLw9fU1VSomMaqPJ16uthyKSSfpaoHB\nGFdrF0K8R5J/s4AdMgwshBBCmITJmpl+/foRFBREWFgYr7/+OkuWLCE8PJydO3fi4uLCggULmDdv\nHrNnz6ZDhw6MHTuWs2fPMnfuXDZt2sQXX3zB3Llzyc/PN1WKDaLRKMwJubWS9tqdCVQZmYsZ33kM\njhYdfhwGzmzKFIUQQoh2Qalu5dOppjwFWJfTZR9tieV43DUenRhIcG8PgzE/ZJ3l45gvCHT059k+\nT6IoiinSbRHktKx6UjP1pGbqSc3Uk5qp1+YuM7UXs0Z3xcJMy9f7kyi5UW4wprdLEN2dAojPS+R0\nVkwTZyiEEEK0bdLMNJCjnQVT7vXhekk5mw9dNBijKAqzAqahU7R8nfgtNyvLmjhLIYQQou2SZqYR\njBvoTUdHK/acvEJaVpHBGFdrPWNlGFgIIYRodNLMNAIznYaHQvypqq5m7c4Eow/J+2kYePelA1yT\nYWAhhBCiUUgz00h6+bnQy8+Z+Ev5RJ3PMhhjoTVnpv9UKqsr+SpxizwZWAghhGgE0sw0oodC/NFp\nFdbvSeRmWaXBmN76nnR3CuBcbgJnss42cYZCCCFE2yPNTCPq6GjN+EHe5BbeZOuxVIMxiqLwYMA0\ntIqWjTIMLIQQQjSYNDONbPJQHxztLNhx/BKZ+aUGYzpa6xnrHUzezXwiUvY0cYZCCCFE2yLNTCOz\nNNcxa3RXKiqrWL870WjchM5jfxwG3s+1EsMzNkIIIYS4O2lmTGBQd1cCvDpwOjGbs8k5BmMstObM\n8J9CRXUlXyV8I8PAQgghRD1JM2MCinJr3SZFgTW7EqmorDIY11d/D4GO/reGgbNjmzhLIYQQom2Q\nZsZEvDvaMbqvJ9dyS9gZddlgzG3DwAlbKJNhYCGEEEI1aWZM6P4RXbC1MmPL4RTyrt80GONm48oY\nrxG3hoFT9zZxhkIIIUTrJ82MCdlamTFjZBdullWycd8Fo3ETOo+lg4UDu1L3kSnDwEIIIYQq0syY\nWHAvD3w62nE09hqJafkGYyx1Fszo+uMwsDwZWAghhFBFmhkT02gUHh4XAMCanQlUVRluVPq59qKb\nY1fics4TnR3XlCkKIYQQrZo0M02gq6cD9/Z049K1Ig6cuWowRlEUZgVMQ6No2Jgow8BCCCFEXUkz\n00RmjvLD0lxL+IFkikrLDca42XRkjNcIcm/k8b0MAwshhBB1Is1ME+lga8F9w3wpKi1n08Fko3ET\nfxwG3nlpP1klhh+4J4QQQoifSTPThEIGdMLNyZp9p69w6dp1gzGWOktmdJ1MRVUFXyXKk4GFEEKI\nu5FmpgnptBrmhPpTXQ1rdyYYbVT6ufYmwLErsTnxxMgwsBBCCFEraWaaWE9fZ/r6u5CQVsDxc9cM\nxtw5DGx4xkYIIYQQ0sw0i7Cx/ui0GjbsucCNsgqDMe42HRntNZycG3nslGFgIYQQwihpZpqBvoMV\nEwd7k19UxndHUo3GTeocgoO5Pd9f2ifDwEIIIYQR0sw0k0lDfXC2tyAi8hLXcksMxvxyGHhj4pYm\nzlAIIYRoHaSZaSYWZlpmj/GnsqqaL3cnGo3r37EP/h26cDbnnAwDCyGEEAZIM9OM+nfT093Hkeik\nHM5cyDYYc2sY+H40ioavEmQYWAghhPg1aWaakaIozAnxR6MofLk7kfKKKoNxHrZujOo0jJwbuey8\ntK9pkxRCCCFaOJM2M8uXL2f27NmEhYURHR1922cbNmxg1qxZhIWFsXTp0ppnrtS2TVvkqbdlbP9O\nZOaV8v2JS0bjJvmGYm9ux87UvWSX5jZhhkIIIUTLZrJmJjIyktTUVNavX8+yZctYtmxZzWelpaVs\n3bqVNWvWsG7dOpKTkzl9+nSt27Rl04Z3xs7ajG+PpJBbeMNgjJXOkhldp1Auw8BCCCHEbUzWzBw9\nepSQkBAA/Pz8KCgooKioCAArKytWr16NmZkZpaWlFBUVodfra92mLbO2NGPmSD/KyqvYsPeC0bgB\nPw4Dx2THcTb7XBNmKIQQQrRcOlPtODs7m6CgoJrXTk5OZGVlYWtrW/PeqlWr+OKLL5g3bx5eXl51\n2ubXHB2t0em0pvkRgF5vZ7J9/9L9YwI4HJtB5LlM7h99k3v8XAzG/XbwHP7n++WEJ33LsIC+mGvN\nmiQ/NZqqZm2J1Ew9qZl6UjP1pGbqNUfNTNbM/JqhdYieeuop5s2bx/z58+nfv3+dtvm1vDzDz2hp\nDHq9HVlZhheENIVZo7ry+hdRfPDVDyx5bCBazZ0nzqywZ1SnYey5fJB1J79jom9Ik+VXF01ds7ZA\naqae1Ew9qZl6UjP1TFmz2pokk11mcnV1JTv759uNMzMz0ev1AOTn53PixAkALC0tCQ4O5tSpU7Vu\n0x508bBneC930rKK2Xf6qtG4n4aBI1L3kCPDwEIIIdo5kzUzw4YNIyIiAoDY2FhcXV1rLhdVVFSw\naNEiiouLAYiJicHX17fWbdqLmSP9sLLQsflgMtdLygzGWOksmd518o/DwN82cYZCCCFEy2Kyy0z9\n+vUjKCiIsLAwFEVhyZIlhIeHY2dnR2hoKAsWLGDevHnodDq6devG2LFjURTljm3aG3sbc+4f7suX\nuxMJP5DMIxMCDcYN7NiXQ1eOE50dS2xOPEHOhuOEEEKItk6prstgSgtmyuuZzXW9tKKyiqWfnSA9\nu5iXHx1AZzd7g3FXitJZcWIlzpaO/HnwHzHTNNkIlFFyjVk9qZl6UjP1pGbqSc3Ua3MzM6L+dFoN\nD4f4Uw2s2ZlAlZF+09PWnZGe95JVmsPuS/ubNkkhhBCihZBmpoXq3tmJAd30JF0p5OjZDKNxk7uE\nYmduy46UPeSU5jVhhkIIIUTLIM1MCzZ7jD/mOg0b9yVRerPCYIyVzorpfpMpryrn6wsyDCyEEKL9\nkWamBXN2sGTSUB8Kisv49nCK0bhBbv3wc+jMmayzxOacb7oEhRBCiBZAmpkWbuJgb1wcLNkZdZn0\nnGKDMYqiMCvgfhQUvkrYTHmV4bM4QgghRFskzUwLZ6bTEjbWn8qqatbuSjT6VOROdh6M7PTTMPCB\nJs5SCCGEaD7SzLQCff1dCPJ1IvZiLqcTs43GTfYdh52ZLTtSdpN7Q4aBhRBCtA/SzLQCiqIwJ8Qf\nrUZh3e5EysorDcZZm1lxf9dJt4aBE79r4iyFEEKI5iHNTCvh7mxD6AAvsgtusCPyktG4QW796OLg\nww9ZMZzLSWjCDIUQQojmIc1MKzJ1WGccbMzZdjSV7IJSgzEaRcOsgOkoKGxIlGFgIYQQbZ80M62I\nlYWOB0f7UVZRxYY9F4zGedl5ENxpKJkl2ey9dLAJMxRCCCGanjQzrczQIDf8PO2JOp9FXEqu0bgp\nvuOxNbNhe8ouGQYWQgjRpkkz08ooisJvQruhAGt3JVJRWWUw7tYw8GTKqsoJl2FgIYQQbZg0M62Q\nj5sdwX08uJpdzJ5TV4zGDXbrh6+9D6ezYojPTWzCDIUQQoimI81MKzUjuAs2ljq+OZRMYXGZwRiN\nomF2t1tPBt6QsJkKGQYWQgjRBkkz00rZWZtz/4gulN6sZOP+JKNxXnaejPAcwrWSLPZclmFgIYQQ\nbY80M63YqL4edNLbcig6neSrhUbjpnb5aRh4N3k38pswQyGEEML0pJlpxbQaDQ+H+gOwZud5qoys\n22RtZs00v0mUVZYRfkGGgYUQQrQt0sy0ct28HRnU3ZWL6dc5HJ1uNG6Ie38623tzKjNahoGFEEK0\nKdLMtAGzRnfF3EzDxv1JlNwoNxhz+zDwNzIMLIQQos2QZqYNcLK3ZOq9nbleUs7mQxeNxnnbdWK4\n5xCulWSy9/KhJsxQCCGEMB1dI56qAAAgAElEQVRpZtqIcQO9cXW0Ys/JK1zJKjIaN7XLeGzMrNmW\nskuGgYUQQrQJ0sy0EWY6DQ+N9aequpq1uxKpNjIMbGNmzTS/iZRVlrHpwtYmzlIIIYRofNLMtCG9\nu7rQy8+Zc6l5nDyfZTRuqPtAfOy9OJl5hoQ84wtWCiGEEK2BNDNtzENj/dFpFdbvSeRmeaXBGI2i\nYXbArWHg9QnfUFllOE4IIYRoDaSZaWM6OlkzbqA3OYU32XY01Wicj70XwzwGkVF8jb1pMgwshBCi\n9ZJmpg2acq8PjnYWbD9+icz8UqNxU/0m3BoGvriT/JsFTZihEEII0XhM2swsX76c2bNnExYWRnR0\n9G2fHTt2jFmzZhEWFsbixYupqqqiqqqKl19+mbCwMObOnUtSkvE1h4RxluY6HhztR0VlFet3G39A\nnq2ZDdO6TOSmDAMLIYRoxUzWzERGRpKamsr69etZtmwZy5Ytu+3zV155hffee49169ZRXFzMwYMH\n2b17N9evX2fdunUsW7aMN99801TptXmDu3ckwKsDpxOzOXsxx2jcUI+B+Nh5EXXtBxLypHkUQgjR\n+pismTl69CghISEA+Pn5UVBQQFHRz88/CQ8Px83NDQAnJyfy8vJISUmhV69eAHh7e3P16lUqK2U4\ntT4URWFOiD+KAmt3JlJRWWUw7pdPBl6fsFmGgYUQQrQ6JmtmsrOzcXR0rHnt5OREVtbPtwvb2toC\nkJmZyeHDhxk5ciQBAQEcOnSIyspKkpOTuXz5Mnl5eaZKsc3z7mjH6L6eZOSWsCsqzWicj70X9/44\nDLwv7XATZiiEEEI0nK6pvsjQQ9xycnJ4+umnWbJkCY6OjowcOZJTp07x8MMP061bN7p06WL04W8/\ncXS0RqfTmipt9Ho7k+27KTw5vRcn4rP49shFJgf74WRvaTDucfuZnNl2lu0puxjfYziOVg71/s7W\nXrPmIDVTT2qmntRMPamZes1RM5M1M66urmRnZ9e8zszMRK/X17wuKipi/vz5PPfccwwfPrzm/eef\nf77mzyEhITg7O9f6PXl5JY2Y9e30ejuysq6bbP9NZfoIX76IOM+/Np5h/tQeRuOm+I5n3flwPjm+\nnkeDHqrXd7WVmjUlqZl6UjP1pGbqSc3UM2XNamuSTHaZadiwYURERAAQGxuLq6trzaUlgBUrVvDI\nI48QHBxc8158fDyLFy8G4MCBA/To0QONRu4eb6jg3h74dLTjaGwGF9KM34I9zGMQ3nadOHHtNIky\nDCyEEKKVMFmn0K9fP4KCgggLC+P1119nyZIlhIeHs3PnTkpLS9m8eTMbN25k7ty5zJ07l/Xr1xMQ\nEEB1dTUzZ87ko48+qmlsRMNoNAoPhwYAsGZnAlVVhi/d/XIYeIM8GVgIIUQrYdKZmT/96U+3vQ4M\nDKz589mzZw1us2LFClOm1G517eTA0CA3jsZmcCD6KqP6eBqM62zvzVD3gRxJj2T/lSOM8RrRxJkK\nIYQQ6sg1nHbkwdF+WJhrCd+fTFFpudG4aX4TsdZZsTX5ewpuFjZhhkIIIYR60sy0Ix1sLbhvWGeK\nSsvZfDDZaJytuQ33+U3gRuVNNl3Y1oQZCiGEEOpJM9POhA7wws3Jmr2nr3DpmvGJ82Eeg/Gy8+TE\ntVNcyL/YhBkKIYQQ6kgz087otBrmhPhTXQ1rdyYYfY6PRtEwO+B+ANaf3yTDwEIIIVosaWbaoZ5d\nnOnr70JCWgGR5zKNxvk6+HCv+0CuFmdw4MrRJsxQCCGEqDtpZtqp2WP90Wk1bNh7gRtlFUbj7vOb\niJXOiu+Sv6fgpjw8SgghRMsjzUw75drBiomDvcm7fpOtR1ONxtmZ23Jfl/HcqLzBN0kyDCyEEKLl\nkWamHZs01AcnewsiIi9xrZZlIYZ7DsHL1oPjGSdlGFgIIUSLI81MO2ZhpmX2GH8qKqv5clei0TiN\nomFWt+kAbEjYLMPAQgghWhRpZtq5Ad30BHp3IDophzMXso3GdXHwYYj7AK4UpXPwyrEmzFAIIYSo\nnTQz7Zyi3Fq3SaMofLk7kfKKKqOx9/tNujUMfDGCwjIZBhZCCNEySDMj8NTbMqa/J5l5pXx/4pLR\nODtzW6Z2GU9pxQ02y5OBhRBCtBDSzAgA7h/ui521Gd8dSSXv+k2jcSM8h9Dpx2Hg5IKUpktQCCGE\nMEKaGQGAtaUZM0f6cbO8kg17LxiN0ygaZnf76cnAm6mqNn5ZSgghhGgK0syIGsN6uePrbsfxuGuc\nv5RnNK6LQ2eGuA0greiqDAMLIYRodtLMiBoaRWFOaAAAa3YmUllVyzBw10lY6Sz5NnkH18uKmipF\nIYQQ4g7SzIjb+Hk4MPwed9Kyitj/w1WjcXbmtkzx/XEYWJ4MLIQQohlJMyPu8MAoP6wstGw6kMz1\nkjKjcSM8h+Bp686x9CiSC4wviSCEEEKYkjQz4g4ONuZMG96F4hsVbDqQbDROq9EyK+DWMPCG85tk\nGFgIIUSzkGZGGDSmnyceLjbs/+EqqRnGH5DXtYMvg936c7noKodkGFgIIUQzkGZGGKTTapgT4k81\nsGZnAtXV1UZj7+86CUutJVuSIyi8IU8GFkII0bSkmRFG9ejsRP9uei5cKeBobIbROHtzO6Z0GUdp\nRSkfnvgPNyqMP3RPCCGEaGx1bmaKim7dfpudnU1UVBRVtdy2K9qO2WO6Yq7T8NXeJEpvVhiNC/Yc\nip+DLyevxvDGiZVcvn6lCbMUQgjRnmmXLl269G5Bf/3rX8nPz8fT05NZs2aRnp7OsWPHGD16dBOk\nWLuSWu62aSgbGwuT7r81sLY0o6qqmjNJOVRVVxPk62QwTqNoGOjWFzMLhdMZZzmWHoWlzpLO9l4o\nitLEWbcucpypJzVTT2qmntRMPVPWzMbGwuhndTozExcXx4MPPsj27duZPn06K1euJDVVbsVtLyYM\n9sbFwZKdJy6TnlNsNE6n0TG3zwM80/sJLHWWbEzcwkcxn1NUZnwbIYQQoqHq1Mz8NPy5b98+xowZ\nA0BZmXSr7YW5mZawsf5UVlXz5a7EWoeBAYKcu/HSoOfp5tiVmOxzLI98h8S8pCbKVgghRHtTp2bG\n19eXSZMmUVxcTPfu3dm8eTMODg6mzk20IH39XQjq7MjZi7n8kJh913gHC3ue7fMk93WZwPXyIlae\nXsV3yd9TWVXZBNkKIYRoT3R1CXr99ddJSEjAz88PAH9//5ozNKJ9UH5ct+mVf0fy5e5EgnydMDfT\n1rqNRtEwvvMY/B39+Cx2LdtTdpGQl8RjQQ/haNmhiTIXQgjR1tXpzMy5c+fIyMjA3Nycd955hzff\nfJOEhIS7brd8+XJmz55NWFgY0dHRt3127NgxZs2aRVhYGIsXL6aqqori4mKeffZZ5s6dS1hYGAcP\nHqzfrxIm4e5sQ8iATmQX3GBH5KU6b9fFwYfFA5+jr/4ekgou8rfIdzmTFWvCTIUQQrQndWpmXn/9\ndXx9fYmKiiImJoaXX36Z9957r9ZtIiMjSU1NZf369Sxbtoxly5bd9vkrr7zCe++9x7p16yguLubg\nwYNs2rQJX19f/vOf/7By5co7thHN775hvjjYmLPtaCo5BTfqvJ21mRVP9PwND3WbQVlVGatiVrMh\nYTPlleUmzFYIIUR7UKdmxsLCgs6dO7N7925mzZpF165d0Whq3/To0aOEhIQA4OfnR0FBQc2zagDC\nw8Nxc3MDwMnJiby8PBwdHcnPzwegsLAQR0fHev0oYTpWFjpmjvKjrKKK9XsvqNpWURSGew7hfwb8\nATebjuxPO8LfT/4f14ozTZStEEKI9qBOMzOlpaVs376dXbt2sWDBAvLz8yksLKx1m+zsbIKCgmpe\nOzk5kZWVha2tLUDNf2dmZnL48GEWLlyIo6Mj4eHhhIaGUlhYyEcffXTX3BwdrdHpap/daAi93s5k\n+26t7htly+GzGUTFZ3I1/wa9/fW3fX63mun1dvzd6yVWn/6KXcmHeCPqPZ7oH8bIzkPa7TNp5DhT\nT2qmntRMPamZes1Rszo1My+88AJffPEFL7zwAra2trz//vs8+uijqr7I0O28OTk5PP300yxZsgRH\nR0e++eYbPDw8+Pe//018fDwvvfQS4eHhte43L69EVR5q6PV2ZGXJWkOGzBrtx18/j+LDjWdY8thA\ndNpbZ+rU1Gx65/vwse7M2viNfBD5BZGp0YR1m4GVztKUqbc4cpypJzVTT2qmntRMPVPWrLYmqU7N\nzJAhQ+jVqxcXL14kLi6OJ598Eisrq1q3cXV1JTv751t4MzMz0et//hd8UVER8+fP57nnnmP48OEA\nnDp1qubPgYGBZGZmUllZiVZrujMvon46u9kzorcHB85cZe+pK4QO9KrXfvq59sLHrhOfxa4l6toP\npBRe5vGgOfjY129/Qggh2p86zczs2rWLcePGsWTJEv7yl78wfvx49u/fX+s2w4YNIyIiAoDY2Fhc\nXV1rLi0BrFixgkceeYTg4OCa93x8fDhz5gwAV65cwcbGRhqZFmzGyC5YW+jYfOgihcX1f4iis5UT\nz/f7HeN8RpNTmstbJz9g96UDVFXL+l9CCCHuTqm+2+NcgbCwMD744AOcnG6ty3Pt2jUWLlzIunXr\nat3uH//4B1FRUSiKwpIlS4iLi8POzo7hw4czcOBA+vbtWxM7ZcoUpkyZwksvvUROTg4VFRUsXLiQ\noUOH1vodpjwFKKcY7273yTTW7ExgRC93HpvUvcE1O5ebwOq4dVwvK6KHczfmdZ+Nnbnt3TdsxeQ4\nU09qpp7UTD2pmXot+jKTmZlZTSMD0LFjR8zMzO663Z/+9KfbXgcGBtb8+ezZswa3WblyZV1SEi3E\nqL4e7P/hCoei0xnV17PBg1/dnQJ4adDzfBG3nric8/wt8h0e6fEQ3Zy6NlLGQggh2po6XWaysbHh\n008/JT4+nvj4eD755BNsbGxMnZtoBbQaDQ+HBlAN/Pf7BKqq7nqi767sze14pvfj3O83ievlxbz/\nw8dsSdohSyEIIYQwqE7NzLJly0hJSWHRokUsXryYK1eusHz5clPnJlqJbt6ODOruysX0QnZGNs5q\n6hpFQ6jPKP7Y/xmcLB2JSN3Du6f/RU5pXqPsXwghRNtRp5kZQ5KSkmrWampOMjPTMuQW3uDPHx+n\nrKKSCYO9mT6iS83t2g1VWlHKl/HhnMw8g5XOit8EzqSP6z2Nsu+WQI4z9aRm6knN1JOaqddcMzP1\n/tvm1Vdfre+mog1ysrfkxYf64uZkw/Zjl3j9iyiuZhc3yr6tdFY8FjSHhwNnUlFVwcdn/8O685so\nk6UQhBBC0IBmpp4ndEQb1sXDnpV/HMWIXu5culbEq5+fYPfJtEY5VhRF4V6PQSwa+Ac8bNw4eOUo\nf496n/Tia42QuRBCiNas3s1Me33svKidlYWOxyZ1Z8H0ezDXaVizM4GVG6MpaMBzaH7JzaYjLw74\nPcGeQ7lanMEbJ97j8NXj0lwLIUQ7Vuut2Rs3bjT6WVZWVqMnI9qO/t30dPGw59Nt54hOyuGVfx/n\nsYnd6ePv0uB9m2vNmN1tOt2c/Pnvua9YG/8153Mv8FDgDKx0tT+ZWgghRNtTazNz8uRJo5/16dOn\n0ZMRbYujnQXPz+rN7pNpfLU3ife+jmZUHw9mj/HHwrzhT3buo++Jl60nn8d9ycnMM6QUXuaxoDn4\nOng3QvZCCCFai3rfzdRSyN1MLYuxmqVlFbFqSxxpWUV0dLLmqak98HW3b5TvrKyqZFvKLiJS9qAo\nCvd1mcBY72A0SuPcTWVqcpypJzVTT2qmntRMvea6m6lOzcycOXPumJHRarX4+vryzDPP0LFjx4Zn\nWU/SzLQstdWsvKKK8ANJREReRqtRmDbcl0lDfNBoGmf+6nzuBVbHfUlB2XW6OwUwr8ds7M2bfil6\nteQ4U09qpp7UTD2pmXrN1cxoly5duvRuO0hPT6eiooIHHniAfv36kZOTQ0BAAG5ubnz66adMmzat\nMfNVpaSkcQZLDbGxsTDp/tui2mqm1Sj09HXGv5MDcSl5nE7M5lxqHt29HbG2vPvyGHfjYuXEILf+\npBdfIy73PJEZp/C0dUdv5dzgfZuSHGfqSc3Uk5qpJzVTz5Q1s7GxMPpZnc7Dnzx5krfeeotx48YR\nEhLCihUriI2N5dFHH6W8XJ71IdTp0dmJVx8fxIBuehLTCljyWSRHz2Y0yh1Jdua2/K7XYzzQdQol\n5aX83w+fsPnCNlkKQQgh2rA6NTM5OTnk5ubWvL5+/TpXr16lsLCQ69flFJxQz9bKjN/d35MnJnen\nqho+/i6Oj7bEUnyj4c2xoiiM8Q7mT/0XoLdyZuelfbx96kOyS3PvvrEQQohWp06rZs+bN4+JEyfi\n6emJoiikpaXx29/+lr179zJ79mxT5yjaKEVRGHaPO/5eHfjk2zgiz2Vy4UoBT07uQaCPY4P3723f\niUUDF7Lu/CZOXDvN3yLfZU7gA/Tv2LsRshdCCNFS1PlupqKiIlJSUqiqqsLb25sOHTqYOrc6kQHg\nlqW+NausqmLr0VS2HEqhurr61vpOwY2zvlN1dTXHM06yPmEzZZVlDPMYxEz/+zDXmjd4341BjjP1\npGbqSc3Uk5qp11wDwHU6M1NcXMzq1auJiYlBURT69OnDI488gqWlZaMlKdo3rUbDfcN8CfJ14uNv\n49h+/BKxF3N56r4gPFxsGrRvRVEY4j4AX3tvPo1dy+GrkSQVpPJE0MN42Lo10i8QQgjRXOp0N9Oi\nRYswNzdnwoQJBAUFcf78ebZt28a4ceOaIMXayd1MLUtDa+ZkZ8nwXu5cLykjOjmXg9HpWFvo8HW3\na/ASGrbmNgxx68+NypuczTnHsfQT2JjZ4G3n2azLc8hxpp7UTD2pmXpSM/Wa626mOp2Zyc7O5u23\n3655PXr0aObOndvwzIQwwNJcx6MTu9PLz4XPt8ezZmcC0Uk5PD4pEAdb4wdzXZhpzXgwYBrdHLvy\n33Nfse58OPG5iTwc+ADWZtaN9AuEEEI0pToNJJSWllJaWlrzuqSkhJs3b5osKSEA+gXoee2JQfT0\ndSImOYeX/x3JD4nZjbLvXvogFg96jq4dfPkhK4a/nVhJckFqo+xbCCFE06rTZSaNRsPChQuJiopi\n27ZtvPvuu8yfP5/AwMAmSLF2cpmpZWnsmlma6xgc1BEbKzOik3I4GptBQdFNAr0dGzwcbKWzZLBb\nfxRFISY7jmMZUWgUDV0cfJr0spMcZ+pJzdSTmqknNVOvRV9mmjlzJsOGDSM2NhZFUXj55Zf5z3/+\n02gJClEbjaIQOsCLHj6OfLQljn0/XOXcpfxGWd9Jo2iY7BtKQAc/Po/7km+Td5CQd4FHeoThYNE4\na0cJIYQwrTr/09bd3Z2QkBDGjh1Lx44diY6ONmVeQtzBU2/Ly48MYMIgb67llrD8Pyf59kgKVVUN\nf3Kwv2MXFg96jntcunM+7wLLI98hNie+EbIWQghhavU+T9/KF9sWrZSZTsOsMV15MawP9jbmbDqQ\nzIq1p8jKL737xndha2bDb+95lAf9p3Gj4gYfnPmU8MTvqKiqaITMhRBCmEq9m5nmvJVViO4/re8U\n6MqFtAKWfBrJkbPpDW6yFUVhlNcw/jTgWVytXdh9+QBvnfyArJKcRspcCCFEY6t1ZmbkyJEGm5bq\n6mry8vJMlpQQdWFrZcbvpgVxxM+ZNTsT+OS7c0Qn5TB3fDdsGrgKt5edJ/87YCEbEjZzPOMkK068\ny0PdZjDArW8jZS+EEKKx1NrMrF27tqnyEKJeflrfKcCrAx//uL5TYloBT07pQfcGru9kqbNgXo/Z\nBDr5s+58OJ/Ffcm5vERmBdyPRQtZCkEIIcRdmhlPT8+mykOIBtF3sOJ/H+7LtqOpfHMohX98eZrx\ng72ZPqILZrqG3cI9yK0fne29+Cx2LcfSo7hYcInHg+bQyc6jkbIXQgjREHVeaLI+li9fzpkzZ1AU\nhZdeeolevXrVfHbs2DHefvttNBoNvr6+LFu2jK+//potW7bUxJw9e5bTp0/X+h2y0GTL0hJqlny1\nkFXfxpKZV4q3qy3z7wvCs4HrOwFUVFXwTdJ29lw+iE6jY0bXKQR7Dm3w/FhLqFlrIzVTT2qmntRM\nveZaaLJOD82rj8jISPbu3cvq1avp27cvS5cu5cEHH6z5/PHHH2fVqlU8+uijbNmyBRsbGyZNmsSM\nGTOYMWMGnTp1QqfTMWrUqFq/Rx6a17K0hJo52ln8uL5TOdHJORxqpPWdNIqGHs7d8LHrRFzOeU5n\nxXClKJ1ApwDMtfWf0WkJNWttpGbqSc3Uk5qp11wPzWvY+fdaHD16lJCQEAD8/PwoKCigqKio5vPw\n8HDc3G6tWOzk5HTHQPE///lPnnnmGVOlJ9q4W+s7BfLsjHuwMNOyZmcC73x1hoKihi/D0dOlO4sH\nPUdABz/OZMfyt8h3uZB/sRGyFkIIUR91egJwfWRnZxMUFFTz2snJiaysLGxtbQFq/jszM5PDhw+z\ncOHCmtjo6Gjc3d3R6/V3/R5HR2t0Om0jZ/+z2k5rCcNaUs3G6+0YeI8HK9ef5lR8Jks+O8HvZ/Vh\nSE/3Bu1Xjx2vebzA5vgINpz9jndP/4sHg6Ywo/sENBr1/0ZoSTVrLaRm6knN1JOaqdccNTNZM/Nr\nhkZzcnJyePrpp1myZAmOjj/febJx40amT59ep/3m5ZU0Wo6/JtdL1WupNVswLYjdnRzYsDeJZZ9F\nEtzbg4fG+mNh3rBGeIR+OB59O/FZ7Fo2nP2W02mxPBr0EB0sHOq8j5Zas5ZMaqae1Ew9qZl6zTUz\nY7LLTK6urmRn/7zCcWZm5m1nWoqKipg/fz7PPfccw4cPv23b48eP07evPM9DNB5FUQgZ4MWSRwfg\n5WrLgTNXWfpZJBfTCxu8b78OnVk86Dl663uSmJ/M8sh3iMmOa4SshRBC1IXJmplhw4YREREBQGxs\nLK6urjWXlgBWrFjBI488QnBw8G3bXbt2DRsbG8zN5TkeovF56m35y7xb6ztl5pU22vpONmbWzO85\nl9kB07lZWca/oj9nY8IWymUpBCGEMDmTXWbq168fQUFBhIWFoSgKS5YsITw8HDs7O4YPH87mzZtJ\nTU1l48aNAEyZMoXZs2eTlZWFk5OTqdISomZ9p3u6OPHJ1nNsOpBMTHIO86f0QN/Bqt77VRSF4E5D\n8evQmU/PrmFv2iEu5CfzeM+HcbW++/yXEEKI+jHpc2aagjxnpmVpbTUrvlHOFzvOcyI+E0tzLQ+H\nBnBvT7cGPzvmZmUZGxO+4Uj6CSy05swOmM5g9/4GY1tbzVoCqZl6UjP1pGbqtbmZGSFaAxtLM56e\nFsQTk7sD8O+t5/jXN7EU3yhv0H4ttOY83P1BHguag4LCF+fW80Xcem5UNPzWcCGEELdrsruZhGip\nblvf6bs4TsRncuFKAU9O7k73zg275DmgYx8623vxaexajmec5GJBKo/1nIO3XadGyl4IIYScmRHi\nR/oOVvzvnL5MD+5CYXEZ/1j3Axv2XKC8oqpB+3WxcuaFfr8jxHskmaXZvBX1T/ZePmTwcQVCCCHU\nk2ZGiF/QajRMvbczL83tj6ujFTsiL/H6F1FcySq6+8a10Gl0TO86mQW9n8BKZ8XGxC18FPM5RWXF\njZS5EEK0XyZbm6mpyNpMLUtbqZmjnQUjenlQVFpOdFIOh2LSsTLX4utu36DhYL21CwPd+nGlKJ24\n3POcyDiNh70r9hqHBg8dtydt5ThrSlIz9aRm6jXX2kzSzNRCDmT12lLNdFoNfbq64O1qS0xyLicT\nskhOL6S7jyOW5vUfN7PUWTDQrS/mGjNics5x6NIJTmVGo1E0uNu4otWYbnmOtqItHWdNRWqmntRM\nPWlm6kmamZalLdbM3dmGe3u6cSW7mLPJuRyOycDNyRp3Z5t671NRFPw6+NJbH4RiVs357CRisuM4\ndOUYpRU36Gijx1Jn2Yi/om1pi8eZqUnN1JOaqSfNTD1JM9OytNWaWZrrGNKjI3bW5kQn5XA09hp5\n128Q6OOITlv/0TN7cztGBwymj0NvzDQ6LhWlcS43gf1pR8gszcbZ0hEHC/tG/CVtQ1s9zkxJaqae\n1Ey95mpm5NZsIepIURTG9u9EoI8jq7bEcuBMOvGX8nlqahBdPBrWcDhY2DPVbwLjO48hMuMUey8f\nIjLjFJEZp/Dv0IXRXiO4x6U7GkVm9oUQ4tfkzEwtpCtXrz3UzN7anOH3uFNRWUX0hRwORaeDAl07\nOaCpxxDvL2um1Wjxtu/ECM8h+Dr4cL2siIT8JE5mnuHEtdMoioKbdUd0mvb975D2cJw1NqmZelIz\n9eQyUz1JM9OytJeaaTUKQb5OBHh1IC4llx8SszmXmkegtyM2lmaq9mWoZoqi4GrtwmD3/vTV30Nl\nVQVJBSmczT7HwSvHKC4vwc3aFat2OlfTXo6zxiQ1U09qpp40M/UkzUzL0t5qpu9gxfBe7uQU3CAm\nOZdD0el0sLXAy9W2zrda361mdua29NIHMdxjMOZac9KuXyE+L5F9aYfJKL6Go2UHOlg4NNZPahXa\n23HWGKRm6knN1JNmpp6kmWlZ2mPNzHVa+nfT4+poRXRSDifiM7maU0J3H0fMze5+m3Vda2ahNSfA\n0Y+Rne7FxcqZrNIcEvKTOHI1kvjcBCx1lrhaubSLuZr2eJw1lNRMPamZejIALEQrpigK9/Z0J6DT\nrfWdouIzSWqk9Z1+zUxrxlCPgQxxH8D5vAvsuXyQ2Jx4kgtScbZ0ZFSnYQz1GNRuL0EJIdofOTNT\nC+nK1WvvNbO2NGNYT3d0Ws2PTw7O4EZZBd28HNFqDF92qm/NFEXBxcqZgW596e/amyqqSC5I5WxO\nPAfSjnC9vAhXaz3WZlYN/VktTns/zupDaqae1Ey95jozo1S38tXusrKum2zfer2dSfffFknNfnYx\nvZBV38ZxLbeETnpbfirQ8pIAACAASURBVHtfDzz1tnfENWbNisqLOXzlOPvTDlNQdh0Fhd76nozx\nGkEXB582s2SCHGfqSc3Uk5qpZ8qa6fV2Rj+TMzO1kK5cPanZzxztLBhxjztFpeXEJOdwMDodS4s7\n13dqzJqZa83p2sGXkZ2G0dFaT86NPBLyLnA0/QSxOeex0JrT0dq11c/VyHGmntRMPamZejIAXE/S\nzLQsUrPb1azv1NGWs8m5nErIIvlqId07/7y+kylqplE0eNq6M8xjMAGOXSmpKCUxP4nTWTEcTY+i\nqroKdxtXzLTqbiNvKeQ4U09qpp7UTD1pZupJmpmWRWpm2E/rO13NLuHsxVvrO3X8cX0nU9ZMURSc\nrRwZ0LEPAzr2BeBiYSqxOfHsv3KEgpuFuFo7Y2NW/3WmmoMcZ+pJzdSTmqknzUw9STPTskjNjPv1\n+k7HflzfqV9gR8puVpj8+23MrAlyDiTYcyg2ZtZcLcrgfF4iB9KOcun6FezN7XCydGwVczVynKkn\nNVNPaqaeDADXkwwAtyxSs7q5kl3Mx1tiuZRZRAdbC0b382RMP0/VTw9uiMqqSn7IimHP5UOkFF4C\noJOtB2O8RtC/Y+8WvWSCHGfqSc3Uk5qp11wDwNLM1EIOZPWkZnVXUVnFd0dS2H0yjeIbFViYaxnZ\n24NxA71wsm/aZ8QkF6Sy59IBfsg6SzXV2JvbMbLTvQz3GIKtecu7BCXHmXpSM/WkZupJM1NP0sy0\nLFIz9WzsLPl6VwLfn7hEflEZWo3CkB4dmTDEB0+Xpm0kckpz2Zd2mCNXT3Cj8gZmGh2D/r+9Ow+O\n8r7zPP7uU1J362z1oasRiEsIMDKXAXHZJD7iSXacZCAk2FuZ9RRxuWzPjlPlJTFMymOvyWZcKWOv\nZ5LM1NjOzFqJzXjJxjZOYkgIRuKwwaAbAVLr7FardbRad/f+0aKFbIN5BH2J76tKJfTokfTTl0fw\n0fP7Pd+ffTl3FpRhN9qiOpZrketMOamZclIz5STMTJOEmfgiNVPucs1GxwJUVHfwXmUz7R4/AMvm\nZnPPagfzCzKiOqbBsSEq2k9yyPlnPEPdACwyL+DOgvUszJwX83U1cp0pJzVTTmqmXKzCTPxOigtx\ni9Fp1axfmsu6JTmcaejincomTp/v4vT5LubmpXPvHQ5um5uNOgpBIkWbzOaCMjbmr+UTdxUfOI9Q\n7amj2lNHrtHO5oIyVtpKE/bRbiHEzCJ3Zq5BUrlyUjPlrlWzemcP71Y0cabRA0ButpF7Vjm4o8SG\nVhPdxndNfU4+cB7hI9cnBIIBTDojG/LWsD5/DWn6q//GFAlynSknNVNOaqacTDNNk4SZ+CI1U+56\natbi9vFeZTOV1Z2MB4JkpibxpRUFbFyWS0pSdG+weod6+GPLh/y5rZLBsUG0Kg0r7KXcWbCePFNO\nVMYg15lyUjPlpGbKzcgw89xzz3HmzBlUKhW7du1i6dKl4fdVVFTwwgsvoFarmT17Ns8++yxqtZoD\nBw7wi1/8Aq1Wy2OPPcamTZuu+TUkzMQXqZlySmrm6R3idyed/PF0G8Oj4xiStGy+PY8tKwpIN+oj\nPNKphsdHqJxYV+Ma7AJgYeY8NheUsci8IKJbJsh1ppzUTDmpmXIzbs3M8ePHaWpqory8nMbGRnbt\n2kV5eXn4/bt37+a1117Dbrfz2GOPceTIEZYuXcrLL7/MW2+9hd/vZ9++fV8YZoS4lZjTk9l21zzu\nX1vIoY9a+P2pFn57rImDx52ULbFz92oHtkxDVMaSpNGzIX8tZXl3UOWp5YPmI9R6G6j1NmAzWNhc\nUMZq+3L0muiGLCHErSdiYebYsWNs2bIFgKKiInp7e/H5fJhMoV2D9+/fH/5zVlYWXq+XY8eOsWbN\nGkwmEyaTiWeeeSZSwxMioZlSdPzFutncvcrB0bPtvHe8mcOn2/jj6TaWL7Bw7x2zmJ2TFpWxqFVq\nlmQvYkn2Ipz9bRxyHuFk52neqPtPftN4kLK8O9iQv4aMpPSojEcIceuJ2H3grq4uMjMzw29nZWXh\ndrvDb18OMi6Xi6NHj7Jx40ZaWloYGhpi586dbN++nWPHjkVqeELMCHqdhs235/Pc39zBzq+VUGAz\ncbLOzTOvnuR//Z+POXfRQzSXxRWk5vLgoq08s/Z/cE/hXaCCg00fsPvD5/m3qjdo7m+J2liEELeO\nqK0c/Lx/UD0eDzt37mTPnj3h4NPT08NLL71EW1sbDz74IIcOHbpmT4vMTANarSZi477WHJ34fFIz\n5W5Gzb5iS+e+9UWcrnez/9B5Tje4qWnyMic3nQc2z6Xstlw0UXoCykIqc/O/wXfGvsqfmir5bf0H\nnOj8iBOdH7HIMo+vLLiL5TlLUKunPx65zpSTmiknNVMuFjWLWJixWq10dXWF33a5XFgslvDbPp+P\nhx9+mCeeeIKysjIAzGYzpaWlaLVaHA4HRqOR7u5uzGbzVb+O1+uP1Lcgi7+mQWqm3M2uWX5WCo99\nfQmXOvp4t6KZk3UufvLvp/i3/1fF3asclC3NIUkXuV8APu22tGUsWb6Umu4GDjmPUO2up9rdQHaK\nmc35ZdyRs4Jk7dU3kPs8cp0pJzVTTmqmXKwWAEfs17R169Zx8OBBAKqqqrBareGpJYDnn3+ehx56\niA0bNoSPlZWVUVFRQSAQwOv14vf7p0xVCSGuX6E9je/9l8X8z7+5g82lefQOjPDvv6vn+//7Qw4c\nvYhvcDRqY1Gr1JSYF/Dosv/GD1b9d9bmrKRnuJdfN/xffvjhs/zn+d/iHeqJ2niEEDNLRB/N/slP\nfsLJkydRqVTs2bOH6upqUlNTKSsrY+XKlZSWlobPvf/++9m6dStvvPEGb775JgDf+973uOuuu675\nNeTR7PgiNVMuWjXrGxjh96ecfHCqFf/wGEk6Detvy+HulQ7M6dHd2BKgf8THkdZj/KnlGP2jPtQq\nNaWWJWwuWM/sdMc1P1auM+WkZspJzZSbkX1mokHCTHyRmikX7ZoNDo9x5EwbB0848fYPo1GrWFVs\n497VDvKtpi/+BDfZaGCMk52nOeQ8QquvHYA56bPYXLCe27JL0Kg/OyUm15lyUjPlpGbKzbg+M0KI\n+JSSpOXLqxzcuTyfyupO3q1s5lhVB8eqOlhaZObeiY0to7WZpE6tZU3OCu6wL6fOe55DziOc89Ry\nobeJrORMNuWvY23uSlK0KVEZjxAi8cidmWuQVK6c1Ey5WNcsEAzySaOHdyuaaGjpBaAoN417Vs+i\ndH50Nrb8tM4BF4dajlLRfpLRwCjJmiTW5K5kU34Z2SlZMa9ZIpKaKSc1U06mmaZJwkx8kZopF081\nO9/SyzsVod26AexZBu5Z7WBNiR2dNrobWwL4Rgc42lrJH1s+pHekDxUqbrOUcG/xRqyqXPSya/d1\ni6frLFFIzZSTMDNNEmbii9RMuXisWVvXAO9NTD+NB4JkmPR8aWUBm5blRX1jS4CxwBgfuT7hA+cR\nnP2tAOjUOhZkFlFiLqbEvBBzijz5eC3xeJ3FO6mZchJmpknCTHyRmikXzzXr7gttbHn4dBvDI+Ok\nJGnYVJrHl1YUkGFS1hvmZggGg1zsa6JhoIHjzk/oGOgMv89utLHYvJAS80KK0gs/d+HwrSyer7N4\nJTVTTsLMNEmYiS9SM+USoWYDQ6Mc/riV351soW9gBK1GxdrFOdyz2oE9KzobW17pcs08g91Ueeqo\n8tRQ521kNBDqnZOsSaY4ax4l5oUsMi8kPUm6uCbCdRZvpGbKSZiZJgkz8UVqplwi1Wx0bJyjZzt4\n73gzLu8gKuD2+aGNLefkRmdjS/j8mo2Mj9LQ00iVp5ZzXbV4hrrD73Ok5oWno2al5aNWRX/9T6wl\n0nUWL6RmykmYmSYJM/FFaqZcItYsEAhyqt7NOxVNNHWExr7QkcE9q2exZE5WxB/r/qKaBYNBOv3u\nULDx1NLYc5Hx4DgAJp2RReYFobs2WfMx6KJ/ZykWEvE6izWpmXLSZ0YIkTDUahUrF1pZscBCbZOX\ndyqbqbrYTW1zD/kWE/fe4WBVsRXNDWwkeSNUKhV2oxW70cpdjg0Mjg1R5z1PVVcNVZ5ajnd8xPGO\nj1ChYk76LErMC1mcXUyu0R61/jpCiJtH7sxcg6Ry5aRmys2UmjV19PPe8WaO13QSDII5LZm7VxWw\nfmkuSfqbuxj3RmoWDAZp8bVR5amlylPLxd5mgoT+GcxISqfEvIASczELMucq3gAzns2U6yyapGbK\nyTTTNEmYiS9SM+VmWs3cPYMcPN7Mnz9pZ2QsgClFx52353HX8nxSDfqb8jVuZs18owPUeOqp8tRS\n7aljYMwPgFalYW7GHEqyQ09I2QyWm/L1YmWmXWfRIDVTTsLMNEmYiS9SM+Vmas36/CN8cKqFP5xq\nYWBoDL1Wzfrbcrl7ZQHZGTe2NUGkahYIBrjU5wxPRzl9bZNfM8Ucmo4yFzM3Yza6BGvYN1Ovs0iS\nmiknYWaaJMzEF6mZcjO9ZkMjYxw5087BE8109w2jVqlYVWzlntUOHLbpPTIdrZr1DPdS7amjylNL\nbXcDQ+PDAOjVOhZkzaXEXMxi80IykzMiPpYbNdOvs0iQmiknYWaaJMzEF6mZcrdKzcbGAxyvCW1s\n2eoeAGDxnCzuWz2LBQ5lG1vGomZjgTEaey5xzlNDlaeOTr8r/L5coz28iHh2miMuG/bdKtfZzSQ1\nU07CzDRJmIkvUjPlbrWaBYNBzl7w8E5FM/XOHgBm56Ry7+pZ3D7fglr9xaEmHmrWNejh3MQi4gZv\nI6OBMQBStCkUZ81jsbmYReYFpOpNMR3nZfFQs0QjNVNOwsw0SZiJL1Iz5W7lmjW29vJuZTMf17sJ\nArbMFO5Z7WDtYjs67dXvbsRbzUbGR6j3Nob72nQPeQFQocKRlj+x1mYhBal5MWvYF281SwRSM+Uk\nzEyThJn4IjVTTmoG7Z7JjS3HxoOkG/VsWZHP5tJ8DMmfbYcVzzULBoN0+F2cm1hE3Nh7iUAwAECq\nzhRu2FecNR+D7sYWQisRzzWLV1Iz5STMTJOEmfgiNVNOajbJ2z/M7086OfRxK0Mj4yTrJze2zEyd\n7PmSSDUbHBukprsh3Nemf8QHgFqlZk76LBZPbLOQY7RFtGFfItUsXkjNlJMwM00SZuKL1Ew5qdln\n+YfGOHy6ld+dcNI7MIJGrWLNYjv3rnaQYzYmbM0CwQAt/W3h6aimPme4YV9mUgYl2aHpqPmZc0nS\n3JyePJclas1iSWqmnISZaZIwE1+kZspJza5udGycD8918F5lM50TG1sum5fN1++ajz0t6boWC8ez\n/hEfNd31nOuqoaa7Hv/YIABatZZ5GXPCfW0sBvMNfy25zpSTmiknYWaaJMzEF6mZclKzLxYIBPm4\nwc07Fc1cbO8DIN2kZ9VCG6sX2Zidk5rweyqNB8a52Nccno5q9bWH32c1ZIeno4oyZqNTK99WT64z\n5aRmykmYmSYJM/FFaqac1Oz6BYNBGlp6+bjRw59PtzIwFHoc2pqRwqpFVlYX28izxMej0DfKO9QT\nbthX421gZHwEgCSNnoWZ80K7fpsXXHfDPrnOlJOaKSdhZpokzMQXqZlyUjPlLJZU2jt6OXehm8qa\nTj5ucDMyGnpiKN9iZPUiG6uLbTe8bUK8GA2M0dhzcaJhXy0uf1f4fXmmnPB0VGFawVUb9sl1ppzU\nTDkJM9MkYSa+SM2Uk5op9+maDY+Mc/p8F5XVnZy94GE8EPpnrSgvjdXFNlYW20g33twFtbHk8neF\np6Maei4wNtGwz6BNoThrPouziynOmj+lYZ9cZ8pJzZSTMDNNEmbii9RMOamZcteq2cDQKKfq3FRW\nd1Lb5CUIqFRQPCuT1cU2li+wYEhOrE0ir2V4fIR67/mJvjZ1eIdDXZVVqChMK6DEHNr1u3TOAjxd\nAzEebWKRn03lJMxMk4SZ+CI1U05qptz11qzHN8yJGheVNZ1caAstHNZqVCyZY2b1Ihu3zc0mSRd/\n+yhNVzAYpH2gMzwddaG3KdywL1mbRK4xh4LUXPJNoZccoy3hdv+OJvnZVE7CzDRJmIkvUjPlpGbK\nTadmrp5Bjld3UlnTGd7oMkmvoXReNquLbZTMzkKric1WA5HiH/VT091AtaeOVn8rrf2d4XADocZ9\ndoOVPFNuOOTkpeZg0hljOOr4IT+bykmYmSYJM/FFaqac1Ey5G61Zi9tHZXUnldWddPUOAWBM1rJy\noZXVi2zMK8hAneCPen+axZJKa0c37QMdtPjaaOlvC732tYeflLosMymD/NSc0B2c1DzyTbmYkzMT\n/vF3peRnU7kZGWaee+45zpw5g0qlYteuXSxdujT8voqKCl544QXUajWzZ8/m2Wef5cSJEzz++OPM\nmzcPgPnz5/P0009f82tImIkvUjPlpGbK3ayaBYNBLrT1UVndyfFaF30Dof/UM1OTwsGm0J74PWzg\n6jULBAN0DXpo8bXj7G+lxddGa38bvSNTz03WJE8GnImQk2O0op1Gz5tEIT+bysUqzETsKjx+/DhN\nTU2Ul5fT2NjIrl27KC8vD79/9+7dvPbaa9jtdh577DGOHDlCcnIyq1at4sUXX4zUsIQQIkylUlGU\nl05RXjrb7ppHbbOXyupOTtW5ef+Ek/dPOLFlpoQe9V5kI8c886Zf1Co1VoMFq8HC7dbJXzj7Rvpp\n7W+nxdc2EXLaaey5xPmei+FzNCoNdqN1ItzkUmDKJc+UG9UNNIWACIaZY8eOsWXLFgCKioro7e3F\n5/NhMoUeFdy/f3/4z1lZWXi9XnJyciI1HCGEuCa1WsWiwiwWFWbxnS8v4NxFD5XVnZxu6OLA0Usc\nOHoJh9XE6kU2VhXbMKcnx3rIEZWmTyXNnEqxeX742PD4CG2+y9NUoYDTOvFS2XEqfJ45OXNi/U3o\nLk5Bai6ZSRkz4g6XiE8Rm2Z6+umn2bhxYzjQbN++nWeffZbZs2dPOc/lcvHtb3+bX/3qV9TX1/Oj\nH/0Ih8NBb28vjz76KOvWrbvm1xkbG0ernTlPIwgh4svg8BiVVR386eMWPqp1hXvYFBdmsbE0j3W3\n5ZFxxY7et5pAIEC7z8WlHieXvC1c6mnhktdJ7/DUqQaj3kBhRj6FGQWh15n55KXloL1Kkz8hlIja\nZOfnZSaPx8POnTvZs2cPmZmZFBYW8uijj3LvvffidDp58MEHef/999Hrr97syuv1R2zMMl+qnNRM\nOamZctGuWUlBOiUF6fi+NJ9Tda5QD5tL3dRc6uZnb59jUWEmqxfZuH2+hZSk+FxDEsma6TEyP2Uh\n81MWQm7o3/u+kf6pC43726h2NVDlqg9/nFalIcdkv2IdTi55phxStPFx10t+NpWbcWtmrFYrXV2T\nLbddLhcWiyX8ts/n4+GHH+aJJ56grKwMAJvNxn333QeAw+EgOzubzs5OCgoKIjVMIYS4bqYUHRuX\n5bFxWR7e/mFO1IQe9T53sZtzF7t59b06bisK9bBZWmRGP4N62CihUqlIT0ojPSmNEvPC8PGhsSHa\nBjrCAcfZ30bbQAfO/tYpH5+dYr4i4IQWHWckpcs0lbiqiIWZdevWsW/fPrZt20ZVVRVWqzW8Rgbg\n+eef56GHHmLDhg3hYwcOHMDtdvPXf/3XuN1uPB4PNpstUkMUQohpy0xN4surHHx5lYNOr3+ih42L\nU/VuTtW7SdZruH2+hdWLbBTPypxxPWymI1mbzJz0QuakF4aPjQfG6fS7Jx4Tb6O1vx2nr5XT7rOc\ndp8Nn2fSGcN9cC4HHZvBctW9qMStJaKPZv/kJz/h5MmTqFQq9uzZQ3V1NampqZSVlbFy5UpKS0vD\n595///185Stf4cknn6Svr4/R0VEeffRRNm7ceM2vIY9mxxepmXJSM+XitWbBYJAW90C4h42nL9TD\nxpSiCz/qPTc/PSY9bOK1Zp8nGAzSM9w7MT3VHg46XYOeKefp1FpyjTlX9MTJJdeYQ7L25qxhSqSa\nxYsZ2WcmGiTMxBepmXJSM+USoWbBYJDG1lAPmxO1nfT5RwHISkti1cLQo94OmylqUyeJULMvMjg2\nSKuv44qGf220+zoYC46Hz1GhwpJiJj91ch1OvimXNL3yfkEzoWbRJmFmmiTMxBepmXJSM+USrWbj\ngQC1TT2hHjb1bgaHQ7tc27MM4R429ixDRMeQaDW7XuOBcTr8rikLjVt8bfjHBqecl6ozfSbgWA3Z\nqFVXn/6bqTWLJAkz0yRhJr5IzZSTmimXyDUbHRvn7IVuKqo7OXO+i9Gx0F5Js2ypEz1srGSl3fyn\neRK5ZkoFg0G8wz04+9vCHY1bfG14hrxTztOpdeSZcsg35YS3bcgz2dFrQk/Q3ko1u1kkzEyThJn4\nIjVTTmqm3Eyp2eDwGKcbuqis6aTqYne4h838/HRWl9hZscBCquHqrSmUmCk1uxH+UT8tvvYpd3Da\nB6ZuvqlChdVgId+UwzzbLNLIIMdoIzvFfM27OCJEwsw0SZiJL1Iz5aRmys3EmvX7RzhV56ayupN6\nZw9BQDPRlXj1Iiul826sh81MrNnNMBoYo2PANdHRuC286HhofGjKeVq1FpvBgt1gJcdow260kWO0\nYknJlieqrjDj+swIIYS4fqkGPZtK89hUmkd33xDHa1xU1nRy9oKHsxc86LRTe9jopPP5TaFTaylI\nDW25cFkwGMQz5MWv7aOu7RLtA520D3TS4XfR6muf8vEalQarITsUbgzWiZBjw2LIRjeDN+GMN1Jp\nIYSIM1lpydyz2sE9qx10dF/uYdPJyTo3J+vcpCRN7WGjUcv0x82kUqnITsnCYpmFQ1cYPh4IBvAO\n9dLhnwg3A66J16G3P77ic6hVaiwp2eQYrVOCjs1gQafRRf17mulkmuka5LasclIz5aRmyt2KNQsG\ngzhdPiqrOzle04mnbxiANIOOFRM9bIryrt7D5las2Y263ppd7ovTMeCi3X853ISCzuCnnqpSEQpK\nl+/ghKasrNgN1vDC40Qma2amScJMfJGaKSc1U+5Wr1kgGKSxtZeK6k5O1rron+hhY05LYtUiG6uL\nbRRYp/awudVrNh03WrPLe1SF7+L4J+/iDIxO3VdQhYqs5MzJOzkTLzaDheQ42avqekiYmSYJM/FF\naqac1Ew5qdmk8UCAmkteKqs7+ajBzeBwqIFcjnmyh40t0yA1m4ZI1qx/xHfFFJUr9NrfSf+I7zPn\nZiZlhO/gXLn4OEWbEpGx3QgJM9MkYSa+SM2Uk5opJzX7fKNj43zS6KGyupMzjZ5wD5tCeyrrluWR\nn5XCnNw0WTx8nWJxnflGB6asxbn8596Rvs+cm5GUfsXTVZN3dIy6yDZgvBZ5mkkIIcQN0Wk1LF9g\nZfkCK4PDY3xU76ayppPqi14uvVcLgFajZk5uGgsKMpjvyGBubjpJegk38cKkMzI3YzZzM2ZPOe4f\nHaTD7wpPU12euqr1NlDrbZhybqreRI7RHpqyMtjCU1epehMzlYQZIYSYgVKStKxbksO6JTn4Bkdp\n7xniRFU79c09NDh7qHf2wIehXjaF9lTmOzJYUJDB3LwMDMnyX0O8MehSmJM+iznps6YcHxwbotPv\nCk9VXZ62qveep957fsq5Jp1xYqrKHnptCE1Zpemjt0dYpMgVK4QQM5wpRcdaRxbzckK36f1Do9S3\n9FLv7KGuuYeL7f00tvXxbkUzKhU4rKkscGQwvyD0YkqRR4njVYo2mcI0B4VpjinHh8dH6Lw8XeWf\nnLZq7LnE+Z6LU841aFPC63CuXHycrk9LmJAjYUYIIW4xhmQdy+Zms2xuNgBDI2Ocbw2Fm/rmHi60\n99HU2c/7J5wA5FmMoWmpgtDdm3RTUiyHL65DkkaPIy0fR1r+lOMj46N0+t2Td3Empq4u9TVzoffS\nlHOTNcnhgBNefGywkZWcEXchR8KMEELc4pL1WhbPNrN4thmAkdFxLrT1he7cOHtobO2l1T3ABx+1\nAmDLMrBgItgscGREZGNMERl6je4zHY8htK2D299F+0DHFU9XuWjqb+FiX/OUc5M0euyGK5+uCr3O\nSs6M5rcyhYQZIYQQU+h1GhbOymThrNB/TmPjAS6191Pn9FLn7OF8Sy9/OtPGn860AZCdnjx558aR\ngSUjJe5+cxfXplNryTXZyTXZpxwfD4zjHuyaaALYEX66qtXXRlO/81OfQ8d/Lf0my9KXRXPogIQZ\nIYQQX0CrUTM3P525+el8ZU2ot43T5aOuObSQuN7Zw9FzHRw91wFAZmpSeL3NgoIMcswGCTcJSqPW\nTEwz2ShlSfj4eGCcrqHuKX1yXINd6DSxiRUSZoQQQiiiUasptKdRaE/j7lUOAsEgbe4B6pw91DV7\nqXf2UFndSWV1JwCpBt2UcJNvNV112wWRGDRqDTaDBZvBwm2WyeOx6gElYUYIIcQNUatU5FtN5FtN\n3LU8n2AwSEe3n7qJuzZ1zT2cqnNzqs4NgCFJOxluHBk4bCbZLFPcEAkzQgghbiqVSkWO2UiO2cim\nZXkEg0G6eoeoa+6hzhm6c3P6fBenz3cBkKTXMC8vPRxuCu1p6LQSbsT1kzAjhBAiolQqFZaMFCwZ\nKZQtzQGgu28o/LRUvbOHcxe7OXexGwCdVk1RbtpEuMlkTm4aSTrpUiyuTsKMEEKIqMtKS+aOEjt3\nlISenukdGKFhItzUNYdeapt74OglNGoVsye2YFhQkEFRXjopSfLfl5gkV4MQQoiYSzfqWbHQyoqF\nVgB8g6M0tEyuuWls7eV8Sy+/PdaEWqVilt00saA4k3kF6RiTpUvxrUzCjBBCiLhjStFROs9C6bzQ\nozKDw5NdikNbMPRxsb2fg8edqIB8qyn8tNT8ggzSjPrYfgMiqiTMCCGEiHspSVqWzDGzZE6oS/Hw\n6DgXWnvDa24a2/pwunz84VQLADlmQ3hn8AUFmWSmyhYMM5mEGSGEEAknSaehuDCL4sIsAEbHAlxs\nn9yC4XxLL4dPYgJKWAAADaxJREFUt3H4dKhLsTUjJfy01PyCDLLTk6WR3wwiYUYIIUTC02nV4d41\n9xPagqG50zcxLeWlvqWXP59t589n2wHISkuaMi1lz5IuxYksomHmueee48yZM6hUKnbt2sXSpUvD\n76uoqOCFF15ArVYze/Zsnn32WdQTTZOGhoa4//77eeSRR3jggQciOUQhhBAzkFajZk5uGnNy07hn\ntYNAIEiL2xealmoO3b2pqOqkoirUpTjNqA+HmwUFGeRajDH+DoQSEQszx48fp6mpifLychobG9m1\naxfl5eXh9+/evZvXXnsNu93OY489xpEjR9i4cSMAr7zyCunp6ZEamhBCiFuMWq3CYUvFYUvlSysK\nCAaDtHn84Ts3dc4eTta6OFnrAsCYrGW+IxNLejK52UbyLEZyzUZ5JDxORexv5dixY2zZsgWAoqIi\nent78fl8mEwmAPbv3x/+c1ZWFl6vF4DGxkbOnz/Ppk2bIjU0IYQQtziVSkVetpG8bCObS0Ndil09\ng+G7NvXOHj6ud3/m48xpSeRmm8izhD42NzsUcpL00tQvliIWZrq6uigpKQm/nZWVhdvtDgeYy69d\nLhdHjx7l8ccfB2Dv3r08/fTTvP3225EamhBCCDGFSqXClmnAlmlg/W25ABhMyXxS10lb1wCt7gFa\nu3y0dg1w9oKHsxc8kx8LZGckk5dtCt/Fycs2kmM2oNNKyImGqN0vCwaDnznm8XjYuXMne/bsITMz\nk7fffptly5ZRUFBw3Z83M9OANoIXi8WSGrHPPVNJzZSTmiknNVNOaqbcmmX5nznW7x+huaOf5o4+\nmjv6aerop7mzb8p+UwBqFeRkG3HY00JTXPZUZtnTyLWYZvTeU7G4ziIWZqxWK11dk3+pLpcLi2Vy\nn3Cfz8fDDz/ME088QVlZGQCHDx/G6XRy+PBhOjo60Ov12O121q5de9Wv4/X6I/UtxGwr80QmNVNO\naqac1Ew5qZly16qZNVWPNTWbFfOyw8f6/CO0uQdo7Qq9tLlDd3Ja3e0cm3iKCkCjVmHNTCHPYgpP\ndeVmG7FlpST87uGRvM6uFZIiFmbWrVvHvn372LZtG1VVVVit1vDUEsDzzz/PQw89xIYNG8LHfvrT\nn4b/vG/fPvLy8q4ZZIQQQoh4kWbQkzZLz8JZmeFjwWCQ3oGRiXAzOVXV1jVAu8fPySs+XqtRYc8y\nTExVTQYdS0YKarU8Nn4tEQszt99+OyUlJWzbtg2VSsWePXvYv38/qamplJWV8fbbb9PU1MSbb74J\nwP3338/WrVsjNRwhhBAi6lQqFRmmJDJMSZRMNPiDUMjx9g9P3LkJhZvWLh9tXX5a3ANQ4wqfq9Oq\nyTEbwndwLgcdc3oyaumNA4Aq+HmLWRJIJG+bym1Z5aRmyknNlJOaKSc1Uy4WNQsEg3T3DtEycffm\n8sLjdo+f0bHAlHOTdJpQyLEYw4uP8y1GMlOTYtYAcMZNMwkhhBBCGbVKRXZGCtkZKSybO7keJxAI\n4u4dpM09MCXotLh9XOqYGh5SkjTkmqfexcnNNpJh0s/YLscSZoQQQog4p1ZPPjpeOn/yYZrxQACX\nd3DiDs5AeD3OpY5+Gtv6pnwOY7I2FHA+NV01E3YYlzAjhBBCJCiNWk2O2UiO2ciKK46PjQfo6PZf\nMVUVejnf2ktDS++Uz2FK0ZFvMX4m6JhSdNH9Zm6AhBkhhBBihtFq1ORbTORbTFA8eXx0bJx2jz98\nB+fympy65h5qm3umfI50o35KE8DL63IMyfEXHeJvREIIIYSICJ1WE96j6krDo+O0eybv4lwOOjVN\nXmqavFPOzUxNuuIOzuWQYyBZH7tIIWFGCCGEuMUl6TQU2tMotKdNOT44PEabZ2BqM8CuAc5d7Obc\nxe4p52anJ/Pdv1jMwvypnyMaJMwIIYQQ4nOlJGkpyk2nKDd9ynH/0OgVnY5Drzu9frz9Q4CEGSGE\nEELEOUOyjnn5GczLz5hyPFb9jBJ7EwghhBBC3PIkzAghhBAioUmYEUIIIURCkzAjhBBCiIQmYUYI\nIYQQCU3CjBBCCCESmoQZIYQQQiQ0CTNCCCGESGgSZoQQQgiR0CTMCCGEECKhSZgRQgghREKTMCOE\nEEKIhCZhRgghhBAJTRUMBoOxHoQQQgghxHTJnRkhhBBCJDQJM0IIIYRIaBJmhBBCCJHQJMwIIYQQ\nIqFJmBFCCCFEQpMwI4QQQoiEJmHmczz33HNs3bqVbdu28cknn8R6OAmjvr6eLVu28Mtf/jLWQ0kY\nP/7xj9m6dStf//rXef/992M9nLg2ODjI448/zne+8x2++c1vcujQoVgPKWEMDQ2xZcsW9u/fH+uh\nxL3KykruuOMOduzYwY4dO3jmmWdiPaSEcODAAb761a/ywAMPcPjw4ah/fW3Uv2KcO378OE1NTZSX\nl9PY2MiuXbsoLy+P9bDint/v55lnnmHNmjWxHkrCqKiooKGhgfLycrxeL3/5l3/Jl7/85VgPK24d\nOnSIxYsX8/DDD9Pa2sp3v/tdNm/eHOthJYRXXnmF9PT0WA8jYaxatYoXX3wx1sNIGF6vl5dffpm3\n3noLv9/Pvn372LRpU1THIGHmU44dO8aWLVsAKCoqore3F5/Ph8lkivHI4pter+fnP/85P//5z2M9\nlISxcuVKli5dCkBaWhqDg4OMj4+j0WhiPLL4dN9994X/3N7ejs1mi+FoEkdjYyPnz5+P+n8u4tZx\n7Ngx1qxZg8lkwmQyxeRulkwzfUpXVxeZmZnht7OysnC73TEcUWLQarUkJyfHehgJRaPRYDAYAHjz\nzTfZsGGDBJnrsG3bNp588kl27doV66EkhL179/LUU0/FehgJ5fz58+zcuZNvfetbHD16NNbDiXst\nLS0MDQ2xc+dOtm/fzrFjx6I+Brkz8wVktwcRab///e958803+dd//ddYDyUhvPHGG9TU1PD973+f\nAwcOoFKpYj2kuPX222+zbNkyCgoKYj2UhFFYWMijjz7Kvffei9Pp5MEHH+T9999Hr9fHemhxraen\nh5deeom2tjYefPBBDh06FNWfTQkzn2K1Wunq6gq/7XK5sFgsMRyRmMmOHDnCP/3TP/GLX/yC1NTU\nWA8nrp07dw6z2UxOTg7FxcWMj4/T3d2N2WyO9dDi1uHDh3E6nRw+fJiOjg70ej12u521a9fGemhx\ny2azhac0HQ4H2dnZdHZ2SiC8BrPZTGlpKVqtFofDgdFojPrPpkwzfcq6des4ePAgAFVVVVitVlkv\nIyKiv7+fH//4x/zzP/8zGRkZsR5O3Dt58mT47lVXVxd+v3/KlLD4rJ/+9Ke89dZb/OpXv+Kb3/wm\njzzyiASZL3DgwAH+5V/+BQC3243H45H1WV+grKyMiooKAoEAXq83Jj+bcmfmU26//XZKSkrYtm0b\nKpWKPXv2xHpICeHcuXPs3buX1tZWtFotBw8eZN++ffKf9DW88847eL1ennjiifCxvXv3kpubG8NR\nxa9t27bxgx/8gO3btzM0NMTu3btRq+X3MXFz3XnnnTz55JP84Q9/YHR0lL//+7+XKaYvYLPZuPvu\nu/mrv/orAH74wx9G/WdTFZRFIUIIIYRIYPJrjRBCCCESmoQZIYQQQiQ0CTNCCCGESGgSZoQQQgiR\n0CTMCCGEECKhSZgRQkRNS0sLixcvDu9IvG3bNv7u7/6Ovr6+6/4cO3bsYHx8/LrP/9a3vkVlZeV0\nhiuESBASZoQQUZWVlcXrr7/O66+/zhtvvIHVauWVV1657o9//fXXZQ8rIcQU0jRPCBFTK1eupLy8\nnNraWvbu3cvY2Bijo6Ps3r2bRYsWsWPHDhYuXEhNTQ2vvvoqixYtoqqqipGREZ5++mk6OjoYGxvj\na1/7Gtu3b2dwcJC//du/xev1MmvWLIaHhwHo7OzkySefBGBoaIitW7fyjW98I5bfuhDiJpEwI4SI\nmfHxcX73u9+xfPlyvv/97/Pyyy/jcDiora1l165d7N+/HwCDwcAvf/nLKR/7+uuvk5aWxj/+4z8y\nNDTEfffdx/r16/nwww9JTk6mvLwcl8vFXXfdBcC7777LnDlz+NGPfsTw8DC//vWvo/79CiEiQ8KM\nECKquru72bFjBwCBQIAVK1bw9a9/nRdffJEf/OAH4fN8Ph+BQAAIbTPyaWfOnOGBBx4AIDk5mcWL\nF1NVVUV9fT3Lly8HQhvHzpkzB4D169fzH//xHzz11FNs3LiRrVu3RvT7FEJEj4QZIURUXV4zc6X+\n/n50Ot1njl+m0+k+c0ylUk15OxgMolKpCAaDU/aFuRyIioqK+O1vf8uJEyd47733ePXVV3njjTdu\n9NsRQsQBWQAshIi51NRU8vPz+eMf/wjAxYsXeemll675MbfddhtHjhwBwO/3U1VVRUlJCUVFRXz8\n8ccAtLe3c/HiRQB+85vfcPbsWdauXcuePXtob29nbGwsgt+VECJa5M6MECIu7N27l3/4h3/gZz/7\nGWNjYzz11FPXPH/Hjh08/fTTfPvb32ZkZIRHHnmE/Px8vva1r/HBBx+wfft28vPzWbJkCQBz585l\nz5496PV6gsEgDz/8MFqt/BMoxEwgu2YLIYQQIqHJNJMQQgghEpqEGSGEEEIkNAkzQgghhEhoEmaE\nEEIIkdAkzAghhBAioUmYEUIIIURCkzAjhBBCiIQmYUYIIYQQCe3/AyOGJUc4a+knAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "yjUCX5LAkxAX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see a possible solution." + ] + }, + { + "metadata": { + "id": "hgGhy-okmkWL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "A regularization strength of 0.1 should be sufficient. Note that there is a compromise to be struck:\n", + "stronger regularization gives us smaller models, but can affect the classification loss." + ] + }, + { + "metadata": { + "id": "_rV8YQWZIjns", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.1,\n", + " regularization_strength=0.1,\n", + " steps=300,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "print(\"Model size:\", model_size(linear_classifier))" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From ecf4d7ecdbdc1bd0ea2a7696541875f090b33722 Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sun, 24 Feb 2019 01:58:34 +0530 Subject: [PATCH 08/11] Created using Colaboratory --- intro_to_neural_nets.ipynb | 1222 ++++++++++++++++++++++++++++++++++++ 1 file changed, 1222 insertions(+) create mode 100644 intro_to_neural_nets.ipynb diff --git a/intro_to_neural_nets.ipynb b/intro_to_neural_nets.ipynb new file mode 100644 index 0000000..4d21c94 --- /dev/null +++ b/intro_to_neural_nets.ipynb @@ -0,0 +1,1222 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "intro_to_neural_nets.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "O2q5RRCKqYaU", + "vvT2jDWjrKew" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "eV16J6oUY-HN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Intro to Neural Networks" + ] + }, + { + "metadata": { + "id": "_wIcUFLSKNdx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Define a neural network (NN) and its hidden layers using the TensorFlow `DNNRegressor` class\n", + " * Train a neural network to learn nonlinearities in a dataset and achieve better performance than a linear regression model" + ] + }, + { + "metadata": { + "id": "_ZZ7f7prKNdy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In the previous exercises, we used synthetic features to help our model incorporate nonlinearities.\n", + "\n", + "One important set of nonlinearities was around latitude and longitude, but there may be others.\n", + "\n", + "We'll also switch back, for now, to a standard regression task, rather than the logistic regression task from the previous exercise. That is, we'll be predicting `median_house_value` directly." + ] + }, + { + "metadata": { + "id": "J2kqX6VZTHUy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, let's load and prepare the data." + ] + }, + { + "metadata": { + "id": "AGOM1TUiKNdz", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "2I8E2qhyKNd4", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "pQzcj2B1T5dA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1213 + }, + "outputId": "a52d02f8-810a-4765-fff0-f442afd23e62" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.7 2638.5 538.8 \n", + "std 2.1 2.0 12.6 2179.1 423.4 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1462.0 297.0 \n", + "50% 34.2 -118.5 29.0 2126.0 435.0 \n", + "75% 37.7 -118.0 37.0 3142.0 649.0 \n", + "max 42.0 -114.3 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1424.6 500.0 3.9 2.0 \n", + "std 1157.5 384.8 1.9 1.1 \n", + "min 3.0 1.0 0.5 0.1 \n", + "25% 790.0 281.0 2.6 1.5 \n", + "50% 1168.0 410.0 3.5 1.9 \n", + "75% 1719.2 605.0 4.8 2.3 \n", + "max 35682.0 6082.0 15.0 52.0 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.72638.5538.81424.6500.03.92.0
std2.12.012.62179.1423.41157.5384.81.91.1
min32.5-124.31.02.01.03.01.00.50.1
25%33.9-121.818.01462.0297.0790.0281.02.61.5
50%34.2-118.529.02126.0435.01168.0410.03.51.9
75%37.7-118.037.03142.0649.01719.2605.04.82.3
max42.0-114.352.037937.06445.035682.06082.015.052.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.5 28.4 2656.2 540.8 \n", + "std 2.1 2.0 12.6 2182.2 416.9 \n", + "min 32.5 -124.2 1.0 15.0 3.0 \n", + "25% 33.9 -121.8 18.0 1461.0 295.0 \n", + "50% 34.2 -118.5 29.0 2135.5 432.0 \n", + "75% 37.7 -118.0 37.0 3182.0 646.2 \n", + "max 42.0 -114.6 52.0 32054.0 5290.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1441.6 504.0 3.9 2.0 \n", + "std 1124.5 384.0 1.9 1.3 \n", + "min 8.0 3.0 0.5 0.0 \n", + "25% 789.0 282.0 2.6 1.5 \n", + "50% 1163.5 407.0 3.6 1.9 \n", + "75% 1726.0 606.0 4.7 2.3 \n", + "max 15507.0 5050.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.528.42656.2540.81441.6504.03.92.0
std2.12.012.62182.2416.91124.5384.01.91.3
min32.5-124.21.015.03.08.03.00.50.0
25%33.9-121.818.01461.0295.0789.0282.02.61.5
50%34.2-118.529.02135.5432.01163.5407.03.61.9
75%37.7-118.037.03182.0646.21726.0606.04.72.3
max42.0-114.652.032054.05290.015507.05050.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 207.8\n", + "std 116.4\n", + "min 15.0\n", + "25% 119.4\n", + "50% 180.6\n", + "75% 265.9\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean207.8
std116.4
min15.0
25%119.4
50%180.6
75%265.9
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 206.0\n", + "std 114.9\n", + "min 15.0\n", + "25% 119.4\n", + "50% 179.5\n", + "75% 262.6\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean206.0
std114.9
min15.0
25%119.4
50%179.5
75%262.6
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "RWq0xecNKNeG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Building a Neural Network\n", + "\n", + "The NN is defined by the [DNNRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor) class.\n", + "\n", + "Use **`hidden_units`** to define the structure of the NN. The `hidden_units` argument provides a list of ints, where each int corresponds to a hidden layer and indicates the number of nodes in it. For example, consider the following assignment:\n", + "\n", + "`hidden_units=[3,10]`\n", + "\n", + "The preceding assignment specifies a neural net with two hidden layers:\n", + "\n", + "* The first hidden layer contains 3 nodes.\n", + "* The second hidden layer contains 10 nodes.\n", + "\n", + "If we wanted to add more layers, we'd add more ints to the list. For example, `hidden_units=[10,20,30,40]` would create four layers with ten, twenty, thirty, and forty units, respectively.\n", + "\n", + "By default, all hidden layers will use ReLu activation and will be fully connected." + ] + }, + { + "metadata": { + "id": "ni0S6zHcTb04", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zvCqgNdzpaFg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a neural net regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U52Ychv9KNeH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_regression_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `DNNRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a DNNRegressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " dnn_regressor = tf.estimator.DNNRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer,\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " dnn_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = dnn_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = dnn_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % training_root_mean_squared_error)\n", + " print(\"Final RMSE (on validation data): %0.2f\" % validation_root_mean_squared_error)\n", + "\n", + " return dnn_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "2QhdcCy-Y8QR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Train a NN Model\n", + "\n", + "**Adjust hyperparameters, aiming to drop RMSE below 110.**\n", + "\n", + "Run the following block to train a NN model. \n", + "\n", + "Recall that in the linear regression exercise with many features, an RMSE of 110 or so was pretty good. We'll aim to beat that.\n", + "\n", + "Your task here is to modify various learning settings to improve accuracy on validation data.\n", + "\n", + "Overfitting is a real potential hazard for NNs. You can look at the gap between loss on training data and loss on validation data to help judge if your model is starting to overfit. If the gap starts to grow, that is usually a sure sign of overfitting.\n", + "\n", + "Because of the number of different possible settings, it's strongly recommended that you take notes on each trial to help guide your development process.\n", + "\n", + "Also, when you get a good setting, try running it multiple times and see how repeatable your result is. NN weights are typically initialized to small random values, so you should see differences from run to run.\n" + ] + }, + { + "metadata": { + "id": "rXmtSW1yKNeK", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 783 + }, + "outputId": "4fef28b8-97db-4645-d15a-e64169656f38" + }, + "cell_type": "code", + "source": [ + "dnn_regressor = train_nn_regression_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=10,\n", + " hidden_units=[10, 2],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 223.01\n", + " period 01 : 255.23\n", + " period 02 : 161.39\n", + " period 03 : 192.99\n", + " period 04 : 171.10\n", + " period 05 : 193.50\n", + " period 06 : 196.48\n", + " period 07 : 126.93\n", + " period 08 : 181.00\n", + " period 09 : 129.38\n", + "Model training finished.\n", + "Final RMSE (on training data): 129.38\n", + "Final RMSE (on validation data): 128.04\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8VFX6+PHPtGRSJr0RAklIpBqp\nUZEOAqGtIE1AREV0Fay4lt+q+93VdQVXFF0R1EUUFdHYQEEQQQUVEYKIEJLQ0kkmdVJmkin390fI\nLAiEAJlMEp7368XLTLn3PndOYp6c85xzVIqiKAghhBBCtCJqdwcghBBCCHGhJIERQgghRKsjCYwQ\nQgghWh1JYIQQQgjR6kgCI4QQQohWRxIYIYQQQrQ6WncHIERL1qVLFzp27IhGowHAbreTmJjIE088\ngbe390Wf98MPP2TatGlnPP/JJ5/w+OOPs3z5coYNG+Z83mKxcN111zFq1Ciee+65i75uY2VlZfHs\ns89y7NgxALy8vFiwYAHXX3+9y699IZYtW0ZWVtYZn8nPP//M3LlziYqKOuOYr776qrnCuyQ5OTmM\nGDGC2NhYABRFISQkhL/+9a907979gs71wgsvEBkZyYwZMxp9zOeff05ycjKrV6++oGsJ0VwkgRHi\nPFavXk1ERAQAtbW1PPjgg6xYsYIHH3zwos5nNBp58803z5rAALRr144vvvjitARm27Zt+Pn5XdT1\nLsbDDz/MDTfcwPLlywHYt28fc+bMYePGjbRr167Z4rgU7dq1azXJyrloNJrT7mHDhg3Mnz+fTZs2\n4eHh0ejzLFy40BXhCeFWMoQkxAXw8PBg0KBBpKamAlBTU8NTTz3F6NGjGTNmDM899xx2ux2AQ4cO\ncdNNN5GUlMQNN9zA9u3bAbjpppvIy8sjKSmJ2traM67Rp08ffv75Z8xms/O5DRs2MGDAAOfj2tpa\nnnnmGUaPHs3w4cOdiQbA3r17ufHGG0lKSmLs2LH8+OOPQN1f9AMHDuSdd95hwoQJDBo0iA0bNpz1\nPtPT0+nZs6fzcc+ePdm0aZMzkfvPf/7DkCFDmDhxIq+//jrDhw8H4LHHHmPZsmXO4059fL64nn32\nWW6++WYA9uzZw+TJkxk5ciTTpk0jOzsbqOuJeuCBBxg2bBg333wzJ06cOE+Lnd0nn3zCggULmDNn\nDosXL+bnn3/mpptu4v7773f+st+4cSPjx48nKSmJW265haysLABeeeUVnnjiCaZMmcKqVatOO+/9\n99/PypUrnY9TU1MZOHAgDoeDF198kdGjRzN69GhuueUWCgoKLjjusWPHYrFYOHr0KABr164lKSmJ\n4cOH89BDD2GxWIC6z/1f//oXEyZMYOPGjae1w7m+Lx0OB//4xz8YOnQoU6ZM4dChQ87r7tq1i0mT\nJjF27FjGjBnDxo0bLzh2IZqcIoQ4p86dOyv5+fnOx2VlZcqsWbOUZcuWKYqiKCtWrFDmzZunWK1W\nxWw2K5MnT1Y+++wzxW63K2PGjFHWr1+vKIqi/Pbbb0piYqJSUVGh7Ny5U7n++uvPer2PP/5YefTR\nR5WHH37YeWxFRYUyYsQI5aOPPlIeffRRRVEU5T//+Y8yZ84cpaamRqmqqlImTpyobN26VVEURRk/\nfrzyxRdfKIqiKJ9++qnzWtnZ2Ur37t2V1atXK4qiKBs2bFBGjhx51jjuvfdeZdiwYcrbb7+tHD58\n+LTX0tLSlH79+imFhYWK1WpV7r77bmXYsGGKoijKo48+qrz66qvO9576uKG4evTooXzyySfO+01M\nTFR27NihKIqirF+/Xpk0aZKiKIry7rvvKrNmzVKsVqtSUlKiDBs2zPmZnKqhz7j+c+7Vq5dy7Ngx\n5/sTEhKUH3/8UVEURcnNzVX69u2rHD9+XFEURfnvf/+rzJkzR1EURXn55ZeVgQMHKsXFxWec98sv\nv1RmzZrlfLx06VLl6aefVtLT05VRo0YptbW1iqIoyjvvvKN8+umn54yv/nPp1q3bGc8nJiYqR44c\nUX755Relf//+yokTJxRFUZQnn3xSee655xRFqfvcJ0yYoFgsFufjV199tcHvy2+//VYZNWqUUllZ\nqZjNZmXKlCnKzTffrCiKotx4443Kzz//rCiKohw7dkx56KGHGoxdiOYgPTBCnMfs2bNJSkpixIgR\njBgxgmuvvZZ58+YB8O233zJt2jS0Wi16vZ4JEybwww8/kJOTQ1FREePGjQMgISGByMhI9u/f36hr\njhs3ji+++AKALVu2MGzYMNTq//24btu2jZkzZ+Lh4YG3tzc33HADmzdvBuCzzz5jzJgxAPTt29fZ\newFgs9m48cYbAejRowd5eXlnvf7zzz/PrFmzWL9+PePHj2f48OGsWbMGqOsdSUxMJDQ0FK1Wy/jx\n4xt1Tw3FZbVaGTlypPP84eHhzh6n8ePHk5WVRV5eHrt372bkyJFotVoCAwNPG2b7o/z8fJKSkk77\nd2qtTExMDDExMc7Her2e/v37A/DDDz9wzTXXEB0dDcDUqVP5+eefsdlsQF2PVFBQ0BnXHDp0KAcP\nHqSsrAyAr7/+mqSkJPz8/CgpKWH9+vWUl5cze/ZsJk6c2KjPrZ6iKKxdu5bw8HBiYmLYunUrY8eO\nJTw8HIAZM2Y4vwcA+vfvj6en52nnaOj78pdffmHIkCH4+Pig1+udbQUQHBzMZ599xpEjR4iJieGF\nF164oNiFcAWpgRHiPOprYEpKSpzDH1pt3Y9OSUkJ/v7+zvf6+/tTXFxMSUkJBoMBlUrlfK3+l1hI\nSMh5rzlgwACeeOIJysrK+PLLL7nnnnucBbUAFRUV/Otf/2LJkiVA3ZDSVVddBcD69et55513qKqq\nwuFwoJyy3ZlGo3EWH6vVahwOx1mv7+npydy5c5k7dy4mk4mvvvqKZ599lqioKMrLy0+rxwkODj7v\n/TQmLl9fXwBMJhPZ2dkkJSU5X/fw8KCkpITy8nIMBoPzeT8/P6qqqs56vfPVwJzabn98XFpaeto9\nGgwGFEWhtLT0rMfW8/b25rrrruPbb7+lb9++mEwm+vbti0ql4pVXXmHlypU8/fTTJCYm8ve///28\n9UR2u935OSiKQnx8PMuWLUOtVlNRUcHXX3/Njh07nK9brdZz3h/Q4PdleXk5YWFhpz1f79lnn+W1\n117jtttuQ6/X89BDD53WPkK4gyQwQjRSUFAQs2fP5vnnn+e1114DICQkxPnXNkBZWRkhISEEBwdT\nXl6OoijOXxZlZWWN/mWv0+kYNmwYn332GZmZmfTu3fu0BCYsLIzbb7/9jB6IgoICnnjiCT766CO6\ndevG8ePHGT169AXdZ0lJCampqc4eED8/P6ZNm8b27dtJT0/HYDBQUVFx2vvr/TEpKi8vv+C4wsLC\n6NSpE5988skZr/n5+Z3z2k0pODiYvXv3Oh+Xl5ejVqsJDAw877GjR4/m66+/prS0lNGjRzvb/9pr\nr+Xaa6+lurqaRYsW8e9///u8PRl/LOI9VVhYGJMmTeLRRx+9oPs61/dlQ59tSEgITz75JE8++SQ7\nduzg3nvvZdCgQfj4+DT62kI0NRlCEuIC3Hbbbezdu5ddu3YBdUMGycnJ2O12qqur+fzzzxkyZAhR\nUVFEREQ4i2RTUlIoKiriqquuQqvVUl1d7RyOOJdx48bxxhtvnHXq8ogRI/joo4+w2+0oisKyZcv4\n/vvvKSkpwdvbm06dOmGz2Vi7di3AOXspzsZisXDfffc5izsBMjMz2bdvH/369aN3797s3r2bkpIS\nbDYbn332mfN9oaGhzuLP7OxsUlJSAC4orp49e2I0Gtm3b5/zPH/5y19QFIVevXqxdetW7HY7JSUl\nfP/9942+rwsxYMAAdu/e7Rzm+uCDDxgwYICz560hw4YNY+/evWzZssU5DLNjxw7+/ve/43A48Pb2\npmvXrqf1glyM4cOHs3nzZmeisWXLFl5//fUGj2no+7J3797s2LEDs9mM2Wx2Jk5Wq5XZs2dTWFgI\n1A09arXa04Y0hXAH6YER4gL4+vpy5513smjRIpKTk5k9ezbZ2dmMGzcOlUpFUlISY8aMQaVSsWTJ\nEv72t7/xn//8By8vL5YuXYq3tzddunTB39+fAQMG8OmnnxIZGXnWa1199dWoVCrGjh17xmszZ84k\nJyeHcePGoSgKV155JXPmzMHb25vBgwczevRogoODeeyxx0hJSWH27Nm8/PLLjbrHyMhIXnvtNV5+\n+WWeeeYZFEXB19eXxx9/3Dkzafr06UyaNInAwEBGjRpFRkYGANOmTWPBggWMGjWK7t27O3tZunbt\n2ui49Ho9L7/8Mk8//TRVVVXodDruv/9+VCoV06ZNY/fu3Vx//fVERkZy/fXXn9ZrcKr6Gpg/Wrx4\n8Xk/g4iICJ555hnuuecerFYrUVFRPP300436/Hx9fenRowdpaWn06tULgMTERL788ktGjx6Nh4cH\nQUFBPPvsswA88sgjzplEF6JHjx78+c9/Zvbs2TgcDoKDg/n73//e4DENfV8OGzaMb7/9lqSkJEJC\nQhgyZAi7d+9Gp9MxZcoUbr31VqCul+2JJ57Ay8vrguIVoqmplFMHooUQ4gLt3r2bRx55hK1bt7o7\nFCHEZUT6AIUQQgjR6kgCI4QQQohWR4aQhBBCCNHqSA+MEEIIIVodSWCEEEII0eq4dBr14sWL2bNn\nDzabjbvuuothw4bx2GOPkZmZiY+PDy+//DL+/v6sW7eOt99+G7VazbRp05g6dWqD5zUazz5tsikE\nBnpTWlrtsvOLiydt0zJJu7Rc0jYtl7RN44SGGs75mssSmJ07d5KRkcHatWspLS1l0qRJGI1GAgMD\neeGFF1i7di27d++mf//+vPrqqyQnJzvXGxg5ciQBAQGuCq1BWq3GLdcV5ydt0zJJu7Rc0jYtl7TN\npXNZApOYmOjcm8XPzw+z2cy2bdu47777gLqFsAB++uknEhISnPub9OnTh5SUlAte1EkIIYQQlw+X\n1cCcumlccnIygwcPJjc3l++//57Zs2fz4IMPUlZWRlFR0Wm7ugYFBWE0Gl0VlhBCCCHaAJdvJbBl\nyxaSk5NZuXIlU6dOJTY2lgULFrBs2TJWrFhB9+7dT3t/Y2Z1BwZ6u7T7raExN+Fe0jYtk7RLyyVt\n03JJ21walyYw27dvZ/ny5bz55psYDAZCQkJITEwEYODAgbzyyisMHTqUoqIi5zGFhYXO/UPOxZWF\nT6GhBpcWCYuLJ23TMkm7tFzSNi2XtE3jNJTkuWwIqaKigsWLF7NixQpnQe7gwYOdO9weOHCA2NhY\nevbsyf79+zGZTFRVVZGSkkK/fv1cFZYQQggh2gCX9cBs2LCB0tJSHnjgAedzixYt4rnnniM5ORlv\nb28WLVqEXq9n4cKFzJ07F5VKxfz5850FvUIIIYQQZ9MqtxJwZbebdOu1XNI2LZO0S8slbdNySds0\njluGkIQQQgjhHt9++02j3rd06Qvk5eWe8/XHHnuoqUJqcpLACCGEEG1Ifn4eW7ZsatR7779/IZGR\n7c/5+nPPLWmqsJqcy6dRCyGEEKL5LFmyiNTUAwwalMioUWPIz8/jpZeW8a9//QOjsRCz2cztt9/J\ngAGDWLDgTh566BG2bfuGqqpKsrIyyc3N4b77FtK//wDGjRvBl19+w4IFd5KYeA0pKbspKytj0aIX\nCQkJ4R//eJITJ/JJSLiKrVu38OmnG5rtPiWBEUIIIVzkw62H+eVQ4RnPazQq7PaLK0FN7BrGtOHx\n53x9xozZfPLJh8TGxpGVdZxly96ktLSEq6++ljFjxpObm8OTTz7GgAGDTjuusLCAf//7ZXbu/JHP\nP/+Y/v0HnPa6j48PS5e+xmuvvcL3328lMjKK2toaXn99FT/8sJ0PP1xzUfdzsSSBaaOsNju/Hi6m\n9xUhaDUyUiiEEJejbt16AGAw+JGaeoB16z5BpVJjMpWf8d6rrqpbgy0sLIzKysozXu/Zs7fz9fLy\ncjIzj5GQ0BOA/v0HoNE07/5OksC0Uas3pbNjfz63junK4J6R7g5HCCEuS9OGx5+1t6S5ZiHpdDoA\nvv76K0wmE6+++iYmk4k77ph9xntPTUDONkH5j68rioJaXfecSqVCpVI1dfgNkj/N26DdhwrZsT8f\ngENZpW6ORgghRHNSq9XY7fbTnisrK6Ndu0jUajXffbcVq9V6yddp3z6KtLSDAOzatfOMa7qaJDBt\nTGlFDW9/dQidVo2Xp5a0rLJG7S8lhBCibYiOjiUt7RBVVf8bBho6dDg//rid+++/Gy8vL8LCwnjr\nrTcu6TrXXTeIqqoq7r57Lvv27cXPz/9SQ78gspDdH7TmxYUcisKLa3/lwPFSbh7VmdTjpexJN7L4\nz/0JCfByd3iXrDW3TVsm7dJySdu0XG2hbUymclJSdjN06AiMxkLuv/9u3n//4ya9RkML2UkNTBvy\nzZ4cDhwv5aq4YIb1bo/drrAn3UhadlmbSGCEEEK0HN7ePmzduoX331+Noji4997mXfROEpg2ItdY\nyUfbjmDw1nHb2G6oVCo6d6jbRDMjp4wBCe3cHKEQQoi2RKvV8o9//Mtt15camDbAanOwYt1BbHYH\nt47pir+PB2abmaO1+/DSQ1r2mdPlhBBCiNZMEpg24NPvj5JjrGRIr0h6XxGKoii8c/BDkg+vI6RT\nEQUl1ZRX1rg7TCGEEKLJSALTyqUeL2HTrizCA724afgVAPyYt4vfig4AoPWvm0adniO9MEIIIdoO\nSWBasSqLlTe/TEWlUjFvQg88PTQUVBtJzliHl9YLH503Jk4ACulZZe4OVwghhGgyksC0UoqisHpT\nGqUVNfxpYAydIv2wO+ysOrCGWoeVGV1upHNgPNX2KnQ+FtKyJYERQgjxP1OmTKC6uprVq1fx+++/\nnfZadXU1U6ZMaPD4b7/9BoANG9bz3XfbXBbnucgspFZq58ECdqUWEtfej3H9owH48tjXZFXkcE1E\nX/qG98RUW8Hewt8IjzKTm1ZJlcWKj17n5siFEEK0JLNn33rBx+Tn57FlyyaGDh3B2LENJzquIglM\nK1RUbubdzWl4emiYN6EHGrWajNKjbM7cRrA+iKmdbwAgPiAWAM8AEwpBZOSU0ys+xJ2hCyGEcLHb\nb5/Fs8++QEREBCdO5PP44wsJDQ3DbDZjsVh48MG/0L37lc73//Of/8fQoSPo1as3f/3rI9TW1jo3\ndgTYvHkjyclr0WjUxMTE8eijf2XJkkWkph7grbfewOFwEBAQwOTJ01m2bCn79+/DZrMzefI0kpLG\nsWDBnSQmXkNKym7KyspYtOhFIiIiLvk+JYFpZRwOhTfXH8RcY+f2sd0IC/Ci2mrm7YMfAHBrj5vw\n0uoBaO/bDr1GT5W6AIghPbtMEhghhGhGnxz+gr2F+894XqNWYXdc3EL4vcMSuDF+/DlfHzx4GD/8\n8D2TJ09j+/bvGDx4GHFxVzB48FD27PmF9957m3/+8/kzjtu0aSOdOsVx330L+eabzWzZsgkAs9nM\nCy+8gsFgYP78eRw5cpgZM2bzyScfcttt8/jvf1cA8OuvKRw9eoTXXluJ2WxmzpybGDx4KAA+Pj4s\nXfoar732Ct9/v5Vp02Ze1L2fSmpgWpmNP2eSnlNO3y6hDEioy2DXpn9KaU0ZY2JG0Mk/xvletUpN\nJ/9oyq2laDxqSZc6GCGEaPPqEpjtAOzY8R0DBw7hu+++4e675/Laa69QXn72WanHjx/lyit7AtC7\nd1/n835+fjz++EIWLLiTzMxjlJef/XfJoUMH6dWrDwBeXl7ExHQiOzsbgJ49ewMQFhZGZWXlWY+/\nUNID04pknqjgs+3H8Pf1YE5SV1QqFbtOpLC74Fdi/TqSFDPijGPiAmI5WJJGeAczmccqsNTa0HtI\nswshRHO4MX78WXtLXLkXUqdOcRQXGykoOEFFRQXbt39LSEgYTz75NIcOHeQ//3nprMcpCqjVKqCu\ntx/AarWyZMliVq16n+DgEB555IFzXlelUnHq7oo2m9V5Po1Gc8p1mmYLRumBaSVqrHZeX38Au0Nh\n7rhu+HrpKDaXsDbtMzw1HszpPgONWnPGcfV1MN7BFdgdCkfyTM0duhBCiGbWv/9AXn99GYMGDaG8\nvIz27aMA+O67bdhstrMe07FjNIcOpQKQkrIbgOrqKjQaDcHBIRQUnODQoVRsNhtqtRq73X7a8V27\n9mDv3j0nj6smNzeHqKiOrrpFSWBai4+2HSa/uJrr+0VxZWwwDsXB2wc/wGK3MLXzREK9g896XLQh\nCq1Kg0VXCCDrwQghxGVgyJBhzllCSUnjWLv2PR58cD49elxJcXExX3657oxjkpLGceDAfu6//26y\nszNRqVT4+weQmHgNd9xxC2+99QYzZ87m5ZeXEB0dS1raIV5++QXn8T179qJLl67Mnz+PBx+cz5//\nvAAvL9dtJKxSmqovpxm5cgvylrjF+W9Hinjpo99oH+LDk3P64aHT8NXxb1h/dBO9QxOYe+XNqFSq\ncx6/ZM8yjpZnYt49gi5RITwys08zRt90WmLbCGmXlkzapuWStmmc0FDDOV+THpgWzlRdy8oNh9Bq\nVMyb0B0PnYbjpiy+PPY1AZ7+zOg6ucHkBerqYBQUwqIsHMkzYbU5mil6IYQQwjUkgWnBFEVh1YZD\nmKpquXFwHB3DDVhsNaw6sAZFUbil23R8dN7nPU/cyZlJfmGVWG0Ojp+QOhghhBCtmyQwLdj3+/L4\n9XARXTsGMOrqDgB8nLEeo7mYER0H0yUovlHn6eQfgwoVVn0RgEynFkII0epJAtNCFZRUs+abDLw9\ntdwxvjtqlYpfjb/zY/4uonwjGd9pdKPP5a3zItI3gmLrCVA5ZF8kIYQQrZ4kMC2Qze7g9fUHqbU6\nuCWpC0F+espqynk/NRmdWsttPWagU1/YWi7xAbHYFBsh7Wo4nFPunOMvhBBCtEaSwLRAX/x4nGP5\nJvr3COfqbuE4FAerD35Ila2aG+PHE+ETfsHnjPOvWw8mMKISS62d7MKmWQlRCCGEcAdJYFqYw7nl\nrP/xOMF+nswa2QWAb7N3cKg0gyuDuzKoff+LOm/9gnYO7xIAGUYSQgjRqkkC04KYa2y8sf4AKHDH\n+O5467XkVubz+ZGNGHS+zOo29bxTps/F39OPEK9gSuz5gCKFvEIIIVo1SWBakDXfZGAsszC2fzRd\nOgZSa7ey6sAabIqdm7tNxc/j3Av6NEa8fywWu4XA0BrSs8uabD8KIYQQorlJAtNC7EkrZMdv+USH\nG7hhYN1wz+dHNpBXdYLB7ftzZUi3S75GXEAMAMGRZirNVvKKqy/5nEIIIYQ7SALTApRW1LBq4yE8\ntGru/FN3tBo1B4rT+DbnByK8w5gUP65JrhN3sg5GbSgFZD0YIYQQrZckMG7mUBRWfnmQKouNacPj\naRfsQ0VtJatT16JRabi1x0w8NB5Ncq0wrxAMOl/KHFIHI4QQonVzaQKzePFipk+fzuTJk9m8ebPz\n+e3bt9OlSxfn43Xr1jF58mSmTp3KRx995MqQWpxv9uRw4HgpCZ2CGda7PYqi8N6hZCpqK/lTXBId\nDJFNdi2VSkVcQCwVtgoM/lapgxFCCNFqXdhqaBdg586dZGRksHbtWkpLS5k0aRKjRo2ipqaG119/\nndDQUACqq6t59dVXSU5ORqfTMWXKFEaOHElAQICrQmsxco2VfLTtCL5eOm4f2xWVSsWO3J3sLzpI\n58B4hncY1OTXjA+I5VfjfsI6WDjyuwdF5RZCA1y33bkQQgjhCi7rgUlMTGTp0qUA+Pn5YTabsdvt\nLF++nJkzZ+LhUTcssm/fPhISEjAYDOj1evr06UNKSoqrwmoxrLa61XZtdge3jemKv68nBVWFJGes\nx1vrxS3dpqFWNX3z1Bfy6vzrho9kGEkIIURr5LIERqPR4O1dt1NycnIygwcPJisri0OHDjFmzBjn\n+4qKiggKCnI+DgoKwmg0uiqsFuPT7UfJLqxkcM9IencOxeawsergGqwOKzO6TiZQ75oeqCjfSPQa\nTypUJwBZ0E4IIUTr5LIhpHpbtmwhOTmZlStXsnDhQp544okG39+YmozAQG+0Wk1ThXiG0NBLW2/l\nfH47bGTTriwiQ3y4d3pv9J5a3v/tM7Iqchka05/RPQa49PpdQuPYd+Ig3j52juSZXH6/Tak1xXo5\nkXZpuaRtWi5pm0vj0gRm+/btLF++nDfffJPq6mqOHj3Kww8/DEBhYSE333wz9957L0VFRc5jCgsL\n6dWrV4PnLS113foloaEGjMYKl52/ymLl3+/uQYWK28d2o8JkJqX0CJ+nbiZEH8SEjmNcen2Ajt4d\n2MdBIjpaOJqqIeNYEQG+ni69ZlNwdduIiyPt0nJJ27Rc0jaN01CS57IEpqKigsWLF7Nq1SpnQe6W\nLVucrw8fPpx3330Xi8XCE088gclkQqPRkJKSwv/7f//PVWG5laIorN6URmlFDRMHxdIp0o9qq5m3\nD65FpVJxa48Z6LV6l8cR5x8DgD7QBPiQnl3G1d0ufINIIYQQwl1clsBs2LCB0tJSHnjgAedzixYt\nIjLy9GnBer2ehQsXMnfuXFQqFfPnz8dgaJvdajsPFrArtZC49n6M6x+Noih8kPYJpTVljIsdSax/\ndLPEEe3XEY1KQ5WmAGgnCYwQQohWx2UJzPTp05k+ffo5X9+6davz66SkJJKSklwVSotQVG7m3c1p\neHpomDe+Oxq1ml0nUthTuI9O/tGMjh7ebLF4aHRE+0VxrDwLDw+HzEQSQgjR6shKvM3A4VB484tU\nzDV2Zl5/BWGB3hSZS1ib9il6jSdzut+ERu26ouSzifOPRUEhMrqWHGMVlWZrs15fCCGEuBSSwDSD\nr3ZlkZ5dRt/OoQxMaIfdYeftgx9gsdcwrfNEQryCmz2m+JP7IvkE1xWRZeRIL4wQQojWQxIYF8s8\nUcGn3x/F39eDOWPqVtvdnPktR8uP0yfsKq6O6OOWuDr5x6BChcWjbs0dGUYSQgjRmkgC40I1Vjuv\nrz+A3aEwd1w3fL10HCvPYsPxrwnw9GdGlxtRqVRuic1b50WkbwSFtXloNA7Ss8vdEocQQghxMSSB\ncaGPth0mv7ia6/tFcWVsMBYrAbBUAAAgAElEQVRbDasOrkFRFOZ0vwlvnbdb44vzj8XmsBHZ0Ubm\niQostTa3xiOEEEI0liQwLvLbkSK2puTSPsSHKUPiAEjOWEeRuZjrOw6hc2CcmyP8375IfmGVOBSF\nI7km9wYkhBBCNJIkMC5gqq5l5YZDaDUq5k3ojodOw6+F+/kp/xc6GNozvtMod4cI/K+Q16YvBmRf\nJCGEEK2HJDBNTFEU3t54CFNVLTcOjqNjuIGymnLeP/QxOrWOW7vPQKt2+RZUjRLg6U+wPgijNQ8V\nihTyCiGEaDUkgWli23/LZ29GEV07BjDq6g44FAfvHFxLla2ayVeMJ8InzN0hniY+IBazzUy7KAdH\n80xYbXZ3hySEEEKclyQwTaigpJr3t6Tj7anljvHdUatUbMveQVrpYRJCujEw8lp3h3iG+jqYwIgq\nbHYHx/JlczEhhBAtnyQwTcRmd/D6+oPUWh3cktSFID89ORV5rDuyEYPOl1ldp7ptynRD4v3r6mAU\nnxJA1oMRQgjROkgC00S++PE4x/JN9O8RztXdwqm1W3nr4Bpsip3Z3adh8PB1d4hnFeYdikHnS7Et\nD6QORgghRCshCUwTOJxbzvofjxPs58mskV0A+OzIBk5UFTAk6jp6BHd1c4TnplKpiAuIwWQ1ERYO\nGbnl2B0Od4clhBBCNEgSmEtkrrHxxvoDoMAd47vjrddyoPgQ3+X8QIRPOBPjxrk7xPOKOzmdOrS9\nmZpaO1kFlW6OSAghhGiYJDCXaM03GRjLLIy5NpouHQOpqK1kdeqHaFUabus+Aw+Nzt0hnlecfwwA\nakMpIHUwQgghWj5JYC7BnrRCdvyWT8dwXyYOikVRFN5N/YiK2komxCURZYh0d4iNEuUbiafGgzIl\nH5AERgghRMsnCcxFKq2oYdXGQ+i0au6c0AOtRs2OvJ38XpxKl8B4hncY5O4QG02j1hDrF02RpYjg\nIBUZOeU4FMXdYQkhhBDnJAnMRXAoCis3pFJlsTF9eDyRIT6cqCrk44wv8NF6c0v36ahVreujrd9W\nICzKQqXZSn5RlZsjEkIIIc6tdf2WbSG+2ZPDgWMlJHQKZljv9tgcNlYdXIPVYWVG18kEePq7O8QL\nVl/I6xFQN3wkw0hCCCFaMklgLlCusZKPth3B10vH7WO7olKp+OLoZrIrcunfLpHeYQnuDvGixPh1\nRKPSUKEqAGRjRyGEEC2bJDAXwGqrW23XZndw25iu+Pt6kl56hC1Z3xHiFcyUK/7k7hAvmodGR0dD\nFAWWExgMatKzy1CkDkYIIUQLJQnMBfh0+1GyCysZ3DOS3p1DqbZW8/bBD1CpVNzafQZ6rae7Q7wk\n8QGxOBQH7TvWUlZZi7HM7O6QhBBCiLOSBKaRUjNL2fRzFmGBXtw0Ih5FUViT9gllNeWMjbmeWP+O\n7g7xktVv7OgVZAIgPbvcjdEIIYQQ5yYJTCNUWay8+cVBVCoV8yZ0R++hZdeJFFIKf6OTfwyjooe5\nO8Qm0enkgnbV2kJACnmFEEK0XJLAnIeiKKzelEZpRQ1/GhhDXKQ/ReZiPkz/DL3Gkzndb0Kj1rg7\nzCbho/Mm0ieCfHMuXnq1JDBCCCFaLElgzmPnwQJ2pRYS196Pcf2jsTvsrDrwARZ7DdM6TyTEK8jd\nITapuIBYrA4rHaLtFJaZKa2ocXdIQgghxBkkgWlAUbmZdzen4emhYd747mjUajZlbuWYKZO+YT25\nOqKPu0NscvEnh5F8Q+rrYKQXRgghRMsjCcw5OBwKb36RirnGzszrryAs0Jtj5ZlsPP4NgZ4B3NTl\nRlQqlbvDbHL1C9rVeBYBksAIIYRomSSBOYevdmWRnl1G386hDExoh8VmYdWBNSiKwpzu0/HWebk7\nRJcI1AcQrA/khCUHD51KEhghhBAtkiQwZ5F5ooJPvz+Kv68HtyR1QaVS8VHGOoosJYyMHsoVgXHu\nDtGl4gJiqbaZ6dBBRW5RFZVmq7tDEkIIIU4jCcwfWGptvL7+AHaHwtyx3TB4e5BS+Bs783fTwdCe\ncbEj3R2iy8X71w0jBYRXApAhvTBCCCFaGElg/uDtLw6SX1zN9X2juLJTMKWWMtYc+hidWsdt3Weg\nVWvdHaLL1S9oZ/Oqq4ORfZGEEEK0NJLAnGL/0WK++OEY7UN8mDI0Dofi4J3UD6m2mZl8xQTCfcLc\nHWKzCPcOw1fnQ6E1F41a6mCEEEK0PJLAnGJvuhGdVs28Cd3x0GnYmr2d9NLDJIR0Z2DkNe4Or9mo\nVCri/GMoqymnQwcNmQUVmGts7g5LCCGEcJIE5hRTh8Wz/LERdAw3kF2Rx7ojX+HnYWBW1yltcsp0\nQ+qnUwdHVKEocCRX9kUSQgjRckgCcwovTy1hgd7U2mtZdeB97Iqdm7tNw+Dh6+7Qml38yQRG8SkB\nID1HhpGEEEK0HJLAnMWnhzdworqQoVED6BHcxd3huEWUbyQeGg+K7XmoVJCeJQmMEEKIlsOlU2oW\nL17Mnj17sNls3HXXXSQkJPD4449js9nQarU8//zzhIaGsm7dOt5++23UajXTpk1j6tSprgyrQSl5\nv/N97o+08wnnhrixbovD3TRqDZ38ojlUmkFUhAdH801YbXZ02raxcaUQQojWzWUJzM6dO8nIyGDt\n2rWUlpYyadIkrrnmGqZNm8bYsWN57733eOutt1iwYAGvvvoqycnJ6HQ6pkyZwsiRIwkICHBVaOdU\nUVvJa7+8g1al4bYeM/HQ6Jo9hpYkLiCGQ6UZhLY3k52v4WieiS4dA90dlhBCCOG6BCYxMZGrrroK\nAD8/P8xmM3/729/w9PQEIDAwkAMHDrBv3z4SEhIwGAwA9OnTh5SUFIYPH+6q0M5p4/EtlNdUMDl+\nPO192zX79Vua+joYjV8pEEJ6dpkkMEIIIVoElyUwGo0Gb29vAJKTkxk8eLDzsd1u5/3332f+/PkU\nFRURFBTkPC4oKAij0djguQMDvdG6YChjiCORiIBgJnVPQq2S8iC/wB5oflVTpS0EQjhWUEloqMGt\nMbn7+uLspF1aLmmblkva5tK4fFnZLVu2kJyczMqVK4G65OWRRx7h2muvpX///qxfv/609yuKct5z\nlpZWuyTWcHV7ruzRFaOxwiXnb406GKLILM8hIqQXqcdKOFFQjkbtnuQuNNQgbdMCSbu0XNI2LZe0\nTeM0lOS59DfR9u3bWb58OW+88YZziOjxxx8nOjqaBQsWABAWFkZRUZHzmMLCQsLCLo8Vb1uDuIAY\nHIqDdh1qqbHaySqodHdIQgghhOsSmIqKChYvXsyKFSucBbnr1q1Dp9Nx3333Od/Xs2dP9u/fj8lk\noqqqipSUFPr16+eqsMQFqt/Y0SOgbhp1mkynFkII0QK4bAhpw4YNlJaW8sADDzify8vLw8/Pj9mz\nZwMQFxfH//3f/7Fw4ULmzp2LSqVi/vz5zt4a4X6dTm7sWKkuAAJIzy4j6ZqObo1JCCGEcFkCM336\ndKZPn96o9yYlJZGUlOSqUMQl8NX50M4nnJyqHIL9E8jIKcOhKKgvs60VhBBCtCwy1UacV1xALLUO\nKx2i7VRZbOQZq9wdkhBCiMucJDDivOrrYPRBJgDSsqUORgghhHtJAiPOK+5kHYxFWwhAhmzsKIQQ\nws0kgRHnFaQPJNAzgBxzNn4+OtKyyxq1Xo8QQgjhKpLAiEaJD4ilylpNdLSK8spaCsvM7g5JCCHE\nZUwSGNEocSf3RfINqVs5Ml3WgxFCCOFGksCIRqnf2NHqWbdqcroU8gohhHAjSWBEo0R4h+Gj8ybP\nko2PXiszkYQQQriVJDCiUVQqFXH+sZTWlBHTUUdRuYUSk8XdYQkhhLhMSQIjGq1+OrV/eN2Gjuky\nnVoIIYSbSAIjGq2+DsbhVQxAena5O8MRQghxGZMERjRaB9/2eKh1FNTm4qnTSCGvEEIIt5EERjSa\nRq0hxj+aE9UFxEZ5kldUham61t1hCSGEuAxJAiMuSLx/DADB7aoByJBhJCGEEG4gCYy4IPUL2uFb\nCsi+SEIIIdxDEhhxQWL9o1Gr1BTb89BqVLIejBBCCLeQBEZcEE+NBx0M7cmuzCU60pusggrMNTZ3\nhyWEEOIyIwmMuGDx/rE4FAfh7WtQFDicK3UwQgghmpckMOKC1dfBaP3qho9kOrUQQojmJgmMuGBx\nJ2cilSknUKmQOhghhBDNThIYccF8PXyI8A4jszKLDuE+HMszUWu1uzssIYQQlxFJYMRFiQuIpdZe\nS/sOduwOhWP5JneHJIQQ4jIiCYy4KPX7InkE1A0fyTCSEEKI5iQJjLgocf51CUylugCQQl4hhBDN\nSxIYcVGCvQIJ9AwgqzKLyBBvDueWY7M73B2WEEKIy4QkMOKixQXEUGmtomMHFbVWB5kFFe4OSQgh\nxGVCEhhx0errYLyC6xayk2EkIYQQzUUSGHHR6utgzDojIDtTCyGEaD6SwIiLFuEThrfWi5yqLEID\n9KRnl+FQFHeHJYQQ4jIgCYy4aGqVmriAGIotpcR00FFdYyPXWOXusIQQQlwGJIERl6R+GMkQVlfA\nK3UwQgghmoMkMOKS1BfyWj2LAFnQTgghRPOQBEZckg6G9ujUOvLMOfj7epCeXYYidTBCCCFcTBIY\ncUm0ai2xfh3JryogvoMXpqpaCkvN7g5LCCFEGycJjLhkcQGxKCgERFQDMowkhBDC9SSBEZesvg7G\n4VUMSCGvEEII19O68uSLFy9mz5492Gw27rrrLhISEnjkkUew2+2Ehoby/PPP4+Hhwbp163j77bdR\nq9VMmzaNqVOnujIs0cRi/DqiVqkpqM3BR3+VJDBCCCFczmUJzM6dO8nIyGDt2rWUlpYyadIk+vfv\nz8yZMxkzZgxLliwhOTmZiRMn8uqrr5KcnIxOp2PKlCmMHDmSgIAAV4Ummphe60mUbyRZFbnEd7iO\nfRllFJdbCPbXuzs0IYQQbZTLhpASExNZunQpAH5+fpjNZn7++WdGjBgBwLBhw/jpp5/Yt28fCQkJ\nGAwG9Ho9ffr0ISUlxVVhCReJD4jFrtgJbmcBID1HemGEEEK4jst6YDQaDd7e3gAkJyczePBgduzY\ngYeHBwDBwcEYjUaKiooICgpyHhcUFITRaGzw3IGB3mi1GleFTmiowWXnbqv61HRna/Z2vEMrAS1Z\nxir+5ILPUdqmZZJ2abmkbVouaZtL49IaGIAtW7aQnJzMypUrGTVqlPP5c60V0pg1REpLq5ssvj8K\nDTVgNFa47PxtVYgqHICcykw8dZ35LcPY5J+jtE3LJO3ScknbtFzSNo3TUJLn0llI27dvZ/ny5bzx\nxhsYDAa8vb2xWOqGGAoKCggLCyMsLIyioiLnMYWFhYSFhbkyLOECBg9fwr3DOG7KJC7KQH5xNaaq\nWneHJYQQoo1yWQJTUVHB4sWLWbFihbMg97rrrmPTpk0AbN68mUGDBtGzZ0/279+PyWSiqqqKlJQU\n+vXr56qwhAvFB8RQY68lor0NgAypgxFCCOEiLhtC2rBhA6WlpTzwwAPO55577jmeeOIJ1q5dS2Rk\nJBMnTkSn07Fw4ULmzp2LSqVi/vz5GAwyLtgaxfnH8kPeLnR+ZYCWtOwy+naR3jQhhBBNz2UJzPTp\n05k+ffoZz7/11ltnPJeUlERSUpKrQhHNpH5BuzLy0WqiZT0YIYQQLiMr8YomE6QPJMDTn6Plx4lt\n50t2QSXVFpu7wxJCCNEGSQIjmoxKpSLOP4ZKaxVRHVQowOHccneHJcRlQ1EUKqprOZpnYldqAYeO\nl7g7JCFcxuXTqMXlJT4glj2F+/AMrEtc0rPLuCou2M1RCdF2WG12isotGMvMGMvq/1v3dVG5GUut\n3fleD62aJQsG4q2X/9WLtueiv6uPHz9OTExME4Yi2oK4k3UwlaoC1KoIqYMR4gI5FIXyytpTEhPz\nKQmLmbLKsy9P4OmhIdTfi9AAPaEBXhjLzOzNKGLfkSL694ho5rsQwvUaTGBuu+2204puly1bxj33\n3APAU089xTvvvOPa6ESr084nHG+tF5kVmURHxHMs30SN1Y6nznUrJwvR2phrbKf1mpz+tQWb3XHG\nMWqViiA/T7pFBxIaoCfE34vQgLp/IQF6DF46VCqV8/25RVXszShiT5pREhjRJjWYwNhspxdg7ty5\n05nANGbFXHH5UavUdPKP4ffiVK7poONYvsLRPBPdogPdHZoQzcbucFBiqjlrD4qxzEKl2XrW43y9\ndESF+pyWmNR/HWTwRKs5d9mioiiYaisorC7CWF1EobmIkE4m9h9VY6m1ofeQYSTRtjT4HX1qNg+n\nJy1/fE2IevEBsfxenIp3UN0y2enZZZLAiDZFURQqzdY/9KD8ryalxFSD4yx/5Gk1KkL8vYht51eX\nnDh7Uep6VBpTq1Jlra5LUsxFFFYXUVhtPPl1MRa75fQ3h4A1eyj7j5aQ2FXWZBJtywWl5JK0iMao\nr4Ox6AqBQKmDEa3ShRTLnsrf14NO7f1Oq0cJDfAixF9PgMETdSP+P2qxWSg0n+xJqS6m0Gx09qpU\nWc/cC06r1hLiFUy4Vxyh3iGEeYWQX13AtuwdaAIL2ZNWKAmMaHMaTGDKy8v56aefnI9NJhM7d+6s\n66o0mVwenGidOhrao1NryarKon1oFEdyy7HZHQ12fwvhblabnU+/P8aRvPJGFMuenpic+rVHI+u9\nau1WjM4kpS45qe9ZMdWeucmfWqUmxCuIWL+OziQlzDuUUK8QAvX+qFWn/3yVWsrYlr0Dr7BC9qUV\nU2u1Nzo2IVqDBhMYPz8/li1b5nxsMBh49dVXnV8LcTZatZYYv44cLjtG3w5e5BqryDxRQVx7f3eH\n1iJknqigsMxMvy6h0qvZQtRa7bzy8W8cOF6KSgXBfnq6RQeenpyc7E35Y7FsQ2wOG0XmEozmIgqq\n63tRijFWF1Fac2bPpAoVQfpAugV1JtQrhDDvun+hXiEE6wPRqBufgATqA7giKIYMMqlRzBw4VkLv\nzqGNPl6Ilq7BBGb16tXNFYdoY+ICYskoO4p/aBVQVwcjCQwUl1t4fs1eqmtsjLmmI1OGxkkS42Y1\nVjsvJ/9GamYpveJD+PMNPS6op8LusFNiKaPQbPxDbUoRJZZSFM6shQnw9KdzQFxdcuLsTQkh2CsY\nnbrpim2v6dCHjJLjaAIL2J1WKAmMaFMa/EmprKwkOTmZW2+9FYAPPviANWvWEB0dzVNPPUVISEhz\nxChaoXj/ujqYWs8iwIe07DLGXBvt3qDczOFQeOOLg1TX2PD10rHx5yysNgczrr9Ckhg3qam1szR5\nH4eyyuh9RQh3T7zyrEOdDsVBWU25MzFxJilmI8XmUuzKmfUwBg9fOvnH1PWieJ1MVLxDCPUKxkPj\n0Ry3x7VRvXl33yfoQ438erhYhnJFm9JgAvPUU0/Rvn17AI4dO8aSJUt46aWXyMrK4p///Ccvvvhi\nswQpWp9Y/46oUJFrziYsoDcZOeU4HApq9eX7i/rLnZmkZ5fRt3MoN4/qzL8/+JUte3Kw2h3MHt2l\nUcWdoulYam0s/ei3ul3TO4dy1w09qHVYOGbKP1lAW3yyLsVIkbkYq+PMfb18tN50NLQ/rRcl9OSQ\nj5dW74a7Ol2YbwgdfCPJUfIx28wcPF4qK2OLNqPBBCY7O5slS5YAsGnTJpKSkrjuuuu47rrr+PLL\nL5slQNE66bV6OhgiyTJlk9BhED/uN5JjrKRj+OVZO3Ukt5zPtx8j0ODJtJExWDVVPDKzNy+s/ZXv\nfs3DanNw29iuaNTy13FzMNfYWPrRPtJzyunXNYw7J3QntfQQK39/j1rH6Wu06DV62vmEn1KTEur8\n2kfn7aY7aLxeYVeRXZmHJqCQ3WmFksCINqPBBMbb+38/nLt27WLKlCnOx9LlLc4nLiCWrIpcgiIs\nsL+uDuZyTGDMNTZeX38ARVG4fVxnVhx8nYJqI7O6TuEvM3rz4of7+PH3E1htDuZN6C5d/C5mrrHx\n4kf7OJxTztXdwpg3oTs/n9jDmrSP0ao0jOw4lHDvUOeQj0Hn26r/f9c79ErWH/0KzzAje9ON2EZ3\nke8x0SY0+F1st9spLi4mKyuLvXv3MmDAAACqqqowm83NEqBoverrYBzexQCX7Xow725Ox1hmYWz/\naI7Y95BfVYBDcbA69UO2n9jOQ9N6ckWUP78cKuS1z37HajtzGXnRNKotNpZ8+CuHc8q5tns4d4zv\nxtdZ3/LeoY/w0ui5r/edTIwfS//IROIDYvHzMLTq5AUg3CeMdj7h4GukqtZC2mX6cyjangYTmHnz\n5jF27FgmTJjAPffcg7+/PxaLhZkzZzJx4sTmilG0UvUL2p2oySHQ4El6dtlltwXFzgMn+OnACWLb\nGejTU8fXWd8SrA/kkX73EugZwPqjX/F55nrun5pAt+hA9mYU8conv1FrPfsiaeLi1ScvR3JN9O8R\nzu3juvLJkS9Yf/QrAj0DeKjvPcT6t81C816hCSgqO5oAI3vSjO4OR4gm0WACM2TIEHbs2MEPP/zA\nvHnzANDr9fzlL39h1qxZzRKgaL0MHr6Ee4dyrDyTKzr4Yaq2cqLkzFVE2ypjmZnVm9Pw9NAwd3wX\n3k9LxqE4mNV1KtF+HXi433za+7ZjR+5O3kl7n7sndeWquGB+P1rC0uTfqDnHSq/iwlVbrLywdi9H\n80wMuDKCW8Z05u3UNXyX8wORPhE83G8+ET5td6Xa3mEJAHiEFpKSVojDcXn9ISHapgYTmLy8PIxG\nIyaTiby8POe/Tp06kZeX11wxilYszj8Gi72GsIi6wsjLZRjJ7nDw+voDmGvs3DyyMynlP5FXdYKB\nkdfQJSgeqFsL5ME+d9MlMJ79RQdZ/vt/uXVCJ/p0DiU1s5QXPvwVc82ZM1/Ehak0W3n+g185ll/B\nwIR23DQqluX73yKl8Dfi/GN5sM+fCfBs22sURfpEEOYVgtrPiMliISPn8vg5FG1bg0W8w4cPJzY2\nltDQusWP/riZ4zvvvOPa6ESrFxcQy4/5v6AylAIq0rPLGNKrvbvDcrn1PxznSK6Jq7uF0THawQd7\nthHoGcDE+HGnvc9Lq+eenrfzbmoyvxSksHTva9w16ja0GhW7Ugv59we/8tD0nvjodW66k9at0mzl\n3x/sJaugksE92zFxWHte+XUF2ZV59Azpwa09ZuKhafufrUqloldYApszt6H2rxtG6tJRNlgVrVuD\nCcyiRYv4/PPPqaqqYty4cYwfP56goKDmik20AfEn62CKbLn4esWSnl3u5ohcLz27jPU/HifYz5NZ\nI+N55ffXTg4dTTnr2iBatZY53acTqPdnc+Y2Xtr7Gn8eehs6rZof9p/g+ff38tBNvfDzbp7Fz9qK\niupa/v3Br2QXVjK0VySjBwXzYsoyiiwlDIi8humdJ17Q0vytXa/QK9mcuQ3PkEL2pBu56forZO0h\n0ao1OIR0ww03sHLlSl566SUqKyuZNWsWd9xxB+vXr8disTR0qBAABOuD8Pfw40j5ceKj/Cg21e3k\n21ZVW6y8sf4AAPMm9GB7wXZyK/O5rl0i3YI7n/M4lUrFDXFjmNZ5IpXWKpb+uoJrrlEztHd7sgor\nWfz+Xsora5rrNlo9U3Utz6/ZS3ZhJcN6t2fwdT4sOZm8jI25nhldbryskheAjoYogvSBqAOMlFaa\nOZYnG/KK1q1RiwG0a9eOe+65h40bNzJ69GieeeYZBg4c6OrYRBugUqmID4iloraSqPZ1f+1ltNFe\nGEVReGdTGsWmGiZcF4NPoJmvjm8lwNOfG68Y36hzDIm6jjsSZqMoDlbsX0V8Qjkj+3Ugr6iK597f\nS4lJ/nA4H1NVXfKSY6xiRJ8o+vaDl/euoMpazU1dJjGu06hWPzX6YqhUKnqFXolDZUXtV8TutEJ3\nhyTEJWlUAmMymXj33Xe58cYbeffdd7nrrrvYsGGDq2MTbUT9dGqdf13hYFtdh+LH30+wK7WQuPZ+\njO3fgdWpH2JX7MzsOhkvrVejz9Mr9Eru630nXho97x1Kxj/uOGOv7UhBSTXPvZeCsazt9mBdqvLK\nGhav2UuusYrr+0XR+aoqlv+2CrvDztwrb2ZQ+/7uDtGtnLORQgrZk2a87JY1EG1LgwnMjh07ePDB\nB5k8eTL5+fk899xzfP7559x+++2EhbXdKYeiadXXwZQq+Xh6aNrkTKSC0mre3ZyOl6eGOyf0YGvO\ndrIrcrkmoi89grte8Pk6+cfwUN97CNYH8uWxr6kJ/5U/DYymqNzCc++lXFbT0Rur7GTykldUxajE\nDkR0LmDVwTXo1DoW9LrD+cv7chbj1xF/Dz+0QYUUmarJLKhwd0hCXLQGE5g77riD1NRU+vTpQ0lJ\nCW+99RaPP/64858QjdHOJxwvrZ4j5ce5or0/J0qqKa+qdXdYTcZmd/D6ugPUWO3MHtUFq7acjce+\nxt/DwJQrJlz0eSN8wljYdwEdfCP5MX8X+YbvmTS0I6UVNSx6L4XcoqomvIvWrbSihkXv7yW/uJrR\nV3dAH53Bx4fX4+dh4ME+f+aKwDh3h9giqFVqeoVdiV1Vi9pQIovaiVatwVlI9dOkS0tLCQw8fcpd\nTk6O66ISbYpapaaTfwwHig+REKXj92OQkV1Gv65toxfv8x3HOJZfQf8eESR2C+WFPcuwKXZmdJ2M\n9yVu9ufvaeCBPn/mzd/f5ffiVCr8Kpk8fDQfb81h0XspPHxTr8tyf6lTlZgsLF6zl8JSM0nXRGEJ\nT+H7rD2EeYUwv9cdhHjJzMlT9QpN4LucH9GFFLD7UCE3Du50WdYEidavwR4YtVrNwoULefLJJ3nq\nqacIDw/n6quvJj09nZdeeqm5YhRtQP2+SPrAugLetjKMdCizlA0/ZRIaoOfmUZ3Zmr2dzIpsEsP7\nkBDSvUmuodfqufuq27gmoi+Zpmx+sX/K5JHhVJmtLH5/L8fyL9/ZJCUmC4vfr0texvSPpChoBz+f\n2EO0oQMP9b1HkpeziC9914AAACAASURBVA+IxVfngy7ISEFpNblG6ckTrVODPTAv/v/27jw8yvre\n///zvmfNJJNkksxkJ4SEJSQBwia7VEGpWqwiYCmoPV30qL+259hzTo+nre3lafuj7TntafW0atuj\nhaKIKy7FDVCUPQk7JCSE7MlksieTZbbvHwEsLqyZ3DPJ+3FdXpdMZu77BXcy8879Wd6//jVPP/00\nWVlZvPfee/zoRz/C7/cTExPDpk2bhiqjGAbOTuTtUhvR62zDooDp6vHw1OvHUBSFb30pl3ZvC69X\nvI3VGMXycUsH9Vw6VceanBXYTDFsqdzKB94X+PKNS3nl7VZ++Wwx/7RiMmPTYgf1nKHO1d7DLzYU\n42rvZcmcJE5b3uV0cxU5ceP4Rt4azHqT1hFDkqqoTLbn8VHdHlRrK/tLnKQ5orSOJcRlu+gdmKys\ngbHj66+/ntraWu666y4ee+wxEhMThySgGB5GRaehV/VUdFSSlRJNtbMLd69H61hXLBAI8MzfTtDa\n2cet8zPJTLGy/vjzeP1e7hx/O5FXOXT0WRRF4UtZS7hz/G10e9xsbX+Bm2+IwOP1898bD3K8snXQ\nzxmqXG0fFy83zE3ghPFNTndUMSNxKvdNukeKl4sosA9MaNbHN8o8GBG2LljAfHJcNDk5mcWLFwc1\nkBieDKqe0dHp1HbVMyYtggBwsiZ894PZcaiewtImxqXHcvOsDLZVf0hFRxXTHJOZYs8L6rnnp87m\nm/l3EQC2tb3K9Yv9+Px+frPpIIdPNQf13KHA2dbD2g1FuNp7WTQ3msPqazS6nVyfvoC7Jq5Ar17w\nxrIAxtmysOgjMCU0Uevqor5ZhpFE+LmkfWDOkole4mpkx2QSIEBkQhcQvvNg6pu72fBuKRaTnm/e\nMpGmXhevndpClCGSFeO+PCQZJttzB/aK0ZvZ0foWs67rAAL87sVDFJcO39+ona1ufrGhiOaOPr4w\nL4KiwGu09bVzW/bN3D72FlTlst7SRiydqiM/YSJe1Y0a1cZ+uQsjwtAFf9qLi4tZuHDhuf/O/vna\na69l4cKFQxRRDBdn58H0GpyoihKWBYzH6+eJzUfp9/i554sTsEUb+evxTXj8XlaOv40oY+SQZRkT\nk8FD0x4g3hxHYftHTLq2FlUN8L+vHGHfieG3y2pji5u1G4pp6ehj/jyFQu9r9Pn6uCtnJYtGXat1\nvLBzdl8cfZyTQtmVV4ShC95r3bJly1DlECNAZkwGCgqnOyvJSJrJ6YZO+jw+TIbw6Unz8genqGrs\nYt6kZKZPcLCt+kPK209TYM9nqmPSkOdJtNh5aNoD/OHQnznWeYised1U7MrmD68ewePNYU5e8pBn\nCob65m5++WwxbV39XDOvj8L+7Rh0Bu7Lv5vc+PFaxwtLE+LGYdaZ8NqdVBV24mzrwRF76TtGiyvX\n7+vHH/BrHSPsXfAOTGpq6gX/E+JyROjNpFlTqOyoZmx6FD5/gFO14TMP5mhFC1v2VpFoi2DVorE0\nuZt5tfxvRBosrBx/m2a5YkxWvlNwHxPjxnO6u5ykmYcwW3z86fXjvH+gVrNcg6W+uZtfbCimrauP\ngnmtHOrfRqTBwncKviXFy1UwqHryEnLw6rpRLB1yF2aItPa28e8f/ifPHnpV6yhhTwaMxZDKihmN\nN+AjxjHQzydc+iJ1uPv54xvH0KkK31qai9Gg8tcTm/D4PawY92WsRm2XoZr1Ju6bdA+zkqfT2FtP\nbMF+LDH9PLOlhPcKw3fTyVpXN2s3FNPe3cfEuXWc6N9DnNnGP0+7n9HRo7SOF/amnF2NFCerkYbK\nzrq99Pp6eavsfXq80pz1agS1gCktLWXRokWsX78egH379vGVr3yFNWvWcO+999LePvDb9x//+Efu\nuOMOli9fzvvvvx/MSEJjZ+fBeM0uFMJjIm8gEODpN0/Q3tXP7QvGkJkczY7a3ZxsO8XkhFymOSZr\nHREYmJi5esJyvjj6etr6WzFN3I01oZu/vlPK3/ZUah3vstU0dfHLDUV0uHvInltOhecwqVHJPDTt\nfhItdq3jDQu58eMxqgbMjiZO1bVLt/Mg8/l97KzfB0Cvt4+9DUUaJwpvQStg3G43jz76KLNnf9z9\n9ec//zk//elPWbduHQUFBWzcuJHq6mrefPNNNmzYwBNPPMHPf/5zfD5fsGIJjZ1t7FjVXUWqPZLy\nug68vtAeC95WXMuBMhc5GTZuvGYUrp4WXil/E4s+gpXjbw+p1XmKonDLmBv5yvjb6fX1QNYuopNb\n2bStnM0fVYRN9+EaZxe/2FBMR5+bUbOPU+spIzs2k+8W3EesKUbreMOGUWdkYvwEvPpOlIguuQsT\nZMdaSmjra8fXkogSUPmgZmfY/EyGoqAVMEajkaeeeuq8rtU2m422toHfuNvb27HZbOzZs4f58+dj\nNBqJi4sjNTWVsrKyYMUSGos2WnFEJHCqrZKx6dF4vH5O14duR9zapi42bi0j0qznG7dMRAH+euIF\n+n39LB93KzGm0OxDNC91FvdOuhtFUfCm7yVmVAOv7KjgpQ9OhfwbZlVjJ794tpgubyfJMw/S5K1h\nij2PByd/A4tBJpkOtoIz+xbp4xrYL/Ngguqjur0AeOqy8LYk0uB2crKtXONU4StoBYxer8dsNp/3\n2MMPP8wDDzzAjTfeSGFhIbfddhsul4u4uI/7lcTFxdHUJL8FDGdZsZn0+nqxJ3kBKK0JzWEkj9fH\nE5uP4vH6+dpNOdisJj6s20Npaxl58TnMSCzQOuIF5SdM5DsF9xJpsNCfdICYrAre2HWa594rC9ki\nprKhk18+W4zb30bCtCLafC7mpc7i63mrMegMWscblnITctArOiIcLspq2mnv6tM60rDU1tfOEddx\n/N3R6Ppi8DYOzOF6v2anxsnC15BuWfnoo4/y2GOPMW3aNNauXcuGDRs+9ZxLeWO12Szo9cFbemu3\nh+Zv1cNFQVcOu+r3YbEPbGh3urHrkv/Nh/LaPPXKYWqauvni7NHcOHcMru4WXi1/E4shggfn3EWc\nJXrIslwpuz2X9MR/5Wfv/45GSog19fFOYQC9Qcd9t09CVQdn+GswrktZdRv/tfEAPbpmYvIP0u13\nsyLvFpZNvCmkhunCzcWvjZXJyRMprDsM5m5K6zu5aU7CkGQbST44uoMAAbzOdO76Yg6v7iinpyea\nQ65jqJFe4i02rSOGnSEtYEpKSpg2bRoAc+bM4bXXXmPWrFlUVFSce05jY+N5w06fpbXVHbSMdruV\npqbQHdIYDhzqwN4kpc3lJNqyOHrKRWNjx0U/TIfy2hwqd7F5xymS4y0snZOB09nB4wefocfby+qc\nFfi6dTR1h8f3iZ4Ivlvwj/z+4P9RxWmic3v42x4/HV29fO2LOVddxAzGdamo7+C/njtAn7mByAkH\n6TvTU2q+YxYuV9dVHXsku9RrMzEmh8K6w+hsDWzfX82MsVLADCZ/wM87Jz8Evw5dRyrTsuPx+QP8\ndV8ZxsyjvHr4Pb405katY4akCxXgQ7qMOiEh4dz8lsOHD5ORkcGsWbPYvn07/f39NDY24nQ6yc7O\nHspYYoglRMQRY7RS3lbB2PQYevp8VDtD50OqvbufP79xHL1O4d6luZgMOnbV7+N4SykT48czK2ma\n1hEvW7TRyncK7iU3fgIeSyPWSYV8dLySp14/pvkk6vK6dn713AH6oqowjS8CJcA38tcwP3WWprlG\nkkkJE1EVlYhEFyVVbXS4+7WONKwcbzlJS18rXlcys3PSsJgNLJk9Gl1bGvgMfFS7B6/fq3XMsBO0\nOzBHjhxh7dq11NbWotfreeutt/jJT37CD37wAwwGAzExMfzsZz8jOjqaFStWsHr1ahRF4cc//jGq\nKtvTDGeKopAVm0mR8xApKQocGlhOnZGk/dCdPxDgT28co8Pt4c7rshmVaKW1t40XT76OWWdm1fhl\nYTucYdabuDf/bp4reYmd9fuImrSXvce8eF71c9+tueh1Q/9zV1bbzn9vPIAvrhzjqBOY9Wbuzb+H\nsbYxQ55lJLMYLIy3ZXO8pZSAoZsDJ10smJyidaxhY2fdHgC8Telcd10aAFaLkTl5aXzoTKUz+TQH\nnIeZnhTa8+pCTdAKmLy8PNatW/epx5977rlPPbZmzRrWrFkTrCgiBGXFDBQwqrUVGChgFs9I1zgV\nvLe/hiOnWsjLjGPRjHQCgQAbSl6k19fLqgnLsJljtY54VXSqjlUT7iDWHMubFe9gydtD8XEPj73k\n54Hb8jAEcW7ZJ52saeO/nz+AP/E4+uQKYoxWHpjyDVKjhkf7g3BTYM/neEspurhG9pc4pYAZJO19\nnRxqOoa/20q2LZ10x8ebXi6alsb769IxJJ/m/dpdUsBcJrnVITRxdkO7xr4abFYTpTVtmq+MqWrs\nZNP2MqwWA1+/OQdVUdjTUMix5hIm2MYyJ3mmpvkGi6Io3Jy5mK9OuANULxET93Gk+Tj/88Ih+vqH\nZg+m0uo2/ntjMYG0A+iTK870dHpQihcNTbLnoqAQ4Wji+OlWuns9WkcaFvbU78ePH29TOtdPO/+X\ntJSESHJT0/G1JXCq/TQ1nXUapQxPUsAITaRGJWHWmTnVfprx6bF0uj00tARvcvbF9Hl8PPnaMby+\nAP9wUw4xUSba+tp54eRrmHRGVk24I2yHjj7PnJSZ3Dvpbgw6FdPYYkq6D/Lr5w/Q0xfcsfiSqlZ+\n/UIhjNmPLqGO0dGj+Oep9xMfIaswtGQ1RpEdm4nX3IJP18OBky6tI4U9f8DPh3V7wK8S2ZPB1HGf\n3kH6hhnpeJ0DS6o/qJUl1ZdDChihCVVRGRObgbPHxajUgf09tOyL9PzWMupc3Vw/LY3J2QkEAgGe\nK3mJHm8Pt2XfPGw/XPMScvju1PuIMlowZh7jVGAfv9pYjDtIv30fr2zl1y/tg6zdqDFNTIwfz7cL\nvkWUMTIo5xOXp+BMR3Wd9EYaFKWt5TT3tuBtTmbhpIzPnGeWOzqORP1oAn0R7G0oxu3p0SBpeJIC\nRmgmO2ZgGMkQM9ATS6u+SMUnm9hWXEuqPZIVX8gCYF9jMYddxxkXm8XclGs0yTVUMqLT+d60B7FH\nxGNIPUWN6SPWPltI5yCvRDl2uoX/eXU36rhdqFHtXJM0jfvy78GkMw7qecSVm2zPBcDiaOJIRUvQ\n78YNdx+dmbwbcKVz7ZTUz3yOoijcMD0db2M6Hr+H3Q37hzJiWJMCRmjm7DyYFn8dUREGSqqGfh5M\na2cf//fmCfQ6lXuX5mLQ62jv62RT6asYdUa+mrMcVRn+PyZ2SzwPTXuADGs6ensdjbHvs/a5vbR3\nD04Rc6Simf95/UPUcTtRzN0sHrWQNTkr0KlDN2lYXFysKYYxMRl4I5rxKj0cKm/WOlLY6uzv4oDz\nCH53FJNTx2Kzmj73ubNzkzB1jQb/QH8kfyC0+8OFiuH/zixCVkZ0OnpVT3lbBePSY2nt7KO5fei6\n4foDAf74+jG6ejysvC6bNHsUgUCAjaUv4/b2cGvWF0mIiLv4gYYJqzGK70y9l7z4HHQxzTTbt/Pz\n53bS2nl1W8sfPtXM77a8j27cbhRjH8uyb+HL2bK7bqiaYs8HAuhsjdIb6SrsaSg8M3k3jUVT0y74\nXKNBx8L8TLzNSTT1NFPSIv0AL4UUMEIzBlVPhjWdmq56MtMswNDOg3l7bzXHK1uZnBXPdVMHbu8W\nOQ9ysOkI2bGZLEidfZEjDD8mnZFv5d/FnOSZqJEdtKds42fPb8fVfmXj8ofKXTz23tvoxu5Fp/dz\n98Q7uW7UgkFOLQbTQAEDEYkuDp9qHrKVacNJIBDgg+rdBPwqDsYyLv3i2y9cNzWNQFMGANtrPgp2\nxGFBChihqazY0QQIYInrAAb2BhkKpxs6ePH9cmIijXzt5hwURaGzv4uNpa9gUA18dcLIGDr6LAN7\nxSzj5szFqKYeutM/4KcvvUvjZbbwOFDm4n8/eAPdmGIMOh33T/4HZiZNDVJqMVjiI2yMsqbht7jo\n9/dy+JQMI12uk22naO5rxteSxKIpYy7pbqPNamJ6xjj8XTEcaT5Oc0/LECQNbyPzHVqEjOwz82A6\naMBs1FFS3R70c/b1+3hi8zF8/gBfvyWHaMvAJNKNpa/Q7XGzNGsJDsvI7gWjKAo3ZS5m9YTlqHov\nfekf8bPNb1Dn6r6k1xeVOPn9rpfQZRwlQhfBP0+7j5z4cUFOLQZLgT2fAH50NieFpbIa6XJ9WDsw\neVfflsHs3MRLft3i6R8vqd5Ruzso2YYTKWCEpsbEZKCgcKrjNGPTYmlscdPedXVzLi7m2fdKaWxx\nc8OMdPIy4wEoch6i2HmIMTGjWZg2N6jnDyezU2bwj5P/Ab2qw5O2j59veemifav2nWjkyeKN6FPL\niNbH8K8zHyQjWvtdlsWlm+LIAyDC0cTBMhcerwwjXaouTzfFzsP4eyKZkzkRs/HSN7zPTI4m0zye\ngMfAh7V78PhkM8ELkQJGaCpCH0FqVDKnO6rJShvYYru0Jnh3YfafcPLBwXpGOaJYdu3Akumu/m42\nlryMQdWzeoSsOrocufHj+d70f8SsRuBPOcz/v/WvVNR/9jXafbyOPx9dj85RTYLRwfev+f9ItHx6\n8y4R2hwWO6lRyfijmuj19nG0olXrSGFjb0MRfnz4mtK47iKTdz/LDdNH421Ko8fXQ5HzUBASDh/y\nTi00lxWbidfvJcY+MMeitCo482BaOnp5ZssJjHqVe2/NxaAf+PbfdPJVujzd3DLmRvmw/RyjotN4\neNa3saqx4CjnVx89TUnN+WP0Hx6t5JmSZ1BtjaRFZPD9WQ8QY4rWJrC4alPseR8PI8lqpEsSCATY\nXrWLgF8hKyKX5PjL36Bx6jg70T3ZBAKwrVom816IFDBCc2fnwbh1TRj0alBWIvn9AZ567RjdvV7u\nXDT23BvLwaYj7G88QGb0KK5Lnz/o5x1OEiLi+cGc75BgSIa4Wv5n/x85dLoBgG2Hy/lrxV9Qo1sZ\nGzWB7838FhH6CI0Ti6txdjWS2d5E8UkXXp/sTXIx5e2nae5z4WtN5IaCrCs6hqoqLJ48Hn+bnequ\nGio7qgc55fAhBYzQXNaZHXkrOk+TlRJNbVPXoDeSe3N3JSXVbUwdZ+faM112uz1uni15Cb0MHV2y\nKGMk/zHnAUaZs1GiXfzhyFP86pW32FTzDKqlkymx0/n2jHsw6AxaRxVXKTkyceCOpNWJ29PLiUoZ\nRrqYD6oHJt5Gdo9hcvaVLwSYPykFpWXgfXF7tfRH+jzyji00F2OyYo+I51T7acamRRMATg7iPJjy\nunZe2VGBzWrini9OOLek8YWTm+ns7+LmzMUkRV76SoGRzqgz8r1ZX2di1BQUSyd7+15BMfUy134t\n3yiQQnC4UBSFAns+fsWHGuOSTe0uwu1xU9x0CH+vhevGTUZVr3yjRotZz7zR+fh7LRQ2HqDLc2mr\n/0YaeacRISErNpMeby/xiQN3XgarL1JPn5cnNx8lEAjwjZtziIoYuDNw2HWMvQ1FZFjTuT5dNla7\nXDpVx/0zvsIs27WoASM3Jt/MqvybZXfdYWaK48wwkqOJolIXPr8MI32evQ3F+PERcKWz4HP6Hl2O\nxdPT8TWOwoePXXX7BiHh8CMFjAgJZ4eR+k0udKoyaAXMX98ppamtly/OyiBn9EBbALfHzbMnXkKn\n6Fids1z68VwhRVFYU3Azz678DUtzrtU6jgiCtKgU4s1xKNFOunp7KR2CfZrCUSAQ4L3KnQT8CpNs\nU87tLXU1HDYLE2PyCfhUtlZJf6TPIgWMCAnZsaMBqOqqIiPJSmVDJ739V9cJd/exBnYeaWB0kpUv\nz8889/iLJ1+nvb+DmzIXkRKVdFXnEMhdl2FMURSmOPLwKx7UmGYZRvocpzuqaOlvwt/m4MZp2YN2\n3CXTsvE1p9DhaeNYc8mgHXe4kAJGhAR7RAJWYxRlbRWMTYvB5w9QXtdxxcdztfWw7q0STAYd9y7N\nRa8b+FY/2nyC3Q37SY9KYfGohYOUXojhq8A+CQCz3UlRSRP+Ie4YHw62nt4FQLx3PGOSB2/rgPGj\nYknwTgDgndM7Bu24w4UUMCIkKIpCdkwm7f0dJKcM/EZ/8gqHkXx+P0++foyePh+rFo8lMW6gUWSP\nt4cNJ15EVVRW56yQoSMhLkFGdBqxphjUWCft7l7KgrjRZDjq8fZyoPkQ/t4IluRMHdQ7koqicNPk\nfHydsZR1lOF0uwbt2MOBFDAiZGSd2Q8mYGlG4con8r6+s5KymnZmTHAwLz/53OMvnXyDtr52loy+\nnjRrymBEFmLYUxWVKfY8fEo/anQzhSXSG+nv7akrwo8XXesorpk4+KsZZ+YkYmwfA8D2KllS/fek\ngBEh4+yGdjXdVaQ5oiiv68DjvbyJaydr2tj8UQXx0SbuWjL+3G9Dx5tL2Vm/l9SoZG7M+MKgZxdi\nOCtwDAwjmRKcFJY6CcgwEjAweffd0x8RCChckzwDo2Hw7+oa9CrXZU4n0G9kZ90++n39g36OcCUF\njAgZqVHJmHVmytorGJcei8fr53TDpc+Dcfd6eXLzMQC++aVcIs0DS6Z7vb389cQLqIrKmpwV6NVL\nb64mhBhoumo1RqGLc9LS0UNFfafWkUJCVWcNrd4m/K12lkwdG7TzXDd1FP7mdDz0sa+hOGjnCTdS\nwIiQoSoqY2IycLpdpKcMFB+XOowUCAT4y1snaO7o5ZbZoxmXHnvuay+Xv0lrXxs3ZHyBdOvV788g\nxEijKiqT7Xn4lD5Ua6v0RjpjS9mHAIzST8QeG7zWGdGRRqbETiMQUHjr1A65A3aGFDAipJydB6Oz\nDmxbfql9kXYeaWDvcSdZqdEsnTf63OMlLWV8WLub5MhEloy+ftDzCjFSFJzpjWRMcLK/RIaRer19\nHGk9jL/PzM35M4J+vptnTMDf6qDZ46Sioyro5wsHUsCIkJIVMxqA+t4aEuMslNW04/df+I3S2epm\n/TulmI06vvWlXHTqwLd1r7ePv57YdG7oyCBDR0JcsbGxY4g0WDDEO2lq66Ha2aV1JE3trCnEr3gx\nd2WSP+bK+x5dqnRHFClMBGBL2QdBP184kAJGhJTR0enoFR3l7RWMT4+ht993wTdKr8/PE5uP0dfv\nY82N48+7jbv51N9o7m1l0ahryYhOH4r4QgxbOlXHpIRcvGoPalTbiN/U7t3TOwkEYGH6NahDtJnj\nlyZPx98TybG2o3T2j+wCEqSAESHGoDMwKjqd6s46MlMH9m+50DDS5o8qqKjvYFZuIrNzP95V92Rr\nOe/X7CTJ4uCm0YuCnluIkWCKPQ8AQ3zjiF5OXdVeS7vfCR0OFk0J3uTdT5qcnUBEZxYBxc/W07Kk\nWgoYEXKyYzMJEMBkG1iB9HkTeUuqWnljZyUJMWZWLx5/7vF+Xz/rT7yAgsLqnBUYdIYhyS3EcDc+\nbixmnRmTvYn65m5qXSOzS/JrJQNDOOMsk86tdhwKqqJwQ/ZsAj4dH9Tsxuf3Ddm5Q5EUMCLknJ0H\n0+SpIy7aRGl126cmDHb1eHjytWMoisK3luZiMX88v2XzqS24epq5btR8MmNGDWV0IYY1g6onP2Ei\nHrUbJbKDwhMjbxipz9fPiY4jBPpNfHnyNUN+/oWTMlBa0+iliwPOY0N+/lAiBYwIOWNiRqOgUN42\nsB9MV4+Humb3ua8HAgH+suUErZ19LJ03muzUmHNfK287zfbqj3BYErgl80Yt4gsxrBU4Ph5G2j8C\nh5G2n9qHX/UQ3ZfF6KSYi79gkJmNeqYnDKx6euPk9iE/fyiRAkaEHIshgpSoJE53VJGVFgWcP4y0\n41A9+0uaGJcWwy2zR597vN/nYf2J5wFYk7MCowwdCTHocuLGY9QZMdubqGnqpLHFffEXDSPbqnYR\nCMDiMXM1y7B02iT8HXE0eqqp72rULIfWpIARISk7NhOP34s1vgf4uLFjfXM3G94tJcKk55tfykVV\nP579/3rFWzjdLhamz2XMmWEoIcTgMuoM5MZPwKPrRInoHFGrkU631tKpOFG7HFw7MUuzHPExZkbp\nB+6EbS7ZrlkOrUkBI0LS2Xkwbf56rBYDJdVteLx+ntx8jH6Pn7uXjCc+xnzu+RXtlWyt2kFCRDxL\nxyzRKLUQI8PZTe1G2jDSK8feByA/pgC9TtuPz9snzyHQb+JI2yF6vX2aZtGKFDAiJJ3dkbe8/TTj\n0mNp7ezj188WUdnYybz8ZGbmfNz11ePzsO74JgIEWD1hOUadUavYQowIufETMKh6zA4XlQ2duNp6\ntI4UdH3efsrcRwl4jCwrmK11HMal2bD2ZONXPLxXsVvrOJqQAkaEpFhTDAnmOE61n2bsmUm6Ow7U\n4rBFsGrx+fsuvFHxDo1uJ9emzWWsbYwWcYUYUcx6Ezlx4/Ho21HMXRSWDv+7MG+V7iWg82D3jSMh\nxqJ1HBRF4cbsuQT8Cturdo7I1g5SwIiQlRWbidvbQ5xjoH28TlW4d2kuZuPHS6YrO6p5t+p94s1x\n3Jr1Ra2iCjHiFDgGhpF0cY0jYh7MjpqBuxw3jZuncZKPLZg4Bl1nCm6llaPOMq3jDLmgFjClpaUs\nWrSI9evXA+DxeHjooYe44447uPvuu2lvbwdg8+bNLFu2jOXLl7Np06ZgRhJhJPvMMFKX3sn8Sck8\nuHwKmcnR577u8XtZd/z5gaGjnDswydCREEMmLz4HnaLDkthEeW0HrZ3Ddx7GyaYa3HonereDmVmZ\nWsc5R69TmWkfWFL9ask2jdMMvaAVMG63m0cffZTZsz8eK3z++eex2Wy88MIL3HTTTezfvx+3283j\njz/O008/zbp163jmmWdoa7u0DsRieDs7D+ZUWwVfuymHRTPP35RuS8W71Hc3Mj91NuNs2VpEFGLE\nshgiGB+XjcfQhmJyUziM78K8fGby7vSEaShD1PfoUn156nQCPVbqPOW09Iysz86gFTBGo5GnnnoK\nh8Nx7rFt27axZ3NjRgAAHWFJREFUdOlSAFauXMn111/PwYMHyc/Px2q1YjabmTp1KkVFRcGKJcKI\nIyIBqyGK8vbTnxrfreqs4e2q7cSZbXxZho6E0MTZ1Ug62/DtjdTr6aey7zgBj5EvT9Z+8u4nWS1G\nMo2TQAnw4pHtWscZUvqLP+UKD6zXo9eff/ja2lo++OADfvnLX5KQkMAjjzyCy+UiLi7u3HPi4uJo\narrwD4LNZkGv1wUlN4Ddbg3ascXlmZg4lj01xWAZmAdjt1vx+rysLXwRf8DP/desIT3JrnFKIT8z\noSuY1+YL0dfwbMlLRCa7KD3Qht5swGY1X/yFYeTPO94GfT8Z6hTGjBrc95rBujbfunYJ/759D4fb\nirHFr0KvBu/zMZQErYD5LIFAgMzMTB588EH+93//lyeeeIKJEyd+6jkX09oavJ0f7XYrTU2dQTu+\nuDzpEensoZi9p45wy6SFNDV18sapt6lqr2VuykySdWlyvTQmPzOhayiuzdjYMZS0loGhh3d3nWZh\nQWpQzzfUtlV8BCa4edy8Qf23HMxrE2M0EevJoj2ihGd3bmXJ+FmDctxQcKEib0hXISUkJDBjxsCE\no3nz5lFWVobD4cDlcp17jtPpPG/YSYxsZze0K2+vAKCms44tlVuJNcVwW/bNGiYTQgBMOTOMpNoa\nh908mEM1lfSZnJj7HeSlhHZj2C9mzwdga9VHGicZOkNawCxYsIAdO3YAcPToUTIzM5k8eTKHDx+m\no6OD7u5uioqKmD59+lDGEiEsNSoZk85IWdtpvH4f644/jz/gZ9WEO4jQR2gdT4gRb7I9DwWFyCQX\nxyvb6OrxaB1p0Gw+/gEA1yTO1DjJxc0bNxa920G3rpHjjZVaxxkSQRtCOnLkCGvXrqW2tha9Xs9b\nb73Fr371K37605/ywgsvYLFYWLt2LWazmYceeoivf/3rKIrCAw88gNUq4+ligE7VMSZmNMdbSll3\n4EVquuqYlTyd3PjxWkcTQgAxJitjYkZT3l6BX99L8ckm5k9K0TrWVetw91LnL0HBwNK8a7SOc1GK\nonCNYyYfdb3Oy8e2kZN4j9aRgi5oBUxeXh7r1q371OO//e1vP/XYkiVLWLJE+teIz5YVk8nxllL+\ndnIbMcZolmV/SetIQoi/U+DIp7y94txqpOFQwLx8cBeKoZ/RusmYDSat41yS26fM5qOt71GrK6Gt\np5vYiEitIwWV7MQrQl527Ohz/79qwjIsBhk6EiKUTLEPdEaOTHRxtKIFd69X40RXJxAIUNRcCMBt\nuddqnObSmY0GxpjyQedj08HtWscJOilgRMgbHT0KR0QCN2QvIC8hR+s4QohPsJljyYhOxxvRhE/t\n42CZ6+IvCmF7yirwWpxE+hxkJ6RpHeeyrJx8HQG/wqG2Ivx+v9ZxgkoKGBHyDDoDP5r1L3x96p1a\nRxFCfI4Cez4BAuhinWHfG+nN0g8BmJ8afsuR0+LiiPNn4jd28vaJYq3jBJUUMCIsKIoSclt4CyE+\ndra5oyWpiSMVLfT2h+cwkrOtG5fuJIrPwA3jQn/10We5KXsBAFsrh/eSailghBBCXLWEiHjSolLw\nWZrwBPo4VN6sdaQr8tKBXSjGPrIjczHpw7NB7OzMHAz9NrqMNZyoq9M6TtBIASOEEGJQTLHnE8CP\nLtYZlr2RPF4/R9oPAPDlieEzefeTFEVhpmMmigIvHh2+XaqlgBFCCDEozg0jJbo4VN5Mv8encaLL\n8/7RMvxRTqw4GB0b3i0Rbs+fBz4Dtf7jtHX3aB0nKKSAEUIIMSiSIh0kRSbij3LS5+vjSEWL1pEu\nyzsVO1EU+ELGHK2jXDWzwUSWORfF0M/zRTu0jhMUUsAIIYQYNAX2PPz40MU2hdVqpFP1bXSay1H9\nBhaOHh7tbO7Iv55AAA61F+H1Db8l1VLACCGEGDQFjkkARDiaOFjmwuMNjw/OVw7sRTH2MSE6D5Mu\nPCfvftKo2ETiSCNgaeHtI0e0jjPopIARQggxaFIik7BHxBOwOunp7+d4ZegPI3X1eDjZcwiAWybM\n1zjN4Ppi1sdLqgOBgMZpBpcUMEIIIQaNoihMsefjV7yoMS72nwj91UjvHDiJEuMkVnWQER1eO+9e\nzOyMSRh8UbgjKjla1ah1nEElBYwQQohBdXY1UoSjieKTTSE9/8LvD/B+9W4UBa7PDP/Ju5+kKurA\nkmqdn5eOfqB1nEElBYwQQohBNcqahs0UixLTSHdfPyVVbVpH+lwHy5vos55GDeiZkzpV6zhBsTRn\nPvhV6jmGs61b6ziDRgoYIYQQg0pRFAoc+fgUD2p0M4UhvBrpjSOFqKZe8mz5mPVmreMERZQxkjGW\nHFSzm5eK9modZ9BIASOEEGLQTbEPDCOZHU6KSpvw+0NvAmljq5sa3zEAlmTP0zhNcN2W8wUADrcX\nhm2fqk+SAkYIIcSgy4wZRYzRihrrpKOnj5M1oTeM9FbRSdRYJza9nVHW4TV595PG2EYRozgIRDt5\n+2CJ1nEGhRQwQgghBp2qqEy25+NT+lCtLewPsd5IfR4fexoKUdQA14+eOyK63d+QOR9FgW2VO/EP\ngyXVUsAIIYQIigJHHgAmexOFJc6Q+tDcfbQBv60SFT2zUgq0jjMk5qZPRR8w0Wc9TdHJ8F9SLQWM\nEEKIoMiKySTKEIk+rpG2rj5O1XVoHQmAQCDAW8eKUM09TInPJ0IfoXWkIWHQGZhun45i8PDa0Y+0\njnPVpIARQggRFDpVx6SEXLxKL6q1lf0nQmM1UnltB82GkwBcN3r47f1yITeNXQABBafuBFWNnVrH\nuSpSwAghhAias5vamRKcFJY0hcR29m8Vn0RnayTOaGd09Cit4wyp+AgbGZYs1Kh2Xi0s1jrOVZEC\nRgghRNCMs2URoY/AEO+kuaOH0w3a/tbf3t3PoZaDKGqA6zJmj4jJu590y7hrATjWXUxHd7/Gaa6c\nFDBCCCGCRq/qmZQwEY/qRolsp1Dj1UjvF9eg2qtR0XFN0vDcefdiJsSNJUqNRbHV81ZRmdZxrpgU\nMEIIIYLq74eR9pc4NRtG8vn9bD15GNXspsA+CYvBokkOramKyvUZc1FUPx9U78HjDd1eVRciBYwQ\nQoigmmAbi0lnxGh34mx1U9OkTT+e4lIXPVGnAFiQPkuTDKFiXtpMVPR4bRXsOlqvdZwrIgWMEEKI\noDLoDOTF5+BRu1AsnZr1RnqnuBydrYF4UwJZMaM1yRAqLIYIpiZMQTX18uaxfSExufpySQEjhBAi\n6KacGUYyxjdqsitvbVMXp3qPo6gBFqbPGpGTdz/phjHzAWgzlYZ0x/DPIwWMEEKIoMuNn4BBNWB2\nNFHn6qLONbTDSO8V16B3DEzenZk0bUjPHapSo5JJiUhHF+vi9cKjWse5bFLACCGECDqTzkhu/Hj6\ndR0oEV1DOozU0+dlV8Vx1IhuChx5RBkjh+zcoe6GzIEu3Cd7D9LY6tY4zeWRAkYIIcSQmGIfGEbS\nxzUO6XLqnUcG+h4BzEsd2ZN3P6nAkY9ZtaBLqOWt/ae1jnNZpIARQggxJPISctArOiyJLqqcXTiH\n4Df+QCDAuwdOoYtrIN4cz9jYMUE/ZzjRq3quTZuFoveyq7YQd69H60iXTAoYIYQQQyJCb2ZC3Dj6\n9W0opu4huQtzorIVl1qOovqZn3qNTN79DAvSZ6OgQPxpPjhYp3WcSyYFjBBCiCFzdjWSPm5oViO9\nV1SD3l6Nisqs5OlBP184ijXFkBeXixrZydvHDuHzh8fGdlLACCGEGDKTEiaiKiqWJBcV9R00t/cG\n7VwtHb0cqCtDtXQx2Z6L1RgVtHOFu+sy5gLQHVVGcalL4zSXRgoYIYQQQybSYGFcbBb9hhYUYw+F\npcG7C7P9QC06ezUgk3cvZmzsGOxmOzpbA38rOql1nEsS1AKmtLSURYsWsX79+vMe37FjB+PHjz/3\n582bN7Ns2TKWL1/Opk2bghlJCCGExs72RtLFNbA/SMupPV4/7x+qRB/fQJzZxjhbVlDOM1woisJ1\no+aiqAGqvceoqO/QOtJFBa2AcbvdPProo8yePfu8x/v6+njyySex2+3nnvf444/z9NNPs27dOp55\n5hna2sJvR0AhhBCXZrI9DwWFyKRmymvaaevqG/Rz7C9x4rZUgepjXso1qIoMOFzMzKSpGBQjOns1\nb++v1DrORQXtihqNRp566ikcDsd5j//hD39g1apVGI1GAA4ePEh+fj5WqxWz2czUqVMpKioKViwh\nhBAasxqjyI7NpN/oImDopSgIw0jvFVWjt1ejoMjk3Utk1puZnTIN1dRLYf0RWjsHv7AcTPqgHViv\nR68///AVFRWcOHGC73znO/zyl78EwOVyERcXd+45cXFxNDVd+JvZZrOg1+sGP/QZdrs1aMcWV0eu\nTWiS6xK6QvXazMuczsniU+hsjRw61cLKG3MG7dhlNW1UtNVgTu1kRuoUstNSB+3YgykUr82XjYv5\noHYXqr2S3Sec3HXTRK0jfa6gFTCf5ec//zk/+MEPLvicS+mI2RrEzY/sditNTZ1BO764cnJtQpNc\nl9AVytcm2zIWgKhkF4cPuSivbCbaYhyUY7/4Xin6M5N3pydMC8l/g1C9NiaiyI4ZQxmneGP/Ia6b\nkoLJELwbBhdzoSJvyAYFGxsbOXXqFN/73vdYsWIFTqeT1atX43A4cLk+XrLldDo/NewkhBBieIk1\nxZAZnUG/yUVA10/xIA0jdfV42HOiFn1CAzZTLDlxYwfluCPJwvSBJdWe2Ap2HW3QOM3nG7ICJjEx\nkXfffZfnn3+e559/HofDwfr165k8eTKHDx+mo6OD7u5uioqKmD5dxiuFEGK4m+LIAwLobIPXG+nD\nQ/X4Y2pB9TI3ZaZM3r0CkxImEm2IRpdQy9v7T13SyIgWgnZljxw5wpo1a3j55Zf5y1/+wpo1az5z\ndZHZbOahhx7i61//Ol/72td44IEHsFpDb1xQCCHE4Co409wxKsnF8cpWuq+yD48/EGBbcQ0GR41M\n3r0KOlXHgrRZKDofTWo5RytatI70mYI2ByYvL49169Z97te3bt167v+XLFnCkiVLghVFCCFECIqP\niGOUNZVq6vEp/Rw46WJufvIVH+/IqWZc/U7Mke3kJeRgM8cOYtqRZU7KNbxZ8S56RxVv7a8ib0y8\n1pE+Re6tCSGE0MwUez4B/OhszqseRtpaVHtu8u7clGsGI96IFWOyMjVxEqqli+NN5dS5urWO9ClS\nwAghhNDM2eaOkYkujlQ009PnvaLjOFvdHK5oxGBvINYUw8S48Rd/kbigBalzANAnVvLu/mqN03ya\nFDBCCCE0k2ixkxKZhDeyEW/Aw8HyK2skuK24FjWugYDqYXbyDHSqdkt/h4sxMRmkRiajsznZWXKa\nrp6rm6M02KSAEUIIoakpjjPDSLFOCk9c/jBSn8fHh4fqMSbVoqAwO3lGEFKOPIqicG3aHFAC+OMq\nef9ArdaRziMFjBBCCE2dXY1kSXJx+FQzff2+y3r9nmONuJVWsLSSEz+O+AhbMGKOSNOTCjDrzOgd\nNbxbWIXX59c60jlSwAghhNBUcmQiDksC/ign/f5+Dp9qvuTXBgIBthbVoHcMzNGYJ5N3B5VJZ2R2\nynQUQx9dxmr2nwhO9/ArIQWMEEIITSmKQoF9En68qDEu9pdc+odkeV0HVc52jPYGoo1W8uIHr6eS\nGLAgdTYAekcVb++rDpmN7aSAEUIIobmBXXkHViMdLG/G4720YaStRTXo4hrwq/0yeTdIHBY7OXHj\nUKNbqWyvo7y2Q+tIgBQwQgghQkB6VCrxZhuB6Eb6PB6OXMLur+3d/ew77iQipQ6AOSkyeTdYzt2F\nSazi7X1VGqcZIAWMEEIIzSmKwhR7Pj48qDGuS9rU7oODdfiNnfgimplgG0tCROjtFjtc5CXkEGe2\noU+oo7C8Dld7j9aRpIARQggRGgrObGpnSWyi+KTrgitefH4/24trMSUNLO2dmyqTd4NJVVTmp8wC\n1YcaX8t7hTVaR5ICRgghRGjIiE4n1hSDEu2kp7+f45Wtn/vcAyddtHa5MdjriDJEMilh4hAmHZlm\np8xAp+gwJtXwwcG6K941ebBIASOEECIkqIrKZHseXqUP1dpC4QVWI20tqkVna8Sr9DE7eQZ6NWi9\nicUZVmMU0xOngKmLPlMjO480aJpHChghhBAh4+ymdhGOJopKXfj8nx5GqnN1c7yyFWv6wAeoTN4d\nOgvSBibzGpKqeWd/NX4Nl1RLASOEECJkZMWOxmqIQrU10tXTT2lV26ees7WoBsXcTZ/JybjYLBwW\nuwZJR6bR0aMYZU1DjXHS1N3CobJL33RwsEkBI4QQImQMDCPl4lV6Ua0t7P/EaqSePi87jzQQmVoP\nyORdLSw40x9J56jWdEm1FDBCCCFCypQzq5HM9iaKSpvw+z8epth1tIFejwddfA2RBguT7XlaxRyx\npjkmE6m3YEqq5UR1C1WNnZrkkAJGCCFESBkXm0Wk3oI+3kl7dx9lte3AQN+j9wpr0Mc56aeXa5Km\nYZDJu0POqDMwO2UGfrUPXVwD7+7XZkm1FDBCCCFCik7VkW+fiEdxo0a1neuNdKKqjfpmN7aMRgDm\npszUMuaINj91NgoKEak1lNe1a5JBChghhBAh5+xqJFNCE4UlTfjPdJ1WTG669PVkxWSSFJmoccqR\nKyEijtz48fjMLXzlFocmGaSAEUIIEXLGx43FrDNjTGiktbOXopImiktd5+6+zJPJu5pbkDYHgANt\nhZqcXwoYIYQQIceg6slPyKFf7UaxdPD0307gx0fAVk2EPoIpZ+7QCO3kxI0j0WLnVPtpTc4vs5+E\nEEKEpCmOfPY1FmOyO3FXxhBhb6Y34GZh0lyMOoPW8UY8VVH5dsG38Pq1aSkgd2CEEEKEpIlx4zCq\nBkz2JiCAbfTAZN65KTJ8FCpiTTGadQGXAkYIIURIMuqM5MZPoF/tIHN8L21KDZnRGaREJWkdTYQA\nKWCEEEKErIIzm9p1JewnQEB23hXnSAEjhBAiZOXGT0Cv6unydGPWmZnqmKR1JBEipIARQggRssx6\nMzlx4wCYmVSASWfUOJEIFbIKSQghREj7Qto8nG4XC9PnaR1FhBApYIQQQoS08XHZ/GjW97SOIUKM\nDCEJIYQQIuxIASOEEEKIsCMFjBBCCCHCjhQwQgghhAg7UsAIIYQQIuxIASOEEEKIsBPUAqa0tJRF\nixaxfv16AOrr67nnnntYvXo199xzD01NTQBs3ryZZcuWsXz5cjZt2hTMSEIIIYQYBoJWwLjdbh59\n9FFmz5597rHf/OY3rFixgvXr17N48WL+7//+D7fbzeOPP87TTz/NunXreOaZZ2hrawtWLCGEEEIM\nA0ErYIxGI0899RQOh+PcY4888gg33ngjADabjba2Ng4ePEh+fj5WqxWz2czUqVMpKioKViwhhBBC\nDANBK2D0ej1ms/m8xywWCzqdDp/Px4YNG/jSl76Ey+UiLi7u3HPi4uLODS0JIYQQQnyWIW8l4PP5\n+Nd//VdmzZrF7Nmzee211877eiAQuOgxbDYLer0uWBGx261BO7a4OnJtQpNcl9Al1yZ0ybW5OkNe\nwPz7v/87GRkZPPjggwA4HA5cLte5rzudTqZMmXLBY7S2uoOWz2630tTUGbTjiysn1yY0yXUJXXJt\nQpdcm0tzoSJvSJdRb968GYPBwLe//e1zj02ePJnDhw/T0dFBd3c3RUVFTJ8+fShjCSGEECLMKIFL\nGbO5AkeOHGHt2rXU1tai1+tJTEykubkZk8lEVFQUAFlZWfz4xz9my5Yt/OlPf0JRFFavXs3SpUuD\nEUkIIYQQw0TQChghhBBCiGCRnXiFEEIIEXakgBFCCCFE2JECRgghhBBhRwoYIYQQQoQdKWCEEEII\nEXakgPk7P/vZz1i5ciV33nknhw4d0jqO+Du/+MUvWLlyJcuWLePtt9/WOo74O729vSxatIiXXnpJ\n6yji72zevJmlS5dy++23s337dq3jCKC7u5sHH3yQNWvWcOedd7Jjxw6tI4W1Id+JN1Tt3buXyspK\nNm7cSHl5OQ8//DAbN27UOpYAdu/ezcmTJ9m4cSOtra3cdttt3HDDDVrHEmf8/ve/JyYmRusY4u+0\ntrby+OOP8+KLL+J2u/nd737HwoULtY414r388stkZmby0EMP0djYyN13382WLVu0jhW2pIA5Y9eu\nXSxatAgY2GCvvb2drq6uc5vuCe3MmDGDSZMmARAdHU1PTw8+nw+dLnj9sMSlKS8vp6ysTD4cQ8yu\nXbuYPXs2UVFRREVF8eijj2odSQA2m42SkhIAOjo6sNlsGicKbzKEdIbL5Trvm0m6YocOnU6HxWIB\n4IUXXmDBggVSvISItWvX8v3vf1/rGOITampq6O3t5b777mPVqlXs2rVL60gCuPnmm6mrq2Px4sWs\nXr2af/u3f9M6UliTOzCfQzYoDj3vvvsuL7zwAn/+85+1jiKAV155hSlTppCenq51FPEZ2traeOyx\nx6irq+Ouu+5i27ZtKIqidawR7dVXXyUlJYU//elPnDhxgocffljmjl0FKWDO+Kyu2Ha7XcNE4u/t\n2LGDP/zhD/zxj3/EapUW9KFg+/btVFdXs337dhoaGjAajSQlJTFnzhyto4148fHxFBQUoNfrGTVq\nFJGRkbS0tBAfH691tBGtqKiIefPmATBhwgScTqcMh18FGUI6Y+7cubz11lsAHD16FIfDIfNfQkRn\nZye/+MUveOKJJ4iNjdU6jjjjN7/5DS+++CLPP/88y5cv5/7775fiJUTMmzeP3bt34/f7aW1txe12\ny3yLEJCRkcHBgwcBqK2tJTIyUoqXqyB3YM6YOnUqubm53HnnnSiKwiOPPKJ1JHHGm2++SWtrK9/9\n7nfPPbZ27VpSUlI0TCVE6EpMTOTGG29kxYoVAPzgBz9AVeX3Va2tXLmShx9+mNWrV+P1evnxj3+s\ndaSwJt2ohRBCCBF2pCQXQgghRNiRAkYIIYQQYUcKGCGEEEKEHSlghBBCCBF2pIARQgghRNiRAkYI\nEVQ1NTXk5eWxZs2ac114H3roITo6Oi75GGvWrMHn813y87/yla+wZ8+eK4krhAgTUsAIIYIuLi6O\ndevWsW7dOp577jkcDge///3vL/n169atkw2/hBDnkY3shBBDbsaMGWzcuJETJ06wdu1avF4vHo+H\nH/3oR0ycOJE1a9YwYcIEjh8/zjPPPMPEiRM5evQo/f39/PCHP6ShoQGv18utt97KqlWr6Onp4Z/+\n6Z9obW0lIyODvr4+ABobG/ne974HQG9vLytXruSOO+7Q8q8uhBgkUsAIIYaUz+fjnXfeYdq0afzL\nv/wLjz/+OKNGjfpUczuLxcL69evPe+26deuIjo7mv/7rv+jt7eWmm25i/vz57Ny5E7PZzMaNG3E6\nnVx//fUA/O1vf2PMmDH85Cc/oa+vj02bNg3531cIERxSwAghgq6lpYU1a9YA4Pf7mT59OsuWLeO3\nv/0t//Ef/3HueV1dXfj9fmCgvccnHTx4kNtvvx0As9lMXl4eR48epbS0lGnTpgEDjVnHjBkDwPz5\n89mwYQPf//73ufbaa1m5cmVQ/55CiKEjBYwQIujOzoH5e52dnRgMhk89fpbBYPjUY4qinPfnQCCA\noigEAoHzev2cLYKysrJ444032LdvH1u2bOGZZ57hueeeu9q/jhAiBMgkXiGEJqxWK2lpabz//vsA\nVFRU8Nhjj13wNZMnT2bHjh0AuN1ujh49Sm5uLllZWRQXFwNQX19PRUUFAK+99hqHDx9mzpw5PPLI\nI9TX1+P1eoP4txJCDBW5AyOE0MzatWv5z//8T5588km8Xi/f//73L/j8NWvW8MMf/pCvfvWr9Pf3\nc//995OWlsatt97K1q1bWbVqFWlpaeTn5wOQnZ3NI488gtFoJBAI8M1vfhO9Xt72hBgOpBu1EEII\nIcKODCEJIYQQIuxIASOEEEKIsCMFjBBCCCHCjhQwQgghhAg7UsAIIYQQIuxIASOEEEKIsCMFjBBC\nCCHCjhQwQgghhAg7/w/244c07VjbCgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "O2q5RRCKqYaU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see a possible solution" + ] + }, + { + "metadata": { + "id": "j2Yd5VfrqcC3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** This selection of parameters is somewhat arbitrary. Here we've tried combinations that are increasingly complex, combined with training for longer, until the error falls below our objective (training is nondeterministic, so results may fluctuate a bit each time you run the solution). This may not be the best combination; others may attain an even lower RMSE. If your aim is to find the model that can attain the best error, then you'll want to use a more rigorous process, like a parameter search." + ] + }, + { + "metadata": { + "id": "IjkpSqmxqnSM", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 661 + }, + "outputId": "4e3378e5-23e3-4fab-e438-05aae1c2e216" + }, + "cell_type": "code", + "source": [ + "dnn_regressor = train_nn_regression_model(\n", + " learning_rate=0.001,\n", + " steps=2000,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 156.84\n", + " period 01 : 150.94\n", + " period 02 : 144.00\n", + " period 03 : 134.90\n", + " period 04 : 130.40\n", + " period 05 : 121.97\n", + " period 06 : 117.31\n", + " period 07 : 113.50\n", + " period 08 : 113.80\n", + " period 09 : 112.90\n", + "Model training finished.\n", + "Final RMSE (on training data): 112.90\n", + "Final RMSE (on validation data): 110.57\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYFOf2wPHv7C69SVUQC1YUEVCx\n94otdmPDxBjT1BhNbqq5N7kmmmrsNYmxpNhb1GiMsSWxIIioKHYRUTpIb/P7wxt+GgUWZXGB83me\nPI+7O2fm7B42HN55Z15FVVUVIYQQQohyRPOkExBCCCGEKClpYIQQQghR7kgDI4QQQohyRxoYIYQQ\nQpQ70sAIIYQQotyRBkYIIYQQ5Y7uSScghDFr2LAhNWvWRKvVApCXl4e/vz/Tp0/H0tLykfe7bt06\nhg8f/sDzmzZt4p133mHJkiV06dKl4PnMzEzatm1Lz549+eSTTx75uPq6fv06M2fO5MqVKwBYWFgw\nadIkunfvbvBjl8SiRYu4fv36A5/J0aNHGT9+PO7u7g/E/PLLL2WV3mO5ceMG3bp1w8PDAwBVVXFy\ncuK9996jcePGJdrXl19+iZubGyNHjtQ7ZuvWrWzYsIHVq1eX6FhClBVpYIQoxurVq6lWrRoA2dnZ\nTJ06laVLlzJ16tRH2l9sbCxff/31QxsYAFdXV37++ef7Gpjff/8dW1vbRzreo3jjjTcYMGAAS5Ys\nASA0NJRnnnmGXbt24erqWmZ5PA5XV9dy06wURqvV3vcedu7cycSJE9m9ezempqZ67+f11183RHpC\nPFFyCkmIEjA1NaVDhw6Eh4cDkJWVxb///W969epF7969+eSTT8jLywPg3LlzjBgxgoCAAAYMGMCh\nQ4cAGDFiBDdv3iQgIIDs7OwHjtGsWTOOHj1KRkZGwXM7d+6kXbt2BY+zs7P56KOP6NWrF127di1o\nNABCQkIYPHgwAQEB9OnThz///BO4+xd9+/btWbVqFf3796dDhw7s3Lnzoe8zIiICHx+fgsc+Pj7s\n3r27oJFbsGABnTp1YuDAgSxbtoyuXbsC8Pbbb7No0aKCuHsfF5fXzJkzGTNmDAAnTpxgyJAh9OjR\ng+HDhxMZGQncHYl67bXX6NKlC2PGjOHWrVvFVOzhNm3axKRJk3jmmWf47LPPOHr0KCNGjGDKlCkF\nv+x37dpFv379CAgIYOzYsVy/fh2A+fPnM336dIYOHcp33313336nTJnCt99+W/A4PDyc9u3bk5+f\nz1dffUWvXr3o1asXY8eO5fbt2yXOu0+fPmRmZnL58mUA1q5dS0BAAF27dmXatGlkZmYCdz/3WbNm\n0b9/f3bt2nVfHQr7uczPz+e///0vnTt3ZujQoZw7d67guMeOHWPQoEH06dOH3r17s2vXrhLnLkSp\nU4UQhWrQoIEaHR1d8DgpKUkdPXq0umjRIlVVVXXp0qXqhAkT1JycHDUjI0MdMmSIumXLFjUvL0/t\n3bu3un37dlVVVfXUqVOqv7+/eufOHfXIkSNq9+7dH3q8jRs3qm+99Zb6xhtvFMTeuXNH7datm7p+\n/Xr1rbfeUlVVVRcsWKA+88wzalZWlpqWlqYOHDhQ3bdvn6qqqtqvXz/1559/VlVVVTdv3lxwrMjI\nSLVx48bq6tWrVVVV1Z07d6o9evR4aB6TJ09Wu3Tpoq5cuVK9ePHifa+dP39ebdGihRoTE6Pm5OSo\nL7/8stqlSxdVVVX1rbfeUhcuXFiw7b2Pi8rLy8tL3bRpU8H79ff3Vw8fPqyqqqpu375dHTRokKqq\nqrpmzRp19OjRak5OjpqQkKB26dKl4DO5V1Gf8d+fs6+vr3rlypWC7b29vdU///xTVVVVjYqKUps3\nb65evXpVVVVV/eabb9RnnnlGVVVVnTdvntq+fXs1Pj7+gf3u2LFDHT16dMHjuXPnqjNmzFAjIiLU\nnj17qtnZ2aqqquqqVavUzZs3F5rf359Lo0aNHnje399fvXTpknr8+HG1TZs26q1bt1RVVdX3339f\n/eSTT1RVvfu59+/fX83MzCx4vHDhwiJ/Lvfv36/27NlTTU1NVTMyMtShQ4eqY8aMUVVVVQcPHqwe\nPXpUVVVVvXLlijpt2rQicxeiLMgIjBDFCAwMJCAggG7dutGtWzdat27NhAkTANi/fz/Dhw9Hp9Nh\nbm5O//79+eOPP7hx4wZxcXH07dsXAG9vb9zc3AgLC9PrmH379uXnn38GYO/evXTp0gWN5v+/rr//\n/jujRo3C1NQUS0tLBgwYwJ49ewDYsmULvXv3BqB58+YFoxcAubm5DB48GAAvLy9u3rz50ON//vnn\njB49mu3bt9OvXz+6du3Kjz/+CNwdHfH398fZ2RmdTke/fv30ek9F5ZWTk0OPHj0K9l+1atWCEad+\n/fpx/fp1bt68SVBQED169ECn02Fvb3/fabZ/io6OJiAg4L7/7p0rU7t2bWrXrl3w2NzcnDZt2gDw\nxx9/0KpVK2rVqgXAsGHDOHr0KLm5ucDdESkHB4cHjtm5c2fOnj1LUlISAL/++isBAQHY2tqSkJDA\n9u3bSU5OJjAwkIEDB+r1uf1NVVXWrl1L1apVqV27Nvv27aNPnz5UrVoVgJEjRxb8DAC0adMGMzOz\n+/ZR1M/l8ePH6dSpE1ZWVpibmxfUCsDR0ZEtW7Zw6dIlateuzZdfflmi3IUwBJkDI0Qx/p4Dk5CQ\nUHD6Q6e7+9VJSEjAzs6uYFs7Ozvi4+NJSEjAxsYGRVEKXvv7l5iTk1Oxx2zXrh3Tp08nKSmJHTt2\n8MorrxRMqAW4c+cOs2bNYvbs2cDdU0pNmzYFYPv27axatYq0tDTy8/NR71nuTKvVFkw+1mg05Ofn\nP/T4ZmZmjB8/nvHjx5OSksIvv/zCzJkzcXd3Jzk5+b75OI6OjsW+H33ysra2BiAlJYXIyEgCAgIK\nXjc1NSUhIYHk5GRsbGwKnre1tSUtLe2hxytuDsy9dfvn48TExPveo42NDaqqkpiY+NDYv1laWtK2\nbVv2799P8+bNSUlJoXnz5iiKwvz58/n222+ZMWMG/v7+fPjhh8XOJ8rLyyv4HFRVpV69eixatAiN\nRsOdO3f49ddfOXz4cMHrOTk5hb4/oMify+TkZFxcXO57/m8zZ85k8eLFjBs3DnNzc6ZNm3ZffYR4\nEqSBEUJPDg4OBAYG8vnnn7N48WIAnJycCv7aBkhKSsLJyQlHR0eSk5NRVbXgl0VSUpLev+xNTEzo\n0qULW7Zs4dq1a/j5+d3XwLi4uPDcc889MAJx+/Ztpk+fzvr162nUqBFXr16lV69eJXqfCQkJhIeH\nF4yA2NraMnz4cA4dOkRERAQ2NjbcuXPnvu3/9s+mKDk5ucR5ubi4UKdOHTZt2vTAa7a2toUeuzQ5\nOjoSEhJS8Dg5ORmNRoO9vX2xsb169eLXX38lMTGRXr16FdS/devWtG7dmvT0dD799FO++OKLYkcy\n/jmJ914uLi4MGjSIt956q0Tvq7Cfy6I+WycnJ95//33ef/99Dh8+zOTJk+nQoQNWVlZ6H1uI0ian\nkIQogXHjxhESEsKxY8eAu6cMNmzYQF5eHunp6WzdupVOnTrh7u5OtWrVCibJBgcHExcXR9OmTdHp\ndKSnpxecjihM3759Wb58+UMvXe7WrRvr168nLy8PVVVZtGgRBw8eJCEhAUtLS+rUqUNubi5r164F\nKHSU4mEyMzN59dVXCyZ3Aly7do3Q0FBatGiBn58fQUFBJCQkkJuby5YtWwq2c3Z2Lpj8GRkZSXBw\nMECJ8vLx8SE2NpbQ0NCC/fzrX/9CVVV8fX3Zt28feXl5JCQkcPDgQb3fV0m0a9eOoKCggtNcP/30\nE+3atSsYeStKly5dCAkJYe/evQWnYQ4fPsyHH35Ifn4+lpaWeHp63jcK8ii6du3Knj17ChqNvXv3\nsmzZsiJjivq59PPz4/Dhw2RkZJCRkVHQOOXk5BAYGEhMTAxw99SjTqe775SmEE+CjMAIUQLW1ta8\n8MILfPrpp2zYsIHAwEAiIyPp27cviqIQEBBA7969URSF2bNn85///IcFCxZgYWHB3LlzsbS0pGHD\nhtjZ2dGuXTs2b96Mm5vbQ4/VsmVLFEWhT58+D7w2atQobty4Qd++fVFVlSZNmvDMM89gaWlJx44d\n6dWrF46Ojrz99tsEBwcTGBjIvHnz9HqPbm5uLF68mHnz5vHRRx+hqirW1ta88847BVcmPf300wwa\nNAh7e3t69uzJhQsXABg+fDiTJk2iZ8+eNG7cuGCUxdPTU++8zM3NmTdvHjNmzCAtLQ0TExOmTJmC\noigMHz6coKAgunfvjpubG927d79v1OBef8+B+afPPvus2M+gWrVqfPTRR7zyyivk5OTg7u7OjBkz\n9Pr8rK2t8fLy4vz58/j6+gLg7+/Pjh076NWrF6ampjg4ODBz5kwA3nzzzYIriUrCy8uLl156icDA\nQPLz83F0dOTDDz8sMqaon8suXbqwf/9+AgICcHJyolOnTgQFBWFiYsLQoUN59tlngbujbNOnT8fC\nwqJE+QpR2hT13hPRQghRQkFBQbz55pvs27fvSacihKhEZAxQCCGEEOWONDBCCCGEKHfkFJIQQggh\nyh0ZgRFCCCFEuSMNjBBCCCHKnXJ5GXVs7MMvmywN9vaWJCamG2z/4tFJbYyT1MV4SW2Ml9RGP87O\nNoW+JiMw/6DTaZ90CqIQUhvjJHUxXlIb4yW1eXzSwAghhBCi3JEGRgghhBDljjQwQgghhCh3pIER\nQgghRLkjDYwQQgghyh1pYIQQQghR7kgDI4QQQohyRxoYIYQQooLZv/83vbabO/dLbt6MKvT1t9+e\nVloplTppYIQQQogKJDr6Jnv37tZr2ylTXsfNrXqhr3/yyezSSqvUlculBIQQQgjxcLNnf0p4+Bk6\ndPCnZ8/eREffZM6cRcya9V9iY2PIyMjguedeoF27Dkya9ALTpr3J77//RlpaKtevXyMq6gavvvo6\nbdq0o2/fbuzY8RuTJr2Av38rgoODSEpK4tNPv8LJyYn//vd9bt2Kxtu7Kfv27WXz5p1l9j6lgRFC\nCCEMZN2+ixw/F/PA81qtQl6e+kj79Pd0YXjXeoW+PnJkIJs2rcPDoy7Xr19l0aKvSUxMoGXL1vTu\n3Y+oqBu8//7btGvX4b64mJjbfPHFPI4c+ZOtWzfSpk27+163srJi7tzFLF48n4MH9+Hm5k52dhbL\nln3HH38cYt26Hx/p/TwqaWDuEZeUQWR8Bu4O5iiK8qTTEUIIIR5Lo0ZeANjY2BIefoZt2zahKBpS\nUpIf2LZpU18AXFxcSE1NfeB1Hx+/gteTk5O5du0K3t4+ALRp0w6ttmzXd5IG5h4//3WVg6HR+Hu6\n8EyAJ5bm8vEIIYR4dMO71nvoaImzsw2xsXcMfnwTExMAfv31F1JSUli48GtSUlJ4/vnAB7a9twFR\n1QdHh/75uqqqaDR3n1MUpcz/8JdJvPd4qp0HjWo7cPxcDB+sOMalmw92qEIIIYQx02g05OXl3fdc\nUlISrq5uaDQaDhzYR05OzmMfp3p1d86fPwvAsWNHHjimoUkDcw8HW3NmvdKOfm1rE5+cySdrgtl1\n5Br5D+lEhRBCCGNUq5YH58+fIy3t/08Dde7clT//PMSUKS9jYWGBi4sLK1Ysf6zjtG3bgbS0NF5+\neTyhoSHY2to9buoloqgPGycycoYcdvt7WC/8agLLfj5Lcmo2Xh4OPN+vMXZWpgY7riheWQ25ipKR\nuhgvqY3xqgi1SUlJJjg4iM6duxEbG8OUKS/zww8bS/UYzs42hb4mkzwK0ai2Ax8+15Jvd4Rz6lI8\n//n2GBP6NcbLw+FJpyaEEEI8cZaWVuzbt5cffliNquYzeXLZ3vRORmD+4Z9dcb6qsvd4JOv3XyIv\nX6V365oM6lAHnVbOvpW1ivAXS0UkdTFeUhvjJbXRT1EjMPJbuBgaRaFny5q8G9gclyoW7DpynU+/\nDyY2KeNJpyaEEEJUWtLA6MnD1Zb/jPOndeOqXLqZwgcrjj305kRCCCGEMDxpYErAwkzHhP6Nea5P\nI/LyVRZvOc3KX86RlVO2l44JIYQQlZ1M4i0hRVFo39SVutVtWbL1DAdO3uTijWReHOCFu7P1k05P\nCCGEqBRkBOYe11Ii2X3hALn5ucVu6+poxfSxzenW3J2ouDRmrAxif0jUQ+9eKIQQQhiboUP7k56e\nzurV33H69Kn7XktPT2fo0P5Fxu/f/xsAO3du58CB3w2WZ2FkBOYeR6KDOBj1FzVsDvFs45FUs3Ip\ncnsTnZbRPRrQuJY93+4MZ9Xu85y9msCzvT2xNDcpo6yFEEKIRxcY+GyJY6Kjb7J37246d+5Gnz5F\nNzqGIg3MPQbU7Y3GFPZf+YtPjs9lcL2+dKjeptj1HfwaOPNhNRuWbjtD0PlYrkTf4cUBXtSrXrZ3\nJRRCCCGee240M2d+SbVq1bh1K5p33nkdZ2cXMjIyyMzMZOrUf9G4cZOC7T/++AM6d+6Gr68f7733\nJtnZ2QULOwLs2bOLDRvWotVqqF27Lm+99R6zZ39KePgZVqxYTn5+PlWqVGHIkKdZtGguYWGh5Obm\nMWTIcAIC+jJp0gv4+7ciODiIpKQkPv30K6pVq/bY71MamHuY68x5peVY6lnV48dzG1kbsYWw+HDG\neA7Hzqzwa9Hh7jIEb47yY/sfV9n+x1U+WRPMoI4e9G5dC42sbC2EEJXSpos/ExIT9sDzWo1CXv6j\nTTnwc/FmcL1+hb7esWMX/vjjIEOGDOfQoQN07NiFunXr07FjZ06cOM7336/k448/fyBu9+5d1KlT\nl1dffZ3fftvD3r27AcjIyODLL+djY2PDxIkTuHTpIiNHBrJp0zrGjZvAN98sBeDkyWAuX77E4sXf\nkpGRwTPPjKBjx84AWFlZMXfuYhYvns/Bg/sYPnzUI733e8kcmIfwc/Hm3VZTaeTQgLPx55l5bDah\nsaeLjdNqNAzsUId/jfTD1sqEjQcuM3vtSZJTs8ogayGEEOLvBuYQAIcPH6B9+04cOPAbL788nsWL\n55Oc/PCFiq9evUyTJj4A+Pk1L3je1taWd955nUmTXuDatSskJyc9NP7cubP4+jYDwMLCgtq16xAZ\nGQmAj48fAC4uLqSmpj40vqRkBKYQVczseMXnOQ7e+Istl3awLGwVbV1bMqR+f8x1ZkXGetay58Pn\nWvLNPcsQPN+vMU3qOJZR9kIIIYzB4Hr9HjpaYsg78dapU5f4+Fhu377FnTt3OHRoP05OLrz//gzO\nnTvLggVzHhqnqqDR3D1jkP+/0aGcnBxmz/6M7777AUdHJ95887VCj6soCvdex5Kbm1OwP61We89x\nSudiFxmBKYJG0dC5RjvebPEq7tZu/Bl9jFnH53Al+VqxsTaWpkwZ2pQR3eqTlpnL7HWhrPv9Irl5\n+WWQuRBCiMqsTZv2LFu2iA4dOpGcnET16u4AHDjwO7m5D7/StmbNWpw7Fw5AcHAQAOnpaWi1Whwd\nnbh9+xbnzoWTm5uLRqMhL+/+e6B5enoREnLif3HpREXdwN29pqHeojQw+nCzrsYbLSbRo2Zn4jMS\nmB28mB2X95CXX/QN7BRFoad/Dd4b2xwXewt+OXqdWWuCiZFlCIQQQhhQp05dCq4SCgjoy9q13zN1\n6kS8vJoQHx/Pjh3bHogJCOjLmTNhTJnyMpGR11AUBTu7Kvj7t+L558eyYsVyRo0KZN682dSq5cH5\n8+eYN+/LgngfH18aNvRk4sQJTJ06kZdemoSFhYXB3qMs5vgPxQ3rXUi8xMqza0nMSqK2bU2eafw0\nLpbOxe43IyuXNXvO89eZ21iYaXkmwJOWjaqWZuoVnix+ZpykLsZLamO8pDb6kcUcS1F9+7q812oq\n/lWbcTXlOrOOzeGPqKPFntO7uwyBF+P7NiI/H5ZsPcN3u8JlGQIhhBDiEUgD8wgsdBY86zWCcV6j\n0Gp0/HB+I0vDVnInu/iZ1e28Xfn3sy2o6WLNwdBo/vvdcW7ElM6MbCGEEKKy0H7wwQcfPOkkSio9\nPdtg+7ayMtN7/27W1fCv6seN1GjCE85zNPoE1axcij2lZGNpSjtvVzKzcjl1KZ7DYdFYm+uoXc2m\n2JvmVWYlqY0oO1IX4yW1MV5SG/1YWRV+1a+MwDwme/MqTPZ9nsH1+pGRm8HiUyv46fxmsvOK/sE0\n0WkY1aMBk4d4Y6rTsHpPBIs2nyYtM6eMMhdCCCHKL2lgSoFG0dCtZkfe9H8VN6tqHIr6i1nH53At\nJbLYWL/6znz4XEsa1KjCiYhYPvj2GBdvPPwmQ0IIIYS4S04h/cPjDOvZmtrQxrUF2fk5nI4/x1/R\nQWgUBQ/bWmiUwntFCzMdbZtUQ1EUTl6M44+wW2g0CvWq28kppXvIkKtxkroYL6mN8ZLa6EdOIZUh\nE60JQ+r3Z7LvBGxNbdh+eTdzQpYQlxFfZJxGozCgvQdvjvTDztqUTQcv8+XakyTJMgRCCCHEA6SB\nMRBPh/q823IqzVyacjn5GjOPfcVf0UHFXm7dsKY9H4zzx6euI+HXEvnPt8c4dano5kcIIYSobKSB\nMSArE0ue8xrNM41HoKBhTfg6vj69mtSctCLjbCxNeXVoU0Z2r09GVi5z1oeydt8FWYZACCGE+B9Z\nzNHAFEWhZbVm1LXzYFX4T5yMPc2V5GuMaTScxo4Ni4zr0aIGDdyrsGTraXYfi+T89SReGuCFi71l\nGb4DIYQQwvjIJN5/MNTEKksTC1pVa46p1oTT8ec4eusE6Tnp1K9SF61GW2hcFWsz2nm7kpSaRdjl\nBA6HReNoZ467s3Wp52jsZNKbcZK6GC+pjfGS2uhHJvEaCY2ioWetLvyrxSSqWbqw/8YffBo0j8g7\nUUXGWZjpeL5fY57v1whVhWXbzvLtznCysmUZAiGEEJWTjMD8Q1l0xXZmtrRx9SczL4sz8eH8FR2E\nVqPFw65WkZdN13CxoYWnCxduJBF2OYHgiFjqu9thZ114h1qRyF8sxknqYrykNsZLaqMfGYExQqZa\nE4Y3GMBEn/FYmViy9dIu5oYsJT4jsci4ag6WvBfYgh4tahAdn85Hq06wL/hGsVc3CSGEEBWJNDBP\nWGPHhrzXchq+zk24mHSFmce+4tit4CIbEhOdhpHd6/PqkKaYm2pZsyeChZtPk5ohyxAIIYSoHKSB\nMQLWplY83ySQMZ7DUMln5dmfWHHmB9Jz0ouM863vxIfPtaRhjSoER8TywYpjREQmlVHWQgghxJMj\nc2D+4Umdl1QUhRo21Wle1Yfrd25wNuE8x2+H4G7thpOFQ6Fxfy9DoClYhiAajQL13atUuGUI5Jyx\ncZK6GC+pjfGS2uinqDkw0sD8w5P+obI0saRVteZoFR2n48M5ciuIrNws6tnXQVvIekqKotCwpj2e\nNatw5moiIRfiiIhMonFtByzMKs6tfp50bcTDSV2Ml9TGeElt9COTeMsZrUZLb49uvNF8Ii6WTvwW\neZDPjs8jKjW6yLiGNe358LmW+NZz4tz1JP7z7THOXSt6UrAQQghRHskIzD8YU1dcxcyONq7+pOWm\ncyb+HH/dPI6p1pTatjUKPT1kaqKlZSMXrC1MOHkxjr/O3MLR1pyaVW3KOPvSZ0y1Ef9P6mK8pDbG\nS2qjHxmBKcfMtKaMbDiYl5uOw0JnwaaLPzP/5NckZhY+WVdRFLq3qMG0p30xM9HyzY5wthy6LJda\nCyGEqDAM2sBERETQvXt31qxZA8Dbb79N//79CQwMJDAwkP379wOwbds2hgwZwrBhw1i/fr0hUyq3\nmjg14r1W0/B2akRE4kU+PvYVJ26HFhnTqJY97wY2x8nOnG1/XGX59rPk5MqCkEIIIco/g83wTE9P\nZ8aMGbRp0+a+56dNm0aXLl3u227hwoVs2LABExMThg4dSo8ePahSpYqhUiu3bEytedH7Wf68eYwN\nF7bx7ZnvCYsL5+mGA7DQWTw0xs3JiuljWzB/4ymOnL1NQkomk4Y0xdrCpIyzF0IIIUqPwUZgTE1N\nWb58OS4uLkVuFxoaire3NzY2Npibm9OsWTOCg4MNlVa5pygK7aq34p2Wr1HLtgbHbwfz8dGvuJB4\nudAYWytT/jXSjxaeLkTcSObjVUHcTiz6HjNCCCGEMTNYA6PT6TA3N3/g+TVr1jB27FimTp1KQkIC\ncXFxODj8/31OHBwciI2NNVRaFYaLpTOvN3uFPrW7k5SVzNyQpWy9tIvc/NyHbm9qouWlAV70aV2L\n24kZfLzqhNz0TgghRLlVpjcJGTBgAFWqVKFRo0YsW7aMBQsW4Ofnd982+kw0tbe3RKfTGipNnJ3L\nzxU7z1YdQtu6fsw/+h17rv3OheSLTG49Dnc714du//IwX+rUqMKijaf44qeTvDbCj07N3Ms460dX\nnmpTmUhdjJfUxnhJbR5PmTYw986H6dq1Kx988AG9evUiLi6u4PmYmBh8fX2L3E+iAU9/ODvbEBt7\nx2D7NwR7nHmz2atsvLCdP6OP8daemQys25dO7m0ferl1s7qOTB3mw6ItYXzx/QkuRSbSr03RK2Eb\ng/JYm8pA6mK8pDbGS2qjn6KavDK9jHry5MlERkYCcPToUerXr4+Pjw9hYWGkpKSQlpZGcHAwLVq0\nKMu0KgRznRmjGw3lBe+xmGpNWX9hKwtDvyE1J+2h23t5OPDOmOY42pqx+eBlvt0ZTm6eXKEkhBCi\nfFBUA90c5PTp03z66adERUWh0+moWrUqY8aMYdmyZVhYWGBpacmsWbNwdHTkl19+4ZtvvkFRFMaM\nGcNTTz1V5L4N2bVWhK44OSuFNeHrOZtwnurWrkz2nYCNqfVDt01KzWLehlNcvXUHz5pVmDjYGytz\n47xCqSLUpiKSuhgvqY3xktrop6gRGIM1MIYkDUzxVFVlXcRWDkb9iZtVNV71e6HQJiYrO49l288Q\nciEOV0dLpgzzwaXKwy/LfpIqSm0qGqmL8ZLaGC+pjX6M5hSSKDuKojC8wQA6ubfjZtot5oYsJSX7\n4V8WM1MtEwd509O/BtHx6Xy8KohLUcllnLEQQgihP2lgKjBFURhW/ym6uLcnOu02c4OXkpz18CZG\no1EY0a0+Y3o2IDUjh89+DCE2TLKRAAAgAElEQVToXEwZZyyEEELoRxqYCk5RFIbU70/XGh24lR7D\n3JClJGelFLp912buTBnaFI1GYdGW0+w6ck3WUBJCCGF0pIGpBBRFYXC9fnSr2ZHb6THMCVlCUlbh\np4ia1nXindHNsLcxY/3+S6zafV6uUBJCCGFUpIGpJBRFYVDdvvSo2ZmY9DjmBi8tsompWdWG6WNb\nUNPFmgMnbzJ3wynSMx9+l18hhBCirEkDU4koisKAur3pWasLMRlxzAleQmJm4csJ2NuY8faYZjSt\n68iZKwnM+v4E8cmZZZixEEII8XDSwFQyiqLwVJ0AAmp3IzYjnjnBS0jITCx0e3NTHZOHeNOtmTtR\nsWl8tCqIK9GFz6ERQgghyoI0MJWQoij08+hJ79rdictMYE7wUuIzCm9itBoNo3s2YGS3+qSkZfPp\n98GERMiCm0IIIZ4caWAqKUVR6FenJ308ehCfmcDckCXEZyQUGdPDvwaTBnuDAgs2hbHneKRcoSSE\nEOKJkAamkuvr0YN+Hj2Jz0zkq+AlxBXTxPg1cObt0c2wtTLlp98u8P2vEeTlyxVKQgghypY0MILe\nHt3pXyeAxKwk5gQvIS4jvsjta1ezZfrYFlR3tmJfcBTzN4aRkSVXKAkhhCg70sAIAAJqd2VA3d4k\nZiXxVfASYtLjitze0c6cd8c0x8vDgVOX4vn0+2AS72SVUbZCCCEqO2lgRIGetbowsG4fkrKSmRuy\nlJj0oifqWpjpmDK0KZ183bgek8pHq4K4flsWJxNCCGF40sCI+/So1ZnB9fqRlJXMnOAl3E4rej0k\nnVbD2F4NGd6lHol3spi1JpjQi0WP3gghhBCPSxoY8YBuNTsypH5/krPvMCdkKbeKaWIURSGgVU1e\nGdiEfFVl3sZT/HbiRhllK4QQojKSBkY8VNcaHRha/ylSsu8wJ2QJt9JuFxvTwtOFN0f5YWNhwve/\nRvDTbxfIz5fLrIUQQpQ+aWBEobrUaM/wBgO5k53KnOCl3Ey9VWxMXTc73hvbAldHS/Ycj2Th5jCy\nsvPKIFshhBCViTQwokid3NvydINB3MlJZW6Ifk2McxUL3g1sTqNa9oRciOOTH4JJSpUrlIQQQpQe\naWBEsTq6t2FEw8Gk5qQxN2QpUanRxcZYmZswdbgP7b1duXbrDh+vCuJGbGoZZCuEEKIykAZG6KVD\n9daMajikoIm5cedmsTE6rYZxfTwZ3LEO8SlZzFpzgtNXir5JnhBCCKEPaWCE3tpVb8Voz2Gk52Qw\nL2QZkXeiio1RFIV+bWvz4lNe5OSqzFl3igMni48TQgghiiINjCiRtm7+jG40jPTcu03M9RT9Lpdu\n1bgq/xrpi6W5jpW/nGf9/ovky0KQQgghHpE0MKLE2ri2ILDRcDJyM5l3cjnXUiL1iqvvXoX3xjan\nqr0Fu45cZ8mW02TnyBVKQgghSk4aGPFIWrk2Z2zjp8nMzWT+yeVcTbmuV1xVe0veG9uCBu52BJ2P\n5bMfQ0hJyzZwtkIIISoaaWDEI2tZrRnPNB5BZm4W80O+5kqyfk2MtYUJr4/wo7VXVS7fTOGjVUHc\njEszcLZCCCEqEmlgxGPxr+bHOK+RZOdns+Dkci4nX9MrzkSnYUK/xjzVrjZxyZnMXH2C8GuJBs5W\nCCFERSENjHhszav6Ms5rFNn5OSw4uZxLSVf1ilMUhYEd6vB8v0Zk5eQxe+1JDp8q/h4zQgghhDQw\nolQ0c2nKc16jycnPZWHo11xMuqJ3bNsmrrwxwhdzUy3f7gxn08HLqHKFkhBCiCJIAyNKjZ+LN+Ob\njPlfE/MNFxIv6x3bsKY97wY2x7mKOT//eZXl28+SkytXKAkhhHg4aWBEqfJ1bsLzTQLJy89jUeg3\nRCRe0jvW1dGK98a2oG51W46cvc0XP53kTrpcoSSEEOJB0sCIUufj7MUE70Dy1HwWhX7L+YSLesfa\nWpry5kg//D1duHAjmY9Xn+B2QroBsxVCCFEeSQMjDMLbqTETvANR1XwWn/qWcwkX9I410Wl5cYAX\nfdvUIiYxg49WBRERmWTAbIUQQpQ30sAIg7nbxIxFBZacWkF4fITesRpFYUinuozr7Ulmdh5f/BTC\n4VBZQ0kIIcRd0sAIg2ri1IgXvJ+528SEfcfZ+PMliu/g48Zrw30w0Wn48vsTnL2aYJhEhRBClCvS\nwAiD83JsyEvez6IAS8NWcib+XMniazsweXBTQGHBpjCu375jkDyFEEKUH9LAiDLRyLEBLzUdh4LC\nslMrOR0XXqJ4z1r2TB3pR2Z2HnPWhxKfnGmgTIUQQpQH0sCIMuPpUJ+Xm45DUTQsC1tFWNzZEsV3\n9HNneJd6JKVm89X6UNIycwyUqRBCCGMnDYwoUw0d6vGKz3NoFQ3Lw1YTGnumRPG9Wtage3N3bsal\nMX9jmNzsTgghKilpYESZa2Bfl1d8xqPVaPn69GpOxp7WO1ZRFEZ0q0/zhs5ERCbx9c/h5MuyA0II\nUelIAyOeiPr2dZjoMx4TjY5vTq8hJCZM71iNRuGF/o2p727H8XMxrNun/43yhBBCVAzSwIgnpl4V\nDyb6PI+JRse3Z74nOOaU3rEmOi2ThzTF1dGSPccj2XM80oCZCiGEMDbSwIgnqm6V2kzyfR5TjQkr\nzvzAidsn9Y61tjBh6jAf7KxMWfvbBY6fizFgpkIIIYyJNDDiiatj93cTY8qKMz9y/FaI3rFOVSyY\nOtwHU1Mty7ef4fz1RANmKoQQwlhIAyOMgoddLSb7PY+5zoyVZ3/i2K1gvWNrVrVh0iBvVBXmbwwj\nKi7NgJkKIYQwBtLACKNR27Ymk30nYK4zZ9XZtRyNPqF3rJeHA8/29iQ9K5c5606SeCfLgJkKIYR4\n0qSBEUallm0NXvWdgIXOnNXh6/grOkjv2HbergzqWIf4lCy+WhdKRlauATMVQgjxJEkDI4xOTVt3\nXvV7AUudBd+Hr+fPm8f1ju3Xphadfd24EZvKgk1h5OblGzBTIYQQT4o0MMIo1bCpzmS/F7A0seD7\nc+v5I+qoXnGKojC6ZwN86zkRfi2RFTvDUeVGd0IIUeFIAyOMVg0bN6b4vYi1iRU/nN/Ib5cO6xWn\n1Wh4cYAXddxs+evMbTYdvGzgTIUQQpQ1aWCEUatu7VrQxCwL+kHvm92ZmWh5dWhTXOwt2PHXNX4P\nvmHgTIUQQpQlaWCE0XOzrsZEn/GY6UxZeeZHziVc0CvO1tKUacN9sLE0Yc2vEYRExBo4UyGEEGVF\nGhhRLtS0defN9i8BsCxsJddS9Fs6wMXekteG+WCi07Bk2xkuRiUbMk0hhBBlRBoYUW40qerJs16j\nyM7LYVHot9xK02/pAA9XW14e0IS8PJV5G05xKyHdwJkKIYQwNGlgRLni5+LNyIaDSc1JY8HJr0nM\nTNIrzqeeE2MDGpKakcPstSdJTss2cKZCCCEMSRoYUe60q96K/nUCSMxKYsHJr0nN0W/pgI4+bjzV\nrjZxyZnMWR9KZrbc6E4IIcorgzYwERERdO/enTVr1tz3/KFDh2jYsGHB423btjFkyBCGDRvG+vXr\nDZmSqCB61epClxrtuZUew+LQFWTm6rd0wID2HrT3duXarTss3nJGbnQnhBDllMEamPT0dGbMmEGb\nNm3uez4rK4tly5bh7OxcsN3ChQv57rvvWL16NStXriQpSb/TAqLyUhSFwfX64V+1GVdTrvP16dXk\n5hc/oqIoCmMDGtKkjgNhl+NZvfu83OhOCCHKIYM1MKampixfvhwXF5f7nl+yZAmjRo3C1NQUgNDQ\nULy9vbGxscHc3JxmzZoRHKz/SsSi8tIoGgIbDaOJoyfhCRGsOruWfLX4ERWdVsMrA5tQq6oNh05F\ns+2Pq4ZPVgghRKkyWAOj0+kwNze/77krV65w7tw5evfuXfBcXFwcDg4OBY8dHByIjZX7dQj9aDVa\nxjcZQx272pyICWXDhW16jaiYm+p4bVhTnOzM2Xr4CgdDb5ZBtkIIIUqLriwPNmvWLKZPn17kNvr8\n8rG3t0Sn05ZWWg9wdrYx2L7F4ymsNtO7TuKDfV9x4MafVK3iwFCvvnrta8ZLbXlz/iFW7T5PrepV\naNGoammnXCnId8Z4SW2Ml9Tm8ZRZA3P79m0uX77MG2+8AUBMTAxjxoxh8uTJxMXFFWwXExODr69v\nkftKTDTcfTycnW2Ijb1jsP2LR1dcbV5s8iyzTyxi3emfUbJN6OjeptBt/2amwOTBTfn8pxBmrTzG\nW6Oa4eFqW5ppV3jynTFeUhvjJbXRT1FNXpldRl21alX27t3LunXrWLduHS4uLqxZswYfHx/CwsJI\nSUkhLS2N4OBgWrRoUVZpiQqkipkdk3wnYGNizbqILZy4HapXXD13O17o70VOTj5z14cSk5Rh4EyF\nEEI8LoM1MKdPnyYwMJDNmzezatUqAgMDH3p1kbm5Oa+//jrjx49n3LhxTJw4ERsbGVYTj8bF0omJ\nvuMx05qx8uxPhMdH6BXXvKEzo3o0ICU9h6/WnuROutzoTgghjJmilsNrSA057CbDesarJLW5kHiJ\nBaHfoFE0vOr7Ah52NfWKW7//IruOXKeumy1vjPTDzMRwc60qCvnOGC+pjfGS2ujHKE4hCVGW6tvX\n5TmvUeTk5bA49Ftupd3WK25Ip7q09qrKpZspLNt2hvz8ctffCyFEpSANjKiwfJybMMpzKGm56cw/\n+TUJmYnFxmgUhef6NKJRLXtCLsTx/a8RcqM7IYQwQtLAiAqtrZs/A+v2ISkr+e66SdnFr5uk02qY\nOMgbd2drfg+JYueRa2WQqRBCiJKQBkZUeD1qdaZbzY7cTo9lUei3ZOZmFhtjaa5j6nAfHGzN2Hjg\nMn+eji6DTIUQQuhLGhhRKQyq25fW1Vpw7U4ky8NWk6PHukn2NmZMHeaDhZmOFTvPceZqQhlkKoQQ\nQh/SwIhKQVEURnkOwdupEecSL7Dy7E96rZtU3dmaV4d4oyiwcFMY12/LVQNCCGEMpIERlYZWo+U5\nrzHUtfMgJOYUayO26DVBt2FNe57v15jM7DzmrA8lPrn4U1BCCCEMSxoYUamYak14qemzVLd25XDU\nEXZc2aNXXMtGVXm6az2SUrOZve4kaZk5Bs5UCCFEUaSBEZWOpYkFE32ex8ncgV1Xf+P3yMN6xfVq\nWZMeLWoQHZ/O/A2nyMnNM3CmQgghCiMNjKiU7Mxs7q6bZGrNhgvbOH4rRK+4p7vVo4WnCxE3kln+\nczj5co8YIYR4IqSBEZWWs6Ujk3yex0JnzqrwtZyJP1dsjEZRmNCvEQ3c7Qg6F8O6fRfLIFMhhBD/\nJA2MqNTcbdx4qek4tIqG5WGruZxc/E3rTHRaJg1piqujJXuOR7Ln2PUyyFQIIcS9pIERlV69Kh6M\nbzKGPDWPxaHfcjP1VrEx1hYmTBvui521KT/tu8ixcP3WWhJCCFE6pIERAvB2asxoz6Gk52awMPQb\n4jOKXzfJ0c6cqcN8MDfV8vXPZzl/vfgYIYQQpUMaGCH+p7VrCwbV63t33aTQ5dzJTi02pmZVGyYO\n8kZVYf7GMKJii48RQgjx+KSBEeIe3Wt2okfNzsSkx7Eo9Bu91k3y8nBgXB9P0rNy+Wp9KIl3ssog\nUyGEqNykgRHiHwbU7U1bV3+u34liadgqcvKKv2ld2yauDOlUh4SULL5aF0p6ZvFrLQkhhHh00sAI\n8Q+KojCi4WB8nLyISLzId2d/1GvdpD6ta9HFrzo3YlNZuDmM3LziY4QQQjwaaWCEeAitRss4r1HU\nr1KHk7Gn+en8pmLXTVIUhdE9GuBX34nwa4l8uzNcr7WWhBBClJw0MEIUwkRrwotNn6WGtRt/3DzG\n9su7i43RaBReeMqLum62HDlzm40HLpdBpkIIUflIAyNEESx05rziOx5nC0d2X9vHvshDxcaYmWh5\ndWhTqtpbsPPINfYF3yiDTIUQonJ55Abm6tWrpZiGEMbL1tSGyb4TsDO1YeOF7RyNPlFsjI2lKVOf\n9sXW0oTv90QQHBFbBpkKIUTlUWQDM27cuPseL1q0qODf//73vw2TkRBGyNHCgUm+E7DQWbDm3HpO\nx4UXG+NSxYIpw3wwNdGydNsZLt5ILoNMhRCiciiygcnNvf9S0CNHjhT8WyYnisrGzboaLzcdh1bR\n8vXpNVxKulpsjIerLS8P9CIvT2XuhlCi49MMn6gQQlQCRTYwiqLc9/jepuWfrwlRGdStUpvn/143\n6dQKolKji41pWteJsQENScvM5at1oSSnyo3uhBDicZVoDow0LUJAE6dGBDYaTkZuBgtPfk1cRkKx\nMR193HiqXW3ikjOZs+EUmdlyozshhHgcuqJeTE5O5q+//ip4nJKSwpEjR1BVlZSUFIMnJ4Sxalmt\nGak5aWy8sJ35J5fzevNXsDW1KTJmQHsPEu9kcehUNPM2nOK5Po1wqmJRRhkLIUTFUmQDY2tre9/E\nXRsbGxYuXFjwbyEqs641OpCancbua/tYePIbXmv2Iha6whsSRVEI7NWQO+k5nLwYx7vLj9KjhTt9\n29TG0rzIr6IQQoh/UNRyOBs3NvaOwfbt7Gxj0P2LR2eMtVFVlR/Pb+KPm0epX6UOE33GY6I1KTIm\nX1U5evY2Gw9cIiElC2sLEwa096CTrxs6bfm7NZMx1kXcJbUxXlIb/Tg7Fz5YUuT/LVNTU/nuu+8K\nHv/0008MGDCAV199lbi4uFJLUIjy6u66SYPwdfbmQtJlVpz5gbz8vCJjNIpCG69qzJzQmiGd6pCb\nl8/3v0bw72+OEXIhVq7wE0IIPRTZwPz73/8mPj4egCtXrjB79mzeeust2rZty8cff1wmCQph7DSK\nhme9RtLAvh6hcWf0WjcJwNRES982tfnkxTZ08atOTGIG8zeG8fmPIVy7JX+ZCSFEUYpsYCIjI3n9\n9dcB2L17NwEBAbRt25YRI0bICIwQ9zDR6HjReyw1barzZ/Rxtl7apXesrZUpgb0a8uH4ljSt68i5\n60n897vjfP3zWRJSMg2YtRBClF9FNjCWlpYF/z527BitW7cueCyXVAtxP3OdOa/4jMfF0olfr+9n\n7/UDJYqv7mTFa8N8eGOEL+4u1vx5+hbvLjvCpoOXyciSy66FEOJeRTYweXl5xMfHc/36dUJCQmjX\nrh0AaWlpZGRklEmCQpQnNqbWTPKZQBUzOzZf3MGR6KAS76NxbQf+86w/4/p4YmGu4+c/r/LOsiMc\nOBlFfr7MjxFCCCimgZkwYQJ9+vShf//+vPLKK9jZ2ZGZmcmoUaMYOHBgWeUoRLniaGHPRJ/xWOos\n+P7cBsLizpZ4HxqNQoembnzyQhsGtvcgMzuXlb+c5z8rjnH6crwBshZCiPKl2Muoc3JyyMrKwtra\nuuC5w4cP0759e4MnVxi5jLpyKm+1uZJ8jXkhy1BRmejzPPXt6zzyvpJSs9h88DKHT0WjAk08HBje\npR7uLtbFxhpaeatLZSK1MV5SG/0UdRl1kQ3MzZs3i9yxm5vbo2f1GKSBqZzKY23OxJ9nyakVmGpM\nmdrsJdxtHu87ExmTyrp9FzhzNRFFgQ5NXRnUoQ521mallHHJlce6VBZSG+MltdHPIzcwnp6eeHh4\n4OzsDDy4mOOqVatKMU39SQNTOZXX2gTdCuG7sz9hbWrF680m4mzp+Fj7U1WVsMsJrPv9Ijfj0jAz\n0dK7dU16tayJmYm2lLLWX3mtS2UgtTFeUhv9PHIDs3XrVrZu3UpaWhp9+/alX79+ODg4GCTJkpAG\npnIqz7XZf+MP1kdsxcncgWnNX8HOzPax95mXn8+h0Gi2HLpMSnoO9jZmDO5YhzZNqqEpw6sEy3Nd\nKjqpjfGS2ujnkRuYv0VHR7N582a2b99O9erVGTBgAD169MDc3LxUE9WXNDCVU3mvzc+X97Dr6l6q\nW7vymt9LWJqUzkKOGVm57DxyjT3HI8nJzadmVWue7lqfRrXsS2X/xSnvdanIpDbGS2qjn8duYO61\nfv16vvjiC/Ly8ggKKvkloqVBGpjKqbzXRlVV1kVs4WDUX9S2rcmzjUc+9umkeyWkZLLxwCX+OnMb\nAN96TgzrUhdXR6tSO8bDlPe6VGRSG+MltdHPYzcwKSkpbNu2jU2bNpGXl8eAAQPo168fLi4upZqo\nvqSBqZwqQm3y1XxWnV3H8dvBmGh09K7dne41O6HVlN7clSvRKazdd5GIyCQ0ikJnPzeeau+BraVp\nqR3jXhWhLhWV1MZ4SW3088gNzOHDh9m4cSOnT5+mZ8+eDBgwgAYNGhgkyZKQBqZyqii1UVWV4JhQ\n1l/Yxp3sVNysqjHScwh17GqV6jFOXohj3e8XuZ2YgYXZ3XWXerRwx0RXuhN9K0pdKiKpjfGS2ujn\nsa5Cql27Nj4+Pmg0D97zbtasWaWTYQlJA1M5VbTapOeks/XSLg7fPIqCQrvqrRhQp3epzY0ByM3L\nZ39IFNv+uEpqRg6OtuYM6VyHVo2qltpyIBWtLhWJ1MZ4SW3088gNzLFjxwBITEzE3v7+CYE3btxg\n8ODBpZRiyUgDUzlV1NpcSrrKD+c3civtNramNgxrMAA/Z+9SXW8sPTOHn/+8xt4TkeTmqXi42jKi\nWz3qu1d57H1X1LpUBFIb4yW10c8jNzBBQUFMnTqVrKwsHBwcWLp0KbVq1WLNmjUsW7aMgwcPGiTh\n4kgDUzlV5Nrk5uey9/oBdl39jdz8XJo4ejK8wSAcLUr3SqLYpAw27L/E8XMxADRv6MywznVxsbcs\nJrJwFbku5Z3UxnhJbfTzyA3M6NGj+e9//0vdunX57bffWLVqFfn5+djZ2fH+++9TtWpVgyRcHGlg\nKqfKUJuY9Fh+PL+ZiMSLmGpM6FunJ13c25fqJF+Ai1HJrN13gUtRKWg1Ct2au9OvbW2sLUxKvK/K\nUJfySmpjvKQ2+imqgSlyMUeNRkPdunUB6NatG1FRUYwdO5YFCxY8seZFiIrMxdKZV30nMLbR05hq\nTdl8cQefB83nWkpkqR6nXnU73h3TnJcHNsHexow9xyN5Z+lf7DkeSW5efqkeSwghDKHIBuaf5+Bd\nXV3p0aOHQRMSorJTFIVWrs15v9UbtK7WgsjUm3wetIANEdvIzM0s1eP4e7rw8YTWDO9Sj3wVfvrt\nAtO/PsqJ8zGU8BZRQghRpopsYP6pNCcVCiGKZm1qRWDj4UzxewFnC0d+v3GYGUe/JDT2TKkex0Sn\nIaBVTT59qQ3dm7sTn5zJws2n+eT7YC7fTCnVYwkhRGkpcg6Mt7c3jo7/f6fQ+Ph4HB0dUVUVRVHY\nv39/WeT4AJkDUzlV5trk5OWw+9rv7Ln2O3lqHj7OTRjeYABVzOxK/Vi3EtJZ//tFQi7EAdCqcVWG\ndKqDk93DL++uzHUxdlIb4yW10c8jT+KNiooqcsfVq1d/9KwegzQwlZPUBm6l3eaHc5u4lHwFc60Z\n/esE0NG9DRqlRIOpejl/PZGf9l3k2q076LQaevi707d1bSzNdfdtJ3UxXlIb4yW10U+proVkDKSB\nqZykNnflq/n8FX2czRd3kpGbQS3bGoxqOAR3GzcDHEvl6JnbbDx4iYSULKwtTBjYwYNOvm5o/3dz\nS6mL8ZLaGC+pjX6KamC0H3zwwQdll0rpSE/PNti+razMDLp/8eikNncpikJNG3dau7YgOSuF8IQI\n/ow+RlZeFnXsaqMrxUuuFUWhhos1nX2rY2aq5fz1JIIj4gg6F4OjnTlV7S2kLkZMamO8pDb6sbIy\nK/Q1GYH5B+mKjZfU5uHOxp/np/Obic9MwNHcnqcbDsLL0dMgx0pOy2br4SscOBmFqkKjWva8NMQH\nG9PSP4UlHp98Z4yX1EY/T2wEJiIigqeffhqNRkPTpk0JCQlh2rRpbN26lR07dtChQwcsLCzYtm0b\n7777Lhs2bEBRFLy8vIrcr4zAVE5Sm4dztnSinVtLVFTOJpzn2K1gbqfFUMfOA3Nd4X+9PApzUy0+\n9Zxo4elCfHImZ64ksPvIVextzKhVrfD/0YgnQ74zxktqo5+iRmAM9mdTeno6M2bMoE2bNgXPrVix\ngs8++4zVq1fj5+fHunXrSE9PZ+HChXz33XesXr2alStXkpSUZKi0hKiQTLWmDKjbm7f9p+BhW5MT\nMaHMOPoFh6OOkK+W/o3pqjtZ8dowH15/2hdrC1NW7jrHkbO3Sv04QghRGIM1MKampixfvhwXF5eC\n5+bNm0eNGjVQVZXbt29TrVo1QkND8fb2xsbGBnNzc5o1a0ZwcLCh0hKiQqtu7cq05q/wdIOBqKrK\nj+c38VXwEm6mGqa58PJwYMaLbTA30/H19nCCI2INchwhhPgnXfGbPOKOdTp0ugd3f/DgQT7++GPq\n1KnDU089xY4dO3BwcCh43cHBgdjYov8naG9viU5XumvD3Kuoc27iyZLa6GeISy+6eLZiRfA6jt4I\n4ZOguQzw7MHgRr0x1ZmW6rGcgf++0Ib3l/7Jkq1neP+5VjTzdCk2TpQN+c4YL6nN4zFYA1OYjh07\n0qFDB7744guWLVv2wL1k9JlTnJiYbqj0ZGKVEZPalJSWsQ1G4ufgw9rzW9h09hcOXTnOiIaD8XSo\nX2pHcXa2wdHKhMlDmjJnfSgfrTjKtOE+NKxZuitpi5KT74zxktro55EXcyxtv/76K3D30sxevXpx\n4sQJXFxciIuLK9gmJibmvtNOQojH4+3UmOmtXqdrjQ7EZSQw/+RyVp1dy53s1FI9TqNa9kwc5E1+\nvsqcDae4dDO5VPcvhBD3KtMGZv78+YSHhwMQGhqKh4cHPj4+hIWFkZKSQlpaGsHBwbRo0aIs0xKi\nwjPXmTGkfn/ebDGZGjbVOXrrBDOOfsFf0UGlumhj07qOvDTAi5ycfL5aG8r12/IXphDCMAx2H5jT\np0/z6aefEhUVhU6no2rVqvzrX/9i5syZaLVazM3N+eyzz3B0dOSXX37hm2++QVEUxowZw1NPPVXk\nvuU+MJWT1KZ05OXncffrSt8AACAASURBVCDqT7Zf3k12Xjb1q9RhpOcQqlo6P9L+HlaXv07f4uuf\nz2JtacJbo5rh5mRVGqmLEpLvjPGS2uhHlhIoAfmhMl5Sm9KVkJnIuogthMWFo1O09KrdlR61umCi\nKdnUuMLqsv9kFKt+OU8Va1PeHt0MF3vL0kpd6Em+M8ZLaqMfo5kDI4QwHg7m9rzo/SzPNwnEysSS\nHVd+ZdaxOVxMulIq++/sW50R3eqTlJrN5z+eJCEls1T2K4QQIA2MEJWaoij4uXjzfus36Fi9LTHp\nsXwVvJjvwzeQlvP4V/v19K/BoI51iE/J5PMfQ0hOzSqFrIUQQhoYIQRgobPg6YYDeb35K7hZVePP\n6GPMOPIFx2+FPPYk335tatGndS1uJ2bwxdqTpGbklFLWQojKTBoYIUQBD7tavO0/hYF1+5CZl8V3\nZ39kYeg3xGXEP/I+FUVhSKc6dG/uTlRsGl+uPUl6Zm4pZi2EqIykgRFC3Eer0dKjVmemt5pGI4cG\nhCdE8NHR2ey59jt5+XmPtE9F+b/27jw+qsLe+/hn1uw7SViyEPY9Yd9VELSI4oIsKlhbxbZqvbXa\n1mvr1T726X3obe+1rdS6i3AVBBVBQbQCCkIABcIaQjCEJITsZN9mef4gICjgDGTImfB9v16+kplk\nzvzm9T0nfD1z5hwTsyf1ZPygTuQer+bZ5Rk0Nl3cskREQAVGRM6jQ1AMD6bey4/63UGgJYD3D6/h\n/23/KzmVuRe1PLPJxA9/0IeR/eLJzq/kb+/sptmhEiMiF0cFRkTOy2QyMazjYJ4c9RhjOo3gWO1x\n/vLVP1h68D3qHfVeL89sNnHv1L4M7tmBA7kVLHhvLw5n618tW0TaPxUYEfleIbZg7up7O48M+Rnx\nwbF8XrCFZ9L/zI7i3V4f5Gu1mPnpzQMYkBLN7sNlvLhqP06XSoyIeEcFRkQ81iMyhcdH/IIbU66j\n1lHPK3sXM3/T89Q013q1HJvVzIO3DaRXYiRfZhbz2upMXP53Tk0RaUMqMCLiFZvZypSUSTwx4hF6\nRXZnx7E9/H3nS16fNybAZuHfbh9ESqdwNu89zuKPs1r1ukwi0r6pwIjIRYkPjuXng+cxqds48muO\n8fedL3pdYoICrPxyViqJcaFs2FnA2+uzVWJExCMqMCJy0cwmM/cNu4OxnUeQV3OMv+96iTovS0xI\noI1HZ6XRKSaYtdvyeH9T61zKQETaNxUYEbkkZpOZ2b1vY0yn4eRVF7SUGO8+oRQeYuex2YOJjQxk\n5RdHWLP14j6qLSJXDhUYEblkZpOZO/pMZ3Sn4RytLuC5XS97XWKiwgL41ezBRIUFsGz9YdbtyPfR\ntCLSHqjAiEirMJvM3NlnOqM6DiO3Oo/nMl72+lwxHSKD+NUdgwkPsbP44yw27S700bQi4u9UYESk\n1ZhNZu7qezsjOw4ltyqP53a94nWJ6RgdzGOz0wgJtPLamgNsO1Dko2lFxJ+pwIhIqzKbzMzpO4MR\nHYdwpOooC3a9Qr2jwatlJMSG8ujsNALtFl5atZ9dh0p9NK2I+CsVGBFpdWaTmbl9ZzI8fgg5F1li\nunYM5xczUrFYTPxjxR72HSn30bQi4o9UYETEJ8wmM3f3m8mw+DRyqnL5R8YrNHhZYnomRPLw9EGA\nib+/s5usvBO+GVZE/I4KjIj4jNlk5u6+sxgWn8bXlbksyHjV6xLTr2s0D946AKfTzbPLMsgprPLR\ntCLiT1RgRMSnLGYLd/edxdC4VL6uPMI/Ml6lwdHo1TJSe3Tg/mn9aWx28t9Ld5FXXOOjaUXEX6jA\niIjPWcwWfthvNkPiBnH4IkvM8D5x/PiGvtQ2OPjLkp0Ulnl3AUkRaV9UYETksrCYLdzT7w4Gxw3i\ncGUO/9z9Go3OJq+WMXZgJ+Ze14uqumb+vGQXJSe8+4i2iLQfKjAictlYzBZ+1O8OBscO5NCJr3k+\n41WavCwxE4YkMHNCDyqqG/mvt3ZSXuXdMTUi0j6owIjIZWUxW/hR/ztJix3QUmJe87rE/GBkEjeP\nS6G0soE/L9lFVa13jxcR/6cCIyKXncVs4cf97yI1dgBZJw7z/O7XvS4x08Z25QcjkzheXsefl+yi\npr7ZR9OKiBGpwIhImzhZYu4ktUN/siqyeWH3QpqcnpcQk8nEjGu6M3FIF/JLavift3dR3+jw4cQi\nYiQqMCLSZqxmKz8ecBcDO/Qjs+IQL+x+3esSc+fkXowd2JGcwmr+uiyDxianDycWEaNQgRGRNmU1\nW7lvwBwGduhLZsUhXtyzkGYvSozZZOJHU/oyvE8cWfmVPPfubpodLh9OLCJGoAIjIm3OarZy74C5\nDIjpw4HyLF7c84Z3JcZsYt5N/Ujr0YF9Ryp4fsVeHE6VGJH2TAVGRAzBZrZy38C76R/Th/3lB3lx\n7xs0uzw/psVqMfOzW/rTv2sUu7JLefmD/bhcbh9OLCJtSQVGRAzDZrYyb8Bc+sX0Zn/ZQV7a412J\nsVktPHTbIHomRLDtQDGvr8nE5VaJEWmPVGBExFBsFhv3D7ibftG92VeWyctelpgAu4VfzEila8cw\nNu0p5K1PDuFWiRFpd1RgRMRwbBYb9w+8m77Rvdhblskrexfh8KLEBAVY+eWsNBJiQ/h0Rz7LPzus\nEiPSzqjAiIghnSwxP6RPVE/2lB7g5b2LvSoxoUE2Hp09mPjoYNakH2XV5iO+G1ZELjsVGBExLLvF\nxk8G3dNSYvbzyt7/9arERITY+dXsNDpEBLJiYw5rtx314bQicjmpwIiIoZ0sMT+kd1QPdpfu49V9\nb+J0eX6yuujwQB67YzBRYQEsXZfN+p0FPpxWRC4XFRgRMTy7xc5PB91Dr8juZJTs9brExEUG8djs\nNMKCbSxee5DNewt9OK2IXA4qMCLiF+wWOz9N/RE9I7uxq2QPr3lZYjrFhPDY7MEEB1p55cMDfJlZ\n7MNpRcTXVGBExG8EWOz8LPXH9Izsxs6SPby2/y2vSkxiXCiPzEwjwGbhhZX7yMgu9eG0IuJLKjAi\n4ldOlZgekSnsLN7Nwv1LvCox3TqH84sZqVjMJha8t5cDR8p9OK2I+IoKjIj4nQCLnZ8N+jHdI1L4\nqjjD6xLTKzGSn08fBLj52zt7yM6v9N2wIuITKjAi4pcCrQE8kPpjukd05aviDN44sNSrEtM/JZqf\n3TKAZoeL/1m2iyPHq3w4rYi0NhUYEfFbp0pMt4hkvizaxaIDb+Nye34V6sE9Y5l3Uz8aGp38Zcku\n8ktqfDitiLQmFRgR8WuB1kAeSL2XlPBkthft5I393pWYkf3iueeGPtQ2OPjzkl0UlNb6cFoRaS0q\nMCLi94KsgTyYdi8p4UlsL9rh9Z6Y8YM6c9fkXlTVNvH0q9tYtj6b+kbPz/grIpefCoyItAunSkzX\n8CS2Hd/B4gPLvCox1w5N4MFbBxAZamfN1qM88WI6m3YX4tJFIEUMSQVGRNqNIGsQD6XdS3J4IluP\nf8X/Zi73qsQM7R3H/503ilvGp1Df6ODV1Qf4w8IvyS7Qp5REjEYFRkTalSBrEA+l3kdyWCLphV/y\nZuY7XpUYu83CtLEp/PH+UYzqF8+R49X8cdFXvLhqH+VVDT6cXES8oQIjIu1OsC2Ih9LuIyksgS2F\n23kr812vSgycvAjk/dP68+9zhpAcH0b6viKeeCmdVV/k0NTs+ce1RcQ3VGBEpF0KtgXx87T7SAzr\nwubCbSw56H2JAeiZEMmT9wzjR1P6EGiz8N7GHH770la+zCzGreNjRNqMCoyItFvBtmB+njaPxNDO\nfHFsG0sPvndRJcZsMjE+tTP/+ZPR/GBkEidqGvnHir3811s7OVpU7YPJReT7qMCISLsWYgvm54Pv\nJyG0M5uObWVp1oqL3nMSFGBl5oQe/OG+kaT16EDm0RP8/vXtvLH2IFV1Ta08uYhciAqMiLR7J0vM\nPLqEdmJTQTpvX0KJAYiPDubh2wfxy5mpdIwOZsPOAp54IZ1PtufhcHq/h0dEvKcCIyJXhFBbCA+n\n3U+X0E58XrCFZYfev+RjWAZ0i+H3Px7BHZN6AvDWp4d46tVt7P26rDVGFpEL8GmBycrKYtKkSSxe\nvBiAwsJC7rnnHubMmcM999xDSUkJACtXrmT69OnMmDGDZcuW+XIkEbmChdpPlpjOIR35LH8zyw6t\nvOQSY7WYmTwskf/8ySgmDO7C8fI6/vvtDP66LIOi8rpWmlxEvs1nBaauro5nnnmG0aNHn77v2Wef\nZebMmSxevJjJkyfz2muvUVdXx4IFC3j99ddZtGgRCxcu5MSJE74aS0SucKH2EB4efKrEfME7h1a1\nyqeJwoLtzL2+N0//aAR9kiLJOFzG717eytvrsqlr0GUJRFqb5emnn37aFws2mUzceOONHDx4kKCg\nIAYNGsTYsWPp3bs3ZrOZ/Px8srKyiIiIoKysjJtuugmr1UpmZiYBAQGkpKScd9l1PjxYLiQkwKfL\nl4unbIzJH3MJsNgZHDeQfWWZ7Ck7QL2zgb7RvTCZTJe87IgQO2MGdCQhNpSvj1Wx++syNu0+RnCg\njcT40FZ5Dk/5YzZXCmXjmZCQgPP+zOqrJ7VarVitZy8+ODgYAKfTyZtvvsmDDz5IaWkp0dHRp38n\nOjr69FtL5xMVFYzVamn9oVvExob5bNlyaZSNMfljLrGE8X9ifsnv1z/L+rxNhAQFMDdteqsVjClx\n4Uwc1ZUVn2Wz7NNDvL4mk017Cpl3y0D6pcS0ynN4wh+zuVIom0vjswJzPk6nk1//+teMGjWK0aNH\ns2rVqrN+7smu3IoK372vHBsbRkmJzutgRMrGmPw7FxMPDrqPv+54gQ+yPqW+vplbe0xt1b0kE1M7\nM7hbDMs3ZLNlXxG/eW4TI/vFM+Oa7kSHB7ba85yLf2fTvikbz1yo5F32TyH9+7//O8nJyTz00EMA\nxMXFUVpaevrnxcXFxMXFXe6xROQKFW4P4+HBPyE+OI5P8z5n4f4lVDZWtepzRIUFMO+m/jwxdygp\nncLYur+IJ15MZ+WmHBp1WQKRi3JZC8zKlSux2Ww8/PDDp+9LTU1lz549VFVVUVtby44dOxg2bNjl\nHEtErnARAWH82+D7SQzrwvainfw+/U98kruBZlfrHnzbo0sEv717GPdO7UtQgJUVm3L43UvpbDtQ\npMsSiHjJ5PbRVrN3717mz59PQUEBVquV+Ph4ysrKCAgIIDQ0FIDu3bvz9NNP89FHH/HKK69gMpmY\nM2cO06ZNu+CyfbnbTbv1jEvZGFN7ysXldvHFsW2s+vojapvr6BAUw209bmRQh36tfvBtfaODD7Yc\naTn5nZteCRHcMakXyR1b77iI9pRNe6NsPHOht5B8VmB8SQXmyqRsjKk95lLXXMfqI//is/zNuNwu\n+kT1ZHrPm+gc2rHVn6uooo6312Wz81ApJmB8amduu6ob4SH2S152e8ymvVA2nlGB8YJWKuNSNsbU\nnnM5XlvE8kOrOFCehdlkZnyXUUxNuY4QW3CrP9e+nHLe+vQQx0prCQqwMG1sCtcOTcBqufh3+ttz\nNv5O2XhGBcYLWqmMS9kYU3vPxe12s68sk3cOraK4vpQQazBTu13HuM4jsZhb93QOTpeLDTuPsWLj\n19Q2OOgYHczsa3syqPvFfey6vWfjz5SNZ1RgvKCVyriUjTFdKbk4XA425H/BmpxPaXA20Ckkntt7\nTqNPdM9Wf66a+mZWbPya9TsLcLthUPcYZk3sQaeYEK+Wc6Vk44+UjWdUYLyglcq4lI0xXWm5VDVV\ns+rwWrYUbseNm9QO/bm1x43EBrf+yenyi2t469NDHMitwGI2ce3QBKaN7UpwoM2jx19p2fgTZeMZ\nFRgvaKUyLmVjTFdqLker81metZLDlUewmixMTLqK65MnEGht3ZPTud1udh4qZcmnhyitbCAs2MZt\nV3Vj/KDOmM0X/mTUlZqNP1A2nlGB8YJWKuNSNsZ0JefidrvZUZzBe9mrqWg8Qbg9jJu7T2FExyGY\nTa17mq1mh5OPt+fxweZcGpudJMWFcseknvROijrvY67kbIxO2XhGBcYLWqmMS9kYk3KBJmcTnxz9\nrOXkd80khyUyo9c0UiKSW/25Kqobeeezw2zeexyA4X3imDmhBzER393zo2yMS9l4RgXGC1qpjEvZ\nGJNy+UZ5QwUrslfzVXEGAMPjh3BLjylEBkS0+nMdPlbJm58cIqewCpvVzJSRSUwZlUyA7ZtPRikb\n41I2nlGB8YJWKuNSNsakXL4r+0QOyw+tJK+6ALvZxvVdJzIx8SrsFs8OvvWUy+0mfd9xlm04TGVN\nE1FhAcyc0IMRfeMwmUzKxsCUjWdUYLyglcq4lI0xKZdzc7ldpBd+xcrDa6huriEmMIpbe9xIWuyA\nVr8sQUOTgw+35LJ2Wx4Op4seCRHcOaknwwd2UTYGpe3GMyowXtBKZVzKxpiUy4XVOxr46MinrM/b\nhNPtpGdkN27vOY2EsM6t/lzFJ+pZti6br7JKMAEThiUyaUgXOka3/pmD5dJou/GMCowXtFIZl7Ix\nJuXimeK6Et7N/oA9pQcwYWJsl5HcmHIdYfbQVn+uA0dOXpYgv6QWEzC0TxxTRyW36oUi5dJou/GM\nCowXtFIZl7IxJuXinf1lB3nn0CqO1xUTZA1iaspkruoyutUvS+Byuck+XsNbazPJLTqZz4CUaKaO\nTqZXYmSrv40l3tF24xkVGC9opTIuZWNMysV7TpeTzwu28GHOJ9Q76okPjmN6z5voH9O7VZ8nNjaM\n4uIq9h0pZ/WWXDKPngCge5dwpo7qyqAeMZhVZNqEthvPqMB4QSuVcSkbY1IuF6+mqZYPcj5mU0E6\nbtwMiOnDbT1vIj44tlWW/+1sDhdU8uGWXHZllwLQJTaEG0YlM6JvHBZz6554Ty5M241nVGC8oJXK\nuJSNMSmXS1dQU8jyrJVknTiMxWThmoSxTEm5liBr0CUt93zZ5JfUsCY9l637i3G53XSICGTKyCTG\nDeqEzdq6b2XJuWm78YwKjBe0UhmXsjEm5dI63G43GSV7eTf7A8oaKgizhTKt+w8Y1WnYRV+W4Puy\nKTlRz0fbjrIxoxCH00V4iJ3rhicyYXAXggKsF/tSxAPabjyjAuMFrVTGpWyMSbm0rmZnM5/mbWRt\n7jqanE0khnXh9p7T6BGZ4vWyPM2msraJT7bnsX5nPvWNToICrEwc0oXJwxIJD7FfzMuQ76HtxjMq\nMF7QSmVcysaYlItvnGis5P3Da9h2fAcAQ+NSuaXHDUQHnv/ijd/mbTZ1Dc2s31nAx9vzqK5rxm41\nM35QZ64fmUiHiEt7O0vOpu3GMyowXtBKZVzKxpiUi2/lVOay7NBKcqvysJltTE66msnJ12C3fP+e\nkYvNpqnZycbdhXy09ShlVQ1YzCZG9otnyqhkunQIuZiXId+i7cYzKjBe0EplXMrGmJSL77ncLrYf\n38n7h1dT2VRNVEAkt/S4gaFxqRc8n8ulZuNwuth2oIjV6Uc5VloLwOCeHZg6uivdOodf9HJF242n\nVGC8oJXKuJSNMSmXy6fB0cDa3PWsO/o5DreTbhFdmdFzGknhCef8/dbKxuV2k3GolA+25JJTWAVA\n3+QobhidTL/kKJ0U7yJou/GMCowXtFIZl7IxJuVy+ZXWl/Fe9ofsKtmLCROjOw3jpu4/INx+9h/7\n1s7G7XaTmVvBh+m57D9SAUDXjmFMHZ3M4F6xOimeF7TdeEYFxgtaqYxL2RiTcmk7B8uzWX5oJcdq\njxNoCWBKyiSuSRiL1XzyI9C+zCansIrVW3LZkVWCG+gUE8yUkcmM6h+P1aKT4n0fbTeeUYHxglYq\n41I2xqRc2pbT5eSLY9v44Ou11DrqiAvqwG09b2RATF/i4sJ9nk1hWS2r03NJ31eE0+UmOjyA60ck\ncVVqZwJsOine+Wi78YwKjBe0UhmXsjEm5WIMtc11rM75hM8LtuByu+gb3Yv7RswisOnyXIG6rLKB\ntduO8nnGMZocLkKDbEwelsDEoQmEBNouywz+RNuNZ1RgvKCVyriUjTEpF2MprC1iedZKMisOATAg\npg8TE6+iV1T3y3KwbVVdE//6Mp91X+VT1+gg0G7hmsFduG54IpGhAT5/fn+h7cYzKjBe0EplXMrG\nmJSL8bjdbvaWHWBdwedklX0NQJfQTkxIHM+w+DRsZt9fJqC+0cGGXQV8vC2PytomrBYz4wZ25Aej\nkomL1EnxtN14RgXGC1qpjEvZGJNyMa7Y2DC2Ze9jfd5GdpbsweV2EWYP5eouYxjXZRRh9lCfz9Ds\ncPLFnuOs2ZpLyYkGTCYY0TeeG0Ylkxjn++c3Km03nlGB8YJWKuNSNsakXIzrzGzKGyrYkP8Fm49t\no97RgM1sZUTHIUxIHE+nkHifz+J0udieWczqLUfJL6kBYFD3GKaOTqZnQqTPn99otN14RgXGC1qp\njEvZGJNyMa5zZdPgaGBL4ZdsyNtEaUM5AH2jezExcTx9o3v5/DgZt9vN7sNlfJieS3Z+JQC9EiK4\nYXRXBnaLvmJOiqftxjMqMF7QSmVcysaYlItxXSgbl9vFntL9rMvbSPaJHAA6hsQzMXEcw+OHYLf4\n/pNDWXkn+HBLLnu+LgMgKS6UG0YnM6x3HGZz+y4y2m48owLjBa1UxqVsjEm5GJen2Rytymdd3ka+\nKs7A5XYRagthfJdRjO8yhogA338M+2hRNavTc9meWYzbDXFRQUwZmcSYAZ2wWf3npHgut5vmZheN\nDidNzU6aHS6aml00NjtpcjhP/6y52UWn+DAsbjfRYQGEhdh1FuPzUIHxgv4YG5eyMSblYlzeZnOi\nsZLP8jezqSCdOkc9VpOFYfGDmZg0ni6hnXw46UlF5XWs2XqUzXsLcTjdRIbauX5EElendSbQfvGf\nnHI4TxaJJoeTJoeLpmbnydvNZ9w+/bNv3/+try3FpLFlec0t9zc2u3A4XRc1n8VsIiosgOiwAKLD\nA09+f/prAFFhgYQF267IkqMC4wX9MTYuZWNMysW4LjabRmcTWwu/Yn3+RorrSgHoFdWDaxPH0y+m\nN2aTb/eKVFQ38vH2o2zYeYzGZichgVbGD+pMYIDljILhaeFw4Wrlf+asFhN2qwWbzUyA1YLdZsZm\ntRBgM2O3WbBbz75ts578GtDy1WoxY7KaOXqsivLqBiqqGymvaqCyponzTWq1mIgMPVlsosMCiAoP\nIDos8KzSExZsa3fHEKnAeEF/jI1L2RiTcjGuS83G5XaxryyTdXmbyKrIBiA+OJZrEsYxstNQAiz2\n1hr1nGrqm/n0q3z+9WUetQ2O7/19e0tBOF0ozrhtt37z9czicapgBJyjeHx7OSeLiBmL+dIL3Lmy\ncThdVNY0nSw01Q2UVzWeUXAaqaj+/pJzck9O4OmCc2ovzqn7woL8q+SowHhBf4yNS9kYk3IxrtbM\nJr/6GOvzNvFl0U4cbifB1iDGdRnF1QljiAyIaJXnOJ/GJidZ+SewmE3fFJGWwvHNHg+z3/3DfDHZ\nOJwuTtQ0nlFqTu69OV16qhupumDJMbfstQk4+62qM8pOqIFKjgqMF/TH2LiUjTEpF+PyRTaVjdVs\nLNjMxoJ0apprMZvMDI1LZWLieJLCE1r1udozX243p0rOd/fgfFN2Kmubzvt4m9V8+picqLDAlj04\nAUSFf/OWVUig9bKUHBUYL+iPsXEpG2NSLsbly2yanM1sL9rBurxNHK8tAqBHZAoTE8czsEM/nx8n\n4+/aertxOF2cqG6kvGXPTUXVN4WnvPpk2am6QMmxnyo54YEM6RXLtUN9U14vVGB8f0EMERFpd+wW\nG2M7j2RMpxEcKM9iXd5GDpRnkX0ihw5BMUxIGMeoTsMItOoCjkZktZjpEBlEhwtcl6rZcWpPzqm3\nqBpPFp1TJaeqgQO5FTQ7XT4rMBeiAiMiIhfNZDLRL6Y3/WJ6c6zmOOvzNrGtaAfLDr3PBzlrGdN5\nBNckjCU6MKqtRxUv2axmYiODiP2ekmOxtM3xMnoL6VvaereenJ+yMSblYlxtlU11Uw2bCtL5rGAz\n1U01mE1mBscOZELieFIiki77PEak7cYzegtJREQumzB7KFNSJjEp+Rq+LNrF+paz/H5VnEFKeDIT\nk8aT2qE/FrOlrUcVP6YCIyIiPmEzWxndaRijOg4lq+Iw6/I+Z29ZJq/szSU6MIprEsYypvNwgqzn\nf4tC5HxUYERExKdMJhO9o3vQO7oHRbXFrM//gvTCL3k3+wNW53zC6M7DuSZhHB2Cott6VPEjOgbm\nW/S+pHEpG2NSLsZl5Gxqmmv5omArn+VvprKpChMmUmP7MyFxPN0juhrmRGq+YuRsjETHwIiIiKGE\n2kK4vutErk26ih3Fu1mXt5FdJXvZVbKX5LBEJiaOY3DcIB0nI+elAiMiIm3GarYyouMQhscPJvtE\nDuvzNrK7dD+v7X+L9w6v5uqEMYzrPJJgW3BbjyoGowIjIiJtzmQy0TOqGz2julFSV8b6/E1sKdzO\n+4fXsCbnXwyLTyM8IByLyYzFZMFitpz82nLbbLZ862ct3595+/RjTt1vPuf3ZpN/XVfpSqUCIyIi\nhhIbHMPMXjdzY8p1bC7cxoa8L9hcuP2yzmA2nbvcnFWcvlWizixO5u8pUR1KI6DRQogtmGBbMCGn\n/rMGY7PYLutr9VcqMCIiYkjBtiAmJV3NhIRx5Ncco8nZjNPtxOl24XI7cbqcp2+f9f3pn5383nXG\n92f+zOFynlzO6ftd5/7e7WpZhhOHy0Gjq/GsnzldTtznvf6z92xm21mF5qyCYwsm2Hqu20FYzVfW\nP+lX1qsVERG/YzFbSA5PbOsxLsjldrWUGcc5S9Sp711uJw6XE3uIicKyMmqb607/V+eoO+t2eUMF\nBY5Cj2cIsNgJsYUQYg0ixBZCsC3ojNvf3dMTbAsm2BrktwdKq8CIiIhcIrPJjNlkxubhXpDY2DBK\nbN//MWqny0md3ZtaMgAACOZJREFUo/6cBaeuuY4axzffn7q/qL6UpppjHs8eZA30Yk/Pyf+CrIFt\nfsVxFRgRERGDspgthNlDCbOHevW4ZpfjrFLznfLzndv1FNYep9nl8Gj5JkwEt+zZSY0dwC09briY\nl3dJfFpgsrKyeOCBB7jnnnuYM2cOAG+88Qbz589n27ZthISEALBy5UoWLlyI2Wxm5syZzJgxw5dj\niYiItGs2s5WIgHAiAsK9elyTs5na5tqWvT611Daf/FrXXE+No7Zlb0/Lz1p+p7yhwkev4sJ8VmDq\n6up45plnGD169On7VqxYQVlZGXFxcWf93oIFC1i+fDk2m43bb7+dyZMnExkZ6avRRERE5BzsFht2\nSyRRGP/fYJ+9gWW323nppZfOKiuTJk3ikUceOevz9RkZGQwcOJCwsDACAwMZMmQIO3bs8NVYIiIi\n0g74bA+M1WrFaj178aGh330Pr7S0lOjoby7gFR0dTUlJia/GEhERkXbAcAfxenJtyaioYKxW333s\n60IXj5K2pWyMSbkYl7IxLmVzadq8wMTFxVFaWnr6dnFxMWlpaRd8TEVFnc/m0RVCjUvZGJNyMS5l\nY1zKxjMXKnlt+yFuIDU1lT179lBVVUVtbS07duxg2LBhbT2WiIiIGJjP9sDs3buX+fPnU1BQgNVq\nZe3atYwZM4bNmzdTUlLCvHnzSEtL49e//jWPPvoo9957LyaTiQcffJCwMO1WExERkfMzuT056MRg\nfLnbTbv1jEvZGJNyMS5lY1zKxjOGfgtJRERExFsqMCIiIuJ3VGBERETE76jAiIiIiN9RgRERERG/\nowIjIiIifscvP0YtIiIiVzbtgRERERG/owIjIiIifkcFRkRERPyOCoyIiIj4HRUYERER8TsqMCIi\nIuJ3VGDO8Mc//pFZs2Yxe/Zsdu/e3dbjyBn+9Kc/MWvWLKZPn87HH3/c1uPIGRoaGpg0aRLvvvtu\nW48iZ1i5ciXTpk3jtttuY8OGDW09jgC1tbU89NBDzJ07l9mzZ7Nx48a2HsmvWdt6AKPYtm0bubm5\nLF26lMOHD/PEE0+wdOnSth5LgPT0dA4dOsTSpUupqKjg1ltv5brrrmvrsaTF888/T0RERFuPIWeo\nqKhgwYIFvPPOO9TV1fH3v/+da665pq3HuuK99957pKSk8Oijj1JUVMQPf/hDPvroo7Yey2+pwLTY\nsmULkyZNAqB79+5UVlZSU1NDaGhoG08mw4cPZ9CgQQCEh4dTX1+P0+nEYrG08WRy+PBhsrOz9Y+j\nwWzZsoXRo0cTGhpKaGgozzzzTFuPJEBUVBQHDx4EoKqqiqioqDaeyL/pLaQWpaWlZ61M0dHRlJSU\ntOFEcorFYiE4OBiA5cuXc9VVV6m8GMT8+fN5/PHH23oM+Zb8/HwaGhr46U9/yp133smWLVvaeiQB\npk6dyrFjx5g8eTJz5szhN7/5TVuP5Ne0B+Y8dIUF4/nXv/7F8uXLefXVV9t6FAFWrFhBWloaiYmJ\nbT2KnMOJEyd47rnnOHbsGHfffTfr16/HZDK19VhXtPfff5/OnTvzyiuvkJmZyRNPPKFjxy6BCkyL\nuLg4SktLT98uLi4mNja2DSeSM23cuJF//vOfvPzyy4SFhbX1OAJs2LCBvLw8NmzYwPHjx7Hb7XTs\n2JExY8a09WhXvJiYGAYPHozVaiUpKYmQkBDKy8uJiYlp69GuaDt27GDcuHEA9OnTh+LiYr0dfgn0\nFlKLsWPHsnbtWgD27dtHXFycjn8xiOrqav70pz/xwgsvEBkZ2dbjSItnn32Wd955h7fffpsZM2bw\nwAMPqLwYxLhx40hPT8flclFRUUFdXZ2OtzCA5ORkMjIyACgoKCAkJETl5RJoD0yLIUOG0L9/f2bP\nno3JZOKpp55q65GkxerVq6moqOAXv/jF6fvmz59P586d23AqEeOKj4/n+uuvZ+bMmQD87ne/w2zW\n/6+2tVmzZvHEE08wZ84cHA4HTz/9dFuP5NdMbh3sISIiIn5GlVxERET8jgqMiIiI+B0VGBEREfE7\nKjAiIiLid1RgRERExO+owIiIT+Xn5zNgwADmzp17+iq8jz76KFVVVR4vY+7cuTidTo9//4477mDr\n1q0XM66I+AkVGBHxuejoaBYtWsSiRYtYsmQJcXFxPP/88x4/ftGiRTrhl4icRSeyE5HLbvjw4Sxd\nupTMzEzmz5+Pw+GgubmZ//iP/6Bfv37MnTuXPn36cODAARYuXEi/fv3Yt28fTU1NPPnkkxw/fhyH\nw8HNN9/MnXfeSX19PY888ggVFRUkJyfT2NgIQFFREY899hgADQ0NzJo1i9tvv70tX7qItBIVGBG5\nrJxOJ5988glDhw7lV7/6FQsWLCApKek7F7cLDg5m8eLFZz120aJFhIeH85e//IWGhgZuuOEGxo8f\nz+bNmwkMDGTp0qUUFxdz7bXXArBmzRq6devG73//exobG1m2bNllf70i4hsqMCLic+Xl5cydOxcA\nl8vFsGHDmD59On/729/47W9/e/r3ampqcLlcwMnLe3xbRkYGt912GwCBgYEMGDCAffv2kZWVxdCh\nQ4GTF2bt1q0bAOPHj+fNN9/k8ccf5+qrr2bWrFk+fZ0icvmowIiIz506BuZM1dXV2Gy279x/is1m\n+859JpPprNtutxuTyYTb7T7rWj+nSlD37t358MMP2b59Ox999BELFy5kyZIll/pyRMQAdBCviLSJ\nsLAwEhIS+OyzzwDIycnhueeeu+BjUlNT2bhxIwB1dXXs27eP/v370717d3bu3AlAYWEhOTk5AKxa\ntYo9e/YwZswYnnrqKQoLC3E4HD58VSJyuWgPjIi0mfnz5/OHP/yBF198EYfDweOPP37B3587dy5P\nPvkkd911F01NTTzwwAMkJCRw8803s27dOu68804SEhIYOHAgAD169OCpp57CbrfjdruZN28eVqv+\n7Im0B7oatYiIiPgdvYUkIiIifkcFRkRERPyOCoyIiIj4HRUYERER8TsqMCIiIuJ3VGBERETE76jA\niIiIiN9RgRERERG/8/8Bd09wO0ISya8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "c6diezCSeH4Y", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Evaluate on Test Data\n", + "\n", + "**Confirm that your validation performance results hold up on test data.**\n", + "\n", + "Once you have a model you're happy with, evaluate it on test data to compare that to validation performance.\n", + "\n", + "Reminder, the test data set is located [here](https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv)." + ] + }, + { + "metadata": { + "id": "icEJIl5Vp51r", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "a9e66737-c971-4baa-edac-1def40666ced" + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_testing_input_fn = lambda: my_input_fn(test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = dnn_regressor.predict(input_fn=predict_testing_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Final RMSE (on test data): 110.14\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "vvT2jDWjrKew", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see a possible solution." + ] + }, + { + "metadata": { + "id": "FyDh7Qy6rQb0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Similar to what the code at the top does, we just need to load the appropriate data file, preprocess it and call predict and mean_squared_error.\n", + "\n", + "Note that we don't have to randomize the test data, since we will use all records." + ] + }, + { + "metadata": { + "id": "vhb0CtdvrWZx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_testing_input_fn = lambda: my_input_fn(test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = dnn_regressor.predict(input_fn=predict_testing_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From 7bcad2c43a96e75fcd97e949488859ff31f9200a Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sun, 24 Feb 2019 02:05:16 +0530 Subject: [PATCH 09/11] Created using Colaboratory --- logistic_regression.ipynb | 1620 +++++++++++++++++++++++++++++++++++++ 1 file changed, 1620 insertions(+) create mode 100644 logistic_regression.ipynb diff --git a/logistic_regression.ipynb b/logistic_regression.ipynb new file mode 100644 index 0000000..18a94ff --- /dev/null +++ b/logistic_regression.ipynb @@ -0,0 +1,1620 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "logistic_regression.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "dPpJUV862FYI", + "i2e3TlyL57Qs", + "wCugvl0JdWYL" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Logistic Regression" + ] + }, + { + "metadata": { + "id": "LEAHZv4rIYHX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Reframe the median house value predictor (from the preceding exercises) as a binary classification model\n", + " * Compare the effectiveness of logisitic regression vs linear regression for a binary classification problem" + ] + }, + { + "metadata": { + "id": "CnkCZqdIIYHY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As in the prior exercises, we're working with the [California housing data set](https://developers.google.com/machine-learning/crash-course/california-housing-data-description), but this time we will turn it into a binary classification problem by predicting whether a city block is a high-cost city block. We'll also revert to the default features, for now." + ] + }, + { + "metadata": { + "id": "9pltCyy2K3dd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Frame the Problem as Binary Classification\n", + "\n", + "The target of our dataset is `median_house_value` which is a numeric (continuous-valued) feature. We can create a boolean label by applying a threshold to this continuous value.\n", + "\n", + "Given features describing a city block, we wish to predict if it is a high-cost city block. To prepare the targets for train and eval data, we define a classification threshold of the 75%-ile for median house value (a value of approximately 265000). All house values above the threshold are labeled `1`, and all others are labeled `0`." + ] + }, + { + "metadata": { + "id": "67IJwZX1Vvjt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "Run the cells below to load the data and prepare the input features and targets." + ] + }, + { + "metadata": { + "id": "fOlbcJ4EIYHd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "lTB73MNeIYHf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Note how the code below is slightly different from the previous exercises. Instead of using `median_house_value` as target, we create a new binary target, `median_house_value_is_high`." + ] + }, + { + "metadata": { + "id": "kPSqspaqIYHg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Create a boolean categorical feature representing whether the\n", + " # median_house_value is above a set threshold.\n", + " output_targets[\"median_house_value_is_high\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] > 265000).astype(float)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FwOYWmXqWA6D", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1153 + }, + "outputId": "de3069fc-0291-48ae-8ff6-a7dc28ba324c" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.5 2653.8 541.4 \n", + "std 2.1 2.0 12.5 2188.6 425.4 \n", + "min 32.5 -124.3 1.0 8.0 1.0 \n", + "25% 33.9 -121.8 18.0 1465.0 296.8 \n", + "50% 34.2 -118.5 29.0 2137.0 435.0 \n", + "75% 37.7 -118.0 37.0 3165.2 652.0 \n", + "max 42.0 -114.5 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1432.4 502.6 3.9 2.0 \n", + "std 1167.9 387.0 1.9 1.1 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 786.0 282.0 2.6 1.5 \n", + "50% 1169.0 410.0 3.6 1.9 \n", + "75% 1724.0 608.0 4.8 2.3 \n", + "max 35682.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.52653.8541.41432.4502.63.92.0
std2.12.012.52188.6425.41167.9387.01.91.1
min32.5-124.31.08.01.03.01.00.50.0
25%33.9-121.818.01465.0296.8786.0282.02.61.5
50%34.2-118.529.02137.0435.01169.0410.03.61.9
75%37.7-118.037.03165.2652.01724.0608.04.82.3
max42.0-114.552.037937.06445.035682.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.5 28.7 2619.4 534.7 \n", + "std 2.1 2.0 12.8 2159.1 411.9 \n", + "min 32.5 -124.3 1.0 2.0 2.0 \n", + "25% 33.9 -121.7 18.0 1451.0 297.0 \n", + "50% 34.2 -118.5 29.0 2110.0 430.0 \n", + "75% 37.7 -118.0 37.0 3119.2 641.2 \n", + "max 42.0 -114.3 52.0 30405.0 4957.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1422.8 497.8 3.8 2.0 \n", + "std 1098.4 378.5 1.9 1.2 \n", + "min 6.0 2.0 0.5 0.1 \n", + "25% 796.0 281.8 2.5 1.5 \n", + "50% 1164.0 405.0 3.5 1.9 \n", + "75% 1715.5 597.0 4.7 2.3 \n", + "max 13251.0 4339.0 15.0 52.0 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.528.72619.4534.71422.8497.83.82.0
std2.12.012.82159.1411.91098.4378.51.91.2
min32.5-124.31.02.02.06.02.00.50.1
25%33.9-121.718.01451.0297.0796.0281.82.51.5
50%34.2-118.529.02110.0430.01164.0405.03.51.9
75%37.7-118.037.03119.2641.21715.5597.04.72.3
max42.0-114.352.030405.04957.013251.04339.015.052.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 12000.0\n", + "mean 0.3\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 1.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count12000.0
mean0.3
std0.4
min0.0
25%0.0
50%0.0
75%1.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 5000.0\n", + "mean 0.2\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 0.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count5000.0
mean0.2
std0.4
min0.0
25%0.0
50%0.0
75%0.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "uon1LB3A31VN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## How Would Linear Regression Fare?\n", + "To see why logistic regression is effective, let us first train a naive model that uses linear regression. This model will use labels with values in the set `{0, 1}` and will try to predict a continuous value that is as close as possible to `0` or `1`. Furthermore, we wish to interpret the output as a probability, so it would be ideal if the output will be within the range `(0, 1)`. We would then apply a threshold of `0.5` to determine the label.\n", + "\n", + "Run the cells below to train the linear regression model using [LinearRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor)." + ] + }, + { + "metadata": { + "id": "smmUYRDtWOV_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "B5OwSrr1yIKD", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "SE2-hq8PIYHz", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_regressor_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "TDBD8xeeIYH2", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 748 + }, + "outputId": "4e5460fc-b334-498c-9de4-89990be50d2d" + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_linear_regressor_model(\n", + " learning_rate=0.000001,\n", + " steps=200,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 0.45\n", + " period 01 : 0.45\n", + " period 02 : 0.45\n", + " period 03 : 0.45\n", + " period 04 : 0.45\n", + " period 05 : 0.45\n", + " period 06 : 0.44\n", + " period 07 : 0.44\n", + " period 08 : 0.45\n", + " period 09 : 0.44\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGACAYAAACgBBhzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8VfX9x/HXvbm5SW72TsggYYSR\nsAlCAiI7DAVHEUGk1k6LVaxWy89ZLWqttlXU1tZRsVXURpwoIKKyMiCMDAiE7D1v9rr3/P4IXImQ\nsHJzRz7Px8OH3Jt7z/nce5Lcd75TpSiKghBCCCGEHVFbugAhhBBCiL4mAUcIIYQQdkcCjhBCCCHs\njgQcIYQQQtgdCThCCCGEsDsScIQQQghhdzSWLkAIWzZixAjCw8NxcHAAwGAwEBsby0MPPYROp7vs\n47733nssX778nPsTExP5/e9/z9///ndmzZplur+1tZW4uDjmz5/P008/fdnnvVgFBQVs2LCB3Nxc\nAFxcXFi7di1z5841+7kvxcsvv0xBQcE570lSUhJ33HEHoaGh5zzniy++6K/yrkhRURFz5swhMjIS\nAEVR8PPz4//+7/8YPXr0JR3rueeeY9CgQdxyyy0X/ZyPPvqIDz74gE2bNl3SuYToLxJwhLhCmzZt\nIigoCID29nbWrVvHP/7xD9atW3dZx6usrORf//rXeQMOQHBwMJ9++mm3gPP111/j4eFxWee7HPfd\ndx9Lly7l73//OwCHDx9mzZo1bN26leDg4H6r40oEBwfbTJjpiYODQ7fX8Pnnn/PrX/+aL7/8Eq1W\ne9HH+e1vf2uO8oSwKOmiEqIPabVaZsyYQVZWFgBtbW088sgjLFiwgIULF/L0009jMBgAOHbsGCtW\nrCAhIYGlS5fy3XffAbBixQpKSkpISEigvb39nHNMnDiRpKQkWlpaTPd9/vnnxMfHm263t7fz5JNP\nsmDBAmbPnm0KIgBpaWnccMMNJCQksGjRIvbu3Qt0tQhMnz6dt956i2uvvZYZM2bw+eefn/d1Zmdn\nM27cONPtcePG8eWXX5qC3saNG5k5cybLli3j1VdfZfbs2QA8+OCDvPzyy6bnnX37QnVt2LCBW2+9\nFYADBw5w4403Mm/ePJYvX05hYSHQ1ZJ1zz33MGvWLG699VbKysoucMXOLzExkbVr17JmzRr+9Kc/\nkZSUxIoVK7j77rtNYWDr1q0sWbKEhIQEbrvtNgoKCgB48cUXeeihh7jpppt48803ux337rvv5vXX\nXzfdzsrKYvr06RiNRv7yl7+wYMECFixYwG233UZ5efkl171o0SJaW1s5deoUAJs3byYhIYHZs2dz\n77330traCnS970899RTXXnstW7du7XYdevq+NBqN/OEPf+Caa67hpptu4tixY6bzJicnc/3117No\n0SIWLlzI1q1bL7l2IfqcIoS4bFFRUUppaanpdl1dnbJq1Srl5ZdfVhRFUf7xj38oP/vZz5SOjg6l\npaVFufHGG5UtW7YoBoNBWbhwofLJJ58oiqIoR44cUWJjY5WGhgZl//79yty5c897vv/973/KAw88\noNx3332m5zY0NChz5sxR3n//feWBBx5QFEVRNm7cqKxZs0Zpa2tTmpqalGXLlik7d+5UFEVRlixZ\nonz66aeKoijKhx9+aDpXYWGhMnr0aGXTpk2KoijK559/rsybN++8ddx1113KrFmzlH//+9/KyZMn\nu33t+PHjyuTJk5WKigqlo6ND+dWvfqXMmjVLURRFeeCBB5SXXnrJ9Nizb/dWV3R0tJKYmGh6vbGx\nscru3bsVRVGUTz75RLn++usVRVGUt99+W1m1apXS0dGh1NTUKLNmzTK9J2fr7T0+8z6PHz9eyc3N\nNT1+zJgxyt69exVFUZTi4mJl0qRJSl5enqIoivLaa68pa9asURRFUV544QVl+vTpSnV19TnH/eyz\nz5RVq1aZbv/tb39TnnjiCSU7O1uZP3++0t7eriiKorz11lvKhx9+2GN9Z96XUaNGnXN/bGyskpOT\no6SkpCjTpk1TysrKFEVRlIcfflh5+umnFUXpet+vvfZapbW11XT7pZde6vX7cteuXcr8+fOVxsZG\npaWlRbnpppuUW2+9VVEURbnhhhuUpKQkRVEUJTc3V7n33nt7rV2I/iAtOEJcodWrV5OQkMCcOXOY\nM2cOU6dO5Wc/+xkAu3btYvny5Wg0Gpydnbn22mvZs2cPRUVFVFVVsXjxYgDGjBnDoEGDOHr06EWd\nc/HixXz66acA7Nixg1mzZqFWf//j/PXXX7Ny5Uq0Wi06nY6lS5eybds2ALZs2cLChQsBmDRpkqn1\nA6Czs5MbbrgBgOjoaEpKSs57/meffZZVq1bxySefsGTJEmbPns0777wDdLWuxMbG4u/vj0ajYcmS\nJRf1mnqrq6Ojg3nz5pmOHxgYaGqxWrJkCQUFBZSUlJCamsq8efPQaDR4e3t368b7odLSUhISErr9\nd/ZYnYiICCIiIky3nZ2dmTZtGgB79uzhqquuYvDgwQD86Ec/Iikpic7OTqCrRcvHx+ecc15zzTVk\nZmZSV1cHwPbt20lISMDDw4Oamho++eQT9Ho9q1evZtmyZRf1vp2hKAqbN28mMDCQiIgIdu7cyaJF\niwgMDATglltuMX0PAEybNg0nJ6dux+jt+zIlJYWZM2fi6uqKs7Oz6VoB+Pr6smXLFnJycoiIiOC5\n5567pNqFMAcZgyPEFTozBqempsbUvaLRdP1o1dTU4OnpaXqsp6cn1dXV1NTU4O7ujkqlMn3tzIec\nn5/fBc8ZHx/PQw89RF1dHZ999hl33nmnacAvQENDA0899RTPP/880NVlNXbsWAA++eQT3nrrLZqa\nmjAajShnbUfn4OBgGhytVqsxGo3nPb+TkxN33HEHd9xxB/X19XzxxRds2LCB0NBQ9Hp9t/FAvr6+\nF3w9F1OXm5sbAPX19RQWFpKQkGD6ularpaamBr1ej7u7u+l+Dw8Pmpqaznu+C43BOfu6/fB2bW1t\nt9fo7u6OoijU1tae97ln6HQ64uLi2LVrF5MmTaK+vp5JkyahUql48cUXef3113niiSeIjY3l8ccf\nv+B4JoPBYHofFEVh2LBhvPzyy6jVahoaGti+fTu7d+82fb2jo6PH1wf0+n2p1+sJCAjodv8ZGzZs\n4JVXXuH222/H2dmZe++9t9v1EcISJOAI0Ud8fHxYvXo1zz77LK+88goAfn5+pr/WAerq6vDz88PX\n1xe9Xo+iKKYPk7q6uosOA46OjsyaNYstW7aQn5/PhAkTugWcgIAAfvKTn5zTglFeXs5DDz3E+++/\nz6hRo8jLy2PBggWX9DpramrIysoytaB4eHiwfPlyvvvuO7Kzs3F3d6ehoaHb48/4YWjS6/WXXFdA\nQABDhgwhMTHxnK95eHj0eO6+5OvrS1pamum2Xq9HrVbj7e19wecuWLCA7du3U1tby4IFC0zXf+rU\nqUydOpXm5maeeeYZ/vznP1+wJeSHg4zPFhAQwPXXX88DDzxwSa+rp+/L3t5bPz8/Hn74YR5++GF2\n797NXXfdxYwZM3B1db3ocwvR16SLSog+dPvtt5OWlkZycjLQ1SXxwQcfYDAYaG5u5qOPPmLmzJmE\nhoYSFBRkGsR78OBBqqqqGDt2LBqNhubmZlN3R08WL17MP//5z/NOzZ4zZw7vv/8+BoMBRVF4+eWX\n+fbbb6mpqUGn0zFkyBA6OzvZvHkzQI+tHOfT2trKb37zG9PgU4D8/HwOHz7M5MmTmTBhAqmpqdTU\n1NDZ2cmWLVtMj/P39zcNTi0sLOTgwYMAl1TXuHHjqKys5PDhw6bj3H///SiKwvjx49m5cycGg4Ga\nmhq+/fbbi35dlyI+Pp7U1FRTN9q7775LfHy8qeWuN7NmzSItLY0dO3aYunl2797N448/jtFoRKfT\nMXLkyG6tKJdj9uzZbNu2zRREduzYwauvvtrrc3r7vpwwYQK7d++mpaWFlpYWU7Dq6Ohg9erVVFRU\nAF1dmxqNpluXqRCWIC04QvQhNzc3fv7zn/PMM8/wwQcfsHr1agoLC1m8eDEqlYqEhAQWLlyISqXi\n+eef59FHH2Xjxo24uLjwt7/9DZ1Ox4gRI/D09CQ+Pp4PP/yQQYMGnfdcU6ZMQaVSsWjRonO+tnLl\nSoqKili8eDGKohATE8OaNWvQ6XRcffXVLFiwAF9fXx588EEOHjzI6tWreeGFFy7qNQ4aNIhXXnmF\nF154gSeffBJFUXBzc+P3v/+9aWbVzTffzPXXX4+3tzfz58/nxIkTACxfvpy1a9cyf/58Ro8ebWql\nGTly5EXX5ezszAsvvMATTzxBU1MTjo6O3H333ahUKpYvX05qaipz585l0KBBzJ07t1urw9nOjMH5\noT/96U8XfA+CgoJ48sknufPOO+no6CA0NJQnnnjiot4/Nzc3oqOjOX78OOPHjwcgNjaWzz77jAUL\nFqDVavHx8WHDhg0A/O53vzPNhLoU0dHR/PKXv2T16tUYjUZ8fX15/PHHe31Ob9+Xs2bNYteuXSQk\nJODn58fMmTNJTU3F0dGRm266iR//+MdAVyvdQw89hIuLyyXVK0RfUylnd3QLIUQfS01N5Xe/+x07\nd+60dClCiAFE2hCFEEIIYXck4AghhBDC7kgXlRBCCCHsjrTgCCGEEMLuSMARQgghhN0x6zTxDRs2\ncPjwYVQqFevXrzetpHq25557jkOHDrFp0yaSkpK4++67GT58OABRUVE8/PDDPPjgg2RkZODl5QXA\nHXfcwTXXXNPjeSsrzz8ttK94e+uorW026znEpZPrYr3k2lgnuS7WS67NxfP3dz/v/WYLOMnJyeTn\n57N582ZycnJYv369afGuM06ePElKSgqOjo6m+6ZMmXLe9TjuvffeXveV6U8ajYOlSxDnIdfFesm1\nsU5yXayXXJsrZ7Yuqn379plWWB06dCh6vZ7GxsZuj3n66adZt26duUoQQgghxABltoBTVVXVbV8W\nHx8fKisrTbcTExOZMmUKISEh3Z538uRJfvnLX3LLLbewZ88e0/1vv/02t912G+vWrTPb/jJCCCGE\nsA/9tlXD2bPR6+rqSExM5I033qC8vNx0f0REBGvXrmXhwoUUFhZy2223sW3bNpYuXYqXlxejRo3i\n1VdfZePGjTzyyCM9nsvbW2f25r2e+vyEZcl1sV5ybayTXBfrJdfmypgt4AQEBFBVVWW6XVFRgb+/\nPwD79++npqaGVatW0d7eTkFBARs2bGD9+vWmfXXCw8Px8/OjvLycadOmmY4ze/ZsHnvssV7Pbe6B\nWf7+7mYfyCwunVwX6yXXxjrJdbFecm0uXk9B0GxdVPHx8Xz55ZcAZGRkEBAQgJubGwAJCQl8/vnn\nvPfee2zcuJHo6GjWr1/Pxx9/zGuvvQZAZWUl1dXVBAYGctddd5l27U1KSjLNshJCCCGEOB+zteBM\nnDiR6OhoVqxYgUql4tFHHyUxMRF3d3fmzZt33ufMnj2b++67j6+++oqOjg4ee+wxtFotq1at4p57\n7sHFxQWdTsdTTz1lrrKFEEIIYQfscqsGczfrSdOhdZLrYr3k2lgnuS7WS67Nxev3LiohhBBCCEuR\ngCOEEEIIuyMBRwghhBB2RwKOEEIIIexOvy30J4QQQogLK69ppqqxAz83xws/WPRIWnCEEEIIK2FU\nFP76/mHWv7Kb+qZ2S5dj0yTgCCGEEFbiSE415bUtdBoUkrLKL/wE0SMJOEIIIYSV2J7StWq/WgV7\n08ssXI1tk4AzACmKQml1E1+nFZNbWm/pcoQQQgBFlY1k5dcyMtyLSaMCyS9roLiy0dJl2SwZZDxA\n1De3k5VXS0ZeDRm5NdQ2tAGg1ahZt3wcI8K9LVyhEEIMbDtSiwCYNzkMnZsTKZnl7M0o40fXDLNw\nZbZJAo6d6ug0crKojvS8GjJza8kv/37Jb1dnDbEjAxjk58qne/P46wdHuO/m8QwN8bRgxUIIMXA1\ntnSwL6MMP09nxg3zw9vHFRcnDfszyrnx6qGo1SpLl2hzJODYCUVRKK5sMrXQZBfW0d5pBMBBrWJk\nuBfRkT6MjvBhcKC76YclxM+Vv3+UwfPvHeb+W8YTEeRhyZchhBAD0jeHiunoNDJ3chhqtQqtowNT\nRgXwzaESsgpqiY7wsXSJNkcCjg2ra2wjM6+GjNxaMvNq0J81pTDEz9UUaEaEeeGkdTjvMSaPDOCn\nRiP//DiT5949xO9WTiQswK2/XoIQQgx4nQYjOw8W46R1YPqYYNP98THBfHOohL1HyyTgXAYJODak\nrcNAdmEdGbk1ZObVUFTZZPqah6uWqdGBREd0hRpvd6eLPu7U0UF0diq8/nkWf343jQdWTmSQn6s5\nXoIQQogfOJhdSW1DG3MmhaJz/v5jeWiIBwFeLhzIrmB1exTOWvnIvhTyblkxo6JQWN5o6nY6UVRH\np0EBwFGjJjrSh+gIH6IjfQj1d0Wluvw+2uljg+k0GHnry+M8+24aD66aSKC3rq9eihBCiB5sTy1E\nBcydFNrtfpVKRVxMEFt253LgeCXxZ7XuiAuTgGNlaupbycitISOvhsy8WhpbOkxfCw9w6+p2ivQh\nKtQTR835u50u1zUTQujoNPLOVyd49p00Hlw5ET8vlz49hxBCiO+dKqknp7iecUN9CfQ594/KqacD\nzt70Mgk4l0gCjoW1tHVy/Kxup9LqZtPXvN2diB8T1BVqBvvg4ao1ez3zYsPoNBh5f1cOf3qnqyXH\nx8PZ7OcVQoiBaEdq18J+c2PDzvv1AC8XokI9OZZfS7W+FV9P+X18sSTg9DOjUSG3rJ7M3K5up5yS\negzGrm4nJ0cHxg71NXU7Bfvqrqjb6XItnDqYjk4jW3bn8uw7aTywaiJebhc/pkcIIcSF1Ta0kXKs\nghA/V0YP7nktsrgxwWQX6dmfWcbiaRH9V6CNk4DTDyrqWroCTV4NWXm1NLd1AqACIoLdTWNphoZ4\nonGwjsWlr42PoMNg5LN9+fz53UP8buUEPHTmb0ESQoiB4uu0YgxGhTmTQ3v9Y3byiADe3pbN3vQy\nFk0dbJE/fG2RBBwzaG7tICu/rmscTW4NFXUtpq/5eTozeWQAMZE+jBzsjZuLowUr7ZlKpeKGq4fQ\n0WlkW0ohz717iPtvmWC19QohhC3p6DSwK60YV2cN06KDen2szlnDxCg/krMqyCtrIDJY1iu7GBJw\n+kCnwcipkvrTa9LUcKq0HqWr1wkXJwcmDPfraqWJ9CHAy8Vm0rdKpeLm2cPo6DTydVoxz28+xH0r\nJnSbxiiEEOLS7c8op7Glg0VTB+PkeOEJI3ExQSRnVbD3aJkEnIskn1SXQVEUymqau2Y75dZwrKCW\n1nYDAGqViqEhnl3jaCJ8iBzkjoPaOrqdLodKpWLV/Cg6DEZ2HynlL+8f4t7l43Fxkm8dIYS4HIqi\nsD21CLVKxeyJIRf1nOhIHzx0jiRllXPznGFWM5zBmsmn1CVoaevkg29ySM+tobL2+26nQG8XpsX4\nEBPhw4hwb7tr4VCrVPw4YSSdBiP7M8p54YMj3LN83EX91SGEEKK74wV1FFU2Ejsy4KJnqTqo1UyN\nDmJbSiFHc6qZEOVv5iptn319EptZeW0zXx8sxl3nyOSRAURHeBMd4TMg1opRq1XcsXgUnZ1GUo9X\nsvF/R/jNTWP7fC0eIYSwd9tPTw2f18PU8J7ExXQFnL3pZRJwLoIEnEsQEeTBX++aTkS4DzXVjZYu\np985qNX8/LpoOj9M59DJKl76MJ21N4yRplIhhLhIFXUtHDpRRWSwO0MHXdpYmvBAd0L93Th0sorG\nlg6Z9HEB8sl0iTxctTgM4G3rNQ5qfrUshphIH47kVPP3jzLoNBgtXZYQQtiEnQeKUIC5k8Mua8JJ\nXEwQBqNCSlZ53xdnZyTgiEvmqFHz6xvGMDLci4PZlfzr00yMpxcrFEIIcX4tbZ18d6QETzctsSMD\nLusYU6MDUalgT3pZH1dnfyTgiMvi5OjAb24ay7BQT5KzKnhjaxZGRUKOEEL0ZM/RUlraDMyeEHLZ\nXftebk5ER/pwqqSe0uqmPq7QvkjAEZfNWath3Y/GERnswZ6jZbz95XEUCTlCCHEOo6Lw1YEiNA5q\nZk64uKnhPYmL6VoYcF+GtOL0RgKOuCIuThruvXkc4QFu7DpUwjtfnZCQI4QQP3A0p5ry2hamjg68\n4m1vJgz3x1nrwL70Mmk574UEHHHFXJ0d+e2K8YT4ubIjtYgPduVIyBFCiLOYdg2fHHrFx3JydGDy\nyACq69vILqi74uPZKwk4ok+467Tcd8sEgnx0bE0q4KPduZYuSQghrEJxZSMZebWMDPciPNC9T44Z\nf7qbaq8MNu6RBBzRZzxdtdx/ywT8vZz5eE8en+3Ls3RJQghhcTsOFAFdU8P7yvAwL3w9nEk5XkFb\nh6HPjmtPJOCIPuXt7sT9t0zA18OJ/31zim3JBZYuSQghLKaxpYN96WX4eTozfphfnx1XrVIxLSaI\ntnYDadmVfXZceyIBR/Q5P08X7r9lAl5uWt7deZKdB4ssXZIQQljEt4dLaO80MmdSKOo+XiQ2Trqp\neiUBR5hFgLeO+2+ZgIerlre3ZfPd4RJLlySEEP2q02DkqwNFODk6MGNscJ8fP8hHx9AQDzLyaqht\naOvz49s6CTjCbIJ9XblvxXjcXBx5c+sxWbNBCDGgHMyupLahjeljgtE5m2ffqLiYYBQFkjJl64Yf\nkoAjzCrU343f3jweFycN//o0k5RjFZYuSQgh+sWO1K7u+Tl9MDW8J7EjA9A4qNiTXirLc/yABBxh\ndoOD3Ln35vE4OTrw6scZpJ2QAXFCCPuWW1rPyWI9Y4f6EuSjM9t53FwcGTfMj+LKJgrKG812Hlsk\nAUf0iyGDPFi3fBwaBzWvbEnn6KlqS5ckhBBm05cL+12IDDY+Pwk4ot8MD/XiNzeNRaVSsTHxKFl5\nNZYuSQgh+lxdYxvJWRUE++qIjvAx+/nGDPHFzcWRpMwyOg1Gs5/PVkjAEf1q1GBv7rphDIqi8Lf/\nHSG7UJYZF0LYl68PFmMwKsybHIZK1bdTw89H46DmqtGB1Dd3kJErfzieIQFH9LuYIb7cuWwMBoPC\nX98/zKmSekuXJIQQfaKj08CuQ8W4OmuYdrrrqD9IN9W5JOAIixg/3I9fXBdNW4eB5zcfIr+swdIl\nCSHEFUvKrKChuYOrxw3CydGh384bEeROsK+OtBNVNLd29Nt5rZkEHGExk0cG8NMlo2lp6+S5zYco\nqpQZAEII26UoCttTC1GrVMyeaP7BxWdTqVTExQTRaTDKchynScARFjUtOogfLxxJY0sHf34njdLq\nJkuXJIQQlyW7sI7CikYmjvDH19O5388/LToIFdJNdYYEHGFxM8YNYvX8KOqbO3j2nTQqapstXZIQ\nQlyy7acX9pvXD1PDz8fHw5mRg705UaSX36NIwBFWYtbEUFbMHkZdYzvPvpNGlb7F0iUJIcRFq6xr\nIe1EJYOD3BkW4mmxOuLHdA023pchWzdIwBFWY/6UcG6cOYTq+jaefSdNNo8TQtiMrw4UoSgwv5+m\nhvdkYpQ/To4O7JWtGyTgCOuyeFoE18VHUFnXyp/eSUPfKCFHCGHdWts7+e5IKZ6uWmJHBVi0Fmet\nhkkj/Kmsa+VEkd6itViaBBxhdZZOj2Th1HDKa5r587uHaGhut3RJQgjRoz1Hy2hp62TWhBA0Dpb/\nWJU1cbpY/koI8QMqlYqbZg5l7uRQiquaeO7dQzTJug5CCCtkVBR2HChC46Bi5oQQS5cDwMhwb7zd\nnUg5VkF7h8HS5ViMBBxhlVQqFbfMGc41E0IoqGjk+c2HaGnrtHRZQgjRTfqpasprmrlqdCCerlpL\nlwOAWq1iWnQQLW2dHDpZZelyLMasAWfDhg3cfPPNrFixgiNHjpz3Mc899xyrV68GICkpialTp7J6\n9WpWr17NE088AUBpaSmrV69m5cqV3H333bS3S5fFQKBSqbh1fhTxY4LILW3gL+8fprVdQo4Qwnp8\nPzU8zMKVdDdNuqnMF3CSk5PJz89n8+bN/PGPf+SPf/zjOY85efIkKSkp3e6bMmUKmzZtYtOmTTz8\n8MMAvPDCC6xcuZL//ve/DB48mA8++MBcZQsro1apuH3hKK4aHcjJIj0vfHCEtgHc5CqEsB4lVU1k\n5NYQFeZFeKC7pcvpJsTPlYggd9JP1aBvGpiNAmYLOPv27WPu3LkADB06FL1eT2Nj96X4n376adat\nW3fBYyUlJTFnzhwAZs2axb59+/q+YGG11GoVP10yikkj/DlWUMfGxKN0dErIEUJY1o4Dll3Y70Li\nYoIwKgpJmQNzTRyNuQ5cVVVFdHS06baPjw+VlZW4ubkBkJiYyJQpUwgJ6T4o6+TJk/zyl79Er9ez\ndu1a4uPjaWlpQavt6tv09fWlsrKy13N7e+vQaMy7yZm/v3Wl9YHg/34ylaf+nUxKZjmvfX6cB9fE\n4qjpntHlulgvuTbWSa7L5WlobmdvehkBPjrmxQ3BQd33a99c6bVZNGMom3eeJPlYBasWje6jqmyH\n2QLOD5294FBdXR2JiYm88cYblJd/nywjIiJYu3YtCxcupLCwkNtuu41t27b1eJye1Jp5iWp/f3cq\nK2X3a0v46aKRNLd0kJxZxobX9/OLpdE4qLtCjlwX6yXXxjrJdbl8W/fn095h4Jpxg6ip7vuNgvvq\n2owZ4suhk1WkZZQSGuDWB5VZn56CoNm6qAICAqiq+n70dkVFBf7+/gDs37+fmpoaVq1axdq1a8nI\nyGDDhg0EBgayaNEiVCoV4eHh+Pn5UV5ejk6no7W1FYDy8nICAiy7kJKwHEeNA2tvGMPIcC9Sj1fy\n2qdZGI0De7VOIUT/MhiNfHWwCCdHB64eF2zpcnplWhMnY+ANNjZbwImPj+fLL78EICMjg4CAAFP3\nVEJCAp9//jnvvfceGzduJDo6mvXr1/Pxxx/z2muvAVBZWUl1dTWBgYHExcWZjrVt2zZmzJhhrrKF\nDXBydOA3N41lWIgn+zPLefOLYxgH+JLkQoj+k5ZdRU19G3FjgtA5O1q6nF6NG+aHq7OGfRllGIxG\nS5fTr8wWcCZOnEh0dDQrVqyLNXVjAAAgAElEQVTgySef5NFHHyUxMZHt27f3+JzZs2eTkpLCypUr\nufPOO3nsscfQarXcddddbNmyhZUrV1JXV8eyZcvMVbawEc5aDff8aBwRQe7sPlLKf7ZlD/h9V4QQ\n/WNbaiEAcydZ5+Diszlq1EwZFYi+sZ2svFpLl9OvVIodfiqYu09Z+q2tR2NLB8++k0ZhRSPzpoQz\nZaQ/gwPdrWK5dPE9+ZmxTnJdLl1eWT1/eDOVMUN8Wbd8nNnO05fXJqdYzx83HWDq6EB+fl30hZ9g\nY3oag9Nvg4yFMAc3F0d+u2I8z/43je3JBWxPLkDrqGboIE+Gh3oyPMyLoYM8cNbKt7oQ4sptT7Hu\nqeHnM2SQB4HeLhzMrqSlrRMXp4Hx+3BgvEph1zx0WtavnkReZROpmWWcKKzjWH4tWfldzbFqlYrB\nQW4MD/UiKsyL4aGeuOusY0l1IYTt0De2kZxVTrCvjuhIH0uXc9FUKhVxMUF8+F0uqccrmDF2kKVL\n6hcScIRdcHHScPWEUEaFegLQ1NrBiSI9JwrryC6qI6+0gdzSBraldPWdB/vqTgceT6JCvfD1dEal\n6vt1LIQQ9uPrtGIMRoW5k8Ns7vfFtOiugLMvvUwCjhC2zNXZkfHD/Bg/zA+Atg4DuSX1nCiqI7tI\nz8liPd8eLuHbwyUAeLs7ERXmRdTpbq1Bfq6obewXmBDCfDo6jexKK0bnpCEuOsjS5VwyPy8XRoR5\ncaygjip9C36eLpYuyewk4IgBwcnRgZGDvRk52BvoWseisKKR7MLvW3mSMstNS5q7OmsYFuLZ1aUV\n5kVEkAxcFmIgS84qp765g4SrwnHSmnelfHOJiwnieGEd+zLKuTYuwtLlmJ0EHDEgOajVRAR5EBHk\nwfzYMBRFoaymmRNFerIL6zhRVMfhnGoO51QDoNWoGTLIwzSOZ8ggjwEzUE+IgU5RFLanFqJSweyJ\nIRd+gpWaPDKAt7dnsze9jCXTBttcN9ulkt/QQtA1CC/Y15VgX1euHtfVP13b0NbVpVVYR3ahnuMF\ndRwrqAO6Bi6HBboRdXocz/BQLzxcZeCyEPboRJGegvJGJo/wt+muHRcnDROj/EnKLOdUaT1DB3la\nuiSzkoAjRA+83Z2YMiqQKaMCAWg+PXA5u6iOE0V68krryS9rYPvpRb+CfHSmsDM8zAt/GbgshF3Y\nfnpywtzJYRau5MrFxQSRlFnO3vQyCThCiC46Z0fGDfNj3OmBy+0dBnJL68k+PVura+ByKd8eLgXA\ny017elp6V7dWiL8MXBbC1lTVtXDwRCWDA90ZHmr7gWB0hDeerlqSM8tZMXs4jhr7HVsoAUeIy6R1\ndGBEuDcjwr8fuFxU0dTVpVVUx4nCOpKzKkjOqgBA56RhWGjXAoRRYV5EBHnY9S8XIezBzoPFKArM\nnRxqFy2yDmo106KD+CK5gCM5VUwaYb+bV0vAEaKPOKjVDA5yZ3CQO/NOD1yuqG05K/DoOZJTzZHT\nA5cdNWoigz1Ma/EMDfGUgctCWJHW9k6+PVyCh6vW1FVtD+JiugLO3vQyCThCiEunUqkI9NER6KNj\nxg8GLp8o1JtaebIL64B8VCoID+hqBh8R7s344b44qKWFRwhL2ZteRnNbJ0tjI+2qtTU0wI3wADeO\n5FTT0Nxutyu7S8ARoh+db+DyyeJ602yt3NJ68ssb2HGgiKgwL365NBovNycLVy3EwGNUFHakFqFx\nUHHNBNudGt6TuJgg3t15kuSsCubYwK7ol0MCjhAWpHN2ZOxQX8YO9QWgo9Ng2lLiYHYlj72Rwi+v\nizYtUCiE6B8ZuTWU1TQTFxOEpx0uAXHV6EDe+zqHvemldhtw7KfNTQg74KhxICrMi19fH8OKOcNp\naung2XfT+GxfHkZFsXR5QgwYZ5Z/mGcHU8PPx9PNiZghPuSWNlBS1WTpcsxCAo4QVkilUjE/NowH\nVk7Ey82J/31zihc/OEJTa4elSxPC7pVWN5F+qoaoUE8GB7lbuhyziYvp2lNrX0aZhSsxDwk4Qlix\nYaGePHp7LNER3hzOqebxN1LILa23dFlC2LUdqUWAfSzs15vxw/xwcXJgb3qZXbYQS8ARwsp56LSs\nWz6e6+IjqNa38tTbB/g6rRjFDn8hCWFpTa0d7EkvxdfDiQlRfpYux6y0jg7EjgygtqGN4/m1li6n\nz0nAEcIGqNUqls0Ywrrl43DWatj05XH++Wkmre2dli5NCLvy3eFS2juMzJ4UOiCWaYiLCQa6psTb\nG/u/ekLYkZghvjx2eyxDB3mwP6OcJ986YLcDBIXobwajka8OFKJ1VJs23bV3w0I98fN0JvV4pd39\nwSQBRwgb4+PhzAOrJjJ3ciglVU088e9UkjLLLV2WEDYvLbuK6vo24mOCcXV2tHQ5/UKtUhEXE0Rb\nh4GD2ZWWLqdPScARwgZpHNSsnBvFr5bFgAr+8XEGb287Tken0dKlCWGzdqSe2TXcPteF6cmZ2VT2\n1k0lAUcIGxY7MoBH1kwmxN+VnQeLefo/B6jSt1i6LCFsTn5ZA9lFemIifQj2dbV0Of0qwFvHsFBP\nsvJqqalvtXQ5fUYCjhA2LtjXlYdum0xcTBC5pQ08/kYKR3KqLF2WEDbFtLBfrH1PDe9JXEwQCrDf\njrq7JeAIYQecHB24Y/Eo1iSMoK3DyF/fP0LitzkYjTKVXIgL0Te1k5xVTpCPjuhIH0uXYxGxIwPQ\nOKjZm15mN0tQSMARwk6oVCpmjg/h/1ZPwt/LmU/35vPc5kPom9otXZoQVm1XWjGdBoW5k0NRq1SW\nLsciXJ0dGT/cj5KqJvLLGyxdTp+QgCOEnRkc5M6jP45lwnA/svJreeyNZLIL6yxdlhBWqaPTyNdp\nxbg4aUyDbQcq02Djo/Yx2FgCjhB2SOfsyNobxrB81jAamjr403/T+CKpwG6anoXoK8lZ5dQ3tTNz\n3CCctRpLl2NRMZE+uOsc2Z9ZTqfB9mdkSsARwk6pVCoSrgrndysn4O7qyHtfn2Rj4lGaZcNOIQBQ\nFIUdqUWoVDB7Uoily7E4jYOaq0YH0tjSQfqpGkuXc8Uk4Ahh56LCvHjs9imMDPci7UQVj7+ZQn6Z\nffSxC3ElThTpyS9vYOJwf/w8XSxdjlWIN23dUGrhSq6cBBwhBgBPVy33rZjAkrjBVNa18sdNB/jm\nkGzYKQa2gbqwX2/CA90I8XPl0MkqGltsu7VXAo4QA4RareKGq4dy901jcXJU8+8vjvPaZ1m0dRgs\nXZoQ/a5K38KB7ErCA92ICvOydDlWQ3V664ZOg0LKsQpLl3NFJOAIMcCMG+bHo7fHEhnszt70Mp58\nK5WymmZLlyVEv9p5sBhFgXmTw1AN0KnhPZkaHYRKZfvdVBJwhBiA/DxdeHDVJGZPDKG4sok/vJli\n83+tCXGx2toNfHuoBA+dI1NGBVq6HKvj7e7E6AgfcorrKbfhP34k4AgxQDlq1Nw6fwQ/v240igKv\nbEnnv9uz7WJ6qBC92ZtRRnNbJ9dMCMFRIx+D52MPG3DKlRVigJs6OoiH10wm2FfHjgNFPPOfg1Tr\n7WfDPSHOZlQUdqQW4qBWMWuCTA3vycTh/jhpHdiXUYbRRicjSMARQjDIz5WH10xmanQgOSX1PP5m\nCumnqi1dlhB9LjO3htLqZqaMCsTTzcnS5VgtJ60Dk0f4U6Vv5YSNroQuAUcIAYCzVsPPloxm9YIR\ntLZ38pf3DrPlu1OyYaewK9tTiwCYFytTwy8kzrQmjm12U0nAEUKYqFRdzfa/v3USPh7OfLwnj+ff\nO0R9s2zYKWxfaXUTR09VMyzUk4ggD0uXY/VGhHvh4+FEyrEK2m1wOQkJOEKIc0QGe/Do7bGMG+pL\nZl4tj7+RwskivaXLEuKKfHWgq/Vm/uQwC1diG9QqFdOig2htN5B2osrS5VwyCThCiPNyc3HkrpvG\ncuPMIdQ1tvHMfw+yLVk27BS2qbm1gz1Hy/D1cGJClJ+ly7EZZ2ZT7bHBNXEk4AgheqRWqVg8LYL7\nV0zA1cWRd3ee5OUP02lu7bR0aUJckm8Pl9LWYWD2xFAc1PLRd7GCfV2JDPYgI7eGusY2S5dzSeQq\nCyEuaORgbx67PZaoMC8OZFfyh3+nUFAuG3YK22A0Kuw8WIRWo2bGuEGWLsfmxMUEoSiwP6Pc0qVc\nEgk4QoiL4uXmxP23jGfh1HAqalv446YDfHekxNJlmZWiKNQ2tHEsv5Zdh4rZvPMEH357ivomGXRt\nS9JOVFGlbyVuTDBuLo6WLsfmTBkVgINaZXOzqTSWLkAIYTsc1Gp+dM0whoV48tqnWbzx+TFOFOm5\ndV4UWkcHS5d32ZpbOyiraaG8ppmymmbKa8/8v4W29nNnj2xLKWRebCgJU8LROcsHprXbfmbX8Eky\nNfxyuOu0jB3qS9qJKgrKGwgPdLd0SRdFAo4Q4pJNGO7PI7e78cqH6ew+Ukp+WQN3Losh0Edn6dJ6\n1NFpoKK2pSvInAkwp/+rb+445/FajZoAbx1BPi4E+ugI8tER6K2joKKBT/bk8enefL4+WMzCqYOZ\nMzEUJ63tBjx7VlDeQHZhHdGRPgzyc7V0OTYrfkwwaSeq2JteJgFHCGHfArxcWL96Iu/sOMGuQyX8\n4d8p/GTRKCaNCLBYTUajQnV96/ctMTUtlNV2hZhqfSs/nP+lVqnw83ImItiDwB+EGS93J9Tn2WV6\nWKgn8WOC+epAEVv35/PBrhy2pxSyJC6CmeMHoXGQnn9rcqb1Zt5kab25EmOH+uLqrGF/Zjk/mjXU\nJgZqS8ARQlw2R40DtyWMZFioJ299eZyXPkxnfmwYN10z1Gwf9IqiUN/ccVaI+b47qaK2mU7DudPY\nPd20RIV5EeSrOx1kdAT6uODv5XJZdTo5OrBo6mCuGT+IL5IL2Z5SyH+2Z/NlcgFLp0cyLToItfrc\ncCT6V31TO0mZ5QT66IgZ4mvpcmyaxkHNVaMD2XmwmIzcWsYOtf73UwKOEOKKxcUEEx7ozssfprMt\npZBTJfX8alkM3u6Xv9dPS1vnWV1J3cfHtLSdOy7GxUlDWIB7VyuMt87UEhPg7YKLk3l+1emcHbnh\n6iHMnRTKZ/vy+TqtiNc+y+Lz/fnccPUQJkb5ozpPK5DoH7vSiuk0KMydFHre1jhxaeJigtl5sJi9\n6aUScIQQA0eovxsPr5nMv784RnJWBY+9kczPr4smOsKnx+d0dBqprDsdXmrPtMZ03dafZ6aSxkFN\noLcLgYO7WmCCvHVdrTI+OtxdHC0WJjxctdwydzjzY8P4eE8ue46W8dKH6QwOcufGmUOIjvCRoNPP\nOg1Gvk4rxsVJQ/yYIEuXYxcig90J8tGRdqKK5tZOdM7WHSFUih0uS1pZad71Ofz93c1+DnHp5LpY\nB0VR2HmwmHe/OoHRqLB0RiRLrh5G1snK77uUToeZKn0rP/wNpAJ8PZ1PdyN9350U5K3Dx8PZJrp+\nSqub+Gh3LslZFQCMCPPixplDGRbqaeHKurPnn5l96WX889NM5seGsWLOcEuXc8ms9dp8ujePxG9P\n8eOFI7naStYU8vc//6BnCTiXwVq/8QY6uS7WJadEzytb0qmpP//qpx6uWoK8z5qhdPq/AC9nHDX2\nMSOpoLyBxG9PcSSnGugaqHnD1UOsZhaKvf7MKIrCE/9OJb+8gad/MQ1/LxdLl3TJrPXaVOtbuf+V\nvUSFevLgrZMsXQ7Qc8Axa/vShg0bOHz4MCqVivXr1zN27NhzHvPcc89x6NAhNm3aZLqvtbWVJUuW\ncOedd3LDDTfw4IMPkpGRgZeXFwB33HEH11xzjTlLF0JcoaGDPHns9ikkfpODUaXCS+f4fZDx1ll9\n83ZfCA90554fjeNEUR3/+6Yr6BzJqWbKqACWzRhCkBVPq7dlJ4v15JU1MDHK3ybDjTXz9XRmZLgX\nxwrqqKhrIcCK31+z/YZJTk4mPz+fzZs3k5OTw/r169m8eXO3x5w8eZKUlBQcHbsvlPXKK6/g6dm9\nKffee+9l1qxZ5ipXCGEGbi6O3JYw0mr/Gu0vw0O9eGDlBDLyavjfN6dIzqog9Vgl08cGcV18JD4e\nzpYu0a5sT+3aNVymhptHXEwwxwrq2J9exnXTIy1dTo/MNpF93759zJ07F4ChQ4ei1+tpbGzs9pin\nn36adevWdbsvJyeHkydPSguNEMKuqFQqYiJ9eWTN5NOLIrrw7eFSHvzHPt7ZcUK2f+gjNfWtHDxe\nSViAG1FhXpYuxy5NGuGPVqNmb3oZ1jzKxWwBp6qqCm9vb9NtHx8fKisrTbcTExOZMmUKISEh3Z73\nzDPP8OCDD55zvLfffpvbbruNdevWUVNTY66yhRDCrFQqFZNHBvDEHVdxx+JReLo6sT21kAf+sY8P\nvz0lO7Vfoa8OFmFUFOZODpWZa2bi4qRh4gh/KupayCmut3Q5Peq3TvCzU15dXR2JiYm88cYblJd/\nvzvpli1bGD9+PGFhYd2eu3TpUry8vBg1ahSvvvoqGzdu5JFHHunxXN7eOjRmHqTY06AmYVlyXayX\nXJtzLQv0YPHVQ9m2P593d2Tzyd48vk4r5qbZw1k8PRJnrfl/RdvTdWlt6+S7w6V4umlZcvUwm94f\nDaz72iyMH8L+jHIO5lQzbYJ1dgWa7acnICCAqqoq0+2Kigr8/f0B2L9/PzU1NaxatYr29nYKCgrY\nsGEDFRUVFBYWsmvXLsrKytBqtQQFBREXF2c6zuzZs3nsscd6PXdtbbNZXtMZA308gbWS62K95Nr0\nbsoIf8ZF+vDVwa7tH978LJMPd53k2vgIrh5nvu0f7O267EorprGlg2vjItDXmfdzwNys/dqEeDnj\n5abl24NFXB8/2KIzH/t9FlV8fDwvvvgiK1asICMjg4CAANzc3ABISEggISEBgKKiIn7/+9+zfv36\nbs9/8cUXCQkJIS4ujrvuuovf/e53hIWFkZSUxPDhtremgRBC9MZJe+72D29vy+aLpAKWzYhk6mjZ\n/qE3iqKw40ARDmoVsyaGXPgJ4oqo1SqmRQexNamAwyermTzScnvQ9cRsAWfixIlER0ezYsUKVCoV\njz76KImJibi7uzNv3rxLOtaqVau45557cHFxQafT8dRTT5mpaiGEsKwz2z/MmRTKZ/vy2JVWzL8+\nzeLz/QVcP2MIE6P8ZGzJeWTm1VJS1cTU6EC83C5/ixBx8abFdAWcvellVhlwZKG/y2DtTYcDlVwX\n6yXX5vJV61v5eE8uu4+WoigQEeTOjTOHMjrC+4qDjr1cF31jG//8NJPMvFoeXjOZyGAPS5d0xWzl\n2jz+RgpFlY089+t4PFy1FqnBIgv9CSGEuDK+ns7cvmgUCVeFs+W7XFKOVfDc5kOMDPfihplDGRZi\nXds/mJPBaKS8poWCigYKyxspqGiksLyB+uYOAIaFetpFuLElcTFBvPPVCZKyypk3OezCT+hHEnCE\nEMIGBPu68qtlMSwqa+DD77pWRd6w6QDjh/lx/dVDCAtws3SJfaqlrZPiyiYKKhooKG+ksKKBosom\nOjqN3R7n6+HMhOGehAW4MWuidc7msWdXjQ5k886T7D1aJgFHCCHE5Rsc1LX9Q3ZhHYnf5HDoZBWH\nT1YxZXQgy6ZHEmhj2z8oikJtQxuFFd+3yBRUNFJR29LtcQ5qFSF+roQFuhEe4E54oBuhAW64Ojv2\ncGTRHzxctYwZ4sPhnGqKKhsJ9beeoC0BRwghbFBUmBcPrJpIRm7X9g9JmeWkZFUwfWww18VHWOX2\nD50GI2XVzafDzJmWmUYaWzq6Pc7VWcOowd6EBbgRFuBGeKA7wb46s02XF1cmbkwwh3Oq2Zdexo9m\nDbN0OSYScIQQwkapVCpihvgSHenDgeOVfPjdKb49XMLe9DJmTwxh0bTBeOgsM/CzubWTwoqGs1pm\nGimuaqTT0H1eS4CXCyPCvbqCzOmWGW93J5kpZkPGD/PFxUnDvowybpw51GqWM5CAI4QQNu7M9g8T\novzYl17OR7tz2ZZSyDeHS1gQG8b82HCz7d6uKArV9a0Unm6NKahopKC8gSp9a7fHaRzUhPq7ER7o\nRliAu6l1xsVJPoZsnaPGgSmjAvjmUAlZ+bVER/pYuiRAAo4QQtgNB7Wa6WODuWp0IN8eLuGTvXl8\nvCePrw4UsWjaYGZPDMXpCrYv6DQYKalqMnUtFZ7uZmpu675/lrvOkegIb8IC3Qk/HWSCfHU4qKWL\nyV7FxQTxzaES9qaXSsARQghhHo4aNXMmhTJ9TDA7DhSydX8B73+dw7aUQq6Li2DGRWz/0NjS0RVi\nyr/vZiqpasJg/L6LSQUE+OiIjvTp1jLj5aaVLqYBZliIJwFeLhzIruTWtk6raJmzfAVCCCHMwknr\nwOJpEcyaEMIXyQVsSylk07ZsvkguYNn0ISye6YaiKFTqW7tmL53VMlNd39btWFpHNRFBp7uWTrfM\nhPq74aS17Q0trVFdm542fSNOWM+MpAtRqVTExQSxZXcuB7MriR8TbOmSZCXjy2ErK0wONHJdrJdc\nG+ugb2rns7157DpUTKdBwc/LhaaWdlraDN0e5+mmJfx0a0xXy4wbgd46qxk8au+eSfkb5S1VbIj7\nP5w11jcbricVdS08+Pd9jBrszf23TOi388pKxkIIMcB5umpZOS+K+VPC+HhPHqnHKvDxcGbcULfT\nLTNd3UyeFlpyX0BhQzEFDcUAZNWcYELAGAtXdPECvFyICvXkWH4t1fpWfD0tG84k4AghxADj5+nC\nTxaN4oE1U6RlzcrsK001/ftIVYZNBRzoWhMnu0jP/swyFk+LsGgtMqRdCCGEsAIdxk5Sy9Jw17rh\n4+JFRtUxDEbDhZ9oRSaPCEDjoGbP0TIsPQJGAo4QQghhBY5WZdLU2cyUoIlMHjSWps5mTunzLV3W\nJdE5a5gY5UdZTTO5pZZtHZSAI4QQQliB/ae7p6YFxzI5ZBzQ1U1la+JiggDYm15q0Tok4AghhBAW\nVtemJ7P6OIM9wgh2DSQ6YDhODlqOVGVavKvnUkVH+uChcyQps5xOg/HCTzCTyw44eXl5fViGEEII\nMXAllx5EQWFa8GQAHB0cGe0zgqqWasqaKyxc3aVxUKuZGh1EU2snR3KqLVZHrwHn9ttv73b75Zdf\nNv37kUceMU9Fol/UtNbyn6wP+K54v6VLEUKIAU1RFPaVpeCo1jApYLzp/rH+0QAcrcy0VGmX7ftu\nqjKL1dBrwOns7L6/yP79338Y2lqTmejSaexkW/7XPLH/z+wtTebd44kklR6wdFlCCDFg5dbnU9Fc\nxTj/GHSOLqb7o31HolapbXIcTliAG6H+rhw+WUVjS4dFaug14PxwL5GzQ43sM2J7smtzeCr5r3yU\nsxWtg5brhy1Gp3Hh7WPvk1WTbenyhBBiQNpX0jW4eOrp7qkzXB11DPWMIK++EH2bba1X1LV1QzAG\no0JyVrlFarikMTgSamyTvq2BNzPe4W9p/6C8uZIZIdN4dOr9zA2fyS/G/hg1Kv51dBNFDSWWLlUI\nIQaUNkM7BysO4+3kxQjvYed8fazfaBQUMqqzLFDdlZkaHYhKZbluql5XMtbr9ezbt890u76+nv37\n96MoCvX19WYvTlwZg9HAd8X7+eTUl7QaWgl3D2XFiOsZ7BFmeswwr0huG72C1zP+w8uHX+f+yWvx\ndvayYNVCCDFwHKo4SquhjWvCpqNWndvmMMYvmv+d/JQjVRnEDZpigQovn5ebE9GRPqSfqqG8pplA\nH12/nr/XgOPh4dFtYLG7uzsvvfSS6d/CeuXq89l8/EMKG0tw0bhwc9T1TA+56rw/QJMCx1HXpifx\n5Ke8dPg17p14Z7d+YCGEEOZxZu2bqUGTz/t1f50vwa6BHKs5QbuhHa2Dbe0TljAlnLLqZizRAdRr\nwNm0aVN/1SH6SGNHEx/nbGVPSTIAVwVN4vphi3HXuvX6vNlhM6hprWVX0R5ePfpvfj3+pziqZasy\nIYQwl6qWGrLrchjmFYm/zrfHx43xG822/K/JqjnBuNMzq2zF6Agf/vSrOIucu9cxOI2Njbz55pum\n2++++y5Lly7lN7/5DVVVVeauTVwCo2Jkb0kyf9j/LHtKkhnkGsS6ib/ittE3XzDcQNf4qhuHX8t4\n/xhO1J3i7az3MCqWW6BJCCHsXdKZ1pvg2F4fN9bv9HTxKtubLm5Jvf6J/sgjjxASEgJAbm4uzz//\nPH/9618pKCjgj3/8I3/5y1/6pUjRu8KGEjYf/5Dc+nycTs+OmhU6HQe1wyUdR61Ss2b0LdQfepXU\n8kN4O3mxbNgiM1UthBADl1Exsr/sAFoHLRP8e98xfLBHKB5ad45WZWJUjOcdaiDO1eu7VFhYyG9/\n+1sAvvzySxISEoiLi2PFihXSgmMFWjpb+SD7Y55J+Ru59flMCBjLw1fdx9zwmZccbs7QOjjyi7E/\nJkDnx/aCXXxTtLePqxZCCHGi9hQ1rbVMDBiLs8ap18eqVWrG+I2isaOJvPqCfqrQ9vUacHS670c8\nJycnM3XqVNNtmTJuOYqikFqWxh/2P8vXRbvxd/Fl7bif8tOYW/tkBpSboyu/HncH7o5uvJ/9EYcr\nbW+RKSGEsGb7ztpY82KM8RsNwBEbXNXYUnoNOAaDgerqagoKCkhLSyM+Ph6ApqYmWlpa+qVA0V1Z\nUzkvpL3KG5nv0NLZwpLIBay/6l5G+Ub16Xn8XHz51bjbcVRreCPjv+Tq5a8GIYToCy2dLRyqPIq/\niy9DPSMu6jkjvIejVTtyRMbhXLRex+D87Gc/Y9GiRbS2trJ27Vo8PT1pbW1l5cqVLF++vL9qFHQt\nBvVF3ld8VfAtBsVAjO9IfhS1FD+XnkfeX6nBHmHcEXMrfz/yJn8/8ga/nfRrAnR+ZjufEEIMBAfL\nj9Bh7GBq8OSL7g3ROjgyyieKw1UZlDdXEqjzN3OVtq/XgDNz5kx2795NW1sbbm5dM3GcnZ25//77\nmT59er8UONApisKRqt/IVq8AACAASURBVAzez/6Y2rY6vJ28+FHUUsb6je6XbsIYv1GsGHE97xxP\n5KXDr3HfpF9f1KwsIYQQ57evNBUVKq4KmnRJzxvjN5rDVRkcrcokMHymmaqzH70GnJKS75fuP3vl\n4iFDhlBSUsKgQYPMV5mgqqWa97M/Ir36GA4qB+YPnkVCxByc+nmhp+khU6ltreOL/J28cuQN7pnw\nC5tbbEoIIaxBWVMFufX5jPKJuuQxkzF+o1Ch4khlJnMl4FxQrwFn9uzZREZG4u/f1RT2w80233rr\nLfNWN0B1GDvZkb+LL/N30mHsJMp7GDdHLSPINcBiNS0ZsoDaNj1JZQd4PeO//HzMbTJVUQghLpFp\n5eLg869c3Bt3rRuRnoM5pc+jsb0JN61rX5dnV3oNOM888wwfffQRTU1NLF68mCVLluDj49NftQ1I\nWdXZvJe9hYqWKjy07tw6bAmTAsdbfNaaSqVi5cgb0bfVc7Qqk/eyP+LmqGUWr0sIIWyFwWgguewA\nLhoXxvld3orEY/1Gc0qfR3p11mWFpIGk1z/Bly5dyuuvv85f//pXGhsbWbVqFT/96U/55JNPaG1t\n7a8aB4Ta1jr+lf42Gw//i8qWamaFTueRqfcxOWiC1YQIjVrDT8esJsQtmO+K97G9YJelSxJCCJuR\nVZONvr2B2MDxODo4XtYxxp6eLi6rGl/YRfUxBAcHc+edd7J161YWLFjAk08+KYOM+4jBaGBHwTf8\nIenPpFUcIdJjMA/E3s1NUdfhorG+DS9dNM7cOe4neDl58lHOVlLK0ixdkhBC2IQr6Z46I9A1gACd\nH5k12XQYOvqqNLt0Ubsp1tfX8/HHH5OYmIjBYOAXv/gFS5YsMXdtdu/k/7d353FVlvn/x1/nHED2\n9bArICCyo7jkWpq2TmVlKanUtPktqylrmilnymYmTWd+zZhaluVSmqlTtE37omYFiorsoCwCKvu+\nb+f8/kCZzGUUOdznHD7P/+As9/t488A393Xd11VXyI7cDznZXIadpS13jriFCd5jjX5ui/MQJx6J\nuZ9/HnqNLdk7cRriQIhLsNKxhBDCaDV1NJNWlYWPnRd+DkMv672itRF8W7yH3No8IrVh/ZTQ/Fyw\n4Pz444988MEHZGRkcO2117JixQpCQvp3QbnBqLGjiQ/zPmNf2UEAJvuM55agG7C3NJ0JYz72XiyM\nupu1hzewPv0dnoxdhI+9l9KxhBDCKCWXp9Ct776ktW/OJ0obzrfFe0irypKCcwEXLDgPPPAAAQEB\nxMbGUlNTw6ZNm854/KWXXjJoOHOj0+v48cQ+Pin4ktauVoba+xA38jaGO/krHa1PQlyCiQ+bw+as\n93g1dQNPj30U5yFOSscSQgijk1R6ALVKzXiv2Mt+r0Anf+wt7cioykKnv83or/or5YIF5/Rt4LW1\ntbi4uJzx2PHjxw2XygwVNZSwPfdDihuPY62x5s4Rs5jqO6HPm2Iai3Feo6ltr+Pj/C94LXUji2Mf\nxsbCWulYQghhNEoaT3K86STR2oh+WShVrVIT6RZGUtkBShpP4O84rB9Smp8LFhy1Ws3ixYtpb2/H\n1dWVN954A39/f7Zu3cr69eu5/fbbByqnyWrpbOGTgq/48UQSevSM8xzNbcE34TTEQelo/eYav2nU\nttXxw4lE3krfwsMx92KhvqjpXUIIYfaSSpOBy5tc/GtR7uEklR0grTJTCs55XPB/oX/9619s3ryZ\noKAgvvvuO55//nl0Oh1OTk78+9//HqiMJkmv17Ov7CAf5n1GU2czXrYezB15q1lOxlWpVNwZMou6\n9gbSqjLZlvMB8WFzjOb2diGEUEqXrovk8hQcLO2JdAvtt/cNcw3BQm1BWlUWNwdd32/va04uOHCn\nVqsJCgoCYMaMGZw4cYK7776btWvX4unpOSABTdGJplL+dWgdW7J30tHdwaygG3h2/BNmWW5OU6vU\n3BtxFwGOfuwrO8h/Cr9WOpIQQiguvSqb5s4WxnmN7tcpCUM0VoS6BHOyuYyq1pp+e19zcsGC8+u/\nwL29vbnmmmsMGsiUtXW18cHRT1mR/Ar59ceIcY/kuQm/51r/6YNiyMZKY8VD0b/F3caNL499x48n\nkpSOJIQQijo9PDXRe1y/v3f0qdWQZdG/c7ukqdcy5HBuer2eQxVp/DXp//F9yV5chzjzcPS9LIy6\nG1drl//9BmbEwcqeRTH3Y29px/bcD8moylY6khBCKKK+vYHM6lz8HIYaZBmN07eIp1Vm9vt7m4ML\nXlZISUlh2rRpvV9XV1czbdo09Ho9KpWK3bt3Gzie8StvqWRn7kfk1B7FQqXhhoCZXOs/Has+LsNt\nDjxstTwUfS+vpLzBhoytPBH7kEyCE0IMOvvLDqFHz0QD7RnlNMQRf8dh5NUX0tLZgq2lrUGOY6ou\nWHC+/PLLgcphcjq6O/mq6Hu+LdpNl76bMNcQ5oTMwsPWXeloRmG4kx/3Rcxjffo7rEvdxO/HPoLW\nxk3pWEIIMSD0ej2JpQewUFsw1nOUwY4TrY2gqKGEzOpcxnmNNthxTNEFC46vr+9A5TApB0+m81by\ndqrbanAe4sTsETcz2j1KhvB+Jdo9gjkhs9hx5CNeTd3AU2MeManVmoUQoq+ONRRT3lLBGI8Yg15Z\nidaG82nBl6RVZUrB+RXzn/najzq6O9ic+R6pVZmoVWpm+l3FDQEzsbYYonQ0o3Xl0EnUtNXxTfFu\n3kjbzGOjFg7q4TshxOCQ2A8ba14MbztPtNauZFXn0qXrGhQ3tFwsWd/5EpxoKiO1KpMw92CeHfcE\ntwX/RsrNRbgl6HrGeo6ioL6It7PeQ6fXKR1JCCEMpqO7g4PlqTgPcSLUdYRBj6VSqYhyD6etu52j\ntQUGPZapkYJzCYY7+bF88p95YfqTsrHkJVCr1CwIm8MI50AOV2bwwdFP0ev1SscSQgiDOFyZQVt3\nG1d4jRmQfaKiteEApMnt4meQgnOJnIY4ylybPrBUW7Aw6h687TzZffwnvi/Zq3QkIYQwiKTe4akx\nA3K8IKfh2FrYkF6VJX88/oIUHDFgbC1teCTmfpysHEnI+w8Hy1OVjiSEEP2qurWWI7X5BDkFDNhd\ntRq1hgi3UGrb6zjedHJAjmkKDFpwli9fzty5c4mLiyMtLe2cz3n55ZeJj48/43ttbW3MnDmThIQE\nAEpLS4mPj2fevHk8/vjjdHR0GDK2MCAXa2cWxdyHtWYI72RtlzFjIYRZ2Vd2AD16Jhhg5eILiXbv\nWdVYhqn+y2AFZ//+/RQVFbFjxw6WLVvGsmXLznpOXl4eycnJZ31/3bp1ODk59X69evVq5s2bx7Zt\n2/D39+f99983VGwxAIY6+PBg1N3o0PNG+tuUNZcrHUkIIS6bTq8jqfQgVmpLYj2iBvTYYa4haFQa\n0mVV414GKziJiYnMnDkTgKCgIOrr62lqajrjOStWrGDx4sVnfC8/P5+8vLwzVlDet28fM2bMAGD6\n9OkkJiYaKrYYIKGuI1gQeietXa28mrqR+vYGpSMJIcRlyasrpLqthtEe0VhbWA/osW0srAlxCaKk\n6SS1bXUDemxjZbAb5quqqoiIiOj92tXVlcrKSuzt7QFISEhg/PjxZy0muHLlSp577jk++uij3u+1\ntrZiZWUFgJubG5WVlRc8touLLRYW/bdr67m4uzsY9P0Hg5vcp9Fh0cr29E94M/NtXrj6SWwsL++X\ngpwX4yXnxjjJeek/OwoOA3BD2FX98u96qe8xKSCW7JojFLTlc/2waZd9fFM3YCsC/XJmd11dHQkJ\nCWzatIny8v8OT3z00UeMGjWKYcPOv2/RxcwQr61tubyw/4O7uwOVlY0GPcZgMUU7mRKfcn46uY8V\nu9fxcPS9aNR9K6dyXoyXnBvjJOel/7R1tZFUfAitjRtaPC/737Uv52a4dSAAicdSGOM8MHdwGYPz\nFUGDFRwPDw+qqqp6v66oqMDdvWdGeVJSEjU1NcyfP5+Ojg6Ki4tZvnw5FRUVlJSUsHv3bsrKyrCy\nssLLywtbW1va2tqwtramvLwcDw8PQ8UWA0ylUjE35Fbq2+vJqM7hvdwE5ofeIbfiCyFMyqGKNDp0\nnUzwGqvY7y8Xa2eGOfhypDaf1q42bAZ4mMzYGKzgTJ48mTVr1hAXF0dmZiYeHh69w1PXX389119/\nPQDHjx/n2WefZcmSJWe8fs2aNfj6+jJp0iQmTZrEV199xaxZs/j666+ZOnWqoWILBWjUGu6NmM8r\nKW+QWJqMi7Uzvxl+jdKxhBDioiWWHkCFasDWvjmfKG04JY0nyKrOZYxnjKJZlGawScaxsbFEREQQ\nFxfHiy++yNKlS0lISOCbb7655Pd67LHH+Oijj5g3bx51dXXceuutBkgslGRtMYSHY+7FzdqVzwu/\n4eeTZ99dJ4QQxqi8uYKC+mOMdAnGxdpZ0SzR2p65r+lyuzgqvRkue2joMWUZtzac8uYKXj74Gq3d\nbTwcfS/hbiMv+rVyXoyXnBvjJOelf3yc/wVfF+3i3vC7GNtPO3r39dzo9Xqe+/kl2rrbWTnl+T7P\naTQl55uDIysZC6PiaefBQzG/RaNS81bGFkoaTygdSQghzkun17Gv9CA2FtZEu0cqHadn801tOK1d\nreTXFyodR1FScITRCXQK4Lfhd9HR3clrqRupbq1VOpIQQpxTds0R6jsaGOM5CiuNpdJxAIh2P7X5\nZuXgHqaSgiOM0iiPKGaPuJmGjkZeS91Ac6dhb/0XQoi+SDy1seZE77EKJ/mvEc6BWGusSRvkm29K\nwRFGa/qwKcwYdiVlLRW8kfY2nd2dSkcSQohezZ0tpFdm4mXnib/D+ddvG2gWagsi3EZS3VZD6SDe\nCkcKjjBqtwbfSKxHNPn1hbyTvQOdXqd0JCGEACC5PIUufTcTvZVb++Z8orSnhqmqBu/eVFJwhFFT\nq9TcHTaXIKfhHKpI46O8z5WOJIQQACSVHkCtUjPOM1bpKGeJcBuJWqUe1LuLS8ERRs9SY8n/Rd+D\np60H35X8wK6SH5WOJIQY5E40lVLSeIIIt5E4DTG+/bxsLW0Jdg6kqKGEuvZ6peMoQgqOMAl2lrY8\nEnMfjlYOfHD0Uw5XpCsdSQgxiCWW9ixGOsF7nMJJzi/61DBVRlW2wkmUIQVHmAw3G1cWxdyHlcaS\nzVnvUVB/TOlIQohBqEvXRXJZCvaWdkS6hSod57z+Ow9ncA5TScERJmWYgy8PRMbTrdfxeupmypsr\nlI4khBhkMqpzaOpsZpzXaCzUBtvS8bJpbVzxsfMitzaPtq52peMMOCk4wuSEu43krpGzae5q4dXU\njTR0yFLzQoiBk3RqeGqiEQ9PnRbtHkGXrouc2qNKRxlwUnCESZrkM44bh19DdVsN61I30d7doXQk\nIcQgUN/eSGZ1LsMcfPG191Y6zv90eh5OWuXgu11cCo4wWTcGzGSi9ziKG4+zMWMr3bpupSMJIcxc\ncvkhdHodE4xo5eILGebgi5OVAxnV2YNuHTEpOMJkqVQq7hp5O2GuIWRU57Bm32aO1hbQISseCyEM\nQK/Xk1h6AAuVhnGe/bNruKGpVWqitOE0d7ZQUF+kdJwBZbyzo4S4CBq1hgciF7Aq5Q1+Lj7Az8UH\n0Kg0+Dn4EugUQJBzAIFOAThY2SsdVQhh4ooaSyhrLme0RzR2lrZKx7loUdpwfjy5j7SqTIKdhysd\nZ8BIwREmz9rCmidjH6aks4iUkmwK6oooajxOYUMx35X8AICHjZZA5wCCnHoKj6etu9EtrS6EMG7G\nuLHmxRjpEoyVxor0qixuD75J6TgDRgqOMAtWGismeMUSZD0CgPbuDooaismvK6Kg/hgF9UUklR4g\n6dQvKHtLO4Y7+fcWHj/HoVga8e2eQghldXR3crD8MM5DnAhzDVE6ziWx1FgS7hrC4coMypor8LLz\nUDrSgJDf6MIsDdFYEeISTIhLMAA6vY7S5nLy646RX19IQX0R6VVZpJ9aAMtCbYGfw1CCTg1rDXfy\nx97STsmPIIQwImmVGbR2tTHVdyJqlelNX43ShnO4MoP0qiwpOEKYE7VKja+9N7723lw5dCIAde31\npwrPMQrqj1FY33O155vintd42nr0XOFxDiDIyR93G60MawkxSJ0enjKVu6d+LdItDBUq0qoyucZ/\nmtJxBoQUHDFoOQ9xYoxnDGM8YwBo62rjWENJT+GpO0ZhQxE/l+7n59L9ADhY2hPoHEDgqaGtYQ6+\nRr2KqRCif9S01ZJbm9c7f88U2VvZEegUQEH9MRo7mgbFjRfy21mIU6wtrAl1HUGoa888nm5dNyeb\ny3oLT379MVIrM0itzADAUm2Bv+Ownru1nHqKj60J3VkhhLg4+0oPokdvcpOLfy3aPZz8+kLSq7KZ\n5GP8qzBfLik4QpyHRq1hmIMvwxx8mTZ0MtDzl1x+Xc+QVn79MfLrjpFXV9j7Gm87z96Jy0HOAbhZ\nu8qwlhAmTKfXkVR6ACu1JbEe0UrHuSzR2nA+zPuM9KosKThCiDO5Wrvg6uXCOK+eRb5au1oprC8+\nVXiKOFZfRGlzOT+e3AeAk5UDgb3zeAIYau+DRq1R8iMIIS5Bfl0hVW01XOE1BmsLa6XjXBYPW3e8\nbD3IrjlCR3cnVhpLpSMZlBQcIS6DjYUN4W4jCXcbCfQMax1vOklBfRH5dYUU1B8jpTKdlMp0AKzU\nlgQ4+vUWnuFOfthY2Cj5EYQQF2Dqk4t/LUobzjfFu8mtPUrUqX2qzJUUHCH6kUatwd9xGP6Ow5g+\nbAp6vZ7qttreslNQX8SRunyO1OUDoEKFj71X77BWoFMArtbOMqwlhBFo62ojpSINN2tXs1kBONq9\np+CkVWZJwRFC9J1KpUJr44rWxpUrvMcA0HJqT5iC+iLy6wspaijhRFMpP5xIBHru7hrhHMjNgdfh\nZuOqZHwhBrVDFel06DqZ4D3GJNe+OZcARz8cLO1Jr85Cp9eZzec6Fyk4QgwwW0tbIrVhRGrDAOjS\ndVHSeLJ3AcKCumMkl6eQV1fIE7EPoZWSI4QikkqTUaHiCi/zGJ6CnjXBIrVhJJYmU9RQwnAnf6Uj\nGYwUHCEUZqG2YLiTH8Od/ICeHYu/LtrFJwVfsurQ6zwR+39obdwUTinE4FLRUkl+/TFGugTjZuOi\ndJx+Fa0NJ7E0mbSqLLMuOOZ7bUoIE6VSqbgu4GpmBd5AbXsd/zr0OpUt1UrHEmJQSSo9CJjP5OJf\nCnUdgaXagrRTW9WYKyk4QhipawOmc2vQjdS117Mq5XUqWqqUjiTEoKDT69hXdhBrjTWj3COVjtPv\nrDRWhLqOoKy53Kx/r0jBEcKIXeM/jduCf9NTcg69TkVLpdKRhDB7OTVHqWuvZ4xnDFYaK6XjGES0\nNgKgd8NhcyQFRwgjN9PvKm4Pvon6jgZWHXqd8uYKpSMJYdaSTq19Y+pbM1xIpLZn800pOEIIRc3w\nu5LZI26mvqORV1LeoExKjhAG0dLZQmpVJp62HgQ4+ikdx2AcrRwIcPQjr66Qps5mpeMYhBQcIUzE\n1cOmcseIW35RcsqVjiSE2TlQfpguXRcTvcea/YKb0dpw9OjJrMpROopBSMERwoRMHzaFO0Nm0dDR\nyKqUNyiVkiNEv0osPYBapWa8V6zSUQwu2r1nJWNzHaaSgiOEiZk2dDJzQm6lsaOJVw69wcmmMqUj\nCWEWTjaVUdx4nHDXEJyGOCodx+A8bT1wt3EjqyaXTl2X0nH6nRQcIUzQVUMnMTfkNho7m3glRUqO\nEP0hsTQZgAne4xROMjBUKhVR2nDauzs4UpuvdJx+JwVHCBN15dCJxI28nabOZl5JeYMTTaVKRxLC\nZHXrukkuS8HO0paoU9uoDAanbxdPq8pUOEn/k4IjhAmb6juBeSNn95ac440nlY4khEnKqM6hsbOJ\n8Z6xWKgHzy5GgU7+2FnYkl6ZhV6vVzpOv5KCI4SJm+x7BfND76Cls5XVh9dTIiVHiEt2eu0bc9ya\n4UI0ag2R2jDqOxoobjyudJx+JQVHCDMwyWc8806VnDUp6ylpPKF0JCFMRmNHExnV2Qyz92Gog4/S\ncQZclNY876aSgiOEmZjkM475YXfS0tXK6pT1ZvfXmBCGsr/sEDq9btBMLv61MNcRWKg0Zrf5phQc\nIczIRO+xxIfNobWrjdUpb1LcICVHiAvR6/UkliZjodIw1muU0nEUYW1hTYhrMCeaSqlurVE6Tr+R\ngiOEmbnCewx3h8+lrauN1YffpKihROlIQhit4sbjlDaXE6UNx97STuk4ionuHabKVjhJ/5GCI4QZ\nGu8V21ty1hx+k2MNxUpHEsIoJQ7SycW/dnoejjndLi4FRwgzNd4rlt+Gx9HW1c6alLcorJeSI8Qv\ndXZ3cqD8ME5WDoS5higdR1HOQ5zwcxjK0boCWjpblY7TL6TgCGHGxnqN5t6Iu+jQdbD28JsU1Bcp\nHUkIo5FalUlrVyvjvcagUWuUjqO4aG04Or2OrGrz2HxTCo4QZm6M5yh+G34XHbpOXj38FgX1x5SO\nJIRROL32zcRBPjx1WrT76VWNzeNuKik4QgwCYzxjuDdiHh26TtYefov8umNKRxJCUbVtdeTUHGW4\noz+edh5KxzEKPnZeuFq7kFWTS5cZbL4pBUeIQSLWI5r7IubTqetibepb5NUVKh1JCMXsKzuIHr1c\nvfkFlUpFtDac1q42s/j9IAVHiEFktEcU90cuoEvXxaupGzhaW6B0JCEGnF6vJ6n0AJZqS2I9Y5SO\nY1T+ezeV6Q9TScERYpAZ5R7JA5HxdOu6eS11A0dr85WOJMSAyq8/RmVrNaPco7CxsFY6jlEZ4RyI\njYU1aZWZJr/5pkELzvLly5k7dy5xcXGkpaWd8zkvv/wy8fHxALS2tvL444+zYMEC7rzzTnbt2gXA\nM888w80330x8fDzx8fHs3r3bkLGFMHsx7hE8ELmAbr2O11I3cqQ2T+lIQgyYxNJkQCYXn4tGrSHC\nLZTa9jpONJUqHeeyGKzg7N+/n6KiInbs2MGyZctYtmzZWc/Jy8sjOTm59+tdu3YRGRnJ1q1bWbVq\nFStWrOh97Mknn2TLli1s2bKFadOmGSq2EINGtHsED0bFo9PreC11E7k1UnKE+WvraudQRRpu1i6M\ncAlUOo5RMpfNNw1WcBITE5k5cyYAQUFB1NfX09TUdMZzVqxYweLFi3u/vvHGG3nwwQcBKC0txdPT\n01DxhBD0/CJ7MOpu9Hod69I2klNzVOlIQhhUSmU6Hd0dXOE1BrVKZmmcS4TbSNQqtcmvamyws1tV\nVYWLi0vv166urlRWVvZ+nZCQwPjx4/H19T3rtXFxcfz+979nyZIlvd/bunUrd999N4sXL6amxnw2\nAxNCaZHaMBZG34MeeD1tE9k1R5SOJITBJJ0anrpChqfOy8bChhDnIIobT1DbVqd0nD6zGKgD/XKy\nUl1dHQkJCWzatIny8vKznrt9+3ays7N5+umn+eSTT5g1axbOzs6EhYWxfv161q5dy/PPP3/eY7m4\n2GJhYdhVKd3dHQz6/qJv5Lz0zTT3cTg72fKPH1/njbTNPD3lYUZ5h/frMeTcGKfBdF7KmirJqysk\nwiOEMD9/peP8T0qem0nDY8mpPcqx9gJChl2lWI7LYbCC4+HhQVVVVe/XFRUVuLu7A5CUlERNTQ3z\n58+no6OD4uJili9fzi233IKbmxve3t6EhYXR3d1NTU0NEydO7H2fq6++mhdeeOGCx66tbTHIZzrN\n3d2ByspGgx5DXDo5L5fH18KPhVH38Eb62/z9x3UsjLqHCLeR/fLecm6M02A7L58X7AFgjNtoo//c\nSp+bgCE985N+LkxhtFOsYjkuxvmKoMGGqCZPnsxXX30FQGZmJh4eHtjb2wNw/fXX8/nnn7Nz507W\nrl1LREQES5Ys4cCBA2zcuBHoGeJqaWnBxcWFxx57jJKSEgD27dvHiBEjDBVbiEEt3G0kD0X9FhWw\nPm0zGVXZSkcSol/o9Dr2lR7EWjOE0R5RSscxem42Lvjae3OkNo+2rjal4/SJwQpObGwsERERxMXF\n8eKLL7J06VISEhL45ptvzvuauLg4ampqmDdvHgsXLuT5559HrVYzf/58nnjiCRYsWMCePXt49NFH\nDRVbiEEvzC2Eh6LvRaVS8Wb6O1JyhFnIrc2jtr2OWI8YrDRWSscxCdHaCLr03WSZ6Lw8ld7UV/I5\nB0Nf1lP60qE4Nzkv/Sun5iivp21Gr9fxQFR8762jfSHnxjgNpvOyKXMbB8oP89SYRwh0Mo35N0qf\nm+KG46w8sJrxXrHcEx6naJYLGfAhKiGEaQt1HcGimHtRqdS8mb7F5NfEuBzNnS0kl6WwKXMb72Tt\noK69XulI4hK0dLaSWpmBp607wx39lI5jMoY5+OI8xInMqhy6dd1Kx7lkA3YXlRDC9IS4BLMo5j7W\npW7kzfQt3B+5gBj3CKVjGZxer+dkcxkZVdlkVOdQWF+Env9e7M6szuHu8Lh+m4QtDOtgxWE6dV1M\n8B6LSqVSOo7JUKlURGnD2XsikYL6Y4xwCVI60iWRgiOEuKAQlyAWxdzPa2kbeSujp+SMco9UOla/\n6+ju4EhtPunV2WRW5VDb3rP+hwoVw538iHQLI1IbxtG6Aj48+h9eS93ANX7TuDnwOjRqwy5LIS5P\nYukBVKgY72XcdwMZo+hTBSetKksKjhDC/IxwCeSRmPt5NXUDGzK2cn/EfEaZwZ0oNW21ZFTlkFGd\nzZHaPDp1XUDPQmdjPUcR4RZKuNtI7C3tel/ja+9NoJM/GzPe5Zvi3eTVFXBvxDzcbFyV+hjiAk42\nlVHUUEKEWyjOQ5yUjmNyRrgEMURjRVpVFrcH32RSV8Ck4AghLkqw83Aeibmf11I3sCHzXe5lHrEe\n0UrHuiTdum4KG4rJrM4hoyqbk81lvY9523n2XqUZ7uh3wasyfg5DeWbc42zP/ZDk8hReSn6FBaF3\nmEXpMzdJpQcA8RPM+gAAGy5JREFUmCArF/eJpdqCcNeRpFSmU9pcjo+9l9KRLpoUHCHERQt2Hs6j\nox7g1cMb2JS5DcDoS05zZwtZ1blkVGeTVZ1LS1crcOoXt9tIotzCiHALveQrMNYW1twTHsdIl2B2\nHvmINzO2cKXvRG4PvglLjaUhPoq4RN26bvaXHcLOwvay7gIc7KLdI0ipTCe9KksKjhDCfAU6BfDI\nqAd49fBbbMrchl6vY4znKKVj9brQBGHnIU7EesYQ6RbKSJfgy14PRaVSMdFnHAFOfmzMeJcfTiSS\nX3+M+yMX4Gnr3h8fR1yGzOocGjubuGroZCzV8t9dX0W4haJWqUmvyuK6gKuVjnPR5IwLIS5ZoJM/\nj456gLWHN7Ap8z30ej1jvUYrludiJwj72HkZZA6Bt50nT499jPePfsJPJ/exIvkV4kJu4wrvMf1+\nLHHxTg9PTZThqctiZ2lLkFMAeXWF1Lc34jTENPYvk4IjhOiT4U7+PDb6AdYefovNWdvRA+MGsORc\naILwGI8YIrVhZ00QNiQrjSXzQmcz0iWIbTkJvJO9g9zaPOaE3Iq1xZABySD+q7GjifTqbHztvRnm\n4Kt0HJMXrQ3naF0BGdVZTPa5Quk4F0UKjhCizwIc/Xhs1IOsOfwmb2dtR4/eYLfi9tcEYUMb4zkK\nf8dhbMh4l31lBznWUMz9kQvwtfdWLNNglFx2CJ1ex0TvcUpHMQtR2gg+yPsPaZVScIQQg4S/47BT\nJect3snagV6v77ehmfNNELa4zAnChqa1ceOpMYv4OP8Lvi/Zy98PrOGOETczxWeCSd1ma6r0ej2J\npQfQqDSM81Ru6NScuNu64W3nSW7tUdq7OxhiAvt5ScERQlw2f8dh/G70g6xJeZMt2TvRo+/Tbbmn\nJwhnVuWQXp199gRhj2gitWH9MkHY0CzUFswecTMhLkFsydrJ9twPya3JY17oHdha2igdz6yVNJ7g\nZHMZo9wjsbcamCHKwSBKG87XRbvIqTlqEiuaS8ERQvQLP4eh/G70QtakvMnW7H+j1+uZ6PO/hwdO\nTxDOODX0NNAThA0tShvOs+OfYFPme6RUplPceJz7IucTIHsiGUyirH1jENHaCL4u2kVaVaYUHCHE\n4DLMwZfHRi9kTcp63s15Hz16JvmMP+t5xjZB2NBcrJ15fPRCPj/2LV8d+56XD77GrKAbuHrYVNQq\n2fO4P3V2d3KgPAVHKwfCXWWvsP7k7zgURysHMqqy0el1Rv+zKwVHCNGvhjn48LvRC1l9+FTJ0eu5\n2W06eXWFRj9B2JA0ag03B17HCOdA3s7azod5n3GkNp/4sDk4WNkrHc9spFVl0dLVyky/q8z2Z0kp\napWaKG0YP53cT2F9MUHOAUpHuiApOEKIfjfUwYfHR/8fq1PWsy33Az4u/ILmjhbA+CcIG1qo6wie\nHf8E72TtILM6h5f2r+LeiLtMbiNDYyVr3xhWlDacn07uJ70qSwqOEGJw8rX35vHR/8faw29iobFg\ntE+UyUwQNjRHKwcWxdzHt8V7+LTgK15JWc8Nw2dyQ8AMo7/sb8zq2uvJrjlCgKMfXnaeSscxSyNd\nRmCltiStKpNbg29UOs4FScERQhiMj70XL07+Ex7ujlRVNSkdx6ioVWqu9Z9OsPNwNmZs4/PCbzha\nm89vI+6SXa/7aF/pwT7fwScujpXGkjDXEFKrMilvrsDTzkPpSOclfyoIIQxKrVKb5N1PAyXQKYBn\nxz9BjDaCo3UFvLR/FZnVuUrHMjl6vZ6k0gNYqi0Y6xmjdByzdnrj0vTqbIWTXJgUHCGEUJidpS0P\nRt3NnSGzaOtq47XUDXyY9xndum6lo5mMgvoiKlqriHGPxMZC1hkypEhtGCpUpFVmKh3lgqTgCCGE\nEVCpVEwbOpnfj30Udxs3vi3ewz8PraO6tUbpaCYhqTQZQLZmGAAOVvYMd/KnoL6Ixg7jHXqWgiOE\nEEZkmIMvz4x7nHGeoznWUMxLyatIqUhXOpZR0ul1HK3NZ0fuRySXp+AyxJkQuRttQERrw9GjJ6M6\nR+ko5yWTjIUQwshYW1hzT3gcI12C2XnkI97K2MKVvhO5PfgmLDWWSsdTlE6vI7+ukEMV6RyuTKeh\noxHoGea7fcRNchfaAInWhvNR/uekV2UZ7S35UnCEEMIIqVQqJvqMI8DJj40Z7/LDiUTy649xf8R8\no75zxRD+W2rSOFyZcUapmeQ9nljPaEKcg2RhvwHkaeeBh62W7OpcOro7sTLC4i0FRwghjJi3nSdP\nj32M949+wk8n97HiwGriQm7rtx3bjZVOryOvrpCUijRSKtN753rYWdoy2Wc8oz2k1CgtWhvBt8V7\nOFKbR6Q2TOk4Z5GCI4QQRs5KY8m80NmMdAlmW84HvJO9g9zaPOaE3Iq1xRCl4/UbKTWmJUobzrfF\ne0irypKCI4QQou/GeMbg7ziUDRnvsq/sIMcairk/cgG+9t5KR+uz06WmZ/hJSo0pCXTyx97SjvSq\nLHT624xu/pMUHCGEMCFaGzeeGrOIj/O/4PuSvfz9wBpmB9/MVN8JJrOgYk+pKeidKPzrUhPrEcMI\n50ApNUZOrVIT6RZGUtkBihuPE+Dop3SkM0jBEUIIE2OhtmD2iJsJcQliS9ZOdhz5kNzaPOaH3oGt\npXEucne+UmNvacdknyuI9YiWUmOCotzDSSo7QFpllhQcIYQQ/SNKG86z459gU+Z7HK5Mp6TxOPdG\nzGe4k3H8R3NGqalIp7FTSo25CXMNwUJtQXpVFrcEXa90nDNIwRFCCBPmYu3M46MX8sWxb/ny2Pf8\n89BrzAq6gauHTVVkTsTpUnOwIo3UigwpNWZuiMaKUJdgMqpzqGqtRmvjpnSkXlJwhBDCxGnUGm4K\nvI4RzkFsznqPD/M+I7c2j7vD5uJgZW/w43frunsmCleeXWqm+FzBaCk1Zi1aG0FGdQ5pVVlcPWyq\n0nF6ScERQggzMdI1mCXjF/N21nayqnN5af8qfhtxl0G2L/hlqTlckU5TZzMgpWYwitSGQS6kV0rB\nEUIIYSAOVvYsirmPb4v38GnBV6xOWc8Nw2dyQ8CMyx6y6i01Fakcrsw4q9TEesQQ7DxcSs0g4zTE\nEX/HYeTVF9Lc2YKdpa3SkQApOEIIYXbUKjXX+k8n2DmQjRnv8nnhNxytzee3EXfhPMTpkt6rW9fN\n0boCUk5tk3BGqfGdQKx7tJQaQbQ2gqKGEjKrcxjvFat0HEB2Ex9wu3d/d1HPe+WVlzl58sR5H3/m\nmSf7K5IQwkwFOvmzZPwTxLhHcrSugJf2ryLzInZ/7tZ1k1NzlPdyPmDJTy+y5vCb/HhyHypUTPGd\nwO9GLWT55D9z18jbGekaLOVGEK0NByCtKkvhJP8lV3AGUGnpSb799iumTZvxP5/7+ONPXfDxFSv+\n2V+xhBBmzNbSlgcj49lz4mc+PPofXkvdyEy/q7gl8Mxbek9fqTlUkUbqL67UOFjaM8V3AmM8ogl2\nDjS61WqFcfC280Rr7Up2dS6dui4s1crXC+UTDCL//OdKsrMzmTp1HNdeewOlpSdZteo1Xnrpr1RW\nVtDa2sp99y1k8uSpPProQp588g/s2vUdzc1NFBcXceLEcX73u6eYOHEyv/nNDD777DsefXQh48Zd\nwaFDB6irq2Plyn+h1Wr561+fo6yslKioaL7//ls+/PBzpT++EEIhKpWKaUMnE+QUwMaMd/m2eA95\ndYU8OeV+jtYcP2epmeo7kViPKCk14qKoVCqi3MPZVfIjebUFhLmFKB1pcBacnd/nkZxT0efXazQq\nurv1Z3xvXKgHc64OvuDr7rornoSEnQwfHkRx8TFee+0tamtrGD9+AjfccBMnThznueeeYfLkM2eh\nV1SU8//+32qSkn7m448/YOLEyWc8bmdnxyuvrGPdujX88MP3+PgMpaOjnfXrN/PTT3vZufO9Pn9W\nIYT5GObgyx/H/Y7tuR+SXJ7C7z5f2vuYlBpxuaK1PQUnrSpTCs5gFhYWAYCDgyPZ2Zl88kkCKpWa\nhob6s54bHT0KAA8PD5qams56PCZmdO/j9fX1FBUVEhUVA8DEiZPRaGR8XAjRw9rCmnvC4xjpEsy+\nimS8bLyl1Ih+EeQ0HFsLG9KqspgTcqvie6MNyoIz5+rg/3m15ULc3R2orGy8rAyWlpYAfPPNlzQ0\nNPDqq2/R0NDAAw/En/XcXxYUvV7/Px/X6/WoT036U6lUiv+QCSGMi0qlYqLPOG6Jufqyf5cJcZpG\nrSHCLZTk8hRKmk7g5zBU0TxS1weQWq2mu7v7jO/V1dXh7e2DWq1mz57v6ezsvOzj+PoOJTe3Zyb7\n/v1JZx1TCCGEMIRo957RifRK5e+mkoIzgPz9h5Obm0Nz83+HmaZNu5qff97L448/jI2NDR4eHmza\n9OZlHWfSpKk0Nzfz8MP3k5qagqPjpa17IYQQQvRFmGsIGpXGKG4XV+nPNeZh4gx9ybU/hqgMqaGh\nnkOHDjBt2gwqKyt4/PGH2bbtA6VjGZyxn5fBTM6NcZLzYrxM+dysPfwW2TVH+NukZ3G1djH48dzd\nHc75/UE5B8fc2dra8f3337Jt2xb0eh2PPSaLAgohhBgY0dpwsmuOkF6VzVVDJymWQwqOGbKwsOCv\nf31J6RhCCCEGoShtODuOfERaZaaiBUfm4AghhBCi37hYOzPMwZejdQW0drUqlkMKjhBCCCH6VZQ2\nnG59N1nVuYplkIIjhBBCiH4Vre25XVzJu6mk4AghhBCiXw2198ZliDOZ1bl065RZi00KjpG5446b\naWlpYcuWzWRkpJ3xWEtLC3fccfMFX79793cAfP75p+zZs8tgOYUQQojzUalURGnDae1qJa+uUJEM\nUnCMVHz8b4mMjL6k15SWnuTbb78C4MYbb+aqq6YbIpoQQgjxP0W7hwOQrtAwldwmPkDuu28+y5e/\njJeXF2VlpTz77FO4u3vQ2tpKW1sbixc/TXh4ZO/zly17gWnTZjBq1Gj+9Kc/0NHR0bvpJsDXX3/B\n++/vQKNRExAQxB//+Cf++c+VZGdnsmnTm+h0OpydnZk9ey6vvfYK6empdHV1M3v2HK6//jc8+uhC\nxo27gkOHDlBXV8fKlf/Cy8tLiX8aIYQQZmiEcyDWGmvSqjKZPeLmAd8X0aAFZ/ny5aSmpqJSqViy\nZAnR0WdfkXj55Zc5fPgwW7ZsobW1lWeeeYbq6mra29tZtGgR06dPp7S0lD/84Q90d3fj7u7OP/7x\nD6ysrPqcKyHvP6RUpPf59Rq1im7dmQtAj/aI4vbgm877miuvnM5PP/3A7Nlz2Lt3D1deOZ2goBFc\neeU0Dh5M5t1332bZsn+c9bqvvvqCwMAgfve7p/juu697r9C0trby8strcHBw4JFHHiQ/P4+77oon\nIWEn9977IBs2vAHA4cOHKCjIZ926jbS2tnLPPXFceeU0AOzs7HjllXWsW7eGH374njlz5vX530QI\nIYT4JQu1BRFuIzlYkUppczk+9gP7R7TBhqj2799PUVERO3bsYNmyZSxbtuys5+Tl5ZGcnNz79a5d\nu4iMjGTr1q2sWrWKFStWALB69WrmzZvHtm3b8Pf35/333zdUbIPpKTh7Afjxxz1MmXIVe/Z8x8MP\n38+6dWuor68/5+uOHSsgMjIGgNGjx/R+39HRkWeffYpHH11IUVEh9fV153x9Tk4Wo0bFAmBjY0NA\nQCAlJSUAxMSMBsDDw4OmpqZzvl4IIYToq6m+E/Cw1WKl6ftFib4y2BWcxMREZs6cCUBQUBD19fU0\nNTVhb2/f+5wVK1awePFi1q5dC8CNN97Y+1hpaSmenp4A7Nu3j7/85S8ATJ8+nY0bNzJvXt+vNtwe\nfNMFr7b8L33ZIyQwMIjq6krKy8tobGxk797daLUePPfc38jJyWLt2lXnfJ1eD2p1z2U93amrRp2d\nnfzzn39n8+ZtuLlp+cMfnjjvcVUqFb/cbayrq7P3/TQazS+OY3ZbkgkhhFDYCJcglk74gyLHNljB\nqaqqIiIiovdrV1dXKisrewtOQkIC48ePx9fX96zXxsXFUVZWxuuvvw70DMecHpJyc3OjsrLygsd2\ncbHFwkJzwedcrvNt7nUhM2ZczTvvvMl1111DbW0toaEjcXd3YOvWn1Gp9Li7O6DRqNFq7bG2tsTJ\nyYbw8BCKi/Nxd7+VpKTdaDRqbGxUWFpaEBo6nNLSUo4cycHOzpIhQ4ag0ahwd3fAzm4I9vbWhIaG\nsm7dOtzdHWhubqas7CSjRoVjZWWBi4sd7u4O2Ntb09k5pE+fydiYw2cwV3JujJOcF+Ml5+byDNgk\n419eIairqyMhIYFNmzZRXl5+1nO3b99OdnY2Tz/9NJ988sl53+d8amtbLj/wBfR1l9dx4ybz0EP3\nsXnze7S1tfLii0v55JP/MHv2HD7++FM2b36X7m4dVVVNtLV1Ul/fypQpM1my5PfMm7eA6OhR6HR6\nurosGDNmPLNm3UZw8Aji4hbwt78tY82aN0hPz+C5517Azs4eS8s2/P1HMnz4CObMiaOrq4sHH1xE\nc3M3HR1d1NY2U1nZSFNTG83N7Sa7c+1pprz7rrmTc2Oc5LwYLzk3F+98RVClN9DYxJo1a3B3dycu\nLg6AGTNm8PHHH2Nvb8+XX37J6tWrsbe3p6Ojg+LiYu644w5uueUW3Nzc8Pb2BnqGrLZs2cKcOXP4\n7LPPsLa2Zv/+/WzdupXVq1ef99iG/qGQHzzjJOfFeMm5MU5yXoyXnJuLd76CY7BJxpMnT+arr3ru\n+MnMzMTDw6N3eOr666/n888/Z+fOnaxdu5aIiAiWLFnCgQMH2LhxI9AzxNXS0oKLiwuTJk3qfa+v\nv/6aqVOnGiq2EEIIIcyAwYaoYmNjiYiIIC4uDpVKxdKlS0lISMDBwYFrrrnmnK+Ji4vjT3/6E/Pm\nzaOtrY3nn38etVrNY489xh//+Ed27NiBj48Pt956q6FiCyGEEMIMGGyISkkyRDU4yXkxXnJujJOc\nF+Ml5+biDfgQlRBCCCGEUqTgCCGEEMLsSMERQgghhNmRgiOEEEIIsyMFRwghhBBmRwqOEEIIIcyO\nFBwhhBBCmB2zXAdHCCGEEIObXMERQgghhNmRgiOEEEIIsyMFRwghhBBmRwqOEEIIIcyOFBwhhBBC\nmB0pOEIIIYQwO1JwLsHy5cuZO3cucXFxpKWlKR1H/MLf//535s6dy+zZs/n666+VjiN+oa2tjZkz\nZ5KQkKB0FPELn3zyCbfccgu33347u3fvVjqOOKW5uZlHH32U+Ph44uLi2Lt3r9KRTJaF0gFMxf79\n+ykqKmLHjh3k5+ezZMkSduzYoXQsASQlJXH06FF27NhBbW0tt912G9dee63SscQp69atw8nJSekY\n4hdqa2t59dVX+eCDD2hpaWHNmjVMmzZN6VgC+PDDDxk+fDhPPfUU5eXl3HPPPXz55ZdKxzJJUnAu\nUmJiIjNnzgQgKCiI+vp6mpqasLe3VziZGDduHNHR0QA4OjrS2tpKd3c3Go1G4WQiPz+fvLw8+c/T\nyCQmJjJx4kTs7e2xt7fnb3/7m9KRxCkuLi7k5uYC0NDQgIuLi8KJTJcMUV2kqqqqM37QXF1dqays\nVDCROE2j0WBrawvA+++/z5VXXinlxkisXLmSZ555RukY4leOHz9OW1sbDz30EPPmzSMxMVHpSOKU\n3/zmN5w8eZJrrrmGBQsW8Mc//lHpSCZLruD0kexwYXy+/fZb3n//fTZu3Kh0FAF89NFHjBo1imHD\nhikdRZxDXV0da9eu5eTJk9x9993s2rULlUqldKxB7+OPP8bHx4cNGzaQk5PDkiVLZP5aH0nBuUge\nHh5UVVX1fl1RUYG7u7uCicQv7d27l9dff5233noLBwcHpeMIYPfu3ZSUlLB7927KysqwsrLCy8uL\nSZMmKR1t0HNzc2P06NFYWFjg5+eHnZ0dNTU1uLm5KR1t0Dt06BBTpkwBIDQ0lIqKChly7yMZorpI\nkydP5quvvgIgMzMTDw8PmX9jJBobG/n73//OG2+8gbOzs9JxxCmrVq3igw8+YOfOndx5550sWrRI\nyo2RmDJlCklJSeh0Ompra2lpaZG5HkbC39+f1NRUAE6cOIGdnZ2Umz6SKzgXKTY2loiICOLi4lCp\nVCxdulTpSOKUzz//nNraWp544one761cuRIfHx8FUwlhvDw9PbnuuuuYM2cOAH/+859Rq+XvXWMw\nd+5clixZwoIFC+jq6uKFF15QOpLJUullMokQQgghzIxUdiGEEEKYHSk4QgghhDA7UnCEEEIIYXak\n4AghhBDC7EjBEUIIIYTZkYIjhFDc8ePHiYyMJD4+vncX5aeeeoqGhoaLfo/4+Hi6u7sv+vl33XUX\n+/bt60tcIYQJkIIjhDAKrq6ubNmyhS1btrB9+3Y8PDxYt27dRb9+y5YtsiCaEKKXLPQnhDBK48aN\nY8eOHeTk5LBy5Uq6urro7Ozk+eefJzw8nPj4eEJDQ8nOzubtt98mPDyczMxMOjo6eO655ygrK6Or\nq4tZs2Yxb948WltbWbx4MbW1tfj7+9Pe3g5AeXk5v//97wFoa2tj7ty53HHHHUp+dCFEP5CCI4Qw\nOt3d3XzzzTeMGTOGp59+mldffRU/P7+zNh+0tbVl69atZ7x2y5YtODo68vLLL9PW1saNN97I1KlT\n+fnnn7G2tmbHjh1UVFQwY8YMAL744gsCAwP5y1/+Qnt7O//+978H/PMKIfqfFBwhhFGoqakhPj4e\nAJ1Ox9ixY5k9ezarV6/mT3/6U+/zmpqa0Ol0QM8WKr+WmprK7bffDoC1tTWRkZFkZmZy5MgRxowZ\nA/RsnhsYGAjA1KlT2bZtG8888wxXXXUVc+fONejnFEIMDCk4QgijcHoOzi81NjZiaWl51vdPs7S0\nPOt7KpXqjK/1ej0qlQq9Xn/GfkunS1JQUBCfffYZycnJfPnll7z99tts3779cj+OEEJhMslYCGG0\nHBwcGDp0KHv27AGgsLCQtWvXXvA1MTEx7N27F4CWlhYyMzOJiIggKCiIlJQUAEpLSyksLATg008/\nJT09nUmTJrF06VJKS0vp6uoy4KcSQgwEuYIjhDBqK1eu5MUXX2T9+vV0dXXxzDPPXPD58fHxPPfc\nc8yfP5+Ojg4WLVrE0KFDmTVrFt9//z3z5s1j6NChREVFARAcHMzSpUuxsrJCr9fz4IMPYmEhvxqF\nMHWym7gQQgghzI4MUQkhhBDC7EjBEUIIIYTZkYIjhBBCCLMjBUcIIYQQZkcKjhBCCCHMjhQcIYQQ\nQpgdKThCCCGEMDtScIQQQghhdv4/RiwB1cyvojcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "JjBZ_q7aD9gh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Can We Calculate LogLoss for These Predictions?\n", + "\n", + "**Examine the predictions and decide whether or not we can use them to calculate LogLoss.**\n", + "\n", + "`LinearRegressor` uses the L2 loss, which doesn't do a great job at penalizing misclassifications when the output is interpreted as a probability. For example, there should be a huge difference whether a negative example is classified as positive with a probability of 0.9 vs 0.9999, but L2 loss doesn't strongly differentiate these cases.\n", + "\n", + "In contrast, `LogLoss` penalizes these \"confidence errors\" much more heavily. Remember, `LogLoss` is defined as:\n", + "\n", + "$$Log Loss = \\sum_{(x,y)\\in D} -y \\cdot log(y_{pred}) - (1 - y) \\cdot log(1 - y_{pred})$$\n", + "\n", + "\n", + "But first, we'll need to obtain the prediction values. We could use `LinearRegressor.predict` to obtain these.\n", + "\n", + "Given the predictions and the targets, can we calculate `LogLoss`?" + ] + }, + { + "metadata": { + "id": "dPpJUV862FYI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to display the solution." + ] + }, + { + "metadata": { + "id": "kXFQ5uig2RoP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "c7becddf-5625-482d-ae50-8b2e94f71917" + }, + "cell_type": "code", + "source": [ + "predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + "validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + "\n", + "_ = plt.hist(validation_predictions)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFKCAYAAADScRzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGx9JREFUeJzt3X9MVff9x/HXvVzurqyXwmX3mpq6\nblnsZJWhBMeEaAtKW0mW0SpWiJpM2tWUdrWlP5j9ZdKkoJVGnST+2GhJSVvS+8fCt2nEOFlSwy2r\nvQlD10S7PxanTu61tFDAQsn5/tHsrk7lMu6F+/HyfPyl557L/Zx3TvvknosHm2VZlgAAgJHsiV4A\nAAC4PkINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBHIlewLWEQoOJXoKxMjPT1N8/nOhl3LCYX+yY\nYWyYX+yScYZer/u6j/GO+gbjcKQkegk3NOYXO2YYG+YXu9k2Q0INAIDBCDUAAAYj1AAAGIxQAwBg\nMEINAIDBov7zrJGREdXV1enSpUv66quv9Mgjj6ijo0OnTp1SRkaGJKm6ulp33XWX2tvb1dLSIrvd\nrnXr1qmiokJjY2Oqq6vT+fPnlZKSovr6es2fP3/aDwwAgGQQNdSdnZ1atGiRHnroIZ07d06bN2/W\nkiVL9OSTT6q4uDiy3/DwsJqamuT3+5Wamqq1a9eqtLRUnZ2dSk9PV2Njo44fP67Gxkbt3r17Wg8K\nAIBkETXUZWVlkT9fuHBBc+fOveZ+PT09ysnJkdv9zT/azsvLUzAYVCAQUHl5uSSpsLBQ27Zti8e6\nAQCYFSb9GfX69ev11FNPRULb2tqqTZs26YknntBnn32mcDgsj8cT2d/j8SgUCl2x3W63y2azaXR0\nNM6HAQBAcpr0LUTfeecdffLJJ3r66ae1bds2ZWRkKDs7WwcPHtS+ffu0ZMmSK/a3LOuaX+d6278t\nMzNt1t155n8x0a3mEB3zix0zjA3zi91smmHUUJ88eVJZWVm65ZZblJ2drfHxcd1+++3KysqSJJWU\nlGj79u265557FA6HI8/r6+vT4sWL5fP5FAqFtHDhQo2NjcmyLDmdzglfM9nu4RpPXq+be6HHgPnF\njhnGhvnFLhlnGNO9vk+cOKHm5mZJUjgc1vDwsF588UWdPXtWktTd3a0FCxYoNzdXvb29GhgY0NDQ\nkILBoPLz81VUVKTDhw9L+uYH0woKCuJxTAAAzApR31GvX79ezz33nKqqqnT58mW9+OKLSktL09at\nWzVnzhylpaWpvr5eLpdLtbW1qq6uls1mU01Njdxut8rKytTV1aXKyko5nU41NDTMxHHdcDY3HEv0\nEibUXFeS6CUAwKxksybzofEMS7ZLGpNBqGdGMl4ym2nMMDbML3bJOEN+zSUAADcoQg0AgMEINQAA\nBiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0A\ngMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFAD\nAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYzBFth5GREdXV1enSpUv66quv\n9Mgjj2jhwoV65plnND4+Lq/Xq1dffVVOp1Pt7e1qaWmR3W7XunXrVFFRobGxMdXV1en8+fNKSUlR\nfX295s+fPxPHBgDADS/qO+rOzk4tWrRIra2t2r17txoaGrR3715VVVXprbfe0m233Sa/36/h4WE1\nNTXpjTfe0JtvvqmWlhZ9/vnneu+995Senq63335bW7ZsUWNj40wcFwAASSFqqMvKyvTQQw9Jki5c\nuKC5c+equ7tbK1eulCQVFxcrEAiop6dHOTk5crvdcrlcysvLUzAYVCAQUGlpqSSpsLBQwWBwGg8H\nAIDkEvXS97+tX79e//rXv7R//3796le/ktPplCRlZWUpFAopHA7L4/FE9vd4PFdtt9vtstlsGh0d\njTwfAABc36RD/c477+iTTz7R008/LcuyItu//edv+1+3f1tmZpocjpTJLg0zwOt1J3oJcZNMx5Io\nzDA2zC92s2mGUUN98uRJZWVl6ZZbblF2drbGx8f13e9+V5cvX5bL5dLFixfl8/nk8/kUDocjz+vr\n69PixYvl8/kUCoW0cOFCjY2NybKsqO+m+/uHYz8yxFUoNJjoJcSF1+tOmmNJFGYYG+YXu2Sc4UTf\neET9jPrEiRNqbm6WJIXDYQ0PD6uwsFAdHR2SpCNHjmj58uXKzc1Vb2+vBgYGNDQ0pGAwqPz8fBUV\nFenw4cOSvvnBtIKCgngcEwAAs0LUd9Tr16/Xc889p6qqKl2+fFkvvviiFi1apGeffVZtbW2aN2+e\nysvLlZqaqtraWlVXV8tms6mmpkZut1tlZWXq6upSZWWlnE6nGhoaZuK4AABICjZrMh8az7Bku6Qx\nGZsbjiV6CRNqritJ9BLiIhkvmc00Zhgb5he7ZJxhTJe+AQBA4hBqAAAMRqgBADAYoQYAwGCEGgAA\ngxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYA\nwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgB\nADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCOyey0c+dOffzxx/r666/18MMP69ixYzp16pQy\nMjIkSdXV1brrrrvU3t6ulpYW2e12rVu3ThUVFRobG1NdXZ3Onz+vlJQU1dfXa/78+dN6UAAAJIuo\nof7www915swZtbW1qb+/X/fdd59+/vOf68knn1RxcXFkv+HhYTU1Ncnv9ys1NVVr165VaWmpOjs7\nlZ6ersbGRh0/flyNjY3avXv3tB4UAADJIuql76VLl2rPnj2SpPT0dI2MjGh8fPyq/Xp6epSTkyO3\n2y2Xy6W8vDwFg0EFAgGVlpZKkgoLCxUMBuN8CAAAJK+ooU5JSVFaWpokye/3a8WKFUpJSVFra6s2\nbdqkJ554Qp999pnC4bA8Hk/keR6PR6FQ6IrtdrtdNptNo6Oj03Q4AAAkl0l9Ri1JR48eld/vV3Nz\ns06ePKmMjAxlZ2fr4MGD2rdvn5YsWXLF/pZlXfPrXG/7t2VmpsnhSJns0jADvF53opcQN8l0LInC\nDGPD/GI3m2Y4qVB/8MEH2r9/v37/+9/L7XZr2bJlkcdKSkq0fft23XPPPQqHw5HtfX19Wrx4sXw+\nn0KhkBYuXKixsTFZliWn0znh6/X3D0/xcDBdQqHBRC8hLrxed9IcS6Iww9gwv9gl4wwn+sYj6qXv\nwcFB7dy5UwcOHIj8lPdjjz2ms2fPSpK6u7u1YMEC5ebmqre3VwMDAxoaGlIwGFR+fr6Kiop0+PBh\nSVJnZ6cKCgricUwAAMwKUd9Rv//+++rv79fWrVsj2+6//35t3bpVc+bMUVpamurr6+VyuVRbW6vq\n6mrZbDbV1NTI7XarrKxMXV1dqqyslNPpVENDw7QeEAAAycRmTeZD4xmWbJc0JmNzw7FEL2FCzXUl\niV5CXCTjJbOZxgxjw/xil4wzjOnSNwAASBxCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYDDHZHbauXOnPv74Y3399dd6+OGHlZOTo2eeeUbj4+Pyer16\n9dVX5XQ61d7erpaWFtntdq1bt04VFRUaGxtTXV2dzp8/r5SUFNXX12v+/PnTfVwAACSFqKH+8MMP\ndebMGbW1tam/v1/33Xefli1bpqqqKq1evVqvvfaa/H6/ysvL1dTUJL/fr9TUVK1du1alpaXq7OxU\nenq6Ghsbdfz4cTU2Nmr37t0zcWwAANzwol76Xrp0qfbs2SNJSk9P18jIiLq7u7Vy5UpJUnFxsQKB\ngHp6epSTkyO32y2Xy6W8vDwFg0EFAgGVlpZKkgoLCxUMBqfxcAAASC5R31GnpKQoLS1NkuT3+7Vi\nxQodP35cTqdTkpSVlaVQKKRwOCyPxxN5nsfjuWq73W6XzWbT6Oho5PnXkpmZJocjJaYDQ3x5ve5E\nLyFukulYEoUZxob5xW42zXBSn1FL0tGjR+X3+9Xc3Ky77747st2yrGvu/79u/7b+/uHJLgszJBQa\nTPQS4sLrdSfNsSQKM4wN84tdMs5wom88JvVT3x988IH279+vQ4cOye12Ky0tTZcvX5YkXbx4UT6f\nTz6fT+FwOPKcvr6+yPZQKCRJGhsbk2VZE76bBgAA/xE11IODg9q5c6cOHDigjIwMSd981tzR0SFJ\nOnLkiJYvX67c3Fz19vZqYGBAQ0NDCgaDys/PV1FRkQ4fPixJ6uzsVEFBwTQeDgAAySXqpe/3339f\n/f392rp1a2RbQ0ODnn/+ebW1tWnevHkqLy9XamqqamtrVV1dLZvNppqaGrndbpWVlamrq0uVlZVy\nOp1qaGiY1gMCACCZ2KzJfGg8w5Lts4fJ2NxwLNFLmFBzXUmilxAXyfjZ1kxjhrFhfrFLxhnG/Bk1\nAABIDEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj\n1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDB\nCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGGxSoT59\n+rRWrVql1tZWSVJdXZ1+8YtfaOPGjdq4caP+/Oc/S5La29u1Zs0aVVRU6N1335UkjY2Nqba2VpWV\nldqwYYPOnj07PUcCAEASckTbYXh4WC+//LKWLVt2xfYnn3xSxcXFV+zX1NQkv9+v1NRUrV27VqWl\npers7FR6eroaGxt1/PhxNTY2avfu3fE/EgAAklDUd9ROp1OHDh2Sz+ebcL+enh7l5OTI7XbL5XIp\nLy9PwWBQgUBApaWlkqTCwkIFg8H4rBwAgFkg6jtqh8Mhh+Pq3VpbW/X6668rKytLL7zwgsLhsDwe\nT+Rxj8ejUCh0xXa73S6bzabR0VE5nc7rvmZmZpocjpSpHA+midfrTvQS4iaZjiVRmGFsmF/sZtMM\no4b6Wn75y18qIyND2dnZOnjwoPbt26clS5ZcsY9lWdd87vW2f1t///BUloVpFAoNJnoJceH1upPm\nWBKFGcaG+cUuGWc40TceU/qp72XLlik7O1uSVFJSotOnT8vn8ykcDkf26evrk8/nk8/nUygUkvTN\nD5ZZljXhu2kAAPAfUwr1Y489Fvnp7e7ubi1YsEC5ubnq7e3VwMCAhoaGFAwGlZ+fr6KiIh0+fFiS\n1NnZqYKCgvitHgCAJBf10vfJkye1Y8cOnTt3Tg6HQx0dHdqwYYO2bt2qOXPmKC0tTfX19XK5XKqt\nrVV1dbVsNptqamrkdrtVVlamrq4uVVZWyul0qqGhYSaOCwCApGCzJvOh8QxLts8eJmNzw7FEL2FC\nzXUliV5CXCTjZ1szjRnGhvnFLhlnGPfPqAEAwMwg1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQ\nAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBov72LEAy/5eGSMnzi0MA4Nt4Rw0AgMEINQAA\nBiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0A\ngMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYbFKhPn36tFatWqXW1lZJ0oULF7Rx40ZV\nVVXp8ccf1+joqCSpvb1da9asUUVFhd59911J0tjYmGpra1VZWakNGzbo7Nmz03QoAAAkn6ihHh4e\n1ssvv6xly5ZFtu3du1dVVVV66623dNttt8nv92t4eFhNTU1644039Oabb6qlpUWff/653nvvPaWn\np+vtt9/Wli1b1NjYOK0HBABAMokaaqfTqUOHDsnn80W2dXd3a+XKlZKk4uJiBQIB9fT0KCcnR263\nWy6XS3l5eQoGgwoEAiotLZUkFRYWKhgMTtOhAACQfKKG2uFwyOVyXbFtZGRETqdTkpSVlaVQKKRw\nOCyPxxPZx+PxXLXdbrfLZrNFLpUDAICJOWL9ApZlxWX7t2VmpsnhSIlpXZh9vF53XPfD9THD2DC/\n2M2mGU4p1Glpabp8+bJcLpcuXrwon88nn8+ncDgc2aevr0+LFy+Wz+dTKBTSwoULNTY2JsuyIu/G\nr6e/f3gqy8IsFwoNRt3H63VPaj9cHzOMDfOLXTLOcKJvPKb0z7MKCwvV0dEhSTpy5IiWL1+u3Nxc\n9fb2amBgQENDQwoGg8rPz1dRUZEOHz4sSers7FRBQcFUXhIAgFkp6jvqkydPaseOHTp37pwcDoc6\nOjq0a9cu1dXVqa2tTfPmzVN5eblSU1NVW1ur6upq2Ww21dTUyO12q6ysTF1dXaqsrJTT6VRDQ8NM\nHBcAAEnBZk3mQ+MZlmyXNCZjc8OxRC/hhtdcVxJ1n2S8ZDbTmGFsmF/sknGGcb/0DQAAZgahBgDA\nYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEA\nMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoA\nAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAzmmMqTuru79fjjj2vB\nggWSpNtvv10PPvignnnmGY2Pj8vr9erVV1+V0+lUe3u7WlpaZLfbtW7dOlVUVMT1AAAASGZTCrUk\n/exnP9PevXsjf//tb3+rqqoqrV69Wq+99pr8fr/Ky8vV1NQkv9+v1NRUrV27VqWlpcrIyIjL4gEA\nSHZxu/Td3d2tlStXSpKKi4sVCATU09OjnJwcud1uuVwu5eXlKRgMxuslAQBIelN+R/3pp59qy5Yt\n+uKLL/Too49qZGRETqdTkpSVlaVQKKRwOCyPxxN5jsfjUSgUin3VAADMElMK9Q9+8AM9+uijWr16\ntc6ePatNmzZpfHw88rhlWdd83vW2/7fMzDQ5HClTWRpmMa/XHdf9cH3MMDbML3azaYZTCvXcuXNV\nVlYmSfr+97+v733ve+rt7dXly5flcrl08eJF+Xw++Xw+hcPhyPP6+vq0ePHiqF+/v394KsvCLBcK\nDUbdx+t1T2o/XB8zjA3zi10yznCibzym9Bl1e3u7/vCHP0iSQqGQLl26pPvvv18dHR2SpCNHjmj5\n8uXKzc1Vb2+vBgYGNDQ0pGAwqPz8/Km8JAAAs9KU3lGXlJToqaee0p/+9CeNjY1p+/btys7O1rPP\nPqu2tjbNmzdP5eXlSk1NVW1traqrq2Wz2VRTUyO3e/ZcrgAAIFZTCvVNN92k/fv3X7X99ddfv2rb\nvffeq3vvvXcqLwMAwKzHnckAADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAM\nRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAA\ngxFqAAAMRqgBADAYoQYAwGCEGgAAgzkSvQAgXjY3HEv0EibUXFeS6CUAuAHxjhoAAIMRagAADEao\nAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBgM3LDk1deeUU9PT2y2Wzatm2bfvrTn87EywIA\ncMOb9lD/5S9/0T/+8Q+1tbXp73//u7Zt26a2trbpflnAOKbfOU3i7mmAiaY91IFAQKtWrZIk/ehH\nP9IXX3yhL7/8UjfddNN0v3TEjfA/SMAEpv+3wjcSmI2mPdThcFh33HFH5O8ej0ehUGhGQw0gOZj+\njYTENxOIvxn/pRyWZUXdx+t1x/U1/6/xl3H9egAQi3j/P242mk0znPaf+vb5fAqHw5G/9/X1yev1\nTvfLAgCQFKY91EVFRero6JAknTp1Sj6fj8veAABM0rRf+s7Ly9Mdd9yh9evXy2az6aWXXprulwQA\nIGnYrMl8aAwAABKCO5MBAGAwQg0AgMEItaFeeeUVPfDAA1q/fr3++te/XvFYV1eX1q5dqwceeEBN\nTU0JWqH5JpphSUmJqqqqtHHjRm3cuFEXL15M0CrNdvr0aa1atUqtra1XPcZ5GN1E8+McjG7nzp16\n4IEHtGbNGh05cuSKx2bV+WfBON3d3davf/1ry7Is69NPP7XWrVt3xeOrV6+2zp8/b42Pj1uVlZXW\nmTNnErFMo0WbYXFxsfXll18mYmk3jKGhIWvDhg3W888/b7355ptXPc55OLFo8+McnFggELAefPBB\ny7Is67PPPrPuvPPOKx6fTecf76gNdL3brkrS2bNndfPNN+uWW26R3W7XnXfeqUAgkMjlGmmiGWJy\nnE6nDh06JJ/Pd9VjnIfRTTQ/RLd06VLt2bNHkpSenq6RkRGNj49Lmn3nH6E2UDgcVmZmZuTv/77t\nqiSFQiF5PJ5rPob/mGiG//bSSy+psrJSu3btmtQd82Ybh8Mhl8t1zcc4D6ObaH7/xjl4fSkpKUpL\nS5Mk+f1+rVixQikpKZJm3/k347cQxf+O/4Bj998z/M1vfqPly5fr5ptvVk1NjTo6OnTvvfcmaHWY\njTgHJ+fo0aPy+/1qbm5O9FIShnfUBprotqv//djFixe5tHYN0W5dW15erqysLDkcDq1YsUKnT59O\nxDJvWJyHseMcjO6DDz7Q/v37dejQIbnd/7m392w7/wi1gSa67eqtt96qL7/8Uv/85z/19ddfq7Oz\nU0VFRYlcrpEmmuHg4KCqq6s1OjoqSfroo4+0YMGChK31RsR5GBvOwegGBwe1c+dOHThwQBkZGVc8\nNtvOP+5MZqhdu3bpxIkTkduu/u1vf5Pb7VZpaak++ugj7dq1S5J09913q7q6OsGrNdNEM2xpadEf\n//hHfec739FPfvITvfDCC7LZbIleslFOnjypHTt26Ny5c3I4HJo7d65KSkp06623ch5OQrT5cQ5O\nrK2tTb/73e/0wx/+MLKtoKBAP/7xj2fd+UeoAQAwGJe+AQAwGKEGAMBghBoAAIMRagAADEaoAQAw\nGKEGAMBghBoAAIMRagAADPb/EQeAz2ylrGQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "rYpy336F9wBg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Train a Logistic Regression Model and Calculate LogLoss on the Validation Set\n", + "\n", + "To use logistic regression, simply use [LinearClassifier](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier) instead of `LinearRegressor`. Complete the code below.\n", + "\n", + "**NOTE**: When running `train()` and `predict()` on a `LinearClassifier` model, you can access the real-valued predicted probabilities via the `\"probabilities\"` key in the returned dict—e.g., `predictions[\"probabilities\"]`. Sklearn's [log_loss](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html) function is handy for calculating LogLoss using these probabilities.\n" + ] + }, + { + "metadata": { + "id": "JElcb--E9wBm", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) \n", + " linear_classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on training data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions. \n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "VM0wmnFUIYH9", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 627 + }, + "outputId": "5f8af41a-f2b5-4c88-b245-9ae2f31fafe2" + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000005,\n", + " steps=500,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss (on training data):\n", + " period 00 : 0.61\n", + " period 01 : 0.60\n", + " period 02 : 0.58\n", + " period 03 : 0.57\n", + " period 04 : 0.56\n", + " period 05 : 0.55\n", + " period 06 : 0.54\n", + " period 07 : 0.54\n", + " period 08 : 0.54\n", + " period 09 : 0.54\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGXax/HvmUnPpGcmHQghoQeS\niIhUKQK6rh2RFQULiKis6O4quyysrri+YlsVVCwoNpTF2ChKLyIlgTQIgYQkkN57n3n/CEQREoaQ\nyUwy9+e6uDQzc2bu5J6T+eU5z3mOYjAYDAghhBBCdFEqcxcghBBCCHElJMwIIYQQokuTMCOEEEKI\nLk3CjBBCCCG6NAkzQgghhOjSJMwIIYQQokuTMCNEN9e3b19yc3M75LnOnDnDgAEDOuS5zGHmzJmM\nGjWKKVOmMHnyZG644QY++uijy36e+Ph4HnjggcvebsCAAZw5c+aytxNCtM3G3AUIIURn+stf/sLN\nN98MQEFBAXfddRfBwcGMGTPG6OcIDw/n/fffN1WJQojLJCMzQlipuro6/vnPfzJ58mSmTp3Kf/7z\nH5qamgDYvXs3Y8eOZerUqaxdu5bIyMhLjiiUlpayYMGClhGPd999t+W+V199lcmTJzN58mTuvfde\n8vLy2rz9nJ07d3LTTTedd9vNN9/Mrl27OHDgALfeeis33HADU6dOZePGjZf9M9BqtUyZMoW9e/cC\ncPLkSe655x4mT57MTTfdREJCAgD79+9n+vTpLFiwgCeffJL9+/czadKkS/4cd+7cyaRJk5g6dSrv\nvfdey+tWVVUxf/58pk6dyoQJE/jHP/5BQ0PDZdcvhGgmYUYIK/XRRx+Rm5vLDz/8wNdff82hQ4f4\n/vvvaWpq4umnn+bZZ59l48aNpKenU1NTc8nne+WVV3Bzc2Pz5s189tlnfP755xw6dIgTJ06wadMm\nvv/+ezZv3sykSZPYt29fq7f/1ogRI8jNzeX06dMAnD59mtzcXK699lpefPFFnnnmGTZs2MDKlSvZ\nsmVLu34OjY2N2NnZodfrmT9/PjfffDObN29m6dKlPPLIIzQ2NgJw9OhRpk+fzssvv2z0z/Hvf/87\nS5YsYePGjahUqpaQEx0djaurKxs3bmTz5s2o1WpOnjzZrvqFEBJmhLBaO3bsYNq0adjY2ODg4MBN\nN93E3r17SU9Pp76+nrFjxwLN80z0ev0ln2/nzp3MmDEDAHd3dyZNmsTevXtxdXWluLiY7777jrKy\nMmbOnMktt9zS6u2/ZWdnx3XXXce2bdsA2LJlCxMnTsTGxgYvLy+io6NJTU2lV69eF4QMY5w+fZpN\nmzYxadIk0tLSKCoq4o477gAgKioKT09PDh8+DICDgwMjRoy47J/jqFGjALj11ltbtjn3vHv27EGv\n1/Ovf/2L/v37X3b9QohmEmaEsFLFxcW4ubm1fO3m5kZRURFlZWW4urq23K7T6Yx+vt9u5+rqSlFR\nET4+Przxxhts2rSJcePGMWfOHHJyclq9/fcmT558Xpi54YYbAFi2bBmOjo7Mnj2b66+/nk2bNhlV\n50svvdQyAXjhwoU8/fTThIeHU15eTm1tLVOnTmXKlClMmTKFoqIiSktLW34+rX3frf0cNRrNebef\nM3XqVGbNmsXrr7/OiBEj+Ne//kV9fb1R9QshLiRhRggr5e3t3fJBDc1zXry9vdFoNFRXV7fcXlhY\neEXPB3DNNdfw7rvvsnfvXvz8/Fi+fHmbt//W6NGjSU5OJj09nfT0dK655pqW11u8eDG7du3in//8\nJ8888wxVVVWXrPMvf/kLmzZtYvPmzXz11Vct4Uin0+Hs7MymTZta/u3Zs6dlbszlft9ubm5UVla2\n3F5cXHzedtOnT+err75iw4YNJCUlER0dfcnahRAXJ2FGCCs1btw41q1bR1NTE9XV1XzzzTeMHTuW\nXr160djYyP79+wH4/PPPURTFqOdbu3Yt0PzB/dNPPzFu3Dj27NnDv/71L/R6PU5OTvTr1w9FUVq9\n/ffs7OwYNWoUL730EhMmTECtVtPQ0MDMmTPJz88HYODAgdjY2KBStf9XWkBAAL6+vi0jPMXFxSxc\nuPC8YNfa932xn2OPHj1Qq9UtP8f169e3fH9vvfUW69atA8DHx4fAwECjfsZCiIuTU7OFsAIzZ85E\nrVa3fP3vf/+bmTNncvr0aW688UYURWHKlClMnToVRVFYunQpzzzzDC4uLsyePRuVSoWiKBgMBpqa\nmpgyZcp5z79q1Sr+/Oc/s3TpUqZMmYJKpWLOnDmEh4dTV1fHDz/8wOTJk7Gzs8PT05Nly5ah0+ku\nevvFTJ48mccee4zVq1cDYGtryx133MGsWbMAUKlU/OMf/8DR0ZGffvqJbdu28cILL1zWz0hRFF55\n5RWWLl3Ka6+9hkqlYvbs2Tg5OV3yZ9vaz/G5555j0aJF2NnZcdttt7U8180338wzzzzDqlWrUBSF\nIUOGtJwuLoS4fIrBYDCYuwghhOWqrq4mIiKCQ4cO4eLiYu5yhBDiAnKYSQhxgdtvv50NGzYAsGHD\nBkJCQiTICCEslozMCCEucOjQIZ599lnq6upwdnZm6dKlhIeHm7ssIYS4KAkzQgghhOjS5DCTEEII\nIbo0CTNCCCGE6NK6/KnZBQUVJntuDw8nSkraXmNCmIf0xjJJXyyX9MYySV+Mp9W2fhKCjMy0wcZG\nfekHCbOQ3lgm6Yvlkt5YJulLx5AwI4QQQoguTcKMEEIIIbo0CTNCCCGE6NIkzAghhBCiS5MwI4QQ\nQoguTcKMEEIIIbo0CTNCCCGE6NIkzAghhBDd2I4dW4163Ouvv0x2dlar9z/99MKOKqnDSZgRQggh\nuqmcnGy2bNls1GMXLHgSf/+AVu//z39e6aiyOlyXv5yBEEIIIS7ulVde5NixJEaPHsb1108lJyeb\n115bwQsvPEtBQT41NTXcf/8cRo4czaOPzmHhwr+yfftWqqoqyczMICvrDI8//iQjRozkxhsn8MMP\nW3n00TkMGzac2NhDlJaW8uKLr+Lt7c2zzy4mNzeHwYPD2bZtC19/vaHTvk8JM0IIIUQn+HLbSQ4m\n5593m1qt0NRkaPdzDuunY9r4Pq3ef/fdM1m//kuCg0PIzExnxYr3KCkp5uqrr2Hq1D+QlXWGxYuf\nZuTI0edtl5+fx/Ll/+WXX37mm2/+x4gRI8+739nZmddfX8nKlW+wa9c2/P0Dqa+v4913V7N3726+\n/PLzdn9P7SFhphWpWWWU1TXhZi/XzRBCCNH19e8/EAAXF1eOHUvi22/XoygqysvLLnhsePhQAHQ6\nHZWVlRfcP2RIRMv9ZWVlZGScYvDgIQCMGDEStbpzPzslzLRi1fdHyS+pYVS4H3eOC8HFyc7cJQkh\nhOjCpo3vc8EoilbrQkFBRae8vq2tLQA//bSJ8vJy3nrrPcrLy3nwwZkXPPa3YcRguHDk6Pf3GwwG\nVKrm2xRFQVGUji6/TTIBuBVzbhpILz9X9sTnsOjdX9gVl43+Ig0VQgghLJVKpaKpqem820pLS/Hz\n80elUrFz5zYaGhqu+HUCAgI5fvwoAAcO/HLBa5qahJlW9PZ35bUnxjJ9fB8a9QZWb0zmhU9iyMzr\nnAQthBBCXKmePYM5fjyZqqpfDxWNGzeen3/ezYIF83B0dESn0/Hhh6uu6HWuvXY0VVVVzJv3AHFx\nh3F1dbvS0i+LYrjY+FEXYsrhuXPDf8XltXyx7SSHkvNRKQoTrwrk5lHBONrLUTpz6cyhWWE86Yvl\nkt5Ypu7Sl/LyMmJjDzFu3AQKCvJZsGAen332vw59Da3WpdX75NPYCJ6uDjxyyyAS0or49McUfjx4\nmgPH8pg+IZRh/XSdfmxQCCGEsCROTs5s27aFzz5bg8Gg57HHOneBPRmZacPFEnNDYxMbfsnkh30Z\nNDbpGRjsyT2TwvDxdDJZHeJC3eWvme5G+mK5pDeWSfpivLZGZmTOzGWytVFz86hgnnvgagYGe5J0\nqpjF7x8gencaDY2dO+FJCCGEEBJm2s3H04mF04Yw75ZBaBxt+HZvOovfO0BCWpG5SxNCCCGsioSZ\nK6AoCsP66Xj+oWu4flgQhWW1vPplHCu+TqC4vNbc5QkhhBBWQSYAdwBHexumTwjl2kG+fPJjCoeO\nF5BwqphbRgUzISoQG7VkRiGEEMJU5FO2A/XwceHpeyKZPbUftmoVa7ed5NnVBzlxptTcpQkhhBCt\nuuOOm6iurmbNmtUkJsafd191dTV33HFTm9vv2LEVgA0bvmPnzu0mq7M1MjLTwVSKwugh/kSEaVm3\n4yS74nJ44ZNYuSyCEEIIizdz5qzL3iYnJ5stWzYzbtwEbrih7dBjKhJmTETjaMusqf0ZFe7Pms3H\n2ROfw+GUAu68rg+jwv1Qydo0QgghTOz++//EsmUv4+vrS25uDs888yRarY6amhpqa2t54om/MGDA\noJbHP//8UsaNm8DQoRH8/e9/pb6+vuWikwA//riRdevWolar6NUrhL/97e+88sqLHDuWxIcfrkKv\n1+Pu7s7tt9/FihWvk5AQR2NjE7ffPo0pU27k0UfnMGzYcGJjD1FaWsqLL76Kr6/vFX+fEmZMrE+A\nG/+cdRVbY7L4encaqzcmszs+m5nX96WHT+vnzAshhOhe1p/8nsP5CefdplYpNOnbv9xbhG4wt/X5\nQ6v3jxlzHXv37uL226exe/dOxoy5jpCQUMaMGUdMzEE+/fQjnn/+pQu227x5I717h/D440+ydeuP\nbNmyGYCamhpefvkNXFxcmD//IVJTT3L33TNZv/5LZs9+iPfffweAI0diSUtLZeXKD6ipqeG++6Yz\nZsw4AJydnXn99ZWsXPkGu3ZtY9q0Ge3+/s+ROTOdQK1Scf2wIJY9dA3D+ulIzSrnX6sP8vmWE9TU\nNZq7PCGEEN1Uc5jZDcCePTsZNWosO3duZd68B1i58g3Kysouul16ehqDBg0BICIiquV2V1dXnnnm\nSR59dA4ZGacoK7v4nNDk5KMMHRoJgKOjI7169eb06dMADBkSAYBOp6OysvKi218uGZnpRB4u9sy7\nZRCjTxXxyY8p/HToNAeT5bIIQghhDW7r84cLRlFMvQJw794hFBUVkJeXS0VFBbt378DbW8fixc+R\nnHyUN9987aLbGQygUjV/JunPjhw1NDTwyiv/x+rVn+Hl5c1f//rnVl9XURR+e32BxsaGludTq9W/\neZ2OuQiBjMyYwaBgL5574GpuGRVMZU0jb3+TxCtfxpFXXG3u0oQQQnQzI0aM4t13VzB69FjKykoJ\nCAgEYOfO7TQ2XvzoQI8ePUlOPgZAbOwhAKqrq1Cr1Xh5eZOXl0ty8jEaGxtRqVQ0NZ2/An6/fgM5\nfDjm7HbVZGWdITCwh6m+RQkz5mJro+aPo4J57sGrGdRyWYT9RO9Oo75BLosghBCiY4wde13L2UZT\nptzI2rWf8sQT8xk4cBBFRUX88MO3F2wzZcqNJCUlsGDBPE6fzkBRFNzc3Bk2bDgPPngvH364ihkz\nZvLf/75Cz57BHD+ezH//+3LL9kOGDKVv337Mn/8QTzwxn4cffhRHR0eTfY8mvdDksmXLiIuLQ1EU\nFi1aRHh4eMt9OTk5LFy4kIaGBgYMGMCzzz57yW0uprMvNGkKBoOBmOMFfL71BCUVdejcHfnT9WEM\n7u1l8tfuquTibJZJ+mK5pDeWSfpiPLNcaPLAgQNkZGSwdu1ann/+eZ5//vnz7v/Pf/7D/fffz7p1\n61Cr1WRnZ19ym+5KURSu6qfj3w8OZ/LVv14W4S25LIIQQghxSSYLM/v27WPixIkAhISEUFZW1jJr\nWa/XExMTw/jx4wFYsmQJ/v7+bW5jDRztbbhrfChLZg+jT4AbMccL+Puq/Wzan0ljk97c5QkhhBAW\nyWRhprCwEA8Pj5avPT09KSgoAKC4uBhnZ2deeOEF7r77bl5++eVLbmNNgnSa5ssi3NAPWxsVX26X\nyyIIIYQQrem0U7N/OzXHYDCQl5fHvffeS0BAAHPmzGHHjh1tbtMaDw8nbGzUl3xce7V1jM7Ubpvg\nysRrgvl4w1E2/5LBC5/EMnFYD2b9YQBuGnuz1WUpzNkb0Trpi+WS3lgm6cuVM1mY0el0FBYWtnyd\nn5+PVqsFwMPDA39/f3r0aD5Na8SIEZw4caLNbVpTUmK605ktZWLWXeNCiAr1Zs3m42w5mMm+hGzu\nGBfC6CH+VntZBEvpjTif9MVySW8sk/TFeGaZADxy5Eg2b25e/jgpKQmdTodGowHAxsaGoKAg0tPT\nW+4PDg5ucxtrd+6yCNMnhNKoN/DRpuO8sCaGzDzZCYQQQlg3k43MREZGMnDgQKZPn46iKCxZsoT1\n69fj4uLCpEmTWLRoEU8//TQGg4GwsDDGjx+PSqW6YBvxq3OXRRjWT8fabSc4cCyff60+yISoQG4d\n3RtHe1nQWQghhPUx6ToznaE7rDPTXolnL4uQX1KDm8aOu63osgiW3htrJX2xXNIbyyR9MZ5ZDjMJ\n0/vtZRGqzl0WYe0RcuWyCEIIIayIhJku7txlEf794NUM6u1JUnoJ/3x/P1/vkssiCCGEsA4SZroJ\nnYcTT9w5hPm3DsLFyY7vfk5n8fv7iU8tMndpQgghhElJmOlGFEUhqq+O5x8azpSre1BUVsdrX8ll\nEYQQQnRvEma6IQc7G6aN78PS2cMIDWy+LMI/3tvP0fRic5cmhBBCdDgJM91YoE7D3/4Uyayp/Whs\n0vPaV3EcTM43d1lCCCFEh5Iw082pFIUxQ/x5YtpQbNQq3o5OZFvsGXOXJYQQQnQYCTNWon9PD/42\nIxIXZzs++TGF6N1pRl37SgghhLB0EmasSE9fFxbdE4nW3YFv96azZvNx9HoJNEIIIbo2CTNWRufh\nxKJ7ouih07DjSDYroxNpaJT1aIQQQnRdEmaskJvGnr/OiKRfD3diUgp49cs4qmsbzV2WEEII0S4S\nZqyUk4MNT0wbQlSYluTMUv7vs1jKKuvMXZYQQghx2STMWDFbGzXzbhnEuKH+ZOZXsuyTGPJL5LpO\nQgghuhYJM1ZOpVKYObkvfxzZi4LSWpatiSEjV67gKoQQouuQMCNQFIVbRvfmnuvDqKhu4MXPYjmW\nUWLusoQQQgijSJgRLcZHBvLwLYNobNLz6pdHOCSrBQshhOgCJMy0Irsyl/wq67vi9LB+Op64cwhq\ntYqV0YlsP5xl7pKEEEKINkmYacW7CR/x1KbnOFacYu5SOl3/Xp48PSMSFydb1mw+LqsFCyGEsGgS\nZlpxS8gNNOqbWBH3AQdyY81dTqfr6evCMzOj8HZrXi34kx9TZLVgIYQQFknCTCuG6gbzj7GPYa+2\n46OjX7Alc6fVjU74eDixaGYUQToN2w9n8fY3iTQ06s1dlhBCCHEeCTNtGKAL44nIebjbu/H1yR/4\n38nv0Bus68PcXWPP32ZE0jfInUPHC3j1yyPU1MlqwUIIISyHhJlLCND48VTUfHydfdh+eg8fJn1G\ng966PsydHGxYeNcQIs+uFvziZ7GUVdWbuywhhBACkDBjFA8HdxZGziPErRex+fG8deQ9ahprzF1W\np7K1UfPILYMYM8SfzLxKXlgTQ36pdf0MhBBCWCYJM0ZytnXisaEPMVQ7iBOlabwSs5LSujJzl9Wp\nVCqF+6b05aZre5FfWsOyNTFk5slqwUIIIcxLwsxlsFXb8sCgexgTMILsqlyWH3qL3Ko8c5fVqRRF\n4dYxvfnTpDAqqup58bNYkmW1YCGEEGYkYeYyqRQV08Ju4Y+9p1BSV8rLMStILU03d1mdbkJUIHNv\nHkh9g55XvjxCzHFZLVgIIYR5SJhpB0VRmNxrPDP7T6O2qY43jrxLXEGiucvqdFf39+HP05pXC14R\nncgOWS1YCCGEGUiYuQLX+F3Fw+GzURQVqxLWsDtrn7lL6nQDe3ny17sj0Dja8vHm43y755TVrccj\nhBDCvCTMXKGBXn35c8RcnG2d+OL413yXusnqPsyD/Vx55p7m1YKj95zi059ktWAhhBCdR8JMB+jp\nGsSTUfPxdvRiU8Y2Pk1eR5O+ydxldSpfTyeeuSeKQK0z22KzeOfbJFktWAghRKeQMNNBdE7ePBU1\nnx4ugezLOcg7CR9R12RdC8t5uNjz9J8iCQt042ByPq99FSerBQshhDA5CTMdyMVOw4KIufT3DCOp\nKJnXY9+hor7S3GV1KicHWxbeNZSIUG+OZZTwf58dplxWCxZCCGFCEmY6mIONPfPCZzPcN4qMitO8\nHPMWhTVF5i6rU9nZqnnk1kGMDvcjI6+CZZ/EUCCrBQshhDARCTMmoFapmdl/GpN7jqegpojlh94i\ns/yMucvqVGqVillT+/GHa3uSXyKrBQshhDAdCTMmoigKfwyZwrSwW6hsqOK1w29zrCjF3GV1KkVR\nuG1MCDMmhlJ2drXg45myWrAQQoiOJWHGxMYGXssDg+6hyaBnRfwH7M+JMXdJnW7iVUHM+eMA6hv0\nvLw2jpjjBeYuSQghRDciYaYTROgG89jQh7BX2/PxsbX8mLHd6taiuWaALwvuDEetUlgRncCuuGxz\nlySEEKKbkDDTSfq4B7Mwch7u9m58k7qRr058i95gXeuwDAr24q8zInB2sGX1xmS++znd6kKdEEKI\njidhphP5a3x5Kmo+/s6+7Dyzlw8SP6WhqcHcZXWq5tWCI/FydeDrXWl89tMJ9BJohBBCXAEJM53M\nw8GdJyLn0cc9mMMFCbwZ9x7VDdZ12rKflzOLZkYRoHVma+wZ3pXVgoUQQlwBCTNm4GTryKNDHiRC\nO5iTpad4NXYlJbWl5i6rU51bLTg00I0Dx/J5fZ2sFiyEEKJ9JMyYia3alvsH/YmxgSPJrsplecxb\nZFfmmrusTuXsYMuTdw1laB9vjqaX8NLnhymvltWChRBCXB4JM2akUlTcGfpHbg6ZSmldGa/EruRk\n6Slzl9Wp7GzVzL9tEKPC/UjPreCFNTEUymrBQgghLoOEGTNTFIXre17Hvf3voq6pjjeOrOJIfoK5\ny+pUapWK2VP7ccM1PckrqeH5T2I4nW9d17QSQgjRfhJmLMRwvygeCb8flaLivcRP2HnmZ3OX1KkU\nReGOcSFMnxBKWWU9//k0lpTT1jWPSAghRPtImLEg/b3CeCLiYTS2znyZEs03qRutbh2W64cFMeem\nAdQ3NLH8iyMcTpHVgoUQQrRNwoyF6eEayJNR89E6evFjxnbWHPuSJn2TucvqVNcM9GXBHc2rBb/5\ntawWLIQQom0SZiyQ1smLJ6Pm09MliP25Mbwdv5raxjpzl9WpBvX24i93/7pa8A/7ZLVgIYQQFydh\nxkK52GlYEDmXgV79OFp8nNcPv0NFvXVNiu3tf261YHv+tzONz7fIasFCCCEuJGHGgtmr7Zg7+D6u\n8buKzIozLI95i/zqQnOX1an8vJx55p4oAryd2RJzhlXfHaWxSVYLFkII8SsbUz75smXLiIuLQ1EU\nFi1aRHh4eMt948ePx9fXF7VaDcDy5cvRaDT87W9/o6ysjIaGBubPn8/o0aNNWaLFU6vU3NPvTtzt\nXNmUsY2XY97ikSH309M1yNyldRpPVwf+9qdI/rsunv1H86isaeCfD15j7rKEEEJYCJOFmQMHDpCR\nkcHatWtJTU1l0aJFrF279rzHrFq1Cmdn55avP/nkE4KDg3nyySfJy8vjvvvuY9OmTaYqsctQFIWb\nQqbgZu/GlynRvHb4HR4cNJOBXn3NXVqn0Tja8uT0obwdnUhcahFP/Xc3j9w8EB9PJ3OXJoQQwsxM\ndphp3759TJw4EYCQkBDKysqorGx7zoeHhwelpc1ri5SXl+Ph4WGq8rqkMYEjeGjwTAwGPW/Hf8gv\nOYfMXVKnsrdVM/+2wUyMCuR0XgXPfnSI+NQic5clhBDCzEw2MlNYWMjAgQNbvvb09KSgoACNRtNy\n25IlS8jKyiIqKoonn3ySG2+8kfXr1zNp0iTKy8t55513Lvk6Hh5O2NioTfI9AGi1LiZ77vaYqB1B\noFbHi3tWsObYlzTa1HFL/8koimLu0jrNghlRDArV8ta6OF5fF8c9U/pz54RQq/oZWDJL22fEr6Q3\nlkn6cuVMOmfmt35/Wu3jjz/O6NGjcXNzY/78+WzevJm6ujr8/f15//33SU5OZtGiRaxfv77N5y0p\nqTZZzVqtCwUFFSZ7/vbyQscTEfN468j7fJ7wDVnF+dwZdjMqxXrmc08Y1gMXezVvrk9gzcZjHE0t\n5P4b++No32lvaXERlrrPCOmNpZK+GK+t0GeyTz+dTkdh4a9n3uTn56PValu+vuWWW/Dy8sLGxoYx\nY8aQkpJCbGwso0aNAqBfv37k5+fT1GRdC8YZy8/Zh6eumo+/sy+7svbxfuInNDQ1mLusThXs58qS\nWcMIC3InJqWA59fEkFdsunArhBDCMpkszIwcOZLNmzcDkJSUhE6naznEVFFRwQMPPEB9fT0ABw8e\nJDQ0lJ49exIXFwdAVlYWzs7OLWc7iQu527vxROQ8Qt17c6QgkTeOvEd1g3V9mLs62/HU9KFMiAok\nu7BK5tEIIYQVUgwmXFZ1+fLlHDp0CEVRWLJkCUePHsXFxYVJkybx0UcfER0djb29PQMGDGDx4sVU\nV1ezaNEiioqKaGxsZMGCBYwYMaLN1zDl8FxXGf5r0Dfy8dEviM2Px9fZh0eHPICHg7u5yzKpi/Vm\nb0IOH206TlOTnlvH9ObGET1lHk0n6yr7jDWS3lgm6Yvx2jrMZNIw0xkkzDTTG/SsP/E928/swd3e\njflDHsBf42vuskymtd6cyinnzfUJlFTUERWmlXk0nawr7TPWRnpjmaQvxjPLnBnRuVSKittDb+LW\nPjdSWlfGK7ErOFGSau6yOp3MoxFCCOsjYaYbURSFiT3Gct+A6dQ11fPmkfeIzY83d1mdTubRCCGE\ndZEw0w1d7RvJI0PuR61S80Hip+w4vdfcJXU6G7WKP00K44Eb+9PQqOf1r+L4/me58rYQQnRHEma6\nqf6eYTwROQ+NnTNfnfiG6JMbrPKDfORgP565JxJ3F3vW70pjxdeJ1NQ1mrssIYQQHUjCTDcW5BLA\nU1GPonP05qfMHfzvxHdWGWhKU28RAAAgAElEQVRkHo0QQnRvEma6OW9HTxZGPYKvsw/bz+xh/cnv\nrTLQyDwaIYToviTMWAEXOw0LIubg66Rj2+ndfH3yB6sMNDKPRgghuicJM1bC1c6FxyPm4uOkY+vp\nXUSnWuccGpB5NEII0d1ImLEibvYuLIiYg4+Tli2ZO/kmdaPVBhqZRyOEEN2HhBkr42bvyoKIueic\nmicFf5u2yWoDjcyjEUKI7kHCjBVqCTSO3vyYsZ3v0jZbbaCReTRCCNH1SZixUu72biyInIvW0YvN\nGdv4/tSPVv0BLvNohBCi65IwY8Xc7d1YEDEXb0cvNqVvZcOpn8xdklnJPBohhOiaJMxYOQ8Hd/4c\nMRdvB082pG/hBysPNDKPRgghuh4JMwIPB3cWRM7Fy8GTDad+YuOpLeYuyaxkHo0QQnQtEmYEAJ4O\nHiyImIuXgwffn/qRTelbzV2S2ck8GiGE6BokzIgWXo7NgcbTwYPv0jazKX2buUsyO5lHI4QQlk/C\njDiPl6MnCyLm4mHvzndpm/gxfbu5SzI7mUcjhBCWTcKMuIC3oyd/jmwONN+kbeSnjB3mLsnsZB6N\nEEJYLgkz4qK8Hb1YEDEXd3s3olM3sCVzp7lLsggyj0YIISyPhBnRKq3Tr4Hm65M/sDVzl7lLsggy\nj0YIISyLhBnRJp2TNwsi5uBm58r6k9+z7fRuc5dkEWQejRBCWA4JM+KSdE5aFkTOxc3Ohf+d+I7t\np/eYuySLIPNohBDCMkiYEUbxcdKyIKI50Kw78S07Tu81d0kWQ+bRCCGEeUmYEUbzcdbxeMRcXO1c\n+OrEN+w887O5S7IYMo9GCCHMR8KMuCy+zjoWRMzBxU7DlynR7JJA00Lm0QghhHlImBGXzdfZhwUR\nc3Gx1bA2JZrdWfvMXZLFkHk0QgjR+STMiHbxc/bh8Yg5aGyd+eL41+zJ+sXcJVkUmUcjhBCdR8KM\naDd/jS8LIuaisXXm8+Pr2Zu939wlWRSZRyOEEJ1Dwoy4Iv4aXx6PmIOzrROfJf+Pn7MPmrskiyLz\naIQQwvQkzIgrFqDx4/Gh5wLNOvZJoDmPzKMRQgjTkjAjOkSgiz+PDZ2Dk40jnyav45ecQ+YuyeLI\nPBohhDANCTOiwwS5+PNYxEM42jjwybGv2J8TY+6SLM7F5tFkF1aZuywhhOjSJMyIDhXkEtASaNYc\n+5IDubHmLsni/H4ezeL397MyOpGM3ApzlyaEEF2SeunSpUvNXcSVqK6uN9lzOzvbm/T5uys3e1f6\neYQSkx9PTF4c3o5eBGj8OvQ1unpvVCqF8BAveug05BRXcyyjhJ1HsknNKsPDxR4vNwcURTF3mZet\nq/elO5PeWCbpi/Gcne1bvc+mE+sQVqSHayCPDX2QN46s4uOja1GhcJVvhLnLsjgRYVqGhnqTlF7M\nhn0ZJJ4qJvFUMSH+rtxwTU+GhHqj6oKhRgghOpOMzLRBEvOVcbd3o69HH2Ly4ojJj8PHSYu/xrdD\nnrs79UZRFHQeTowc7MegYE8qaxo4mlHCgWP5HEzOx8FOjb+3MyqV5Yea7tSX7kZ6Y5mkL8Zra2RG\nwkwb5E125dzt3QjzCCE2P75DA0137Y2nqwPDB/hwVT8d9fVNHD9dSkxKAXsTc1AUhUBvDTZqy53q\n1l370h1IbyyT9MV4EmbaSd5kHcPDwY0wj94tIzS+zjr8nH2u6Dm7e29cneyIDNMycpAfBgycOFNG\n3Mkidh7JpqFJT4BWg52t2txlXqC796Urk95YJumL8STMtJO8yTqOh4M7oR4hxOQdISY/Dj9nnysK\nNNbSGycHGwb39mLsUH/sbFSkZZeTkFbMttgsKmsaCNBqcLS3nKlv1tKXrkh6Y5mkL8aTMNNO8ibr\nWB4O7vRx701MfnOg8Xf2wbedgcbaemNvq6ZfTw+uiwjAxcmWjLwKktJL2BpzhqKyWnw9nXBxsjN3\nmVbXl65EemOZpC/GkzDTTvIm63ieDu6EuAcTk998yClA44uvs+6yn8dae2Nro6JPgBvjIwPRujmQ\nVVTN0fQStsdmcaagEq27Ix4ure/wpmatfekKpDeWSfpiPAkz7SRvMtPwdPCgz9lAcyjvCAEav8sO\nNNbeG7VKoaevC+MjAgjUasgvreFYRgm74rI5caYUd4093mZYq8ba+2LJpDeWSfpivA4JM5WVldjZ\n2VFYWMjRo0fx9fW1iEW9JMx0TZ4OHoS49WqZQxPo4o+Pk9bo7aU3zRRFwd/bmbFD/AkNcqe0oo5j\nGSX8nJhLQloRGkdbfL2cOm1flb5YLumNZZK+GO+Kw8xzzz1HaWkpAQEBTJs2jZycHH755Reuu+66\njqyzXSTMdF1ejr8GmkN5lxdopDfnUxQFnbsjIwf7ER7iRVVtA8fSSziQnM+BY/nY2aoI6IS1aqQv\nlkt6Y5mkL8ZrK8wYtWDF0aNHufPOO9m4cSO33norr7/+OhkZGR1WoLBeoR4hzBsyG5Wi4r2ENSQW\nHjN3SV1esJ8r828dzL8fGs6ocD8KSmv4cEMyf3t7Hz8eyKS2Xq7ULYToXowKMwaDAYAdO3Ywfvx4\nAOrrJUmKjhHm0Yd54bNRFIVVCR+TVHTc3CV1C35eztx/Q39efHgE1w8Lorq2kS+2neQvK34menca\nlTUN5i5RCCE6hFFhJjg4mBtuuIGqqir69+9PdHQ0bm5upq5NWJG+nn14+GygeTfhI45KoOkwnq4O\nTJ8QykuPXMsto4JRFIVv96bz1Iq9fL7lBMXlteYuUQghrohiODfs0oampiZSUlIICQnBzs6OpKQk\ngoKCcHV17Ywa21RQUGGy59ZqXUz6/OJCx4pTeDt+NQAPD55Ff6+wiz5OetN+dfVN7IrLZtOBTEoq\n6lCrFK4Z6MPU4T3x93a+oueWvlgu6Y1lkr4YT6t1afU+o0Zmjh07Rm5uLnZ2drz66qv83//9Hykp\nKZfcbtmyZdx1111Mnz6d+Pj48+4bP348M2bMYObMmcycOZO8vDwAvv32W/74xz9y2223sWPHDmPK\nE91If88w5g6+D4B3ElZzrPjS7zNxeezt1EwaFsSLD4/g/hv6o/NwZG9CLovf28+b6xNIyy43d4lC\nCHFZjAoz//73vwkODubQoUMkJCSwePFi/vvf/7a5zYEDB8jIyGDt2rU8//zzPP/88xc8ZtWqVaxZ\ns4Y1a9bg4+NDSUkJb731Fp999hlvv/02W7dubd93Jbq0AV59mTP4PgwGA+/Erya5+IS5S+qWbNQq\nRoX78dyDw3n0tsH08nMlNqWAf398iJc+P0zSqWKMGLgVQgizMyrM2Nvb06tXL7Zu3cq0adPo06cP\nKlXbm+7bt4+JEycCEBISQllZGZWVlZfcZsSIEWg0GnQ6Hc8995yR34bobgZ69WVOeHOgeTt+NceL\nT5q7pG5LpShEhmn5x71R/OXuCAb28uBYRgkvrz3Cs6sPcTA5H71eQo0QwnIZFWZqamrYuHEjW7Zs\nYdSoUZSWllJe3vZQdGFhIR4eHi1fe3p6UlBQcN5jlixZwt13383y5csxGAycOXOG2tpaHn74YWbM\nmMG+ffva8S2J7mKgVz8eGnwvBoOelfEfklKSau6SujVFUejf04Mnp0fwz1lXcVU/HZl5FayMTuTv\nq35hV1w2DY16c5cphBAXMOpyuwsXLuTjjz9m4cKFaDQa3njjDWbNmnVZL/T74erHH3+c0aNH4+bm\nxvz589m8eTMApaWlvPnmm2RnZ3Pvvfeyffv2Nlcv9fBwwsZGfVm1XI62JhwJ07tOezWubo4s3/sO\nb8d/yDNj5jNA1zwpWHpjOlqtC8MGB5BVUMn67SfZdiiT1RuT+XZvOreMDWHyNT1xcrBtdVthmaQ3\nlkn6cuWMOpsJoLq6mlOnTqEoCsHBwTg6Orb5+DfeeAOtVsv06dMBmDBhAt988w0ajeaCx3766acU\nFRUREBBAYWEhc+fOBeDGG2/k448/xsvLq9XXkbOZrENC4VFWJaxBrah4ZMgDXBs2RHrTiUoq6vjx\nYCY7jmRTV9+Ek70N46MCmXhVIK6/uVq37DOWS3pjmaQvxrvis5m2bNnC9ddfz5IlS/jHP/7B5MmT\n2blzZ5vbjBw5smW0JSkpCZ1O1xJkKioqeOCBB1oW3jt48CChoaGMGjWKX375Bb1eT0lJCdXV1ecd\nqhLWa7D3AB4YdA+NhiZWxH9AYl6yuUuyKh4u9tw1PpSX5l3LraODUakUvv85nb+u+JlPf0qhsKzG\n3CUKIayYUSMz06dPZ8WKFXh6egKQl5fHggUL+OKLL9rcbvny5Rw6dAhFUViyZAlHjx7FxcWFSZMm\n8dFHHxEdHY29vT0DBgxg8eLFKIrCF198wbp16wCYN28eEyZMaPM1ZGTGuhwpSOSDxE9BgZn9pjHM\nN8LcJVmluoYmdsdls/lAJkXldagUheEDfLh7Sj80tkb9jSQ6mfw+s0zSF+O1NTJjVJiZOXMma9as\nueRt5iBhxvocLz7JqqSPqWmo5ebeU5nUc5xFXMHdGjU26TlwLI8Nv2SSXVgFgK+nExGh3kSEaent\n74pKemMR5PeZZZK+GK+tMGPUVbN//PFH8vPzcXR0pLCwkOjoaAoLC/nDH/7QkXW2i1w12/p4O3oy\nuk8UB87EEVeYSEVDFQO8+kqgMQOVSiFI58K4iAB6+rqgtlGTll3G8cxSdsfnsPNINnkl1agUBU9X\nB9Qmvmq3aJ38PrNM0hfjtXXVbKNGZoqKinj99deJj49HURSGDh3KY4891nLYyZxkZMY6abUupJw+\nzcr4D8mqzGGw9wDuHzgDO7XdpTcWJqPVupCVXcrR9BJiTxQQd7KQiurmC1ra26kZ3NuLyFBvwkO8\nWj0bSpiG/D6zTNIX413xYaaLSU1NJSQkpN1FdRQJM9bpXG9qGmtYlbCG4yUn6ekaxLzw2bjYXXjG\nnOgcv99n9HoDJ7PKOHyigNiUAgpKmy9qqVYp9OvhTkSYlqF9vPF0dTBXyVZDfp9ZJumL8UwSZu69\n914+/vjjdhfVUSTMWKff9qZR38inyes4kBuLt6MX84fcj85Ja+YKrVNb+4zBYCCrsIrDKQXEnigk\nI/fXxwX7uTA0VEtkqDf+3s5yyNAE5PeZZZK+GK+tMGPUonkXI9dsEZbCRmXDvf3vwtPenU0Z23g5\nZgUPh88i2K2nuUsTv6EoCoFaDYFaDTeNDKa4vJbDJwo5fKKA45mlnMqp4Otdaeg8HIkM1RIR5k2I\nvxsqmWcjhLiEdocZ+ctJWBJFUbgpZAoeDu6sTYnm9cPvMHvgnxiiHWju0kQrPF0dmBAVyISoQKpq\nG4hPLeJwSgEJacVsOpDJpgOZuDrZMqRP85lRA3t5YGvC1b6FEF1Xm2Hm3HovF/P76ywJYQlGBVyD\nu70b7yd+wqqEj7kz7GbGBl5r7rLEJTg72DJioC8jBvrS0NjEsYwSYlMKOXKigN3xOeyOz8HeVs2g\n3p5EhmoJ7+OFs0wgFkKc1WaYiYmJafW+oUOHdngxQnSEQd79+XPkw6yM+5AvU6Ipri3h5pCpqBRZ\nzK0rsLVREx7iTXiIN/rJfUnLLif27ATimOPN/1SKQt8e7s3r2YRq8XKTCcRCWLN2TwC2FDIB2DoZ\n05vCmiLeinuf/OpConRDmDngLmxV7T6yKoxgyn3GYDCQXVTN4ZQCDp8o5FROect9PX1ciAjzJjJU\nS4BWJhBfjPw+s0zSF+Nd8dlMM2bMuOCXg1qtJjg4mEceeQQfH58rr7KdJMxYJ2N7U9lQxTvxq0kr\nyyDUvTdzBt+Lk61TJ1RonTpznympqOPIieYzo5IzSmjSN/8q07o7EBGqJSLUm9BAd5lAfJb8PrNM\n0hfjXXGYefPNNzl16hSTJ09GpVKxZcsW/Pz8cHNzY9euXXzwwQcdWvDlkDBjnS6nN/VNDXx09AuO\nFCTg6+zD/CH34+kgFzA1BXPtM9W1DcSnFXE4pZCEtCJq65sA0DjaMrSPNxFh3gzs5YmdrfVOIJbf\nZ5ZJ+mK8Kw4zs2fP5sMPPzzvtjlz5vDuu++a/RpNEmas0+X2Rm/Qs/7E92w/swc3OxfmDXmAIBd/\nE1ZonSxhn2lo1JOcWdJyOKqsqnmpeDtbFQN7eRIZpmVIH280jtY1gdgSeiMuJH0x3hWvM1NUVERx\ncXHL5QsqKirIzs6mvLycigppgrB8KkXFHWF/xNPBnf+d/J5XY1fw0KB76e8VZu7SRAeztVExuLcX\ng3t7cc9kA6fOTiA+nFJ4dl2bQlSKQliQW8vhKG93R3OXLYS4AkaNzKxbt46XXnqJgIAAFEXhzJkz\nzJ07Fy8vL6qrq7n77rs7o9aLkpEZ63QlvYnNj+ejo1+gN+iZ0e8ORvhd1cHVWS9L32dyiqqaA01K\nAanZv04g7qHTEBHWHGyCdJpuOYHY0ntjraQvxuuQyxlUVlaSnp6OXq+nR48euLu7d1iBV0LCjHW6\n0t6cLD3FO/GrqW6s4cbgSUztNbFbfoB1tq60z5RW1nHkRCGxJwpIziihsan5V6GXq0PLmVFhPdxR\ndZP3RVfqjTWRvhjvisNMVVUVq1evJiEhoeWq2ffddx8ODuZf20HCjHXqiN7kVuXxVtwHFNeWcK3f\nMKb3vQ21ynoniHaErrrP1NQ1kpBWxOEThcSnFlJT1zyB2M/LiSnDe3DNAF9sbbr2OkVdtTfdnfTF\neFccZhYuXIiPjw/Dhw/HYDDw888/U1JSwvLlyzu00PaQMGOdOqo3ZXUVrIz/gNMVWQzw7MsDg+7B\nwca+Ayq0Tt1hn2lsap5AvC8xjwPH8mjSG3DT2HH9VUGMHRqAk0PXXKuoO/SmO5K+GO+Kw8zFrpBt\n7rOYzpEwY506sje1jXW8n/gJR4uPE+QSwLzw+3Gzb32nEa3rbvtMcXktPx06zY4j2dTVN+Fgp2bc\n0AAmDQvCw6Vrhd7u1pvuQvpivLbCjFHjpjU1NdTU1LR8XV1dTV1d3ZVXJoQFcLCx5+HwWVzrN4zT\nFVksj3mT3Ko8c5clLICnqwN3jQ/l5Ueu5faxvbG3VbPpQCZ/Xfkz739/lDMFleYuUQiBkadm33XX\nXUydOpVBgwYBkJSUxIIFC0xamBCdSa1SM6PfHXg6ePD9qR95OWYFc8Nn0cc92NylCQvg5GDLjSN6\ncf2wHuxLymXzgUz2JuayNzGX8BAvpg7vQViQu0wiF8JMjD6bKScnh6SkJBRFYdCgQaxZs4annnrK\n1PVdkhxmsk6m7M2+nEN8lrwOlaLivgHTidSFm+R1uiNr2Wf0BgNxJwvZtD+TE2fKAAj2c2Xq8B5E\nhmkt8hIK1tKbrkb6YrwrXjQPwM/PDz8/v5av4+Pjr6wqISzUCL+rcLdz5b3ENXyQ+CmlfUoZ32OM\nucsSFkSlKGcX3NNy8kwZG/dncOREISuiE9F5ODL56h6MHORr1ZdPEKIztftcwy5+sW0h2tTfK4w/\nR87D1U7D/05+z7qUb9Eb9OYuS1igPoFuPHZ7OP9+aDhjhvhTXF7Lms3H+cvKn/l27ykqaxrMXaIQ\n3V67w4wcGxbdXZCLP09d9Si+zj5sP7OH9xM/pb5JPpjExfl5OTNraj9emnctN47oSVOTgejdp3hq\nxV4+/SmFwtKaSz+JEKJd2pwzM3bs2IuGFoPBQElJiUUcapI5M9apM3tT3VDNuwkfc6I0jd5uPZkb\nPguNrXOnvHZXI/vMr2rqGtkdl82Ph05TXF6HSlG4qp+WqcN70tO380/9l95YJumL8dq9zkxWVlab\nTxwQEND+qjqIhBnr1Nm9adA38smxLzmUdwSdkzfzhzyIt6Nnp71+VyH7zIUam/QcPJbPxv0ZnCmo\nAmBALw+mDO/BwF6enTbKLb2xTNIX43XItZkslYQZ62SO3ugNer5N3cRPmTtwsdUwb8hseroGdWoN\nlk72mdYZDAaSThWzcX8mxzJKAAjSaZg6vAdX9dNhozbt5RKkN5ZJ+mK8tsKMeunSpUs7r5SOV11d\nb7Lndna2N+nzi/YzR28URaGfZygaW2eOFCRwMDeWQI0/Oidtp9ZhyWSfaZ2iKOg8nBg52I8hfbyo\nqWskObOEmOMF/JyYg4JCgNbZZKFGemOZpC/Gc3ZufdVtCTNtkDeZ5TJnb3q5BhGg8edwQQIHcmNx\ntXOhh2ugWWqxNLLPGMddY89V/XSMGOSLQQ8nzpQRl1rEjsNZ1NY34u+twcGuY0/rlt5YJumL8STM\ntJO8ySyXuXvj66yjr0cf4guTiM2PR69vIswjxOrP8jN3X7oaZwdbwkO8GDvUH3tbNadyKkg8VczW\nmDMUV9Ti6+mExtG2Y15LemORpC/GayvMyJyZNsixTMtlKb3Jry7krbj3KawpYrhvFDP63Y6Nqmte\nVbkjWEpfuqq6hib2JuSw+UAmBaW1KEBkmJYpw3sQEuB2Rc8tvbFM0hfjyQTgdpI3meWypN5U1Ffy\ndvxq0ssz6ecRyoOD78HRxtHcZZmFJfWlK9PrDcSkFLDxlwzSc5t/nmGBbkwZ3pPwPl6o2jECKL2x\nTNIX40mYaSd5k1kuS+tNfVM9HyR9RkLhUQI0fjwy5H7c7a/sL+muyNL60tUZDAaOZ5aycX8mCWlF\nAPh5OTHl6h5cM9AXWxvjJwtLbyyT9MV4cjZTO8mxTMtlab1Rq9RE6sKpaqgisegYsfnx9PcMw8VO\nY+7SOpWl9aWrUxQFb3dHRgz0JSpMS11DEymnS4k9Ucju+GwMegMB3hqjQo30xjJJX4wnE4DbSd5k\nlssSe6MoCgO9+mGntuNIQSKH8g7TyzUILytaXM8S+9JduDrbERmmZdTg5gv+pmaXE59axLbYM1TV\nNOLn5YSjfevztaQ3lkn6YjwJM+0kbzLLZam9URSFEPde6By9OZyfwIHcw3g7ehGg8bv0xt2Apfal\nO3G0t2FQby/GRwTgaG9DZl4lSenNZ0AVlNSg83DE1dnugu2kN5ZJ+mI8CTPtJG8yy2XpvQnQ+BHi\nHsyRggQO5R3BVrGht1uvbn/qtqX3pTuxtVETFuTOhKhAvN0cyCmq5lhGCdsPZ3EqpxwPF3u8XB1a\n3nPSG8skfTGehJl2kjeZ5eoKvfFy9GSQV38SC49xpDCRioYq+nuGoVJMu2y9OXWFvnQ3apVCT18X\nrosMoKevC8UVdRzLKGFvQi4JaUU4O9g2r1ejkd5YItlnjCfrzLSTzDK3XF2pN6V1ZayI+4CsyhwG\ne/dn9sA/Ya++8DBAd9CV+tKdnTxTxsb9GRw5UYgB0Lk7MuXaXvT20RCk03T7EcKuRPYZ48mp2e0k\nbzLL1dV6U9NYy3sJa0guOUFP1yDmhc/ulmc6dbW+dHc5RVVsPpDJz4m5NDY1/6p319gxuLcXg3t7\nMaCXJ04O1rvIoyWQfcZ4EmbaSd5klqsr9qZJ38SnyevYnxuDt6MX84fc3+0uUtkV+2INKmsayCis\nZu+RMySmFVNZ0wA0H6LqE+DG4JDmcBOodZZRm04m+4zxJMy0k7zJLFdX7Y3BYOCHUz+yMX0rGltn\nHg6fRbBbT3OX1WG6al+swbne6PUGTuWWk5BaREJaMek55Zz7EPBwsWdwb8+WUZu2TvUWHUP2GeNJ\nmGkneZNZrq7em73Z+/ni+NeoFRWTe06gp2sgARo/XO1cuvRfxl29L91Za70pr64nKa2YhLQiEk+d\nP2oTGujWckgqQEZtTEL2GeNJmGkneZNZru7Qm6SiZN5L/IT6pl/PZNDYOhOg8Tvvn6+TDlt1x1w5\n2dS6Q1+6K2N6o9cbOJVTTkJaEQlpRZzK+fXxzaM25+baeMioTQeRfcZ4EmbaSd5klqu79Ka8voK0\n0nSyKnPIqsolqyKbwtri8x6jUlT4OGmbw42zHwEuzSHHzc7V4v5S7i596Y7a05vyqnoSTzUfjkpM\nK6KqthH4zajN2bk2Ad4yatNess8YT8JMO8mbzHJ1597UNtaSXZVHVmU2WZW5ZFXmkF2ZQ21T3XmP\nc7Zxahm98df4Eajxw9fZBzszjuJ05750dVfaG73eQFrOubk2RS1X8wbwdP111KZ/Txm1uRyyzxhP\nwkw7yZvMcllbbwwGA0W1Jc0jOGdDTnZlDgU1RRj4dRdWUNA5aQnQ+BKg8T/7Xz887N075S9na+tL\nV9LRvSmrqifx7OGopFPF543ahAW5N4ebEC/8vZxk1OZ3Gpv0FJfXUlhWi8rGBl93e9w1rS8IJ5pJ\nmGkn+cVsuaQ3zWob68ipyiO7MoesqhzOVOSQXZVDTWPteY9ztHFsCTbn/vk5+3b44n3SF8tlyt40\n6fWcyq4gPq2IhNQiMvJ+fR2vc6M2Ic2jNg523X/UprFJT3FFHUWlNRSW1f7mX/PXpRV1/PaDVwFC\nA924qp+OqL46PFwk2FyMhJl2kl/Mlkt60zqDwUBJXenZUZxf/+VXF14wiqN18mqeh/ObkOPp4NHu\nv6SlL5arM3tTVllH4qli4lObR22q65pHbWzUCqGBzaM24SFe+HXRUZsmvZ6S8roLQkphWS1FZTUU\nV9RxsU9WRQFPF3u83BzxdnPA280BT3cnfo7P5sTpUgw0B5s+Z4PNVRJszmO2MLNs2TLi4uJQFIVF\nixYRHh7ect/48ePx9fVFrVYDsHz5cnx8fACora3lD3/4A4888gi33XZbm68hYcY6SW8uX31TPTlV\neReEnOrGmvMe56B2wF/jS+DZuTgBGj/8nX1xsLn0L1Xpi+UyV2+a9HrSspvPkIpPLSIzr7LlPi9X\nBwaHeBF+dq6NvZ260+u7GL3eQElF3XkhpbCshqKyWgpKaympqEN/kY9OBXB3sT8bVH4NLN5uDni5\nO+LpYo+N+vxrs53rS2llHTHHCziYnN8SbKA52Azrq+OqfhJs2gozJhvvO3DgABkZGaxdu5bU1FQW\nLVrE2rVrz3vMqlWrcHZ2vmDblStX4ubmZqrShLBKdmo7eroG0dM1qOU2g8FAaV3Z+QGnKpf08kzS\nytLP297b0ev808ad/cPoya8AAB8DSURBVPBy9OjWF84UV06tUhEa6E5ooDu3jQmhtLKOxLRi4s/O\ntdlxOIsdh7OwUTfPtQk/e0jK19N0ozZ6vYHSyroLRlUKzx4WKqmoo0nfeljpHeD6m6Dym1EWV4cL\nwoqx3DX2TIgKZEJUYEuwOZScT8rpUk6eKePzrSfoE3BuxEaLp6vDFf4UuheThZl9+/YxceJEAEJC\nQigrK6OyshKNpu3r0aSmpnLy5EnGjRtnqtKEEGcpioKHgzseDu4M8u7fcntDUwM51Xlnz6bKbvlv\nXEEicQWJLY+zV9vh7+zXMuF4mO1AHHE1x7ciugh3jT2jwv0YFe5Hk15PatbZdW1SiziaXsLR9BK+\n2HYSbzeHllO/+/e4vFEbvcFAWWX9r0Gl9LeHgWopKq+9aFgBcNPY0cvPBa2bI16/Cyyerg7Y2pg+\nvP822JRV1hGT0hxsjp8u5WRWGV9sPUFIgGvLiI0EGxOGmcLCQgYOHNjytaenJwUFBeeFmSVLlpCV\nlUVUVBRPPvkkiqLw4osvsnjxYqKjo01VmhDiEmzVtvRwCaSHS2DLbQaDgbL68pYzqc5UZpNdmUtG\nxWlOlWcA8GVKNLf0uYEJQWO65FwI0bnUKhVhQe6EBblz+9jmUZtzwSYpvYTtsVlsj83CRq2ib5Ab\ng0O8GdzbEx9PJ8qr6i8SVJr/v6i8tuXCmr/n5mxHL1+Xs0Hl7KiKe/P/e7naY2tjGYe6znHT2DM+\nMpDxkYGUVdUTezyfg2eDTWpWOV9sO0mIv2vLHBsvN+sMNp02rfz3U3Mef/xxRo8ejZubG/Pnz2fz\n5s3U1tYydOhQgoKCWnmWC3l4OGFjwjdfW8fohHlJbzqfDldCCTzvtoamBrLKczlVcpovEr/l65M/\nUNpUwkNRd2Oj7v5nrnQllr7PaLUuhAZ7c9uE5jOCjmeUEJOcx6FjeSSll5CUXsIXW5tP/25tZMVd\nY0/vADd0Hk74eDb/03k6ofNo/q+9rWWFFTC+L1ot9OnlxbTJ/SmpqOWXhBz2xGWTmFpIanY5a7ed\npG8PD0YO8WdkuD86TycTV245TDYB+I033kCr1TJ9+nQAJkyYwDfffHPRw0yffvopRUVFpKWlcfr0\nadRqNbm5udjZ2fHss89y7bXXtvo6MgHYOklvLJPauYllO94ksyKLPu7BPDToXjR2F86LE52vq+8z\nJRV1JKYVEZ9WRHF53W8OAf16KOj/27vz6Kjre//jz5nJRpLJZJ2ELJMNSEjYQ6qyBCqgtL3WhdpQ\nNba32luvS3/0h/7qobW0px5/P7j23t6iF7VWa/GqUbRarwqCCqYKskWEhLCEbISEbJN9T+b3R2IE\nREQk+c4kr8c5nkPIzPAe3/OFVz7f9+f7DbP5uWVYOZ9L0Zfmtm72HRkYHi4qdw7tpEocH0Rmqp3Z\nqRGE28ZdgmqNZchupn379rFu3TqefvppCgoKePDBB3n++ecBaGlpYcWKFaxfvx4fHx9WrFjB1Vdf\nzbe+9a2h569bt46YmBjtZpJzUm/cU0SElcrqev5amEt+7QHC/UK5Y/o/Mz4g0ujSxjwdM+7pUvel\nuX0g2OwpqqGorHFo11XieCuzU+1kptgJD/bMYGPIbqZZs2aRnp7O8uXLMZlMrF69mldeeQWr1cqS\nJUvIysoiOzsbX19f0tLSWLp06XCVIiIjyMfiw4+n3MybJVt5q3QrD+95lB9PuZn0sBSjSxMZ9YL8\nfVg4I4aFM2Jobu8mfzDYHCprpKSqhZfeKx4KNrNT7ER4aLA5my6adx76ScZ9qTfu6ey+7KnOZ0PR\nS/T197Fs4jUsjJ2rwWCD6JhxTyPVl5b2bvKP1rG7qIZDpc6hFZuEKOvgqSj3Dza6AvBF0sHvvtQb\n93SuvpQ0lfP4gb/Q0t3KvOjL+P6k67CYPWuuYTTQMeOejOhLa0fP0KmowtOCTfxpwcbuhsFGYeYi\n6eB3X+qNe/qivjg7G1n/ydNUtlYxKWQCt0+5hQDvsbPTwh3omHFPRvfl9GBzqMw5tEssPtLK7NQI\nMlPt2EPc41hVmLlIRn/I5IupN+7pfH3p7O3ir4UvsL+uAPu4cO6Y9iMiA+wjXOHYpWPGPblTX1o7\nesg/UsvuwwOnoj4NNo7IwKEVm0gDg43CzEVypw+ZnEm9cU9f1pd+Vz+vH9/M22XvMc5rHLdPuYXU\n0IkjWOHYpWPGPblrX1o7esg/WsueoloKSxs+Czb2wIFdUal2Ikf4OjYKMxfJXT9kot64qwvty0dV\ne3muaCP9uLhx4rVkxV4xAtWNbTpm3JMn9KWts4f8I3XsOVxDQclnwSbutGATNQLBRmHmInnCh2ys\nUm/c01fpS3FjKU8ceIbWnjYWxM5h2YRrNBg8jHTMuCdP60tbZw8fD+6KOj3YxEYEkpkawTdnxRI4\nzntY/myFmYvkaR+ysUS9cU9ftS/1HQ089slfONlWzeTQSfw4/Wb8vd1vF8VooGPGPXlyX9o7e8g/\nWseeohoKShvo7XOxcEY0ty5NHZY/T2HmInnyh2y0U2/c08X0pbO3k6cLnudg/SEi/e3cMe1H2P3D\nh6nCsUvHjHsaLX1p7+zlUFkDCVFBw3azy/OFmeG/l7mIyHn4efnx02k/ZJEji1PtNTy85xGOOIuN\nLktEvgJ/Py8yDLxrt8KMiBjObDJzw4R/4ubUG+ns62Ldx3/ig5MfGV2WiHgIhRkRcRtzojO5Z8bt\njPPy47mil3n56Ov0u/qNLktE3JzCjIi4lYkhydyXcQ9R/nbercjjsU/+Qkdvp9FliYgbU5gREbcT\n4R/GvbPvYnLoJArqi/j93kep62gwuiwRcVMKMyLilsZ5jeNfp/0z34ydR1XbKf5tzzqONZYYXZaI\nuCGFGRFxWxazhe9N+i7LU26gvbeDP+Y/wY6qPUaXJSJuRmFGRNze/JjLuXv67fhafHj20Iu8euxN\nDQaLyBCFGRHxCCmhE7h39t3Y/cPZUr6NJw78lc7eLqPLEhE3oDAjIh4j0j+C+zLuJiVkAgfqCvn3\nff9FQ6fT6LJExGAKMyLiUfy9/blr+m3Mj7mCytYq1u5ex/GmMqPLEhEDKcyIiMexmC0sT7meGydd\nS2tPG/+Z/zi7qvcZXZaIGERhRkQ81sLYudw1/Ta8zV48U/gCrxdv0mCwyBikMCMiHm1y2CTuzbiL\n8HFhbCp7lz8ffJauvm6jyxKREaQwIyIeLyogkvtm383E4CQ+rj3If+xbj7Oz0eiyRGSEKMyIyKgQ\n6B3A3TNuZ874b1DRUsm/7VlHWXOF0WWJyAhQmBGRUcPL7MVNqctYNuGfaO5u5T/2rWfvqf1GlyUi\nw0xhRkRGFZPJxJWOLO6Y9iMsJgtPFfw3b5RsweVyGV2aiAwThRkRGZWmhE9mZcZdhPmF8GbJFp4u\neI7uvh6jyxKRYaAwIyKjVnRgFPfNvodkWwJ7a/bzh32P0dTVbHRZInKJKcyIyKhm9Qnknpn/wmVR\nGZS1VLB2zzoqWiqNLktELiGFGREZ9bzNXuRM/j7XJX+bpq5m/n3vf/FxzQGjyxKRS0RhRkTGBJPJ\nxJL4hfxk6q1gMvGngxvYVPquBoNFRgGFGREZU6ZHpLNy1p2E+Abz+vFNPFP4Aj0aDBbxaAozIjLm\nxFqjuW/2PSQGOdh9Kp//zH+C5u4Wo8sSkYukMCMiY5LN18r/mvlTMiNnUtJcxtrd66hsrTK6LBG5\nCAozIjJmeVu8+WHacq5JuhpnVyMP732UT2oLjC5LRL4ihRkRGdNMJhNLExZx+5QcXC4XTxz4K1vK\ntmkwWMSDKMyIiAAz7VP53xn/is03iFeL3+TZopfo7O0yuiwRuQAKMyIigxzWWO6bfTcOayw7q/bw\nqw8f4rXit3TVYBE3pzAjInKaYF8bP591B99JXILFZObtsvf49Yf/l2cPvURV2ymjyxORc/AyugAR\nEXfjY/Hh24lLWOxYyK7qvbxT8T47qnazo2o3U8JSWeRYwMTgJEwmk9GliggKMyIiX8jH4s28mMuZ\nE/0NDtQd4p3y7RysL+JgfREOawyLHAuYGTEVi9lidKkiY5rCjIjIlzCbzEyPSGd6RDolTWVsLX+f\n/bUHebrgOV7zC+HKuPlcMT4TPy9fo0sVGZMUZkREvoJEWzw/mZpDbXs971bksaNqNxuP/p03SrYw\nP+ZyFsbOxeYbZHSZImOKyeXhF1OorR2+S5BHRFiH9fXl4qk37mks9qW1u428yh1sO/EBrT1tWEwW\nMqNmsigui+jAKKPLGzIWe+MJ1JcLFxFh/cLvaWVGRORrCPQJ4FuJi1nkWMDu6n28U/E+O6v2sLNq\nD2lhKSyOW8CkkGQNC4sMI4UZEZFLwMfizdyYy7giOpODdYfYWv4+hfWHKaw/TJw1hsVxWcy0T9Ow\nsMgwUJgREbmEzCYz0yLSmRaRTklTOe+Ub+fj2oM8Xfg8rxa/xZWO+cwZn4mfl5/RpYqMGgozIiLD\nJNHm4PbBYeH3TuTx4cndvHz0dd4s2cK86MtZGDeXYF+b0WWKeDwNAJ+HBrPcl3rjntSX82vtaSPv\nxE62n/iAlp7WgWHhyJkscgz/sLB6457UlwunAWARETcQ6B3AtxIXsdiRxa5T+3in/H12Vu9hZ/Ue\n0kJTWOzQsLDIxRjWMPPQQw+xf/9+TCYTq1atYtq0aUPfu/LKK4mKisJiGRiGe/jhh4mMjGTt2rXs\n3buX3t5efvrTn3LVVVcNZ4kiIiPO2+LN3OjLuGJ8JgX1RWwt305hw2EKGw4TFxjNIscCZmlYWOSC\nDVuY2bVrF2VlZeTm5lJcXMyqVavIzc094zF/+tOfCAgIGPp6586dHD16lNzcXJxOJ9dff73CjIiM\nWmaTmanhaUwNTxsYFq54n49rDvCXwud5rfgtroybx5zob2hYWORLDFuY2bFjB4sXLwYgOTmZpqYm\nWltbCQwM/MLnZGZmDq3eBAUF0dHRQV9f39DqjYjIaJVoc3C77RbqOup5t+If7Di5i5eP/Q9vlm7V\nsLDIlxi2MFNXV0d6evrQ16GhodTW1p4RZlavXk1lZSUZGRmsXLkSi8WCv78/ABs3biQrK+tLg0xI\niD9eXsMXds43cCTGUm/ck/ry9URgZbIjgVu7rmNLcR5vHd3GlvJtvHsij3mOTK5JWYwjOObiXlu9\ncUvqy9c3YgPAZ2+a+tnPfsb8+fOx2WzcddddbN68maVLlwKwdetWNm7cyFNPPfWlr+t0tg9LvaAp\nc3em3rgn9eXSmh8xj8tDL2P3qXy2lr/P9tKdbC/dyeTQSSx2LCAlZMIFDwurN+5Jfblwhuxmstvt\n1NXVDX1dU1NDRETE0NfXXXfd0K+zsrI4cuQIS5cuJS8vj8cee4wnn3wSq1VpVUTGNm+LN3Oiv8Hl\n42dTUF/EO+Xvc6jhCIcajhAbGM0iRxYZ9ukaFpYxzTxcLzx37lw2b94MQEFBAXa7fegUU0tLC7fd\ndhvd3d0A7N69m4kTJ9LS0sLatWt5/PHHCQ4OHq7SREQ8zqfDwitm3cH/mX0Ps+zTqGyt4pnCF/j1\njv/H1vLtdPR2Gl2miCGGbWVm1qxZpKens3z5ckwmE6tXr+aVV17BarWyZMkSsrKyyM7OxtfXl7S0\nNJYuXcqLL76I0+lkxYoVQ6+zZs0aoqOjh6tMERGPEx8Ux21TbqGuo4H3KvL48OQu/nbsDd4qeYd5\nMZexMHYuIX76gVDGDl0B+Dx0LtN9qTfuSX0xRltPO3mVO9l24h+0dLdiNpmZHTmDxY4FxASOB9Qb\nd6W+XDhdAVhEZBQL8PZnacKVLHJksbs6n3fKt7Oreh+7qvcxOXQSixxZhIfPMrpMkWGjMCMiMkp4\nm72YE53J5eMzKKw/zNby7UPDwrlHQkkJnkhaWCopIcm6EJ+MKgozIiKjjNlkZkr4ZKaET6asuYL3\nKj6gsOEQ/zj5Ef84+REWk4VkWwJpYSmkhaUQHRCl+0GJR9PMzHnoXKb7Um/ck/rivkLD/NlzvJCC\n+sMU1h+mvOXE0PeCfW2khQ4Em9TQCYzzGmdgpWOLjpkLp5kZEZExzmK2kGRLIMmWwDVJV9PS3Uph\n/cDNLQ81HOHDql18WLULs8lMYlA86WEppIWlEhs4Xqs24vYUZkRExiCrTyCXjc/gsvEZ9Lv6KWs+\nMXDn7vrDHG8qpbiphL8f30SQj3Vw1WYSqaGTCPD2N7p0kc9RmBERGePMJjOJNgeJNgffSVxCa08b\nRfVHKGw4QmH9YXZW72Fn9R5MmEgIcgyu2qQQZ43BbBq2a6+KXDCFGREROUOgdwCzo2YyO2om/a5+\nTrScpLDhMAX1hylpKqOkuYz/KXmbQO8AJoemkB6WwuTQSQT6BBhduoxRCjMiIvKFzCYzjqBYHEGx\nLE1YRHtPO0XOYxTUF3Go/jC7T+1j96l9mDDhCIolbTDcxAfFadVGRozCjIiIXDB/b39m2acxyz4N\nl8tFZWvV0KxNcVMpZc0VvFW6lQAvf1JDJ5IelsrksEkE+ejGwTJ8FGZEROSimEwmYq3RxFqjuSr+\nm3T0dnLYeYzC+iIK6g+zt2Y/e2v2AxBnjRna/p0Y5NBdvuWSUpgREZFLYpyXHzMipjAjYgoul4uq\ntlNDqzbHGkuoaKlkc9m7jPPyIzVk4GrEaWGTCPa1GV26eDiFGRERueRMJhPRgVFEB0ax2LGAzt4u\njjYWD160r4j82gPk1x4AICZw/NCqTbItQas28pUpzIiIyLDz8/JlangaU8PTcLlc1LTXUjC4anO0\n8TiVrVVsKd+Gn8WXlJAJQ7daCPULMbp08QAKMyIiMqJMJhORAXYiA+xcGTef7r5ujjiLB69rU8T+\nugL21xUAEBUQSfqnqzbBiXib9c+WfJ4+FSIiYigfi8/QjTHhWmra64ZmbY44i3mn4n3eqXgfH4sP\nKSHJTAhOItQvhBBfG8G+Nmy+QdoGPsYpzIiIiFux+4dj9w9nYexcevp6ONZYQkFDEYX1RzhQd4gD\ndYfOeLzZZCbIx0qIbzDBfjZCfAf+C/YLVuAZIxRmRETEbXlbvJkcNonJYZNgItR3NFDRUomzqwln\nVyONnU04u5po7GqirKWCkuayc77OZ4Hns5BzduAJ8rFq+NhDKcyIiIjHCBsXSti40HN+r9/VT0t3\n6xkh5/OB5wQlzeXnfP75Ak/w4K8VeNyTwoyIiIwKZpMZm28QNt8gCDr3Yz4NPI1dTTg7Gy9J4An2\ntRGiwGMohRkRERkzTg888UFx53zM1w08JkzYfIM+H3QUeIaNwoyIiMhpRjLwRAaGET0umqTgBJJt\nCQOrSvKVKcyIiIh8RV838DR2DYSeow2lHHYd570T/wAg3C+U5OBEkm0JJAUnEOkfoV1YF0BhRkRE\nZBhcSOCxhfiyt6SI4sYSjjeVUtxUxkfVe/moei8AAV7+JAXHk2RLINmWiCMoVhcOPAf9HxERETGI\nj5cPE4ITmRCcCAys5lS31VDcVEpxYynHm0rOuLaOl9kLhzWWZFsCycEJJNkSCPD2N/ItuAWFGRER\nETdhNpmHbtA5P+ZyABq7mihuLKW4qZTjjSWUNJVxvKmULYPjOFEBkQPhZjDghPmFYjKZDHwXI09h\nRkRExI0F+9rIiJxORuR0ADp7OylpLh9cuSmlpKmM6rZTfHDyIwBsPlaSBudukm0JxASOH/U7pxRm\nREREPIiflx+TQycxOXQSAH39fZxoPcnxpjKKG0sobiolv+YT8ms+AQbufZUUFE+SLZ7k4EQSghz4\nefka+RYuOYUZERERD2YxW4gPiiM+KI5vxs3D5XJR39kweGqqhOKmMoqcRylyHgUGTmXFBI4fPC2V\nSJItnmBfm8Hv4utRmBERERlFTCYT4ePCCB8XxmXjMwBo7WmjpKlsaPamvLmCipZKtp34AIAwv1CS\nB691k2RLICrA7lFbwhVmRERERrlA7wCmhqcxNTwNgJ6+HspbKgdWbgZnb3ZV72NX9T4A/L3GDW4H\nH7jeTbw1Fm+Lt5Fv4bwUZkRERMYYb4v3wEpMcALED2wJP9VeO3i9m4HZm4P1hzhYP7gl3GTBERRL\nsi2R5OAEEm3xBHoHGPsmTqMwIyIiMsaZTWbGB0QyPiCSeadtCT/eVMbxwdmb0uYKjjeVfbYl3N8+\neGoq0fAt4QozIiIi8jnBvjZm2acxyz4NgM7eLkqbywevd1NKSXMZH5zcxQcndwEQ5GNl2cRrmB05\nY8RrVZgRERGRL+Xn5Utq6ERSQycCA1vCK9uqhmZuyppP0NLdakhtCjMiIiLylVnMFhzWWBzWWL4Z\nN8/QWjxn35WIiIjIOSjMiIiIiEdTmBERERGPpjAjIiIiHk1hRkRERDyawoyIiIh4NIUZERER8WgK\nMyIiIuLRFGZERETEoynMiIiIiEdTmBERERGPpjAjIiIiHk1hRkRERDyayeVyuYwuQkRERORiaWVG\nREREPJrCjIiIiHg0hRkRERHxaAozIiIi4tEUZkRERMSjKcyIiIiIR1OYOYeHHnqI7Oxsli9fzief\nfGJ0OXKatWvXkp2dzbJly3j77beNLkfO0tnZyeLFi3nllVeMLkVO8/e//53vfve73HDDDWzbts3o\ncgRoa2vj7rvvJicnh+XLl5OXl2d0SR7Ny+gC3M2uXbsoKysjNzeX4uJiVq1aRW5urtFlCbBz506O\nHj1Kbm4uTqeT66+/nquuusrosuQ069evx2azGV2GnMbpdPLoo4/y8ssv097ezrp161i4cKHRZY15\nf/vb30hMTGTlypWcOnWKH/7wh2zatMnosjyWwsxZduzYweLFiwFITk6mqamJ1tZWAgMDDa5MMjMz\nmTZtGgBBQUF0dHTQ19eHxWIxuDIBKC4u5tixY/qH0s3s2LGDK664gsDAQAIDA/nd735ndEkChISE\ncPjwYQCam5sJCQkxuCLPptNMZ6mrqzvjQxUaGkptba2BFcmnLBYL/v7+AGzcuJGsrCwFGTeyZs0a\n7r//fqPLkLOcOHGCzs5O7rjjDm666SZ27NhhdEkCfOc73+HkyZMsWbKEW265hV/84hdGl+TRtDLz\nJXS3B/ezdetWNm7cyFNPPWV0KTLo1VdfZcaMGcTFxRldipxDY2MjjzzyCCdPnuTWW2/lvffew2Qy\nGV3WmPbaa68RHR3Nn//8Z4qKili1apVmzb4GhZmz2O126urqhr6uqakhIiLCwIrkdHl5eTz22GM8\n+eSTWK1Wo8uRQdu2baOiooJt27ZRXV2Nj48PUVFRzJkzx+jSxrywsDBmzpyJl5cXDoeDgIAAGhoa\nCAsLM7q0MW3fvn3MmzcPgNTUVGpqanTa/GvQaaazzJ07l82bNwNQUFCA3W7XvIybaGlpYe3atTz+\n+OMEBwcbXY6c5g9/+AMvv/wyL774IjfeeCN33nmngoybmDdvHjt37qS/vx+n00l7e7vmM9xAfHw8\n+/fvB6CyspKAgAAFma9BKzNnmTVrFunp6SxfvhyTycTq1auNLkkGvfnmmzidTlasWDH0e2vWrCE6\nOtrAqkTcW2RkJFdffTXf//73AfjVr36F2ayfY42WnZ3NqlWruOWWW+jt7eU3v/mN0SV5NJNLQyEi\nIiLiwRTPRURExKMpzIiIiIhHU5gRERERj6YwIyIiIh5NYUZEREQ8msKMiIyYEydOMGXKFHJycobu\nFrxy5Uqam5sv+DVycnLo6+u74Mf/4Ac/4KOPPrqYckXEQyjMiMiICg0NZcOGDWzYsIEXXngBu93O\n+vXrL/j5GzZs0MXFROQMumieiBgqMzOT3NxcioqKWLNmDb29vfT09PDrX/+atLQ0cnJySE1N5dCh\nQzzzzDOkpaVRUFBAd3c3DzzwANXV1fT29nLttddy00030dHRwc9//nOcTifx8fF0dXUBcOrUKe69\n914AOjs7yc7O5nvf+56Rb11ELhGFGRExTF9fH1u2bCEjI4P77ruPRx99FIfD8bkb7/n7+/Pss8+e\n8dwNGzYQFBTE73//ezo7O/n2t7/N/Pnz+fDDD/Hz8yM3N5eamhoWLVoEwFtvvUVSUhK//e1v6erq\n4qWXXhrx9ysiw0NhRkRGVENDAzk5OQD09/cze/Zsli1bxh//+Ed++ctfDj2utbWV/v5+YOA2I2fb\nv38/N9xwAwB+fn5MmTKFgoICjhw5QkZGBjBw49ikpCQA5s+fz3PPPcf999/PggULyM7OHtb3KSIj\nR2FGREbUpzMzp2tpacHb2/tzv/8pb2/vz/2eyWQ642uXy4XJZMLlcp1x76FPA1FycjJvvPEGu3fv\nZtOmTTzzzDO88MILX/ftiIgb0ACwiBjOarUSGxvL9u3bASgpKeGRRx4573OmT59OXl4eAO3t7RQU\nFJCenk5ycjL5+fkAVFVVUVJSAsDrr7/OgQMHmDNnDqtXr6aqqore3t5hfFciMlK0MiMibmHNmjU8\n+OCDPPHEE/T29nL//fef9/E5OTk88MAD3HzzzXR3d3PnnXcSGxvLtddey7vvvstNN91EbGwsU6dO\nBWDChAmsXr0aHx8fXC4XP/nJT/Dy0l+BIqOB7potIiIiHk2nmURERMSjKcyIiIiIR1OYEREREY+m\nMCMiIiIeTWFGREREPJrCjIiIiHg0hRkRERHxaAozIiIi4tH+P3Qh8sQLo8G9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i2e3TlyL57Qs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see the solution.\n", + "\n" + ] + }, + { + "metadata": { + "id": "5YxXd2hn6MuF", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) \n", + " linear_classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on training data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions. \n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "UPM_T1FXsTaL", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000005,\n", + " steps=500,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "i-Xo83_aR6s_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Calculate Accuracy and plot a ROC Curve for the Validation Set\n", + "\n", + "A few of the metrics useful for classification are the model [accuracy](https://en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification), the [ROC curve](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) and the area under the ROC curve (AUC). We'll examine these metrics.\n", + "\n", + "`LinearClassifier.evaluate` calculates useful metrics like accuracy and AUC." + ] + }, + { + "metadata": { + "id": "DKSQ87VVIYIA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "outputId": "01f6ce66-28cd-457c-8730-6d7176c23517" + }, + "cell_type": "code", + "source": [ + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "AUC on the validation set: 0.76\n", + "Accuracy on the validation set: 0.78\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "47xGS2uNIYIE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "You may use class probabilities, such as those calculated by `LinearClassifier.predict`,\n", + "and Sklearn's [roc_curve](http://scikit-learn.org/stable/modules/model_evaluation.html#roc-metrics) to\n", + "obtain the true positive and false positive rates needed to plot a ROC curve." + ] + }, + { + "metadata": { + "id": "xaU7ttj8IYIF", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "f8d2f90e-915e-4d92-f6ef-90614cce67b3" + }, + "cell_type": "code", + "source": [ + "validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + "# Get just the probabilities for the positive class.\n", + "validation_probabilities = np.array([item['probabilities'][1] for item in validation_probabilities])\n", + "\n", + "false_positive_rate, true_positive_rate, thresholds = metrics.roc_curve(\n", + " validation_targets, validation_probabilities)\n", + "plt.plot(false_positive_rate, true_positive_rate, label=\"our model\")\n", + "plt.plot([0, 1], [0, 1], label=\"random classifier\")\n", + "_ = plt.legend(loc=2)" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFKCAYAAAAqkecjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlgVPW5//H3TGay7/tOIJBkCLLL\nviq4gsoWduxVa221m9qq9FavrVXbWm9/anu11tYKKgSIgKiIuCMg+56dkBCy75lkktnO7w90JLIE\nyHJmMs/rH+ecOTPz+GUyn3nOnPM9GkVRFIQQQgjR67RqFyCEEEK4KwlhIYQQQiUSwkIIIYRKJISF\nEEIIlUgICyGEECqREBZCCCFUouvtF6yubu7W5wsJ8aW+vrVbn9MdyTh2nYxh18kYdp2MYdf1xBhG\nRARccL3Ld8I6nYfaJfQJMo5dJ2PYdTKGXSdj2HW9OYYuH8JCCCGEq5IQFkIIIVQiISyEEEKoREJY\nCCGEUImEsBBCCKESCWEhhBBCJRLCQgghhEokhJ3IV199yR/+8D8Xvf+1115hw4a1vVeQEEKIHnVZ\nIZyXl8eMGTNYvXr1efft3LmT+fPns3DhQv72t791e4FCCCFEX9XptJWtra38/ve/Z/z48Re8/6mn\nnuK1114jKiqKZcuWceONNzJw4MBuL7QnWa1W/vSnP1BWdgaz2cw999zHmDHjmD9/Nm+8sRZfX19e\neumvDBiQDMDu3TupqanmySefJiIiEoD333+XQ4cO0NDQQFHRSe6998ds3/4hp04V8fjjT5GePoTM\nzLf5+ONtAEyePJVly35AYWEBTz31OIGBQcTGxjtq2rAhk+3bt6LRaJk8eRqLFy/r/YERQgjRozoN\nYU9PT1599VVeffXV8+47ffo0QUFBxMTEADB16lR27drVpRDO/KSAvTlVl729h4cGm0255DbXpkWS\ncd3Fa/roo614enry0kv/oKammgce+BFr1mRddPvKygpefvlfaDSaDutPny7h73//J+++u5HVq1/n\nX/96kw8+eJft2z8kJCSEDz54l1dffQOAe++9k+nTZ/D66//krrvuZfLkaTz33DNYrVBWdobPPvuY\nv//9NQB+/OO7mT59xuUOiRBCiCugKAq7j1dS19xGq9KELsjI7YZxaLU9/4ttpyGs0+nQ6S68WXV1\nNaGhoY7l0NBQTp8+fcnnCwnxveS8nD6+nnh4aC56/4V0tr2Pr+dFJ88GKCkpZOrUSUREBBAREYCv\nrzd6vQ0PDy3h4f74+fnh6+tJQIA3ACNHDicyMrDDcwQEeDNixDAiIwMZMCCBwYMNREcHk5QUT17e\nCSorSxg1aiQxMSEAjBlzLVVVpyktLWbatImEhgYwdeokvvjiC86cOUlZWSkPPXQ/AGZzG21tDfj5\neeHv733J/5eu6KnndScyhl0nY9h1MoaXZmq3ciC3irzieo4U1lBwugFQ8IgqRh+fByY7N18zioSw\n8B6vpdevotTZlSlmj0tk9rjEy36+iIiAy7oy06W2MZksNDa2OrYxmdqoq2vFbleoqTHS2mqnqamV\n5uY2ACwW5bzna25uw2y2U13dTGOjCatVcdw2mcw0NbVhMpkdj2tqaqG5uR2LxUZdXQs2m56Ghhba\n2iy0tloZO3YCv/71bzq8xscff45e39btV6KCyx9HcXEyhl0nY9h1fXkM7XaFMzUt2O0Ke7Irqaw3\nUdNoorrBhJ+3/vKeQ1Goa2rvsE7j1YK+/zE8Auvx1vowL2Uu3navbh3Hi30x6lIIR0ZGUlNT41iu\nrKwkMjKyK0+pCoNhMAcO7GPGjBuprKxAq9USEBCAr68ftbU1eHnFcfz4UVJSUq/6NVJSUvnXv/6B\n1WoF4MSJ46xYcReJif3Iyclm7NjxHDiwH4DUVAP/938v0tbWhpeXF//v//2FH//4gW75fxVCCGfV\nbraxJ7uSTw+ewcerYzxlF9df8rGmdhthgV6X9TohAV7UN7dz28QkavU5HG3bjcVuYXjENSxKncOA\nuJhe+yLTpRCOj4/HaDRSWlpKdHQ0n376Kc8991x31dZrrr/+Bg4e3M9Pf/ojrFYLv/rVSgDmzcvg\nkUd+SWJiP/r3H9Cl14iJieW22+bw05/ei92uMHv27URHx3DnnXfz9NNPsm7d28TGxmG1WoiOjiYj\nYzH33/9DtFotU6ZMw8vLuzv+V4UQQnWNLWYOF9Rw9GQt/j569udWYzRZLuux/j56xg6OQqMBb08d\n00fE4anXXnYn/K0aUy2rs9eR33ASP50vywwLGBU57LxjfXqaRlGUSx7VdOzYMf74xz9y5swZdDod\nUVFRXHfddcTHxzNz5kz27t3rCN4bbriBu++++5Iv2N3fLvryrpfeJOPYdTKGXSdj2HXOOIbFFc0c\nyKvmSGEtoYFeHMyvuei2qQnB+PvoWTIzhUC/jsHq0Q0HStkVO1+e2c3Gwvcx28wMC09nYepcgry+\n213cE2N4sd3RnYZwd5MQdk4yjl0nY9h1MoZd5wxjqCgK2cX1fLT3NHmljZjarRfc7s6bUokJ8yPA\nV094kDf6Sxy02x1qTHWszs4kv+EkvjofMlLuYHTU8PO6394M4V4/MEsIIYRrs9rsHCmspb65na1f\nF2Ox2vHUfxegNY1t5z0m2N+TpTNTSY4LxFOnxcdL12u7fu2KnR1nvuadwvcw28xcEz6YxalzCfIK\n7PzBPUxCWAghxAXZ7Haq6k3UNrZxsqyJivpWdh+vvOC2HlorQf6eAIQGemGzKYxMiWBwUgijUtU7\nYLfWVM+bOevIrS/AR+fDnYMXcW3UiF7/7fdiJISFEMLNWKw2SiqNlNW0oNVqOFJYi5/3d3GQV9pI\nu9lGbdP5He23Anz1jEyJwNAvhKgQX/pFO9e5yYqi8FXZ12QVbKHdZmZImIHFaXMJ9gpSu7QOJISF\nEKIPqGtqY8eRckKCfTC2tJ93f7vZxtGTdZRWG7FY7Zf9vB5aDYPigxicFIqX3oOB8UH0iw5A6ySd\n5IXUtdXzZvZ6curz8dF5s9yQwdjoUU7T/Z5LQlgIIZxQu8VG2zcHNFU1mGhqMTvuq6o3UdfUjk53\nNlTO1LRw7GTdFT2/l6cHg/uFMHxgOHZFISrE17E7GSDA1xN/nys77UdtiqKws3wPWflbaLO1Mzgs\nlaVp852u+z2XhHA3uvvu5Tz11B+JiYnt9ucuLy/jv//7EV57bVWXnmf37p2Ul5cxZ858nn/+jxw7\ndoSf/ewhsrMPs3jxf3VTtUKIzjQa23l503GqGkwA6M6ZftfUbrvs82a/b+UPxtBivPBuZI1GQ1J0\nAL7eOnQefetKtvVtDbyZs57sujy8PbxZlraAcTGjnbL7PZeEsJsZN26C4/auXTv5179WExAQwMyZ\nU1U/rUGIvsposnCqvIny2lY27jiJqd123jY+Xjq8Pc8eYazXaQnw1aPVakhNCEZRzk7ZmJIY7Nhe\nsSsMSvhu2UvvQUyYL5GRgW71t6woCrvL97E+/13abG0YQlNYmjafEO/gzh/sBCSEOXsZwnMvT7hm\nzWpOnDiO2WzmjjvmMXv2HfzhD/9DeHgEubnZVFZW8PjjT5GamsZf//pnjh07SmJiP6zWs99cq6oq\neeaZ32GxWNBqtTz66G/RaDT8/vePExcXz9GjR5gzZx6FhQWcOHGMOXMWMG9eRoea3nzzP3z22cdo\nNFruu++BDt31tm0fsH79Wjw8tCQlJfPII7+hoqKC3//+t2i1Wmw2G48//ntAc966Awf2cfJkIaGh\nodTWVvPII79k8eJlfPbZR/z2t3/g888/Yc2a1Xh46EhNNfDTn/7yvPH59vKNQojzKYpCVYOJrM9P\n4uejx2az8+WR8gtu6+ul4xcZw4iP8MPbUz6Or1RDeyNv5WzgeG0O3h5eLEmbx4SYMU7f/Z7L6f7V\nswq2cLDq6GVv76HVYLNfer6REZHXMHfgrEtu8+3lCc1mM9HRsfz0pw/S3t5GRsYdzJ59BwBms5nn\nn3+JjRvXs3Xre3h6enL06BFeffU/VFdXsWjRHAD++c+XmTXrdq6//gY+/XQ7//rXP7j77h+Rn5/H\nM888R1NTE8uXZ7Bu3WbMZjO/+c2vO4Tw6dMlfPbZx7zyyuuUlZ1h9erXufPO72YiM5lM/OUvLxIQ\nEMD99/+QwsIC9u7dzbXXjuUHP7iH3NwcampqOHbs8HnrvrVkyQqystbx3HMvkJNzAjh77ej//Oc1\nXn7533h6evLb3z7KkSOHOoyPK725hehtlXWtPPaP3Re9f+6UAdjtCjePS+zxiSn6MkVR+LpiP+vz\nN2OytpEWMoilhvmEeoeoXdoVc7oQVovBMBiNRoOXlxdNTY3cd99d6HQ6Ghq+mzR82LARAERERHHi\nxHFOnTrJ4MFD0Gq1REVFExsbB0Bubjb33Xf2ggsjR47m9df/CUBcXDxBQcHo9Z6EhIQSERFJa2sr\nLS3GDrXk5eU6njc+PoFHH/0t5eVljvsDAwN57LGHACguLqKxsYExY8axcuWvaG5uZvr06xkyZCi+\nvj7nrSspOXXRMSgqOkllZQUPPni29pYWIxUVFR3GRwjRUV1TGx/sLuHjA6Ud1hv6hTB9RByx4X5o\nNBAV6uvURxS7iob2Rt7O2cCx2hy8PDxZnDqXibFjXfbzyelCeO7AWZ12refqrunFdLqzRwEePLif\nAwf28dJL/0Cn0zFz5mTHNh4e331zVRQFRQGt9rt/eLv928P+NXw7G6jFYkWj0Z73+O8/17k8PLTY\nL9LdWywWnn/+T7z++luEhYXz61//AoABAwby+utvs2fPbl5++SVuvfU2br551nnrLkWvP7sL+vnn\nX+qw/v3333WMjxDuTFEUDuTVcKigGptNYfeJ8yeu6B8TyA9nDyY61FeFCvsuRVHYU3GAdfmbMVlN\npIYMZGnaAsJ8XK/7PZfThbDaGhsbiIyMQqfTsWPH59hsdiyWCx+lmJjYj8zMt1AUhcrKCke3+u2l\nEWfOvIlDh/aTlma4ohpSUw28/vprWK1Wmpoa+fOfn+FnP3sQgNbWFjw8PAgLC6eysoKcnGysVivb\nt39IbGwcU6ZMIygomE8//Qi9Xn/eupSUtIu+bmJiEqdOFVFfX0dISCivvfYKt90254pqF6IvMJos\nnKpoQlHgeFEdPl46SquM7M+rvuD2EcHe3DKuH1OGxbpsR+bMGtubeTt3A0drTuDp4cmi1DlMih3X\nJ8ZaQvh7Ro8ey5tv/ocHHriXyZOnMmHCJJ577pkLbjtw4CAGDEjmRz/6LxISEhk0KAWAe+65j2ee\n+T3vvrsRnU7PY4/91nEd4csRExPLjTfewgMP3IuiKPzoR/c77gsKCubaa8dyzz0rGDhwEEuWLOeF\nF57nscce53//90/4+Pii1Wr5xS9+RXt7O88993SHdSdOHLvo63p7e/Pznz/Eww//HE9PPYMGpRIe\nHnHZdQvhqswWGw3GdgrLmvj8UBl5pxsuuf349GjGDo4iLtyPkEAv2c3cQxRFYW/lQdblbaLVaiIl\nOJmlhgWE+4SqXVq3kasoCUDGsTvIGHZdb46hqd3Kmo/z+epoBfaLfAzOmTIAi9VGfIQ/Ab6eeHt6\nkBQd4NQdWF95HzaZm1mTk8XhmuN4avXcMfBWJseNQ6vp+fOb5SpKQgjRjT7ae5q65jb25VRR23T+\nlI4AOg8tIwaFExXqQ1piCIOT+k635UoURWF/1WEy8zbSYmllUPAAlhkWEO4TpnZpPUJCWAjR59Q3\nt3OsqJavT1Ry4lT9BbdJSQimrqmN2ROSGJceJacMOYFms5E1ue9wqPooeq2eBYNuZ0r8+F7pftUi\nISyEcGk2u529OVWUVrXgqdOycUfRBbcblRrBzWP7ERfuh5enBK6z2V95tvs1WlpIDkpimSGDSN9w\ntcvqcRLCQgiXZbbYuO8vn1/wvsgQH0amRDDWEOV0l9kT32k2G1mbt5GDVUfQa/XMGzSbafET+3T3\ney4JYSGEy1EUha9PVPKPd0841l0/Mp4RKeFogMgQX8KCvNUrUFyWg1VHWZObhdHSwoCgJJYbFhDp\n615nZEgICyGcltFk4UhhDQVnmvD5ZhdyvbGd3cc7TpLx2LKRDIp3jQn7BRjNLWTmbWR/1WH0Wh1z\nB85iesIkt+l+zyUhLIRwOseKanll03Fa2i59fv2koTEsm5mCp15+43UVh6qPsSYni2aLkf6BiSw3\nZBDl574XhZEQFkI4hXazjbe35bLjUCklld/Np67XaZk5OoFrBoSi053tlDx1HsRH+Dn1+bqiI6Ol\nhXV5m9hXeQidVsecgbdyXcJkt+x+zyUhLIRQXVOrmV+8sKPDukBfPb+7ZyyBvp4qVSW6y+Hq47yd\nu4Fms5GkwESWGxYQ7ReldllOQUJYCKGadouNB1/a0eEi97MnJHHL+H546rTS6bq4Fksr6/I2s7fy\nADqNB3ck38J1CZPx0MrPB9+SEBZCqKLR2M4vX/rKsazz0PK3X09H37sz6YoecrTmBG/nbKDR3Ey/\ngASWD84gRrrf80gICyG6zGK1UVVvAqC13crpKiMeHS7zqbBqWx5RIT4AVH6z7beevW88kcE+RIT7\n94l5j91Zq6WV9fnv8nXFfjw0Htw24CZmJE6V7vciJISFEFelpsHEP9/LRu+h4fhFpob8vsp6E0H+\nngT5edLYYiYqxIdfLR5BaKCc09sXHKvJ5q2cDTSam0gMiGO5YSGx/tFql+XUJISFEFfkUH4Nm3YU\nUVx5fsc6fWQcAM2tFoYlh6H9Xjc8MiUCHy/52OlrWi0mNhS8y+7yfXhoPJg94EZmJk6T7vcyyF+D\nEOKSDuXX8MKGIwT5e6IBGozmDvf/9s7RxIb7yYFUbup4bS5v5aynob2RBP9Ylg9eSJx/jNpluQwJ\nYSEEAC1tFr49JspuV3h61X6qGr777bbRaCYyxIfIEB8GxQcxf9pAgvzk9CF3ZbKayMrfws7yvWg1\nWm7tP5Mb+10n3e8VkhAWws2V17bwm1e/vuj9/WMCURSFlctHofNw74kVxFnZtXmszllHQ3sjcf4x\nLDcsJCEgVu2yXJKEsBBuaseRcl7/IAf7OacEpfcPxfvbKSA1MG1EHOlycXvxDZO1jXcKtvBV2R60\nGi23JM3gxqTr0GklSq6WjJwQbkRRFJ56Yx9F5R0PqgoL9OLJu8bi6y0fCeLCcuryWZ29jvr2BmL9\nolkxeCEJAXFql+Xy5C9OCDdQVd9KdnE9/9ma22H9oPggfr1kBB5a2c0sLqzN2sY7he+z48xutBot\nNyddz01J10v3201kFIXoo/blVLFt32nOVLdgau94NaJ7ZhmYMESOYBWXlltXwJs566htqyfGL4oV\nhoUkBsarXVafIiEsRB9jtdn545sHKCxr6rA+PsKP0amRzJ6YJKcSiUtqs7azqfB9vjizC61Gy439\nruPm/jPQS/fb7WREhXBxdkXh9Q9y2JtdhV1RsFjtjvv6RQfw07nXyIxU4rLl1xeyKnsdtW11RPtF\nscKQQb/ABLXL6rMkhIVwURarnRezjnDsZF2H9aGBXjS1mFl2QypThslpI+LytNvMbCr8gM9Lv0KD\nhhv6TeeWpBnoPfRql9anSQgL4YLazFZ+8vwXHdYtnjGI6SPi5FxeccXy60+yOmcdNaZaonwjWW7I\noH9QotpluQUJYSFczP/8ew8llUbH8s/mD2X4wHAVKxKuymwzs7lwK5+Vnr2k5IzEqczqf4N0v71I\nQlgIF3GmpoWn3thHu9kGQLC/J48tG0VEsI/KlQlXVNBQxOrsTKpNtUT5RnzT/fZTuyy3IyEshBNb\n+0k+Xxwuw9Ru67B+dGoEP5lzjUpVCVdmtll49+RWPj29A4DrE6Ywa8CNeEr3qwoJYSGcUGublUde\n3klL29nze/199Hjpteh0HvzkjiEkRPqrXKFwRScbi1mVvZaq1hoifcJZZsggOThJ7bLcmoSwEE5G\nURQe/NsOzJazpxrdPDaRBdMHqlyVcGVmm4UtRR/yScmXAFyXMJnZA27E00OugqU2CWEhnICiKJja\nrXy0r5RNO4oc65+9bzyR8puv6IKixmJWZWdS2VpNhE8YywwZDAzur3ZZ4huXFcJPP/00hw8fRqPR\nsHLlSoYOHeq4780332Tz5s1otVqGDBnCb37zmx4rVoi+6GKXErzv9nQJYHHVLDYL7xV9xPaSz1FQ\nmB4/iduSb5Lu18l0GsJ79uyhuLiYtWvXUlhYyMqVK1m7di0ARqOR1157jW3btqHT6bjrrrs4dOgQ\nw4cP7/HChXB1drvCK5uPszenyrFucFIIUaG+LJuZIlNLiqtW3HSaN06spaK1inDvUJYZFjAoJFnt\nssQFdBrCu3btYsaMGQAkJyfT2NiI0WjE398fvV6PXq+ntbUVX19fTCYTQUFBPV60EK7MarPz9Kr9\nnKr47nKCQ/qHcudNaYQFyfSS4upZ7FbeOrKRTdnbUFCYGj+B25NvwUu6X6fVaQjX1NSQnp7uWA4N\nDaW6uhp/f3+8vLy4//77mTFjBl5eXtx666307y+/NQjxfXuyK2lutfDB18XUNbU71vv76LlxTAK3\njk9SrzjRJxQ3nWZVdiblLZWEeYewzLCAlBA5oM/ZXfGBWYqiOG4bjUZeeeUVtm7dir+/P3feeSc5\nOTmkpaVd9PEhIb7odB5XV+1FREQEdOvzuSsZx647dwwbje2s2ZbLlq+KLrjtD24dzLzrBvVWaS5D\n3odXxmKzsOHE+2zM3oZdsXPDwCksGzoHb73sVemK3nofdhrCkZGR1NTUOJarqqqIiIgAoLCwkISE\nBEJDQwEYPXo0x44du2QI19e3drXmDiIiAqiubu58Q3FJMo5dd+4YVta18tg/dne4v39MIDePTSQy\nxIfEqLN/4DLmHcn78MqUNJey6kQmZS0VhHqHsCxtAZNSR1Bd3UwzFrXLc1k98T68WKh3GsITJ07k\nxRdfZNGiRRw/fpzIyEj8/c9OFBAXF0dhYSFtbW14e3tz7Ngxpk6d2q2FC+Fq7HalQwD/YsFQDP1C\n0evkwgqie1jtVrae+oQPiz/BrtiZFDuWOQNvxVsn3a+r6TSER44cSXp6OosWLUKj0fDEE0+QlZVF\nQEAAM2fO5O6772bFihV4eHgwYsQIRo8e3Rt1C+FU7HaFXUfL+XBnEfvzqh3rX/j5ZPx9ZDpA0X1O\nN5exKnstZ4zlhHgFs9QwH0NoitpliaukUc79kbcX9ESLL7uvuk7G8crtPlHBPzafICzQi9pzDrb6\n1m+WjyI5Ts4WuBLyPrw4m93G1uJP2HrqY+yKnYmxY5gzcBY+3+t+ZQy7zql2RwshOqqqb+XRV77b\n3Vzb1E5YoDf1zW0MGRDG/GnJxIX7yXm+otuUNpexKjuTUmMZwV5BLE2bz+CwVLXLEt1AQliIy2S1\n2fnTWwcpONPoWDc4KYSfzhuKl95DOhDR7Wx2G9uKP+WDUx9jU2yMj7mWeYNm4aOTmdT6CglhIb6n\ntNrIvpwqtFoNH+wucRxQZTR9d7SpBnjiv651HOUsRHc7YyxnVXYmp5vPEOQZyFLDfNLDLn7miXBN\nEsJCfMNssXG8qI4Xs452WN9usREb7kegnyc6rYYlM1NISQhWqUrR19nsNj4q+Yz3i7ZjU2yMix7N\nvEGz8dVL99sXSQgLt5d9qo43t+dTVtPiWOfnrWPB9IGEBnqREh+Mp757J5gR4kLKjBWsys6kpLmU\nIM8AlqTNZ0i4Qe2yRA+SEBZu7ff/2UdReVOHdVOGxTJv6gACfGW+XdE7bHYbH5d8wXtF27AqNsZG\nj2L+oNn46n3VLk30MAlh4ZaqGkw8s3o/jUYzAMmxgSy/MVV+4xW9rrylklXZmRQ3nSbQM4AlafO4\nJnyw2mWJXiIhLNzOqYomfvf6PsdyYpQ/v1khk8yI3mVX7Hxc8gVbirZhtVu5NmoEC1Jux0+6X7ci\nISzcRnWDiUde3tVh3e/uGkN8pL9KFQl3VdFSxersTIqaSgjw9Gdx6jyGRaR3/kDR50gIiz4v64tC\ntuws7rAuLtyPBxcOJyTAS6WqhDuyK3Y+Of0l7578EKvdyuio4SxIuR1/vZ/apQmVSAiLPsmuKJw4\nVcfajws4c85Rz9Ghvvx6yQiC/SV8Re+qbK1mdXYmJxuL8df7sXjwYoZHXqN2WUJlEsKizymraeG/\n//l1h3XXpkXy4zuGqFSRcGd2xc5np3ew+eRWLHYrIyOHkpFyBwGe8jOIkBAWfcyZaiO/fW2PYzk9\nKYSF1w2S332FKqpaq1mVvY6Tjafw1/uxYvAiRkYOVbss4UQkhEWfUVzRzJOv73UsP/eTCYQGyvVV\nRe+zK3Y+L93JpsIPsNgtjIi4hoWpc6T7FeeREBYur6nFzC9e3NFh3d9+OQUfL3l7i95X3VrL6pxM\nChqK8NP7styQwaioYWqXJZyUfEoJl/c///5u93NaYjA/nTdUAlj0Orti54vSXWwqfB+z3cKwiCEs\nSp1DoKdMACMuTj6phEt7Yf0RGr6Z9er394wlLlxO9RC9r8ZUy+rsdeQ3nMRP58vStPmMihou15QW\nnZIQFi7p+0dA3zYxSQJY9Dq7YmfHmd28U/g+ZpuZoeHpLEqdS5CXdL/i8kgIC5dzuKCG/7f+iGN5\nXHoUd0weoGJFwh3VmupYnbOevPoCfHU+LB68iGujRkj3K66IhLBwKdUNpg4B/MLPJ+Pvo1exIuFu\nFEVhR9nXvFOwhXabmWvCDSxOnUeQV6DapQkXJCEsXEJ9czt/33iUwjPfXXbwlYenoddpVaxKuJta\nUz1v5awnpz4fH50PKwwLGRM9UrpfcdUkhIVTM7Vb+c/WHPZkV3VY/7dfTpEAFr1GURR2lu0hq2AL\nbbZ2hoSlsThtHsFeQWqXJlychLBwas+vPURh2Xfd719/OolAP08VKxLupr6tgTdz1pNdl4ePzptl\nhgzGRY+S7ld0Cwlh4bQOF9Q4AvieWQbGp0fLB5/oNYqisKt8Lxvyt9Bma2NwaCpL0uYR4h2sdmmi\nD5EQFk4pp7jecQBWWmIwE4bEqFyRcCf1bQ28lbOBE3W5eHt4szRtAeNjRsuXQNHtJISF03lv1yk2\nfH7SsfyrxSPUK0a4FUVR2F1BSUB+AAAgAElEQVS+jw0F72KytmEITWFp2nzpfkWPkRAWTqW+ub1D\nAP/jV9Ok+xC9oqG9kbdyNnC8NgdvDy+WpM1jQswYef+JHiUhLJzGwbxqXsw6CkBYoDd//skElSsS\n7kBRFPZUHGBd/mZMVhNpIYNYaphPqHeI2qUJNyAhLFT32nsnOF1ppKTK6Fj36NKRKlYk3EVjexNv\n527gaE02Xh6eLEqdy6TYsdL9il4jISxUc7Ksiafe2NdhXf+YQFYuH4mHVs4BFj1HURT2Vh5kXd4m\nWq0mUkIGsixtPmE+oWqXJtyMhLDodTa7nUdf3k1tU5tj3awJScydIvM/i57X2N7MmtwsjtQcx9PD\nk4Upc5gUNxatRr74id4nISx61d6cKv5v4zHHso+XB0/dM46QAC8VqxLuQFEU9lceIjNvEy3WVgYF\nD2CZIYNw6X6FiiSERY9rbbPw1bEKKmpb+fTgGcf6O29KZerwOBUrE+6iydzMmtx3OFx9DE+tngUp\ntzMlbrx0v0J1EsKiR33/ur/f+ucj09HKwS+ihymKwoGqw6zN20iLpZXkoP4sN2QQ4RumdmlCABLC\nogfty6ni7+fser5jcn8GxASS3j9Ujj4VPa7ZbGRN7jscqj6KXqtn/qDbmBo/Qbpf4VQkhEWP+OeW\nE+w8VuFY/sevpqHzkA8/0TsOVB1hbe47GC0tJAclscyQQaRvuNplCXEeCWHR7f667jBHCmsBCPTz\n5I/3jZcAFr3CaG5hbd47HKg6gl6rY96g2UyLnyjdr3BaEsKiWx3Iq3YE8LThsSy/MVV2PYtecajq\nKGty36HZYmRAUD+WGTKI8o1QuywhLklCWHSbdrONl76ZdjI8yJsVN6WpXJFwB0ZLC5m5G9lfdRi9\nVsecgbdyXcJk6X6FS5AQFt3i++f/Pn3vOBWrEe7icPUx3s7NotlspH9gIssNGUT5RapdlhCXTUJY\ndNlbH+WxfX+pY/mhRcPlN2DRo1osrazL28TeyoPotDruSL6F6xOnSPcrXI6EsLgqiqKwP7e6wylI\nAK89Ml1+AxY96kj1cd7OzaLJ3Ey/wARWGDKI9otSuywhroqEsLgqv3zpK5pazI7lSdfEcNetBhUr\nEn1dq6WVdfmb2VNxAJ3Gg9sH3Mz1iVPw0HqoXZoQV01CWFyxF9YfcQTw8IHh3DNrML7e8lYSPedo\nzQneztlAo7mZxIB4lhsyiPWPVrssIbpMPjnFFSmtMnKooAaAftEB/Gz+UJUrEn1Zq8XE+vzNfF2x\nHw+NB7MH3MTMxKnS/Yo+Q0JYXBa7ovCHN/ZTVN4EgJenB0/84FqVqxJ92fHaHN7K2UBDeyMJAXEs\nN2QQ5x+jdllCdKvLCuGnn36aw4cPo9FoWLlyJUOHftf9lJeX8+CDD2KxWBg8eDC/+93veqxYoZ4n\n/rWHM9UtjuU//mi8itWIvsxkNbEhfwu7yvfiofFgVv8buaHfNOl+RZ/UaQjv2bOH4uJi1q5dS2Fh\nIStXrmTt2rWO+5999lnuuusuZs6cyZNPPklZWRmxsbE9WrToXf96P9sRwD+4OY0pw+TfV/SMQ+Un\n+PvXb9DQ3ki8fywrBi+U7lf0aZ2G8K5du5gxYwYAycnJNDY2YjQa8ff3x263s3//fp5//nkAnnji\niZ6tVvSq1jYrr2w+ztGTZ6ehnDWhnwSw6BEmaxtZ+VvYWb4HrUbLrf1ncmO/66T7FX1epyFcU1ND\nenq6Yzk0NJTq6mr8/f2pq6vDz8+PZ555huPHjzN69GgeeuihSz5fSIgvOl33/mFFRAR06/O5q3PH\nsbbRxAPPfuJYTkkM5t65w+Qc4E7Ie/HKHanI5v/2raK2tZ5+QXHcP/ZOkkIS1C7Lpcn7sOt6awyv\n+MAsRVE63K6srGTFihXExcVx77338tlnnzFt2rSLPr6+vvWqCr2YiIgAqqubu/U53dH3x/H5zEOO\n279ZPorkuCBqaoxqlOYy5L14ZdqsbbxT8B47yr5Gq9Fyc9IMlo++nfo6k4xjF8j7sOt6YgwvFuqd\nhnBkZCQ1NTWO5aqqKiIizl6ZJCQkhNjYWBITEwEYP348+fn5lwxh4fyq6ls5drIOgD/9eDzhQT4q\nVyT6mpy6fN7MWU9dWz2xftEsH5xBYkA8Og85YUO4l04nWp04cSIffvghAMePHycyMhJ/f38AdDod\nCQkJnDp1ynF///79e65a0SsefWU3AH7eOglg0a3arO2syX2HFw+9SkN7IzclXc8j1/6MxIB4tUsT\nQhWdfu0cOXIk6enpLFq0CI1GwxNPPEFWVhYBAQHMnDmTlStX8uijj6IoCikpKVx33XW9UbfoIXVN\nbY7bz8hpSKIb5dUXsDp7HbVt9cT4RbHckEG/QPntV7i3y9r38/DDD3dYTkv77jqx/fr14+233+7e\nqoRqnnpjHwDDksPw99GrXI3oC9ptZjYVvs/npTvRoOGGftO5pf9M9FrZ9SyE/BUIh9ySehqMZ+eE\nvvPmtE62FqJz+fWFrM5eR01bHdG+kSwfnEFSYKLaZQnhNCSEBdv3neb9r0toaG4HID7Cj2B/L5Wr\nEq6s3WZmc+EHfFb6FRo0zEycxq39Z6L3kL0rQpxLQtjNbf26hMxPCzqse/KuMSpVI/qCgoYiVmVn\nUmOqJco3kuWGDPoHSfcrxIVICLuxt7bnsX1fKQDB/l785f4JMhmHuGpmm5nNJ7fy2emvAJiROJVb\n+9+Ap3S/QlyUhLCbKq5odgRwSkIwf/7ZFGprZTIOcXVONp5i1YlMqkw1RPqGs9yQwYCgJLXLEsLp\nSQi7oVUf5vLpwTOO5UeXjkSrlQ5YXDmzzcK7J7fy6ekdAFyXMJnZA26S7leIyyQh7AYURaGy3sTu\n4xVs/upUh/teeXiqOkUJl3eysZhV2Wupaq0hwieM5YaFJAcnqV2WEC5FQtgNPLP6AAVnGjusmzw0\nhv+6xaBSRcKVWWwWthRt4+OSLwCYnjCJ2wbchKeHp8qVCeF6JIT7uIN51Y4ATkkIZowhkinDYtF5\ndDpjqRDnKWosYVV2JpWtVYT7hLHckMHAYJmqVoirJSHch/1zywl2HqsAIDbcj0eXjlS5IuGqLDYL\n7xV9xPaSz1FQmBo/kduTb8ZLul8hukRCuI8yW2yOAIazlyMU4moUN53mjexMKloqCfcOZZlhAYNC\nktUuS4g+QUK4j9p9ohIAT72Wlx+apm4xwiVZ7FY+KNrORyWfYVfsTImbwO3JN+Otk9nUhOguEsJ9\n0FdHy3n9gxwAbhojMxWJK1fSVMqq7EzKWioI8w5hmWEBKSED1S5LiD5HQriPKals5rX3sh3Lt4zr\np2I1wtVY7VY+OPUx24o/xa7YmRQ3jjnJt+Ct81a7NCH6JAnhPkRRFP7n33sdy688PA29To6CFpen\npLmUVSfOdr8hXsEsMywgLXSQ2mUJ0adJCPcRNrudX7yww7H89wenSACLy2K1W9l66hM+LP4Eu2Jn\nYuxY5gy8FR/pfoXocRLCfcSv/r6TljYrcHYXtLen/NOKzpU2l/FG9lrOGMsJ8Qpmadp8DGEpapcl\nhNuQT+o+4HBBDQ1GMwArl49iYFyQyhUJZ2ez2/iw+BM+OPUxdsXOhJgxzB10Kz46H7VLE8KtSAi7\nMEVR+PX/7aS2qR2AoclhEsCiU2eM5aw6sZbTxjKCvYJYkjaf9LBUtcsSwi1JCLsoRVH4w6r9jgCO\nCvHhR7elq1yVcGY2u41txZ/xwant2BQb42OuZd6gWdL9CqEiCWEX1Ga28pPnv3As3zYxiTsmD1Cx\nIuHsyowVrMpeS0nzGYI8A1mSNo8h4XIBDyHUJiHsgl7edNxxe/GMQcwcnaBiNcKZ2ew2tpd8zvtF\nH2FVbIyNHsX8QbPx1fuqXZoQAglhl9HUaubNbXnszalyrHto0XDSk0JVrEo4s/KWSladyKS4+TRB\nngEsTpvHNeGD1S5LCHEOCWEX8MD/fkFru7XDuklDYySAxQXZ7DY+Pv0F753chlWxMSZ6JAsG3Sbd\nrxBOSELYyWV+WtAhgH9yxxBGpITjoZWJOMT5KloqeSM7k+Km0wR6BrA4dS5DI+SAPSGclYSwE2sz\nW9n6dQlw9kIMGdfJBPriwuyKnY9LvmBL0Tasdiujo4azIOV2/PV+apcmhLgECWEn1dpm4YG/fulY\nlgAWF1PZUsWq7HUUNRUToPdnUfpchkcMUbssIcRlkBB2Qoqi8NDfdzqWn7xrjIrVCGdlV+x8cvpL\ntpz8EIvdyqjIYWSk3IG/p3S/QrgKCWEn9NXRCtrNNgCe/dE4IkPkgBrRUWVrNauzMznZWIy/3o87\nBy9mROQ1apclhLhCEsJORlEU3ttdDJydhlICWJzLrtj5rPQrNhd+gMVuZWTkUDJS7iDA01/t0oQQ\nV0FC2InYFYV7/vipY/meWXJOp/hOVWsNq7PXUdhYhL/ejxWDFzEycqjaZQkhukBC2Im8sP6I43bG\n9IH4++hVrEY4C7ti54vSXWwsfB+L3cLwiGtYlDpHul8h+gAJYSdypLAWgCUzBjFDpqIUQI2pltXZ\n68hvOImf3pflhgWMjByGRqNRuzQhRDeQEHYCnx48w6oPcx3LEsDCrtj58sxuNha8h9luYVjEEBal\nziHQM0Dt0oQQ3UhCWGXZxfUdAviH8juw26sx1bE6O5P8hpP46nxYkjaf0VHDpfsVog+SEFZRY4uZ\nP799EIC4CD+evGsMWvmgdVt2xc6OM1/zTuF7mG1mhoansyh1LkFe0v0K0VdJCKvoly/ucNyWAHZv\ntaZ63sxZR259Ab46HxYPXsS1USOk+xWij5MQVsnBvGrH7b/cP1EC2E0pisKOsq95p2AL7TYzQ8IM\nLE6bS7BXkNqlCSF6gYSwCrbtPc2aj/MBGNI/lJAAL5UrEmqoa6vnzez15NTn46PzZoVhIWOiR0r3\nK4QbkRDuZTa73RHAAA8uHK5iNUINiqKws3wPWflbaLO1kx6WxpK0edL9CuGGJIR7Ud7pBp5984Bj\n+bVHpqtYjVBDfVsDb+asJ7suD28Pb5alLWBczGjpfoVwUxLCvaS4orlDAP/2TvngdSeKorCrfB8b\n8t+lzdbG4NBUlqTNI8Q7WO3ShBAqkhDuBXZF4cnX9zqW//nr6Wi1EsDuoqG9kTdz1nOiNhdvDy+W\nps1nfMy18iVMCCEh3NOaW838/IXvTkV6/oGJEsBuQlEUvq7Yz/r8zZisbaSFDGKpYT6h3iFqlyaE\ncBISwj3s+Kk6x+2HFg4n2F+OhHYHDe2NvJ2zgWO1OXh5eLI4dS4TY8dK9yuE6OCyQvjpp5/m8OHD\naDQaVq5cydCh518+7S9/+QuHDh1i1apV3V6kK1v7SQEAC6Ynk94/VOVqRE9TFIU9FQdYl78Zk9VE\nashAlqYtIMxHul8hxPk6DeE9e/ZQXFzM2rVrKSwsZOXKlaxdu7bDNgUFBezduxe9Xi69d6680w00\nGs0AjDVEqVyN6Gn1pkZeOfofjtZk4+nhyaLUOUyKHSfdrxDiojoN4V27djFjxgwAkpOTaWxsxGg0\n4u//3bVMn332WX75y1/y0ksv9VylLqiovAmAxEh/QgO9Va5G9BRFUdhbeZD1BZtpMbeSEpzMUsMC\nwn1kz4cQ4tI6DeGamhrS09Mdy6GhoVRXVztCOCsrizFjxhAXF3dZLxgS4otO53GV5V5YRITzTXBv\narc6dkX/YHa6U9b4fa5Qo7NpaGvi1X1vsffMYbw8PLl75CJmDpyMVqNVuzSXJe/DrpMx7LreGsMr\nPjBLURTH7YaGBrKysvj3v/9NZWXlZT2+vr71Sl/ykiIiAqiubu7W5+yqRmM7v3zpK8dyuL+n09X4\nfc44js5MURT2Vx4iM28TLdZWBgUP4GcTf4DW5E1tTYva5bkseR92nYxh1/XEGF4s1DsN4cjISGpq\nahzLVVVVREREALB7927q6upYunQpZrOZkpISnn76aVauXNlNZbueBmM7D54TwH+8bzz+PvJbeV/S\nbDayJjeLQ9XH8NTqWZByO1PixhPlH0S1ST78hBCXr9MQnjhxIi+++CKLFi3i+PHjREZGOnZF33TT\nTdx0000AlJaW8thjj7l1AAMdAvh3d48hIthHxWpEd9tfeZjMvI0YLS0kB/VnuSGDCN8wtcsSQrio\nTkN45MiRpKens2jRIjQaDU888QRZWVkEBAQwc+bM3qjRZZRWGR23n39gopwT3Ic0m42szdvIwaoj\n6LV65g+6janxE+S3XyFEl1zWb8IPP/xwh+W0tLTztomPj3frc4QVReHxf+0BYIwhUgK4DzlYdZQ1\nuVkYLS0MCEpiuWEBkb4RapclhOgDZMasbmBqt3L//37hWJ4/NVnFakR3MZpbyMzbyP6qw+i1OuYN\nnMW0hEnS/Qohuo2EcDc4N4BnjI4nXH4HdnmHqo+xJieLZouR/oH9WG5YQJRfpNplCSH6GAnhLqpq\nMDlu/+6uMcRH+l9ia+HsjJYW1uVtYl/lIXRaHXMG3sp1CXLerxCiZ0gId9Gxk7UADIoPkgB2cYer\nj/N27gaazUaSAhNZbsggWrpfIUQPkhDuAkVRWL0tD4DrR8WrXI24Wi2WVtblbWZv5QF0Wh13JN/C\n9YlTpPsVQvQ4CeEueOfLIsft4QPDVaxEXK2jNSd4K2cDTeZm+gUksHxwBjF+crENIUTvkBC+Slab\nnS07TwGw+PpBeOq7dz5s0bNaLa2sz3+Xryv2o9N4cPuAm7k+cQoeWvl3FEL0Hgnhq9DaZuHlTccd\nyzOvTVCxGnGljtVk81bOBhrNTSQGxLHcsJBY/2i1yxJCuCEJ4auw8csijhXVAbBgmpwT7CpaLSY2\nFLzL7vJ9eGg8mD3gRmYmTpPuVwihGgnhK3S6ysj2/aUA3HlTKpOHxapckbgcx2tzeStnPQ3tjSQE\nxLHckEGcf4zaZQkh3JyE8BVQFIUnvpmaMtBXz5RhsWg0GpWrEpdisprIyt/CzvK9aDVaZvW/gRv6\nTZfuVwjhFCSEr8DRk3WO2/9952gJYCeXXZvH6px1NLQ3Eu8fy3JDBvEBsudCCOE8JISvQO7peuDs\nBRrCg2RqSmdlsrbxTsEWvirbg1aj5ZakGdyYdB06rbzdhRDORT6VrkBJ5dlLFU68Rn5LdFY5dfms\nzl5HfXsDcf4xLDcsJEG6XyGEk5IQvkx5pxs4/s0R0UnRASpXI76vzdrGOwXvsaPsa7QaLTcnXc9N\nSddL9yuEcGryCXUZjCYLz755AIB+0QEE+HqqXJE4V25dAatz1lHXVk+sXzTLDRkkBso0okII5ych\nfBn+sGq/4/Z/rxilYiXiXG3WdjYVvs8XZ3ah1Wi5qd913NR/BnrpfoUQLkI+rTpRUNpIZV0rAL+/\newweWpnU3xnk1xeyKnsdtW11RPtFscKQQb9AmblMCOFaJIQ78dd1hwG4ZkAYcRFyqUK1tdvMbCp8\nn89Ld6JBww39pnNL/5nS/QohXJJ8cl2Cqd1Ka7sVgPtuT1e5GpFff5LV2ZnUtNUR5RvJisEZJAUm\nql2WEEJcNQnhSyivPbsbOtBXj4+XDJVazDYzmwu38lnpVwDMTJzGrf1novfQq1yZEEJ0jSTLJRRX\nNgMwbUScypW4r4KGIlZnZ1JtqiXKN4Llhgz6B/VTuywhhOgWEsKXYLXZAfCVLrjXmW1m3j35IZ+e\n3gHA9YlTmNX/Rjyl+xVC9CGSLpfw+aEyAGIj/FSuxL2cbDzFqhOZVJlqiPQJZ/ngDAYEJaldlhBC\ndDsJ4Yt448NcympaAEiQo6J7hdlmYUvRh3xS8iUA1yVMZvaAG/H0kMlRhBB9k4TwBVhtdj47eAaA\nkAAvgvy9VK6o7ytqLGZVdiaVrdVE+ISxzJDBwOD+apclhBA9SkL4Ar4+UQlAsL8nf7l/osrV9G0W\nm4X3ij5ie8nnAEyPn8RtyTdJ9yuEcAsSwhdw4tTZCzWMTo1UuZK+7VRTCatOZFLRWkW4dyjLDBkM\nChmgdllCCNFrJIQv4FTF2VOTpg6XS+D1BIvdyvtFH/FR8WcoKEyNn8jtyTfjJd2vEMLNSAh/T7vZ\n5pikIyZMjorubsVNp1mVnUl5SyVh3iEsM2SQEpKsdllCCKEKCeHveWHDEQA8tBq0Wo3K1fQdFruV\nrUXb2VbyGXbFzpS48dyefAveOjnoTQjhviSEv8diPTtBxy8yhqlcSd9R0lzKqhOZlLVUEOodwrK0\nBaSGDlS7LCGEUJ2E8DnsikLBmUZ0HlrSk0LVLsflWe1Wtp76mA+LP8Wu2JkUN445ybfgrfNWuzQh\nhHAKEsLnyC1pAMD2zXSV4uqdbi5jVfZazhjLCfEKZplhAWmhg9QuSwghnIqE8Dn2ZJ89P/jWCUnq\nFuLCbHYbW4s/Yeupj7ErdibGjmHOwFn4SPcrhBDnkRA+R3OrBYAh/WVX9NUobS5jVXYmpcYyQryC\nWZo2H0NYitplCSGE05IQPofdrgAQL3NFXxGb3ca24k95/9R27IqdCTHXMnfQLHx0PmqXJoQQTk1C\n+ByHCmoA8NRrVa7EdZwxlrMqO5PTzWcI9gpiSdo80sPS1C5LCCFcgoTwNyrqWh23dR4Swp2x2W18\nVPIZ7xdtx6bYGBczmnkDZ+Orl+5XCCEul4TwN4q/maoyLTFY5UqcX5mxglXZmZQ0lxLkGciStHkM\nCTeoXZYQQrgcCeFvfHvt4LR+ISpX4rxsdhvbSz7n/aKPsCo2xkaPYv6g2fjqfdUuTQghXJKE8Dfe\n3XkKgLRECeELKW+pZNWJTIqbTxPoGcCStHlcEz5Y7bKEEMKlSQgDRpPFcXtgfJCKlTgfu2Ln45Iv\n2FK0DavdyrVRI1mQcht+0v0KIUSXSQgDp8qbAIgO9UWrkYs2fKuipYrV2ZkUNZUQ4OnP4tR5DItI\nV7ssIYToMySEgeczDwMwfWScypU4B7ti55PTX/LuyQ+x2q2MjhrOgpTb8dfLpR2FEKI7XVYIP/30\n0xw+fBiNRsPKlSsZOnSo477du3fz/PPPo9Vq6d+/P3/4wx/Qal3zFJ8Rg8LVLkF1la3VrDqRSVFT\nMQF6fxalz2V4xBC1yxJCiD6p0xDes2cPxcXFrF27lsLCQlauXMnatWsd9z/++OO88cYbREdH87Of\n/Ywvv/ySqVOn9mjRPSEs0IvwIPc9x9Vut/NJyRdsPrkVi93KqMhhZKTcgb+ndL9CCNFTOg3hXbt2\nMWPGDACSk5NpbGzEaDTi7392asesrCzH7dDQUOrr63uw3O7X1GIGwN/XU+VK1FPVWs0LR14ht6YQ\nf70fKwYvYmTk0M4fKIQQoks6DeGamhrS0787GCc0NJTq6mpH8H7736qqKr766it+/vOf91CpPePb\nqSojgt2vC7Yrdj4v3cmmwg+w2C2MiBzKwpQ7CPCUubOFEKI3XPGBWYqinLeutraW++67jyeeeIKQ\nkEufZxsS4otO53GlL3tJEREBV/3YzV8VATA8NbJLz+NqKozV/N+eVWRX5xPg6cf9o+5kQuIotcty\nee70HuopMoZdJ2PYdb01hp2GcGRkJDU1NY7lqqoqIiIiHMtGo5Ef/vCH/OIXv2DSpEmdvmB9fWun\n21yJiIgAqqubr/rx7WYbAMP7h3TpeVyFXbHzRekuNhW+j9luYXjEEBamziE5LtYt/v97Ulffi0LG\nsDvIGHZdT4zhxUK908OYJ06cyIcffgjA8ePHiYyMdOyCBnj22We58847mTJlSjeV2rta2qz4eHng\n661Xu5QeV2Oq5YWD/2Bd/ib0Wj3/lb6Ee4YsJ9BTvjULIYQaOu2ER44cSXp6OosWLUKj0fDEE0+Q\nlZVFQEAAkyZNYuPGjRQXF7N+/XoAZs2axcKFC3u88O5Q+U1X7uvVt0+Xtit2dpzZzTuF72O2mRkW\nns7C1LkEeUn4CiGEmi4rfR5++OEOy2lp310v9tixY91bUS9654uTAESF9t0pGGtNdazOXkdeQyG+\nOh+WDF7M6KjhaGRmMCGEUF3fbgEvwW5X2JNdBcCcyQNUrqb7KYrCjrLdvFPwHu02M9eEG1icOo8g\nr0C1SxNCCPENtw3hbXtPO24nx/WtizbUmup5K2c9OfX5+Oh8WGFYyJjokdL9CiGEk3HbEP7ySBkA\nN1yboHIl3UdRFHaW7SGrYAtttnaGhKWxOG0ewV5960uGEEL0FW4Zws2tZsprzx6UNXtikrrFdJP6\ntgbezFlPdl0ePjpvlhsyGBs9SrpfIYRwYm4Zwl8cLnPc9nPxU5MURWFX+V425G+hzdbG4LBUlqbN\nl+5XCCFcgFuGcIvJCsAPbk7rZEvnVt/WwFs5GzhRl4u3hzdL0xYwPma0dL9CCOEi3DKES6rOzoQy\nINY1jxRWFIXd5fvYUPAuJmsbhtAUlqbNJ8Q7WO3ShBBCXAG3DOF2y9mpKoP9vVSu5Mo1tDfyVs4G\njtfm4O3hxZK0eUyIGSPdrxBCuCC3DOHSqhYA/H1c5/dgRVH4umI/6/PfxWQ1kRYyiKWG+YR6X/qC\nGUIIIZyX24Wwoii0W2x4aF2nc2xob+TtnCyO1Wbj5eHJ4tS5TIwdK92vEEK4OLcL4ZrGNsA1rh+s\nKAp7Kw+yLm8TrVYTKSEDWZY2nzCfULVLE0II0Q3cLoSrGkwAJEU798ULGtubWZObxZGa43h6eLIw\nZQ6T4sai1XR64SshhBAuwu1CePOOIgBCAp3zoCxFUdhfeYjMvE20WFtJCU5mqWEB4dL9CiFEn+N2\nIZxf2gjAtWmRKldyviZzM2ty3+Fw9TE8tXoyUu5gctw46X6FEKKPcqsQ/vbUJA+thqRo5zlHWFEU\nDlQdZm3eRlosrQwM7s+ytAwifMPULk0IIUQPcqsQLq44O0lHYpTz/B7cbDayJvcdDlUfRa/VM3/Q\nbUyNnyDdrxBCuAG3CuHdJyoBSE1wjpmlDlQdYW3uOxgtLSQHJbHMkEGkb7jaZQkhhOglbhXCO46U\nAzBpaIyqdTSbjWTmbTwuCZUAAAwQSURBVORA1RH0Wj3zBs1mWvxE6X6FEMLNuE0IK4qC1WYHICbM\nV7U6DlYdZU1uFkZLCwOC+rHMkEGUb4Rq9QghhFCP24Tw6SojAJHBPqrMNGW0tJCZu5H9VYfRa3XM\nHTiL6QmTpPsVQgg35jYhvH1fKQCD+/f++baHq4/xdm4WzWYj/QMTWW7IIMrP+U6REkII0bvcJoR3\nHD37e/DUYbG99ppGSwvr8jaxr/IQOq2OOQNv5bqEydL9CiGEANwkhL89NQmgXy9NV3mk+jhv52bR\nZG6mX2ACKwwZRPtF9cprCyGEcA19PoQVReHJ1/cCMDAuqMdfr9XSyrr8zez5/+3df0zUd57H8ecw\ngL+GUmbLoDCgFG2D7OrZaHMNHlQKol139x+XgRRsTNNuE9umvV6aSnqFP1raJtrkkvaSpmlyF/Cu\nuu7sbnfrajeNpruKv3o9W1Aq0tUDtcDw6xj5IQOf+4Msq1cctCPznRlfj78YP8PMi3ckLz7f78x3\nvv0v4m12fpazkUcyC7DH2Wf9uUVEJLrEfAn3/u/o1Nf/6Fk5q8/1le80/9nyKwauDpKV5KYqt4x0\nx8JZfU4REYleMV/CI1cDADy8KoO5ibPz4w6NDbO39SOOffs5dpudn967geKsQu1+RUQkqJgv4cNN\n3wIQN0vvSmruaeE/Wn5F/+gAWUkZVOV6tPsVEZGbEvMl/McT7QAsdd/e88HDgWH2tv6Oo5dPYrfZ\n2ZRdyvrFD2v3KyIiNy2mS3h8YoLxCQPAD7Nv3ycSne75ml0te+kfHSDTkU7Vcg8ZDmsvhSkiItEn\npkv48FeTh6IzUhfgmJcQ8uMNB0bwtv6eI5ePE2eL48fZJZQuLtLuV0REvpeYLWFjDA2ffA1AwYrQ\nL9Bxpvcsu87spW+0nwzHIqpyPWQmhe/CHyIiEntitoQvdA4SGJ88FP3QD7//C6VGAiN4z33M4UvH\niLPF8eiSYkqXFBEfF7OjExGRMInZJjnXMQDAA/elfu9D0S29rexq2UvvSB/pCxayZbmHzKSM2xlT\nRETuYDFbwr/5018AWLn01l+QNRIY5Tdt+/jTxUbibHFsXPIIG5Y8ot2viIjcVjHZKsYYhkYnL9Kx\n+v5b+7Sis33naDjzS3pG+li0II0tuR6y7nLPRkwREbnDxWQJ+wZGAEi9ey7z5tzcjzgSGOW3bX/g\ns4tHsGGjdHERG7OLSdDuV0REZklMNkzf4OT1ot2pjpu6f2tfG/VnfknPSC8LF6SxJbeMxXdlzmZE\nERGR2Czhz05dAiBnhk9NGh2/ykdtf+BQx2Fs2CjJepgfZ5eQYA/9PcUiIiIzickSPn6mC4Cc9Ltu\neJ9z/X+h/swefMM9pM13UZVbRnZyVrgiioiIxF4JXxkZIzA+AcD9WSnfWb86fpWPvtnPofbDABRn\nFbIpe712vyIiEnYxV8L/3eoDYNk0H9jQ1n+ehjN76Br24Zp/D1W5Hu5NXhzuiCIiIkAMlvCXbT0A\n/P3ytKl/uzo+xu++2c/B9j8D8EhmAZvuLSVRu18REbFQzJXwiZbJ88FL3XcD8M3ABerP7KZryIdr\n3j1U5paRc/cSCxOKiIhMiqkSvuS7MvX1wh/M4dfnPubT//kMgKLMf+An95aSaE+0Kp6IiMh1YqqE\n+/2T7w/OyLrKGyf+hc6hLu6Z9wOqcstYene2xelERESuFzMlPBYYZ8/Bs8S7v6Z34XkYMjzszuen\nORuZo92viIhEoJsq4bq6Ok6dOoXNZqO6upoVK1ZMrR05coS3334bu91OQUEB27Ztm7WwN9I3OMo/\n/ds+ErO/ImG+nyR7Mk+sKGdZSk7Ys4iIiNysGUv4+PHjXLhwgd27d9PW1kZ1dTW7d++eWn/ttdf4\n4IMPSEtLo7KyktLSUpYuXTqroa81Nj7GP3/878xZ3obNZrh//t/xizWbtfsVEZGIN2MJNzY2Ulxc\nDEBOTg4DAwP4/X4cDgft7e0kJyezaNEiAAoLC2lsbAxbCXf09fDMvn/FuAYxo/PY+iMPa9zLw/Lc\nIiIioZqxhH0+H3l5eVO3nU4n3d3dOBwOuru7cTqd1621t7cHfbyUlPnEx9tDiPw3Jy+1MpHoZ7wz\nkycf/DkbVy27LY97p0pNTbI6QtTTDEOnGYZOMwxduGZ4yy/MMsaE9IR9fUMhff+1VqcvI3/Z2/gH\nRkiIt9PdPXjbHvtOk5qapPmFSDMMnWYYOs0wdLMxwxuVetxM3+hyufD5fFO3u7q6SE1NnXats7MT\nl8sVatZbctf8uSTcpp21iIhIOM1Ywvn5+Rw4cACA5uZmXC4XDsfk5/S63W78fj8dHR0EAgEOHjxI\nfn7+7CYWERGJETMejn7ggQfIy8ujvLwcm81GTU0NXq+XpKQkSkpKqK2t5cUXXwTg0UcfJTtbF8UQ\nERG5GTYT6kneWzQbx9l1/iN0mmPoNMPQaYah0wxDF1HnhEVERGR2qIRFREQsohIWERGxiEpYRETE\nIiphERERi6iERURELKISFhERsYhKWERExCJhv1iHiIiITNJOWERExCIqYREREYuohEVERCyiEhYR\nEbGISlhERMQiKmERERGLRFUJ19XV4fF4KC8v58svv7xu7ciRI2zevBmPx8O7775rUcLIF2yGR48e\npaysjPLycrZv387ExIRFKSNbsBn+1c6dO6mqqgpzsugRbIaXL1+moqKCzZs38+qrr1qUMDoEm+Ou\nXbvweDxUVFTw+uuvW5Qw8p09e5bi4mIaGhq+sxaWXjFR4tixY+app54yxhhz7tw5U1ZWdt36xo0b\nzaVLl8z4+LipqKgwra2tVsSMaDPNsKSkxFy+fNkYY8yzzz5rDh06FPaMkW6mGRpjTGtrq/F4PKay\nsjLc8aLCTDN87rnnzCeffGKMMaa2ttZcvHgx7BmjQbA5Dg4OmnXr1pmxsTFjjDFbt241X3zxhSU5\nI9mVK1dMZWWleeWVV0x9ff131sPRK1GzE25sbKS4uBiAnJwcBgYG8Pv9ALS3t5OcnMyiRYuIi4uj\nsLCQxsZGK+NGpGAzBPB6vSxcuBAAp9NJX1+fJTkj2UwzBHjzzTd54YUXrIgXFYLNcGJigs8//5yi\noiIAampqSE9PtyxrJAs2x4SEBBISEhgaGiIQCDA8PExycrKVcSNSYmIi77//Pi6X6ztr4eqVqClh\nn89HSkrK1G2n00l3dzcA3d3dOJ3Oadfkb4LNEMDhcADQ1dXF4cOHKSwsDHvGSDfTDL1eLw8++CAZ\nGRlWxIsKwWbY29vLggULeOONN6ioqGDnzp1WxYx4weY4Z84ctm3bRnFxMevWrWPlypVkZ2dbFTVi\nxcfHM3fu3GnXwtUrUVPC/5/R1TZDNt0Me3p6ePrpp6mpqbnuF1ymd+0M+/v78Xq9bN261cJE0efa\nGRpj6OzsZMuWLTQ0NHD69GkOHTpkXbgocu0c/X4/7733Hvv37+fTTz/l1KlTtLS0WJhObiRqStjl\ncuHz+aZud3V1kZqaOu1aZ2fntIcX7nTBZgiTv7hPPvkkzz//PGvXrrUiYsQLNsOjR4/S29vLY489\nxjPPPENzczN1dXVWRY1YwWaYkpJCeno6WVlZ2O12HnroIVpbW62KGtGCzbGtrY3MzEycTieJiYms\nXr2apqYmq6JGpXD1StSUcH5+PgcOHACgubkZl8s1dfjU7Xbj9/vp6OggEAhw8OBB8vPzrYwbkYLN\nECbPZT7++OMUFBRYFTHiBZvhhg0b2LdvH3v27OGdd94hLy+P6upqK+NGpGAzjI+PJzMzk/Pnz0+t\n6zDq9ILNMSMjg7a2NkZGRgBoampiyZIlVkWNSuHqlaj6FKUdO3Zw8uRJbDYbNTU1nD59mqSkJEpK\nSjhx4gQ7duwAYP369TzxxBMWp41MN5rh2rVrWbNmDatWrZq676ZNm/B4PBamjUzB/h/+VUdHB9u3\nb6e+vt7CpJEr2AwvXLjAyy+/jDGG++67j9raWuLioma/EFbB5vjhhx/i9Xqx2+2sWrWKl156yeq4\nEaepqYm33nqLixcvEh8fT1paGkVFRbjd7rD1SlSVsIiISCzRn5ciIiIWUQmLiIhYRCUsIiJiEZWw\niIiIRVTCIiIiFlEJi4iIWEQlLCIiYhGVsIiIiEX+D3ss5B95r+QuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "PIdhwfgzIYII", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**See if you can tune the learning settings of the model trained at Task 2 to improve AUC.**\n", + "\n", + "Often times, certain metrics improve at the detriment of others, and you'll need to find the settings that achieve a good compromise.\n", + "\n", + "**Verify if all metrics improve at the same time.**" + ] + }, + { + "metadata": { + "id": "XKIqjsqcCaxO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 653 + }, + "outputId": "8d00e86c-e1ef-47f3-f2d2-169e92ac5982" + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000003,\n", + " steps=20000,\n", + " batch_size=500,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n", + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss (on training data):\n", + " period 00 : 0.51\n", + " period 01 : 0.49\n", + " period 02 : 0.48\n", + " period 03 : 0.48\n", + " period 04 : 0.48\n", + " period 05 : 0.48\n", + " period 06 : 0.48\n", + " period 07 : 0.48\n", + " period 08 : 0.48\n", + " period 09 : 0.48\n", + "Model training finished.\n", + "AUC on the validation set: 0.82\n", + "Accuracy on the validation set: 0.79\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VPXZPvD7zJZlJtskM9lDFghJ\nBgIEjbKjkJKgVlGEKIKivr5t0SL669uSSsGFFFuxtWpt3dDaglEaEVllR5CwyJ4FSCA7JJnsezLL\n74+EIYEEAmRyZpL7c11cM3PmnDPP5Kvh5vmeRTCbzWYQERER2SmJ2AUQERER3Q6GGSIiIrJrDDNE\nRERk1xhmiIiIyK4xzBAREZFdY5ghIiIiu8YwQ9TPDR06FJcuXeqVfRUWFiIqKqpX9iWGuXPnYvz4\n8YiPj8e0adMwffp0fP755ze9n5MnT+KZZ5656e2ioqJQWFh409sR0fXJxC6AiKgv/eY3v8GDDz4I\nACgrK8Ps2bMREhKCiRMn9ngf0dHR+OSTT6xVIhHdJHZmiAao5uZm/OEPf8C0adOQkJCAFStWwGg0\nAgB++OEHTJo0CQkJCUhJSUFMTMwNOwpVVVVYuHChpePx4YcfWt77y1/+gmnTpmHatGmYN28eSkpK\nrrv8sj179uCBBx7otOzBBx/E3r17cejQIcyYMQPTp09HQkICNm/efNM/A41Gg/j4eOzfvx8AkJ2d\njSeeeALTpk3DAw88gFOnTgEADh48iMTERCxcuBAvv/wyDh48iLi4uBv+HPfs2YO4uDgkJCTg448/\ntnxufX09FixYgISEBEyZMgWvvPIKWltbb7p+ImrDMEM0QH3++ee4dOkSNm7ciG+++QZHjhzBhg0b\nYDQa8bvf/Q6vvfYaNm/ejNzcXDQ2Nt5wf2+//Tbc3NywdetWrF69GmvWrMGRI0dw7tw5bNmyBRs2\nbMDWrVsRFxeHAwcOdLu8ozFjxuDSpUsoKCgAABQUFODSpUsYO3Ys3nzzTSxevBibNm3CBx98gO3b\nt9/Sz8FgMEChUMBkMmHBggV48MEHsXXrVixbtgy/+tWvYDAYAAAZGRlITEzEypUre/xz/P3vf4+l\nS5di8+bNkEgklpCzbt06uLq6YvPmzdi6dSukUimys7NvqX4iYpghGrB2796NWbNmQSaTwdHREQ88\n8AD279+P3NxctLS0YNKkSQDajjMxmUw33N+ePXvw+OOPAwDc3d0RFxeH/fv3w9XVFRUVFfjuu+9Q\nXV2NuXPn4qGHHup2eUcKhQL33HMPdu7cCQDYvn07pk6dCplMBk9PT6xbtw45OTkIDg6+JmT0REFB\nAbZs2YK4uDicP38e5eXlmDlzJgBg9OjRUKvVOHbsGADA0dERY8aMuemf4/jx4wEAM2bMsGxzeb/7\n9u2DyWTCq6++isjIyJuun4jaMMwQDVAVFRVwc3OzvHZzc0N5eTmqq6vh6upqWa7Vanu8v47bubq6\nory8HN7e3nj33XexZcsWTJ48Gc899xwuXrzY7fKrTZs2rVOYmT59OgAgOTkZTk5OmD9/Pn72s59h\ny5YtParzz3/+s+UA4Jdeegm/+93vEB0djZqaGjQ1NSEhIQHx8fGIj49HeXk5qqqqLD+f7r53dz9H\nlUrVafllCQkJeOqpp/DOO+9gzJgxePXVV9HS0tKj+onoWgwzRAOUl5eX5S9qoO2YFy8vL6hUKjQ0\nNFiW6/X629ofANx999348MMPsX//fvj6+uKtt9667vKOJkyYgKysLOTm5iI3Nxd333235fOWLFmC\nvXv34g9/+AMWL16M+vr6G9b5m9/8Blu2bMHWrVvx9ddfW8KRVquFUqnEli1bLH/27dtnOTbmZr+3\nm5sb6urqLMsrKio6bZeYmIivv/4amzZtQnp6OtatW3fD2omoawwzRAPU5MmTsXbtWhiNRjQ0NODb\nb7/FpEmTEBwcDIPBgIMHDwIA1qxZA0EQerS/lJQUAG1/cW/btg2TJ0/Gvn378Oqrr8JkMsHZ2RkR\nEREQBKHb5VdTKBQYP348/vznP2PKlCmQSqVobW3F3LlzUVpaCgDQ6XSQyWSQSG79V5q/vz98fHws\nHZ6Kigq89NJLnYJdd9+7q59jUFAQpFKp5eeYmppq+X7vv/8+1q5dCwDw9vZGQEBAj37GRNQ1nppN\nNADMnTsXUqnU8vqNN97A3LlzUVBQgPvuuw+CICA+Ph4JCQkQBAHLli3D4sWL4eLigvnz50MikUAQ\nBJjNZhiNRsTHx3fa/0cffYQXX3wRy5YtQ3x8PCQSCZ577jlER0ejubkZGzduxLRp06BQKKBWq5Gc\nnAytVtvl8q5MmzYNL7zwAj777DMAgFwux8yZM/HUU08BACQSCV555RU4OTlh27Zt2LlzJ/74xz/e\n1M9IEAS8/fbbWLZsGf76179CIpFg/vz5cHZ2vuHPtruf4+uvv46kpCQoFAo8/PDDln09+OCDWLx4\nMT766CMIgoARI0ZYThcnopsnmM1ms9hFEJHtamhowKhRo3DkyBG4uLiIXQ4R0TU4zURE13jkkUew\nadMmAMCmTZsQFhbGIENENoudGSK6xpEjR/Daa6+hubkZSqUSy5YtQ3R0tNhlERF1iWGGiIiI7Bqn\nmYiIiMiuMcwQERGRXbP7U7PLymqttm8PD2dUVl7/GhMkDo6NbeK42C6OjW3iuPScRtP9SQjszFyH\nTCa98UokCo6NbeK42C6OjW3iuPQOhhkiIiKyawwzREREZNcYZoiIiMiuMcwQERGRXWOYISIiIrvG\nMENERER2jWGGiIiI7BrDDBERUT+2e/eOHq33zjsrUVxc1O37v/vdS71VUq9jmCEiIuqnLl4sxvbt\nW3u07sKFL8PPz7/b91eseLu3yup1dn87AyIiIura22+/iczMdEyYcCd+9rMEXLxYjL/+9e/44x9f\nQ1lZKRobG/H0089h3LgJeP755/DSS/+HXbt2oL6+Dvn5eSgqKsSvf/0yxowZh/vum4KNG3fg+eef\nw5133oWjR4+gqqoKb775F3h5eeG115bg0qWLGD48Gjt3bsc332zqs+/JMENERNQHvtqZjcNZpZ2W\nSaUCjEbzLe/zzggtZt07uNv3H3tsLlJTv0JISBjy83Px979/jMrKCsTG3o2EhPtRVFSIJUt+h3Hj\nJnTarrS0BG+99Tekpf2Ib7/9L8aMGdfpfaVSiXfe+QAffPAu9u7dCT+/ALS0NOPDDz/D/v0/4Kuv\n1tzyd7oVDDPdyCmqRqPRDCepIHYpREREty0yUgcAcHFxRWZmOtavT4UgSFBTU33NutHRIwEAWq0W\ndXV117w/YsQoy/vV1dXIy7uA4cNHAADGjBkHqbRv7znFMNOND79LR1OLCa89Ews3pULscoiIyM7N\nunfwNV0UjcYFZWW1ffL5crkcALBt2xbU1NTg/fc/Rk1NDZ59du4163YMI2bztZ2jq983m82QSNqW\nCYIAQejbRgAPAO7G1DsCUdvQgs83Z3U5kERERLZOIpHAaDR2WlZVVQVfXz9IJBLs2bMTra2tt/05\n/v4BOHMmAwBw6FDaNZ9pbQwz3ZgyOgDDw7xwPFuPH09fErscIiKimzZoUAjOnMlCff2VqaLJk+/F\njz/+gIULfwknJydotVqsWvXRbX3O2LETUF9fj1/+8hmcOHEMrq5ut1v6TRHMdt52sGZ7ziSVYsGf\nd0IiCHj9mVioXR2t9ll0c/qyNUs9x3GxXRwb29RfxqWmphpHjx7B5MlTUFZWioULf4nVq//bq5+h\n0bh0+x47M9fhrXZG4r2D0dhswCpONxEREXXJ2VmJnTu347nnnkJS0v/DCy/07QX2eADwDUwc4Yef\nzpbh9PkK7DlejMmjur+gEBER0UAkk8nw2mt/FO3z2Zm5AUEQMD8hEs4OMqTszEZpVaPYJREREVEH\nDDM94OHigDk/C0dzqxGfbsyEidNNRERENoNhpofujvJGTLgGZwuqsP1IodjlEBERUTuGmR4SBAHz\npg2FykmO/+7JwcXyerFLIiIiIjDM3BRXpQJPxg9Fq8GETzZmwmgyiV0SERHRbZs58wE0NDTgiy8+\nw+nTJzu919DQgJkzH7ju9rt37wAAbNr0Hfbs2WW1OrvDMHOTRg/V4u4ob5wvrsGWg/lil0NERNRr\n5s59CsOGRd/UNhcvFmP79q0AgOnTH8CkSfdYo7Tr4qnZt+DxuHBk5ldi3Q8XEB3mhUCtSuySiIiI\nrvH003OQnLwSPj4+uHTpIhYvfhkajRaNjY1oamrCokW/QVTUMMv6y5cvw+TJUzBy5Cj8/vf/h5aW\nFstNJwHg++83Y+3aFEilEgQHh+G3v/093n77TWRmpmPVqo9gMpng7u6ORx6Zjb///R2cOnUCBoMR\njzwyC/Hx9+H555/DnXfehaNHj6CqqgpvvvkX+Pj43Pb3ZJi5BSonOeYnROCvX5/EJxsy8MqTd0Am\nZZOLiIi6l5q9AcdKT3VaJpUIMJpu/QzZUdrheHjw/d2+P3HiPdi/fy8eeWQWfvhhDyZOvAdhYUMw\nceJk/PTTYfznP59j+fI/X7Pd1q2bERoahl//+mXs2PG9pfPS2NiIlSvfhYuLCxYs+B/k5GTjscfm\nIjX1K8yf/z/45JN/AgCOHz+K8+dz8MEHn6KxsRFPPpmIiRMnAwCUSiXeeecDfPDBu9i7dydmzXr8\nlr//Zfwb+BZFh3lhQrQv8kvr8N3+XLHLISIiukZbmPkBALBv3x6MHz8Je/bswC9/+Qw++OBdVFdX\nd7ldbu55DBs2AgAwatRoy3JXV1csXvwynn/+OeTlXUB1dVWX22dlZWDkyBgAgJOTE4KDQ1FQUAAA\nGDFiFABAq9Wirq6uy+1vFjsztyFxyhBk5FZg44E8jBzihRBfV7FLIiIiG/Xw4Puv6aJY+95MoaFh\nKC8vQ0nJJdTW1uKHH3bDy0uLJUteR1ZWBt57769dbmc2AxKJAAAwtXeOWltb8fbbf8Jnn62Gp6cX\n/u//Xuz2cwVBQMdLshkMrZb9SaXSDp/TO9dtY2fmNjg5yPD09EiYzGZ8vCEDrYa+veU5ERHRjYwZ\nMx4ffvh3TJgwCdXVVfD3DwAA7NmzCwaDocttgoIGISsrEwBw9OgRAEBDQz2kUik8Pb1QUnIJWVmZ\nMBgMkEgkMBo7//0XEaHDsWM/tW/XgKKiQgQEBFnrKzLM3K7IYDWmxATgYnkDvtl7QexyiIiIOpk0\n6R5s374VkydPQXz8fUhJ+Q8WLVoAnW4YysvLsXHj+mu2iY+/D+npp7Bw4S9RUJAHQRDg5uaOO++8\nC88+Ow+rVn2Exx+fi7/97W0MGhSCM2ey8Le/rbRsP2LESAwdGoEFC/4HixYtwC9+8TycnJys9h0F\ns53fCtqa7bmetv+aW4xYuuoQyiob8ds5MQgPdLdaTdTG2q1ZujUcF9vFsbFNHJee02hcun2PnZle\n4KCQ4tn7ogAB+HRjJppbON1ERETUVxhmesngADdMiw1CaVUjvt6dLXY5REREAwbDTC+aMSEEfl5K\n7DxahIzcCrHLISIiGhAYZnqRXCbFs/dHQiIIWLUpEw1NXR8lTkRERL3HqteZSU5OxokTJyAIApKS\nkhAdfeV+D/feey98fHws55u/9dZb8Pb2vu429iDYxxX3jx2E9ftz8eXOc3h6eqTYJREREfVrVgsz\nhw4dQl5eHlJSUpCTk4OkpCSkpKR0Wuejjz6CUqm8qW3swf1jg3E8W499Jy8iJlyDkYO9xC6JiIio\n37LaNNOBAwcwdepUAEBYWBiqq6tveNniW9nGFsmkEjx7XxRkUgGfb85CXWOr2CURERH1W1brzOj1\neuh0OstrtVqNsrIyqFRX7jC9dOlSFBUVYfTo0Xj55Zd7tM3VPDycIZNJu33/dl3vvPYbbTcnPhKf\nb8zA2r3n8Zsn7ujlyuhWx4asi+Niuzg2tonjcvv67N5MV1+b79e//jUmTJgANzc3LFiwAFu3br3h\nNl2prGzotRqvdrsXM5qg88a+Y4XYe6wIukEeuDNC24vVDWy80JRt4rjYLo6NbeK49JwoF83TarXQ\n6/WW16WlpdBoNJbXDz30EDw9PSGTyTBx4kScPXv2htvYG4lEwDP3R0Ehk+CLrWdQXd8idklERET9\njtXCzLhx4yzdlvT0dGi1Wst0UW1tLZ555hm0tLT95X748GEMGTLkutvYKx+1Mx6ZHIa6xlb8a0tW\nr90hlIiIiNpYbZopJiYGOp0OiYmJEAQBS5cuRWpqKlxcXBAXF4eJEydi9uzZcHBwQFRUFOLj4yEI\nwjXb9AdTRgfg2NkyHDunx4H0Sxg7zFfskoiIiPoN3mjyOnpzLrOsqhF/+PQQJIKA15+JhdrVsVf2\nO1Bxntk2cVxsF8fGNnFceo43mrQBGncnJN47GI3NBny2mdNNREREvYVhpg9NHOGHYaFqnL5QgT0n\nisUuh4iIqF9gmOlDgiBgfkIknB1kSNmRjbKqRrFLIiIisnsMM33Mw8UBc+LC0dxqxKcbM2HidBMR\nEdFtYZgRwd06b8SEa3CmoAo7jhSKXQ4REZFdY5gRgSAImDdtKFROcqzdk4OL5fVil0RERGS3GGZE\n4qpUYN60oWg1mPDpxkwYTSaxSyIiIrJLDDMiuiNCi7ujvJFTXIMtB/PFLoeIiMguMcyI7PG4cLip\nFFj3wwUUltaJXQ4REZHdYZgRmcpJjqfiI2A0mfHxxgwYjJxuIiIiuhkMMzZgxGAvTIj2RX5JHTb8\nmCt2OURERHaFYcZGJE4ZAk9XB2z4MQ8XLtaIXQ4REZHdYJixEU4OMsyfHgmT2YyPN2Sg1WAUuyQi\nIiK7wDBjQ6KC1ZgSE4CL5Q345ocLYpdDRERkFxhmbMzMyWHQejhh68F8nCusErscIiIim8cwY2Mc\nFFI8c18kAOCTDZlobuF0ExER0fUwzNigIQHumHZXEEqrGrF2d47Y5RAREdk0hhkbNWNCCPy8lNhx\ntBAZuRVil0NERGSzGGZslFzWNt0kEQSs2pSJxmaD2CURERHZJIYZGxbi64r7xw5CeU0zvtxxTuxy\niIiIbBLDjI27f2wwgrxV+OHkRZzI1otdDhERkc1hmLFxMqkEz94XBalEwGebs1DX2Cp2SURERDaF\nYcYOBGhVeGhCCKrrW7B621mxyyEiIrIpDDN2Iv6uIIT5uSItowRHskrFLoeIiMhmMMzYCalEgqfv\ni4RcJsG/tp5BTX2L2CURERHZBIYZO+LrqcTMSWGoa2zF51uyYDabxS6JiIhIdAwzdmbKHQEYGuiO\nY+f0SEsvEbscIiIi0THM2BmJIODp+yLhoJDi39vOoqKmSeySiIiIRMUwY4c07k6Yfe9gNDYb8Nlm\nTjcREdHAxjBjpyaN8MOwEDVOX6jA3hPFYpdDREQkGoYZOyUIAp5KiICTgwxf7sxGWVWj2CURERGJ\ngmHGjqldHTEnbgiaW4z4dGMmTJxuIiKiAYhhxs6N0flg1BAvnCmowo6fCsUuh4iIqM8xzNg5QRAw\nLz4CKic51u7OwcXyerFLIiIi6lMMM/2Am1KBedOGotVgaptuMnG6iYiIBg6GmX7ijggt7oryRk5x\nDbYcyhe7HCIioj7DMNOPzIkLh5tSgXU/nEdhaZ3Y5RAREfUJhpl+ROUkx1MJETAYzfh4YwYMRpPY\nJREREVkdw0w/M2KwF8ZH+yK/pA4bfswVuxwiIiKrs2qYSU5OxuzZs5GYmIiTJ092uc7KlSsxd+5c\nAIDJZMKSJUuQmJiIuXPnIicnx5rl9VuPTRkCT1cHbPgxD7mXasQuh4iIyKqsFmYOHTqEvLw8pKSk\nYPny5Vi+fPk162RnZ+Pw4cOW1zt27EBtbS2+/PJLLF++HH/605+sVV6/5uQgw/zpkTCZzfh4QyZa\nDUaxSyIiIrIaq4WZAwcOYOrUqQCAsLAwVFdXo66u80GpK1aswKJFiyyvc3NzER0dDQAICgpCcXEx\njEb+RXwrooLVuDfGH8X6eqz74YLY5RAREVmN1cKMXq+Hh4eH5bVarUZZWZnldWpqKmJjY+Hv729Z\nFh4ejn379sFoNOL8+fMoKChAZWWltUrs9x6dPBhadydsOZiP7MJqscshIiKyCllffZC5w32Dqqqq\nkJqailWrVqGkpMSyfNKkSTh69CjmzJmDoUOHIjQ0tNN2XfHwcIZMJrVa3RqNi9X23RdefmI0fvf+\nPnyyKRNJT8Ui1N9N7JJ6jb2PTX/FcbFdHBvbxHG5fVYLM1qtFnq93vK6tLQUGo0GAJCWloaKigrM\nmTMHLS0tyM/PR3JyMpKSkjpNO02dOhWenp7X/ZzKygbrfAG0/QdWVlZrtf33BY1KgQfGBmP9/ly8\n+JfduDcmADMmhMDZUS52abelP4xNf8RxsV0cG9vEcem564U+q00zjRs3Dlu3bgUApKenQ6vVQqVS\nAQDi4+OxadMmfPXVV3jvvfeg0+mQlJSErKwsLF68GACwd+9eREVFQSLh2eO366EJoXh59khoPZyx\n46dCJH2Yhv2nLt6w60VERGQPrNaZiYmJgU6nQ2JiIgRBwNKlS5GamgoXFxfExcV1uU14eDjMZjNm\nzpwJBwcHvPXWW9Yqb8DRhajx2tOx+P5wPr77MRefbMzE3hPFmBMXjiBvtjiJiMh+CWY7/+e5Ndtz\n/bX9V17dhC93nsNPZ8ogCMCUmAA8NCEUzo59dgjVbeuvY2PvOC62i2NjmzguPSfKNBPZLk83RyyY\nMRwvzRoBrbsTtv9UiKSP0vDjaU49ERGR/WGYGcCGhXritWfuwsMTQ9HUbMDHGzKx4j9HUcCbVBIR\nkR1hmBng5DIJ7h8bjDf+5y6MDtfgXGE1Xl11GKu3n0VDk0Hs8oiIiG6IYYYAAF5uTljw8HAsmjUC\nXu6O2H6kberpwOlLnHoiIiKbxjBDnQwP9cTrz9yFGe1TTx9tyMCb/zmKQk49ERGRjWKYoWvIZRI8\n0D71FBOuwdnCaixbdRhf7jiHxmZOPRERkW1hmKFuebk54fmHh+PFR0fAy80R3x8uQNKHaTiQzqkn\nIiKyHQwzdEPRYZ54/dlYzJgQgoZmAz76LgNvrj6GwjJOPRERkfgYZqhH5DIpHhgXguXP3oVRQ7xw\ntqAKyz7l1BMREYmPYYZuipe7E154JBoLZ0bD082hberpozSkceqJiIhEwjBDt2TEYC+88exdeGh8\nCBqaDPjwuwz8afUxFHHqiYiI+hjDDN0yuUyKn48PwRvP3oWRg71wpqAKy1YdRspOTj0REVHfYZih\n26Zxd8KvZ0bj1zOj4eHigK2HCvD7j9JwMKOEU09ERGR1DDPUa0a2Tz09OD4EdY0G/HN9Ov685hiK\n9PVil0ZERP0Ywwz1KoVcigfHh+CN/7kLI8I8kZVfhWWfHsJXu7I59URERFbBMENWoXV3wsJHR+DX\nj7RNPW05mI9XPj6IQ5mceiIiot7FMENWNXJI29TTz8cFo7ahFf/4Nh1vfXkcxZx6IiKiXsIwQ1an\nkEvx0IRQvPFsLKLDPJGZV4mlnx7C17uy0dTCqSciIro9DDPUZ7Qezlg4MxovPDIc7ioHbD6Yj99/\ndBCHs0o59URERLdMJnYBNLAIgoBRQzSIClZj04E8bD6Yhw/WnUZUsAfmxIXD11MpdolERGRn2Jkh\nUTjIpZgxMRSvP3sXhod6IiO3En/45BC+3s2pJyIiujkMMyQqbw9nvPhoNJ5/uH3qKa1t6ukIp56I\niKiHOM1EohMEATHhGuhC1Nh4IA9bDubh7+tOQxfsgcc59URERDfAzgzZDAe5FA9PDMXrz9yFYSFq\npLdPPa3dnYPmFqPY5RERkY1imCGb4612xqJZI7BgxnC4qxTYlJaH33+cxqknIiLqEqeZyCYJgoDR\nQzUYFqrGxgO52HIwv23qKUSNOXHh0GhcxC6RiIhsBMMM2bS2qacwjB3mi/9sO4v0CxVY8vFBjBqq\nRUSgG6JDPeHl7iR2mUREJCKGGbILPmpnvDRrBI6eLcO6fRdwJLMERzJLAAB+XkpEh3pieJgnhgS4\nQSbl7CkR0UDCMEN2o23qSYvRQ7UwSaXYczgPJ3LKkZVXiS2H8rHlUD4cFVLogtWIDmsLN+4qB7HL\nJiIiK2OYIbvkrXbGPTEBuCcmAC2tRpwpqMLJnHKczNHjp7Nl+OlsGQAgyFuF6DBPRId6IdTPFRKJ\nIHLlRETU2xhmyO4p5FIMD/XE8FBPPD51CEoqG3EyW4+T58txJr8K+SV12PBjHpSOsrb1wjwxLEQN\nF2eF2KUTEVEvYJihfkUQBPioneETG4SfxQahsdmArLxKnDxfjpM55UjLKEFaRgkEAKF+rm1dmzAv\nBHqrIBHYtSEiskcMM9SvOTnIMCpcg1HhGpjNZhSW1eNkjh6ncsqRXVSDnOIafPPDBbgpFRge6ono\nME9EBavh7Mj/NYiI7AV/Y9OAIQgCArUqBGpVuG9MMOqbWpF+oQInc8px6nw59p26iH2nLkIqETAk\nwA3DwzwRHeoJPy8lBHZtiIhsFsMMDVhKRzliI70RG+kNk9mMvEu17QcRtx1rk5Vfha935cDT1dFy\ndlRkkAccFFKxSyciog4YZogASAQBIb6uCPF1xYPjQ1BT34JT59s6NqfPV2DXsSLsOlYEmVSCiCB3\nDA/zxIgwT2g9nMUunYhowGOYIeqCq1KBccN9MW64L4wmE3KKaixdm9MXKnD6QgXWbD8Hb7UzotuP\ntQkPdIdcxgv2ERH1NYYZohuQSiQID3RHeKA7Zk4OQ0VNE061nx2VkVuJbUcKsO1IARzkUkQFe1iO\ntVG7OopdOhHRgMAwQ3ST1K6OmDTSH5NG+qPVYMLZwiqcau/aHDunx7FzegBAgEbZPh3lhTB/V0gl\n7NoQEVmDVcNMcnIyTpw4AUEQkJSUhOjo6GvWWblyJY4fP44vvvgC9fX1+O1vf4vq6mq0trZiwYIF\nmDBhgjVLJLotcpkEumA1dMFqJE4ZgtLKBpw6X4ETOXpk5VWhsCwfm9Py4eQgw7CQttssDAv1hJuS\nF+wjIuotVgszhw4dQl5eHlJSUpCTk4OkpCSkpKR0Wic7OxuHDx+GXC4HAHzzzTcICQnByy+/jJKS\nEjz55JPYsmWLtUok6nVaD2d4Ix9sAAAgAElEQVRMGe2MKaMD0NxqvHLBvuxyHM4qxeGsUgBAiK9L\n+3VtvBDkreLNMYmIboPVwsyBAwcwdepUAEBYWBiqq6tRV1cHlUplWWfFihVYtGgR3nvvPQCAh4cH\nzpw5AwCoqamBh4eHtcojsjoHuRQjBnthxGAvmOPMuFjeYLl/1LnCaly4WIv1+3MBAEpHGVyVCrg6\nK9oelQq4Oss7PL+y3EHOU8OJiDqyWpjR6/XQ6XSW12q1GmVlZZYwk5qaitjYWPj7+1vWue+++5Ca\nmoq4uDjU1NTgn//8p7XKI+pTgiDAz0sJPy8l4u9qu81CRm4FTp0vR2llI2oaWlFT34KL5Q033JeD\nXApXpbxzyOkmBDk7yHjBPyLq9/rsAGCz2Wx5XlVVhdTUVKxatQolJSWW5d9++y38/PzwySefICsr\nC0lJSUhNTb3ufj08nCGTWe9fqhqNi9X2TbfH3scmKMAD8ePDOi0zGE2oqW9BVW1z25+6K4/Vl5+3\nv869WAujydzN3tvIpALcVA5wd3GAu8oBbioHeLi0vXZTtS27/J6rUgFpL0x32fu49GccG9vEcbl9\nVgszWq0Wer3e8rq0tBQajQYAkJaWhoqKCsyZMwctLS3Iz89HcnIympubMX78eABAREQESktLYTQa\nIZV2H1YqK2/8L9lbpdG4oKys1mr7p1vX38fGRSGBi6cTAj2dul3HZDajocmAmvqWtj8NVz3Wt1qe\nF1yqRY6h+rqfKQBQOcs7dXlcnOVwa+/8uCgVlueuSjnkXfwjor+Piz3j2NgmjkvPXS/0WS3MjBs3\nDu+++y4SExORnp4OrVZrmWKKj49HfHw8AKCwsBCLFy9GUlISPv30U5w4cQLTpk1DUVERlErldYMM\n0UAmEQSonORQOcnh56W84fpNLe3Bp31Kq3PwubK8srYZRfr6G+7PyUEKl/bg49YedoJ8XeHt6oAQ\nP1c4KnjlByLqG1b7bRMTEwOdTofExEQIgoClS5ciNTUVLi4uiIuL63Kb2bNnIykpCU888QQMBgOW\nLVtmrfKIBhxHhQyOChm0PTiu/vJ0V1vYab1u56esqhqWWeRjRQAAQQACNCqE+bshzM8Vg/3doPVw\n4vE7RGQVgrnjwSx2yJrtObb/bBfHxnaYTGbUNbUFnkaDGceySpBTVI3cS7VoNZgs66mc5Ajzc20L\nOP5uCPF1YfemD/H/GdvEcek5UaaZiGhgkEiEtuNonBXQaFwwxLftF47BaEJBaR2yi6qRU1SNnKIa\nnMgpx4mccgDs3hBR7+lxmLl8jRi9Xo/c3FzExMRAwsuzE1E3ZFKJ5U7kcXcEAgCq6potwSa7uBq5\nF2tRUFqH3e3TU+zeENGt6NFviddffx0RERGIi4tDYmIidDod1q9fj9dee83a9RFRP+KucsDooVqM\nHqoF0Na9yS+paws4xW0dnKu7N4GXuzf+bSFH687uDRF11qMwk5GRgSVLlmDNmjWYMWMGFixYgCef\nfNLatRFRPyeTShDq54pQP1fEoa17U1nbjPPFnbs3+aV12NXevXFxliPMrz3c+LkhxNcVDgqe9Ug0\nkPUozFw+Rnj37t148cUXAQAtLS3Wq4qIBiwPlxt3b45n63E8u+06VhJBQIBWeSXgsHtDNOD0KMyE\nhIRg+vTpUKvViIyMxLp16+Dm5mbt2oiIuu3eXAk3Nci9VIv8EnZviAaqHp2abTQacfbsWYSFhUGh\nUCA9PR2BgYFwdXXtixqvi6dmD0wcG9sk1rgYjCbkldQip6gGOUXVOF9cjfKaZsv7lu6NvxsGt4cc\nzQDr3vD/GdvEcem52z41OzMzE2VlZYiMjMRf/vIXHD9+HC+88ALuuOOOXiuSiOhWyaSStk6Mnxtw\n5w26N0fbujeuznKEtgebwf5uCPZh94bIXvUozLzxxhtYsWIFjhw5glOnTmHJkiV47bXX8K9//cva\n9RER3RIPFwfcEaHFHRFtx960GkzIL73SvckpvvbYm0CtyjI1FernCncXByhkkgHVwSGyRz0KMw4O\nDggODkZKSgpmzZqFwYMH8xozRGRX5LLuuzfZ7eEm71It8kpqsbO9ewO0dX2UjjIoneRtj45yKJ0u\nP8qhsrwnh3P7c5WjDI4OMkgYgoj6RI/CTGNjIzZv3ozt27djwYIFqKqqQk1NjbVrIyKyqi67NyW1\nyCmuQd6lGtQ2tqK+0YD6plZU1zXjor4ePb3/iyCgLfB0CDtKJxmUDh3D0JVQ1DEwSfmPRaKb0qMw\n89JLL+Ff//oXXnrpJahUKrz77rt46qmnrFwaEVHfkssklqsPd8VkNqOx2YD6JgPqG1tR33Ql7LS9\nNlx5bLryWl/dBKOp57fBc3KQwtmh+w7QtZ2itucKOY/5oYGpxzeabGhowIULFyAIAkJCQuDk5GTt\n2nqEZzMNTBwb28Rx6ZrZbEZLqwn1Ta2oaw87DR3CTl0XoaihqRV1TQY0txh7/DlymaRzJ6hD6FG7\nO6OluRVyqQRymQSyqx47Pe/mPZlU4PFDvYz/z/TcbZ/NtH37dixbtgw+Pj4wmUzQ6/V4/fXXMWnS\npF4rkoiovxIEAQ4KKRwUUqhdHW9qW4PR1HUnqOOyq96vqm1GcVnPp8RuRseAI5cKkMmkkEuFa8KQ\nrJuAZHmvw2Pn9QTIZVLIZEK3wUsqYaiiznoUZj7++GOsX78earUaAFBSUoKFCxcyzBARWZlMKoGb\nUgE3peKmtrNMiTW2oq7RAGelA8rK62AwmNBqNKG1w6PhqsdOz43mtm0MRrQazdes19RsQG2HZdYI\nUFeTCAKcHKRwVEjh6CBre1TI4NT+6OjQ/tqh8/LLrztux7PV+ocehRm5XG4JMgDg7e0NuVxutaKI\niOj2SAShfapJDq1H+3SGm4NVP9NsNsNoMluCkqGrwNRlmGrfxmC0PO86WLU9thiMaGoxoqm5rQvV\n2GyEqWdHTFxDIghwVEivBJ2rAtDl4OPUIQA5tS93sgSptvfsIRiZzGYYje0/c6MJRqMZBqOp/c8N\nnhtMMJiuWm4wwWBq24/RZMbYYT4I8e37C+r2KMwolUp8+umnGDt2LABg3759UCqVVi1MbEdKjsPP\n6Ak/aaDYpRAR2QVBECCTCpBJJejLoyrN5rYA1NRiRGOLAU3NRjS1GNDYHniaWtrCT2P788YWgyUM\nddymqq4ZTRXGmzpYu6PLwcjR4UrguToAXf2exrMOVVUNbeGvPVy0dnq8Olh0fN11+Oi4bavR3P54\nJXBYk0QQbDfMLF++HO+88w7Wr18PQRAwcuRIJCcnW7s2UW288D0qM6vwmztegL/KV+xyiIioG4Ig\nQCGXQiGXwvUmp+OuZja3hYLGy4Go/bFzCOr8XmPLlXUuB6SqumY0tdx6MLoVl4OkTCqBVNp2zJGT\nQ9sxTdL2A7jlUgmkUkn7o2A5sPvydjd6Lr1qH7L2fV9+7uspTqOjx2czXS0nJwdhYWG9Xc9Ns9ZR\n4Kf0GfjHyc/gq/TG/93xayiknFazJTwDwDZxXGwXx6bvWYJRi7FzJ6hDR0iukKOpsaVDSBAgk7Qd\nHH0z4WMgHBR922czdeXVV1/t17czGO4VhfjBk7Eleze+yd6A2UNniF0SERHZEUFoOzNLLpPC1bnr\ndRgye8ctX2byFhs6duWJETPgp/TB3qIDOFmWLnY5RERE1IVbDjP9vZ0FAAqZAvN1j0MmkeHfWV+j\nqrla7JKIiIjoKtedZlq7dm2375WVlfV6MbbIT+WDhwffj6/OrsO/MlLw/MhnIRF43xQiIiJbcd0w\n89NPP3X73siRI3u9GFs10X8MMivO4JQ+Ezvy9yJu0GSxSyIiIqJ21w0zf/zjH/uqDpsmCAKeiJiF\n5ENvY/35LQj3CMMgV15/hoiIyBb06Gymxx9//JpjZKRSKUJCQvCrX/0K3t7eVinOlqgUSsyLSsS7\nxz/CZ+lr8Ns7F8JRZt2raRIREdGN9ejgj7Fjx8LHxwdPPvkk5s+fj8DAQIwePRohISFYvHixtWu0\nGRHqIZgaNAmljXp8fe5bscshIiIi9LAz89NPP2HVqlWW11OnTsVzzz2HDz/8EDt27LBacbbogdBp\nOFOZjbSLRxClDsdo74Fz7BAREZEt6lFnpry8HBUVFZbXtbW1KC4uRk1NDWprB9bFfmQSGebrHodC\nqsCaM6kob6wUuyQiIqIBrUedmXnz5iEhIQH+/v4QBAGFhYX43//9X+zatQuzZ8+2do02x9tZg1lD\nHsS/s77GZxlr8OKo/4VUIhW7LCIiogGpR2Fm5syZiI+PR25uLkwmE4KCguDu7m7t2mza3b53IKPi\nDI6WnsSWvJ24LyRO7JKIiIgGpB6Fmfr6enz++ec4deqU5a7ZTz75JBwdHa1dn80SBAGPDX0YF6rz\nsfnCdkR4DEGYe7DYZREREQ04PTpmZsmSJairq0NiYiJmzZoFvV6PV155xdq12TxnuTOe0j0GAPgs\nYw0aWhtFroiIiGjg6VFnRq/X4+2337a8vueeezB37lyrFWVPBruHID54CjbnbseXZ1IxX3ftNXmI\niIjIenrUmWlsbERj45WuQ0NDA5qbm61WlL1JCJ6CULdB+Kn0BA5e6v4WEERERNT7etSZmT17NhIS\nEjBs2DAAQHp6OhYuXGjVwuyJVCLFU1GPIfnQX5Fydh1C3YKhdfYSuywiIqIBoUedmZkzZ2LNmjV4\n6KGHMGPGDHz55ZfIzs62dm12xdNJjcciHkaLsQWr0lfDYDKIXRIREdGA0KPODAD4+vrC19fX8vrk\nyZNWKcie3eE9EhnlZ3Dw0k/YcP57PDR4utglERER9Xs96sx0xWw292Yd/cas8Afh5eSJ7fl7kFVx\nTuxyiIiI+r1bDjM9OWMnOTkZs2fPRmJiYrednJUrV1rOjPr6668xd+5cy59Ro0bdanmicZQ54un2\nM5r+lZGCupZ6sUsiIiLq1647zTRp0qQuQ4vZbEZl5fXvSXTo0CHk5eUhJSUFOTk5SEpKQkpKSqd1\nsrOzcfjwYcjlcgDAo48+ikcffdSy/ebNm2/qy9iKQa6BeCB0Gr7N2Yz/ZK3Fc8Pn8XRtIiIiK7lu\nmFm9evUt7/jAgQOYOnUqACAsLAzV1dWoq6uDSqWyrLNixQosWrQI77333jXbv//++3jrrbdu+fPF\nNjVoEjIrzuGkPh37itMwwX+M2CURERH1S9cNM/7+/re8Y71eD51OZ3mtVqtRVlZmCTOpqamIjY3t\n8jNOnjwJX19faDSaW/58sUkECZ6Mmo3kg3/Bf899hzC3EPipfMQui4iIqN/p8dlMt6vjAcNVVVVI\nTU3FqlWrUFJScs26a9euxYwZM3q0Xw8PZ8hk1rtjtUbjcuvbwgW/xFy8tf+f+OJMCpLjfguFVN6L\n1Q1stzM2ZD0cF9vFsbFNHJfbZ7Uwo9VqodfrLa9LS0stnZa0tDRUVFRgzpw5aGlpQX5+PpKTk5GU\nlAQAOHjwYI/v/VRZ2dD7xbfTaFxQVlZ7W/sIcQjDeP+7sa8oDR+npeDR8Ad7qbqBrTfGhnofx8V2\ncWxsE8el564X+m75bKYbGTduHLZu3Qqg7YrBWq3WMsUUHx+PTZs24auvvsJ7770HnU5nCTIlJSVQ\nKpVQKBTWKq3PPTL4fvgovbG7cD9O6zPFLoeIiKhfsVqYiYmJgU6nQ2JiIt544w0sXboUqamp2LZt\n23W3Kysrg1qttlZZolBIFXha9zhkEhm+yPwK1c1M4URERL1FMNv51e+s2Z7r7fbfroJ9WHtuPSLV\n4fjViKchEayWJfs9tmZtE8fFdnFsbBPHpedEmWaia00OGIcoz6HIrDiLXQX7xC6HiIioX2CY6UOC\nIGBe5Gy4KFT4NmczCmqLxC6JiIjI7jHM9DEXhQpzI2fDaDZiVfpqNBtbxC6JiIjIrjHMiEDnORT3\nBk5ASUMZ/ntuvdjlEBER2TWGGZH8PCwBASo/7C8+hGOlp8Quh4iIyG4xzIhELpFhvu5xyCVyrM5a\ni8qmKrFLIiIisksMMyLyUWrx6JCfo8HQiM8y1sBkNoldEhERkd1hmBHZWL9YjNQMQ3bVBXyft0vs\ncoiIiOwOw4zIBEHA4xEz4e7gho0XtuFCdZ7YJREREdkVhhkboJQ748moRJjNZqxKX4NGQ5PYJRER\nEdkNhhkbEe4RhmmD7kF5UwVSzqwTuxwiIiK7wTBjQ6aHxCHYNQiHS47i0KWjYpdDRERkFxhmbIhU\nIsV83WNwlDog5cw3KGsoF7skIiIim8cwY2O8nDwxe+gMNBmb8VnGGhhNRrFLIiIismkMMzYo1icG\nd3qPQm5NPjZd2CZ2OURERDaNYcZGzR46A56OamzN24VzlTlil0NERGSzGGZslJPMEfN1j0EQBHyW\n8SXqWxvELomIiMgmMczYsBC3QbgvJA5VzdVYnbUWZrNZ7JKIiIhsDsOMjfvZoHsw2D0Ex8tO48fi\nQ2KXQ0REZHMYZmycRJDgqajH4CRzwtfn1uNSfanYJREREdkUhhk74OHojscjHkGrqRWr0lej1WQQ\nuyQiIiKbwTBjJ2K00RjrG4vCumKsz9ksdjlEREQ2g2HGjswM/zm8nTXYWfAD0svPiF0OERGRTWCY\nsSMOUgXm6x6HVJDii4wU1LTUil0SERGR6Bhm7Eygiz8eDEtAbWsdvsj8iqdrExHRgMcwY4fuCRyP\nSHU4MsrPYHfhfrHLISIiEhXDjB2SCBLMjZwNlVyJddkbUVR3UeySiIiIRMMwY6fcHFwwN3IWDGYj\nPk1fjRZji9glERERiYJhxo4N84rE5IBxuFRfgv9mbxC7HCIiIlEwzNi5h8Kmw0/pg31FaThRdlrs\ncoiIiPocw4ydk0vlmK97HHKJDP/JXIuq5mqxSyIiIupTDDP9gJ/KBw8PfgD1hgZ8nv4lTGaT2CUR\nERH1GYaZfmKC/92I9tLhbFUOtufvEbscIiKiPsMw008IgoA5ETPhpnDFd+e3IrcmX+ySiIiI+gTD\nTD+iUigxL2o2zGYzVqWvQZOhSeySiIiIrI5hpp+JUA/B1KBJ0DeW46uz34pdDhERkdUxzPRD94f+\nDEEuATh46SccuXRM7HKIiIisimGmH5JJZJivewwKqQJrznyD8sYKsUsiIiKyGoaZfkrrrMGs8IfQ\nZGzCZxlrYDQZxS6JiIjIKqwaZpKTkzF79mwkJibi5MmTXa6zcuVKzJ071/J6/fr1+PnPf46HH34Y\nu3fvtmZ5/d7dPqMxWjsC56vzsDl3u9jlEBERWYXVwsyhQ4eQl5eHlJQULF++HMuXL79mnezsbBw+\nfNjyurKyEu+//z5Wr16Nf/zjH9ixY4e1yhsQBEFA4tCHoXb0wObcHXj/+Ce4UJ0ndllERES9ymph\n5sCBA5g6dSoAICwsDNXV1airq+u0zooVK7Bo0aJO24wZMwYqlQparRavv/66tcobMJzlTvhl9HyE\newxGRsUZvPXT++2hhtehISKi/kFmrR3r9XrodDrLa7VajbKyMqhUKgBAamoqYmNj4e/vb1mnsLAQ\nTU1N+MUvfoGamhq88MILGDNmjLVKHDD8VD5YOOo5nKvMwaYL25FRcQYZFWcQ5TkU04PjEOIWJHaJ\nREREt8xqYeZqZrPZ8ryqqgqpqalYtWoVSkpKOq1XVVWF9957D8XFxZg3bx527doFQRC63a+HhzNk\nMqnV6tZoXKy2776m0YzE2PCRyCg9i6/TNyK99Awyys9glK8Oj+rux2DPYLFLvCn9aWz6E46L7eLY\n2CaOy+2zWpjRarXQ6/WW16WlpdBoNACAtLQ0VFRUYM6cOWhpaUF+fj6Sk5MxdOhQjBo1CjKZDEFB\nQVAqlaioqICnp2e3n1NZ2WCtrwCNxgVlZbVW279YNIIvfjXsWZytzMGmC9tw7GI6jl1Mh84zAtND\npiLY1fY7Nf11bOwdx8V2cWxsE8el564X+qx2zMy4ceOwdetWAEB6ejq0Wq1liik+Ph6bNm3CV199\nhffeew86nQ5JSUkYP3480tLSYDKZUFlZiYaGBnh4eFirxAEv3CMML8b8AgtH/S+GuIcivTwLfz7y\nHv5+4lPe24mIiOyG1TozMTEx0Ol0SExMhCAIWLp0KVJTU+Hi4oK4uLgut/H29sa0adMwa9YsAMAr\nr7wCiYSXwrG2cI8whHuE4WxlDjZe+B7p5VlIL8/CMM8ITA+JwyDXQLFLJCIi6pZg7ngwix2yZntu\noLb/Loea7KoLAGCToWagjo2t47jYLo6NbeK49Nz1ppn67ABgsh/hHmEY4v4LnKvKwYbz23C6PAun\ny7MwzDMS00Om2lSoISIiYpihLgmCgHCPwVgUc2X66XR5Jk6XZ2KYZyTuC4lDkGuA2GUSERExzND1\nCYKAoerBnY6puRxqhntFYnowQw0REYmLYYZ6pGOoOVOZjY0XtuGUPhOn9JkY7hWF6SFTEeTCUENE\nRH2PYYZuiiAIiFAPwVCPwR1CTQZO6TMYaoiISBQMM3RLrg0131tCTbSXDtNDpiLQxf/GOyIiIrpN\nDDN0W7oKNSf16TipT2eoISKiPsEwQ72iY6jJqjyHjee3WULNCC8dEkLiEOjiJ3aZRETUDzHMUK8S\nBAGR6nBEeAyxhJoT+nScYKghIiIrYZghq+gUairOYeOF76+EGs0wJARPZaghIqJewTBDViUIAiI9\nwxGh7hBqyk7jRNlpjNAMw/TgqQhgqCEiotvAMEN9omOoyaw4i40XtllCzcj2Tg1DDRER3QqGGepT\ngiAgynMoItXhllBzvOw0jreHmukhcfBX+YpdJhER2RGGGRJFx1CTUXEWmzqFmuGYHjKVoYaIiHqE\nYYZEJQgCdJ5DEdUeajZe+B7Hy07heNkpjNIMRwJDDRER3QDDDNmEzqHmDDZe2IZjZadwjKGGiIhu\ngGGGbEpbqIlAlHpoW6g53yHUaKMxPXgq/FQ+YpdJREQ2hGGGbFLHUJNenoVNF7bjWOlJHCs9iVGa\n4RgbEgN3eMLbWQOpRCp2uUREJCKGGbJpgiBgmFckdJ4RSC/P6jT9BAByiQx+Sl8EuvghwMUfgS5+\n8FP6QiGVi1w5ERH1FYYZsgsdQ01uTQEqzGXIvHgehbVFKKwrRl5tgWVdiSCBj7MWAS5+CHTxR6DK\nDwEufnCSOYn4DYiIyFoYZsiuCIKAELcgxGp0GO0+GgBgMBlwsb4EBbXFKKwrQkFtEQrrLqK4/hIO\nXTpq2dbLybM92LR1cAJd/OGqcBHrqxARUS9hmCG7J5PI2jowLv4A7gQAmMwmlDXoUVBX3BZuaotR\nUFfUaYoKANwULu3hxt8SdDwdPSAIgkjfhoiIbhbDDPVLEkECb6UW3kot7vAeCQAwm82obK5q6+DU\nFqGgrggFtcVIL89CenmWZVsnmZNlaupySPJ21kAiSMT6OkREdB0MMzRgCIIAtaMH1I4eGKHRWZbX\nttRZOjeFtW2dnLNVOThblWNZRy6RI0Dl29bFaQ86fkofyHmgMRGR6BhmaMBzUagQ6RmOSM9wy7Im\nQxMK6y5awk1BXRHyagtxoSbfso5EkMBX6Y1Alb+lixOg8oWjzFGMr0FENGAxzBB1wVHmiMHuIRjs\nHmJZ1moy4GLdpU4dnMK6iyiquwhcurKt1smrLdyo2qaoAlz84KJQifAtiIgGBoYZoh6SS2QIcg1A\nkGuAZZnJbEJpQxnyLQcZtx2Pc7T0JI6WnrSs5+7g1nYtHNWVM6k8HNx5oDERUS9gmCG6DRJBAh+l\nN3yU3oj1iQHQdqBxRVOlJdgU1LYdaHxKn4lT+kzLtkqZMwJc/BDlORRjfe+Es9xZrK9BRGTXGGaI\nepkgCPB0UsPTSY2RmmGW5TUttR3OpGp7PFOZjTOV2dh4/nvc5XsHJgeMg49SK2L1RET2h2GGqI+4\nKlyg8xwKnedQy7K61nqkXTyC3QX78UPRAfxQdABR6qGYHDgekeohPB2ciKgHGGaIRKSSKzE1aBLu\nCRiPk/oM7CrYh4yKM8ioOANvZw0mB4xDrM9oOMocxC6ViMhmMcwQ2QCpRIpR2uEYpR2Ogtoi7CrY\nh59KjiPl7DqsP78FY31jMSlgLDyd1GKXSkRkcwSz2WwWu4jbUVZWa7V9azQuVt0/3bqBMDY1LbXY\nV5SGvUUHUNtSBwECRmh0mBwwHoPdQ2zyTKiBMC72imNjmzguPafRdH8vPXZmiGyUq8IF00PiEDfo\nHhwtOYHdhftwvOw0jpedRoDKD5MDx+MO7QhehZiIBjyGGSIbJ5fIcJfvaMT6xOB8dR52Fe7DibLT\n+HfmV1iXvRET/O/GBP8xcHNwFbtUIiJRMMwQ2QlBEBDmHoww92BUNFVib+EB7C8+iM25O/B93m7E\naEfgnsBxGOQaKHapRER9imGGyA6pHT3w0ODpSAiZikOXjmJ34X4cLjmKwyVHEeo2CJMDxmOkZhik\nEqnYpRIRWR3DDJEdc5AqMMH/boz3uwtZleewu2AfTpdn4Xx1Htwd3DDJfyzG+sdCJVeKXSoRkdUw\nzBD1A4IgIFIdjkh1OEobyrC78EekXTyMb89vxqbc7Yj1icHkgHHwU/mIXSoRUa9jmCHqZ7TOGswK\nfxAPhP4MB4oPY3fhj9hffBD7iw8iwmMIJgeOg84zglcXJqJ+w6phJjk5GSdOnIAgCEhKSkJ0dPQ1\n66xcuRLHjx/HF198gYMHD2LhwoUYMmQIACA8PBxLliyxZolE/ZaTzAn3Bk3E5MDxOKXPxO6Cfciq\nPIesynPQOHliUsA4jPG9A44yR7FLJSK6LVYLM4cOHUJeXh5SUlKQk5ODpKQkpKSkdFonOzsbhw8f\nhlx+5ToZsbGx+Nvf/matsogGHIkgwQiNDiM0OhTVXcSugn04XHIMa8+tx4bz32OMX9sNLr2cPMUu\nlYjollitz3zgwAFMnToVABAWFobq6mrU1dV1WmfFihVYtGiRtUogoqv4q3zxROSjeGNsEh4InQYH\nqQK7CvZh2YE/4R8nP2V+xmcAAA/6SURBVMOZimzY+UXBiWgAslpnRq/XQ6fTWV6r1WqUlZVBpVIB\nAFJTUxEbGwt/f/9O22VnZ+MXv/gFqqur8fzzz2PcuHHX/RwPD2fIZNY7/fR6l08mcXFsbp0GLgj1\nfwiPjX4AaQVHsfnsTpzSZ+CUPgNBbv5IGDIZEwbFQiFT3Py+OS42i2Njmzgut6/PDgDu+K+9qqoq\npKamYtWqVSgpKbEsDw4OxvPPP4+EhAQUFBRg3rx5+P7776FQdP8LtbKywWo1854Ztotj03uGOkdg\n6MgIXKjOw66CfThWdgr/PPIf/PvENxjvdzcmBoyBu4Nbj/bFcbFdHBvbxHHpOVHuzaTVaqHX6y2v\nS0tLodFoAABpaWmoqKjAnDlz0NLSgvz8fCQnJyMpKQnTp08HAAQFBcHLywslJSUIDOQVTYmsLcRt\nEELcBqGquRp7Cw9gX3EatubtxLb83RilGY57AscjxG2Q2GUSEV3DamFm3LhxePfdd5GYmIj09HRo\ntVrLFFN8fDzi4+MBAIWFhVi8eDGSkpKw/v+3d++xUZR7H8C/s/dr291tt7RvKdLiOUjxAsj7viKo\nR0FPNJEIamtl9Q9jYoh/aMDYVLEYjUlJTIxCUKPmkBpfqoCKr4pXauqxqEd5kVO5tVZD6b27vexu\n9zK78/6x2+1ub1RKOzv0+0nIzjw70/4msy3fPs/MPAcPoru7Gw899BC6u7vR29uL3NzcmSqRiMaR\npc/EncV/x98vuwX/6jyKw2e/xU9dx/BT1zEsyJiPvxWsxjLnldCo+GQHIkoPM/bbaPny5SgpKUFZ\nWRkEQUBVVRUOHDgAq9WKdevWjbvPzTffjK1bt+Krr75COBzG9u3bJx1iIqKZo1NrsSr/P3Fd3kqc\n6WvG12e/xb97TuAfv/4P3m/6X9xQsArX5/8XrDqL3KUS0RwnSAq/dWEmxxo5lpm+eG7k0e3vxTfn\n/omGtn8hEAlAo9JgZe4y/G3+avyHJW/WzktUikKMihCjEUSkSNKyiHD8VYzG2mPvT7Q8sp8YjUCU\nRESisW2iiCJLlwG70QaHwQ6HwQ6bIVOxPVL8mUlPPC9TN9k1Mwwzk+CHLH3x3MgrIAZwpP0n1LV+\ni+6hXgDA5VlFuKn4v+HzBiFKEUSiqQEhnAgKYvz9SZbj4SISbxsdPiTI82tLgIBMfQYcBhvsBjsc\nRlt82Zb2YYc/M+mJ52XqGGYuED9k6YvnJj1EpSh+7T2Fw/GnC0+XAAEalQYalRpqQR1bFtRQx9s0\nggZqlRqa+HuTL4/aJ/G1JlrWpOwvAOgLDqA34IF7yI3egAe9ATd6hzzoC/aPG6iSw47DaB8JPQYb\nHEYbbPos2WYy589MeuJ5mTpZ7mYiokufSlBhafYVWJp9Bdp9neiNdsHvC8cCgaAeFSZGAoZ6OGgk\ntoutp9t8UU5TzrjtkWgEnmA/3PFw0xvwwJ0Udn7r/wPN/b+P2U+AgCx9ZqwnJ9GrY0+EH5s+U7aw\nQ6RkDDNEdFHkmXNxVc6iOfFXplqlRrbRjmyjHbCNfV+MiugL9icFnXjPzlAs9PzW/zua+1vG7Dcc\ndhzx63Riw1ex4GM3MOwQTYRhhojoItOoNMg2Oiac72p02Bnu0RkOPc19v6MJ5w87DoMN9vhwlsNg\nQxbDDs1RDDNERLNsKmHHE+hHb8AdH77yTCnsqARVLOwkLkoeCTtqy2WQJBUEQZjpwyOadQwzRERp\nRqPSIMfkQI5p/LATjorwBPoS1+m4Ez08sWGspr4WSPgtdaejgFFjRL45F3nmXOSZ5yHfEnvls4JI\n6RhmiIgURqvSwGnKhtOUPe77o8NOz5AbfaIHv3tax7042aI1JwJO3nDYseTCojXPwtEQTR/DDBHR\nJWa8sDN8C3A4EkaHvxvtvg60+zpj/7wdaOprwZm+1N6cDJ01EW7yzfOQZ4ktGzXG2T4kokkxzBAR\nzSFatRbzrfmYb81PaQ9FQujwdaHd14m2pKBzytOEU56mlG2z9JkjPTjx4ap5plwYNPrZPBSiBIYZ\nIiKCTq1DYUYBCjMKUtoDYgDt8ZCT3Jtzwn0aJ9ynU7a1G2wjvTjxsDPP7IROzTn2aGYxzBAR0YQM\nGgMWZhZiYWZhSrs/PDQm4LT5OtDYexKNvScT2wkQ4DDaU4erzLnINeVAq9bO9uHQJYphhoiI/jST\n1ojirMtQnHVZSrs37EO7t3NM0Dne8yuO9/ya2E6AAKcpO2m4KjZk5TRlp+38VpS++IkhIqKLxqI1\n43JbES63FaW0D4a8aPN2pIScNl8nOv3d+L/ufye2UwkqOE05KbeQ55lzkWN08IGANCGGGSIimnFW\nnQV/tS/CX+2LEm2SJKE/NJC4oypxd5WvEx2+zpT9NYIauWYn8sy5yDY6YFDroVfrYdDooVfroE9a\nj70Xa2MAmhsYZoiISBaCEJueIUufiSvsf0m0S5IET7Av6dbx2PU4Hb5OnPO2/6nvoVFpUsLNRAFI\nH9/GoNZDP3o9aR+tSsunKKchhhkiIkorgiDAHp+SocSxONEelaJwxx8GGIwEERSDCEZCCESCCEaC\n8dfQmPbhdU+wH8FIEFEpeuG1QZggACWFo+HwpEldH9lnJBxFo3ww4cXAMENERIqgElQjs5VfIEmS\nIEbFkeAzHIQmCECTrfvCPrgDHoSj4Wkdl0ljhEVnhkVrgVVrTizHXs2wJi1btGbeBTYOhhkiIpoz\nBEGAVq2FVq2F9SJ9zUg0glA0lAhEUw5IkSAiggiPfwDekA/d/l5IkM77/fRqXSLsWLWpwceiGxWI\ntGbo1bpLfmiMYYaIiGga1Co1jCrjBU3zMDzNBBAbRvOLQ/CGfPCGffCGvBgM++Lr3nibD4NhL7wh\nH1oH2xCRIuf9HlqVJh5sTLDoLPHQM35PkFVrhlFjVFz4YZghIiJKAypBlRhKmgpJkhCIBDCYFH68\nYX8s+MTbBpOWO/3dOOtt+1N1pPb0jLQNL1t1Fpi1JqgE1XQPf1oYZoiIiBRIEAQYNbEeISfGn0F9\ntFAkFA8/Y3t6vGFfIggNhn1wB/rQ5us4fx0QYNIaYdVacPvCdViRe/V0D+1PY5ghIiKaI3RqHRxG\nHRxG25S2D0dF+BJDXUlDX4meIF+iZ8gX9mMgNDjDRzA+hhkiIiIal1alSTwLKJ3JO8hFRERENE0M\nM0RERKRoDDNERESkaAwzREREpGgMM0RERKRoDDNERESkaAwzREREpGgMM0RERKRoDDNERESkaAwz\nREREpGgMM0RERKRoDDNERESkaAwzREREpGiCJEmS3EUQERERXSj2zBAREZGiMcwQERGRojHMEBER\nkaIxzBAREZGiMcwQERGRojHMEBERkaIxzIzjhRdeQGlpKcrKyvDLL7/IXQ4l2bFjB0pLS7Fx40Z8\n/vnncpdDowQCAaxduxYHDhyQuxRKcvDgQdx5553YsGED6urq5C6HAPh8Pjz66KNwuVwoKytDfX29\n3CUpmkbuAtLNDz/8gD/++AO1tbVobm5GZWUlamtr5S6LABw5cgRnzpxBbW0tPB4P7rrrLtx6661y\nl0VJdu/ejczMTLnLoCQejwe7du3C/v374ff78corr+Cmm26Su6w57/3338fChQuxZcsWdHZ24sEH\nH8ShQ4fkLkuxGGZGaWhowNq1awEAxcXF6O/vh9frhcVikbkyWrlyJa666ioAQEZGBoaGhhCJRKBW\nq2WujACgubkZTU1N/I8yzTQ0NOC6666DxWKBxWLBc889J3dJBMBms+HUqVMAgIGBAdhsNpkrUjYO\nM43S09OT8qGy2+3o7u6WsSIaplarYTKZAAD79u3DDTfcwCCTRqqrq1FRUSF3GTRKa2srAoEAHnnk\nEZSXl6OhoUHukgjAHXfcgba2Nqxbtw6bNm3Ck08+KXdJisaemfPgbA/p58svv8S+ffvw1ltvyV0K\nxX3wwQe45pprMH/+fLlLoXH09fVh586daGtrwwMPPIDDhw9DEAS5y5rTPvzwQ+Tn5+PNN9/EyZMn\nUVlZyWvNpoFhZhSn04menp7EeldXF3JycmSsiJLV19fj1VdfxRtvvAGr1Sp3ORRXV1eHs2fPoq6u\nDh0dHdDpdJg3bx5WrVold2lznsPhwLJly6DRaFBYWAiz2Qy32w2HwyF3aXPazz//jNWrVwMAFi9e\njK6uLg6bTwOHmUa5/vrr8dlnnwEAGhsb4XQ6eb1MmhgcHMSOHTvw2muvISsrS+5yKMlLL72E/fv3\n491338U999yDzZs3M8ikidWrV+PIkSOIRqPweDzw+/28PiMNLFiwAMeOHQMAnDt3DmazmUFmGtgz\nM8ry5ctRUlKCsrIyCIKAqqoquUuiuE8++QQejwePPfZYoq26uhr5+fkyVkWU3nJzc3Hbbbfh3nvv\nBQA8/fTTUKn4d6zcSktLUVlZiU2bNkEURWzfvl3ukhRNkHhRCBERESkY4zkREREpGsMMERERKRrD\nDBERESkawwwREREpGsMMERERKRrDDBHNmtbWVixduhQulysxW/CWLVswMDAw5a/hcrkQiUSmvP19\n992H77///kLKJSKFYJgholllt9tRU1ODmpoa7N27F06nE7t3757y/jU1NXy4GBGl4EPziEhWK1eu\nRG1tLU6ePInq6mqIoohwOIxnnnkGS5YsgcvlwuLFi3HixAns2bMHS5YsQWNjI0KhELZt24aOjg6I\nooj169ejvLwcQ0NDePzxx+HxeLBgwQIEg0EAQGdnJ7Zu3QoACAQCKC0txd133y3noRPRRcIwQ0Sy\niUQi+OKLL7BixQo88cQT2LVrFwoLC8dMvGcymfD222+n7FtTU4OMjAy8+OKLCAQCuP3227FmzRp8\n9913MBgMqK2tRVdXF2655RYAwKeffoqioiI8++yzCAaDeO+992b9eIloZjDMENGscrvdcLlcAIBo\nNIprr70WGzduxMsvv4ynnnoqsZ3X60U0GgUQm2ZktGPHjmHDhg0AAIPBgKVLl6KxsRGnT5/GihUr\nAMQmji0qKgIArFmzBu+88w4qKipw4403orS0dEaPk4hmD8MMEc2q4Wtmkg0ODkKr1Y5pH6bVase0\nCYKQsi5JEgRBgCRJKXMPDQei4uJifPzxx/jxxx9x6NAh7NmzB3v37p3u4RBRGuAFwEQkO6vVioKC\nAnzzzTcAgJaWFuzcuXPSfa6++mrU19cDAPx+PxobG1FSUoLi4mIcPXoUANDe3o6WlhYAwEcffYTj\nx49j1apVqKqqQnt7O0RRnMGjIqLZwp4ZIkoL1dXVeP755/H6669DFEVUVFRMur3L5cK2bdtw//33\nIxQKYfPmzSgoKMD69evx9ddfo7y8HAUFBbjyyisBAIsWLUJVVRV0Oh0kScLDDz8MjYa/AokuBZw1\nm4iIiBSNw0xERESkaAwzREREpGgMM0RERKRoDDNERESkaAwzREREpGgMM0RERKRoDDNERESkaAwz\nREREpGj/Dw1t8Mv7UhvFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "wCugvl0JdWYL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a possible solution." + ] + }, + { + "metadata": { + "id": "VHosS1g2aetf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "One possible solution that works is to just train for longer, as long as we don't overfit. \n", + "\n", + "We can do this by increasing the number the steps, the batch size, or both.\n", + "\n", + "All metrics improve at the same time, so our loss metric is a good proxy\n", + "for both AUC and accuracy.\n", + "\n", + "Notice how it takes many, many more iterations just to squeeze a few more \n", + "units of AUC. This commonly happens. But often even this small gain is worth \n", + "the costs." + ] + }, + { + "metadata": { + "id": "dWgTEYMddaA-", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000003,\n", + " steps=20000,\n", + " batch_size=500,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n", + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From 50662cb735a05d3e1184f048e51c53680256444d Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sun, 24 Feb 2019 02:39:24 +0530 Subject: [PATCH 10/11] Created using Colaboratory --- ...classification_of_handwritten_digits.ipynb | 2378 +++++++++++++++++ 1 file changed, 2378 insertions(+) create mode 100644 multi_class_classification_of_handwritten_digits.ipynb diff --git a/multi_class_classification_of_handwritten_digits.ipynb b/multi_class_classification_of_handwritten_digits.ipynb new file mode 100644 index 0000000..38b8328 --- /dev/null +++ b/multi_class_classification_of_handwritten_digits.ipynb @@ -0,0 +1,2378 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "multi-class_classification_of_handwritten_digits.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "266KQvZoMxMv", + "6sfw3LH0Oycm" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mPa95uXvcpcn", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Classifying Handwritten Digits with Neural Networks" + ] + }, + { + "metadata": { + "id": "Fdpn8b90u8Tp", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png)" + ] + }, + { + "metadata": { + "id": "c7HLCm66Cs2p", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set\n", + " * Compare the performance of the linear and neural network classification models\n", + " * Visualize the weights of a neural-network hidden layer" + ] + }, + { + "metadata": { + "id": "HSEh-gNdu8T0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class." + ] + }, + { + "metadata": { + "id": "2NMdE1b-7UIH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random." + ] + }, + { + "metadata": { + "id": "4LJ4SD8BWHeh", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 231 + }, + "outputId": "9d4c07a8-024b-4f4f-e0b4-4b295eae6514" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import glob\n", + "import math\n", + "import os\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "mnist_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_train_small.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "# Use just the first 10,000 records for training/validation.\n", + "mnist_dataframe = mnist_dataframe.head(10000)\n", + "\n", + "mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index))\n", + "mnist_dataframe.head()" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...775776777778779780781782783784
63027000000000...0000000000
2861000000000...0000000000
47033000000000...0000000000
23231000000000...0000000000
30621000000000...0000000000
\n", + "

5 rows × 785 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 ... 775 776 777 \\\n", + "6302 7 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "286 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "4703 3 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "2323 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "3062 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "\n", + " 778 779 780 781 782 783 784 \n", + "6302 0 0 0 0 0 0 0 \n", + "286 0 0 0 0 0 0 0 \n", + "4703 0 0 0 0 0 0 0 \n", + "2323 0 0 0 0 0 0 0 \n", + "3062 0 0 0 0 0 0 0 \n", + "\n", + "[5 rows x 785 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "id": "kg0-25p2mOi0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes." + ] + }, + { + "metadata": { + "id": "PQ7vuOwRCsZ1", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png)" + ] + }, + { + "metadata": { + "id": "dghlqJPIu8UM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72." + ] + }, + { + "metadata": { + "id": "2ZkrL5MCqiJI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 415 + }, + "outputId": "ffe2517d-b85e-46b1-9b27-87f9bfdb2025" + }, + "cell_type": "code", + "source": [ + "mnist_dataframe.loc[:, 72:72]" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
72
63020
2860
47030
23230
30620
......
41520
12010
86980
28930
86700
\n", + "

10000 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " 72\n", + "6302 0\n", + "286 0\n", + "4703 0\n", + "2323 0\n", + "3062 0\n", + "... ..\n", + "4152 0\n", + "1201 0\n", + "8698 0\n", + "2893 0\n", + "8670 0\n", + "\n", + "[10000 rows x 1 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "vLNg2VxqhUZ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set." + ] + }, + { + "metadata": { + "id": "JfFWWvMWDFrR", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def parse_labels_and_features(dataset):\n", + " \"\"\"Extracts labels and features.\n", + " \n", + " This is a good place to scale or transform the features if needed.\n", + " \n", + " Args:\n", + " dataset: A Pandas `Dataframe`, containing the label on the first column and\n", + " monochrome pixel values on the remaining columns, in row major order.\n", + " Returns:\n", + " A `tuple` `(labels, features)`:\n", + " labels: A Pandas `Series`.\n", + " features: A Pandas `DataFrame`.\n", + " \"\"\"\n", + " labels = dataset[0]\n", + "\n", + " # DataFrame.loc index ranges are inclusive at both ends.\n", + " features = dataset.loc[:,1:784]\n", + " # Scale the data to [0, 1] by dividing out the max value, 255.\n", + " features = features / 255\n", + "\n", + " return labels, features" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mFY_-7vZu8UU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 343 + }, + "outputId": "5d126d0d-19ca-4edd-ca1f-649ee37757f4" + }, + "cell_type": "code", + "source": [ + "training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500])\n", + "training_examples.describe()" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count7500.07500.07500.07500.07500.07500.07500.07500.07500.07500.0...7500.07500.07500.07500.07500.07500.07500.07500.07500.07500.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...1.01.00.80.21.00.20.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 10 \\\n", + "count 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ... 775 776 777 778 779 780 781 782 783 \\\n", + "count ... 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 \n", + "mean ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max ... 1.0 1.0 0.8 0.2 1.0 0.2 0.0 0.0 0.0 \n", + "\n", + " 784 \n", + "count 7500.0 \n", + "mean 0.0 \n", + "std 0.0 \n", + "min 0.0 \n", + "25% 0.0 \n", + "50% 0.0 \n", + "75% 0.0 \n", + "max 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "id": "4-Vgg-1zu8Ud", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 343 + }, + "outputId": "9af7b31e-5a99-4d46-fa03-ad0230daf6a9" + }, + "cell_type": "code", + "source": [ + "validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000])\n", + "validation_examples.describe()" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count2500.02500.02500.02500.02500.02500.02500.02500.02500.02500.0...2500.02500.02500.02500.02500.02500.02500.02500.02500.02500.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...0.91.00.30.00.00.00.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 10 \\\n", + "count 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ... 775 776 777 778 779 780 781 782 783 \\\n", + "count ... 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 \n", + "mean ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max ... 0.9 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " 784 \n", + "count 2500.0 \n", + "mean 0.0 \n", + "std 0.0 \n", + "min 0.0 \n", + "25% 0.0 \n", + "50% 0.0 \n", + "75% 0.0 \n", + "max 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "metadata": { + "id": "wrnAI1v6u8Uh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Show a random example and its corresponding label." + ] + }, + { + "metadata": { + "id": "s-euVJVtu8Ui", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 361 + }, + "outputId": "ba9c9ff9-a298-4b57-ca82-3a7b966615d2" + }, + "cell_type": "code", + "source": [ + "rand_example = np.random.choice(training_examples.index)\n", + "_, ax = plt.subplots()\n", + "ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28))\n", + "ax.set_title(\"Label: %i\" % training_targets.loc[rand_example])\n", + "ax.grid(False)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFXCAYAAAAro2x+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFCNJREFUeJzt3X1MlfX/x/HX6ZyYICiJwuKPsiUW\nM2u1dIJZAs7CzbxZm4piZVtaYRI5Yy6tRYWiWVGZyNKt6OYs3Mp1B5HdOAc0nLOwNczKyJIQT94k\nJiDfP37r7MdX+vLmdA7X4fR8/FWHdxefa9d67jocPheu7u7ubgEA/qeLnF4AAAwGxBIADIglABgQ\nSwAwIJYAYEAsAcCAWGLAXHXVVTp69Gi//pvMzEw1NDT0678pLCzU5s2b+5zbsWOHZsyYoezsbN19\n99364Ycf+vV98O9CLPGvdOjQIZWUlGj79u368MMPNX36dK1evdrpZSGMEUs4rr29Xfn5+br11luV\nmZmp9evX9/h6XV2dZs+erVtuuUXPPvus//WamhrNnDlTWVlZWrJkiY4fP37BsZ955hm9+eabF7x+\n6NAhjR49WklJSZKkSZMm6eDBg0E+M0QSj9MLAN5880398ccf+uijj3Ty5ElNnz5dWVlZuvHGGyVJ\nBw4c0I4dO/T7778rOztb2dnZGjp0qFatWqW33npLY8eOVVlZmR5//HGVlpb2OPbDDz/c6/e87rrr\n9NNPP6mpqUkpKSmqrq5Wenp6yM8VgxexhOOWLFmi3NxcuVwuDR8+XCkpKfr555/9sZw5c6bcbrcS\nEhI0YcIE7du3T+fPn9fEiRM1duxYSdL8+fM1efJkdXV1mb5nUlKSCgoKNHv2bA0dOlTR0dGqqKgI\n2Tli8COWcNyPP/6odevW6fvvv9dFF12ko0ePau7cuf6vjxgxwv/PcXFxOnnypLq7u9XQ0KDbbrvN\n/7XY2Fj9/vvvpu/5zTff6OWXX1ZNTY2Sk5P17rvv6r777tN7770nl8sVvJNDxCCWcNwTTzyhcePG\n6aWXXpLb7db8+fN7fP3EiRM9/nn48OGKiopSenr6BW+7rWpra3X99dcrOTlZkjRjxgytWrVKPp+v\nR5yBv/ABDxzX1tam1NRUud1u7dmzR4cPH9aZM2f8X3///fd1/vx5tbW1ae/evbrxxht10003qaGh\nQc3NzZKkr776Sk8++aT5e15xxRXat2+ffD6fJOnzzz/XqFGjdMkllwT35BAxuLPEgMrNzZXb7fb/\n+5NPPqn77rtPxcXF2rx5s7KyspSXl6fS0lKlpqZKksaPH6877rhDx48f15133qkxY8ZIkoqKivTA\nAw+oo6NDQ4cO7fVXf5555hklJydrwYIFPV7PzMzUgQMH/HexsbGxeu6553gLjr/l4nmWANA33oYD\ngAGxBAADYgkABo58wPP0009r//79crlcWr16ta699lonlhFU9fX1WrFihVJSUiRJY8eO1Zo1axxe\nVeCampp0//3366677tKiRYv066+/atWqVerq6tKoUaO0YcMGRUVFOb3MfvnvcyosLNSBAwcUHx8v\nSbrnnns0depUZxfZTyUlJdq7d686Ozu1dOlSjR8/ftBfJ+nC89q1a5fj12rAY/nll1/q8OHD8nq9\nOnTokFavXi2v1zvQywiJiRMnBvx7f+HkzJkzKioqUlpamv+10tJS5eTkKDs7W5s2bVJlZaVycnIc\nXGX/9HZOklRQUKCMjAyHVvXP1NXV6eDBg/J6vfL5fJozZ47S0tIG9XWSej+vSZMmOX6tBvxteG1t\nraZNmyZJuvLKK3XixAmdPn16oJeB/yEqKkrl5eVKTEz0v1ZfX6+srCxJUkZGhmpra51aXkB6O6fB\nbsKECXr++eclScOGDVN7e/ugv05S7+dl3cYaSgMey2PHjvX4xd8RI0aotbV1oJcREt99952WLVum\nBQsWaM+ePU4vJ2Aej0dDhgzp8Vp7e7v/7VxCQsKgu2a9nZMkVVRUaPHixXrooYd6fWpROHO73YqJ\niZEkVVZW6uabbx7010nq/bzcbrfj18rxX0qPlF/zHD16tPLy8pSdna3m5mYtXrxY1dXVg/LnRX2J\nlGs2a9YsxcfHKzU1VVu3btWLL76otWvXOr2sfqupqVFlZaW2bdum6dOn+18f7Nfp/59XY2Oj49dq\nwO8sExMTdezYMf+///bbbxo1atRALyPokpKSNGPGDLlcLl122WUaOXKkWlpanF5W0MTExOjs2bOS\npJaWloh4O5uWlubfJZSZmammpiaHV9R/u3fv1pYtW1ReXq64uLiIuU7/fV7hcK0GPJaTJ09WVVWV\npP97TmFiYqJiY2MHehlBt3PnTr3yyiuSpNbWVrW1tfkfLBsJ0tPT/deturpaU6ZMcXhF/9zy5cv9\ne8vr6+v9v8kwWJw6dUolJSUqKyvzf0ocCdept/MKh2vlyHbHjRs3qqGhQS6XS4899piuvvrqgV5C\n0J0+fVorV67UyZMn1dHRoby8PN1yyy1OLysgjY2NWr9+vY4cOSKPx6OkpCRt3LhRhYWF+vPPP5Wc\nnKzi4mJdfPHFTi/VrLdzWrRokbZu3aro6GjFxMSouLhYCQkJTi/VzOv16oUXXtAVV1zhf23dunV6\n9NFHB+11kno/r7lz56qiosLRa8XecAAwYAcPABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIA\nDIglABgE/NShSHzaOQD8nYBiGclPOweA3gT0NpynnQP4twkolpH8tHMA6E1QPuDhwUUAIl1AsYzU\np50DwN8JKJaR+rRzAPg7AX0afsMNN2jcuHGaP3++/2nnABDJeFI6ABiwgwcADIglABgQSwAwIJYA\nYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIgl\nABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANi\nCQAGxBIADDxOLwAIxKeffmqeXbJkiXm2oaHBNJeQkGA+JiIDd5YAYEAsAcCAWAKAAbEEAANiCQAG\nxBIADIglABgQSwAwIJYAYMAOHgxKbW1t5tnDhw+bZ2+//XbT3BdffGE+ptvtNs8ifHFnCQAGAd1Z\n1tfXa8WKFUpJSZEkjR07VmvWrAnqwgAgnAT8NnzixIkqLS0N5loAIGzxNhwADAKO5Xfffadly5Zp\nwYIF2rNnTzDXBABhJ6C34aNHj1ZeXp6ys7PV3NysxYsXq7q6WlFRUcFeHwCEhYDuLJOSkjRjxgy5\nXC5ddtllGjlypFpaWoK9NgAIGwHFcufOnXrllVckSa2trWpra1NSUlJQFwYA4SSgt+GZmZlauXKl\nPvnkE3V0dOjxxx/nLTiAiBZQLGNjY7Vly5ZgrwUAwparu7u72+lFAP119OhR82xycnLQv7/P5zPP\nDh8+POjfHwOP37MEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAG/HVHhNz5\n8+fNs99++61pbsyYMeZjvv766+bZhQsXmuY6OzvNx0Rk4M4SAAyIJQAYEEsAMCCWAGBALAHAgFgC\ngAGxBAADYgkABsQSAAzYwYOAfPHFF+bZTZs2mWd37txpmrv99tvNx+zPrFVsbGzQj4nwxp0lABgQ\nSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwYLsjeti8ebNp7oEHHjAf0+VymWe7\nu7tNc5MnTzYf8+qrrw769//hhx9C8v0RvrizBAADYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgFgC\ngAGxBAADYgkABmx3/Bc4duyYeXbFihWmuYKCAvMxH3vsMfOs1bBhw8yztbW15lnr1kyfz2c+JiKD\n6c6yqalJ06ZNU0VFhSTp119/VW5urnJycrRixQqdO3cupIsEAKf1GcszZ86oqKhIaWlp/tdKS0uV\nk5OjN954Q5dffrkqKytDukgAcFqfsYyKilJ5ebkSExP9r9XX1ysrK0uSlJGR0a+3OQAwGPX5M0uP\nxyOPp+dYe3u7oqKiJEkJCQlqbW0NzeoAIEz840/Drc//A4DBLKBYxsTE6OzZs5KklpaWHm/RASAS\nBRTL9PR0VVVVSZKqq6s1ZcqUoC4KAMJNnz+zbGxs1Pr163XkyBF5PB5VVVVp48aNKiwslNfrVXJy\nsmbPnj0QawUAx/QZy2uuuUavvfbaBa9v3749JAsCgHDEDp5/gc7OTvNsV1eXaW7MmDHmY/Zntw0Q\nrtgbDgAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADFzdPJAy4v31OD2L1NRU\n01xHR4f5mPv37zfPJiQkmGet7rzzTvPs22+/bZo7fvy4+ZhDhgwxzyJ8cWcJAAbEEgAMiCUAGBBL\nADAglgBgQCwBwIBYAoABsQQAA2IJAAbEEgAM2O6IHnr7s8e96c8WwnHjxplnd+zYYZobOXKk+ZiX\nXnqpefbBBx80zW3YsMF8TEQG7iwBwIBYAoABsQQAA2IJAAbEEgAMiCUAGBBLADAglgBgQCwBwIAd\nPAhIf/5g17x588yzNTU1pjnrThtJKi8vN8/u2bPHNHf99debj4nIwJ0lABgQSwAwIJYAYEAsAcCA\nWAKAAbEEAANiCQAGxBIADIglABgQSwAwYLsjQu7cuXPm2aeeeso0V1RUZD5mdHS0ebalpcU0Fxsb\naz4mIgN3lgBgYIplU1OTpk2bpoqKCklSYWGhZs6cqdzcXOXm5uqzzz4L5RoBwHGevgbOnDmjoqIi\npaWl9Xi9oKBAGRkZIVsYAISTPu8so6KiVF5ersTExIFYDwCEpT5j6fF4NGTIkAter6io0OLFi/XQ\nQw/169mGADAYBfQBz6xZs7Ry5Uq9+uqrSk1N1YsvvhjsdQFAWAkolmlpaUpNTZUkZWZmqqmpKaiL\nAoBwE1Asly9frubmZklSfX29UlJSgrooAAg3fX4a3tjYqPXr1+vIkSPyeDyqqqrSokWLlJ+fr+jo\naMXExKi4uHgg1goAjukzltdcc41ee+21C16/9dZbQ7IgAAhHbHdEWPn6669Nc1OnTjUf0+fzmWcL\nCgpMcyUlJeZjXnQRG+UiAVcRAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAY\nsN0RIdfe3m6eXb16tWnu5MmT5mNOmzbNPLtw4ULTXF1dnfmYEydONM8ifHFnCQAGxBIADIglABgQ\nSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGff51R6A3x48fN8/OmzfPPPvJJ5+Y5s6ePWs+ZldXl3l2\nzJgxprmPP/7YfEx28EQG7iwBwIBYAoABsQQAA2IJAAbEEgAMiCUAGBBLADAglgBgQCwBwIBYAoAB\n2x0RkLfeess8a93CKEnTp083zUVFRZmP2R/5+fmmuaefftp8zEceecQ86/Hwv2S44s4SAAyIJQAY\nEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAYsLcKAdm1a5d59tJLLzXPvvPOO4EsZ8D9\n8ssv5tm2tjbzbFJSUiDLwQAwxbKkpER79+5VZ2enli5dqvHjx2vVqlXq6urSqFGjtGHDhpDt1QWA\ncNBnLOvq6nTw4EF5vV75fD7NmTNHaWlpysnJUXZ2tjZt2qTKykrl5OQMxHoBwBF9/sxywoQJev75\n5yVJw4YNU3t7u+rr65WVlSVJysjIUG1tbWhXCQAO6zOWbrdbMTExkqTKykrdfPPNam9v97/tTkhI\nUGtra2hXCQAOM38aXlNTo8rKSq1du7bH693d3UFfFACEG1Msd+/erS1btqi8vFxxcXGKiYnR2bNn\nJUktLS1KTEwM6SIBwGl9xvLUqVMqKSlRWVmZ4uPjJUnp6emqqqqSJFVXV2vKlCmhXSUAOKzPT8M/\n+OAD+Xy+Ho/bX7dunR599FF5vV4lJydr9uzZIV0kADitz1jOmzdP8+bNu+D17du3h2RBABCO2MGD\nHs6dO2ea688fIZs/f755dsiQIebZUPD5fKa5v34kZREXFxfochBG2BsOAAbEEgAMiCUAGBBLADAg\nlgBgQCwBwIBYAoABsQQAA2IJAAbEEgAM2O6IHi6++GLTXG5urvmYmzdvNs+ePn3aNLdw4ULzMfft\n22eefeGFF0xzeXl55mP+9fBsDG7cWQKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKA\nAbEEAANXd3d3t9OLwODT0dFhni0tLTXPFhUVmeZOnDhhPqZ1C6ck3Xvvvaa5DRs2mI8ZHR1tnkX4\n4s4SAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAzYwQMABtxZAoABsQQAA2IJAAbE\nEgAMiCUAGBBLADAglgBgQCwBwIBYAoABsQQAA2IJAAYey1BJSYn27t2rzs5OLV26VLt27dKBAwcU\nHx8vSbrnnns0derUUK4TABzVZyzr6up08OBBeb1e+Xw+zZkzR5MmTVJBQYEyMjIGYo0A4Lg+Yzlh\nwgRde+21kqRhw4apvb1dXV1dIV8YAISTfj2izev1qqGhQW63W62trero6FBCQoLWrFmjESNGhHKd\nAOAocyxrampUVlambdu2qbGxUfHx8UpNTdXWrVt19OhRrV27NtRrBQDHmD4N3717t7Zs2aLy8nLF\nxcUpLS1NqampkqTMzEw1NTWFdJEA4LQ+Y3nq1CmVlJSorKzM/+n38uXL1dzcLEmqr69XSkpKaFcJ\nAA7r8wOeDz74QD6fT/n5+f7X5s6dq/z8fEVHRysmJkbFxcUhXSQAOI2/wQMABuzgAQADYgkABsQS\nAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGx\nBAADYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAYEEsAMPgPtHN3\nYGw4Nc0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ScmYX7xdZMXE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Build a Linear Model for MNIST\n", + "\n", + "First, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.\n", + "\n", + "You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?\n", + "\n", + "Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training." + ] + }, + { + "metadata": { + "id": "cpoVC4TSdw5Z", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " \n", + " # There are 784 pixels in each image.\n", + " return set([tf.feature_column.numeric_column('pixels', shape=784)])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kMmL89yGeTfz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls." + ] + }, + { + "metadata": { + "id": "OeS47Bmn5Ms2", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True):\n", + " \"\"\"A custom input_fn for sending MNIST data to the estimator for training.\n", + "\n", + " Args:\n", + " features: The training features.\n", + " labels: The training labels.\n", + " batch_size: Batch size to use during training.\n", + "\n", + " Returns:\n", + " A function that returns batches of training features and labels during\n", + " training.\n", + " \"\"\"\n", + " def _input_fn(num_epochs=None, shuffle=True):\n", + " # Input pipelines are reset with each call to .train(). To ensure model\n", + " # gets a good sampling of data, even when number of steps is small, we \n", + " # shuffle all the data before creating the Dataset object\n", + " idx = np.random.permutation(features.index)\n", + " raw_features = {\"pixels\":features.reindex(idx)}\n", + " raw_targets = np.array(labels[idx])\n", + " \n", + " ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " feature_batch, label_batch = ds.make_one_shot_iterator().get_next()\n", + " return feature_batch, label_batch\n", + "\n", + " return _input_fn" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "8zoGWAoohrwS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def create_predict_input_fn(features, labels, batch_size):\n", + " \"\"\"A custom input_fn for sending mnist data to the estimator for predictions.\n", + "\n", + " Args:\n", + " features: The features to base predictions on.\n", + " labels: The labels of the prediction examples.\n", + "\n", + " Returns:\n", + " A function that returns features and labels for predictions.\n", + " \"\"\"\n", + " def _input_fn():\n", + " raw_features = {\"pixels\": features.values}\n", + " raw_targets = np.array(labels)\n", + " \n", + " ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size)\n", + " \n", + " \n", + " # Return the next batch of data.\n", + " feature_batch, label_batch = ds.make_one_shot_iterator().get_next()\n", + " return feature_batch, label_batch\n", + "\n", + " return _input_fn" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "G6DjSLZMu8Um", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classification_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model for the MNIST digits dataset.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " a plot of the training and validation loss over time, and a confusion\n", + " matrix.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing the training features.\n", + " training_targets: A `DataFrame` containing the training labels.\n", + " validation_examples: A `DataFrame` containing the validation features.\n", + " validation_targets: A `DataFrame` containing the validation labels.\n", + " \n", + " Returns:\n", + " The trained `LinearClassifier` object.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + "\n", + " steps_per_period = steps / periods \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create a LinearClassifier object.\n", + " my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=construct_feature_columns(),\n", + " n_classes=10,\n", + " optimizer=my_optimizer,\n", + " config=tf.estimator.RunConfig(keep_checkpoint_max=1)\n", + " )\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss error (on validation data):\")\n", + " training_errors = []\n", + " validation_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute probabilities.\n", + " training_predictions = list(classifier.predict(input_fn=predict_training_input_fn))\n", + " training_probabilities = np.array([item['probabilities'] for item in training_predictions])\n", + " training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions])\n", + " training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10)\n", + " \n", + " validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn))\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) \n", + " validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions])\n", + " validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) \n", + " \n", + " # Compute training and validation errors.\n", + " training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_errors.append(training_log_loss)\n", + " validation_errors.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " # Remove event files to save disk space.\n", + " _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*')))\n", + " \n", + " # Calculate final predictions (not probabilities, as above).\n", + " final_predictions = classifier.predict(input_fn=predict_validation_input_fn)\n", + " final_predictions = np.array([item['class_ids'][0] for item in final_predictions])\n", + " \n", + " \n", + " accuracy = metrics.accuracy_score(validation_targets, final_predictions)\n", + " print(\"Final accuracy (on validation data): %0.2f\" % accuracy)\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.plot(training_errors, label=\"training\")\n", + " plt.plot(validation_errors, label=\"validation\")\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " # Output a plot of the confusion matrix.\n", + " cm = metrics.confusion_matrix(validation_targets, final_predictions)\n", + " # Normalize the confusion matrix by row (i.e by the number of samples\n", + " # in each class).\n", + " cm_normalized = cm.astype(\"float\") / cm.sum(axis=1)[:, np.newaxis]\n", + " ax = sns.heatmap(cm_normalized, cmap=\"bone_r\")\n", + " ax.set_aspect(1)\n", + " plt.title(\"Confusion matrix\")\n", + " plt.ylabel(\"True label\")\n", + " plt.xlabel(\"Predicted label\")\n", + " plt.show()\n", + "\n", + " return classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ItHIUyv2u8Ur", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**\n", + "\n", + "Stop if you get anything above about 0.9 accuracy." + ] + }, + { + "metadata": { + "id": "yaiIhIQqu8Uv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 2061 + }, + "outputId": "eba02600-6bd6-4344-ccfb-b0991dbcc202" + }, + "cell_type": "code", + "source": [ + "classifier = train_linear_classification_model(\n", + " learning_rate=0.02,\n", + " steps=100,\n", + " batch_size=10,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n", + "_ = train_linear_classification_model(\n", + " learning_rate=0.03,\n", + " steps=1000,\n", + " batch_size=30,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 13.90\n", + " period 01 : 12.32\n", + " period 02 : 8.04\n", + " period 03 : 8.26\n", + " period 04 : 6.52\n", + " period 05 : 7.56\n", + " period 06 : 7.31\n", + " period 07 : 6.62\n", + " period 08 : 6.37\n", + " period 09 : 6.47\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.81\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAFnCAYAAACLnxFFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xlc1HX+B/DXdy6OGRgGGG65BQTB\nu8S8j1DLtK3MLMrO7Vy32m2zrc2y+9xq9+duVlaaZZm6HSp55VWpoMklICDKzTDcDOfM/P5ABlFA\nUOYAXs/H4/fYH9/5zvf75iPNa76f7+f7+QhGo9EIIiIisnkiaxdAREREvcPQJiIiGiAY2kRERAME\nQ5uIiGiAYGgTERENEAxtIiKiAYKhTdQPwsPDUVJS0i/HKigoQGRkZL8cyxri4+MxefJkzJ07F3Fx\ncZg/fz4+++yzPh8nOTkZ9957b5/fFxkZiYKCgj6/j2ggkFi7ACIafP76179i4cKFAACNRoNbb70V\nQUFBmDp1aq+PERMTg48//thcJRINSLzSJjKjpqYm/OMf/0BcXBzmzZuH1157DXq9HgBw4MABTJs2\nDfPmzcPGjRsxduzYS14hVlVVYfny5aYr2A8//ND02rvvvou4uDjExcXhzjvvRGlpaY/b2+3btw8L\nFizotG3hwoXYv38/jhw5ghtvvBHz58/HvHnzsH379j63gVqtxty5c3Ho0CEAQHZ2Nu644w7ExcVh\nwYIFSElJAQAcPnwYS5YswfLly/Hkk0/i8OHDmDNnziXbcd++fZgzZw7mzZuHjz76yHTe+vp6PPLI\nI5g3bx5mzZqFZ599Fi0tLX2un8iWMLSJzOizzz5DSUkJfvzxR2zZsgWJiYn44YcfoNfr8fTTT+PF\nF1/E9u3bkZeXh4aGhkse75133oFSqURCQgI2bNiAL7/8EomJiTh16hR27NiBH374AQkJCZgzZw5+\n/fXXbrefLzY2FiUlJcjPzwcA5Ofno6SkBJMmTcLrr7+OFStWYNu2bVi9ejV27dp1We3Q2toKmUwG\ng8GARx55BAsXLkRCQgJWrlyJhx9+GK2trQCA9PR0LFmyBG+//Xav2/Hvf/87nn/+eWzfvh0ikcgU\n5lu3boWzszO2b9+OhIQEiMViZGdnX1b9RLaCoU1kRj///DMWL14MiUQCe3t7LFiwAIcOHUJeXh6a\nm5sxbdo0AG33gQ0GwyWPt2/fPixduhQA4OLigjlz5uDQoUNwdnZGRUUFvv/+e1RXVyM+Ph6LFi3q\ndvv5ZDIZZsyYgT179gAAdu3ahdmzZ0MikcDNzQ1bt25FTk4OAgMDLwrT3sjPz8eOHTswZ84c5Obm\nQqvV4uabbwYAjBs3Dq6urjh+/DgAwN7eHrGxsX1ux8mTJwMAbrzxRtN72o978OBBGAwGvPDCCxgx\nYkSf6yeyJQxtIjOqqKiAUqk0/axUKqHValFdXQ1nZ2fTdg8Pj14f7/z3OTs7Q6vVwtPTEx988AF2\n7NiB6dOn44EHHkBxcXG32y8UFxfXKbTnz58PAHjllVfg4OCAu+++G9deey127NjRqzrffPNN00C0\nJ554Ak8//TRiYmJQU1ODxsZGzJs3D3PnzsXcuXOh1WpRVVVlap/ufu/u2lGhUHTa3m7evHlYtmwZ\n3nvvPcTGxuKFF15Ac3Nzr+onslUMbSIzcnd3NwUS0HZP2t3dHQqFAjqdzrS9vLz8io4HABMnTsSH\nH36IQ4cOwdvbG2+99VaP2883ZcoUZGRkIC8vD3l5eZg4caLpfM899xz279+Pf/zjH1ixYgXq6+sv\nWedf//pX7NixAwkJCfjmm29MXwI8PDwgl8uxY8cO0/8dPHjQdO+6r7+3UqlEXV2daXtFRUWn9y1Z\nsgTffPMNtm3bhrS0NGzduvWStRPZMoY2kRlNnz4dmzZtgl6vh06nw//+9z9MmzYNgYGBaG1txeHD\nhwEAX375JQRB6NXxNm7cCKAtoHbu3Inp06fj4MGDeOGFF2AwGODo6IiIiAgIgtDt9gvJZDJMnjwZ\nb775JmbNmgWxWIyWlhbEx8ejrKwMABAVFQWJRAKR6PI/Nnx9feHl5WW6Yq+oqMATTzzR6QtMd793\nV+3o7+8PsVhsasfNmzebfr9///vf2LRpEwDA09MTfn5+vWpjIlvGR76I+kl8fDzEYrHp55deegnx\n8fHIz8/HddddB0EQMHfuXMybNw+CIGDlypVYsWIFnJyccPfdd0MkEkEQBBiNRuj1esydO7fT8des\nWYM///nPWLlyJebOnQuRSIQHHngAMTExaGpqwo8//oi4uDjIZDK4urrilVdegYeHR5fbuxIXF4fH\nHnsMn376KQBAKpXi5ptvxrJlywAAIpEIzz77LBwcHLBz507s2bMHr776ap/aSBAEvPPOO1i5ciX+\n+c9/QiQS4e6774ajo+Ml27a7dly1ahWeeeYZyGQy/OEPfzAda+HChVixYgXWrFkDQRAwatQo02No\nRAOVwPW0iaxPp9NhzJgxSExMhJOTk7XLISIbxe5xIiu56aabsG3bNgDAtm3bEBISwsAmoh7xSpvI\nShITE/Hiiy+iqakJcrkcK1euRExMjLXLIiIbxtAmIiIaINg9TkRENEAwtImIiAYIm37kS6Op7fdj\nqlSOqKzs+ZlQunJsZ8tgO1sG29ky2M5t1OruB6QOuSttiUR86Z3oirGdLYPtbBlsZ8tgO1/akAtt\nIiKigYqhTURENEAwtImIiAYIhjYREdEAwdAmIiIaIBjaREREAwRDm4iIaIAwa2hnZWVh9uzZWL9+\nfaftBw4cQHh4uDlPTUREQ8zPP+/u1X7vvfc2iooKu3396aef6K+S+p3ZQlun02HVqlWIjY3ttL2p\nqQkffvgh1Gq1uU5NRERDTHFxEXbtSujVvsuXPwkfH99uX3/ttXf6q6x+Z7ZpTGUyGdasWYM1a9Z0\n2v6f//wHS5cuxZtvvmmuUxMR0RDzzjuv4+TJNEyZMgHXXjsPxcVF+Oc//w+vvvoiNJoyNDQ04J57\nHsA110zBo48+gCeeeAp79+5GfX0dzp49g8LCAvzpT08iNvYaXHfdLPz44248+ugDmDDhahw7loiq\nqiq8/vq7cHd3x4svPoeSkmJER8dgz55d2LJlm8V+T7OFtkQigUTS+fCnT59GRkYGli9f3qvQVqkc\n+3Vau0PJRYBE0uO8rtR/2M6WwXa2DLZz733yfRoOnei++/lyXDPKF/csiOr29Yce+iO++OILDB8+\nHLm5ufjmm43QarWYNWs6brzxRuTn52P58uVYtGg+ZDIJVCo55HI7FBWdxWefrcX+/fvx1Vdf4YYb\n5kIQBKjVTpDJJPD0dMOGDevx1ltvISnpEPz9/QHosWXLt9i7dy++/vpLi/5tWHTBkFdffRXPPvts\nr/fvz4njG5tb8dpnRxHsq8Qzt4+FSCT027HpYmq1k1kWfKHO2M6WwXbumwZdM/R6Y5/fJxYL3b6v\nQdfc479BVZUOTU0tqK9vQnBwGDSaWrS2inDkSBK++GIDBEEErbYCGk0tmptbUVlZj/r6JoSHR0Gj\nqYWdnRMqKqqg0dTCaDSa9gsJGQGNphYKhQtKS7WoqqozvScycizEYnG//2309CXAYqFdWlqK3Nxc\n/OUvfwEAlJWV4Y477rhokJq52MskuDrKHYfTNNh/ogjTx3R/P4OIiC7f4pmhWDwztM/v668vR1Kp\nFACwc+cO1NTU4N///gg1NTW47774i/YVizt6c43Gi78wXPi60WiESNS2TRAECIJlLwAtFtqenp7Y\ntWuX6eeZM2daLLABoLG1CRlOX8NhuDu+3S/F+AgPKBykFjs/ERGZj0gkgl6v77StqqoK3t4+EIlE\n2LdvD1paWq74PL6+fqZR6keO/HbROc3NbKPHU1NTER8fjy1btuDzzz9HfHw8qqqqzHW6S7ITyxDo\nPAxQFaHJLR1bDuRarRYiIupfAQFByMzMQH19nWnb9Okz8csvB7B8+UNwcHCAh4cH1q5d08NRLm3S\npCmor6/HQw/dixMnjsPZWXmlpfeJYOyqP8BG9Pd9grqWerx7fDVK6srQnBuN5xYsgr8nB5eYA+8B\nWgbb2TLYzpYxENq5pqYax44lYvr0WdBoyrB8+UPYsOHbfj1HT/e0h9SMaAqpHE9PfRh2IntIA1Px\nyb6DXd7DICIi6oqjoxx79uzCAw8swzPP/AWPPWbZiVgsOnrcFvg4eeLBUXfivWNrUOZyEDuTA3Ht\nqBHWLouIiAYAiUSCF1981WrnH1JX2u3CVKG4IWABBEkL/lf0DbT1tt0dQ0REBAzR0AaAuNDJCBCN\nAuzq8M7hj6E3WHYEIBERUV8N2dAGgD9NWgxxrReqUIS1yd/w/jYREdm0IR3a9jIploYthqHeGccr\njmH32f3WLomIiKhbQzq0AeDqCF8ENMyAsdkOW3J+REp5urVLIiIiM7n55gXQ6XRYt+5TpKYmd3pN\np9Ph5psX9Pj+9olVtm37Hvv27TVbnd0Z8qEtCALunDkardnjAIMYn6RuQH5tkbXLIiIiM4qPX4aR\nI2P69J7zl/+cP38Bpk2bYY7SejTkHvnqio+7HDNHRGFXdgMw/Dj+k7wWT41/DEo7Z2uXRkREvXDP\nPbfjlVfehpeXF0pKirFixZNQqz3Q0NCAxsZGPP74XxEZOdK0/8svr8T06bMwevQY/P3vT6G5uRkx\nMaNNr//003Zs2rQRYrEIgYEh+Nvf/m5a/nPt2jUwGAxwcXHBTTfdiv/7v/eQknICra163HTTYsyd\ne12Xy3p6eXld8e/J0D5n4eQg/JZeiqZCHap8M/Gf5E/x+NgHIRPLrF0aEdGAsjn7BxwvS+nz+8Qi\nAXpD1wOCx3hE4w+h13f73qlTZ+DQof246abFOHBgH6ZOnYGQkOGYOnU6kpKO4osvPsPLL1+8JHRC\nwnYEB4fgT396Ert3/2S6km5oaMDbb38AJycnPPLI/cjJycZtt8Vj8+avcffd9+Pjj/8LAPj992PI\nzc3B6tWfoKGhAXfdtQRTp04HAMjlcrz33mqsXv0B9u/fg8WLl/a5TS405LvH2znYSXDL9BA0FQbC\npTkEZ2sL8Fn6RhiMBmuXRkREl9AW2gcAAAcP7sPkydOwb99uPPTQvVi9+gNUV1d3+b68vFyMHDkK\nADBmzDjTdmdnZ6xY8SQeffQBnDlzGtXVXa+dkZGRjtGjxwIAHBwcEBgYjPz8fADAqFFjAAAeHh6o\nq6vr8v19xSvt88SO9MLPvxci50QIQqY043dNCn7I/Qk3hMy1dmlERAPGH0Kv7/GquDtXMvd4cHAI\ntFoNSktLUFtbiwMHfoa7uweee24VMjLS8a9//bPL9xmNgEjUtrym4dxVfktLC9555w18+ukGuLm5\n46mn/tzteQVBwPlPC7e2tpiOd6llPy8Hr7TPIxIE3DEnHIJRhPqMUXB3cEPCmT34rTjR2qUREdEl\nxMZOxocf/h+mTJmG6uoq+Pr6AQD27duL1tbWLt/j7x+AjIyTAIBjx9o+63W6eojFYri5uaO0tAQZ\nGSfR2tra5fKfERFROH486dz7dCgsLICfn7+5fkWG9oUCvJwwdbQPSspaESPMhYPEARsyvkV21Wlr\nl0ZERD2YNm0Gdu1KwPTpszB37nXYuPELPP74I4iKGgmtVosff/zuovfMnXsd0tJSsHz5Q8jPPwNB\nEKBUumDChKtx3313Yu3aNVi6NB7vv/+OafnP999/2/T+UaNGIzw8Ao88cj8ef/wRPPjgo3BwcDDb\n7zikluYEetf9UqtrxjMf/gaD0Yh7b/XE2sxP4SCxx1/GPQoPR/d+r2kwGghL7A0GbGfLYDtbBtu5\nDZfm7CMnRxkWTQlGQ5Mex48bsCT8RtS36PCf5LXQteisXR4REQ1RDO1uTB/jg2EeChxKKYGXMQKz\n/KeiVKfBR6nrubgIERFZBUO7G2KRCLfPCQMAfLEzCzcEz0OMexQyK7OxMWsrFxchIiKLY2j3IGyY\nCyZGeiKvpBa/pJTirsgl8FP44FDRYezNP2Dt8oiIaIhhaF/CLTNCYScVY9PPOdC3ivBgzDIoZU7Y\nnM3FRYiIyLIY2pegcrLDgmsCUdfQgq37T0Nl74IHY+6GRCTBJ2kbUMDFRYiIyEIY2r0wZ/wweKoc\nsOd4AfLL6uDv7IdlkUvQrG/G6uS1qG6qsXaJREQ0BDC0e0EqEWHpnDAYjW2D0oxGI0Z7RGNhyDxU\nNVXjv8mfoVnfbO0yiYhokGNo91J0sBtGh7ojK78KR06WAQDm+E/HRO/xOFObj8+5uAgREZkZQ7sP\nlsweDolYhK/3ZqOxuRWCIOC28D8g1CUIx88tLkJERGQuZg3trKwszJ49G+vXrwcAHD9+HLfddhvi\n4+Nx7733oqKiwpyn73ceLg6Ye7U/Kmub8OOvZwAAEpEE90ffCfW5xUUOFydZuUoiIhqszBbaOp0O\nq1atQmxsrGnb2rVr8cYbb2DdunUYM2YMvv76a3Od3myuiw2Aq7Mddhw+i9KKtilNFVI5Hoq5Gw4S\nB3yRsYmLixARkVmYLbRlMhnWrFkDDw8P07b3338fw4YNg9FoRGlpKby8vMx1erOxk4px68zh0BuM\n+HL3KdN2T7kH7h8ZDyOM+DDlM2h0WitWSUREg5HEbAeWSCCRXHz4/fv34+WXX0ZwcDBuuOGGHo+h\nUjlCIhH3uM/l6GkFld6Y567AodQSJGeX47SmHldFep077hg0SW7DfxO/wJq0z/DS7L9CLnPsj5IH\npCttZ+odtrNlsJ0tg+3cM7MvzfnBBx9ApVLhjjvuMG0zGo1466234OTkhAcffLDb91prac7eKNTU\n4flPjsJdaY9V910F6XlfLjZn/4DdZ/cjQjUcD4+6B2JR/3/xsHVcYs8y2M6WwXa2DLZzG5tZmnPn\nzp0AAEEQEBcXh6SkgTtoy1etwKxxfiirakDCkfxOry0KmY9o90hkVJ7C11xchIiI+olFQ/uDDz7A\nyZMnAQAnTpxAUFCQJU/f7xZODoKzoxQ//JqHippG03aRIMKyyNvgp/DBwaLD2Ftw0HpFEhHRoGG2\ne9qpqal4/fXXUVhYCIlEgoSEBLz00kt44YUXIBaLYW9vjzfeeMNcp7cIR3sJbpoegrXbMvD13mw8\nuHCk6TV7iR0ejFmGNxM/wOZTP0Dt4IZo90grVktERAOd2e9pXwlbvqfdzmA04pV1ScgtqsFfbxuD\nEQGqTq+frSnAO8dWQxAEPDn2Yfg5+fTbuW0Z701ZBtvZMtjOlsF2bmMz97QHI5Eg4PY5YRAAbNiV\nBb2h81Sm5y8u8p/kT7m4CBERXTaGdj8I8nbGlFHeKNTUY8+xwoteH+0RjYXB81DZVMXFRYiI6LIx\ntPvJH6aFwNFOgq0HTqOm/uJQnhMwHRO9uLgIERFdPoZ2P3F2lGHRlCA0NLXi2305F70uCAJui+hY\nXORHLi5CRER9xNDuRzPG+sJPLcfB5GKcLr743nX74iLuDm7YwcVFiIiojxja/UgsEuH2OWEwAlj/\nUxYMXQzMV0jlePjc4iIbuLgIERH1AUO7n4X7q3DVCA+cLq7BoeTiLvdpX1zEwMVFiIioDxjaZrB4\nRihkUhE27cuBrrGly33CXUOxJPxG1LfosDp5LXQtDRaukoiIBhqGthm4OttjwaRA1OpasPVg993f\n1/hcjVnDpqJUV4aPU9dDb9BbsEoiIhpoGNpmcu0Ef3ioHLAnqRAFmrpu91sUysVFiIiodxjaZiKV\niHDbrOEwGI3YsDOr2zDm4iJERNRbDG0zGhXqjpgQN2ScrUJipqbb/doXF1HKnLD51A9IKU+3YJVE\nRDRQMLTN7LbZwyERC/hq9yk0NXd/z1pl74I/xiyDRCTB2rQNKKzreuQ5ERENXQxtM/NUOSLuKn9U\n1jbhx9/yetw3wHkYlkUuQZO+GatPrEV1E1e7ISKiDgxtC7g+NhAqJzvsOHwWZZW6HvfttLhIyqdo\n1nf9yBgREQ09DG0LsJOJcevMULTqjfhqd/Yl958TMB1Xe43DmZp8fH6Si4sQEVEbhraFTIjwQIS/\nC37PLkdyTs8zoAmCgKURN7UtLlKWjF1n9lmoSiIismUMbQsRBAFLZ4dBJAj4clcWWlp7vnpuX1zE\nQeKAfYW/8PltIiJiaFuSn4cCM8b6orSyATsT8y+5v0IqR7T7CFQ1VSO/ttACFRIRkS1jaFvYoilB\nUDhI8f2hPFTWNl1y/xj3KADAifI0c5dGREQ2jqFtYXJ7KW6eHoKmFj2+3nvpQWkjXMMgEUmQrGFo\nExENdQxtK5gc440gbyccTi9F5tnKHve1l9ghQjUcRfUlXMKTiGiIY2hbgUgQsHROGADgi52noDf0\nPCgtRh0JAEhmFzkR0ZDG0LaSEB8lJkd7o0BTh5+PF/W4b7R7JAQIDG0ioiHOrKGdlZWF2bNnY/36\n9QCA4uJiLFu2DHfccQeWLVsGjab7RTSGgpumh8DBToytB3JRq2vudj9nmROClAHIqcpDXXO9BSsk\nIiJbYrbQ1ul0WLVqFWJjY03b/vnPf2Lx4sVYv3495syZg7Vr15rr9AOCUi7DwsnBqG9sxeb9uT3u\nG+MeCSOMSNGetFB1RERka8wW2jKZDGvWrIGHh4dp2/PPP4+4uDgAgEqlQlVVlblOP2DMHOsLX3c5\n9v9ehNPFNd3uN0rd9ugXR5ETEQ1dZgttiUQCe3v7TtscHR0hFouh1+uxYcMGLFiwwFynHzAkYhGW\nzgmDEcCGnVkwdDPzmYejGl5yT5ysyEKzvvuudCIiGrwklj6hXq/HU089hYkTJ3bqOu+KSuUIiUTc\n7zWo1U79fswroVY74Zf0Uhw6UYTUM1WYNcG/y/0m+o/G1pMJKNIXYILXKAtX2Xe21s6DFdvZMtjO\nlsF27pnFQ3vFihUICAjAo48+esl9Ky+xjOXlUKudoNHY3jrViyYF4mhaCT75Pg2hXk5wtL/4n2a4\nfDiABBzITkSgLNjyRfaBrbbzYMN2tgy2s2Wwndv09MXFoo98fffdd5BKpfjTn/5kydMOCG5Ke1wX\nG4Ca+mZ8d+h0l/v4O/lBKXNCijYdeoPewhUSEZG1me1KOzU1Fa+//joKCwshkUiQkJAArVYLOzs7\nxMfHAwBCQkKwcuVKc5Uw4My92h8HU4qxO6kAU0b5wNdd3ul1kSBCtDoKBwt/Q271GQxX2fbVNhER\n9S+zhfbIkSOxbt06cx1+UJJKxFgyazg++DYFG3Zm4S9LRkMQhE77jHJvC+3k8jSGNhHREMMZ0WzM\n6FB3RAe74eSZSiRlXjz5zHBVCOzFdjihSeMa20REQwxD28YIgoDbZg+HWCRg455TaGrpfO9aKpIg\nyi0C2sYKFNWXWKlKIiKyBoa2DfJydcS1Vw2DtqYJ2387c9HrMZxohYhoSGJo26gFkwLhopBh229n\noalq6PRalFs4xIKYC4gQEQ0xDG0bZS+TYPGMULTqDdhyoPO85A4SB4SpQnC2thCVjZwKlohoqGBo\n27CrIz3hqXLAsSzNRfe2Y9zbushP8GqbiGjIYGjbMEEQMD7CA80tBqTkaDu9FqOOBACkaNKtURoR\nEVkBQ9vGjQ9vWyUtMbOs03YXOyUCnIYhqyoHupb+n+6ViIhsD0Pbxvl7KuDh4oAT2Vo0X9hFro6E\nwWhAqjbDStUREZElMbRtXHsXeVOLHim5F3SRn7uvnVzOLnIioqGAoT0ATIho6yI/mtG5i9xb7gm1\ngxvStRlo0bdYozQiIrIghvYA4O+pgNrF/qIuckEQEOMehSZ9MzIrs61YIRERWQJDewAQBAHjw9u7\nyCs6vWaaHY1d5EREgx5De4AYf66LPOmCUeTBygAopHIkl6fBYDRYozQiIrIQhvYAEejlBHelPX7P\nLkdLa0cXuUgQIdo9ErXNdcirybdihUREZG4M7QGifRR5Y7MeqRd0kY/iAiJEREMCQ3sAMY0iv6CL\nPFw1HDKRlAuIEBENcgztAcTURX6qcxe5TCzFCLdwlOo0KKkv6+EIREQ0kDG0B5D2UeSNzXqknr6g\ni9w00QqvtomIBiuG9gAzLkINAEjM0HTaHuUeAZEg4n1tIqJBjKE9wAR7O8PN2Q6/Z2vQ0trxiJdC\nKkeIMhB5NfmobqqxYoVERGQuDO0BRhAEjAv3QEOTHml5F44iHwkjjEjhRCtERIMSQ3sAah9FnnjB\nXOQx7m1rbJ/gfW0iokGJoT0ABfs4w9XZDsdPlXfqIndzcIWvwhtZFdlobG20YoVERGQODO0BqH0U\neUNTK9Iv7CJ3j0KrUY/0iiwrVUdEROZi1tDOysrC7NmzsX79etO2zz//HFFRUaivrzfnqQe98eHd\ndJGfmx3thCbV4jUREZF5mS20dTodVq1ahdjYWNO2rVu3QqvVwsPDw1ynHTKCfZ2hcmrrIm/Vd3SR\n+yl8oLJzQZo2A3qDvocjEBHRQGO20JbJZFizZk2ngJ49ezYef/xxCIJgrtMOGSJBwLhwNXRNrUjP\nqzRtFwQBo9RRaGhtxKmqXCtWSERE/c1soS2RSGBvb99pm0KhMNfphqTuR5FzdjQiosFIYu0CeqJS\nOUIiEff7cdVqp34/pjW4uSng9n06fs8uh8pVDom47TuYyi0GH6c7IlV7Eg+732G1no3B0s62ju1s\nGWxny2A798ymQ7uyUtfvx1SrnaDR1Pb7ca1lTKg7diUVYH/iWUQHu5m2R6oicLT0GI7lZsDf2c/i\ndQ22drZVbGfLYDtbBtu5TU9fXPjI1wA3vn25zgu6yE1rbLOLnIho0DDblXZqaipef/11FBYWQiKR\nICEhAZMmTcIvv/wCjUaD+++/H6NHj8ZTTz1lrhKGhFA/JZQKGY5nadAaF27qIh/hGgaJSIITmjRc\nHxxn5SqJiKg/mC20R44ciXXr1l20/aGHHjLXKYckkSBgfJgHdh8rQMbZSowMausit5fYIUIVilRt\nBsobtHB3cLvEkYiIyNaxe3wQGG9arrPriVa4XCcR0eDA0B4Ehvu5QCmX4VhW54lWot0jIUDgAiJE\nRIMEQ3sQEInaJlqpa2hB5tkq03ZnmROClP7IqcpDXTOnjSUiGugY2oPEhG5Gkce4R7Wtsa09aY2y\niIioHzG0B4nhfi5wlstwLEtOW3hxAAAgAElEQVQDvaGji3wU72sTEQ0aDO1BQiQSMC7s4i5yD0c1\nvBw9cLIiC836ZitWSEREV4qhPYiM724ucnUUWgwtOFlxyhplERFRP2FoDyLhw1zg7ChF0gVd5KYF\nRNhFTkQ0oDG0BxGRSMDYcA/U6lqQdV4XeYCzH5QyJ6Ro07nGNhHRAMbQHmQmhLdNtHI0U2PaJhJE\niFZHob5Fh9zqM9YqjYiIrhBDe5AJ83eBk6MUxzLLYDAYTdu5xjYR0cDH0B5kxCIRxoapUaNrQVZ+\nRxd5mCoE9mI7JGvSYDQaezgCERHZql6Hdl1dHQCgvLwciYmJMJw30Ilsi2m5zsyOUeRSkQRRbhEo\nb6xAUX2JtUojIqIr0KvQXrVqFbZv346qqiosWbIE69atw8qVK81cGl2uCH8XKBykSMrUXNBFHgmA\no8iJiAaqXoV2eno6brnlFmzfvh033ngj3nvvPZw5wwFNtsrURV7fjFMFHV3kUe4REAti3tcmIhqg\nehXa7fdAf/75Z8ycORMA0NzM2bVsWVdzkTtIHBCmCsHZ2kJUNlZ191YiIrJRvQrtoKAgzJ8/H/X1\n9RgxYgS2bt0KpVJp7troCoSf30VuvLiLnMt1EhENPJLe7PTSSy8hKysLISEhAIDhw4ebrrjJNknE\nIowZ7o4DycXILqhG2DAXAG1rbG/M2ooUTTqm+11j5SqJiKgvenWlffLkSZSUlEAmk+Hdd9/FG2+8\ngaysLHPXRleoqy5ylb0L/J38kFWVA11Lg7VKIyKiy9Cr0H7ppZcQFBSExMREpKSk4LnnnsP7779v\n7troCkUEqCC3lyAps6xTF/kodRQMRgPStBlWrI6IiPqqV6FtZ2eHwMBA7N69G4sXL0ZoaChEIs7L\nYuskYhHGhKlRVdeM7IJq0/b22dF4X5uIaGDpVfI2NDRg+/bt2LVrFyZPnoyqqirU1NSYuzbqBxO6\nWK7TW+4Jdwc3pGsz0GJotVZpRETUR70K7SeeeALff/89nnjiCSgUCqxbtw7Lli0zc2nUH0ac6yJP\nPK+LXBAEjHKPQpO+GVmV2VaukIiIeqtXoT1x4kS89dZb8Pf3R3p6Ou677z7ccMMN5q6N+kHbKPK2\nLvLcwo7ekRj1uS5yzo5GRDRg9Cq0d+3ahWuvvRbPP/88nn32WcTFxWHfvn3mro36yfiIc8t1ntdF\nHqwMgEIqR0p5OgxGziNPRDQQ9Cq0P/roI3z33XfYtGkTNm/ejG+++QarV6++5PuysrIwe/ZsrF+/\nHgBQXFyM+Ph4LF26FMuXL+esahYSGegKR7vOXeQiQYRo90jUNNfiTE2+lSskIqLe6FVoS6VSuLq6\nmn729PSEVCrt8T06nQ6rVq1CbGysadv777+PpUuXYsOGDQgICMCmTZsus2zqi/aJViprm5Bb1NFF\nPopd5EREA0qvQlsul+OTTz5BRkYGMjIy8NFHH0Eul/f4HplMhjVr1sDDw8O07fDhw5g1axYAYMaM\nGfj111+voHTqi/FdjCIPVw2HTCTlAiJERANEr0L75ZdfRl5eHp5++mmsWLEChYWFeOWVV3p8j0Qi\ngb29fadtDQ0NkMlkAAA3NzdoNJrLLJv6KirIFQ4XdJHLxFKMcAtHqU6DkvqySxyBiIisrVdzj7u5\nueHFF1/stC0nJ6dTl3lfGc+boas7KpUjJBLxZZ+jO2q1U78fcyCIjfbGnsR8VDW0Ijyg7d9uctA4\nnNCkIqchG9GBIf16vqHazpbGdrYMtrNlsJ171qvQ7soLL7yAzz//vE/vcXR0RGNjI+zt7VFaWtqp\n67wrlZW6yy2vW2q1EzSa2n4/7kAwMkCFPYn52PlbHlwd28Yk+NsFQiSI8GveMVzjPqnfzjWU29mS\n2M6WwXa2DLZzm56+uFz2XKS9uVK+0KRJk5CQkAAA+OmnnzBlypTLPT1dhrYucjESMzSmfz+FVI4Q\nZSDyavJR3cRZ7oiIbNllh7YgCD2+npqaivj4eGzZsgWff/454uPj8eijj2Lr1q1YunQpqqqqsGjR\noss9PV0GqUSE0aHu0NY04nRxx7fZGHUUjDAipTzditUREdGl9Ng93tMjWZcaRDZy5EisW7fuou1r\n167tZWlkDuMjPPBrWikSM8oQ7OMMoG0BkW9PfY/k8nRM9p1o5QqJiKg7PYZ2UlJSt6+NHj2634sh\n8xsZ5Ap7mRhHM8pwy4wQCIIAdwdX+Cq8kVlxCo2tjbCX2F/6QEREZHE9hvarr75qqTrIQqQSMUYP\nd8dvaaXIK6lFkHfH1fb2umKkV2RhrEeMlaskIqKu9Gr0+NKlSy+6hy0WixEUFISHH34Ynp6eZimO\nzGNCuAd+O9dF3h7ao9RR2J63C8maNIY2EZGN6tVAtEmTJsHLywt33XUX7r77bgwbNgzjxo1DUFAQ\nVqxYYe4aqZ9FBbnC7lwXefsocj+FD1R2LkjVnoTeoLdyhURE1JVehXZSUhLefvttXHvttZg9ezZe\ne+01pKWlYdmyZWhpaTF3jdTPZFIxRoe6o7y6EWdK20aRC4KAGHUUGlobcaoq18oVEhFRV3oV2lqt\nFhUVFaafa2trUVRUhJqaGtTW8kH4gWh8eNvENucv1znKvW0BEc5FTkRkm3p1T/vOO+/EvHnz4Ovr\nC0EQUFBQgD/+8Y/Yu3cvbr31VnPXSGYQHdzWRZ6YUYabp7WNIg91CYKjxAEnNGm4ZfjCSz6LT0RE\nltWr0L755psxd+5c5OXlwWAwwN/fHy4uLuaujcxIJhVjVIgbjpwsw9nSOgR4OUEsEiPKbQSOlh5D\nfm0h/J39rF0mERGdp1fd4/X19fjss8/wr3/9C6tXr8bGjRvR2Nho7trIzCa0L9eZeV4XuZpd5ERE\ntqpXof3cc8+hrq4OS5YsweLFi1FeXo5nn33W3LWRmY0MdoNMKuo0inyEaxgkIglOaBjaRES2plfd\n4+Xl5XjnnXdMP8+YMQPx8fFmK4osw04qxqgQdxzNKEN+WR38PZ1gL7FDhCoUqdoMlDdo4e7gZu0y\niYjonF5daTc0NKChocH0s06nQ1NTk9mKIstp7yI/fxR5THsXOa+2iYhsSq+utG+99VbMmzcPI0eO\nBACkpaVh+fLlZi2MLCM6pK2LPDGjDH+YGgxBEBDtHgkBm3GiPA0z/adau0QiIjqn16PHr7nmGqSl\npUEQBDz33HNdruBFA4+dVIyYEHckZpShQFOPYR4KOMucEKT0R05VHuqa66GQya1dJhERoZehDQDe\n3t7w9vY2/ZycnGyWgsjyJkR4IDGjDEczyjDMQwGgbQGR3OozSNGeRKz3eCtXSEREQC/vaXelfbQx\nDXwxwW6QSdq6yNv/XXlfm4jI9lx2aHO2rMHDTiZGdIgbSip0KNTUAwA8HdXwcvTAyYosNOubrVwh\nEREBl+genzZtWpfhbDQaUVlZabaiyPImRHggKVODoxll8GvvIldH4acze3Gy4pRp0hUiIrKeHkN7\nw4YNlqqDrCwmxA1SiQiJmWVYNCWobdUv97bQTtakMbSJiGxAj6Ht6+trqTrIyuxlEsQEuyEpS4Oi\n8nr4qhUIcPaDUuaEFG069AY9xCKxtcskIhrSLvueNg0+4y+YaEUkiBDtHon6Fh1yq89YszQiIgJD\nm87T0UWu6dimbptQhwuIEBFZH0ObTBzsJBgZ5Iqi8noUlreNIg9ThcBebIdkTRof8yMisjKGNnVi\nWq7zXBe5VCRBpFs4yhsrUFRfYs3SiIiGPIY2dTIq1B0SscgU2gAwyr19opV0a5VFRESwcGgbDAY8\n99xzWLJkCeLj45GTk2PJ01MvONhJEB3sisLyehSd6yKPco+AWBAjuTzVytUREQ1tFg3t3bt3o7a2\nFl999RVefvllvPHGG5Y8PfVS+yjyxMy2q20HiQOGuwTjbG0hKhurrFkaEdGQZtHQzsvLQ0xMDADA\n398fRUVF0Ov1liyBemF0V13k7XORl7OLnIjIWiwa2mFhYTh48CD0ej1yc3ORn5/P6VBtUPso8gJN\nPYq1bV3k0e6RALiACBGRNfV6ac7+MG3aNBw7dgy33347wsPDERwc3ONjRCqVIySS/p+FS6126vdj\nDjYzJvjj9+xynMyvRkyEF9RwQogqAKeqcuCoFEMuc7zkMdjOlsF2tgy2s2WwnXtm0dAGgMcff9z0\n/8+ePRtubm7d7ltZqev386vVTtBoavv9uINNiKcCErGAn5MKMHO0DwAgUhWBnMoz2JeZiAleY3p8\nP9vZMtjOlsF2tgy2c5uevrhYtHs8IyMDK1asAADs378fkZGREIn41JktcrSXICrQFQWaOpRUtH15\nijn36NcJzo5GRGQVFr3SDgsLg9FoxM033ww7Ozu89dZbljw99dH4CA+cyNEiMaMM108KhLfcE+4O\nbkjXZqDF0AqpyOIdNUREQ5pFP3VFIhFee+01S56SrsCY4e4QiwRTaAuCgFHuUdidvx9ZldmIcouw\ndolEREMK+6apW472UkQFueJsWR1Kz40viDn36NcJjiInIrI4hjb1aHx457nIg5UBUEjlSClPh8Fo\nsGZpRERDDkObejQmrK2L/MI1tmuaa3GmJt/K1RERDS0MbeqR3F6KyEBXnC2tQ1l7F/m5iVbYRU5E\nZFkMbbqk8RFqAEBipgYAEOEaBplIyilNiYgsjKFNlzRmuLpTF7lMLMUIt3CU6spQUl92iXcTEVF/\nYWjTJSkcpBgRqMKZklqUVTUA6OgiT+ZEK0REFsPQpl5pH0WedO5qe6T7CAgQkKxhFzkRkaUwtKlX\nxoapIRI6usgVUjlCXYKQV3MW1U01Vq6OiGhoYGhTr7R3keeV1ELT3kWujoIRRqRwQBoRkUUwtKnX\nJkSc6yI/N4q8fQERjiInIrIMhjb12pjh7p26yN0dXOGr8EZmxSk0tjZauToiosGPoU295uQow4gA\nF5wurkF5dfso8ii0GvVIr8iycnVERIMfQ5v6ZHxE+1zkbV3ko84tIJLM2dGIiMyOoU19MubcKPLE\nzLYucj+FD1R2LkjVZkBv0Fu5OiKiwY2hTX3i7ChDuL8LcotqoK1uhCAIiFFHoaG1Aaeqcq1dHhHR\noMbQpj7rGEXedrU9yjSKnF3kRETmxNCmPhsbpoYgAEfPhXaoSxAcJA5I1qTDaDRauToiosGLoU19\n5iyXIcJfhZzCGlTUNEIsEmOk2whUNlUhv67Q2uX1icFoQHmDFinl6SiqK7F2OUREPZJYuwAamMZH\neODkmUokZmpw7YRhiFFH4mjpMSRr0uDv5Gft8i5iMBqgbahEia4UxXWlKNaVori+FCX1ZWgxtAAA\nZGIZ/jb+MXjJPa1cLRFR1xjadFnGhqmx/qdMJGaU4doJwxDpGgaJSIITmjRcHxxntbrarpwrUFLf\nFsrF9WUoqS9BiU5jCud2EpEEXo4e8JJ7wFHiiP2Fv2BN6no8Nf4x2IllVvoNiIi6x9Cmy6KUyxA+\nzAUZZ6tQUdMIV2d7RKhCkarNQHmDFmo4mfX87d3a7cFcXF+CkvoylOrK0GJo7bSv1BTOnvCWe5r+\n193BFSKh4w6RSBDwc8EhfJnxLe6KXAJBEMz6OxAR9RVDmy7b+AgPZJytQlKWBnPGD0OMexRStRlI\n1qRhhH9gv5xDb9CjvLHiXFd2+9VzKUp1GrReFM5SeMk94eXoCR+5J7zkHvCWe8HNQdUpnLtzY+h1\nyKvJx9HS4whxCcIU34n98jsQEfUXhjZdtnFhanzxUxYSM8owZ/wwjHSPhJC5GSfK03ArruvTsfQG\nPTQN2k7BXKIrQ2l9GVqNnSdtkYmk8JF7wlvudS6Y266cXe17F87dkYgkuHfk7Xjt6HvYlPU/BDj5\nwd/Z9u7PE9HQxdCmy6ZU2CFsmAuy8qtQWdsElZMTgpT+yKnKQ01TXZfvaQvn8k5d2sX1pSjTaboO\nZ4W3KZTbu7Zd7V2uKJx74mqvwl2Rt2H1iU/wUeo6PD1hORyljmY5FxFRX1k0tOvr6/G3v/0N1dXV\naGlpwSOPPIIpU6ZYsgTqZ+MjPJCZX4WkzDLMPtdFnlt9BkcKfoeH2Kvjqvnc/5bpyqG/MJzFMvgq\nfM6FcseVs8qM4dyTKLdwzA2che15u/BZ+kb8MeYuq9RBRHQhi4b2li1bEBQUhCeffBKlpaW46667\nsGPHDkuWQP1sXLgaG3a2dZHPHj8MMeoobM3Zhg8Tv7hoX3uxHYY5+XYKZi9HT6jslTYXivODZuN0\n9Rmkak9i19l9uDZghrVLIiKybGirVCpkZmYCAGpqaqBSqSx5ejIDF4UdhvspcaqgGlV1TfBUqDHR\nezy0TeVwt1OburR95J5wsVPa7IjsWl0zJGIRHOza/pMQCSIsi7oNrx19D9/l7ECgsz/CVCFWrpKI\nhjrBaOF5J++9916cPXsWNTU1+O9//4vRo0d3u29rqx4SidiC1dHl+P5ALj7cmoI/3hiN6ycHW7uc\nS9IbjDhbUoOTeRXIyKtARl4lirX18FA54N3Hp8NZ3vGMdoYmBy/sfQcKOwXeuPYZqByUVqyciIY6\ni15p/+9//4OPjw8+/vhjZGRk4JlnnsHmzZu73b+yUtfvNajVTtBoavv9uENZuK8zBAA/J+bj6nA1\nANtq5/rGFuQU1iC7sBo5hdXILa5BU3PHfXVHOwn8PRU4W1qHNz8/isduijb1CLjBA4tC5uPb7B/w\n1v4P8djo+yEW2c4XSVtq58GM7WwZbOc2anX381xYNLSPHTuGyZMnAwAiIiJQVlYGvV4Psdh2PgSp\n71ROdgj1UyIrvwrVdU1QKuysVovBaESxVoecwmpTSBdrO3/583ZzRKivEiG+SoT6KuHl5ggYgbc3\n/o7fs8uxK7EAcyYMM+0/Y9gU5FTn4XdNKn44/RMWhsyz9K9FRATAwqEdEBCAEydOIC4uDoWFhZDL\n5QzsQWJ8hAdOFVQjKUuDmWMt92xzQ1MrcotrTCGdW1gDXVPHpCt2MjFGBKhMIR3i6wy5vfTiAwnA\n/Qsi8fwnR/D13myE+ikR5O3c9pIg4I4Rt6Cgrhg/ndmLYGUAot0jLfUrEhGZWPSedn19PZ555hlo\ntVq0trZi+fLliI2N7XZ/c3STsPvFPCprm/Dkvw8hwt8FTy0da5Z2NhqNKKtqQHZBNXKKapBdUI3C\n8jqc/xfsoXJAiI8SoX5KhPg4w0+tgEjU+8FvqblavPP1Cahd7PH8sqvgaN/xvTa/tghvJ/0LEpEU\nT09YDncH1/789S4L/54tg+1sGWznNjbTPS6Xy/Hee+9Z8pRkISonO4T6KpGZX4Xq+mao1Vd+zKYW\nPfKKa0wBnVNUjVpdx6IfUokIw/1cEOLr3HYl7aPsNIjscowMdsP8iQHY9tsZfJ6QgT/eEGW6vz3M\nyQeLw27EFxnf4OPUdXhi3COQijg/ERFZDj9xqN+Mj/BAdmE1jmWWITTQrU/vNRqNqKhpMt2Hzi6s\nRn5ZHfSGjstoN2c7XDXCw3QvepiHAhJx/z/fvWhKEDLzK3HkZBlGBKgwbbSv6bVJPhOQU30avxUn\n4ttT32NJ+I39fn4iou4wtKnfjA9X46vdp5CYqcHiuBE97tvSasDZ0tpOIV1V12x6XSIWEOjlZAro\nEF8lVE6WGeAmEYvwxxui8MLao9iw6xRCfJXwUytMr98atgj5tYU4UPgrgpUBuMprrEXqIiJiaFO/\ncXW2R4ivMzLOVqKqtqnTa1V1TeeN6K5BXkktWvUG0+tKuQzjwtSmkA7wUkBqxWf03ZUOuHv+CPxr\ncwpWb03FP+6aADtZWz0ysQz3jbwDrx99H19mfIthTr7wlntarVYiGjoY2tSvJoR7IKewBt8dyIFM\nJJiupMurG037iAQBwzwVCPVRIsTPGaE+Srgp7W1utrSxYWrMHueHXUkF+GJXFu6Z39F74OGoxh0j\nFuOj1HVYk7IOT41/DPYS6z3qRkRDA0Ob+tX4CA98tScb3+w+ZdqmcJBidKi7acBYoJez6arV1t0y\nIxSnCqpxMLkYIwJUiI3yMr02xiMaM4dNwZ78A9iQsQl3Ry21uS8eRDS4MLSpX7k62+OW6SGoaWyF\n37lJTDxUDgM2zKQSER5c1HZ/+/OETAR7O8PTtWOpzkUh85FXcxZJZScQ6hKEqX6TrFgtEQ12trW0\nEg0K8yYG4NFbRuOaaG94ujoO2MBu56lyxJ1zw9HUrMfqraloae2YAlUsEuOeqNuhkMqx6dT3yKs5\na8VKiWiwY2gT9cLESC9MifHG2bI6fL0np9NrKnsXLIu6DQajAR+lrEddS72VqiSiwY6hTdRLS+eE\nwcddjt3HCpCUqen02gjXMMwPmo3Kpip8nr4RBqOhm6MMbWdq8rHzzM9IKU9HZWMVLLzIINGAx3va\nRL1kJxXjoYVRWPVZItZuO4kATwXcXRxMr88NnIXc6jNI02bgpzM/Y27gTCtWa1uMRiP25h/Alpxt\nnb7QyKWO8FX4wE/hDT+FD/ycfODl6GFTK6kR2RKGNlEf+KoVWDonDJ9uz8B/v0vD324fa5qVTSSI\nsCzyNrx69J/4ITcBQc7+CHcNtXLF1tfY2oj1GZtwvCwZzjInLAiOQ3VTLQrqilBQV4SsymxkVWab\n9pcIYnjLPeHr5NMW5Aof+Cq84Sh16OEsREMDQ5uoj6bEeOPkmUocTi/Flv25uGVGRzArZHLcN/IO\nvHNsNdambcDTVy2Hi53SitVaV0l9KT5MWYdSXRlClIG4d+QdUNo5d9qnobURRXUlbSFeW4TCumIU\n1Rcjv66o035u9qq2AHfquDJ3tVcN+IGORH3B0CbqI0EQcGdcOE4X12D74bOICFAhOrhjrvUgZQD+\nEHo9Np36Dp+kfoHlY/44JLt7j5UlY/3Jr9Gkb8bMYVOwKGR+l+3gILFHiEsgQlwCTdv0Bj3KGspR\nUNt2NV5YV4z82kKcKE/DifK0Tu89/2rcz8kHXnJPLuRCg5ZFl+bsKy7NOXANhXY+U1KLl9clwsFO\ngpV3X9VpbnSj0YiP077A8bJkzPafhhtDrzNLDbbYznqDHltztmFP/gHIxDLcEXELxnmOuuLjGo1G\n1DS3dasX1habutfLdOUwouNjTCSI2rrX2++TK3zg6+QNhVR+2ee2xXYejNjObWxmaU6iwSTAywm3\nzAjFl7tOYc33afjLkjGmtbsFQcDtETejsK4Iu87uQ7AyAKPUI61csflVN9Xg49T1yKnOg6ejB+6P\nju+3edkFQYDSzhlKO2dEuUWYtjfpmzu61+uKUHiui72wrhhHcMy0n4ud0jTYrT3M3RxUEAl8iIYG\nDoY20RWYPc4PGWcqcfxUOX74JQ83TA4yveYgscd9I+PxZuK/sO7k1/CRe0Pt2LclSweS7KrT+Dh1\nPWqaazHGIwZ3RNwMe4m92c9rJ5YhSOmPIKW/aZvBaICmQdupe72gtgip2pNI1Z7s9F7fcwHu59R2\nZe4t94JMLDV73USXg93jZBZDqZ3rGlrwwtojqKhtwlO3jUG4v6rT64eLk/D5yY3wU/jgyXGP9Gsg\n2EI7G41G7Mk/gK052wC0Te06c9gUmxwgVttc1ynEC+qKUKrTdHoMTYAAT7lHx2NoCh+MCQpHY43N\nflQOGrbw92wLeuoeZ2iTWQy1ds4uqMZrXxyDs1yKlfdcBWdHWafXN2RswqGiI7jG5yosjbi5385r\n7Xa+8HGue6Jux3BVsNXquRwt+hYU15eautfbR7A36juWlxULIsT6XIV5gbOG9NMA5mbtv2dbwXva\nRGYW6qfEjVOD8O2+XHz8w0ksvyUGovOuNG8ZvhBnawpwqOgIgpWBmOg93orV9o/ePM41EEjFUvg7\n+8Hf2c+0zWA0oKKx0nQ1/rs2BQcLf8Ph4kRM8Y3FtQEz4CRTWLFqGqrEK1euXGntIrqj0zX3+zHl\ncjuzHJc6G4rtHOqnRE5RDVJPV8BeJkGoX8cVmVgkRrhqOA6XJCG5PB3R7pFwlnX/bbq3rNXOSaUn\nsDp5LWqaazBz2BQsi7wNDoNo8hNBEOAodYSX3BNhqlAsipkNB4McZ2sLkV6Rif2Fv6JF34xhTr6Q\n8v53vxmKnxtdkcvtun2NoU1mMRTbWRAEjAxyxa9pJTiRXY6oIFe4OnUMxJJLHeHpqMbR0uPIrMzG\n1V7jrvh5Yku3s96gx+bsH7Al+0eIRWLcFbkEs/ynDvoR2AqFPVzF7pjiGwtnmRPyas4irSITB4sO\nw2A0wE/hCwmfDb9iQ/FzoysM7fPwj8Iyhmo728nE8PdU4JeUEqTnVeKaaC9IJR0TinjJPdCkb0Jq\n+UmUN2gxRh19RQO2LNnO1U01WJ28FsfKkuHp6IHlY+5HmCrEIue2tvZ2FgsiBDoPw1TfWDhKHZBb\nnYdUbQZ+KToCsSCCn8JnSE6k01+G6ufGhRja5+EfhWUM5XZWuzjAYDDi9+xylFY2YEKER6dgDnMJ\nQVZlDtIrMiGXyhF43qNKfWWpdj5VmYsPfl+DEl0ZxnjE4KGYZXCxdzH7eW3Fhe0sFokRrAzEZN+J\nkIokyKnKQ4o2Hb+VJEEmlsFX4TXoex/MYSh/bpyPoX0e/lFYxlBv57BhSmSeqUTq6Qo4y2UI8u4Y\noCUSRBjhFoajJceRXJ6OCNfhUF1mAJq7nY1GI3bn78fnJzei2dCCG0Ovw02h11/2fVxNVQMyzlRB\n4SiFnXTgXJF2185SkQTDVSGY7Hs1BEHAqcocnChPw9GS43CUOMBH4WWTj77ZqqH+udGOoX0e/lFY\nxlBvZ5EgIDLQFb+kluD3bC1GhbpBqej4D9FeYg8/Jx8cLknCyYosXOU1FjKxrIcjds2c7dzY2ojP\n0r/C3oKDcJIp8NCoezDec/RlhZDBaMTupAL8a3MKfksvRcLhsziRXY6KmiZIJSK4KOxsOtwu1c4y\nsRQRrsMR630V9EY9TlXm4LgmBcfKkuEkU8DTUW3Tv5+tGOqfG+16Cm2LPqf9zTff4LvvvjP9nJqa\niuPHj3e7P5/THrjYzo013uoAAB4sSURBVG1OZJfjvU3J8HR1xPPLxsNe1nmw0o683fg+NwEjXMPw\n8Kh7+tylaq527vw4VxDuHXn7ZT/OVVHTiE+2nUR6XiUUDlJMG+2DnMJqnCqoht7Q9vEjt5cgKsgV\nI4PcEB3s2ukLji3oaztXNFZiR95u/FqceG6gmg8WBMchyi2C4d0Dfm60scnJVY4cOYLt27fj+eef\n73YfhvbAxXbusHHPKSQcyUdslBfuXxDZ6TWD0YDVyWuRrs3E9UHXYl7Q7D4d2xztnFR6AuszvkHz\nJVbnuhSj0YjD6aVY/1MWdE2tiAlxw93zIkyB3NDUipNnKpGSq0VKrhYVNR2Tmfh7KBAd4oaRQa4I\n8VWa1iy3lstt5zJdObad3onE0t9hhBFBzgFYEBzHdda7wc+NNjYZ2nfddRfeeustqNXqbvdhaA9c\nbOcOrXoDXl1/DKeLa3DvdSNwTbR3p9frWurx2pH3UNVUjUdH34cI1+G9PnZ/trPeoMeWnB+xN//g\nFa/OVdfQgnUJmTiaUQY7qRhLZoVi6iifbq8yjUYjirQ6pJ4L8Kz8KrTq2z6aHOzEiAxwNYW4q7P5\n5zO/0JW2c1FdCX48/RN+16QCAMJUoVgQHIdgZUB/lTgo8HOjjc2FdnJyMjZs2IDXXnutx/1aW/WQ\nSAbOYBWi7pRo67H8nZ+hNxjx7p+nYZhn5/8os7V5eG7PW3CUOuCNa5+Bm6OqmyOZR2VDNd79ZQ0y\nynPg6+SFJyc/AD9n70u/sQtJGaV4f+NxVNQ0YUSgKx6/bSy83fu2LGZjUyuSc8pxLKMMSRmlKNHq\nTK8FeDlhXIQnxkZ4IDLIDVLJwBmlnVtxBl+lfIffS9IBAGO9R2JJ9A0IVA2zcmU0UFgltP/xj3/g\nuuuuw9VXX93jfrzSHrjYzhc7mlGG1VtT4aeW49k7x0N2wejpfQW/4OusrQhWBuDPYx7sVZd0f7Tz\nqcpcfJy2HrXNdVe0OldTsx5f783G3uOFEIsELJoShHlXB5iWK71cRqMRZZUNSD53FZ55tgotrW0L\nfNjJxBjhr0J0SNu9cHeleWZl6++/5+yq0/ghNwGnqnIBAGM8YnB90Bx49dMypgMVPzfa2NyVdlxc\nHL7//nvIZD2PlmVoD1xs5659npCJn48XYvpoH9w5N6LTa0ajEWvTNiDp/9u70+goq3zf499KKmNV\n5qQykpABCIQ5DIJMCsqgR1tRGSR67G7O8bhsT/dVlyxaG7326tt4VvfqbuFq2+iRg7cVBWdlEAVF\nBRIBgUCYQsw8pzLVkJqe+6JCSAhjSGrK/7NWFpA8lexsdp5f9vDsXXeEW4fMZPGwf7nq57uRej7/\nONdHxdsAuCdzEbf08XSu4soW/vHpCer0JpLjNKy8cxSp8Te+TeulWKx2TpU3d86FN1HbdKEXnhgT\nypiMGEZnRDNiSGSPjW1uxEC0Z0VROKk/wyfFOyhtK0eFiikJE1mUPo/YEN89wvVK5L7h5FEHhtTW\n1qLRaK4a2EL4oqW3ZnG2ooU9P1Yxcmg0k7N1XR9TqVQsz15MRXs1X5XvJTNiKON1YwakHGabmbeK\n3uNw/THCA8P4xegVZEWmX/2FF7HZHXz8XQmf7SsFBRZMSeWeWen9FpaXEhjgz5iMGMZkOIOtrtnk\nnAsvbqSoTM/OgnJ2FpQTqPYjOy2q89podFGhA1amvlCpVIyMHk521DCONpzg03M7OFBzkILaw0xP\nnMyCoXP7/Py+8F0uD+36+nqio6Nd/WWF8AiBAf78x89yeOHNAt7cVkRaQhi6yAtDusHqYH45egX/\n9cPLbCp6jyRtArrQyy/W7ItqQy3/OPY/1Brrb+hxrsoGAxs+OUFpbRsx4cH88s6Rvc4SdwVdZAi3\nTkzh1okpWG0OTlc0dy5oa+JocSNHixud10WFdAX4iNQoj9ncRaVSMS4uhzGxIzlUd5TPSnbybdUB\n9tccZJacKCYuIudpiwEh9Xxl3x2r5vXPihiaEMbqvNxejzTl1xxi44l3SNYm8lTu4wReZgey663n\ng7U/8tbJLTf0OJdDUdhVUM6Wr89hszuYMSaRZfOGERLkeQdmNLaYOVbSSOG5Jk781ITZYgdA7e9H\ndmokoztDPCE69IrTAq5sz3aHnfyaQ3z+0y6azHoC/QO5NWUGc1NnERrgWaMF/U3uG05XGh6XHdHE\ngJB6vrLU+DDqm00cO9dEh9XO6Iyec5jJ2kRaLW0cbzxJq6WNsXE5l/w811rP3U/nUvv58685y/p0\nOldji5n17x9jz49VaELU/Pu/5LBoWprHruAODVYzNCGcKSPjmT8llZFpUYRrAzGabZytbKGwpImv\nDlXyfWENNU1GHIpCVFhQr1+iXNme/VR+DAlLHpQnisl9w8ljdkS7XtLT9l5Sz1dnttj432/+QE2T\nkSfuG8v4rNgeH7farfz50P+lrK2SB7PvZ3rS5F6f41rquaWjldcL36K45ScSQnWsHJN33auUFUXh\n+8Ia/rnrNKYOOxOGxfLwgmzCNd67NkXf1uEcRi9p4nhJE6YOGwBqfxXDUiK7FrQlx2rQ6cLd1p4t\ndgvfVO5jZ+luDFYj2gANt6fdwszkaZcdgfFWct9w8rjV49dKQtt7ST1fm/K6dl7c+ANBAX688PMp\nvTYOaTA18ceCv2JzWHkq93FSwpJ6fPxq9dwfj3O1GS38z/ZTHDxdT1CgP8vnDWPGmESf2o7T7nBQ\nXNlKYYlzLry05kKdRocHMTUnkek58SRf5/Pm/clkM7O7fC9flu3FbDcTERjOwvS5TEuc7DM9b7lv\nOElodyONwjWknq/d7kMVbNp5muEpETy9fAL+fj2HZo81nODVo28SFxLDM5OfIER9YeHa5eq5vx7n\nOnK2gf/edpJWg4XhQyL5xR0jiYscmGehPUmLwULhuUYKS5ooPNeIwezshY/LjGHhTWkMS4lw2y8t\nBquRXWVfs6f8WywOKzHB0SxKn8eUhIlefxyot903LFY7J8v0jBoa3a9b7cqcdjcyZ+IaUs/XbmhC\nGFUNBo6VNKEoMDKt5wrs+NA4bA4bxxpOUGdsYKJubFdgXKqeL3U6V+51ns5ltth4a+dp3t19FrvD\nwX1zsnho/gi0Ib41HHs5wYH+pMaHMWmEjgVTUhk7XEdVQztFpXq+PVZNYUkTmmD1VRewDYRLnSj2\nY32hT5wo5i33DUVRyC+qY937R9l9uIrkOA3Jcf23wl+O5uzGWxqFt5N6vnYqlYqc9Gjyi+o4craB\nYSkRvXqzwyIzONtcwommU4Sog0nv3LP64nquNtTy8o//4GxLCZkR6TwxYSVJ2oTrKs+Zimb+vPlH\nikr1DNFp+V8PjGfiCO8NghulUqkYnh5DblYMo4ZGYTBZKSrVU3CyjgMnalH7+5EUq8HfxYeaBKuD\nyInJZmpiLha7hVP6sxyqO8KxhhNEBoWjC4n1uv8zb7hvnKtq5dWPjvPFD+VYbQ7mT0nl1okpN7zz\nX3eyEK0bbxt+8VZSz9fvXFUr/+etg2hCAnjh51OIuGiRV0tHG38s+AvtVgO/nvAomZFDe9TzjT7O\nZbM7+HBvCdsOlAKwcGoad89I99iV4a50cXuubjSwI7+M7wtrsNkVwkMDmDtpCLdMSHbbaMTFJ4ql\nhiUzPCqLFG0SKWFJ6EJi+3Ramyt58n1D39bBlj3F7DteA0DuiDjuvyWrxz4L/UXmtLvx5EbhS6Se\n+2b7gTLe3X2WnKFR/GbJePwu6imd0Rfz18OvEREUzqrJ/0lGciI1tc18cPYzdld8S5B/ICtGPsBE\n3djr+roV9e3845MTlNe1ExcZzC/vHMWwFNmN67zLtefm9g6+PFjBV4cqMXXYCArwZ+a4RG6fPGTA\n9kG/mqr2Gj4t2cmRzhPFzgvwU5OoSegK8RRtEsnahD7tMz9QPPG+0WG1syO/jM/3l2KxOkjVaVk2\nb9iAbiQkod2NJzYKXyT13DcOReFvW45ytLiRxbMzuGPa0F7X7CzdzUfF28iOGsZ/zniE//rmNc71\n8XEuh0NhZ0E5739TjM2uMGtcEktuzfLIjVLc6Wrt2dRh45sjVewsKEff1oGfSsWUUc758IHag/1q\njFYTle3VVLRXUdFeRWVbFdWGWmyKvcd1sSExziDXJpESlkiKNonIIPcstPOk+4aiKBwoqmXLnmKa\nWjsI1wSyeFYGN49J7Neh8EuR0O7GkxqFL5N67rs2o4Xn/7uAlnYLzzw4oVeP16E4+PvRjRQ2FhHg\np8bqsPXpca6GZhMbPividHkz4ZpA/nVhdq9nxYXTtbZnm91BflEt2w6UUVlvACAnPZqFU50bu7h7\njtnusFNjrKOirTPI26upaKvCYDP2uE6jDiU5LIkUbWJXzzwhVDfgw+uect8ormrhnV1nKK5qRe3v\nx/wpQ1h0U5rLfpmV0O7GUxqFr5N6vjGnyvS89PZhosKCeP6RKb3mSY1WI38s+Cv6jpbrfpxLURS+\nPVbN27vOYLbYyR0eR96CEYSHeu9GKQPtetuzoigUljSxbX8pJ8uaAUiN17JwahqTsuN6PdbnToqi\n0NzR4uyRt1VT2dkzrzc19rhOrfInURPfGebOQE/WJhEa0H/TAO6+bzS1mtnydTH7j9cCMClbx/1z\nMl3+mKOEdjfubhSDhdTzjfv4uxI+3FvC+KxYfrV4TK9QbrcaCA33x8907b3rVoOFjdtPcvhMAyFB\n/iyfN5zpoxPc3gP0dDfSnkuqW9l+oIwfTtWhKBAbEcztk4cwc2wSQYGeuzDMbDNT2V7T2SN3BnqV\noRqrw9bjupjgqM758cSuufLo4L6NKrjrvtFhsbPtQCnbD5RhsTlIiw9j2bxhDB8Sid1hx2gzYbQa\nMdiMGKwX3oxWIzbFztzUWYQH9t80iIR2NxImriH1fOMcDoU/dT56tWzeMG6bNKTXNddTz4dP1/Pm\n9pO0Ga1kp0by8ztGum2xlLfpj/Zcpzeyo6Ccb49WY7U50ASrmZubwq25KV4zymF32KkzNVDZVkVF\n53x5eVsl7VZDj+tC1MHOEO+aK08iQRNPwFV2bhvI+4ZDcWC2mTFYTRhsBgxWE+0WAyfKazlcUkWH\nw0RgkB1dnJrAYHtXSJts5qt+7n8b8zDjLnM+QF9IaHcjYeIaUs/9o7m9gzVv5GM02/jtQ7kMTeh5\nhOa11LOpw8bbX57h26PVqP39uG92BvMmD+m1Ml1cXn+251ajha86V5y3m6wEqP2YMSaR+VOGeNyZ\n39dCURRaLW1UtFd3hrnzrc7YgMKFePFT+ZEQquvqjadok0gOS0QbcGFr2GupZ0VR6LBbnL1dmwGj\n1YTB6gxhg9WIsas3bOgKaGPnx7qX50rUfmo06lA0ARfeQi/69/n3RQSFowvt37UgEtrdSJi4htRz\n/yk818if3z2CLjKENY9M7rEY5mr1fKpMz+ufFdHQYiY1XsvKO0f1685Ng8VAtOcOi51vj1WzI7+M\nhhYzKhXkjtCxcGoq6YnXf765p+mwW6jqHF4/v3q9sr0ai8Pa47rIoIiu3viw+FQam1s7A/nCEHR7\n57+N3Yakr4Wfyq8rfEM7g1atBFFe3UF1rRXFFkBWQhy3jB1KUmRUVxgH+rt35ENCuxsJE9eQeu5f\nW/YU8/n+UqaM1PHvd+V0zRderp6tNgcffHOOHflloII7pqVx183p/bo/8mAykO3Z7nBw8FQ92/aX\nUVrr/BrZqZEsmJrGmIxon1pv4FAc1Jsau1avO8O8mhZL6xVfp0JFqDqE0IAQNAGarl6uNiD0wvvU\n3T7WGb7B/kFd9We22Ni2v4zt+WVYbQ6GJoSxdK5z3trTXCm05WFMIbzAz2amc6pcT35RHaOGRjNr\nXNJlry2rbWPDpyeoqDegiwrhl3eOIis5woWlFdfD38+PKSPjmZyt42Spnm0HyigsaeJkWTPJcRoW\nTEll6qh4n/iFy0/lR3xoHPGhceTGj+t6f5ulnYr2Kkx+7VhNykXD0BpC1MF9PgzFoSjsK6xh69fF\nNLdbiNAGct/sTKaNTvDKKSLpaYsBIfXc/xpaTDz/RgE2u4NnH55ESpy2Rz07HArbDpTy4d4S7A6F\nOROSWXJLlkevUPYWrm7PZbVt7Mgv48CJOhyKQlRYELdNGsLs8Uk+vfFNf9fzmYpm3t51hp9q2ghQ\n+7FgSioLb0olONCz61CGx7uRMHENqeeBceh0PeveP0ZSrIbnHp5ESlIk9fVt1DWb2PDpCc5WtBCh\nCeSRRSMZmxnj7uL6DHe154YWE18UVPDNkSo6rHZCgtTcMiGZeZNSiNRe/lAJb9Vf9dzQYmLLnmLy\ni+oAmDoqnvtmZxIT4Tlbtl6JhHY3EiauIfU8cP7fF6f58mAFM8cm8vRDk9m66xTvfHmWDqudSdm6\nQXWEpqu4uz0bzFZ2H6pk1w/ltBqtqP1VTMtJYMHUVBJjNFf/BF7iRuvZbLHx+f5SduQ7T+BKTwxn\n2dxhZKV41/SQhHY37v7hGyykngeO1ebgD5sOUlrbRtaQSM6WNxMSpGbF7cO5aVS8Ty1c8hSe0p6t\nNjvfFdaw40AZtXoTABOGxbJgaqpPHPDS13p2KArfH6th6zfFtLRbiAoL4r7ZmUzNiffKeWsJ7W48\n5YfP10k9D6zaJiPPv1lAh8XOyLQofnHHSKLDvWPozxt5Wnt2OBQOn2lg+4FSiqucK6+zkiNYODWV\nccNivTKooG/1fLq8mbe/PENpTRuBaj8WTE1l4dQ0r17LIaHdjaf98PkqqeeBV1zVgsUBI5LDvfYm\n7S08tT0risKZiha2Hyjjx7MNACREh7JgairTcuIJUHtXcF1PPdc3m3hvTzE/nHTOW9+U45y39oVf\nXiW0u/HUHz5fI/XsGlLPruEN9VzZYGBHfhn7CmuwOxQ0wWqS47TookLQRYY4/+z8e2iwZ655uNYd\n/s7PW9vsDjKSnPPWmT70WKNHPaf98ccfs2HDBtRqNU888QRz5sxxdRGEEMLnJMdq+PmikdwzM4Nd\nP5STX1THmfJmTpc397pWE6xGFxXaI9DjIkOIjwohXBPokesiHA6F745Vs/Wbc7QanPPW98/JZMoo\n75y37iuXhrZer2f9+vVs3boVo9HIyy+/LKEthBD9KCosiPtvyeL+W7Kw2hw0tJio05uoazZR3/ln\nnd5EWW0bJdW9dyILCvAnLjLYGernA70z3KPDg9xyrOipMj1vf3mGstp2AgP8+NmMdOZPTSUowLuG\n//uDS0N73759TJs2Da1Wi1ar5cUXX3TllxdCiEElQO1HYozmko+FORwKTW1m6vUmas8H+vlQbzZR\nUW/o9Rp/PxWxEcHERYUQHxnaFebOnnpwv8+h1zWbeG/3WQ6eqgdgWk4Ci2dn+MS8dV+5NLQrKiow\nm808+uijtLa28qtf/Ypp06a5sghCCCEAPz8VsREhxEaEMPKijymKQqvR6gx0vZH65gs99Dq9idpz\nTRTS1OM1KiAqPAhdpHOo3TmHfqG3fj07uZk6bHy67ye+KCjHZlfITA5n2dzhZCR5/0EqN8qlC9Fe\ne+01Dh06xLp166iqquKhhx5i9+7dl50/sdnsqL1s9aMQQvg6g8lKdaOBmkYD1Q2db40GahoMNLRc\n+vzpcE0gibHOXn9CjObC32NDidQ6D/awOxR25Zfx1rYimts7iI0M4ZE7RzFzfLJHzrO7g0t72jEx\nMUyYMAG1Wk1qaioajYampiZiYi693aJeb+z3MnjDKlBfIPXsGlLPriH13FtEkD8RSeGMuKj3a7Ha\nqW8xdw63G7uG2+v0Js6WN3OqVN/rcwUF+qOLDEEBKuqc89b3zExn/pRUAgP8aWhod9F35Rk8ZvX4\njBkzWLVqFStXrqSlpQWj0UhUVJQriyCEEGIABQb4kxyrITm29zy63eGgsbWj24I4I3V6E/XNJmqb\njFjtDm4encC9szOJCvO9vdX7g0tDOz4+nvnz5/PAAw8A8Oyzz+LnhpWIQgghXM/fz885xx0ZQs5F\nH1MUhYgoDa3N/T/C6ktc/pz20qVLWbp0qau/rBBCCA+mUqkG5SNc10u6uUIIIYSXkNAWQgghvISE\nthBCCOElJLSFEEIILyGhLYQQQngJCW0hhBDCS0hoCyGEEF5CQlsIIYTwEhLaQgghhJeQ0BZCCCG8\nhIS2EEII4SVcep62EEIIIfpOetpCCCGEl5DQFkIIIbyEhLYQQgjhJSS0hRBCCC8hoS2EEEJ4CQlt\nIYQQwksMmtD+wx/+wJIlS1i6dClHjx51d3F82ksvvcSSJUtYvHgxO3fudHdxfJrZbGbevHm8//77\n7i6Kz/r444+56667uPfee9mzZ4+7i+OTDAYDjz/+OHl5eSxdupS9e/e6u0geS+3uArhCfn4+paWl\nbN68meLiYlavXs3mzZvdXSyftH//fs6cOcPmzZvR6/Xcc8893H777e4uls965ZVXiIiIcHcxfJZe\nr2f9+vVs3boVo9HIyy+/zJw5c9xdLJ/zwQcfkJ6ezpNPPkltbS0PP/ww27dvd3exPNKgCO19+/Yx\nb948ADIzM2lpaaG9vR2tVuvmkvmeyZMnM3bsWADCw8MxmUzY7Xb8/f3dXDLfU1xczNmzZyVEBtC+\nffuYNm0aWq0WrVbLiy++6O4i+aSoqChOnToFQGtrK1FRUW4ukecaFMPjDQ0NPRpBdHQ09fX1biyR\n7/L39yc0NBSALVu2MGvWLAnsAbJ27VpWrVrl7mL4tIqKCsxmM48++ijLly9n37597i6ST7rjjjuo\nqqritttuY8WKFTzzzDPuLpLHGhQ97YvJzq0Db9euXWzZsoU33njD3UXxSR9++CHjx49nyJAh7i6K\nz2tubmbdunVUVVXx0EMPsXv3blQqlbuL5VM++ugjkpKSeP311zl58iSrV6+WdRqXMShCW6fT0dDQ\n0PXvuro64uLi3Fgi37Z3715effVVNmzYQFhYmLuL45P27NlDeXk5e/bsoaamhsDAQBISEpg+fbq7\ni+ZTYmJimDBhAmq1mtTUVDQaDU1NTcTExLi7aD7l0KFDzJgxA4Ds7Gzq6upkWu0yBsXw+M0338yO\nHTsAOH78ODqdTuazB0hbWxsvvfQSf//734mMjHR3cXzWX/7yF7Zu3cq7777L/fffz2OPPSaBPQBm\nzJjB/v37cTgc6PV6jEajzLcOgLS0NI4cOQJAZWUlGo1GAvsyBkVPe+LEieTk5LB06VJUKhVr1qxx\nd5F81ueff45er+fXv/511/vWrl1LUlKSG0slRN/Ex8czf/58HnjgAQCeffZZ/PwGRV/HpZYsWcLq\n1atZsWIFNpuN559/3t1F8lhyNKcQQgjhJeRXRiGEEMJLSGgLIYQQXkJCWwghhPASEtpCCCGEl5DQ\nFkIIIbyEhLYQPqaiooLRo0eTl5fXdWrSk08+SWtr6zV/jry8POx2+zVfv2zZMg4cONCX4gohroOE\nthA+KDo6mk2bNrFp0ybeeecddDodr7zyyjW/ftOmTbK5hRAeaFBsriLEYDd58mQ2b97MyZMnWbt2\nLTabDavVyu9+9ztGjRpFXl4e2dnZFBUVsXHjRkaNGsXx48exWCw899xz1NTUYLPZuPvuu1m+fDkm\nk4nf/OY36PV60tLS6OjoAKC2tpannnoKcJ71vWTJEu677z53futC+BQJbSF8nN1u54svviA3N5en\nn36a9evXk5qa2utghtDQUN56660er920aRPh4eH86U9/wmw2s2jRImbOnMn3339PcHAwmzdvpq6u\njrlz5wKwbds2MjIyeOGFF+jo6OC9995z+fcrhC+T0BbCBzU1NZGXlweAw+Fg0qRJLF68mL/97W/8\n9re/7bquvb0dh8MBOLf7vdiRI0e49957AQgODmb06NEcP36c06dPk5ubCzgP5MnIyABg5syZ/POf\n/2TVqlXMnj2bJUuWDOj3KcRgI6EthA86P6fdXVtbGwEBAb3ef15AQECv9118BKWiKKhUKhRF6bEH\n9/ngz8zM5LPPPqOgoIDt27ezceNG3nnnnRv9doQQnWQhmhCDRFhYGCkpKXz99dcAlJSUsG7duiu+\nZty4cezduxcAo9HI8ePHycnJITMzk8OHDwNQXV1NSUkJAJ988gnHjh1j+vTprFmzhurqamw22wB+\nV0IMLtLTFmIQWbt2Lb///e957bXXsNlsrFq16orX5+Xl8dxzz/Hggw9isVh47LHHSElJ4e677+ar\nr75i+fLlpKSkMGbMGACysrJYs2YNgYGBKIrCypUrUavlNiNEf5FTvoQQQggvIcPjQgghhJeQ0BZC\nCCG8hIS2EEII4SUktIUQQggvIaEthBBCeAkJbSGEEMJLSGgLIYQQXkJCWwghhPAS/x/wZONfI/DS\ndQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlcVeW+BvBnMSqDjG4UBS27aJEU\naqmholwQtfR4zYEyzMKbOBzT0kQkQBOUTuU5JRaeLAsnFCk9OaB5squGqFkOdLTU4ooDMyiDyLDu\nHx73FWWSxdprrb2fb5/9+bCn9XuB2I/vsN4liKIogoiIqJXMlG4AERFpG4OEiIgkYZAQEZEkDBIi\nIpKEQUJERJIwSIiISBIGCUkiiiI+//xzPPfccwgODkZgYCBiY2Nx48YNScedP38+/P39cfDgwQd+\n76lTpxAWFiapflvbtWsXysrKGnzu/fffx6ZNmwzcIqK2I/A8EpLiL3/5C44ePYpVq1bBzc0NFRUV\niIuLw++//44NGzZAEIRWHffRRx9Feno6PD0927jFyhgxYgTWrVuHTp06Kd0UojbHHgm1WklJCZKT\nk7FixQq4ubkBAGxsbBAdHY1p06ZBFEVUVVUhOjoawcHBGDlyJFasWIHa2loAQEBAADZv3ozx48dj\n0KBBWLFiBQAgNDQUdXV1CAsLw/fff4+AgAAcP35cX/fO/ZqaGixevBjBwcEICgrC7NmzUVZWhszM\nTAQFBQFAq+rfKzQ0FGvWrMGkSZMwYMAAbNiwAatXr8aIESMwatQoXLp0CQBw8eJFvPDCCxg5ciSC\ngoLwzTffAAAWLVqE33//HaGhoTh+/DgiIiKwfPlyjB49Grt370ZERARWr16NU6dOYejQoSgvLwcA\nfPLJJ5gzZ05b/9qI2hyDhFrt5MmT6NSpE3r06FHvcWtrawQEBMDMzAxffPEFrl27hp07d+Krr77C\n8ePH9R+wAHDs2DGkpKRg27ZtWL9+Pa5du4bk5GQAQHJyMvz9/Rutf+jQIeTk5GDPnj3Yu3cvHnnk\nEfz000/1XtOa+g05duwYNmzYgOXLl+Mvf/kLOnXqhD179uCRRx7Btm3bAADvvvsuhg0bht27dyM+\nPh6LFy9GdXU1li9frv9++vXrBwDIyMhAamoqRo4cqa/h4+ODwMBAJCUlITc3Fxs3bkRUVFSzvwci\npTFIqNVKSkrg4uLS5GsOHDiAiRMnwsLCAu3atcPo0aNx+PBh/fOjR4+Gubk53Nzc4OLigqtXr7a4\nvrOzMy5cuIB9+/ahsrISc+fOxeDBg2WpP2zYMFhYWMDLywuVlZUIDg4GAHh5eSEvLw8AsHr1av3c\nTN++fVFVVYX8/PwGjzdw4EBYW1vf9/i8efOwZ88eLFq0CDNnzoROp2vxz4NIKQwSajUnJyfk5uY2\n+ZqioiI4ODjo7zs4OKCwsFB/387OTv+1ubm5ftipJXx8fBAVFYXk5GT4+fnhzTffxPXr12Wpb2tr\nq3/N3ffNzMxQV1cHADh48CAmT56M4OBgjBo1CqIo6p+7191turfOyJEj8eOPP2L06NFNfv9EasEg\noVZ78sknUVhYiKysrHqPV1dXY+XKlaisrISrqytKSkr0z5WUlMDV1fWB6tz9YQ0ApaWl+q9HjBiB\n5ORkfPfdd6isrMTatWvrvbct6rdEdXU15s6dixkzZiA9PR07duxo1UKD3Nxc/OMf/8Czzz6LVatW\ntXk7ieTAIKFW69ChA6ZNm4aFCxciOzsbAFBZWYno6Gj88ssvaN++PYYOHYrU1FTU1taioqIC27dv\nb3LeoyEdO3bE2bNnAdxeRltVVQUA2LZtGxITEwEAjo6OePjhh+97b1vUb4nKykpUVFTg8ccfB3B7\nbsbS0hIVFRUAAAsLi/t6Sw2Ji4vDtGnTEBkZid27d+Nf//pXm7eVqK0xSEiSP//5z5g4cSJmzJiB\n4OBgjBs3Di4uLvp/TYeGhqJTp0549tln8fzzz2Po0KH1JphbYubMmVi3bh2ee+45XLhwAY888ggA\n4D//8z+RlZWF4cOHY+TIkTh//jxeeeWVeu9ti/otcSdUx44di7Fjx8LT0xOBgYEIDw9HRUUFRowY\ngZCQEOzatavRYxw4cAA5OTkICQmBnZ0d5s2bh6ioqAca7iNSAs8jISIiSdgjISIiSRgkREQkCYOE\niIgkYZAQEZEkDBIiIpLEQukGNMbWtoMidcvLm1/r39aqa2sMXhMALM1V++uXRdG/N0M0NNsGtkIx\nBGsLZX6/Si0Ebe1O02rW2u/J0L8D0/okISLSEK2EI4e2iIhIEvZIiIhUSis9EgYJEZFKCYI2Bo0Y\nJEREqsUeCRERScChLSIikoRBQkREkmhljkQbrSQiItVij4SISKU4tEVERJIwSACUl5ejoKAAwO3r\nbtvY2MhZjojIqJh0kJw+fRpxcXG4fv06nJycIIoi8vLy4ObmhujoaPTs2VOOskRERsWkgyQ+Ph5x\ncXHo0aNHvcezsrKwdOlSbNiwQY6yRERGRhvroWRppSiK94UIAHh7e6O2tlaOkkREpBBZeiRPPPEE\nwsPDERgYCGdnZwBAQUEB0tPT8fTTT8tRkojI6GhlaEsQZboCyrFjx5CRkaGfbNfpdPDz84Ovr2+L\n3s8LW8mPF7YyDF7YyjC08qH7IOztnVv1vhs3itq4JU2TLUikYpDIj0FiGAwSwzDGIOnQwaVV77t+\nvbCNW9I00/okISLSEK2EI4OEiEiltLLXFoOEiEiltNIj0UbcERGRarFHQkSkUlrpkTBIiIhUi0FC\nREQScLKdiIgk4dAWERFJwiAhIiJJtBIk2hiAIyIi1VJtj0SJPa8AZf4FUF2jzF5bpsbGykqRukrt\neUXap5UeCf8PJyJSKa7aIiIiSdgjISIiiRgkREQkAXskREQkiVbmSLTRSiIiUi32SIiIVIpDW0RE\nJAmDhIiIJGGQEBGRJAwSIiKShKu2GnH9ujJ7aBERaY3Qyv8MzeBBMnv2bEOXJCIiGckytLVhw4ZG\nn8vNzZWjJBGR8ZFxjiQ+Ph4nT56EIAiIjIyEj4+P/rkNGzZgx44dMDMzw+OPP47Fixc3eSxZgmTd\nunUYOHAgdDrdfc/VcMt0IqIWkWuy/ejRo8jOzkZKSgouXLiAyMhIpKSkAADKysqwdu1a7N27FxYW\nFnj11Vfx888/48knn2z0eLIESWJiIpYtW4aoqChY3XMNiMzMTDlKEhEZHbmCJCMjA4GBgQCAHj16\noLS0FGVlZbCzs4OlpSUsLS1RUVEBGxsbVFZWwsHBocnjyRIkXl5eSEpKgkUDF/SJiIiQoyQRkdGR\na9VWQUEBvL299fednZ2Rn58POzs7WFtbY9asWQgMDIS1tTWeffZZPPTQQ00eT7bJ9vbt28PM7P7D\n3914IiJqnCAIrbo9KFEU9V+XlZUhKSkJe/bswf79+3Hy5EmcPXu2yfdrY5EyEZEJkitIdDodCgoK\n9Pfz8vLQsWNHAMCFCxfg4eEBZ2dnWFlZoV+/fjhz5kyTx2OQEBGZGD8/P6SnpwMAsrKyoNPpYGdn\nBwDo0qULLly4gJs3bwIAzpw5g+7duzd5PJ7ZTkSkUnJNtvfp0wfe3t4ICQmBIAiIiYlBWloa7O3t\nERQUhLCwMEyZMgXm5ubw9fVFv379mm6nePfgGCmyt021QkuiLczNFamrlJvV1YrUbWdpqUhdpSj1\nkaKVfakeRK+e/Vv1vrPnDLs6lj0SIiK10kg4MkiIiFRKK70sBgkRkUoxSIiISBKtBAmX/xIRkSTs\nkRARqZRWLmzFICEiUimtDG2pNkhqamsVqVt565bBa3p09TJ4TQDIufybInXNG9iDzTB1lfmjzL9x\nQ5G6TjY2itStVeg8EusGNonVOgYJERFJxCAhIiIJOEdCRESSaGVoSxtxR0REqsUeCRGRSmmlR8Ig\nISJSKQYJERFJwiAhIiJJuGqLiIgkYY+EiIgkETRyQqI2+k1ERKRasgZJQ9duvnbtmpwliYiMhyC0\n7mZgsgTJvn37MGzYMAwcOBALFy5EWVmZ/rm33npLjpJEREZHEIRW3QxNliBZs2YNvvrqK/zwww/o\n06cPwsLCcOPfO6A21EshIqL7CYJZq26GJstku7m5ORwdHQEAkyZNgouLC8LCwvDJJ59oZhUCEZHS\ntPJ5KUuQ9OnTB9OnT8ff/vY3tGvXDoGBgbC2tsbUqVNRUlIiR0kiIqNj0kHy1ltvITMzE9bW1vrH\nBg8eDF9fX+zatUuOkkRERsekgwQA+vfvf99jdnZ2mDhxolwliYhIATwhkYhIpbhFChERSWTiQ1tE\nRCSNyc+REBGRNAwSIiKShEFCRESSaGWyXRutJCIi1WKPhIhIpTi0RUREkjBIiIhIEgYJERFJpI1p\nbNUGiVJJbG5m+Lo/nz1h8JoAMDxoqiJ19+//UpG6//zlF0XqBvf2UaSuUtf+qampUaRuda0ydS3N\n5fsYZY+EiIgk0UqQaKPfREREqsUeCRGRSmmlR8IgISJSKQYJERFJopUtUhgkREQqxR4JERFJwiAh\nIiKJtBEk2hiAIyIi1WKPhIhIpbQytGWwHklRUZGhShERGQVBMGvVzdBkqXjgwAEEBwdj6tSp+PXX\nXzFmzBiEhoYiICAA33//vRwliYiMjiAIrboZmixDWx9//DE+//xzXLlyBeHh4Vi9ejV69eqFgoIC\nhIeHw9/fX46yRERGRStDW7IEiZWVFdzd3eHu7g6dTodevXoBAFxdXWFtbS1HSSIio6OVIJFlaMvF\nxQVr164FAGzevBkAcO3aNcTHx6NTp05ylCQiMjomPUeyYsUKdO7cud5jhYWFcHd3R3x8vBwliYhI\nIbIMbbVr1w6jRo2q95i3tze8vb3lKEdEZJTkHNqKj4/HyZMnIQgCIiMj4ePz/xdgu3r1Kt544w1U\nV1fjsccew9KlS5s8Fk9IJCJSLaGVt6YdPXoU2dnZSElJQVxcHOLi4uo9v2LFCrz66qtITU2Fubk5\nrly50uTxGCRERCol1/LfjIwMBAYGAgB69OiB0tJSlJWVAQDq6urw448/IiAgAAAQExMDd3f3Jo/H\nICEiUinBTGjVrTkFBQVwcnLS33d2dkZ+fj6A2yeP29raYvny5XjhhRfw/vvvN3s8BgkRkUoZ6oRE\nURTrfZ2bm4spU6Zg/fr1+OWXX3DgwIEm388gISJSKbmCRKfToaCgQH8/Ly8PHTt2BAA4OTnB3d0d\nnp6eMDc3x8CBA/Hbb781eTwGCRGRifHz80N6ejoAICsrCzqdDnZ2dgAACwsLeHh44I8//tA//9BD\nDzV5PO7+S0SkUnIt/+3Tpw+8vb0REhICQRAQExODtLQ02NvbIygoCJGRkYiIiIAoivDy8tJPvDeG\nQUJEpFJynkcyf/78evfvbGUFAN26dcOmTZtafCwGCRGRSimw20mrMEiIiNRKI5s2MkiIiFRKK7v/\nMkiIiFSKQSKRuZkyg4NmouF/cc52tgavCQD793+pSF17e2dF6haX5CtSt6qmRpG6Fgr9DSmlTmz+\nNSQP1QYJEZGpY4+EiIgkacm+WWrAICEiUin2SIiISBIGCRERSaKRHGk8SFJTU5t84/jx49u8MURE\ndBeNJEmjQfLjjz82+UYGCRERAU0EyfLly/Vf19XVobCwUL9fPRERyU8rq7aaPWPpzrV9Q0NDAQDx\n8fHNXi2LiIikM9QVEqVqNkhWrlyJLVu26Hsj4eHhWL16tewNIyIydUYTJDY2NnB1ddXfd3Z2hqWl\n5QMVycjIePCWERGZOK0ESbPLf9u1a4ejR48CAEpLS7Fz505YW1s3+vqvv/663n1RFPHxxx9j5syZ\nAICxY8dKaS8RkckwmvNIYmJiEBsbi9OnTyMoKAh9+/bF0qVLG319YmIiHB0d4e/vr3+sqqoKOTk5\nbdNiIiIToZXJ9maDpHPnzkhKSmrxAb/55husXr0a586dQ0REBLp06YKDBw9i9uzZkhpKRETq1GyQ\nHDt2DCtWrMCFCxcgCAK8vLzw1ltvoW/fvg2+3traGvPmzcPFixexdOlS+Pr6oq6urs0bTkRk7DQy\nstX8ZPvSpUsxf/58ZGZmIiMjA3PmzMGSJUuaPfDDDz+MpKQkdOrUCV27dm2TxhIRmRKjmWx3cXHB\nwIED9ff9/Pzg7u7e4gJjx47lBDsRUWtopEvSaJBcunQJANC7d2989tlneOaZZ2BmZoaMjAw89thj\nBmsgEZGp0vyqrZdffhmCIEAUb1+/cv369frnBEHAnDlz5G8dEZEJ0/yqrX/+85+NvunEiROyNIaI\niP6f5nskd5SVlWH79u0oLi4GAFRXV2Pbtm04dOiQ7I0jIiL1a3bV1ty5c3Hu3DmkpaWhvLwc3333\nHWJjYw3QNCIi06aVVVvNBklVVRWWLl2KLl26YOHChfjyyy+xe/duQ7SNiMikaSVImh3aqq6uRkVF\nBerq6lBcXAwnJyf9ii4iIpKPRqZImg+SP/3pT9iyZQsmTJiAUaNGwdnZGZ6enoZoGxGRadP6qq07\nXnjhBf3XAwcORGFhIc8jISIyAM2v2vrb3/7W6Jv27duH119/XZYGERHRbZoPEnNzc0O2g4iINKrR\nIOG270REytJ8j0RpNbW1itRV4hcnQJn/WapraxSpW1ySr0hdZyedInWLivMUqasUc4UmiM2EZs9m\n0BwGCRERSaKVvbZaFOHFxcU4ffo0APAiVUREBqKVExKbDZJvvvkGkyZNwqJFiwAA77zzDrZu3Sp7\nw4iITJ0gtO5maM0Gyeeff47t27fDyckJALBw4UJs2bJF9oYREZk8jSRJs0Fib2+P9u3b6++3a9cO\nlpaWsjaKiIi0o9nJdicnJ3z11VeoqqpCVlYWdu3aBWdnZ0O0jYjIpGll1VazPZIlS5bg9OnTKC8v\nR1RUFKqqqrBs2TJDtI2IyKQJZkKrbobWbI+kQ4cOiI6ONkRbiIjoLlrpkTQbJP7+/g1+MwcOHJCj\nPURE9G9GEyQbN27Uf11dXY2MjAxUVVXJ2igiIjKiIOnSpUu9+927d0dYWBimTp3a4iI1NTXIzc2F\nm5sbLCx4Mj0RUUsYTZBkZGTUu3/t2jX87//+b5PvWbZsGaKiogAAP/zwAxYvXgxXV1cUFhZiyZIl\nGDx4sIQmExGRmjQbJKtXr9Z/LQgC7OzssGTJkibfc+7cOf3XiYmJ+PLLL+Hh4YH8/HzMnj2bQUJE\n1AJa2Yey2SCJiIiAt7f3Ax307u6Yg4MDPDw8AAAdO3bk0BYRUUtpZGir2bxLSEh44IP+9ttveP31\n1zFnzhxkZ2dj9+7dAIDPPvsM9vb2D95KIiITpJVNG5vtHri7uyM0NBRPPPFEva1RmrrU7r2X6e3W\nrRuA2z2S999/v7VtJSIyKUYz2d61a1d07dr1gQ769NNPN/j46NGjH+g4RESmTPNBsmPHDowZM4aX\n3CUiUojmL2yVmppqyHYQEZFGaWRxGRGR6ZFzsj0+Ph6TJk1CSEgITp061eBr3n//fYSGhjZ7rEaH\ntn766ScMHTr0vsdFUYQgCNxri4hIZnLNkRw9ehTZ2dlISUnBhQsXEBkZiZSUlHqvOX/+PI4dO9ai\n6081GiSPPfYYPvjgA+ktJiKiVpFrrj0jIwOBgYEAgB49eqC0tBRlZWWws7PTv2bFihWYN28eVq1a\n1ezxGg0SKyur+/bZIiIiw5Frsr2goKDeiebOzs7Iz8/XB0laWhqefvrpFmdAo3MkPj4+EptKRESS\nGOia7aIo6r8uKSlBWloaXnnllRa/v9EgWbBgwQM3hoiI1E+n06GgoEB/Py8vDx07dgQAHDlyBEVF\nRZg8eTJmz56NrKwsxMfHN3k8rtoiIlIpuVZt+fn5IT09HQCQlZUFnU6nH9YaMWIEdu3ahS1btmDV\nqlXw9vZGZGRkk8fjDopERCol16qtPn36wNvbGyEhIRAEATExMUhLS4O9vT2CgoIe+HiCePfgmIrU\n1NYqUleJLQmU+hWIUKauAGXO1nV20ilSt6g4T5G6Sm2vUSfWKVLXTKE9183N5Ksbn7Sx+Rc1IHL6\ni23ckqaxR0JEpFJa2SJFtUEiZ8o3pU6B3oFSPQNLc2V+/dW1NYrU/eNq01f2lIujg6sidcvKihWp\nayYq8+GnlQ0OH4RWvifVBgkRkanTSI5w1RYREUnDHgkRkUpxaIuIiKRhkBARkRRctUVERJJwaIuI\niCRhkBARkSRaCRIu/yUiIknYIyEiUin2SO5RVFRkqFJEREZBMGvdzdBkKfn9998jOjoawO1rAw8b\nNgxTpkxBQEAADhw4IEdJIiKjI9f1SNqaLENbH374IZKSkgAAiYmJ+PLLL+Hh4YHi4mJMnz4dQ4cO\nlaMsEZFx0cjQlixBUlNTA1tbWwCAvb09unbtCgBwdHRU7NobRERao5U5ElmCJCwsDGPHjoWfnx8c\nHR0xc+ZM+Pr6IjMzExMmTJCjJBGR0THpIBkzZgyGDBmCH374AZcvX4YoinB1dUV8fDzc3NzkKElE\nRAqRbfmvo6MjRo0aJdfhiYiMHvfaIiIiSUx6aIuIiKRjkBARkSQayREGCRGRamkkSRgkREQqpZXJ\ndu7+S0REkrBHQkSkUpxsJyIiSRgkREQkCYOEiIgkYZAQEZEkWlm1xSAhIlIpjXRI1BskdQpdt6Sq\npsbgNW/VVBu8JgA42ijz66+8pcz326FdO0XqlpUVK1LXw6OXInX/yP5Fkbo3b91SpK6ttbUiddVE\ntUFCRGTyNNIlYZAQEakUJ9uJiEgSBgkREUnCVVtERCQJeyRERCSJVoKEu/8SEZEk7JEQEamUVnok\nDBIiIpXSSI4wSIiIVIurtoiISAqtDG3JMtnep08fvPPOOygsLJTj8EREJkEQhFbdDE2WHom3tzdG\njBiBN998E507d8a4cePg6+sLCwt2gIiIWkorPRJZPtkFQcBTTz2FdevW4fTp09i6dSvefvtt2Nra\nwsXFBWvWrJGjLBERKUCWIBHv2gK+d+/e6N27NwAgLy8P+fn5cpQkIjI6ZqbcI/nTn/7U4OM6nQ46\nnU6OkkRERsekh7bGjx8vx2GJiEyKSfdIiIhIOo3kCIOEiEitBGgjSRgkREQqpZWhLe7+S0REkrBH\nQkSkUnKu2oqPj8fJkychCAIiIyPh4+Ojf+7IkSP44IMPYGZmhoceeghxcXEwM2u838EeCRGRSsm1\nRcrRo0eRnZ2NlJQUxMXFIS4urt7z0dHR+PDDD7F582aUl5fj4MGDTR6PPRIiIpWSa44kIyMDgYGB\nAIAePXqgtLQUZWVlsLOzAwCkpaXpv3Z2dkZxcXHT7ZSllUREJJlcPZKCggI4OTnp7zs7O9fbdeRO\niOTl5eHw4cPw9/dv8njskRARqZShVm3dva3VHYWFhQgPD0dMTEy90GkIg4SISKXkyhGdToeCggL9\n/by8PHTs2FF/v6ysDP/93/+NuXPnYtCgQc0ej0NbREQmxs/PD+np6QCArKws6HQ6/XAWAKxYsQIv\nv/wyhgwZ0qLjsUdCRKRScp3Z3qdPH3h7eyMkJASCICAmJgZpaWmwt7fHoEGD8PXXXyM7OxupqakA\ngOeeew6TJk1qvJ1iQ4NjKlBbV6dI3bKbNw1e08bayuA1AcBMUKZDqtT/cpsPZyhSd8IzAxSpa2Vu\nrkjdsWPnKFJ3W9pfFalrIePP+dszZ1r1vsDHH2/jljSNPRIiIpUy6W3kiYhIOgYJERFJopVNGxkk\nREQqpZUeCZf/EhGRJOyREBGplFZ6JAwSIiKVMtNGjjBIiIjUipfaJSIiSbhqi4iIJOEcyT1EUdTM\nD4WISA208pkpy/LfQ4cOYeTIkZg8eTJOnTqF559/HkOGDMGIESNw9OhROUoSEZFCZOmRJCYm4osv\nvkBpaSlCQ0Oxbt069OrVC5cvX8aCBQuwceNGOcoSERkVk54jsbS0hE6ng06nQ4cOHdCrVy8AQJcu\nXWCu0I6kRERao5WhLVmCxMHBAStXrkRxcTE8PT0RHR2NwYMH4+eff4aLi4scJYmIjI5WgkSWOZKE\nhATodDoMGDAAn376Kfr164fDhw/D1dUV8fHxcpQkIjI6ZkLrboYmS4/ExsYGkydP1t8fM2YMxowZ\nI0cpIiKjxRMSiYhIEq1MtnP3XyIikoQ9EiIildLKZDuDhIhIpRgkREQkiVbmSBgkREQqxR4JERFJ\nwiAhIiJJtHKFRC7/JSIiSdgjISJSKZ7ZTkREkmhljkQQRVFUuhENqa6tUahuncFrWluYVp6nnz6t\nSN0BjzyiSF0nGxtF6l4tKVGkroNC3++0sFhF6m5av1y2Y1/My2vV+x7W6dq4JU0zrU8wIiIN0UqP\nhEFCRKRSPCGRiIgk0UqPhMt/iYhIEvZIiIhUSis9EgYJEZFKaeXMdgYJEZFK8YREIiKShENbREQk\nCZf/EhGRJFrpkXD5LxERSSJrj0QURRQXF0MURbi4uMhZiojI6GilRyJLkPz+++9ISEjA5cuXkZOT\ngx49eqC0tBTe3t5YtGgR3Nzc5ChLRGRUtDJHIsvQVkxMDBYvXox//OMf2LZtG3r37o19+/Zh3Lhx\nmD9/vhwliYiMjiAIrboZmixBcuvWLXh4eAAAunfvjnPnzgEAhgwZgps3b8pRkojI6JgJrbsZmixD\nW15eXnjjjTfg4+ODgwcPon///gCAyMhIPKLQNSGIiLTGpE9IXLJkCfbv348//vgDL7/8MoYMGQIA\nmDJlCnr27ClHSSIio2PSk+2CICAwMPC+x3v16iVHOSIiUhBPSCQiUimtrNpikBARqZRJD20REZF0\nDBIiIpKEQ1tERCQJeyRERCSJVq6QyN1/iYhIEvZIiIhUSs4z2+Pj43Hy5EkIgoDIyEj4+Pjon/vh\nhx/wwQcfwNzcHEOGDMGsWbOaPBZ7JEREKiXXpo1Hjx5FdnY2UlJSEBcXh7i4uHrPL1u2DB999BE2\nbdqEw4cP4/z5800ej0FCRKRSZoLQqltzMjIy9LuP3LnMR1lZGQDg0qVLcHBwQOfOnWFmZgZ/f39k\nZGQ03U7p3yoREclBrh5JQUEBnJyc9PednZ2Rn58PAMjPz4ezs3ODzzVGtXMklubKNM3SXJGyJmXU\nE08o3QST4H7XB4Up2LR+udLzLdFcAAAKVklEQVRN0CxRFCW9nz0SIiITo9PpUFBQoL+fl5eHjh07\nNvhcbm4udDpdk8djkBARmRg/Pz+kp6cDALKysqDT6WBnZwcA6Nq1K8rKypCTk4Oamhp899138PPz\na/J4gii1T0NERJrz3nvv4fjx4xAEATExMfjll19gb2+PoKAgHDt2DO+99x4AYPjw4QgLC2vyWAwS\nIiKShENbREQkCYOEiIgkUe3y39Zq6rR/Of3666+YOXMmpk6dipdeeskgNQHg3XffxY8//oiamhpM\nnz4dw4cPl7VeZWUlIiIiUFhYiKqqKsycORPDhg2Ttebdbt68ieeeew4zZ87EuHHjZK+XmZmJ119/\nHf/xH/8BAPDy8sLbb78te10A2LFjBz799FNYWFhgzpw5GDp0qOw1t27dih07dujvnzlzBj/99JPs\ndcvLy7Fw4UKUlpaiuroas2bNwuDBg2WvW1dXh5iYGPz222+wtLREbGwsevToIXtdoyMakczMTPG1\n114TRVEUz58/L06cONEgdcvLy8WXXnpJjIqKEpOTkw1SUxRFMSMjQ5w2bZooiqJYVFQk+vv7y15z\n586d4po1a0RRFMWcnBxx+PDhste82wcffCCOGzdO3LZtm0HqHTlyRPzzn/9skFp3KyoqEocPHy7e\nuHFDzM3NFaOiogzehszMTDE2NtYgtZKTk8X33ntPFEVRvHbtmhgcHGyQunv37hVff/11URRFMTs7\nW//5QQ/GqHokjZ32f2dZm1ysrKzw97//HX//+99lrXOvp556St/j6tChAyorK1FbWwtzc/nOqhw1\napT+66tXr8LNzU22Wve6cOECzp8/b5B/mSstIyMDAwcOhJ2dHezs7PDOO+8YvA2JiYn6lTtyc3Jy\nwrlz5wAA169fr3fWtZz++OMP/d+Qp6cnrly5IvvfkDEyqjmSpk77l5OFhQXatWsne517mZubw8bG\nBgCQmpqKIUOGGOwPICQkBPPnz0dkZKRB6gFAQkICIiIiDFbvjvPnzyM8PBwvvPACDh8+bJCaOTk5\nuHnzJsLDw/Hiiy82u9dRWzt16hQ6d+6sP0lNbs8++yyuXLmCoKAgvPTSS1i4cKFB6np5eeHQoUOo\nra3FxYsXcenSJRQXFxuktjExqh7JvUQTWdn87bffIjU1FZ999pnBam7evBn/+te/sGDBAuzYsUP2\nK7l9/fXXePLJJ+Hh4SFrnXt1794ds2fPxsiRI3Hp0iVMmTIFe/fuhZWVley1S0pKsGrVKly5cgVT\npkzBd999Z7Ar5qWmpuK//uu/DFILALZv3w53d3esXbsWZ8+eRWRkJNLS0mSv6+/vjxMnTmDy5Mno\n2bMnHn74YZP53GhLRhUkTZ32b6wOHjyITz75BJ9++ins7e1lr3fmzBm4uLigc+fOePTRR1FbW4ui\noiK4uLjIWvfAgQO4dOkSDhw4gGvXrsHKygqdOnXCM888I2tdNzc3/XCep6cnXF1dkZubK3ugubi4\nwNfXFxYWFvD09IStra1Bfs53ZGZmIioqyiC1AODEiRMYNGgQAKBXr17Iy8sz2BDTvHnz9F8HBgYa\n7GdsTIxqaKup0/6N0Y0bN/Duu+8iKSkJjo6OBql5/Phxfc+noKAAFRUVBhnP/utf/4pt27Zhy5Yt\nmDBhAmbOnCl7iAC3V06tXbsWwO1dUQsLCw0yLzRo0CAcOXIEdXV1KC4uNtjPGbi9t5Ktra1Bel13\ndOvWDSdPngQAXL58Gba2tgYJkbNnz2LRokUAgP/5n//BY489BjMzo/pYNAij6pH06dMH3t7eCAkJ\n0Z/2bwhnzpxBQkICLl++DAsLC6Snp+Ojjz6S/cN9165dKC4uxty5c/WPJSQkwN3dXbaaISEhWLx4\nMV588UXcvHkT0dHRRv2HFxAQgPnz52P//v2orq5GbGysQT5g3dzcEBwcjIkTJwIAoqKiDPZzvncb\ncUOYNGkSIiMj8dJLL6GmpgaxsbEGqevl5QVRFDF+/HhYW1sbbHGBseEWKUREJInx/lOSiIgMgkFC\nRESSMEiIiEgSBgkREUnCICEiIkkYJCSbnJwcPP744wgNDUVoaChCQkLw5ptv4vr1660+5tatW/Xb\npMybNw+5ubmNvvbEiRO4dOlSi49dU1ODnj173vf4Rx99hJUrVzb53oCAAGRnZ7e4VkREBLZu3dri\n1xOpGYOEZOXs7Izk5GQkJydj8+bN0Ol0+Pjjj9vk2CtXrmzy5MC0tLQHChIiah2jOiGR1O+pp55C\nSkoKgNv/ir+zh9WHH36IXbt2Yf369RBFEc7Ozli2bBmcnJywYcMGbNq0CZ06dYJOp9MfKyAgAJ9/\n/jk8PDywbNkynDlzBgDwyiuvwMLCAnv27MGpU6ewaNEidOvWDUuWLEFlZSUqKirwxhtv4JlnnsHF\nixexYMECtG/fHv3792+2/Rs3bsT27dthaWkJa2trrFy5Eh06dABwu7d0+vRpFBYW4u2330b//v1x\n5cqVBusSGRMGCRlMbW0t9u3bh759++of6969OxYsWICrV6/ik08+QWpqKqysrPDFF18gKSkJs2bN\nwocffog9e/bAyckJM2bMgIODQ73j7tixAwUFBdiyZQuuX7+O+fPn4+OPP8ajjz6KGTNmYODAgXjt\ntdfw6quvYsCAAcjPz8ekSZOwd+9eJCYm4vnnn8eLL76IvXv3Nvs9VFVVYe3atbCzs0N0dDR27Nih\nv5CZo6MjvvjiC2RkZCAhIQFpaWmIjY1tsC6RMWGQkKyKiooQGhoK4PbV6Pr164epU6fqn/f19QUA\n/PTTT8jPz0dYWBgA4NatW+jatSuys7PRpUsX/T5T/fv3x9mzZ+vVOHXqlL430aFDB6xZs+a+dmRm\nZqK8vByJiYkAbm/9X1hYiF9//RWvvfYaAGDAgAHNfj+Ojo547bXXYGZmhsuXL9fbFNTPz0//PZ0/\nf77JukTGhEFCsrozR9IYS0tLALcvDubj44OkpKR6z58+fbre1ul1dXX3HUMQhAYfv5uVlRU++uij\n+/aQEkVRv4dVbW1tk8e4du0aEhISsHPnTri4uCAhIeG+dtx7zMbqEhkTTraTKvTu3RunTp3SX4hs\n9+7d+Pbbb+Hp6YmcnBxcv34doig2eIEnX19fHDx4EABQVlaGCRMm4NatWxAEAdXV1QCAvn37Yvfu\n3QBu95Li4uIA3L6S5s8//wwAzV48qrCwEE5OTnBxcUFJSQkOHTqEW7du6Z8/cuQIgNurxe5c472x\nukTGhD0SUgU3NzcsXrwY06dPR/v27dGuXTskJCTAwcEB4eHhmDx5Mrp06YIuXbrg5s2b9d47cuRI\nnDhxAiEhIaitrcUrr7wCKysr+Pn5ISYmBpGRkVi8eDGio6Oxc+dO3Lp1CzNmzAAAzJo1CwsXLsSe\nPXv01/9ozKOPPopu3bph/Pjx8PT0xJw5cxAbGwt/f38Aty9ENX36dFy5ckW/83RjdYmMCXf/JSIi\nSTi0RUREkjBIiIhIEgYJERFJwiAhIiJJGCRERCQJg4SIiCRhkBARkSQMEiIikuT/AKcU0Uof0jPH\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 4.78\n", + " period 01 : 4.57\n", + " period 02 : 4.10\n", + " period 03 : 3.92\n", + " period 04 : 4.01\n", + " period 05 : 3.81\n", + " period 06 : 3.85\n", + " period 07 : 3.88\n", + " period 08 : 3.62\n", + " period 09 : 3.74\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.89\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAFnCAYAAAC/5tBZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlcVPX+x/HXDPu+byIo4AZuuO+K\nJikuaZlK3rDFm7eysttmtqjVrVs3K8178/6ybPFamUrkTrnmrriBKCIIiAiy7zszvz8w0lREnI3h\n83w8eiAzc8585tMM7znfc873KNRqtRohhBBCtHhKfRcghBBCCM2QUBdCCCGMhIS6EEIIYSQk1IUQ\nQggjIaEuhBBCGAkJdSGEEMJISKgLoQOdO3cmKytLI+u6dOkSQUFBGlmXPkRERDB06FDGjh3LmDFj\nGDduHN98880dryc2NpZZs2bd8XJBQUFcunTpjpcToiUw1XcBQojW5+WXX2bSpEkA5OTkMH36dPz8\n/Bg+fHiT19GjRw++/PJLbZUoRIskW+pC6FFVVRULFixgzJgxhIWF8f7771NXVwfA3r17GTFiBGFh\nYaxZs4bevXvfdguzsLCQuXPnNmwBf/755w33ffLJJ4wZM4YxY8Ywc+ZMrly50ujtv9uzZw8TJ068\n7rZJkybx22+/ceTIEe6//37GjRtHWFgYW7duveMeuLm5MXbsWPbv3w9AUlISDz/8MGPGjGHixInE\nxcUBcPjwYcLDw5k7dy4vvvgihw8fJjQ09LZ93LNnD6GhoYSFhfHFF180PG9ZWRlz5swhLCyMe+65\nhzfeeIOampo7rl8IQyKhLoQeffPNN2RlZbF582Z++uknYmJi2LRpE3V1dbz66qu8/fbbbN26ldTU\nVCoqKm67vo8//hgHBweio6P57rvv+P7774mJieH8+fNs27aNTZs2ER0dTWhoKAcPHrzl7dcaNGgQ\nWVlZpKenA5Cenk5WVhaDBw/mgw8+YP78+WzZsoXly5ezffv2ZvWhtrYWc3NzVCoVc+bMYdKkSURH\nR7No0SKefvppamtrAThz5gzh4eF89NFHTe7j66+/zsKFC9m6dStKpbIh7KOiorC3t2fr1q1ER0dj\nYmJCUlJSs+oXwlBIqAuhR7t372batGmYmppiaWnJxIkT2b9/P6mpqVRXVzNixAigfj+0SqW67fr2\n7NnDjBkzAHB0dCQ0NJT9+/djb29Pfn4+GzdupKioiIiICCZPnnzL269lbm7OyJEj2blzJwDbt29n\n9OjRmJqa4uLiQlRUFMnJybRv3/6GsG2K9PR0tm3bRmhoKBcuXCAvL48HH3wQgD59+uDs7MyJEycA\nsLS0ZNCgQXfcx6FDhwJw//33Nyzz+3r37duHSqXirbfeIjAw8I7rF8KQSKgLoUf5+fk4ODg0/O7g\n4EBeXh5FRUXY29s33O7u7t7k9V27nL29PXl5eXh4eLBs2TK2bdtGSEgIs2fPJjMz85a3/9mYMWOu\nC/Vx48YB8N5772FlZcVjjz3Gvffey7Zt25pU54cffthwoNwLL7zAq6++So8ePSguLqayspKwsDDG\njh3L2LFjycvLo7CwsKE/t3rdt+qjra3tdbf/LiwsjEcffZSlS5cyaNAg3nrrLaqrq5tUvxCGSkJd\nCD1ydXVtCCyo3yfu6uqKra0t5eXlDbfn5ube1foABg4cyOeff87+/fvx8vJi8eLFjd5+rWHDhpGQ\nkEBqaiqpqakMHDiw4fnefPNNfvvtNxYsWMD8+fMpKyu7bZ0vv/wy27ZtIzo6mrVr1zZ8SXB3d8fG\nxoZt27Y1/Ldv376Gfed3+rodHBwoLS1tuD0/P/+65cLDw1m7di1btmwhPj6eqKio29YuhCGTUBdC\nj0JCQli3bh11dXWUl5fz888/M2LECNq3b09tbS2HDx8G4Pvvv0ehUDRpfWvWrAHqA+zXX38lJCSE\nffv28dZbb6FSqbC2tqZLly4oFIpb3v5n5ubmDB06lA8//JB77rkHExMTampqiIiIIDs7G4CuXbti\namqKUtn8Pyve3t54eno2bPHn5+fzwgsvXPcF51av+2Z99PX1xcTEpKGPkZGRDa/vP//5D+vWrQPA\nw8ODtm3bNqnHQhgyOaVNCB2JiIjAxMSk4fd//OMfREREkJ6ezvjx41EoFIwdO5awsDAUCgWLFi1i\n/vz52NnZ8dhjj6FUKlEoFKjVaurq6hg7dux161+xYgXPP/88ixYtYuzYsSiVSmbPnk2PHj2oqqpi\n8+bNjBkzBnNzc5ydnXnvvfdwd3e/6e03M2bMGJ599lm+/vprAMzMzHjwwQd59NFHAVAqlbzxxhtY\nWVnx66+/snPnTv75z3/eUY8UCgUff/wxixYtYsmSJSiVSh577DGsra1v29tb9fGdd97htddew9zc\nnAceeKBhXZMmTWL+/PmsWLEChUJBz549G06zE6KlUsj11IUwfOXl5fTq1YuYmBjs7Oz0XY4QwkDJ\n8LsQBmrKlCls2bIFgC1bthAQECCBLoRolGypC2GgYmJiePvtt6mqqsLGxoZFixbRo0cPfZclhDBg\nEupCCCGEkZDhdyGEEMJISKgLIYQQRqLFn9KWk1Oi0fU5OVlTUND4ObHi7kmfdUP6rDvSa92QPoOb\n260PmJUt9T8xNTW5/YPEXZM+64b0WXek17ohfW6chLoQQghhJCTUhRBCCCMhoS6EEEIYCQl1IYQQ\nwkhIqAshhBBGQkJdCCGEMBIS6kIIIYSRkFAXQgjRKuzevaNJj1u69CMuX8645f2vvvqCpkrSOAl1\nIYQQRi8z8zLbt0c36bFz575Imzbet7z//fc/1lRZGtfip4kVQgghbufjjz/g7Nl4hg3rx733hpGZ\neZklSz7jn/98m5ycbCoqKnj88dkMGTKMZ56ZzQsvvMKuXTsoKyvl4sU0MjIu8dxzLzJo0BDGj7+H\nzZt38Mwzs+nXbwDHj8dQWFjIBx98gqurK2+//SZZWZl0796DnTu389NPW3T2OiXUr5FRmkla9QV8\nzfxQKBT6LkcIIYzSjzuTOJqQ3axlTUwU1NXdeMXwfl3cmTaqwy2Xe+ihCCIjf8TPL4CLF1P57LMv\nKCjIp3//gYSFTSAj4xJvvvkqQ4YMu2657OwrLF78KYcOHeDnn9czaNCQ6+63sbFh6dLlLF++jN9+\n20mbNm2prq7i88+/Zv/+vfz44/fNep3NJaF+jejUnRzLPkVHR38e6vwAHjbu+i5JCCGEhgUGdgXA\nzs6es2fj2bAhEoVCSXFx0Q2P7dEjGAB3d3dKS0tvuL9nz14N9xcVFZGWlkL37j0BGDRoCCYmup2r\nXuuhXllZyYQJE3j66ad54IEHALhy5QovvfRSw2PS09N58cUXqampYenSpfj6+gIwePBgnnrqKW2X\n2OCBjhNQmEFMxineO/IJY9vfQ2i7EEyV8t1HCCE0ZdqoDo1uVTfGzc3urq/OaWZmBsCvv26juLiY\n//znC4qLi/nrXyNueOy1oaxW3zhC8Of71Wo1SmX9bQqFQuejvlpPq+XLl+Pg4HDdbR4eHqxatQqA\n2tpaIiIiGDVqFNHR0YwbN4558+Zpu6ybcrRw4JWhT/LrmYP8eC6KTSm/EHPlJA91mUIHRz+91CSE\nEOLuKZVK6urqrrutsLAQL682KJVK9uzZSU1NzV0/j7d324aj7I8cOXTDc2qbVo9+T05OJikpiZCQ\nkFs+5qeffmLMmDHY2Nhos5Q7EuzWjTcHvshw78FcKc/hk+PL+S5hPeU1FfouTQghRDO0a+fHuXMJ\nlJX9MYQeEjKKAwf2MnfuU1hZWeHu7s5XX624q+cZPHgYZWVlPPXULE6dOoG9vcPtF9Ighfpm4wka\nMnv2bN58802ioqLw9vZuGH6/1rRp01i5ciW2trZERkayevVqHB0dqa2tZd68eQQFBTX6HHc7DPNn\nfx7aSSlK47uE9Vwuy8Le3I4HO95Hb/ceciDdXdLEEJq4Pemz7kivdcPQ+1xcXMTx4zGEhNxDTk42\nc+c+xXffrdfoc7i52d3yPq0Nv0dFRREcHIyPj88tH3PixAn8/f2xtbUFoGfPnjg7OxMSEsKJEyeY\nN28eGzdubPR5nJysMTXV7IEI1zbMza0bvf0D2ZjwK+vObGFl/GpO5p9iVp9w3GxcNPq8rU1jb0yh\nOdJn3ZFe64Yh99nR0ZJly3azdu13qFQq3njjdZ3Wq7Ut9eeff5709HRMTEzIysrC3Nyct99+m8GD\nBzc85pNPPsHf359JkybddB1Dhgzht99+a/ToQW1vqV8ruzyXH85Fcq4gCXOlGRP8xxDSdggmSt0e\n3WgMDP3btrGQPuuO9Fo3pM962lJfsmRJw7+XLVuGt7f3dYEOEBcXx7hx4xp+X7FiBV5eXkyYMIHE\nxEScnZ11fjpAY9ytXXk2+AmOZB1nfdJGIpM2cfTKCWZ0mYKvXVt9lyeEEKKV0+m5WpGRkdjZ2REa\nGgpATk4OLi5/DGFPnDiRl19+mR9++IHa2lreffddXZbXJAqFggFefejq0oXIpE0czjrGv44uY6TP\nUMb73YulqYW+SxRCCNFKafVAOV3Q5fD7zSTkn+eHc5HkVOThbOnE9E6T6eYaqNGajJEMoemG9Fl3\npNe6IX1ufPhdLuhyl7o4d+S1/i8wpt0oCquKWB77FV+e/h9FVa37TSeEEEL3JNQ1wNzEjPsCxjK/\n3/P42bfjeHYs7xxezL6MQ6jUKn2XJ4QQookefHAi5eXlrFr1NadPx153X3l5OQ8+OLHR5X+feGbL\nlo3s2bNLa3XeioS6BrWx9eSFPk8xvdP9qNVqvj8XyZLj/yWr7Iq+SxNCCHEHIiIepVu3Hne0zLWX\ndx03biIjRozURmmNkknNNUypUDK87SB6uAWxNnEDJ3PieO/IEu5tN5Ix7UZiZmKm7xKFEKLVefzx\nv/Deex/h6elJVlYm8+e/iJubOxUVFVRWVvL3v79MUFC3hse/++4iQkLuITi4F6+//grV1dUNF3cB\n+OWXraxbtwYTEyXt2wcwb97rDZd3/eqrFahUKhwdHZkyZTqffbaUuLhT1NbWMWXKNMaOHX/Ty7Z6\nenre9euUUNcSRwsHnugeQWxOPGsSo9iaup1j2SeZ0XkKHZ0C9F2eEELoTWTSJk5kxzVrWROlgjrV\njcd393LvzgMdJtxyueHDR7J//29MmTKNvXv3MHz4SAICOjJ8eAjHjh1l9epvePfdD29YLjp6K/7+\nATz33Ivs2PFLw5Z4RUUFH320DDs7O+bMeYLk5KSGy7s+9tgTfPnl/wFw8uRxLlxIZvnylVRUVPDI\nI+EMHx4C3HjZ1mnTZjSrJ9eSUNeyHm5d6eQUwMYL0ey5dIAlJ/6PQV79uL/DeGzMrPVdnhBCtArD\nh4/k3/9ewpQp09i3bw/PPPN3fvhhFd9/v4qamhosLS1vulxq6gWCg/sA0KtXn4bb7e3tmT//RQDS\n0lIoKiq86fIJCWcIDu4NgJWVFe3b+5Oeng7ceNlWTZBQ1wFLU0umdppEP89efJewnoOZRzmde5Yp\nHSfS1yNY5pEXQrQqD3SY0OhWdWOae0qbv38AeXk5XLmSRUlJCXv37sbV1Z0333yHhIQz/PvfS266\nnFoNSmX932jV1RGCmpoaPv74X3z99Xe4uLjyyivP3/J5FQoF1544Xltb07C+213WtTnkQDkdam/v\ny7y+zzE5YByVdVV8feZ7/nPqS3Ir8vVdmhBCGL1Bg4by+eefMWzYCIqKCvH2rp8JdM+eXdTW1t50\nGV/fdiQknAXg+PEYAMrLyzAxMcHFxZUrV7JISDhLbW3tTS/v2qVLV06cOHZ1uXIyMi7Rtq2vtl6i\nhLqumShNCG0XwhsDXiTQuRNn8xP5x+GP+DVtN3Uq3V53VwghWpMRI0ayfXs0ISH3MHbseNasWc3f\n/z6Hrl27kZeXx+bNG25YZuzY8cTHxzF37lOkp6ehUChwcHCkX78B/PWvM/nqqxXMmBHBp59+3HB5\n108//ahh+Z49g+ncuQtz5jzB3/8+hyeffAYrKyutvUaZUe5PdDlbkVqt5tiVk6w9v4HSmjK8bb34\nS5cHaWd/6yvbGQuZFUo3pM+6I73WDemzzChnsBQKBX09e7Fg4MsM8upHRmkmH8b8m7WJP1NZW6nv\n8oQQQrQwEuoGwMbMmocDpzK3199ws3Zh96X9vHP4I2Jz4vVdmhBCiBZEQt2AdHIK4LV+fyes/WhK\nqkv5v7hvWBG3isIqzZzqIIQQwrjJKW0GxszEjAn+99LHoyffJ6znZE4cCfnnmRQQxlDvASgV8j1M\nCCHEzUlCGCgvGw+e7/0kMzpPQaGANYk/8fGx5VwuzdJ3aUIIIQyUhLoBUyqUDPEewJsDXqK3ew9S\nitP459ElbEjeRnVdjb7LE0IIYWAk1FsABwt7ZnV7mKd6PIaDuT3RaTt578jHJOSf13dpQgghDIiE\negvSzTWQNwa8yCifYeRW5LPs5Aq+PbOG0uoyfZcmhBDCAEiotzCWphZM6TiRV/o+i4+dN4ezjvHu\nkY/lCHkhhBAS6i2Vr31bXu7zDGHt76G4uoRVZ35EpVbpuywhhBB6JKHegpkoTRjvdy9BLp1JKDjP\nnksH9F2SEEIIPZJQb+EUCgUPd5mKjZk1PydvIbPsir5LEkIIoScS6kbAwcKeGV0epEZVy9fx31Or\nuvklBIUQQhg3CXUjEezWjYFefblUepnNKb/quxwhhBB6IKFuRKZ2vA8XS2d+TdtNUmGKvssRQgih\nY1oN9crKSkaPHk1kZOR1t48aNYoZM2YQERFBREQEV67U7wd+7733mD59OuHh4cTGxmqzNKNkaWrJ\nI0HhAHxz5gcq5PKtQgjRqmj1gi7Lly/HwcHhpvetWLECGxubht+PHDlCWloaa9asITk5mddee401\na9ZoszyjFODYnnvbjSQ6bSdrE39mZtB0fZckhBBCR7S2pZ6cnExSUhIhISFNevzBgwcZPXo0AAEB\nARQVFVFaWqqt8ozaOL/RDRPTnMiO03c5QgghdERrof7BBx/w6quv3vL+hQsX8tBDD7F48WLUajW5\nubk4OTk13O/s7ExOTo62yjNqpkpTHg0Kx0xpyvcJ62W2OSGEaCW0MvweFRVFcHAwPj4+N73/ueee\nY9iwYTg4ODBnzhyio6NveIxarW7Sczk5WWNqanJX9f6Zm5udRtenD25udkTUTGHl8TX8mPwTrw1/\nBoVCoe+yrmMMfW4JpM+6I73WDenzrWkl1Hfv3k16ejq7d+8mKysLc3NzPD09GTx4MACTJ09ueOzw\n4cNJTEzE3d2d3Nzchtuzs7Nxc3O77XMVFJRrtHY3Nztycko0uk596e3Qm0POJzmVdYZ1J6MJaTtE\n3yU1MKY+GzLps+5Ir3VD+tz4lxqtDL8vWbKE9evX8+OPPzJ16lSefvrphkAvKSlh1qxZVFdXA3D0\n6FE6duzIkCFDGrbY4+PjcXd3x9bWVhvltRoKhYKHA+tnm4tK2kyWzDYnhBBGTatHv18rMjISOzs7\nQkNDGT58ONOnT8fCwoKgoCDGjh2LQqGga9euhIeHo1AoWLhwoa5KM2oOFvbM6DyFFadX8fWZH3ip\nzxxMlTr73y6EEEKHFOqm7rw2UJoehjHWoZ1VZ37kUFYMY9qN4r6Asfoux2j7bGikz7ojvdYN6bMe\nht+F4Xmw0324WDrxS9oukgtT9V2OEEIILZBQbyWsTC2ZKbPNCSGEUZNQb0U6OPoR2i6EvMp81p3f\noO9yhBBCaJiEeisz3i8UHztvDmXGcFJmmxNCCKMiod7KXDvb3Hfn1lNUVazvkoQQQmiIhHor5Gnj\nweSA8ZTVlPO/hLVNnr1PCCGEYZNQb6WGtx1EoHMnzuSdY2/GQX2XI4QQQgMk1FsppUJZP9ucqTWR\nSZu5Upat75KEEELcJQn1VszRwoHwLg9Qo6rh6zM/UKeq03dJQggh7oKEeivX270HAzz7cLHkEltS\nt+u7HCGEEHdBQl0wtdN9OFs6EZ26kwtFqfouRwghRDNJqAusTK145PfZ5uJ/oFJmmxNCiBZJQl0A\n9bPNjfYdQW5lPuvPb9R3OUIIIZpBQl00mOB/L21t23Ag8yinck7ruxwhhBB3SEJdNDBVmvJIUDim\nSlO+S1hPUVXrvryhEEK0NBLq4jptbD2ZHDCO0poyVstsc0II0aJIqIsbjGg7mC5OHYnPS2Df5UP6\nLkcIIUQTSaiLGygVSiKCpmFtakXk+U1cKc/Rd0lCCCGaQEJd3JSjhQMPdZlCtaqGb+JltjkhhGgJ\nJNTFLfV270F/z96klaSzVWabE0IIgyehLho1rdMknC2d2Ja6kwtFafouRwghRCMk1EWjrEytmBk4\nHYBvzvxAZW2VnisSQghxKxLq4rY6OvnXzzZXkSezzQkhhAGTUBdNMt7/XrxtvTiQeYTYnHh9lyOE\nEOImJNRFk5gpTXk06CFMlaasTlhHcbXMNieEEIZGQl00WRtbTyYFhNXPNndWZpsTQghDo9VQr6ys\nZPTo0URGRl53+6FDh5g2bRrh4eHMnz8flUrF4cOHGThwIBEREURERPDOO+9oszTRTCFth9DZqQOn\n8xLYd/mwvssRQghxDVNtrnz58uU4ODjccPuCBQv49ttv8fT05LnnnmPv3r1YWlrSv39/Pv30U22W\nJO6SUqEkInAa7x75hMjzG+nkFICHtZu+yxJCCIEWt9STk5NJSkoiJCTkhvsiIyPx9PQEwNnZmYKC\nAm2VIbTAydKRhzrfXz/b3BmZbU4IIQyF1rbUP/jgA958802ioqJuuM/W1haA7Oxs9u/fz9y5c0lM\nTCQpKYknn3ySoqIinnnmGYYMGXLb53FyssbU1ESjtbu52Wl0fcZorNswEkuT2Jd2hN9y9jGt24Q7\nXof0WTekz7ojvdYN6fOtaSXUo6KiCA4OxsfH55aPycvL48knn2ThwoU4OTnRvn17nnnmGcLCwkhP\nT2fmzJn88ssvmJubN/pcBQXlGq3dzc2OnBw5srspJvmOJz4rkcgzW2lv6Yefg2+Tl5U+64b0WXek\n17ohfW78S41Wht93797Njh07mDZtGmvXruWzzz7jwIEDDfeXlpbyxBNP8PzzzzN06FAAPDw8GDdu\nHAqFAl9fX1xdXbly5Yo2yhMaYm1mxcyg6ajVar45873MNieEEHqmlS31JUuWNPx72bJleHt7M3jw\n4Ibb3n//fR555BGGDx/ecNuGDRvIyclh1qxZ5OTkkJeXh4eHhzbKExrUySmAUb7D2HHxNyKTNjGj\nyxR9lySEEK2WVo9+v1ZkZCR2dnYMHTqUqKgo0tLSWLduHQATJkxg/PjxvPTSS+zYsYOamhoWLVp0\n26F3YRgm+o8lIf88+y8fprtrIN1dg/RdkhBCtEoKdQufQUTT+1Zkf03zZJRm8q+YZViZWPL6gBew\nM7dt9PHSZ92QPuuO9Fo3pM962KcuWh9vWy8m+Y+lpKaU1Qky25wQQuiDhLrQmBCfoXR26kBc7lkO\nXD6i73KEEKLVkVAXGvP7bHNWplasS9pIdnmuvksSQohWRUJdaJSTpSPhne+nuq5aZpsTQggdk1AX\nGtfXI5i+HsGkFl8kOm2nvssRQohWQ0JdaMX0TvfjZOHI1tQdpBZf1Hc5QgjRKkioC62on21uWv1s\nc/E/UFVXre+ShBDC6EmoC63p5NSBUT7DyK7IJTJpk77LEUIIoyehLrRqYsBY2th4si/jEKdzz+q7\nHCGEMGoS6kKrzJSmPNr1IUwVJvwvYS0l1aX6LkkIIYyWhLrQOm9bLyYGjKWkupTvEtbLbHNCCKEl\nEupCJ0b5DKOTYwCxufEczDyq73KEEMIoSahfY/eJDD5dc4I6lUrfpRgdpULJzKDpWJlasvb8BrJK\nc/RdkhBCGB0J9Wtk5JTx65GLbD6Ypu9SjJKTpSPTO9XPNrfs0FeU1pTpuyQhhDAqEurXmDzcD1cH\nSzbsSyUls1jf5Rilfp696OsRzPm8FBYd/IBf0nZRXVej77KEEMIoSKhfw8bSjOfDe6NSq/l84xmq\nqmXecm2ICJzGo72molQo+Tl5K28d+heHMmNQqWW3hxBC3A2TRYsWLdJ3EXejvFyzM5X5+zqRV1BO\nbHIe5ZW19OzgqtH1i/r968G+Xejl0AuFQkFiQRIncuKIzY3H2dIZNysXFAqFvss0CjY2Fhr/jIib\nk17rhvS5vge3IlvqNzFlhD/ebjbsOpFBbLJcPlRbrM2smBQQxsKBrzDQsy+XS7P47NSXLDu5gosl\nl/RdnhBCtDgS6jdhZmrCExOCMDVRsHJLAsWt/FuhtjlZOhIRNI35/Z8nyKUz5wqS+ODop3wd/z15\nFQX6Lk8IIVoMCfVb8PWw4/7h/hSXVfPN1gSZMEUHvG29mNNzFs8GP4GPnTdHr5zg7UP/IjJpE+U1\n5fouTwghDJ6EeiPG9POls48jJ87nsi82U9/ltBpdnDvySt9neTToIewt7Nlx8TcWHPyA7Rf3UCNH\nygshxC1JqDdCqVQwa0IgVhYmfLfjPNmFFfouqdVQKpT08+zFggEv8UCHCSiAn5I289ahDzmSdVyO\nlBdCiJuQUL8NVwcrHg7tTFV1HV9sPCOzzemYmYkZ9/gO561B8xjtO4KSmlK+OfMD/zr6KQn55/Vd\nnhBCGBQJ9SYY2NWD/oHuJGUUseXQRX2X0ypZm1lzf4fxLBjwMv09e3OpNJNlJ1fw75NfcKnksr7L\nE0IIgyCh3gQKhYKIMZ1xsrNgw74UmW1Oj1ysnHgkKJx5/Z6ji1NHzuYn8v7RpXx7Zg0FlYX6Lk8I\nIfRKq6FeWVnJ6NGjiYyMvO72AwcO8OCDDzJ9+nT+85//NNz+3nvvMX36dMLDw4mNjdVmaXfMxtKM\nWeMDqVOpWbHxDFU1MtucPvnYefNsryd4pudfaWPryeGsYyw69C+ikrZQXiPHPgghWiethvry5ctx\ncHC44fZ//OMfLFu2jO+//579+/eTlJTEkSNHSEtLY82aNbz77ru8++672iytWYLaOxPa14es/HLW\n7krSdzkCCHTpxKv95jIzcDp2Zrb8enE3iw5+wM70vdSoavVdnl6V15RzIT9NDioUohUx1daKk5OT\nSUpKIiQk5Lrb09PTcXBwwMuhkf5HAAAgAElEQVTLC4ARI0Zw8OBB8vPzGT16NAABAQEUFRVRWlqK\nra2ttkpslgdD/DmTms/O4xn07OBKd38XfZfU6ikVSgZ49aGXew/2XNpPdNpO1p/fyO70/dznP4be\nHj1RKox/T1NFbQVJhSkkFiRzviCZS6WZqFHjY9uGqZ0mE+DYXt8lCiG0TGuh/sEHH/Dmm28SFRV1\n3e05OTk4Ozs3/O7s7Ex6ejoFBQV07dr1uttzcnJuG+pOTtaYmppotHY3N7tG75/3SD9eWLKHr7cm\nsOylkTjY3noeXnFrt+tzc8zwnMjE7iOJPLONbUm7+erM9+zJ3M/DPR+gm0dnjT+fPpXXVJCQk0x8\n9jnisxNJKUxvmCTJVGlKoFsHbMytOZpxio+Pf8awdv15uOcDOFndOHomNEMb72lxI+nzrWkl1KOi\noggODsbHx6fZ62jqDG4FBZqdaczNzY6cnJJGH2NrpuT+Yf6s3Z3MJ6uP8fT93eQCJHeoKX2+G+Pa\njqG/Sz82XthGzJWTvL17Cd1cujApYBxtbD219rzaVFlbRXJRKucLkkksTCa9JKNhaN1EYYK/fXs6\nOfnTySmA9vbtMDcxw83NjsNJcfyY+DN7045w5NJJwtqPZqTPUEyVWvtO3ypp+z0t6kmfG/9So5VP\n9e7du0lPT2f37t1kZWVhbm6Op6cngwcPxt3dndzcPy6ScuXKFdzd3TEzM7vu9uzsbNzc3LRRnkaM\n6e/LqeQ8jiXmsD8ui6E9vPRdkvgTVytnHus6g1E+w/gpaTOn8xKIzzvHQK++TPC/F0cLw95iraqr\n5kJhKomF9cPpaSWXGkJcqVDS3t6HTo4BdHQKwN+hHeYm5jddj79De17p+ywHLh9hw4VtRCVv4UDm\nER7sOImuLsY1eiFEa6eVUF+yZEnDv5ctW4a3tzeDBw8GoG3btpSWlnLp0iU8PT3ZtWsXixcvpqCg\ngGXLlhEeHk58fDzu7u4Gtz/9Wkqlgr9OCGThyiOs3p5IJ19H3B2t9F2WuIl29j7M7fU34vMSiEre\nwsHMo8RcOckon2GEthuBlalh/H+rrqvmQlHa1S3xC6QVp1Onrj/LQqlQ0s6uLR2dAujkGICfQzss\nTZu+20epUDLUeyC93XuwKeUXfrt0kM9OfUl31yCmdJiIm7UcGyKEMVCotXylkt9DHcDOzo7Q0FCO\nHj3K4sWLAbj33nuZNWsWAIsXLyYmJgaFQsHChQvp0qXLbdev6WGYOx3aOXA6ky82naVDWwdendEb\npVKG4ZtCX0NoKrWKw5nH2HghmqLqYmzNbAhrP5qh3gN0PhxdU1dDSnEaiQUXSCxIJq34IrVXQ1yB\nAl+7tnRyqt8SD3Boh6Wp5R0/x636nFGayY+JUSQVpmCqNGW0z3DubT8Ki1ts7Yvbk2Fh3ZA+Nz78\nrvVQ1zZ9h7parWb5z/HEJGTzwHB/Jgxur9F6jJW+P5jVddXsTN/Hr2m7qKyrwtXKhUkBYfRy6661\n4yNqVLWkFl1sGE5PKb5I7dXT7hQo8LFr07AlHuDoh1UzQvzPGuuzWq3mWPYpfkraTGFVEY4WDjzQ\nYTy93XvKMSLNoO/3dGshfZZQvyPNecOUVtSw4MvDlJTX8PrMPrT3tNdoTcbIUD6YJdWlbE3dwd6M\ng6jUKtrb+zI5YBwdnfzvet21qlpSi9MbhtNTilIbzp1XoKCtrVd9iDsFEODgh7WZ5ncDNKXPVXXV\nRKfuZMfFPdSq6+jo6M/UTpPwtpXjRO6EobynjZ30WUL9jjT3DROfks9Ha07i5WLNgkf7YWGm2dPs\njI2hfTCzy3PZcGEbJ7LrZzLs7hrE5IAwPG08mryOOlUdaSXpJBZc4HxBMslFqdSo/rhUrLet19UD\n2/zp4OiPjZm1xl/Hn91Jn3PK81iftIG43LMoUDC87SAm+N2LtQ7qNAaG9p42VtJnCfU7cjdvmO9+\nTWT7sUvc07stf7m3k0brMjaG+sFMKbrIT0mbSS5KQYGCwW36M94vFAeLG0df6lR1XCzJaDjFLLko\nleq66ob729h40tHJn06OAXRw8sfWzEaXLwVoXp/j8xJYl7iB7IpcbM1suM9/LIPa9GsVE/jcDUN9\nTxsb6bOE+h25mzdMdU0db38Tw+XcMl6Y1pNuMtvcLRnyB1OtVnM67yxRSVvIKs/GXGnGPb4jGOUz\njJyKXBJ/D/HCFKquCXFPGw86OfrT0SmAjo7+2Jnr/+yN5va5VlXLrvR9bE3dTlVdNb523kztNBl/\nh3ZaqNI4GPJ72phInyXU78jdvmHSskr4x7cx2Fqb8c6sAdhamWmwOuPREj6Ydao6DmXGsCnlF4qr\nb6zVw9rt6oFt9UFub254s1zdbZ8Lq4qIStrC0SsnABjg2YdJAeNwsDC816pvLeE9bQykzxoK9d/n\nYc/NzSU1NZXevXujVOp/OM7QQh1g88FU1u+5QJ/Objw9WWabu5mW9MGsqqtmx8U9nM5LoO3V/eId\nnPwNfvIa0FyfkwpTWJv4M5dKL2NpYkGY32hC2g6RWemu0ZLe0y2Z9LnxUDdZtGjRotut4J133qGw\nsBBvb2+mTZtGZmYmhw4dYuTIkZqss1nKy6tv/6A7YGNjcdfr7ODtQEJaAadT8nFztMLXQ7Zq/kwT\nfdYVU6UJHZ0CGNJmAN1dg2hj69Wsc8b1QVN9drZ0Ykib/jhY2HG+4AKxuWc4kR2Lu5WbTFxzVUt6\nT7dk0uf6HtxKkza1z5w5w9SpU9m6dSv3338/S5cuJS0tTWMFGpv62eaCsDQ3YfWvieQUyvW9Rcun\nVCgZ5j2IBYNeZrj3ILLLc/n3qS/4v9hvyK3I03d5QgiaGOq/j9Dv3r2bUaNGAVBd3bq/Kd2Oq6MV\nfwntRGV1HV9sOoNK1aIPXRCiga2ZDdM738+8fnMJcPAjNjeedw5/xKYL0dcd/S+E0L0mhbqfnx/j\nxo2jrKyMwMBAoqKicHAw/P2J+ja4myd9Ortx/lIRWw/LyIYwLj52bfh77yd5LOghbEyt2Zq6g7cP\nLeZ4dmyTr7IodK9WVUthVRGXS7OoU9XpuxyhYU06UK6uro7ExEQCAgIwNzcnPj4eHx8f7O31P3Oa\nIR4od63Sihre/PIwpeU1vDGzL+08Zf86yMEuuqKrPlfWVhGdtpMdF3+jTl1HJ6cOTO14X4u9zG1z\n6Os9Xaeqo7SmjJLq0pv8LKWkuuzqz/rbK2orG5b1tvVidvdHcLVy1nndzSV/OzRw9Pvp06fJyclh\n5MiRfPLJJ5w8eZJnn32Wvn37arTQ5jD0UAc4fSGPj388hZeLNQsf7Ye5zDYnH0wd0XWfs8tzWHd+\nI/F5CSgVSkZ4D2acX6hWpsA1NJrqdZ2qjrLackqrbx3MJdWllNSUUlpdRnnt7Y/ZUSqU2JrZYGtm\ng525LbZmNlSraojLPYONqTWPdZtBoHPLmDBL/nZoINTDw8N5//33yc3N5bPPPuO1117j7bff5ttv\nv9Vooc3REkIdYPUview4fonRfdoyI7RlfHi0ST6YuqGvPp/OPcu68xvIqcjD1syGSQFhDPTqa9Sz\n0t2q1yq1ivKaCkr+FMql1aWU1JRd/Vkf0CU1pZTXVKCm8T/LChTYmFk3BHT9T1vszG2u/rS97j4r\nU8ub9n7/5cP8eC6KOrWKSQFhjPYdYfCn4MrfjsZDvUknmVpYWNC+fXvWrFnDtGnT6NChg0Gco96S\nPDgygDNp+Ww/domeHVzp6tdyhruEuFPdXAPp7NyRXRf3sjVtB6sT1rE34xDTOk3Gz8FX3+VpRE1d\nDfmVBeRd/U+VXc2VwvyrgV3WENSlNWW3DWkAGzNrbM1s8bLx+COYzWyw/VNA25rZYGNmrZEvSEPa\nDKCNjScr4lYRlbyF9JIM/hI4VS7B24I1KdQrKirYunUr27dvZ86cORQWFlJcXKzt2oyKhZkJsyd2\n5R/fxvDl5jO8LbPNCSNnpjTl3vYj6efZi6jkLcRcOcniY/9moGdfJnUIM8gZ+K5Vo6ql4Gpg51f8\nHt755FUUkF+ZT9FNZhm8lrWpFbbmNrhbu9YH8+8BbWaLrbnNHz/NbbExtcZEqZ/dcn4O7ZjXby5f\nnF7FsexTZJVnM7v7TFytZP6BlqhJw++HDh3i22+/ZeLEiYSFhbFs2TLatWvHfffdp4saG9VSht9/\nt+lAKpG/XaBvF3eemtTV4Ie6tEWG0HTDkPqcVJjCj4lRZJRmYmliybirs9LpK8zqVHUUVBWSW5H/\nxxZ3RX1w51cWUFRVfNMtbKVCiZOFIy6WTrhYOeNi6YSzpRO+7h7UlSuxNa/fd93SZturVdWy7vxG\n9mYcxNrUise7/oVAF8PbVWhI72l90cg0seXl5aSkpKBQKPDz88PKyjAOfGlpoa5SqXn/u+MkXSri\nrxMCGdytdV6zWj6YumFofa5T1bH/8mE2XoimvLYCT2t3pnaaRBfnjlp5rsKqoobh8byG8K7f2i6s\nKrppaCtQ4GTp2BDWvwd3/e/OOFrY3/SLiKH1urkOXD7CmnM/Gex+dmPp892461Dfvn07ixYtwtPT\nE5VKRW5uLu+88w4jRozQaKHN0dJCHSCnsIKFK4+gUMBbj/fH1cEwviDpknwwdcNQ+1xaXcbGC9vY\nf/kIatQEu3XjgQ4TcLmDU6tUalV9aFcUXBfWv29pF1QVoVKrblhOgQIHC/s/bWk742pV/9PJwqFZ\noweG2uvmSCm6yBenV1FYVURv9x48HDjNYPazG1Ofm0sjR79/9tlnODvXf+CuXLnC3Llz+eGHHzRX\nZTO1xFAH2BebycotZ+nk48grD/VCqTScb8K6IB9M3TD0PqeXZPBj4s9cKErFTGlKqG8Ioe1GYm5i\nhkqtori65I/h8av7snMrC8ivyCe/qvCmoQ3gYG6Pi1X9lrarpTPOVk64WDrjYumMk6WDVobGDb3X\nd6qoqoQvT68iuSiVNjaezO7+iEHM829sfW6Ouz763czMrCHQATw8PDAzk4O87saQ7p6cSsrlWGIO\n0UcuEjZQrlMtWh8fO29e6P0UR6+cICppM1tSt7P/8mHMTcwpqCykVn3zGc/szG1pZ9f2T8Pj9eHt\nbOGImYn8fbpbDhZ2PNdrNuvPb+S3jIP8K+ZTHus6gyCXzvouTTSiSaFuY2PDypUrGTx4MAD79u3D\nxsZGq4UZO4VCwcyxnUnKKCLytwt09XOWq7mJVkmhUNDfszc9XIPYlrqT3Zf2U6dW4W3bBperW9j1\n4f37vx0xN5ChYGNnqjRleuf78bFry5pzkXx2aiX3BYwl1DfEoPaziz80afg9Ly+PpUuXEhsbi0Kh\nIDg4mGefffa6rXd9aanD77+Lu5DHJz+ewtvVhgWP9sXMtHXMNidDaLrREvusVqtbZGC0xF7fidTi\ni6yIq9/P3su9Bw93mYql6a0vAaotxt7nptDI0e9/lpycTEBAQLOL0pSWHuoA//vlHDuPZxDa14eH\nRmv+KGBDJB9M3ZA+605r6HVxdQlfxP2P5KIU2th48kT3mbhbu+q0htbQ59tpLNSbPSXRW2+91dxF\nxZ9MHdkBLxdrfo1JJz4lX9/lCCHETdmb2/FcrycY0XYwl8uy+FfMMuLzzum7LHGNZoe6XFpRcyzM\nTHhiYhAmSgVfbj5DaUWNvksSQoibMlWaMq3TZB4OnEaNqoblp1YSnbpTMsFANPu8jtvt86qoqODV\nV18lLy+Pqqoqnn76aUaOHAnUnxL30ksvNTw2PT2dF198kZqaGpYuXYqvb/3c0IMHD+app55qbokt\nSntPe+4b6sdPv11gVfQ5nmzFs80JIQzfIK++tLHx4PO4b9lwYRvpJRk8HDhNL/vZxR8aDfV169bd\n8r6cnJxGV7xr1y66devGE088QUZGBo8//nhDqHt4eLBq1SoAamtriYiIYNSoUURHRzNu3DjmzZt3\np6/DKIwb6Etcch5HE7IJ7uDKoG6t51rUQoiWp529D/P6PceXp//HiZy4q/PGP6Lz/eziD42G+rFj\nx255X3BwcKMrHjduXMO/MzMz8fDwuOnjfvrpJ8aMGSOnyAEmSiV/nRjEwpVH+N+v5+jo49AqZ5sT\nQrQc9uZ2PBc8m/VJm9hzaT//ilnGY10foqtLF32X1io1++j3pgoPDycrK4v//ve/dOly4//kadOm\nsXLlSmxtbYmMjGT16tU4OjpSW1vLvHnzCAoKanT9xnD0+5/tPXWZr7Ym0NnHkZeNdLY5Q+hzayB9\n1h3pNRzKjOH7c5HUqeqY4D+GMe1Ganw3Ykvrc35lAZYmFlibWWtsnXd9StuMGTNu+B9jYmKCn58f\nTz/99C23wn939uxZXnnlFTZs2HDdek6cOMGaNWt4//33gfrT5NLT0wkJCeHEiRMsWLCAjRs3Nrru\n2to6TI3s3G61Ws17Xx/h0OksHpsQxAMjW8dpbkKIli85P43F+/6PvIoC+rcNZk7/R7Ays9R3WTpV\nUVPJwfRj7Eo5yLncZHq36c6rw57WyXM36UC5wYMHk5KSwpgxY1AqlWzfvh0vLy8cHByYP38+K1eu\nvGGZ06dP4+LigpeXF4GBgdTV1ZGfn4+Lyx9zB+/evZtBgwY1/B4QENBw7nuvXr3Iz8+nrq4OE5Nb\nh3ZBQXmTX2xTGMq3wPBRHTiTks+3W87Szs3G6GabM5Q+Gzvps+5Ir+vZ48zLfZ7ly9P/48ilk1ws\nyORv3Wfibu2mkfUbap9VahVJhRc4mBnDyew4qlU1KFDQxakjIZ7DNFrzXc/9fuzYMb766quG30eP\nHs3s2bP5/PPP2bFjx02XiYmJISMjg9dff53c3FzKy8txcnK67jFxcXHX7XtfsWIFXl5eTJgwgcTE\nRJydnRsNdGNmb23O4+O6sGRtLCs2nmlVs80JIVo2O3Nbng1+gsikTey+up/90aCH6OYaqO/SNC6v\nIp9DWcc4nHmMvMr6eUZcLZ0Z6NWXAV59cLZ0us0aNKtJoZ6Xl0d+fn7DtLAlJSVcvnyZ4uJiSkpu\n/u0jPDyc119/nRkzZlBZWcmCBQuIiorCzs6O0NBQoP4I+mu33CdOnMjLL7/MDz/8QG1tLe++++7d\nvr4WrUeAKyN7ebPrRAbr91wg/B4ZhhdCtAwmShOmdpqEr11bvju3nv/Gfs0E/3u5t91IlIpmT5Fi\nEKrrqjmZc5qDmTEkFiQBYG5izkDPvgz06ksHRz+9nZLcpH3q69at48MPP8Tb2xuFQsGlS5f429/+\nhouLC+Xl5Tz00EO6qPWmjPFAuWtV1dSx6KujXMkv56XwYILa63++fU0wtD4bK+mz7kivb+1i8SU+\nj/uWgqpCerp1Y2bgNCxNm7efXV99VqvVpBRf5FDmUY5diaWyrhKAAAc/Bnn1pZd7D52do6+Rud9L\nS0tJTU1FpVLh6+uLo6Ojxgq8G8Ye6gApmcW8t+oY9jbmvD2rPzaWLf+ykobYZ2MkfdYd6XXjSqpL\n+fL0/zhfeAFPa3dm93gEj2bsZ9d1nwurijiSeZxDWTFcKa+fn8XRwoGBnn0Y4NVXL+fk33Wol5WV\n8fXXXxMXF9dwlbZHHnkES0v9H9HYGkIdYMP+FKL2ptA/0J0nJ3XTdzl3zVD7bGykz7ojvb69OlUd\nPyVvZlf6PqxMLZu1n10Xfa5R1RKXe4aDmUc5m5eIGjWmSlOC3box0KsvnZ066HUXwl2H+gsvvICH\nhwcDBgxArVZz4MABCgoKWLx4sUYLbY7WEup1KhXv/+84yZeLmT0xiIFdW/Zsc4baZ2MjfdYd6XXT\nHc48xvfn1lOrqmO8Xyhj2o9qckhqq89qtZr00gwOZcYQk3WSstr6M6va2fswyKsvfdyDsTYzjMnA\n7vro99zcXD7++OOG30eOHElERMTdVyaazESp5ImJQSxceZRVvyTSsa0jLg76HykRQog7NcCrD162\nHnwe+y2bUn4hvSSDmUHTm72f/W6UVJdy9MoJDmXGkFGaCdQfvX+P73AGevaljW3L2oBqUqhXVFRQ\nUVGBlVX9t5Ty8nKqqqq0Wpi4kbuTNQ+N7sjXWxP4cvMZXnqoF0q56IsQogXytWvLvH7PsfL0ak7l\nxvNhzL+Z3X0mHjbuWn/uOlUd8XkJHMo6RlzuGVRqFSYKk4bh9SDnzpgoW+YpxE0K9enTpxMWFka3\nbvX7cuPj45k7d65WCxM3N6yHFyfP53IyKZdfjqQzdoCvvksSQohmsTO35ZngvxKVvIWd6Xv5V8y/\nebRrON1dG58evLkul2ZxKDOGI1eOU1JdCoC3rReDvPrR1yMYO3NbrTyvLjX56PfMzEzi4+NRKBR0\n69aNVatWXXf5VH1pLfvUr1VcVs2CLw9TXlXLm4/0w8e95b0RW0KfjYH0WXek13fnSNZxvktYR42q\nlvF+oYxtf89N97PfaZ/La8qJuXKKQ5kxpJWkA2Bjak1fz14M8uqLj523xl6Drtz1PnUALy8vvLy8\nGn6PjY29u6pEs9nbmPPYuECWrotlxcZ43nxEZpsTQrRs/T1743X1+uybU34lveQyM4OmY9WM/ewq\ntYqE/PMcyozhVG48tapaFCjo6tKFgV596e4ahJmyyfHXojT7VWn54m7iNnp2cCUkuA27T16W2eaE\nEEbBx86beX2f48v41cRe3c/+tzvYz55dnsOhzGMczjpGYVURAB7Wbgz06kt/z944Wjhos3yD0OxQ\n19cUeOIP00d15GxaAb8cTcfCzITJw/Q3NaEQQmiCrbkNz/Scdd1+9keCptPDretNH19ZW8nx7DgO\nZR4luSgVAEsTS4a0GcAgr760t/dtVX8XGw31ESNG3LQZarWagoICrRUlmsbC3IS5U3vyyY8n2Xgg\nlezCCh4f10WG4oUQLZqJ0oQpHSfia9eW1Qnr+L+4bxjnF0pY+3uA+uH15MIUDmbGcCI7tuGKaJ2d\nOjDQqy/Bbt0wNzHX86vQj0YPlMvIyGh0YW9v/R9g0BoPlPuz4vJq/r0+jqSMIjp4O/DMlO7YWxv2\nG7ol9rklkj7rjvRaO9JLMvg87lvyKwvo7hpEoGcAO5P2k3v1imguls4M9OrDAM++uFjp9opo+qKR\nud8NlYR6vZraOlZuSeDwmSu4OVry/NSeeLnY6LusW2qpfW5ppM+6I73WntLqMlbGr+bc71dEU5rR\ny70Hg7z6EuDo1+Kv+nanJNTvQEv+YKrVaqL2prDxQCrWFqbMub8bgQZ6VbeW3OeWRPqsO9Jr7apT\n1fFbxkFcHR3oaNVRL7PPGYrGQr11fb0xcgqFgvuH+zNrfCBVNXV8/OMp9sZe1ndZQghx10yUJoz0\nGcoo/8GtOtBvR0LdCA3p7sVL4cFYmpvw1ZYE1u9JRtWyB2SEEEI0gYS6kers68TrM/vi7mTF5oNp\n/PfneKpr6vRdlhBCCC2SUDdins7WvDGzL53aOhCTkM2H35+guKxa32UJIYTQEgl1I2drZcaL4b0Y\n1NWD5MvF/OPbGDJyy/RdlhBCCC2QUG8FzEyV/HVCEJOH+pFbVMl7q2KIT83Xd1lCCCE0TEK9lVAo\nFNw31I/ZE4OoqVWx5MdT/HZKjowXQghjIqHeygzs6slL4b2wsjDl660JrN2VJEfGCyGEkZBQb4U6\n+Tjy+sw+eDhbs/XwRZb/dJoqOTJeCCFaPAn1VsrDyZrXI/rQxdeRY4k5/Ou74xSVVum7LCGEEHdB\nQr0Vs7Uy44XpwQzp7klKZgn/+DaGSzml+i5LCCFEM0mot3KmJkoeHxfIA8P9ySuu4r1Vxzh9IU/f\nZQkhhGiGRq+nfjcqKip49dVXycvLo6qqiqeffpqRI0c23D9q1Cg8PT0xMam/9vfixYvx8PDgvffe\n49SpUygUCl577TV69OihrRLFVQqFggmD2+PuZMUXm86yZG0sf7m3EyN76f/SukIIIZpOa6G+a9cu\nunXrxhNPPEFGRgaPP/74daEOsGLFCmxs/rg86JEjR0hLS2PNmjUkJyfz2muvsWbNGm2VKP6kf6AH\nzvaWLFsfy6roc1zJL2fayA4olQp9lyaEEKIJtBbq48aNa/h3ZmYmHh4et13m4MGDjB49GoCAgACK\nioooLS3F1tZWW2WKP+ng7cDrM/uydO0pfjmaTk5hBbMndsXC3ETfpQkhhLgNrYX678LDw8nKyuK/\n//3vDfctXLiQjIwM+vTpw4svvkhubi5du3ZtuN/Z2ZmcnJxGQ93JyRpTU80GTmPXqm0N3Nzs+Pjv\nIbz/zRFOnM/lox9P8sbjA3BxsNL48wjtkz7rjvRaN6TPt6b1UP/hhx84e/YsL7/8Mhs2bEChqB/K\nfe655xg2bBgODg7MmTOH6OjoG5ZVN2FSlIKCco3W6+ZmR05OiUbX2VLNmdyNVdHn2Bubyd8/2cPc\nB3vg66GZD5P0WTekz7ojvdYN6XPjX2q0dvT76dOnyczMBCAwMJC6ujry8/+Yb3zy5Mm4uLhgamrK\n8OHDSUxMxN3dndzc3IbHZGdn4+bmpq0SxW2Ymih5NKwLU0MCKCip4p+rjxObnHv7BYUQQuiF1kI9\nJiaGlStXApCbm0t5eTlOTk4AlJSUMGvWLKqr6y8DevToUTp27MiQIUMattjj4+Nxd3eX/el6plAo\nCBvYjqcnd0OlUrN0XSw7jl3Sd1lCCCFuQmvD7+Hh4bz++uvMmDGDyspKFixYQFRUFHZ2doSGhjJ8\n+HCmT5+OhYUFQUFBjB07FoVCQdeuXQkPD0ehULBw4UJtlSfuUN8u7jjbW/Lp+lhW/5rIlfxywu/p\nKEfGCyGEAVGom7Lj2oBpet+K7K9pXG5RBUvXxpKRW0bPABf+NqkrluZ3/t1Q+qwb0mfdkV7rhvRZ\nT/vUhXFydbBi/sN96OrnzKnkPN7/33Hyiyv1XZYQQggk1EUzWFua8vzUHoQEt+Fidin/+DaGtKzW\n/c1ZCCEMgYS6aBYTpZKIMZ2ZNrIDRaXVvL/6OCfPy5HxQgihTxLqotkUCgVjB/gy54HuqFGzbH0s\nvx5Nb9L8AkIIITRPQirzPtQAAByTSURBVF3ctd6d3Hj1L72xtzHn+x3nWf1rInUqlb7LEkKIVkdC\nXWhEe0973nykL23dbNl5PINP18VRUVWr77KEEKJVkVAXGuNsb8n8h3vT3d+FuAt5/PN/x+TIeCGE\n0CEJdaFRVhamPPdgd0b19uZSThnvfBNDSmaxvssSQohWQUJdaJyJUsnD93bmodEdKS6r5oPVxzme\nmKPvsoQQwuhJqAutCe3rw7NTeqBQKPhPZBzbDl+UI+OFEEKLJNSFVgV3dOXVv/TGwdacH3clsSr6\nHLV1cmS8EEJog4S60Lp2nna8+Ug/fN1t2X3yMkvXxVJWUaPvsoQQwuhIqAudcLKz4NWHexPcwZX4\nlHxeWLKHTQdSSc0qRiVD8kIIoRFylbY/kSsAaZdKpebHXUlsj0lHdfWdZ2dtRjc/Z7r5u9C1vTP2\nNub6LdKIyPtZd6TXuiF9bvwqbRLqfyJvGN2wsLZg77GLxF3I4/SFfIrKqhvua+dpR3d/Z7r5uRDg\nbY+JUgaUmkvez7ojvdYN6XPjoX7nF8IWQgPsbczpH+hB/0AP1Go1l3LKOH0hj7gLeZy/VERaVgmb\nDqRhZWFCUDtnul0NeRcHS32XLoQQBktCXeidQqHAx90WH3dbwga2o6KqloSLBZxOyScuOY9jiTkc\nu3qeextXm6tD9c509nHEzNREz9ULIYThkFAXBsfKwpReHd3o1dENtVpNdkFF/TB9Sj4JaQX8cjSd\nX46mY26qpLOvU0PIezpbo1Ao9F2+EELojYS6MGgKhQIPZ2s8nK0Z3deHmto6Ei8Vcfrqvvi4q0P2\n7ABXB0u6+bvQ3c+ZLu2csLKQt7cQonWRv3qiRTEzNaFre2e6tndm+ijIL67kdEo+py/kEZ9awO4T\nGew+kYGJUkEHbwe6+TvT3d8FH3db2YoXQhg9CXXRojnbWzK8ZxuG92xDnUpFyuWSq0P1eSSmF3Iu\nvZD1ey7gYGNO16vD9F3bO2NnLafNCSGMj4S6MBomSiUd2jrQoa0D9w/3///27jw66vr+9/hz1oQk\nk22yEUKABJMAYQf5iSwuLBZsrUsFwci5KKct5VeponKhSP2J3sKh3tblilZolf68RHEDd72CpQVk\nlR2CrCFkmSQTsi+Tyf1jQiQgoMLMJJPX4xxPMt/5zjfv+TiH13w+3+/n86W8up79x0pbevIb9xaw\ncW8BBqB753Aye3h68T0SbZo2JyIBQaEuASs8xMp/9EngP/ok4G5qIrewkr3HSthztJQjeWc4ll/O\n2o3HCQky07tHtOeCux7RRIdr2pyItE8KdekQjAYD3RJsdEuwMfG67tTUuThwwtk8N76UbQeL2Haw\nCIAusaH07WGnT0o0aUmRWMzqxYtI+6BQlw6pU5CZQWmxDErzTJsrKK32XE1/rIRDJ8v42HGSj7ec\nxGoxkpEcRd8UO31T7cRFdvJ36SIiF+W1UK+pqWHu3LmUlJRQV1fHzJkzufHGG1ue37x5M8888wxG\no5EePXrw1FNPsXXrVh588EGuueYaANLS0liwYIG3ShQBPNPmOttD6WwPZezQrtQ3NJKTW+ZZ/OZo\nCbuPeP7jM7h5UBJ33ZBKkFWL3ohI2+O1UF+3bh2ZmZnMmDGDvLw8pk+f3irUH3/8cV577TUSEhL4\n7W9/y4YNGwgODubaa6/l2Wef9VZZIpdltZjITLGTmWJn8s3XUHymhr3HSvlsay7/b8cp9hwtYfrE\nXqR1jfR3qSIirXgt1CdMmNDye35+PvHx8a2ef/vttwkLCwMgOjoap9NJ586dvVWOyI8WE9GJGwZ0\nYXifBN7dcIxPtpxk8X/vYOzQrtwxKgWrRb12EWkbvH6XtsmTJ1NQUMCyZcvIyMi44PmioiKmTp3K\nG2+8QU5ODk888QTJycmcOXOGWbNmcf3111/y+C5XI2at/y0+dOBYKX9etYPTxVV0iQ1l9j2DyOgW\n7e+yRER8c+vVAwcO8Oijj7JmzZpWq3qVlJQwY8YMHnroIUaMGEFhYSHbt2/nJz/5Cbm5udx33318\n+umnWK0XXyhEt15tn9p7O9c1NPL2l0f5fFsuGOCWa5P5+cgebe4GM+29ndsTtbVvqJ0vfetVr83V\n2bt3L/n5+QD06tWLxsZGSktLW56vrKxkxowZzJ49mxEjRgAQHx/PhAkTMBgMJCcnExMTQ2FhobdK\nFPnRgiwm7hlzDY9OGUhMRDAffXWSJ/6+jWP55f4uTUQ6MK+F+rZt21ixYgUAxcXFVFdXExUV1fL8\nH//4R6ZNm8aoUaNatq1Zs4bly5cD4HA4KCkpueBcvEhbkp4cxRPTr+WmQV04XVzFU69t5+1/HqHB\n5fZ3aSLSAXlt+L22tpb58+eTn59PbW0ts2bNoqysDJvNxogRIxg6dCgDBw5s2f/WW29l4sSJzJkz\nh/LychoaGpg1axajR4++5N/R8Hv7FIjtfOB4KSs+PEhJeS1JsaHcP7E33RIuPkzmC4HYzm2V2to3\n1M6XHn73yTl1b1Kot0+B2s41dS7eWPcNX359GpPRwK3DuzPxum6YTf5ZlS5Q27ktUlv7htrZT+fU\nRTqiTkFmpt2SwUOT+hMeauW9fx1j0WvbyC2q9HdpItIBKNRFvCCzh50n7x/GiH6dOVlYyX/9fStr\nNx6n0a1z7SLiPQp1ES8JCTYzfUIvHryrH2EhFt7551Geem07ecVV/i5NRAKUQl3Ey/r3jGHRA8O4\nrk8CxwsqeOJvW/ho8wnc7nZ9OYuItEEKdREfCA22MOOnvfnPO/oSEmTmzfVH+F//2E5+iXrtInL1\nKNRFfGhgWixPPjCMa3vFceR0OX/421Y+3XJSvXYRuSoU6iI+Zgux8qvbMpn580yCLCZWffENi1/f\nQaGz2t+liUg7p1AX8ZMhGXEsemAYg9NjOXzqDAuXb+Hzbbm42/fSESLiRwp1ET8KD7Uy8+eZ/PJn\nfbCYjbz++WGW/t+dOMpq/F2aiLRDCnURPzMYDAzrHc+iB4YxoGcMB0+W8fjyLazbmUc7X/BRRHxM\noS7SRkSEBfGfd/blgVt7YTIaWPnJIf6U/TUlZ2r9XZqItBMKdZE2xGAwMDyzM08+MIx+qXb2H3ey\nYPlX/HPXafXaReSyFOoibVCULYgH7+rH/5iQgcEAf//oIP/7zV2UlqvXLiIXp1AXaaMMBgMj+yXy\nX9OH0ad7FHuPlrJg+Rb+vSdfvXYR+U4KdZE2zh4RzEOTBnDfLem4m5pY/sEBnntrD2WVdf4uTUTa\nGIW6SDtgMBi4YUAXnpx+LRnJkXz9TTELXvmKzfsK1GsXkRYKdZF2JCayE3PuGcjUsWk0NLp5ee1+\n/s87eymvqvd3aSLSBpj9XYCI/DBGg4GbByfRNyWaFR8cYHuOg0O5ZWSNT2doRpy/yxMRP1JPXaSd\niosK4dGpg5h88zXUNTTy4rt7WfbeXiqq1WsX6ajUUxdpx4wGA+OGdqVfqp3lH+xny4EiDp5wct8t\nGQxKi/V3eSLiY+qpiwSAhOgQ/ufUwdx9Y0+q6xp5/u09vLx2n3rtIh2MeuoiAcJoNHDLsGT6ptpZ\n8cF+Nu8r5NCSLxiemcCQ9DiS48MwGAz+LlNEvMjQ1M7nwzgcFVf1eLGxtqt+TLmQ2tm7Gt1uPtp8\nkvc3naC+oRGAmIhgBqXFMiQ9jpQu4RgV8FeVPtO+oXb2tMHFKNTPow+Mb6idfcMW3ol1W06wPcfB\nrm+Kqa33BHxEmJVBabEMToslPTkSk1Fn4q6UPtO+oXa+dKhr+F0kgAUHmRmSEceQjDgaXG72Hy9l\ne46Drw8Xs25HHut25BHWycKAa2IYnBZL7+7RWMwKeJH2ymuhXlNTw9y5cykpKaGuro6ZM2dy4403\ntjy/ceNGnnnmGUwmE6NGjeI3v/kNAE8//TS7du3CYDAwb948+vXr560SRToUi9lI/54x9O8ZQ6Pb\nzaGTZWzPcbAjx8G/dufzr935BFtN9O/pCfi+KXaCrCZ/ly0iP4DXQn3dunVkZmYyY8YM8vLymD59\neqtQX7RoEcuXLyc+Pp57772X8ePHU1payokTJ8jOzubIkSPMmzeP7Oxsb5Uo0mGZjEZ6d4+md/do\npo5N42heOdsOFbEjx8FX+wv5an8hVrORzBQ7g9Ni6d/TTkiwxd9li8hleC3UJ0yY0PJ7fn4+8fHx\nLY9zc3OJiIigc+fOAIwePZpNmzZRWlrKmDFjAEhNTeXMmTNUVlYSFhbmrTJFOjyjwUDPpAh6JkUw\n6aaenCysZNuhIrYf8vTid+Q4MBkN9OoexZD0OAZcE0N4iNXfZYvId/D6OfXJkydTUFDAsmXLWrY5\nHA6io6NbHkdHR5Obm4vT6aRPnz6ttjscDoW6iI8YDAa6JdjolmDjztGp5BVXsaM54PceLWXv0VIM\nH0N610gGp8cxKC2WKFuQv8sWkWZeD/VVq1Zx4MABHnnkEdasWfOD5sl+nwvzo6JCMJuv7nm/S11Z\nKFeP2tk3rqSdY2NtDOiVwHSgoKSKjbvz2bTnNAdPODl4soz//iyH9G5RDO/bmeH9Ekmwh169wtsh\nfaZ9Q+18cV4L9b1792K32+ncuTO9evWisbGR0tJS7HY7cXFxFBcXt+xbWFhIXFwcFoul1faioiJi\nYy+91KXTWX1V69Z0Cd9QO/vG1WxnEzAyM56RmfE4K+rYkeNg+6EiDp10cuiEk7+9v5+ucWEMTvdM\nlUuMCe1Qi93oM+0bamc/TWnbtm0beXl5zJ8/n+LiYqqrq4mKigIgKSmJyspKTp06RUJCAuvWrWPp\n0qU4nU6ee+45Jk+ezL59+4iLi9PQu0gbFGUL4ubBSdw8OIny6nq+PlzM9kMO9h8vJbeoknc3HCMh\nOsQT8OmxdIu3daiAF/EXry0+U1tby/z588nPz6e2tpZZs2ZRVlaGzWZj7NixbN26laVLlwIwbtw4\n7r//fgCWLl3Ktm3bMBgMLFy4kIyMjEv+HS0+0z6pnX3D1+1cXeti15FidhxysOdoCfUuNwD28OCW\ngE/tEhGQq9npM+0bametKPeD6APjG2pn3/BnO9fVN7L3WAnbDznYdaSYmrrm1exCPavZDUqPJb1r\nJGZTYCx2o8+0b6idtaKciPhBkNXE4PQ4Bqd7VrM7cKKU7Ycc7DxczLqdeazbmUdosNmzml16HH26\nR2G5yhe9inQ0CnUR8TqL2Ui/1Bj6pcZwn9tNTvNqdttzHPx7TwH/3lNAsNVEv1Q7g9JiSUkMxx4e\nrPPwIj+QQl1EfMpkNNKrezS9ukczZWwaR0+Xs715LvyWA0VsOVAEeHr6ifZQusSG0iXG819iTChR\ntiCFvchFKNRFxG+MBgM9u0TQs0sEd9/oWc1u99ES8hyV5BVXcbKwgmP55a1e0ynITGJMSHPIh7WE\nfWSYVWEvHZ5CXUTahHNXszvL1eim0FnD6eIq8hyVnp/FVRzPr+BIXuuwDwkykxj7bY8+KSaUxNgw\nwkMsCnvpMBTqItJmmU3GlqH3oRlxLdtdjW4KSqubw76qJeyP5pXzzakzrY4R1slC4jnD911iQkmM\nDdX69RKQFOoi0u6YTUaSYsNIig2DXt9ub3B5wj6vuLJV2B/OLSMnt6zVMWwhltZBHxNKl9gwwjrp\nbnTSfinURSRgWMxGusaF0TWu9UqU9Q2N5JdUt4S852clh06WcfBk67CPCLW26tGfHSnQrWelPVCo\ni0jAs1pMF5yvB6hraCS/pPUQ/uniKg6ccHLghLPVvpFh1m8vzjvn3H2nIP0zKm2HPo0i0mEFWUx0\nTwine0J4q+219S5OF3uG8c8N+33Hnew73jrso8ODSLSHEhEejKuhEaMBjEYDRoMBk9GAwWjAZDB4\nthmbtzU/d3Zfk9H47evO7nfOa1qOdfZ1RgNGIxfsc/b4xnO3N/8dk9F4zu+e7UEWky4iDDAKdRGR\n8wRbzaQkhpOS2Drsa+pc5w3he37uPVbqp0qvzPkzBs6eaggP1fTA9kqhLiLyPXUKMpPaJYLULhGt\nttfUuQiPCMFRXIHb3USjuwl3UxNud9N5j/Fsa2reds7vTee97vxjuJv4Ya9pArfbjdvNdxyriYZG\nN46yWo7knblgxkBosNkT8LFhmjHQzijURUSuUKcgM5G2IBpq6/1dyg/W4PquiwirOHzqDDnnhb1m\nDLR9CnURkQ7MYjaRHG8jOb71RYQ/ZMZAeKj1O8I+lFDNGPA5hbqIiFzgojMG6hvJL/XMGGgJe8d3\nzxiICLN6VvZrnjGQGBNKoj2UkGBFj7eoZUVE5HsLsl75jIEoW9AFK/wl2jU98GpQC4qIyBX7MTMG\nzp81YA8PanWTni7NYR9kNfnyrbRrCnUREfGai80YqK5taOnZ552zhv+eoyXsOVrSat+YiOCWkO/e\nJRJDoxtbiIXwUCu2ECshwWaMmoIHKNRFRMQPQoIt9EyKoGdS67CvrGn4tkfvqGoZzt99pITdR0qA\nkxccy2gwEBZiITzEgi3E6gn85p+2UCu2TlbCQz3PhYdY6BRkDth5+Ap1ERFpM8I6WUjrGkla18hW\n2yuq6zldXEWjwUheQTkVNfWUVzVQUV1PRXUD5dX1lJTXccpRddm/YTIaLhn8tpBvvwDYQqwEW9vP\nynsKdRERafNsIVbSk63ExtpwOCouul+Dy01lTQPlVfVU1NRT0Rz85dXffgHwPK6nsKyGk0WVl/3b\nZpPRE/idrNiaf577BcDz5eDbLwH+vAZAoS4iIgHDYjYSZQsiyhb0vfavb2j0BP15Pf+zwV9xzpeB\n/JIqThS6L3tMq8XYKvhH9O3MkIy4K31r34tCXUREOiyrxYQ9woQ9Ivh77V9X39iq519eXU9l8/B/\nxTk/K6rryS2qwtVYQUiQWaEuIiLS1gRZTQRZOxET2emy+zY1NVHX0EiQxXfD8Qp1ERERLzAYDARb\nfRuzXv1rS5YsYfv27bhcLn75y18ybtw4AAoLC5kzZ07Lfrm5uTz88MM0NDTwl7/8heTkZACGDx/O\nr3/9a2+WKCIiEjC8FuqbN2/m8OHDZGdn43Q6uf3221tCPT4+npUrVwLgcrnIysripptu4pNPPmHC\nhAk89thj3ipLREQkYHkt1IcOHUq/fv0ACA8Pp6amhsbGRkym1ucW3nnnHcaPH09oaKi3ShEREekQ\njN46sMlkIiQkBIDVq1czatSoCwId4M033+Suu+5qebxlyxbuv/9+pk2bxv79+71VnoiISMDx+hn8\nzz//nNWrV7NixYoLntu5cycpKSmEhYUB0L9/f6Kjo7nhhhvYuXMnjz32GGvXrr3k8aOiQjCbr+6V\nhbGxtsvvJFdM7ewbamffUVv7htr54rwa6hs2bGDZsmW88sor2GwX/k9Yv3491113Xcvj1NRUUlNT\nARg4cCClpaXfOWR/Lqez+qrWfLnViuTqUDv7htrZd9TWvqF2vvSXGq8Nv1dUVLBkyRJeeuklIiMj\nv3OfPXv2kJGR0fL4r3/9K++//z4AOTk5REdHXzLQRURE5Fte66l/+OGHOJ1OZs+e3bJt2LBhpKen\nM3bsWAAcDgd2u73l+Z/+9Kc88sgjrFq1CpfLxVNPPeWt8kRERAKOoampqcnfRVyJqz0Mo6Ed31A7\n+4ba2XfU1r6hdvbT8LuIiIj4lkJdREQkQLT74XcRERHxUE9dREQkQCjURUREAoRCXUREJEAo1EVE\nRAKEQl1ERCRAKNRFREQChEL9HE8//TSTJk1i8uTJ7N6929/lBKwlS5YwadIk7rzzTj799FN/lxPQ\namtrGTNmDG+//ba/SwlYa9as4Wc/+xl33HEH69ev93c5AamqqopZs2aRlZXF5MmT2bBhg79LarO8\nfuvV9mLLli2cOHGC7Oxsjhw5wrx588jOzvZ3WQFn8+bNHD58mOzsbJxOJ7fffjvjxo3zd1kB68UX\nXyQiIsLfZQQsp9PJCy+8wFtvvUV1dTXPPfccN9xwg7/LCjjvvPMOPXr04OGHH6awsJBp06bx8ccf\n+7usNkmh3mzTpk2MGTMG8NwC9syZM1RWVrbc612ujqFDh9KvXz8AwsPDqampueztdeXHOXLkCN98\n841Cxos2bdrEddddR1hYGGFhYTz55JP+LikgRUVFcejQIQDKy8uJioryc0Vtl4bfmxUXF7f6oERH\nR+NwOPxYUWAymUyEhIQAsHr1akaNGqVA95LFixczd+5cf5cR0E6dOkVtbS2/+tWvmDJlCps2bfJ3\nSQFp4sSJnD59mrFjx3Lvvffy2GOP+bukNks99YvQ6rne9fnnn7N69WpWrFjh71IC0rvvvsuAAQPo\n2rWrv0sJeGVlZTz//POcPn2a++67j3Xr1mEwGPxdVkB57733SExMZPny5Rw8eJB58+bpOpGLUKg3\ni4uLo7i4uOVxUVERsbGxfqwocG3YsIFly5bxyiuvYLNd/BaC8uOtX7+e3Nxc1q9fT0FBAVarlYSE\nBIYPH+7v0gKK3W5n4MCBmM1mkpOTCQ0NpbS0FLvd7u/SAsqOHTsYMWIEABkZGRQVFem03UVo+L3Z\n9ddfzyeffALAvn37iIuL0/l0L6ioqGDJkiW89NJLREZG+rucgPXnP/+Zt956izfeeINf/OIXzJw5\nU4HuBSNGjGDz5s243W6cTifV1dU63+sF3bp1Y9euXQDk5eURGhqqQL8I9dSbDRo0iD59+jB58mQM\nBgMLFy70d0kB6cMPP8TpdDJ79uyWbYsXLyYxMdGPVYn8OPHx8YwfP567774bgN///vcYjeorXW2T\nJk1i3rx53HvvvbhcLv7whz/4u6Q2S7deFRERCRD6SikiIhIgFOoiIiIBQqEuIiISIBTqIiIiAUKh\nLiIiEiAU6iIdzKlTp8jMzCQrK6vlrlcPP/ww5eXl3/sYWVlZNDY2fu/977nnHr766qsfU66I/AAK\ndZEOKDo6mpUrV7Jy5UpWrVpFXFwcL7744vd+/cqVK7X4h0gbpMVnRIShQ4eSnZ3NwYMHWbx4MS6X\ni4aGBh5//HF69+5NVlYWGRkZHDhwgFdffZXevXuzb98+6uvrWbBgAQUFBbhcLm677TamTJlCTU0N\nv/vd73A6nXTr1o26ujoACgsLmTNnDuC51/ukSZO46667/PnWRQKKQl2kg2tsbOSzzz5j8ODBPPLI\nI7zwwgskJydfcOOMkJAQ/vGPf7R67cqVKwkPD+dPf/oTtbW1TJgwgZEjR7Jx40aCg4PJzs6mqKiI\nm2++GYCPPvqIlJQUnnjiCerq6njzzTd9/n5FAplCXaQDKi0tJSsrCwC3282QIUO48847efbZZ5k/\nf37LfpWVlbjdbsCzlPL5du3axR133AFAcHAwmZmZ7Nu3j5ycHAYPHgx4bpaUkpICwMiRI3n99deZ\nO3cuo0ePZtKkSV59nyIdjUJdpAM6e079XBUVFVgslgu2n2WxWC7Ydv4tRpuamjAYDDQ1NbVaA/3s\nF4PU1FQ++OADtm7dyscff8yrr77KqlWrrvTtiEgzXSgnIgDYbDaSkpL48ssvATh27BjPP//8JV/T\nv39/NmzYAEB1dTX79u2jT58+pKamsnPnTgDy8/M5duwYAGvXrmXPnj0MHz6chQsXkp+fj8vl8uK7\nEulY1FMXkRaLFy9m0aJFvPzyy7hcLubOnXvJ/bOysliwYAFTp06lvr6emTNnkpSUxG233cYXX3zB\nlClTSEpKom/fvgD07NmThQsXYrVaaWpqYsaMGZjN+mdI5GrRXdpEREQChIbfRUREAoRCXUREJEAo\n1EVERAKEQl1ERCRAKNRFREQChEJdREQkQCjURUREAoRCXUREJED8fxfJ/gvS3GRSAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xlc1VXeB/DPj9UFZPWiIGjpkEUy\noZYZKsqAqGXjY6aU4Vj4JC5jWpqIBGiC0OZMhaWTZZElijQ6uaD1ZI8a4pYbjpZaJJrsoiwiy+/5\nw8c7onJBfvy2ez/vXvf14m7ne7gJX77nnN85giiKIoiIiFrJSu0OEBGRvjGREBGRJEwkREQkCRMJ\nERFJwkRCRESSMJEQEZEkTCQkiSiK+OSTT/DEE08gLCwMISEhSEhIwJUrVyS1O3fuXAQFBWHXrl13\n/d6jR48iMjJSUvy2tmXLFlRUVNzxubfffhtffvmlwj0iajsCryMhKd58803s27cP77//Pjw8PFBV\nVYXExET88ssvWLNmDQRBaFW7999/P7KysuDj49PGPVbHiBEjsHr1anTp0kXtrhC1OVYk1GqXLl1C\nWloakpOT4eHhAQDo0KED4uLiMGXKFIiiiJqaGsTFxSEsLAwjR45EcnIy6uvrAQDBwcFYu3Ytxo0b\nh0GDBiE5ORkAEBERgYaGBkRGRuL7779HcHAwDhw4YIx7435dXR0WLlyIsLAwhIaGYubMmaioqEBO\nTg5CQ0MBoFXxbxUREYGVK1diwoQJePTRR7FmzRosX74cI0aMwKhRo3Du3DkAwNmzZ/HMM89g5MiR\nCA0Nxddffw0AWLBgAX755RdERETgwIEDiI6OxtKlSzF69Ghs3boV0dHRWL58OY4ePYqhQ4eisrIS\nAPDhhx9i1qxZbf2/jajNMZFQqx05cgRdunRBz549Gz1ub2+P4OBgWFlZ4dNPP8XFixexefNmfPXV\nVzhw4IDxFywA7N+/H+np6diwYQM+//xzXLx4EWlpaQCAtLQ0BAUFNRl/9+7dyM/Px7Zt27B9+3b0\n6tULP/74Y6PXtCb+nezfvx9r1qzB0qVL8eabb6JLly7Ytm0bevXqhQ0bNgAA3njjDQwbNgxbt25F\nUlISFi5ciNraWixdutT4/fTv3x8AkJ2djYyMDIwcOdIYw9/fHyEhIVixYgUKCgrwxRdfIDY2ttn/\nD0RqYyKhVrt06RLc3NxMvmbnzp0YP348bGxs0K5dO4wePRp79uwxPj969GhYW1vDw8MDbm5u+P33\n31sc39XVFWfOnMGOHTtQXV2N2bNnY/DgwbLEHzZsGGxsbODr64vq6mqEhYUBAHx9fVFYWAgAWL58\nuXFupl+/fqipqUFRUdEd2xs4cCDs7e1ve3zOnDnYtm0bFixYgOnTp8NgMLT48yBSCxMJtZqLiwsK\nCgpMvqa0tBROTk7G+05OTigpKTHed3BwMH5tbW1tHHZqCX9/f8TGxiItLQ2BgYF45ZVXcPnyZVni\nd+zY0fiam+9bWVmhoaEBALBr1y5MnDgRYWFhGDVqFERRND53q5v7dGuckSNH4uDBgxg9erTJ759I\nK5hIqNUeeughlJSUIDc3t9HjtbW1WLZsGaqrq+Hu7o5Lly4Zn7t06RLc3d3vKs7Nv6wBoLy83Pj1\niBEjkJaWhu+++w7V1dVYtWpVo/e2RfyWqK2txezZszFt2jRkZWVh06ZNrVpoUFBQgH/96194/PHH\n8f7777d5P4nkwERCrdapUydMmTIF8+fPR15eHgCguroacXFxOHHiBNq3b4+hQ4ciIyMD9fX1qKqq\nwsaNG03Oe9xJ586dcfLkSQDXl9HW1NQAADZs2IDU1FQAgLOzM+69997b3tsW8VuiuroaVVVVePDB\nBwFcn5uxtbVFVVUVAMDGxua2aulOEhMTMWXKFMTExGDr1q3497//3eZ9JWprTCQkyV//+leMHz8e\n06ZNQ1hYGMaOHQs3NzfjX9MRERHo0qULHn/8cTz11FMYOnRoownmlpg+fTpWr16NJ554AmfOnEGv\nXr0AAH/605+Qm5uL4cOHY+TIkTh9+jSef/75Ru9ti/gtcSOpjhkzBmPGjIGPjw9CQkIQFRWFqqoq\njBgxAuHh4diyZUuTbezcuRP5+fkIDw+Hg4MD5syZg9jY2Lsa7iNSA68jISIiSViREBGRJEwkREQk\nCRMJERFJwkRCRESSMJEQEZEkNmp3oCmt3TVWKjUWsam1cM6SPmMAaFAprrWVZf29VqfScmW1Pmc5\nf45a27bSP2OaTSRERJZOrT/27pZl/alERERtjhUJEZFG6aUiYSIhItIoQdDHoBETCRGRZrEiISIi\nCTi0RUREkjCREBGRJHqZI9FHL4mISLNYkRARaRSHtoiISBImEgCVlZUoLi4GcP3c7Q4dOsgZjojI\nrFh0Ijl27BgSExNx+fJluLi4QBRFFBYWwsPDA3FxcbjvvvvkCEtEZFYsOpEkJSUhMTERPXv2bPR4\nbm4uFi9ejDVr1sgRlojIzOhjPZQsvRRF8bYkAgB+fn6oV2mLaSIikocsFckf//hHREVFISQkBK6u\nrgCA4uJiZGVl4ZFHHpEjJBGR2dHL0JYgynQCyv79+5GdnW2cbDcYDAgMDERAQEDLOmZBhy7xYCtl\n8GArZfBgq7bj6OjaqvdduVLaxj0xTbZEIpUl/ZJjIlEGE4kymEjaTqdObq163+XLJW3cE9N4HQkR\nkUbpZWiLiYSISKP0stcWEwkRkUbppSLRR7ojIiLNYkVCRKRReqlImEiIiDSLiYSIiCTgZDsREUnC\noS0iIpKEiYSIiCTRSyLRxwAcERFplmYrEkvaf6qhoUHxmIBlfcYA/2pSilr/f/Xy1/vd0Mv3pNlE\nQkRk6bhqi4iIJGFFQkREEjGREBGRBKxIiIhIEr3Mkeijl0REpFmsSIiINIpDW0REJAkTCRERScJE\nQkREkjCREBGRJFy11YTLly8rHZKISJeEVv6nNMUTycyZM5UOSUREMpJlaGvNmjVNPldQUCBHSCIi\n82PJcySrV6/GwIEDYTAYbnuurq5OjpBERGbHoifbU1NTsWTJEsTGxsLOzq7Rczk5OXKEJCIyO3pJ\nJIIo0+lG1dXVsLe3h5VV42mY3Nxc+Pn5yRGyTVjSwVZqUeuHw9IO8lJLvUr/nq2t9LHC6W706tW3\nVe87ffpQG/fENNmW/7Zv3/6Oj2s5iRARaYmcf4QkJSXhyJEjEAQBMTEx8Pf3Nz63Zs0abNq0CVZW\nVnjwwQexcOFCk23xOhIiIo2SK5Hs27cPeXl5SE9Px5kzZxATE4P09HQAQEVFBVatWoXt27fDxsYG\nL7zwAg4fPoyHHnqoyfbMrxYkIiKTsrOzERISAgDo2bMnysvLUVFRAQCwtbWFra0tqqqqUFdXh+rq\najg5OZlsjxUJEZFGyVWRFBcXN5pmcHV1RVFRERwcHGBvb48ZM2YgJCQE9vb2ePzxx3HPPfeYbI8V\nCRGRRgmwatXtbt28EKWiogIrVqzAtm3b8O233+LIkSM4efKkyfczkRARaZUgtO7WDIPBgOLiYuP9\nwsJCdO7cGQBw5swZeHt7w9XVFXZ2dujfvz+OHz9usj0mEiIijRIEoVW35gQGBiIrKwvA9UsyDAYD\nHBwcAABeXl44c+YMrl69CgA4fvw4evToYbI9zpEQEWmUXHMkffv2hZ+fH8LDwyEIAuLj45GZmQlH\nR0eEhoYiMjISkyZNgrW1NQICAtC/f3/T/ZTrgkS94gWJ8uMFieaNFyS2HT+/wFa9Lzd3Txv3xDTz\n++SJiEhRHNoiItIovRxsxURCRKRRehkW1WwiUWuctbKmRvGYXbveq3hMAMjL/1mVuPY26vyza1Bp\njqShoV6VuPUNljUnZKVSXDm/XyYSIiKSiImEiIgk4BwJERFJopehLX2kOyIi0ixWJEREGqWXioSJ\nhIhIo5hIiIhIEiYSIiKShKu2iIhIElYkREQkiaCTCxL1UTcREZFmyZpI7nT+w8WLF+UMSURkPmQ6\naretyZJIduzYgWHDhmHgwIGYP38+KioqjM+9+uqrcoQkIjI7ch2129ZkSSQrV67EV199hR9++AF9\n+/ZFZGQkrly5AkC9U+qIiPRGEKxadVOaLJPt1tbWcHZ2BgBMmDABbm5uiIyMxIcffqibVQhERGrT\ny+9LWRJJ3759MXXqVPz9739Hu3btEBISAnt7e0yePBmXLl2SIyQRkdmx6ETy6quvIicnB/b29sbH\nBg8ejICAAGzZskWOkEREZseiEwkADBgw4LbHHBwcMH78eLlCEhGRCnhBIhGRRnGLFCIiksjCh7aI\niEgai58jISIiaZhIiIhIEiYSIiKSRC+T7froJRERaRYrEiIijeLQFhERScJEQkREkjCREBGRRPqY\nxtZsIrG2UucDbG9rq3jMs7+dUjwmAHh73qtK3MLC31SJe+VqtSpxnTt0VCWuldCgSly1VNfWqhK3\ng52dbG2zIiEiIkn0kkj0UTcREZFmsSIhItIovVQkTCRERBrFREJERJLoZYsUJhIiIo1iRUJERJIw\nkRARkUT6SCT6GIAjIiLNYkVCRKRRehnaUqwiKS0tVSoUEZFZEASrVt2UJkvEnTt3IiwsDJMnT8ZP\nP/2EJ598EhEREQgODsb3338vR0giIrMjCEKrbkqTZWjrgw8+wCeffIILFy4gKioKy5cvR+/evVFc\nXIyoqCgEBQXJEZaIyKzoZWhLlkRiZ2cHT09PeHp6wmAwoHfv3gAAd3d32NvbyxGSiMjs6CWRyDK0\n5ebmhlWrVgEA1q5dCwC4ePEikpKS0KVLFzlCEhGZHYueI0lOTkbXrl0bPVZSUgJPT08kJSXJEZKI\niFQiy9BWu3btMGrUqEaP+fn5wc/PT45wRERmSS9DW7yOhIhIs5hIiIhIAlYkREQkiWAlXyJJSkrC\nkSNHIAgCYmJi4O/vb3zu999/x8svv4za2lo88MADWLx4scm2uNcWEZFGyXVB4r59+5CXl4f09HQk\nJiYiMTGx0fPJycl44YUXkJGRAWtra1y4cMFke0wkREQaJVciyc7ORkhICACgZ8+eKC8vR0VFBQCg\noaEBBw8eRHBwMAAgPj4enp6eJttjIiEisjDFxcVwcXEx3nd1dUVRURGA6/siduzYEUuXLsUzzzyD\nt99+u9n2mEiIiDRKqb22RFFs9HVBQQEmTZqEzz//HCdOnMDOnTtNvp+JhIhIo+RKJAaDAcXFxcb7\nhYWF6Ny5MwDAxcUFnp6e8PHxgbW1NQYOHIiff/7ZZHtMJEREGiVYte7WnMDAQGRlZQEAcnNzYTAY\n4ODgAACwsbGBt7c3fv31V+Pz99xzj8n2uPyXiEirZLqOpG/fvvDz80N4eDgEQUB8fDwyMzPh6OiI\n0NBQxMTEIDo6GqIowtfX1zjx3hQmEiIijZLzgsS5c+c2un9jl3YA6N69O7788ssWt8VEQkSkUbyy\nXaKbVxGYu/a2tqrELSjIUyWum5uXKnFLSs6rEletf8tWKv0SalDp+y35/+sglNbB1VWVuFqi2URC\nRGTpWJEQEZEkcu611ZaYSIiINIoVCRERScJEQkREkugkjzSdSDIyMky+cdy4cW3eGSIiuolOMkmT\nieTgwYMm38hEQkREgIlEsnTpUuPXDQ0NKCkpMW7qRURE8tPLqq1mt/e6cQBKREQEgOvHMza3pTAR\nEUmn1DbyUjWbSJYtW4Z169YZq5GoqCgsX75c9o4REVk6s0kkHTp0gLu7u/G+q6srbO9yS4/s7Oy7\n7xkRkYXTSyJpdvlvu3btsG/fPgBAeXk5Nm/eDHt7+yZf/89//rPRfVEU8cEHH2D69OkAgDFjxkjp\nLxGRxTCb60ji4+ORkJCAY8eOITQ0FP369cPixYubfH1qaiqcnZ0RFBRkfKympgb5+flt02MiIguh\nl8n2ZhNJ165dsWLFihY3+PXXX2P58uU4deoUoqOj4eXlhV27dmHmzJmSOkpERNrUbCLZv38/kpOT\ncebMGQiCAF9fX7z66qvo16/fHV9vb2+POXPm4OzZs1i8eDECAgLQ0NDQ5h0nIjJ3OhnZan6yffHi\nxZg7dy5ycnKQnZ2NWbNmYdGiRc02fO+992LFihXo0qULunXr1iadJSKyJGYz2e7m5oaBAwca7wcG\nBsLT07PFAcaMGcMJdiKi1tBJSdJkIjl37hwAoE+fPvj444/x2GOPwcrKCtnZ2XjggQcU6yARkaXS\n/aqtv/zlLxAEwXhM6Oeff258ThAEzJo1S/7eERFZMN2v2vqf//mfJt906NAhWTpDRET/ofuK5IaK\nigps3LgRZWVlAIDa2lps2LABu3fvlr1zRESkfc2u2po9ezZOnTqFzMxMVFZW4rvvvkNCQoICXSMi\nsmx6WbXVbCKpqanB4sWL4eXlhfnz5+Ozzz7D1q1blegbEZFF00siaXZoq7a2FlVVVWhoaEBZWRlc\nXFyMK7qIiEg+OpkiaT6R/PnPf8a6devw9NNPY9SoUXB1dYWPj48SfSMismx6X7V1wzPPPGP8euDA\ngSgpKeF1JERECtD9qq2///3vTb5px44deOmll2TpEBERXaf7RGJtba1kP4iISKeaTCTc9p2ISF26\nr0jUVl1bq0pcOxUqMWurZldhy6K8ukqVuMXF6hxy1r27OnN7Z385rkpctVRfu6ZK3K5OTqrElRMT\nCRERSaKXvbZa9KdwWVkZjh07BgA8pIqISCF6uSCx2UTy9ddfY8KECViwYAEA4PXXX8f69etl7xgR\nkaUThNbdlNZsIvnkk0+wceNGuLi4AADmz5+PdevWyd4xIiKLp5NM0mwicXR0RPv27Y3327VrB1tb\nW1k7RURE+tHsZLuLiwu++uor1NTUIDc3F1u2bIGrq6sSfSMismh6WbXVbEWyaNEiHDt2DJWVlYiN\njUVNTQ2WLFmiRN+IiCyaYCW06qa0ZiuSTp06IS4uTom+EBHRTfRSkTSbSIKCgu74zezcuVOO/hAR\n0f8zm0TyxRdfGL+ura1FdnY2ampqZO0UERGZUSLx8vJqdL9Hjx6IjIzE5MmTWxykrq4OBQUF8PDw\ngI0NL6YnImoJs0kk2dnZje5fvHgRv/32m8n3LFmyBLGxsQCAH374AQsXLoS7uztKSkqwaNEiDB48\nWEKXiYhIS5pNJMuXLzd+LQgCHBwcsGjRIpPvOXXqlPHr1NRUfPbZZ/D29kZRURFmzpzJREJE1AKC\nOvu53rVmE0l0dDT8/PzuqtGbyzEnJyd4e3sDADp37syhLSKiltLJ0Faz+S4lJeWuG/3555/x0ksv\nYdasWcjLy8PWrVsBAB9//DEcHR3vvpdERBZIL5s2NlseeHp6IiIiAn/84x8bbY1i6qjdW4/p7d69\nO4DrFcnbb7/d2r4SEVkUs5ls79atG7p163ZXjT7yyCN3fHz06NF31Q4RkSXTfSLZtGkTnnzySR65\nS0SkEt0fbJWRkaFkP4iISKe4hIqISKN0P7T1448/YujQobc9LooiBEHgXltERDLTfSJ54IEH8M47\n7yjZFyIiuomceSQpKQlHjhyBIAiIiYmBv7//ba95++23cfjwYaSlpZlsq8lEYmdnd9s+W0REpBy5\nJtv37duHvLw8pKen48yZM4iJiUF6enqj15w+fRr79+9v0Ym4TU623yk7ERGRgmQ6sz07OxshISEA\ngJ49e6K8vBwVFRWNXpOcnIw5c+a0qJtNJpJ58+a1qAEiItKX4uJiuLi4GO+7urqiqKjIeD8zMxOP\nPPJIi0eldLIlGBGR5VFqixRRFI1fX7p0CZmZmXj++edb/H4u/yUi0ii5Vm0ZDAYUFxcb7xcWFqJz\n584AgL1796K0tBQTJ07EtWvX8NtvvyEpKQkxMTFNtseKhIhIo+SqSAIDA5GVlQUAyM3NhcFggIOD\nAwBgxIgR2LJlC9atW4f3338ffn5+JpMIwIqEiEiz5Fq11bdvX/j5+SE8PByCICA+Ph6ZmZlwdHRE\naGjoXbcniDcPjmlIXX29KnGtrZQv0uobGhSPCQA21taqxK2tr1Mprjqfs8HVQ5W4FRVlqsRV62dX\nrX/Pckr+aG2r3hc9JbyNe2IaKxIiIo3SyYXtnCMhIiJpWJEQEWmU7vfaIiIilTGREBGRFHo52IqJ\nhIhIozi0RUREkjCREBGRJHpJJFz+S0REkrAiISLSKFYktygtLVUqFBGRWRCsWndTmiwhv//+e8TF\nxQG4fhLXsGHDMGnSJAQHB2Pnzp1yhCQiMjtKnUcilSxDW++++y5WrFgBAEhNTcVnn30Gb29vlJWV\nYerUqRg6dKgcYYmIzItOhrZkSSR1dXXo2LEjAMDR0RHdunUDADg7O0Ojmw0TEWmOXuZIZEkkkZGR\nGDNmDAIDA+Hs7Izp06cjICAAOTk5ePrpp+UISURkdiw6kTz55JMYMmQIfvjhB5w/fx6iKMLd3R1J\nSUnw8FDnbAYiIpKHbMt/nZ2dMWrUKLmaJyIye9xri4iIJLHooS0iIpKOiYSIiCTRSR5hIiEi0iyd\nZBImEiIijdLLZDt3/yUiIklYkRARaRQn24mISBImEiIikoSJhIiIJGEiISIiSfSyaouJhIhIo3RS\nkGg3kVhbqbMyub6hQfGYNXV1iscE1PyM1TmTpoOdnSpxKyrKVInr7t5NlbhFRedUiVteVaVKXKcO\nHVSJqyWaTSRERBZPJyUJEwkRkUZxsp2IiCRhIiEiIkm4aouIiCRhRUJERJLoJZFw918iIpKEFQkR\nkUbppSJhIiEi0iid5BEmEiIizeKqLSIikkIvQ1uyTLb37dsXr7/+OkpKSuRonojIIgiC0Kqb0mSp\nSPz8/DBixAi88sor6Nq1K8aOHYuAgADY2LAAIiJqKb1UJLL8ZhcEAQ8//DBWr16NY8eOYf369Xjt\ntdfQsWNHuLm5YeXKlXKEJSIiFciSSETxP9uE9+nTB3369AEAFBYWoqioSI6QRERmx8qSK5I///nP\nd3zcYDDAYDDIEZKIyOxY9NDWuHHj5GiWiMiiWHRFQkRE0ukkjzCREBFplQB9ZBImEiIijdLL0BZ3\n/yUiIklYkRARaZRFr9oiIiLp5EwkSUlJOHLkCARBQExMDPz9/Y3P7d27F++88w6srKxwzz33IDEx\nEVZWTQ9gcWiLiEijrAShVbfm7Nu3D3l5eUhPT0diYiISExMbPR8XF4d3330Xa9euRWVlJXbt2mWy\nPVYkREQaJVdFkp2djZCQEABAz549UV5ejoqKCjg4OAAAMjMzjV+7urqirKzMZHusSIiINEquiqS4\nuBguLi7G+66uro22r7qRRAoLC7Fnzx4EBQWZbI8VCRGRRik1137z/og3lJSUICoqCvHx8Y2Szp2w\nIiEisjAGgwHFxcXG+4WFhejcubPxfkVFBf77v/8bs2fPxqBBg5ptj4mEiEijhFb+15zAwEBkZWUB\nAHJzc2EwGIzDWQCQnJyMv/zlLxgyZEjL+ineqabRgLr6elXi1tTVKR7TzsZa8ZgAcK1Onc+4g52d\nKnGLrlxRJa7bTT+gSrI2sVxTTn/4Qz9V4h47sVeVuO1sbWVr+5vjx1v1vpAHH2z2NW+99RYOHDgA\nQRAQHx+PEydOwNHREYMGDcLDDz+MgIAA42ufeOIJTJgwocm2OEdCRKRRcl5HMnfu3Eb3e/fubfz6\n+F0mMCYSIiKN4pXtREQkiV42bWQiISLSKL1UJFy1RUREkrAiISLSKL1UJEwkREQaZaWPPMJEQkSk\nVTxql4iIJOGqLSIikoRzJLcQRVE3HwoRkRbo5XemLMt/d+/ejZEjR2LixIk4evQonnrqKQwZMgQj\nRozAvn375AhJREQqkaUiSU1Nxaeffory8nJERERg9erV6N27N86fP4958+bhiy++kCMsEZFZseg5\nEltbWxgMBhgMBnTq1Mm4GZiXlxesrdXZ6ZaISG/0MrQlSyJxcnLCsmXLUFZWBh8fH8TFxWHw4ME4\nfPgw3Nzc5AhJRGR29JJIZJkjSUlJgcFgwKOPPoqPPvoI/fv3x549e+Du7o6kpCQ5QhIRmR0roXU3\npfFgq1vwYCv58WArZfBgK2XIebDV4by8Vr3voe7d27gnpvE6EiIijdLLZDt3/yUiIklYkRARaZRe\nJtuZSIiINIqJhIiIJNHLHAkTCRGRRrEiISIiSZhIiIhIEr2ckMjlv0REJAkrEiIijeJRu0REJAnn\nSCSqV2kLMDn3zWmKWnsiqaW6tlaVuJ0dHVWJq9Yvg9p65feNA4Cffz6oSlwnJ3dV4paXF8vWNpf/\nEhGRJKxIiIhIElYkREQkiV4qEssanCciojbHioSISKP0UpEwkRARaZRermxnIiEi0ihekEhERJJw\naIuIiCTh8l8iIpJELxUJl/8SEZEkslYkoiiirKwMoijCzc1NzlBERGZHLxWJLInkl19+QUpKCs6f\nP4/8/Hz07NkT5eXl8PPzw4IFC+Dh4SFHWCIis6KXORJZhrbi4+OxcOFC/Otf/8KGDRvQp08f7Nix\nA2PHjsXcuXPlCElEZHYEQWjVTWmyJJJr167B29sbANCjRw+cOnUKADBkyBBcvXpVjpBERGbHSmjd\nTWmyDG35+vri5Zdfhr+/P3bt2oUBAwYAAGJiYtCrVy85QhIRmR29XJAoiGLbnyAliiK+/fZb/Prr\nr/D19cWQIUMAACdPnsR9993XotKrpk6dQ3lsVDhkSq2DrdQ6+Ki2vkGVuO1VOLQMsLyDrWyt1bmq\nwBwPtrpcXd2q93Vq376Ne2KaLImkLTCRyI+JRBlMJMpgIvkPpRMJL0gkItIovazaYiIhItIoi76O\nhIiIpGMiISIiSTi0RUREkrAiISIiSfRyQiJ3/yUiIklYkRARaZScV7YnJSXhyJEjEAQBMTEx8Pf3\nNz73ww8/4J133oG1tTWGDBmCGTNmmGyLFQkRkUbJtWnjvn37kJeXh/T0dCQmJiIxMbHR80uWLMF7\n772HL7/8Env27MHp06dNtsdEQkSkUVaC0Kpbc7KzsxESEgIAxmM+KioqAADnzp2Dk5MTunbtCisr\nKwQFBSE7O9t0P6V/q0REJAe5KpLi4mK4uLgY77u6uqKoqAgAUFRUBFdX1zs+1xTNzpHY22i2a2ZD\nrT2RbK1VCWtx1Pr/qxY597yMZCXCAAAKUElEQVQyd1K3XGRFQkRkYQwGA4qL/5N4CwsL0blz5zs+\nV1BQAIPBYLI9JhIiIgsTGBiIrKwsAEBubi4MBgMcHBwAAN26dUNFRQXy8/NRV1eH7777DoGBgSbb\n0+w28kREJJ+33noLBw4cgCAIiI+Px4kTJ+Do6IjQ0FDs378fb731FgBg+PDhiIyMNNkWEwkREUnC\noS0iIpKEiYSIiCQxu/WBpi77l9NPP/2E6dOnY/LkyXjuuecUiQkAb7zxBg4ePIi6ujpMnToVw4cP\nlzVedXU1oqOjUVJSgpqaGkyfPh3Dhg2TNebNrl69iieeeALTp0/H2LFjZY+Xk5ODl156CX/4wx8A\nAL6+vnjttddkjwsAmzZtwkcffQQbGxvMmjULQ4cOlT3m+vXrsWnTJuP948eP48cff5Q9bmVlJebP\nn4/y8nLU1tZixowZGDx4sOxxGxoaEB8fj59//hm2trZISEhAz549ZY9rdkQzkpOTI7744ouiKIri\n6dOnxfHjxysSt7KyUnzuuefE2NhYMS0tTZGYoiiK2dnZ4pQpU0RRFMXS0lIxKChI9pibN28WV65c\nKYqiKObn54vDhw+XPebN3nnnHXHs2LHihg0bFIm3d+9e8a9//asisW5WWloqDh8+XLxy5YpYUFAg\nxsbGKt6HnJwcMSEhQZFYaWlp4ltvvSWKoihevHhRDAsLUyTu9u3bxZdeekkURVHMy8sz/v6gu2NW\nFUlTl/3fWNYmFzs7O/zjH//AP/7xD1nj3Orhhx82VlydOnVCdXU16uvrYW0t3xV/o0aNMn79+++/\nw8PDQ7ZYtzpz5gxOnz6tyF/masvOzsbAgQPh4OAABwcHvP7664r3ITU11bhyR24uLi44deoUAODy\n5cuNrrqW06+//mr8GfLx8cGFCxdk/xkyR2Y1R2Lqsn852djYoF27drLHuZW1tTU6dOgAAMjIyMCQ\nIUMU+wEIDw/H3LlzERMTo0g8AEhJSUF0dLRi8W44ffo0oqKi8Mwzz2DPnj2KxMzPz8fVq1cRFRWF\nZ599ttm9jtra0aNH0bVrV+NFanJ7/PHHceHCBYSGhuK5557D/PnzFYnr6+uL3bt3o76+HmfPnsW5\nc+dQVlamSGxzYlYVya1EC1nZ/M033yAjIwMff/yxYjHXrl2Lf//735g3bx42bdok+0lu//znP/HQ\nQw/B29tb1ji36tGjB2bOnImRI0fi3LlzmDRpErZv3w47OzvZY1+6dAnvv/8+Lly4gEmTJuG7775T\n7MS8jIwM/Nd//ZcisQBg48aN8PT0xKpVq3Dy5EnExMQgMzNT9rhBQUE4dOgQJk6ciPvuuw/33nuv\nxfzeaEtmlUhMXfZvrnbt2oUPP/wQH330ERwdHWWPd/z4cbi5uaFr1664//77UV9fj9LSUri5ucka\nd+fOnTh37hx27tyJixcvws7ODl26dMFjjz0ma1wPDw/jcJ6Pjw/c3d1RUFAge0Jzc3NDQEAAbGxs\n4OPjg44dOyryOd+Qk5OD2NhYRWIBwKFDhzBo0CAAQO/evVFYWKjYENOcOXOMX4eEhCj2GZsTsxra\nMnXZvzm6cuUK3njjDaxYsQLOzs6KxDxw4ICx8ikuLkZVVZUi49l/+9vfsGHDBqxbtw5PP/00pk+f\nLnsSAa6vnFq1ahWA67uilpSUKDIvNGjQIOzduxcNDQ0oKytT7HMGru+t1LFjR0Wqrhu6d++OI0eO\nAADOnz+Pjh07KpJETp48iQULFgAA/vd//xcPPPAArKzM6teiIsyqIunbty/8/PwQHh5uvOxfCceP\nH0dKSgrOnz8PGxsbZGVl4b333pP9l/uWLVtQVlaG2bNnGx9LSUmBp6enbDHDw8OxcOFCPPvss7h6\n9Sri4uLM+gcvODgYc+fOxbfffova2lokJCQo8gvWw8MDYWFhGD9+PAAgNjZWsc/51m3ElTBhwgTE\nxMTgueeeQ11dHRISEhSJ6+vrC1EUMW7cONjb2yu2uMDccIsUIiKSxHz/lCQiIkUwkRARkSRMJERE\nJAkTCRERScJEQkREkjCRkGzy8/Px4IMPIiIiAhEREQgPD8crr7yCy5cvt7rN9evXG7dJmTNnDgoK\nCpp87aFDh3Du3LkWt11XV4f77rvvtsffe+89LFu2zOR7g4ODkZeX1+JY0dHRWL9+fYtfT6RlTCQk\nK1dXV6SlpSEtLQ1r166FwWDABx980CZtL1u2zOTFgZmZmXeVSIiodczqgkTSvocffhjp6ekArv8V\nf2MPq3fffRdbtmzB559/DlEU4erqiiVLlsDFxQVr1qzBl19+iS5dusBgMBjbCg4OxieffAJvb28s\nWbIEx48fBwA8//zzsLGxwbZt23D06FEsWLAA3bt3x6JFi1BdXY2qqiq8/PLLeOyxx3D27FnMmzcP\n7du3x4ABA5rt/xdffIGNGzfC1tYW9vb2WLZsGTp16gTgerV07NgxlJSU4LXXXsOAAQNw4cKFO8Yl\nMidMJKSY+vp67NixA/369TM+1qNHD8ybNw+///47PvzwQ2RkZMDOzg6ffvopVqxYgRkzZuDdd9/F\ntm3b4OLigmnTpsHJyalRu5s2bUJxcTHWrVuHy5cvY+7cufjggw9w//33Y9q0aRg4cCBefPFFvPDC\nC3j00UdRVFSECRMmYPv27UhNTcVTTz2FZ599Ftu3b2/2e6ipqcGqVavg4OCAuLg4bNq0yXiQmbOz\nMz799FNkZ2cjJSUFmZmZSEhIuGNcInPCREKyKi0tRUREBIDrp9H1798fkydPNj4fEBAAAPjxxx9R\nVFSEyMhIAMC1a9fQrVs35OXlwcvLy7jP1IABA3Dy5MlGMY4ePWqsJjp16oSVK1fe1o+cnBxUVlYi\nNTUVwPWt/0tKSvDTTz/hxRdfBAA8+uijzX4/zs7OePHFF2FlZYXz58832hQ0MDDQ+D2dPn3aZFwi\nc8JEQrK6MUfSFFtbWwDXDwfz9/fHihUrGj1/7NixRlunNzQ03NaGIAh3fPxmdnZ2eO+9927bQ0oU\nReMeVvX19SbbuHjxIlJSUrB582a4ubkhJSXltn7c2mZTcYnMCSfbSRP69OmDo0ePGg8i27p1K775\n5hv4+PggPz8fly9fhiiKdzzgKSAgALt27QIAVFRU4Omnn8a1a9cgCAJqa2sBAP369cPWrVsBXK+S\nEhMTAVw/SfPw4cMA0OzhUSUlJXBxcYGbmxsuXbqE3bt349q1a8bn9+7dC+D6arEbZ7w3FZfInLAi\nIU3w8PDAwoULMXXqVLRv3x7t2rVDSkoKnJycEBUVhYkTJ8LLywteXl64evVqo/eOHDkShw4dQnh4\nOOrr6/H888/Dzs4OgYGBiI+PR0xMDBYuXIi4uDhs3rwZ165dw7Rp0wAAM2bMwPz587Ft2zbj+R9N\nuf/++9G9e3eMGzcOPj4+mDVrFhISEhAUFATg+kFUU6dOxYULF4w7TzcVl8iccPdfIiKShENbREQk\nCRMJERFJwkRCRESSMJEQEZEkTCRERCQJEwkREUnCREJERJIwkRARkST/B0yiKqwBQqJAAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "266KQvZoMxMv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "id": "lRWcn24DM3qa", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Here is a set of parameters that should attain roughly 0.9 accuracy." + ] + }, + { + "metadata": { + "id": "TGlBMrUoM1K_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = train_linear_classification_model(\n", + " learning_rate=0.03,\n", + " steps=1000,\n", + " batch_size=30,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mk095OfpPdOx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Replace the Linear Classifier with a Neural Network\n", + "\n", + "**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**\n", + "\n", + "You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class." + ] + }, + { + "metadata": { + "id": "rm8P_Ttwu8U4", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Replace the linear classifier with a neural network.\n", + "#" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "TOfmiSvqu8U9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below.\n" + ] + }, + { + "metadata": { + "id": "evlB5ubzu8VJ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "mnist_test_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_test.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe)\n", + "test_examples.describe()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "PDuLd2Hcu8VL", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Calculate accuracy on the test set.\n", + "#" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "6sfw3LH0Oycm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a possible solution." + ] + }, + { + "metadata": { + "id": "XatDGFKEO374", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units." + ] + }, + { + "metadata": { + "id": "kdNTx8jkPQUx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_classification_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network classification model for the MNIST digits dataset.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " a plot of the training and validation loss over time, as well as a confusion\n", + " matrix.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing the training features.\n", + " training_targets: A `DataFrame` containing the training labels.\n", + " validation_examples: A `DataFrame` containing the validation features.\n", + " validation_targets: A `DataFrame` containing the validation labels.\n", + " \n", + " Returns:\n", + " The trained `DNNClassifier` object.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " # Caution: input pipelines are reset with each call to train. \n", + " # If the number of steps is small, your model may never see most of the data. \n", + " # So with multiple `.train` calls like this you may want to control the length \n", + " # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, \n", + " # or since it's in-memory data, shuffle all the data in the `input_fn`.\n", + " steps_per_period = steps / periods \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)]\n", + "\n", + " # Create a DNNClassifier object.\n", + " my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " classifier = tf.estimator.DNNClassifier(\n", + " feature_columns=feature_columns,\n", + " n_classes=10,\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer,\n", + " config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1)\n", + " )\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss error (on validation data):\")\n", + " training_errors = []\n", + " validation_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute probabilities.\n", + " training_predictions = list(classifier.predict(input_fn=predict_training_input_fn))\n", + " training_probabilities = np.array([item['probabilities'] for item in training_predictions])\n", + " training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions])\n", + " training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10)\n", + " \n", + " validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn))\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) \n", + " validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions])\n", + " validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) \n", + " \n", + " # Compute training and validation errors.\n", + " training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_errors.append(training_log_loss)\n", + " validation_errors.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " # Remove event files to save disk space.\n", + " _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*')))\n", + " \n", + " # Calculate final predictions (not probabilities, as above).\n", + " final_predictions = classifier.predict(input_fn=predict_validation_input_fn)\n", + " final_predictions = np.array([item['class_ids'][0] for item in final_predictions])\n", + " \n", + " \n", + " accuracy = metrics.accuracy_score(validation_targets, final_predictions)\n", + " print(\"Final accuracy (on validation data): %0.2f\" % accuracy)\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.plot(training_errors, label=\"training\")\n", + " plt.plot(validation_errors, label=\"validation\")\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " # Output a plot of the confusion matrix.\n", + " cm = metrics.confusion_matrix(validation_targets, final_predictions)\n", + " # Normalize the confusion matrix by row (i.e by the number of samples\n", + " # in each class).\n", + " cm_normalized = cm.astype(\"float\") / cm.sum(axis=1)[:, np.newaxis]\n", + " ax = sns.heatmap(cm_normalized, cmap=\"bone_r\")\n", + " ax.set_aspect(1)\n", + " plt.title(\"Confusion matrix\")\n", + " plt.ylabel(\"True label\")\n", + " plt.xlabel(\"Predicted label\")\n", + " plt.show()\n", + "\n", + " return classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZfzsTYGPPU8I", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 979 + }, + "outputId": "b9721f26-eb0d-4c1b-c38a-084120a9d5a2" + }, + "cell_type": "code", + "source": [ + "classifier = train_nn_classification_model(\n", + " learning_rate=0.05,\n", + " steps=1000,\n", + " batch_size=30,\n", + " hidden_units=[100, 100],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 5.15\n", + " period 01 : 3.40\n", + " period 02 : 3.65\n", + " period 03 : 2.71\n", + " period 04 : 2.43\n", + " period 05 : 2.10\n", + " period 06 : 2.00\n", + " period 07 : 2.06\n", + " period 08 : 2.09\n", + " period 09 : 2.13\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.94\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFnCAYAAACcvYGMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4W+XZx/Hv0fLeS55x7EzbcXZi\nZ7OygJcdAiVACqUt0KalpS+8JW2AltlSoAPKHi2jUAgrA5KQnTixExzHI4kzvfeItyzp/cOOybIt\n2xq2dH+uy1dsSUe6fSP083POc86jmM1mM0IIIYQYNFSOLkAIIYQQ55JwFkIIIQYZCWchhBBikJFw\nFkIIIQYZCWchhBBikJFwFkIIIQYZCWch+mD06NGUlpZa5bkKCwtJSEiwynM5wrJly5g1axYLFy5k\nwYIFLF68mLfffrvPz3PgwAHuuuuuPm+XkJBAYWFhn7cTYijQOLoAIcTQ9eCDD3LNNdcAUFFRwc03\n38zw4cOZM2eOxc+RnJzM66+/bqsShRiSZOQshBW0trbyu9/9jgULFrBo0SKeeuopjEYjANu2bWPu\n3LksWrSIDz/8kEmTJvU64qutrWXFihVdI9JXXnml676//OUvLFiwgAULFnD77bdTVlbW4+1nbNmy\nhauvvvqc26655hq2bt3Knj17uO6661i8eDGLFi1i7dq1fe5BSEgICxcuZMeOHQDk5+dz2223sWDB\nAq6++mqysrIASEtLY+nSpaxYsYJf/epXpKWlccUVV/Taxy1btnDFFVewaNEiXnvtta7XbWxs5L77\n7mPRokVcdtllPPLIIxgMhj7XL8RgIuEshBW8/fbblJaW8tVXX/Hpp5+Snp7Ol19+idFo5KGHHuKx\nxx5j7dq1nDhxgubm5l6f77nnnsPPz4/169fz3nvv8f7775Oens6RI0dYt24dX375JevXr+eKK65g\n165d3d5+ttTUVEpLSykoKACgoKCA0tJSZsyYwdNPP83DDz/MmjVreOmll9iwYUO/+tDe3o5Op8Nk\nMnHfffdxzTXXsH79elatWsW9995Le3s7ADk5OSxdupQ///nPFvfxt7/9Lb///e9Zu3YtKpWqK7RX\nr16Nr68va9euZf369ajVavLz8/tVvxCDhYSzEFawefNmlixZgkajwd3dnauvvpodO3Zw4sQJ2tra\nmDt3LtBxnNZkMvX6fFu2bOHWW28FwN/fnyuuuIIdO3bg6+tLdXU1X3zxBXV1dSxbtoxrr72229vP\nptPpuOSSS9i0aRMAGzZs4PLLL0ej0RAUFMTq1as5evQosbGxF4SmJQoKCli3bh1XXHEFx44do6qq\nihtvvBGAyZMnExgYyP79+wFwd3cnNTW1z32cNWsWANddd13XNmeed/v27ZhMJh599FHGjh3b5/qF\nGEwknIWwgurqavz8/Lp+9vPzo6qqirq6Onx9fbtuDw0Ntfj5zt7O19eXqqoqwsLC+Otf/8q6deuY\nN28e99xzDyUlJd3efr4FCxacE86LFy8G4IknnsDDw4Ply5czf/581q1bZ1Gdzz77bNeEsAceeICH\nHnqI5ORk6uvraWlpYdGiRSxcuJCFCxdSVVVFbW1tV3+6+72766O3t/c5t5+xaNEi7rzzTl544QVS\nU1N59NFHaWtrs6h+IQYrCWchrCA4OLgreKDjmHFwcDDe3t40NTV13V5ZWTmg5wNISUnhlVdeYceO\nHYSHh/OnP/2px9vPNnv2bPLy8jhx4gQnTpwgJSWl6/VWrlzJ1q1b+d3vfsfDDz9MY2Njr3U++OCD\nrFu3jvXr1/PRRx91hX1oaCheXl6sW7eu62v79u1dx5b7+nv7+fnR0NDQdXt1dfU52y1dupSPPvqI\nNWvWkJ2dzerVq3utXYjBTMJZCCuYN28eH3/8MUajkaamJj777DPmzp1LbGws7e3tpKWlAfD++++j\nKIpFz/fhhx8CHUH0zTffMG/ePLZv386jjz6KyWTC09OTMWPGoChKt7efT6fTMWvWLJ599lkuu+wy\n1Go1BoOBZcuWUV5eDkBiYiIajQaVqv8fD5GRkej1+q4ReHV1NQ888MA5f6h093tfrI8xMTGo1equ\nPn7yySddv9/f//53Pv74YwDCwsKIioqyqMdCDGZyKpUQfbRs2TLUanXXz3/4wx9YtmwZBQUFXHnl\nlSiKwsKFC1m0aBGKorBq1SoefvhhfHx8WL58OSqVCkVRMJvNGI1GFi5ceM7zv/rqq/ziF79g1apV\nLFy4EJVKxT333ENycjKtra189dVXLFiwAJ1OR2BgIE888QShoaEXvf1iFixYwM9+9jPeeustALRa\nLTfeeCN33nknACqVikceeQQPDw+++eYbNm3axJNPPtmnHimKwnPPPceqVat4/vnnUalULF++HE9P\nz157210fH3/8cf7v//4PnU7H9ddf3/Vc11xzDQ8//DCvvvoqiqIwfvz4rtO7hBiqFFnPWQj7aWpq\nYuLEiaSnp+Pj4+PocoQQg5Ts1hbCxm644QbWrFkDwJo1a4iPj5dgFkL0SEbOQthYeno6jz32GK2t\nrXh5ebFq1SqSk5MdXZYQYhCTcBZCCCEGGdmtLYQQQgwyEs5CCCHEIDNoTqWqqDht1ecLCPCkpqbn\ncyrFwEmf7UP6bD/Sa/uQPkNISPcTQ5125KzRqHt/kBgw6bN9SJ/tR3ptH9LnnjltOAshhBBDlYSz\nEEIIMchIOAshhBCDjISzEEIIMchIOAshhBCDjISzEEIIMchIOAshhBCDjISzEEKIIWXz5o0WPe6F\nF/5McXFRt/c/9NAD1irJ6iSchRBCDBklJcVs2LDeoseuWPErIiIiu73/qaees1ZZVjdoLt8phBBC\n9Oa5554mNzeb2bOnMn/+IkpKinn++X/w5JOPUVFRTnNzMz/84T3MnDmb+++/hwce+A3ffruRxsYG\nTp06SVFRIT//+a9ITZ3JlVdexldfbeT+++9h6tTp7NuXTm1tLU8//ReCg4N57LGVlJaWMG5cMps2\nbeDTT9fY7fd0ynAubiil1FSEXtX9X0xCCCEG5j+b8tmbV96vbdVqBaPxwhWLp44JZcmlI7rd7pZb\nlvHJJ/9h+PB4Tp06wT/+8Ro1NdVMm5bCokVXUVRUyMqVDzFz5uxztisvL+NPf3qR3bt38tln/yU1\ndeY593t5efHCCy/x0kt/ZevWTURERNHW1sorr7zFjh3b+M9/3u/X79lfThnOXx7/mgOV2TyW+hCB\n7gGOLkcIIYQNjB2bCICPjy+5udl8/vknKIqK+vq6Cx6bnDwBgNDQUBoaGi64f/z4iV3319XVcfLk\nccaNGw9AaupM1Gr7XgvcKcN5XHACmRUH2Va0m2viFzm6HCGEcEpLLh3R4yi3JyEhPgNejVCr1QLw\nzTfrqK+v5+9/f436+nruvnvZBY89O1zN5gtH7OffbzabUak6blMUBUVRBlRrXznlhLDJoePx0Xmx\noziNNqPB0eUIIYSwEpVKhdFoPOe22tpawsMjUKlUbNmyCYNh4J/7kZFRHDqUA8CePbsveE1bc8pw\n1qm1XBY/i0ZDExnlmY4uRwghhJUMGzacQ4fyaGz8ftf0vHmXsnPnNlas+CkeHh6Ehoby5puvDuh1\nZsyYTWNjIz/96V1kZu7H19dvoKX3iWK+2PjeAQa6e+MCnm3c/+VKonwi+N8pP7f7LglXYY1dU6J3\n0mf7kV7bx2Dvc319Hfv2pTNv3mVUVJSzYsVPee+9/1r1NUJCfLq9zymPOQOEeAWRHJJIZsVBjtef\nIs5vmKNLEkIIMUR4enqxadMG3nvvXcxmEz/7mX0vWGKzcE5LS2PFihWMHDkSgFGjRrFy5UpbvdxF\nzYuaQWbFQbYU7pBwFkIIYTGNRsNjjz3puNe35ZNPmzaNF1980ZYv0aOR/vGEe4Wxr/wA14+4Cj83\nX4fVIoQQQljKKSeEnaEoCnOjZmAym9henObocoQQQgiL2DSc8/Pz+clPfsItt9zCjh07bPlS3Zoa\nNgkPjTvbi3bTbmp3SA1CCCFEX9hstnZZWRkZGRksWrSIgoICbr/9dr7++mt0Ot1FH9/ebkSjsc0V\nWN7a/xFrDm9iReoPmRkz1SavIYQQQliLzY45h4WFsXjxYgBiYmIIDg6mrKyM6Ojoiz6+pqbJqq9/\n9jT9qYGTWcMmvsjZyCiPMVZ9HVc32E+HcBbSZ/uRXtuHrft8441X8847H/Lf//6HiRMnkZSU3HVf\nU1MTt99+Mx9//EW322/evJF58y5jzZov8PLyZu7cS6xeY0+nUtlst/bnn3/O66+/DkBFRQVVVVWE\nhYXZ6uV6FOoZQkLQaI7VneTU6UKH1CCEEML+li2785xgtsTZy1IuXny1TYK5NzYbOV966aX8+te/\nZuPGjRgMBlatWtXtLm17mBc1k5yqQ2wp3MmysUscVocQQoj+++EPf8ATT/wZvV5PaWkJDz/8K0JC\nQmlubqalpYVf/vJBEhKSuh7/xz+uYt68y5gwYSK//e1vaGtr61oEA+Drr9fy8ccfolariI2N53//\n97ddy1K++earmEwm/P39ueGGm/nHP14gKyuT9nYjN9ywhIULr7zocpN6vX7Av6fNwtnb25uXX37Z\nVk/fZ2MDRxHiEUR62XdcN+JKvLVeji5JCCGGtE/yv2R/eVa/tlWrFIymC6c8TQwdx/Ujrup2uzlz\nLmHHjq3ccMMStm3bwpw5lxAfP5I5c+aRkbGXf//7bf74x2cv2G79+rXExcXz85//io0bv+4aGTc3\nN/PnP/8VHx8f7rvvRxw9mt+1LOXy5T/i9df/CcB33+3j2LGjvPTSGzQ3N3PHHUuZM2cecOFyk0uW\n3NqvnpzNqU+lOptKUTEnagbtpnZ2Fu9xdDlCCCH6oSOctwGwffsWZs2ay5YtG/npT+/ipZf+Sl3d\nhctFApw4cYykpI4lICdOnNx1u6+vLw8//Cvuv/8eTp48Tl1d7UW3z8vLYcKESQB4eHgQGxtHQUEB\ncO5ykxdbjrI/nPbynReTop/CF0fXsbVwF5dFz0Gtsu/6nEII4UyuH3FVj6PcnvR3QlhcXDxVVRWU\nlZVy+vRptm3bTHBwKCtXPk5eXg5/+9vzF93ObAaVqmONBVPniN1gMPDcc8/w1lvvERQUzG9+84tu\nX1dRFM4+t6m93dD1fL0tR9kfLjNyBvDUejAtfDI1rbUcrMp1dDlCCCH6ITV1Fq+88g9mz55LXV0t\nkZFRAGzZ8i3t7Re/nkVMzDDy8jo+9/ftSwegqakRtVpNUFAwZWWl5OXl0t7eftFlKceMSWT//ozO\n7ZooKiokKirGVr+ia4UzwNzIGQBsLtzp4EqEEEL0x9y5l7Bhw3rmzbuMhQuv5MMP/80vf3kfiYlJ\nVFVV8dVXn1+wzcKFV5KdncWKFT+loOAkiqLg5+fP1KnTufvu23nzzVe59dZlvPjic13LUr744p+7\nth8/fgKjR4/hvvt+xC9/eR8/+cn9eHh42Ox3dNolI3vaZfLCvn9yuPYoj0z/FeFejjm9y1nIOaH2\nIX22H+m1fUifHXSe82A2N3omAFtk9CyEEGIQcslwHhc0lgA3f9JKM2hub3Z0OUIIIcQ5XDKc1So1\ncyJTaTO2sbskw9HlCCGEEOdwyXAGmBExDY1Kw5bCHZjMJkeXI4QQQnRxynDOOlbFmp3He3yMt86L\nKaETqGiuIrf6iJ0qE0IIIXrnlOG87UAJL/33AGW9rHQ1N7rjtKothY5Za1oIIYS4GKcM5/HxQQCk\nZZf1+LgYnyiG+w4jp+oQ5U2V9ihNCCGE6JVThvOkUSHotGp25ZT1eim1eVEzMGNmW9EuO1UnhBBC\n9Mwpw9nDTUNKop6y6iZOlPZ8kvuE0HH46nzYVbKXVmObnSoUQgghuueU4Qwwd3LHtVZ3ZZf2+DiN\nSsOsiOk0t7ewp3SfPUoTQggheuS04TxpdCjeHlr25JZjNPV8qtTMyOmoFBVbC3dabUURIYQQor+c\nNpw1ahVTx4RS39hG7omaHh/r7+bHxJBxFDeWcqT2mJ0qFEIIIS7OacMZIDVRD8CuXmZtA8zrut62\nnFYlhBDCsZw6nOMjfQn2c2ffkQpa24w9Pna47zCivSPIrMimuqXnkbYQQghhS04dzoqikJIYRmub\nkf35Fb0+dm7UzM7TqnbbqUIhhBDiQk4dzgApCR27tndbsGt7ctgEvLSe7Czeg8FosHVpQgghxEU5\nfThHBHsxLMyH7OPV1Df1fB6zTq1lRvg0GgyNZJRn2qlCIYQQ4lxOH84AKYlhGE1m9uaW9/rY2ZGp\nKChsKdwhp1UJIYRwCJcI52ljw1AU2J3T8wVJAII8AkgOTuDU6SJO1J+yQ3VCCCHEuVwinAN83Bg7\nLICjRfWU1zb3+vi5UR2nVW2W06qEEEI4gEuEM3w/MSytl8t5AowKiEfvFcb+8izqWnu+NrcQQghh\nbS4TzpNHh6DVqNiV3ftKVYqiMDdyBkazkR3FclqVEEII+3KZcPZw0zBhRDCl1U2cLOt9NDxNPwl3\ntTvbi3ZjNPV8ARMhhBDCmlwmnKFj1jZYds6zu8aN1PAp1LWd5ruKLFuXJoQQQnRxqXAeFxeEl7uG\ntJwyTKbeT5OaHZUKwJbCnbYuTQghhOjiUuGsUauYOjaMusY2ck/2fv3sMM8QEgJHc7TuBAWni+1Q\noRBCCOFi4QyQknBm13bvs7YB5kbNAGS1KiGEEPbjcuE8IsqPIF930g9X0GrofaJXQtBogj2CSC/b\nT4Oh0Q4VCiGEcHUuF86qs1aqysyvtODxKuZGpmIwtbOreK8dKhRCCOHqXC6cAVISLV+pCiAlfCo6\nlZatRbswmU22LE0IIYRwzXCODPYiJtSbrGNVnO5lpSoAT60H0/STqG6pIasy1w4VCiGEcGUuGc7Q\nMXo2msyk5/W+UhV8f73trXJalRBCCBtz2XCenhCGAuzKsWzXdoS3npH+ceTVHKG00bJthBBCiP5w\n2XAO8HFjzLAA8gvrqLBgpSqAeZ2jZ7koiRBCCFty2XCGsy7naeHoeVxwAgFu/uwuzaC53bJAF0II\nIfrKpcN58qhQNGoVu7NLe12pCkCtUjM7MoU2Yxu7SzLsUKEQQghX5NLh7OmuYcKIIEqqmjhV1mDR\nNjMipqFRadhatFNOqxJCCGETLh3OAKmd5zzvsvBynj46byaHjqe8qZK86iO2LE0IIYSLcvlwHhff\nuVJVrmUrVYFMDBNCCGFbLh/OGrWKKWNCqWtoI+9U7ytVAcT4RjHcN4bsqjwqm6tsXKEQQghX4/Lh\nDN+vVGXprm3ouCiJGbOMnoUQQlidhDMwMtqfIF83Mg5V0GbBSlUAE0PH4aPzZldJOq3G3i8BKoQQ\nQlhKwpmOlaqmJ+hpaTOSedSy3dQalYZZESk0tzezt3SfjSsUQgjhSiScO525IMmug5bv2p4VOR2V\nomJL4U6LzpMWQgghLCHh3CkqxJvozpWqGpoNFm3j7+bHxJBxFDeWkl97zMYVCiGEcBUSzmdJSQzr\n00pV8P1qVTIxTAghhLVIOJ9l+tjOlar6MGs7zm8YUd4RZFZmU9NSa7vihBBCuAybhnNLSwuXX345\nn3zyiS1fxmoCfd0ZHePPkcI6KussW9hCURTmRs3EZDaxrWi3jSsUQgjhCmwazi+99BJ+fn62fAmr\nS+m8nGeahStVAUwJm4CXxpMdxWkYjJYdrxZCCCG6Y7NwPnr0KPn5+cybN89WL2ETU0aHoFEr7Mou\ns3gGtk6tZUbENBoMjewrP2DjCoUQQjg7ja2e+Omnn2blypWsXr3aoscHBHii0aitWkNIiE+/tpuW\nqGfngRIaDGbiIn0t2uYaz8vZULCFHWW7uSp5Xr9ed6jqb59F30if7Ud6bR/S5+7ZJJxXr17NhAkT\niI6Otnibmpomq9YQEuJDRcXpfm07MT6YnQdKWLv9GEsuHWHRNgo6xgUlcKAymz352Qz3i+nXaw81\nA+mzsJz02X6k1/Yhfe75jxObhPPmzZspKChg8+bNlJaWotPp0Ov1zJgxwxYvZ3XJ8UF4unWsVHXj\nvHhUKsWi7eZGzeBAZTZbCne6TDgLIYSwPpuE8/PPP9/1/V//+lciIyOHTDADaDUdK1VtzSzm0Kka\nxsYGWrTd6IAR6D1D2VeeyfUjr8RXJ7tshBBC9J2c59yN1DOX8+zDrO2O06pmYDQb2VG0x1alCSGE\ncHI2D+ef/exnXH/99bZ+GasbGe1PoK8bGYfKMbRbtlIVwDT9JNzVbmwr2oXRZPl2QgghxBkycu6G\nSlGYPjaM5lYjmfmWrVQF4K5xJyV8CnVt9XxXcdCGFQohhHBWEs49SO28IElfLucJMCeq4/i6XG9b\nCCFEf0g49yAq1JuoEK8+rVQFEOYZwtjAURytO07h6WIbViiEEMIZSTj3IiVRT7vRTPohy1eqApgn\nq1UJIYToJwnnXqQkdMza3p1t+axtgISg0QS7B7K3bD+NButeYEUIIYRzk3DuRaCvO6Oj/TlcUEtV\nXYvF26kUFXOiZmAwGdhVsteGFQohhHA2Es4WSOk853l3Tt8mhqWGT0Gn0rK1cCcms8kWpQkhhHBC\nEs4WmDImFI1aYXcfLkgC4Kn1ZKp+ElUtNRyszLVRdUIIIZyNhLMFvNy1JMcHU1TRSEF5Q5+2nSun\nVQkhhOgjCWcLfT8xrG+7tiO9wxnpH0dezRFKG/s241sIIYRrknC20PgRQXi4adidU4bJbO7TtnM7\nT6vaWiSjZyGEEL2TcLaQVqNmyugQak63cvhUbZ+2TQ5OwN/Nj90l6TS3Wz7jWwghhGuScO6DlM7L\nefZ11rZapWZ2ZCqtxjbSSjNsUZoQQggnIuHcB6Nj/AnwcWNvXkWfVqoCmBkxDY2iltOqhBBC9ErC\nuQ9UisL0hDCaW9s5cNTylaoAfHTeTA6bQFlTBYeq821UoX21GtuobKx2dBlCCOF0JJz7qL+X84Sz\nTqsq2mHVmuypzdjGvvIDvHbwXzy07VHu++oRsipzHF2WEEI4FY2jCxhqokO9iQz2IvNoJY0tBrzc\ntRZvO8w3mljfGA5W5lHZXEWwR5ANK7WeNmMbB6vy2F9+gIOVubSZOlboCvUIpqatjrdzPuA3U35G\nqGeIgysVQgjnIOHcR4qikJIYxn+3HCPjUAVzxkf0afu5UTN4O+cDthbt4voRV9moyoFrM7aRXXWI\n/eUHyKrM6QrkEI8gJoWOZ1JoMpHe4eQ25vD3PW/zStY7/Hry/bhr3BxcuRBCDH0Szv0wPaEjnHdn\nl/Y5nCeGJvPJkS/ZVbyXq4bPR6fW2ajKvmszGsipymNf+QGyqnJpM7YB3wfyxNBkorzDURSla5u5\nw1M4WHyELYU7+XfeR/ww8Qfn3C+EEKLvJJz7IdjPg1FRfuSdqqW6voVAX3eLt9WqNMyKnM7aExvZ\nW7afmRHTbVhp77oL5GCPICaFJjMpNJko74geA/f6EVdRcLqYfeUHiPGJ4oph8+xUvRBCOCcJ535K\nSdJzuLCOtJwyFqUM69O2syJTWH/yW7YU7mRG+DS7jzTbjAZyqr/fZd3aj0A+m0al4e6kZTy993k+\nO7qWaJ9IxgSOtOWvIIQQTk3CuZ+mjA7l318fZld238PZ382PCSFJ7Cs/QH7tcUYGxNmoyu8ZOgN5\n3/mB7B7I3KjxTAwdR7R3ZL//UPBz8+Hucbfz/L6XeSP73/zvlBUEeQRY81cQQgiXIeHcT94eWpLj\ng9h/pJLC8gaiQr37tP3cqJnsKz/AlqKdNgvnngJ5TmQyk8KSBxTI54vzG8ZNo/6HDw59yqsH3+GB\nSfeiU1s+m10IIUQHCecBSE3Us/9IJbtySrkpdESfto33iyXSO5zMioPUtNQS4O5vlZo6Avkw+8oz\nOViZS4uxFYCgM4Ecmky0j/UC+XyzIlI4WV/IrpK9fHDoE5aNXSITxIQQoo8knAegY6UqNWk5Zdww\nNx5VH0JIURTmRc3k33kfs704javjFvS7jjOBfOYY8veBHMDsyFQmho4jxifKLiGpKAo3j7qWooYS\n0koziPWNZk7nxVeEEEJYRsJ5ALQaNZNHhbI9q4QjBbWMjunbMdYpYRP4NP8rdhSlsTD2MrQqy/9z\nGIwGcqsPs688i6zK7HMCeVZkCpNCk+0WyOfTqrX8aNwynt77Ih8d+ZxI7wji/WPtXocQQgxVEs4D\nlJoYxvasEnZll/U5nHVqHTMiprHh1Bb2lx9gmn5Sj483mNrJqz5MRtmZEXLH8pOBgyCQzxfoHsBd\nST/gr9+9xmsH3+V/p/4cfzc/R5clhBBDgoTzAI2OCcDfW0d6Xjk/uGIUWk3fLlc+JzKVjae2srlw\nx0XD+Uwg7ys/wIGKcwN5ZuQ0JoeOHzSBfL5RASO4Nn4xn+R/yesH/8WKiT9G04e9A0II4arkk3KA\nVKqOlarW7ykg61gVk0b17frSQR6BJAWPJasyhxP1p4j1jekK5P3lWWRWZHcFcoCbPzMjpzEpNJlh\nPtGDMpDPd2n0bE7WF5BRnsnHR75g6ejrHF2SEEIMehLOVpCSoGf9ngJ2ZZf2OZwB5kXNJKsyh8+P\nrsPfzY8Dldk0t58VyBHTmBiaTKzv0AjksymKwg/G3kRJYxnbinYxzCeK1Iipji5LCCEGNQlnK4gJ\n8yYi2IvM/CqaWtrxdO9bW0cHjCDMM5RDNR3rPAe4+ZMaPpVJoeOHZCCfz02t455xd/B0+ot8cPhT\nIrz1DPONdnRZQggxaMl6zlagKAopCWG0G01kHCrv1/bLxi5hUexl/HryfTw+42FuGHk1w/1ihnww\nnxHiGcTyxFswmoy8mvUup9saHF2SEEIMWhLOVpKSEAbAruzSfm0/3C+Gq+IWMNxvmNME8vkSg8Zw\n5fD51LTW8kb2exhNRkeXJIQQg5KEs5UE+3swMsqPQ6dqqTnd6uhyBq0FsZcwLjiBwzX5fHZsraPL\nEUKIQUnC2YpSEvWYgbScMkeXMmipFBV3JNxMqGcwG09tJaPsO0eXJIQQg46EsxVNHROKWqX0e9e2\nq/DQePDjcXfgptbxr9yPKGoocXRJQggxqEg4W5G3h5ZxcUEUlDdQVCETnnqi9wrj9rE302Yy8ErW\nOzQZmhxdkhBCDBoSzlaWktg+G2PdAAAgAElEQVQxMWy37Nru1YTQccwfdgmVzVW8lfMBJrPJ0SUJ\nIcSgIOFsZRNGBOOuU7M7uwyT2ezocga9q+MWMDZwFNlVeaw5vsHR5QghxKAg4WxlOq2ayaNDqKpv\nIb+wztHlDHoqRcWdibcQ5B7A2hMbOFCR7eiShBDC4SScbSAlUQ/AbpkYZhFvrRc/GncHWpWWt3M+\npKyx7xdyEUIIZyLhbANjYwLw89axN6+cdqMcR7VEtE8Et465gRZjC69kvUNL57XFhRDCFVkczg0N\nHbOPKysrSU9Px2SS0OmOSqUwfWwYjS3tZB2tcnQ5Q8Y0/STmRc2ktKmcd3M/wizH7IUQLsqicH78\n8cdZu3YttbW1LF26lHfffZdVq1bZuLShLbVz1/YumbXdJ9ePuIoR/sP5riKLb05tdnQ5QgjhEBaF\nc05ODjfddBNr167luuuu44UXXuDkyZO2rm1IiwnzJjzIk8z8Sppa2h1dzpChVqm5K+k2/N38+Pzo\nOnKrDzu6JCGEsDuLwvnM7sXNmzdz6aWXAtDW1ma7qpzAmZWqDO0mMg7LBKe+8NX5cHfSMtSKijcP\nvkdlc7WjSxJCCLuyKJyHDx/O4sWLaWxsZOzYsaxevRo/Pz9b1zbkTe+atS27tvtquF8MN426hsb2\nJl7Neoc2o/wxKIRwHRpLHvSHP/yBw4cPEx8fD8DIkSO7RtCie6H+HoyI9CPvZA01p1sJ8HFzdElD\nyqzIFE7WF7KzZA/vH/qE28fe7LTLaQohxNksGjnn5uZSWlqKTqfjL3/5C8888wyHD8uxQEukJIbJ\nSlUDsGT0tQzzjWZP6T62FO50dDlCCGEXFoXzH/7wB4YPH056ejpZWVmsXLmSF1980da1OYUzK1Xt\nzpELkvSHVqXhR0nL8NF689/8L8ivPe7okoQQwuYsCmc3NzdiY2PZuHEjS5YsYcSIEahUcv0SS/h4\n6kgaHsipsgaKKhsdXc6QFODuz11JPwDgtYPvUtsql0UVQjg3ixK2ubmZtWvXsmHDBmbNmkVtbS31\n9fW9brNixQpuu+02brrpJr799lurFDwUyeU8B25kQDzXjbiS020NvJb1LgaTnJ4mhHBeFoXzAw88\nwBdffMEDDzyAt7c37777LnfeeWeP23z77bckJSXxr3/9i+eff56nnnrKGvUOSRNGBuOmU5OWUyZX\nvRqAS6JmMSVsAsfrT/Hx4c8cXY4QQtiMRbO1U1JSSE5O5vjx4+Tk5HD33Xfj4eHR4zaLFy/u+r6k\npISwsLCBVTqEuWnVTB4Vws6DpeQX1TEyyt/RJQ1JiqLwgzE3UtJYxvbiNIb5RjMjYpqjyxJCCKuz\nKJw3bNjAqlWr0Ov1mEwmKisrefzxx5k7d26v2y5dupTS0lJefvnlARc7lKUkhrHzYCm7s8sknAdA\np9Zxz7jbeXrvi3x46FMivPXE+sY4uiwhhLAqxWzBftalS5fyj3/8g8DAQADKyspYsWIFH3zwgUUv\nkpuby29+8xs+//zzbs9TbW83otGo+1D60GI0mlj++Ne0G028/fuFaDUyoW4gvivJ4cmtfyPQw5+n\n5j+En7uvo0sSQgirsWjkrNVqu4IZICwsDK1W2+M2Bw8eJCgoiPDwcMaOHYvRaKS6upqgoKCLPr6m\npqkPZfcuJMSHiorTVn3OgZoyOpRv0gvYvOckE0YGO7ocq3BUnyM10VwVt4Avjq3jmS3/5GcTfoRa\n5bx/3A3G97Ozkl7bh/S5owfdsWj45uXlxRtvvEFeXh55eXm89tpreHl59bhNeno6b7zxBtCxzGRT\nUxMBAQF9KNv5pCR2HHeXc56tY8GwSxgfksSR2mOsPrrG0eUIIYTVWDRy/uMf/8gLL7zQtVt6woQJ\nPPHEEz1us3TpUn77299y66230tLSwu9+9zuXPzc6Vu9DWKAn+49U0tzajoebRe0X3VAUhWVjl1Da\nWM6mgm3E+EQxVT/R0WUJIcSAWXTM+WKOHj3ada1ta7D27o3Busvk8x3HWb3tOHddOZaZ48IdXc6A\nDYY+lzaW82z6XzGaTTw45X4ivYd+X883GPrsKqTX9iF9tsJu7Yt59NFH+7upS0tJ6Ny1LRcksRq9\nVyi3J9yMwWTglQNv02iw7vwFIYSwt36Hs1xMo39CAzyJj/Al52QNtQ2tji7HaYwPSWLhsEupbKnm\nrez3MZlNji5JCCH6rd/hLEv39V9Koh6zGfbISlVWdWXcfBICR5NTfYivjn3t6HKEEKLfepyR9PHH\nH3d7X0VFhdWLcRVTx4by/oYj7MopY/40uYCGtagUFcsTb+HpvS+y7uQmYnyjGB+S5OiyhBCiz3oM\n54yMjG7vmzBhgtWLcRW+njqS4gI5cLSKkqpGwoN6Pi1NWM5T68k9yXfwbPrfeCfnQx6cEoreK9TR\nZQkhRJ/0GM5PPvmkvepwOSmJYRw4WsWu7DKunxPn6HKcSqR3OLeNuZE3c97nlax3eHDK/Xho3B1d\nlhBCWMyiE21vvfXWC44xq9Vqhg8fzr333uvSi1r018QRIbhp1aTllHLd7OFyDN/KpugncvJ0IZsK\ntvFu7n+4O+k2VIprn2cvhBg6LPq0mjFjBnq9njvuuIPly5cTHR3N5MmTGT58OA8//LCta3RKbjo1\nk0YFU1HbwtHintfGFv1zbfxiRvrHkVlxkK9PbnZ0OUIIYTGLwjkjI4M///nPzJ8/n8svv5ynnnqK\n7Oxs7rzzTgwGg61rdFqpiXoAdsk5zzahVqm5K+k2/N38+PLYenKqDjm6JCGEsIhF4VxVVUV1dXXX\nz6dPn6a4uJj6+npOn3btK7wMxNjYAHw9tezNLafdKOfl2oKPzpsfjVuGWlHxZvZ7VDZXObokIYTo\nlUXhfPvtt7No0SKuv/56brjhBi6//HKuv/56vv32W26++WZb1+i01CoV08aG0dBsIPt4de8biH6J\n9Y3h5tHX0dTezCtZ79BmbHN0SUII0SOLJoTdeOONLFy4kBMnTmAymYiJicHf39/WtbmE1CQ9GzIK\n2ZVdyvgRzrGM5GA0I2IaJ+sL2F6cxr/zPub2sTc79RKTQoihzaJwbmxs5O233yYrK6trVao77rgD\nd3c5PWWgYvU+hAV48J2sVGVzN466hqKGEtLLviOv+ghTwiYwPXwy0d6RMlteCDGoWLRbe+XKlTQ0\nNLB06VKWLFlCZWUljzzyiK1rcwmKopCSqKet3cT+I3LVNVvSqjT8OPlO5kXNBGBz4Q6e3vsiT+z5\nCxtObaGuVWbNCyEGB4uGaZWVlTz33HNdP19yySUsW7bMZkW5mpTEMD7bfpxtmSUMC/PBTafGTdvx\npdWoZFRnRT46b24adQ3XjbiS7KpDpJVmcLAyl0/zv2J1/hrGBo0iRT+F5OAEtGqto8sVQrgoi8K5\nubmZ5uZmPDw8AGhqaqK1VVZUspawAE/iInw5VFDLytf3nHOfooBOeyasVV2hrdOqcdd9/72bVo2b\nTnXuz123n7u97sx2Lhz8GpWG8SGJjA9JpMHQSHrZd6SVZJBTdYicqkN4aDyYHJrM9PApDPeNcdk+\nCSEcw6Jwvvnmm1m0aBFJSR2LCGRnZ7NixQqbFuZq7lg4hl0HS2kxGGltM9JmMNJ6zpeJNoORhuZW\n2gxGjKaBL9mpcCb4Vd2E/ff3XTzs1YwxgfsQv/CWt9aLeVEzmRc1k5LGMtJKMthTuo/txWlsL04j\n1DOY6frJTNNPItA9wNHlCiFcgGK2cGHmkpISsrOzURSFpKQk3n33XX79619brZCKCuueLx0S4mP1\n5xxM2o2mjtBu6wjvNoPp+yBvOy/Y2867v/Orra0j9FsMnX8MdG7X1+C/99okpoxxrsUlTGYTedVH\nSCvNILPiIAZTOwoKIwPiSdFPZkLoONzUOrvV4+zv58FEem0f0ueOHnTH4qnB4eHhhIeHd/184MCB\ngVUlBkSjVqFRq/Byt/5x0XajqXPkbrow7Lv+GDDS3Gbky50neH1NLhHBXkQEO8/qWipFRULQaBKC\nRtPc3sy+8gOklWRwuCafwzX5fHD4UyaGjCMlfDIj/OPkut1CCKvq93k7Fg64xRB0Jvg9LThTLi46\ngGfeTefvn2bxyO1TnPJUMA+NBzMjpjMzYjoVTVWklWawpzSDtM6vQPcApuknMV0/mVBPOVddCDFw\n/f4klQkyAmD2hEi+yyvj670FvLEml3uvTXLq90aIZxBXxc1n8fDLOVp7nN2lGewvP8C6ExtZd2Ij\ncX6xpOgnMyksGQ+Nh6PLFUIMUT2G89y5cy/6QWs2m6mpqbFZUWJouemSeE6WnibjUAXr9pxi0fRh\nji7J5lSKipEB8YwMiGfJqGvJrDjI7pJ0Dtcc5VjdCT468hnJwYlMD5/C2MCRsttbCNEnPU4IKyoq\n6nHjyMhIqxUiE8KGpjN9rmts49E391DX2Mavb57A2NhAR5fmEDUttaSV7iOtNJ3ypkoA/HQ+TO3c\n7R3hre/X88r72X6k1/Yhfe55QpjFs7VtTcJ5aDq7z/lFdTz97314uGlYtXwqgb6ue3lXs9nMifpT\n7C7NIKMsk+b2ZgBifCKZrp/ClLAJeOssn0An72f7kV7bh/RZwlnY0Pl93rSvkH99fZjh4b489INJ\naDWyO9dgNJBVlUtaSTo51YcxmU2oFTVJQWOYHj6ZxKAxaFQ9T/+Q97P9SK/tQ/pspVOphLDEJRMj\nOVZcz86Dpby34TB3LBzj6JIcTqvWMik0mUmhydS1nia9bH/H+dOV2WRWZuOt9WJy2ARS9JOJ9pFF\nOIQQEs7CyhRF4fYFoyksb2DLd8XEhfsye3yEo8saNPzcfLgsZg6Xxcyh4HQxaaXp7C3dz5bCHWwp\n3EG4Vxgp4VOYGjYRPzdfR5crhHAQ2a0tBqS7PpfXNvP4W3tpNZj4v2WTiNVL0HTHaDKSU32I3SUZ\nHKzMod1sREHpXIRjMsnBiUToA+X9bCfy2WEf0mc55ixsqKc+HzhaxQsfZRLo687vl0/F20NWeepN\ng6GRfWWZ7C7N4GR9AQAeGndmxkxhWvBUIr3De3kGMVDy2WEf0mcJZ2FDvfX58+3HWb39OImxAfxy\nyQRUKjmeaqnSxjLSSvexp3Qfta11AIwJGMmlMXNICBwlx6ZtRD477EP6LBPChANdNTOW4yX1ZB6t\n4tNtx7hhbryjSxoy9F5hXBO/iKvjFlBgOMnqg1+TV3OEvJoj6L3CuDR6FtPCJsm600I4IfWqVatW\nOboIgKamNqs+n5eXm9WfU1yotz4rikJyfBDpeRV8l19JTKg34UHOs0CGPSiKwkh9DOP8xpEcnECb\nycCR2mMcqMxhe3EabcY2wr3C7LpKljOTzw77kD539KA7sltbDIilfS4ob+CP76SjViusvGMq+kBP\nO1TnPM7vc21rHVsKd7K9aDdN7c1oVBqmhU3kkujZ/b4Kmeggnx32IX3uebe2jJzFgFjaZz8vHUF+\n7qTllJN3soYZSXo0arlAiaXO77O7xp0xgSOZGzUTfzdfShvLOFSTz7aiXZyoO4WP1ptgj0A5Lt0P\n8tlhH9LnnkfOcsxZ2E1qop5jxfVszCjkrbV5/Ph/EiU8BshNrWNO1AxmRaaQVZnLpoKt5FQfIqf6\nEBFeei6Nns0U/US0vVyBTAgxuMj/scKubr50BCfLTrMnt5y4cF/mT4txdElOQaWoGB+SyPiQRE7W\nF7CpYBv7yg/wr7yP+OzYWuZGdgS4j87b0aUKISwgu7XFgPS1zyqVwri4IHZnl7H/SCWjY/wJ9pN1\nj3vTlz77u/kxMXQcqeFTUCtqTtSfIqf6EFsKd1DdUkuIRxDeEtLdks8O+5A+y4QwYUP97fPhglqe\nfX8/Xu4afr98GgE+3b9JxcDezy3trewuSefbgm1UtlQDkBg0hkujZzM6YIQcWjiPfHbYh/RZJoQJ\nG+pvn4P83PHQacg4XMHR4jpmJOnlAiU9GMj7WaPSEOsXw9yoGUT5RFDXWsehmnz2lO4jszIbnUqH\n3isUlSIT9EA+O+xF+tzzyFnCWQzIQPocF+FLeU0zWceqaWwxkBwfbOXqnIc13s+KoqD3CiU1YiqJ\nQaNpbW/lSO0xvqs4yK7iPRhMRvReoehc/Hxp+eywD+mzzNYWg5SiKNyxcAyFFQ1s2ldEXIQvM5Lk\n2tH2EOsbww+TfkB1Sw2bC3awo3gPXxxbx7oTG0kJn8Il0bMI8wxxdJlCuCw55iwGxBp9Lqtp4rG3\n0mk3mvjtssnEhHV/HMZV2fr93Nzewq6SvWwu2E5VSw0A44LHcmn0HEb6x7nUcWn57LAP6bMccxY2\nZI0+e3toiQz2Yld2KQePV5OapEenVVupQudg6/ezVqVhuN8w5kTOIMI7nNqWjuPSaaUZZFXmoFPr\nCPMMcYnj0vLZYR/SZznmLGzIWn3WB3liNJn5Lr+SwopGpieEudRorTf2ej+rFBXhXmHMiJjG2MBR\ntBhbOVxztPO49F6MJiPhXmFOvdiGfHbYh/RZjjmLIeLaWcM5UVJP1rEqPt9+nGtnxzm6JJcW5zeM\nOL9hVDVXs7lwBzuL9/DZsbWsPbGB1IipzIuaRainTOITwhZk5CwGxJp9VhSFcfFB7M0rZ/+RSmL1\nPrJARidHvp89tR4kBI1mTlQq3lpvihpKyas5wtbCnRSeLsbPzY8AN3+n2dMhnx32IX2Wi5AIG7JF\nn0+WnuaJf2WgVav43Z1TCA2QgB5M72ejych3FVlsPLWNk6cLAIjxieKy6NlMDE1GrRra8wUGU6+d\n2VDps8lsos3YRouxFV+dj1XnXfQ0IUzCWQyIrfq8/UAJb6zJJSrEm9/ePhk3F58gNhjfz2azmWN1\nJ9lUsJXMimzMmPF382Ne1ExmRkzHUzs0L8s6GHvtjGzdZ7PZTKuxjRZjCy3tLTS3t3Z+30pze8tZ\nt3fcduF9399mpiMmJ4Ymc3fSbVarsadwlmPOYlCalRzOsZJ6Nu8v4p11edx9VYLT7DZ1FoqiEO8f\nS7x/LBVNVWwu3M7Okr2sPrqGNSc2kBo+hXi/WII8Agl2D8JL6yn/DUWvzGYzbSYDze3NF4Zmewst\nxtaL33eR78+Eal+oFBXuajfcNe4Eugd0fe+udmOqfqINfuOLk5GzGBBb9tnQbuLp9/ZxrLieH1wx\nissmR9nkdYaCofJ+bjI0s6M4jc2FO6htrTvnPje1jiD3QII9ggjyCOj8PpAg90CCPAJxGyRXJhsq\nvXakjl29BgwmQ+e/bbR1fX+xf9suuB2Nkdqmho6QPTOCNXZ8359QVVDw0Lh3Bam7xr3j5zPhqnHD\nQ+2Bu6bzvos8xkPjjlaltdsfkbJbW9iMrftcXd/CY2/tpbGlnd/cOpGRUf42e63BbKi9n40mI3k1\n+ZQ3VVDVUk1Vcw1VLdVUNlfRarz4JCAfrXfHKLsrsAMIdg8iyCOQADc/ux3LHmq9PsNkNmEwtV80\nCM8PyDbT2bf1tM1525oMGIwG2s1Gq9WtoHQFale4atzwUF/s++9D9fzbdXYMVWuRcBY2Y48+552s\n4U8ffIePl5ZVd07Fz9v1VrBylvez2Wym0dDUFdRVzTVUtlRT1VxNZUs11S01mMymC7ZTKSoC3PwI\n8ggi2D2AoM4AD/boGHX7aL2t9sHs6F63GQ00GhppNDR1fLU3nfuzoemC+1uNbbSb2q1ei1alQavS\nolPr0Ko0nf9q0am0aNUX+7fzfrW2m3/PbK8hIiyIxtp23NS6IReq1uKwY87PPPMMGRkZtLe38+Mf\n/5j58+fb8uWEkxozLIAb58Xzn2/zeWn1QX59y0Q0aue/UpUzUhQFb50X3jovhvlGX3C/yWyitrWu\nI6ybqztDvKZz9F3F4Zp8Dl/keXUqLYEegQR37iLvCPCgzlF4AO4ad9v/chf5XZrbW7oN1ob2i4et\nwWSw6PlVigovrSc+Oh9C1G7nhuf5oajSoVVrOv/tCNNzH6NDd972GpXGpleEC/Twwdgw9P/gtBWb\nhfPu3bs5cuQIH374ITU1NVx33XUSzqLfFkyL5lhJPel55fzn23xuvXyUo0sSNqBSVAS6BxDoHsDI\ngPgL7m8zGqhuqekYdbfUUNUV4B3/ljaWXfR5vbSenbvIA7qOcZ/ZfR7o7o9G1fNHocFo6BzBdgRp\nQ3ejWEMTje0dPzcZmi0+duqudsNL60m4VyheWi+8tJ4dXxrPc3/Wfv+zu9rNZUecrsBm4Tx16lSS\nk5MB8PX1pbm5GaPRiFrt2qfEiP5RFIXli8ZQVNHAhvRC4iJ8SUnQO7osYWc6tRa9Vyh6r9CL3t9k\naKLyTFg3V3cFeGVLFUUNxV3nZZ9NQcHfzY9gj0AC3QNQa6G6of6sEG6krS+jWY0nPlpv9J6hFwnW\nznDVnB20Hr3+cSBcj12OOX/44Yekp6fz7LPPdvuY9nYjGo0Et+hZYflpHnh+KyazmT/9fA6x4b6O\nLkkMESazidrmesoaKyhvqKK8sZLyxs5/G6qobq49Z6TrrnHDR+eFt5sXPjrvzn+98HHr2C3vo/P+\n/vvOx3ho3WU0K6zC5uG8YcMG/vnPf/LGG2/g49P9wW+ZEDY0OaLPGYcq+PunWYQGePC7O6bg6e68\nizCcIe9n2zOY2qlrrUMfEkBzvQmtjGZtSt7TPU8Is+msmm3btvHyyy/z6quv9hjMQvTF5NEhLEqJ\nobymmde+zMU0OE44EEOcVqUh2COIAA8/CWbhcDYL59OnT/PMM8/wz3/+E39/1zw3VdjO9XPiGDss\ngO/yK/lq5wlHlyOEEFZls3Bes2YNNTU1/OIXv2DZsmUsW7aM4uJiW72ccDFqlYofX5NIoK8bq7cd\n5+CxKkeXJIQQViMXIRED4ug+Hy+p58l/ZeCmVfP7O6cS7D80F1vojaP77Eqk1/YhfXbgMWchbG14\nuC+3zR9NY0s7f/s0izaD9S4rKIQQjiLhLIa8OeMjmJ0czqmyBt79+hCDZGeQEEL0m4SzcAq3zR9F\nrN6HHVmlbP5O5jYIIYY2CWfhFLQaNfdel4S3h5b3vjnM0eK63jcSQohBSsJZOI1gPw9+fE0iJrOZ\nf3x6kPrGiy9NKIQQg52Es3AqibGBXD8njprTrbz82UGMpguXHxRCiMFOwlk4ncUpw5g4Mpi8U7X8\nd/MxR5cjhBB9JuEsnI6iKNx9VQJhgZ6s23OKvXnlji5JCCH6RMJZOCUPNw33Xz8ON62aN77Kpaiy\n0dElCSGExSSchdOKDPZi+eIxtBqM/P2TLJpb2x1dkhBCWETCWTi1aWPDmD81mtLqJt74KlcuUCKE\nGBIknIXTu+mSeEZH+5NxuIK1aaccXY4QQvRKwlk4PbVKxU+uTSLAx43/bjlKzolqR5ckhBA9knAW\nLsHPS8e91yahUhRe/ixblpgUQgxqEs7CZcRH+rFswWgaWww8959MXvgok9LqJkeXJYQQF9A4ugAh\n7GnO+Ahi9T58sPEImUerOHi8mssmR/E/M2PxdNc6ujwhhABk5CxcUEyYDw/eMpH7rus4Dv313gIe\nfmU3m78rwmSS2dxCCMeTcBYuSVEUJo8O5Y8/ms4Nc+NoM5h4Z90hHn1rL3knaxxdnhDCxUk4C5em\n1ai5MjWWJ+5JYWaSnoLyBp55fz9//zSLitpmR5cnhHBRcsxZCCDAx427rkrg0slRvLfhMBmHKsjM\nr2LBtGiuTB2Gu07+VxFC2I+MnIU4y/BwX/7vtsncc3UCPp5avtp1kodf2c2OrBJMcnUxIYSdSDgL\ncR5FUUhJ1PPEj1L4n5mxNLW08/pXufzxnXTyi+ocXZ4QwgVIOAvRDTedmmtnx/HEj1KYNjaU4yWn\neeLdDF75Ipvq+hZHlyeEcGJyIE2IXgT5ufOTa5K4dFIt7288wu7sMvYdrmDx9GEsmB6Dm1bt6BKF\nEE5GRs5CWGhUtD8r75jC8sVjcNdpWL39OI+8ups9uWWy2pUQwqoknIXoA5WiMDs5gifvSWFRSgx1\njW28/Fk2T/17HydK6x1dnhDCSUg4C9EPHm4abpo3gj/cPZ2JI4M5UljH42+l88aaXOoaWh1dnhBi\niJNjzkIMQGiAJz+7IZncE9W8v/EI2w+UkJ5XztUzYrl8SjRajfz9K4ToO/nkEMIKxsYG8vvlU1k2\nfxQatYqPNh9l5Wtp7DtcIcejhRB9JiNnIaxErVJxyaQopiWE8dn243y7r4i/fZLF2GEB3HLZSKJC\nvR1dohBiiJCRsxBW5uWu5dbLR/HYXdMYFxdE7skafv/mHt79+hCnm9ocXZ4QYgiQcBbCRsKDvPjl\nkvH84qZkwgI8+XZfEQ//czff7C2g3WhydHlCiEFMdmsLYWPJ8cEkxAayaV8Rn20/zvsbj7D5uyKW\nXjaScXFBji5PCDEIychZCDvQqFXMnxrNkz9OYd7ESEqrm/jLfzJ5/qNMSqoaHV2eEGKQkZGzEHbk\n66nj9gWjuWRiJO9vOMyBo1VkH6/msslR/M/MWDzdtY4uUQgxCMjIWQgHiA715sFbJnLfdeMI9HXj\n670FPPTP3WzeX4TJJKdeCeHqJJyFcBBFUZg8OoQ/3D2dG+bGYTCaeGf9IVa9uZfckzWOLk8I4UCy\nW1sIB9Nq1FyZGsvMceF8suUY27NKePb9/UweFcJNl44g1N/DrvWYzGYMBhOtBuP3X23Gc35uM5gu\ncpuR1rNuN5rMJA4PZNa4cAJ83Oz6Owgx1CnmQXL5ooqK01Z9vpAQH6s/p7iQ9Nn6jpfU8/6GI+QX\n1aFRK8yfGsMdVyfSePr7NaRNZvP3YXheeLadE5qm74Oz7WJha+p8nnOD15oUBZLjgpg9PoLk+CA0\n6sG9w07e0/Yhfe7oQXcknMWASJ9tw2w2sye3nP98m0/N6Va8PbS4adVdQdvWbp0A1ahVuGlVuOnU\nuGnV6LQd/3Z8fX/7mS+dVt15m+rc27Rq3HVnba9T0WYwsSe3jK2ZJRwv6Vixy9dLx8xxeuYkRxAW\n6GmV38Ha5D1tH9JnCetiaroAAA7ySURBVGdhQ9Jn22o1GFmXdoodWSWYzeZzw7MrDFW4azXodKpz\ngvT7MD3v9q4gVqFW2WcUW1DewLbMYnZll9LY0g50rI89Z3w4k0eH4qZV26UOS8h72j6kzxLOwoak\nz/bhLH02tBvZd7iSrZnFXZPePNw0pCSGMSc5gmH67j+s7MVZej3YSZ97DmeZECaEsButRs30hDCm\nJ4RRXtvM9gPFbD9Qwrf7ivh2XxExYd7MGR9BSkKYnPMtXJqMnMWASJ/tw5n7bDSZOHismq2ZxWTm\nV2Eym9FqVEwZHcqc8eGMivZHURS71ePMvR5MpM8ychZCDGJqlYrxI4IZPyKYuoZWdhwsZWvn8eld\n2aWEBXgwe3wEM5P0+HnLKVnCNcjIWQyI9Nk+XK3PZrOZwwW1bM0sIf1QOYZ2EypFYfyIIOaMjyAp\nLtBmk9lcrdeOIn2WkbMQYohRFIXRMQGMjgngB1eMZHdOGVszi9l/pJL9Ryrx99YxKzmcWckRdr9I\nixD2IOEshBjUPN21XDopiksnRXGy9DRbDxSzO7uML3ee5MudJxk7LIA54yOYNCoYrWbwnJIlxEBI\nOAshhoxheh+W6Uez5JIRZBwqZ2tmCbkna8g9WYOXu4bURD1zxkcQFert6FKFGBAJZyHEkOOmVTMj\nKZwZSeGUVjexLbOYHQdL2ZBRyIaMQoaH+zJ7fDjTx4bh4SYfc2LokXetEGJI0wd6ctMlI7huThwH\njlaxNbOYrGNVHC+p54ONR5g2Jow54yOIj/S16ylZQgyETcP58OHD3Hvvvdx5553cdttttnwpIYSL\n06hVTBoVwqRRIVTXt7Ajq4RtB0rYntXxFR7kyZzxEaQm6fH11Dm6XCF6ZLNwbmpq4vHHHyc1NdVW\nLyGEEBcV6OvO1TOHc+WMWPJO1rA1s5h9hyv4cFM+H28+ysSRwcwZH0FCbCAqlYymxeBjs3DW6XS8\n+uqrvPrqq7Z6CSGE6JFKUUiIDSQhNpCGZgO7Dpay9UAx6YcqSD9UQZCvG7OSI/j/9u4+tql6j+P4\np+3pw9quz+uglC1seu8uDEFhf4CAJoAmmkgEtXNS/cvEEP/QoHGZ4jQak5KYGAdBjZqQGUMVVDAq\noNGZGQea6EXdZfK0i1u3tXTr1m3tHtr1/tF2D2xDrtKds8PnlZCNri3fAuHN75z1d9YtXwi7WSf2\nuETjchZnQRAgCDylTUTSYMxTY3PFYmxa7caFzigaT3Xi5OkgDn/XiiPftWLZEhvWr3BhjU6NVCrF\n89MkqpzvEFZXVwer1fqn55wTiSQEvkeRiOZQfDiB7/4dwPGTF9GSuUoWkL5S1kKHAQsdBrgyPxY6\njHA5DLDkaxluyjnJLG0jkdg1fT5uDTc3+Ps8N/j7nDsrS2xYWWJDIDyIk/8Jort/GG1dUbQH+3Eh\n0Dft/lqNCoWWPDiteSi06eGc9LnZoGG4rxL/TnP7TiKiP7XIYcDWDSXj0RhLpdA3MIJgTwyh3jiC\nkRhCPXEEI3F0RWL4IzQw7Tm0ahWc1kysrfrMxzw4rXpYjAw3Xb2cxfm3336Dz+dDIBCAIAg4duwY\n6urqYLFYcvVLEhFdM0qFAtZ8Laz5WpQVW6d8LZVKoXdgBKFIDMFIHKFIJt6Zz9tmCLdGrYTTok/H\n2paOdzbcZqMGSoabJslZnMvLy1FfX5+rpyciEo1iUrj/WTQ93H2DmRV3JJ5edWc+D0biaL80Q7gF\nZWbFnQ32xMrbkq9luK9DPKxNRHQNKRQKWIxaWIwzhzs6OILgpJV2euUdy4R7cNrzaQQlCqx5cFoy\n57itE6tuhlu+GGciojmiUChgNmphNmrxj8VTT/GlUilEY6OTVtwxBHsmDpkHZgi3WlDCacmDw6yD\nw5wHu1kHh1k3/tGYp+Z57nmKcSYikgCFQgGzQQOzQTNjuPtjozOutkORGALh6eEG0t+gNiXYpmy4\n0yE36RlvqWKciYgkTqFQwGTQwGTQ4Eb39HDHhhMI9w6hOzqEcN8Qwn1xdPcNobsv/fOOWeKtEZSw\nm3WwmyYCno23w6yDycBvVBML40xENI8pFAoYdGoYFqhRvGDm983GhhKZcMcRzkQ7G+5wXxyd3TPv\nMyGolLCbtJlwTxw2d2SCbjFquTd5jjDOREQyp9cJ0OuMWOw0zvj1+HBifNU9Ee74+G3N/40AiEx7\nnEqpgN00ecU9sQp3mPNgyddApVTm+NXJE+NMRHSdy9MKcBcY4S6YOd7DI0mEo9lwZ1bf44fQh3D6\n4vRwA+n3ituyK2/T1EPmSo3APcyvgHEmIqIr0mpUWOQwYJHDMOPXR0aT6I5OHCq//Nx3yx+9Mz4u\nTyvA5dBjkcMAl8OY+WjgbmpgnImI6G/SqFVYaDdgoX3meI8mkuiJDo+vvi/1xhEZHEFroA+tHf04\nH4hOub9eK4xfcGSRwwBXgQEu+/UVbcaZiIhySi2oUGjTo9CmH78tu4f5aGIMwZ4YOroHEbg0iI7w\nIALhQVzoiOLcZRce0WsFuAoywbYbxj+X4wVHGGciIhKNWlDC7TTC7TQC/5q4PRvtQCbWHZkfFwJR\nnGufGm2DbmKlnV1tL3IYYJrH0WaciYhIcqZEe5LRxBi6emIIhAcywU4H/FygD2dnifaiKYfIjfNi\n8xXGmYiI5g21oMRi5/S3hY0mkujsTh8e7whPHCKfLdrZUKcPkeslF23GmYiI5j21oEJRYT6KCqdu\nxDIe7csOj58N9OHMZdE25qmnrLRdkw6PzzXGmYiIZGu2aI+MJjOHxyeCHQgP4mxbL860TX3rVzba\nG1e5UVHmnJO5GWciIrruaNSzR3umw+Nn23phM2kZZyIiormmUatQvCB/2j7lo4kxCKq5Ox/NOBMR\nEf0JtTC3e4RzR3IiIiKJYZyJiIgkhnEmIiKSGMaZiIhIYhhnIiIiiWGciYiIJIZxJiIikhjGmYiI\nSGIYZyIiIolhnImIiCSGcSYiIpIYRSqVSok9BBEREU3gypmIiEhiGGciIiKJYZyJiIgkhnEmIiKS\nGMaZiIhIYhhnIiIiiZFlnF955RV4PB5UVlbil19+EXsc2dq9ezc8Hg+2bduG48ePiz2OrA0NDWHT\npk346KOPxB5Fto4cOYJ77rkHW7duRUNDg9jjyNLg4CAef/xxeL1eVFZWorGxUeyRJEsQe4Br7Ycf\nfsDFixfh9/tx/vx51NTUwO/3iz2W7Jw4cQJnz56F3+9HJBLBvffeizvuuEPssWRr3759MJvNYo8h\nW5FIBHv37sWhQ4cQi8VQV1eH22+/XeyxZOfjjz/GkiVLsHPnTgSDQTzyyCM4evSo2GNJkuzi3NTU\nhE2bNgEASktL0dfXh4GBARiNRpEnk5eKigrcdNNNAACTyYR4PI5kMgmVSiXyZPJz/vx5nDt3jrHI\noaamJqxZswZGoxFGoxEvvfSS2CPJktVqxe+//w4AiEajsFqtIk8kXbI7rB0Oh6f8gdtsNly6dEnE\nieRJpVJBr9cDAA4ePIgNGzYwzDni8/lQXV0t9hiy1t7ejqGhITz22GOoqqpCU1OT2CPJ0t13342O\njg5s3rwZ27dvxzPPPCP2SJIlu5Xz5bg7aW599dVXOHjwIN59912xR5GlTz75BCtXrsTixYvFHkX2\nent7sWfPHnR0dODhhx/GN998A4VCIfZYsnL48GG4XC688847aGlpQU1NDb+PYhayi7PT6UQ4HB7/\neSgUQkFBgYgTyVdjYyPeeOMNvP3228jPzxd7HFlqaGhAW1sbGhoa0NXVBY1GgwULFmDt2rVijyYr\ndrsdN998MwRBQFFREQwGA3p6emC328UeTVZ++uknrFu3DgBQVlaGUCjE02GzkN1h7VtvvRXHjh0D\nADQ3N8PpdPJ8cw709/dj9+7dePPNN2GxWMQeR7Zee+01HDp0CB988AHuv/9+7Nixg2HOgXXr1uHE\niRMYGxtDJBJBLBbj+dAcKC4uxqlTpwAAgUAABoOBYZ6F7FbOt9xyC5YtW4bKykooFArU1taKPZIs\nff7554hEInjiiSfGb/P5fHC5XCJORfTXFBYW4s4778QDDzwAAHjuueegVMpu7SI6j8eDmpoabN++\nHYlEAi+88ILYI0kWLxlJREQkMfyvIRERkcQwzkRERBLDOBMREUkM40xERCQxjDMREZHEMM5E81R7\nezvKy8vh9XrHr/Kzc+dORKPRq34Or9eLZDJ51fd/8MEHcfLkyb8yLhH9HxhnonnMZrOhvr4e9fX1\nOHDgAJxOJ/bt23fVj6+vr+cmEEQSJLtNSIiuZxUVFfD7/WhpaYHP50MikcDo6Cief/55LF26FF6v\nF2VlZTh9+jT279+PpUuXorm5GSMjI9i1axe6urqQSCSwZcsWVFVVIR6P48knn0QkEkFxcTGGh4cB\nAMFgEE899RSA9LWmPR4P7rvvPjFfOpGsMM5EMpFMJvHll19i1apVePrpp7F3714UFRVNu8CAXq/H\ne++9N+Wx9fX1MJlMePXVVzE0NIS77roL69evx/fffw+dTge/349QKISNGzcCAL744guUlJTgxRdf\nxPDwMD788MM5f71EcsY4E81jPT098Hq9AICxsTGsXr0a27Ztw+uvv45nn312/H4DAwMYGxsDkN7i\n9nKnTp3C1q1bAQA6nQ7l5eVobm7GmTNnsGrVKgDpi8qUlJQAANavX4/3338f1dXVuO222+DxeHL6\nOomuN4wz0TyWPec8WX9/P9Rq9bTbs9Rq9bTbLr80YiqVgkKhQCqVmrLHdDbwpaWl+Oyzz/Djjz/i\n6NGj2L9/Pw4cOPB3Xw4RZfAbwohkJj8/H263G99++y0AoLW1FXv27LniY1asWIHGxkYAQCwWQ3Nz\nM5YtW4bS0lL8/PPPAIDOzk60trYCAD799FP8+uuvWLt2LWpra9HZ2YlEIpHDV0V0feHKmUiGfD4f\nXn75Zbz11ltIJBKorq6+4v29Xi927dqFhx56CCMjI9ixYwfcbje2bNmCr7/+GlVVVXC73Vi+fDkA\n4IYbbkBtbS00Gg1SqRQeffRRCAL/OSG6VnhVKiIiIonhYW0iIiKJYZyJiIgkhnEmIiKSGMaZiIhI\nYhhnIiIiiWGciYiIJIZxJiIikhjGmYiISGL+B3qm9SKPcE6/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlcFfX+P/DXsKrsoAcFRUsvLiQF\nWmaoKBfEtbzmQhlm4U1cMi1NRQI0QanMW4ZbmRa5I6XlXje7LoiaJUppaUXiwr7IIrLM7w+/np+o\nHJBhzpk55/XscR4PzjbvD0jnxXs+M58RRFEUQURE1Ehmhh4AERGpG4OEiIgkYZAQEZEkDBIiIpKE\nQUJERJIwSIiISBIGCUkiiiLWrVuHYcOGITg4GIGBgYiJicH169clbXfWrFnw9/fHoUOHHvi9aWlp\nCAsLk1S/qe3evRslJSX3fW7p0qXYtGmTnkdE1HQEnkdCUrz77rs4fvw4PvroI7i6uqKsrAyxsbH4\n888/sWHDBgiC0Kjtdu3aFfv27YOHh0cTj9gwBg0ahPXr16N169aGHgpRk2NHQo1WWFiIxMRELFmy\nBK6urgCAFi1aICoqChMnToQoiqioqEBUVBSCg4MxePBgLFmyBNXV1QCAgIAAbN68GaNGjUKfPn2w\nZMkSAEBoaChqamoQFhaGH374AQEBATh58qS27u37VVVVmD9/PoKDgxEUFIRp06ahpKQEqampCAoK\nAoBG1b9baGgo1qxZg7Fjx+LJJ5/Ehg0bsGLFCgwaNAhDhgzBpUuXAAB//PEHnnvuOQwePBhBQUH4\n5ptvAADz5s3Dn3/+idDQUJw8eRJz587F4sWLMXz4cOzZswdz587FihUrkJaWhv79+6O0tBQAsGrV\nKkyfPr2p/9mImhyDhBrt9OnTaN26NTp27FjrcWtrawQEBMDMzAyfffYZrl27hl27duHLL7/EyZMn\ntR+wAHDixAls2bIF27dvxxdffIFr164hMTERAJCYmAh/f/866x8+fBiZmZnYu3cv9u/fj06dOuGn\nn36q9ZrG1L+fEydOYMOGDVi8eDHeffddtG7dGnv37kWnTp2wfft2AMA777yDAQMGYM+ePYiLi8P8\n+fNRWVmJxYsXa7+fnj17AgBSUlKQlJSEwYMHa2t4e3sjMDAQq1evRlZWFjZu3IjIyMh6/x2IDI1B\nQo1WWFgIFxcXna85ePAgxowZAwsLCzRr1gzDhw/HkSNHtM8PHz4c5ubmcHV1hYuLC65evdrg+s7O\nzrh48SIOHDiA8vJyzJgxA3379pWl/oABA2BhYQFPT0+Ul5cjODgYAODp6Yns7GwAwIoVK7RzMz16\n9EBFRQVycnLuu73evXvD2tr6nsdnzpyJvXv3Yt68eZgyZQo0Gk2Dfx5EhsIgoUZzcnJCVlaWztfk\n5+fDwcFBe9/BwQF5eXna+7a2ttqvzc3NtbudGsLb2xuRkZFITEyEn58f3njjDRQXF8tS38bGRvua\nO++bmZmhpqYGAHDo0CGMGzcOwcHBGDJkCERR1D53tzvHdHedwYMH48cff8Tw4cN1fv9ESsEgoUZ7\n7LHHkJeXh/T09FqPV1ZWYtmyZSgvL0fLli1RWFiofa6wsBAtW7Z8oDp3flgDQFFRkfbrQYMGITEx\nEd9//z3Ky8uxdu3aWu9tivoNUVlZiRkzZmDy5MnYt28fdu7c2agDDbKysvD1119j6NCh+Oijj5p8\nnERyYJBQo9nb22PixImYM2cOMjIyAADl5eWIiorCL7/8gubNm6N///5ISkpCdXU1ysrKsGPHDp3z\nHvfTqlUrnDt3DsCtw2grKioAANu3b0dCQgIAwNHREQ8//PA9722K+g1RXl6OsrIyPPLIIwBuzc1Y\nWlqirKwMAGBhYXFPt3Q/sbGxmDhxIiIiIrBnzx78+uuvTT5WoqbGICFJXn31VYwZMwaTJ09GcHAw\nRo4cCRcXF+1f06GhoWjdujWGDh2KZ599Fv379681wdwQU6ZMwfr16zFs2DBcvHgRnTp1AgD885//\nRHp6OgYOHIjBgwfjwoULeOmll2q9tynqN8TtUB0xYgRGjBgBDw8PBAYGIjw8HGVlZRg0aBBCQkKw\ne/fuOrdx8OBBZGZmIiQkBLa2tpg5cyYiIyMfaHcfkSHwPBIiIpKEHQkREUnCICEiIkkYJEREJAmD\nhIiIJGGQEBGRJBaGHkBdLCwsDVK3qqpS/zUNdHinxf+dpU3y4oGRxq2xK1zLuW19/84pNkiIiEyd\nnCHVlLhri4iIJGFHQkSkUGrpSBgkREQKJQjq2GnEICEiUix2JEREJAF3bRERkSQMEiIikkQtcyTq\nGCURESkWOxIiIoXiri0iIpKEQQKgtLQUubm5AG5dd7tFixZyliMiMiomHSRnzpxBbGwsiouL4eTk\nBFEUkZ2dDVdXV0RFRaFz585ylCUiMiomHSRxcXGIjY1Fx44daz2enp6OhQsXYsOGDXKUJSIyMuo4\nHkqWUYqieE+IAICXlxeqDbRkOhERyUOWjuTRRx9FeHg4AgMD4ezsDADIzc3Fvn378MQTT8hRkojI\n6Khl15YgynQFlBMnTiAlJUU72a7RaODn5wcfH58GvZ8XtpIfL2ylH7ywlXGT88Pezs65Ue+7fj2/\niUeim2xBIhWDRH4MEv1Q6P9i1ETkDBJ7e5dGva+4OK+JR6IbzyMhIlIotezaYpAQESmUWtbaYpAQ\nESmUWjoSdcQdEREpFjsSIiKFUktHwiAhIlIsBgkREUnAyXYiIpKEu7aIiEgSBgkREUmiliBRxw44\nIiJSLMV2JIZY8wowzBpflZU39V6T9Ectf1U2lcrqKoPUtTRX7MdZo6nld8f4fvJEREaCR20REZEk\n7EiIiEgiBgkREUnAjoSIiCRRyxyJOkZJRESKxY6EiEihuGuLiIgkYZAQEZEkDBIiIpKEQUJERJLw\nqK06FBcX67skEZEqCY38T9/0HiTTpk3Td0kiIpKRLLu2NmzYUOdzWVlZcpQkIjI+pjxHsn79evTu\n3Rsajeae56qqDLPENBGR2pj0ZHtCQgIWLVqEyMhIWFlZ1XouNTVVjpJEREZHLUEiiKIoyrHh8vJy\nWFtbw8ys9jRMeno6vLy85CjZJEzpwlZq+SUldeGFrZpOp06+jXrfhQunmngkusn2k2/evPl9H1dy\niBARKYla/tgzvggnIjISagkSdZztQkREisWOhIhIodTSkTBIiIgUSpBxp1FcXBxOnz4NQRAQEREB\nb29v7XMbNmzAzp07YWZmhkceeQTz58/XuS0GCRGRUsnUkRw/fhwZGRnYsmULLl68iIiICGzZsgUA\nUFJSgrVr12L//v2wsLDAyy+/jJ9//hmPPfZYndvjHAkRkUIJgtCoW31SUlIQGBgIAOjYsSOKiopQ\nUlICALC0tISlpSXKyspQVVWF8vJyODg46NweOxIiIoWSa44kNze31qkYzs7OyMnJga2tLaytrTF1\n6lQEBgbC2toaQ4cOxUMPPaRze+xIiIgUSq6O5G53npdeUlKC1atXY+/evfjuu+9w+vRpnDt3Tuf7\nGSRERCZGo9EgNzdXez87OxutWrUCAFy8eBHt2rWDs7MzrKys0LNnT5w9e1bn9hgkREQKJQhmjbrV\nx8/PD/v27QNwa9kqjUYDW1tbAIC7uzsuXryIGzduAADOnj2LDh066Nwe50iIiBRKrjkSX19feHl5\nISQkBIIgIDo6GsnJybCzs0NQUBDCwsIwfvx4mJubw8fHBz179tQ9TrkWbVSr6poavde0tbHXe00A\nuF5SZJC6FubmBqlrKIZaxNBMJZdpbSrmZsb3/Xp7+zfqfWlpPzTxSHRjR0JEpFg8s52IiCRoyHyH\nEjBIiIgUSi1rbakj7oiISLHYkRARKZRaOhIGCRGRQjFIiIhIEgYJERFJwqO2iIhIEnYkREQkiaCS\nExLV0TcREZFiyRok91vG69q1a3KWJCIyHoLQuJueyRIkBw4cwIABA9C7d2/MmTNHewlHAHjzzTfl\nKElEZHT0dWErqWQJkjVr1uDLL7/E0aNH4evri7CwMFy/fh3A/bsUIiK6l1zXI2lqsky2m5ubw9HR\nEQAwduxYuLi4ICwsDKtWrVLNUQhERIamls9LWYLE19cXkyZNwgcffIBmzZppLyI/YcIEFBYWylGS\niMjomHSQvPnmm0hNTYW1tbX2sb59+8LHxwe7d++WoyQRkdEx6SABgF69et3zmK2tLcaMGSNXSSIi\nMgCekEhEpFBcIoWIiCQy8V1bREQkjcnPkRARkTQMEiIikoRBQkREkqhlsl0doyQiIsViR0JEpFDc\ntUVERJIwSIiISBIGCRERSaSOaWwGyV3MzfT/D3e9pEjvNQHAztbBIHXLy0vqf5EMym7eNEjdFlZW\nBqnLa/+oHzsSIiKSRC1Boo6+iYiIFIsdCRGRQqmlI2GQEBEpFIOEiIgkUcsSKQwSIiKFYkdCRESS\nMEiIiEgidQSJOnbAERGRYrEjISJSKLXs2tJbR5Kfn6+vUkRERkEQzBp10zdZKh48eBDBwcGYMGEC\nfvvtNzz99NMIDQ1FQEAAfvjhBzlKEhEZHUEQGnXTN1l2ba1cuRLr1q3DlStXEB4ejhUrVqBLly7I\nzc1FeHg4/P395ShLRGRU1LJrS5YgsbKygpubG9zc3KDRaNClSxcAQMuWLWFtbS1HSSIio6OWIJFl\n15aLiwvWrl0LANi8eTMA4Nq1a4iLi0Pr1q3lKElEZHRMeo5kyZIlaNOmTa3H8vLy4Obmhri4ODlK\nEhGRgciya6tZs2YYMmRIrce8vLzg5eUlRzkiIqOkll1bPI+EiEixGCRERCQBOxIiIpJEMGOQEBGR\nBOxIiIhIEgYJEREpVlxcHE6fPg1BEBAREQFvb2/tc1evXsXrr7+OyspKdOvWDQsXLtS5LS4jT0Sk\nUHKttXX8+HFkZGRgy5YtiI2NRWxsbK3nlyxZgpdffhlJSUkwNzfHlStXdG6PQUJEpFByBUlKSgoC\nAwMBAB07dkRRURFKSkoAADU1Nfjxxx8REBAAAIiOjoabm5vO7TFIiIgUSjBr3K0+ubm5cHJy0t53\ndnZGTk4OgFuX/LCxscHixYvx3HPPYenSpfVuj0FCRKRUgtC42wMSRbHW11lZWRg/fjy++OIL/PLL\nLzh48KDO9zNIiIgUSq5dWxqNBrm5udr72dnZaNWqFQDAyckJbm5u8PDwgLm5OXr37o3ff/9d5/YY\nJERECiVXkPj5+WHfvn0AgPT0dGg0Gtja2gIALCws0K5dO/z111/a5x966CGd21Ps4b93tlr6VGOA\nuhbm5nqvCQBlZdcNUtfZuU39L5JBfv5Vg9Q11O+yoRjq3IerhYUGqdvG0dEgdaXw9fWFl5cXQkJC\nIAgCoqOjkZycDDs7OwQFBSEiIgJz586FKIrw9PTUTrzXRbFBQkRk6uQM5VmzZtW6f/sChADQvn17\nbNq0qcHbYpAQESkU19oiIiJJuEQKERFJwiAhIiJJVJIjdQdJUlKSzjeOGjWqyQdDRER3UEmS1Bkk\nP/74o843MkiIiAjQESSLFy/Wfl1TU4O8vDztmY9ERCQ/tRy1Ve+Z7bdXiQwNDQVwaw37+tZdISIi\n6eQ6s72p1Rsky5Ytw9atW7XdSHh4OFasWCH7wIiITJ3RBEmLFi3QsmVL7X1nZ2dYWlo+UJGUlJQH\nHxkRkYlTS5DUe/hvs2bNcPz4cQBAUVERdu3aBWtr6zpf/9VXX9W6L4oiVq5ciSlTpgAARowYIWW8\nREQmw2jOI4mOjkZMTAzOnDmDoKAg9OjRQ+f1exMSEuDo6Ah/f3/tYxUVFcjMzGyaERMRmQi1TLbX\nGyRt2rTB6tWrG7zBb775BitWrMD58+cxd+5cuLu749ChQ5g2bZqkgRIRkTLVGyQnTpzAkiVLcPHi\nRQiCAE9PT7z55pvo0aPHfV9vbW2NmTNn4o8//sDChQvh4+ODmpqaJh84EZGxU8merfon2xcuXIhZ\ns2YhNTUVKSkpmD59OhYsWFDvhh9++GGsXr0arVu3Rtu2bZtksEREpsRoJttdXFzQu3dv7X0/Pz+4\nubk1uMCIESM4wU5E1BgqaUnqDJJLly4BALp3745PP/0UTz31FMzMzJCSkoJu3brpbYBERKZK9Udt\nvfjiixAEQXuZ0C+++EL7nCAImD59uvyjIyIyYao/auu///1vnW86deqULIMhIqL/T/UdyW0lJSXY\nsWMHCgoKAACVlZXYvn07Dh8+LPvgiIhI+eo9amvGjBk4f/48kpOTUVpaiu+//x4xMTF6GBoRkWlT\ny1Fb9QZJRUUFFi5cCHd3d8yZMweff/459uzZo4+xERGZNLUESb27tiorK1FWVoaamhoUFBTAyclJ\ne0QXERHJRyVTJPUHyTPPPIOtW7di9OjRGDJkCJydneHh4aGPsRERmTa1H7V123PPPaf9unfv3sjL\ny+N5JEREeqD6o7Y++OCDOt904MABvPbaa7IMiIiIblF9kJibm+tzHEREpFJ1BgmXfSciMizVdySG\nVlVTbZC6lub6/5HcXoZG3wz1M87Lu2KQujY2jgapW1JSYJC6hlJtoMtGaOztDVJXTgwSIiKSRC1r\nbdV7QiIAFBQU4MyZMwDAi1QREemJWk5IrDdIvvnmG4wdOxbz5s0DALz99tvYtm2b7AMjIjJ1gtC4\nm77VGyTr1q3Djh074OTkBACYM2cOtm7dKvvAiIhMnkqSpN4gsbOzQ/PmzbX3mzVrBktLS1kHRURE\n6lHvZLuTkxO+/PJLVFRUID09Hbt374azs7M+xkZEZNLUctRWvR3JggULcObMGZSWliIyMhIVFRVY\ntGiRPsZGRGTSBDOhUTd9q7cjsbe3R1RUlD7GQkREd1BLR1JvkPj7+9/3mzl48KAc4yEiov9jNEGy\nceNG7deVlZVISUlBRUWFrIMiIiIjChJ3d/da9zt06ICwsDBMmDChwUWqqqqQlZUFV1dXWFjwZHoi\nooYwmiBJSUmpdf/atWv4+++/db5n0aJFiIyMBAAcPXoU8+fPR8uWLZGXl4cFCxagb9++EoZMRERK\nUm+QrFixQvu1IAiwtbXFggULdL7n/Pnz2q8TEhLw+eefo127dsjJycG0adMYJEREDSA0aBErw6s3\nSObOnQsvL68H2uid7ZiDgwPatWsHAGjVqhV3bRERNZRKdm3Vm3fx8fEPvNHff/8dr732GqZPn46M\njAzs2bMHAPDpp5/Czs7uwUdJRGSC1LJoY73tgZubG0JDQ/Hoo4/WWhpF16V2775Mb/v27QHc6kiW\nLl3a2LESEZkUo5lsb9u2Ldq2bftAG33iiSfu+/jw4cMfaDtERKZM9UGyc+dOPP3007zkLhGRgaj+\nwlZJSUn6HAcREakUD6EiIlIo1e/a+umnn9C/f/97HhdFEYIgcK0tIiKZqT5IunXrhvfff1+fYyEi\nojuoJEfqDhIrK6t71tkiIiL9Uf1ku7e3tz7HQUREd5Pxmu1xcXEYO3YsQkJCkJaWdt/XLF26FKGh\nofVuq84gmT17doMGQ0RE6nL8+HFkZGRgy5YtiI2NRWxs7D2vuXDhAk6cONGg7alkSTAiItMj1xIp\nKSkpCAwMBAB07NgRRUVFKCkpqfWaJUuWYObMmQ0aJ4OEiEih5AqS3NxcODk5ae87OzsjJydHez85\nORlPPPFEg+fJGSRERAqlr0UbRVHUfl1YWIjk5GS89NJLDX4/T0gkIlIouY7a0mg0yM3N1d7Pzs5G\nq1atAADHjh1Dfn4+xo0bh5s3b+Lvv/9GXFwcIiIi6tyeYoPEwszcIHXvTGZ9MdRJR5bmhvnnN8TP\nGABKSgoMUtfMzDCNv6F+zuZqOflBBeT6bPDz88Py5csREhKC9PR0aDQa2NraAgAGDRqEQYMGAQAy\nMzMxb948nSECKDhIiIhMnVyZ7OvrCy8vL4SEhEAQBERHRyM5ORl2dnYICgp64O0JoqH+bKmHQocl\nC7Usg9BUTOnfFjC9joSaTvzazY1635ywkCYeiW7sSIiIFEotf2QySIiIlIpBQkREUqhlrS0GCRGR\nQnHXFhERScIgISIiSdQSJFwihYiIJGFHQkSkUOxI7pKfn6+vUkRERkEwa9xN32Qp+cMPPyAqKgrA\nrXXvBwwYgPHjxyMgIAAHDx6UoyQRkdHR1+q/Usmya+vDDz/E6tWrAQAJCQn4/PPP0a5dOxQUFGDS\npEno37+/HGWJiIyLSnZtyRIkVVVVsLGxAQDY2dmhbdu2AABHR0eu/0NE1EBqmSORJUjCwsIwYsQI\n+Pn5wdHREVOmTIGPjw9SU1MxevRoOUoSERkdkw6Sp59+Gv369cPRo0dx+fJliKKIli1bIi4uDq6u\nrnKUJCIiA5Ht8F9HR0cMGTJErs0TERk9rrVFRESSmPSuLSIiko5BQkREkqgkRxgkRESKpZIkYZAQ\nESmUWibbufovERFJwo6EiEihONlORESSMEiIiEgSBgkREUnCICEiIknUctQWg4SISKFU0pAoN0jU\n0tI1hcrqKoPUFWA6P2MAsDA3N0hdQ12Dx8XF3SB18/IuG6RucXm5QeraN29ukLpKotggISIyeSr5\ng5pBQkSkUGrZM8MgISJSKAYJERFJwqO2iIhIEnYkREQkiVqChKv/EhGRJOxIiIgUSi0dCYOEiEih\nVJIjDBIiIsXiUVtERCSFWnZtyTLZ7uvri7fffht5eXlybJ6IyCQIgtCom77J0pF4eXlh0KBBeOON\nN9CmTRuMHDkSPj4+sLBgA0RE1FBq6Uhk+WQXBAGPP/441q9fjzNnzmDbtm146623YGNjAxcXF6xZ\ns0aOskREZACyBMmdy2Z3794d3bt3BwBkZ2cjJydHjpJEREbHzJQ7kmeeeea+j2s0Gmg0GjlKEhEZ\nHZPetTVq1Cg5NktEZFJMuiMhIiLpVJIjDBIiIqVSy+WwGSRERAqlll1bXP2XiIgkYUdCRKRQJn3U\nFhERSccgISIiSeScI4mLi8Pp06chCAIiIiLg7e2tfe7YsWN4//33YWZmhoceegixsbEwM6t7JoRz\nJERECiXXoo3Hjx9HRkYGtmzZgtjYWMTGxtZ6PioqCh9++CE2b96M0tJSHDp0SOf22JEQESmUXB1J\nSkoKAgMDAQAdO3ZEUVERSkpKYGtrCwBITk7Wfu3s7IyCggLd45RllEREJJkgNO5Wn9zcXDg5OWnv\nOzs711oH8XaIZGdn48iRI/D399e5PQYJEZGJu3Oh3dvy8vIQHh6O6OjoWqFzP9y1RUSkUHKd2a7R\naJCbm6u9n52djVatWmnvl5SU4N///jdmzJiBPn361Ls9xQZJZXWVQeqaCfpv0gxREwBKKyoMUteu\nWTOD1K2oMszvlKHk5V02SN02bR42SN3MyxcMUldOcs2R+Pn5Yfny5QgJCUF6ejo0Go12dxYALFmy\nBC+++CL69evXoO0pNkiIiEydXOeR+Pr6wsvLCyEhIRAEAdHR0UhOToadnR369OmDr776ChkZGUhK\nSgIADBs2DGPHjq17nOL9do4pgCl1JIZiah3Jzepqg9Q1FGsDXdra1DoScx3nV0j1319+adT7Arp1\na+KR6MaOhIhIodSyaCODhIhIodSyRIrp7MchIiJZsCMhIlIotXQkDBIiIoUyU0eOMEiIiJSKl9ol\nIiJJeNQWERFJwjmSu4iiqJofChGREqjlM1OWw38PHz6MwYMHY9y4cUhLS8Ozzz6Lfv36YdCgQTh+\n/LgcJYmIyEBk6UgSEhLw2WefoaioCKGhoVi/fj26dOmCy5cvY/bs2di4caMcZYmIjIpJz5FYWlpC\no9FAo9HA3t4eXbp0AQC4u7vD3NxcjpJEREZHLbu2ZAkSBwcHLFu2DAUFBfDw8EBUVBT69u2Ln3/+\nGS4uLnKUJCIyOmoJElnmSOLj46HRaPDkk0/ik08+Qc+ePXHkyBG0bNkScXFxcpQkIjI6ZkLjbvrG\nZeTvwmXk5cdl5PWDy8jrh5zLyP+ckdGo9z3Wvn0Tj0Q3nkdCRKRQaplsN50/v4mISBbsSIiIFEot\nk+0MEiIihWKQEBGRJGqZI2GQEBEpFDsSIiKShEFCRESSqOUKiTz8l4iIJGFHQkSkULzULhERScI5\nEokszAyz3Lwh/uEMtdyZqa15ZSHjmki6yLkWky6G+r0y1JpXtjb2BqlbXl4i27Z5+C8REUnCjoSI\niCRhR0JERJKopSPh4b9ERCQJOxIiIoVSS0fCICEiUii1nNnOICEiUiiekEhERJJw1xYREUnCw3+J\niEgStXQkPPyXiIgkkbUjEUURBQUFEEURLi4ucpYiIjI6aulIZAmSP//8E/Hx8bh8+TIyMzPRsWNH\nFBUVwcvLC/PmzYOrq6scZYmIjIpa5khk2bUVHR2N+fPn4+uvv8b27dvRvXt3HDhwACNHjsSsWbPk\nKElEZHQEQWjUTd9kCZKbN2+iXbt2AIAOHTrg/PnzAIB+/frhxo0bcpQkIjI6ZkLjbvomy64tT09P\nvP766/D29sahQ4fQq1cvAEBERAQ6deokR0kiIqOjlhMSBVGGq9+IoojvvvsOf/31Fzw9PdGvXz8A\nwLlz59C5c+cGtV6GuiiPKV3YylB4YSv9MNTvVY2B6hrjha2Ky8sb9T775s2beCS6yRIkTYFBYrwY\nJPrBINEPBglPSCQiUiy1HLXFICEiUiiTPo+EiIikY5AQEZEk3LVFRESSsCMhIiJJ1HKFRK7+S0RE\nkrAjISJSKDnPbI+Li8Pp06chCAIiIiLg7e2tfe7o0aN4//33YW5ujn79+mHq1Kk6t8WOhIhIoeRa\ntPH48ePIyMjAli1bEBsbi9jY2FrPL1q0CMuXL8emTZtw5MgRXLhwQef2GCRERAplJgiNutUnJSUF\ngYGBAKC9zEdJya0z9C9dugQHBwe0adMGZmZm8Pf3R0pKiu5xSv9WiYhIDnJ1JLm5uXByctLed3Z2\nRk5ODgAgJycHzs7O932uLoqdI1HLYW9NwZS+VwCwtlDsr51RMdTvlbmB6sq55pWxk7ouGzsSIiIT\no9FokJubq72fnZ2NVq1a3fe5rKwsaDQandtjkBARmRg/Pz/s27cPAJCeng6NRgNbW1sAQNu2bVFS\nUoLMzExUVVXh+++/h5+fn85rt28/AAAJ9klEQVTtKXYZeSIiks97772HkydPQhAEREdH45dffoGd\nnR2CgoJw4sQJvPfeewCAgQMHIiwsTOe2GCRERCQJd20REZEkDBIiIpLE6I7D1HXav5x+++03TJky\nBRMmTMALL7ygl5oA8M477+DHH39EVVUVJk2ahIEDB8par7y8HHPnzkVeXh4qKiowZcoUDBgwQNaa\nd7px4waGDRuGKVOmYOTIkbLXS01NxWuvvYZ//OMfAABPT0+89dZbstcFgJ07d+KTTz6BhYUFpk+f\njv79+8tec9u2bdi5c6f2/tmzZ/HTTz/JXre0tBRz5sxBUVERKisrMXXqVPTt21f2ujU1NYiOjsbv\nv/8OS0tLxMTEoGPHjrLXNTqiEUlNTRVfeeUVURRF8cKFC+KYMWP0Ure0tFR84YUXxMjISDExMVEv\nNUVRFFNSUsSJEyeKoiiK+fn5or+/v+w1d+3aJa5Zs0YURVHMzMwUBw4cKHvNO73//vviyJEjxe3b\nt+ul3rFjx8RXX31VL7XulJ+fLw4cOFC8fv26mJWVJUZGRup9DKmpqWJMTIxeaiUmJorvvfeeKIqi\neO3aNTE4OFgvdffv3y++9tproiiKYkZGhvbzgx6MUXUkdZ32f/uwNrlYWVnh448/xscffyxrnbs9\n/vjj2o7L3t4e5eXlqK6uhrm5uWw1hwwZov366tWrcHV1la3W3S5evIgLFy7o5S9zQ0tJSUHv3r1h\na2sLW1tbvP3223ofQ0JCgvbIHbk5OTnh/PnzAIDi4uJaZ13L6a+//tL+P+Th4YErV67I/v+QMTKq\nORJdp/3LycLCAs2aNZO9zt3Mzc3RokULAEBSUhL69eunt/8BQkJCMGvWLEREROilHgDEx8dj7ty5\neqt324ULFxAeHo7nnnsOR44c0UvNzMxM3LhxA+Hh4Xj++efrXeuoqaWlpaFNmzbak9TkNnToUFy5\ncgVBQUF44YUXMGfOHL3U9fT0xOHDh1FdXY0//vgDly5dQkFBgV5qGxOj6kjuJprIkc3ffvstkpKS\n8Omnn+qt5ubNm/Hrr79i9uzZ2Llzp+zLcXz11Vd47LHH0K5dO1nr3K1Dhw6YNm0aBg8ejEuXLmH8\n+PHYv38/rKysZK9dWFiIjz76CFeuXMH48ePx/fff623Zk6SkJPzrX//SSy0A2LFjB9zc3LB27Vqc\nO3cOERERSE5Olr2uv78/Tp06hXHjxqFz5854+OGHTeZzoykZVZDoOu3fWB06dAirVq3CJ598Ajs7\nO9nrnT17Fi4uLmjTpg26du2K6upq5Ofnw8XFRda6Bw8exKVLl3Dw4EFcu3YNVlZWaN26NZ566ilZ\n67q6ump353l4eKBly5bIysqSPdBcXFzg4+MDCwsLeHh4wMbGRi8/59tSU1MRGRmpl1oAcOrUKfTp\n0wcA0KVLF2RnZ+ttF9PMmTO1XwcGBurtZ2xMjGrXlq7T/o3R9evX8c4772D16tVwdHTUS82TJ09q\nO5/c3FyUlZXpZX/2f/7zH2zfvh1bt27F6NGjMWXKFNlDBLh15NTatWsB3FoVNS8vTy/zQn369MGx\nY8dQU1ODgoICvf2cgVtrK9nY2Oil67qtffv2OH36NADg8uXLsLGx0UuInDt3DvPmzQMA/O9//0O3\nbt1gZmZUH4t6YVQdia+vL7y8vBASEqI97V8fzp49i/j4eFy+fBkWFhbYt28fli9fLvuH++7du1FQ\nUIAZM2ZoH4uPj4ebm5tsNUNCQjB//nw8//zzuHHjBqKiooz6f7yAgADMmjUL3333HSorKxETE6OX\nD1hXV1cEBwdjzJgxAIDIyEi9/ZzvXkZcH8aOHYuIiAi88MILqKqqQkxMjF7qenp6QhRFjBo1CtbW\n1no7uMDYcIkUIiKSxHj/lCQiIr1gkBARkSQMEiIikoRBQkREkjBIiIhIEgYJySYzMxOPPPIIQkND\nERoaipCQELzxxhsoLi5u9Da3bdumXSZl5syZyMrKqvO1p06dwqVLlxq87aqqKnTu3Pmex5cvX45l\ny5bpfG9AQAAyMjIaXGvu3LnYtm1bg19PpGQMEpKVs7MzEhMTkZiYiM2bN0Oj0WDlypVNsu1ly5bp\nPDkwOTn5gYKEiBrHqE5IJOV7/PHHsWXLFgC3/oq/vYbVhx9+iN27d+OLL76AKIpwdnbGokWL4OTk\nhA0bNmDTpk1o3bo1NBqNdlsBAQFYt24d2rVrh0WLFuHs2bMAgJdeegkWFhbYu3cv0tLSMG/ePLRv\n3x4LFixAeXk5ysrK8Prrr+Opp57CH3/8gdmzZ6N58+bo1atXvePfuHEjduzYAUtLS1hbW2PZsmWw\nt7cHcKtbOnPmDPLy8vDWW2+hV69euHLlyn3rEhkTBgnpTXV1NQ4cOIAePXpoH+vQoQNmz56Nq1ev\nYtWqVUhKSoKVlRU+++wzrF69GlOnTsWHH36IvXv3wsnJCZMnT4aDg0Ot7e7cuRO5ubnYunUriouL\nMWvWLKxcuRJdu3bF5MmT0bt3b7zyyit4+eWX8eSTTyInJwdjx47F/v37kZCQgGeffRbPP/889u/f\nX+/3UFFRgbVr18LW1hZRUVHYuXOn9kJmjo6O+Oyzz5CSkoL4+HgkJycjJibmvnWJjAmDhGSVn5+P\n0NBQALeuRtezZ09MmDBB+7yPjw8A4KeffkJOTg7CwsIAADdv3kTbtm2RkZEBd3d37TpTvXr1wrlz\n52rVSEtL03YT9vb2WLNmzT3jSE1NRWlpKRISEgDcWvo/Ly8Pv/32G1555RUAwJNPPlnv9+Po6IhX\nXnkFZmZmuHz5cq1FQf38/LTf04ULF3TWJTImDBKS1e05krpYWloCuHVxMG9vb6xevbrW82fOnKm1\ndHpNTc092xAE4b6P38nKygrLly+/Zw0pURS1a1hVV1fr3Ma1a9cQHx+PXbt2wcXFBfHx8feM4+5t\n1lWXyJhwsp0UoXv37khLS9NeiGzPnj349ttv4eHhgczMTBQXF0MUxfte4MnHxweHDh0CAJSUlGD0\n6NG4efMmBEFAZWUlAKBHjx7Ys2cPgFtdUmxsLIBbV9L8+eefAaDei0fl5eXByckJLi4uKCwsxOHD\nh3Hz5k3t88eOHQNw62ix29d4r6sukTFhR0KK4Orqivnz52PSpElo3rw5mjVrhvj4eDg4OCA8PBzj\nxo2Du7s73N3dcePGjVrvHTx4ME6dOoWQkBBUV1fjpZdegpWVFfz8/BAdHY2IiAjMnz8fUVFR2LVr\nF27evInJkycDAKZOnYo5c+Zg79692ut/1KVr165o3749Ro0aBQ8PD0yfPh0xMTHw9/cHcOtCVJMm\nTcKVK1e0K0/XVZfImHD1XyIikoS7toiISBIGCRERScIgISIiSRgkREQkCYOEiIgkYZAQEZEkDBIi\nIpKEQUJERJL8P02jCqEJafEcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "qXvrOgtUR-zD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we verify the accuracy on the test set." + ] + }, + { + "metadata": { + "id": "scQNpDePSFjt", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 343 + }, + "outputId": "bd8499eb-dad1-492d-a091-311a9946b1de" + }, + "cell_type": "code", + "source": [ + "mnist_test_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_test.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe)\n", + "test_examples.describe()" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count10000.010000.010000.010000.010000.010000.010000.010000.010000.010000.0...10000.010000.010000.010000.010000.010000.010000.010000.010000.010000.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...1.01.00.60.00.00.00.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 \\\n", + "count 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " 10 ... 775 776 777 778 779 780 781 \\\n", + "count 10000.0 ... 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 \n", + "mean 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 ... 1.0 1.0 0.6 0.0 0.0 0.0 0.0 \n", + "\n", + " 782 783 784 \n", + "count 10000.0 10000.0 10000.0 \n", + "mean 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "id": "EVaWpWKvSHmu", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "6c4185f2-7fe3-4fa8-fb2b-d53ac566f676" + }, + "cell_type": "code", + "source": [ + "predict_test_input_fn = create_predict_input_fn(\n", + " test_examples, test_targets, batch_size=100)\n", + "\n", + "test_predictions = classifier.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['class_ids'][0] for item in test_predictions])\n", + " \n", + "accuracy = metrics.accuracy_score(test_targets, test_predictions)\n", + "print(\"Accuracy on test data: %0.2f\" % accuracy)" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Accuracy on test data: 0.95\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "WX2mQBAEcisO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Visualize the weights of the first hidden layer.\n", + "\n", + "Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.\n", + "\n", + "The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.\n", + "\n", + "Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called \"classifier\" has already been trained." + ] + }, + { + "metadata": { + "id": "eUC0Z8nbafgG", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1173 + }, + "outputId": "ed5f6dc6-02d8-4f83-bd61-0a37d43546fc" + }, + "cell_type": "code", + "source": [ + "print(classifier.get_variable_names())\n", + "\n", + "weights0 = classifier.get_variable_value(\"dnn/hiddenlayer_0/kernel\")\n", + "\n", + "print(\"weights0 shape:\", weights0.shape)\n", + "\n", + "num_nodes = weights0.shape[1]\n", + "num_rows = int(math.ceil(num_nodes / 10.0))\n", + "fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows))\n", + "for coef, ax in zip(weights0.T, axes.ravel()):\n", + " # Weights in coef is reshaped from 1x784 to 28x28.\n", + " ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink)\n", + " ax.set_xticks(())\n", + " ax.set_yticks(())\n", + "\n", + "plt.show()" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/Adagrad', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/Adagrad', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/Adagrad', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/Adagrad', 'dnn/logits/bias', 'dnn/logits/bias/t_0/Adagrad', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/Adagrad', 'global_step']\n", + "weights0 shape: (784, 100)\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGcAAARNCAYAAAD/4C04AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWl4XNd1JXow1IgqVGGeR4LgABIk\nxZkSJVEUJWuWLMm2bHmM0447cZx04vTL686XdDr9nnuI04nbdhI78TzIkWUNtgZqIkWJFCdxJjgB\nxDwWgAKqClVAFYD+4c93rX1s8nufU2z8eHv9OmTtqrr3DPucW1hrr5zFxcVFo1AoFAqFQqFQKBQK\nhUKhWBLkLvUFKBQKhUKhUCgUCoVCoVD8/xn644xCoVAoFAqFQqFQKBQKxRJCf5xRKBQKhUKhUCgU\nCoVCoVhC6I8zCoVCoVAoFAqFQqFQKBRLCP1xRqFQKBQKhUKhUCgUCoViCaE/zigUCoVCoVAoFAqF\nQqFQLCHyr/di36Wnnfaxr70jXqtZWeW0K25twnt+cl7E5bjw+0/tAyucducPTou4wmXFTrt8e53T\nHnq9S8SNXB1z2tv+ZLfTHtx3xWnPpzLiPf7aQqdd1r7Mac8lp0TczHDMaScHp5125Y5WEffaf3rW\naddVlzvt+vevktf6dg8+49ZGp335OydFXFFbmdPe8MTnTbbx/B//sdOu39IgXssvcDvtqbOjTnt0\neELElZcXOe3wugrEHewTcaGVpU47z5PntH1VQXlRuTlOc2F23mnHu6OIWVgQbwm24rN7XrzotOvv\nWi7iMok5pz15fBjXvaFCxA0d6nXaHpfLabtCHhE3Noi+aL1vtdNOT8+KOFcAfbnqzk+bbOLsz//B\nafurrb5EV5rI4X6nneeVy7vq9manPXYUcUVrZL8kR+NOe3Z8xmn7KuX3Tl8ep8/AOnAVehHTOS7e\nE16BuZ4YwBqLHJLzyEvzpbAFuSGX5pQxxsxGcH18v1MXIiIuPYWxCjSHnXYOzUNjjPFVI1e0bH7S\nZBuHvvRfnHZsLC5eq78b87j7Jcxvn0fOx/Lb6p02r52JI4Mizt8Uctp8nxMdYyKu7KZqpx09jRwQ\nXoux8lYExHtmBpErfZV4bS6aEnF9B7sR58b6cPvdIq5oPeZgohd5uf/ikIhbcRdybIrmKed4Y4yZ\nOkv7xOf/1GQTB/7iz512OjMvXqvejTW2kMZr09Z8rLit0Wm7AhjfkXd6zLUwdQlrqWxztXiN8+v4\nkQGn7a9Dv+S65NrJycfevDi/6LRDK0pFXO/T2NO91RhrT4lfxHGuSPZhbXsqCkRcJd17Jom9evLM\nsIjjfLNy16dMtnHuReTUzExavDZxEtdS99BKpz1O+dUYY8ppX+d+Kt1eK+LcRciJPL8X5+Ue56f8\ns0Bzi8du8qTsp3nqw/ExfHbdpnoRF6X9vXRrjdO294mcHOSKPB/2xcGXr4i4fA/e529Erpm+KHN+\nXj6ufeef/4XJJt75r//ZaTd9aK14Ld6Pvgi1lDjtWM+kiPOWYn4OvYHzJp9ljJHzcZTWqbdc5kbe\nn1ORhNMOr8QemRpPiPcMvYrvzS9An/MaNcaYpoe3OO35eayx8VMyTy7M0dyhPZPzuzHG5ORhrJd9\n+CannRiOirjxY8gpmz71RybbePv/+UunXX6rnLdztHfn+TDnxg/KtTibxLkvTDnMzmcDP7/stLmv\nc12yrz20581cRX+U344z9NBe+XzC187nULvf07NYs4XNOFtHr8i1U7QSezDvs0P7u0Wcrxi52FuO\n9vys3J94brbd+xmTTQwPvuC0e34qnwN5LzQL2Gty3XJPysTQZ80fXe+0F61nAT47LmTw2sKcfPbj\n5xsXtaN0BuI5ZYwxriD2Yz/tq8lheV4TeZPOVwVV8iySmsBaj/dgHk2fleewWtpn5lPYj7wlcv9M\n07xqWP0Bk20MXP2p0+b8YIwxeR6sl4U0+nrOehbivStYXem0Z+Myr/Cz+lyM1rlHjskifZ477EOc\nG3FuX7F4T3oWeT4ZwdilaY4ZY4wriHlR3LCaXpH5YHYW+SY/H2s2k5H35PHgt5HFRczNqcHLIo7X\nRNO6J4wNZc4oFAqFQqFQKBQKhUKhUCwhrsuc8RXjl/7F68QN018bmp5sF69Nnh1x2vxrWqBO/rrI\nv2BH6K/6fiuuNIlfFJktwyyG4DL5CxqzbwL1+Kt5xz8dE3EN94Ahc2UffuVKdEuGzR1/do/TjvXi\n17n5OfkrNf/1YoH+MhlPyb8uTx/FX2E2/OoPaP9qeIkVMmPdC/9VpYD++lVX6hNxgWb06Qz9ap2b\nK3/f43FcpF+07b+oL9Kv5zP0V9a5SNJpl2yvEe+5/Pw5p910B1gGY2/3irjFNL43MYt54Z9Miriq\nHfgrx9ykvD4RR/fEf63JC7hEXOEq+ReabMJVSH9df/OqeM1Xg1/3y4h1Nmr1S6wbc5X/6j1xWv4l\n1lOMsedfqXncjZF/9YjQX+v5r8SZhPyLdIbWqSuEuPpHJOssNf7rGTH2Xy+mO8BIYJZecLnMASl6\nH98Tsy+MMcZbLOd9thFai5w6f9TKF/RLOufb0pvlX+H5Rf7rXGCFvOfuI91Ou3UP/ipTtbNRxEXp\nL/H8V8HJE/j/0fckK6ea2JK8tpnJZIzMPcyW8dfLvM5zIT+Iz2NGmzHGDBMbcXERHTFxQf4Vqtq6\nx2yi7jH8dcX+S13fs2A8FTRhr6m8o1nEcf7jv3oXtUsWG/9lqXg9/gIVvyr/+u8mtlp6GnMidgVx\n+Va+KtuO/Oem/BKxxprZMv4ajNuslU8zcXxvHuXMBWtf7P1Jh9NmNuPsqJw75dvkX9CzjcED3U67\ntL1SvFayEX/9uvL0Gfz/Mpnj09OYq7x2+l6VLJOKjbSX0by175n/yh/rBGMz3IZ+CtBf2o2RrLic\nDuTAybMWS4LaQwexN/A+aIxk4uTk4v7mrb9el28Fe+vyyxecdvNtLSKukFgr2UbTE2DLMEvFGGPy\n/ZiDQ/uxZ9bsWiniht7BWW9ujPadDXK9DL3e6bRr7wULPNYlWcbc77yXdhFjumJ3k3hPsAVjmo7T\nnrkoT94zEZyn/aU0V67Ia3DzHp6H3BCm/ccYeR6O94O1wcxIY4xpfHCjuZFwF+Maed4bY4yXGCOR\nd8Cwtfuw92fIvakh7OtzE1aemkc+yqEp42mQe1JoBeZtmva4ydMYg4pdjfKziYEXPYl5kB+Uc4nf\nx7m8eLUcH94nxt7GvRc2hEUcn18XMnjP3Li8d5upl02MHcPZuP5heZ4TTC46NyYG5Zlyhthu87S3\nzkXlfQy9hPzKzJfgKjs/47w5egnzyhXGfle2ok68x08MuWla24XLZB7jvNtPTOekdU8L9DxSSvvA\nTK+M4/2Uz6U5efIZy2sxVrMNPlcFw1KVMHzm+K99T8nKZeLfmQzGMZ3Cfc5OyP3OTee+4mVYz2Pn\nJMukrA35lpkqublgFeXlybN7jpd2PJoW6bjML8wuGz75ntO2FRTM+ArWYc4tLsozYHQAc4HnsL9C\nKg9y86zPt6DMGYVCoVAoFAqFQqFQKBSKJYT+OKNQKBQKhUKhUCgUCoVCsYTQH2cUCoVCoVAoFAqF\nQqFQKJYQ1605w9XgN356m3wj1Q+InIBG/fDfviXi2p9ABfgxcvYptCrhczX9iXPQdBY2yzoK7ErB\nOnnW5SVHZB2JvnFoaUs7oANd9tgaEcd6xw2f2or3P3tBxI0ehl57hpwX6h9ZLeJY75kkJ6hVj8q6\nPPOzUrOWbfj86CeuBfCL60JfBcgVh10ajDFCsF5QFzLXQox0ncWk2+8jvbYxxlTfDH2+uwRaQW8V\n9MXRM1IzX90OjXsmDi2pXeuFtYIVVM3b1jtytfTiLfjsiOUCYKhe0BxVKHdbevA41Xcwd5usYpb0\n9HYdJk8ZdJfsMlJBTiLGGJNPY8rOZFzzx0aGKqiz45ExxlTcAY0o18ZI03tKNsq6Qaw9Zj3m5Hk5\n1mFyKRgmZ4KybVIfzC44ZdtQm8WuyJ5PTlpc28W+p/m5G6fJNsaYrr2XnHbQJzWyueRq0nAn6jaM\nHxwQcW6uB0Xr0l8jNa0r72tz2lxNv+uArIex6kHUbZi+hP6MjWGOeN3SXYnzBjtZ8DoyRurL2b1t\n1tLCp8ZofpOjRNWi/LzkAK7JQ/0wG5GfJ5yr7jVZxdBe9J8r7BWvsVtHsAn5tPupsyKu4XHsFexs\nxI4cxhgz+ka30655ELrr4nVVIo73vFAb8iG7Idl5O0r77ATVyajYLteYeB/prm2Xizwa68ljqKPj\nLpcaeT/Vdpjpx3jmWG4poh6BLC+RFWSohkrEqrvlL8TcKvBhjAst55dEP9VfI2cdn9fSk9Newe54\nUZd08Rp4AVp7XudvvPa6016/q028J34Ze248jnXgzpfj4/ZhDVdTXZjUsKwvMnwc+19hOcbKXyZd\nQ5JUl2TVI8gh7CZijDEDLyLnNcgj0r8aXK+poEbui4V12A+SQ7jWWL+sT8X3UX57I+Ks2idc6ytB\nZ8VEn6zjxw4nHjrbsBtLsFKusZzlWDv9b6OuQ0m7XOe8T/K5MbSqTMSVtaN+YjKK9/RabqrF9Pns\nVGWjN4p6OaVP3n7NuN8UueTOYtdJSQ4gt1XuQe2u8cNyX6zgswHXIzsu13Yp1e4qoNotkUPy3Bfr\nwnkuNYL9qegmWZ+KMUauk8XkaprokXOE5xY7LnK9J2Pk2XZRuBLJOl5cw2boRexP4Y3yWiePSlev\nbELUs7GKlLI7GT8H2vsnGcWJWk5ce8cYWduUXdmCDbIe1xzVBAtTPZ94L84sXAPNGGOaP7bOaU/S\nvhCw9s8r/3wC37sSz6/hVbJuEO9j8T58L88pY4yJnsF+zHWW7NqRXNut6t8/ZLKNgiLkzVRKronw\nctxb9Arlonn5zM1uU2l6VmNnPGPkc3vkAuat3ddzc3iGDwaxiUwOIy95Cq2z/Dz+nRjCGORZDmHs\nVFnShoNGZk7ui1yLJ9aHe2e3TWPkvbPb3pTlxMbXUS6njDFGmTMKhUKhUCgUCoVCoVAoFEsK/XFG\noVAoFAqFQqFQKBQKhWIJcV1Z0wxRpQeevyhe6x0CrWft3ZAH1a+Vtq8sd2CK+9BrkkKZ6AHdq+Zu\nUDJHDvaIOKauxuk9U0TLLt4kqfA7P3ur0+5/BhKlky+dEXF7/iMsss9/9bDTnoxLytbyLZuc9luv\ngRKX+gcpm2EL4FAr6Im9P5XU0pYnbjY3EiXbIC2xbdnYWpGlIInuqIibGgR1sHITxtimoF7tAW1y\nIQXqZeUWOS9miA6eGkT/DkdpHlRJCvlMH2hm57tA9bv50S0ijmlmbGWZb0m6uC9YpudvkJS6AFFf\nmcJcYNkZ2vTwbIKp8GwzbYwxUZr782RdbVuLMlWQLeyq9kgbPL5HpmW7CiUFtedpzGMfUd4bHgXt\nPmVJyUK1oB6PnQXd3Vcu5RzjJzCPCpeDMmpTyJn+yVaECcumsHwHvpfHPXZJUg0nz4DG2iDdILOC\nmpuwDoQMzkhaa2gN1qW7RPZ7aDUo7JPUT5bKzsRpDQfI1plttY0xJk704e5zoLG23YO8PnVOys7Y\nnnQ8RvKnftnvPpIosQTUztFsBctr9uqxbhFX2woafpCksHl++b1sc5ltlO2EJDM3T34Py8cufRO2\njMs/sUHEsYwr14t9MTUq12zV+7A2I0cwNmz5a4wxhauRK1nmWFKDNe8JSCtQfyXGdNUjH3La09Mn\nRFzkFGjoRauRh67+8LSIK9mMfYYtslm6ZIykqBeQpbq9N6WnUuZGYvUnsI+PkNWyMfIa58juevh1\nGecqJKnQ+2A7mrSsiKfPI8/wOmW7Z2OMCa3Duh84hLNP2wbMA1v6xtbNoRKstyJL0hA5gHFkCRZf\nmzHGNN2H/DD6Jq7BVydlk26SJHhKMOd4bzHmV6Wj2QSfKW3r8IIa5LxUBGNoSyS4L1gmWnlLo4hj\n+T5Ll2yrZpZqlCzHWbb3zWNO+8Q33hXvWfkgcm28E/tCrkXBz3XjWosbsc/29R8ScWOnsbcuknzP\ntlLu+h5kAd4KsqW1ZO0z/deWPmcDbrI2LrDOX+MkMx9+GfL4stsaRFyULK5nKL/WP7BCxA2/imeP\n2EXsO6G1UhrmIQnGFEng+w52//qbMHIvnD+BvvYF5ZrwkB1y9CSu2x7vIZJ0+0LYF+dick0FqSQB\nyyHdYSmdnl+4cbJttq1mOZEx0q64dCvOQEN7ZbmDHNI18fk6vELqPqY6IQcdfgM5ufhzFSKOJSaZ\nJLXpnLzm83vEewYPQoLc/Ohmpz16QsrBWz4Ne/mJMziHzV5n32LpHMuyjTGmchckNQMvQd4aXiPv\nffQtKXPKNmZnKY9audLrx7ltMY2zcnJMnsv95VhLmST2F/uZpKgJ8trCdZDGLizI+Z2bi312KoJz\nR0ExzhwsYzLGmIVZ+V2/hCsoZUi8N8SHsRaDVdYZdRAyysJ6fO/kFTkegTrMWy4fEW6Vz7Ns0/7r\noMwZhUKhUCgUCoVCoVAoFIolhP44o1AoFAqFQqFQKBQKhUKxhLiurIndkOoekVT4ZaH1TnuCKlp7\nKyTldppkA4WtoFXX3Sephi//+c+cdvEGUNcHD0vK0Np/Axclphi3EG3c7ZX0ocGDp5x20SZ8dllA\n0iJf+k+4hg27QTONHpL0qMFXQTlbII4yU5yNMSbcDordFLmghNokTa13L+jvJU/sNNkGU/hiHdId\nYmQUFNrV5NqSsByvGH2HQXW+OiqpxCuqiQpGfRPvkjKpwDJUVZ8hB5bM/LUr17Obx61P7nDag5ZE\nroSq8bOjAbv0GCNdSNjZITMj3SYyRI3sfQ/zsSIipQXDPaC+rnvcZBXTJPuwJSZ1D0N/M/4eqNd2\n/+WSc1UOyQ1tep0riHnMleF5nIwxxlMEWmblbrgojBIdv2aXdESLnMfamTqP/nIXWVX7SeLgLQUF\neMJyVYlfwvyN0/yovFPau3BF9vkU7qlyt5R0TV2UTh7ZRs9R9M1yS17EUheW5bCb2S9eRNNThr5J\nDcs1y5Ki3ldByb00JB0bBsjNbudqVMJ/6bv7nHZdqcypy7ei3+qJnjvTLenvAxfxXWVlWPMDP78s\n4qrvxufFr2JMW25pEXERknGx5M5XKSUXmZm0uVFgad3Ee7Ivq+/G9TZ/CPmUnZGMMcbQ+JaRO5Lb\nor9PkMyO10QjfbYxxhSWYi4lk91Oe/Qo8lWgXtKtk6OYL5PnnzHXQrAR4zZNjgPhdZJCPtWBtRMn\nGUTZZkkPZqeR0f24vqq7mkXcrOX6k21EybmRXRWMMWaRaPg1D0KaEu+V9O15ospf/j4kIo0PSU3k\n6R9hj69fCzlKJmE5TND3Nt2DMxJL/Tp/JOXY7K6VoH124HW5L7J7E89ht0WvnzyBOeepQH5xFUo6\neKAJ82L0HeS1onY5L8ZIDmQ+YLIKdv/geWqMlPOUkayaXQKNkQ6gHpIk9b8kpfw8R/gsEWqTchgv\nyQpjo5jfeeRIdO8X/6N4z+U3n3baLPtgZxtjjGn9OCTwU0O4PluuxE5qfF6w9xLOk0XtdG5KyT6q\nvk2e17MNdlPkcgDGGFN+O87pc1HksLQlnUlQPvOTbCjyrnSc4fzjYjlVvZSpjx/HvPXXYo6MnMUa\nW7C0xKNTWFdlhZBsTo9KCXN+N+53MopzVUmlvIYCkntPDuJ7K9ZKF68BctrifMAOtMb86trMJrx0\nrb0/Pideq3sM54o+ksMv+62bRNzwW91Om6XOtty3lFxAK8lhbfRd+by48t6P4nvPvuC0V9yDA/ri\nonwuqNuJuROfQF4Lr5TPbfwcyC5+7EppjDGnvg8ZTnEAfVSyQsqMe/8F/eInGXq8S86d5o9Kt99s\ng6VHtrRn5Az2Hj6X5xfIZ9/pHqwdlhHZzka5uchH6TTuM5ORZ1mXC89qnB8WFnBGSKfkM2asB59X\nvAprYnHRckSrwNlzZgrzZy4p+z1Qhfw41QOJkz03+R55n5ixnqnDLbJvbShzRqFQKBQKhUKhUCgU\nCoViCaE/zigUCoVCoVAoFAqFQqFQLCH0xxmFQqFQKBQKhUKhUCgUiiXEdWvOnP4a7P5Yr2yMMev+\nEPZjgwcQ1/Y7W0Wceyv02oNvw3Y63if1YTfdu85pc62MuYzUh/mLoLWsugs1P2aGoXH/6Zelfr6p\nHFrBivXQeU2dk/UlWkhT9o1/fM5p71gh9bYXD8P+rf0B6P9GDki9Y9mGRqfd9zLs2ap2SW39XFRa\nMWYbsYuoExBYXixe4zouabLn8/ikhrBqC/pt8riss8AYIc1tTTG+K9+ynGVb3Zp7YUHqPQItX2it\n1HiO7YP+89APYXXeUiv1t2xPyjVTQitk3QxvGDrG8Q5odoONso9YTxm7gL50WXVS2jatMzcKXHOg\n7iFZq2TwZWhf2RY7ZdXEmSOLPw9ZLM5Z1txshTpxHPUHSrZIjWRoJfozRnVrIifxnrJt9eI9hcug\ns2Utqq1Z5dobkfcwJ2z78iTZq89E5X0wen8CPW/zkxinvucviLjSbdLyPdtgjbpto9t3EvUFylnH\narlf5lLtAs6Vdk2gF/ciL08m8HmP7dgu4qZm0G8VK6FJr2rHeBevk7a8bF/pIQvWK4MyN7AGf9mt\nqMcy3SHtezt+Ci1zaTnGeDIia9hUraG1TrabY5a9pF1HI5uYIYvyhvfL2iI5+dCbc90gtsf9RRzV\nR9qG/Dd5aUDEcY2Fsm3QTfe/dEnEFbaiP5MjGOuq21F7qfOb0iK7cg/2odotqGXBNWuMMWbkXfx7\n2Z33Oe0Tf/stcy0MTCAflOfXideCtIbTcdS84JpLxkhr1huB1BA04AWNMq8MHCDLbFqzFbfLWlas\nzy+j8X7vB8dE3MYnYcnKNc3ScVlXx0u1Mg5//aDTrq1BXRNvQO47KRrvSxewDm7+rZtFHNu8z1Jf\nB1pkrRauXRVcjnzd+zNZg4VrCJZsRK6YtfaTQIWsB5VN+Ki+S06u/Fsjjw3bZ4+QPbExxqQn0S/j\nU8g3qx6WdZ3e/QHOHAEvxmDtY+tFXNdTOOtt+hMU2cnJwT49NrhfvCffi72gaDnWi12XgG1bK9sw\np7zF3SIuEEBdo0At1n2uS57j2WqYz+S5Llk3Yz59Y23tJ9/DmYHrERoj6zpxHbX+16QNc/lN6Cs+\nT9j1x7g2YG0jzoCzE3LeRjuRU6eTOKM/f/So035oyxbxnsg05s9rp1FrhC22jTFm21Sr+XWIp2Q/\n8968/X5YN3PuMsaYuruxh4zSOTnXK8exdPuNO98UU82iqTOyLmKSLIVLb8H87nuuQ8S5QlSfhOo/\n+SplLVOul+avodqRlfK8mcng/OErw2ewXXTf22+L91RuXW1+HXitGGOMrwY1hQZ/hrUdapfPLctv\nx1i7Ateel2PjWH8rt6GmjsmV9z74CuoH1i03WUegEmcsrgljjDFFK+g58CLqyhSG5J7EdVf4LJ8c\nk/M2Jwfzk2v/pGfl7wNTPTgbF9bjjDqXwrlq1nqOLluDs1kqhvySGJJnymAjztAFYZyJ2L7bGGNS\nKdSuKqjC2Nv1vgqrMQenB7AWixus+pudyA9lsmzZL77/V/9LoVAoFAqFQqFQKBQKhULxfwr644xC\noVAoFAqFQqFQKBQKxRLiurKmYBAU21y3pMft/6tnnfbW37/Vab/1P14XcTd9aJPTZvlEaLm0ESsl\nSuKhv97ntG/+v3aLuLGzkCEw9XKCLFYf/++fFO+JD+O1ju/C0jJUIum2nipQZH/7Mw857USPbZ8J\nGtTpF0BNys+TfdS3F1KK9DToy6f/1yER5/eSvdgjJutgu8CR45I2X3sHaFxsxzczJ+nW0VdBRwuH\nQLNLW7KzaaJhNteB5tjbJS2Q1z8G6/Ou59BPwTKMyfQFafsdI8onS9DOd0u7yR1EK3QR3S5pWZ4N\nvwnqeskmzL+0ZW863QV6a4zkc9Wtcg5HDqNvW28xWYWPLOpjV6VEIkySk/4XQD2vsezq3WSFmiGq\ncNl2SQVdyIBeWH4rXmMLSmOMkJUwpbXu1m1Oe+DgEfGWEpIVsp0rW2kaY8xIJ8Ym3o24vnEph5ki\nuc7GDbjf8aODIs5L0puhNzHPy26WkosY2xZKhWZWUL8WtOJFy4aTJU+xCNbbrLXGYhN4rYgkeKHV\nUrbnv4LxXt/Y6LSvDktb5ztvgZ1lQT0owok+zPV5a+wPHwcdOY/mwXhc0lbzSGoQITlkyJJX+mOg\npBZvAq22OEfS+qc7kBNCK8EFnbEsjo1UUWYV9Y+A9hyx8mnRGlBuB64hNzTGmARZTS8uYi2yHbUx\nxvjrQJ8d2gs6cwXZhxpjzLnvYV9b9UHI9i58Deuv6k4pp2Xq/0QfZGW21TCv53gcFqkXr0qL2u4x\nXHsDWa8Pk82yMcYsfxIyEFcAco54l6Qyl26tMTcS5Tth0ZtryW5LI9hDkgOY02xnbowxuSRP81KO\n3vrbO0QcS0xDy9E3h74n5U98FS2bIKGKXsS89xX7DeOd/aec9tleyF6qn5HyEJaaBX2gq5/plZLA\nAg/yRvAtxFWGpfSLbZ7nJrA3eyvk9bG8L9vIJ3lR38tSIhFchhwzeQrnj5p7pBaALa6rSH5x6Fvy\nnLbtI1gH44cw99/5roxrqUb+WlggqXgYe9DVp0+L97BNeToOyWKJJSdt3Ihz6ejAG047MSip+ukq\njEdVA6SIfReeFXH+MszFRB9R8NfLvJuO31iJYQmtdZY7G2NM7Ar2fB6r0nbZN26SBLIk0t4b6jdi\n3XcewVmg6EqBiAs1YP0s2waJW9OmRrpWeW5pvgmf7aHrGT9inUcq8V28504ek7Lg5jKcT5K0Z/Re\nkXH5dB2VdyHP83ORMfLcl210fvuk0/ZYsuJMAs8TpZtwBpo6L/e7yluR87rIgnraKkFRQFbT/Nkj\ni1dFXJDOGQmSI+cHMdfLNkup1+gprL+ydvSlyyXP+74ifJ6nCPc78qa8hvB6zFM+vxRtkPO34Sac\ntd30eXb+9NXcOJnoLwCZTjot+z3WR3sIWc/b8ypDEjA3lVAob5GH6lQK5yeXC+utqGSbiAuG0NfT\n43heDJdB6jdfKJ/v5uZw7Z5+UHKlAAAgAElEQVQA8lxOrexPtxvfG4vgjMWW3cbIHOgrxlxYnJfP\nYxNXrtBrONPz9RhjTE7e9fdFZc4oFAqFQqFQKBQKhUKhUCwh9McZhUKhUCgUCoVCoVAoFIolxHVl\nTckEqJHJqKQt7fjjXU6781ugs7XdJStds/NL7b2QHdhuE54yUAD3/OXvOO1j//W7Iq75CdALmXbU\n+CgqIbtckn5rDKh9ZeRGkp6SldEnr4Kydfkg3vPAv79PxCX6QZM88A1QrB782B0ijumZTLjyjUgq\nZMMTsopzthEjWufMrKSnLsyBwla2AVTW7nclNY8lGP0joOYNRyUVfctajPHYCOhey7dISv3Ia/j8\nUapwHywGNXzeqmZesQJU832vg8bfUinpgewwxPTHovYKEZdHbjnpGKiRJW1SglC5HDTo8ErIBM59\n9V0R1/igdG7JJnrIbShoSULiVzBvvVWgPJbUSReJ6AhooqMkNai4pUHEMVW/bD0qzY+dviziFjOY\nO9GLRNkjNZUthwmGMNczq9DnY0elPIRlTh5yxWprlZR0ptN3XQLVvMKi4PvJ1YPzhi1TcIdl1fls\nw0330vuK7M/VDyG3Rd6GZKB2s3QjG6PXWI6XSUo5ys3rkYvPXMR623ybzDfseJXowXpmmUbvT6Vk\ngN0nqotAC93eKl0o2L2igJw2mPJtjDH1tDdwXq7YKj/PVy6dC34Jt+WcNjd+49xFRt7udtqBZrkW\nmYpd/T64U4VqW0RcqBZr5/KP9+H/V8qy/bwOclaDBssyJmOM6Se5X+ff7XXaJ7pA2/+cJcOcn8V8\nSVzFuIdWy2uYmUKuYJepAq/s87u3QR732hGcCdbvlGeCk/8E15vG7aCx23KT6AVJA842xg5CzjN0\nWUr9lt2BeVe6CZKLoVeviLj6h5Dz4wPYZ6OWPI0/Y+AVnH1YEm6MMRNnsHedfBlSs1pyPpwZl/Tt\npw4ccNrhANbH2T4p9y0qQA784tNPO+2/evJJEVdQCBp6CbnXDb3eJeLYVWd6FmcCdhUzxpgrP5AS\nnmxi4hzkIqFVct6yC2bVbpJ6nJRSD57TLM+95Xfk2Jz9DiRoVW3Iu7ftuU3EsRNibi7OgOxGUrJZ\nSvZYMsxy3yN/85aIq2yiPExyh3CbdIjpfxFzLFKOfbHpbnlGHTl33Gk3vg9SguHjZ0Rc2Xp5Jso2\nuGxC37PSQbHidpxPZicwpt4yKUNiN8/qB7B+k4PSKSlDrqQbPoKyC3bpBpcfuTdYjvuvWA63w4IC\n6d4WjcIZK53G+ddXZUlR6DwdasRc8FfLOHZY4/vLs5zJJilX8rnZPvPa57FsYpbKAZTf1nDNuHFa\nf00flI5oQ/uQYwqaIPe6eFDm3UV6BmlZ3+i0hy/I8gnf+NGLTvuV/XBI+86f/ZnTLt0oJXyFTci1\n8WG4OmVmpIzXTy507DS4+fc/L+Kmp7GW6rdiPMa6pOT/ylGc0WoGIaUNtcm8VrJBXm+2kZeH/JVO\nSUlgUVMjxWGvmRqWz/PsHFrUgLVYUCCfA5NJzOn8fPQny6d/8V1Y60XlcKlzuTBH8i1XyLExjFcg\ngH16qkfKrF312MfyfXgmzM2Xbqr+ykanPRPvdtoLGenW5C7AuYgd4HJyLJlUTJYOsaHMGYVCoVAo\nFAqFQqFQKBSKJYT+OKNQKBQKhUKhUCgUCoVCsYTQH2cUCoVCoVAoFAqFQqFQKJYQ1605E14Gjfrq\n3VJzGiddbPEWaODY8tcYY1IRaPHmyV5r5ILUeDc3ouZAdOSs0740JPXB1RPQ7g+8Ah3iHX/1V047\nk5Ga7Jx6/AY1N41aBKkRafva04nvWlULrfX0FWnf+y/fhKb/oYd3Ou3Dzx0Xcbd/BlrkorXQGja8\nb6OI63nxqNOul+7HWYHHB+1sKi3ruMzPQPfGlm2VjVLnmKC+6o1A7/nQF+4VcSmyqy71QwPIOmxj\npM57xRTmDNf8yMQtTR5Z9m5dAR2jbUl2sYe0hlQTp+qqrI/D1twVpMUVdsrGmOCyTqfN9rPBykIR\nFzkEjT/JkrMCXzX6KDUs523t/Zg0njBfk7RqjhxDXZeSjdA59/9M6kUbSQc8/C5q3QxZlrjFq8iy\nnKxAu74Na1e2cTfGmO79WDuz49Bj+mpkX/I88lbh3rn/jTEmehFrk62ovQH5vUVkZ8i69aG9nSKu\n4fE2cyMx3YHrDZbJXDl5EnrpHBfWx0XLInbZzcjFA89j7JJzcr2wLj0/D3r6RSmRNcVbyUY+ijVR\nvA61boJWbZXAQdT0mR3FOPrrpGbe34P1XEg1T7zlsl6Ar5z0xn1YpzNjEREXp5o4xWRbPT8rtfRF\nm2SdnmzCU4prH3lD1uYqIOtr3gsjF8+LOBfN41w3tuELz58VcXVkr8m2r9MzMyJu082o6/LOftT4\nePOdd5z27vZ28Z62HcihdfevdNpsg2mM3DMzVM9gxS2yRkyEagnUk5X2U0+9JuJaqzHfmj2Yl3xW\nMMYYd0iu4WzDX4uxKkvIe/ZSDbzOH6JmQJBsb40xpu8F1Mc48R7W4rp2WWOI69RV78Fr8ylZJ4r/\n3boGdRvYsjfRKfexD+7EGWTzaoxJoVWrgLXxf12JtVPYLuuV+Kk+RkE1+ii0XNYsynNjfOq2oT5L\n74F9Is5TcOPG0Vf+62uJGWNMHtUQmRmiGghrZY067heu2zV+TNZBa30Qe8P0hQi9R86dXBe+dz6E\nvabzu6jDVGjVx0lcxZnjwEGsX87bxsjaUrUllE/LZA2vpsex1l0u5O5I5ykRN0X3EW5Bzkz0SWvu\nyfeQR0r/ZJfJNqKn8TzANWaMMeIY46tETl1cWLxWmImQzfvkoFwvuXSO5ByQts6bgQbscckxjAmv\nibhf5nW/H3vz8AnUn8n3y/oVM2R9nhxB3svJl2fZfKp7E1qHdZp/VZ6DMjF6trqCOilhq+ZMckie\nHbOJlg9jzo0ckGdFdzHO/6EV2Bsu/f0xETc7izEoovprg5PyTL62Ds8W3Wcw1uf7ZV2Y+jJ8xle/\n8AWnfawT576SC7L+07I7HnTaqRQ+u6hoi4jrOfeU0264ebfTnpw8ZCQwpj3vvO60Z/rlGlu1h+qX\nXUYdyVBrqYiL99J8bjRZx/hl7GMBqsdijDHRXoyrJ4QxdQdl/TmexwMH8Vy8sC0p4pJRsuYO4rnD\n65X25oEA9rVMBmcfruu0sCDXr9uNuR+P4wwdqJW5NzWFek15XqzTjFWf1Ricz/m3jHjXhIhi++xS\nqi2WmyufgXNd1+fGKHNGoVAoFAqFQqFQKBQKhWIJoT/OKBQKhUKhUCgUCoVCoVAsIa4ra0qTTa1t\nMzdxAhTmcrLiPfddKe255T982GlPDcI6dt1ntok4pqQyrX3r3dIOuOOnoBcu2wWq01D/807bF5CW\nWskEqGlsM/fNf3hBxPk9oN9+8j88hvcPSSs+xth50DFd+bI7J8+AXhghGVfbb8k4m56ZbZTvanTa\n0Wclbb73MFmZEYV2OinpZ/PzkA1sWIt+n74iKV0usn71E61/6E1J/2f5RH8v+qljAFTiAo+kQx+6\neNFpf+FjGJ/YsKQHMsJ+0H0TFk2NKcJFE6CqFm+SVnWxTlDnAmTNXbhK0g3735RWo9lE2RbQ/BID\n8n6TJAeYIfnZpBkUcXlkE8e02qo7pb0d29wvpjHuKz8p5Xi8TqfOghroI2lL8QYpLymsQ992/ghW\n5PkBaX08T/Ty6jtwfalJKecgxqgpzeC7rrwlrReL5/G9TCdkeZ0xFmVUdktWEFoLSqU7JKmggySx\n8pC8b/kd0k6aaZMlN2NeLKalXilyGGuprQ2WnwUNUpoRJPo2y1UZ3hIpQ0pPYS2F14E+6imR1M38\nINZwmGRwY0ekze8cfV5lOyyZPR4puWhYDUlCKoWcOlZmfd6EzF/ZBEsvGz8obclZAssSoKKWRhGX\nk4N5t7CBLOkvSxkX28ivugvSpelz0qo5Q7KcdAZr58t/9EdOu2GbvAYf2baGirHPMpXbGGPGziIf\n9FJumEhIGVJ5IXLo6nYsnoBlud3+KL6L7byHX5N7BGPV7mu+9BvDRetvYlhKH7yXMN+LSRowdkLm\n1M4RzEGWQpdulbTs6nZIj7rfftVph1stm9T1yGFjhzEOUyTfrLhVyj4qInitcDX2JFuKmBzGOabp\no+ucti3LCVRizSVGMc/chXIcXS5Q3lMp5BqWuBpjTOEqKYfKJpJkYbtoWZqyNKf5IeiMJ7uklJXP\nX7FOOs8synPZ2NsYD8554RaZoxYWsGcGg5AqLP84+n92Wp4pQyT53EX99/6P/zsR93f/Dv+uXIbv\nnT4vpfcTpzAv+S5W/+5WETcyiTXX/zqo/yzPNMaYgnr572yDx2DiiFxjgeWYx/ycMDspc7w4e9Ie\nV0BnNmOMCTRi3uaSJJ7nkn1N0bPozyC9Py9PyskSCZw70nHsaRNH5T2x3Jtt1G2Zo5ckhgskpWAZ\nkzHG5AVwtqtbCSls9IwsH8FnwGwjQWfKytulxfjQa1hz7s3Ijbluef6qo7MOy97b6+tFHEvYXyL5\n2CNbpPTo668i1+7ZBdv0PTsanXb5ZnmtCwsYt/x8zPvZWbk3pxOQ0czPYy4OH7ws4nyVJNkm+WLZ\ndnlPPF/4fBW9KPf6FMngzK0m6wg3Y3wmLvWK13wk6c5QSQxfSObAQB36g9dpfFRanZfUbXDaU1Pv\nOW17XU2Pw1rbH8L+l0pCxjYblc8QxbU4m7G0M5Wy8ksJziqTvZAps2zLGGPigxj/fJI/lW2Vvzek\naN7yFpJOy3H0lsoztQ1lzigUCoVCoVAoFAqFQqFQLCH0xxmFQqFQKBQKhUKhUCgUiiXEdWVNrmLQ\nWGeGLOkI0XW8JaAgrXxcOkJ0/fwtp738wbud9vnvPCfi/ESjZNq47erBLkJX3gDFmqmGw28fkO8h\n2dWZ5yGL2rlqlYgLEv16NgJq0t4fvyPiPvonjzjtsXdA+1rzGUkZZflJJgaaGrtfGGNMzR7pepFt\nsItQ7WZJpeP+TZILUN9rp0Vc1zDoaAVeHh9JP2MHlTwPqF/Vd0q3r8lzkDJVToMe1z0G6tePD8hx\n/NBtcL96cd8Rp33FcvTasw6U7dfPwGljOCqp621c8f0qPiM9Lat+R6Yxjjv24D7GT8rv9XlkBf1s\ngiUS7AZhjJQGFNSCzpsclZX5K7fD1WnwACjMNh2Q56qH5sfI27ICP0vT2FGpbg+oiuHwJvGey2/9\nENdNFF6bkn4tGnXksKzGX0iV/1na0XKrdEthqjTL/Hzl0jGJ+/JGgHNWbZt0CUiTdDBIcpaM5SQz\nT3TaIDmojB2VFFSW8ZWtwFzPJOT8vvoDrBGW9PmDeM/IKenyUU7SirkoaKvsOGVfu4ccG/yWO1dB\nNebt4DGs7eI10lkllWLJITahuUk5h28k2DEqaTn+sSyF3T/6Xjsp4lwk94qTlKKwXlLwoySNXSCp\nX2pWjiG78N2yjVwPKrB+V9z/mHjP1BQkyH4/9gWmchtjzHQR9o9QA/bZwIxcOx5yjEkNgXpd2yAp\nzyyjYWpv/aNyP7bzV7YxRXtQxXJ5jSx/Hj8HacCyD6wVcQWv4/oDy9A3Ay9KavsMnQVKbsIc7n1O\nOrGxqwlLSku3IlfwXmCMMXv+4gNOOzaIPOcvl/LFggqcnTJz6Ft/kXR0GTiAtV7YgvySsM6AKQ/O\nSO7CazsyTZ1CP5tHrhn2G4GdpRKWJHOBcvnICdDieU0ZI6XKE2fxWvkWmZ+9JE/gfWKqU9LVGzc9\n7LRnZiAbWlzEeNrnaXYQDK3Envbzn/29iEvT3hw5hfNH2XopHz7xBu53fgF7a9U5KXOJjuA6NnwI\nZ/fcfCl/ySRvbH6dj2NOl9/eKF4bfgWSGB+Nd3JASsPYNXbsAPbCQIt0nJkgaaK7iKQL0ijJDJI7\nZdMDyE18Vsn1yTNfrBu5cpYcJ/MLZZxwOGzEOq28SUrq+5+DzKJ0B/ZjW45dQPtGLjngLWSkNC92\nUcrfsonpDsg+0taZsvpunMc6vg53Wp8lHen+Oe63oBD7SWZeujHOk17kI+RW1z0q1/aj2yFnZNk3\nnz3Hz1qS6AbMq7kp3Ifd51MdWPe5LuTM8WPyuaD2AcxZlhIvLsgzL/cZO9UKGZMxpu6hleZGIieH\n1r5VccNF0ta8POT8kZMXRByXtFicx33OTUkp4kQOJGm839vuZn3PoaSFrxLtsychI2zfLOX/o6bb\nadfei2cfexxzcrBeyppRumG8V57Zyls241qT+OzZaSuXU5mJPFqLiSH5/FnceH1nWGXOKBQKhUKh\nUCgUCoVCoVAsIfTHGYVCoVAoFAqFQqFQKBSKJYT+OKNQKBQKhUKhUCgUCoVCsYS4bs2ZmrugE5yx\n7KT9tdDOsW46E5NaeF8N4tg+tKBRauurt6NOyLmvvOy0L/YOiLit96OexfrbGp32NOn2q3fJ+ias\nKTvVAx3phz79PhF3dT+0rX/9xe877Q/fcouIY3u6yjtgwzZ2RNbDKN0EzXJZGzRvF7/1hojL9WAY\nKn/3AZNtsJ7XXSTtMFnrPHMVmrhVddIKlLWcLXfhXvykwzbGmFmqP5Hvh862vOYOEVdUju8KNMBS\n2fwYTbuWzLZ2aC25nkO4QNYlOtnd7bR3tUHXNxGXNQzcZH3+p1/9qtP+wsc+JuJuexS27xnSqiYH\n5ZoovUVaqmUTY1RrxVMq6/yEVqCWwNDrmMN190lt6uRlaGsTXbD0y/fKNFBE9tcpqqnhrpJjzfVO\nWPufkwPxNlsMGmNM/dZdTjtQC+s8l2XTmujH/HD5oV+1LWrTlG9CVH8m3j0p4tiOk2v2JK28xnrt\nG4HSMPTl4bbyawdSH8bOSwvHXBovN9X7YntOY4ypW4N5MUK1sVwuOd7lt6N+TJTqcPh3Nzrt2k1S\nt//Gn3/Faefnoc9szff6dainxda242dlbZqqm3ENk8fxml1fI8+LnDDTixoTgRZpG5y4Ksc/m8jJ\nxdjw2jNG1qDhXMhWucYYc+kp1PQKVaDGS76Vn4++e95pB33Q57eukrXDyqi2DNffKV6HtTw/L+sA\nlJVh/4vHUSMlcvW4iOM9gmuiTA/KfDqfQl0AXw3W7HxS1nHi/JBP1q5sQWnfx41AeC1qrVx+7px4\nLT8XZ5XCSqrBY9krc52dE6+gdtPWD0lL1+hpnBliRXRWuUvWxiqswjqYmUJtDF4HBeVyzuXnI/fW\nrb7faU9PnxFx8/MYL677s7gg84uvGvd74buoCbD605tFXPf38flBssteSMtaCsEbaKU99FqX07Zr\ni5Rtx34cqMZYxztlbpi+gDocJWSbzjX4jDFm+DJyW9VK1MJquvM2Edf17jNOe8XOTzjtY9983Wm7\nrVw9P4u1w2eqQJ08J5//ymGnXUpr+6tfe0bEfeoR1HdcpDlr25zX34GzMteZGTksbe3dZDtvpJN7\nVpBXgO+263i5S312uDHGGFdY5sqpc6gBwjXR+KxojLTcZnv5jBXHNU8mT2Dfmb6E+VLQIGu4BOqw\nv/fQM0lxm6zrxNc+04N9bH613O98VIuTa7bZWMhg/gy/3O20S7bL81Ii1yqsk0Vwnndb18o1uJZ9\nEHW7eG8xxhhPN859c7QfRGLynNbUQGdUquG5aoWcnDX34PwRqMTz2OIi+nnyiqw5w7VCx9/F8+fA\ngKwt5fdgLQ2fw5llhVV3dXR/t9NufBz2zn0/vyjiCldQ/cAuqt+TkftnCV2fkdtHVjDegTouXBvP\nGGPcbuTY2BCeSeasceSarbwfBBpkHTT+XaH7Zaol0yfHpGsE++daslX/4re+5bT/eE4+t93x4Zud\nti+AvSAW6RJxoRD6fW6O1mzdOhE3cgG5t7ABtaHsc0se1cspXoY6OHNz8mw82oGaNqFtcs4Yo8wZ\nhUKhUCgUCoVCoVAoFIolhf44o1AoFAqFQqFQKBQKhUKxhLiurKnre6BeN39UUnwCZKk5+i4o88Em\nSS0N14NWxtZUFVuk9Gh2BrSly32g897xb3eJuFPfgQ0b08pWfuwmpz1ySFr+lm8BpYllLv1vd4s4\nvxt0x7/4+uectqtA2uC9+f/uddqdZ3DvxQFpLZroAkUvOgnpTusja0Rcx0+kbXW2MZOC/WLIom5O\nvAe6ppfkMt4aSUus6qJxnQdN1qYlsg06200KezZjjMcDmmdhNaiXuV5Q29rqJXW/tw9zpGkl3lM6\nJuU2RSRzKqIxKSmUcWxv+N8+h/HuHJaSizOvnHXaaxaubX82vK/baa+685phvxEK6kEHLLCozok+\nzLPUACjB8T5p3cZyniqyBGd7TmOkzeAsUfYS3fLzvCRlql4P6VcyKS2dGTMzoBQWlGIMIxckxXP8\nXVAmJ0MYj3i3tEsNNGNeThwFBbX6fdKenqmVkyQxKN0krStHiIJq9vzaW/hXwVeHPluYk/aQE1dA\nZS1djfVhU5PHDoLymSLqvf15TEUP1IIezXIOY4yZ6ac+JdVGZARW9n0vSKtElgT+/DhkMG+fk/KQ\ncaKdfunzn3faHQNSrto4hWsoCaKPwguWFegl0E49RHe3abW2XWI2wfaImRmZT3nt+MhOcuqClI4E\nw8hRbEM/Ny7v45b7YO04N4V1alPwWUI7ThT8qUv43pI6KTdJJEA17/jB804739rvGCNnaL9wyZw+\nPQmKcp6X7Fwtmcsi7R9TF0EV91kS2TzvdY8n/2pMnkJeafvYRvFa5w+xJ7MsOCdPzqt4J3LiilUN\n9P8TIo5lFmz57C8rFXG9bx5z2mwFXU3yk66fHBXvWSA5mbtkv9Muapfr3FuMOcf2pgMvXRJxLNVq\nfmi10+57Rtp+e6vwecdeRX/t+oyU+cS6bpzEMNgKOWNJu7STXqTcETmFfadwhexzzhVxkkOOXLZo\n6JSjvJ2Y+z37Doi4QCP2pJGRnzntZC/ZqW+UkuOxg9gzZ8lSt6BSygBaPwlZP+/nnxy+S8Tlk3wp\nSBbvHT8+JeKW34/xvfJd5PHwWim5dYevLanJBko2Yx/ueU7uNbVkw8zyIp6nxshSCZw7ytvXirie\nVw857Vw3+vCll94VcSuqcU1vv4m5/9u/Bz/46o1Svjg3h7OF148xmItI6YO3Emun8s5mp21L6VjK\nxPMik5LyJz4HsDX3+CFZaiH3BubUfJKmxa7I/JcfwGsDLyDfzCSkdLV0NeZdAZ3tVlhyPFcI//bN\nYf/018n1EqqBrCQx2e20Z8nSmWVqxhgzRf9+6zxkxatr5TnMTXLuIElfU5Ysj8+i7gLkK5ZdGmNM\n548hE61YBdlkzNpLJk/S84lMtVlBuBXz3uWScnGWgyXJKj524doW7QUkN+W9zxh5FojOYI2kLev0\nqiL6vYGsq7/4u7/rtG96XO7hNRsha5qewDjyGc0YY6aiKK/A1xPvt6yvl6OESSKCMfCWyDxkl/r4\nJWJWqYVgQ9GvjfsllDmjUCgUCoVCoVAoFAqFQrGE0B9nFAqFQqFQKBQKhUKhUCiWENfluC0STb7z\nWyfEa1yRuOI2UHbnopKmlioBfT2dABU7npE0b6aKr1rdiPdHEiKufj1V4Cf66Ph7kEKteORh8Z5I\nzxG89ilQn/Z96XURt/FhUEaFJMeqcM7ypZZHIVE6b1FGazeBrliUAcX46vOSHrz+U5IamW00PbDq\nmq8Fm0AFZZeGy69Kaunuj8CxKkPjaDsHVbRud9ouFz57uOclEVe77FGnnZ8PKmKoDZTj+jFJA1tx\nDyi40x2YPxvukZWuo6dALfWU4/pivZJSlxzDfdQ3g0ZYUy7dJRJxUCBziQJt0/VLN0uJTDbhLQMN\ndvy4lIQwNTfPhyVtV1pnZ5TYVVAlbVpn0Tr0RZJkUkwhN8aYZD/ohek0xiovD1Rcj0f2ZTCI9TI+\nBHpx0XJJ8cwl+cDo26B8zy/IPs/Nx9qsewjznOUSxhgzN4W8VLYFEpDBV66IOO7LGwF2abDlZOXr\nMX88JejDwTelc4a/BHPh0EFI7jIWFbR1EGNSWo1cydRwY4w5dgxrfcNaUHBnyMmi5m5pCzD0lXcQ\nN4d1tGWlpOu7SUZaVYu1zZJUY4yZTYMuW0n9cGavlEnVlGA+CXrqvJQ/xSflvpFNpKcxbnHLFcpX\nDUprJoF7suVKrmLMA16ntmuZj12Y6HvnLIcAdgxYyGCNFLaiz+fn5XsiV7BfRYlyW9ZeKeJmR/G+\nomrk9IJmKa8MEs05TRKs0m2SDn72p/je2uWQonC/GiPz0I3A2FXsIbmWDK5oFRyRXEHIvGxadgFJ\nCHyVOBcU2e4sfoxjsAafffZvpXNj8XrcMztfvvNFnFWuWLLbXHK/YufC+nMjIq7hfaD48/ltukfS\nt4votYnjOFeNDMl9oqEa576tD0BW3vUTuWYb7pc5IZuIniZ3uapC8do8ST9myFnRPs+x/GuUZHsl\nVZJ2zm6PDffCsdKeOyWNkNGMd0OqkEtSv3y/lASmyPls7BD2u6IP7hZx0+Og55csx37nq5JSYnbL\nGXoVkq62j9wk4rhfWj++w2lf/t4hERdokGs92xj4GSSWvPaMkXk0PY01UbxRnrfmJpFj+cxgO/7N\nkGvgmfPoG9v18wtf/rLT/thDD+EaaF0uLkp56cICzhn1j+O8Gu+VayxMLn+c1203LXaT7NuPay1u\nlucq3ncWKf9PWZKYkhbZt9lE/SO438h78ozK95smKbAt9628haShJLcuXCbPntUrUTdg5Oo+px2q\nkrmm+/W3nPbQYcyJTnL/qSuVMsezvYhjZ6CaJpnTeV+LdaGfXSG5hydHMIYsJ83zWC6py3EdLNsK\n1EupVuWuJnMjwXM6PtYtXsvJQ+4sX4ccyPvELwIRx3J7W97H99kbwVy4/8nbRdwsnS3CdD6Zp7Vd\nsU6WXuFnEl5j/nK5T7B0Ky8Pe3igTY7P1CjO2iwXt8exessmxA3h+cJtzYtpegarlIpcY4wyZxQK\nhUKhUCgUCoVCoVAoloYQb7MAACAASURBVBT644xCoVAoFAqFQqFQKBQKxRLiurKm4GrQrMIW1dBT\nBNpknKi+CxlJrfcWgIJ0dT8onjZ9j6mCm3//95127+nnRRxXRg41gHIW74aDQU6O/M0pXAP61dCJ\n4+Za2PtdUOBaKnHdJTWS3lqyDP3ClNZESkq66rZDCpRIdNK1SorjjQbTe+0q6lwNPkHUy4YtjSJu\niFxs+sdBb976ISnJinRDQpYYJHeCdklB7bv8tNPO94E2PjuBPvS5pWvI+CFQJct3gf44bVEji24C\nR4zdhsq3Sno93/ul50DFtr+3bA3mwuQxKQlhpCdp/B+6ZthvhNG34EAWWCbnI0ueQuREMTct5+Pw\n66DFMr3Sdj0YeAkU4yDRSfMsKnbTE6BvsxvX4iLkJtGolENefQlrrOJmjOGlf35HxLGDzegA5lvL\nHa0iLrQSeSmTxDy35XapMdAic4mGyDIjY4ypIFrtjQBTa6u3y+9iOjI7jdiV6wtXgNLcMIDx7h6T\nUq4qqvifT9KZRKeU4uTlIocxTZTdbGzUrsVauiuD8a4qk/TjiSjRsnshQbAd0eboM9jJ6bYtUrIY\nG8PnZSbQL4EqWSG/0Cupq9lEiBwlps5LR5eps/g3OyoVNElZQIpoun0HIFvjfjDGmLr16Oepi1gH\nfut+fTW4X5ZtjJAkbma5lOSMkOsXS16OPiXdgJobkbtZLsYORMZIeq97Dbn2WS5i5WHQtEUeslwP\nkkPkerHeZB0srfM3SOo4U7Hjl4l+vLtZxJVsQN+Mn8TeYLs6ZWYhuchzI1fW3i/zGTtxsKtQDeWG\nP/yf/1O85+MPQ8b95R/+0Gn/8cc+JuKCJ8hd7y7IFH1F0omHnV+Crcg15/bLs9PG34EMhp2cmh+T\nbpS29C+b4HXlCljnBZK6V+3CuHX/+KyMO07jRnT8sx1STlpKLnIXnsVZtmmndB5NLUP+8pNj2+gw\n5lHwrJScNX0Uec4bRg6NjclrqGqDA8nIZbgLhVdb7kokjywi57/ZCSkrCJLD0ZUf4PP8NTK/DO/D\nddSvMFlHyVZIjXNdcu3w2bOWnG94vzdG7vFekhiyI6kxcp9trcJZsXC53Lv+cOFJp93egFyXptIN\nQ8fl+SbfjznIsuUZkoAbY0yKpKKeIpK4Ws9F/UeRowNexLmtc8sMOYHNjqAfSixpaNoqO5FNdHwN\nZ3/bBZPPouyONnLCcm28GznF1YKc3PnjwyKubBmeVZKjyFepiMxRvAcXNyGX1d2GfPDXX/y+eM9l\nOn946Vkg5Jf7Ux6dj9JRjPWJN6Wss5qchprug+yqav1mETfuRr5iKW3FNulaO3GOzk7SlDQr4FIi\ntktbapzk4kUYx9Bq+fvALD0LLdDzZ2GbjFuYxT77yb/7FL7XLSVk7BLlcmEcc3KopEOeXBOJBFzB\n3Cwdd0lJYLQXz+ZeKhng8lpnNnIEFU6o9TKOZWFuGsfZSSltr2i7/qFGmTMKhUKhUCgUCoVCoVAo\nFEsI/XFGoVAoFAqFQqFQKBQKhWIJoT/OKBQKhUKhUCgUCoVCoVAsIa5bc4brV+TkS4vZC38PXTrb\nP/a+2y3iWFtfvhO6TdsytKQONtZXjzyD77VtrFthI3bySy877cQsNH++qlfEe9jWcuIIdH19EVmr\nZOdqWBPOzkHjdvCo1BBua4dukLXle/7iURE3eAIa3op26MtmBt8Vcd1P4fMb/tJkHcNvdjttu6ZB\naBa6zukh6FZrbpV2bad6UPNkgGrOVL0i65+s+BisGoNN0PAOv9Ul4kKroJHOJKG/ZYvYcLXU8rF1\n7vgR0oWSvtgYY6InSLe/BhrHvU+9LeI2LYNWvGYjrJyf/5f9Iq51CrUaYlRXaPOdsh6G16pzkk2w\nRfZCWtZwYG0zW0GzntMYY1ykbZ7pwT0tLkjb4crbG50210Aos2r2sF3eRCfsmAtqMW6Tnd3iLaWb\noC2fjZJFuaUz5+srK8Pn+WtkLRGuERCoxJwaOXJJxBVvgLZ85ADmsl1zhrX1dbIcRFaQn4fxiV+S\n9Z9C63D9fP+FxXJ+c92o8mqsscVFaSf99E/3Oe0PfmSP0871ybS/nHT3hzvQbzuLML8rd8u6Cmz3\nGqc1wTVmjJE5lmt8XBiQWvObmqEBf/fiRaddEZK1QNrW4Tq49k46Li1Nhc12lsF1xmzbTF816omM\n7UcfJckq1xhjcsgCfvljqN10+ekzIm6e1vDABMZ9mZVrDnwTuW3dDuxjYbIJtq3bF8iWnmsCrN4u\nheyBZsyx+krUohh8TdrQl5C17eQZ1N4pqJNrlmvZlawnD0lrr48c7Tc3Ep4C6MGTA3Lehtf8+rUY\ntWoMcf2q2ttg5enz1Yk4vx9nn4sHvoW4cmnfW3Fro9MepnpBL7+Beg7//XOfE+95rwt765c+/3mn\nXWDZ1ZdtxzV1/eA03n9V1jXZTPti136M8SOf2iPijn4NdcIqq7AWj31b1ofY9tmd5kaB0r/pfbZD\nvFZ9N+Zx3wvYn/zWfCyhvSFxFbUs2pbJWg8Bqkny1Hf2Ou2GLbL2UuQk9peqzZgTy25FnR+2hzbG\nmGGqq7LiAzhf5pfK3J9MYk2UNiM/z87KuiqDB5DH+VySXyDr8niopsSyJ1ADY+yEnBML83JvyTZm\nqc5FysqVngLM4zw63wzt7RRxReuQ6/g5JByUfVi4FmdCrq80Oybr8WzfjtpJ8QGcjblezEJG5gOu\n1ROhs1PdffIwkevCfSS6UZMpOSLPYi46L3B9pdGTcryjCbyv7T5cd/SkrG1UsqXG3CiU0WdzLS5j\njLlK+aaQ8n/77+0QcfFxrJ3pTjxnVN4un0e6XnvVaU+dwhgEV8q6QX/6xa877f/xX37XaQ+/g73Z\n65K1FDNU4+/uDyN3VW2TtbQ6vv6G0z57qdtpb39go4iLdeAMxOdzj0fWA+I6M4W0517+uqyjU9As\nz0TZhq8Mz3TJcVmnjs9Zk1fJht6qeRU5hvNd60P3Oe25OVkXketTLizgfJKc6ZFxlH8yXsz1/Hys\nbY9HXkM6jVw+O4XzzVxM5jY+N8/PIi/PRuUaS43IvPRL2PXlknGs+0AIe2mBVQYx0oU1EVovbcCN\nUeaMQqFQKBQKhUKhUCgUCsWSQn+cUSgUCoVCoVAoFAqFQqFYQlxX1nT5R0S7qZFUKpYRFRMtyJ0v\nP5Lpm0wfmpuStlLvfPsbTpslNMUBSUl8u+MfnTbbnH3ysbudduMtd4n35OTgmk6ch2Sq0Cdtwuo/\nCNoa0/Y/8MmbRFxFwx2IG4QEJjk5LuK8paAs970FKVPIsiWftywBs42ae0DvHX5FUkGTJDsLFOF6\nr75xWcSV0Di01ULeYksprnzvJD57jizFrHlRchPJWyZBEx0m2+TGjZIuHG4DbY2tpW15iKcS9zFw\nCHF1JdJCbTIOmtroIdD3aoolNbJ5Jd0v0etsKvzC7I2TUrC1dGpI0uu85Xht7BCsF4ssG0W2SS7b\nCcq227JvZClFAVltTpySNL9Zove6S7CWZobQL66A/Gy2qptPor8SEUnnXf3ZrU578jyoubZ8Jc8L\nSmpyAnOnfLOUZkROg4KZQz9JF1gyqUVLMpZtlJKMY/K0pByPHkDOqbwDNF7bKr77AiijWz693Wmf\n/7KkgjaUIc9Md6BvbAkZ21BvL4QkhmUmc1GZr0tInpZ8C1KceZLKGGPMLMkoR0ge+NBmaSN5dRTU\n5FV1kF+UFcrx8ZRinmUSmAssNTLGmLhlXZpNxMgauLBF5pS+n0BaUdgG+rYrKNdBhtZimii3yx5c\nLeL2ffOA084jDccze6VEc+dqvO/lFw85bc5l9aWl4j3vkHzsFvpslt4ZY0w+WRSHWvAZjY9IWafL\nhdf8lRi30Xd7RVz5duQetuYcPzYo4uz8lW0Us32vRU3mPLNA1rvF66pE3Pwcze/3MPbJwSMirvH+\nLU47tBz9dOErUgJUTnm5cCXm1upL2IMa10rJVPOGRqc9eA592PzAKnMtsNRl7byU75Rsx3flkzwt\nauUrlk2xxXrIOled+DrmY8OXHr/mNf0mYMl6xQ55XpjswLV76H7nLEvTXrIBZ2Hd4LA8z+WO4Jzx\n6GO7nHaeV55tkiSViUcw99nu+NxZKfO++SPI4yPn33Pa1WtvFXHDFyAlcxeSnKNMWrz7q5HTu5/D\n/VVskdLk2BXcY6Ib+bnlE/LMO0aWzjcCeT7s465iKRUtqMOzB+dNT4mcZwmSH7LtcSQqpRnLNqLE\nANtx51h7SJJkDCzZTPTh8yp3SrnN1BXs1Qtk5Z7oiYq4/uPoz5JynLHs83QqjetL0p5mn6fDBThX\n8V4YaLZsfq39OZtIx5Azr37vlHiteDP6b+ocpC2lG6TMqqCY+rkf/TzyVreIYwla1fsgHUkOyzP5\no9uxrsaP4/x65Arkms0V0rb5kx98n/l1iI3I/an+Uey5LUGslwFL7sv3zrnh5Df+SX7ew8jXXdR/\n9Y/LM4FtyZxtRC+jn8LLpVQoWIG9JzGBc6gnIM9B5dtxhpgaw/nQPnvmezBvZ6cx3u6glPsGQuiD\nqUk8Y7KUKZGQz6yxbuTrUDPOEplZ2X/8W4S/CHGxOTne1TsgPZqfx3siZ6RMqn7rbqedTuMa8vLk\nPRU3rjTXgzJnFAqFQqFQKBQKhUKhUCiWEPrjjEKhUCgUCoVCoVAoFArFEuK6siYGS2OMMaYlfLPT\nnrzSjf9vlpKQkX14zRBjL9goXX6KyNnngx9HtWuWyRhjzC1E/8wQ9ZhdoWIx6XhRXn6v0+7oR7V7\nn1tWrjdE+WMJTWWjdCkYH3sL10A0y4wlT0pPQ/rF1Ey35fCxuHBjK+HPRUGbZ/ciY4y5egj02jxy\nXZmakZXrF4hu+e5l0Mfuvm2T/LxLoLoFvLhPl0WVnyH6IdNEV93f5rRz3db0pGtIjmG8FywqaN4U\n+n06CfqZ7VS1+m581xRRtluapDMNzzOm5fWelFTfxupGc6MwG8F92NTXGXISKKWK+SNvdIs4bxVo\ndcOvg4pXuVtSc9nVJXaB5DBuOYYFTZjT77121mlv2A154Oi70nFlze+jOn/3D7FOw8tk3mAJVTm5\nYcR6JdU8VAU69+hZfF6sZ1LE5ZLbXCaOdeoKyBzgrZAyymyD+9BtOWfk0GvjB9Fv4fWSdru6FpIR\nlpBte1iuxcn30IfBVvRv0VopF4leAM14+gzajZ/AOE5dllX22TFs50OQKL32k0Mijp2gzvaC4v9W\nh+WsUoT9gF3USuvlvGAXpsgpVMUvttwCbEeWbKKQ5urUJSk5K96M++WcnxqX+TRJ4zZG9PfqXXIt\nNpI0LVQHijpLkowxpncM47PnNukW8UvkWJTi5VHMgwKSRhZvlNKdCK1hpv5XbpNngsQEZHXsYGBT\nmccOI2+yy4O3TDpQ2XLLbIPlKLNjUlYZPYH9IJHEvrjwguz3gkaM8ew4cnT1nXIP6fja6057+W9j\nnYbXynnrKUEfzAwir7fuRF8X1EuJ+akfwM2j5VbEjb4l5WQhcqkpJec9tzWHJ0he1jME6UyhX47P\nILmH3fohkg8clk5sKx5ab24UWHLW/RPpqsnuJ4Em5JfyrVIWxq6BeeS+FTguae3RDqwxdokaOyrj\nEnSOKt+G7xrrw961fqeUKnCudpMEyx2Usjc+b/I1zIXkGPJ52EUSmDy/dKbhfMoyuskOy+VnvXTf\nyTYm6PxVaJ0FWNbro72voEGugxQ5HZ05j3PtTVulfGBoP84+3IflO6S8j89V+dRvwRZcX7xPnjNY\nvlpB88x256rfgTzfcxDXUxSS5w8/PaP46X4j5+X4jMewn1SnsDdPn5fnpYV5rJdVu01WwVI6O+cP\nkvNc4/sx9/1Bud+Nd9GZcCVyIz/DGCNd8oZfxVhv+uPPirggPY9e+SHKdLAjne1WV0guxZ5iSOcq\nmqTr3GQEazMdJzcga6+/chilJG79v6nkhvXcN/QWroP3BXatMsaY5CBJt242WUcZuRYvLkoZXLS3\nyw43xhiTmy+v0V2AueAtxDqIXD0h4uI9yJ0VW3kuyPkzfAHy7pJlOJfOz89QW+7hPjrLR85QyYAN\n0nWruAxzITKE7wmUy3NQJkOyKzfO5Pl++YwTj+NZyO+HQ5/tqDczjv0kHJYyUmOUOaNQKBQKhUKh\nUCgUCoVCsaTQH2cUCoVCoVAoFAqFQqFQKJYQ+uOMQqFQKBQKhUKhUCgUCsUS4v9zzRkhzjTGXPo2\n6q60fBR648vfPiji6h+Bfm3sKLTI6fisiEsOwGIsk8Br5Vul9d/TX3nJabdSPYP290PXPDct9Ykn\n9v6t0/7sFz5A3yN1oPv/1z6nffsfwC771Pek5VluPvoi2Q/9X/muRhGXk4e4gecvOW3b2m/NBzbg\nHy0m65gni+fISal7y6FxjSag2esflxrCFdXQHO/Ziuu9ckHWXVm5Cfo9N+k1bYvijmeg/2z/OGpW\ncC2L6Fmpq+V6HRNkg11VKy1iWZdcTbbQs3NyvNnesKsP9StWWhaNeT4sk/Hz0OAXeGXtoFiH7LNs\nooxqyaQiUtPK4xs9Dx1j5V3SXjNyGNrIYAs0+LbNL1tcc50CW1t/fi9qTLAV8vlvYU488WFpa9/7\nAmqNeKuhCa3aJa91LoY1nJlFzZ9Qo7ReXFig+jF0HzOD0lKRtcNcuyhyTNZHKFor67tkG7EO1s8H\nxWuso57pg97dttJemIMOeNnHkffs2lWs3eeaJzm5MpcHqR5DfgG09bEe1JTIt2oVcO2DSarP4XPJ\nuMNUn6oyjJopfo+cc9s2UQ0Gurx8q+4Ia+0rNiAnsZ28MTfWbpL7r9iaL/0/R54vbkdNl+4fy3oY\njMJ69Iu7UOaUklXQni/MIZf9248/KOK49sZiGu0EWXdeGpTrt60eWnBPBepR5Vu1kPxU4yTUilw7\nMyrz3Tzl7nA91rOvMi7iRvcjb7hofINWvbqh16Fvr19hso7Bl2B56quU86eS7FmPf/+o0264S9bZ\n4TNE+S3IlQMvSVvPwHKsscE38L12/Seu1ZDowv6UT/VTEr3y/DBLdrsZqhfGNcGMkfVspmgfy7fy\nf2Eb7qP3zHmnfc/7bxFx5hiaKbK2DbfLOjrnv4c6A03/7QmTTUzSGSFsrcV4F/JXWRvOocmYPANN\nnkVflNyEnOIqlOug9n04nI29Q3WTVkgb2eh7qG8wTBbAy+9HjmNLemOMGdiL+VK8HnNi4vSwiItf\nQo2T9j94v9MePS9rM04cwz2y5TRbEBsja0hV3Yzru/TPb4u42Qnk0yp5JM8KuA8nOmR9sxDVp+Qc\naKzae6OdeB9bUHPNQGOMqdiEMR47iHG8+M/vibjq3chhkQOI4zo91bfJxDR5GTmWra8jvRMirrwF\na2zDv9nmtDu/Ky2ox/mcW9GIF86LMLN8A+p1cA6pukfWvpq+dOPOqJyvw2tkDmj+AOp88B430SP3\nRa53OLOIPGefPyp3YGyme3A+Sia7RRzXAeW6apF+jMc9H5Z29aVrkOOn+zHukQH5bJuK4Hkp2Ii9\na9Sqi7jucdQTcbux7qf65bWGWrEGuKbm5LsyXy371AbzfwrptDx7hupQlyk1jfVWUimL38zMYC4s\nLmIMFqznQK5bl5lFbrJ/H/BV4KycSuE5prgYe1JsVNbDKa3DNeV5UZctlZA5NZPBs0K4DH07Nyfv\nPU5W6vmVuJ7yVetEXGK6G5+Rjz5KTsrPC5Rdv46XMmcUCoVCoVAoFAqFQqFQKJYQ+uOMQqFQKBQK\nhUKhUCgUCsUS4rqyporN4C+OHpLyFS/ZpvW8ANpqLCIpzIvzoB7mksyHrSqNMWZmFjSmoZdhPRZo\nlVTnuhJQv769b5/T/tafPey0PR5Jb51bjc9me+un/v4lEffYx2GZzRS9LZ/9ExE31P+80x7ehzim\n5BljjCsAuvDazz/ktGdi0uLS5ZUWldlG+joU/6btoEPGLoLqZ9uM57KsjX7Sa21vFHGRi6AIe0ji\nULxOjklFA+h93G+9P4dVqb+kQLyHLZ9bieY4eEj2Z9nNoN6deAO2Zhv3rBVxrjDolfXDoBF2nJD0\nuDU7Wp22rwDv6RuW9NuW9Y3mRmF4f7fTDq2WduiFLVgTmQQovOPHpIwhvAZjwNKM2BVJw5w+J+l3\nv0TAsie+iajI//lj33DaD915p9NmO1NjjFlIS2s+5zu75DV4ikDF5muNnJW2h74yzJGCKshD5qbl\nWlyYAxU50AyatG2dLeRQv+pu969G8WZQGXtfuyJeq96OeespJUngvKRvB0mu1PssZGKVlg1zvg9r\nxENzfc7KU2wZmp6CnCzYgH5KDEgpBY9P5R5QjP0X5RzZTuN/4EVQS4sK5Npm6SDbxpff2iDimNbO\nUqbUqNx3ht6DXG3d+01W0fsM+rxkm5TZlW7Dnpkk2rM7ZMmzhiFZqWjBPbK9szGWBI1ka4uWNM1H\n+3F6CuPrmsR4btkt6bcZog4zbby27R4RF29ATmaac6w3KuIKqjD2Q0chWy1ZJ+m7mc2gOccuY93b\n8j1bfpdtxMnyuG6rlCfkuiChratGvj301BERt/VR2GLHOrF/Tg3J9cI0+sbbIDWw11VhE9Z2mPbM\noz+GhmjTY9Iqfc2dkKNMncae5G+UazF2hWSKJGUqapMShOhFjMNdd29x2mf2d4g4lilyno9dkLk8\nYMl/swkv5X+WMRkj95rOZ99x2qFVUlI0T9IHptPHLsnPy1+P8eB8Zcvjm7Y0Ou05slfnuExSSm3Y\nej1O68plyRxbPo1NKZXCmXzWsu8NkGx5huRx1XdJ3XxmBtdx4e/3O+0cywrZtprPNljS6w/L83DR\nOsi8WJrN5zdjjLkyDLlCXwRzeFNaShHf+Qbmwunubqe9rbVVxA09jf2qvhRzhssVDO67IN6TGsU4\n+GqQkystee6pt0neTZLK0q1yP/F2oS/O/Aw20wsL1jmKjhI5eRg7zmPGGOMtl/tuNhEg+au3VI4h\nn6t4j0sOS/l55SbIn/Lzkb+Gk8dE3PRVsiFeRntuXEqAilsw9uFmyHjr45AHjp+Q5+RMBuuFn02i\nltyOH4mi5/DcU79FnlmSQ7jHmRp8V8+/SElX7f2Yf/le7McVe6Tkn6+jptFkHWPnMTeDJCk0xphc\nN9acL4R9Y/jyGyKusAZ9nZ9PttrFcl64XPx8j3mb55Zrmz/D40E5k2QS+cAdsspR5OHfPh/GJJXq\nEXHpJM6O7jDud3L4uIhjOV4qTvtsobynNMkoMyShsu3lpwdZnmV+BcqcUSgUCoVCoVAoFAqFQqFY\nQuiPMwqFQqFQKBQKhUKhUCgUS4jrypqGj4A2uWhVRl/1CdB5E32ggfWclvKnsSOg7nDV9EOnJEX2\no3/zpNN+/j8847TXFkl606Uh0NZ2t7c77b5XQKP210g674UXIG1p3Abq/xO/d5+IYwogU/SGB18Q\ncYl+UJELV4Du2LBBOmgMXIBs6uxX8Rm2m0F+AJTgsttN1tF3FhT/tsfWi9dOPgXqVkMr6OfpoYyI\ncxM1uacbVC2P5c6y5lFQ59lFiN1EjDGmgvot8i7mSN3doCGyI4IxxvQ/AwopOzfV3irlHKNvgba2\n7XE4QQ3vl3S26jtBF4wlQT/e8SlZeTzRh/Eu2Q7aqW9AzjOmD2cbpeRaZlMDJ89BIshz2K6Yz5X6\n58ltJ9gq3SbS8+SAQa/FO+X9PXsEFP+/+YM/cNqVVXiPlTbEuIWJXl6xYoeI46r77MgUapHXKpzI\nTmEe2ZKIPKJNT50FJdF2iImn5LzPNhbmsQ4a71spXht5FXK68RiosKVh6brCsqY0yVbsNTZ1GdRu\nlruxi5CNJFG22QmloF5ewzy5oLG0bPyIdL8av4y+LiCHpoYyKc1jKWF1Eailw3ulxJBlYWNvQc7I\n69IYY2q2S2pxNlH/KMlILkqqc/QU+sxDFHKWWhpjjOcyXmN5Vrx7UsSxBM/QWrJdD2bJwY3Huugm\nUIArtkh6fzqFOTZ2FGtnbHCfiBsnh7/Sjejn5OC0iON5wJK4vuflXj9L1P/KuyHnGHlNjrXbcs3L\nNvJz8bcplgIYI53P2FVt4/J2Effu03ByqqR5W1Ir6eAszWAZ6sDLl0TcTA/2Gm8V5sWaW5ErevdK\nJ6gFSrIBP/osbMmVWC4eJomOnaPLaIw7/hH3Z+/1LEXn+cd7izG/6nqUTUyewlnElgQ2PNLmtOem\nsb97rXzKznOhRoyTvYcsUn4tvwXrubBe5p50CmOYof1kgtZR94/Oive0fBIuIexgZrvUDOwlp692\njKHbkvjMk/yT5zLvv8YY4wtgjnEO9ZZZ7neWbCrbSA1BWpD+3+y9Z3Sc13Xuv4EBBsAMBr13EAAr\nwN6LRKpRhaJ6s2RZsh0XJY5LenJzb26cdXNzY8dxHJeVa1u25ci2umRJVKFEUhRJsfcGgiR678Cg\nA/x/yMr7PPtI5F0rHvzxZf8+HXLODN5yzj7nndnPfhx3JXaK8tPzgM9xlVs+D/Hto1cgxfzJG++q\nfjdUQjozvxDyC3ZGEhEZn8C9S1mCa82OV+zWKiKSUIQ94SDtB92xyWUD2Flr0pErhUogHSydhz1g\nqFzvW1j6zOOn/7yWirrreCTJp7176+5a/SJpgJJp71+4RjvAdV6GWxVL7pLK9L6vmSThSaX4vPQs\n/XkjI9iP1L2932sX3QJ5YHy2XseO/tNur52Sj+s/0a/HZckjGEeD5KDnzpWWg3iOGaMSE7mOXCk6\nDnMzlp4JJ521nmWY00FKBdaN8bB2Ph4M13ptftZw9569JBfMrMC9S85coPp11aEkSiALY3qoXe+D\nkvMxbvnZwOfDs9BQm56LsbHYd/Rcxt7ClRelFGIP0lz91icej4jISB/GCTu2SZQuqzFYj2PPWopn\n04kxXV5ktFdfWxfLnDEMwzAMwzAMwzAMw5hB7MsZwzAMwzAMwzAMwzCMGcS+nDEMwzAMwzAMwzAM\nw5hBrllzpow0fuyaaAAAIABJREFUuz0ntfU122KzRWNugbYpzF4P7X/Dq6gZMidP22se/vZOr735\nTzd77Rf/9lXVr6UHeq6FxZ9sQerWPdh15ozX/up3vuO1P3/ffarflvs2eO3MVdCiBhJLVL9QFXTd\n3Y3HvHZf33HVLzEXOtXMdaR5ztR2dpeeRb2cuRsl4hQvL/Havaf0fVz8EGw5R8n6NdOpp8IW0imk\nZ05dqutXsKWcssxr0HrAcCb0uFnrcB9Z551YlqLew9aYgQIcH2uqRUSmRnB8XOco70at8YwlO9GS\njbCYrH35jOpXQPaTx16ERnLJg9rSdGo665VQYYBrWczyaxOOdjuxFHUQ2Fp6zNHIzn5iiXwSbHEs\nInJjFazJs0mnytrZtCo9PsapHgbragcHta1g30XUx/GRTj4hO6T6tX2IOkI8Z5vf1jbVoQroR1kf\nO9ymdeYfK8AQYWregRZ+zhatv2Vb5jQ6jHCtrvUzRNaMSZWo3RJ2rI37z+Ma+tMQs5q3X5SroSyZ\nB3Cv2JZbRGSAbGsb30DdjPzbdF2Tye2wPk8II76MjmvddHkZ1W1gfXqlrk3TdwY1XnoGcO/63tW1\nO/IW6vUlkrTuxDkp63UR8VMdhJwNJV6bx72ISIBsVvupbg3XVxARGSNd8gTdj7RluapfygKsNV2H\nsf5xjZjYWF0HJSGB1rgbUM/g0hsfqn5sA96+D/pqrn0komtF+KnuQVSM/g1ofAT3vvE1zIeyx7XV\n91CrMzcjTMWDqB/TX61rM/AY5NoWbm2PlVtRu6DvJO4jW76L6NoPE3T+XRf03/VRHZxAMXT21e9C\nP+/36bohuaWIvUF6T1qZtgaOewQxoP4V7MUScnVM7aEaa4l5XENDa+S5DiGvNX1hvZ7kFF29xtXv\nCtfr4/p/IiJdJ2BbOzWGmO+r0tvelDmIMf11qGETzHPrbGHNDKZizzIxoWtWJKViXezrwt6u8Aas\nq3Xj2hp4mPZeHAOuOLUcglTThOdYpzN+x/tRD6iU5lWsU6el8S3ULyq6Y57XrnnmiOqXkKdr0ESa\n0FzUpQg6+yiec+17EH8y1xSqfqdqar12CtXS6XVqyZyow54hm+zg1y6br/pNDGCe9p/G9eX6LjFO\nPSXe83IMYEt1l1iKrzkrdf2iC69hX5Seq/fDTBxZV3cfwbhPnqvXz4/tdyII26HHpel6YVyLbWw+\njunCvndUv5QFeC2B6h4d/2e9JuXQujbah7nT0r5d9es7h5jMsSIqCvuZaGd9Kr8f87d9R63Xjnfm\nwI5vv+e1F6zBvifWsU3PXY61ldfCC7/Vzxm8h/YlXP3RnPe508FgI/Z27n57tAexPT4Dz7EpxfrZ\nigvkXbmCedDTdFL3ome3/joaIxS/RET8IdRlmqCaO5P0HBOXosdc9wV6BqDnomCOnke99dgP957B\n86ss0s9ZIx0YZwnZGAvhpj7VL3cF9hUDLYg1aUW6Xt1Yv6475mKZM4ZhGIZhGIZhGIZhGDOIfTlj\nGIZhGIZhGIZhGIYxg1xT1tT+IVIISx+qUq91HIL1po9S3tsuaWvRpu/s9NpLH1/ptZP7tM0jp1uy\nreW6DToVaOs3bvPaI5QKWrr+dq998T1tfV1+Fmm1//KNb3jtqkeXqn7RflyO5EykOPY061QsTp9i\nW64z/6JT6nqHkAI2axPS3gYuaZuwssd0Onek4RS5pqPantpNe/xPBkd0CnMSWZlFU9rpeJ/u11JN\n9rtknTs6oVNVZ61Fqh9b9k4Oo99wo2PVSlIAtqQbdCysM9bhs9nyLFio05QbXkKq+Eg/ziMh5NhS\nktXm7NWQOA1c6FL9wg36eCMJW/V1HW5Wr7F0sOso0v/Sl+kU2dYdsJPLoPTZwcv6+o2QzIlT+UKz\ntYwhVA6ZxEgb+mWsRNqlmzLKsitO2e48rKWImcthVdq8A6nXrqSLU0hZ7pO8QI/r/nNISy68C7a0\nLM8REYlJ1CmpkaZ0PdI/L247p17Lnoc4NTGAtE7XhrP5CGLvhRbc75WLtTX35CDGbXMLYk5+lZb8\n8OfHpZIVL8WG1h2X1XtY4sZS07h9Or6E5mLM+LpwrQ9e1NKq64OQeDW1Y17FN+k5lpmJlNQclQas\nZVcdp7V8M5KwRM5NrR+jeMgyCBe2dvfTNc9crS23o0he009SP3+SjlG9Z5GOmzwX8o4msl2OjtXX\nnONa2hLIpKac4+4+gL+bsYHmdqyW17D8kM89fbkebzq9nI5nVEuBuvZhnMsGiTgDNTivliM6/rC8\nqPAmWG1OOcfYuR/vYyvx7E2lql87yS/7TmGPFB7V6dt7ziEm3JeOz+M5ForX974whHuSWIqxWb99\nv+rH8qVgKeYRS5FFtOSOZVKFjoSj9gj2h2wVnlyp93auvDaSJNJ5RPn02uCnfRpbbo86+4BQHiSB\noSKS2jbrtSFAKf4NH+Da+pP1/QgW4n3BVMzncDeuV84GPT78CVhLG2sgj3etjzm+sIwwfFmn1sfn\nYOzwHOtzZHQs4w234jP4vouIZCzXe4lIw7LZlg/1GhJLduL5t2MfPdSgz3nZWuzZFxTjuk9NamnY\nmQZ8/tLlWDPbL+tnlwDtX1kSf+FNkhgO6RgYT3Ps+BHE3iUr56h+wT7Ii1jWNNar5U9lm/G+a1lk\nD1Qjlk0Osc2v6qasyCMN7+E6nH1AIAcyEN7DFd6ipd2XfgO5XxqtGwt+b6Xq5w9hbg+1Y98dzNb7\nvjCNEb5+De/j77jXhJ8/8+/AeFOSFxGZuxhz+MgHkCjlpGjZDD9L8WspyVomxTI4js+BHC0tanwd\nUuDCb0jE4biSUqKvZ1Qers1wO/bbuYX6/gwM0LPVCFlNO+OR9wlJxbjfU1N6HkRF0d+l536OyT1n\n9J6P97UswYqP13uscBSef1IrsRa4EsCMKjz7sZTVtebuuQQ5Fe/zhofrVL/k3HK5FpY5YxiGYRiG\nYRiGYRiGMYPYlzOGYRiGYRiGYRiGYRgzyDVlTd2tSPdJ2K3T2tmJomVXrdfOnqXToOrPQ4LRTv1a\nGnRa3vX/Dc5JY8NICz1zRKdiz6PqzuUPrvPaPe0HvXYGVccWEYl+EblUOWVIuX3hH19X/e77ozu8\n9tAQ/m5BxV2qX28vKtlPxSHVreILy1W/cAtSn1rfxufNclwpYhO0e1Ok4bRWf4wjkXgXx5WzscRr\nz751nuo3VIf0QK5WPzGoXVdyZyMtLHkexoIrAWJJy+AF3G9OMUxdol0e2B0iQC4SF3ZdUP2yroPM\nJyGbXLwc6YwvgNey5mPMtDkpmdXvItU8kVLKi+/UMpJuN2U4gnDq3JVxnabbSvMqZQFJPeJ0yi1L\nxprfQOpd0vx01W+cJDVjPUjJ/FgV+nVwAxnpQazoJplapiOtiiPnhUlK43QdQzpIfhegNHTXTClQ\ngNfCtUj9H3fGpT8dabAsD5lwqsLHOG4Wkab1AKQarusK09OE65kY0FXo0/KQ8lpMrkdtjXr8laws\n8dqpIcylhBydTstjgYPFMMnEgiU6VbfxLOJ6vB/XzJ2z7JIyMYn7nRHS95vlO7NXQUbipoyyfKmT\nXPnSlmr3ovTZnyzXjATsMMAp0CIibe/Xeu2cm5EKP9SoU/B5nrLjU8NvtdQtiSRKPHfi0gKqX2Lx\nJzt58N8586uj6rWMPEgpwiQhHWkNq36JcxAfErIwdq44coGO/ZizE2GMy/E+PcfYaYpdGVzXg9iU\n6ZUYxpI0LC5Wy+JS6Jw792LOFtyl5QkxsVhD2hsQV2IO6Tgy3o04eqYW12leod6r3LcJexp26lq9\nApKNy9V6HQsUYC51H8W8zFihPzuYRXNzLu5dVJSzJ9gDGTc7xblr/ZInkMrOUtjhFp0O7vNP32+A\nLJnKWKgdQwabsQ7FUfznMSwi0kSShHG65nk367TzOnJx7K7DniXTiTWN7yCeps7HvU4gqVFapY6T\nw73YR7K8r/e0ltrwetUfhXhf9pnFqt8oyb77L+JYXfennI2QZiQk4zxc6XT3cchn80sk4vSewvnn\n3aavO8uuG8gZMJit7yNLbUMViG0+Z02/9X7MpVEat66sKXU+YmcMSauGx2jMFWer9xzagblTObfE\na/szdLyuXImSCv0kScp0nl1O/+tHXjtI4zY4S8d7lsayhNt1E+TxLTdLRLkyhbFVsEU7xbHrUQ/d\na1cqxGsrPzMkz9JSyWAQnz+eCBmg36/3sqFSkgKTzLHjA0hMMtZpaXLvCcSNHtqjpi3T8twOKiFQ\nmoXjG3GcKFc8sdpr8zNw/u36GrHkp+MjxI3U+XqMBQq1k26kSSzC2Jqc1HuB/hqMraxKlDrp6vpA\n9YuLwzFnZNzotTvlfdUvNa/Saw90Q641UKdLf7DLFUuFJkdxrd19bTAHMWC4E/ub3mbtksV7lWA+\nrq0ra+q9RLIk2q+6zoxK0k0S376LrapfVAyuZcqKjzvkWuaMYRiGYRiGYRiGYRjGDGJfzhiGYRiG\nYRiGYRiGYcwg9uWMYRiGYRiGYRiGYRjGDHLNmjNc46P2QK16reYj2PIuegj6SbaTFBHxp0HnN0p2\nu8WLtc6v/Ri09i2kTyzO1Hreioc2eu2+JtTBOfBve7x2fr5+TxrVN7h0Blq+FWVlql9KaYnXrv75\nLq/ds0RbdGUtgmZ1pBvnFBWtv+vqIz3lLNIEj/YMqX7hJujhMqehVEIc2YiVbtW1ZNp3QkfXSRaG\n6eu09jVUAS3n20/v9NppiVrnN28F9MIjpNk7tEfr/Fjjv+aRVV6ba3507tW1X3JvwWcPUX2C2Zu0\ndnOQ7JG5lsnH6pWQdnOgBu9Jcuo3ZOXgWrB9rNLvikhihr4WkWSKLMFTqrQGlS3C2SqTbbBFRPJu\nwXgfpWOPDep6C8lkQ9l9AXOM7ehERNr2Q1sfKoW+k3XtUY6VduvuWq8dTda7Y516Tgw1Qitd8jB0\nqcPtWgfKtoypVdDxT45pO2C2B+SaSa4dsGuVG2mKboE1Y8cH9eo1rq8yTvVZUhZrvXVUDI6ZbYmb\nz7aofkP1iCspVfiMjj16XqWthJaa64iwjWuHMxcTqM5MDNXOqX+3RvXLJWvokln4O259nJ5e3O/4\nUYyz+iO69kFBFeZiPK0tMY6V9mR4+ux72R5+8HL3VftxnYLBaq2hTluIscr1YgL5Wk+eMQ+xrfMc\n6i3UvXha9RtuxbwoupdiPAW9hU+uUO9p34Pxx7rpKMfucohqPkyNQJ89WKtrxKQtxTl1n0X9hrR5\nelGLp9oJg1TTJOhYHHOds+mgjc4/xlm7oyguZKzFmHPHWWwq2e0WUD2eKb3Y+DMxVpfkoFbZWJe2\nDH1r32F8XirF1EZ8Xn66rqtw/FXUXCitQI2vpm26FlvmWsT8EYqjYec+znkcNQL6SrHP6zyoa93U\n/PqE104txzFFx+tr1H+a5voDElGGGvqv+lp/Nf4u7yvcNaRwI/avY2OoUTHSqdfPeKppsPqRTV67\n87yuExVH9UUmqM5bxkLUwqt/86R6D1uRp5OtvVuTY4Tq+aQsREyve0HHg8khzNMpWo8z12sbWR4j\nBXdg4o+26ms0nfFURCRMtVHYyl1EJJHqnSXNxjibGtVrPJ8nr+uu1TnvYwao/lxmkZ5XyVTva6gZ\n4ywtePUakVXzUcOHLeXduhR+qnfFY9MXoz+b96Jc/6//lK6PEyxDrMhch3s82q3jS2xo+up4cfxu\n36Vtg6Nor9dDY3rOZ5eqfq07sd8MX8TacPjbO1S/jv5XvTbvRU7U/Vz1u30j6mK9twc1126+fhn+\nTl2veg/fq85mrNsjzrWc9QD2pe27cb7JibrGUfNvsW5nrMdzr1uzrf55PCNFJ+DR/NIvjql+sdNo\nhy6i61W545afoXobsdeLSdBfJSTklHjtnp4D+Ow+HVemJvAZ0VRLZnxAx5tgAfZF6aULcQwtuGbu\n2jzSjZgyShb1bL8tIpJchtg71M51K/UxcA24FNrTxDpW54NUL6fnHNZM91nIF3Pt3BjLnDEMwzAM\nwzAMwzAMw5hB7MsZwzAMwzAMwzAMwzCMGeSasqaUENI4u/p0+ujyz8Ie7OjPkLbE9ooiWq5Q/uga\nekWn/bYdRnplGqXgX9irrbRHwrCjaiNbsqq7kOpUs02nmS7YvMBr+yj9yrV8HB1CiiOnWJWu3ar6\ndbV9iM/zo1/PSW2Vxbavyp7YkcNUv4aU1Io1EnHYErduf616LW8OUrqiyXo57KSUs2XszZ/e4LUH\nL+p0/SBJhVi2seoWbfXYfAT2pENk4xoqT/PaU47tY9chvKf3PO5VeERfz5REpIZyevoHbx5S/a67\nDamNwWKkZLLdsYhIGqWftZyBdGT2XZWq36RjNRpJ/OlIlfY5KYQ9p8kylCx2B510zUmSRiWSDMm1\nFm07gvkTLEBarZuGmbcWVnqdZ5GeyKmQjW+cV+/JopRbTi+OitKpoIONSNvtIstCTm8U0enLnLo4\n4aRhc2ozz79ggZZSTAxP3z0UEYnyIXU8aUGGeo3T4aMok7Vmp5YnBMnOPSEeacrlN2mb3xNvQHbg\ni8eYiXYs1qPJ6rZlB+as/wTSj2OTHRv1VbiPsZTGG5embb97z+A+JlciFdTv9BumeDM5gvHD8UlE\nJIYkeFfG0a/vpE7/d9NxI0nXPqSq5mzW0tgMWg+UbeZWLb3k9OB+sgx15TDDbUe8djzFgNIHFqp+\n9b/FGsL2qRwrLjrr4ryHFnlttu8ddSSGqYtxD/rOQipS+rCOfzXPYrz5Y/B3fU66MduKjzRhDe4a\n1bIZttyeDorugrxovE+vIW2Ulu9fA1lT24daipi9scRrc7wdqNZyNx/NOY69rlX81i2w0u67hLU1\n93r8HTdmsY01y8rdNOqEFKyt53bs9tqpS/Qcm5jAPWkjy1k3BqSShXQU/ako5ye/1BXagjaSxOch\npfzir/ar12Y9jD1H9Y8Pem2W04qIxCRg3NX9BvOo+KEFqh/HtvYT6DdwSe+B8m9GTGgiW+1Lz2Mu\nZ67WsnG2dO4j++y8zdpWmqWSsUm4Hx+bK6RNjA2RVPyAnmMsd2UKtuq1ZNKREEWa7LWQe7hr9ySt\nySyXyblZW6fHpeLaDFzGPcmpWqb6+XyIo8GbIDMeHtZSnM7j+DdLoUvugmx0clhflzGKIznLUf6A\n90ciIj4ag7ynGe3XY4mlTGnLcY8nHMlF/zmsISxdis/SMimWu0UaXnN5zRARaac4UnQnxlb/JR0n\n2dY4iWR7TTv02lV1Pe4Bz8uCU3o859+G+7uO1rXcmzBHL/37CfWejFWQhnIMjc/W15LX7VSSIvqc\n+BJPlu8jdAyBPL2XLXoA42WISkK4z2LuPjzS8Pxz98OptB/z+1FeYTisZe/Dw5CnxcXh2ozGd6l+\nI12QjubOvslrTy7YrfolZ2CvMTGB58W8stu9dn+/ln91ncd3B/yM43P2v1EUK/vOIfbyfRNxJP/Z\nOKf+Rv28yLE3JoB9kFtWI9aRv7lY5oxhGIZhGIZhGIZhGMYMYl/OGIZhGIZhGIZhGIZhzCDXlDWx\ni0d+doV6jdMc80qQStb4mpYxcHrk2DDSs3rOaAckTtme6IcEqOqeRapfZs4NXrt2FBXvm96Dq0DB\nMu0E1fxhrdceGUeals9xaDi3F1W11z11Hd5//l3Vj1MZz7+IY8hbkq/6cYoeSy7iM3W61Io/ul6m\nk2GSDRUs1Mc40oz0uRhKk3Ur4U/0I9UtaQ6q2rvyBE6Pb+vD/Q6OagckH6V+cSo/u+X0tOl0vmyq\nUp5zPZwPuvbqVN2kKqRbV+/CPb3l8etUP07/j4rG3x2b0OdedwIpexUbIU9wXU0SinSaYiQJ5OKz\nm96sVq/lUnrvMKVDjtM8EtHpfL0nMf/cex0qRfp7x36k7KXM164rk5NI0Uwmt45+Sg1kly8R7Uw2\nTG5SH6uYP44UQk6XHQvpVMCBC0iLZfctdhoSEYlLxTgdpJRnN/U/+v9RQf13peb1s147f7mOUwPV\nSPlMSUaMSJqn5U8Mp7a379aSi+ISSi2msTrcrOWcAUqrDpAsgiUxvoCWprAjl3L1e/ms6ueP/+Q0\nfFdGkrwIa0jvUYzNGEdK0V6DsZU9B2m1/nTtYBCbPH2OBsEyxDKWq4pot6UESoN25yK75I2PY/4V\n3Oass5RWHK7HHLni5Mh2VOO6lM3BeOk5Bqlt4Urt1BKXijW36S1I52IS9b2+mkSs96x2DGE5B6cA\nDzUNqH7sNJK3BefL8VhEpPVdrOkVqyXisKufK0PKJWc7jgkxjtsJX5sAOQO6KevhBlrLaC6GynV8\n7PwI8TZEMYwlqfXPaWeeNErDbyJHpaQFOl6PpmEPkr8F61hsUMfU9oMYCzk30NrSqu8PO+KxbNR1\nWZxOiSG7CIXm6GvZewFSx9TFlILfos+j6wAc4RIKcQ/jkvU+rZfWNR/J3mMct8P2fZ/sgjbaSs6e\nMTq1PrEQMWWYnYvStTNjfCqOb7gL/Zoc+fDsJ9Z77cEWxIDSu5eLBmN7pA+SxZ5Ten+u7qE22IkI\nUyRRVe5eouUt8dmIWQ2vOi5Z5IAUm4J5WvPb91Q/3gexxC2typXQYl4EyJGFJRKuHDvcgjW8qxqy\nikFHvpNIzkYszQ47MXCgG2t1EkmZeH8komXLQ01XdzBzZbORhON3rLNPi8/FNWO3yKJ7tHss7z3b\nPqj12pW3agltXDr2czUvIx4u/spa1Y8lS3O+gLHfV4P7lOdIk4UcQEuWQ3441KyfRzooVg+R4x3H\nVhEtdes9RTGpUs/tqQna55L03pW+jk+jNE1EJLsKE3yw2ykrQg5IkyGMx4Fap7xFHknO6xBfYwJ6\nXITySDJcC0culuqKiIz1oSRFMBey4OYa7BHcvXzGXHz3MDyIGOi6Kk+MYl3MXofnysFGfb/ZHTQ2\nFvE6Pl2fe3wR4tXYCGJZfEA/e3ee1+u4i2XOGIZhGIZhGIZhGIZhzCD25YxhGIZhGIZhGIZhGMYM\nYl/OGIZhGIZhGIZhGIZhzCDXrDkTIJtCV+N+5JewJlz71Y1e2x/SNUgGm6HHOvCdXfjsOK3dXvhV\nWEiybR1rcUVE3v2rb+I9X4YQfYJ0eOEmrRVLiIPOLXcNdPeJJamqX93z0IDVkqVi/5DWv+Uvhk4u\nKQQN7HifrivAsF10+hytceyuhm4uZxrcQ1sboHvL6Nda+GyqV9JAtUwSHc181g2oP8RWaxcdq/Oc\nbGhGczPRbjrZrPolJWCcdJ+FDpPruLg1fNqPw1K5mSytkwMB1Y/rF/Frbk0DtuId6sA9jvVpPXhy\nEmpHcP2BLteW0rEPjCRTpO93bTN7jkNPyTUMkufqWiWsY80ibeWAo4fm2gJs/dx3XmvBB0lnyvrs\npLmodTBwUX92qIys0knHPjGgrSGjSUOdzLVuHMk01xLguh5d+/W9ybsVlqRskTfm1D7xT2OtEhEd\nL/wp+m9xXYngLMQm1uOLiNQdRL2SktWlXjtUruOZn+rscPzJ3lSi+kWRxjqDLF67j2GO8X0T0Tb3\nI1Q7iC1/RUTC9YjFXGfGrUXE9ys+S89npnAVxm3zQWjXnfJPklU1fTbMA2ehV89Y7tQZoxoxrTtq\nvbZrWZt9M+7bKF0/ruUjIhJDdotRVJvAtdNMK8L94do+yQvwd69M6fe0US22rA24rqPder3j2mlx\naRizI21h1S9pNuJNDNUrmnA08vzpsYk41pignotF9+p6BJEmmuqGpK/W97HpbVjfDgxDk175yBLV\nr52stdPITtWtRcTrmo/qMLW+rddPtm8+98xReg+ONTZNx43qd1DnKUTranZ2qerX9ArqkviorhDX\n6hIRGe3E+bbuwfklFeu9GN//ovtx3H1tuuZFMDx9NRJ4HWvbXateCw9TjSaqtRGq0LEscRb+HaSa\nUT3nWlS/QapvljQPa1Jolo67o924fn7aiyRQ3Q2OuSK6hmPGCsTg4V5d16llO8YL75Pjc3R9nJa9\nGBMZyzC2J8b1HojrvvFamLdprurXfdqxi40wnQexP0x06sXxnovHZtZaXbMtmmrJcO3CGKem0kg7\n2RTXYozw/khEx9HmbYgHbL0bcOoMJs3GusafF3TmTg/teftOoj0Z1vX/Emm/wPsWd/zweSSXZn7i\n/4uIpDh1TiKJqp3j/N2MlRiDHPPDTl2Ptu2wYOa1L31ZnurXdQj7hXmfRo2UIacuViLNdY7Jw1SX\nh9dVEZFo2vPyHtXdG3KtPh57g079lfQlOPb+s9hDdx3Rz0QZdI6ZFAM+tpb43N1OZBkZQcznumIi\nuq5LILEE/z9LH9NAHa5BShnOK9yqnyH42TdEz+OBdF0vjeNWVBTWwpFOxK+syip9DO0YS3zNfIn6\nuweuBxuXgvUzmHf1GqL9HajLNunYjU+EESsT0hEPui469Rj/H88aljljGIZhGIZhGIZhGIYxg9iX\nM4ZhGIZhGIZhGIZhGDNI1BVXr2QYhmEYhmEYhmEYhmH8/4ZlzhiGYRiGYRiGYRiGYcwg9uWMYRiG\nYRiGYRiGYRjGDGJfzhiGYRiGYRiGYRiGYcwg9uWMYRiGYRiGYRiGYRjGDGJfzhiGYRiGYRiGYRiG\nYcwg9uWMYRiGYRiGYRiGYRjGDGJfzhiGYRiGYRiGYRiGYcwg9uWMYRiGYRiGYRiGYRjGDGJfzhiG\nYRiGYRiGYRiGYcwg9uWMYRiGYRiGYRiGYRjGDGJfzhiGYRiGYRiGYRiGYcwg9uWMYRiGYRiGYRiG\nYRjGDGJfzhiGYRiGYRiGYRiGYcwg9uWMYRiGYRiGYRiGYRjGDGJfzhiGYRiGYRiGYRiGYcwg9uWM\nYRiGYRiGYRiGYRjGDGJfzhiGYRiGYRiGYRiGYcwgMdd68eSrP/DafSc71GsDA0Ne2xeN73gyF+ao\nfhMDY167vUZ/BpNekOq1E/JCXrv7WKvql39ruddOLErx2m9+8w2vXZKZqd5z5coVr52zutBrBwuT\nVb/tP9i2RWFrAAAgAElEQVThtW96apPXHu0ZVv3Ovn7aa8f6fF678tPLVL/eM+1ee6wLn5GQH1L9\nEktx7rMWf0oiTWvr6157uH1Q/+3cLK995Qru1XDXgOoXyMAxHv2n97x29tI81S82Od5rN+645LUr\nv7xK9RsfxN8aD6Md7Yvy2iOdQ+o9yRUZOIYf7PXai76gP7vzcLPXzlyR77X9oYDq1/T+Ba+dReMi\nNhAvV+PKlSm8f3uNei33+hK0C+666mf8Vzj09D95bX9KnHqtds9lr73wiRVeu/d0m+o33IJ733AJ\n86pq60LVr/cE3hebjL+VkJek+g1Ud3ntxPI0/P8F/H/qIh0PuuneRMdi7vAcFRGZGp7w2vE0X3Kv\nL1X9Tv7wI69d8TDOo/n1C6pfdy/G84qvX+e1h9v0OB+s6/XaC+/5fYk07e3veO3JsRH1WhSN/fb9\nDV47JhCr+sWlYxyP9eEzgs79iYpBXPb5ca1HOsOqny8enx8di/dMTeCeBDJS1HumpkbpPCbx2R06\nvvhTErx29/EWrx2fGVT9UmZjnHQex7lPhMdVv+SKdHxGBj6Dr5eIju2zlkQ2pj7z1FNeu6xEx79J\nGrfBcsRMX5xP9bsyhWt7aR/iZFJCguqXOhdrWcdpzNm0Wemq3yRdp4s1TV57xcOIB7FJOm6Eaawf\nfOMY3rNlieoXTeMo3NDntTMpZoqI1D6PdTFvM9bpK5NTql/Tuxe99qyHKr12//lO1W+U1syVX/pT\niTTHX/q+1+ZzFBHx0zoWE8T8mBjS47H3FNb4zDW4HlPjk6qfPwmfN1iP6z45OqH6RcdgnETFIB6k\nzME46KJ5JCKSkJ3otfkaBgr0/iaQizja9Ga11y68a55oMDaH2mg+T+kYPXi5B++g1/ypzhiuzPba\nBbPulUhy8Mff8tppS3LVa7zW9NXiWEPOdYnPwfW7QvdtqFGvDbEhv9dOXYx4VfvKWdUvd0OJ1w4W\nICbz3qtrfzO/RVIW4Rr5UzFWRtp1rB5uwjHF0PGEaP0V0eO5fWed105bqeNV/zmMl+g4PA6EL/eq\nflnXF3nteTd+XiLNT7/wBa9dlJGhXpv/xZVe2xePY2ym/aWIHme8987bWK769ddhf8Lzpf2knleX\n2/EZa29f6rVbDyO+Nvf0qPds+soNXrvhhTNeOy5Hr3c7dh7x2pNTiI+337de9ZMoxIAEmr/Dzf2q\nW8byAq+957s7vXbFqjLVL3sd7mN+yT0SSS7s+4XXHnOemUKzMD5b3sN9S6nKUv04lvEY7r/Yrfrx\nXonX3KRyvS5ynOMYlUV79aEmfS27D2McxNCcyNxQpPoN1GAcDdZiXQw4z3cDtGYW3jEbn52g93W8\n90wswX6r48N61W+0Hc9F1/3t30qkOb/raa997MWj6rXVX8L4bNtd67V7Luv7U3D9LK8d7ac95Zje\nCyQWIRafewZ/a2JK98upRGyvPoD9w6rPrfXax39xUL0nOYg5F0X/39DVpfpt+BKeB/ge8JgV0Wt1\n285aekGvi+lrMBd7T+JZir8LERHJ3ljitctXfVpcLHPGMAzDMAzDMAzDMAxjBrlm5gxTeM9c9e9m\n+vWrtwXfDLY7v+rkry/x2pX0rW3Y+bZyrBe/APMvbZ0D+teLuSX4Nuudv3vTa0fTN8xZlC0hIjJF\nv+zG0i9YZ399XPVLpW/aWt9HNkL6qgLVb/ZNuBYd+/CL7Xv/+r7qt+wG/CrI34D3HtUZDakLsmU6\naf8I37yOtOlftpPux7kN0a8Aoz06a6X+OfwqWnRLhde+uO2c/rwgftVPzMC34Kd+uF/1Sy7EN8OT\ng/g1MvtGZEb0n9W/pMYE8UtRZil+XeEMDBGRwXP4ZpSzDqacXym7TuCX6Lg0/NoXG9K/MI/1Y2yO\n0i9ZORtnqX499GtNrh4yvzMplfiFoeFVfc0XfRa/LHF2Qtpi/StZqAzZDherG712vZMBFEPZYAso\nGyXc3Kf6cdbGyW0nvfbap/BN9FCrnr8+uh+Fd2Ieufewh7IEOnZh/IZn619GAgmYz/wLQ+Z1+leO\nxBYcR181xhVnAoiITAzqb7cjzWAT/vYV55foqCi393+QkKN/ieFj5veMdOk5yz8XpFYgJg4M6l/7\nJkYwL0LFyPbgDJu2/RfVe1LmYTz2nsW4nwjr6+enecXZLJxRIyLScxbjNpCLX5ujfPr3g4R0fMbE\nCM43rUpnaLmZC5Fk7efWee0+mvMiOrMiVIZr2b6jVvUL0mtZ6YiFKUv0eQhllJVuQYbDrp9/qLpx\ntuiqx1d77cbX8cth0T06Q4LXoXWPrfHaZ185qfr1DeE6b/gi5nb1r/T6GUpDvL/wGtaLnPk6o2Fg\nGL+qttF1SchLVP1qzyBGrZTIk0JZSUPOL9H8C27feWT8+pxfO/nfffQrfMp8/Ytw8zuIsckUy1Nm\n6X7te5DlwGO/iTIZcm/U6w6vBwVb5njt3nNOtvMwxiZ/dutOnYEQRbGY10Xeo4mIpFCmAs/7kQ6d\n7dFzErG8QB/678xYB8Zm16Em9VrWWqwBnLk86Ow9OeOp9V1ci5ybdJZmL+1H+Ff9ZOcX1oRcjJ2u\no7QeUxZpImXViehflznLMSpaLwr8vkTKAHIST6VtJ/avo7R/4bVURCRQglgbTX93bFxniEVFT+/v\nuHmpOK+FX9uoXqt5Br+Ip6/AnoazC0REzv8Sv7yHMrFmTk3ptYAzTA8/c8Brc1wSERmdwLq4+/VD\nXrs8h+5jvM6y3v7d7V57binGFWfKiGi1wd1PbfbaCVlODHwWsbj+AGLD7Dvm68+jjKLljyNaJmTr\nvUMLZRvll0hEGaa9XrhO76t4784ZXz2OMkIoI43PKalMz7GT/4b7NkWDP9t5vklbjvEy1Izj44y0\n5Nk6U4vH1dQoxo6b5Tg1jufUOMp2c7PFk+bi8wdqkGGSWqlj/3ifjq/4u3r8xjqZ85Emnsbg4vt1\nFi1fg7NHMZaq1uvvBxKyKauZ9uXVZ3X84X1L2X14XnafU/vP62yXT4Lnq4iIP4BxVnQf9j4lzn1k\nFQfvmTsP6vVEZU7SPq3+HZ2lf+lXGJvF2bjHvkS9dxi4RNlGWvwhIpY5YxiGYRiGYRiGYRiGMaPY\nlzOGYRiGYRiGYRiGYRgziH05YxiGYRiGYRiGYRiGMYNcs+ZM2iJoxeuo5oiISOmnUIui5ifQU3b2\naq0hV1B/5+/f8tprHtYiq4t7UdOAdZwV63Sl9VPf3+e1A3HQ3q38Aqo2t+6q1Z99Gjq3hbfjuEtu\n1J+9/0XoSpPnkx7d0Sj3nYaWu+KzqOKevE87hlyhKs7s0FR0l9bnXfr3E1678M8k4gTI/WrI0YKe\nf3qn1y59BNfm/Eu67kBmEWp9TFKNiqzZWjfJ2u60ZRg/0cd1nZ2yB6GLHRvG9eUaGvx+EV35evYj\nN3rtK1e0Prr4YWgXW3dBe+26OfSSAxlrWl1Xp8vP4/7MehCOXGNhXU+FXY7kFokoMaS/HXO0lcOk\nzxxuRrs3TtfD4Jof2cloV311neo33I7zGu7E50X7dbjoIaeSpQ8t99pcs+fEj3RtjGWPwj0m3Iix\n6Lr3hKi2VDvp5NkJSkSk9LEqr917FvczuVzriH1Udf/cC7ifZbfpudh3Ul+zSMOaXdYsi4gkkWsb\nOy25BQWyVqAWQsuH0LvGZ+v7E6BaNZ3Ha70215EQ0ZpbriPE9Q6mJqac96B+EdfOydtUofq1fAhd\nMmv92bFGRDvv+Wn8dJ/SmnR2PWK3A5/jcsSOM5GmZRvqh+RvnaNe2/l9OP6tJgeVs5f02lBFzknB\nMpw7124SEUmhOmhdVH/tusfWqn5cS6LpDYwJdou54tzDaLqW7e/Xeu3yG2arfue3o6bJmWdR16Fg\nuXZrOrUL/VZ9GnVvxKmlxLW/eF10HWKKynS8jjRq/DiOaAN1VJeJ5gHXqRERGe/HPEgiJ7Huo9qN\nJ20prYUUizr2aQ1+Njn98FwcH8DfadqmNe4JdI9VLT/XAY/ufyHtQUZ7da0NH8d5+gzXMSU+Detk\nw16Mb9edK/92PZ4iSfYNiIUDl3UtLY5reeSSMt6vaztcfgF727gg5uUY3VsRkXFyoBkndzSuRSCi\n65ZNUp0fXi+T5+r1qeZ5zPvxSdSYyK106jXV4Bxjb8WxjnbremOJs7CWpFANjKkxvXfoOUwOcFTP\nJdik9zbdB2k8b5KIM/9J7B9cF8PdB3FtHn8Y633HAR1TZ39qsdd+/3twFC0ZW6D68b58ViViWPIC\nvZfl/eaxQ6jdlb+22GvzM5KIyIHvfuC1hwYwXm66XT/v+FPwjHPkucNe262xmRwIfOJrdT/T9aTW\nXIfrcuYQnqXWflbv7Q7uxLVc9rhEFK5j5dZdaXsP+/DSxxfhBafuXtcx1Gjqof307M9rJ9zshRir\nUbRVGqzWMYCPg2vJxFINHHYdEtFuweyyN+XENXYyzd+MfY9aO0RkiOYS13XiWn8iIiOtqIMznIV9\nd6BA1w1y65lFmnAD1uHuQ7qGbNoKjHeuE5W2WM8D3jvy9azK0nXvOFYe+Bme7Vc+sUb141o9UfSQ\n2LYD4yozSbuVxmVgT9j46nmvnew4hPHzPbvenXpbf+cxZzW+Lzj5CurtTTrOUlU3Id7UfIC1OjSi\n96gDHTTXH5GPYZkzhmEYhmEYhmEYhmEYM4h9OWMYhmEYhmEYhmEYhjGDXFPW9MbfveG142N12m/n\nPyP1KW8eUscqluv0JrZjXUR2W1E+nes8fwukKCFK7298o1r1yyVr7mSylO05jZRRTh0TESmvQhpi\niFLbzv/ymOoXHkUaK8sPWJolIpK2EOd75Ad7vXZKQMthkhcifWqC0mD7arQ0g9PjpoPkUtwT15at\nk9KRWUKQnqNtCifI7jouHelZmctKVL+hdqT0DdainepYxLYdRrrXKNlhsg1lfIaWurCF6KH/86LX\nrvpDneLP6c2Tw7iPri1lxjr4XftD+Fvn/nWv6jdE42KkF+P+ws/1+EmZo22eIwlbtruWcTVvnvXa\nQZL6sRWhiMiJ7UjTq5iDdF62WhcRiSXJBUshksr0+U1ROh9bi3aTRXnFqjL1Hr6nbFHr2rRefh/j\nY97DSFfmNEYRPZe6DiD1OqlcHyvLZrLKIU0YbtGWfQmFOjUy0rDNrGvZzmmuAbLAbHfSt9lKO2Mp\n0ntdK+0JSqkP5EPG5vPr7+RHu5F+PTE0Rm2y3o2+is+3iITISnbSsWAt2oR07r5GyIFc6/RROnZO\n0U8s1pazLPVgGVsgV1uQxqVSLNZKlN+Z4TCOoeVdbTG+7jOIRS1v4bWcFB1P2y/j2FP7MOaWP6pN\no3lezM7C3Blu1eM25xbERr7v7Tthv9rSpo+1bxBjcYKkFDkZes7ml2L9y70Jf2ek27GepXvP4zzG\nkQylr4Ctez/Z2ifN01KPIy9DQrVaIk8P2aBzzBMRGbyINaTgNkhiGn57XvXz01rYyrHJSddPWIPx\n2X0cqeKuBfKQsqPFWsOx3F3DR2gsJBbTOHOmbAJJRzsPwqZ81LmPnDYe78wrppsssnM2QV7U6Vha\nu3K6SKJkoo5FKkspUpdi/9G+V8fTYpJ48d6R5S8iIiFa3zvJHjY2Tdsp82e0XcAYq3wc0gy2lxUR\nCSTgM4Jkl51UoS2EQyS/nhzBfOs/06n68fmOkWwtIUdLJPj6sbQ4UJSs+nU4Mr1IM0hSCndNfvi/\n3+u1T3//I6/d71hfr1mB/dym34f2qols7EVEkudhQfBnYJ3Y+fRu1a9nEMexpBTj+/JuSHWTKnTM\n4lILLHdIyNHziJ9/5qyBJObiK1oGvqgYzy4bv3qD165/4Yzqx3L2EJWF4L2CiMiC0iKZLljWxBJ6\nEZGcW7Gm8Dxtflvfm6zrij+5n3MPE8tojtC+1JXH8zrJcS6dShwUbtHS9qlxxNdBisGhEmcvQp/H\nkid+v4hILFko83jhfbKISPEDJId5Gmtf+ZPazrrnNJVPqJKIc+hllCnh5wQRkSDtI/30nQDL3EVE\n9v0cEqXVj2H1dve8LXRfF2zEfWh5Q0t3GzoQ30roeTZvM6RG2/95u3rPSBPWocIMXPfJ/XqPmkpy\nzpMvQ66Un6Zjb4DkwysWQnZ18Mf7VD9+FkoiuX3OGj33XHt4F8ucMQzDMAzDMAzDMAzDmEHsyxnD\nMAzDMAzDMAzDMIwZ5JqyphU3ImfKn6xTN8P1SJfj6uCcUiciUvUw3IyClHLrSlYCmUjxee9vX/Xa\nvmj9/VFpIqpss1SIpTbdNTrFs7oFacRju5G2tOG6RarfFnIrGmlHWjanaIuIXKFc5Ln34BrFBHX6\ndtcBpFVxVWq/I2NKcir3R5pz5Jgz78vXq9e6DyNdte84UnBTHXkau9107kNKdMqsYtWP3ZZSKH20\n7cM61a/1NFL6Vvwx0jUnx3GdXAeC6p8h1W/BlyCXaNmlpS71B/G3ysh5JJCrJSvDbbiv+/7hXa9d\n9ZiuDN95AOcbn4JxGnRSVZPmTN99HG3HtRgeG1OvseQwYyUkA5xeJyJy831Im+Q0xNhEPR5DIfTr\n64azEUtKRESSKc2zaOltXrv+yDav/fazH6j3xL2DlMmbP7sRf+ecdh/IKKD07eGry2t2PLvHa9/2\nh7DIcmWTPDD5WqY4Dg1Hn8PxLbpXIg6n+LvyS5YBxlG6dfaqUtVvku5/9wnENvfzJsLox9ctNknH\naHaGGiVHEn7PWI9OIW88gvkbmo9xn04yKxGRmCSk0SflI1YEKmapfqOj+LyhQcxflsWK6PvKEtVw\ns3bUY4lXvr58vzOBFNyb1MVa8nr42YNeu/Lm+TiGXC0n2PNTjNvsCozBHT/R82VOHq4nywjTHSe7\nAXLS2bENx9DYBdnfow9pC7n0AsSKgQt4f/IsLUFlV57WnYi1ieU6LXf+vBKvzSm7bup6+irID4Yb\nIOMZ79Op0SwRmA4GzmOfwOnRIiJ5t+DfjdsgrfbF6znGcoVUiiUsCRTRjiBpNEd6TmoXw/rXIZtK\nJWeomETMUfdY2+ieyDXkh5xGz3snlnmIiHQfQUxhORXvYUREEslRj2NPJt1fEZEe+rtFWkHwO8Ou\nN658iv89eAmx1e+k1vfTOBi4gH75d2jnuRFaN8YotgZKtWQxlvbKpeRe1/IO9sljzlhPLIFcgN01\nXfniUCPiHJ9f7mYtReR7GCzGZ9e9clb1yyB5B68XbUe0NK3kdu1KF2kmab6Ea7TbDbvsFN6K6+nu\nBZ77S0jd7/ubu7129nq9R33z/2B/sukzG7z2oqX6fndcxrhY+BXIVS/+HPtQV24TCOLes+TRlRiy\nkyK7UV6/UDtLlTyEcg9nn4arU9UfaDebj74Fl8DsAqzH7jXKvVXHjkjCzz+1/65dBwvuxvhhSfNo\nj95TsjSqk2Sn+dfpRZydQ+tehMQr5wbdj/czY9VYC5UkukA/F7AMd4yc3aJa9X669RA9B5GDUq/j\nTJtLawnvQ91yGeyCm0KOQmO9V5edTgdzF+MaZq3Tc4fX//hsKlFwRu/fU8llsnMPZKQZ67RMqqsV\nsjH+vCjn2aW5BzFh8d0oc/D2d/Dcdtuf3qrec/hHKE9Reh3io/tclLsa3wPwfHGleTw2u4/huXnx\nQ/p5sfqVU157inXLzm2bHNPyNxfLnDEMwzAMwzAMwzAMw5hB7MsZwzAMwzAMwzAMwzCMGcS+nDEM\nwzAMwzAMwzAMw5hBrllzhjXgrh3mCbJCXrx2nteOz9R20gef2e+1b/hr1KUYqNe60sEJaNZYU5eZ\npPWArE3dfRC6xltLoR11LfZWrsDxsQ3laIuuZ8C2aUfeQG2asgKt7999EhrHMbI1fuQbW1W/MdJT\nFpJdY9sHtarfdNYqERFJroSmvJpqHYiI+NOhkZ0cwbUZ79ea6Ng81PphO9Xqn+oaCSUPQyM7Rp/h\n6tpH26DfbvmA7NTuftJr17W+ot5T/ii0gbXPQ9d35ryuZ1OaBb3mOGlGD35HH2t4BK8VF6HOgs+p\n3dFP46J+G8ZF8X1aHxztm74aCaWPoh5SAtUvEBFpOAZN58m3r6J3FJHV6Zib7btxzVz9e9ln8O+u\nI9BWZizPV/2mxqF5P/bjn+LzyGKwqkjbx8X6cG1f/zdY383K0rVfTjXgnEKHoN0+cumS6vep9eu9\n9svffsNr3/3V21Q/1jmzFrz7cIvqV7akRKYTtjKNjr36d+Nc02vUschOXYCxyrVpUsu03rq/CZpo\nPv+BS92qH8d2rgXG72G9rYhIAtVFYJ1u/4Uu1W98ADp5tnhOKe9V/UIh1O4a80Nr7k/Wuly2qWQ9\neep8rd++4lgZR5KxAcyPjl3aEnfOaujLWbPszrGeMNaeKVqTxhwr8p2nT3tttma9OVYv3U+/977X\n/vqfPOK1j23DGtl1vl29x5+K2N9Zi/tWOKzHG1tOx5Dl9HCTrvOTkI8x0UcW2dmb9Lgcbkcdjbhs\njF93j1G0UOvTI03RvagJ1PDqOfVaLF2b7OtKvHbbrlrdj+qXsK169sYS1Y9rvPDa6ovTa838L8JK\nfYRqrg3RtebaVCIiU1R7pPcU7lWgQNc5CuRjL8W2ssECra3nOidJs2BT23de1xWI4nqANN/6zuua\nfzFJ07cuDl7Gteio1sdXshn15lSdASc0xFINwJaTWA96T+naEdVHUG8hmWoqRJ3Wf7ed6hGM0v4w\nmva1hat0LQeuUbTzGdQIXHObttHlOigl16OOwoGfaDvX+Tdgv8n1E7lulYhI3Ue1XjvhMObf7Ed0\nPcZxp95QpPGnYk1OWqD3w4O1WCtqDuEeLH1kueq38W7UIeSaIhznRERiaA+y/9cHvPbKh1aofklk\nnd5zFmOhsQX3ID1R1x0coGePQBj7y1inZmf3fowRrmHp1o1791vveO3yHKz79S9rK+2cQlyzWLqW\nQaeeSsCxUo8kibTe+TbrmnL8LNC+h2zoqYaoiEgt1Y/h2opcD0nEqX9Ilvc9jj112mI8u/HzDVtu\n9zp1v/hecd3Mml+fUP38MViD+ZlucnhC9evYh/Pleoe8fxYRKdiKeMXrQtNr1aofWz9PB+m0z294\nWdeoCs5CnUmfHzHVHbcjtI/h58+e4/r+nG/GPBik57GyKv3cUFmIvQDXDn3sX/67177w5mvqPfx5\n7fuxF06dr581Ok7iHNOqsI9seOO86sdjiesFcU1SEf3cVXYj7ungRb3vHu+nMa3DvIhY5oxhGIZh\nGIZhGIZhGMaMYl/OGIZhGIZhGIZhGIZhzCDXlDVxyvy593WKz9oHkX57/FVIPdZ8cb3qx3ai578P\niVPJo1WqX+PrSN1a8jCsqQoWb1L9Omo/8tp3Utrh3ueQnrjx965T72GLsnOvQvax+HOrVL+W7UhL\nXvfkOq+dkK1TF+O2IyUuWIRUvn4nnXeEJDXnfw6LXn+sTt9WaXDa6ToicJqeL6BveeYapI81vIT0\nrmCJtofsJxu6HkoZPezITDrakGbMafjdg9oSsmox0v9Zanby+R977Yo7b1fvqX7lDfkklqyfp/7d\neAI2kO17SH53z2LVz5eA+9D2HtJlg9laIsEU3478s6Pfflu9lreRLOg2X/Uj/kuwnWvaEi2zm0MS\nE04Bdi3bu48hZTtlIc7x8vYLqt+Jf8M8rXwSqb4t7+t7/eFepHmydV7lMtzblDx9Lb/7rV977T/4\n/fu99r5tR1Q/TuFt70dK/5cfuEP1S1+BFMzcZli4ppRpO9feyxgTPGddyRDLdaaDAFkqu5Z+7ZQe\nyf0SXUs/So9PK8e1jonRx56QibnIMp/4DC09HWqBnXFcGlKiw/UYS5OjOlWXU+Uf+NKfee1H77xT\n9dt6Iyw/Sx5CzJ+a0nKlyUmkgw80QJrBdvciIlnLkS4dJlvZGL+O0e1HIJXMi7A6JpXmTmKxjpMt\nb2ENaSeJxMCItgxt74NsjdObFzsW44/+9d947Z/91V957W/+5jnVb8N8rLMvPg17yc3rsZa6qcds\nfbr2L+7DsZ3SqczMJKWXpy7WcSiG4ilLlCacNO/kCqTgDzdh7LGNsYiIP01LASLNOMnTkuZrKQXL\nefovYe3LcSRaIx0Yn2yZ6kpjC7bASjZMEqXMVXpwxiXi706O4bqxvXL3US3F9NOczViBuDc+qKV0\nQunWkyQx9Pn1noD3fWyl7Vq/tlIqP0umXAlCKEdbrkeSaDq+dLpnIiJdexFP87fi+o/1aNl7zW8g\n/WOJSYxjuc2p+n0d2AMtWTxb9Qul4H2HPoAssSgDY4z3pCIiZz7CGszH0H9a7yk5VZ/Pw5X/u1a0\n/0nxFu1lPtqJ8ctrRPuHWq6pWHf1l/6rtG3H/suNU6E5GD9zN179PmbS2H/pv73ktQNx+j4u3Qjp\nPctHTrx0TPWbtQh7406SzC39FORULOEWERncjuckttXeue2g6vfw/8Le588f+Uev/Udfe1j189G+\n5YOziMs3pS/Vx/oo9radZIPevE1bfbM8PtL0nsNY7fxISz0yVuPesAX81IjeBzR1Q/rBMjNXDlPy\nAO5huBnxNHvOStVvdBSSpeyvYeA2n9zltfNu0jb0XfS3WndgXOauL9HHuhuvjV7GGsFyLBGRPJLR\nx5LEs/6ijuPFcYhloTJaB5xY0b4Pkn/R2+GIwBLLQLHee8Zl4Fz4ufXSBxdVvyWP4d5t/yEk1xs/\nrb8fWNOHeLTvJKTF/rN6TVr8GM05sha/tGOb1+bnORGRgnRcwzbab81Zra2vBy5jzLV/hGtbtFU/\nV/ZdwPjm54uELXrfnbwAsqnOvfg8ljaLiDTWYJwtfVQ+hmXOGIZhGIZhGIZhGIZhzCD25YxhGIZh\nGIZhGIZhGMYMck1ZU8oCpLEWO+n/iYVI504KIA2294x2hCi6GelNMYlI8eSUYhGRxV9+3GsHAkj1\nPfyL76h+XDGZXUJu/vrNXrv/gk4Fzd8AKUpiEY47PqRTmRc8ibT78y8gXWq4TUtydu9E+uOmLUij\na4ikjksAACAASURBVDrdrPplZqOydeHdSN86+/Rh1a9si66MH2n6z1I6VpVOTe6m6uZlT+I61fxU\ny0xYSsEOInfdqdPUzhxCetuK+5E+ljxbuzWxY0wzuVzMIkems79+Vb2H0w/ZoSI2oCu+J83GffWT\npOvcL/Q5ZdL4TlqA47v43H7VL3s1xmN/PVJGZ39al9gOZuXIdJFCqXINb+jq7X3k/FK0GMeava5E\n9bvwE4y7IM2D5X+kZYDN7+N+NP0WabpNTdqVgmVrZxuRxrpoHcZ6dIxOUb6hEumoSeVIV166bI7q\nx3KWM/TZiaVaRtJJKZ6cOhsVpVMcuw7gvsWEMF5yrtcyhenGR6mr7DwkIpJM45amm8TEBVU/vx9j\ndXgI6efR0Tp9e5BkSeEGpHVy+vd//DE0e8i5IG0RxjO/X0TkwF7EgHWrIA9dM1un+CeWIQaGQrj3\nU1Na5uPzQZaUWYGU7eGCWtVvsAVjMKkcaatTU3p9YgeHSMMSjsuvaNeM3HVwYfGT49aVOl2pfzVd\npwPHkM4bF6OX5O//8R977fdPQZK7yrnOdSSz2DAP6bhJ5DaRkK3HUfVvIEtkNy526RIRGe3EtY2l\nudPhSB9mfxpxpGkPPjt9kZY/dR7GXOymtXpoVO8Jqm7RqfuRpp/cE0bbtXwuZQ6uG699rlQohtxG\n4lKQ8h0I6bjS14p7PEUSQVdSFBuL+ZKYgc9uOHXIaxdv1fLc8SHsT4Y70Hb3WLlL8b74DLj1dZ/Q\n6fUp87DW+GKxfg606vgfR+5/LJOaGtNxzZ80ffK0rj1YG5Kr9B6j4yK56pB8x3WIKdgEKSFLoYYa\ntBtZMB7nwdKFhDwtqWw4QG405AyUnIW4MdKs95QUgtXfyb29XPVLpXHK+9+yh3WZAH4thvZHQ60D\nql+4jtaFdUWf+P/u500HoXmI5ZkrtdRvx7fh6shuU5VrdAzc8y3IJxbPwV6x+P75qh/LeNn1J81x\nXmK5YNZCOOQ88w8ve+0vfudx9Z5F5I7UvhvjYM1yfQzNVELhqQe3eG2WlIiILL0D++Foct5LXaL3\nmgf+cYfXXvwlSIn3v3xI9SsY1LK2SDJATo38vCMi0vAK4t84OZglhBJUP5YyDZFcKW+zngenvgd3\nsuv+5k+8duOpN1W/ksUPee1wGBIv7QyoxzY7Ob37AtxtL/1WuzqVkfR+5dwKr93jSrFpXp17Fs+O\n5Sv0GsGOVm3vQzI1NqLHRPrCq5ddiARhcgOsP6rX+LQQOTIOYV/Az7oiIod+gWcolmm+9m/vqn5L\nSkrwd2n9r7i+QvW7Qvs5niMsn0uaq5/nWWY9pwqfF0zTrrMsi8vZgOPpOq7XxcFLuC4szZ4Y0jK2\noWbEl9YGrEELHtDrdsjZU7tY5oxhGIZhGIZhGIZhGMYMYl/OGIZhGIZhGIZhGIZhzCD25YxhGIZh\nGIZhGIZhGMYMcs2aM/XPoa7A2QZtjTa/C1rN8juhp8xcoGtHtB6CTj5nOXSx1c/sUP3iM6CN7I1G\nbYz0pXmqH2vjue5Nah60mVml2iq28fh7Xpv1agPR2rozfQHOKY7sz+KztFb/hq2osdBJ9sSLnlih\n+nHhiEu/hAZ/3pPayqub6jwUaFe3iDBCGsipeVPqtYIbce8uPU81SZzaHhOD0NVt3YI6Mz/6xW9V\nv2/81WNem+1Ia587pfoV3YO6CH6yrLz8LK5TbEDXDWELUqaD7KNFtN1rN9mgBhK09p0txlOp/szU\nfK2ZbyPL0JZ90GDOukfriC+8tdtrZ3xD13H5XRkgvWPejdpul2fI2degS47P0hrq5CrUErgyiXFQ\n97KumzFJc8SXiHuQn681/bOWor5G+CLuwWgnrO64/o+IyE3/4y6vPdIDzeWsh7QF4lAHtJqf3oxJ\n8f5PP1D9Fs7HtWC7d7bmFNGa9sQS6GOrf6zrP2WswNXML5GIM9iA6+Rahobr8Foc6Z79KU49FUHt\nh7h43NPhsI7RUT7En9AsnLNbN2Oc5nb+zWQH7IN+vvOA/uwEP+oYVBVjHMTF6jmbsxpzxOdDXPb7\nte1tw8nXvPYo2ZO6dTO4zgXXtnCvJddUijTjpA3PXKLXp56jqOHVQDU6oqP17yC5qbgfNz+CeFq7\nU1tSFq4t8dp5i1ErKHxB17DJvQ33bfdPP/TabIEe7dQ3yV6MY//RP8Ca+4knblf93t+Otfn2RxDX\niu9boPrVvgm72PBljOWMpVrjPdqB8ZxBcZfraono+keyXCIOW9knO3+7bQ9qsqQtRG2BWMdeOTaB\nakwcQk2D0QI9Z0eobg/XShob0LWX4gOsX8eYzl2PfVVMjB7bmcU34RgS3sKxxWoL675mjK3kPKrf\nNsuxtacxMzaAmJo7T9eXa4/7yGv3nMK9ylpTpPvRmlkU4ZIXyYsxfjoP65p/aXm4TsMtqPHScErb\n8nLthIX3oi7AqGPVXJGD9XQ+rYtH3zqp+rFlNsfJYBHGCluAi4jMz0W8Hx/AGGj/oE71G+nFeOH6\nK7lUK0FEJKkM976XbKDj0/XemC23W8h2OXWprmkSLNSWupEm7waMR64BISKy9rNrvXb3Eey3r+it\nrGLxHz7itT/85o/1a1/f4LXj4nCeQ/W6BsSxd7BnXXIbLKhbe7AXa3jtnHpPoBD3uOUi5kTZRl1D\n4/mn3/Haqyrw2tL7tE851yE5XY95dMscHaMXPIr6XAf+FfvQubP1XJzO2kEcT/urdd3PhFzMndLr\nS7x2TFDXf2rbg3OcolorbGktIlJ0B+JhT89er51aqp8/G86jPlAj3av8O1CvaNKp6SJUI2Xjjbiu\n1zt17H7ya9QlDSWQXbZP70W66RmR40GMs5Z07cceK/8OjIm4VD1nh9t1vaqIQ8+t6SFtE520gGJb\nD2LRYKOes5W3or5g/2nEn5Qlul7Otp/t9NpbtmLsjzg14DoOIbYv+ApqKvG+74Nf7lXvWbISYyFY\nhPhV+9ZHql801YFsbkQMCBbrdba1BvV0u/8Z62JqkV5ns6/DfriCPvvCK6dVv8onne8LHCxzxjAM\nwzAMwzAMwzAMYwaxL2cMwzAMwzAMwzAMwzBmkGvKmgrvRQ5q8/910qhJahAqRJru+HiX6scWix0n\nz3rt+BwtFWr/CJa4Q2TjF5ehrdaCJUg1KliJNKjoaEhU/H6dZnTsV5AuFBQjfZltXkVEwq049pgg\n0lYP/fKA6tc1AKssTlPLOKutJofJUqv0UUi6Wt6/pPpFx07vd2R8rROd9NRLz+Ha5N4Eici+7+9W\n/eZtQopY00dIPfy9B25T/diGs5XkQMmVWhLTtO2C1+7qwP0u34y/s/vXOv1sqhqpjSwLiHXsZ8tu\nw7jl8cIpvCLaynigFuO7+s2zql8Wje+EAFIRBy7qOcEprZGG7VcHL+m/20vHkVeBNN0MVxIYhRTA\nhm04R9eCzkcp1yxnO/SStiJvPoK/u5Hs6lMqMQaSy7RcgOUs/X1I++05qaVVs++422ufP/mS1144\nV0u6OE2X72fiHB0DOH2W5XHZ1xerfq5sIdKwrelYr06b59RxPg6WQomIJM/CZwx2IG4GM7R8xF+K\nOdJ9AXMnIVunqvqTEWNZ0hCXhFRklgCKiCyown2Y3YfU69JPaUtXvt/xJMHq7tZze5IkSmxT2HGg\nQfVjK3KWY7nyp1CJju2RpJ1Sr/Nu1jrUgfNYQxbejlT4n3zvZdWP04XjayAnuOVBLR0JkjUrS3pT\nK/W8andsrf+TLkoHdi2yq/dB5jK/AJKp//b3P1H9/u4vPof37Kj22pMjE6pfD61/KXNwDwcu63g1\n95GtXnt8HBKB7X/zrOq34vNrZTpheeOVKZ2yHp+NsT9F6ewfSymn2zBCrw23aMtiTpUfJVtnV/bZ\nsBsWpEXX4fyDQayLo6Pa4rO/H/KLyTHMg+hoLZlKyce6ODoKO/PaZ7UsJ3014ghfh6EhvW9hKRPH\nrg5HAhnnSGkiyZUJaFuCjow3Oh7j3Z+MeFqyRWurEkhC6iP7VZ8jr2GpRizZg7up/yxJ4PUztRJr\nc+/ZdvUetmufGsc5FW3Vx0rDSPpIrsRxUURLg3JXIA5NTmq5nS8e59v6Hu5v+14dd/0hHG+JDvER\ngeefG1fC9Vj/8kh22/hmteq38guYL7zXKblVS10uPo19TBTJIgY69Jw934zYeeh7iNFPbr0Z7/fp\nPSXfn91nscfKKdb7382rIZfhe7/j799R/XgN+dL//rTXbnhdy6kO78Xfmp2b67Xr67T9c3IDBaxK\niSgJtFaxHbWISPgyyfPofNnKXEQ/77XswrFXPLpI9cutuMVr1x993WuPdOrYE5qFfWDGWli0X/o1\nYp4/oKVVJQ9BrhvIwdzm5xkRkS8/da/XHiXZ6lCTHkcsvUmajePpPqzjePED+LtjJKmse0k/j+Td\nMg21L4iWExj3uQv1M0TyXIzj7uOQhxZu0bb27/wItvbLlmD+Pf0dvQ9aUgo78YO7sI5t+as7rn6A\nNMnq3kIMyE/Te36OvW/+YLvX3nFSr3d59L6ty6GfDtbosidHL2MP/dhf3OO1a17QJTui9+N+j5GE\nu7Nfryfu/t/FMmcMwzAMwzAMwzAMwzBmEPtyxjAMwzAMwzAMwzAMYwa5pqyJU3jLl5Wo10YoNffg\nz5CiXr5E96s/iTSzCqpYfuDdE6rfxieQzs3pSK3ndFrewNFar82pZH2nkXJ6sVVX4x+bQJpkzX68\ntrZXpzty2mnPYfTjdCYRkUc+vdlrn9yFlLNAvpa1TIQh6eI00TjH/clNSY007GpS76TI5d9e4Xb/\nj//P0enWu16BtOumx1Htnh2zREQGapEKVnIbHHj6m3Xafepckjj8AGnvU6M41v/105+q9/z9U095\n7beOHfPa18/Xrkmd+zDmKINSih/U7iIp2UiV7OtAqtvs2+apfrFJSIlmGU18ur6Pze/WyHQx2or5\nNuuJxeo1rvrO8qcL/1c7EfkCGGf5tyMN8YrO6JcDP4Lbi49cZtZ/aYPqd4XS/dnBRuia+/06nXeg\ns9Zrc8ro4GWdQli97VWvze5PUxPaoqGXUpEvtyP1euP9q1W/mveR/phTgmMKj+vPY6eqCv0REWGQ\nHJn8qVoq5E9BSq8/8ZNdiURExgYwFjh9fciRUkxN4H2cht93QTspJJN7TCgVY39sDGnzSbO1u1Lj\nAczn8i14D7vhiYgkJWHOTU1NUntM9Rtpw1oz1ACZozs2Bym+ZK8r8dqjTorocJsjK4kgRXeT3Pf1\nC+q1rBuRptuxG9doHsmGRESe3bXLa//1gw967f5TWhqbQmnECemQ4TQ4DjFJ8xCv59EcGSdHhT0v\naXnu7jOQEm5eAllivOO4NTmC+7brNBwHiir1OWWugBxmmFK723dqxxmWLfhTMC7zc/Wa07EX1690\noUQclnGE5urxzXOu/QzuSSalxouIDNB8zt+MmOrOsWAe9ga95/B5PSf0XiVrHTng9WLfMTGM+DXU\nqsd2/3n8rUxySppM1HFjYABSpi5yNopN0VJOlmSxFHgkRcfoUXKBTCD5EzsBinzceSOSsPwzNtk5\nD3YQoY1AUpm+1xPk7uhKSBmWPKXMwbxcPl87kERFoV9WFuQXQ0OYB7EL9X6orwH7w95j2PMOtWkZ\nXQJJtzIXQd7g82lpFct6YmLwnsF+HV/8JFdNWYTzSHMkkN2OE1ak6SJHG5aNiminu4RcnOfBA1oK\nvYIWi/5i7ClTnfvT8QE+/xRJ5XvCepzed/9Gr/35P/tHr/0hxcAHNug90VKSady3CWUXEvL1/WGp\nC0tv+p7Rc7vnIK57/znM8+On9F5z/d1wftn5EqSRd3x9s+oXl6zLREQSdrWNSdBrCJdW6D2N8d1+\nRI+r7FWIrwHaX/ee1/E0pQDzhSVU7PQoItLwIsZIfQv2h2ULECdTF+rx0XUUY/Fqa5WI6M0J7XkD\nzr3m2MP7o7zNWp7E0mxeM9OX5ap+gVzn8yNM9jw8B4806/jzwYeQ02Unkww/Scde3u90NEDqfc+N\n2o0sIQ+x6aN38EzX8KqW7cWT2xePs2Jac9t21Kr3tDXi767bhGemgWE9RvadP++1J8gBLz7bkeaN\nYC/VQc/z7Y5cKXwa93Hp5/AQkdaqJWJdB7AeV6yRj2GZM4ZhGIZhGIZhGIZhGDOIfTljGIZhGIZh\nGIZhGIYxg9iXM4ZhGIZhGIZhGIZhGDPINYudNL8PPWbWSm3TOk72qUsfWua1XbvO4XrosboOQctX\nkZOj+n31S9/y2p+/6Sav3dqrNcBsW3jXw1/12r93//1e+9bbtYBrnOzaUqpQ68S1zWXb1ig/vre6\nf+v1ql/ncZxH5TrUrZkY0nUUGLbU6q7Wut/yh6bBm5AIlUPTyvbeIlpf2XkGWtCUIm1Fy9rV+FTU\nw5gc17r21Dm4r4mJZN2Zos85ykca8DToCfe8fNBr/+NXvqLe8yff+57Xfu57f49jcKwXC8l+Mi0f\nloV9nbrOUc2b27x2zvoSHKujWx0i6+Xk+Rg/dS+eVv26Wq+uV/9dGRnF2HKtStMXkyaVtK9NPboe\nBtemGSN9a3KJnou52dDk+9Ohs3VrnzCspWV7xO6k86pf06uonXCgGseXHNB2q6Pj+LyzjTjfzzyo\nNdQf7kUdjQqykNz27AeqH2vBg6Wok3Rpp9ZuL/m9aSg0Q2Qsge50qFVrVeMotnWegOY4Y6FjHx6F\n2NT4Oq5nrmPrPDmCa8hWpcWrblH9Rkagfe1tgy0g39ORDq3Hz54LnTbblLvxv7t7n9ceH4cGmOsV\niYgkUP0htnKPd2x4Wz/EdRntQUx1Y/mVSa0XjiQjFMuj4/T57v0lzpdrne2/oOfi1+6802sHSDOf\nWKpreI2SpSbXeYtxzpfrKlx6C3NuL+mpPzqnddx/fi+sQJt7UE9krlMfJyaI+gH3rcHa+sabe+Vq\nvHkQcfwH//Nr6rWUuVludxERGQvr9TO56pP7RYqCO6nmnFPcqPld2Izn3wZde9Nb+j6mLkHsHGrB\nfFY1uESkbxA1ExJIy8622iIiXYcxFxNLqcbQq7iPyfOd2jwX8dmN57Cel20oV/2G6lHLqaUO6zGP\nUxFdN3C0C2O92akLllyJuiuqZphzLdNX6L1jJOG6WgPV2rI9PguxI60K82OwXp8Hr2vdR3D98m/V\n9fjYcnt8EPe3oOJe1U9Zm09i/vb1HMffOa5tdNXaTHG7fbeu15R9fQk+rwv3MHuprqc30Ia9O9fJ\nc2vY9ND+jy28uRaEiEjaMl0vIdJwDYfCu7R9ONdA6q/GGlLuPEOUPYy1Oy4Oe4Fw2Jmzy/HaxvWI\ndWM92tZ5iGoWzS1CjZK/++Efeu2Lzzk29Aswzg7txDjwXYhS/cro2DOWYn6U3anrHcalYQyffBox\ndU6+nlN7X9P1Bf+Tjj3aEr34nvmf2C8S+GkM957RVvFJcxCzhhoRh0ru0uebWIA6Jjxus1eXqH49\nDaidefYZWKPvOKVtjX/z5pte+6mHHvLa89IQ+/kai4jkL8HzXls11nOu9yQi4ovFvqfuNfzdsS79\n/MC1R7M2YBx1HdL1dnJobicvwtoX5+yBxgev/pwZCWh7Kemr9DjLuh410bjGYWJRsurno5pKp97C\nc1L9ST0Xky7i3GbnIcZkXVes+h2gurZllbiGXBeG/6aIyBVah7hOzS03rVD9+NljnNbCpnM6Rt+9\nCXuf48fx3FA1p1T1O1eDmlZcR8jlUjWeaz7pqcMyZwzDMAzDMAzDMAzDMGYQ+3LGMAzDMAzDMAzD\nMAxjBrmmrKn0vqunwI2RrKn7MNJ/epq1tKOhC2mIOynlbFmZTsGvpLRBTsXOTtFp3mzR9dO//Euv\nHaK0qnjHqjp5LlLqzr+ENMT8ZdoWM1iEv3XwPfSrqtSygmGSXIQv43zDF/W5t/fg32u+sdFrN7ym\n08uHnVTTSJO+GOli3bGOdedSpD5nr0O6797v7tL91iPN7NK/Qx40+/MrVb/mHZBZJN6J8TPcoc9x\nqPmTrW67B9EvLVGnEb70s297bbZXXvL7n1P9/H7IuLq6dnjtmARthce2jJ1HkWLoWhz3UXpr029x\nfoX36vTbSZLsRJqSrUj/dCUcbMXO8pVhx8L08imkOq+fA+nSsX96T/XL24g0vX0vIJW2dftB1e+x\n/wEpIafqJ5Xh+ku0TufdfRrWhq0kpXj0nptUPx4fNa0Ysz/85W9Vvy/cd5vXZht2Tl0WEeneD7kA\nX78VX9VWmFG+6f2+ephkDMH8FOdVXCu+p/HxOrW0+RhSbYvuwbjov6jT+hOL8fnxSZBIjI3ptP7Y\nWIyF+GRc98Ew0ubZTllEpKv6k222YwJ+1c/nQ8roUA/WibF+nUI+SRbwbDc+lKg/L4PS6zluBnO0\nBGa4ffpi6uAlXL9MSlMWERkhuUMxySuXHtex4uJJstl+4lav3Xr0mOoXKsZ96yHZ6fwtn1H9hoeR\nvr7qT2HbXH4G4+MhR665/QXIkhbS+ltRrmVNbFFc9TXICpPe1pbE0WS7vHk9pM6uxOfk9zF+k3Jw\nrKmOjOnYm1hnKrdIxGGpXud+LRUtonT7aJ6LWTrFPC4F1rQd9BkJOXrt4n8HSMI33KZj9NTYxCe+\nNjKGVPYffeff1Xv2kYSM5d0F7ToG5tyAuD74K8zzOMc6fWIAfytlAe6Jz7HHHSP7+gySLsUm6vWp\nbQ+kOZG2RG/6sNZrz35kkX6R1FWtJA8q2qwPIiaG9o4kXeo42KT6Za3GfnGki8ZO5/uqXyCAPdWl\ng8977Xayeh0nyaiISA/te/LKII3xJegtOku4WX7dvE9LtqNjMRcLVq/12lemtP10mPY6Qw2fvCf7\njzdeufprEYDnx2vffUu9FozDeLrxS5u8NktlRESqf/qh1w7NQ2yquvPLql9f4tNon8U69tLrWgr9\n5J9hLq06Amnjb/73q1777i86EmFakxL8WLuW3rVY9ctcgngbE4N1+sy2/arfFFn7JidibPoztSX2\nbGon0PMPl58QETn3Q8jAc755p0QSjg++gI4VHR+SPTrtUf2p+jx6z+N+9J+FXDNnzRzVL45srUMh\nxGSWnohoWdPdX8baFaY9fTArU71nYgKv8bpQdLd+Hm58B89xNcdqvXbpbGe/dhkSr9R+zO0oZ2/c\nsv0S+i3NvWo/99+RhmXlfed0OQqW0HYNIF6U5mk78vw7IAld+shyr/3st15V/apbsCe8ewXkRvWv\n6Gfk8814Ppu3AaM9kIf9Q/51Oq7nXkbM5339UEOf6nfDw7D3rt8JOTOXVhDRz4U8txsatYRv0x/c\n4LVH6LnX/V5i1ZOf4J9NWOaMYRiGYRiGYRiGYRjGDGJfzhiGYRiGYRiGYRiGYcwg15Q1tX2AtKBo\npxIyV6Se9RjSSY//3euqXw7Jkv78zx/32ufe12lLXHn9vRNI0SzO1ClnqQvw7/BlpCdxSl3ual25\n/tW/+IXXzk+D5GLCSbc+8utDXnv+LKQd/uTlt1W/P/w6qn4HSBqz88c6LfKGp5CCWfcCKlaz/EJE\npO8kpUVpM5qIMEHV/0dadbp/70Wk7XH6ecUaLTurex7HX3An0sp6a9pUvyBJKZpO7PTaqeU6/X9y\nFGmOOTci3frhW5ES/Iu/fUG9Z9Nf3+e1Wbo0OHhW9YuLQyp21wmcn+sSMkVSCnalcFN4yz+N9LP3\nv/mK154V1JKLsid06mokOfsi5sTSp9aq13r+P/beMsCu68rWnSo8xcxcKklVYmaLwTLJtuyY7Tjg\nOOB0ks7tQHcnabhJd+B2mJ3EFDsm2TLKtiTLYqaSVKJSlYqZTjG9H+9ljzFXbP14Obr1Z36/lnTW\nPrXP3mvNtfY5c8xxGvfgNFVGz8rQab8rP4/xyBKYKZ/TtcKr34CscOZCqmqfrFP62Z2MK9IfeQKp\ns9Nv19dk+aypXvveb37ba6c68sWN9+Nc78lBmmB3lXY42nMQUsnF8zDvh5yK9uMfmuW1j/8E6c/R\ncTrVcPyD1+4eioj4KyCJGXSkPdE5uAbxE5Em2tOjK9z7EikVmIaq6xyk0voPQHKXPEvHgBZyDhkX\ngpRZlu/01uhjMhdD5sip9qGODGlgAGmxXD2f5SAiIuUv4D7GUKpq/GQ9Z9tOI1amL4bctOGAlhSy\nPCHQlJ2CPHC8kzYeFool9fIrkBCkzddSoSlrIJup3A6ZT+JUnR7cdATxq3AV5E+trXtUv/h4yEtj\nYiChqq6DTGpkSMe1jV/C+7Ej3aWd2sEsIgtr3PNffdxrJziy0ynrkPa96xDup+uqkjfrw90W3HTt\nhQ9dPe3376WrHDEwtkTHSn8VpHWcOh2WqMftmSfgkpKzDOOxZZ+WSUUVQZ7WSPuqzPXaUal2K659\nP+2xoiL132W+fP/9XnuYZBAxExJVv+FezNO4fJzPKLn0iOh70teMdbHzrE5xT1+Dz9tLEjHXqSXY\njUsBJLEA8pXql/WeMmsj1i6Wo3VUapeUoBDIZjvPk5TiOu0Yws5psfkYL42HLql+YQl4/9hC3IOa\nNxDH2YFQRCSSpDsp7Ygp8dN1PGg7iXNNWYR5pPYvIhJGUsT6k5C9uc40w7QXHaE4Hpmt3VeadmG/\nNnGpBJxjR7DnGHTcwxbeiv3JiWewRx9x9mmpcThndiU9887vVL8JKz+G15qe8tquA9Lpl+Gutf7h\nFV7bX4HY8IcfvqSOGaL510BOs995/HHV70/f+LrXnvwYJN0+RxLo78B9zbsL+5vRYT1nmdd/ABfS\npbdoZ5qItGi3e8BwHR0ZloSMI0fH1oN6LqbRs0DyIqyZjUf1mqTkWrRu8FolIvLa5l947StvY48Q\nm4Wx0teh5eBX9mOvHUslMYKC9ONyZDbWhdl3QsZ7+U0dh7InQaLEzpYhzl4pNBP3nmOtz5HI1m1F\nvClwlJyBoHQnzn/OHXPUaywPShXszVIW6P3NuWew74jLwLUODtL5IDfOhpvue6dQSqSGyqGImQsU\n0QAAIABJREFUiHz+wY1eu70U14ZLU0RE6GfMpLkoWdDXhzXJX/GC6nf6LexVWKqV63z3EEmlU6bH\nYK/T75SP4BjN47Rln5bJxhSTLHyu/A2WOWMYhmEYhmEYhmEYhjGG2JczhmEYhmEYhmEYhmEYY8hV\nZU2ctuVKGvzkUrT7f+CIExai33JoGGmTXVR9m9M4RUS6+5H+8+Dd0PYkzs5U/Xb8En8riFKkJo5D\nSmK/v1kdM3kqUuUaryBditN8RUQ6eig1tA6pU4994Q7VL3Uh0qfO/xISjnX/qCu3D5PzQnsD0sZd\nd4SiB65BbhrB6bhxxTpVi1Ntc+9Aqn1MQYLq13Ac6YecAs+uMiIiecsgQVEuCD4tT+j3b/baLeSU\nNNSDa/bJ79+rjmk9DzlBVAbuY2K6dowaNw5pk+xYU0/ODi4sgzlfWqleY1eAlf9yg9e+9PQR1a/o\nAX0egWTWo0jx73aqjdfsqvDaveTqEe2ktZ94AunNnF7YeUqnq/f34z3yybXEdV5qoUr2ieSis/Cx\nZV57+w/fVcdwdfZtByA3HHRkSOyutOMo0h1nFRSofrPp33wOMblaJlW7DWmxPXSNooa1XKBmK1Jf\nM7QJWEDgNMyRAS1v7O+AzKmnHumVbrpw5mLEi6Eh9OtvqVP9Os9hjkTlIJa3n9f3m+mtg3yJY0VL\nuU4zzaN0/f5WxM3wSO3g03oeDgThJAlp2HdF9UugOTZIaf383iIicZNwTiPDkNK5ribsiBNokmNx\nLesaWj6y35SbIOE7svmYem36KqTFZiyDTLRu5znVL2kO1rW2BrxHVIJO4e3uxviuKUM7ezUcDM7+\n4n11TAa5srWdQCpuarqOG+zekJOM+/T1P/xB9fvPUDhIZSRg/Xh+j5Zg/dttOKf2UqQbHz+ipWkr\nHrwG+gmCnYjcOeavRIxtPYp5lTBTS7SyFkH60rgPjlkx+Tr+DLZjbifMwns0HahS/UKisTdg+fMw\nufuU5GiXSZZ3LJwKKU/zbkdaVYj12E/yUOWuJyI99BqfQ8G92g2DHRh9SdgfcgwREQmN1fudQBJK\nri2uXJzT/1mK3VOnXYlGSNaVQnu7Bme/kDgd981fDSkEr78iIkHjsE6eJvlSD+1xC9O0XGn/eYz9\nQdozh5Zq50iWQvSR819Cid5fNR/B+hlF6fhhsfr92Dkn907EpCpHIhYSpyUYgWZqUb7XVun+InLg\nTcS94kys8TmbSlS/VophFw9jr1jsSFw7O7GfiClEnFr68BLVj8d07TsYSzUX8Xfuf3iDOubQO5DE\nPPbdB7x29Ss6rrOb5Etfe8Jrr//yWtVvhORLvNd2JaBVJEVfeR8+x2CX3lddS4lh+ynI63kvJiJq\nnLUfJ/cix1Wz5k0t4f4rhffr2MOOcN2XIL8+ur1U9YuPwr1nyWfmeKx9l5/STmf15LI7fm7+h56P\niEg87UWGehGfsxZrOSSXi6jYghIMam8t+lksjBxFXVeykKhrF09FRBY8CBlhx2ktUeU9a2M59pGu\nk1/OKpTFqN6BPSA/n4iInLqCfeD8Ikh846br+11einVymOLjlBI8awQF6b38xUNPe22eL3mrtEMr\nS+frtuFc3bnywq/hIrd+GXRIqY5jZz+t9REZkKS514i/Q/kwLHPGMAzDMAzDMAzDMAxjDLEvZwzD\nMAzDMAzDMAzDMMYQ+3LGMAzDMAzDMAzDMAxjDLlqzZnYidC6NR/U+mW21Jq+EfqwEMdeeHR4lNrQ\n/B19/H3Vb860CXgP0tu5NQeWPgg9pS8ZekLWhzU6Ou5DR6CfnT0Zura2Wq35Wn4/3vvkZliB5azW\nPlcXX9jltVmne+6Jo6pfix/aa9YRT5yqNYlVr+D8cr8mAScuH1rpmh3adpp10L1ksx0Wp7XJ0z4L\nHSJrndvP6PoVTZdgddiws8Jrp63QtULC6f1T5kFDX012dz2O7XdIJNml593otStOaMvtypdgYZu+\nMt9rj9MyXdm/Ffd40Q2wdKtt1dZ6lzbDnnriXRhnvgxtcXfhSdQfSvlHrR3+e7n4J+iuI1K1hjqx\nCBrtkfOYY9te2a/6XbcCNtG/exqW9595+BbVL5q0zWUvQo+blKXrEKWvgpXqMNmS122DPnv6isnq\nmDkxsLQOiUSsSJ44VfXjmjMz8/O9dmePjgfjb4BtcOc51JpKmzZN9ctcg/uWdh3er7dRjzG3hlKg\nCQqh78MdK9CeatS5iKGaLmxVLSIyPIxzDg+HZjvYp2slhSdBg8txufH9CtUvIhv1WRJn6Joaf2XC\nHfp6BofhekaR7ergoI6pqZNxv+tPIDZEOTWBuA5E7GScT1SWtnTtb0f9LP9lzNPEGVq77l7bQJJW\njHoRnWQ3LqJrObG9fCrVqRERubgbdWH6yIoxcZb+HGHRqHvgr0Z9m5gkrV8eHMS1GO7D3z354/fw\n/8O6JkfV61h30pYhPg91a3vwdtKdv7QfMeWRG29U/dLHQ7s9fSnWuJg/6bWk4T3Ug8jYgPU4s1yv\nJY07Krz2pOUScBp3Q+/uXvfQWFzDkEjEBK4tICISRjVP4kt0PTemi+x3Rw+jxlr6mvGq36s/eAN/\nl8ZSdhJifJRTr28a1aBJWghL02HnXDvLEB+jMjHHkuboz171IvYIkfmYf0N9+v1Yx8/t1IXaVpU1\n+IGG6wV0BOnxE0p20q3HUTdI2fCKriM01IOaCNlr9NrVcBD1CNqoDlFosK5N8MqhQ/JhvPLOO177\nx1/6knqN7y9bSbu1Hruojlg41URh63cRvT+/8CzW8JKHtTVuENWTqt9ONf3G6/jMdWuuBUkLUVsr\nJk/vM5ZSnZ2eGqwT7todPxnzb/5MWhed2hGVb2Ed4vod7764V/VbvgbXKpnGdNb1iFmjI3qd8W/B\nHvDC86fko2AL6eUP4LnjR1/6vep391oEvsZ6xPgQZ8yNo80t1wiLnajr94TG6NgRSJLJTrnPsXav\n349nshlfRp2Qi0/quo0cT7mWR/WrumZP9ASMEX7GnDqzSPVLnI1xcPgZ3Jsr72OPeuzyZXXM9Tej\nvmN/C/YbYQm6pkl3LWpz9VB7yKllyvvNkSF6Hh7SdujBIbin3W3YEzRt0XV0EmOvXT09EZHuK9iH\n1pzRdQwTY/DMU7gKz+xl7+jnypwS1ByKikecunGJtnavq8Wa9OwuPFfHR+tnq/o27LP+1923e+3d\n333Ta0eEvaeOmfFFzKvyJ/Gsx8+vIiIhPsSAaKoV13pEf/ZND+OZbqgb68Txpw6rflM3oSZkeBKe\n1Rp26nGWulR/D+BimTOGYRiGYRiGYRiGYRhjiH05YxiGYRiGYRiGYRiGMYZcNYe/iexO2cpKRKR4\nKVKawuKR7uXKkNpPwF4tgVLMFq3Q9tE5N8AC8sWvveC1N/2XtrH+4LtIDc3KgOyqpg7pUWzLLSIS\nG4Hzy6Q06pBd2s41bgJSAFf+K6QefV0Nqt9gK9J0D/wOqZD+3l7V74Zv3+S1OfWu/gOd3pS1foJc\nS668hfRKPg8RkbzVuB7RJDVw02TbS3ENInOQ4jriSC5YtpE4F6ltDe/rzxyVh/eIovebet89ONdR\n/d4t1UgXbm1Fer1rm7u7DOn6U7qRwsZWeiIiKx+CpVpHGVKib3lES5LYZtuXgnQ7TlUXEUma69gH\nBpCM1ZAQtR6pVa+l3QCb0IhsyCcKIopVv2d//JrX/vqPH/Ha+3+nrW4v1MMq8tZ7VnrtjpPaVq/9\nDP4dRX83nKwr3RTyt17e7bVv2ASrXJY8iojETkGKcnI80vYH2vQcS5qS77UTJyO+9Pq1DHOYbFb7\n2xCj2OZQRKRuH9JdC66Bwz1bmY4MaZkJpyP7EjEngkL1d+jNpxC3wmIxL2MKtCUuS3v8lRirKY71\nX/N+XCu+D10k2cla4cjOzkFCxecXV6DnYn8/3jt9BuShvT0Vql8kySxayZIzIl5bxPa34TgfyfuC\nQ7V0pqMcY1i0yuLvJpLGevJ8/ea1b8MOk2UHTZ2dqt+qb6z32q0nkD5b/Ya2k25Nx1yf+vDdXjs4\nWKdYN52DdIHtqd85jnTeez5+vTqG4+6V5yHdDI7S24Jfb37La396HWLjwfPa9jSMrNIHuzCvJt00\nRf/dLFy/QYqtk++eqfr5L2vJWKDJuQl7jhEnxZxtdM8/AUnphAf1OXZdgtRgsAP7gk5n/YxKwFgd\nR2skXycRkfnTcE69HYh18SRPSE7UEpPIPFzPtmMYS5nX631F6yG8Fk4S4bq3L6l+LGUKIpknr5Ei\nWprIKf6x47WU4lpKDGvfwhjk+Cki4j+Pe9PcilT9WZ9coPqxxWkQyYHazut19sxWzJEY2lP6+7Rs\nK5fs5tkiO4JS9Subm9UxLFWLi8TYc2UzvL4H+yCDCHXKCZQ+hzFbQtb1h3+l13qWwxQsgrQxPFlL\np1kmdS0IJenSQIde43mNjivGta3fqsdt7FTsGfa+AbmML0xfm+mLMcc+eAVSl5s/v071663BmI6g\n61H7HiSptWfr1TE8Fvget/m1BGv5Imwunv8ZpIyP/MMm+SiiJ2J9z1upbb/7+7FmdlzCOR19Vksu\npqwjqd4kCSgDdJ+ic3SMCiYZVl8brkXS/CzV743fbvPaK1IxD3yZWuYSSVLqrjJI/dw9eAtJSJNj\nsMeo70A8WL1cS/1qT+p5/1dYxi8iEhKBeBMWg7HnSuO5VEMbSbFZdikiknUz4nXHeXwmnyNtjMy4\ntrKmygMVXrtwhZaJDZNkq/RtxMPZ9+rSH9t/t9Nrz1+D+DOql1nJJsnwvp/g+e6uG25Q/VLjcL+7\n27F/P0lW3Cun6H1G+dMnvHafH2OT13YRkZotuD8hsYgVUQWO9L4a8aCb2iU3671xXxOeOTl+83Ok\niEhXOZXP0G8hIpY5YxiGYRiGYRiGYRiGMabYlzOGYRiGYRiGYRiGYRhjyFVlTdkbIJeILtAV1Lna\n+IkdcMcpSNVp6HEz4Wxx8HmkLRUV6HS2n3z6N3hvSgF8d8O/qn7ffBSyF67s3V+FVL7Za7WzSN0h\nSLI4hf/MyXLVL2EGzrX9tK4OzuTeifSp4gR83tbzWroTFIrL669HirabCl//QYXXztbmDQGBr1PN\nngr1WnQdrnXnWaRhjvRryUXZRaSPLchEClvspGTVb7AHjg5Jk+jDOOm5LMGIjEY67fHfPOG1Mx25\nF8sn6vaggnnlbn3d161ERfA9+yDpuv4hbflxhdINp3wWqc5VW8pUv3hysAmh9OOMpTrNcahfp60F\nkkFKy0uap+fOyADu1VAXzqHjhJYhcbXx7iqkdc67X6d55+/FfGHpg+vY8PwPIZNaUgwJ1V/2IHX6\nUx+/SR3DrhT56yEri47W97oxEemtfS1IE3RlTQd/8LbXnvZJ3PfarRdVP05JrX0Dr/kydPp2bIke\nz4EmLAYplc0ntFSU5QB9lIY/PKDnYjS7I/m1LIKJoNjUTSna/soO1S9vE+IZSwNSJiDd1+fT6cIj\nE5C+3VWFFNzu+hbVLzQa86WnEetEUp7WjA2G47j+HLx36wUdo7suIhU0nVwQ/NVacsHV9ANNPzlR\nnNhyQr1WMBFzkx1spq3RKbcs/02ejWPylusY1dmCWNTZDulSyzGdeh1MMpXqUjid3boW6e+V+yvU\nMak1GG8TH0VMbzyox+XnPoY5PDKIsbhgis6L95/DveGY1FenU/rZZZFdOLocWfAQuUvNuFMCDl/D\nsESd6tx+AvuJCHLpqH5N7wvCUz/cMTJhgo4jPRWYc1mrcd1YFiUiElOMexJ0GdKowXbMc069FhGJ\nIJmYLw3p/22lWo6dtRH7uaqXMa4y1utNR9WbWBez1yOt3Y297HoRHIa40UD7GRGRzDXXYFPz/9FD\nKe6JJXrvGTuZ7sEBNF3HmtAI3MPWMswd1+0qbyJi4Bvb8IbLSkpUv/IGXPdlkyEj+dx6SBnHOdaR\nEWk4h7d3YJ8cfkC7si34IpxuBinGue44WZNxrk07IUFNjtdreHg6xn3nGcTgkLgu1S9xzrWTbIto\np8V33zigXmOZVwe5NT70f+5T/bprMccWXQ+XwOrDOp698MJ2vMdXbqNz0GtXEDkSXv4zYu/OY9h7\n3vllZ39TDgn2lSO47q70rZHWzFj6fOGO5IKdOQ/8DG420XlaclH7BuR96Wux15l9j5abbPn5Vq89\n9aZHJZB0kKufK+FImErPSeSc5j5XTs7CWnjuAGRrxUv0/tBHEtr6BsTQYGe+nCnFswHPudVfXuO1\n2WlURMRHcqpQenYaGdD9hgTPNEHstFSrYzqXrUgh6Rc784lop8e8FMikcubkqH6hsdfOcUtEZPKd\n2Ju5Ei12K5y5CXPs2J+1fC4+CuO2dBfWzKnX6T1DJUlHn/mP73jt947qfdUN6+AWzPNy4yzEpaf+\n+KY65ua5GPtTPo/jj/x4l+qXT6U9+Lm3cpfee7JTbBDdq/bXtJsWl1WZQp+30RkXUfl6DrtY5oxh\nGIZhGIZhGIZhGMYYYl/OGIZhGIZhGIZhGIZhjCH25YxhGIZhGIZhGIZhGMYYctWaM/3t0Em6FsxZ\nt0BLlUWebJeeO6n6XdqF+g4L70Vti3cef1/1u3ER9GH7TkEPvXiS1qixVbMvFfrqkxUVXvv0n7RF\n9vqZsL/MXAd9WdVZrdvvrYPONpJ03HETtX688xL0ohFzoBEPcewMz/8KNn3VzThm6trJql/irHS5\nlvSTtVdYqNZkdndCRzfxJlyn6ld13ZVB0v8P90F3GJGuLe6CSQ84OAjNPNuti4iEhsMObniYahJQ\nbZq0guv4ECl99s84102wPcxdsVT1+/3n/ttrz58IvWd8sdakh5CFZu170LemLNVWw32NuH4N+6Fh\njSnU1sVVL6KmRuZ3NkogGSWr1546rQfn8cljMJ7qPYloS7520gcnzdR68p481CdJmog6BaU/fUv1\nY2vyp3bCOu+Weaj9wjUZRERu/8FXvHZUFObilTPPq35cIyV74SJ8hiRtn5mxBHOJ7Z2jx+t7E5uJ\nOk+pKzHmuyu15W31QcSOGXdIwGk5iZpXvhR9bbqroZkfoNibNEvfH65XwvcxY6WugdR8CrF3mCzv\ney7rz9wYDC127ATEs7AC1MlqPKc1xZEZiI9RmWiLU0shOBia7Z4GxNuBAV0jpqsWtR7YKp7tmUV0\nvGmi2iipi/JUv+jsFLlWdF/GfcrN0XOMxzvXE3HtMGOzMR4bjiLWjhRrr8neRsTGxCLEskF/hep3\n+h3EnpJVqP80SjViChxryMwlqM3Wfhnv135c1yr57l9e9Np3Ll7stWvbtNX1vd9E/Yaa11G3xL2H\nlS/AgjMqDzUwcufr2h1VL56VawqN1ahMbU/KNTDCU3Dvop2Yz/uRhh1YG9yabeHpGBdc9070dJHm\nCuwTcpfk43iqReHWjOo8g7nEtUHc/QjXAcq6EWOp87y2dW4km9lcWs/d9a6DrhHbHXNdIhGRhj2I\ny5l6af27yaJaYo0f6H1fTBHON3VlPl5wYpQIPmM41zF0eoXRHJ6QkeG1z9XqfWQx1c24WI/aRXU0\nX6at196ptXtxjZZTnZqE6XrP0lmO8THQgTP0X9D1DBLn4vw6yZI+c2WB6sdjYnQIey+uuyGir8u1\n4PguzHW+fiIi+WTx/cFrqMcz7NQAOfin/V575xnEwy9+4x7Vr+Qu1NRoPYr6J/XnddzLnIa55O/A\nmnvX17C3u/SirjeRvgD1QSKpPuHM/HzVr7YV9yuX6vCNC9Zjs68VdZ7SklGfJbFAx8rQj2Gud1Xg\nfnONNhGRlNhYuVakLMbk5mcEEZGGPZibBVSz039F70Wau7C3HT8Ra2Rkpj7v8Fhci5n349kxKluv\ncRPuw7NB+UsYHw27Md94fojodW3NN1En6uyvD6l+WetQSytlKu7HYLeudxjsw3NG3fNY+65bO1v1\nCyE7+aQZmL899Xq/z+93LeC1j62zRfT+pukw9mwLP6ef1ZoOYG/GNXL4WUpEJJnGY2s7PuekTL3n\nHepEDaOUZRhn7aXY/z70mZvVMQM0d2q34Z6U3K3rHbIt9t5Xsc+dt1LXrj32ym6vfdvHUbOo5aCO\n/3lzsBe9uB91a3r69YrC1twfhmXOGIZhGIZhGIZhGIZhjCH25YxhGIZhGIZhGIZhGMYYclVZ0+gQ\nWfQ6toKcWp82A2lq/UNHVb/xS5D6FZ2LlLNFy6erfpx2v+pGyJ9GnPQ4tp+KJmvfuzatwnk7Eqxz\nx5FuPJ5s06J9OlUzYTrkRTGpSJ1qLtP2mW1HkKraUYqUYjdbNvcupK6OewlplslzdNpmPaXYyUwJ\nOLk34/7UfaBlIX0NZFPcjjSw/Ht0SldOH9L29v7qA6+dGqetGc/WINVtNaUUuumaAx2QbSSQ/Wze\nHTjX088/q44JiUI6X1cLrANDInX69p3futVrv/Y92NXFH9MSBJax1V9Aehz/HRGRZrJVTafUzQvP\nHFf9ZnxZ2+AGEpbZuamGHReQhthbDxmEKzmr31HhtbNvglzJTS0NIkvYvm589imPrVX9Yt5F2njB\n9Su9dsU773vtkrWfUMf4/ZBwsLVheJKW+PhJ4tPZBIlEXKpO5204gzRElhjIqI4B3a34HG3H0E69\nzpGw1em0y0CTMBUxpv2stjoPITvkWJJlqc8l2sJ2lGSA1W9fUP2iKVaGxmCO+Lu07aqvG9eeJQmN\nJ5Fq7koCO84h7rGNq3uuqZTmzfOtoVPLJlniFRqHNNiIND2GmRR679ZT9eo1Hvup+tT/bkLjcX7x\nU/Sb17yL+MoR78x+fW9Wke0vp2L31OpU1yqybo56FDGAbZtFROLJjrV2H9YTtnUcv1hbGvfQnAgn\nK+nMDUWqXwbN86ZOnN/AkGMtSta+yUv4vmsr7chsSIjKtuPznT2i16alj+hU6UATkYHzGHJiatZa\nXAOORcM9ej8SW4L5HLYR42LQsZLl1PTeWlwP12a8mCQX8fkkExgm2+oIvT7x2hpFcsO2Mzq+NJKl\nctJCrLnd5VomlZ0GmSzLadtO6/eLIRvclkNY9yNz9Z6gr15/xkDSsgcSsf5BfW+q38ScS56LNPne\nBn0+vJ52nEVcc9cG3t/N3QRJwgd/3qf6TbgessL0c5BXDnXj/Fi2KiJS2Yw1fGpxvtcOjdN71Lgi\n3JuGfZCK1NRomWh0IWJKQjGO6XXuRTCtOQkzsD9yJWIhbN+rt4YBge9dGe0hRUQKwzAX131yhdeu\n26bjBcuIHrwBzwOP/5+XVb95RXi/CXMhmUor0rH8L89v89prpuN55cpmrIvRCXrfwvbrn/6v//La\nv/jqV1W/zQdgF/5v//6I1245qD/7xPsgn8iYjP10xc6tql8aSULZKj5phpaHhDvy2kBS/pdTXtsX\nq8dt7wDiIY99X7K+fvPume+122nf3dek92WDfYin/Hk7zut5kDkLa94o7QlDSBo0MqKlxCXzMD76\n2/BMNPWLunxCSAjiXONJPN+lTtelOBqOYbxUVEJGl9Ci9zapU7CW8P6qdleF6pfF8nX9GB0QYqlM\nQsUWLS1uP4vxWTgnH/9fpq87x62BNtzvxFkZql/mGtyf0Gjcxy7nmYS/H+BSBAW3zvHaV97Sz2O8\nLvpoH+muzaPDuP9TChDzy/bpPdstd+H5bscLOuYzJbQvSozG351+u364L9uiJZEuljljGIZhGIZh\nGIZhGIYxhtiXM4ZhGIZhGIZhGIZhGGPIVWVNYXFwWQgO1+mQp1856XYXEZFZX1is/t2wF+mRwWH4\nc/FTdQrhcz/Y4rWXT4e0ZcCRNV0+iSrQGWmoch5PVe2HB7RbwJLPID26g5wJctdNUP38lC7F0ijX\nzcCXgVSl2Ek4h4Z3ylW/JqrAHzMZqWJ1OytUv8EOneIaaC4+ecRrj39glnotKAj3uP0SUoQvP3lC\n9yPXhvElOfJRLJuLdOnm3bhXviydwnfyMFLG5q5Fbl7STKS9cWq5iEhEZL7XbjiFz5Q793rV7/Dj\nv/XaIcE47xNvn1L9ln8Zqa9BoejXclJX7c+7GWnKwySLy16tZQLd9VT1PcBSCk69PvgXXTV+yaeW\neO2QSMyxniqdrh4zEfKEkUGk8g1Q6qaISPwkpGJHx+Gz9/frquTp1yEluOE05IyROUj3HB3Vc7Hx\n7DGv3R6HlElfoh4fKbMwxob6kYZ49Ada6pZKldtZVtHtOJqMC0KK41AX+rGjjohI4f26knugaStF\nqu7IsE6n5evO8qI2R/7Ezii9NYjLo4P6/WJIGtVBji7F9+sYMELSBW5HpkP2Mc7RbCZOhpPClTcx\nr8L+xtUDx0XnIdXeTa+PSMH9HyLpiL9Cp7fGT8E18tP4ZtmWiEh4gnYICiScLjvkrE8sn9j8FNLi\nk6L1+K6llHx2i8jZoNekWV+FA1L1Hkj4fvuLzarfTXOQ3ps6DTG0jWQaXWf0OtZ1Fs4vvX0YU+66\n+JWv3ee1OaY0lev36yd3hCiStkTnaJkLy0omLoe88sx2nUJ9+I9w1yicda8EmuBwxEpXjsdOMPxa\nmCMLaDyE/U1YAsZ+iCM9YnlBhw/3JPdGLdPsbcG1CQ3F/PX5MN+6Q/erY3hu1u2EhHuc85lyb8ff\navigwmtHZOuxGU4Sw5gCnAPLB0S0nDEiC7HCldOyfCzQRE/C+aXnJ6jXWo9BQsBztrdGu58MUTzN\no2vUclivd+xsxHKgeSu08xLHnjZaa1hpy39TRGT6NOwl/A04v5g+LbcLi0IM7TqDNdffp/eQVw58\nuLQx0YlDMWm4Nxy7U5bqPZ7r+hNobv0PSNH3/+h99Rpfd96rxDmS0u3vYU+YkoGxMKdQuxh29uI9\ntr6BubTpCxtUv7ujICmKnYT9+7bf4PwWzZ3Dh8iVPZh///TQQ147bYI+13+e+aDX5n1L0T1LVL/z\nf8YaMuWh2732pHUPqH4tLdu9dsXzkEvk3FKs+qUuCrBdGpE8E7KciCztrhRH0hZ+zkrohKtPAAAg\nAElEQVRbol0Wq1+HzLW5GmMutlFLsTmmxBXhGWywS8+rK3t34bV2vNZJ53C5SUtyij+Be+qLR3wJ\nDtZ7irI/4pqnLcfn6O3U+7Uwkvgs/DTu76ATA/jf9eRuVfzJuarfUI+W5QSa5gN4Dhx2JF+xEbgG\nHOddh8dscnPmsgt1b2onq/GfhDyUnSnbT2qZegxJrYJo3S5/Cc9C7GgoIhJF+47Sv+C5Y8J6PSeO\nvI3vMqYvxnk/9dwLqt+9FMCX3wr53c5XDqp+/MwZU4Q41O7Igktuv7omzTJnDMMwDMMwDMMwDMMw\nxhD7csYwDMMwDMMwDMMwDGMMsS9nDMMwDMMwDMMwDMMwxpCr1pxp2F3htZPnavvn8FBoblnz1+1Y\ngTYcg/VWJ2neG9p1LYHFk6D1Yitjt+ZMejI0XA2N0CRGtEKD6EvT9mynn4Y2t2AN9PSxhYmqH9dV\nOfbj3V77qZ07Vb9/+go0+H/+4ate+/YHVqt+XGPhyBPQpc3/jNaVNpHG71pQeC/qaIwM6Rog3Y3Q\n9kVlQaPn2lJmLoHmvZnsK4PDtKVr9o24j6xhPvmKrmFTUghNc95aWKc3nIBetq9R2+cV3YD3zpkD\nPXD9RX1/ausxzoKD8P1jcozWvle9Cjvf7Jvx3q7td9UbsHLO3zTZa7t1M1yL60DCNueOY7t0UV0O\nrgPTdESPq+7L6BdGVofDjq69hyyP63ZgfE/42CrVLyIOf2vceNw3rtd09I8/U8ckz0McqSJLyj6/\n1t+ynWZGAuY8308RkVGyh81cD91+mFNzhHW/ccWoW9Lg2BS2Uk2YdO1CGRAGSFectlDrvzsrEM8S\nJ+K1mHyt++2qQI2S5MWYl27dDK4fwxbh9Tsuq34cL0NpzrL1dXCEXioy50GXHZX74ZbdIiLBwdAB\nR6RinEVnJ6l+/R2YS/w5UubrdYdreQRl4Jy663SNobZSaKCz8iWglB3H9ZsaOVG9xtd59Sxoirsc\n+/L+evRLnAYL275m3a+vB3UvQsnO9uEHblD9IjIR27rOYxwdr6jw2sVZ+lpyjM/MR02Ept3aRreN\n7k1KJuZi0c2TVb9hWqt7azF2mpy6QalLoc/voX4psbpOQQLN02tB+2mMEbY5FhFJX4HY1kjXI2aC\n3jNwnOHaEdFZTp0d0tPzGhwWpmtRDIQhzne1YN0ZoFoKMZn6PjaXQscfnY+56NZf4DpWHBsqSrV9\n79QbUUOlm2zE4wq1DWpkOupIcF2s7it6LvI5BRq2aR3N0XFy2I972t+M6+ruD8dRvRw/nTvXFhTR\ndRW4nk8sWVWLiCQVoWZibwPmOe9rT23W+6FoH1nPkhUr18ITEWk4gjExLhTnMH2htu/to/iSROda\nX9ei+vlacU5dF/CaW2MsKFyfR6DpprUmc3yaeq39JMZW7ibUBOLaJSIi1y2Ax3ddJeqIrPzGeudv\n4Rnlye++5LUPPqdr+Y0vxAbgzS17vfY9X9votYPC9LrIK/qkNJzP0WcPq34zN6Hu27t/eN9rb1qs\na7BkrsOepux51OVMnp+t+nXQ/GurxXXJD9fn9+5/vuW1H/jlRgkk0fQ81des9+68dvHQ4hozIiLh\nNDfz8hFDXet5rmPWcpJrS+k90Lm3scfMyMN6wmtLnlNXpfYd1IOb8hDsjy9ve0f1S1mMZxiep3HJ\nU1S/y0+jTmJkwUfHwiEnXv+V6i1l6t+9VNut4BpYacdPx/y7dF4/Q3A9lci9eC1uhl7HuL7WAJ/v\ng7qmY38b9jtc/zHIp2u2dVLtvGx6DuxtxrraSM8CIiKdpTgmORHjpeytM6pfJdUcCj2AzzfR2S9F\nhmFve3obxlV6vL6nXVTTKj4C14XtxUVE+lv0Xs/FMmcMwzAMwzAMwzAMwzDGEPtyxjAMwzAMwzAM\nwzAMYwy5qqypmVLl6k9ra6vkHKSwlT+FFM2M67X9ceYipOkN9yLNNH+6Tv0aImlFPaWVRSRqe6wk\nSnP3UaoTy64uPH1cHTPz0UVee5Tyrbqu6LTIg89CesSWYSy5EhH5+S9e9Nrf/t1jXvvcn46qfg0H\nkfYVQSlRA451dsrCj7amDgT1JE8LdtJTI7M5dRDpWJM/M1/1q30HqdPnapFqv/SuBaofW013kn2v\nm/oVSraj55+BJd1wP1Kvk+ZqXUlDGe5PUhFS6jk9XURkxp1kz0bpsgnT0lW/c0/iftVtgw36iCPz\n4TFTswVpxWHJWjqTMCXA/tn83nTuyyfrv3PlRaTpnXsfaaJr/+1+1e/sOaRldlcjtTdxhr4uvWTl\nyRaS+/9LW8st+BrsL1kademPsK2LnaJTvqteQjpgSBxSXTldUkTkiW2wkJw5Hqm9n/vcJtWP5z2n\nyKavLFD9QqPxtzi9nyVYIiKHN2NMTF4nAYclLCyhEhGJISvY4WGkPLJER0Sn7gaFoR3s0+F8kK2N\nCzHP451xOi4E195H8ZblFxGx+pjWCqTaps1Ebm1n7SXVr/0yJBMxJH9qO1un+qXPhF1kbRXmuSsx\nZMldZCZkMN1OinvaIm2fGkgmz8Ma11OlbXkT50L6UbkNMXP7qVOq312bIBHc8To+b4mTSttHttPn\nT1R47Vk3z1T9WKbI0psFbZBdNbXoa1RB6bzjl2COXTxXpfpxmm4YzdPsNL0uXnpKSzX+SuYGvSfo\nb8XY7qU4FD9eS4aS51wDXSGRRhICtvsU0fa96atI4vSBTp1OmQt5ActIgxy5L+99chYs89p9fToG\nRMSzlAtjv+MC4mZ4nLY1ZutmtkENjdPW1xGpkOlkrsH9HurS1qwchyKTEL/7u/T4qduOuR5LMgGW\nd4mINB9EDBivXWH/bqJIOs5rmogedywLc89vsAOv9ZCsKedWbXMeRXslll72O5KLxjOwZh0m21uW\nfKbGadlb6jIIYoZorLip7znrITnj++RKVfn8mhtx36LC9ZiIm0bjjfQmvA8TERFH+hFoDj95wGtP\nXa+fDfYdOO21u55GLMqaraU9/S14rXAh5mzd++WqX91J7F8//QPskfyVbaqf0Nbg3jVYT3ivE56o\nZbzhiZiLfpIfL/nSCtUvmORQKTQWEpL1vntkBGOzshbXIdyRbQfR2j/zMZRNuLLlrOq32pF4BZLz\nz2PcZ8zR9yY8ns43ip6F6J6JiKQswbMQSy/7HblvFe31WDKVME1L4iatwxw+/Cr2dsVT8732s7t3\n8yHyze9/2muXv4c9c/JsvR6xZXkY3fe4HL33HP9xrNV1OzAWXZnLAH3GyZ/FOGgv01bfOQV6nQw0\nvI+cd48ejyGRkBuxbHZckN6n8TMZlxGo36HnYtkR/Hv1P1/vtXvq9b4qNBpjpvUU1sxueoYPidZS\nqNgSrF2dZVjf8zL18/ZrhyE5XLcEcv2YCD3HWv3Yi634/EqvXf+e3vNWlGNvy/bo7r47JErHDhfL\nnDEMwzAMwzAMwzAMwxhD7MsZwzAMwzAMwzAMwzCMMeSqsqaspfle+9Tbpeq1qauR/tN6CilMrvNL\neBLS5Fso5bbDScG/srfCa+evQDqqmy4VNx4uH9GUZtpKFbsj4nQ6Uv1OpHzm3gQ5DEt1RESmLEGa\ndtsZSLoWLpum+k3MRHpbL1Ulr3McqAqyIRcZ7kC/85v1tcxdko9/6EzagOBLQQX05Gk63f/wD1C9\nPXsZXhto1WmEuRtxYgkz8bnaTmrJRdU2pHhNuAtyh/IX9GeOorTvnNuQxtp8FCnQrqTBfxlpoq1H\nIXsJcRxiwijNkVOJq17SVboXfP1ur335bTg+xTkuIVdIijNMUo/mSu180PErpOZmfu9WCSRBJGWp\neFl/jqhCpHZPnQNZRfWuI6pf3DSk1XWV4dxDnfS64DykS7MEIctxF+qqh/yh+RDmNjtZbHv1gDpm\nZn6+1+6ow/38044dqt+vv/sVr80OOK6rCrst7d4P6chti3XqYjC5FrRRymX6cp2CmrYsX64lfZSm\nzmnpIiLdNUjL53N05Xh9TbgenPrL8VBEpIfS/LPXY/62OO4snMbqo3jNUqbgYO1cwvKnhhNIZ+5v\n1WnKPBdHR5An7jrJ9PVBLsLOWh1ndUpvEqUWh8fiHOIdqd8AuyMFWG3IqarBPi1f4WvJcqBP/tMd\nqt+515CivmQx1peBRh13a88hhZelsRwLRbSbSk8NUoJ9mbhvg406XvFc5Biak6yliHEkTeTrvPun\n7+tzICe14WHEydhyRy5A8olTZ7A256fouBuZS+NZKx0CQu17Fz/yNV8q1kzeg6StyFf9Wo5DIpGx\nCHOss7pW9eN90MU33vbaWau041XT8QqvzdKSSHLjCnIcWLrKIXPKYLmSI99pp7nEEtwBZy5WvYz1\nLoZSw929HRNEzkExRdqJzd3DBZKobEgbWVItItK0D+vTOHJT6a3UblK8XsXPhCzClZ+zOyP/rV5H\nTuUn6WUcSfWajl3w2hMfmqWOqX4dcukocnTJXONIAjtx7krima2dzjjWNjVg/rHLqoiOFSyFSnQk\nhc37tNQx0LCUqdu5P6nk4la4DjJNX7J23WKnyqM/hVTlQp2W0K66faHX3vrfmItTp+q9cQ+ts+x6\nt+6e67z2az/XDj7zJuF+xc/AWHJdtzovIRbP/yTKLjSUf6D6qTFI8+jKq1qudOgA9oSL2iCjiXdk\nPsFhV33k+7uIjcf9YGdQEZGINKxDQz3Yw2XfqqWxg7S/G/IjfiXN03LfXb/CdZq6tNhrn3/2w6W1\nIiLTlyM+H3wPe5Y7Fi1S/Vr2Yy8bnkLPr8f1OOpowtyZ+xDKO7BDpYhIqA/rWBTt+XgfJyKSeh32\n1z0kZ45I1y6zA106LgUaduBtPao/8wWSVs9/CPPIldnVvQu5UvMxvEfyTL2XDaK9gJ8kSq4713u/\nROkLLpEx+7OLvXbDTi3t5LjOz6zP/vg11a8kGxK8UZIzBzmOdTNXIkZVUSmJrI16DAeT9IvLQrQe\n0XsCN8a6WOaMYRiGYRiGYRiGYRjGGGJfzhiGYRiGYRiGYRiGYYwh9uWMYRiGYRiGYRiGYRjGGHJV\nAWLpVujiWe8uIuKvhi40rhi6qto3tY67i2qt+PugI0vr1HrouV+GvSRbF1e9Vqb6scY4dTws4/qy\nUDOk+AZtITwygr/l9+P94kq0xn3vs/u99uw1qAPwh99tUf3u2bDCa7NF5rw7tU8ka95kJ2oqdHXp\nugKupjDQ9NRCG9nQe069FpuK69lLNS+yb9A6uvbzsCJrfL/Ca9c1aVvP7Gxo2bk2Q6RjiZ53MzTX\nR38E3W7BLdCFnnr+mDpmwWMYIzVvQaPdWtqo+qUsQL0R1jHO+vIDql/Fzne9dhrV/Sl/RutWC+7D\nWIhIhN5xaEDX12g5pjWFgYStXtMcm2imge5NWLy2zWQtZGc97vVz//Ki6jeOtJas9y5ZOEH1e/yf\nn/XaswtwTklxOGbeBK2Z33IAtsFsUb9xvrbs2/wS5vOGxZhXDWe19Wwm2WnGR0Hz3OLoO8PiUcek\n6tAV6qc1tSmLMHZy9KkHBLb0dq2vE6ieR+dlzKvuKq3BjymAbpk15H0tWsOcMh/XZqgfczF5mq4d\nNNiHeMTvEZKBOdtRfUUdExaD68l1akaHteUqW5X3NkJHzZ9BRKSL9cZtmFfRTj+2Jx30kwVurbZe\n5DoX2eMloFRewpiZuEC/OdfLmXI9NMqX39JxN3MSNNCDZGX8izffUv0eWQc/d14/u6r1mGiuQA2D\n01WoDzElB+N5wiJ9rqExGItcyynrJj3PG9+ntess/g6v0yIiufmob1B5GfP00iGtBQ+m2jQz56GG\nRJxTN6id65mtlYCTsQrXo7tO1w3pojo5XPvAHd9cz61uD3To/ku6zk7sFOw1WE9/4Y/7Vb+4GbgG\n8bSv6qc5ISP6uuesQHxsq0DNN7eWWNpizPsBZfGp90FcH4OtpeMm635DtJ40U52G1OvyVL/eOj03\nAwlbSIcn6boHI4O4V3ETUAcnJErXXemrQ1zimlmjznXmuk68D40p1DHqzC/e99or7oL1de0ZxI0u\npw6Tur8UM6vb9B4jaR5iOtu9tx/Xtf+Sl2Le5y+i/YIzZ8Np/HINF7fejmsNH2haD2K9dmsUse14\n+0ns9Qrvm6H6HfufXV47ay4+/4kXK1S/aLJfr2vDfbhulq6H0fYGnhVW3466JEkzUddv7gFdpyZ5\nEe5P6WuogTfFWesvvYP1YPLdqBETk6Vrq7SewB644F7sQ936J1w3o+o44n9BpB7rIRF0Hroczd9N\nP9W4Gn/vdP0i7SkvPIXPNPlRve8bF4zx3rIPMcXdK02alu+1j+/Ec+qC2/QzGI/3P/zsFa/98Oc3\nem23vskAxQB+hgtz6qrM/6ebvXbbRcShogV6sbp8EvtkruWZOFXfgKYDuG8xFK8qN+v6QkmzMf5k\npgScylcw7jNW6WeNibQ21L+DujLxztzJuwO11NR697qulxkSjPfj/dyO5/aofhMy8JmTS7BGcn20\ntFX56piWw4gpp46g3tdt96xU/UYo3p58H+eX69TeK/0A12Xpo6g71XZKP38mL8RcbNqDe9papWN+\nzSXE7AmLHhQXy5wxDMMwDMMwDMMwDMMYQ+zLGcMwDMMwDMMwDMMwjDHkqrKmyashMakiq2sRbbvH\nXKnR6ZVLH1vhtSv/gvSzM1e0NV/Em0gTjZ+KtKU0J0U2nOQxVYffwwuUrXnmlSfUMZzJySnz8U5a\n2YZv3eS1T/8S6cb336HT1FrKkdoddI5saNO13SzbyUUVIfU1c6LWS5z7C2zdihZIwKk9jvTAaR/X\naX9tR5F+nrwWKZrtZTpV6+QWnGN+MVIvS2Zo7++2w0i35FTEpAXZqt/5PyBtLYoscf2U7ps9MUMd\nExaDtMJUsjyOrNDpYmxDzKm6Def2qX5BdH6ddE8zN+i0/pO/hxQnKQv3McWxa2aJW6A5/spxr73w\nkSXqtfrtSKlMXYb5cu6Fk6rf8AjSvMevhpzg0vNaKrToekjOSncilS8iQ4/vj3/rTq+945ewwp7z\nOZIbOnaBt1A74wbMAzf1PWQr4ksQ2RVPeXCO6jeOLMZn9sLeNN5JwQ+hFH9Od794sFz1K5qobWAD\nDdsUutavnM7N8qeIVH3d/ZWIK/HFiJV9zVou2Ut2jCHR+Px9DdpKOyoHaePBEeg31E/3TmfDywjJ\nO/h8XBv6TpJDtpH80Jfq2E3GaAneX3FTjtkCmNcgllaJaCvKQDP/E0hxZ6mWiEjHOXzeygMVXjsp\nQVvdHtyLtTA7CWPu3370OdXv7d/BQvKNw4e99n/+w8dVvxAaL/FJkMmO0lgPcVLc2Z750J9geT95\njY7pPe0YV4cuQTZTkKplSMN9kFks+DRiQNtJHV/OH8B79NXg+vFcFhFJWaTXjEDDFtL9TpwKJrtq\nlrewJayII5GhORLkpOEP0jhOIgtNf4W2nOV574vDXOqqgIw32KfvY2gG1p2QCLw25Fhfc9o4f77e\nKif2xn14rHTvD18LZS/vWH37XSv1ABJKFvA9zudgCRrbirvzICIL88BHnyl+oo5lHRdgRc4yn06a\n8yIiM8jal+9H7jzIykaGhtUxsbTu9DfSWAzS17x5P/bNLCtMWa73ySMDuPedZ3F+GescjScpiCr+\nUuq1s2/Rsvae+msXT0VE0tZAPqHkjCIy3ID7yJbtLUf1OlbfjrnU8j7Gwn3fuUP1G6SxMC0X96T0\nZS1nzynBPGXp2+NfesprF6VrOUdWAq5bVQv2lMFvaTlH/tx8vHcL4mvnxeOqH885nvfJs7QNL0tx\nag8jvvov6LIDUblxcq3I3wQpi9/Zk/O8mvTwbK89MqjnQRON76SFeM5oJomTiEj0BFjUL7oL0ii/\nY+E9QjHwjvWQolwtJuVuxPo3SLbfQSFabtfTgnUttgCxor5OWzXXv4c9JsuHh3p1fOY9GtuNx9Fn\nFflb2+pAw5+SS12IiMSMx/NPx0WM76Z9+nk+dD329jXvYjwW36nlbmX0jNK8C+8xo1DLqVju21uD\nud3fiXW1Zst5dUxIHNbSVY+t9tr+y3pONB3A2GK79Zgi/SwQSvbg3ST3dZ/7Dj6O58yJC3Edhiu0\nJDo96+rPGpY5YxiGYRiGYRiGYRiGMYbYlzOGYRiGYRiGYRiGYRhjyFVlTZyymzZJpzAPtCGdqGkn\nnDymrpms+l18GqmCebci3TOqLF71Y8enyy8jBXDyZ7XOZ8u/vuq1F982z2t3U2p9/qap6pimQ0iX\nYncFTpEU0ammFU1IYV20VKeMnj6KNK0gqkI+Zb2WK6XMQVpew144XnAao4hIaPC1rYQ/5x+Qztfb\npNNTJz6C61v9LirI510/W/VbUoDUuhO/geRL17MW8WUhfbHtFNJT827R96TzLK5v0Z1wYbrwF7j0\n+FKj1DGXnj6KYx7AebuuFB0XkcY7MoRUsi5KwxPRbh3s6hSRrP/upE2okt9KFcBbDuq02tzb9NgP\nJHPuxVjva9Qp+IlUvf3wk5AnxEdqqUc+SZn4+i+9TVfMZzISkMYYk6ddKaq2QPI0ZRokcWWPQ35R\n/LCWIfH4GKaUU07pFBEpmo45lzgbKbycJi6ix3PKQsjMGj7QDjHZ1+Ozj5CcaPrtutz9zv+BjOT+\nX+p06EDAUoMBx4mDnQEiKE4N+rWzXeJkfM76vUjljHfcbvg4ltv4UvS44NRpTvlMpvjlOmiwVpTd\nK+p3V6puiTPwWlwx4txAu/7sLD/s6ME89TkpvCxV6KQ566ZHJ0wOsBUF0XoUMWCwo1+9Vl0J6VZn\nD+J8zmztkLVsOuJXBMlhG7bpcTuV3Ja47UpMgsPw76QFuG88X2rfuKCOYTnbsq+t8dpv//sbqt+U\n2YiTK1LhkOKOiVByRGs5RE4bjoxkaBj3qppS/yfmaelXE6WyF+rlKEBgDLvyOXaOGkfztL9Vr91R\nWZA1dFMKuBsrG2uwR2J3Lt6PiGiJTAStf3zMcK9OyWcJS+Mu/J0YR6IZnoi51HIY/RLna4lE23Gk\n6+fdjjWt9l3txBlVgD1c2hLaIzmh4loSQa5JYYlOrKC1n92A3LWG5aW8to5zPkdMPu4pu9DxuBcR\n8ZGDXuUL2MuyVCjYcT9qP4f1OInWuyrHqSWXpCMsU2O3LBGRYZJPZG/Evrtmi3aNG6LPnjCdxrzz\n2YODru3vuB20H9m975R6bfka7CHOHEQMWzRPOxuNT0PML/w41vVWR1bJMoQFX1lB/bQD0uEtcBVq\n8WOfccfnNqCTc504fl+3AucQ5oyRU9sxLhZ/eqnXduW5J5854rXL95E8Zlivd5NWYGx1dGMMu7H3\nlR/DDfCrf9bupX8vrRQ3IjK1/LOHYmNIBOJSwwcVql/CDMTT8ldxjXJWazkeS72DaL7xc6mISBOt\n1bk34hqxVJXjhIhIbzOuX8th7PELN81T/Spexb2JnYQnIXYxEhFJWw2JTtVWjN8CZ/xefgoSH47J\nrkvUtXb3zb4Re+X9T2k3wdG9uG7LH4PrEcciEZHq17AvZXcpfk4XEQkLwb1Lvg77m67zWnrEe8xK\nckJk6eCKf1iljuE9YUcZ4kvsRP3Uyu6EkdnYE1Vv1k7ReXfBffP9n+A5YdGDi1Q/HqnNpZgT0z+p\nn7P6nL2Ei2XOGIZhGIZhGIZhGIZhjCH25YxhGIZhGIZhGIZhGMYYYl/OGIZhGIZhGIZhGIZhjCFX\nrTnj6qaZ06/Ddq9gOrRi/U1aRxVbiPcofRYazpERrfObSHUQfJGwwKrZqnXy0eF4zX8JurSWaujQ\nMjt0PYM+slVNmgd7zrp3tIZ6/AOwEE6Ph566u6pD9dvwbVhu93dA49h5SevkLr+Hc+f6Az39Wp+3\n9EFtjRxouLbOkGP7dfx/UONl1ldgN3bsR2+pfrG5uB6J6dDlDXXpehjpa1B7JCoDevBx4z66rk7p\nT9702hk3wsa637EG7qFaPa1nUEcoplBbzQnpwUMiMMRzN+j6Ig0HoYtsPUIW4DdqK+2oLHzehCKM\n9dZzV1S/xgM4p4zbJaBEkxbyyE93q9dK7kQdiFl3oDjDyZe1LWPdrgqvnb0W9ZHCHZ3zcB/GSAFp\n3Dsu6Jo9nU2wtPOFQcc/9fMLvfaoY8GctR7XdtcPtnlttz5OZBRptOlNBpy5fWkzLIkLb4YNXneV\ntgBsOYH723AOdUG6K3W/idPz5VoSFAyRerxjO91HWudx1K+rXMcV1vfy2A+N0nbUbMvL+luulyCi\na2ClzEXtiPYLqBnl1nRh62Gu9ZC2SNdW6aRzZ3vIYJ+OBwNUuyUsDvfercsTlYmYwjWLUmZp68Xh\nIX1cILlwrMJrjzoDfM7H5npt1oqfevKw6pdRDG39qa1YS2feqmPUhbehe+b6Zj5nneV6S2wbzNr6\nIKfORQ3VoGGL3Ql5WgsfTWs4210mzM1Q/Q6+hppgIVRHLTZCa+aXPIoaY6zrrjmjaz64dXoCTUcZ\n6rukL9fjp5/GXVQO1r6hHr3eNezBGhBG1p18D0T0NYymtdStvcTzjC2p2V55ZEDPxeg8vF8w1Qnk\ney8i0k92u2EJmGNunQuuycJxKDzFXScw/3if5saXlMU5cq3oqcTerPmStrQueQBrYccp1BzIuF7X\nrzjzNPalk6kuTOWL2v4493asL1xfo6lMWz9nLUIMjczDus31Y2KLdT2g4X7c07ZTeG+2ExYRqd+O\neha+TNSeiMjQNT44JnddwrodM1nXW+CxxDXLasn+VuRva1wFGq67tXSJttttv0DzlPbl7/xmu+o3\nfzFqQnRXY1xwjTkRXUvt4h8Rs3xpuv7TlPnYq6h56cO83P77neqYtV/AHrq3DvujrX/epfrd+Aj6\nbf4hanzd9Oha1a+6FetndiLW+mm3zlD9uB7S2hTUAuH9r4jIQme/HlBoLeQ6HiIibYcQ27mWqS9d\nj9vWI6gRE0F7SraDFxGJpX1PF9l2u3WnkqmGDd+32tcRr7Jv1bbxXCszpgh/ZwP49X4AACAASURB\nVKBX7xV575g0F2MqepKe2/z8mEL1pHjOi4jk34valmf+gP0C761F/na/Hmj8VBcmJUbXt4lNxf7r\n2O9Rj2bSDbreZl0bPY+nk632m/p5fuK9GMfNVM8zZYleM7gmV2QOzmFaFmJy5XOl6pj4WahBFUp7\nSl4HRUSiqZ5qxbOod1XbqvfdwW/gebEwB3ufQ08fUP0SozGm+Xr1Nulaoe6662KZM4ZhGIZhGIZh\nGIZhGGOIfTljGIZhGIZhGIZhGIYxhowbdfOyDcMwDMMwDMMwDMMwjP9rWOaMYRiGYRiGYRiGYRjG\nGGJfzhiGYRiGYRiGYRiGYYwh9uWMYRiGYRiGYRiGYRjGGGJfzhiGYRiGYRiGYRiGYYwh9uWMYRiG\nYRiGYRiGYRjGGGJfzhiGYRiGYRiGYRiGYYwh9uWMYRiGYRiGYRiGYRjGGGJfzhiGYRiGYRiGYRiG\nYYwh9uWMYRiGYRiGYRiGYRjGGGJfzhiGYRiGYRiGYRiGYYwh9uWMYRiGYRiGYRiGYRjGGGJfzhiG\nYRiGYRiGYRiGYYwh9uWMYRiGYRiGYRiGYRjGGGJfzhiGYRiGYRiGYRiGYYwh9uWMYRiGYRiGYRiG\nYRjGGGJfzhiGYRiGYRiGYRiGYYwh9uWMYRiGYRiGYRiGYRjGGGJfzhiGYRiGYRiGYRiGYYwhIVd7\n8eKBp7x23TuX1GsDfYNeO3Famtf2l7Wofj19/ehXlOy168vqVb+gIHxPNPn+2V67u6pD9Rvy4/0G\nO6jdjnbykhx1TMP2yzg/f6/XTp+ZqfrFFCXh/N4t99rRRQm6XyH+PdDJ59On+oVEhXntiLRor13z\nxgXVb3RwxGtf9+3vSKC5eBD3sau8Tb0WmRWLfq+d8dqTNk1T/TrONXvtkGh8rt7qTtUvKj8e/xiH\nZmhMuOrXSe/XX9eN8ymIw3tXdaljUlfkeW1/RbvXjsiIVv1GhnA9R/qHvXZfY7fqx5+j9mi1185f\nMV71q91V4bXjCxK9dsKMdNVvsAtjoWTNpySQHHvup147a9UE9Vr5s8e99nDfkNeOLoxX/ZJmY7xX\nvVqG/1+Qrfr1NeE6+S+2eu3giFDVL3N9kdcepWseFBbstZsOVKljhroGvHbKIszT4HAdivg9RgZw\nD1tLG1S/9CX5XrvtDF6LHZ+o+vE8DaV56a/W8WW4F3Ft8rpPS6CprXrVa4eE6znRfh4xMYbGWXTs\nRNXv3+/6ite+bcVir526Ml/147HQ+H4F3ntSkurXV+/32nsOlHrtBSX4u1sPH1PHFKYh5m/4zk1e\n+2eP/l71++qfvum1fb5cr33yD0+qfskLsrx2Rxliw7gQ/fvBC39+z2sXpWP+bfrB51W/4z96yWsv\n//d/l0By4sWfe22OnyIiA21YX9qOYzzm3TFZ9buy+azXDk+O8NqhsXpMROVjrWk5VOO1k+botSsi\nFTFwiMZwxXO4n4UPTHc/ikdXBdaFkYER9VooxUmOmUGhwapf5QunvXbenfi8Qz2Dqh+Py54axPie\ny+2qX/raQq9dtOCBjzz3/780NW2nf+nPfP73e712SBzuyenjeh9U345zvvmBlV77lSe2qX6xkZFo\nR+B+9/T3q34VjY1e+1Nfv9Nrx+RhHPz083qOfeOZ73ntHf/2R699qUHHykd/+59ee9u3f+G1535x\nqeo3QPsYXwrGVfUbZapfyd2bvPZzX/qu146PilL9Vn7rbq+dmLhQAsn5vU947a4Leu+ZQPvS/lbM\ny9A4n+pXvxX3dHR01GuPC9axJ+smxMNB2of2NfhVvy7aA0dTrA2JwvrZebpJHZNyHfY2IbTO1rxx\nXvULjcdYjCnCGsH7HBGRjrOIoWEJ+LzunoX3RH2N+BwDbXovy/u66bd+TgLNgZ//l9fOvU3HyrbT\nGMe9dYgXyfP1Pr9pP/Yao4O4HmGJEapfKM1nvtYD7fozc2znOcExKyxOx+uweFxrjnPu/jeMxmD9\nTjyfDPl1rAz2YV80Qp8pflqq6sf3i/e/Udl6ffJfRpyf/cCXJZCc34O5yGuViF43+BqFOtfPfwnn\nN9SNa5G6NFf166nFc0cv3Y/oCXrf11GKecbzoPcKjo8ar/fJjaXYhxVuxFgcdMZH+ynE6uRF2EN3\nX9F7yt4q/C2ep2nrClW/8lfx/JUyBfO0+YyO4+PG4cFq3fe+J4Hm3W98w2sPDOu4kjEd+w7em6Ut\n0venq5KeMxFSZVyojqkRKVgrLj6B55gJn5it+pX+5gCOoX3zyAjGepyzr+U5EZWH50oeiyIi4YlY\nm9vPYLz0OvcxKAJzMWl+lnwU4Ql4v5EBxIC6d/Xeoae1x2uv+e53xcUyZwzDMAzDMAzDMAzDMMaQ\nq2bO8LeTwRG6a0QkvnFuPYVv9iJT9K8mRdfh14aTTx/G/6/Qv/530q8NtW8hsyQiK0b186Xi/UNj\n6RcQ+hK9cWelOiZ5MWUG7EaGBGfKiIgE0bd6mTcgK8D9JnR0BF8FhtB1CHJ+5a1485zXjs/Gt7Mx\nxfrvVu69LNeS4V58e8cZIiIiGYMZaE9Dm79BFBEZF4xva/mXoQzn29+Oc3it+wKyLtr8OmtlwoZi\nr91SjmMGL+Cb2uAgfT3bT+Obas424l/+RUTSVuR77d4G/F33V6OWA7gW4SEf/guFiEjejZO8dtOu\nK3ghaJzq19/SI9cK/qWl7Zz+Jj3/Y1O9dvXbmDuDnfpX2Ta6ftHj8UvsUM+A6heRjl9LkynbpuNC\ns+onNA9qt1702qnL8CtgXHGKfm/6hV/oV8rmY7Wqn4/iyDi6zjEFOoutdjv+Ls/FzvJW1Y+zb/iX\nznj6dVVEpJV/8VknAWe4H3MxLEL/qsXXhrOwmhqOqH73PXS9105fVuC13XH763/AL1klWfimf8Nj\nG1W/iq27vPbCqRjrPZ34tfmhf75DHfOrbz3jtW+PzPfaX/jFJ1S/Yz96zWtfrMcvUnd8X2eWRUUh\n3oZE7fDaO3+6XfW77abrvPaWN/d47bKn3lL9EudlyLWi7QTmH/9KKSLiP4dxF1OCON9dqzMMU5dj\njjTtRkwJTdC/8obTv1MWYh3rqtBZJhyf+dfw+On4hdV/RR/TSb+upy3Px7k62arBNK94Lrad0nEo\ngf7WCMXn0eFR1Y/nYk8l/laQs8fgjNeiBRJwBvvwi+v53x5Wr01+bInX/uWjv/Xaa+fNVP2KQ/GL\nYeGq9V77vpw41a+dMiVaKRPAF6l/OX7gp1/12lV7kL1TsxVx/etP60ywuqOHvHZaLrKT95/XWRf7\n/vfvvHZyBuLoc998UfV79Lf4NfY7dz7qtW+YrX/NbL6Ca7bmS2u8Nv8SKSLyzrcRK+7+WWAzZ1oP\nY91ImKXnPGdscZYXZ42KiOTcgpjXQu+X7GSUdpThHvI+lH/hFxEJp/UzmDJA2ymTLjJPj48RWhdq\nd1Z47YEuvYbzmttbi/EbOylZdYuhbG/OFOLMPhGdScHxZdCv9wSDXfrfgSacrmfL8Tr1GiUKSOIs\n7Ee6LulMqTTKPmrah5ja7cTKsCSMz2jKCOpwspk6aS/LWcgp87CW9tTp7G7ep/kK8ZkuPXVc9eOs\ng9AY/JLvS9dZ4CGRiIlRFFN6nT1veDI+k48+nxvL3XESSM6+fNJr5y/RzwURdH85o6h6m84mSKH7\ny5n37t7m8m4oGwqXIdO938mO72rC/UmirLPwdJxPd4W+Rjmr8H7nNyPzdOLGKapfwmw8T3C26pAz\ndzhbJJ2eTdysYH7eCQ5H3IgI05keEbl63xhouimbc85nF6vXTv8ea830zy/y2nU7ylU/zmor/SOO\niXKyxQvvRzbvhIdnfeQ5JeSQWoUyYsbfi/X4DJ2biMikB7FeDXXjM4U7e6zmI4j5/B2Aux9pr8M4\nSQnB5+NMfBGR47/fj/Nbhe8/3IydwjV6jrhY5oxhGIZhGIZhGIZhGMYYYl/OGIZhGIZhGIZhGIZh\njCH25YxhGIZhGIZhGIZhGMYYctWaM61HUSMgdZmuxtxAdV2SSevbcERX6Y64CN3mrE9AOM7uECJa\nlx5Fjj3NJ7WrU9E0aNTY9cjfQbVFcnXFbtYAJi+FrrbloD5X1v2GJUGXNs6pLVJHelbGdV6YsB51\nVUIioTcb7tMa5aSka6sh5NooCWla68w1YlgXGluital15Pbio1o/PTW6loKf3i88De83fr52F2F9\nbxpVAA+NxXW6skvX4knOoQrZJEQeaNc66qY9qNrPVdRZxymi6zvkU/Vt19FKqJYMOzi0ndBj063c\nH0iCwvB3+T6JaMehMNLVJk7XGnx2XWmmeerqybmifAfVHuJaSyIiseNRUyNnI8Y611W58tJZdYyP\nnLVCo1HLgnXgIiJNH2COpVyH2OPL0J+9M5jGbybmUZjjetO4F2Mihurt9NZp7Xb6Gu3UFWiqXsH1\ncOtpFd/6Ma/deBl1YOLydOzd8j9ve+1lVNvD1TB//F9RJ2brz+ByxDVmRETOfIDaWAs/jVobJ59E\nTQnWiYuI/O/NcIXx+1HDIT5pjup36OKzXvu6uaiNVPW+rqNzZvvTXnv2XXO9dqtf3x+uo/SZH8HB\np2G3rjO29xWc+7SbJaBEF6D+gLs2FD40w2vzmnbpCV1zgLXW/B49Tn0zrkfQdR71bIIc14NhqlXA\nziLs9hEWr7XW7HDYuJfq3jhuNv2k8e6+SDUqnD0B13zyV6LOQ+cpXcshfhbqPKWvRs2kdseJLWbi\ntauPICLyW6rJlJus/1b9f7zhtT/5/fu8tluf68DvUBcms/yg1w7xaWe7sr2o/3LLf8Mlpb9f19eo\nOw7d/NZnPvDaj/z62177F5/6V3VMQjTu/f0/Rb/+Fr0uXqKaT3f/M5zopgzpNbzhwm6vXZCKOkIz\nvqInUst5xA2+324cWvkv6+VawXOHx7qIXp/ZsSf7Ju1+x/WRuAaJG/PYQZCdOdldTsRZn1P0uvZX\nfM4azmsrr4VxU7QrD7t/8P1t/EDHv4x1qOHVsAP7KHfNYdpKUZOOHXVEdH2ba0Equb20HNX78rgS\nqptVhXEW5OznuKYWu94FOzUhYqnWJLtuFd4/Q/XjPRLv+2rfQ52UnJuL1TFNh1DHsIvq3sVM1M8k\niTNobzbK+yq9nnCtMq5txPVwRPTeNpL2MK47jutIFUjyF+Z77R6nzg+7RvEanr22SPUrfxsxZZic\neAZa9HlnTcV+PTwZc6mnWo9Tdl/jde3yXtRImbBmkjrm4js4h0iq9+LGNa4vxPMvwnHI6qRx2deM\n51Rez0VEwkOxZkTlxX9oW0Sk5xrPxdmfQS0Z929NvAdz5NQv98tHQs9nPvpcibN13c/zT8AFNLEE\n9SndWpBBFNvz74GTcMMeXPeij7kOw9h3dJJrV7dfr4tcY6iHajSxu5eISMlq1Ijpqcd1qdpyTvWb\nuKHEa3Pds8TZ+nmMHYtFl7ITEcucMQzDMAzDMAzDMAzDGFPsyxnDMAzDMAzDMAzDMIwx5KqyplSS\nE7Sf0CnHOTcjFayBJC9JJToNs+Ukjmski7xEx8a6i2RJ/aVIeyv59DzVr9WROf2VzIW5H/r/IiJl\n25F2NEJpbunxOl0sfQ1SrDmFrfzVM6pfbBJSQ2tqkC41YYlO0WNr7VGyXHXTZeNn6BSuQNOyD6mW\nUYX6M/e2QrKTOBfyIvccc+l+c9p8RMpHp+de2AnZWWqTtpmuaUFK34R4pIv11iBdjO2tRUROv33a\na+cUIj1u32F9fzITIFs5fBSSi9lTtH37uBCk3vmp7XNSkUOjkSLrv4wURTeNuvk4jc07JaD4KHWT\nbftEtF3iIFllVr2mLUPZYpzTqjll9//9N65F8mykj/a16nvIKbcsf2LL8uJHlqljBvtwrs1HYWHn\n2l1GT8A9jM7BmO13JGwspeDU3qAQnfLMNptsf9l1QacHtx3DPSyYLgFnqBOyiJjlOgYe/envvfbc\nL33Wa4+M6JTeT/7ym167cudOr31xu7bOnTsfkr4ZU3VsYjgm9rfi+sZEQApQ+aZO3WQ7wrd+BJlV\napyWTX7iZ7DMridpR+6K61S/fa9D5tTXhLXgU7/6lur32td/4rVnZ0Ga8ZvNT6l+D379drlWpC3F\nWKp8/rR6jdP/szYg3vhSdUxha98UGpthMVqOx7E2iux3+T6JaBv2lBKk2jeeQmxkuaGIiI8kDuHJ\nuJ/H3zql+s27EzKzAZJ4Rjvp1rw2d5BtcOaNOu6yHDn/LtiT9lZrCRvLTUQPl4DwwDcxRtx0/7zF\na7127SnIizov6lT03gGSTBdA0jcyoiXOxQuxBh/5/pNeu+QLi1S/mALIH+Jo/jVegNzp+k1L1DEJ\n0xBvj3wfMSS6MEH1mz8XadVt9Ue9drcjTe48j5g4tRBj8/wz2tae1/rpn7of/V7brPqxdEQCvNWJ\np7VGHNlt4ky8xrIDn7NnCSHL1HZaSxOT9ZxleTxb9mau01JYvi69tNb0dWKMNX+gpfFpa7EHCk9E\nOn1IlJbHNR3BHjoiB/M3bpred1c8DwtgTqdvOqwlQ0kkH4idgPWo6lUd71nKeS3oqcMYdKUpvBcN\no3Wn9bCWBLL8uesc5mnuphL5KGpex5oU/YD+jPx3+8i6Om4qrnVvo45ZSTNxrbl0g7tXrHwB60Y4\n7Tddy+jIbMT8YBqn+XdqW+fyJ094bV4zEqdoGUnV63pPGEgiyeqbpUsiIpVkXx9Pdt5Np/XzXMp4\nvJY4G88jjWQvL6LXobqt2DtGZGkr8lQqmTDUjfkb7cMcO/euviaJJBPt7MU6y8eLiFSTvC1jCeJk\nqLOGNxzDnAshiV3MBC11Cyc5Y8WrkL+nzstW/aKyrm0ZDH5WdUs3sGQrJiXmQ48R0fLQ5Ll4hnBt\np3ntavigwmu7suCeK4gPV2juxE7GeHFl0b40KqFAEiUd/UUqt1302mH0zJk0XS9WPJ/5XrllJtjy\nXl2XIP2cxdflw7DMGcMwDMMwDMMwDMMwjDHEvpwxDMMwDMMwDMMwDMMYQ64qazr/NlKrcufkqdcG\nKEVzZACpePGTU1Q/TpXktOqmnTqtM4PlEw1U0bpcpxEPk6SjqQlpRgmzkB61/+VD6pghqvo9rQTS\nJU4TFxG58hZSHOMpvTgmXqct8eeYciMcSJxC69J5FtWYfeRcJI6MZLBDpwAGGk5/ZZcBEZEsquzO\n0hRX6hJThOvRsAv3LnmOrkA9QOn2p66gX0GfTrsdHMaYYTnKKKV15lyv0+En5yNNm+Uta5z7yONn\nPLk5qDR50e5cVYdwrkXX6wr8LCOKJqefiDSdQsnzINCMDuPc2flLRLsP1FOqZcIsfW84tTuG5uVg\nlx5/nGrYTM4JrsNEXwNSejmFvPkAjgkO0/KiqAz83ezrIANoOq2laeww1nUF8zwkQqc7srSC5UoN\nZRWqH7t1DJDLRYjj6hSZq8dSoNleinTz+zZoqRG7RRz8/s+9tjtuC+5FVfrspZB95q9Yrfr19UFK\ncegE0tRn+wtVv+K5iAFHXoS86PYffsNrd3WdVMec/DEcXWZOw+cIjtT3Z8/33vTa5Y1wAyl4/4Lq\nNzkbqbupC3K8dn+/TlVt6IDs4M9fhGvNLTdoqUdK8VS5VrSQPDd+lk4b5/HYR6nXMZO0hK12G+Zp\nHK2Z9Tu1Qx0TTnKM3A3aWaT1LOZ2Wi7caPIX4N60NGiXLpZWRVP6/Lr5Oapf5SuYmyyVcVOUk+eQ\n4x2tfUef0etxRiLeo5lkFmEp2k0qPPnDnW4CBcfDF9/drV67l6Q+4zcuxzkl6Ptzy/WIYVX7ITEM\nidbXJioX4+LKMTjH1e7Q8+CdV/Z57ZRYpJA3UFo/yxtERJ759ote29+H9f3u2derfiwBrdmKVO5I\nx12krwZxvbENkoEiRxY8ccNGr/3iP34X/z9F7xVjkj9aUvn30k6yeXZ6FNEuLrFTMMfGOfs0Pzmk\nJS9AHGKnDRGRplKSvN4MqUxvg5a21B7AXiJzLt4vhWTjx7Zq6eDAm9iLnK+F3HfWTO0sxY5R5Ucx\nfnmsiGipVV8z4lBUsl7DeX/O8uiUpToG+C/ofXigCY2B7GDYkW33VOPasHNTyhI9D9jBLnkxubIe\n0/KnrjLI9qZ8HnNkaKhb9WMXpXiSOChJ6gQdhxvL4D4TTnsOV2ZdcC8004Msl2vR58AOe7wPdd1u\nC8j9j2Nq84Fq1S9lsb6vgYT3v+yEKiKSvQ7jrI3k/xlztWSnrxFjteUQ7SOdfV9TBdaXwrWYI+Xv\naml3UhbWmtEB7KNiaZ2+ckS7raUm4bXMAuyhO0q162Asye39l3A/Rke1vLK2Da810f6qeLbeh7Wz\nOzJJmeoPVql+SZPoWWqBBBwu49Bcped9AcULfuZmmZmIfjZgKp4rVf/+qDkblaKfXUIi8F0EyxcH\n6Nk5zBlzF7ZCrpaag/M+WKbXXI6d7M4V16Nl4CxDKnsc9zHFec7ieMPPw6HOs8YgSamzvyB/g2XO\nGIZhGIZhGIZhGIZhjCH25YxhGIZhGIZhGIZhGMYYYl/OGIZhGIZhGIZhGIZhjCFXrTnDdWa6L2qN\nYz/ZncowNHb127Qm25cOjWvVCegfCxZrvR3XmGD7QFf3W34A73/oInTTbGk5MKS1Yi/u3eu1WV+2\n812twZ+YAe1YJmm3E6J1bZH01ahbM9yLv9V2RGtbY8jmizW76Wv0Z7/0otbhBRqutzEuSev4hweG\nPrSfWz+lnSzV8jdN9tptjrV5DNU/uXnjUq9duk9rQWcsgDV3E9VwyFxBduZO3Zvad3G/Wb/XWabt\nkPm4IKpnw7VtRERiS6BDD42H5rntqPOZSvCZus61fGhbRCRhttYeBpLwRNy3uu3l6jWuBVNwLzTQ\nXRVaL8r3l7Xm/W3alrenBtpz1n/3NWo9dGgcrhnX12CL8q7LOm4k5EEfPDyMv5tYrOsUdP0/7L1n\neF3VtTW81MuRdNR7tyTLsiXbcu+9YDAYQgudQBICJIEUQm5uQgpJIJUkJECAXCAQSIAYMJhiXMG9\nW66y1Xvvvfj98T53jzHXNX6/53L0+Psxx69pzjxH++y11lxrH+YYowZjwNfXXio/j22NfSgv/Tqp\nOVL6D2imnKe5HWFphrCV9ljgymtgLf6Xn/xDvPa1H33Riac+CGva5vKDIo/1h4r/udmJ7fWSsQ56\nGO09GLusuwtFXncl2ZgfgBZKfTHqY2iS1BI7VIY6vHYJtG6OvnNU5GXmgkc84xvwQ45JXCLy/utr\n33bi+HLoJSRPlZz+qmbww2/78hW4Pss2+PSLHzrx7G/K7/t5EUn2vY07pXaam9bVedoXe6ukXTFr\nktRsBAc6cYW05W0vIk0Nes+exzeKvPw7oD3U2gL9FLZmDQ6TegNDXainAYGoXT2t8jtlX7/UiZtO\nwsbS5ZJ6GP0+0MoIJw2qUctmc9xtU5yY959+i7fesk/a/noamTfjOkI/tdYYXfOnP3/NiTOWSt0V\ntg/3c2NPCkmWtrzDfTifxCXTflIsazSfXZIiofNWfg73Ni1d1iy2/2zpgu5W4jxZA2s+gc5J5nVY\nE83HKkRewQOwGD/2xL+dOGP5YpF35KkXnXj+PVjbrni5Fl/71h+d+KvPP288CdYssDn9rEcTTlbT\n9R/J/ZMVIlj/z9YkTCAtrMr3oOHFdtTGGBMehzPmgY+w77jIvnfiTDmP9u7A2HCNe+yBF0Teg7dg\nX+joxXqZnyt18t77K/aFJVfMdOLgdDkvu8tR+7mGelkaKQGWnoOnwXbr0bNt62CMA1uEBybIc3kU\naT+wjkviovEiz38Fxis4GOeHupKPRF7iEoxReDjEPZrrdzhxX59cO6xjxfbmfdWy/qeuhRV27Ueo\n/76WDfNQF75HzDRobVRvklbnwz04p4Xl8B4ka2/nOao3041HMUD6GrYFfOcZzGk36T9Vk/aaMca4\nImyj4/8LPlMaI62wK8kK2capk+VOHByAexvVhrmTP1PuYxve2+nE/kdRW5994w2R99Dttztxwbh0\nJ25q7RB5uVkYN1cG5jJrYxpjjBfpSfXXoo5H5dg6rtKC29OofAv6LqOWfo6XDz2nk4aZj3+oyCun\n+hhPdXPC/fNF3kA71kVMKl6rP7dd5GXcDE2lw0/ieX5PMZ4rr7xCfvbJavzecK4e+7SPZWmdHov7\n292H5/7+mi6RN0AaMeNugO6jl7ecm8FxGJ/i5/Y4sV+o1EQ7PyrvrQ3tnFEoFAqFQqFQKBQKhUKh\nuITQH2cUCoVCoVAoFAqFQqFQKC4hLkprYlvsigPl4rX81WiLrfsIrWmxCyU9oWID7Kxi4tA2eWq7\nbMubedccJx4dRFtoQLhsp8yjVqqsNrSAMy3FbhcrnI6Wz8pitAdfUSjb3bOpzbl5/2dbCPsE4ra5\nEulaLevP1kP4W0yFGmyXNJK4GbKN09Ng6lXNbtmG6U2+kmw5nlhoXRO1bnEb13nZNSna6Ef68Xfj\nw2U7bQdZpIfG4x6eJ9tgf6LNGGNMYDxa587TtQ5Qy7gxxkQVkMUb2UjaFqQ9FWjp7SRqR/JKaf3Z\nS+1to2TH58qU38n8P9rUPg+q3sY6si3bvVNw/1qOYs5FTpTt76FpWH8lLx1xYp7PxhgTMw9tiC6y\n2O2tl21+URPTnfj002j15fscMlPeo74erCtff7SW9rVIihjbe3NLNc8vY4wJCsN3bOuCVfOwZccZ\nvwTX2lcPmz+fAPnd4xanm7FEyX7Qgb73gvTPa9wDOsn6h37nxDl5qSIv64uwjQ66GuPzy9ueEHmn\nn3jBib995ZVO3FUmqRR/ewztuksmgQrBNpzec+Xv+FfevdyJW4nO+cmpUyKv8HpQqyJiETeUfyzy\nVj240oljMtBCPjLSL/K+//fv4e+eQS2LziwQef1Nli2qB9FBLdp9VXJNlL0MGsMI1aihETlvY6eg\nBT80A2tk1z/2iLyFXwENjm3pZz20XOQ1Hcbcic2c68SlW4n+lG8EQhOwMpU2/QAAIABJREFUVzef\nhl223W7bXYnvlDwD9JWQEEnN8PcHjbcnDWsxdrqk8fKYthxBvfILk/U+YbmkeHkae3+91YnDXXKP\nT1qF71ZRhHWw8819Ii+B9rXFj9zlxE0lh0VeINFSz51DDZx1i/RCvYyoNOETQYvY9pN/OvH4WfK+\nLFo61Ym/dM03nPivX/u9yLvvuZ85ccPpvU6cOlvOpeYKfEffUJy3zlubfeJq3KNNv9/kxHm56SJv\n9mVTzViBz302EldjH+fzXBydxYyRFMP+ZtQNe6/pOAYr3Whav3UHpV1xUyda9fMmpDvxCFmzBsVL\nSs7Cq0E9qt6FurZ44kSRFxaLvb67GftYa7e0rl22brYTb/gnKAJX3SLppEFko95+AmvWti4OiBpb\nW/smooeGT4oVr5W+DKps1GzY2fq6PpsmEExnxabD5SKvvQjz20W1N3pqosgb7scZ5OxW7JG+wfi7\nEePlGcuXqAuRk/Da+Vz5nby9UW+YOeJvzWf+jsHBWPeh4xpFHlPOq9cTpWSVrL1tR8eOts22wcai\nw0QQzZUpZ6lrJOWsZTfWUlAKxtCWWSgrwb4xQFTQrAQ5HkxD5fN+3VlQHiP95NnmilV4FnWloh5f\nffcKkddDlMAIeuZIsyiA9dtx5mO7Z29/SR30oWdbX1p/pRvkmarpDMY+RzJ5PIKoWVhjfhFyPoaR\nbEXLQdTU8EnyvufeTrTZ/RjT0ZEBkRcai1pcse99vGentA9PvBzjeJgo9Sw5cu2Xvyve84cHH3Ti\n3779thNPz5bnlvQY/M6RkAXKo01DOvL3/U4851uLndjLokl11+B82N+Ns47LTz4Lce25ELRzRqFQ\nKBQKhUKhUCgUCoXiEkJ/nFEoFAqFQqFQKBQKhUKhuIS4KK2pfhNU7XPXSuX/3jq0c4dPQSvQgOW4\nEEztvEmXoZ0oola2QUWmo71taAiOLMOD1ueRcju3iLGr0/irrxLvGRlBy9+4QbT0V2yUDg0RKRPw\nPcj5xaYhtexFOxcry/dZtA9Ws2Y19Z4KqebdyQ401xiPo3Ef2spSF8uW6GZqI4yeg+/izokWeTXv\nQxW79gOoow90yTa10QG0GHIrYnlTk8gL8kfL2NQ5oNE07aEWOMvlo4/oRT6BaAmMnytpH8c/hKNI\n1hS07lcdl+4fSePRmsytkXa7YfIKzIt2osWxAr0xxtQfR7vhBNkp/rnB7kPnrZbRZmov5LbYc88f\nEnnxK9HiGhCDdRkQJdsw2WWG57ArKUzkeXmhfISRAj9fQ9Mu2Z4YOx9jFTMOdMPWRkm34zZdnge8\njowxpuEwxjo4CW2wLUekc1ovtaD6kJNAUKJUmXclXLzV8POC3eJ8fWVrO7eO8xi7rTbvoUF8l2pa\nl7fctErknae2/EeffMWJp56RlNJscqn7yuOPO/Gbz//GiXc/86l4z9rHQJ848hbcWO576AaR9/qf\nQKuZnIaxKrxvnshrohr1r59/34mXrpCWEkyZ+/c/QUvJit8t8qYsl/uVJzFIqv0+IbL9n53AfIj+\nmbZS1t2BVuxrrjTMuSnB8vPcaWi1P38eNWrQojEkzABnqfrIFicOJkeTrnLpdBZWCNc9pkp2npa1\nOmYO1mxbLSgGXcEnRV4PnQmisrC2+3trRR63vDOlJCBS1qGadzG30/KMx/HJSVx/VoJ02ms6gJrK\nrpDf/q9virzqzWg572hE7OMvj1Zlr8KNZ9nDoPBtfkw6xKx8ZI0Tf/DIu048Lg5nrJTV0sHs4G/g\nTLbngb848eKFkk40MABKA8/hupNybSdOBJWuegB02paSYyLPyxf/b+9cHert0vskdWbvc3DXmHyt\n8SgE3cHaF9tPYj9mp0K7XZ0p23zGCM2SrijJ63BG7WvE+ktfIdvkC/Mxl5h+3XYSVIrG7dIRbcL9\noFJkLAN9oqtdrrHWE/iMzAJQOf38pUNW9Xas0y8+vM6Jm2x3uVzs271E0Uy+UtJNxhpuklDws+js\n/HzB1KUTrx8ReVPvApWrnWpYSLq8N2HjMK6DHVgHAaFRIs/lQs1uPviWEyfMANWsq0HWNjc5gFa8\nif0u0nLyDE7AvIiajhoflizlBBoPY68+8gTcHYMtSgRLULAzoO12O9giacKeRNh4PDOw+5YxRlii\nMZW8p0o+CzXW4/ms/jSeP+dY1MjcuXBY6qXnqdIqee47ux7/zh2PZ4HZD8GBcKBNPmMyhntBwXKn\nyeeMvizMseRxeHBraHhP5E390ledeHAQ9P2hIfnd26ux3zEtO3mhpKYNdY7dGBpjTMOWcie2XbdK\nX8Cai5iBOW0/+zZsxWd09eH5OThZOuAFJ+C7dJGTWHC6zGshWup7+0EvaqR957H77hPveefAASd+\n5AacS2NnJIm8gx8QbZvoZDa1c+I61Nujf8Z5M+d6SalnGYa0K3EOYme8/y/QzhmFQqFQKBQKhUKh\nUCgUiksI/XFGoVAoFAqFQqFQKBQKheISQn+cUSgUCoVCoVAoFAqFQqG4hLio5ozxIZvlHmlXPNgG\nrlj7WWhvBARJPq8/6VmwZS9bEhsj+fQ+PuDJ93ZI21fmnLKlc+ZscP7a26Xdpb8/+Jgtp8BjtLnH\nbVXgjIdlgpfaW9cp8mJngnsYGAiOaMOw5MBGkTXfiadgXenvJ7ls6deOAaGekHoF+MP9DVKrIDgV\nGhi9xP/sqZT8uKhZ+J6l/waXtrtf8h+j48BDbD/cYD4LhVfAtpxtJQMiMN62zTHrpHQeB98zcbm0\nvp5JOiJtpAMzbpHkhrPGB2sHtR+XNoUR2RhH1mAZbJe82rAcyVn2JHpoDtoaSK4U4meSdoSvW85v\nL1rPzNWPsGzw+lvAdw0MwdoZ9JVrsbcZ4ztM2kPNB8HDzrxBan90FoNz6+uCDoPN7+wpxfzjNV+2\nu1Tkzbh/AeVRTRmR9SWY7MZZ88m2aBxrzPoP8I/rTu8Qr7lo3s6+Bfz5+g9LRJ6b7Axzr1/rxGWb\npT21tx+0k+aMRw04USV1gO59+mtOPIF42U+/+I4Tp8dK3ZvtP33Oiec/AI2JDkuH6cbvwMKbdRrc\nMdIi9vhx1EdvL8xT5vAbIy3Wp2WCiz33YWlz+fFPoNfhaZ0L3ncC46QF8+gQaQlMQy3sb5a89pa9\nWCNTvnGTE3enStvMkBDoXXV3Q//D5sl7+6EeRmSDU13+NvYkd67UETv+tzedmDU53BPlWB96Fvzq\nxGzUCtZ4Mkau06EO/F2/sACRF52DsfeaiDnK2lnGGBNRKOuSp/GVH93oxAGW/WlU8gwn/s/l0Ig5\n8+8NIi9xKeZg5TsYnxNH5Jqdfhl0YkrJbn3CDLl3sZVzaBCuKYDODH2tLeI9BffDOn0CrY83fv62\nyAvPh3bHv56CbekXH1wr8j74ASy4M2bB6vTpH/5D5H3/5R858dJ8aB599EdZh9zBY2fDHEw6aN2l\ncn9ifY3ztB/YOgqGtgqhMyMlbMwI7RVsk+wOLxR5NUXQfOoiPcFgqu+xi9PEe4KCcJ+7OzGP/IPk\nmSJxJmpKa+lZvD9G7mORNNasn5j2BVl3uypwfUlXQMej7bg8uw13Yl6lj4GcF+tNpJJOgzFyXAdI\niy7aLTXwQuJRt/iM1FMtz7JBsThvso5IVNQCkXdu39/x2aQL1nwKGlRd5+Ra9PJFPYtblO7ErCFi\njDEth1DrBsiC2rblZSvtwATsNRE0vsYY40d5SWQh37hH2ryHT5bv8ySGaI5Ub5fntEHSdIyKx71k\ni21jjImiMfXzxfm/v0nud6P9+DzWeWObZWOMWU66TIGxqENNB3BfXMlyHrHuYFMpNJqCYmV96SrH\nv7vjMCeGeuRzQU0jai1rHBk65xgj9Vr763FW8rX2Tz7XjQViF2JNnH7ruHht0k3Q/uHns+YDcu/u\nHcA9iM9DzYrIk2eL4T5oIrG23abfSS22BbdBo/CP/wFtmR7SV9p0TGqiZcVjboVn4+zTZj2XFq7A\n3hWWjXrbWSzPsvx9x12FZ/bgeHkOKnoS5yVfH4yVn68ct6FhqtlyCzbGaOeMQqFQKBQKhUKhUCgU\nCsUlhf44o1AoFAqFQqFQKBQKhUJxCXFRWlNDNdp64hbJNsy6XWj3SlkGyznbto5tv04+B2urtMty\nRF7pOzvx2uVoE3UnSipKfx/a0eIT0AtUU7beiYPc0raufNMnThxZgFYntgo3xpjOE/i+yVcRFciy\nB++pRiuVKxltoWxPaYwxZTtgDxwcRrbffcMiT9BophiPo6cCbZ3eFlWIqTjtx9DuZbe2V78DS7/I\nHFANgqol5YvbjCt3lTvx1JnjrTy0gg1Qy39oNtqKA2NkOzS3f7KV4MlnJI0tYT7m6gC1Q8bMkjaF\nfiFoF2wji8rQcdJC09sb1o7cIsxtksYY01MurfE8iTqitiSulra8rYdhJxdO45a8Rq6x9lOYZ4FE\nJWO6oTHG9NbCFi8wGveFW+6NkRQOtrUfdyPaBN/9zfviPSvuWuzE3WTt686WlAu25u48BcqG2yVp\nJCUvgj6RsFJaDjK4NdSmVDIq3gFlL/buyz4z73+LopdADSg6cFa8NvsaUCk+eX2PE6979GqRd/bZ\ng04cEId1mX6NLB5PfvUpJ77zx9c7sU0XbC8BxSb79llO/Ngd8534gx/9S7xnwk34W88/BJvur/7x\ndpG37bFNTjzv/kVOPDAgqYMdvVin5Y14LSJb2lc+f//TTvylP33FiX91+29E3oK8saOK8ryPm2/Z\naxJt1NsP93moQ+4N7omY7+XbQANJnJsv8ioPwiY5egLWM7fmG2NM+xncM2+ycQ6MxXo58Op+8Z6s\nAtTJ4W7Qlt/78yaR9/uXX3bi9X8H5cVyLhY0Ucag9d0bjsHm19sfrb6hmbLulr6CvAnLL/jRnws+\n9Ldt2vYL9/3YiS//9monjpkp9xBuyy46jNZ2Px/ZwsxjUlmDmjpaXS/ydm5FPbvy26g/+59Hq/Rv\nv/GceM81s7Bms+/G2enW38u1WPoq6saqhbCo533VGGMmXAHqS+wU7NuLDkmKxPAw9gn+vmt/JHu0\n2Tbe02CaMduyG2OMD73mT/bMnSekVbwrE2dWpubZcyIogc4s9J16/eU50pUEmjHT5fi8ERW9SLzH\nzw/npuYyzIHAVDnfOmqxZ3SeBaXGz/rufE4R+3mU3D8Haex7+VybKq1sO0/LFn9PI3IqzuyDXfK+\nRxTgtZE+vNZi1Z+mozgj1ZGVb/43l4q8zgrsd33tmAuDoZL+xOci32DcXy9frPlgixLTshv0Dr5n\n7jx5vuk8hbHjc6SfRblrp3NpMNHXBYXbGNNNMgRMoRqx5nBPm1zrnoSXL2g6GWsniNdG+nHP2o/i\nOzFN2RhjgkhmwVC5OU611RhjokKxFkdpI7r5eklvPrIbFMFJ01DzuB74+su9dKDzwpT6D362UeTl\nZGJtFm/EWSs2RVIRWT6jvw5j09ou7aermjFfVt+PDa9he4XIC8mUNuqeBls+ZyySzxq1GzEObKXN\nVG9jjMm7A/d6dAjPux0WDdCfzuXF/8B+v+zry0Qe1+K+aty30gbMpWtvlOu8dC8oboIOOUfW1BCq\ndYM0HyMKJOWucRfkAJJWgDrYaX2njKsw95nqV7tNUu7CredMG9o5o1AoFAqFQqFQKBQKhUJxCaE/\nzigUCoVCoVAoFAqFQqFQXEJclNY0biFad4pfLxKvxeRC9Xu4Fy1rowOSssMt4FnXQea9x6LDjJD6\ndnMR2kT7LHchv1C0QfXEo51+7992OXFKvHT4CCIKTetRUED8IwNF3kALWv4+fAKt3UH+smU0IRxt\nZW1b0C5VYNEKRoi+FDIerW5dZ2QbVETB2CmoG2NMI31nVkA3xpioQrSmuTLQ3lvxYbHI49bB7pP4\nvJYu2ZpnNiIvOABjdX5ItmHyvWE3D25zt1twTS5a53Y9Dxrc5BXSgYCdUUKzuGVZflxfE+bWCLWn\nG9mhZzoqQOHzC8OcsekxIxZdzZOInotWvMZPKsVriauwTtl9YcRai0w9GqT21i6iFxkj1eAbPil3\n4r4qOdbD9Pkp6+Cw0PAJ2jATIiTN0Z2F9t74RHIaOvaayONWUL6vcQskjaTrNLV20zwa7JDtsiGp\nuI7gBLTOdlkOH2bU6pX2MMbfuMqJTx2W7fADRBtbdBMcWGo3y5beDw4dduKHXnrUiU8+/47I+9LP\n4EbTehT0iR0fHBB5N/wSdkZvPATaVW0b5sU9T0iKRMNOzMEv3IlW4pqP5LUOU/t14260hXr7SXV/\ndqb5HrlHNeyXdYjV7+t3oWU5M07W0Gn3zTNjhahpcG+z3TVGhy9MmWPnPmOMaTmM1no/clVrOiGp\nbtF5WNsjI1izrcckHYYx3INaxhSOvIWSWvr1//iDE49LwD6QEi1b8O/+whec+JOPDuHzkpJEXhxR\nfvrqUFuDEqWbQVAc2sgDI1HjRwaGRF7yFZKW6WlEZ8FBqalYOi0WpIPyxWeO+u2yNTmU3B1mXQEn\ni7g5GSLP5UKrc9sh7J9v7dor8q6eB5e29373gROXUPt2R4+klz7y6qtO/Otk3OucG1aJvD6iO0z/\n3s1OHBQka2rJLlAYW4vxfad/W1Jx/vVd0N1mL8W97KmVZ7udL+JslvnMzcaT6CSXn+FuWfNj5xFt\nj/b3hFRJC+CW/J5qUJOHLJo6ryszDvtJ5evSnSqO6LX+NHciEuAcU1UkXb/Y5SeQ6IGNJ6UDSSjt\nY0xFtClYdUQ/SL0e5yNfyxWxn9r92YGVHTSNGVsnSmPk+Z+lEIwxpmFbuROnXoN1ZFOv2PExjKhq\nJa/KNZZ8OepgcAT2jZZG6Z6YkneVEzfVY4zLyW1t01E5PhOoJnrT3tBzWM5NdjkNJkpvRIOUZDi9\nE/tBwRpQXgMjJIWU7x87UNpn0uA0ec88ieZPsL+7xsk15qI1x66rtmMRu34yLXHKfIsmRd+r7ixq\nYx09mxhjzPTluGdM92reD87UgOUEFUzz6rWXQCuemytdxA6fxBqbmJLixIeOyDPL5CzsBf29+H7s\naGSMMQUZ6U7cSnsEO8kaY0znmbGlGNYexdksc6Xcg5l21rYf15h2o7RwYyozP1s1bpMULfdkyDDE\nTMbcD0mQ9aa/DXW5sw/nID5fevnIs1hIIJ7Vxt8FJ7bO6lqRF50OOYHyT7HOR61n1ubTREemZ5+c\nGyWVruwDyKiwQ2bMVLm2I6fIf9vQzhmFQqFQKBQKhUKhUCgUiksI/XFGoVAoFAqFQqFQKBQKheIS\nQn+cUSgUCoVCoVAoFAqFQqG4hLio5gxrOGRfm/+ZeWyzPNAk+dBs/9ZXB82K6mNScyClELzn+i3g\nOUfNkFz9rf8CfzmMdAqOVYDL9vft28V77l+zxomj08FlC4yTmib7DkHD4EwNrm/t9Okir4e4gmm5\n4Jja331ohLifxAn2tmzHBIewwHgcUWR9HZol7buYn2rouiKzpO5A1Qncj1Di8uUWSG59Uxm+S0wa\n7nVYrvy80SH83djcC8+t0FDJ8TxbCl2SnEngk7ssDnnd++CCBkyFHdq5l6WuAGtqpMeB++jKlLzc\nMLJ4bT6A+8Ccb2PkXPc0XMn47O4yafnIPHm27mQ+uTHG9JBFXhBZQLYelBzM86SbwfxbYXNojBkl\nnvMbvwaHvn8IHNNZWVniPT5+uL6q4jfoWqW2FNvSh7Je02mp19RRh++e7IJ2R2D0hW19jTGmrwF1\niK1YjTEmKH9s9Z/6+8HLvvzRm8RrP7/lF0582VToVxR8U+qnZH2KOuXtje9sWxs3kHXfYDN4ujUt\n8h7u+NVmJ548CeNVSFaiFW+eFO+JoHWVvfCL+JtVH4q8tLUoaMXPwQ44JFvWoU9OnXLi+XF3OvFw\nz2GRN0Ic47AszIurfrpO5FW/hz0p6R7jUbAFvK0x00JccTd9R7a4N0ba8ibmw7K8u1ve55I3sN9l\nXIN9qL1IWpHHzAPnvWkn5lgKaTR0V8i68fi9X3LiiMmY982fVok8f7J67a9HTQmMl/tnUDy+E1tH\nn/pIfqfkUtyL5LXQf+gqk9pXto6Gp+HtjX2s9M0T4rVdxdANSO0la+m5Up+lcRe0l9Iux5rd/NP1\nIm/S5binufcsdOKvr5N73HnWdnsFWgg3/AaaT6efltoYsYuwFzbtwPX86rYfiry7f4Z1OjiIGsBa\nRsZIzbbztE/7BEh78Ct/cAX+7j7siwde2SfyAv1kjfUkWM+A9X+MMab6LdTJ+FWwhO0olpoN/fXY\ne3rIdtrH0pPKuhPjW78DtTX1ujyRN0QajEM0hxvOwMq+doPUpQhIwFoKiEEca1m3sy5T9EycPX0C\n5FE+bjnOZT012CMbLDtXrsNCC8TaS9he18w3Hkcw6VLZ2hEJNHasrRIQZe3xtHZcaRe2MzfGGHcs\namJrJTRjErJXijzey+rovp2oxFq+9rbl4j2734UmV3EtzlXLC+TBvqkDY5JLOjXVG6XmWGoKnUd8\ncD4veUGeZSNn4zmJdRu9/OS97KuxNCI9CLay52uwwRov9pnFn8a0bD/ueXKQ1Oc4chDrZ+9Z3LOb\nFywwn4XWw9ibfYKwXlhj0RipNTV/AuaKr1UP5q4sxGeT5fnUPHnmHaLnhNBEnKGjY6RVM2tC8rN3\n855qkddQifoln0w9g5SZ2ONa90sNn6AkaFEl09519gV5TgvLwDPZ+REMsrtAnoN4DUcXQieqyjoz\nJCxCPUvIx1xPc+O/2zqTU78FjTRfX9SDoa5ykVe2Dfqy4fSc2mc9z6evxlklbgrOBG0Vp0UeX+vR\nP0AblbVyjDEmmizlUx691tjQzhmFQqFQKBQKhUKhUCgUiksI/XFGoVAoFAqFQqFQKBQKheIS4qK0\nJrbD7C6RLcde1GLHtnBxZEFpjDF91Aa9fRNa/rLjZUtXbwXa/GpbYY94boO0DGX7sQ8Oo5Xq9sWL\nnXhNYSG/xQSS/XF7Jb5H0afSkpgtREPIBvqeX/1K5E2dAsvsa/pgfVl4hbTSDgzBZ3RSS3naOmkL\n11c/dq2GxkhKUU9lh3iNLenaimG7GjVR0jtSJqL1Mn4x2rYOPbVL5MUkok12uAvtfF6+8nfA5Glo\nOXO5YD3Z11dHsaS+cXvqYCNaI6vfPiPydp3Bv5eQJfP2k7JVLo3Gu60Lc716r2x77qvFaz5E9RDW\nmsaYAaKOmMuMR8FUiqEOaTXZS7fWpxUt5ImLs0VefxbmWS1ZHvtHyrbfpuNYc2ETQYkb6pRtg4f3\n4T5nkxVvXDzmQLBFhYqImOPEw6GoDdXvPivyWuuJrkRtliHjpDX3+RHQSnqJNhkYIykXfi6sRZOM\nlsuO05IeIizVxwCHfwebvQm3TxOv/WL9807s44Pr7+yULaN3PvOME2//0Y+cuKNXWkIueeTLTrzp\nR0878b2P3SryXvv5W06cvxYUw3MfYny51hpjzOo6tPhHTQLNIiBUjs+mH4O6dsUvv+7Exes3irw7\nvge75t2/eNGJD5fJNnymGjCVIv8m+Z2CbpD7iyfRVQxKiC/VF2MkLaWN6Kotp5tEXvIS1Lz2pqN4\nv2Xl7krHXD3+hy1OHGitWaZPRE7HWqzbDLv2oXa5fltasMZctE5HrWuImIx72dKPFuvEFeNE3vHn\nQNsoqsTeGu6Sa3HSFHxeB90jbos3xhh3imyB9jSGh1Ev5v1Qct+C/4A52LQb3yV5jbQjP3sA8zOY\nqKKLvi/tNR+69jEn5lq5evVskXd8P1r0Z12LpvUPH8E6+sFTT4n3fLTtb0687ehxJ37gua+LvPPn\nyW53FHtVd4OktTLFhOkytUQXNsaYELLLjSA6aMrZVpFX+N07zVghegbOJW3HZS1PvgpjxXbobYdl\nq/4I0ZBGiTYZNzdF5PW3YL9iakZXuaQL+tE8rvgA9Iv3qYZeM3uWeA+fD+OY4uNrUS5aMW4DLYg7\nTsjvHpyCuThM38+uV0wT5teCE+W+HZ4XY8YS3vQ9+dnCGHn9bHtuU7m66BnFPZ7oCRZl2t8fdWWQ\nzjSdnZIqxOMdGEv7MdETrr/tYfGe4FCM3fevuw7XExUq8pYuA/Wli9aLff4IoL8bkYvrHh0YEXlB\nsaCbDBG9g+kxxhjTY1HiPYlAoua5LIr/AM/bNqasS7kDlr4IIDrk7t3HRV5LF/Kum4MzpXucpEu3\nH8e+O0p7c8JSPMMEWHtpgBv/ZtmHwEQ5hobOnnXtuK8HDh4UafPJgru7AVSW7LQkkTfQg9dCSU7A\npohFR46dfIIxxrgnYJ75hQeK15rILp2fhVLXyn2R72n5axi72Pny94G0vOudmGUOAiLk3z3zDM4W\n7jzMGaakJSyWEhv+/vEUY15kzLpK5JXve9uJuR4w3dwYY3p6cB728sLcjBknyWXDw6g3sWQP7m6U\n5/P4ZZnmYtDOGYVCoVAoFAqFQqFQKBSKSwj9cUahUCgUCoVCoVAoFAqF4hLiorSm4CS0NpZ9IKkj\nuTejrb32FGgQdVvLRV44Oa3Mngo6z6FjUq2+gdTLX9yC9u1f3HqLyKtqQhv011atcuL0xWgTtFv5\nus6hbXDPMSgrX/WN1SKPKT+95Yi/dM01Io8dQybOyXHiYxuPiTxfH7RcFd4yw4nPvC7zcq6ZZMYS\nfeRA4GU5RQVEof3MnQ5KQn+DVKoOJMcOVubOWpYj8jqojZCdAGw6VVsqWkh9k9Cm19mJlsDwcNny\n7e9Gq1v0QlBdWnZJNfOlCzA3P91d5MR+PrI9kNvtg/3R0huTKKkZp8+grX06Uddst6bBNkk38iTY\npcBuaeX2Qkb5v+U8YxoW0xi6zsg29Jh8tOIxNe3gTkkLO1hS4sQ5iVBQL7wL48Z0LGOMOfPRy07M\nbjuhOdJpo5/aYNllKm5xusjrrel04rqPQOFwT5Jt2IP0eW5q0Y6dI9ssRweGzVhi3NVQed/+p63i\ntamrUdvSly5z4rMv7xZ5HQtAQ2Da2KSrpdtE/Ym9eO06zNvoDElnJFPBAAAgAElEQVT7vOwarNlw\ncnbLj0Or9OQvzRTvOfcKqDi120DFsNumr/jl/U780td/6cTX/eoG+XkvYN1/fAzz9pt/vlvkBYbi\n+srfQ6vrew//QuQxxevOZySF4PMiMB73padEft9gotMxTcffLfek0SHsIVXvYE9qr5GfFxKKuts7\niLXo2ylr2QA5swXRvp1ArbN+IfIaXOQ401OJdcTUDmMk1YpbrA8/s0fkRUbi77KTYpC/pFKc3oA2\n57RpWH9hlttOTxXtGZIJ7BFs/clLTlxcZ1Fd6B7c+DDaoOMT1oq8L/xusRNv+eHPnfjoW0dF3rqZ\nWD8PPvGEE9/8n/JsMY7GwZ2N9u3MTNTXT8++Id7DjlFZRBfvb5dzKSIBjjHrH8I1rP3Fl0XeSBzm\n0v5fwYWv4N45Iu/jx+Bms2YZ6JA+IZL+9NoDuC93PSvpq58XjRY1ndFTi3sZQa36XpY7C58XE8m1\nrGF7hchjOkv6PKyr0q3SYaeTag87QtYRXb+tW56v8m8DxbWnCtfduEd+P/d41D/e+/ys+nLiY7jf\nZU4EPcumBffVoAU/jOgCTTs/+75mFn7mS/9rDPeitnVZZwY+iyatxDl/ZFCeg6IKsUb8Q1A3bapo\nYwX23di8qfSKzIvKQj0reh/rIC8ZDlov/UY6op0fxmfs3oM6V2U5JNZshYsL023u++nNIs9FZ+Ne\nkj/opTlijDwD8pk+xHIyZQqfp9F6CucI+0zK1LQ+2sfOW3sNuxryXuMOkdRYVxbmcd1R0JuL9srn\nyskLsHHwGZCph2HJ0gmqegvGjff61kNyj2jqxBhkj8caq2qWsggss7CaJDHKqqVkR3os1jbLTbTW\nWrRJn892wvIE2opwXfzMZYwxUbNAxQrPxfW2HJbU2JL1cD+c9h08pwcFyfP2sbf+4sSJ8/EcXHNO\n1lQfmguDROdkt6fWY/J+doag3kbmoTbU7ywRedvfgrvggjWow8EJ8nnHix6da3YfcOLsZdJpaWAA\n9DReb7a0R9tx5KVf4CcA7ZxRKBQKhUKhUCgUCoVCobiE0B9nFAqFQqFQKBQKhUKhUCguIS5Ka2LF\nZVeAbJtkl5T4bLSi+bpkCzO3IJ09C6Xn0CCpkJ1P7Wez10H9ONhSyI7rQzupPynws3J7454q8Z5B\nUtafNRGq0idfl63HddSCyjSrzDjpXMQtbN5++H1r2o0zRF7jZrSNd5WgxSpjhXTRadqBFtJsyeTx\nCFgBPiRDtrWy2jW3fzZVSqckdvTxo3vdWy3bK9uaqS07H/MiZmayyBtoBwWo+IN/OnESUZKqjrwv\n3iNaI8lJLGqOVD1nV6HECHzfEauFMjoMbauR09AOzp9tjDERRH/iVsv6I7KVLyRItgB6EkxrSloj\n50/DJ2i/DqL1wkr/xhjjR5SdMEsln8E0p5gFoI9NnSEV2XOTcN+DEtH+2UHONFFTE8V7OkvR3tvb\ngPv80WufirxFK6nN+xzWZcmbJ0SeOwVtu/3ULhs6ZLXLkptIaBrmRMUb0gWAkXj/Z770v8b6P2BO\nr717mXgtMAb3sKUc1MG8Oy8XeV5emIP9RGfpqJSt6L1EC0lagr7JphLpJhAzE/Wsvw21kml7ISmy\nPTqZ2sv9SdH/zKeyHXVeKJwKLnsAtKu+FrnGuKX+Wjec3Oq2SremljOgagW78HcjLEcgdpfzNLqK\nsT7Sb5goXhvsQu3xDYKif/NeSb0MoXbcf27c7sTc9myMMW/vwveNJCeQZUuk01f7GayraKq1/c0Y\nzxGLsueegLZkdjfpPCdpjoNt1A5O9An7TLDvJFrKmcLc0Sj3iLTlmDuRRKG0KYVh4yTNydNY+eg3\nnHhWq6SA1m/HvOurx1w9u+clkZdWeIUTT/vOGic++BvpRvbpaVDXnnjgASeu2SDb8NNuxDrd/0c4\nuyXnY0xvvUw6xFw5C7Q9dgt7/Sdvibxl16CNOjkSlOPRUeni1XwCa/hsPVrFXS9IN5ul34Ej1cc/\n+bcTL/jWUpFX+bsGM1YYJIfE0Fzp1OLtg7NZ8yHs1a406XbCLfMNH2PcY2bLM0sk7cHHPsY+FOeW\nn9dLtIPTNThHLcjLc2JJLjemrQhuSzEzUbuaD8hzmKEzTBhRgSvfkbIDTCXk1vpT78n9M20y9vdA\nqknns+S9HBhDyrYxxtRvwX23Kckp5JDWfoYouONl3lAP5nHbaVBQUqYvF3k833kvrTshzyDMcgpK\nQu11ZeL8wHR/Y4wp2gAafSC5Ddlnz4xYnI3DgvEZNvU0OAQ0kLJt7zpx6tWS58ln9/ZTjRRLl8Ck\n1fLs6EmExOMe2c+BPWU4i8SMx3fvKZWUHZ6rTI3q7ZPzr48cRRMLsU5Tg9JF3jDRgwLjcEYYon26\nv1PS6Pi5t5so9YHRcqwnLcTY1GwFpX7Dvn0i7/cPftWJmdqSmJwq8kZIroApNDZFrP6cdGbzNHyD\nMW/duXKNnfgrvhs/VwZazxrZ14PmOjyMM+rISJ/Ic+fg3NF8HHTYgBh5r/m+lZ7E830y1f+kdfL5\nZIgkGT788TtOXFwrn9v4ueHAx1i/K6dIulvR86DRJ9C5ZWBArrGuOtRslnyZcG2ByGs7ImlYNrRz\nRqFQKBQKhUKhUCgUCoXiEkJ/nFEoFAqFQqFQKBQKhUKhuITQH2cUCoVCoVAoFAqFQqFQKC4hLqo5\nw1aWMYskP26UbOyCEsA1HOqQ3MDRYXAtCy+f7MS9FdJaOSAaPL+ACNK6SbT4wT7gtrWcKqfrIT0N\ny5Z37x5wqAvXQdMkykfqYQyTxWcScbIrLWu0unJw/gJrwa30tay8AohzWn0QPDnmohpjTOKCdDOW\nYJ0Ujm0MtkCfoGdA8tDr9oMPeIY4e2sWSp2dLUXg7F0ZCE2ITov76kV8cH/icrYUY6y6LO2D9tMY\nh0Ol4HguXi71F9rOIi85DpxGth02RtpIMmfX1yXHJzYRc+Hkxs/mmvtbPElPgteRPYaspzJAY8g6\nTMYYM9SBMT39CvQDwsItbZoIjFsw2fLaVnBsy9lPugysycHaVMYY409ru7sMXN+QQKnXM1APnipb\nEgdKqRJjaNxiJ4MHyu8xxphO0sFh7Q3bZvP8sLxeT+PyWxc78f43pPYL6wRc9etHnHh4WH7pgQHU\nn73rYemXO17aFA6SrlP0dHCnm3ZKTa7xN4OTf+rZN534HOlNTJubJ94TVYh73VYETYnMArlP1JSt\nd+J9z8MS3K6BqYV430Aj5nBQslyz7WRTO/v7X8S1vr1F5PkEjJ3dZOq14PuXvlokXktaDT0V1sja\nt0tqPbR+hDFNIF2s1m451n6+WMNs4eobKrUJ4hdh7NtoH3KlQSsodpy0Qq47AU2TBtJHC0qVde3s\nTuilNJIWG1sLG2PMtEzowZ0+Ax2s7CS5zzIXnNdv9ftSf4XrXFKG8TgO/eZFJz5ZKdfE1JnEXycd\nl3CyZDbGGC8vjE94OHsMS82Z77z4UyceHcV9e+T6/xR5o9uhe7EsH7z97/ziKfydkBDxnowY6AJM\n/9o8XJtdryMxR6p2v+bEpeul1gbbuC65DnNm+xvSOr3it6hDV//6u06869G/irz8yy7gE+ohDA/h\nWsMnSm3AatJhcU/EOaB1r9RxiZiGWsZ7n713dZ7AuaKb5r6Pl1SQKW3EfYkmnagoitPmZ4r3DPeQ\nxTFtSaGZUvulizQwequxFsMypCbYka3leI30HQtukD7YvP+1kFVwxOR4kddxUp7fPI34ZbgfTZZm\nJGsIRuTjuup2SD2y+PnpTsxWyR1th0XeUDc+LygSzwr+YfIMcvbvOCO5x2EcWk9gvwsfkM8aR8vL\nnTguHGNS3ih1Qu64G1pVpWTt62fV9fJNqNEuOr8OdsrnrP4m0vWg9Wtrdpa/jn0o8dvrjCcx2o9n\nwu5SqeMSlILr6DiJdRRu6QsV78RzBs/b2ElyPornT7K7Zj1BY4yp24Y5MkD6fD6kq1K5/pR4j1+o\n/wXzRvulJtrp92G1fKwC+929a9aIvD0HkDc5DTW4slhqn7BeWP5V0Cfxts7xSUEXfWz/3IiYhDpq\n21OHRJD+Jp2xWJ/QGPnsNjqC7+WdJnUR+xpx3mHb7leeeEfkTSB9S9ZBy8zFmcjW9ePnuwnTUF8y\nEuU+sesEzjc7TmKsCvfJM29YMOYj18eeHqmzyLUn/zbo57bsl9fXXiHXiA3tnFEoFAqFQqFQKBQK\nhUKhuITQH2cUCoVCoVAoFAqFQqFQKC4hLtofVb4d7XbuEEl9iJyNVmW2cw2w7MaKtoEqlM/tTVbb\n+WAr2kRDUtGaVre9VOT5U9upF7WTth9Dq2FjjaTD5C9BGzpbP3O7pDHG5CxDKzO3OGb2D4m8PW/A\nUiuWqC3J1FZpjGxR9P4UrZoj1JJnjGzLGwswnWWgTbaiczstt0En5MjWr81vfuzEN61d4sSHDkoL\nR7Ydv+1nP3Pi//rBD0Sem6hnjcfQ3jdMFndt5XIcA4n2MSsHloA2FSU4DO1nXmR1zlQqY4xpa8Vc\ncPVjHBPJ6tUYY1qOod2X599IvxxH2wrWkwgn29vqDfKeuyei1Z6paXEWXY7XKVNoImdI2oGfm9cY\nvZ9aZ42RLdfcTuq9AGt71JrrtZtQU04cRTwxW1Jynvw3bCPXzZzpxJmTJW3GLwxrjO3eWw/Uibzw\nKZiXbDE93C3XdvZdsu3b02jYhTqQvzBXvPbOGzuc+LJBzP2ujpMiz9cf9SI7BWPH1FBjjElYMc6J\n/UPQVjz+5pUi7093/9yJl80B7TM/NN2Jq09IKkDRPlBQQqn9+Mpf/VDkHf2vvzlxS1eXEw9b1qKt\nO9CCuuwB0KzY8tIYYw68jjo08PDTTjznNknZ2fIc7Kmn3GA8Ci9v1JGs26X1dRO11rJd/ayF+SLv\nN0//04lzia50uEy26l+1cLYTtzZh3o5ae1JgtOuCceIE3MvmWklfYevcvi60yft2yNb6gSH8rUSi\nYOUkSKvJ+LlYm0n+4CGFJEuaVHAsallnJdZp8pockVf7cYkZSwTE4/sH1UsaJI/duffQ9i7oJ8YY\n77WodeeeBU1x4ldmirzAQKzT5jpQFR787V0iLzQR7dKtxWiV//MK1IriTafFe+JTiLJDbehscW+M\nMZX/Rh2ZeCuowHUfnRN50WQhveGpTU585f2rRF7rYVlj/xtFVZKWEtkUc8E8T8A9HueI9pOSOsL0\n5BbaDyIKJDWN6bXufLxW8r68z11EZUolKllEnJzfTF/q7se6Ss7Gevkf9P8h1ENu9Q/LihZ53RVk\n7Uv2tfs3SpvzlCjcl6AY5Nl0GJ7PTCdt3FEh8pjCPBZo2FHuxF4+kibGlInKNzGHo2Yliby6bXhW\nCM/D+PQ1dIk8PudW0n2LKpTnoLR1eG5o3F5uLoTd24+Jf7+yYYMTf/W665yYKYrGSIviSUTd9Q2Q\ne3jFHvzdmd9Z7MQ+PvI5q73oqBMHxuF8EJIi6W6BMfI5zpMIycF50NtPPt817AKdJZnsvFv3y3PF\n+AV0rifK3YbXd4i8ebmoh0z597Po7K3FoOPxPhbUjnvEFFxjjFl41wInLlkPGlgHUaqNEexDs3w6\nzgEnSy3qDlk1H6L9fca4cSIvdmk6rvsg6pW9HkasM6un0UX18Nx2SdnJXoI9+tQm7ItTrpfn5gii\nmLIV+GCXvId1H2PNBtL5/YYvXyby2N47cQvuYcw8nDlsWlNAFD6v9CjGJClB1tSYMKy/+26+EtcT\nJ5/Lw2jN8twc7pGUrjayeecHqP46+fzUP3TxcdTOGYVCoVAoFAqFQqFQKBSKSwj9cUahUCgUCoVC\noVAoFAqF4hLiorSmAN/PfvnMB2hpik8gxXO3bImeNn+iE7eTi07SUqlWz+rORX/b58RRSbKdMiwb\nf4tdKbi9aXSbbJmv3o8224KvzHLiqrdl22rHUbTF9nSjhTXjygkib/oquE5xy1ZfrWyfjJ6KNkmm\n1PTVdoq83jrbgsazCMtFG5ft9NND6v9BpOzOjlnGGHN1Fdq0Tx8vd+K2HtmqVZiBdvbnHn7Yicsa\nGkTe8QNwmVk1Gfdz1064n+SnSgqLN1GUwqk1uf2YbGfm78huL6zWbowxeTeiFZGdbWzqV+se0K5c\nmWhhHmiWeUyd8TS4Zds3VLZuRheivbeKXJPaT0uHhahpmI8+pPhuz4nuUqxFPxfa7HNWXyPyWurh\nvtO0Dy2F0dNwPc2HpCJ98Qm0kL65B+4fx599VuQtmjvXiZnKFGw5yXBvaUhq+AVjY4xpoevglmKb\nwtbLLdBjMJzB1IoeNVW2UX91yZ1OfP48KHIhYdki7+zbHzrx9mNou/3avd8QeV21aBkODExxYm9v\nOX/SY7GWuFZ4+aIl0+uo/B1/80dYp7devcKJDzzxlMib8eD9Tpx29S4nLntNtoNHkPvTzj+DksSU\nKWOMue2etU7M9y/ELcdx+kLpsOdJsNtH1ZuSdhs5E9fUQC27Xe2y9jx4+xecuPQU9ieX5VrW1oy9\nInV2Oj7vdIvIq9+EvxUxHffyyF+fd2L3REkv6SHHxChyfAuKlw4fk4iqzK5s4QVygYSmY6+uJarM\n+SG5H0emot4PRuEa2o7LPSJqulwfnkZPFe5tqHXf33t2sxPf+9zjTtzXJ1vguxtRV8bfC2pd0wGZ\nN9D6gRNHZ4PiMBIm27w7a6n9f8piJ645ijVhOymWnMM6TyJ6eHOXPI9MuhJ/d4joLTMfeEDkvfqN\nh5z4psevd+Jzzx0SeVO/czNe2wga6l1//q7Ie/O7f3biabcbjyKAqHlMWTfGGDc5wXjT+dLPont1\nl+IM1EMt/ZEWXSklM92JmYrOLffGGOPzKcZw3AzshUxJ6q2S1xqSif2K6fAthyTtY6AJ86WjGp/H\nVCpjjHEF4DM664nK3yZpTcH0d88TBTlsslzbtuuPpxE5FTUryKITlL8GaQTfENxrm84eMxt7XOth\nrMv6g/IeusIwZzraUc/ss4AXu0RNxTmo6m3sXTtPSaefq5aDRrpkLs6XttwDO+GyO1Bvo3Rwic/C\n3tx8AGcsdgI0xpiYOTgj8X3pOCv3QXbdSh1vPAqmwJdulXSYcctAh+k8g2uKnCGpafxsVE9zv6lD\nuvuyk2TDaTzHrY1YJPKYXlr+L8yj3gr8nXaLrsS0nhhyiYq03Jpaz+F7HDyN/S7SctOblIJ5OTSC\nNVbbJsc6uIxrAOZEXbHcF9PmjoF1IYHPzknZ0iWrm+uoD54b9ryyV+TNvB4uvlGT0p24YaecFyer\nMae9azCBJlh1Ko7cKHnsXfvxfGefF7Y+gz1z9lWg8RZ9cFzkTb8c65TPN/7WM3D9h6BZJ16BM/lw\nn1yLrQdxfewQnHqtdH+KKFO3JoVCoVAoFAqFQqFQKBSK/99Cf5xRKBQKhUKhUCgUCoVCobiE0B9n\nFAqFQqFQKBQKhUKhUCguIS6qORM3C1w5tiU0xpgYP3AcKz6ArWpwWpjIqzwGPj1bmcV2S/upwVZw\nzE7XgGsozWaNcTeDRxw9A5aPzQfwHtt6LGUO+GotxD9lW2RjjBn3pfm4nkHwCRv3SP54ONuEkSU4\n85+NMWaYOIqsCeBtWTqfHyHu7OXG42Bbu7qN0jbTnU+WkHngt9ZtlZau8cvAc4zqBLdvpm1dtxf3\n9++btjnxojzJt5tIPMzITOgIhbSC02hbjSWvAie4cTvGxNtX3k/WQti7Hto2UxZI7aDeGvBO3eNx\nH/qbpT6EjwvLhDnfzCc0xpjyzbi3E6Xr6OdGEnF2hwfk2hnuxb/jFmCu+4dK/afmI+BhD7aQXs75\n8yIvniy4e+uhW9DbK61tffxxXzJWLXTioSGMYfneT8R7yhuhnfONNWucOGjdOpEXmHhhe3mfAFmy\nAmOQ10OaAwMtkkecugIc2JqdsM8MipV/p6uE7NsLLngJnwt5d0AzpWb/HvHae49vdOJrfwU9h7Zi\nyZlPXom1tJw0Jn57569F3t0/hof0z278lhOvnTlD5A0TD3rDS1uQd+sSJ86+c7Z4z6NfgdVhTxs0\nFiLipKVi0WsvmAshZr7Uk/rn42878XSymIyZbNk1zwFRfngAc/ON7/xB5K3+zzVmrDBEWgRxyyX/\ne2QANT9mIdZiQLHUiHGlQc8ilT7Pz9qThjuxtnnfYe01Y4w5Sxo+0bRGYuaiznYSX9wYY1pJjyDv\nbsyJkf7PtngcIm2uk28Xidem3DrdiROWQVOuz9L66myBTgNbpUdaY11DujUZY7AWuT52t8p7k0E6\nTJUHYN8eXzBV5LWQtkVfDeZjn6VbNvXbVzjx0BD0E+p2Sv4779VDKahne/+OWjFg7Yu8T86/F5oL\nE6zziDsc47PzZ39y4ojx+0ReLd2Lhp109vGS56q/3vNTJ86OhzZBb817Im/+bXPNWIHtTtne1Bhj\nOkmXKYj2k71vHBB5WYmYd150/1l/yxipzcbrYKBJzu+oWTiX9tVhTkSRrop99hwhDZF6Ont1WzbQ\nfCbnfbutWGq7JeZgPLypHrisM0t3CXQPkq5CbeU6Zowx7SdI108uAY+A9QTrt0odr9Bc1LpI0sYa\nsixsq9+B9gifAUNjpF5OVQU0PPadhQbGrnvPiLwR2hdZC+wI2SEXpKeL90xOQ81nPUrbbjeAbIPj\nC7Aui9/4UORF01zi+W1rQvbTHPQLw7U275T2wqET5L7hSXSdRd1II300Y2SdD07BHGzZLa+PbdND\n3NDnmzNeCuQMDmN+8rNE3UH5ece3Ya9p6YaeyLLrUZMWJsn5wWuRtaW8rOeMEbKhLwyie94u9XGi\nE6HFFkCagz6WVhV/d1cabMmzsyJFnq2t5WnwugpJl9qNbJEdQ7Wp0zrf8DNtw178PjBKulbGGDM1\nH9otkaQ72Ha4TuR1nsHnz1qLMyavCVsrNC0a9bujCPVr5h3yLNtPzwqdrAtWLWtv5Ay6vmOoIX5h\n8jkr7Tqcz7mO9jVKbdnSzbgvE6VzuDFGO2cUCoVCoVAoFAqFQqFQKC4p9McZhUKhUCgUCoVCoVAo\nFIpLiIvSmtiSremTKvkatVRG5YASMtQl2/dyL0OLD9N+Tr56WOSN0uctmA+rzfc2ydb/7n60k46O\n0vWRbWRhtrTp5mvqLUPLWeziNJHH9rVMZfK16CH+1MbUTDQpV4q0XuQ2y6hZsIyzuoNNyRZpL+Zp\nnH4TLe/j100SrzV8jBZNn2BQlNja0BjZjuYulO2+jOQZ85z4p3ehVf7MX+Q4+kWiDZBbyebfBDtS\nbnU1xpiGreVO7MpAu92wRZEroXaxIH98p+BkOT5sGd3hjRb/5PnTRB7bbLOFYW+lbF8Mj7gwFccT\naDmGeWa3yPpHYl25s9C2en5Etnl70cSLW5TuxEzNM8aYrnK0OkfngVjYViZpTbE5aC/08kKLZvkm\nUJl8feRnL56M+cet5t6BssVzlNoBgxLQdtp1VrZP9pH1nZva0N0W7aP5NOaEvxtzr7uqXeR1n724\nvd3nRUcDakLGvCvFa0fWg2614+ewpl35s6+KvJ4ejMO4L2KN3VEo1+yZf2LdhwVjjrANoDHGHHwC\nn7doJvgjiWQF+sZDz4n3TJkBml1TCdZOQoGkgAYlYIxPvQfb76wgufVkES0iOBQt2zxWxhjT30a0\nx1a0o676vuwLjYydY8YKHcfRIsttysbItTQyiP0pYYmkP3kRtdWVJKkGDP9QfP+uCsxNP2tPiszG\n3A/PBiXH1xef7Rci3xM3D/tfVxndV4uGFL8A1857eNq6fJE3MoS65BeANRuXulLk9feDglFTtvMz\nr8+MSqtcT4OpdVO/fod47akvP+zEywqwH5Ru3CLyNm+Ahegtv/2iEzMd1BhjgoNxD3c/+qQTB0ZK\nesIo2Y53HAfVb8HXQTHc/Zcd4j3rHoM/9aHfgFIUWyitRevPlzuxjzfm326iUxpjzA0/AMU0OA4t\n9UFrUkRe0jmc4TY9CevxRT+6Q+T944HfOXHOfPna58VgO1rZva19zM+N+cR0sbAgec/3nwV9Lr4R\nZ4TcObJODtC6iKDzUTu1zBtjTBtZqfpHUS0jKoqPtd8NEj2V9+0IOlsbI9vzGRl5yeLfxcfKnTia\nbLZHLboS/y2meY9Y9IOec2O8L57GHhI+Sdp4B0YTFYSoQl7e8iCduBrjxRSCgBhJ72s6hnPbqinY\n45o7JV0kwA9jVE1Uv+wEjH1rt6QqMN0mfjHW/CDReuxr727D/EtcNk7kjQ5jHPxDcR+8veW+yHTv\nyrdA5fH2l2dopuZ5Gj5BdL/2VYrX3OFEDyLZichp8szSsgfn3PJqrKO0uFiRx9Qhb6plFU1NIo/t\nqlcU4rmyZR/2oMBYOT+YKtN2CNcQkiPpRf70DFN8Gt+3xqLIRkeipoxUkpTCJLm2B+pRX/iZJsiy\nse+wKESeRsm/QFfO++pM8VrVBpxf/aieudIk/Ykt0fm7DDRKuYF4ooV3l+MsHpwqn9UMrZeOY6iB\nrnH4u0c+lDTrBfcsNBdCp/UMwTIOvE/seGWXyJsSh/Xnnoixa9xSLvICozGfRuk3lKEOaQ+eSVIV\nF4J2zigUCoVCoVAoFAqFQqFQXELojzMKhUKhUCgUCoVCoVAoFJcQF6U1cQtce49sdU6aBJpO9Ayi\n7FithozWY2gRO1ktVbVHqIV52wm0vydFylYypmYU10HR+Yb7YXPUUy6pCsNEa3JPRntc4w7Zgu9F\nNJro6WgTLX3piMir3kRtsHPQGt20U7by9VGraiypfvdUyuvLWChbGT2N8Vej/bxlv3R+iV6I6+fW\n2qAY2a7vjgLdobnyoBMHRsqWwK42tL0FhqA9NfOOKSKvcTfuVUctWhRHyOHKO8Cik5HDQQSp8de8\nK2lhCbmgSESQur/dqhuUeGE6Qcl66TDUT+2Grky00XU1y5bWtFUXb1P7PGBl974GuRa9fNAuV78D\nNLWoqbKtnekKoRlQkG87IVulM5ahhb69DmsxPneeyKs5sthZAzsAACAASURBVN2J2TErlNTlk4cl\nNYH/7lA3Wn157hljTOoqUKZaTmGdZqybJfL6O9EOPdCBz/ALlG2RYZmoZcM9+Lsth6TLReRMec88\njaY9oIdWvfOseK2ZqJkumvs8BsbIulz54UknDrWoXIkzQEM4TA4Tnz4r5/dV34WzUS+5ixz4NWgV\nayza0K/uedqJ/+Pv33Ti6o3S8SIyH23LM9Mw9mFxkjLQRXSyEyUY79QOOddr/73fiVc9jGuKSpBz\nc9sjv3Xi1Y8/bjyJmHmombXvydrjH41W39SrQellVx9jjPEll7vQdNwXW9E/JhUOgiODoIYOdso2\n+fCJ2Nc6y7Am+hrLnZgpAcYY03kSeUHkoJG4SDpjDHRiTrC7WcNe6egXPRXngIEu7HEjIbKVuaUc\ndJhBavUd7pMuRD4u6QToaYSkopZveeSP4rUv/uI6J371wd878ZI7Zav0sivh/FC7GfTAhMWSWr3+\nO4868YQF2CeSl8l9sfhFrM28u1Y7MdPT5t4vv8eTX8H1ffP5/3DiM//4WORxXS6n9v/Lfyad8lqO\nY67ufuZTJ56yTl7rhudBZWKHtbcf/ovIu+G395qxAtMe7XZ1dvhIWIHxsKm23nSm3HEKlJCz9fUi\nb2kBzlF9RFsLnyJpOC3kkBO7ALWCKWv2OWywGXtXGNEdmFJtjDEny7F/5BC95nytrBslDXATyZ2G\n7x4zR7rk1ZIjmh/dy6EaSfFxZUWYsQRTLFuL5H3vKmu7YJ5dAzmPJRmCk+U5L4VcXLKux5gGW7Wc\nKV88Z0Job85KkLSc7LtwbvENQl5QlKR9+PigjjYV4cycNG2ByOvtxfiU/xs05dQrpfNoyYt4RklY\nhbXoa9X8PstZzJMII1etIMttk13BmuuxNwTWyOcMpqn4N2L9NlkOSPy8WEkOoIkRcp7GuXEOLK7E\nmhufgbORj0WxHmyneUXPs3Zefx3WHNPZchPlGdI3FPvYELkSN+2TNcBFz4hMEWs9KJ2LwjLHeC2S\nI1zZy8fEawHxGK+SfXBVm5Ynz+XB03AWaNiOc0KoRQ1jFy922iq4RzoqfdbvCk3k0jzzBulCWrMB\nUgbJ6yDPkLxksshrOYPvwc9IE5KSRN7hgzjbziWHr+Srpaf0iVcOOXHPAL7f+HnyzBt2ETq7Mdo5\no1AoFAqFQqFQKBQKhUJxSaE/zigUCoVCoVAoFAqFQqFQXELojzMKhUKhUCgUCoVCoVAoFJcQF9Wc\nYQvb6GjL2oqsryv+BU2EuKXpIi22ANzIgTbwaufmSl67IXu1vafAFcu2OJ2JE/Dv9FxwwnoqwEkM\niJY6KDvfgk7BzDBwTNnO1BhpF338yd1OfKC0VOQtmobPYE5w9GxpZ9j/Dr5H2xHwBm371RDLhszT\nqP0AvFUf6zv7kpbJYAu0AQJcUr+ioxU2ZeGJGLvGk1KPZ7gX+j5NHeAD/g8LR5IiiSNtlI6T4MJH\nTI3nt5joOeBCdpXAri5imszrpblQ9z6+e/I1kqfrR7oP5W9CuyMwXNoU1jWA+xpPvHF3olwTbUeJ\nK73EeBS+xEENtKwhR0irIYq4ngFh0oIv7TJYwraeBQ80ZrrkVrbVHHfi2HRwoPv6pKbSIK1ntowL\nJuu/9uNSzyaU+LIJ06Y6MXOwjTGmswXj4Sab4OFhyYXvqcFYB1O9GuyVuk6sq8PcYd8wqWvElpRj\ngYEmWmPWON7yBLQZ1n/veScOjJD1ofJ9rMWUy7EWfQPk55W+Du7rssUY+01bD4i8+OzFTvziEz9w\n4oI8aBVUvnWa32IeePwOXF8gavL2za+KvNn0fU+chZbMjb+TazHvnmVO/O5tv3TiNd+TWjezY9Kd\n+Mc34lp/8HdpjxttWdB6Eo3b8T183XL+hE3AXGXbyczrpom8jjLsB20noA8ROUnWsp4e8Jz7GsBx\n77e0A9ham7XTwsahjjftlTpvQ23Yu3xD2NpXanIM9aCmD5Ku00Cz1IkyhiyA46Y7cfnu90QWa71E\nkG3uiKU5Y+8ZngafRw6UlIjXssowP2cuA0c9akK6yBsdwvt2vQpNoP56qQGSNQXvGx3GfXr8tsdE\nXlw47k15KbRf5t6DOnyezl7GGLN6GexOT73woRMfK5LfaXwd9tlZ12J8OiukVktEHsZkUfYKJw4N\nl5pq07ZiD4mYBM2jWWvvFnl1J6FbEzFjuvEkmnZCg8WVIetkEFmfjtBcOlsnNRz8fFHzh0dwBrR1\nFvnMm7g0y4nrtsn77OPCWqr/GPcoMAHXM9gmtWSaOrCv+dejltWXSWvgIH+cWdiyt8261iuvW4Tr\nId2RIcvSOZB0Lkb6sf5sy+XuMrmfehqjIzg/RObLGti0H3Wr7B/QwAiIljU/+TLsha3HpW4NIyoC\nWg8dZ6C75R8jP4919FJd0MrIpDNzxtJl4j0tFdDT6m2ALlHcBGlJ3NmM800waU+c2/i+yAshjb6E\n5dCSqf+0XORFkO4RW6IPNEu9r8A4ec7yJHpr8H0DLc3KYNI0yxiPPcmeZ3zPJ66e6MSjlnbhEOkN\nJdVjrz9ztkrkZRVAoyidznojfagHbtqzjZG6I6c+hgaVrZcSPhn3PK4KNTTcLe8xazmx1px7gjyj\nNJEGal0pzqvZK6SmiZ915vA0XKTRFDZOfuead/FMO/Vm1PJhOiMYY8xwL2pJWC6+Z5A1/1hjdMIt\neB5o2ifHseUYzkjp10DLb4DOQe2UY4wx6TfhOb2WdGLd16fLa7Wu3XkP2bAbY8yMxfi8hr24Pnuv\nDw1CHYmMwTNiULz87iVv4neTcRfYFrVzRqFQKBQKhUKhUCgUCoXiEkJ/nFEoFAqFQqFQKBQKhUKh\nuIS4aA8/2wVGz00Rr3Gb6Ai1MDEFwRhjfHzQas+0g+BM2YJaewwUmIxYtMhWt8iW28RRtDxyuxjb\nenX0yla+2avRLsX2Z5EzJGWqgygYz2+GTeS37rpW5PXX4DO8WvH7Vk+VtHuLmU92bUSX6Donv9MA\ntdFlFBiPI5RsELmdzxhjRgfQxlu5F211w1aeP7XSNY+izTQkXdq6MTXMn9oI247IFjG2ho6dD3tH\nbsGNzpe2j01Hyp3YnYN51lnaKvI+y4K1/F/Hxb+5rTBqCuZVT6ls4eU28t4+tCPHWPaSAZGyLdaT\n6KnG3LJbosPz8D1Em264ZcubhzbRsAy0lnZVyPvnzsC9GBzEXK0/JG31YmemO/FQDygC3IbcPySp\nCkWvgmqTPgtzwt+iF3Grb1Ag5orLJVvr28+j7bv9FGLvANku60d2hiFk6WxGJUVgqFder6cRmIDW\nxglX3yBee+YrDznxrU981Ylf+MZTIq+4FnSH+LdQR6+8WtpwDnehXTNyBigNtyyU9aylFhROpjLF\nLyM7YItK8Y9fvuXEd//pdlzD11eJvLYjaC8vyEdbdvHrsn07iqh1iydinrqiJeWupw3Uul+984oT\nH3n+eZH30RZQWaffZTyKoFSam1aram81Wsr5/pe/LemfbH093I28hp0VIq+n7KgTF34L9/nc+5Iq\nxFS95ELYUI6OYj77LvET7+FW8e5yrMWuGkkJiEjDmmstBc0qcam0i24tQlvxYBrmVEKhpHT1duM7\n8jmiZqO0sh3tG1taUzvRyW79wRfEayVvYK+Y9fAXnfjk8xtEHlNtw4Jx1rEpix1nUWNjaC1mxkkb\n5j6ql7vO4F7PGpzrxC8++oZ4z71/+ZITtxwDZafo3S0ib+U3lzsxW8CP/7KsG8V/2+nE076JOlS2\nS373okqsxRULQR84+ueXRd7hk2gpz3rhFuNJuPOxjpimbIwxoUQJqX4b93LFNXNF3pGPMdbL8tG6\nbltuZ30Z85ipTMGWJWprEc6RTJGuOIT7NeVOaT2bTPW1aQ9a5ps7JY2XrZtridaUY9H/z+7CPefv\nEe6SdJPIAsy/oDicz/tojzHGmPApkmrkafB3jiiQa4JlCoaJlpV8uaR7dFeghjF9wp4XrXvxrOFN\ncgr2OHJNjZmMvYvPgy1VR8V7wpNBuehuwxg0lx0Webyf8vX5WNbXfC4KjUa9beiR+0SQoKehbkYW\nynnRsK3cjBXqj6P2JOTLvztIFtJ15VgfwQHy3Me0vfiV+L7eFt2cKa9szZ2XnyHy+Bw41IFrGO5G\nnR22zny9VVhzOfNAX/z0XUkHHyIK5KQU7AMDfZImE0iUvUGiebcNfjb1LrUQzz6+LrlvD4yhHbox\nxvgGYwyYSm2MMa5xqKldpVhvlfvlfJx4I56524/he4Zny3nRVoO1ONCKe+MbIucFr7k3f/MuPo/q\n2fTFk8R7ajaCgjXcgzGu3nHQfBZcKaAhBfjKORdM9tmBVJM6TzeLvBCSbvCPQP0PjpcyE8GhF39e\n1M4ZhUKhUCgUCoVCoVAoFIpLCP1xRqFQKBQKhUKhUCgUCoXiEuKitCZ2iLHRb7U7/Tc6SyRlxysH\nv/+Uv4b20cjpsr1pXDyU1lt2gRYx9Xapcs5tfty+x22Ctgp2fzPawLiF8OjbsiVx3zm0IV4xHfLJ\nA/WSJhVALgC+RJewOv9N7TYo9Qe50cKUsHKcyKteL51QPI2eErT9BcTKdutOosFExYIiYautD5CT\nE9PYyneWibzoBLR0heWCemTT4kKSyOkInaUmdB7aZ/s7JRUqIAL3sJ9U6LkN0RhjhqiF8lQ1tbB6\neYm8fKLZnTiBtryZN84QeaM70L7oLkAbdUCUvJeV76F1eqI0mfEoRvtlu39gNMaqn8YpIkdSQry9\nMVdHh/AZrkTZznvmWVASDp9B+/a0/GyR13ECNCJWoWdHgJAQ2boXPIT1O9CAdckOW8YY4x6PNcwO\nYC0th0TeYDvoVD3kKGG38/LcqduC78TtjsYYEz1T3jNP4903P3FidhwwxpgIatEcHcV3tqlCu1/E\n+My5Ey36/qGyFbThU8xpptx9+PuPRF7+BLQCt1CLcAhRXWJnSYrh7b8AJeuN773uxHc9/XORF5qG\ndu7IKNAnzm17XeTVEqWltZtoo17y/x807SPnjjNP4lpzJMXwWy/+2owVfKnd3ctb1pR+mtMhRN21\nx9qbHJVi5+DeHnpyp8hLyMM8HhqisUmXtGBvf1xTWy322dBY0E0CQqQDX1871m/0ZOR1lMp265K3\nduAzyCGlu0LSP/uI0sWObbUHZTt4yx7U5JSrsO/bVCCmIo4FWonG/Pqrm8VraTGoP7NogwrNkfew\neD3udfZc7Oslu6XD4ygdDt56cr0TL8jLE3lTb8He00juHTxfbvzaGvGejY+AbjR5HqgeK6dMEXm8\n14flYW8e6u8SeXHLUA/6+zEXRodGRF5IIFq2mR4dki3XYk6brMWeBLt02s4vA3RG5e9k5JI1U5aj\nHd6f6qRNMWk+WHPBvA6rrb2sAXS5aUSTysqG80n9Fjk/mNpNpmdm5hVTRd4I3Wfvk/gi/pZz0UA5\n9vf823CWZfqiMcZ00h7OrqEDDfLMG1EwtrQmQ2czb8tR1J/kC1rqUF/PD8v5yN+Nz2b1W+UZNXZx\nuhMPtOL8kDRX3mseCF9fnFeDg/H+6Ghrz60H5YKfn/yC5Xm6rwXzNigcZ8rzshyYVnJ57a3DOg0n\ndzRjjHGngwpW8irqrZePnOyhWdJ9x5PIWouL7zonqfJRdK7ia2IXJ2OMGWghN0A6y4ZZ7ovhE/F9\nmQLDTlX/929hLvGcCEpArfCyngvO0rNA3lxQeketBzw/ogsGhmCOllfL/bPvNM5ymSvwef5h0hW2\ngtwdYzKwH3PtN8aYvroLP3t7CsdfwPzJXC1dlW0n5P+GO1j+9+p38CyUex8onI375Vpk6mnTJ6B9\n+oTI3x4+PgZJBd7X3LQfNxRJF76+Qdz31AI8f3pbdT2cnjVK/obzanyanHM8N6v2YY7kXDlR5PH5\nJm4BxvHU8/IclHm1tdgtaOeMQqFQKBQKhUKhUCgUCsUlhP44o1AoFAqFQqFQKBQKhUJxCaE/zigU\nCoVCoVAoFAqFQqFQXEJcVHOmaQc4YJ19feK1hElk6VcCjm2MpS1S8eYJJ+7rwmd0FUttmvMj4POF\nEh/atp9iPq5PAHhpMbPxd1sOSRvA0SFYmTEvfuoXCkVeRhF4kTv3gkueOyNL5A214Xv0dUBLoLVV\n8h0n3QQOaw1ZV9Z9VCLyIqaPHSfbGGNCJ4CXFxgrua9+xHtsJw4+2w0aY0w02YKXfEh8wmvyRV5Y\nJv4WUznZttUYYxp3kZ0qaai4yJrbnSX5/V3t0JJp3g3tifND8rNf3gGNhNuWL3HiE2WVIq/kJP5d\nsGQC/o7Flx0he/A+4v2et2yY0/8fHMLPg65iXJOtxVC3GfMplCzGqz4oEnlx89OdmK+9+UC1yAtK\nxppbmAMNBLYJNsaYpDXgz54mPmUK8UhtjSN3HrjSnWR9nbharrHeBtxntg5vOyB5pa5McMGzboKF\ncGe1zGP9AL4PbScbZF7ARUvi58aX/wg75INPfCJeW3T/YlyHD9Zp62H5XSZMh7ZFXz3uE/POjTEm\nZQ3W9t8e+LsTX/2VlSLv9Huo0VPuhMZXaCLqUntplXjP23/4wInzkpOd+PGbvyHy7nvmfifu6kJN\n3fA3qfGxbAV0EUoPoQ6d/ed2kcdaCMlXgw8dlV4g8p686/tO/L3XXjOeREgG8/ZlDXCRzXbXWWgg\nhOZIrn/lW8QvJzvmibfIPamD1kjphm1OnH75bJHXWYtaJvS4SH9mZFBqVUVMwFpsPAQuuK015yJd\ngB7S97L1DFgzhnUiWAfLGGNS1kEXpeQf4JLn3Cm/e+MeOec8jS4606y29FkiZ+EsUH8UtS1ultSL\ni56GvJbDOHfMvHe+yHv6u1h/X77/aieOmSHPS65Q1MGwNOx/T371r058zReXivfUkKXymhXQBWMd\nGGOMObIZ63zVj69wYrv+py+G5XZ7I8bH3hd59FmvJDxVapON9I+dJfpAIzRIElZIa/dR0nhp3kPn\nBessEjkDYxidh/HtqJLzL3IutAVqP8W6YntcY4yZNAVjyNo0LTtxDeO+JPVNeO6wpt/ooBzD9JXQ\nGCs6A62hyrNyj8hbjWsdpXXP42SMMUGku9eyH2c+H8u+1z6/eRoR+bR3eX+25kzs0nQnrnr3jMhL\nXIn7Xr+9HB/nJ7WIhsiOO5S0u8o/2C3y+GzMeSYVNT8gQJ7d/QPo/LUZdcNeA2wN3dSN2h05VX5e\nWDZqQA+dv4a7pV1zSDLOQV6+uH9th6X+ie8Y6njx2Zj3QWOMaTuK6xjuwrXbY+POg85H8y6sPz+3\n1GfhcxrbFYdmSr2rZprTbKvtH451eX5Ezu0AP8z9nZsOX/C/GyNtv/2jcA0TkmX947HqOIqzTdQs\nqW8YOxPnqLYjuF+2Fttgs3wW9zRcZG/eUyY1qhKWoT6eeGafE0fnSQ0knoODHbjept2yprJ27VA/\n6p47X+q93HDzCvyt6bhvnzyx1YlzCqWNuovW7NBF5hyjqRNrrLq8XLy2IBrnE9aZOfhPqSUz/+uL\nndjW+GJUb4DVd9bM//m6ds4oFAqFQqFQKBQKhUKhUFxC6I8zCoVCoVAoFAqFQqFQKBSXEBft4WfL\n6MQw2S7Wfga0pNh4tI/aVI/OathtJlNLVPsxSSeII3u7sNREJ24+Lq23uCV13MIvOHHduU1OnLpc\nWiEPDsLqsL8JbVQhCZIGwBSBmbloTWs/K60S09aiLXu4B+1SgRWy/ayXLM+CktHmFz7Rsuhqlm2x\nngZbGw93SUtXHi9famWNXSZbxCo2ooWU7eB6LDvVwEjcg2pqO+XWQ2OMCSXK0mAHaCuDRBkrfUVa\nnTfUYM41dWGs5l0jx/uOMLRlRxNlIChFUuS41dSfbPZsa+5gatEMise99LIsH9mq1MhL+tyImoE1\nYf/dxu2giMUtwncMsihs1RvRRsf0Q79wOTZ9ZK85MIz5EZggP69hR7kT5945zYnZ7ti2G+f22zai\n67QVyXrA9sKt7ciLnp8s8lqJ5tR2Fi2T/mHS4rK7EtaVrYfwnvRrpQ1ef0uPGUuEhIE+N/U+2bL+\nyW+34LrGlztx5DTZ6sw0zfSZoCeMjvaLvI52tOR+66U/OvGRZ/5L5E2+FZSi6rexZt2TQGOo2yvb\nUfNTMT7zf/g1/M3vSQvrsy/ucuL3PtnvxJfPkwuErdhj3ZgjLqsNP3Ye/m5nCa7vtZ//VOTd+Ydb\nzViBa1TtJklRjVsE68TouZir9ZvlPhaSiu8YEEU27++fE3md7UTbmIbPK39/n8iLno764M5Ca339\nDrLsteoGU4lT5y504u6OYpHH/BVuXfez1lhADOqDD1l7dxQ1ijzew8ffjbpR9vIxkWdTIj2NqDDU\nyv3n5Dj6UEvzzb+724nPviSpiP+HvfcMkKu8sna3OlbnnIM6S60cUEQJJQQSIiPAJhscsBl77Osw\n9mePPTM2jmMDNjaOGGyCTQ5CoAySkFDOodXqnHPOfX9812et/Ro0915KX//Zz69Xql2nTp3zplO9\n115NNUhbXvrte7z2pv/1hIq7/z9v89rbHkMq9oZV61Tcyef+7rWj8rHnCgnC9WQpiojIigWQyJz4\n5ftee/uJEypuCo3ZRx7A+d33nQ0qrukC0rQTcnDsk5UfqLirvrXWa29+eJPXXv4VLZ149e+QGc+8\n7V/En0SSdKlxt56jkpfkeO3UK7CfaT+j93PhtD9qLcVaGpak1zsR9NvkeVg/Y4v1fm6UVBKDXdhv\nZZBtvCufjZsKq2q2Ce44r+X/AwP4d+wMxIWU6zW8qxT9kveorjQ5dTmuSyTJkbvOawlbZwmdh5/3\nNiIiIVFkh1yvrd1b9kPy5aP9V+ZVRSqu7DlIzUJTce9c2+kI2oOw/TrLp0VEMldib9BVgz1RZwvW\nyPqGA+o90ePxWckLsRYMk2RDRKTqDcyxgeHYd4fGaUv03gY8Q7CEsu2UnlMDAnH9hrvwWTm36bID\n7Wcb5VLRW4P71nhIl5aITMGc1dCAvjnuuF6TIkn+G09rGsuQRETisnHvh4awtxvs132H95GNH2Bf\nGp1Pzx8d+r5PuxES13Qqn8DPqCIi5a9Cmsxy/W5HysJSLVZBl7+l19lRsupOIOvwsvf13uFSwzLm\nuOmp6rX3fw6Z+bwvLKFX9HP/+Sfx7BYzAfuRqHwt7+4tx73jucgdB/zMU/63kzhXH+a9gWZ9H5MW\n4Hu0tWK8DLRoWVhvJMZY3jycQ/hhvb9hG/oOKssyZaUuZ9HXguf5bnruyFimn6nDkiPlYljmjGEY\nhmEYhmEYhmEYxhhiP84YhmEYhmEYhmEYhmGMIReVNdWSC9PEa6ao11pPIzV0pA/p+aee01KUgrVI\n4+d08KEOXW287RSO10+uPG2HdbXx/UeQCtZ+Eil6sVTtvZ7cekREgihlkqvCN58sU3GcLswpjkF9\nuko3S4HCyE3qYlWgA314rd5JcWd3nEsBpxv6UnSq7nAvpD3NVFE9NUandIVHIH2MpSSjjptAH0m5\nYqdReu4pnUpcuxnp9qX16GfTF6G/qHRA0VXLx1Oa20CHlmpxf+xrhCwgPENXkA9NxPH6yPWB0ylF\ntIsVO1Zwiq2ISNtp/R39SUwhUgO7KrSULGkxUjdrNkEWkX1tsYrLugZp1TXvIM7nOKJxqm94IVKA\nncxF8VHad28Trl9PBVKngxzXh8BF+Dc7UQy265TEjlJcZ04hzFw3QcWFp+GethxBv0xfrl1VgiPR\nnwcpjbWrql3F+RIvrZSiuRxp0CV/1TKOvgHMiSxl+vPDL6q4r//lZx967JK3X1X/jp+OY5S+C2eP\nvNu0M837P4JzUuZMpOsXXHmN1x6/XF+n0FCM7ZpTm732wgeXqLjy5yCt+L+e/I7XfvzTP1RxX3oI\nsiuurD/cr10ujj0JycXMzy7w2leU6+/Eso3vv6qlIx8Xdj3Kc9LGg8Ih6Tj3h4Ne23WSYdg9JPmK\nHPXawOtY71hu6TrODJFUNiAIxwtLJ/eoEi2RuPAX9L9xgXB2cx090tdA4pswC3PjUK9O1fclYD4o\nfwmpx/3NOo2Y07c5bT/r+okqzp3X/U3GeqTGT8hcoF574sHfe+1jP3/bayfN17LKtFWYZw795Dmv\nveq7d6u4c89jjFz5rau99tCQlplM2nCjfBhf+tMyek+Xeu33D//Na998LeK++nU9xnp7IdlZQy4z\nQ0N6Pak/iHT94X5Imc7UaKlC+FPY693w4y957cOPaHe0+3926SSG7CyWsjRHvdZDMvW+BqSas9um\niIhMR5PlsLyeiIgkXoZ1sekAXGAyF2uXsYEB7Ev7aF0cIGlLeIpec33RWN87KiGliJ+iZQV1u7Fu\n95AkgB1wRETi52Kc8noe7Ozr6reX4fzIBSbApx8N2PnkUlD+IuaLgGD9N+P0K+HC1EUy+jZHohOS\nCClE6uIcrz0ypPeobafxvkBy8InM16UbehqxB2HHzrYzeH9ktr4ufa24J7xPc6Xy7GbjY5e7CN0v\nmqsx5iIysBdjabaISBftlwLDce86nDnfPV9/wvv9gFP6WailAucXF4l9c2Ck3h9yiYfWg3geyVyv\nJWzHf/W6144md19Xasv7Zt7/jwuAVjcwRJ8rr60Za/G5g05JiAya+3toH9lTru91TyXmoeZmxCUm\nxshHUXUc8wtfLxGR+DmX1t234iQ+u/q0445KTk5Vb0De5+7LIwswlo7/FfL6GffPU3Gd9AwVnQfZ\nkCv7bD+LZ6v8u7DX63kMDmtVVVrqN+5tjLGWGozFaQ/oc2g7ifexJDUhT7sFB0dgX9RzAfcxYaF2\n3eqg58BmmqPyHXml64rpYpkzhmEYhmEYhmEYhmEYY4j9OGMYhmEYhmEYhmEYhjGG2I8zhmEYhmEY\nhmEYhmEYY8hFa85MWAcrudFhrXGPI+uwTrLV5hozItpemG11Qx1b3mGy+2Ob7RhHp7WYLKm5RgrX\nw3DPtbEU59B+ChowX7y264qfA+0YWw0PdWtt/ckXwwqJKQAAIABJREFUoLVm/Xx0uK5XMf5aaOhb\n38e5Dvbo40VFao2/v2ErxfObqtRrectRTyCMbLBZkykiEkc1MKp3omZO8kxdn6WnDFq8ii3QR0cn\naC1t4jxc6953cX4jZG8d6GjyRvqh+x0dQVxrmbZ9zF4FjTJbR7oWagNU26jjOPrFoKNRTpqLc+Xj\ncS0aERFftLaz9Cd8P7jPiYg0k91fMln59jbq2gT1O8q8NtdH6qvT9oODVA+q6zxsAROdegtcl4l1\n3VnXYw5ga3URkaaD0LOGZaBPcJ0aEZHRUYzZsHTEVb+h7QcjcqGhTiJ70/42fa+5Fg9bhwdfwnv2\nYfRRH2zr1rbdky5Dv+XaJV996gcqbpSEsZ2d0Oqz1aaIiIxDn0mYhnH6x4eeVGGr1kKDG0nX82d3\nfdlr9/RrvfX161FbJmk+rrsv3tFHz8fnPnY/vkdhmtZNN1Xv8tq7d6IWyoYf3qziWDcel4paDwkP\nLFRxSYuy5VLBWuERd63ZBzvf7BswDhp3Vai4EKptxHWZonJ03YMQ0jkHUJ2CVKrDIKJr81RvOue1\n++vQxwru07Uxzv4O9Y/CqBbZcI+u89NxrvlD4yrJdl1EJGEO7jXXH2A7SRGRvnqcUyhZpDY41yht\nxUfX6fEHI1RboOwlXf/p07/6tNe+8CJqBwU49Qn6qEYC10Vge1cRXQ8lJn6a1y7d8paK66KaZtM/\nc6fXrjkKC9OUyfo+Th2POd+XhvH3+jceVXEBAeg/M26ERXb6LD12emtQZ4bXneUbdNzIIOb81jrU\nLIoq1H040HfRbebHIoj2Tq3H69VrXIeF95EdTh2r0qdw79NWo8+5Nepqt8JunWuGtFWUqrjq19gm\nGd89dgbqx1TRGBURCQjCdeb6OKlX5Kg4tpjlfWnMZF2fb5j2Su20Txls0/N4cCxqSPjS0Xe6HMvt\nqFx9T/1NCu1beN0S0fUnwsj2vN/dz1HNnJajqJXRWaKtjXkfw88KcYUpKq7sb7DmzlyLmhp17+B+\nB4XrPSqfXxjVFWrdr2t3BMdj38H9rKdJn2t0AepeVLxyymur6yV6jk6n/e+g8+zyP9W5+DgEU23P\n7lq9p4wfH09xGLP8TCii59Ne2nM07a2Wj6J6D2pp5V6la5807cfemOvRHPndXq+dMV3vm0JojPXS\n9wiO0XvF+p343L5BXOf0eXrvwTVsuE5bhFPjqIWeeyfdiEJYTe/rZ7agiEv7vFh8NZ77Q5zvfO5F\njAmec7qr9XzB+w6uY1jxwikVF56FMXL6t7ieWWt1jaFurrNJa1L65RgHo++VqfcMtWP+n/QJrHen\nf79fxU16YC6OMYJ7VU3PDCIiNRvx76SluMctB/TYDqI6SomTaB9Urmu7NVajb2XrcnsiYpkzhmEY\nhmEYhmEYhmEYY4r9OGMYhmEYhmEYhmEYhjGGjBt1NRKGYRiGYRiGYRiGYRjG/zEsc8YwDMMwDMMw\nDMMwDGMMsR9nDMMwDMMwDMMwDMMwxhD7ccYwDMMwDMMwDMMwDGMMsR9nDMMwDMMwDMMwDMMwxhD7\nccYwDMMwDMMwDMMwDGMMsR9nDMMwDMMwDMMwDMMwxhD7ccYwDMMwDMMwDMMwDGMMsR9nDMMwDMMw\nDMMwDMMwxhD7ccYwDMMwDMMwDMMwDGMMsR9nDMMwDMMwDMMwDMMwxhD7ccYwDMMwDMMwDMMwDGMM\nsR9nDMMwDMMwDMMwDMMwxhD7ccYwDMMwDMMwDMMwDGMMsR9nDMMwDMMwDMMwDMMwxhD7ccYwDMMw\nDMMwDMMwDGMMsR9nDMMwDMMwDMMwDMMwxhD7ccYwDMMwDMMwDMMwDGMMCbrYiyc2PuG1wzOi1WuB\nIYFeu+rVM147LCtKxQUEIy40MdxrN2wtU3Hxc9PxWZn4rP6WXhXX39jttccFjPPa3eXtXjttdb56\nT/WrZ722Lz3Sa8dNT1Vx9dsueO3EhVle++xLx1XcpNtneu2S54957aLbp6u4M3857LVTL8vEuZa2\nqThfWoTXnnXHl8TfHHvtca/dfqxRvdbcjOs256HFXntkaETFnfvjQa8dkYX7017WquKis2K9dn8d\n7lV3f7+KS5mG+z3cPeC1g6JDvXbPBX2d8u6cgX+M0rk9sV/H3YW4vY/u9NqFy4pUXFgq+sJQz6DX\n3v/3AypuyeeXee1BOteIdD0mtv/gba9922OPiT/Z9q1vee2+wUH1WtbiXK/dVYr7kbIsV8U1vFvu\ntXtqO7123m1TVdy4QPxm21HSjPdUd6i4lCU4/sjgsNce7MK9HuzU9z2mINFrh0SFee09P9ys4qbf\nM9drn3/mqNeecO8sFTfUO+S1A32Yzgba+1Rc0/tVXjtifAz+f2+1iku/qsBrFy28S/zNhaPPeO3g\nyFD1Gs+Vw/34XqHR4SpuZATXWkYxEEZHRnUc3ZP+VsyjvgR9PP6srkrMB/GTU7z2uHEh6j19rYgL\njcV97K7VfSQ8BetBTz363DDdNxGRgGD0uYE23LvhPh2XMAPzxlAPxuLwwLCK4++eN/N28Sf7//gz\nrx09IUG9FhiKPrj/yb1eu2B2jorzJWPuObER60tyTIyKy7p2gteufbvUa7e1dqq4SJ/PayfOx1pz\n6u2TXrt49ST1nmbq+wnzMrx23a5yFTc8grWg4KYpXpvnEBERXyLWsePPH/La6YV6nU2Yg8/qpvWj\nZn+Vikubje8x45YviL/Z9cP/8NpNDc6aHBzstdMXjvfajfv0fJG3Adej43yL127eX6PieP2bevdl\nXvvA795XcclJcV47LBNjJ5TGbOT4WPWehvdwvyLz8H5foh7nnbQ2BEVhPEdm6j7XWYZrERSO69B1\nQa/1reeavDZ/v6I1xSouJAZ9s2DeHeJP6uvf8Np7f7xNvTb1ztle++AfMBa5P4uI9A5gHrniSyu8\nduP7lSpuqBNxF86gH8y8ZbaK62/Cvuf8zhKv3dGLOXhoWM9XKx7C59Zswnua6nS/XPzNW732yV+/\n6bUn3L9Mxb3yjadwfksw7lOX6j3Bzh9v8drhoViPEhL03oaPn5i4RPzN4/fc47UvX3+Zeu30Njxf\nrP4e1uRDP3lJxcXPwDwzLgjrScZivb+p2YX59uTmU/jcLy5TcUHhGCNBQZivH3vgEXzOuHHqPeuu\nXeS186653Gv3tOl5o/rtc147ugh7opQZk1Vc02l897/8+GWvfd0Gfa5ZK/FMMtCLeYjXdhE9Zxct\nulv8SeW5v+NznXV7ZBhjbqQffX90VO9ZeB8eRfPc6LCOa9hTgeMN4tihCWEqjt83SHvCmMnJXtvd\nKw62Yy7jZ1bel4joPUzc1BSK08+svBcJT8Wc3nxQrxFx02idpH7V5MxDqVdgDGcV3iT+5sCT2N9k\nXKmfmRr2YK1JWZjjtUeH9Zw6SnMs31MJ0OOlfmeZ185Zj3m0dtdJFedLwfiLysYa13K8Ducze6J6\nT3cjXussx9o14uwVYycmIY72I5HZep3tKsdcnDwL+7LGo+dUXNI0/P7QXV+Pz3WeqYMjMb9k5t8o\nLpY5YxiGYRiGYRiGYRiGMYZcNHOmhf7640ty/npLvwYmzMdfwgbprwsi+i8v/U09XntcsP5diP99\n5pkjXjt/vf5rX+1B/AIdm4Jf96OLkyhK/zoXNQm/TA/Tr3i1G0tUXGRRvNdu3IFfCKfeM0fFddJf\nkGIy8Fenrop2FRdBf/GOmYBziKK/bomIjDi/Cvubk+/grwPpCfEfGTdI1yYwNFC91tmHX42HynDv\nY8br7zLUgfufvrbQa+/64y4VV5CPvxC0HcWvi/HT03DsIv1X6Sa69xXvIsuptatLxaVU4T4kRqOP\nRGTqvwbx/Uqeh0yplf+2RsXxX+jrN+Ov12fL9F9DMuI/+tp+XCY/hL/InPv9vo+My92AvxK1ndZZ\nUqGJ+KtCwmXIQOht6FZxscX4q8IQZQr11+q4zvPIquEMmVjKuDj38gn1nkn0l4NjT+CvmUnp+tqd\no6yz4k9h/F14+qiKS12d57VDY/EX2t4G/ZebnJvQ3xr24S8RcdOSVVw3/TouC8XvhCXj+486v6S3\nnW7w2uE0rwx06r/EcIZQXzPuifsXgcEu3LvQONz71hMNKo7HBWfvdFzAX+DUXz9EJGkarnvTMYzF\nELoHIiJdFbiefA69NTrrIm4K+gyfwz9lAw3hO/ri8JeN5hMVKo6zv/xNxVH0n9Ej+nOn3IisvdxJ\nyPzordZz1PkDZV57fBHGYmeNzjw6+hdk8U2+EZmZ3a+fVnHhlGVRth3r2jQ6n/aTej7wpSDTpYcy\nplIWZKm4c1uRecoZaAnzMlVcywHsFzInY0/AfykV0XNKAGXgBgXoe9ZXp6+Zv+HxEhGqs9gyVyOD\njjPN3H519ElkbQYH4rskFSWpuPA+fFbzYfxFLylWZ63ETNXv+wfVtN7lRE5Qr9WXYDwH0n7r3Cbd\nRybdjP7T+B76bb8z/0fmYk3ntaHymM5siovEXzMnr0e2jDtmy1/FeRTME79SSutE3rIC9drZv2If\nOW0DMi7f+vUWFbd8Ayb6c3/G8cav13+JbdyDcT9rA/7Ky2NCRCSY5sBEur/BQZi3p9yps214fi2+\nb7XXbjiq188PfvQCjvEZXMzuhjoVd/ntC7x2XwPGEe/bRURWfgd/sT3y3+947bjZaSqu7Tz2w4mJ\n4nemjM/22mmLdP9+8Sncr/n12H+FROkxy1mkcZQZceZPO1UYz3uLvnSF1975U90vKpqQGbb2DsQ9\n8Atk72z+/lvqPWmUmXTyiU14wRkTcZfh+r7xO3zuwtm1Ki6KnhtuuHOl1w51sl/P/32P1+Y5Ku0K\nnSkVN0HP2f6EswpjJ+t5rOMMriXP+U7ijARTRh/vUzjLXURnyyQvRN/pd7JWfPG4Tu2U6cfvH3Ke\nWYe6aa8zivmPM5xERDrO4nhtJ3Gu/AwjojPJ+d4kzM7QcbwuBuIZljNhRUR662ldLBS/w32rp0Y/\n00bl45ms5Rj6KmefiIh00TNYH6ldeir1/ib3JqxJle9gvnYzqyMoiyUgCOM+phD3pLNWZyLxtY6i\n59S+lh4VFxaHY3Afjp+sM34jSBVStRXnyr9xiIhUbETWcEQOPjduQoqKGx3Vc7GLZc4YhmEYhmEY\nhmEYhmGMIfbjjGEYhmEYhmEYhmEYxhhiP84YhmEYhmEYhmEYhmGMIRetOROWAR17k+NSwLVbQqke\nDesJ/3ccdHTsxpC3Tlf07zyH+hXJk8glJFDXj5n9ZaqmT7p9rpDvFFCXQaqynbMe2uPGI+dVXPwU\naAVbEqCn63c0avW7odfOvRE1ccpfPKXixtNrLVRXpfGY1pXGUvXpAl3exi/M/zSqxte/p504Ajqh\nX/TFoyZEV6V2CZj1WeiyS5+ELpudN0R0hfsO0ngu+exSFXfmrzjGhNtRF+HYH1BPZeJN09R7Gsld\nJP9q6MGjnLo3W34E16Q5N0Hb3UF9TEQkkTSfXPU7wKkrwDUSyqtwHycU6toM2dfrPu1PzjwOV4+C\n+7RjUXc19J0Vr6APZl6ttdu+JKoxQa464Wm6Fk/lqzhGLFWhD0vTTmys92w7g3oWfTQWi26Yot7T\nsIvGzlU4P7cyOld/L3sGjmhdPR9dCb/xA8wv7IYjIlLyJ+hAs2lctjt1edLm5sglhUTWQaGOaxI5\nHHRVcNV43b87qRaMqk3Tqt0EEqdAb952HtcmLE1fG4brwijXAUcz31GFOYzrDcVP1vrormrMAb44\nnGtvrK5zwY4JXH8h2KkrwO4YPY24Dq4DFdet8TdBVFvEdTWpeBPuGvGsw3auny8E8+RAM61P1+o5\nhOtZVL2FWjIxabpWSQfVShq/BPWAOs+jH0Vk6/dwDZqEuZgLa98pVXHhdK5cr6Hk78dUXC7NyfVb\nUCOFa76JiDRuxxo0RDWEslZrAX1QpHYI8zdJi1Gr4PSr2pGRa08NUe0mXgtEREKpjkgOzbeuA0hf\nPdcugG4/YVa6ihvuxfHZcSahCWMxJE47khRTLZn67WVeO9Cp4VP9BlwlUldgbjjxsq7jlUluJT1U\n9yfCp+tJhdP+kOcA12GTHa38TUsd1r6cW7QrD68NXPcgL0Vr/0u2oKZSCN3Pnb9/V8Ut+9wyr11H\ntef6HBeXyHyq2VOBdXbCjTg/16mFa2DseRL1Q2ZerfdA07+IvdzL/wa3InYXExFZ/ACcN5OnY04Z\nHtbz7mAfzi80AnNtaLzjejNyaesisovqc195Sr129/c2eO2mfZgPi+9fpeLqD2EMH6F6dm49qQl3\nYy/a04r9nDte7nnkXq+9+2HUlpmZg71Kaqzetwz1Ye06dgZzYEy4Xp8SFmCdnJaNeajXGTthNN/0\nUI3ErpIWFRczCWtNyz70rUCf7he8ZsqHl7f6/03MRKr/4ZxfODnCcQ2k6AJdVzI4Audbt6PMa8dO\n0rUBQ2JwT1uOYu/u1kZtPUb1vebjOneVf7hznYhI2hK47TQdRn9rccZsKrmhshtm3Rb9XJm8JMdr\n99J3Z2dHEZHuCv3M9Q8iHHc+14HL3/AzfF+zU5+FXJMiqZ5KG9XfERFJnIprXXoQTr/jHLemtnMY\nf/ybQphTHzQ4gp3TsAdpKcf9CXeeT7jmIl/bmAm64/d3oS+kLoIzY1CI3id3tn/4Xio2X+95Gw5i\nn8Z76P4OfS15DUi5Rf4Jy5wxDMMwDMMwDMMwDMMYQ+zHGcMwDMMwDMMwDMMwjDHkorKmpjOwB8tY\nOF69FpkL61u2EYvK15a4jSRjCKf0wgZKexYRybgOKcGjZC3dV6/tNAdTkJbJFrCcbsznJqJT7Hb9\n4HWvXXy9ToOtfhvpraHJSJ2SUZ1GlrkG6dfd1UgLzVxbpOJq30Z6W0cLvgfLtkREmk5pa1t/U7sF\nKbhJC7UUJ4jSxao2Ie05dpJO/Tr0+G6vHU0pmoef+kDFTVqPa5oyH+mB3bVaUtTRi3SvrY9t9doz\nFpMU7JCWf6Uty/HaFzZCPtDcqW15mZ5qvFZzVEvzdm+C1IVTWmfO0vcxmNLIi2ZDMpCxWlt3Vr2F\n65eZL34lfj7S39lOWESk6nX027TV+OABSjUXETn2R9yr2f8Ca+6OUp2COkrSG7btc+WCDe9rG+F/\nwHNA8wf6mmetxThn6VzFS1oSGD8LEkMfpc+nT9fXPDwVc8BILllTOx6NQzNhi8ffKcaxAHz/R5u9\n9vqfaEt1f8CSnQBHspMwE/eY5zNfnJ7PWPqg/t9Jd+0hK9BIkv65Ft4DHUjLZ1kTWwT21OoxFhiC\npYNtsOt2l6i4qDx8bj+N07hCLYccGcE5jAwifTsyVaczt11Af2Lr9IAwnb7tymH9STHJLXsdu+eO\nPZDsDLZh/LnSHjmN86tvwPiLd9KII3JjP7TtWqnGUDr90VcgU2F76qIVWuZ48gzOdeE03MPoifpc\no12/0/+HxIl6HTtJ8pi8xRino459L0sY+mqxnreR9FdEpLESa0bBnE9+6Dl8HDitfNINWj7C1q/d\nZZinLpzR81nBDOyLSl7HHJbiXJumc5CQXTiKeXPqddNV3Nk3Tnrtnn70n4mXY8/BklQRkf0vIW18\nxorJXvt0iZ6fc28gzTTd0pRELZvk/VdoNMZYQpGeh9oP437xfN3nWHOXPQ876Fx9mT828766zmt3\nVGpL66xl+L6Hfvqq1x4e0fNfdBjmPJacLVi/QcVV78b6WVqKlPT6dm03u4hsf/PuhmT7zO8PeO3T\n1bof8Z5q5lr0ic4zWi7A++GpEyCriMjVkkWWWdS34vqHOpK46GysOfl34nOPPLpbxc368jK5lLAU\n7PabHlCvjRuHcdpP82PTSW0VHxAEOcYIzVnVLXp/M/KzjV57x0mMt1Wz9Fj8zeee8Nr3/PB2/P+X\n/+y1WQYnIpJyFNczNxlrV0OHHrNxxZgftpDVtyuTmrgAffj4IUjbp35+gYrjPdzkh7Bv+eUDP1Vx\nq5fjeOMniV/ppT0Cy9JFREYGsAawvL6vUa+f3ZWIi5uOPVvDbj2XBQST5JP2TWxbLSLS34T+0nwY\nYzaKJDnh6VpC01UN+QpLfGKn6Dmdr3lPFb57pPMMHEDyVP4sljiJiARSSYhIks301Om9V5+z5/A3\nAzR3uPbh4wI+PJ8jtkjvo2t24PksMhfXOmXOR3t/x0/AWtrdqMsNNJEEqDcL60vyNHTi3nb9vDgw\nhD0lS4EbnNIe0WRXz32zdvshFRdOvzdEk6V49bYTKi5hJtbC+nfxWQFT9LXjPvxhWOaMYRiGYRiG\nYRiGYRjGGGI/zhiGYRiGYRiGYRiGYYwhF5U1pS9AmlHFrjL1WipV9A8Kw2G6LrSquI46pPPlXUeS\nlQM6BWm4Fyn5IbFIQeqp0Sld/eRIUnDNSq8dkYrjNR3R55p9HarVJ5AMidP2RURSlyBNNDoB6cFD\nQzqN7Oxz7+B8KC07ba1O2YqZjFSv9GykebtuGMV3z5ZLSdZ6uGi0UPVyEZHzH0BelpaCVK2KQzqN\nMJAcSjgtuHCp/s5NO/E+dkuof1cfb9V37/Ta5W8jhbZw3TVeu+H8XvUeTreLS0f658QrZqq4+u34\nTuwukr0wV8VNzoPr0TuPbsF70nXVb04/6ziOFObqt7WEIzjq0rmLxE9BimfVG2fUa92U/t5xCumA\nZaU67ZedRSpfxzG6qnTKbQDpl1KoevnWR7aquMX3kjSKnLA6SEboVpqv2Yq+X38KffFEZaWKu5Uk\ngu30ncY5Tlof/GyH12bXkjMvaCeZwmsxnrliPEsyRUQyZ+jK6/4mOBJSpt4mXZ0/PAnpsJyWPjLi\nVMxPRv9sI+lp4gwtPR0gGVFHCdLjQ+O1JIZd1aIoXZMdOhImap1efxfe01OPz0ldqGVn3XXoF+yg\n1FWr01a7yYmC00fr3td9nV0bOFW6q05LC5SsLVv8Sv3WMq8dM0Wn88Yk4N5EFuB+9lTp8wtNxBoX\n2IQ+3XZM98dOksM20f103T+y5+fgGN2U9huNa9l1Tqf3Hy3D9wj4O8bEOEe/WDwZxw4IxT0c6tTy\nuqQkpC/7EnF+XWW6n3dXYr7htSQsUrsj5C3/6BRof9BAzkYhCVruwZI0dmvKm6xlwb2VuCfsTFfy\nkk51ziMnq6bdmOuCHDnepJswh/H66UuKpP/X8sWFd8FJsWkvpD2Tp+apOHasSFmc47XjZqepOHZh\n4r1KVK7jGncGY7v8Faw1yXO1ZDE4/NKti6UvQOrBEm0RkQpyz0yaA+nDtMu1e9Sr//a0155D595S\nptdP3ovGRmBfkRGvZQxvbMG+ZR1JGoaGcT/LGvQ4/9JvPu21X/n2y177hodvUnGhodgHnPwd5Dl7\nNuoU/PXfvdZrlz51xGsHRej+Vt0KSXQuyZoS8rWc4dwf93vt5K9dJf6m/QTWA3YbEhHJuxPSsITJ\n2MPtfvh1FTf5NuwDy0kWcdtP71Zx1dvg6nTjDFzPugNaahZP81E7udEUZ6CPzN5wmXrPvmchfZuy\nBGN+5zNatj3nFCSBC1aQnOw93ed8EVjv3juN17Z+Wu9v7vsW7F52/uffvPZnHv+Mijv9S+1A5k/C\nad/c6cz5oTS/DvdjHHSW6ufFxNkYp7yEu859aYuwNgz2YL1zXcXCsyAPCiGJZk8N1qCwVL3usDyL\nHfM6qvWzKI8llnG5jn7seMTuPe58xc+jjTSPu+UEAkIv+tj+sYnMw3zmOrnWkBPVCMnoXRk5ry/s\ndtzbpvcgQT58l1p6bstcrSXYqXS81hMYO+Vvw923v17LaTPXfXgJhdhpWp7WSM+s42/Bc0JUoXYS\n66X5n+cDfi4VEWk5gucaXsMDffq+Jc25+LOGZc4YhmEYhmEYhmEYhmGMIfbjjGEYhmEYhmEYhmEY\nxhhiP84YhmEYhmEYhmEYhmGMIRcVr1WTLWjKBG1p2l0CrWD8XOgEe6p1/YpW0r+zrRnruEVEesku\njPX5rl2xLxIa0Z4u6KEDg6FpHHSOHRUH7VlIOPRqcXHzVFxXF6yQR0dJF9mka8SkrUD9BbbKGiRL\nWhFtMXv6t9Ds+iK1hW4XacFlovgdtsoNdux7p9+CuitsQ9e1Vev30uahcEPNXmj0yndpS3Su+9FP\n+srkBVqrX7F5j9dm6+XSzdBRJ83TxSJ88bjHrFVtdGz22IKveS90xGzJLKJttjMTqNaGY/2aOBfn\nXrYDmsvZt2tfULeejz/pJcvBhMvS1WvcHwOpJoTvkNZutx+DDpvtlEMd7Ws/aWZZwzt1rq4Bwfc3\nOAb9qomueYjT3xLJyr3mBM7vyhsWqrhWqgVzaD/qjsSf1rrw6TdCZ8629rPIKlxEpJ3qqsRPIl3z\nsL5nF3bi/s7yv3uvtFPtF9f2kQlPRn2HoV7HXjmW6r/QfBEQ4FNxoyO4HqEJqJHAfUREJO1y1OQa\nGYElc2Ag2WoHaavW7l7U+EqbfLnX7uk5r+KUzrvuoy3vMxfB4rO/H/ck2OmbbH8cEom6Jr54rRtv\nOaFrmvmTtNWo5cG2wyIipzajtsCsZagBxBa4IlqjnTERNT8qT+kxmxiFOWuUas40OPa9pa9Cex1C\n9cFOVEG7fq5O9/Vksm2dtgAdqfRQmYq7cBZjjuvRsNWziF7rVxV/9HzKVt3l+/FZnSe0dru4cKpc\nSniey1yvNe7NZN0ZVYh1yK2p11iK8dzxImpZxCVqrf62J1HroWcAn9u696CKu2oxxkFVOfYqXX1Y\nw5d9dpl6T1IxaqhwvYN//eLPVdy/f/YOfO5xHHv7a/tU3Jr7rvDayYvx3fscm/f0q7A3Y0t5t2YI\n14byN4W3LMc5dGgr7bhp2AdUv47aKiXbX1JxC2+b77VjJ6CGVOXruv5HxpVY/8KzcH+3P6Ntp1fP\nwZr0h+ff8tr33X41jlWt6xlUvAhL5zVfutJrb/p3XVdl5lXYc+z4AHVH7n3kThXXcgJjPSAEf4M9\ncEjX8Fp8Lfobr/UDrXovy+v7pYBre/Q7NTu9LIADAAAgAElEQVTK/oZxtZ/Of+n1ev8elYV7F+nD\nuvPaN59VcVd/D3UNK17BfD39i3rPkPAmPit70WKvnT4fe9xx45y901PoC3WHMG9+6fdfUnFHf77Z\na7d2Yeys+tqVKq5sI8bm/T/6hNd2a6vUbsEzSmUzakE995WnVNz8JZduTuUaMTFOvY52qknItWnc\nei9cy4OfVdiOWkSvQ7wnqNms9x+Jc1HXg2tuBUfj2M37P3q+4voko46FNdeciSnEvra7Rj8DD/Wg\nPw9SrVa26RYRGR3CBeQaPdEF+lq2HK2XS0lnCe4V13sU0XvHzFXoS83Hdc3I5sPYf2UuxXgZHtZ7\nwJI/H/DaUUX4nt11umaRCO4376XGX42aT111+j6Gx2Ffxc/YHWebVVzcLKwTHfTdY4v1bx5tdN1T\nFtLerlGviyFxmHsSL0N9Ku7bIiKR2boep4tlzhiGYRiGYRiGYRiGYYwh9uOMYRiGYRiGYRiGYRjG\nGHJRWVNgAH67iZ+tpRRhaUhNiyC7MrapFREpTkDq+dO/RormnAItV2qog8VW3kKygHR8xPp7kFp0\n+FGkECbkIiWqv16nGZWOwAKY5Ryb331BxYWHItVt6h2wt2abYBGR5PlI9Q2JxXs6Tum0pYYdkNtE\nZeMaDbXrtM36nZBGTVotfofT9vi+iYh0nME5d5Kdbd/goIqLnYiUUb7HvuQIFdfbQPKb6UgrC/Lp\ntNiKN5BOOkiWrJxS+MvP/E695/YvrPPakTlICRvu1ecqdH6THoDt4/4f6fudsRLykKn3Ib239ZhO\nG+QU4QyyWm4766T8+S6dxd1AG9KMfQnaRrf0ycNeO2M9LKg5hVJEJHUlbCjZqnm4R1+/4qWwroyO\nRop2zlT9uVXncT0T0iFLyluOzx0Y0JahrWWwH89dius/0q9T38Opny5cj9TFAxuPqLiuMsgMYshm\nmfuhiLZqFkq/bT+hzy9rtpbf+Zu4Ihy/r11LJALJarq/A+mfrixgIBz9LjwS6ZWdzTqll+WdnBY8\n0K/vd3AE5svg4ARqY85qb9RWoAlZGC+9vZA2RkZqm9reQMxtkXGYKzqbzqq4ng6kxSanr/LaDX3v\nqLjhPtg3sn1lsyPhc1NS/UkrWSW2ndfWkMUrIA9qo3kk1JknT72D65meCpkPr7ki2kI0sBnz2qI7\nHBngIZxT5jWQ6Ay0Y97odywfO07q+esfpCVoa+DoqZj7WaIUmaOtlbsrMcbaj+PY4wL1d4qbjTTi\n9AK0g2O1LM+VPvub6FysIW4qeg9ZZCdTCnN/s76G8akYI740pOgf26klMW8eQPr2d79xn9d+66Vd\nKu6vG7d57RvmQ24TFYY09wbaL4hoyQ7LTx7+3mdV3Mmt6HPT8iCPufozK1VcG0meQpPQbyOztbSx\n7HnYhY+/AdLIrOu1Nntc0KX7G2DZJuwBMxzr9ZAIsoTNxvhIdyQ6LKN/6deb8J5QHbe6AMcLjcda\nOGOCtiyfcP8Sr31lI+b4iuOQXf3300+r97xwxU+89so5d3nt7953n4or3YH1c14hvm9nmZ6HDvwd\n/W3xFyBTS5yv7Vv3/RWymaCt6LOzb5+j4lwprL9hKXrGGn0fD/0K9/jqh7BBfumnb6i462jPsObb\na732OOcZIiQEa8OZw2967eFebVFfX4G9ceLco16b5QmvPbNdveeaDUu9NlvlNh3XpREmfR5ju/Rp\n7N/q39Nj+/huSKuOPg2JXHZSkoqbXYS91PINem1gOktaPvK1jwtbJgcE6/4SRuvfYCftSx2b6FDa\n27J8JXmBLnHQ14ox20PW14Fh2iq+n6SY/NoFkixGp2oJamQ+1rXQOJxP1zh97cJSMN+HJ2Pf5J5D\nwx7sbXhP7tras3ypvwXrTJMjuwoMu7RW2vw8EDtV206Hp2CMlb+MvXjO9TNUXP1e7EWHhnCvBrv1\nM0nWtVgreL/aVa5lTTyG2eo7Ph6S+oQEvc60t+P8Yoqwx3KtzkcGsY/sps91S7Tk3YQ5caAXr2Ws\n1L9lVL6BvsUy2SHnOet/el60zBnDMAzDMAzDMAzDMIwxxH6cMQzDMAzDMAzDMAzDGEMumlcTRSlM\nnPojIhJFqUXVbyKtdqhDpwydrEQq59o5kCecqtSV9Rdeh9eq3yvz2uGZOpWWU+IqmkiS04s0sAsN\nWqpQvhNOCW9shcRp7fLlKm7RRKRYnfkrUg2DAnWKXncpUp/OleJ75CbrVPqhYaSAN57HuSYX6JTE\nrlbtjORvKo/hHFM79GeHk4NR/EzIkFyXlL4mnOMpSn/NytbfuYmqbB97C1X2i2br1N/gKBz/Nz98\n3mvfvBIV81fPmK7eE1OEc2cZQ4iTDh8Sg39X7tjrtVPm6ZRelgLUbYU0Y3BYy0hYjsESE5ZWiYi0\nsURGZ4p/bLg6/+mnD6nXkqfivtXvQFps/Ow0FcduaSzzmXb33Squ7hzGSG8HvlPlqzpVP2YS7kca\nXYuAAKSDc0qjiHapSZwJqWTtNp32yzIuljdc8fkrVBynz3K6sSsFaiBp2iRKN3ZTRCMzL15B/ePS\nchL3x/1s/s4s3wnP0Gm3gz1IqWy/AEeIsCTtfMDXJpTGSIfjODOair7VVoH7EJuNMZuQtkC9Z3gY\n80FvC2SfrSVahhSWjHOKiMN1j0rUqaCDg0gZrilBqjk7HYiIDNN9jclD/3NTiTvL6TsWiV9pJuev\n8Vfqg3MqbBSl0jqZ9WptOF+BuWxC8XgVxzKE8DL0g+F+nYKffzucS5KSsK61tpITT452+Eibhf4X\nHIxU7sYLH6g47lctx+HCEJ6u++UQyUvD0qkvOlItltidPYHxkBarx14TuVNNvlr8DjvS+FK13NeX\nijn/wtOQNAwP6Xkl61pIyC6Q4w67xYiI3LFsmddW61OTlkLfvADj7O7/+i+v/fxjD3vtlCW6j7Cc\nrJZkEVETtMtHwTS879Br2N8kROnvnrcW+yCWpPH8JCISOwVr/9nncI0S8hNVXP05rCHZP75Z/Eny\nfMhEO8r0tTz0F8hAln/7JsRV6b3nnife89qz8zDnTX1wvorb8n1Inlb8G1x13vngsIp79CXI97/5\nrXu8dsIMrMe3nNWyznu++gOvvf4KrHGxEVoOmZSLa5tEc0OQs1/j/XB3FfZkIbFhKm7aashQO0iK\n6MqYWGZxKah/B+vOxAeXqtdCgzG3txzAXHnDV9epuKoXsT9pprmjaJWW2XVdwDi98rvXe+3fPvhb\nFbd0Jq5NQDDGQccJXKdDpXrfckcx+tlL33nZa8+cpNc7Lq9w9CSOMSNYS7qWfA7X4kqah1/9X6+o\nuJoGrMGj+3Ds7Fsmq7iuMtcFx39E5eKZkCXHIiJ9tPdkB0d33W56HxIgdiFtO6MluCN0/YY68EwY\nXaglueykwyUYJnwCMpyWI9rFkPcsw31Y01wHM3ZqbCVHQ36PiEg0ySGjc7FnaT2lHSXZzTIgCONv\nxFnr3Wvrb8Iysa6HOvNF8xGcMztZ1byr57PEWdjbV5LrmSvlyl6J5/6mRhzDnadi6dlvsAv3oaUF\nksfOGj2vR2dgbeBrFk8ufiLahZCfh11HNKbjPMZb1Pi4j4zjPhI/VX9uTy3JpvSjmohY5oxhGIZh\nGIZhGIZhGMaYYj/OGIZhGIZhGIZhGIZhjCH244xhGIZhGIZhGIZhGMYYctGaM83V0O2PbtM6Nx9p\nyt06M8zkfOicI/OhKU9q07Uo2GYqKolq3Ti1I3qqoctbfCvZ0b0Nvdrl0yap9+x6Dpa/n9uwwWsP\nDGkt3+NvQaP844c+hc9s1DVhTp2DrjuFdPJhmVq7HRMHbWVUIfTfrnaR63BcCiJI/+5L0RrmQdJr\nsq12T7m2ESu4bxbas3O89qgjf0yg2kSxvbChc+2a334LtWBmkc6b9bd5KdrGrfQpWKPN/Jc7vHZz\n1X4Vx30mh+oKtdWfUHEpC/C5LSehZT77+kkVV30eOtgr/w3W3E2OfS/bjvqbtsPQxboWnxmroGce\nJJu41mNaSxuaiPPLvBrX9tRLz6i4iGz06U6yqg52LEgjxyPub1/8qtcuXoo6DFEFWgPMtYw6K6B/\ndi3eub4B18ph+1YRkaL7YXnfeRY60EFnTorLwLk27oHFffJCbdFY/gKOn/Yv68Xf8DVzrfWCozBO\nQ6Jwrdm6XkRkkOuwUDETdx7hWiF9zZjDfIm6n4aH5+Bzs2Ff2ddd/6FtEZHoOMyxXEPDPYfBLswv\nNadRK6nrgta+J8yBRpnHLx9bRGSIavG0ntHnxERcwtpBLV24RhF7tM6Z7w3XabtwWFukFk7P8dp8\nzdg6W0Sk7BXYH4dR/7hYHaK62te8du12zKfusbMWY/2sP7PHa3eW6ppEbEs/MoDv5Grr247gfmSu\nwxzg2pw37sD4K5wIXbhruR3aqPXp/iZ1ea7XbnivQr2WsjTHa1dVQzPf3tOj4hLrMa7CY7HexRfr\n2m71xzEXt5OF+afu1XPMAOnfZ85AXYSyM6hpEJmr+3bafNTGaNmHa500M0vFtfpwPSdyPap4PcZe\n/CX2Qf2DuMebDh5UcTPzURPirutXeW22RRYRSb5cz7H+JCwaYv2SP7ypXuN1cud/vui1F3/zehWX\nk4e5J3kxzrXtrK5hk5mAPdxr/44xlujU7PnKZ2/FOaTjNa6X9clPrVXvuffLN3jt5r24h2EZuo5Y\nPNWtiUxHH/vtg0+ouGs+scxr+8ieuGlftYp77z3UCvrkz+702rU7zqi4k/TvYj/X0xMRqWvFejD6\n6Hb1WhrZKHecwj1pO65rS/L8lp6CPhg/TRd0CKB6Omd/h3lv/Z26BmXbYcxn23+OOnxcA+dnf/6q\nes/B373vtWdNQ/2YPqdmz3O/Ql/lfW7Wel0fp/EDrC9cq+WmH2mL9doPjnnt+Mk4HtfTEBEZ6vzo\nZ7WPS9sJXK+gKL1XHKF1OyQO9URGnRpevPa3U52ZfueZqZvWqDCqE8J7KBH9fBNE9W06S1HjLmai\nrpHFNbz6m3HfIvN0bRG2Dh/g++usY1wfZ9w4PHIHhuv1ja+L2iefa1Zx/5MF88clphDXg23KRXS9\nOLbVjsrW16aFajxybTKuHykiMtCP8cx73qS8uSpucBDzQ2Qk1bs9ssNrZ87Q9Siba1A7L4T6xUCH\nHotcV6eb6sDEFujnz6qtqKHKNWyCnPs4/hrUSh3sw/6A98Iiul98GJY5YxiGYRiGYRiGYRiGMYbY\njzOGYRiGYRiGYRiGYRhjyEXzo2Kikf4ePUmnfg1SelJgJNJ6fI48oeoQJCFRRUhHmnzTDBXXsK3M\naweEIO2QrbNFtEyieS9S/tKmIjX1xB5t6/WVa6/12j39OJ4vRKd5T8/J8dpB0UixaivT6ZPLv7DC\na9dvgwXzqUPaVm/WWqQ3NVLadJKT5uvaePobTsXOzdHpZzUbS7z25IeQ1jnq6JVOUqrpAKU6c4qn\niEhEAY4fmYt2nyMNW3cbLAJPbEHq/rpvwR6x4u9aXpREKcfHn4T9dsaV2n6QbQo725COW7vlvIob\n6UMKZVQRUpYXfG2Nijv9S1ixP/3157z2lTcvUnG1e3GPp98gfqWrEdKC3Ou0bK/kD0g3j8ina17X\npeJYxtV6GpZ4SXO1xXj9LnyPPpIRRk/RqfodlG45+xNzvPaeJ5EqHLBVy1zyCzK8dngWpBl1B3S6\n9fSHLscxgjAWS57SNr+dZAudtgpp9h1OKmgPWYcnzsE5uJKL7OuL5VISEhHjtQND9JgYoRRfToFk\nWYmItu4LpLnyn+wmSYISQfaI0Zn6ftcexjVlG8n+NqR/th3VEqKOIlxflpO59oOhCUgZbSbZS6iT\n9txykPojSc1cy+jYAqTItpFFL0uIREQCLqFUdMYNM712x0l9zX1puH51J/GdsvK01MOXirhNz2J+\nWbFe2/dm0dzGay7bVouItJO9dytdZ05D7r6gpcQhMWQBTPI416pz85M7vfaCZVjTQhPDVVwI/Zst\n0NnCVERkmCyez+w557Xzp+h1MTw3Ri4lLGXqrNUy3nRKHW/vwDgtulrPD9VbsOZXtyBVvjgmT8Wd\nJPvmrF58/8Zj51RcYwfOIzkG379wHua2SGcNHxnBvNHRgzHbXqr7ZvU7WP/ip2IcBQRr2+QVyyEV\nfeRPL3nt2QXaDnjqeEjWa0sxFnktFdFyHn/TUoLrV9uq5XgLH1yCc0qBhG1wUF+XwjuRQs8yl/x7\nZqm45vexRl31dcibM/P1Yl929FmvHZ+DtTo6eprXTs5qUe858IvHvfb2Q5CoLOnT/Y0lrs1kK/2J\n79yo4tiK9sgju7w2r6siIkspJf/ko5iHAh1phmvp7W+CA9EHp/3rdeq1yh2QCvEcGNKn14aeNrJr\n7sL4jYnXzxqdYdu8duwMzMthjuTfl4I5OtMHmeaJp7DfSsrV83XGRMhXizbgOeHIz7T1NUsEn33j\nh16bLbtFRFpo3U0medexn29UcVP+BbLChiN4/uE+KyJyshRznu4JH59gkiAHhupHy7YS9HdeDzrP\n63HA0iGW/bTu0rLTxJkf4j0sWq4kIhIaj3HQuBvH4M85/LQui1CwCPPcAMmaXDlRdDLmuSiakwN9\n+pmIbZdrdsDuPTha74F4jzXQjv0fSy1FRIa6L500TUSkvxXf2ZUus/SK++pgt35OZ4lzAu23xdmW\njQySjI337OP0Pj8uC3K/0VE97v9BUJB+jg6i+1W7HWtf0jwt9y19EuUyih/EM/C4cXosJlCfayTL\nd/69QkSktwXrEO+/IpPTVVx7v+7TLpY5YxiGYRiGYRiGYRiGMYbYjzOGYRiGYRiGYRiGYRhjyEVl\nTaHJSFMOofQwEZEokqy0U/Xzit1lKq66mVKVkJ0o4+eNV3FcpTt2JlINgyIc2Uw60vN7SRbx+t+R\nkpkaq90M6tuRzp0aj/M+Ua7TivpIrhPAad6jOlX/3DNIg4ovQGrbzKunqbguqigeXQxZWO3bWl6T\nvkanC/ubOfcv9Nq9dbr69sQHkdLb146UwJAonbJ+vALXiqVMV3xmmYp777e4DxNacY+56rmIiI/6\nFqfM7qPU2jgnlZalHuxw0npSSy6yl+D71h9H6n5Yuk576zyDvpkwEylnbtpcQBiGyc3fgLtGw07t\nwDI4fOnSt6Oz0Kd9jpwgZhqqiifOwvco+b1216jcCJlYTwXS592081OUgj9vJVKCS7ZquWD+Ukgu\nXvoF0myjyB1s9nydlh09AeMglFIk05dNVnE9jZBpJOde5rWzrtHygyaSQ9VuhsQg0Ek1zNkAR5OT\nf0Aaa8aiHBV34JH3cE4/0enV/qDufcjsYoq0VDQkBtcjPBySBlcq1HwEchmeh11XpxBy1+JU1fbR\nShXnI1enJnKHCI71fWhbROQcOZrFJ+FcL5TXqrg5t2F+aXoXEoTM2GQVV18CWQSP08gcPZcPdH14\nmnFktiOBCbh0siaWTTaUaUeXSbdB8jQygHlkoFm7TbAUbOW1SI13XcvaT0GCEZWvnc+YrjK4GbQ3\nYIy0krNUVrKWJfY1QK7Dsj9O9RcRWXkX5CGh1A+434iItB0lRyJy/ht0HEIixuNeTVuLNbO/Scv8\nWBZ7KaguxbqRkqyvbenTcLHJXwNJQ2eJTpuPIBlgpOPkxEzMQGp3ygT0/RHHxat3ANfq7msgVegj\n14zQK7RkSgT9sWAd5tteR9Za34Y+ElqGueHHz76o4qaRvPsb/36P167apmXb8QWYv9iNMSxF94vW\nY7Q+Lxa/EpsHiebERVrWdOi32HD6gg947WlfWKjiGvbie814CC6QPT0XVFz6GkjLsgogI9r36x+p\nuEmfhMyp6gNIAhvD0acypmlnkTKaN9n9yXUUTZqPlPyqN7Ae/+nbz6u4zz7+aa+ddy2kVQ179J43\nYyX2nufKcY3SnD1pfH6uXErYAW/X959Vr7V3Y16YMBf3wHVJmfy5eV67uxpz4ItfeVjFzbwWe5p3\n/or95uyCfBXX14f9Zj/dBx5H+37wO/WeSdS3Bgcxp9a1aXfCCSQt3vlLOM7M3TBHxRXdg/Xkma/j\nHt/wtXUq7onPPea1FxVDApLzSf1MkhMwRS4Vw73kyOTsF3j/0LQXe7awdD1XsMxloA7Xn5/HRLQ0\niuc593NZRtNSijW3+TzWp+Ag/Rh8dCv2NhNnoN9HjNd7EXaGYjeutmNlKo5LcYSQgy87SYno/UwE\nSZ5cybb7Pn8TRm6e3RW63/Y1Yo3jZ8kBx41s/E3Yz7fQfjVj8XQVFxiI+98Rj7WVnbBERGrqIHNi\naSM7H5+qflq9h91QWXpU9swxFZe+Ds8xF17e57WLb9VOisEpuP+tkVjTAh1ZMDvc9lSSTPlyR3of\ncnHXLcucMQzDMAzDMAzDMAzDGEPsxxnDMAzDMAzDMAzDMIwxxH6cMQzDMAzDMAzDMAzDGEMuLnoi\nXE0Za4w7TkC/l7tc2xoPvA0d4mTS49du0nVXUlZC28cWYz3VukYK25KNI63X1GzYjbEdpYjIvnOo\ndRAdjnodKxbMVHFcx6SlBlq73Nm6Pg7boHLdEq5F8L+PF0CvoW4Ea+ZERHq4DoyW5PmFhl3QtQeG\nOTZvVPvg5BForydO0PZtM6dAgxxdjNoFzfu1Vd/a/9zgtbd+DzacrKUXEZlI1paVVJdowTWwr/zT\nr19T71lE2mOuwlG7R1tu9z2LuiGf+MmtXjtsirbGbEpD7aDwcNZU6xofxfejRkL1LtSwOXZE9+G0\nuEtXI2GgEeOv3rEVjJ2E+xEYBL1o0lLdb5Mmo3bCBz+CtWPmUl3DoHsbNK3Xf/KLXvue669XcTH7\n8VlDVG+HLepjJuo6Fznzr/HaZe/j/g7G63HOVB/d7LX/qV7TVeiXUVT/qfzlUyquowR9LIzOr/1Y\ng4pLLUqRSwnrioMcy8Wm/VVuuIjoecT9N9eZ+ac5uh/3hPXSXJ9ERGSYbJm55skwWZVGF+iaHNOn\noS5J22nURVl6g64xxHrp/Nk5XptrHomIZMxELYURss+u2Vii4lKuwDH4OvgSdX2qgMD/10vb/2dY\ndz08ouf8LrLyrDmDGiwFy4tUHNd5ii1GDZLRIV3/KXs9rmfrKbIOd2xkg6PQp9toniya7dYnAd3U\nDwrvQt2bkRGtaa9+B+tnCK3NXZW6H3FtmXaqt5Z+ha5XERxB468Ke4d2WotEtJ5cFn34d/g45M3D\neXHNMRGR1mO4d8GR+M5tZbquSRPtNZKiUQOv3YlLHI+5icdEfKSuuXC0HGs177GGaEyMOFbniYnL\nvHZHFOyVQ2J0/QWuXxKWiXP93rc/peJ2vYqaXF3n8T2SJjtzYwDGX+wUqqPj7IMuVivp43KGatw1\nNWmr+MxpqPOTfDnWwue+/jcVd89jX/Xa278LS+uCayapuLz5qCXT2LjVaw+06HpSRx79q9fOvgnH\nKHkSe4f209rOu4ZswNd+ChbMwZEhKq5xH9frwFx9939sUHEHf7rFa0/73AKv7dYle+M7r3rtNd+8\n2mt31+j5+cCPX/faq37gbxNmkcJ02NTuO6fn/NW3YvAH0dyRMmOiirvw2l6v3VeDOiRL/3WFimOL\n3SvWoyba7594VcXFU+0frif4wMOf9NpcN09E5MxvcA4lVai10dCu++Yv3viV1y57GzVnovL0WNnz\nU9h+X/tF2LcHhet+ccf3cf9P/BZ1M3Y/skPFcf3MWx/VFvAfF7atDnCt2OmZIWAantt6G3WdMbYe\n5hqTmeuc9ZPq20TS3satD9pJ9swx6djHb6N9fIhTc2ZmLtaFlKU5iIvR9zosDHPK8DC+h9snehvQ\nF/tqsM+NyNJ18ng/E56B+bmvXtcO47nsUhAURpboTl2nuKnY9w20Y97rrdXn2Ea18nxUl62zTj8v\ndl7AvJd3Bfp3d7eeA1rPoU5iD11DrutXu1/XHj1Ca+k192IO6Dqr12be//I96GjVzxBct5H3JjWb\n9LnGTsc6mTAL81rbKf2swfv18XrbLCKWOWMYhmEYhmEYhmEYhjGm2I8zhmEYhmEYhmEYhmEYY8hF\nc7+jCpGKW7+tTL0WPxvpOgkLkD4a6KTqJ1Bq4OnnICPp7tOpoKNbkTYYQjbLF07pVP+59yJFk23S\nODXtbE2NMOsugxVv7AykHL336gcq7ppvrPXaofvwuRmrtVSrnuwIQ8nSbXRYp9SxfTbbn8VO1Tay\nbQeRQi1Xit9pvYBU++jUaPVa9rXIpzp+COlZCfMyVVwg2aVv+w1SJWfMn6DiDv/sHa897zNIR214\nT1uGdpPFWEoM0vtaDpAUIFVbuj7xDo49kawI5xfplMcZN0GuNtiNVPuQUJ16Fz0ex689jFTQEcda\nungl0r7L2mDPuegTC1TcyVe0RZs/Sbsa8p06RxKYTPaanVW4fjEk8xER2f9jpO2OI2vCg68dVnEf\nkAzwhd//xGu7shm2R1yVg/RgTnHPmrFGvWdggOzLJ+d47YgIfQ8be3Z77Yb3MN56e7TkorsK/Sgo\nAnPPxE9dpuLKX4T0bYikKJmOZWifk2brbwJDMU81H9W200mzacyxXKldX/cAknOyzXb0BC0h43RN\n/l7hjqV8ZHbch75niOVOifo9g92Yv9nGusuxXkydBSvPvjzIgeJnpqm4HrIK5pRRX6qWKw204bVY\n+r49tToNn6+z6On2YxMQjL9pBAbov2+0H0M679TbIaNkW0cRkWhK9a3bAcve9JXazrXs+eNeO3EB\n+kf5Fm1rXEuyiPP1SO8NOoK+MnmdtlENyyDL3m5cf1f6kDAb63vjbszjQY7kIp5SeGNIdsVSPhGR\nDrKjHqR7zXIsEZGM6fpa+BtOK28+pPcMwdGY29gKOu86LXVJqYRcgfsmp6WLaAtV7guH959VcZNo\nXRskKZOPUuWDfXosnt8PC1FONVeyMNF9lS3aU5dr2dncKzBmeS2MLkpUcW0nkKZ96K+QQqWn6rhw\nsk4XvWR+bAbpWk68VvdvPvfy50947fATyAwAACAASURBVNlFul8d/fkLOL2vQ7r7/Fd+q+Je/uVb\nXvv6LyAFP6pQy5nf+BukVlmVWI/n3wnpYAdZzYuIrLoBFsyR1C/3/2qXiitaBSkPSw6aD+r+O+NL\n8Cx/9Vsve+1ld2t94PLPL/famx/e5LUzE/TeIa5Iry3+ZoTWMVcCz/K+aLJv76zVzwa8/z5egnmq\n/0/6eL/bDJn0nUuXeu0hR6J686exd4mfgr3ixu9C4rX++59U72lrxx5z06FDXnvtZXo/cu5FnMP2\ndzB2pjv3kSXim36J98yaofdLNWUYiwWLsKcZnxCu4lJnzpBLBdtgj4589KMlW6BHOPMkS737W7Ff\naD+nJa9spd3XhDg+BxGRYJJ2lh/EPvLXz8OW/NEvf1m9J3UJZEOj1CWCgrQEdWgIc/8oBYZG6z2L\nWvtJdjXUo/slz1cs/ZUU/bktRzGnZOntq1+48Dc8p6et0LLo0Gj0pyYqaVGwYaGK66jG2KzfXua1\n82+bp+J4/9rTg7iaHbpURdMh7JXDSF723iHM6yvWaBv6BaGQI8fQ2hWZrS3RK16EfKnoU5ijGw+V\nqTjum50k2y64S48pttJu3o/xnL5K36yuKi11dLHMGcMwDMMwDMMwDMMwjDHEfpwxDMMwDMMwDMMw\nDMMYQy4qa+KK2P2DOi07nFw9WijlqOZsnYrrJ4eAwjlIn926UUuKcqfBHajyBNKl5t6n82BrXifn\niESkNxXeiJTWU9W6InRwNFLESM0hlU06tbRuO9LLW0rJ3cVJvWOJEqei/ZNcgNJTjzyBKu5T7pyt\n4rpKdPVof1N4K9KUQ2N1JXFOZV18F6rwR43Xqbr1lM6+6kurvHbN27pS9ZQv4H7VbkfqfYCT2j71\ni9Bv7f4B0m4DQ5CG71ZRv3khUufY5aLP6Zv7nkXfyqL03On/qqucx8Qg1bQvDXKMhAydevfBEz/2\n2kPktJW8UDtahYfoNH9/wmnQruyK+20aySJOPPa+iuN+wOQ47mHdv0c6/FsbcYw7vnuzijv2R1zn\nuESMkRCSBPT16dTjrmacK7uzDPfpNEYeY+FZOHZdlR6z7OwzjpxkWhzJEDusDbXj2CwDEBHpOEXH\nXy1+h12FQuN1yjG7xXGKdpDjsBYagRTN/m7qF4M6LZvTh0MpvTkpU6e2j47iGlaXw4UkkuaAgc4e\n9Z4+krgNduJ6RuXoeaOvG/dhlFxm3D4cnoq5k50o3NTf3jqkjcdNgkTVdcBTLhCTxa+U7y3z2mmF\n2sGm7CT6++irkKxMfFDPKd3VmG+aaa1JaNWuQWdOYd7dewDpt3tOn1ZxQYGYN//1c7d47Qi6H1Hj\ndTovXyNOlR7q1teSU8jZ5ScwRM/PvSRNO78Hcz+fm4hIbASO19qF+6nFVCLlb+H6TVgqfqenGlI4\ndgkR0VK96ncxZ7lyJXZES5wL+dexPx9QcQG08Yj0YX5MitJ7hha6HqGU2p5Axx7q1852sblY1w79\ndKPXfnrnThW3fOpUr51zMwZFybNHVVwmpV/30jVqOazn1JhJpBc8jH7KbhUiIp2OhMefFN4H6eBb\n//Wmem3BLZDa7jqK9WXRTD0hsDyvvQrfo95x2LnpAexZXngEn3XnD29VcfEbsdYUToDkOCIDfeqD\np/aq97Ab0HySMUT4HMctWq9qtkPeHOnEPfc2ZBvrv3yVfCQ06Apy0cdSV2ipW0LBh9iJ+JG8O2FT\nOilmsXqteivmva0/h7SHr5mISHkjpHos4dt48KCKu3cFnFte3Iv7cMcyPckkzsBc7PPhPi6+F+tn\n23kt159wHZ5D4knWVFCkywSEpWAO5O+RMlfHxUzEGBtPToAv/fEdFffZXz/otfva8Tzx+n+9ruJW\n0D48doF2L/24sLyIZR8iIjETsWfhtSZlnpYYtpVgjuF1iOUvIiIjNO+ylCnMkQAFhuH7BtI69IPP\nfc5rj5+fo97De092XgoJ0dK+xnMoB5BYgLm1o1E7sQXQvo4lw+w89k/QuGSpuYh2TLwUFNyK58D+\nHi0nazsLiS//PlD9ri7pwA5a7HgloveovO4ODWC+bXTkfY9txLq2qBhzEUuZfElaTjYuCPebZfP1\nWy6oOHaK7u9AHDsxi2iXzuTL8eznSvlZThwcg3tV9cYZFZd/63y5GJY5YxiGYRiGYRiGYRiGMYbY\njzOGYRiGYRiGYRiGYRhjyEVlTSGUkhOfp6u3cypZwmVI/9u754SKW7AE6V4RVCV5+dVzVVxvNdKJ\nkuKR/hkQpFOi42ahanrGQhyj9A2k8C67SldtDiPHj5qtSGlaN1/HDTQiVb+AZFKcziQi0k0ypIT5\nSAXtb9ZxHZTKnFqM8y57Xl+jPqc6vb85+wyqbxffqVMZZ6zE9+xvxffvOKNdJMavR0Xq+n3kFuSk\nGz795We89l2/uMdrV2w8ruICApDSF0zphsHxSM/d9bZOA9vyLlwQfvv1r3vtvCW6CvaJzUhhDolC\nHz733FYVV3Qr7k8XuW50V+uU0WhKyQxPR1p72ymdvhifq8eIP2HHFHZDEtFVxCtfRgowV50XEem8\ngH6bOBNjtvmgTldnWeCnHrwO76e0WhGRiTdDJhWehuvCaZilr+1Q73n+uS1eu5icSdixS0QkOhnH\nC4pA+uS0W3X/PfIM5AOhwbgO6dMzVFwGpepfoHHqc9wMhh1XHX/DabL9bVpS1bC30munLYQrR9MZ\nnYaZNA39bJjkQYOd+ngxuZhzehpx75uq31NxYbGQISgpUxvmg74m7aQTTOOKr1hwpE65DQjAv3sq\nIXVJdNK3WQrH7fZzWhIRPx3faXiA3GwSdUprT52WfviTjElwJYrI0VKhwNNIx43Mx2unHIlh0kKk\nyedfCwegrgotpWC3jtmZ+NymDu1OFUcyz3ffQTr9lfcso2Pr9FtOQ+e08fhp2iWPaTsJV5CgZC23\nGyS5YP4CuDyc2aWlr+x2NUwOKROv0k5IwRdL+/YDfL4lR7U8YTo50bX34DplBWrxFafNK9cQx/nF\nR84RfO/f+fUb+ngkxyhIw/3uLse9Y+dEEZGWJsgEDpRijNW36fvNDpmtx3EfXflOOjltjaO089gp\nWq7UQA6eaQnxXvvCtnMqLrVIv8+fsNPZsk9rWcrL/41U+NRYjMX+Tu34d/xsmddu3A7nnELHLfKb\nX3/ca//nf3zaa7tzI4/FunLsERJrMGYXfkZLd+KyIbUKDERficp2pYiQvUWTm2rpC3pPueZ+uDCx\n615Eupbl8T4+bRXGbFyudih985t/8Nq3/1LL8v0BS3KbjuixyOO0uRPz+q3/caOKay+BDOHsW9gH\nrZ6t3VRGyTHnqplw9iz8jH4eiI9f4rU7OrCHZifAI3/W5Rke34QyAQ9/436vzRIQEZED5JCZkwS5\nzOvP6P3S3T+53WtveQ7OXVddpSURnTWQm1S9Asnrsju0hPmvP3nFa3/nhTvFn8RQfxzq09+XyxX4\nSHrUXlav4iKz0N/5PrEkWkRkgKRHg11ou5JcdvAsXPPhTmduqYfYDMhmYmLw/NrSskfFhdIaERyM\n845M0HubNtr3sHPhqCNDZ1nOuEDKmxin1xyWD18KWCrvOhCzXC3nGuzF28t1KZHqV/DsFhSL+Swg\npELFJZIrcMnTGGMRzn7u0GGMl6/dcZPXjiJH2u5KvY4FBOG68TwXPl7PgQ07MN8U34+SHWHp+rmI\n7x3vYdw9b/sJzPkpy3K8dtBMvV9ih68PwzJnDMMwDMMwDMMwDMMwxhD7ccYwDMMwDMMwDMMwDGMM\nsR9nDMMwDMMwDMMwDMMwxpCL1pzpPI8aE671af1maH2Tr8jx2uu+vEYfhCRrfVTrgWvMiIgEkI7a\nlwZNYvMBrWXLvhr60eHhLvkwAkMcW0yqoxA/BfrgpqPa9juG4mo3oa5KbaOutdFF2u30RGhz20/p\n+gjZV0GbOzwMvfH5pw6ruIxFWt/rb3LXQUP5/m92qddCqN7L+NmoURIQqrtG3fvQkbd8AC1eWLq2\nrrv7kQe8dtVW2KsV33SDimsoRQ2G1NnQHW5/bZ/XvmfFcvUeH9UUicuH1vDwJm3jNvMq1EJha+SA\nEK3VrzsEjWPKDGi+a3br+8Na0F6qZeFap5ds1XV6/EnDu2Ve27UlZ5vCvE9gfOz98TYVN+V26Kv3\nP4q6I8lZulbOvZ9a57XDyIKaLY5FRNpOQC/Mc0XNIYzZpLxE+SimLUW/dO3k827DPWw+Rv0tWfc3\ntuUNjYD2s79B1wEYoDoDKctgndfsWPaFJOkaNP5miGradFfqmhAp83FeLaehg40p1New7A3URYiZ\ngNdczS3r+AeonlRssa5Z1FkD+2eu99JNNRJcO2/WfAeQPrrlmJ5Tw9MwRrjmmNuX+LPYrj7cqZHA\n1ov8uYODen2Kn3zp6lxwDYTucn3Ns4pRyymSbKxLD+o6Cp1bMFfERpEGv0v323CqOZN4OWqVbJip\n62FwfTiuMdF5DnUYfvTb59V7rp2DGgtsd51bqzXzUYWoJ8I2o53nHLvUqaidcPId1HyobdVxQVRX\nJfeyHK/t1n9ybe79zTDVRcgrzlKv9VDtH66LM9yvaymcfxf1dGpaMAfmO/VKuJZMN9X+ufbqy1Xc\nYBuubxLd7+QpqH1QtWu/ek8wWUFzHa+BIX2uQ/Q9uFZO8Xy9/+ipoTUuC+OvaqOuJcN1j2bdQTUE\n39I1hpIWZsv/CXjuEhG5/UcbvHZ3Ne7niFPrIWQb5ragaFxLrkshIvKLB1HT5pEv/9Fr3/P561Tc\nZXfN89qdVAdlkOph1G7U1yjiQazBx3+BuiMTnTooebM/4bV7ezFv7/nDbhXX9nfUnZpz/0KvHRym\n18+qXahVwzUVLrzwiopb/k1nX+9n6rahLkfyIt1feJwuXYY9zJBTx4Vrh6TnY/4PH6/r2bUfQb0l\ntlce6ta1iPojEZeQgBpBzaf+5LUXfFXvUa/6wde8duWht722L1HPbeOvo/G8CXPllGhdd4vr28yZ\nPsFrx81IU3H7fof7f/kXl+FcD+u6GTfcuUIuFd3VmA94vyGi6yNx/Y+4Qj3viuC1zmrU7uhv0vU8\nU2Zhv95Ti89VtVpE1PPnCNWtaf8A+76IPF3XKb0Q/Y/HWHT0dBXn82GtHx7Guj00pJ9tu2ktiaYa\nKXXbdC3BZKoR2V2F94TG677jS9Vj2N9wHa/BTl3DJ2MN1oreVjxbjXNqsYVlY93oq8FzevoNuj5o\n3VaMex/V8OF1R0TkmhXot1FFuIYRGYiLzo1X7wkOxf6rcvNBr52yOEfF9Tbi3pX8DbVrEy7TdSs7\nqN9G0l6W3y+i59GQKHynjlJtzT3Yg2ubpF3aRcQyZwzDMAzDMAzDMAzDMMYU+3HGMAzDMAzDMAzD\nMAxjDLmorIlhO2ERkQGygeX0T5Y3iIiEUqpy4lSkbcUW6eO1kMQoKh/pSVHJ2g44JAQp+SMjSEPM\nvhIyiM4anVpfuxkSpZQlOTiWY6HWR+lJMVPxOYnROvWu8h2kpLJFXkyx/k7Dw0hv49Sn8GydZumm\n2fqbsGRIP6aum6pe6yzB/eLUNNfli1O1MtYitS0230mBj0K6Yd4aztXSvwOOUoo1pzwuWobUwV//\n+TX1ns/ceY3XDonHvZtK8hgRLcEb7kaKf9xKnWrOqZeV22HJPOKkrrcfQ3prKKUUhqVou7fClRPk\nUhFN8pX4Sbo/DvWjb519HLKwgiv1+bDdNdsUZqwtUnH9LUghZRnJqGOb7kod/0EHWc+mBOv7/tCv\nPuW1w6LQd/r7dPptxStI9Y3IRQrhyJD+zLwNsII/+Ie9Xnv67drus+wvkL5l34I+GupY9rUd0nOH\nv+HUxpAYnYbfeAA2gwnTkbbcdkZbtvuo37ENoC9Dy+xY5jRI8/WIIwEaIClFJF3rHpZJOXaOLPXr\nb8E4inDSUcOTMbaj0/O9dme9TukNovmF7cbDY3X69tAQJCFdNZDLRGVoqVZ3PaWQ+lnhNNyD+SEo\nUk+UkblIpT36IuSRQ8P6mh+rRX9fc80Cr31mp5bxLvoEXmvajRTr5KV6XRzuwzzH85UE4L71D+gU\n5cLJOEYEp/4797qdbJcjSeI01KVt5/tqkb6cNR4XPTpMr7Nps5AuHER22e46ePSVo167+BJk4weR\nHCg4Wtthst1r9Bl8f3fMBpMsorwR4/R4ZaWKu3cDZCE1ZzDHFCzXc29wMc6D19ymsye9dsrcPPWe\nCy9AwnKkrMxrZyZouWp+Cu5J/QfUl2amqziWBpx8E7KXnMl6re86izmlfivGc6AjiW4lqWPOFPEr\nQ5R2X/WmlhV3N6A/5t6IOT86O07FNb2Pa5EwB33z3T++p+LyKyCfKCSb84Y9+l6nLIYs4sVnIS1e\nORV7r7SrdHp/xcbjXvt8PeTCYS+eVHGj12IN7qnH/nLl/7pKxQWHYB6v2gb5dg/JR0VE0pfjPHb8\nF2ygp984U8X5wnWKv7/hvt5bp8sVpC1Ap2k4BJvoUceuPr4Q+1KWwzbscex7SS7oK8N6cuBXWhqW\nlIY9yNu7IYu4+7u3eO2qN8+o9wyvoOeBfOx/XdvcVpoDDu7EPV79ldUqbvfDW7z25d/Aa5u/+7qK\nm3Y1nn8i4jBOQxbpubf+/TK5VPRT2Qp+hhMRaT+L9dhHzyM9TVrqEUDPILx/yVyk93N93Vg/E6Zh\nLJ7/0yEVl0RSIZZY896VpTEiIv39mMfHjQui/9d7w5ZafBbvmV3JdlQ+2z2jv7nPgR1nIBOKp/1f\ny3FtNx4cpY/vb4Jpjctao58X6/fhWZr3kYnOGtJXh2eS5OU5XnuoR+9B6svwnSfegM9iKZiIyAqa\nO/l5kZ+rQ5w1vL0EMtwwuvehkXr+r9+F+aGvGnPP3qN6PgggaXLEeMyvfN9ERGImYdyzpbwrgRf9\nOPVPWOaMYRiGYRiGYRiGYRjGGGI/zhiGYRiGYRiGYRiGYYwhF5U1cWpSuJP61UduKBFZSM9iRw4R\nkd5apF76fEi3a6w8oOLSFyCNMiIC6YkhIToFqasLqaut1Uh7rt9Z5rXLTlTxWyR3OtJMW44gHY5T\nl0VEstZM9NpVm5A+2XlGp94V3ooUwhNPI90xIU1/d077GheE9GeuPi8iUrMJMqkJi8XvVPwNaZMZ\n67XUJXYiUrBYPlG/Q7uLtCHDU+Im4z0hsTrNu7MGaZgZE6/02l1dTvpnP67NG4+iqj2nZXf26orv\n721Heu6GH9wsH8WFZ9EvQhKR1skSHRGRFqrYHj0F3ynIp79T7FpIJpoPoP90lWm3nfiZWoLhTzjF\nM2aCLu194BdIv554M/pmoE+7TbSTcwRf22onHZzT7bgyeusBLT06Xoo+csPDSPVNWoDxds5JM40k\n2WPMXHZe09X4Qyn1tZuuc0yBlg6+9+t3vfbcDXC2qN9WpuLiZkPSVvUqxnb2DVoSd6lTRvmesKRD\nRM8L7ArDTjwi8n+z957xcV7X1e9BHQxmBr13gCBAAuy9k2JTo7qtYlUnbrHsG5fXznvtxI4TO45b\n7MgtbrIty1ax1UWJkkiRFItIgp0EG0gARO91MIM2wPsh189a+5jk/d14ePFl/z8dcs7MPOWcfc4z\n2GsvMzaI1F/fTNyf2l3SAaST3FTa+nANy3NkCmo1STDySQqx9M5FTnsyJNOy2UknfSnielSMdETj\ntOCYGKwhtnNaoA3330PXpeeiPKdxkinGJmOedp2S8WqCY2yYpRQtHZhHc1ZKieGxF7AeLLgP189O\n0y0LQeL1wp92Oe1l06Vzzhhd52RyaKp9VcodmIKNkCpMjOK+feEDd4l+LReRpj17McaE7ZKUeQNc\nxNpIvhKXIV0kLh2ud9rTV+D8ai9JqVbnLiwmuSlIf0+bJ2WnXisOhxueby7LTYXTr5Mzsb/pOSzd\n3Upvxp5h+q1wWjnxknT8G+vBNX3jKEkksmT6f9oKzCVvPvY+0dHkfjEo06jPn6x32gnxOI//eOEF\n0e9/feADTttHUrPmHadFv7IiSFgyE3Huo71yXMx+GFKDc3/A+U5Mynzt5AXyvoYTXp+81t6T91WN\nLyPmZ1qSQHYGHLwMqWRagtzzNnbhuifSdR6zXLEiSEr42FeuvE/pOiT3qCyr4xj8wrY9ot8jRThH\nTtWPc0vZUU89zpf359GWA1XLTsgUhscQW1nyZ4wxv3r8e07787//vQk3zdWYVzPL5Rr/k4//wGnf\nuBGuYCmz7XGFPWVULNad5sNSdjZM8s6+ITzHrP3oGtGP5W79JNW+8AfsQ6UAVEozczYhDucUbxH9\nWt79qdO+8YvYJ0e75XVnN6mJCZzfrI3S1enV32LfvXQ/ZBqVn1om+h16DbFn9u0mrLA7ob2+h8ip\njFRDxpsvpT3uZNz7/kiss/3NUgbty8Z4r99a5bTZOdgYyzmH3NzSSFqblCId0YaHMV5cLkhBAwE5\nZ8f8kIPzc26yPS4pHE6G8A/72an/LC5M/wXEGnZ4MsaYSGuPFW64ZEndi0fFa7xnzVqLfcGI5c7F\nexWWrA9clGVP8ubnX7Gfr0Q+9y9fg+8abECMZoemlncviffk0RzprUF8sSWGeZvwTNyRhH1k5An5\n8wivzS3ktjftYenixeUf3Km0hnstd+jpV3eyNUYzZxRFURRFURRFURRFUaYU/XFGURRFURRFURRF\nURRlCtEfZxRFURRFURRFURRFUaaQa9acYbvO7kPNV+0X5cbH2FbaWSuhoT/z25eddukDq0S/7guo\nSdLrgp4rv1JqNYNB6CnZsnHgMmoqhCyLvclx/DvYCG1gyhzLWnkQutK0xdI2kokke+AFn1rptANt\ng6IfW8KyPWWgVdoZegulVjrc+Mqhy2t68ax4bWQUOmO3DxrIlAWyfkrmMtQRGSM9fkK6tAJlgeWZ\nl5922sEmec4pC1HjYPNja5320tOoAdLXLGu6JBfiPFp3Q4P6xsvS8nLDctQyEbbalvXzhXqM6TWb\nUSNhtE/qJ+MzqVbGMrLW65F1UmzNezjJJf3y6OCIeK1wNaxVO/difiRbNXB43C78AOoF2Dr008+h\nToyL6ko8v1te57lFRU77uS8847RXbl7gtOOSpZWjj6yGL74JO8ikmbKOTs5q6ED7LkEv6kqQ17hs\nFmLU2Vdglz1q1QGIL8A9TCerU9amG2NME9d/khL0sMAa2e7jsn5FfN6Vrc45dhgjNa2xSbi+qalS\nvx0fC30wW7/+dtcu0W/HHtQ1+M2Xv+y0m/dgjmXT/DdGjpnhLqpNlintvPtqod8OjdQ7bbu2j68Q\n44LrPkRa555E9Zb8zajjYtthjg9Jy8ZwMv9DqCVj275OXwBtdMeueqfd0inXxQyqZ3HzYsyXSLcc\nj1xXYtcv3nPatj11XgHqYv36+y85bS/127hIaqPLNqFeytgAYsrkuKwZEmhG7E6l2jT8/8bImhU8\nRvPTpLa6pQfXIm8z4lpEjHWva+VYCjfJVONmrF/GVG8e1emgOlE1r8taP62NqA2Qnoh7+oNXXxX9\nvvXII077U59BfS477rXtotoKVLskxou9RfdhuRe71AYt+0WyaP/ivfeKfiX5OF+2E259p1b0i6Ya\nV0l0jfx1vaIfz/u06TiP9GWyDtN4UFquh5P+M6jTwGPYGGO6mjDOKh7AniCJ1i1jjGncgboKvSdh\nmx5pWcqv/wdYGXcdxT04sFXWVSvLwDxLKYKF93Off+LKJ2GM2fj4eqfdQ9b1y8tljcAYH+5NDNV/\nGBuzajlU3OK0e3v3Oe03viLH5eyl2L9t+QbG6JHvyH43PbLWXE9yZ6EGSEaltO+973NoJ5Uizl16\nWtbD6G9HPHrvLPa5x2rl+E72otbk137wSaf9y3957qr9Pv/jjzrtn37uKaednST3I3PjcX/4+WR4\nWNbr6z4Fe+T0JZgv7fvqRb8Ff7fCaXcdRs0Tj1Wr5aM//pjT7jmHft3H5ffe8c0HzfUi2I61MCJK\nzh0P1UqKS0c9QX+D3OOPUL2TGKp7FO2We9TOk6iTGKjFZ9gW3lyjrq8ascJDe61gwk7xnsyy5fjs\nAOJxsFfW+uIaXGmL8Lw41Czry3nzcO5837qqZBzPpLoqXVW4h3Y9NFH7S5ZMDAvJszDHuFaqMcb0\n0rgduISaQPyMbYzc57fRs5pdu5b3Cb0U9+z7OETPzFzvln+XSJ4rn+dDY7hOfHz+1g7Rj9dTUT/R\nJc+d15f4XOxNYryyJqS/CeMxNhHPkjFW7ciBWsTsHFkGzRijmTOKoiiKoiiKoiiKoihTiv44oyiK\noiiKoiiKoiiKMoVcU9bU8BqkRh7LdjpzHVKwml4i275SaYHVsgufEZeDVKCmd2Uq6Eg30n/ytyDd\nurH6ddEvtRhpov4BpKlFReJ3pqJSaRXrKUZaWaAR6VH+yzKlzkuSgyBJlFwpMoU8KQfWi9HRlN4U\nLy2JO48hnYutCZu3SXvYjJVSMhBuLuzF9xWUyWtz9liN047rRergQsvWdJKkYnFkrxkM1It+w91k\niVtAqeGWbfB3vvIbp33LAqT1z/kQ5Datf5DpZ83HcB5Vl2CbVpyRIfq5aKy+u/Wg076LLGGNMWbV\nhyFJ4xTU5Ep57hPjkEO5yP6u65C0aBTyIOls+VfDFnx8rP99fLg3HrKgGzgv0zA5xTM+D+P21D45\nHkuXQuLFKaglWfK6sO15QTrS2llKdsmy0Y16A8eeStI2Ttc2xpjLr8MOveBWeCH31shr3noRaZZz\nH4UlIqdIGiPnH0tReo/KtN/M5TIlP/zQfbQkLL5cXN++S0hrTSzJsvphDA51QNKQsljK2IItZO9I\nEs7PL5eSzdsXkeXzCFI3C9dALhdslpLN3BshV01IQ7zuvnxS9GOZkycJ42p8XMbeyEjcn1AWJGkT\nlhQx0Ib4HZeCdF9bsuhKkanA4WSQ7CAnRqR8LrESsShtCa7z+LOnRL8A2bnmzYVdJ6+Dxhhz7o+4\nnmwt/YUf/lD0mzUbUoCH10KCMbb0cgAAIABJREFUMEJSoyySbv73eSAtOYbimm0X3T+ANGKWUHad\nlNaQ/WRLe3oP1v2jlqzgNhpv4wEcX0S0TIVvaMTcXmnCTx+laHPavTHGdOyDPJTlhmV3Sl/2My/A\nVjfKi/j/4298VvTb9zYkGLfcDimJLQPP2Yh71EwSy8w1RU472CDlZGMhjH3/MFK5X3j/fdHvu49B\nH9KxC5ahUZZ00DsNa8hw+9AV/98YY9rpM7JpbJ37nZSb5FEcCTd5t+Ja8t7DGGOmpZBsz4/5duQ7\nck+ZQRJ2dxb2DoWrpF3xpV9jzxpLct8Hvv+/RL/qX0NWyLa05TlY7yo+vU68JyoK619yBfa1yZYt\nefocxN2+Olz/sYCUV7Z2vu20WTowd7XUQRTcBAnWc5//udO+/z8+Ifo175fW8OFm2p0oc/CTj/27\neO2OxzY47db3sO8reXCe6DdQi3hWfAvuvesJeb+TPNjTDDVAgvKRf7pP9NuwDDKv2/4Gx/CRf73f\nabPk0Rhj9j6xy2mf+eorTvueb0k5RwatDSd+dsBpj4fkOvaDHz7vtD/7GXyvbV386+/9ymmn+bDm\nLr9viejX8CbGcNrD60w4YRlSaNiSlWfT+ZNckCUqxhjjzsD8SyzCujjQIPdzwsZ6BHO7a5+1J0/E\nMcXRcwHLa4YapQypvwsxfaSfpDFWuQy2wmZ51nhASqo7SY7GJSx8pVK6E0t7YJbN2BLt6ynZNsaY\nhAI8vExMDIvXukluxRLz3up20a/zIO4D7xV7T8t+DNueuzM84rXeatx/vncDJFVLrSyyPhHjLKkc\na1zLu/J5J4qe2/h7Rq05lkOlJVypiP+t70mb99z1OF+27R6ql3veREvSbKOZM4qiKIqiKIqiKIqi\nKFOI/jijKIqiKIqiKIqiKIoyhVxT1sTuC7G9shI+F7KPTYPsJz5HOixw6n5kDKofxybGiX5cjTsp\nBfKEkb73RL/u2mqn3UcpSFnrIVnpPSHTrf21cBkYbkb6pytVypUGaiADYYcUf61MPXanIz0uLh6p\nqj1nZEody6FcyUiD4lRc+zyuB5zaPhmSqXmzK3DdkuZwer1MEa76ARxdFn8WNjYen0xZDrQjDT+O\nUr9sacY//fRxp81joWkr0uHzZ0ltUMplpHPHRGNczdssU817juL+sxTg6FOHRL9VX4BDgtuLNNOz\nT24T/dix4vCfjjjt+bdK9xO7Qn04qX0aqZbsNmSMdAWL9tA8miHT5i4/e9ppcypfXp6Uhb32Iubc\nmplIg144Td5rdl1h6cKMM7hvmYnSVSAuHWMioRguLjEx8ljTFiPenPkhxl7CDOn8UrIGqYYDJBGI\ntJxf+o5gTGTfgvdwVXljjAlZMpVwwxI0lqoZY4y/BSmf8VmIo6N+mbIe7ca1iYxFTE2aIe8jf8Yg\nOa3Y46JkGJIEfw36JVfg8xJKZApuShZidH8vUqUTcqyx6YLUqq8D/dJz14l+fX1VTtuTjPEz0HpZ\n9OMU/cho3OPBehmjPXly3IUTTqu1U4wDlCI9eB7HxGupMcbMehTyzTZydRppl2neB2tqzJX4hOXE\nk0yp+t2DkKAt30AxypJIsGTs5GuI23npco7Fu5Buzc4RiYVy7izOJ1cKSt+eVi2ltBy/zvwJcS1/\nnpTblS2RMqxw46W5f3nHxav2i6ojV4WV0lYhswDXKp5kvKe2V4t+6++D68r7T+532ovuXST6DZGr\nITsm8v7o9OUG8Z577sU6lvAapEwFlkvWmedxrQtXYN2v3iEdqKLP4n4nlKU67VBAjuGieyExP/QL\nOqcPLxP9jv0W6+6sW01YGSPnwq79cv9VRy5/FWvgepRaIePk1md3O+3bHlzntIc75Vw8VIMxctsm\nODc1HZQuhokViK8J5DrCx/rWV/8k3jN/C+bpOPUrvXe16Lf/my867aK1mB8p0+SesrMK1zyOJAIs\n0TPGmIu/h6Tmjn++w2k37Dws+u14EeNq1q0fN+EmFMJ+857HbxavsdRsx39sd9qFx+U+f9qDFOtI\ngrJqxgzRL2sV5jC7fW1/WcoAf/4P/+C0WZ627SmMl8o8GbPmfwASfd5LnP3pLtGv8vGbnPYYSWdS\nF8o970sHIctnGUzXwSbR7wNfvA3f9QwkaKmz5ecFc+ReIpzw2uyxnEt5bxzBD4+WIxq7NU2EcG9s\nZ1SWwWdew1m39SBiZR7tCQItiLP2vr2NZCq8ZNoypF4af7wP4z24MXLNZHlloEnKqTz07JwwDXGX\n3Y6M+ct9Y7hpr0J5jkSK/8YYU3QH7VsO4Fkt1nJl5bW1ZTukiN01naJf5jzsDXjPMGE5RvJvB1xy\nJIqu9VCH/Gx3Gj4vPh57/sRyKS9iaTVf24kx+azc9DqVaKGYZDunRUYi3vbVYfwV3z1f9GM3qSuh\nmTOKoiiKoiiKoiiKoihTiP44oyiKoiiKoiiKoiiKMoXojzOKoiiKoiiKoiiKoihTyDVrzky/A5pi\nYRNsjGnbCR1cKAhtpa23u/QitNe+dGjqQn6pX47Lhk4r+ZGlTtuukcL2qaxzmxiDft7+bK5N0BeA\ndjH6vKxTkH0TNLysMe0/LS21WnejvkZ0PHTOwVap52Tr4liqPzPSJvulrbi+9r35pD0fH5A1ErzT\noQ08/CIsMItzMkW/8tsxFlxuaLb7286Jfnx/ouOgCx1slHrApCLoflv2ot4B24oPNUvL0IRynEdK\nN9kOH5c1e9gOeN5c2JpxXSJjjNn7nXed9oKHUUMjZaGskcBjetnD0NNz/RBjjKl7HmO9eI4JKylL\ncq76Wmwy6up4c3A/2/ZLrWoM9SNHZ+Pvldp6rtPzn1u3Ou1v/PvfiX6Rh1F/5+ObocFPmoex03RA\n1gzJXgvt58gA5mJ/p6x7QC54prEbFpnZ1dJqMm0e6jIkkTVdf0236OfKQnyJIvtL1q8ac31rlRgj\n9dbp8+V49Lei5lX/BbSLVt0k+o2NQTMb60IsiYqS9oP+RtR4SZmN+WJrrDOWYc4lkj1iXCI01t5c\nacE6NIT6C24P3t/XJONBJNl+j/QjjvZ5Dop+wS7M9cEA5nNCoRz33afrnXZ0PGKZXW9ntE/G7HAS\n44M9J9eRMMaY2v1YG3xuxPyUfFmfpeb3qP+RNhf3Ji5DWoAXtuJ+zJ6HuXOeroMx0oK1YhbGVdUu\n1JlKOCh14VwHZ+HNqNfQcUjWMxgZx/re/g5iSr9fxo3Mcsz7noPNTjs6IVb06z6E1xLoGlklccz4\n4PW1DK3eimtTtlbW7KjbC5184WKsVee3y/GdSra16cuxjleukXUuuLZFJMWAJ/7196JfXio0/g9+\n7YNO++JvMJfXPSSNxdmm9oZB1Lx48nlZO20l1d448Q7OvThLrvVjPdj7DFxAHOW6CsYYM1SHOLTg\nQayfHXtkzM9IlfUnwkkE7e3SV8l6V1xzpmATLIV3/suzol+I6pO8/fw+p33bJzeLflxfZGyArHxb\n5RqSSvuHd76BezC9HOPDQ3WcjDGm832yqJ2FOd/y/knR7wjVdqt4EDUMxsdl/YrkWbinnnTEl0Dv\n1esbxnpwn3a8KGviZCQk2N3DSs95jJnTL50Qr7H19dw1sDfPWCb3zVzj5fiTqLnTNyTjlOsYrv2B\n05jPcTHy2WWcxsWl/YgHbb2oy7buxoXiPdt+tdNp3/jhdfhOK66ffwp7z+e3ocbfx/I/KPp98auP\nOm2ugVR4p7R5H6zHMSXEI6ae/6lcZ4senG2uF7x36jsjx5mba5FSnOe6Z8YYM3Ae+54QPT8lVMj6\nWT1HWp129ibUQmx7V+55kwuwh+k/jWNKno850bJLvidzKeY5187pPyefYS6cxpgtysT+I8ojH6uD\njYgPiXPRz1cq67mERjHeug7hs+PS5b7OroUVbvh5h8eVMcY0n8O+r+RejH1/i7w2Iz20/6JaROUf\nmif6TdKiz8/c7VadnbF+xNu821A/jGsP8Z7ZGGN8WYgPwaD8PCa5HPf7wpOoO2X/lpFMtUdHqU6U\nXQ9pNIDfFTw5iJu1zx0R/QrvrjTXQjNnFEVRFEVRFEVRFEVRphD9cUZRFEVRFEVRFEVRFGUKuaas\nqf51pPwl5snU1NQlsGiLonRXtlMzxpheSimM9yDFvW9QSnuK5iHd68j3f+a009dK68oxsi5lu+fc\njUj5ZutsY4wZacMx5JFdZ4+Venf6KaQdJflglZW2Slq1BcjuMiIB58Rpzf/9ItKXLz2L9FRfrpRO\njFsWleFmMIgUs6wiaWl9fh/S1BZ9AGlqLFUzRqaiZ82F/acvQ0ozIiORZjYxgXsV7Zapv027KXWV\npGtspReTIFN/+07CarjuNORkBaXZol9aKu4JWy8fe1KmeJ5vQdpzZS+uUd7SFaLfyR+94LST5mCc\nJpbJVMu8m6eb6wXbjdt2z+2Uynm5B/KgxHKZNpm+8sryuY5+mRLtIpvy7/78807bTkEtysC1yL8T\nqYb+BnxeyWYpF5iYwGe07kCq8MBlaW/HcYMldsMBKSPJXouU1lP/iZT0/Jvl96YtQKo5p2pyerox\nxtQ8DRvKwn+TdsXhYLgXMcvf3H/VflFknTsy0i5ei4zEawkJkKP4/edFv4RipPRyXI6LlzFgYoKs\nudMw56KjEfPbanaJ90RE4Xd9Ho88To0xZqAN8SUhD/N0ZFDebya5hC2UpXQw0oW1ZoSkS3+RWkpx\nxFw7e/T/M2yHaa9308jafTyA69J1Wtq+5m9Cv/efRVxa/eFVol9WEu5BbAqubfnsItGP08ZZlpTi\nxTpWOFPaqgaaEZMv7oZld0a6lGC1NuHYAyQZZSmVMcbkkdwrYSPWBXEvjDGjFGtZYmdbhI72XD9p\nmjFSvhmf7ROvsZQpqRJxLq9XngvbSwc7sKfxFsn9UkMV0tRZLrG2Ug7O+g7sSfxk4Z2+HHsQljEZ\nY0xkDOZipAuxe81MKUUszEMcTV1G+6CqFtGvqwNzk3cqMV4pT+tsRxzNdOF+j/XKmDo+JtercFL9\nO0ix85dIWVPHAPZp1T+EvCi3RMq4oiJx/So/iLR7Wz5wqR1xeHIX/p+t640x5ob1WJNmr8U9cJG0\nvb1BpuBfasMcc5GMd/Xja0W/D//b/U6bJbJjQXmsHfth4freu6847RVL5Hjra8a9Zhn+yhVS/lLy\nwcXmejLSheNf8+XbxWujfqyTE7RX7D8vpRTn3j7rtBf+7dXl5xxzXOexB9n88fWiX0IJ9k/s+Dyn\nFtLBb3zh5+I933/te06b188jO58W/aJpnn7ks3c77a73GkS/kscwHnmNO/SdXaJfC0mtKgqwzyt5\nZK7o107jIr/UhJVheh4LBa9eWsJLz5L8DGeMMS37ESfTKzFPB87I+VJwJySaQ/Q8Njkq7/VoP9Zq\nlhR17cXzQ2BUymfHSE47QPL4iwdqRb+SQuxnUpdibbXXuziy0o6Kw30fts59nPYVmauLnHb7XikT\n5c+4HsRnYS0cseThOZuxN6ujMhgTI3Iv4CkmG+s8rFe2NCyRShEMt2P95L2JMVLq2UefEU375Gmb\npPy/rxPPmO4E7Hm9eTInJdCBexxfgGNNXyKf+0do39JzGGtm1sYS0a+VZHKeAqyg0+5fJvvtR7zK\nkiHPGKOZM4qiKIqiKIqiKIqiKFOK/jijKIqiKIqiKIqiKIoyhVwzPyo6CinkSXNkKiinILFLEacw\nGWPMzLWQO7gpdfj0L3eJfh2vI3VxZjlSim2XqL5qpDR5C5E61VmFNDX7GDjVl1Ma0+dLOQy7Rbgo\nFc12YeIcRz4G+1jZMcSThorbY1ZqNFd+vh6kF0N+k1iRLl6LOI6UuSSS6bB8zKbt+GGnnb9YpoIG\ng7gPkZFIG49LldXqSzZtdNr1u1C5PnMW0jg7z0unglG6buzgE285HxSsRIr1G79G9fySDOno8uA/\nIp3Uk41U/pajUv7EY4YlbcEWmXpnj7tw0ncaKdXpy2X6tqcEx15wF6r4N7xyVvTrPYHU6fh8pNut\n+/xG0S+WJH0tuyCVsd0R5lQixZFTh5NmYIx5M6TbzvAg5q+HUv8TLInYvh/BJapkAeJB4XKZlt3w\nGs6RK7+zBM4YYyZIehMktzSXNS6L7pBSgHDjpjjQZ6Vlc2oou22EQjL+DPVC7hAbi9TriQmZJuuK\nk/Htz4yOSolNcjKkNBER+L2+vWE7+hRId4jgEOJGbBzuN0uujDGm7RhSS8cp1TkiUjpGcQx0JSOF\nOdAu55iLZFPs1OJKkk5EfVb6bDgZOIfjs53dJmkeXH4NsuBJy4qoax/iJDv0DFqS3LK7Zjntzj1I\nSS+4W47T5jcgSxogGWvFTZgvE+My9bj/Mr6rvhPXq2yjdBoqJ5noSCvJDR+WKfMNL0FS6SaXAlsO\nyUR5IJXpq5Gp6/k3Xj+ZqDHGZM1HKvqp54+J1wpm4bVuSmGOsWR7ebdAPhkZg/1Sx36Zip6ainhb\nsAjx239R3u/iCqRS83exTGB0QO4X6ijOZ5B73bRKuU6M9UFuxKnxEdFyLqam41hrL8MVZWahTN9O\nj8S6c/y3VU571gekI0fXAen+FU5YalTskToNe1/wZ+prpIxr9hZIeAYvYl/x1usHRL+7P3Wz0972\nC+xZSrOkTPTYj/c77aVfxHtCY5g7c9LkusNrEsfCuDTp1NJ9Evfj8nZIRn2Jsp87D3ttdkTraJAu\nhv3kXppBcgyWoRhjzNiwjMPhJn8tHFpP/edr4rWeAXz30DCOccljy0W/OfdDbsQuLqOWdDljGpy7\n7v8u9h0+n4xnfT3YB9aT6yy7ln39t58T7+k8i5jPMdmWmG9/A25S992FeBu1Vj6StWyH7CqNSknY\nzlLs/lXxKeznLj6zV/TLWi/ncDiJI9leaFjKmtjRbLgD84AlrsYYE+9GzIume5ixQpa3GGrBPpyd\neiPjpKMcl2fgOB5JUkaeH8bI+xsaxvtn3ynHBz/fde7G2pxxgzzWPnKJiknC+flrpFswO/ryMdj7\nbltqFG46q6iExWp5Lk1vXnDa2Ruw/w+2yz1q0nTsXwcbEXOylsr9u78N38XXOv9OuQeJoX1CXArW\np5F+jIPISCm7dXnxfNH4LkqWJJTJudhHTopZa6hMh+UeGePD3q74QxgL0dFe0c+bjZjStB17ooFE\nue6MdMn9uo1mziiKoiiKoiiKoiiKokwh+uOMoiiKoiiKoiiKoijKFKI/ziiKoiiKoiiKoiiKokwh\n16w5k0B2WJ27LQ31CmijE8hOOtAk7WHHBlC7JEj2WGxzaIwxM3Khp+ztwGsn/vMd0S8/DXqu4hRo\n0vuroVc/TvZ4xhizZAV0bv2kKY6JsvSJZHHZRfaIifFSH1xINr1ssWdbng2RnjzKjUsdsjT4qfOu\nXBsiXASoNsqQVSeF7VBZM9/0irTljcuBri42EVrQ4z/5neh39BR0th6yKp1RLvXv40OoW3O5FZpM\nrrtxcNtx8Z5Cuvej49AnlmyStsmsp998P9fTkNr69t31Tts7DWPOf1FqQdmqtOMS9Il9Q9K+MuEC\nxknlLSasZK0jrbBl39tzBDr0IapZEQpIC1O2GYwnizdPirSMGw6gJknCdOgz/Y1ybmesgR7VRVpa\ntgj0Zsg5Nkh1Lti+tnWbnLMcD2Lps8eH5TlxDSWuaWXbGabOwecFs3Gvo+KkdvtatZbCAevf3RlS\nq+pKibe7G2OMGe6XdQJ4DkdGYR7F+WyLbGiT2dbT5ZLxpq/vfaedkYEaCTyPxsak9fVAPeZIoKke\nx5Auax9w3GMrUPtcfYWoXxFBenC2tTTGmEgaC+5kjOGOqjrRL2WOvBbhxEea5VFL/926q95pB8mi\nM6NE1vpKXwEdOevibQ0+19mKTca52+P09GnYfHINDHcm7keEVUcitBfHuvmB1fhOy5Z8YhgxOX0d\n5rxd1ydIx87WuN3HZY2jdKqdwLUICm6RcbzmVei1y6WjcFjwUa0u34lW8VrzGfyba+/lzJd25M1v\nYb2Ly8R8DlnWorlbsFdh++fEBDlfgi3Q7vO6w/UXzrx+WryHj49r/UR7Zc2VixexpueShp9ttY2R\nNZVmpmHdSZol6w5yzC6Yjc848kyV6DfvLlmDJpxkk9V85/uyts0g11761AanXfvl34t+F7ahZk/B\nfOxT7v/SnaJf00uoJ7KwDPUWDpyRe6WSTFwnrgPGdacmLNv4CLrXbNmbusCq2Ua1abYdx/7owbs3\niH48dvJSUpz2meZm0e/+b37QacfEYSyGQnL9fPtrqAH3yE/vMOFmchIxMBC01u5kjOlVf4d7EuyX\n8afvLP7NcaVk042iX9dlrJnjAcTRlvrnRb+2wxhPfO9W/uNjTvv0L14U72msRw2ks3StH7rzLtEv\naz/G7WA91taspTIG7vjte057Fa19ndbzE++Hf/n4j5w276OMMSapS87hcNJLdRE5DhljTKARx8tx\nclI6X5uCe/GsxnVr3EmyXmSgDfc3mmIZr5HGGBOXhe+K8aLfGNlW27U/2NI6iuqI+utkfTBvMdaP\nzA1F+B6fjLs5m1ELq4fWmaS58l5E0/Fx/VI+V2P+cm8bbhJKES/adst9VdFdqM/VQ2ukJ1feb38T\n9qyxCbgeoZB1LrQfLrwVNaMuPClrJRV+EONihGpQ+dKxPnXU7Rfv4TqEvB/0N8i9rHiPG3u73lp5\n7lwXLKEU/VqPS4v1jKXY2+VtxPW6/Lp8njVWHUIbzZxRFEVRFEVRFEVRFEWZQvTHGUVRFEVRFEVR\nFEVRlCnkmrKmJEoFGs2X6dYeSltj6z+WMRkjrUUbLiEN6oZKaal1oAbpwUunIwV4VqGUw1zuQOri\nK7+G1etNt69w2pntSeI9e/fAknlWPlKOOBXQGGMutOL4Vm+a77TrjzaIfkOUonfyBaQq5WRJi67E\nOUjF43R/V4q0bmt9F2lRBdJBLCwkzcJxcMqeMca4ydJxklJts2+cJvod+MU+p71yMXLMGxs6RL8F\ns3HvDp0gG+a1RaJfgKzw3CSZclMa4oLl8mKcPAgbt40bFjnt4U6ZlnhuP9m9JSP1MPcmabXJdnU+\nSlHsOShTf4sfnuO0449jjPTtlFbViz69ylwvhkkmUPOctBgvvh22uj1VsGtLqJT21KNkpZo2F2no\nY2NSxhUk++LEQsgY+hvlPBjpQUzInIH70Vi3hz5b2uPmzIf9Ze02SBYz1xeJfuXF65x2/euwnWzZ\nekH0K34Q9+Z9ssMtWSYtIycpf/bMU5AVeOPlXCz/u6XmesJ20tHx0vqPZXcDdbgnttTlapaLQz1y\n3MYlYkz3NUEiwunfxhiTWI5xUnPpKaftK8L7G96SVsPxuZCQxeegHWtZWnPq5iTJ8eKzfKIby3T8\nJI31FcpYzpLQ7tOwo47xyWvJ9prhhtN0WcJnjDEuD17r8SMNNi5dyrjYXpPlY/ZxZ9+AOOxehbkz\nOSmtStc8ius3RPLDXvqexBkyHuSuKnLaLFXltjHGJG6GJKuzCtc8Ikr+bcdNUjW2S42JltLGzkMY\np4ERxCR7XYy1ZMfhZoxSqvsC8j6WLEDcS5kPacmQJe0MBXAfhHQ5KO8P27iW3oJ4zbIFY4xZvByW\n9RyvWdbacEjKpzOLcX/qt0J602vJbmfegPV014934jtvXyD61Z1AnGcr9tCI3C+582ne071b/LCM\noYO1cn0JJ5u+9ojT/sNnfyReW1pZ7rSrvv260/ZZ1rmV98AWNXsujv3nn/i66FecgX1URjpi44e+\nea/o17an3mkP1kMKkVwKm9aOxkZ+i9gnL/0k9hExljSNpYmf+8FHnHa0W27l93wPVt9sFe49ImV0\nO775ltMuzsN+f8bH1ol+MxfK/WC46TiNvdSpBrnPWLkIY/DVLz3ttJc/IMfZjuewR33wP/7GaQ8P\nS7lb85t41vCWYH1pqZL3JDEd45ufa+q249qmLJKyM5aqLMnAM8kzX39J9POR5N+VivE4OiTji4ss\ns3mduOUbfyv6vfPV3zrtW//1dqfd8No50e96roseWquHLkvpSFwGxh3v8W0Z0kAN7Rdp75CQL6WX\nsYl43wjvjyLlmjRBMctVhONjebw7R+5FApdxDxJob2TbRQea8QzjSsXa131I7sN8/BlU2iN1sZSc\ncXwdGyT7d6scA6+t14VIfJ+H9oDGGDMxgfETl4Z72nlQzjG2qx4hGZZdGiFxOq5N50nIZBMq5F6F\npV3J0/GbwGAnnp29mVKuH+zDPjeOJPDe9CLRr24rJFRtR7BPdmfKccGyM97Hj1qyuPb9iF9eGnPR\nHllCwd7v2GjmjKIoiqIoiqIoiqIoyhSiP84oiqIoiqIoiqIoiqJMIdeUNbW+cdFpR3lk1449SN3h\nSsruXJkKNE7pWTNLkM5bt1u6s9z2EVSb79qD9MLMTVKekOtBqmrS72Wq/Z8pqpQpcNOTIGcZH0I6\nkitFptSV5SL9k11CKvJni35RLlwL93GkOtlSoAFy/eGUOE5xNsaY1CUyvS3cZK9FOu2pJ2RF6/Z+\npJm1fgdpYNn5Mq2spAJyMHZ/Kl81XfTjNML195CE5U/SYYKrzbPbxPI1RU57129kxe4bP7vJafed\nQbq+p0BKH5aULnPaHXsxTrv2y9S75IVI42VZhbtAVh4/8CPIdNZ8CccQbJVpjgOUvp1TaMIKS0Ly\nN8hxVvNytdOedjNS11mqZYysUH+RHEP8XfI8irbgM9oOIc0vxpI79JELy+Q4rlFyBdK/bUeXjn7M\n7RC5R3XukynFTDal9Ddtk7ImlpUs+hjSiNmFwRhjJkP4rvmfhTMNS7iMMebgt3c47du+e7MJN+xY\nZFdrj6M0x6TpnKIpU5FHB/EZA5ekkxMTSbITdkdKni1dAliqwem5gVbMUXa2MUY6ErjTkaYcESFT\nNydC7E5FaeJ+6TgwNoB/s9PImCXDvJqjVVK5dHMYtsZ0OOH4F2XJCTLWYuLHnKD5YqUmT4zR2D+N\nuFR0S7nox+NlcAASWlvkuXWKAAAgAElEQVQSx9eFXSVYcsbyY2Nkmjw7XvSelO5KHBuFq8zb0qUm\ndxbWMQ/F0OS50jmLY9llSrsfOCPHcspMeU/DzVADxn3hTLkGpy3BeucnaUpkrPx7FstM2JFkwnJr\nEnOdhsLyjdLJKETp9pnripx29zHsGXIqZPp2D0kBcldjrS+00qjr38T9Sk/A/QlZsbLy1llOe4Jk\nhCf+JPdbxbNwjSZJLtF9RO5vstfLPVw48XfVO22WgBhjTOYNRU67bBpJ9P0yNlx+DnuTnb/GOrZ4\nmlxnL7XDjWb6bLjqtLwr3TqaTmE+L16FeFD38gGnHZ+fKN6TuRB744kJzNPe83LPsnMrnLAeWAM5\nVWycjM+VmyCPS50L6U3WogrRr/9brzptTru/+Id9ol/h3bIMQbiJICnFzQ9JazaOtywVtfdz7OY5\n1IH9IUtgjDHGQy60rz+z22mzbM0YYxZ8bo3TvvQ0Yi8/G8RbLjXPPwFXq1vvhDzthpVynvMxJE3D\n88rR770t+t3ylS1Oe9e/4zVfSYrot+QT+K7nv/hHp/3g9z8m+oVoPQ47FOL4OcsYub6wRJ9dGo0x\nZpSk8kkzsU8ZaJL3mmM3x9YUa63h8gk8xthth/cexshnVl5XbRcmXpv5eCLj5J4g3nom/jPBDhmH\nuKxEwjTcX1uGnrE831xPokgqH7ScoiZGsT4N0t4z/8Y5ol/LHsgUWQbODq3GSIcv3p8Ubl4i+p17\nEiVMbGnxn/FuktfFRWtc30WsSf7LshwFS+IDdB+9+fK5ko89QG5w0ZakPn8zYmzzTuxvbBmT13pu\ntdHMGUVRFEVRFEVRFEVRlClEf5xRFEVRFEVRFEVRFEWZQvTHGUVRFEVRFEVRFEVRlCnkmjVnXJnQ\n2yVWSj1mx7v1Tvsc1X5xx1qWpmylSu3iNVLP27oTn5dKdnS2/VRfNfR3026CPr+N3h+fc/W6N5FU\nLybYJjV/Q2ShFiLNZMKsdNGvl2ptVD68EJ8dI60/B89Dk8c2ubFpUnvW9g40y+WrTdjZ9y3U0Rif\nmBCvzbsFWkHWhUbHy+t++jncY7YHy1pTLPr1n8f9Ydu+GX+zUPQb/hn0112D0O/VPwv994wcaVPI\ntQqCLbh3Z9+TdUjYKjOjFPfu7DGpDfe0QKvPtqN5KVLPW3EjaQi3o1ZS7s2y3k7d72BxPeMGE1ba\nd9Y57cQKOR7L7kaNALaH7Tgg67iw5jbkx/i2a9gkFOP8h7txXU799rDol54P3W7PIWg6WZvJtonG\nGNO2A+dR8hDGnq2/7SedLWtx7fpCbOdX/8wpfG++jAHuDBwHj7FYy+K48kPzzfXEkwMdLNerMEZe\nA65RFZskNfNspZhKNr/RMfJat74PvauHahyEgtISl+ufcM2LGC/HAxnXBy6hvhJrlAfqpI1kJJ1j\n2pwi/H+sPAa2jOW4EeWSMdV/GfU/2Oq792y76Pf/puf9a+A6A6yfN8aY7iqcfwzVOri0T9ZYm3kr\najjEeBFrm966KPp5abwMkc45yrIMdefi3nup1hRbcvaflNr13kGMMf68zBmyJlHP+zgnrgEXb631\n7hwaf1R/oPM9aY2bvgZWmMV3UWx9vUb0S7LiXLjh63Rh6xnxmm86YmDPQZx/lFeui70dqGmQEI91\nxzsjVfTz5OE+jpP99tDFXtEv9w7sadhadaAaa1XiHHld+N6xjWfIWutLbkNdE7akH7Xt4Ekbz3E4\n2rI2ZxvcgXPY66Quk/V73v8J6rgUPPFBE05iE3AMpVmy3sTB32GPUToD9QjsGkhRtNeZlomxn7ZK\n1jDoehPzz52JsX749eOi3x3fhL33mZ+gVkJrJ2JmRY6sVdJ5EnuYxrcxD0ZDsnbRI2SfXf0ELJ2P\n19eLfg989yF89jG8Njku43NNa6vTTvBgLUxbKes2GlkyK+zUvYY6EGkVMv640nBc67egFoXHqtuT\nOopxF+3GPe1ne2ZjjKF9ZGw0ngeKSuV+c+s/veK0l5DdfBfFA2+hXGc2LEFtmX3vYM98x/+9RfRr\n3YG96FBRh7kaw52I0SF6fhqwzimdamStuhl77W3/9AfRL9GD/dKt315/1e/9nzBM+xe+Z8bIWmXM\nENWEMcaY0X6sV72n8ZzltuYL33t+Vum/IK/LMNWF5L0x70vtOigDFxDLRvtRAyciSp4D78v8tYjj\n7my5DwtSzSS2TRd1c4wx8bRGRNH4ZVtqY4zpPoY5W3gdSkF1kS22XRuL92Z8PceGZW0aN1mnp87E\n84W/TdYjS1uAOde4FTXRal+S9UZLH8G8r6PaZ3F0H4eHZK08rmHD9WO4/qQxshwcX/dWq5YYW2nn\nbkIdW9uefmIC14VrIPF6bowxwU7aO5aZv0AzZxRFURRFURRFURRFUaYQ/XFGURRFURRFURRFURRl\nComYnLT8XBVFURRFURRFURRFUZT/39DMGUVRFEVRFEVRFEVRlClEf5xRFEVRFEVRFEVRFEWZQvTH\nGUVRFEVRFEVRFEVRlClEf5xRFEVRFEVRFEVRFEWZQvTHGUVRFEVRFEVRFEVRlClEf5xRFEVRFEVR\nFEVRFEWZQvTHGUVRFEVRFEVRFEVRlClEf5xRFEVRFEVRFEVRFEWZQvTHGUVRFEVRFEVRFEVRlClE\nf5xRFEVRFEVRFEVRFEWZQvTHGUVRFEVRFEVRFEVRlClEf5xRFEVRFEVRFEVRFEWZQvTHGUVRFEVR\nFEVRFEVRlClEf5xRFEVRFEVRFEVRFEWZQvTHGUVRFEVRFEVRFEVRlClEf5xRFEVRFEVRFEVRFEWZ\nQvTHGUVRFEVRFEVRFEVRlClEf5xRFEVRFEVRFEVRFEWZQqKv9eKpV37itP2XesVr8fkJTrupqtFp\n9w8NiX4L71vktFvevuS0fSXJot/FY/VOe/aW2fi8Ex2iX1y2x2mPDY46bVdavNNOqsgQ79n7k91O\n2x0b67SzslNFv4ngOD4vC9/TeK5F9Ku8c47THu7A+UZ7YkW/zvdxXQrvnum0I6Llb2LDXQGnPXP9\n35pws++b/+K0R4ZGxWvBUfw7vSTNaftKU0S/7kO4BpOhCacd7YkR/fraB5x2RmWW0w7U9Yt+8UUY\nP7VHLzvtxPh4czUGg0GnPfOWSqc9NjAi+l3ce9FpR0XiWg8OD4t+lSvKnPYI3ce2xi7Rb3hszGnP\n2lRx1e/l+zr/gb+/yln8z6g//ZzT7jrYKF6LonGXNDPdaQ/WyTkbERnhtOMyPOZq9BxppTdd/ZhS\nF+U47YHzuGbeaRg7kTFR4j1dNCdik+Nw3LMyRb/uIxhvoQCuf+a6ItGvY28DPmM2PiPGJ+dijNfl\ntHtOtjntsd6g6OcrwxwoX/2YCTcX9v7Gae/73fvitZWPrnDaQw2YL910vMYYE5rA/EspxfHWHKsT\n/QI0t/NScE9Ck5Oi3wiN7/FQyGnnF+F6Nta3i/fMvgMxMCIK4z4iQg6Yc6+edto+t9tpz/nMRtGv\ndd8Zp+3JT3TaY34Zry6+ftZpZ8/NddrJs2TMr/oVru29TzxhwknVz7/jtBvONIvXym5ATInL8Drt\nSy9Xy3734fq17ax32vb4PvX7I067cAleS6pIF/1CtHZFxtKco9sxOT5hmNAo7jXft9Y3L4p+KUtx\nnQNNGJdjPTKe5tw6HZ/xTu1Vv9dbkoR/0Nix1xKOyQse/qwJN7XH/+C0A00D4rVgyyAdB9Zn3n8Y\nY8z4EOZOIt0T3o8YY0xULLZaw504L3svMHCh22lnripw2g0vYtxHRMk5Fl+A+RLlxve07m8Q/fLW\nlzjtmm3nnHZ2mYy9HLNT5mc77RErVta/dcFpR9M6W/HxJaJfw8s49uWf+ZIJJ7xHTZ2XI17rOIDz\nz1xV5LT7a+T67ivCXrRtN2JodLwcj1HxWFOG2zA+stdPE/3a6bpnrcH3dtK6HZsUx28RMfRqx2aM\nMaMDmHMe2r92Hb8s+vH7Bi714Bzi5Jafx9Ig7fGT58gxMdpHe68NH7nisf417PvWvzptd16CeG20\nG/PPlY55FZ8r+3XsxjXIXF/stEd6AqJfUjnmKcfKpq0XRL+ouCvPg4GLuJ4JZfIZYrAW1zBpBr6n\n9g8nRb+0JYip/Bxjw/PZlYL1076PfO+SKvG947R3MsYYN61J+aX3XPV7/yfUHHjKafdXy+e2ojsQ\nEwaampz2ZEjuRRIL8532+V/swvvvny36Nb2Je5VUibW/60CT6Jd3+wynzVuTlrexxo31yn08pyzw\nmlR0nzyGiTGsn42vIJ5m0dgzxhhvNj0HdXc67f5znaLfCD0HJs3BexIK5d6mZSe+a959/5cJN0ee\n+r7T5r2YMcYkTsd+c7ibnvWt5wRXEsZqyw7sBWK8MqbyM3MizZfRfrm38F/uc9opdG0GazEX/fV9\n4j0ZyzGWuuh5wluYJPrxOY0HMRcnxuS+hdcNVzLOL9ghf/NIX4S5PUyxy14/fXQcedP+ci5q5oyi\nKIqiKIqiKIqiKMoUcs3MmXH6a1wa/QpljPzlqPsE/qoaFyN/Ges+gL8s5t9W7rRPPHNE9Fv0EH5Z\nDbb7nXZzs/x1ceFm/PXn4C/3O+1c+sswZwgYY0xsNE6TM0VGB+Uvpvl3zDBXorVG/tXYlYJf7/kv\nbgMN8lgTZ+AXuYEa/EXM/qvaIP0Sb9Zf8RD+Krq7cYyNXfKvRny/avYhY6LgfJrol56Iv1Icr6t3\n2osXyGuWt7LIafMvwX2DftHP1OEX82mL8J6aKvzlqmxFqXhLYjd+eeSslfYj8q/XxfR5h3fhL/eT\nVsZA+ymcb86iPKddOk3+tSqS/kpx4E9VTrsgTV4jX7b8S0446aZzjE2V42eIfjHu6ME1inLJrBVP\nMc4rkv5iG5so/4rHv4KnLqTsGB6nRmaNJZTjWkTFYUyFRsbFe3zl+EtToBHjcqhJZlZlrMBfjXtP\nIXPkL/4KT/eqpwrXKGVxrujHv4InUnbMxHhI9huV/w43B/9wyGlv+fp94rXmnciuCDbjL7Oz/36F\n6Md/sXHF41zybi4T/d75+ptOe2gE82XF/7pBfi/9FenE+/irTNmja512/O4T4j2DNRgLnEG162e7\nRb/l9yKuV7+OuVjz9H7RL28L1obDP97rtPsC8q+eW77+QafddaIe57C1RvRb9vhqc72Ip7/s5lh/\nmbywE3/Ry8zAmuSJd4t+Y5Rxkb1J/uWd4ZjVdQLxijPk/vvzsK5FhRCvBs5iTRrrl+vdaB/+nbEW\n8803U/41uI/W91zKjgk0y2wTP2XqDXZi/BbfNlP06z6Iv2766C/P57edNVdjwcNXfel/DGe9xCS4\nxGsxFBODSTiX5sMya5Gz2HzTcS72tY7OREw8/xrm+Yy75V9j0+kv6v5GxET+C3BktNzfdB7AMfFf\n1ys+ulj044zX8i3IPO3cLbMu8j+A7FCOvfE5cn2reHSh0+bshMZXz4l+nHUQbtKXYF/Kf6U0xhgP\n/WWyi9dPK2tliMaxO9vntPlaGmOMNx9rTesuZIG3vCMzzTIpW6b7KL6Xsxgylsn9dM8pzLHI2Ehq\nyzWcs3kmJzHn7fEbpOysaC/+Oh2f6RX9xF+u6S/I/H5jjEmZdf3uoTHGuHNx3WMSZNZrkLJIU2/E\nWtNzvFX0S6CMERfdY481bgcvI07xWIi09ktpS3GPhmgupi7AMQzWyT1RZAzuHWe3ZFkZkeMUr0Um\nuleeOz9nde5GRlbayjzRjzM8Wl7HWpgwS64TATqPfLm9/qsZouwGO+ug8Z1jTpuVDRy7jJEZEoX3\nzXLaI30y6yDkx1zicw8NyfXYX497nbkYMTRzHfZQp546LN4zNo49a9lc7Es6rIz1+n3ICClZgzXc\neswwExPIAgmN4HuHLss972gXzrHkruV4T0jGtYJNMq6HmwRax0b7ZAbLAI33cXp+dqXLjFK+X5wh\nbz9r8JzjODxuPZvzfjhIMYyfnQtul/sMfxPGEsfb3jMyq6ttb73THm7Fc2rOjXKCcMZNjAfxNt56\n7uOxzxlEbusaNVC2Vd7j5i/QzBlFURRFURRFURRFUZQpRH+cURRFURRFURRFURRFmUL0xxlFURRF\nURRFURRFUZQp5Jo1Z/xUV8DWinE9i1iqMZG2UmppuWp3zYuoOTAQlBrCPU+izsCye6GpK11WIvod\n/y1qfsS7oPsqeXSe0z76U1nPYPHfQr/XthM1TbhOhjHG9J6AvpprXsTHSh0o1+toPYkq0PnLC0U/\n1q2zvjCiV+r43Dk+cz1p6cF9XHefrF/BNUEmJyCWnByTtTdGSA95w2J8xvl3ZJ2AUnLx2rcLdSqm\nZcrq/+4C9Kt+HxrZmCiMqyM7Ton3zF0K/ef2l+DGsnLJLNEvinTZldNwH+sapesNO3ftf+Oo0152\n43zR7+Ar0KQme6F3rG6SleFXz1xgrhd8/cet6v5py6A/Zi3zkFW9PEiazlAAWki7on/WOlSb76rC\nObLW2hip+e47iXmetRHv7z8naxyxixJrW1lrbIyswp62GOfHNRCMkfrepLkYY0PW54WGqX7WErpe\nlhtQfPb1nYtc4+ncj2V9ljGqf9M9CI3t6I8Oin6JpK1vO4ZY5/PJWkTls4ucdg7VNdn6tddFvzWP\nrXLaa2etcdrPfO4XTvu2f7hVvGeY6mYNd0ITveXrd4p+Z390wGlzvI60XGqC5H4yQTd11WMrRb+D\n337LaZfeCo1xtOUC0PwmYkpBuQkrrK/2WjWQ5lNtAV5P4rJkrQceuOyEwi5dxhhTSPWzuk7j89iB\nxRhjEmkutb6Dehj5d0odNsO1MiZICz9u6fYz1+MYeuicGo9LDX5eJeJDP9UK6rBqmvj7Uc8iayPW\n93kPLxL9Aq1WnbIww7Vv+PyNMcZbivoiXIdk5ofmiX5cVy1hGu5B0xvS+WWMNPTsSNi67ZLoxzV9\nBs4idna9h3oT2dTHGGNGaT/ReBznVLRS7p2CVB+P3TaT5su1ufEFrOk9A5iXKQkyNhY/BMcxrpUR\nsNwrUqKuYfn3V9J3HjWVYnyy7koU1WtJnYuaKf5GuTZwzQp2ORoPynkweBlzLmUePq/vrKw12E3r\nItdIy92EGgaRUXLrzcfXfZycMa340vIW5mwu1RiLdl/dBaX9vXqn7bXcVzoPYQ6nL8bePdaqYTM6\nQPt1OVzCAruWjVr7Y3aLayTXspxbZY21jr2IMyPkRmnXIyu4BzWVOt7HvLLrzbErZgrtfXpPoz5Q\n2kJZ265tF+qQDFK9k1HLqSU0ivvKdW9GumU/vv8JlXhe6Tsp62Dm0rXwUx0OdrYxxpjuo9J5Npwk\nz8EYvvj0cfGaewD7zbpD9U67cH6B6Je1Es9Q7ftxP+3rHE11iXpPYe9Z+ICs4dV3Fq+9+ZVnnfa6\nz21w2nM/LGu4NL2O2F1DNeTs9WnZShQIbXgN4zLZch498r2dTptrcjZeknvZylvxHFP17decdr9V\nd2/ho0uddkrKchNuuOarXUCHXV55bMZnyP0N13UaI+clX4l0Aeb6sMEOfK/Xcqljqy2udZdErnIt\nO2TtrwRyf+J5zs/2//0a5nl8IeKjvU6wyxvD9cKMkS5v/dVYGwrukHuxwrsrzLXQzBlFURRFURRF\nURRFUZQpRH+cURRFURRFURRFURRFmUKuKWtKIYvU1j314rWcGyBd6OhG+k9MtUyHZAtulpuUzZHp\nZ42vnHfaF9+ExRSnwhtjzJwPkX0jpRRHuXAqORXS9q//PNKD4wuQttS5X6Zlpy7B+Z58Epa3ZbdX\nin61fzjptGf/DVLimrfJ9Mms9Uhz5jT+Y388Kvr53Ej5m32bCTssFRq1LOkObce5LFyJNKtgg7RJ\nDQwjLdtbgpSz8y0yTbJ/G+6Jl+7d9C0yhWuYUthae5ECt7wCGgTbHvLkQYyRNWuRXt54Vh5Dvhtj\nobMTY7NsTpHod/oo0uBGyD7v5K4zot/itUg37DmHNLXSRcWiX1ymtEoLJykLMaZtKQ7LJ8Q1i5Dp\n5N5pSCkcJGt3lkIZY0z/GZwjyzH+wqqUUg/ZtrT7EOxDYyzbUpYIsA0e2xMbY0xCMY6V0wtTF8j0\n1kALxilLB+yxw7aofL591dJWb4CknHlXdzj+HzN9JVLbGw5JuUdzN+5JdjKubcFd0q6e45YvEWPu\nQr2U2S1diDTcAbrf6z66RvTzFeK7OB317q/f7bRDwzLFP2Um4nrPWRxP/R+lFJFlGhdfgoXw6RNS\nzrGUbN6z85C+nVQqpXTJKfVOm2Nq2UPynC48/Z65XgzQemKnwvOaxBbjdqp+z2HErIgonIenOEn0\nc9P8G/djfHsseQJbbrM89fJzkBKzVMcYY84eQwr+3GSscSFL5thG0pvYdEhyWOJpjDEukrotfAQW\n6jXWmIiJRnxuepFsly35S1y2JQULM5PjuE7x1nVneUEUSUbiLXnaMFkOdxxA6nTuTVJ6xFbOLPu0\npTjHn4JsO7sQadSd/YhzGdb9OXIU6+LS1Vir/sI6naSxvLfrqZLrZ+4dkEh4TiM+psyVEok62gdF\n0FrDVrTGWNLWVSasJJaS7bu13g01QSLYtA3yBLclXU0qw7UYauN1UV7ntBmIwxER2FPZ0qMJ+jfP\nS5ZJxXrlffc34hpF05gYapH7sCiSKw13SfkY00v3jeczxxpjjEknyfAESdl7LPmwsBWXQzssRNLc\nD7bJ8+ISCpkkg+yzLHHHabwHWkgma90fnossp0q2xjdL/vtp3xcK4v+HO6X0kuV9kXStI+Pko1Zs\nKvr5a7HmdtdIidzsTyy74nH7re/lcg2FH0AsP/cLaRPt8shxF058mdgTJJbIvU3BbTim6RE4hvZD\n8pmp6S38O2t1kdPmczdGloJg+ed7P9wp+pWWYXxPK8E8HyGZmW21nr4KspfkAMZE92EZJ1NKIFNp\nOfuu0/Zaa0nZvZB/NtNz7py7pUS29g2shblUIiP+lBzn/Kx7PWCZ5+D5bvFaIkl7Rnqw1wl0yPE4\nGULci6XYwdbmxhiTsRTXmuebLSlNnY9753ZjnA12YW8Sst5jaB/kpf1lI1lYG2NMYiWs3fl3jrh4\nOVeG23COXArCLjPBUisX7ZdatkvZFceerEfNX6CZM4qiKIqiKIqiKIqiKFOI/jijKIqiKIqiKIqi\nKIoyhVwzP+roa6i4HRstu07PRVr1zFuRsmanI40NINWw+wJS9trPyQrHyRlILSvbhNTF1Ioi0W+g\nEZXwOaX4nW+86bTn3yQlU/2n8L2Dg0jFypwjU+bb9iMteZRSc2u3yjSo8vvnOu0oSlcseWCO6NdJ\nTjcDZ5B6t/zvVot+zZazQ7iZOR0pcnZ6fbIHsoiGUzhevqfGGLP9d3ucdsJ53KsNa6RD0YUzuIaB\nEdz7LktC1kLpwzkk4Xj3OFLgzzbK93z2EcgsjhxAdfS5s6T+pO403rf9JFKvPz7vDtFv4SaMkxPv\nQsrE18QYmR7e0IX7OHhMXksXOfFU3mjCCqe/9xxpla8l4rWkCqTocWqvMcbEpSLFzl8HqRDLDY0x\nhr3JhijlNrIsVfTzFCB9kzPK2UXCjgducrqZGKN0Y6sqvC8VudNRLqTsTlguYlEkYRsh2VWi5cQW\nQ+ngTSQ/TLIq67tSpONRuOFUxpn3yHixYjrSNd/8yh+dNstUbFxpSBlN7JDHHhmD7zr+MmJ5e790\nBLr5o3AdePtXu5z2wtm4B40NMrWWpYj8fpY8GmNMx856p51ehpTY3FTpbHfolSNOe9MXNjvtkUGZ\n1j9KkrR3n4R0afV9MrU0a710qgknLGXiNc0YY/I3IBZxrO3cJ2NZxjqcP6fjNm2Xcq9Ekpxxuuyg\n5dYUIDfA4QF8rzsZ42PHK9L1K82H1PARctjxt8m40UxufytvgXuWK8kt+5FDVhM5baSXZ4h+PAdY\nsmCFANNQJVPjww5JKWw3Sv7uXEojj4iUad4TIcQwTsP3N8k5xpx5CWtS4UI5D0IT+LzxfozpkmWQ\nQg01ys9Opfu4lxwSV6yU+6ATl3FO7tN4T1yWXO8S8iAFqPsjpIi23G04gHUxbyPGfUmpjL3jliQy\nnHAqfLRbumqO9EC6wHIeW0rmbyHZewauS7Tlotlbj7R0Xk+8WVJqGxuLODc6irgZHY0980CnlHNE\n0xqcO4dcYKreFv3Sl2GN4LUwzlq3YkhewyUDek5KudIoSRNctD+wZZPdR0jSEWZpmjHGDNbQPiNW\n/s2Y9xk8BhNKpfNLgPY0gXrMEV4jjZF79hPbsN+cv2Wu7Ef3hKULLNW2ZWK8/+L4GBUl51jVd7Y5\n7bTptC6uKhL9Tv8MMTupAGsBxwljpBTFUBxNmS33N3Fp129/c/oHbzjtKI/cU9a/hOvMEhNPvpQU\nDZNTEO97eGwaY0z9GxjTWeTkVJ4o53bmasTXLhrDvIZ37JfrzIW9mOcLH4U8t6dK7rsHOyELLt2A\nPS8/8xpjzGCNXKv/zMWt0uk2qxISKnZatWVMR38FB8yi7993xc/+axCSXuvZgJ3KUsmxrvXdWtGP\nSzzE0jxg11RjjImKQoxNLMR7htrl7wNCPpiKZ0y+NjEJVgkFetYYIoenTHLUNEau/TnLIDVrO3pS\n9IvPISenOtxTe2zympSxHLItW06Ve8u19aGaOaMoiqIoiqIoiqIoijKF6I8ziqIoiqIoiqIoiqIo\nU4j+OKMoiqIoiqIoiqIoijKFXLPmzJwbYBXGdljGGHP5WVh0Zt8Ce9jeo1LTmnMzXstdTbrpOmmp\nVXAnrJa7jqD2SfshWY+Fa0n0nIWed/UnYKXavFXqeVkbzVrNnBtkXYKSW/EZLYdgQectlNZorCVl\ne2HbkjiS9PT+Xmj6x6x+2ZtLzfXEVw5t7t6Xq8Rr8+dBK5lQgWvLtsTGGDMzF7pON1mcBptlfYKi\njCvbf9r1BHJy8F0dbdDvbVo+32n3DUlLRdYreuOgE3x99yHRr6oG9/+G2dDdb39D1lzITcF1mT4d\nOvsXt+8T/R6Yu8ZsT/4AACAASURBVMlpF6ThuN0eqXEMDMkaNOEkmnTSOZtljZ0g2dgNNeGax2VI\nnTPXaOJ7yPpWY4wZJa1+2gpo3GMtTSePkfEAabJJ0x9sleOD7S8nqV5DtEfWC+i5jPjCtodxaVe3\nKx8lrW/HvgbxGo+d5HnQ9gatujzCMnqmCTupc6HTPftLORd9f4/xuPKjEPZX//6o6LfgcdT98KZg\nLHiPyM/z5kEju+TDy/F5zxwT/f74Q2jF73joBqedMgfHmhssE+/ponpaR55DrKxYUy76cQyMy8SY\ns8dmRSXWBrYFte2UuebTPd96yGm37KoW/Sazr16n56+F18K8tXIN6a9GDZrWy2gXWbVFIiJR76T3\nCNZMT6q8LpGkqd7z671Oe/Et0obz2BnSyc/FvfJOx5jaULRMvGeY6sxkrS1y2kPPSOvrjf8bBbS4\nzkX/BVl/hW2DM0g/n3+TrF/WfgB1ddgGta1Vft6Cv5HHG27SltKaliHH2aKZmH/jZJ072hcU/bjm\n1dn/wvzzWPVKPAWYi5X3oLZF9yFpEbv0k/he3lvwnmPgkrxO5Suwf+DZZ9fRyb+AmmGNZ1F/YdJa\nnLmORmwcag5EWTG64CaMM64tNWpZeCdXyppD4aS3GuvJuFUTJ3sd5mbaAtzroGVDzPVZ+NyHOmU9\nKbZTzlyJ+Rzolnve3j7Er9F+7Aky5uM+xVp1b+LSUX9gcBDzL3OOrEvmdqOGwfAwvre/VdYz8GQi\ndk+GUNsiYNUr4jpWMWTvHbLqBBXePstcT4ofwD5toE7W6OB9C4+lYKfcH6avxrXhOhfVTx0R/Urp\nGWLhPaiZWPOmvIYxUVi7yj6I4+MaPvazQef7qC3GtWm4ppcxxsz+2FKnPUjnG2nVF0mvxP3hWiC5\nK4tEP1+JrL/zZ/xWvRO7Tk84mfUZrBOXXnxfvMa1glJmU20Vyyo+bQn24X003+wHiKX/+4NOe7AT\n841rixhjjDsdcbfktiKnHR2N+9YU3MNvMfEuzIMJsoROrJS1tDroXgdqsYfmPY8xxiRU4pmo6G6M\no+5TMvZHUayNjMVnJBXniX7ud06Y6wmvG5NeGfPZlr6/BuuQx5oHSTNwzlwXZmJc1owc7sc95pph\nueVbRL+2hrecdrwXcZ1rOUXFyho+oVGMufwFG+g9skZMTxee9yYmsHa5M+UaHmhB7By8iHllPyvz\nswzvl2JT5W8orTtQpyf/CuVnNHNGURRFURRFURRFURRlCtEfZxRFURRFURRFURRFUaaQa8qakin9\nzLbK8pYjRbbtLbzWNyhTRmOrkLrlorSe5AXZot9gA2ROnVVIua1plfZl//bkk07711/+stN+5btI\nzV+zWdo7Z0xDCurAOaRRv/+dd0W/0vVI02W5jq9Y2sOOUGozp/fHWGnE/aeQcts9iM9Lt2xQh0la\nUSyzWMNCJElipmfL627IAnliFClr53dJOVl2Ju73aB9Sdd/cc1j0W1JKqbtkv36w+rzot2o50vvc\nsUgDe+oN3JOWbpm+/aWf/dZciSSvTEn/9C23OO23jsNC+O5lMk3+JFmLllI6890bV4p+IUprr+3A\nPV28Tqb6tlTJ4w0nbIHpK5WW1mydGBGNGzo5btktUoqiLw3XzJMj7Qw7yFKe5VRBy2K3ax/GftaN\nSDXkVO5Yy2739EtIycwpQOoj2+saY0wk/Zstsm2bwtR5OU47xou0w9FuKT/IugGyGZZJ2Z+XbFlP\nhhtO8ZzzGTnO+kmu0Hsc95tlTMYY03MKr0UuwHWyJVolK2Ed39+PeXrTv/2j6Hd7LFJSBweRGhoZ\niXj27ld/LN6TMxvXvWMAqcTTuuR195C1dtJMpKRf+LWUak17EFKPxhdga59/2wzRz/cu4tJQO1Ji\nYy07w04aw+GOqTUUG+c9vFi8FqQ07Zm3Qs7TtENaZHeexj0cHUd8yZ0nU5hZjjd3BXR2rQelNXcE\nedm70nEt2P6TJWHGGLPwTkhIOZ0+LsmylX4ZYyJhJlK7A5Zd9EAbzt3dgxjw6pf/KPqxXGCEzn3h\n6grRb7CW1snrsC72HMG1yVgrZWfNz+AeZ9yA17wFMn17hKyIJ0gy7bIsa33TELO9GViDbQlQyzbI\n01hSyin+1TvOiPcERyEpXXY3xiNbBhtjTEYujsFTiHT//Vul7CP1BGxMI2lcNR2TY668AOtf6gqM\nW94fGGNM9zFc5wKpevyr4b1Zz0lpv9pZheNNmw9Zk20BHxrFGOw6jv1qxgIpNx8pxL1OTl/ktP1+\nmU7P8qCkObDijYnBNe/q2iHe09eEzxgmWbErWc6xsUz8OyIC9zcpR2pw26sRX9Po3riS5bm7Uq5s\nrey35Hujgzh3cx1Uah0UzwbPyDiVuhLHP0jlEFpI/mqMMWkLsSb5iiDfyZyZJfqxjI/3JwVLZAxg\nq+BhmudeWtNYfmKMMdlkKc+ybZZzG2NM9wnMCZa4+tKlrPXCCYzH9HzM35gEKYtr2QYpPz9bsdTL\n/q5wMzaGe9NnSS8Ti3DNmt9BjBvpDIh+IbIsz7sLaz/vKY0xpqcWErTdP3vPaZdmy3td/yaeO1Kn\nYe26eBJ7/3l3SYnwQID2m/S9rQdk/Ovox1z88Rt4/nycnj+MMaaYrnkL2XbPeHi+6JeUh/Md7MJ+\noXmnlBnba0u4GRvAOdvflTYT++Pec/R8e0BKtOJzIQmKGkWcSstfIvqxLKm7HbJtv18+f/pSofvp\nvABZPs8/X06ueM/oCNbMYBD3bqjbkpPF4vhGxjFuB2pkHGJpLNujH9ku78/qxyBN9l+G3C2hTD63\n9Z2S65WNZs4oiqIoiqIoiqIoiqJMIfrjjKIoiqIoiqIoiqIoyhRyTVlT4ytIHZsYlVWW4/Mhhci7\nC7mq9f8lK1/nk5Sibg/kTzmVOaIfpyc9sXWr064skGl5q0mawm4+PnLvGaqVqaDH9yBl9FI7UomW\nTZclkk+8ifSkFR9DatLR/5KVxxd+EjKD3M34jPGgrHCfNBOyjWySTxz49X7Rb9Zambofbuq2I+Wx\nZJN0Xek9hvT6o69DAjRnnWVVQ+nNoyQLuXXDUtFtuAMpgZ5ipIDbzktbd8A5qboBEoTsZKQ/FmXI\n/NkN5FwQFYnfFV88KF2YWE6VRZ93tqlJ9JtTiDTW6tMYm163TP2ddTPSt5cmQn4xeE7K02bffh1y\n7/8fRui6sszKGCljiIzGPApYTklZVOF/sJ6O3cp0HaO09PPPnXTa7MBijDG5t2MsTU5MXrHd+JZ0\nTitehGPoPYu0Q3eivObBNsgj3ZQimTBNpgY2vIwU/4QKzDdX2tVT16M9qIqfuVqmMgfoe02YU/CN\nMab/IlIlWWJpjDFjJHHgdGS/JR9ht4Mj/4lU0Bn3zhX93vryvzvt2Y8gDT8xUY6f/n5IzTwepGWf\n3fqU0w6MSoe5F1/c7bRvWYHPjs+TFe6f+dU2p72sDOOltVe69XX/F8bq9BU4hniPdEMaHX8b7zmC\n9NQ+yzmo8PbrF1NL1yDmn3tOOifkLkQKvpvcqeKTZHowu6RwDO63xsSx+nqnPSsfMpfkYum6kU/y\nIH8Nru2es1j7WD5ljDERL6NdsRKDvaddjrcskgWwu9LkqJRNVl1CKvaWD8L5cNqE7HeG4nB5DvYB\n9cekw9r8x2QKdLjxt2PM5fmklCsuF/cuOh7xgt18jJGxzkNOct0npIMPyycDxbi+tsPj+BD2ECNd\niPlnd2IvNmOZlNvs2451OyYRcocEa4ywzCk0grFgS50LSE5w9lmM7/I7pIy35lU4pGVV4DNC1j7I\nlteGEz6PyBh5b1gywQ5XscnyXrfvqnfaRR/AOUZFSelIwYKbnfbkJPbDAw1SshJHUqGBAciLgt1Y\nWxKz5T0cj8cxjJF0J9KS+8bmY42r3wE5R+YyuU/2kFMfuwHZjlaBVhw7u7exJMcYOS7zpFlkWBgi\nt5uiD80Wr118GmPQRU4oPnJAM8YYTy6eSbqOYm0oum2R6HfpeeznvSSLK9wk483EBM9NPDc0XMRY\nGrRKFPhI8uQjZ6TEMun0Exlz5X2a7ZyWloPPGyfJT9sOKekaGcP9SabPcCXLdaeLykyUyOoPfzWX\naS/GMltjjHGTe13OCnK+2i7lzRyjWMJ2ZoeUDm78Ktya1nx0tdOufva46NdIUt6Pf/vbTvv3//rP\nTvuX331BvOfOFXimcZFcOtnae/7sp9iLfO2BB5x2WoV8bmGXymKSdqekyzILEREYExd2vuO0hy7L\n9ThtmZQ+h5sEcjPr3CelXLyOcSmCxFnpot/AeVz3WJJSBlqlnDO1sshp81oaGLgs+2XieTyxCONi\nbARxo/+yPNbhdsTb3hDiXJTliObOwv3hcZs8S5Y44HICPnLBnB0hf0foPoj9TfpKcpCzyp5E0b7i\nSmjmjKIoiqIoiqIoiqIoyhSiP84oiqIoiqIoiqIoiqJMIfrjjKIoiqIoiqIoiqIoyhRyzZozbL2b\nvtyy+KQaNKxHtYnxQbc7bT20WQnTpX7v3JOwczxG9scFaVKr+eAaaNkTUqAVKy2Dhve9lw+J9xSk\nQw+38CbUZbi056Lox/VoOsiae15Rkeh35Cf7nHZ6DrRnadY18hWSXpS05WVz5OfFWNal4SZEmv+I\nKKkFZY26KwYauNCIrDHkvwid36U2aO/GQlYtIhc+rywDes25N0q9uu896BBvvx2a0SN7oWPfXV0t\n3vMS1ZZJ9UHDurZCWrCmTseYiaGaDRV5V9dqzpxRhH9Yul/+CfPyIWghS9ZJ3bhduyWc5NyI77IP\nj4l2Y0qP+WU9g9bdqKsTaICOlW1VjZFjIjsX9nHdllWptxA1hbiOS9NOfE/xFln7o+1tvNbcA712\ncazUd/KcYN392KC0nvWRPV3abNSP6b0g7fIS8lATYagd+tMey84uNlHWGQg3cVSXwrNRXveeYy1O\nm+vP9FnXPfnDqNOx5AubnPZwj9QmF69GvZahBmhzn/z+F0S/CRpQN35yg9NOIu106kFZr+mhT9/m\ntGvfhu2hq1tq3B/9/F1Ou+ltxNst/7hF9Dv4BOonFN0IfXHVt/4g+hWXYzwGm6mGA2n9jTHGWyj/\nHU5Gyeo2rUDW9fCSZWj3UdzPcxdlPZUlMzBuOSbnbJYFHTL8qDMTaIJVdWyKrKk0rQj1fHqPID5z\nXbXpD8qaRE2v476lzs++Yts+j9+9Bs24xyXnSgzV+mqqwvnuP39e9OP6CMs34JiSxmVg6zkKu9kS\n6XYaFvI2c0yV3+2lemnuTKw1bq+su9X0Bs4tfRX05fUvyxoJiTOwJrF9MdcIM0Zq+tkut3RBMd5v\n2cbf/MmNTjvKjTjcWSXnbMocHHszWe/2WvXgWBufkoUYNW6tJ9NuJqtbqlMWsuqauDKkPXA4ETU1\nZHkq487A/rCZYo9dT8VHe9EJem2wvUX06+zAfEmagT0l16wxxpj0lZizGTNxUPH5mLPDw/KzXT4c\nQ8ocxIPIWLlF72vGuMpbi7lz+c3Dol/uJsz7WFpLO/bKOMR7fK6XYtdSsesphpv4AtSLsWvlxdP4\nSSG7bLte0xj9u+8oYqAnL0H0mxhGnSJ3NsbI2Jh9zrQGk5V9dBTmbPaNMl4nTceaGRVFNcfi5eCM\njMTcrj70tNOO6Zcxtb0J9W24TltGotw7JMZjHkxQjafa50+Lftnrisz1Yvq965z22SffEa9xPaCW\nvahjmDhD1irpPoJ50X4O+57b/v2zot9vHv8Xp7354+uddmaRfF6sacUa8uZbP3fa1VtxXcpyZP3T\nxjbca/+zWOuLNsnaIpvmYv75hxH//EflHJv3MGoete+td9pR62XsZ2bef6fT7m2VdXR4Pb4eDNZg\nzLlzvOI1Tz7G3VAj9pt2XbFAI/Yq0VQnylixNzISr/WTdTWvucYY09j6ptN2UQ2biTE8fyYXy7l4\n5i3UBCq6rxLfY9Un5N8vuIaZXWc3ZS72RSM9qGc22itt3jvq8ezBo3uwVtZZ5PpKV0IzZxRFURRF\nURRFURRFUaYQ/XFGURRFURRFURRFURRlCrlmXg3bora+dUm8FulCStbxU0gZXfvACvkFlNIUEYl0\nzZE+mQrEVqPf+fSnnXZegbQlC1A6EaeKT6fUJLZINsaYU2TVnNOPFLYN//xh0W/yq0867f4Avqfw\nTinN6D0FWUQ/2epV/1Gmn42TnIg/r7KyWPTjNPnrQf58pNkOXpSpmwffh3SI09RbTkpZSNFapIxl\nJyNF89jz0govPw/3a7QL53XiuJSQzVuENPxRsrzMS0V6799u2CDek7MB33vyZdgrzrlDWlgH25Cm\nzemfnnyZ3uqlNF62AN/3tjwnfxUs1lfNgsU4S/aMMaZlOyQ7M+Wh/9UE2pDq66/rE6+xLMmTg3Ps\nOd4q+rFcKWsjruWZ3x8T/bxkS882cyX3SYvL0DDmHFtfT7sHErahy/JYMzdi7KeNYFz2VMljZRvi\nXrKl9RbJVENO42/ZA4lB7hopdTMG8SomgSRTlv2qfW3DzbFfHXDaxctkHGC7+jyyc8xdLlNBg0Ow\nDIwiKWJkrEyTjSDJBMvObv7cjaIfWxh2H8a8bz+PODdm2TDH52LMZZRhzudskKmlz3zpj+hHczGv\nQV5nThVvfh8p+h39Uqo1TJKYykcW4v1uaUvYTVaqWbeYsMKSl/Zd0vJxsBbxtfoApCO2PNdTgM8Y\n8+Oc7FRaXj8z1xY57V0/eFf0+z/svWd8nNd17rvRMQAGM+gdGBQCIMHem9hESpQoUb3Lki07sZw4\nsp3Y8UmOb3wTO9eJ4xLH145LLNmSJVmSZXVRoiSKvVewggCJ3uugDDCo58O9fp9nbYu8v9/J4OLL\n+n/a1OwZvPPuvdfe72g961l2L+4Fp9qzrbE9P3z3Y5027YBkY5RioTHGJK+ClOzGeYgB6Ule0S9l\nNfq9+8zHTntwWO5vuXQvOCXY3yLH2psrPz/U8F7IckNjjOnaD0lQVALtixfkOYildV0jeE/R/VLG\n23UYrw234D3ehZack6RM/vNYf7XnsOYL5+aJ9/Bcis+AzG7Ub52xPBgf73yknaevleelCZJ95Gwr\n/cT/bowxnYdxTU2XEL9tiVhULY6Zix40IYWlW7xXGWNMeBTmXfoafEd/Vafo13ca+wunmrftknbF\nKUuR1t52AOs+MkHGniGSDFefh7yD0+czN0mZy2g/xiqjAhq+4YCUSLC8KDIS8TTOku50HMX72Ao+\nwoqT/H1ZJsTz0Bhj4rKlzCDUxJHshW14jZHnm9FejKltRZtA6yBiC75XoMWSSfkortDe13nKsg0m\naTFfX8kTi5x2t3XG8iyFHTfbqLdf2S/6BVqx/njsuvbLa/j+G2847f9xzz1OO2+1T/QbpFjGFvIx\nrmjRb2ps+mztW4/hTB7lln93uBNn8pZDmJtllj01v2/OI7jPNe++I/qt2oLXeiuxftPX+US/B7eV\n0TUg7rLU9nNfulu8J2cV9tLRUcSKrjNybDLoPONbjr/L8d0YY3IqbnLa3cd/7bQH6qXMJS4L8+DM\n05BzZ1pS56wN0+BlT6SvQqxseFPKcxNLMF5dJzD3szb6RD8uSzBGFvD+01Ki338Ra52t4vPvrRD9\nzj+HsieuaMyRWNqb+/vkc1taOfZWloJFxMm5GZPMVt+IFXZZCFu69Ucirble8iCeR1kmlVgsJfCt\nu66a66GZM4qiKIqiKIqiKIqiKDOI/jijKIqiKIqiKIqiKIoyg1xX1jRQjVS55BU54jWWlSxeBtnP\nSLtM6WJazyINKnd5vnitpQXpTW4X0ozCIuXvR2lLcR2du5AaeL4RKWe1HR3iPffevt5pZ1M66aXn\nd4h+7DTE0o6ff/NF0e+uGyHdyt5IMo1emb59fCeqkhdlIMXKUyErlHfslamroSY2Aynb7XtkyuiK\nVUgf43ttp7FGkoSH007n3SalLjz+wW7cj6lGmerMVfI7GiFB6BnE+xNd0pGEU88XP4wK6Hba6odv\nQzqyYT3SH8+flCnpJW1IU04ohcRp5RqZks7V71trkJbX/+4l0S8pXaYWhxKWB0XGyWXrJtek5vcg\nH4uzZFwsw2KZYuFmWYU+PAryh8YP8HnDr8i1nX4D1vBQPVK5UxbivsYmS2cRlmkE2rB+U5bLivmd\n5CpRQCmOIz1SchERg3vBDhqdZ+RYj5ODCLudjPXL1EV2r5gOVv7NRqf93rdkqu7IKK6lk5ybln39\nftFvuB3z3VOAMaj6lUydZve5CJJMtVtSofu/tt1p//613U47jdJ273hqq3jPYC32Bk6Vj3XL2DYr\nC3Ph4CWsl425Uve37Mtw4eP0464BubZLlyF+dx1BzD+wp1L0u+ebd5jpgqVvWVbKcRTNn/gjkEUk\nz5by3ME6pDRnbcAe0vx+tejnykEc5nW59s/Win6cNs5rIp7kZ7Gxcg+v+u37Tru9DjH9TyRsbfiM\nlV/GXlrztJRDJhYhbff2J+EiVvO2TI1OyUGsjU7CPptp7TkNh+vMdMIOSn3nZbp10eNw4ugi6Uzu\nLaWiX/tByFtSFyGGBf3yLJC9BfNk8hrp0cbIMR4bhKwi/w7INDuPyfR6li956N4m5Mp4PdiJmBqd\nyA4+UprnnYezCqdle2ZJaZ5nNtY6p6R7F0ipFkttQ03q0pz/705G3kvbvWe0G3vKhTchYWZ3HGOM\nyaazSSVJ5bOSpDPc7w8edNqLixCv+kne91nPtmtea2IRyVYjpZNnbArGIzIS56GMBfLMEhaGecTO\nQBOL5f7ZchhSfL4vtmS776KUgoUalsxFWY6JfaewNlPXYb/rvyTPssN0DmRHrqQF0mGNz1Kj5I42\nUCVdXBIpPgSacVZpJ7lbuuV+NDyMtZSWhhgYEyOdRyOiEROHuxC7X94j9/BPbcR5IZqkv5NBGaNj\n0nCmcZN8IsFyMew91WamC5bIZW2W+2L3CZzxF/8N3OWioqTUIykPca7qRTyf2WP41k/gxLP9Szib\n/PvXnhH9HrgJ54oIcjJ9/DPQOnvKZFwL9GP9eVIgURnJl2eRRZ9d6bS7jpKk9WFZZmF0FPNq1v34\n7k0HpKswz8uSJxY77ZaPpfxltA9xJEOG2pDADoTuEjk+PeQc6pmF11iSZYx0M2Jn2OFRed5OzKY9\nhGREYwNSkptRhi9KR1lzaC/itTdeSpMHTuE+ZadDjlXy2cWiH0tjh+owBi7rPBKdQKUW6LxgS0BH\naD+JTcW6bD8gn/Mz1ltlDSw0c0ZRFEVRFEVRFEVRFGUG0R9nFEVRFEVRFEVRFEVRZhD9cUZRFEVR\nFEVRFEVRFGUGuW7NmZQVuU77xO+Oidfys6Ch985F27akvPoCagHsPIM6NQ/lSi1kdCQupWBzidPu\nPiwtnUdaqSZJHPRczT2ogVBkCfHY0nnv9z5y2mztaowxEeH4rSqbrBc79ksd6MQI7E6H26EXjU2T\n9TVml+EzuLZFeKS0NI2yLAFDTc8R1K9IWZIlXvNXQkscX4T70X5Q6trDSejX1A0NZdmE1M0dP3TB\naWd6UQtlbqlP9Buh+5a6EHrS/oPQ6y36s5XiPQnp0PTX7YDdblSirBMyJxfz9gdP/95pf+lBWYei\npgZzy0f2n609UmveRHNr03ZYHI8PBEW/mFQ5/qFkMog5l7xQjmEvWa6mrcJ35/oFxhjT9BbscuOL\nvNfs10U1kLJWwrbVlSU1mGOk1y64G1rhpGTUZJqYsOoeDGJ+hIVjTqUtlLUcJkkzHuuBtnW4Q35e\noBN61tadqI8zMSQ12ekbsRYDTdCPJ1qaWq5HMx1cfR4xcMlWqU0evAq9a+njuIcBv6wJMUjaZK4T\nlXtzieiX0oo4+Nyvod/+3N/cI/q1vov79tiXsEb+/m9/6rQXvSXX+dAINMHpPmi2+1uaRL+C1Xif\nbw3a/hqp7w9QzaIwmo+F6bJWS/1pxCXfUp/T3v7VW0Q/XhO5IXae5HXefUR+33GK85MUU3jfMsaY\nsAhotPsu4lonqDaSMcZExmJvCKMYPOqXsYdrfkyOIVZER8t9lhlowToovxM1K869ekb0SyjEZ3D9\nlVmfk9rtLrKr5PpPvo1yXjbvRc2GBLpWtsw1Rn7f6WCSbGVdVl2Uyv9E3bI5j8NadXxI3ne2fh3p\nxp7Wd0HW6IimOhpxufieqSUyBkxMYEzqyFI+vRh7oWfzMvGegQGcscbG8HcTU8tFv54G9Dv/LKxJ\nfZY1qysD2vpOsr2165AcozOhh85iSYvl/nTxWVicFvzrAyaUDDYgFg7Vyn2b6+QNXKD6JNa8OnkF\nNR043hSkyfpZXPdgKIh58Ozu3aLfo+tRl+n/+NnPnPbXHnvMaXN9DmNk/Z5Rqlc0NSFrxIRHId77\ne1BvgetQGGNMaiHWZmQk5vbQUI3olzwfZ6+IKMzlnvMtot8I1bSaDnqO4CxW+NgC8Rpb2PZxzQur\ndiPXyORaGW0fypodOWSv3PwW6msE+2Wdi2Sax3t/d8hpcz3K9ClpQx8Tg/cEg5hzVS/L+panDqP+\nWlk2zrX3rVsj+lU14L4Mj2FvcJdIC2quMzbUjL3Uf07GoZxb5TkrlAw1InZVvnpavFa+Cff86kuI\na9nWmWWYalYW3Ys413dV7rO3fGaD077wEv7WV77/hOg3QLXxkudirr/+j7Ao9+yRtSOLfBgPH4Wr\n4z87KPpxFHmBnhFXfChrOK6cg++etAzzo3GvnJe5a31O+/IvcI/Co+X5vP5ondOeLUv3hQS2qI9O\nknU/A42YW7x/TozIc0vnAZzTIuPxeVGRMu7xd4sni/uBqzKWjzRjXlxtRd0k/t3gd9Zz+pJi7Gv8\nrN9xWNZ+4RjoKcVZ1o7R/Q04p9ljwnistflHEgq94t8TwbFP7Of8jeu+qiiKoiiKoiiKoiiKokwr\n+uOMoiiKoiiKoiiKoijKDHJdWRPLNkoXy7T25CVI/Tr+NFKAg5YNZ2MXUvvqyeK6rlqmTRZVQD4x\nPoR0nxTLq/5A8wAAIABJREFUwjtpDtJOr/7LB2iTbaxtbWhIPrHkYaTKHfvtEdEtNRHpn68+g8/+\nxg8+L/rVvgZpRtcJpNXa1otsMZ5/12ynPVAn+3V1SWvbUNPcAQmBd5G0pGsjCc88sim0JSw17yH1\nj9P1X3t7n+iXl4KULrbsLVxVJPpxijTLBDKbkap6+r/k+BSsQAqpmywCO3bXiX6/oTTjzj6Mz/Ez\nl0U/tl5LvxHzu+8NmcI7Px/3JTYd75n0SpvLbkrNNSF28g2nFLsBK317iqQBYSSZY2mQMcakr8f9\nG26FLeD4kLS38y5C+nb6Snz3oJU6nVwi0zf/SPNFWPSydMkYY8bILi8qAXOg55JM8YzxIp2yZR9s\nKE+9f1b0KylEfGCrRBu26uTU8KhEOYZscWxkxm1ICFJMTYyUv42fvYB7UGqQ3hwWIe9hxmqf024/\nWOe0M9dIeUJsGuQJn/lLTMhBK2XUlYt+o71I7f7CzTc77chwea3zPo04Oh7AmO74/nuiH8sEDlfD\nJvqmlVISw3PzzR9j/tz1NWk5O0K2oxEk+XnvhztFP06fnbfdhJQ2svC2rSHn3EcWzC/Bajptbb7o\nF0mpw72VSNNl+1ZjjOk6jHTuuh1IwU+xbI1fenWX015VhjTqrDxIiAoflnKB4gchqenYW4f3FEi5\nAMseWf7TSJIAY4yZoH17mKSDLI82xhjf7dgXe47jHJBoWZrmR107dTgUNO7EfEyZK/fFsQnEVB4r\nW1Y5Ocqp3WQ7bY1j45u4V/PW4CxQ+97Hot9oH9ZfNO0vZ37yvNOOK5ASrPh8pEt7S3CvJydl2vSl\n5zAf8yiGDDXI80fKQpzt8m+BpCs8XI5HSRnWQW019r64THl2qPislGGFkqQ52KsSC6VEtf0A5KDp\nm3xOe6CmR/QLXEBMfu8U7hGvI2OMSaaxYRnX5gVyXRVmIOZ9laRMfN5gqaAxxnjzcD7qqsJc8ZM8\n0xhjsjYhxo+RDMeel72xkLDFeBDfWz6WZ6CUxRjrlkNXnHZkgpSKJ5Z+cqp+qHCRpNFfJS2yU5dh\nTvNeY1vSc1mBqh04oy/74lrRr/YFnCHi6O+GRcs9rm0n9uNw2v/iY3BuGemw5V6IG8Eg5llcnlyz\nY/sRK149BMnUrYvlvuh24Rw0537MM/tcNerHXJgax/ncO1/Kgtv3YD8omG1CSkwyrrVso1w70XSe\ni3Ahnl59rlL0i8vHfWLZzKHfyWeBOfOxXkq3QVLf+uEV0c+VhbnvToGki23tF5TIZ9vMzfj3BFmW\n7z53TvQ7fAnPRKVUSmHznatEv36Slh3+PaSg8bHy7FlMknr+7l09Mj6P0t40HXBssud35gbcm5Ee\n+TzAsORw9yuY3yWZcp+NTUNM5Fh36XSt6DerDL8PRHfibDcxiftkrx0uexIRgfXbflRK5AYuY52G\nx2CPy79TLpDe061Ou2A71mJEhCyF0F2FOdhfjWdvV2aC6OeySsDYaOaMoiiKoiiKoiiKoijKDKI/\nziiKoiiKoiiKoiiKoswg15U1cUXiuDzppHD5RTg6rPjCDU57zKp4PvnMAad990o4DhQUyvSmvNuQ\nBuf2Vjhtf5eUMcTEIV34tu980WmXvY5q6Ht3nhTvSSIpT3QiUhLnbp4j+g1WI92fHZ96qUK8MVKu\nw45E84p9ol/OzZB9RFC6VJglEeC0vOmAnZYMSZKMMaaYHE/GBsmJYlL2y1+JfidfRCr2prlzRT9O\nB08rQ0pl6lIpT+u/gnSvZKqqPTlKrkQknTNGVu3n+5lsSd8Wn0bK4+JCpOGllMp0/ZYLSFNjt4OU\nTFlVO4rSyznFv++MnBcTo9OXbjhGKdWJs2SKMcteRii92XZYiKc1zJ/Rc6ZN9BsjaUt9G9KDUy15\nwvg41kvvJXyGcFSYK9Nq2VVgsB7v986W/XjK9pzCOC2yHI54TrADWHebdAOKppTR9FVIkQyQvMsY\nY3p5TDebkDP/y/jQrnNSynXHP9/ltEcDkOO5k2SK8OXXIB3i9RIWJsM5V9BniUTlDhlTi+ew5AYx\nwJuP9Nbi+5eL95z6PmREJQ9hTDh13xhjUooRrz//V3CgCrMc6wbqkFrKa9ZeU7z+2NlhbpF0zfD3\nT5+7SEISvmNyqpSvXH0d68UVDWlAsFu6rowHMFYXj8BBhV0HjZGyqaQEpMVmBeTncapz2U1Ix+W4\nxi4wxhjjzsa+OLUW66jy2eOi3xDFFD/93aV/JtO3m9+BTGisD/NomFyhjDGm+zjWcxKl3bfQ+40x\nJixiev/fUfF92Lu6T7aK1wpvwB5S9xLS2Wf/mQwKYbNwjUO9kPaMWuegkscXOu2YGOxrKYtlnHr/\nu5D0XWxC+vUCn89pz0mVDhof/XK3064oxFr2PTRP9JtP64/nhe06OD6MORcbh7nucsk1FhYFd4z5\nt9Lfss4YnZRGnhdisxh/FSQDdtp40nyc4dhZcLC2T/QbJOe5B9dATjowIsewpx3nvl0kcdg833bc\nwlpavQnp79nkQmrLkKpf2uO02fEtdbXcc3vOYZ/1kLTRWybPNuyGV/nLo047o1w6mbZ9DPmA7y7M\n0akpWZ4g0D690nt2agu35L4sLWn9AHtmlFe6h3XUYC5ER0E6Y8svE0qwrw1dwVwIDMnx5lIJHMv5\njBtvPRd11kPCMdiIzw52yni97h64fm6hs4m3RI7PQAMkXi6SKY9aazbQjPFOmovP4HOyMcYk5Muz\nbSipfAcSpfK1cqFPUUyYmkDbdlo9vA9nk+2rbnXam7+6RfRLSEWcG+pFfOEzgTHGlG2HM+XoKO7R\nbQ/DUc126us6hjjODlT7z58X/X70hT932okk40kokPe4i+Qwm//6Jqcdmyzj+Mt/+4rTvvFRSPH6\n35fzd8WX15vphOVFMenyPNdzFmuCz2IjbfIczZJDlpCNjEmpbdchSGMvXYaLUopbSmMbruAectmS\ny63474NWvD5CMvpPb9z4iddjjDF9dKbJycM4BqzvxG5Sje9jLtiST5YmZ5DrM7s5GiNLPHwSmjmj\nKIqiKIqiKIqiKIoyg+iPM4qiKIqiKIqiKIqiKDPIdWVNselIozv8i/3itaLZkAZ0n4TjwsSwTFua\nsxiSlZSlSOf1FMgU2ZoX8fmZNyLd59JvToh+8/4C0qjRaMgi0lYhze3WIlm1P2PuIqfdeQlyLHZX\nMMaYaKr2vmoDUra7DsnqzgtuQQpv20GkYtlplpPjSH+sfgZSq4K7ZRXoyDiZ2hdq4qi6/EcvHxSv\nLV8IyQRX6I+Ml9d05n24GKwth9uG20rrHGlBWmEKyZLa99WJfgXbMCbJybjXfXFIs3XnWs5Sh5De\nxzINV7pMZ/alITUtgiRkU5ZUq2A15BPhlEKftDhL9Dv3BtI1h0+gEvesWTLlOIpcPUJNzi2QyE1a\nUo+xANZcXA7Gw57fLNnhdNIotxzrK8cxBiXLkd7f9IdLol90CtIyE+cgxZrT/2zpF78ngfqxC4Mx\nxhgaqvhC9Bu1KsRzujp/dsqQTC1ll632/eTiQRInY2SMmg4u/AdcdZKXy7/VeQSxJMGH1M3Wj3eI\nfv5qSF+6+pF267UkZFWvIkW49A5IRbd+61HRb+c3X3Dam795n9Puralz2k27pFOBh67PnQ1ZYdkK\n6RgV7MZ4DZPTUvsuWY0//25IO9kNbnJMzvXmnVh/OTdDJhC7XlbMr/vdMTNt0P/S6K2WziK+WxBP\nK/9w2mnb7hq1HyDltoVc/ng8jZFSpmOUpvvk7beIfp9ehft+fgfGqnQt4oY7XTpGhYUhXoWFQy6R\nnCDjKaf9nqnH2snbJ+dvRDw+L9CH98QH5JkggiRtQVrPrlyZytx9QTrVhJqm17GfsJuPMcaMU8rx\nrM8sddptx+U64H0oJhlzMK1YOkeEhWHSjI1hvDvo/GCMMUkkC7x3C1Lbj57Gtf7Tj54V7/m7x+93\n2pEk27bnHMtDeH/3zpNSimAvxmRyHDKSsWQpuYvLhRyg/SDS04caLQmM3HZDSmIxznpjlusgSxIC\ndE1pa2XMv5MkNbEZuP9eyw3o9E6St5E7S1KGPAMVPwopk8uFMwZLhcIjG8V7Jums5L8Iec6g5cw4\n3IRU+wlaV1GWc2TfSaznkttw3mx6v0b0S1uG2N1LDqqTQUuiLadSyHGTFKThtYviNT6P5d2Js2fH\nQXkPc5ZgXM/txVll9vqFot+xZ+Auy19r0pLjccmC1GSaI1mYI/YZq/0s4mP+7bjvV58/Lfrx+zJW\n+Jx2f22n6DdG8qXhNpytY1LkfhcgxzWOSVGJ8pnEPiuHkliSkuVvWSReG+rEfGQZvn32vHUj1ksP\nuRiyo6sxxtS/BFlJ1i04B+TeKJ+tXC7M76t733HaKYuw3vZ890PxnkAQ9/xcI+bY3913n+i37ywk\nzOvCcL6KseRK7PR18CeQL278xlbRb8unIVdiGfTKr8t+0xpQjSxf0HnYWmNUqoPlh52jch10kgvj\npjWYC+zGZYx0B52/EmencUvyw3sZP8eVh137vJ5K0qjszXiOSbgkz2yjPbiGlz6A+/BfLHtQ9HNl\n4PP4XOsukM57/EzSvr/OaWes9Yl+tuTQRjNnFEVRFEVRFEVRFEVRZhD9cUZRFEVRFEVRFEVRFGUG\n0R9nFEVRFEVRFEVRFEVRZpDr1pw58LO9Tnv2ylniNda7euegxsfFF6W2cvnXYIHG+tuOy0dEv9mP\n3e60W0/B+o81/MYY00fWiWwleJ7sAt1eaf/lW3YHrrUY9na27VrJbbDbCgZJ7x4mBbfxWdDNBRqg\na04sk5ZaEdG4vbm3wVrOrjEzaWmbQ83kJD6fLQGNMSZxNsbu6Ouo7zN/Tbnol0eWsVk3o76BbRGb\nuQFjzHZ/p/dLHXF0EnSZtR34uxGxuGcjXdJ6LG8d7HyHB2F313lc1gRiq7WcbZi3AzVSM59YgvHq\nIrtPa7jNkk/D9nCANODRlp533Kq3FEpYczlYL61APeUYw5ad0JTHpFja12toHNuPyvvH9r1HPkKN\nplO1sk5IaiLWwYoG3OdkL7SZjW1SQz1Oc7FiEmvCXSzrRMWTvWEs6avbrRoN435ca7AV8yXnDhk3\neC65S/C37DpEE5Z2NtTM+nPUrxhskuMYaEIsYcvxnJulLWWEi8YB5ZCMt1jWQBoKwhKZ5fSXf7tb\n9OseQB2Dvf/8mtN+cT/qgLldci6l09jf1gn97aKvPC76Vf78eafNcTN1taz7cP7nFPNvQ+xp3ynt\nxmMpbrDl46wHpL3kllJpLRtKutowbr61ReK1i2+gzs+sNdDCD9XJsT55Fd9rxSysnUOXL4t+0ZGY\nB7OyqS5Fn9y72o8gts25Gfr31CXQ3LOFszHGtJzb7bQDzZh7kR4Z106SbXBFHsZtuEVeQyXVo+Ha\nKXHNsl6AdxFqnHDthEirZlf8NNq+GmNMYgX2tK79lrZ+O9ZcsB97nF1PYIT2P967oqPl/Ouo/xj/\noFg+OSb3fq73U3kec4TrOZyprBTvifI+5rQLboets9u9QPSLjUVNqr4+7LlTE3WiX5CsQONS8D16\nLteLfiffxd7gSydL9Ko20a94fYmZLhrf+eQ6dMbI2mzZN13bxppjLZdzsGvnLL9/mdNmS+LOo3Lu\ntB/Efcpai2vyenGO8Hjk2PRflXWE/silw7JGjK8Q9VcmqC5MpDWPkpaiH597PCXyjJq3fonTDgax\nV48NSFvarhMtZjrhc5V3vqyB1HUA93dqJeKZu1jWeuikNXy+AeeE7h/Imm3bv4IaHmefRy3Ip37w\nA9HvJ1/9qtOOpBp9XHdjoE7WBOI6es0fYuwKH5J26zW/wt8dHyFbbOvsmb4Ie2HDTqzZEevZJS4P\neyufye26U6OxclxDyfKn1jnttqPyvN9zFPOn8FHci75zsq4Y7ylFn0K/tLx1ol/+KuxXXbU45/Q3\nyM9rfO+HTjtrI/ZqfuYq8Mnalr4HUFN0C9Wx6j0n6yeuWowzx9QEPo8tpo0xZtHf4Nl2JIDPSEyc\nJ/qZMsT1Sfq81v3SSjt5PtXEnIZjDs+Z3K3y7Ml1y/hMbdeCzKBajiMd6Bdh7fHeXNRy6r+E+JO5\nSZ6r+Jms9nc4j+Ruxzm/76wcnyJ61uAaNnv3yt8ofvzii077t//0Tadd/fYF0Y/rlxZtw7qs+720\nWM/ZSnV5aG+ZmpQxuvEdxIesz5s/QTNnFEVRFEVRFEVRFEVRZhD9cUZRFEVRFEVRFEVRFGUGua6s\nKZ4smFOXyZR5ts+ufA5pZQseXyb6Ne5EapCnHClnbMNljDG9zeiXNg92aA0fHBX9Bi4hRZPt6GY/\njvRMd6ZMmW++9J7TniJ767gcaevVdARp/CxRmbCsQPsvdzvtjHWwBGcrTWOMufos0qe8i5E6x/Zh\nxkiLPN9cE3JS0r2f2DbGmG6yCWfJU0tls+gXGYFUvVFKe/aUpop+LBUbp5TAirkyTe3yLqTqxVDK\ndlIqxmSkTaZuTk0irTPYidRNTik0xhj3LMhWjjwL28Si4hzRr/U9pJW5y5Hua6fXj/o/ORXUTsm0\nrYxDSR/Zv/H9N0baLWash6xsuH1A9OPcQFc2pEen9sr0vdwU3Is//9d/ddqLFkpLysVFGNOhEVxT\n8gRS8wOj0hJvOVmo831ue/+K6Je5FdI5lsOER8uU0fSNPqcdlYB41b5XSrASaZ6yTKrzkExJT19b\nYKaTD/8vxKIFN8nFfngH7Oo35SBl9vwzx0W/pV/d7LQ9ZfheO/7hFdFv9RNrnHbTm1hvnjlyzd78\nl/i8V773ltP+l5992Wnb9u391YiBaWS9ONB/VvRb9tSX8J5+pKNGxEjL6KZufN6cTMzNhDIpd6s6\niDWbTfLFyh++I/q5sjEHM5+8zYSShFhIFVoPS5kd7388t2IzpYVpGUmU2LrTGy8luSw5u+sByG5r\nDsn1suEb+I6Tk/i8pCTYMUdHy9jP8tqDbyG2XmyWsX9VKVKb//3NN5329//qz0S/FJLk5FAMic2S\nFtks32Or164jMi05sUzO01DTcbrVaXt9UiIx6sc95HEsvHup6BcWISU8f6Sv77D4d2reKqd9/Lu/\ndNosPzHGmNpKzCdfGnLW2cL8xX/9lngPp2wPttI+MXhA9PPX4LXUBVizLq/ctyLjIedp/BCp9uNk\nEWqMMSNjOBf5yW599h0yXf/Sm1j38+4wISV7M+RKk2MyRrHMLCIWe42QMRlphRpGqeu2xDU+Dyn4\nbAecvFDKBceHcJ8SEnCWZQv1oSEpV2LicrBeCmfJM4t3HsZquAWxoeuIXLOFD2JviU1DTLGl/APt\nmG9jg7huW24XZ63hUMNn4PRV+eK1vkrEhbAIjE/du1LukUJlDm6/ARKy4+erRb+2D3E2KLkJsojf\nuv9B9POR/CYmEWeGvmqc+9IqpHVzbx3iMlu5H/63j0U/Txw+7/1/huyKn7mMMcY3BzEqiuSmWTcW\ni37+aqztMYpd9r49NTF9NswNb0DKlEmW2MYYE3cXZCBDLbgvLAExRsqNcoogB+q3zhV9jRjT5ALE\nm9Yzx0S/MJIYRcZgDkfGk2w+o068x+0lu/YOnL2y18tSD8M9WM85JbjWC28/Lfp5N+PcPNyP8RwY\nkN9pqAVxd5Cs0bMs6XTHUewFuXIahIT2vfj8uFy57tOW49l6oB7f35Utn6U59norEH/sMgKNb8Dy\nvvxJnJ3sUh88b8s+j37DHYiBPdXSInuQnkka3sazeEGa1ILdsRnn3/O1iIcLF8i5OdxJMq5eyLgS\nCuW5KtCGa4olGXSUW8puc26Sn2+jmTOKoiiKoiiKoiiKoigziP44oyiKoiiKoiiKoiiKMoNcV9aU\nvxApTCd+cVC8FmZ3/n+xU0bTqWpzShZSe10umc7b2ox06YmJa1cb7/aTO1IQaYwBSpXrvyKrMWet\nQjpa825UVi655VbRb3QU1aJbjyOdN22plHRFRFKaaA/S8btOytTS9A0+XF8rUp1q98uUdDuVMdS0\nt+IaYy23JoarUReskWmJCZT2Xf0S7k3zPikfSfAgXbOJUqyL5kqpWSK5v1S1QCJXsBZ/N9gj5TuJ\nxUiVbzyHsaqvbRX9UtxIxSsuQVowV7T/f/6NNOVoN8agr0qmx7F0iyuPt9VLJyIxVzebaWNyRMrs\nOFWwi5wjXFYq8gRJ9XpPIR2/JEuuxZTlSNN+d+PPnfZLP5OuB3E0b9M9uJfDQaTZL15fId7TeLDO\naftuREq6K1+ODcse2REhKkHO3wSq9l77EtJE43Ll5/kvYqyiKSbZ0on2fbi+gjkm5Kx9Eq4D8Zke\n8dpyGh9OtU8rl+4VR76702k390Dmed+/fU70O/0DSH0ybkCquB1TB67gMz79/Uecds95zBFee8YY\n46Z4cOXXkGNVfOF20e/yx6iEH0NOS+17pPPLtm9td9ojVPnfdgRiJ7Y5T2GRBbqkJGb/j3c77eUm\ntLDUqHCBTMFv+wgOO9HklhZokM4vF5ogJ11WgnXQ3iddne7cBllS8wms7Zv+6bOiX18LUvyHKa12\nNPdDXE+idBrqPYvx/c4zzzjtv3/iCdGPXZiW0LUGuqWbXlEp9smPD2IP3pS5WPTzN+I7DpJLVIKV\nGt1Fkluz0YScZHKu8c6Ta2yQ3GPSV2OMa547JPrFU0qzcM9xSWlsv8H9YCeOKLeMZz2DmO88z1Jp\nT2ttkfvTrA2QnbG0c98Pdol+yz+z0mm7XD583lkpHfdfQKyMIIe/i6ekc9oUWcDlzMOeEeyVzh2+\nNTItP5RMkkw9zJLKd5/CuSLKg5Ty3GVrRb+BXsgxpiYgZbKdjdoo3T9tJbmRdMoY5SGnuCsfQSbK\n+7Qtneb4yq9lLJLS186zuFaW+CbNl9K0CZJ4TZFEYKhWxhcvXWtSDmQ8V9//QPSLSZWS/VATHoWx\na9tbJ16bGMS+OElrLGORlJOxhKWnBmfelSvkGcRTge8cm0qSi6VSSsFnkKgojE9yGeLoUI888w/Q\n3609jfliu6S+dgRutbNzETdZHm6MMVntkPXyeZXPKcYYE0fnIJY62w5DidacDiXsUsTuW8YYM0ku\nP03HsY/NfWyJ6OfJxf4yMADJy9SUlGdFJ2I9JyZifAPFMkZlzIMrmsuF+zw8jGuwS3ZMTZETsQ+x\nPypKSl/9/dg/2xpwNuaxsD9vpBfPth175Rkolc6lCQXkBndKSu/TlslnqVCTfwekeu0H6sRrfMb2\nkEuzXVpC/EBA7bhM+UySvQW6LD73efPkntF8AO5mUfSsxg59BbdKh9YffhMOePesgMyxpk1Kkef7\nfE57ySbE2ynrK/W34azSewKfEZsjJesxVAYlqRTPn11n5Xj30z6b80XzJ2jmjKIoiqIoiqIoiqIo\nygyiP84oiqIoiqIoiqIoiqLMIPrjjKIoiqIoiqIoiqIoygxy3ZozgQZorNju0xhj1jx5g9OeGIae\nkLWAxhjj9kDD1X5lr9NOK1wh+sXGQfPdcwU2acFuqV/muihsKcz1NWx9bMP7qJGSfzOsfDuvSq21\nOxvaw4R8aP6SkleLfs0X33falc/Cai2zQFp0Ne2vw2d7oG1NTZaaxKZ2qSEPNeW3QZPJtpvGGBNo\nhq49Ow33LdAorW5Zq9o/jDE5ViMtIe/ZhpoaTeegvy2OsGoz+FGDIZ6saaPJjnygRupWG15BvaCW\nNnz2M7uktj41EbULWKu/ecEC0S+wF3N6zibUJbKt09lisp3qCpVsKhX9DrwGG7+VJrSMUB2JsQE5\nhtGkp/dWQHtu207znE5Ih261o1JaaRtyu4tOwmc//o17RbcxslblOiYRpJnvPSP1nb4N0JiyRjkm\nRdbD6DmJOkIpS6EtHyELdWOMad2DmkcF92Cej3TJehiGrm+4AzUCBqq6RTfW/U4HV0mz60qS37m6\nBjU2cm6E7tddLLXOnnJoyr0f4ft3Xbws+pV8CvM9jGzUE9J8ot/wAP7uUCvWfZDqK+1784x4D8eA\njY9jL6jfJWuThZPlbAPVmSl8UNrt9l6EPSnbqiYtypTXSjVKLj+N/cRes8kJUgccShY9DDvlS7+v\nFK9lL8QeMkLfo7OlR/SbmISg+S/+7d+c9pP33y/6xZAV4+KnUCsjPr5E9OuPxNhzHZO+S9A1J82R\ndVXYGvh7Tz3ltNkW2RhZEyGTaktVt8paX2W0N49PoEYA1y0xxphFf73FaQ+2oCZC30VZw6urXq7N\nUJO2usBpT1h1vIauojaHuxh1H8YHZL+avdj/CqhG36mfSyvtZV/GGolNxx7HNcyMMWZuEa4pJhNn\nhqP7YUddXir3Ut7TG16jmiRhsrZUy3uodXfuBdSJSs2S8YVtUGtO113z85asRlEuzxzsOz0nW0S/\n8OjrHjP/W7TvQ0yJtOqRZVCtILbZHhqUcTIiBvtVkGpCxFjxOXMdxiYxDeeFAZf1eREYXz6XBrvx\n2QWrt4j39PsRRyIjsU/31csaGunzETdHy7G3XvqJPMuG0xgOXEbsydsu6zKw7WuEC+du3veNkfvH\ndBDN9zpM1l3henQBiv9cf8aYa8eLCJecf7y/eMsxb8eH5LmKv3N8PM56kZEY37ZhWYdv/zsncD1U\nMyoqQsbANIqj3C8pPl70C6NaPJ5ZOIMHe+UzDu8TbXvq8HlWLa1rFgsNAXxfB1vk80N8BvbjFX97\ns9Ouf0ueKzJnbXLax/71p0676HF5dnclYtzOvf0zp22PYYIPcXxqEmevcarvN9ot97tRP+aft5j2\niAnZL3M2TvlXP8Az4eF3Tol+G57A8/FLP0ANqlWl8vkhk9bsYD2uu3KHtNwubcK9zfjsNhNq+msR\nL3gvMMaY2AzMT64vO2VZX7OF+yTVbuo4Iuvn8Fk2KR/W0pGR8hk5qQLz2JOGc35HNZ6/u7lGnTHm\nZnrec2chhlREyXpfyVRjMzYd3y/QMiD65ZP1tf88zqupy2XNoqEmPNtOTmIu2fMscbasd2mjmTOK\noiijZ26AAAAgAElEQVSKoiiKoiiKoigziP44oyiKoiiKoiiKoiiKMoNcN9807y6k1mf0+cRr3SeQ\n0jxG1olVbTIFa+FfIKWLbQ+v7pLpgCyNqj2EVE5bOlI2H+lNYwOQVfzdU//htG9ZLK07OYWcU77j\nLbvdCz+GfWA0pR63jEvpTlw+Uq4S49Av3idTsRJKkA7Nf4uv2xhjWl+RKe+h5v1f73Ham+6Wgpu2\nK0jPyk1AelZHg0wRjbuC73b4MtJ489OklKu3Ht9l7RpYM+7+6KTox7IDD93Dv//yj532kuJi8Z66\nDlzr6StI0d4wf77od4KkVpySX0vvN8aYeflIe2YZ13i/TI0caUfqef5myAmO/0F+p4oCmW4eSlLI\n7q+/Ro5NTyXSm1OXwLptuF2m5bHkMCoK45k6V9qmp6bCtzYQQNr45KS8LxMTSNlzuxEr2prexrVa\nkgZOPWfpEkucjJG25+276px2fJFX9ON0ypadSMu2LbK53+AVyOWSFkjZzFAjWR4vMyEnidI4cyhN\n0hhjig0kl/WvI90360a5DqLdWDt/It8iein1ktOeP/jeL0Q/tqfOXetz2h3nMK8qNpTzW0ztIcip\n+qsxHysevk/0q37nTadd+AAkrhnF0s724qmXnfZIK623LYtEv5FCSEAj41i+I9d2wEqrDiUskYgn\nO3ljjOmme5ZJdruRCTKV9haSkqSQ9NIdK+UEHJdaBhHzBorknhFO62yAxsMzG/H5/C+l9CGW7F1j\nKdW35EYpOYtOxHfc+wrkOoFRGQ+iKM35oa/f6bRdaTJVv/0o1ukQpW/b0rTZDy8000kEyT791vzJ\nuR3yj9ad2E/y7pkt+iWSbIylUOV3yXs4Run2vY2IP1VHpaR0Tg7id8wk9sUFpbAWdeVIO9LLhzAv\nFtyFe5a6SqZbc8p/2EnoG9JvkPvW+Zdg+52XifkTFiE1EWyfevYFyDkWPCYDZ88pKX8LJRzn4zKl\nlLHjUMMnvifGmo8JZH2bW3qH0+7pOSD6TcVB7zs5iTPcuDVv2w/gDJy2AmOQXISzw8SElOuHR2Dt\ndF/EfJsYldKd7nHYCwc7ESe9C6V8JYlkZr4NkIp01cozS9IsxCi2iw6TDt6mu3L6xtAYY/znsP6S\nFmfJv037dfpGn9MeuCJl76lhuP7L53BuSeqS5/zsWzEmV3+Lue5dIO8hnwX8ya867YKVm5124xsX\nxXsq8nA/h6gUxO5z50S/25ZCGttDsqaCxXItjvnxGf7L2PsSZ0lLbD4/RXsQr10Zck10HYP0I08e\nP/7bFNwHmaM7W56r+mpRDmA8CHlH0Z2yZMS+f/whPm8bYnDT21Wi32gvzkcnq/G8uOm+VaLfiedR\naqB3ELKrtXcvd9ov/uZ98Z4HHoHkcJJiXNIsad0+2In4suOlfU77js/fJPr1VUK6e9u9KPvQc1ba\nnA9cxZ6euRrnrYTd8vkze7OUNIea0T7EpskxKVfi8gWj/Tj/e0rleXuEJDy872SsKRD9eA9uPQ45\nWP6qTaJfcibGy+XCHjlVgusbbpXPO4yngp5Tp+RraQtxPxvex7zyWrKjhFw8z/N5i8+DxhiTuRLz\nNjoan5FYNij62bJZG82cURRFURRFURRFURRFmUH0xxlFURRFURRFURRFUZQZ5LqyJk5HOvqCTIlm\n1yROi+8ekKlFV55GqlLaOqTsTU3I3KKcjajA7KVUbK5abYwxcZSmV78PaWVj45BFnW2Q6azs2MMO\nGud2nhf9SuYj5arnKlLD8y35gf8sUjDjqLqzuyjZXAtOfeo6LKtKZyYn2d1DypJipEQPtwxes9+x\n3UjHrciXrjV9J5Guf8NspHbb473jNNJElw1AjlFO6drGGNPSi5TUn+/c6bTvWgEXL5Y7GWNMZV2d\n0/76Pfc47aoW6Q5RQ7Krh9YhjbCDHKKMMSaW0spY9uJZkC76HX8b36mcUrtLSmXa+GD7tdPq/ru0\nfwwZiXe+TL910Rzsv4J5y9XUjZESmMF6yBMyFy4R/bq64ILD8qfoaHlf2DEmEKhDm9IL7ZRvroCe\nTOnLdjzg9TJKMsDxSik/yL4Na5M/204H5xT8rBuxHgJWKmR8jkyBDjVx5JDTdVrOW5bPnTuBVNbk\nJTKd9spvMB/nfgkpuG/83XOi39b/eSs+m1xIclNkSvTLB+Gw9MF3v+u0E6nfj6KeFO+ZnMJ4JdF8\nrN0nU4Q95YjlWaVIBz/3krzW4u0bnHYwiPvC8gFjZFrtn+SnEmkrps91KzIecqBR2neMMSZ/C9YE\ny67856Uj36t7cc8XF2E+Hrh0SfSboPs8bw7kh6P9MiU2JoXktQWQ/rW8TVK/TDm3I8lVLWch1lGw\nV0ouug5gvyrJRLp6fJKUhzQ2YW12kswlPUVKEZMW4zNyb4Fs+ch/7BX9ok/hOxVNg8Lp3C+OOO28\nTVI62LYLqfLs4FbzgnQXKboX5xZ20esgZzJjjIlOgVyNz0551lo8RXvcAhr75h6kvM+Ok3G9ZInP\naQ9Savyk5aDBrhK5JNtiqYMxxhStxxx++/ndTptlwMYY45uH/WDeYsSowTopN0leJGUqoYQlHFHx\nUmKYtQHrKiyMZENn5fdlmXBOCTkIxsi4GxyABC0wDtcRf5V0GYv2Yqzl/oK/Ox6QLkwsOWaHFLdP\nng1HaY5xWry9j41TmYCREZyHE7KkDH24D/Olpw1zlp13jDFmzC8dlEINS/X4/hljjIvKCIz2kpTa\ncjH88OcfO21+JrFp3/3JZ6nMJVLL5W+qc9rsPnP14/ecdkS8dAgbHccZs6kb82pWtpxLyUsQA6Nq\nMG8nx+Wexo4uXPqBpcTGSDebsUGcuWpfkGUmkiz5Wyjh+Nd1tla81l+F/c99F/aDQK88A5U/gbNo\nP8Wy2qpm0S+B5L+r10JCaruKxURiLXX2QyLM83tDRYV4T/5NuIarr+GcvP/XUubIfysnGc9+sZZb\n8NQEXqt5D/t7u/U8UjobEu4P//EPTnvBdulUFeuevjE0xpi4bJwTug5JdyV3GfarWDpzuJLlPjYR\nxFxNn4OyE0N9daJfbKzPaUd58Kw/NCRlbOxg11YNCRmXCGFXRWOMCfbgHBNDLsDeAimtGh/HuTuR\nSpHYrri8h8RlIF71XpDytIhY/Dsxh5xrLRlbqnWut9HMGUVRFEVRFEVRFEVRlBlEf5xRFEVRFEVR\nFEVRFEWZQfTHGUVRFEVRFEVRFEVRlBnkujVnRklnuuyh5eK1kTZoXIfqoZ2L8UvL0PgSaD/PvQX9\nY9nGMtHv7I92Oe2iB6EhnJqSGsy2PXVO+/RFWEj+n3/7BK6nWtqMVtZBSxvsgg5txRPSdq3lPXxe\n8V3QIQ41yLo3VRfxeaw1HGqS9q1dh6AxHiHbUbuGDVuVTjfttVIf3dAFLei622Dvx9peY4xpqULN\nmUbS0p6qldrS8Qloc9ki9mKz1IzOpho0X7n9dqfNdWH47xhjTBHVO+CaF3adhvtvucVps406f1dj\njHn6TdS6cbug3/adlrVVFlPNnroaaGTnb5MW3l1N02eJnrHR57S5loUxxnSSZWga2ffa9Zq4/kuw\nG+sgoeCK6Mda2rAE/H7bXStrNEXRdfA1DbdDz8t1Dowxpp/sINlGN9yqjzNwEWOfTDUqbF2pMbhW\nrrthE+XGGmunGDI1KeML14SZDqI90Erb1n8usoJd/4X1eI9bxofUlVg7PdVYf1u+Ji0cj/z7Hqfd\nF0DNGdv++ev/8lmn3fEkxmRVOewcLzbJOg1X26GfLbiIORfhkvHfsxx1Uk7/6ldOe/ajt4l+LSdR\n/6PlQ9RjsOtELf0U9qGq32M/8Q9JS/FN39hqpouGP8A+NXuVrMMR7UUcaX4DuunEubLWww2dqNvF\nFp+Pblov+r1xEPdl3SOwHWWttTHGvP9z7J+rb0SBlnAX1lV0kqzlEE01K/pID23XOPLQtRfejOvr\nqbPiwTF8fgzp7hsOyD3CUP0yPmMUry4S3SaCsm5UqEnwoGZOoF7OM67vEGjCazmbZW2a088dx2uz\nEKfOVls1FyoRb+/8S5qb1vmm8b8Q91JKcd/HL2Efc1s2umNkaeqiekODV+R+xLWE2N6ca7MYY4yf\n6pZt2YoacImzZOwdISvnC2S/PecBq0CQLAMRUrpPwOI5d6s8Vw3T9UXyOvDKek05FaiFNTyMGgsR\nEdZ6ScB5pnkX6s+ERcj/x9m8D2PPNagCzTgfDlhj00h1cOY9uBjXEC33+hgv/hbXUeu17MqTl2IN\ne3JwBh/ul3G8pxJrkeutRVlnUk+ZtJUNNVyTK9Aoz9Fsrd17Et+zt0P2mzcLe01zGz6vt0v2K9qK\nZ4+By5jrjf0nRD+2q+YaPhxHubaGMcbMegj1QbLJirvTqt3RdQznyJxbr+1pzRbZrnTMYU+uXLNN\nexGHsjbgPrR+LGsbxU1jTb3kMtTyiIiQaywsHOuFawju/sFHot+Wb+DsfuRVfKcVdy0V/c7vgDU5\nx+oIlzxHnqYaXl1Uc+bKGTzDBYJyL738HGqfzXp0rdPuqZHPDzFROOvsuYDvV7JLxn4+uy/50g1O\n++xPDol+hurpbfyfN+M/R8gzVU8N1SNcLp9hQwHXpoz3yXpxk7QnT1KdyMhIadmeOQtrbHwc5xtZ\nM9CYsTGsET7ThIfLenbj4ziXcq0tjut2jc3cm2DtHhmJee/1yrk0QLXEUqmmjv3bQ89VnOfy5293\n2gkp1aJfxwWcS8eCuO44qqtljKwt9klo5oyiKIqiKIqiKIqiKMoMoj/OKIqiKIqiKIqiKIqizCDX\nzauJJYtelioYI1OiXVlI16mvaxP9qo4gBctPqfWJhy2769mQkvRXI30s3pIZnNmBlKG1JMPpPwe5\nTsoaKaVYOx+f/TFZoxV0SsvHepK9FPcgBa5ka7noV5yLNMu09Ujle+On0kZ226c2OO2GPUgvHKyR\nKa2XTiMNrnjpoybUjI4h7S9zlpTs9NOY7H0baYSLymT6NlvX1XXAMvVusr42xpgLJH9gidO6jTLV\nufMyxovnxX998IHTvsP67I8rK502WyV+dft20W/XOaQ8euMxhwvT5XefT5ZqkWRveuyKlPlExJO1\n5SDm/dHXZRrs2MT0peGzRMm2nWY5T99F3FeW0BhjTHgU2YWXI025+lcnRb+UpZjffWSNbqeMxhch\n5ZGtNqPo7wa7A+I9GWt8TttP63xiRKYHJ5RifDm+xCRJ6dLECKRaHfshzbBTBoOduI64fKQ4sn21\nMcYMkOWj2WZCDtvb+i/KNNkEsgZlG7/u49Ju0jsX83jf0/uddn6qTD1f+oU1TvvVb73htBdtktaR\nPZQSf8tipNSvvh3x1X9a2gBu/wakiGydG2lZi9bvhCyH58XUlBxvTlevJclUnCXBaiZr6MVP4fvZ\nEhg/yecyQ+zkm3s77J8Ha+UeMkL7ZOZWxND6t6T0snAFUs+LKNU3UCflNWke7H8shYhNk+tgFkk+\n604iZTsjHVKUsMgI8Z7IBIxVeCTLJWR8SV6Azw4Px3tsy21Omed1OTgiJbIFNyAlv+UgrtWbb9nf\nTl7bKj0UsCzkT2Ib3ffkhZhAY4PSXtNN+2LV2TqnvWKz3O8iYnDvWd7CFr3GGLNyJdZmeDTeM0ny\n3LBImRrumQ35E0tFraxsM9JB6eo0VjVW/HfPRmo32xXbMZXPZnwfYiwr5EtPY58MtSW6dw6++4i1\n1/D1Tozi/iUVyrNN+5XdTjs+A7HV610m+jUeh3Sw4KaVeP/pc6LfAopLk+MYX5ZZJRTJuZ7WgrjB\nez3PAWOMic/GPe8jC2/PXHm26ToIGQ1LY1gCZ4wxWWtxL9gqdmxYnvcDbVKCG2p4fke65R7S/nGd\n005dAUnvQJe8xuRlWKeRFyAFYSm6McYcfBHPAMu2wb64/4LcjwMNiMXxhTjrxKZDwhFlXStLkNvp\nnF9LZ2ZjjFm4DpKL3lN4ZrLPQWlrIBlu/QjPEP5cea3Xkitl3CBtg7ksROECE1Kqf3vQaedYEsPu\nIyhrEHcnznN5KVKiufNb7zrt+avw3HVuh1xjGRSfvQtgLW3bsG/bCtlP9k2QGHpSUTrD3yXtxnmd\nxsdjfaTMkuerbJIsjvyEylbcNVv06ziMtcjPqectqbj7dcwrlvJVvn5G9Fv55FoznUTGYu3018t5\nFpuB56l+kgSO+StFv+xleE6KjcV3saVHPZfx7Js2H/e6+6KU4yWV4Qwy0ol1z/uxLVcdmcR+MNxe\nh3aZlIAmpmAtUhgysbGZol9qCdli98JWPTxcnsVSyzEveqrxPVhCaYwxo32IxTk+8ydo5oyiKIqi\nKIqiKIqiKMoMoj/OKIqiKIqiKIqiKIqizCDXlTVFxCCNx3bv4XTcQC3S/+Zskild/ZVI50sLIgUp\nZ5OsNh6binQprhZtM3cDPv+1F5BmyhKV6leOifew3MRF1e/nP7JE9Iv4HSQc4SRzGbwqU9cHB5Au\nlULV2llqY4yUfrFbU2+tlDUtvi3E+YXXIS7XcqOhjLkbqTK5Lfc49cEpp52fhlRidvYxxphbHkQ1\n8iFK0e+pkSldEXR/i+YiddP1EdJC+4dl2vzaOUg/W1gCWYArV6Z03j13k9OuOgAZxJZtUibFc7rx\nClJLb71Hpg1WH4TMKScf6cOJLplGF18sK5uHEm857nm/JYtjxxNOg47PtVNdMVYDNAftVNDLH192\n2uW34J637LacuSoxp9k9y5WBNREeJX//DfZi7QzWUSXzXFnJPLEUKaTsiGDHhuEOpDjGktuR/XfH\n+lEJPp4cTWwXCk5pnQ640nzB3XPEa91nkG7JsoPm92tEvwSqoH/jV7Y47doXZGppsA/rZ9XKuU77\n+d+8J/p9/dm/xd+qxjpIITlH7X4p9csbwtj3nUOML3tso+jnSsd3anoH1e6jo+V9DyNZTVEG0pRL\nHpM6iCGShIzSmDaSg5IxxhQ9Nn0x9Tw502SXydTXjtP4viznYXmlMcZ45yCONP7+2s4vxXQv2i7R\n2PTIWFNKLiHsqDBEjiFJczPEe3h+jJHEZ9SSK+XPh4QtLAzxxXYqufIR4kbeUrhYxUZJt4mmA3VO\nO3spJMjRlttasEvKVELNGF0/O9kZIw9GHeS0Ym13Jm0RXHHcrVizB3ZKqdC62yGRiYzH/Wg9I1Os\nc9ZhX+s4AOl3+b1wBrTlkInFkAYkFOIMkrdeOnl0X8E8Y+lMMklFjDEmjcaEx7v7rEzDbyFXktFx\n3MvGN6SELyFDxvZQwnth5jqfeM1P0unhNsT18BVyjaX6cC4YG+ultpQYFiyHznVoCLEsJtk6B7gh\ne2w9A0eW+BycvWzXksybkdKfQP3GAlJGF+zDmhgi2U3HeVlOIGcl1t8QyU557zPGmF5y4WRpcvJ8\nGdf4bxlp3BoSokkOG2iSEqrMTVgTI7Tf+7bJcgNBOhuwQ467VEpn2GVsnGQRsVnScSaMpgmfm9np\nrOEPF/gtJiEf9zcsAmO8/A75rDFEZ5/eBszhrBXS/U/EQJJ5jg/JeeEnOXuAXCCHLeer1NV5Zroo\neggxqmWXPC9EJeOMOU6S1+CYjLvL7oOUOpz2wuhK6XblnYf9k+Ui9hiePIJYlLKc4lwq9rv2A7LE\nBkv+e9qO4nosiWHVL1AGovBWzMWYeDnfCm/G/H1r98+d9tbHpTMjlyHwFOLstcZas+ywZuQRMiSw\nfDpxtnSZ5HN16hJc16hfnhlaT+IZPH0BntkjI+XzZ1wG5vFAM/bCpDLpGBn0Yx7zGZ1/h7CdQlk+\nnLYMe1pcgk/0i4nBuajhzNv02adEP15zKQtwfQMt0om46zD2ydxb4VoVaJFrkd1ZPwnNnFEURVEU\nRVEURVEURZlB9McZRVEURVEURVEURVGUGUR/nFEURVEURVEURVEURZlBrltzpu5FWIxFWlaTY6TR\njiStl22VlbEFtWW4jsJQk9TzBnugreQ6Jm0fSEutFz/a67QfunEd/m4cruH4R4fEex74FOoysFXd\nuz/+QPRbvQm6/RGyNmQbPWOMiU6FNp7txJbcuUj0a92BWhEFS1ATh+tfGGOMuyjZTCdsaf3RSwfE\na/PzoXFlfSvbrBpjzMobYD135QzsT+16Ahc+gsazeCG+c055oej3wk/fcdrLR2E9tn0ZtPnLV0vL\nX7Z7dWVjLr3z7MeiH9cVWsd265dk3ZuEEujzk9qgIx680if6zb4Jws7mfdDZDwXlOF7eD83kksdN\nSGHLOLaANcaYmBRo3rmOTtcJaSEZl8tWt1RvwS+/x7x7UedjgjSd8alSIxnlQX2gpHnQbYbHsHWn\n/Gw/WVVPjeGzbQvmvnOwU07wYZyaqa6FMcbkbINl42QS7kvnQalRTltDNTCoRoCtN472SOvmUBNJ\n9q5+qw5TygLojHvP4/tPWBbtZ95Aoai8XGivyz6/VPSzP/+PPPL4VvHvnd98xWknUB0lnmdzH5Cx\nrY1sPWPSsXb8jXWi36UXUJ+l4glcX+2+d0U/rjmTfgPGqseqycFrmO0mbdr24jqyH71mt/8tSjZD\nR+w/Ky1Sk6j+h5vmflSSrEtx8mnYuVbcCa3+cz98Q/S7dSVqFYwM4vPSN/pEv0AT9MxdZFt6lWzJ\n5/WVivfE5SEesH1mdJKsQTUxgZji90ODH2vViPGtQYx3F2NPG2mTlrdsBV/1Lmo2ZBVJO2C7VkSo\nSVmIuhpDV2XMj6HvxjHMO1/W7al+BWek4ruwXz34sFyL9W+j30QbYnlilqwL1leJ8Uqm+d17BnUG\n2MLaGHlOK38SNs6BARnbuL5Gz3Gsq9LPySIiXIckOpFi/Bz53QPNqG3RfRHrYLBb1u3Kv1na6oYS\nrg/RfUrudzF0TmOP1MF6WUOw8wjWXDbVQqzdsVf045oQPD9irHXQsG83ro9qmvVTnTe75oyb9rje\nS7iXE1YtJLZM9lZgvcRly7o+XLuKa2VEueXaDnbjXkwM42/1nG0X/UZ7ZE2JUJN1C86AUdZZYITO\npRNUTyvGiqn+87hvUTRWdjzjmN3TieeQghtkHUyuMZFehjORvwP1hsKt552uo6g3MTmOOde4Vz7H\nBOjsWLoJ+wmvS2OMcc/CvMjcjOvrOy/3HZ5PUXx2z5PxxZ5PoeTY9/Y47dxlsnZO3m2oyXLgXz50\n2nEx8rzVS9+/tQVnRd8i+XkBqqVz9Qr2u/iL8vO2/T3qRDXvwNlxuJ2e76x7xHbo47Qm7JozPYP4\nDDfVJR3plNbX+TfimSadLMBbPpY1HOc8iTjcVVnntKcmpkS/bHoWmw4m6VzOMcEYY/qrsF641iDX\nUTNGxr2Wg7gf/DxhjDGVH5532tGRWEvLPi3rg/ZX49wXT3WdBuiM6y6Uz9GxdC5t3oln8bxb5Tg2\n7MUzccYKn9MeHZQxLz4Jc7C7GjUO+853in5s2c61eNKtelL1r1G9qpXmT9DMGUVRFEVRFEVRFEVR\nlBlEf5xRFEVRFEVRFEVRFEWZQa4ra/IuRBpr/UGZghVO0qMwStGbOi4lFz39SH1l21HbLq+yHlKZ\nTQ8iNXfMSsN78iv34bUB/F1OOX0w/2bxnuo9sFMWFs4ZMk13ii7duwCvRSXIVDlOqYuitF9hN2iM\n6QsgHbP9GF4rXVsi+tkylVCTS/acfe9Je9IBsnsdJ4u2dr/8Lpx+yNbkMS6ZgjprDiwh2U60ukWm\nHG9ZAAlZchpS/fKXQQp1cV+VeE8Upb0lXUHK2up50r69tgnfo/YQ5m1OuZRBnPoYKXVzl2BMWqqk\nLWXfbsxVTzxSmG0b8cIVUroVSoYakHbPki5jpFSG01sT8qQcb5A+g9MVOaXYGCkxiqR08MRyaX/s\nysAYjA/h89jeNDxS3qP+80hVDafr7j4sbVqztyIVvr8a70mcfW0L5ilKmUy0JBEs4+q7hM9zFyWJ\nfr1nZDp3qPn4OzuddsWN0gex9UOkPrNdZ2uflFxs+/bDeO0Q5rBtw5w2DzKW3pNIF87ZNFf0O7AD\n63TNX8Lecf+PduN6ouU6X/E3G3ANZJv5/o+kVPS+f/uM0+44jfV88d3zol9qIuZ08f1Iae1vkDaF\nbAUbl4lUftv+2ZZlhpLG3fi+o5bkbO5Ni51281tIo+5rlzaKszZgbPY/Dxlufqqc37z/xWdAVnj4\nmYOinycOcSlnEexS9+9BqnnvkJSb+NJgk7n4M7jnHXvrRb9oN9J+eyoxj9i22Rhjek4ibsam41qT\nFkpb3qq3MPbzHpEWswxbYU4H/WRJHZ0iJRIRFJs6T2LvSl1m2U6T1KeH1tjkmNzTWcJZ+shmp918\n4Ljo56Z7euk5WHkmUcp287468Z7sNdgzgwPYq9qtfvyd8u6AlKLjmBzvoVqk6IdfY28xxpjWC/i+\n+StwDX+S/n+c9v4NJqSwHD7YKec320Hza4lFcm+IpVg7QnbMLM0zRsoL2D7bPh8WrNuE90xh35ma\nxLxPSPWJ94yPY66HRyDee+bJtTMxSvb1dP6w5cNsOc1zcWJEnqc9tE+yDDbRktpPjcs4F2pa3oXs\nYNSyD4+j8Ql2I87b8r6M9Th/jZEElJ8TjDHGPRvfOToNcdNbLm2D+8lSuKcBYxekvSZzg0+859Xv\nvOW002lP88bHm2tx7G2s89UPS32D/wIkEyxZj7POgCwx4Xs02iHP+8Esug7p5Pzfhs/GXaelPItL\nJix8FJLP+tcviX6pa7B3hR9HHMm/VUp5Ap2IUekDkItEe6WEjZ+txvrJtrkKc738Mfm8eOp7f8B1\nk9V3SrHcm/PKYaecTHscW1EbY8xIAGdKVyxiRdp6KXPZ813IvTK9OOcUPiDPa/ZzR6gJj6L4bf0p\nllJynI+35iPLwdrpPBHvk88kRXm4b4kVWH/jdF43xphokjAONeLZNGkB3u9Kk2UXONYV3AbpeHi4\njNccH9sO4AzuKZXj3dODucry0Iw1chz99Lwy3IL9OGeLlPfm3ymfW200c0ZRFEVRFEVRFEVRFI7t\n0TQAACAASURBVGUG0R9nFEVRFEVRFEVRFEVRZpDrypo6jyOlPDVLpjDXXUWq6tqnNjjtIz/dL/ot\nf3It3kOuApk3SgmILw2pW+3ktJG8WKZ1cnpl6hKklfVdRPqf/4ysZM4p201vIrXeO1+6Q4ySa00L\npQR7i2UabHsV0tTyV/twbZY8KXdhrtNmmcVIp0w1bN+PtK8CaVAUEqYmkY47MipTRlMSkAo2MIx0\nyIIseW+GqHI1V9U+e6VO9MvoRtraxvtWOe2i61SrZyeis3tQBXuIJFfGGDOv2Oe0rzYjhT59QqbU\nzSpDaqS7HPed3Z6MMWZ+FCrIcxX7vIV5ol+gHml0Te1IWSvwybl5YMcJp73oQRNSWEpny5ra99Q5\n7bgCpPq27ZZSxPQbfE6bnSyClhPDYD3Jn+i+ZKzziX4DV5G+2UcOCEkkCWzdXcdvMTFUCT95CWRm\ndjpqH7kVxZJ8xU6t76O03zSSHNhODgN1SIN1ZWLOswuKMcZ4KmRqc6gpLEbMOvuhlPbc+u1HnPal\nZ3Y77UVbZUovp8q3HYQjS9M+Od6zH4dkJC4f86KrUq5FlnpeehYSpyUPw2Xg6hsXxHsCbUjXTFuF\ntM4F3XIu1b5+xGknkEwg3nJp8FQghbTxA1T3rzpYI/pxTGAPg6gIKaVgGeb8O01ISZmFORJnOT2M\nDSCWRZDDoTtCprWzzG7VvbjPEdFyS269hitW4bCUaLpysEYSKHX4r/7iXqd97MNK8Z5kiv19F7B+\nPRUy9je+iXRez7x0eo90KeC1E0GObW3vXxH95j0C6VcvucI0VUoJ29QURnjedhNysknOOdon9xqW\nCZR/Fuuo67i8Rk7z5tjErnTGGJNQgrl//idwKoxMlPK7ZJKxzP40/m54FNZobKWMWYNXENvq9uBe\nz3looegXlYgYW/8yYk+UV67FtLVYz1FxuD52kDPGmNyl6EdDZSZtd5GbpWw2lESQy1jmRum2w2sp\nnNodh6WLFctjWArcb8kTeN9g95AIl3Qqqb+Ae8uyF3YdmpqUsZqlNyyV7zkn73naUuxxLSQntWVN\nHpLoxGUhNrDcxxjpysQS3xiPjFdxuVJCFGrYlajbkhbzOYGlFPaanQjirBJF7q227OzSb3BOm/0Z\nrLFxS/LFMsC6l87hv0fiGlx50iVrw1ZIdkZpL4x0y3XOTjIsq+vYIyWGGZt8uL5h7Bm2PC2xDOfc\n7qN4NvNaz0/j0+jWlHkzShoEu+UzTuZKnLUHWhC/bIFOUinORyxZrHn+mOhXfwWyqbI1kItweQtj\nZDzlZwGWoO78h1+L96z6IlyAj/8nJL1Xzsq4Ub4Wf7fmZTzbltwvz2vt++vwd6nMR/Orp0S/uTfj\n4S91EdZ58wfyDBS3bXrdfT2zETsmLXclfsYNC8M66L0on7kTSYbLMqwxv1yzBffjO/eSA5ktkxog\nqS1fE5/fwxbK2cRypZrn4TLJZ2FjjElfjuf0jsNwee08IkstZK73Oe3mHSiVYp8Bk8l1lb+HcGcy\nxsTTs1qWVEsbYzRzRlEURVEURVEURVEUZUbRH2cURVEURVEURVEURVFmEP1xRlEURVEURVEURVEU\nZQa5bs2ZANUnyVlULF6bGIR2kXWMiS5Z68FfBV161lZ8xmRQatlO/BJ2ogWLoGW2ta5s88laX9YD\nNwRk3QPW08flQwN2dqes+TBnHewlg+PQd6ZQbRtjjAm2wW6x+wS0i7FUx8MYY7K34PuyZq7vtNTU\nsn3cdHD2Pehly2YXiNcaSLtZtAD3vf6s1NvNWg99JVv2FkzJ2kFX90IHffId1I6oWCltxILt0JOy\nbre8H+1zJ6TWMjiM+cg1K/JvlJr2/ktsZUaWkqPSnq3+AuoHVGwjuzpLCNtNesqS+bh/th5zfHL6\nLNEzN5JN5JCsG8R2p2zd5rGsIVlv3ntKWh0ybH0bRbbadk0lF1n7cr0FrmeTu1WOTdcR3HO2HLSv\nlW1Mu0kfPGbpzFmD3kaxIW2lXFOeEuiNO49ibifNzxD9uP7RdFDyKdS/Sjwpa7/4m6B3ZQ25p0xa\n+nWewRqLpForaYtkHZILpK0PJ93vyJjUna9/ZLXTbtmFWgi7/gs2zHd8SxZu+cP/hN3kihuwds5U\nyjW74VOoOZZItbtiLWvuMar3lboSGuAUq77G0keXO23W5/selHaTbXtkTYdQwvFvYljGFK5z0d6M\nuhTzHlos+jW/Dc1yEtUF4NpSxhiTtx17Euvk7Zptfqq51nsa9yxtFe7lnKvS8pFrrvC+yjUQjDEm\n3oc9eLAGazY2U1pXjlNc6q3EHpdDts3GGBNoRUweuoL6VgUrfKJf8/FGM51wfYIWGg9jjMmks8r5\nX6LeQd4meQ7iWisNf0C9tPQb5L0OkP1ndBrOSEnzZU2I2t+hdgHXqWDL0MQSWQPPfw5jn0eW1nYs\n4xpBubfDyv38cydFP7ahT5qLmjqtR+R4ZK+mv0W1BKLj5BkwMk7WZAklSWU4mzV/dFG8xnsI1zSz\nLZODvTiLDDRgPtrXzWMYRXMn0bLcZrvrmBSsJa5hw3XdjJHn15EOnC+zNsg6Oh1HaY+YRZbQXnnP\nB6nGGp9nuEaPMXKtR9JrQb+0JffTmcosMSGHz2lFD1q2ya2IibE0JmxnbowxnQdwb3JuwXlzxKp/\nkuDB+aR9H+LehFWPJXcb1kjRI7DirX+Fagqtl3G4+hmsJbZAtusXcT2ySTpXJS2R8YBjVOtO1Kzg\nGj3GGDPUgHuURs8T7R/JfTD1hul71rj0KmqaLfmrteK1ff/8htNe83ewrq54ap3o10RrmG3eI2Lk\no2oh1Y/MWEPPNJOy3lXXKZw3u06gFk8OPZuNvndZvIf/VnYxzocxafL5brgZZ+0sqrvX+Jq0B08k\n6/blfw3/8ppfnhD93FSnJSoWz6nZm2QM2P3tt532/f9xkwk1fVT7hWvHGSPPOynLUSglIlr2a9uL\neRdOn8H1bIyRvx1wXB7pkvGnn2q45WzF2h7uRD97v+N6L67tqHk00ik/u4Fq6qWTLfbkuPU8R2do\nD+2LQ1YsnxzDc2EYzdP8O8pFv45DsoaRjWbOKIqiKIqiKIqiKIqizCD644yiKIqiKIqiKIqiKMoM\nEjbFfpWKoiiKoiiKoiiKoijK/69o5oyiKIqiKIqiKIqiKMoMoj/OKIqiKIqiKIqiKIqizCD644yi\nKIqiKIqiKIqiKMoMoj/OKIqiKIqiKIqiKIqizCD644yiKIqiKIqiKIqiKMoMoj/OKIqiKIqiKIqi\nKIqizCD644yiKIqiKIqiKIqiKMoMoj/OKIqiKIqiKIqiKIqizCD644yiKIqiKIqiKIqiKMoMoj/O\nKIqiKIqiKIqiKIqizCD644yiKIqiKIqiKIqiKMoMoj/OKIqiKIqiKIqiKIqizCD644yiKIqiKIqi\nKIqiKMoMoj/OKIqiKIqiKIqiKIqizCD644yiKIqiKIqiKIqiKMoMoj/OKIqiKIqiKIqiKIqizCD6\n44yiKIqiKIqiKIqiKMoMEnm9Fy988EunHREtuw63Dzrt3E1znXbTR2dFv5i0eKedXJHptEd6AqJf\nsBf/9pakO23/1U7Rb3xw1GkPNfbjGm4pddrdp1rkNaS4nHZ8jsdp913qEP3CIvBblbsgyWn3nG0T\n/bLX0PfdU4n/fsNs0a/utRNOu+BOvGe4a0D0G+kactpl6z5jQk3Vvl877anxSfHaxMi40x7tG3ba\nsTRuxhgTR/ctSGMXaPJf8+9OjuFvubIS5Odl4/O6jzc57fHAmNMOj5S/HWbc4MN7Trc67ZRFWaLf\nUBPmRWR8lNPuO9su+rlLU9EvDv38F+S8ENedh+uOTYkTr01NTTntwvkPXfMz/nfY/+1/dNod3X3i\ntRVPrXPaYeFhTrv5/WrRr+487nN2ZorT9i7OFP0Gq3ucdg6tq9oXKkW/9A0+px0ehbEaqO522gW3\nLhXvqd+BNZG1sQjvqe0R/QZre5320BV834IH54p+9b87h37DI0574ZfXin41vzrptN1lyU47e0OF\n6Lf722847ft+9CMTag5855+cdn2TnI8VG8qdtv8s4l58sVf0azyDcUxNxWupq3NFP1eG22n3nUMM\nqztcJ/olxWOt5983x2mPDSHWnnrhuHhP+SZca9dxxNswI0lZmu20vbPTnHblfx0V/QLBoNPOTsfc\njM2WcSO+AOsvJhnrb/8v9ol+6/5yg9P2zX3AhJKTz2NetFfKvcabkei0Of5FJ8WKfu5Z+I7hMRH4\n7/lyrJt31uAfFF9Sl8uxrnv5vNMu/tQCp922t85pj/cH+S2m4F7M/YbXLzrtzI2Fol/3SXzH1KU5\nTrunUu6LyQsx1hNBxPGrL58T/VIXIl530l6dVJom+iXNwzmgeOmjJtQc/N63nXbhQ/PFaz1nsL8k\nzc1w2oPWftd1CGux5FPLnHbtyydFvz0HzjjtBQUFTnv+F1eJfm/8A+LPXd+5x2lX/vt+pz0UlON4\nuRXXOicX82L+Z5eLfmERWJ2ToxNOu+WDK6Jf8mKMT89JfHbOLbNEv6FG3ItAM/bcC0dqRL/SOflO\ne8UX/4cJJcef/r7Tzr21TLw2PoT7xGeCiFh5lp2cwDqNdOEcMNI5JPoF6DM4rvEZyhhjYlMQT3vP\nI8bzeSbKK+PBUAPuZTiNUwRdjzHyfMR/N29ruejXvAt7f8Yq3P9Ilzyz9Fxootfwt6IS5fVFu6Od\ndlbuHSbUnN/xC6c9Pijn91A97g3fNzuehdH9dWVj73NluUW/qUnEUVc6xorP/8bI8/BIB+aC/wL2\nZnt8IhPw79RlWIv+Kvkcw2MXS9dgpkQ3M9yKZ4VIdwzePzwm+sWkYlxHOnA+z1xbIPrxd8zK3W5C\nyeEffcdp595WKl5r+RAxJnM99heOScYYExWP79h7EWtnYliusbhc7LOjvTj3RSXGmGvB4959BPO+\n4G55Bjz3fx9y2jk34oxqX0OCD8+ITW9W4dry5HyLiMfaGbqKc627NEX04znG5+mxPjnP02/Aei5a\n/IgJNWff+KnTnghOiNc8ZXhmat9TR9ck51nbrlr8g84tsZnyPJc0D3srx9vwqAjRj/cabwXOBaN9\nGPvBq/IZIjwGcZ7jQd9peW7hmMLzx12UJPrxNfGe0UVzyRhjxgexNvm8yvPPGGNikvG7xOzNnzM2\nmjmjKIqiKIqiKIqiKIoyg+iPM4qiKIqiKIqiKIqiKDPIdWVNsalItxvuGBSvcVpe52lKWVsnU6LD\nI5Dm13m83mlPjsl0KU5PSilDKpkrTcqfooso9ZkkHB2H8NkplF5tjDGxiUjFat4H2VX2WilDaj+B\nVFBOK7PTHaemcO1jdN0Dja2iX2wG7l/HsQanPVQvZSnpa/PNdBJNqVrdx5vFa5EJSLmL9iC9a2xA\nptINtyO9kuU8o5SyZ4wx7kKkgnXx37LSNcMjMXacoj/qx/3sr+oS7+k8hs9LX5nntAcb5f3ksWPp\ngy0F6CFplGcOUuXsNNjRXqS3ckp0kMbeGJnabWSW/H8blkwteGSJeG2oGSl//SRJSl4i10HBnfOc\ndt1rkChdePe86Lf6yxvweSQ3KrhPpn+yHK+XUgVTV+A+N+06Ld7DaYz+yxjfhHyP6Mdp6FHJmJcd\nBxtEv9IvIHW/6zTmR+ueWtGPpUwpiyHN2PvPb4p+GR55HaEm3IX5s+rPpfSq5V1KRb8RcXRyXMbK\neRWLnfaRZ5CC2/SqTJ0OjiG9sjgfc6F4k0w5johFuua+/9zrtPNTETdXfXGdeE/T20jjHRv/X+y9\nZ3Rc15UlfJEKFYBCIWegQAIgmHPOFCVRyaSyLKllOY7bbVt2u4Nn7G96bLfb7el2222P3W1bTu0s\nWTlTEnMQSTHniJxjIVShUAjzo1e/vc8VxVnrU2Hhz9m/LlX3Fd674dzzSnufjbNgxqMLRb8Bopry\n3k5IkHTmRY9AEvLOr/BMMwqkvPLk85CHjI+DWrr4rgWin00hjSd8tFbnUhwyxpgJoruOk4Q0KVXS\ndEMU21hSOdwtz7vSOyDV6D0PuWX/VUnhDZAEqH0/9kjmfEgWfYV+cc35f4e0bM7nVzvtlJQs0a/r\nMGi7nlx8x+iA3IvjI1gHiXRmur2Sal5ItPYUouqPWlT9aE/ETCbCJM89+j0pi6vYDAnPAEksa1+9\nIPrFxrA3G77xktNe8thy0W8N5UvjI1gX/RYVe+19uC50BWukthN7e/U9S8U11cnIY1xE0W58Qd5r\n0ZZKp83r7Ojxi6LfnZunO+1pH4ZE7trvT4p+XU24964B5Ae3fvV20a915zUzWchbjdyp55TMvzgX\nYRl+rpUH9J3H2A7WIpfIWSLPT5Zg9J7GXrTp78mUExWuwpnZe7mOvkw+B8sek4iOnzVL3mu4HWPu\nyYNEwJbK+0h+zesoZkmBOFfm8Qu3yu/LJTnjZCB0FuNpS0BTc5HDsRR6LCplJhw/YlT+gGXWxhiT\nvybotDmHseMP57ksOyu8BfuDpW7GWFK/VpbXyzw5bznWbe0fkIslWFL+nJU4X0ZJZpxcLGM55/j+\naZDLhC7LHJpjauEDJq5wU+mCLus9g6VM7fvwrhaYkyf6caxl6ZanSD5vz1GSEydc/13CGJmv85nL\n8pqGl86LawLTcf6xvG9sWMocOX8tuxcxuO63srTHKOUpFQ9Alt9B42CMLL/RdwYxyZ0jpYi21Cje\nYPlcarbMWzr24czPovjYfUTOd+Z85Pm89geuyL3YvqvOaWcvQ4zhdy5jZFmMKH0Wpv3mq5BxOEQx\nmt/FM6w1x/GWc23+78YY0/IG5LpeygFzlsrYOEaS4b4zuAdbhunJlxIvG8qcUSgUCoVCoVAoFAqF\nQqGYQuiPMwqFQqFQKBQKhUKhUCgUUwj9cUahUCgUCoVCoVAoFAqFYgpxw5ozXFfGtrYq3QItbWIi\ndHl1L0nL1bI7YM3KNoAFZItsjDH1z51D+1V8R9INapoEyAqZdYe2tWG4B5ZshauhJW/eJWttsH10\nH+kJ7for7UcuOW22pLTrBfB9jA5BJ1e+bZboN9j8/nbU8UA/aW6zLX0c25Gz7XnE0hyzFpstF/2V\n0g6Oawm5SRMt7AKN1L4Od2HcMqn2y4BdV4E+Y+v1QbKnM8YYbynVRQiTTteyPWTbtGHSpPt5XRlj\numleI23olz5N1mawa+TEE2mVWPcTVjmNQbKa9M/AfGSUy7k+/2+7nPasz2x22qUROc6sU+4+gHoT\nTUOyxs6yLz/ktL1FqDvVtgv1XqbfLeuqdF1AfQO2EE5JkzpzruXU0UDW3MulZd8Y1bkYo/jCts3G\nSK3sxZ/Dznvu/bJGiq1jjzcSXXhmrsFijKxHc/xPsOItzpN7rJhsKouz8VnuGln/hGM2r3X7GZuo\n1k2GF/rm1l7sq7Jhqcevu4b6BGWl0Bez/agxsvbB6d8cNe8Hrs+y9nMbca/W300Lwmq6/k2yik+y\nTbwnr+ZMzizU7hhsl1bavPbTqxAf/FasGCH9cf8lrO80q34Fw1eCsex5V/7dTLI/Lr8ZtaVGRqB5\n7rPsXIP34RyamMD47/vm06Lfyi/f4bQv/hS1WRJS5P/b8RVibpKSULer4GY5hxy/+Dx3BTyi34nv\n4m/NusXEHXlc66xX7sUkF/biqWdRN+tae7vo9+BXtjltrk1n5wLvnED9l7XrUMfFro3E66LvJP7W\n3DmoteGz7NbP/xqxYvpWzGnFQ3NFv73f2YHvHkL9hJExWcOA6zSwna1dC6TuONZTeS7i7WC9PI/3\nvXXcaS9+zMQVXPchMFPWEuBYxHVmOt5pFP3Y4jqNrE/tnDdzFtdRwDPmzLAsvEeRUw2HMEb5VCus\nfpescZSzCPUbXB7EioEWWcuB60C6XKgnFRmXdujZNaiLMtCK70h0yZQ/QjVXuJZF3nJ5lgzU4XkL\nZVmPuMBTjHiRatXYmIghNnVTncBol9xjnHsWbUaM9uTK3JPnn62mh7utmiKUz/nJQthXQDHaOmbY\nYjedrJa5Bo4xVi2/e/EuFRuS/diWnZ+v7ilZ16TsHuz7cBvZb1vvT/y+Em/wHmuzav5x/Y6im7A2\nI52ylinX1fEUYE3YNU3YXjoyEKFrZB0PfxXyI7uOidNnhsz3m9/EXgpQjcTWfXWiX+FqrB2O2xkL\n8kW/DL4H6lewPij6sR131ccXmfeD/X4bb4zQu5mvXJ41niKMr4tq09jv6fxOlk21abgGnjHyPZDr\nXHms90WuB8XnU+Y8ioFtci35KnDvPYeQL3E9R2PkGZxAyYmdJ3Pewnlt9zFZ6yxrAe4pje5h8Ko8\nF/n3kOtBmTMKhUKhUCgUCoVCoVAoFFMI/XFGoVAoFAqFQqFQKBQKhWIKcUNZ0zDZZ9v2XQ0vwf4t\njazH2A7MGGOi/aAKMiXdtq1jWqOwsLItB8nuOdKJ72Y70gFL5sJUt87DkE8NXJS2XkyXyltXdt3/\nboy0VGQauk2zZBlOWhGobi17pXUbU1onAzmLIW+JhiS1z09z130c1K8xi3LF9tKxQVDzEiw5QQLZ\nm7O19LBlxZ63CuM70g9KeZgsu1OzJb219xTsmgs2gOYd2BoU/cbH8Yz1tE5t+/ZsspqeGANnzbaR\n5PsIt+CzAcsG1Z0r7zeeiIUw5kkuSbdmW/IQWbfZdsUjJBGJjWCPdB2XlNG+oxjnwEKs27BFB287\nATp96dJNTrtpEPTMM99/TT4I/Rw87VHQ+099b5/o5i8mejk/h2Vr33kEsqtkH2JA16Em0a/4NsgZ\nD/7rbqed8Npl0a+bLGFnbjJxR2891kzb1Q7x2dxHQGUd6cGeGByUe5blfm19kBtGd8o9GyBade5K\n7LfWNyQFnuUtnfsxx3lrcU24We6JGStAG/dXg7Y7VC9t7X10D8EVQaddf0jaSEq5F5639dUrol9K\nAFTaittrnLZtQVr7FCSrFXG2te9vxtrimGSMtL5OcmM9skTHGGOyqyEDcWXhzGQrZGOM8RK1O3QV\n51WQLDmNkRakbccQ84qWkKVzgpRdssVsx27MR16FlAS+8tU/Ou35m0DB5/PcGGPaDoDKXkLSHZZj\nGSPPGbYet2m/8z6z0kwmdj77jtO++c/Wis9OPQcp07T52Afr79oi+g2SnbSXJAhu6+za8th6p81y\nGT4vjZE27SOUT4wOYW+ztMUYaeftzsLf7ToupW81G7A2WcLdul3Gg06KnUNXSNp430zRL+cILLIr\nb8F3v/rjt0U/lkrGGyxV7tgvYwrLFdhens9LY4zJXghJYMdBxD9bYuKfjjjHlPS6198R/Tjvywpi\nv9S9jXOn9ZA8S5NI0pq7AHPjLw6KfhkZC5x2QgKePTFRSrYjQ3helvVE2mQcHydZMMeemJX/Baql\nHCHe4H2Q7JUSid4TiLFs18z5mzHGDNLZw3L2jgMNol/xrcgF+D2kxTprPGWQxyck0Zm0D/uFJSvG\nGBPtQj+W6qZmyvcifqcYobIJPB/GGDPUTOc7yXKK76gW/VjuNUF/l+OrMdJGPN648nPIF1Nz5PNy\nLBod5FID8t1KlC4gaTvn3cYYU3w75rBzL+aXrzfGmMYXICf1z0Q82PFb5Ju2rHNhMIjP6B4C0+Vc\ncykNfiafZXPevgdxKYvkx/1W2QbfdORK/A4SuiDP7SEqMVH29ftNvMHvdN2H5btBYB7eByZI5zNu\nSYDYrrptB/IC+12a5dgsL7UlSh1HcR88X2Wrg0472i3zZH7fS05HTGl/W0ruvEGcuf30m0CS9a6R\nlIYYO0y/PfitGNB7knJCWiMcu4wxZnRQlkuxocwZhUKhUCgUCoVCoVAoFIophP44o1AoFAqFQqFQ\nKBQKhUIxhbihrCl/JaQjvRclfdu7AHQkpiEOWc5DLK1ILwPV6dKTkgqaMRdUapYhMU3XGEkVdPlB\nw+w8DJqoTZ1iuhRLmXJWyrLzTClkCqFNSWRqaOYc0LySLDegjNKg0x4dpWss6h1TEi0Wa1zQ8jZo\nmJlzZSXxEareztIldi8yRjpEdB0G7Xm8UNImmRrLapS0CulCwhRUH0lYouSw0Hdayj646vdQE9ZZ\nOLFf9GO6XfldoNdHeiRtnqm07BjFNEljjPFNw7NztXtLNWSiPdLxI54I3gNtxqUnD4vP2jtAjyyt\nwRix1M8YY0pugRTl3A8POW2fVeG+8A5QRtNIklCwqkb0S0qCxKSvE5RWdssqeni2uObc9+EY0k40\n9BKq4G+MrNo/dxM5leRJevVIBHMaugRnjIp7loh+Y2OY39VfghtQ685rol/asKSkxhs1fwbpUtvb\n8m930Lpj56Um6x6H20GpXPzIUqc9Zjkx8Nw1vwH5Fq9nY4w5/ztIOM43YW9vJpmevZZYwuldj+r3\niZbkbqgB+7TvNOZnwSeWy34t2MNNb4JeXnabpG9zZf0Tz2DN1ayT/SoekOsunug9iXidmCrPmig5\ncHXRmJeRe4gxxuQvwv31XMHzMoXfGCkTi3aSQ12+lI9Vb73NaXP8622GxKl08UZxTagH887j2mNJ\ntWa7ce+hM5hDW9bEZ8bub/zJaVdQHmGMpNpHSC5X/fhq0Y/37GTA78G5/uovdorPtn0B4+krwj5q\nevOS6Nd6EnTrwWHM/arPrxf9eF9kzw467Z5zUopz9HdHnHYojOff8kXYVe34hpSKlhXjTK//wxmn\nveuMdKN8+L/f7bQ7yb3OVypjHkur9r4Bh7WR30mpy9KPrMDf+gkkO3PLykS/aZYEL55giZid9zHN\nPcWPHDVvmXQiSkjAZ/wdtltT2w7EYZYx2DHg0u9POm1XMuYgowayirJbqsQ1KeR2EotgH6X4pctb\n/elnnXZ6Mc7CWFjmQCleSJmG2pEf5C6Q5+xQJyQTfeeRb8UGZC7D/86T6WtcIGRNltTFS/Iizp1Z\nim6MMcMdOBezyMXFlj+17oSsgd1nSu+Rsj0hi6D5aXkD8dp2B2J3Fs4Ve61SC/3nEUcnQe4hjAAA\nIABJREFURvEcOZbjYtdBnMfTHkEu23FQxg0uO8Fr01uULvr1kzS2UJp5fmAUU944WGfl2pQrs1Sy\n4rH5ol/vGbjD8XnitcaZ5b4VH4YrXR3FP2OkZCxM8qKF5GbGrqHGGNPZgvsronhgOymy5CmVpMmB\n6dJRNIXeU7uPQd7lyZfyVMZQA53v4/Idq/q/LTGTiTRyaGKXz/+8L3rvIvlTzjL5Lt26HXukkN47\noj3yTI9Q6QvOD+3yKEXrkGOyE9Q4Obkl2u6RlJ+0krSqvlO6Vi6agRjLc5I+Q8qV+HcOljXZjosZ\nFKO438B5WUbl/0WNUeaMQqFQKBQKhUKhUCgUCsUUQn+cUSgUCoVCoVAoFAqFQqGYQuiPMwqFQqFQ\nKBQKhUKhUCgUU4gb1pwZbIZWNatG6ohrn3nXabNG2UZaKXRfbQegQws+KGsCsNZQ1LCxbI1ZV8aa\nU7aPy14oNaYJZIkVoNo2KRlST5fsht6MtWzhFqnnLbkJ9T8GmlF/YLBW6izTSqDdT/Hhu237TLsG\nTbzhK8f8DFj3mE21g/iZ04JSX8n1eLh+DNsXG2NMhHSi/H3jVj0M1jL2UA2HCZJXspWvMbI2jcuN\nexhokXZv5XMedNpjY9CdR/tfF/24NkMa1dQZXS7XD6/h0WGMQ/dRaVU6mVbaoxHoW90FUqs6dwM0\nrpeeg+a2/O5Zot++H8POd+OXNtMnlna7B2PGdqL97dL6LyUdcxghC/SheuhSzxyTtqotPfiOs09D\nm5+SJHW/RVnQgZbnQKufO7dQ9GNNNWvO6189Ifr1kJ6+bAvqk9Qdl/WFSqrk98cbHL8yF8j6OS6q\nbcX1DoJ3ylo/rHVmbfLAZbm3h6uwRzJmIu6FzkvNbTgKXfaiaagPcu0gaiz4UmWsLL8VY+jyoCaA\nq0TGDbYALr4TmvS3/uVN0c/jQsxPTUFMOf70MdGvejm04qXlqLXR8E6d6Dd7uqzVEE+wRW+4WZ4N\n6UWY04mlCGa8V4wxJjkZY9Z3Bmszf11Q9PPl4vtaD6J+BddUMMaYut2omdKyrw7ftxRa8Ku/+am4\nZtFfP+C0205hnCs3bxP9YjGssSPf/o3TriebUmOMudyKOL56K3TxtsXlWAQx1FOCcbj08/2iX8Yc\nrNn8203cseRO2BK3H5TWxmkliPm9FzA/6dPl+i65GXUq9n0LtWC8mfJMj5FtZqgW5xXXtjNG1nGp\nfRbz3XcO91CzStZXeunZPU774b/a6rTvmik181/+9Pecdq4f4/6Zv3xA9GNr7b4hxNS8ZbJIxcvf\nf8NpL1+Mcehvk3siNSDrB8QTnEdwHTtjjMlZSpbwdMS17pZWqqU3LcQ/Eq9vj2uMzBezqI6JqA9h\nZG0KtqvnWksuq5ZDShr+zTbdXa2yblBuzQL6Fx6K678ZY0znadRGKliAveh2W2eOC3l3iNa5P5gj\n+jW+dh7/WGbiDh/VufDkyzop4VbklPV/Oue07RpDWUsxJ2GqC8l1H4wxpuwO5EX8jsN5qDGyVgjn\n7Nm0D2xrcl4z9a9jDjjXNMYYfzaeketospWvMcZ0teJMd79FVt9WwUOuZ8Q1MCLW+5OwRl5n4gqO\nG3Y9zyaqe1n1CNZw91GZu3PdzuwlGOf31Cqh94wRiqFJ1vtISz3mtLUP+zSYi9hQUi1zvpn34f3O\nV4Q4eebfDsl+H13stHm9jYRlnuzJxnvLjG3Yi+efek70K6Cz/8xP8LfyF8q4yzVECx8zccc4v1db\n9VQSiM4xQu8JnP8bI+fBtnNn5JMVNtdlS82V7zihc8hZXVnYlxmUi3FdKGNk7bwA7Q9foYwvY/RO\n56aaM807ZK3H9EKshTTKL2278fRqfMbW7unTZE4abpXnpA1lzigUCoVCoVAoFAqFQqFQTCH0xxmF\nQqFQKBQKhUKhUCgUiinEDWVNTAf05ktqIEsmeolyG+2S/cbfh9Jky2tGQqD9Nj4LCuWMj0tLyn6y\neh0fg1Qmcz7Rv4n2ZYy0tkojahHLp4yR0p1xopbGBiS9dXQUlDq2r82xLPvCRPXyV4DmNTosLSkF\n7VIyluMCtr0dG5byIrbxNkS9zF4knyVGlnRM8eywbKeZbeknKYVNr2SaJ1O/+Av4bxpjzAjbbLdi\nzWXPk7S/wcGLTjs9HZIQmwY7RvPA1twsYzJG0l1Z0pC7Qtoe2lZu8UTjy3imolukHWbvWYzFgk+D\nFt93QcpXNnxhk9NueA704MWf+7TolxwEtS8cxvy27XhR9Esjiv8Y7ZeHvvgVp/3a9p+Ia64+Barh\nliWgk6dVSrnAqd2IAdPvgQTSthr+0T/83ml/4jOQY+Qul1RVlvV482HLOGbZFHbUyjGLN0IXYV06\ncElSmN1Et4w0gfKYZllfJ5DkyUt22ZGWQdGP5Yc9NG5uy5by+//0stPeMBe2lHkZ+O7lKy0Z6nHs\nCZZlJiZKej3viRGyma6plpJFtl9nanjIsiC9egSShOJizOl8y5r7RlTaD4rOA5DAZC2S66zzFM6e\nvPkI5va4XH5+u9P20LyzTasxxiz+zK1OO3kt1kF4QEozBq+CSl3zOOzahxoR11Z+9XPimuRk7POi\nBbi/ruYDol8byUDmf3GL077yRylDCo7i/Dz5BuSV3YNyXW79a2iUWt/EeGUukpKLaPfkWmlnz8Pc\nHXzhqPishs6GzJlY32175Lj3HMM+KJ2Nc6jt8HnRL28JrECv/h6S8MarMp4t+rOlTptp+P5O7MX6\nS1JOW12I5/jZN59y2vvPy3uoKsb9PbIZeZV9NvuJlr1sBDaoWfPkWp++F7JCbzHWcPA+aZ3NeZCR\nLrMfGJE2rC3bWjlE55+/ChKvkk3y/lrfgXQodzHGKMktJRJjUawJlqOxdNMYY0Kn8HejUcSyfJKX\nt++WVsj8fcEHEGt9JbJkQOM+7E1/Jeap81CT6DdOVP2JCdiz25J6P+XDAVrnzW9Ly/iy2+eayQTL\n3htekOs2MBfrrOIh3MdYdFT06yKJDNvWBh+W91733CmnnUWy/sFLlv0zWQVfqMf4Ts/H/SQmypzv\n3askOQkgXs+9Va65WD9y24FLiN2D1nmXV0bSRMqNM+dK2aQ7C5L6CL1P5Fq28WGyQo43spbgncGd\nJ2UpgQqss3Ty8G568aLox3bcfDbY63aI3jN5DliibYwxxdkYPy9Jsxu7sT5i5+U7EaPnKOX+JGsx\nRr4/Zs1EYBukdxNjjOm6hnhduBrvIGzjbox8xrLNiLvZVtytf/6cmUx07kVsSp8h5Y1Z83EvoxHE\nvcRkuQ/4fT6F5EYDV2TOG6P4Fm4kW+3j7aJf7nqML8s+vfm4vr+2S1yT5MFYD9XhLC25Xb5k957F\n3woIG2yZf/AZF6b3xRvNY4RKLQxZslt7j9hQ5oxCoVAoFAqFQqFQKBQKxRRCf5xRKBQKhUKhUCgU\nCoVCoZhC3FDWxNS7tr2Szps5FxRkP1UuHi2SlZBZLuIhOcF7K+ujunf/JdBC2dXCGGNyp6PadeOh\n3U7bnQ1aX85ySeVLoirQI/2g1qdmShcBrgjOLhwxckcxxhifD5SzsVxQMFO8kqaU6KLvILeG/iuy\nmnf+Cknxjzdyl2FsmRJmjHSF6T4O+h1XsDbGmFSiTfadrXPaBRuDoh9/P8u1UrPf38mo8RmMobcC\nVNAsy82mnyhxTK/rPC6dNnIWgKYYieBe3V4p1ZrwYE7GR/Hsg41ybTISkzFevadkdX92JSmtNHFF\n3hqskdpfn5KfbQo67aEWUMg7dtaJfmkzsE8Lb4Y0KjFR0rebL0PmwhS9BR/9lOjX2QKHmFM/Oui0\ndx77rdM+9DMpkdj8BbhEseQxdEFSEhfcBGo3y/Jsh7VPfeE+pz1AkiGbap45j5x9nsd6Y+mOMZLS\nPxlg+nZyupRVDpJTQ/5NkEH0npTSh/Qq6cLyX+Aq9sYY8+5/HHbaa78ESds739st+s0uB2WUxyNG\nstH2K5KqW9eJGO0NYs+y+5sxxnQdBB28twX7KiNbnhM7XsK9zilF/Oa/Y4wxfg9i9plLdU57/Fkp\nYxoJQ05Q/vcPmngiheaNpVrGGJO9ADGmZd9pp115y1bZbyHGKaMEDlm1PQdFv3AYFOPa17HfCjdI\naWPBJnyHJwvr48Iv2e3qJXGNrxRz7c+neGBRlIMfgitFqAEyx/oL0qWgZuMMp51DTg6JljykfQ+e\nKTAf+zJ0Rs61TReON67+Eo5uH/q6nJ+rv8Zn/pmgdp/fK+UeSx6BdU1WNeZg1zf+JPplkTQjgcZ3\nycdXiH61T0Fis/B2uIbU74FzxJLHpYTvZ1+DlOm+uzegfe8m0e/Qbpwbz+7BOmvtlVKKr//gs+Z6\naHpVPjtLQrtINnllv5SVF5ZCfjh9sYkrIuSk6bVcQ9m9I0QS0sTZ0hkwTNI/dn9KSZPxmc9CdgBt\nPy3zAHa2Gyf5NkuwbGnpODmYNT0HqUf/kKTWD0Swr9jhsLBEyg8KNuH8CFNOwPHJGCk5GyBppDtf\n3t8ISxNzTdzhycPfS90o8+iBa7ivMS49EJNylKJNSLrqKBfrvyrzbVcA52SU4tTwsJTE5NE7ib8D\n6ydvNXKxYy9JV8hMcmWtXox4YOfdw+3IjdkhpuWKJXN8GDGAyw7we4wxxqRVQL4/MYb8pnWn3ItJ\nXhmL4wlXJsbVfr+LNGGdnfvRW047GpElIzr24Xxpb8aYJ1lunqOUmxTQ2p/okdLG47V4bx0cxpj9\n9E+Iz4/cdZe4ZsZqSKsCs6g0Q5uU5576P8htWYYUqJGSs6xy5LI9dZD7DtXKMeL3zNBZ5LLsimSM\nPLcnA3nrkA+276gTn7EzFsvmR6xSHfwsreR65K+RcYpdmke6cU1yQOb57ITMMsfWPSQjt8pMcPxm\nCZq9d7zkyJXiw9/1z7DybFpasR58R8cVmbeUrUbsHbhE89gt/67/ffL4/4IyZxQKhUKhUCgUCoVC\noVAophD644xCoVAoFAqFQqFQKBQKxRRCf5xRKBQKhUKhUCgUCoVCoZhC3LDmDGt2bdu6pFRoALuO\noV6Hv1LqqBKp3os3H3UGXH6pKfPlQkcWG4A2a2JC1hJoO/cOvpvqf8TIftVXKG15e89DExwmjXJK\nurwHfyG0dpEO6Au9lsavq/a4uR7YctkYY7IXQt/b+S70+RnVUnfH+uXJQPs+aPzZUtgYY3oPol4L\nW18b6VwnbKwzarif7JhVE3TajU3QuNtaV7arDpdD88265xHLysxTBm1gF40nr7H/vCX8OytrrdPu\nbH9b9BuluhQh0gZGmqW1KFtGN5PuPm99UPRL8sjr4gmugZQ+U+6x0DloHlkPnb2qRPRj6za2dA63\n/VH0Y+s+fwY0z8PD0sLV5cMclt8CnS5rwZc+JusjnPwFbD0z06EzDyyQOt2JcQg8uRbFzE/eIvp1\nnoO+epi0ua2NsoZN73l8h4tqYGQvkTVSshdJW/Z4o+4gNNDVd8wSn/modkv3EaxvuzZNBtkbHvsR\ndM8Va6eJfqu/sMFpH/8h+oXCcl/9zb98wmnv/8k+p/38oUNOu9+65uG/ohodpMVNTZe1ZBLpnBge\nIX15t9wrJVmo9VNANcOi+6SWOb8K6+TaGcQuT7GskeCx4lI8Ee3COvPXyHia6sXe7DyCtZ698Ijo\nxza/ocvQ1g9clFaTtSm7nPb251En5OGlcm+zPemZf4VNd85snKtv/XqvuOZzv/qV025tftFpt+2t\nE/04xld9CNbehVnSBpU19A110JKfbZQ1wW5eMN9p+4pxto5FZI4RmDkJxS0IR69Ar+7bYdnVk41u\nwz7s2dICeU/HyBZ7aBh7Z81jq0S/3d9GnYXFD8Mu+zdff0b027QUY3NlB86aokrUX0uwagKNUf2F\noXqcE2eoPpAxxmx4YKXTXjeKvCpKteGMMWbvk1gn0Rj239L10g44gdZF1hzsy/qdZ0W/GVadgXgi\nYzb+bt8ZWRfLlYX6VPmrkNtdeVLapg+HUWuE8yNProwpbh/2Ut0biI2V22aLflxrr+0g5oDrFARm\ny/Mu2o58s43Orh7Lhr5mGmLjw//j75z2Xz32mOh36wrEB65R0XdJ1kfIpPoYXCeE7eONkfnwZKD5\n9ctOe2JU5vxUasX4SpEDcn0SY4zJWoSznM/SDKu2w6VfIX9v7kG+uepjq0W/9rdQK6NmE2q6DNNY\nzF1fI67h2mndNNYZRfIdImMO1tkrv0QtsaoCWWeR3yn4ncmOAS3HcL4n+5Df2O84USunjie4Vlmy\nle9X/TfUCm1+HXEtYNkJhxsQv7Iol8hcJMdl4Dz2SGsjxjkzTe7Z2g7EhNRkvO5++7Ooq5XhlfUw\nu2jMh6nOTOmH5FxX0b3XPo2Yl5ola5leeRL1bfJvQY527PAF0W/Tx9c77d7TuG+2mDbGmLK7Zd4Y\nb/Qcw/MX3ipr27W9jT0RoJj/HittysUzqG5P29uydi3XhUl0I1dsqZOxvHQm3qUHqQaVi+rGNrwo\nxzN3JWKll2po9dfKGlScg0Q6kJfGBmQ9JK5Rm5qHNZNr/ZbBNa0iVO/LJMmclONXpXxNMsYoc0ah\nUCgUCoVCoVAoFAqFYkqhP84oFAqFQqFQKBQKhUKhUEwhbihrYuuw/DXS7pmtllnKNNQcEv36z4Jy\nlrUE1KTRiGW9RVZzbElct32f6Md23P1EB08mepRtW8eSGqa6sjWiMcZ4PEGnXbkGFN6648+Jfh17\nQUfKWwu6LMvAjDHGnQY61+Bl2KradrOhK6Do5eebuCNnCSjvYyPSfpDpnyxdSrAoWGyNlklU+WSP\npHS1HQLVnWnqyUWS5jhMtuWRFqyzhi6MRWKP/O0w0AHa7exHFznt0UFJP3O5QIHs7t6Fe3BJymMq\n3fugD+t23BojpjbyOhu3pH7+qsmjb/MadlsyLk8B6J/JHvRjuZMxxowOYZyKN4KK3fj6SdGv6TXQ\nTiONoIDP/tzNol/rAbKRJ2rfU/8My977//JOcU1+EGNUtg30zObtl0U/ntO8Ddhje7/5lOjH31e8\nBXaGC2ZLCn4sBipjuB3tth2SZskSjiLpzBcXMLWW58MYY5Lc+KyjBfdY8yH5LG27cM9Vt8902uNR\nuW5daYh1JSswhrOmS7vwtp34vtgo1vS7x2DDvHrmTHHN+WcgWVz15TtwfURScDnG5hXg73a0SWrp\nyXpIL8vqyWbaohwPNxOl/DaMS/8lKQeaGJHU+HiidBvozTEr9nScALV24Zc+hP9+5pzo1/ouLMYz\nSyGbZEq6McaMDkByESCb1te/9ZroN3c+6Me7zoJivSpW7bQrLcp8w4WnnXZWCeQ07a560W/alo1O\n+9T/wf4re0DKObpJ3uxqRIzadt8G0c9TiDjc+ALGa2RAWtlOtqxp84OQMfRfkDLIXMp3Gn4LSVpW\nkZQ/zVsJ2WdGJWJRapqUUmz8Kj77/V9BRto1IOV9x85dcdrBXDz/D37zvNP+ysxPiGty/JB6hKMY\nw2VrZNw49wbWIO9zW6q16YmbnDZLf4/+x2HRb+5WPHv+QqyFvJUyV3zrH99w2nPuMHHFwBXEkbyV\ntpUqzqSOg1jTrhwpO0jPwVyxDLP3XLvo55+OMYs0Ic7FQtIiNTUX+5SttF25iGWJqTL1rv4IJA0l\nPbBTrvvdGdHvzSOwbr5tI/blqk3zRT+Oh/3XYENb9dgC0Y8lyKwEte1mJ1t6zzHBb8n++85B4pDk\nwrjlrpLz3X0YUuDAPOSog43Sspht7afPwRpu31Mn+o3TGeKmOb26G7nKv73xhrjmsQ0b8N33Yv/x\n+5IxUvq27S9ufd9+GZRT8hxc/LGUyaZX4WzNW4X9l+yT+fmY9d4VT7Dsw37P6CB5X2AeziFfoV/0\ni9HcN7+Gcc6cI1+Mmmk/p3vwd11e+Q52/3rE+L5exNq+IYz/9pMy//3yrz6H+xnEPsgqWCL6tXTv\ncdqVj2JfdR1pEv0yFuDee97FGTm7XMZJLhVSuBnyp7QyeebU/Q7vkiVfvcfEG7F+nCHRXmnj7S2D\nBIhjjG3vnbkQc9x3EnGU97kxxozQu36AximtSuaoSRQvR+jdkWMvv5sZY0xiCsYzTLLR9KAse8KI\n9uC8K1oj5WNdpyHp8pD99rsvHBP9qum9kMszTMRkTpq3Ifi+92GMMmcUCoVCoVAoFAqFQqFQKKYU\n+uOMQqFQKBQKhUKhUCgUCsUU4oayJqbADTZIaqCXpBRJJLPIX1wl+uUvBq3a4wG1vvHwTtGPv8OV\niWrHY8OShpc9G/TttHLQvaJEdRoJSXp0jCia6dNAl4r2SermQABUfY+nwmnb8ieuCh8bxN/i7zbG\nmKbdoKBmkStMy/Yrop+ovC4LxscFTE2z5WT+6aD09pwGndadJeUEqQFQBxtfgXTJP0PSt5mW33gK\nLh3FI5KuWXcW1L+//sEPnPZXPv7x93kKY6ZPgywuvRiVwicm5DONjOA5+i6AEpthyY56L4Jqyes5\n0aLwRtpAh0wl2RBL7Iwxpuc06HvlUgXygREiJwpPiaSCpleAptdzCs9ef1W6hxWHQNnLXoCxTLNk\nLiy3Sa/EZ0Pd8vs6DmEO370K55NllZAXtb4q13rhbfgsIwtU7MFZMr6wJOv4b+GIUjFfUkFbz+Ge\ncojWnpgo5SFjMex1dqXwlks6pr2H443p5OwR7bacE8iVIjERa7D3RJvoxtLMoXrI8ZK9Mpz3nMXY\n+GjNtL5xVfQ7eR7/biL3Cg85H9y0VZaTL1w/w2nn5m5y2v39koaf6IZk6tQF0ELnWJTej37lPtwf\nrZmMuVJy0UHSGZZXRnsk/ZZdH+KN7uMY1+Ct0pWntx6SwN5a0LI9livFtA+BMssU98//9XdFv288\n8rDTLgjgvDteK+V4OdcQvxZV4OzKpjEabpGOK2l5cHSJxUj6cIeUIp75FaRM3grcQ+Pz0h2h+hNw\nIcogh55dP94t+i3fBnr4tEcgKzjxgwOi3/knse9LvnWviTd638U8lt4nKcx8rlctwXimWfEhQDR8\ndrmKdl0S/YpvRV50pRV/90vfkefd6V9DRtoRwt6uIL1zmkUh3/r5LU47uHib005JkefE4Fe/6rTT\np+HMSEyx5MPFkO017oND2Pz7F4l+fXTeRdogeXLnytxhxYevY0URJ2SSRKXzkJQTFN2EXJFlEe19\n0uXHU4S9469APpOQIM+Qlp1Y74H5JO225OyNr2Dug7chTubNwxob7JQOZiGSdXoLMG+XmppFv2xy\nsLlr6xqn/dZrUnK2adNip12wHnk35wfGGJM1H/IDljN07H9/J6TJgDsPZ40tpWCZHLs6+crkPmBX\nTZYHDVlnQeFG7GdbgsJgB8meozh3zjdjThosJ7p5t0DKlEquLcPWWZ+3DLG36yi+r++UdKnxFmK+\nOb9058g9xu8ofefxHbbzaMlt1WayECb5v+2gGqLn8pN7FssNjTEmg1zCOpuQi2S3y7Or6r65Trud\npOm2HIZLK/zmrV1O+yztt3//wd+Ia1jOmDMX+WpCguVIROs0I4h4MHTltOiXtQy59hA9R74lwxwi\nqWTmLIyDLTEssByU4g2WB9nOaZyz+khu5c6W67GTpJS8L9MqpKSI9ynL9mw3556TiFshcrR0Ueyt\neHieuMbQnmDJmF22IpXeddnFtmWvdB3MJYfM0BXcw4xZ5aJfKuV6PH6p1hj1UB5pVpr3QJkzCoVC\noVAoFAqFQqFQKBRTCP1xRqFQKBQKhUKhUCgUCoViCqE/zigUCoVCoVAoFAqFQqFQTCFuWHOGba+4\nJocxsm4Da8+adsiaA/5q6At9M6C79hVLPTTXXYmRpeZoWNYqaXwLdVxYT5mSAY1aYHaeuGZ0CN+9\n4wc7nPbsBVK7lxGENjASqcMzlEm97WgUfzdC9QJS0+UzDVzAWKRQHZ389RWi33hMPmO8wbrVgXpZ\n2yPSCQ3k6BBqt4QuSWvRcAP073nroLHrOiw10SOd0CT+cf9+p118QdamYfvPOXOhH02mWhtL71oo\nrmHN3jDp8V3pUp+YkgJdY84csl5vkvpi1lin0HfY+uDxURQDSSIp7WCjtI0P1Eye9Ws61faJWTWV\nws3QqmYvxFqdT5pnY6SWdIxqAGVWSe1ruFPO/X/hV//jj+Lfhy9BW//IeliBerOhuWxvkt81/io0\n46xLtm2/M0kL33MZ3zHroftEv4oItPFth2HtPRqUWususi4OkK551/d2iH43L7/NTCbYLttbJGMq\n1y6Y8wjqOwxae7aILHKv/ekdp+2ukJaLYdIw81gfOCFtnZfPgA59Otktc+2SgYvS+nraFsSAlnrY\n/Pqzpb1yKtXH2fAoCmrVWdbpkVbMF9cl6rfiUMnN+Ozgd3c57RVPrBf92hNkzYR4IousQBveOig+\nG7wCrXX5g5inoWZZ92CkD3r1CztQy+K73/ic6JeYBN10y15895kG+Xw/f/ZZp/29L3zBaXeegVa7\nfIusN5CQgDVR+zJidd5qqaHmeimsf3dbdXQu/ghrseQe1C2542sfEv1SUrFO3/n2S0579p/Jmiat\nb18zk4kZn4HQu++SrMXRc5TqCt2PefzVX/5W9Nt8O+qpjJKtOtfNM8aYp/8n5ueJv3/MaX/x8f8t\n+t26AJasxdmI+TXTEKOT3LIWyvRlDzntSARxbnRUxsD1X/+fTjsaRQ2IxER5r5EI6jGUr8O+6qo9\nIfplzMJ55yNr0Tf/ebvol5eB2iAz5Db9wOimWiCp2dIiu/8aYlbPMcynXUehoxU5UJTyOb9Voy53\nOeaArYH52Y0xxk91FbiWytgY8gpvtrS1jyRjPprfQs2thetlPD29D7GC84B7vyg9yjmH5tp4UZdM\n+d0B1OhwBXAPWfNlzhu6fP2cIF4QdSYjMh/m849jkV0/kWt3Zc4sxveFZb/es3hOfu/w18j55rM6\nJQP39+MnnnbaCxdIa/IJsibn+85fJG3tuU5iwSrkAVxDzhirDgfdQ7pVJzCZ7rV3mkuKAAAgAElE\nQVR9D/ZvqlX/qeEF5EhFn99m4olEGsvaZ2W9jhmPI7Y3PIN7mPaorBNy9efHnXZwDeyk61+W9c3y\naS9yzazWQ/JcjIwgJn/2Lx9w2me3IwfKnCv3YkYW3kd8PtzD8HC76JdAZ3PdC7Djzlkr8+nzr2As\nAj6cmUleGcdjHVi/42N457BrYF57Cu+VlUtN3ME1Yuy6mlzHJUJxsyvUIrqlpCOX5feOhET5LJ37\nMF8Zc5CX81qy/25aEPkD59CpafId0+vF3HW3HnLa0dCQ6Oeieqr5K/CbQOiazAl6qZbT4FXkYlwD\n0hi5N7m+zYhtS14qzw0bypxRKBQKhUKhUCgUCoVCoZhC6I8zCoVCoVAoFAqFQqFQKBRTiBvKmkwC\nqETePEkZihFVMNlD9D9LYuImiUPLuV1Ou2iW5LdeeRP05kGy4fJZVrdFa0HzHA7BzmqgFtf86Gu/\nE9ewte/XfvpTp/3CH78v+tW/BEpd5T0bnXbXRUnRS80kGlT1Cqc9NiZpS0V3EB2cKKiDdb2iX8Gy\nOPsuW+g9Azoe0+WMMSaZrKGz5sEOLtwmKdE9jbjnQB/6xSw78uZW0F83z4dVcoZX0ivb+0D5/Mu7\n7nLaHhpbtnu27yk9J+i0h4cti+eTsPoeHwWtLNwopQVMOWNq2hhZSRsjJSEsn0tIkBbr/Uz9lc6s\nHxjpFaDKeQJSPnXgH1902sEoKMHX9krL5OnrsQ86doP6alup1nx0s9NuOQgq+wNPSOp0x9cwh0XZ\nuL9RWuunLPnFR/7X/U676SXIokJ90iqx+BbsnUA5aJZX3nhZ9Jt28y1OO3shKMEt+06JfgWrILPY\n9w+INes+t1H06z6FtVQwCe6hPWSL7S2RsqZesrhubIHMa/knV4t+PRdhHckWp7Zt+UtHYEW8bSMk\nHPd+WcpMfvF3kKvdvAh71ufHnshcbEk7STKRmIL90X7hkOjXdQiyx95BzPGcB6Rksf9yt7kebIlN\n17v4vtFxyBNYnmmMMRNjUroQTzDd3VgxgCn5Hfuxx/zVkjJftxtzHZwFi0amxRtjzNsvw1p55RIE\nlb8MSkp68a9hB3rgh3uc9mvHcaZ9fq2U0w71QALDtP3Wt2TcSCQbylgf9nbGbBmHpn+cqOvPgjbu\nnyWffbidnn0jYtLIgJRrjvTIsyXeqH0aVPRIm1w/+Ruw7v74ZcgYgnlSMs1yDJaUtu+uE/22/vXt\nTptt37cslPvg1idudtoxOoc8Ocij8go3i2s6OyEjys2FLLP22O9FvxE6q1n24rVkOaELiD2RZoxL\n1ccXi36Hfgop3Nw7IQVYtlX2C8ycPLmvmUA+M2rJVzz0XBUP4v7qn7EsUldDhjBIeWS41coXotib\nbqL7t++VdsCZCyCTYAtXnw+ywtbzu8Q1HEPzyGK3+VUp/1y4BTKQziOIhXKHGeOhMgQRypsKl8i5\n6amDxCSNcozu41KmEBuQOVG80U8WtnmrZMzne3GlYdybXj0m+mUvRb44MoB1m7tEfh/PQ+PhXU67\neMkq0a+r9ri5Hn73j1932iwBMcaYfDqv0v14VxkIyTU32IxcJVCB+G9Lq9xZeP/xZEPOYUsR++qQ\nZ6WQnJ2tio15r5Qmnuglq++kJGmlPdSE5+WzufOwLDVQeh/OuL5zkJHUfEyu2zNPHnHaVfdAMjb2\nppTC5hTjXSV0Gt83cxPywVEr34/6kAMmJ2P8e7tlbtN7HLlc9nLMYbI1xnPuQU4VmIFY2PSG3NvF\nJNlu21uHZ1hSLPrN+vPlZjLBdu4TMZlHxUi6O0Tv6fkbg6LfIMnz+Nyxy6Ok0Pse/3bA7/PGSNle\nHsmzk1x0/mavFdd0d+912oE8xM2JMSnP5TgfbsZ6tCWGo/14dncxniNrgcyNOT9s24H1aO/F8diN\nc1RlzigUCoVCoVAoFAqFQqFQTCH0xxmFQqFQKBQKhUKhUCgUiinEDWVNRWtAMWt886T4jKlbPnID\nsims3nRQNMdH6px2b9dR0Y+pZdMfXuK02w9JinXjW5ArcPXyPpIL2NTjdy6DPjZjJiREkSZJWw0S\n9TUpCTKccYsiHw2BphVy437sivaBGtwHU5r8Ffmi39iYrB4db6T4MU6pVmXpIRqDMZLEJFlV/QOF\nRO+jsU7xSxlb1UpUu24+BopYukf+3cWPg5o3QuOZUQla53CPHJeMIMat9rV9TttbIqVvUXJbGrwM\nx4aYRXsuvBnVvHtP4pn6LNlZFrk2MFW6/7x0GCoiWmK8Ufsf2H/Vn5Yl2llYwXTrOQ9KyjzT6XPX\nljltm9ZZ/+Zhpx1pYUc0SaW9fx3kNh6i+bHUbctNy8z7IWM2xjU9Jt0HOo80Ou2jh0C9vu1LW0S/\nhoO7nHbZyg1OO2mVlNElJ2NcFn0K9OXzv3xX9IuNgbo++9b3vfX/3xgmh7nRfinjyFwCemT/W1j7\nQ5YrWOMeUCX9WXgu/2xJib43b53TdpNrwzs/2Sf6bbsXElNfGfYS7+3W16RkKmse3Wsd9tjbP90l\n+t30yQ24hyOgp/eekpXwmT6bSfLKIz/YK/qVzgV9uDAAmnfzy5IiHPzwXDNZaHwe67H4DumANEYO\nIh46F21KawrRvvfsAc327i9J6WDSm/j/JwWbIEtiZxJjpGvgik9hXy6LQXbrzpHuSj1EQ+99F1Ru\njyW3K7oJMZ0dC7zFMu4O1GIduHKw3tjpzxgpVfNkQxbQeaJW9BsfnzxpmjHG9DTgfhu65NmdEwGV\nvCgT91g6TTp79B3FOs6ag8/Y0dAYY9p31eE7PgRK/co7JV2f90XeKsTol7/5itOeXXZaXNNI7nq5\nfkiNAhUypvZcg3SQc6Jp+TIfmbX8+udYWpp0Dlr0Yfzdnnext8eG5DkbqLFFN/FD1iJIWWKWLG64\nHdKWYXJCSc2X+4DP/oIN0+gTKQFnefhwF3KMvNVloh/nVEmpyKNaenY6bX+5XEdJSYjjLQcQD1rr\nOkQ/JtDnLsUatfO61AzkKYVVm5z2+Lgco5JZiCkdjXAudOfKMcpfFTSTiVSKTSyBMUbmJ4OtWMOx\nXil7zKqkMgLDyM1SU6U83u3GuNVs/JjT7uuTMiZ/Mc6ankuITby3hcTVGJOYhH+3nsVeLJojyzhE\nQ5DIsHNT7kLpIDscQi6akTfDaXdelu9jaSU4CweuIq6lVctyFKlWDhdPsEtNLsl8jJE5vr8m+7rX\nGGNM5wHIs7KXYN5SfPI9Y9rtiKHsuDUxIfcsOypdrMX7yO0fQW7scst76DiFsghZs7CXz/1Iypq4\nBAM7ttX9XsbnwELsdZbN916Q7w8Fa4NOm/Putl3yXAzR/BZ9c6uJN/LWIJ6xG54xcjyzlmF+Bi0J\n0Di9S47Qe0f3Mfl9kQaMb9kdeDd358j8PT0X+6LrEtyqsqswtkNDUtKWlobvGxyE2xfHRmPke1GU\npNRZi2XcGKxDGQcvve/0W+/97NCXSVJn+z2Lz4brQZkzCoVCoVAoFAqFQqFQKBRTCP1xRqFQKBQK\nhUKhUCgUCoViCnFDXk37UbipZNRIuRK7a7RQReKZ990n+rndoMwmJHAFb/m7UOWdoIe3nUEl7owq\nSYlNSQO9relV0M9S80CDymyQlMwVVaA75vpBaSq/f47ox44fSSmgklWtfEz06+x8E/2SQG1LD0qn\njdadGJfUbNwfy4KMMabkjhlmMsGOReOjkiruKQAFK9nrctq9p6QDUsYszH9CIqhtoxFJYR6lat75\nVZB15a8Lin7eHKyLpCDmNNwH2puvQFbCr38JErL2C6AYZzZKZ6kxki/lrANFL2zJQ2IkK5kgF6s8\nq/o2P1OKD3K+1Dy5zvqJNl4sjVE+MApuAd26/YB0h5j7OMmciNbZeUhWwi++BXT1aB+ofCMWPZgl\ni2/sgexn0bRpot/ZRkiPloTxWTmt54Qkuc97z4KmzdXZA9Uyvrz9Xeyx/RdASVywXVLumWI8OIB+\nKS65dlwufH/fWci2glvk3rNpsfEGV3l3W+unYw8ovVmluP/2A9LxqnAxKMNc8b3DooxWPoQK9Uyh\nnNYZFv2SaU0PUFxnZwdbEtjyFmROLENa98BK0Y9dcNwFeF7/DBnXu0kWEboAmmhKsjyiLh9DXF7z\n+Q1O+9pvpDtXCzkhlMfZDK/6I5CLXX36oPis8gFIisbHEXeZFm+MMT3kXLVqMeQiTE83xpi7/wec\n7JjuX7Zyk+jHriNDLeQ+QHRjOwaP9GAdcHzpOyulFM9+9TmnXUgSn9Vflq5BnmycJRdfhDtJ0SwZ\nT1vewNop24bJKVwiZZhZs6X0I95w0dra/OfStW3fk5D+5VDO8PruI6LfpjnIIUYGSO58QVKd5378\nQae94+9+5LRLFpeKfod3ghK/nmRxq+6C/MmWArgPw7UnOQ1neNdJeYY3dWNvd4awLu75iJzHvmPI\nT3LXI772tkl3nEvPgV5euhz9DrxiSdZ/BYp7ydfvNfEEu3+0kOzIGGNMIs6eDJJWte6rE93m/AWk\nfyzbK12xRvTrTcRnnkKs9da3JZ0+vQqyjZ7jNAd0tqSXSbnJQBvF/vnYLzN9LtGPpVuFqxA3hjpk\nTsmy/FgM0piJCZmjshQgdBEyC1sqzmvbSBVcXMCOcBPj8gzOnIs4ECGpWvlDMn9PSUHsZCfNxEQ5\nhmNjiHuRCMbdlny53dibaaUYw9AV7O2Rfpk7cakFzn06a+U54S9Cgjg+Tq5sHimHjPYj3vA8BoKy\n32AH1lneSuS8Q80y551MTJAM1c49C9YHnTaPEZdSMMYYXxBzOEpS4Prnzpn3A0to0qpkbPRSDN28\nHE54kS7IHJMKZR6WTu6g9c8jxuVYMhfOqc6Re1TwzhrRr+EVvKf6y/B8lQ/PF/3qn8aZ6crGGEWa\n5ftN5aMLzGSCy3gE5srNzrKmvlOIt94SKRXqPYq1er4Ra2H8nHz/XHs/Yu9gM65xZ0lZUzSKMy4w\nTa595xq3nJ+BgbPX7ddxROZiLKFKciMOcXkMY4zJJ/lqihdr5sqvZU4Q7ca7Vf4a3GvXgUbRj8fS\nyLTZGKPMGYVCoVAoFAqFQqFQKBSKKYX+OKNQKBQKhUKhUCgUCoVCMYXQH2cUCoVCoVAoFAqFQqFQ\nKKYQN6w5k+xBzYHuI83is5wV0GPGSHc5NCQtTV0uaABjMViADTRLjWzONOjocmpQB6Ll4AnRLy0I\nPWAS6XGjZCXKNqXGGDNrE3TtCwLQtU/Y9VfIzi8xEbVk2IbLGGMGm6DNTSuBdtiVLi1IM+dBK8t6\nzOz5UoPPFtyFxSbucJGVNtvsGWOMK5Os9UgTHQtJ/W2klbS+98BivceyxM1fRTVAGmE9Fu2NiH6h\ni9ByZsxAPZBUsqdzuaTeMTAH4z7cQrUsiuW4x+hvsX0s29MZY0zXIaxpttUOWRbZ7KjJ45e9SGoc\nExIn77fOptdRp6H6Y4vkZy9D08o1SKoekzbWwyHUosgOwmq4653XRL/9e1G/48HPwtp3+y93i369\nVDfDT7a6b/wUlqHbvnqXuMZDNnOdh6HBTLCG7kob1tUTH0edggzLlnU0Ar1xQSH+VsOFp0W/jmbs\n4dzliF27v/2m6LfqL6TlZbzRcArPvJgsvY2RtV9OPwerzIWPSuv08ZGx67bzVsj6FY0vwPI5Yw7q\nP3XVdYt+WaTtDpPOtuJ+1DQou0WuuYQE3Gvda7CYHLoibegDC7GHh8mysPFZK6YO4wyJxlDfpub2\nWaJfzxFo68Ot2M/hqIxX412TZ8MciyKuFW6SdZg6z+L8SyvFnsibJa29N/8dxmWwCfNx6d+lfrl4\nK2qxtZIdc1pQ2r5yTTNfAXTtHorHPQ2yLk+iC+ckx438dbJg1p2km45R/a2eszL2cy2By62Yp+o7\n5Bz2X8R5NxbD+o1GZI2UjkOoB1Fwt4k7yqnejSc3TXyW4cV41jyI2gDZ+2Utq/wNQafN9fBCZ+QZ\nEt0MfX7XANbtmi0rRD+2X2+gukmzPoEY0LZL1jjZ+TZqvKyai2casvbEvOXIq77+5JP4O53yXv/5\nh1902pdegG5/xd/KWL74ibVOu/lNnE9c78MYY45ew/3GO7p2H0etqiSrPgvbS/MtpVlzPUi16Dj/\nGB2VdvUFK1C7MCkJeUVaqayvkV26xGmHw1eddqgW69vlyhPXDESQV3AdDlGXwEg71oFm5C+2Letw\nP+Z0zIeY3rxDxt3M2bgPtgf3V8qaOBwfJgOcoyZ75LM0PE82uLnYl7bdbv3uXfi+97E5NsaYoiD2\nQSiEvVP/soyPmXMxNlyrMUa20AWrqsQ1A/RukFNJ9ahG5Jkb6ce67T2L2JCcfkX0c/kRU0YGkDv4\nCuUzdVIdwkRaC3wuGPPeGoDxhCcfsSs9KGu/JJLddSvVKB2PyhpI3lI8F6+5go3yTKr7A94f0qsQ\nkztOyLp7gW58xmt6qAn1o4Ya+sQ1vMcK6HxvelHunc4W5DptffiOol5ZEyWb3gN7z+Dv+qwamGX3\n4Zzk2krFW6pFv7a9dU473vX0jDGmcy/OXa7paIwx4Wa8Q3CdmcGrMu/juHW5BXOyukbW42Eb6ytv\n4T2maovsl16B9eTLQt4yNoYY3dNzQFwTC+NeO48gRrvzZfzneoeXz2IfLdwqa/vwO2zoEnIYzgGM\nkb8rcG3PvLVlop9JlLHdhjJnFAqFQqFQKBQKhUKhUCimEPrjjEKhUCgUCoVCoVAoFArFFOKGsqbh\nDlCGyrdJ26/RYVAgw62gD7GFnzHG1L77jNMumgsabP+YpJ+lp4OfNToKSldi6mnRr/soqJxpZCl5\n6R2y5yyVcpiUdNBdCxeBqhSNShp1IAA/q7pDL6Jft7TkCswE3bH7DO6nYbuUdOXOxn0UbpzutFnu\nY8x7JT/xBlN1bXswN9Eeh4hm5y6U1C9+5nGioo9ZVtrdRCtkSqUtFUolSipbv3YeBv1sdNCyQiN5\nkSuXLMynS6q5rxBUvAGiLNr2vd5iolASFY3laMYY484FhZnnKkw2wcZIemS8rbRTUrBVr/5SSv1m\nfhaWny27QA2sfUZKH9KrQeuMdIDOG7xbWthW3ANadmwYczOzWGruqgshz2u+Cmruyg2IFSnpbnFN\naiokbP05oPqeevKw6JdNEsGnnt3htP/8m4+KfilkHdtS/7zTTkyR0sb+86Ah9h6HHGPNExtEv8M/\nhIVu+ffuN/FGQTHmYGJMUsXDTRjr5Z/BnDY+L+m01+oRt5Y/stxp952XFsgsI+rfAXp99T2WBSnJ\nAZhSf+o/yEb9Uynimo799XQN4kFzl6Rv5/hg+x1tw3mSt05SPLOISpxWgf186lfvin412yAP6iCZ\nT/AWSS9veFPSw+OJK7/Eviq7V/KKB6+RPGEYsXEkX0pM8ishaQuN7HLa1Z+WErbGVzD3WWRZHmmT\nEs28ORgXlmOw/KKw6mZxjS8f1PAj//QKrrHkmXPJatiVgbg7NiJtUEMXEONnFEHyyeevMcbkkSVl\n/1Wsl7xFlaLfZEspInTusDzQGClr6mJbWOnyaw7+GPEiieTUiy0p4rN/+3OnffMXYF0dGZA5yJu/\ngHT0oX/+M6cd7cfZbMt3PC78O8mLc6J6i1ybn/mL/+20P3EvpKJbblku+o2QpHnVf7/HaY+NyTzl\n/L8jZs+kdZuSkSr69Z2wLK7jiGQai9wlMqb0XUE8TEjG3Iz0yb1YNA+xdiCEnGN4SOaoHSTD9RA1\nPrNaypvr9r153X4s7XC7S8Q1vmK5Dpy/Wd8g+5FUsmM/Piu6Re6dxpcQN9KmIZ7adsB9lJfFeiHX\n4TzMGGlXPBlSimEqSyCk9saYzIXIx0boTBtskLIQtpE3pBhI8sizi620ey/iOYtvlmOYnIpYN9yL\nvxUmeTzbbRtjzMAE1hxbcw+2yD3AEtCUANosqTHGmIIliBUtZ3c57b4LMp9OoHzHV4Y14iuWluht\nu8lGWIaoD4wkskN/z/29z3xkWaUBeJ2xvKbvpBw//0zkUTtfgRR4831SKs5W2qkevMNkz8U99F6U\n351CUrKLP0eeXHyTlDAnefEdF3bjPbD/osyBfBWQGY+N4Zxh+3hjjGnZjpzFT/L9i5bU2WXF13gj\ndw3iqF0Gg/cfy6K9ZVJmV78f62x+MOi0+awyxpiTe2CRfq4R8XV0TJ7HhaV4b3DnYV34a/DfLTWt\nGaMznXPKvjNyvjkPT3NjL45QPDTGmLq3MT8Fc/Duk+SWP6OM0jtx6DTigYhPRq4fcx13dGXOKBQK\nhUKhUCgUCoVCoVBMIfTHGYVCoVAoFAqFQqFQKBSKKcQNZU3+KlDH+q5I2iVXQM9bBA1H+7Ezop+b\n3FmaT+7Bd1vVvPv6jjntoT5Q5u1q4xNj4BWzK8DIKOhwpy/WimtuvQ10xXAI1ClvhqxE3dEAlxn+\nO76ygOjH8oHULNyfTdki8yMzGgZdMTYoabVMFZsMdJEUjN0gjDGCC8byBE+BlDWxM8rAZdD2fEE5\nNuyI1HcK42RTnX3loFsmE70rrRzfx1W0jTHGnQ+Kfu4y0II9WZaDD8ni0un7Bhvfnwbb+gokaZ5S\nOUYTJIdKIVcBljDYzxFvtHTjbwW81p6YwNqaGMeiy1ooXcGYOly9/hGnffpPPxH9sheCaholZwKW\nNxhjzAh91nMaVMHiTagun5Ag90TDW6DC1x/CPq9YKymjjc9DhvT4Z7c67ZBFly3ZDEeh2DCeL9Uv\naZahZpLspWCe+L6NMWbh49LhKt4IzIc0peVVKYNsb8W+SiAKfO5qSZ12ZZOkj9Z3X1TKTDwkx+ut\nI7q15ZDQRFXyO7ohzVvwGHjPXHXeGGMKNiDm/8OnfuS0tyyUErl6knq29KKi/8LpMm7wmnvzO9ud\n9k1PbBb9WNaatQTXRNqks0pnf7+ZLAyG8LeS3XLPR7swTuyMwdJSY4xJTcU6yJgGunUsLMd5qA7r\n1hdEzAxUS+llYiLia99VUIXT5sOZpO7IS/KaFNxf2QbIbktWSZlLYiJi3sQEKLscZ40xJmcT5CHj\no5Azt26X7kKzPn2T0472YX207jsv+qVmyzGLN6LkTnPsNenUwu4bq1LgHLH37DnR78NfhY1UIs33\npd9I6emMMkhC3/3pQaedlSbP2TW3LXbadc9BPnfyyCWnPXtmUFxzz9e2OW2mxl96XY7nF+6C29Il\nctNKstxxnvsFZDl3khNn/hr5dwvWI38688N3nHZ7SJ6z5fnSmSieyJyJcQ13SMcQlrZ27Klz2ukz\npBPR6Sf/6LTnf+oxXFMn3T/yKOcY7iFZf4fMA1LSsRe73oFsZtajmKfBQWutp2KMrjwNaZunSOYi\n7IITobIDg/WWWwqdHwNXcH9RK9dkKVMKyYlifZLSn1Yl8/V4g2ORHVND7TjzM+ci7rXtkHEln84k\nL8nJfL4Zot/Vg3ByTCGHxATLPWWgGX83NYBYVLoBGgRb6jcm5JF4JnapNMaYznexLjwFmGPbTena\nnleddvZ8nHe206woSUBuZJFOGaPHwrIMQTwRI0mWv1Kul9a3MFf9TYit9v2UfYjc5uiZ9r1+TPRb\nWwnp/Zo185x244E60W/hZyFzCvfifSKnGP+917wuruG8tpscSfOH5L02X0QM3fqZW502uxEaI8si\nuCj3HLFKTLCcL0SuTuX3SbfD4S6Z68QbLGUaHZQyO95jPeSUNxqWuWd+JeLZ0e04G149JudxVily\nWx7rN07I83MuOWAtqMQ9eKg0Bb+XGiMd27pPopRByRYpge89hnnkd4OL+2V+zu/3/O44aq0LlrO7\nyDFwLCLHiN2urgdlzigUCoVCoVAoFAqFQqFQTCH0xxmFQqFQKBQKhUKhUCgUiimE/jijUCgUCoVC\noVAoFAqFQjGFuGHNGbaMK1gmdW9jY/is4xhqvLDm3hipzeI6Lv11Uqc7XgytZmwANVnyq6Q1WvsE\ndMBnfgv92qxl0JHZOkYX2fmG23HfuUWyzkVyMrSfKT5ogpNdUvfLmkQ3WUIX3CK/L3QOmlW2i86Z\nJ/uNhKT+ON5IC8JGbLhDalDZLj1/FXR9w93vr2vMX4N+4Xb5faxVHg5jHlNzZZ2Urn3Q3CaQ3pgt\ndvPWSGtMtp5LDUDHOdAi6yGlFcJeLTZM+tZhuS7YCi5/M3SMrBn/zxtEM0YafH+1rHVj64XjiYUP\nohZB1NKcNr6CmiHppPXt2Fsv+nW1ka14JepPFKyTvt/9VEuH7T9TvbJ2wJWfveG0M+ZhzBMTMdeR\nHmnvHGnFehF2tUdkfaENj6522tFuxJSZd39Y9BsawrP7/LiHjnMnRb/y21AH59xzqC+RUifneugK\ntPvTrmNv90ERI5va/m5ph1y+JOi0L+xDjYnlH5cxkOfY5UE73HhV9Kt8ZKXTLhvC3LfYWv2bMP/V\n06HpHx/DvbbtrRPXtL6K2ha+VIzhU/v3i363L1rktP9jJ2p69Q7JNbxuCLVqKsmi/cKvpUa55lH0\na3oJY2Tbkqck3/Bo+0AoXh102o0vXxSfzfwY7KpHRxHz2w5cEv0SFiGoREPYE1xHwhhjgg+iplIn\nWTqHrsl91RmCvSSff+cu/c5pZy+R9r3RXql5d/57VNZhGqJaSFw7J3RZauv90xGHp920xWmPrJX3\n6vEE6fvwTOMxWQuJY8VkoPEM6hetelzuMXcOzpdksn7t+mdZT6X7CL7j2knMQcUcWSfKUD2LSCvG\nI3uxrAvWf56sxTfgnK2hvCpteqa4Zvu3UDOhJAvxYM5Dsv5T44tYq2uXznHagdkyrm+ow2cZZFVq\nxqWP+Ou/Qm2U+/+O6t585y3Rb3hY1tiLJ5reRO6UvUDWYWKr9LK7kb9e+elR0S80hH3QdPJtpz1s\n7UW2TA3MxJh1HJR214XrEU8zpqO+Tetp1F4IVMq9ODKCXJHr8/krZX2ctAycYynrkJeybbMxRli+\ns/12l2WRPUGFEV1k6cxtY2TNlckA18Ozaw0W34bcvvFZzLd/Tq7oNzGK+COHyjAAACAASURBVME5\nenKyjGc+qlPBdRbtnDc1A8/M9S1TU7FnJyZkHYncGsTryCDGuuuYfKZM2nPDVHskPSj3dmo6arNd\newqWyiPWe5aPa7iN4yy01zDXIoo3uIZXqr1uK/FckTY671pkjG/dg3fJYYr/s0tlPGXbZK5F6WuW\nOVVG9nynnZyMeb+29zmn3fi2zJsGImTXTu2DL8q4kZZ6fUtru1Zaw6uIu/5SzFP24mLRr/8KYn/W\nAqyx8ZhVX6iuz0wmxqlukrdYvvvy+0DuCsyJXQsyXIt73DgH58nYuHyWTB/mrqYY4/HDP/xB9Cu6\nG7XdwkPY2/30ju0tl7bxB1/AfC1ahVpGda9ckPdQgTPTQ3Nadf9c0a9jD96nkuksGLgka93weyqv\nzaRiWUur9116b91k3gNlzigUCoVCoVAoFAqFQqFQTCH0xxmFQqFQKBQKhUKhUCgUiinEDbnfLAMZ\n6pLSkRhZbIXrQfUN3i21AGxHFzoLal9qjpS5jA2DHsiWlJFCaYvd+BwoSSyLSEwGz81TIW1a07Ig\nI8orQTsabRP9elsghWgl6v/MR7aKftlz8OwnvguqfpFlNRlpAsWOLRHDnZIObixKfrwROgcatb9G\nUkGZqpvqBRUx0iHpgemlsH4dbMX9p6RLq+SSO2Fb2H0CayZBuhSawFx8H1PDeR1kVMl77a/tpjbu\nwabgjo2B9sbSpcTkJNGP7RtD5yDlyaR7s28+3AyqtG29mOwnmuM8E1ec+CMoeiv+Yq34rI/ml63v\ncldLWZjZi2bHflD08tcGRbfMatALa5+BrKTuBSm/m/9F2By37IbFbKgedvWBoLyH4P0Yo/6rmE+2\nCDXGmBQ39nDdi6DzdrXsM++HgWugj/K6NsaYQaKCLvv8Oqc9YdEsBxukbCHeYPlNdFRSojPnguo8\nk+JZ+04ZA3lem3ZDolV003TRr/4VzF3GLHx35d0bRb/2U7AtvPq7d532qdOg++ZnSMroH/ZhHoJ5\n+O57Vki79RePYO5umg+K8cqFM0W/ZLI0zV0LuizHA2OM6TkFinoeWfmefvq46DfnjjlmspAWxNos\nWbtIfHb23yAxyV2D5xi1pLZ1p/7ktNnqdtqtN4t++/7+5057/mcgUzvz74dEPz57OC7x37WlX+1v\nYl1FSHrCkgD7+9gWNK1MnrPNr8N6MvtxyBLHxqR8KhpFvHKRhNTei/5pk2vfu+Cjy5z2uz97R3yW\nlIizobAU8tWeQUnDX7AUsbKPLEh/9+zbot8T//S4024+hzwofbqk/3fQWciShI5OyC2Dc2aLa5Yk\nIufylch9ygg+gOuSUhEf03KLRL+UD+M8HWxA3BwfkbIzHiOWfs2YWS76BR+U9PB4IiUNfzfFL/MA\nlhlzLjJhybMy0rCmuw7g7MpbHxT9eo5i3lhuVLZ5iZHAfnG5sHZSZyJ3iEZlPu12I1bkLMFe5HE1\nRu6lpCTkv8P90kqb92nnO3gm24KZ83CWSxTfXi36te2iM2i5iTvcbDVtJYujZNHsIsmIy5rvi3/E\nWZhZjNjkLrDeXfpJAkZrIWOOlPe10bmbMYuk8mHkYsmWDX2y5/plHBItORGXA+D3ndpfnxL93MUY\nl1G676I7pR1wshd/l62WuayEMcZkWtK/eIJz7Q5ac8YYM0KSp5zliJnJPnl/4SbkX7x/fYVSXpO3\nEjkQl4ywJUApKSSniuCeOE4evnJFXDON8pmKfLwLJCfKORTxhSTHE9Y9jJN0cIQk+vZ53PA27qNk\nHd5T061z0PP/sGD+oOD3ogkZKs04SQdjPViPbssqfoLSL/594EN3rhH9huizRNr3iR+2yhdE8bfO\nNmGsq8dwP9lWbBujzxLpvGMZkzHGpFchlnOpisFaGVM5PvQex28HKQEpb5sYxaClT+e/JeMaS8Sv\nB2XOKBQKhUKhUCgUCoVCoVBMIfTHGYVCoVAoFAqFQqFQKBSKKcQNZU3s3hOxXH6YFuslmlV/vayM\nzrRMpkilWVXJ23fVOW0PVYgeHZXVxsuJmsv31H8eMpdop6RRt6WD8p45A/c3NiLp24zUPNBCm49K\nB5KiRaBDVz4Ayq49RjlEa0/2Yhy8uZJW5d0gXX/iDqLj2Y4YYxHQ3kMpoP3FBkZEv+gAqINMM82p\nmSH69bfBuYDXyOigdBNg+mJgHsmIiGYa7ZPzmES0yf7LkMR4iyXNL0KUUXbdcFk0sm6iKY+PQD7R\ntrNO9PPXYH5Gw+jHrjnGGOMhKnG8MX1x0GmzpNAYYxoO1DntpX+1wWnX/kFSZJlGmUR00qLpd4h+\nV/ahUjpLGkpuqRT92g9DxjBr60ec9sDAWaedlibXR28v9tIorb2Og9JZKjUH+5klcI0vykrr/W1Y\nl1436IUuyx2Mnb+GmmntVUsJW0aVpJHHGxFyE1j4SSkBOvgj6M5GSPJUPUfKBFhexq5E6UEpM+k4\nh1iXVoF4OzoqJYssV8haDInDHHKyuHhV0pS/+Pi9TvvMcdBxU1Pk+P3t/3rcab/0M0g9MuZKCrkh\nCvjVNyBPy86Tz+QuAn2WpWtpbklxT0yREsZ4omMfYlzHuFy37gLEgJzZ2C8j0yRF1p+JcyPZAymZ\n7ZRUuhbOLw007950GctSSFL5nf/vl057dhnW/WqXPO5900DtTiPaffBWuS7ZdarzBKj+tvyJ4+Gx\n7//EaVc+LmUfZ5980WlXfwTyp9Q0eQ6e/dftTrv463ebeKP/ImLMtEVyj3nJ4ab7HUiNltwmZdu/\n/3u4flSRy9inv/KQ6PfG99502rd+AdI1W37pDSBulW/E2BSuhoyheYeUlxZugJyx+S3sxUhTv+hX\ntAXr8cd/8xunfc+9G0S/rPmQPnTtx77PtdwT2emH5QQ5K6UT0al/Rcwv+NadJp5g2QbLZI2R8iU+\n34WzjTEmXEvU+tT3T4lL76xx2u0HsO+jFdI5J6cSe5tlTf09Z5w2u8gYY0xKCu4pMQ/PNDQkJRcT\nEzgzO89iHXgsWUHvacQRjg3hRrkm0il353ln9yRjjPGWTq6Ugl2KbDdKljllL4MkJtIiz7G82bh/\ndg219wHLUTLI8enaC+dEPz7LWNIwEsJ895yQcV3IdEjFYEs0k+i9aKAWcsiCW6WTa+cenDW9PXje\nfEsS03MS0i0/xWGv9Xdr/3DaaVfJMP+B0bETeyK1wMq/1gWdNkvBek7K0hI81yxbHumTZw3njuwk\nFtgk4/jwMGJ3XxPmt/6PyFF/+qc/iWs+8+CDTvtyG+4vGpPSZC6rMa8cf7d4hYyT3ij2dlq5jD2M\nYnrfzqa9WPu706Ifu2tOCmgOvEVSTsa5Tz7NKTssG2NMNrlNjQ5h3PJWyLOhfT++z1OAGLYmR+Y3\nbXUoj8KOT1n5OKdtl6yl6xCHWarF7nXGyHccdmXzWFI6dl/m3yiGLcexottxVvP7du9pudbfUz7D\ngjJnFAqFQqFQKBQKhUKhUCimEPrjjEKhUCgUCoVCoVAoFArFFEJ/nFEoFAqFQqFQKBQKhUKhmELc\nsOYM62q9lkXjMNX14JoztlY10oZ+hRuhp3yP1RpZjFU8BB/i3nNSg59JlrBdh2GpxQVtfNNkPRu2\nsWt4Gfq93JVSG+jLhQYsdwmGhjWqxhjTsAc2sqxrHiRLVGOM8ZZhzNKp5kPvxSbRL71ici1Ds+bj\nuXqOS1vBXNI5erKh+fPmS71dSgrsxtKyoKsNNV8W/QbIjrH3CGq6+Kpu8Iw0d6zr8xZJnXOYNMaR\nVqorky/11rw22TJvtFdqw9n6z5WJmhWJxXK+WTcoxvKE1BDatorxROltsB6+9vsT4rP5n4S3ZddR\nrC1vudyzu5+D/W5RO9ZjxoznRL+RPoxTHtk2p2ZJHTFbGLY3oD5EZsFip91w4mVxDVtaX9qHtVOz\nUdameeuXu5329hN43m9/9/Oin78a65Lt6jsPyPjCYF34/m9tF5/NuG2W0y6U8ti44NIl3Fd7k6yR\nMJPGIHMO1tmO77wl+q35JKzUT/waVtVlVpw63QA9b+AY1kLHjjrRb5TsEU/WI+av2YC6CDVJMlby\nWM93oxZD7+Uu0Y/32J0f2+S0bRv60WHUUZr9COypj/xCWhxn9uJ8GbyEeNs9IOsPlFvfH08U34ra\nHQ3PyPofY1Sn58S/wFY7Z7G0K+5xIw6zDj3S2yH6uQKIS2yheX6nrL30869gjWxdutRpJydRna6r\n8nxie9KUDNSlaDks4wvXA+J5zyyXdru1L6NmUmAh1u/lnx0W/bj23FAHnrf5NXmWzH7iFjOZ2PMy\nav2MWTbeK1fCC5RrqPRaNRIyfagxNO8e1KOJtMr1uOK2hU47TJ817rgq+k3biviz9+9RF6YjhLoo\npdnSfrvhCPZ5OtVeylpUKPr1ncNYb54LPX7D8QbRj22YKz+KvWhbnS+dBW19tBf14a49J2t3NHTJ\nmBBPcN2RJMuW10vrOyEJ8eA99tTDqEcT60Fti4KaVaJfOIy5yluBeoKeNBkbuy6j1lveDPytorJt\nTntkRO7FgYEz5npIT58j/p2YSPeeiBjQXyu/b6gW56x/NuqqZFlxKFCFfLplJ/afbXGctyx43fuL\nF2SOJdct13J0ZyMHGRiW9V4aT+Bs5ZptJSWyvlnmIsQmfj/xeWTdstRC7IOOXTgX/TOx/9xWncGh\nBuzT8rtwfkZ65L227bzmtAs24L0o2idzVK4vks6W0ZZtsI/eNUIXkVdwzUVjjEmbLt+N4om8jXiX\nGIuOWp8i6Nf9Fu9gRXfJM6TvLGJU97t4f6jYtkz043OSa19F+jpFv7YLiEVXaX3n5mMc/FY85Vi7\ntBJnfVtfn+jHZ0YpWV9zfStjZF2xATqDue6mMcZ0HMPzsn12yVaZGw81yxpK8YaLcoGOvfJseL/a\nU/Z6ZDv3ok0YG1eqrCuXvQhjlZSKXCVm1bObuRAxoY/O4ASqJTPcKn978E1DXsX7lGuSGiPXascR\n1Chye6VFdiK93w3SPi/eImtxch2l8WHU2xnpk3V53rtHJJQ5o1AoFAqFQqFQKBQKhUIxhdAfZxQK\nhUKhUCgUCoVCoVAophA31GG4yZ5vwKJEMzc5iSw6XQFpZ8USk5F+UJXcltVtWgUoSEPNoI8l+yQF\nte4ZWKB5CnF/GctBPfYXSauxUBMohCyDGGqUNLUE+qnKnQlKbH+tpMpNvwl2kOEwrEXHVki61EAj\nxqz1bdyDbdfIVoem2MQdbHOZ6JbjyVKccDuoWkwVNMYYlx+yA7ZktiVfPpa40dwnuWS/aA/om4O1\noH6xNSZLxoyRVL/i1aBbj41JOluvG/TWRLq/EYsyypaDTONNDUh6a+95UCh5LG1bcmvI4opIJ6iM\nvqCUK7GtINvgXdx5UfTb9tW7nHbHQYwR07qNMcZHMovjP4MUqmKVtHkc7sC4F28Bxf3q9lecdv95\nKd1he8T+COYjdFLKOU7U/V/23jM+7us68z+oAwzaoPdGEgQB9l4lkiIpUVSXJdmWbMmWlbgnTuRs\nnMSJs5uNk/x33eW4rO1Esi3LTVZvlESKRey9d/TegRkMMCj7Ih//nudcS3yxHvzx5nxfXXLuDH7l\n3nPvb+Y856nz2p/fts1rd+7U1sVVfwqb3q6jSEnMWak1SZzSH2rAtaxYqWPFhVeRBls7BaqK/Azc\nu9qPa4thttrreBfppPPXzVH9WBKUlYoYeOqnR1S/5ESM6bFBzN+8jRWq3+nfnfDaWz68zmvzHOVx\nJaLlpT0ncdwz79dp+BMkicmbP9drN+3Wx5o+C3H5rW/BcnvNh7XfJ8sPz/78mNdefO9i1W+kKyRT\nRSelvrJkQESkaz9khTM+iGvRf06vISmzkd4bKIGUpfPiCdWPJa8s61x83xLVb8Wjq732t770pNe+\n/wZIM45c1BKam29a77ULFkPm0nHqjOqXlEv25RTHW/bpe5i9jNbgAszzvmNamhzvx5ozTingLD8W\nETn2tVe89uavrpNos/ZmXEPXMpRttreTxPKer9yl+h0+hhj76ydwvAUBbZm65EbcY5aQxcXqc/7v\nf/k9r/2JTZu8Nq/HfSE9tnefRcz6yH2w6X7h6R2qH1t9V8yCvCXRkbBceeui1+49hrl9+JyWnW28\nB3MzlvaArsRwzf1akhBNeD0OVOhr3n0U0sG8NWX0Hr1uj/UjNmaT1eu1Ha+rfrzvSaV52bpjp+rH\ncvn4eOyH+vowXyYmdNp+UlIxvQdjse3y26pfqA3X1l/4/vbWhZRqP0Hp88MtWhKRQXGX5UTxfr1P\n7DiEdTfvtvf9s//PcIr/qCNpGKGSB65ckEmIxxgsXQTZWUaNjtF9tF7t2gEJ542bdExNSMO8OHUY\nY782iyTwzl6eLXvb3sU86j+jpX3BAcxh3vO6crJYknqE6rE/v/aOjuWFsyHVYrvxjn1aljKp1SdR\nhS2Tx4a0hIMtirNW4vhYxiQiUnEb9kSJidhjTE7qPepQGBKg9l0Ym0cPa7lvJu2Plj4Eue/4MD7v\nyW/8nXrP5UN4psuj/VpoRJ+T34c43kuxJilfS8nGhhBfSu9GeYK6Z7SUseYxnHsvXRfXRpwtp6eC\ngfPYs2c4+xtXvvR7WM4noi2zOw7gWSNQo8+Fnz+DtL+JT9eSIpallt+LfWQnlXGYyNXHNh7CeOw+\ngD0bS65FRC68gvWTZeCN3frZhffTNRuxJx+8qiWL/He55EtSgd5jjPbo51EXy5wxDMMwDMMwDMMw\nDMOYRuzLGcMwDMMwDMMwDMMwjGnkurKmvtNIR0520n65Ej5Xow426/QmrqbP6aS5K0pVv7EgUr8G\nLiOdyJet5U8suQheQzpRPrkOcWVwES036T2JcyrcpGUanDY+MYpjdeU1Q0Nw6BgfQ5rWcKeWNbGz\nA8uzUmdo56LRfp0uF216T1FauXsujbhffH+SnOuenI6UV3YMCA1oVxx/DtLguCq2myabNhPXgFOT\nuUK7W806ZxZkAi1H4LQR60ir+H3NJ5GO6kpd2L0kQk5ObqqqLwtSvcgg7lVgrnYBcGVT0WTgKo6V\nnapERHqPYJz5SR44Y0m56tdJDmmp5B7G5ySiU2vn3g8HEq6mLiIycyt0P40H4dSSUoZjcCUNCWlI\nV0ykNGRXavOF5Q967bd+uddr3/rJTapf52GkNU5SyqXfcfBiV4aeTlyHpELdj1NVpwJOm2zbeU29\nxunXnNrtL9bp6ywx5dnsShG3fhrX6rXvQSq0dYuOe0FK1937LNyfVt2ONO/2I1pOlnwE1+3yfkg2\n52XOV/18mZg7k5RTzZI4ERFfDuJNUSbG5kiX7sfrxJwH4IYx4cSKlFIt/YsmHMsTnPTbBE5R96Od\nMUenB4dIXtB9ZLvXLto0U/Vr213ntdmRo/5Fnb4951E4pP3l1x/12mefOuq1P/adv1Lv6byAlP7G\ndxBPS9drGUpf42WvzS4M8Wn63COUyt52FI412at13G18Fen+5eQKGJ+q14j8iimwSyOSKf3cl63l\n2HxuLFFyJaAjEaQwf/R/POC1r/5cy9N2vg5JSzal2rvypyRKnT7fjFTsMXIGmVWo3WzmlSPOl98N\n+dTsM9oVsrIW15PTrS+9peWvyz8HN7in/uYZr/2Bz92q+sXROrn73yH9Wv3IatXv2NMYW9GWiibl\n4R66+yjlkkLrp+sGNOtjmDvXfoNxy3ITEb0n7DiIe3PgkpZ73dhI0psH6AUuBeDsMS78504cHzkq\nZczW7iadB3BPQ02IIZnzdap+72nIItJIvp05v0D166e99sB5SC+Lb6lS/fzFev8/lbjXhh0808j1\nM7lAy0cKF+C6sWTAlZRGSOK7ci7cgsZpbRER6TyPvUsKuaDlrsGzS7hTSwzP78RcKp+JcRYa1HtD\ndpMKtyOmJmQ4e156TkqrwLroP6v3BLy/CdKenueHiEhmjR4n0SST9sOuGy+71ba8qSVZjM+H8dl0\nCHtK1yluglwR+dzXbNPStMBcnC/vf/m6vP6SdoTkmN4zhM8uytLPbTO30NghKQuPLxGR7Fqs/Sxd\nH3bGRIiel2ITsE/MqNYxINQytW5NuWsx5jiGioiSt3NMHefSCiIyQs9TLBnmPZGIljLz88WYo0qf\nJHk8l9KIkOSLvxsQEbn6MvZImUV4bbRXS6vKSALZcgrPn3OqtQvf2ADuK99vV2Y2Rq+NdONEMhfq\n2Dt0TcuhXCxzxjAMwzAMwzAMwzAMYxqxL2cMwzAMwzAMwzAMwzCmEftyxjAMwzAMwzAMwzAMYxq5\nbs2ZGR+A9Vjnca0T5DosrBvLrNWaRtZop5ImjO1XRUQmyFIzfzXsbTsO6loHXLMijuqYHP7aLq9d\n/QFd94Brn7AN1+SYtlRMJquroQbowdLKM1W/gXpoUWMToZPzZWjdOtvq8fVi7bKISGLG1Na5YI1e\nYKGuk5KcA+0l1zdIztM6uo6TsBtLp5o5Q026xlDhfFiMxSWhpoYvS9ewCdL7WGOcSDaFoWatrRwM\noPYB661zV+jaBL1UKymRalnEJ+uaBvx3/aSX/YO6AmTLm0H1VNw6OpEhrTWNJgWrYI0Z7tPXvPkV\naN5zV0E/uf97u1W/NX8G69yDT+C1dX+zWfXrvwTbR67RNNKm63/EfRDXL5WuS0YexkBLgtbjv/0d\n1D5ZdvMCr/3lL/676vfXn/mw167Mw70Z7dU63VSyT+3cA9vItj06bvC9WvnfUItl1NH9umMp2rT1\n9XntANmYiuj6JU1vYKw3OZZ+vgScS9UyxMqiMq257dyF6xEZR8zpobpOIiLrPokaExwrT710ymuX\nVWi97HAL+mWnIW5yjRkRURrlK7/BmBuo71Pd0qtwLVL8+IyBs/rci++Czrv/PMYpx2GRqa05w3rj\nROeas00ya49de1jWUDeTztnVeLMNZ9c+1JsIVGr9e0Y+LDpjYvAZVffhGNpPH1Xv6T2ONbjkNlxX\nn0/Xx0krwr0enIRlaLhbC8MTqBYPW4CzNl1EJJM09Lx+VN69UvW78pt9MpUc+x2s2Dc7Ftmd76I+\nwcIPoo7Bge/vUf3W34TXEmlv0hfUsbK6CPUwym7AnH316V2q38e3IRYHFmEvxVr9lCJdb2JmDOqC\nxcdj3N/wV7o+16//7rdee/nCaq/N81dEpO6XsHi999NbvXbT65dVv1kPIn7XLMf69Ny3XlX9Vs7W\n9UuiSWIA+wW3NmCAaj2w7XTDC+dUv5JbMfaLNqPmU89pXS+N61rN/jju+/AP9LqflI89B9fI6qJ6\nMXGOZTLXt0mmemmX/+OY6le0FcfXR7VYBut0POU6M8m52OO179brItdBYAvwriPNql/Bmqm7hyIi\nQdrruTUEOSZmU72gptcuqn5s1xzr1Mdj8tdXeG2uV8LPICI6ludQjZOsWRjr53e9pd5TUU2W6GTF\n3XFB12CZvxnPIWkz8HzRfVBfd46dQbrHmYv0eszl5q63P294EWO/4JN3SDTh+adrgIq07anz2jzH\n3BokTYexR+ijWplxzl47lWorznwYtefc8c01Xnh/dWUH9qXb7lun3nPibTzrzL8Re9nUCv0cyHul\nAbJKHxrU62LmAsRxXnMLVuuaJq2v4Rl75iM4p3CX/rx0Z98YbXgPN+LYeHM9o5hYzDe3Vh7XL+Ua\nsiULtqh+Y2OY9/EzcG0iYR3PRqkuZs8Z9Au30jobq+PG5Tb0W5qNNS54Rdd6aWvHHOMYEnasrhMp\nZnOtm6xFuobZcDtqjnHtIL52Ivr7hvfCMmcMwzAMwzAMwzAMwzCmEftyxjAMwzAMwzAMwzAMYxq5\nrqwp3I/0HzdtnFOf2Aq590Sr7kdylvYddfjDaTqdLYvS9MbZyuygTsFPrdKpZb9n/qOQYPU4x1Cy\nCWm/PRcgtXGtrCJkxcgpjemO9TVbbhesRrpn70WdksiW2fy33NT19LJimUrSq5EG554zp+qyvfWQ\nIzvglE9O13dtD0/9EKnTBTchfZttVkW0PfUopYglBvD/IScNrGcc44yt2/ovaKvEQC1JtyhNzT1W\nZYNLaaFJOdp+kP8dbMB1GXPkT6mOlVs0ufTkAa8946GF6rVQJ1L7RrrRrrlpjurHcq/qLZBBtO3V\nqaCcNll5H/7W5Z8eUf069iFVl21+c4rRnvmxxeo9V/8ZqYaxNA/W1dSofod2QVITS+mK1Y59b9tb\nmM/9HUiRHL2mx8Ssm5HGv/urr3vtogot8+tqQopj2f++X6LNkrtxPQYva7nHqZ/h+i75JOxo03Zc\nVf0K1mNesQTt8is6XX94FCn1wTDm2OHD2oZ5Ccks66/h/sy/Fdb1bmoty8RK78C1HXFkZ+fJmpZt\nKTf+hZZcDFzDtUirwfjrPqHlr6FmxN74ZIyfNse6U93V5RJVeJ3IKNWpyXz+LBllaYGItq+fFY/r\nF+7Q15nlCXkL0C8uTktbGvfBbp4lHH1kqRuXpNfwwDxcpaz8VV778pvPqX5JdOxqrT+q11l/Kf6u\nvwQxYMyx2RwL0vpB+4rx8SHVL92xEI025WXYc7Tu0fLL1kuIlRX3QiY9k2SEItpGc+Aq0rf7Qk4q\nejLWta4D2Cc8/I2HVL+nvwjr6vvvQUx882uwW9/8RZ0aPnAJf3e8HNfWn6f3LXf/DWQMydk47nNP\naPkYy3J6jmD/1dGv1+OadEiKrh6r89pb7l2j+mXOmzr7XrbPdtdfTrtv3YkYGu9IippJQsqW1CyZ\nEtHy/e6juC4VG2apfnU78XljQ7gfmYsx3vb89F31nkU3wAK9/pdnvHanI2FOuYB4z1qWiGMjnrsU\ne8rhLrJqdvbdk7Sn6joE2ZUr2Z6c1HudaMM20XxMLvW/xbUp2DRDvcYy+HaSJebfoGN0J+1bCjbi\nM4JNes87TlKmFDq+C0/t8Nox8fr37bTZmHPd+/XzADPSgXsydAHzN22Olqyokgck4U7K0WUC/CSR\naPgdZDkFm/U18gUc2XEU6aI5MXi2S72Wt7HCa7OVdt5aLX9KpD15v9EwxQAAIABJREFUxlzIEuve\n0PE5azGkJCwZdsc37/9PvIWxw1JO1w593jrsm310nblMhYhIF8nDJ8jqu/J2vZeNI2lLPJ1f3wkt\nm2SuPnnCaxfdMVu9xvv4Cl3BIyqM0zNhrDO+/cVY43lstpNsTUQkheTeLDFsv6ZLLfgyEGMTfHhP\n34UO1W/oGuZmyznsOyYpBlbN13v5DfdhT5M+C3uJ/vP6s8vuQ+ztovUueNWRitLcVHbpk1pOyzbv\nygJed/uDsh0uljljGIZhGIZhGIZhGIYxjdiXM4ZhGIZhGIZhGIZhGNPIdWVNbbvqvHZ6lU6R5SrO\nnDod43zdk7cC7jF+SgHm9GgRkSGSi/gykUpWdn+t6scpqVzVvf8y0uiyFurqye2HkMafTZWVR51K\n1FxtPJvSQt10pLyVSJNs24d0O5+TajhMaUssk3IdZ0ZDOn0q2vip+r+bphZsQNpsFlXud92VYuOR\nHjhMMprJMX0fyygVm92LRru0e8VwK1LYMyh9nStaJxVoxyiulp5A6XDhDv3ZbW9rGcjvKbhJp3gO\nUSV8ljiNDuhxwSnD7AITcWRX4Xadlh9NCm9G6rR7fFWPQLZX9zScNmZ9QkuKrjyFVMnAQqRv+4t0\n1fDBK0izPf3UYa+99PO6qv2x7yI1ewE5ILz2t1/z2rO36hTPpbfjWPNX4pw+vNKp9j6BsXP8G0iF\n7CBppIhIYi7GafFqpMhylXQRkYwqjLE54zim4dZB1W/WVi0FizYpJPe4ul27TdSShKzppQte25WU\nnvkP3JM5D+J6TjrplWlJmCN3fhBOXU2HtASI5Sg1JE9rfAfzKDVNx4O+fox1Tltte7dB9av5IM5p\ndADziM9PRKSY3ILO/ATnlzNTS1tYgjcyhvTbXKff0CUtGYsmmZRS3XrozPv2i0tACjk7KImI9NRB\nrjVCrgDuXOx4u85rX34ZsrW1f6sld33HkerMEgFfDo6h84BOsy/eBJnUyf94ymtXfWi96te8B44x\nIyyhdNZPjtchcgkp2aRzr8dXII288SWcU7hSp5e7MtRoU7wNkuRgi04xLqrBPf7tX//Ka6+5Y5nq\nlz4Tqc7Nr2MvMKdGp+v3teJ6sLyv63CT6vfAf7/Ha/M6e+tXbvfaO//lDfUedlLjlPTEDC3LafgN\nxmrZfXCLiRFNBjkXHv7ZQa+95rN6XBz7DqR0wRHM7Z0vHFT9PrD4bpkq/IUYc/48LXmvfw7rXTE5\nMnW8q2W8cT6s/ezUyLIoEZHUUqTdBxsxXsYd2d7MWzCvWGrV+Dz2octv02tzWiWOveI2jLFgp5Z1\ncohvI7lr8S2OmxIdOzunxDqSet7bppFjniu5He6mvY1WD0SF5lewFrpumRxX8jdUeO0O13mK4nL+\nWuzRXXfUcZKaNb+IdShrRZHqxxIOlrSMkaQh1XkuaqK9ZxzJsWtW6fvTfQ7PTNk1uKDs2iWiXVOH\n6hFDJt9f+aXKCYw4jnrJ+dd3iPljCJPz1WhYz4khcppiqW7Dr/T66ScXpuIt2B/mO06hfD/4/qY6\nJShYPpyVimtZ+xDmX6/jHJxN46iD9jODF/WcyFmG8cJOWhkztTSNnapYLphUqJ9vspfi87oPYa2u\nf07L1VMcJ91oM9yOa+26THKcYqez8WE9Z2PiEH+GLlBJD8cxd3wE4yQpG4Pa7zgZcezl68THl5St\n96hD9Gwb7sSxpjgOm/wZsXTcmYu0HJdjIj9Ldh3Q++nRPow5Liky4bhDu3IoF8ucMQzDMAzDMAzD\nMAzDmEbsyxnDMAzDMAzDMAzDMIxpxL6cMQzDMAzDMAzDMAzDmEauK+pmTd24o9vsPwvNJNdEiPPp\n+ghso9m+BxpRtkITERm6Cl0aa6X9RdoydJy0jENtqBcRrGd9mWNjSRrHjv3QEKY5+kRfNvT5Axdh\nxfsHOrkwXkunWhZsrygikknWXlzbJXuR1rb2nkO9gCLt+hcVuL5P/3ltccc1Y7ifaxvH2k22CkvO\n0xaxbCXL2mG+vyIiOStLvHZcIoahvwT3eyw4qt7DxzBOdt7KOltEIlSThcdmqE3XF2GrVv5bQ1f0\nsRaR9rVtF6ybc5ZpC/RBx6Y8mjS/AG30rMeWOn8XWsjaz8GieGJC60UDC3CdyGFQ0sq0Vp/HatXt\nqPnEdsciIiv/G+ogBNthbzfrJuj7ew9pu905n9rotSNh6HQbnte62hiqcZQ1A7rN8rvnqn6s42Rt\n/YUfadvvTBojrRSHxie0eLuT5n3NZok6bIMYyNS62mO/QK2VirmYHxlzclU/tmPkMVe2qkL141ow\nCal4T0KcjtEn3ob15lzSxg+S/XZqhp7nhfMRw3iOZdXoucg2vz7SBGfT/BcR6diLuJyeBU21W0en\nbBvGFq8TXN9K5A/jXDTpeKfOa4eduivlVHNrPIJYyDaRIiJde8jqdQv0y0lZ2uo0tQpzs3LlAhzD\nKa3V53jdQ/bjbGmaXqmPISEB8a9oC2o+RSL62g2exz3MWYP7Ntyia2xxnTaOwQ2vnVD9uG5X3xXE\nlMq7V6l+o8NTVzdIRGvNcxeXqteaOhFvU6h2U8Cx9z77o0Nee9FfoCbLtd/oc27txTy94eOo3eXW\nn2vbhdh08TAsZ5c9uMJrJ8brbVtXKz57xocxRoaadU20nj6yoef6OJ/T1tfnn0AtsYpZmOe7vrND\n9SvOwv5p4Q0Y903HdR2dkV69H4smXKOu95S2puU6LAOXMYbjHJtorq83SOMxZ7mOUVwXMYNqCXBs\nFRHpOox6EVyXgWv58F5TxLH93oe5PRbStTvyVmKc8mf0nNTrbMFanHtgJtaZnhFdp4X3aLyWsqX4\nf714nSInUSDvxgoc04iuX+EjS/PmVzBus5brfTTXquT6kS4VH5zntbuPY88+cEHHPWW5TuvQrI8v\n8dr9l/R75n92tdcepf1qy+vaCrqMxqYvE/ex+4h+hkgku/oUqgfXSvbvIiJFW7FH5VpdXGtPRPTG\nL8pwfY2BRl1Hc4Ke2/j5IT5d19jJXoLnwmAr6jr1nNFzm2ug8vx1bdj7z2E/N+d+xMY4qr2UUaP3\nVyN9w+/5WsSpv5JEzz4jXYhx3af0XOS5nbcaD3gjTuy//DTWDJ8P12X2I7o+FdeCnQoGac/GNZ5E\nREJNuCccmzi2iYh0H6A1gM7frVEarMc44esU7tQ1hhLSEGPHgvi7/Ezoznmu3zdwEfM0IV3XYgt3\nIEYH6Dy69ut1LHsF9jdBWguynXWCa5BxjSH3OxT3GdvFMmcMwzAMwzAMwzAMwzCmEftyxjAMwzAM\nwzAMwzAMYxqJmXTzxg3DMAzDMAzDMAzDMIz/37DMGcMwDMMwDMMwDMMwjGnEvpwxDMMwDMMwDMMw\nDMOYRuzLGcMwDMMwDMMwDMMwjGnEvpwxDMMwDMMwDMMwDMOYRuzLGcMwDMMwDMMwDMMwjGnEvpwx\nDMMwDMMwDMMwDMOYRuzLGcMwDMMwDMMwDMMwjGnEvpwxDMMwDMMwDMMwDMOYRuzLGcMwDMMwDMMw\nDMMwjGnEvpwxDMMwDMMwDMMwDMOYRuzLGcMwDMMwDMMwDMMwjGnEvpwxDMMwDMMwDMMwDMOYRuzL\nGcMwDMMwDMMwDMMwjGnEvpwxDMMwDMMwDMMwDMOYRuzLGcMwDMMwDMMwDMMwjGnEvpwxDMMwDMMw\nDMMwDMOYRuzLGcMwDMMwDMMwDMMwjGkk/nov7vvmV7123roy/UZ/otceD0e89lgoovoNXOz22pMT\nk1473Dqk+uVvrEA/dJOR7pDql1GV7bU7Dzbj71zp8dr+vBT1noKbZnjt0YGw1+493qb6RfpGvHZC\nhs9rjw2MqH7+igyvPXgO55eYk6z6DXcE8Z6iNK89GZlQ/cbpmq39m3+QaPP844977ezMdPVa6uws\nrx280uu10+Zkq35Xdl322tc6O732R77+EdVvqAnXo/9Cl9eO9OtrmLmwwGunz8AxtLx9xWsX3TRT\nvaf+d2e9dv76SvzNaz2qX8+hVq8dDuPvJiYkqH7ZK4u9dtf+Jq9duGWG6pecl+q1J8Zw7xJSElW/\ngas495pNj0k0OfLUN7x2pDesXiu5fbbXbt/b4LWzFxeqfi2v4h4W31HttZteOK/6Za/AdYn345ol\n5fhVv1DroNf2F2JcNb9+yWuX3lat3tN5CNc51NDvtSdGxlW/wMJ8/N18XH8/tUVEhjsQRxIzMP8i\nwVHVj+MItwO1earf4FWMpXm3f0qizbWTz3jtK8+cVK91Dgx47bJSnH/RrVWqX2xCnNeOT46nth7f\nr33lJa+95pE1Xvv0r46pfpWrKT72DnttXxauZ6h5UL3n8kXcx5UPrvDabvwPNeIenzqIcVGRm6v6\npVUGvHbb+XavnZ6sY+rsTy/32uPhMa/t3m9fAO8rLLlTosmpF7/ntZOd8Th4FTG08wTiUO1jy1S/\ny/953GtHxnAeqflpqt9QO6570QbEPF+mvi59ZxCT82mt5nV6YlTPsXA31qfOdxu9dtndNapfz0ms\nk+F2zDd/aYbql5SLdXe0HzEqNl7/BtS+o85rZy1FjBpu1WMsi+LXjCUPSbTZ+y//w2tzPBQR6dyP\n6xGbiPk27oxv3icwSc644Pg4cAnrYqhxQPVLnZXptZPpekaGML7dMTdwGTEruQCvRQb1mhvnQ6zg\nsTAR0ePCX4gx2HcO4yq5SI9NHgvJBbS/Gdf7m4FLOL5lH/9LiSbNdb/z2jxORfTalVaJ6zpY36f6\nJWVjXevYg/VTYvTf4j3L+AjmrC+QpPqllWLcXv31Ia9dvBVxnOeliEjLm1ib+fqNDenxFsfnNAPn\n5C/W+7qeYy14D60LPmcN53V3YgxtX7buF5+Ezyibc79Em/ozv/Ta/JwgItJ1GOeSXITxnVqi448a\nqzSGA1V6jQ+24v6P0HqXWaP71T+H/WbaLOxRU+jvDrfr55jMORgjoXasfTHxcaqfPwfrXaiD5m9u\npmgwFnrO4joMXdF73vhUjKe4JMxz9+/yHm7Wyo9KNPnVn/2Z1y7MzlKvxSbhOGJiMLEylzl71Leu\neu3uQawHeRn6XveHsIerWIv9i/tcmVKB69xzAM+LOetK8VlnO9V7im6e5bWvPI09WmBOjupXuAF/\nl+cO739FREq2YW3htfDaL0+pfhyv4tOxrtQduKb6rfnSZq+dn3+bRJumK8967e6jzeq1wvW4NpEg\n1njeS4iIpJdjHvRewF7RfZ5PKcf9SSvGnnBsRPcb7sLn8140bzn2OmPDer1L8NNaGMb7h9v1PiOO\nYhvPHV+6/h5hqJm+Y6D1vOdUq+qXTHu4CH3fEKS9sIhI+myMp5lL/3B/Y5kzhmEYhmEYhmEYhmEY\n08h1M2f4F/TmFy6q14pux68AbW/im728G3WGTdpMfIMaasGvROlOZkZiBn594F/kx5xff/gXi5Qy\nfHs12olv2vyl+leEy0+f8NrFlEWTUat/veXP5myJXucXmUnKnuBsmZxVJaoffyPXcxzfriWk61/b\n3HOMNvzN8pm3zurX6BvtljZkfqx7eJHqF27HN49li3GPL/7wgOp3sQHftN76D7d77ef/4TnV7+67\n8OssX3f+9fXkN/eq9wyF8S2kvwT32P2VsrMP31Dm5+GXiPHhMdXv1Kv45nreLXO9tnt/9j7xjtee\nf+t8rx2XrKePm/0RTfgb3XGf/jVksA6/1g83Ye4MOr/oxaVgPDY9d85rlz8wT/Ub7cevSa2vUybT\nbbNVP/6lO9yF+Ze5CN+aj4X1L3+xCfg+uJTGQJxzTu1769/zs7sPOd/kb8LYHqzHdeA5KiISpviQ\nSr+mDFzpVv0mnKy2aEM/Gkntp1ao1wav4fjPPodfbNr/Q8+x0AjiRUURMmwy5ut4xr9QDV7GeVbf\nWqv6nXwRf+vGL27y2j2nEPfybyxX76l8APOgbU8djtX5pcWfgjFYU1vhtTMXF6h+LW9gnOWWY20I\nd+hfUPiYuvYgu2EwrLPJFn1mtUwVoXrElyHKNhTR1zybfomN8+msptK76Ne0RMxtzooSEUlMwy+i\nA5TV5f66nF6Fdbb1bfz6mLsasdr9xSitEu/htauBYoOISDr9YlhyK467bbf+RY8zrRro18PyrTpu\njFPWBmcCxDmZiLyvmLFEog5nh06M6rUhdxV+WW2jX3Nz1pSqfmOU0TJE94f3MyIine8invkos9fN\nWlHZMoP47EH6pTziZPJm0C9wnO0R7tC/Zg5SFjPH6MlJPZaGO/G+RLqn7udxjOUsHX+R3n+N9gzL\nVMHzzb0uPJc4y85dG/rOdnjt7OVFXjshVe8DeO3ijItIUK9xDa8gKy57OfbQcZSB5f4inURjIpV+\nTW5986rqV3479mX91/AZ7i/SWYuQkcB7z1En6zZnCc63ncZosEFndMkErlnZHIk6XYdxLiVOvOC5\nyHsTX7b+ZXsigrWBM/bHh/X9yZqPa8PZNonOvo/3lRmzMMfGac6GWnRMTcrBMQWbcA3drMDyO3CP\nfZnIZuk+2aD6ZVRjTefMN3fPm78SWeb9V3EdOBtDRKTjXfr8lRJVlj26yms3v6ifF2PiME85hiam\n6zjJJCdiPeBMGRGRxHjae1OmWWKW/rzMuViDh5txP7LmIf51H9BzsXMfrlH+WqyfbrZSsBn7AFZk\nDDiZeTv/9Q2vnUqZwLExOjWvZBmuS+Z8HF9Kmc4aOvOdfTi+/xn9zJluyrpLcNax0SHMP46BaWU6\nq6hl9wWvnbsMMdCdBxxjw720r2rQ15AzRzn7q/c8xnpMrL6egdmUEUmxLWe5fk73pSHTpelNPB8H\n5uarfsm59J3AGfzdzFrdL9SKccZZi/wMJyIy0qPHtItlzhiGYRiGYRiGYRiGYUwj9uWMYRiGYRiG\nYRiGYRjGNGJfzhiGYRiGYRiGYRiGYUwj1605076dasncVKFe49oMWcuh4WTXGxGtV09Ig76s/1SH\n6pdE1f4HzsHNIKlQayu5+ngstZOp/ow4Wj52uWCN++BlrSFkrS+78ox2a8102b2o2XDlJ3A+YZ2r\niEiAatqwztmthJ8YeH/dZTTgCuETjr684oOoHVH/b9u99rWfaycZrq3DLkoDjlNSXmyF1z75xLte\n+6ZHb1T9JsdxHOye4C+GvrL6EV1ogDW3B769y2uPRLSmuHYDRNEN++u8dtlKXTcjJYT7zQ4Vo31a\nl+0jl6f9zx322jd9eoPq9+I3X/fac7d9UqJJoAZjya3A33cOc4ndPoJ1WrdZuAWV1kf7MKaDLVpf\n7ifHDx4ubj2MVHLAiE/B3G5+GXrTgk3a+Yrra7TtqvPaKeVaV8taTa4X4HOc2FibOnD+/XXmPO99\nWZh/rusN1z+aCk4+ifGTlqTnfdEtuD89Q3AdqKnW45av6e4fYB7kDOiaEDd/BXpkdhJrfFnrwavX\non4Yu4a0nIOudvlf6Pk7NgwN8KmdqFGy5hNrVb940tmyvpir74uIFG/FuXfshD648GY9frjWSn0X\n1okVH9b1e1rfQg2b4k9IVAmQa0v3Pr3eDZP2vITqV5z59/2q3+xHFnttjmtcd0hEJCYWcaljR728\nHwW3cC016OxZh91/RrtSMHxvspYWqde6D+Ac02ehTsuw44zB9eWK1mLM9p7QNdu4vk1GFfYHriZ7\n4GyXTCWZpCkfcOoJjJH7V3oNjjHeOUZ2b1LXPU7vQfT+BvfBrVPXRk5WY+RwyDX+Bt1jpbpeXJ/L\nvZ5cI42dKrOWaMeUnqNUH4/cqNgBR0Q7cvE44/8XESncrOdwNGFHjtwV+loONWJt6D0NB7iMObo2\nF9dBYMc7fo+IdrgquKHiPY9BRF/3IZrPXGMg0Vl3uJ5N+zt1XrvoZu1Y2X0Gr3G9opg4/Ttr/3mM\nsQDV3UgtDeh+VHONa/b4nNod41NYT09E15Xpd+vA0XVnN0GuCymi70kfnT/HLBGR5u2oh8XXPaNc\n18uMiUfc86XiM3ou4rnIdbBk9yaOAb5c3a/9IGoJ+ekZJ22GdjnqPk5OVVRnJmdpseo3UI+xyu5y\nKQX63Mvu0tcsmvjILZPdNkVEBmlvxmOw8Xld3yyN6qsEaB4VbtQxhNdJrnc1cEyvNeyodO00atTl\nrcP65MtznseozhbvB906b5eePe21yzZgnvoSdZ2fNZ/G3qmDaim6z4Ecl7qP4r7HOG6HNZ/We51o\nU3gj9mJte6+o18K0b0stIwe8RufZl86F1wauheXCexB37eK6aFwTNER1nWIS9HXqOdtE70E8Yxdh\nEZHMWooB1Vjr3WeDENXsmxjF8zzXHhIRSa/AZ4yNYB8xcElfo5Qyff9dLHPGMAzDMAzDMAzDMAxj\nGrEvZwzDMAzDMAzDMAzDMKaR68qa0muREtd3Uqd4cuoz2xkmOqlabN842of0s+QinV7X8XYd/i5Z\nwrL9oIhI3xkch7K6otSpHsdul1MKIxdxDDM/tEr1GxtDSmJiIlKTXPve5teQFpmzjmz+erX8ieUn\nbOOckKLT3vodOVS0OfoKrMRZoiMicuRbu7328ChJFS5om9TVVZAYsUSi7pULqh/LphpIdnD5Rzrd\ncN2dy732oVdhPdk5gDS1j371Af3ZY0hv7SXZR35Ap+o2HkDqYMUNSGvsP6PT2ZIKIJFRVsvl+vP8\nZOlXfc8yr/3uj7TV9/KF1TJVsPQo1KhlSCNkN5w2G2mxabN0iqyPbPES01hiouUJbZRWzddoclxb\nkAYbkc6XuxzzYGwA46htu7YCVfMggGPo2qUtJLPXIkW9613ItmbeM1f14/Tt5GKk3QevankISwRi\n6CvpkR6dgj9EtuSyWKLOwo9j3O/67jvqtcR3kXZbko3YW+DIAvgarntsndc+98sTql//RVwbTo2t\neniR6lf/zBmvnb+pwmsf3gtbwR9/4afqPdvugnxp8bYF+Kzf6TTlRX8JaVXn6fNee8K1Oqd08MRc\npJP2n9dzNnUGUmmrqjHmuvbo8ePavkeTjrcQG+PStP0zp2Vz2v3cz2jfUpZyDtPcjvXpJbltB84/\n5wacb5oTow5/F7Go9r6FXnuI/s7kqL7mgxcQx1k64Chfle15A93f1JmZqh+PMX8JZMapFbpfQiqu\nWbAJMcTdY1Q+NF+mksgQYkK4Q8dATjlna+iW1y+rfhM0Fwu2YJ660tjYRFybeDr/vtNa3p1HlvX1\nZGne/BL2HGlV+nqyPfIoWSrHO1bQPSSnCpAE7ewzx1W/6rvnee1euifu502Q3LTnNMVhx/qVqVz4\nvi/9PzEygPHTvrtOvVZ2B86j/rlTXjvJ2aNyCn2E5Gw8hkVEMquw5x0bYRtUPWF4nfWTlT3Lj/tO\n6bFeQNL77BWQrIQdi+yew5A7VH4I86PpFS1VLdmG+Nd1BPtX1w49tRLjwL8O62fz65dUvyRHThxt\nOOX/DyRfzjPA7wk70tiENFz3JLKkd2XbSfl4jSXOXWf03M6bj71GUhJi70gxjjXUruNGXjU2DYPd\nuCehNm0hHCa7+rhkxIM4J/7HklzNX4jxOOLEl8ggxi1fL5ZPiegSCgUFElV4DPY16v0XW2FPPIl4\n4y/Xc2zgYs97vof3PCIieWRxzXbz2cu1JPfw1yH7nrG4wmuz3bFrF32a7JRX/Qn2OfV79LUcHcMx\nnX4VEqf5d+h1i2UvhTdhjXCliKd/cMBrl9yIfh37GlU/ltIWPipRZ+AaYrl7bdgeniWgGeX6urfu\nw16P7dLjHGv3MbLIzp6He5pSrNeQYVqfYxMwR1gGOFivx1zOPMTUyUl6dryon+eHO/HZLN+M9+m9\nHZ8vl5lwLbGHu/F5wSbsv7IdSdewEztcLHPGMAzDMAzDMAzDMAxjGrEvZwzDMAzDMAzDMAzDMKaR\n68qaUih12per0xpHKKVwjFLOYq7zdU8upWVPONXf2ZGl8zDSjo7X1enPSEcaXMEJuApkV5NTglPd\nmp1fOGUy3K9dD9p2Im3NR1XYMxfp/L8hckvIXYzUqeEenVbFDk35lK483KnTMbma9VSw5FbIDva9\neFS9xvKgu/7xLq/dd0E7e7A87dwOSJlKy3VVds6Jr4wll6gJnVL/8x+/4rVXVsGJoroEKb1Xn9Qy\njdAI0tBv+dKtXvvM/zmo+uXU4phCTUgnTanUqXLsYsDuUW1v6/TF3iDuVyGlPXcM6HTZvK73T+f+\nY+HUwIyNjvvAa0jHjfUhpXW4XY+zMXIwanoJ95BdH0REEjPxt4abcf1a39SV21vqkKbNqfrsNJST\nqK/JyWt1XjtMLltbH16v+nWQzKmIUsPP/Eqn4CeRTC+W5JW5i3WaJTsdhMidw5elU6iVVHIKYClT\n1ZxS9RpLdgKxGJtnf35M9Zt9D9L12Q1k+Rf1NWym+9V4FNezfGWF6ld8F1LgW0g+saAWqbWum1b2\nElzfeErLbt5Tp/pdeGqH1752CXF9zqpZql+EZGf1F5G6X7O5RvXj1NJiki7FOjG/leZw5QKJKgW3\nwJnBdT/hFNnzP4Yzlz9dj7MkkvVmkvuTK4fhf6dTCu+II6Fd/Bgkuixlyl6IVFqe1yIivgCO6diP\n4CbF8U5EJK8dadn5tM66+iceO4FFmEfBeu1mwI5ynXuQsj3HcaGo/x3Sy8umQDEal4SxlLdaO7W0\n74E0doSkJY4RpDpPliqwo4SIyHALYk7LRUh8S+Zp1xV2tgqQc0QOycjZ9VJEJIbWWZY0xKfotOwc\nGmfstNdzWcuq+fOTyUmGXaZERDLmYyxkLsM46z3cqvoll2iXp2jStovcTxzpzUAdjpdlQ3y9RPT+\nkCX6MfH6ZvfXQYqURk4lV54+rPoll2KPGqjBNUomx65Qo54Tl57Culb1MUhj3H0ySwzjEnGfSm+f\no/qNj2I/HRnCOpuUp2UFLA1i56Kcldr5aqpdDDNmY6yzA6OInlfFmxDzx0mGLyLSugMxP4kcJxMd\naUYixT1eN1wpRUIC4m13yz56BXHP3Tt1nMf+ml1bknJ0P5YMwJSxAAAgAElEQVRdRcjhb6hfx3UO\nOOFuXIfSubepbi0Tr3ntYDP2pXnLtdNj6ztarhZNirdiH9/1A8edcB1eYyfNyIC+hwGKKTMXI6YM\nOfPl/M+wJ1r2V1u99sSE47TK8lSafywx7D6pSy6cb8H+Ywmtv/MeXqr6Nb8AGVdyKT47e4GWrxz7\nOkpHFJIjmr9Ej7dxWk9zl2H+te3VLo0F6ytkKmH3q6z5+ly4tATLeYZ79BrC+22W47lxZITcBQca\nEF9DjhSRnZPYMbH/Esne9SOmjIZIMk3lD7IX6meDwXo8zweqcL6jg1qKyBJsdsKNdZylOI7y/I33\n6/XYlUO5WOaMYRiGYRiGYRiGYRjGNGJfzhiGYRiGYRiGYRiGYUwj9uWMYRiGYRiGYRiGYRjGNHLd\nmjP9rDF2xNZsPxjP9liOTbS/GHqzky+c9Nqu3Vj+hgqv3bW/yWsvmNSaSWXP3AatIOvkS4ty1Xta\nD0HXzrq+Qy/qWg7zV0HYHqiF9pFrdYiIDF1CnYerg0e8dvEtVapf9xnoGgdOol18p7Z5bXmLapxo\n9+iosOe5Q17b79N69S1/f7vXPvBN1MOo79IWtuU50M/Ouw01LzJrdY2OF77yvNde/+Aar32K7r2I\nyJ/8/Qe9dt3zsAz926dg2fvVhz+q3rP7POzZ2v8X9H87Tp9W/R5f+5DX7jiDMZI5putDNF+D/pbv\n8faT+li3rYLW9MTbqIOwZrm2dc5ZpXXa0aSPxlJqmR4/rOHl2gYlW3W/CFnwsQ1uqEnrO/NvrPDa\n3cdQPyBvla6RkriDrCtJ21tzD4p8xMTpuLGQ6iul16B2Ts/+FtUvaym0n6wbXvrZtarf5ATVCtoJ\ni2PX1r75MGJA7UdgC99zTP/dtFm6nk+0qVmKOi5dF3UNhwKyWewgnfFssrYVERkLap327xl27IAT\nUhGLFzwMC3i3xlXb27hutZ/Z7LXP/8dO/M2QjoHxKYgjp74FG+dyZ8xdeQVzNjIOvfLbrx5S/W66\nDVbTeRnQYg9e0nXBQg2Y91xTacKpf1KwXq8b0SRINRHaXtd1mITG+9xP4ZzGndoEnQewxiVlo/5A\n92E9HlMrEbMu/AhrzeyPL1H9sgoRo9IK8Nl9VLMtf65+T/MB1AW48csf8NojIR37Wa99+kVYEru1\naWaRN+uZNxAns1NTVb/SO7DO9hzE+V55Uq/HuVN4D0VE2nfVee2EDL0uco2l5HzUE5gc18J2tr7l\nOgaDl7QGfzyM+1+1BfVBOH6JaLtN1v6zxXPEmf8DF3C/CjcihkSGdL8EqlvGMaD6o4tVv+Qc7Nm4\n1lnmPL3W8+dzDaSSO3WBIB7r0WacrkXacl2/h+cpW4IX36zrXcUmkFUzXRe+/iLapjy9HPtD3ruK\niHQfwZgeoToh/Wcxj7gmioiIP0hrOFmsHn1G17Ph/VuI6sEVbZqp+vE5JZN1tBvHh1vxt8pupVpm\nrXr8qmeBNRJ1kjIx39x1LH8t4sD4KI7ftftOn4N9f5g/Q08xKV+7BX9ruA6fPa7jWccl1DJMLcZ+\naWwY4yLWsUPm2plXnkY8m/mgnmOjQ5gvObPgL9/Xck71Y7tl/uzWq2+ofj5aQwaohtT4qB7DiY6N\nfDTheldlayuc1xAn+dlqtE/v0/g82EI6Z7neW/uo1mDPBdTTy63VNeoqlqMWW8Oxl7x2Ms2/4k0z\n1Hu+8MU7vDZbMHed1Vbr6778FbzWhdp6fVd0vMuqxJ6ybn+d1+52aposXIt14eQ393jtuZ9Zpfod\n/Aae00q+/gGJNhOjOOf2fbreDddR5dquCWm6ngqvi11HUGswMqDHY+Y8jAW2h890aj+mZqFm2Ogo\nYlF8Kp5d/Pk6pnYdRRzOmo/PGx3UdYkm6Jw6j9ThHJL11yNcey6JYmpyoa6pxms61yTsOqotvJ0t\n6x9gmTOGYRiGYRiGYRiGYRjTiH05YxiGYRiGYRiGYRiGMY1cV9YUbkOaX5xjF+WfixRCTv/kdCYR\nkaGrkAD1URo0WxyLiAxeQCpe61WkB//5N76h+j16771euzIPKVGHLiPl7F2Sv4iIPHTXJq89Nog0\n2GxKVRQROfEuUgpLLuAY/Cnaii9rJdJnc8hS1k2fTCUr8nGyG69/Vqcult0+BT6hxJ3/cKfXHgtr\nK7P+y0iJZmvorY9uVP1Sy3Auza/CQo5T4EREVmxCiuaLP37LaxcEtKSI02t/+OabXvv7T/y112ab\nYBGRK62Q2Nxz141e+x9+8APV77Ptd3vtgWGkTZ50UvRu//hNXvs/v/Wc115dre8HW4be9EGk/rKM\nRkSk+WWk2c5aKVGlkCQvfec71GucYpe5ANKCxpcvqH6RPpqnfsxTX662ID3/E8gnMknmc/lH2oY9\n76YKr8328Gz5231UyzSWP/5Zr93TidRNthkV0fEmrQSxxu/X0sFIBHEj6S6kRo+P6XTZEZKEcEo/\np2mKiISatGVjtIkjCWjxugr12u5/R7rq6kdWe+2e49qatvJeyFMmJzGfO480qH6dh3DtS9cjNfbn\nX/i26tdF6bVjlF7PUo+zB3RKb2oFYufzhyBRKrqiZT6cultbgtTkDZu0xCZ7EcZt6c2QvHafrlP9\nzjwPyWFeJmJKwY3aCpnHYLQJNSJOhke0dKT6EZzXSD/SZ4OOPayPbK079uG+ZdRoSW4Gzb/kPKTt\nDjU6drPdu/B3uzH259z8sNe+euhX6j1Z83HNm3ad8NosRf6vY8ecmHcn7k3L2zr++cnK+K09mNtb\nF+uUfrayz16FtbT9HR2fu/YhPXz2FEgpctdApulKO/vPIHWabTxHHKvzjCrIfTkVm63cRUTKPwAJ\nbEoKYljn5SOqH0sW0wsgVWk5hH6duxvVe5LJlv2Fr7zgtRev0OtY9jJca5a9FMzUa30ohPvQsBPj\nqniLlgOx5CK1GPOt7lktCy7YWClTRfGtuJZ9jtU3p6FznFf2q6JlYSUzIct0bdPZdnmgHmtwSpGe\nLyw/Of8cJNeFczDfhlv1/je5COtfoAr7jaUPLVf9EsnmnGXKA1e0DInHLN8nls2JiIzT/q2RpIiJ\njszPld9Fm8bXcJ0mInpN5nPh/YQr0fFl4d/JtKfxBfT9CYUwN+Pi8NlDbe2qH1sl9w9R2YSVkFmx\nJb2ISMuLWP/iyLK995y2az7+W0ieKmuxto45UsQcilGpZPWdlqXlO13X8HksHan/7VnVLzFn6mRN\nV36CYyi4RUuFDv8MErHKKsSh/la936p9FPJrLklQvFnHHh/JLXNqWEqt8w16urAOsRy0YDHWsZiY\nOPWecAhjbCxMNvRZyarfubd/jGOYjzHBVuYiIu2XESvmP4T9QUKqnmNvfm27116wBrGbLdRFRMqX\nT63cN3cZPr/njN6/8z6dbeR9jl39BMl/h9sgMUybpfdlY/Rc3HsM9zs+WZdHGR/BHEnOxjHwPHfX\n5oI1GDPhXoyz0X7dj++Dkimf0c9ZKaWYf36SMrH0V0Rk4Bqk+Gy/nTWvQPVLSNHjycUyZwzDMAzD\nMAzDMAzDMKYR+3LGMAzDMAzDMAzDMAxjGrmurClrOSQ7/ad1ig9Xak6jFPIJx5WidQ9SZIdHkVZ2\neLd22Mknh44DlyAP+c7jj6t+2bnol1SIdN6bvgiXkWCLThnlFM0IyZqGrmonkIWrUS2bz2O4WVeP\nHxtC2uC1XyCFN3edTq1XaZYFlGaZo9OZlNvVFBBsRZpdco6WsKRQquSyG5F67XcqUAul+Jbfi367\n/nW76tbSCynSsplIy3YyhKX3KKQaX7gPsqueA6hoHZOo0w03zkcq4m+eRXX0v3/sMdWv7hTSvi+2\nIC3v5pt0inCkH/cxJQmpaXO21ap+oz2QCbz4Ty967ZJs7eyTnaelW9Gk5Q2k9U2M6DnGqa/sdJCY\nqdPt2JkhKR9jc9xxIyu/A/OAHSYaHAcv3xkaS3SDRzqRTl5ys06tHx/Ha4Uld+EFx+gqEhmgNsbU\n+LhOSQz2kSQkhyQXJ/aqfinkesPp6gUbdPpt61uO+06UOfI24t6SDdqFaeVHoIXrPoR5cOaklki0\nXkT6dWgEY7hqcYXq50tBBf22Y8e99pbHNqh+SZQaGu/He85+74DXnlGqUzJ3PLnba+eTZPGuj21S\n/VjyOtqLe3d4r063voPcRq7+mmRSW7QLydZ//oLXPv3kL712slOpv/FFSFuLPidRZWIUKbuV92rH\ntp6TSM1lR4jBi+/v3sPuNq6UYnIccgKW47lpvwP0+T1nea1+ymsF5mjJVJhkHyU3Qo7avPuE6tdJ\nEl+W5xbdpOUqLA0KpGBMJcTpOM5Siu79GOclt2unL449U8EgSa4zyUFERKdid+xBjMnfoM+5+zjW\nl4zZkDjNvF/rsHw+fH5fOxyv+s/rc0ynz7i4A3LfXe9g/n7nF79Q73mC9khFmZBZBOY77ko0F7ve\nJUcRxzaicz/Wz+yl2AMmp2o3pORk7Hd6uvZ57VJHpt30CuQhZVFWcHMauuvwMTGGccbn3ueMK5bQ\nDtZjTHAsdPt1kwNV4mYdo/wlkNEsuAESATV/U/RnDzUi/X2kHzIGVzKVlgk5S3/nGa/tynMzi+CY\n2DEGxydXmpy/Besf72vZRUVEJH+llpVEG5Zjj/RoSfIQSQN8tH9Nn6klEpM0jvsvYq+Sv1Lvy4Lt\nuP/svlb36zOqH+93YkmiVE339+hTB9V7Zq9HDOs/jnX6mW+/pPr95NlnvfZ3v/hFr81SKBGRDNqj\nDozgeWWw/l3VLyEV4ymRnjv4OU1EJH/N1EliCm7GWHLnzg1/AenktZ8h/mVX63E2WIf5t/Rx7CUS\nE/XaNT4Cmefer/4WxzBbx4B4chFqOIw4zvLRojV6HxZqx/OjL4BnNbe0B8fNgQbc6/ZD2q2pmtw2\n23bUee3+Di1/qsjFOQ5exnXId+TvrvQ52ozRntJ1rONyFDHxiGeJ6VqiNVRPsmuKeyyRFtFS0QLa\nT4QcaRi7voboeZbjXu5iHYdDXdgTsewqIUUf62ADPV/Q+RU6az1vzlLSK7x26zEtTWZJdP6NmG99\njjsrO9zm6WkgIpY5YxiGYRiGYRiGYRiGMa3YlzOGYRiGYRiGYRiGYRjTiH05YxiGYRiGYRiGYRiG\nMY1ct+ZMN+mS0+bo+hqsHevmOiGOaP4S2R/PKoCu9Eq7tq3jejT3PwCtYd1Rba85Qho4fxm0n71k\ne5Xs1ksh4lOg1R/t0fUr/OWov/LMT17z2hvn6roC/Pl9p6EjG7ika9hkVONasOVm6w5dQ2LoCjRv\nlQsl6nTuhtYyZ7Uu7nH2d6iZs+AjsLH7xT/+VvUrzoK+t6IIus4F9yxS/Xp+Cuu6QDXGTP1RbfNb\nXIp7l+DoFX9PxwltIcx23PNroW9ta9K1UCqWQudXvREi90TH7u3gr1DbIjsN97Rg6XzVb89Xf+O1\nZ+Tj3POXaA1+uE3XJoompVQHpuNdPSdiSY+ZQFabcUm6LsUoWezGklY/UKs1rD3HUTcjkewDl963\nVPXLnofzH49g/ubmw6J8aEjbeXfW7/faBTOguRwb01rUuDhoy7m2QWfn66ofa/XTs1EPo3jRDarf\ntT7URoqQXeVwh7YpZH3sVLBkPWJJzrIi9dqeb+/02uUlNMeoFpaISOWdqJ0UGYW29+rT2sJ26V98\n0muf/fXTXrtwo66zc+1paMBnP7rWay9+fJvXrn/lkHrP7CCOffkGzJcDz2n97ZoHYeEdqodWeN6s\nCtWPa6vkrkYNpfY9Om7kfhj3dd4jH/Tae/7p+6pfOKLrKEWT5GLUknGtT5mOHZinJXfrYhtcj6xz\nP84x1tG1RwYwF9l+++1f6poDNcWYi0+8+qrX/lgYWv/1q/TiklKMYwoGUdMqPlXXC5j/SdRCangW\ntYKC9XrOpldjjfvop2732j/9vq63ULQAxxpYALE17yNE/nCtijYjNPcHkvXaHUv1zkpuw3WanNC1\nPSo2bMBndKHOUXb2OtWv8SLWkL4L2DO4e5DRPsRotjRfVYtjGL3/fvWerzyNuf3dL37Wa4ed2Ma1\nxfLWY43k2kMiIolkXcy2o+FhbauamIh7p6yqL+v1OGPeewjqo0TPKewj3VolMfTTI9faiAzomhDF\nt8COm+vU1P9K1yDJmI/z4PXYresxwdeCbLoHL2KMJWbpvUjhJsTk7mPY93D9GhGR8TBi9QjdG9fm\n98KzL3ttH72WsUDfi/RK7OvGw2zNredDH9Wxyv3wZok6tOwmpOn4M1KH8ck1mcI9etx27kIcDSzC\n+tl5/JrqF+7A++oO13nttCR9TxZtRq0Qnovtb+LzeN8oIhLpxRjMWoE1MvGC3gf92+dQCO3Pv/1t\nr/2VRx9V/QroHsePYT/HY0lEpHgbat3EJmI85q7QMbTlTcT5ok9IVGl6GbWlAs6cTynDs1VnH9aN\nGz6j4yTXFGT746ZDukZdAtURrd5Y4bVjnTqVJ57GfsSXgOvHtsgDTToecMw7+zTswZd8fq3qF0P1\ngQYvo75J1my9n+bnDn5WiYzr2pGpqZinLZ0UK36nz72+DnuCGU88KNGG16CC1brWFNd1Yhv6nkt6\njiWRZTvXreH5ISIyMoSYU0w1GJOytOX7SD/ex8/ZWQvxncJgs7arDzWjdlCYYkpSrq5PWLQA9eH6\nOhBfUzJ0zZnRUazbMTHYp+XM09dolCy9uaZc0Qa9j48MO88eDpY5YxiGYRiGYRiGYRiGMY3YlzOG\nYRiGYRiGYRiGYRjTyHVlTdmrkH7sy9ZpRmw1zalFXYd0ajJbauZWIiUxv0qnvYXbkeIz2oW0w9Gx\nMdUvrQLSlqELSG/qoFS5qvVV6j0sQ+KUxFBQpxSzXdcdG5DKXX9Np0s1/gy2kfOWIKUp6Mia+PPa\n367z2iMD+u+69nnR5tQFnPOGFVqKw9bXK+gezyvTtuDV90G6cPZXsFpNOKftwRLjMaSyFiOtky1Y\nRbQdcNWtSPfKoJTAvNX6GJLTMWauvQQLw5s+8bDqd+WFnV67+AZYSh76/15U/VY/shqfTXbCnWfO\nq36LP4V+TS8hPbXiZm2XeuHpN2WqYIve4RYtn8ogi9wgWdC5c7a/GXMkJ4BUy8kJbaXKacUZVZCm\nuSmjg41I5YxNwBjumHgLn5Wk0345/frCq7BCLlijpTYxMfhbfWTB7Kbgsw1922mMiZw52g49hWR0\nuTMgz+q4fFj1y15SKFNJ60lIA7KXaFnTsodWeO2mVy557bJ1eh701SF9O9gAWVPmQm0j2XYJdvN5\na/AZ576vJUrld2P+1b8Cy96rR+q8du1WLe3MzyMbdZIkLdumZY6c4jn3k3d6bb9fp4yOjGB8t7RD\nsuPL0en655/HmKm+8wNeO7NC26pGenWMjSZjg5AyDV3VMT+N0u7TZ2Pu8DgVEUlOxZp5cgekerPn\naqvTpkuQOBSW4LPnlZaqfo//5Cdeu78b8/LiHNzbmlM6PTo5H+Mo3In1N2uetk3Pzt7gtftqEO+L\n1+h73XkWcZPlXn6flq2mORa4vycyoG07R5wU6GiTVEjyNOdvs7Rn4AquZ2q5tuWdmEBatj+Ae9LX\nd0z1YxvWcCvidwpJqUVEhluQij0xhnnF6eQs7xUR+ZNbbvHapXfhfg936rRptl9nuY17P9LoHDnF\nP9ii7U0nRiEZ4OObcGyde0hWPVsvmX80vA9NLkhRr41SDAiS/WrJNm3ZznbcnYexLym9W6ehJ6Ri\nHHeSXa4r72M71nyyh1WyZ0c9Ox7G/iiH7MvdtZmlFHw/u49qyVnaLNzTwcuIUa4dcJD2BGzb7UrA\nm9+4LFNJSgFiZcsOvf9iCbY/H/uJSz/WElp+XuFz4TEsIjJwDmN/9iaSC/brGHB0OyQOS0jiFJuE\nvclESL+n+BaMrbY9dV573bwa1U9oinzts5AiLvuclvmwtfQoyfaGHUlX92GMxwTa2/Wd1xLDwAId\n26MJ2wZn1urnu/a9kPiufnyD127de1H1C9Fcyl6J+1lwQ4Xq9+a/Ys0soLntT9HjdvEj2FNdfAbP\nLUmZ2Bu3vHVFvecXv8Y+/rHHsce48EO9V5zzKXx21z5c/8Kb9V52uB3zfsGHlnjtvrP62Sl4DXu5\nLHpuDnbrOL76U1qyH21i4jG+u083qtf4eUBIfRgTp59hfXR9w/Q8n0H7IxGR3tOItxMT2DO4ksUh\nmgdpMzPxd6kMQbIjV+KYOkyxNzGg95QiiLEpmRhzkYiO6z4f5k5v42mvnVu5WvUruREXJtSL70NG\nBvT6GSE7d9FbfBGxzBnDMAzDMAzDMAzDMIxpxb6cMQzDMAzDMAzDMAzDmEauK2saqkOaVc8hnTZZ\nfDvS90JtSMU9vFdXuOeU5t56pFcGinVqbh6lxAWbkP4zp1BLlFjC4duM9KSub+3y2pymKiKSXolU\nrN4cpM/Hp+uq8K1XqSJ9PlKnslN1ulR/SKdc/Z5Yn5Z9TFLKbcZCpPk1OW5N6QW6In+04XvQ8pb+\n25sfXe+1OQ269iOLVb/0YqRsJ8YhpavqQzoNc4hkNZefRhph6VZ9Hzld11+I8+87j3uQVqnTrXuu\nQJ414w7Oj9Zp1BnkGtJXh3TKRV/Qx3r15zi+8g9AtlG0aJXqFxyExCSLZC/j43ocVHxASz+iSTql\nE6ZVZqrXwl24b9kLcHwd+7XTTfk2pPB2H0S63ZBT+d+Xh5TEbHKkGqzT/ZJIChYoxf3ta8D1is3V\n3//2X0Ka7entiBWhBp1CODaAlL/8zUgNZ/mZiEjPccg+gpcpBdiRRHDq/vAwrstIl76HPUfweTOW\nSNTJnYmx6ab/M1Ufw/zj9EwRkaF6xOX+40gLzd+i02m5Kn3nQaSnpjsyhn5KfWY5SukMpHGyk4eI\nSBzJdIZJknrmgE5TvvnLt3rtSATjJxjU53TxGaQSJxchdd1Ngz3/5FGvPTkJR7lsx/nKTWWPJgGS\n8aY7MWqwAWOw5yjGknsPY+IQh30kBW2jNUhE5PlDkKAt7ZnptcOj2iXqW3/6J157IESOP4kkUXRc\nJJKTseYWVCK+x8VpGVIoVId+KxFDBlrqVL/mVzHvM8nZZuuG5arfxCjWxX5yWcxcrCWF/Hlzb5Go\nw9KNcETHgQhJj3nPkZ6v51hf0zm8h+QsiY4DYTw557Hc2XUYyqZr0PwS5lIsOQIlxOv9zar7yb0t\n+P7uYd2HEfNdiSrD+4A0kgt2HdGS9RDJnFLIzYblPyIiuTe8R852lMhbiXHbtrtOvcbOPikFOI/W\nd7RzTkYNxmrmXEhDOc6K6OsyOY7YXfHAPNVvqJGkplWIS7x29Z7V8zw+BfPUH8AxxMVpWXDDO3u9\nNjvOBOZqSauPUvdTS7HXbntHu6p0HYAcgyVPiZlaHlKwXstQo834KMWsEi31Y4fVyBC5tTqSwMbt\nkF6VsCOhIyGLJ0fL/lO4Dykz9b5q7hLE21AjxvoQyUxm3qfvfd9FSFVySLbMboQiImN0HuyDy/J1\nEZExcroJXsUeqblH78XSh3GPsxbhPFy5W9YUypp4jQu2DqrXuERB3W+w7yu6RT8XZM7DOGbXII6t\nIiIzinEeSYWYVwUbdHxmueXCz+OZgaXdvhT9HPjo5+/22od+C+nc7f/8iOo32IZ9JDsHdzmug5X3\nwyWx9wLub9Mp7RKVnYnPSEnFOXW06XvNLnIVevhFhX56Bst04kofuQ/x8xnLCEW0XJIl064TJMew\nsWGswa5bE6/VHAP6L2LvynFCRGSSZMG5y+Fa5u5l+7vO0GsYw2n5WmI+OYl9C8dr3h+JiHSewLo9\nMYL3hFr0nCh2xr6LZc4YhmEYhmEYhmEYhmFMI/bljGEYhmEYhmEYhmEYxjRiX84YhmEYhmEYhmEY\nhmFMI9etOcOWuokZWkfMemi2CyzN0TUCApnQzIaH3r8OQMdO1Aapb4fmbe4N1aof2weyjnPGWuhD\nI4Pa3o7rmKSQTeTVt3R9hOx0stwmnd/Y+Ljqx1aWYbI1biILUxGRCrIXCzVCbzY2oWtNZC6aOh2o\niMiaR9d6bbdmx8nv7ffaM++E/XCfo31NKYCOlY+/44TWb6/58me8dnfrAa+9/d9eV/2SEnAfUypx\nPbmGQ9dhrd1Mm4Fj6K2H/V1yjq4JxDrT9FKus6Cve+HNsEFPzYJW9fSPn1X9qj6CWjUlS1FXpqdV\n26WyBj9fSzX/aJpfxlhNnaXrXCSQjrPlTeiuQ/Xauo1106wvj3XsitOqoYJOTMNrbg2g5Axo9YcH\noJ/tIz39xGx9zetfw3mcb4Ee+j937FD9Pr9tm9c+83/e8dqjY7p2R2wMBOXrboNF9vk3zql+JbO4\nfgo+IzZB115gS/Cp4PQR3J/UM1pzvPKTmKd1v4CNZ+osrYUfOIc4s/xLj3nt4//+lOp38BewFl9H\n9ov+Il3HgC2Lk8le2Ed2wokZeowc+A5qfNXeOd9r33Lr7apf/W+h52XtddtxXfuKrV8jVPfGtVPO\npvofxTeh7tnYsF5b3vr+Tq9ds+kxiSZs39h9XGv6R8jq3V8CHXagWtd7ufRj1M7hMf1X3/mO6pdf\nAq10Qwfm1bizhmT4odHe+DHc6wjZfvdf1NadY8VYJzt7UH/LrZcyPkI2v5WohVR/RMc/tg4PNWG9\ni0/VWnCuucK15lrf0Jamsx7WVt3Rhq27eV8hIhKhenEjZOsZytFzluurhOneS5q+hnFUc8ZHNvQx\nMbogBtehKrkTe5/+S5jz6+/RtrzDHdiDhJpx3UONuo5XHcWbOZthE/3GE2+qfpv/dKPX7jyEWlWu\nDfNwK843OY/iRkDXK+k5hbpYEmUr7ZgYrH2jTv2erv049pS7UdsgwTm+OKoVyPVeQk7dDH8h4ibb\nZbe8cUn1S6NaNwkJaDcdgZV9vF+PN66vEchDrOB6CCIiAYp/PCZylxWrfv2X8Zq/gGp4zdH7c64r\nmUjXJdio9w7jo3oPHG0aX8I+MnOh3g+zFXgOnWfEqTfScuoAACAASURBVCs26wGsQ7yuj4V0HabJ\nCOYY18bq3Kttg2NoL8BxKuEE9sanfq7tvEsXoQYSx5e4ZD134hLx2VxjLdSgrzuP1cBijM2VAV0P\ng8cTr9uTTlk791pEkys7MQ+qb6tVr7VRrZKma4gHLT/QtZeCI7hmWVTr013vqm5B/ArSGB4d0GNi\ntA//5rpYE/R5ScV6P5SUj79buwzPled/ouNk7WO3ee3W7Vi7Qp3a+rrzGGrTtL5T57VXfOFG1e/c\nD1AHZ9Z9eM5IcGppFdFzy1SQswx7Dq4nK6KfrbjuVjvZxouIxNO6yPVZRhyL7JxFulag18/Z93Gt\nyuBVilk52PewDbuISB7VOhu4ihhy8jd631K7DdfaR7VuYgr0nE1MROyMiavz2m6NvsxazFP+u4Es\nvYdWdRFL5Q+wzBnDMAzDMAzDMAzDMIxpxL6cMQzDMAzDMAzDMAzDmEauK2sa6aQU7VJtlcUWUb2U\n5peVr+3txoeQ/pm3AulSPifFh62yko8gzcyX41hqkUUgWxYGapDueYUkASIiaZTaXUgWe3MLtRym\nfWed1y4tQrpVnGO11ncOKXpnGpEKuWyttlIeD+Lc2e7NlSkkOmm20ebVJ7Z77Q33rlSvLfwc8oxZ\nSpHiHOORr0F20tGP9LHZjn14V+M+r336x0jTW3abTlFv2lvntcvWIL0vLg73N6tYpzKmpEA+9+s/\n/3OvnZOm0xJZtnH8F0g73fDlO1S/jt2Q0nG6vmsz2rgdaXB5q5Au3HtKS7+GKaVcdMbiH03GXIzv\nsJM26cvGNWMpU3KJvi7hVryP52VKlZYrRfqRWtqyA6mqKWUB1a/5NbxWdifSTLMoVXH3d7RcqZ3G\nTkMn5tE/fuxB1e9qHeQitaWIG+64PPsuZFKndkDKlO7XcSMwH6mGEyRZYOtsEZHMJVMrMczLQHws\nW6vtSbd/E2mz8xcinda1SS3ZjPTt5GRcm+qPr1f9Yp6E9Kj7ECSC5XfqudgzDLlDsI6soA/iHrh2\nuJXLKrx21y6k7XaSPFVEpPJhSJnCPe8vuaBsWYmnFHC2TRQROfku0t97LyDVNX9liep38xe2yFSR\nQJKVvtPt6rVUsrlPorVrpF+n6SZmIebPLq7w2n/3iU+ofgMhrMHluYgByYl6TcqtRMqtn2wth+px\nP/Pm6/WprxHSsvrnMHdSC3XcSCXr9Z4ErBHNJ7XstHwVziNnK1Kvgy06VZ/Xu5hY/D6U6ljZDjWQ\nlfFsiTopZZiLbW9qmR3bcA5eRGqya4nbR1b2cz95p9eemND3e2yMbKfJKjgpR8uMM3MgzYyLw2uR\noZe8NtuH/tdBkYx3FqRlA+e0jK2kHBKOoy9Dxrb+Qa01YplsH0mSRjp0SnrBzdhLsU3oSJdjS943\ndbb2k5NYx0q2aQk8S1vqfkcy0Uo9zji9fLgTstPJMUcTQree9wgsgxARyazGGlK/fY/Xzl8DKUp8\nst7zcWwMhzGvWIIrItJ9HOtVGp1H2y5tkZ27ovQ9X8tbq+UwQYrD/HkTjoypYy/ierlW1UWF4q2w\nlW13ZRxb8FrvWYzH1Aq9HxkkKVcyx8Cr2oqY7XxZlphcpO9jYB7uY7gLe6f8Gyq8dr1jhxyoRYwe\nJVkT7zlE9B5LJjCwMmq1/DVrLvZSTdux9o04e8AEkqKmFCO+cCkAEZFgM8ViPV3+aBY8vMxrX/3V\nafVa7SdXeO3spZCmXfrZcdVv4YOIfwefRMmFWQv0uL3wKiSCc27Durbnh7tVv1UfWeW1h+ketvRi\nXQyMZav37Poh9k0sp1qwTFsfD3ZAytTegJjcSp8tIlKRiwmTGI+9jWtrzxJ9fhZLytN72e5j2JfR\n1iFq8OezjFJEJNT83qURshdredLANcy5zDlYdwbr9LWJjaW91GXENn7OF9FrSCw9cw5dIGnnBj1G\nek9DMsfq4fRk/dnX3sRzzOy7MJa6LmhJaV4NjjW/aKvX7ux4Q/WLT8D8G26pw/87cvGxIEkM38MS\n3TJnDMMwDMMwDMMwDMMwphH7csYwDMMwDMMwDMMwDGMaua6sKXsF0s96jun0/9Q5lApGabX+ci1r\nYsJtcBXImq/lA1zRuex2VPrOyFim+kUiSIuKr0T61aH/9arXLlquSx+z5ImreXMapIiugs0Vz1ve\n1inPBVS53X8eqcdjQ7oSOldQD9YhfTSwUMsUBig9X6bAoGLpfKTjueln56lC+Jw/wbVu3anPeenj\nm7z2nn/Btd7/0/2q35qPIUU6qwzp8HzvRUQycpE6H4kgff3415/x2gW3zFDv+c03vuS1E+KQ2lY2\nW5/TO7uRKnnrh6EvuviTfapfIsmBzj71nNcOLND3J38+u8xA4uRW1ufUxmjTcwhjPd5xTvOvwrUs\nvgu5quEOnfrKsoGBczjWQI12cOi/iHmRUor5zPJFEZGkAqQBd+yDtGV8FKmgqUk6fXvFQ5DVracK\n/kN1Wuay8mGko7KEsmW7dnSpmoe5ePE0Uq9zi3Q6LzvOpM9E7Bp2xmXIcamINiXLIQ9yjFpkw59C\nlnTh1ye99tirEdWvYDOuR24uvl8fatcxetGnH/Xa4+NImz/5g1+rflwZf+ZHMNb703F/xob1Mfzn\nky977fI8pK3Wlmh5UTul7hZsgIyr66x2achbVOi1A7XkoLFfO2isuBdpzxyjD//0oOpXcBgp7xXz\nPijRpOnZc+/7GrsUpdBaGBOnfwfJXYM1imUgMxt07ClcX+G1k2m+JabreRXIxX3rvIaYzu4/o6P6\nmu/9PtK380lux25tIiLnX0EKOQ/Zi616vBV047410DXK21Ch+rXvqPPaSQVYP7NoDIhoV6ypgJ2S\nctdq2R5Le/jeDTh7hvh0cqIYQYzuu+zI3UjKxKnhrkR1tBAymNRC7JGUVKFCxzZ21Gh8nlxvluo9\nFku15pHkzv08DkyxnLq+SjsCBZtwHoFqcrJwUuHdaxZNxsOISzHxeo4NdyK2l94G2e3EmCPZobUr\newn2Ej4ntb6OnOfY8cd14hlqQUp/ErtYpZILYqJecyczsd/qOAZpFa99IiJZCzFHWFZdtEFLLlr3\nYJ1MofvrymtYotlLMdl1L8tZoe99tGHZUFqVjj9DDdjzD7finrLTkojIpV9gzSwnhypXysXzhWWz\nvO6IiCSSW21eBfa1fd2HvXbpHL33TCvDsY8OYV3tc9a7ZJKOjpKDzbizzg41kzxkHo5vqL5P9Uuv\nwnhiWUpquZZ+uXKRaNJ9GH+3+mNL1GuttA9Ip/vbH9ISyLd+sNNrb/wE9u5DV7Q0beEjy732ju9C\nOr/vonbg3fN3WIdWVpE8Lojx1vGmdtxaVFHhtdmpt/WijukF67GfmfsAHtzKrmnpzqVfQaJU83Hs\nX0YdtzF28WNZYZxPx5eMKh07og2PJXYCFBHJXY79Ha/PLOETEYn38/qJfu6xx8ZiH1MwD9K37jot\nd2Mp3NWnMc8n6LuHxu2X1XtYQtbH93tA7/G76N+5J3B8PsfFNqcaz/fDw1gzMgKLVb++bjhxsvNV\n2HGqSivV66SLZc4YhmEYhmEYhmEYhmFMI/bljGEYhmEYhmEYhmEYxjRyXVlT2xtItSzcOlO9NkkV\nxrnf0bd1le6FqyCzmKBUUNcRZ2IUsoOUTKSftV3Rbi/ZZUghCnYgVZAlNH+QGtgAyUQ6OU/M2Hqz\n6tddB8lKz2mkjBau164q9c8ivbVwC6RQLa/qlLo8SpUOU+r6+KiuwD/VlNyOe/DKP72sXuMK5K/8\nT7y2YKlOkz31rXe89tx7Fnhtf4F29kjKRPp1135Usi8k9w4RkbFhXIOBFshRkkuQBvzTf/udeg9X\n2a4qRHrvd59+QfX77ENwzXjuqbe8dmOXlh3NLcP9uftLt3vtYJOW2HSchrNF3atIGy9eo9NlBy9o\nCUY0YWkAS3RERJpo3OXfiH6T49ptwl+Ae8NyB3YpExHJWopU3YxZSPNzHRw4PZ+dE9h5LW+1lhi2\nvol068yFSLuPTdJp1EGas2FKZT54Wacuhs9hrt/94Y1eu8uRYZZQajenF6bP1inUE65DR5Q5+855\nr53kOu5kwGGi6k5IOyODWi6ZlAVJwuAgxiPLfFwa9mH+pjjSU5a7XXwKMTCFUvLPntHOAhkpSMG9\ncSNi8piT3ppG7jENz+HcA+VaStF4CGmiLA0q2KRj7zvfw3lUz8b8rd2kLUSOv64d+6JJ0R3vbx1U\n9ywkQCW3ot+hb+xS/bKXIH5d3I7rcqlNSwdvyMa9jtC1jXNkB3GLsSblzUAKfk8y5F49jrvcyXrE\n3dnkTph+SafCl8whuRE51hRWahlA7irMdZYFNb96SfVjuTS7AUUcWbCSYOjlKCp0URq+G6c4ZbuV\nZM3xKfq6F27GvojlLG2vafllzg34/B2/hrx27RadEp1SjBgQCSMGcnp5nBMrUwoxlwpvwfH0Htcx\nMEhOfjM+ijXcldzx38pejHvf9KLe3ySQpEtqMBZcCWSC41IRTSLkeBFyXMEGyMmjaAuuS1qe3svG\nxGGfwq5Tw44smF114lNxD5Idd7Nh+ozCVZAb9l7DmIjztaj3cExPprg73K5lBT0n3tutqel1LbXk\nY0qvxJ6XXVT+6zO0U+PvCbUP6v+YfM9uUWOIpCDxqXq85C7F3OESAK4kecY9WDNTirDG5eRvVP3G\ni7D+t19DXI5xfqpOSsH+ZGSkjfqhYw3tNUVEWo5hbmfVYH+YkKb3lLxHyqxG7E1O1vLK/g6sJ4lp\nWN8TnGsU7sZYzVtOMalV73k7D2KPWniPRJXiWxCk+y9qpziOp/y8ODqm97I3PQZp99P/+3mvffeH\nNqh+X//iT7z2PNrHf2DVKtWvrQ/yr3NNmOcB2r+wg6aIdnJafh9kSG0kxxURqXsaewyWZ9U8sFD1\nazv2f9l7r/C4zuvcfxHADDAABr13kCBBkGAvYhPFpkqq0pIl2XGRaxInOfHJyYmf/E+O7SR2up3E\nlu24xU2WbFmyClUpkRTFLvZeQKL33mYwaP8LP97vuz6TvLAGBzfrd/WR8+2ZvfdX98Z61wv3tW5K\nDVB3SH9f0SJIYPyUusBd6+toj1H4P6PciCISIWdJdn4UERmg+SNAz37KeUhEkikdAs/RPsf5eLAV\n82BmKSTdgRw9p77xJTybTpCD1vwVeK6MceRfO34NifD3fvUrr/y3n/2sqreIZWy0x5r5iJbm+f3Y\ny3a3QDoeSNP7oPERrH/N9LyTuVxLQwcbMUZy9FeIiEXOGIZhGIZhGIZhGIZhTCv2csYwDMMwDMMw\nDMMwDGMasZczhmEYhmEYhmEYhmEY08hNc86MUW6LcJe2gWrfixwBhZRPpO9FrdM9+A50eRnJ0NIG\nCrSmjHNWBILQuxbMvlPV8/mgZWts3+uVR3tgS8YWySIi+bcs8MoJCdD1NZ54W9XLmIP8Bl3HYJc3\ncFFbQSbPhNa37wLy3rQ0aH3n+PO4fyMh6O7ik7ReVGm0tYQ1Krz41Ze98vavbFefxfqgfWU7c9cW\n/EITdJPFMdCWJqRrzfLOLz3nlStXo56by2OSdINs0Vx2P+zUqk/Wq2MS43Hf3jgBq7W8NJ0jgWGr\ntSce0n2p5AHkqTjwb7u98tq/3KzqNb+FPCdLyVK8Zc9FVa+8WFuXRpNYsjQdbtF68OBstAHnaYj0\naqu+0WH0s5SZOKb3mM5FwZaIk3T/OB+CiLZpjPEhh9RgA3S+A46tYApZrnLuHF9Qa1G5v/jJ9nX1\nHJ3vo57yCB14BRZ2RZk6l4yQ5rn9HeTaSF+srYsj3SGZSuLIAr6wQvcXnldYl734L7QV9Ml/hxX2\n3M9iPmx46YKql/QY7lXfWehbqz52t6p36ek3vXJ8gNqBcix8+XvfU8f8+qmve+W/+5cfe+U/336/\nqsf3fZz639FTOn/FHMohNUH5qFrf0rlulEad+ibneRARmb/6xnlh3i+BbLK8dKxp2fp6sB7joPLe\n+areYC3GxYJHoW3OelXnVOpvx3V1NOOYRCdfUZDWz0NPfscrp87FeMvfoPP3PPwgcjGkkU1ryJlf\nGg5QTjD63VmPL1T1hluQ84PHb1K5Y9VMFN6FNYLnEBGRQSf3V7Txp2PtY7tPEZEQWVwn0Tw3VK8t\nbDmHVtYt2FvEk0W4iEjbHtzDW9agL0S69HzDdtBjYfT1nDmwjk1M1DlThoYwlobi0Edca+niB5B7\njnPgcf5AEb02cH6N4vsrVb2mHcgl1Hse+6D4DL3/4vESbQauIgfC6IDOd1X+MPL5jPSjTw/316l6\n+bfN9Mpt1NcTcvR5py3EWpFdjb1D07vHVb3UORhzLQeRr26CcsAlZOnvTsqFrepwM/LKpDv2zry2\nDjVgfMRTbioRkUS2aqb7Muisx5yfMWMB1iO2mf/NOdGcoFNqRAXOTZZcqPeU9S8jnxbP+WEnJxDn\nNkrNwEn6fE5OILLBDeYi38twj7ZKVucXrKbvw7kGAkWqXvpcrFexsRgH6VU638RYmMbfJPbaQ4M6\nP1dCKvpSXx3yxbhW2tmUz2KwBWt9ICtZ1YtPS5CpouMQzq//jM45kzKf1qG7MX+VBPW6OB5Gf/zQ\n/37AK9e9oPc23YPIN5ScgGsKR/Rzy6L1yEM0+xraung75fQb1PPGW99GntMYP/bd3925U9Xbd+iQ\nV37ioYe8csEF3dYz75nrlU/+CnNFbIyenydovq89heetomU6H1rOrTovUbThddifrPuPbzbW/86j\nOMecFTNVvfT01V657iRyB7m5aTJn4dl8oBd5s1zb6Vkz0XbjQ7hPqTQ/us9Fm5Zhf7JlHfZYly7o\n58qBENbggiVou4kJ3S+6W/BOgO3NwwP6ub/3PPp+kHLcxjjrsbvuuljkjGEYhmEYhmEYhmEYxjRi\nL2cMwzAMwzAMwzAMwzCmkZvKmgrvQcgxS09EtDUhyxPGxnWYdy9ZjM0tRMiQa0nJdrEcDhgO69+N\nRBDG2n8B4UTXmhGSWBTWVo6zt93AAssJt7367EGvnL8JYVo9Z3W4I4dTNpyGPZsOBBUJzkMoXzrZ\noXXs15bLCdk6JDXabPwgrFV7zulrSSqELCJM1oTF989V9XzvIXQ6WEbWjPXarnP+FoQLsn1euEOH\noKZXoi8c+R7sB7spJMwN+qrcjhC4Zf/jVq989Ot7Vb2y7QhB3UpyoAvvaXvTvH608co/WueVd/7d\nq6rerDkIXY0MUDjlTB1+m1p1HT+0aEHhvHGOtV76PIRbN72Gdpoc13eQrbBZbpRQqMN+R1rRVnGJ\n+K2ec+2qXtZSst9NR3jq6ADkRT3H9fj1U1ht7yn0xY46LR3MmYUw75ozCEMMOHKOv/7Wt7zyyy8+\n6ZX7Tupz5dBVtkH9nfNLn7qwXxGR/Gz0mWsXGtVn84vQDuUfQVh2X7sO6c0le+m4OISdJuTpENTz\nTyGc9DLZvJf26bB+lhvtPQ2bxjeOIwT3Q/feq47pPoP7u7YKIf45G7S9fAtZCrOtpUtaCaQvySSD\ncaUFJQ9gXmqgUOfLZ/Q1Lbl38Q1/6/3CVsOdB3Ub5pKsqecs7lGoXtv8pi7AXHH6aYyXax06HHz1\ncsynr+yGLTZbgYqIvPoXaKsHVt2C321CqO+1p7S9eEw8wpcz52A9j63S/WikA2u4j8avK3WOkLT4\n6K9wTcse0paU4U7ML2y57drDduxFm1askOhDc+qgI1cK0zXnrUOfHm7QUqvTRyFDWEpzR2uNnn/8\ncViH4gcx3lxbe56ji+dhzPX3n8K5hZvUMcPDGGNte2rx3WVa7sv7jparOL9ZG7VP+Qi1cXw69ibB\nfD22UxfhXnDbxQX0tnKILa61iuF9o+zXHSkOS5m6KAQ/NlGvn9xv+f67UsnirZB1+Xy4t4mORJ8l\nXnlrscdISIA8IT5eS1ov7HjGK4fpdy++oS2y5z+IUP1Le9H3ljy+XNXrJov6AK0L2Su1DGeM9sq8\nXxh2JIXjYW15HG2Gm6iPTOp9SwHZ1XMKgCHnHNNmYT/S1QwJQny53peNjWGsx8TgWSMtV8s0/X7s\n3/v7MXeOjeFc2WJbRCQ9HXvt8XHsObo7Dqh6fB0Jydjr9NbpdSw+HfedpZelm9aoeoNdkFPx/tAX\nr+eAsVi9DkWTFJLzDTfq30kka2Weh9IX6XFw7NmjXnn955FCIJCupZLLZqFPrHgUi0PzG3qPP0b7\nPpYyxdLaV/+MlpItW4dJ6rlv4FngriVLVL0PrV/vlfeew77Jlcan0LPkqj/Cc8uJ7x1S9RJpLcgh\nWbA7ZvtrumUqifTi/HvD+vmO58f0+XjuiI3Ve4bOzt1eObkIfTAzc4OqFxODvjrUCyn/qJNWI4Fk\nmnwOF36FdTGnLEsdk7EC80Ev7Vfn36Il7xP0/oIlrirdiIhMjOF3J0miOupItbKW4tmW04b8jkzq\n7I1llCIWOWMYhmEYhmEYhmEYhjGt2MsZwzAMwzAMwzAMwzCMaeSmsiZ2DInx6/c4HBravqPWK7vh\n1iso/CwxE59dfV27dSz4BELTOOzQ79chiY3H9nhlljus/eRaHD+sw5E6ryHEmkNfR5yM0Cy1GqHQ\nrj4n83igACFcnCn8SqsOcWx7GSF6t35wlVcufkBLhlzHj2jDGbKb39Nh+NV038sfhWyodW+tqldC\n7jfhboSlJ+bpkN4ekqpUPLjBKw8PaCnXcCfauPpe/O7R5xGeX1Ghs573nYeMreswwpSVg4uIHP5n\nZFsvXIyQwKpVOnw71IrwYXZDOnr1qqrHYZPXnkIYXfqSm7gzVd/4o98Hdt5wJWKcNT1vIzlPOG3Y\ncwL9s/g+9MFArg5JbKrH2Gwjt5ySD8xT9bjfNh2DtOzaDshNZt5bpY7p3I/+50tDKLwvVju15K4v\nw3nXIoyzrU+HMv/bn/2ZV+Zw3uzbdAj+aB9CCrNXI7w80qdDDQevTm3IaHIFJDsbP61D0a/8N/p+\n/wXIvLo69DWv/t93eeXJSYRXuvNe80W0911fetArj49qF6+sNbgfn/zwMq/8WAukb8HCfHXM/n+A\nA9za1Ri/L33zDVUvGEA48qptkLfcuWG1qvfO3/3MK7ODz5nv6NDfWpL9LKfw43mr9di+/Cb64Hxt\nTvW+YTlPyYN6TFz+DsLpSz+I85us1q5gLO2ZvRlyidjdehxMjGCMledgLUxN1FJYdlVjWcCv9yCc\n/rHHblfHnN4Ht7n00xjzruQ4Iff6bjvJRVqSw3PyorvQJ1wXnbFhzNeRPvTFkR4dDh5w5JbRJo2c\nHjhUWkSk6xAc65rpM5Zfi4gs3YyJvvZQrVcuXVmm6nGoe2oVZAwXXjqj6lWw/DkLLmopqZA59nYe\nU8f4Api/k8rJ9TJHz+scip1DbeDKZIP5cAO5+GOspZnLC1S9xHy497GLVbhDOzO67k3RJGMh1mB3\nveO+FU8S9vS5ek/ZdRqh+/20xxjr023dV9NF5X1eOa0yW9WLIzfO8Qjm5EgM5q6xMS2Z6j6Gc8hY\nirk233G5ZCe1sgWYt0cciWHKbOzXgsWQ0ja8piWyebeWeWXe17kypomxmzuLvF+CJBEPZGkpTtdp\n7POzFpZ5ZXe966/DehcsQRt3dmpX1qQkrBVxcejD1/bv0OdUxq6saLvS9Zu88owZ+hGquxv7IJZF\n+BL1HJqcSlKtsUG5EewaN0IOa6Es7TjDKQRGejHfdh0/oeqxnCfXMVZ8v3AfjHWkjSPkSsf7rxi/\nXu9aaX/XdxH3/NhpLT3atA2uruzSlbdJOxKO0hzQvg+SMZbK7XjvqDrmlj70j4o8zC9FpXreSCxG\n34m5gHF15ZJ+xko5hbF48HnsD2bn6z0Vzz35m7GPv/B9fX6JabT23yFRh52IXMfX7OV4nuq7gvMd\nzdBjMZHG8NgI+kV705uqXnqO3gP/Fu7PItrNtec9zJXZxbi3LNUV0e567A7tzm1cj+f4YImeh+p+\nAde4qj+8zSv7U/XzGO/t+i7juTdrmX6eTZ3lOMo6WOSMYRiGYRiGYRiGYRjGNGIvZwzDMAzDMAzD\nMAzDMKYRezljGIZhGIZhGIZhGIYxjdw050z+XdDlsX5XRCSWtIIZq6Glat59TdVr7IKGq41yeZRl\na53u+R9CV5eSA/179toSVY9tGhfdBx32QC00z6xPE9H5RPqvIKcE23iKiIz2Q2M87NgoMt1XSJeW\nCy3b1ZMnVb0HbkNehTM7oC2fWV2s6rFOfCoYJevO7Eqtmzz1Pdiz5i+ABvLwLm27ev/fPuCV2Rqz\n/4q2QC7ZihwM/a2wtUvO0ddc84PXvHLSLFz/zGJoPONStLVq9kr0s5988Vmv/Adf/ICq1/gy+k8f\n2a37EnV7s9619TjyJdy/Qvu2+oI4j8rPwMLw6L++peolxdP5bpOo0vQyNLeBIp2LIY76cd9FXG9K\npbaWS69AG/TVIaeCL0nfl8rPIH/T5R/CXn7ff+xR9RbcjXwLLe9Cz5sxE1pKtrATESl9GHk4Yny4\n/6n1Pape90noSkfHkfOheo22wRunnBxdh3FN2bfqeSN3EayVa17c7ZXzKUePiJ7XpoJ0yj3Sslvn\nNurvhvac81cVZWjL9uFO3KukbLRdUrHOATLwDubsrjPQvuYv1ZaQ49lk1zkD3xfph3a99pjOc1G6\nBtruUdIlx8bo9/3FlKuKbbG5DUREipehbx5/cr9XXvq5tapeZT9+q/5Z2MzO+pi2zg5W3FzP+35o\nojUutUKPseRK/G4r2Rpnr9Hz3zBZXMf4cM+utml7Rc5pNov075978klV7z8++9nrnmsprbPNp5rV\nZ9VrkOsmvQpzf895bZ8ZSzlJilZhTWs6clDVK6OxzWsE59MQEclcgXm86xD0+e5aH267cS6GaEDp\nmmS41bFNfhC5suqfwdrd3qvzP1XQ2s35lV57fp+qt6AE1xah/AuVW3XOorEhrNWcq6elGbksml/R\n+ReELJCDVaTBd2xlR8kyNGUm8mk0va3noQGyyiFxIgAAIABJREFUam2rx3rC7SYiEkN50PrPUb4E\n2jeK/G4+n2jiT8X4yNug800Mke151iLkIGt4/ayql1ZNuYcoH4GbX4hzQuTeVoZjnOtjR++4eOSH\nyMra6JXf+MIX1DHX2mmd3IHxsny99h7PWoGcD5xjx7UH5/xC4R6MI85FIyLSQ3auMZSPJG+DXhcH\nG7TVfLTpv4x76+bU47xwk5MYH27uCM55wns7tnkXEQnFIF8L52ybcL4vJhb9O2sZ7ntvO/bGo4M6\nnxbnb0rLw/6o9exhVS++CvuAjtNYx4qW36bq1R9Czqe8lZiTXFteXzLGs8zA9fH4EBEZG9Z9Opp0\nH8H6krOxTH3Gc1l8JsbEcIued/PTMJ/G0HNbz5DuE920ryy+Hc+BdaeOq3rhFvR9Xmc5b1xZjn4m\nyggGr3vM0ZM6T2p1D+b0rauRO6W+Se95e05gjK159BavHMjV+/g22i/E0bPKvM+uVPVOfVPbskeb\nMOU2incszHvO4VpSKE+UODliEhOxBgyMYr4NpukclAMDGEuc5zU+Tf8uW7Mn0pobqsf/Z6bo+znc\nhM94zQ216b7E83VSKb6738k/WbgNzx7hfuzB3XcjQt/H63lcvJ6HeignpOgUmSJikTOGYRiGYRiG\nYRiGYRjTir2cMQzDMAzDMAzDMAzDmEZuKmvqOYmwm4lRbenHoTuNuxAWOxjWIT4cMsZh2XvOnVP1\n2vsRgnT7xlu9csc+bRmXthjfMdp//VA5DkUTUc6iEkfhn65dF1ujsYXY2Wv6HGpIcpBMocz5jvzg\n/BUct2gFQqIG63VodEKetryMNoW3I8Ts9Dd1KHrAj/C59EUIbV/tSF16zyNU7zLZMZbfpkOYm96C\nPevVQwj/n3ffAlWveDvC2zh0jsMfj3xbh4Zze82kfnX+x1pyUfURWPZy2OSPvv5rVa/217im//vV\nT3vlmDgtbemk0HvfFoSmxTkSDg4pjzYZK9A24VYd7s92gWxZGOPX5xcfDyvUYPEo/b+2+W14F30k\ndzNCxVNatRSRQ6kTEnFfAvkIL0wqSlHHxAcRNth5Gv3DtfOOo5DWtPk4v1YnBD93PeIB08srvPLk\npA5Rbj4CC8Mgh/S/riUCykb4Fok6HGZ8Zo+2NZ1DNqELP7vKK190rBTrn0WYaPoSyAob92pJ6eI7\nEVZdcgtC6huPvaPqDdUhZD2tGn2Jx1vBJh3mzuHcPP5KsrTMp5fCkSdpDclZpWU+GYUICw63PeWV\nW9+pVfXOH0R73fq5DV657pdaqtDTifVktnbtft9UPIz7GhnQ650/De07EcYYu/oLbZmcNgtrxcQI\n7vNtW7WksoPkfSl0zLc+/6eqXk09Qso7aC2dQTG7GXlaPlt7DFLEQD7GH4fiiojkrERbNeyD5Cxn\neYWqx+OZ56SeOh0eXHcBEtKKW7B+DNZp6YQ/feosmEVExkMI8Y/1661QTBzuW0IB7k1FtZ4DL+1B\nqPuc27DGr0/RcoK0xZjDeFzFOL87QRKOUDvm+a730L51LTpsPobaeFY29kHJs/V+JELh6mw/O/vD\nWhLIEpPkOlxH9jwdkt5Td8Ur524q88puO450kM3z9Z1Tf2+6z2AvxjIUEZG0uWirzpPo6zmrtXxu\nnMYp2zO7+0gmQvJKtk4VESlYChkCW2Y3N7yA35zQ++mv/OAHXvn7JHlyxwDPc7kbyq573iIiHe9i\n71n6AUij+rv1WAxT2/CYjXMk4Il5U2trz1barkyA26HnAtqb9/8iIqnU3v2X0IdZEiEikkBznZ/G\nacDZh/sS8e/xcZzT6CDmjUiPPleWYKXlYVwGy/RYDIUgM04gm/eGw7tVvUAOziE2FvV6r9WpeuMj\nmFP9NLZZkioi0nUE9coXSlTx09wT78ipeF/PMsCEDN2/yyqwR+X+uGmZPtnSR7AG1zyN/aovTf9u\nLllrJ9K9DKRAprbpE3qvONyI5zN+rrxjY5mql0JWyIf/FZL/ioVao+JLRXtwn+053qrqJZZAlv76\nP7zqlV3Z1QLaG04FvGd3x2LqHIwxXsdYRikiEhOD+SOYivlnoF/v02Lj0P4sk41z+i2nAxiog6Qo\nkIsxwbJMERE/SaP4PULQWRdT5mDP2rQD+8ukMp0moGQbrmNiAn3G3TuE2jHns6V8qFPPQyy7uh4W\nOWMYhmEYhmEYhmEYhjGN2MsZwzAMwzAMwzAMwzCMaeSmsqb0JZBSxMbrqh0HECZUsgXhzZzpX0Tk\nyimE302QvmjNHO260jmAUKCBiwjVZ6mRiA594nAxLWvS4U0RygKdXAZJQ/cJ7SKRWIDQzc7DCP9j\n6Y+IyJ2LEQZ8oQn1Ch1ZU1Yqzr39SodXrnp0kapX/zzJG+6TqNPxHs4xf40O6Q2W45xZXtT04kVV\nr7ENYaLLHkfo/cXntKtTXQeu82Pf/CKOP7pL1Wt9C/KUriaEqZ1vhITono9vVMf0nUY4d/UWuFwM\n1minn5ad+O5v/3KHV3ZdmJ74wsNe+ejPj3jlOSscCQeFqsanIIyu7D4d5j0jburedbIjTsbifPXZ\nOLlw1O6DtKDYcSPrbUVbsROPb6but3m3wMWlrw59x5Uo9ZxCWGbxdrRH9wmE4HMI8G++D5/xuGRn\nDRGRkrsxRnouIQQ4mSRJIiJpZZBFhIeRSZ6zyotoOVFSQep1/19EZKQnJFNJ7wWMD1cCFOkmKeV/\nwd2h6ollqt7X//T7XnlJC8J2i53vYznY5R0YB6lzdb0JCvNmp4zJCczXg026fVLIkSuPnCzOv6Pn\njbY+HJdMmfADKboPD/Shb7KzkS+o22fTbbjea0+d8sozHAlC3lwt1YsmNb+ERKnqU3pOCZHDUPYa\nhDezq5iISBdJR5JSsHaVfbBa1cul+bp1L9bSExe1E8/CUvxWaiK+r3AewsT9Tgh5Ca2fSUVoG1+S\nDikeakYbzoglSU6M43bIUqbjGH+ldzoOayHMV6nkKFfvSNN8GdT2WyTqsLzYdaUYC0Emwq53IcfV\nad6dmPfY4TH/dr2GdB/HXiN1PsLUO/c3qHq8hrQcwh6rhly85hZq16S0ORiLtcdxTP6QHueZqzFO\nWco45IxtdqbhOaTrinYr8ZOLIbtduRLV/jMdMlWwWxo7D4noNoyh/esk69xFpJP2R8Pk/lG4dbaq\nF7eYXBFJNpO9vEjVGx7CGhwTi3vUcRBt87WXXlLHPPHQQ145WIB19vIufc9z87BWs3zMlTqn0Bzf\nugfnk+3ISdlBj/fufscps/s0uQdqJXtUaCfZQaBAS6hYnsaOLk2OG9nxV7AezF+Ntiu4Q8sv2eVp\nPMJOhTrNwYwZ6DOBAN23bEpz4PSl5AKc69AQJBJNb2j59JwH7/HKLbvgXBrj7CFH2Z3wF5gfk2fr\nfVDBZlxjqAN9wb2mnLXXsYWJEj2XMM752UxES3LP/Qgy7a4BxyWP9jD9rRiLBWv0edf86MR1v2Ph\n43qvxPPrwk992Cs3n4UMKeS4AmYuwZrZT2NiuEk/2w5cxXNHZjb2lIFCvU/e/zyeLbb9nxvbuJ7Z\niVQf86uxfrh7m9qnsVcq/MKDN/y+35dwO/aAWcv0WhPuxvgbrMX1x2clqnq+AJ5pQ12ol1GkJbSj\no7in4xE838VEtNQsJQ/3wxfEfN1Fz/B9Z/U6k7EM7Rjia1ql5+v2d8hpdjn2pZmL9B619wrWF3aT\n4rVARLtAZyzA+slO0SK/+zzlYpEzhmEYhmEYhmEYhmEY04i9nDEMwzAMwzAMwzAMw5hG7OWMYRiG\nYRiGYRiGYRjGNHLTnDOsIR/36zwubIvqC17fRldEJPYsjhsgW9UsR8+VNgjdNOeVOPeizmmSGI/f\nyl8KPVwcWT8POVbVbccpL8zaMq+csShP1WNLxNQqaEdj92mtGNsgziuGFjV3rc7n0rgHuU9yKQeC\nyjEjIvlbtD492mSvgMZuzz+8qT6rXAOt6hsvHPDKKyu0TnfuOmh42ZYsf0GBqrdsE2zQ3/nyt7xy\nmZN34JXdyKnBOX1SyJr8wivabv1n78ACOD0ZuvbNC7RN964zyAnxR3+AJD4/eOY1Ve/8DfIFFWzW\nouqOI8iDc+EbsJKt/GPttcy5GaJN2jzkKei73KU+m6CcM0VL0B9DTVrPO1YFDX4r5eUZW6NtODnn\nhI/GFVvYiWjr9f4r0F0GKzCWXbv6M0/Bdnn2XXO9cp+Tl6B5D9q+5Qh0w2kF2g74ase7Xrli+yac\nj1/fo94zpGclXXeY7GX/X9B/Hvep6MG56jPOlVXzc+jn9/+ntr7+6KehW37v1ZNeOS6gp/N9/77b\nKy96ADl8WHMvIuIjO9FgCebe3gu4Z+Mh3Ufe/PIrXpnHDo8pEZG0JOQ04BwJ6Su0Nnx0FO3FeWbY\nUl1EpOaHx71yxmrM/6mzdX4NN/9ENEmn36p75swN67EdZPtV3b/nPQrtNact4JwuIiIHvwZtfE42\n2iY3TY+DVLJqTuyBljmpDPV4jRTReQCGKe+Im5OD812FmqHPH7iyT25E9jrMQ227atVng2F8XznN\nD2Mh3S9DjiVztOFcFpyXQ0QknfYGnIdpYlRbhtbuRt6L6o/BJ9rn5PsKzsac2HkQ68lYv87J5c+B\ndj+fcpkUJ2NN6jun+1IqrQ35ZI2csVyvzYlkFczWpxnztAY/Ph7z+rDgvown6DmgZSeuPY5ylKQv\n1Pme8u/Se4loEp/C+0095ifH0Y/52pt26DwucckYp7yvZStWEZGxIbRVFu09EwL6PndcQG4Qzssz\ncBnr52O33qqOiY2hXENXMe9mp2k71whZEifROC19aL6qV//CeZxDJq6j+6S27/WT9XAszbVDzdrm\nNbHw5vkR3i8ZS9Hn3Bwg8Wlou/4rWCcK79D7tMQTWGuGajB39OXqnBAhys+TTPOjmzOwowP9m+24\nZz9wu1ceDei9/HAn2pjX4zhnPuhpxvqexjmoaG4QEcm5tcwrD9Vhjk4q0fN/3a+xX+LcYpOjOteZ\nUD8r0duP9w3nDS1yLK15H1j9KVjNxzrPlXXP4TpyqvE81blP35ei+/A80fc08s+4uQszVmBsnn/2\nWa/M7c5W5iIiu772lld+8J/+DL/TrnOi9ZzFOE2vRhvGZ+j8K3EvUJ7URIyjsUG95izahj1aJuWV\nvPqzk6peaEDbW0ebFFqrYmJ0O46HcH+5T8c6NtZjEaxDPI+Oj+v9tt+P++ZPxd6xaOZDql5nJ3KW\ncq5Kvk+cv05EhNMtlT6E/KATY3oNL7oXOTY5R2bru9qufoTmpSDleeNciiI6P298KvpW1lK9nrg5\n+1wscsYwDMMwDMMwDMMwDGMasZczhmEYhmEYhmEYhmEY08hNZU0cZj9K1rsiItnrEHLWdx5htokF\nOvwxPg4/UV0BO7QekhmIiCSQlWXXfoSwcbin++9ID8K7fvGznV757hVL1TE5CxD6xOGZrpX2CIUE\nnz6PkLOsoJZq5VJIayd9R8gJBU0rRhg62675EnU4kxtWF23e+FtIEDb/5R3qs3Pfhc3bw395r1c+\n/uMjql52EkKfuV+4Uopj/wGZydg4QiprX9ehxEMU2h4ZRbh0GtnAnqrTYWUsIeN+sOrT6/S5Po02\n/umzkHF9/CF97Qm5uO/Zq9CfxxzZB4epNXVD4nbl/7yg6t35hbtlqui/it/NXq7t7Vp2QaKUtx5W\nw91ndJh3hOQJ7a34vtCr2j66oQuhw9XLEJI+OqBD8Hn8DV7E9/X5MB9kr9XWnUGSrbHEx4Ulh0nF\nCO1OnanlkCP9GHMDHbgPKbMyVb2EHIRG95AtqGsB6FrqRhtlletYgQ73Yv6peHShV/Y7tvYvPrXb\nK9//YdjND1zU8sviIoSMXqXxV9+hZRHVpej7SZ/E3HnkGcwBMY4l5+I7Yfk8VItQ10f/6B5VL60S\n0pFwN64vJkZbbfaSDWeQwkT5GBGR3DsgAT3wY8gwt/zVnfp3q3JkqugmG+yMOdnqM7am7T2F8Td7\n2zxVj6VlKsy+SMsYFn0YUhmW4zV/X4+drKUI377w3fe88tgg5tZIlx7neXQv0+dBitJ3WX/3BK1X\n+WRLG2rTssmuQ2RJTJLKQJ62Vo7rg4xknCSZcz6zXNVr26fn/2gT7iIJ0GI9r/hTEc7NsiaWeouI\nZJWQNIzspCcc6/Q4koqyfCS4Qs9TY4PYZ8XSfY8hO9XS7bov+ZPQZzJmoX2Ge7TEcNixW/4ttc+f\nUP8uI3fWgVrMKSPduv+E2kgGTtIZd52YSsI91w+zF9EydZb05W4sV/VGqB/kri/zyq20roqIjIfR\npnn8HZP6PrOcargFfcKXhjlvSUW1Oqb3NPbDRdtIAu7Iglmem0N7FrZPFhFJmYt+xX05kKPHYvdp\nzFEsgYl30hP0kBW8rJDoQ+uLL1mvDW0HsRfPXYX77q4hrTtRLyFHr+sMS7nYbj3UqPfvGTSnsgzw\n6muQWHSf0nuswjsx/gZpz1Z3okHVK4/gXjcfw/POzDu0/L+f5uLUeVhrep3np7xNmMtb30a/zblV\np1qYnNCS1Wiy+rOQ6u3/lpZiz5qP82Cr9NzV+vziaR4ZbkJ7dPU5bUNjdu5DSGvQ67RHhOYslnt1\nHcSYzblN23Tf/eXtXnlo6Aq+y3kGnn0HpDdxcRhXIyP6HNY8hme/hASS7zVrWXDnObRp1wH0icL7\nK1U9lldOBXEBzJU9l/TcxpItvh/+oJY/BZLoWS2W5p+Afh4YGICMLT6IfV9np+4/I4OQKU6MX78P\nxyX41L+HyYqdn1knI3pt7jmF54GUOVl0jH73kJCPNmZ784Qs/fw+RBJxTvky2KBl2snFWg7lYpEz\nhmEYhmEYhmEYhmEY04i9nDEMwzAMwzAMwzAMw5hGbiprYtcGf5qbtRnhyEkUhu66evB38DF+R9qT\ntRqymY49CGd2ZU1tfQgZOr8fIVcsofnJW7vVMY+ug+xl8BJCDdOWaFeBGbH4rZVFyJzdeVLLn1gK\nUXIPwhBZuiQiwvmrg+W4R701Wn7QS84ipTpiOSrMmYvQwTYnA3XxFmS8j0/HdY2M6nbMXoFwNM52\n3XdSh1ey7Oe2j6z1yjv+6y1V70Mfggxh92sIw99zFhnRP//EB9QxHJaYsRCyl+/+1c9UvYWlCFPc\nWI3w4aKtOjxw1z9D8rScpGUZ83SIe/fhZq9cdSvam0PWRERGekiCoSOn3zeZC3FObnglZ+5vP4Tw\n2eFanbk+hjKqZ5ELBIfsiogs3YJ7FmpBuHTmCu1KkbMAnbWjCO4QLNlIcMKo+8ixLSMX0pPi+7R1\nQHoO5DWxJWibs7/8qapXejekEIPtGKedx3Q4ZphC+jkEuPec7r8c7jpziUSdzjpIxio/oF3Gjvz4\nkFfOpFDL1Gotnbm7ZLVX5vv7+jPvqnr3/+ld+Owfn/fKcwt0O56pg/ta+kl8VlGJMX/8hJYlDtaQ\nTJPWhqPPH1f1yoswTieoX7Rn6nlo/hMIEY5E0CbXfq7d+lgasO5TCKMeuKbnXjeDfjQJJOAcCu/Q\nTjTtB3Avs9fg/tX8Urs6dZAcb/4G9P32g/WqXvEGaAiGe9E3t37186reDJIFpJRDLhesgOxmxHEm\nSyIJVaQfch3X+ersNw965XOvY34unavllcUP4DrGSdbj7gkmaL5hCUjT65f1+ZVoiVe0YTn2+LA+\nR54rE+k+jfbpuTdQBAntUC3CltklS0SHg/M65LrZscwiIRW/G+pC/45P1lKouDjMj6FBhMO3vKVl\nOVm3YI/FUt3mnbreEEleWYLlulwkZNN+gSThwZkZql58xtRJRdvIOZIlhSIimdWYy2bMwJgd6dfh\n5f2XIB1hB6/gHD0OJkj2w+4kCUl6H9nejLmN58aOa/idoQu6H81ajD1Ly2sYv7M+tljV863CdXSd\nwL6E12kRkUAhpCNZC/Hdg81asphUjP7LTkGJRVo64EvVe51ow66QbnqAzMVoR5Y45a+pUvXSFmI/\nwekLXAcf5vBLcI+smlumPmO5w6UjGCPzNuF3i7dpGdIw/VYuOS3VHK1V9XjszHkQ+62xYS1Z6TuF\ntbCY5IyxiVrCEemDfCeWUg2wrE5Ej1PRXet9w3KOioVaKtR9Ffuekvtw/yKOTDT7FqyZnUex3s3e\novfuw+RcVfX4/V55dGC3qlewEheZkID1qvUSOb+W6jbsa8b4yyjGHi2+TPfLjkbstwpnIiVEKKT3\nNjWvwtGLpZeJJToFCDsFjdLz7IQjw7n4ItbgyvUSdbpPYR+dXJauPhsPY31iqdBArd5/dZ/B2Mla\ngvHbdPSAqpeYh3mKXZ1iYrT7k3IYpXcKicnl9N967MSVYoyNDmN+jHdc+NihtJH2IDmrtQSLZUks\n13edHtltWl2Ds8fg+bug2K1tkTOGYRiGYRiGYRiGYRjTir2cMQzDMAzDMAzDMAzDmEbs5YxhGIZh\nGIZhGIZhGMY0ctOcMyHSK7KGU0Qk3AkNVx/ZAMY7FnYBPzR2CYXIj+B3LGtZqxlP1pvDLVojW7UC\nGv8RyiMxqxu6364BrbPk/DZ5W6BRa3tLa8VS5kNHxvlnCtbrBCIRsnFj+9rSR+arer0XoGnnHAhx\nTq6S1Lk6p0S06SdLsQzHbpJ1fnv/7W2vXH27vpbz3zgo14NzAImIVJVC1y4kWy7L1teYvhDttUGQ\nNyQ5ARrt4m1aZ7rjSy975dR9sLj7+P99RNV79p9e8spLy9F2R7+prevW/SEEm6zNvfQ9bSMeKIX2\nP0AayfZdtapeUgVpDbWb+/uG8zEU3aM1sqNkrRdqxnWkLdZaeM6dkzQT19RwolHVS4vDcQGyjxuq\n123dMnLKK+csme2V2w7D+jkuQU8xM9cg30vxZuTTiIS1vXM4jHMd7oUGNnuVFmcOd0PbytZ3gVyd\n64Z12EONN7Zf5ZwmUwHn3OEcXCIiyx7D/Tj5C2jhB0Lawvb2/wVL+Ms/gg3urWsXqXqcY2T745u8\nclyKvsZn/+t1r8yO2V1N0BHHOLm/kimXSdO+Wq+85a/vUvW6jqMd+89hLh/t0Vrz5uP7vXL3ezim\n4mPuQMKkEhlA3oZd396talUWQudc9MWHJJrM/vQyrxxq17keEouun+tg4f9Yq+o1vw1de2yArKUd\nffn4OO5TYTk8jvv7dQ6b2Fj09+J7MG/G+pCHY3JS97fOk9DGsx46ycnXU0R5dYrJzrvnRKuqxznX\nguWYCzsPahtZtnN184AxSQXBG34WDXgucS1mh+qhL58cI/2/Y5HNxFMeiXgnR99gHb4v7xZccySk\n59RuGi/Fm9GHs0uRz6e365g6Ji4Z9ylM1rE8RkV0XibO2TY6pvtF13vI9cAW4G7+gVg/8gJw3rPu\nEzpHXzLn35ktUSVjEdYqvsciIs27sGaOkI18zjpt31uyeaVXHh3FdxQu0WN2fBzzaXw87l97nbZ9\njaF8Prw3LtuAcTQjTucaCjVjHhkOYczzHCci0vAsrGfLPoR8GOkL8lS9vouYayND+O6ETJ2Xp2UX\n5qGJUeQU8jnrItt2TwUDZDudu3qm+qz2OewzMpZhTPTW6HklbT71hWv4voRsfc0nnkNetPRkzJu+\noL7m4Xrsm2/55Bqv3E/3dszJIzEewT3sppw1bn6uvT/Hfrqact1MOjbBGStxvX0XsUf6nfxhtEfl\nuSzWr/dfOaunrh2bduN5qvw+nQ/o6hm01fgI5pu2vbWq3rVTqLfgAexnuM1EROZtxvfXvIr9S+tR\nnWswqRD3pfY08p1kkk36QId+DuR8UgM92MvOcPZAnC+s5tDT+P84XW/+H2APE3ODOVNE5PIBjMV1\nf4H9Gu+hRERySnTOsajDtvZJekxwrrJANsZOz3ltH865yjpoPRkb1Hlh+JkiYzHyavKaKyIyIw73\nLY7zUw3XeuW2fTrXT6SX9pg0JjJX6rHYexrnHqbcXa71dRzt0/rI4j5jkZ57e87g++JTsQ/gXLUi\nIpErOvesi0XOGIZhGIZhGIZhGIZhTCP2csYwDMMwDMMwDMMwDGMauamsiS0ku4/q0KqMJQhBCs5B\n+GwgX4cis41i/1kKBxzQ4U0czpdEttMVy7WkiOVGnZ0IiUok+dRtf7xBHdN9EuGF4XbICnzpOvR4\nlGzdODSt45QO3577UYSpjZE0ofYZHWpe+jCkQfUUjpq6KEfV4zC/qSCtCPczZbYOiWN7yNl0r9l6\nWETkfCOkL3f+2e1eOdORurC9dNchhLMt+9RqVe/wdyAxmr0W4b4c4nngX3erY1gaVflxtMEVknaI\niNz1CKzTg7NwvaODOkT4nSf3eOXxCYSjsrRKRGTZPTg/lqJkrdMSm90/wzUt/bBElXQab62OHXoc\n2SqWfQC2jJMT2vo0he5F48sI11zwB8tUvbbdtV45d0OZV+49o22n06sQRjw+jv6SXI75gKVGIiKV\n90KCNjgI++2snI2q3uQkzn24B2HyylJPRLqO6Xnpt+Q48icO806Zg/sQcqwmk8umzoJZRGTZI5Dw\nsfRDRKT2acwfaz+P+7Hv33apeq17anFMO9pkYbk+d5ZyJZJE5PX/3KnqzcpFO3KYKVt9V/m0tSGH\n9Gb34PiBazpUk+2FC7dC08DzuIjuJyyXGY/o9u4gq+mcNbDrXP3QClXv0hvnZapgu2vXNpilHnyN\np/99v6pXfBfuRecBzK35t+uQ/vZjGKcslczMvFXVqzkMi/kwhbzH+HEOiflamtx/HmOirQ7lhR9Z\nruqx5XYXWdQX3D5L1RvphXSk4QXYh4ojGcrdjHVmpAfHDF7Vfcc/xfa97TSPZju2mSxHiaFxlLm6\nSNXj/Q1bc1/+hbaAT83HPXxn5wteuerealVv8AqkRz1kiV5zAmvLhDMHBorQf9hiNmmma+eNc732\n45M43q9D10fasEeKpTml7W0d/s/ySLYez1qh75FrDxxVaB7KWqbD1Zteg6yJ2zchQ4eXT0xgX1D7\nHPYSFY/o8dJ9Gd+XVIS+49qh+ymUPWuKnV4/AAAgAElEQVQNSefIijylQtt0t/bCqnnO45BzdB7W\nkuNRCvdn693EXL3vHiF5W/8V2BjHZ+przyCbW5aj9Z7XMuNM2n9MBRGyqB+o16kMMpfjHJWsIkdL\nl4dbsZYPkGSApdkiIksexkTKEqB6ko6LiMT7sK9iOUawAvuH8ZCWNSXTeOFnDdfmnQlW0n6kSe9H\nuM9EqE3z1pepery3zV6Mz1zrdE61UKSn7/dNOu0v3X1fWiL6Xdu7tV453pGcpSfh3xFaTyrXaj0k\ny/drL2BNmrd5rqrXTlIXfubsS8J9cfeAaQuwn2l7E3OeP1M/F6RUYQwnZOG8+ZlKROTYDw555dkb\ncB3DTltXboDctfHVS17ZtWauvYw97yqZAsiquuOwlg5mr+R1EvWyFun1s+cC5hKWIfV3a4l+oBDz\nVs9JHJO+UEuFWB7EkqkJGh9uepBRkoTyc4MrT2M5Z85t2FPyPC4i0nkI9yKNzi/Sr58rWTI8Qu8U\nfMl6P5O//uYD0CJnDMMwDMMwDMMwDMMwphF7OWMYhmEYhmEYhmEYhjGN3FTWxLiZzDv2IcSncBvc\nY9wsy207EUaXs7HMK3cd1OGaHILLIXFJTmZqDkOcNwvhXonkohPu0pnMWcrDoddpC7WbDYcN8u+4\nmcd7zyPkmcM9WV4iokO2R8MIfww6rgedRyjDuI4ojwql2yGvcrPLc4ghS8tynbDJlXRtx//7sFde\n8rGVqh6HchY/hPt24fvvqXqb/+9jXnliAuGG/Q3oF7MKFqtjOPys/QDCFYvv1Y4fP/3H570yh2zP\nK3JC0ilsNTWAkO+Kh3SoObtOXfn1WRyTo8Oe5xQUyFQxOY5rD5GLgMvQNchIMpbr80mgbOEc4qmy\nmotI8izdP39L3m1aYjjUhBB6Hi/JxRjLY2Hd3zqb3vXKHKLc03NY1WNnmaFmXO+MWB1CXrAZoYGd\nlKk/LlHPV7lr2aUA3xHruEkNkqPJVMCZ4U/8SjsQzF4JScuef4b0aOP/px2QakkysfVv7/PKLLcR\nETn3EmRSy0lWuPZ+LQGKkHNSIoWZdtIc3dmgJSfsPFJ7HL+bdE5n7c+aizn28s8gpch1ZGetB/Ad\nKdR/3BDh/nMI0Y+lNj7yonawuefL98lUMU6OPUONeiwmkVsTuzGUOnKCjv1YPwN0TPu7ug1ZRsnO\nYoNBLedjx7b4TMxlLLMacdZFlkCGv4Xxx249IiIFW9DW7ETjOhyx7JGd4lgiJKLXCJaFZS3XspTh\nNi2tjTYsR2l5s0Z9VkhrCsvT+q9omQAzXIe+4EqFOATedVFiUmlPUvs8pHnZNJe7jhdtFG5d8ehC\nr9z464uqXs5GhGwXPoDrcx1ieNwric7D2sGxk/oJu+NNjGrZlbvniCrUB3vO634Wy64eJNOOd5xC\ne2pqvXLOOtyjjtNaGsluUOy6Muo4KoXJwY1TA7AEi/eGIiK5a8u8ctt+ki1P6rYpJ0fQ3nPYW7vS\nDMZHbchOhSIi8STxSqlEH+X9hohIiMdilB23RESCN9hziPxue/0W3heIiMQmYD/np5QFo4Ou9Aj1\nek5hvar8iHYGHKzFXiB1NiQTdbQHnBzV9ylvE9ZwnudYfiEiMpf2isMNuA537xUmiWHJNsiMu8/p\n5yeWeI30oy+EO4ZUveAUyrZz1mLs7PvGbvXZuj/Z4JU7SKrHTo8iInlLsQaMDWMeaTyu5TVDYexZ\nNvwV0iwc/pp2TiuohMRkrB/zJq9djRe0u9wgtcesD0Fi2HFAr83s3MfjueuAbpvqh/EcM0FujEUL\ntVSw5ofYD1Z8CqkGOt/T35cVnFoXQ56v4xwpDjsY8ZzquoCFab7gVCfsZikikkR7PX6GH3Akzj6S\nCnXux7rDezH3+TtzEe4vSx5dksuv/x6hz1nrOZULz71p1TpNiT8V8xU7N2Uu0c9jE2M3T2dikTOG\nYRiGYRiGYRiGYRjTiL2cMQzDMAzDMAzDMAzDmEbs5YxhGIZhGIZhGIZhGMY0ctOcM8NN0N6lL9b6\nuNrnYA091AAda79jwefPgv6q6zC0Yvl3V6h6nOsh0gsNL+s2RbQdZNo8aL3YNpH1wCIi4VZ8R6AQ\n2szuA1pb78+G/jZ9MTRuHXu11pAt1di21LWfTiqFnq6MtMIjjp3YUK3WAUeby9876pVLHtL5c9h+\njPNvvPLPr6p6a+6BHrdnCPdz95O7Vb1btiNpTstO6Pivtms9+NxOsv8kvTSfw0/+/Cl1TEkWNNFL\nHsfvuPbKeWm471u/cI9XPv6dg6reqs+s9cpD1Nfd3Ay7f3HAK9/x2U1e+d0f7lP1Jh19eDTpv4Rc\nGwn52n6Q7TDj00hrPaRzE4yR7WOwEnkPUmdrW0+2hus9C81ky+s6L4OPrG5ZK917EW3tWneyHSvn\nXmDLZRGReBqLmUtxfZNaui3hTrJ9pb5T99xZVY/zS7BONbFYa2ATsm9seRkNkkjzXVXo2J92oN+t\n+hT6Zqhd62XTF2FuuvrzU145a5XOqTRnI3KBsZ2ha+HddAa2jWGyd/SloX2LV2pNcYjGy9InYOgY\n6dP5i4ZIt59GFqS9x1pVvXzSq/dfgNbXHdsVn1iCz6gdN83coup1n4GOPFenFnvfsN2pb67WZPso\nL0yY5vlWZ+zwuuinMZuQo8dLCtmTsnVuf43WZLO+enxkjI7BWObvEhHpOAIdf8mDsCCtfU7n2sij\nfAmdtIZnLdUa6kzKGcO/G+fkq0ssxJhj+/gsx6bazWkTbTJX4Hxb3tDtM1SP+YhzivC5i2gL4OIH\ncA8H6nTuKrYxZ8vilGzdJpzHoILyHfCexs0HwuOA92wlD89T9TivTnAuftefoi1DY0m7z9c+MaLH\nYno1BlbzK2RbvV7PFQkZ188ZEg14Xhs6rPdzhWRX33cJc0rnMZ2vifMyJRahHJekcxhwzidKWya+\nFGcOCOLfnAuk7zLOoYPzyohI2f3IMcH5e4K36NxcMT6cX3ALxnyoR+dH4Jxr7WwBW6XzI3B+nFga\np4N1zpozTx8XbUZoH815qERExiOUb49yRww6e4akUuT34TwXvzPvkT0w57DzOe0d48ffrht2XPDK\nGfQs5K53DOfp5Hx/IiIJtL/hNk2r1Pd5uO36+QVHnFwy6dSunEOKx8dvzkn31WgS7kBfmr9RP2dc\n/Rn2KWPjmK8qP7RE1VP2x7RfTfDptimowh6o+S3Ma9WP67xBzS9jXspYifXq7Bt4fp1/h54nOw9h\nHmErbp6bRURS5mDffPRJ/SzAND2NsVlejfFc+6rOCTb7YeQU4lwlWUt1LjY1D00BSSUYR0N1eozl\nLMdz+9gw7nvPWZ1rkMefyhk1Q+eMHOnGuOdxOh7R95r3UsrOm7YIw216zuI1k7+Pn4NE9PMe5+tL\nKkxV9frIhp6f7Uf7dM4xfr7ntbT7pM5txDbyeddJV2qRM4ZhGIZhGIZhGIZhGNOIvZwxDMMwDMMw\nDMMwDMOYRmZMTqUWwzAMwzAMwzAMwzAMw7gpFjljGIZhGIZhGIZhGIYxjdjLGcMwDMMwDMMwDMMw\njGnEXs4YhmEYhmEYhmEYhmFMI/ZyxjAMwzAMwzAMwzAMYxqxlzOGYRiGYRiGYRiGYRjTiL2cMQzD\nMAzDMAzDMAzDmEbs5YxhGIZhGIZhGIZhGMY0Yi9nDMMwDMMwDMMwDMMwphF7OWMYhmEYhmEYhmEY\nhjGN2MsZwzAMwzAMwzAMwzCMacRezhiGYRiGYRiGYRiGYUwj9nLGMAzDMAzDMAzDMAxjGrGXM4Zh\nGIZhGIZhGIZhGNOIvZwxDMMwDMMwDMMwDMOYRuzljGEYhmEYhmEYhmEYxjRiL2cMwzAMwzAMwzAM\nwzCmEXs5YxiGYRiGYRiGYRiGMY3YyxnDMAzDMAzDMAzDMIxpJO5mHx77yde8clJJmvps4EqXV470\njnjl4OwMVS/GF+uV/ekJXnlsMKLq1b552SvP//hyrzwjZoaq1/zGFa+cMi/bKydkJXrlppcvq2MK\nt87G8a/h+KSyVFUvITfZKzfS78z7zEpVb3x03Cv3Xez0yhffPK/qVW2d75Xb36n3yrkbSlW97sPN\nXnntF/5Gok1L04teOT6QqT5rPnDGK6dWZnnlUOuAqpeQnYTP2ga98sDlLlWv6O5K1Osc8spxCbqr\n9Zxr98pjA+g/vpR4/GZOsjomMT/olQMpOV658Z2Tql7GglyvPNSsr4OZHJvAudL1+lMTdL3J6x+f\nVKz7T9eRRq+8/BN/ccPf/X049I1/8Mqj/XrsZKzI98rjw6Ne2T1vHiPM+MiY+vfYEL6Dr3GC7peI\nyHBTv1eOdA175Rg/xnyic48mIhg7E6P4voScJFWv9wz6R976Mq/csuuqqpexOM8r913AWEzI1d8X\nLEv3ys2v0xxQnq7qjYdw7Ys+8DmJNke+9y9eeYae2mSoDvczb3O5V+461KTq5W4q88rNNNdl3FKo\n6sX48O69+wjmmIyVBaqeLwX9PSEj4JXb92POSizS7RjpDXnlsWH0n9GekKpXcEeFVx5s6PXKA5e7\nVT1eD5Jmok14LIuI1P3ynFfOWlPklUe69e8mFaZ45Ypb/kCiyYGvf8UrF22doz5rP9CA81tG9zlG\n/x1kpAtzY3wm+uq1p06peryecp9u2n1N1Zu1HWtNfDq1IZ1PN825IiLZy9Ffwi2Y09MW5Kh6PBZT\n5mD9GKrvU/XSF2Estr2F8wv16baJpXtR8uBcr9zyph7baYvR9vPv/LREmzM7vuOV3bl84Cr654xY\nDNTxkJ4rs5bhHja/iXklZ51e49uovXxpGG/jYf19OauLvfLEOCbwUBvWp3DbkDqG5/zUarTdYI0e\nY/4MzP/BMtrPORNRxwGM+6yVGGOxAZ+qx4dNTuBcB+t7db1YtPfcDU9INDn35ne98qFn31OfrXl8\nlVeOpf3H6aePqXrlqzDX5qwuwfd9bY+ql1eK/eb5c7XX/R0RkVbq+ymVGC+1R+u88vDIiDpm699/\nzCuf/LeXvHLqvCxVj/eo2QtneuUz//62qpdcjvbltfXizguq3sIPLvXKufNRrt+7T/9uNvpOxcro\nzqciIm1tO7xyzY+Oq896OrEult42yytHuodVvZEuzDO87vBYFhFJq8IYqX0G+1+Z0Bumrh78Ls9Z\nFfdUeeVTz59Qx6z89Fq5HkNNeq7k56IJep6of7tG1UvwYcxN0IYubY7ex+euK7vu9x18cq+qt+C+\nhV65assnr3uuvy/n3/6+V46nfYSISP2v8Gw0eaMNtYgkFgSv+/+To3rvyd/hp9/qu6SfR7JXYn4e\nuIDPMlZgbXbPh/f/PafavHIgTz+PjNDzTagZ62fG8nxVj+fNvnMdXjk+U9+jlNkY6/30fB1L+2kR\nvRcrX/ioRJu9X/qiV54Y1/e99OF5Xpn7MO+pRUTSaV8ebse98WfqZ5C0OZhTI7RPGKzTawjft9hE\n3E+e25JK9Bre8S7WsbSF2EuMj4yren20v+G9T3K5fpfhS/Z7ZdU+zrMt1+O+1LavTtXjubxq0yfE\nxSJnDMMwDMMwDMMwDMMwppGbRs4kz8Sbo4ZXLqnP/D4cGhOPN2j95ztVvdKH8Re9rqP4C/Cld/Wb\ntuWfwF8fOg4jAiGNomNE9FuvTopGyb8Hb8rLHq1Wxxz6j3dwrvTnnpI8/df1uCS88Zr7SUTvuG9W\nh1vwV6wRihiIi9VvOOt34hp9cbhfAScipLNTv1WPNhytcPW1A/ozeiPNUSvu28ChxuufYyBfv+nm\nKIzu4/hrfdZy/Vd9fqM4Qcfw+XQfbVbHjNNfBScKcU0F63R799bgDWWwFH9BanhR/9UoeRb6dzxF\nlUyO6fYONeMvKBlL8Fa852SLqpfpXGM0iQ2gPbJWFanP+q/gL0P8Np77s4jIDOr7rTvxV+pU5y/l\n6fPw785jaIPMJfovAn3n8de/rFvwF1+Odqt7+ow6poCi2Aau9XhljvIQEZmkv/5wtEwiRUSIiMT4\ncV+47wzV6f7asRcRBGWPLcB3v6nnoUTn7Xu04SigjkMN6rOi+xF1NtqPe5tUrs9psBZ/VSjejr/i\nuX+9GB/EX9TTluEvGeNh/ZeD+HS010At2oTf7HcdbFTHpNFfRnqO469LfG9FRIYpys6XjPklLhiv\n6mWuwNhR0QTOH9n4Lzd8vUHnL4kcPRJt+K+yjS9dVJ/56Hfb3sU8FG4aVPWKKGIkJg73P9P5q1v9\nvlqvXL1ihVdOL9f920/RTy1v0XihiJA5H1mijpmkv4qN0riK9IdVvbEBRDXxX60iTrQSR65xdFds\nvF5LItS3RylKr+TBKlWv52ybTCUcJRdxIr6SaR4Y42gZJ9qt/SDGcDZFvUw6f3Hk/t13AX8FTJmt\n+23rnlqvzH9xDVZgrcpeqef/ETp3Xrc5QkdEX+MM+j7ez4iIBIrQF3jvMzqooz263sPaEKS1NORE\nq2Ys1n06mnDEzj1fvk99FhlAP+ZrLF5YrOqd2o2/6lf14Ro3/I3+q/T+r/7KK3MkxeFnjqh62/7+\no175wvd2euWWHsytq7csVsdMTGCMNXdjPZ+zdpmqt/Orr3vl3DcQNVnb0aHqBToxFu/84lZ84ERJ\ncYRD87HDXjlriY6u9CfoCJ5oM9yKPVY6rVUiIlkBtFcczT9jQzqCONyJvfjeb+z2ym6cxpp8RLeE\nB9FHEtP0X/ULKnEe+ZsRpTTSi2Pm3TFPHcN/Nb/2U0RBVjyxVNU7+C+7vPKST9zilQfDeu4t2YRI\nocuvY/+a4vz1v/c8/vofR+eQGdT78yO/OuqVox05w9GvfB9ERNIXIXKB5wd3juqm6/BT1FDWKr23\njvThPvH6NDGh510OH89ai37UvqvWK6ct0f3t2s6zXnnWB7GfGaP1QkSkdhf2H+lZmDPd/VX/RURZ\nZC67ccQOPx/zPteNQuJIlKkgLoj77l5L8xuI7OKIJW4DEZHO/VgX+TJj6vtVvd4TrV45k6Kc3CjN\nonuxN+aomqRiPN+Nh/Q5ZK9DFGTrTkQz5qwvUfU4QjcxD+PFvc/+FKzVAdobu/2i6RXMyyXbMT+4\n6qOuIxQRv0l+B4ucMQzDMAzDMAzDMAzDmEbs5YxhGIZhGIZhGIZhGMY0Yi9nDMMwDMMwDMMwDMMw\nppGb5pzhnB/hUa2rqvo09O8jlGU5Jk7nXRklHWI8Of4s3K41t0e+h1woAT/0iiFHo8Y5DVjrNUi5\nEtgpQkQkJQBtXEI8vrvxlHZB6aVM34VboPXsPKDzLfDvlj+O7OdZK7QWPEzZvDv2Ij8OZ7kW+d1c\nNdFmbBht4OZF4Uz2rMHvc5w9yh5Ee9X8FBrr7Fu1K8UY5YtIJiec1t21ql4yObKkUY6ToQbkUvA7\n7kIps6D5Y/eKnjOnVb14cqXoPgVNo5tPJEQ69ELKIzHDcVZJJqefUcrHEHDyn7j5CKLJjDicU8d+\nnaskd0OZV+b8Qk0v6jxRKdXI38TOaZzfRUTkErklJFJ29UFH+9p6Bjl3kim3z1gY/SihUOdXYjoo\nZ0/p3dr1ZpCcYMo/iJxCbhb3rvcwhjlXSWKx0zZE52Hcv3wa5yK/m0Mk6lAf6buonQXSyJmI84YU\n3Fmh6nF+niHKh1S0rVLV6yT3MHaZSXHys7S+gd9iR66EXLR94TbdPlxv1kcxN3Sf0nmYUirwWw2/\nhmbel6pzzgyQswy7t0V6tQa//yxn7cfy5eY16b2IesX61N83HYdwX1OqdE40zoHhJz193C16bTj/\nFFw+Fn0GOQd6j+s8K8qtYxRtyLlfRESaXoXOmfMV9dN4OfmydrWbuxr5nzgvyIQzH7B7m8on4sj7\nGc4NN+o4MyZkYR/Argfu7zYcQM6ehQ/e+Ld+XzjPGOdbE9FulKnk7jI6oPOuZFLuJV5r2PlQRK+z\nnMuPHe9EtMsFO1S0v13rlXM3l6ljRknvzy5qvBaI6DwGoVbo6bk9RPQc230c43nCyXPBeXT4mLRq\n7bDm5q+LJh3vYi7nvEsieo5iZ5/ie/SEwDmfyrchH8nlX+xW9VopZ0xhBtqw9E7n+2IwNmOTUN7+\n1e1e+arjyjbYinVs7irM924+oLWfXOeVuX2rndx/nO/qZ//zaa+89dObVT3uz23UxwauaIejhBzM\neRn3rZap5MizR9W/ef+eGI9xWvWEzsfDzi0FsbiHPB+K6D1D3lrsX1NmaXcWnsvf/fpurzz/duSR\nOPaKnlOXCdZCflYZ6dU5rYoXYT3oJcfXyg03XqyyMrB/DTq5qvjcOfdeAeXKERHpeF7PN9Gk4zDu\na9Hds9VnnJOq7xTllXH2lGX3I+9YpAdrP+d9FNF5sTpo3mXXQhGRTsqVx458eXfgvkyO69wvcz+x\nXK6HO49llaINxqiP+YI63w7v63hP0PiCk68uA5/xfrrfcRvr2odrqtpy3VN9X/A+MtShnQH5nUAG\n5RGSxTpvT/tezD+cg7Joq96jdvAelXOPOmsNz1NdB9DP2Emx97R+ZuXcnImlaPtAnp4rRy9h/I1S\nHit+ZhfR155IbocTjtst5/bk58V+x0ksIe/Gz0YiFjljGIZhGIZhGIZhGIYxrdjLGcMwDMMwDMMw\nDMMwjGnkpvGmHI6UW6ntdvsuIxSok0JL8+7SMgEOlSx5CCFrA06o1txNsBZlmUXjES3hOPrkPq+c\nnQu5yQwKTU1bpMNq8wsQxlT37Dmc6yx9TRyOtuen+J3ImA5bWns7LElbyeY30qFDF2OTyG6cZCmu\n/KVso5YtRJsYCvnvfK9OfZazBrZiHD43I1a/t+u9jPDm/NvRxq5dM9ufZi9DWNmQI0cZIckXh1uz\nxKnuF2fVMR2xCDNji9j8ddqCdWwEIdss6WrbW6vqJVFoWj/ZOqfN0VKFWLKKD85GOGTNc9qW3LVI\njyapc0mSlKrDt1kC09+I+1y4UYe0dr+HNmSZCt8jEZECsgNu3gWJYLITvsdhnUfITrT6NozllDk6\nvH+CLGZL70GIY6ITlp1Gtunt+9DuHGosokMDYygkMWOBDrPsS8B8xbbaiUVa/uTPnDoLZhGRtndq\nvXLepnL1GctHCiksmOdhES1RaqfQy+QiLdvj0OdTTx/zypXOmE2ejXnUR33LT1KPmqe1dLCAzr3h\neciVAo6MLWsppA9zP7se1zCmw2UbXiKbUJIKJRXofjFOfTWRrpet5kV+V0oTTXzJLDXS4bfp89Fv\ne84izDaQq9eaohWw9bzwfYTxz/6wlvvWkhX9cCNCu10b2b4WyABDEXxWMIfsYEn+KCLSfQTzQcsp\nhOyyrFhEJIHkIrUHMB8UVmuJLIdss/TOlRWMkMSk9xhC0tNXaMvljLyptbVn28yOw1q6nJALiUT3\nCdynJEcay/1skmQ0HY71PEsueD3hUHsRx4KU5Akp8zGPuvdTnQ995kofeB6JoXNopfVDRCRQiPtS\nsBl7k0if3t+wpDLShTYdd8K1WXJerNUO75uKj2Ev1nVSSyqPvQ7p0KY/g5yn7YAOV9+/ExJDnlMG\nG7SUYmYu9pW8CgVLtUVqx3nsW1iW9PLfvOiVl96m5RfjJFEKNeKY7NXa9nXXv8Kae/4q3MyETC0B\nrzuKfd66dZDeX9txQdXLoz3azA+jXudRLfkfbpg6OYyI3kdmp+g1OTkRa3LSTLSPK/li2im1gS9d\n75eyyVKZpXCHn3xX1ZuzGfuTGJIqTNIeZnRcz/8DJF1IpLUrkKPXsZP70A5LNlVf9xgRLWdnCUec\nI2tla+nGlyBn92fqa1//v7SsLZok0Pw/QvPBb0D/zCRbbN4Pimh5csNu2DbPfmShqsdypZI7aFJx\nrOJ5P9dPUr14+v9RxwY6rQJ21+Ee7KcHaB4TEUmZq+fX39J7SkuT+XmJ5Tnhfi3Z5lCJIZK7jjrS\n7uC8qbW17z6D83dup3oubHsHc0zpg9pSPms1xhivOyHHnpr3vPwc2HWoWdXL2QD5YaAI60v/eZIk\ndev7lJiLsZRAqS46nPk/SNJ7fxr6RekH9RzN+4CUCsj0/EE9xsJz0PdnUJqX1Crdbu5+3cUiZwzD\nMAzDMAzDMAzDMKYRezljGIZhGIZhGIZhGIYxjdxU1pR7W5lX7jmjQ7XOvYxw6/LlqOeG4Mf48f6n\n+fUrXjnnVh2uee7nCC0NUnb2gZAOpeWwvLpnET5acBdC2xKzdfhQzVOHvHJ7P8LFVj5SreqFOxBy\nVZGHcPDzjTpEOUBhuzt34Ls3blyq6rGjxrX3ar1yabwOl+IQqamA287Ngj1CIXPZS9Amzb3a6ccX\nhMRhiMLr/U7IKMtJuk4jDKzoTi096q+FE8VADUJBU2aj7Tj8UUQk0oO+0EWZ4dnVQkTfdw6Vm+G4\nZKXPx7kONUEW0HNe93UOtUxMQ2hzsZN5vPMYheLprvW+GenGtbe8ekV9lr4ccgB2wUkq1uHWMX5c\n/9VnIFPJWKBlgI3vIewvfx6+2w2v5PkhibKhs/Qos1qP844TCDeOC5CrheO2kzoX/aDpBfTFs3U6\nJHHjxyGVCdPv1v3qnKpXfC/airOp+5K1S0u4SYddRpvUGziTiWiXBT+1Y+8J3R/ZdcuXiHDwSz89\nITciLxdzzAC5Q4iItDVi/L1yDPKnx9bBGSR9npbldB/WYae/JejMZa3kGhLIx7yZWV2s6iWVo6/m\nLYQLR3+7djRgp5uOd9EXxoe1myCPiWgTboMkK2+jlqaxRGnORyG56HPuOcsyc2heGnekgzEURnxt\nF8a9P06Pl64BhPgX56F/9NSSfNgJUS7chjUzlWSdrkNWArks1jdQyLPzp52hWoSAX90F96i8Ct13\nRtoQ9ltKjiZXnP6bXHBjx7VowPfaddgYrsPY5DYed9bPntOQZcUl4ztc+eXABYwxlqR1ntcOE8Es\njJHUhZiXz7+B+YwdvERE6jvRtzY8Aiedzr1aEp6Qr12Zfovr8jbYgHYcJlfExFwtV2J5LYenh9v0\nHOpKn6PJsW/t98pFS/ScMkIOo4CjwX4AACAASURBVCO0dwiSU6SIyNgE5l12z0qvdqT85BSXvgCf\n+YNaitL8JuQY+eSWE7uLHBfPtKpjeE85g9bpaz/WbkAsr+m6gPMJOLLgBY9hL8rS18rHtWySpdg7\nSHZVNVu7cM55Yr1MJbF0zYv+WLtBNe/E/Ry4jHnKlXxxqoRACeYOX5reow6z4xzdz0WPafcnlqAs\n2o65nMd5bqrjAEr7tIZfY+1KrtB9bv5iSF14ruk6pfvF/D9e5ZVbQ7gPzTsuq3o8jxZuxbx+8kdH\nVD12HCr4qEQVdshMm6tTAwzWY05hZ7y2ndpZl12K0otJbp2s55DyhyFzCnVgzLJTq4iWtvD6F+7C\nGp6Qree1/jq0QUopPSM4jlE853FfYVmoiMi1n2GvzXOS69IbpnV3hFyS4pw9augmcr5okLUUsi52\nUxQRSd2EeY/TIYQ6tUy9/gXI9iYnsRaOOilCEkhC3XQGz3SF8/T+rekV9PeirUjJwGtL93G9Jx2P\n4LdadkK6y5JeES27zVmNtotP1mO2jORzIyP4rZZ3tSyYHUqbyUUzIU+vvy2vYD+X/+X7xcUiZwzD\nMAzDMAzDMAzDMKYRezljGIZhGIZhGIZhGIYxjdjLGcMwDMMwDMMwDMMwjGnkpjln2Dqq76LWns27\nF0k1+klP3b5bWzWHyH5x5gdxjGt1uuDjK/C7pLus2rRG1eu5gHPiHA1phchpMjygNWBFlG8i9Sq0\nkPGOJXGkF+c6TjrkW7ctV/VYtzmL7BU5F4GIyP6z0N1t++gmr9z8hs4ZUnD71Fpp56yEFrvzmLZI\nFNID1r+EPEJl9+tr7jpLlsqkC+29oPO9sN6cc7+Eu7VOcqQTeQfSq3EP2e6u6R2tR915CtaYhZnQ\n9bX36dwdH/zYHV6ZLSYz5uocNoPN0Oqzfn64UX9fwUborQe6oCFkTaOISHLJ1Fm/tpANeHxA629D\nrbjnueugFb/4o2OqXkIitKsFlEeh3xnbs7fBFi9A+SaGW3Ubci6jAOUjyFmEsXjpJ7vVMfE5aI/6\nE9BtLvjDVapeqIXyFtAr5CXLdX6EeNKTZ1ZB399xUudMCpGGN5FyWTS9qrXbubfrHCLRhvP+uDl8\n/Fm4N9ymyXN0HpdQE9qhsQXjb/Uf6bwArKXl74s4NpfZ2RjPf/L5D3rlMcrjEunWub9SyM6x9wTl\nzdCpNiRM+uiU2biOiXFtB8z5hzqvYJynlencB90nr59XZ9L53YSs6+fXiAacT6T+ufPqszGyVp0g\ne9xIt77nrLtvPoA1M9/JVdLShfkwTHp1NxfbghLkX+jpQ1unBzEu+TdFdO6leBrniY7F47EfH/bK\n8zbNxfm06/WO82uMPY/2vXZO52xjZtEaUfmEztk2Hh5zq0cV/n7OqyOicxdwvq+Qk08l1Ix/Zy6H\nVj+pROf7ylgMDT3nNSlxvKWTKEda48uYwwoLsW8JVmkL18p02otRbqPEMp2zh8+J+0LYyRfgp8+C\nxTjvyUm9Z3PX9N/i5uUZcSxOo8mGv/m4Vz79refUZ3f8yRav3PA89mKcn0lE5NF/esQrT45j/A3U\naevc429jf7T1c1ivYmL0epxGuYL6z2N+XvDn27zytz7zL+qYKz/FnnfJAvSJik/qMZFHuTsO/PQg\nfvOqPteOq+gH6VnoB6nFen3rvoz1b+uX7/PKh/5lt6qXchA5j7K2RT//TMch5EeKcfLPFWxBfpba\np9EGbo6JdMp3yHmd9r6g867c+sBKr8xz+eigXpP4+eLb//xLr/yBdciJ88sDB9Qxe/YjB9Jff+IT\nXjlSp5+L7vjURq/Mz0xzP6n33c078axQ9ScbvHL9K3odHA/hejmP5LwPLFL1ug7eeC5+v/gzkCuU\nraB/87t47si+DWt6zsYyVS+OcujlbkBfdW2sOYdIwR3oH4PO3p1zwXD+tiS1xuk1N1AIe/mEBMzp\nIyX6mhLT8Fn7SYyPvrM6j9jVNuyTF63D+snPkSIiPnoG6XgX4yFrdZGq5+Z1jTYRsvjmMSAiMtyM\n+zsxhs/ccyq6C8+0bL/t5g76yZeexffRJq5stZ6nksv0eur9fz7WwvGQzjvYcQh9feYjmEe7zuhc\nbBnzcX8jA1jPfT697+6qQe6gWHoGy1yk8+Pwc1LmLXjmDJbqHDYNfRfkZljkjGEYhmEYhmEYhmEY\nxjRiL2cMwzAMwzAMwzAMwzCmkZvKmjgUt+6YtrDNodDV3PUIUxus61X1Wt+CnVz3cUiSfviTV1S9\nT3/uIa/M9szdZ3XoYrAMoUEZVfjdgU6EALvh0IWVCCdNzsD5uGFLI70IUUwvx2ejAzqc15+Jay9f\ngfCrDrKOFhEpJulNx36EUqUt0BaNrsVptIn1Uch6oQ51TqVweLbIDvd1q3r5SyA7U2G8M7TVY0oe\nvo8t1OLjtV3z6BDCP1niNkjhuaX3aAnLYrJB/8KTT3rl//7rv1b1Wg8jnC2JLGszMm4VzV46V7Qp\n23mLiMyYgdB7DvlLzNOWeZG+qQvfnvkB2K/PiNNWcEMU6tx3EWHUlR/TIdGnv4/w3v43MF5ca9b4\nLISnslVdqnNf2vdANnVxH8KjS45gzHa16/kgpgnte4hCqrPe0taLw3Vo6yM1sJDcsl3LHJPyMMaa\ndqEv5qzWcpgIhbe27YFcLj5bWy827MB9maN/Kiq07cJvpy/OU5/Fk6wpTNa+SUU6pJNDSzMbcX97\nHXvWvtPoC99+4w2v/InNm1U9tnQcuobviw1gechaqSWB3SfwW/l3UVixM//HkE30SBdJcRwZUqQP\n7TN0CmHAHJYsIpJE0sEhsiBNLNHzWtcRhFHPXCJRJXUe+qp7fpPHce5Xn0EI/qwP6fDygRpICSse\ngizlxf98XdWLJ8tsnk9TEnW/ZalGB5XLb4XUqP+ctvNuOoZ5snQ9SZKGdHjwrJX4LI0s1X0rtEyq\n5zyuPY7679INOlSfw6Gv/gRjNi5FhzzzfZb5EnVCFH7sSm9Ygucn6eTANR1en7aQrEXDuG8zfPrv\nXh3vYk6MTcJ8m+DMP2zzyzKBMMk8Iz36XAfOoy+lLcY6y1JGEZE4kpCxtIrbQ0RLgfvrcN7JxXoe\n4rHN9qEsKfnNeUyd9et3//ArXvmxrzysPnv7HzHn3frHt3nlykxHwhaPeXh8HPLDuIA+7/x07D33\n/D3Gadl8LTsYqMe8tOjP7/TK+74CacySch22n5qD+StjKfbdvRe1bPyv/uIbXvnbL33JK//ir3+l\n6i2vgjRqjPZX3TVaUj9M9sC8t1n7hW2q3s4vQTJWrT+KChkkDTj3g/fUZ/50jIO+LrTJ5Ljut1kr\n0A4svb/7T29X9ZrJwjZ1DvY0AUfaONiAdvz4E1u98qE3MGd9dMMGdcyaSuxZn9qzxyt/Yft2Ve/5\nb7zmle98EBuNQKp+Nmg/d8grl9yD/5/Uly5DdK7X9kLyM3Ojlk12NOv5K5qE2zF2Bh2pfN6dtEeg\nOTQ4Sz+Dte7G/ihUj77JaSZEROJ8WBc7j2KOaj2u0zYkJ6LvlHwAcvuWXWSt7Nf76UAenn0Gruzz\nymdP1Kh68+ZjDAdpvYh0aslxZhDPCTXv1Xrlug49tu/+6AavPBjGWMx0pM7u/B9txkN4fk6doyW0\nw7SmTPRj7zNQo58XI7TXY2lUfafeg9z36AavfOVdjEtX8sWyKZWCoh2/O+lo21OraJ8WRt/ktAsi\nIj4f5vUZM/Cc3npKp4VIpmfJs9+B1LvYSUvC55pWiXNofFWnWnCfPVwscsYwDMMwDMMwDMMwDGMa\nsZczhmEYhmEYhmEYhmEY08hNZU0TFDboRKErdwcO9Q07obSpFH7NbgEPr9GaAXYgmRGLsKBAgZaO\njFLIbO95yCLYGWjUkZfkVSCkaXKSQo9naD0RO4ZwKGiaIz9460fveOWFpZBP5C3Tof/5FPbbfwYh\nbNkr/t9m36556tANP4vZhPdzuashSYqN0yGeLPvpqkem+JEeHcLX0ginlZbdtV45c6GWNZXduQ71\njiJ8jB0vLjx7Sh2Tm4b+87O/R0jve+e1487q1ZAJcGh3R9ubqt4YZfeOJYcAV5rRe2GnV+bw7bb9\nOgN/4fqFMlVw6PnAJR0yymMueSZC9DhEVEQkeyZCeBMpRC9YrrOIJ+cixLjlwFmvPOmGv5PzUltt\nrVcuzME9auzS5/r8IfTFLYsg9Ri4pu95sBxtfW0/5BLuWIkM4toLNkD74PPpEHx/AHOA/17IMRp3\nXFT12MVqKmD5jpsJn8NVWVrQ+rZ2n6u9iNDdgB9SkN7TOkyWM+Mvr0DoZcYCPRbDJKUYJ4em/NsR\niuwLaglL9irMlX767P9n7z0DI73Ks+F7VUYjaaSRNOp91bb37u3N9trrXigGbGxwCBBw4E3Pmzf5\nICGEhBDaB4RqMBhXXHDd7vX2vt6ireq9a9Tb94PwXNd9bO/3w6N3/9zXr7OeM6NnnnPOfc4zvkr+\nPE0hrzuFNRftp/c4yUFRcaiVtXvwfd36n0hJW1nrir22S3F3k4QiiSkxqJksoRQRyaLankyU7RqS\nOImI1LVhXSx+AOkha9bPV/0unUCNyc8BRbazQydHDI+CilyUjnUepnUV7taJUWnZWCN9V9AvUKrr\nAUu3xobwd9qOaMmxL4gxzdtSgf+epOm7Z76912vH0pyIy3RkBVW6JkQaLH9mCZ+IyHDXeydWZCzV\ne3cPydO6TyKlI3WxTnDgtdR2xElM5L9LZxdOn0goonQRh76dsgDrufsMagDLzUX0XpixGN+jt8aR\nOtDH8/WMZ+s11n4SMm5O6+M5IqKlsZFGRQ7ucwelB4qIFPI6oD2d00NERLZ9+6deu6QY54+cmzVd\nfclf3Oy1R4dxLy/+5KjqN/9LW7x2Tz3qw9ZvfMNrH//Nf6n3FGyG9nKgE/Po2A90GtAtixZ57bM/\nALV+4336PN12CHPs2FWcAzZVa9lM3jqcldrPVXntyp/sVf1Wf2mDTCbiUjB/Zjy0SL020IJ7zfvd\n5RptI+Dfjc9oOI3aNPeRZarfrM9BouT348zefGm36sf7Zw9ZG9xwO66v7bCugV/72c+89re/9CWv\nPe8LK1W/xXHQhg0PQprRcUHv9bnLcCav2449xJVDFq1F+hPXq9gkvfZCGZOXKMrphO4aY5lK+xms\nU7YdENHfa4zktRfOa1uN1ETsFe+8jj0yOlpLlBbPxpmQ61In1e1Y5z0JdOaIIQnqqCOtaieJfu0V\nyLxjovR3HxjG3CnIxB6+/fRp1Y8l5UFaD3V79JwI5kzeGIqINL4G+VbZI9oaoZOsSfJuwR4f5dPf\nuXFnldceobNJfpqWsXWfQq3rp/vU76Z9XcF48fkrhtbolbe0ZLN8IySGIyTZHCvUsu1oH+YjP2ex\nhYqIflYouQuJtu3OOair5r1TUhOL9LhxIuR7wZgzBoPBYDAYDAaDwWAwGAzXEfbjjMFgMBgMBoPB\nYDAYDAbDdYT9OGMwGAwGg8FgMBgMBoPBcB1xTc+ZToo0jXZ0dBydFT5PUY6LtD/LYCNp/8kuoq1H\na8oKcqGxy9mA6M7Bdq2TryLt/hGK2L3lIWgus2/Q8XEXXn/Ga7PfS/tFHW2VMwu6UN8DiGCre037\nUtz7tXu9dlw8NLxDQ9rz4dC/7/LarDsMHNY+BVEUu5lbKBFH8f3QFfvidBxyzZuIV2adffoyra1P\nKYSfQBRp/jpP6Pje9GXQ8I6TRpOjkUVExsYwL7IWzKD/Dg+b4nV67HsrEcMWS/GK07pzVb9kin9L\nmYHx6TyrNelXKE563p8sx/vLdXxc11noIhOzoZlsO1Cr+o2OdstkoXUvNLeZjpfAxBiZBJAfgeup\nxFHpPL5DHfo+hwqxhv0ZVV47ju65iI7cXbURXhmvvgyd/Lwifa2V58557TuWwmsj1fEkYo3yww9C\nI85zT0T7Hgy3ox7M+dgnVT+ebx0XoeEdbNAeWf118F+ZsUkijqkfhS9R03YdzTjWD21ulB86aPbT\nEhEZG4O2u3+IPGwcTXRONu7p3EIUFvb3EhEZp+jEko+TD1AVtLOtzlznSGv2nKl86WnVr+kovA8K\nNsB3Y7Rfx+2yRj0Qj6jE8GXth8E+LhzJGb6ooxwzyY8m0mjcRlGld+uMZ9Y291xAvcqmuHERkczh\nYq/dcQxzeLBZe+Us/BD8Ddgjq3+H9vqa8yDiqlveRq1gH5eQE4cel4L1zL4O/nTt/cJjk16Iv5OY\nrb2+2P+p/lW8FktR1CIiRXej3vPfuvzT46pfwT068jLSGKX1lsKx3SLScQJjElqE/WWgWdeL4Q6M\nwzB58/jTtZ6cvVtSZ9Oe9E6L6hdLXkyp81CH2Yev96L28QpfwTpQHhNO/c9cgnNVuBFz0xfUdX2M\nIsHjKM67aW+V6pc6G/WljbyXEou131fSVO0zEEmkpsAfItbxsar40yVe+82vvOq1b/3qJ1S/1Z9f\n57WP//iA1y5wfIg6L6IGtu5Du/gjc1S/1lM4V2QvQD099MN/89rNF1uc9+AclUr3q7lbnynO1de/\n52vZzfpsk0feDkvLyTvH8WxrPws/GvZzq3h4herXchh7Vd4k2LLt/OorXntoRHtCbP57ePh0ncZ9\nm+r4mpTcjvN7cgXO7O1H9Hm7rg5nkCVf/rzXzihZrvr196OGsa9mFUVVF60qUe95Yxf8i3IX4vOi\novTcbK7EGSmlGJ+RPFf7FlZeet5rB8gbsHylnsPNTb/32lyTKvfoZ5wbHlsnk4WOC3j+Kbplmnpt\niJ7jUitQa6+8cl71y5yFmhduxjllwRZ9X8bJPya8G7V1+aOrVL/eK/ScSr5TgRD2HX4+EhFpPw4P\nkXMH4WNS68RA//NPfuK1Vy6Dr9HMggLVr5x8sfoHcK0Pbt2o+vXU4PrKPoLv6+45PY7nZKThy0DN\nHx8dU69lrMI5ks+HF1/V41h2I8a/6wT9jpCga2os+dTNqkDNynCePzneu5fOeoV0Rsg4rz1i+Nwy\nPoTv0ef42Qy1YW7yM3DWKv3skjwdz87t5OmV7JwdMukenf0VzjRxMfq7x9O+W7JA3gVjzhgMBoPB\nYDAYDAaDwWAwXEfYjzMGg8FgMBgMBoPBYDAYDNcR15Q1ZS4HPWukU8dT56wFt3HKetDyqp45o/rl\n3gpKZcPvQRGb/7HFqt/RxxEL2HABFM+iJZpa1EHU6ViiCT37o9e99j2P3qTe00oUJI7K4thYEZGB\nZnxGaC6oaNPuuU31azoL6mv0VFCTwk4k5awPQ+rhex8KuYimVU0GmomOnL9BU798RFsOUHSYL0lT\n0UdH3zvqPCFfR93u+e+3vPayezDGPofazjKTiQlQ1lJTQUscLNdRqj0UE8pU7mBIXwNH+sX48P3c\nayi5CVFw3ZX47LS5OgZ1mOLC204itq/0Xh1fWfXqEa+d9YBEFBmrsQ5YBiGiaeTt+0DhDc7TsZlJ\nJNdq3Q9adnxOQPWr2r3Da3eTtJGpgSIi+SRPCF8F1bAsG9TU/Rc0rfbFp7/jtQs3QtbUVaMlPlEU\nQ5+Sh79Tf/CA6pdYiO8+THO5u1vHm44Nv0807lpdXyYbfXWY0xk3aPrrCMnEWPYzMaqjc4MXKEay\nBhKWVQsciU0HRXMHMPfj8/R6CU4DXZPj4eNImjEa1jKk9gOoqSdfOOm1yxYUq371HZgX6Y2Yj92u\nnIPW5ihRabsadU2N2gEa/sVKzOEZi7VsqOl1zKdyzdD/wMjZhP1uoElLxDgOfYAkcqPOXsOx9K1V\noEsXrChW/TjuOSEb4+bSxmuePuu1/SQRLtqAL9904oR6T38D6L1M5+2p1PTtglvxtxITse9f/P3L\nqh9TzfNvRW0NpGrqv98PmdCVvS947bQVWnblynIiDZZSxiToyNnkCqyJKB9qUUyilid0HAUFPnMN\n6MzvkpTWQoISJHp0ghMV78/A2uaxHwlTnPmAjqoeDWNuJU9DjU/K1xLzjnNY2ynTQMVuOaQlixwJ\nnr0ZYxebpL/7mcdRY1PTEXEfn6O/E8vxIo2KRyEn+M3/+rV67e7/fbvX3vCXm7129RuHVD+WZy35\nwmq8oMuuPP7157z2J/76bq+991s7Vb+4WMhQC5dBGzvtw4jirv/Hn6n3LH5sjdc++Z23vXaSX59Z\n/vzfIddlSWD7KX0mePtpfMdgMvqd2X5W9VtwF/j0QZrzta+/o/q5EfKRRnI89u6kTC0rH2zHWTGh\nAPPM75xb+jqwJ7EcL7BB7w0JgWKvXXX4Ja9dsPBG1W+oF/WbZbNzH8a5xY3DrXoK8cgT45AuFS3f\novqVLMQBcXAQZ6yuTj03eT/pHkJdvuLXcz1nJuatPxtnwBXr1qh+Tbuwf+brsvyBkUPPi65smWvW\nQDVq4fSPzlf9ap+F5CxndbHXbtpbrfqFqHYvvA/S33bHMoJjl5U8dwU925IcVUQkJhF7wYI7cH2J\nr+n6t/Cxx7z23vOQ9WxYNk/1S12I54ldv0REfU9Vleq3ah7imbvP43kkOl7L2kOLtY1DpMHyxsE2\nLbP2JaMexdJ9KnbkfbxntjbjDFcwX9eRjnP4nslFOMs3v6XHO1CKZ9Nssj2JomfRsk9qbdCvvvwb\nr735bjyrNbxVpfol50Ginzofe2Z8SD8rx9A49NN+3nNen5emkMyp7DaM6UCDllOlL752TTXmjMFg\nMBgMBoPBYDAYDAbDdYT9OGMwGAwGg8FgMBgMBoPBcB1xTVlTN6UCMDVLRKS/ERSdgSbIdFzK/AjR\n4RNLU97zv4uIzL0b9LHBFlCpmAIsIpJHVP0EH2hV8XGgnCXmB9V7OkkKNXAAdKmsGZr2GxUDKtYY\nUbS7Wk6rfvEZoFP21oKS2H1OpzWxZKjhVUi6WFYhIjL1Ae32H2kk0P1gCZGISLAc95ep9+FaLSmK\nScCYhMpBWe+K0ZQuTgng9IRQuU7eiIlJpDbmTHP1Nq+dnFWh3pO5HmPfRekGsU6KUOocjGvDW5DV\nDDZoCQK7b6cvAqU+NlbTatMXQ9Y00od523H5qupXvGWpTBY4mYYThUREcjaSzKIRr7mpPIkFmAdj\nRIUPFOl0jQ5K4OpoxzrPnKpdyWMoRSghD3TjimWgEftjNSWT6Y6cbsV0SRGRHpJJ9V7d57UP/O6I\n6rf646Ar+oL4jL5G7WjPaQvx2Vi/LHkUEZV2Jesl4vCHiAbtSB9adlR57axNkI/0O+7yLxwC9Tkt\ngO9y/lKN6pcfwjzOXgoab94aXW+GenGvctZiLtVvQ80qvk8nGnDCV/tPcT1u+tXM2fgeTM+9eFEn\n/RSmYy0mUSLT5X3nVL+MAnwnH8la3USgodbJk4oOURrGUKum/fbVYqyYfpwyQ6+dzjOQjlTcoeVo\nCjRHErKwThu3H1PdZn4Bk7WvGZ99/heQ6ubcWKbe07QDqSN7953y2psduWa4Dut0KAP1vuyWm1W/\nhlNYp8mh6V57eFivxfqzb3ptli9G+fRxZLhLJ1JFGixXnRjTe/L4CKR1I73D9B6dnpNAqWWcSsT3\nVkRkgupKNH1P/v4iIsn5oDoPdOM8ceYpSNIKFupIR6bup8yEdDDcqKWDgQLMnz6iWLspfCwL5v2u\n7YCWDOQuxLXGhfAZ/bW6XrEEuViXkQ+MKVNwLxeWamp9IB0173d/jRSdpXcvUv2ScyFt7a7Dnl79\ntJYAsVSNJb5bvvqw6seS7eaLkCh10flw2WNr1XvajmEfKr8P9ZkTEf/nIrxmywHU++539Nlzzmzc\ni8I7cPZKceRPjbuq8Np01KjQIi0xDGZPl8lEzkL8vbN7dDqqvIzv7M/GudFNeGyjVCYfzWmWbIqI\nJJdjjxqhFLULv39W9es6hfVT8jGk59S9jOvL2qCjqy6cw5hsIDlo9YFXVT9esywB2v/MYdVvw2dR\n1zuOY+wGnFS/i1df9Np+kr92nNJpqjGJ+jwWSfD+3uskCnXWogYk0LPa6V9q+XlqEOeZmACe7/zO\n+bD3HD6/9zzOilE+zTfIWP3e8bcse+4b0rKm3GV4T+3+Kq8d79PS19QCyF7WRqOOT3ESRfkZa8WW\nhV47fElLtrNvxLm5/QjqQXCmfqYe6pzcfdGXinvdXanHMZ2SCxu3Y49jSbOIyOVa/Vz4R2Qs11L+\neHpuYJlmXFCP9zClYI7R/tR7heTCFfo8HUUJ08//GlYNH/uru1S/rrOonUnF2MP72/T4pOSiBmat\nxn7O1yai98+rz2EPCc3R9Uo9Y2vl5R+u/93/yWAwGAwGg8FgMBgMBoPB8H8L9uOMwWAwGAwGg8Fg\nMBgMBsN1hP04YzAYDAaDwWAwGAwGg8FwHXFtzxmKOx134htLH0ZsVTfpC1mTJiJy+PvQ3AYoFjAz\nVv8uxDHOrP9ueUv7KHTWQF/IWsH8NdDYun4pUxcXe+0Uirlijdsf/jCaMfHwhmg+qGN+SzYgFq+5\nGzr7HCeyb6gTvgesHeZrEBG5+Dj05IX/fJ9EGqyF76ltUK+xz0zGTNYV6ygzjgwMtyJ6k+OtRXSc\nnp/eExurfU2GhqCfrd2PeLnMheVe++rru9V7qg9Wee3sUmjr/T6t27/6K0T7Biha1O/ElrJ3RFwc\nPJXaKrXWPHMG5vqFp1/z2uyp84fPgzdR2k2Rze8dId10UrmOeGt+G2uEtdYcyyqi41z7uzA3X/32\nm6rfwrkYg0VfRESjGwEfzISmurkNHhgT41hI026dqd7TV4W1OTaC78Tx7CIi515ClGfuVIz1i4d0\n1GROKu5Fdx902G6UbWYQ3hD55L2RvlzH2dW/qr1QIo1OqqnsfSMiEl8I/W3tK/BKqmvXut9+qnuP\n3IdaFBPQenI/fT7rYBMStE4+PR1xm411iDaedvdWr31lm54jE+TJUX4z6sb4sPbumBKDcRjpxnWv\n+az2XOi9gro+Rn4ORenacyyxGOM4qwx1rWrXJdUvLUv7jkUSHGVf+jEdm9nwOq6j9xx012e3a++c\n5m6sxXV3Ig44wYkhTqvAmU509gAAIABJREFUWLFfWHCW3kP4NY6hzFwDP426F8+r93A85aoV8LkI\nX9Ra6+Qy1NBL2+HLkLVUx3mnlEFTHe7G/G05pL1KMhw/iz+i3/EEm2yw30u0X6+dvip4NXC8Zuos\nrRvvvogx7jqLtc0+YCIiDW/iDNF6EPtn6lzte9d6GvWHPb1i2NPAqZXsI8FefsPdWgvPHj49dGYb\ncT05ZlPM9i7MpYxV2i+g4xDOEqM92GsCJXp/6nH8JyKJ2jfOeO2EqXrNNx3Ffrz2T1Fvap/T6yA0\nF3v/1afweU/t26f6ZafgDHP8Gex3N83VnlE7/p9nvPaCjy3x2uwBF5uga/+FHfAxGR1HDXVr/+wC\njEHOcnhjZK4tUv1CM3EWvfxbRDq78zJ8FfvxpZ8d99r5d2iPmWPf+K3XXveVCBsHiUjuepw5XE/G\nvM147cIP4MmSu0mft5t3Y64mUyy4+wwRRc8e7E1WsFV/59y1+Hf9DpwJ+XzjXuvCrfDOTErH9TXt\n0vtn8jRc31u/PYBrcPa7FqrlcRk4Tx996bjqt+BmeOK0bIdvkut/MpW8cyKN6u3Y+2Y/skS9FiSP\nq8qXsMbcc1r2ZszPy8+jX1qJ9oGsqsdzx4zN8FRqP6Sfb37577/z2kUZqGv55I15wom0Zs+ZbPIl\nPXVAeyHxM2ewBfMo1/F2u/xTjFVMEmp1uFv7BjXvxLixf0/bXj1/+3pQx2fdJBFH1spir82x2iIi\nQ7SHsNdslDOOHC3+4KM4RyZl6LNnz0V4SBbOghfM4KDznJqCv9XTgnEIrcNz1vnHX1PvufXTG702\n72McUy4iUrQVa2JiAs/DRTNuV/2unnoS10M+UfnzNqt+rTV4nuU4eD4L/+GPyTVhzBmDwWAwGAwG\ng8FgMBgMhusI+3HGYDAYDAaDwWAwGAwGg+E64pqyJqbRufS4y7+AFCdrI6hKg+06wnT6FsgaMheC\nBl277YTqF64Clbr5BChNmXO1TKqgBFTBjoOIG+MIYYdhJZ2XQA3d9RpoVBtu09HHafNBb50SDapv\n1jJNn6w9hFiunkrQml3KaM0zoLL7M3EvO0/riMup910jSjUCGKU4TJ8TUdZJUXvhKtArC2/S9Mfm\no6BbR0VjLsSm6c/rPoP7MYWiySXqpOrXeRp/N20e7vvIIOiPgWIthcrpAKV8zx7Mn833rtT9bsJ4\nRcdhinc5UeelWzZ57bYr+LyYRB2ZV7Ud8qrcTaAsxgU0BbX9nJZWRBIcxdp3Rce5Js8E5ZOlMpef\nO6P6NXWBwrz8I5BSxO3UlP6SByDVCAaxRoaSdQwnR6CXLn3Aa5+s+p7Xbj+o6YksWbz6JOJ7u5p1\n/GowAetlqA1UyiXl5arfrncgf1o9E7Umf4Gm4O96FXToghhEtLPUS0Qkbb6WGUQaLGmMcuR4LDEs\nuhNU3RBJfkREZsxHnWEJQVKxlhO0HcO9L9yMCMfxcR3F2FiPGM624yRVmI7rSXPkF2d+BHnZ3D9D\n9LJLg23aA6ouR9zHBvQaY+kM35f8DTr2u/oVUIRrjoPuO/tDC1S/kR4djxlJcETj+V/oSGtepyGK\n0Cz0OfOqCs0wxVXmrHqPTMX/wegIqL0qkl1EeqqbvXZcOl5LyockMOYOR7pDVHOOlN39tq7VaRdB\nCd7wOYp2vaClr6FpmJexiaCN56zS8s/eWnzfhlewr6TfoCWGnSfwneRWiTj4TOOeGbLWFHttjsrs\na9R1amwAayRvNdZYQkKx6jexif+BOeJzImJDJTgLnPnxy167px/nqsEDOqa7ZDnue1Iu9sjBgJan\njfRiTfiCGJPoOF2H+mtQEwNlqCkDdfq7py3Cvh1L54rwVf13/ZmOfDyC4HNKw14tHXzxx9u89m2P\ngOJe/CF93mreW4U27ZGf+ZM7VT+WDO9/GvWPqfAiIiu/hDXSffm9JV0jA1oivPEfP+G1f/XF//La\nQyP6s9NnYD3zPHIl1g17sS+yLO/Yj/arfpnZWKeVNThPx+zQ9Tk+R8uwIo0T/7nHa7d06z2ZpX8s\ny/ElpKl+/izMswtPooZN++h81a/jJM6epfdi79r9lWdUvxl3YO9pOYGzz+6zkDjln9GWByerURM/\nS9Lfkd5h1e/ii/iMK82oc0/s1lL+rz3yoNfuacR1r/r0atWPY7Yz6XnszHO6lofoWSivWCKK4htx\nNnPjhVt2VHntpHisoyTnjD/cifclh3C+HOnQnxdLMs+ffx/nl7yQlj8to/NiJ8ne/3sbakNhhpYI\nX9qDPSmZrnXNI/qeBwpw7UNt+Ozzj+szQWga1uz4MOTHRZv1WdaXQjWU5P8JVGdFRKL913xs/8Co\neRF1NLRYP3/XvQS5MkurXYn+/fS8G76M/WBgab3ql0L1bGQE6z4qSp9VLr+I8cq8AbKz9kt4xsne\noJ+/Wb6UdwfO/NE+ff8GOnB9LP9vnnhZ9YsnG5TO8xjvpgu7VL/+euyT6owRrX9DiU3SNdaFMWcM\nBoPBYDAYDAaDwWAwGK4j7McZg8FgMBgMBoPBYDAYDIbriGvyo5henr5YJyw0EZ23rxoULF9KvOqn\n5EaLwB2ecef9ql84DLpU9hrQ8loOaKdqRa8kLnLBrZBMhWt0WpMvDdf0diWcnjNv0A73J78Ld35m\nOSfEacpo2jLcix76WzmO+3LRfZBZEANVopy0BaaXTwZaDyEdYtShV6bMAQ16bAiUu6oXjqp+TJWP\no0SRxCKdkJAyGzS1hCz0c+UOCfl4Xz/Nkew5i71227E96j2tVyCZ+vh/fhSfPUXTwzgZ6vwvQIeb\n/chdql/LBdAP00pAMRwd1ZRjpsH2VoMC1zOm5SZMFY804ih5aZzSbERE4vOQ8tNzEdekKNAiMrUM\nUpkBmnPTP7dK9YuJwdgMDGD9RUXp75eQgPUzPIy/W38U8y0tW9NW33gb8rEPffYWr33hmVrVb5Do\n3D/fvt1rl+Zoiuc9y5d77VAI92GwUSe/LCoB5ZGlfUxjFBHpc2pHpNFzEbTiYYeqm1CA648ht/7A\nVC1XOnMI93DadC2tY3Dai98PyUhPp6Y6h+tAJ02kdcl1ND5T01ZnfRpyt7h4kmpFaZlGXAiUbXb6\nb9p1VfVj+mycD/W6fudp1W+gBvN29v2QMg13aKlWf93k1dTSByH7u/rLU+q14RHU0CFKcIiK11tt\n2ULscbGUstVT3ab6xQYwj8M1RA9u0DWq7C6k0YQoLMLnw9i0ndaJIU07MAZBmkfHLmuq/o3zIQto\nPwRa8sG331H9lt6Asc5eR98vUdeNjqOQzqXRuDOlXUQkqVzLFiKNOJKpjA3rNMqBVtCWB4imHJui\n53fuKkgfhgdBo46L0zK2uGTsn34/aNnhTp0OFx6AZCmpAt+/mM4MLN8QebckC/9dv8CJiwkFWOfu\n2umrQj3g9ebL0Ge7jsMkpViPvcCl3ScWTF5yWt0OzEE+N4qIfGIJzghdlRibzneaVb/EQuxRq/98\ng9c+SkmjIiI9A7hPpdkY3yvPa6kQy+gzSCo/9UNIOfrJn/9KveeeP0HsSmwM7t8D/6TTO9voLMfS\nzee/8XvVb+ufQEeXmIt9JSVRzx0fWResXgaJz95f6aSqe//98zKZYMmJG2LST/tT5hLs40O9WjLG\n6yJQg/aO7+5Q/dZ/FrKz8z/b5bV5fEX0mXXBlyCL6/oKrvW5AwfUe/w+nEWr9mItj47pc8aMWyGt\nC6Zgb33gkVtUv5FOXNPJC/i88lidEsh7TWsTpFULPrlM9Tv1C8i7Z2ySiIIT79zkvaQZkBtxcu3Z\nI9oKIPU87sVOkqyvnalTP9NTUFPuXoPEnuAcfeZVz7DzUaNKfoL168/TCYksVQ1R+rD7DBMdi3rI\nz5jxPv08kjYPz1j8HNh+WEt8eklin7Ou2GtzapWISPEWnZIYaQRJet97WT/jlD8M6W7nGdTRKMf2\nROhe9bRiLvBZUUSkpwNztfEC2YVc0mvbR3vXYBslY81Z57X7+/W5hdOY09LwjFNzUsuV9v8MtS4z\nGbUyf62WSbE8N30O7XfR+mw8EsZvDPFZeK15T5XqN8VJNXRhzBmDwWAwGAwGg8FgMBgMhusI+3HG\nYDAYDAaDwWAwGAwGg+E64pqypqRS0Gr7mzRNrYvSlViCcMNf61iF0WHQr5uOwAU6qbhJ9UvLA02v\nuQpSitzVms5Wtx0097JHQGsfH0UKTJSTPhCbBFr1k2+C2n3fOzerfm29RL8iaqkvVjtHJxANrqYN\nNPTU/VqCxe7M8bl4T1+1dqOPcxKPIg2mERbdqemQnedBrUsuwXinzshS/Zj2XfvSea893KqpoO3d\noEFP2wrqJqeBiOhEpMFmzJH+ElA33YQYpohNmYLxSU/fqPp1doJmPO0ToCm3XtQu6pwYc/l3e712\nruP6nb+Z0n2ayEU9K1n1G+rSSWWRRLActFCmuoqIDBEFPyqWkrRS9bxqP1jntdNvQJoRJ8yIaGlK\nRzVSBcZHNDW3KwHzgFOYyrdizR596oh6z+13r8H1HIK8YdpMLTFsvIpEs/VzkdBw11btmB9FFPrU\nuZizO7+3U/WbXgYpwTDNxdo3tKxg6t2Tm5zG1MjwJZ1qkrkK19h2EPT1UwcvqH4NnXhf4+NoJ/r1\neC+4Bfetrw9jxfJFEZGYBKyD1n2oYelLId9063/Wwun0L1BY+3t0gg/LIadQylHp/Topj+s6yy/G\nHAlf4b2YW0pieF7LgbI3vX/q0QdF51nMzb4BXdcSE0Bvzr0VdWOwRcuQ2g+g7sYvgfSh+6xO8oui\ntLnsVcVee7REy1MvPAnp38Q41nPBVlCgR8P6PX6iYnfQ331w/XrVj9NEGi+gvWy1TtLi5LCWfZi/\nblrP2CDmX+dRSGOmOHLfdFoPkwGmvPfV6z2Z1wSPQfoCLe+OjsZ3627C2gkk6zXGqXcNlTiDsPRQ\nRCQ6FtfUX/ve0ry+y1p6GVrO14R7mDdVy3jb2nbhs6OxnovW6PGOjsdeyPIEd41N/QjGf4QSId1k\nmi6WEWmVxQdGxhLINV/5hxfVa+s/j+8VR3K0I89oyXZxJqj2wfnYQ1b9rb5/dTuQFMdS02f/Q0uK\n7v3L27x2FI3na195xWs/9PWPqPcc+z6o9Xd8BSlR/S267saTpJzr+A1L9L7V8AYo/rEkN/Gn65Q3\nPsuyhKEiX8/z5tP47sFV+gwZCaz8ImSZrY7co/sdSNJ6LlDa0M067YbTClNnYhzD3+5T/Y7+/KDX\nDtCeue4LG1S/5Jxir33k357H5w2i5l9p1AmWv/jZ/8H7KYEwXK3X7M5fvOW1R0jytOvZF1S/+1ci\niXTlFkhK6l+sVP2GBrDmpt6DPbLuhfOq35LH1shkoeG1908rLeJ9m9LcbnjoBtWP028/tZH2z1Y9\nhv30DMWJsXwOFRFJLoXMqbcGe9ysP92K90zo91x5EXYKbLngpvY27cfZsfMI5kGgXMtV+HjN+7sr\na89egzMwn4FmPLRY9et9nwS4iIGuN2OpTj1teqvKaw824kxTeNcM1a+hEfXnVA32xcIjWgrN+3/a\nEkjIUqZpuX7nGdy31OWoda3VkBW6qYOcGDYxSmlwO6tUv4qZOGds34NnxNYevf/OvRGy1NrfYV3F\nOzLjgttxNq55Hr95uJYiY5TOKuvkXTDmjMFgMBgMBoPBYDAYDAbDdYT9OGMwGAwGg8FgMBgMBoPB\ncB1hP84YDAaDwWAwGAwGg8FgMFxHXNNzhiPsEou1jm72ZyAernoGUV/t57TnAMePZSwo9toTE47+\n3Q+9GWuWg8GFql/PNNZ44rN98RSjK1qf+OwPX/fa//2XX/barlZs3WPQnHKU5pUXz6p+HAW66Eb4\nOiRXhFQ/P+kGO05Dd508Tffrr9V690iDIwavPnNcvVZ6P2Loqn8PfxBXC89RzhPk7xObqmNS8yjq\n+OIr0Nut+KubVL+WI4hx5ejNtqPQG4evaE+O3JuQERtugD46KUn7FzUfw99NyEl+z7aISN1r0IwO\nkIa156qOj+s6hbGLI/+E+EwdwfeuOLkIYkoM9JQps7UfUJj8nzgWtOu0jgytq4ZuM3sTfHWGe7Wu\nneN3w+TrcWG71jkvfww68VHyHEguxfxe/qmV6j3sh5G9FtGno/26Hgw/AV+dW1dAcxvtRBKnzsN8\nSynA5239qh7rjjP6XvwRuU78anTcNUviB0ZfFbTn2itC+2alUYRjVqX2IVm0GV4Pf/uV//baWxct\nUv3ClzF2gSLMCzfqlkXRSVTDOmn+pMzSEZXdNfAUGWqH19IwxbuKiCSRD0nbAbynv0jreQfqydsi\nCbpzN+a3/hX471y9jDpcNkd7FvE1RRp9VzCGMz6h96cpVANayeMptDBX9YtOwBhwTPm447HjI6+M\nmDj0a9mv4zUzVkAbzv5APVdQy1wvkMuXUGuDCdirUlN0Xas9g/E4U4sxnNdZrPplnsGaK98Ir5ue\nc62qX4i8jNh77MJTOpa84wXo06dpq6mIoJ8iske69bydGMFaDFEcsutp0NeJ8064hvbxKYdUv4LZ\n8CHh8Q7Xai8K9gxLKoMHHPuyRefr2hYbxBxJSIAvwsiIXmMJCah1w1n4u6Ojuv7z3s/zr/Ae7SvQ\nQ94HQ61YbzGJ+uyQ7PgHRBJ7/xPeYjf97Rb12stfQWTqxkfXee2lH1qi+g13ocZkrcA9GuzR83Zs\nGGP//DfhH3PjXdo3Y6gD9+LZH+DsuXHlAnk/JJH3SX8zxqPrrL6GAZpjOTdhrKff/FHV7+j3v++1\nK+lMPnNxmeoXLMfY7HgCXkM3f36z6tdXpc9ikUYX+RlVH6pSry341HKvffpniIJOPKf3RT95Eg62\n4LWimypUP/YBGhuE7wPvvyIitbtxHo5PxPjMn4l1cGu79v9ImYF98p3vwvswPknH0M+aCp+LumZ8\n9y/eqj07z9WjRrN35NELOjZ4yTzU265z+Ly4DO0xdOCbu7z23f95h0QSQ+Q9muDXzwWd72A80sgb\n8MwvtQ9k0RqcSwcaqH5N0X5k4TDWbCKdMfyZOtaY62toFvbIgTD25vhAvnpPcgXWRM4cPB91t2m/\nlGRaO+wF5UvS351joXsuYD/2BXU/3oPSZsNvs/517YuYWJwikwl+bmg/UKdeC9Cza9oi7IvN5EUj\nIlJ0HzyGnv8L7IV9NfpZN2kG7iGfBXxB7Z/I/rd9rfgNwJeMe9h6WF8rr3NeO28d0+O4ci6u9YdP\nP+21N6/R/kwlxTjDJZXjepLL9fP80W+jjpZtgf/MsHPGSPr/GUdjzhgMBoPBYDAYDAaDwWAwXEfY\njzMGg8FgMBgMBoPBYDAYDNcR1+TwDzSAStt9WtMro4m6mr0RVNCBJh0ZOtgCeVAfyXdyHDlBS8M2\nrz0+Cmp3W/Mu1S+7YpXXjooCpanmyKtem+lRIiJ3PoioZaYHs8RCRFglJSd+i7jFvLwM1e3KSUSD\nVawETbT6aS1/ChQHvbYvBHph+2uafhWcoz8/0kiaCgqWG6faeanKaycQXTo2WdPKuoiW2NsIuuHY\nuKaC5iwBdTC7HBTPc995S/Wb9jlEi7YdgzwhmajcSaWaLjbY9t5ShcZzu9S/+4k613MWFM/05Zq+\nWHwbaMY9daDKMQVORCQ4C+PDcY1VT51W/cofmATu/f8gXANacZIjMWQaZvNOyMVYBiYi0kfRrE3b\nEFmeMlfLpCYm8BrHH+cU6HnK8ZB8TbUvI2Yu4wYdh5uQDVlYdAyovm5Md8YavO/syyRvmKPlNS17\nQdkemQfaoBvdnliAtcjrniWKIiJRvsn9vTo2Fd+5/W1dBzLWQZpz7GnUn3m3zlX9OE40JxX3vTBD\njw/TTkcptq+vzonopa+ctQjxpP25WDtuTW3Zjxroo8h2FQ8oIm//CBTPkiJcT0yypvSqMaGI9ZQF\nem5efQtzc/6d8732hVfPqX7BGZNXUzNXY26eJJq9iEh6JqiqsSn4ju1HdTzslGjc9O7z2Fs5oldE\nZLgT8zg+Pp/66XmbmINamVoEivuhr4OmG8zXNNqMZNT7/RcgF8sKBlW/uUWYl7M3gQI8PqJr/9E3\nIUvi+RJu1zLjAEnVukm2MdORiHVf0NHNkcYAS4UcuSTT6Hl/SnLHh+I6ucYE8tJUv+5urOfeq0xt\n1/tsH0nJfVQrei/hPW68fM4aXRPf62+KiIwMQS7D32lKlI4DDpIMieuGG2c7TpHoLGuK8mlZ3ADF\ncct8iSgK8um7O8e5mQVYLxMs3XT2zze/hmjldRR/7Mo/Lx9C7Xnke4957aPf+J3qN+1hyEujaf/M\nWIm6UfVrfXZIW4jayNLacKWWzfBXDNK6DIe15Di+AGs7rxlzMX2JltJ2nMLYL1kCuU6fE/1cdaDK\na8+7TyKO2ADqRUaGrlMsTSm/DfXHfdaoewXyj5mfg+3Cue8dVP0qGzD3+4dxHt50r5an1e/H2aJ3\nADWrvAzz58aVumZxvHk6Sa4LNuk9/O2vveS152yBTJlriIjI2W/hjHBiP85Vbo3ubEbdKKV9v+uk\nPjPPvjfCC5CQQvuLKxFjCU/Dq4jcnvOwlhiybJTXHz/DiIj0VeH7+jPxbMWyUBGRtAqcZ6ZMwWtd\ndN4fSdFyk/Tp2D+bz2PuJGRrOakvGbKZWJKCNmzXkjNfGup4xaOQ6Nc8p58X89bT+mvC3ufuTe7Z\nNtLI34rv3/CmjkdPI0sFlk9LlL7vU2j//PQX7vbaZ1/XcuyyJfgdIHkF6iPvqyIiyYWY0+FGPIuO\n0DWM9upxjKNn7uFOrN81S+eofnsOoRbPnoPXNs7R/WKCqFFVx1Absmr0eTpAElWWjY7Rfimi94AS\nXUZExJgzBoPBYDAYDAaDwWAwGAzXFfbjjMFgMBgMBoPBYDAYDAbDdcS105qIxhoo0JSuEKWJxCSA\n7hOar1MpmvZWeW1OubjapGmdSeR4PEhUJZcK1CagJDKtNkyfPcVx9k6aBkrcvE982mv39mrX5qgo\n0M9WfgmUtepnNBVrwUdBTUstK/ba/kxNAQtTMkvtviqvPesTOlXFlXREGn31TAHUCVWcDjIxBtKs\n6zjuI4p+9nJIl0YdGQNTrjm9KHm2lhl0ngU1LWU6XgukQYrTUa3ve9o00N5qXgeFfqhZ01tjKWEi\ndT5czweadCpF1kzM1YlRyA58juSipwWfn5CKz0uZo53Ha7cjCSt0/yqJJNh53KVvt1EqTEcTrilz\nQI/NAFF422twL2Id13iWzcTngqJ+6ZKW4SRQTeirwVwvux8u5x0XtdM8X/vYKKiGjTuuqG6ZJIca\nJenciVd0ossSSt4IUzJNpiOnqvs9ZBtMIefvJ/Ju+U6kwQ7tsUn6b3WfgcSjdxC0zuMvn1T95mya\n5bWXVyCJoq1H0yt7nkTaxMrPI1nLpf4yBTk2No36QUrXfkzLcuIpGYPlqrkbSlW/Xk4nCKG+jvVp\neeWly/h8NU/ParnSyBjqS8kwKMuzP6J5oe20JmStRBT1v8ecnnGvpqvzXjg+jP1pbFjXeE7y85GE\ntPOcThXLXc40dIxb3mydpjI4SFT9HlBuv/sKUmWm52tZ553rkUSxcgqozAMjum7Ex4KyzfIVVxY8\nez5qd+N2rOekDJ2gEUv1NUzzo3GbrgF9VHflLok4OEmMUyVFdFojJ4kNtWhpT9Y60LI5laP9sLNe\ncnAP4nNRN/udPYlT70ZIgjxO8yd5uk4/8vlwdgqHsV5G+vS19lLyXtsRzJcYh5LOe7qf0l5a9tSo\nfnzOyr8ddci9lx0ndJpiJOHPwXmG156ISN8AamioAnWpt1lLAgdpvne+Q0klp/RavNSE77GJNrLR\nMb22Wab48X+532uzDJBluyK6nvLY5G4tV/2i/ViLnHA6ZYpOyJqxFelNoXk7cK3OeS19EWrCwd27\nvPbQBX2Pljy8XCYTfDYLrXDSc0qwJ1X+CHta0b0zVb+EPEpspbS+vFv0PQw/h3lxtg77RH+1Ps9V\n3I/afvJX+LsDJAvOWOXItlNwtshdjzrX26DXwLxPQtb/6n+85rW3fEmnmrZRkmYUrbctf3eL6tfw\nBp49hkj+31St7Si6G/EdK3SQ5gfGYAv+bqojR2ZZSfaNSGTyp+nzV2cl7hMnX7lSIU6OyyqHHK2/\nX6cFd1WhZnXSeo4NYL3weVdEZGQm5DGcwOfKeLNnQzrXRc+zmSv1nIjx67X5R5R8xE1vQx3ub8S4\nu/JKToaaDIyQPEg9d4jIML3WfgB7nCtnr6Kk3YR8XO+c2/V5iWU/sbHYj1MKp6l+rfV7vHb+DMz9\nytd/7bWfeXqnes/WVVhjqYvw3JZK538Rkc30TNxD8sUDzrNLfgautYLSKKN8+h5xHeGU5q7jugYU\nOPXLhTFnDAaDwWAwGAwGg8FgMBiuI+zHGYPBYDAYDAaDwWAwGAyG6wj7ccZgMBgMBoPBYDAYDAaD\n4Trimp4zXaRZjuvQet6OY4gii4qD5sqfrfXlhZuhq2vcDw8RV6fVuLvKaw+PQqufn6E9Ul76FXRl\nx68iNviOJfCeGJ/QWvicTnyPKP9vvXbRyvWqX9OZA167iyI+R3u0P8KpJ4957dl3kd5YS62VNrX0\nluleO+zEFL4rxjPC6D1P0bs36njljpMYx9RZ0Hi2HdGaeX8WxmGkF/ej+6yOOy26Dzq67vMUY71I\nexH5kqBlj47GnBkawvWkFJSo99TsRGwt6/qaWzpUv7QOfN4gxcFP/4w2n+jtQjRhchE0iYNdenx8\nKfDK6KqGpnW4a0D1m8xxTGSfgkbtU8B+BonkjzDo+COwZpkjPqPi9HX3VWPejnRBY+qP1drZq/vh\nEVG0EDpb9iIYaNF+QP50jDt7KmSuLNL9KH6QwdGXIiL7fo01W5YLLemxk/tVv5wKaKA5Sjq0QOtP\nWw/U4h+TILNv2lnltQMlTmRoA64rPwQfiYxS7THBlloF1K/F8Zy52gJfp5mnoXct2qzF5hMT0FIP\nDuL791xB3XC9v2JUz7qpAAAgAElEQVQSMRcGmzHP+hq0br+hA2uziOJSezv0vJg+D94dr2875LVX\nkKeOiMi2U/AcGu6Axn2sX88LN0Y+kmDNclyqnqfsv8MR8Is+tUL145rC9zlvidPPBz+u2Fhot4eH\ndc2bmMA+1HsVeu87lkJ3XZypI5c54pO9Ezodj5Cdu7Dfff9f/9Vr/+Av/1L1Y6+gRY/CB+DID99W\n/Tiqs2UX6mliuo6H7avV0ZiRBuvpO09rfxH2eMmke9P6tvZdadmL6x8bwBrpbtFrcfQS1mI21aLe\nGr1eWrrx77gY1OWUROy/KRXav20gDN+MHvLd6q/X1zDYSN5pdK6acM5LXe/gWjmSnvcZEZG6C9ir\nkznq2/GTyl6n9/FIgqPmh7p0bPCMh+AN2LAPnhD9dfq+3PtvD3ntwV46zzjehQ98HP5PDftPeO2K\nD2kfBX8I9/Y3f4so+1s+ifPmj//jWfWekizMiVW3wpOw/mXte9BEZ5Ppq3FGnX77R1S/vj54rKXn\nod739mqvx9o3EOfLEbCuXxGf5SIdhy4ikkoRvW4sbzd5OaXMwnxUEe0iMkD7EPtJtR/R/jk+Wle3\nPIAz4eWd+l6zj0Yqrb8y8owc6tL3qeZNnFGHuzA368/ruPoVf7nBa0+luux6At3/51u9dvVLOK/G\nBfTZoesq1t+crai9Q+16TYScc3gkEVqGmHbXR5PPmOzx4l5fdDx5wVAtG+3Re0HXOcz9qFiKu87Q\nZ6URel/aApzx49PpzJzs+OS1Y+0Ei+F/5PO55zDUh7gg5kfbCe3NmL0Yz0RD/fjumZk3q34151Er\n+Jw84ZyFXe+bSIPPMFz/RUTi0/E9o8m3hyPQRUQG6Zk5MBVrsdbxDkouxfk1EMB9Gh7Wz5U8n+rO\n/d5rd5/GXlWapX2OpvhQR3geuPcvuQLXUJGDs50bVy+0T7L3XLhK7+GZq3Fe4Djv1kG9tvnsUDxb\n3gVjzhgMBoPBYDAYDAaDwWAwXEfYjzMGg8FgMBgMBoPBYDAYDNcR19RhlK1FBJ0v6FevjVFMb+YS\n0FZH+jXNb2wM0g+m7AULNGUoexVkDU1E9znz5lnVj6lGD6xe7bWTE0AfctRFUvYgeJgsabi6Y5vq\nd3YbYijLl4HqtuivHlL9ejpBV+dosfiQ/k4tO6q8dj/JTTIpilpEpPYFiovdIBFHYnHwfV9LXwwq\n4mAbxi60UNMfq5/Ed+ZYbDe2nKU0OWshVWAJi4jI2DDmwqVf7/ba2Zsxl4Y6NIWco7lZVrH401oK\nUPMc7mfZI4jYnZjQ0ozE5GKvffZnoMrl3qSjFycoyjkhC9KClrd0bF98vo6bjyTCFFXd60T/cbRq\nyhxQZAdb9VrkSGqWIDSe0rTfrOmgB44QNZcp9yIi0/MwdwbqML9f+tufe+3sFE2/jaMIYV6oAxc0\njXGoA3UjMxn3lenFIiIdYVD1z9WCTsr0RBGR9sv4fKahVz2had75d+oIv0iDqdKOmkASM0G17boK\nmQVTI0VEDr8CSv2sOVgvj37966rf5jWINOeI+/ZLuqamTC3GNSTi+/cESCJRq6UA3UQrLrwTkk33\nO7EU7vhZxH3y3BERabgAKc0Yr7cU/d0//tnbvHYj7RMFN+s1O9BMsin90gdGH8mG4tJcWRPuU04B\n6qSSy4lI1mrsdyzt6a91KLLLQZGNiUc0a8dZTZPnOtxFEp0rJG1zhkam+TA2LMkcaNCSszO1uPZ/\n+NSnvHbecidGlqJs+ftOXVys+lU/BXkz7x6hxXrPyXD2yYiD/njGMh3fO0w06DCNd6wjY+NY+ppK\n1NFp67QcjyPljx2EPOFffvpT1e8fH30U/a5ANnrbUsi2u863qPfE0tlskGJ00xfpNdZM64XjwUeG\n9L6Yvgi1s/4A9uDcZXq8S9NxRuq7iv0peXpI9Rvu1vLfSKL4XvDBfX5NwX/tf//Sa5dMw/ieOKHl\nKwGSwGQswJklb/0s1e/A1xFLX7IZ4xvI13/3qb94wmunJ+G8cPKFk177c//ycfUejlD/my9+x2t/\n7b/+TPW7/Pg+r31uD+QXhZt0DH3rOcyxmARICVjOISKSTmsusRDnxGClIysY1jKVSIPPh5efP6Ne\ny16MsZsYpTOMI++OTkA9y56Pc58rFZq+bJ3X7rxa5bUz8/S8lTFUzFiKQ+bYcn+qPt/krif5fx/O\nTicOX1D9mt7C342PQ11PzNNnyCPfestrl98K2Uf9Ln2PMum83rgbc+HyaX2Gjk3G35LFElH4UqkO\nOZL6LpKfFNyBM4YrMeF9KK2YzmLOwaKTYonbDuPcV3qH3uz9GTinhIpw7gv3oAac/OZT6j3xRVgH\nMYn47Lz101W/wW7s9c30LBCfq9dY2zmce7Ln4KbXVz2v+gVz8PkNRyDVSipOU/1qnsf5rVw/+kQE\n7Yewj7mR6CzHDpNsNn1+tuo3dBLrmWWkaY4k9/B3ML+n34Z9NlCk19XFx3Hm9Sdjnk2h/TfDkSGF\nm+mZm85b/NuFiEjdS1ibeWm417Ex+ucRjr6u+i2eh2MD2vIlMR/X0bIP66/Iic72JevfVFwYc8Zg\nMBgMBoPBYDAYDAaD4TrCfpwxGAwGg8FgMBgMBoPBYLiOuKasien0U6K0fKV1D+g6qbMoCaVR09/L\nl9/ptbsLQUVzP298FLTJYBk5OPclqX73/9nfeO3VyxGn8vdf+7TXTsjR7zn7kyNeu/gWUOX4ukVE\n5hNlOUgu0jX7d6h+7CgeKAT96p1v71H9UqbhM/wZlE7kpOOkOokxkUbWivdPLum+jDFhqYLPoetP\n/cQ8r91xCu8JLdVU9OxFc7x2ZzXotEl5mvbW/k6V106k1Jqei5QsRbIoEZHERND+Wi4i0WXMcYZP\nI1o2pwXFBjSdLSoFtLLSjyJVrOp5LXVht/FxciUv/YjmhbqpF5FE617IBGKDceo1lqy0HAclMa1c\nu8uzBGju+hle+4mfv6b6PXIrXmuhdKFZBVpmkEapNW1H8XcX3w1KMdP5RUQCRPk78C3I2aYu02Od\nTjKDlDkYt7a9Wh5Scheogl1nMH/jQnr+suSij+iYLNETEWmnFLqShRJxMG2XpXkiIlF+pMcUL4CE\n4Mrb2uF+WpGWYPwRn7n/fvXvOYX4jMM7MadXJOovlpCNNTcyBGppsBRrdtRJQ6p6A7TgJKrXbkpD\nVz9kFnEkcTpdo+nWG+9DwkTsXtwjTgIU0bKNqXdj7Dk9UEQkY8XkSWKSZ2Bd9V7W8zupFLXixPEq\nrz3ntjmqHwVkSQLRqItuvEH18/tpDEaxfqP9rarf3p8hEWn2ItT7TXPwd6PdFJQwqOe+DqyXtMV6\nP4ragb16KiUiTInWn8f3gve78JVO1S84D9LLJqL9dhzXY8gShiLNCI4IWt6qed/XOJ0wgeSqNS9V\nvu974n2gN7+zTUsH3zgJScuMfKzfO2+8UfWraYOc5L471nnt5GmYc27SZTT9Oz4LlPraF8+rftVV\n2LdLZ6M2RDtplK2UbsPfKdGR7fIZLnUO5mnXGZ18NeokvUUS+7+Bs1l4SCe6rPkzpCOx5LzsozqG\nb3yc34c9fNdXX1D9VnwRyT6cFnPoG2+qfoUZ2FN+/CZe+48ffNlr+9O0XPMX/4q/tW42pFrf/acn\nVL8P34RrYDlzW6Ue60ABzlRvfWO71179FxtVv2A25FlVTyBBKiZZU/VnfupWmUyEq2jfydHyhJgk\nXMvRN5DWN3+NLgoDtZAxNJ+BDKJ+z1XVr/Mo6kxLO+R4y7+0TvVrP4bE0sJ1SLyKicE6aDyrk+hY\n/sVJRLyORESSSiGf6H4Hc+ngN3erfvWUdphCz1zBufrcklyGuRCmBDhO4BLRspRIg9Ok3MTc3Bsg\nK+H0rDQnPaplD+RBLGviuiYiEr08/z1fGx3VSasT47iO1svHvXbdc7jWRiedtYDkcUfegkTMDe8M\nFGONDZJMNKlMy5A4/XCkB/MlIVc/p9adQ8JoN6UFDzRqmfHE2OQ9Z4iIpC+HHDa5Qj9DsEzHH8Bz\nyCXnjFqxAWOXQolPI06S30ANzuL9dZi3MQnO2Zhk26mUutV+EGvUTZOtbce5Novk4r4UvSbqqF9J\nKb772fNVql/iIdSlpHKMcXCavkfNe/C+3M2cBKZ/82CrCnmPQENjzhgMBoPBYDAYDAaDwWAwXEfY\njzMGg8FgMBgMBoPBYDAYDNcR9uOMwWAwGAwGg8FgMBgMBsN1xDU9Zzg+O9rROff1Ix6xjbSZ/kyt\nDezrg94ztQw6594GrS/vPg2N3ZnL0B2WZmlfmKWL4fPR3gud3/kXEW3FOk0RkXkVEHQ99z34a6ye\np6MSM1bT9dVAA8vaURGRviro18YWww8jLlHrSv3ZuBdJU6FRa9yp9XnJjmYt0hgfg6a6/g0dI8l+\nEXwdruYvMQ3a0Pg1eE/ryUuqX9NxihhLgiYxKkp/XuGyTV67uwNa0PrXcX2uhUu4BxHZHGndsFPH\nSEaTTwVfQ0y8voa63fABYP1nxgodGRpL3iBDHZgLU0JaQ8iR25HG8AjmWVqZ9u/hGM6EJGiKOy7q\nOMyRUWj/L+zFuH38Ua0n3/1L6GKT4/F5M9bqmOlh8v8IkM/TcCciJFNmZ6r39DVAYzp1abHXHmzQ\nsZis541L1fp8BvtGJJJ3R93bVapfAsVVFt4LTx1Xv9vnRBlHGsPd5G/gTJf0pdBRVz0Lz4rBEe2V\nFJwDDe+ZbVgTy8t1jGT5J+Ets5hqU92rOtaz5wrqZZCiDjvPo66r6xaR/FXFXpujm6dE6zWRT9GE\nbVSvl92ufW96z0H3O3UzvkfHQR3znjIP+wGv7THH16KNdO3F2u7lA4Pnd3y23u8a3kBtz6AI+MQ8\n7aPA8cKjYdzb2Fjt69HVfhT96DtydLaISEEINXm4HZ/N/msXzlSr9/DaTpmL+1r5wjuq3z3k7ZaQ\nAS+Whn3681LysWZH+2hfzExU/WJoLgYycP/iHQ3+5dff398lEsik/d71geP43a4ziIEtukPHqXIU\nLEd0siefiEhFLvZP9mO4bdEi1S+KfIF4TrOvQtuRevUe9iDjM1uso62vWIJzULQf3zcuXdfX/Dmo\n8+xn5p6Duk5h3eeQtp49QkREfEnaIy2SKCavMo4HFxEZaoenUi/VuMo3z6l+ucXYozJXYU5M36TH\nupnij4XWn+s1t+jz8CeZTV52zbvw/k1f/nv1nhef/a7XfuZx+NTwviUicuoszjoraI/ks7WIyJ5/\nhofNSvLKCddqf43AbMyD8kcxF1/5p5dVv9BJeLikrF0gkUaIYt8bt+nzsZ+8LxdsgB/P6d16HNlT\nb10R6ujRK/p8GKJ48w2P4t5U/UZ7DfLzQOWTr3vtCVrzHNErIpJA67RlN+pjs+Nr8rUv/chrf+HP\nP+S1k519LPYYxic+n7xVwtq74/hPEb288NPIV56Vo8fqKp0rZm2RiCJEHp4pM7UnTuObGAPeaxJz\n9H7XSXWpswbnlNiAXgfs+xmbgH2s8id7Vb8x2ofYz4vnQOk8vXZ2bT/mtecWYXwv7NXPTinHsa/l\nrkS/Y789ovrlZ+C5qqaGzlohvd+FVrDPImpSEnleiohcfvykTCYC9Kxa+zu9xgpo/2vaiWf78SZd\nA3vP4zzXe5Gex53zdtpy7Iu9lXgPezOKiBTehTN7qBRt9rPLWaS9VctisJeO0t7s+t0WptNzLz3r\nLd6kD47sW1n5O5yR3tmnzynrH4OvV3cl5lzLPu2XOe1Plsi1YMwZg8FgMBgMBoPBYDAYDIbrCPtx\nxmAwGAwGg8FgMBgMBoPhOuKasqYRolt31Wi6f+YcxG32XQVlL53oiSIiHfWgZSem4z0cpyYikrEK\n0ac33wnq1Pio5v5/+7OgWF/6MT47c0Ox1542rONcgxQpzNHPUbFaqhUm6us40XlHejSlv+RjiJX2\n+Slm2bnWRqKx1u8ArS+Z6N8iIiO9+vMjjernQWV0ZSah6aA6t5/HNV595ozqV7AFNMpAEb5z/tKV\nql9vJyhe8UkY754mTfNua4GshuPukqeDDskSIhGRpGzQD6tfPyjvh7x1oL5WvYg5EijR9MAoor2x\nvCUuqOngrUdBI+eoxKIbi1W//i4t1YsksklqpWiCoqPlOPa16iUdr8mU4BiiDQ616fs8dw4o6iNd\nJLlI1tRSjqTjMWQK/rCzdoKlmH/xJIHsON2k+vHY9Deg9sRla4lEwc2oFb21uC8jB6pUv7zbEBla\n9zzm6MCgvr7i2zSVPdLwkQShfX+dei04H3Tf4nsQE3rl+ztVP5ZSzNkK6iXXLBGRToq07TqOdvpK\nHcU93A2ZTrgaNNHBZtDEEwt1zTr0+AGvXbEY88WtL4ESUGT9RPM++aqmkHPMdnwh5rA/R493wzbU\nqNxNqF0ZN+jo7H5HJhdJsNxkoEnHXMbEYl2NjKDfuV8cVf1mPgx5Ls/19urjqh/HoqZQbWTZjYjI\ntIcgE2s7hr01exXo1tGOVDWZ4iDDVdjDE5zY18vNmDtlt4BSnLlWU/qbd4DmnEiSi8ylul/T2xjD\nRKrJCQ7FfcZ982QywTLXoa5B9VrXKdQj/i5jzhpzZXx/RPZNperfd63DPeirxpjGuhKgNFD0+fr6\nKGY0Y5lev62HsD8NUuyqKy8aaMBrAYp8d+t675X3lnRnLNV/d2IMdaiT6ndika4VHL8aaYlhz1nQ\nxsse1hKOJoo0LbsDVPOEHC1FTCnGWA0NQMLmnueu7MKZJXcGzjbd/Xr/fPubqNcsS9pzFuew7375\ny+o9+19GfVhG8tSpG7RU9eoOSCuSyyFljI7WEcmtPZAP99WjPSVG///Y/j6sRX8ivlNnX5/qJ+89\nzSMGftZIqgip1wZpDmYuR50veKdF9Vv6IcgEnvjWi1773gd0fDjH/r5FMhiWeYqIBDspApjOQSUP\noC61HdV7eD/da8aN969S/15yDOtlgubZwTdOqH4sae6mMXHlbiwWiSXZaPsx/ZxVdOcMmSzw+XpK\njH62SiyGrLf3IuQrXSf0uS9rI2SKvCe9+ZSOLE8nWdLyj+OZkGUpIiKXq/D9WVY9cyWkm9/94bPq\nPbMKMMcqG/D+xfMqVL+GGlhxsDR08ceWqn58NmaTjt5L+hzfSJLopDLcy67Tep4nFuh9MtJQa7Fc\nx4LXPAeZU9I0rNNZU2erfhzZ7qP9peF1bYPBvx2EluC3A/d8kz9vg9eeMgVnrHmffMRr1595Tb2n\n6x2cWzKobnSc1HMuYw2erQaascZaT+jnuXaStfUP4R6t+sQNql/di3i+CM5GDfGn6frSuAPjnfug\nvAvGnDEYDAaDwWAwGAwGg8FguI6wH2cMBoPBYDAYDAaDwWAwGK4jrilrGiBqeNChGp57Eo7Radmg\nrHU7CTFRPvyJnquQyjB1VkQkfwsoY6lpoAmNjmp6eu3hHV47ntJZEnJB9eq5oK8hOYRUpvhkUMmu\nvnJA9eMUjpZaUO/yZuWqfjE+UNjazoCmFcjXiRxR5OjfSzSoUoeCz8ksMzQDMyIovANUxmpHrpRc\ngnFNyAZVcPYXVqh+XZWg8A00Y0ya9rzxvn83sQBjzH9HRCSzGGPc23vKa0dFQSozPq6pbf2doG+z\nJI3pvSIifS2gAebfAvpiwzZNqSu4aS4+uwXfz6Wq+4myyK7fbWe1S3dKhZ4nkcRIL8nKSrU8K4lk\nZvWUxFPxUS0LaD0ICm7rSVD20mfpRDSfH9RQP1HAY5w0svERUPw7D4H+mf4Q5jcxpf/QrxKUwiAl\nhXGqjIjICKURRNP1DNTpelD5fazh0A2g3S94dLnq1/AGxr7ow6gHU6L179NNuyDNEM1WjAhCS0Hd\n7Dmv61Q/0XgDhaglnMQjInJ2F+RqTK9ctHmu6hcXAo2SZZ+cZiYi0nEUc8FPaTwDJJEIztByJU6V\nYXmMm4jWcRTzIncrKPrBOj3nat7GfVfrzXHtn0rUV5YiumlN7r8jCf7sBIdi7M/C/RvuQGqSm5wT\nrsFYV5/Guhxu1/KaKBqrRJIsJpdoujFTp4PTIeNNTkUN6MzX9Ghez8m0v484Ep9l87GIW3a9fwKJ\nn+RQCTR/rz59SvXjJAaWwUW5kovGyZOmieh6yBIdEZ3Yx/sBSwBFRLpYWjHB81HLn3hecKqcmxzB\nFHCW1XA6Sbha3/dhkn3wfAk6KZCcwDjYivfkrdZ1YyiMutR2HOt3bEivKZZjxyZjfnc6tPGs1cUy\nWZjz2E1ee3hYnymjYjGfLr2w3WsnFuhzWvMxJG9wTXYlQLnTIB8epvu36rNrVT+ugV3n9Jr7I9IL\n9PotIOnf6V2QDgQPaVnK1E2ooSOU0tjXoRO8Vt0DaQUnp7kyzMEW0PgHm/F3H/7un6l+x/79Ja89\nbY1EHCxhYfmmiEjLfqScsGTnXWknVAM/+X/u99qDrVqiNfsu1ERO2wtk6HP5Dz7zTa9dnoMaWBGH\n97gyx2SyUIgJ4FpdmW3B3ZBPn3oc6T5bvnyT6qfWPe0ZNa/r5CCWBQ91Yd+pPqoT9ebP1UmfkcQQ\n3efWt2ret1/+VjzrXfq13hvaSaIZpvq/eo0+y3Jt7D6Ls3vyDF3zsupwz2YuQZrP/jchH/7cp+5S\n7zm6B89IGSSf8jtpgtNpnz32a4xhXIw+s3A636y7UGs5kVREZIykPDzucU6YL0t0JgMdJIXL3awT\nkNoO47Wed3Dfc2/R/fj83kj7bNCRvatEX6rXA826TvX3U+pz6jKvzUl5BXNuV+8ZHXzOa8cFsf/y\ns5SISJhsInj/zF03VfULnMPeMD5AZ0BHju0LYS8coDlc4CQ9DnUOyLVgzBmDwWAwGAwGg8FgMBgM\nhusI+3HGYDAYDAaDwWAwGAwGg+E6wn6cMRgMBoPBYDAYDAaDwWC4jrim5wzH8salJqjXSm6EbrD9\nAHSCrp5rpAeaqySKWmPdoYjI8W8h0i7/BmhMXU8IjgNNXwyPj4bXoMF0tYGdjfDHiQtCL8rafBGR\n1C2INw0ehQ9M2PHHufI0Yg/5HrXsqFL9stcVe+1pFfhbp7+vvW76hiY3Spt9Utx4TY5NY41/0PFx\n4XFg/eyg4wsQnAVNIcdO9zXqiMFoH7SmmZlbvHZT08tee2JU63nZYyJtHrSznWe0rnuIdNRJ9D0K\nb9a61dptiPOdwtL/Ke+fG5m/AVmgNa/q2FvWgGdq6fAHBut5/Rlak83jG+B4XMebIETrhWOw3di6\n8WHoKQPFFCcZ1vO0ajt8XKbdi/vSfRnjMdqv6wF7D/H9uvjcO6pf9nxca9cZaFvZ60REa075e4yP\nTah+MeTlwPMlwakVrEGfDHB8uFsr+2i8uugai27WtTKZ4iezN0AX27JX67zZ8yQ4E+Po6t+L7kVs\ntz+I+RMdh+2B54SIyPJHV3rtpp3QA5d8eL7ql7YI48g+UfzZIiK58+EXxF4PrHEW0VpsjgD2h/T+\n1LqvViYL6eR7035Eez2EFpOnEMX8ctSmiI5TbujE/hLl1J53avE9Pkl7ZpRz/0ZpLXFUqT8N0azj\nw9pXhb2c2G+s1ZlHKTMwd1rJg6TI8djKXAPfDK49bsx5dyXuS5QPc6L3qt5nu09SXb9TIg6Osfal\n6fFhPfhID9U9539n8Rpjjwl/pv489nthT6UuZ+/ieNVx8rPgmFoXwVkYn6E2eKG48eDsMTRyCfe6\n4+IV1Y+vgb14hjq0Rt6fhVrGdY29kUREus4g0rRopkQUnVervDZ74IiIBMm75I3vbPPaoSRd89f+\n3c1eu/pNiqrO0P1yNiNy+8B/I9q3ME5/qeQMrNOm3aiNMz+KqG81p0QkuRR1t/hG1NaOqvOqX/1L\n8JTj9RbK1R6BExP7vDbXBtczaffzB7323f+ERdZ48LTqV3CTjvSONNIXoW5OcWpgtB81gvd4jkoX\nEQktRD3i8V7/0GrVr20/PDByt+B7Hfz686rfHQ/BAJI9vXw+nOXDF3Qccoj8uRrfxLpKyNdzqekN\nvJaZhzPR5d/o+55NY3zgmcNe++a/v0X1az2IfYJrb+laPW69V+h6tdXUBwbXl4RCXQOaT2Df6KSI\n4+K7dLQ3e2F112OPrDmr99nhUZxHegZQl2a3Fql+Fxrhpzc/HmfeVbcu8trsrSci0kYx9LVt2KsK\n5up9LNyOv1s8DfN37z7to7NmPdY9eyu5fmPpy3AGatkDr6Dhdl13R+ncWDhNIg725Oo4pf3DEuh8\nzM/i7l6TVIz9KmkqatvYgH7WYLBXUtos7Y2UlISo7sFBXFNbDeqX6+GSNw9eYL3dWFdcT0REAhQJ\nzr4/zY5vUiI9K7C3kesr5p71vOsmbzgRfR5+LxhzxmAwGAwGg8FgMBgMBoPhOsJ+nDEYDAaDwWAw\nGAwGg8FguI64pqyJKbIccSai45lZVjHYrGPrWA7D1F6m/ImIpBWC+pRYiIgxl/rDMokBknpE+fFV\n4lLj1XtiEkC3q9+O+OOUmTrWq68dFDimNxVs1RFYjTsue+3MZYjcjI5/f6o5x+BlL85X/ZqO1Mlk\nYqAJMgY30jUhHfSszrOgZ01x5COxRNmOo8+Iz9IykCGibrE8IVjsxJHHINqsrw9zwecDHS7crSUN\n3RSRzvGQqbN1LG8nRd1yJFt1jZYhpREFtXl3ldeOd2jZmUtBZ6x6AZF5WWuKVb+OE40yWUiZi+84\n7NDLwyOYWxyT7M/WVNq2w1jDvUSv9Cc7c6IYtMazz0ISWLK6VPXr6cdY95BUgecYr3kRkU6iuL/y\nxG6vXZqlx/D826CXl87GGpsY1dIMlrqxRKn+lQuqX+GdWMPtFBXoymHcextp8HUxTf4Pf/u9107n\nCU0tZYlDbADSnoqPbFT9rry4x2tz/LNbp7ovQQbTWE1rMQ11NDYYp96TmIc5krOxxGsPdev6nzd7\nvddub4Ccs/dCu+rHEYZDbWiXPKCliHUvgubPtP5Lj59Q/TjeO9Lop3rqRiZ3UrQy05EnHJldIkVN\nr1gLfvmeHWMtVY0AACAASURBVLpGVeSibp74Ae5fSqpe2+3toIAnxmGsEolezFGVIiKt+0HbTV+K\nPWnAWQNTYjAe2TdgLXIMpohIO9WXQOn7x6uzdJD3C1+qrkNJ0ydvDEVEfCmY326d6jj+3rXcVbyy\nXFAocjtQoGNSey5jvnPMaEK+jnXm2F+uZ72XIUNKdOLbWaYYKMLfbXr9suqXuhj7nZ/HoE3TrcdH\nUGM5RtznnKs4OpwlzLzPiIgEZ2gZbiTB8et8RhERufwUqOybP4faGMjXY9N5nmSiCyFP6LuiZcGJ\nOXjf5n9EVHPzYS09atz+itfmdc/j5NL7lWxmLuZ9fIY+Xw0P0rlnBsZzfFzLCkK5kOg/+7++7rW3\n/vODqh9bDVz5OWro4Ut67mz9zCaZTPRWYX5feEFLnMfGMR/LNkLH0efYDbBNAUdLu/HhJQ+g3nad\npzjgJVq2UreH5Lp3QLrW3YhniOBc/QwRrsWc4b/DsiMRkYZKzLmRMawdnxPDXEbrOd5HzzFvXFL9\nAlPRr23v+z9PVHxm8fu+9kHBseJDrbqmpBZhTrOMiKVoIiKtb+M+5azAXlPiyM1Zenv1Ms5zybN0\nrblpLc4Ida/gTBmfg9raX6stF+YU4u+mJOHv8jlJRKSrD7U64MfetbRcx0oP1mHd592J+etGvPOz\nck8Trqnk7lmqX59jVxBpsPQqNqj35H5aSzEkrR7u1PXHn47nu1iSu9W/qiPgA2WYFyyd5z1SRKT1\n8K+9No8dyzSb9ujY+JQy1MfEJIxJ3ka9xmJisJ8O9uE5pp2eVUS0DJqfE9h2QUQkmp6dC+7B7yRs\n4yAi0rSN6ssCeReMOWMwGAwGg8FgMBgMBoPBcB1hP84YDAaDwWAwGAwGg8FgMFxHXFPW1Pg2aEIp\nUzXFuPUoqKssNWi/qCk+iQFQYZuJguRSrJuugA6evgzU0otPaffyWZ9Z5rVrDpzz2pwI0fB7Tfk7\n9TzomkwbTMh16MFEV6/bpylSDKYiX/opkpvSlmiKXhxLJsiZO8GRzUzN1rKpSIOTPRLz9N9uOgCK\nZgLRxWpePKf6pc6He3aoAg7wXTVXVT9OSOirBdW+7bTuNz4CCmRoLuhnF38I2ZDPSbxgN3OmWyfn\nOjKxHeSST/KB4DSdzhWfhe/L36/zuJaRtPtAm0wqoxQrh+OeuUI7xUcSAZL6Xdqh72XaPEiC+mtJ\nkuC4wQ+1gGoaT47igVKdBOIjKmNaALROl+JYNhfft6sSlM9RounmkAxCROTwS5BtrF2NZJ/mK7pu\nFM3BmMYSnb7vkqYy59wEaVDL26C6jnTrNAxOCIgmmaMr3wtOmzwKvoiWzHWc1POMpQZRJCVxJTFt\nJDFlWeFIWNe9oWYab1rb75Iitr23tIT/e5wj/2Ia/kALqK6+ZC11Obv/Ka/NaTYxAS0jYef/YXL+\nHxtw0v+I7spyWlc6wTKLSKPzMCQvOVs0hZnTbVj2MdisqfU9lPKRdwvq6W0zb1T9rr6AOhwIgSos\nWt0nhYuxznh/4hJ1+Lmj/BYpK8J+1UeyW78jXxlqB/06dRZqzdVf6lSKrM1IDuP1N9im6dtMeW4g\nqrkv4/+uxJDXgZukEE0yaZ6bnKojosebP4PXhIhOpfJTMtSYM08DNHYs6R6lec+SQhG9N/RQGkvm\nhmLVj+nqKZSqODakk9hYAsmS4b4GTf/vOQ8KeOZKzD/em0XeLTOPJA79ZL/Xzs/TNSAmGveP69KO\nr7yq+g2OoI5MK8U5MtaR2XVfxh6VVIR7FKzQ5wquc0k0Nr3V2Lu2PblXvWfd1iVe++R/vu61Sz48\nR/Uruh1nxVf/4Xdee81n16l+u76302sPDmPu9DRUqX7pFZDrhMohuZgtes+59Oxb+McqiTjiM1ET\n+oeH37dfiFI6Ux1bgtbDkPNs+cetXpuTYEV0qlDaXHxe894q1S/BjznDaWSVdOafep+WnMSno19X\nJZ5pAlP1GSt4Eet0+p8u9dpXfnVS9eurx5pb8uByrz3cpWtj/XaceTMoMdCVbV/66TGvnfU3WyWS\nqN4NKVzZrTPetx+nwrbs04k4fVQ3WerMbREtCR/rx1p0JUrdpzAGaXMwX1opiYfTekREcqhesVSu\nebs+d+fRnMhaX+y1XcuOREquqn8BsvaYoJZhckpZ7kqcrYcc+ZMrQ4008rcgbe7qE3qPDy3Cs1qY\npLZuzedkV97H2J5BRCcXskR/qNtJXlqMuV+7F+uZz6UzP7tMvafpAM7DuTeglkdFJap+vY2oG7xP\n560vUf04rZDPDv5M/XmcwtpP6zfeSYZ157QLY84YDAaDwWAwGAwGg8FgMFxH2I8zBoPBYDAYDAaD\nwWAwGAzXEfbjjMFgMBgMBoPBYDAYDAbDdcQ1PWfY36X62TPqtaoz0GnNuQtxp7nLtcfElbegQ8zP\ngxay+pSOliu9ARrCcA28SkKzs1U/1lS31MDnYqgNerCW7m71nmmroelPpxhrjuUW0ZrqYAb0YX1V\n+vNiU6GnC5KOsfdSh+rHcbhjHP28QH+n3osU0TYJet4EilSO9Wt93PgIxtGfgddCS/JUv5RijGvN\nm4e9dnK51mtyVHL2ctz3xrd1tHHuKmhSOyqh/+S4z/RF+hqqnkLEYhz50STna68f9h/qPA3NacwM\n7XMRG0t+NJBZqng2Ea1rZK8kt1/naXiI5GgbnA8Mjt3j6EURHV2dTL46boRk+gpcFHsPuX4LrBeN\nTYEO1I21Z5+ecfKdigtBs8uxrCIi6z+PaGX2VQkU63jTWPII4JjbmEQ9htXPnPXa8TnQgebdWq76\nKf8j8mwJX9ZrNpU07aKTriOCJPKs6Dylo/qiyRuKdavjjidEGt13npv8HUVEUhZA3zuF/Ic4ylJE\nJI50v+zjkr4U66/feU/LXnhy8WenLshR/TgeMonGuN6JH2Stb/YmaH17nJoan4UaxZ4kbnT2SK/2\nHIoo6PteeEprsmc+uMhr8/WNdOrr8ZO/ynAPeez064jdQCq+b+5N8Ldhzy4RkRbS0HOEdxR5pxRn\nao+GAN0zjo2d+YiOW2VfgF6Kr/WFtCcHR76nLcQ8aN5RpfollmAeDNF35/kq8u644UiDY3RdHybl\nWUVeAOyHJCISpghgrlOpc509nurMUCfGp+eijmfltc0Y7sH1uOcWjjofII17yNk/B8mrgGPPY5xI\ndF5LvLbHBnQdyiXfB/aCSp2jx5Hvc2GE7fVWf3mD1+50ok8DFCN/5sc4sxQW6OureHiF1247jbp2\n7iUd6Xz6KPyRNn8Z3lB7vr1T9bvlqw947ZgYnDGe/Lt/9dq3fV57Sx3+5UGvvfgBeJC43ozdlfD5\nWXAzoprf/PY21W/zFxAd3nYAZ7x9/+9bqt8t/wzPmcYjuIbsRdrrJnvdVJlMNLwOf4jFD2rviPO/\nhQ8LR26zd4yISD+d09sS4RO44Iv6UN1zBWvu8k/gwTL14/NUv5x12IcG6PwVHkQNOP7zQ+o9eSXk\n/9eC93DssojI8sfWeu1939jhtd0o7dQx1INTv4bXzcq/3qj6sdcKR8rzmV5EJP/2aTJZyCjF2dPn\n+DWxn0oCeW/UPn/+ffv118ObxvXp5DNr3m04vHed0+eK3nrMiQzy3eNzcmyCnkfDdHZgbx/Xx459\nb+pewPdwvUQGyesxyof13N2oz2sBirXn8+81z6iTgKon4fMaKNdeSR3HsMcX3w+/JZ/jR9lD1xwV\n/d5jL6L3tV56th/q0Pts0zb4+BTciWfHqidwra6HT/G9s71281GMT7Bce4TxNXSewvcbH9LjnbYI\nz5n8jBQo1PeoaSeuNYn20ibHsyj/1gq5Fow5YzAYDAbD/8fee4bJfV1nnqdTdXVVdXWozrkb6EY3\ncgYIgCBIAATEAEaRoqItypLHs/ZqPGuNPetdaXZW62f9WPZ6bHmcJFtWMilSFANIUCRIgMg5NmKj\n0Y3OOVXntB/86P++54rAPM+w+ukv5/fpAnWr+h/uPff+q857XsMwDMMwDMOYR+zLGcMwDMMwDMMw\nDMMwjHkkbnZ2dvZ/3M0wDMMwDMMwDMMwDMOYCyxzxjAMwzAMwzAMwzAMYx6xL2cMwzAMwzAMwzAM\nwzDmEftyxjAMwzAMwzAMwzAMYx6xL2cMwzAMwzAMwzAMwzDmEftyxjAMwzAMwzAMwzAMYx6xL2cM\nwzAMwzAMwzAMwzDmEftyxjAMwzAMwzAMwzAMYx6xL2cMwzAMwzAMwzAMwzDmEftyxjAMwzAMwzAM\nwzAMYx6xL2cMwzAMwzAMwzAMwzDmEftyxjAMwzAMwzAMwzAMYx6xL2cMwzAMwzAMwzAMwzDmEfty\nxjAMwzAMwzAMwzAMYx6xL2cMwzAMwzAMwzAMwzDmEftyxjAMwzAMwzAMwzAMYx6xL2cMwzAMwzAM\nwzAMwzDmEftyxjAMwzAMwzAMwzAMYx5JvNeLTTde8drRpn712lBdr9dOKUjFBwZ9ql9cXBzaCWjH\n+xJUv7GOqNeOrCrw2n2XO1S/mekZr52xJBefl4Dvmcb6RtR7ktNTvPbk0LjX7jrRrPrlPVDmtTsO\nNXrthBR9mca78Pl8HlODE6pf+kocX6g03WtPj0+pfs2vXffa93/zWxJrzv7wL7x2SmFYvTZ4pctr\nZ20s8tqnfnBC9Vu0aaHXvnjwqtcOp6SofkueWeG1JwdxrduP3FH9IivyvHZSCGOm9VCD1+4f0fdx\n8e4lXvvS25e89urn16h+N9+44rWLNpZ67eHbegwn+HFfM1bheMa7hlW/lDyM744PbnvteGdcxCdh\nLGz49/9JYsnlvX+H4+vR1yWRrl/DkXqvXbF1geo3UNuNdj/mmy9Bz8X8zbhmPL77L+q5OD2Mcdwz\nMOi1/UlJXjujJFO9Z4LmTkIA/RLDOm4wM+PTXrvjTrd6rXRDGY7hQrvXzlqVr/q1n8ZcD6UFvHZy\nTkD1a7uKz3j8z/7srsf0P8vp73/Ha185VadeS6brNjGFazs6oeMKz7nB0VGvnRbQ55KfjphzpRnn\nv/6h5arfaBPuHY/p0+cQl9atrlbvGWzHe26145pVFxaqfjfptcR4xOgVW2pUP5md9ZqN55u8dvfQ\nkOq2evNir91+pc1rX7qj40tOGHHuxX/4B4klHR17vXbDzy6p18qfQ/y7sxdxcrw9qvpVvrjOa1/4\ni4+8dtUXV6t+LW/fwGd/Zhn+/92bqt/0GMZLRz1i+oKdVV57dnJGvceXgXFUTzGzcFOp6lf7Ps4j\nKxWx0B/yq36R9Vi3xyiGpi/OUf3CRVhnGt8+7bVzNuu/e+qvDnntp/7iLyTWXHjlr712xtJc9dpo\nJ+5XQgrmZbS+V/ULlmCOTfSPee3Bq12qX8ZqxCO1/k/Pqn5TI5N4aRTtySHEgMiaAvWeySjW2alh\nvGfopj7W+ETMv7RluCedBxpVv7LPLKXjwd/tPdum+mXScYw0D+CzF2WrfjS1pbTm0xJLat/5e6/t\n7tMmB3A/IitpbDr7Qz6v1AVYr/w5IdWv5U3Ew9JPYy9y57Urqh+fbxn1a6L3J/j1mlu4q9Jrt+6/\n5bUDxWmqX5D2b528p5rV4yib5rAvnIz3HNX3Op320AM3sLZmrdFxfKwH87li5Wcl1jTf+rnX7jjc\noF4L0DnPUAwLOHvZoVs9XpufDXrOtap+U1GMaV8EaybPHRGRYDH93QnsQZLSEPeC+anqPYO3MOdm\nJvEefm4REQkW4r4m0TOT+5zlo781OYzj5ucqEZHkTMTyRIpXwy2Dqt8UxZSah16UWHLuX/+b145e\n61GvFTyG8c3XebhpQO5GYhDnMdqq189celbrOdPitZNorIuIxNFzoT8n6LUn+hAb+s61q/dkbyn2\n2nzfe07qcZS2JMtrx9OzxHinfn6YHEB8HmzB+S58YYXq13MKezTe03PsFxGJi8e9X/vl/yixprH2\nJa/tPn/z3x7rRBxNStd7AV8a7sMsxaaRJj0eM5ZjnvZf7sT/0/OhiEi0oQ+fTc/zU7T2JQT0M8QY\n3Yf4RBw3X1sR/ZzKa33EeYYQmnP9tbguPEZERKZGsb4X7sRzsxuHxrpx/dZ88T+Ii2XOGIZhGIZh\nGIZhGIZhzCP3zJzpvYBfFDKW62+y+Bce/nbX53yD1nUMv4LyrwPdp1tUv4xl+Aat6wTek5wdVP1C\n9GvGRD9+NU7w4xuv9vfr1Xtyt5V97LHmbCpR/cbpl6+0Gvz6M1Tfp/rxN2W+DHzeRO+Y6td/Cd8E\n8q84bnZRak1E5pJLR/CLTWVlsXotpRDf/PO3ou6v8ElhnGc8/QKeX65/FeVvHq++hl+VCxfrbyFn\nZ/BtKv+SGMzA/Z5xfg0apV+fl+7CL1Jdh/Sv5gWr8cuscKbVCv3raHwyhv/UsP52Wv1dyuqS+Ltn\nf/U16l8qY0lCMv5WfJL+TpUzfQoWYZ7yHBURCZTglyD+5S68RP/S2bAfGR1ZlPnS16m/9U5Lx1zk\nX3IyyzGem6/rX1vz8vFa+ircD/dX/bbD+IUv9z6M2UC7Pgb+lSJEv2J1ntHxpWQHvsHuOIjP7rys\n+5Wu0b/exxrOlhkZH1evlRfgevgi+HXA/TXo6HvnvPaSYlwbzrYREemNYtwmUnbUwDWdfTRAGWo5\nhbg/KyvKvfaHR8+r9zz0ADI80gZxTxKT9ZJSHMHnTU0jbh7brz9v41ZkhUTHECvXbF2i+h1+H+ee\nR5lBiykbQ0SkaIX+dyy5/dJFrx1aoDPD6v75jNdub8Ovh/f/58dVv6t/dcBr+wO4vwk+PbdH6Bfr\nK3+DbMbGLp2Z8dDvbffaU/RL25W3a732+KSOB9VrKvB3KaaHq3Q82LIUMYWzXy/99+OqX/PrF/DZ\n9yNjZ7xvVPV7429+5LX3/D+f99qth3UW0qY/3CFzCf+yffOHejwG6Bf1YDnGWcYyvQ/q+KjBa4/R\nr7vur3Pt+5Fx6c+itVX/AC4Z9Gtd/yX8OsdrjRv/Oc77ab8UKNC/6jf+4hr+DmXRcAapiEjXcey/\nwtX4dXjojv6VO7wIr/F6ztdERP9KXeokzH1SQmUZXrv7lM6EVlnNY7hGnDkhIpK1HrGCM75GWvX5\ncrbROGXfJNAv/CI6A6yTriX/upzovKedMobTl+DvcBaEiEjLXmTSxdE9nB7VsX9yCNd8iLK9AkU6\nE4ezxwNFlCHsZK9whthcMNaL65m1TsduzvjqoGyhiQG93+a9uLrfI/ra+HOxb+F5mlqeofolZ2Ke\n9pzFPiFAWS9uFjzPA56XKXkhpx/2O3zu0QadORMowp5tuPHuWSbZG7EPGLqN5xX32SW1Qp9jLJno\nRZzPf2Sheq3rCOZB9mYcK2d8iohM9OAzIuuRvcVZ6SIi3adwPzgr1e9c56RUyhr7sOFjjzvdeS4Y\noWyj0RZk7rrHylkg2ZtwTu6xzs5SVnk3xlvXUf3ckkbznp9t3Tk71qmziGINPxdxjBcRGW3D3w6F\ncG0Hruj9CGd9cvbIeLfeC6SWY/8UpfEdKtbxpuck7vc0zyva8w9c1fvayDpkS4Yr8HcaX9WZjrkP\nluHvnMHzSv+VTtWP90X8vUS4TO8BB+pwHJx56mbntuzT2c8uljljGIZhGIZhGIZhGIYxj9iXM4Zh\nGIZhGIZhGIZhGPOIfTljGIZhGIZhGIZhGIYxj9yz5kxkNTR/Le/c0C9S7Q2uvt31kdbRpVaj5kD7\nQeiuc7fo2g7tBxu8NmtCR9u0W0ffeVTWZk1x8aOLvHbaYq2ZHyct5DTVi3HdZ1QNEnJ1mp3S9TAY\n1ji69QeSSJM31g0tc+8pXbV51nFsiDVL74P+361If+MoamAsJc1uIFnXubj0DuoBLKyCJnjEqUze\nTRrm/Epo7JJzdO2gLHLkilLFdq7nEyjTWkt2W4qSlrbsOV2Xoom09eyGwRptEZHoELS+wQBqfDR3\nae3iqmdQXyNUAS3ktUNaM7hgha5hFEvaDzR47f5hfc25BlCKD5rW4TGtyS5eivnc3oRz7GzRtXK4\nunoi1TvJKtO1ka5cQG2nFVvg5jPWgePLDDka4HR8XvQW7uG0Ux8nlXS2Nz9A7OHaGCIiAaqvweMl\n3akHxOMlczXqRoR6tQa2+TzG7+rPS8wZInelVUu1LpvrNQmFhMHr2vmA4boyRVW6rtPwTcRKriF1\n6tYt1W9RAeZibzvmGMeAhXm61kYnOQJlkTPS+brbqh/Xgrneirjn1scZp8r/7DL14b5Tqt+27ZiL\nRw6i9otbT8WXeM+l7RNR8gQKZ3Sf1TWLIvfhfBv+FfrlztPamav4GXxGSjbmSM95vTZUPIvYdvx7\nR7322kdWqn7s+FH+Aur3LArgWs7O6nWs/qWTXrv6xbVe23UC4RppN/8O7kqlOytVv+xWrNXsTthz\nSl+jR//rM177/J/v89ptfbo+wv2VpHfXcu2YEK3D30tzajFwubNoPeaEu4YE6TyDJYg/7EQnItJG\ndfByH0QtpxHHTaWfHOd4b8G1Ioab9Xu4VlzrOxhn+bu0W1+A1mDec/T26s9bRDUhRuhv+cO6niDX\nRVD/36P/P9GpmRVLWsm1rHB35V37cR2deKcuFruEsANV71k9F3kecG2a7Pt0Hb8O2stynZmkVLx/\nwqnDlEjjJVhEzp5jOq7xPord1titR0Skg+pr5D+McRDvjF+uB9G0F/umtGq9h3b34bEmkeoeDd7S\n6106HUtyFs6TXTRFRPx0Ddg1Kce5P7NUh5DrTHY77q35O3DduF4EO0Z1OC6kyVSrimuSxCfr/QjX\nMvHRcUdWayc2dlcqoONxawKNdWEfwDXqcjfrPenkPWorflLYRc6tx8gxr/c81kX32Wp0APOC96F8\nXUV0jcjkpRgfU46zEdc4yduJGmvNb2BP2X5EO5iF2YGPnJaKHqtS/TpoT37rZ5e9dvnT+nmE6wZx\njcSsDbq2Etco6j9De7cVuq7n9Lh2B4o1A9fxbJBWqff8PfSsVvQInrnjnVp54+RENDGIOcbP1SIi\nHc61/xVck0lEJFyDvUA6uQE20HV3awexq+0EjR93LrLTc+ZK7HP7a3XNGa71xm6MUccFOFSG8cPf\na7h1p0L/g/pPljljGIZhGIZhGIZhGIYxj9iXM4ZhGIZhGIZhGIZhGPPIvXO/Kbs5j9LSREQGyZ4v\nWIi0rVRH2sOpr2zDOdyq0yQzVny8XefsPazR+i8i7aj/OtKM3LQlttlm2YybVuajdMChRqQqpZbp\n9KOBm0j7Clcg7WsyqlO22Iori1L+XOtK16It1gzexL3KXK2lD2vXr/faw5SylrdD3+/QbaRqhauQ\nYtZ1tEn1m+zHNYhshIzGtXrsItvLwq3LvbY/G9eM07VFRMp3bfPavY1IZxvt0jKfQCnSy4vYvt1J\nU/a3Iu2UU0HjD2mZT9dhpK6OjyJtMi1FpxK3XEG65lqZO0rXlql/s20dp5MG7uh0dbadK09Fiqcv\nXaerswRoluxmUxxr1kg9/ZukEDy+U5z0/uvnIXthMV/YuZZ17UjrrC7EOJpx0h07OnGslYsxLt30\nbZYpjJLlbe8dfa+z8ufOalJEpCADn88psyIi4904rnGS/dxo1eN20+rFXruzFcfPMjMRkaJMxOJB\nklNtWqb9bDNWIfayBLTrEsZz2RIdK8+eQAr8+xchL/r6s3tUv/dPwqKYZSs1jvV1HI1bPvf7llWr\nfgf2n/3Y17q7tc2oa1MeS3h9SqvWKcf9tZDKrn52jdd2bTz7aI7kP4y5mLte35vBO4iva55DVLn6\nuradPrUXFuMZJCXsIpvz3f9xl3pP3kP4u+f/9pjXXvpFHb0afoq/VbgHqd2u1IFjz8l/gc32tm/s\nVP1Gu7G2Zi7F9SuvceSpP7/qtUsXS8wp2oO07JF2fS4pLK2mvcqYs9ZEb+Fcip7A5/GaISJSsBOS\nBJZVqMAkWg41dA3yDt7T+B2JcALJdLL/PeYVp5OLiKQuwl6F92VBR8I8fAfnxPe0rVXLfaN9uBYL\nP73Ua7sSBFe6FUtKn8GYGevR94ZjGa9JruRiguyP2bI1a0Oh7jeImDJMdsXumCgjKWLHUaTts23z\nuCP9YvvorhMYO3mbtJQiJR/jkve1LH8REZkg+UDL69fxd7ZqmcvANeybXXkWMzWHchgRkTiSFvxa\nGQHaW/izaOzP6LkzRjKGIMmiXSkilxhgy15fmt4H8bVhy2yWt7FU7d/+Fo41tQrrL1vci2jb6QQa\nj4nOfmmIJF4pdO7ucxZLrdjKedaJLzP3KNHwSWl8A3uClAy9nxsj+VjZ01jjbr6s17HK5/EswOOW\n1x0RkcwVeI7pOolniez1el8RpVhW/2qt117wPKS/bqzOIgvvYYpdvKaJiMzQtV3xKXxejyOPa6un\n58AsjDd+3hLRc2yGxnbbCf2Mlb9x7soniIjM0J7fHS9ZG3F92a7e3cuy9GqUrL99ztrA8qfix7B+\n8nh2GabntukoHYNTouD6EUh8Cy5iLiem6Tk7Rc/fiVRaoOyRDapfyxHsZXM267Isdzs+jmXjzvEl\nON9TuFjmjGEYhmEYhmEYhmEYxjxiX84YhmEYhmEYhmEYhmHMI/eUNXFqElcdFtHplbOUguXP1GlL\nbPzA0pZpJw1zamTiY/slhXQKUsYSVGRuoYrlgQ6kTk306nTezHWQFE1SauqskxZ5i1LscjcgxbPL\nSSvLXk+vkTwnWKzdhVhC1U/VnTmFU0RkvFunxcaatGrIPYbrtCPG1Q+RilgYQark9LROK0utxGvt\n78LtZfHv7lD9QiHkn/d0HvbaXE1eRCSQF5aPw0eytaQkXSm8/eIZr83jZdRxryjcjRTIPpKWuSmj\nXMmdx3r1Vp1CyTKuC/8Mh5OS1Tq90E2riyW5W5FG131Yj0clD2Jpj5O+HUfVxkPlkNeMO2nZ7HbW\n8T5kSK7T14rfXOe1Of0zTBXeW/dqR6v2fqSZ/tVPf+q1f/8LX1D9KnIgd0gm550Ljbq6e0kWzvf2\nIch6Nj+TTgAAIABJREFUsgu0PKm5EeOgIA/HNzWtK993ttzdGSkWjJGrUHJEp/6mkgypnyrmr66o\nUP0On0F67n2LkQoaydBz6r2zF7z2k8884LWPvHdO9cttx9/Kz8YxcNpuopO+/cAXNnvtxQeQ6pqc\nreP/5kU4Pr737ComInLqAlKYQySzSAvqz+NjqmuE3Kt/ZET1y07VErxY0n8D1yvBcX7JWouUaJav\nBL+wXPXrPg35BKfjD1w7q/pxmvYQOZDkL9TOBO2ncW2XPrPCa5/+Kdyues5o16SiXZCFpadhPW97\nT7t5sVtE+37Mses3dRxaWIRU87WfhVzWdcdppfRydvFw08urvnqfzCUq3dqRNDT/HOti0dO4Tu6e\ngaWe7MATLE9X/ThlfagOMSbZkTtEaPyMtJHsltbFSJVen2ZnEVNGeiCrSwzoOcbukcqpypVI0L4l\nia4Lu7KJiAzSnOu/ijmRFNZ/1113Y8lkFNfVlcPw3jFEMpdxxykpehPXovgp3Ospx0GQ5SdCroHD\njnyYHa54L6ukKI7chPeHI+TkExen13CWGYyStCpjuY4HHCcjmxBDxhx3TXbtGiI5M8sNREQmSZYi\nj0jM6b0ACW2gQI+z9g8Qc9hNa4CumYjef/NrIacsAUuRpidwf9jdRURklFwnUxfi3qXQnJ0Y0M8a\nPE/D+WX4/yQ9xyLl+Oyu65AFp6RpmWzCWsROLn8wfEdLYtgpjseW67zHMSDW5JEDb6BQr78s42PH\n3IontV61l9x42dGw+6SWCgVp/8pjP7tUrxkl1Rj75fdj/etsgPOh3ymd0fYextvZK5DGbH1ivep3\n5yj2xo0f4T0XnT3q+oVwRAstYCc2XeqBx/1EH8ZVSrw+vrl8zhDRzmTu+A6Q3JflO64LE68bXBbE\nHX8soWKaXr+q/s1OTEd/gHvHZQJCztpclI9nAz+Nx3CVfq7keR8iuVzH2VrVL2MxPZOE8XfD4RWq\n30gu9k8to9hrp5bpPQHLIz8Oy5wxDMMwDMMwDMMwDMOYR+zLGcMwDMMwDMMwDMMwjHnEvpwxDMMw\nDMMwDMMwDMOYR+5Zc6ZlL+oAlJH1mIjIaAd0sSNkNemPaA01655ZE9pf26n6XTl6A+9JgM52zefW\nqX4dVGdGHQ/Z4/7gnf3qtUcaV3vtBNIKR/K0BuwaWdbGn0K/5h5dh6KG6tZkroYG1q23E8iDzo1t\noV17u84jWusaa6ZIl+3P1/cnrQfHnL0NmtFzr+jaB6FpaOwW/y6sUYfadB2DgSnUIWBbMlfTz7bj\no93Qk7a+A41naIHWCrNemq0xR5t1PZuhBminWXt8q1bXNCjOQ22VvkbUcyip1Ppgrhew8CHo/Vlf\nLKItdmNNlPTlQ2NaB1rxMI6pbh/VSlijrTHbDjR47QDpplMrtQaz7xx0v5H7qJ5Ipq6R0nsR/dim\nu+sIrnPaSq2F30j3bek3vuG1r7e1qX6N3ahhsKgAc8ydOyE/xtUdek9rr7bIvu9Tq7w22/5VrNDH\n52psY00h1ZUZ6tD2vQGyBUy7R32C6ZuoO/C9d9/32k9v3Kj6VdN14zozxRF9vxc9At03z6s8siBN\nLdNzItqEGif+AuiQE50aYTlUMyVwA7Em4tjUVtF17z+LcbX39BnVLyddx+xfUVOoP+92Z+fH9osF\nXKNptEXfw84xaKhzKJ52HdKxx08129j23a0TlZyOeZq+FJbnWSXa7rryM6g1UvvdfV47gdbSXqdG\nw1gn1p2y52GF3PDSZdXv1X96z2t/9vdhlR4s1TXWXv3JB177mWqMsWuvabvUJS9gLp7+J9iTTs/o\nmiFxr+G65HztYYk1w42o28DxS0QkUAr9f9cRrGmRtQWqH9soD9Uh5ri69rNvof5T1RKMi8FafU+4\npg2vJ1y3ZaS/Vb+H6pCk5sCyOy5Ob++GfVQXjGy13Rpmbb1Ya7Kpzszha9dUv62LETe4tlvFc0tV\nv6ZXqX7AExJTktMR/+MT9frbRZa2BQ/huvDeQ0RboPfTeQzUautwXyb+ViLXFlmoYyPXMrqblapr\nN861ENkqfWJY1xYRmiL8GWNOjZhgDlnBt+N4Jvv0+sZ15NiOO8Gpi5i+Jk/mFKqNMt7r7Idp78w2\n2K69ty8D9yc4g3XC3beMtCFmsx15enW26pdRg3PuuYw5x3Vq3HVxuBX3a3IS8SA+Xu9/ExJwTKml\nVOdtRt8frkuSTHOxbGel/rv9qHMxSdel/5qOL+61iCWBQhxf6zu61uAMrYt5u1BDb2Zc1xwZvo19\nRRbF2izHIjutCLXKRqPYL/R1nlb9JtIRy0ZHUQuG66+pekoikn0/akk+TNbR7ftvq35JtLbWNiPW\nFFMdRBGRl4+iRsqWPtTRWfP4StWv+zg+I1yDzxhx6gulr9FrUMxx9pvMSDs965O1e2CbXj/7b2Dc\n9V3G3iRK91dEJHsTnlG49l5/h67jlXgL+8qKfMzL1h7MsYWLdb2m4p2oBdN7A/ee64+J6BqwQ2S9\nnrVC13qcncW8ys5+yGtPT+vx09eIZ9hpqo0al6hjanzivXNjLHPGMAzDMAzDMAzDMAxjHrEvZwzD\nMAzDMAzDMAzDMOaRe8qaONWw/aBO6eL0dbbe4vRWEZ1GxymJrgRk45dggcYWhmxFKKIt2cr3IEXs\n+A+RHs3ptv92Gvhb39sPyVNlfr7qt2M57E5b+5AOt3L7EtUvWIqUSbbFjMZrKUXGMqRfsXVqlpOW\n5suYu1RDERF/LtLPhm7oY8xbBTlAzwkc44Yva0u6vsu4r2zd6abAsY0kW4umFGp7xBnHRu5X5O9E\nKhnL5UScNO8g0lF/cfyE6veZwtDH9rvhSGeq1iLVeeY28oWP/+yU6ldTjTR0toUdatHphhlOWmws\nCZINmz9XW+txujSnWs5qlYCSBKWQrKL9iLb+85F1NUsRp8f1PeNr4aP08rwduK7xzjxnOzm2Bl5Q\npOfYlVcgA3j1OOb25upq1e+v33nHaz+4VKfTMyx7DJRgLLIVq4jIRO/cyppCVWRJf7JevcZW093X\nMPYr83RKeQ6lN79GKbPryLJRRCRK8rf7V+PajA5oK8Zb70K+mpqCWJS5FvGx70K7eg+nZCaQ5CLl\nHraUoTKMJU7hFdHWwz6y415fqdO3Kx+EhO/2R0jlDoZ1DF2zsEbmiqZTkCgt3K3HI0sSZiYxAS/f\naFD9VmeQZS+NwRuHdTp43pYyr33he4hzi57Qlrg9x3A9l/4v8Lpd7UOq79WXf67es/SFz3vtwUHI\nWFd+/QXVL/g67s0vvvuu197o3JsXv433sTVucqLeZpz4PsZsST6Oj219RUQS59D2VURkmiQdoVIt\nl5ska9DIOsT19vf1nGUZWm8r5u+BYxdUv7JsfAbbzSel6XNkaUD7uxjfaVVIc2eLdhFtTdt2Fvcx\nd6XeB5WuhCRtfBzr+cU3/pvqt2gL7us4SYkfCmo7+ARaW9OLcNxtzjXKebBM5oo7b0AylZCiLbv9\nJN3lNHt3TymzWBv4M1Irtaya9338GZOOvGasDZ9380KD197ye9vwfkfOwWtrZBX2h5G8zarfSDsk\ni2kViM+9V7U0reQpxD+eVxNDen3j8Zy/C+s2y6hFRLJWa9lorPHTnAgWatnBFEkDBm9ivx10rGkH\nb+jyA7+CSwqIaJlXx0fY++RtK9PHRNKwzCVYg2dJfpmQoOUccQlYt5OTeZ+vjyEhgcoJZKNMQHy8\nlgVHUyCRYFv1mRktzfMFcS36rqBEhLs/H59DG+b29xGv3Fie9zD29WMduP7xSVrGy9LBCZL6TY9p\nW/vhVsTX7FVlXjsuTucbTE5iTPA1j6zBeI4Ur1Lv6bqF/X8fSfeLn9JrPZdg2LFhk9duOtag+j2y\nGmU13jgN2VVFsX7+HB6ErCepFeuCL6L3Nr8m+4sxPEa6T+h9WiZJzZrfxL5xekTfnwDt9drPQxK4\n7Kvajvz2jyB5zt+N+JO3Uj8j95H8t4P2yZWrIW8badFSKI7L8SRd6nCedzLJPptlsh0nbqh+vM4m\nPXgS7SQdh4YoRqUvwXcjrvQ0wXfvr18sc8YwDMMwDMMwDMMwDGMesS9nDMMwDMMwDMMwDMMw5pF7\n5tWkUcXo8R4nJYckDQPXUdU+vODuletLtm7x2qFQlerX3vS212YXGJZLiIiUPo1U3eZ3kHY0NIpU\nrJoiXdn7oytXvPaedXB/iqTqlMTJaaQt1ayDRIClVCIi0XpdcfpXpC/Xzi8tb+P4yj+DlOCGl7V7\nhetwEmvO/xLuG5t+Y5N67Q6lpmWtoTTZc1oCFK5BWnbzB/g8lrSJaInDjXdrvXYgWadvs8tOShbS\nDaMNuLZu+vEYyaTClBK2srxc9Xv3XaT/b9+MlMXd27Tz14mDF7328DhSKNmhQkTLE2ZnqVK/k36b\n6oz9WDJ0HalyLNUSERmkCugl2zFu3cr8g9cwT9mlIVyi0/JYZjHSilTBDKcaOjtwTZPTQ0oO5lUk\n8oB6T2IiUoVbs1/H+5201YAPc2L7MjjF9Ua1M9fuVbi/vyD5U6FTMX9lWZnXvngJ6bfrd+pU/UCx\nvvexpvk8OYjk6WO8Ug+5zMblSKF1ZUjM1/dAqvDDgwfVa/9u926vHe3TMhgmrxpzmMfFGKV/Xz2n\npQqVlaiyP0IV81nWIyKSQLKPPpKA+v06HrBbybkziEkFmXpOtRxp8NrsyJSZqe/bgf2Qd6x9UWIK\nrxNN+2+p1xZ/BS5KwyTxXPuAltxlk/tE3Y+Qol2yUKc6H/lTyHC3/u+41+wWICLSvwyuVnFxmDtt\nVw7jsx/VMpcL//h9r138OMbb8JRO52XZ7Wf/72e99pQTn3vOIn05fxticvZ67Ro3TDHlg+9jzO75\n5h7V7/ZP9DoZazjNeOi2lvuO3sExZi7D/Eh33N1Y+t16C64UOx/Wa80kOcSxa0OCI7mYvovcl1PI\nk505xjKaqi9DBsMyCBGRjiY4uwUzMP4e/OPHVL/GX2A8ppLr1M13tVvTFYplS4txj7MKtBzIddWJ\nJRGSiLvyFb43SbTHanpNn4e/EOsVOy+5zoDDjVhno3WQ/STnaOeluotIm+f4df2fEZPSSvU1ylyF\nec9uUq58hWV0A/XYo7GTpYh2kmTX0J4PtdMX7+t47AVL9N6G99r5X5GYw44pg7f0XORnCpZ83Xnt\nqu63GOtpxzHIvNx9WlIYYyFrHY0fxz0lqxxuOr1N2CuG88u8dv8dHf/95KA1OoxxkJqm3W7HxnAf\nEhIwn0dGdMxr/AB7miBJHsPleu/QfQFzkV2nZhwJ5HCT4/4VQyLkbNR/qUO9lpCC/XqS2jfqeFf+\nHK7TFO0J+51yGTzXuy/gOk84sq2RJsTxvO0fXzIhOUPHA547RbuwLnaddtxeyeWt7icYHzNO3OBn\nnxc/tcNrDw/qYw3QnmiEXCCTHIe15Cwdb2INP7NnrNSSenZbKtilZfQMP/uW7qBn6T59zvmfgpSp\n5S1IujsH9Dg9dxtlVdg9+Qq5ZD351Fb1nnhyHg3X4Nml65jjTtiDvS3HPXZOFBHJJilc80eQp7ly\n2jiS6vGeiEtJiPy6a6CLZc4YhmEYhmEYhmEYhmHMI/bljGEYhmEYhmEYhmEYxjxiX84YhmEYhmEY\nhmEYhmHMI/esOcO6PFfPG66EFrllL/Rlbj2M/FXQXrOldXf3e6qfPxU6ybIHYQPo80VUv9br0E2z\nXVspWVUWOlq4PdXQZ3J9l8HLXapfxRdX4PjOwFY6VK51d42voIZNmDTZ8T79XVeI9Mu3/uW8106t\n1ufk1gaJNeW50Nv1nNaa48xleC21gmx+b+saE2w/yNdt1LG7np2AxpVrt+w7d0716xuGRvpLD27z\n2hOT0KAu/PxKfosM3uSaKdCxX2xoUP0qclEXoK0Rx3qnu1v1W1EKi2y22c5yahH5MqCRvXQausjK\nAl0fov8y6Wy1A+YnJlQBjTrXdxERSSfd+K1fojZBbqWuEZNB9RJaT0F3meLTNY/Y0nk6ir814uiV\ng+U4Jraq45oSY8Vvq/cozSlpcwdvap156WPQ+hZQPZLDr2jb9H4aR597APVt3HoB3UMYpxOTOKfx\nLl1Ly63nEGu4ls6hC7XqtYfuR/2c9w6ihkhFjr6PHaTHXVZS4rX/z698VvXrbsY1zWa7QMeakXXa\nvVQXhiM+jwkRkXd/hnj2e599An/zsNbzBhdijAzXopZYdERrj31jmGNrt8BW/dShy6rfVdIYP74W\n9V3qm3SNLHdMxxKul1X6yCL1Wv9VxJvEII6h9WKL6lf4MOyKP7yMc/Q5ttPbNyIGDrWwnfkHqt/4\nIO5Pchjxa4bsH9uP6PoIt8h+t/AR1IBL8Otj4PiXVXg//ua4tld//U/3eu2UAzin/HRd06pwBbTb\nU2RL21er6wpkrtPxNdbE035kpFHHtqwtqKEyM0U1xxwdeirZ+S55Vq9XzBjp+KM3Ua8kVKVrKp36\nKSw6o2OoNbC0AmtVckTXHPDnUs2KLqxxiSn6nNJzUM/B58Oa0XLtHdWPtfq81qz8srZBHfou5vDC\nR7BnS3Jq6LW9Q+NOl7f5xPjCGJtcK0FEZLQNMZ+tcxPD+vimyDZ9vB/nNNah67j0XcPcTk7BZ0w4\nNSHCAaqhR/cwLYj/T1+qYzoH27Fu/N3ZSj3efGHUpeijOhxuHYokij1s0821vUREGi8iBuRkYCyn\nVutxmbOpROaSKNWZCRTrGjF8X7k2TdjZR493497lUE2v2UltW841tCLLMS5CoSWq38wM9phsXzww\njb1xSq7eK3adQF2SQBHOY2LwlOrXfhA1NDJXYc8WyNe10wL5+HyulXGv2jHthxq8tls7yH0+iyVc\nkyneqd/TeRB1YXhvlhR2as/RMxPXBDu794Lql8pr8BrExsl+PRcbbmNfkHAM5x4sxVgf79HzPJiL\ndYdrTCZn671hVtkGnMdXcR7RJr1XatiL+3ujAfsAd49aVYKxmLkC8SHo1IScGNDnGGtmab1j23MR\nEV8azpNrAsXF6/s9RnvKvFzUWnHtpHm899AePT9bxx+uD3v0Oq7nzgexB0yj5yARkawq1NjrqUN9\nqqUvPq36dV5H/Zi+S4ipvnQ9NgfqsLb6MhFv3f0S1wsapX1F0IlrM05ccrHMGcMwDMMwDMMwDMMw\njHnEvpwxDMMwDMMwDMMwDMOYR+4pa0qlFDO2WBXRVln8WrBIp+4MdUMGklUIG+doX53qN+tDqu/o\nAFKLOD1TRCSUD2lG+HmkLi4PwCYtPl6nI91JgrQiUoX07Za4s6ofSy7YTo3TvEREql5c47V7LyG1\ne5jsN0VE4hKQq1ryDNJ+xxxbcrYungsKHkMK/cUfn1GvLVkBKRenjObtqFD93v7zd712FsmVIlPa\nHmya0tQTE2Ap9sILO1W/P/vuS147UIG0vQVkwTripNSNdyH9cHII1+zJB+5T/X5+4KjXfu0EZDDr\nKitVv0Aejj13BOP2T197TfX7g6ee8tpbfwt2bT0ntVRhtEUfbywZpzRBV4rT3ox0u6rtkFkMO6n6\ngSLct/jTGJuu9R/L0fxFlLbrpC7WvY1UwSClmRbthqyw77K2VOS0U07HZ+tdEZHkVMhhGvdini5Z\nUKr6NbUiVrAcjeUSIiJ9ZMHNkpfEVB1fOs7SPX1OYk4qxcctKTXqtdvX8beXk+Tu0JUrql8uyUQq\ndiKe3XpPWyCzbINlqQO1Ws7Z04LYG05J+dj3rHLs6v9pLyQsbbcx/9yxFHcbY2bR5yDb6ruoJTGc\n3syp9wvytKSU7+u+85BWuce3apme67GEpUwsnRARydtS5rW7zkCCFcnTqcmNr0LS9tyXd3ntU29p\n+WfOA/i85HTcm9N/9q7qFwrhtdYuSARutJJlqzN/P/fNZ7x2A9lWV311g+qXkIxtwtnv/oPXzt1W\npvptfw7rO8eac/98Uu7Gk/8H7LNP/vUh9VrVQ4vc7jGF1zsXTufuJTvW0qe19GG0E/d/jNYnlpOJ\naIlbdyfS3v0Fd18/V6+HtJPl2Cwzc4+VZVc5RdpunWUaPh/GY2aptlhvew+yDb5GXce1ZHHtc0gp\n5/Pt/KhR9fNlzZ1su+sEjqlgu5az+2i+hDIRH/y5WgIZrcf9YCmTe52v01ziNbJihZb8XDyFufTo\nC5Da5m9GrE5O1pK9sTHIYfpvYM2cntaSi8x8lAkYvIUY4ErJeBw0voJYU/qsHr8ls1iDhluwXxhu\ndvayrk15jEmtQumBqRG9H+a1geU80Vt9uh/JlYYbcE8j6wtVv8wqjIWJUXxGV9cx1S9cAJtffxb2\nKjzm+m/0qPf4SWb38j/90msXZGjrdGZBA45hYkpbS2fmYr8wSs8nOffrfVBiAPc/OR3H0LpfS1kV\n6+/+0v8M/JzkSoAkHscen4SYwnJDES3ZOfdTyE38SVqOdfEO5surx2E3ztIYEZErtRj7f/I7v+O1\ns0l6lJC8QL2H48bADeytc1bo/RrLehNTMEaTwjpupJGVO8vL3TWC5XfxZMc8NaKfvSfnWNaU4Me1\nDhRq2d7MJO5x1xHMg0CR7hdPe42UbKxx4cIi1e/69w567bx8yBTdZ+K9Z/Dcunsl5MPj7YiP8b4E\n0SBmZVdh7zk5qWVnHQca8Nog/u6kI2saoef2fNqXiSN15mvBsmC/Iz3tPkMlRlbLr2GZM4ZhGIZh\nGIZhGIZhGPOIfTljGIZhGIZhGIZhGIYxj9xT1hQuh6yp+5x2+cneBDcDzmSfjOpq8GXLn/faHW1I\nhR+6o1OLJqgaekIAaVXxiTpVKXs5UkPDYbgPzMwgfWh6WjuBDFH6Y9EKpFXlbdLykIkoUiZDBZBP\njQ/q9MmuU0hXD5FbQ+ZynYLPqaD1P7rotXMfLFP93GrPsaaDKqVXP75Uvcb3jtNa+07p1N+165DS\n13kbsoibbbpfKskiXjmGNNFdrdrJIjsNqX5tl/TY+hUZjqPBvn2QKBVmYmy6qaADI7ivNcUYpyVZ\nWarf6dPXvDZLsJ66T8ukSjchDTaF0lvjEnWqb2LK3N1HHkvsoCQismgn0t/5fk5063lw6zWkeAYD\nuE9jY3rOckoiO/vEORX4c8pRHb2enF/SSU7lVs/fTy5ET33tYXx2gr6WnM6dcx/SxqPNWqo18QHS\nECPkRtVxVo+pHBpvLO9occZe8dq5daU4dBiuA+y0JCKSGUL6ZxM5i7ETnYhIax/iEbtkLf28zo0c\np8r4LKtwHdbKd0AC1H0Esa2uFXO7oUtLob71G7/htdODmBPBIu02wQySE5TrhMIuEuxeF0zXqaAr\n/ZiLSTRnq1aUqX4TPXOX+jvSgpT/1AXaVaDvCiQJeRtxXdMX6XvY9AvEHr4fy9ZXqX7TY4ht73wb\n8lx2jBIRCaXg3zyTdmzBmMhcU6DeM0EuNVPk6NJ+VDv1sWSi5Cmd2s3wHO46jLTzVV/S+fMH/vsB\nr519AVK+B/74SdWv9ZB2M4s1RU9CNtWy96Z6Le8h3K8QOXuIo+6I9328s9HwLb2/SQigX/EarEnR\nOr232PAZXCt2c5ghF8RovX5P5grsO/rJwScuXkvfCqtglTQ4iGvb36rlkCxXY6cfV97Nkr7hBsRl\nVyrqn0MHPHYRct0vJgYRA6I95LCTp1PwBy4itgXXYJ1ofV/Pg099HetV3wVIGvyOhOOxz2/z2skk\ntRm8g9gQKtJrbv8NHEOIXD3q3nLu4XbEB76u7FwqovdyYXIrdV102ImMpdPR69o9MbX87rKcWMBO\nP750HdtGSbYXXsjnop8Npmj+sYtqquN203MV9zVvOUoUzIT0fqmnDjE6VIzPYJkVu3GJiPzxj3/s\ntZeQNPlfXn9d9fuDL37Ra7NcrtKR8Q6TkxA7iqbX6r1s7mb8rb6rJPVeq2VD7Qduy1yRUoi1391j\nJPhxr8baSIY5rWPKzZ9BEphB+4o/f/PNu/7dzTVYk1768EP12tO7IBkuzkNMT19J5TEWatevvlrM\nU57bXZeuqX7p1Xg+mR7H2Gt547rq19qJfU9qE+LBgj1aTtpLMheei4FCvacaab67U1csYCdmN+Yn\np5PkqQTH5cbUPIp7KQHE6PFx53lxEfZPLOVqOqhj7yv79nntRYUY09t+E+6R/GwmIjI7i2MfieLz\nei7pYwjSM3wnuTTP9umYOjWN9YWlxIM3dKzMp5IgReSC2fahnnuubNbFMmcMwzAMwzAMwzAMwzDm\nEftyxjAMwzAMwzAMwzAMYx6xL2cMwzAMwzAMwzAMwzDmkXsWyRi4iboHaY5mvu09WGGzveSsY6Xa\n3Q07OdaIuvU5Snc97bW5fkxcnP7+yO/P/9jXGmthzTztaI8Ld8AqreXyAa/t2nRPDpPVJNV/mHRs\nxAu2wbJxtAfasxlHn9f2PmzsIhuhk+s+0az6JbFGe6vEHNYc957Q9s/9fTj+tHScsz9f6/emx3BN\nfYm4d1z/QkSkrR7avifWQz8/7VgbLyRtbdUTGD/9l6GXHbjerd7z5Je2e23Wqp7ae171+63nHvHa\nuVuhxb3zM21JnJQJzV9SGtVscOqfhEqgAb/8d6h7k5Sox3D6Iq1djSWdpJMs2aEtQ6+9fcXtLiIi\nrb1aC1mWA41sajW0npmO9V8Czc1TL8POsKGzU/XbvhF1hIbHoaG/fQrayqKFWkO9qAB1L3pOQGPr\n6seFauykV1HscWpVlT0D3W7PKYztlIC2wQvXYA60n8b8y8rRevTm01Qr4zMSc9jyeXRC2wXe6qB6\nJWSX/fpJbUXM82qC7DUHHVvP7PtQ26J9P+bluFMHqOd91NvgY6osxr364NIl9Z4f/OIXXvt3X3jB\na1ePO7alZAWaTFaClV/UdUgG79C8v0b2lQ9oy1Cu9VB/EtertF6vT/3DuqbNXOFL1eNs8BpqRzR3\noa6HW5tmqBdxd8mzuBZcX0FE5O//67967WrSWnO9HRGRDy5d/tjj++UF1DhacEzPxftXIO6mLcHH\n/qXIAAAgAElEQVT1y1iia31NjyP2c+2rE3/5keq36Q9g3XzhPPYHNX16vC1egjmQQLWGZmZ0v4vv\n4fotf0pizhhZY4YW6poaLW+hDkuQXqt/RdfByb+/zGvHk+V4eKkejxxTh65jnrJuX0Sk9zRiYjrV\n0EqjOgBn/05b/jadQ70vrre2ytljpebBpj0pCfEws0jXoeuqQz+uadVzrl314zpjC1eWee1AsT6n\nUceWOZaMUV2taKNeG6aoptIA7SvSFut7092PGg5ZZIuaXq3reghtbadHUYtnxDm/0EI9172302e3\nH2nQL9JrZ1/Cmpubrten0VbEh9Qq/B23tltKAWpA5G1ETbq2I3qvMEO1alpPYO0r2abthbl+z1zA\nx+uP6DpjvRTzxzsR19Nq9H3kdWO8G/3YfltEJEg1fSYmEK8nx3SdlEk65zH6vCGqMVGyTq9Pn+7Y\n4rUbaD3/xpe+pPp1k+Xz7ocQ/2svaOtr3lfxniBQoGt8dJ3EXJwm6+XRFj02cx0L7lgyeAXX8tfr\nTuF4uT7JeK+u+1nXjns9QnuRrUu0Bfyxa6j/crkRNTX/6PnnVb8UH46D58vwbcSKmTFds5LrFWYs\nQNxNdOzq+Tmh9wz2527snzqDz+d6JP2XO1S/vhYcU34u1vqh2/oZq/ey3ofHmkmKm50fNarXUqmW\nE+/Z+y/qtSF7E8ZZ83E8M005z9JDV+g7hmW4bpnl+lnqe3/0Rzg+qv3CNbTCGcvVe6JRrNU+P2J5\nUlDvk8++jufHxRvwbOWj2ociulYSn0fxk9WqXzJZsd/+CfbNZc/rdXa8X9e4crHMGcMwDMMwDMMw\nDMMwjHnEvpwxDMMwDMMwDMMwDMOYR+4pa2Jrq/b9Ot2ObaDik8h6N1mntY8MIC2qeR+lCpfpdM2R\nEUghBpob6LP1IXJ6YRKlRB/5xyNemy3YRET8SehXQtZWE46NW9EKpGW3XT3otYduaXlI3yWkowUp\nhTfg2ImNdyBljy3J3PQ41+I01nQeQ8qja0/d04O0R07Ta7+mU+7S0yB5ClOK4vQVfQ3zM5ACXlmK\nsTA6pFO4SnbjPrA1Yc5m2K51n9Y2x6MtSIHraUcK4MoHdMojpzPv/Q4s2NjmW0Rk3QOwUbzwC6T/\nx8VpWdOqBR+fpjwyru0wczIDH9svFgTJKjd6S6c5sjU02xoXL9Fz0Z+L1wYvIwWV5V0iIv0N+HyW\nRlXm56t+Zy5BDsPXgvulONbK+ZRCWncLMqSkS3pOhCopZTuK9GK2yxQR8dEcZqvvBCelv/c80i57\no0hPTC/WcgaOFXNBWgX+XmKjTjkuoLnD6b07V2ob+qUrkXrpp5gzNarTc5teQ+pvSiHmb8NtbSVY\nFEEKKUsW27v1OGO+9dWv4hjomrkyx5wFSFXl1PXOs9pWMFiIVPOkED6vx5FhRjZgTL+QBpvM8x9q\nuQnPiVgzQlbxHef08S377Y1eu/FVHBOnxIqIdA3i3h/7S6w111r0521dDNlePckKqyuKVb8PL0PW\n9PU/+Q0cH9kBH7l4Vb0nPhnre4jW41BWmer3zh//k9deuAzpypFUvd5FmxGT0wKIhSPDWhJRugUx\nnuds58kG1W/5wzoNONb0HIW8Md6JF4lpiEdpVUiJnpnQkumxLtqP0Do25sjTWAaTko+5OOFIvrI2\n4b6yvXDtW7i/PUNafnGyDhKyUDKOYdWsTvMeHyEr+1mspZNRLa9k+2eWCnFKvohISgHOY5jmxHCD\nlhfxdYk1LBF391F8b1iO50vT693yz2EfMEL24Fnr9PqZmoNxG6U1csq5fnyvA7m4Rj3nEHe7a/X+\nKlKNOFlcgD3aT/YfVP0eXIo5seUzy7y2ayOeHMJaEheHsR1Zrc+p5xz2WNkkH3ZtXrsOQ/IkOyXm\nsDyh56xen3JIntt9Cvebx6mIlo6yNIPlZCIioSKsNWMDuI/jPVpiE67Auti8F/bIabSH7nOOdWkx\njvWBnau9doCkVCIigyTBGiJr5MoCvccaHcfYyijH+bUfaFD9yj6NPbAqm+Csg1y6IdYESP4/dFM/\nM4Upht54DbEsPSOk+q2sRIxJoH1Aba3eL+xatcprr1gImawvW4+JnE2Ys1nluB91b8OinmW7IiIp\nyYj9HdcxT92SHQsii7z2UDvW8/5WR3q/G/1YjtZ9XJe3qHgMluDN+7C3Tl+k5ZWJjqQ51nQdpefF\n1Xo8ppC1+Ggn1jh3nx+9jfs/Q3v04m16L9tf1uC1D/4dZNLuteYyGJWfp8+gfv2durxFMAP3vu7n\nB7z2+WPaEj1CJUzSFmNu95zUezGWxSWmYGzydxIiIn56Dix5BveUvycREZkc1M+PLpY5YxiGYRiG\nYRiGYRiGMY/YlzOGYRiGYRiGYRiGYRjzyD1lTZzumrO1TL3WcxopP4mJnLKnZS4j7UgTHaBU0FPH\ndNX40GtnvTanpLup00OjkMf0kSMHp0G1Oan1m5cjtShUjPTtlLBO2ap7/02vnV6D9CbXhSmyEilW\nnDLZddJxYcpAOm+IUi6DToojp2DOBexc0nW0Tr22YCXS1FtqkeJa29Sk+m1ahNS8JEp5dR18wpTO\nnrESbhNaPCLSdQSfn0jytK4mpF7nL9Fpypw6N0uyJtepwBdBaiOnw1U8uVj1a3wD6W1cCX/YkSv1\nk4ytoQtyIHZPEZnb9G2uAH/7aL16LbcI6bcdzbh+BUu0q1PrO7j3CX5M/Ykeff14/pRm4++W1xSp\nfsF6XIvcSswXXzrGx8y4ltpMD+PfKx7C/Ri6qeds84c4x97jGJdTk/rzWI7B6eVvfaQdjpaVIMUx\nnuLLzVpdjb5mg75mseb4R5fu+tp9D63w2jf3Il1642Yt7zh5FHKZ/DrInxbvWab6XT2O1NgASSFm\nnJRRJo3i4+wd9FtXWan65dN8GaCYzHIWEZH3P4DzyIYmfEamI6+8+OZFr730YaRoxzmpoJ0Hcb9Y\nhjkxpcfF8mXabSSWhKsx32YuOjIXcp/geNB8VUs0q9fi+JKzcc3WL9is+g2SY2LhIMlEm7W05Yl1\n67z2q995y2t/+g/3eO3E2hvqPfk7kUKeFMSx3vjx+6pfQSbWLpamnT2p04Nryu7DeyJ4T9kLjhvQ\nCcT+iV7EHleKmOC4Kcaa4qeq7/raYD3Sstmpht3cRETSQ0jzztoCSUNiQK948T6koqeW4rWGl7XL\nFqdSX7iIeH30OmQVW2pq1HtKspD2nh3GGulzZB+t+/F5mauw92GXOxGR9GVYt3tJihMs1fuW1AqS\n+5IUOLVCn/tY59w5p0VIeuRz1l927Bm6hnWx03HL9Pmw/0hfibjk7sv6x7AmBUsoTjqyGXYBZUeO\nDLquR947p97TcB4p+Ryf2W1GRGT5s5BzdB5FLMzeoGWOE6OQyoQzMF5G+/V+jaWN6UtxfCwJE/l1\nKX6smRzC2p1JLmUiIu0HIGlJKUT86TmrY2rOfVjj+Z40vaHjVGsfSjTkbsH+15VSJJFEPDkH7QS6\nZu6ej90Fu2mPK45UPnsj9lKT+zDOJka07GjRF3C/hygmuWNumuTiPCemHBmTcnTUhomfmEAhYo8r\n/2TJWMEqHN+ZD3T8W1xd5rVZ6rZ2p5Zo8v41cxn2+P6wdkpiB8DW80e9Nt+Otot6HDX34BotrcLx\nJGfpeJpA7nx8Nwo3aUes3lP4fL4OHe1a+uWvxxgLlyK+ZDlyTXbjmgsyVuF68lolIjJEz/AD5M6V\nlKbnAUsM0ysw1kf6tKsTy5rXPga5Usj5u30XsA6NtEJClrsae8Vop47r3TfoOwaa2zULS1S/GZKh\nHv0+yqOs2K7LZSRSXGdZYsFO/czQeQx7BHZTnRrSczHvoXK5F5Y5YxiGYRiGYRiGYRiGMY/YlzOG\nYRiGYRiGYRiGYRjzyD1lTVzhntOKRER8mUjxukMpmm4KVlIYEoeSRyCNid+nvxc6dgMp1+xksbhI\nSylYpnLiJtL2X9kHV57/7YtfVO9paUMKUipVpy9+QB8rpx5z1f78B7RLwa0fIgW14nNIt8veqFNL\nr30PKf0ZK3DcruNMsFBXuo41LNNZ9egK9Rqn/uZVIKW3eJU+l0O/hOxsdSKuB6dUi4gsIqlPGjkQ\ndB7R8pFgxcfLUQqW4Z4kpupUueN7cQwrliOVbKJXO0GxE1g1pYW2f6grvmfWZNN7kEZ343Wdaskp\now/+5v1eu/5N7X4ydAPjTO6XmNJ8EqlylTsWqdcmqOo3JwS3vH1T9bvRhjncR45Fg6P6+rEEqIXc\nmspn9Vw8U48074fzcf3qLyOdt71fV65PJEnR6iDCT2ihTmNsOYxreZOOe+UiLVfh9NkrVNF/z/b7\nVL/rVzH+FpZijI0OaUnXgOMyEGuSyA2pxpHF1Z/FMW4nJ7Hr5/W4ZXcldnVK2Xdd9WOJw5unEYtW\nlut0yrO38flrknB9G7txD1Yv0DEwcz2uYcoxpJOyK5SIyNgE5vbYJOLe4NUe1a9iMeJN4yGSDyTr\nGFDfAYlhMrlELS7R8er2TUg19Ej45Jzai/j/8B/uVq81/ASyNZZkuQ4LyVmQMvWfxzlNO45bObSm\nsGyW46eIyLHXkbrPY+x733zJa09M6nUnUoa16/rL73jtwZYB1a/mK2u9du0/nPLamSF9r8/9OZxl\nmig1vHCkSvVLzkL6dhI556Tkawnz4LUumUui5JLC0kkRLUmeITePBbt07O07i/nXfYTuzwJ9fzKW\nIzL3XYG05GqdlkmdpD1N0I9rU0zr7Le/9z31ns0bNnhtnhNDdTqWZa/X8eZXuI5RPeSSGKH3cBq/\niMg0xV52SHTdDl2JQyxh5yVX6sGOMak1iJnpfn0eI03YbyZHMC+jjutU7pYyrz1Nezh2Nf2344AM\n/s7LkKAm52Hc6yukXRZZVryxSs+d/ouIFeEajAl/SEuBWo4gRg0EEcfjE/S+myVY7EKaVqPlIaPt\n2n0s1rDraY/j0skOnmPdkIX4yxynxSCkepOTuPf+Ah1XWEbP0lh3fN8hqe3sNMbWaDPGS5IjHRxp\nwWvX6rEP2vbwNtVP6Nkq98EyvL9Ny1U7DjXgb3GsdM6p/zLuXbwf58fOhyL63GMNH0OPE7tTc8lV\nsh+xYsU6Pb7HWjHOAsV3d8kLL4Rsxh9Gv776BtVvkiSpvScxrlJJmuw6dPIetbsTMeDKWf1csGMW\nUmIusZHlyFd8JFuuOwxp6cKtWiqeTM/U7Io03KpdPV13uFiTFMLaN96nnw0SA7hW7P7qlupIoDHY\ndxPzICVHOynzfocdkGYdJ+X8B7EvnRjAMTXtx7423onrHMt91J4a1vsgdh3MGcV4cd3b2MEushb7\nX/dYuR+vSRHnu5GUHL1/crHMGcMwDMMwDMMwDMMwjHnEvpwxDMMwDMMwDMMwDMOYR+zLGcMwDMMw\nDMMwDMMwjHnk3lbapCMOFGlN2dAtaDpZS+XWuUgnrTVbZeY/UKb6Lae6KG9RfYQxRyfPVtpsOfhb\nzz7rtVcv1tZWbL8XJouvhAStf0tOh+YvfQHqa3Rf0jUfguXQk6dH4Ec3MaF1liWfglawl3S08Y62\ndYasy0S7fMWEqqWwdqt9t1a9VpgHveadFmhGu4a09nWadNRvnIBN8dCYo1en9538q0Nee/ET2uaX\ntYvNb6LeUO42HGv7hw3qPVxrg2suJDqWq4FcaPlSsjFueSyKiPSdQ72AyBpoEguWa21+sASfMUqa\n4Dannkpeqq7JEkvylkJPPdyka0JwTQTWMvdGtU58KdkUXruBWgdrKnQ9Ea5BM07zL1Su6yhwTRM+\nhqxUzLeEeP3975Vm1GUYJT1rYqq+h2zFW5SPMRrnc/T9kxiXi5eglsqdW7pG1tJNqBXBNYryV5ap\nftHb2tI71qxah+NovaFtBcuWYPywreeK3XrujPfg+JOpvsiAUzuoIBOa/Gc2bvTa4aqI6jdch3Pm\n2j/rqD3SoMecn3TUIxS7+67rMcevhQOIrx9c0vrtW/txLb722C6vffyyrqNTnoO6WPFU24JrB4iI\nhFJ0LYBY8vi3P+21r/3NEfVa5jrM0wTSUCfWal07a+j9+YhXXItGROTvv/4vXntLNayfp6a1Bv+x\n39rhtZNoLr30p2947fUL9brYfALWoulkbT7ozIFABtZ3rkN03xNrVD+uXRKZxJwdd2qCxSXiXuWs\nxoLXf13b/Er83P52NEW1ugqf0LUP2vdjzQ+SrenMpL7uqVWIUzwvf816mMqhJNFrGUG9B2mneiOZ\nFEc7aK1ZtXKles+/exR1j/IfhjY/wdHgD1M9jBRaI6eHdZ2jEbKDz74PNY86P9J145JzAtTGeXAN\nNJFft/ONJVwnsOOQPr6SpxbjmKhOgVs/peJJxMahNqxPvnQdQ2ansNbkFD3ktbvaD6h+ja9gjxWg\nfQqX4tmwWdvLz9A6xn+n5Eltm974Kj6b7VxnJi/J3eDPy1ym640NNWGdnKHaerw/E3H2GHOALxV1\nGlxrWo6VvjS0u09q61yuR8MW12mVer2boevBNyWQr2s/juRhr5dKdQwH6dknWq9jZeMFxLAs2h/d\nfPmi6pdVjb3oJO2DktL9ql8i1f+Ikh18+po81Y9t0LmG5VivrpshuixTTAlRDaCxdm3Fnkr3YGaC\nxpkTJ3kNYTtmt67TWCfmcEc36q31nGhR/YIVOCauPVqRh/hX/IiO/Y0/wHMcr7NbV+s5e/kUnnWX\nrsGYLdihxy/P+3iqQzfu2NWnL8KayTHUrUOXukiP51jD1zrRWUM4/jCTTp0drp8z1onzbN57Q/UL\n0bxKW4w6V1znU0Tvh1vfu+W1eZ4HM3W8vvZzxMQVL6Ium1t3KYXqIR3bf8Fru7U4tz6OWDxYj7k4\n6ax3o62IG36qKzPl3MdRqvcqH/PoaJkzhmEYhmEYhmEYhmEY84h9OWMYhmEYhmEYhmEYhjGP3FPW\nxDZQnAYrouVBo5RixvahIiKD18nGuhLvuf7OFdXvchPstn7rs4967TPHtV0x2549t3sr/k47UnZ7\nunQKfpDs1Njumu32RET8ZPGZmAgpS9YyLfuIi8Nl62k75rVHHMsztsoKkfVbnGNnKDNzmGsoOi10\n/Vc2qdc6DiB9e8Ue2GyPdeiUu4RkpLoN1OKefvuVV1S/dz780Gv/7Te+4bWHbmjr3I6bSP/MoxRP\ntomLOpIptlvPXYQ0/IMfHVf9Pvf//a7XDoeRijhRuFf182fj/iSS5M69P3V7MQarn4X97Jrdy1W/\n0ba5s5vk9G22sBMRufku0jrZktNNmW+6g2uek4bx3dCl5XjLViEtMzud5IyORer9T8BKkK30Lv74\njNdO9es03Y2VsA9Mo5TTzNXaZq7jYIPXnmG7PccaspfSC+NJBtE54MhwLiLdNSMN992VMfkdq79Y\nwynmBYt0avKhj5BSuWn9Eq9957CWVRbfB+lfB53n2qdWq34cz1jq13dVy0dKPgXZ1OwsZGz9NEf7\navUYufzTc147LQB5Q2qavn5HrmFsvnEKNsyRVG0F+jTJrljKNDHlSC5IJrVwEWJ5gpOq6h/WsSOW\nsJSp+ne2qNfe+M+wrn7km4957dEOHRsGryKGhmhd3PuP+1W/r/3Vb3jtgRt4z4//8g3Vr/xRSJ7O\n/wiy4N/+29/32vWvHVbvYbtLTs3lFGIRkXPfectrP/Unn/Har9O5iohsJJnTL/8Vf2vzmJblhWje\nN5P9e7+zRhQ9rNPDYw3LrWauOrbdZJ3LKdZJzjhLX4x1qOccJCIDl/Qc41Rqlsu4duRf2wVJXxNJ\nyEIUR9kqXURbKo+2I6WapTL/9nfxGf10vr6IjtHppViP2U50uFOP4cx1iNljNL57jmi5CcvZY03H\nRw1eO/f+UvWasvoeQVwLOzKX0UHcK38W7sfksE5XT0zGfZuYwLoRydF7qsndeN+hvz7gtQPJSMF3\n5xjb6gbIUr71g3rVb5xkH+Wfxf7DR+n9IiKX/hr70mKSCfXf0veG5fbFTyBtf6Jfp/Sz7HEuaN0P\nqYK7Hy7chWvDNtvBMi2z5jIM3UfwPBHvSKGX/vaTXruj9qzXDlfoccHbHZaoTpAMiW1zRUTKsyEb\nY9mKe/1GaX+d+yDeMzWqyzgMXkdMzNwAub0rfx2lZw++DgmOPM2Vq8WSoToc68SQnjtRkoIFyDZ9\nckD3y94Cmes4SbKGruu1YZikiWm0fnIJCxGRKL2Py2AcP4C9Vk2d1pSwRElJkx0J1tbtuG/xPsS4\nvisdql96FeJz9gb8rQSfjovN+/B8k74E48W1EXctnmNN6zs4DteeOrQAazc/J40062ff0kdWee26\nnyAWxTtS5QmSAk/2k6StIlP16zmPec/yp/BCzNn4RP3Zq0qwp/SFMU8nh/TekOfzp35vp9eONuqy\nFRyzuayLKx/O3VLmtftpr91zTMfeEEmiRSuVRcQyZwzDMAzDMAzDMAzDMOYV+3LGMAzDMAzDMAzD\nMAxjHrlnvim7mrCsRURkiFJ+OJ3IdQKZpirv/HmLn16h+tVMIfW5dT9SOVevr1b9fvbGAa/9VATp\npEUPQHrEjjoiuqIzHyvLk0S0E0PbaaQ7TkZ1JerUcnIxIQeEvrPafSW4AGmX2RuQgh+9o9OlAgW6\nSnys6WxCal+oIeOu/VJL8dp4l06de/NnH3ntHZuQsrZjhb6PGxfBjealI0j/L7ymx0UFua5M1eK6\nszvXwpU6TXkXyScOfgBZRarjzNJ8CPKJ0m14LS1HV1u/c+iA104pQDrktOMukV1ObkE0fliiIiKS\nvXHu3JrYUWemWKduspQpfRmua9NJ7V4xNoHzqiUZ4bAjH1tcieueuwOpm4lOenrvBaRvTkWRJp+d\njXH06kdH1Xs2VqEyfi6libpSMn/ex0vOXLld9hJIg/LuL/PaoZ/pqvKcZhvHDg1Feu65VeJjTest\nXDO3Gjw7W12/gnvX7TinFc3i/rDcIW1hluoXzsa1ZnlfZna36tfbhXmaHKB5OYI0zGC+HnP9dbgP\nd0h+wQ5eIiLrSca2qBBp2Wfrdbr+7U6kf64qx5jzBXQqMbtJtZ/B8WUv1k5s/cN6nMSS8GLEsvN/\nrmVI6/dAWnbsOwe89pqvaulD9jpcC3YfSEzQ6+y+/wtSzJZepNI+sm296tdzHLK96l1wqWk7jvTt\nxFQtfZgZx1gfvgN5HMtHRUSe+RqkNu996zWv/eg3H1f9hlvxGXt+F+859H0tp1qajDHBae0FD2kn\nmfCCuXWlYEeJngs6FT2bJAQsb0gvK1P9em9BcsjSbzfVufVD9MslB6TcrXqN471Axrt1XruhHmnd\nV5t1evSiaaThT9DaxS5TIiK5KyCVHO7FeLn6j6dUvw8OYW399O9DmpezQa9v/RdxzTiOxsU7zmlz\n6C7CMobmN7WzW/ET2Dt2kPNj0Z5Fql9yBu4VO3gmpmmHUr+/gNpwZZud1WtG9yncn4JMpK7/5re/\n7bU/v2ePeg+v4TW/jbkddFxSO45gXeB1cdiR1LOUife1I816zSl6FNei7zLup+toMu66/sQYdm1x\n3TfH+vC3M1fjuvecaVX9ktKwFuZ/CufPEgQRkb4WyNTZ+dJ1FWPlWdcJ7Jd4j9BQq+ci70VTfDgP\nV5oSJGnPOMkq2OlFRCR9CSQcXYfhsOm6Z4WXop+wO5Aj9ei7QM8oHyOl+CT003VOK9PPGezm03kK\nsSfNka/UHUbMY+mzu1diRmtxTgsf0+5m7DJZuRbry2IaK64ENdqEuVT0CNYqf0RLyYbIqSu9Gtc/\n2XHcYvfDEM3nviv672ZRfGVJ6kS/3p+7cr5Yk78Tjn9dx5rUa1lrsC6yBM+XoZ/Bou2IJezkV/EZ\n7fAYbcZzAz9n9zvSe3aQ4udvH8mCk5J0rGy9ir0PS8jcEi1c2sCXjvuYXqOliD3nIVvmGJW6UI/h\n3ksYjywjTAjoPYHrMOpimTOGYRiGYRiGYRiGYRjziH05YxiGYRiGYRiGYRiGMY/YlzOGYRiGYRiG\nYRiGYRjzyD1rzkTWQmPr1oTwkWZvtAM6SddGMXM9PqPpJDSTVU/q+h/J2dClXaF6GFkDuoZBmOqO\njJNFNuvfsh1t9PgA+vVegG6s/+IF1S8pjawOqZ6IP19r1DpJ+9l7BzrLRMcmbOActJVsGeZaIc9O\nU+0S7dodE7imiD9b/+0L+y7hOOicZ6e0nWFRBLrxUaod5NZ2qCnCtX/ymQe89tANrftNKcA15b97\n5ybuT5h0nCIi549DU/7w87CwzV5frPqNtEEz2tuI8wvkak1i6daHvPaNX6C2Q5KjGR3vhua58xA0\n3+2N2n41txH61grtavyJ6eiGLrJigdacJpOdY+c56LDL7teDqfedi157xzLUeDp165bq58vGHBum\n+kgRx+66aDf0uLd/is8+cA7XvDhL10HhmiQh0iUnOjUaZkknP3gbxxCs0Oc+3o2xOEsWnNOjug5A\ngGoTsP1l/zlda2KuudOD+k/Zjp30Epo7/3LwoNcuzdbzoOlYg9fOIM1t05vXVL/ZaWjra75895oB\nmdmbvfbQ0GWvPTWMmPq9n72j3rOBasmwNnxqWmvhC/IQN17+OeoPbanR2vBSGidsjenaAXNti8gg\nrkunY19ZvrxE5orwIhxrr1OrpOck5t/G39+GFxzr3GgzYkWwHGN6z/rdql9aKc6j6X3UAsm7X9dn\nGSRL+azFqLUxOYl6QMf/9EP1nrp2aKO3PoACBE9+abvq13sC57Tn//1fvXbbpeOqH8eKwodwfxcv\n13EoWII4fPktxIor1xpUv13/SV+LWMO1I7LW5KvXRluwp+H6a24tmWA+xmPLL2/i/U26dkTx3eyA\ny3U84xiWlApde2sf4v+ju+9T7xlrxxqcGILG3a2JNtCMujc3foK9z8CIjg27n0R9JLYPZa2/iEig\nEOc+TfWL8nYvUP1mp/XYjyVsv+ruWdguPJXq3ox16z1LIA/n0fQ+1jEepyIiiQHs+4oWf3CtLm4A\nACAASURBVMprt9W9p/rxdf/5ccwRrjOz52Fdg6r4MdR+4f1gw0uXVb+ix9EvPhF1GDoPNqh+vMYV\nPIyxN3hLWxL31SJ+uZbTDNcMmQu4Lkz+gzpezND1TCnAfHHrw42RdTXHIn+O3vNG72AucR3MacfG\n+tVXD3jt578Ai92BBry/IEfXU0pbjjoVXHuJLZlF9PXkmlY5m/S61Ui189i63q1NE1mB+DVJ63bf\nxTbdj2qGxJqUNNQdcWv5TdG9yliJ+nBTTj1P3kuEKmh/2KavX85WXKeMRdg33f75WdUvm/pxXbVg\nMeb2CP2/iEjJTtTmmoyiJtrUiB4fkZW45mNkb339R+dUv0CQbJypZtJYu76HDR+i3k5WGcbViHOv\nM1fptSrW8BrkWmlz7Byl+dbv1Fvl535eJ+LjnWcrmn9cMyolT++NuT7cwHXsaVIrEBs6nTqGfL/Z\nyp7jhIhI1jr6voDWu66TzXft10vPWRN9uiYQxyWOKenLdV3EJMea3cUyZwzDMAzDMAzDMAzDMOYR\n+3LGMAzDMAzDMAzDMAxjHrm3lTaljLJltIhO+82gNCs3pbXjgwb0y0SqUrdj0RXtQaoRp/EPj4+r\nflmU9hahVOQUsnpt2XtTvSfej3RNljscuKBTRl/4gyfwdykt0rXv5bSlKEmG4uO0NRbb6nFabdix\njxtu1tc21sxQqpay0hORZQ+SvICkawPndbr+5i8glZot5B7xa2u05DykkHIqWv5Xdb9Izlav3XTp\nba+dRXbUWZXL1Hue+w4+o+c20uGTknRqeKQCMqfERKQvdt46pvpJHtK8IzSGm9/SVrLxSbguLLMo\nXuqkiMbP3XedPLbYflZE24mO9/GcdSyYSZo2RON241JtLZrA82UMMhXXIrXxVaTcTg0hfW/DQrKx\ndGy6A5RiPEppnZxKKSKSSCl/SZlId0xy7ICH6zFPW99DWmhqjU43nhzENeM0xMh9+h7W/VLbscaa\n1ZVI2XbTyDvakdq9IA8W4WsqdJp3Wkinaf+KE2euqn9X5CKN8srfv+u183fqz6vdt89rlzyDeDDc\ngGv7+Nq16j1JZPncR9LGOCcGHjly0msvLUGKcVGmjoE9ZBeeRZKQDEdu0rQXczOyAtcoPVenUd++\nCAnCOoktt1/GuE93bIJZvTRC9rYTA3oefPBj2EtzKndpuT7flM/gtdSFd7ckZrlq54UrH/v/WVla\npvHddyBVe/QrkDJlLtHHkLUKKcqdN0977TM/0RbM1Vsgnxin+1n61GLVr/1wg9dedD/e03FWW+P6\nnLkea5LJGrWbrMhFtPS49yZZzzvje/AmZCIsQ5IiLYXuOoL9TrAc96H0oY2qX91rkDOyNOXx34as\nYrhJ7xcyVmIeCI2/ySG9TnRTmnaKH9e2NxpV/W6fbPDaK0nCN+XISKL1iFejbfiMyHodU7vp3Ks2\nS0zhlPm0Gi3/7PwIEuQQSSVdSUhjHc4jiyzuWR4iIuJLJXnCJFLmCyq1/K7v8g+89mcf3ua1i5+E\n3NCVxw2RVKbzII47vESf03AL/u7Adci2cu7XluwzJI1iG2jX9jWNYgpL0+KcvUzaQi1PjjUsPRp3\nYuVY57DbXUREQsV638elDcbaMR4dRankbMD+cIbHtLO/KaQ1qvlUE3VDP1+WthDmZwOWBWc5tvYs\nF+Q9Jduei4jkPID72nMCMSq1Ut9Hltz0k1QtLknvMVy78FiSTNdivEdLJXnPmkD7nsmonmP8PJVA\nZQIaOnUJAd9lzEUuseF3bJJ5H8nyVJbRVX3+QfWexndPeG2OL8kFeo/R+BrWWY7Buat1/OM4nrkM\na2vbh7qcQPkOrIVssxx29hhs/Sz6sSom8Nh0S3D4SLo2QXvqxLBeq4copvKa5NpH562BnHpmBhKn\n9hNXVD/+LoLtvFkCGlmlyy7w/nrwBtbpvAfK9GdTvAnkYr+Vs1FLDFkSytJ2f6a2WOc912gn4tBY\ntzMn6PrJx5TBsMwZwzAMwzAMwzAMwzCMecS+nDEMwzAMwzAMwzAMw5hH7ilrUpWUnRTj7M1I+Rlt\nQ5rojOsQ0I+0nqJ1SCd0pUI321BVPD8DVbpXPr1K9YtLxPdJfWfxnpkJpAOWPa+doNgZo/cMUqd3\nbNKfzTKLuiNIOcvJ0CmJnJpVVIoq0G76JGdA+ymFeuCGrpif7rgSxZqFi3Dd05bkqNeuvw5pV3YR\nUiVZniQicvstOMGkZiP1K22ZPvbpcdwHThsPpVWrfsPDkJ6VrXzaayckIG1udFSnmjPsHpaaukS9\nducCnJd6TuEzyp7R42LoTqfXZrnXd1/bq/p94z981mvfPg4p1EybvuF5+XeXHXxSKrdDeuQ6p3Ga\no48cx1zZTDa5r/WRS1F3t65Wn5OCsBBPabG3f3hR9bvdievHUsRAOu57OFXPnclepBCyC9bQTe3m\nNTWI9NtukkhUFerU0hkabz6S0UUdd7CJMaTPhskFoOeYHmP51Xkyl5y4ClkOO1eJiCRQKnkwGffx\njVNaPvLis5RGT0GmekSndSYl4j5yam0HpfuLiKQUYT63f0iOLtcgDQok6/j/7vnzXvuJdRAO+ZN1\nBXp2glm+BHKqcafCfdVDGN+9pxHXWVIoIpKcgs9np5bOFn2/XXlVLBkaxboYd13H8lAZxvuh70O6\ntGq7jj1jkxiPfKxuCvP1v8W9X/b1XXj/oOMUV4bU7EuH/9lrd32Ee/j5b/0X9Z4ffeubXpvTvIPO\nHBuk1xIoNqx/0XENIvlBJ8mW3VTmCZr3yeQMl7VYr03sLvXEdx6TWNN7CuPMHS2chp+9HDFhynGt\nmaHhGa1DHE4ManeRdHJx4RTt/uY61a9gO+YIy2qSyUGQ5SciIo2vY23mGOKOpWtn4GYxTuNv47Na\n+MfOG3wMnSRRF9HSUY7D7ft0uv69XIA+KbwfHCQXDxG9R21+DdcovFTvWXIoHZ7l7PzZIiKzM9jb\nJiYiZiYl6fmSRvu54u1I2x9sgazMn6ElhtEGxN2cbWV4j3NOQ1fw74JHIB9ODOq4y/uwyQDGW89J\nvd7FJ+Pe+NLv7paSkqPlIrEmYwkkuD3ntcNQzkbsX1m61HVKu6mwND0hGXEq4MhReP5kksuRKz3d\n+VXE1Cg5Rg5ewz3I3Vqm3tNzBtc3Yxnm/KjjEBOkYxppRnydHtduNuw4w/L1ULmWNU2QhJGlHr6w\nll258vFYwo67nSf0vWH5HO/Trr6npdj52Tiv7l6c+8rdusQBS+zZeS7onG94AT4vYzXiOI+PjnO6\nvMU0ScTq9yJuZC/S6xO75HUfxnoX2ahlTTznhkmq9Wt7G3pean2T5Nubtfuw6yoWa1KyMNfZEU5E\npO8y1oastTiu0XYtjR2n5/vcB+Es6bqydl2FRJzPK9FxMmKZ1ATt31m6mxjQ78leVYbja0MZjMaX\nalW/Rf8/e+cVH+d1XfuDPhi0Qe+9g713kZRIiRQpqjdLlkusOHauEztOXO61b24SJ7Zz0+Nux1XF\n6l0iKYm99wYCYAFA9I4BMDPowH3IL99a+1jkw/UgeNn/p0POmcFXztnnfDN77fVZOOcFuvB3Ap3y\nnAaqseeKSsG9suMGS5n4e5NQ67nNfp+NZs4oiqIoiqIoiqIoiqLMIvrljKIoiqIoiqIoiqIoyiyi\nX84oiqIoiqIoiqIoiqLMIresOTNBVk/uTKlBZa0Xa3NdiVLzl7UI+rvL+2FTGx4mtWzL10KTP9JK\nNniTsoaNp1Lq/pz3kD7M3yatJtme7mottIHFxVIb6CHda/gB6KZ7vLImBx97G9X7mFMs7Qw9C/B5\nbNM3YulP++kcswtN0HFlQkM4ZenVo6guxTDVAih+YoHoN/jrM047jHTK0ZaeN6UU9V/Gx6HNDQ2V\nGvzQUIyTvj7UZoiJKXPaISFyeHY1HnHaSXkYLzVvPyf6sV16dBbG7Rv/6zXRb9mm+U47geodPLJ6\ntegXIOvSjFxYqMWQ9tEYY87tgq4xyI6hopZTw15pFZ9Nlt5u0iWzvakxxhx+Eza4XOdickrOsaN1\nmKcPPXg73mNpZLn2BuvVB7pwvRKjZc0ZVyZ0yWzTfblO1kFJjEE/PlbbgnQwQMdAVom+IWlbNzyG\nWhEDFzH/SjaWiX5sHz0TREVgHnhiZF2ntFzosvO9qFvAx26MMS+/e8Bpb1mEulmTVtGrnn7EprQV\n0AcHWmR8ZLquQ1c7ZxlqGrTVdIh+25fAw/H9C6hFtG2J9HaMc2FcNDWizlHJkgLRz0s1kFLXocbA\ntHVOIwGsO1EGul8eizPNnEdQR2LC0n/76nHNE9w4vt7z8vo99PUdTptrSEV55PqZvgLjMzQU17Ln\ntKwdERGD+BxNa3XWZtzD3Rt+Lt5z7HlYhmaOIJZdOinjSyzdw/QE1MqIKZHx7/wh1A9Y9chyp508\nX66zERFUV6AWsab7YJPot+BTy82MQmMr72Fp9811UrieXbhbrmPtH6KOS95DtPb5pI31QA3mFZdD\nik6VtTwSEjB/+jqPOe0A1cPjMWaMMR6y9eRaDG+9dlD0u2MR1rtwsv1u2iNrxMQlIC7deBf3J9Gu\nc0E1CdlGdzJOav9t++ZgwhapfDzGGONvwL6t5DPwKh3pk2vDIFmlp5ANbni0rLPVTzFwOhd7DJ/v\niuiXWrTUaXdcPuq0Q2mfPDEmj5VtwMe8eC2+TNYN6qcaQAFa3xv3ydpFSRlYd7tacY2KN5SKfmzn\neqv6K3b9nWDjZVtwsro2xpjmtzEGuaYX19WxiclBnGp7X16b8Fjc17BInFdsoYxnKRWInRGxiE3Z\nm/D/vmY5F7PvRLzuOYMYnVAurcj5+nKtFrtwJddV88zH80SEVdNqahzjketc2M9L3pouM1NEk411\nXJ6sqZS8GGNr8CrGo8ctbYinJ3H+ibH4vPM7L4p+YxM435IM1JLhGkrGyPp6udtR125qAmOn+4Ss\nj8P1TrKorgrXyjHGmPbLqI2URPfjwivnRL+MFIyrMDfVSPTI+kJcO9JD9XGmxuT+3K7HEmwGG1B3\nZWpMPi8mzsNxdR3BtXVnye8HfFRD0neDarFFy3EbX4z45vYg9k5NyfVzpAd7zAiqr8XW3qGh8tlg\nlGpVujIwljjWGmNMWBjGYMd+7KPS1kor7VAawx0fYN2f9MtrlLwK58G1TG1b8iGr9qyNZs4oiqIo\niqIoiqIoiqLMIvrljKIoiqIoiqIoiqIoyixyS1lTMlnvTo7JFMKuvY1OO4RSgDM3FYl+oWRZVroE\nr6WtlqmL7ZQmFD8HKYBs022MMVGUWjZQjRS9aJLuRFnpZ5wqvvQhpA1HJsi0spr/gOyjrQ9pWYNW\nyvyiQrIGI+tKtqQ1Rlpmss3oxJBM2YqIm9k0NU7LPvXqGfEap6nn31/ptEd6pPSq8mnYbTa/jvR1\nTqM2xpgrL7zvtDM24Dp1nXxf9Esie9LW3Ug7TV+HVOTOA43iPRHxSNf0N0N+0nSkQfSreAjp29Uv\nIsWQZUzGGFN9ADZ5WUlIvU5JkVIctoK7+Oxppx3XK9Ojlz0oJR3BZKgGqde21IMt+cbJ6jXaSjVM\nIevmJEoZ5RRRY4ypykEqZwhbxfrkPJifDxlfOtl/hp9COu/0uEzJZBkc25by8RhjjDsSc4JlPePW\n3OkZhESnsAwp22M98lgnSLqVVkKSoTYZXyKTZZptsGGJSM4CaZHIFsN7LsLecX6eTK+sJwvzaErr\njDYy7vF5shTClob1UqpzcibG/pgX1zpnkYzXLNMoTEPq9MlrMoW8KB2p2MXrSszNSFiAzxBx2XL+\nZFv1w7uQ7p6ZKFPSC1Nl6mowOfkbkgNZfzdnB1Knh+iaJ1JKujHGXHseabrJ8/BalDX+hJUqpeYO\nWVbxkR6k3U/4MV/e+qu3cAyWjO5aB1JuV30ctti9z0vr9vhojKvCJxFDO/bJuLvu02ud9sUXzjrt\nAstms/E00qHnPgyJWO59FaLfqR8exmf886Mm2ESRxLL5FWnpmvcIJEojFOf7P5TytNRVmBeBNtwr\nt2VFzLIGtvat+/5x0S9tI+R9LK0aJxlE6ioZD7zVeE8YpY1v2SgtsvtJgpFN1t6TIzL+p6xCXOo/\nh/N150upQu9hyAHSN2GNHOmR6yJLZ4INS6ZiLIl1w3OQQrC0PSRU/ibJa+YUScxdLnmdk6qw/2g4\n8rbTtuMpS99SyiCXa9yF8dx3VtpF87rD8iy26zXGmL4+rHdCrm7tCSITEUM9Xoxzlm0ZY4yvBWvw\nAMm77HW7+xjKAWR91gSd4VbE9akqKcVhGT1LgGwJyxDLQirwGZ458vPcmRgnESRxskso+LranHZS\nvpQ9/heBCCkRHvVi7MeRTGp6Qn42y5p4vHiK5J6AZT6eErw2Piz/bmQc7ndoPtnLX5fSifgSKZML\nJr2ncL3sa8nPjy6SP7k9cr1LXo7x2bQb8trlT64Q/djaPUBlLCIsyU9oBMbIKMkFo5Lwd9PXFoj3\nsBVyD1mC+65JCdvcp7DfZ6n48Yt1ot/IOKSItz24wWm37ZZ7JY5lLE0Li5bxxXux08wkXpLi5N0n\nx31fNV7jdcNl7VsSyEaer/XQdblvcdF97LuIZ6sp6/sGjolh9GwQFkZ7ojYp9Z6kEh4JpVh/z//o\nmOiXlIXY1k229hNDspwAW9kHSBqbtlzOWbZpz7wd33kErHIr/ggZv2w0c0ZRFEVRFEVRFEVRFGUW\n0S9nFEVRFEVRFEVRFEVRZpFbypq6yD3BdmqJn4u0cU7Z6zsn0zXHB5DSmrgI1Y4H6npEP07R5PdE\nJMiK+f5WpAYlLYHsquN9yKJSlsjUTU5LHqJK4XYKecmj85x2whGk98cWy9T1NkrnLqCU/hirQjlL\nmVge4pmbe9N+M8HlI3ATWP64dMBofAfSHnaRsNMDW95Cqt6cz9zntKt//obol38/0uB8JD0aqJH3\ne4iqeXc14564c5Fy+sZbh8R7VpahEv6lJozNNfOt1LszGIPHruDcbXecCpLZjfUizTRljbw/3ktI\nI/SNoF92Rabod+U9pMZXbjJBJSKJ5DBpWeI1TgGMSqEUwqsyhbCIHHL8lKIZFS3vNaeoD13DZ1Q8\nsVD0GyaHNB4vCRWIDUOWs8ggzXtOOS3bJCUNrQcxx4pvgxzGltFVLqK0QZKATE7ItMiMKrpXlAIe\nbrketJxCiuPiJ0zQSY5DauRkQDr9HD5V7bQrsxHDXjp6VPRzRyEmslTllWMyXbOYJEXrqjBHsrOl\n5GcggPiYWYpUfnYpC3fLpSKSKubf9QUM9sFrcsxx6ivLOTnGG2NMLDmfXXsFkq7ICHl/wkiSsOV2\nimVyWJj+G/I4ggk7bsVZjkVHfwFHuTu+fpfTDouUKayZ6zFua76H+1ZAchpjjHFRGv9ALaRkoZZ7\nSuserH9z/nil0478ANdy4WNSdnngf1922pdfOe+0lzy2VPRjF45X/+ZNp33Ho9KTjmUlqQloh1ny\ng/XfeMBpd5xAzIzLk3LS+U/K4wg2MeT8El8m3VRu/BbXLbYM6eZ2qnP3UcQLljjZUpdIklY3vYFz\n9iyScjfen2RvgUyzmWQwrjS5jrEkJI7cfYoeldev/kWkjXvPY01LXin3S/4bWLfdtKeJzZX3J2wj\nzpFdyzit2/68YMNrH8v5jDGm4DE4OrIctuVNS3ZADnCp5Go3MtIs+vXXIaV/8DLmIksxjDEmLBLn\nPzWF6+LOJtmVtY6d+y3uzfz7sc6O9UvXpPJ7cU58XRPjpCyYZQDx5RgTzbTfM0aOUx7bYZYrWcb6\nGbARJaJoTPeeaROvxeRj3EXQcdlxJTQc/+483Oi0Y4ukWxiPVX8L9gwca40xJjYdewZ2Dh0ZgXzC\n3o/EpiIG+HsgiQm14n9iJeZ9fw3m4nCflCGxxLevBnJQLplgjNzHsKSS5THG3NrhKpikWmUr6l/B\n3iaOZGVJS+UeuvoNyH3n3g/H2KQyKTH0d0KKzU7CMcny83zdGEvsEsXXLzZfxrUAjQkuOeGZJ2N1\n08uI4+xWt3G7fMZqOI69rJDezbPkey7cQ38zjiHQIONnbPnMSdOMkWOE1ypjjMm8A/sWHpsd+xtF\nP3cO7vFEgGSjllzpxM+wX5pzJz07XpfPDf092IvGXsT842OwnaCGO/FczeMv3JK1Ji9D/ObvFHz1\nN9/LFj2COGxLFtmhieWlvhvS9TmPyoh8FJo5oyiKoiiKoiiKoiiKMovolzOKoiiKoiiKoiiKoiiz\niH45oyiKoiiKoiiKoiiKMovcsuYM22GNdEo7TNY5s64qd6vUUfnaqLYF6a5j5i0Q/bzN0AFHp0FD\nODUubR59pAdMKi522qxz9jVLbRfbfGVtQv2K1veuiH5sQ8k6V+8ZaZ+ZQjbQfB3YMswYYwL0Wirp\nku26DMayQQw2Sx+B9tzW6ebdCV27l+rCRMTLOiTN9bgGbX/5M6e98ONS1974ErT6NXXQyF5uaRH9\n4siedXwSOsTIMBzf1rXys/290BB2eFkXLy00R8nKkz/bnS3tTZsuQbuYvwia1s4PpEVsDNWVWP4E\nLP06qc6RMcaUbftou8Vg4KP6H6mWxr3hwHWnHUqFg3KXS51uCNV4EVppSzfN9uO5C6EdZi2lMca4\nc1GPwEe22H7SyHKdKWOMad8J+0COG7aGOi4V94ptg6Ote8h1o8KpDsq4VRuCNdl+0rNGL8wQ/aLC\nbxkSf2+SkzFWB5ukljiE7l1eCa5bznWpMR4cRj2Bxm7UPtiyaJHod7UNemu2HI+0zrFoMSzR33vu\ngNPO8CAGlk8XiPdwXabWt2B5Geqy6gBQrbLIZMz5Kcuq9dIuaIILSqD7te936x6MhVMnoYfOTpJ1\nBUJDZ+53h+xiaM+jM+XxzVmFeBoehfPtOiljSiLZxU5T/B9qlFprrglRcd9DTrvj6kHRz011YUb7\nMT4W3IaY1LWnUbznkdWrnTbXtLr48jnRLysPNYrKMzEu2w/JzwvQusvW6LEFsi6PtxH1wqLTUech\nwiVrtk2NyXU82Ez4UXvCroGUMA/nzFbQdu2IsT7ELda/swWuMcb0nsVc5Lpqw21Dot842df7yXpz\nsBXXIt4r6+Nkb4N9+9gA7v1Aox2vqQ4Q1e4YuNgl+kVS3bJJqs/BdeeMMSZpGc1TGn9TVl2LvuPS\n4jSY+GitcaXImiFNr6KmUgrVA4pKk/u0UC/uaes7VKNugawxwTVNRrqwx/BektePr62P5jPXCpqw\n6o2t+CzqN7W+h3hq1zu88S7uQeZqrO9hMTKmTw5j3xyVivMd6ZT1DblOkov2r32WXe/Y0MzZoRsj\n42G4Ve+GLXHHfVjX/db6OUHnnLIUe6TWd+U+PyT8o9eG7LtKxb97LmGv4uI5QcfDf9MYYwJujHW2\nj54Ykfeb5/ZwB56thqxng/hSrP0JVBeLbc+NkXufUHoWmrBs7e0aOcEkYQ5iph0nc+nactzlWlzG\nGFNAexHel3ZfkHttfyPufTzV2Rq8ekn0SyjHMUVQfB64jDkbkyPXnTFaC2Joj2s/pyXMwf1oOEZ1\nSFMLRD83WT/zfqjvhKytlEj1d7geoV3/KdaqbRps+BkxwuMSr3VQvdWEKlzbFOuZhOu/TE/huvWd\nlDVpPW7Mq166HolWLbaUlagFduFV7E96h7B+Llwo5y/Xqy2lepnDnXLNFe/h2plVsiYQr4V9Z7G2\nxhbImkWpqzGGp6n2ZfJiWSvUW4e9e5Z8VDPGaOaMoiiKoiiKoiiKoijKrKJfziiKoiiKoiiKoiiK\noswit8zhHySZC9s6GmNM4/MXnTan0XmvyhTP6Umkr0clIIVtdFSmusZlIS0qMhLpUiMjMvUr0AJ7\nw7xFOKauXqS45y6/Xbznyluw/yy4C7KUrC0yTY1t9diqtOTT0oJ0sJ6sn8ke0dcgUxKT5iM1q/1D\npOWlrZE5TC1vUdrldhN0at7AvUqw7KTdlGrLtpnn37so+hUV4/6wddj7398j+q17FDau+X1Iqawo\nktZ615uQ3lZSiM/u68Y9iEySKY/XrmPMPH4f7vFY77Do19aIMfjIPRucNluhGWNM8RrI4jhljces\nMca4syBdaKYU2QLLCo3t2irlEPy9iS+GbKP2Q2mHyfbMqSsondeSHSQXIw2TUyXt880sQjrfcBPS\nb1n6YIyUj/E8CCf7QTMl51gMWSZHxOIYbOlDC1lwx5KszE7L5pTWqTHc33DLCv7qYaQoz71nntMe\nqO4W/aLj5JgLNpzyn1QpLa3NDcgAW+uRVv7g1nWiW/cNxJ+jZBV/tE7KDtZUwJ68rR/XMydZyqRe\nfXW/0948f77T/qc3ETfvGpZzrLIdqaEDftwT36hMf2fbwolrGGfTt5BynjyD8b14pES8NjyGtHY+\nD7YDN8aYqmXyfcEkjFLIbWtI/nfDS2edduamItHv9PcPO+3iO8qctm3rOdKDazvgPYN2jVxnL/76\nlNNOTIDEZHAI16W9X0qmlm7GvY6k9OXoTGnLGx6L9ODBLtz3ys8sk8fwk+NOe+F2jL2hRmtdrMC1\n6LmIedn03lnRz50zs+nbgSayTI2XlrOJtHY3vY7xmHtvhejHkpYBSlOOtCTOkYmIK/GFiOUjhTeX\nHfRfQgzIuxvSpb7Tck+UUIq4PjlK6fCRcns3SPKshEpKybfsUhMpdrKFsG0PzrGsYzf2N/bcnpyS\n60swYfmEz5IERgkZEeJGkpVezhbczbsgKUp25Yh+fN2jszFHkixprJdsthPnYBx1n8b+JWm+fA+v\nk/EVuDe29IElqUI6EiLlKiyR7T8t5W03o5+kHlHJch3sPoi1qURO+6Aw3I04Z4+zPrLWZukRlysw\nxpjmt7H+dR5odNq5O+ScHenFnOO9T6DDkjvQJR2jucOyD7atNsaY0X58dmQ82WCfl/HaQ5KJqXTM\nI9cceU4sUe2h68D71f/8PIx1L60Noz1y3fbMsfYcQcR3HXF+sE7OeS4ZwTKQMa88lG2paAAAIABJ\nREFUvqSFJJt9H3L9CUt2mrIWzxMcg20ZDsvtw6IxruJILtZ5+IZ4Tzj1E/tIK65xTK+89+Z7ypRy\n3GteZ0Ms6Vfzhzjf3DvwbDI9If+uLdkPNglzcbzRlr28kM+RzDPQMSj6scS3n8Zjwlw5/sJJnsZS\nzNAISz5M42SCSlXMKy1w2rY0mcdCJFnK8/01xpgWkrIm3GJ+cAkFHgsBS5rMUrj2AyQDq5CfHWc9\n89ho5oyiKIqiKIqiKIqiKMosol/OKIqiKIqiKIqiKIqizCK3tiah1J2piUnrJbyWvg7ViTv3S1cK\nrnjMKX8dB2Q1+NytcJXwDSA9znb1EBW8W5COz2mY7dXSySKZHGPajp132gHL1ank4fVOe3gIKYTN\n70gZiZ3y6fydxbJiNafUZW1Gmv2olcpX+LF5ZiaJjEBK4ei4TIeMILcJQ7Km8sUyDZ/PueMEnJfy\nU6RzBKcvdg3g+i69u0z063oFKcjh5AyVX17otGv3SJlG1XKktHJap52KdqUWbiDsdhCdJtP1T/7i\nmNOuWIfPDomQ31n2HsP5RkZgyrS9c030SyyV1yKYtFdjPEZFyOrtLB3pJmeMxFyZNsdyI3Zuis6S\n18V7DnNzgpwJwifkXAwJw1xkBwN2SvDWyhRPrlYfk4f01q5DTaIfp2WzW4rt5OBv+mgZXKBJplmy\n9IudMgbaZQyYmMEUfGOMGR3D3+492yxe23AX3Mn27YJMxZ6z+XlIiU9ux3klWpLFgjTE3gUlmFeT\nlhSH33f8KtL6712+3Gl7rM/efQ4V8zMSMc6K02WV/SGSQ11obHTa8/LzRT+WNvLa4uuXMrY8kjJF\nUIp/bauUyWZd6zUzRfZmpByze6Axxpx794LTLiqCfMJex+Y+sdhpd5DrW/O+66IfO3PxfZr/xbWi\nH0uLO49jXHkSMbcX/8ka8Z6+aszzYy+fdNouK74wSx+HpmH3d3eK13iO7f32LqddVCblIXysbST3\nTVkq5SaeiplLwTfGmHiS9rCE2xhjxgawLrKUadqKgew2NViLz4i1ZCapS3ENOG76bkjHmVGSsXHq\nPbtf2BKsUXJo4tTwcJe8j/HlOF923it5VO4/uvYjzT9pMfZO4THy73KqeSQ5Ao0PSOe9rJXFZqZg\nGSGn3BsjJWLsGDJkxQaWGFV+BjHYTq3n98WTcw677RgjZdY3XoNjVA7tgdp2y71D+m0FTpslwq7t\nMu56yUWJXURtZyk+Pt7HT1pOWmEkrWA50Zh1D8OtMRdseB0PtfZf0SQr532GLVNPon1+gGS37PBk\njDGjJLfnzxgflP1Y3umneZq6EpIalp3af9c/jXNKX1Mg+nWfwp4yOgN/x3tZyp8SKrGGR5A0I9Bq\nyUjo/vA+N3m+dMvsOTNzzmm8/7JdoXjcTdD94JhpjDEZmzDe48og/wyx4mnzHqyTefRs1XdKugGx\nvKb7APaY4QmIFZ75cu6wY0/9qyhVEGY5QOZQqY8RkuVxzDTmd/eszudZ8r1ken5g57lpqzSALQUL\nNlEk1xq4Iu+Ph8bjpLm5DKmNJFopy7D2RVgxOoaeOdt34T22a1nG7XgezSJnTuEAau1r2TFxiuSL\ntlNe4gJyXyZp41i/jIHR6YhDLHdLWSL3LbzXS6DSBbb8ideTXFk1xhijmTOKoiiKoiiKoiiKoiiz\nin45oyiKoiiKoiiKoiiKMovolzOKoiiKoiiKoiiKoiizyC1rzoSSJq7rkLQbY3vboXrowyISpJVZ\ngDT50VmkpbXqfwyThfKol7Reln1ZMunDhsg6kWud2Fqxrn049qgMaPlse/C+67DU6j5Mun1Lz5tQ\nAi140xuoRzNYe0H0c9HfGvehboa/QerM2dY4u8AEndxVqO9g63SvHIXOL7oXmrqIOKkNrP4QdpsV\na3Dd+i5Z1umkyc/LxnWbsrT6aRnQDY52QK/JNWKKFsu6FGwd2UY1WNhO2RhZM6F1H2og2ZaeUVSz\ngvWyibZmNAafx1ab7V55H9MCM6cFjXVhXrkzpX3jYAuOI3MNrln/WWmhyZrqULKDHO+Xx80abdZd\ne5ukVSnrLgcuoLbMQAquZZhlWzdC95rvZ6Rl0z1BdWaiyM5valSO39Yz0G4P15DNcn6a6BeVjvMY\nuIAxm7VajrERq35AsAkPwzknuKVtZqAe93H97Yucdu3petHv6HnMRbaTLiiV2lcf62dHqM6OX+rk\n1yyf67Tbb+A+eqlfgTUX0zzQCrsL0R68KrXCPEfyU6G/teuasE37WDdqAiRbdZyGW3B/TlzBXCyy\nat2cvI64tskEF66jFEe2yMYYU5CD9YnnW+1vzoh+hdtQxyT7HtgklyRL++i6Hx9x2jk70O/CvxwS\n/eIysbYu+vKdTruvDjr7nrPSljeR6sEt3oS6I3Y8bX0D62LfaWj6l969UPRLmod70HUEfzdjg6xf\n1kvHEZuD47bXnJDQmf3tqOsgjjF9vRzfPYcQV2KKURvLa9VISF+T57RHad+RXSbHrb8dNSLYvnfM\nir1D1xBjufYI13Bgq2VjjOnc14hjzcf4GaiR9b74fakrUAfArmkwSjVTePvV9HK16BdXjnHCa4gr\nS65PXGMn2Iz14e+GFMsaawNkaZ26FvfJ3yjX7YGr0P6z1a33vKyL6KZrG0P3xq5hw/sHYQFLMTi2\nUB4rWz9zDcf+C3INT1uL13hMsD20MXK/2XMcYzlrk6z/00efz7US3NY95PEyE4TQVOfaKsbIOjNc\nR2nS2gswfH/YKt0YaQGcMBdzgq+ZMcb4qA5OynKcP8d/+1mD617EFuEec80LY2SdmYg4jDnbbjc0\nHBfGfrZi2Gabaz7Z+6/fqeEZRKJpX9p7XNa2ia+i+l6XEUPjK+X5Nr+MvU1cJeKL/7qcs9GRWCsG\nazH/0qw43nsCxxFJ+9LERfQceVXOX66FGEq1bqKsmlv82dlbUPem86B8Vp7wU40TroNiPRMlzMEY\nu/Jb1EYt2lEl+vms58dgw/t/YSVu5FrBa/y4V86DuFLsi7jOzEiv3Hvy3+JnEs88uX/vovjIz9Vx\ntFex11K+jzy3+87KukSeudi38DNJzrZy0Y9ryKbTc0O7VWc3ns490oMxNzEsa92YxJvPZ2M0c0ZR\nFEVRFEVRFEVRFGVW0S9nFEVRFEVRFEVRFEVRZpGQ6WlLN6QoiqIoiqIoiqIoiqL8t6GZM4qiKIqi\nKIqiKIqiKLOIfjmjKIqiKIqiKIqiKIoyi+iXM4qiKIqiKIqiKIqiKLOIfjmjKIqiKIqiKIqiKIoy\ni+iXM4qiKIqiKIqiKIqiKLOIfjmjKIqiKIqiKIqiKIoyi+iXM4qiKIqiKIqiKIqiKLOIfjmjKIqi\nKIqiKIqiKIoyi+iXM4qiKIqiKIqiKIqiKLOIfjmjKIqiKIqiKIqiKIoyi+iXM4qiKIqiKIqiKIqi\nKLOIfjmjKIqiKIqiKIqiKIoyi+iXM4qiKIqiKIqiKIqiKLOIfjmjKIqiKIqiKIqiKIoyi+iXM4qi\nKIqiKIqiKIqiKLOIfjmjKIqiKIqiKIqiKIoyi+iXM4qiKIqiKIqiKIqiKLOIfjmjKIqiKIqiKIqi\nKIoyi4Tf6sX6M8867fi8XPFazfc+dNrDo2M3/YyC7RVOOzQc3wWFuyNEv0M/POC013x2ndN+8x/f\nE/3ykpOd9vI/uQ2fHYHPDouMFO85+He7nPa8hxbiuNuHRL+pyWmnnTQv3WkPNfSLfmEuXLasZcvQ\nr+e66BcRG4XPnph02uGRsaJfeHi8005MXGqCzflXv++0B851itciPDhGz3ycc5h1fwZrup129xW0\nK59cJPpV/+aM0y7ZXum0m3deFf0mJnE9UspS0V6BcVb969PiPTkr8512oNGLY+uS9zF/S5nTjojD\n+U1PTol+LW9dcdrh0TjfMLecFn1t+FsRYWEf2TbGmLGJCad913e+Y4LJ8e9/12lPT8jzSFqa5bTD\no3Hs3UeaRb/UNXlOu/VtnHvW1hLRr+PDBnz2sixzM8Ki8Ld6juJvpd2G++S/4RXvifC4nPb0OJ1H\nWIjo56VxGh6H+Tw1Nin68Tn1Hm9x2glz0kQ/nn9jfcNO25UWe9N+VZufNsGmZs9/OG37PobH4DzD\nojC2hjt8ol/P8VannXc/4utwt1/0u7a7zmlX3j/PaY95R0S/icC40/Y34H5FpbqdtmeuvJ7t715z\n2qNjeH/qokzRL7Yw0WlP0fl27mkU/SLice78d8cHRkW/zqtdTrvikQVOu/dEq+iXuDDDaZet+YQJ\nJsd/gLkYmegSrzWcaHTaackepx0SIX8H6WjvddpJsRiDgTG5lsa7o532JMWv6Ew5bhl3LtaTQNOg\n0y56ZIno13Wq3ml7KhCD2/fWi36hkRiLN07fcNplWypFv75jbU47eVU2jjUjTn4e7QNG+zEX44uS\nRD9vHdaZig2fNsHm7b/4C6ftipDrXVIlrsfVk4iHlbdXiH4hoYhbo704l3BrDZkcwdrA8356WnQz\n0Zm4ViHh+OxwN8WGSLnujA9hjnB8nLLiS+2HtU47KwP7qKlRGVNdOTiGRNoHeS/JvQOPC/91xI3E\npZk37Vd1Z3Bj6q6vfc1pD1tzZ+6j2Jucfx57iUWfXC76BVqxfwiPwTjwnpfnmzAXY8J/Y8Bpx5Um\ni35tuxAb44oxpiNoHRsflHFtsB57zGSKXfYAcecm4LhbMLcHa3pEv/rWDqcdH40YstA697adONbo\nbNz3umPXRL90D2LZ7d/6lgk2Vw7/ymn3nW4Tr3EsD7TinCdH5LhNqEhx2p20h0m/o1D06zvT7rTd\neYiVsfmJop+/ifYuIbQ/oXtycecl8Z6UOFzDogfnOG3v5W7RL3kx9lU8Xhrr5bln0/PO6DjW2dLH\nF4h+EwGMfY4H13bViX6+YcSoj33/+yaYHPw/f+m03UUe8dpod8Bp87PaWM+w6OcfxbHHJ2GNS12X\nJ/pxnBusw9iPKZB/t+MA1quSj8132hMUj238zZjbHLfd2fGi3+Qw7gfvhSMSokS/CT/6TU9h7Hgv\nyPjCY5HXTN5bG2NMSBiu34o//upNzuL/n8aLv3Xabe/JOOBZiPXg6i6sJ8UbS0W/aZojvN4lzZdr\ng78V17rzA8zZqDS36JdPc4n3DD2nsO9zpcj3xORhLIwNYs873CafF8eHMHeyNhU77b7z7aKfKy3G\naQ9ewf5toFbG3orPIcbyM2e4S+4Vrz+DNWnVn/0vY6OZM4qiKIqiKIqiKIqiKLPILTNnWl7Ht665\nD8nvceb8yVan/fb/wrfeRbnymzFPKX5xbduHb+HyN68S/e75Nn6Fu/wfbzvtR//+EdHP5cLn7/2r\nZ5z2gk8gg2XP998W79nwNDJsJulXoup9taLf7d/Y4rQ7jzY57f6zHaJf5f9Y4bRbDh9z2jlr5Dn9\n+I++7bTveXqT0979y5dFv4e/9YDTnonMmUTKIgh3yVvecwzfPHbux7fMkR75Ld8k/bpe+hB+ha95\n5qzoV/XkYqfddQifl317kegXQ78A3Xgevz74MvBrReXjC8V7wlz4VWucfv2PCchvwfmbZc6Iadst\nvwXOugvfknYfxP0OjZC/THKGTPmTOCb+FtwYYyatrI5g4krHt7b2r2kjXcis4G+p48rlL3qd+xud\ndvY2+qY7VGatTFMGWR9laWRukRk2PSeQqTI+iG+f+f38q6QxxoRTJkR8eYq5GZw9wb8+9h6XGRL8\nKwzP7bEBmR3Cv4BM+nGsfTfkL1XJK7LNTNK+B78OeOjXeWOM8dKvPGGhOK/cB+Sv9VH0rT3H6FDr\nF/WpKYyFutcxx9JLZRZMVCqNLRrTYZSFZWempNyGX7IG6VfB+DJ5T/sv4tchni8J8+S587G37sM1\nKn5orujHGVG9J3FMbddkjE6zfmkLJnk7sFYN3ZBZlanXENfyH8WvPR0094wxpnwuPiPMhXPvOyV/\nrSn79EqnXfuDw/jsB+aIfv3VOP+kuVgjr54/5bTH/HIujvbi18yes5gHnD1gjDHxlBmQuRFxfPBa\nr+iXeTfiA8ehCb/MaAhQxmpcwUf/umXM72bdBRvOdMxbI39dbzyE7CGO/w0HZXZs+Xbch0u7q522\nJyZG9MtZjWzC87swFytXyJjK2TKcxcbx3/4Fl+P3wCXMxZaWLtEtmjKKORsxLF3eb86g6Hgf1yFj\ns1zDhztwH9PvxGsNb9aIfpHhiCNVd5qg4nbhV+rKT8nMsOFOrIuJlJ3Gv4wbY4zvap/TjqRfX6PS\n5T28+MYFp52djfiVuiJH9IuhzDXOoHJRnOVfa40xJncbsn0HLuO+9V6Vv8qWlePvcgZk6loZ79Kj\nMJ55D2TkUm/Sb0e/vjOIAZXrykS/wWp5HMHm1HMnnHZu2s3XhkbKTAyzMpejUpAh5Pfh13VvtZwH\n/Gt2XAGyZY7/9Ijox/Nl3lMYW+08JzwyUyP/wSr8Xco0s7NkB67geqauRra4O0dmGfJWr+4wss8b\nXpQZO5yJPkIZNpUPzZf9/DdXOfy+cPy399A1z59z2gUb0W9oWq4hyRWYS1FJmIs8J4wxJozGdGwR\n7uG4lRWcfx/W2Y59jU47MgnPN8NtMjM5rgz7TU8V9hs9x2QGC2e/cQblxNC46Bedg9gTShk2HGeN\nMabtMPZ/43Q/p639fslWuR8MNrxPC3XJ+9i8B+vfii9vcNrjATmuOKuolp4R44rlMwlnsRV9Es9W\nY16ZUVXz/eNOO4H2zR2X8P7c1QXiPU0vYj1mhUjODnn9Am3Ixrv+cxyrPyCPYfGX73DaQ9exZiRY\n+/jaHyKWxZfhfFOWyXUieaX8t41mziiKoiiKoiiKoiiKoswi+uWMoiiKoiiKoiiKoijKLKJfziiK\noiiKoiiKoiiKoswit6w5w9rFLqqHYIwxkdug2bv3O3/ktH/8R9Klpv/voee67ZtwzfjRZ/9W9GON\n9vLNqET+wldeFP1ufxAa/OoW1LxY4lqN92+TDkJJJaivsf9vXnDaKz69WvRzRaOC+uBFVFJOqJJ1\nFJrfQZ0H1pK+9fUfiX7bPrnxI/t96nuywvaVl3c67azgm1KYEXJx4SrTxkg9YxQ5jwx1Sx1m+hLU\n4mBXHEvCbK49f95px2VCe+1rlPUDRnqoejs507COOiZHauu91dDwsrbUlSm14VxLYcIHLSS7JRgj\nq357FsMRgN18jDEmIQS64s5Dch4wifMzbvra70tMPo5htC8gXuN6QFyfpe1dWWOH63ywkxO7dBkj\nXZRiK6GZFO4FRroLpa6FbjoyHvrO5KXS7Ym1wuzKYLswsY6YnW48i+SxciV81vDaldu79uG+hZMz\nUHiCHBNcv2cm6Pfh84fOyHFWehe0sP4m1EWwHYtYtxyRhBkYlRwt+uUXYsx0XcC15mtrjDEB+ltc\nvyIqGdfQnZPAbzENb6OuRDbV07ADAru9jJPePSJWXnd2jMogx7YLz5wS/SqoxgfP5+wKWeus9zS0\nyIVSdv97462F/j2+RGqoJ0ZRx6SHxveE5c4yTnVdkubh+vka5Bxro7pohR/HiVz/xRnRr/hTqPVV\n8z3UQav6Ata44V45tn1XSDdNLgxTE5aFEI0JdgIJt+6hcLxjtzHLRWy4GXuCXtKc590rteC5W6vM\nTDL3YWjc+8/JmkVc8ym9CHHzd+o6kbvbJNV4SsyStSiGrqE2UUwU4mPdCVnDpnJdudPm68s1s3qO\ntoj3RFONk7T1GEspk9Jhs30n/lZ9LT6D93nGGDNvJY4hrgLje9iKjeHkhMj1gQYCcn0qWyPr6gST\nKFr7e07KuljJ5BzX0ot9T1asrJ2TeSeOb3IE1+LS87KeHteZYZe2MWtuc9wcpBpAHLdthqh+Uwi5\nmbks59Erz6F2RwbtyUZ75BxjlzyuuXL5yBXRL5zqtiz/FPbWV164IPoNDMu1KtiULihw2rEl0rWt\ni2ohVmxD/A+z6icOUO2zrFWowdN90qorR+5PA1dx3ctWFYt+gzV4jZ9/etsxl+Oi5Zp77cWLTpvX\nMXemrC/CDrAt7+CepJPTpTFGrKdFc/F5vI8yxpgAuYeV3ot1wnbbCWHXqTtMUOml62zX2EktwjMU\nryG+TlkHjf+dt53ikOWIxvGQHVkHqqUr1sQw+uVQXafOw6gxWfLxxeI9TW+hVkks7bsL7pfPlX0U\nQ9nNNnWdvIfXXsaYKHsU92bcL+OuOwYxJXs7jpXrfv3n36L6T0G+h8YYc/W3mPu2K1i6wd5g3If7\naM9Frus1//OyFitT8gRqxXadQq3B1CWyhlbVFxCbwsIQ813k6sTPI8bItTqB3EanxuXY7DmMZyF+\nliy5W97v9kOo+cQ1htrOyvV46ZdR43aMxrqYe0bOzTL5VcR/Hv/v/peiKIqiKIqiKIqiKIry34V+\nOaMoiqIoiqIoiqIoijKL3FLWFE02hZOWXXFMItKOJiaQprxumbQ+lXZRSCdav0qmS7FlV/6dSHXa\nlCgtnUc6kb65aS3S0d76zjtOe+VGmcfu70Ha0eLPID2q8YVq0e9yAGmshRshhbrwrkzxvPOvHnba\nvdVIxSqzrJVZjsBp3h0XZap+zhZpWxhsmt9DOlbePeXitSmyH54ii8GodpnCPHABqbGDlOI6Zdm8\nGbKAKyZ7x6lJ2Y/TeLPI1rn7KFLM2j+Q6XwsYxjoxJiL8cvU0uRlSPdtehnyixvdMuWxKBvpramU\nDj5hpRuyVRpbv9mWs16yDTY3z+T7/2KMJFiTw3IuclonX+eoDCn3YskY2ySHWenWKWswZyfIEs+d\nJWVm/echBRgiuRzbKHL6qTHGDJONbnwFUl39JHX4z+PDtY0mC1I7uZolbGzhzVZ3xkgp0wTZfrNk\nyhhjwmOjzEwy90FIKSKs8cPykUALrodt2R5J8qVwuo/9p6U0I4pSPjOW4J5Gp8sUax7vaWsxD1h6\nGGiV9yelHGmifkqpbjkiZX+FWxBvopJw3K4kOTYnonFPWCKRXS7lSj1HEMtT1iDN25VijfX+mUvD\nj/RgTZqy0rfzH4B1Z+OriD0skzFGSik4zdudK+fYMI2DoUakwpd9RubB9l5CmjbLSvqqEa/4uI2R\nMhyWkHqt1PDYLEgkpqcR35teviz69fRhHCz5Ixxf/euyX1QExn3aKtzDjl1S4hP5MM1F6f4eFLoP\n4prZKccsP0z04drUNTSKfsW9Urb5X0xYVsmc5p87D3NxqF5asXMsj0xA+/KrlGq+Wcq/OD6wfa/H\nktmmrcd6nJcKyVjvSZmW3VYNeUJiLOZV2h3SbryT0u3j5yCWL3xEygRO/xb7nYWPmqCSQjbWp39x\nXLx25TjG0+pPYTza0rS2XUgvz92BeDX3Y/I8Lj4LqfuCLdij2rImljzlP4b9MNsnByz5Itt2s9Vz\nNu2NjDHGRzFgsBZrLsdCY2S85r3n3A2Voh/btXfsob3sY3J/3vbOVTOThJEkoX5nnXgtJQ8yp9p3\nsGcvu1OeizsX0tuBi9ivpt3Cspb3LUlL5Fxm2+4Ykv7FuHB/YwulfDGRJOJhLsS5umekRO5GD8bC\nCpJPTFv75LEB7NnSb7I2GyPLFQyQxKavW9rGh4bO3O/xMfm4/rbEZJDGfmwBrpkthxmiMT1Kctio\nVLm+95GEim2SY4ulZNtTiYWDZbcJtPf0XpU23XEkVR7uwDrQe0rK4yJoPfWQfJvl+sZI6eAQlXdg\nSa8xxrgSsT+qfwlW6SUfk3NxuENKwYJNfAbWu5gMOb57L0E6OkgywoKH58l+x7CmcDwLc8s979Qo\n9umNexGHQ619OT9H8H5ptBvzgO+BMcaMBNDPS/FAyMKMMem0rkWnwfa8wyphwVKmxuONTrvqQXl/\nes7h/qcsxLNozxkpu827/9aW6Jo5oyiKoiiKoiiKoiiKMovolzOKoiiKoiiKoiiKoiizyC1lTZ6F\nSAkb7RsRrzXuOuy0333lkNPmlD9jjLmdKq/7vUibrL8iU2lXfmaN0975zWec9tovbBD9uigV2TeC\nY0qJRypWywWZPpSxHmlLP/3qs07741+5X/SbX4E0o0N/C5eo7iGZRlb7o/1O+1QdUrG2Pn276JdU\niXTKi/+K9zR2yTS6zgGkHn79hXtMsMlcX+C0w620MkOpfqPkUuSplA5VnGI9TtKjwofniH59ZyGt\n4LT+wkdkPx+5V/RcwHtYJsWpn8YYk+AmmYYH6XZ2SvpoL84jZRXugbtVSgY4zb/5PVTMz1xXIPq1\nvI97XPpxpKDW/FLK04rukWm2waST3ALs1NQMSstjqZHtEMMpn8MkW+s61CT6uSjFmtOeYyzHnlGS\nGHK6IqdU25KcmDx8Bjv29FySkpzMWHxe226kT4aEy3vdfR1jJL0SafyjXdK9giVoGXfBlaF9p3Qz\nGG6SacDBpvcEYtOw5bqVuaHAaXfU4HqkBqTMju/PyXfg3rHi/qWiX/M+pPWnUJrx5Wek008ozZ+E\nMsz74Tbcx+iMWPGehBL0G+3HecQ2SJkGO4/EZUOi5G2Q8T+GnN2GyEVoOCDHcNH9kGNw1X1OOTXm\ndyWHwYTTxtsvytTkxBScR8FDOFb7+Nj57OoHSOMv3y7jZGwR1s84cmC5+otjol97G+YBS+disiBh\nu/bLc+I99Z2QwCRchXQzznJLOfkPe5124SbILKLzZDytIMc2dimwJV0Vn1vutP3tJE/dIeW9Dc/C\n5SLvrx82QYdi04BXynh5fYknt8b5+fKcmSpyi7OdAVnque/Fo07bFSHHafgpbMmSV5EbzwTSuocs\nx8Wz57B2sWQs8rSUBc+/ExKbniNwAfMskOngCTewzvL8NVYsD6M51kEp25kRUjY0k1KK6y9gjMy9\nV8rZu8mhz1CMs9060kh+zRIn29Vu0R+scNqnf4b5x/JAY+Q+JZ7iWh7FrmjLvUcc90Ecd/NbUuIT\nRzKa9I0FTrv/fKfo5yF3kt7juDcRSXJ/3tyCvei87ZAmDFlxPHlltplR6BoOhgo+AAAgAElEQVSm\nFEhnnkRyV2JHxoh4KUEWEpm5iGe2JCaK9n3DbdjbR1olFOY+ir0eSyniKSaz05Ixcmy178a9q2mV\nzyTx5PL05nOIr3dtXi761Z7DM9MCkuOdek/G8nSKV9m0T8salffNdiINJhyX0mzXKYKdGVnyYowx\ng724H4kxuO98/Y2R92qI9mwJFami3/Vf4To10fPE4u20RubKfS1LeQKdWKdt+T+v4eyIG2iVz4t9\nJJFND0Mc4v2eMcZ0HcA+3EPSKpa2GSNdycwmE3QSF2OfVvdDuc8o/iSuW0IxObm2yX1zHu19zvwI\n693yL60X/c7/O75HSPBgj8lyMmOMSaFSFXwfXHFYm5OS1or3pM7HZ09OYo/qvSJlZ+zae/qZk057\nfEKWZJi/GXuzyvux1sQXyv3S9d9gzHXQc1v2ZssNjpzijFTQGmM0c0ZRFEVRFEVRFEVRFGVW0S9n\nFEVRFEVRFEVRFEVRZhH9ckZRFEVRFEVRFEVRFGUWuWXNmXEftIH526VV1jTVBvnMRtRqadtbK/pl\nrcH7wsKg/bzeKTWyo1THZfl9S5x2dLK08sp/EFo2rp/Sub8R/29pUdlC7Z6tsFQcuCxrv7Bt8NIv\n3ua0s/dKi88uqo9RmAZtb/9ZWTejaw+OqYHOtzRT2sPe/90/NDMJ24hFp8vaES2v4X7FFFMdlzB5\n3blmQmw2dNS2vpJrlHjIrm73v34g+vVSHZ+OfuibP3YP6vZUxUqL7MgU/Hu8HzrMuAqpUY5Khua7\ni+zQMjYWiX7jg/gMtv4bqLas9UjDW/dr1OvIXCotGtnWOdjEFVPtCasmxJgXmkkuvxNqaWSjM6DX\n9jdCIxpbJO/1MN1Tttzu+FDWMEhcgnHM2kqODWxrbowxcfn4Wz1nof10x8l73UNWiR9cRF0BWwea\nnYx7z5abtkVjDNk3jnRCz2rriBOXyrkZbPj++EdHrdfwItcx8Fv6W7bSXrIFNn5n35I69IhwnNt0\nLeJP5gJ5T4bqoH0doznRdBz3NK1Iarn7yFYycRGuGVsBG2NM8apHnHZ4OOblWOB10S8lHVrkuC+h\ndlNPw2nRj/XBPrKlTFoo75uw/paleH5v+qjmTM7yPPHa4CW8xnWdrr4v18X5T+GgMgpwbXsOyPpP\nmXfDcrv+V+eddvGnF4l+k7+EVWvNa7BdXvrHqOWWulba7U4ewBib8GEsWiW8RF2U1EUFTtvXJmuC\nDdTh330nMD6KHpJ1dIa7cV14XRm81if69Q7NrGWotx/HUf6g3N+wXem5d3E9C3OlPTWFOtPeiXmU\nmW6tSbR2ZSchTmVXSfte73V8Bl+b9ASsQa0Ncu+0ehv2Sy/8erfTtmv9LIpErOAaIt6z8vMGyYo9\nLR1js2tvo+jHNYe4BoRtETvnziozU5Q9iRoItqU121P76jG27BiVUI5zzNqCmko3XqwW/cJoH1ly\nG+bl2V0XRb+ydfiMa4dQw+bzK/7daX/x3nvFe3afQ+zesghz276HKSkYL74bWMOPHrsk+o0exF72\n7icQW+11cc1teO3gv6L2yZr/sUH02/9ve5x25abPmGBz5QT2FpmJstbPNNVxGaD4GrZc1mvyUZ2c\n5MV8naRtOZO2BvGbbY6NMcZN9brCqN5LL9X1K31C1rnwNlBtQKrXZJ/TO6exrj15G541GqplLbbh\nsTGn3XECtR5X3LtE9Kv7AOtL/1nMv8gUt+jH9ZWCTVwZYl6gTcbu/gbMP64fMtYva+C4IrEP76U1\npOBRuYb0n6RzdOM9E/4x0a+mBdezJAOx+1/+/jmnffdiWfDjXGOj085LwTPMvEUlot9YF+JkYxfG\n5ZU2WdOkKgfPCa//BvPo7h1rRD/eN/P+3GU9s3HNwZlgnGrcxFfJdazxBcSZqHSMrXSrTqfbgzpm\nRetx3Xwtco4t/+oOpz0awP4hJX2j6Dc5iWMKCcG8aq3e5bRdLml97W3Evzv3onZTe4vct1Ruw9gK\njN68Vh7Xk5oIYJz111rPi+W4ZhH0rBGXL2NAdOqt76NmziiKoiiKoiiKoiiKoswi+uWMoiiKoiiK\noiiKoijKLHJLWVNYJL67GWiQkh1OIeQ00fN7L4t++XdCRlTz83ed9qoyaZtZ8QdI0+s+gVS09sNX\nRb/qD/D5676E1KdfvYj0pr/416fFe078331Oe3xy0mmXb64Q/eIKkHYk0q2vyHRrTr3LWgXLuMw1\npaLfvm+97bRHxpFmGh4rbTb76mG5l7gkyDn4xhh3LtKPJ8cmxWuxJAmapJTAkDD5vV3zfqSdxpDc\n6NxpaSXINpJRfehXRPIvY2S65ue++qjT9lMKanSOtC2NITkVpwBOT0g7vqlxnGPpY0gZ7b4opQVs\n8zxwUaamMeNkI1+wrdxp+6w02D62s5RZy783SWR3Ou6TqZuRCUgp957GPE1aLlPmR3ooXX09xu34\ngEwH5zTtsgqkwdqWlNOTuH5xJBuKTMJ9j7Xst+ufhUSgtxupm5x+aoxMJ62l1/502zbRj+dzI1nk\nFc6RkjMeEyNkAe5ZKG1k+0hOZW43QSd+DlLo/T3S7ptlZ4kxuNbROdJ2tb8aKbRpqyBVqVgqrfqa\nLuK65a2HpO/n/y4lRQsLYcWeHYIYdvI65Jy/+sd/FO/56de+5rS9OxG/PJnyfofHvOq0E4twfGFR\nMiV9eBjHOjEBSVJ2xVbR7/wz/+G0Of3W3yytHBsPIl7NC/Jc5NhTf1hKXlM8OH+2/1z09CrRL5Qs\nNQsfhaSGZWXGGNP6LtY/fwAp4La1aHs31qj8Msz7nd/Z6bSX3bVAvKeN5KTdN5ACXFArJWxLP4s1\n3N+JvxPouLnsiG2WoxJlaj3LQ078wz6nXbxZ7gkWfUrays4kw11SOugnycii7bhuU5b169QIZJYs\nB4stldLTUJJFFKcjzZtjkTHGHK7DXEptR+o+S8vKsmVc/+4/POO0/3DzZqedQBbgxhhTR9K61CSM\n03hLFhzqwrGeOIH91urb5fjpuoz1LmMhjmmM9jrGGOOrl7bMwaSD5OwNNXINSY6FHMB3Deti5Q4p\nYWt+o8Zp857AjrvNuzEXB4cxF0tLpVxwsBpp8/1+3N///dhjTpvtdY0xZk0F9qK8V/ybn/1M9PuL\noadwrPT/mx6T8pqRLvzdrmO4Lr4RGV/ScnHvF2yDPezksNxjhM+gHboxxhTNwTW8dlHKE1JH8Vp8\nJca0LU/z034sOgX3bvCqlDFw7GWr+IwVlaJf7U/2Oe2EOfi7wy1YnwZb5ZgLtCMmfngCUrVNq6UM\nNf0a5t+rx4877fcPHxb9Jmif/L0vf9lp73zugOi3ohKxM4wk+pOWzMeWcQcTLifQf14+L6YvQnzg\nfaht7d3hxT1cvBXPQv2XpPSS957nr2KtX1cm424lSYqiSHr5p1/GXGRrb2OMWflnG5y2vwXrwM4f\nfSj6jdI8DaX5saxEyp/Ok0xq8zo851471SD65ZdAms1xaNzaE3Scwx514aMm6IRE4FxiUmXJgym6\n7skkZ6/56UnRLz6Xyhc0Qqq75EvrRL+wMMzTvmrISOMTe0W/+j3YxyTNgzzNRzbq09Ny7lx9Ec8a\nRfdgbg+8JfctJ1+BxHCKygnwHtwYYxLKEQPaP8CYY/miMca4MrHuTFBpmM4jUrLOJSPypWrvPz/3\nd/9LURRFURRFURRFURRF+e9Cv5xRFEVRFEVRFEVRFEWZRW6Z4/buy4ec9n2fvVO8lrsJaXqDra1O\ne82nZQXqZ7+ICvW3P4nUy7DrMtW1+Q2k3JY+hc+Ii5P5Pq40SKPO/eiY004lN4P3/nGXeE8Spbdy\nynfVVil/8nrhxHP5R/g7B2tqRL+FBQVOe+5aOBFERsp08A3fuMdpv/b13zrtgV6ZVlVRKOUIwYZT\nqutflQ4ERffh+K+/RmllFfJcTtUjjeu2SqSIpcTJ1F9OS+w+jXva3CNTS3esWeG0M5Ygzbg/BTKB\nwgWPi/d4vUg/i4lB6mD1q78W/UYpVTw+D3KqxErpUhMRgRTIcErDZ3cvY4zpPIg0W5Yy2ZXhI1zy\nfcGE0xxDI8LEa+wyFkL32j6+qBSk6dU9D+eXgjulHG/xVqQ3cxqj/5qcs54qjJGBy+SiQNev44BM\n3XTnY55eqf/oSvrGGFNDMYUrqLNjlzHGJJD0Lb7n5m5ZnM7LsquAJYex5QjBhl1s0iwnK3aVYFkl\nH68xxuTOhxRroAbzaqxfpr96KaV+lF57aLNMgWf3p5a3IVNkV5knd+wQ7/nlXjh7fG7bFqftmSfl\nizHZuN89tfhsW+52dSdidvpaSO6mpqR8h50eJkcw7ntPS4eE1Dwp1Qgm7Ko19xGZrs7zNKEEabDn\n/+WQ6Ff5B0jZHiF5m+04k3UX4pyHUuZb35Zy0qwM/K2eJkiP2PHInS1lot/44Q+d9psvYZ2uOyA/\nu/ZXWBdT5mDsJVTKNaJtH+Z6/j2QabTvlS5v/L555FpV9+xZ0a/yk8GX+DJ+kng07JfytII1kPq1\nHmx02rHJMtU5gpwhWQbDKf7GSGdJdqUat+73HfOxFrb0ILWb3S1HLNnQvHzMl/SNBU6703JXqroX\nn139OlK+J85LB7xwipUsU54clv1a+3Ae4RfwO9/ElJR+JVTJcRJM2BGtcqOUqbO7zbzH4cjSZ7lJ\ntTcjhi7/AtLuG0iCa4wxeyntnvdA7x2UKf2Pfe5upz2/Adfv3CnMq8ocGfsnSS53sQnp73/+1FOi\nXxrtc09egxPU1Q+kZJv3YXmpuP7p+VLqxntDXktqd8s979xNM+e4ZYyUqbADozFyzcy5F7Ly4W4p\nCUwimUWgE+v6jUNyD5IQg3sySFLR+Bg5Zwd8+PzqN7EH9JDcwZUhnXSiMxED7toMWea5kzKmlpBj\nK8foZQukdPATGzd+ZL8Qy1KP9y1uOoYRS6559Tna9337MRNMuo9gvnEpBWOMmSApPsvoh5rk/iuK\nHCZZDhll7YECw7Sf+e7DTrv/kpRT5ezAeJkaRfwqXPGA026peVe8JyMbUuq6q79x2qHWNefSDPk0\nx547ICVny0qxv370i//TaT+yVUq2s5JxD7v6MX9L8+X+vOxhKcsMNvx8MTYg95Qucv8aqMWeP2OV\ndAFrOdyI95Ak1x1TKPpNTmLPzk6Q09Oy/Eb6Cjwjf/BXbzjtaCoxMsXWicaYA/Tc/ngWZFZnG2Q8\n2LIDsm22X4wtuvmzwJgX1yV7m7w/7GRa+hSec6/+4pjsR2UdFjxgfgfNnFEURVEURVEURVEURZlF\n9MsZRVEURVEURVEURVGUWUS/nFEURVEURVEURVEURZlFbllz5vM/+YbTPvnd58Vr7kxoCq9R/YrC\n+6U2dduXUY+g7llYy+2rlrVP/vRHqP/irYd28Uat1KG7s6GnXPrl9U77w0/C/vfhz24R76l7D3aQ\n2XfDcq6nZ4/oNzEKjWlvL+zyNiyYK/pdbsTxnf/n9512rKXp57oR6x5f6bSPvSg1ymNjsh5LsIlK\nhF7THSe1mz1ks5hYAI2dXa9kDlnSxZOt4PvPS1329k04z0myGb2tYJnol7QANUZYd5heCv2fzyd1\nuuHhuPct1dCJhrnkMGa7xevPnXLa5U/dIfqN+KENZD390V8eFf2KcnGsfTegsy99QI6LaUvzGExY\nz8v1cYyRdQ+i0qAJDY+VVpP9Z6XW/r8IDZc1bLxnUd8gjGolhLnldfaSvWHqGthdRqdBhz1tWc92\nH8d4Y9u6Dy9eFP3e2YO5+atvIA7VVDeKfpWmwGm3NcAOvXiNVceJ7DMjyMo+0Dwo+82wZWjCXGiT\nYwsSxWtsjzw8ivkX2SW19TzeR1qhQ48plraHZaOYs7FkdR5l1e2JJov01BW4j7GHUd9ggV/WuXDn\n4bWzOxEDAu9LjXJUEsbj1Bh0xLaWmWtysM329LSsczE1hn8nl2Ct6dwv7VcTF0iL9GCSRHVXAi1S\nM99wFHrmlV+BF3tSmay7MVCHmO9Kw/Xv2CVrn/hIW5+9CrVFBq26ZSUUi7JpfEz9BnOs/o3L4j3r\nVyPWsv1v1V2yzhuvY8MdqGFg27KmzEecHKxDvZSsO+Rc9LXimk0EMM7ZntgYY+p+jVo3+d9+2ASb\ngirMD7t+DlviDtFxpeZkin6Dl3HdIuIRV0Z75bmkrcO9S6jA+uRKk3Uu+o5jTTpKttp3LUJtoymr\npkvXAK5ngGx+2/tljbDQPbiPOWV0HtaydfEcapm09OI+LkiWe7tYF6xpk2lORCbK+MLrU7BJ34Dr\neuqVM+I1rpnF62dMvqx3FdOI4+N6c56FMoYs7cM4PliLGi/JVt29069jz7rtW0847aQlqHf4q799\nWbxnUSFqMSyZhxoGUyOy9sKJWth5l2bh8773rqyb8a3PfcJp11xudNp5a2XNh7PvIXav/UPU20kb\nkzUkbGvkYFNfg/vDNSqMMaZwJY450IF5mTRH1qkbpTXF34yaHTFRcvyNjMq97X8xMS7XmoYu7CfW\nbMb8e+Ul1FtbcP9C8R7vReyJ4mme59bLOjpcvWTRctRF2Rwi98l79qDO4rrFiPH91XJP4LuKfWl0\nOvZfcaVW7bWwmdvf9HXgmscWy70NW2a70rHe5W4rE/1iqHZcN9WPSSqRtZJKH0Hdlago1LkLc8ln\nKTddC1csYvzQEO83ZQDs6trttP03EFvXbpc10FpOoDbUzz+EzXZEmNxPx0UjHv74K19x2rvOnxf9\nrrVhf861PCM9Mp42vY7YUzwDZdkmyVo8aYFc71rewZoUSdbk8dY4S6X9jisD5zIxYddA2ue0c7Zj\nHkxEyn2VrxX3dfP/uc9p7/rL15z2ssfk3ClsKnDar72Mv/P0d58Q/a79Bveh6FHMsdjMLNHP146x\nmfcAao4F2uRejGv+FU7jWsZXyTFcsODWtYM0c0ZRFEVRFEVRFEVRFGUW0S9nFEVRFEVRFEVRFEVR\nZpFbyppe+vN/c9rzl0i7qAhKQ09bjPSf+AKZCjo9jRTCM2RhtX2lTEF67qsvOu25uUitX/aVe0S/\nvuv4jKlxpHzWtkAucfLV0+I9oSRVYKlN22lpF5h7B44pjN4zPirTHVfvWOK0r+9HCvDcB1eLfmf+\nCZZqL7+132l/4V8/Lfqd/eeDTnvrd7ebYDPaj5TC7O3yPra+jTTZSUrFvnTmmuhXUY704YZjuAdV\nJHcyxpi4MqS3xeRCSsHjxRhjhhqRcu0jO+PeY7gWoVFWemAZ0pTHBzGuRi1LxWtXMBYK0pHyGBIi\nj8HfjhTwGLL2Zet1Y4w5dgmpfHfcC9kWp74bY4wrVdqsBpOkpZhjtuQsjCy8rxzCfatIk9ai/Blp\nMQVO27ZzTViAa+ZvQKoq31tjjJmkecGpfZEJSMOcslKFWT7Q+Sbuu50a/uzf/pXTjinCOEodkXKY\nCA9SK7OLEXvaTjaLfunzkJ4ppFrWGLMlP8GGr/W4T97Hzg8wrzJXI6384s5Lol+eF+fpzoeUMnmR\nTMNkO9+EEty7lp1SLphYhc/rv4y07OgsfHZImLSRfP1nkHMuKChw2rbN79B1pHgOXUG7tUOmHxeU\nw1r2/L8fdtoVH18s+mVU3Oa0IyIwLmIKpRTRb1l0BpPWs2TR+wmZV5xSR+fbwKnmMjYkkgxk6AZi\nYfeAlNn1+5AGnHgD5zvn6eWi36F/Qar9oodwzVgi0NDdLd7zxDrIGDilPyIuUvTLWQL58KVfvuS0\n47Nk7GcJI8vZek61iH6cKj4xhDmw5s82in5Nr0oZVrDh1PuQCPk7VSiN94EAZLcD1fIaJs5HrPRe\nxGvxlTJWstRz8BqkQkdePCH6Ld2EVOd7/B+ds36ysVH8+76nNzttlucuelDOnW6S/o114ZzY/t0Y\nY/JSkH5dVVHgtEMt+XBePsZw3TGsO0UVclyEhMvYEUzY9nX+7VJ2xbKDvFVkwWzZC6/5BvZjZ//x\nOXx2pBwTiz6JObckHPuA1EK572OZdk8DpFY583CfnvqqlKbF5mL/cf3XSLMf9sv1bll5ifkoPhFx\nu/j3u/swrp780r1OOyRcnlNxHtbFkR7so+p3yzWij+KQ3LkHB45Zje/VyRfJwjiEZDn2OtZyqdVp\np+dg/qWulOPxwxePOO3r7ZCSrCV7dGOM8fpxPcZob/wnP0EJBrdbSjazl+JYa59/y2lnLcsV/Xg9\njUjAHubym1LezdK8YxcgZ7nz8XWiX/8pnEfn3kanbUvtk5fLPUIwKbsXctjwGLmGsKypvxZrf3is\n7Je6FvueiGrsxWwrbZbUjo5CfsbPd8ZIyX7PZTzrJFdiHsVlSenOke+8jddIunn+hpRO+2gv6qX5\nsbCoSPSroWfT5/bjOfBbn/q46NfQAhlXyVbs3e3SADE5snxGsGEZ6oXvHRGvxbhxH9JvK3DaJ358\nWPSb/yDkfizLGh6UpRUySPLsTsDYHAm0iX6RNEd++sc/ddo/fgn7kcL33xfveYhk2wtpj9qxV1pp\nx2RgbY7NxJrWebJW9BskKfpQJ5532FLdGGPKt2MedJLMPd6StteTnCrrf95rbDRzRlEURVEURVEU\nRVEUZRbRL2cURVEURVEURVEURVFmkVvKmhatQ5po/elG8dqBA3Be+uS/Ic2vdZ90YXJRteyPffMB\npz02JKUUG3Iha5gahVzp+HffFP3u+JuvOe0Lz/7CaS8uRnrU3ktSBrBjGRIxk3LnO+24jF7R79w/\nIZ2NK7zn3S/lIVMTSDPLLEEalL9dptJHUUr5l37yWacd6UoS/RZ+YY2ZScIikdrXe/qjHXuMMab4\nEwucdt/3pGQnaQlS/zyUys2uXcYYE0kpcZxy7G+V18ZFad79F3BM5+qkWwmzcS6uUw9Vcme3CmOM\n8biRUp++GZX+Y2NlZfjIObgPndeQvlf+kKyinXaBzpdSCjs/lOlxw8mUehnkW8ouEv3nLOcESktP\njcfxRaVIJxCuwt62BynBriwp4+L09aRlkJsMXZFSlD5Kz5/7eaR5R7hYoiRTMmt/cMhpd5CbSHay\nlAG4KR7EFeM+uS7Ic08oRwo+OwB55kt55TBJ0IbJ0SShSqYajvYGzEwy0oFU6bBoKbNzF0K2cuYd\npDx2WuO7qAxp2mcOkPTjgJSB3PVVuNZxyjrPPWOkzGJ6HPeLXVfq35SfvWE54uioF9fdZ8nOmo41\nOu3kTMhIspIsp6oBrAdpc+HCce056WgwfAfuY+oCxPxAo1f265NuOcFkxVfg+nbjdbnWuDIhX2J3\nqhFLejnuw/mynG3OAwtEv/q3Ib1lFzpbmpGbgXE8QXI5lhx37JXj6M9/9jOn/e7RH5mbERaGOMKu\nbL5umXpc9xz2BOkL8XfT1xaIfsPtOHaWqg5Y8SX/YemGF2yGSYpZc1zKeKtWQf6bQOsJSx2MMSaU\npEx8LgkVMq50HUFK/NUjWOP8o3IfFLiB2MSCBP676xfJ68Jr8NB1zOUbu6TsI43uyTjN2e56ed3r\nOyFt3LIDY33EGnOHTmOvV5iGNTIqVa470xMz52JY+wbmX0qKdGHKW4e1f4qkAROWnJRlERWfX+u0\nW/fImMeul7zWhITI3zh9A0iHDyfJcUQEjq901VPiPZ2d2HvGliA2XvlASgKH23HsFdlYm1d+fKXo\nF/LMcafNMmhfvXTw8ixErBXzMlrKSCYmpWtUsBm4TPMoSa5PNQcgc5p/D9YdLmtgjDHpeYiP7P53\n4T0pFWLZ+qJVq5z2iWsyBty1GTK2tDWQ9bMMNX25lEINDeFYszZDOmPLgkdon8FueBV3ys8b7sS8\nLx3G/i0mV+67WfbT8g7mfe6OctHv8otYT+fJihG/Nyxz572/McZE0d7Y1YlnhECTlPGyNNtbgzGR\nd488j5h07O/66hBbbTlVz1msUXyNpqcRD5rfl3uMnAWYV/7r2Fes3yYFffyss7UHEprRDrlGNLcg\nvtxLz6I8z40xJpucC8f6EV/GLWdLd66Mc8Gm7wyex/LvlGUweo4gHk2Sc2bF7fL+sKy5lcZj5p1S\nBphUiPdFReHed9dISVH3QUhUeT/86QfwncKxOimHXP8gYuKpd7A3ydkqnwN7z+N8Wz5ErMjaKM+d\nY1RkOJ6Reofks/LUBOKS9wLufaBV9rMleDaaOaMoiqIoiqIoiqIoijKL6JcziqIoiqIoiqIoiqIo\ns4h+OaMoiqIoiqIoiqIoijKL3LLmzLmD0NyW5WWL19iis/6Vk06b6xQYY0zmAmjs3vza9522bZ1b\n9UnYRiZmo9ZN/kir6Dc1Bd3lvI/BiswzF5rngctd4j1s33v2/8IqsfDj80U/TwU0q1Okn3z1H94R\n/datxvtYX+1vlpp+P9Vf2PnX+IwNn98g+kWny2sRbMapvk9opNSCpqxC/YoBqj1RcY/UtXfvg65z\n6Vf/0Gl3Xj8k+nE9nqbXUS9hekLWHunrwLV66Qjqvdy1EBZsF5uaxHtCyFKx6AHYleVZGvJIsldm\nXWh4uLSzHR2Ftr7/PGqZxJXK+iesUfeRtXTCXFlXYMwr6wcEk9a3odv0LLTs6ic/WtNvW4yzDWVY\nLOZvW52s45K/osBpj/VBG21rXRMXog5RH+k2c9aiLkVIiAwxg358HttzvnPggOi3/SnY6o504TxS\nF0nbw9g81Gnhukb+Fqll7r2Ae529GbrXoSuy7pSPLZgfNUEnayt06B0f1IvX4ilOsT3f2iVzRL+R\nHlzD1Q9DF2+fS+Oz0M/mPoC6WRPD0u56uA3Xim0Uo4oxD0oelPGA6y/4W/H+q2/LOg3Jabg/+09c\nwPFYNYY8MZibB86hjkRYqPz9IHkeWVC3YdwGrFpBrniXmSkmyS48c5PUUHefgCbbW03rkGVX3HsW\n8yV1A+oZRHnkcRduhSbblYJrFJ0qY9nll6Gbd/ejHsHXvg3bSTfVUTPGmFiqvdD8JvTavCYYY0zH\nyD6nnZCLuV3/yjHR72oH7kdhDtVOsOxcuRYWW8vfqhZSlnSiDQpc22h7Zl0AACAASURBVI5rzBhj\nhH1v+SbMHbumwds//cBpr47HvqVvTNbDGG6G3jyD6i39cu9e0W9eHqxkuc5M+W3QybstK1W2wh6h\nGhVJRXKOvfHiPqd9123Yb7X0yrixYjXiTR+N09hCWSOh00trIdXlGartE/0yt8g5Ekzmk5W9bQne\nTzG/5n3sRfhaGmPMqB81d7pPYb+ZfbtV28dd4LQv73zFaQ93vSf6RcRinnGsnS7CHujiGz8Q78lc\ng/nSeqrZaW/+yl2iX4Bi7UAtaiB07pZryapPoJYK1wLJf0ie0xTVjWh8EXE3pkCu9U2nZF2iYOOi\nfXSoVU9lvlU/7r+w9z1jfdhvx5Wg/lN5lBx/77191GnPXYf4On9crou8j3Sn4ZgGG3Ataj78mXjP\nYA1ei87Gvv53aqEcwj3OobXZfn66vgf2zwVrUENpzCvrkASoftbkFMYZ19ozxpjEWLluBBOukxLm\nkvX0JinWxlHttKR5GaIfF9py0xpnX7+hVqqdSeV8ug/LZ4baK/h31VxcP64BFBol96g1R1DvpGwl\n9muTfvmcETMHz5y9xxA38h+TcyxsH65FxvoCp+1vk3vU/PsRA7hGoF2bMNIzc3sbY4yJLUKct2Nq\nzr2YL8OdsgYZw3Gl+BOLnLbbXSj68TPYjQ8wL4u33Cn69Z/F3uLJBzc57V+9uMtp/+3XPiOPgeLe\n3GVY31vfl7WlfFSvMO8+zMW4OPn9QMFD2KuERyNeFXvlfRT1pOiZK75MrsdTY7eu46WZM4qiKIqi\nKIqiKIqiKLOIfjmjKIqiKIqiKIqiKIoyi9xS1lRVWeC0z1y4Kl675+vbnPbef/7QaSfGytTk/W9/\n12kvqUCK2LFL0irr4l8j/Wz9GlhNZt8tU1CvnXjVaWethgRmzAvr1Obz0n6QbVrzHkHKbrhbpsqd\n2Q9ryMFhfJ5t1Vxfi8+vTEOaV+0H8pzK1uJ8iykVbfe/fSD6sW33kz/YboLNQDVSLZNXSHladAZS\nLwPtJG+Ildcmh+zEh4ZwnSITZIqdrwkpYixlOn1e2noWkPXm3sOHnfaja+BB/fEv3ivew6mcLGcJ\nDZffMfaehn0epxF2d8vr7mtDWrBnLlnznZV245FkwZdIsgpOAzbGmOSlWWamyLobaXlj/dImuO8k\nzjeZJAkxOTI1mWV3LKGxpW6BRupXRVI/Kw0v0IJ+U5Ri7OttdNrTU1LOVrABKcZ/WoYxkO7xiH7R\nWRiXXfshqXPny3NiOzqW1CWUS8lZbB7eN0bxIDpbplAnL5fzI9jUv4Axk746T7wWQ3KFdQ/DBrB2\nl5QKZRdiDIZRSu6AZVfPtL2HVM6qP9wmXhsbwzwYuE4SN5KjJJdKq8T+Rnze0edh28pyV2OMieon\nmQWtDS8fPSr6ffOLkKiyjevxq3Ld6bsEqdCNkxgXtvwptWzm5uJQI6xUe09K2S2nrracwpqWWSnT\ntxtP49hX33G70254Qdq+pq6Cnqdzf6PTzt1RIfoVb0B8iCfr+T/djvVkMCClXzkpOFaW+HhKpIxg\nkiR2Q+0Ua6y5spnO/fxLZ5x2foXs11mP8ZaYgDHhoTRxY4yJL0oyM8nV841Ou3RR4U37tRyE1Xn+\nZil/WrUAqegpq3GvksullKL2J3ucNqu8vrB1q+iXQNcwrwJzjlOvd/7wQ/GebV+C9GV8CPcqPEbO\nxRySEobT+h4RJuO/vxn7gOQlkJH2n5br4m1VkHFlz8F8G+uR6xPH75IVJqhcfZ6kkpbEMIlsorur\nEddsC+a4RMylQDZkIA2vnhL9Rtv3O+3INKS1s4zJGGNismmtIUn5jfOv4W9aY7vxTcyXkm0YUzFJ\n1npEg4c/o/estLVn2SnHq7ofnBD9OkiaNkVrdVSrHDsF6XJuBptrh7HnX/D4EvEaS1AmhrHeXzwr\n5QmxLuxFp47xXkDKCcqzMFZHuxAT46zyAgmVOGe2Xs5duAXvJ1mGMcaERWHM9BzDc8LFmgbRb15V\nkdM+/jPI+t85fVr0u4eslxsP4zMmLWvzISqhMH8j5qUtk4otn7mYypbttuTFT+UAYktxDO0fXhf9\n8u7F2H93H8bq3dKJ3KSuwd7pxX+GDf2WLTLAsNyyvg73I56kVfEl8prctuQOp934EvZrkclu0a+H\n1v7klZino9b+PLYYMiEvldyIL0sR/cJc2Mtdfxl/N/9uufdqfQ97orI1JujwujHcJmVxoeFYK258\ngPmXt75I9GOZ3eA1yFw9lda4oPIDBZvXO23fkLTFjiQr9m/8HaSEf/fNp532s7/cKd7z9DdRlyB7\nI9bm8REpQ+q7gLXh+it4ts2df7fol5a92WkPD2MsBTrPin6DV/C8nb0N+4Vwt4yptt28jWbOKIqi\nKIqiKIqiKIqizCL65YyiKIqiKIqiKIqiKMoscktZUzg5dyRZciVOybn7bx502oM3ZJpfCqW0xuQh\nbX/ugLRfWPLnSBmKjIQk4cs7/kT0W1kGmdN6SjProL+TM0emtLMspfrXSBus75THes9fII2JJT7u\nDJnu6E5H2mrDi3DJKJwvz4mrl+dtQrrd+DPS4WjactEINqnkntN3Qqa/9p9CqnJMCdLvJq2K4Cwp\n4pTFjKXzRL/a9+DclUpp78siK0U/TlP7zTe/6bQTlyGNOnPxIvEevxf3eLAeqXIp82RKuvcS7itX\n9G8/LKVV7ML02sv7nPbaCikZiAzHNAnUIz0zPEJOn4Hz5M5ynwkqPUdR3T/MSo9zZWFu/r/2vjO8\nrupMd6nXo97rUXGXVWzLvYMLEHoxkIT0kIRkkkzaPJPcudxkJrmpM5N2QwqT0AIEMAFsigH33m3J\nRcXq7agfSUdduj/myX7fbwU8zzM5Gv353l/LnHXK3mutb60t3tJ/qfM928ZIejDLhqLypKSo4k1Q\n+7LI8dxIhZKJXwraeOJiUICbXoG8L2+HnB8hJIO7sBMU4PxUKaVgGv/cDyO5adQn12xENOitQRGg\nmXprZLpEOKfbUBILS7OMMSY0dmbXYt7doBx37KsXr/lIdhZHCRXhoVJimLIe6T5NO3GvJy0JWcYy\nSNxi56Om9jXLddC6GzTZ1M1up80JXH2V8r6zNGOcKNbxUTINIiIMv50p9EsLpARhnJLOjlXh95UX\nFop+qURn7ngNtTfIkmbUHUJ6SfGdxq/wUkpK0gqZbMTysRVfJ3r0S1KuxGmFnadAkeXEEWOMGWzA\nPQtPxb31tUu6MdPXrz51zmnHxqE2ZJRJiURCKfbJvgpQe+PiVop+Xi9ouyG0F454e0W/Y7+BPHWC\n5mLKGinfy9xGY0prMTBI/r+i+hdQh1If8b/cNzcH9SvYkvG6KLGiuxrjXfX6ZdGP11zyNK6z84Jc\nY8m0ZodI+hsbLeWXnF7C9HiWGS8tllLvCR9SZriWT/pk+szN34KcsesMauXqB+V4x+SB5u+twz4b\nlibXdqoLvymKZKN2mpSv6f3lln8rEkl6cuHPF8RrCzZjHy/5Avj/7QelxKSnCe87/0ecDzkd0hhj\nMvLwXZ2U2LP/4DnRb8vtSErKvhHS+/pXsd/FWFKb1PVup83nK29LvejnrcV4xJMUO9ot9/C+q5iz\nnODFMmVjjEmIwnmLpSeROVI+zFLJmUD+Cpzh6v8s11g6SdMb34UMZtVd5aJf9R7shWxLMGbtXfNv\nwLxILEMNtKVhvbT/RW5F3euo2+e0Y9Ol5CSO5LQs+T96Vl5TbS3WH6ey2eD9NLUce03fOeuaboFd\nA6fhNb4ov7efpK1lD7zv1/63MNKKeZu8Xs5vrl9speCdlGeWip9C7rzj05B89pySY3P0d9hrTtVg\nz93QKpMt7bPTX8DPZunLZCrP5CTOIjGU4MvPkcbI58KoeNT+kBC5drrqUFOil2J+jI/2iX5sG1Bw\nN66jg55tjTEmacXMSu/jF753OpoxxrS+g3NV2ZfXOe3qx6QEdNnXH3baU1O41wP90gqCk0f7miHf\nt60WRtoxt/7lm0hlqtyHNX/HplXiPTw+V3+HZ267rockYJ2GkSzf55P7xNQUnhcTEvBd7UPHRb+R\ndqxnTmvqs1KkR7tJ/rbB/BWUOaNQKBQKhUKhUCgUCoVCMYvQP84oFAqFQqFQKBQKhUKhUMwiritr\nOnUYtOLlG6U8wZUIF+KBbtDibafqOQ+B/tP4OmjoaUslHfzED99y2u4bQHv+zjNfEf2qiD7lOQC6\nF6d6rI+S1Lbqs/VOu/wjoPAuDJOXPzUBWlk4Saa8Nd2iX0wmKMppm+FSzbIRY4w59ouDTjtzO2h5\nsRb1f8ntpWYmEZEGantQpLxmQV/lJIC8eNGvmxKMAigd6cT3d4p+SXNB0x4iaYpNG++tBO0253bQ\nTGPdoP15KqUUIGEeqK+JRaCieRsk5ZFpvE07QeucJKd/YyTlrCgHtESPV7p5Z1PKRfwy0IA9x2Qq\nmPuehWamEBDy/n9HHSN6XFgqxtp2oWe5F1P7eJyMMWZolGmduHbb+Z+TknqJOpxMqSXTU9PiPb3n\nSD5B6yAzX1IpmRI80I7Um4gkKTEcHmykf+GakhZKaZrnAiiTfefpPlhrtusIxnTuWuN31L2I3zE+\nYc1HGpOYeaDTzr2rSPTrJXd5dvgPtRIcEkoxV1v3gA7umiPnBcsf3voFkmAiSW45v1hKB599Za/T\nzk7Cb52eluOdnIo6kh6PdukyKc1gSjTLn1JWSakoj1f5hyAV7btoyWlXyv3Fn8i4EfvTSLekpGdT\nqt1oH14bbJY1ZfEXwWMdaALdNTzJkoWlkJyYpmpcipwTg4OQ0cy5H+MWHAGa7rWnpOwjoQTzgym2\noaFSIjHkQa3uOgU6foqVNpY/D/c8+1bch8P/ulf0W/sVpFMNd+EecdqHMcZMeEfNTIL3pPrjksJc\nEAZa9STN6ZRMuXZ4/2QpZt1J+Xl5y9xOu4GSuhY/KJNpWK7GZ5C9JAENCZZ7+ASlzxV+Ygn6RUop\nesMrkN8kLcdYuRffL/o1Vb/gtPsuYF0lWGmEx58CnTulDdIl9y2y9roKpcRhplD+cSnPuvwMrnew\nFhI8WxbQRrUxww3pUmi8lHazXCtlLeZ+botMKukm6XhvBc61PtpXY+dLeVHHfswXTh0MtpOg6Dfw\neuH3GGPMEMmvUze6nXaCW9aNxgOg+8dREiUnjhhjJWLKRwG/IDID12Wnb4bGYBw4Waz3bLvo10vy\noOQYfF5qmZy3+1885rS3xG1839/E0oprf8SzS0Q61tVIt0zAYyTMwxxJt9Iok+j38bzYVial/Cn0\n2xOKIXm0ZU2cjjN4DXM9fauUD/e+dN7MFFyUgNTxrqx/Qor9As5ALI03xphYqhWcGvTCIZnuuLWk\nxGl/iRIJy778IdHv8jN4PglLwd7KksDWE/Ke9BzFHhdI+0BghPW8WELjcRl7ZNoKKXUbqMN4DJAd\nQ9pqeQZqOYT74qPEvM42KR8WmvJbjd8x1k8ypOoe8RqnhF3+OdbRnI8vMRKoRywPSkrZJHrFJ+K7\nRkZIRt8sE0qnx/B5Ez6cm9+tgEzq0a/cIN7TTzUsLBl76bh1rggji41IsnvouCifP/mZZNSH8bZt\nT6LcOBO0voG/SwRYdS37VjlPbChzRqFQKBQKhUKhUCgUCoViFqF/nFEoFAqFQqFQKBQKhUKhmEXo\nH2cUCoVCoVAoFAqFQqFQKGYR1/WcGSVPhPZKqe8c637FaSeUQ8Pbc1z6f7CGPpgigL0VMuY3Zx08\nDQo33uW0r7zyR9Fv1bf+3mlXv/O8006sho47LE1qrbNIjxueAO1Zy5vVol84vY/9Sc7trxT9QlzQ\nAV/ZhdfmbpVx0cNj0AS37kHc28IVMh52YkhGXvobHNmbQrGExhjT/jai0XLvhVfPSJf0Uggmr5re\nM9AGJhZI7XTMAnjOePZhTAoeWCb6DbRg/IcoatOVA+8D71VL90wa4EDynui9KCPKEiiurp+0oLYu\nu7oJc7VoKcbE9qbhCFvWOadaEbGdhxF3ne9nG6GJAcwlWwvvIn+SMfJ8anz1quiXuQX64ymKMBzr\nkj5Rq+5BRGVAIO5zX4W8zzweiXTPI1OhwbT14xGZeC2ZvIF8HjnfUijKveNAvXk/8OfF5MMPovrX\nu0U/jnuOpVjQhFKpee6rlNfob3BsZl659HEJJ10s3/e/ihZd63bajecw51wR0hOI71t0Afxe7CjB\nyHzo4Vcvwlxi3fPkoKxRm4vgXdDSA11yc7f055o7AF+TpetRX64erxH92K+kOBf69MhMqecNpdrr\nJf12tOWv1PYGfCTyZFLm34yBemjAm6w9ZGQc9ylzCa4pPE6u2fFhmu80HhzFbYwxxV++zWlPTsKX\np7tJ6uSjkjFuSfnsM4D1l3OPHEPWUPN8m5yUcd5DLajP6Zvgr9G295roN031teMIvKDWfnWz6Nd+\nEPvCcCM+O/suuX9GumUkqb/R1YC5mlEo64DnJHwHYiKxriKsmOhpqqON5CXjLpN7QzR5uEVcxP7p\na5Yx06Fx+K7Wt8gnitZ2XpH0YYqm2O/+auyZU2PSlyLrZmjcAwIxL5qqXhD9ml5GPGlQNM5sda/I\nOsQxv7EZGKvJYTnPxiwfQn9iqAZrkePPjTGm6KM4c3A8te2LyH5uySsorrhC3r+ru+CDEEzeJ4np\n0k9kijwhIih+N7AXa2yYvIWMMeaPL8DrKyYS+0BOkjxfrfsk4ms5VjthsfRsS9+K80zt06gVvfPl\nNbHfWHA+xnrCqvfRufIa/Q32exzxSB8X9t3Jouuy/eyu1GEvzFntdtrDLfJe89hd+TM8K8YsD7hL\nzfCf27gIe9dEHzwr0tbLPbzjMGpAczM8K4pvkkY9AzUYu2H6nrLl0oeCvVF8rdiPcyx/w2O/hndQ\nIK3tsoXJol/pR5ebmQLvITbYGy8iC3s6x0cbI8+2Da/DR63fihv3UiR4ylz4RA30S68SfhZgL5V6\n8l/LuFV6v1Q2Yh4VFbqddmu9PBvy8yIfqbyNLaJfRDquN4g8bPqvtcl+5F0y3Eax5BnybOP1SP86\nf6Od/K/G+6U/yxidoxMXYW6GRstn7tZK+MyF0TP3pUN/EP0W3fZx9AvD58VlyWe17nQ8qzWdw3r5\n52e/it/WL88tgSG41wllOIcayxexl/wKGy7i2ufdKddsN/ntpa7FGTUxS66poSyMD9euy2/JuRl5\nFmeJLGkN9Z+//6//k0KhUCgUCoVCoVAoFAqF4n8K+scZhUKhUCgUCoVCoVAoFIpZxHVlTfd//z6n\nXf270+K1/A8iyuzED/c57YFhSRmd2gkaVNcA6IUlH5QRkiwVuvTS006bI/aMMebfPvJZpz0/E3Kq\nBVloDzdK2teqb4L6tPsfHnXa6XMlFTR7I+LAnvjiL5329o/L+K/KP4MSx5F9Ns3SnQK6XcFdG532\nUE+D6GcC3p8O6A+kbgT1sq9S0lpZ4tB/BRKg+EXy3gwR/TyRZGwd78jIPH4teR2o3Z0UZ26MMRnL\nMf6RqaCLDdSD7plxo+R6MW2N48xtmjLHCj76yyed9kc3S3o9S5l6roHiHhoSIvoxNTKK6L1dh5pE\nP47Z9jfil+Czma5njDF95yG1Co7BOopMlrG8k2Og7Q7VIWozqkBSlqfHKQavHfTKtgYpRQwi+qyh\nuR9xC6i5qakf4LcYXx5kiuEUbTjWI8ewhyO3i7CORjolvZUjJcf7MD/siMYgihRmSrHnUKPoNznD\nEsPsBZhLPdZajKG5FbsQ15wwX1KTB+n356/BGuF7ZowxTz6/x2nftgwUf7tGu1e4nfbkKOp1Zysk\nA3NukvG4o3txrxdkQQqw5o5y0a/iLcg+k+JQG7ISZbxuYw0ovhyXakdkD9VSzPYm/G47pjBprZR+\n+BNXX8U1LfnsavFa+z5IfeJoDO044T3ffcNpxxMlOH+jlLye+/HLTtt9H6j1LEc1xpjAUJLAzMV3\nhSeBUhyRKiVip/71AD57HeRKV995UvQboojoNpLIunKk7GhyBHPHRTK6rjNS6hyRJuvSX1D9xDnx\n7wWfLn/Pfv5CfCp+/2iHrCvdg6h7qbHoFxgi59k4yU0np1A3QxOkxHCQJHgZK7EvXjtYK/otuANU\n6skR1OvC5RgflpMaY0xgGI5xIRQPzu83xpj2A9ir42h/b90tpXkdbdgLM+dj34nPk/T6KaoVTH+v\neE1GkOaXuc1MIf1mWi/y+GUGmzBvR2h87b2Go1T7L0G6wNdnjDFpuajDe49grvZflnKv8FAaA5oT\nvM6z+qWcbXspdNAZ69xO2x5rHlNbcsAYJOll0d+tcdqjXikZ4jPVWB/uy4T12WcfR2y6+19l9Lo/\nEERzOK5Ynj1HSWIfRuuqdqe0G1h9L+QF44NYl8aS25yqxZrjMzpLZf7zbXjft597zmn/8FufwW+w\nalZYEn5faCJq75h1PzO3z3Ha60jKw9YPxhgz2oPfxJJ6O9Y+jM6s+atQK048c8K8H/J++cD7vvbf\nwQhJ0zm62Bgpow+iSOpDu+RzZflKyLU6aI3cu1rusxG0xlhONdQqn/1Gu3D/QklaHE7Squ6TUoa0\nbB0k2wFkn1C0Rp4p+CyaugbPI8OeQdHP8zbm2/7TqI1cG4wxZu18nLHYEiNrda7o19sha4e/wTLZ\npBL53UO0N1Q8ibGLnS/ll8FReA4ZH8Dcn7asJZou/dlpx+dg7Ct/+5rol30bnikyt0KG1l8LGa+v\nSd6XC/tQl4PpWaXoRikJ5PmTR+evntPy3NLVhD2cZU0Xfy+tVzLIPmK0G/MvLV4+Z/G56r2gzBmF\nQqFQKBQKhUKhUCgUilmE/nFGoVAoFAqFQqFQKBQKhWIWcV1ZU9cZ0L1KvySpjKOjoKE3doFadPPf\nbxf9fvr13zvtu9eDmla/U1JBM24AFS+W0mdsKvaaUlCSUje6nbbLDSpWdLSkLZ1+7BdOe/t3/9Fp\nX9r5lOg3MQGa0baPbXTaSYulI/tNK7Y47ZAQyJpe/PtviX4NnZCBXP3ar5w2pxwYY8zWb3/czCRa\nXoPrOUuNjJHU+wlKWfB1SIf77M1lTvvE95HUVfqltaKftw7Ur/h5UlrCCAvD93ZehmM+/wZbrhSX\nAyroyBBRziw688QgaHQlbrfTjrHSbFLJaT+WpCMnnzsp+rko8WmkDVTGxNWZot9QXa+ZKbB7e8wc\nSS9nSUdEOqjTNn17rJfczInKFxQVKvoFBOHz2F2+YI2UmdUfBU2e6dfszG8nv4wPga7JNF2bos10\n0jaSYMWXScpzOF1vaDzGt/NYs+iXvAqU1BAXrjdmnqRjdp+SVEZ/Y3oCk9VryYuy52N++1pAz3UV\nyPGuew1pKv1toHK6b5JJDw+QbKyuCrU80SVr6vNPv+20c5OxDgrTsH7tpLMFn1/ptFkuMUHja4wx\nyz4EqnnHu/VOO3qOTFa5/DIo6usXILWn/6pMf8rbAcpx53GMsZ0UIeQAkhH9N6PoQdTCISttJ3YR\n6lp4Iu4/yzWNMWbVh1c57XEv5r6dOJC8EpIxTnJKtijW8ZR2NdAEKVjHAUhoo/MkrTazFO9h+jdL\nU42RMkpO17Ap+G1V+N6qx5Eesv1bN4t+05NYAzWvYy6Xf3Wj6GenivkbrrlYVxEpMm1iehekPtNW\nugNjgsaugc5B2a1SdsA06A5Kq0pJs5I4qjDfWVZz4l1IqZcslxLDxCX4rmCqvUNtcg9nSe61Z0Gv\nf/7IEdGPa0DWIsyF2vNSjp1IMh1OkBs9LGvA+SM46y37mPErOkmW2tQo01Tcc3FfWJpcb6VOcZId\nJ/41vyLTDpNozW2NW+G0+6vl2q5px75WugwU/Mefh5RxcbZcvz6SMRja+2wJ8yCdMXI/AClUQID8\n/6yRy7FPdl7EXD7+rJS55GeixietRj3otyQ++avzzUxiiqTU415ZAzk5LXMz5BJzHywR/UQyJ33e\n4SNSZsfYfjPVYeu82VCHcWztxX1vPo/fk5Qu9zFO+mw/Dtl7comUvLe+iVoekYF1xPJrY2RCZubN\nOB/w3meMTJoabsbZISosTPRLipu5BDxO/rITRbmWB5OFRVGOfB4ZpN/Oz0m2BIhlP6GtOBtHb5fJ\nSzyXxkj2zlvLuCVl3/fuKae9vhhS4rT1btHPs7feafOZN8qS+/JZJ+Ma2iypM8aY4CiMfTpJ04at\nOp61UkqN/A1+1rh6TO4Nk7T/L9iB+sNJtcYYM06JZtl3Yb/qsCTOyctRB5sO4rsyt0t5t4/uQUwK\nzrntrTh7pqySc2kdJQc/fP93nHbjE0+Ift//9KeddvFDkP/3V0obh/QirGG2MCn5uNzUfD5Izlub\nIGmLni+l7Sw5fy8oc0ahUCgUCoVCoVAoFAqFYhahf5xRKBQKhUKhUCgUCoVCoZhF6B9nFAqFQqFQ\nKBQKhUKhUChmEdf1nDnxyhmnPdwqdW/xZdBf3fuDHU771488Lvo9/A3Ece9/6rDT3vp3N4p+obHQ\nKLKu3XNE6pxPVsA/ZQtF7g2RR0NMoYwyi8yBL0xPF37D/Nt3iH6Hv/NTp80xwd7LXaLfqZN/cNp3\nfvsOp11yZ6no1/gbeDls+sR6px0/R+qNa15+x2kv/YjU0foDLtI81u+6Il7Lvx3+PIMN8PaIzpX+\nBCOD0N/FJMKzoqdCxveOeKBV7rsgY3AZWTdD/+mtwv1NJe36UIv0c+g4B939EMWm2X4TveR78+Ev\n3Oa0R7ssD5Z+/Js1o2seXif6sf9HZDb0pAOWH4bt3eJP8JqwfSmGSXPL/jMTfdLHJXQhNJgcZ9hw\nQMbyJiTjGoOioYP1WGOdvwG60EDypmk/WO+0Y2+V9yiQfl9QON4z0CKvKZNi1AfIh2G0U2rhOVq0\ndi+09cFBUqvfewYeWUmroK3vPiFjFKPypIbc3wgmv5u85W7xGo9JQjG8ALzVsv4kLYBWme9H93F5\nLamb8fkXLkD7unCj9KwIvoKakJsED57sm0jjflBGjrOuPYwjYnFLkwAAIABJREFU2y2bkAmKNA1N\nRI3f/YrUMt/10A1O+9I7+D3R4VK7zlGZHPlo708RadJDxJ+ITMd+cu3t8+K19O2Yt8d/ss9pp7ll\nHDpHqda+cslpz9tRLPpdeApxlUkJWJfeq3JOcKxnzQH4GeSWYq957GcviffcsnSp0y6gfSAiRXoS\n7f35Xqe9qATX13VJenzM2YZ5lUv6/kHLl4d9NEbGoffvPC7nWPIKqSH3N0ZIW994sE68VkDR8T0n\noZOvePuS6JebhTNISgzmxb59Z0W/xFOoTaEUe3utQ+6RHOf7whvwKPnaQw85bZflOdZXic8Ipj3I\n9isZoYjXOvreklzpYbC4wO20J8mPocOKf65sgs/ALbQmbH+InCTp6+VPJK/FHAk8Ia+XjSVGKI55\ndEJGjAcG43195FvS4ZEechFNWH++OtyLuHnSS2ApRdmfPwR/mznpODMfvir9bNiTI7sTa3YsSBbU\nvW/AD+8mqrv9lXItpm/F3sxeG+wnZIwxeQ8iun2M/JMS0+T5T/jVzQDYOyjG8mbgszifS5t2yrNs\nlwfn10UPwBdslWeB6Ld2HWpscCT23Lpz8h6W3I6z+NVW1IB4F/aWK1fl88miYniFsG9P4piMZQ+m\nc1VUDq5pzPLbCaXo8GGKqk6juHVjjDnwJvaJ/EjMn8z50utmYlD6q/gT7LczFSWvt+soakUYeeFF\nWT5ok+RZlzYPdannuPQqiV+K6+II+LAI6UmYvQJj7+2Bt6XnMOZbRLL0AJ2fCZ8t10LUrv4quedG\nZGOfjCN/k5BoeWbx1uB5pHTrYvN+CAzBPGfPPJ4fxhgzWD9z3pbGGBNHvnnDzfJcVfBheP7xWczT\nJM/5WeRnx/2SFsnxaX4dz/Mpa1DLOw7JdZWxBfWs6k9vOu1Th+FVuNp6DuyhM/+ONWucdmaC3D/d\n28nDZi/OAWVf+Kjo19V0zGnzM5jXK+Pgrz17zmmnrMMcDouXnqdt78rnLhvKnFEoFAqFQqFQKBQK\nhUKhmEXoH2cUCoVCoVAoFAqFQqFQKGYR15U1lawBtTdz6xzxGtORLj0HGs+Hv32f6HfxcUT3bfoY\n5CJR6ZK6eOwHbzntOg/ohTt+ID8v8xAo23Xvgiq85h8hUZqakvKVKIqrjIxEfPKZn/9G9EtZASoW\nS2VCXDKOblE76ME//dxvnfYn/0nKpDasAS1yehJU35pnjol+SfS9MwGO54uKltQqloWMkDTATjGd\nHEU/bzf65c5ZJPuNQPoyNfL+FMo93wVlm+nSxZdAt170yXLxnuZXQQWOyAKNOmaunEsxc/BvH1Hq\nMm+U8Wyt72IuTQyATjk+IKNA07eAquoh+m1csaTohcZJOqM/wTG4XUdkjKKLaNUcx2dHMLOEZ6CH\normtiHGmB4f1oESEBMty4WvEuKVtwrqaTMZc6Wo6Kt7DdE0XjVNXlYytGyWZRvYHQDtseEnKCjj2\nm2Mj7fjbNBrDIPoNof9FnJ2/EZkJKuxgraSnMv08Mo0pszJy0deBseOI3uBIKasLjwA9d9tXcG8m\nhqTcbftaxAfGLcZ39Z5/f1kiy+fCiaYcatXKEYpzrzpfj++kCFNjjKndj7UYTrKP3PUywvXYC6D1\nF5ViPYfEWt/bJeVv/kTrO5CI9XRKqUcyyUDSC1Afcu6Q1HqOHA8hCZ6913C04xDJTu3I1eQyt9M+\ntguSmrFToOmuX7iQ32LGJ0E9r9oJyveYJftYdT9ig1nis+jTy0W/jiOojb4G3Je207Je5X8A9yJn\nHiKOIzJiRL9pK77d32i8hHpYvGOJeK1lN84WCUShd1syE663g9VYv1kWdfrAZchbVs1F3GtCtJTf\n5VG86tS2bU77rXM4Y2399GbxnuQSfN5gO6jcQ419ot8Tj+/GddD3pMVJ2nwQST1eeguR6DcvkfeI\nZYVR2Ri72IVSOlO/p9rMFJi6nrxaysUvPgNZvjsJe1zBtnmiX80bkMfERaOW2bJTBst4fU2S+n/4\nAvYolhFlJ2K/C7Jkt5ebsUY8F3FN6cvk2XD1Upy3OCY4xDp7TI1hDfefx3k69155XvPRWTaC6vj0\nuFx78aVpZiYREoO6V3O4Vrw2dxPmN0dI93Z5RT/3GpxBek6jTqWsl7I9PvNyJG5BeZ7ox/N2czHk\nKJ/60Y+d9tcfeEC8Z4ju5/f+9Cen/dz9/1f0c+WhPrS+jb0vLFGeRyIzcA5InA9JafsJeQ5aOhev\nVZzB57EkzBhjltzsf9uEvyAkDmM4UCdrzwTtNXxms89fr+9CjHXSaVz7wIiUe83twf6SnIz61VNb\nJfrllNzutDNycF5ozeMoc7nvlN+C+TZMZ63JYfk8w/KshHTs05f/9KLox9K04EjsFwPVPaIfx4hn\n029o2iWvKSTkuo/tfzMGr+F35dwtzy29JGVuPQrp0bzbi0S/jj2Q7DSdhaSt+CPymY4laQP0vWEJ\n8pmk5zxqIu8vRS1Y296L8hnCRc9M8+hsXFkrJVOpHTgnL/3cZ5x2QICs0RznnbVsrdO+8vyroh/X\nm97zeB7mumOMtNJ4LyhzRqFQKBQKhUKhUCgUCoViFqF/nFEoFAqFQqFQKBQKhUKhmEVcl1cz3g/6\n+77vviVe6x4AxadsIehiXkuewLT0xt3kzFwkUykW7kDSUfxuUM4ee+Q/RD+WK3zuV5922oe/+5zT\ntql88RkkCWneg99QKOm3TKWKmwtK+vce+nfR76GP3uy0VwxC7jVl0bATSa4UmQL6cvw8SVXd8+hO\np1244sPG3+ggp/T4+e+fnJB7Nyivg02SlsgygfxbQXXrPCEp656zoJOmluM6bcoZU+qPV2FezKVE\ng9onZBJK4jK81nAIdP18i9LbXwHqXXQh6KOeY5LO5ioEzTg6G3Ok4qcySYbTHCbJ7T4iRVLSq56A\nnCCvWNJd/1b4WrDeUtbLFJMJH34Ty01YQmSMMaMDWM/hoaD5caqAMcb0DoLKWZCFez4xKml5LAUb\n7QU9MSYf9zUsQkpyeP02HwDtvPBuSYsMjQmn9+C/21Iy7xU46CcsxHd1VUpJTjDJQDjZhhMGjPlr\nOqW/ERIN6u9Ix5B4LWkl1stID8YkwKpnw0SvDKaEp34rwWfulg34jAxc/5BXusQXPww5Zl8H1hxL\nGcOtRIN+SrCbnsQARabImjrcWe+0l38Q8phwi848TDKYzNtA6W20EjkWzCH3e5IqjLTLexmzYOYS\nYqIoMSRlSEogWRrAUsSBOklhZmnigk+B6tu8W1KY0zZj/wygOjTaLdfsmR8j8Y/TCOpJIrz2Nkkp\n7jwFWY/7dtR0OzGk+xj6uebisy/+SspzmXq+8vOQMNsSM04NyrsH5wBfh5SIzTRKHkBalWe/3BsC\nSddbux/yhkSXTLKaoDNSSRGkBW8fkWlN20txvmHZ2ItHpeyTa28uSY8e/epHnbadLhIcjN8UFgep\n5GivlMixZCqJkqWmLAnos28ecNqlbrfTbu+TZ4I8H/a//krs7wGW9Ct7nZSL+BMNVzA3+60zCyfV\nsHyl9k2ZlLTi60iKa6XEP7umXKvCmk0lKZh93ty4HklBVy/WO+0YOmNkbCngt5jEc9jXvFeQfHLt\niKzV2UWg4IdS+gdLuY0xpo/qs/sB7K12QgjL95tfx/pzuS2p239Bwf9bMTWO82BusZSn9ZyGNCA8\nDXM/xJKGNR6pd9q8xvh8ZIwxyZQK03UEZ+Oaq02iX0UjZJosT1tL8r7SdVL2wck6P42ERMKWGEZl\nYv1xOg5Lm40xZpwStK7+xz6nPeGV+05zN+ZMyVr8plBL7uuawTTKkRbULvd98jzH6apDdahRQzVS\n2l2UjbFv7cVrEaFSsn2JZIDrYnEv+60E1eqeZ512UinODvN3IGV3akre85aT2NdC47DGOg9YewSd\nvfqKUe95nzZGprr20B5nJ1HG0bMZ22CMjcv5y5KnmQA/NwzUynPLCMm8ikjWXPHrE6Jf0nzUs/Ea\nSl8+UC/6cXop19vEFZmiH5/L+by54BGccU/98A3xHpcLNTF5Lu5teKNM/oqj54bO1v1Ou+ukfLZN\nXoG52d+FlKj8O1aLfpd+ib+VDAzg7DPvfikp7Dwi640NZc4oFAqFQqFQKBQKhUKhUMwi9I8zCoVC\noVAoFAqFQqFQKBSzCP3jjEKhUCgUCoVCoVAoFArFLOK6QtL9R+A/cP//vlu8duBne512XCn0Zb1n\n20W/jJvgycLxmju/8Zjox1pu1vDautIFmdCinfzRu047dx20+UNWjBtHWG3/3v922ke+/QPRL+Hu\nlU47NBR6ta899hnRr4t8VbzD8NqIzowV/QZbcL3j5E0QGiVv++KtMt7Q38jYDM331OikeK3+Deiv\n530QWmmOuzPGGFc+vAbY52KwQfoENHVB65zkw7zo8cq4ScYA3cMzdfCSufWWNaJf+zFo9Ngv6Plf\nvS763VACH4P6A4hlzC6XXi1nnoROcsM3tzrt/HulXpb9SmIWki5USvVNWKiMt/UnonMxtyasSD8v\n6cuTKE50xCM1875R6JczSrCOwntk9HxqGDSYRw5ddNrLS2QEKcdt+loQA8h+TZ2XpWdIjBvzKG01\n1uzUlPR+8dZCp9u3D3NirEv+Vtb9Mlyp0huim/w1WLNqx9v1noam1mw1fkfXMehYWW9rjDFj5F8x\nRDHl9kSLJL26rxXrKtmKXR0YQNxmRARe6/dJvXpHBzTWrhzMb47wDgyW9YA9Z9iPICpKxtVPzMH9\nZB+rxhcvi35zHkYUZSv5IkSkSn8NQx4Jw+zDtMEtulU9f8FpL/TzOHJMbeo6+b1XfnfaabOXjPea\n1MInlCNCOjAEe1zh/VK/PD6OeTBB9+LYy6dEvyUbsIdwdOXKTaiF471y7SQvQw3oPAx/Bddc6V9R\n8BC00uyFxGNhjDHF9Hkc9257X/maUCs6DNY2e2gYY0zHQWj80z93m/E3ml7F3mf7uIQEw6shl3x2\nbI8EQ/4qDXU4+yzOkXsN+7UU5cP74JZly0S/7z7+uNPOpOjl4Vbcz54K6ac1UYj9ICweXk595+VZ\nrHQefE4iMuEXM2XFJs9Zjrp88C34gi0qkz4pQRQL216BqNPcDbJfzTu4z0UfMH4Fe4vEpMlI3PgS\nxD9zTGvpZ1aJfgONWJvsPzCRL/eGrmZ8RlIZ/Gwi0uVew0hpwHt6qG32yH6T5IvC0bsL1sp5xN5f\nJ3592Gnbkeyp5HfIMbRt1XLuuCLwXZnbULsbdktfHi/5hORJu0i/IIpi2a8drBGv5S7FeolIw3XW\nk9+QMcYUlOBecTR3v+V32HsW9yMsBeslozNB9KtqQ7/QYOxxBWmYV83n5W9I8qA+hibAUyTJ2pv7\nruA3Za9a77S7rp0R/dr24FnD04r5s/Ae6V+ROoEz/kAN+o32SD+ViAw5p/2J1BvxG648LT238m+Z\n77SjC3CfAxfIc8X4Xvw+9pmpI+80Y6R/1hE6Y26Ik/clKgfn5p5KnL1GM7EHRSfLNcb7Me+L8UvT\nRT/2Tzz8EzwPF1D9NMaYV/bhfHXXrRjruMXSP5Gfzfj5Ky5T+j+FRMtzo78RlY171nVCzu/RDvJC\npN84aZ1R+dzG546BVq/ox89M7DUYliA9CYMjaC48h7Nddzh+39r/9SnxnsBAvKenHeelW/75ftGv\n+3K90x6l803MPOmf2HEY5xE+86atsTzgYvC9hbQmKp+WazsyTPpB2VDmjEKhUCgUCoVCoVAoFArF\nLEL/OKNQKBQKhUKhUCgUCoVCMYu4rqxpeSFojmd+LeOFl9yKaEiO1yr4cKno10fR2rn3QC5y8MgF\n0W/T5zc57RuWfQSfVyApsjffvdZpD9aCKhyZAWrp+TcuiveU7wC9fHISNL8hknkYY0zb4Qqn7WsG\nZf7saUnxXLoSUXW3fe9jTttz8ZLoNzUGmlrzQdDjQmLrRb/cOxeamQTTHMf75DW74oiSRdS04XYp\nQxrtBN0raSWkM3Zs5qLFoPQxTT0uSlK/WP70vW980mk3nAMl/9IpSW/liNhrFeh3040rRL++RlBw\n51NUa1yBpCWyPKRtP+j1PJeMMcZbRRIOkjgN1EqpQu4DUg7lT3QTvTAsRd7LpFWgzHYfB3UzKErS\nH2OIwuy5CMpuQ5eMYM6IB8U4PATXG2BJW8KJzu05h88buoZ1mbLJLd7jpUjh8X6sRb6vxhgTlojf\nyvT58HT5Gzqugu46Mga5Tvb8DNFvrBffFRoPurGrUFKZw6yIZ3+DZWcdb8tYU6aS91Ck7vJPSBp+\nENFumV7JMkpjjBluo7kQjprIEkVjjPFWYx5z5GUw0WeDQuVWUfxB1L3RUcgnBgdlDfQcxzrl2Nbs\n26VEruElvI9jsOMXW1HsJElreQWx01xrjTFmcETSuf2JEaqF0bkympS/t5LiJXkdGWNM8npQqXsq\ncf8mhmS8YiDV14GrJM1YLSNch0kqFEV0WZashNsSMUII1erhVln7h6lOxmSjhtb8Ue7haWvcTpsl\nvgONUgrE0kRux5ZKmrcth/I32iiqNdeqlQnLUT84yt6+h30XUH+yszBX95+WZxCWbff04f629Mio\n0oxcSDg2F2PvGh3Avp2cKiUsjS9AIphPErS0G+TZaaQLMtdJksaefOm06DdvIX7D6rWLnXZInIx+\nrdiH751b7MYLFsV9zpb5Zqaw4Uubnfa1p+R8bHsLkubkdVhvnqONol93JaQ+aavQr+KtStEvJhJ7\nw5UDqD0ZCbIGpG3Dfc+7Gdc+MYJ7Xv2mlPuGkGyGpfxjnTKG3v0gxmPJB3GubX6tSvS7/A4+P5/k\nPvnr5ZxgieEInflSl8ooW1eB3DP8DbYiyCmVUdqtJB1K9WGNTU1JOZ6XPqOmHTU1J1HKNBvO4bxz\n4ze3O+1p+XHm3hXQw8bQnuk5ihqdZslpRykKm/e7jkP1ol8CyeJ8PsS3D9bLWhmzANKKiiv4jMR3\n6kS/YR/qQ5cXY5qdJqUZfOYqLDd+BZ/hbMmGZy9JQsjWYXJYyqx4TD10HWHW/nnmGs5O6fRc0N8m\nz0DPfBvWF9vKYNswMYnzQs4yKd1hCWl7M+ZKaKI8G451Y20WlEO+MtYl1+wDH9nmtHm9dR2VUc1R\nZF3AkerTU7KeDrE0aLHxO4LCca9H26U1Qs59kE97SSoanyQlpWEkv4waxRifPi/r1ASN9+gLqI+x\nbllT9+6FJGj1ItTUlmuo3eO/fFa8J+duPFcPUpR9RLE8U3LcvIfi0jO2SYk+S0r5bNJ9Ue4njBA6\nV2SWybrGcenvBWXOKBQKhUKhUCgUCoVCoVDMIvSPMwqFQqFQKBQKhUKhUCgUs4jrypouNYN2FRsp\nKV05a+E6fe3Nt512YLCkn516Hi7JJdvBwbr/O/eIflMToJl99+GHnfbXf/Yz0S88BZTeEaJc1e8E\nxbbsVimtYplKWBgo82mlUvoQzNRmUutw0oIxxvQT9fDwd19w2knZlkSC5CcjXtDUOMHKGGPaD9Y7\n7VR5W/yCRErRaHtdSoWCojFeLbtArwwKl5Ry1zzct0mi57ryJP2M0yy8lZC0xS9JE/1iSUrD9M+0\nTFBQM8Pl9GRpSvwU7m2MlS6SsQXU3WZK5LATqPoqQUmPWwSqW5iVGhKZAcpe+/56p91xWaZhpJK8\nL0eqNv5mTHgh2QmJlZTR7pNw9A8lOVD3RZnMkLoKtLooSmhKHE0S/arP1zvt3GTQYq9cbhD9VixC\n0kjhDqxtllJMDMlkIKZrBtAaGx+U/ZhCyFIWW9IVVIUPYekAU1ONMSYyi6RqJFOYsqiFza+Cdlm4\n3PgdY+Rcz1R7Y4yJoOSzvuOg5EckSRmD5yjGIZhSKXpOtIp+CZQu4Gv2vm8/TlkYJ/lEaBzmUqxb\nrt/Lf37KaQeQzGrgqpT6TY2grjd5UA+Sj0sabDBR+VtqsK4W3SXTF4JJ4pa6Bb/bpogWrpSJCf4E\n05ZP/uKQeK38Echuhz2Yg5deOC/6ZRFFmqVkxrqOKEo3cxWgzvWQjNAYYwb6sBfmUTLGJFGKwy1a\n9ijNxclISvyxKMpxubiXzfshgVn0GSknbT8Iqn3nGcyxmFyZNpG8EbKZwVpQo0NjpWwmLEHWYX+D\n60Xy+lzxWt2rOE+46X563pVygo5+jF0cnZHK8vJEv6ZurAum1Lf3ShmDhxJiXOG4H6lrUCumxqWE\nr2cAcpSQP0POEiAVxybvfsikeKyyk2T95zSVACuRizFvCebF9ATm7bndUl5Ufr+f9ROM65zTIint\nJfA4pAuclGaMMb0nIJHw7cf5iGUVxhizYD02da5DR6zktOh6SqMhKTCnBuWtlfKiUKrjLOOdtpK0\nXv6XV532lo9ucNq17fIs0k2y2AXJkEBeeUfKqeZuQELKGJ0Jwq19doDSmkyZ8TtSaP2NWalyWXQO\n7KCk1MXbpYz87eeQXrWyHJKG6itSKhpM+3/tH845bftc1XnxvaXa4Wl0NrEkJ2FUw/quYrzjiqRk\nk+UOLA/xtUhJKdsQbPoEnrnGvFK220qJllkk4+rtl+eg2PGZk22z9N4+73N6FtcUW4487sX1pobh\nvNpzUu53LFtbWYb5ffK8tKCYIoll6jyc8VnGa8uQovKwX002ypQoxoGjqHOr5mEdRc+Tz4Ee3guz\n8NnRhfLZKbYQ4+Y5AqmMr1GOdeR10uH8gW76vbaVgbcG+xjvz/wcaYwxTbQPpW6Qeytjwy3YG373\n21ec9mfX3Sf6cTJW4ko8z+79FeTDnVa9nnwKZ5/QRKzL6ByZqsxrLpCfOa003kiSaje9CBl+rCWT\nyr4N54V+ssSwz8buB66vSVPmjEKhUCgUCoVCoVAoFArFLEL/OKNQKBQKhUKhUCgUCoVCMYvQP84o\nFAqFQqFQKBQKhUKhUMwirus5c98PP+i0249Jr5LeFmi9zr2NCOowS9ceTbrprHXQl7WeOCP6DdZC\n07rkQXhZPDr6adHvse8/77S/8R+POO06ivX0XpXRwBWv4/dt+hb09Gf3yqjECNIob3kUmrfFVVLv\n6KPI3sJt0CGfe/mc6BdSi9ubngo9YVy29EMQngMzgOY/Q4cZlSv9BCaG2GuAdJi9UucYSjGakyPQ\n8sXPl9pSby7u/TDFkbMm3RhjSrZCL9x0pN5px7ho/lhJY6mb3E67YReuabhDxr0lFkOfn/cgPCsC\nA6WPTiT5F3HkO2tnjTEm4yboSQND8PfMhAzppTDeL2PK/QnXQvgCDNZIn4KMmxH51kKeKa5Mqa2c\nonFjDXDbcanJTojGfSm4A9F5SZaHDfvCtL4Gv6LQZMyjQwel/wDHoectRAR4hBVf3nMemmKO1Y7K\nkteUtpQ+Iw2/u/uYHMNY8hQKjsC6HOmWemP2aZkJsH+RHTk7PYlxLVjqdtp1z8lY3ph5qCXtFP0X\nFCj/1n7mNficLN4IXbZvSK7t4EjUvcrnUcOKP4w6PG3ljHKs5GANNPMBltGFbxjfxT4Ii7cuEv1q\nyeshNQVa7LrXLot+aUugN46kucD1wBhjkkpmbhzz7oOnWUq7XIvhsRjfMYotLX5omeyXiLXTdQLe\nbgX3yNh0L/m+sVb/3AEZWc5jn0FzOmMdvBfqXpaRyROk72fvoslR6QPQPoX5x2u+7hm5tgs+CjOK\nCNLFR1jRzxzpnLYJeyHHOxsj9dozgXHyfumzalsoRRsPNcBvImW99Ima3o/1N0mxoOHB8mjV0In9\nZXwCdXhsQkbJvvjkj5x27RH4TvH/Rmt4Q8aR8rmFEemW+1P3OXgJsF8f+9kYY4znMPwOwslXoLlB\n+i+kUYR09Fy0/8pjxtLu+xNVvz/rtBdskkZvg+QT4mmB3j/oohybKDqjum/AXpp6VXrxtJ/GWozP\nwT5mRzV3XcDelVyKOjQ6jvmdulLe84aXcBbl81Xe/dKXYO1NS532lVdxrk2Nk2O94ZPwJ+m7hLlX\ndHux6NdDfnW+PtSNaMsDbqCDvFDuMn5H+5uY660e6c2QlQu/ljnkmzTcIf1UtnxondPmfWiR5V01\nQdc2QGfvyBx5No6dxP4y3oNafqkS/i6b5suo6vZ34F80RHUu766Fot/5x47je2JQU13z5VwKCKI4\n7r31+K3Z8rwUm4v1x55F0YHS/2S4Sfpy+BPs2RPikjWp6zDOmFH5+K0tZ+XZk+su18ZwK0qbz5En\nzsHfhJ83jTHmwe0bnXZkNsYzKAzfk1QmPaj6a9573/E1yOe0jRuw38WQJyf7pxoj46LFeB6UEcwc\nK95P/iTpN8rnRfYPNHI5+wVB5LuSfed88VpkCu772Z8gpnzOA/KHjJJ/VX8F9o15GfJe89ngjuVk\n8midjW/Yhte8dG8e+j/3vt9bjOcQ9mZe850n5bMBPw/00Nh7quR+t/RLqC/9XqztgiXymjzHMKfb\nTqJdeJf0yLrwO9SA3B/da2woc0ahUCgUCoVCoVAoFAqFYhahf5xRKBQKhUKhUCgUCoVCoZhFXFfW\nNDEGatKIJR25tg809JUPIFLz9PMyVnDN50CvHB4EnajnqKQWpW4FdYvj1DZ9YbPol/k0aPfNb0BK\nUfSpu512V52UF2XdDFlK71WKHbaox6s/C9pS7fNHnbYd0fjATxD1fe4nu5x2yW0y9pWjsxLLQcf3\ntso4zoxV8n3+BtNp89bIWLNxijqufh409XCLKj1YL+/BXxAYKqVCaesRIdpfDYpYtFvGxjHlP38r\nxodjmKOypYQlJgMSlhiKlY1PkFKAlstvOW2OIQ4Ik5THgCDcF5YMJC7PFP18LaAz+hpBKYzIlHT9\n68WO/q3geMnYIkmlHaUowPBUUGTjS6XkjKNzWc7mvlnSwbuOgr7dSRR3O9bz0tOglOdvwRhyvGl5\nm4wM3VcB+nbRLaD5TU9ITiLLx/i+DjVLamnMHIoXPgv5oR2X6mt5bzpvZKakMtvRmP5GJ0Uk9tdL\nSUxiMcarj6igUxZfc98TkCt94AHEqZ57q0L0YylF2lkh62/fAAAMkElEQVSsJVtK0bwTtGBXBCjg\nnoOghfZEW9LOeoxDfDmo+yyPMcaYUYr83P7ZG5x2P1HtjTFmzo2Ygyy5SxiVv3W0G3P40ou4DwUb\n58h+nXK/8ifqSPoVmStrVEgUfntfJcYwNF7WHt7j0kna03JQStgaDoEmn5CM74qPklG3TOdOXe12\n2m1HMbaJS+WaGKF7xPXFlrQml2INtx3G5xV+fKno10WyjzCSPwVHSEp65yGsAZYbxhRICn6iRTf3\nN/h+BobJs0BcEX6XKw9716mnToh+ORQx39uBNZG2WspWbonBfnqlCte/Y80a0Y/XlbsMn9F/EXMp\n3i3vU9WFeqdd50G/8gQpiWk+hvWcnA8a/oVdUp42fy1q+el3MB/t89IUxb7znOE90hhjBnsxz+Zt\nMH5FLEkkItKk1IMlpIMvQwLjs2rDgvtx/uoiynvSyizRLyuRzpGXcJ9jF8n9mOPrWboQ4UJtbdgp\nZYlRNMd4vnWdlufkQJJFrP6HLU67dW+16NdzDvXaS7I8uwYER2Ft5m2E9CYwTJ7rxl6SEdz+xogP\n9bDkbpnVzc8UyasRr2xHCncehYTARbVkytpDYhdgvEJYru+TskqW4sdQXO6yErRP/u6oeM+i7ZDr\nVr2C39P75EnRz0X1OpBkFfZ953ORkMRUyOj0lEWoQ9G5kLhdeEk+C6XFS/mbPzFQBXnz9KQ8K3Js\ndOtZzOkwS64076ElTntiCHNiuN2KBG/B512rIOnIkjzRjyXxfRcgXc29B+MU7pLrt6sP+9iyT+DZ\nYqhRPgPFkpRpnGQz0ZmyPvdX4qzDMd2j7bIOdZC9QGQc2TtYR1LbOsTfSKBz6IQlNa749/1Om2XB\nYXFSOti2B+cWvubs2xeIfmN9OHdEU/0OjZefN0LPOEG0Xq79EftT3g4pG2KrBF4TtpXBBD0DZ67D\n/LmwW+6LU+NSrvYXnPvZEfHvkkcwZ5LLsYc0viwl+tnl8oxgQ5kzCoVCoVAoFAqFQqFQKBSzCP3j\njEKhUCgUCoVCoVAoFArFLOK6sqa2fZDfXDgu0zBKVoOeFE6pN1HhtnQEf/8JCQcdq/jL0vJ9qA/f\n9fhXn3baaZYLfU4SqGQTA6C9+Xxwez/5W0kzYqp+IaXPzCmSEp/IFNDbAoJAAb79n24T/Sr+7XWn\nnbQMNNHYQum0PlQHGlxoLO5Lw7NSfhDpBo0u4eMrjb8x/yOgCo4NyEShkCjQrecSvXe4bUD06zsP\nSmDGLZAQ2DKQ/lpIuRIWgx5n03jTbwRVnuma8bmgDredPCveM9iA+8YygYDAY6JfSDQlEe0Dva73\nspRSJJPUjN3bp8ZkUgFTf0Pi8Nk87435a6mGP5FAjuB2uheniURRQoc9hgPVoJ0GhoA+GxxupVe4\nQfcPpaQDdpM3xphQD9YzXzvLUnoGJB31xrWYi16ie8YskNRSlrf1XQCFnOeKMcb0X8RnpJM0sutY\ns+g3PYl5mkBrtr9SOrKPD9DYbzN+xzRJlFwZlqSKfiMnvwRaKUz3fQ316OQfMPftRIO18+G07/FC\natDcLdMwirJBFe8ewJwpuwH388Tzkpa98kFIWVkiF5UjKbfskt9LCVypa2XtnaCEEqYwR6bLNdZ7\nDnUoKQlzPSpHyotc+ZJa7E9kbEWii50o1LYX9YYlBF3H5XxsPIj9LjETFG1bFhYfB2ru1AhotaHW\nWCcuQqLJQD3WecpyjG3TbpnyE7cQa66P7mv6dilF3PPoi057yb2QMo10S1q29wruxcDBeqddeJ+U\n1zClvO4Z0JJtCvXAFczTzH+80/gbsYshTzhPyWbGGJObg72L67+9xjpbca/jSGoWliTXQRLJMUpJ\nejphSSm4xkblYH4HBKNeTwzKPbye5IubVyJJzI6v6KG0tPxC7LNFVlLeqV2QQpRvRQqHz0p6icii\nZDKSxSWukLJgeSryL3jfYLq7Mca0v4M1llSE8YyZK39RByXeMX0+OEpKu6fcWH8s1Qu11mz7u5DO\nZ27FWrq2C9KgOTdK+cWIB2up6kmce+IKrCSoaox1QDD2haF6eSbgMai5gOvL6pGU/voq/NZ+km/z\nPmCMlML6WZlmjDEmlmTvdtrqnDLcq6ZdqGE5t8skmYZLkMvEkWQ4OlnuISyZGG7HdXZXyfNbGtXO\nM29C4lB+K2RXnCRlf/bidXhGqj5eK/oFB2E9tzTiDFK2VkodWKo3eA21Jn6JlKzzHsxy2vwlcp8d\nrH1vewJ/YITOzQMVUgadUoh1uvBDOAOyzNsYYzr2Y81y3eXrM8aYFDo/BNFaDLH3T5LNxi1Ee4ok\na8HB8uwQTM8P3Sexb9vn3yFKb4omeSWfrY0xZorSD1mmFrdUjiEnkbaTLMiWutW9jGepwhXG72h9\nC5Yl433W8yIlewaSXUbTa/LvAy6SsXESsymXUtHWN/FdhZRo2VPZKvp5KnF25CeA0i+uddo1v5fP\ni8HRmBc9pzAf531Wpgn2XXnvpN5VD68V/fjZecnf4bWgUPk3D88JjF3PCVxHcKycm/y3kfeCMmcU\nCoVCoVAoFAqFQqFQKGYR+scZhUKhUCgUCoVCoVAoFIpZhP5xRqFQKBQKhUKhUCgUCoViFnFdz5ns\nrYjWG++T8Zpv7EaE3Ofv3Oi03Wukh0NMWiH9Czq/zqsypiqCdKFz0hHNuu3bHxP9Gvfhe6NI83zm\nJwecdul9S8R7DEXxnnzquNNe84hUz/o6oXWdcx9eu/ybPaJf6hZ4MZz70xmnfeO6YtEvcRl02H2V\n0PQXfekm0S8gQGoK/Q3W9XEUrTHGuObCm4Ej2uzobNcCeP2wppUjYY2RXhJV/w8+FYPDcv4EHcbU\nG6iBJnFoOXSc7B1jjDGxc/AbmndB42h7prAnC0dLx1j6fvYsGm6F9pgjFI2RkdRT5I0xaUU0jllr\nxJ/opZjosGTpZzDcNGB3N8ZIXa0x0tNkOhCvsReNMcYkk+65dTciOtO3SS8K1smP9+DaJ324L5lF\n0n+A9f58TYO18jdwnDnHIseXSJ1uzxl8RhfpRROsyFAeK57btqaWIxFnAvz7B6ql9wvX2CjyM0os\nl/eQUbQV/h2dJ2TsajT5sEyTtLvkrlLRz9cML4mRs1gjPNfXPbxevGeUvAvG+vG7bd8Hbx3WdjJ5\n/XSdkr+V49JH2jDe9hpjHXpzM+p171NnRD+OH3f/eIfxJ6r+AG1z7h0yGnLwGq6XtecT1rxa+uV1\nTnucohzt2GnPUQzcIK1T16TUOUekYb6MU10785ODTjt5Xop4j7cGn+frYy8K6eu0eDsiKtlXJiJV\nepWkbHA77SwXanfrHum3MEReWCEhmC+1B2tEvxVflHPO3+g9Cx37gnXzxGuDV3FvxnqwZy68p0T0\n89Few94HPJ+NMWaS1hLvsyMd0uei14O1yLUihKK4Q6LlHLnvSx9w2p699U47OEv2W7AM9Zu94tqP\nSt+HBQvdTnuoDtcXlSe9GTxnoKfP2oJzXos13tGZ5K210fgVvG+Pdkk/FfalGyEfq3Br/+T9Pom8\nWiJSpVeJh2Kx+bNtj4l08qQKJF+YvO2YYxf+KOvVBMXSZmbCn8OOJec4c/a8s2PEeQmnxcP/4eJO\n6a207CMwrZgkz6fhnRdFvzllbjOTqD5fj+8qkd+VRPtfIu0h7GFmjDEJ0bgfneSx5r5N1ui2N2Sd\n+Qs4RtcY6Vu34p5ldndjjDFRudaa2FfvtJPX4yw8P3SO6Ocif0o+T3fQ+40xprcL15FRgvtwZbf0\ncFx4G3y9+Exee6pO9AsJmrlnjdQyjI3tERNN8fCVT5522nGxco3xGbXHh7qbsUp65wx7sJ65noZE\nS5+ouifxnJlKnoQBARRLflA+30XloF5FUyQ7+4cYY0z2XZhXwx34Pb42uWYDQ1ADxno4EjrE6oex\nSVoLvyM7Sju5NN3MJPiaQyyfFPYo7SMPz8zNcn5f/jme0+c/ghrjrZNn3uhCfNeoF+e+hEXy/H7l\nVfiNpmTgPe3k3RdprUWOc2dPoM6T0v+Pve0SluLejvXLZwMvX+82XO+1Z0+LfryfsK8M1y5jjBnx\nSD9OG8qcUSgUCoVCoVAoFAqFQqGYRegfZxQKhUKhUCgUCoVCoVAoZhEB09NW3qJCoVAoFAqFQqFQ\nKBQKheJ/DMqcUSgUCoVCoVAoFAqFQqGYRegfZxQKhUKhUCgUCoVCoVAoZhH6xxmFQqFQKBQKhUKh\nUCgUilmE/nFGoVAoFAqFQqFQKBQKhWIWoX+cUSgUCoVCoVAoFAqFQqGYRegfZxQKhUKhUCgUCoVC\noVAoZhH/H57HyWjx4Q0dAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "kL8MEhNgrx9N", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The first hidden layer of the neural network should be modeling some pretty low level features, so visualizing the weights will probably just show some fuzzy blobs or possibly a few parts of digits. You may also see some neurons that are essentially noise -- these are either unconverged or they are being ignored by higher layers.\n", + "\n", + "It can be interesting to stop training at different numbers of iterations and see the effect.\n", + "\n", + "**Train the classifier for 10, 100 and respectively 1000 steps. Then run this visualization again.**\n", + "\n", + "What differences do you see visually for the different levels of convergence?" + ] + } + ] +} \ No newline at end of file From 4825e19bc4a5e917ae970208393d539eb205aba9 Mon Sep 17 00:00:00 2001 From: Subham <40177225+loneWolf148@users.noreply.github.com> Date: Sun, 24 Feb 2019 02:48:49 +0530 Subject: [PATCH 11/11] Created using Colaboratory --- improving_neural_net_performance.ipynb | 1786 ++++++++++++++++++++++++ 1 file changed, 1786 insertions(+) create mode 100644 improving_neural_net_performance.ipynb diff --git a/improving_neural_net_performance.ipynb b/improving_neural_net_performance.ipynb new file mode 100644 index 0000000..0cc8811 --- /dev/null +++ b/improving_neural_net_performance.ipynb @@ -0,0 +1,1786 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "improving_neural_net_performance.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "jFfc3saSxg6t", + "FSPZIiYgyh93", + "GhFtWjQRzD2l", + "P8BLQ7T71JWd" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "JndnmDMp66FL" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "cellView": "both", + "colab_type": "code", + "id": "hMqWDc_m6rUC", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "eV16J6oUY-HN" + }, + "cell_type": "markdown", + "source": [ + "# Improving Neural Net Performance" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "0Rwl1iXIKxkm" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objective:** Improve the performance of a neural network by normalizing features and applying various optimization algorithms\n", + "\n", + "**NOTE:** The optimization methods described in this exercise are not specific to neural networks; they are effective means to improve most types of models." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "lBPTONWzKxkn" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, we'll load the data." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "VtYVuONUKxko", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "B8qC-jTIKxkr", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "Ah6LjMIJ2spZ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1213 + }, + "outputId": "09a06602-d7b1-48c0-a187-1bfbe645362d" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.6 2639.8 537.6 \n", + "std 2.1 2.0 12.6 2185.9 421.5 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1460.0 296.0 \n", + "50% 34.2 -118.5 29.0 2122.5 433.0 \n", + "75% 37.7 -118.0 37.0 3142.0 644.0 \n", + "max 42.0 -114.3 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1429.7 499.6 3.9 2.0 \n", + "std 1161.9 384.4 1.9 1.0 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 785.8 281.0 2.6 1.5 \n", + "50% 1164.0 407.0 3.6 1.9 \n", + "75% 1718.2 601.0 4.8 2.3 \n", + "max 35682.0 6082.0 15.0 34.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.62639.8537.61429.7499.63.92.0
std2.12.012.62185.9421.51161.9384.41.91.0
min32.5-124.31.02.01.03.01.00.50.0
25%33.9-121.818.01460.0296.0785.8281.02.61.5
50%34.2-118.529.02122.5433.01164.0407.03.61.9
75%37.7-118.037.03142.0644.01718.2601.04.82.3
max42.0-114.352.032627.06445.035682.06082.015.034.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.6 28.6 2653.0 543.8 \n", + "std 2.1 2.0 12.6 2165.8 421.4 \n", + "min 32.6 -124.3 2.0 12.0 3.0 \n", + "25% 33.9 -121.8 18.0 1471.0 297.0 \n", + "50% 34.3 -118.5 29.0 2143.5 436.0 \n", + "75% 37.7 -118.0 37.0 3167.0 657.0 \n", + "max 41.8 -114.6 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1429.4 505.1 3.9 2.0 \n", + "std 1113.5 384.9 1.9 1.5 \n", + "min 11.0 3.0 0.5 0.1 \n", + "25% 799.0 283.0 2.6 1.5 \n", + "50% 1175.5 411.0 3.5 1.9 \n", + "75% 1725.0 613.0 4.8 2.3 \n", + "max 16122.0 5189.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.628.62653.0543.81429.4505.13.92.0
std2.12.012.62165.8421.41113.5384.91.91.5
min32.6-124.32.012.03.011.03.00.50.1
25%33.9-121.818.01471.0297.0799.0283.02.61.5
50%34.3-118.529.02143.5436.01175.5411.03.51.9
75%37.7-118.037.03167.0657.01725.0613.04.82.3
max41.8-114.652.037937.05471.016122.05189.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 206.8\n", + "std 115.9\n", + "min 15.0\n", + "25% 119.2\n", + "50% 179.2\n", + "75% 264.7\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean206.8
std115.9
min15.0
25%119.2
50%179.2
75%264.7
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 208.6\n", + "std 116.1\n", + "min 15.0\n", + "25% 120.8\n", + "50% 182.5\n", + "75% 265.9\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean208.6
std116.1
min15.0
25%120.8
50%182.5
75%265.9
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "NqIbXxx222ea" + }, + "cell_type": "markdown", + "source": [ + "## Train the Neural Network\n", + "\n", + "Next, we'll train the neural network." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "6k3xYlSg27VB", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "De9jwyy4wTUT", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a neural network model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "W-51R3yIKxk4", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_regression_model(\n", + " my_optimizer,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " my_optimizer: An instance of `tf.train.Optimizer`, the optimizer to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A tuple `(estimator, training_losses, validation_losses)`:\n", + " estimator: the trained `DNNRegressor` object.\n", + " training_losses: a `list` containing the training loss values taken during training.\n", + " validation_losses: a `list` containing the validation loss values taken during training.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a DNNRegressor object.\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " dnn_regressor = tf.estimator.DNNRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " dnn_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = dnn_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = dnn_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % training_root_mean_squared_error)\n", + " print(\"Final RMSE (on validation data): %0.2f\" % validation_root_mean_squared_error)\n", + "\n", + " return dnn_regressor, training_rmse, validation_rmse" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "KueReMZ9Kxk7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 783 + }, + "outputId": "ea66a629-b4a2-477d-8bad-8a79868cd623" + }, + "cell_type": "code", + "source": [ + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0007),\n", + " steps=5000,\n", + " batch_size=70,\n", + " hidden_units=[10, 10],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 175.36\n", + " period 01 : 168.20\n", + " period 02 : 163.14\n", + " period 03 : 161.24\n", + " period 04 : 144.39\n", + " period 05 : 130.82\n", + " period 06 : 115.57\n", + " period 07 : 110.12\n", + " period 08 : 108.40\n", + " period 09 : 107.18\n", + "Model training finished.\n", + "Final RMSE (on training data): 107.18\n", + "Final RMSE (on validation data): 106.01\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGX68PHvlEx67wUIoYQWUiBA\n6AkttEWlSIuKqLsqylp21fenbsHG2lYEXMC2gq4UqdKUJr0mlEAg1PTeSU/mvH+gg6GEBEhmktyf\n68oFM6fdZ+4z5OY5z/MclaIoCkIIIYQQTYja2AEIIYQQQtSXFDBCCCGEaHKkgBFCCCFEkyMFjBBC\nCCGaHClghBBCCNHkSAEjhBBCiCZHa+wAhDBl/v7+tG7dGo1GA0B1dTWhoaG8/vrrWFlZ3fV+V6xY\nwaRJk256f/Xq1bz22mv85z//ITw83PB+WVkZffv2Zfjw4bz33nt3fdy6SkxM5J133uHy5csAWFpa\nMmvWLIYOHdrgx66PhQsXkpiYeNNncujQIWbOnImPj89N22zZsqWxwrsnycnJDBkyhLZt2wKgKAou\nLi783//9H126dKnXvj788EO8vLyYMmVKnbdZt24dq1atYunSpfU6lhCNRQoYIe5g6dKleHh4AFBR\nUcELL7zAokWLeOGFF+5qf1lZWXz++ee3LGAAPD09+fHHH2sUMDt37sTOzu6ujnc3Xn75ZcaNG8d/\n/vMfAE6cOMGjjz7K5s2b8fT0bLQ47oWnp2eTKVZuR6PR1DiHTZs28eyzz7J161Z0Ol2d9/PSSy81\nRHhCGJXcQhKiHnQ6HQMGDCAuLg6A8vJy3nzzTUaMGMHIkSN57733qK6uBuDs2bNMnjyZyMhIxo0b\nx549ewCYPHkyqampREZGUlFRcdMxQkJCOHToEKWlpYb3Nm3aRL9+/QyvKyoqeOuttxgxYgQRERGG\nQgMgJiaGhx56iMjISEaNGsX+/fuBa/+j79+/P9988w1jx45lwIABbNq06ZbnGR8fT2BgoOF1YGAg\nW7duNRRy8+fPZ9CgQTzwwAMsXryYiIgIAF599VUWLlxo2O73r+8U1zvvvMP06dMBOHbsGOPHj2fY\nsGFMmjSJpKQk4FpL1J///GfCw8OZPn066enpd8jYra1evZpZs2bx6KOP8q9//YtDhw4xefJkZs+e\nbfhlv3nzZsaMGUNkZCSPPPIIiYmJAHz66ae8/vrrTJgwga+//rrGfmfPns2XX35peB0XF0f//v3R\n6/V8/PHHjBgxghEjRvDII4+QkZFR77hHjRpFWVkZly5dAmD58uVERkYSERHBiy++SFlZGXDtc3/3\n3XcZO3YsmzdvrpGH212Xer2ef/7znwwePJgJEyZw9uxZw3EPHz7Mgw8+yKhRoxg5ciSbN2+ud+xC\n3HeKEOK2OnbsqKSlpRle5+fnK9OmTVMWLlyoKIqiLFq0SHnyySeVyspKpbS0VBk/fryydu1apbq6\nWhk5cqSyYcMGRVEU5eTJk0poaKhSVFSkHDx4UBk6dOgtj/fDDz8or7zyivLyyy8bti0qKlKGDBmi\nrFy5UnnllVcURVGU+fPnK48++qhSXl6uFBcXKw888ICyY8cORVEUZcyYMcqPP/6oKIqirFmzxnCs\npKQkpUuXLsrSpUsVRVGUTZs2KcOGDbtlHM8995wSHh6u/Pe//1UuXLhQY9m5c+eUnj17KpmZmUpl\nZaXy9NNPK+Hh4YqiKMorr7yiLFiwwLDu71/XFlfXrl2V1atXG843NDRU2bt3r6IoirJhwwblwQcf\nVBRFUZYtW6ZMmzZNqaysVHJzc5Xw8HDDZ/J7tX3Gv33OQUFByuXLlw3rBwQEKPv371cURVFSUlKU\nHj16KFeuXFEURVG++OIL5dFHH1UURVHmzZun9O/fX8nJyblpvxs3blSmTZtmeP3JJ58oc+bMUeLj\n45Xhw4crFRUViqIoyjfffKOsWbPmtvH99rl07tz5pvdDQ0OVixcvKkeOHFHCwsKU9PR0RVEU5Y03\n3lDee+89RVGufe5jx45VysrKDK8XLFhQ63W5a9cuZfjw4crVq1eV0tJSZcKECcr06dMVRVGUhx56\nSDl06JCiKIpy+fJl5cUXX6w1diEag7TACHEHUVFRREZGMmTIEIYMGUKfPn148sknAdi1axeTJk1C\nq9ViYWHB2LFj2bdvH8nJyWRnZzN69GgAAgIC8PLy4tSpU3U65ujRo/nxxx8B2LZtG+Hh4ajV17+u\nO3fuZOrUqeh0OqysrBg3bhw//fQTAGvXrmXkyJEA9OjRw9B6AVBVVcVDDz0EQNeuXUlNTb3l8d9/\n/32mTZvGhg0bGDNmDBEREfzvf/8DrrWOhIaG4urqilarZcyYMXU6p9riqqysZNiwYYb9u7u7G1qc\nxowZQ2JiIqmpqRw9epRhw4ah1WpxdHSscZvtRmlpaURGRtb4+X1fGV9fX3x9fQ2vLSwsCAsLA2Df\nvn307t2bNm3aADBx4kQOHTpEVVUVcK1FysnJ6aZjDh48mDNnzpCfnw/Azz//TGRkJHZ2duTm5rJh\nwwYKCgqIiorigQceqNPn9htFUVi+fDnu7u74+vqyY8cORo0ahbu7OwBTpkwxXAMAYWFhmJub19hH\nbdflkSNHGDRoENbW1lhYWBhyBeDs7MzatWu5ePEivr6+fPjhh/WKXYiGIH1ghLiD3/rA5ObmGm5/\naLXXvjq5ubnY29sb1rW3tycnJ4fc3FxsbW1RqVSGZb/9EnNxcbnjMfv168frr79Ofn4+Gzdu5Jln\nnjF0qAUoKiri3Xff5aOPPgKu3VLq3r07ABs2bOCbb76huLgYvV6P8rvHnWk0GkPnY7VajV6vv+Xx\nzc3NmTlzJjNnzqSwsJAtW7bwzjvv4OPjQ0FBQY3+OM7Oznc8n7rEZWNjA0BhYSFJSUlERkYalut0\nOnJzcykoKMDW1tbwvp2dHcXFxbc83p36wPw+bze+zsvLq3GOtra2KIpCXl7eLbf9jZWVFX379mXX\nrl306NGDwsJCevTogUql4tNPP+XLL79kzpw5hIaG8o9//OOO/Ymqq6sNn4OiKLRv356FCxeiVqsp\nKiri559/Zu/evYbllZWVtz0/oNbrsqCgADc3txrv/+add97hs88+Y8aMGVhYWPDiiy/WyI8QxiAF\njBB15OTkRFRUFO+//z6fffYZAC4uLob/bQPk5+fj4uKCs7MzBQUFKIpi+GWRn59f51/2ZmZmhIeH\ns3btWhISEggODq5RwLi5ufH444/f1AKRkZHB66+/zsqVK+ncuTNXrlxhxIgR9TrP3Nxc4uLiDC0g\ndnZ2TJo0iT179hAfH4+trS1FRUU11v/NjUVRQUFBveNyc3PDz8+P1atX37TMzs7utse+n5ydnYmJ\niTG8LigoQK1W4+joeMdtR4wYwc8//0xeXh4jRoww5L9Pnz706dOHkpIS5s6dywcffHDHlowbO/H+\nnpubGw8++CCvvPJKvc7rdtdlbZ+ti4sLb7zxBm+88QZ79+7lueeeY8CAAVhbW9f52ELcb3ILSYh6\nmDFjBjExMRw+fBi4dstg1apVVFdXU1JSwrp16xg0aBA+Pj54eHgYOslGR0eTnZ1N9+7d0Wq1lJSU\nGG5H3M7o0aNZsmTJLYcuDxkyhJUrV1JdXY2iKCxcuJDdu3eTm5uLlZUVfn5+VFVVsXz5coDbtlLc\nSllZGc8//7yhcydAQkICJ06coGfPngQHB3P06FFyc3Opqqpi7dq1hvVcXV0NnT+TkpKIjo4GqFdc\ngYGBZGVlceLECcN+/vKXv6AoCkFBQezYsYPq6mpyc3PZvXt3nc+rPvr168fRo0cNt7m+//57+vXr\nZ2h5q014eDgxMTFs27bNcBtm7969/OMf/0Cv12NlZUWnTp1qtILcjYiICH766SdDobFt2zYWL15c\n6za1XZfBwcHs3buX0tJSSktLDYVTZWUlUVFRZGZmAtduPWq12hq3NIUwBmmBEaIebGxseOqpp5g7\ndy6rVq0iKiqKpKQkRo8ejUqlIjIykpEjR6JSqfjoo4/429/+xvz587G0tOSTTz7BysoKf39/7O3t\n6devH2vWrMHLy+uWx+rVqxcqlYpRo0bdtGzq1KkkJyczevRoFEWhW7duPProo1hZWTFw4EBGjBiB\ns7Mzr776KtHR0URFRTFv3rw6naOXlxefffYZ8+bN46233kJRFGxsbHjttdcMI5MefvhhHnzwQRwd\nHRk+fDjnz58HYNKkScyaNYvhw4fTpUsXQytLp06d6hyXhYUF8+bNY86cORQXF2NmZsbs2bNRqVRM\nmjSJo0ePMnToULy8vBg6dGiNVoPf+60PzI3+9a9/3fEz8PDw4K233uKZZ56hsrISHx8f5syZU6fP\nz8bGhq5du3Lu3DmCgoIACA0NZePGjYwYMQKdToeTkxPvvPMOAH/9618NI4nqo2vXrvzpT38iKioK\nvV6Ps7Mz//jHP2rdprbrMjw8nF27dhEZGYmLiwuDBg3i6NGjmJmZMWHCBB577DHgWivb66+/jqWl\nZb3iFeJ+Uym/vxEthBD1dPToUf7617+yY8cOY4cihGhBpA1QCCGEEE2OFDBCCCGEaHLkFpIQQggh\nmhxpgRFCCCFEkyMFjBBCCCGanCY5jDor69bDJu8HR0cr8vJKGmz/4u5JbkyT5MV0SW5Ml+Smblxd\nbW+7TFpgbqDVaowdgrgNyY1pkryYLsmN6ZLc3DspYIQQQgjR5EgBI4QQQogmRwoYIYQQQjQ5UsAI\nIYQQosmRAkYIIYQQTY4UMEIIIYRocqSAEUIIIUSTIwWMEEII0czs2rW9Tut98smHpKam3Hb5q6++\neL9Cuu+kgBFCCCGakbS0VLZt21qndWfPfgkvL+/bLn/vvY/uV1j3XZN8lIAQQgghbu2jj+YSF3ea\nAQNCGT58JGlpqfz73wt5991/kpWVSWlpKY8//hT9+g1g1qynePHFv7Jz53aKi6+SmJhASkoyzz//\nEmFh/Rg9eggbN25n1qynCA3tTXT0UfLz85k792NcXFz45z/fID09jYCA7uzYsY01azY12nlKASOE\nEEI0kBU7LnDkbOZN72s0KqqrlbvaZ2gnNyZFtL/t8ilToli9egVt27YjMfEKCxd+Tl5eLr169WHk\nyDGkpCTzxhuv0q/fgBrbZWZm8MEH8zh4cD/r1v1AWFi/Gsutra355JPP+OyzT9m9ewdeXj5UVJSz\nePHX7Nu3hxUr/ndX53O3pID5nez8UhKyS2jlbIlapTJ2OEIIIcQ96dy5KwC2tnbExZ1m/frVqFRq\nCgsLblq3e/cgANzc3Lh69epNywMDgw3LCwoKSEi4TEBAIABhYf3QaBr3+U5SwPzOhv1X2HMyjXbe\ndkwf5k8bj9s/BVMIIYS4k0kR7W/ZWuLqaktWVlGDH9/MzAyAn3/eQmFhIQsWfE5hYSFPPBF107q/\nL0AU5ebWoRuXK4qCWn3tPZVKhaqR/+MvnXh/58GBfvQL9OJiSiH//PoI32w5y9XSSmOHJYQQQtSZ\nWq2murq6xnv5+fl4enqhVqv55ZcdVFbe++82b28fzp07A8DhwwdvOmZDkwLmdxxszHn1kVD+MjkI\nTxdrdh1P5bVFB9gZk4Jef3f3KoUQQojG1KZNW86dO0tx8fXbQIMHR7B//x5mz34aS0tL3Nzc+Oqr\nJfd0nL59B1BcXMzTT8/kxIkY7Ozs7zX0elEpt2onMnEN2ez2W7NeVbWeHceSWbv3MmUV1bR2t2H6\nMH/a+zRugsR1jdXkKupH8mK6JDemqznkprCwgOjoowwePISsrExmz36a77774b4ew9X19l05pA/M\nbWg1aob3ak3vLu6s2nWRfbHpvLPsGH27eTBxcDvsbcyNHaIQQghhNFZW1uzYsY3vvluKouh57rnG\nnfROWmBucLuq+EJyAct+PkdixlUsdBrG9W/LkB4+aDVyF66xNIf/sTRHkhfTJbkxXZKbuqmtBUZ+\n+9ZRex973nw0lKgR/mjUKpbvuMDfvjzMmSu5xg5NCCGEaHGkgPmd2Ow4vopeQXbprYsStVpFeLA3\n7/4xjMHB3qTnlPDB98dZuOYUOQVljRytEEII0XJJH5jfuVhwhZ8SdvLThd0M9A5jhG8Etjqbm9az\nsTTjkRH+DAr0YtnP5zh6LouTF3MY3deXyF6tMNM27mQ+QgghREsjfWB+R6/oOV96jm+PryOnLBcL\njTlDWw8movUAzDW622yjcCA2nZW7LlJYXIGrgwVThnYkqL1Lg8TYksk9Y9MkeTFdkhvTJbmpG+kD\nU0dqlZr+bXrxZp+XmdhhHFq1lh8vb+VvB95jd/IBqvU3T9KjVqnoF+DJO0/2YXhoK3IKypm36iT/\nXnmCjLwSI5yFEEIIcWcTJoylpKSEpUu/Jjb2ZI1lJSUlTJgwttbtd+3aDsCmTRv45ZedDRbn7cgt\npFvQqrUMbtWP3p492J64m+1Ju1kev4adSXsY2y6SYNeAm6ZMtrLQMnlIBwZ09+S7bec5eTGHM1dy\nGdGrNWPCfDHXyW0lIYQQpicq6rF6b5OWlsq2bVsZPHgIo0bVXug0FClgamGptWCM33AGeIex5co2\n9qYe4ovYZbSxbcUD7UfS0fHm51t4u9rw8uQgjp7L4vvt59l4IIH9selMHtKBnv6ujf6sCCGEEC3L\n449P4513PsTDw4P09DRee+0lXF3dKC0tpaysjBde+AtdunQzrP/2239n8OAhBAUF83//91cqKioM\nD3YE+OmnzaxatRyNRo2vbzteeeX/+OijucTFnearr5ag1+txcHBg/PiHWbjwE06dOkFVVTXjx08i\nMnI0s2Y9RWhob6Kjj5Kfn8/cuR/j4eFxz+cpBUwd2Jvb8rD/g4S36s+GS1uJzjzJJzGL6eLkz7h2\nI/Gx9aqxvkqlIrSTG939nNl48ApbDiXy2dpYOrV2YNqwjni73twxWAghRPOz+sKPxGSeuul9jVpF\n9V0+oibYLYCH2o+57fKBA8PZt28348dPYs+eXxg4MJx27TowcOBgjh07wrff/pe3337/pu22bt2M\nn187nn/+JbZv/4lt27YCUFpayocffoqtrS3PPvskFy9eYMqUKFavXsGMGU/yxReLADh+PJpLly7y\n2WdfUlpayqOPTmbgwMEAWFtb88knn/HZZ5+ye/cOJk2aelfn/ntSwNSDm5UrM7tNZ2hhEmsvbOJM\n7jnicuPp6R7MWL/hOFs61VjfXKfhoYHt6Bfgyf9+va30ty+PMLSnD3/o1xYrC/n4hRBC3F8DB4Yz\nf/6/GT9+Env3/sKsWS/w/fdL+d//llJZWYmFhcUtt7ty5RJBQT0ACA7uYXjfzs6O1157CYCEhMsU\nFOTfcvuzZ88QFBQCgKWlJb6+fiQlJQEQGBgMgJubGwUFBfflPOU36F1oY9eK54OfIi43nrUXN3Ek\nI5qYzBMM8Akjss0QbHTWNdZ3d7TizxMDOX4hm++3neenI0kcPJPBxMHtCOvmgVpuKwkhRLP0UPsx\nt2wtachRSH5+7cjJySIjI52ioiL27NmFi4sbb7wxh7NnzzB//r9vuZ2iXJvvDDA8wLiyspKPPvoX\nX3/9Hc7OLvz1r3++7XFVKhW/H9dcVVVp2J9Gc70f6P0a/CyjkO6SSqWii7M/r4bO5tEuk7E3t2Nn\n0l7+duA9tlzZTnl1xU3bBLV3Yc4TvXhwoB9l5VV8sTGOd5cdIyFdhtIJIYS4f8LC+rN48UIGDBhE\nQUE+3t4+APzyy06qqqpuuU3r1m04ezYOgOjoowCUlBSj0WhwdnYhIyOds2fjqKqqQq1WU11dc2Ru\np05diYk59ut2JaSkJOPj07qhTlEKmHulVqnp5RHCG33+woQOf0Cj1rDh0lb+fmAue1IO3jT02kyr\nYWxfX95+sg89/V25mFLIP78+wjdbznK1tNJIZyGEEKI5GTQo3DBKKDJyNMuXf8sLLzxL167dyMnJ\nYePG9TdtExk5mtOnTzF79tMkJSWgUqmwt3cgNLQ3TzzxCF99tYSpU6OYN+8j2rRpy7lzZ5k370PD\n9oGBQfj7d+LZZ5/khRee5U9/moWlpWWDnaNMZHeDe23WK60qY3viL2xP3E2FvhI3KxfG+t166DXA\nmSu5fPtzPGk5JVhbaHloUDsGBXoZmt3EdTLxk2mSvJguyY3pktzUTW0T2UkBc4P7dVEVlBey+cp2\n9qUeQq/oaWPXigfajaKjY7ub1q2q1rP9WDLr9l6mrKKa1u42TB/mT3sf+3uOozmRL7xpkryYLsmN\n6ZLc1I3RCpj4+HieeeYZHnvsMaZPn87zzz9PXl4eAPn5+QQFBTFnzhw+//xztmzZgkqlYtasWQwa\nNKjW/TaFAuY3GSVZbLi0lZjMa7McdnH2Z5zfzUOvAfKvlrNq10X2x6YD0LebBxMHt8Pexvy+xdOU\nyRfeNEleTJfkxnRJburGKAVMSUkJf/zjH/H19cXf35/p06fXWP7aa68xZcoUHB0dmT17Nt9//z1X\nr15l6tSpbNy4sUaP5Rs1pQLmN1cKE1l7YRPn8y+hQkWoRzBj2t489BrgfHI+3/4UT2LmVSx0Gh7o\n35aIHj5oNS27y5J84U2T5MV0SW5Ml+SmbozyLCSdTseSJUtwc3O7admlS5coKiqie/fuHDp0iAED\nBqDT6XBycsLb25sLFy40VFhG42vXmtnBf+SZwJl42XhwOD2afx58nx/Ob+BqRXGNdTv4OPDmY6FE\nDe+IRq3i+x0X+PtXRzhzJddI0QshhBCmpcHmgdFqtWi1t979N998Y2iRyc7OxsnpeiuEk5MTWVlZ\n+Pv733bfjo5WaLUN92yh2iq+e+Xm1pOB/iHsTTjC8lPr2ZG0hwPpRxjXaTijOkZgob1+u2jSCDtG\n9PNj2ZazbD14hQ++P06/QC8eH9sVN0erBovRlDVkbsTdk7yYLsmN6ZLc3JtGn8iuoqKCY8eO8fe/\n//2Wy+tyRyuvAZ/y3FjNep2tu/B/vTqyJ+UAW65s5/tT69l8biej2g4jzDMUjfp6gTZpkB+9/F34\n9qd49p1I5ciZdEaH+RLZqxVmDVjImRppcjVNkhfTJbkxXZKbujHKLaTbOXLkCN27dze8dnNzIzs7\n2/A6IyPjlredmiMztZaIVgP4R9grRPoOobSqjP+dW81bhz/keOapGsWcr4cdr0X1YObozliYaViz\n+xJvfH6YExeyazmCEEII0Tw1egFz6tQpOnXqZHjdp08fdu3aRUVFBRkZGWRmZtK+/c1PeW7OLLWW\njPUbwd/DXqG/dx+yS3NZEruUD44t4HzeRcN6apWKfgGevPNUGMNDW5FdUMYnq07y75UnyGjAVikh\nhBDC1DTYLaTY2Fjmzp1LSkoKWq2WrVu38umnn5KVlUXr1tenFvby8mLSpElMnz4dlUrF3//+d9Tq\nljnaxt7cjin+DxHRagAbLm4hJusU/45ZRFfnToxrNxJvG08ArCy0TB7SgQHdPfn253hOXszhzJVc\nInu3ZnQfX8x1Lee2khBCiJZJJrK7gSndl7xckMi6i9eHXvfyCGF02+E4Wzoa1lEUhSNnM1m+4wJ5\nReU42ZnzcEQHevq73nLm36bMlHIjrpO8mC7JjemS3NSNzMRbD6Z2USmKwpncc6y9sInU4nS0Kg0D\nffoywjcCG7PrT70uq6hi44EEth5OpKpaoXMbR6YO64i3i3Ute29aTC034hrJi+mS3JguyU3dSAFT\nD6Z6UekVPUfSY/jx8k/kluVhobFgeJvBhLfqj06jM6yXkVvCd9vOc+pSDmqVihB/V4aEeNOxlUOT\nb5Ex1dy0dJIX0yW5MV2Sm7qRAqYeTP2iqtRXGYZeF1eWYK+zZXTb4fTx7GkYeq0oCicu5LB690WS\ns65Nkuftak1EiA9hXd2x0DX66Pn7wtRz01JJXkyX5MZ0SW7qRgqYemgqF1VpVSnbEn5he9IeKvWV\nuFu58od2Iwl06WpoaVEUhfPJBWw/lkx0fBbVegVLcw39unkSHuKNp3PTur3UVHLT0kheTJfkxnRJ\nbupGCph6aGoXVX55AZsvb2N/2hH0ip62dq0Z124UHRz9aqyXV1TO7hOp7DqeQsHVCgC6+DoSEeJD\nYHtnNE1g5FdTy01LIXkxXZIb0yW5qRspYOqhqV5UGcWZrL+0leNZpwDo5tyJP/xu6PVvqqr1RMdn\nsSM6hfikfACc7cwZHOzNgEAv7Kx0N+3bVDTV3DR3khfTJbkxXZKbupECph6a+kV1uSCBdRc3G4Ze\nd3LqQF+vXnR36YJWXbPvS3LmVXbEpHAgNp3yymq0GhWhndyICPHBz8vO5Dr9NvXcNFeSF9MluTFd\nkpu6kQKmHprDRfXb0OstV7ZzqSABAFszG3p79qCvVy/crVxrrF9SVsW+2DR2RqeQnnttRt82HrZE\nhHjTu7M7OjPTmBivOeSmOZK8mC7JjemS3NSNFDD10NwuqtSr6RxIO8Kh9GMUV14rTto7tKWfV2+C\nXAPQacwM6yqKwpmEPHYcS+b4hWwUBawttAzo7sXgEG/cHCyNdRpA88tNcyF5MV2SG9MluakbKWDq\nobleVJX6Kk5kxbI/9TDn8i4A157B1MsjmH5evW/qK5NTUMau4ynsPpFKUUklKiCgnTMRIT5083NC\nbYTbS801N02d5MV0SW5Ml+SmbqSAqYeWcFFlleSwP+0wB9OOUlhx7Vzb2LWin2cvergHYqG1MKxb\nWaXn6NlMdkQnczG1EAA3B0sGB3vTv7snNpZmtzxGQ2gJuWmKJC+mS3JjuiQ3dSMFTD20pIuqWl9N\nbM5Z9qce4nTOORQUdBodPd0C6evVG1+7VjU68l5JL2THsRQOxWVQWaVHp1XTu4s7ESE+tPG4/UV2\nv7Sk3DQlkhfTJbkxXZKbupECph5a6kWVV5bPwbSj7E87Qm5ZHgBe1h709epFL48QrM2sDOteLa1k\n78k0dsYkk5VfBkA7bzsiQnzo6e+GmbZh5pRpqbkxdZIX0yW5MV2Sm7qRAqYeWvpFpVf0nMu9wL7U\nQ5zMPkO1Uo1WrSXYNYC+Xr3o4OBnaJXRKwqxl3LYfiyF2Es5KICdlRkDg7wYHOSNk51F7Qerp5ae\nG1MleTFdkhvTJbmpGylg6kHBWRnDAAAgAElEQVQuquuKKq5yKP0Y+1IPkVmSDYCbpQt9vXrR27MH\ndrrrF1ZmXgk7Y1LYezKN4rIqVCoI7uBKRIg3nds43pc5ZSQ3pknyYrokN6ZLclM3UsDUg1xUN1MU\nhQv5l9mfdpiYzJNU6qtQq9R0d+lCX6/edHbqgFp17bZReWU1h85ksCM6mcSMqwB4OlsREeJD324e\nWJrf/YMkJTemSfJiuiQ3pktyUzdSwNSDXFS1K6ks4XBGDPtTD5NyNQ0AR3MHwrxC6esZiqOFA3Ct\n6LmYWsiO6GSOxGVSrVcw12no29WDiBBvvF1t6n1syY1pkryYLsmN6ZLc1I0UMPUgF1XdKIpCYlEy\n+1IPcTTjOOXVFahQ0dm5I/28ehPg3BmN+toMvgXFFdceJBmTQl5ROQCdWjsQEeJDUAcXtJq6dfqV\n3JgmyYvpktyYLslN3UgBUw9yUdVfWVU50Zkn2Jd6mCuFiQDY6mzo49GTvl69cLNyAaBar+f4+Rx2\nRCcTl3BtpJODjY7BQd4MCvLC3sa81uNIbkyT5MV0SW5Ml+SmbqSAqQe5qO5NytU09qce5nB6NCVV\npQB0dGhHX69eBLl2w+zXRxekZhezMzqFfbFplFVUo1Gr6OHvSkSIDx187G/Z6VdyY5okL6ZLcmO6\nJDd1IwVMPchFdX9UVldyPCuWfamHOJ9/CQBrrRW9PELo69ULLxsPAErLqzh4Op0d0SmkZBcD4ONq\nw5Ae3vTp4oG57vqDJCU3pknyYrokN6ZLclM3UsDUg1xU919mSRb7U49wMP0oRRXXRia1tWtNX6/e\nhLh1x0JrjqIonEvMZ0d0MtHx2egVBUtzLf0DPIkI8cbdyUpyY6IkL6ZLcmO6JDd1IwVMPchF1XCq\n9dWcyj7DvrTDxOXEo6BgoTGnh3sQ/bx60drWB5VKRV5ROb8cT+GX46kUFFcA0LWtE/2DvLE11+Dp\nbI2Dje6+zC0j7p18Z0yX5MZ0SW7qRgqYepCLqnHkluVxIPUIB9KOkleeD4C3jSf9vHoT6h6MlZkl\nVdV6ouOz2H4smfPJBTW2t9Bp8HS2wsPJGk9nq19/rHFztKzzqCZxf8h3xnRJbkyX5KZupICpB7mo\nGpde0ROXG8++1MOcyj6DXtFjptYS7Nadfl69aWfvi0qlIi2nmNziSs5dySU9p5i0nBIy8kqoqq55\n+apVKlwdLfFytsLD2QrP3xU4VhaN9+TslkS+M6ZLcmO6JDd1IwVMPchFZTwF5UUcSj/K/tTDZJXm\nAOBu5Xrt0QUePfDz9qyRm2q9nuyCMtKyS0jLvVbUpOeUkJZTTHFZ1U37t7fWGVpqPH5rtXGyxsnO\nXG5H3QP5zpguyY3pktzUjRQw9SAXlfEpisL5/EvsSz3E8axYqvRVaFQa/F388LTwpLWdD21sW+Fi\n6XTLwkNRFIpKKknLKSYtt8RQ4KTnlJBdUHbT+uZmGjycrGrcivJwtsLd0arBnqzdnMh3xnRJbkyX\n5KZuaitg7v7BNEI0EJVKRUfHdnR0bEdxZQmH06M5lHaUuKwLnOG8YT1LrSVtbH1obedDa9trP04W\nDqhUKuysddhZ6/Bv7Vhj3+WV1WTklpD2a0vNtT9LSMkuJiGj6IY4wNXBEk+n60WN169/2ljK7Sgh\nhDAmaYG5gVTFpsvGwYyYy+dILEq+9lOYTGZpds11zKyvFTN2PobixsHc/o771usVcgrLahQ16TnF\npOaUcLW08qb1ba3M8HT+tX+NkxUeztZ4OVvhZG+BuoXdjpLvjOmS3JguyU3dSAuMaBYszSzo4OhH\nB0c/w3sllaUkFaWQWJRMQlEyiYVJnMk9x5ncc4Z17HW2NVpp2ti1wlZX82GSarUKVwdLXB0s6d6u\n5nGLSipIv6HVJj2nhPPJ+cQn5ddYV6dV4+50/VbUtZFS1350ZhqEEELcH1LAiCbNyswSf6f2+Du1\nN7x3taK4RitNQlEyp7LjOJUdZ1jH0dzBUNS0+fVPazOrWx7D1kqHrZWODj4ONd6vrKomI7f0Wj8b\nQ8tNMem5JSRlXq2xrgpwtrcwFDUBfs50bet0/z4IIYRoYeQW0g2kWc903UtuCsqLSCpKJqEw6Vpr\nTWEyRZU1iwwXC6caRU0rW28stZb1PpZeUcgrLL9e1ORevx1V+OvEfAAvTQ6iq2/TL2LkO2O6JDem\nS3JTNzIKqR7kojJd9zM3iqKQX15Qo5UmsTCZ4qqSGuu5WbkYbju1tvXBx8YLC23tT82uTXFZJfFJ\n+SxcE4uNlRn/fLwXtla6ez0do5LvjOmS3JguyU3dGK2AiY+P55lnnuGxxx5j+vTpVFZW8uqrr5KQ\nkIC1tTXz5s3D3t6e9evX89///he1Ws2kSZOYOHFirfuVAqZlaujcKIpCTllejaImqSiZ0qrrQ69V\nqPCwdqvRUdjbxgudpn6jkjYdTGDVrosEd3Bh1kMBTXoeGvnOmC7JjemS3NSNUTrxlpSUMGfOHMLC\nwgzvrVixAkdHRz788EOWL1/O0aNHCQsLY8GCBaxatQozMzMmTJjAsGHDcHBwqGXvQtx/KpUKF0sn\nXCydCHHrDlybKTi7NOd6K01RMolFKaQVZ3Ao/RgAapUaT2t3w6inNrat8LLxQKu+/dcrsndrTl/O\nJeZ8NruOpxIe7N0o5yiEEM1FgxUwOp2OJUuWsGTJEsN7O3fu5Pnnnwfg4YcfBuDAgQMEBARga3ut\nygoJCSE6OpqIiIiGCk2IOlOr1LhZueJm5UpPj2DgWlGTUZJV49ZT8tUUUq6msT/tCABalQYvG8/r\nw7ltffC0dkej1vy6XxVPjOnCm18cYvn283Rs5YC3i7XRzlMIIZqaBitgtFotWm3N3aekpLB7927e\nf/99XFxc+Nvf/kZ2djZOTtc7Mjo5OZGVldVQYQlxz35rcfG0dqe3Zw/g2pO200sySShM/rWTcBIp\nV9NILEpm76/bmam1+Nh40drOh+4uXenk1IHHRnZmwZpTLF5/mtcf6Skz/wohRB016jBqRVFo27Yt\ns2bNYuHChSxatIguXbrctM6dODpaodU23Jwatd1zE8ZlyrnxwIEgOhpeV1ZXklSQysXcRC7mJXAp\nN4GEgmQuFyayO/kArw58hsj+3biQVsjWgwlsOpzEE+O6GfEM7p4p56Wlk9yYLsnNvWnUAsbFxYXQ\n0FAA+vfvz6effsrgwYPJzr4+m2pmZiZBQUG17icvr6TW5fdCOlaZrqaYG1ucCLJ3Isg+CHyhorqS\n+LwLLIldyrz9X/FK6PM80NeXk+ezWLf7In4eNgT4ORs77HppinlpKSQ3pktyUze1FXmN2l49cOBA\n9uzZA8Dp06dp27YtgYGBnDp1isLCQoqLi4mOjqZnz56NGZYQjUanMaObS2cmdRxHcVUJn8cuRa3R\n89TYrmjUKr7YGFdjrhghhBC31mAtMLGxscydO5eUlBS0Wi1bt27lgw8+4O2332bVqlVYWVkxd+5c\nLCwseOmll5g5cyYqlYpnn33W0KFXiOaqr2cvLhUkcDDtKKvOr2dKp/FMGNyO5Tsu8OWmOGZP6N6k\nh1YLIURDk4nsbiDNeqarueWmorqSD47NJ+VqGo90fphQjxA+XnGC05dzmTq0A0N7tjJ2iHXS3PLS\nnEhuTJfkpm5M5haSEOI6ncaMJ7s9gqXWgv+dW01acTozR3fGxtKMFTsvknzD85SEEEJcJwWMEEbk\nauVMVOeHqdRXsuTUN5hb6Hl8dGeqqvUsWn+aispqY4cohBAmSQoYIYws0LUrw9uEk1Waw9IzKwhs\n50xEiDcp2cWs3HnR2OEJIYRJkgJGCBMwpu1wOjq040T2abYl/sKk8PZ4u1izPTqZ4xey77wDIYRo\nYaSAEcIEaNQaZnSbir3OjnUXN3Pl6hWe+kNXtBo1X26MI/9qubFDFEIIkyIFjBAmwk5ny8xu01Gp\nVHx5+lts7auZFN6Oq6WVfLExDn3TGzAohBANRgoYIUxIOwdfHmo/hqKKq3wZ+y2Dgz3p3s6Z05dz\n2XYkydjhCSGEyZACRggTM9inHyFu3blYcIV1lzbz+KjO2FnrWPXLRRIzZN4IIYQAKWCEMDkqlYpp\nnSbgbuXGjqQ9XCg+y8zRnamqVli0/jTlMrRaCCGkgBHCFFloLXgyIAqdRseyuBW4uVczrGcr0nJK\nWL79vLHDE0IIo5MCRggT5WntzrROEyivrmBx7FLGDvDGx9WGXcdTiY7PMnZ4QghhVFLACGHCeroH\nMdinH+nFGay8sJan/tAFM62arzbFkVckQ6uFEC2XFDBCmLgH24+mrV0bjmYc52L5SSZHtKe4rIrP\nfzwjQ6uFEC2WFDBCmDitWsvMbtOwMbPmh/MbaONXRVB7F+IS8th6KNHY4QkhhFFIASNEE+Bo4cCM\nrlPRK3q+OP0tE4e1wt5Gx+rdl7icVmjs8IQQotFJASNEE9HJqQNj/UaQX17AqkureHx0J6r1CovX\nn6asosrY4QkhRKOSAkaIJmRYm8F0c+7M2bzzXFGOEdmrNRl5pXy3TYZWCyFaFilghGhC1Co1j3Z5\nGGcLJ7Zc2Y5/twrauNuy92QaR85mGjs8IYRoNFLACNHEWJlZ8WRAFFq1lqVnlzNxhCc6MzX/3XyW\nnIIyY4cnhBCNQgoYIZqgVrbePNzxQUqrSlmf8gMPD/GjpLyKJT+eQa+XodVCiOZPChghmqi+XqH0\n9QwlqSiFVPPD9OjoSnxSPhsPJhg7NCGEaHBSwAjRhE3s+ACtbLzYn3aYLj2KcbQ1Z92ey1xMLTB2\naEII0aCkgBGiCdNpzHgiIApLrSXrLq/ngWHOKMq1odWl5TK0WgjRfEkBI0QT52LpzKNdHqZSX8W2\n7LUM6+NBVn4Z3/4cb+zQhBCiwUgBI0QzEODShcg2EWSX5ZLneAhfTxv2x6Zz8HS6sUMTQogGIQWM\nEM3EaL/h+Du2JzYnjq698jDXaVj60zmy8kuNHZoQQtx3UsAI0UyoVWpmdJ2Kg7k9O9N2MHSQBaXl\n1SzZcIZqvd7Y4QkhxH0lBYwQzYitzoYnuk1HrVJzuGQLwV1suJBSwIZ9V4wdmhBC3FdSwAjRzLS1\nb8NDHcZwtbKYUs/DONmZsWH/Fc4n5xs7NCGEuG+kgBGiGRrk3Zee7kEkFCXi3+daR97F689QUlZp\n5MiEEOL+kAJGiGZIpVIxxX88HtbuHM8/QmifKnIKy/hm6zkURR41IIRo+qSAEaKZstCa82S3KMw1\nOs4pu2ndBg7HZbI/VoZWCyGaPilghGjGPKzdmN55EhX6CpTWR7GwUFj2czyZeSXGDk0IIe6JFDBC\nNHMhbt0Jb9Wf7PJsfEOvUF5RxaL1Z6iqlqHVQoimq0ELmPj4eIYOHcqyZcsAePXVVxk7dixRUVFE\nRUWxa9cuANavX8/48eOZOHEiK1eubMiQhGiRHmw3Gj97XxLKz9E+MI/LaYWs33fZ2GEJIcRd0zbU\njktKSpgzZw5hYWE13n/xxRcJDw+vsd6CBQtYtWoVZmZmTJgwgWHDhuHg4NBQoQnR4mjUGmZ2m8Z7\nhz8hTXUUR/d+bNyfQFdfJ/xbOxo7PCGEqLcGa4HR6XQsWbIENze3Wtc7ceIEAQEB2NraYmFhQUhI\nCNHR0Q0VlhAtloO5PY93m4qiKGjaxaAyq2DxhjNcLZWh1UKIpqfBWmC0Wi1a7c27X7ZsGV999RXO\nzs688cYbZGdn4+TkZFju5OREVlZWrft2dLRCq9Xc95h/4+pq22D7FvdGcnNvXF2Dyaoex3cn1+IT\nGk/i/i4s33mRVx7piUqluof9Sl5MleTGdElu7k2DFTC3Mm7cOBwcHOjcuTOLFy9m/vz5BAcH11in\nLnNU5DXgCApXV1uysooabP/i7klu7o++zmHEupznZPZp3Drbsu+kmtXb4xkY6HVX+5O8mC7JjemS\n3NRNbUVeo45CCgsLo3PnzgBEREQQHx+Pm5sb2dnZhnUyMzPveNtJCHH3VCoVUZ0n4WLpTJFtHJau\nOXy3LZ60nGJjhyaEEHXWqAXMc889R1JSEgCHDh2iQ4cOBAYGcurUKQoLCykuLiY6OpqePXs2ZlhC\ntDhWZpY82S0KM7UWM7+TVKqvsniDDK0WQjQdDXYLKTY2lrlz55KSkoJWq2Xr1q1Mnz6dP//5z1ha\nWmJlZcW7776LhYUFL730EjNnzkSlUvHss89iayv3BYVoaD62Xkz2f4ilcStwDIgl4Zg5a3ZfYmJ4\ne2OHJoQQd6RSmuCDURryvqHclzRdkpuG8d3ZH9iXegizgjYUnuvMy5OD6OLrdOcNfyV5MV2SG9Ml\nuakbk+kDI4QwPRM7/IHWtt5U2idg5pbM5z+eoaikwthhCSFEraSAEaKFM9OY8US3KKy0luh84yjQ\nZ/H15rPy1GohhEmTAkYIgbOlE491nYKCHutOJ4m5lMovx1ONHZYQQtyWFDBCCAC6Onci0ncI1dpi\nLDvE8v32eFKzZWi1EMI0SQEjhDAY1XYonZ06gl0metcLLFp/msoqGVothDA9UsAIIQzUKjWPdZmC\no7kDZj7nSSm7wg+/XDR2WEIIcRMpYIQQNdjorHkiYDoatQaLDif5+UQ8py7lGDssIYSoQQoYIcRN\nfO1aM6HDWBRNBbr2x/l802kKi2VotRDCdEgBI4S4pQHeYYS6B6O2KaDM+SRfboqTodVCCJMhBYwQ\n4pZUKhVTOo3H09odrXsip/NPsSM6xdhhCSEEIAWMEKIW5hodT3aLwlxtjq7taZbvjyE586qxwxJC\nCClghBC1c7d2I6rLJFBXo/E7xn9+PE5FZbWxwxJCtHBSwAgh7ijYLYAhrQaitiwh2+4QK3ZeMHZI\nQogWTgoYIUSdjGs3Ej87XzROGfySso8TF7KNHZIQogWTAkYIUScatYYnAqZjrbXGrPU5Pt+5l4Kr\n5cYOSwjRQkkBI4SoM3tzO54MiEKtgupWx/jPpmj0ehlaLYRofFLACCHqpYOjH+PajUSlK+ey7hfW\n7pb+MEKIxicFjBCi3oa2HkRXxy5o7HL59sRaLqYWGDskIUQLIwWMEKLeVCoVMwIexl7riMbjEh//\ntIWMvBJjhyWEaEGkgBFC3BVLrSWzQmZgptKh94nh/XU7KJDnJQkhGsldFzBXrly5j2EIIZoiLxsP\n/jLgKdRqhRLPA3y4eh9lFVXGDksI0QLUWsDMmDGjxuuFCxca/v7mm282TERCiCYlyLMrD3d8AJVZ\nJVlOu5m/Lpqqar2xwxJCNHO1FjBVVTX/J3Xw4EHD3+WptEKI3wzwCSPCZyBqy2IumG3n6y1n5N8I\nIUSDqrWAUalUNV7//h+kG5cJIVq2BzuMIsC5Kxq7PI4Ub2PN7kvGDkkI0YzVqw+MFC1CiNtRq9Q8\n3m0KPtY+aF1S2ZKwnV0xKcYOSwjRTGlrW1hQUMCBAwcMrwsLCzl48CCKolBYWNjgwQkhmhadRsez\nwTN47/A8Cnwu8O2xndjbjCC4g6uxQxNCNDO1FjB2dnY1Ou7a2tqyYMECw9+FEOJGdjpbngt+gveP\nzEfxjWXRditethpCe297Y4cmhGhGai1gli5d2lhxCCGaEU9rd57q/gjzj38Bfsf4ZL0l/2/SQDyd\nrY0dmhCimai1D8zVq1f5+uuvDa+///57xo0bx/PPP092dnZDxyaEaMI6OXVgaqfxqLSVVLU5xEc/\nHJanVwsh7ptaC5g333yTnJwcAC5fvsxHH33EK6+8Qt++fXn77bcbJUAhRNPV1yuUEW0iUFuUUOR+\ngI9WRlNaLhPdCSHuXa0FTFJSEi+99BIAW7duJTIykr59+zJ58mRpgRFC1MkYv+H0cAtEY5tPus0B\nFqw9JRPdCSHuWa0FjJWVleHvhw8fpk+fPobXMqRaCFEXapWaqM6TaGvXBq1zOvEVh/hq01mZ6E4I\ncU9qLWCqq6vJyckhMTGRmJgY+vXrB0BxcTGlpaWNEqAQoukz05jxp+6P4WzhhJn3JQ5nHGW1THQn\nhLgHtRYwTz75JKNGjWLs2LE888wz2NvbU1ZWxtSpU3nggQfuuPP4+HiGDh3KsmXLary/Z88e/P39\nDa/Xr1/P+PHjmThxIitXrrzLUxFCmDIbnTXPBs3EUmOJru1pNp+OZvuxZGOHJYRoomodRj1o0CD2\n7t1LeXk5NjY2AFhYWPCXv/yF/v3717rjkpIS5syZQ1hYWI33y8vLWbx4Ma6urob1FixYwKpVqzAz\nM2PChAkMGzYMBweHezkvIYQJcrdy5Y/dH2Xe8SWYd4jhf3vMcbAxp4e/THQnhKifWltgUlNTycrK\norCwkNTUVMOPn58fqampte5Yp9OxZMkS3Nzcarz/n//8h6lTp6LT6QA4ceIEAQEB2NraYmFhQUhI\nCNHR0fd4WkIIU9XB0Y+ozhNBU4XO/xiLNkUTn5Rv7LCEEE1MrS0wERERtG3b1tBacuPDHL/55pvb\n71irRautufvLly9z9uxZZs+ezfvvvw9AdnY2Tk5OhnWcnJzIysqq/5kIIZqMXh4hZJfmsPHyz2ja\nHWXeah3/b1ovvFxkojshRN3UWsDMnTuXdevWUVxczOjRoxkzZkyNYqO+3n33XV5//fVa16nLyARH\nRyu0Ws1dx3Enrq7ymARTJbkxTXeTl0dcHqRIKWT3lUNUeUfz7x/M+eC5gTjbWzZAhC2XfGdMl+Tm\n3tRawIwbN45x48aRlpbGmjVrmDZtGt7e3owbN45hw4ZhYWFR5wNlZGRw6dIlXn75ZQAyMzOZPn06\nzz33XI05ZTIzMwkKCqp1X3l5JXU+bn25utqSlVXUYPsXd09yY5ruJS/jfceRlp/FeS6RX36C1z/T\n8uq0EKwsav2nSdSRfGdMl+Smbmor8mrtA/MbT09PnnnmGTZv3syIESN466237tiJ90bu7u5s27aN\nFStWsGLFCtzc3Fi2bBmBgYGcOnWKwsJCiouLiY6OpmfPnvXatxCiadKqtTwZ8AjuVq6YeV4mjTMs\nWCMT3Qkh7qxO/80pLCxk/fr1rF69murqav74xz8yZsyYWreJjY1l7ty5pKSkoNVq2bp1K59++ulN\no4ssLCx46aWXmDlzJiqVimeffVaedC1EC2JtZsXT3R/ng2Pzueobx7l4S77cqOOJsV1Qy4SZQojb\nUCm1dDrZu3cvP/zwA7GxsQwfPpxx48bRsWPHxozvlhqy2U2a9UyX5MY03a+8XCpI4JPoRVRXQ+np\n3ozo3pVJ4e3vQ4Qtl3xnTJfkpm5qu4VUawvME088ga+vLyEhIeTm5vLVV1/VWP7uu+/enwiFEC2e\nn30bHunyMF+e/hbLztFsiTbD0cacYaGtjB2aEMIE1VrA/DZMOi8vD0dHxxrLkpNlBk0hxP3Vwz2Q\nnNJc1l3ajFWnGL7fqcXB1pzQTm533lgI0aLUWsCo1WpeeOEFysvLcXJyYtGiRbRp04Zly5axePFi\nHnroocaKUwjRQgxrM5is0hz2px3GvMNJlmzQYmcVjH9rxztvLIRoMWotYD7++GO+/vpr2rVrx/bt\n23nzzTfR6/XY29vLM4uEEA1CpVIx2f9BcsvyOMt51D5xzPtBy2vTQ/BxtTF2eEIIE1HrMGq1Wk27\ndu0AGDJkCCkpKTzyyCPMnz8fd3f3RglQCNHyaNQangiYjqe1Oxr3BCocLvDxihPkFpYZOzQhhImo\ntYBR3TCE0dPTk2HDhjVoQEIIAWCpteTp7o9jq7NB1+YcBZokPl5xgpKySmOHJoQwAXWayO43NxY0\nQgjRkJwtHXm6+wzM1FosO5wktSSVT384RWVVtbFDE0IYWa19YGJiYhg8eLDhdU5ODoMHD0ZRFFQq\nFbt27Wrg8IQQLV0bu1bM6DqFJaeWYtPlOPEndSz5UcefxnWVie6EaMFqLWC2bNnSWHEIIcRtBbp2\n46H2o/nhwo/Ydj3O0RNmfL9dx5QhHaRlWIgWqtYCxtvbu7HiEEKIWoW3GkBWaQ67Uw5g2+UU246q\ncbK1ILJ3a2OHJoQwAnnkqxCiSVCpVEzo8AdyyvI4zVlsOsSzYqcKB1sdfbp4GDs8IUQjq1cnXiGE\nMCaNWsPjXafibeNJteMVLH0S+eLHOOKu5Bo7NCFEI5MCRgjRpFhoLXi6+wzsdXbgFYfaMZ35a06R\nmCEPxhOiJZECRgjR5DhaOPB04Ax0Gh3m7U5Rps3h45UnyC4oNXZoQohGIgWMEKJJamXrzcyu09BT\njX23ExRW5PPxihNcLZWJ7oRoCaSAEUI0Wd1cOjOx4zjKlVIcA0+Sll/AvB9OUlEpE90J0dxJASOE\naNIG+fQlvFV/SlX5uASe5kJKHks2nEGvV4wdmhCiAUkBI4Ro8h5qP4buLl0p1qbj0vU8x+Iz+W5b\nPIoiRYwQzZUUMEKIJk+tUvNY1ym0tvWm2OoyTu2T2RGdwuZDicYOTQjRQKSAEUI0C+YaHX/qPgNH\ncwdKnU5j553Fql0X2R+bZuzQhBANQAoYIUSzYW9uxzOBj2OhsUDvcxxLx0K+2nSW05dlojshmhsp\nYIQQzYqXjQdPdJuOgoKFfwwqixLmrzlFQrpMdCdEcyIFjBCi2ens3JHJHR+kTF+Kc+BJKvSl/Hvl\nCbLyZaI7IZoLKWCEEM1SP+/eDGs9mMLqPLxDz1JQUsZHK05QVFJh7NCEEPeBFDBCiGbrD+0iCXYN\nIKc6lTahl8jILWbeDycpl4nuhGjypIARQjRbapWaR7pMpq1dazK5gG9QOhdTClm07jTVer2xwxNC\n3AMpYIQQzZpOY8Yfuz+Gs4UTGboTtPLP5/iFbL79SSa6E6IpkwJGCNHs2epseCZwBpZaS/IcjuDe\nuoRdx1P58UCCsUMTQtwlKWCEEC2Ch7U7TwVEAVDhfRhHl0rW7L7E3pMy0Z0QTZEUMEKIFqOjY3um\ndhpPWXUZFp2isbKu5uvNZzl5McfYoQkh6kkKGCFEi9LHsycjfYeQX5GHR48zaLR6Plsby+W0QmOH\nJoSoBylghBAtzui2w2/9UF4AAB8wSURBVOnpHkRaWQod+l6hoqqKT1aeIDOvxNihCSHqSAoYIUSL\no1KpmN55Eu3sfblceo7A/tkUllTy0YoTFMpEd0I0CVLACCFaJDO1lqe6P4qbpQvnyo8R3LuEzLxS\n5q8+RVW1zBEjhKlr0AImPj6eoUOHsmzZMgBiYmKYMmUKUVFRzJw5k9zca0+IXb9+PePHj2fixIms\nXLmyIUMSQggDGzNrng6cgbWZFfHspXO3Ki4kF/D99vPGDk0IcQcNVsCUlJQwZ84cwsLCDO999dVX\n/Otf/2Lp0qUEBwezYsUKSkpKWLBgAV9//TVLly7lv//9L/n5+Q0Vlvj/7d15dFT13T/w9525s89k\nMpPMTMhqCJuEBAgECJtUQaxWrCKGIhGe8th61Kc/+1CtpSp6sH1OPO1TK1IX3BAeK4KKUDARZFUW\ngUAgYYcAWUgmy2SdLMzy+yNhTAjQsEzuTPJ+ncNJcufO5TN8JuSd7/d77yWiDqxaC36VNAcyCCg1\n7IAt0oXNOcX4/jBPryYKZH4LMEqlEkuXLoXVavVte+ONNxATEwOv14uysjJEREQgNzcXSUlJMBgM\nUKvVSElJQU5Ojr/KIiLqpF9oPDJufwRN7mbI+u6DRuvGsqzjOFdaJ3VpRHQVot8OLIoQxc6H3759\nO/70pz+hb9++mDZtGtavXw+z2ex73Gw2o7y8/JrHNpm0EEX5La/5EovF4Ldj081hbwJTT+jLTy0T\nUSfUYHX+BkSPPoFT2wbiH1/l4W/P3AGjXiV1eTesJ/Smp2Jvbo7fAszVTJw4ERMmTMBf/vIXvPvu\nu4iKiurweFfuTeLw46mOFosB5eX8rSsQsTeBqSf15Q7rRJyyF+Jg+WH0G6XDyd0x+NMHe/Df6UMh\nlwXfOQ89qTc9DXvTNdcKed36Hblx40YAracwTp06Ffv374fVakVFRYVvH7vd3mHaiYiou7TevTod\n0fpIFHmOIC6xCkfPOfD5tjNSl0ZEl+nWALN48WIcPXoUAJCbm4v4+HgMHToUhw8fRm1tLRoaGpCT\nk4ORI0d2Z1lERD4quRK/Tp4Dg0KPCt1+hEXVI2vPefxwtEzq0oioHb9NIeXl5SEzMxPFxcUQRRHZ\n2dl49dVX8corr0Aul0OtVuO1116DWq3G/PnzMW/ePAiCgKeeegoGA+cFiUg6ZrUJjyc9hr8feAee\n2H1Q1YzBhxuOITJch2iLXuryiAiA4O3KopMA4895Q85LBi72JjD15L7sKtmLFcdWwSiaUbpnOKwh\nIXhpzkho1QqpS+uSntybYMfedE3ArIEhIgomaZGpuDNmAmpcVYgacQJ2hxNL1x2BJ/h+7yPqcRhg\niIiu4ecJ9+J28wBUoRARieeQe7oSa78rkLosol6PAYaI6BrkMjl+mfgobFoLanTHYIyxY+33Z3Hw\nZMW/fzIR+Q0DDBHRv6FVaPDr5LnQiBq4I3OhMNZg6b/yUVblv2tSEdG1McAQEXWBTWvBvMRH4fF6\noL89F03eeiz+4jCaWlxSl0bUKzHAEBF10e1hAzC9//1o8jgRNjQPJVW1+GD90S5dQZyIbi0GGCKi\n6zApehzG9hmFBqES5sRj2Hfcjqw956Uui6jXYYAhIroOgiAgfeDPkWCMR6OmEPrbzmL1ttPIL6iS\nujSiXoUBhojoOokyEY8nZcCsNsFtPQ65qQzvrM1HRXWj1KUR9RoMMEREN8Cg1OOJ5LlQypVQ9zuM\nBqESb355GC0X3VKXRtQrMMAQEd2gKH0fzBk8E264EJKYi/OVlfg4+zgX9RJ1AwYYIqKbMMwyBD+L\nn4oWoQEhiYewM78Em3OKpS6LqMdjgCEiukn33HYnRliH4qKqEtp+R/HptydworBa6rKIejQGGCKi\nmyQIAmbfPgOxhih4TYWQWc/iH2vy4Khrlro0oh6LAYaI6BZQypX4VdIchCgNEGOPo14sxj/WHIbL\n7ZG6NKIeiQGGiOgWMalD8aukxyDK5NAMOIQzlSX4ZNNJqcsi6pEYYIiIbqF4YxxmDZwOj3AR2kEH\nsfXQWezILZG6LKIehwGGiOgWG91nBKbEToJHWQ/NgENY/s1RFFyolbosoh6FAYaIyA+mJdyDIWGD\nAEM5hKhjePOLw6htaJG6LKIegwGGiMgPZIIMcxNnIUJngxhxDrWq03j7qzy4PVzUS3QrMMAQEfmJ\nRlTjiaS50IpaKOOP4ERVAVZtOS11WUQ9AgMMEZEfWbRh+M8hsyETAPXAg9iYewK7j5RKXRZR0GOA\nISLys4HmfpgxYBq88maoBh7AR1l5KLTXS10WUVBjgCEi6gYTo8difNQYCJpaIDYXi7/IRUPTRanL\nIgpaDDBERN3kkf4PoH9oX8jNZajW5eHdtUfg8fDO1UQ3ggGGiKibyGVy/OeQDISpzVBEncaR6jys\n+a5A6rKIghIDDBFRN9IrdXgieS6UMiWUffOw/mAuck6US10WUdBhgCEi6maR+gj8csgsQOaGasAB\nvJeVgwuVDVKXRRRUGGCIiCSQFD4YD/T9KQRlE7y37cPiLw+isdkldVlEQYMBhohIIlPiJiHVNhwy\nfQ0qQ/bi/fVH4PVyUS9RVzDAEBFJRBAEPDroYcQZYiCGl+BQ7V5s2H1O6rKIggIDDBGRhBRyBX6d\nPAchCgMUMcex5uAe5J2plLosooDHAENEJDGjKgRPDJ0LUSZC0S8Xb2fvhr26UeqyiAKaXwPMiRMn\nMHnyZKxYsQIAcOHCBcydOxezZ8/G3LlzUV7eeurg2rVrMX36dMyYMQOrVq3yZ0lERAEpLiQGGbfP\ngCB3wR23F4vX7EfzRbfUZREFLL8FGKfTiUWLFiEtLc237fXXX8cjjzyCFStWYMqUKfjwww/hdDqx\nZMkSfPTRR1i+fDmWLVuG6upqf5VFRBSwRkYMx9S4OyFTO1Fu/B4fZXFRL9HV+C3AKJVKLF26FFar\n1bdt4cKFmDp1KgDAZDKhuroaubm5SEpKgsFggFqtRkpKCnJycvxVFhFRQPtZ37sxJGww5MZK5NRv\nw6Z9RVKXRBSQ/BZgRFGEWq3usE2r1UIul8PtduOTTz7B/fffj4qKCpjNZt8+ZrPZN7VERNTbyAQZ\n/iNxJmwaK0Tbeaw6vBnHzzukLoso4Ijd/Re63W4899xzGDNmDNLS0rBu3boOj3dluNRk0kIU5f4q\nERaLwW/HppvD3gQm9uVWM+DFO/8Lz2X/Dxpij+CtTaH4+6+nIzxUc91HYm8CF3tzc7o9wPzhD39A\nXFwcnn76aQCA1WpFRUWF73G73Y5hw4Zd8xgOh9Nv9VksBpSX1/nt+HTj2JvAxL74hwAVfpWUgb8f\nWIqWqB/w0odGvDBzIhRi1wfO2ZvAxd50zbVCXreeRr127VooFAr85je/8W0bOnQoDh8+jNraWjQ0\nNCAnJwcjR47szrKIiAJSf1MC0gf+HILiIuyh2/HxxnypSyIKGH4bgcnLy0NmZiaKi4shiiKys7NR\nWVkJlUqFjIwMAEBCQgJefvllzJ8/H/PmzYMgCHjqqadgMHBYjYgIACZEjUFR3QV8V7ILex3ZSDhg\nwqTh0VKXRSQ5wRuE5+j5c9iNw3qBi70JTOyL/7k9bry+fynO1J2B+0JfPPuTXyAh0vhvn8feBC72\npmsCZgqJiIiun1wmxxPDHoNRNEHe5wwWf5uFmoYWqcsikhQDDBFRENAptPjNiHkQoURLnwN4ff02\nuNweqcsikgwDDBFRkIjQWfF48qMQBC/KQrZj+ZZcqUsikgwDDBFREBkSfjt+Fn8PBGUzfnBuwI7D\nhVKXRCQJBhgioiBzT/wkJJuGQaavwSfHP8e50lqpSyLqdgwwRERBRhAE/HLoI7AqIyEzl+Bv275A\nfeNFqcsi6lYMMEREQUghE/FM6jyooENL+BH8b1Y2PJ6guyoG0Q1jgCEiClJGlQH/b+Q8yCBHqf57\nLN++T+qSiLoNAwwRURCLC4nGowNnQJC7sdv5L3x/5KzUJRF1CwYYIqIglxadgvGWiZCpG/F/Jz/F\n+XIu6qWejwGGiKgHSB9yL2JV/SEYqvC/3/0fnE0uqUsi8isGGCKiHkAmyPDMmDnQIQwXjQX4y6Yv\nuaiXejQGGCKiHkIlV+LZMY9D5lahVLMPf1v3DW83QD0WAwwRUQ9i0ZrxePJjEADsdn6F//7yHXyx\nK59TStTjMMAQEfUwybb+mD3gUWhlBrjNBdjU8DF+99U7WPbtQVTUNEpdHtEtIUpdABER3XppMcm4\nd9gYfJmzGf86swmNlnPY4zmPXRtikahLxc9SByG+T4jUZRLdMAYYIqIeSpTJMSluDCbEpGJXyT6s\nPbURDbZzOOopRN6WaMQKw3DfyEFI7hcGmSBIXS7RdWGAISLq4eQyOcZHj0Za5EjsKd2Pdac2ojbi\nPIo9RXhr70GYtifinhEDMDYxAkqFXOpyibqEAYaIqJeQy+QYGzkKoyNGYE9pDtaf3ojqiPOo9RTh\nn0fy8cXOgbgruR9+khKFEK1S6nKJrokBhoiol2kNMqkYHZGCPaX7sf7MJlRHnIfbWoQN509gw/4E\njBt4G6akxqBPmE7qcomuiAGGiKiX6jgisx9fF3yLqohzgLUQ39tjsO2jeAyNi8Y9o2PRP9oIgetk\nKIAwwBAR9XKdgszZ1iAj2gqRXxaDg5/FIz7cgqmjYjFioAVyGa/AQdJjgCEiIgA/BplRbVNLWWc3\noyriHBS2IhSVRePtDeUI2xKKu1NjMD65DzQq/ggh6fDdR0REHYgyEeMiR/tGZNoHmfryGPxzezXW\nfFeAScMjMXlEDEwGldQlUy/EAENERFfUIchc2I+sc5tRZT0LnbUQqIjF1/vr8c0PhRg92Iapo2IR\nY9VLXTL1IgwwRER0TaJMxLio0Rjdp12QCS+APvw8xOp47DzeiJ15pUi8zYSpo2KRGG/mgl/yOwYY\nIiLqksuDzNdnv4Uj9BT0KWehre+L/BORyP/MgSiLDlNTYzF6sA0KkQt+yT8Er9frlbqI61VeXue3\nY1ssBr8en24cexOY2JfA5e/euDwu7L6wD1lnN8PRXA1REBHaPADF+RHwXFTCqFdi8oho3DEsCnqN\nwm91BCN+33SNxWK46mMMMJfhmypwsTeBiX0JXN3VmysFGZt3EIrybGhyKqBUyDAhORJTUmNgDdX4\nvZ5gwO+brrlWgOEUEhER3RRRJmJ81BiM6TPSF2SKm/OgSD6GBFkiio9E4Nv9RdicU4QRA1qvJ5MQ\nZZS6bApyDDBERHRLtA8yuy7sQ/bZzTjTnAvFoCNIUSfDfrwP9h0vx77j5egXbcTU1FgM7x8OmYwL\nfun6McAQEdEtJcpETGg3IpN9djOOOvdDEadA2pDhqCmIxpFTNThVdBhWkwZ3p8ZgXFIfqHgnbLoO\nXANzGc5LBi72JjCxL4ErUHpzsW2NTHbbGhmFTIEU80g0F8dhb14NXG4v9BoFJg2Pwl0jomHU9fw7\nYQdKbwIdF/FeB76pAhd7E5jYl8AVaL1pDTJ7kX12iy/IjLaOAsoTsPNAFRqaXBDlMqQl2nD3qFhE\nhffcO2EHWm8C1bUCjF9P0D9x4gQmT56MFStW+LZ9/PHHSExMRENDg2/b2rVrMX36dMyYMQOrVq3y\nZ0lERCQRhUzEhKg0LEx7DjMHPgidQovvSr/HHu8/MfGnNZgxORrmEBV2HLqAF9/bg9dX5eLoOQeC\n8Pds6gZ+WwPjdDqxaNEipKWl+batWbMGlZWVsFqtHfZbsmQJVq9eDYVCgYcffhhTpkxBaGiov0oj\nIiIJXQoyY/qkYlfJXmSf24ytxTugkO3GxDvTYL04BNtzKnHodOufWJseU0bGIL5PCCyhGl4cjwD4\nMcAolUosXboUS5cu9W2bPHky9Ho91q1b59uWm5uLpKQkGAytw0QpKSnIycnBnXfe6a/SiIgoAChk\nIiZGpyEt8scg823hdihluzBhTBruV6RgR04l9p8ox/vrjwIABADmEDVsZg2sJi1sJg2sJg1sJi3D\nTS/jtwAjiiJEsePh9frON/qqqKiA2Wz2fW02m1FeXn7NY5tMWoii/1arX2vOjaTF3gQm9iVwBUtv\nptvuxrTkn2BLwU58eSQb357fju/ku3H3qImYdf84HDpah+LyepRUNOBCRQOOnHXgyFlHh2MIAmAJ\n1SAyXI8+4TpEWnS+zyPCtFD48efGjQiW3gSqgDuNuitznQ6H029/PxdWBS72JjCxL4ErGHsz3JiC\nIaOTsavkB2Sf24J1xzch++Q2jIsajduHxOMnugiEa8LgdgmwVzeirMqJMocTdkcjyhyNsDucOHiy\nHAdPdvxFuP3Ijc2k9Y3aWE0aSUZugrE3UgjoK/FarVZUVFT4vrbb7Rg2bJiEFRERkZRap5bGIi1y\nlC/IbCn8DlsKvwMAyAQZLJow2LRWROisiLjNisREC2zaeGhENZpb3O1CzY/hpszhvOrITViIukOo\nsZm0sJk1CDdyWipQSR5ghg4dihdeeAG1tbWQy+XIycnBggULpC6LiIgk1j7IHK86iVKnHaUNdpT5\nPpbjUEV+h+cYlSGI0Flbw43eigSrBeN0kTAqQyAIQqdw0zpq0/Vw07rmhuEmEPjtOjB5eXnIzMxE\ncXExRFGEzWbD2LFjsXPnThw8eBBJSUkYNmwYnnvuOWRlZeH999+HIAiYPXs2pk2bds1j8zowvRN7\nE5jYl8DVk3vj9XpRf7EBpQ1lKHWWo6zB7gs4jubqTvur5WrYdBZEaK2I0Fph01kRobUgXBMGuax1\nbUxTiwv2doGmfbipqW/pdMxL4cYXaq4j3PTk3txKvJDddeCbKnCxN4GJfQlcvbU3Ta5m2BvLfaM0\nl0Zt7M4KuL3uDvvKBTksmrAfR210Vti0Fti0VqhF1Y/HvFK4qXKirLrxusONJVSDPhHGXtmb6xXQ\na2CIiIhuJbWoQqwhGrGG6A7b3R43KpuqUNo2WlPWUO4btSl12jsdJ1RlbB2xaRdu+sdbMWKgBYLw\n4w0orxVu8s86kH+FaSmTQQWDVgmTXoVQvRKhehVCDe0+16ug1yogE3ijy6thgCEiol5BLpPDqrXA\nqrUgGYm+7V6vF7Utdb61Ne2npI45TuKY42SH42hEDSK0lrZpqLaAY7BiuCUMcpm1w75XCze1jRdR\nUtGAc6VXH4WRywQY9UoYdW3BxqBqCzeXgk9r6NGpxQ6BqrdggCEiol5NEAQYVSEwqkIwwNSvw2NN\nrqZ201DlbSM3dpyrK0JB7fkO+4pCa0CyaS0dp6TCLYi1dZwKsVgMsNtr4Wx2obquGdX1Laiub277\n0+7zuhacL6tDwYWrr/YQ5QJC9SoY243edBzVUcGkV0Kj6llBhwGGiIjoKtSiGnEhMYgLiemw3e1x\no7yxssMZUZfW2pQ0lAKXXY/VrDa1LR5uXUjczxMDsVkNkyoUURY9oixXr8Hr9aK+8SKq61tQU98M\nR/uQ0y78FJTUweOtvepxlKLMF26MvhGczqFHowqOaMBFvJfprYveggF7E5jYl8DF3nQ/r9eLmpba\nTutsyhrsqGnpHC4ECAhVGRGuMcOsNiFMY0aY2oQwtRnhGjOMqhDIhK6dqu3xelHnvIia9iM5dT9+\n7mjbXtvQgmv95Fcp5b5RmyuO7LSN6qgU/r+yMRfxEhERdQNBaA0koSojBpn7d3is0dWI0oZylDnt\naJTVo7CyDBWNVahsqsKp6gJ4cabT8eSCHCZ1KMLVlwUcjRlhajNClHrftJBMEGDUKWHUKTtNWbXn\n8XhR62zxTVH9OHXVMfTYq5y41giHRiUiVK/EyIFWPDix7w39e90MBhgiIqJuoBE1iDfGIt4Y22l0\nzOVxoaqpGpVNVahqdKCiqQqVjVWoamr9/PKFxJcoZCLMajPCNK2jNmGXhRydqO207kUmE3wjKoi4\ner0utwe1DS2Xrc9pH3paPxZXNNySf5/rxQBDREQkMVEmwqoNh1UbfsXHW9wtrWGmXaipbHSgqu1j\n2RVOAwcAtVx1hZGbtrCjMUMjqq9ek1wGc4ga5pCr7yMlBhgiIqIAp5QrEaGzIUJnu+Ljja4mX8C5\nfBSnsqmqdWHxFWhFjW866vLRmzC1CUq50p8v66YwwBAREQU5jahGlL4PovR9Oj3m9XrR4HK2hRlH\nh6mpykYHShvKUFhXfMXjGhT6q4zemGBSm6CQSRcjGGCIiIh6MEEQoFfooFfoOp0ODly6kF9928hN\nFSouCznn64pw9rJr3gCtZ1AZVSEYaRuGB/vd1x0vpQMGGCIiol6s9UJ+BhhVBvQ1xnV63OP1oKa5\n1jc9dWkUp7JtBMfR1Pnmmd2BAYaIiIiuSibIYFKHwqQORX90/+nSV9O1q+MQERERBRAGGCIiIgo6\nDDBEREQUdBhgiIiIKOgwwBAREVHQYYAhIiKioMMAQ0REREGHAYaIiIiCDgMMERERBR0GGCIiIgo6\nDDBEREQUdBhgiIiIKOgwwBAREVHQEbxer1fqIoiIiIiuB0dgiIiIKOgwwBAREVHQYYAhIiKioMMA\nQ0REREGHAYaIiIiCDgMMERERBR0GmHb+/Oc/Iz09HTNnzsShQ4ekLofaee2115Ceno7p06fjm2++\nkbocaqepqQmTJ0/GF198IXUp1M7atWsxbdo0PPTQQ9i6davU5RCAhoYGPP3008jIyMDMmTOxY8cO\nqUsKaqLUBQSKH374AefOncPKlStx+vRpLFiwACtXrpS6LAKwe/dunDx5EitXroTD4cCDDz6Iu+++\nW+qyqM1bb70Fo9EodRnUjsPhwJIlS/D555/D6XRi8eLFmDRpktRl9Xpffvkl4uPjMX/+fJSVlWHO\nnDnIysqSuqygxQDTZteuXZg8eTIAICEhATU1Naivr4der5e4MkpNTUVycjIAICQkBI2NjXC73ZDL\n5RJXRqdPn8apU6f4wzHA7Nq1C2lpadDr9dDr9Vi0aJHUJREAk8mE48ePAwBqa2thMpkkrii4cQqp\nTUVFRYc3k9lsRnl5uYQV0SVyuRxarRYAsHr1akycOJHhJUBkZmbi+eefl7oMukxRURGamprwxBNP\nYNasWdi1a5fUJRGA++67DyUlJZgyZQpmz56N3//+91KXFNQ4AnMVvMNC4Nm0aRNWr16NDz74QOpS\nCMCaNWswbNgwxMTESF0KXUF1dTXefPNNlJSU4LHHHsOWLVsgCILUZfVqX331FSIjI/H+++/j2LFj\nWLBgAdeO3QQGmDZWqxUVFRW+r+12OywWi4QVUXs7duzA22+/jffeew8Gg0HqcgjA1q1bUVhYiK1b\nt6K0tBRKpRIREREYO3as1KX1emFhYRg+fDhEUURsbCx0Oh2qqqoQFhYmdWm9Wk5ODsaPHw8AGDRo\nEOx2O6fDbwKnkNqMGzcO2dnZAID8/HxYrVaufwkQdXV1eO211/DOO+8gNDRU6nKozeuvv47PP/8c\nn332GWbMmIEnn3yS4SVAjB8/Hrt374bH44HD4YDT6eR6iwAQFxeH3NxcAEBxcTF0Oh3Dy03gCEyb\nlJQUJCYmYubMmRAEAQsXLpS6JGqzYcMGOBwOPPPMM75tmZmZiIyMlLAqosBls9kwdepUPPLIIwCA\nF154ATIZf1+VWnp6OhYsWIDZs2fD5XLh5ZdflrqkoCZ4udiDiIiIggwjOREREQUdBhgiIiIKOgww\nREREFHQYYIiIiCjoMMAQERFR0GGAISK/KioqwpAhQ5CRkeG7C+/8+fNRW1vb5WNkZGTA7XZ3ef9f\n/OIX2LNnz42US0RBggGGiPzObDZj+fLlWL58OT799FNYrVa89dZbXX7+8uXLecEvIuqAF7Ijom6X\nmpqKlStX4tixY8jMzITL5cLFixfx0ksvYfDgwcjIyMCgQYNw9OhRLFu2DIMHD0Z+fj5aWlrw4osv\norS0FC6XCw888ABmzZqFxsZG/Pa3v4XD4UBcXByam5sBAGVlZfjd734HAGhqakJ6ejoefvhhKV86\nEd0iDDBE1K3cbjc2btyIESNG4Nlnn8WSJUsQGxvb6eZ2Wq0WK1as6PDc5cuXIyQkBH/961/R1NSE\ne++9FxMmTMDOnTuhVquxcuVK2O123HXXXQCAr7/+Gn379sUrr7yC5uZmrFq1qttfLxH5BwMMEfld\nVVUVMjIyAAAejwcjR47E9OnT8cYbb+CPf/yjb7/6+np4PB4Arbf3uFxubi4eeughAIBarcaQIUOQ\nn5+PEydOYMSIEQBab8zat29fAMCECRPwySef4Pnnn8cdd9yB9PR0v75OIuo+DDBE5HeX1sC0V1dX\nB4VC0Wn7JQqFotM2QRA6fO31eiEIArxeb4d7/VwKQQkJCVi/fj327t2LrKwsLFu2DJ9++unNvhwi\nCgBcxEtEkjAYDIiOjsa2bdsAAAUFBXjzzTev+ZyhQ4dix44dAACn04n8/HwkJiYiISEBBw4cAABc\nuHABBQUFAIB169bh8OHDGDt2LBYuXIgLFy7A5XL58VURUXfhCAwRSSYzMxOvvvoq3n33XbhcLjz/\n/PPX3D8jIwMvvvgiHn30UbS0tODJJ59EdHQ0HnjgAWzevBmzZs1CdHQ0kpKSAAD9+vXDwoULoVQq\n4fV68fjjj0MU+d8eUU/Au1ETERFR0OEUEhEREQUdBhgiIiIKOgwwREREFHQYYIiIiCjoMMAQERFR\n0GGAISIioqDDAENERERBhwGGiIiIgs7/B24BqrpTAuY8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "flxmFt0KKxk9" + }, + "cell_type": "markdown", + "source": [ + "## Linear Scaling\n", + "It can be a good standard practice to normalize the inputs to fall within the range -1, 1. This helps SGD not get stuck taking steps that are too large in one dimension, or too small in another. Fans of numerical optimization may note that there's a connection to the idea of using a preconditioner here." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Dws5rIQjKxk-", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def linear_scale(series):\n", + " min_val = series.min()\n", + " max_val = series.max()\n", + " scale = (max_val - min_val) / 2.0\n", + " return series.apply(lambda x:((x - min_val) / scale) - 1.0)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "MVmuHI76N2Sz" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Normalize the Features Using Linear Scaling\n", + "\n", + "**Normalize the inputs to the scale -1, 1.**\n", + "\n", + "**Spend about 5 minutes training and evaluating on the newly normalized data. How well can you do?**\n", + "\n", + "As a rule of thumb, NN's train best when the input features are roughly on the same scale.\n", + "\n", + "Sanity check your normalized data. (What would happen if you forgot to normalize one feature?)\n" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "yD948ZgAM6Cx", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 661 + }, + "outputId": "a974da45-a5d5-43d5-cca5-787e8b7c9a8c" + }, + "cell_type": "code", + "source": [ + "def normalize_linear_scale(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized linearly.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + " processed_features[\"total_rooms\"] = linear_scale(examples_dataframe[\"total_rooms\"])\n", + " processed_features[\"total_bedrooms\"] = linear_scale(examples_dataframe[\"total_bedrooms\"])\n", + " processed_features[\"population\"] = linear_scale(examples_dataframe[\"population\"])\n", + " processed_features[\"households\"] = linear_scale(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = linear_scale(examples_dataframe[\"median_income\"])\n", + " processed_features[\"rooms_per_person\"] = linear_scale(examples_dataframe[\"rooms_per_person\"])\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize_linear_scale(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.005),\n", + " steps=2000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 167.29\n", + " period 01 : 115.83\n", + " period 02 : 105.11\n", + " period 03 : 89.40\n", + " period 04 : 78.46\n", + " period 05 : 75.63\n", + " period 06 : 74.03\n", + " period 07 : 72.82\n", + " period 08 : 71.96\n", + " period 09 : 71.45\n", + "Model training finished.\n", + "Final RMSE (on training data): 71.45\n", + "Final RMSE (on validation data): 72.14\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8VfXh//HXTW5C9r43ISAbEmaA\nJDIVWTKdKFUQR9H+2kK1ShXtV20VF62gooCjKgq1VRD3QBFRUBkhIcywZ4DsPUhy7/n9gaZEIATI\nzbkh7+fj0ceDu85533ygeXs+55yPxTAMAxEREZFGxMPsACIiIiLnSgVGREREGh0VGBEREWl0VGBE\nRESk0VGBERERkUZHBUZEREQaHavZAUTcWUxMDK1atcLT0xMAh8NBYmIiDz/8MH5+fue93ffee4/x\n48ef8vzSpUt56KGHePnllxk8eHD18+Xl5fTv358rr7ySZ5555rz3W1cHDx7kqaeeYt++fQD4+voy\ndepUhg0b5vJ9n4t58+Zx8ODBU34ma9euZfLkybRs2fKUz3z55ZcNFe+CHD58mKFDh9K2bVsADMMg\nIiKC//u//6NLly7ntK1Zs2YRHR3NzTffXOfPfPTRRyxZsoSFCxee075EGooKjMhZLFy4kKioKAAq\nKiq49957eeWVV7j33nvPa3tZWVn861//Om2BAWjevDmffvppjQLz7bffEhQUdF77Ox9/+ctfuOaa\na3j55ZcBSE1N5bbbbuOLL76gefPmDZbjQjRv3rzRlJUz8fT0rPEdPv/8c6ZMmcKyZcvw9vau83am\nTZvmingiptIUksg58Pb25rLLLmP79u0AHD9+nEcffZQRI0YwatQonnnmGRwOBwBpaWncdNNNjBw5\nkmuuuYZVq1YBcNNNN3HkyBFGjhxJRUXFKfvo3bs3a9eupaysrPq5zz//nAEDBlQ/rqio4IknnmDE\niBEMGTKkumgApKSkcP311zNy5EhGjx7Njz/+CJz4L/qBAwfy9ttvc9VVV3HZZZfx+eefn/Z77ty5\nk7i4uOrHcXFxLFu2rLrIvfTSSwwaNIhrr72WV199lSFDhgDw4IMPMm/evOrPnfz4bLmeeuopbrnl\nFgA2bNjAuHHjGD58OOPHj+fQoUPAiSNRf/7znxk8eDC33HILx44dO8uInd7SpUuZOnUqt912G//4\nxz9Yu3YtN910E/fcc0/1L/svvviCsWPHMnLkSG699VYOHjwIwIsvvsjDDz/MDTfcwIIFC2ps9557\n7uGNN96ofrx9+3YGDhyI0+nkueeeY8SIEYwYMYJbb72VjIyMc849evRoysvL2bt3LwDvvvsuI0eO\nZMiQIdx3332Ul5cDJ37uTz/9NFdddRVffPFFjXE4099Lp9PJ448/zhVXXMENN9xAWlpa9X7XrVvH\nddddx+jRoxk1ahRffPHFOWcXqXeGiJxRp06djKNHj1Y/zs/PNyZOnGjMmzfPMAzDeOWVV4y77rrL\nqKysNMrKyoxx48YZH374oeFwOIxRo0YZn3zyiWEYhrFp0yYjMTHRKCoqMtasWWMMGzbstPt7//33\njenTpxt/+ctfqj9bVFRkDB061Fi8eLExffp0wzAM46WXXjJuu+024/jx40ZJSYlx7bXXGitWrDAM\nwzDGjh1rfPrpp4ZhGMYHH3xQva9Dhw4ZXbp0MRYuXGgYhmF8/vnnxvDhw0+b409/+pMxePBg4623\n3jJ2795d47UdO3YYCQkJRmZmplFZWWn84Q9/MAYPHmwYhmFMnz7dmDt3bvV7T35cW66uXbsaS5cu\nrf6+iYmJxurVqw3DMIxPPvnEuO666wzDMIxFixYZEydONCorK43c3Fxj8ODB1T+Tk9X2M/7l59yz\nZ09j37591e/v3r278eOPPxqGYRjp6elGfHy8sX//fsMwDOP11183brvtNsMwDGPOnDnGwIEDjZyc\nnFO2+9lnnxkTJ06sfvzCCy8YM2bMMHbu3GlceeWVRkVFhWEYhvH2228bH3zwwRnz/fJz6dy58ynP\nJyYmGnv27DHWr19v9OvXzzh27JhhGIbxyCOPGM8884xhGCd+7ldddZVRXl5e/Xju3Lm1/r1cuXKl\nceWVVxrFxcVGWVmZccMNNxi33HKLYRiGcf311xtr1641DMMw9u3bZ9x33321ZhdpCDoCI3IWkyZN\nYuTIkQwdOpShQ4fSt29f7rrrLgBWrlzJ+PHjsVqt+Pj4cNVVV/HDDz9w+PBhsrOzGTNmDADdu3cn\nOjqazZs312mfY8aM4dNPPwVg+fLlDB48GA+P//1z/fbbb5kwYQLe3t74+flxzTXX8NVXXwHw4Ycf\nMmrUKADi4+Orj14AVFVVcf311wPQtWtXjhw5ctr9//Of/2TixIl88sknjB07liFDhvCf//wHOHF0\nJDExEZvNhtVqZezYsXX6TrXlqqysZPjw4dXbj4yMrD7iNHbsWA4ePMiRI0dISkpi+PDhWK1WQkND\na0yz/drRo0cZOXJkjf+dfK5MmzZtaNOmTfVjHx8f+vXrB8APP/xAnz59aN26NQA33ngja9eupaqq\nCjhxRCosLOyUfV5xxRVs27aN/Px8AL7++mtGjhxJUFAQubm5fPLJJxQUFDBp0iSuvfbaOv3cfmEY\nBu+++y6RkZG0adOGFStWMHr0aCIjIwG4+eabq/8OAPTr149mzZrV2EZtfy/Xr1/PoEGD8Pf3x8fH\np3qsAMLDw/nwww/Zs2cPbdq0YdasWeeUXcQVdA6MyFn8cg5Mbm5u9fSH1Xrin05ubi7BwcHV7w0O\nDiYnJ4fc3FwCAwOxWCzVr/3ySywiIuKs+xwwYAAPP/ww+fn5fPbZZ/zxj3+sPqEWoKioiKeffprZ\ns2cDJ6aUevToAcAnn3zC22+/TUlJCU6nE+Ok5c48PT2rTz728PDA6XSedv/NmjVj8uTJTJ48mcLC\nQr788kueeuopWrZsSUFBQY3zccLDw8/6feqSKyAgAIDCwkIOHTrEyJEjq1/39vYmNzeXgoICAgMD\nq58PCgqipKTktPs72zkwJ4/brx/n5eXV+I6BgYEYhkFeXt5pP/sLPz8/+vfvz8qVK4mPj6ewsJD4\n+HgsFgsvvvgib7zxBjNmzCAxMZHHHnvsrOcTORyO6p+DYRh06NCBefPm4eHhQVFREV9//TWrV6+u\nfr2ysvKM3w+o9e9lQUEBdru9xvO/eOqpp5g/fz533HEHPj4+3HfffTXGR8QMKjAidRQWFsakSZP4\n5z//yfz58wGIiIio/q9tgPz8fCIiIggPD6egoADDMKp/WeTn59f5l72XlxeDBw/mww8/5MCBA/Tq\n1atGgbHb7fz2t7895QhERkYGDz/8MIsXL6Zz587s37+fESNGnNP3zM3NZfv27dVHQIKCghg/fjyr\nVq1i586dBAYGUlRUVOP9v/h1KSooKDjnXHa7nXbt2rF06dJTXgsKCjrjvutTeHg4KSkp1Y8LCgrw\n8PAgNDT0rJ8dMWIEX3/9NXl5eYwYMaJ6/Pv27Uvfvn0pLS1l5syZPPvss2c9kvHrk3hPZrfbue66\n65g+ffo5fa8z/b2s7WcbERHBI488wiOPPMLq1av505/+xGWXXYa/v3+d9y1S3zSFJHIO7rjjDlJS\nUli3bh1wYspgyZIlOBwOSktL+eijjxg0aBAtW7YkKiqq+iTZ5ORksrOz6dGjB1arldLS0urpiDMZ\nM2YMr7322mkvXR46dCiLFy/G4XBgGAbz5s3j+++/Jzc3Fz8/P9q1a0dVVRXvvvsuwBmPUpxOeXk5\nd999d/XJnQAHDhwgNTWVhIQEevXqRVJSErm5uVRVVfHhhx9Wv89ms1Wf/Hno0CGSk5MBzilXXFwc\nWVlZpKamVm/n/vvvxzAMevbsyYoVK3A4HOTm5vL999/X+XudiwEDBpCUlFQ9zfXf//6XAQMGVB95\nq83gwYNJSUlh+fLl1dMwq1ev5rHHHsPpdOLn50dsbGyNoyDnY8iQIXz11VfVRWP58uW8+uqrtX6m\ntr+XvXr1YvXq1ZSVlVFWVlZdnCorK5k0aRKZmZnAialHq9VaY0pTxAw6AiNyDgICAvjd737HzJkz\nWbJkCZMmTeLQoUOMGTMGi8XCyJEjGTVqFBaLhdmzZ/O3v/2Nl156CV9fX1544QX8/PyIiYkhODiY\nAQMG8MEHHxAdHX3afV166aVYLBZGjx59ymsTJkzg8OHDjBkzBsMw6NatG7fddht+fn5cfvnljBgx\ngvDwcB588EGSk5OZNGkSc+bMqdN3jI6OZv78+cyZM4cnnngCwzAICAjgoYceqr4y6Te/+Q3XXXcd\noaGhXHnllezatQuA8ePHM3XqVK688kq6dOlSfZQlNja2zrl8fHyYM2cOM2bMoKSkBC8vL+655x4s\nFgvjx48nKSmJYcOGER0dzbBhw2ocNTjZL+fA/No//vGPs/4MoqKieOKJJ/jjH/9IZWUlLVu2ZMaM\nGXX6+QUEBNC1a1d27NhBz549AUhMTOSzzz5jxIgReHt7ExYWxlNPPQXAAw88UH0l0bno2rUrv//9\n75k0aRJOp5Pw8HAee+yxWj9T29/LwYMHs3LlSkaOHElERASDBg0iKSkJLy8vbrjhBm6//XbgxFG2\nhx9+GF9f33PKK1LfLMbJE9EiIucoKSmJBx54gBUrVpgdRUSaEB0DFBERkUZHBUZEREQaHU0hiYiI\nSKOjIzAiIiLS6KjAiIiISKPTKC+jzso6/WWT9SE01I+8vFKXbV/On8bGPWlc3JfGxn1pbOrGZgs8\n42s6AvMrVqun2RHkDDQ27knj4r40Nu5LY3PhVGBERESk0VGBERERkUZHBUZEREQaHRUYERERaXRU\nYERERKTRUYERERGRRkcFRkRERBodFRgREZGLzMqV39TpfS+8MIsjR9LP+PqDD95XX5HqnQqMiIjI\nReTo0SMsX76sTu+9555pREe3OOPrzzwzu75i1btGuZSAiIiInN7s2TPZvn0rl12WyJVXjuLo0SM8\n//w8nn76cbKyMikrK+O3v/0dAwZcxtSpv+O++x7g22+/oaSkmIMHD5Cefpi7755Gv34DGDNmKJ99\n9g1Tp/6OxMQ+JCcnkZ+fz8yZzxEREcHjjz/CsWNH6d69BytWLOeDDz5vsO+pAiMiIuIi763Yzfq0\nzFOe9/S04HAY57XNxFg744d0OOPrN988iaVL36Nt2/YcPLifefP+RV5eLpde2pdRo8aSnn6YRx55\nkAEDLqvxuczMDJ59dg5r1vzIRx+9T79+A2q87u/vzwsvzGf+/Bf5/vsVREe3pKLiOK++uoAffljF\ne+/957y+z/lSgTlJTlkuWZlHsVmamx1FRETkgnXu3BWAwMAgtm/fyscfL8Vi8aCwsOCU9/bo0RMA\nu91OcXHxKa/HxfWqfr2goIADB/bRvXscAP36DcDTs2HXd1KBOcln+75mXUYyM/o9RKhPiNlxRESk\nkRs/pMNpj5bYbIFkZRW5fP9eXl4AfP31lxQWFjJ37r8oLCzkzjsnnfLekwuIYZx6dOjXrxuGgYfH\niecsFgsWi6W+49dKJ/GepE3QJRiGwcasLWZHEREROS8eHh44HI4az+Xn59O8eTQeHh58990KKisr\nL3g/LVq0ZMeObQCsW7fmlH26mgrMSeJs3bBgYWPWZrOjiIiInJfWrduyY0caJSX/mwa64ooh/Pjj\nKu655w/4+vpit9t5883XLmg//ftfRklJCX/4w2RSU1MICgq+0OjnxGKc7jiRm3PlYbc5qS+zM2cf\nTw18mCDvQJftR85dQx1ylXOjcXFfGhv3dTGMTWFhAcnJSVxxxVCysjK5554/8M4779frPmy2M/8e\n1jkwJ9m0JxuvkhYY7CU1ayuXtehrdiQRERG35Ofnz4oVy3nnnYUYhpM//alhb3qnAnOS5J1ZJG23\n4NMTUrO2qMCIiIicgdVq5fHHnzZt/zoH5iTd24VjVPgRSAQ78nZTWllqdiQRERE5DRWYk3RvF46P\ntyfHs+04DSebsreZHUlEREROQwXmJN5eniR0jqTwSBiArkYSERFxUyowvzIwrgVGeQD+hLI9dxfl\nVeVmRxIREZFfUYH5lfhYO95WD6pyI6lyVrE1J83sSCIiIvXuhhuuorS0lIULF7Bly6Yar5WWlnLD\nDVfV+vmVK78B4PPPP+G77751Wc4zUYH5FZ9mVrq3D6cgPRyAFN2VV0RELmKTJt1Ot249zukzR48e\nYfnyZQCMHn0VgwYNdkW0Wuky6tNIjLWzYUcmvgSxNSeNCkcl3p5eZscSERE5q9/+diJPPTWLqKgo\njh07ykMPTcNms1NWVkZ5eTn33ns/Xbp0q37/k0/+nSuuGErPnr34v/97gIqKiuqFHQG++uoLlix5\nF09PD9q0ac/06f/H7Nkz2b59K2+++RpOp5OQkBDGjfsN8+a9wObNqVRVORg3bjwjR45h6tTfkZjY\nh+TkJPLz85k58zmioqIu+HuqwJxGj/bheFk9ceZHURGyk+25O4izdTv7B0VERE6ydPenpGSeekGI\np4cFh/P8boTfy96d6zuMPePrl18+mB9++J5x48azatV3XH75YNq378jll1/Bhg3r+fe/3+LJJ/95\nyueWLfuCdu3ac/fd0/jmm6+qj7CUlZUxa9aLBAYGMmXKXezZs5ubb57E0qXvcccdd/H6668AsHFj\nMnv37mH+/DcoKyvjtttu4vLLrwDA39+fF16Yz/z5L/L99ysYP37CeX33k2kK6TR8vK10bxdOQfqJ\nq5FSMjWNJCIijcOJArMKgNWrv2PgwEF89903/OEPk5k//0UKCgpO+7n9+/fSrVscAL16xVc/HxQU\nxEMPTWPq1N9x4MA+CgryT/v5tLRt9OzZGwBfX1/atGnHoUOHAIiL6wWA3W6nuLj4tJ8/VzoCcwYJ\nMTaSd2biQwBbcrZR5azC6qEfl4iI1N31Hcae9miJK9dCateuPTk5WWRkHKOoqIhVq1YSEWHnkUdm\nkJa2jZdeev60nzMM8PCwAOD8+ehQZWUls2f/gwUL3iE8PIIHHvjzGfdrsVg4eXXFqqrK6u15enqe\ntJ/6WYJRR2DOIK5DBFZPTyiIoqyqnB15e8yOJCIiUif9+g3k1VfncdllgygoyKdFi5YAfPfdt1RV\nVZ32M61atSYtbTsAyclJAJSWluDp6Ul4eAQZGcdIS9tOVVUVHh4eOByOGp+Pje1KSsqGnz9XSnr6\nYVq2bOWqr6gCcya+zax0axtWPY208TRzmCIiIu5o0KDBLF++jCuuGMrIkWN4991/c++9U+jatRs5\nOTl89tnHp3xm5MgxbN26mXvu+QOHDh3AYrEQHBxCYmIf7rzzVt588zUmTJjEnDmzad26LTt2pDFn\nzqzqz8fF9SQmJpYpU+7i3nun8PvfT8XX19dl39Fi1NexnAbkyiXITz6s9+OWo/zr020EX/o93l4e\nPDXgYTw9PM+yBXGVi2H5+YuRxsV9aWzcl8ambmy2wDO+piMwtejZwYanhwceRc0prixhT8E+syOJ\niIgIKjC18vOx0vWkaSRdjSQiIuIeVGDOIiHGjrMoDC+akZq1BafhNDuSiIhIk6cCcxa9OkXgafHE\ns7g5BRWF7C88ZHYkERGRJk8F5iz8fbzo3CaUgiO6GklERMRduLTA7Ny5k2HDhrFo0SLgxA1xpk2b\nxg033MBtt91WfTfAjz/+mHHjxnHjjTeyePFiV0Y6L4kxdpwF4XjixcaszfV2Ex4RERE5Py4rMKWl\npcyYMYN+/fpVP/fee+8RGhrKkiVLGD16NElJSZSWljJ37lwWLFjAwoULeeutt8jPP/1tis3Sq5MN\nD6x4lUSRU57HoeJ0syOJiIg0aS4rMN7e3rz22mvY7fbq57799luuvvpqAH7zm98wdOhQUlNT6d69\nO4GBgfj4+NC7d2+Sk5NdFeu8BPj+Mo0UDkCqrkYSERExlcsW97FarVitNTefnp7O999/zz//+U8i\nIiL429/+RnZ2NmFhYdXvCQsLIysrq9Zth4b6YbW67oZyp7txzuCES9j6fiaeWNmcu43f9r3RZfuX\nM6vtpkZiHo2L+9LYuC+NzYVp0NUJDcOgbdu2TJ06lXnz5vHKK6/QpUuXU95zNnl5pa6KeMa7I3Zo\nHoiH4YVXWSTppLNp/26a+0e6LIecSneudE8aF/elsXFfGpu6cZs78UZERJCYmAjAwIED2b17N3a7\nnezs7Or3ZGZm1ph2chdBft7EtAqh8OdpJF2NJCIiYp4GLTCXX345q1atAmDr1q20bduWuLg4Nm/e\nTGFhISUlJSQnJ5OQkNCQseosIdaOI9+GBQ9SslRgREREzOKyKaQtW7Ywc+ZM0tPTsVqtLFu2jGef\nfZYnn3ySJUuW4Ofnx8yZM/Hx8WHatGlMnjwZi8XClClTCAx0z3nB3p1sLPrKC+/ySNI5SlZpDja/\ncLNjiYiINDlajfpXzjYv+Y93ktlVugXvdlu4tv1ohre+wmVZpCbNGbsnjYv70ti4L41N3bjNOTAX\ng/gYO458OxYsbMzS5dQiIiJmUIE5R/ExNixV3ngft7G/8CB55e510z0REZGmQAXmHIUENKNjy2CK\nj/58NZKOwoiIiDQ4FZjzkBBrpyrvxD1gUlVgREREGpwKzHmIj7FDpQ/NKiLYnb+PoopisyOJiIg0\nKSow5yE0sBkdWgRTfCwcA0NHYURERBqYCsx5Soi148g9MY2k82BEREQalgrMeUqIsWFU+OFdGcqO\nvN2UVrpufSYRERGpSQXmPIUF+dA+OojSDBtOw8nm7O1mRxIREWkyVGAuQHyMnarcEwtPam0kERGR\nhqMCcwESYm0Y5QF4VQWzPXcn5VXlZkcSERFpElRgLkBEsC9tmwdSlmGjylnF1pw0syOJiIg0CSow\nFyghxk7Vz1cjpehqJBERkQahAnOB4mPtGGUBeDkC2JqTRoWj0uxIIiIiFz0VmAtkD/GldWQQ5Zk2\nKhwVbM/daXYkERGRi54KTD1IiLVRWX1TO12NJCIi4moqMPUgIcaOURKM1eHH5uxtVDmrzI4kIiJy\nUVOBqQeRYX5cYg/keLaNsqpyduTtMTuSiIjIRU0Fpp4kxP7vaqRUTSOJiIi4lApMPUmIseEsCsXT\n6UNq1lachtPsSCIiIhctFZh60jzcn5a2ACpybBRXlrA7f5/ZkURERC5aKjD1KCHGTlWOrkYSERFx\nNRWYehQfa8dZFIaH05uNmVs0jSQiIuIiKjD1qEWEP9HhgVTl2SioKGR/4SGzI4mIiFyUVGDqWUKM\njUpNI4mIiLiUCkw9S4i14ywIx8OwsjFzC4ZhmB1JRETkoqMCU89aRPgTFXpiGimnPJfDxUfMjiQi\nInLRUYGpZxaL5cTaSL9MI2VqGklERKS+qcC4QEKMHWdBBBbDk5SsLWbHERERueiowLjAJfYA7MGB\nOAsiyCjN5FhJhtmRRERELioqMC5gsVhIjLVXTyOlZOoojIiISH1SgXGRhBg7jnwbFsNDl1OLiIjU\nMxUYF2kVGYAtMBBnUTiHi4+QXZZjdiQREZGLhgqMi1gsFhJi7FRm/zKNpKMwIiIi9UUFxoUSYu04\n8u1gWEjV1UgiIiL1RgXGhdpEBRLuFwTFYewrPEheeb7ZkURERC4KKjAu9MtN7Spy7ACkZm01OZGI\niMjFQQXGxRJi7TjytLijiIhIfVKBcbF2zYMI8w2GklB25++jqKLY7EgiIiKNngqMi1ksFuI72anM\nsWNgsEnTSCIiIhdMBaYBJMbaceT+fDm1ppFEREQumApMA2jXIoiQZqFQGsyOvN2UVpaaHUlERKRR\nU4FpAB4WC/GdbFTm2HEaTjZnbzc7koiISKOmAtNATr4aSdNIIiIiF0YFpoF0aBFMkGcYlAeyPWcn\n5VXHzY4kIiLSaKnANBAPDwvxMSemkaqMKrbmpJkdSUREpNFSgWlACTH/uxpJN7UTERE5fyowDajT\nJSEEWMLguB9bstOocFSaHUlERKRRUoFpQCemkSKpzImkwlnB9tydZkcSERFplFRgGlhijK36aqTU\nrC0mpxEREWmcVGAaWKdWIfg5I6DSh03Z26hyVpkdSUREpNFxaYHZuXMnw4YNY9GiRTWeX7VqFTEx\nMdWPP/74Y8aNG8eNN97I4sWLXRnJdJ4eHsR3slOVE0lZVRk78/aYHUlERKTRcVmBKS0tZcaMGfTr\n16/G88ePH+fVV1/FZrNVv2/u3LksWLCAhQsX8tZbb5Gfn++qWG4h8aSb2ulqJBERkXPnsgLj7e3N\na6+9ht1ur/H8yy+/zIQJE/D29gYgNTWV7t27ExgYiI+PD7179yY5OdlVsdxCTKsQfCptUOVNatZW\nnIbT7EgiIiKNissKjNVqxcfHp8Zz+/btIy0tjVGjRlU/l52dTVhYWPXjsLAwsrKyXBXLLVg9f55G\nyo2kuLKEPfn7zI4kIiLSqFgbcmdPP/00Dz/8cK3vMQzjrNsJDfXDavWsr1insNkCXbbtXwzt05of\n3o3Eaj9EWvEO+nfq6fJ9XgwaYmzk3Glc3JfGxn1pbC5MgxWYjIwM9u7dy1/+8hcAMjMzueWWW/jT\nn/5EdnZ29fsyMzPp2bP2X+Z5eaUuy2mzBZKVVeSy7f8iOsSHZsft4PBizcFkxrQciYdFF4XVpqHG\nRs6NxsV9aWzcl8ambmoreQ32GzMyMpLly5fz3nvv8d5772G321m0aBFxcXFs3ryZwsJCSkpKSE5O\nJiEhoaFimcbq6UHvTnaqcm3kHy/kQOEhsyOJiIg0Gi47ArNlyxZmzpxJeno6VquVZcuW8eKLLxIS\nElLjfT4+PkybNo3JkydjsViYMmUKgYFN47BaQoydn5ZHYbUdISVrM22DW5sdSUREpFGwGHU56cTN\nuPKwW0Me1quscvLnl76Drl8R7h/MY/2mY7FYGmTfjZEOubonjYv70ti4L41N3bjFFJKcysvqQc/2\nkVTl28gpz+Vw8VGzI4mIiDQKKjAmS4i14ciNAnRTOxERkbpSgTFZt7ZheJdFgtODjZkqMCIiInWh\nAmMyL6snPdtF4ciP4FhpJsdKMsyOJCIi4vZUYNxAQqwdR96JaaSUzC0mpxEREXF/KjBuoFvbMKwl\nUWBYdB6MiIhIHajAuAFvL08++g4sAAAgAElEQVTi2kbhKAjncPERsstyzI4kIiLi1lRg3ERCjB1H\nXiQAG7M0jSQiIlIbFRg30b19OJ7FUWBAiq5GEhERqZUKjJto5uVJj9YtcBSFsb/wIHnl+WZHEhER\ncVsqMG4kIcaGI/fENFJq9laT04iIiLgvFRg30qN9OJ5FzQF0UzsREZFaqMC4ER9vK90vaYGjKITd\n+fsoqig2O5KIiIhbUoFxM/GxNpx5kRgYbMrSNJKIiMjpqMC4mbj2EVBwYhopRTe1ExEROS0VGDfj\n28xK95YtcZYEsSN3N6WVZWZHEhERcTsqMG4oIdaOIzcSJ042Z28zO46IiIjbUYFxQyemkU4s7qi7\n8oqIiJxKBcYN+flY6dq8Fc7SALbl7KC86rjZkURERNyKCoybSog9sTZSlVHF1pw0s+OIiIi4FRUY\nN9WrYwTkn5hGStU0koiISA0qMG7Kz8eLzlGtcZb7sTl7O5WOSrMjiYiIuA0VGDeWEHNiGqnCWcH2\n3J1mxxEREXEbKjBurFdHW/U0kq5GEhER+R8VGDcW4OtFTEQbnMd9SM3aSpWzyuxIIiIibkEFxs0l\nxkbizIuk3FHOrry9ZscRERFxCyowbq5XxwiceSemkbQ2koiIyAkqMG4u0M+bTuFtMCq92Zi5Bafh\nNDuSiIiI6VRgGoHE2CgceXZKqkrYk7/P7DgiIiKmU4FpBHp3tJ00jaSrkURERFRgGoEgf286BLfD\nqPIiJWOzppFERKTJU4FpJC6NjcKRZ6OwspADhYfNjiMiImIqFZhGonen/00jbdTVSCIi0sSpwDQS\nwQHNaB/YHsPhyYaMTRiGYXYkERER06jANCKJsc1x5NvIO57H4eKjZscRERExjQpMI9K7kw1nrqaR\nREREVGAakdDAZrQJaIfh9CA5QwVGRESaLhWYRubSTi1w5keQWZbJsZJMs+OIiIiYQgWmkYmPseHI\niwQ0jSQiIk2XCkwjExbkQyvf9hhOCxuObTI7joiIiClUYBqhSzu1xFkYzpHSo2SX5ZgdR0REpMGd\nd4HZv39/PcaQc5EQYz9pGklrI4mISNNTa4G54447ajyeN29e9Z8fffRR1ySSswoP9qGld3sMA00j\niYhIk1RrgamqqqrxeM2aNdV/1p1gzdWnUyucRWEcLD5E/vECs+OIiIg0qFoLjMViqfH45NLy69ek\nYcXH2HDkahpJRESapnM6B0alxX3YQnxp7tUe0DSSiIg0PdbaXiwoKOCnn36qflxYWMiaNWswDIPC\nwkKXh5Pa9e3Ymo8zQtjHfooqign0DjA7koiISIOotcAEBQXVOHE3MDCQuXPnVv9ZzJUQY+PDtEiM\nwHw2ZW9lQHQfsyOJiIg0iFoLzMKFCxsqh5wHe6gfkZ7tyGUHG45tUoEREZEmo9ZzYIqLi1mwYEH1\n4//+979cc8013H333WRnZ7s6m9RBn/ZtcZYEsSt/D6WVZWbHERERaRC1FphHH32UnJwTd3rdt28f\ns2fPZvr06fTv358nn3yyQQJK7RJi7ThyI3HiZHP2NrPjiIiINIhaC8yhQ4eYNm0aAMuWLWPkyJH0\n79+fm266SUdg3ERUmB82S1sANmRocUcREWkaai0wfn5+1X9et24dffv2rX5cl0uqd+7cybBhw1i0\naBEAR48e5fbbb+eWW27h9ttvJysrC4CPP/6YcePGceONN7J48eLz+iJNWZ/27XGWBpCWu4PyquNm\nxxEREXG5WguMw+EgJyeHgwcPkpKSwoABAwAoKSmhrKz28y1KS0uZMWMG/fr1q37u+eefZ/z48Sxa\ntIjhw4fz5ptvUlpayty5c1mwYAELFy7krbfeIj8/vx6+WtORGHtibSQHDrbl7jA7joiIiMvVWmDu\nuusuRo8ezVVXXcUf//hHgoODKS8vZ8KECVx77bW1btjb25vXXnsNu91e/dzf/vY3RowYAUBoaCj5\n+fmkpqbSvXt3AgMD8fHxoXfv3iQnJ9fDV2s6mof7E260AWDDsVRzw4iIiDSAWi+jHjRoEKtXr+b4\n8eMEBJy4SZqPjw/3338/AwcOrH3DVitWa83N/zIl5XA4eOedd5gyZQrZ2dmEhYVVvycsLKx6aulM\nQkP9sFo9a33PhbDZGt89boZ07crSjB/ZmrOD4DAfvD29zI7kEo1xbJoCjYv70ti4L43Nham1wBw5\ncqT6zyffebddu3YcOXKE6Ojoc96hw+HggQceoG/fvvTr149PPvmkxut1WSQyL6/0nPdbVzZbIFlZ\nRS7bvqt0aRXC4rQoKn32sXpnMt0jupgdqd411rG52Glc3JfGxn1pbOqmtpJXa4EZMmQIbdu2xWaz\nAacu5vj222+fc5iHHnqI1q1bM3XqVADsdnuNK5oyMzPp2bPnOW+3qYuO8CfU0Zpi9pF0bNNFWWBE\nRER+UWuBmTlzJh999BElJSWMGTOGsWPH1pjuOVcff/wxXl5e3H333dXPxcXF8fDDD1NYWIinpyfJ\nycn89a9/Pe99NFUWi4U+rWP4unQNm7K24XA68PRw3TSbiIiImWotMNdccw3XXHMNR48e5YMPPmDi\nxIm0aNGCa665huHDh+Pj43PGz27ZsoWZM2eSnp6O1Wpl2bJl5OTk0KxZMyZNmgRA+/bt+fvf/860\nadOYPHkyFouFKVOmaJ2l85TYOZJly+1URB1kZ94eOod3MjuSiIiIS1iMupx0cpLFixfz7LPP4nA4\nSEpKclWuWrly3rAxz0sahsEDCz+ltOUq+kZdyqQuN5gdqV415rG5mGlc3JfGxn1pbOqmtnNgar2M\n+heFhYUsWrSI66+/nkWLFvH//t//4/PPP6+3gFI/LBYLfVrFYlR6szFzC07DaXYkERERl6h1Cmn1\n6tW8//77bNmyhSuvvJJnnnmGTp00LeHOEmOj+HqlnXL7Yfbk76djaDuzI4mIiNS7WgvMnXfeSZs2\nbejduze5ubm8+eabNV5/+umnXRpOzl2ryAACK1pRxmE2ZGxSgRERkYtSrQXml8uk8/LyCA0NrfHa\n4cOHXZdKzpvFYiHxks58V7mO5IzNjI+5Gg9LnWYKRUREGo1af7N5eHgwbdo0HnnkER599FEiIyO5\n9NJL2blzJ88//3xDZZRz1Kdzcxz5dkocRSRnaGkBERG5+NR6BOa5555jwYIFtG/fnm+++YZHH30U\np9NJcHCwVo12Y60jAwkobU+ZcZQ3t/2HjdlbubHj1QQ3CzI7moiISL046xGY9u3bAzB06FDS09O5\n9dZbeemll4iMjGyQgHLuTtzUrjPHt/QnwGknJXMTM9Y+y6r0n3RlkoiIXBRqLTAWi6XG4+bNmzN8\n+HCXBpL6MSy+JZG+kWQl9cJ6tAdVDif/3fEBszfM50jxMbPjiYiIXJBzOrvz14VG3FdYkA+P/TaR\nqwe0pTS9BYXJ/QmqaM2+wgM8vf55PtrzBRWOSrNjioiInJda78TbvXt3wsPDqx/n5OQQHh6OYRhY\nLBZWrlzZEBlPoTvxnpv07BLe/jKNXYcL8I3Ixq/9DkqNIiJ8w7k55npiwzqaHbFOLsaxuRhoXNyX\nxsZ9aWzq5rxXo/7yyy/rPYw0vBYR/kyf2JvvU4+w+FsrOetDsMUcIoedvLjxNRIjezOu41gCvQPM\njioiIlIntRaYFi1aNFQOcTEPi4UreragZ4cI/rN8F+u3W7H6hxPWdRfrM5LZlpPGtR3G0K95gqYK\nRUTE7ekOZ01MSEAz/nBtN+6+oQdBnjYy1/WmWWYPKhxV/DttMS+kvEJGSabZMUVERGqlAtNE9ewQ\nwRN39uHKxFYUHIimKKUfwY5L2JW/l6fWPcdne7+i0llldkwREZHTUoFpwny8rdw0tCMP35rAJSE2\njm3oiseBBLwtvny+fzlPr3uOXXl7zI4pIiJyChUYoW3zIB65PYHxgztQmWsnZ11fgso6kVGazfMp\nr7Bo+2JKKkvNjikiIlKt1pN4penw9PBgZJ9WxMfYWPjVDrZstuIdFEFo5x38dHQ9m7O3Ma7jVSRG\n9tJJviIiYjodgZEabCG+3HtjHL+7ugvNqsLJWBePX253yquO89a2//LSxn+RVZpjdkwREWniVGDk\nFBaLhb5donjyrr5c1r0FObtbUJLSn1CjJWl5u3hy3SyW7V9BlU7yFRERk6jAyBkF+Hpxx+jOTJ/Q\nC1tABEfWd8XrcAJWvPl475fMXD+HvQX7zY4pIiJNkAqMnFVMq1Ae/3ldpZJjNnLX9yP0eEeOlBxj\n1oZ5/GfHUkory8yOKSIiTYhO4pU68bJ6cu1l7UjsHMlbX6axO9UL39AIgmJ2sDp9DZuytnJDx6vp\nbe+hk3xFRMTldARGzkmLCH8enNibW0fGQGk4GWsTCCroTkllKW9s/TfzN71JTlme2TFFROQipwIj\n5+yXdZWevKsPCTFRZOxoQdmmAYRaWrA1J40n1j7L8oPf4XA6zI4qIiIXKRUYOW8hAc3448/rKgV7\nhXJkbTd8jsXjgZUPdn/GP5Je5EDhIbNjiojIRUgFRi7YL+sqDU9oRf4hG3lJ/Qiv6sDh4iP8M+kl\nFu/8iPKqcrNjiojIRUQFRuqFj7eVm4edWFepVVgYh5M74LGvHwGeIaw8/AMz1s4iNWur2TFFROQi\noQIj9arGukp5oWSuSSCkpBuFFcW8uvktXt30Fnnl+WbHFBGRRk6XUUu9O2Vdpa2eeAeEYeu2i9Ts\nrezI281V7UZyect+eFjUoUVE5Nzpt4e4TI11lZzBpK/pQUB2PBgWFu/6iGc3zOVQ0RGzY4qISCOk\nAiMuVWNdpR7RZO21kZ/Ujwhnew4UHuIfSXNYuvtTjjsqzI4qIiKNiAqMNIhf1lV64OZe2INCOZTU\nEa+D/fD3COKbg9/z5NpZbM1JMzumiIg0Eiow0qBiW59YV+mq/m0oyQwhc20iEeVdyTtewLzUN3hj\ny78pOF5kdkwREXFzOolXGpyX1ZPrLm/HpV1+Xldpkye+wWGEddnFhsxUtuXu5Nr2o+gffalO8hUR\nkdPSbwcxTfW6SiNioDyY9J/iCM6Px+l08p8dS3ku+WWOFB8zO6aIiLghFRgxlYfFwhW9fl5XKTaS\nYzttFKX0x25px96C/Tyz/gU+2fMlFY5Ks6OKiIgbUYERt1BjXaVmQRxY2wnfI33x8/TnywMreGrd\nbNKy9pgdU0RE3IQKjLiV/62rdAl56SFkrrkUe2VXsstymbHyeS1HICIigAqMuKGT11W6JCKEAymX\nYNl/KYZh4bXNb/PT0SSzI4qIiMlUYMRttW0exKO/rKuUG07p1ni8LM1YtP09lh/8zux4IiJiIhUY\ncWu/rKs0fWJv/Jx2CjfF08zizwe7P+OjPV9gGIbZEUVExAQqMNIotG0exMypAwmxRlCQEo8vwXx1\n4Fv+s+N9nIbT7HgiItLAVGCk0bgkMpCHbumNPSCC3OTe+DnD+eHIOl7f8m8qnVVmxxMRkQakAiON\nSkSwLw9N7E2r8HByUnriVxXJxqzNzE99g/KqcrPjiYhIA1GBkUYnyN+bB27uTadoGzkpPfA73oId\nebuZk/IaxRUlZscTEZEGoAIjjZKfj5X7xsfRs30kOald8S1pw4GiQ8xOnk9eeb7Z8URExMVUYKTR\n8vby5I/XdaNf12hyt8bgk9+RjNJMZm2YR0ZJptnxRETEhVRgpFGzenoweWxnhsVfQt7OdnhldSHv\neD6zk+dzsPCw2fFERMRFVGCk0fOwWLh5WEeuHdiOwn2t8DzSg+LKEp5PeZmdebvNjiciIi6gAiMX\nBYvFwtUD2zJxeCeKD0fD/t5UOR3M3fg6G7O2mB1PRETqmQqMXFSGxrfkd1d1oSI7koqd8YAH/9q8\nkB+PrDc7moiI1COXFpidO3cybNgwFi1aBMDRo0eZNGkSEyZM4J577qGiogKAjz/+mHHjxnHjjTey\nePFiV0aSJqBv1yimXt8doyiCsm0JeFua8e+0xXx9YKXZ0UREpJ64rMCUlpYyY8YM+vXrV/3cnDlz\nmDBhAu+88w6tW7dmyZIllJaWMnfuXBYsWMDChQt56623yM/XZbByYeI6RDDtNz3xqgijMDUBX0sA\nH+75nA93f671k0RELgIuKzDe3t689tpr2O326ufWrl3L0KFDARg8eDA//fQTqampdO/encDAQHx8\nfOjduzfJycmuiiVNSKdLQpg+oTcBHqHkpcTjZwnm64MreSdtCQ6nw+x4IiJyAVxWYKxWKz4+PjWe\nKysrw9vbG4Dw8HCysrLIzs4mLCys+j1hYWFkZWW5KpY0Ma0iA3nolnjCfELJ2RBPgBHBj0fX88bW\nf1PpqDQ7noiInCerWTs+02H8uhzeDw31w2r1rO9I1Wy2QJdtWy7M+YyNzRbIrD9fziOv/MShDT2J\njN/Kxqwt/Gv729w/8Pf4evmcfSNSK/2bcV8aG/elsbkwDVpg/Pz8KC8vx8fHh4yMDOx2O3a7nezs\n7Or3ZGZm0rNnz1q3k5dX6rKMNlsgWVlFLtu+nL8LHZv7b+rJc++lsi+pG7Y4K1syd/DI17P4Y9xv\nCfQOqMekTYv+zbgvjY370tjUTW0lr0Evo+7fvz/Lli0D4KuvvuKyyy4jLi6OzZs3U1hYSElJCcnJ\nySQkJDRkLGkiAny9uP/mnnRuFUHWxs74l7blYNFhnkueT255ntnxRETkHFgMF12SsWXLFmbOnEl6\nejpWq5XIyEieffZZHnzwQY4fP050dDRPP/00Xl5efPnll7z++utYLBZuueUWrr766lq37crWqlbs\nvuprbCqrnLz6yVY27MgkPGY/pcE7CGkWzJ963kmUf+SFB21i9G/GfWls3JfGpm5qOwLjsgLjSiow\nTVN9jo3TafDWl2ms2nSU0HaHKY/Ygr+XH1PiJtM66JJ62UdToX8z7ktj4740NnXjNlNIIu7Cw8PC\n7aNiGdWnFXl7W2I92pPSyjJeSHmFtNxdZscTEZGzUIGRJstisXDj4A7ceEV7ig5FYTkQT5XTwfzU\nN9iYudnseCIiUgsVGGnyRvVtze2jYinNjKByVwIWPPnXlkX8cGSt2dFEROQMVGBEgMvjovnDNd2o\nyg87sX6Shw/vpL3PVwe+NTuaiIichgqMyM8SYu38+cY4PMpDKUpNwM8jgI/2fMHS3Z9q/SQRETej\nAiNykq5tw/jLzT3xMYLJTY4nwBLCNwe/Z1HaYq2fJCLiRlRgRH6lfXQwD07sTbB3MFkbehOIjTVH\nk3h9yyKtnyQi4iZUYEROo4UtgIduicceGExmUhxBzuakZm9lburrlFWVmx1PRKTJU4EROQNbiC8P\n3RLPJREhZGzoTlBlK3bl7+WFlFcoqig2O56ISJOmAiNSi2B/b6ZP6EWHFqFkpHQmsLw9h4rSmZ08\nj5wyrZ8kImIWFRiRs/Dz8WLab3rSo30EmZs6EFAUS2ZpNrOT53G0JMPseCIiTZIKjEgdNPPyZOr1\n3enbJYqs7W3wy+lO/vECntswn/2FB82OJyLS5KjAiNSR1dODO6/qwpDeLcjZ04Jmx3pRWlXGCymv\nav0kEZEGpgIjcg48LBYmDu/EVf3bkH8wEs9DCTicDualvkFy5iaz44mINBkqMCLnyGKxcN3l7bh5\naEeKjobj2JWIp8WTN7b8m9Xpa8yOJyLSJKjAiJyn4YmXMHlMZ47nhVK2LZFmHj78Z8dSlu1foaUH\nRERcTAVG5AIM6N6cKdd3w1kSTGFqAv6egXy890uW7v4Up+E0O56IyEVLBUbkAvXqaGPab+LwcgSR\ns6E3gR5hrDi0ikXbtX6SiIirqMCI1IOYVqFMn9CbAGsQmUk9CbbYWXtsA69tWUiF1k8SEal3KjAi\n9aR1VCAPTuxNmF8gx9b3IIQWbM7exrzU1ymrKjM7nojIRUUFRqQeNQ/356+3xNM8NIij67sS4mhz\nYv2kZK2fJCJSn1RgROpZWJAPD07sTZvIYI5uiCHkeEcOFR9h9oZ55JTlmh1PROSioAIj4gKBft7c\nf3MvYluFcjS1HcElXcgsy2bWhnkcKT5mdjwRkUZPBUbERXybWbl3fBy9Oto4trUVgfk9KKgo5Lnk\n+ewrOGB2PBGRRk0FRsSFvKye/PG6bgzoHkXmzmj8MuMprzrO88kv8+X+b6hyVpkdUUSkUVKBEXEx\nTw8P7hjdmSsTLyFnvw2vQ5fi4+nLJ3uXMXP9HK1mLSJyHlRgRBqAh8XCb4Z04PrL25F/NISSjQPo\n4NOdIyXHeDZpLkt2fUx51XGzY4qINBoqMCINxGKxMLZ/G+4YFYuj0srm71sQnT+UsGZhfHtoNU+u\nm822nB1mxxQRaRRUYEQa2GVx0cy481K6tQ1jz04vstYm0sk7nvzyAuamvs5b2/5LcUWJ2TFFRNya\nCoyICSKCfbl3fBx3ju2M1cNK6mobYRnDaO4bzbpjycxY+yzrj6VoVWsRkTNQgRExicVioX+35jx5\nV18u7Wzn0AEPDqzqTiePfhx3VLBg23+Yt+kNcsryzI4qIuJ2VGBETBbk783vr+nG3Tf0IMjfh9Q1\nwfjuH0Jrv7Zsy9nBE+tm8e2h1TgNp9lRRUTchgqMiJvo2SGCJ+7sw+BeLcg4ZmHHyk50dF6Op8WT\nJbs+Zrbu4isiUk0FRsSN+DazMmlEDA9O7I09zJ9NSX6wfRAd/Duzr/Agz6x/gU/3fkWlboAnIk2c\nCoyIG+p0SQiP/zaRMf1aU1BgYfO3rWlbPpQArwC+2L+cZ9Y9z96C/WbHFBExjQqMiJvysnoyblB7\nHrktgdZRgWzb5EXxxv7E+PUkozSL2Rvm8+6ODymrKjc7qohIg1OBEXFzrSIDefjWeMYP7kBFuYWN\nK6NoWTCcCJ8Ivk//kSfWzmJz9jazY4qINCgVGJFGwNPDg5F9WvH45EuJbRXCzh0eZK6Np3OzSymq\nKOblTQt4Y8u/KawoMjuqiEiDUIERaUTsoX7cf3Mvbh8ViwUryavCsGUMp4VfSzZkpjJjzbP8dDRJ\nN8ATkYueCoxII2OxWLg8Lpon7+pDfCcb+/bD/lXd6WK9DIfhYNH293hp47/ILssxO6qIiMuowIg0\nUiEBzZhyfXemXNcNfx8vNvzoj9/+YbT170Ba3i6eWDub5Qe/w+F0mB1VRKTeqcCINHLxMXaeuKsP\nl/VozpGjTravbE9nhuDt4c0Huz/j2Q0vcajoiNkxRUTqlQqMyEXA38eLO0Z35v6behIR7EvyOm9I\nG0RMQDcOFqXzj6Q5fLTnCyoclWZHFRGpFyowIheRzm3CeHxyH0Ze2oqcPCcbV7SkY8WVBHsH89WB\nb3l63XPsyttjdkwRkQumAiNykWnm5cn4IR14+NYEWtoC2LTRg+KUfnQNiCerLIfnU17hnbQllFaW\nmR1VROS8qcCIXKTaNg/i0dsTuP7ydpSWQdIKG22KRxLlG8kPR9bxxNpn2Zi1xeyYIiLnRQVG5CJm\n9fRgbP82PPbbRDq2DGbbNoNja+Lp7tufkqoyXtv8Nq9tfpv84wVmRxUROScqMCJNQPNwf6ZP7M2k\nKzthGBbWfRdEZOYIWvm3YmPWFp5YO4sf0tfiNJxmRxURqRMVGJEmwsNiYXDvljxxZx/i2oeze6+D\nfau60t37CgzD4J0d7zMn5VUySrPMjioiclYqMCJNTFiQD3ff0IP/d3VXmnlbWbfah4CDw+kY2Ild\n+Xt5at1zLNu/QjfAExG3pgIj0gRZLBb6dInkybv60q9rFIfSq9j6bTu6eQzHz+rLx3u/ZGbSHA4U\nHjI7qojIaanAiDRhAb5e3HVVF+4dH0dIQDPWr/GEtEF0DYojvfgo/0x6iaW7PuW4o8LsqCIiNViM\nBly2tqSkhOnTp1NQUEBlZSVTpkzBZrPx97//HYCYmBgee+yxs24nK6vIZRlttkCXbl/On8bGtcor\nqlj63V6+2XAYA+gdbyHTfy055bmE+4Rxc+z1dA7rdMrnNC7uS2PjvjQ2dWOzBZ7xNWsD5uCDDz6g\nbdu2TJs2jYyMDG677TZsNht//etf6dGjB9OmTeO7775j0KBBDRlLRAAfbysThnfi0i6RLPgijeQN\nJYQE9Sfu0iw2F63npY3/ok9UPNd3HEuAl7/ZcUWkiWvQKaTQ0FDy8/MBKCwsJCQkhPT0dHr06AHA\n4MGD+emnnxoykoj8SocWwfzt9kSuHtCGomIHa5aH0q54FNF+0aw9toEn1sxiQ8ZGGvDgrYjIKRp0\nCglg8uTJHDx4kMLCQubPn8/jjz/Ohx9+CMBPP/3EkiVLmDVrVq3bqKpyYLV6NkRckSbtwLFCXnx3\nIzsO5hHgZyVxUCnJ+auocFTSO7o7d8bfRIRfmNkxRaQJatAppI8++ojo6Ghef/110tLSmDJlCoGB\n/5vfqmuXyssrdVVEzUu6MY1Nw/PztHD/TT35ZsNh3v9+D99+4U1Mh5F4tt5C8pHN3Juxg5t7XEN7\n3w6ENgvBYrGYHVlOon8z7ktjUzducw5McnIyAwcOBCA2Npbjx49TVVVV/XpGRgZ2u70hI4nIWXh4\nWBieeAm9Okbw1rIdbN2dS7MDnUno1460qh9ZkLIYAB9PH5r7RxIdEElz/yii/aOIDogi0DvA5G8g\nIhejBi0wrVu3JjU1lREjRpCeno6/vz8tWrQgKSmJhIQEvvrqKyZNmtSQkUSkjiJCfLlvfBw/bjnG\nf7/ZxQ/fe9HmkmFc3q+CzNKjHCnJ4EDRIfYVHqjxuQAv/5+LTVR1sWnuH4mfl69J30RELgYNfhn1\nX//6V3JycqiqquKee+7BZrPx6KOP4nQ6iYuL46GHHjrrdnQZddOksXEfBSUV/Gf5TtZtz8TDApFh\nfkRH+BMV5kNA6HHwLabMksex0gyOlmSQU5aLQc3/qwlpFlxdZpoHRBHtH8n/b+9eY+SqCz6Of891\n7rvde+1TStriI9KiIJInVlATERNNJIK4tbD6ysQQX2jQ2FSxGo1JSUyMQlCjJqTGsApeo+Ll0Zom\nFjWBgNmAXJ5GaXe320bY+VgAAA/LSURBVGVvM2du5/a8OLPT2W273bK0s9P+PslkzpyZs/MftoUv\n/3PmnI25IVKW26ZPdenR35n1S7+b1VlpF9JFP4j3taCAuTzpd7P+PPXCSf73yeMcHV+gUguWPGca\nBkO9mSRs+lwy3VXIFClzKmyWXwXbwKAv05vsfmqGzUYGs/3Y5kWdML4k6O/M+qXfzeqsm2NgROTS\ncv3rB7h11zamphaYK9UZn/Y4Pu0xPl1ifLrM8WmPiVeWHnRvGnmGegfY1P8/XNdnk+muEKeKeMww\nWT7BuDfJM9NjPDM91rKNyWB2gE25oWTWpjFj05/pwzR0QnGRy5ECRkTWzDAMegopegopdmw99bXq\nOI7PI2w2MNT7Orb0ZxnoM0l3lYlSRbx4hsnyFBPeJJPeCZ7kmeY2jmmzcTFqckPNY230jSiRS58C\nRkQumLWHjYFp9DPUewVb+7P09cWkCmWi1AKleIZJL9kV9XLx+JL3TVup5IBhfSNK5JKlgBGRi27t\nYeNgGhsZ6t3K6/sz9PSFuPkyoZuEzURZ34gSudQpYERk3ThX2BxvBM34dKkROMvDJo1p/BdDvVfx\n3/1pNvT5OHmP0FlgIXqFyfIUL84d5YW5/1vyvhtS3UnY5DbSm+6h4Obpcgt0uXkKboGMndYuKZF1\nRgEjIutea9js3NrXXL/6sMljGgWGet/IG/pdunrrOHkP35lnIUwOHn525nmenXn+jO9vmzYFJ4ma\nJG6SsFlcTtYnwZOxM4odkYtAASMiHWttYWMAGzCNHoZ6d/KGfpuu3hpOxgenRmRV8Y0q1cijVPdY\nqBc5XhoniMMVx2QbFvllMzjLZ3QW77OKHZFXTQEjIpecVYXNSY/xV7yzzNg4jVsBgwEKWYfufIot\nOYd8DtK5EDcdYKXqYNcIzCqBUcELPIp+iWK9xIQ3yX+KwfKhLWEZ1hlmdE4PnoKbJ2dnFTsiLRQw\nInLZOFfYjE97zBSrLHh15kt15rw6C6Ua816dk3MVXp4qneGnWkAOyOHag3TlXLrzLkM5l1zeIJ0J\ncNI+ZsoHq0ZoVqhRodQInWK9yIQ3xX+WfZNqOdMwm3FTcPN0OafvwloMn6yT0flx5JKngBGRy15r\n2KykVg+Z95KgmS/Vk3uvdmq5lDw+Ol4kOutJzjNAhnxmiO68S3fOZXPOIZ8zSWUDnJSP4dSI7Tqh\nWaESeRTrHsV6kYV6iRPe1GlfG1/ONEwKTp6ebBcZM0veyZF3cxScPHk3R95JIijv5Ci4OdKWDlKW\nzqOAERFZpZRrMehmGezJrvi6KI4pVfxm0MyX6smsjldnrlRrLs8u1Dh+0lvpHbGtNN2519GVSzGQ\nd7kq55LNGqSyAXaqjuHWiawqAVW80KNYS0KnWC8yWTpJNaid83MtHrdTcHLkm2GTXxY++WYApa2U\ngkfaTgEjIvIaMw2DrqxLV9blClY+eV7dD5tBk8zi1FqW680Zn/+cKHJ0YqVL1zlkU/105zfRnXPZ\nlE8x1JcjNn3sVIDpJsfrxGadwKzixxWqUYWSnxy3U6p7nKhM83Jp/Jyf7/TgyVNwc0vCp9BYr+CR\nC0UBIyLSRq5j0b8hQ/+GlU+mF8cxXjU4a+C0zvIsv0zD6Uwgh2nkyaZfRy7jkE/b9GYcMmkDNxNg\nuz6m64NTJzarBGYNnyq1qEw5KFPyS6sPHtNOomZZ8CzO6DRnexrrUwoeWQUFjIhIBzAMg3zGIZ9x\n+K+BlV/rBxHFch3LdTg2MY9X9fEqPqVqgFdJlr1qQKmx3qv4TM9VCKOzzfCkG7fuxlggl3bIZRx6\nM5DOhrjpEDvlYzp1cHxiq0pgVPGpUo3KVMLK+QdPS9jk3SwpK0XKdHGt5JaynMZ9Y515ajlluTim\noxC6hClgREQuMY5t0tuVZmCgQHfaWtU2cRxTrYdnjJtm+FR9vErLc9WA6Tm/JXwMINW4nb7rzDAg\nmzHI5qIkejIBdsrHcHwMu05k1QhbomfSm8KP/Ff9z8HAwLGcZvQ0Q8dycU1nyeNUM4Ccpetanlu+\nTt/0ai8FjIiIYBgGmZRNJmXTfx7bNcPnDHHjVXxKLeHjVRuPywEzr/iEkU0ys7MCM8Rw6mSyIa4L\nTirGcSJsJ8ZyIiw7wrBCTCsEM7nFRkBkBEQEhAQE+PihT9mvUI/qhOc4GeFq2aZ92oyQs2wWKHnu\n9IjqqxQolwJs08YxLWzTwTYtbMPGWVw2bRzTxjZtLMPSbNIyChgREXnVloRP9+q3i+OYmh8mQdOI\nG68aNB63zPYsLlcDqpWA8nxItR6usLvr3GwLUmlIpWJSqRgnBY4T47gRlh1jOSGmHWFaEYZ5Kowi\nMyBuRFGITxD7BJFPParj+R6z1Tr1NcwYnctizNiGvSRu7GYAJcuO6WAb1rLXLNvGOPP2TiOczvw+\nyfJ6iSkFjIiIXHSGYZB2bdLu+YUPJPEThBGVehIz1VpAtR5S85c+rtYX78MzPE6W57xkOTltz+p2\nty3n2CZp1yLtWhRci1QKHDfGdWMcN8Z2kjCy7SSMDCsknbWo1mrERkRshGBExITEhESEhIv3cUgY\nBwRRSBAFBHFAEAX4UUA1rBH4XvNxzKuPuvPVDBvD5tr+N3LXG++8aO/dHMNFf0cREZE1MAwDx7Zw\nbIuulU/JsypxHOMH0Vkj52wBVDvD+tJ8lWo95KznMQROhdLKJ05s5dgmjmViN+4XH2ftxrJtYlsk\nM0hW3LinOZNkmjGGFWOYEaYZYZgRsZHcY0bERMnuN5KQioxkOYmogIiwGVF+S0gFUbIbrB0UMCIi\nclkzDAPXsXAdi66cu+afF8cx9dYgqp2KnMVZIjflMDdfwQ9C/DDCDyKCIMYPQ/wgwg9jgiBqPJ8E\nVrI+IggiyrUg2aax7Ro+PUlQWSTX/zo7yzRaYulUOJnb+uANaxjCq6SAEREReQ0ZhkHKsUg5Ft1n\nCaKBgQInTxZfk/dLdqnFzZhpDRt/2X3Quq71dS1x1HztCq/zg4ian3xrbXq++pp8jvOlgBEREelg\nyS61ZHYks/q9Uh1PX2IXERGRjqOAERERkY6jgBEREZGOo4ARERGRjqOAERERkY6jgBEREZGOo4AR\nERGRjqOAERERkY6jgBEREZGOo4ARERGRjqOAERERkY6jgBEREZGOo4ARERGRjmPEcRy3exAiIiIi\n50MzMCIiItJxFDAiIiLScRQwIiIi0nEUMCIiItJxFDAiIiLScRQwIiIi0nEUMC2+9rWvMTw8zO7d\nu3nmmWfaPRxpcf/99zM8PMwdd9zB73//+3YPR1pUq1VuueUWfvrTn7Z7KNLil7/8JR/4wAe4/fbb\nOXToULuHI4DneXzyk59kZGSE3bt3c/jw4XYPqaPZ7R7AevH3v/+df//734yOjvLSSy+xb98+RkdH\n2z0sAZ544gleeOEFRkdHmZ2d5YMf/CC33npru4clDQ899BDd3d3tHoa0mJ2d5cEHH+Sxxx6jXC7z\nrW99i3e9613tHtZl72c/+xlbt27l3nvv5cSJE3zsYx/j8ccfb/ewOpYCpuHIkSPccsstAGzfvp35\n+XlKpRL5fL7NI5Mbb7yRN73pTQB0dXVRqVQIwxDLsto8MnnppZd48cUX9R/HdebIkSO87W1vI5/P\nk8/n+cpXvtLuIQnQ09PDv/71LwAWFhbo6elp84g6m3YhNUxPTy/5w9Tb28vJkyfbOCJZZFkW2WwW\ngEcffZR3vOMdipd14sCBA+zdu7fdw5Bljh07RrVa5ROf+AR79uzhyJEj7R6SAO9///sZHx/nPe95\nD3fffTef+9zn2j2kjqYZmLPQFRbWnz/+8Y88+uij/OAHP2j3UAT4+c9/znXXXccVV1zR7qHIGczN\nzfHAAw8wPj7ORz/6Uf785z9jGEa7h3VZ+8UvfsGmTZv4/ve/z3PPPce+fft07NgaKGAaBgcHmZ6e\nbj6emppiYGCgjSOSVocPH+bb3/423/ve9ygUCu0ejgCHDh3i5Zdf5tChQ0xOTuK6Lhs3bmTXrl3t\nHtplr6+vj+uvvx7bttmyZQu5XI6ZmRn6+vraPbTL2pNPPslNN90EwNVXX83U1JR2h6+BdiE1vP3t\nb+d3v/sdAGNjYwwODur4l3WiWCxy//33853vfIcNGza0ezjS8I1vfIPHHnuMH//4x9x5553cc889\nipd14qabbuKJJ54giiJmZ2cpl8s63mIduPLKK3n66acBOH78OLlcTvGyBpqBaXjLW97Cjh072L17\nN4ZhsH///nYPSRp+85vfMDs7y6c+9anmugMHDrBp06Y2jkpk/RoaGuK9730vH/7whwH4whe+gGnq\n/1fbbXh4mH379nH33XcTBAFf+tKX2j2kjmbEOthDREREOoySXERERDqOAkZEREQ6jgJGREREOo4C\nRkRERDqOAkZEREQ6jgJGRC6oY8eOsXPnTkZGRppX4b333ntZWFhY9c8YGRkhDMNVv/4jH/kIf/vb\n317NcEWkQyhgROSC6+3t5eDBgxw8eJBHHnmEwcFBHnrooVVvf/DgQZ3wS0SW0InsROSiu/HGGxkd\nHeW5557jwIEDBEGA7/t88Ytf5JprrmFkZISrr76aZ599locffphrrrmGsbEx6vU69913H5OTkwRB\nwG233caePXuoVCp8+tOfZnZ2liuvvJJarQbAiRMn+MxnPgNAtVpleHiYD33oQ+386CLyGlHAiMhF\nFYYhf/jDH7jhhhv47Gc/y4MPPsiWLVtOu7hdNpvlhz/84ZJtDx48SFdXF1//+tepVqu8733v4+ab\nb+avf/0r6XSa0dFRpqamePe73w3Ab3/7W7Zt28aXv/xlarUaP/nJTy765xWRC0MBIyIX3MzMDCMj\nIwBEUcRb3/pW7rjjDr75zW/y+c9/vvm6UqlEFEVAcnmP5Z5++mluv/12ANLpNDt37mRsbIznn3+e\nG264AUguzLpt2zYAbr75Zn70ox+xd+9e3vnOdzI8PHxBP6eIXDwKGBG54BaPgWlVLBZxHOe09Ysc\nxzltnWEYSx7HcYxhGMRxvORaP4sRtH37dn7961/zj3/8g8cff5yHH36YRx55ZK0fR0TWAR3EKyJt\nUSgU2Lx5M3/5y18AOHr0KA888MCK27z5zW/m8OHDAJTLZcbGxtixYwfbt2/nqaeeAmBiYoKjR48C\n8Ktf/Yp//vOf7Nq1i/379zMxMUEQBBfwU4nIxaIZGBFpmwMHDvDVr36V7373uwRBwN69e1d8/cjI\nCPfddx933XUX9Xqde+65h82bN3Pbbbfxpz/9iT179rB582auvfZaAK666ir279+P67rEcczHP/5x\nbFv/2hO5FOhq1CIiItJxtAtJREREOo4CRkRERDqOAkZEREQ6jgJGREREOo4CRkRERDqOAkZEREQ6\njgJGREREOo4CRkRERDrO/wN7hPiyXo4AUAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "jFfc3saSxg6t" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "Ax_IIQVRx4gr" + }, + "cell_type": "markdown", + "source": [ + "Since normalization uses min and max, we have to ensure it's done on the entire dataset at once. \n", + "\n", + "We can do that here because all our data is in a single DataFrame. If we had multiple data sets, a good practice would be to derive the normalization parameters from the training set and apply those identically to the test set." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "D-bJBXrJx-U_", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def normalize_linear_scale(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized linearly.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + " processed_features[\"total_rooms\"] = linear_scale(examples_dataframe[\"total_rooms\"])\n", + " processed_features[\"total_bedrooms\"] = linear_scale(examples_dataframe[\"total_bedrooms\"])\n", + " processed_features[\"population\"] = linear_scale(examples_dataframe[\"population\"])\n", + " processed_features[\"households\"] = linear_scale(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = linear_scale(examples_dataframe[\"median_income\"])\n", + " processed_features[\"rooms_per_person\"] = linear_scale(examples_dataframe[\"rooms_per_person\"])\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize_linear_scale(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.005),\n", + " steps=2000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "MrwtdStNJ6ZQ" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Try a Different Optimizer\n", + "\n", + "** Use the Adagrad and Adam optimizers and compare performance.**\n", + "\n", + "The Adagrad optimizer is one alternative. The key insight of Adagrad is that it modifies the learning rate adaptively for each coefficient in a model, monotonically lowering the effective learning rate. This works great for convex problems, but isn't always ideal for the non-convex problem Neural Net training. You can use Adagrad by specifying `AdagradOptimizer` instead of `GradientDescentOptimizer`. Note that you may need to use a larger learning rate with Adagrad.\n", + "\n", + "For non-convex optimization problems, Adam is sometimes more efficient than Adagrad. To use Adam, invoke the `tf.train.AdamOptimizer` method. This method takes several optional hyperparameters as arguments, but our solution only specifies one of these (`learning_rate`). In a production setting, you should specify and tune the optional hyperparameters carefully." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "61GSlDvF7-7q", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 921 + }, + "outputId": "de66b505-2c8a-4ad9-dc8d-95c581b12ce2" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Retrain the network using Adagrad and then Adam.\n", + "#\n", + "_, adagrad_training_losses, adagrad_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.5),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n", + "_, adam_training_losses, adam_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdamOptimizer(learning_rate=0.009),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n", + "plt.ylabel(\"RMSE\")\n", + "plt.xlabel(\"Periods\")\n", + "plt.title(\"Root Mean Squared Error vs. Periods\")\n", + "plt.plot(adagrad_training_losses, label='Adagrad training')\n", + "plt.plot(adagrad_validation_losses, label='Adagrad validation')\n", + "plt.plot(adam_training_losses, label='Adam training')\n", + "plt.plot(adam_validation_losses, label='Adam validation')\n", + "_ = plt.legend()" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 78.88\n", + " period 01 : 73.16\n", + " period 02 : 71.59\n", + " period 03 : 71.04\n", + " period 04 : 74.86\n", + " period 05 : 72.79\n", + " period 06 : 69.65\n", + " period 07 : 70.05\n", + " period 08 : 72.90\n", + " period 09 : 68.63\n", + "Model training finished.\n", + "Final RMSE (on training data): 68.63\n", + "Final RMSE (on validation data): 69.49\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 212.67\n", + " period 01 : 121.02\n", + " period 02 : 113.92\n", + " period 03 : 105.99\n", + " period 04 : 93.43\n", + " period 05 : 79.21\n", + " period 06 : 72.23\n", + " period 07 : 70.47\n", + " period 08 : 70.31\n", + " period 09 : 69.39\n", + "Model training finished.\n", + "Final RMSE (on training data): 69.39\n", + "Final RMSE (on validation data): 70.09\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGACAYAAACk8chOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlcVPX+x/HXDIuAggIDKpj7igug\nkiBuaCq43CQVTSXv1bRUyp/WdblJZeaClTfNJdPU0jQLrTTNBc2lvJqKueKCK6ICKsOwyjCc3x9c\n50ogijLMqJ/n49Hjwcw533Pe53zpwcfvWb4qRVEUhBBCCCGeQmpzBxBCCCGEMBUpdIQQQgjx1JJC\nRwghhBBPLSl0hBBCCPHUkkJHCCGEEE8tKXSEEEII8dSyNncAIZ40jRo1ombNmlhZWQFgMBjw8/Nj\nypQpODg4PPJ2v/vuO8LCwop8v379eiZPnsznn39OUFCQ8fucnBzatm1Lt27dmDVr1iPv92FduXKF\nGTNmcPHiRQDs7e2JiIjghRdeMPm+S2PhwoVcuXKlyDk5cOAAw4cPp0aNGkXabNmypbziPZarV6/S\npUsX6tSpA4CiKGg0Gt555x28vLxKta1PPvkEDw8PXn755Ydu89NPPxEdHc3KlStLtS8hzEkKHSEe\nwcqVK6lWrRoAubm5jBs3jsWLFzNu3LhH2l5KSgpLly4tttABqF69Oj///HOhQufXX3/Fycnpkfb3\nKN5++21efPFFPv/8cwCOHj3K0KFD+eWXX6hevXq55Xgc1atXf2KKmvuxsrIqdAybN29mzJgxbN26\nFVtb24fezltvvWWKeEJYHLl0JcRjsrW1pX379sTFxQFw584d3n33Xbp3705ISAizZs3CYDAAcPr0\naQYOHEhwcDAvvvgie/fuBWDgwIFcu3aN4OBgcnNzi+yjZcuWHDhwgOzsbON3mzdvJjAw0Pg5NzeX\nDz/8kO7du9O5c2djQQJw5MgRXnrpJYKDg+nRowf79u0DCkYI2rVrx9dff03v3r1p3749mzdvLvY4\nz549i7e3t/Gzt7c3W7duNRZ88+fPp2PHjvTp04cvvviCzp07AzBp0iQWLlxobHfv5wflmjFjBkOG\nDAHg8OHD9O3bl65duxIWFkZCQgJQMLL1f//3fwQFBTFkyBBu3LjxgB4r3vr164mIiGDo0KHMnj2b\nAwcOMHDgQMaOHWssCn755Rd69epFcHAwr7zyCleuXAHgs88+Y8qUKfTr148VK1YU2u7YsWNZtmyZ\n8XNcXBzt2rUjPz+ff//733Tv3p3u3bvzyiuvkJSUVOrcPXr0ICcnhwsXLgCwdu1agoOD6dy5M+PH\njycnJwcoOO8zZ86kd+/e/PLLL4X64X6/l/n5+XzwwQd06tSJfv36cfr0aeN+//jjD0JDQ+nRowch\nISH88ssvpc4uRLlQhBCl0rBhQ+X69evGz1qtVhk8eLCycOFCRVEUZfHixcqIESMUvV6vZGdnK337\n9lV+/PFHxWAwKCEhIcrGjRsVRVGUY8eOKX5+fkp6erqyf/9+5YUXXih2f+vWrVMmTpyovP3228a2\n6enpSpcuXZTvv/9emThxoqIoijJ//nxl6NChyp07d5TMzEylT58+ys6dOxVFUZRevXopP//8s6Io\nivLDDz8Y95WQkKB4eXkpK1euVBRFUTZv3qx07dq12BxvvPGGEhQUpHz11VdKfHx8oWVnzpxRWrdu\nrSQnJyt6vV4ZNWqUEhQUpCiKokycOFFZsGCBcd17P5eUq2nTpsr69euNx+vn56f89ttviqIoysaN\nG5XQ0FBFURRl1apVyuDBgxW9Xq/cvn1bCQoKMp6Te5V0ju+eZx8fH+XixYvG9Zs3b67s27dPURRF\nSUxMVFq1aqVcunRJURRF+fLLL5WhQ4cqiqIo8+bNU9q1a6fcunWryHY3bdqkDB482Ph57ty5yrRp\n05SzZ88q3bp1U3JzcxVFUZSvv/5a+eGHH+6b7+55adKkSZHv/fz8lPPnzysHDx5UAgIClBs3biiK\noiiRkZHKrFmzFEUpOO+9e/dWcnJyjJ8XLFhQ4u/lrl27lG7duikZGRlKdna20q9fP2XIkCGKoijK\nSy+9pBw4cEBRFEW5ePGiMn78+BKzC2EuMqIjxCMIDw8nODiYLl260KVLF/z9/RkxYgQAu3btIiws\nDGtra+zs7Ojduze///47V69e5ebNm/Ts2ROA5s2b4+HhwfHjxx9qnz179uTnn38GICYmhqCgINTq\n//0v/OuvvzJo0CBsbW1xcHDgxRdfZNu2bQD8+OOPhISEANCqVSvjaAhAXl4eL730EgBNmzbl2rVr\nxe7/o48+YvDgwWzcuJFevXrRuXNn1qxZAxSMtvj5+eHm5oa1tTW9evV6qGMqKZder6dr167G7Vet\nWtU4gtWrVy+uXLnCtWvXOHToEF27dsXa2hpnZ+dCl/f+6vr16wQHBxf67957eWrXrk3t2rWNn+3s\n7AgICADg999/p02bNtSqVQuA/v37c+DAAfLy8oCCES4XF5ci++zUqROnTp1Cq9UCsH37doKDg3Fy\ncuL27dts3LiRtLQ0wsPD6dOnz0Odt7sURWHt2rVUrVqV2rVrs3PnTnr06EHVqlUBePnll42/AwAB\nAQFUqFCh0DZK+r08ePAgHTt2pGLFitjZ2Rn7CsDV1ZUff/yR8+fPU7t2bT755JNSZReivMg9OkI8\ngrv36Ny+fdt42cXauuB/p9u3b1O5cmXjupUrV+bWrVvcvn0bR0dHVCqVcdndP3YajeaB+wwMDGTK\nlClotVo2bdrE6NGjjTcGA6SnpzNz5kzmzJkDFFzKatGiBQAbN27k66+/JjMzk/z8fJR7prizsrIy\n3kStVqvJz88vdv8VKlRg+PDhDB8+HJ1Ox5YtW5gxYwY1atQgLS2t0P1Crq6uDzyeh8lVqVIlAHQ6\nHQkJCQQHBxuX29racvv2bdLS0nB0dDR+7+TkRGZmZrH7e9A9Ovf2218/p6amFjpGR0dHFEUhNTW1\n2LZ3OTg40LZtW3bt2kWrVq3Q6XS0atUKlUrFZ599xrJly5g2bRp+fn5MnTr1gfc7GQwG43lQFIX6\n9euzcOFC1Go16enpbN++nd9++824XK/X3/f4gBJ/L9PS0nB3dy/0/V0zZsxg0aJF/OMf/8DOzo7x\n48cX6h8hLIUUOkI8BhcXF8LDw/noo49YtGgRABqNxvivdwCtVotGo8HV1ZW0tDQURTH+UdFqtQ9d\nFNjY2BAUFMSPP/7I5cuX8fX1LVTouLu7M2zYsCIjGklJSUyZMoXvv/+eJk2acOnSJbp3716q47x9\n+zZxcXHGERUnJyfCwsLYu3cvZ8+exdHRkfT09ELr3/XX4iktLa3Uudzd3albty7r168vsszJyem+\n+y5Lrq6uHDlyxPg5LS0NtVqNs7PzA9t2796d7du3k5qaSvfu3Y397+/vj7+/P1lZWURFRfHxxx8/\ncGTkrzcj38vd3Z3Q0FAmTpxYquO63+9lSedWo9EQGRlJZGQkv/32G2+88Qbt27enYsWKD71vIcqD\nXLoS4jH94x//4MiRI/zxxx9AwaWK6OhoDAYDWVlZ/PTTT3Ts2JEaNWpQrVo1482+sbGx3Lx5kxYt\nWmBtbU1WVpbxMsj99OzZkyVLlhT7SHeXLl34/vvvMRgMKIrCwoUL2bNnD7dv38bBwYG6deuSl5fH\n2rVrAe476lGcnJwc3nzzTeNNqgCXL1/m6NGjtG7dGl9fXw4dOsTt27fJy8vjxx9/NK7n5uZmvIk1\nISGB2NhYgFLl8vb2JiUlhaNHjxq3889//hNFUfDx8WHnzp0YDAZu377Nnj17Hvq4SiMwMJBDhw4Z\nL699++23BAYGGkfyShIUFMSRI0eIiYkxXv757bffmDp1Kvn5+Tg4ONC4ceNCoyqPonPnzmzbts1Y\nkMTExPDFF1+U2Kak30tfX19+++03srOzyc7ONhZYer2e8PBwkpOTgYJLntbW1oUupQphKWRER4jH\nVKlSJUaOHElUVBTR0dGEh4eTkJBAz549UalUBAcHExISgkqlYs6cObz33nvMnz8fe3t75s6di4OD\nA40aNaJy5coEBgbyww8/4OHhUey+nn/+eVQqFT169CiybNCgQVy9epWePXuiKArNmjVj6NChODg4\n0KFDB7p3746rqyuTJk0iNjaW8PBw5s2b91DH6OHhwaJFi5g3bx4ffvghiqJQqVIlJk+ebHwSa8CA\nAYSGhuLs7Ey3bt04d+4cAGFhYURERNCtWze8vLyMozaNGzd+6Fx2dnbMmzePadOmkZmZiY2NDWPH\njkWlUhEWFsahQ4d44YUX8PDw4IUXXig0CnGvu/fo/NXs2bMfeA6qVavGhx9+yOjRo9Hr9dSoUYNp\n06Y91PmrVKkSTZs25cyZM/j4+ADg5+fHpk2b6N69O7a2tri4uDBjxgwAJkyYYHxyqjSaNm3K66+/\nTnh4OPn5+bi6ujJ16tQS25T0exkUFMSuXbsIDg5Go9HQsWNHDh06hI2NDf369ePvf/87UDBqN2XK\nFOzt7UuVV4jyoFLuvSguhBBl4NChQ0yYMIGdO3eaO4oQ4hkn44xCCCGEeGpJoSOEEEKIp5ZcuhJC\nCCHEU0tGdIQQQgjx1JJCRwghhBBPLZM+Xj579mwOHz5MXl4er732Gs2bN2fy5Mnk5eVhbW3NRx99\nhJubGxs2bOCrr75CrVYTFhZG//79S9xuSkrxj46WFWdnB1JTs0y6D/HopH8sn/SR5ZM+smzSP6Xj\n5uZ432UmK3T279/PuXPnWLt2LampqYSGhtKmTRvCwsLo0aMH33zzDcuXLyciIoIFCxYQHR1tfDdD\n165dqVKliqmiPZC1tZXZ9i0eTPrH8kkfWT7pI8sm/VN2TFbo+Pn5GefZcXJyIjs7m/fee884oZyz\nszMnT57k6NGjNG/e3DhXTcuWLYmNjS31i7KEEEIIIf7KZIXOvRMFRkdH06FDB+Nng8HA6tWrGTNm\nDDdv3iw046+LiwspKSklbtvZ2cHk1W5Jw2DC/KR/LJ/0keWTPrJs0j9lw+RTQMTExBAdHc2yZcuA\ngiJnwoQJ+Pv7ExAQwMaNGwut/zBPu5v6uqWbm6PJ7wMSj076x/JJH1k+6SPLJv1TOiUVhSZ96mrv\n3r18/vnnLFmyxHhpavLkydSqVYuIiAigYLbdmzdvGtskJyfj7u5uylhCCCGEeEaYrNBJT09n9uzZ\nLF682Hhj8YYNG7CxseHNN980ruft7c3x48fR6XRkZmYSGxtL69atTRVLCCGEEM8Qk1262rx5M6mp\nqfzf//2f8btr167h5OREeHg4APXq1eP999/nrbfeYvjw4ahUKsaMGWMc/RFCCCGEeBxP5BQQpr5u\nKddGLZv0j+WTPrJ80keWTfqndMx2j44QQgjxLNu1a8dDrTd37idcu5Z43+WTJo0vq0jPHCl0hBBC\nCBO4fv0aMTFbH2rdsWPfwsPD877LZ82aU1axnjkmf7xcCCGEeBbNmRNFXNxJ2rf3o1u3EK5fv8an\nny5k5swPSElJJjs7m2HDRhIY2J6IiJGMHz+BX3/dQWZmBjduJHLx4iXefPMtAgIC6dmzC5s27SAi\nYiR+fm2IjT2EVqslKurfaDQaPvggkhs3rtO8eQt27ozhhx82m/vwLYYUOkIIIZ563+2M5+Dp5DLd\npl9jd8I617/v8pdfDmf9+u+oU6ceV65cYuHCpaSm3ub55/0JCelFYuJVIiMnERjYvlC75OQklixZ\nwsaNW/npp3UEBAQWWl6xYkXmzl3EokWfsWfPTjw8apCbe4cvvljB77/v5bvv1pTpcT7ppNC5hyHf\nQMyx/fTybwuozB1HCCHEU6JJk6YAODo6ERd3kg0b1qNSqdHp0oqs26KFD1DwnrmMjIwiy729fY3L\n09LSuHz5Is2bewMQEBCIlZXMk3UvKXTuEZdwkQ23f+Ly9quMbD/A3HGEEEKUkbDO9UscfTE1Gxsb\nALZv34JOp2PBgqXodDpefTW8yLr3FirFPRj91+WKoqBWF3ynUqlQqeQf6veSm5HvUbdqDVT5auIz\n480dRQghxBNOrVZjMBgKfafVaqle3QO1Ws3u3TvR6/WPvR9PzxqcOXMKgD/+2F9kn886KXTu4WBn\nh2teVTJt07h2q+SJRYUQQoiS1KpVhzNnTpOZ+b/LT506dWbfvr2MHTsKe3t73N3dWb58yWPtp23b\n9mRmZjJq1HCOHj2Ck1Plx43+VJEXBt7jZmIKH2z9AUPteF6o1I3Q518wyX7E45EXaVk+6SPLJ31k\n2UrTPzpdGrGxh+jUqQspKcmMHTuK1avXmTihZSnphYFyj8499Lm5ZOqqYUc8cannCEUKHSGEEJbN\nwaEiO3fGsHr1ShQlnzfekJcL3ksKnXtUr+NJlazDZN+x44bVVfIMBqzl7nUhhBAWzNramg8+mGnu\nGBZL7tH5iyaVVRjSNBis9Ry7dNbccYQQQgjxGKTQ+YsWjatjSNMAEHv1pJnTCCGEEOJxSKHzFy38\nm6LWVgEFLmRdMHccIYQQQjwGKXT+wq6iPXXVegwZVUizvYU2Q2fuSEIIIYR4RFLoFMO7thP5aRpQ\nKfzn3DFzxxFCCPEU69evN1lZWaxcuYITJwr/zcnKyqJfv94ltt+1awcAmzdvZPfuX02W80klhU4x\nAtp5Ge/TOXnztJnTCCGEeBaEh/+dZs1alKrN9evXiInZCkCPHr3p2DHIFNGeaPJ4eTHqNauL47I/\nyNXbkEgC+fn5qNVSEwohhHh4w4YNZsaMT6hWrRo3blxn8uS3cHNzJzs7m5ycHMaN+ydeXs2M60+f\n/j6dOnXBx8eXCRPeJCMjyzjBJ8C2bb8QHb0WKys1tWvXY+LEd5gzJ4q4uJMsX76E/Px8qlSpQt++\nA1i4cC7Hjx8lL89A375hBAf3JCJiJH5+bYiNPYRWqyUq6t9Uq1bNHKemXEmhUwy1Wk0TJ4VYnSu5\nrjc4d+0KjWrUNncsIYQQj2h9/M8cST5eptv0dW/OS/V73Xd5hw5B/P77Hvr2DWPv3t106BBEvXoN\n6NChE4cPH+Sbb75i+vSPirTbuvUXGjRowIgRb7BjxzbjiE12djaffPIZjo6OjBkzgvPn43n55XDW\nr/+Of/xjBF9+uRiAP/+M5cKF8yxatIzs7GyGDh1Ihw6dAKhYsSJz5y5i0aLP2LNnJ2Fhg8r0nFgi\nGaa4j+YNqxbcpwP8cUnu0xFCCFE6BYXOXgB++2037dp1ZPfuHYwaNZxFiz4jLS2t2HaXLl3A19cX\nAF/fVsbvnZycmDz5LSIiRnL58kXS0rTFtj99+hQ+Pi0BsLe3p3btuiQkJADg7V2wXXd3dzIyMopt\n/7SREZ378AloinK8YGLP+IzzZk4jhBDicbxUv1eJoy+mULduPW7dSiEp6Qbp6ens3bsLjcadyMhp\nnD59ivnzPy22naJgvF0iP79gOkq9Xs+cObNZsWI1rq4aJkz4v/vuV6VSce8slnl5etRqFQBW97zt\n/wmc6vKRyIjOfTg4VaKWIY/8rErcsk4iKyfH3JGEEEI8YQIC2vHFFwtp374jaWlaPD1rALB796/k\n5eUV26ZmzVqcOHECgNjYQwBkZWViZWWFq6uGpKQbnD4dR15eHmq1GoPBUKh948ZNOXLk8H/bZZGY\neJUaNWqa6hAtnhQ6JfCqZo8hTYOizueP8yfMHUcIIcQTpmPHIGJittKpUxeCg3uydu03jBs3hqZN\nm3Hr1i02bdpQpE1wcE/+/PNPxo4dRULCZVQqFZUrV8HPrw2vvvoKy5cvYdCgcObNm0OtWnU4c+Y0\n8+Z9Ymzv7e1Do0aNGTNmBOPGjeH11yOwt7cvz8O2KCrlCRy7etip6x+Vm5sjKSnpXDgez4y9R6jQ\n+CCNlOa82SXcpPsVD+du/wjLJX1k+aSPLJv0T+m4uTned5mM6JSgdtO62GvtUQxWJOReMnccIYQQ\nQpSSFDolUKvVNK5oID/dhawK6Vy9mWTuSEIIIYQoBSl0HqB5fTfjW5L3nz9q5jRCCCGEKA0pdB7A\nt21TFK0LAKe158ycRgghhBClIYXOAzg6V8bjTj75OfYkqRLR5+nNHUkIIYQQD0kKnYfQ1N2O/DQN\n+dZ5/HnxrLnjCCGEEOIhSaHzEHx96hrv0zmSKO/TEUII8XB27drxUOvNnfsJ164l3nf5pEnjyyrS\nM8ekU0DMnj2bw4cPk5eXx2uvvUbz5s2ZMGECBoMBNzc3PvroI2xtbdmwYQNfffUVarWasLAw+vfv\nb8pYpVbPuz4Vtp9FyVdx4c5Fc8cRQgjxBLh+/ZrxZYEPMnbsWyUunzVrTlnFeuaYrNDZv38/586d\nY+3ataSmphIaGkpAQACDBg0iJCSEOXPmEB0dTZ8+fViwYAHR0dHY2NjQr18/unbtSpUqVUwVrdSs\nrKxoZGvgVEYV0h1vc0uXhqtTZXPHEkIIYcHmzIkiLu4k7dv70a1bCNevX+PTTxcyc+YHpKQkk52d\nzbBhIwkMbE9ExEjGj5/Ar7/uIDMzgxs3Erl48RJvvvkWAQGB9OzZhU2bdhARMRI/vzbExh5Cq9US\nFfVvNBoNH3wQyY0b12nevAU7d8bwww+bzX34FsNkhY6fnx8tWrQACmZczc7O5sCBA0ydOhWAoKAg\nli1bRp06dWjevDmOjgVvNWzZsiWxsbF07tzZVNEeSfN6rpxI1WDllMr++KP0bNnB3JGEEEI8pJTv\nvyX90MEy3aZjaz/c+g+87/KXXw5n/frvqFOnHleuXGLhwqWkpt7m+ef9CQnpRWLiVSIjJxEY2L5Q\nu+TkJJYsWcLGjVv56ad1BAQEFlpesWJF5s5dxKJFn7Fnz048PGqQm3uHL75Ywe+/7+W779aU6XE+\n6Ux2j46VlRUODg4AREdH06FDB7Kzs7G1tQXA1dWVlJQUbt68iYuLi7Gdi4sLKSkppor1yHz8vTBo\nXQE4efOMmdMIIYR4kjRp0hQAR0cn4uJOMmrUMKZPfx+dLq3Iui1a+ADg7u5ORkZGkeXe3r6Fll++\nfJHmzb0BCAgILDRDuTDxPToAMTExREdHs2zZMrp162b8/n5TbD3M1FvOzg5YW5u2I/86b4abmyPV\ns/dyW2/LNRJwda2IWi33cptLSfOaCMsgfWT5nqU+chs9AhhRrvusUsWBChVsqFixAs7Ojri5OfLD\nDz+Qm5vNd9+tRavV0q9fP9zcHLG1tcbZuSIVK1agcuWKADg7V8TGxgo3N0dUKpVxPY3GCTc3RypV\nskOvz6ZCBVusrArWUxTFuK4oYNJCZ+/evXz++ecsXboUR0dHHBwcyMnJwc7OjqSkJNzd3XF3d+fm\nzZvGNsnJyfj4+JS43dTULFPGvu9kak1cbdmT5opec529R47hVbOeSXOI4slkd5ZP+sjySR+Znk6X\nQ1ZWDpmZd7CxySElJZ2EhBs4O7tx61YmP/20kZycO6SkpJObm0dqaqZxXYDU1Exyc/NISUlHUZRC\n66WkpJORUbDtqlVrsGvXDv72t3QOHPgPBoPhmetbs0zqmZ6ezuzZs1m8eLHxxuK2bduydetWALZt\n20b79u3x9vbm+PHj6HQ6MjMziY2NpXXr1qaK9Vh8vGuR/9/HzA9ePm7mNEIIISxZrVp1OHPmNJmZ\n/7v81KlTZ/bt28vYsaOwt7fH3d2d5cuXPNZ+2rZtT2ZmJqNGDefo0SM4ycMyhaiUh7lW9AjWrl3L\nZ599Rp06dYzfzZo1iylTpnDnzh08PDyYOXMmNjY2bNmyhS+//BKVSsWQIUP429/+VuK2TV2p3u9f\nOnn6PN78dDOqVr/hcqcq00JKfhxQmIb8S9TySR9ZPukjy1aa/tHp0oiNPUSnTl1ISUlm7NhRrF69\nzsQJLUtJIzomu3Q1YMAABgwYUOT75cuXF/kuODiY4OBgU0UpM9Y21tRX53Mu04lU+xQysrOpZG9v\n7lhCCCGeYQ4OFdm5M4bVq1eiKPm88Ya8XPBeJr8Z+WnTvI4zp9NcUVfU8Uf8cTo3f97ckYQQQjzD\nrK2t+eCDmeaOYbHksaFS8m3jZbxP53hSnJnTCCGEEKIkUuiUksbTDY3OBsVgxZW8y+aOI4QQQogS\nSKHzCLxcbMjXuZJjm8GlpGvmjiOEEEKI+5BC5xF4N6thnM38wMWjZk4jhBBCiPuRQucReLVuglVq\nwbuBzmrjzZxGCCHEk6xfv95kZWWxcuUKTpw4VmhZVlYW/fr1LrH9rl07ANi8eSO7d/9qspxPKnnq\n6hHYVLClvgLncxxItrlOrl6PrY2NuWMJIYR4goWH/73Uba5fv0ZMzFY6depCjx4lF0TPKil0HlHT\nmpU5l6Yhv+oVYi/E4d+ohbkjCSGEsCDDhg1mxoxPqFatGjduXGfy5Ldwc3MnOzubnJwcxo37J15e\nzYzrT5/+Pp06dcHHx5cJE94kIyPLOMEnwLZtvxAdvRYrKzW1a9dj4sR3mDMniri4kyxfvoT8/Hyq\nVKlC374DWLhwLsePHyUvz0DfvmEEB/ckImIkfn5tiI09hFarJSrq31SrVs0cp6ZcSaHziHyfb8S6\nLUlYV73Cn9dOSqEjhBAWbN/O81w4nVym26zb2J22ne8/52GHDkH8/vse+vYNY+/e3XToEES9eg3o\n0KEThw8f5JtvvmL69I+KtNu69RcaNGjAiBFvsGPHNmJiCqZOys7O5pNPPsPR0ZExY0Zw/nw8L78c\nzvr13/GPf4zgyy8XA/Dnn7FcuHCeRYuWkZ2dzdChA+nQoRMAFStWZO7cRSxa9Bl79uwkLGxQmZ4T\nSySFziOqVtuDKlo7svJVXNRfNHccIYQQFqZDhyDmz/+Uvn3D+O233UREjOPbb1eyZs1K9Ho9dnZ2\nxba7dOkCHToEAuDr28r4vZOTE5MnF0w9dPnyRdLStMW2P336FD4+LQGwt7endu26JCQkAODt7QuA\nu7s7aWlpZXOgFk4KncfQ1MmKAxnOZDjdJll7G/cqLuaOJIQQohhtO9crcfTFFOrWrcetWykkJd0g\nPT2dvXt3odG4Exk5jdOnTzF//qfFtlMUUKsLnhXKzy+YjlKv1zNnzmxWrFiNq6uGCRP+7777ValU\n3DuLZV6eHrVaBYCVldU9+zHKK82iAAAgAElEQVTJVJcWR566egwtvDzJ1xY8Zr4//tgD1hZCCPGs\nCQhoxxdfLKR9+46kpWnx9KwBwO7dv5KXl1dsm5o1a3HixAkAYmMPAZCVlYmVlRWurhqSkm5w+nQc\neXl5qNVqDAZDofaNGzflyJHD/22XRWLiVWrUqGmqQ7R4Uug8hmZtvEDrDMCp22fMnEYIIYSl6dgx\nyPhUVHBwT9au/YZx48bQtGkzbt26xaZNG4q0CQ7uyZ9//snYsaNISLiMSqWicuUq+Pm14dVXX2H5\n8iUMGhTOvHlzqFWrDmfOnGbevE+M7b29fWjUqDFjxoxg3LgxvP56BPbP8ATUKuUJHLt62KnrH5Wb\nm+ND72Pm7B9IaBGLtUrh312nYqW2enAj8VhK0z/CPKSPLJ/0kWWT/ikdNzfH+y6TEZ3H1Ow5Rwxp\nrhhscjl5+by54wghhBDiHlLoPCbf1g2Ns5kfTjhh5jRCCCGEuJcUOo+pRoOaOGoroigQnykjOkII\nIYQlkUKnDDRxsELJrIzW5ia6zExzxxFCCCHEf0mhUwZaNK5WMJu5WuGAPGYuhBBCWAwpdMpAC/9m\nKNqClwUeTz5t5jRCCCGEuEsKnTJgX8mBmlnWKHnWJBguk5+fb+5IQgghLMT27Vvo2LENWm3xUzas\nW7fWOE+VqVy4EE9ExMgi3//6a8xDb2PlyhWcOHH/qxbvvTeZO3dyHimfKUmhU0aae1QkX+dKrm0W\nF5ISzR1HCCGEhdi+fSuenjXYtevhi4ryoNfrWbt29UOvHx7+d5o1u/8E1lOnzqRCheLn7zInmeuq\njPi0qs+m/1zHyiWJgxePUb/6c+aOJIQQwsx0ujTi4k4yefK7rF79NX369APg0KE/mDfvE1xcXHF1\n1eDh4UleXh7Tp79PSkoyev0dXnnlVQID23Pw4IH/rquhZs1aVKlSBV/fVnz77SqysrKIiBjHkSOH\n2bVrB/n5+QQEBDJs2EiSk5OIjJyEjY0N9es3LJJt3rw5nD8fz8cfz8LLqyn79+/j5s0Upk6dwbff\nruLUqZPk5ubSp09fevfuw/Tp79OpUxfS0rQcO/YnWm0qV65cZtCgcHr16kO/fr35+uu1/Pvfs9Fo\n3DhzJo6kpBu8++6HNGrUmE8//Yjjx49Rp05drly5zNSpM6he3cPkfSCFThmp2bg29pv/xFAHzuri\nzR1HCCHEPVITt5OlPVWm23So4oWzZ9cS19m5M4a2bdvRpk0AUVEfkpKSjJubO4sXzycychoNGjTk\n7bffxMPDk/R0Hc8/709ISC9ycrSMHh1BYGB7Fi36jMjID6hXrwFjxozAz68NAOfPx7NmzXpsbW05\ncuQwCxcuRa1WExb2IgMGDCI6+lu6dOlGWNjLrFq1gvj4s4WyDRoUzqlTJ3j77Uls3ryRpKQbfP75\nMnJzc6lWzYM33hjPnTs5hIX1oXfvPoXanj8fz+efL+Pq1QTee+9f9OpVeHlubi5z5sznxx+j2bJl\nE9bW1hw79idLl67k4sULDBs2uAx64OFIoVNG1Go1XrZWHM2uSIrtDXJyc7GztTV3LCGEEGYUE7OV\noUOHY2VlRVBQF3bs2MbAgUO4fv06DRoUjLL4+LTkzp07ODo6ERd3kg0b1mNra4NOlwZAUtJ1GjZs\nDIC/f1vjJJ716zfA9r9/Z+zs7IiIGImVlRVarRadTselSxcJCnoBAF/f1uzfv6/ErE2aeKFSqahQ\noQI6XRqvvz4Ma2trtNrUIus2a9YCKysr3NzcyczMKLLc29sXADe3qpw6dZJLly7i5dUctVpNvXr1\nqVat+qOczkcihU4ZatagKkdSNairXebQ+ZO0a+Jr7khCCCEAZ8+uDxx9KWvJyUmcOnWC+fM/RaVS\nkZOTg6NjJQYOHIJa/b9bZO9OObl9+xZ0Oh0LFizFxsZAaOhLRbapUqmMP9vY2ABw48Z11q79hmXL\nvsHBwYHw8DDjdlUq9X9/fvBDMtbWBds7cuQwsbGHmD//C6ytrenatX2Rda2s/jevY3FTZhZdrqBW\n/y/7vcdhanIzchnyCWhK/n8fMz96vWyHSIUQQjxZYmK2Ehran6++WsOKFatZs2YdOp2OxMSraDRu\nXLlyCUVROHLkMABarZbq1T1Qq9Vs374dvV4PgIuLK5cvX8JgMHDw4IEi+9FqtTg7O+Pg4MCZM6e5\nceMGer2emjVrcfp0wd+i2NhDRdqpVGrj6NC90tK0uLtXxdramt9+243BkG/M8qg8PWtw5sxpFEXh\n0qWL3Lhx/bG2VxpS6JShSlUc8cywRclXc+nOJXPHEUIIYUYxMVvp2bO38bNKpSIkpBcxMVsZOXI0\nU6ZMZOLEcbi7VwWgU6fO7Nu3l7FjR2Fvb4+7uzvLly9hxIjRvPPOP5k0aTy1atUuNFoC0KBBQ+zt\nHRg1ahg7dmzjxRdf4pNPoujf/2U2bdrA+PERpKcXnQldo9GQl6dnypSJhb5v3boNV69eISJiJImJ\nV2nbth0ffzzzsc5F48ZePPdcTUaOHMp3362mdu26hUa1TEmlFDfmZOFMPXW9m5vjI+8jesUWYiof\nxaryLab4TKC6i6aM04nH6R9RPqSPLJ/0kWW7t3/++GM/zz1Xk+rVPZg9ezo+Pq3o1i3YzAlLJzc3\nlx07thES0ovs7GwGD+7Hd9/9hLV12dxB4+bmeN9lco9OGfP2rcu2I4lYVb7F/vNHCXXpYu5IQggh\nnmCKovCvf72Ng0NFnJ1dCAp68v6u2Nracvr0KaKj16JWq3j11dfLrMh5ECl0yli95vWx2XkMakLc\n7TOE8uT9QgohhLAcbdoE0KZNgLljPLZx4yaYZb8mvUB29uxZXnjhBVatWgXAwYMHefnllwkPD+e1\n114jLa3g0bmlS5fSr18/+vfvz+7du00ZyeTUajWNsUbJrcANVSJ5xdzoJYQQQojyYbJCJysri2nT\nphEQ8L8qdObMmUyfPp2VK1fi6+vL2rVrSUhIYPPmzaxevZrFixczc+bMYu8Cf5K0qO+GIU2DwVrP\n8cvnzB1HCCGEeGaZrNCxtbVlyZIluLu7G79zdnY2TmqWlpaGs7MzBw4coH379tja2uLi4oKnpyfx\n8U/2m4V9A5qSry24CTk24YSZ0wghhBDPLpMVOtbW1tjZFZ7c61//+hdjxoyhe/fuHD58mNDQUG7e\nvImLi4txHRcXF1JSUkwVq1w4aargnmaHokB85nlzxxFCCCGeWeV6M/K0adOYP38+rVq1IioqitWr\ni86a+jBPuzs7O2BtbfXA9R5HSY+qPYyW1RyJyayMruJtrCoouDg5lVEyAY/fP8L0pI8sn/RR+fj5\n55+ZOHEie/fuLfQP+7tWrVpFamoqb7zxRqHvy7J/zp49y7Rp01i5cuUjtQ8PDycyMpITJ07g6OhI\n166F3zLdpk0bDhwo+jLDu7Zs2UJwcDB79uzh6tWrDBo06JFyPIpyLXTOnDlDq1atAGjbti0bN27E\n39+fixcvGtdJSkoqdLmrOKmpWSbNWRbvl2jq9RxbT11CXSmNzQf20d0nsIzSCXn/h+WTPrJ80kfl\nZ926H/Hw8GTdup+Ms5ffKyMjh8zMO4X6o6z7JzU1k9zcvEfeZm5uHqmpmbRvX1Dg/HU7iqLcd9t6\nvZ4lS76kVatAmjTxpUkT3zL/3bOY9+hoNBri4+OpX78+x48fp1atWvj7+7N8+XLeeOMNUlNTSU5O\npn79+uUZyyQa+DbEet8xqAHHk+PojhQ6QgjxrNHp0oiLO8nkye+yevXXxkLn0KE/mDfvE1xcXHF1\n1eDh4UleXh7Tp79PSkoyev0dXnnlVQID23Pw4IH/rquhZs1aVKlSBV/fVnz77SqysrKIiBjHkSOH\n2bVrB/n5+QQEBDJs2EiSk5OIjJyEjY0N9es3LJJt8uS3GTBg0H8nFc1h8OD+rF69jpkzPyAlJZns\n7GyGDRtJYOD/5rr68svFVKlShRdf7MvUqVNITk6iSRMv4/KDBw+wdOnn2NjY4OjoyAcfzGLevDmc\nPx/Pxx/PwsurKRcunCci4v/47rs17NixDYD27TsyZMjfmT79fTQaN86ciSMp6QbvvvshjRo1fqw+\nMFmhc+LECaKiokhMTMTa2pqtW7cydepUpkyZgo2NDZUrV2bGjBk4OTkRFhbGkCFDUKlUvP/+++X2\nWmhTsrKyokGeLefybLian0B+fv5TcVxCCPEk+iUhheO3i86y/Tiau1Qi5Dm3EtfZuTOGtm3b0aZN\nAFFRH5KSkoybmzuLF88nMnIaDRo05O2338TDw5P0dB3PP+9PSEgvcnK0jB4dQWBgexYt+ozIyA+o\nV68BY8aMwM+vDQDnz8ezZs16bG1tOXLkMAsXLkWtVhMW9iIDBgwiOvpbunTpRljYy6xatYL4+LOF\nsnXsGMTvv+/Fx6clBw8ewM/Pn8zMDGOGxMSrREZOKlTo3HXw4H7y8vJYvHg5J0+eIDp6LQDp6em8\n996HeHh4Mm3auxw48B8GDQrn1KkTvP32JDZv3gjAtWuJ/PLLRpYs+RqAkSOHGmdaz83NZc6c+fz4\nYzRbtmyy3EKnWbNmxV4L/Pbbb4t8Fx4eTnh4uKmimE2Luq6cTnNF73qD+OsJNPSsZe5IQgghylFM\nzFaGDh2OlZUVQUFd2LFjGwMHDuH69es0aFAwylIwonIHR0cn4uJOsmHDemxtbdDpCt41l5R0nYYN\nC/7Y+/u3Nb6CpX79Btja2gJgZ2dHRMRIrKys0Gq16HQ6Ll26aCwefH1bs3//vkLZAgM7sHr114wZ\nM5a9e3fTpUu3QhlUKrUxw19dvHiR5s1bANC0aTMqVKgAQJUqVYiK+hCDwcC1a4m0auVXbPtz587Q\ntGlz49uRmzf3NhZi3t6+ALi5VeXUqZOlPeVFyJuRTcjXvynf/nwJXG/wx6VjUugIIYSZhDzn9sDR\nl7KWnJzEqVMnmD//U1QqFTk5OTg6VmLgwCGFRvjvPoSzffsWdDodCxYsxcbGQGjoS0W2qVKpjD/b\n2NgAcOPGddau/YZly77BwcGB8PAw43ZVKvV/f84vsi1HR0c0GneuXLnEiRPH+Oc//1Uog06n49VX\n7zcI8b9t33sMM2dO46OPPqV27TrMmRNVwtlRFXr4SK/XG7d376SlZTEdp1xLMSGXaq64aO0BOJv2\nZL8bSAghROnExGwlNLQ/X321hhUrVrNmzTp0Oh2JiVfRaNy4cuUSiqJw5MhhALRaLdWre6BWq9m+\nfTt6vR4AFxdXLl++hMFg4ODBok82abVanJ2dcXBw4MyZ09y4cQO9Xk/NmrU4ffoUALGxh4rN2KFD\nJ776aplxdOXeDLt37zRm+Kt7t338+FFyc3MByMzMoGrVaqSnpxMbe9hYwPz1RcANGzbixInj5OXl\nkZeXx6lTJ2nYsNEjnOUHk0LHxJo7OZCfVYnbNklk5eSYO44QQohyEhOzlZ49exs/q1QqQkJ6EROz\nlZEjRzNlykQmThyHu3tVADp16sy+fXsZO3YU9vb2uLu7s3z5EkaMGM077/yTSZPGU6tW7UIjHgAN\nGjTE3t6BUaOGsWPHNl588SU++SSK/v1fZtOmDYwfH0F6evFPOXXo0IkdO7YZJwq9X4a/8vcPJDf3\nDhERI9mxYxtubgVPS7/0Un9GjRrO7NnTGTz4FVatWoFKBXl5eqZMmWhsX726B3/7WyhvvDGSMWNG\n0Lv3i1SrVv3xTvh9qJSyGBcqZ6Z+JLIsH+s78Z8TzLuwB5vqlxhQdQAdmrYqk+0+y+SxWMsnfWT5\npI8s273988cf+3nuuZpUr+7B7NnT8fFpRbduwWZOaFlKerxcRnRMrHHrxqi1zgD8eeOUmdMIIYR4\n0iiKwr/+9TZjxoxAp9MZR1/Ew5GbkU3M2saaujkVuGRQc1l/ydxxhBBCPGHatAmgTZuAB68oiiUj\nOuXAp5YL+eku5Nilc/VmkrnjCCGEEM8MKXTKgY9/EwxpBbOZHzh/zMxphBBCiGeHFDrlwL1GVSqn\nVgTg1O0zZk4jhBBCPDuk0CknTe0dyL9jR7LVNfR5xb+XQAghhBBlSwqdcuLb7Dny0zTkW+dx9NLZ\nBzcQQgjxVNi+fQsdO7ZBq9UWu3zdurV8+eXiMtlXfPw5rly5/FDr3rp1k9mzp993+f79+/jhh+gy\nyWVOUuiUk6bPe4HWFYDYq48/d4cQQognw/btW/H0rMGuXTEm39fu3TtJSLjyUOu6umqYMOGd+y73\n929LaGi/sopmNvJ4eTmxqWBLrcwKXFVUxGedN3ccIYQQ5UCnSyMu7iSTJ7/L6tVf06dPQeFw6NAf\nzJv3CS4urri6avDw8CQvL4/p098nJSUZvf4Or7zyKoGB7YmIGEnLlq05ePAAarWakJCebN78M2q1\nmrlzFxnflHz+fDw//bSe3bt34uzszAcfROLvH4izszNt27ZnzpworK2tUavVTJs2i8zMTKZMmciX\nX65kwIA+vPjiS/z++15yc3OZO3chu3bt5MKF8/TtG8b06e/j4eFJfPw5GjZsxKRJkcTHn2P69Peo\nVMmRxo290GpTeeed9814tosnhU458qnhwpWMKmRWSuW2Lg0Xp8rmjiSEEM+E73bGc/B0cplu06+x\nO2Gd65e4zs6dMbRt2442bQKIivqQlJRk3NzcWbx4PpGR02jQoCFvv/0mHh6epKfreP55f0JCepGT\no2X06AgCA9sDBaMvixZ9yahRw9DpdCxcuJTRo1/lwoV4GjQomCOqXr36tGkTQKdOXfDyakZeXh7+\n/m3x92/LwYP7GTfunzRs2JilSz9n27ZfCAzsYMxpMBioWbM2gwa9wnvvTebQoYOFjuPMmTimTp2B\ns7MLoaE9SE9PZ/nyL/j730fQsWMQkZGTsLOzK9PzW1bk0lU58vVrRH6aBlTwn/ij5o4jhBDCxGJi\ntvLCC92xsrIiKKgLO3ZsA+D69es0aNAQAB+flgA4OjoRF3eSUaOGMXHiRHS6NON2vLyaAgUFz93C\nxsXFhYyMjBL3f7eds7MrixcvJCJiJDExW0lLSyuyrre3LwBublXJzCy8XU/P53B11aBWq9Fo3MjM\nzODy5Uu0aOENQLt2HYpsz1LIiE45ql7Xk4obHcmtASdSTtMTy/3FEEKIp0lY5/oPHH0pa8nJSZw6\ndYL58z9FpVKRk5ODo2MlBg4cglr9v3GGu1NObt++BZ1Ox4IFS7GxMRAa+pJxnXsn8rz35wdNV2lt\nbQPA3LkfM3jwUPz927J69Uqys7OKrFvSdv86kaiiKCiKgkpVcBwqlarEHOYkIzrlrKm1A4rehkQl\ngfz8fHPHEUIIYSIxMVsJDe3PV1+tYcWK1axZsw6dTkdi4lU0GjeuXLmEoigcOXIYAK1WS/XqHqjV\narZv345eX/pXkahUKgwGQ5Hv09K0eHrWIDc3l/37fycvL++xj8/TswanTxfM4bh//77H3p6pSKFT\nznyaeGLQaTDY3uF04iVzxxFCCGEiMTFb6dmzt/GzSqUiJKQXMTFbGTlyNFOmTGTixHG4u1cFoFOn\nzuzbt5exY0dhb2+Pu7s7y5cvKdU+vb19+fTTjzh06I9C3/ftO4DJk98mMnIiffsO4Jdffn7gZa8H\neeWV4SxY8Cnjx0fg7OxcaJTKkqiUB417WaC7U9ebipubo8n2kZOZzdjV32Nd7wRtbNvySrs+JtnP\n08yU/SPKhvSR5ZM+smxPQv+cOHEcOzs76tdvwMqVy1EUhVdeGWaWLG5ujvddJvfolDO7ivZ46OxJ\nBs6kxZs7jhBCCPFIbG1tmDVrGhUqVKBCBTvef/9Dc0cqlhQ6ZuBbzZlfMh3R2qeQkZ1NJXt7c0cS\nQgghSqXgUfWvzR3jgSzzgtpTzrd1g4LZzNUKf5w/bu44QgghxFNLCh0z8GzwHHZaJwCOXT9l5jRC\nCCHE00sKHTNQq9U0oSKKwYrL+oebfE0IIYQQpSeFjpn4NKxOvs6FXLtMLiddM3ccIYQQ4qkkhY6Z\nePs3Iz+tYDbzAxePmTmNEEIIU9m+fQsdO7ZBq9UWu3zdurV8+eXics0UG3uIKVMmADBp0vhSZ4qP\nP8eVKwVXJN57bzJ37uSYJmgZkELHTBycKlJVVxGAU7fPmDmNEEIIU9m+fSuenjXYtSvG3FGKNWvW\nnFK32b17JwkJVwCYOnUmFSpY5oSeII+Xm5WvizPbcxy4aXODXL0eWxsbc0cSQghRhnS6NOLiTjJ5\n8rusXv01ffr0A+DQoT+YN+8TXFxccXXV4OHhSV5eHtOnv09KSjJ6/R1eeeVVAgPbExExkpYtW3Pw\n4AHUajUhIT3ZvPln1Go1c+cuMs5Dde7cWT77bA7z5n0OwLJlX+Do6ETt2nVYuvRzbGxscHR05IMP\nZhXK2LNnFzZt2vHATNnZ2QwbNpJq1arz00/r2b17J87Ozrz77mS+/notGRnpzJz5AXq9HrVazaRJ\nkahUKqZPfx8PD0/i48/RsGEjJk2KLNc+kELHjHxa1mPr8bOoq14h9mIc/g1bmDuSEEI8ldbH/8yR\n5LJ9nYeve3Neqt+rxHV27oyhbdt2tGkTQFTUh6SkJOPm5s7ixfOJjJxGgwYNefvtN/Hw8CQ9Xcfz\nz/sTEtKLnBwto0dHEBjYHiiYtXzRoi8ZNWoYOp2OhQuXMnr0q1y4EG+czbxBg4bcvJlCeno6jo6O\n/PbbHqKi5nD8+DHee+9DPDw8mTbtXQ4c+A8ODg5Fsj4oU2LiVSIjJ7Fs2SratAmgU6cueHk1M7Zf\nuvRzevV6kS5duvHrrzEsW/YFw4e/xpkzcUydOgNnZxdCQ3sY85UXKXTMqLZXHWz2VkapCkeunpRC\nRwghnjIxMVsZOnQ4VlZWBAV1YceObQwcOITr16/ToEFDAHx8WnLnzh0cHZ2IizvJhg3rsbW1QadL\nM27Hy6spUFDw3C1sXFxcisxXFRjYgQMH9tGsmTcVKtji5uZOlSpViIr6EIPBwLVribRq5VdsofOg\nTCqVulCmvzpzJo7XX48AoGXL1qxYsRQAT8/ncHXVAKDRuJGZmSGFzrNCrVbTIM+BM/kqzt+5YO44\nQgjx1Hqpfq8Hjr6UteTkJE6dOsH8+Z+iUqnIycnB0bESAwcOKTQB5t0pJ7dv34JOp2PBgqXY2BgI\nDX3JuM7dy1N//fmv01V27BjEunXfkZampWPHzgDMnDmNjz76lNq16zBnTtR98z4ok06n49VXw0s4\nYpWxnV6fh0qlLpK3uMymJjcjm1nLetXJz3Am2y6NlLRUc8cRQghRRmJithIa2p+vvlrDihWrWbNm\nHTqdjsTEq2g0bly5cglFUThy5DAAWq2W6tU9UKvVbN++Hb1eX+p9Nm3anEuXLrBv3+906vQCAJmZ\nGVStWo309HRiYw/fd7sPyrR7905jW5VKhcFgKNS+SRMvYmMPAfDnn4dp3LhJqfObgkkLnbNnz/LC\nCy+watUqAPR6PW+99Rb9+vVj6NChpKUVDIFt2LCBvn370r9/f77//ntTRrI4PgFNyde6ggr+c+6o\nueMIIYQoIzExW+nZs7fxs0qlIiSkFzExWxk5cjRTpkxk4sRxuLtXBaBTp87s27eXsWNHYW9vj7u7\nO8uXLynVPlUqFc2aeZOZmUG1atUAeOml/owaNZzZs6czePArrFq1glu3bhZpW5pM3t6+fPrpRxw6\n9Iex/auvvs6WLZt5883X2bz5Z4YPf63U58wUVIqJxpCysrJ47bXXqF27No0aNWLIkCF88803XLx4\nkSlTprB27Vo0Gg0BAQGEhoYSHR2NjY0N/fr1Y9WqVVSpUuW+2zb11PVubo4m38e9Js9bja7Zn3je\nqcO/QkaV236fVOXdP6L0pI8sn/SRZZP+KR03t/vf82OyER1bW1uWLFmCu7u78btff/2Vv/3tbwAM\nGDCALl26cPToUZo3b46joyN2dna0bNmS2NhYU8WySD6VnFFybbmuTsSQb3hwAyGEEEI8FJPdjGxt\nbY21deHNJyYmsmfPHj766CM0Gg3vvfceN2/exMXFxbiOi4sLKSkpJW7b2dkBa2urEtd5XCVVh2Wt\nY8em7Dx8BpXmGle112ndyDKua1qy8uwf8Wikjyyf9JFlk/4pG+X61JWiKNSpU4eIiAgWLlzI4sWL\n8fLyKrLOg6SmZpkqIlD+Q4ZutT2xjnEGzTV2HD9ALZca5bbvJ5EM6Vo+6SPLJ31k2aR/Sscsl66K\no9Fo8PPzA6Bdu3bEx8fj7u7OzZv/uykqOTm50OWuZ4GVlRV171RCUeBs+nlzxxFCCCGeGuVa6HTo\n0IG9e/cCcPLkSerUqYO3tzfHjx9Hp9ORmZlJbGwsrVu3Ls9YFqFl7aooWU6k291Cl5lp7jhCCCHE\nU8Fkl65OnDhBVFQUiYmJWFtbs3XrVj7++GOmT59OdHQ0Dg4OREVFYWdnx1tvvcXw4cNRqVSMGTOm\nXN+YaClaBjRlzZYTqCvqOHD+GF1bBJg7khBCCPHEM9nj5ab0tD1eftc/568iy+sYdXIb8Xbw8HLf\n/5NCrl1bPukjyyd9ZNmkf0rHYu7RESVrUaEKisGKBCXB3FGEEEKIp4IUOhaklXcd8tM05FXI4sIN\nKXaEEEKIxyWFjgVp1LIxKq0zAPsvHDNzGiGEEOLJJ4WOBbGytqJmdiUATt0+Y+Y0QgghxJNPCh0L\n09qzKvnZDmgrpHBHn2vuOEIIIcQTTQodC9MywIv8NDcUKwOHzp8ydxwhhBDiiSaFjoVxre5GRW3B\nY3KxCcfNnEYIIYR4skmhY4GaWVdByVdxMfeyuaMIIYQQTzQpdCxQ62a1yU934Y69jhu3bz64gRBC\nCCGKJYWOBWrSqjFoXQD4T/yfZk4jhBBCPLmk0LFANhVs8cgoeMz8eMppM6cRQgghnlxS6Fio1lWr\nouRWIMX6OoZ8g7njCCGEEE8kKXQsVCv/JhjSNOTb6Dl+6Zy54wghhBBPJCl0LFTVmtWx11YG4OBl\nmQ5CCCGEeBRS6FiwxnRCKGYAACAASURBVEplFAXOZl4wdxQhhBDiiSSFjgVr41UbJbMyWfapaDMy\nzB1HCCGEeOJIoWPBvPy8+H/27js6rvrO+/j7tumjGXVLcu+4yAVTbExvDhBDQl0Cye7JtgdIsjmk\nwZOw7JKEOH03YZPdLBsSsjyBmBCcBgQSuo0N7r03yVYdaTT9tuePkYVlbNkCSzOSv69z5kzV1Xf0\nnRl95nd/9163oxwUl7d2rit0OUIIIcSQI0GniHn9Xiq78puZr27YWOBqhBBCiKHnfQedvXv3nsYy\nxInMK6vGtXQOqQ04jlPocoQQQoghpc+g8zd/8ze9rv/Hf/xHz+UHHnhgYCoSvcw79yyceDm2N8PO\nQwcLXY4QQggxpPQZdCzL6nV9xYoVPZdd1x2YikQvdRNG4olFAVixe02BqxFCCCGGlj6DjqIova4f\nHW6OvU8MnElWPuhs6ZAdBwohhBD90a85OhJuCuO8yWNwUiHivlbSuUyhyxFCCCGGDL2vOzs7O1m+\nfHnP9Xg8zooVK3Bdl3g8PuDFibyZ503DefYt1JoEq3Zu4qJpZxe6JCGEEGJI6DPolJSU9JqAHA6H\neeSRR3oui8HhDwUoi4eJ18Db+9dL0BFCCCFOUZ9B5/HHHx+sOsRJzA1V8RdHZb99oNClCCGEEENG\nn3N0EokEjz32WM/1X/7yl1x//fV8+tOfprW1daBrE0c575wpOPEyTH+Cg61NhS5HCCGEGBL6DDoP\nPPAAbW1tAOzZs4fvfve7fPGLX2TBggV87WtfG5QCRd7IyWPQO0oBWLFjbYGrEUIIIYaGPoPOgQMH\nuPfeewF4/vnnWbRoEQsWLOC2226TEZ1BpqoqY3MlAKxr2VrgaoQQQoihoc+gEwgEei6vXLmS888/\nv+e6bGo++OaPHY2T9RHzNWPZdqHLEUIIIYpen0HHtm3a2trYv38/a9as4YILLgAgmUySTqcHpUDx\nrjkLZuJ0VuDqJmv3bCt0OUIIIUTR6zPo/N3f/R3XXHMNH/7wh7nrrruIRCJkMhluv/12brjhhpMu\nfPv27VxxxRX84he/6HX7a6+9xpQpU3quL1u2jBtvvJGbb76ZX/3qV+/zqQx/gZIQkc78Zv1v7ZZ5\nOkIIIcTJ9Ll5+cUXX8zrr79ONpslFAoB4PP5+PznP8/ChQv7XHAqleKhhx5i/vz5vW7PZrP813/9\nF5WVlT2Pe+SRR1i6dCmGYXDTTTdx5ZVXEo1GP8jzGrZmeyt53d3K7uzeQpcihBBCFL0+R3QaGxtp\naWkhHo/T2NjYcxo/fjyNjY19Ltjj8fCTn/yEqqqqXrf/+Mc/5vbbb8fj8QCwbt06Zs6cSTgcxufz\nMXfuXFavXv0Bn9bwdd7cqTiJCJlAB7GE7J1aCCGE6EufIzqXXXYZ48aN6xl9Ofagnj//+c9PvGBd\nR9d7L37Pnj1s3bqVz3zmM3zrW98CoLW1lbKysp7HlJWV0dLS0v9ncoYYN2M82poyCHfw5ra1XHv2\nRYUuSQghhChafQadJUuW8Oyzz5JMJrn22mu57rrreoWS/nr44Yf58pe/3Odjjg5TJ1JaGkDXtfdd\nx6morCzeQ1yMykY4AKw5vJG/rry20OUURDH3R+RJj4qf9Ki4SX9Ojz6DzvXXX8/111/PoUOHeOaZ\nZ/jYxz5GXV0d119/PVdeeSU+n++Uf1FTUxO7d+/mc5/7HADNzc3ccccdfOpTn+q1T57m5mZmz57d\n57JisdQp/973o7IyTEtL14D+jg/ivNpR7Dc30qQdoqmpE1Xt10Hoh7xi74+QHg0F0qPiJv3pn75C\n4Sn9h6ypqeGuu+7ij3/8I1dffTVf/epXTzoZ+VjV1dW8+OKLPPXUUzz11FNUVVXxi1/8glmzZrFh\nwwbi8TjJZJLVq1czb968fi37THP2/JnYneU4nizbGvYVuhwhhBCiaPU5onNEPB5n2bJl/PrXv8a2\nbf7hH/6B6667rs+f2bhxI0uWLKGhoQFd13n++ef5wQ9+8J6tqXw+H/feey+f/OQnURSFu+++W46M\nfhIl5RFC8QiZisO8ueMdzho1rtAlCSGEEEWpz6Dz+uuv8/TTT7Nx40auuuoqvvGNbzB58uRTWvCM\nGTP6PPr5n//8557LixYtYtGiRadYsgCYrlXwDtvYlthd6FKEEEKIotVn0Pnbv/1bxo4dy9y5c2lv\nb+enP/1pr/sffvjhAS1OnNgFs6awqnE9yUA7yUyaoM9f6JKEEEKIotNn0Dmy+XgsFqO0tLTXfQcP\nHhy4qsRJTZw1CWVzGdR28db29VxWf16hSxJCCCGKTp+TkVVV5d577+UrX/kKDzzwANXV1Zx77rls\n376d73//+4NVozgOTdOoTuaPZr5y3/oCVyOEEEIUpz5HdL73ve/x2GOPMWHCBF566SUeeOABHMch\nEonIMamKwPlVI3nW3swhte+9VAshhBBnqpOO6EyYMAGAyy+/nIaGBj7+8Y/zwx/+kOrq6kEpUJzY\nuRfU48TLsPxJ9jcfLnQ5QgghRNHpM+goitLrek1NDVdeeeWAFiROXWlVOb7OCACvbX2nwNUIIYQQ\nxadfu9Q9NviIwpvilgOwKbatwJUIIYQQxafPOTpr1qzhkksu6bne1tbGJZdcguu6KIrCyy+/PMDl\niZNZOG0S62Pr6fS3kjNNPIZR6JKEEEKIotFn0HnuuecGqw7xPp01bxosfRmqD7J69xbOn1Jf6JKE\nEEKIotFn0KmrqxusOsT7pBs6FV0ltFfD8p2rJegIIYQQRzmzDns9TJ1TWofrKOx3ZCeOQgghxNEk\n6AwDCxbMwklEyQXitHbGCl2OEEIIUTQk6AwDFXVVeDtLQYHXt6wudDlCCCFE0ZCgM0yMs/LHIlvd\ntKnAlQghhBDFQ4LOMHHxpEm4pod2bzOO4xS6HCGEEKIoSNAZJmacNwO3sxzXk2Pzgd2FLkcIIYQo\nChJ0hgnD6yEazx8O4tUtKwtcjRBCCFEcJOgMI3NCNQDsyu4vcCVCCCFEcZCgM4xcdP4snGQJmWCM\nRDpZ6HKEEEKIgpOgM4yMGFuL3lEKqsvrW9YUuhwhhBCi4CToDDOjsvnNzFft31DgSoQQQojCk6Az\nzFw8fhKurdHsaSp0KUIIIUTBSdAZZmbPn4nTWYbjS7H7cEOhyxFCCCEKSoLOMOP1+yiJRwF4eeNb\nBa5GCCGEKCwJOsPQDE81ANsSsuNAIYQQZzYJOsPQZefNxskESATbyJq5QpcjhBBCFIwEnWFo5KTR\nqB1loNms3CZbXwkhhDhzSdAZpmrT+c3M39wl+9MRQghx5pKgM0wtHDkB11Fo1A4VuhQhhBCiYCTo\nDFPnXjAbp6sUK9BFU0d7ocsRQgghCkKCzjDlDwUIduY3M//LuuUFrkYIIYQoDAk6w9hZWhUAq+Lr\nWb5tnWyBJYQQ4oyjD+TCt2/fzl133cVf//Vfc8cdd3Do0CHuu+8+LMtC13W+9a1vUVlZybJly/jZ\nz36Gqqrccsst3HzzzQNZ1hnjsjn1vLNvA5lgjF80/C9P7NeotGuYHJnIueNmMX5EXaFLFEIIIQbU\ngAWdVCrFQw89xPz583tu+/73v88tt9zCNddcw//+7//y05/+lHvuuYdHHnmEpUuXYhgGN910E1de\neSXRaHSgSjtjjJ02nujv6mmJZtEiraglrTT5D9KUPshrm1/GuzbIKH00M6qmct6EekqCwUKXLIQQ\nQpxW2oMPPvjgQCxYURSuu+46tm3bht/vp76+ngsuuIApU6agqioHDx5k+/btRCIR2tra+PCHP4yu\n62zduhWv18u4ceNOuOxUamBXwQSD3gH/HYNBURQuPmcCk1wN30GV1J5KOlrH4qRD4CrY/i5iWjNb\nU1t56cCrLN+2jn2HDqM6GpWRKKpSnGs2h0t/hjPpUfGTHhU36U//BIPeE943YCM6uq6j670XHwgE\nALBtmyeeeIK7776b1tZWysrKeh5TVlZGS0tLn8suLQ2g69rpL/oolZXhAV3+YKodOZ9LF+dH1tqb\n2nnrlXWs3nSITTsgGc6iRlrRIq20B5uJWc28vWcF+g4PdepoZo04i0tnnktdRUWBn0Vvw6k/w5X0\nqPhJj4qb9Of0GNA5Osdj2zZf+MIXOP/885k/fz6//e1ve93vuu5JlxGLpQaqPCD/4mpp6RrQ31Ew\nqsG8S+cx71JwHIeDO/az9p2dbNlazW4MnGgHaqQVN9LGPn0n+5p3suyl3xLMRhnrHcus2mnMmzAN\nr+Ep2FMY1v0ZJqRHxU96VNykP/3TVygc9KBz3333MWbMGO655x4AqqqqaG1t7bm/ubmZ2bNnD3ZZ\nZyRVVRk9ZSyjp4xlMZBNZ9ny9hY2bGlgy66xNAWV/NyeSCuJcDubWMumxrX8vwMalfYIJpdM5Jxx\n9YyvrkNVi3M1lxBCiDPboAadZcuWYRgGn/70p3tumzVrFl/+8peJx+Nomsbq1au5//77B7Ms0c3r\n9zL7wtnMvjAfNGPNbaxdsYVNuyvYllZJR1M9wafZ30BzpoHXt7yCd12AkVp+UvP5E+spCYYK/EyE\nEEKIPMU9lXVF78PGjRtZsmQJDQ0N6LpOdXU1bW1teL1eQqH8P8IJEybw4IMP8txzz/Hoo4+iKAp3\n3HEHixcv7nPZAz2cJ0OG7+U4Dns372H9ml1sbkyyR9cgGuvemqsNRbe6H6gQNSsYHxzP2SOnM3Ps\nJDT19M6nkv4UP+lR8ZMeFTfpT//0tepqwILOQJKgU3jZdIaNKzezYXMDW2IObSVWz6RmJdiJouQf\np1keatw6ppZN5vwJs6gp++CTmqU/xU96VPykR8VN+tM/EnT6SV5g/dfa0MK6VVvYtKedbaZKLtr1\nbvDxZHseF8hG8pOaa6Yxb8J0fJ7+T2qW/hQ/6VHxkx4VN+lP/xTVZGQxPFXUVXJ5XSWXk9+ybvfG\nXaxfu4fNe1Ps94ISbUeNtJIMx9jMOjYfWscvD2pUWNVMKpnIOWPrmVgzUiY1CyGEOK0k6IjTTtM0\nJs2azKRZk7kRSCdSbHhrMxu2HWLrNotYJNczqbnF30hLtpE3t72KZ4M/P6m5cirnTZxFNCSTmoUQ\nQnwwsurqOGTIcGA17T/EupXb2LSvgx0umKWd753U7CpEcuWMD4xn7sjp1I+djK7lJzVLf4qf9Kj4\nSY+Km/Snf2TVlSgq1aNruGp0DVcBtmWzc/0O1q3dw+adGRqCNkq0DS3SSkewlTV2K2v2rUTbZVDt\n1HFW2WQ+NG8BfjVQ6KchhBBiCJARneOQJF04qXiCdSs2sWF7E1uTNvFoumc1l+rN9DwumI0y0T+R\n88bMZuaYiTK3p8jIe6j4SY+Km/Snf2Srq36SF1jxOLS7gbVvb2fj/g52aQ52tBMt2oIabkdR8y9d\n3fQxWh3D7BHTmT9pNgGfr8BVC3kPFT/pUXGT/vSPBJ1+khdYcbJMi21rtrFx0wHeaU7RHs2glTaj\nRVpQDBMAxVaptGuYFp3Kwslnn5b99oj+k/dQ8ZMeFTfpT/9I0OkneYEVtyP9ObS7gZXLN7PuQIL9\nQQu1tBWttBnVn+x5bDhbysTARM4dPYsZsopr0Mh7qPhJj4qb9Kd/ZDKyGJZqxtdx/fg6rgfibZ28\n88Z61m5tYxsudlkMLdpMPBxjjb2KNXtWYWz3MVody5yaGZw/uR6/R1ZxCSHEcCdBRwwLJeURLl18\nIZcCZjbH+uUbeWfjQTYmXdKlCdRoM260hV3aVnY1b+XpQ89QbdcyrXQqC6ecTXW0rNBPQQghxACQ\nVVfHIUOGxa0//XEch13rd/L2OztZ35SjJWKhRpvzE5qPrOJyoSRXxsTgJM4fO5uzRo6TVVwfkLyH\nip/0qLhJf/pH5uj0k7zAitsH6U/T/kOsemMT6/Yn2GsoKGWtqNEW1HAMRcm/FTw5P2P0ccyumcH5\nk+rf1/G4znTyHip+0qPiJv3pH5mjI0S36tE1XDe6huuAREcXq19fz5rt5Ww1NczSTtTSFtxICzvU\nzexo2szTjU9TZdcxo2wqF0yeS5Ws4hJCiCFFgo44Y4WiYS667gIuIj+vZ9PKzbyz/gAbdkwgEcmi\nRlvQos0c9u/ncGI/L77zApFcOZOCkzhv3Gym1o2VVVxCCFHkJOgIARheD7MvnM3sC2fjOA57N+3m\n7VU7WL++jkN+JT+nJ9pMZ7iNt6023t6xAu+mAGP0ccypncF5k2biNWQVlxBCFBuZo3Mcsm60uA12\nf1obmln5xkbW7+1kl+KBaCw/oTnS2nMQUtXWqXbqmFF2Fgsnz6EiUjpo9RUjeQ8VP+lRcZP+9I9M\nRu4neYEVt0L2JxVPsvr19azd3sSWtEE2kkKLNqNFm1F86fyDXIjkKpgcmsT54+YwuXb0GbeKS95D\nxU96VNykP/0jk5GFOE0CJUEWXjOfhdfkD0mxedVm3lnnZ8OeUXQGye+ZOdpMZ6iVVWYrq7Yvx7sx\nyBhjHGfXzuScidNlFZcQQgwiCTpCvE+6oVO/oJ76BfU4jsP+rft4e9V21m+u4KDuRYvmD0mRjbSy\nXdnI9kMbefKgzghnJDPLp3LB5LMpL4kU+mkIIcSwJkFHiNNAVVXGThvH2GnjuAloP9TKqjc2sG5P\nmJ3WdJxIvHsVVwuNvr00xvfy/KrniOYqmRKexIdmXkzlGT6vRwghBoIEHSEGQFlNBVffdClXA+lE\nirVvbmDNFi+b9owjE7J6Qk9HqIW3ci2sXPkWU9Rp3DTnQ3LEdSGEOI0k6AgxwPyhAPOvOo/5V4Ft\n2WxdvZV3VmtsbKim1WOglR/CGLGXrd4NfG31JiYylZtmf4iRFdWFLl0IIYY8CTpCDCJN15h+7nSm\nnzsdgAPb9/Haqy6vrx1BrqoFo2Y3O3ybeXjtFsa7k7mx/kOMra4tcNVCCDF0SdARooBGTR7D7ZPH\nsLiji+eefZO/rKsgV9mOXrOL3f5tfGvjdsasm8hHZ1zNxNrRhS5XCCGGHNmPznHI/guK23DuTzqR\n4oVn3+DFvVkylR3otbtQA0lwYaQ1jhumLeKsUeMKXeZJDeceDRfSo+Im/ekf2WFgP8kLrLidCf3J\npjO8tOxNXtiZJFHRhVG7CzWYf8415miun3I1M8dOKnCVJ3Ym9Giokx4VN+lP/8gOA4UYYrx+H9fc\nehlXZnO8/PvlPLchRGdZCqN2J4dC+/nx7p9QtXUkiydfxZzxUwtdrhBCFC0JOkIUMcPr4cqPXsxl\nls2rf1jOHzf6aS/NoNfuojl8kP/e+z9UbK/h2glXcu6kGYUuVwghio4EHSGGAE3XuHTxQi661mb5\nC6v4wxovzRETvW4XrSWH+NmBn7NsZxUfGncF8yfXn3HH1hJCiBORoCPEEKJpGgs/dD4LrnZY9ed3\n+P0qg8awjV67i1i0mScan+D3e17gqlGXctG0syXwCCHOeNqDDz744EAtfPv27dx6662oqkp9fT2H\nDh3irrvuYunSpbz66qtcfvnlaJrGsmXLuP/++1m6dCmKojB9+vQ+l5tK5QaqZACCQe+A/w7x/kl/\nQFEURo6v4+ILJjM6m+PwOp3WjjoUI0cu1MLm5GZe37YaN60xrrIORVEGtT7pUfGTHhU36U//BIPe\nE943YF/3UqkUDz30EPPnz++57d///d+5/fbbeeKJJxgzZgxLly4llUrxyCOP8Nhjj/H444/zs5/9\njI6OjoEqS4hhRVVV5lw0h6988QY+O28yo3dNJLNxAXZ7NV2edn7T+gxfev5h/rjmNWzHLnS5Qggx\n6AYs6Hg8Hn7yk59QVVXVc9tbb73F5ZdfDsCll17K8uXLWbduHTNnziQcDuPz+Zg7dy6rV68eqLKE\nGLZmzJ/B/V+4gS8snMqEvRPIbFiI1VpD0tPJ72K/5UvPf51lb7+MZUvgEUKcOQZsjo6u6+h678Wn\n02k8Hg8A5eXltLS00NraSllZWc9jysrKaGlpGaiyhBj2psydyufnTmX3hp0s+5PDhoYJ6LV7SFU0\n8nz8D7zyp1dZWLaAa+dcjMcwCl2uEEIMqIJNRj7RfgpPZf+FpaUBdF073SX10tfOh0ThSX9OrvKy\nOZx32Rx2rt/FE0vhnYZxaLV7SVc08GLiBV778+tcUnUht1+8CL/Xd/p/v/So6EmPipv05/QY1KAT\nCATIZDL4fD6ampqoqqqiqqqK1tbWnsc0Nzcze/bsPpcTi6UGtE7ZI2Vxk/70T6Smiv/zqcUc2t3A\ns79zebthPFrtXtzKgzwfe54//+oVzg2fxw1zLyfgOz2BR3pU/KRHxU360z99hcJB3fZ0wYIFPP/8\n8wC88MILXHjhhcyaNYsNGzYQj8dJJpOsXr2aefPmDWZZQpwRasbX8Y+fvp6v3zyPc9rHYK5diHlo\nLDnV5I3MK9z3ytf4+evPkkinC12qEEKcNgN2rKuNGzeyZMkSGhoa0HWd6upqvv3tb/OlL32JbDZL\nbW0tDz/8MIZh8Nxzz/Hoo4+iKAp33HEHixcv7nPZcqyrM5v05/RoP9TKb59dwZtxcGsPolfvQ9Fs\nNMvDHN9cbjz7KkqCofe1bOlR8ZMeFTfpT//IQT37SV5gxU36c3p1tsT43W+W83q7g13bkA88uoVq\nGdR7Z3PT2VdTGirp1zKlR8VPelTcpD/9I0Gnn+QFVtykPwOjKxbnj795k1eaTcwRh9FH7EUxTFRb\nZ5o+k5vnLqIiUnpKy5IeFT/pUXGT/vSPHL1cCHFS4dISbvmbRVwXT/LCs2/w4upqcjUt6CP2sFFb\nw6aV65mqTeem2YsYUVZR6HKFEOKUSNARQvQSKAlyw51XsSiZ5sVlb/CnNZWkRrRi1Oxhi7aer67e\nyCTO4sbZixhZUV3ocoUQok8SdIQQx+UL+rnur67g6myOP//2DZ5bXUGiuh2jdjfbvZv4xtotjHMn\nc1P9IsZU1xa6XCGEOC4JOkKIPhleD1ffdCmXmxav/n45f1hbSmdlJ3rtbnb7tvLNDdsYu24iH5m5\niIk1owpdrhBC9CJBRwhxSnRD57IbLuTi62zefP4tfr82QltlF3rtLvb6d/C9zTsYuX48H5m+iMrK\nmYUuVwghANnq6rhktntxk/4UB8dxeOvFVfz+nUMcLkth1O1CDXSBC6PdCdw288OySquIyfuouEl/\n+kc2L+8neYEVN+lPcXEchzWvrmXZin00RDP5wBOMozgq09R6bj93MdHQ+9vxoBg48j4qbtKf/pGg\n00/yAitu0p/itf7N9Tz72i72lyXRR25H9WbQLA8Lwgu48ZwrMXQ5WnqxkPdRcZP+9I/sR0cIMSjq\nF9RTv6CezW9t4Gd/DhKrbcWt3c1r6ZdZ9ad3uHbk1VwyfR6qOqiH2RNCnMHk00YIcdpdfN0Cvv75\nxdwcnoy29jys5pGkPV083bKUf37+e2zct7PQJQohzhASdIQQA0LTNa786MV88/9cxRWZydjrz8fu\nqKDd28SPdv4X33rhJzS2tRS6TCHEMCdBRwgxoPyhADf/9SK+8bGLmdc4ldzWuTjpEHv1HXx99Xf5\n71d+RSKdLnSZQohhSuboCCEGRWlVOX97z2Ku3r6PJ5d52VYaxxi5gzX2Kja8uoFLyi5m8dmXoKla\noUsVQgwjMqIjhBhUoyaP4XOf+wj/NHMe5WvnYDaMx9RyvNj1PF967hu8sXVtoUsUQgwjEnSEEAUx\n/dzp/MvnP8LHK2bjWzsPq7WWlK+TJxqf4ME//hvbG/YXukQhxDAgQUcIUTCqqrLwQ+ez5FOLWezM\nhA3zsOOltHgb+Lctj/C9Pz1Ga2es0GUKIYYwmaMjhCg4w+vh2tsu5+KOLp556hVeO9yJNnoHO32b\nefCt7ZzjO5dbz78Gn8dT6FKFEEOMBB0hRNEIRcPc+ffXcfXBJp56OsD6cAx95C5WWm+y5qW1XD3i\ncq6edYHscFAIccrk00IIUXSqRlZzz2c+wpfOuYiaDXOwDo8hZ6T5Xey33PfHb/L2zs2FLlEIMURI\n0BFCFK3xMyfylXtv4h9HLiC07mzs9moS/nZ+uv8xHvrjD9nX1FjoEoUQRU6CjhCi6M25aA4P/9ON\n3KKfi7ppDk6ihMPe/Xxzw7/zgxd/QUciUegShRBFSuboCCGGBE3TuOyGC7kgneG3T73MS4eaYPQu\ntnrX85U3trAgvICbzr1KjpAuhOhFRnSEEEOK1+/jpk8s4hsfXczcPXOxDkzEVh1ez7zCF174On/e\nsBLHcQpdphCiSEjQEUIMSZHKUv7urht4YOE1jNk8F6t5JFlvkqdblvJ///AdOUK6EAKQoCOEGOLq\nJozki5+5mc9OvJLoxjnYHRXEAy38aOd/8fAffyxHSBfiDCdBRwgxLEyddxZf/dStfCJ0McaWmTjp\nEAe9u/na6u/y45d+KUdIF+IMJUFHCDFsqKrK/KvO49t//1dcm7wAd/dUXEdjg7Ka+175Ok+v+BO2\nYxe6TCHEIJKgI4QYdnRD57pbL+fbt9zK+QfOxW4Yh62b/Dn1Jz7/x4d5bfPqQpcohBgkEnSEEMNW\noCTIx/92MV+97CYmbZ+H1VpD1h/nl4d/yf/97XflCOlCnAEk6Aghhr2Kuko+e9dN3DfjBio2z8KO\nl9IRPMy/bXmEJb//iRwhXYhhTIKOEOKMMXbaOP7lno/xD+WL8G2fjpPzs9+/g39+61v85KVfkcnl\nCl2iEOI0G9Q9IyeTSb74xS/S2dmJaZrcfffdVFZW8uCDDwIwZcoU/uVf/mUwSxJCnIHmXDiH+gX1\nvPz7N3hm7zackXtZq6xiw0sbubzsYj58ziVyhHQhholBDTrPPPMM48aN495776WpqYlPfOITVFZW\ncv/991NfX8+9997LK6+8wsUXXzyYZQkhzkCapnH54otYmD6PZ5a+xCvqbtzqA7yQfI5Xf7+C26Ys\n5pzJMwpdphDiAxrUryylpaV0dHQAEI/HiUajNDQ0UF9fD8Cll17K8uXLB7MkIcQZzuv3ctud17Bk\n0Z1M230OdnsVB8RHqQAAH2pJREFUmWAHjx38OV959vtyhHQhhjjFdV13MH/hJz/5Sfbv3088HudH\nP/oR//qv/8pvfvMbAJYvX87SpUv5zne+0+cyLMtG17XBKFcIcYY5sOMA337q9zSM2IMaioOjMDo3\nkcvOOo+F02dTEgwWukQhRD8M6qqrZ599ltraWh599FG2bt3K3XffTTgc7rn/VDNXLJYakPoS2QyP\nrX0Nn64yMlzGeaMmU+qXD7ViU1kZpqWlq9BliD4M5R75olG+/PcfY9vqrTz6zpt0jdzLft8OHtuz\ng8d2/S/+dJQx3pHMGTWDOeOmEvT5C13y+zKUe3QmkP70T2Vl+IT3DWrQWb16NQsXLgRg6tSpZLNZ\nLMvqub+pqYmqqqrBLKmXTQ07OayOwnE0dnfCq50NBN1O/G4XUY/KtMo6Zo8Yi083ClajEGJwTJk7\nlW/MnsyKP6/kuR3baQl2QUmMVDDGViXG1kMb+H8NCoFMKeMDY6ivPYu546fi9/gKXboQ4iiDGnTG\njBnDunXruPrqq2loaCAYDFJXV8fbb7/NvHnzeOGFF7jzzjsHs6Rezhs/A91dz86OBjpNl5RWQkwp\nI6lEabVg5yH43aFdBNwOAqSoDPiZPWI0U8pGoKuyKk2I4UZVVRZccT4Lrjgf27bZtW4nq9btYH22\njY5wArUkRjLQzkba2di4hicOqoQzZYwPjaW+Ziqzx03F5/EU+mkIcUYb1Dk6yWSS+++/n7a2NizL\n4jOf+QyVlZU88MADOI7DrFmzuO+++066nIEezjt6yPBw62HWH9hCUzZOWvGSUKO0E8Xh3WCjuTkC\nbgdB1WR0NMqc6lGMCpXK5qkDRIZ0i9+Z0KN0IsWmlVt4Z/t+trpxUpEEargdJdCFonQ/yFGJZMsZ\nHxrHzJopzB43Ba9RHMHnTOjRUCb96Z++Vl0N+mTk02Ewg86xTNNk54Gd7GjbTYedI6MF6aCMDiK9\nHme4aXx0EjFgUnklcypHUuEPDWjdZwr5ACh+Z2KP2g+1snblFtbua2KXkcaKxFFL2lADiZ7HKLZK\n1KzMj/jUTqV+zGQ8RmFWhZ+JPRpKpD/9I0Gnn/r7AmvvaGPnga0cSDaRQiGtRWiljAS9JzJ73C78\nJKkIejirrJL6ilpChqzP7y/5ACh+Z3qPHMdh/9a9rFuzi/VNHRwMZCHSgRpuPyb4aJRZVYwLjqG+\n7izqx0zEGKQ5gGd6j4qd9Kd/JOj00wd9gZmWScOhvew5vJM2q4uM5qVLLaXZLSOL990Hug5e4gTU\nDHUlQc4qrWR6WQ0ebVCnTg058gFQPDqzKTbHDrOrs5PD6SxxU8V0g4CKQhZNMdEVB6/m4tcUgrpG\n2DCIeD2UevxU+INU+kKEDO+wXtVrZnNsfnsLGzcfZFNHmpaSLGpJe/7kT/Y8TrU1yqzq/IhP3VRm\njJ4wYMFH3kfFTfrTPxJ0+mkgXmAdnTEOHNxBY/wAXZhk9SBtlNNKKdZRc8IV18JLJ2HDYWxJmOll\nVUyMVA7rfwL9JR8Ag89ybHZ3trK9s5X9iSTtWYeU7QOl96il6zqoJFAVF9vVcfGiKCcP7q5roZBD\nVUwMxcarufh6gpFO1Osl6vFR7gtS6Q9RYviG9Hsi3tbJurc2sWlnC9uyDolIKh96wm2o/nd3n6Ha\nOhV2NeNCY5lVdxbTR09A107Phg/yPipu0p/+kaDTT4PxArNsi8ZD+zjctJvWbDMZTSOpRWh2y2kn\ngnvUTqtVN4uXLsr8KuNLwtSX11AXKh3Q+oqZfAAMrFg2yab2JvbGOziUzhE3NSw3iKL0Hllw3Qxe\nNUXUA7UBHyO9PkpzFplEKz6fget68XpDKD4vaU0l4dh05LJ0ZLN0mSZJyyZtu+RsBdNVsV0DF897\nfs/x9AQjTAzVxqO6+HWFoK4SMgwiHg+lXh/l3iCVgRARw1/Uwahh10HWvbOdLfvj7HQVrGhXfjVX\nSTuq793go1kGFU4148PjmFU3lWmjx6O9zy0+5X1U3KQ//SNBp58K9QKLJzo5cHAH7R37iDsJTMNH\nu1JGs1tOnN5N1NwkXjVNdcBgUkmEWZW1lHrPjJ0bygfA6WE5Njs7W9je0cqBZIr2rEO6j1GakG5S\n4VGpVBzKrQxGphOsDgw6CRkJ/IZ1gt/U/ftshbTlIWd7MF0vDn5c1YeqBdA9QTyeID5fGNfwktN1\nkopLh5mjM5elK/duMMraYLpaP4ORjUIWFRNdtfGqR0aMVEKGTsTjpdTro8wXoNIXotQbKFgwsi2b\n7Wu2s2HDXrY2Z9lv6CglHaglbWjhdhRfuuexmmVQ6YxgfHgcc0adxZSRY085+Mj7qLhJf/pHgk4/\nFcsLzLZtGg/vp6V5N/FUIxnNIm2U0OLmw0+K3ntk1dw4QT1HbdDLlEgZM8trCBjeEyx96CqW/gwl\n7ekkm2KH2dPVyeFUji7rRKM0abxqmqiao9zNUWqnKDU78bidBPQEYW/2Pcu2HYV41k/GKcHVohi+\ncvx+L4muDhwrBXYalQyaksGj5vDpOby6fdKaXRcylk7W8pBzvNh4cRU/qH40I4huBPB6wyheH1lN\nJ60qdNkWnaZJl5kjadqkbJfs+xoxco4KRhZe1aXEo1Lh9TIiEGRMOMrIUOmg7D8rFU+yYeVmNm4/\nzPYOl1af1jPao5W0oXgzPY/VLQ+V7ggmhscza9RZTKkbc8LAJu+jwurIpjjQFaMx1UVrJk0sa9Jl\nOmRsFdP1AApeNUOZB+qCASZGSpkcrZYd1p6ABJ1+KuYPgK5knIMHd9IR20fWbsX06HQoZTRTRotb\nRo6j9tHh2mh04dNtNAUMBXRVwVAVDFXFoyp4NA2vquHVNHyajlfX8es6fs0goBsEdA8Bw4NPM4pm\np4jF3J9Csxyb7R3N7Oho42AyRVvWJeN4jzNKY6OTIKykiDppyp0E5XaMMi1GiSfN8f43xrM+UlYI\nW42ie8oIhqooK6umorwa/ZgJ9CfrUS6XJZ6Ik0rFSaW6yGYT5HJJbDOFa6dQ3DQaGQw1h1fL4tfN\n49Z0LNNWyVgGWduL5Xq6R438qJof3RPC4wmiGn4yhk5a00i5LnHTpMs0SVg2acsh60DO0brnGHlQ\nlOPv9yY/SpTGq+YI6i5Rj06V30ddsIQx4TLKBmhUqLWhmbUrt7J5bzs7Uh5SfqdnYrMebodjgk+V\nW8OEkvHMHT2NiTWjemqS99HAyVgmDckOGpOdNKdTtGWyxE2blKWQdXQcfH28rlwUMoALSuCY+2w0\nkgR1kyqfzphwmLNKq6gJRIp61exgkKDTT0PpA8B2HA41HaS5aReZ5EEsNUHWCNJCOc1uGa2U9tq5\n4QfhuhZgoeCgYKPgoCoOquKiKS6aAroCugqGomBoCh5VzZ+OBCpdw6fq+HQdv27g1wz8hkFQ8xIw\nPHhU7aRv2KHUn4HUmk6wqf0we7s6aUqb3aM0ofdM/lXdFAE3QdRNUO7GqXbbqTNajzuqksoZJMwQ\nlhJBNUrxByuJRqupqqjB6z31XSGc7h7ZjkMylSCZjJNMxcmkE+RyCaxcEsdK4Tr5YKQrWTxqFp+e\nw6M7J12u60LaMshaBqbjxcaHo/hRND+aHsDwBFEMP2ndIK5rtJkWbVmTuOmQtjUs14eiHP/v4ro5\nNNL4NIuwoVDuNagOBBkVLGF0uOy0jLY6jsPeTbtZv3Y3mw+l2Gv5sf0majg/2qOVtIPn3VE4w/RS\nRS3jS8YypmoEuuMhEggRDYYpDYUHbdP2ocxxHJrTXRxMdnA4laAtkyGWs0iaLhlHw3a9uPhQevYa\n2Zvr5lDJ4FUtArpLiaFR7vMS1XTCroM/m8PMdOLxqOS0EO0eL43ZHIfTfY3EZvIjsR6HGr+fiZFS\nppZWExyGI/onIkGnn4b6P9JEMsHBhp10xvbhmIdBzaGoLpoGiqZioWG5ev6cY87d996Wc3Vy3dfN\n7vtttO6TDsrp+ybhug5gQXeQUrDzYQq3J1B5dRXFdXpGpzyq0jtMaVo+SGk6Pv3IyJRBQPcSNLx4\nTyFMFZOcbbGjs5ntHW00JFO0ZyHj+N7zbQ/Xxk+cqBunwu2kRmujRovhV3qvbspaGl25IDm3BMUo\nxeuvIBKtprK8hlDwxB8W/VEM76FsNkNXMk4y2UUqHSeXSZLLJbCtJNhpFDeDSgaPmsWr5fAZJurx\n/zf1yFkqCdNPzgliK2E0owTXW0LS8BFXdWKuSyxnkTCPfHMPHHers/y39jS6kiWgO0Q8KhVeHzXB\nEGPCUWoCkfc1gppNZ9m8ajMbtjSyrc3ikBJE8aW7R3vaUEvawZM74c+rto5hezBcL17Fi0/x4VP9\nBHQ/QSNAyBsk7A1S4g8RDYSJBvOnQu30cCDEs2kOJmM0JrtoyaSJZXPEu1cp5RyjO8Qcf0vC/Chf\nBkPJ4dcdQrpKqUenVNcIOS4BK4eaTWBmO3GsBJqbwKOmCBqZPlfnpnIGXWYJllqK5ikn7Y/Sphsc\nzpm051xStheU3jukzc+tSxLQc1R6NUaHQ0yJVDImXDakPv9OlQSdfiqGD+mBYts26UyKVCpJJpsi\nm02RzaWwzAyWmca2MrhOFpwsuFlUcmiKiaGYGJqFVzPRtXdfMq4LDuoJQlP+3EQj4xhkXJ2sa2C6\nOjlFx0TH7L7fOhKclCMBSsVBw0XDRT+lTZRPVT5M2Rw9OnUkTGmKi6a671nVlw9SKh5Vw6up+HUd\nb/fIVOCokamQ4SWoe9/3vpCa011sbjvM3kS8e5RGx3aD73n+HjdFhE6qlA5GqDHKlRgRutCUfG/y\n82YCZJwwrlaKx19OOFxFeXkN0ZKBPzzJUHwP2bZNMp0gkegkmUqQSXdh5hKYZgrXSqA4XXiUJEFP\nCt8J/inZjkIi5yNjB7CUEGgl5DxhErqPuKbT6Sr54+hZ+XkYLn6U43xRcF0LlTQe1SSku5R6dar8\nAeqCYcaWlJ3yhgedLTHWvbWZjbta2ZHQ6NT8KL4kaqgTRc+h6jlULYeqmyiGCZqJq1u4ugnayedR\nHXFsQPIqPvxHByRPgLAvRIk/RMQfIhoqobQAASlnWzQmOziYjNOcStKezdKZs0haSn51JT4U5cSj\nIK6bD6de1SZkQImuE9FVShyHgJXDm01hmXFcu6tng5HASUJM2tRJmX5MN4CtBFH1MIY3gt/vobO9\nEcVuJ6B1UuJNc+wgUco0SOTCmEoptqeMuDdEq2bQYkJn9z6tjl1F5ro5DCVJxHAYEfAyviTCtNIR\nRLzHfHEaYiTo9NNQ/JAeTLlclmQ6RSbTHZYyKUwzjWmmscwMjv1uWFLJoZJDV0wM1cSjWXh066Tf\nnI9l2Qop20va8ZDBi9kTot4NU5bSfeLdk42KrRx1+ahA5XDkpOOgg3L65iAdGZlSsKE7timKg6Y4\n71nNp6AQNyF7nFEa1bWJKB1UKp1UKB2UE6NM6cCv5HBd6Mr6SNlhHDWK7j0yb2YEFWVVaKdpfyvv\nx3B/DyWSCdo7WuiKt5FOtWPlOsGOYygJAnqa4AlGTVwXkjkPKTuA5YawtTApPUSX4SOuGMTR6LIV\nMrbevVrs+P90XTeLrqTxaTYlukKZz8OIQJBRwQijw2XHnbDqOA4NOw+wfvVOdjZ2kbIVkhakHY20\nopNRDHr9J1Vs0E0U3UTRzHcv6/nLqpZD03MougXdt72vgOR4MBwPXsXXHZB83QEpSMgTIOQLUuLr\nHkEKlRANho57vDDHcWjNJjmY6OBwqovWTIaOrEnCcsnYKlbPKqXjh3zXNbvDZfcqJV0lrCmUuA4B\nM0fATIPVhWt1oZPEq6UJGhkM7cSrSFM5g7TlI+cGcJQQqlGCx1tCIFBKSUkZpZFyfD7/cX/22PdQ\nJpuhqbmBWKyRTKoZxWrDr8Up8abe83maNnW6cmFySilpTyntRog2xaDdUkjaXhyC7/07uEn8WoZy\nr8rIYIDJ0QomRiqLZm7myUjQ6afh/iFdaLbjkMmkSWeSpDMpMpkUuVwKM5fGsjL5UaXusKS4ue5R\npe6wpOX3m6IpDprqvucbzgfhuAr2UeGpJ0j1Ws3XO2Dl7+texYeO5WrdI1W9R7fs7nO3j/lSQZKU\nKx2U05E/VzqI0EXaNEiaIUwlguYpIxCsJFo6gqryajye4lwHf6a/h3K5LG2xFjo7W0ml2sllOnCt\nODoJ/FqKkCdzwsnVaVMnaQYw3SAZNUxCD9Gl+YirHuKuTtJRyTn5idbHXy3moJDGUHIEdYeIR6PS\nl18tNjZcSrW/BFVV39Mj27ZJdiTo6ugi0Zkg3pmiqytJPJUlkcqRzNqkTIe0CWlbIeOoZF2VDDrW\n0XUoDui5Ewak/EhS922GCZoFeg7UUw9IiqujKF4UvCiKJx8IVQNQ8iclf57/eOi+7DgojoPmguaC\n4bp4cPC4Fh4sDEw01cqPYOs2Hs1C617UkY8Z5aiTaWlYtoHteHBcA/CiKD5U1YehB7pPOqCiKgqK\noqB216UqCqqidt+m5n+HoqKSf5yiKJSU+DEzLh5Nx6MbeA0Dj+7Ba3jwGjpew4OhG2SzGZpaGonF\nGkknm1CsdnxqJxFv6j2vsYylEc+FyVBKzCglpgdow0OnY5B1Au+Zb+a6FrqSIKzbVPsNxoYjnFVW\nTZX/9KziPp0k6PTTmf4hXeyO7o9t29i2hWlZ2I6FZVndt5k999mOjWNbOE7+uuPY+ZObv911HBzX\nwnVsXNfGdR1cxwIcXMfOn7s2HFnl5Trdq7zy149cVrpHbRTc7lVh+cnaiuKidU/aRnFxFQ1HVXuC\nk42Kz06Ty3l65s34AkfmzdQSDAy9/SPJe6hvlm0R62ino7OFZKKdbCaGY8bR3C68apKQ58QjBUfm\nCWWcIEklQlwP0qX56cJDFzop18Byve+dw9UtP3KRAQVc98i/bRW3+/zI6UQjH8ddpuPimA6u5eBY\nTv6ymb/smvnrPZeP3N99zpH/QIqTD0JaPgy9NyB1jyQZ715GM1HUvvffNKy5oLgqqqOhuioqGoqr\nopG/riugKQ666uBRbTyajU+zu29X0CEf5hwV0/KSdQKkCJFWA6QVH1nVi6P585OfFQ0FDVDBtfAq\nOSKGRl0gwKTSSs4qG0GggF+8JOj0k3xIF7fh0B/HcbAdG9uysB0Hv6+499zbX8OhR4XkOA7xrk5i\nnS0kutpIp2LYZifqkXlCRhrfCXbQeGSeUNIO0qFE6NKCxDU/Cbwk8JB2Pdjdx9zLh3UXBRfIh3RF\nyV/PR6D8RgBK977ale5Zc/nb341HGm5+g4Hux+VPbu+TS/4LgJu/rrkuiuvimjZO1sbO2tg5Bzvr\nYJpgmi6mBaalkLNVspZK1tHI2Hp+zp+jkx+96Q5ISv655IdfjjoHUI4+P3I5f79y5L4+f+ao82Me\npxxZZl+/9wT3K33UheKCmv/yhOrkn6dq568rDorafep1/1HnRy6fxlHvk1NRXK07fKlorormamiu\nhlfx8XfzbmdkRfWA/Oa+go4cPVKIAlBVFVVVZXNecVyqqhKNlBKNnPhQL8lUkvZYM/GuNtLJo+cJ\nJQnoKWp9rdTS+p6fc11ImR5cuoOKkg8zR59O5yrhkzKA9zEP1nHzWxCmTZ2Mqef3oZTTMS0D2/bg\nOvlVWprqxaMF8Og+vLoXRVHzo7Zufus31wXHccF189fJj1C5uD339zrvvs/pzibv3ud0/yz5n3WA\n7sfllwW43deP/AxHfjb/2Pxt+d+vaiqprIVpuZiOS852MR0F0wXTUbDI7wjTRMVSVCwlP/ewt+7A\ndFQIUo4JRYqaD1BHHvfu9Xcfq2o2qmp3nzso3fe7iourgqu6uKoLqourOriKg6M4WKoNmIBNwk1w\noK15wIJOXyToCCHEEBQMBAkGxgHjjnt/fp5QK53xVlLJ/Dwh7O7VY1oaUHDd/NiN4+bHaxwUcFXe\nHdM5MkZzZEwnf5+ivHs7ypHVXGr3ria6r3fffuzlIydV0VBUBUXR8rep+dvyXwK0/PXuXUEcffuR\n2zRNJ6JqaJqKqqj4fYGCTsA/3d7PqKht2eQyWbKpDNlMlmw6SzaTI5c1yWVy5HImuaxFzrTI5Wxy\npoVp2uQsB9NyyJoOpu3mTw75c1chB1iKiqmqWKj5jT9cFcvp3997vxNj/pR+/chpIUFHCCGGIY/H\nS011HTXVdce9X1YvDj+aruEPBfCHBn5Tcdu2OdzcQHPTARKdzZjZGCopvEYWFwXT0bBsFdNRSZk6\nadPHBTMuHfC6jkeCjhBCCCH6RdM06mpGU1czutfttm3T0t5MW1sDya4mnFwrVXTgUTvzq8wKQIKO\nEEIIIU4LTdMYUVnDiMqaQpfSY/hs5iGEEEIIcQwJOkIIIYQYtiToCCGEEGLYkqAjhBBCiGFLgo4Q\nQgghhi0JOkIIIYQYtiToCCGEEGLYkqAjhBBCiGFLgo4QQgghhi0JOkIIIYQYtiToCCGEEGLYkqAj\nhBBCiGFLgo4QQgghhi3FdV230EUIIYQQQgwEGdERQgghxLAlQUcIIYQQw5YEHSGEEEIMWxJ0hBBC\nCDFsSdARQgghxLAlQUcIIYQQw5YEnaN8/etf59Zbb+W2225j/fr1hS5HHMc3v/lNbr31Vm688UZe\neOGFQpcjjiOTyXDFFVfw61//utCliONYtmwZixcv5qMf/Sgvv/xyocsRx0gmk9xzzz3ceeed3Hbb\nbbz22muFLmnI0wtdQLFYuXIl+/bt48knn2TXrl3cf//9PPnkk4UuSxxlxYoV7NixgyeffJJYLMZH\nPvIRrrrqqkKXJY7xox/9iEgkUugyxHHEYjEeeeQRnn76aVKpFD/4wQ+45JJLCl2WOMozzzzDuHHj\nuPfee2lqauITn/gEzz33XKHLGtIk6HRbvnw5V1xxBQATJkygs7OTRCJBKBQqcGXiiHPOOYf6+noA\nSkpKSKfT2LaNpmkFrkwcsWvXLnbu3Cn/PIvU8uXLmT9/PqFQiFAoxEMPPVToksQxSktL2bZtGwDx\neJzS0tICVzT0yaqrbq2trb1eUGVlZbS0tBSwInEsTdMIBAIALF26lIsuukhCTpFZsmQJX/rSlwpd\nhjiBgwcPkslk+Md//Eduv/12li9fXuiSxDGuvfZaGhsbufLKK7njjjv44he/WOiShjwZ0TkBOTJG\n8XrxxRdZunQp//M//1PoUsRRfvOb3zB79mxGjRpV6FJEHzo6OvjhD39IY2MjH//4x/nLX/6CoiiF\nLkt0e/bZZ6mtreXRRx9l69at3H///TLf7QOSoNOtqqqK1tbWnuvNzc1UVlYWsCJxPK+99ho//vGP\n+e///m/C4XChyxFHefnllzlw4AAvv/wyhw8fxuPxMGLECBYsWFDo0kS38vJy5syZg67rjB49mmAw\nSHt7O+Xl5YUuTXRbvXo1CxcuBGDq1Kk0NzfLKvoPSFZddbvgggt4/vnnAdi0aRNVVVUyP6fIdHV1\n8c1vfpP//M//JBqNFroccYzvf//7PP300zz11FPcfPPN3HXXXRJyiszChQtZsWIFjuMQi8VIpVIy\nB6TIjBkzhnXr1gHQ0NBAMBiUkPMByYhOt7lz5zJ9+nRuu+02FEXhn//5nwtdkjjGH/7wB2KxGP/0\nT//Uc9uSJUuora0tYFVCDB3V1dVcffXV3HLLLQB8+ctfRlXl+24xufXWW7n//vu54447sCyLBx98\nsNAlDXmKK5NRhBBCCDFMSZQXQgghxLAlQUcIIYQQw5YEHSGEEEIMWxJ0hBBCCDFsSdARQgghxLAl\nQUcIMegOHjzIjBkzuPPOO3uO0nzvvfcSj8dPeRl33nkntm2f8uP/6q/+irfeeuv9lCuEGMIk6Agh\nCqKsrIzHH3+cxx9/nF/+8pdUVVXxox/96JR//vHHH5cdqQkhTkp2GCiEKArnnHMOTz75JFu3bmXJ\nkiVYloVpmjzwwANMmzaNO++8k6lTp7JlyxZ+9rOfMW3aNDZt2kQul+MrX/kKhw8fxrIsrr/+em6/\n/XbS6TSf/exnicVijBkzhmw2C0BTUxOf+9znAMhkMtx6663cdNNNhXzqQogBJEFHCFFwtm3zpz/9\nibPPPpvPf/7zPPLII4wePfo9BzUMBAL84he/6PWzjz/+OCUlJXznO98hk8lwzTXXcOGFF/Lmm2/i\n8/l48sknaW5u5vLLL///7d0xS7JRGIfxS0hp8Rs8k7ZZONQUSB9BqEFQHFv6BIKIBC6t4eTmEkGj\nhE6CODqIhEuLo1tLESTi0xC+vL1By0spD9dvO4dzhns5/DnnwA1At9sllUpxeXnJ29sbd3d3v16v\npN9j0JG0EU9PT5TLZQBWqxVHR0ecnZ1xfX1NtVr9s+7l5YXVagV8tGr512Qy4fT0FIDd3V329/eZ\nTqc8Pj5yeHgIfDTtTaVSAORyOW5ubqhUKpycnFAoFH60TkmbZdCRtBHrPzp/e35+Jh6Pf5lfi8fj\nX+ZisdincRiGxGIxwjD81MdpHZbS6TT39/eMRiN6vR7tdpvb29v/LUfSlvIzsqStkUwmCYKAwWAA\nwGw2o9lsfrsnm80yHA4BeH19ZTqdkslkSKfTjMdjAObzObPZDIBOp8PDwwPHx8fU63Xm8znL5fIH\nq5K0Sd7oSNoqV1dXNBoNWq0Wy+WSSqXy7fpyuUytVqNUKrFYLLi4uCAIAvL5PP1+n2KxSBAEHBwc\nALC3t0e9XieRSBCGIefn5+zseBRKUWX3ckmSFFk+XUmSpMgy6EiSpMgy6EiSpMgy6EiSpMgy6EiS\npMgy6EiSpMgy6EiSpMgy6EiSpMh6B8ihu0AGOrFoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "FSPZIiYgyh93" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "X1QcIeiKyni4" + }, + "cell_type": "markdown", + "source": [ + "First, let's try Adagrad." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Ntn4jJxnypGZ", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_, adagrad_training_losses, adagrad_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.5),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "5JUsCdRRyso3" + }, + "cell_type": "markdown", + "source": [ + "Now let's try Adam." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "lZB8k0upyuY8", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_, adam_training_losses, adam_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdamOptimizer(learning_rate=0.009),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "twYgC8FGyxm6" + }, + "cell_type": "markdown", + "source": [ + "Let's print a graph of loss metrics side by side." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "8RHIUEfqyzW0", + "colab": {} + }, + "cell_type": "code", + "source": [ + "plt.ylabel(\"RMSE\")\n", + "plt.xlabel(\"Periods\")\n", + "plt.title(\"Root Mean Squared Error vs. Periods\")\n", + "plt.plot(adagrad_training_losses, label='Adagrad training')\n", + "plt.plot(adagrad_validation_losses, label='Adagrad validation')\n", + "plt.plot(adam_training_losses, label='Adam training')\n", + "plt.plot(adam_validation_losses, label='Adam validation')\n", + "_ = plt.legend()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "UySPl7CAQ28C" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Explore Alternate Normalization Methods\n", + "\n", + "**Try alternate normalizations for various features to further improve performance.**\n", + "\n", + "If you look closely at summary stats for your transformed data, you may notice that linear scaling some features leaves them clumped close to `-1`.\n", + "\n", + "For example, many features have a median of `-0.8` or so, rather than `0.0`." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "QWmm_6CGKxlH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 715 + }, + "outputId": "e0880e3b-74b0-41b4-958b-0dd09a6ca570" + }, + "cell_type": "code", + "source": [ + "_ = normalized_training_examples.hist(bins=20, figsize=(18, 12), xlabelsize=10)" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBkAAAK6CAYAAAB8J4SIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XtclGX+//H3zMAsoUMKzrhZZpuZ\nWp5yLRMPJUYiZZHrCdeObGWiZUsqmaa7tkEqPTxE2XpkaS2KrKgMzMQtE9lsdl1t28r2265nB0VR\nwRhxfn/4c1bjODjDAPN6/sVcM/f9ua77hs/cfrzu6za4XC6XAAAAAAAALpLR3x0AAAAAAADNA0UG\nAAAAAADgFRQZAAAAAACAV1BkAAAAAAAAXkGRAQAAAAAAeAVFBgAAAAAA4BUUGeAVe/bs0XXXXee3\n+EuWLNEzzzzj0TaFhYWKjo6u8r1nnnlGS5Ys8UbXAKBGDZE///GPfyghIcGnMbzpuuuu0549e/Tx\nxx/r6aef9nd3AKDRqul69pzt27frX//6lyTptdde08KFCyu1eyI6OlqFhYWedxYBI8jfHQAAAL7V\no0cPrVixwt/d8Fh0dHStF88AgJq9/fbb+uUvf6kuXbpo/PjxVbYD3kSRAV6VnZ2tjIwMlZSUaOrU\nqYqNjdWiRYuUl5cnSerVq5eeffZZhYaGKioqSvPmzVOfPn0kyf26V69emj17trZt26YzZ86oc+fO\nSk1NVcuWLbVhwwYtWrRIpaWl6tChgxYsWKDw8HBJUnl5uX7729/q73//u9q0aaMlS5aobdu22rdv\nn2bNmqU9e/YoODhYv/nNbxQXF3dBv4uLi5WUlKQffvhB11xzjUJCQvTzn/9c0tmK75///Ge5XC61\nbNlSKSkp6tSpUwMeVQCBwJf586uvvtLMmTP18ccfa8mSJSouLtbBgwf1r3/9S61bt9bLL78sm82m\nr776Sk8++aQk6a677lJeXp5mzpypvn37VtvvJUuWqKioSAcOHNBXX32lfv36KTY2VkuWLNGhQ4c0\nd+5cDR48WOXl5Zo3b54+++wzOZ1OjR49WhMmTJAk/eUvf9Fzzz2noKAg/epXv3Lve+3atcrJydHq\n1atVVFSk6dOna+/evSovL9e9996rBx980D3+Rx55RNnZ2Tpw4IDuvPNOJScn13i8y8rK9PTTT+vr\nr7+W0+nU0KFDNX36dEmq8TjU9D0EAP5SXU57/fXX9d5772njxo06cuSITpw4oQMHDqhbt25Vtv/h\nD3+QdDa3n3u9c+dOTZ8+XadPn9Ytt9xyQVxyIqrC7RLwmjNnzsjpdOr999/X008/rYULF+qjjz7S\np59+qrVr1+rDDz9USUmJVq9eXeN+Nm/erD179ig3N1fr16/XNddco7/97W/avXu3pk2bprS0NH3y\nySfq27ev5syZ496uoKBASUlJ2rhxo8LDw5WdnS1JmjVrlm666Sbl5eXp1Vdf1XPPPac9e/ZcEHPZ\nsmVq3bq1Nm7cqGeffVabN2+WJJ04cUKLFi3SW2+9pdzcXCUkJGjTpk3ePGwA4PP8+VO5ubmaMWOG\nNmzYoIiICL399tuSzubLBx54QOvXr1fLli31ww8/1Kn/mzZt0vPPP6/3339fubm57n5PmDBBy5Yt\nk3Q2z+7atUvvv/++PvjgA+Xl5Sk/P18VFRV65plnNHv2bH300UcyGo2qqKioFOOVV17RFVdcodzc\nXGVkZCgtLU379+93v//FF18oKytLb7/9tl577TUdOHCgxj6//vrrOnnypHJzc/XOO+9o7dq12rZt\nW43HobbvIQDwl+pyWnx8vHr06KGpU6e6C7OSqm2vypw5c3TfffcpLy9PN9xwg/s6mpyI6lBkgNe4\nXC73DIHrrrtOBw4c0KZNmxQXF6fQ0FCZTCaNGDFCn3/+eY37CQ8P1/fff6+PP/5YZWVlmjJligYO\nHKhPP/1UN910k6699lpJ0tixY7Vx40b3xegvf/lLXX755ZKkLl266ODBg3I6ndqyZYvGjRsnSbr8\n8svVt29fbd269YKY27Zt07BhwyRJV1xxhW666SZJ0s9+9jMZDAZlZ2erqKhIw4YN08MPP+ylIwYA\nZ/k6f/5Unz59dPnll8tgMKhr167av3+/Tp06pa+++kp33nmnJOnXv/61XC5Xnfp/ww03KCIiQq1b\nt5bVatWgQYMkSddee60OHTokScrPz9e4ceNkNpsVGhqqu+++W+vXr9cPP/yg8vJyDRgwQJJ0zz33\nVBlj5syZmjVrliSpffv2slqtFxSMhw8fLpPJpLZt2yoiIuKCAkRVHnroIb388ssyGAy69NJL1alT\nJ+3Zs6fG41Db9xAA+Et1Oe1i/fjjj9qxY4diY2MlSTExMbrkkkskkRNRPW6XgNeYTCZ30jEajTpz\n5oyOHDmiSy+91P2ZSy+9VIcPH65xPz169NDMmTOVmZmp6dOnKyoqSrNnz9bx48e1bds2xcTEuD/b\nsmVLHT161P3z+X2pqKjQ0aNH5XK5ZLFY3O+FhYXpyJEjat++vbvt2LFjlT4jScHBwVq9erWWLl2q\nJUuWqHPnzpo9e7Y6d+5cn0MEAFXydf78qfPz3bl8eezYMRkMhgvyX0RERJ3636JFiwv2FxoaesFY\nJOn48eNKSUnRiy++KOnsLW49evTQsWPHLsjf54/5fDt27HDPXjAajXI4HO59S1V/B9Tkhx9+UGpq\nqv7973/LaDTqwIEDGjFiRI3HoabvoboeKwDwhepy2sX66XX2+fmRnIjqUGSAT7Vp08adnKSziapN\nmzaSLrz4lM7+Q/+cmJgYxcTE6OjRo5oxY4ZWrFihDh06KDIyUosXL65z/NatW8toNOrYsWPuC9eq\nEl9YWJiOHz/ufn1+EeK6667T4sWLVV5eruXLl2v27Nl64403PDgKAOA5b+bPyMjIWuO1bNlSLpdL\nZWVluuSSS3T69GkdOXLEa+Ox2Wx66KGHNHjw4Avav//+e504ccL9urqYU6dO1f3336/4+HgZDIYq\nZ2h44ve//72uv/56paeny2QyaezYsZJqPg42m83j7yEAaAjV5bS6qu575dz184kTJ2SxWHTmzBn3\ne+REVIfbJeBTt956q3JyclRWVqbTp08rOzvbvWCM1Wp1PzZn3bp1+vHHHyWdXek2PT1dktSqVStd\nffXVkqQBAwZo27Zt2r17t6Szj2R77rnnaowfFBSkAQMGKCsrS5L03//+V9u2bat0wd2rVy9t2LDB\n/Zkvv/xSkvTNN9/o8ccfV3l5ucxms7p16yaDwXDRxwUAauPN/FkXLVq0UMeOHfXRRx9JkrKysrya\n74YMGaK33npLFRUVcrlcevnll/Xpp5/qyiuvlMlkcj8Obe3atVXGPXz4sDsHv/POOyorK1NpaWm9\n+3P48GF17dpVJpNJn3/+uf7zn/+otLS0xuNQn+8hAGgI1eU06ez18Pn/mXbO+e02m03ffvuteybd\np59+KkkKCQlRly5d9PHHH0uSPvzwQ/d3DjkR1WEmA3wqJiZG33zzjUaMGCGXy6W+ffvqvvvukyRN\nnDhRs2fP1ptvvqmhQ4fqmmuukXT2QnTGjBm6/fbbZTKZ1KFDB6WmpqpVq1aaO3euEhMT5XQ61aJF\nC82YMaPWPvzud7/TzJkztXbtWgUHB+u5557TZZddpv/+97/uzzz66KN68sknFRUVpY4dO+r222+X\ndPZ+4iuuuEJ33nmngoOD1aJFCz377LM+OFIAcCFv5s9vvvmmTjFnz56tWbNmacWKFYqLi1Pbtm29\nVmgYN26c9uzZozvuuEMul0vdunXT/fffr+DgYM2dO1czZsyQ2WzWiBEj3LdbnO+JJ55QYmKiWrVq\npbFjx2rMmDGaNWuW1qxZU6/+PPbYY0pJSdHLL7+sIUOGaNKkSVq8eLG6du1a7XGw2Wz1+h4CAF+r\nKafddtttmj9/vnbv3n3BrWXnt0+aNEk5OTm67bbbdPXVVysmJsZ9i96cOXM0Y8YMvfrqqxo0aJA6\nduwoSeREVMvgquuqTgAAoNlzuVzuwsLNN9+s1atXB+Qz1DkOAADUD7dLAAAASdLjjz/ufuRkQUGB\nXC6XrrrqKv92yg84DgAA1B8zGQAAgKSzizA+/fTTOnbsmIKDgzV16lRdccUVSkxMrPLzHTt2dK8B\n0dh8//339e53Vcfh3HoYAACgZhQZAAAAAACAV3C7BAAAAAAA8IpG+XQJh6PyI1Zq0rp1qIqL6/8Y\nq4sVyPEDeeyBHr8pjt1qtfioN4HH0zwtNc3fmeYQm/ic+6YUnzztXU0tVze131fiN4/YgR7fF9fU\nzWImQ1CQifgBGJv4nHs0Lf4+Z/y9ED/QYhMf9cHfC/EDLXagx/dF7GZRZAAAAAAAAP5HkQEAAAAA\nAHgFRQYAAAAAAOAVFBkAAAAAAIBXUGQAAAAAAABeQZEBAAAAAAB4BUUGAAAAAADgFUH+7oC/PJS6\n0eNtViZH+aAnAADgYvG9DjRv/I0DTQczGQAAAAAAgFcE7EwGAAAAoKGUlZUpOTlZhw8f1o8//qiJ\nEyeqS5cumjZtmioqKmS1WjV//nyZzWbl5OQoIyNDRqNRo0eP1qhRo+R0OpWcnKx9+/bJZDIpJSVF\n7du39/ewAKASZjIAAAAAPpafn69u3brptdde08KFC5WamqrFixdr3LhxWrNmjTp06KDs7GyVlpYq\nPT1dq1evVmZmpjIyMnT06FF98MEHCgsL0+uvv64JEyYoLS3N30MCgCpRZAAAAAB8LDY2Vg8//LAk\naf/+/Wrbtq0KCws1ZMgQSdLgwYNVUFCg7du3q3v37rJYLAoJCVHv3r1lt9tVUFCg6OhoSVJkZKTs\ndrvfxgIANeF2CQAAAKCBjB07VgcOHNDSpUv14IMPymw2S5IiIiLkcDhUVFSk8PBw9+fDw8MrtRuN\nRhkMBpWXl7u3B4DGgiIDAAAA0EDeeOMNff3115o6dapcLpe7/fyfz+dp+/latw5VUJDJ4z5arRaP\nt/EWb8auz778OfZAjx/IY/d3fG/HpsgAAAAA+NjOnTsVERGhyy67TF27dlVFRYVatGihU6dOKSQk\nRAcPHpTNZpPNZlNRUZF7u0OHDqlXr16y2WxyOBzq0qWLnE6nXC5XrbMYiotLPe6n1WqRw3Hc4+28\nwduxPd2XP8ce6PEDeez+jl+f2LUVJViTAQAAAPCxbdu2aeXKlZKkoqIilZaWKjIyUnl5eZKk9evX\na+DAgerZs6d27NihkpISnTx5Una7XX369FH//v2Vm5sr6ewikn379vXbWACgJsxkAAAAAHxs7Nix\neuaZZzRu3DidOnVKzz77rLp166bp06crKytL7dq1U1xcnIKDg5WUlKSEhAQZDAYlJibKYrEoNjZW\nW7ZsUXx8vMxms1JTU/09JACoEkUGAAAAwMdCQkKqfOzkqlWrKrXFxMQoJibmgjaTyaSUlBSf9Q8A\nvIXbJQAAAAAAgFdQZAAAAAAAAF5R6+0ShYWFeuKJJ9SpUydJ0rXXXqvf/OY3mjZtmioqKmS1WjV/\n/nyZzWbl5OQoIyNDRqNRo0eP1qhRo+R0OpWcnKx9+/a5p3m1b9/e5wMDgEDz7bffauLEiXrggQc0\nfvx47d+/n1wNAACABlWnmQw33XSTMjMzlZmZqVmzZmnx4sUaN26c1qxZow4dOig7O1ulpaVKT0/X\n6tWrlZmZqYyMDB09elQffPCBwsLC9Prrr2vChAlV3osGALg4paWlmjt3rvr16+duI1cDAACgodXr\ndonCwkINGTJEkjR48GAVFBRo+/bt6t69uywWi0JCQtS7d2/Z7XYVFBQoOjpakhQZGSm73e693gMA\nJElms1nLli2TzWZzt5GrAQAA0NDq9HSJXbt2acKECTp27JgmTZqksrIymc1mSVJERIQcDoeKiooU\nHh7u3iY8PLxSu9FolMFgUHl5uXv7qrRuHaqgIJNHA7FaLR59vj5qitEQ8Wviz/iBPPZAjx/IY29s\ngoKCFBR0YUr3Za6uT56W/H/O+HsJ3PhVaag++XvsgR4fANCwai0yXHXVVZo0aZKGDRum3bt36777\n7lNFRYX7fZfLVeV2nrafr7i4tNbPnM9qtcjhOO7RNvVRXYyGil8df8YP5LEHevymOPZAvtD1dq72\nNE9LTfN3pjnEJn71GqJP/h57U4sfyHkaAJqLWm+XaNu2rWJjY2UwGHTllVeqTZs2OnbsmE6dOiVJ\nOnjwoGw2m2w2m4qKitzbHTp0yN3ucDgkSU6nUy6Xq8ZZDAAA7wgNDSVXAwAAoEHVWmTIycnRihUr\nJEkOh0OHDx/WiBEjlJeXJ0lav369Bg4cqJ49e2rHjh0qKSnRyZMnZbfb1adPH/Xv31+5ubmSpPz8\nfPXt29eHwwEAnBMZGUmuBgAAQIOq9XaJqKgoPfXUU/rkk0/kdDo1Z84cde3aVdOnT1dWVpbatWun\nuLg4BQcHKykpSQkJCTIYDEpMTJTFYlFsbKy2bNmi+Ph4mc1mpaamNsS4ACCg7Ny5Uy+88IL27t2r\noKAg5eXlacGCBUpOTiZXNwLDk97zeJuVyVE+6AkAAIBv1VpkaNmypZYuXVqpfdWqVZXaYmJiFBMT\nc0HbueetAwB8p1u3bsrMzKzUTq4GAABAQ6rXIywBAAAAAAB+iiIDAAAAAADwilpvlwAAADjnodSN\nHm/zftrdPujJxavPWFgrAwCAmjGTAQAAAAAAeAVFBgAAAAAA4BUUGQAAAAAAgFdQZAAAAAAAAF5B\nkQEAAAAAAHgFT5cAAAAAGsC8efP05Zdf6vTp03r00Ue1ceNGffXVV2rVqpUkKSEhQbfeeqtycnKU\nkZEho9Go0aNHa9SoUXI6nUpOTta+fftkMpmUkpKi9u3b+3lEAFAZRQYAAADAx7Zu3arvvvtOWVlZ\nKi4u1j333KObb75Zv/3tbzV48GD350pLS5Wenq7s7GwFBwdr5MiRio6OVn5+vsLCwpSWlqbNmzcr\nLS1NCxcu9OOIAKBq3C4BAAAA+NiNN96oRYsWSZLCwsJUVlamioqKSp/bvn27unfvLovFopCQEPXu\n3Vt2u10FBQWKjo6WJEVGRsputzdo/wGgrigyAAAAAD5mMpkUGhoqScrOztagQYNkMpn02muv6b77\n7tOTTz6pI0eOqKioSOHh4e7twsPD5XA4Lmg3Go0yGAwqLy/3y1gAoCbcLgEAAAA0kA0bNig7O1sr\nV67Uzp071apVK3Xt2lV//OMf9dJLL+mGG2644PMul6vK/VTXfr7WrUMVFGTyuI9Wq8XjbbzFm7Hr\nsy9/jj3Q4wfy2P0d39uxKTIAAAAADeCzzz7T0qVLtXz5clksFvXr18/9XlRUlObMmaOhQ4eqqKjI\n3X7o0CH16tVLNptNDodDXbp0kdPplMvlktlsrjFecXGpx320Wi1yOI57vJ03eDu2p/vy59gDPX4g\nj93f8esTu7aiBLdLAAAAAD52/PhxzZs3T6+++qr7aRKTJ0/W7t27JUmFhYXq1KmTevbsqR07dqik\npEQnT56U3W5Xnz591L9/f+Xm5kqS8vPz1bdvX7+NBQBqwkwGAAAAwMfWrVun4uJiTZkyxd02YsQI\nTZkyRZdccolCQ0OVkpKikJAQJSUlKSEhQQaDQYmJibJYLIqNjdWWLVsUHx8vs9ms1NRUP44GAKpH\nkQEAAADwsTFjxmjMmDGV2u+5555KbTExMYqJibmgzWQyKSUlxWf9AwBv4XYJAAAAAADgFRQZAAAA\nAACAV1BkAAAAAAAAXsGaDAAAwKeGJ73n8TYrk6N80BNcjIdSN3q8zftpd/ugJwCAxoyZDAAAAAAA\nwCvqNJPh1KlTuvPOOzVx4kT169dP06ZNU0VFhaxWq+bPny+z2aycnBxlZGTIaDRq9OjRGjVqlJxO\np5KTk7Vv3z73irjt27f39ZgAAJJOnjyp6dOn69ixY3I6nUpMTJTVatWcOXMkSZ07d9bvfvc7SdLy\n5cuVm5srg8GgSZMm6ZZbbvFjzwEAANBU1anI8Morr+jSSy+VJC1evFjjxo3TsGHD9OKLLyo7O1tx\ncXFKT09Xdna2goODNXLkSEVHRys/P19hYWFKS0vT5s2blZaWpoULF/p0QACAs9555x394he/UFJS\nkg4ePKj7779fVqtVM2bMUI8ePZSUlKS//OUvuvrqq7Vu3Tq98cYbOnHihMaNG6cBAwbIZDL5ewgA\nAABoYmq9XeL777/Xrl27dOutt0qSCgsLNWTIEEnS4MGDVVBQoO3bt6t79+6yWCwKCQlR7969Zbfb\nVVBQoOjoaElSZGSk7Ha770YCALhA69atdfToUUlSSUmJWrVqpb1796pHjx6S/pfDCwsLNXDgQJnN\nZoWHh+vyyy/Xrl27/Nl1AAAANFG1zmR44YUXNGvWLL377ruSpLKyMpnNZklSRESEHA6HioqKFB4e\n7t4mPDy8UrvRaJTBYFB5ebl7++q0bh2qoCDP/gfNarV49Pn6qClGQ8SviT/jB/LYAz1+II+9Kbjj\njju0du1aRUdHq6SkRK+88op+//vfu98/l8NbtWpVZQ7v3LmzP7qNi1CfhflYYBEAAHhTjUWGd999\nV7169ap2HQWXy+WV9p8qLi6t0+fOsVotcjiOe7RNfVQXo6HiV8ef8QN57IEevymOPdCKEu+9957a\ntWunFStW6F//+pcSExNlsfzvGFxMrq5PMVjy/znwd3xPNFRfG+sxaU798vdYAj0+AKBh1Vhk2LRp\nk3bv3q1NmzbpwIEDMpvNCg0N1alTpxQSEqKDBw/KZrPJZrOpqKjIvd2hQ4fUq1cv2Ww2ORwOdenS\nRU6nUy6Xq9ZZDAAA77Db7RowYIAkqUuXLvrxxx91+vRp9/vn5/D/+7//q9ReE0+LwVLTLEz5U0P1\ntbEek+bSL3//3vk7vuTZMaMgAQBNX41rMixcuFBvv/223nzzTY0aNUoTJ05UZGSk8vLyJEnr16/X\nwIED1bNnT+3YsUMlJSU6efKk7Ha7+vTpo/79+ys3N1eSlJ+fr759+/p+RAAASVKHDh20fft2SdLe\nvXvVokULdezYUdu2bZP0vxx+8803a9OmTSovL9fBgwd16NAhXXPNNf7sOgAAAJqoOj1d4nyTJ0/W\n9OnTlZWVpXbt2ikuLk7BwcFKSkpSQkKCDAaDe0pubGystmzZovj4eJnNZqWmpvpiDACAKowZM0Yz\nZszQ+PHjdfr0ac2ZM0dWq1XPPvuszpw5o549eyoyMlKSNHr0aI0fP14Gg0Fz5syR0VjrusAAAABA\nJXUuMkyePNn986pVqyq9HxMTo5iYmAvaTCaTUlJSLqJ7AID6atGihRYtWlSpfc2aNZXa7r33Xt17\n770N0S2gSfN0cc330+72UU+Apqs+i9QCaDr4ryoAAAAAAOAVFBkAAAAAAIBXUGQAAAAAAABe4fHC\njwAAwPe4ZxkAADRFzGQAAAAAAABewUwGAAAAoAHMmzdPX375pU6fPq1HH31U3bt317Rp01RRUSGr\n1ar58+fLbDYrJydHGRkZMhqNGj16tEaNGiWn06nk5GTt27fP/QS39u3b+3tIAFAJRQYAAADAx7Zu\n3arvvvtOWVlZKi4u1j333KN+/fpp3LhxGjZsmF588UVlZ2crLi5O6enpys7OVnBwsEaOHKno6Gjl\n5+crLCxMaWlp2rx5s9LS0rRw4UJ/DwsAKmkWRYbhSe/5uwsAAABAtW688Ub16NFDkhQWFqaysjIV\nFhbqd7/7nSRp8ODBWrlypX7xi1+oe/fuslgskqTevXvLbreroKBAcXFxkqTIyEjNmDHDPwMBgFo0\niyIDAAAA0JiZTCaFhoZKkrKzszVo0CBt3rxZZrNZkhQRESGHw6GioiKFh4e7twsPD6/UbjQaZTAY\nVF5e7t6+Kq1bhyooyORxX61Wi8fbNEb1GYe/xx7I8QN57P6O7+3YFBkAAACABrJhwwZlZ2dr5cqV\nuv32293tLperys972n6+4uJSj/tntVrkcBz3eLvGyNNx+HvsgRw/kMfu7/j1iV1bUYKnSwAAAAAN\n4LPPPtPSpUu1bNkyWSwWhYaG6tSpU5KkgwcPymazyWazqaioyL3NoUOH3O0Oh0OS5HQ65XK5apzF\nAAD+QpEBAAAA8LHjx49r3rx5evXVV9WqVStJZ9dWyMvLkyStX79eAwcOVM+ePbVjxw6VlJTo5MmT\nstvt6tOnj/r376/c3FxJUn5+vvr27eu3sQBATbhdAgAAAPCxdevWqbi4WFOmTHG3paamaubMmcrK\nylK7du0UFxen4OBgJSUlKSEhQQaDQYmJibJYLIqNjdWWLVsUHx8vs9ms1NRUP44GAKpHkQEAAADw\nsTFjxmjMmDGV2letWlWpLSYmRjExMRe0mUwmpaSk+Kx/AOAt3C4BAAAAAAC8giIDAAAAAADwCooM\nAAAAAADAKygyAAAAAAAAr6DIAAAAAAAAvIIiAwAAAAAA8AqKDAAAAAAAwCuC/N0BAAAA/M9DqRs9\n3mZlcpQPegIAgOdqLTKUlZUpOTlZhw8f1o8//qiJEyeqS5cumjZtmioqKmS1WjV//nyZzWbl5OQo\nIyNDRqNRo0eP1qhRo+R0OpWcnKx9+/bJZDIpJSVF7du3b4ixAQAAAACABlRrkSE/P1/dunXTww8/\nrL179+qhhx5S7969NW7cOA0bNkwvvviisrOzFRcXp/T0dGVnZys4OFgjR45UdHS08vPzFRYWprS0\nNG3evFlpaWlauHBhQ4wNAAJeTk6Oli9frqCgID3++OPq3LlznYvEAAAAgKdqXZMhNjZWDz/8sCRp\n//79atu2rQoLCzVkyBBJ0uDBg1VQUKDt27ere/fuslgsCgkJUe/evWW321VQUKDo6GhJUmRkpOx2\nuw+HAwA4p7i4WOnp6VqzZo2WLl2qTz75RIsXL9a4ceO0Zs0adejQQdnZ2SotLVV6erpWr16tzMxM\nZWRk6OjRo/7uPgAAAJqgOi/8OHbsWD311FOaMWOGysrKZDabJUkRERFyOBwqKipSeHi4+/Ph4eGV\n2o1GowwGg8rLy708DADATxUUFKhfv35q2bKlbDab5s6d61GRGAAAAPBUnRd+fOONN/T1119r6tSp\ncrlc7vbzfz6fp+3na906VEGoiQYZAAAgAElEQVRBprp2rcFYrZZ6vdcQ/Bk/kMce6PEDeexNwZ49\ne3Tq1ClNmDBBJSUlmjx5skdF4prUN0/7+5z5O35j1FiPSWPtV300xFi4RgEANBa1Fhl27typiIgI\nXXbZZeratasqKirUokULnTp1SiEhITp48KBsNptsNpuKiorc2x06dEi9evWSzWaTw+FQly5d5HQ6\n5XK53Be41SkuLr34kfmAw3G8ynar1VLtew3Bn/EDeeyBHr8pjj0QL3SPHj2ql156Sfv27dN99913\nUUXi89UnTzfF35lA0FiPSWPtV300xFga6zWK5Nn4AzFPA0BzU+vtEtu2bdPKlSslSUVFRSotLVVk\nZKTy8vIkSevXr9fAgQPVs2dP7dixQyUlJTp58qTsdrv69Omj/v37Kzc3V9LZRST79u3rw+EAAM6J\niIjQDTfcoKCgIF155ZVq0aKFu0gsqcYisc1m81e3AQAA0ITVWmQYO3asjhw5onHjxumRRx7Rs88+\nq8mTJ+vdd9/VuHHjdPToUcXFxSkkJERJSUlKSEjQgw8+qMTERFksFsXGxurMmTOKj4/Xn//8ZyUl\nJTXEuAAg4A0YMEBbt27VmTNnVFxc7HGRGAAAAPBUrbdLhISEKC0trVL7qlWrKrXFxMQoJibmgjaT\nyaSUlJSL6CIAoD7atm2roUOHavTo0ZKkmTNnqnv37po+fbqysrLUrl07xcXFKTg42F0kNhgM7iIx\nAAAA4Kk6L/wIAGh6xo4dq7Fjx17QVtciMQAAAOApigwAAKDReSh1o7+7AAAA6qHWNRkAAAAAXLxv\nv/1Wt912m1577TVJUnJysoYPH657771X9957rzZt2iRJysnJ0a9+9SuNGjVKb731liTJ6XQqKSlJ\n8fHxGj9+vHbv3u2vYQBAjZjJAAAAAPhYaWmp5s6dq379+l3Q/tvf/laDBw++4HPp6enKzs5WcHCw\nRo4cqejoaOXn5yssLExpaWnavHmz0tLStHDhwoYeBgDUipkMAAAAgI+ZzWYtW7as1kcEb9++Xd27\nd5fFYlFISIh69+4tu92ugoICRUdHS5IiIyNlt9sbotsA4DFmMgAAAAA+FhQUpKCgypfer732mlat\nWqWIiAjNmjVLRUVFCg8Pd78fHh4uh8NxQbvRaJTBYFB5ebnMZnO1MVu3DlVQkMnjvlqtzeMJQ/UZ\nh7/HHsjxA3ns/o7v7dgUGQAAAAA/uPvuu9WqVSt17dpVf/zjH/XSSy/phhtuuOAzLperym2raz9f\ncXGpx32yWi1yOI57vF1j5Ok4/D32QI4fyGP3d/z6xK6tKEGRAQAAAPCD89dniIqK0pw5czR06FAV\nFRW52w8dOqRevXrJZrPJ4XCoS5cucjqdcrlcNc5iAHytPk8BWpkc5YOeoLFhTQYAAADADyZPnux+\nSkRhYaE6deqknj17aseOHSopKdHJkydlt9vVp08f9e/fX7m5uZKk/Px89e3b159dB4BqMZMBAAAA\n8LGdO3fqhRde0N69exUUFKS8vDyNHz9eU6ZM0SWXXKLQ0FClpKQoJCRESUlJSkhIkMFgUGJioiwW\ni2JjY7VlyxbFx8fLbDYrNTXV30MCgCpRZAAAAAB8rFu3bsrMzKzUPnTo0EptMTExiomJuaDNZDIp\nJSXFZ/0DAG/hdgkAAAAAAOAVzGQAACCA1WfhLgAAgOowkwEAAAAAAHgFRQYAAAAAAOAVFBkAAAAA\nAIBXUGQAAAAAAABeQZEBAAAAAAB4BUUGAAAAAADgFRQZAAAAAACAV1BkAAAAAAAAXhHk7w4AAOBP\nD6Vu9HiblclRPugJAAD+MzzpPX93Ac0EMxkAAAAAAIBX1Gkmw7x58/Tll1/q9OnTevTRR9W9e3dN\nmzZNFRUVslqtmj9/vsxms3JycpSRkSGj0ajRo0dr1KhRcjqdSk5O1r59+2QymZSSkqL27dv7elwA\ngP/v1KlTuvPOOzVx4kT169evzvkbAAAA8FStMxm2bt2q7777TllZWVq+fLmef/55LV68WOPGjdOa\nNWvUoUMHZWdnq7S0VOnp6Vq9erUyMzOVkZGho0eP6oMPPlBYWJhef/11TZgwQWlpaQ0xLgDA//fK\nK6/o0ksvlSSP8jcAAADgqVqLDDfeeKMWLVokSQoLC1NZWZkKCws1ZMgQSdLgwYNVUFCg7du3q3v3\n7rJYLAoJCVHv3r1lt9tVUFCg6OhoSVJkZKTsdrsPhwMAON/333+vXbt26dZbb5Ukj/I3AAAA4Kla\nb5cwmUwKDQ2VJGVnZ2vQoEHavHmzzGazJCkiIkIOh0NFRUUKDw93bxceHl6p3Wg0ymAwqLy83L19\nVVq3DlVQkOmiBuYLVqulXu81BH/GD+SxB3r8QB57U/HCCy9o1qxZevfddyVJZWVldc7fNalvnvb3\nOfNWfH+PA01LQ/y+cI0CAGgs6vx0iQ0bNig7O1srV67U7bff7m53uVxVft7T9vMVF5fWtVsNyuE4\nXmW71Wqp9r2G4M/4gTz2QI/fFMceaBe67777rnr16lXtOjgNnaeb4u9Mdfw5DjQ9DfH70livUSTP\nxh9oeRoAmqM6FRk+++wzLV26VMuXL5fFYlFoaKhOnTqlkJAQHTx4UDabTTabTUVFRe5tDh06pF69\neslms8nhcKhLly5yOp1yuVw1zmIAAHjHpk2btHv3bm3atEkHDhyQ2Wz2KH8DAAAAnqp1TYbjx49r\n3rx5evXVV9WqVStJZ9dWyMvLkyStX79eAwcOVM+ePbVjxw6VlJTo5MmTstvt6tOnj/r376/c3FxJ\nUn5+vvr27evD4QAAzlm4cKHefvttvfnmmxo1apQmTpzoUf4GAAAAPFXrTIZ169apuLhYU6ZMcbel\npqZq5syZysrKUrt27RQXF6fg4GAlJSUpISFBBoNBiYmJslgsio2N1ZYtWxQfHy+z2azU1FSfDggA\nUL3Jkydr+vTpdcrfAADv+vbbbzVx4kQ98MADGj9+vPbv389j4QE0O7UWGcaMGaMxY8ZUal+1alWl\ntpiYGMXExFzQdi4JAgD8Z/Lkye6f65q/AQDeU1paqrlz56pfv37utnOPFR42bJhefPFFZWdnKy4u\nTunp6crOzlZwcLBGjhyp6Oho5efnKywsTGlpadq8ebPS0tK0cOFCP44IAKpW6+0SAAAAAC6O2WzW\nsmXLZLPZ3G08Fh5Ac1Tnp0tAeih1o0efX5kc5aOeAAAAoCkJCgpSUNCFl96ePFa4IR8L31ye8lGf\ncfh77P6O72s8brdxxvd2bIoMAIBGi+IugEDRWB4L3xgee+ot9XnUdXN51HJj1VgftxvI8X3xWHiK\nDAAAAD4yPOk9f3cBjRiPhQfQHLEmAwAAAOAHPBYeQHPETAYAAADAx3bu3KkXXnhBe/fuVVBQkPLy\n8rRgwQIlJyfzWHgAzQpFBgAAPOTpWhEA0K1bN2VmZlZq57HwAJobbpcAAAAAAABeQZEBAAAAAAB4\nBbdLAAAANHE87hUA0FgwkwEAAAAAAHgFMxkAAAACDIuXAgB8hZkMAAAAAADAKygyAAAAAAAAr+B2\nCQAAAACSpOFJ73n0eRYRBfBTzGQAAAAAAABeQZEBAAAAAAB4BUUGAAAAAADgFazJAAAAAADwufo8\nPpd1P5oeZjIAAAAAAACvoMgAAAAAAAC8giIDAAAAAADwijqtyfDtt99q4sSJeuCBBzR+/Hjt379f\n06ZNU0VFhaxWq+bPny+z2aycnBxlZGTIaDRq9OjRGjVqlJxOp5KTk7Vv3z6ZTCalpKSoffv2vh4X\nAEDSvHnz9OWXX+r06dN69NFH1b179zrn76aoPvd6AgAAwHtqnclQWlqquXPnql+/fu62xYsXa9y4\ncVqzZo06dOig7OxslZaWKj09XatXr1ZmZqYyMjJ09OhRffDBBwoLC9Prr7+uCRMmKC0tzacDAgCc\ntXXrVn333XfKysrS8uXL9fzzz3uUvwEAAABP1VpkMJvNWrZsmWw2m7utsLBQQ4YMkSQNHjxYBQUF\n2r59u7p37y6LxaKQkBD17t1bdrtdBQUFio6OliRFRkbKbrf7aCgAgPPdeOONWrRokSQpLCxMZWVl\nHuVvAAAAwFO13i4RFBSkoKALP1ZWViaz2SxJioiIkMPhUFFRkcLDw92fCQ8Pr9RuNBplMBhUXl7u\n3r4qrVuHKijIVK8BNSZWq6VZxmpMsYnPuUf1TCaTQkNDJUnZ2dkaNGiQNm/eXOf8XZP65mnOGRB4\n+LsHgMBSpzUZauJyubzSfr7i4tKL6lNj4XAcb5A4VqulwWI1ptjE59x7Gj9QL3Q3bNig7OxsrVy5\nUrfffru7vaHztL9/ZwD4hyd/94GYpwsLC/XEE0+oU6dOkqRrr71Wv/nNb5r1+jkAmrd6PV0iNDRU\np06dkiQdPHhQNptNNptNRUVF7s8cOnTI3X7uf8ScTqdcLleNsxgAAN7z2WefaenSpVq2bJksFotH\n+RsA0DBuuukmZWZmKjMzU7NmzWL9HABNWr2KDJGRkcrLy5MkrV+/XgMHDlTPnj21Y8cOlZSU6OTJ\nk7Lb7erTp4/69++v3NxcSVJ+fr769u3rvd4DAKp1/PhxzZs3T6+++qpatWolybP8DQDwD9bPAdCU\n1Xq7xM6dO/XCCy9o7969CgoKUl5enhYsWKDk5GRlZWWpXbt2iouLU3BwsJKSkpSQkCCDwaDExERZ\nLBbFxsZqy5Ytio+Pl9lsVmpqakOMCwAC3rp161RcXKwpU6a421JTUzVz5sw65W8AQMPYtWuXJkyY\noGPHjmnSpEkerX9Wk4ZY56wx3+JSn775ezz+jt8YNdQx8fexb07rrNVaZOjWrZsyMzMrta9atapS\nW0xMjGJiYi5oM5lMSklJuYguAgDqY8yYMRozZkyl9rrmbwCA71111VWaNGmShg0bpt27d+u+++5T\nRUWF+/3Gvs5ZY15rpz5rNzW19aYCQUMcE38f+6a2zlptRYl63S4BAAAA4OK1bdtWsbGxMhgMuvLK\nK9WmTRsdO3aM9XMANFkUGQAAAAA/ycnJ0YoVKyRJDodDhw8f1ogRI1g/B0CTddGPsAQAAABQP1FR\nUXrqqaf0ySefyOl0as6cOerataumT5/O+jkAmiSKDAAAAICftGzZUkuXLq3Uzvo5AJoqbpcAAAAA\nAABewUwGAAAAAGhGHkrd6O8uIIBRZAAAAACARirQCwaejn9lcpSPeoK64nYJAAAAAADgFcxk8KH6\nVB2pvAEAAAAAmipmMgAAAAAAAK9gJgMAAACAegn09QIAVEaRAQAAAECz42kB5P20u33UEyCwcLsE\nAAAAAADwCooMAAAAAADAKygyAAAAAAAAr2BNBgBAgxie9J6/uwAAAJq5+ixGynoc3kWRAQAAAEDA\nq08xfGVylA96AjRtFBkAAAAAoB7q87/mFCbQ3FFkaGSY3gMAAAAAaKooMgAAAABAA6nPfyqi6Quk\nWS88XQIAAAAAAHgFMxkAAAAAAAGLRT+9q0GKDM8//7y2b98ug8GgGTNmqEePHg0RNmB4+kfBHwSA\nqpCrAaDxI1cDjQO3vVTP50WGv/71r/rPf/6jrKwsff/995oxY4aysrJ8HRYA4AFyNQA0fuRqAE2B\nz4sMBQUFuu222yRJHTt21LFjx3TixAm1bNnS16FRjYaqujFjAmg6yNUA0PiRqwHUxtN/6/niSYU+\nLzIUFRXp+uuvd78ODw+Xw+EgGQaAxjqFiOIHUBm5GgAaP3I1EFga67+natPgCz+6XK5aP2O1Wjza\npy+qL0Bdefr72pziB/LYm7vacnV9jj25GghM5GrfIVcD8AZv52mfP8LSZrOpqKjI/frQoUOyWq2+\nDgsA8AC5GgAaP3I1gKbA50WG/v37Ky8vT5L01VdfyWazMaULABoZcjUANH7kagBNgc9vl+jdu7eu\nv/56jR07VgaDQbNnz/Z1SACAh8jVAND4kasBNAUGV10WSQAAAAAAAKiFz2+XAAAAAAAAgYEiAwAA\nAAAA8IoGf4TlxfjrX/+qJ554Qs8//7wGDx5c6f2cnBxlZGTIaDRq9OjRGjVqlJxOp5KTk7Vv3z6Z\nTCalpKSoffv2HseubT87d+7UCy+84H69a9cupaen6/PPP9f777+vtm3bSpLuuusujRo1yuvxJen6\n669X79693a9Xr16tM2fOXPT46xJ73bp1WrlypYxGo/r166cnn3xSa9eu1aJFi3TllVdKkiIjI/XY\nY495FPv555/X9u3bZTAYNGPGDPXo0cP93pYtW/Tiiy/KZDJp0KBBSkxMrHUbb8XeunWrXnzxRRmN\nRv3iF7/QH/7wB33xxRd64okn1KlTJ0nStddeq1mzZtUrdm3xo6Ki9POf/1wmk0mStGDBArVt29Zr\nY68p/sGDB/XUU0+5P7d7924lJSXJ6XRe9Pk+37fffquJEyfqgQce0Pjx4y94z9fnHhcnUHO1P/N0\nXeP7Ilf7M0/Xti9yNbka1fNXrg7ka+q6xidXN69cHZB52tVE/Oc//3FNmDDBNXHiRNfGjRsrvX/y\n5EnX7bff7iopKXGVlZW57rjjDldxcbFr7dq1rjlz5rhcLpfrs88+cz3xxBP1iu/Jfo4dO+b69a9/\n7aqoqHAtXrzYlZmZWa+Ynsa/6aabLqrf9Y1dWlrqGjx4sOv48eOuM2fOuEaOHOn67rvvXG+//bYr\nNTXV43jnFBYWuh555BGXy+Vy7dq1yzV69OgL3h82bJhr3759roqKCld8fLzru+++q3Ubb8WOjo52\n7d+/3+VyuVyTJ092bdq0ybV161bX5MmT6xXP0/iDBw92nThxwqNtvBn/HKfT6Ro7dqzrxIkTF32+\nz3fy5EnX+PHjXTNnzqzy78eX5x4XJ5BztT/zdF3244tc7c88XZf45OqzyNX4KX/m6kC+pq7LfsjV\nzStXB2qebjK3S1itVr300kuyWCxVvr99+3Z1795dFotFISEh6t27t+x2uwoKChQdHS3pbBXIbrfX\nK74n+1mxYoXuv/9+GY3eO7z1HYc3xl/bPi655BLl5OSoZcuWMhgMatWqlY4ePepxnKri3nbbbZKk\njh076tixYzpx4oSks5W+Sy+9VJdddpmMRqNuueUWFRQU1LiNt2JL0tq1a/Xzn/9ckhQeHq7i4uKL\nGqun8b21zcXu65133tHQoUPVokWLesWpjtls1rJly2Sz2Sq95+tzj4sTyLnan3m6LvvxRa72Z56u\nLb5Erj6HXI2f8meuDuRr6rrsh1zdvHJ1oObpJlNkuOSSS9xTWKpSVFSk8PBw9+vw8HA5HI4L2o1G\nowwGg8rLyz2OX9f9nDp1Sps3b9aQIUPcbbm5uXrwwQf16KOPavfu3R7Hrmv88vJyJSUlaezYsVq1\napVH/b7Y2Oee0fzNN99o79696tmzp6SzU/ESEhJ0//3365///KfHcVu3bu1+fe6cSpLD4aj2fFe3\njbdiS/8b76FDh/T555/rlltukXR2St+ECRMUHx+vzz//3OO4dY0vSbNnz1Z8fLwWLFggl8vltbHX\nNb4kvfXWWxo5cqT79cWc7/MFBQUpJCSkyvd8fe5xcQI5V/szT9d1P97O1f7M07XFl8jV55Cr8VP+\nzNWBfE1d1/2Qq5tPrg7UPN0o12R466239NZbb13QNnnyZA0cOLDO+3BV82TO6tpri799+/Y67WfD\nhg269dZb3RXXW265RTfffLNuvPFGffjhh3ruuef06quv+iT+tGnTdNddd8lgMGj8+PHq06dPpc/U\nNv6LGfsPP/ygp556SmlpaQoODlbPnj0VHh6uW2+9VX/72980ffp0vf/++zXGr0ldzp03tqnrfg4f\nPqwJEyZo9uzZat26ta666ipNmjRJw4YN0+7du3Xfffdp/fr1MpvNXo//+OOPa+DAgbr00kuVmJio\nvLy8OvXZW/El6W9/+5uuvvpq9xeDt8/3xfLm+FG1QM7V/szTFxNf8m2u9meerm5f5GpydaDzZ64O\n5Gvqi4kvkauba64OlDzdKIsMo0aN8nghF5vNpqKiIvfrQ4cOqVevXrLZbHI4HOrSpYucTqdcLlet\nv5xVxU9OTq7TfvLz8xUfH+9+/dNFRRYsWFDrWOob//y4N998s7799luPx1/f2AcOHFBiYqLmzZun\nrl27Sjo7vaZjx46SpBtuuEFHjhxRRUVFjZXz81V1Tq1Wa5XvHTx4UDabTcHBwdVu44maYkvSiRMn\n9PDDD2vKlCkaMGCAJKlt27aKjY2VJF155ZVq06aNDh48WK9FgWqLHxcX5/550KBB7nPtjbHXJb4k\nbdq0Sf369XO/vtjzXd++efvco+4COVf7M09fTHxv52p/5una4kvkaolcDf/m6kC+pr6Y+OTq5pOr\nAzVPN5nbJWrTs2dP7dixQyUlJTp58qTsdrv69Omj/v37Kzc3V9LZZNW3b9967b+u+9m5c6e6dOni\nfv3cc89p27Ztks5Oezm3Qqq34//73/9WUlKSXC6XTp8+Lbvdrk6dOnll/HXZxzPPPKM5c+bo+uuv\nd7ctW7ZMH3zwgaSzq5qGh4d79MfRv39/dyXxq6++ks1mc1f4rrjiCp04cUJ79uzR6dOnlZ+fr/79\n+9e4jadjrmk/qampuv/++zVo0CB3W05OjlasWCHp7PSjw4cPu1dA9mb848ePKyEhwT217osvvnCf\na2+Mvbb45+zYseOC3/WLPd915etzD99qzrnan3m6LvEl7+dqf+bp2uJL5GqJXI368WWuDuRr6rrE\nl8jVUvPJ1YGapw2uJjJPbdOmTVqxYoX+/e9/Kzw8XFarVStXrtQf//hH3XjjjbrhhhuUm5urFStW\nuKc23XXXXaqoqNDMmTP1ww8/yGw2KzU1VZdddpnH8avbz/nxJalfv34qKChwb/fNN99o9uzZCgoK\nksFg0HPPPacOHTr4JP78+fO1detWGY1GRUVF6bHHHvPK+GuL3apVK8XFxV1QYX7ggQd0/fXXa+rU\nqe4kXZ/HnyxYsEDbtm2TwWDQ7Nmz9c9//lMWi0XR0dH64osv3FXs22+/XQkJCVVuc/4frTdiDxgw\n4IJzLkl33nmn7rjjDj311FMqKSmR0+nUpEmT3PeUeTN+dHS0MjIy9O677+pnP/uZrrvuOs2aNUsG\ng8FrY68tviQNHz5cq1atUps2bSSdrbpf7Pk+59zjq/bu3augoCC1bdtWUVFRuuKKKxrk3KP+AjlX\n+zNP1yW+r3K1P/N0TfHJ1eRqVM+fuTqQr6nrEp9c3fxydSDm6SZTZAAAAAAAAI1bs7ldAgAAAAAA\n+BdFBgAAAAAA4BUUGQAAAAAAgFdQZAAAAAAAAF5BkQEAAAAAAHgFRQYAAAAAAOAVFBkAAAAAAIBX\nUGQAAAAAAABeQZEBAAAAAAB4BUUGAAAAAADgFRQZAAAAAACAV1BkAAAAAAAAXkGRAQAAAAAAeAVF\nBgAAAAAA4BUUGQAAAAAAgFdQZAAAAAAAAF5BkQEAAAAAAHgFRQYAAAAAAOAVFBkAAAAAAIBXUGQA\nAAAAAABeQZEBAAAAAAB4BUUGAAAAAADgFRQZAAAAAACAV1BkAAAAAAAAXkGRAT5XWFio6Ohor+83\nLS1Nr7/+uiTps88+0759+zzex3XXXac9e/Z4u2sAAABAk3Hvvffqvffeq/Vzb775pvvnmJgYFRUV\n+bJbaKIoMqDJSkpKUnx8vCRp9erV9SoyAAD+55lnntGSJUsk+e7i8R//+IcSEhK8vl8AgG85HA4t\nX77c/To3N1dt2rTxY4/QWFFkQIP58ccf9eyzz2ro0KEaNmyYUlNTVVFRIUmKiorSG2+8oZEjR2rA\ngAFKTU11b7d06VL169dPv/rVr/TnP/9ZUVFRkqTk5GS9/PLLWrhwobZu3aqpU6dq3bp17vZzzn/9\nl7/8RdHR0Ro2bNgFSVKSsrKyFBMTo6ioKP32t7/VqVOnfH1IAKDR8tXFY48ePbRixQqv7xcAmqPC\nwkINHz5cqampGjp0qKKiovT3v/+9xuvqzp07609/+pPuvvtu9evXzz3zd+3atXrggQfc+/7p63M+\n+eQTDR8+XEOHDtWIESP09ddfS5LGjh2rffv2KSYmRuXl5ercubMOHDggSfrTn/6k2NhYxcTE6LHH\nHtORI0cknb0OX7x4sR588EENHjxYDz74oMrKynx4xNAYUGRAg8nIyNCBAwf04Ycf6p133tG2bdv0\nwQcfuN//4osvlJWVpbfffluvvfaaDhw4oO+++07Lly/Xe++9pzVr1ig3N7fSfqdMmaK2bdtq/vz5\nio2NrTZ+RUWFnnnmGc2ePVsfffSRjEajOxlv27ZNixYtUkZGhjZu3KiWLVtq0aJF3j8IAOBFe/bs\n0YABA7Rs2TINHTpUQ4cO1d///nc98sgjGjhwoJ5++mlJ0oYNGzR8+HANGTJEDz30kPvir7i4WA89\n9JCioqL0yCOP6Pjx4+59n3/xmJ6erqFDh+q2227To48+qpKSEknSkiVL9Pvf//7/sXfvYVWV+f//\nX5sNewwFFWLr2GmsyXRSUfOQKCoYcihHLE+YdpAmLTUtTBlGR/vmBGqYWZZmnkZrxpGs6DBgJjaZ\nSBmNaTOT1XwqRJONgoCoIK7fH/7cIyHCxg0b2M/HdXVd7nuvtd73vVa8Xb5Z9700depUDR06VKNG\njVJeXt5l+3zxFLrL7Z+Tk6N7771XYWFhuueee/TVV19Jkg4fPqzY2FiFh4frrrvu0ltvveXQubjc\n+QCAxui7775T9+7dlZ6erkceeUQLFiyo8b76hx9+0Ntvv63XXntNzzzzjAoKCmoV6+zZs4qPj9fT\nTz+t9PR0hYaGatGiRZKkZ555Rr/85S+VlpYmi8Vi3+ef//yn1qxZo40bNyotLU0dOnRQcnKy/fu0\ntDQ999xz+uCDD3T8+HF98MEHTjozaKwoMqDB7Ny5U2PGjJGnp6datGih4cOH65NPPrF/P3z4cJnN\nZrVr107+/v46cuSIPhxTwU8AACAASURBVPvsM/Xt21dWq1W/+MUvdM8999Q5/vfff6+ysjINHDhQ\nkjRy5Ej7dzt27FBUVJTatWsnSYqJidG2bdvqHAsAGkpBQYECAgKUnp6uW265RY8//riSkpKUmpqq\nd999Vz/++KNmz56t5ORkffjhh+rXr58WLFggSVq9erXatm2rHTt26I9//KN27dpV5fgHDhzQa6+9\npjfeeEPbtm1TWVmZNm3aZP8+LS1NCQkJ2r59u/z9/fXGG2841P/q9p83b57uvPNOffDBB3rkkUc0\ne/Zse3vfvn2Vnp6uVatWaeHChfa1dWpzLnJycqo9HwDQGHl7eysyMlKSNGzYMP373/9Wenr6Ze+r\nL9wz33jjjerYsaO+/PLLWsXy9PTU7t271aNHD0lS7969lZOTc9l9du7cqfDwcPn7+0uSRo8eXakv\ngwcPVps2beTp6alOnTrpyJEjtR88miRPV3cA7uP48eNq3bq1/XPr1q117Ngx++dWrVrZ/2w2m1VR\nUaGioqJK+1woAtTFiRMnKsW4+LjFxcX64IMP7DfYhmGovLy8zrEAoKGcPXtWERERkqROnTpJkvz8\n/CRJAQEBSk1NVd++fe3fjRs3TgMGDFBFRYX27t2rhx9+WJJ07bXXqm/fvlWO37VrV+3cudP+W6ue\nPXtWuuHs3bu3rrnmGklSly5dHL55vNT+Z86cUVZWlpYvXy5JGjp0qPr376/y8nLt3r1by5YtkyRd\nc8016tevn/bs2aPbb7+9xnORl5enr7/+utrzYTabHeo7ADQEX19fmUwm+58lqaSk5LL31T//7sIT\naLWxceNGvfnmmyorK1NZWZk9dnWOHz8uq9Vaqb8X98XHx8f+5wv3+GjeKDKgwVx99dUqLCy0fy4s\nLKxxvm+rVq1UWlpq/1zTY7iS5OHhoXPnztk/nzhxQtL5BFtSUmJvv/jxWKvVqpEjR2rOnDk1DwQA\nGhGz2awWLVpIOp//vL29K33n6empvXv32v/xLZ3PrYWFhTpx4kSlm78LN68XO3XqlBITE5WVlSXp\nfE4dMmSI/fsrvXm81P6FhYU6d+6c/TuTyaSWLVvKZrPJMIwqfb6Qz2s6FxUVFSouLq72fFz4LRwA\nNCYX3z9fuK/19fW97H11QUGBvYBbWFio1q1b6/jx45Vy9KUKD9nZ2Vq9erW2bNmia6+9Vp988onm\nzZt32f7V5R4fzRvTJdBghgwZopSUFFVUVKi0tFRvv/22Bg8efNl9unfvrqysLB0/flxlZWX2ubc/\n5+npaZ9LHBAQoP/85z+Szs/pzc7OliRdf/31MpvN9hvlrVu32iuzoaGh2rZtm/1Gdfv27XrllVeu\nfNAA4GJWq1VBQUFKS0uz/7dnzx75+/vL19e30joMl1qbYMOGDfr++++1detWpaena+zYsfXe57Zt\n28pkMtnnEBuGoR9++EFt2rSRh4eH/SZbksPFgcudDwBojE6fPq3t27dLktLT09W1a1eFh4df9r76\nvffek3R+PYcffvhBgYGBslqt+r//+z+dOXNGp06duuRaZ8ePH5e/v786dOigU6dO6c0331RpaakM\nw5Cnp6dKS0t19uzZSvsMGTJEH3zwgT1n//Wvf63xHh/NG0UGNJiJEyeqffv2uvPOO3XPPfdoyJAh\n9vll1enevbtGjhypkSNH6r777lNISMgltwsPD9cTTzyhdevWacyYMcrNzdWwYcOUnJys8PBwSZKX\nl5eefvppJSQkKDIyUiaTyf5brltvvVVTpkzRxIkTFRkZqfXr12vo0KHOPQEA4AIWi0V79+61T3H4\n8ssvtXDhQklSjx497DeuP/74oz7//PMq+x87dkw33nijWrZsqdzcXH300UeVnjCrrz4PGDBAb775\npiTp448/1sMPPywvLy8NHDhQmzdvtvd57969CgoKqvWxBw4cWO35AIDG6JprrtHnn3+u8PBwrVq1\nSvPnz6/xvtrPz08jRozQvffeq7lz56p169bq16+fAgMDFR4ert/97neXvNcNDg6W1WrVHXfcoUmT\nJun++++Xj4+PHnvsMd1yyy1q3bq1BgwYUOnV8d27d9fDDz+se++9VxERESouLtbjjz/eIOcGjZPJ\nMAzD1Z0ALscwDPsTBzt37tSyZcuqfaIBANzJoUOHNGzYMP3rX/+SJL300kv68ccf7a8BDgsL08KF\nC1VSUqLnn39e5eXlatmypRISEtSrVy/l5+fr8ccfV25urm666Sb5+fnp2muv1fTp03XLLbfoo48+\n0smTJ/XYY4/p7NmzuuWWWzR+/HhNnz5dU6dOVXFxsX766Sf96U9/knT+bREXf76UrKwszZ07Vx98\n8EGV7S/+/NNPP2nWrFk6cuSIWrduraeeekrdunXTkSNHNHfuXOXm5srLy0vTpk1TeHh4rc9Fv379\n9OGHH17yfABAY3NxzqytC/m7ffv29dgzoHoUGdCoHT9+XJGRkdq6das6dOig+Ph4XXXVVawEDgAA\ngGaPIgOaIhZ+RKPm5+enmTNn6oEHHpDJZNKNN95of40ZAAAAAKBxqfFJhlOnTik+Pl7Hjh3TmTNn\n9Oijj6pz586aPXu2KioqFBAQoCVLlshisSg1NVUbNmyQh4eHxowZo9GjR6u8vFzx8fE6fPiwzGaz\nEhMTdd111zXU+AAAQAObOnWqvvvuu0t+t2LFCt10000N3CMAANBQaiwyvP/++8rNzdXvfvc75ebm\natKkSerVq5cGDRqkyMhILV26VO3bt1d0dLRGjhyplJQUeXl5adSoUdq0aZMyMjL05Zdfav78+dq1\na5dSUlLs77cGAAAAAADNR43TJaKioux/PnLkiNq1a6esrCw99dRTkqSQkBCtXbtWHTt2VLdu3ezv\nru7Vq5eys7OVmZmp6OhoSVJQUJASEhJq7JTNVlzjNhdr29ZbBQX1u9I18RtfbOJz7R2NHxDgU0+9\ncT+O5mmpaf4/0xxiE59r35Tik6edq6nl6qb2/yvxm0dsd49fH/fUtV6TYdy4cfrpp5+0cuVKPfjg\ng7JYLJIkf39/2Ww25efny8/Pz769n59flXYPDw+ZTCaVlZXZ97+Utm295elprm3XJLn+LyV3ju/O\nY3f3+O48djjO0bzenOK789jdPb47j70xxIfj+HkhvrvFdvf49RG71kWGv/71r/r3v/+tJ598UhfP\nsKhutoWj7RerSyWlLpVaZ3Hn+O48dneP3xTHTlECAAAAqF8eNW1w4MABHTlyRJLUpUsXVVRUqGXL\nljp9+rQk6ejRo7JarbJarcrPz7fvl5eXZ2+32WySpPLychmGcdmnGAAAAAAAQNNUY5Fh7969Wrt2\nrSQpPz9fpaWlCgoKUnp6uiRp27ZtCg4OVmBgoPbv36+ioiKdPHlS2dnZ6t27twYMGKC0tDRJUkZG\nhvr161ePwwEAAAAAAK5S43SJcePG6Q9/+IPGjx+v06dP649//KO6du2qOXPmaPPmzerQoYOio6Pl\n5eWluLg4xcbGymQyaerUqfLx8VFUVJR2796tmJgYWSwWJSUlNcS4AAAAAABAA6uxyNCiRQslJydX\naV+3bl2VtoiICEVERFRqM5vNSkxMvIIuAgAAAACApqDG6RIAAAAAAAC1QZEBAAAAAAA4Ra1fYQm4\ns0lJOxzafm18aD31BICzOfrzLfEzDqD5Gh73tkPbkw8B/BxPMgAAAAAAAKegyAAAAAAAAJyCIgMA\nAAAAAHAKigwAAAAAAMApKDIAAAAAAACnoMgAAAAAAACcgiIDAAAAAABwCooMAAAAAADAKTxd3QEA\nAJxlUtIOV3cBAADArfEkAwAAAAAAcAqKDAAAAAAAwCkoMgAAAAAAAKdgTQYAaAYWL16szz//XGfP\nntXkyZPVrVs3zZ49WxUVFQoICNCSJUtksViUmpqqDRs2yMPDQ2PGjNHo0aNVXl6u+Ph4HT58WGaz\nWYmJibruuutcPSQAAAA0QRQZAKCJ27Nnj7755htt3rxZBQUFGjlypPr376/x48crMjJSS5cuVUpK\niqKjo7VixQqlpKTIy8tLo0aNUlhYmDIyMuTr66vk5GTt2rVLycnJWrZsmauHBQAAgCaIIgMANHF9\n+vRR9+7dJUm+vr46deqUsrKy9NRTT0mSQkJCtHbtWnXs2FHdunWTj4+PJKlXr17Kzs5WZmamoqOj\nJUlBQUFKSEhwzUCaEEffYvFO8oh66gkAAEDjQpEBAJo4s9ksb29vSVJKSooGDRqkXbt2yWKxSJL8\n/f1ls9mUn58vPz8/+35+fn5V2j08PGQymVRWVmbf/1LatvWWp6fZ4b4GBPg4vE9z4eqxE9918d15\n7I0hPgCgYVFkAIBmYvv27UpJSdHatWs1bNgwe7thGJfc3tH2ixUUlDrcv4AAH9lsxQ7v11y4cuyu\nPvfuHN+dx16X+BQkAKDp4+0SANAMfPzxx1q5cqVWr14tHx8feXt76/Tp05Kko0ePymq1ymq1Kj8/\n375PXl6evd1ms0mSysvLZRjGZZ9iAAAAAKpTqycZfr5q+Y4dO/TVV1+pTZs2kqTY2FgNGTKEVcsB\nwAWKi4u1ePFirV+/3p6Xg4KClJ6erhEjRmjbtm0KDg5WYGCg5s6dq6KiIpnNZmVnZyshIUElJSVK\nS0tTcHCwMjIy1K9fPxePCACan5MnT2rOnDk6ceKEysvLNXXqVAUEBGjBggWSpFtuucW+ls6rr76q\ntLQ0mUwmTZs2TYMHD1ZxcbHi4uJUXFwsb29vJScn23M+ADQmNRYZLrVq+e23364nnnhCISEh9u1K\nS0tZtRwAXOD9999XQUGBZs6caW9LSkrS3LlztXnzZnXo0EHR0dHy8vJSXFycYmNjZTKZNHXqVPn4\n+CgqKkq7d+9WTEyMLBaLkpKSXDgaAGie3nzzTXXs2FFxcXE6evSo7r//fgUEBCghIUHdu3dXXFyc\nPvroI9144416//339de//lUlJSUaP368Bg4cqA0bNqhv37566KGHtHnzZq1evVpPPvmkq4cFAFXU\nWGS41KrlFRUVVbbbt28fq5YDgAuMHTtWY8eOrdK+bt26Km0RERGKiIio1HbhKTMAQP1p27atvv76\na0lSUVGR2rRpo9zcXPt9dkhIiDIzM2Wz2RQcHCyLxSI/Pz9dc801+vbbb5WZmalnnnnGvu2UKVNc\nNhYAuJwaiwyXWrXcbDZr06ZNWrdunfz9/TVv3jyXr1ru6oWC3Dm+O4+9Og3ZJ649AACN35133qmt\nW7cqLCxMRUVFevnll/X//t//s39/4U1Abdq0qfGe2t/fX3l5eQ0+BgCojVq/XeLiVcsPHDigNm3a\nqEuXLnrllVf04osvqmfPnpW2b8hVy5vaysnNKb47j/1yGqpPXHvH4lOUAAC4yttvv60OHTpozZo1\n+s9//mOfsnaBI/fOtbmflur+umFHOPvvVlf/XU18fnnljvGdHbtWRYYLq5a/+uqr8vHxUf/+/e3f\nhYaGasGCBQoPD6+yanmPHj3sq5Z37tyZVcsBAADglrKzszVw4EBJUufOnXXmzBmdPXvW/v3FbwL6\nv//7v0u222w2+fj42NtqUpfXDTvKmb9waIq/wCB+04/t7vHr4xd3Nb7C8sKq5atWrbKvYDt9+nTl\n5ORIkrKysnTzzTcrMDBQ+/fvV1FRkU6ePKns7Gz17t1bAwYMUFpamiSxajkAAADc0g033KB9+/ZJ\nknJzc9WyZUvddNNN2rt3ryTZ3wR0++23a+fOnSorK9PRo0eVl5enX//615XuqS9sCwCNUY1PMlxq\n1fK7775bM2fO1FVXXSVvb28lJiaqRYsWrFoOAAAAXMLYsWOVkJCgCRMm6OzZs1qwYIECAgL0xz/+\nUefOnVNgYKCCgoIkSWPGjNGECRNkMpm0YMECeXh4aOLEiXryySc1fvx4+fr6asmSJS4eEQBcWo1F\nhupWLR85cmSVNlYtBwAAAKpq2bKlnn/++Srtr7/+epW2iRMnauLEiVX2f+mll+qtfwDgLDVOlwAA\nAAAAAKgNigwAAAAAAMApKDIAAAAAAACnoMgAAAAAAACcgiIDAAAAAABwCooMAAAAAADAKSgyAAAA\nAAAAp6DIAAAAAAAAnIIiAwAAAAAAcAqKDAAAAAAAwCkoMgAAAAAAAKegyAAAAAAAAJyCIgMAAAAA\nAHAKigwAAAAAAMApKDIAAAAAAACnoMgAAAAAAACcgiIDAAAAAABwCooMAAAAAADAKSgyAAAAAAAA\np6DIAAAAAAAAnIIiAwAAAAAAcArP2my0ePFiff755zp79qwmT56sbt26afbs2aqoqFBAQICWLFki\ni8Wi1NRUbdiwQR4eHhozZoxGjx6t8vJyxcfH6/DhwzKbzUpMTNR1111X3+MCAAAAAAANrMYiw549\ne/TNN99o8+bNKigo0MiRI9W/f3+NHz9ekZGRWrp0qVJSUhQdHa0VK1YoJSVFXl5eGjVqlMLCwpSR\nkSFfX18lJydr165dSk5O1rJlyxpibAAAAAAAoAHVOF2iT58+ev755yVJvr6+OnXqlLKysjR06FBJ\nUkhIiDIzM7Vv3z5169ZNPj4+atGihXr16qXs7GxlZmYqLCxMkhQUFKTs7Ox6HA4AAAAAAHCVGp9k\nMJvN8vb2liSlpKRo0KBB2rVrlywWiyTJ399fNptN+fn58vPzs+/n5+dXpd3Dw0Mmk0llZWX2/S+l\nbVtveXqaHRpIQICPQ9s7mzvHd+exV6ch+8S1xwUHDx7Uo48+qgceeEATJkxQfHy8vvrqK7Vp00aS\nFBsbqyFDhjC1zQWGx73t8D5r40ProScAAAD1q1ZrMkjS9u3blZKSorVr12rYsGH2dsMwLrm9o+0X\nKygorW23JJ3/h4bNVuzQPs7kzvHdeeyX01B94to7Fr85FyVKS0v19NNPq3///pXan3jiCYWEhFTa\njqltAAAAqC+1ervExx9/rJUrV2r16tXy8fGRt7e3Tp8+LUk6evSorFarrFar8vPz7fvk5eXZ2202\nmySpvLxchmFc9ikGAIDjLBaLVq9eLavVetntmNoGAACA+lTjkwzFxcVavHix1q9fb3/kNigoSOnp\n6RoxYoS2bdum4OBgBQYGau7cuSoqKpLZbFZ2drYSEhJUUlKitLQ0BQcHKyMjQ/369av3QQGAu/H0\n9JSnZ9WUvmnTJq1bt07+/v6aN2+e06a21WVam9S8nyZxNmefK1efe3eO785jbwzxAQANq8Yiw/vv\nv6+CggLNnDnT3paUlKS5c+dq8+bN6tChg6Kjo+Xl5aW4uDjFxsbKZDJp6tSp8vHxUVRUlHbv3q2Y\nmBhZLBYlJSXV64AAAOeNGDFCbdq0UZcuXfTKK6/oxRdfVM+ePSttU9epbY5Oa5NcP8WmqXHmuXL1\nuXfn+O489rrEpyABAE1fjUWGsWPHauzYsVXa161bV6UtIiJCERERldouLCAGAGhYF6/PEBoaqgUL\nFig8PLzK1LYePXrYp7Z17tyZqW0AUE9SU1P16quvytPTU4899phuueUWzZ49WxUVFQoICNCSJUtk\nsVhYoBdAk1arNRkAAE3P9OnTlZOTI0nKysrSzTffrMDAQO3fv19FRUU6efKksrOz1bt3bw0YMEBp\naWmSxNQ2AKgHBQUFWrFihV5//XWtXLlSH374oZYvX67x48fr9ddf1w033KCUlBT7Ar3r16/Xxo0b\ntWHDBhUWFurdd9+Vr6+v/vKXv2jKlClKTk529ZAA4JJq/XYJAEDjdeDAAS1atEi5ubny9PRUenq6\nJkyYoJkzZ+qqq66St7e3EhMT1aJFC6a2AYALZGZmqn///mrVqpVatWqlp59+WqGhoXrqqackSSEh\nIVq7dq06duxoX6BXUqUFeqOjoyWdXx8tISHBZWMBgMuhyAAAzUDXrl21cePGKu3h4eFV2pjaBgAN\n79ChQzp9+rSmTJmioqIiTZ8+XadOnbJPTfP396+yEK9U9wV6pbov0usIFqklfnOI7e7xnR2bIkMj\nMylph8P7vJM8oh56AgAAAGcqLCzUiy++qMOHD+u+++6rtMiuowvx1rRAr1S3RXodxSK1xG/qsd09\nfl1i11SUYE0GAAAAoJ75+/urZ8+e8vT01PXXX6+WLVuqZcuWOn36tCTp6NGjslqtslqtVRbovdBu\ns9kkiQV6ATRqFBkAAACAejZw4EDt2bNH586dU0FBgUpLSxUUFKT09HRJ0rZt2xQcHMwCvQCaPKZL\nAAAAAPWsXbt2Cg8P15gxYyRJc+fOVbdu3TRnzhxt3rxZHTp0UHR0tLy8vFigF0CTRpEBAAAAaADj\nxo3TuHHjKrWtW7euynYs0AugKWO6BAAAAAAAcAqKDAAAAAAAwCkoMgAAAAAAAKegyAAAAAAAAJyC\nIgMAAAAAAHAKigwAAAAAAMApKDIAAAAAAACnoMgAAAAAAACcgiIDAAAAAABwCooMAAAAAADAKSgy\nAAAAAAAAp6DIAAAAAAAAnIIiAwAAAAAAcIpaFRkOHjyoO+64Q5s2bZIkxcfHa/jw4Zo4caImTpyo\nnTt3SpJSU1N1zz33aPTo0dqyZYskqby8XHFxcYqJidGECROUk5NTPyMBAAAAAAAu5VnTBqWlpXr6\n6afVv3//Su1PPPGEQkJCKm23YsUKpaSkyMvLS6NGjVJYWJgyMjLk6+ur5ORk7dq1S8nJyVq2bJnz\nRwIAAAAAAFyqxicZLBaLVq9eLavVetnt9u3bp27dusnHx0ctWrRQr169lJ2drczMTIWFhUmSgoKC\nlJ2d7ZyeAwAAAACARqXGJxk8PT3l6Vl1s02bNmndunXy9/fXvHnzlJ+fLz8/P/v3fn5+stlsldo9\nPDxkMplUVlYmi8VSbcy2bb3l6Wl2aCABAT4Obe9s7hzfncdenYbsE9ceAAAAQGNRY5HhUkaMGKE2\nbdqoS5cueuWVV/Tiiy+qZ8+elbYxDOOS+1bXfrGCglKH+hMQ4CObrdihfZzJ1fEluSy+q8fu6vjV\naag+uXL8rj73dYlPUQIAAACoX3V6u0T//v3VpUsXSVJoaKgOHjwoq9Wq/Px8+zZ5eXmyWq2yWq2y\n2WySzi8CaRjGZZ9iAAAAAAAATVOdigzTp0+3vyUiKytLN998swIDA7V//34VFRXp5MmTys7OVu/e\nvTVgwAClpaVJkjIyMtSvXz/n9R4AAAAAADQaNU6XOHDggBYtWqTc3Fx5enoqPT1dEyZM0MyZM3XV\nVVfJ29tbiYmJatGiheLi4hQbGyuTyaSpU6fKx8dHUVFR2r17t2JiYmSxWJSUlNQQ4wIAAAAAAA2s\nxiJD165dtXHjxirt4eHhVdoiIiIUERFRqc1sNisxMfEKuggAAAAAAJqCOi38CABAQ5iUtMPVXQAA\nAIADKDIAANAI1aXAsjY+tB56AgAAUHt1WvgRAAAAAADg5ygyAEAzcfDgQd1xxx3atGmTJOnIkSOa\nOHGixo8frxkzZqisrEySlJqaqnvuuUejR4/Wli1bJJ1/xXBcXJxiYmI0YcIE+xuEAAAAAEdQZACA\nZqC0tFRPP/20+vfvb29bvny5xo8fr9dff1033HCDUlJSVFpaqhUrVmj9+vXauHGjNmzYoMLCQr37\n7rvy9fXVX/7yF02ZMkXJyckuHA0AAACaKooMANAMWCwWrV69Wlar1d6WlZWloUOHSpJCQkKUmZmp\nffv2qVu3bvLx8VGLFi3Uq1cvZWdnKzMzU2FhYZKkoKAgZWdnu2QcAAAAaNpY+BEAmgFPT095elZO\n6adOnZLFYpEk+fv7y2azKT8/X35+fvZt/Pz8qrR7eHjIZDKprKzMvv/PtW3rLU9Ps8P9DAjwcXgf\n1N7lzq+rz707x3fnsTeG+I3N6dOnddddd+nRRx9V//79NXv2bFVUVCggIEBLliyRxWJRamqqNmzY\nIA8PD40ZM0ajR49WeXm54uPjdfjwYfsr4q+77jpXDwcAqqDIAABuwDAMp7RfUFBQ6nAfAgJ8ZLMV\nO7wfaq+68+vqc+/O8d157HWJ7w4FiZdfflmtW7eW9L9pbZGRkVq6dKlSUlIUHR2tFStWKCUlRV5e\nXho1apTCwsKUkZEhX19fJScna9euXUpOTtayZctcPBoAqIrpEgDQTHl7e+v06dOSpKNHj8pqtcpq\ntSo/P9++TV5enr3dZrNJOr8IpGEY1T7FAACom++++07ffvuthgwZIolpbQCaJ55kAIBmKigoSOnp\n6RoxYoS2bdum4OBgBQYGau7cuSoqKpLZbFZ2drYSEhJUUlKitLQ0BQcHKyMjQ/369XN19wGg2Vm0\naJHmzZunt956S1L9TmuT6j61zRHOfvrE1U+zEJ+pZe4Y39mxKTLA7UxK2uHqLgBOd+DAAS1atEi5\nubny9PRUenq6nn32WcXHx2vz5s3q0KGDoqOj5eXlpbi4OMXGxspkMmnq1Kny8fFRVFSUdu/erZiY\nGFksFiUlJbl6SADQrLz11lvq0aNHtesoOHtam1S3qW2OcuZ0nKY2vYf4zSO2u8evS+yaihIUGYBG\noi7Fj3eSR9RDT9AUde3aVRs3bqzSvm7duiptERERioiIqNR2YRExAED92Llzp3JycrRz50799NNP\nslgs9mltLVq0uOy0th49etintXXu3JlpbQAaNdZkAAAAAOrZsmXL9MYbb+hvf/ubRo8erUcffdQ+\nrU1SpWlt+/fvV1FRkU6ePKns7Gz17t1bAwYMUFpamiQxrQ1Ao8aTDAAAAIALTJ8+XXPmzGFaG4Bm\nhSIDAAAA0ICmT59u/zPT2gA0N0yXAAAAAAAATkGRAQAAAAAAOAVFBgAAAAAA4BQUGQAAAAAAgFNQ\nZAAAAAAAAE5BkQEAAAAAADhFrYoMBw8e1B133KFNmzZJko4cOaKJEydq/PjxmjFjhsrKyiRJqamp\nuueeezR69Ght2bJFklReXq64uDjFxMRowoQJysnJqaehAAAAAAAAV6qxyFBaWqqnn35a/fv3t7ct\nX75c48eP1+uvyl4r9QAAIABJREFUv64bbrhBKSkpKi0t1YoVK7R+/Xpt3LhRGzZsUGFhod599135\n+vrqL3/5i6ZMmaLk5OR6HRAAAAAAAHCNGosMFotFq1evltVqtbdlZWVp6NChkqSQkBBlZmZq3759\n6tatm3x8fNSiRQv16tVL2dnZyszMVFhYmCQpKChI2dnZ9TQUAAAAAADgSp41buDpKU/PypudOnVK\nFotFkuTv7y+bzab8/Hz5+fnZt/Hz86vS7uHhIZPJpLKyMvv+l9K2rbc8Pc0ODSQgwMeh7Z3NneO7\n89ir05B94toDAAAAaCxqLDLUxDAMp7RfrKCg1KE+BAT4yGYrdmgfZ3J1fEkui+/qsbs6fnUask9c\ne8f2AQAAAFB/6vR2CW9vb50+fVqSdPToUVmtVlmtVuXn59u3ycvLs7fbbDZJ5xeBNAzjsk8xAAAA\nAACApqlORYagoCClp6dLkrZt26bg4GAFBgZq//79Kioq0smTJ5Wdna3evXtrwIABSktLkyRlZGSo\nX79+zus9AAAAAABoNGqcLnHgwAEtWrRIubm58vT0VHp6up599lnFx8dr8+bN6tChg6Kjo+Xl5aW4\nuDjFxsbKZDJp6tSp8vHxUVRUlHbv3q2YmBhZLBYlJSU1xLgAAAAAAEADq7HI0LVrV23cuLFK+7p1\n66q0RUREKCIiolKb2WxWYmLiFXQRAAAAAAA0BXWaLgEAAAAAAPBzFBkAAAAAAIBTUGQAAAAAAABO\nUeOaDAAAoGmYlLTD4X3WxofWQ08AAIC74kkGAAAAAADgFBQZAAAAAACAU1BkAAAAAAAATkGRAQAA\nAAAAOAULP9ajuizAVRfD4952aHsW+ap/DXXtAQAAAKAx4UkGAAAAAADgFBQZAAAAAACAU1BkAAAA\nAAAATsGaDADQTGVlZWnGjBm6+eabJUmdOnXSQw89pNmzZ6uiokIBAQFasmSJLBaLUlNTtWHDBnl4\neGjMmDEaPXq0i3sPAGgK6rIOFeuDAc0bRQYAaMb69u2r5cuX2z///ve/1/jx4xUZGamlS5cqJSVF\n0dHRWrFihVJSUuTl5aVRo0YpLCxMbdq0cWHPAQAA0BRRZHBDVJwB95WVlaWnnnpKkhQSEqK1a9eq\nY8eO6tatm3x8fCRJvXr1UnZ2tkJD+bkHAGdavHixPv/8c509e1aTJ09Wt27dav10WXl5ueLj43X4\n8GGZzWYlJibquuuuc/WQAKAKigwA0Ix9++23mjJlik6cOKFp06bp1KlTslgskiR/f3/ZbDbl5+fL\nz8/Pvo+fn59sNttlj9u2rbc8Pc0O9ycgwMfhfVC/GuqauPrauzK+O4+9McRvLPbs2aNvvvlGmzdv\nVkFBgUaOHKn+/fvX+umyjIwM+fr6Kjk5Wbt27VJycrKWLVvm6mEBQBUUGQCgmfrVr36ladOmKTIy\nUjk5ObrvvvtUUVFh/94wjEvuV137xQoKSh3uT0CAj2y2Yof3Q/1qiGvi6mvvyvjuPPa6xG/OBYk+\nffqoe/fukiRfX1+dOnXKoafLMjMzFR0dLUkKCgpSQkKCawYCADWgyAAAzVS7du0UFRUlSbr++ut1\n9dVXa//+/Tp9+rRatGiho0ePymq1ymq1Kj8/375fXl6eevTo4apuA0CzZDab5e3tLUlKSUnRoEGD\ntGvXrlo/XXZxu4eHh0wmk8rKyuz7X0pdnzqrb5crJrm60ER8nvpyx/jOjk2RAQCaqdTUVNlsNsXG\nxspms+nYsWO6++67lZ6erhEjRmjbtm0KDg5WYGCg5s6dq6KiIpnNZmVnZ/MbMgCoJ9u3b1dKSorW\nrl2rYcOG2dsdfbqsvp46awjVPd3S1J68IX7ziO3u8esSu6aiBEUGAGimQkNDNWvWLH344YcqLy/X\nggUL1KVLF82ZM0ebN29Whw4dFB0dLS8vL8XFxSk2NlYmk0lTp061P6YLAHCejz/+WCtXrtSrr74q\nHx8feXt71/rpMqvVKpvNps6dO6u8vFyGYVz2KQYAcBWKDADQTLVq1UorV66s0r5u3boqbREREYqI\niGiIbgGAWyouLtbixYu1fv16+yuCg4KCav10WUlJidLS0hQcHKyMjAz169fPxSMCgEurU5EhKytL\nM2bM0M033yxJ6tSpkx566KFav4IHAAAAcCfvv/++CgoKNHPmTHtbUlKS5s6dW6uny6KiorR7927F\nxMTIYrEoKSnJhaMBgOrV+UmGvn37avny5fbPv//972v9Cp4L1VsAAOBak5J2OLT92vjQeuoJ0LyN\nHTtWY8eOrdJe26fLzGazEhMT661/AOAsHs46UFZWloYOHSrp/Ct4MjMztW/fPvsreFq0aGF/BQ8A\nAAAAAGh+6vwkw7fffqspU6boxIkTmjZtmk6dOlXrV/DUpC6v23HnV440BF411Hg1p9fdNLX4AAAA\nACqrU5HhV7/6laZNm6bIyEjl5OTovvvuU0VFhf37K3nVjuT463bc+ZUjDYVXDTVeTel1N66OT1EC\nAAAAqF91KjK0a9dOUVFRkqTrr79eV199tfbv31/rV/AAzjI87m1XdwEAAAAA8P+r05oMqampWrNm\njSTJZrPp2LFjuvvuu5Weni5JlV7Bs3//fhUVFenkyZPKzs5W7969ndd7AAAAAADQaNTpSYbQ0FDN\nmjVLH374ocrLy7VgwQJ16dJFc+bMqdUreAAAAAAAQPNTpyJDq1attHLlyirttX0FD1AdR1+lBgAA\nAABoPJz2CksAAAAAAODeKDIAAAAAAACnoMgAAAAAAACcgiIDAAAAAABwCooMAAAAAADAKSgyAAAA\nAAAAp6jTKyzhfuryasm18aH10BMAAAAAQGPFkwwAAAAAAMApeJIBAADUWl2ebHsneUQ99AQAADRG\nFBkAAA1ieNzbru4CAAAA6hlFBgAAUK/qUmBiXR8AAJomigyoN3V5pBYAAAAA0HSx8CMAAAAAAHAK\nigwAAAAAAMApKDIAAAAAAACnoMgAAAAAAACcgiIDAAAAAABwCooMAAAAAADAKXiFJQAAaHQcfQ3y\n2vjQeuoJAGery2vO+RkHmg6KDA6oS0IE6tPwuLcd2p6/oAHgf/iHDgAAztcsigyO/kNL4iYBAAAA\nAABna5AiwzPPPKN9+/bJZDIpISFB3bt3b4iwAH6moZ7GoYjXNJGr0ZQ1VH5zNM47ySPqqSdwV+Rq\nAI1dvRcZPv30U/3www/avHmzvvvuOyUkJGjz5s31HbZGTH0AgP9prLkaQONRl3sniizO5c65mulN\nQNNR70WGzMxM3XHHHZKkm266SSdOnFBJSYlatWpV36EBNBHcuLoeuRqoH3WZ0tkQ+MdX00SudgxP\nHgGuUe9Fhvz8fN166632z35+frLZbJdNhgEBPg7FICEATVtdf4YdzRWonqO5ui7nnlwNNG3katcj\nV9c/V///6s7x3Xnsro7v7NgeTj1aLRiG0dAhAQAOIlcDQONHrgbQGNV7kcFqtSo/P9/+OS8vTwEB\nAfUdFgDgAHI1ADR+5GoATUG9FxkGDBig9PR0SdJXX30lq9XKvDEAaGTI1QDQ+JGrATQF9b4mQ69e\nvXTrrbdq3LhxMplMmj9/fn2HBAA4iFwNAI0fuRpAU2AymMwFAAAAAACcoMEXfgQAAAAAAM0TRQYA\nAAAAAOAU9b4mgzN9+umnmjFjhp555hmFhIRU+T41NVUbNmyQh4eHxowZo9GjR6u8vFzx8fE6fPiw\nzGazEhMTdd111zkcu6bjHDhwQIsWLbJ//vbbb7VixQp98skneuedd9SuXTtJ0m9/+1uNHj3a6fEl\n6dZbb1WvXr3sn9evX69z585d8fhrE/v999/X2rVr5eHhof79++vxxx/X1q1b9fzzz+v666+XJAUF\nBemRRx5xKPYzzzyjffv2yWQyKSEhQd27d7d/t3v3bi1dulRms1mDBg3S1KlTa9zHWbH37NmjpUuX\nysPDQx07dtSf/vQnffbZZ5oxY4ZuvvlmSVKnTp00b968OsWuKX5oaKjat28vs9ksSXr22WfVrl07\np439cvGPHj2qWbNm2bfLyclRXFycysvLr/h6X+zgwYN69NFH9cADD2jChAmVvqvva48r46652pV5\nurbx6yNXuzJP13QscjW5GtVzVa5253vq2sYnVzevXO2WedpoIn744QdjypQpxqOPPmrs2LGjyvcn\nT540hg0bZhQVFRmnTp0y7rzzTqOgoMDYunWrsWDBAsMwDOPjjz82ZsyYUaf4jhznxIkTxr333mtU\nVFQYy5cvNzZu3FinmI7G79u37xX1u66xS0tLjZCQEKO4uNg4d+6cMWrUKOObb74x3njjDSMpKcnh\neBdkZWUZDz/8sGEYhvHtt98aY8aMqfR9ZGSkcfjwYaOiosKIiYkxvvnmmxr3cVbssLAw48iRI4Zh\nGMb06dONnTt3Gnv27DGmT59ep3iOxg8JCTFKSkoc2seZ8S8oLy83xo0bZ5SUlFzx9b7YyZMnjQkT\nJhhz58695M9PfV57XBl3ztWuzNO1OU595GpX5unaxCdXn0euxs+5Mle78z11bY5Drm5eudpd83ST\nmS4REBCgF198UT4+Ppf8ft++ferWrZt8fHzUokUL9erVS9nZ2crMzFRYWJik81Wg7OzsOsV35Dhr\n1qzR/fffLw8P553euo7DGeOv6RhXXXWVUlNT1apVK5lMJrVp00aFhYUOx7lU3DvuuEOSdNNNN+nE\niRMqKSmRdL7S17p1a/3yl7+Uh4eHBg8erMzMzMvu46zYkrR161a1b99ekuTn56eCgoIrGquj8Z21\nz5Ue680331R4eLhatmxZpzjVsVgsWr16taxWa5Xv6vva48q4c652ZZ6uzXHqI1e7Mk/XFF8iV19A\nrsbPuTJXu/M9dW2OQ65uXrnaXfN0kykyXHXVVfZHWC4lPz9ffn5+9s9+fn6y2WyV2j08PGQymVRW\nVuZw/Noe5/Tp09q1a5eGDh1qb0tLS9ODDz6oyZMnKycnx+HYtY1fVlamuLg4jRs3TuvWrXOo31ca\n+8I7mr/++mvl5uYqMDBQ0vlH8WJjY3X//ffrX//6l8Nx27Zta/984ZpKks1mq/Z6V7ePs2JL/xtv\nXl6ePvnkEw0ePFjS+Uf6pkyZopiYGH3yyScOx61tfEmaP3++YmJi9Oyzz8owDKeNvbbxJWnLli0a\nNWqU/fOVXO+LeXp6qkWLFpf8rr6vPa6MO+dqV+bp2h7H2bnalXm6pvgSufoCcjV+zpW52p3vqWt7\nHHJ188nV7pqnG+WaDFu2bNGWLVsqtU2fPl3BwcG1PoZRzZs5q2uvKf6+fftqdZzt27dryJAh9orr\n4MGDdfvtt6tPnz567733tHDhQq1atape4s+ePVu//e1vZTKZNGHCBPXu3bvKNjWN/0rG/v3332vW\nrFlKTk6Wl5eXAgMD5efnpyFDhuiLL77QnDlz9M4771w2/uXU5to5Y5/aHufYsWOaMmWK5s+fr7Zt\n2+pXv/qVpk2bpsjISOXk5Oi+++7Ttm3bZLFYnB7/scceU3BwsFq3bq2pU6cqPT29Vn12VnxJ+uKL\nL3TjjTfa/2Jw9vW+Us4cPy7NnXO1K/P0lcSX6jdXuzJPV3cscjW52t25Mle78z31lcSXyNXNNVe7\nS55ulEWG0aNHO7yQi9VqVX5+vv1zXl6eevToIavVKpvNps6dO6u8vFyGYdT4P+el4sfHx9fqOBkZ\nGYqJibF//vmiIs8++2yNY6lr/Ivj3n777Tp48KDD469r7J9++klTp07V4sWL1aVLF0nnH6+56aab\nJEk9e/bU8ePHVVFRcdnK+cUudU0DAgIu+d3Ro0dltVrl5eVV7T6OuFxsSSopKdHvfvc7zZw5UwMH\nDpQktWvXTlFRUZKk66+/XldffbWOHj1ap0WBaoofHR1t//OgQYPs19oZY69NfEnauXOn+vfvb/98\npde7rn1z9rVH7blzrnZlnr6S+M7O1a7M0zXFl8jVErkars3V7nxPfSXxydXNJ1e7a55uMtMlahIY\nGKj9+/erqKhIJ0+eVHZ2tnr37q0BAwYoLS1N0vlk1a9fvzodv7bHOXDggDp37mz/vHDhQu3du1fS\n+cdeLqyQ6uz4//3vfxUXFyfDMHT27FllZ2fr5ptvdsr4a3OMP/zhD1qwYIFuvfVWe9vq1av17rvv\nSjq/qqmfn59DPxwDBgywVxK/+uorWa1We4Xv2muvVUlJiQ4dOqSzZ88qIyNDAwYMuOw+jo75csdJ\nSkrS/fffr0GDBtnbUlNTtWbNGknnHz86duyYfQVkZ8YvLi5WbGys/dG6zz77zH6tnTH2muJfsH//\n/kr/r1/p9a6t+r72qF/NOVe7Mk/XJr7k/FztyjxdU3yJXC2Rq1E39Zmr3fmeujbxJXK11Hxytbvm\naZPRRJ5T27lzp9asWaP//ve/8vPzU0BAgNauXatXXnlFffr0Uc+ePZWWlqY1a9bYH2367W9/q4qK\nCs2dO1fff/+9LBaLkpKS9Mtf/tLh+NUd5+L4ktS/f39lZmba9/v66681f/58eXp6ymQyaeHChbrh\nhhvqJf6SJUu0Z88eeXh4KDQ0VI888ohTxl9T7DZt2ig6OrpShfmBBx7QrbfeqieffNKepOvy+pNn\nn31We/fulclk0vz58/Wvf/1LPj4+CgsL02effWavYg8bNkyxsbGX3OfiH1pnxB44cGClay5Jd911\nl+68807NmjVLRUVFKi8v17Rp0+xzypwZPywsTBs2bNBbb72lX/ziF/rNb36jefPmyWQyOW3sNcWX\npOHDh2vdunW6+uqrJZ2vul/p9b7gwuurcnNz5enpqXbt2ik0NFTXXnttg1x71J0752pX5unaxK+v\nXO3KPH25+ORqcjWq58pc7c731LWJT65ufrnaHfN0kykyAAAAAACAxq3ZTJcAAAAAAACuRZEBAAAA\nAAA4BUUGAAAAAADgFBQZAAAAAACAU1BkAAAAAAAATkGRAQAAAAAAOAVFBgAAAAAA4BQUGQAAAAAA\ngFNQZAAAAAAAAE5BkQEAAAAAADgFRQYAAAAAAOAUFBkAAAAAAIBTUGQAAAAAAABOQZEBAAAAAAA4\nBUUGAAAAAADgFBQZAAAAAACAU1BkAAAAAAAATkGRAQAAAAAAOAVFBgAAAAAA4BQUGQAAAAAAgFNQ\nZAAAAAAAAE5BkQEAAAAAADgFRQYAAAAAAOAUFBkAAAAAAIBTUGQAAKCJ+9vf/uaUbQ4dOqTf/OY3\nNW4XGhqqvXv31qpv1fnDH/6gF1544YqOAQDNTUPnc6A+UGRwY4cOHdLAgQP1zDPPaMKECcrKytLI\nkSMVERGh0aNHa//+/ZKkc+fO6bnnnlNERIQiIiIUHx+v0tJSSdLEiRP1yiuvaOzYsbr99tv12muv\n6aWXXlJERISioqKUk5MjSfr73/+uu+66S5GRkRo+fLiysrIu27esrCwNHz5cSUlJCg8PV2hoqP75\nz39KksrKyrRw4UJ7+8qVK+37hYaG6sUXX1R4eLgOHz5c78evblyHDx9WbGyswsPDddddd+mtt96q\ndM7//Oc/a/jw4QoODtb777/v0HUDgItVVFRo8eLFV7wNAMC1yOdoLigyuLnCwkJ16dJFq1at0owZ\nMzR37lylpaXpoYce0qxZs3Tu3Dn9/e9/1z/+8Q9t3bpV7733noqKirR+/Xr7MT777DO99tprSkxM\n1JIlS9S+fXulpaXp17/+td544w1J0lNPPaVVq1bp73//u+bPn68dO3bU2LfvvvtO3bt3V3p6uh55\n5BEtWLBAkrR69Wp9++23euedd/Tuu+8qPT1dGRkZ9v2OHj2q9PR0dejQod6PX9245s2bp759+yo9\nPV2rVq3SwoULdejQIUlSQUGBPDw89M477yghIUHLli2r8VwAQHUefPBBFRcXKyIiQp9++uklC5wX\nb5OTk6P//ve/iomJUWRkpMLCwvTuu+86HHfPnj2Kjo7W4MGD9dxzz9nbt2/fruHDh2vo0KGaNGmS\njh8/Lul87ps0aZJCQ0P18MMPq7i42L7Pzwu41RVqpf8VrSMiInTffffpxx9/lCS98MILmj9/viZP\nnqyBAwfqySefVEZGhu6++24NHDjQnscPHjyosWPH6s4779SwYcO0adMmx086ANQDV+TziRMn6rnn\nnlNkZKSys7NVWFioGTNmKDw8XFFRUXrllVfs21b3C8mtW7fqscceU1xcnIYMGaIHH3xQe/fu1bhx\n4xQUFKTNmzdLOn8Pff/99ysqKkp33HFHpb870MwYcFs5OTlGp06djOLiYmP37t3GiBEjKn3fp08f\n48cffzRmzZplrF+/3t7+wQcfGOPHjzcMwzAmTJhgvPbaa4ZhGMahQ4eMTp06GSUlJYZhGMYLL7xg\n/P73vzcMwzCioqKMZ5991jh06FCt+rZnzx7jtttuM86dO2cYhmEUFhYanTp1MkpLS4177rnHSE9P\nt2+7bt06Iz4+3jAMwwgJCTG2b9/eYMe/1LjKysqMzp07G0VFRfa2Rx991NiyZYv9nJ88edIwDMP4\n4YcfjFtvvbVW5wQALiUnJ8fo0qWLYRiGMWnSJGPlypWGYZzPybfddpuRk5NTaRvDMIzJkycbq1at\nMgzDMD799FOje/fuRllZWZXtqhMSEmJMmTLFOHv2rJGfn2/06dPH+Pe//238+OOPRs+ePY2vv/7a\nMAzDWLlypTF9+nTDMAxj0aJFxhNPPGHvc8+ePY3ly5fbjzd37lz78asbR25urnHbbbcZ33//vWEY\nhrFmzRrj/vvvNwzDMJYvX24MGjTIyM/PN44fP2507drVWLBggWEYhrFx40YjJibGMAzDmD59urF1\n61bDMAzj2LFjxiOPPGKcOXPGoXMOAPXBFfl8woQJxqRJk4yKigrDMAxj3rx5xrx58wzDMIyCggJj\nyJAhxmeffWaUlJQY/fr1M/bu3WsYhmGkpaUZw4YNMyoqKow33njD6NGjh/Hf//7XOHPmjBEcHGxM\nnjzZOHv2rLFjxw5j0KBBhmEYRlJSkvHCCy8YhmEYpaWlxuOPP24cPXrUGacOjQxPMrg5s9msVq1a\n6fjx4/L19a30nY+Pj44dO6bjx4+rdevW9vbWrVvr2LFj9s8tW7a0H+vizx4eHjp37pwk6eWXX1Z+\nfr7uvvtuRUdH69NPP62xb76+vjKZTPY/S1JRUZGKi4uVmJhon77x5z//WadOnarUv9pwxvEvNa7C\nwkIZhiEfH59KsS78Ns9sNsvb27vKOQKAK1FeXq7du3dr/PjxkqRrrrlG/fr10549e6ps+9JLLyk2\nNlaSdNttt+nMmTOy2WwOxRs+fLjMZrP8/f3Vp08fffHFF/rHP/6hvn37qlOnTpKkcePGaceOHaqo\nqNDevXsVGRkpSbr22mvVt2/fSscbMmRIjeP45JNP1K9fP91www2SpNGjRysrK0tnz56VJPXs2VP+\n/v5q27atAgICNGjQIElSp06dlJeXJ0ny9/dXenq6vvrqK7Vt21YvvfSSLBaLQ2MHgPrU0Pl88ODB\n8vA4/8/Cjz76yB63TZs2CgsL0yeffKIvv/xS7du312233SZJCg8PV0FBgXJzcyVJv/71r9WxY0dZ\nLBbdcMMNGjhwoMxmc5X8u2vXLu3du1cWi0VLly6V1WqtwxlCY+fp6g6gcfD391dhYaH9s2EYOnHi\nhPz9/XX11VdX+q6wsFBXX321Q8e//vrrlZiYqHPnzumtt95SXFycPv7448vuc3HMEydOSDqf7KxW\nqyZNmqSQkBCH+lAfx7/UuDIyMuTh4aETJ07YCxKFhYXy9/e/ov4CwOXUVOC82Mcff6yXX35ZBQUF\nMplMMgzD4YKnn5+f/c8+Pj4qKiqSYRjau3evIiIi7N+1atVKhYWFOnHiRJW+XezifHm5cVy8n4+P\njwzDUEFBgaT/Fbml6gu6s2bN0qpVqzRz5kydOXNGkydP1r333uvQ2AGgPjV0Pr/4F2g//8Wjr6+v\n8vLyLvsLSan6/Gs2m+39eeCBB3Tu3Dk99dRTysvL07333qvp06fbf+mH5oMnGSBJ6t69u/Lz8/XF\nF19Ikt577z21b99e1157rYYMGaLU1FSdOnVKZ8+eVUpKigYPHlzrYx8/flwPPvigSkpK5OHhocDA\nwFolk9OnT2v79u2SpPT0dHXt2lW/+MUvNHToUG3ZskUVFRUyDEMvvfSS/vGPfzg85is9fnXj8vT8\n/9q7/+io6jv/46+ZJLNpcKJMzFCoQKvV4koMzaKUxCgBozFtbaoEkhT8sWiNBIptFLIUhR6pRDAs\nsmYLiwI5uGBKatlIbYI/wp4iIRanJ4XqithflB/JDAYCCTEx3O8ffBn5EclMcudHkufjnJ5DPjN3\nPq+Pd+Y90/fceydSt9xyi/f8s7///e/avXu3kpOT/c4IAL4aPHiwt8F5VlcNzo6ODj322GN69NFH\nVV1drcrKyh59wDt3nrNNVafTqeTkZFVVVXn/t2vXLsXFxSk2Nva86zB09WG5u3Vc2BA/fvy4rFar\nBg8e7HPuQYMG6Sc/+YneeOMNvfDCC1q5cqX+8pe/+LN0AAioYNfzc33Rl4uX+kLSV5GRkfrhD3+o\n1157Ta+88ooqKyu1c+fOXuVFeKLJAElSTEyMVqxYoaeffloZGRnauHGjli9fLovFooyMDN166626\n55579J3vfEdf/vKXdd999/n82A6HQ6mpqbr33nuVmZmpn/zkJ/r5z3/e7XZf+cpX9N577+nOO+/U\n6tWrtXDhQklSXl6ehg0bpm9/+9vKyMjQxx9/7D10yx+9ffxLretnP/uZ6urqlJGRoYKCAi1evFhD\nhw71OyMAdCcqKkqnT59WW1vbFzY4z97n5MmTOnXqlFpbWzV69GhJUllZmaKiory/GuSr3/zmNzp9\n+rSOHj2q9957T2PHjtUtt9yi3bt3e39Z6I9//KMWL14sSRozZoy3sfv3v/9d7733XpePe6lGbUpK\nynmP/8qf8SR1AAAgAElEQVQrryglJUWRkb4fmJmfn6+PPvpI0pnTKC677DK+RQMQFkJVz881YcIE\n77yffPKJ3njjDU2YMOGSX0j66qmnntI777wj6czRwFdeeSX1t5+yGIZhhDoEcKG6ujotWLBAb7zx\nRp98fAAIltOnT2v69Onat2+fSktLtXr1ah08eFBRUVGaNWuW7rzzzvPus3r1ar311luqrKxUXFyc\nHn30UVVVVam+vl6rV6/W9773Pb3//vuXnHPixInKzc3Vb3/7W33yySfKzs5WQUGBJOmtt97S888/\nr46ODg0aNEjz589XUlKSPB6PfvzjH+vgwYO65ppr5HA4dNVVV2n27NmaOHGili5dqrFjx0qSDh8+\nrAULFly0DunMkWcvvPCCOjo6dNVVV+npp5/W0KFD9R//8R86cuSIt9mbnp6uxYsXa9y4cdq9e7fm\nzp2rt99+Wzt27NDSpUvV0dEhSZo8ebL3fGYACKVQ1PPp06dr8uTJ+t73vifpzBFiixYt0gcffCCr\n1aof/OAH3lPK3n33XRUXF6u1tVUOh0OLFi3Sddddp1dffVWVlZXeX5974IEHdPfdd+uee+7RkSNH\ndNttt+nDDz/U+++/r6eeekonT56UYRiaOHGi5s6dS6OhH6LJgLBEkwEAAAAA+h4u/IiQKSgo0Mcf\nf9zlbffff3/YPz4AAAAA4HwcyQAAAM6zZcsWrVq1qsvbvv/97+uRRx4JciIAQE9QzxEKNBkAAAAA\nAIAp+HUJAAAAAABgirC8JoPbfaL7O51j8OAYNTX1/KdagoGM5iCjOQZqxvh4u6mPN5D5W6el0D/v\nQjn/QF77QJ9/IK+9J/NTp83VF2t1V8jUvXDLI5HJV30xU3e1ul8cyRAZGRHqCN0ioznIaA4yIhRC\nvU9DOf9AXvtAn38grz0c5of/wnGfkal74ZZHIpOv+mOmftFkAAAAAAAAoUeTAQAAAAAAmIImAwAA\nAAAAMAVNBgAAAAAAYAqaDAAAAAAAwBQ0GQAAAAAAgCkiQx0gVP61+G2/t1lbNDEASQAAX8TfWk2d\nBoDg4jM1gAtxJAMAAAAAADAFTQYAAAAAAGAKmgwAAAAAAMAUNBkAAAAAAIApaDIAAAAAAABT0GQA\nAAAAAACmoMkAAAAAAABMQZMBAAAAAACYIrK7O2zevFmVlZXev/fu3atNmzZp0aJFkqRvfOMb+tnP\nfiZJevHFF1VVVSWLxaJZs2bptttu04kTJ1RYWKgTJ04oJiZGJSUluuKKKwKzGgAAAAAAEDLdNhmy\ns7OVnZ0tSXr33Xf129/+Vj//+c81f/583XjjjSosLNT//u//6uqrr9brr7+uV155RSdPnlReXp5u\nueUWlZWV6eabb9ZDDz2k8vJyrVmzRk888UTAFwYAA0VdXZ3mzJmja6+9VpJ03XXX6aGHHtLcuXPV\n2dmp+Ph4LVu2TDabTZWVlSorK5PVatWUKVOUnZ2tjo4OFRUV6dChQ4qIiNCSJUs0fPjwEK8KAPoX\najWAgcKv0yVKS0v18MMP6+DBg7rxxhslSWlpaaqtrVVdXZ1SU1Nls9nkcDj0la98Rfv371dtba3S\n09PPuy8AwFw333yzNmzYoA0bNujJJ5/UypUrlZeXp40bN2rkyJGqqKhQa2urSktLtX79em3YsEFl\nZWU6duyYtm7dqtjYWG3atEn5+fkqKSkJ9XIAoF+iVgMYCLo9kuGsP/7xjxo6dKgiIiIUGxvrHY+L\ni5Pb7dYVV1whh8PhHXc4HHK73fJ4PN7xuLg4NTY2djvX4MExioyM8Gcdio+3+3X/nujtHMHI2Ftk\nNAcZzdEXMoaruro676lsaWlpWrt2rb72ta8pISFBdvuZ/65JSUlyuVyqra1VVlaWJCk5OVnz588P\nWW4AGEio1QD6I5+bDBUVFfr+979/0bhhGF3ev6vxL7rvhZqaWn2NJenM/xFxu0/4tU1P9GaOYGXs\nDTKag4zmCETG/ty02L9/v/Lz83X8+HHNmjVLp06dks1mk/R5M/jcpq/UdTPYarXKYrGovb3du31X\netIMlgK/D7p7/FA+B0L9/GN+9v1AnT+cUKt7/vjh+DwKt0zhlkcik6/6Wyafmwx1dXVasGCBLBaL\njh075h1vaGiQ0+mU0+nUX/7yly7H3W637Ha7dwwAYJ6vfvWrmjVrlu666y4dOHBA9913nzo7O723\n+9MMvtT4ufxtBkvBaW5d6vFD2VwLdWOP+dn3fWX+cPygbRZq9ef8ffxQP4+7Em6Zwi2PRCZf9cVM\n3dVqn67J0NDQoEGDBslmsykqKkpXX321du/eLUnatm2bUlNT9a1vfUvbt29Xe3u7Ghoa1NjYqK9/\n/etKSUlRVVXVefcFAJhnyJAhyszMlMVi0YgRI3TllVfq+PHjamtrk3R+09fj8Xi3a2xsPK8ZLEkd\nHR0yDOOS34wBAPxHrQYwUPjUZHC73ecdtjV//nwtX75cOTk5GjFihJKTkzVs2DBNmTJF06ZN049+\n9CMtWrRIVqtV06dP1969e5WXl6e6ujo99NBDAVsMAAxElZWVeumllySdqddHjx7VPffco+rqakmf\nN3gTExO1Z88eNTc3q6WlRS6XS2PHjj2vGVxTU6Nx48aFbC0A0F9RqwEMFD6dLjF69Gi9+OKL3r+/\n/vWva+PGjRfdb/r06Zo+ffp5Y4MGDdJ//ud/9jImAOCLTJw4UY8//rjeeustdXR0aNGiRbr++us1\nb948lZeXa9iwYcrKylJUVJQKCws1Y8YMWSwWFRQUyG63KzMzUzt37lRubq5sNpuKi4tDvSQA6Heo\n1QAGCp+vyQAACE+XXXaZVq1addH4unXrLhrLyMhQRkbGeWNnf28dABA41GoAA4VPp0sAAAAAAAB0\nhyYDAAAAAAAwBU0GAAAAAABgCpoMAAAAAADAFDQZAAAAAACAKWgyAAAAAAAAU9BkAAAAAAAApqDJ\nAAAAAAAATEGTAQAAAAAAmIImAwAAAAAAMAVNBgAAAAAAYAqaDAAAAAAAwBQ0GQAAAAAAgCkifblT\nZWWlXnzxRUVGRupHP/qRvvGNb2ju3Lnq7OxUfHy8li1bJpvNpsrKSpWVlclqtWrKlCnKzs5WR0eH\nioqKdOjQIUVERGjJkiUaPnx4oNcFAAAAAACCrNsjGZqamlRaWqqNGzdq1apVeuutt7Ry5Url5eVp\n48aNGjlypCoqKtTa2qrS0lKtX79eGzZsUFlZmY4dO6atW7cqNjZWmzZtUn5+vkpKSoKxLgAAAAAA\nEGTdNhlqa2s1fvx4XXbZZXI6nXr66adVV1enSZMmSZLS0tJUW1ur+vp6JSQkyG63Kzo6WklJSXK5\nXKqtrVV6erokKTk5WS6XK7ArAgAAAAAAIdHt6RL/+Mc/1NbWpvz8fDU3N2v27Nk6deqUbDabJCku\nLk5ut1sej0cOh8O7ncPhuGjcarXKYrGovb3du31XBg+OUWRkhF8LiY+3+3X/nujtHMHI2FtkNAcZ\nzdEXMgIAAAD4nE/XZDh27JheeOEFHTp0SPfdd58Mw/Dedu6/z+Xv+Lmamlp9ieUVH2+X233Cr216\nojdzBCtjb5DRHGQ0RyAy0rQAAAAAAqvb0yXi4uL0zW9+U5GRkRoxYoQGDRqkQYMGqa2tTZLU0NAg\np9Mpp9Mpj8fj3a6xsdE77na7JUkdHR0yDOOSRzEAAAAAAIC+qdsmwy233KJdu3bp9OnTampqUmtr\nq5KTk1VdXS1J2rZtm1JTU5WYmKg9e/aoublZLS0tcrlcGjt2rFJSUlRVVSVJqqmp0bhx4wK7IgAA\nAAAAEBLdni4xZMgQ3XnnnZoyZYokacGCBUpISNC8efNUXl6uYcOGKSsrS1FRUSosLNSMGTNksVhU\nUFAgu92uzMxM7dy5U7m5ubLZbCouLg74ogAAAAAAQPD5dE2GnJwc5eTknDe2bt26i+6XkZGhjIyM\n88YiIiK0ZMmSXkQEAAAAAAB9QbenSwAAAAAAAPiCJgMA9BNtbW26/fbb9eqrr+rw4cOaPn268vLy\nNGfOHLW3t0uSKisrde+99yo7O1ubN2+WdOaivIWFhcrNzdW0adN04MCBUC4DAPo1ajWA/o4mAwD0\nE7/4xS90+eWXS5JWrlypvLw8bdy4USNHjlRFRYVaW1tVWlqq9evXa8OGDSorK9OxY8e0detWxcbG\natOmTcrPz1dJSUmIVwIA/Re1GkB/R5MBAPqBjz/+WPv379eECRMkSXV1dZo0aZIkKS0tTbW1taqv\nr1dCQoLsdruio6OVlJQkl8ul2tpapaenS5KSk5PlcrlCtQwA6Neo1QAGAp8u/AgACG/PPvusnnzy\nSW3ZskWSdOrUKdlsNklSXFyc3G63PB6PHA6HdxuHw3HRuNVqlcViUXt7u3f7rgweHKPIyAi/c8bH\n2/3exszHD/T84To387PvB/L84YRa3fPHD8fnUbhlCrc8Epl81d8y0WQAgD5uy5YtGjNmjIYPH97l\n7YZhmDJ+rqamVt8D/n/x8Xa53Sf83s4fl3r8YMwfjnMzP/u+L80fjh+0zUKt/py/jx/q53FXwi1T\nuOWRyOSrvpipu1pNkwEA+rjt27frwIED2r59u44cOSKbzaaYmBi1tbUpOjpaDQ0Ncjqdcjqd8ng8\n3u0aGxs1ZswYOZ1Oud1ujRo1Sh0dHTIM45LfjAEA/EetBjBQcE0GAOjjVqxYoV/96lf65S9/qezs\nbM2cOVPJycmqrq6WJG3btk2pqalKTEzUnj171NzcrJaWFrlcLo0dO1YpKSmqqqqSJNXU1GjcuHGh\nXA4A9EvUagADBUcyAEA/NHv2bM2bN0/l5eUaNmyYsrKyFBUVpcLCQs2YMUMWi0UFBQWy2+3KzMzU\nzp07lZubK5vNpuLi4lDHB4ABgVoNoD+iyQAA/cjs2bO9/163bt1Ft2dkZCgjI+O8sYiICC1ZsiTg\n2QAAZ4Rzrf5u4f8EfA4A/RunSwAAAAAAAFPQZAAAAAAAAKagyQAAAAAAAExBkwEAAAAAAJii2ws/\n1tXVac6cObr22mslSdddd50eeughzZ07V52dnYqPj9eyZctks9lUWVmpsrIyWa1WTZkyRdnZ2ero\n6FBRUZEOHTrkvWDN8OHDA74wAAAAAAAQXD79usTNN9+slStXev/+t3/7N+Xl5emuu+7S8uXLVVFR\noaysLJWWlqqiokJRUVGaPHmy0tPTVVNTo9jYWJWUlGjHjh0qKSnRihUrArYgAAAAAAAQGj06XaKu\nrk6TJk2SJKWlpam2tlb19fVKSEiQ3W5XdHS0kpKS5HK5VFtbq/T0dElScnKyXC6XeekBAAAAAEDY\n8OlIhv379ys/P1/Hjx/XrFmzdOrUKdlsNklSXFyc3G63PB6PHA6HdxuHw3HRuNVqlcViUXt7u3f7\nrgweHKPIyAi/FhIfb/fr/j3R2zmCkbG3yGgOMpqjL2SE7/jtdQAAgP6v2ybDV7/6Vc2aNUt33XWX\nDhw4oPvuu0+dnZ3e2w3D6HI7f8fP1dTU2u19zhUfb5fbfcKvbXqiN3MEK2NvkNEcZDRHIDLStAAA\nAAACq9vTJYYMGaLMzExZLBaNGDFCV155pY4fP662tjZJUkNDg5xOp5xOpzwej3e7xsZG77jb7ZYk\ndXR0yDCMSx7FAAAAAAAA+qZumwyVlZV66aWXJElut1tHjx7VPffco+rqaknStm3blJqaqsTERO3Z\ns0fNzc1qaWmRy+XS2LFjlZKSoqqqKklSTU2Nxo0bF8DlAAAAAACAUOn2dImJEyfq8ccf11tvvaWO\njg4tWrRI119/vebNm6fy8nINGzZMWVlZioqKUmFhoWbMmCGLxaKCggLZ7XZlZmZq586dys3Nlc1m\nU3FxcTDWBQAAAAAAgqzbJsNll12mVatWXTS+bt26i8YyMjKUkZFx3lhERISWLFnSi4gAAAAAAKAv\n6NFPWAIAAAAAAFyIJgMAAAAAADAFTQYAAAAAAGAKmgwAAAAAAMAUNBkAAAAAAIApaDIAAAAAAABT\n0GQAAAAAAACmoMkAAAAAAABMQZMBAAAAAACYgiYDAAAAAAAwRWSoA5jhu4X/E+oIABAyp06dUlFR\nkY4ePapPP/1UM2fO1KhRozR37lx1dnYqPj5ey5Ytk81mU2VlpcrKymS1WjVlyhRlZ2ero6NDRUVF\nOnTokCIiIrRkyRINHz481MsCgH6FWg1goOBIBgDo42pqajR69Gi9/PLLWrFihYqLi7Vy5Url5eVp\n48aNGjlypCoqKtTa2qrS0lKtX79eGzZsUFlZmY4dO6atW7cqNjZWmzZtUn5+vkpKSkK9JADod6jV\nAAYKmgwA0MdlZmbq4YcfliQdPnxYQ4YMUV1dnSZNmiRJSktLU21trerr65WQkCC73a7o6GglJSXJ\n5XKptrZW6enpkqTk5GS5XK6QrQUA+itqNYCBol+cLgEAkHJycnTkyBGtWrVKDz74oGw2myQpLi5O\nbrdbHo9HDofDe3+Hw3HRuNVqlcViUXt7u3f7rgweHKPIyIjALqgH4uPtvbo9kEI5N/Oz7wfy/OGG\nWt2z50Q4Po/CLVO45ZHI5Kv+lsmnJkNbW5u+853vaObMmRo/fjznjgFAGHrllVf0wQcf6IknnpBh\nGN7xc/99Ln/Hz9XU1NqzkAHmdp/4wtvi4+2XvD2QQjk387Pv+9L84fhB22zU6kvX6q6E+nnclXDL\nFG55JDL5qi9m6q5W+3S6xC9+8QtdfvnlksS5YwAQZvbu3avDhw9Lkq6//np1dnZq0KBBamtrkyQ1\nNDTI6XTK6XTK4/F4t2tsbPSOu91uSVJHR4cMw7jkN2MAAP9RqwEMFN02GT7++GPt379fEyZMkCTO\nHQOAMLN7926tXbtWkuTxeNTa2qrk5GRVV1dLkrZt26bU1FQlJiZqz549am5uVktLi1wul8aOHauU\nlBRVVVVJOnNhsnHjxoVsLQDQX1GrAQwU3Z4u8eyzz+rJJ5/Uli1bJJ35+Z1Anjsm9a/zx8zcPhjI\naA4ymqMvZAwHOTk5+ulPf6q8vDy1tbXpqaee0ujRozVv3jyVl5dr2LBhysrKUlRUlAoLCzVjxgxZ\nLBYVFBTIbrcrMzNTO3fuVG5urmw2m4qLi0O9JADod6jVAAaKSzYZtmzZojFjxnzhdRQCce6Y1H/O\nHztXOJ5rcyEymoOM5ghExv7atIiOju7ydLR169ZdNJaRkaGMjIzzxs5eMwcAEDjUagADxSWbDNu3\nb9eBAwe0fft2HTlyRDabTTExMWpra1N0dPQlzx0bM2aM99yxUaNGce4YAAAAAAD93CWvybBixQr9\n6le/0i9/+UtlZ2dr5syZnDsGAAAAAAC65NNPWJ5r9uzZnDsGAAAAAAAu4nOTYfbs2d5/c+4YAAAA\nAAC4ULc/YQkAAAAAAOALmgwAAAAAAMAUNBkAAAAAAIApaDIAAAAAAABT0GQAAAAAAACmoMkAAAAA\nAABMQZMBAAAAAACYgiYDAAAAAAAwBU0GAAAAAABgCpoMAAAAAADAFDQZAAAAAACAKWgyAAAAAAAA\nU9BkAAAAAAAApqDJAAAAAAAATBHZ3R1OnTqloqIiHT16VJ9++qlmzpypUaNGae7cuers7FR8fLyW\nLVsmm82myspKlZWVyWq1asqUKcrOzlZHR4eKiop06NAhRUREaMmSJRo+fHgw1gYAAAAAAIKo2yMZ\nampqNHr0aL388stasWKFiouLtXLlSuXl5Wnjxo0aOXKkKioq1NraqtLSUq1fv14bNmxQWVmZjh07\npq1btyo2NlabNm1Sfn6+SkpKgrEuAAAAAAAQZN02GTIzM/Xwww9Lkg4fPqwhQ4aorq5OkyZNkiSl\npaWptrZW9fX1SkhIkN1uV3R0tJKSkuRyuVRbW6v09HRJUnJyslwuVwCXAwAAAAAAQqXb0yXOysnJ\n0ZEjR7Rq1So9+OCDstlskqS4uDi53W55PB45HA7v/R0Ox0XjVqtVFotF7e3t3u27MnhwjCIjI3q6\npoCJj7eHdPtgIKM5yGiOvpARAAAAwOd8bjK88sor+uCDD/TEE0/IMAzv+Ln/Ppe/4+dqamr1NVZQ\nud0nerxtfLy9V9sHAxnNQUZzBCIjTQsAAAAgsLptMuzdu1dxcXEaOnSorr/+enV2dmrQoEFqa2tT\ndHS0Ghoa5HQ65XQ65fF4vNs1NjZqzJgxcjqdcrvdGjVqlDo6OmQYxiWPYgAA+G/p0qV677339Nln\nn+mRRx5RQkICF+gFgDBDrQYwEHR7TYbdu3dr7dq1kiSPx6PW1lYlJyerurpakrRt2zalpqYqMTFR\ne/bsUXNzs1paWuRyuTR27FilpKSoqqpK0pmLSI4bNy6AywGAgWfXrl366KOPVF5erhdffFHPPPMM\nF+gFgDBDrQYwUHTbZMjJydEnn3yivLw8/fCHP9RTTz2l2bNna8uWLcrLy9OxY8eUlZWl6OhoFRYW\nasaMGXrwwQdVUFAgu92uzMxMnT59Wrm5ufrv//5vFRYWBmNdADBg3HTTTXr++eclSbGxsTp16hQX\n6AWAMEOtBjBQdHu6RHR0dJed0nXr1l00lpGRoYyMjPPGzh7OBQAIjIiICMXExEiSKioqdOutt2rH\njh1coLcHtwdSqK8Jwvzs+4E6f7igVn+uJ8+JcHwehVumcMsjkclX/S2Tzxd+BACEtzfffFMVFRVa\nu3at7rjjDu84F+g9I5QXPA31xVaZn33fV+YPxw/aZqNW+38x9VA/j7sSbpnCLY9EJl/1xUzd1epu\nT5cAAIS/3/3ud1q1apXWrFkju92umJgYtbW1SdIlL9B7dtztdksSF+gFgACiVgMYCGgyAEAfd+LE\nCS1dulSrV6/WFVdcIUlcoBcAwgy1GsBAwekSANDHvf7662pqatJjjz3mHSsuLtaCBQtUXl6uYcOG\nKSsrS1FRUd4L9FoslvMu0Ltz507l5ubKZrOpuLg4hKsBgP6JWg1goKDJAAB93NSpUzV16tSLxrlA\nLwCED2o1gIGCJgMAoN/41+K3/d5mbdHEACQBAAAYmLgmAwAAAAAAMAVNBgAAAAAAYAqaDAAAAAAA\nwBQ0GQAAAAAAgCm48CMAAACAoOEivUD/xpEMAAAAAADAFDQZAAAAAACAKWgyAAAAAAAAU/h0TYal\nS5fqvffe02effaZHHnlECQkJmjt3rjo7OxUfH69ly5bJZrOpsrJSZWVlslqtmjJlirKzs9XR0aGi\noiIdOnRIERERWrJkiYYPHx7odQEAAAAAgCDrtsmwa9cuffTRRyovL1dTU5O+//3va/z48crLy9Nd\nd92l5cuXq6KiQllZWSotLVVFRYWioqI0efJkpaenq6amRrGxsSopKdGOHTtUUlKiFStWBGNtAAAA\nAAAgiLo9XeKmm27S888/L0mKjY3VqVOnVFdXp0mTJkmS0tLSVFtbq/r6eiUkJMhutys6OlpJSUly\nuVyqra1Venq6JCk5OVkulyuAywEAAAAAAKHS7ZEMERERiomJkSRVVFTo1ltv1Y4dO2Sz2SRJcXFx\ncrvd8ng8cjgc3u0cDsdF41arVRaLRe3t7d7tuzJ4cIwiIyN6tbBAiI+3h3T7YCCjOchojr6QEQAA\nAMDnfLomgyS9+eabqqio0Nq1a3XHHXd4xw3D6PL+/o6fq6mp1ddYQeV2n+jxtvHx9l5tHwxkNAcZ\nzRGIjDQtAAAAgMDy6dclfve732nVqlVas2aN7Ha7YmJi1NbWJklqaGiQ0+mU0+mUx+PxbtPY2Ogd\nd7vdkqSOjg4ZhnHJoxgAAAAAAEDf1G2T4cSJE1q6dKlWr16tK664QtKZaytUV1dLkrZt26bU1FQl\nJiZqz549am5uVktLi1wul8aOHauUlBRVVVVJkmpqajRu3LgALgcAAAAAAIRKt6dLvP7662pqatJj\njz3mHSsuLtaCBQtUXl6uYcOGKSsrS1FRUSosLNSMGTNksVhUUFAgu92uzMxM7dy5U7m5ubLZbCou\nLg7oggAAAAAAQGh022SYOnWqpk6detH4unXrLhrLyMhQRkbGeWMRERFasmRJLyICAAAAAIC+wKdr\nMgAAAAAAAHSHJgMAAAAAADAFTQYAAAAAAGAKmgwAAAAAAMAUNBkAAAAAAIApaDIAQD+xb98+3X77\n7Xr55ZclSYcPH9b06dOVl5enOXPmqL29XZJUWVmpe++9V9nZ2dq8ebMkqaOjQ4WFhcrNzdW0adN0\n4MCBkK0DAPor6jSAgYAmAwD0A62trXr66ac1fvx479jKlSuVl5enjRs3auTIkaqoqFBra6tKS0u1\nfv16bdiwQWVlZTp27Ji2bt2q2NhYbdq0Sfn5+SopKQnhagCg/6FOAxgoaDIAQD9gs9m0Zs0aOZ1O\n71hdXZ0mTZokSUpLS1Ntba3q6+uVkJAgu92u6OhoJSUlyeVyqba2Vunp6ZKk5ORkuVyukKwDAPor\n6jSAgSIy1AEAAL0XGRmpyMjzS/qpU6dks9kkSXFxcXK73fJ4PHI4HN77OByOi8atVqssFova29u9\n219o8OAYRUZGBGg1wRUfb+9X8zB/+M0/kNceDvOHi2DXaYlaHWjhlinc8khk8lV/y0STAQAGAMMw\nTBk/q6mptdeZwoXbfSLgc8TH24MyD/OH3/wDee09mT8cP2gHi9l1WqJWB1KoX1sXCrc8Epl81Rcz\ndVerOV0CAPqpmJgYtbW1SZIaGhrkdDrldDrl8Xi892lsbPSOu91uSWcuLmYYxiW/HQMA9B51GkB/\nRJMBAPqp5ORkVVdXS5K2bdum1NRUJSYmas+ePWpublZLS4tcLpfGjh2rlJQUVVVVSZJqamo0bty4\nUEYHgAGBOg2gP+J0CQDoB/bu3atnn31WBw8eVGRkpKqrq/Xcc8+pqKhI5eXlGjZsmLKyshQVFaXC\nwkLNmDFDFotFBQUFstvtyszM1M6dO5Wbmyubzabi4uJQLwkA+hXqNICBgiYDAPQDo0eP1oYNGy4a\nX+qt6BgAABFESURBVLdu3UVjGRkZysjIOG8sIiJCS5YsCVg+ABjoqNMABgqfTpfYt2+fbr/9dr38\n8suSpMOHD2v69OnKy8vTnDlz1N7eLkmqrKzUvffeq+zsbG3evFnSmXPGCgsLlZubq2nTpunAgQMB\nWgoAAAAAAAilbpsMra2tevrppzV+/Hjv2MqVK5WXl6eNGzdq5MiRqqioUGtrq0pLS7V+/Xpt2LBB\nZWVlOnbsmLZu3arY2Fht2rRJ+fn5KikpCeiCAAAAAABAaHTbZLDZbFqzZo2cTqd3rK6uTpMmTZIk\npaWlqba2VvX19UpISJDdbld0dLSSkpLkcrlUW1ur9PR0SWcubuNyuQK0FAAAAAAAEErdXpMhMjJS\nkZHn3+3UqVPen8yJi4uT2+2Wx+ORw+Hw3sfhcFw0brVaZbFY1N7efsmf3Bk8OEaRkRE9WlAg9fa3\nm/vCbz+T0RxkNEdfyAgAAADgc72+8KNhGKaMn6upqbVXmQLF7T7R423j4+292j4YyGgOMpojEBlp\nWgAAAACB5dOFHy8UExOjtrY2SVJDQ4OcTqecTqc8Ho/3Po2Njd5xt9st6cxFIA3DuORRDAAAAAAA\noG/qUZMhOTlZ1dXVkqRt27YpNTVViYmJ2rNnj5qbm9XS0iKXy6WxY8cqJSVFVVVVkqSamhqNGzfO\nvPQAAAAAACBsdHu6xN69e/Xss8/q4MGDioyMVHV1tZ577jkVFRWpvLxcw4YNU1ZWlqKiolRYWKgZ\nM2bIYrGooKBAdrtdmZmZ2rlzp3Jzc2Wz2VRcXByMdQEA4JN/LX7b723WFk0MQBIAAIC+r9smw+jR\no7Vhw4aLxtetW3fRWEZGhjIyMs4bi4iI0JIlS3oREQAAAMBARkMY6Dt6dLoEAAAAAADAhWgyAAAA\nAAAAU9BkAAAAAAAApqDJAAAAAAAATEGTAQAAAAAAmIImAwAAAAAAMAVNBgAAAAAAYAqaDAAAAAAA\nwBSRoQ4AAEBf86/Fb/t1/9dKvhegJAAAAOGFIxkAAAAAAIApOJIBAAAAQL/j71Fna4smBigJMLBw\nJAMAAAAAADAFTQYAAAAAAGAKTpcAACDAvlv4P35vw2G7ABBc/p5eIVGrga4EpcnwzDPPqL6+XhaL\nRfPnz9eNN94YjGlNx3ldAPqz/lKrAaA/o1YDCHcBbzK8++67+tvf/qby8nJ9/PHHmj9/vsrLywM9\nLQDAD9Tq8NOTb9R6goY40HdQq8MPRz8AFwt4k6G2tla33367JOmaa67R8ePHdfLkSV122WWBnjrk\n+IAIoK8YyLV6oAvWe5W/eG8DLkat7h/Cte4GA7V9YAh4k8Hj8eiGG27w/u1wOOR2uy9ZDOPj7X7N\n8VrJ93qcD+fz9799KJDRHGTEufyt1T3ZN9RqhFIo60moa9lAn78/oVYDvReONam/ZQr6r0sYhhHs\nKQEAfqJWA0D4o1YDCEcBbzI4nU55PB7v342NjYqPjw/0tAAAP1CrASD8UasB9AUBbzKkpKSourpa\nkvSnP/1JTqeT88YAIMxQqwEg/FGrAfQFAb8mQ1JSkm644Qbl5OTIYrFo4cKFgZ4SAOAnajUAhD9q\nNYC+wGJwMhcAAAAAADBB0C/8CAAAAAAA+ieaDAAAAAAAwBQBvyZDoLz77ruaM2eOnnnmGaWlpV10\ne2VlpcrKymS1WjVlyhRlZ2cHNV9HR4eKiop06NAhRUREaMmSJRo+fPh59/n3f/931dXVyTAM3X77\n7Xr44YfDLuP//d//af78+ZKkSZMmqaCgIOwynvWTn/xENptNxcXFYZfx9ddf19q1a2W1WjV+/Hj9\n+Mc/Dkq2Z555RvX19bJYLJo/f75uvPFG7207d+7U8uXLFRERoVtvvTXo+9aXjLt27dLy5ctltVr1\nta99TT//+c9ltdIbDXc9qc/+vNYvpbvH2bt3r5599lnv3/v371dpaaneeecdvfbaaxoyZIgk6e67\n7/b7fcOXNdxwww1KSkry/r1+/XqdPn06KGuXuq5Fr776qp5//nmNGDFCkpScnKxHH33U53l7Umcu\ntY2//K0hv//97zVnzhxde+21kqTrrrtOTz75ZEDmnzhxor785S8rIiJCkvTcc89pyJAhQVl/Q0OD\nHn/8ce/9Dhw4oMLCQnV0dPRqf19o3759mjlzph544AFNmzbtvNuCsf/Rc6Gs1RcKZe3uaSYpsDW9\np5kCUee/SKjrv7+ZgvGe4G+mYLxP+JrH1PcNow/629/+ZuTn5xszZ8403n777Ytub2lpMe644w6j\nubnZOHXqlPHtb3/baGpqCmrGV1991Vi0aJFhGIbxu9/9zpgzZ855t3/44YfG1KlTDcMwjM7OTiMj\nI8NobGwMq4yGYRiTJ0829u7da3R2dho//vGPjdbW1rDLaBiGsWPHDuPee+815s2bF8x4hmF0n7G1\ntdVIS0szTpw4YZw+fdqYPHmy8dFHHwU8V11dnfHDH/7QMAzD2L9/vzFlypTzbr/rrruMQ4cOGZ2d\nnUZubm5QMvmbMT093Th8+LBhGIYxe/ZsY/v27UHPCP/0tD77+lrvjj+Pc/z4ceMHP/iB0dnZaaxc\nudLYsGFDj+b0Z+6bb765V5l7M/8X1aJf/epXRnFxcY/m7Emd6W4bM+fvqobs2rXLmD17do/n9Gf+\ntLQ04+TJk35tY+b8Z3V0dBg5OTnGyZMne7W/L9TS0mJMmzbNWLBgQZevn0Dvf/RcqGv1hUJZu3uT\nKZA1vSeZAlHnv0io639PMgX6PaEnmQL9PuFvnrN6+77RJ78SjI+P1wsvvCC73d7l7fX19UpISJDd\nbld0dLSSkpLkcrmCmrG2tlbp6emSznR7Lpzfbrfr008/VXt7uz799FNZrVZ96UtfCquMHo9Hra2t\nuuGGG2S1WrV8+fKwyyhJ7e3t+sUvfmFKR7Ynusv4pS99SZWVlbrssstksVh0xRVX6NixY0HJdfvt\nt0uSrrnmGh0/flwnT56UdKYzefnll2vo0KGyWq267bbbVFtbG/BM/mSUpFdffVVf/vKXJUkOh0NN\nTU1Bzwj/9LQ++/Ja94U/j/PSSy/p/vvvN+3omJ6uIVhrD0Qt6kmd6e51b9b8UuBrSE/WEsz1n/Xr\nX/9ad955pwYNGtSjeb6IzWbTmjVr5HQ6L7otGPsfPRfqWn2hUNZuMzKZsZ0Zjx3Mz5yhrv/+ZpJC\n87ky1O8TPX3s3r5v9Mkmw5e+9CXvISVd8Xg8cjgc3r8dDofcbncwonWZwWq1ymKxqL293Xv70KFD\nlZGRobS0NKWlpSknJyfov3PcXcaDBw/q8ssvV1FRkXJycrR+/fqg5vMloyStXr1aubm5IfudaF8y\nns324Ycf6uDBg0pMTAxKrsGDB3v/Pvd14Ha7Q/4a6S6j9Pl/t8bGRr3zzju67bbbgp4R/ulpffbl\ndeQLXx+nra1NO3bs0KRJk7xjVVVVevDBB/XII4/owIEDAZm7vb1dhYWFysnJ0bp16/zKbMb8X1SL\n3n33Xc2YMUP333+/3n//fb/m9LfOdPe690dPa8j+/fuVn5+v3NxcvfPOOz2a25f5JWnhwoXKzc3V\nc889J8Mwgrr+szZv3qzJkyd7/+7p/r5QZGSkoqOju7wtGPsfPRfqWn2p+YJdu3uTKZA1vaeZzK7z\nl8oSyvrvbyYp8O8JPckkBfZ9oid5pN6/b4T9NRk2b96szZs3nzc2e/Zspaam+vwYRoB/pbOrjPX1\n9ZfMcODAAb3xxht688039dlnnyknJ0eZmZmKi4sLm4yGYegf//iHSktLFR0dralTpyolJcV7zlI4\nZPzrX/+qvXv3avbs2aqrqwtIrt5mPOuvf/2rHn/8cZWUlCgqKipgGb9IoF8HZugq49GjR5Wfn6+F\nCxeeVxQReoGsz748X3vzenzzzTc1YcIE7zdht912m771rW/ppptu0m9+8xstXrxYq1evNn3uuXPn\n6u6775bFYtG0adM0duzYi+4T6LVfWIsSExPlcDg0YcIE/eEPf9C8efP02muvdZuhKz2pM2bWJl9q\nyFe/+lXNmjVLd911lw4cOKD77rtP27Ztk81mM33+H/3oR0pNTdXll1+ugoICVVdX+5TZrPkl6Q9/\n+IOuvvpq74drM/e3GfrCe1NfF+pa7UueYNVuszOZVdPNzCQFts5/kVDXf18fP5jvCb5kCvb7hC+P\nbcb7Rtg3GbKzs/2+gIvT6ZTH4/H+3djYqDFjxpgdzaurjEVFRXK73Ro1apQ6OjpkGMZ5T9Y9e/Yo\nMTHRe/rBN77xDe3bt0/jx48Pm4xxcXG69tprvf/H7l/+5V/00UcfBazJ0JOM27dv16FDhzRlyhSd\nPHlSn3zyidasWROwi2j2JKMkHTlyRAUFBVq6dKmuv/76gGS7UFevg/j4+C5va2ho6PJw11BmlKST\nJ0/q4Ycf1mOPPaZbbrkl6PlwaWbWZ6fT2e3ryJf5fXk9SlJNTY1yc3O9f194EabnnnsuIHOfO+e3\nvvUt7du3L6hr76oWXXPNNbrmmmskSd/85jf1ySefqLOz85Lfcp7VkzoTFRV1yde9P3pSQ4YMGaLM\nzExJ0ogRI3TllVeqoaGhRxdm627+rKws779vvfVW7/4O1vqlM++T53626M3+7k22QOx/+CbUtdqX\nPMGq3WZnMqumm5nJ7Dr/RUJd//3NJAX+PaEnmQL9PuFvHsmc940+ebpEdxITE7Vnzx41NzerpaVF\nLpery85iIKWkpKiqqkrSmYI4bty4824fMWKE9u7dq9OnT6ujo0P79u0z7clsVsbhw4erpaVFx44d\n0+nTp/XBBx/o6quvDquMDzzwgF577TX98pe/1MKFCzVhwoSg/0pHdxkl6ac//akWLVqkG264Iai5\nznZD//SnP8npdHo7kldddZVOnjypf/zjH/rss89UU1OjlJSUoGXzJaMkFRcX6/7779ett94a9GwI\njC+qz768jnzh6+Ps3btXo0aN8v69ePFi7d69W9KZQwJ70kztbu4///nPKiwslGEY+uyzz+RyuXTt\ntdcGde1d1aI1a9Zo69atks78UoDD4fD5g2dP6kx3r3t/1+xvDamsrNRLL70k6cwhvUePHvVemd7M\n+U+cOKEZM2Z4D2X+/e9/793fwVq/dOZLjXOf673Z3/4Ixv5H4AS6Vl8olLW7p5kCXdN7kkkyv85f\nKkso67+/maTAvyf4mykY7xP+5DnLjPcNi9EHj1Pbvn27XnrpJf35z3+Ww+FQfHy81q5dq//6r//S\nTTfdpG9+85uqqqrSSy+95D186e677w5qxs7OTi1YsEB//etfvT+rOHTo0PMyrly5Ujt37pQkZWRk\n6IEHHgi7jPX19Vq8eLEsFotSU1M1e/bssMt4Vl1dnX79618H/Scsu8t4xRVXKCsr67xu+wMPPHDe\n+YSB8txzz2n37t2yWCxauHCh3n//fdntdqWnp+v3v/+9t+N/xx13aMaMGQHP40/GW2655aJ9/J3v\nfEdTp04NSU74pqf1+YteR/7ytWaMHz/+vIudfvjhh1q4cKEiIyNlsVi0ePFijRw50vS5ly1bpl27\ndslqtWrixIl69NFHg7b2L6pFN9xwg5544gnvB2V/fyqrJ3Xmwm3O/TDjL39ryLe//W09/vjjam5u\nVkdHh2bNmtWr671cav1lZWXasmWL/umf/kn//M//rCeffFIWiyUo6z97cbjvfve7Wrduna688kpJ\nZ77l7M3+PtfZnxU8ePCgIiMjNWTIEE2cOFFXXXVV0PY/eibUtfpCoazdvckUyJrek0yBqvNfJNT1\n359MwXpP8CdTsN4n/MkjmfO+0SebDAAAAAAAIPz0y9MlAAAAAABA8NFkAAAAAAAApqDJAAAAAAAA\nTEGTAQAAAAAAmIImAwAAAAAAMAVNBgAAAAAAYAqaDAAAAAAAwBT/DwI1pkEEprp5AAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "Xx9jgEMHKxlJ" + }, + "cell_type": "markdown", + "source": [ + "We might be able to do better by choosing additional ways to transform these features.\n", + "\n", + "For example, a log scaling might help some features. Or clipping extreme values may make the remainder of the scale more informative." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "baKZa6MEKxlK", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def log_normalize(series):\n", + " return series.apply(lambda x:math.log(x+1.0))\n", + "\n", + "def clip(series, clip_to_min, clip_to_max):\n", + " return series.apply(lambda x:(\n", + " min(max(x, clip_to_min), clip_to_max)))\n", + "\n", + "def z_score_normalize(series):\n", + " mean = series.mean()\n", + " std_dv = series.std()\n", + " return series.apply(lambda x:(x - mean) / std_dv)\n", + "\n", + "def binary_threshold(series, threshold):\n", + " return series.apply(lambda x:(1 if x > threshold else 0))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "-wCCq_ClKxlO" + }, + "cell_type": "markdown", + "source": [ + "The block above contains a few additional possible normalization functions. Try some of these, or add your own.\n", + "\n", + "Note that if you normalize the target, you'll need to un-normalize the predictions for loss metrics to be comparable." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "8ToG-mLfMO9P", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 661 + }, + "outputId": "0ca50fcd-bfe0-47c4-9492-1be9f945112d" + }, + "cell_type": "code", + "source": [ + "def normalize(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + "\n", + " processed_features[\"households\"] = log_normalize(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = log_normalize(examples_dataframe[\"median_income\"])\n", + " processed_features[\"total_bedrooms\"] = log_normalize(examples_dataframe[\"total_bedrooms\"])\n", + " \n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + "\n", + " processed_features[\"population\"] = linear_scale(clip(examples_dataframe[\"population\"], 0, 5000))\n", + " processed_features[\"rooms_per_person\"] = linear_scale(clip(examples_dataframe[\"rooms_per_person\"], 0, 5))\n", + " processed_features[\"total_rooms\"] = linear_scale(clip(examples_dataframe[\"total_rooms\"], 0, 10000))\n", + "\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.15),\n", + " steps=1000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 93.17\n", + " period 01 : 76.95\n", + " period 02 : 73.87\n", + " period 03 : 73.01\n", + " period 04 : 73.15\n", + " period 05 : 71.32\n", + " period 06 : 70.64\n", + " period 07 : 70.48\n", + " period 08 : 70.26\n", + " period 09 : 69.25\n", + "Model training finished.\n", + "Final RMSE (on training data): 69.25\n", + "Final RMSE (on validation data): 69.23\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGACAYAAACDX0mmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VPW9//HXmZkkk53sJISQECHs\ni4gLiGyy48/1ohURrbW3Lq1VW6nWte5ttdW6VHurVlur1bpRd6WoiLKLoiRsCQnZ932bmfP7IzAS\nCTFAJmeSvJ+PRx4z55w553xmvjPy9nu+5xzDNE0TERERET9ks7oAERERkcNRUBERERG/paAiIiIi\nfktBRURERPyWgoqIiIj4LQUVERER8VsOqwsQ8QcZGRmkpKRgt9sBcLvdTJ48mZtvvpmQkJCj3u6/\n/vUvlixZcsj8V155hRtvvJE///nPzJw50zu/qamJKVOmMHfuXO67776j3m9X5ebmcs8995CdnQ1A\ncHAwV199NaeffrrP930kHnvsMXJzcw/5TNatW8dll11GcnLyIeu88847PVXeMdm3bx+zZ88mLS0N\nANM0iY2N5de//jWjRo06om098MADJCUl8YMf/KDL67z++uu8/PLLPPfcc0e0L5GeoqAist9zzz3H\nwIEDAWhpaeHaa6/liSee4Nprrz2q7ZWWlvJ///d/HQYVgMTERP7zn/+0Cyr//e9/iYiIOKr9HY1f\n/OIXnHnmmfz5z38GYOvWrSxfvpy3336bxMTEHqvjWCQmJvaaUHI4dru93Xt46623uOqqq3j33XcJ\nDAzs8nauv/56X5QnYikd+hHpQGBgINOmTWP79u0ANDc3c+uttzJv3jwWLFjAfffdh9vtBiAzM5ML\nLriA+fPnc+aZZ/LJJ58AcMEFF1BQUMD8+fNpaWk5ZB/HH38869ato7Gx0TvvrbfeYurUqd7plpYW\n7rrrLubNm8esWbO8gQJgy5YtnHPOOcyfP5+FCxeydu1aoO3/0E899VSeffZZzjjjDKZNm8Zbb73V\n4fvcsWMH48eP906PHz+ed9991xvYHnnkEaZPn85ZZ53Fk08+yaxZswD41a9+xWOPPeZd7+Dp76vr\nnnvu4aKLLgJg06ZNnHvuucyZM4clS5aQl5cHtPUs/fznP2fmzJlcdNFFFBUVfU+LdeyVV17h6quv\nZvny5fz2t79l3bp1XHDBBVxzzTXef9TffvttFi9ezPz587n44ovJzc0F4E9/+hM333wz5513Hs88\n80y77V5zzTU89dRT3unt27dz6qmn4vF4+MMf/sC8efOYN28eF198McXFxUdc98KFC2lqamLPnj0A\nvPjii8yfP59Zs2Zx3XXX0dTUBLR97vfeey9nnHEGb7/9drt2ONz30uPx8Jvf/IYZM2Zw3nnnkZmZ\n6d3v+vXrOfvss1m4cCELFizg7bffPuLaRbqdKSLm8OHDzcLCQu90VVWVuXTpUvOxxx4zTdM0n3ji\nCfPyyy83W1tbzcbGRvPcc881X3vtNdPtdpsLFiwwV65caZqmaX755Zfm5MmTzdraWvPzzz83Tz/9\n9A739+9//9tcsWKF+Ytf/MK7bm1trTl79mzzpZdeMlesWGGapmk+8sgj5vLly83m5mazvr7ePOus\ns8xVq1aZpmmaixcvNv/zn/+Ypmmar776qndfeXl55qhRo8znnnvONE3TfOutt8w5c+Z0WMdPf/pT\nc+bMmebf/vY3c9euXe2WZWVlmSeccIJZUlJitra2mldccYU5c+ZM0zRNc8WKFeajjz7qfe3B053V\nNXr0aPOVV17xvt/Jkyeba9asMU3TNFeuXGmeffbZpmma5t///ndz6dKlZmtrq1lRUWHOnDnT+5kc\nrLPP+MDnPGHCBDM7O9v7+rFjx5pr1641TdM08/PzzUmTJpk5OTmmaZrmX//6V3P58uWmaZrmww8/\nbJ566qlmeXn5Idt98803zaVLl3qnH3roIfPOO+80d+zYYc6dO9dsaWkxTdM0n332WfPVV189bH0H\nPpeRI0ceMn/y5Mnm7t27zQ0bNpinnHKKWVRUZJqmad5yyy3mfffdZ5pm2+d+xhlnmE1NTd7pRx99\ntNPv5erVq825c+eadXV1ZmNjo3neeeeZF110kWmapnnOOeeY69atM03TNLOzs83rrruu09pFeoJ6\nVET2W7ZsGfPnz2f27NnMnj2bk08+mcsvvxyA1atXs2TJEhwOB06nkzPOOINPP/2Uffv2UVZWxqJF\niwAYO3YsSUlJfPXVV13a56JFi/jPf/4DwAcffMDMmTOx2b79Wf73v//lwgsvJDAwkJCQEM4880ze\ne+89AF577TUWLFgAwKRJk7y9EQAul4tzzjkHgNGjR1NQUNDh/n/3u9+xdOlSVq5cyeLFi5k1axb/\n/Oc/gbbejsmTJxMXF4fD4WDx4sVdek+d1dXa2sqcOXO8209ISPD2IC1evJjc3FwKCgrYuHEjc+bM\nweFwEBUV1e7w2HcVFhYyf/78dn8Hj2VJTU0lNTXVO+10OjnllFMA+PTTTznppJMYMmQIAP/zP//D\nunXrcLlcQFsPU3R09CH7nDFjBt988w1VVVUAvP/++8yfP5+IiAgqKipYuXIl1dXVLFu2jLPOOqtL\nn9sBpmny4osvkpCQQGpqKqtWrWLhwoUkJCQA8IMf/MD7HQA45ZRTCAoKareNzr6XGzZsYPr06YSG\nhuJ0Or1tBRATE8Nrr73G7t27SU1N5YEHHjii2kV8QWNURPY7MEaloqLCe9jC4Wj7iVRUVBAZGel9\nbWRkJOXl5VRUVBAeHo5hGN5lB/6xio2N/d59Tp06lZtvvpmqqirefPNNrrzySu/AVoDa2lruvfde\nHnzwQaDtUNC4ceMAWLlyJc8++yz19fV4PB7Mg27bZbfbvYOAbTYbHo+nw/0HBQVx2WWXcdlll1FT\nU8M777zDPffcQ3JyMtXV1e3Gy8TExHzv++lKXWFhYQDU1NSQl5fH/PnzvcsDAwOpqKigurqa8PBw\n7/yIiAjq6+s73N/3jVE5uN2+O11ZWdnuPYaHh2OaJpWVlR2ue0BISAhTpkxh9erVTJo0iZqaGiZN\nmoRhGPzpT3/iqaee4s4772Ty5Mnccccd3zvex+12ez8H0zQ57rjjeOyxx7DZbNTW1vL++++zZs0a\n7/LW1tbDvj+g0+9ldXU18fHx7eYfcM899/D4449z6aWX4nQ6ue6669q1j4gVFFREviM6Opply5bx\nu9/9jscffxyA2NhY7/89A1RVVREbG0tMTAzV1dWYpun9R6GqqqrL/6gHBAQwc+ZMXnvtNfbu3cvE\niRPbBZX4+Hh++MMfHtKjUFxczM0338xLL73EyJEjycnJYd68eUf0PisqKti+fbu3RyMiIoIlS5bw\nySefsGPHDsLDw6mtrW33+gO+G36qq6uPuK74+HiGDh3KK6+8csiyiIiIw+67O8XExLBlyxbvdHV1\nNTabjaioqO9dd968ebz//vtUVlYyb948b/uffPLJnHzyyTQ0NHD//ffz+9///nt7Jr47mPZg8fHx\nnH322axYseKI3tfhvpedfbaxsbHccsst3HLLLaxZs4af/vSnTJs2jdDQ0C7vW6S76dCPSAcuvfRS\ntmzZwvr164G2rv6XX34Zt9tNQ0MDr7/+OtOnTyc5OZmBAwd6B6tu3ryZsrIyxo0bh8PhoKGhwXsY\n4XAWLVrEX/7ylw5PCZ49ezYvvfQSbrcb0zR57LHH+Pjjj6moqCAkJIShQ4ficrl48cUXAQ7b69CR\npqYmfvazn3kHWQLs3buXrVu3csIJJzBx4kQ2btxIRUUFLpeL1157zfu6uLg47yDMvLw8Nm/eDHBE\ndY0fP57S0lK2bt3q3c4vf/lLTNNkwoQJrFq1CrfbTUVFBR9//HGX39eRmDp1Khs3bvQennrhhReY\nOnWqtyetMzNnzmTLli188MEH3sMna9as4Y477sDj8RASEsKIESPa9WocjVmzZvHee+95A8UHH3zA\nk08+2ek6nX0vJ06cyJo1a2hsbKSxsdEbkFpbW1m2bBklJSVA2yFDh8PR7lCkiBXUoyLSgbCwMH78\n4x9z//338/LLL7Ns2TLy8vJYtGgRhmEwf/58FixYgGEYPPjgg9x222088sgjBAcH89BDDxESEkJG\nRgaRkZFMnTqVV199laSkpA73deKJJ2IYBgsXLjxk2YUXXsi+fftYtGgRpmkyZswYli9fTkhICKed\ndhrz5s0jJiaGX/3qV2zevJlly5bx8MMPd+k9JiUl8fjjj/Pwww9z1113YZomYWFh3Hjjjd4zgc4/\n/3zOPvtsoqKimDt3Ljt37gRgyZIlXH311cydO5dRo0Z5e01GjBjR5bqcTicPP/wwd955J/X19QQE\nBHDNNddgGAZLlixh48aNnH766SQlJXH66ae36wU42IExKt/129/+9ns/g4EDB3LXXXdx5ZVX0tra\nSnJyMnfeeWeXPr+wsDBGjx5NVlYWEyZMAGDy5Mm8+eabzJs3j8DAQKKjo7nnnnsAuOGGG7xn7hyJ\n0aNH85Of/IRly5bh8XiIiYnhjjvu6HSdzr6XM2fOZPXq1cyfP5/Y2FimT5/Oxo0bCQgI4LzzzuOS\nSy4B2nrNbr75ZoKDg4+oXpHuZpgHH0AWETmMjRs3csMNN7Bq1SqrSxGRfkR9eiIiIuK3FFRERETE\nb+nQj4iIiPgt9aiIiIiI31JQEREREb/l16cnl5Z2fDpid4mKCqGyssGn+5Ajp3bxX2ob/6R28V9q\nm66LiwvvcH6/7lFxOOxWlyAdULv4L7WNf1K7+C+1zbHr10FFRERE/JuCioiIiPgtBRURERHxWwoq\nIiIi4rcUVERERMRvKaiIiIiI31JQEREREb+loCIiItKLrV79YZde99BDD1BQkH/Y5b/61XXdVVK3\nUlARERHppQoLC/jgg3e79NprrrmepKRBh11+330PdldZ3cqvL6EvIiIih/fgg/ezffvXTJs2mblz\nF1BYWMAf//gY9977G0pLS2hsbOSHP/wxU6dO4+qrf8x1193Af//7IfX1deTm7iU/fx8/+9n1nHLK\nVBYtms2bb37I1Vf/mMmTT2Lz5o1UVVVx//1/IDY2lt/85haKigoZO3Ycq1Z9wKuvvtUj71FBRURE\n5Bj9a9UuNmSWHDLfbjdwu82j2ubkEfEsmXVcp6/5wQ+W8cor/yItLZ3c3Bwee+z/qKys4MQTT2bB\ngsXk5+/jllt+xdSp09qtV1JSzO9//zCff76W11//N6ecMrXd8tDQUB566HEef/xPfPzxKpKSkmlp\naebJJ5/h008/4V//+udRvaej0S+DitvjYUNWEfMGdP4FEBER6S1GjhwNQHh4BNu3f80bb7yCYdio\nqak+5LXjxk0AID4+nrq6ukOWjx8/0bu8urqavXuzGTt2PACnnDIVu73n7mHUL4PKmp2ZvFjwN/au\n+n+cf/zU719BRESkE0tmHddh70dcXDilpbU9UkNAQAAA77//DjU1NTz66P9RU1PDj3607JDXHhw0\nTPPQHp/vLjdNE5utbZ5hGBiG0d3lH1a/HEybEBWKYZhsLfnK6lJERESOms1mw+12t5tXVVVFYmIS\nNpuNjz5aRWtr6zHvZ9CgZLKyvgFg/frPD9mnL/XLoDI8bjCGO4gqCmh19dyHLSIi0p2GDEkjKyuT\n+vpvD9/MmDGLtWs/4ZprriA4OJj4+Hiefvovx7SfKVOmUV9fzxVXXMbWrVuIiIg81tK7zDA76vPx\nE77sLrv1g8cpt2WzPPUnnDh0qM/2I0euJ7tK5ciobfyT2sV/9ZW2qampZvPmjcyYMZvS0hKuueYK\nnn/+3926j7i48A7n98sxKgAZ0emsrcpmw75vFFREREQ6ERISyqpVH/D8889hmh5++tOeuzhcvw0q\nU1LHsPaLD8ipzbG6FBEREb/mcDj4zW/utWTf/XKMCkBqVCI2dzD1jiKaW1xWlyMiIiId6LdBxTAM\nEgIHYwS0sCFnt9XliIiISAf6bVABGD9wBACbCjItrkREREQ60q+DyuyRbVfey63PsbYQERER6VC/\nDipDYgZid4XSGFBCfVOL1eWIiIh0u/POO4OGhgaee+4Ztm37st2yhoYGzjvvjE7XX736QwDeemsl\nH330X5/VeTj9OqgAxAckYzhaWZe9y+pSREREfGbZsksYM2bcEa1TWFjABx+8C8DChWcwffpMX5TW\nqX57evIBo2KHUViaxZbCTGaNHGV1OSIiIl3ywx8u5Z57HmDgwIEUFRVy443XExcXT2NjI01NTVx7\n7S8ZNWqM9/V33307M2bMZsKEifz61zfQ0tLivTkhwHvvvc3LL7+I3W4jNTWdFSt+zYMP3s/27V/z\n9NN/wePxMGDAAM4993wee+whvvpqKy6Xm3PPXcL8+Yu4+uofM3nySWzevJGqqiruv/8PDBw48Jjf\nZ78PKlPTxvBh6X/Y17DX6lJERKSXemXXf9jSwf3j7DYDt+foLgA/MX4s5xy3+LDLTzttJp9++jHn\nnruETz75iNNOm0l6+jBOO20GmzZt4B//+Bt33/27Q9Z79923GTo0nZ/97Ho+/PA9b49JY2MjDzzw\nJ8LDw7nqqsvZvXsXP/jBMl555V9ceunl/PWvTwDwxReb2bNnN48//hSNjY0sX34Bp502A4DQ0FAe\neuhxHn/8T3z88SqWLLnwqN77wfp9UEkIi8bhCqc5qISaxiYigp1WlyQiIvK9TjttJo888kfOPXcJ\na9Z8xNVXX8sLLzzHP//5HK2trTidHf97lpOzhwkTJgEwceIk7/yIiAhuvPF6APbuzaa6uqrD9TMz\nv2HChOMBCA4OJjV1KHl5eQCMH992kkp8fDzV1dXd8j77fVABGBg4mH2eb1i7K4v5Y8dbXY6IiPQy\n5xy3uMPeD1/e62fo0HTKy0spLi6itraWTz5ZTWxsPLfccieZmd/wyCN/7HA90wSbzQDAs7+3p7W1\nlQcf/C3PPPM8MTGx3HDDzw+7X8MwOPgugS5Xq3d7drv9oP10z60E+/1gWoCx8cMB2Fq8w+JKRERE\nuu6UU07lyScfY9q06VRXVzFoUDIAH330X1yujq+6npIyhMzM7QBs3rwRgIaGeux2OzExsRQXF5GZ\nuR2Xy4XNZsPtdrdbf8SI0WzZsmn/eg3k5+8jOTnFV29RQQVgStpoAAqaNE5FRER6j+nTZ/LBB+8y\nY8Zs5s9fxIsv/oNrr72K0aPHUF5ezptvvnHIOvPnL+Lrr7/immuuIC9vL4ZhEBk5gMmTT+JHP7qY\np5/+CxdeuIyHH36QIUPSyMrK5OGHH/CuP378BDIyRnDVVZdz7bVX8ZOfXE1wcLDP3qNhdlffjA/4\n+tbYB3fJ/fy9u2kxarnz5FuJCQ/x6X6lc33ltuh9kdrGP6ld/Jfapuvi4sI7nK8elf0GOVMw7B4+\n3b3d6lJERERkPwWV/cYnZACwrUTjVERERPyFgsp+J6eOAhOKWvKsLkVERET2U1DZLyIojCB3FC5n\nOUWVOp4oIiLiDxRUDpIcnIphM/l0zzdWlyIiIiIoqLQzMaltnMrXZTstrkRERERAQaWdE1NGgmlQ\n2rqv266oJyIiIkdPQeUgoQHBBLtjcDsr2Vfe8T0OREREpOcoqHxHSqjGqYiIiPgLBZXvmDRoBADb\nK3ZZXImIiIgoqHzHCckZYBqUuzRORURExGoKKt8R5Agi1BOHJ7iaPcXlVpcjIiLSrymodCA1LA3D\ngLXZX1tdioiISL+moNKBE5NHAZBVudviSkRERPo3BZUOjB80DDw2Ks18PB6NUxEREbGKgkoHAmwO\nws0ECK4ls6DI6nJERET6LQWVw0iPGArAZ3t1PRURERGrOHy1YY/Hw2233cbOnTsJCAjg9ttvJyQk\nhBtuuAG3201cXBy/+93vCAwM9FUJx+SklFF8sf1TdlXtAWZbXY6IiEi/5LOg8uGHH1JbW8sLL7xA\nbm4ud999N9HR0Vx44YUsWLCABx98kJdffpkLL7zQVyUck9EJQ+FrO9VGAS63B4ddnU8iIiI9zWf/\n+ubk5DBu3DgAUlJSKCgoYN26dcye3dY7MXPmTD777DNf7f6Y2W12BpCI4axnW16B1eWIiIj0Sz7r\nURk+fDh/+9vfWL58OXv37iUvL4/GxkbvoZ6YmBhKS0s73UZUVAgOh91XJQIQFxd+2GVjBmawpmQf\nXxTvYM7kkT6tQ9rrrF3EWmob/6R28V9qm2Pjs6Ayffp0Nm/ezNKlS8nIyGDo0KHs2LHDu7wrl6ev\nrGzwVXlA25entLT2sMsnJmSwpuRDtpfu6PR10r2+r13EOmob/6R28V9qm647XKDzWVABuPbaa73P\nTz/9dBISEmhqasLpdFJcXEx8fLwvd3/MhsemYLgDqLUX0epyE+Dj3h0RERFpz2djVDIzM7nxxhsB\n+Pjjjxk1ahRTpkzh3XffBeC9995j2rRpvtp9t7AZNqJtSRhBDWzOybO6HBERkX7Hp2NUTNPkvPPO\nIygoiN///vfY7XZWrFjBiy++SFJSEmeddZavdt9thkel81nVXjbs+4aTjku1uhwREZF+xWdBxWaz\ncd999x0y/+mnn/bVLn1iSuoYPvtiFTl1OVaXIiIi0u/o4iDfIzUqCZs7iAZHEY3NrVaXIyIi0q8o\nqHwPm2Ej1jEII7CJTTl7rS5HRESkX1FQ6YIRMccBsDF/u8WViIiI9C8KKl1wypDRAOTW51hbiIiI\nSD+joNIFgyMGYnM7aQoopq6xxepyRERE+g0FlS4wDIP4gMEYgS2s27Pb6nJERET6DQWVLhodOwyA\nLwozLa5ERESk/1BQ6aIpqW3jVPIadeaPiIhIT1FQ6aKE0Fgc7lBagkqprGuyuhwREZF+QUGliwzD\nICFwMIajlXV7dlpdjoiISL+goHIExsUPB+CLoiyLKxEREekfFFSOwMn7r6dS0JRrcSUiIiL9g4LK\nEYgNiSLAHY7LWUZpdb3V5YiIiPR5CipHKCkoBcPhYu3uHVaXIiIi0ucpqByh8QMzANhWoqAiIiLi\nawoqR+ikIaMAKGrJxTRNi6sRERHp2xRUjtCAoAiC3JG4gysorKi1uhwREZE+TUHlKCQHD8Gwu1m7\nR5fTFxER8SUFlaMwMWkEAF+X7bK4EhERkb5NQeUoTE4eCSaUtuZpnIqIiIgPKagchbDAUJyeaDwh\nlewtqbK6HBERkT5LQeUoDQlNxbB5+Cx7u9WliIiI9FkKKkdp0qC2cSrbK3ZbXImIiEjfpaBylI4f\nNAJMg3L3PjwejVMRERHxBQWVoxTscBJixmAGV7G7qMLqckRERPokBZVjkBaWhmEz+Sz7G6tLERER\n6ZMUVI7BCcltl9PPqtQ4FREREV9QUDkG4xOHgWlQaebjcnusLkdERKTPUVA5BkH2QMKJh5BqsvJL\nrS5HRESkz1FQOUbp4UMxDPh8r66nIiIi0t0UVI7R5MEjAdhVpXEqIiIi3U1B5RiNjk8Hj41qo4BW\nl9vqckRERPoUBZVjFGAPINIYiBFSy1e5RVaXIyIi0qcoqHSDYQPSAVifq3EqIiIi3UlBpRucNLjt\neip7avdYXImIiEjfoqDSDTJiUzE8DupshTS1uKwuR0REpM9QUOkGdpudKFsiRnA9X+TkW12OiIhI\nn6Gg0k0yoo4DYOM+jVMRERHpLgoq3eTkIW3jVHLqsi2uREREpO9QUOkmQ6MGY3gCqHcUU9/UanU5\nIiIifYKCSjexGTZi7YOwORvYvCfX6nJERET6BAWVbjQipu16KpsKNE5FRESkOyiodKNTUsYAsLc+\nx9pCRERE+ggFlW40ODIRmyeQpsASquuarS5HRESk11NQ6UY2w0a8YzC2oCY2ZOvsHxERkWOloNLN\nRsW1XU/li8IsiysRERHp/RRUutkpKaMByGvca3ElIiIivZ+CSjdLDEvA7nHSGlRCeXWj1eWIiIj0\nagoq3cwwDBIDUzACW1i3Z7fV5YiIiPRqCio+MCZ+OABfFmucioiIyLFQUPGBk1La7vtT0JSLaZoW\nVyMiItJ7Kaj4QFxwDAGeUFwhZZRU1ltdjoiISK+loOIDhmGQ5EzBcLTy+Z5dVpcjIiLSazl8teH6\n+npWrFhBdXU1ra2tXHXVVTz55JM0NDQQEhICwIoVKxgzZoyvSrDU+IQM9uZt56uSHZzJBKvLERER\n6ZV8FlReffVV0tLSuP766ykuLmb58uXExcVx7733Mnz4cF/t1m9MTh7JG3mvUdSSh2maGIZhdUki\nIiK9js8O/URFRVFVVQVATU0NUVFRvtqVX4oOjiLQE44npJx9ZXVWlyMiItIrGaYPT0u57LLLyM3N\npaamhieeeIIHHniAyMhIKisrSU9P56abbsLpdB52fZfLjcNh91V5Pnfrm0+QWfcFC+Mu4pJZU60u\nR0REpNfx2aGf119/naSkJP7617+SmZnJTTfdxBVXXEFGRgYpKSncdttt/OMf/+Cyyy477DYqKxt8\nVR4AcXHhlJbW+mz7o2OPI7PuCzbkfs2i0nE+209f4+t2kaOntvFPahf/pbbpuri48A7n++zQz+bN\nmzn11FMBGDFiBCUlJcyaNYuUlBQAZs2axY4dO3y1e78wadBIAEpd+/B4dD0VERGRI+WzoDJkyBC2\nbt0KQH5+PiEhIVx22WXU1NQAsG7dOoYNG+ar3fuFyKBwnJ4BmCEV5BRXW12OiIhIr+OzQz/nn38+\nN910ExdddBEul4s77riDyspKLrnkEoKDg0lISOCnP/2pr3bvN1JCh7CjcSufZ2cxNPEkq8sRERHp\nVXwWVEJDQ3nooYcOmb9w4UJf7dIvTUoayY7dW8ms2AkoqIiIiBwJXZnWxyYkZYAJZe58XG6P1eWI\niIj0KgoqPhYWEEoI0RBaya6CSqvLERER6VUUVHpAWlgahs3D5zmZVpciIiLSqyio9IATkttOU95R\nqRsUioiIHAkFlR4wNmEYmFBFAa0ut9XliIiI9BoKKj0g2BFMGHEQUkVmXpnV5YiIiPQaCio9JD1i\nKIbNZN1ejVMRERHpKgWVHjJ58CgAdlbvtrgSERGR3kNBpYeMiksH00aNrZDmFo1TERER6QoFlR4S\nZA8k0ojHCKlmW26x1eWIiIhkiPh8AAAgAElEQVT0CgoqPei4AUMxDFifu93qUkRERHoFBZUedFLy\naAD21OyxuBIREZHeQUGlBw2PSQXTRp2jiPqmVqvLERER8XsKKj0owB5AlG0gtpBavswutLocERER\nv6eg0sMyoo4DYEO+xqmIiIh8HwWVHnbi/uup5NRlW1yJiIiI/1NQ6WHpUSkYHgeNjhJq6lusLkdE\nRMSvKaj0MIfNQYwjEVtIHVuy91ldjoiIiF9TULHAyJhhAGwu0H1/REREOqOgYoETB48EYG99jrWF\niIiI+DkFFQsMiUjG5gmgOaiEipomq8sRERHxWwoqFrDb7MQFDMLmbGBTdq7V5YiIiPgtBRWLjI4b\nDsCWQo1TERERORwFFYtM3j9OZV/jXkzTtLgaERER/6SgYpHksETsniBanaWUVDVaXY6IiIhfUlCx\niM2wMTAoGVtQE5uyc6wuR0RExC8pqFhoTFwGAF8UZVlciYiIiH866qCSk5PTjWX0T5OTRwBQ0JSr\ncSoiIiId6DSoXHrppe2mH3vsMe/zW2+91TcV9SMDQxNweILxhJSRX1ZvdTkiIiJ+p9Og4nK52k1/\n/vnn3ufqATh2hmGQ5EzBCGxmQ/Yeq8sRERHxO50GFcMw2k0fHE6+u0yOzviBbeNUtpXssLgSERER\n/3NEY1QUTrrfpKS266kUteTiUS+ViIhIO47OFlZXV/PZZ595p2tqavj8888xTZOamhqfF9cfxAZH\nE+AJpSW0nNyiWlITI6wuSURExG90GlQiIiLaDaANDw/n0Ucf9T6XY2cYBoNDhrCn6RvW5+wiNfF4\nq0sSERHxG50Gleeee66n6ujXJiSOYE/2N3xdthNQUBERETmg0zEqdXV1PPPMM97pF154gTPPPJOf\n/exnlJWV+bq2fmNiYtuA2lLXPlxuj8XViIiI+I9Og8qtt95KeXk5ANnZ2Tz44IOsWLGCKVOmcPfd\nd/dIgf1BtDOKIDMcQsvJLqy2uhwRERG/0WlQycvL4/rrrwfg3XffZf78+UyZMoULLrhAPSrdbEho\nGobDxfqcnVaXIiIi4jc6DSohISHe5+vXr+fkk0/2TutU5e41Mant8M/2cgUVERGRAzoNKm63m/Ly\ncnJzc9myZQtTp04FoL6+nsbGxh4psL8Yn9B2359yTwGtLo1TERERge856+fyyy9n4cKFNDU1cfXV\nVxMZGUlTUxMXXnghS5Ys6aka+4XIoHCCzQE0hFWwM7+CUUNirS5JRETEcp0GlenTp7NmzRqam5sJ\nCwsDwOl08stf/pJTTz21RwrsT9LC0/imbgvrc3YoqIiIiPA9QaWgoMD7/OAr0Q4dOpSCggKSkpJ8\nV1k/NGnQSL7J2kJW5S5gitXliIiIWK7ToDJr1izS0tKIi4sDDr0p4bPPPuvb6vqZMfHDIAuqKKS5\nxU1QoN3qkkRERCzVaVC5//77ef3116mvr2fRokUsXryY6Ojonqqt3wkLCCWUGOrCKtmeW8aE4xKs\nLklERMRSnZ71c+aZZ/LUU0/xxz/+kbq6OpYuXcqPfvQjVq5cSVNTU0/V2K+kR6Rh2Dysz82yuhQR\nERHLdRpUDkhMTOTKK6/k7bffZt68edx1110aTOsjkweNAmBX9W6LKxEREbFep4d+DqipqeGNN97g\nlVdewe1287//+78sXrzY17X1SyPj0uEbg1pbEQ1NrYQ4A6wuSURExDKdBpU1a9bw73//m23btjF3\n7lzuu+8+hg8f3lO19UvBjmAibLFUh5axbW8JJ2YMsrokERERy3QaVH70ox+RmprK8ccfT0VFBU8/\n/XS75ffee69Pi+uvhkWms6mqlA15WQoqIiLSr3UaVA6cflxZWUlUVFS7Zfv27fNdVf3cCcmj2FT1\nOXtqsq0uRURExFKdBhWbzca1115Lc3Mz0dHRPPHEEwwZMoS///3vPPnkk5xzzjk9VWe/Mjw6DUyD\nBkcRNQ0tRIQEWl2SiIiIJToNKn/4wx945plnSE9P58MPP+TWW2/F4/EQGRnJSy+91OmG6+vrWbFi\nBdXV1bS2tnLVVVcRFxfH7bffDkBGRgZ33HFHt72RvsTpCCLKlkBFaBFf5RQzddRgq0sSERGxRKen\nJ9tsNtLT0wGYPXs2+fn5XHzxxTzyyCMkJHR+MbJXX32VtLQ0nnvuOR566CHuvvtu7r77bm666SZe\neOEF6urq+Oijj7rvnfQxw6PTMQzYuC/T6lJEREQs02lQMQyj3XRiYiJz5szp0oajoqKoqqoC2k5v\nHjBgAPn5+YwbNw6AmTNn8tlnnx1Nzf3C5OS266nk1GqcioiI9F9duuDbAd8NLp1ZtGgRBQUFzJkz\nh4suuogbbriBiIgI7/KYmBhKS0uPZPf9ynEDUjFMG02BxVTWNltdjoiIiCU6HaOyZcsWZsyY4Z0u\nLy9nxowZmKaJYRisXr36sOu+/vrrJCUl8de//pXMzEyuuuoqwsPDvcsPvsHh4URFheBw+PbGfHFx\n4d//IovEBw2iiDx2l5WzYGiG1eX0KH9ul/5ObeOf1C7+S21zbDoNKu+8885Rb3jz5s3ey+yPGDGC\n5uZmXC6Xd3lxcTHx8fGdbqOysuGo998VcXHhlJbW+nQfx2JY5FCKS/P4KHMrJ6QlWV1Oj/H3dunP\n1Db+Se3iv9Q2XXe4QNfpoZ9BgwZ1+teZIUOGsHXrVgDy8/MJDQ0lPT2djRs3AvDee+8xbdq0o3kv\n/caBcSq5DTld6oESERHpa7p0r5+jcf7553PTTTdx0UUX4XK5uP3224mLi/Oe4jx+/HimTJniq933\nCamRgzFMOy1BpZRWNxE/INjqkkRERHqUz4JKaGgoDz300CHzn3/+eV/tss9x2BzEBQyixMjli+x9\nzJ04zOqSREREetQRnfUjPW90bFs42VKYZXElIiIiPU9Bxc+dMGgkAPsa9mqcioiI9DsKKn5ucPgg\nbGYArpBSCst9exaUiIiIv1FQ8XN2m52BgYOxORvYlJ1rdTkiIiI9SkGlFxgT3zZO5csijVMREZH+\nRUGlFzg+aQQABc25eDRORURE+hEFlV5gUFgidjMIT2gZecW6wqGIiPQfCiq9gM2wkeQcjC2oiU05\ne60uR0REpMcoqPQS4xPabkr4VckOiysRERHpOQoqvcSExLZxKsUtebjcHourERER6RkKKr3EwJB4\nAsxgCCsnp7DG6nJERER6hIJKL2EYBskhQzACm9m0N9vqckRERHqEgkovMmFg2ziVr8t2WlyJiIhI\nz1BQ6UXG7R9QW+raR6tL41RERKTvU1DpReKCYwg0QzHCytmdX2V1OSIiIj6noNKLGIbBkNBUjIBW\nNuzdbXU5IiIiPqeg0sscuJz+9vJdFlciIiLiewoqvcyY+OEAVHryaW5xW1yNiIiIbymo9DLRziic\nRGCEV5C1r8LqckRERHxKQaUXSgtLxXC42LBXh39ERKRvU1DphSYNGgnAzkoNqBURkb5NQaUXGhU7\nDIAqCmhocllcjYiIiO8oqPRCkUERhBKFLbySzNxyq8sRERHxGQWVXmpoRBqG3c2GXF1OX0RE+i4F\nlV5q0qC266nsrNI4FRER6bsUVHqpkTFt41Tq7EXUNLRYXI2IiIhvKKj0UmGBoYQbMdjCK/lmb5nV\n5YiIiPiEgkovNmxAOobNw6a8HVaXIiIi4hMKKr3Ygfv+7K7ZY3ElIiIivqGg0otlRKeDadDgKKay\nttnqckRERLqdgkovFhIQTKQ9DltYFdtySqwuR0REpNspqPRyGVHpGDaTj3d/jcvtsbocERGRbqWg\n0ssduO/P3rps7n9+M2XVjRZXJCIi0n0UVHq54wakEWALICAxh72eLdz21Ho27yi1uiwREZFuoaDS\nyzkdQVw5/lIGOMMJGLwTM30tj/5nHf94fwetLh0KEhGR3k1BpQ8YHnUcN514HRPjx2GEVeIct5bV\ne9dx93MbKa5osLo8ERGRo6ag0keEBoRw2eilXDzyfIIC7AQO/Yqi8E+4/blP+fzrIqvLExEROSoO\nqwuQ7mMYBiclTuK4AWn87ZsX2E0OZtjH/N9HlWzfO5YL5wwnKMBudZkiIiJdph6VPigmOJqfH/8T\nzhy6AHtgK0EjNvJ51Sp+8+w68kvrrC5PRESkyxRU+iibYWNu6kx+ecLVxAfH4Ri4l4qED7jzX6v4\neGsBpmlaXaKIiMj3UlDp41IikrnxxGs4bdAUbCF12DPW8vctb/PnN7bR2OyyujwREZFOKaj0A4H2\nQM7POIsrxl1KWGAIASlZbDXf5LbnPiKnqMbq8kRERA5LQaUfGRM7kptPvo6xMaOwR1RQl/Ih965c\nyfsb83QoSERE/JKCSj8THhjG/45bzoUjziUgwMCRvpWX97zMQ69uoq6x1eryRERE2lFQ6YcMw2Bq\n0kn8+qRrGRyajCO2kKzgN7jlhbfYua/K6vJERES8FFT6sfiQWH45+SoWDDkde1AzzSmf8vuPXmDl\n2t14dChIRET8gIJKP2e32VmcPpfrJ13JgMABOBL38Fb589z/8kdU17dYXZ6IiPRzCioCQFrkEG49\n5Xomx0/CFlpLXtQ73PzaC2zLLre6NBER6ccUVMTL6QjikjHn86MxFxNkC8STuI1HtvyVf370JW6P\n7sQsIiI9T0FFDjExfgy3T/0FqaHp2AeU8UnTi9zxykoqapqsLk1ERPoZBRXpUGRQBL848cecnXYG\nNoeH8uhPueW9v7A+K9/q0kREpB9RUJHDMgyD09Om8euTrmGAPR6i83h695M8+eEaXG4dChIREd9T\nUJHvlRg2kDum/ZyTY6diC2rkC97gpjf+RmFFrdWliYhIH+fw1YZfeukl3njjDe/0tm3bGDNmDA0N\nDYSEhACwYsUKxowZ46sSpBs5bA6WjTuTSaWj+MvW56mP3M5dax/mrCHnMGfsSKvLExGRPsowe+Am\nL+vXr+ftt99m165d3HLLLQwfPrxL65WW+vb/2OPiwn2+j76o0dXIo+tfILtpO6bbzlDzJH46YzFB\ngd2Te9Uu/ktt45/ULv5LbdN1cXHhHc7vkUM/jz76KFdeeWVP7Ep6QLAjmF9MuZRzhpyHDRvZjrWs\nePdP7Cwqsbo0ERHpY3zeo/Lll1/y/PPPc99997Fs2TIiIyOprKwkPT2dm266CafTedh1XS43Dofd\nl+XJMSqsLuP2d/9MpZmP2RrIguQzuXT6TAzDsLo0ERHpA3weVG699VYWLVrESSedxPvvv09GRgYp\nKSncdtttpKSkcNlllx12XR366R08pofnNr3D+qqPweYhpjWD66f9gMj9Y5GOlNrFf6lt/JPaxX+p\nbbrOskM/69atY+LEiQDMmTOHlJQUAGbNmsWOHTt8vXvpATbDxvITFnLF6J/gaImkPCCLmz/+Pety\nsqwuTUREejmfBpXi4mJCQ0MJDAzENE0uueQSampqgLYAM2zYMF/uXnrYmMRU7pv9C5IZiyewjr/t\nfopHP30Vt8dtdWkiItJL+TSolJaWEh0dDbRdPGzJkiVccsklLF26lKKiIpYuXerL3YsFggOCuHHW\nMhbFn4/hCuKb5s9Y8cGD5FUVW12aiIj0Qj1yevLR0hiV3i2/spI/rP07jcF54HYwb9ACzhh56vcO\ntFW7+C+1jX9Su/gvtU3XWXp6svRPg6KiuG/+lYyxz8I04d2ildz98ZPUttRZXZqIiPQSCiriUw67\nnSumz2f50Msx6qMpdO/m1x/9jk0F31hdmoiI9AIKKtIjTjoujbtm/pzouvG4jCaeynyGJzf9ixZ3\nq9WliYiIH1NQkR4zIMzJHWdcyGkh/4PZGMrW6o3c/NHvya3Jt7o0ERHxUwoq0qNshsEFU07gZ+Ou\nwlGZRj2V3L/hT6zc8SEe02N1eSIi4mcUVMQSIwbHcs+iHzG4bhZmq4N39r3LvWsfo7KpyurSRETE\njyioiGVCnQGsOGMei2MuxlMVT0FzLret/T3v7/qEhtYGq8sTERE/4LC6AOnfDMNg4eThjEr+MX9a\n/SaNsV/yl03Pg2kQE5BARvRxTEoaRXrkEALsAVaXKyIiPUwXfNOFePxGY7OLpz/cxNbyrRjh5djC\nqjBsbV9Pw7QzwEhkaPhQJiWNZExiKnab7qzd0/Sb8U9qF/+ltum6w13wTUFFXyC/EzEghC1fF7Kz\nsJyvS3aS37yXxoAibCEHXSjOFUCoK5Hk4FTGxWcwbvBgosKDvveqt3Js9JvxT2oX/6W26brDBRUd\n+hG/ExRgJ31QJOmDIpnPUKCtt2V7fiGbCzPJqdtDFfnUO3PJMnPJKv6YF/cG42iIJyEghYzo4xie\nGEdaYgQRoYEWvxsRETkWCirSKwQHOTh+6GCOHzoYANM0yakqZF3u1+yo3EVp0D48zr0UspeClk9Y\ntT0C9+cxhLoGMjQilaGJUaQmRpA6MJxQp8a6iIj0Fgoq0isZhkFaVBJpUUnAHNweN7m1+XxRvJ2v\nS3dQZORjC62hhWy2e9bxdVEUnh0xuGtiiA1MIG1gBGn7g0tKQjjBQfopiIj4I/3XWfoEu81OWmQK\naZEpnD18Hs3uFnZVZZNZsYNvynZSZCvCHllOAFDnCuCLmmg2fRWD59NYaA4mMTaM1IHhB4WXMAIc\nGqwrImI1BRXpk4LsgYyOyWB0TAbnDoPaljqyKneRVbGT7RU7qXQUY48uBsDuCqWiOprigmjWZsaA\nKxC7zWBQbGjb4aLEcNIGRjAoLhSHXZceEhHpSQoq0i+EB4ZxQsIETkiYgGmalDaWk1W5k8yKnWRV\n7sbtyCMwJg+AUDMG6mIpKoog96sBfLy1rWfFYbeRktDW85I6MIK0xHASY0Kx2XSmkYiIryioSL9j\nGAbxIbHEh8QybdApeEwPebX5ZFbsJLNyF3uqsnGFl2MPhzDDTow9kcCmeOpLo9ib72FPQQ3QdiPF\noAA7QxLC2vW8xEcF+/Q0adM0cXtMWl0e71+Ly9323O2htXX/40HzXS4PLQe93vvndnc8v4Ntutwe\nhqVEMWN8IhOHxSmgiUiP0HVUdH6737G6XVrcLeyuziGrYheZlTvZV1uASdvPxGl3khw8hDB3Ii2V\nURQWGhSWNXDwrygkyMGQ/eNdBseHYRh0MVS0BYpW10Hh4TDBw5e/WrvNwOGwEeiwEeCwEWC3ecfr\n7Cttu5ZNbKST0yclc+q4JEKc+v8dq1n9m5HDU9t0nS741gF9gfyTv7VLXUs9O6p2t/W4VOykvKnC\nuywqaADDItOJMpLbDhcVu8guqqW44tjuVWQAAQFtISEwwL4/LLT/C3TYcTgOvMbWwWvs34aNg/86\n2WaAw4bddvhxOE0e+Nf7Waz9qpAWl4egQDvTxiZy+gnJxEeFHNN7lqPnb78Z+ZbapusUVDqgL5B/\n8vd2KWss9x4m2lGxi3rXt6EkKXQgI6KHkRqWhqMxltKKVmw246CQYD9MqGgLHt+GBaPDw0emaeIx\nPW1/mHhMN56D5+3/c39n2sOB54e+9sDrze88drT9McnpxJBAQ5Obj77IZ9XmfCprmzGACcNimTt5\nMMMHD9AVgnuYv/9m+jO1TdcpqHRAXyD/1JvaxWN62FdX0HaYqGInu6uzafW4ALAZNoaEJxNgD/z2\nH/+O/vDg8RwIBh7cprttHEoH4eHAISgrRQUNYPLAiUxOmEh8cDybskp5b0Me2YU1AKTEhzFn8mBO\nHJlAgENnSfWE3vSb6W/UNl2noNIBfYH8U29ul1Z3K3uq95JZuZOsil3k1u7zhgsDA7thwzBs33k0\nsBt2bIYNGwY2mw0btrbp/X+HX8+GzbC3rdel1x+0H8OOzfj+9dpqsmOaHnIaclibu5kmdxMAg8OS\nmDzweCbFj6esHN7bkMemrBJMEyJCA5k1cRAzJg7SrQx8rDf/Zvo6tU3XKah0QF8g/9SX2sXtcQNt\nvSt94XBIXFw4+UUVbCvfzvqiTXxdnoXH9GBgMCJ6GCcOPJ5BgUP5dGsZH31RQGOzC4fdxsmjE5hz\nwmAGx4dZ/Rb6pL70m+lr1DZdp6DSAX2B/JPaxX99t23qWurZVLKVDUWbya7JBSDQHsj42DFMiB1H\naV4YqzblU1zZCMDIIVHMmTyYcekx2PpAcPMX+s34L7VN1ymodEBfIP+kdvFfnbVNSUMpG4q2sL54\nC2WN5QBEBIYzKX48A1zpbN7aTObeKgASooI5/YTBTB07EGegTm8+VvrN+C+1TdcpqHRAXyD/pHbx\nX11pG9M0ya7JZX3RZjYXb/WeFTUwNIGMsNFU7I1h89f1uNwegoMcTB+fxOxJycREOnviLfRJ+s34\nL7VN1ymodEBfIP+kdvFfR9o2Lo+Lb8qzWF+0ma/Kt+Paf0ZUWngqIQ2pZG0LprbWxGYYHJ8Rx9wT\nBpM+KKJPjOfpSfrN+C+1TdcdLqioz1VEfMZhczAubjTj4kbT0NrIltIv2VC0hZ1Ve4AcHKMcZASm\nUZUbx8YsNxszS0hLjGDO5GROyIjXTSBFRD0qSrr+R+3iv7qrbcobK9lYvIX1RZspaigBwGkLxtkw\nmOLd0XjqI4kKdzLr+EFMnzCIsOCAY95nX6bfjP9S23SdDv10QF8g/6R28V/d3TamaZJXl8/6os1s\nLP6C2pa2ewk5zQgaihJoKRlIgDucKWMTmXNCMokxod22775Evxn/pbbpOh36ERG/YxgGKeHJpIQn\nc3b6IjIrd7GhaDNbS7dhS9yJM3EntsYoPslPZPVXAxmbksicycmMTo3WOBaRfkJBRUT8gt1mZ3RM\nBqNjMmhyNbO1dBsbireQWbGTwNRKGLKdrKo4vn4viQRHKnMnDeGU0QMJDLBbXbqI+JCCioj4Hacj\niJMSJ3FS4iSqmqvZVLyV9UWb2WcUYI8qodK1jeczB/LyxsFMP24ssycNJio8yOqyRcQHFFRExK8N\nCIpkdsppzE45jYK6IjYUb2Fd4WaqHfvwxO/jw8YtfPBGEqMix3LGpLGkJUZYXbKIdCMFFRHpNZLC\nBnJm2ALOGDqPXVV7+KxgM1tKvqQ1cQ9Z7GH7xv8S5RrK/OGncOrIVGw2jWMR6e101o9GY/sdtYv/\n8se2aXG38lXZ13yYvZ699bvBMDFNcDTEMy56POdNmMqA0BCry/Qpf2wXaaO26Tqd9SMifVKgPYBJ\nCROYlDCB2pY6Vmdv4JO8jdSHlrCl+X02r11FvJHG3GEnc3LKGGyGLiIn0puoR0VJ1++oXfxXb2qb\nnIpCXt32CbsbvsEMbLvfkN3jZGzUOOYNO5nB4YP6zCnOvald+hu1TdepR0VE+pXU6ESuPW0JrS43\n7277ktW562lw5vJF9Xq+2LieECOC+OA4kiMTGBSeQHxILAkhcUQGRajXRcSPKKiISJ8W4LCzeMJE\nFo2fwI78Sl794nNymrZTH15JjrmbnIbdUPjt6+04GBAYTWJoHMkRCcSHxBEfEkdCSCwhAX17rIuI\nP1JQEZF+wTAMMpKj+VXyQsqrZ/HN3gryyirJrS6ipKGMek8VOOvxOBsoc5dT3lLCtsqv223DaQsm\nLjiOQeHxJITEER8SS3xIHHHBMQTYdT8iEV9QUBGRficm0sm0cUlAEjAagJZWN0UVDRSU1ZNfVk9e\nRRkFdSVUt1aAsw7D2UCDs55cdx559bmHbDMycACJoXEkhO7vgQluCzJRzgE6lCRyDBRURESAwAA7\nKQnhpCQcGNCXDoDL7aGkspGCsnoKyuspKK9jX1UJZc1leALqMJz1GM4Gqpz1VLfsJLNyZ7vt2g07\n8cGx3gATHxy7/1BSHKEBIX1mQK+IryioiIh0wmG3kRQbSlJs+zs3ezwmZdWNFJQ1UFheT0FZPftK\nqimqL8Vlr90fYOrxOOspcJVR2FB8yLaDHcHeQ0gJIQcHmVgC7YE99RZF/JqCiojIUbDZDOKjQoiP\nCmHCsFjvfNM0qaxtbut92R9i8ovrKKiqpMmo9vbA2Jz11DvryWnNI6fm0ENJUUEDvGNg4kNi23pl\nQuKJdg7AbtONGKX/UFAREelGhmEQHeEkOsLJmLQY73zTNKltaKWgrH5/D0wDBeX15GfXUtta4+2B\nse0PMpXBDVQ27yKrcle77dsNO7HBMftDTFtPzHGeZOpqWjEMAwMD2/5H4zuP7efb2s/vYB1bu2nb\nYebr0JX4loKKiEgPMAyDiNBAIkIDGTEkqt2yhqZWCsob2oWYwqJ6ymrrMYK+7YExgushuIESdxXF\nDSXfbiCzh9/Md3QUijoKNO3n2w77+rCAMGKCo4hxRhMTHE2sM4poZzRRzkgNTO6HFFRERCwW4gzg\nuEGRHDcost385hY3hRX1FO7vfSkoq6egsIHSygY89pb9vS/1GEGNYJiAiQHY7QY2O9htBjZb27Td\nBjZb2yErm/f5/mkDDBuHPBrGgT/T+5z90yZgmh5MTEzT9D569j/ynenDvc7ExGN62p6bHtymh5KG\nMnZXZx/yOdkMG9FBA4gJjibGGbX/Mdo7HREYrh6ePkhBRUTETwUF2kkdGEHqwIh281tdHoorD/TA\nNFDd2EpNbTMtrW5aWt00N3v2P/fQ4nLT1No23Z33S7HbDAID7AQG2AhytD0GBtgJdNgICrATGGAn\nyGHzvibwoNcE7X/dwcuCDnpud5g0mXVUtVRR3lRBeWNlu8fvHg47IMDmINoZ/W1vjDfMtD2GOnSW\nVW+koCIi0ssEOGwkx4WRHBcGdO1+MqZp4nJ7aN4fWlpc34aZZpf722Bz0LLm713eFoRaWt3UNbbS\n4nLjcndfHHLYbTgD7TgDIwgOisYZaCc+0EFyoIkR1IgZ0IjbUUervY5m6mg0a6lqqm5/WOwgTnsQ\nMcHRRDujiD2oJ+bAo9Ph7LbapfsoqIiI9AOGYRDgsBPgsEOw766i6/Z49vfkeLw9PO2CTat7f7jZ\nP8/VvvenudVNc4ubphY3TS2u/Y9uyv5/e/ceG1W1t3H8OzO9d9rOtLa0paXQIjRtKSqQ95WLaERN\nNAcCqEVkNDmJiSH+oRQ2EpIAAAy4SURBVEEiqVyj0ZTExCgENWpCapQKeMEoF41iyKGABgXpoQht\nKbSl92mnpTPTzuX9o6VyO7yEQzu79vkkk8ls9p7921mEeVhr7b063Xi81+sVsg68LmP2YYrswRTp\nxhTpxjzw7olyU9/bTH33hWu+BSCMSGJM8VgtCcSHJ2CPsGOPtJEck0RKbBLWqEiiIsKIirAQZtFc\nmeGioCIiIreNxWwmOtJMdOTt/+5gMIi3zz8YXjy9Pjzea0ON2+u7ZpvH7cPT6cfd24fb56bX1I0/\nrAfzZYEmEOmmL7INV7CFBh/gvur8vZEEvNEEvdGY+mII81uJDFqJNsURY44jOiJioAfIMhhoxqUn\nkGaLIi1Jw063asiCyvbt29m1a9fg5xMnTvDZZ5+xfv16ACZPnsyGDRuG6vQiIvI3YzKZBgLA7fnp\n8vkD1wk5fTjdLto87Th7O3D1ddDl66Qn4MIT1kVveCfEdQAQBDwDr/YgBHujCHqjCXbF9L97owkc\niyXYE481KpLJmTYmDbwyU6yYzQouN8MU7J+ePaSOHDnC7t27OXPmDCtXrqSwsJAVK1Ywf/585s6d\n+x+P+//GXP9bNzOuK8NP7WJcahtjUrsMH3/AT4fXNTC5t73/3eOkzd1Oq7sdV28XwasGqExBCyZ3\nAt7OeALdNgLdNqLNsdyZ8VdwGZ8aN+qHk5KT4667fViGfjZv3sybb77JsmXLKCwsBOCBBx6gvLz8\nhkFFRETESCxmS/9dRdF2sOdc8+d9AR9Oj5M2t5NWTzvt/lZONp6h3txIeEz74H6mvhhOuhKoOGkj\n8IuNcG8COWPtg8ElOz2eyHA9gRiGIagcP36ctLQ0LBYL8fF/3WKXlJRES0vLUJ9eRERk2ISbwwaW\nPUgG/urt8vp7qXWdp7qzlprOWmpctVwMvwBJAxN7AxaquuM5fdbGNydsmHrsTEhOHgwuE8cmEBM1\nOqeVDvlV79ixg4ULF16z/WZGnOz2GMLChjZR/qeuJgkttYtxqW2MSe1iXJfaJiM1iVncBfT/BjZ2\nt/BnazWn2qo53VrNOXMDwXjn4HF1nhhqm23srbbBRRtZ9rEUZCdTkJ1E3oQkEqxDMGPZgIY8qBw+\nfJjVq1djMpno6OgY3N7U1ERKSsoNj3U6e4a0No3rGpPaxbjUNsakdjGuG7VNGNHkWfPJs+ZDFnh8\nHs66zlPTeY5q11lqOs/hjmqAOxoAaPBbqGtO4Lvq/nkuKRHp5I4dw6TMBCZn2rHHjezgEpI5Kk1N\nTcTGxhIR0b9ceXZ2Nr/++ivTp09n3759OByOoTy9iIjIiBEVFkVu4p3kJt4JQGBgOYFLQ0VVHbU0\nWpqwxPfPdenkKOWeGP71h41AuY0E0xhyx2QyOTORyZk2km3Rf4tbooc0qLS0tJCYmDj4ubi4mLVr\n1xIIBJg6dSozZ84cytOLiIiMWGaTmdTYFFJjU7g3fQYAbp+bs53nqXbVUt3R3+vijWqA5Abc/Juj\nfgu/VtkIHLMR7b+DSfbx5GWOYdI4O+kj9Fkuw3J78q3S7cmjk9rFuNQ2xqR2Ma6hbptAMEDjxWZq\nXLVUd9Zyuv0sbd7WK/dxxxLothHuTWJCfBYF6VnkjrMb7lkuIb09WURERG4/s8lMujWVdGsqs9L/\nB4CLfT2cdZ2juqOWU201nOc8vuh6gtRTzXGqOsL4sj4Bc08iY2MyyR8zgYJxqYxPM+azXBRURERE\n/kZiw2PIT8olPymXf+T097pcuNhEdWctla3VVHXU0hXWBgltNHCaejfs/d0KB+0kh6cxOWkCd2eO\nJyfDZohnuSioiIiI/I2ZTWbGWtMYa01jztj/BaC79yI1rloqW6qpbKuhmQsEYs7TxnkO+o7wr9Ph\nBH+3kWBKITthPPdkTCQvc0xInuWioCIiIjLKWCNimXJHHlPuyAP6lwZouNhIZWs1J5qqqOupw5PQ\nQhctHAtW8Ps5oNLGizP+yaTU1GGtVUFFRERklLOYLWTGjSUzbiwPTZgDQFdvN6faqvm94Qw1nbX0\nRHcTFTn8k28VVEREROQacRFWpqcVMj2tMKR1GG96r4iIiMgABRURERExLAUVERERMSwFFRERETEs\nBRURERExLAUVERERMSwFFRERETEsBRURERExLAUVERERMSwFFRERETEsBRURERExLAUVERERMSwF\nFRERETEsUzAYDIa6CBEREZHrUY+KiIiIGJaCioiIiBiWgoqIiIgYloKKiIiIGJaCioiIiBiWgoqI\niIgY1qgMKm+88QZFRUUsWbKE48ePh7ocuczGjRspKipi8eLF7Nu3L9TlyGU8Hg/z5s3jiy++CHUp\ncpldu3Yxf/58Fi1axP79+0Ndjgy4ePEiL7zwAg6HgyVLlnDgwIFQlzRihYW6gOF25MgRamtrKSsr\no6qqiuLiYsrKykJdlgCHDh3i9OnTlJWV4XQ6WbhwIQ8//HCoy5IBW7ZsISEhIdRlyGWcTiebN29m\n586d9PT08O6773L//feHuiwBvvzySyZMmMCKFStoamri2WefZc+ePaEua0QadUGlvLycefPmAZCT\nk0NnZyfd3d1YrdYQVyYzZsygsLAQgPj4eNxuN36/H4vFEuLKpKqqijNnzuhH0GDKy8u59957sVqt\nWK1WXnvttVCXJAPsdjunTp0CwOVyYbfbQ1zRyDXqhn5aW1uv+AuTmJhIS0tLCCuSSywWCzExMQDs\n2LGD++67TyHFIEpKSli1alWoy5Cr1NXV4fF4eP7551m6dCnl5eWhLkkGPPbYYzQ0NPDQQw+xbNky\nXnnllVCXNGKNuh6Vq2kFAeP54Ycf2LFjBx9//HGoSxHgq6++4q677iIzMzPUpch1dHR0sGnTJhoa\nGnjmmWf46aefMJlMoS5r1Pv6669JT0/no48+orKykuLiYs3vukWjLqikpKTQ2to6+Lm5uZnk5OQQ\nViSXO3DgAO+99x4ffvghcXFxoS5HgP3793P+/Hn2799PY2MjERERpKamMnPmzFCXNuolJSVx9913\nExYWxrhx44iNjaW9vZ2kpKRQlzbqHT16lNmzZwOQm5tLc3OzhrJv0agb+pk1axZ79+4FoKKigpSU\nFM1PMYiuri42btzI+++/j81mC3U5MuDtt99m586dfP755zzxxBMsX75cIcUgZs+ezaFDhwgEAjid\nTnp6ejQXwiCysrI4duwYAPX19cTGxiqk3KJR16Nyzz33kJ+fz5IlSzCZTKxbty7UJcmA7777DqfT\nyYsvvji4raSkhPT09BBWJWJcY8aM4ZFHHuHJJ58EYPXq1ZjNo+7/n4ZUVFREcXExy5Ytw+fzsX79\n+lCXNGKZgpqkISIiIgal6C0iIiKGpaAiIiIihqWgIiIiIoaloCIiIiKGpaAiIiIihqWgIiK3TV1d\nHQUFBTgcjsFVY1esWIHL5brp73A4HPj9/pve/6mnnuLw4cO3Uq6IjAAKKiJyWyUmJlJaWkppaSnb\ntm0jJSWFLVu23PTxpaWlejCWiAwadQ98E5HhNWPGDMrKyqisrKSkpASfz0dfXx9r164lLy8Ph8NB\nbm4uJ0+eZOvWreTl5VFRUUFvby9r1qyhsbERn8/HggULWLp0KW63m5deegmn00lWVhZerxeApqYm\nXn75ZQA8Hg9FRUU8/vjjobx0EbkNFFREZMj4/X6+//57pk2bxsqVK9m8eTPjxo27ZpG2mJgYPvnk\nkyuOLS0tJT4+nrfeeguPx8Ojjz7KnDlzOHjwIFFRUZSVldHc3MyDDz4IwO7du8nOzmbDhg14vV62\nb98+7NcrIrefgoqI3Fbt7e04HA4AAoEA06dPZ/Hixbzzzju8+uqrg/t1d3cTCASA/qUtrnbs2DEW\nLVoEQFRUFAUFBVRUVPDnn38ybdo0oH+R0ezsbADmzJnDp59+yqpVq5g7dy5FRUVDep0iMjwUVETk\ntro0R+VyXV1dhIeHX7P9kvDw8Gu2mUymKz4Hg0FMJhPBYPCK9WwuhZ2cnBy+/fZbfvnlF/bs2cPW\nrVvZtm3bf3s5IhJimkwrIkMuLi6OjIwMfv75ZwBqamrYtGnTDY+ZOnUqBw4cAKCnp4eKigry8/PJ\nycnht99+A+DChQvU1NQA8M033/DHH38wc+ZM1q1bx4ULF/D5fEN4VSIyHNSjIiLDoqSkhNdff50P\nPvgAn8/HqlWrbri/w+FgzZo1PP300/T29rJ8+XIyMjJYsGABP/74I0uXLiUjI4MpU6YAMHHiRNat\nW0dERATBYJDnnnuOsDD9Eycy0mn1ZBERETEsDf2IiIiIYSmoiIiIiGEpqIiIiIhhKaiIiIiIYSmo\niIiIiGEpqIiIiIhhKaiIiIiIYSmoiIiIiGH9H3Hy62knS6/EAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "GhFtWjQRzD2l" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "OMoIsUMmzK9b" + }, + "cell_type": "markdown", + "source": [ + "These are only a few ways in which we could think about the data. Other transformations may work even better!\n", + "\n", + "`households`, `median_income` and `total_bedrooms` all appear normally-distributed in a log space.\n", + "\n", + "`latitude`, `longitude` and `housing_median_age` would probably be better off just scaled linearly, as before.\n", + "\n", + "`population`, `totalRooms` and `rooms_per_person` have a few extreme outliers. They seem too extreme for log normalization to help. So let's clip them instead." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "XDEYkPquzYCH", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def normalize(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + "\n", + " processed_features[\"households\"] = log_normalize(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = log_normalize(examples_dataframe[\"median_income\"])\n", + " processed_features[\"total_bedrooms\"] = log_normalize(examples_dataframe[\"total_bedrooms\"])\n", + " \n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + "\n", + " processed_features[\"population\"] = linear_scale(clip(examples_dataframe[\"population\"], 0, 5000))\n", + " processed_features[\"rooms_per_person\"] = linear_scale(clip(examples_dataframe[\"rooms_per_person\"], 0, 5))\n", + " processed_features[\"total_rooms\"] = linear_scale(clip(examples_dataframe[\"total_rooms\"], 0, 10000))\n", + "\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.15),\n", + " steps=1000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "b7atJTbzU9Ca" + }, + "cell_type": "markdown", + "source": [ + "## Optional Challenge: Use only Latitude and Longitude Features\n", + "\n", + "**Train a NN model that uses only latitude and longitude as features.**\n", + "\n", + "Real estate people are fond of saying that location is the only important feature in housing price.\n", + "Let's see if we can confirm this by training a model that uses only latitude and longitude as features.\n", + "\n", + "This will only work well if our NN can learn complex nonlinearities from latitude and longitude.\n", + "\n", + "**NOTE:** We may need a network structure that has more layers than were useful earlier in the exercise." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "T5McjahpamOc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 661 + }, + "outputId": "ad36a371-597f-4274-d0ab-577c360d6e70" + }, + "cell_type": "code", + "source": [ + "def location_location_location(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that keeps only the latitude and longitude.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " return processed_features\n", + "\n", + "lll_dataframe = location_location_location(preprocess_features(california_housing_dataframe))\n", + "lll_training_examples = lll_dataframe.head(12000)\n", + "lll_validation_examples = lll_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.05),\n", + " steps=500,\n", + " batch_size=50,\n", + " hidden_units=[10, 10, 5, 5, 5],\n", + " training_examples=lll_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=lll_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 112.43\n", + " period 01 : 104.92\n", + " period 02 : 102.71\n", + " period 03 : 101.54\n", + " period 04 : 101.18\n", + " period 05 : 100.28\n", + " period 06 : 100.29\n", + " period 07 : 99.99\n", + " period 08 : 99.19\n", + " period 09 : 100.42\n", + "Model training finished.\n", + "Final RMSE (on training data): 100.42\n", + "Final RMSE (on validation data): 99.95\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VOX9///nLBmy7wkQ9j2QQMKm\nLCIEECLgF9xQQapWaatiqTv+XGqLVbEulSpU6cdaobQoRRQVA4ioLIIBRIJZ2AJJCCH7HrKd3x+R\nKREICTCZSXg9rqsXzJk5Z96T96S8PPd97mMyDMNAREREpAUxO7sAERERkaZSgBEREZEWRwFGRERE\nWhwFGBEREWlxFGBERESkxVGAERERkRbH6uwCRFxZnz596Ny5MxaLBYCamhqGDh3KU089haen5wUf\n9/3332f69OlnbF+1ahVPPPEEf/vb34iJibFvr6ioYMSIEUyYMIEXX3zxgt+3sY4ePcrzzz/P4cOH\nAfDw8GDOnDmMHz/e4e/dFIsWLeLo0aNn/Ey2b9/O3XffTceOHc/Y5/PPP2+u8i5Keno648aNo1u3\nbgAYhkFwcDBPPvkk/fr1a9KxXnnlFcLCwrjtttsavc9HH33EypUrWbp0aZPeS6S5KMCInMfSpUtp\n164dAJWVlTz44IO89dZbPPjggxd0vOzsbP7+97+fNcAAtG/fnk8++aRegPnyyy/x9fW9oPe7EI88\n8ghTp07lb3/7GwB79uzhjjvuYO3atbRv377Z6rgY7du3bzFh5VwsFku9z/DZZ59x//33ExcXh81m\na/RxHn74YUeUJ+JUGkISaQKbzcaoUaNITEwE4OTJkzzzzDNMnDiRa6+9lhdffJGamhoAkpKSuPXW\nW4mNjWXq1Kl88803ANx6660cO3aM2NhYKisrz3iPQYMGsX37dsrLy+3bPvvsM0aOHGl/XFlZyXPP\nPcfEiRMZO3asPWgA7N69mxtuuIHY2FgmTZrE1q1bgbr/or/qqqt47733uO666xg1ahSfffbZWT9n\nSkoKUVFR9sdRUVHExcXZg9wbb7zB6NGjmTZtGm+//TZjx44FYN68eSxatMi+3+mPz1fX888/z+23\n3w7Azp07ufHGG7nmmmuYPn06aWlpQN2ZqN/97nfExMRw++23c/z48fN07OxWrVrFnDlzuOOOO3jp\npZfYvn07t956K3PnzrX/Y7927VqmTJlCbGwsv/jFLzh69CgAf/3rX3nqqae46aabePfdd+sdd+7c\nubzzzjv2x4mJiVx11VXU1tby2muvMXHiRCZOnMgvfvELsrKymlz3pEmTqKio4NChQwCsWLGC2NhY\nxo4dy0MPPURFRQVQ93N/4YUXuO6661i7dm29Ppzre1lbW8sf//hHxowZw0033URSUpL9fXfs2MH1\n11/PpEmTuPbaa1m7dm2Taxe55AwROafevXsbmZmZ9scFBQXGzJkzjUWLFhmGYRhvvfWWMXv2bKOq\nqsooLy83brzxRmP16tVGTU2Nce211xpr1qwxDMMwfvjhB2Po0KFGcXGx8e233xrjx48/6/v997//\nNR5//HHjkUcese9bXFxsjBs3zvjggw+Mxx9/3DAMw3jjjTeMO+64wzh58qRRWlpqTJs2zdi4caNh\nGIYxZcoU45NPPjEMwzA+/PBD+3ulpaUZ/fr1M5YuXWoYhmF89tlnxjXXXHPWOh544AEjJibG+Oc/\n/2kcOHCg3nPJycnGkCFDjBMnThhVVVXGvffea8TExBiGYRiPP/648eabb9pfe/rjhuqKiIgwVq1a\nZf+8Q4cONTZv3mwYhmGsWbPGuP766w3DMIxly5YZM2fONKqqqoy8vDwjJibG/jM5XUM/41M/5+jo\naOPw4cP21/fv39/YunWrYRiGkZGRYQwePNhITU01DMMw/u///s+44447DMMwjIULFxpXXXWVkZub\ne8ZxP/30U2PmzJn2x6+//roxf/58IyUlxZgwYYJRWVlpGIZhvPfee8aHH354zvpO/Vz69u17xvah\nQ4caBw8eNL777jtj+PDhxvHjxw3DMIynn37aePHFFw3DqPu5X3fddUZFRYX98Ztvvtng93LTpk3G\nhAkTjJKSEqO8vNy46aabjNtvv90wDMO44YYbjO3btxuGYRiHDx82HnrooQZrF2kOOgMjch6zZs0i\nNjaWcePGMW7cOIYNG8bs2bMB2LRpE9OnT8dqteLu7s51113Hli1bSE9PJycnh8mTJwPQv39/wsLC\n2Lt3b6Pec/LkyXzyyScAbNiwgZiYGMzm//26fvnll8yYMQObzYanpydTp05l3bp1AKxevZprr70W\ngMGDB9vPXgBUV1dzww03ABAREcGxY8fO+v5//vOfmTlzJmvWrGHKlCmMHTuWf//730Dd2ZGhQ4cS\nEhKC1WplypQpjfpMDdVVVVXFNddcYz9+27Zt7WecpkyZwtGjRzl27Bjx8fFcc801WK1WAgIC6g2z\n/VxmZiaxsbH1/nf6XJmuXbvStWtX+2N3d3eGDx8OwJYtW7jyyivp0qULADfffDPbt2+nuroaqDsj\nFRgYeMZ7jhkzhh9//JGCggIA1q9fT2xsLL6+vuTl5bFmzRoKCwuZNWsW06ZNa9TP7RTDMFixYgVt\n27ala9eubNy4kUmTJtG2bVsAbrvtNvt3AGD48OG0adOm3jEa+l5+9913jB49Gi8vL9zd3e29AggK\nCmL16tUcPHiQrl278sorrzSpdhFH0BwYkfM4NQcmLy/PPvxhtdb96uTl5eHn52d/rZ+fH7m5ueTl\n5eHj44PJZLI/d+ofseDg4PO+58iRI3nqqacoKCjg008/5b777rNPqAUoLi7mhRde4NVXXwXqhpQG\nDBgAwJo1a3jvvfcoLS2ltrYW47TbnVksFvvkY7PZTG1t7Vnfv02bNtx9993cfffdFBUV8fnnn/P8\n88/TsWNHCgsL683HCQoKOu/naUxd3t7eABQVFZGWlkZsbKz9eZvNRl5eHoWFhfj4+Ni3+/r6Ulpa\netb3O98cmNP79vPH+fn59T6jj48PhmGQn59/1n1P8fT0ZMSIEWzatInBgwdTVFTE4MGDMZlM/PWv\nf+Wdd95h/vz5DB06lD/84Q/nnU9UU1Nj/zkYhkHPnj1ZtGgRZrOZ4uJi1q9fz+bNm+3PV1VVnfPz\nAQ1+LwsLCwkNDa23/ZTnn3+exYsXc9ddd+Hu7s5DDz1Urz8izqAAI9JIgYGBzJo1iz//+c8sXrwY\ngODgYPt/bQMUFBQQHBxMUFAQhYWFGIZh/8eioKCg0f/Yu7m5ERMTw+rVqzly5AgDBw6sF2BCQ0P5\n5S9/ecYZiKysLJ566ik++OAD+vbtS2pqKhMnTmzS58zLyyMxMdF+BsTX15fp06fzzTffkJKSgo+P\nD8XFxfVef8rPQ1FhYWGT6woNDaV79+6sWrXqjOd8fX3P+d6XUlBQELt377Y/LiwsxGw2ExAQcN59\nJ06cyPr168nPz2fixIn2/g8bNoxhw4ZRVlbGggULePnll897JuPnk3hPFxoayvXXX8/jjz/epM91\nru9lQz/b4OBgnn76aZ5++mk2b97MAw88wKhRo/Dy8mr0e4tcahpCEmmCu+66i927d7Njxw6gbshg\n5cqV1NTUUFZWxkcffcTo0aPp2LEj7dq1s0+S3bVrFzk5OQwYMACr1UpZWZl9OOJcJk+ezJIlS856\n6fK4ceP44IMPqKmpwTAMFi1axNdff01eXh6enp50796d6upqVqxYAXDOsxRnU1FRwW9/+1v75E6A\nI0eOsGfPHoYMGcLAgQOJj48nLy+P6upqVq9ebX9dSEiIffJnWloau3btAmhSXVFRUWRnZ7Nnzx77\ncR599FEMwyA6OpqNGzdSU1NDXl4eX3/9daM/V1OMHDmS+Ph4+zDXf/7zH0aOHGk/89aQmJgYdu/e\nzYYNG+zDMJs3b+YPf/gDtbW1eHp6Eh4eXu8syIUYO3Ys69atsweNDRs28Pbbbze4T0Pfy4EDB7J5\n82bKy8spLy+3B6eqqipmzZrFiRMngLqhR6vVWm9IU8QZdAZGpAm8vb351a9+xYIFC1i5ciWzZs0i\nLS2NyZMnYzKZiI2N5dprr8VkMvHqq6/y+9//njfeeAMPDw9ef/11PD096dOnD35+fowcOZIPP/yQ\nsLCws77XFVdcgclkYtKkSWc8N2PGDNLT05k8eTKGYRAZGckdd9yBp6cnV199NRMnTiQoKIh58+ax\na9cuZs2axcKFCxv1GcPCwli8eDELFy7kueeewzAMvL29eeKJJ+xXJt1yyy1cf/31BAQEMGHCBPbv\n3w/A9OnTmTNnDhMmTKBfv372syzh4eGNrsvd3Z2FCxcyf/58SktLcXNzY+7cuZhMJqZPn058fDzj\nx48nLCyM8ePH1ztrcLpTc2B+7qWXXjrvz6Bdu3Y899xz3HfffVRVVdGxY0fmz5/fqJ+ft7c3ERER\nJCcnEx0dDcDQoUP59NNPmThxIjabjcDAQJ5//nkAHnvsMfuVRE0RERHBb37zG2bNmkVtbS1BQUH8\n4Q9/aHCfhr6XMTExbNq0idjYWIKDgxk9ejTx8fG4ublx0003ceeddwJ1Z9meeuopPDw8mlSvyKVm\nMk4fiBYRaaL4+Hgee+wxNm7c6OxSROQyonOAIiIi0uI4NMCkpKQwfvx4li1bZt/23nvvERERcdax\n74ceeoh58+Y5siQRERFpBRwWYMrKypg/f759XQWoWwciNze33qV6p2zZssW+0qWItBxDhgzR8JGI\nNDuHBRibzcaSJUvqhZXx48fz4IMPnjH7vrKyksWLF3Pvvfc6qhwRERFpRRx2FZLVaj3jksNTC1X9\n3FtvvcVtt912zudFRERETuf0SbypqakkJCTYl7ZujOrqGgdWJCIiIq7O6evAbNq0iWPHjjF9+nRK\nSkrIy8tjyZIl9nvNnE1+fpnD6gkJ8SE7++zrSohzqTeuSX1xXeqN61JvGickxOeczzk9wNx55532\nBZK2b9/Ohx9+2GB4EREREXFYgElISGDBggVkZGRgtVqJi4tjxIgRbN26lezsbGbPnk10dDSPPfaY\no0oQERGRVqpFrsTryNNuOq3nutQb16S+uC71xnWpN43T0BCS0yfxioiIiDSVAoyIiIi0OAowIiIi\n0uIowIiIiEiLowAjIiLSymza9EWjXvf6669w7FjGOZ+fN++hS1XSJacAIyIi0opkZh5jw4a4Rr12\n7tyHCQvrcM7nX3zx1UtV1iXn9IXsRERE5NJ59dUFJCbuY9SooUyYcC2Zmcf4y18W8cILfyQ7+wTl\n5eX88pe/YuTIUcyZ8yseeugxvvzyC0pLSzh69AgZGen89rcPM3z4SCZPHsenn37BnDm/YujQK9m1\nK56CggIWLHiN4OBg/vjHpzl+PJP+/QewceMGPvzws2b7nAowIiIiDvL+xgN8l3TijO0Wi4mamgtb\nhm1oeCjTx/Y85/O33TaLVavep1u3Hhw9msqiRX8nPz+PK64YxrXXTiEjI52nn57HyJGj6u134kQW\nL7+8kG+/3cpHH/2X4cNH1nvey8uL119fzOLFf+XrrzcSFtaRysqTvP32u2zZ8g3vv//vC/o8F0oB\n5jS55Xlkn8gkxNTe2aWIiIhctL59IwDw8fElMXEfH3+8CpPJTFFR4RmvHTAgGoDQ0FBKSkrOeD4q\naqD9+cLCQo4cOUz//lEADB8+EovF4qiPcVYKMKf55PA64rO+57kR/x9+bXydXY6IiLRw08f2POvZ\nkuZaidfNzQ2A9es/p6ioiDff/DtFRUXcc8+sM157egA52yL9P3/eMAzM5rptJpMJk8l0qctvkCbx\nnqaTdxi1Ri37cpOdXYqIiMgFMZvN1NTU1NtWUFBA+/ZhmM1mvvpqI1VVVRf9Ph06dCQ5+UcAduz4\n9oz3dDQFmNNEBPcFYF9uopMrERERuTBdunQjOTmJ0tL/DQONGTOWrVu/Ye7ce/Hw8CA0NJR//GPJ\nRb3PiBGjKC0t5d5772bPnt34+vpdbOlNops5/sz8HX+moLyIBaN+j9WsETZXopufuSb1xXWpN66r\nNfSmqKiQXbviGTNmHNnZJ5g7916WL//vJX2Phm7mqH+hf2Zg+0jW7v+SgwWp9Ak89yxvERGRy5mn\npxcbN25g+fKlGEYtDzzQvIveKcD8zKCwugCTkJuoACMiInIOVquVP/7xBae9v+bA/EzfkF7YzG7s\ny01ydikiIiJyDgowP2OzuNEnsBdZZdlkl+U6uxwRERE5CwWYs4gMCgfQWRgREREXpQBzFhEKMCIi\nIi5NAeYsAtz96eDdnpSCg5ysqXR2OSIiIpfcTTddR1lZGUuXvktCwg/1nisrK+Omm65rcP9Nm74A\n4LPP1vDVV186rM5zUYA5h4igcKprq0nJP+DsUkRERBxm1qw7iYwc0KR9MjOPsWFDHACTJl3H6NEx\njiitQbqM+hwigsJZd+RLEnKT6B/cz9nliIiINMovfzmT559/hXbt2nH8eCZPPPEwISGhlJeXU1FR\nwYMPPkq/fpH21//pT88yZsw4oqMH8uSTj1FZWWm/sSPAunVrWblyBRaLma5de/D440/y6qsLSEzc\nxz/+sYTa2lr8/f258cZbWLTodfbu3UN1dQ033jid2NjJzJnzK4YOvZJdu+IpKChgwYLXaNeu3UV/\nTgWYc+jm2xlPqwf7cpIwehvNfpMqERFp+VYd+ITdJ/aesd1iNlFTe2EL4Q8M7c8NPaec8/mrr45h\ny5avufHG6XzzzVdcfXUMPXr04uqrx7Bz53f861//5E9/+vMZ+8XFraV79x789rcP88UX6+xnWMrL\ny3nllb/i4+PD/ffP5uDBA9x22yxWrXqfu+6azf/931sAfP/9Lg4dOsjixe9QXl7OHXfcytVXjwHA\ny8uL119fzOLFf+XrrzcyffqMC/rsp9MQ0jlYzBb6BfUh/2QBx0qPO7scERGRRqkLMN8AsHnzV1x1\n1Wi++uoL7r33bhYv/iuFhYVn3S819RCRkVEADBw42L7d19eXJ554mDlzfsWRI4cpLCw46/5JST8S\nHT0IAA8PD7p27U5aWhoAUVEDAQgNDaWkpOSs+zeVzsA0ICIonPis79mXm0QH7/bOLkdERFqYG3pO\nOevZEkfeC6l79x7k5maTlXWc4uJivvlmE8HBoTz99HySkn7kjTf+ctb9DAPM5rrRhtqfzg5VVVXx\n6qsv8e67ywkKCuaxx353zvc1mUycfnfF6uoq+/EsFstp73NpbsGoMzAN6BfYBxMmEnJ0ObWIiLQc\nw4dfxdtvL2LUqNEUFhbQoUNHAL766kuqq6vPuk/nzl1ISkoEYNeueADKykqxWCwEBQWTlXWcpKRE\nqqurMZvN1NTU1Ns/PDyC3bt3/rRfGRkZ6XTs2NlRH1EB5nSbf8jkleU77cnT2+ZFV9/OHC46QllV\nmZOrExERaZzRo2PYsCGOMWPGERs7mRUr/sWDD95PREQkubm5fPrpx2fsExs7mX379jJ37r2kpR3B\nZDLh5+fP0KFXcs89v+Af/1jCjBmzWLjwVbp06UZychILF75i3z8qKpo+fcK5//7ZPPjg/fzmN3Pw\n8PBw2Gc0GZfqXE4zctRpt6XrkvlyVwaPzxhIn84BAKw9/AWfHI7jlxEzGNw2+jxHEEdqDbefb43U\nF9el3rgu9aZxQkJ8zvmczsCcZmCvYADik7Lt2yKD61blTdCqvCIiIi5DAeY04Z0D8PF0Iz7lBLU/\nnZjq6B2Gn82HH3OTqTVqnVyhiIiIgAJMPVaLmWGR7SksqeRAet1lZiaTiYigcEqqSjlSlO7kCkVE\nRAQUYM5wVVQHAL5LOmHfFhHcF4B9uYlOqUlERETqc2iASUlJYfz48Sxbtsy+7b333iMiIoLS0lL7\nts8++4ybbrqJ6dOn89prrzmypPMa0CsYL3crO5P/N4wUHtATi8miu1OLiIi4CIcFmLKyMubPn8/w\n4cPt21avXk1ubi6hoaH2beXl5bz88su8++67rFixgq1bt3LggPNuoGi1mBnUO4SC04aR3K3u9PTv\nxtHiDApPFjmtNhEREanjsABjs9lYsmRJvbAyfvx4HnzwwXr3FfLw8ODjjz/G29sbk8mEv78/BQVn\nX6a4uQwNr6s5/rRhpMiguquR9uUmO6UmERER+R+HBRir1Yq7u3u9bd7e3md97antycnJZGRkEBUV\n5aiyGiW8SwBe7lbiTxtGirAHGA0jiYiIOJvL3AspNTWVRx55hFdeeQU3N7cGXxsQ4InVamnwNRej\nfTs/RgwIY/2Oo+SUVBHRPYjgYG/a7gshOX8/AYEeWC0u86O7rDS0qJE4j/riutQb16XeXByX+Ff4\n+PHj3H///bz00kv07dv3vK/Pz3fcsv6nVkeM7BrA+h1H2fBtKqE+NgD6+vdmU/oWvj2wlz6BPR1W\ng5ydVq50TeqL61JvXJd60zguvxLvk08+ybPPPktERISzS7Hrq2EkERERl+WwMzAJCQksWLCAjIwM\nrFYrcXFxjBgxgq1bt5Kdnc3s2bOJjo7m5ptvJj4+noULF9r3vfPOOxk3bpyjSmsUq8XMwF4hbN6b\nycGMQnp19KeXf3dsZjcScpO4odeZt0cXERGR5uGwABMZGcnSpUvP2H7vvfeesW3Pnj2OKuOiDAkP\nZfPeTL5LOkGvjv64WdzoE9iTvTmJ5JTnEuwR5OwSRURELksuMYTkqvp1DcCzjZWdydmnDSPVzdHR\nzR1FREScRwGmAVaLmYG9g8kvPsmhjLoF7OzrweQowIiIiDiLAsx5DA1vC/zv3kgB7v6EebUjpeAg\nJ2sqnVmaiIjIZUsB5jxODSOdfjVSZHBfqmurScl33i0PRERELmcKMOdxtmGkU5dTax6MiIiIcyjA\nNMKpeyOdGkbq5tsZT6sH+3KSMH46KyMiIiLNRwGmEfp1Daw3jGQxW+gb2Jv8kwVklmY5uzwREZHL\njgJMI9QtavfTMNKxn65GCj51OXWiM0sTERG5LCnANNKQn4aR4n8aRuob2BsTJt1WQERExAkUYBop\nolsgHqcNI/nYvOnq24lDhUcoq3LczSVFRETkTAowjXRqGCmv6CSHj526GqkvtUYtiXkpTq5ORETk\n8qIA0wRDfnY1UkRwHwD25SY7rSYREZHLkQJME0R0rRtG2pl8AsMw6OTdAT+bD/tyk6g1ap1dnoiI\nyGVDAaYJ3Kx1w0i5RSc5lFmEyWSiX1A4JVWlHClKd3Z5IiIilw0FmCayDyMl1g0j2W/uqKuRRERE\nmo0CTBPVDSNZ7MNIfQJ7YTFZ2Kf1YERERJqNAkwTuVnNRPcMsQ8jeVjd6eHfjaPFGRSeLHZ2eSIi\nIpcFBZgLMPRni9qdGkb6UcNIIiIizUIB5gLULWpnIT4pG8Mw7AFGd6cWERFpHgowF6BuGCmY3KIK\nDmcWE+oZQrB7IEl5KdTU1ji7PBERkVZPAeYCnX5vJJPJRERwXypqTnKw8LCTKxMREWn9FGAuUGS3\nQNxtFr5LOlF/GClHw0giIiKOpgBzgdyslp8Wtasg9Xgxvfy7YzO7aT0YERGRZqAAcxFOvzeSm8WN\nPoE9OV52gpzyPCdXJiIi0ropwFwE+zBSYt0wUkRQXwAStKidiIiIQynAXAQ3q4Xo04aRIoJO3Z1a\nw0giIiKOpABzkYb2+d8wUqB7AGFe7diff5DKmkonVyYiItJ6KcBcpMjudcNI8UmnhpHCqaqtJjn/\ngLNLExERabUUYC6Sm9VCdM9gcgrrhpEig+vmwezLTXZyZSIiIq2XAswlcPqidt18O+Nh9SAhJxHD\nMJxcmYiISOukAHMJRHYLpM1Pi9qZTWb6BfYm/2QBmaVZzi5NRESkVVKAuQRsbv8bRjqSVUzET6vy\n6mokERERx3BogElJSWH8+PEsW7bMvu29994jIiKC0tJS+7aPP/6YG2+8kZtvvpkPPvjAkSU5zNDT\nFrXrF9QHEyatByMiIuIgDgswZWVlzJ8/n+HDh9u3rV69mtzcXEJDQ+u97s033+Tdd99l6dKl/POf\n/6SgoMBRZTnMqWGk+KQTeLt50cW3E4cKj1BWVe7s0kRERFodhwUYm83GkiVL6oWV8ePH8+CDD2Iy\nmezb9uzZQ//+/fHx8cHd3Z1Bgwaxa9cuR5XlMKeGkbIL6oaRIoPCqTVqScxLcXZpIiIirY7DAozV\nasXd3b3eNm9v7zNel5OTQ2BgoP1xYGAg2dnZjirLoYactqhdRLDmwYiIiDiK1dkF/FxjLj0OCPDE\narU4rIaQEJ8L2i/G35N3PvuR3ftz+PWNY/Hf60tifjJBwV6YTZovfSlcaG/EsdQX16XeuC715uI4\nPcCEhoaSk5Njf3zixAmio6Mb3Cc/v8xh9YSE+JCdXXzB+/fvHsSOxBPs3pdF34A+bMv8jp2HEunq\n2/kSVnl5utjeiGOoL65LvXFd6k3jNBTynH5aICoqir1791JUVERpaSm7du1iyJAhzi7rgp1+NVLk\nT5dTJ+RoGElERORSctgZmISEBBYsWEBGRgZWq5W4uDhGjBjB1q1byc7OZvbs2URHR/PYY4/x8MMP\nc/fdd2Mymbj//vvx8Wm5p9X6dw+ijVvd1UiTRkZjMVnYl5vElO4TnF2aiIhIq+GwABMZGcnSpUvP\n2H7vvfeesS02NpbY2FhHldKsbG4WonrWDSNl51bTw78bKfkHKDxZjF+blhvMREREXInTh5Bao1NX\nI8UnnyAiqA8AP+pqJBERkUtGAcYB+vcIwuZmrrucOlCXU4uIiFxqCjAO0OanRe1O5JdTWeJBsHsg\niXn7qamtcXZpIiIirYICjIP8bxgpm4jgcCpqKjhYmOrcokRERFoJBRgHOdswkm7uKCIicmkowDhI\nGzcLUT3qhpE8qtriZnZjn9aDERERuSQUYBzo1KJ2u1Py6BPQk+NlJ8gpz3NyVSIiIi2fAowDnRpG\nik86QUSQrkYSERG5VBRgHKiNm4UBPYLJyi8n0OgEaB6MiIjIpaAA42CnhpFSDp8kzKsd+/MPUllT\n6eSqREREWjYFGAcb0D0Im9XMd0nZRASFU1VbTUr+QWeXJSIi0qIpwDhYG5uFAT2CyMorI9TSBYAE\nzYMRERG5KAowzWBo37YAHDtg89gQAAAgAElEQVTaBg+rB/tykzAMw8lViYiItFwKMM3g1DDSzuQc\n+gb2Iq8in8zSLGeXJSIi0mIpwDSD04eR2rt1A3Q5tYiIyMVQgGkmQ366GqnouD8mTAowIiIiF0EB\npplE9QjGZjXzQ3IxXXw7crAwlbKqcmeXJSIi0iIpwDSTNjYL/XsEcTyvjE7u3ak1aknK3+/sskRE\nRFokBZhmdGpRu5O5wQAk5GhVXhERkQuhANOMBvQIws1qJjmlFl+bDz/mJlNr1Dq7LBERkRZHAaYZ\nudusDOgexPHccrp69aC4qoS04gxnlyUiItLiKMA0s1NXI1FU96eGkURERJpOAaaZRfWsG0Y6sr8N\nZpNZtxUQERG5AAowzcw+jJRTRSfPzhwtTqeostjZZYmIiLQoCjBOcGoYyVbeHoB9ucnOLEdERKTF\nUYBxglPDSMdTvQDYp3kwIiIiTaIA4wTuNiv9uwdx4rgFfzd/EvP2U1Nb4+yyREREWgwFGCcZEh4C\nmPCp6UhFTQUHC1OdXZKIiEiLoQDjJFE9grFazORn+AG6O7WIiEhTKMA4iUcbK/27B5Kd7onVZNXl\n1CIiIk2gAONEQ8NDwbDgTweOl2aRW57n7JJERERaBAUYJ4rqWTeMVHYiANAwkoiISGMpwDjRqWGk\nvJ/mwWgYSUREpHEcGmBSUlIYP348y5YtAyAzM5NZs2YxY8YM5s6dS2VlJQCvvfYat956K7fccgtL\nlixxZEkuZ2h4KEalB96mQFLyD1BZU+nskkRERFyewwJMWVkZ8+fPZ/jw4fZtCxcuZMaMGSxfvpwu\nXbqwcuVKUlJS2L59O//5z3/497//zapVq8jOznZUWS7n1DBSdX4wVbXVpOQfdHZJIiIiLs9hAcZm\ns7FkyRJCQ0Pt27Zv3864ceMAiImJYdu2bfj4+HDy5EkqKys5efIkZrMZDw8PR5Xlck4NIxVm+gOa\nByMiItIYVocd2GrFaq1/+PLycmw2GwBBQUFkZ2fTvn17YmNjiYmJoaamhvvvvx9vb+8Gjx0Q4InV\nanFU6YSE+Djs2Gczdmhndi8/gZvJRmJ+MsHB3phMpmatoaVo7t5I46gvrku9cV3qzcVxWIA5H8Mw\nAEhLS2P9+vVs2LCB6upqbr31ViZNmkRQUNA5983PL3NYXSEhPmRnN+/dobu39cZqsWIqDiXbSGfv\nkYO092rbrDW0BM7ojZyf+uK61BvXpd40TkMhr1mvQvL09KSiogKArKwsQkND2bt3L1FRUXh4eODj\n40OfPn1ISUlpzrKczqONlchugZRk1V1OnaCbO4qIiDSoWQPMiBEjiIuLA2DdunWMGjWKzp07k5CQ\nQG1tLVVVVaSkpNCpU6fmLMslDA0PpaYwGNA8GBERkfNx2BBSQkICCxYsICMjA6vVSlxcHC+//DLz\n5s1jxYoVhIWFMW3aNNzc3Bg5ciQzZswA4KabbqJjx46OKstlRfUMxmq4Y60I4GBhKuXV5XhYL5/J\nzCIiIk1hMk5NRmlBHDlu6MxxyYUrfyCh7FvcOh7g7sjbGRQ6wCl1uCqNGbsm9cV1qTeuS71pHJeZ\nAyMNqxtGCgFgX46GkURERM5FAcaFRPUMxlLhh6m6Dftyk6g1ap1dkoiIiEtSgHEhnu5WIrsFU5Uf\nTHFVCWnFGc4uSURExCUpwLiYIeEh1BTUDSPp5o4iIiJnpwDjYqJ7hmAuCQbDpHkwIiIi56AA42I8\n3a1EdG5LTXEAR4rTKKrULHUREZGfU4BxQUPCQ6n9aRjpx9xkJ1cjIiLiehRgXNDAXsEYRXV38dY8\nGBERkTMpwLggT3c3+rXvRG2FBz/mJFNTW+PskkRERFyKAoyLuiK8LbWFIZysPcmhwlRnlyMiIuJS\nFGBc1MBewRiFGkYSERE5GwUYF+Xp7kZ4UA+MGjN7Tvzo7HJERERcigKMC7syPIza4iCyK7LJLc9z\ndjkiIiIuQwHGhdUNI/10c0cNI4mIiNgpwLgwT3c3evr2AmDX8X1OrkZERMR1KMC4uOG9ulNb5s3B\nosNU1lQ5uxwRERGXoADj4gb2rhtGqqWalPwDzi5HRETEJSjAuDgvdzc6e/QAIP5YgpOrERERcQ0K\nMC3AyB59MaqtJOQmYRiGs8sRERFxugsOMKmpqZewDGnI4N7tqC0Kptwo5njZCWeXIyIi4nQNBpi7\n7rqr3uNFixbZ//7MM884piI5g7eHG+3cugKwPe0H5xYjIiLiAhoMMNXV1fUef/vtt/a/ayijeY3s\nMgDDgJ26nFpERKThAGMymeo9Pj20/Pw5cazhfbpglPqRV5NJeXW5s8sRERFxqibNgVFocR5vDzeC\nTJ3BZLA9TWdhRETk8mZt6MnCwkK2bdtmf1xUVMS3336LYRgUFRU5vDipb2hYJOsK97Lt6A+M6TbE\n2eWIiIg4TYMBxtfXt97EXR8fH958803736V5xfTtR9w3NjJqDlNr1GI26Sp4ERG5PDUYYJYuXdpc\ndUgj+Hq2wbemI8Vuh/jh2CGiO/R0dkkiIiJO0eB/wpeUlPDuu+/aH//nP/9h6tSp/Pa3vyUnJ8fR\ntclZ9A/uC8BXh3Y7uRIRERHnaTDAPPPMM+Tm5gJw+PBhXn31VR5//HFGjBjBn/70p2YpUOqb0HcQ\nRq2JQyUHnV2KiIiI0zQYYNLS0nj44YcBiIuLIzY2lhEjRnDrrbfqDIyThPj44FEdQpUtj8PZ2c4u\nR0RExCkaDDCenp72v+/YsYNhw4bZH+uSaufp498HkwnWJ+9ydikiIiJO0WCAqampITc3l6NHj7J7\n925GjhwJQGlpKeXlWkzNWcb1GgRAUn6ykysRERFxjgYDzOzZs5k0aRLXXXcd9913H35+flRUVDBj\nxgymTZt23oOnpKQwfvx4li1bBkBmZiazZs1ixowZzJ07l8rKSgCSkpK44YYbuOGGG+yXacu5dQ8M\nw1rjRUWb4xzPL3F2OSIiIs2uwQAzevRoNm/ezJYtW5g9ezYA7u7uPProo8ycObPBA5eVlTF//nyG\nDx9u37Zw4UJmzJjB8uXL6dKlCytXrgTg6aefZv78+axcuZKDBw/q7M55mEwmunr2xGStZkOibu4o\nIiKXnwYDzLFjx8jOzqaoqIhjx47Z/9e9e3eOHTvW4IFtNhtLliwhNDTUvm379u2MGzcOgJiYGLZt\n20ZOTg5lZWVERERgNpt59dVX8fDwuAQfrXW7qusAAH44kejkSkRERJpfgwvZjR07lm7duhESEgKc\neTPH995779wHtlqxWusfvry8HJvNBkBQUBDZ2dlkZGTg5+fHvHnzSE1NJTY2ljvvvLPBogMCPLFa\nLQ2+5mKEhLj+KsPjA4bwz6TlFFszqLVYaBvoef6dWoGW0JvLkfriutQb16XeXJwGA8yCBQv46KOP\nKC0tZfLkyUyZMoXAwMBL8sanwpBhGKSnp/Pmm2/i7u7OLbfcwsiRI+nVq9c5983PL7skNZxNSIgP\n2dnFDjv+pdTO1olMUyqrN+/hhuGRzi7H4VpSby4n6ovrUm9cl3rTOA2FvAaHkKZOnco777zDX/7y\nF0pKSpg5cyb33HMPa9asoaKiosmFeHp62vfLysoiNDSUoKAgevXqRUBAAB4eHgwePJj9+/c3+diX\noys69Afgu4wEJ1ciIiLSvBp1N8D27dtz3333sXbtWiZOnMhzzz3HVVdd1eQ3GzFiBHFxcQCsW7eO\nUaNG0alTJ0pLSykoKKC2tpbExES6d+/e5GNfjga3jwAg35xGTqEmPouIyOWjwSGkU4qKivj4449Z\ntWoVNTU1/PrXv2bKlCkN7pOQkMCCBQvIyMjAarUSFxfHyy+/zLx581ixYgVhYWH2S7GfeOIJZs+e\njclkYtSoUYSHh1/8J7sMBHkE4msJpNAnl+2JmUwepuAnIiKXB5Nx+szcn9m8eTP//e9/SUhIYMKE\nCUydOpXevXs3Z31n5chxw5Y2Lrki8WO+ztxMQM4onpt+nbPLcaiW1pvLhfriutQb16XeNE5Dc2Aa\nPANzzz330LVrVwYNGkReXh7/+Mc/6j3/wgsvXJoK5YINahfB15mbya45Qk5hOcF+ugRdRERavwYD\nzKnLpPPz8wkICKj3XHp6uuOqkkbr7tcVN5ONWv9svks8wbXDuji7JBEREYdrcBKv2Wzm4Ycf5umn\nn+aZZ56hbdu2XHHFFaSkpPCXv/yluWqUBljMFsIDemNuU863hw46uxwREZFm0eAZmNdee413332X\nHj168MUXX/DMM89QW1uLn58fH3zwQXPVKOcR3bYfe/MSyKw8TG5hBUF+7s4uSURExKHOewamR48e\nAIwbN46MjAx+8Ytf8MYbb9C2bdtmKVDOr19QHwDM/tnEJ59wcjUiIiKO12CAMZlM9R63b9+ea665\nxqEFSdP52nzo6NUBs3c+O5I1N0lERFq/Ri1kd8rPA424jgGh/TCZDY6UpZJX1PRVkkVERFqSBufA\n7N69mzFjxtgf5+bmMmbMGAzDwGQysWnTJgeXJ40VGRTOZ4fXY/HPJj7pBBOu6OzskkRERBymwQDz\n+eefN1cdcpE6+XTA2+pFsX82O5KzFGBERKRVazDAdOjQobnqkItkNpmJCA5n+/GdHC5IJ6+oP4G+\nuhpJRERapybNgRHXFhncFwCLX90wkoiISGulANOK9A3shRkzFv9svtPl1CIi0oopwLQiHlYPevh3\nxexVyMGsbF2NJCIirZYCTCsTERQOJrD45RCfnO3sckRERBxCAaaVsc+DCdA8GBERab0UYFqZdp6h\nBLoHYPXP5UBGvoaRRESkVVKAaWVMJhORQeEY5irMPgX8ddVeCksrnV2WiIjIJaUA0wpFBIUD0KVX\nGUeOF/On9+I5nlfm5KpEREQuHQWYVqh3QA/czFZMfjlMvaobOYUVPL90JwczCp1dmoiIyCWhANMK\n2Sw2egf0JLP0OFcN9ufOa8Mpq6jmz//eze79ujJJRERaPgWYVqp/cD8A3tn3L6L7+vDbm/qDCd5Y\ntZcvd2c4uToREZGLowDTSg1vP4Qr2g0itegof45/g+C21Tw+YxDeHm4sjUtm1dcHMQzD2WWKiIhc\nEAWYVspqtvKLvrcwpdtE8iryeWXnm5TZMnly1mBCAzz4ZOsR3vk0keqaWmeXKiIi0mQKMK2YyWTi\n2m7j+GXEDKqNGhbveYek0u/5/2YNplt7X7YkHOf1lT9QfrLa2aWKiIg0iQLMZWBw22h+N/DXeLt5\nsSJlNXHpa3nk1iiiegSx73AeC5bvoqDkpLPLFBERaTQFmMtEN78uPDpkDu292rIpfQvvJi3lnqm9\nGR0dxtGsEv703k4yc0udXaaIiEijKMBcRoI8Anl48H30DexNQm4Sr3//N6aMDuX6Ud3ILapbK2Z/\neoGzyxQRETkvBZjLjIfVg3sH3MXVHYaTUZLJyzvfZEB/K3dNCqf8ZA0v/+d7duou1iIi4uIUYC5D\nFrOF6b2ncVOv/0dxZQmv7fob3u1ymXvzAMwmE4s+3MsXO9OdXaaIiMg5KcBcpkwmEzGdruLXA+7A\nZDLx94SlZJp/4LEZ0fh42fjX+hQ+2HSAWq0VIyIiLkgB5jLXP7gfDw+6D/82fnx0aC2bC+J4fGYU\nbQM9WfvtUf7+yY9aK0ZERFyOAozQ0SeMx4Y8QGefjnybGc+K1H/xu1vD6dHBl2/3ZfHa+3u0VoyI\niLgUhwaYlJQUxo8fz7JlywDIzMxk1qxZzJgxg7lz51JZWVnv9Q899BDz5s1zZElyDn5tfHlw0G+I\nDolkf8Eh/rbvbe6Y2omBvYJJPJLPC8t2kV+stWJERMQ1OCzAlJWVMX/+fIYPH27ftnDhQmbMmMHy\n5cvp0qULK1eutD+3ZcsWjh496qhypBFsFht3R97ONZ3HcKI8h4XfL2ZCjBcxAzuQnl3C80vjycjR\nWjEiIuJ8DgswNpuNJUuWEBoaat+2fft2xo0bB0BMTAzbtm0DoLKyksWLF3Pvvfc6qhxpJLPJzLSe\nk5gZfjPlNRW8uefv9OxfzI2ju5NbdJIXlu4kJU1rxYiIiHNZHXZgqxWrtf7hy8vLsdlsAAQFBZGd\nXbfeyFtvvcVtt92Gt7d3o44dEOCJ1Wq5tAWfJiTEx2HHbimmhoylR7sOvLL1bZYlvc/1fWP5XfuB\n/PX973llxfc8PGMwI6PCmr0u9cY1qS+uS71xXerNxXFYgDkf46fLc1NTU0lISOCBBx5g+/btjdo3\nP7/MYXWFhPiQnV3ssOO3JG3NYTw88D4W/fAPPkz8nIEhGcy5cQJ/+yiJBe99x63jenHN0E7NVo96\n45rUF9el3rgu9aZxGgp5zXoVkqenJxUVFQBkZWURGhrKpk2bOHbsGNOnT+cPf/gDmzZtYsmSJc1Z\nljSgrVcojw6eQw+/buzO3ktc/vs8ML03vl42/v3Fft7fqLViRESk+TVrgBkxYgRxcXEArFu3jlGj\nRnHnnXeyZs0a3n//fX7/+98zZswYZs+e3ZxlyXl427x4YOBsrmw3mCNFaSw/8g/uuakj7YM8+XzH\nUd7+eB9V1VorRkREmo/DhpASEhJYsGABGRkZWK1W4uLiePnll5k3bx4rVqwgLCyMadOmOert5RJz\nM1uZ1Xc6oZ4hrDn0Oe+k/B+3Tb6FdRvd2JF4gqLSSubc0B9PdzdnlyoiIpcBk2G0vPP/jhw31Ljk\n+e3M2sPSxBVU19ZwfY8pJO30Z2dKNh1CvHjw5igCfd0d8r7qjWtSX1yXeuO61JvGcZk5MNI6DG4b\nxdyBv8HbzYtVB9cQEnGQsYPDyMgu5U9Ld5KeXeLsEkVEpJVTgJEL0s2vM48OeYAwr3Z8lbGVwpAt\nTBvTifzik7ywbBfJR/OdXaKIiLRiCjBywYI8Anho8H30C+zDj3nJ7DWtYeakjlRW1fDKiu/ZkZjl\n7BJFRKSVUoCRi+Jhdec3A+7k6g4jOFZ6nPVF/2Hm/wvBzWrmbx/tI26Hbg8hIiKXngKMXDSL2cIt\nfaZxc6+plFSWsvr4cqZN8cDf28aKjQf494b9WitGREQuKQUYuWTGdBrJbwbcidlkZnXaSkaNL6N9\nsCfr49N466N9VFXXOLtEERFpJRRg5JKKDO7Lw4PvJ6CNPxuObaDHlYfp1dGb75JO8MqKPZRWVDm7\nRBERaQUUYOSS6+DdnkeHzKGLTyd2Zu+mTd+dRPf1JSWtgBeW7SKvqMLZJYqISAunACMO4dfGl98N\n+jXRIf05WHiYvNCNXDXEl2M5pTz3XjxpJ7RWjIiIXDgFGHEYm8XG3ZEzmdAlhuzyHBJtaxh3tTsF\nJZW8+K+dJKbmObtEERFpoRRgxKHMJjNTe1zL7eE3c7Kmku0n1zBuvEFVdS2vvr+Hb/cdd3aJIiLS\nAinASLMYHjaUOdH30MZiY2tRHMPGFWBzM/P2mh9Zu/0ILfCWXCIi4kQKMNJsegf04JEhcwjxCGJn\nwTbCRx3C39fCB18eZPmG/dTWKsSIiEjjKMBIs2rrGcIjQ+bQ078bSUWJBA/6nvbtzHyxM53FHyVQ\nWaW1YkRE5PwUYKTZebt58UD0bK5sN5iMsgzouYXu3WFncjavrPieknKtFSMiIg1TgBGnsJqtzOo7\nnf/XPZaCykLy2m4kPLKS/emFvLBsJzmF5c4uUUREXJgCjDiNyWRiYtex3B15O7VGLUc9v6T/FUVk\n5pbxp6U7OZpV7OwSRUTERSnAiNMNCh3A7wb9Bm+bFwfYSr+RGRSVVPDiv3ax77DWihERkTMpwIhL\n6OrbmUcHP0CYVzsOV+2lx6gUqo1K/vLBHrYmZDq7PBERcTEKMOIygjwCeGjwffQL6kPGyVTaXfk9\nNs+T/P2TRD7dlqq1YkRExE4BRlyKh9Wd3/S/k9EdR5JbmY3XgO34h5by368O8ad/7CD1eJGzSxQR\nERdgdXYBIj9nMVuY3nsqoZ7BrEz5GEu3bYT5DmX7Pti+7zgRXQOYNLwr4Z39MZlMzi5XREScQAFG\nXNaYjiMJdg/knX3/Ij9wG1dNuoKsxPbsO5zPvtR8urX3ZfLwLkT3CsasICMiclkxGS1wYkF2tuMu\nrw0J8XHo8aXpMkoyefuHf5JTkYfFZKGvbyRlaV3Zl3QSgPZBnkwa1oUr+7XFatGoaHPT74zrUm9c\nl3rTOCEhPud8TgHmZ/Slck3VtdUkliayat9aTpTlYMJEuF9fjKwe/JBQTU2tQaBvGyZe0Zmro8Jo\n42ZxdsmXDf3OuC71xnWpN42jANME+lK5rpAQH7JOFPJ9dgLrjnxJWnEGAD19e+Je0Ic9e2qprDLw\n9nBj/JCOjBvcES93NydX3frpd8Z1qTeuS71pnIYCjObASItiNpkZFDqAgSH9ScrbT9yRjewvOADm\nA3Qb1YnA8gj27K5l9TeHWbv9KGOiw5gwtDMBPm2cXbqIiFxCCjDSIplMJvoG9aZvUG8OFR5h3ZGN\n7M1J5ChptBvWlrCaASTsthK3I40vdqYzIrId117ZhbaBns4uXURELgENIf2MTuu5rvP1JqMkk/VH\nNrHzxB5qjVqC3APpaokmZY83J/IqMQGDw0OZPKwLXdqd+7SkNI1+Z1yXeuO61JvG0RyYJtCXynU1\ntjc55blsOPo12zK/o7q2Gl+bD73bDCR1XyBpxysAiOgWyORhXeijtWQumn5nXJd647rUm8ZRgGkC\nfalcV1N7U3iymC/TvuGbjG1U1JzEw+pBP6+BZKWEsv9IXZDpEebLpGFdiNJaMhdMvzOuS71xXepN\n4yjANIG+VK7rQntTVlXO1xlb+TJtMyVVpbiZ3Yj0i6bocEcSUsoBCAv24torO2stmQug3xnXpd64\nLvWmcRoKMJZnn332WUe9cUpKCrfccgtms5kBAwaQmZnJfffdx8qVK/n6668ZN24cFouFzz77jCee\neIKVK1eSnp7O8OHDGzxuWVmlo0rGy6uNQ48vF+5Ce+NmcaOnf3dGdxyBr82H9JJjHC45RKFHCoMi\nvWjnGczBoxXsTMlma0ImZpOJDiHeCjKNpN8Z16XeuC71pnG8vM59BanD/h+6rKyM+fPn1wsjCxcu\nZMaMGSxfvpwuXbqwcuVKysvLefnll3n33XdZsWIFW7du5cCBA44qSy5jNouNMZ1G8uzwx7i973RC\nPIL5If97Ej0+Imp8KlcObkNxWRXLN+zn0UVbWbPlMKUVVc4uW0REzsJhAcZms7FkyRJCQ0Pt27Zv\n3864ceMAiImJYdu2bXh4ePDxxx/j7e2NyWTC39+fgoICR5UlgtVsZXj7ITx15UPMjpxFJ58OJBYk\n8oPlI/rEJDNymBs1tbV8+M1hHlm0lfc3HqCg5KSzyxYRkdM4bB0Yq9WK1Vr/8OXl5dhsNgCCgoLI\nzs4GwNvbG4Dk5GQyMjKIiopyVFkidmaTmejQ/kSFRJKcf4C4I1+Skn8AOEjnkZ1oW9Wf73eb+XzH\nUTbsTGNk//bEXtmZtgFaS0ZExNmctpDdz+cOp6am8sgjj/DKK6/g5tbw8u8BAZ5YrY67101Dk4bE\nuRzVm9DQQYzqM4j9uYdZnRjHdxl7OEoaHYe1Z7jbYPZ858ZX3x/jmz3HGBnVgRtjetKjo79DammJ\n9DvjutQb16XeXJxmDTCenp5UVFTg7u5OVlaWfXjp+PHj3H///bz00kv07dv3vMfJzy9zWI2aGe66\nmqM3/gRzZ5+ZTOgwjvVHNxGf9T3pxicE9gtgjG0QBxN8+eb7DL75PoPI7nVryfTudHmvJaPfGdel\n3rgu9aZxGgp5zXqZxYgRI4iLiwNg3bp1jBo1CoAnn3ySZ599loiIiOYsR+ScwrzbcUe/W3l22GNc\n3WEExZXFbC/6gpM91jNmQjm9u3iScCiPBct38/yynXy/P4falrcigYhIi+WwdWASEhJYsGABGRkZ\nWK1W2rZty8svv8y8efM4efIkYWFhvPDCC6SnpzNt2jQGDBhg3/fOO++0T/Y9G60Dc3lyZm+KKov5\nMm0zX6dvo6KmAneLOwP8BpF3KIy9KSUAdAj2YtKwLgztG3pZXYKt3xnXpd64LvWmcbSQXRPoS+W6\nXKE35dXlfJ2+jS/TNlNcVYKb2coA/4GUp3dh975Sag2DIF93Yq/szKgB7bG5OW6ulqtwhb7I2ak3\nrku9aRwFmCbQl8p1uVJvKmuq2Jb5HRuOfkVeRT5mk5n+Af0xnehJ/A/lVFXX4uPpxjVDOjF2UAc8\n3RuemN6SuVJfpD71xnWpN42jANME+lK5LlfsTU1tDfFZ37Pu6CaOl2YB0C+gL55F4ezcVUXZyWrc\nbRZiBnZgwtBO+Hmfe1XJlsoV+yJ11BvXpd40TkMBxmmXUYu0BhazhSvbD2Zou4HszUkk7shGfsxP\nBBLpeXV3gk5GsmunwdrtR1kfn85V/dsRe2VnQrWWjIjIRVGAEbkEzCYzUSERDAjuR0r+QdYd+ZKk\n/P0c4BCdh3VkqBHFD7vc2PT9Mb7ac4yIboF0CPYiNMCTtgEehAZ4EOjrrjtii4g0kgKMyCVkMpno\nE9iTPoE9OVKUxrojX7Inex9HSadddChRboNI3lN3CXbCobx6+1otZkL83Wkb4ElogAdtA3/6M8CD\nQB93zGaFGxGRUxRgRByki28nZvf/BcdLs1h/5Ct2ZO3ieNnnBPTx5/pRVxBo7oBR5ktOwUmy8ss5\nkV9GVl45mblnLtRotZgI8ff4X7gJ8LCfvQn0VbgRkcuPAoyIg7XzasusftOZ3P0aNhz9mq3HdvB5\n2joA2lhsdPPtQs+O3Rjr343OPp2oqjKRlVfGifxysvL/9+f5wk2o/+lnber+DFK4EZFWSgFGpJkE\nugcwvfdUJnUdz495yRwoOMzBgsMk5e8nKX8/ABaThS6+Henh142e7boR1acrnm4e9mOUlFfVhZq8\n08NN3dmbzNwyOJhb7z0t5lNnbn46YxNYN98mNMCTYIUbEWnBdBn1z+jSNtfVWntTXFnCwcJUDhYc\n5kDBYdJLjlFr1AJgwivEl8UAAB9iSURBVESYdzt6+nerCzX+3fBr43vW49jDTX553RmcgnKy8urC\nTWlF9Rmvt5hNBNvDTd1Zm7YBHoQGehLk2waLuXGrCbfWvrQG6o3rUm8aR5dRi7gwH5s30SGRRIdE\nAlBRXcHhoqP2QJNadJSMkky+St8KQLBHED1/CjM9/LsR4hGEyWTC28MNbw8/eoT5nfEeJeVVZwxJ\nnQo6WXlnDkudM9wEeBDk597ocCMi4ig6A/MzSsWu63LtTVVtNWnF6fYhp4OFqZRXV9if97X50MO/\nGz396gJNB+92mE2NDxinws2J/LL/TSbOL+dEfjkl5VVnvN5iNhHs526fRNyrayA92noT6Ov+/7d3\np8FtXXUfx7+SJXmTbUm25CWO4yVeEqdZ7MSpnaa0UOCB0pauKSUB3jAwHV7AlCWEltKBgUlZhoF2\nCpR2ppMO00DLkpaSFgbC0ydx7CRusyjxviTxKtuSd1uWdJ8XV1acxE6tJI6u4v9nxmNbm4/yv8f+\n5dxzz7ku71dcP0u1z0QDqc3CyEq8YZCDSrukNqqAEqBrtIfmoWCg8bQx5L3w7xJviCM/JTcUaHKS\nszHqr26wdWxy+sIpKffF825mhxsdULLCSmVpBuXFduJjZXBXC6TPaJfUZmEkwIRBDirtktrMTVEU\n+icGaR5qo9nTSounDdfEhcm8Rr2B3OSc0ChNXkoOcYZrHy2ZCTeuES//qu2g+fyQ+vMMejYUplFZ\nmkFpnm1J7cytNdJntEtqszASYMIgB5V2SW0WbmhqmJah9tBpp87RbhTUrq7X6ck2Z6qBxpJPQUou\nSSbzVf+smbr0eSY47Oyh+lQPve4JAJISjFSsSqeyNIO8zCR0stLwDSV9RrukNgsjASYMclBpl9Tm\n6o1PT9A61B4KNWeHz+FT/KH70xMcrLTkBq90yic13rrg1760Loqi0NY9QrWzh5rTvaFTTem2BCpL\n1TBjt8TP93LiOpI+o11Sm4WRABMGOai0S2pz/Xj903QMn6XZ007LUButQ+1M+b2h+62xFgosuaHL\ntzMSHfNODL5SXXz+AM62QaqdPbzf1M+0T708fGV2ClWlGWwscWCON17/NygA6TNaJrVZGAkwYZCD\nSrukNovHH/DTOdodmhjc7GljdHosdH+iIYH8YKBZacljuXkZMfoYYOF1mZjycazBRbWzh/oONwrq\nKsJrC9KoLE1nbUEaRoPMl7mepM9ol9RmYSTAhEEOKu2S2tw4iqLQO+5Sw0ww1AxMukP3m/RG8lJW\nUGDJY+OKUmw4wrrSaXB4kprTvRxy9tDpUoNSQqyBTascVJZmsDI7RXbmvg6kz2iX1GZhJMCEQQ4q\n7ZLaRJZ70kPzrEDTPdYbus8UY6LEWsjq1GJKU4uxxS18Ds3Z3hEOO3s5fLoHz6h6GistJY5bg/Nl\nMlMTr/t7WSqkz2iX1GZhJMCEQQ4q7ZLaaMvo9BitnnbOTZ3j2PmT9I67QvdlJqZTmlpCaWoJBSm5\nodNNVxIIKJw56+bwqR6ONrqY8qqTjHMzkqhck8HmVekkJ5oW7f3cjKTPaJfUZmEkwIRBDirtktpo\n00xd+icGcA404Byop9HdzHRA3X8pLiaWElshpaklrE4txhJ7+VYHl5ry+nm/2UX1qV6cbYMEFAW9\nTkdpno3KNelsKLQTa/zwULTUSZ/RLqnNwkiACYMcVNoltdGmueri9U/T5GnFOVCPc6Ce/lkL6y0z\nZ4ZGZ/KScz50dGZozEvt6V6qnT2096g/J9YUw8YiO7euyWBVjlV21Z6H9BntktosjASYMMhBpV1S\nG21aSF36xl2h0ZkmTyu+4OhMvCGOEluROjpjKyYldv5fVgDdA2NUO3uoPtXLwLC6H5TFbOLW1Rnc\nWppOTvqVn7/USJ/RLqnNwkiACYMcVNoltdGmcOsy5ffS6G7mdDDQzL66aXnSsuDoTDG5yTnzrj0T\nUBSazw9R7ezhyJk+xqfUQJRtT6SyNIPNq9Nlc0mkz2iZ1GZhJMCEQQ4q7ZLaaNO11GXmcu2ZU03N\nnjb8wRWCEw0JF82dmW+7g2mfnxMtA1Q7ezne3I8/oMjmkkHSZ7RLarMwEmDCIAeVdklttOl61mXS\nN0mDu4XTA/U4BxpwT3kA0KEjJymb0tRiStNKyEnKnnN0ZnRimqP1fRxy9sjmkkif0TKpzcJIgAmD\nHFTaJbXRpsWqi6IodI/1hkZnWobaCSjqVgRmYyKrbOqaM6tSizAbL18rJrS5pLOX3sFx4MLmklVr\nMsjNuPk3l5Q+o103Q22Gxrz86+g5EuIMfGrzikX5GRJgwnAzHFQ3K6mNNt2oukz4JmkYbApNBh7y\nDgPq6Exuco46OpNaQnZS1kWjM7M3l6w908vI+NLZXFL6jHZFc23cI1PsrznLgQ86mfYFKMmx8O3H\nyhblZ0mACUM0H1Q3O6mNNkWiLoqi0DnazemBBk4N1NM23BEanUkymoMrApewylZIgjEh9LxIbC6p\nKArKzGdl1m0K6gcXvgaFwKWPmfe5s15XfSqB4IMC6h1kZqQQ8E4vqdNm0SIaf58NDk/yj8Nn+e/x\nLnz+AKnJsdxdmcuWWzIXbR8zCTBhiMaDaqmQ2miTFuoyPj1BvbsJZ389pwcbGPaq7dHr9OQl5wQn\nApeQbc4MnTaaa3PJGL2OpARjKBBcCAnq1xAMBzNB45IAcuExSvC+yNPpwGKOJTUljrTkOFJT4ki9\n5LMsCnjjaaHfLFT/0ARvHz7L/53owudXSEuJ4zNVuVStyVj0cCwBJgzRdFAtNVIbbdJaXQJKgPOj\nXaHLtNuGzhIcoyDFlBwanSmxrSTeoJ46mtlc8kh9H+OTPnQ6QKcj+AmdTqd+BkCHXgfM3D77Maif\nCT72svtnXiP09YXbZu4H1I0sdQABFJ0fRe9TP+t8BHQ+FPwE9D71e4K3zfo6EPw6BhO+IQvjA8l4\n3Hrm+21vjjdeMeAkxhlu+vlCN5rW+s1c+jwTvF3dzsGTPfgDCg5rPJ+pzOXW0vQbNqonASYM0XBQ\nLVVSG23Sel3Gpsc5M9iIc6Ce0wMNjE6ru1/rdXoKUnJDl2lnJWaE/UdaURR8AR9TAS9ev/ox5ffi\n9U/jDcx8Pft2b/Cx0xff5vcyHfAyFbx95nEzC/5dD/b4NJYn5pAWs4xEXzoTo0YGhicZGJqkf3iK\nweHJ0Cm1S8WaYuYNN6nJcaSYTbJ7eJi03G96B8d5q7qd6lO9BBSFDFsC91TlUrHaQYz+xp6OjFiA\naWxs5PHHH+dLX/oS27dvp7u7m29/+9v4/X7sdjs//elPMZlM7Nu3j1deeQW9Xs8jjzzCww8/fMXX\nlQCzNElttCma6hJQApwb6eRUMMx0DJ8Ljc5YYlMoTS3GbDRfCBeXho05QolynU4UmfRGTDEmYmNM\nmIIfsXpT6DZjjFG9T3/JYy55rHqb+lq6eB9H2k/R5G6l2dPGpH8y9PPS4lMpsuRTaC2g0JKPJTaF\n4fFpBoYmQ8Fm5uv+4OeJqbkDlSFGhy1pnoCTEoctKVbm4VxCi/2me2CMtw61c/h0L4oCWWmJ3FOV\ny6YSR8S264hIgBkfH+crX/kKubm5FBcXs337dr773e9y++2386lPfYpf/OIXZGRk8NnPfpb777+f\n119/HaPRyEMPPcSrr76KxWKZ97UlwCxNUhttiua6jHhHQ6MzZwYaGfONz/tYvU5/xQBxaQCZK1Bc\neOzFzzXqDfOuOnwtZtcmoAQ4P9JFk6eVJk8LzZ42JnyzAk2cjZXWfIosBRRa87HFWS97vfFJ34Vw\nExq9ufD98Jh3znboAEtS7JyjNzOnrmJNS2sejpb6TadrlLeqO6g93YuCuqL1vVvyKCu2R3xk7UoB\nZtGWpzSZTLz44ou8+OKLodtqamp45plnALjzzjt5+eWXycvL45ZbbiEpSW1kWVkZdXV1fPSjH12s\npgkhBABJJjMVGWVUZJSF/sB7A9OYYowXjX6YYkwY9NG9mq9epycnOZuc5Gw+lnM7ASVA52g3Te4W\nGj3qCM3h7qMc7j4KQGqclcJgmCm05JMabyMhzkBCnJnljrlXRfZO+xkcmbp45GZW2GntGqa5c2jO\n55rjjXMGnLQUmYezWM71jfLmoXaO1fehADnpZu7dksf6wrSIB5eFWLQeaTAYMBgufvmJiQlMJhMA\nqampuFwu+vv7sdlsocfYbDZcLtdiNUsIIeY08wd+qdDr9CxPWsbypGV8NBRoetTRGXcrTZ5WDvcc\n5XCPGmhscVYKLWqYKbQWkBpnvSxQmIwxZNgSyLAlzPUj8QcCeEa8c47eDAxN0jUwRkfv3KMSCbEG\n1uTb2FjsYE2+jThTdAfKSOroGeHNQ+3UNap/a3Mzkrj3tjzWFaRGVUiM2BEw35mrhZzRsloTMBgW\nb7jxSkNWIrKkNtokddGucGqT7kihjGJAPeV01tPFaVcjp/uaOO1qoqbnGDU9xwBIS7Cx2l7IakcR\npY5CHIlpC/rjl5E+/32KojA06qXPPY7LPUGfezz0dVvXELVn+qg904fJoGdDsYOqtVlUrE7HnGBa\n8HvUkhvdbxrPutn7z0ZqT/cAUJxj5dFPFFNe4gg7uPSPDfLvtkMcaKsmw2zn+3d+fTGafEU3NMAk\nJCQwOTlJXFwcvb29OBwOHA4H/f39ocf09fWxfv36K76O2z3/eeprpaXzkuJiUhttkrpo17XWJpEU\nNlk3scm6iUBRgO6xXprc6hyaJk8r/9tRw/921ADqJOhCSwFF1nxWWvKxx1/9/+at8Qas8UkUZV34\nA68oCuf6Rjna4KKu0UWNs4caZw8xeh0lK6yUF9vZUGgnJTE6wsyN7DfNnUO8ebCdk60DgLpw431b\n8lidq46i9fePLuh1/AE/JwfOcLCrhjMDjSgoxMaYqMyoWLT3EpE5MHOpqqrinXfe4b777uPdd99l\n69atrFu3jieffJLh4WFiYmKoq6tj165dN7JZQgghPoRep2eZOZNl5kzuWL6FgBKgZ6yPxlmnnI70\n1nGktw6YCTQzp5zysccvbIRmPjqdjpz0JHLSk3jg9ny6B8Y41uDiWKMLZ9sgzrZB9uxvoDA7hfJi\nB2VFdlJT4q7X249Kjec8vHmwDWe7G4CSHAv3bMmjJMcSVi36xvup7j5CdfcRRrxq2MlNzmFLVgVl\njnXEGWIXpf0fZtGuQjp16hS7d++ms7MTg8FAeno6P/vZz9i5cydTU1NkZWXxk5/8BKPRyP79+3np\npZfQ6XRs376de++994qvLVchLU1SG22SumjXjayNoij0jPeFJgU3uVtCa+4ApJiSQpdsF1oLcFxj\noJmtf2iCumCYaT4/FLqwPTcjifJiO+XFjnnn5UTKYtamvsPNvoNt1J9Vd3NfnWvlnqpcinMuv7Js\nPtMBH8f7TnKwq5ZGTwsA8YZ4KjLK2JJVwTJz5qK0/VKykF0Y5JexdklttEnqol2RrI2iKPSO99Ho\nbqXZ00qjpyX0v3eAZFNSaHSm0FJAeoL9ugSaodEp6pr6qWvoo/6sB39wc6llaYmUF9spK7Kz3GGO\n+GTV610bRVE40+Fm38F2Gs+pwWVNvo17q/JYmZ2y4NfpHuvlYFcNtd11oWUFCi35VGVVsN5+C6aY\n67tX2IeRABMG+WWsXVIbbZK6aJeWaqMGGpe6Do1bnUMzs2cVqJe0q6ec1Hk06QnhTyy91OjENMeb\n+znW4OJU2yA+v7rSsMMST1mxnfIiO3lZyRG5ZPh61UZRFJxtg+w72B66RH1dQSr3bMkjPyt5Qa/h\n9Xs51neCQ101tA51AGA2JnJr5kaqsipIT7BfczuvlgSYMGipw4uLSW20SeqiXVqujaIo9E30h8JM\nk7uFodmBxmgOLqynTgrOTEy/pkAzMeXjZOsAdY0ujrcMMOX1A2BNiqWs0E5ZsZ2i5Sk3bKn8a62N\noiicaBlg38F22rqHAdhQmMY9W3LJzVhYcDk30snBrlqO9LzPpH8SHTpKbIVUZVWwNm21JtY+kgAT\nBi13+KVOaqNNUhftiqbaKIqCa6I/eJWT+uGZurDondmYSKG1gCJLAcXWAhzXcMpp2ufH2ebmWGMf\nHzT1MzapbpFgjjeyoTCN8mI7q1bYMBoWL8xcbW0UReGDpn72HWwPrZlTXmznnqpcctI//LLsCd8k\nR3s/4FBXDWdHOgF1k9PKrE1UZm4iLd72Ia9wY0mACUM0dfilRmqjTVIX7Yrm2qiBZkCdPxO8dHt2\noJmZFFxsXUmRtYDUONtVBRqfP0DDOQ91wcuzh4LbIcTHxrCuII2yIju35Kde960Owq1NQFGoa3Dx\n5qF2zvWNogM2rXLwmapcsu1zr4w8Q1EU2ofPcrCrlmN9x/H6vejQsSathC1Zm1ltKyZGr82tHCTA\nhCGaO/zNTmqjTVIX7bqZajMzQtPobgl9jExfmBRsi7NSZCmgyKp+WOPm309vPgFFoaVzSL08u8HF\nwLC6V5TJoGdNfirlRXbWrUwlIe7aJ7IutDaBgMLRhj7ePNhOZ/8YOh1sXp3OZypzyUpLvOJzx6bH\nqe2p41BXLV1j6uJ1qXFWKjMrqMzaiCV24ZN7I0UCTBhupg5/s5HaaJPURbtu5trMXLbd4G5W59G4\nWy/ajNMenxoMM+oITbIpvFVvFUXhbO8oxxr7ONbgontAfe0YvY5VuVbKi9SF85KvcuG8D6uNPxCg\n9kwfbx1qp3tgHL1OR2VpOndX5V7xknBFUWj2tHKwq5b3XSfxBXzE6GJYm7aaLVmbKbatXJSNQxeL\nBJgw3MwdPtpJbbRJ6qJdS6k2ob2c3M00elpocrcx6b+w23ZGYnpohKbQmo/ZeOXRi0t19Y9xrNFF\nXYMrNPdEp4OibEvoiiZb8sIXzpuvNv5AgMPOXt461E6ve4IYvY6qNRncXbkCh3X+4DLiHeVw91EO\nddfSN66ubu9ISKMqs4JbMzeSZLryaSatkgAThqXU4aON1EabpC7atZRr4w/4OT/aRYO7mUZ3Cy2e\nNryB6dD9y8yZFAXn0Ky05BFviF/wa7s8E9Q1qgvntcxaOC8vMzm4cJ6d9CuEDbi8Nj5/gOpTPbxV\n3Y7LM0mMXsdtazO5+9YVpFnmbltACdAw2MzBrhpO9J/Gr/gx6A1ssK9lS9YmVlryI77ezbWSABOG\npdzhtU5qo01SF+2S2lzgC/joGD6vzp/xtNA61I4voF59pENHTlJ2cHSmgIKU3AUvj+8ZneL9YJip\n7/AQCP5JzbYnUlZkZ2Oxg2X2xMuCxExtpn0BDp7q5u+HOhgYnsQQo2Pruiw+vXnFvFsheKaGqO46\nSnV3LQOT6jYBWYkZbMnaTEXGBhKM2lp1+FpIgAmDdHjtktpok9RFu6Q285v2T9M2fJbG4AhN+/A5\n/Iq6Noxepyc3eXnwlNNK8lJWLGgF2tGJaT5o6qeu8ZKF86zxlBepWxrkZSah0+lIsSTwl3838vbh\nDgaHpzAa9HxkXRafunUF1qTLw5M/4Mc5UM+h7lpO9dejoGCKMbHRsY6qrM3kJi+P+tGWuUiACYN0\neO2S2miT1EW7pDYLN+X30uppp9GjXuHUMXwOJXhyyKA3kJecE5oUnJu8/EMXeZtZOO9Yg4sTLQNM\nTV9YOK80z8bpdjeDw5OYDHru2LCM/9mcg8V8eXDpnxikuquW6u6jDHnVBetykrLZklVBefp64g03\n94aVEmDCIB1eu6Q22iR10S6pzdWb8E3S4mkLXeV0frQ7FGhMeiP5KbmhQJOTtOyK66h4p/042wep\na3DxQbO6cF6cKYY7NyzjkxU5l13J5Av4ONF/moOdNTS4m1FQiDfEsSl9A1VZm1melLWo711LJMCE\nQTq8dklttEnqol1Sm+tnbHqcJk8rje4WmtwtoXVVAOJiYimw5IXWoMk2Z817qbLPH6CjZ4TVhQ6m\nxqcuuq933MXBrhpquo+FdvLOT8llS1YFZY61mGKu7pLtaHalABP5jQ6EEEIIjUs0JrDevob19jWA\netmyuqCeetm2c6Ae50A9AAmG+OBO2+pVTrP3cTLE6ClYlkJyognX+BRe/zQfuE5ysKuGZk9b6Gd9\ndPlWqrIqyExMj8wbjgISYIQQQogwJZnMlKevozx9HaBeGTR7leDj/U6O9zuBC/s4FQf3cnIk2Dnr\n6eTNxv9wpKeOcd8EAEXWlWzJqmCdfQ1GDWykqHXyLySEEEJcI0tsChUZZVRklAEwMDFIo7uFBncL\nTZ4W3u87wft9JwB1hGYmtCSbkvjEijupyqzAnpAasfZHIwkwQgghxHWWGm+jMt5GZdam0D5ODcH5\nM23DZym2F7AprYw1qas0u5Gi1kmAEUIIIRaRTqfDkWDHkWBn67JbAZlgfT1Ez45OQgghhBBBEmCE\nEEIIEXUkwAghhBAi6kiAEUIIIUTUkQAjhBBCiKgjAUYIIYQQUUcCjBBCCCGijgQYIYQQQkQdCTBC\nCCGEiDoSYIQQQggRdSTACCGEECLqSIARQgghRNSRACOEEEKIqKNTFEWJdCOEEEIIIcIhIzBCCCGE\niDoSYIQQQggRdSTACCGEECLqSIARQgghRNSRACOEEEKIqCMBRgghhBBRRwLMLD/+8Y/Ztm0bjz76\nKCdOnIh0c8Qszz77LNu2bePBBx/k3XffjXRzxCyTk5Pcdddd/PnPf450U8Qs+/bt49577+WBBx7g\nwIEDkW6OAMbGxvja177Gjh07ePTRR3nvvfci3aSoZoh0A7SitraWjo4O9u7dS0tLC7t27WLv3r2R\nbpYADh8+TFNTE3v37sXtdnP//ffziU98ItLNEkEvvPACKSkpkW6GmMXtdvP888/zxhtvMD4+zq9/\n/WvuuOOOSDdryfvLX/5CXl4eTzzxBL29vXzxi19k//79kW5W1JIAE1RdXc1dd90FQEFBAUNDQ4yO\njmI2myPcMrFp0ybWrl0LQHJyMhMTE/j9fmJiYiLcMtHS0kJzc7P8cdSY6upqKisrMZvNmM1mfvjD\nH0a6SQKwWq00NDQAMDw8jNVqjXCLopucQgrq7++/6GCy2Wy4XK4ItkjMiImJISEhAYDXX3+d22+/\nXcKLRuzevZudO3dGuhniEufPn2dycpKvfvWrPPbYY1RXV0e6SQK4++676erq4uMf/zjbt2/nO9/5\nTqSbFNVkBGYessOC9vzrX//i9ddf5+WXX450UwTw17/+lfXr17N8+fJIN0XMwePx8Nxzz9HV1cUX\nvvAF/vOf/6DT6SLdrCXtb3/7G1lZWbz00kvU19eza9cumTt2DSTABDkcDvr7+0Pf9/X1YbfbI9gi\nMdt7773Hb37zG37/+9+TlJQU6eYI4MCBA5w7d44DBw7Q09ODyWQiIyODqqqqSDdtyUtNTWXDhg0Y\nDAZycnJITExkcHCQ1NTUSDdtSaurq+O2224DoKSkhL6+Pjkdfg3kFFLQli1beOeddwBwOp04HA6Z\n/6IRIyMjPPvss/z2t7/FYrFEujki6Je//CVvvPEGf/zjH3n44Yd5/PHHJbxoxG233cbhw4cJBAK4\n3W7Gx8dlvoUGrFixguPHjwPQ2dlJYmKihJdrICMwQWVlZZSWlvLoo4+i0+l4+umnI90kEfT222/j\ndrv5+te/Hrpt9+7dZGVlRbBVQmhXeno6n/zkJ3nkkUcAePLJJ9Hr5f+rkbZt2zZ27drF9u3b8fl8\n/OAHP4h0k6KaTpHJHkIIIYSIMhLJhRBCCBF1JMAIIYQQIupIgBFCCCFE1JEAI4QQQoioIwFGCCGE\nEFFHAowQYlGdP3+eNWvWsGPHjtAuvE888QTDw8MLfo0dO3bg9/sX/PjPfe5z1NTUXE1zhRBRQgKM\nEGLR2Ww29uzZw549e3jttddwOBy88MILC37+nj17ZMEvIcRFZCE7IcQNt2nTJvbu3Ut9fT27d+/G\n5/MxPT3N97//fVavXs2OHTsoKSnhzJkzvPLKK6xevRqn04nX6+Wpp56ip6cHn8/Hfffdx2OPPcbE\nxATf+MY3cLvdrFixgqmpKQB6e3v55je/CcDk5CTbtm3joYceiuRbF0JcJxJghBA3lN/v55///Cfl\n5eV861vf4vnnnycnJ+eyze0SEhJ49dVXL3runj17SE5O5uc//zmTk5N8+tOfZuvWrRw6dIi4uDj2\n7t1LX18fH/vYxwD4xz/+QX5+Ps888wxTU1P86U9/uuHvVwixOCTACCEW3eDgIDt27AAgEAiwceNG\nHnzwQX71q1/xve99L/S40dFRAoEAoG7vcanjx4/zwAMPABAXF8eaNWtwOp00NjZSXl4OqBuz5ufn\nA7B161b+8Ic/sHPnTj7ykY+wbdu2RX2fQogbRwKMEGLRzcyBmW1kZASj0XjZ7TOMRuNlt+l0uou+\nVxQFnU6HoigX7fUzE4IKCgr4+9//zpEjR9i/fz+vvPIKr7322rW+HSGEBsgkXiFERCQlJZGdnc1/\n//tfANra2njuueeu+Jx169bx3nvvATA+Po7T6aS0tJSCggLef/99ALq7u2lrawPgzTff5OTJk1RV\nVfH000/T3d2Nz+dbxHclhLhRZARGCBExu3fv5kc/+hG/+93v8Pl87Ny584qP37FjB0899RSf//zn\n8Xq9PP7442RnZ3Pffffx73//m8cee4zs7GxuueUWAFauXMnTTz+NyWRCURS+/OUvYzDIrz0hbgay\nG7UQQgghoo6cQhJCCCFE1JEAI4QQQoioIwFGCCGEEFFHAowQQgghoo4EGCGEEEJEHQkwQgghhIg6\nEmCEEEIIEXUkwAghhBAi6vw/v9CYc5AIOS4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "P8BLQ7T71JWd" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a possible solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "1hwaFCE71OPZ" + }, + "cell_type": "markdown", + "source": [ + "It's a good idea to keep latitude and longitude normalized:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "djKtt4mz1ZEc", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def location_location_location(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that keeps only the latitude and longitude.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " return processed_features\n", + "\n", + "lll_dataframe = location_location_location(preprocess_features(california_housing_dataframe))\n", + "lll_training_examples = lll_dataframe.head(12000)\n", + "lll_validation_examples = lll_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.05),\n", + " steps=500,\n", + " batch_size=50,\n", + " hidden_units=[10, 10, 5, 5, 5],\n", + " training_examples=lll_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=lll_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "Dw2Mr9JZ1cRi" + }, + "cell_type": "markdown", + "source": [ + "This isn't too bad for just two features. Of course, property values can still vary significantly within short distances." + ] + } + ] +} \ No newline at end of file