From 81db23e104b1b9fe3f5ce8416fa5c6c82beb641c Mon Sep 17 00:00:00 2001 From: Aravindh Krishnamoorthy Date: Sun, 6 Apr 2025 15:20:53 +0100 Subject: [PATCH 1/3] Add Rules 2-8 --- .../2.1 (c+d x)^m (a+b (F^(g (e+f x)))^n)^p.m | 19 ++ ...(g (e+f x)))^n (a+b (F^(g (e+f x)))^n)^p.m | 7 + .../2.3 Miscellaneous exponentials.m | 115 ++++++++++ .../3 Logarithms/3.1.1 (a+b log(c x^n))^p.m | 9 + .../3.1.2 (d x)^m (a+b log(c x^n))^p.m | 15 ++ .../3.1.3 (d+e x^r)^q (a+b log(c x^n))^p.m | 25 +++ ...4 (f x)^m (d+e x^r)^q (a+b log(c x^n))^p.m | 35 ++++ .../3 Logarithms/3.1.5 u (a+b log(c x^n))^p.m | 63 ++++++ ... (A+B log(e ((a+b x) over (c+d x))^n))^p.m | 28 +++ ... (A+B log(e ((a+b x) over (c+d x))^n))^p.m | 24 +++ ...2.3 u log(e (f (a+b x)^p (c+d x)^q)^r)^s.m | 26 +++ .../3.3 u (a+b log(c (d+e x)^n))^p.m | 65 ++++++ .../3.4 u (a+b log(c (d+e x^m)^n))^p.m | 43 ++++ .../3.5 Miscellaneous logarithms.m | 48 +++++ .../4.1 Sine/4.1.0.1 (a sin)^m (b trg)^n.m | 33 +++ .../4.1 Sine/4.1.0.2 (a trg)^m (b tan)^n.m | 34 +++ .../4.1 Sine/4.1.0.3 (a csc)^m (b sec)^n.m | 17 ++ .../4.1 Sine/4.1.1.1 (a+b sin)^n.m | 39 ++++ .../4.1 Sine/4.1.1.2 (g cos)^p (a+b sin)^m.m | 42 ++++ .../4.1 Sine/4.1.1.3 (g tan)^p (a+b sin)^m.m | 32 +++ .../4.1 Sine/4.1.10 (c+d x)^m (a+b sin)^n.m | 40 ++++ .../4.1 Sine/4.1.11 (e x)^m (a+b x^n)^p sin.m | 25 +++ .../4.1.12 (e x)^m (a+b sin(c+d x^n))^p.m | 99 +++++++++ .../4.1.13 (d+e x)^m sin(a+b x+c x^2)^n.m | 31 +++ .../4.1.2.1 (a+b sin)^m (c+d sin)^n.m | 107 ++++++++++ ....1.2.2 (g cos)^p (a+b sin)^m (c+d sin)^n.m | 100 +++++++++ ....1.2.3 (g sin)^p (a+b sin)^m (c+d sin)^n.m | 41 ++++ ....1.3.1 (a+b sin)^m (c+d sin)^n (A+B sin).m | 49 +++++ .../4.1.4.1 (a+b sin)^m (A+B sin+C sin^2).m | 22 ++ ...a+b sin)^m (c+d sin)^n (A+B sin+C sin^2).m | 45 ++++ .../4.1 Sine/4.1.5 trig^m (a cos+b sin)^n.m | 46 ++++ .../4.1 Sine/4.1.6 (a+b cos+c sin)^n.m | 62 ++++++ .../4.1.7 (d trig)^m (a+b (c sin)^n)^p.m | 79 +++++++ .../4.1.8 trig^m (a+b cos^p+c sin^q)^n.m | 11 + .../4.1.9 trig^m (a+b sin^n+c sin^(2 n))^p.m | 55 +++++ .../4.3 Tangent/4.3.1.1 (a+b tan)^n.m | 18 ++ .../4.3.1.2 (d sec)^m (a+b tan)^n.m | 35 ++++ .../4.3.1.3 (d sin)^m (a+b tan)^n.m | 9 + .../4.3.10 (c+d x)^m (a+b tan)^n.m | 31 +++ .../4.3.11 (e x)^m (a+b tan(c+d x^n))^p.m | 27 +++ .../4.3.12 (d+e x)^m tan(a+b x+c x^2)^n.m | 13 ++ .../4.3.2.1 (a+b tan)^m (c+d tan)^n.m | 63 ++++++ ....3.2.3 (g tan)^p (a+b tan)^m (c+d tan)^n.m | 11 + ....3.3.1 (a+b tan)^m (c+d tan)^n (A+B tan).m | 35 ++++ .../4.3.4.1 (a+b tan)^m (A+B tan+C tan^2).m | 18 ++ ...a+b tan)^m (c+d tan)^n (A+B tan+C tan^2).m | 28 +++ .../4.3.7 (d trig)^m (a+b (c tan)^n)^p.m | 28 +++ .../4.3.9 trig^m (a+b tan^n+c tan^(2 n))^p.m | 37 ++++ .../4.5 Secant/4.5.1.1 (a+b sec)^n.m | 24 +++ .../4.5.1.2 (d sec)^n (a+b sec)^m.m | 89 ++++++++ .../4.5.1.3 (d sin)^n (a+b sec)^m.m | 11 + .../4.5.1.4 (d tan)^n (a+b sec)^m.m | 27 +++ .../4.5 Secant/4.5.10 (c+d x)^m (a+b sec)^n.m | 19 ++ .../4.5.11 (e x)^m (a+b sec(c+d x^n))^p.m | 21 ++ .../4.5.2.1 (a+b sec)^m (c+d sec)^n.m | 51 +++++ ....5.2.2 (g sec)^p (a+b sec)^m (c+d sec)^n.m | 49 +++++ .../4.5.3.1 (a+b sec)^m (d sec)^n (A+B sec).m | 49 +++++ .../4.5.4.1 (a+b sec)^m (A+B sec+C sec^2).m | 34 +++ ... (a+b sec)^m (d sec)^n (A+B sec+C sec^2).m | 51 +++++ .../4.5.7 (d trig)^m (a+b (c sec)^n)^p.m | 35 ++++ .../4.5.9 trig^m (a+b sec^n+c sec^(2 n))^p.m | 31 +++ .../(a sin(m x) + b cos(n x))^p.m | 154 ++++++++++++++ .../(a sin(m x) + b cos(n x))^p.pdf | Bin 0 -> 335610 bytes .../4.7.1 Sine normalization rules.m | 29 +++ .../4.7.2 Tangent normalization rules.m | 22 ++ .../4.7.3 Secant normalization rules.m | 27 +++ .../4.7.4 (c trig)^m (d trig)^n.m | 56 +++++ .../4.7.5 Inert trig functions.m | 76 +++++++ ....6 (c+d x)^m trig(a+b x)^n trig(a+b x)^p.m | 31 +++ .../4.7.7 F^(c (a+b x)) trig(d+e x)^n.m | 53 +++++ .../4.7.8 u trig(a+b log(c x^n))^p.m | 55 +++++ .../4.7.9 Active trig functions.m | 107 ++++++++++ .../5.1.1 (a+b arcsin(c x))^n.m | 9 + .../5.1.2 (d x)^m (a+b arcsin(c x))^n.m | 19 ++ .../5.1.3 (d+e x^2)^p (a+b arcsin(c x))^n.m | 37 ++++ ... (f x)^m (d+e x^2)^p (a+b arcsin(c x))^n.m | 65 ++++++ .../5.1.5 u (a+b arcsin(c x))^n.m | 67 ++++++ .../5.1.6 Miscellaneous inverse sine.m | 46 ++++ .../5.3.1 (a+b arctan(c x^n))^p.m | 13 ++ .../5.3.2 (d x)^m (a+b arctan(c x^n))^p.m | 27 +++ .../5.3.3 (d+e x)^m (a+b arctan(c x^n))^p.m | 25 +++ .../5.3.4 u (a+b arctan(c x))^p.m | 166 +++++++++++++++ .../5.3.5 u (a+b arctan(c+d x))^p.m | 23 ++ .../5.3.6 Exponentials of inverse tangent.m | 80 +++++++ .../5.3.7 Miscellaneous inverse tangent.m | 82 ++++++++ .../5.5.1 u (a+b arcsec(c x))^n.m | 39 ++++ .../5.5.2 Miscellaneous inverse secant.m | 27 +++ .../6.1.10 (c+d x)^m (a+b sinh)^n.m | 5 + .../6.1.11 (e x)^m (a+b x^n)^p sinh.m | 25 +++ .../6.1.12 (e x)^m (a+b sinh(c+d x^n))^p.m | 79 +++++++ .../6.1.13 (d+e x)^m sinh(a+b x+c x^2)^n.m | 27 +++ .../6.3.10 (c+d x)^m (a+b tanh)^n.m | 5 + .../6.3.11 (e x)^m (a+b tanh(c+d x^n))^p.m | 23 ++ .../6.3.12 (d+e x)^m tanh(a+b x+c x^2)^n.m | 11 + .../6.5.10 (c+d x)^m (a+b sech)^n.m | 5 + .../6.5.11 (e x)^m (a+b sech(c+d x^n))^p.m | 21 ++ ... (c+d x)^m hyper(a+b x)^n hyper(a+b x)^p.m | 31 +++ .../6.7.7 F^(c (a+b x)) hyper(d+e x)^n.m | 51 +++++ .../6.7.8 u hyper(a+b log(c x^n))^p.m | 57 +++++ .../6.7.9 Active hyperbolic functions.m | 99 +++++++++ .../7.1.1 (a+b arcsinh(c x))^n.m | 6 + .../7.1.2 (d x)^m (a+b arcsinh(c x))^n.m | 10 + .../7.1.3 (d+e x^2)^p (a+b arcsinh(c x))^n.m | 20 ++ ...(f x)^m (d+e x^2)^p (a+b arcsinh(c x))^n.m | 34 +++ .../7.1.5 u (a+b arcsinh(c x))^n.m | 35 ++++ ....6 Miscellaneous inverse hyperbolic sine.m | 24 +++ .../7.2.1 (a+b arccosh(c x))^n.m | 6 + .../7.2.2 (d x)^m (a+b arccosh(c x))^n.m | 10 + .../7.2.3 (d+e x^2)^p (a+b arccosh(c x))^n.m | 28 +++ ...(f x)^m (d+e x^2)^p (a+b arccosh(c x))^n.m | 58 +++++ .../7.2.5 u (a+b arccosh(c x))^n.m | 37 ++++ ... Miscellaneous inverse hyperbolic cosine.m | 29 +++ .../7.3.1 (a+b arctanh(c x^n))^p.m | 13 ++ .../7.3.1 u (a+b arctanh(c x^n))^p.m | 198 ++++++++++++++++++ .../7.3.2 (d x)^m (a+b arctanh(c x^n))^p.m | 27 +++ .../7.3.2 u (a+b arctanh(c+d x))^p.m | 23 ++ .../7.3.3 (d+e x)^m (a+b arctanh(c x^n))^p.m | 25 +++ ...ponentials of inverse hyperbolic tangent.m | 90 ++++++++ ...Miscellaneous inverse hyperbolic tangent.m | 75 +++++++ .../7.3.4 u (a+b arctanh(c x))^p.m | 166 +++++++++++++++ .../7.3.5 u (a+b arctanh(c+d x))^p.m | 23 ++ ...ponentials of inverse hyperbolic tangent.m | 90 ++++++++ ...Miscellaneous inverse hyperbolic tangent.m | 75 +++++++ .../7.5.1 u (a+b arcsech(c x))^n.m | 39 ++++ ... Miscellaneous inverse hyperbolic secant.m | 41 ++++ .../8 Special functions/8.1 Error functions.m | 72 +++++++ .../8.10 Bessel functions.m | 7 + .../8.2 Fresnel integral functions.m | 58 +++++ .../8.3 Exponential integral functions.m | 30 +++ .../8.4 Trig integral functions.m | 34 +++ .../8.5 Hyperbolic integral functions.m | 34 +++ .../8 Special functions/8.6 Gamma functions.m | 28 +++ .../8 Special functions/8.7 Zeta function.m | 8 + .../8.8 Polylogarithm function.m | 31 +++ .../8.9 Product logarithm function.m | 47 +++++ Rubi.m | 164 +++++++++++++++ 136 files changed, 5844 insertions(+) create mode 100755 IntegrationRules/2 Exponentials/2.1 (c+d x)^m (a+b (F^(g (e+f x)))^n)^p.m create mode 100755 IntegrationRules/2 Exponentials/2.2 (c+d x)^m (F^(g (e+f x)))^n (a+b (F^(g (e+f x)))^n)^p.m create mode 100755 IntegrationRules/2 Exponentials/2.3 Miscellaneous exponentials.m create mode 100755 IntegrationRules/3 Logarithms/3.1.1 (a+b log(c x^n))^p.m create mode 100755 IntegrationRules/3 Logarithms/3.1.2 (d x)^m (a+b log(c x^n))^p.m create mode 100755 IntegrationRules/3 Logarithms/3.1.3 (d+e x^r)^q (a+b log(c x^n))^p.m create mode 100755 IntegrationRules/3 Logarithms/3.1.4 (f x)^m (d+e x^r)^q (a+b log(c x^n))^p.m create mode 100755 IntegrationRules/3 Logarithms/3.1.5 u (a+b log(c x^n))^p.m create mode 100755 IntegrationRules/3 Logarithms/3.2.1 (f+g x)^m (A+B log(e ((a+b x) over (c+d x))^n))^p.m create mode 100755 IntegrationRules/3 Logarithms/3.2.2 (f+g x)^m (h+i x)^q (A+B log(e ((a+b x) over (c+d x))^n))^p.m create mode 100755 IntegrationRules/3 Logarithms/3.2.3 u log(e (f (a+b x)^p (c+d x)^q)^r)^s.m create mode 100755 IntegrationRules/3 Logarithms/3.3 u (a+b log(c (d+e x)^n))^p.m create mode 100755 IntegrationRules/3 Logarithms/3.4 u (a+b log(c (d+e x^m)^n))^p.m create mode 100755 IntegrationRules/3 Logarithms/3.5 Miscellaneous logarithms.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.1 (a sin)^m (b trg)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.2 (a trg)^m (b tan)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.3 (a csc)^m (b sec)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.1 (a+b sin)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.2 (g cos)^p (a+b sin)^m.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.3 (g tan)^p (a+b sin)^m.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.10 (c+d x)^m (a+b sin)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.11 (e x)^m (a+b x^n)^p sin.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.12 (e x)^m (a+b sin(c+d x^n))^p.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.13 (d+e x)^m sin(a+b x+c x^2)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.1 (a+b sin)^m (c+d sin)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.2 (g cos)^p (a+b sin)^m (c+d sin)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.3 (g sin)^p (a+b sin)^m (c+d sin)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.3.1 (a+b sin)^m (c+d sin)^n (A+B sin).m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.4.1 (a+b sin)^m (A+B sin+C sin^2).m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.4.2 (a+b sin)^m (c+d sin)^n (A+B sin+C sin^2).m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.5 trig^m (a cos+b sin)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.6 (a+b cos+c sin)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.7 (d trig)^m (a+b (c sin)^n)^p.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.8 trig^m (a+b cos^p+c sin^q)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.1 Sine/4.1.9 trig^m (a+b sin^n+c sin^(2 n))^p.m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.1 (a+b tan)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.2 (d sec)^m (a+b tan)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.3 (d sin)^m (a+b tan)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.10 (c+d x)^m (a+b tan)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.11 (e x)^m (a+b tan(c+d x^n))^p.m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.12 (d+e x)^m tan(a+b x+c x^2)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.2.1 (a+b tan)^m (c+d tan)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.2.3 (g tan)^p (a+b tan)^m (c+d tan)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.3.1 (a+b tan)^m (c+d tan)^n (A+B tan).m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.4.1 (a+b tan)^m (A+B tan+C tan^2).m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.4.2 (a+b tan)^m (c+d tan)^n (A+B tan+C tan^2).m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.7 (d trig)^m (a+b (c tan)^n)^p.m create mode 100755 IntegrationRules/4 Trig functions/4.3 Tangent/4.3.9 trig^m (a+b tan^n+c tan^(2 n))^p.m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.1 (a+b sec)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.2 (d sec)^n (a+b sec)^m.m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.3 (d sin)^n (a+b sec)^m.m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.4 (d tan)^n (a+b sec)^m.m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.10 (c+d x)^m (a+b sec)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.11 (e x)^m (a+b sec(c+d x^n))^p.m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.2.1 (a+b sec)^m (c+d sec)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.2.2 (g sec)^p (a+b sec)^m (c+d sec)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.3.1 (a+b sec)^m (d sec)^n (A+B sec).m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.4.1 (a+b sec)^m (A+B sec+C sec^2).m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.4.2 (a+b sec)^m (d sec)^n (A+B sec+C sec^2).m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.7 (d trig)^m (a+b (c sec)^n)^p.m create mode 100755 IntegrationRules/4 Trig functions/4.5 Secant/4.5.9 trig^m (a+b sec^n+c sec^(2 n))^p.m create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/(a sin(m x) + b cos(n x))^p.m create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/(a sin(m x) + b cos(n x))^p.pdf create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/4.7.1 Sine normalization rules.m create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/4.7.2 Tangent normalization rules.m create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/4.7.3 Secant normalization rules.m create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/4.7.4 (c trig)^m (d trig)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/4.7.5 Inert trig functions.m create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/4.7.6 (c+d x)^m trig(a+b x)^n trig(a+b x)^p.m create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/4.7.7 F^(c (a+b x)) trig(d+e x)^n.m create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/4.7.8 u trig(a+b log(c x^n))^p.m create mode 100755 IntegrationRules/4 Trig functions/4.7 Miscellaneous/4.7.9 Active trig functions.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.1 Inverse sine/5.1.1 (a+b arcsin(c x))^n.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.1 Inverse sine/5.1.2 (d x)^m (a+b arcsin(c x))^n.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.1 Inverse sine/5.1.3 (d+e x^2)^p (a+b arcsin(c x))^n.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.1 Inverse sine/5.1.4 (f x)^m (d+e x^2)^p (a+b arcsin(c x))^n.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.1 Inverse sine/5.1.5 u (a+b arcsin(c x))^n.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.1 Inverse sine/5.1.6 Miscellaneous inverse sine.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.1 (a+b arctan(c x^n))^p.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.2 (d x)^m (a+b arctan(c x^n))^p.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.3 (d+e x)^m (a+b arctan(c x^n))^p.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.4 u (a+b arctan(c x))^p.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.5 u (a+b arctan(c+d x))^p.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.6 Exponentials of inverse tangent.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.7 Miscellaneous inverse tangent.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.5 Inverse secant/5.5.1 u (a+b arcsec(c x))^n.m create mode 100755 IntegrationRules/5 Inverse trig functions/5.5 Inverse secant/5.5.2 Miscellaneous inverse secant.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.10 (c+d x)^m (a+b sinh)^n.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.11 (e x)^m (a+b x^n)^p sinh.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.12 (e x)^m (a+b sinh(c+d x^n))^p.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.13 (d+e x)^m sinh(a+b x+c x^2)^n.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.10 (c+d x)^m (a+b tanh)^n.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.11 (e x)^m (a+b tanh(c+d x^n))^p.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.12 (d+e x)^m tanh(a+b x+c x^2)^n.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.5 Hyperbolic secant/6.5.10 (c+d x)^m (a+b sech)^n.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.5 Hyperbolic secant/6.5.11 (e x)^m (a+b sech(c+d x^n))^p.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.6 (c+d x)^m hyper(a+b x)^n hyper(a+b x)^p.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.7 F^(c (a+b x)) hyper(d+e x)^n.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.8 u hyper(a+b log(c x^n))^p.m create mode 100755 IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.9 Active hyperbolic functions.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.1 (a+b arcsinh(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.2 (d x)^m (a+b arcsinh(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.3 (d+e x^2)^p (a+b arcsinh(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.4 (f x)^m (d+e x^2)^p (a+b arcsinh(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.5 u (a+b arcsinh(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.6 Miscellaneous inverse hyperbolic sine.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.1 (a+b arccosh(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.2 (d x)^m (a+b arccosh(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.3 (d+e x^2)^p (a+b arccosh(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.4 (f x)^m (d+e x^2)^p (a+b arccosh(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.5 u (a+b arccosh(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.6 Miscellaneous inverse hyperbolic cosine.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.1 (a+b arctanh(c x^n))^p.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.1 u (a+b arctanh(c x^n))^p.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.2 (d x)^m (a+b arctanh(c x^n))^p.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.2 u (a+b arctanh(c+d x))^p.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.3 (d+e x)^m (a+b arctanh(c x^n))^p.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.3 Exponentials of inverse hyperbolic tangent.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.4 Miscellaneous inverse hyperbolic tangent.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.4 u (a+b arctanh(c x))^p.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.5 u (a+b arctanh(c+d x))^p.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.6 Exponentials of inverse hyperbolic tangent.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.7 Miscellaneous inverse hyperbolic tangent.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.5 Inverse hyperbolic secant/7.5.1 u (a+b arcsech(c x))^n.m create mode 100755 IntegrationRules/7 Inverse hyperbolic functions/7.5 Inverse hyperbolic secant/7.5.2 Miscellaneous inverse hyperbolic secant.m create mode 100755 IntegrationRules/8 Special functions/8.1 Error functions.m create mode 100755 IntegrationRules/8 Special functions/8.10 Bessel functions.m create mode 100755 IntegrationRules/8 Special functions/8.2 Fresnel integral functions.m create mode 100755 IntegrationRules/8 Special functions/8.3 Exponential integral functions.m create mode 100755 IntegrationRules/8 Special functions/8.4 Trig integral functions.m create mode 100755 IntegrationRules/8 Special functions/8.5 Hyperbolic integral functions.m create mode 100755 IntegrationRules/8 Special functions/8.6 Gamma functions.m create mode 100755 IntegrationRules/8 Special functions/8.7 Zeta function.m create mode 100755 IntegrationRules/8 Special functions/8.8 Polylogarithm function.m create mode 100755 IntegrationRules/8 Special functions/8.9 Product logarithm function.m diff --git a/IntegrationRules/2 Exponentials/2.1 (c+d x)^m (a+b (F^(g (e+f x)))^n)^p.m b/IntegrationRules/2 Exponentials/2.1 (c+d x)^m (a+b (F^(g (e+f x)))^n)^p.m new file mode 100755 index 0000000..0d57eed --- /dev/null +++ b/IntegrationRules/2 Exponentials/2.1 (c+d x)^m (a+b (F^(g (e+f x)))^n)^p.m @@ -0,0 +1,19 @@ + +(* ::Subsection::Closed:: *) +(* 2.1 (c+d x)^m (a+b (F^(g (e+f x)))^n)^p *) +$UseGamma = False; +Int[(c_. + d_.*x_)^m_.*(b_.*F_^(g_.*(e_. + f_.*x_)))^n_., x_Symbol] := (c + d*x)^m*(b*F^(g*(e + f*x)))^n/(f*g*n*Log[F]) - d*m/(f*g*n*Log[F])* Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x)))^n, x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && Not[TrueQ[$UseGamma]] +Int[(c_. + d_.*x_)^m_*(b_.*F_^(g_.*(e_. + f_.*x_)))^n_., x_Symbol] := (c + d*x)^(m + 1)*(b*F^(g*(e + f*x)))^n/(d*(m + 1)) - f*g*n*Log[F]/(d*(m + 1))* Int[(c + d*x)^(m + 1)*(b*F^(g*(e + f*x)))^n, x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && Not[TrueQ[$UseGamma]] +Int[F_^(g_.*(e_. + f_.*x_))/(c_. + d_.*x_), x_Symbol] := F^(g*(e - c*f/d))/d*ExpIntegralEi[f*g*(c + d*x)*Log[F]/d] /; FreeQ[{F, c, d, e, f, g}, x] && Not[TrueQ[$UseGamma]] +Int[(c_. + d_.*x_)^m_.*F_^(g_.*(e_. + f_.*x_)), x_Symbol] := (-d)^m*F^(g*(e - c*f/d))/(f^(m + 1)*g^(m + 1)*Log[F]^(m + 1))* Gamma[m + 1, -f*g*Log[F]/d*(c + d*x)] /; FreeQ[{F, c, d, e, f, g}, x] && IntegerQ[m] +Int[F_^(g_.*(e_. + f_.*x_))/Sqrt[c_. + d_.*x_], x_Symbol] := 2/d*Subst[Int[F^(g*(e - c*f/d) + f*g*x^2/d), x], x, Sqrt[c + d*x]] /; FreeQ[{F, c, d, e, f, g}, x] && Not[TrueQ[$UseGamma]] +Int[(c_. + d_.*x_)^m_*F_^(g_.*(e_. + f_.*x_)), x_Symbol] := -F^(g*(e - c*f/d))*(c + d*x)^ FracPart[ m]/(d*(-f*g*Log[F]/d)^(IntPart[m] + 1)*(-f*g* Log[F]*(c + d*x)/d)^FracPart[m])* Gamma[m + 1, (-f*g*Log[F]/d)*(c + d*x)] /; FreeQ[{F, c, d, e, f, g, m}, x] && Not[IntegerQ[m]] +Int[(c_. + d_.*x_)^m_.*(b_.*F_^(g_.*(e_. + f_.*x_)))^n_, x_Symbol] := (b*F^(g*(e + f*x)))^n/F^(g*n*(e + f*x))* Int[(c + d*x)^m*F^(g*n*(e + f*x)), x] /; FreeQ[{F, b, c, d, e, f, g, m, n}, x] +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*(F_^(g_.*(e_. + f_.*x_)))^n_.)^p_., x_Symbol] := Int[ExpandIntegrand[(c + d*x)^m, (a + b*(F^(g*(e + f*x)))^n)^p, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, m, n}, x] && IGtQ[p, 0] +Int[(c_. + d_.*x_)^m_./(a_ + b_.*(F_^(g_.*(e_. + f_.*x_)))^n_.), x_Symbol] := (c + d*x)^(m + 1)/(a*d*(m + 1)) - b/a*Int[(c + d*x)^ m*(F^(g*(e + f*x)))^n/(a + b*(F^(g*(e + f*x)))^n), x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0] +(* Int[(c_.+d_.*x_)^m_./(a_+b_.*(F_^(g_.*(e_.+f_.*x_)))^n_.),x_Symbol] := -(c+d*x)^m/(a*f*g*n*Log[F])*Log[1+a/(b*(F^(g*(e+f*x)))^n)] + d*m/(a*f*g*n*Log[F])*Int[(c+d*x)^(m-1)*Log[1+a/(b*(F^(g*(e+f*x)))^n) ],x] /; FreeQ[{F,a,b,c,d,e,f,g,n},x] && IGtQ[m,0] *) +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*(F_^(g_.*(e_. + f_.*x_)))^n_.)^p_, x_Symbol] := 1/a*Int[(c + d*x)^m*(a + b*(F^(g*(e + f*x)))^n)^(p + 1), x] - b/a* Int[(c + d*x)^m*(F^(g*(e + f*x)))^n*(a + b*(F^(g*(e + f*x)))^n)^p, x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && ILtQ[p, 0] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*(F_^(g_.*(e_. + f_.*x_)))^n_.)^p_, x_Symbol] := With[{u = IntHide[(a + b*(F^(g*(e + f*x)))^n)^p, x]}, Dist[(c + d*x)^m, u, x] - d*m*Int[(c + d*x)^(m - 1)*u, x]] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0] && LtQ[p, -1] +Int[u_^m_.*(a_. + b_.*(F_^(g_.*v_))^n_.)^p_., x_Symbol] := Int[NormalizePowerOfLinear[u, x]^ m*(a + b*(F^(g*ExpandToSum[v, x]))^n)^p, x] /; FreeQ[{F, a, b, g, n, p}, x] && LinearQ[v, x] && PowerOfLinearQ[u, x] && Not[LinearMatchQ[v, x] && PowerOfLinearMatchQ[u, x]] && IntegerQ[m] +Int[u_^m_.*(a_. + b_.*(F_^(g_.*v_))^n_.)^p_., x_Symbol] := Module[{uu = NormalizePowerOfLinear[u, x], z}, z = If[PowerQ[uu] && FreeQ[uu[[2]], x], uu[[1]]^(m*uu[[2]]), uu^m]; uu^m/z*Int[z*(a + b*(F^(g*ExpandToSum[v, x]))^n)^p, x]] /; FreeQ[{F, a, b, g, m, n, p}, x] && LinearQ[v, x] && PowerOfLinearQ[u, x] && Not[LinearMatchQ[v, x] && PowerOfLinearMatchQ[u, x]] && Not[IntegerQ[m]] +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*(F_^(g_.*(e_. + f_.*x_)))^n_.)^p_., x_Symbol] := Unintegrable[(c + d*x)^m*(a + b*(F^(g*(e + f*x)))^n)^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] diff --git a/IntegrationRules/2 Exponentials/2.2 (c+d x)^m (F^(g (e+f x)))^n (a+b (F^(g (e+f x)))^n)^p.m b/IntegrationRules/2 Exponentials/2.2 (c+d x)^m (F^(g (e+f x)))^n (a+b (F^(g (e+f x)))^n)^p.m new file mode 100755 index 0000000..e53b624 --- /dev/null +++ b/IntegrationRules/2 Exponentials/2.2 (c+d x)^m (F^(g (e+f x)))^n (a+b (F^(g (e+f x)))^n)^p.m @@ -0,0 +1,7 @@ + +(* ::Subsection::Closed:: *) +(* 2.2 (c+d x)^m (F^(g (e+f x)))^n (a+b (F^(g (e+f x)))^n)^p *) +Int[(c_. + d_.*x_)^ m_.*(F_^(g_.*(e_. + f_.*x_)))^ n_./(a_ + b_.*(F_^(g_.*(e_. + f_.*x_)))^n_.), x_Symbol] := (c + d*x)^m/(b*f*g*n*Log[F])*Log[1 + b*(F^(g*(e + f*x)))^n/a] - d*m/(b*f*g*n*Log[F])* Int[(c + d*x)^(m - 1)*Log[1 + b*(F^(g*(e + f*x)))^n/a], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*(F_^(g_.*(e_. + f_.*x_)))^ n_.*(a_. + b_.*(F_^(g_.*(e_. + f_.*x_)))^n_.)^p_., x_Symbol] := (c + d*x)^ m*(a + b*(F^(g*(e + f*x)))^n)^(p + 1)/(b*f*g*n*(p + 1)* Log[F]) - d*m/(b*f*g*n*(p + 1)*Log[F])* Int[(c + d*x)^(m - 1)*(a + b*(F^(g*(e + f*x)))^n)^(p + 1), x] /; FreeQ[{F, a, b, c, d, e, f, g, m, n, p}, x] && NeQ[p, -1] +Int[(c_. + d_.*x_)^m_.*(F_^(g_.*(e_. + f_.*x_)))^ n_.*(a_. + b_.*(F_^(g_.*(e_. + f_.*x_)))^n_.)^p_., x_Symbol] := Unintegrable[(c + d*x)^m*(F^(g*(e + f*x)))^ n*(a + b*(F^(g*(e + f*x)))^n)^p, x] /; FreeQ[{F, a, b, c, d, e, f, g, m, n, p}, x] +Int[(c_. + d_.*x_)^m_.*(k_.*G_^(j_.*(h_. + i_.*x_)))^ q_.*(a_. + b_.*(F_^(g_.*(e_. + f_.*x_)))^n_.)^p_., x_Symbol] := (k*G^(j*(h + i*x)))^q/(F^(g*(e + f*x)))^n* Int[(c + d*x)^m*(F^(g*(e + f*x)))^n*(a + b*(F^(g*(e + f*x)))^n)^p, x] /; FreeQ[{F, a, b, c, d, e, f, g, h, i, j, k, m, n, p, q}, x] && EqQ[f*g*n*Log[F] - i*j*q*Log[G], 0] && NeQ[(k*G^(j*(h + i*x)))^q - (F^(g*(e + f*x)))^n, 0] diff --git a/IntegrationRules/2 Exponentials/2.3 Miscellaneous exponentials.m b/IntegrationRules/2 Exponentials/2.3 Miscellaneous exponentials.m new file mode 100755 index 0000000..3344c1f --- /dev/null +++ b/IntegrationRules/2 Exponentials/2.3 Miscellaneous exponentials.m @@ -0,0 +1,115 @@ + +(* ::Subsection::Closed:: *) +(* 2.3 Miscellaneous exponentials *) +Int[(F_^(c_.*(a_. + b_.*x_)))^n_., x_Symbol] := (F^(c*(a + b*x)))^n/(b*c*n*Log[F]) /; FreeQ[{F, a, b, c, n}, x] +Int[u_*F_^(c_.*v_), x_Symbol] := Int[ExpandIntegrand[u*F^(c*ExpandToSum[v, x]), x], x] /; FreeQ[{F, c}, x] && PolynomialQ[u, x] && LinearQ[v, x] && TrueQ[$UseGamma] +Int[u_*F_^(c_.*v_), x_Symbol] := Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[u, x] && LinearQ[v, x] && Not[TrueQ[$UseGamma]] +Int[u_^m_.*F_^(c_.*v_)*w_, x_Symbol] := With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0], e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, g*u^(m + 1)*F^(c*v)/(b*c*e*Log[F]) /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x] +Int[w_*u_^m_.*F_^(c_.*v_), x_Symbol] := Int[ExpandIntegrand[ w*NormalizePowerOfLinear[u, x]^m*F^(c*ExpandToSum[v, x]), x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x] && IntegerQ[m] && TrueQ[$UseGamma] +Int[w_*u_^m_.*F_^(c_.*v_), x_Symbol] := Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePowerOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x] && IntegerQ[m] && Not[TrueQ[$UseGamma]] +Int[w_*u_^m_.*F_^(c_.*v_), x_Symbol] := Module[{uu = NormalizePowerOfLinear[u, x], z}, z = If[PowerQ[uu] && FreeQ[uu[[2]], x], uu[[1]]^(m*uu[[2]]), uu^m]; uu^m/z*Int[ExpandIntegrand[w*z*F^(c*ExpandToSum[v, x]), x], x]] /; FreeQ[{F, c, m}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x] && Not[IntegerQ[m]] +Int[F_^(c_.*(a_. + b_.*x_))* Log[d_.*x_]^n_.*(e_ + h_.*(f_. + g_.*x_)*Log[d_.*x_]), x_Symbol] := e*x*F^(c*(a + b*x))*Log[d*x]^(n + 1)/(n + 1) /; FreeQ[{F, a, b, c, d, e, f, g, h, n}, x] && EqQ[e - f*h*(n + 1), 0] && EqQ[g*h*(n + 1) - b*c*e*Log[F], 0] && NeQ[n, -1] +Int[x_^m_.*F_^(c_.*(a_. + b_.*x_))* Log[d_.*x_]^n_.*(e_ + h_.*(f_. + g_.*x_)*Log[d_.*x_]), x_Symbol] := e*x^(m + 1)*F^(c*(a + b*x))*Log[d*x]^(n + 1)/(n + 1) /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*(m + 1) - f*h*(n + 1), 0] && EqQ[g*h*(n + 1) - b*c*e*Log[F], 0] && NeQ[n, -1] +Int[F_^(a_. + b_.*(c_. + d_.*x_)), x_Symbol] := F^(a + b*(c + d*x))/(b*d*Log[F]) /; FreeQ[{F, a, b, c, d}, x] +Int[F_^(a_. + b_.*(c_. + d_.*x_)^2), x_Symbol] := F^a*Sqrt[Pi]* Erfi[(c + d*x)*Rt[b*Log[F], 2]]/(2*d*Rt[b*Log[F], 2]) /; FreeQ[{F, a, b, c, d}, x] && PosQ[b] +Int[F_^(a_. + b_.*(c_. + d_.*x_)^2), x_Symbol] := F^a*Sqrt[Pi]* Erf[(c + d*x)*Rt[-b*Log[F], 2]]/(2*d*Rt[-b*Log[F], 2]) /; FreeQ[{F, a, b, c, d}, x] && NegQ[b] +Int[F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := (c + d*x)*F^(a + b*(c + d*x)^n)/d - b*n*Log[F]*Int[(c + d*x)^n*F^(a + b*(c + d*x)^n), x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2/n] && ILtQ[n, 0] +Int[F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := With[{k = Denominator[n]}, k/d* Subst[Int[x^(k - 1)*F^(a + b*x^(k*n)), x], x, (c + d*x)^(1/k)]] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2/n] && Not[IntegerQ[n]] +Int[F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := -F^a*(c + d*x)* Gamma[1/n, -b*(c + d*x)^n*Log[F]]/(d* n*(-b*(c + d*x)^n*Log[F])^(1/n)) /; FreeQ[{F, a, b, c, d, n}, x] && Not[IntegerQ[2/n]] +Int[(e_. + f_.*x_)^m_.*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := (e + f*x)^n*F^(a + b*(c + d*x)^n)/(b*f*n*(c + d*x)^n*Log[F]) /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] && EqQ[d*e - c*f, 0] +Int[F_^(a_. + b_.*(c_. + d_.*x_)^n_)/(e_. + f_.*x_), x_Symbol] := F^a*ExpIntegralEi[b*(c + d*x)^n*Log[F]]/(f*n) /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[d*e - c*f, 0] +Int[(c_. + d_.*x_)^m_.*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := 1/(d*(m + 1))*Subst[Int[F^(a + b*x^2), x], x, (c + d*x)^(m + 1)] /; FreeQ[{F, a, b, c, d, m, n}, x] && EqQ[n, 2*(m + 1)] +Int[(c_. + d_.*x_)^m_.*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := (c + d*x)^(m - n + 1)*F^(a + b*(c + d*x)^n)/(b*d*n*Log[F]) - (m - n + 1)/(b*n*Log[F])* Int[(c + d*x)^(m - n)*F^(a + b*(c + d*x)^n), x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2*(m + 1)/n] && LtQ[0, (m + 1)/n, 5] && IntegerQ[n] && (LtQ[0, n, m + 1] || LtQ[m, n, 0]) +Int[(c_. + d_.*x_)^m_.*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := (c + d*x)^(m - n + 1)*F^(a + b*(c + d*x)^n)/(b*d*n*Log[F]) - (m - n + 1)/(b*n*Log[F])* Int[(c + d*x)^Simplify[m - n]*F^(a + b*(c + d*x)^n), x] /; FreeQ[{F, a, b, c, d, m, n}, x] && IntegerQ[2*Simplify[(m + 1)/n]] && LtQ[0, Simplify[(m + 1)/n], 5] && Not[RationalQ[m]] && SumSimplerQ[m, -n] +Int[(c_. + d_.*x_)^m_.*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := (c + d*x)^(m + 1)*F^(a + b*(c + d*x)^n)/(d*(m + 1)) - b*n*Log[F]/(m + 1)* Int[(c + d*x)^(m + n)*F^(a + b*(c + d*x)^n), x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2*(m + 1)/n] && LtQ[-4, (m + 1)/n, 5] && IntegerQ[ n] && (GtQ[n, 0] && LtQ[m, -1] || GtQ[-n, 0] && LeQ[-n, m + 1]) +Int[(c_. + d_.*x_)^m_.*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := (c + d*x)^(m + 1)*F^(a + b*(c + d*x)^n)/(d*(m + 1)) - b*n*Log[F]/(m + 1)* Int[(c + d*x)^Simplify[m + n]*F^(a + b*(c + d*x)^n), x] /; FreeQ[{F, a, b, c, d, m, n}, x] && IntegerQ[2*Simplify[(m + 1)/n]] && LtQ[-4, Simplify[(m + 1)/n], 5] && Not[RationalQ[m]] && SumSimplerQ[m, n] +Int[(c_. + d_.*x_)^m_.*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := With[{k = Denominator[n]}, k/d* Subst[Int[x^(k*(m + 1) - 1)*F^(a + b*x^(k*n)), x], x, (c + d*x)^(1/k)]] /; FreeQ[{F, a, b, c, d, m, n}, x] && IntegerQ[2*(m + 1)/n] && LtQ[0, (m + 1)/n, 5] && Not[IntegerQ[n]] +Int[(e_. + f_.*x_)^m_.*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := (e + f*x)^m/(c + d*x)^m*Int[(c + d*x)^m*F^(a + b*(c + d*x)^n), x] /; FreeQ[{F, a, b, c, d, e, f, m, n}, x] && EqQ[d*e - c*f, 0] && IntegerQ[2*Simplify[(m + 1)/n]] && Not[IntegerQ[m]] && NeQ[f, d] && NeQ[c*e, 0] +Int[(e_. + f_.*x_)^m_.*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := With[{p = Simplify[(m + 1)/n]}, -F^a*(f/d)^m/(d*n*(-b*Log[F])^p)* Simplify[FunctionExpand[Gamma[p, -b*(c + d*x)^n*Log[F]]]] /; IGtQ[p, 0]] /; FreeQ[{F, a, b, c, d, e, f, m, n}, x] && EqQ[d*e - c*f, 0] && Not[TrueQ[$UseGamma]] +Int[(e_. + f_.*x_)^m_.*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := (*-F^a*(e+f*x)^(m+1)/(f*n)*ExpIntegralE[1-(m+1)/n,-b*(c+d*x)^n*Log[F] ] *) -F^a*(e + f*x)^(m + 1)/(f*n*(-b*(c + d*x)^n*Log[F])^((m + 1)/n))* Gamma[(m + 1)/n, -b*(c + d*x)^n*Log[F]] /; FreeQ[{F, a, b, c, d, e, f, m, n}, x] && EqQ[d*e - c*f, 0] +Int[(e_. + f_.*x_)^m_*F_^(a_. + b_.*(c_. + d_.*x_)^2), x_Symbol] := f*(e + f*x)^(m - 1)*F^(a + b*(c + d*x)^2)/(2*b*d^2*Log[F]) + (d*e - c*f)/d*Int[(e + f*x)^(m - 1)*F^(a + b*(c + d*x)^2), x] - (m - 1)*f^2/(2*b*d^2*Log[F])* Int[(e + f*x)^(m - 2)*F^(a + b*(c + d*x)^2), x] /; FreeQ[{F, a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && FractionQ[m] && GtQ[m, 1] +Int[(e_. + f_.*x_)^m_*F_^(a_. + b_.*(c_. + d_.*x_)^2), x_Symbol] := f*(e + f*x)^(m + 1)*F^(a + b*(c + d*x)^2)/((m + 1)*f^2) + 2*b*d*(d*e - c*f)*Log[F]/(f^2*(m + 1))* Int[(e + f*x)^(m + 1)*F^(a + b*(c + d*x)^2), x] - 2*b*d^2*Log[F]/(f^2*(m + 1))* Int[(e + f*x)^(m + 2)*F^(a + b*(c + d*x)^2), x] /; FreeQ[{F, a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && LtQ[m, -1] +Int[(e_. + f_.*x_)^m_*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := (e + f*x)^(m + 1)*F^(a + b*(c + d*x)^n)/(f*(m + 1)) - b*d*n*Log[F]/(f*(m + 1))* Int[(e + f*x)^(m + 1)*(c + d*x)^(n - 1)*F^(a + b*(c + d*x)^n), x] /; FreeQ[{F, a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && IGtQ[n, 2] && LtQ[m, -1] +Int[F_^(a_. + b_./(c_. + d_.*x_))/(e_. + f_.*x_), x_Symbol] := d/f*Int[F^(a + b/(c + d*x))/(c + d*x), x] - (d*e - c*f)/f*Int[F^(a + b/(c + d*x))/((c + d*x)*(e + f*x)), x] /; FreeQ[{F, a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] +Int[(e_. + f_.*x_)^m_*F_^(a_. + b_./(c_. + d_.*x_)), x_Symbol] := (e + f*x)^(m + 1)*F^(a + b/(c + d*x))/(f*(m + 1)) + b*d*Log[F]/(f*(m + 1))* Int[(e + f*x)^(m + 1)*F^(a + b/(c + d*x))/(c + d*x)^2, x] /; FreeQ[{F, a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && ILtQ[m, -1] +Int[F_^(a_. + b_.*(c_. + d_.*x_)^n_)/(e_. + f_.*x_), x_Symbol] := Unintegrable[F^(a + b*(c + d*x)^n)/(e + f*x), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && NeQ[d*e - c*f, 0] +Int[u_^m_.*F_^v_, x_Symbol] := Int[ExpandToSum[u, x]^m*F^ExpandToSum[v, x], x] /; FreeQ[{F, m}, x] && LinearQ[u, x] && BinomialQ[v, x] && Not[LinearMatchQ[u, x] && BinomialMatchQ[v, x]] +Int[u_*F_^(a_. + b_.*(c_. + d_.*x_)^n_), x_Symbol] := Int[ExpandLinearProduct[F^(a + b*(c + d*x)^n), u, c, d, x], x] /; FreeQ[{F, a, b, c, d, n}, x] && PolynomialQ[u, x] +Int[u_.*F_^(a_. + b_.*v_), x_Symbol] := Int[u*F^(a + b*NormalizePowerOfLinear[v, x]), x] /; FreeQ[{F, a, b}, x] && PolynomialQ[u, x] && PowerOfLinearQ[v, x] && Not[PowerOfLinearMatchQ[v, x]] +(* Int[u_.*F_^(a_.+b_.*v_^n_),x_Symbol] := Int[u*F^(a+b*ExpandToSum[v,x]^n),x] /; FreeQ[{F,a,b,n},x] && PolynomialQ[u,x] && LinearQ[v,x] && Not[LinearMatchQ[v,x]] *) +(* Int[u_.*F_^u_,x_Symbol] := Int[u*F^ExpandToSum[u,x],x] /; FreeQ[F,x] && PolynomialQ[u,x] && BinomialQ[u,x] && Not[BinomialMatchQ[u,x]] *) +Int[F_^(a_. + b_./(c_. + d_.*x_))/((e_. + f_.*x_)*(g_. + h_.*x_)), x_Symbol] := -d/(f*(d*g - c*h))* Subst[Int[F^(a - b*h/(d*g - c*h) + d*b*x/(d*g - c*h))/x, x], x, (g + h*x)/(c + d*x)] /; FreeQ[{F, a, b, c, d, e, f}, x] && EqQ[d*e - c*f, 0] +Int[(g_. + h_.*x_)^m_.*F_^(e_. + f_.*(a_. + b_.*x_)/(c_. + d_.*x_)), x_Symbol] := F^(e + f*b/d)*Int[(g + h*x)^m, x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m}, x] && EqQ[b*c - a*d, 0] +Int[(g_. + h_.*x_)^m_.*F_^(e_. + f_.*(a_. + b_.*x_)/(c_. + d_.*x_)), x_Symbol] := Int[(g + h*x)^m*F^((d*e + b*f)/d - f*(b*c - a*d)/(d*(c + d*x))), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m}, x] && NeQ[b*c - a*d, 0] && EqQ[d*g - c*h, 0] +Int[F_^(e_. + f_.*(a_. + b_.*x_)/(c_. + d_.*x_))/(g_. + h_.*x_), x_Symbol] := d/h*Int[F^(e + f*(a + b*x)/(c + d*x))/(c + d*x), x] - (d*g - c*h)/h* Int[F^(e + f*(a + b*x)/(c + d*x))/((c + d*x)*(g + h*x)), x] /; FreeQ[{F, a, b, c, d, e, f, g, h}, x] && NeQ[b*c - a*d, 0] && NeQ[d*g - c*h, 0] +Int[(g_. + h_.*x_)^m_*F_^(e_. + f_.*(a_. + b_.*x_)/(c_. + d_.*x_)), x_Symbol] := (g + h*x)^(m + 1)*F^(e + f*(a + b*x)/(c + d*x))/(h*(m + 1)) - f*(b*c - a*d)*Log[F]/(h*(m + 1))* Int[(g + h*x)^(m + 1)*F^(e + f*(a + b*x)/(c + d*x))/(c + d*x)^2, x] /; FreeQ[{F, a, b, c, d, e, f, g, h}, x] && NeQ[b*c - a*d, 0] && NeQ[d*g - c*h, 0] && ILtQ[m, -1] +Int[F_^(e_. + f_.*(a_. + b_.*x_)/(c_. + d_.*x_))/((g_. + h_.*x_)*(i_. + j_.*x_)), x_Symbol] := -d/(h*(d*i - c*j))* Subst[Int[ F^(e + f*(b*i - a*j)/(d*i - c*j) - (b*c - a*d)*f*x/(d*i - c*j))/ x, x], x, (i + j*x)/(c + d*x)] /; FreeQ[{F, a, b, c, d, e, f, g, h}, x] && EqQ[d*g - c*h, 0] +Int[F_^(a_. + b_.*x_ + c_.*x_^2), x_Symbol] := F^(a - b^2/(4*c))*Int[F^((b + 2*c*x)^2/(4*c)), x] /; FreeQ[{F, a, b, c}, x] +Int[F_^v_, x_Symbol] := Int[F^ExpandToSum[v, x], x] /; FreeQ[F, x] && QuadraticQ[v, x] && Not[QuadraticMatchQ[v, x]] +Int[(d_. + e_.*x_)*F_^(a_. + b_.*x_ + c_.*x_^2), x_Symbol] := e*F^(a + b*x + c*x^2)/(2*c*Log[F]) /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*F_^(a_. + b_.*x_ + c_.*x_^2), x_Symbol] := e*(d + e*x)^(m - 1)*F^(a + b*x + c*x^2)/(2*c*Log[F]) - (m - 1)*e^2/(2*c*Log[F])* Int[(d + e*x)^(m - 2)*F^(a + b*x + c*x^2), x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0] && GtQ[m, 1] +Int[F_^(a_. + b_.*x_ + c_.*x_^2)/(d_. + e_.*x_), x_Symbol] := 1/(2*e)*F^(a - b^2/(4*c))* ExpIntegralEi[(b + 2*c*x)^2*Log[F]/(4*c)] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*F_^(a_. + b_.*x_ + c_.*x_^2), x_Symbol] := (d + e*x)^(m + 1)*F^(a + b*x + c*x^2)/(e*(m + 1)) - 2*c*Log[F]/(e^2*(m + 1))* Int[(d + e*x)^(m + 2)*F^(a + b*x + c*x^2), x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0] && LtQ[m, -1] +Int[(d_. + e_.*x_)*F_^(a_. + b_.*x_ + c_.*x_^2), x_Symbol] := e*F^(a + b*x + c*x^2)/(2*c*Log[F]) - (b*e - 2*c*d)/(2*c)*Int[F^(a + b*x + c*x^2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*F_^(a_. + b_.*x_ + c_.*x_^2), x_Symbol] := e*(d + e*x)^(m - 1)*F^(a + b*x + c*x^2)/(2*c*Log[F]) - (b*e - 2*c*d)/(2*c)* Int[(d + e*x)^(m - 1)*F^(a + b*x + c*x^2), x] - (m - 1)*e^2/(2*c*Log[F])* Int[(d + e*x)^(m - 2)*F^(a + b*x + c*x^2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && GtQ[m, 1] +Int[(d_. + e_.*x_)^m_*F_^(a_. + b_.*x_ + c_.*x_^2), x_Symbol] := (d + e*x)^(m + 1)*F^(a + b*x + c*x^2)/(e*(m + 1)) - (b*e - 2*c*d)*Log[F]/(e^2*(m + 1))* Int[(d + e*x)^(m + 1)*F^(a + b*x + c*x^2), x] - 2*c*Log[F]/(e^2*(m + 1))* Int[(d + e*x)^(m + 2)*F^(a + b*x + c*x^2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && LtQ[m, -1] +Int[(d_. + e_.*x_)^m_.*F_^(a_. + b_.*x_ + c_.*x_^2), x_Symbol] := Unintegrable[(d + e*x)^m*F^(a + b*x + c*x^2), x] /; FreeQ[{F, a, b, c, d, e, m}, x] +Int[u_^m_.*F_^v_, x_Symbol] := Int[ExpandToSum[u, x]^m*F^ExpandToSum[v, x], x] /; FreeQ[{F, m}, x] && LinearQ[u, x] && QuadraticQ[v, x] && Not[LinearMatchQ[u, x] && QuadraticMatchQ[v, x]] +Int[x_^m_.*F_^(e_.*(c_. + d_.*x_))*(a_. + b_.*F_^v_)^p_, x_Symbol] := With[{u = IntHide[F^(e*(c + d*x))*(a + b*F^v)^p, x]}, Dist[x^m, u, x] - m*Int[x^(m - 1)*u, x]] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[v, 2*e*(c + d*x)] && GtQ[m, 0] && ILtQ[p, 0] +Int[(F_^(e_.*(c_. + d_.*x_)))^ n_.*(a_ + b_.*(F_^(e_.*(c_. + d_.*x_)))^n_.)^p_., x_Symbol] := 1/(d*e*n*Log[F])* Subst[Int[(a + b*x)^p, x], x, (F^(e*(c + d*x)))^n] /; FreeQ[{F, a, b, c, d, e, n, p}, x] +Int[(G_^(h_. (f_. + g_.*x_)))^ m_.*(a_ + b_.*(F_^(e_.*(c_. + d_.*x_)))^n_.)^p_., x_Symbol] := (G^(h*(f + g*x)))^m/(F^(e*(c + d*x)))^n* Int[(F^(e*(c + d*x)))^n*(a + b*(F^(e*(c + d*x)))^n)^p, x] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, m, n, p}, x] && EqQ[d*e*n*Log[F], g*h*m*Log[G]] +Int[G_^(h_. (f_. + g_.*x_))*(a_ + b_.*F_^(e_.*(c_. + d_.*x_)))^p_., x_Symbol] := With[{m = FullSimplify[g*h*Log[G]/(d*e*Log[F])]}, Denominator[m]*G^(f*h - c*g*h/d)/(d*e*Log[F])* Subst[Int[x^(Numerator[m] - 1)*(a + b*x^Denominator[m])^p, x], x, F^(e*(c + d*x)/Denominator[m])] /; LeQ[m, -1] || GeQ[m, 1]] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x] +Int[G_^(h_. (f_. + g_.*x_))*(a_ + b_.*F_^(e_.*(c_. + d_.*x_)))^p_., x_Symbol] := With[{m = FullSimplify[d*e*Log[F]/(g*h*Log[G])]}, Denominator[m]/(g*h*Log[G])* Subst[Int[ x^(Denominator[m] - 1)*(a + b*F^(c*e - d*e*f/g)*x^Numerator[m])^p, x], x, G^(h*(f + g*x)/Denominator[m])] /; LtQ[m, -1] || GtQ[m, 1]] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x] +Int[G_^(h_. (f_. + g_.*x_))*(a_ + b_.*F_^(e_.*(c_. + d_.*x_)))^p_., x_Symbol] := Int[Expand[G^(h*(f + g*x))*(a + b*F^(e*(c + d*x)))^p, x], x] /; FreeQ[{F, G, a, b, c, d, e, f, g, h}, x] && IGtQ[p, 0] +Int[G_^(h_. (f_. + g_.*x_))*(a_ + b_.*F_^(e_.*(c_. + d_.*x_)))^p_, x_Symbol] := a^p*G^(h*(f + g*x))/(g*h*Log[G])* Hypergeometric2F1[-p, g*h*Log[G]/(d*e*Log[F]), g*h*Log[G]/(d*e*Log[F]) + 1, Simplify[-b/a*F^(e*(c + d*x))]] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x] && (ILtQ[p, 0] || GtQ[a, 0]) +Int[G_^(h_. (f_. + g_.*x_))*(a_ + b_.*F_^(e_.*(c_. + d_.*x_)))^p_, x_Symbol] := (a + b*F^(e*(c + d*x)))^p/(1 + (b/a)*F^(e*(c + d*x)))^p* Int[G^(h*(f + g*x))*(1 + b/a*F^(e*(c + d*x)))^p, x] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x] && Not[ILtQ[p, 0] || GtQ[a, 0]] +Int[G_^(h_. u_)*(a_ + b_.*F_^(e_.*v_))^p_, x_Symbol] := Int[G^(h*ExpandToSum[u, x])*(a + b*F^(e*ExpandToSum[v, x]))^p, x] /; FreeQ[{F, G, a, b, e, h, p}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] +(* Int[(c_.+d_.*x_)^m_.*F_^(g_.*(e_.+f_.*x_))/(a_+b_.*F_^(h_.*(e_.+f_. *x_))),x_Symbol] := 1/b*Int[(c+d*x)^m*F^((g-h)*(e+f*x)),x] - a/b*Int[(c+d*x)^m*F^((g-h)*(e+f*x))/(a+b*F^(h*(e+f*x))),x] /; FreeQ[{F,a,b,c,d,e,f,g,h,m},x] && LeQ[0,g/h-1,g/h] *) +(* Int[(c_.+d_.*x_)^m_.*F_^(g_.*(e_.+f_.*x_))/(a_+b_.*F_^(h_.*(e_.+f_. *x_))),x_Symbol] := 1/a*Int[(c+d*x)^m*F^(g*(e+f*x)),x] - b/a*Int[(c+d*x)^m*F^((g+h)*(e+f*x))/(a+b*F^(h*(e+f*x))),x] /; FreeQ[{F,a,b,c,d,e,f,g,h,m},x] && LeQ[g/h,g/h+1,0] *) +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*F_^u_)^p_.*(c_. + d_.*F_^v_)^q_., x_Symbol] := With[{w = ExpandIntegrand[(e + f*x)^m, (a + b*F^u)^p*(c + d*F^v)^q, x]}, Int[w, x] /; SumQ[w]] /; FreeQ[{F, a, b, c, d, e, f, m}, x] && IntegersQ[p, q] && LinearQ[{u, v}, x] && RationalQ[Simplify[u/v]] +Int[G_^(h_. (f_. + g_.*x_))* H_^(t_. (r_. + s_.*x_))*(a_ + b_.*F_^(e_.*(c_. + d_.*x_)))^p_., x_Symbol] := With[{m = FullSimplify[(g*h*Log[G] + s*t*Log[H])/(d*e*Log[F])]}, Denominator[m]*G^(f*h - c*g*h/d)*H^(r*t - c*s*t/d)/(d*e*Log[F])* Subst[Int[x^(Numerator[m] - 1)*(a + b*x^Denominator[m])^p, x], x, F^(e*(c + d*x)/Denominator[m])] /; RationalQ[m]] /; FreeQ[{F, G, H, a, b, c, d, e, f, g, h, r, s, t, p}, x] +Int[G_^(h_. (f_. + g_.*x_))* H_^(t_. (r_. + s_.*x_))*(a_ + b_.*F_^(e_.*(c_. + d_.*x_)))^p_., x_Symbol] := G^((f - c*g/d)*h)* Int[H^(t*(r + s*x))*(b + a*F^(-e*(c + d*x)))^p, x] /; FreeQ[{F, G, H, a, b, c, d, e, f, g, h, r, s, t}, x] && EqQ[d*e*p*Log[F] + g*h*Log[G], 0] && IntegerQ[p] +Int[G_^(h_. (f_. + g_.*x_))* H_^(t_. (r_. + s_.*x_))*(a_ + b_.*F_^(e_.*(c_. + d_.*x_)))^p_., x_Symbol] := Int[Expand[ G^(h*(f + g*x))*H^(t*(r + s*x))*(a + b*F^(e*(c + d*x)))^p, x], x] /; FreeQ[{F, G, H, a, b, c, d, e, f, g, h, r, s, t}, x] && IGtQ[p, 0] +Int[G_^(h_. (f_. + g_.*x_))* H_^(t_. (r_. + s_.*x_))*(a_ + b_.*F_^(e_.*(c_. + d_.*x_)))^p_, x_Symbol] := a^p*G^(h*(f + g*x))*H^(t*(r + s*x))/(g*h*Log[G] + s*t*Log[H])* Hypergeometric2F1[-p, (g*h*Log[G] + s*t*Log[H])/(d*e* Log[F]), (g*h*Log[G] + s*t*Log[H])/(d*e*Log[F]) + 1, Simplify[-b/a*F^(e*(c + d*x))]] /; FreeQ[{F, G, H, a, b, c, d, e, f, g, h, r, s, t}, x] && ILtQ[p, 0] +Int[G_^(h_. (f_. + g_.*x_))* H_^(t_. (r_. + s_.*x_))*(a_ + b_.*F_^(e_.*(c_. + d_.*x_)))^p_, x_Symbol] := G^(h*(f + g*x))* H^(t*(r + s*x))*(a + b*F^(e*(c + d*x)))^ p/((g*h*Log[G] + s*t*Log[H])*((a + b*F^(e*(c + d*x)))/a)^p)* Hypergeometric2F1[-p, (g*h*Log[G] + s*t*Log[H])/(d*e* Log[F]), (g*h*Log[G] + s*t*Log[H])/(d*e*Log[F]) + 1, Simplify[-b/a*F^(e*(c + d*x))]] /; FreeQ[{F, G, H, a, b, c, d, e, f, g, h, r, s, t, p}, x] && Not[IntegerQ[p]] +Int[G_^(h_. u_)*H_^(t_. w_)*(a_ + b_.*F_^(e_.*v_))^p_, x_Symbol] := Int[G^(h*ExpandToSum[u, x])* H^(t*ExpandToSum[w, x])*(a + b*F^(e*ExpandToSum[v, x]))^p, x] /; FreeQ[{F, G, H, a, b, e, h, t, p}, x] && LinearQ[{u, v, w}, x] && Not[LinearMatchQ[{u, v, w}, x]] +Int[F_^(e_.*(c_. + d_.*x_))*(a_.*x_^n_. + b_.*F_^(e_.*(c_. + d_.*x_)))^p_., x_Symbol] := (a*x^n + b*F^(e*(c + d*x)))^(p + 1)/(b*d*e*(p + 1)*Log[F]) - a*n/(b*d*e*Log[F])* Int[x^(n - 1)*(a*x^n + b*F^(e*(c + d*x)))^p, x] /; FreeQ[{F, a, b, c, d, e, n, p}, x] && NeQ[p, -1] +Int[x_^m_.* F_^(e_.*(c_. + d_.*x_))*(a_.*x_^n_. + b_.*F_^(e_.*(c_. + d_.*x_)))^ p_., x_Symbol] := x^m*(a*x^n + b*F^(e*(c + d*x)))^(p + 1)/(b*d*e*(p + 1)*Log[F]) - a*n/(b*d*e*Log[F])* Int[x^(m + n - 1)*(a*x^n + b*F^(e*(c + d*x)))^p, x] - m/(b*d*e*(p + 1)*Log[F])* Int[x^(m - 1)*(a*x^n + b*F^(e*(c + d*x)))^(p + 1), x] /; FreeQ[{F, a, b, c, d, e, m, n, p}, x] && NeQ[p, -1] +Int[(f_. + g_.*x_)^m_./(a_. + b_.*F_^u_ + c_.*F_^v_), x_Symbol] := With[{q = Rt[b^2 - 4*a*c, 2]}, 2*c/q*Int[(f + g*x)^m/(b - q + 2*c*F^u), x] - 2*c/q*Int[(f + g*x)^m/(b + q + 2*c*F^u), x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[m, 0] +Int[(f_. + g_.*x_)^m_.*F_^u_/(a_. + b_.*F_^u_ + c_.*F_^v_), x_Symbol] := With[{q = Rt[b^2 - 4*a*c, 2]}, 2*c/q*Int[(f + g*x)^m*F^u/(b - q + 2*c*F^u), x] - 2*c/q*Int[(f + g*x)^m*F^u/(b + q + 2*c*F^u), x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[m, 0] +Int[(f_. + g_.*x_)^m_.*(h_ + i_.*F_^u_)/(a_. + b_.*F_^u_ + c_.*F_^v_), x_Symbol] := With[{q = Rt[b^2 - 4*a*c, 2]}, (Simplify[(2*c*h - b*i)/q] + i)* Int[(f + g*x)^m/(b - q + 2*c*F^u), x] - (Simplify[(2*c*h - b*i)/q] - i)* Int[(f + g*x)^m/(b + q + 2*c*F^u), x]] /; FreeQ[{F, a, b, c, f, g, h, i}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[m, 0] +Int[x_^m_./(a_.*F_^(c_. + d_.*x_) + b_.*F_^v_), x_Symbol] := With[{u = IntHide[1/(a*F^(c + d*x) + b*F^v), x]}, x^m*u - m*Int[x^(m - 1)*u, x]] /; FreeQ[{F, a, b, c, d}, x] && EqQ[v, -(c + d*x)] && GtQ[m, 0] +Int[u_/(a_ + b_.*F_^v_ + c_.*F_^w_), x_Symbol] := Int[u*F^v/(c + a*F^v + b*F^(2*v)), x] /; FreeQ[{F, a, b, c}, x] && EqQ[w, -v] && LinearQ[v, x] && If[RationalQ[Coefficient[v, x, 1]], GtQ[Coefficient[v, x, 1], 0], LtQ[LeafCount[v], LeafCount[w]]] +Int[F_^(g_.*(d_. + e_.*x_)^n_.)/(a_. + b_.*x_ + c_.*x_^2), x_Symbol] := Int[ExpandIntegrand[F^(g*(d + e*x)^n), 1/(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e, g, n}, x] +Int[F_^(g_.*(d_. + e_.*x_)^n_.)/(a_ + c_.*x_^2), x_Symbol] := Int[ExpandIntegrand[F^(g*(d + e*x)^n), 1/(a + c*x^2), x], x] /; FreeQ[{F, a, c, d, e, g, n}, x] +Int[u_^m_.*F_^(g_.*(d_. + e_.*x_)^n_.)/(a_. + b_.*x_ + c_*x_^2), x_Symbol] := Int[ExpandIntegrand[F^(g*(d + e*x)^n), u^m/(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e, g, n}, x] && PolynomialQ[u, x] && IntegerQ[m] +Int[u_^m_.*F_^(g_.*(d_. + e_.*x_)^n_.)/(a_ + c_*x_^2), x_Symbol] := Int[ExpandIntegrand[F^(g*(d + e*x)^n), u^m/(a + c*x^2), x], x] /; FreeQ[{F, a, c, d, e, g, n}, x] && PolynomialQ[u, x] && IntegerQ[m] +Int[F_^((a_. + b_.*x_^4)/x_^2), x_Symbol] := Sqrt[Pi]*Exp[2*Sqrt[-a*Log[F]]*Sqrt[-b*Log[F]]]* Erf[(Sqrt[-a*Log[F]] + Sqrt[-b*Log[F]]*x^2)/x]/ (4*Sqrt[-b*Log[F]]) - Sqrt[Pi]*Exp[-2*Sqrt[-a*Log[F]]*Sqrt[-b*Log[F]]]* Erf[(Sqrt[-a*Log[F]] - Sqrt[-b*Log[F]]*x^2)/x]/ (4*Sqrt[-b*Log[F]]) /; FreeQ[{F, a, b}, x] +Int[x_^m_.*(E^x_ + x_^m_.)^n_, x_Symbol] := -(E^x + x^m)^(n + 1)/(n + 1) + Int[(E^x + x^m)^(n + 1), x] + m*Int[x^(m - 1)*(E^x + x^m)^n, x] /; RationalQ[m, n] && GtQ[m, 0] && LtQ[n, 0] && NeQ[n, -1] +Int[u_.*F_^(a_.*(v_. + b_.*Log[z_])), x_Symbol] := Int[u*F^(a*v)*z^(a*b*Log[F]), x] /; FreeQ[{F, a, b}, x] +Int[F_^(f_.*(a_. + b_.*Log[c_.*(d_. + e_.*x_)^n_.]^2)), x_Symbol] := (d + e*x)/(e*n*(c*(d + e*x)^n)^(1/n))* Subst[Int[E^(a*f*Log[F] + x/n + b*f*Log[F]*x^2), x], x, Log[c*(d + e*x)^n]] /; FreeQ[{F, a, b, c, d, e, f, n}, x] +Int[(g_. + h_.*x_)^m_.* F_^(f_.*(a_. + b_.*Log[c_.*(d_. + e_.*x_)^n_.]^2)), x_Symbol] := (g + h*x)^(m + 1)/(h*n*(c*(d + e*x)^n)^((m + 1)/n))* Subst[Int[E^(a*f*Log[F] + ((m + 1)*x)/n + b*f*Log[F]*x^2), x], x, Log[c*(d + e*x)^n]] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*g - d*h, 0] +Int[(g_. + h_.*x_)^m_.* F_^(f_.*(a_. + b_.*Log[c_.*(d_. + e_.*x_)^n_.]^2)), x_Symbol] := 1/e^(m + 1)* Subst[Int[ ExpandIntegrand[F^(f*(a + b*Log[c*x^n]^2)), (e*g - d*h + h*x)^m, x], x], x, d + e*x] /; FreeQ[{F, a, b, c, d, e, f, g, h, n}, x] && IGtQ[m, 0] +Int[(g_. + h_.*x_)^m_.* F_^(f_.*(a_. + b_.*Log[c_.*(d_. + e_.*x_)^n_.]^2)), x_Symbol] := Unintegrable[(g + h*x)^m*F^(f*(a + b*Log[c*(d + e*x)^n]^2)), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x] +Int[F_^(f_.*(a_. + b_.*Log[c_.*(d_. + e_.*x_)^n_.])^2), x_Symbol] := c^(2*a*b*f*Log[F])* Int[(d + e*x)^(2*a*b*f*n*Log[F])* F^(a^2*f + b^2*f*Log[c*(d + e*x)^n]^2), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && IntegerQ[2*a*b*f*Log[F]] +Int[F_^(f_.*(a_. + b_.*Log[c_.*(d_. + e_.*x_)^n_.])^2), x_Symbol] := (c*(d + e*x)^n)^(2*a*b*f*Log[F])/(d + e*x)^(2*a*b*f*n*Log[F])* Int[(d + e*x)^(2*a*b*f*n*Log[F])* F^(a^2*f + b^2*f*Log[c*(d + e*x)^n]^2), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && Not[IntegerQ[2*a*b*f*Log[F]]] +Int[(g_. + h_.*x_)^m_.* F_^(f_.*(a_. + b_.*Log[c_.*(d_. + e_.*x_)^n_.])^2), x_Symbol] := h^m*c^(2*a*b*f*Log[F])/e^m* Int[(d + e*x)^(m + 2*a*b*f*n*Log[F])* F^(a^2*f + b^2*f*Log[c*(d + e*x)^n]^2), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*g - d*h, 0] && IntegerQ[2*a*b*f*Log[F]] && (IntegerQ[m] || EqQ[h, e]) +Int[(g_. + h_.*x_)^m_.* F_^(f_.*(a_. + b_.*Log[c_.*(d_. + e_.*x_)^n_.])^2), x_Symbol] := (g + h*x)^ m*(c*(d + e*x)^n)^(2*a*b*f*Log[F])/(d + e*x)^(m + 2*a*b*f*n*Log[F])* Int[(d + e*x)^(m + 2*a*b*f*n*Log[F])* F^(a^2*f + b^2*f*Log[c*(d + e*x)^n]^2), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*g - d*h, 0] +Int[(g_. + h_.*x_)^m_.* F_^(f_.*(a_. + b_.*Log[c_.*(d_. + e_.*x_)^n_.])^2), x_Symbol] := 1/e^(m + 1)* Subst[Int[ ExpandIntegrand[F^(f*(a + b*Log[c*x^n])^2), (e*g - d*h + h*x)^m, x], x], x, d + e*x] /; FreeQ[{F, a, b, c, d, e, f, g, h, n}, x] && IGtQ[m, 0] +Int[(g_. + h_.*x_)^m_.* F_^(f_.*(a_. + b_.*Log[c_.*(d_. + e_.*x_)^n_.])^2), x_Symbol] := Unintegrable[(g + h*x)^m*F^(f*(a + b*Log[c*(d + e*x)^n])^2), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x] +Int[Log[a_ + b_.*(F_^(e_.*(c_. + d_.*x_)))^n_.], x_Symbol] := 1/(d*e*n*Log[F])* Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0] +Int[Log[a_ + b_.*(F_^(e_.*(c_. + d_.*x_)))^n_.], x_Symbol] := x*Log[a + b*(F^(e*(c + d*x)))^n] - b*d*e*n*Log[F]* Int[x*(F^(e*(c + d*x)))^n/(a + b*(F^(e*(c + d*x)))^n), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && Not[GtQ[a, 0]] +(* Int[u_.*(a_.*F_^v_)^n_,x_Symbol] := a^n*Int[u*F^(n*v),x] /; FreeQ[{F,a},x] && IntegerQ[n] *) +Int[u_.*(a_.*F_^v_)^n_, x_Symbol] := (a*F^v)^n/F^(n*v)*Int[u*F^(n*v), x] /; FreeQ[{F, a, n}, x] && Not[IntegerQ[n]] +Int[u_, x_Symbol] := With[{v = FunctionOfExponential[u, x]}, v/D[v, x]* Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v]] /; FunctionOfExponentialQ[u, x] && Not[ MatchQ[u, w_*(a_.*v_^n_)^m_ /; FreeQ[{a, m, n}, x] && IntegerQ[m*n]]] && Not[ MatchQ[u, E^(c_.*(a_. + b_.*x))*F_[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]] +Int[u_.*(a_.*F_^v_ + b_.*F_^w_)^n_, x_Symbol] := Int[u*F^(n*v)*(a + b*F^ExpandToSum[w - v, x])^n, x] /; FreeQ[{F, a, b, n}, x] && ILtQ[n, 0] && LinearQ[{v, w}, x] +Int[u_.*(a_.*F_^v_ + b_.*G_^w_)^n_, x_Symbol] := Int[u*F^(n*v)*(a + b*E^ExpandToSum[Log[G]*w - Log[F]*v, x])^n, x] /; FreeQ[{F, G, a, b, n}, x] && ILtQ[n, 0] && LinearQ[{v, w}, x] +Int[u_.*(a_.*F_^v_ + b_.*F_^w_)^n_, x_Symbol] := (a*F^v + b*F^w)^n/(F^(n*v)*(a + b*F^ExpandToSum[w - v, x])^n)* Int[u*F^(n*v)*(a + b*F^ExpandToSum[w - v, x])^n, x] /; FreeQ[{F, a, b, n}, x] && Not[IntegerQ[n]] && LinearQ[{v, w}, x] +Int[u_.*(a_.*F_^v_ + b_.*G_^w_)^n_, x_Symbol] := (a*F^v + b*G^w)^ n/(F^(n*v)*(a + b*E^ExpandToSum[Log[G]*w - Log[F]*v, x])^n)* Int[u*F^(n*v)*(a + b*E^ExpandToSum[Log[G]*w - Log[F]*v, x])^n, x] /; FreeQ[{F, G, a, b, n}, x] && Not[IntegerQ[n]] && LinearQ[{v, w}, x] +Int[u_.*F_^v_*G_^w_, x_Symbol] := With[{z = v*Log[F] + w*Log[G]}, Int[u*NormalizeIntegrand[E^z, x], x] /; BinomialQ[z, x] || PolynomialQ[z, x] && LeQ[Exponent[z, x], 2]] /; FreeQ[{F, G}, x] +Int[F_^u_*(v_ + w_)*y_., x_Symbol] := With[{z = v*y/(Log[F]*D[u, x])}, F^u*z /; EqQ[D[z, x], w*y]] /; FreeQ[F, x] +Int[F_^u_*v_^n_.*w_, x_Symbol] := With[{z = Log[F]*v*D[u, x] + (n + 1)*D[v, x]}, Coefficient[w, x, Exponent[w, x]]/ Coefficient[z, x, Exponent[z, x]]*F^u*v^(n + 1) /; EqQ[Exponent[w, x], Exponent[z, x]] && EqQ[w*Coefficient[z, x, Exponent[z, x]], z*Coefficient[w, x, Exponent[w, x]]]] /; FreeQ[{F, n}, x] && PolynomialQ[u, x] && PolynomialQ[v, x] && PolynomialQ[w, x] +Int[(a_. + b_.*F_^(c_.*Sqrt[d_. + e_.*x_]/Sqrt[f_. + g_.*x_]))^ n_./(A_. + B_.*x_ + C_.*x_^2), x_Symbol] := 2*e*g/(C*(e*f - d*g))* Subst[Int[(a + b*F^(c*x))^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x]] /; FreeQ[{a, b, c, d, e, f, g, A, B, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[B*e*g - C*(e*f + d*g), 0] && IGtQ[n, 0] +Int[(a_. + b_.*F_^(c_.*Sqrt[d_. + e_.*x_]/Sqrt[f_. + g_.*x_]))^ n_./(A_ + C_.*x_^2), x_Symbol] := 2*e*g/(C*(e*f - d*g))* Subst[Int[(a + b*F^(c*x))^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x]] /; FreeQ[{a, b, c, d, e, f, g, A, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] && IGtQ[n, 0] +Int[(a_. + b_.*F_^(c_.*Sqrt[d_. + e_.*x_]/Sqrt[f_. + g_.*x_]))^ n_/(A_. + B_.*x_ + C_.*x_^2), x_Symbol] := Unintegrable[(a + b*F^(c*Sqrt[d + e*x]/Sqrt[f + g*x]))^ n/(A + B*x + C*x^2), x] /; FreeQ[{a, b, c, d, e, f, g, A, B, C, F, n}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[B*e*g - C*(e*f + d*g), 0] && Not[IGtQ[n, 0]] +Int[(a_. + b_.*F_^(c_.*Sqrt[d_. + e_.*x_]/Sqrt[f_. + g_.*x_]))^ n_/(A_ + C_.*x_^2), x_Symbol] := Unintegrable[(a + b*F^(c*Sqrt[d + e*x]/Sqrt[f + g*x]))^ n/(A + C*x^2), x] /; FreeQ[{a, b, c, d, e, f, g, A, C, F, n}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] && Not[IGtQ[n, 0]] diff --git a/IntegrationRules/3 Logarithms/3.1.1 (a+b log(c x^n))^p.m b/IntegrationRules/3 Logarithms/3.1.1 (a+b log(c x^n))^p.m new file mode 100755 index 0000000..405ae8b --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.1.1 (a+b log(c x^n))^p.m @@ -0,0 +1,9 @@ + +(* ::Subsection::Closed:: *) +(* 3.1.1 (a+b log(c x^n))^p *) +Int[Log[c_.*x_^n_.], x_Symbol] := x*Log[c*x^n] - n*x /; FreeQ[{c, n}, x] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := x*(a + b*Log[c*x^n])^p - b*n*p*Int[(a + b*Log[c*x^n])^(p - 1), x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_, x_Symbol] := x*(a + b*Log[c*x^n])^(p + 1)/(b*n*(p + 1)) - 1/(b*n*(p + 1))*Int[(a + b*Log[c*x^n])^(p + 1), x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] && IntegerQ[2*p] +Int[1/Log[c_.*x_], x_Symbol] := LogIntegral[c*x]/c /; FreeQ[c, x] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_, x_Symbol] := 1/(n*c^(1/n))*Subst[Int[E^(x/n)*(a + b*x)^p, x], x, Log[c*x^n]] /; FreeQ[{a, b, c, p}, x] && IntegerQ[1/n] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_, x_Symbol] := x/(n*(c*x^n)^(1/n))* Subst[Int[E^(x/n)*(a + b*x)^p, x], x, Log[c*x^n]] /; FreeQ[{a, b, c, n, p}, x] diff --git a/IntegrationRules/3 Logarithms/3.1.2 (d x)^m (a+b log(c x^n))^p.m b/IntegrationRules/3 Logarithms/3.1.2 (d x)^m (a+b log(c x^n))^p.m new file mode 100755 index 0000000..76e8cb0 --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.1.2 (d x)^m (a+b log(c x^n))^p.m @@ -0,0 +1,15 @@ + +(* ::Subsection::Closed:: *) +(* 3.1.2 (d x)^m (a+b log(c x^n))^p *) +Int[(a_. + b_.*Log[c_.*x_^n_.])/x_, x_Symbol] := (a + b*Log[c*x^n])^2/(2*b*n) /; FreeQ[{a, b, c, n}, x] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := 1/(b*n)*Subst[Int[x^p, x], x, a + b*Log[c*x^n]] /; FreeQ[{a, b, c, n, p}, x] +Int[(d_.*x_)^m_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := b*(d*x)^(m + 1)*Log[c*x^n]/(d*(m + 1)) /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && EqQ[a*(m + 1) - b*n, 0] +Int[(d_.*x_)^m_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := (d*x)^(m + 1)*(a + b*Log[c*x^n])/(d*(m + 1)) - b*n*(d*x)^(m + 1)/(d*(m + 1)^2) /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] +Int[(d_.*x_)^m_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := (d*x)^(m + 1)*(a + b*Log[c*x^n])^p/(d*(m + 1)) - b*n*p/(m + 1)*Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0] +Int[(d_.*x_)^m_.*(a_. + b_.*Log[c_.*x_^n_.])^p_, x_Symbol] := (d*x)^(m + 1)*(a + b*Log[c*x^n])^(p + 1)/(b*d*n*(p + 1)) - (m + 1)/(b*n*(p + 1))*Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1] +Int[x_^m_./Log[c_.*x_^n_], x_Symbol] := 1/n*Subst[Int[1/Log[c*x], x], x, x^n] /; FreeQ[{c, m, n}, x] && EqQ[m, n - 1] +Int[(d_*x_)^m_./Log[c_.*x_^n_], x_Symbol] := (d*x)^m/x^m*Int[x^m/Log[c*x^n], x] /; FreeQ[{c, d, m, n}, x] && EqQ[m, n - 1] +Int[x_^m_.*(a_. + b_.*Log[c_.*x_])^p_, x_Symbol] := 1/c^(m + 1)*Subst[Int[E^((m + 1)*x)*(a + b*x)^p, x], x, Log[c*x]] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m] +Int[(d_.*x_)^m_.*(a_. + b_.*Log[c_.*x_^n_.])^p_, x_Symbol] := (d*x)^(m + 1)/(d*n*(c*x^n)^((m + 1)/n))* Subst[Int[E^((m + 1)/n*x)*(a + b*x)^p, x], x, Log[c*x^n]] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[(d_.*x_^q_)^m_*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := (d*x^q)^m/x^(m*q)*Int[x^(m*q)*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] +Int[(d1_.*x_^q1_)^m1_*(d2_.*x_^q2_)^m2_*(a_. + b_.*Log[c_.*x_^n_.])^ p_., x_Symbol] := (d1*x^q1)^m1*(d2*x^q2)^m2/x^(m1*q1 + m2*q2)* Int[x^(m1*q1 + m2*q2)*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d1, d2, m1, m2, n, p, q1, q2}, x] diff --git a/IntegrationRules/3 Logarithms/3.1.3 (d+e x^r)^q (a+b log(c x^n))^p.m b/IntegrationRules/3 Logarithms/3.1.3 (d+e x^r)^q (a+b log(c x^n))^p.m new file mode 100755 index 0000000..33e962d --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.1.3 (d+e x^r)^q (a+b log(c x^n))^p.m @@ -0,0 +1,25 @@ + +(* ::Subsection::Closed:: *) +(* 3.1.3 (d+e x^r)^q (a+b log(c x^n))^p *) +Int[(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[(d + e*x^r)^q, x]}, u*(a + b*Log[c*x^n]) - b*n*Int[SimplifyIntegrand[u/x, x], x]] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] +Int[(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[(d + e*x^r)^q, x]}, Dist[(a + b*Log[c*x^n]), u] - b*n*Int[SimplifyIntegrand[u/x, x], x]] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] +Int[(d_ + e_.*x_^r_.)^q_*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := x*(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])/d - b*n/d*Int[(d + e*x^r)^(q + 1), x] /; FreeQ[{a, b, c, d, e, n, q, r}, x] && EqQ[r*(q + 1) + 1, 0] +(* Int[(a_.+b_.*Log[c_.*x_^n_.])^p_./(d_+e_.*x_^r_.),x_Symbol] := 1/e*Int[(a+b*Log[c*x^n])^p/x^r,x] - d/e*Int[(a+b*Log[c*x^n])^p/(x^r*(d+e*x^r)),x] /; FreeQ[{a,b,c,d,e,n,r},x] && IGtQ[p,0] && IGtQ[r,0] *) +Int[Log[c_.*x_]/(d_ + e_.*x_), x_Symbol] := -1/e*PolyLog[2, 1 - c*x] /; FreeQ[{c, d, e}, x] && EqQ[e + c*d, 0] +Int[(a_. + b_.*Log[c_.*x_])/(d_ + e_.*x_), x_Symbol] := (a + b*Log[-c*d/e])*Log[d + e*x]/e + b*Int[Log[-e*x/d]/(d + e*x), x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[-c*d/e, 0] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_./(d_ + e_.*x_), x_Symbol] := Log[1 + e*x/d]*(a + b*Log[c*x^n])^p/e - b*n*p/e*Int[Log[1 + e*x/d]*(a + b*Log[c*x^n])^(p - 1)/x, x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_./(d_ + e_.*x_)^2, x_Symbol] := x*(a + b*Log[c*x^n])^p/(d*(d + e*x)) - b*n*p/d*Int[(a + b*Log[c*x^n])^(p - 1)/(d + e*x), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && GtQ[p, 0] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := (d + e*x)^(q + 1)*(a + b*Log[c*x^n])^p/(e*(q + 1)) - b*n*p/(e*(q + 1))* Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^(p - 1))/x, x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || IntegersQ[2*p, 2*q] && Not[IGtQ[q, 0]] || EqQ[p, 2] && NeQ[q, 1]) +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_, x_Symbol] := x*(d + e*x)^q*(a + b*Log[c*x^n])^(p + 1)/(b*n*(p + 1)) + d*q/(b*n*(p + 1))* Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^(p + 1), x] - (q + 1)/(b*n*(p + 1))* Int[(d + e*x)^q*(a + b*Log[c*x^n])^(p + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && LtQ[p, -1] && GtQ[q, 0] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := x*(d + e*x^2)^q*(a + b*Log[c*x^n])/(2*q + 1) - b*n/(2*q + 1)*Int[(d + e*x^2)^q, x] + 2*d*q/(2*q + 1)*Int[(d + e*x^2)^(q - 1)*(a + b*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, e, n}, x] && GtQ[q, 0] +Int[(a_. + b_.*Log[c_.*x_^n_.])/(d_ + e_.*x_^2)^(3/2), x_Symbol] := x*(a + b*Log[c*x^n])/(d*Sqrt[d + e*x^2]) - b*n/d*Int[1/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, n}, x] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := -x*(d + e*x^2)^(q + 1)*(a + b*Log[c*x^n])/(2*d*(q + 1)) + b*n/(2*d*(q + 1))*Int[(d + e*x^2)^(q + 1), x] + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, e, n}, x] && LtQ[q, -1] +Int[(a_. + b_.*Log[c_.*x_^n_.])/(d_ + e_.*x_^2), x_Symbol] := With[{u = IntHide[1/(d + e*x^2), x]}, u*(a + b*Log[c*x^n]) - b*n*Int[u/x, x]] /; FreeQ[{a, b, c, d, e, n}, x] +Int[(a_. + b_.*Log[c_.*x_^n_.])/Sqrt[d_ + e_.*x_^2], x_Symbol] := ArcSinh[Rt[e, 2]*x/Sqrt[d]]*(a + b*Log[c*x^n])/Rt[e, 2] - b*n/Rt[e, 2]*Int[ArcSinh[Rt[e, 2]*x/Sqrt[d]]/x, x] /; FreeQ[{a, b, c, d, e, n}, x] && GtQ[d, 0] && PosQ[e] +Int[(a_. + b_.*Log[c_.*x_^n_.])/Sqrt[d_ + e_.*x_^2], x_Symbol] := ArcSin[Rt[-e, 2]*x/Sqrt[d]]*(a + b*Log[c*x^n])/Rt[-e, 2] - b*n/Rt[-e, 2]*Int[ArcSin[Rt[-e, 2]*x/Sqrt[d]]/x, x] /; FreeQ[{a, b, c, d, e, n}, x] && GtQ[d, 0] && NegQ[e] +Int[(a_. + b_.*Log[c_.*x_^n_.])/Sqrt[d_ + e_.*x_^2], x_Symbol] := Sqrt[1 + e/d*x^2]/Sqrt[d + e*x^2]* Int[(a + b*Log[c*x^n])/Sqrt[1 + e/d*x^2], x] /; FreeQ[{a, b, c, d, e, n}, x] && Not[GtQ[d, 0]] +Int[(a_. + b_.*Log[c_.*x_^n_.])/(Sqrt[d1_ + e1_.*x_]* Sqrt[d2_ + e2_.*x_]), x_Symbol] := Sqrt[1 + e1*e2/(d1*d2)*x^2]/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])* Int[(a + b*Log[c*x^n])/Sqrt[1 + e1*e2/(d1*d2)*x^2], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[d2*e1 + d1*e2, 0] +Int[(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[(d + e*x^r)^q, x]}, Dist[(a + b*Log[c*x^n]), u, x] - b*n*Int[SimplifyIntegrand[u/x, x], x] /; EqQ[r, 1] && IntegerQ[q - 1/2] || EqQ[r, 2] && EqQ[q, -1] || InverseFunctionFreeQ[u, x]] /; FreeQ[{a, b, c, d, e, n, q, r}, x] && IntegerQ[2*q] && IntegerQ[r] +Int[(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || IGtQ[p, 0] && IntegerQ[r]) +Int[(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Unintegrable[(d + e*x^r)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x] +Int[u_^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Int[ExpandToSum[u, x]^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, n, p, q}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] diff --git a/IntegrationRules/3 Logarithms/3.1.4 (f x)^m (d+e x^r)^q (a+b log(c x^n))^p.m b/IntegrationRules/3 Logarithms/3.1.4 (f x)^m (d+e x^r)^q (a+b log(c x^n))^p.m new file mode 100755 index 0000000..c456c66 --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.1.4 (f x)^m (d+e x^r)^q (a+b log(c x^n))^p.m @@ -0,0 +1,35 @@ + +(* ::Subsection::Closed:: *) +(* 3.1.4 (f x)^m (d+e x^r)^q (a+b log(c x^n))^p *) +Int[x_^m_.*(d_ + e_./x_)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Int[(e + d*x)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[m, q] && IntegerQ[q] +Int[x_^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[x^m*(d + e*x^r)^q, x]}, u*(a + b*Log[c*x^n]) - b*n*Int[SimplifyIntegrand[u/x, x], x]] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IGtQ[m, 0] +Int[x_^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[x^m*(d + e*x^r)^q, x]}, Dist[(a + b*Log[c*x^n]), u] - b*n*Int[SimplifyIntegrand[u/x, x], x]] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] && Not[EqQ[q, 1] && EqQ[m, -1]] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_.)^q_*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := (f*x)^(m + 1)*(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])/(d* f*(m + 1)) - b*n/(d*(m + 1))*Int[(f*x)^m*(d + e*x^r)^(q + 1), x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m + r*(q + 1) + 1, 0] && NeQ[m, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_)^q_.*(a_. + b_.*Log[c_.*x_^n_])^p_., x_Symbol] := f^m/n*Subst[Int[(d + e*x)^q*(a + b*Log[c*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m, r - 1] && IGtQ[p, 0] && (IntegerQ[m] || GtQ[f, 0]) && EqQ[r, n] +Int[(f_.*x_)^m_.*(a_. + b_.*Log[c_.*x_^n_.])^p_./(d_ + e_.*x_^r_), x_Symbol] := f^m*Log[1 + e*x^r/d]*(a + b*Log[c*x^n])^p/(e*r) - b*f^m*n*p/(e*r)* Int[Log[1 + e*x^r/d]*(a + b*Log[c*x^n])^(p - 1)/x, x] /; FreeQ[{a, b, c, d, e, f, m, n, r}, x] && EqQ[m, r - 1] && IGtQ[p, 0] && (IntegerQ[m] || GtQ[f, 0]) && NeQ[r, n] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := f^m*(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])^p/(e*r*(q + 1)) - b*f^m*n*p/(e*r*(q + 1))* Int[(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])^(p - 1)/x, x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m, r - 1] && IGtQ[p, 0] && (IntegerQ[m] || GtQ[f, 0]) && NeQ[r, n] && NeQ[q, -1] +Int[(f_*x_)^m_.*(d_ + e_.*x_^r_)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := (f*x)^m/x^m*Int[x^m*(d + e*x^r)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m, r - 1] && IGtQ[p, 0] && Not[(IntegerQ[m] || GtQ[f, 0])] +(* Int[x_^m_.*(a_.+b_.*Log[c_.*x_^n_.])^p_./(d_+e_.*x_^r_.),x_Symbol] := 1/e*Int[x^(m-r)*(a+b*Log[c*x^n])^p,x] - d/e*Int[(x^(m-r)*(a+b*Log[c*x^n])^p)/(d+e*x^r),x] /; FreeQ[{a,b,c,d,e,m,n,r},x] && IGtQ[p,0] && IGtQ[r,0] && IGeQ[m-r,0] *) +Int[(a_. + b_.*Log[c_.*x_^n_])/(x_*(d_ + e_.*x_^r_.)), x_Symbol] := 1/n*Subst[Int[(a + b*Log[c*x])/(x*(d + e*x^(r/n))), x], x, x^n] /; FreeQ[{a, b, c, d, e, n, r}, x] && IntegerQ[r/n] +(* Int[(a_.+b_.*Log[c_.*x_^n_.])^p_./(x_*(d_+e_.*x_)),x_Symbol] := 1/d*Int[(a+b*Log[c*x^n])^p/x,x] - e/d*Int[(a+b*Log[c*x^n])^p/(d+e*x),x] /; FreeQ[{a,b,c,d,e,n},x] && IGtQ[p,0] *) +(* Int[(a_.+b_.*Log[c_.*x_^n_.])^p_./(x_*(d_+e_.*x_^r_.)),x_Symbol] := (r*Log[x]-Log[1+(e*x^r)/d])*(a+b*Log[c*x^n])^p/(d*r) - b*n*p/d*Int[Log[x]*(a+b*Log[c*x^n])^(p-1)/x,x] + b*n*p/(d*r)*Int[Log[1+(e*x^r)/d]*(a+b*Log[c*x^n])^(p-1)/x,x] /; FreeQ[{a,b,c,d,e,n,r},x] && IGtQ[p,0] *) +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_./(x_*(d_ + e_.*x_^r_.)), x_Symbol] := -Log[1 + d/(e*x^r)]*(a + b*Log[c*x^n])^p/(d*r) + b*n*p/(d*r)* Int[Log[1 + d/(e*x^r)]*(a + b*Log[c*x^n])^(p - 1)/x, x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0] +Int[x_^m_.*(a_. + b_.*Log[c_.*x_^n_.])^p_./(d_ + e_.*x_^r_.), x_Symbol] := 1/d*Int[x^m*(a + b*Log[c*x^n])^p, x] - e/d*Int[(x^(m + r)*(a + b*Log[c*x^n])^p)/(d + e*x^r), x] /; FreeQ[{a, b, c, d, e, m, n, r}, x] && IGtQ[p, 0] && IGtQ[r, 0] && ILtQ[m, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_)^q_*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := -(f*x)^(m + 1)*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^ p/(d*f*(q + 1)) + b*n*p/(d*(q + 1))* Int[(f*x)^m*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, m, n, q}, x] && EqQ[m + q + 2, 0] && IGtQ[p, 0] && LtQ[q, -1] +Int[x_^m_.*(d_ + e_.*x_)^q_*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[x^m*(d + e*x)^q, x]}, Dist[(a + b*Log[c*x^n]), u, x] - b*n*Int[SimplifyIntegrand[u/x, x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && ILtQ[m + q + 2, 0] && IGtQ[m, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_)^q_*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := -(f*x)^(m + 1)*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^ p/(d*f*(q + 1)) + (m + q + 2)/(d*(q + 1))* Int[(f*x)^m*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^p, x] + b*n*p/(d*(q + 1))* Int[(f*x)^m*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && ILtQ[m + q + 2, 0] && IGtQ[p, 0] && LtQ[q, -1] && GtQ[m, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := (f*x)^m*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])/(e*(q + 1)) - f/(e*(q + 1))* Int[(f*x)^(m - 1)*(d + e*x)^(q + 1)*(a*m + b*n + b*m*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && ILtQ[q, -1] && GtQ[m, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := -(f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*Log[c*x^n])/(2*d* f*(q + 1)) + 1/(2*d*(q + 1))* Int[(f*x)^ m*(d + e*x^2)^(q + 1)*(a*(m + 2*q + 3) + b*n + b*(m + 2*q + 3)*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && ILtQ[q, -1] && ILtQ[m, 0] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := d^IntPart[q]*(d + e*x^2)^FracPart[q]/(1 + e/d*x^2)^FracPart[q]* Int[x^m*(1 + e/d*x^2)^q*(a + b*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[m/2] && IntegerQ[q - 1/2] && Not[LtQ[m + 2*q, -2] || GtQ[d, 0]] +Int[x_^m_.*(d1_ + e1_.*x_)^q_*(d2_ + e2_.*x_)^ q_*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := (d1 + e1*x)^q*(d2 + e2*x)^q/(1 + e1*e2/(d1*d2)*x^2)^q* Int[x^m*(1 + e1*e2/(d1*d2)*x^2)^q*(a + b*Log[c*x^n]), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[d2*e1 + d1*e2, 0] && IntegerQ[m] && IntegerQ[q - 1/2] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := d*Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p/x, x] + e*Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && GtQ[q, 0] && IntegerQ[2*q] +Int[(d_ + e_.*x_)^q_*(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := 1/d*Int[(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^p/x, x] - e/d*Int[(d + e*x)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[q, -1] && IntegerQ[2*q] +Int[(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.])/x_, x_Symbol] := With[{u = IntHide[(d + e*x^r)^q/x, x]}, u*(a + b*Log[c*x^n]) - b*n*Int[Dist[1/x, u, x], x]] /; FreeQ[{a, b, c, d, e, n, r}, x] && IntegerQ[q - 1/2] +Int[(d_ + e_.*x_^r_.)^q_*(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := 1/d*Int[(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])^p/x, x] - e/d*Int[x^(r - 1)*(d + e*x^r)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0] && ILtQ[q, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x]}, Dist[(a + b*Log[c*x^n]), u, x] - b*n*Int[SimplifyIntegrand[u/x, x], x] /; (EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2] || InverseFunctionFreeQ[u, x]] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[2*q] && (IntegerQ[m] && IntegerQ[r] || IGtQ[q, 0]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = ExpandIntegrand[(a + b*Log[c*x^n]), (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || IntegerQ[m] && IntegerQ[r]) +Int[x_^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(d + e*x^(r/n))^ q*(a + b*Log[c*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, e, m, n, p, q, r}, x] && IntegerQ[q] && IntegerQ[r/n] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[p, 0]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^ p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[ q] && (GtQ[q, 0] || IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^ p_., x_Symbol] := Unintegrable[(f*x)^m*(d + e*x^r)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] +Int[(f_.*x_)^m_.*u_^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Int[(f*x)^m*ExpandToSum[u, x]^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, f, m, n, p, q}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_)^q_*(a_. + b_.*Log[c_.*x_^n_.])^ p_., x_Symbol] := (f + g*x)^(m + 1)*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^ p/((q + 1)*(e*f - d*g)) - b*n*p/((q + 1)*(e*f - d*g))* Int[(f + g*x)^(m + 1)*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^(p - 1)/x, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, q}, x] && NeQ[e*f - d*g, 0] && EqQ[m + q + 2, 0] && IGtQ[p, 0] && LtQ[q, -1] diff --git a/IntegrationRules/3 Logarithms/3.1.5 u (a+b log(c x^n))^p.m b/IntegrationRules/3 Logarithms/3.1.5 u (a+b log(c x^n))^p.m new file mode 100755 index 0000000..bd2779b --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.1.5 u (a+b log(c x^n))^p.m @@ -0,0 +1,63 @@ + +(* ::Subsection::Closed:: *) +(* 3.1.5 u (a+b log(c x^n))^p *) +Int[(A_. + B_.*Log[c_.*(d_. + e_.*x_)^n_.])/ Sqrt[a_ + b_.*Log[c_.*(d_. + e_.*x_)^n_.]], x_Symbol] := B*(d + e*x)*Sqrt[a + b*Log[c*(d + e*x)^n]]/(b*e) + (2*A*b - B*(2*a + b*n))/(2*b)* Int[1/Sqrt[a + b*Log[c*(d + e*x)^n]], x] /; FreeQ[{a, b, c, d, e, A, B, n}, x] +Int[x_^m_.*(d_ + e_./x_)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Int[(e + d*x)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[m, q] && IntegerQ[q] +Int[x_^m_.*(d_ + e_.*x_^r_.)^q_.*Log[c_.*x_^n_.], x_Symbol] := With[{u = IntHide[x^m*(d + e*x^r)^q, x]}, Dist[Log[c*x^n], u, x] - n*Int[SimplifyIntegrand[u/x, x], x]] /; FreeQ[{c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] && Not[EqQ[q, 1] && EqQ[m, -1]] +Int[x_^m_.*(d_ + e_.*x_^r_.)^q_.*(a_ + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[x^m*(d + e*x^r)^q, x]}, u*(a + b*Log[c*x^n]) - b*n*Int[SimplifyIntegrand[u/x, x], x]] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] && Not[EqQ[q, 1] && EqQ[m, -1]] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_.)^q_*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := (f*x)^(m + 1)*(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])/(d* f*(m + 1)) - b*n/(d*(m + 1))*Int[(f*x)^m*(d + e*x^r)^(q + 1), x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m + r*(q + 1) + 1, 0] && NeQ[m, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_)^q_.*(a_. + b_.*Log[c_.*x_^n_])^p_., x_Symbol] := f^m/n*Subst[Int[(d + e*x)^q*(a + b*Log[c*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m, r - 1] && IGtQ[p, 0] && (IntegerQ[m] || GtQ[f, 0]) && EqQ[r, n] +Int[(f_.*x_)^m_.*(a_. + b_.*Log[c_.*x_^n_.])^p_./(d_ + e_.*x_^r_), x_Symbol] := f^m*Log[1 + e*x^r/d]*(a + b*Log[c*x^n])^p/(e*r) - b*f^m*n*p/(e*r)* Int[Log[1 + e*x^r/d]*(a + b*Log[c*x^n])^(p - 1)/x, x] /; FreeQ[{a, b, c, d, e, f, m, n, r}, x] && EqQ[m, r - 1] && IGtQ[p, 0] && (IntegerQ[m] || GtQ[f, 0]) && NeQ[r, n] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := f^m*(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])^p/(e*r*(q + 1)) - b*f^m*n*p/(e*r*(q + 1))* Int[(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])^(p - 1)/x, x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m, r - 1] && IGtQ[p, 0] && (IntegerQ[m] || GtQ[f, 0]) && NeQ[r, n] && NeQ[q, -1] +Int[(f_*x_)^m_.*(d_ + e_.*x_^r_)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := (f*x)^m/x^m*Int[x^m*(d + e*x^r)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m, r - 1] && IGtQ[p, 0] && Not[(IntegerQ[m] || GtQ[f, 0])] +Int[(f_.*x_)^m_.*(d_ + e_.*x_)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := (f*x)^m*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])/(e*(q + 1)) - f/(e*(q + 1))* Int[(f*x)^(m - 1)*(d + e*x)^(q + 1)*(a*m + b*n + b*m*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && ILtQ[q, -1] && GtQ[m, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := -(f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*Log[c*x^n])/(2*d* f*(q + 1)) + 1/(2*d*(q + 1))* Int[(f*x)^ m*(d + e*x^2)^(q + 1)*(a*(m + 2*q + 3) + b*n + b*(m + 2*q + 3)*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && ILtQ[q, -1] && ILtQ[m, 0] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := d^IntPart[q]*(d + e*x^2)^FracPart[q]/(1 + e/d*x^2)^FracPart[q]* Int[x^m*(1 + e/d*x^2)^q*(a + b*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[m/2] && IntegerQ[q - 1/2] && Not[LtQ[m + 2*q, -2] || GtQ[d, 0]] +Int[x_^m_.*(d1_ + e1_.*x_)^q_*(d2_ + e2_.*x_)^ q_*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := (d1 + e1*x)^q*(d2 + e2*x)^q/(1 + e1*e2/(d1*d2)*x^2)^q* Int[x^m*(1 + e1*e2/(d1*d2)*x^2)^q*(a + b*Log[c*x^n]), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[d2*e1 + d1*e2, 0] && IntegerQ[m] && IntegerQ[q - 1/2] +Int[(a_. + b_.*Log[c_.*x_^n_])/(x_*(d_ + e_.*x_^r_.)), x_Symbol] := 1/n*Subst[Int[(a + b*Log[c*x])/(x*(d + e*x^(r/n))), x], x, x^n] /; FreeQ[{a, b, c, d, e, n, r}, x] && IntegerQ[r/n] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_./(x_*(d_ + e_.*x_)), x_Symbol] := 1/d*Int[(a + b*Log[c*x^n])^p/x, x] - e/d*Int[(a + b*Log[c*x^n])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] +(* Int[(a_.+b_.*Log[c_.*x_^n_.])^p_./(x_*(d_+e_.*x_^r_.)),x_Symbol] := (r*Log[x]-Log[1+(e*x^r)/d])*(a+b*Log[c*x^n])^p/(d*r) - b*n*p/d*Int[Log[x]*(a+b*Log[c*x^n])^(p-1)/x,x] + b*n*p/(d*r)*Int[Log[1+(e*x^r)/d]*(a+b*Log[c*x^n])^(p-1)/x,x] /; FreeQ[{a,b,c,d,e,n,r},x] && IGtQ[p,0] *) +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_./(x_*(d_ + e_.*x_^r_.)), x_Symbol] := -Log[1 + d/(e*x^r)]*(a + b*Log[c*x^n])^p/(d*r) + b*n*p/(d*r)* Int[Log[1 + d/(e*x^r)]*(a + b*Log[c*x^n])^(p - 1)/x, x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := d*Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p/x, x] + e*Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && GtQ[q, 0] && IntegerQ[2*q] +Int[(d_ + e_.*x_)^q_*(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := 1/d*Int[(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^p/x, x] - e/d*Int[(d + e*x)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[q, -1] && IntegerQ[2*q] +Int[(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.])/x_, x_Symbol] := With[{u = IntHide[(d + e*x^r)^q/x, x]}, u*(a + b*Log[c*x^n]) - b*n*Int[Dist[1/x, u, x], x]] /; FreeQ[{a, b, c, d, e, n, r}, x] && IntegerQ[q - 1/2] +Int[(d_ + e_.*x_^r_.)^q_*(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := 1/d*Int[(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])^p/x, x] - e/d*Int[x^(r - 1)*(d + e*x^r)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0] && ILtQ[q, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x]}, Dist[(a + b*Log[c*x^n]), u, x] - b*n*Int[SimplifyIntegrand[u/x, x], x] /; (EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2] || InverseFunctionFreeQ[u, x]] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[2*q] && (IntegerQ[m] && IntegerQ[r] || IGtQ[q, 0]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = ExpandIntegrand[(a + b*Log[c*x^n]), (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || IntegerQ[m] && IntegerQ[r]) +Int[x_^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(d + e*x^(r/n))^ q*(a + b*Log[c*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, e, m, n, p, q, r}, x] && IntegerQ[q] && IntegerQ[r/n] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[p, 0]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^ p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[ q] && (GtQ[q, 0] || IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^r_.)^q_.*(a_. + b_.*Log[c_.*x_^n_.])^ p_., x_Symbol] := Unintegrable[(f*x)^m*(d + e*x^r)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] +Int[(f_.*x_)^m_.*u_^q_.*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Int[(f*x)^m*ExpandToSum[u, x]^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, f, m, n, p, q}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[Polyx_*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Int[ExpandIntegrand[Polyx*(a + b*Log[c*x^n])^p, x], x] /; FreeQ[{a, b, c, n, p}, x] && PolynomialQ[Polyx, x] +Int[RFx_*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0] +Int[RFx_*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := With[{u = ExpandIntegrand[RFx*(a + b*Log[c*x^n])^p, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0] +Int[AFx_*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Unintegrable[AFx*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, n, p}, x] && AlgebraicFunctionQ[AFx, x, True] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_.*(d_ + e_.*Log[c_.*x_^n_.])^q_., x_Symbol] := Int[ExpandIntegrand[(a + b*Log[c*x^n])^p*(d + e*Log[c*x^n])^q, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[p] && IntegerQ[q] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_.*(d_. + e_.*Log[f_.*x_^r_.]), x_Symbol] := With[{u = IntHide[(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - e*r*Int[SimplifyIntegrand[u/x, x], x]] /; FreeQ[{a, b, c, d, e, f, n, p, r}, x] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_.*(d_. + e_.*Log[f_.*x_^r_.])^q_., x_Symbol] := x*(a + b*Log[c*x^n])^p*(d + e*Log[f*x^r])^q - e*q*r*Int[(a + b*Log[c*x^n])^p*(d + e*Log[f*x^r])^(q - 1), x] - b*n*p*Int[(a + b*Log[c*x^n])^(p - 1)*(d + e*Log[f*x^r])^q, x] /; FreeQ[{a, b, c, d, e, f, n, r}, x] && IGtQ[p, 0] && IGtQ[q, 0] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_.*(d_. + e_.*Log[f_.*x_^r_.])^q_., x_Symbol] := Unintegrable[(a + b*Log[c*x^n])^p*(d + e*Log[f*x^r])^q, x] /; FreeQ[{a, b, c, d, e, f, n, p, q, r}, x] +Int[(a_. + b_.*Log[v_])^p_.*(c_. + d_.*Log[v_])^q_., x_Symbol] := 1/Coeff[v, x, 1]* Subst[Int[(a + b*Log[x])^p*(c + d*Log[x])^q, x], x, v] /; FreeQ[{a, b, c, d, p, q}, x] && LinearQ[v, x] && NeQ[Coeff[v, x, 0], 0] +Int[(a_. + b_.*Log[c_.*x_^n_.])^p_.*(d_. + e_.*Log[c_.*x_^n_.])^q_./ x_, x_Symbol] := 1/n*Subst[Int[(a + b*x)^p*(d + e*x)^q, x], x, Log[c*x^n]] /; FreeQ[{a, b, c, d, e, n, p, q}, x] +Int[(g_.*x_)^m_.*(a_. + b_.*Log[c_.*x_^n_.])^ p_.*(d_. + e_.*Log[f_.*x_^r_.]), x_Symbol] := With[{u = IntHide[(g*x)^m*(a + b*Log[c*x^n])^p, x]}, Dist[(d + e*Log[f*x^r]), u, x] - e*r*Int[SimplifyIntegrand[u/x, x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, r}, x] && Not[EqQ[p, 1] && EqQ[a, 0] && NeQ[d, 0]] +Int[(g_.*x_)^m_.*(a_. + b_.*Log[c_.*x_^n_.])^ p_.*(d_. + e_.*Log[f_.*x_^r_.])^q_., x_Symbol] := (g*x)^(m + 1)*(a + b*Log[c*x^n])^ p*(d + e*Log[f*x^r])^q/(g*(m + 1)) - e*q*r/(m + 1)* Int[(g*x)^m*(a + b*Log[c*x^n])^p*(d + e*Log[f*x^r])^(q - 1), x] - b*n*p/(m + 1)* Int[(g*x)^m*(a + b*Log[c*x^n])^(p - 1)*(d + e*Log[f*x^r])^q, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, r}, x] && IGtQ[p, 0] && IGtQ[q, 0] && NeQ[m, -1] +Int[(g_.*x_)^m_.*(a_. + b_.*Log[c_.*x_^n_.])^ p_.*(d_. + e_.*Log[f_.*x_^r_.])^q_., x_Symbol] := Unintegrable[(g*x)^m*(a + b*Log[c*x^n])^p*(d + e*Log[f*x^r])^q, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r}, x] +Int[u_^m_.*(a_. + b_.*Log[v_])^p_.*(c_. + d_.*Log[v_])^q_., x_Symbol] := With[{e = Coeff[u, x, 0], f = Coeff[u, x, 1], g = Coeff[v, x, 0], h = Coeff[v, x, 1]}, 1/h* Subst[Int[(f*x/h)^m*(a + b*Log[x])^p*(c + d*Log[x])^q, x], x, v] /; EqQ[f*g - e*h, 0] && NeQ[g, 0]] /; FreeQ[{a, b, c, d, m, p, q}, x] && LinearQ[{u, v}, x] +Int[Log[d_.*(e_ + f_.*x_^m_.)^r_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := With[{u = IntHide[Log[d*(e + f*x^m)^r], x]}, Dist[(a + b*Log[c*x^n])^p, u, x] - b*n*p*Int[Dist[(a + b*Log[c*x^n])^(p - 1)/x, u, x], x]] /; FreeQ[{a, b, c, d, e, f, r, m, n}, x] && IGtQ[p, 0] && RationalQ[ m] && (EqQ[p, 1] || FractionQ[m] && IntegerQ[1/m] || EqQ[r, 1] && EqQ[m, 1] && EqQ[d*e, 1]) +Int[Log[d_.*(e_ + f_.*x_^m_.)^r_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := With[{u = IntHide[(a + b*Log[c*x^n])^p, x]}, Dist[Log[d*(e + f*x^m)^r], u, x] - f*m*r*Int[Dist[x^(m - 1)/(e + f*x^m), u, x], x]] /; FreeQ[{a, b, c, d, e, f, r, m, n}, x] && IGtQ[p, 0] && IntegerQ[m] +Int[Log[d_.*(e_ + f_.*x_^m_.)^r_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Unintegrable[Log[d*(e + f*x^m)^r]*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, f, r, m, n, p}, x] +Int[Log[d_.*u_^r_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Int[Log[d*ExpandToSum[u, x]^r]*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, r, n, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[Log[d_.*(e_ + f_.*x_^m_.)]*(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := -PolyLog[2, -d*f*x^m]*(a + b*Log[c*x^n])^p/m + b*n*p/m* Int[PolyLog[2, -d*f*x^m]*(a + b*Log[c*x^n])^(p - 1)/x, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 0] && EqQ[d*e, 1] +Int[Log[d_.*(e_ + f_.*x_^m_.)^r_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := Log[d*(e + f*x^m)^r]*(a + b*Log[c*x^n])^(p + 1)/(b*n*(p + 1)) - f*m*r/(b*n*(p + 1))* Int[x^(m - 1)*(a + b*Log[c*x^n])^(p + 1)/(e + f*x^m), x] /; FreeQ[{a, b, c, d, e, f, r, m, n}, x] && IGtQ[p, 0] && NeQ[d*e, 1] +Int[(g_.*x_)^q_.* Log[d_.*(e_ + f_.*x_^m_.)^r_.]*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[(g*x)^q*Log[d*(e + f*x^m)^r], x]}, Dist[(a + b*Log[c*x^n]), u, x] - b*n*Int[Dist[1/x, u, x], x]] /; FreeQ[{a, b, c, d, e, f, g, r, m, n, q}, x] && (IntegerQ[(q + 1)/m] || RationalQ[m] && RationalQ[q]) && NeQ[q, -1] +Int[(g_.*x_)^q_.* Log[d_.*(e_ + f_.*x_^m_.)]*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := With[{u = IntHide[(g*x)^q*Log[d*(e + f*x^m)], x]}, Dist[(a + b*Log[c*x^n])^p, u, x] - b*n*p*Int[Dist[(a + b*Log[c*x^n])^(p - 1)/x, u, x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, q}, x] && IGtQ[p, 0] && RationalQ[m] && RationalQ[q] && NeQ[q, -1] && (EqQ[p, 1] || FractionQ[m] && IntegerQ[(q + 1)/m] || IGtQ[q, 0] && IntegerQ[(q + 1)/m] && EqQ[d*e, 1]) +Int[(g_.*x_)^q_.* Log[d_.*(e_ + f_.*x_^m_.)^r_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := With[{u = IntHide[(g*x)^q*(a + b*Log[c*x^n])^p, x]}, Dist[Log[d*(e + f*x^m)^r], u, x] - f*m*r*Int[Dist[x^(m - 1)/(e + f*x^m), u, x], x]] /; FreeQ[{a, b, c, d, e, f, g, r, m, n, q}, x] && IGtQ[p, 0] && RationalQ[m] && RationalQ[q] +Int[(g_.*x_)^q_.* Log[d_.*(e_ + f_.*x_^m_.)^r_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Unintegrable[(g*x)^q*Log[d*(e + f*x^m)^r]*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, r, m, n, p, q}, x] +Int[(g_.*x_)^q_.*Log[d_.*u_^r_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Int[(g*x)^q*Log[d*ExpandToSum[u, x]^r]*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, g, r, n, p, q}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[PolyLog[k_, e_.*x_^q_.]*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := -b*n*x*PolyLog[k, e*x^q] + x*PolyLog[k, e*x^q]*(a + b*Log[c*x^n]) + b*n*q*Int[PolyLog[k - 1, e*x^q], x] - q*Int[PolyLog[k - 1, e*x^q]*(a + b*Log[c*x^n]), x] /; FreeQ[{a, b, c, e, n, q}, x] && IGtQ[k, 0] +Int[PolyLog[k_, e_.*x_^q_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Unintegrable[PolyLog[k, e*x^q]*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, e, n, p, q}, x] +Int[PolyLog[k_, e_.*x_^q_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := PolyLog[k + 1, e*x^q]*(a + b*Log[c*x^n])^p/q - b*n*p/q*Int[PolyLog[k + 1, e*x^q]*(a + b*Log[c*x^n])^(p - 1)/x, x] /; FreeQ[{a, b, c, e, k, n, q}, x] && GtQ[p, 0] +Int[PolyLog[k_, e_.*x_^q_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_./x_, x_Symbol] := PolyLog[k, e*x^q]*(a + b*Log[c*x^n])^(p + 1)/(b*n*(p + 1)) - q/(b*n*(p + 1))* Int[PolyLog[k - 1, e*x^q]*(a + b*Log[c*x^n])^(p + 1)/x, x] /; FreeQ[{a, b, c, e, k, n, q}, x] && LtQ[p, -1] +Int[(d_.*x_)^m_.*PolyLog[k_, e_.*x_^q_.]*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := -b*n*(d*x)^(m + 1)*PolyLog[k, e*x^q]/(d*(m + 1)^2) + (d*x)^(m + 1)* PolyLog[k, e*x^q]*(a + b*Log[c*x^n])/(d*(m + 1)) + b*n*q/(m + 1)^2*Int[(d*x)^m*PolyLog[k - 1, e*x^q], x] - q/(m + 1)* Int[(d*x)^m*PolyLog[k - 1, e*x^q]*(a + b*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, e, m, n, q}, x] && IGtQ[k, 0] +Int[(d_.*x_)^m_.* PolyLog[k_, e_.*x_^q_.]*(a_. + b_.*Log[c_.*x_^n_.])^p_., x_Symbol] := Unintegrable[(d*x)^m*PolyLog[k, e*x^q]*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] +Int[Px_.*F_[d_.*(e_. + f_.*x_)]^m_.*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[Px*F[d*(e + f*x)]^m, x]}, Dist[(a + b*Log[c*x^n]), u, x] - b*n*Int[Dist[1/x, u, x], x]] /; FreeQ[{a, b, c, d, e, f, n}, x] && PolynomialQ[Px, x] && IGtQ[m, 0] && MemberQ[{ArcSin, ArcCos, ArcSinh, ArcCosh}, F] +Int[Px_.*F_[d_.*(e_. + f_.*x_)]*(a_. + b_.*Log[c_.*x_^n_.]), x_Symbol] := With[{u = IntHide[Px*F[d*(e + f*x)], x]}, Dist[(a + b*Log[c*x^n]), u, x] - b*n*Int[Dist[1/x, u, x], x]] /; FreeQ[{a, b, c, d, e, f, n}, x] && PolynomialQ[Px, x] && MemberQ[{ArcTan, ArcCot, ArcTanh, ArcCoth}, F] diff --git a/IntegrationRules/3 Logarithms/3.2.1 (f+g x)^m (A+B log(e ((a+b x) over (c+d x))^n))^p.m b/IntegrationRules/3 Logarithms/3.2.1 (f+g x)^m (A+B log(e ((a+b x) over (c+d x))^n))^p.m new file mode 100755 index 0000000..b307d85 --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.2.1 (f+g x)^m (A+B log(e ((a+b x) over (c+d x))^n))^p.m @@ -0,0 +1,28 @@ + +(* ::Subsection::Closed:: *) +(* 3.2.1 (f+g x)^m (A+B log(e ((a+b x) over (c+d x))^n))^p *) +Int[(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := (a + b*x)*(A + B*Log[e*((a + b*x)/(c + d*x))^n])^p/b - B*n*p*(b*c - a*d)/b* Int[(A + B*Log[e*((a + b*x)/(c + d*x))^n])^(p - 1)/(c + d*x), x] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] +Int[(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^p_., x_Symbol] := (a + b*x)*(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])^p/b - B*n*p*(b*c - a*d)/b* Int[(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])^(p - 1)/(c + d*x), x] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] +(* Int[(A_.+B_.*Log[e_.*((a_.+b_.*x_)^n1_.*(c_.+d_.*x_)^n2_)^n_.])^p_. ,x_Symbol] := (a+b*x)*(A+B*Log[e*((a+b*x)^n1/(c+d*x)^n1)^n])^p/b - B*n*p*(b*c-a*d)/b*Int[(A+B*Log[e*((a+b*x)^n1/(c+d*x)^n1)^n])^(p-1)/( c+d*x),x] /; FreeQ[{a,b,c,d,e,A,B,n},x] && EqQ[n1+n2,0] && GtQ[n1,0] && (EqQ[n1,1] || EqQ[n,1]) && NeQ[b*c-a*d,0] && IGtQ[p,0] *) +Int[(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_, x_Symbol] := Unintegrable[(A + B*Log[e*((a + b*x)/(c + d*x))^n])^p, x] /; FreeQ[{a, b, c, d, e, A, B, n, p}, x] +Int[(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^p_, x_Symbol] := Unintegrable[(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, A, B, n, p}, x] && EqQ[n + mn, 0] +Int[(A_. + B_.*Log[e_.*(u_/v_)^n_.])^p_., x_Symbol] := Int[(A + B*Log[e*(ExpandToSum[u, x]/ExpandToSum[v, x])^n])^p, x] /; FreeQ[{e, A, B, n, p}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] +Int[(A_. + B_.*Log[e_.*u_^n_.*v_^mn_])^p_., x_Symbol] := Int[(A + B*Log[e*ExpandToSum[u, x]^n/ExpandToSum[v, x]^n])^p, x] /; FreeQ[{e, A, B, n, p}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] +Int[(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])/(f_. + g_.*x_), x_Symbol] := -Log[-(b*c - a*d)/(d*(a + b*x))]*(A + B*Log[e*((a + b*x)/(c + d*x))^n])/g + B*n*(b*c - a*d)/g* Int[Log[-(b*c - a*d)/(d*(a + b*x))]/((a + b*x)*(c + d*x)), x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] +Int[(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])/(f_. + g_.*x_), x_Symbol] := -Log[-(b*c - a*d)/(d*(a + b*x))]*(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])/g + B*n*(b*c - a*d)/g* Int[Log[-(b*c - a*d)/(d*(a + b*x))]/((a + b*x)*(c + d*x)), x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] +Int[(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])/(f_. + g_.*x_), x_Symbol] := -Log[(b*c - a*d)/(b*(c + d*x))]*(A + B*Log[e*((a + b*x)/(c + d*x))^n])/g + B*n*(b*c - a*d)/g* Int[Log[(b*c - a*d)/(b*(c + d*x))]/((a + b*x)*(c + d*x)), x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[d*f - c*g, 0] +Int[(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])/(f_. + g_.*x_), x_Symbol] := -Log[(b*c - a*d)/(b*(c + d*x))]*(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])/g + B*n*(b*c - a*d)/g* Int[Log[(b*c - a*d)/(b*(c + d*x))]/((a + b*x)*(c + d*x)), x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0] && EqQ[d*f - c*g, 0] +Int[(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])/(f_. + g_.*x_), x_Symbol] := Log[f + g*x]*(A + B*Log[e*((a + b*x)/(c + d*x))^n])/g - b*B*n/g*Int[Log[f + g*x]/(a + b*x), x] + B*d*n/g*Int[Log[f + g*x]/(c + d*x), x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && NeQ[b*c - a*d, 0] +Int[(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])/(f_. + g_.*x_), x_Symbol] := Log[f + g*x]*(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])/g - b*B*n/g*Int[Log[f + g*x]/(a + b*x), x] + B*d*n/g*Int[Log[f + g*x]/(c + d*x), x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0] +Int[(f_. + g_.*x_)^ m_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.]), x_Symbol] := (f + g*x)^(m + 1)*(A + B*Log[e*((a + b*x)/(c + d*x))^n])/(g*(m + 1)) - B*n*(b*c - a*d)/(g*(m + 1))* Int[(f + g*x)^(m + 1)/((a + b*x)*(c + d*x)), x] /; FreeQ[{a, b, c, d, e, f, g, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, -2] +Int[(f_. + g_.*x_)^ m_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_]), x_Symbol] := (f + g*x)^(m + 1)*(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])/(g*(m + 1)) - B*n*(b*c - a*d)/(g*(m + 1))* Int[(f + g*x)^(m + 1)/((a + b*x)*(c + d*x)), x] /; FreeQ[{a, b, c, d, e, f, g, A, B, m, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && Not[EqQ[m, -2] && IntegerQ[n]] +Int[(f_. + g_.*x_)^ m_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := (b*c - a*d)^(m + 1)*(g/b)^m* Subst[Int[x^m*(A + B*Log[e*x^n])^p/(b - d*x)^(m + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[m, p] && EqQ[b*f - a*g, 0] && (GtQ[p, 0] || LtQ[m, -1]) +Int[(f_. + g_.*x_)^ m_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := (b*c - a*d)^(m + 1)*(g/b)^m* Subst[Int[x^m*(A + B*Log[e*x^n])^p/(b - d*x)^(m + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && IntegersQ[m, p] && EqQ[b*f - a*g, 0] && (GtQ[p, 0] || LtQ[m, -1]) +Int[(f_. + g_.*x_)^ m_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := (b*c - a*d)^(m + 1)*(g/d)^m* Subst[Int[(A + B*Log[e*x^n])^p/(b - d*x)^(m + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[m, p] && EqQ[d*f - c*g, 0] && (GtQ[p, 0] || LtQ[m, -1]) +Int[(f_. + g_.*x_)^ m_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := (b*c - a*d)^(m + 1)*(g/d)^m* Subst[Int[(A + B*Log[e*x^n])^p/(b - d*x)^(m + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && IntegersQ[m, p] && EqQ[d*f - c*g, 0] && (GtQ[p, 0] || LtQ[m, -1]) +Int[(f_. + g_.*x_)^ m_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := (b*c - a*d)* Subst[Int[(b*f - a*g - (d*f - c*g)*x)^ m*(A + B*Log[e*x^n])^p/(b - d*x)^(m + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && NeQ[b*c - a*d, 0] && IntegerQ[m] && IGtQ[p, 0] +Int[(f_. + g_.*x_)^ m_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := (b*c - a*d)* Subst[Int[(b*f - a*g - (d*f - c*g)*x)^ m*(A + B*Log[e*x^n])^p/(b - d*x)^(m + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && IntegerQ[m] && IGtQ[p, 0] +Int[(f_. + g_.*x_)^ m_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := Unintegrable[(f + g*x)^m*(A + B*Log[e*((a + b*x)/(c + d*x))^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, A, B, m, n, p}, x] +Int[(f_. + g_.*x_)^ m_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := Unintegrable[(f + g*x)^m*(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, A, B, m, n, p}, x] && EqQ[n + mn, 0] && IntegerQ[n] +Int[w_^m_.*(A_. + B_.*Log[e_.*(u_/v_)^n_.])^p_., x_Symbol] := Int[ExpandToSum[w, x]^ m*(A + B*Log[e*(ExpandToSum[u, x]/ExpandToSum[v, x])^n])^p, x] /; FreeQ[{e, A, B, m, n, p}, x] && LinearQ[{u, v, w}, x] && Not[LinearMatchQ[{u, v, w}, x]] +Int[w_^m_.*(A_. + B_.*Log[e_.*u_^n_.*v_^mn_])^p_., x_Symbol] := Int[ExpandToSum[w, x]^ m*(A + B*Log[e*ExpandToSum[u, x]^n/ExpandToSum[v, x]^n])^p, x] /; FreeQ[{e, A, B, m, n, p}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && LinearQ[{u, v, w}, x] && Not[LinearMatchQ[{u, v, w}, x]] diff --git a/IntegrationRules/3 Logarithms/3.2.2 (f+g x)^m (h+i x)^q (A+B log(e ((a+b x) over (c+d x))^n))^p.m b/IntegrationRules/3 Logarithms/3.2.2 (f+g x)^m (h+i x)^q (A+B log(e ((a+b x) over (c+d x))^n))^p.m new file mode 100755 index 0000000..69bf785 --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.2.2 (f+g x)^m (h+i x)^q (A+B log(e ((a+b x) over (c+d x))^n))^p.m @@ -0,0 +1,24 @@ + +(* ::Subsection::Closed:: *) +(* 3.2.2 (f+g x)^m (h+i x)^q (A+B log(e ((a+b x) over (c+d x))^n))^p *) +Int[(f_. + g_.*x_)^ m_.*(h_. + i_.*x_)*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.]), x_Symbol] := (f + g*x)^(m + 1)*(h + i*x)*(A + B*Log[e*((a + b*x)/(c + d*x))^n])/(g*(m + 2)) + i*(b*c - a*d)/(b*d*(m + 2))* Int[(f + g*x)^m*(A - B*n + B*Log[e*((a + b*x)/(c + d*x))^n]), x] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && IGtQ[m, -2] +Int[(f_. + g_.*x_)^ m_.*(h_. + i_.*x_)*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_]), x_Symbol] := (f + g*x)^(m + 1)*(h + i*x)*(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])/(g*(m + 2)) + i*(b*c - a*d)/(b*d*(m + 2))* Int[(f + g*x)^m*(A - B*n + B*Log[e*(a + b*x)^n/(c + d*x)^n]), x] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, m, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && IGtQ[m, -2] +Int[(f_. + g_.*x_)^m_.*(h_. + i_.*x_)^ q_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := (b*c - a*d)^(m + q + 1)*(g/b)^m*(i/d)^q* Subst[Int[x^m*(A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && IntegersQ[m, q] +Int[(f_. + g_.*x_)^m_.*(h_. + i_.*x_)^ q_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := (b*c - a*d)^(m + q + 1)*(g/b)^m*(i/d)^q* Subst[Int[x^m*(A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, n, p}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && IntegersQ[m, q] +Int[(f_. + g_.*x_)^m_.*(h_. + i_.*x_)^ q_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := d^2*(g*(a + b*x)/b)^ m/(i^2*(b*c - a*d)*(i*(c + d*x)/d)^m*((a + b*x)/(c + d*x))^m)* Subst[Int[x^m*(A + B*Log[e*x^n])^p, x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && EqQ[m + q + 2, 0] +Int[(f_. + g_.*x_)^m_.*(h_. + i_.*x_)^ q_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := d^2*(g*(a + b*x)/b)^ m/(i^2*(b*c - a*d)*(i*(c + d*x)/d)^m*((a + b*x)/(c + d*x))^m)* Subst[Int[x^m*(A + B*Log[e*x^n])^p, x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, m, n, p, q}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && EqQ[m + q + 2, 0] +(* Int[(f_.+g_.*x_)^m_.*(h_.+i_.*x_)^q_.*(A_.+B_.*Log[e_.*(a_.+b_.*x_) ^n_.*(c_.+d_.*x_)^mn_])^p_.,x_Symbol] := b*d*(f+g*x)^(m+1)/(g*i*(b*c-a*d)*(h+i*x)^(m+1)*((a+b*x)/(c+d*x))^(m+ 1))* Subst[Int[x^m*(A+B*Log[e*x^n])^p,x],x,(a+b*x)/(c+d*x)] /; FreeQ[{a,b,c,d,e,f,g,h,i,A,B,m,n,p,q},x] && EqQ[n+mn,0] && NeQ[b*c-a*d,0] && EqQ[b*f-a*g,0] && EqQ[d*h-c*i,0] && EqQ[m+q+2,0] *) +Int[(f_. + g_.*x_)^m_.*(h_. + i_.*x_)^ q_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := (b*c - a*d)^(q + 1)*(i/d)^q* Subst[Int[(b*f - a*g - (d*f - c*g)*x)^ m*(A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[m, q] && IGtQ[p, 0] && EqQ[d*h - c*i, 0] +Int[(f_. + g_.*x_)^m_.*(h_. + i_.*x_)^ q_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := (b*c - a*d)^(q + 1)*(i/d)^q* Subst[Int[(b*f - a*g - (d*f - c*g)*x)^ m*(A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && IntegersQ[m, q] && IGtQ[p, 0] && EqQ[d*h - c*i, 0] +Int[(f_. + g_.*x_)^m_.*(h_. + i_.*x_)^ q_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := (b*c - a*d)* Subst[Int[(b*f - a*g - (d*f - c*g)*x)^ m*(b*h - a*i - (d*h - c*i)*x)^ q*(A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[m, q] && IGtQ[p, 0] +Int[(f_. + g_.*x_)^m_.*(h_. + i_.*x_)^ q_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := (b*c - a*d)* Subst[Int[(b*f - a*g - (d*f - c*g)*x)^ m*(b*h - a*i - (d*h - c*i)*x)^ q*(A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2), x], x, (a + b*x)/(c + d*x)] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && IntegersQ[m, q] && IGtQ[p, 0] +Int[(f_. + g_.*x_)^m_.*(h_. + i_.*x_)^ q_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := Unintegrable[(f + g*x)^m*(h + i*x)^ q*(A + B*Log[e*((a + b*x)/(c + d*x))^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, m, n, p, q}, x] +Int[(f_. + g_.*x_)^m_.*(h_. + i_.*x_)^ q_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := Unintegrable[(f + g*x)^m*(h + i*x)^ q*(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, m, n, p, q}, x] && EqQ[n + mn, 0] && IntegerQ[n] +Int[w_^m_.*y_^q_.*(A_. + B_.*Log[e_.*(u_/v_)^n_.])^p_., x_Symbol] := Int[ExpandToSum[w, x]^m* ExpandToSum[y, x]^ q*(A + B*Log[e*(ExpandToSum[u, x]/ExpandToSum[v, x])^n])^p, x] /; FreeQ[{e, A, B, m, n, p, q}, x] && LinearQ[{u, v, w, y}, x] && Not[LinearMatchQ[{u, v, w, y}, x]] +Int[w_^m_.*y_^q_.*(A_. + B_.*Log[e_.*u_^n_.*v_^mn_])^p_., x_Symbol] := Int[ExpandToSum[w, x]^m* ExpandToSum[y, x]^ q*(A + B*Log[e*ExpandToSum[u, x]^n/ExpandToSum[v, x]^n])^p, x] /; FreeQ[{e, A, B, m, n, p, q}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && LinearQ[{u, v, w, y}, x] && Not[LinearMatchQ[{u, v, w, y}, x]] +Int[w_.*(A_. + B_.*Log[e_.*u_^n_.*v_^mn_])^p_., x_Symbol] := Subst[Int[w*(A + B*Log[e*(u/v)^n])^p, x], e*(u/v)^n, e*u^n/v^n] /; FreeQ[{e, A, B, n, p}, x] && EqQ[n + mn, 0] && LinearQ[{u, v}, x] && Not[IntegerQ[n]] +(* Int[w_.*(A_.+B_.*Log[e_.*(f_.*u_^q_.*v_^mq_)^n_.])^p_.,x_Symbol] := Subst[Int[w*(A+B*Log[e*f^n*(u/v)^(n*q)])^p,x],e*f^n*(u/v)^(n*q),e*( f*(u^q/v^q))^n] /; FreeQ[{e,f,A,B,n,p,q},x] && EqQ[q+mq,0] && LinearQ[{u,v},x] && Not[IntegerQ[n]] *) +Int[(f_. + g_.*x_ + h_.*x_^2)^ m_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^p_., x_Symbol] := h^m/(b^m*d^m)* Int[(a + b*x)^m*(c + d*x)^m*(A + B*Log[e*((a + b*x)/(c + d*x))^n])^ p, x] /; FreeQ[{a, b, c, d, e, f, g, h, A, B, n, p}, x] && EqQ[b*d*f - a*c*h, 0] && EqQ[b*d*g - h*(b*c + a*d), 0] && IntegerQ[m] +Int[(f_. + g_.*x_ + h_.*x_^2)^ m_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := h^m/(b^m*d^m)* Int[(a + b*x)^m*(c + d*x)^m*(A + B*Log[e*(a + b*x)^n/(c + d*x)^n])^ p, x] /; FreeQ[{a, b, c, d, e, f, g, h, A, B, n, p}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && EqQ[b*d*f - a*c*h, 0] && EqQ[b*d*g - h*(b*c + a*d), 0] && IntegerQ[m] +Int[P2x_^m_.*(A_. + B_.*Log[e_.*((a_. + b_.*x_)/(c_. + d_.*x_))^n_.])^ p_., x_Symbol] := With[{f = Coeff[P2x, x, 0], g = Coeff[P2x, x, 1], h = Coeff[P2x, x, 2]}, (b*c - a*d)* Subst[ Int[(b^2*f - a*b*g + a^2*h - (2*b*d*f - b*c*g - a*d*g + 2*a*c*h)* x + (d^2*f - c*d*g + c^2*h)*x^2)^m*(A + B*Log[e*x^n])^p/ (b - d*x)^(2*(m + 1)), x], x, (a + b*x)/(c + d*x)]] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && PolyQ[P2x, x, 2] && NeQ[b*c - a*d, 0] && IntegerQ[m] && IGtQ[p, 0] +Int[P2x_^ m_.*(A_. + B_.*Log[e_.*(a_. + b_.*x_)^n_.*(c_. + d_.*x_)^mn_])^ p_., x_Symbol] := With[{f = Coeff[P2x, x, 0], g = Coeff[P2x, x, 1], h = Coeff[P2x, x, 2]}, (b*c - a*d)* Subst[ Int[(b^2*f - a*b*g + a^2*h - (2*b*d*f - b*c*g - a*d*g + 2*a*c*h)* x + (d^2*f - c*d*g + c^2*h)*x^2)^m*(A + B*Log[e*x^n])^p/ (b - d*x)^(2*(m + 1)), x], x, (a + b*x)/(c + d*x)]] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && PolyQ[P2x, x, 2] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && IntegerQ[m] && IGtQ[p, 0] diff --git a/IntegrationRules/3 Logarithms/3.2.3 u log(e (f (a+b x)^p (c+d x)^q)^r)^s.m b/IntegrationRules/3 Logarithms/3.2.3 u log(e (f (a+b x)^p (c+d x)^q)^r)^s.m new file mode 100755 index 0000000..1713019 --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.2.3 u log(e (f (a+b x)^p (c+d x)^q)^r)^s.m @@ -0,0 +1,26 @@ + +(* ::Subsection::Closed:: *) +(* 3.2.3 u log(e (f (a+b x)^p (c+d x)^q)^r)^s *) +Int[u_.*Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^s_., x_Symbol] := Int[u*Log[e*(b^p*f/d^p*(c + d*x)^(p + q))^r]^s, x] /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && EqQ[b*c - a*d, 0] && IntegerQ[p] +Int[Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^s_., x_Symbol] := (a + b*x)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s/b - r*s*(p + q)* Int[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1), x] + q*r*s*(b*c - a*d)/b* Int[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/(c + d*x), x] /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && NeQ[p + q, 0] && IGtQ[s, 0] && LtQ[s, 4] +Int[Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]/(g_. + h_.*x_), x_Symbol] := Log[g + h*x]*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]/h - b*p*r/h*Int[Log[g + h*x]/(a + b*x), x] - d*q*r/h*Int[Log[g + h*x]/(c + d*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, p, q, r}, x] && NeQ[b*c - a*d, 0] +Int[(g_. + h_.*x_)^m_.* Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.], x_Symbol] := (g + h*x)^(m + 1)* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]/(h*(m + 1)) - b*p*r/(h*(m + 1))*Int[(g + h*x)^(m + 1)/(a + b*x), x] - d*q*r/(h*(m + 1))*Int[(g + h*x)^(m + 1)/(c + d*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, m, p, q, r}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] +Int[Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^2/(g_. + h_.*x_), x_Symbol] := Int[(Log[(a + b*x)^(p*r)] + Log[(c + d*x)^(q*r)])^2/(g + h*x), x] + (Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r] - Log[(a + b*x)^(p*r)] - Log[(c + d*x)^(q*r)])* (2*Int[Log[(c + d*x)^(q*r)]/(g + h*x), x] + Int[(Log[(a + b*x)^(p*r)] - Log[(c + d*x)^(q*r)] + Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r])/(g + h*x), x]) /; FreeQ[{a, b, c, d, e, f, g, h, p, q, r}, x] && NeQ[b*c - a*d, 0] && EqQ[b*g - a*h, 0] +(* Int[Log[e_.*(f_.*(a_.+b_.*x_)^p_.*(c_.+d_.*x_)^q_.)^r_.]^2/(g_.+h_. *x_),x_Symbol] := Int[(Log[(a+b*x)^(p*r)]+Log[(c+d*x)^(q*r)])^2/(g+h*x),x] + (Log[e*(f*(a+b*x)^p*(c+d*x)^q)^r]-Log[(a+b*x)^(p*r)]-Log[(c+d*x)^(q* r)])* Int[(Log[(a+b*x)^(p*r)]+Log[(c+d*x)^(q*r)]+Log[e*(f*(a+b*x)^p*(c+ d*x)^q)^r])/(g+h*x),x] /; FreeQ[{a,b,c,d,e,f,g,h,p,q,r},x] && NeQ[b*c-a*d,0] && EqQ[b*g-a*h,0] *) +Int[Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^2/(g_. + h_.*x_), x_Symbol] := Log[g + h*x]*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^2/h - 2*b*p*r/h* Int[Log[g + h*x]*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]/(a + b*x), x] - 2*d*q*r/h* Int[Log[g + h*x]*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]/(c + d*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, p, q, r}, x] && NeQ[b*c - a*d, 0] +Int[(g_. + h_.*x_)^m_.* Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^s_, x_Symbol] := (g + h*x)^(m + 1)* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s/(h*(m + 1)) - b*p*r*s/(h*(m + 1))* Int[(g + h*x)^(m + 1)* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/(a + b*x), x] - d*q*r*s/(h*(m + 1))* Int[(g + h*x)^(m + 1)* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/(c + d*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, m, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && IGtQ[s, 0] && NeQ[m, -1] +Int[(s_. + t_.*Log[i_.*(g_. + h_.*x_)^n_.])^m_.* Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]/(j_. + k_.*x_), x_Symbol] := (s + t*Log[i*(g + h*x)^n])^(m + 1)* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]/(k*n*t*(m + 1)) - b*p*r/(k*n*t*(m + 1))* Int[(s + t*Log[i*(g + h*x)^n])^(m + 1)/(a + b*x), x] - d*q*r/(k*n*t*(m + 1))* Int[(s + t*Log[i*(g + h*x)^n])^(m + 1)/(c + d*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, s, t, m, n, p, q, r}, x] && NeQ[b*c - a*d, 0] && EqQ[h*j - g*k, 0] && IGtQ[m, 0] +Int[(s_. + t_.*Log[i_.*(g_. + h_.*x_)^n_.])* Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]/(j_. + k_.*x_), x_Symbol] := (Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r] - Log[(a + b*x)^(p*r)] - Log[(c + d*x)^(q*r)])* Int[(s + t*Log[i*(g + h*x)^n])/(j + k*x), x] + Int[(Log[(a + b*x)^(p*r)]*(s + t*Log[i*(g + h*x)^n]))/(j + k*x), x] + Int[(Log[(c + d*x)^(q*r)]*(s + t*Log[i*(g + h*x)^n]))/(j + k*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, s, t, n, p, q, r}, x] && NeQ[b*c - a*d, 0] +Int[(s_. + t_.*Log[i_.*(g_. + h_.*x_)^n_.])^m_.* Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^ u_./(j_. + k_.*x_), x_Symbol] := Unintegrable[(s + t*Log[i*(g + h*x)^n])^m* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^u/(j + k*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, s, t, m, n, p, q, r, u}, x] && NeQ[b*c - a*d, 0] +Int[u_*Log[v_]* Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^s_., x_Symbol] := With[{g = Simplify[(v - 1)*(c + d*x)/(a + b*x)], h = Simplify[u*(a + b*x)*(c + d*x)]}, -h*PolyLog[2, 1 - v]* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s/(b*c - a*d) + h*p*r*s* Int[PolyLog[2, 1 - v]* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/((a + b*x)*(c + d*x)), x] /; FreeQ[{g, h}, x]] /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && IGtQ[s, 0] && EqQ[p + q, 0] +Int[v_*Log[i_.*(j_.*(g_. + h_.*x_)^t_.)^u_.]* Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^s_., x_Symbol] := With[{k = Simplify[v*(a + b*x)*(c + d*x)]}, k*Log[i*(j*(g + h*x)^t)^u]* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s + 1)/(p* r*(s + 1)*(b*c - a*d)) - k*h*t*u/(p*r*(s + 1)*(b*c - a*d))* Int[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s + 1)/(g + h*x), x] /; FreeQ[k, x]] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, p, q, r, s, t, u}, x] && NeQ[b*c - a*d, 0] && EqQ[p + q, 0] && NeQ[s, -1] +Int[u_*PolyLog[n_, v_]* Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^s_., x_Symbol] := With[{g = Simplify[v*(c + d*x)/(a + b*x)], h = Simplify[u*(a + b*x)*(c + d*x)]}, h*PolyLog[n + 1, v]* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s/(b*c - a*d) - h*p*r*s* Int[PolyLog[n + 1, v]* Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/((a + b*x)*(c + d*x)), x] /; FreeQ[{g, h}, x]] /; FreeQ[{a, b, c, d, e, f, n, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && IGtQ[s, 0] && EqQ[p + q, 0] +Int[(a_. + b_.*Log[c_.*Sqrt[d_. + e_.*x_]/Sqrt[f_. + g_.*x_]])^ n_./(A_. + B_.*x_ + C_.*x_^2), x_Symbol] := 2*e*g/(C*(e*f - d*g))* Subst[Int[(a + b*Log[c*x])^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x]] /; FreeQ[{a, b, c, d, e, f, g, A, B, C, n}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[B*e*g - C*(e*f + d*g), 0] +Int[(a_. + b_.*Log[c_.*Sqrt[d_. + e_.*x_]/Sqrt[f_. + g_.*x_]])^ n_./(A_. + C_.*x_^2), x_Symbol] := g/(C*f)* Subst[Int[(a + b*Log[c*x])^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x]] /; FreeQ[{a, b, c, d, e, f, g, A, C, n}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] +Int[RFx_.*Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.], x_Symbol] := p*r*Int[RFx*Log[a + b*x], x] + q*r*Int[RFx*Log[c + d*x], x] - (p*r*Log[a + b*x] + q*r*Log[c + d*x] - Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r])*Int[RFx, x] /; FreeQ[{a, b, c, d, e, f, p, q, r}, x] && RationalFunctionQ[RFx, x] && NeQ[b*c - a*d, 0] && Not[ MatchQ[RFx, u_.*(a + b*x)^m_.*(c + d*x)^n_. /; IntegersQ[m, n]]] +(* Int[RFx_*Log[e_.*(f_.*(a_.+b_.*x_)^p_.*(c_.+d_.*x_)^q_.)^r_.],x_ Symbol] := With[{u=IntHide[RFx,x]}, u*Log[e*(f*(a+b*x)^p*(c+d*x)^q)^r] - b*p*r*Int[u/(a+b*x),x] - d*q*r*Int[u/(c+d*x),x] /; NonsumQ[u]] /; FreeQ[{a,b,c,d,e,f,p,q,r},x] && RationalFunctionQ[RFx,x] && NeQ[b*c-a*d,0] *) +Int[RFx_*Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^s_., x_Symbol] := With[{u = ExpandIntegrand[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && RationalFunctionQ[RFx, x] && IGtQ[s, 0] +Int[RFx_*Log[e_.*(f_.*(a_. + b_.*x_)^p_.*(c_. + d_.*x_)^q_.)^r_.]^s_., x_Symbol] := Unintegrable[RFx*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s, x] /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && RationalFunctionQ[RFx, x] +Int[u_.*Log[e_.*(f_.*v_^p_.*w_^q_.)^r_.]^s_., x_Symbol] := Int[u*Log[e*(f*ExpandToSum[v, x]^p*ExpandToSum[w, x]^q)^r]^s, x] /; FreeQ[{e, f, p, q, r, s}, x] && LinearQ[{v, w}, x] && Not[LinearMatchQ[{v, w}, x]] && AlgebraicFunctionQ[u, x] +Int[u_.*Log[e_.*(f_.*(g_ + v_./w_))^r_.]^s_., x_Symbol] := Int[u*Log[e*(f*ExpandToSum[v + g*w, x]/ExpandToSum[w, x])^r]^s, x] /; FreeQ[{e, f, g, r, s}, x] && LinearQ[w, x] && (FreeQ[v, x] || LinearQ[v, x]) && AlgebraicFunctionQ[u, x] +(* Int[Log[g_.*(h_.*(a_.+b_.*x_)^p_.)^q_.]*Log[i_.*(j_.*(c_.+d_.*x_)^ r_.)^s_.]/(e_+f_.*x_),x_Symbol] := 1/f*Subst[Int[Log[g*(h*Simp[-(b*e-a*f)/f+b*x/f,x]^p)^q]*Log[i*(j* Simp[-(d*e-c*f)/f+d*x/f,x]^r)^s]/x,x],x,e+f*x] /; FreeQ[{a,b,c,d,e,f,g,h,i,j,p,q,r,s},x] *) diff --git a/IntegrationRules/3 Logarithms/3.3 u (a+b log(c (d+e x)^n))^p.m b/IntegrationRules/3 Logarithms/3.3 u (a+b log(c (d+e x)^n))^p.m new file mode 100755 index 0000000..221d127 --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.3 u (a+b log(c (d+e x)^n))^p.m @@ -0,0 +1,65 @@ + +(* ::Subsection::Closed:: *) +(* 3.3 u (a+b log(c (d+e x)^n))^p *) +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := 1/e*Subst[Int[(a + b*Log[c*x^n])^p, x], x, d + e*x] /; FreeQ[{a, b, c, d, e, n, p}, x] +Int[(f_ + g_. x_)^q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := 1/e*Subst[Int[(f*x/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x] && EqQ[e*f - d*g, 0] +Int[Log[c_.*(d_ + e_.*x_^n_.)]/x_, x_Symbol] := -PolyLog[2, -c*e*x^n]/n /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)])/x_, x_Symbol] := (a + b*Log[c*d])*Log[x] + b*Int[Log[1 + e*x/d]/x, x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[c*d, 0] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)])/(f_. + g_. x_), x_Symbol] := 1/g*Subst[Int[(a + b*Log[1 + c*e*x/g])/x, x], x, f + g*x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[g + c*(e*f - d*g), 0] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])/(f_. + g_. x_), x_Symbol] := Log[e*(f + g*x)/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n])/g - b*e*n/g*Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] +Int[(f_. + g_.*x_)^q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.]), x_Symbol] := (f + g*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n])/(g*(q + 1)) - b*e*n/(g*(q + 1))*Int[(f + g*x)^(q + 1)/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_/(f_. + g_. x_), x_Symbol] := Log[e*(f + g*x)/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n])^p/g - b*e*n*p/g* Int[Log[(e*(f + g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n])^(p - 1)/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[e*f - d*g, 0] && IGtQ[p, 1] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_/(f_. + g_.*x_)^2, x_Symbol] := (d + e*x)*(a + b*Log[c*(d + e*x)^n])^p/((e*f - d*g)*(f + g*x)) - b*e*n*p/(e*f - d*g)* Int[(a + b*Log[c*(d + e*x)^n])^(p - 1)/(f + g*x), x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && GtQ[p, 0] +Int[(f_. + g_.*x_)^q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_, x_Symbol] := (f + g*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n])^p/(g*(q + 1)) - b*e*n*p/(g*(q + 1))* Int[(f + g*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n])^(p - 1)/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && GtQ[p, 0] && NeQ[q, -1] && IntegersQ[2*p, 2*q] && (Not[IGtQ[q, 0]] || EqQ[p, 2] && NeQ[q, 1]) +Int[(f_. + g_.*x_)^q_./(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.]), x_Symbol] := Int[ExpandIntegrand[(f + g*x)^q/(a + b*Log[c*(d + e*x)^n]), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && IGtQ[q, 0] +Int[(f_. + g_.*x_)^q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_, x_Symbol] := (d + e*x)*(f + g*x)^ q*(a + b*Log[c*(d + e*x)^n])^(p + 1)/(b*e*n*(p + 1)) + q*(e*f - d*g)/(b*e*n*(p + 1))* Int[(f + g*x)^(q - 1)*(a + b*Log[c*(d + e*x)^n])^(p + 1), x] - (q + 1)/(b*n*(p + 1))* Int[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && LtQ[p, -1] && GtQ[q, 0] +Int[(f_. + g_.*x_)^q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_, x_Symbol] := Int[ExpandIntegrand[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[e*f - d*g, 0] && IGtQ[q, 0] +Int[Log[c_./(d_ + e_.*x_)]/(f_ + g_.*x_^2), x_Symbol] := -e/g*Subst[Int[Log[2*d*x]/(1 - 2*d*x), x], x, 1/(d + e*x)] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0] +Int[(a_. + b_.*Log[c_./(d_ + e_.*x_)])/(f_ + g_.*x_^2), x_Symbol] := (a + b*Log[c/(2*d)])*Int[1/(f + g*x^2), x] + b*Int[Log[2*d/(d + e*x)]/(f + g*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e^2*f + d^2*g, 0] && GtQ[c/(2*d), 0] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])/Sqrt[f_ + g_.*x_^2], x_Symbol] := With[{u = IntHide[1/Sqrt[f + g*x^2], x]}, u*(a + b*Log[c*(d + e*x)^n]) - b*e*n*Int[SimplifyIntegrand[u/(d + e*x), x], x]] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && GtQ[f, 0] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])/(Sqrt[f1_ + g1_.*x_]* Sqrt[f2_ + g2_.*x_]), x_Symbol] := With[{u = IntHide[1/Sqrt[f1*f2 + g1*g2*x^2], x]}, u*(a + b*Log[c*(d + e*x)^n]) - b*e*n*Int[SimplifyIntegrand[u/(d + e*x), x], x]] /; FreeQ[{a, b, c, d, e, f1, g1, f2, g2, n}, x] && EqQ[f2*g1 + f1*g2, 0] && GtQ[f1, 0] && GtQ[f2, 0] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])/Sqrt[f_ + g_.*x_^2], x_Symbol] := Sqrt[1 + g/f*x^2]/Sqrt[f + g*x^2]* Int[(a + b*Log[c*(d + e*x)^n])/Sqrt[1 + g/f*x^2], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && Not[GtQ[f, 0]] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])/(Sqrt[f1_ + g1_.*x_]* Sqrt[f2_ + g2_.*x_]), x_Symbol] := Sqrt[1 + g1*g2/(f1*f2)*x^2]/(Sqrt[f1 + g1*x]*Sqrt[f2 + g2*x])* Int[(a + b*Log[c*(d + e*x)^n])/Sqrt[1 + g1*g2/(f1*f2)*x^2], x] /; FreeQ[{a, b, c, d, e, f1, g1, f2, g2, n}, x] && EqQ[f2*g1 + f1*g2, 0] +Int[(f_. + g_.*x_^r_)^q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := With[{k = Denominator[r]}, k*Subst[ Int[x^(k - 1)*(f + g*x^(k*r))^q*(a + b*Log[c*(d + e*x^k)^n])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x] && FractionQ[r] && IGtQ[p, 0] +Int[(f_ + g_.*x_^r_)^q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (f + g*x^r)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, r}, x] && IGtQ[p, 0] && IntegerQ[q] && (GtQ[q, 0] || IntegerQ[r] && NeQ[r, 1]) +Int[x_^m_.*Log[c_.*(d_ + e_.*x_)]/(f_ + g_. x_), x_Symbol] := Int[ExpandIntegrand[Log[c*(d + e*x)], x^m/(f + g*x), x], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[e*f - d*g, 0] && EqQ[c*d, 1] && IntegerQ[m] +Int[(f_. + g_. x_)^q_.*(h_. + i_. x_)^ r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := 1/e*Subst[ Int[(g*x/e)^q*((e*h - d*i)/e + i*x/e)^r*(a + b*Log[c*x^n])^p, x], x, d + e*x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[r, 0]) && IntegerQ[2*r] +Int[x_^m_.*(f_ + g_./x_)^q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^ p_., x_Symbol] := Int[(g + f*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q}, x] && EqQ[m, q] && IntegerQ[q] +Int[x_^m_.*(f_. + g_.*x_^r_.)^ q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := (f + g*x^r)^(q + 1)*(a + b*Log[c*(d + e*x)^n])^p/(g*r*(q + 1)) - b*e*n*p/(g*r*(q + 1))* Int[(f + g*x^r)^(q + 1)*(a + b*Log[c*(d + e*x)^n])^(p - 1)/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, m, n, q, r}, x] && EqQ[m, r - 1] && NeQ[q, -1] && IGtQ[p, 0] +Int[x_^m_.*(f_ + g_.*x_^r_.)^ q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.]), x_Symbol] := With[{u = IntHide[x^m*(f + g*x^r)^q, x]}, Dist[(a + b*Log[c*(d + e*x)^n]), u, x] - b*e*n*Int[SimplifyIntegrand[u/(d + e*x), x], x] /; InverseFunctionFreeQ[u, x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, q, r}, x] && IntegerQ[m] && IntegerQ[q] && IntegerQ[r] +Int[x_^m_.*(f_. + g_.*x_^r_)^ q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := With[{k = Denominator[r]}, k*Subst[ Int[x^(k*(m + 1) - 1)*(f + g*x^(k*r))^ q*(a + b*Log[c*(d + e*x^k)^n])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x] && FractionQ[r] && IGtQ[p, 0] && IntegerQ[m] +Int[(h_.*x_)^m_.*(f_ + g_.*x_^r_.)^ q_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^ p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q] +Int[Polyx_*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := Int[ExpandIntegrand[Polyx*(a + b*Log[c*(d + e*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && PolynomialQ[Polyx, x] +Int[RFx_*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] && RationalFunctionQ[RFx, x] && IntegerQ[p] +Int[RFx_*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := With[{u = ExpandIntegrand[RFx*(a + b*Log[c*(d + e*x)^n])^p, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] && RationalFunctionQ[RFx, x] && IntegerQ[p] +Int[AFx_*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := Unintegrable[AFx*(a + b*Log[c*(d + e*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, n, p}, x] && AlgebraicFunctionQ[AFx, x, True] +Int[u_^q_.*(a_. + b_.*Log[c_.*v_^n_.])^p_., x_Symbol] := Int[ExpandToSum[u, x]^q*(a + b*Log[c*ExpandToSum[v, x]^n])^p, x] /; FreeQ[{a, b, c, n, p, q}, x] && BinomialQ[u, x] && LinearQ[v, x] && Not[BinomialMatchQ[u, x] && LinearMatchQ[v, x]] +Int[Log[f_.*x_^m_.]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.]), x_Symbol] := -x*(m - Log[f*x^m])*(a + b*Log[c*(d + e*x)^n]) + b*e*m*n*Int[x/(d + e*x), x] - b*e*n*Int[(x*Log[f*x^m])/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[Log[f_.*x_^m_.]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_, x_Symbol] := With[{u = IntHide[(a + b*Log[c*(d + e*x)^n])^p, x]}, Dist[Log[f*x^m], u, x] - m*Int[Dist[1/x, u, x], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 1] +Int[Log[f_.*x_^m_.]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := Unintegrable[Log[f*x^m]*(a + b*Log[c*(d + e*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[Log[f_.*x_^m_.]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])/x_, x_Symbol] := Log[f*x^m]^2*(a + b*Log[c*(d + e*x)^n])/(2*m) - b*e*n/(2*m)*Int[Log[f*x^m]^2/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[(g_.*x_)^q_.* Log[f_.*x_^m_.]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.]), x_Symbol] := -1/(g*(q + 1))*(m*(g*x)^(q + 1)/(q + 1) - (g*x)^(q + 1)* Log[f*x^m])*(a + b*Log[c*(d + e*x)^n]) + b*e*m*n/(g*(q + 1)^2)*Int[(g*x)^(q + 1)/(d + e*x), x] - b*e*n/(g*(q + 1))*Int[(g*x)^(q + 1)*Log[f*x^m]/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, m, n, q}, x] && NeQ[q, -1] +Int[Log[f_.*x_^m_.]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_./x_, x_Symbol] := Log[f*x^m]^2*(a + b*Log[c*(d + e*x)^n])^p/(2*m) - b*e*n*p/(2*m)* Int[Log[f*x^m]^2*(a + b*Log[c*(d + e*x)^n])^(p - 1)/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 0] +Int[(g_.*x_)^q_.* Log[f_.*x_^m_.]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_, x_Symbol] := With[{u = IntHide[(g*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x]}, Dist[Log[f*x^m], u, x] - m*Int[Dist[1/x, u, x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, q}, x] && IGtQ[p, 1] && IGtQ[q, 0] +(* Int[(g_.*x_)^q_.*Log[f_.*x_^m_.]*(a_.+b_.*Log[c_.*(d_+e_.*x_)^n_.]) ^p_,x_Symbol] := With[{u=IntHide[(a+b*Log[c*(d+e*x)^n])^p,x]}, Dist[(g*x)^q*Log[f*x^m],u,x] - g*m*Int[Dist[(g*x)^(q-1),u,x],x] - g*q*Int[Dist[(g*x)^(q-1)*Log[f*x^m],u,x],x]] /; FreeQ[{a,b,c,d,e,f,g,m,n,q},x] && IGtQ[p,1] *) +Int[(g_.*x_)^q_.* Log[f_.*x_^m_.]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := Unintegrable[(g*x)^q*Log[f*x^m]*(a + b*Log[c*(d + e*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q}, x] +Int[Log[f_.*(g_. + h_.*x_)^m_.]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^p_., x_Symbol] := 1/e*Subst[Int[Log[f*(g*x/d)^m]*(a + b*Log[c*x^n])^p, x], x, d + e*x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p}, x] && EqQ[e*f - d*g, 0] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])*(f_. + g_.*Log[c_.*(d_ + e_.*x_)^n_.]), x_Symbol] := x*(a + b*Log[c*(d + e*x)^n])*(f + g*Log[c*(d + e*x)^n]) - e*n* Int[(x*(b*f + a*g + 2*b*g*Log[c*(d + e*x)^n]))/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^ p_.*(f_. + g_.*Log[h_.*(i_. + j_.*x_)^m_.]), x_Symbol] := x*(a + b*Log[c*(d + e*x)^n])^p*(f + g*Log[h*(i + j*x)^m]) - g*j*m*Int[x*(a + b*Log[c*(d + e*x)^n])^p/(i + j*x), x] - b*e*n*p* Int[x*(a + b*Log[c*(d + e*x)^n])^(p - 1)*(f + g*Log[h*(i + j*x)^m])/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, m, n}, x] && IGtQ[p, 0] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^ p_.*(f_. + g_.*Log[h_.*(i_. + j_.*x_)^m_.])^q_., x_Symbol] := Unintegrable[(a + b*Log[c*(d + e*x)^n])^ p*(f + g*Log[h*(i + j*x)^m])^q, x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, m, n, p}, x] +Int[(k_. + l_.*x_)^r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^ p_.*(f_. + g_.*Log[h_.*(i_. + j_.*x_)^m_.]), x_Symbol] := 1/e*Subst[ Int[(k*x/d)^r*(a + b*Log[c*x^n])^ p*(f + g*Log[h*((e*i - d*j)/e + j*x/e)^m]), x], x, d + e*x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, l, n, p, r}, x] && EqQ[e*k - d*l, 0] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])*(f_. + g_.*Log[c_.*(d_ + e_.*x_)^n_.])/x_, x_Symbol] := Log[x]*(a + b*Log[c*(d + e*x)^n])*(f + g*Log[c*(d + e*x)^n]) - e*n* Int[(Log[x]*(b*f + a*g + 2*b*g*Log[c*(d + e*x)^n]))/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] +Int[x_^m_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])*(f_. + g_.*Log[c_.*(d_ + e_.*x_)^n_.]), x_Symbol] := x^(m + 1)*(a + b*Log[c*(d + e*x)^n])*(f + g*Log[c*(d + e*x)^n])/(m + 1) - e*n/(m + 1)* Int[(x^(m + 1)*(b*f + a*g + 2*b*g*Log[c*(d + e*x)^n]))/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, n, m}, x] && NeQ[m, -1] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])*(f_. + g_.*Log[h_.*(i_. + j_.*x_)^m_.])/x_, x_Symbol] := Log[x]*(a + b*Log[c*(d + e*x)^n])*(f + g*Log[h*(i + j*x)^m]) - e*g*m*Int[Log[x]*(a + b*Log[c*(d + e*x)^n])/(d + e*x), x] - b*j*n*Int[Log[x]*(f + g*Log[h*(i + j*x)^m])/(i + j*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, m, n}, x] && EqQ[e*i - d*j, 0] +Int[Log[a_ + b_.*x_]*Log[c_ + d_.*x_]/x_, x_Symbol] := Log[-b*x/a]*Log[a + b*x]*Log[c + d*x] - 1/2*(Log[-b*x/a] - Log[-d*x/c])*(Log[a + b*x] + Log[a*(c + d*x)/(c*(a + b*x))])^2 + 1/2*(Log[-b*x/a] - Log[-(b*c - a*d)*x/(a*(c + d*x))] + Log[(b*c - a*d)/(b*(c + d*x))])* Log[a*(c + d*x)/(c*(a + b*x))]^2 + (Log[c + d*x] - Log[a*(c + d*x)/(c*(a + b*x))])* PolyLog[2, 1 + b*x/a] + (Log[a + b*x] + Log[a*(c + d*x)/(c*(a + b*x))])* PolyLog[2, 1 + d*x/c] - Log[a*(c + d*x)/(c*(a + b*x))]* PolyLog[2, d*(a + b*x)/(b*(c + d*x))] + Log[a*(c + d*x)/(c*(a + b*x))]* PolyLog[2, c*(a + b*x)/(a*(c + d*x))] - PolyLog[3, 1 + b*x/a] - PolyLog[3, 1 + d*x/c] - PolyLog[3, d*(a + b*x)/(b*(c + d*x))] + PolyLog[3, c*(a + b*x)/(a*(c + d*x))] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] +Int[Log[v_]*Log[w_]/x_, x_Symbol] := Int[Log[ExpandToSum[v, x]]*Log[ExpandToSum[w, x]]/x, x] /; LinearQ[{v, w}, x] && Not[LinearMatchQ[{v, w}, x]] +Int[Log[c_.*(d_ + e_.*x_)^n_.]*Log[h_.*(i_. + j_.*x_)^m_.]/x_, x_Symbol] := m*Int[Log[i + j*x]*Log[c*(d + e*x)^n]/x, x] - (m*Log[i + j*x] - Log[h*(i + j*x)^m])* Int[Log[c*(d + e*x)^n]/x, x] /; FreeQ[{c, d, e, h, i, j, m, n}, x] && NeQ[e*i - d*j, 0] && NeQ[i + j*x, h*(i + j*x)^m] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])*(f_ + g_.*Log[h_.*(i_. + j_.*x_)^m_.])/x_, x_Symbol] := f*Int[(a + b*Log[c*(d + e*x)^n])/x, x] + g*Int[Log[h*(i + j*x)^m]*(a + b*Log[c*(d + e*x)^n])/x, x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, m, n}, x] && NeQ[e*i - d*j, 0] +Int[x_^r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^ p_.*(f_. + g_.*Log[h_.*(i_. + j_.*x_)^m_.]), x_Symbol] := x^(r + 1)*(a + b*Log[c*(d + e*x)^n])^ p*(f + g*Log[h*(i + j*x)^m])/(r + 1) - g*j*m/(r + 1)* Int[x^(r + 1)*(a + b*Log[c*(d + e*x)^n])^p/(i + j*x), x] - b*e*n*p/(r + 1)* Int[x^(r + 1)*(a + b*Log[c*(d + e*x)^n])^(p - 1)*(f + g*Log[h*(i + j*x)^m])/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, m, n}, x] && IGtQ[p, 0] && IntegerQ[r] && (EqQ[p, 1] || GtQ[r, 0]) && NeQ[r, -1] +Int[(k_ + l_.*x_)^ r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])*(f_. + g_.*Log[h_.*(i_. + j_.*x_)^m_.]), x_Symbol] := 1/l*Subst[ Int[x^r*(a + b*Log[c*(-(e*k - d*l)/l + e*x/l)^n])*(f + g*Log[h*(-(j*k - i*l)/l + j*x/l)^m]), x], x, k + l*x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, l, m, n}, x] && IntegerQ[r] +Int[(k_. + l_.*x_)^r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^ p_.*(f_. + g_.*Log[h_.*(i_. + j_.*x_)^m_.])^q_., x_Symbol] := Unintegrable[(k + l*x)^r*(a + b*Log[c*(d + e*x)^n])^ p*(f + g*Log[h*(i + j*x)^m])^q, x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, q, r}, x] +Int[PolyLog[k_, h_ + i_.*x_]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])^ p_./(f_ + g_.*x_), x_Symbol] := 1/g*Subst[Int[PolyLog[k, h*x/d]*(a + b*Log[c*x^n])^p/x, x], x, d + e*x] /; FreeQ[{a, b, c, d, e, f, g, h, i, k, n}, x] && EqQ[e*f - d*g, 0] && EqQ[g*h - f*i, 0] && IGtQ[p, 0] +Int[Px_.* F_[f_.*(g_. + h_.*x_)]*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.]), x_Symbol] := With[{u = IntHide[Px*F[f*(g + h*x)], x]}, Dist[(a + b*Log[c*(d + e*x)^n]), u, x] - b*e*n*Int[SimplifyIntegrand[u/(d + e*x), x], x]] /; FreeQ[{a, b, c, d, e, f, g, h, n}, x] && PolynomialQ[Px, x] && MemberQ[{ArcSin, ArcCos, ArcTan, ArcCot, ArcSinh, ArcCosh, ArcTanh, ArcCoth}, F] +Int[u_.*(a_. + b_.*Log[c_.*v_^n_.])^p_., x_Symbol] := Int[u*(a + b*Log[c*ExpandToSum[v, x]^n])^p, x] /; FreeQ[{a, b, c, n, p}, x] && LinearQ[v, x] && Not[LinearMatchQ[v, x]] && Not[EqQ[n, 1] && MatchQ[c*v, e_.*(f_ + g_.*x) /; FreeQ[{e, f, g}, x]]] +Int[u_.*(a_. + b_.*Log[c_.*(d_.*(e_. + f_. x_)^m_.)^n_])^p_., x_Symbol] := Subst[Int[u*(a + b*Log[c*d^n*(e + f*x)^(m*n)])^p, x], c*d^n*(e + f*x)^(m*n), c*(d*(e + f*x)^m)^n] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[n]] && Not[EqQ[d, 1] && EqQ[m, 1]] && IntegralFreeQ[IntHide[u*(a + b*Log[c*d^n*(e + f*x)^(m*n)])^p, x]] +Int[AFx_*(a_. + b_.*Log[c_.*(d_.*(e_. + f_. x_)^m_.)^n_])^p_., x_Symbol] := Unintegrable[AFx*(a + b*Log[c*(d*(e + f*x)^m)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && AlgebraicFunctionQ[AFx, x, True] diff --git a/IntegrationRules/3 Logarithms/3.4 u (a+b log(c (d+e x^m)^n))^p.m b/IntegrationRules/3 Logarithms/3.4 u (a+b log(c (d+e x^m)^n))^p.m new file mode 100755 index 0000000..a53d568 --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.4 u (a+b log(c (d+e x^m)^n))^p.m @@ -0,0 +1,43 @@ + +(* ::Subsection::Closed:: *) +(* 3.4 u (a+b log(c (d+e x^m)^n))^p *) +Int[Pq_^m_.*Log[u_], x_Symbol] := With[{C = FullSimplify[Pq^m*(1 - u)/D[u, x]]}, C*PolyLog[2, 1 - u] /; FreeQ[C, x]] /; IntegerQ[m] && PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponents[u, x][[2]], Expon[Pq, x]] +Int[Log[c_.*(d_ + e_.*x_^n_)^p_.], x_Symbol] := x*Log[c*(d + e*x^n)^p] - e*n*p*Int[x^n/(d + e*x^n), x] /; FreeQ[{c, d, e, n, p}, x] +Int[(a_. + b_.*Log[c_.*(d_ + e_./x_)^p_.])^q_, x_Symbol] := (e + d*x)*(a + b*Log[c*(d + e/x)^p])^q/d + b*e*p*q/d*Int[(a + b*Log[c*(d + e/x)^p])^(q - 1)/x, x] /; FreeQ[{a, b, c, d, e, p}, x] && IGtQ[q, 0] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_, x_Symbol] := x*(a + b*Log[c*(d + e*x^n)^p])^q - b*e*n*p*q* Int[x^n*(a + b*Log[c*(d + e*x^n)^p])^(q - 1)/(d + e*x^n), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && IGtQ[q, 0] && (EqQ[q, 1] || IntegerQ[n]) +(* Int[(a_.+b_.*Log[c_.*(d_+e_.*x_^n_)^p_.])^q_,x_Symbol] := With[{k=Denominator[n]}, k*Subst[Int[x^(k-1)*(a+b*Log[c*(d+e*x^(k*n))^p])^q,x],x,x^(1/k)]] /; FreeQ[{a,b,c,d,e,p,q},x] && LtQ[-1,n,1] && (GtQ[n,0] || IGtQ[q,0]) *) +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_, x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*Log[c*(d + e*x^(k*n))^p])^q, x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, e, p, q}, x] && FractionQ[n] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_, x_Symbol] := Unintegrable[(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] +Int[(a_. + b_.*Log[c_.*v_^p_.])^q_., x_Symbol] := Int[(a + b*Log[c*ExpandToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, p, q}, x] && BinomialQ[v, x] && Not[BinomialMatchQ[v, x]] +Int[x_^m_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && IntegerQ[ Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) && Not[EqQ[q, 1] && ILtQ[n, 0] && IGtQ[m, 0]] +Int[(f_.*x_)^m_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.]), x_Symbol] := (f*x)^(m + 1)*(a + b*Log[c*(d + e*x^n)^p])/(f*(m + 1)) - b*e*n*p/(f*(m + 1))*Int[x^(n - 1)*(f*x)^(m + 1)/(d + e*x^n), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && NeQ[m, -1] +Int[(f_*x_)^m_*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := (f*x)^m/x^m*Int[x^m*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) +Int[(f_.*x_)^m_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_, x_Symbol] := (f*x)^(m + 1)*(a + b*Log[c*(d + e*x^n)^p])^q/(f*(m + 1)) - b*e*n*p*q/(f^n*(m + 1))* Int[(f*x)^(m + n)*(a + b*Log[c*(d + e*x^n)^p])^(q - 1)/(d + e*x^n), x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && IGtQ[q, 1] && IntegerQ[n] && NeQ[m, -1] +Int[x_^m_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_, x_Symbol] := With[{k = Denominator[n]}, k*Subst[ Int[x^(k*(m + 1) - 1)*(a + b*Log[c*(d + e*x^(k*n))^p])^q, x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, e, m, p, q}, x] && FractionQ[n] +Int[(f_*x_)^m_*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := (f*x)^m/x^m*Int[x^m*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x] && FractionQ[n] +Int[(f_.*x_)^m_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := Unintegrable[(f*x)^m*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q}, x] +Int[(f_.*x_)^m_.*(a_. + b_.*Log[c_.*v_^p_.])^q_., x_Symbol] := Int[(f*x)^m*(a + b*Log[c*ExpandToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, f, m, p, q}, x] && BinomialQ[v, x] && Not[BinomialMatchQ[v, x]] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])/(f_. + g_.*x_), x_Symbol] := Log[f + g*x]*(a + b*Log[c*(d + e*x^n)^p])/g - b*e*n*p/g*Int[x^(n - 1)*Log[f + g*x]/(d + e*x^n), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && RationalQ[n] +Int[(f_. + g_.*x_)^r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.]), x_Symbol] := (f + g*x)^(r + 1)*(a + b*Log[c*(d + e*x^n)^p])/(g*(r + 1)) - b*e*n*p/(g*(r + 1))* Int[x^(n - 1)*(f + g*x)^(r + 1)/(d + e*x^n), x] /; FreeQ[{a, b, c, d, e, f, g, n, p, r}, x] && (IGtQ[r, 0] || RationalQ[n]) && NeQ[r, -1] +Int[(f_. + g_.*x_)^r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := Unintegrable[(f + g*x)^r*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q, r}, x] +Int[u_^r_.*(a_. + b_.*Log[c_.*v_^p_.])^q_., x_Symbol] := Int[ExpandToSum[u, x]^r*(a + b*Log[c*ExpandToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, p, q, r}, x] && LinearQ[u, x] && BinomialQ[v, x] && Not[LinearMatchQ[u, x] && BinomialMatchQ[v, x]] +Int[x_^m_.*(f_. + g_.*x_)^ r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := Int[ExpandIntegrand[(a + b*Log[c*(d + e*x^n)^p])^q, x^m*(f + g*x)^r, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x] && IntegerQ[m] && IntegerQ[r] +Int[(h_.*x_)^m_*(f_. + g_.*x_)^ r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_.)^p_.])^q_., x_Symbol] := With[{k = Denominator[m]}, k/h* Subst[Int[ x^(k*(m + 1) - 1)*(f + g*x^k/h)^ r*(a + b*Log[c*(d + e*x^(k*n)/h^n)^p])^q, x], x, (h*x)^(1/k)]] /; FreeQ[{a, b, c, d, e, f, g, h, p, r}, x] && FractionQ[m] && IntegerQ[n] && IntegerQ[r] +Int[(h_.*x_)^m_.*(f_. + g_.*x_)^ r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := Unintegrable[(h*x)^m*(f + g*x)^r*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p, q, r}, x] +Int[(h_.*x_)^m_.*u_^r_.*(a_. + b_.*Log[c_.*v_^p_.])^q_., x_Symbol] := Int[(h*x)^m* ExpandToSum[u, x]^r*(a + b*Log[c*ExpandToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, h, m, p, q, r}, x] && LinearQ[u, x] && BinomialQ[v, x] && Not[LinearMatchQ[u, x] && BinomialMatchQ[v, x]] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])/(f_ + g_.*x_^2), x_Symbol] := With[{u = IntHide[1/(f + g*x^2), x]}, u*(a + b*Log[c*(d + e*x^n)^p]) - b*e*n*p*Int[u*x^(n - 1)/(d + e*x^n), x]] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && IntegerQ[n] +Int[(f_ + g_.*x_^s_)^r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^ q_., x_Symbol] := With[{t = ExpandIntegrand[(a + b*Log[c*(d + e*x^n)^p])^q, (f + g*x^s)^r, x]}, Int[t, x] /; SumQ[t]] /; FreeQ[{a, b, c, d, e, f, g, n, p, q, r, s}, x] && IntegerQ[n] && IGtQ[q, 0] && IntegerQ[r] && IntegerQ[s] && (EqQ[q, 1] || GtQ[r, 0] && GtQ[s, 1] || LtQ[s, 0] && LtQ[r, 0]) +Int[(f_ + g_.*x_^s_)^r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^ q_., x_Symbol] := With[{k = Denominator[n]}, k*Subst[ Int[x^(k - 1)*(f + g*x^(k*s))^ r*(a + b*Log[c*(d + e*x^(k*n))^p])^q, x], x, x^(1/k)] /; IntegerQ[k*s]] /; FreeQ[{a, b, c, d, e, f, g, n, p, q, r, s}, x] && FractionQ[n] +Int[(f_ + g_.*x_^s_)^r_. (a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^ q_., x_Symbol] := Unintegrable[(f + g*x^s)^r*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q, r, s}, x] +Int[u_^r_.*(a_. + b_.*Log[c_.*v_^p_.])^q_., x_Symbol] := Int[ExpandToSum[u, x]^r*(a + b*Log[c*ExpandToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, p, q, r}, x] && BinomialQ[{u, v}, x] && Not[BinomialMatchQ[{u, v}, x]] +Int[x_^m_.*(f_ + g_.*x_^s_)^ r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^ r*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) +Int[x_^m_.*(f_ + g_.*x_^s_)^ r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := Int[ExpandIntegrand[(a + b*Log[c*(d + e*x^n)^p])^q, x^m*(f + g*x^s)^r, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IGtQ[q, 0] && IntegerQ[m] && IntegerQ[r] && IntegerQ[s] +Int[(f_ + g_.*x_^s_)^r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^ q_., x_Symbol] := With[{k = Denominator[n]}, k*Subst[ Int[x^(k - 1)*(f + g*x^(k*s))^ r*(a + b*Log[c*(d + e*x^(k*n))^p])^q, x], x, x^(1/k)] /; IntegerQ[k*s]] /; FreeQ[{a, b, c, d, e, f, g, n, p, q, r, s}, x] && FractionQ[n] +Int[x_^m_.*(f_ + g_.*x_^s_)^ r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := 1/n*Subst[ Int[x^(m + 1/n - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^ q, x], x, x^n] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && FractionQ[n] && IntegerQ[1/n] && IntegerQ[s/n] +Int[(h_.*x_)^m_*(f_. + g_.*x_^s_.)^ r_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_.)^p_.])^q_., x_Symbol] := With[{k = Denominator[m]}, k/h* Subst[Int[ x^(k*(m + 1) - 1)*(f + g*x^(k*s)/h^s)^ r*(a + b*Log[c*(d + e*x^(k*n)/h^n)^p])^q, x], x, (h*x)^(1/k)]] /; FreeQ[{a, b, c, d, e, f, g, h, p, r}, x] && FractionQ[m] && IntegerQ[n] && IntegerQ[s] +Int[(h_.*x_)^m_.*(f_ + g_.*x_^s_)^ r_. (a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])^q_., x_Symbol] := Unintegrable[(h*x)^m*(f + g*x^s)^r*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p, q, r, s}, x] +Int[(h_.*x_)^m_.*u_^r_.*(a_. + b_.*Log[c_.*v_^p_.])^q_., x_Symbol] := Int[(h*x)^m* ExpandToSum[u, x]^r*(a + b*Log[c*ExpandToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, h, m, p, q, r}, x] && BinomialQ[{u, v}, x] && Not[BinomialMatchQ[{u, v}, x]] +Int[Log[f_.*x_^q_.]^m_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.])/x_, x_Symbol] := Log[f*x^q]^(m + 1)*(a + b*Log[c*(d + e*x^n)^p])/(q*(m + 1)) - b*e*n*p/(q*(m + 1))* Int[x^(n - 1)*Log[f*x^q]^(m + 1)/(d + e*x^n), x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q}, x] && NeQ[m, -1] +Int[F_[f_.*x_]^m_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_^n_)^p_.]), x_Symbol] := With[{u = IntHide[F[f*x]^m, x]}, Dist[a + b*Log[c*(d + e*x^n)^p], u, x] - b*e*n*p*Int[SimplifyIntegrand[u*x^(n - 1)/(d + e*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, p}, x] && MemberQ[{ArcSin, ArcCos, ArcSinh, ArcCosh}, F] && IGtQ[m, 0] && IGtQ[n, 1] +Int[(a_. + b_.*Log[c_.*(d_ + e_.*(f_. + g_.*x_)^n_)^p_.])^q_., x_Symbol] := 1/g*Subst[Int[(a + b*Log[c*(d + e*x^n)^p])^q, x], x, f + g*x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && IGtQ[q, 0] && (EqQ[q, 1] || IntegerQ[n]) +Int[(a_. + b_.*Log[c_.*(d_ + e_.*(f_. + g_.*x_)^n_)^p_.])^q_., x_Symbol] := Unintegrable[(a + b*Log[c*(d + e*(f + g*x)^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x] diff --git a/IntegrationRules/3 Logarithms/3.5 Miscellaneous logarithms.m b/IntegrationRules/3 Logarithms/3.5 Miscellaneous logarithms.m new file mode 100755 index 0000000..ca08008 --- /dev/null +++ b/IntegrationRules/3 Logarithms/3.5 Miscellaneous logarithms.m @@ -0,0 +1,48 @@ + +(* ::Subsection::Closed:: *) +(* 3.5 Miscellaneous logarithms *) +Int[u_*Log[v_], x_Symbol] := With[{w = DerivativeDivides[v, u*(1 - v), x]}, w*PolyLog[2, 1 - v] /; Not[FalseQ[w]]] +Int[(a_. + b_.*Log[u_])*Log[v_]*w_, x_Symbol] := With[{z = DerivativeDivides[v, w*(1 - v), x]}, z*(a + b*Log[u])*PolyLog[2, 1 - v] - b*Int[SimplifyIntegrand[z*PolyLog[2, 1 - v]*D[u, x]/u, x], x] /; Not[FalseQ[z]]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] +Int[Log[c_.*Log[d_.*x_^n_.]^p_.], x_Symbol] := x*Log[c*Log[d*x^n]^p] - n*p*Int[1/Log[d*x^n], x] /; FreeQ[{c, d, n, p}, x] +Int[(a_. + b_.*Log[c_.*Log[d_.*x_^n_.]^p_.])/x_, x_Symbol] := Log[d*x^n]*(a + b*Log[c*Log[d*x^n]^p])/n - b*p*Log[x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(e_.*x_)^m_.*(a_. + b_.*Log[c_.*Log[d_.*x_^n_.]^p_.]), x_Symbol] := (e*x)^(m + 1)*(a + b*Log[c*Log[d*x^n]^p])/(e*(m + 1)) - b*n*p/(m + 1)*Int[(e*x)^m/Log[d*x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[m, -1] +Int[(a_. + b_.*Log[c_.*RFx_^p_.])^n_., x_Symbol] := x*(a + b*Log[c*RFx^p])^n - b*n*p* Int[SimplifyIntegrand[ x*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x]/RFx, x], x] /; FreeQ[{a, b, c, p}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] +Int[(a_. + b_.*Log[c_.*RFx_^p_.])^n_./(d_. + e_.*x_), x_Symbol] := Log[d + e*x]*(a + b*Log[c*RFx^p])^n/e - b*n*p/e* Int[Log[d + e*x]*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x]/RFx, x] /; FreeQ[{a, b, c, d, e, p}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*Log[c_.*RFx_^p_.])^n_., x_Symbol] := (d + e*x)^(m + 1)*(a + b*Log[c*RFx^p])^n/(e*(m + 1)) - b*n*p/(e*(m + 1))* Int[SimplifyIntegrand[(d + e*x)^(m + 1)*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x]/RFx, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && (EqQ[n, 1] || IntegerQ[m]) && NeQ[m, -1] +Int[Log[c_.*RFx_^n_.]/(d_ + e_.*x_^2), x_Symbol] := With[{u = IntHide[1/(d + e*x^2), x]}, u*Log[c*RFx^n] - n*Int[SimplifyIntegrand[u*D[RFx, x]/RFx, x], x]] /; FreeQ[{c, d, e, n}, x] && RationalFunctionQ[RFx, x] && Not[PolynomialQ[RFx, x]] +Int[Log[c_.*Px_^n_.]/Qx_, x_Symbol] := With[{u = IntHide[1/Qx, x]}, u*Log[c*Px^n] - n*Int[SimplifyIntegrand[u*D[Px, x]/Px, x], x]] /; FreeQ[{c, n}, x] && QuadraticQ[{Qx, Px}, x] && EqQ[D[Px/Qx, x], 0] +Int[RGx_*(a_. + b_.*Log[c_.*RFx_^p_.])^n_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*Log[c*RFx^p])^n, RGx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, p}, x] && RationalFunctionQ[RFx, x] && RationalFunctionQ[RGx, x] && IGtQ[n, 0] +Int[RGx_*(a_. + b_.*Log[c_.*RFx_^p_.])^n_., x_Symbol] := With[{u = ExpandIntegrand[RGx*(a + b*Log[c*RFx^p])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, p}, x] && RationalFunctionQ[RFx, x] && RationalFunctionQ[RGx, x] && IGtQ[n, 0] +Int[RFx_*(a_. + b_.*Log[u_]), x_Symbol] := With[{lst = SubstForFractionalPowerOfLinear[RFx*(a + b*Log[u]), x]}, lst[[2]]*lst[[4]]* Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])] /; Not[FalseQ[lst]]] /; FreeQ[{a, b}, x] && RationalFunctionQ[RFx, x] +Int[(f_. + g_.*x_)^m_.*Log[1 + e_.*(F_^(c_.*(a_. + b_.*x_)))^n_.], x_Symbol] := -(f + g*x)^m*PolyLog[2, -e*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F]) + g*m/(b*c*n*Log[F])* Int[(f + g*x)^(m - 1)*PolyLog[2, -e*(F^(c*(a + b*x)))^n], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0] +Int[(f_. + g_.*x_)^m_.*Log[d_ + e_.*(F_^(c_.*(a_. + b_.*x_)))^n_.], x_Symbol] := (f + g*x)^(m + 1)*Log[d + e*(F^(c*(a + b*x)))^n]/(g*(m + 1)) - (f + g*x)^(m + 1)* Log[1 + e/d*(F^(c*(a + b*x)))^n]/(g*(m + 1)) + Int[(f + g*x)^m*Log[1 + e/d*(F^(c*(a + b*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && NeQ[d, 1] +Int[Log[d_. + e_.*x_ + f_.*Sqrt[a_. + b_.*x_ + c_.*x_^2]], x_Symbol] := x*Log[d + e*x + f*Sqrt[a + b*x + c*x^2]] + f^2*(b^2 - 4*a*c)/2* Int[x/((2*d*e - b*f^2)*(a + b*x + c*x^2) - f*(b*d - 2*a*e + (2*c*d - b*e)*x)*Sqrt[a + b*x + c*x^2]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e^2 - c*f^2, 0] +Int[Log[d_. + e_.*x_ + f_.*Sqrt[a_. + c_.*x_^2]], x_Symbol] := x*Log[d + e*x + f*Sqrt[a + c*x^2]] - a*c*f^2* Int[x/(d*e*(a + c*x^2) + f*(a*e - c*d*x)*Sqrt[a + c*x^2]), x] /; FreeQ[{a, c, d, e, f}, x] && EqQ[e^2 - c*f^2, 0] +Int[(g_.*x_)^m_.* Log[d_. + e_.*x_ + f_.*Sqrt[a_. + b_.*x_ + c_.*x_^2]], x_Symbol] := (g*x)^(m + 1)* Log[d + e*x + f*Sqrt[a + b*x + c*x^2]]/(g*(m + 1)) + f^2*(b^2 - 4*a*c)/(2*g*(m + 1))* Int[(g*x)^(m + 1)/((2*d*e - b*f^2)*(a + b*x + c*x^2) - f*(b*d - 2*a*e + (2*c*d - b*e)*x)*Sqrt[a + b*x + c*x^2]), x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[e^2 - c*f^2, 0] && NeQ[m, -1] && IntegerQ[2*m] +Int[(g_.*x_)^m_.*Log[d_. + e_.*x_ + f_.*Sqrt[a_. + c_.*x_^2]], x_Symbol] := (g*x)^(m + 1)*Log[d + e*x + f*Sqrt[a + c*x^2]]/(g*(m + 1)) - a*c*f^2/(g*(m + 1))* Int[(g*x)^(m + 1)/(d*e*(a + c*x^2) + f*(a*e - c*d*x)*Sqrt[a + c*x^2]), x] /; FreeQ[{a, c, d, e, f, g, m}, x] && EqQ[e^2 - c*f^2, 0] && NeQ[m, -1] && IntegerQ[2*m] +Int[v_.*Log[d_. + e_.*x_ + f_.*Sqrt[u_]], x_Symbol] := Int[v*Log[d + e*x + f*Sqrt[ExpandToSum[u, x]]], x] /; FreeQ[{d, e, f}, x] && QuadraticQ[u, x] && Not[QuadraticMatchQ[u, x]] && (EqQ[v, 1] || MatchQ[v, (g_.*x)^m_. /; FreeQ[{g, m}, x]]) +Int[Log[c_.*x_^n_.]^r_./(x_*(a_.*x_^m_. + b_.*Log[c_.*x_^n_.]^q_)), x_Symbol] := Log[a*x^m + b*Log[c*x^n]^q]/(b*n*q) - a*m/(b*n*q)*Int[x^(m - 1)/(a*x^m + b*Log[c*x^n]^q), x] /; FreeQ[{a, b, c, m, n, q, r}, x] && EqQ[r, q - 1] +Int[Log[c_.*x_^n_.]^r_.*(a_.*x_^m_. + b_.*Log[c_.*x_^n_.]^q_)^p_./x_, x_Symbol] := Int[ExpandIntegrand[Log[c*x^n]^r/x, (a*x^m + b*Log[c*x^n]^q)^p, x], x] /; FreeQ[{a, b, c, m, n, p, q, r}, x] && EqQ[r, q - 1] && IGtQ[p, 0] +Int[Log[c_.*x_^n_.]^r_.*(a_.*x_^m_. + b_.*Log[c_.*x_^n_.]^q_)^p_./x_, x_Symbol] := (a*x^m + b*Log[c*x^n]^q)^(p + 1)/(b*n*q*(p + 1)) - a*m/(b*n*q)*Int[x^(m - 1)*(a*x^m + b*Log[c*x^n]^q)^p, x] /; FreeQ[{a, b, c, m, n, p, q, r}, x] && EqQ[r, q - 1] && NeQ[p, -1] +Int[(d_.*x_^m_. + e_.*Log[c_.*x_^n_.]^r_.)/(x_*(a_.*x_^m_. + b_.*Log[c_.*x_^n_.]^q_)), x_Symbol] := e*Log[a*x^m + b*Log[c*x^n]^q]/(b*n*q) /; FreeQ[{a, b, c, d, e, m, n, q, r}, x] && EqQ[r, q - 1] && EqQ[a*e*m - b*d*n*q, 0] +Int[(u_ + d_.*x_^m_. + e_.*Log[c_.*x_^n_.]^r_.)/(x_*(a_.*x_^m_. + b_.*Log[c_.*x_^n_.]^q_)), x_Symbol] := e*Log[a*x^m + b*Log[c*x^n]^q]/(b*n*q) + Int[u/(x*(a*x^m + b*Log[c*x^n]^q)), x] /; FreeQ[{a, b, c, d, e, m, n, q, r}, x] && EqQ[r, q - 1] && EqQ[a*e*m - b*d*n*q, 0] +Int[(d_.*x_^m_. + e_.*Log[c_.*x_^n_.]^r_.)/(x_*(a_.*x_^m_. + b_.*Log[c_.*x_^n_.]^q_)), x_Symbol] := e*Log[a*x^m + b*Log[c*x^n]^q]/(b*n*q) - (a*e*m - b*d*n*q)/(b*n*q)* Int[x^(m - 1)/(a*x^m + b*Log[c*x^n]^q), x] /; FreeQ[{a, b, c, d, e, m, n, q, r}, x] && EqQ[r, q - 1] && NeQ[a*e*m - b*d*n*q, 0] +Int[(d_.*x_^m_. + e_.*Log[c_.*x_^n_.]^r_.)*(a_.*x_^m_. + b_.*Log[c_.*x_^n_.]^q_)^ p_./x_, x_Symbol] := e*(a*x^m + b*Log[c*x^n]^q)^(p + 1)/(b*n*q*(p + 1)) /; FreeQ[{a, b, c, d, e, m, n, p, q, r}, x] && EqQ[r, q - 1] && NeQ[p, -1] && EqQ[a*e*m - b*d*n*q, 0] +Int[(d_.*x_^m_. + e_.*Log[c_.*x_^n_.]^r_.)*(a_.*x_^m_. + b_.*Log[c_.*x_^n_.]^q_)^ p_./x_, x_Symbol] := e*(a*x^m + b*Log[c*x^n]^q)^(p + 1)/(b*n*q*(p + 1)) - (a*e*m - b*d*n*q)/(b*n*q)* Int[x^(m - 1)*(a*x^m + b*Log[c*x^n]^q)^p, x] /; FreeQ[{a, b, c, d, e, m, n, p, q, r}, x] && EqQ[r, q - 1] && NeQ[p, -1] && NeQ[a*e*m - b*d*n*q, 0] +Int[(d_.*x_^m_. + e_.*x_^m_.*Log[c_.*x_^n_.] + f_.*Log[c_.*x_^n_.]^ q_.)/(x_*(a_.*x_^m_. + b_.*Log[c_.*x_^n_.]^q_)^2), x_Symbol] := d*Log[c*x^n]/(a*n*(a*x^m + b*Log[c*x^n]^q)) /; FreeQ[{a, b, c, d, e, f, m, n, q}, x] && EqQ[e*n + d*m, 0] && EqQ[a*f + b*d*(q - 1), 0] +Int[(d_ + e_.*Log[c_.*x_^n_.])/(a_.*x_ + b_.*Log[c_.*x_^n_.]^q_)^2, x_Symbol] := -e*Log[c*x^n]/(a*(a*x + b*Log[c*x^n]^q)) + (d + e*n)/a* Int[1/(x*(a*x + b*Log[c*x^n]^q)), x] /; FreeQ[{a, b, c, d, e, n, q}, x] && EqQ[d + e*n*q, 0] +Int[Log[u_], x_Symbol] := x*Log[u] - Int[SimplifyIntegrand[x*D[u, x]/u, x], x] /; InverseFunctionFreeQ[u, x] +Int[Log[u_], x_Symbol] := x*Log[u] - Int[SimplifyIntegrand[x*Simplify[D[u, x]/u], x], x] /; ProductQ[u] +Int[Log[u_]/(a_. + b_.*x_), x_Symbol] := Log[a + b*x]*Log[u]/b - 1/b*Int[SimplifyIntegrand[Log[a + b*x]*D[u, x]/u, x], x] /; FreeQ[{a, b}, x] && RationalFunctionQ[D[u, x]/u, x] && (NeQ[a, 0] || Not[BinomialQ[u, x] && EqQ[BinomialDegree[u, x]^2, 1]]) +Int[(a_. + b_.*x_)^m_.*Log[u_], x_Symbol] := (a + b*x)^(m + 1)*Log[u]/(b*(m + 1)) - 1/(b*(m + 1))* Int[SimplifyIntegrand[(a + b*x)^(m + 1)*D[u, x]/u, x], x] /; FreeQ[{a, b, m}, x] && InverseFunctionFreeQ[u, x] && NeQ[m, -1] (* && Not[FunctionOfQ[x^(m+1),u,x]] && FalseQ[PowerVariableExpn[u,m+1, x]] *) +Int[Log[u_]/Qx_, x_Symbol] := With[{v = IntHide[1/Qx, x]}, v*Log[u] - Int[SimplifyIntegrand[v*D[u, x]/u, x], x]] /; QuadraticQ[Qx, x] && InverseFunctionFreeQ[u, x] +Int[u_^(a_.*x_)*Log[u_], x_Symbol] := u^(a*x)/a - Int[SimplifyIntegrand[x*u^(a*x - 1)*D[u, x], x], x] /; FreeQ[a, x] && InverseFunctionFreeQ[u, x] +Int[v_*Log[u_], x_Symbol] := With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*D[u, x]/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x] +Int[v_*Log[u_], x_Symbol] := With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*Simplify[D[u, x]/u], x], x] /; InverseFunctionFreeQ[w, x]] /; ProductQ[u] +Int[Log[v_]*Log[w_], x_Symbol] := x*Log[v]*Log[w] - Int[SimplifyIntegrand[x*Log[w]*D[v, x]/v, x], x] - Int[SimplifyIntegrand[x*Log[v]*D[w, x]/w, x], x] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x] +Int[u_*Log[v_]*Log[w_], x_Symbol] := With[{z = IntHide[u, x]}, Dist[Log[v]*Log[w], z, x] - Int[SimplifyIntegrand[z*Log[w]*D[v, x]/v, x], x] - Int[SimplifyIntegrand[z*Log[v]*D[w, x]/w, x], x] /; InverseFunctionFreeQ[z, x]] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x] +Int[f_^(a_.*Log[u_]), x_Symbol] := Int[u^(a*Log[f]), x] /; FreeQ[{a, f}, x] +(* If[TrueQ[$LoadShowSteps], Int[u_/x_,x_Symbol] := With[{lst=FunctionOfLog[u,x]}, ShowStep["","Int[F[Log[a*x^n]]/x,x]","Subst[Int[F[x],x],x,Log[a*x^n] ]/n",Hold[ 1/lst[[3]]*Subst[Int[lst[[1]],x],x,Log[lst[[2]]]]]] /; Not[FalseQ[lst]]] /; SimplifyFlag && NonsumQ[u], Int[u_/x_,x_Symbol] := With[{lst=FunctionOfLog[u,x]}, 1/lst[[3]]*Subst[Int[lst[[1]],x],x,Log[lst[[2]]]] /; Not[FalseQ[lst]]] /; NonsumQ[u]] *) +If[TrueQ[$LoadShowSteps], Int[u_, x_Symbol] := With[{lst = FunctionOfLog[Cancel[x*u], x]}, ShowStep["", "Int[F[Log[a*x^n]]/x,x]", "Subst[Int[F[x],x],x,Log[a*x^n]]/n", Hold[ 1/lst[[3]]*Subst[Int[lst[[1]], x], x, Log[lst[[2]]]]]] /; Not[FalseQ[lst]]] /; SimplifyFlag && NonsumQ[u], Int[u_, x_Symbol] := With[{lst = FunctionOfLog[Cancel[x*u], x]}, 1/lst[[3]]*Subst[Int[lst[[1]], x], x, Log[lst[[2]]]] /; Not[FalseQ[lst]]] /; NonsumQ[u]] +Int[u_.*Log[Gamma[v_]], x_Symbol] := (Log[Gamma[v]] - LogGamma[v])*Int[u, x] + Int[u*LogGamma[v], x] +Int[u_.*(a_.*x_^m_. + b_.*x_^r_.*Log[c_.*x_^n_.]^q_.)^p_., x_Symbol] := Int[u*x^(p*r)*(a*x^(m - r) + b*Log[c*x^n]^q)^p, x] /; FreeQ[{a, b, c, m, n, p, q, r}, x] && IntegerQ[p] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.1 (a sin)^m (b trg)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.1 (a sin)^m (b trg)^n.m new file mode 100755 index 0000000..6d3a357 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.1 (a sin)^m (b trg)^n.m @@ -0,0 +1,33 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.0.1 (a sin)^m (b trg)^n *) +If[TrueQ[$LoadShowSteps], Int[u_, x_Symbol] := Int[DeactivateTrig[u, x], x] /; SimplifyFlag && FunctionOfTrigOfLinearQ[u, x], Int[u_, x_Symbol] := Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinearQ[u, x]] +Int[(a_.*sin[e_. + f_.*x_])^m_.*(b_.*cos[e_. + f_.*x_])^n_., x_Symbol] := (a*Sin[e + f*x])^(m + 1)*(b*Cos[e + f*x])^(n + 1)/(a*b*f*(m + 1)) /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n + 2, 0] && NeQ[m, -1] +Int[(a_.*sin[e_. + f_.*x_])^m_.*cos[e_. + f_.*x_]^n_., x_Symbol] := 1/(a*f)* Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] && Not[IntegerQ[(m - 1)/2] && LtQ[0, m, n]] +Int[(a_.*cos[e_. + f_.*x_])^m_.*sin[e_. + f_.*x_]^n_., x_Symbol] := -1/(a*f)* Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] && Not[IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n]] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*cos[e_. + f_.*x_])^n_, x_Symbol] := -a*(a*Sin[e + f*x])^(m - 1)*(b*Cos[e + f*x])^(n + 1)/(b* f*(n + 1)) + a^2*(m - 1)/(b^2*(n + 1))* Int[(a*Sin[e + f*x])^(m - 2)*(b*Cos[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || EqQ[m + n, 0]) +Int[(a_.*cos[e_. + f_.*x_])^m_*(b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := a*(a*Cos[e + f*x])^(m - 1)*(b*Sin[e + f*x])^(n + 1)/(b*f*(n + 1)) + a^2*(m - 1)/(b^2*(n + 1))* Int[(a*Cos[e + f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || EqQ[m + n, 0]) +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*cos[e_. + f_.*x_])^n_, x_Symbol] := -a*(b*Cos[e + f*x])^(n + 1)*(a*Sin[e + f*x])^(m - 1)/(b* f*(m + n)) + a^2*(m - 1)/(m + n)* Int[(b*Cos[e + f*x])^n*(a*Sin[e + f*x])^(m - 2), x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[2*m, 2*n] +Int[(a_.*cos[e_. + f_.*x_])^m_*(b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := a*(b*Sin[e + f*x])^(n + 1)*(a*Cos[e + f*x])^(m - 1)/(b*f*(m + n)) + a^2*(m - 1)/(m + n)* Int[(b*Sin[e + f*x])^n*(a*Cos[e + f*x])^(m - 2), x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*cos[e_. + f_.*x_])^n_, x_Symbol] := (b*Cos[e + f*x])^(n + 1)*(a*Sin[e + f*x])^(m + 1)/(a*b*f*(m + 1)) + (m + n + 2)/(a^2*(m + 1))* Int[(b*Cos[e + f*x])^n*(a*Sin[e + f*x])^(m + 2), x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n] +Int[(a_.*cos[e_. + f_.*x_])^m_*(b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -(b*Sin[e + f*x])^(n + 1)*(a*Cos[e + f*x])^(m + 1)/(a*b* f*(m + 1)) + (m + n + 2)/(a^2*(m + 1))* Int[(b*Sin[e + f*x])^n*(a*Cos[e + f*x])^(m + 2), x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n] +Int[Sqrt[a_.*sin[e_. + f_.*x_]]*Sqrt[b_.*cos[e_. + f_.*x_]], x_Symbol] := Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e + 2*f*x]]* Int[Sqrt[Sin[2*e + 2*f*x]], x] /; FreeQ[{a, b, e, f}, x] +Int[1/(Sqrt[a_.*sin[e_. + f_.*x_]]*Sqrt[b_.*cos[e_. + f_.*x_]]), x_Symbol] := Sqrt[Sin[2*e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]])* Int[1/Sqrt[Sin[2*e + 2*f*x]], x] /; FreeQ[{a, b, e, f}, x] +(* Int[(a_.*sin[e_.+f_.*x_])^m_*(b_.*cos[e_.+f_.*x_])^n_,x_Symbol] := (a*Sin[e+f*x])^m*(b*Cos[e+f*x])^n/(a*Tan[e+f*x])^m*Int[(a*Tan[e+f*x] )^m,x] /; FreeQ[{a,b,e,f,m,n},x] && EqQ[m+n,0] *) +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*cos[e_. + f_.*x_])^n_, x_Symbol] := With[{k = Denominator[m]}, k*a*b/f* Subst[Int[x^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Sin[e + f*x])^(1/k)/(b*Cos[e + f*x])^(1/k)]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] && LtQ[m, 1] +Int[(a_.*cos[e_. + f_.*x_])^m_*(b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := With[{k = Denominator[m]}, -k*a*b/f* Subst[Int[x^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Cos[e + f*x])^(1/k)/(b*Sin[e + f*x])^(1/k)]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] && LtQ[m, 1] +(* Int[(a_.*sin[e_.+f_.*x_])^m_*(b_.*cos[e_.+f_.*x_])^n_,x_Symbol] := b^(2*IntPart[(n-1)/2]+1)*(b*Cos[e+f*x])^(2*FracPart[(n-1)/2])/(a*f*( Cos[e+f*x]^2)^FracPart[(n-1)/2])* Subst[Int[x^m*(1-x^2/a^2)^((n-1)/2),x],x,a*Sin[e+f*x]] /; FreeQ[{a,b,e,f,m,n},x] && (RationalQ[n] || Not[RationalQ[m]] && (EqQ[b,1] || NeQ[a,1])) *) +(* Int[(a_.*cos[e_.+f_.*x_])^m_*(b_.*sin[e_.+f_.*x_])^n_,x_Symbol] := -b^(2*IntPart[(n-1)/2]+1)*(b*Sin[e+f*x])^(2*FracPart[(n-1)/2])/(a*f* (Sin[e+f*x]^2)^FracPart[(n-1)/2])* Subst[Int[x^m*(1-x^2/a^2)^((n-1)/2),x],x,a*Cos[e+f*x]] /; FreeQ[{a,b,e,f,m,n},x] *) +Int[(a_.*cos[e_. + f_.*x_])^m_*(b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b^(2*IntPart[(n - 1)/2] + 1)*(b*Sin[e + f*x])^(2* FracPart[(n - 1)/2])*(a*Cos[e + f*x])^(m + 1)/(a* f*(m + 1)*(Sin[e + f*x]^2)^FracPart[(n - 1)/2])* Hypergeometric2F1[(1 + m)/2, (1 - n)/2, (3 + m)/2, Cos[e + f*x]^2] /; FreeQ[{a, b, e, f, m, n}, x] && SimplerQ[n, m] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*cos[e_. + f_.*x_])^n_, x_Symbol] := b^(2*IntPart[(n - 1)/2] + 1)*(b*Cos[e + f*x])^(2* FracPart[(n - 1)/2])*(a*Sin[e + f*x])^(m + 1)/(a* f*(m + 1)*(Cos[e + f*x]^2)^FracPart[(n - 1)/2])* Hypergeometric2F1[(1 + m)/2, (1 - n)/2, (3 + m)/2, Sin[e + f*x]^2] /; FreeQ[{a, b, e, f, m, n}, x] +Int[(a_.*sin[e_. + f_.*x_])^m_.*(b_.*sec[e_. + f_.*x_])^n_., x_Symbol] := b*(a*Sin[e + f*x])^(m + 1)*(b*Sec[e + f*x])^(n - 1)/(a*f*(m + 1)) /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m - n + 2, 0] && NeQ[m, -1] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := a*b*(a*Sin[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n - 1)/(f*(n - 1)) - a^2*b^2*(m - 1)/(n - 1)* Int[(a*Sin[e + f*x])^(m - 2)*(b*Sec[e + f*x])^(n - 2), x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && GtQ[m, 1] && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := (a*Sin[e + f*x])^(m + 1)*(b*Sec[e + f*x])^(n + 1)/(a*b*f*(m - n)) - (n + 1)/(b^2*(m - n))* Int[(a*Sin[e + f*x])^m*(b*Sec[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := (a*Sin[e + f*x])^(m + 1)*(b*Sec[e + f*x])^(n + 1)/(a*b*f*(m + 1)) - (n + 1)/(a^2*b^2*(m + 1))* Int[(a*Sin[e + f*x])^(m + 2)*(b*Sec[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && LtQ[m, -1] && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := (a*Sin[e + f*x])^(m + 1)*(b*Sec[e + f*x])^(n + 1)/(a*b*f*(m - n)) - (n + 1)/(b^2*(m - n))* Int[(a*Sin[e + f*x])^m*(b*Sec[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && NeQ[m - n, 0] && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := -a*b*(a*Sin[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n - 1)/(f*(m - n)) + a^2*(m - 1)/(m - n)* Int[(a*Sin[e + f*x])^(m - 2)*(b*Sec[e + f*x])^n, x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m - n, 0] && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := b*(a*Sin[e + f*x])^(m + 1)*(b*Sec[e + f*x])^(n - 1)/(a*f*(m + 1)) + (m - n + 2)/(a^2*(m + 1))* Int[(a*Sin[e + f*x])^(m + 2)*(b*Sec[e + f*x])^n, x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := (b*Cos[e + f*x])^n*(b*Sec[e + f*x])^n* Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/2] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := 1/b^2*(b*Cos[e + f*x])^(n + 1)*(b*Sec[e + f*x])^(n + 1)* Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x] /; FreeQ[{a, b, e, f, m, n}, x] && Not[IntegerQ[m]] && Not[IntegerQ[n]] && LtQ[n, 1] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := b^2*(b*Cos[e + f*x])^(n - 1)*(b*Sec[e + f*x])^(n - 1)* Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x] /; FreeQ[{a, b, e, f, m, n}, x] && Not[IntegerQ[m]] && Not[IntegerQ[n]] +Int[(a_.*sin[e_. + f_.*x_])^m_.*(b_.*csc[e_. + f_.*x_])^n_, x_Symbol] := (a*b)^IntPart[n]*(a*Sin[e + f*x])^FracPart[n]*(b*Csc[e + f*x])^ FracPart[n]*Int[(a*Sin[e + f*x])^(m - n), x] /; FreeQ[{a, b, e, f, m, n}, x] && Not[IntegerQ[m]] && Not[IntegerQ[n]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.2 (a trg)^m (b tan)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.2 (a trg)^m (b tan)^n.m new file mode 100755 index 0000000..dea5cc6 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.2 (a trg)^m (b tan)^n.m @@ -0,0 +1,34 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.0.2 (a trg)^m (b tan)^n *) +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := -b*(a*Sin[e + f*x])^m*(b*Tan[e + f*x])^(n - 1)/(f*m) /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n - 1, 0] +Int[sin[e_. + f_.*x_]^m_.*tan[e_. + f_.*x_]^n_., x_Symbol] := -1/f*Subst[Int[(1 - x^2)^((m + n - 1)/2)/x^n, x], x, Cos[e + f*x]] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n - 1)/2] +Int[sin[e_. + f_.*x_]^m_*(b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, b*ff/f* Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*Tan[e + f*x]/ff]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] +Int[(a_.*sin[e_. + f_.*x_])^m_.*tan[e_. + f_.*x_]^n_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff/f* Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*Sin[e + f*x]/ff]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(a*Sin[e + f*x])^(m + 2)*(b*Tan[e + f*x])^(n - 1)/(a^2* f*(n - 1)) - b^2*(m + 2)/(a^2*(n - 1))* Int[(a*Sin[e + f*x])^(m + 2)*(b*Tan[e + f*x])^(n - 2), x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && (LtQ[m, -1] || EqQ[m, -1] && EqQ[n, 3/2]) && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(a*Sin[e + f*x])^m*(b*Tan[e + f*x])^(n - 1)/(f*(n - 1)) - b^2*(m + n - 1)/(n - 1)* Int[(a*Sin[e + f*x])^m*(b*Tan[e + f*x])^(n - 2), x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && IntegersQ[2*m, 2*n] && Not[GtQ[m, 1] && Not[IntegerQ[(m - 1)/2]]] +Int[Sqrt[a_.*sin[e_. + f_.*x_]]/(b_.*tan[e_. + f_.*x_])^(3/2), x_Symbol] := 2*Sqrt[a*Sin[e + f*x]]/(b*f*Sqrt[b*Tan[e + f*x]]) + a^2/b^2*Int[Sqrt[b*Tan[e + f*x]]/(a*Sin[e + f*x])^(3/2), x] /; FreeQ[{a, b, e, f}, x] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (a*Sin[e + f*x])^m*(b*Tan[e + f*x])^(n + 1)/(b*f*m) - a^2*(n + 1)/(b^2*m)* Int[(a*Sin[e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && GtQ[m, 1] && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (a*Sin[e + f*x])^m*(b*Tan[e + f*x])^(n + 1)/(b*f*(m + n + 1)) - (n + 1)/(b^2*(m + n + 1))* Int[(a*Sin[e + f*x])^m*(b*Tan[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && NeQ[m + n + 1, 0] && IntegersQ[2*m, 2*n] && Not[EqQ[n, -3/2] && EqQ[m, 1]] +Int[(a_.*sin[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := -b*(a*Sin[e + f*x])^m*(b*Tan[e + f*x])^(n - 1)/(f*m) + a^2*(m + n - 1)/m* Int[(a*Sin[e + f*x])^(m - 2)*(b*Tan[e + f*x])^n, x] /; FreeQ[{a, b, e, f, n}, x] && (GtQ[m, 1] || EqQ[m, 1] && EqQ[n, 1/2]) && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_*(b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := b*(a*Sin[e + f*x])^(m + 2)*(b*Tan[e + f*x])^(n - 1)/(a^2* f*(m + n + 1)) + (m + 2)/(a^2*(m + n + 1))* Int[(a*Sin[e + f*x])^(m + 2)*(b*Tan[e + f*x])^n, x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && NeQ[m + n + 1, 0] && IntegersQ[2*m, 2*n] +Int[(a_.*sin[e_. + f_.*x_])^m_*tan[e_. + f_.*x_]^n_, x_Symbol] := 1/a^n*Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[n] && Not[IntegerQ[m]] +Int[(a_.*sin[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := Cos[e + f*x]^n*(b*Tan[e + f*x])^n/(a*Sin[e + f*x])^n* Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x] /; FreeQ[{a, b, e, f, m, n}, x] && Not[IntegerQ[n]] && (ILtQ[m, 0] || EqQ[m, 1] && EqQ[n, -1/2] || IntegersQ[m - 1/2, n - 1/2]) +Int[(a_.*sin[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a*Cos[ e + f*x]^(n + 1)*(b*Tan[e + f*x])^(n + 1)/(b*(a*Sin[e + f*x])^(n + 1))* Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x] /; FreeQ[{a, b, e, f, m, n}, x] && Not[IntegerQ[n]] +Int[(a_.*cos[e_. + f_.*x_])^m_*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (a*Cos[e + f*x])^FracPart[m]*(Sec[e + f*x]/a)^FracPart[m]* Int[(b*Tan[e + f*x])^n/(Sec[e + f*x]/a)^m, x] /; FreeQ[{a, b, e, f, m, n}, x] && Not[IntegerQ[m]] && Not[IntegerQ[n]] +Int[(a_.*cot[e_. + f_.*x_])^m_*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (a*Cot[e + f*x])^m*(b*Tan[e + f*x])^m* Int[(b*Tan[e + f*x])^(n - m), x] /; FreeQ[{a, b, e, f, m, n}, x] && Not[IntegerQ[m]] && Not[IntegerQ[n]] +Int[(a_.*sec[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := -(a*Sec[e + f*x])^m*(b*Tan[e + f*x])^(n + 1)/(b*f*m) /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n + 1, 0] +Int[(a_.*sec[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := a/f*Subst[Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] && Not[IntegerQ[m/2] && LtQ[0, m, n + 1]] +Int[sec[e_. + f_.*x_]^m_*(b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := 1/f*Subst[Int[(b*x)^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] && Not[IntegerQ[(n - 1)/2] && LtQ[0, n, m - 1]] +Int[(a_.*sec[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a^2*(a*Sec[e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 1)/(b* f*(n + 1)) - a^2*(m - 2)/(b^2*(n + 1))* Int[(a*Sec[e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && (GtQ[m, 1] || EqQ[m, 1] && EqQ[n, -3/2]) && IntegersQ[2*m, 2*n] +Int[(a_.*sec[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (a*Sec[e + f*x])^m*(b*Tan[e + f*x])^(n + 1)/(b*f*(n + 1)) - (m + n + 1)/(b^2*(n + 1))* Int[(a*Sec[e + f*x])^m*(b*Tan[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && IntegersQ[2*m, 2*n] +Int[(a_.*sec[e_. + f_.*x_])^m_*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(a*Sec[e + f*x])^m*(b*Tan[e + f*x])^(n - 1)/(f*m) - b^2*(n - 1)/(a^2*m)* Int[(a*Sec[e + f*x])^(m + 2)*(b*Tan[e + f*x])^(n - 2), x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && (LtQ[m, -1] || EqQ[m, -1] && EqQ[n, 3/2]) && IntegersQ[2*m, 2*n] +Int[(a_.*sec[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(a*Sec[e + f*x])^m*(b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1)) - b^2*(n - 1)/(m + n - 1)* Int[(a*Sec[e + f*x])^m*(b*Tan[e + f*x])^(n - 2), x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n] +Int[(a_.*sec[e_. + f_.*x_])^m_*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := -(a*Sec[e + f*x])^m*(b*Tan[e + f*x])^(n + 1)/(b*f*m) + (m + n + 1)/(a^2*m)* Int[(a*Sec[e + f*x])^(m + 2)*(b*Tan[e + f*x])^n, x] /; FreeQ[{a, b, e, f, n}, x] && (LtQ[m, -1] || EqQ[m, -1] && EqQ[n, -1/2]) && IntegersQ[2*m, 2*n] +Int[(a_.*sec[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a^2*(a*Sec[e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 1)/(b* f*(m + n - 1)) + a^2*(m - 2)/(m + n - 1)* Int[(a*Sec[e + f*x])^(m - 2)*(b*Tan[e + f*x])^n, x] /; FreeQ[{a, b, e, f, n}, x] && (GtQ[m, 1] || EqQ[m, 1] && EqQ[n, 1/2]) && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n] +Int[sec[e_. + f_.*x_]/Sqrt[b_.*tan[e_. + f_.*x_]], x_Symbol] := Sqrt[Sin[e + f*x]]/(Sqrt[Cos[e + f*x]]*Sqrt[b*Tan[e + f*x]])* Int[1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x] /; FreeQ[{b, e, f}, x] +Int[Sqrt[b_.*tan[e_. + f_.*x_]]/sec[e_. + f_.*x_], x_Symbol] := Sqrt[Cos[e + f*x]]*Sqrt[b*Tan[e + f*x]]/Sqrt[Sin[e + f*x]]* Int[Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]], x] /; FreeQ[{b, e, f}, x] +Int[(a_.*sec[e_. + f_.*x_])^m_*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a^(m + n)*(b*Tan[e + f*x])^ n/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n)* Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2] +(* Int[(a_.*sec[e_.+f_.*x_])^m_.*(b_.*tan[e_.+f_.*x_])^n_,x_Symbol]:= (a*Sec[e+f*x])^m*(b*Tan[e+f*x])^(n+1)*(Cos[e+f*x]^2)^((m+n+1)/2)/(b* f*(b*Sin[e+f*x])^(n+1))* Subst[Int[x^n/(1-x^2/b^2)^((m+n+1)/2),x],x,b*Sin[e+f*x]] /; FreeQ[{a,b,e,f,m,n},x] && Not[IntegerQ[(n-1)/2]] && Not[IntegerQ[m/2]] *) +Int[(a_.*sec[e_. + f_.*x_])^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (a*Sec[e + f*x])^ m*(b*Tan[e + f*x])^(n + 1)*(Cos[e + f*x]^2)^((m + n + 1)/2)/(b* f*(n + 1))* Hypergeometric2F1[(n + 1)/2, (m + n + 1)/2, (n + 3)/2, Sin[e + f*x]^2] /; FreeQ[{a, b, e, f, m, n}, x] && Not[IntegerQ[(n - 1)/2]] && Not[IntegerQ[m/2]] +Int[(a_.*csc[e_. + f_.*x_])^m_*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (a*Csc[e + f*x])^FracPart[m]*(Sin[e + f*x]/a)^FracPart[m]* Int[(b*Tan[e + f*x])^n/(Sin[e + f*x]/a)^m, x] /; FreeQ[{a, b, e, f, m, n}, x] && Not[IntegerQ[m]] && Not[IntegerQ[n]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.3 (a csc)^m (b sec)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.3 (a csc)^m (b sec)^n.m new file mode 100755 index 0000000..fba0e52 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.0.3 (a csc)^m (b sec)^n.m @@ -0,0 +1,17 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.0.3 (a csc)^m (b sec)^n *) +Int[(a_.*csc[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := a*b*(a*Csc[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n - 1)/(f*(n - 1)) /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n - 2, 0] && NeQ[n, 1] +Int[csc[e_. + f_.*x_]^m_.*sec[e_. + f_.*x_]^n_., x_Symbol] := 1/f*Subst[Int[(1 + x^2)^((m + n)/2 - 1)/x^m, x], x, Tan[e + f*x]] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n)/2] +Int[(a_.*csc[e_. + f_.*x_])^m_*sec[e_. + f_.*x_]^n_., x_Symbol] := -1/(f*a^n)* Subst[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Csc[e + f*x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2] && Not[IntegerQ[(m + 1)/2] && LtQ[0, m, n]] +Int[(a_.*sec[e_. + f_.*x_])^m_*csc[e_. + f_.*x_]^n_., x_Symbol] := 1/(f*a^n)* Subst[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2] && Not[IntegerQ[(m + 1)/2] && LtQ[0, m, n]] +Int[(a_.*csc[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := -a*(a*Csc[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n + 1)/(f* b*(m - 1)) + a^2*(n + 1)/(b^2*(m - 1))* Int[(a*Csc[e + f*x])^(m - 2)*(b*Sec[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && IntegersQ[2*m, 2*n] +Int[(a_.*csc[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := b*(a*Csc[e + f*x])^(m + 1)*(b*Sec[e + f*x])^(n - 1)/(f*a*(n - 1)) + b^2*(m + 1)/(a^2*(n - 1))* Int[(a*Csc[e + f*x])^(m + 2)*(b*Sec[e + f*x])^(n - 2), x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && LtQ[m, -1] && IntegersQ[2*m, 2*n] +Int[(a_.*csc[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_., x_Symbol] := -a*b*(a*Csc[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n - 1)/(f*(m - 1)) + a^2*(m + n - 2)/(m - 1)* Int[(a*Csc[e + f*x])^(m - 2)*(b*Sec[e + f*x])^n, x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && IntegersQ[2*m, 2*n] && Not[GtQ[n, m]] +Int[(a_.*csc[e_. + f_.*x_])^m_.*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := a*b*(a*Csc[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n - 1)/(f*(n - 1)) + b^2*(m + n - 2)/(n - 1)* Int[(a*Csc[e + f*x])^m*(b*Sec[e + f*x])^(n - 2), x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && IntegersQ[2*m, 2*n] +Int[(a_.*csc[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_., x_Symbol] := b*(a*Csc[e + f*x])^(m + 1)*(b*Sec[e + f*x])^(n - 1)/(a*f*(m + n)) + (m + 1)/(a^2*(m + n))* Int[(a*Csc[e + f*x])^(m + 2)*(b*Sec[e + f*x])^n, x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && NeQ[m + n, 0] && IntegersQ[2*m, 2*n] +Int[(a_.*csc[e_. + f_.*x_])^m_.*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := -a*(a*Csc[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n + 1)/(b* f*(m + n)) + (n + 1)/(b^2*(m + n))* Int[(a*Csc[e + f*x])^m*(b*Sec[e + f*x])^(n + 2), x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && NeQ[m + n, 0] && IntegersQ[2*m, 2*n] +Int[(a_.*csc[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := (a*Csc[e + f*x])^m*(b*Sec[e + f*x])^n/Tan[e + f*x]^n* Int[Tan[e + f*x]^n, x] /; FreeQ[{a, b, e, f, m, n}, x] && Not[IntegerQ[n]] && EqQ[m + n, 0] +Int[(a_.*csc[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := (a*Csc[e + f*x])^m*(b*Sec[e + f*x])^n*(a*Sin[e + f*x])^ m*(b*Cos[e + f*x])^n* Int[(a*Sin[e + f*x])^(-m)*(b*Cos[e + f*x])^(-n), x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/2] +Int[(a_.*csc[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_])^n_, x_Symbol] := a^2/b^2*(a*Csc[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n + 1)*(a* Sin[e + f*x])^(m - 1)*(b*Cos[e + f*x])^(n + 1)* Int[(a*Sin[e + f*x])^(-m)*(b*Cos[e + f*x])^(-n), x] /; FreeQ[{a, b, e, f, m, n}, x] && Not[SimplerQ[-m, -n]] +Int[(a_.*sec[e_. + f_.*x_])^m_*(b_.*csc[e_. + f_.*x_])^n_, x_Symbol] := a^2/b^2*(a*Sec[e + f*x])^(m - 1)*(b*Csc[e + f*x])^(n + 1)*(a* Cos[e + f*x])^(m - 1)*(b*Sin[e + f*x])^(n + 1)* Int[(a*Cos[e + f*x])^(-m)*(b*Sin[e + f*x])^(-n), x] /; FreeQ[{a, b, e, f, m, n}, x] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.1 (a+b sin)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.1 (a+b sin)^n.m new file mode 100755 index 0000000..488354c --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.1 (a+b sin)^n.m @@ -0,0 +1,39 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.1.1 (a+b sin)^n *) +Int[sin[c_. + d_.*x_]^n_, x_Symbol] := -1/d*Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x, Cos[c + d*x]] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0] +Int[sin[c_. + d_.*x_/2]^2, x_Symbol] := x/2 - Sin[2*c + d*x]/(2*d) /; FreeQ[{c, d}, x] +Int[(b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := (* -Cot[c+d*x]*(c*Sin[c+d*x])^n/(d*n) + b^2*(n-1)/n*Int[(b*Sin[c+d*x])^(n-2),x] *) -b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1)/(d*n) + b^2*(n - 1)/n*Int[(b*Sin[c + d*x])^(n - 2), x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[2*n] +Int[(b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1)) + (n + 2)/(b^2*(n + 1))*Int[(b*Sin[c + d*x])^(n + 2), x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2*n] +Int[sin[c_. + Pi/2 + d_.*x_], x_Symbol] := Sin[c + d*x]/d /; FreeQ[{c, d}, x] +Int[sin[c_. + d_.*x_], x_Symbol] := -Cos[c + d*x]/d /; FreeQ[{c, d}, x] +(* Int[1/sin[c_.+d_.*x_],x_Symbol] := Int[Csc[c+d*x],x] /; FreeQ[{c,d},x] *) +Int[Sqrt[sin[c_. + d_.*x_]], x_Symbol] := 2/d*EllipticE[1/2*(c - Pi/2 + d*x), 2] /; FreeQ[{c, d}, x] +Int[1/Sqrt[sin[c_. + d_.*x_]], x_Symbol] := 2/d*EllipticF[1/2*(c - Pi/2 + d*x), 2] /; FreeQ[{c, d}, x] +Int[(b_*sin[c_. + d_.*x_])^n_, x_Symbol] := (b*Sin[c + d*x])^n/Sin[c + d*x]^n*Int[Sin[c + d*x]^n, x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n] +(* Int[(b_.*sin[c_.+d_.*x_])^n_,x_Symbol] := Cos[c+d*x]/(b*d*Sqrt[Cos[c+d*x]^2])*Subst[Int[x^n/Sqrt[1-x^2/b^2],x] ,x,b*Sin[c+d*x]] /; FreeQ[{b,c,d,n},x] && Not[IntegerQ[2*n] || IntegerQ[3*n]] *) +Int[(b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2])* Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2] /; FreeQ[{b, c, d, n}, x] && Not[IntegerQ[2*n]] +Int[(a_ + b_.*sin[c_. + d_.*x_])^2, x_Symbol] := (2*a^2 + b^2)*x/2 - 2*a*b*Cos[c + d*x]/d - b^2*Cos[c + d*x]*Sin[c + d*x]/(2*d) /; FreeQ[{a, b, c, d}, x] +Int[(a_ + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := Int[ExpandTrig[(a + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] && IGtQ[n, 0] +Int[Sqrt[a_ + b_.*sin[c_. + d_.*x_]], x_Symbol] := -2*b*Cos[c + d*x]/(d*Sqrt[a + b*Sin[c + d*x]]) /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -b*Cos[c + d*x]*(a + b*Sin[c + d*x])^(n - 1)/(d*n) + a*(2*n - 1)/n*Int[(a + b*Sin[c + d*x])^(n - 1), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0] +Int[1/(a_ + b_.*sin[c_. + d_.*x_]), x_Symbol] := -Cos[c + d*x]/(d*(b + a*Sin[c + d*x])) /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] +Int[1/Sqrt[a_ + b_.*sin[c_. + d_.*x_]], x_Symbol] := -2/d*Subst[Int[1/(2*a - x^2), x], x, b*Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]]] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n/(a*d*(2*n + 1)) + (n + 1)/(a*(2*n + 1))*Int[(a + b*Sin[c + d*x])^(n + 1), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n] +(* Int[(a_+b_.*sin[c_.+d_.*x_])^n_,x_Symbol] := a^2*Cos[c+d*x]/(d*Sqrt[a+b*Sin[c+d*x]]*Sqrt[a-b*Sin[c+d*x]])*Subst[ Int[(a+b*x)^(n-1/2)/Sqrt[a-b*x],x],x,Sin[c+d*x]] /; FreeQ[{a,b,c,d,n},x] && EqQ[a^2-b^2,0] && Not[IntegerQ[2*n]] *) +Int[(a_ + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -2^(n + 1/2)*a^(n - 1/2)*b* Cos[c + d*x]/(d*Sqrt[a + b*Sin[c + d*x]])* Hypergeometric2F1[1/2, 1/2 - n, 3/2, 1/2*(1 - b*Sin[c + d*x]/a)] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[2*n]] && GtQ[a, 0] +Int[(a_ + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := a^IntPart[n]*(a + b*Sin[c + d*x])^ FracPart[n]/(1 + b/a*Sin[c + d*x])^FracPart[n]* Int[(1 + b/a*Sin[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[2*n]] && Not[GtQ[a, 0]] +Int[Sqrt[a_ + b_.*sin[c_. + d_.*x_]], x_Symbol] := 2*Sqrt[a + b]/d*EllipticE[1/2*(c - Pi/2 + d*x), 2*b/(a + b)] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0] +Int[Sqrt[a_ + b_.*sin[c_. + d_.*x_]], x_Symbol] := 2*Sqrt[a - b]/d*EllipticE[1/2*(c + Pi/2 + d*x), -2*b/(a - b)] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0] +Int[Sqrt[a_ + b_.*sin[c_. + d_.*x_]], x_Symbol] := Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]* Int[Sqrt[a/(a + b) + b/(a + b)*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && Not[GtQ[a + b, 0]] +Int[(a_ + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -b*Cos[c + d*x]*(a + b*Sin[c + d*x])^(n - 1)/(d*n) + 1/n* Int[(a + b*Sin[c + d*x])^(n - 2)* Simp[a^2*n + b^2*(n - 1) + a*b*(2*n - 1)*Sin[c + d*x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n] +Int[1/(a_ + b_.*sin[c_. + d_.*x_]), x_Symbol] := With[{q = Rt[a^2 - b^2, 2]}, x/q + 2/(d*q)*ArcTan[b*Cos[c + d*x]/(a + q + b*Sin[c + d*x])]] /; FreeQ[{a, b, c, d}, x] && GtQ[a^2 - b^2, 0] && PosQ[a] +Int[1/(a_ + b_.*sin[c_. + d_.*x_]), x_Symbol] := With[{q = Rt[a^2 - b^2, 2]}, -x/q - 2/(d*q)*ArcTan[b*Cos[c + d*x]/(a - q + b*Sin[c + d*x])]] /; FreeQ[{a, b, c, d}, x] && GtQ[a^2 - b^2, 0] && NegQ[a] +Int[1/(a_ + b_.*sin[c_. + Pi/2 + d_.*x_]), x_Symbol] := With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, 2*e/d* Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e]] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] +Int[1/(a_ + b_.*sin[c_. + d_.*x_]), x_Symbol] := With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, 2*e/d* Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e]] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] +Int[1/Sqrt[a_ + b_.*sin[c_. + d_.*x_]], x_Symbol] := 2/(d*Sqrt[a + b])*EllipticF[1/2*(c - Pi/2 + d*x), 2*b/(a + b)] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0] +Int[1/Sqrt[a_ + b_.*sin[c_. + d_.*x_]], x_Symbol] := 2/(d*Sqrt[a - b])*EllipticF[1/2*(c + Pi/2 + d*x), -2*b/(a - b)] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0] +Int[1/Sqrt[a_ + b_.*sin[c_. + d_.*x_]], x_Symbol] := Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]* Int[1/Sqrt[a/(a + b) + b/(a + b)*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && Not[GtQ[a + b, 0]] +Int[(a_ + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -b*Cos[ c + d*x]*(a + b*Sin[c + d*x])^(n + 1)/(d*(n + 1)*(a^2 - b^2)) + 1/((n + 1)*(a^2 - b^2))* Int[(a + b*Sin[c + d*x])^(n + 1)* Simp[a*(n + 1) - b*(n + 2)*Sin[c + d*x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n] +Int[(a_ + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := Cos[c + d*x]/(d*Sqrt[1 + Sin[c + d*x]]*Sqrt[1 - Sin[c + d*x]])* Subst[Int[(a + b*x)^n/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Sin[c + d*x]] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0] && Not[IntegerQ[2*n]] +Int[(a_ + b_.*sin[c_. + d_.*x_]*cos[c_. + d_.*x_])^n_, x_Symbol] := Int[(a + b*Sin[2*c + 2*d*x]/2)^n, x] /; FreeQ[{a, b, c, d, n}, x] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.2 (g cos)^p (a+b sin)^m.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.2 (g cos)^p (a+b sin)^m.m new file mode 100755 index 0000000..1bd06d5 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.2 (g cos)^p (a+b sin)^m.m @@ -0,0 +1,42 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.1.2 (g cos)^p (a+b sin)^m *) +Int[cos[e_. + f_.*x_]^p_.*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := 1/(b^p*f)* Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]] /; FreeQ[{a, b, e, f, m}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] || Not[IntegerQ[m + 1/2]]) +Int[cos[e_. + f_.*x_]^p_.*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := 1/(b^p*f)* Subst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]] /; FreeQ[{a, b, e, f, m}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := -b*(g*Cos[e + f*x])^(p + 1)/(f*g*(p + 1)) + a*Int[(g*Cos[e + f*x])^p, x] /; FreeQ[{a, b, e, f, g, p}, x] && (IntegerQ[2*p] || NeQ[a^2 - b^2, 0]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := (a/g)^(2*m)* Int[(g*Cos[e + f*x])^(2*m + p)/(a - b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && LtQ[p, -1] && GeQ[2*m + p, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m/(a*f*g*m) /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && EqQ[Simplify[m + p + 1], 0] && Not[ILtQ[p, 0]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m/(a*f*g*Simplify[2*m + p + 1]) + Simplify[m + p + 1]/(a*Simplify[2*m + p + 1])* Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + p + 1], 0] && NeQ[2*m + p + 1, 0] && Not[IGtQ[m, 0]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)/(f* g*(m - 1)) /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)/(f* g*(m + p)) + a*(2*m + p - 1)/(m + p)* Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[Simplify[(2*m + p - 1)/2], 0] && NeQ[m + p, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m/(a*f*g*(p + 1)) + a*(m + p + 1)/(g^2*(p + 1))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && LeQ[p, -2*m] && IntegersQ[m + 1/2, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -2*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)/(f* g*(p + 1)) + b^2*(2*m + p - 1)/(g^2*(p + 1))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2), x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && IntegersQ[2*m, 2*p] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]/Sqrt[g_.*cos[e_. + f_.*x_]], x_Symbol] := a*Sqrt[1 + Cos[e + f*x]]* Sqrt[a + b*Sin[e + f*x]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x])* Int[Sqrt[1 + Cos[e + f*x]]/Sqrt[g*Cos[e + f*x]], x] + b*Sqrt[1 + Cos[e + f*x]]* Sqrt[a + b*Sin[e + f*x]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x])* Int[Sin[e + f*x]/(Sqrt[g*Cos[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)/(f* g*(m + p)) + a*(2*m + p - 1)/(m + p)* Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)/(b* f*(m + p)) + g^2*(p - 1)/(a*(m + p))* Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || EqQ[2*m + p + 1, 0] || EqQ[m, -2] && IntegerQ[p]) && NeQ[m + p, 0] && IntegersQ[2*m, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := 2*g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)/(b* f*(2*m + p + 1)) + g^2*(p - 1)/(b^2*(2*m + p + 1))* Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] && Not[ILtQ[m + p + 1, 0]] && IntegersQ[2*m, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m/(a*f*g*(2*m + p + 1)) + (m + p + 1)/(a*(2*m + p + 1))* Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] && IntegersQ[2*m, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)/(b*f*(p - 1)) + g^2/a*Int[(g*Cos[e + f*x])^(p - 2), x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[p, 1] && IntegerQ[2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)/(a*f*g*(p - 1)*(a + b*Sin[e + f*x])) + p/(a*(p - 1))*Int[(g*Cos[e + f*x])^p, x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && Not[GeQ[p, 1]] && IntegerQ[2*p] +Int[Sqrt[g_.*cos[e_. + f_.*x_]]/Sqrt[a_ + b_.*sin[e_. + f_.*x_]], x_Symbol] := g*Sqrt[1 + Cos[e + f*x]]* Sqrt[a + b*Sin[e + f*x]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x])* Int[Sqrt[1 + Cos[e + f*x]]/Sqrt[g*Cos[e + f*x]], x] - g*Sqrt[1 + Cos[e + f*x]]* Sqrt[a + b*Sin[e + f*x]]/(b + b*Cos[e + f*x] + a*Sin[e + f*x])* Int[Sin[e + f*x]/(Sqrt[g*Cos[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^(3/2)/Sqrt[a_ + b_.*sin[e_. + f_.*x_]], x_Symbol] := g*Sqrt[g*Cos[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]/(b*f) + g^2/(2*a)*Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[g*Cos[e + f*x]], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_/Sqrt[a_ + b_.*sin[e_. + f_.*x_]], x_Symbol] := -2*b*(g*Cos[e + f*x])^(p + 1)/(f* g*(2*p - 1)*(a + b*Sin[e + f*x])^(3/2)) + 2*a*(p - 2)/(2*p - 1)* Int[(g*Cos[e + f*x])^p/(a + b*Sin[e + f*x])^(3/2), x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[p, 2] && IntegerQ[2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_/Sqrt[a_ + b_.*sin[e_. + f_.*x_]], x_Symbol] := -b*(g*Cos[e + f*x])^(p + 1)/(a*f*g*(p + 1)* Sqrt[a + b*Sin[e + f*x]]) + a*(2*p + 1)/(2*g^2*(p + 1))* Int[(g*Cos[e + f*x])^(p + 2)/(a + b*Sin[e + f*x])^(3/2), x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := a^m*(g*Cos[e + f*x])^(p + 1)/(f* g*(1 + Sin[e + f*x])^((p + 1)/2)*(1 - Sin[e + f*x])^((p + 1)/2))* Subst[ Int[(1 + b/a*x)^(m + (p - 1)/2)*(1 - b/a*x)^((p - 1)/2), x], x, Sin[e + f*x]] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := a^2*(g*Cos[e + f*x])^(p + 1)/(f* g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2))* Subst[Int[(a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m* Sin[e + f*x]/(f*g*(p + 1)) + 1/(g^2*(p + 1))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1)*(a*(p + 2) + b*(m + p + 2)*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && LtQ[p, -1] && (IntegersQ[2*m, 2*p] || IntegerQ[m]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*(b + a*Sin[e + f*x])/(f*g*(p + 1)) + 1/(g^2*(p + 1))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*(p + 2) + a*b*(m + p + 1)*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && (IntegersQ[2*m, 2*p] || IntegerQ[m]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)/(f* g*(m + p)) + 1/(m + p)* Int[(g*Cos[e + f*x])^ p*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*(m + p) + a*b*(2*m + p - 1)*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + p, 0] && (IntegersQ[2*m, 2*p] || IntegerQ[m]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)/(b* f*(m + 1)) + g^2*(p - 1)/(b*(m + 1))* Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)* Sin[e + f*x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)/(f* g*(a^2 - b^2)*(m + 1)) + 1/((a^2 - b^2)*(m + 1))* Int[(g*Cos[e + f*x])^ p*(a + b*Sin[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + p + 2)*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)/(b* f*(m + p)) + g^2*(p - 1)/(b*(m + p))* Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^ m*(b + a*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := (g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b - a*Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1)) + 1/(g^2*(a^2 - b^2)*(p + 1))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^ m*(a^2*(p + 2) - b^2*(m + p + 2) + a*b*(m + p + 3)*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegersQ[2*m, 2*p] +Int[1/(Sqrt[g_.*cos[e_. + f_.*x_]]*Sqrt[a_ + b_.*sin[e_. + f_.*x_]]), x_Symbol] := 2*Sqrt[2]*Sqrt[g*Cos[e + f*x]]* Sqrt[(a + b*Sin[e + f*x])/((a - b)*(1 - Sin[e + f*x]))]/ (f*g*Sqrt[a + b*Sin[e + f*x]]* Sqrt[(1 + Cos[e + f*x] + Sin[e + f*x])/(1 + Cos[e + f*x] - Sin[e + f*x])])* Subst[Int[1/Sqrt[1 + (a + b)*x^4/(a - b)], x], x, Sqrt[(1 + Cos[e + f*x] + Sin[e + f*x])/(1 + Cos[e + f*x] - Sin[e + f*x])]] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)*(1 - Sin[e + f*x])*(a + b*Sin[e + f*x])^(m + 1)*(-(a - b)*(1 - Sin[e + f*x])/((a + b)*(1 + Sin[e + f*x])))^(m/2)/ (f*(a + b)*(m + 1))* Hypergeometric2F1[m + 1, m/2 + 1, m + 2, 2*(a + b*Sin[e + f*x])/((a + b)*(1 + Sin[e + f*x]))] /; FreeQ[{a, b, e, f, g, m, p}, x] && NeQ[a^2 - b^2, 0] && EqQ[m + p + 1, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := (g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)/(f* g*(a - b)*(p + 1)) + a/(g^2*(a - b))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^ m/(1 - Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && NeQ[a^2 - b^2, 0] && EqQ[m + p + 2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := (g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)/(f* g*(a - b)*(p + 1)) - b*(m + p + 2)/(g^2*(a - b)*(p + 1))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m, x] + a/(g^2*(a - b))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^ m/(1 - Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && NeQ[a^2 - b^2, 0] && ILtQ[m + p + 2, 0] +Int[Sqrt[g_.*cos[e_. + f_.*x_]]/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := With[{q = Rt[-a^2 + b^2, 2]}, a*g/(2*b)*Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x] - a*g/(2*b)* Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x] + b*g/f* Subst[Int[Sqrt[x]/(g^2*(a^2 - b^2) + b^2*x^2), x], x, g*Cos[e + f*x]]] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] +Int[1/(Sqrt[g_.*cos[e_. + f_.*x_]]*(a_ + b_.*sin[e_. + f_.*x_])), x_Symbol] := With[{q = Rt[-a^2 + b^2, 2]}, -a/(2*q)* Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x] - a/(2*q)* Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x] + b*g/f* Subst[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]]] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)/ (b* f*(m + p)*(-b*(1 - Sin[e + f*x])/(a + b*Sin[e + f*x]))^((p - 1)/ 2)*(b*(1 + Sin[e + f*x])/(a + b*Sin[e + f*x]))^((p - 1)/2))* AppellF1[-p - m, (1 - p)/2, (1 - p)/2, 1 - p - m, (a + b)/(a + b*Sin[e + f*x]), (a - b)/(a + b*Sin[e + f*x])] /; FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && ILtQ[m, 0] && Not[IGtQ[m + p + 1, 0]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)/(f*(1 - (a + b*Sin[e + f*x])/(a - b))^((p - 1)/ 2)*(1 - (a + b*Sin[e + f*x])/(a + b))^((p - 1)/2))* Subst[ Int[(-b/(a - b) - b*x/(a - b))^((p - 1)/2)*(b/(a + b) - b*x/(a + b))^((p - 1)/2)*(a + b*x)^m, x], x, Sin[e + f*x]] /; FreeQ[{a, b, e, f, g, m, p}, x] && NeQ[a^2 - b^2, 0] && Not[IGtQ[m, 0]] +Int[(g_.*sec[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := g^(2*IntPart[p])*(g*Cos[e + f*x])^FracPart[p]*(g*Sec[e + f*x])^ FracPart[p]*Int[(a + b*Sin[e + f*x])^m/(g*Cos[e + f*x])^p, x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Not[IntegerQ[p]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.3 (g tan)^p (a+b sin)^m.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.3 (g tan)^p (a+b sin)^m.m new file mode 100755 index 0000000..9ffdb4e --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.1.3 (g tan)^p (a+b sin)^m.m @@ -0,0 +1,32 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.1.3 (g tan)^p (a+b sin)^m *) +Int[(g_.*tan[e_. + f_.*x_])^p_./(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := 1/a*Int[Sec[e + f*x]^2*(g*Tan[e + f*x])^p, x] - 1/(b*g)*Int[Sec[e + f*x]*(g*Tan[e + f*x])^(p + 1), x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[p, -1] +Int[tan[e_. + f_.*x_]^p_.*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := 1/f*Subst[Int[x^p*(a + x)^(m - (p + 1)/2)/(a - x)^((p + 1)/2), x], x, b*Sin[e + f*x]] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[(p + 1)/2] +Int[tan[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := a^p*Int[Sin[e + f*x]^p/(a - b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[p, 2*m] +Int[tan[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := a^p*Int[ ExpandIntegrand[ Sin[e + f*x]^ p*(a + b*Sin[e + f*x])^(m - p/2)/(a - b*Sin[e + f*x])^(p/2), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p/2] && (LtQ[p, 0] || GtQ[m - p/2, 0]) +Int[(g_.*tan[e_. + f_.*x_])^p_.*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := Int[ExpandIntegrand[(g*Tan[e + f*x])^p, (a + b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] +Int[(g_.*tan[e_. + f_.*x_])^p_.*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := a^(2*m)* Int[ExpandIntegrand[(g*Tan[e + f*x])^p* Sec[e + f*x]^(-m), (a*Sec[e + f*x] - b*Tan[e + f*x])^(-m), x], x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0] +Int[tan[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := b*(a + b*Sin[e + f*x])^m/(a*f*(2*m - 1)*Cos[e + f*x]) - 1/(a^2*(2*m - 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(a*m - b*(2*m - 1)*Sin[e + f*x])/ Cos[e + f*x]^2, x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && LtQ[m, 0] +Int[tan[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -(a + b*Sin[e + f*x])^(m + 1)/(b*f*m*Cos[e + f*x]) + 1/(b*m)* Int[(a + b*Sin[e + f*x])^m*(b*(m + 1) + a*Sin[e + f*x])/ Cos[e + f*x]^2, x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && Not[LtQ[m, 0]] +Int[tan[e_. + f_.*x_]^4*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Int[(a + b*Sin[e + f*x])^m, x] - Int[(a + b*Sin[e + f*x])^m*(1 - 2*Sin[e + f*x]^2)/Cos[e + f*x]^4, x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_/tan[e_. + f_.*x_]^2, x_Symbol] := -(a + b*Sin[e + f*x])^(m + 1)/(a*f*Tan[e + f*x]) + 1/b^2* Int[(a + b*Sin[e + f*x])^(m + 1)*(b*m - a*(m + 1)*Sin[e + f*x])/ Sin[e + f*x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && LtQ[m, -1] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_./tan[e_. + f_.*x_]^2, x_Symbol] := -(a + b*Sin[e + f*x])^m/(f*Tan[e + f*x]) + 1/a* Int[(a + b*Sin[e + f*x])^m*(b*m - a*(m + 1)*Sin[e + f*x])/ Sin[e + f*x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && Not[LtQ[m, -1]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_/tan[e_. + f_.*x_]^4, x_Symbol] := -2/(a*b)*Int[(a + b*Sin[e + f*x])^(m + 2)/Sin[e + f*x]^3, x] + 1/a^2* Int[(a + b*Sin[e + f*x])^(m + 2)*(1 + Sin[e + f*x]^2)/ Sin[e + f*x]^4, x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && LtQ[m, -1] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_/tan[e_. + f_.*x_]^4, x_Symbol] := Int[(a + b*Sin[e + f*x])^m, x] + Int[(a + b*Sin[e + f*x])^m*(1 - 2*Sin[e + f*x]^2)/Sin[e + f*x]^4, x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && Not[LtQ[m, -1]] +Int[tan[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Sqrt[a + b*Sin[e + f*x]]* Sqrt[a - b*Sin[e + f*x]]/(b*f*Cos[e + f*x])* Subst[Int[x^p*(a + x)^(m - (p + 1)/2)/(a - x)^((p + 1)/2), x], x, b*Sin[e + f*x]] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && IntegerQ[p/2] +Int[(g_.*tan[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := (g*Tan[e + f*x])^(p + 1)*(a - b*Sin[e + f*x])^((p + 1)/ 2)*(a + b*Sin[e + f*x])^((p + 1)/2)/(f* g*(b*Sin[e + f*x])^(p + 1))* Subst[Int[x^p*(a + x)^(m - (p + 1)/2)/(a - x)^((p + 1)/2), x], x, b*Sin[e + f*x]] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && Not[IntegerQ[p]] +Int[tan[e_. + f_.*x_]^p_.*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := 1/f*Subst[Int[(x^p*(a + x)^m)/(b^2 - x^2)^((p + 1)/2), x], x, b*Sin[e + f*x]] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[(p + 1)/2] +Int[(g_.*tan[e_. + f_.*x_])^p_.*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := Int[ExpandIntegrand[(g*Tan[e + f*x])^p, (a + b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_/tan[e_. + f_.*x_]^2, x_Symbol] := Int[(a + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2)/Sin[e + f*x]^2, x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_/tan[e_. + f_.*x_]^4, x_Symbol] := -Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(3*a*f*Sin[e + f*x]^3) - (3*a^2 + b^2*(m - 2))* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(3*a^2*b*f*(m + 1)* Sin[e + f*x]^2) - 1/(3*a^2*b*(m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)/Sin[e + f*x]^3* Simp[6*a^2 - b^2*(m - 1)*(m - 2) + a*b*(m + 1)*Sin[e + f*x] - (3*a^2 - b^2*m*(m - 2))* Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m] +(* Int[(a_+b_.*sin[e_.+f_.*x_])^m_/tan[e_.+f_.*x_]^4,x_Symbol] := -Cos[e+f*x]*(a+b*Sin[e+f*x])^(m+1)/(3*a*f*Sin[e+f*x]^3) - Cos[e+f*x]*(a+b*Sin[e+f*x])^(m+1)/(b*f*m*Sin[e+f*x]^2) - 1/(3*a*b*m)*Int[(a+b*Sin[e+f*x])^m/Sin[e+f*x]^3* Simp[6*a^2-b^2*m*(m-2)+a*b*(m+3)*Sin[e+f*x]-(3*a^2-b^2*m*(m-1))* Sin[e+f*x]^2,x],x] /; FreeQ[{a,b,e,f,m},x] && NeQ[a^2-b^2,0] && Not[LtQ[m,-1]] && IntegerQ[2*m] *) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_/tan[e_. + f_.*x_]^4, x_Symbol] := -Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(3*a*f*Sin[e + f*x]^3) - b*(m - 2)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(6*a^2*f* Sin[e + f*x]^2) - 1/(6*a^2)*Int[(a + b*Sin[e + f*x])^m/Sin[e + f*x]^2* Simp[8*a^2 - b^2*(m - 1)*(m - 2) + a*b*m*Sin[e + f*x] - (6*a^2 - b^2*m*(m - 2))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] && Not[LtQ[m, -1]] && IntegerQ[2*m] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_/tan[e_. + f_.*x_]^6, x_Symbol] := -Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(5*a*f*Sin[e + f*x]^5) - b*(m - 4)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(20*a^2*f* Sin[e + f*x]^4) + a*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b^2*f*m*(m - 1)* Sin[e + f*x]^3) + Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b*f*m*Sin[e + f*x]^2) + 1/(20*a^2*b^2*m*(m - 1))* Int[(a + b*Sin[e + f*x])^m/Sin[e + f*x]^4* Simp[60*a^4 - 44*a^2*b^2*(m - 1)*m + b^4*m*(m - 1)*(m - 3)*(m - 4) + a*b*m*(20*a^2 - b^2*m*(m - 1))*Sin[e + f*x] - (40*a^4 + b^4*m*(m - 1)*(m - 2)*(m - 4) - 20*a^2*b^2*(m - 1)*(2*m + 1))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] && NeQ[m, 1] && IntegerQ[2*m] +Int[(g_.*tan[e_. + f_.*x_])^p_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := a/(a^2 - b^2)*Int[(g*Tan[e + f*x])^p/Sin[e + f*x]^2, x] - b*g/(a^2 - b^2)*Int[(g*Tan[e + f*x])^(p - 1)/Cos[e + f*x], x] - a^2*g^2/(a^2 - b^2)* Int[(g*Tan[e + f*x])^(p - 2)/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*p] && GtQ[p, 1] +Int[(g_.*tan[e_. + f_.*x_])^p_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := 1/a*Int[(g*Tan[e + f*x])^p/Cos[e + f*x]^2, x] - b/(a^2*g)*Int[(g*Tan[e + f*x])^(p + 1)/Cos[e + f*x], x] - (a^2 - b^2)/(a^2*g^2)* Int[(g*Tan[e + f*x])^(p + 2)/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*p] && LtQ[p, -1] +Int[Sqrt[g_.*tan[e_. + f_.*x_]]/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := Sqrt[Cos[e + f*x]]*Sqrt[g*Tan[e + f*x]]/Sqrt[Sin[e + f*x]]* Int[Sqrt[Sin[e + f*x]]/(Sqrt[Cos[e + f*x]]*(a + b*Sin[e + f*x])), x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] +Int[1/(Sqrt[g_*tan[e_. + f_.*x_]]*(a_ + b_.*sin[e_. + f_.*x_])), x_Symbol] := Sqrt[Sin[e + f*x]]/(Sqrt[Cos[e + f*x]]*Sqrt[g*Tan[e + f*x]])* Int[Sqrt[Cos[e + f*x]]/(Sqrt[Sin[e + f*x]]*(a + b*Sin[e + f*x])), x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] +Int[tan[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Int[ExpandIntegrand[ Sin[e + f*x]^p*(a + b*Sin[e + f*x])^m/(1 - Sin[e + f*x]^2)^(p/2), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[m, p/2] +Int[(g_.*tan[e_. + f_.*x_])^p_.*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := Unintegrable[(g*Tan[e + f*x])^p*(a + b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, e, f, g, m, p}, x] +Int[(g_.*cot[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_., x_Symbol] := g^(2*IntPart[p])*(g*Cot[e + f*x])^FracPart[p]*(g*Tan[e + f*x])^ FracPart[p]*Int[(a + b*Sin[e + f*x])^m/(g*Tan[e + f*x])^p, x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Not[IntegerQ[p]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.10 (c+d x)^m (a+b sin)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.10 (c+d x)^m (a+b sin)^n.m new file mode 100755 index 0000000..f8f2ccf --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.10 (c+d x)^m (a+b sin)^n.m @@ -0,0 +1,40 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.10 (c+d x)^m (a+b sin)^n *) +Int[(c_. + d_.*x_)^m_.*sin[e_. + f_.*x_], x_Symbol] := -(c + d*x)^m*Cos[e + f*x]/f + d*m/f*Int[(c + d*x)^(m - 1)*Cos[e + f*x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0] +Int[(c_. + d_.*x_)^m_*sin[e_. + f_.*x_], x_Symbol] := (c + d*x)^(m + 1)*Sin[e + f*x]/(d*(m + 1)) - f/(d*(m + 1))*Int[(c + d*x)^(m + 1)*Cos[e + f*x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[m, -1] +Int[sin[e_. + f_.*Complex[0, fz_]*x_]/(c_. + d_.*x_), x_Symbol] := I*SinhIntegral[c*f*fz/d + f*fz*x]/d /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0] +Int[sin[e_. + f_.*x_]/(c_. + d_.*x_), x_Symbol] := SinIntegral[e + f*x]/d /; FreeQ[{c, d, e, f}, x] && EqQ[d*e - c*f, 0] +Int[sin[e_. + f_.*Complex[0, fz_]*x_]/(c_. + d_.*x_), x_Symbol] := CoshIntegral[-c*f*fz/d - f*fz*x]/d /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0] && NegQ[c*f*fz/d, 0] +Int[sin[e_. + f_.*Complex[0, fz_]*x_]/(c_. + d_.*x_), x_Symbol] := CoshIntegral[c*f*fz/d + f*fz*x]/d /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0] +Int[sin[e_. + f_.*x_]/(c_. + d_.*x_), x_Symbol] := CosIntegral[e - Pi/2 + f*x]/d /; FreeQ[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0] +Int[sin[e_. + f_.*x_]/(c_. + d_.*x_), x_Symbol] := Cos[(d*e - c*f)/d]*Int[Sin[c*f/d + f*x]/(c + d*x), x] + Sin[(d*e - c*f)/d]*Int[Cos[c*f/d + f*x]/(c + d*x), x] /; FreeQ[{c, d, e, f}, x] && NeQ[d*e - c*f, 0] +Int[sin[e_. + Pi/2 + f_.*x_]/Sqrt[c_. + d_.*x_], x_Symbol] := 2/d*Subst[Int[Cos[f*x^2/d], x], x, Sqrt[c + d*x]] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0] +Int[sin[e_. + f_.*x_]/Sqrt[c_. + d_.*x_], x_Symbol] := 2/d*Subst[Int[Sin[f*x^2/d], x], x, Sqrt[c + d*x]] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0] +Int[sin[e_. + f_.*x_]/Sqrt[c_. + d_.*x_], x_Symbol] := Cos[(d*e - c*f)/d]*Int[Sin[c*f/d + f*x]/Sqrt[c + d*x], x] + Sin[(d*e - c*f)/d]*Int[Cos[c*f/d + f*x]/Sqrt[c + d*x], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0] +Int[(c_. + d_.*x_)^m_.*sin[e_. + k_.*Pi + f_.*x_], x_Symbol] := I/2*Int[(c + d*x)^m*E^(-I*k*Pi)*E^(-I*(e + f*x)), x] - I/2*Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x] /; FreeQ[{c, d, e, f, m}, x] && IntegerQ[2*k] +Int[(c_. + d_.*x_)^m_.*sin[e_. + f_.*x_], x_Symbol] := I/2*Int[(c + d*x)^m*E^(-I*(e + f*x)), x] - I/2*Int[(c + d*x)^m*E^(I*(e + f*x)), x] /; FreeQ[{c, d, e, f, m}, x] +Int[(c_. + d_.*x_)^m_.*sin[e_. + f_.*x_/2]^2, x_Symbol] := 1/2*Int[(c + d*x)^m, x] - 1/2*Int[(c + d*x)^m*Cos[2*e + f*x], x] /; FreeQ[{c, d, e, f, m}, x] +Int[(c_. + d_.*x_)*(b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := d*(b*Sin[e + f*x])^n/(f^2*n^2) - b*(c + d*x)*Cos[e + f*x]*(b*Sin[e + f*x])^(n - 1)/(f*n) + b^2*(n - 1)/n*Int[(c + d*x)*(b*Sin[e + f*x])^(n - 2), x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] +Int[(c_. + d_.*x_)^m_*(b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := d*m*(c + d*x)^(m - 1)*(b*Sin[e + f*x])^n/(f^2*n^2) - b*(c + d*x)^m*Cos[e + f*x]*(b*Sin[e + f*x])^(n - 1)/(f*n) + b^2*(n - 1)/n*Int[(c + d*x)^m*(b*Sin[e + f*x])^(n - 2), x] - d^2*m*(m - 1)/(f^2*n^2)* Int[(c + d*x)^(m - 2)*(b*Sin[e + f*x])^n, x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && GtQ[m, 1] +Int[(c_. + d_.*x_)^m_*sin[e_. + f_.*x_]^n_, x_Symbol] := Int[ExpandTrigReduce[(c + d*x)^m, Sin[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && (Not[RationalQ[m]] || GeQ[m, -1] && LtQ[m, 1]) +Int[(c_. + d_.*x_)^m_*sin[e_. + f_.*x_]^n_, x_Symbol] := (c + d*x)^(m + 1)*Sin[e + f*x]^n/(d*(m + 1)) - f*n/(d*(m + 1))* Int[ExpandTrigReduce[(c + d*x)^(m + 1), Cos[e + f*x]*Sin[e + f*x]^(n - 1), x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && GeQ[m, -2] && LtQ[m, -1] +Int[(c_. + d_.*x_)^m_*(b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := (c + d*x)^(m + 1)*(b*Sin[e + f*x])^n/(d*(m + 1)) - b*f*n*(c + d*x)^(m + 2)* Cos[e + f*x]*(b*Sin[e + f*x])^(n - 1)/(d^2*(m + 1)*(m + 2)) - f^2*n^2/(d^2*(m + 1)*(m + 2))* Int[(c + d*x)^(m + 2)*(b*Sin[e + f*x])^n, x] + b^2*f^2*n*(n - 1)/(d^2*(m + 1)*(m + 2))* Int[(c + d*x)^(m + 2)*(b*Sin[e + f*x])^(n - 2), x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && LtQ[m, -2] +Int[(c_. + d_.*x_)*(b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := (c + d*x)*Cos[e + f*x]*(b*Sin[e + f*x])^(n + 1)/(b*f*(n + 1)) - d*(b*Sin[e + f*x])^(n + 2)/(b^2*f^2*(n + 1)*(n + 2)) + (n + 2)/(b^2*(n + 1))* Int[(c + d*x)*(b*Sin[e + f*x])^(n + 2), x] /; FreeQ[{b, c, d, e, f}, x] && LtQ[n, -1] && NeQ[n, -2] +Int[(c_. + d_.*x_)^m_.*(b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := (c + d*x)^m*Cos[e + f*x]*(b*Sin[e + f*x])^(n + 1)/(b*f*(n + 1)) - d*m*(c + d*x)^(m - 1)*(b*Sin[e + f*x])^(n + 2)/(b^2* f^2*(n + 1)*(n + 2)) + (n + 2)/(b^2*(n + 1))* Int[(c + d*x)^m*(b*Sin[e + f*x])^(n + 2), x] + d^2*m*(m - 1)/(b^2*f^2*(n + 1)*(n + 2))* Int[(c + d*x)^(m - 2)*(b*Sin[e + f*x])^(n + 2), x] /; FreeQ[{b, c, d, e, f}, x] && LtQ[n, -1] && NeQ[n, -2] && GtQ[m, 1] +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*sin[e_. + f_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(c + d*x)^m, (a + b*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 0] && (EqQ[n, 1] || IGtQ[m, 0] || NeQ[a^2 - b^2, 0]) +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*sin[e_. + f_.*x_])^n_., x_Symbol] := (2*a)^n* Int[(c + d*x)^m*Sin[1/2*(e + Pi*a/(2*b)) + f*x/2]^(2*n), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[n] && (GtQ[n, 0] || IGtQ[m, 0]) +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := (2*a)^IntPart[n]*(a + b*Sin[e + f*x])^FracPart[n]/ Sin[e/2 + a*Pi/(4*b) + f*x/2]^(2*FracPart[n])* Int[(c + d*x)^m*Sin[e/2 + a*Pi/(4*b) + f*x/2]^(2*n), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[n + 1/2] && (GtQ[n, 0] || IGtQ[m, 0]) +(* Int[(c_.+d_.*x_)^m_.*(a_+b_.*sin[e_.+f_.*x_])^n_.,x_Symbol] := (2*a)^n*Int[(c+d*x)^m*Cos[1/2*(e-Pi*a/(2*b))+f*x/2]^(2*n),x] /; FreeQ[{a,b,c,d,e,f,m},x] && EqQ[a^2-b^2,0] && IntegerQ[n] && (GtQ[n,0] || IGtQ[m,0]) *) +(* Int[(c_.+d_.*x_)^m_.*(a_+b_.*sin[e_.+f_.*x_])^n_,x_Symbol] := (2*a)^IntPart[n]*(a+b*Sin[e+f*x])^FracPart[n]/Cos[1/2*(e-Pi*a/(2*b)) +f*x/2]^(2*FracPart[n])* Int[(c+d*x)^m*Cos[1/2*(e-Pi*a/(2*b))+f*x/2]^(2*n),x] /; FreeQ[{a,b,c,d,e,f,m},x] && EqQ[a^2-b^2,0] && IntegerQ[n+1/2] && (GtQ[n,0] || IGtQ[m,0]) *) +Int[(c_. + d_.*x_)^ m_./(a_ + b_.*sin[e_. + k_.*Pi + f_.*Complex[0, fz_]*x_]), x_Symbol] := 2*Int[(c + d*x)^m*E^(-I*Pi*(k - 1/2))* E^(-I*e + f*fz*x)/(b + 2*a*E^(-I*Pi*(k - 1/2))*E^(-I*e + f*fz*x) - b*E^(-2*I*k*Pi)*E^(2*(-I*e + f*fz*x))), x] /; FreeQ[{a, b, c, d, e, f, fz}, x] && IntegerQ[2*k] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_./(a_ + b_.*sin[e_. + k_.*Pi + f_.*x_]), x_Symbol] := 2*Int[(c + d*x)^m*E^(I*Pi*(k - 1/2))* E^(I*(e + f*x))/(b + 2*a*E^(I*Pi*(k - 1/2))*E^(I*(e + f*x)) - b*E^(2*I*k*Pi)*E^(2*I*(e + f*x))), x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[2*k] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0] +(* Int[(c_.+d_.*x_)^m_./(a_+b_.*sin[e_.+f_.*Complex[0,fz_]*x_]),x_ Symbol] := 2*I*Int[(c+d*x)^m*E^(-I*e+f*fz*x)/(b+2*I*a*E^(-I*e+f*fz*x)-b*E^(2*(- I*e+f*fz*x))),x] /; FreeQ[{a,b,c,d,e,f,fz},x] && NeQ[a^2-b^2,0] && IGtQ[m,0] *) +(* Int[(c_.+d_.*x_)^m_./(a_+b_.*sin[e_.+f_.*x_]),x_Symbol] := -2*I*Int[(c+d*x)^m*E^(I*(e+f*x))/(b-2*I*a*E^(I*(e+f*x))-b*E^(2*I*(e+ f*x))),x] /; FreeQ[{a,b,c,d,e,f},x] && NeQ[a^2-b^2,0] && IGtQ[m,0] *) +Int[(c_. + d_.*x_)^m_./(a_ + b_.*sin[e_. + f_.*Complex[0, fz_]*x_]), x_Symbol] := 2*Int[(c + d*x)^m* E^(-I*e + f*fz*x)/(-I*b + 2*a*E^(-I*e + f*fz*x) + I*b*E^(2*(-I*e + f*fz*x))), x] /; FreeQ[{a, b, c, d, e, f, fz}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_./(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := 2*Int[(c + d*x)^m* E^(I*(e + f*x))/(I*b + 2*a*E^(I*(e + f*x)) - I*b*E^(2*I*(e + f*x))), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_./(a_ + b_.*sin[e_. + f_.*x_])^2, x_Symbol] := b*(c + d*x)^m*Cos[e + f*x]/(f*(a^2 - b^2)*(a + b*Sin[e + f*x])) + a/(a^2 - b^2)*Int[(c + d*x)^m/(a + b*Sin[e + f*x]), x] - b*d*m/(f*(a^2 - b^2))* Int[(c + d*x)^(m - 1)*Cos[e + f*x]/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b*(c + d*x)^m* Cos[e + f* x]*(a + b*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(a^2 - b^2)) + a/(a^2 - b^2)* Int[(c + d*x)^m*(a + b*Sin[e + f*x])^(n + 1), x] + b*d*m/(f*(n + 1)*(a^2 - b^2))* Int[(c + d*x)^(m - 1)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(n + 1), x] - b*(n + 2)/((n + 1)*(a^2 - b^2))* Int[(c + d*x)^m*Sin[e + f*x]*(a + b*Sin[e + f*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 - b^2, 0] && ILtQ[n, -2] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*sin[e_. + f_.*x_])^n_., x_Symbol] := Unintegrable[(c + d*x)^m*(a + b*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[u_^m_.*(a_. + b_.*Sin[v_])^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*(a + b*Sin[ExpandToSum[v, x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] +Int[u_^m_.*(a_. + b_.*Cos[v_])^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*(a + b*Cos[ExpandToSum[v, x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.11 (e x)^m (a+b x^n)^p sin.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.11 (e x)^m (a+b x^n)^p sin.m new file mode 100755 index 0000000..ef994c0 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.11 (e x)^m (a+b x^n)^p sin.m @@ -0,0 +1,25 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.11 (e x)^m (a+b x^n)^p sin *) +Int[(a_ + b_.*x_^n_)^p_.*Sin[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Sin[c + d*x], (a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0] +Int[(a_ + b_.*x_^n_)^p_.*Cos[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Cos[c + d*x], (a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0] +Int[(a_ + b_.*x_^n_)^p_*Sin[c_. + d_.*x_], x_Symbol] := x^(-n + 1)*(a + b*x^n)^(p + 1)*Sin[c + d*x]/(b*n*(p + 1)) - (-n + 1)/(b*n*(p + 1))* Int[x^(-n)*(a + b*x^n)^(p + 1)*Sin[c + d*x], x] - d/(b*n*(p + 1))* Int[x^(-n + 1)*(a + b*x^n)^(p + 1)*Cos[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, -1] && IGtQ[n, 2] +Int[(a_ + b_.*x_^n_)^p_*Cos[c_. + d_.*x_], x_Symbol] := x^(-n + 1)*(a + b*x^n)^(p + 1)*Cos[c + d*x]/(b*n*(p + 1)) - (-n + 1)/(b*n*(p + 1))* Int[x^(-n)*(a + b*x^n)^(p + 1)*Cos[c + d*x], x] + d/(b*n*(p + 1))* Int[x^(-n + 1)*(a + b*x^n)^(p + 1)*Sin[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, -1] && IGtQ[n, 2] +Int[(a_ + b_.*x_^n_)^p_*Sin[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Sin[c + d*x], (a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1]) +Int[(a_ + b_.*x_^n_)^p_*Cos[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Cos[c + d*x], (a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1]) +Int[(a_ + b_.*x_^n_)^p_*Sin[c_. + d_.*x_], x_Symbol] := Int[x^(n*p)*(b + a*x^(-n))^p*Sin[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && ILtQ[n, 0] +Int[(a_ + b_.*x_^n_)^p_*Cos[c_. + d_.*x_], x_Symbol] := Int[x^(n*p)*(b + a*x^(-n))^p*Cos[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && ILtQ[n, 0] +Int[(a_ + b_.*x_^n_)^p_*Sin[c_. + d_.*x_], x_Symbol] := Unintegrable[(a + b*x^n)^p*Sin[c + d*x], x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(a_ + b_.*x_^n_)^p_*Cos[c_. + d_.*x_], x_Symbol] := Unintegrable[(a + b*x^n)^p*Cos[c + d*x], x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_.*Sin[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Sin[c + d*x], (e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0] +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_.*Cos[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Cos[c + d*x], (e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0] +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_*Sin[c_. + d_.*x_], x_Symbol] := e^m*(a + b*x^n)^(p + 1)*Sin[c + d*x]/(b*n*(p + 1)) - d*e^m/(b*n*(p + 1))*Int[(a + b*x^n)^(p + 1)*Cos[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, -1] && EqQ[m, n - 1] && (IntegerQ[n] || GtQ[e, 0]) +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_*Cos[c_. + d_.*x_], x_Symbol] := e^m*(a + b*x^n)^(p + 1)*Cos[c + d*x]/(b*n*(p + 1)) + d*e^m/(b*n*(p + 1))*Int[(a + b*x^n)^(p + 1)*Sin[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, -1] && EqQ[m, n - 1] && (IntegerQ[n] || GtQ[e, 0]) +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Sin[c_. + d_.*x_], x_Symbol] := x^(m - n + 1)*(a + b*x^n)^(p + 1)*Sin[c + d*x]/(b*n*(p + 1)) - (m - n + 1)/(b*n*(p + 1))* Int[x^(m - n)*(a + b*x^n)^(p + 1)*Sin[c + d*x], x] - d/(b*n*(p + 1))* Int[x^(m - n + 1)*(a + b*x^n)^(p + 1)*Cos[c + d*x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, -1] && IGtQ[n, 0] && (GtQ[m - n + 1, 0] || GtQ[n, 2]) && RationalQ[m] +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Cos[c_. + d_.*x_], x_Symbol] := x^(m - n + 1)*(a + b*x^n)^(p + 1)*Cos[c + d*x]/(b*n*(p + 1)) - (m - n + 1)/(b*n*(p + 1))* Int[x^(m - n)*(a + b*x^n)^(p + 1)*Cos[c + d*x], x] + d/(b*n*(p + 1))* Int[x^(m - n + 1)*(a + b*x^n)^(p + 1)*Sin[c + d*x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, -1] && IGtQ[n, 0] && (GtQ[m - n + 1, 0] || GtQ[n, 2]) && RationalQ[m] +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Sin[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Sin[c + d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1]) && IntegerQ[m] +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Cos[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Cos[c + d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1]) && IntegerQ[m] +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Sin[c_. + d_.*x_], x_Symbol] := Int[x^(m + n*p)*(b + a*x^(-n))^p*Sin[c + d*x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && ILtQ[n, 0] +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Cos[c_. + d_.*x_], x_Symbol] := Int[x^(m + n*p)*(b + a*x^(-n))^p*Cos[c + d*x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && ILtQ[n, 0] +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_.*Sin[c_. + d_.*x_], x_Symbol] := Unintegrable[(e*x)^m*(a + b*x^n)^p*Sin[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_.*Cos[c_. + d_.*x_], x_Symbol] := Unintegrable[(e*x)^m*(a + b*x^n)^p*Cos[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.12 (e x)^m (a+b sin(c+d x^n))^p.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.12 (e x)^m (a+b sin(c+d x^n))^p.m new file mode 100755 index 0000000..3fff50e --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.12 (e x)^m (a+b sin(c+d x^n))^p.m @@ -0,0 +1,99 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.12 (e x)^m (a+b sin(c+d x^n))^p *) +Int[Sin[d_.*(e_. + f_.*x_)^2], x_Symbol] := Sqrt[Pi/2]/(f*Rt[d, 2])*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)] /; FreeQ[{d, e, f}, x] +Int[Cos[d_.*(e_. + f_.*x_)^2], x_Symbol] := Sqrt[Pi/2]/(f*Rt[d, 2])*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)] /; FreeQ[{d, e, f}, x] +Int[Sin[c_ + d_.*(e_. + f_.*x_)^2], x_Symbol] := Sin[c]*Int[Cos[d*(e + f*x)^2], x] + Cos[c]*Int[Sin[d*(e + f*x)^2], x] /; FreeQ[{c, d, e, f}, x] +Int[Cos[c_ + d_.*(e_. + f_.*x_)^2], x_Symbol] := Cos[c]*Int[Cos[d*(e + f*x)^2], x] - Sin[c]*Int[Sin[d*(e + f*x)^2], x] /; FreeQ[{c, d, e, f}, x] +Int[Sin[c_. + d_.*(e_. + f_.*x_)^n_], x_Symbol] := I/2*Int[E^(-c*I - d*I*(e + f*x)^n), x] - I/2*Int[E^(c*I + d*I*(e + f*x)^n), x] /; FreeQ[{c, d, e, f}, x] && IGtQ[n, 2] +Int[Cos[c_. + d_.*(e_. + f_.*x_)^n_], x_Symbol] := 1/2*Int[E^(-c*I - d*I*(e + f*x)^n), x] + 1/2*Int[E^(c*I + d*I*(e + f*x)^n), x] /; FreeQ[{c, d, e, f}, x] && IGtQ[n, 2] +Int[(a_. + b_.*Sin[c_. + d_.*(e_. + f_.*x_)^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(a + b*Sin[c + d*(e + f*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 1] && IGtQ[n, 1] +Int[(a_. + b_.*Cos[c_. + d_.*(e_. + f_.*x_)^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(a + b*Cos[c + d*(e + f*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 1] && IGtQ[n, 1] +Int[(a_. + b_.*Sin[c_. + d_.*(e_. + f_.*x_)^n_])^p_., x_Symbol] := -1/f*Subst[Int[(a + b*Sin[c + d*x^(-n)])^p/x^2, x], x, 1/(e + f*x)] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[n, 0] && EqQ[n, -2] +Int[(a_. + b_.*Cos[c_. + d_.*(e_. + f_.*x_)^n_])^p_., x_Symbol] := -1/f*Subst[Int[(a + b*Cos[c + d*x^(-n)])^p/x^2, x], x, 1/(e + f*x)] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[n, 0] && EqQ[n, -2] +Int[(a_. + b_.*Sin[c_. + d_.*(e_. + f_.*x_)^n_])^p_., x_Symbol] := 1/(n*f)* Subst[Int[x^(1/n - 1)*(a + b*Sin[c + d*x])^p, x], x, (e + f*x)^n] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && IntegerQ[1/n] +Int[(a_. + b_.*Cos[c_. + d_.*(e_. + f_.*x_)^n_])^p_., x_Symbol] := 1/(n*f)* Subst[Int[x^(1/n - 1)*(a + b*Cos[c + d*x])^p, x], x, (e + f*x)^n] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && IntegerQ[1/n] +Int[(a_. + b_.*Sin[c_. + d_.*(e_. + f_.*x_)^n_])^p_., x_Symbol] := Module[{k = Denominator[n]}, k/f* Subst[Int[x^(k - 1)*(a + b*Sin[c + d*x^(k*n)])^p, x], x, (e + f*x)^(1/k)]] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && FractionQ[n] +Int[(a_. + b_.*Cos[c_. + d_.*(e_. + f_.*x_)^n_])^p_., x_Symbol] := Module[{k = Denominator[n]}, k/f* Subst[Int[x^(k - 1)*(a + b*Cos[c + d*x^(k*n)])^p, x], x, (e + f*x)^(1/k)]] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && FractionQ[n] +Int[Sin[c_. + d_.*(e_. + f_.*x_)^n_], x_Symbol] := I/2*Int[E^(-c*I - d*I*(e + f*x)^n), x] - I/2*Int[E^(c*I + d*I*(e + f*x)^n), x] /; FreeQ[{c, d, e, f, n}, x] +Int[Cos[c_. + d_.*(e_. + f_.*x_)^n_], x_Symbol] := 1/2*Int[E^(-c*I - d*I*(e + f*x)^n), x] + 1/2*Int[E^(c*I + d*I*(e + f*x)^n), x] /; FreeQ[{c, d, e, f, n}, x] +Int[(a_. + b_.*Sin[c_. + d_.*(e_. + f_.*x_)^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(a + b*Sin[c + d*(e + f*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[p, 1] +Int[(a_. + b_.*Cos[c_. + d_.*(e_. + f_.*x_)^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(a + b*Cos[c + d*(e + f*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[p, 1] +Int[(a_. + b_.*Sin[c_. + d_.*(e_. + f_.*x_)^n_])^p_, x_Symbol] := Unintegrable[(a + b*Sin[c + d*(e + f*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] +Int[(a_. + b_.*Cos[c_. + d_.*(e_. + f_.*x_)^n_])^p_, x_Symbol] := Unintegrable[(a + b*Cos[c + d*(e + f*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] +Int[(a_. + b_.*Sin[c_. + d_.*u_^n_])^p_., x_Symbol] := Int[(a + b*Sin[c + d*ExpandToSum[u, x]^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && Not[LinearMatchQ[u, x]] +Int[(a_. + b_.*Cos[c_. + d_.*u_^n_])^p_., x_Symbol] := Int[(a + b*Cos[c + d*ExpandToSum[u, x]^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && Not[LinearMatchQ[u, x]] +Int[(a_. + b_.*Sin[u_])^p_., x_Symbol] := Int[(a + b*Sin[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(a_. + b_.*Cos[u_])^p_., x_Symbol] := Int[(a + b*Cos[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[Sin[d_.*x_^n_]/x_, x_Symbol] := SinIntegral[d*x^n]/n /; FreeQ[{d, n}, x] +Int[Cos[d_.*x_^n_]/x_, x_Symbol] := CosIntegral[d*x^n]/n /; FreeQ[{d, n}, x] +Int[Sin[c_ + d_.*x_^n_]/x_, x_Symbol] := Sin[c]*Int[Cos[d*x^n]/x, x] + Cos[c]*Int[Sin[d*x^n]/x, x] /; FreeQ[{c, d, n}, x] +Int[Cos[c_ + d_.*x_^n_]/x_, x_Symbol] := Cos[c]*Int[Cos[d*x^n]/x, x] - Sin[c]*Int[Sin[d*x^n]/x, x] /; FreeQ[{c, d, n}, x] +Int[x_^m_.*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Sin[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[ Simplify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]) +Int[x_^m_.*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Cos[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[ Simplify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]) +Int[(e_*x_)^m_*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Sin[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]] +Int[(e_*x_)^m_*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Cos[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]] +Int[x_^m_.*Sin[a_. + b_.*x_^n_], x_Symbol] := 2/n*Subst[Int[Sin[a + b*x^2], x], x, x^(n/2)] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n/2 - 1] +Int[x_^m_.*Cos[a_. + b_.*x_^n_], x_Symbol] := 2/n*Subst[Int[Cos[a + b*x^2], x], x, x^(n/2)] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n/2 - 1] +Int[(e_.*x_)^m_.*Sin[c_. + d_.*x_^n_], x_Symbol] := -e^(n - 1)*(e*x)^(m - n + 1)*Cos[c + d*x^n]/(d*n) + e^n*(m - n + 1)/(d*n)*Int[(e*x)^(m - n)*Cos[c + d*x^n], x] /; FreeQ[{c, d, e}, x] && IGtQ[n, 0] && LtQ[n, m + 1] +Int[(e_.*x_)^m_.*Cos[c_. + d_.*x_^n_], x_Symbol] := e^(n - 1)*(e*x)^(m - n + 1)*Sin[c + d*x^n]/(d*n) - e^n*(m - n + 1)/(d*n)*Int[(e*x)^(m - n)*Sin[c + d*x^n], x] /; FreeQ[{c, d, e}, x] && IGtQ[n, 0] && LtQ[n, m + 1] +Int[(e_.*x_)^m_*Sin[c_. + d_.*x_^n_], x_Symbol] := (e*x)^(m + 1)*Sin[c + d*x^n]/(e*(m + 1)) - d*n/(e^n*(m + 1))*Int[(e*x)^(m + n)*Cos[c + d*x^n], x] /; FreeQ[{c, d, e}, x] && IGtQ[n, 0] && LtQ[m, -1] +Int[(e_.*x_)^m_*Cos[c_. + d_.*x_^n_], x_Symbol] := (e*x)^(m + 1)*Cos[c + d*x^n]/(e*(m + 1)) + d*n/(e^n*(m + 1))*Int[(e*x)^(m + n)*Sin[c + d*x^n], x] /; FreeQ[{c, d, e}, x] && IGtQ[n, 0] && LtQ[m, -1] +Int[(e_.*x_)^m_.*Sin[c_. + d_.*x_^n_], x_Symbol] := I/2*Int[(e*x)^m*E^(-c*I - d*I*x^n), x] - I/2*Int[(e*x)^m*E^(c*I + d*I*x^n), x] /; FreeQ[{c, d, e, m}, x] && IGtQ[n, 0] +Int[(e_.*x_)^m_.*Cos[c_. + d_.*x_^n_], x_Symbol] := 1/2*Int[(e*x)^m*E^(-c*I - d*I*x^n), x] + 1/2*Int[(e*x)^m*E^(c*I + d*I*x^n), x] /; FreeQ[{c, d, e, m}, x] && IGtQ[n, 0] +Int[x_^m_.*Sin[a_. + b_.*x_^n_/2]^2, x_Symbol] := 1/2*Int[x^m, x] - 1/2*Int[x^m*Cos[2*a + b*x^n], x] /; FreeQ[{a, b, m, n}, x] +Int[x_^m_.*Cos[a_. + b_.*x_^n_/2]^2, x_Symbol] := 1/2*Int[x^m, x] + 1/2*Int[x^m*Cos[2*a + b*x^n], x] /; FreeQ[{a, b, m, n}, x] +Int[x_^m_.*Sin[a_. + b_.*x_^n_]^p_, x_Symbol] := x^(m + 1)*Sin[a + b*x^n]^p/(m + 1) - b*n*p/(m + 1)*Int[Sin[a + b*x^n]^(p - 1)*Cos[a + b*x^n], x] /; FreeQ[{a, b}, x] && IGtQ[p, 1] && EqQ[m + n, 0] && NeQ[n, 1] && IntegerQ[n] +Int[x_^m_.*Cos[a_. + b_.*x_^n_]^p_, x_Symbol] := x^(m + 1)*Cos[a + b*x^n]^p/(m + 1) + b*n*p/(m + 1)*Int[Cos[a + b*x^n]^(p - 1)*Sin[a + b*x^n], x] /; FreeQ[{a, b}, x] && IGtQ[p, 1] && EqQ[m + n, 0] && NeQ[n, 1] && IntegerQ[n] +Int[x_^m_.*Sin[a_. + b_.*x_^n_]^p_, x_Symbol] := n*Sin[a + b*x^n]^p/(b^2*n^2*p^2) - x^n*Cos[a + b*x^n]*Sin[a + b*x^n]^(p - 1)/(b*n*p) + (p - 1)/p*Int[x^m*Sin[a + b*x^n]^(p - 2), x] /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && GtQ[p, 1] +Int[x_^m_.*Cos[a_. + b_.*x_^n_]^p_, x_Symbol] := n*Cos[a + b*x^n]^p/(b^2*n^2*p^2) + x^n*Sin[a + b*x^n]*Cos[a + b*x^n]^(p - 1)/(b*n*p) + (p - 1)/p*Int[x^m*Cos[a + b*x^n]^(p - 2), x] /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && GtQ[p, 1] +Int[x_^m_.*Sin[a_. + b_.*x_^n_]^p_, x_Symbol] := (m - n + 1)*x^(m - 2*n + 1)*Sin[a + b*x^n]^p/(b^2*n^2*p^2) - x^(m - n + 1)*Cos[a + b*x^n]*Sin[a + b*x^n]^(p - 1)/(b*n*p) + (p - 1)/p*Int[x^m*Sin[a + b*x^n]^(p - 2), x] - (m - n + 1)*(m - 2*n + 1)/(b^2*n^2*p^2)* Int[x^(m - 2*n)*Sin[a + b*x^n]^p, x] /; FreeQ[{a, b}, x] && GtQ[p, 1] && IGtQ[n, 0] && IGtQ[m, 2*n - 1] +Int[x_^m_.*Cos[a_. + b_.*x_^n_]^p_, x_Symbol] := (m - n + 1)*x^(m - 2*n + 1)*Cos[a + b*x^n]^p/(b^2*n^2*p^2) + x^(m - n + 1)*Sin[a + b*x^n]*Cos[a + b*x^n]^(p - 1)/(b*n*p) + (p - 1)/p*Int[x^m*Cos[a + b*x^n]^(p - 2), x] - (m - n + 1)*(m - 2*n + 1)/(b^2*n^2*p^2)* Int[x^(m - 2*n)*Cos[a + b*x^n]^p, x] /; FreeQ[{a, b}, x] && GtQ[p, 1] && IGtQ[n, 0] && IGtQ[m, 2*n - 1] +Int[x_^m_.*Sin[a_. + b_.*x_^n_]^p_, x_Symbol] := x^(m + 1)*Sin[a + b*x^n]^p/(m + 1) - b*n*p*x^(m + n + 1)*Cos[a + b*x^n]* Sin[a + b*x^n]^(p - 1)/((m + 1)*(m + n + 1)) - b^2*n^2*p^2/((m + 1)*(m + n + 1))* Int[x^(m + 2*n)*Sin[a + b*x^n]^p, x] + b^2*n^2*p*(p - 1)/((m + 1)*(m + n + 1))* Int[x^(m + 2*n)*Sin[a + b*x^n]^(p - 2), x] /; FreeQ[{a, b}, x] && GtQ[p, 1] && IGtQ[n, 0] && ILtQ[m, -2*n + 1] && NeQ[m + n + 1, 0] +Int[x_^m_.*Cos[a_. + b_.*x_^n_]^p_, x_Symbol] := x^(m + 1)*Cos[a + b*x^n]^p/(m + 1) + b*n*p*x^(m + n + 1)*Sin[a + b*x^n]* Cos[a + b*x^n]^(p - 1)/((m + 1)*(m + n + 1)) - b^2*n^2*p^2/((m + 1)*(m + n + 1))* Int[x^(m + 2*n)*Cos[a + b*x^n]^p, x] + b^2*n^2*p*(p - 1)/((m + 1)*(m + n + 1))* Int[x^(m + 2*n)*Cos[a + b*x^n]^(p - 2), x] /; FreeQ[{a, b}, x] && GtQ[p, 1] && IGtQ[n, 0] && ILtQ[m, -2*n + 1] && NeQ[m + n + 1, 0] +Int[(e_.*x_)^m_*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := With[{k = Denominator[m]}, k/e* Subst[Int[x^(k*(m + 1) - 1)*(a + b*Sin[c + d*x^(k*n)/e^n])^p, x], x, (e*x)^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[p] && IGtQ[n, 0] && FractionQ[m] +Int[(e_.*x_)^m_*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := With[{k = Denominator[m]}, k/e* Subst[Int[x^(k*(m + 1) - 1)*(a + b*Cos[c + d*x^(k*n)/e^n])^p, x], x, (e*x)^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[p] && IGtQ[n, 0] && FractionQ[m] +Int[(e_.*x_)^m_.*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(e*x)^m, (a + b*Sin[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 1] && IGtQ[n, 0] +Int[(e_.*x_)^m_.*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(e*x)^m, (a + b*Cos[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 1] && IGtQ[n, 0] +Int[x_^m_.*Sin[a_. + b_.*x_^n_]^p_, x_Symbol] := x^n*Cos[a + b*x^n]*Sin[a + b*x^n]^(p + 1)/(b*n*(p + 1)) - n*Sin[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2)) + (p + 2)/(p + 1)*Int[x^m*Sin[a + b*x^n]^(p + 2), x] /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && LtQ[p, -1] && NeQ[p, -2] +Int[x_^m_.*Cos[a_. + b_.*x_^n_]^p_, x_Symbol] := -x^n*Sin[a + b*x^n]*Cos[a + b*x^n]^(p + 1)/(b*n*(p + 1)) - n*Cos[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2)) + (p + 2)/(p + 1)*Int[x^m*Cos[a + b*x^n]^(p + 2), x] /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && LtQ[p, -1] && NeQ[p, -2] +Int[x_^m_.*Sin[a_. + b_.*x_^n_]^p_, x_Symbol] := x^(m - n + 1)*Cos[a + b*x^n]* Sin[a + b*x^n]^(p + 1)/(b*n*(p + 1)) - (m - n + 1)*x^(m - 2*n + 1)* Sin[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2)) + (p + 2)/(p + 1)*Int[x^m*Sin[a + b*x^n]^(p + 2), x] + (m - n + 1)*(m - 2*n + 1)/(b^2*n^2*(p + 1)*(p + 2))* Int[x^(m - 2*n)*Sin[a + b*x^n]^(p + 2), x] /; FreeQ[{a, b}, x] && LtQ[p, -1] && NeQ[p, -2] && IGtQ[n, 0] && IGtQ[m, 2*n - 1] +Int[x_^m_.*Cos[a_. + b_.*x_^n_]^p_, x_Symbol] := -x^(m - n + 1)*Sin[a + b*x^n]*Cos[a + b*x^n]^(p + 1)/(b*n*(p + 1)) - (m - n + 1)*x^(m - 2*n + 1)* Cos[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2)) + (p + 2)/(p + 1)*Int[x^m*Cos[a + b*x^n]^(p + 2), x] + (m - n + 1)*(m - 2*n + 1)/(b^2*n^2*(p + 1)*(p + 2))* Int[x^(m - 2*n)*Cos[a + b*x^n]^(p + 2), x] /; FreeQ[{a, b}, x] && LtQ[p, -1] && NeQ[p, -2] && IGtQ[n, 0] && IGtQ[m, 2*n - 1] +Int[x_^m_.*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := -Subst[Int[(a + b*Sin[c + d*x^(-n)])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] && ILtQ[n, 0] && IntegerQ[m] && EqQ[n, -2] +Int[x_^m_.*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := -Subst[Int[(a + b*Cos[c + d*x^(-n)])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] && ILtQ[n, 0] && IntegerQ[m] && EqQ[n, -2] +Int[(e_.*x_)^m_*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := With[{k = Denominator[m]}, -k/e* Subst[Int[(a + b*Sin[c + d/(e^n*x^(k*n))])^p/x^(k*(m + 1) + 1), x], x, 1/(e*x)^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && ILtQ[n, 0] && FractionQ[m] +Int[(e_.*x_)^m_*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := With[{k = Denominator[m]}, -k/e* Subst[Int[(a + b*Cos[c + d/(e^n*x^(k*n))])^p/x^(k*(m + 1) + 1), x], x, 1/(e*x)^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && ILtQ[n, 0] && FractionQ[m] +Int[(e_.*x_)^m_*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := -(e*x)^m*(x^(-1))^m* Subst[Int[(a + b*Sin[c + d*x^(-n)])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 0] && ILtQ[n, 0] && Not[RationalQ[m]] +Int[(e_.*x_)^m_*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := -(e*x)^m*(x^(-1))^m* Subst[Int[(a + b*Cos[c + d*x^(-n)])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 0] && ILtQ[n, 0] && Not[RationalQ[m]] +Int[x_^m_.*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := Module[{k = Denominator[n]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*Sin[c + d*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, m}, x] && IntegerQ[p] && FractionQ[n] +Int[x_^m_.*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := Module[{k = Denominator[n]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*Cos[c + d*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, m}, x] && IntegerQ[p] && FractionQ[n] +Int[(e_*x_)^m_*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Sin[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && IntegerQ[p] && FractionQ[n] +Int[(e_*x_)^m_*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Cos[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && IntegerQ[p] && FractionQ[n] +Int[x_^m_.*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/(m + 1)* Subst[Int[(a + b*Sin[c + d*x^Simplify[n/(m + 1)]])^p, x], x, x^(m + 1)] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && Not[IntegerQ[n]] +Int[x_^m_.*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/(m + 1)* Subst[Int[(a + b*Cos[c + d*x^Simplify[n/(m + 1)]])^p, x], x, x^(m + 1)] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && Not[IntegerQ[n]] +Int[(e_*x_)^m_*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Sin[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && Not[IntegerQ[n]] +Int[(e_*x_)^m_*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Cos[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && Not[IntegerQ[n]] +Int[(e_.*x_)^m_.*Sin[c_. + d_.*x_^n_], x_Symbol] := I/2*Int[(e*x)^m*E^(-c*I - d*I*x^n), x] - I/2*Int[(e*x)^m*E^(c*I + d*I*x^n), x] /; FreeQ[{c, d, e, m, n}, x] +Int[(e_.*x_)^m_.*Cos[c_. + d_.*x_^n_], x_Symbol] := 1/2*Int[(e*x)^m*E^(-c*I - d*I*x^n), x] + 1/2*Int[(e*x)^m*E^(c*I + d*I*x^n), x] /; FreeQ[{c, d, e, m, n}, x] +Int[(e_.*x_)^m_.*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(e*x)^m, (a + b*Sin[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0] +Int[(e_.*x_)^m_.*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(e*x)^m, (a + b*Cos[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0] +Int[(e_.*x_)^m_.*(a_. + b_.*Sin[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[(e*x)^m*(a + b*Sin[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_.*x_)^m_.*(a_. + b_.*Cos[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[(e*x)^m*(a + b*Cos[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Sin[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Sin[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(e_*x_)^m_.*(a_. + b_.*Cos[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Cos[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(g_. + h_.*x_)^m_.*(a_. + b_.*Sin[c_. + d_.*(e_. + f_.*x_)^n_])^ p_., x_Symbol] := 1/(n*f)* Subst[Int[ ExpandIntegrand[(a + b*Sin[c + d*x])^p, x^(1/n - 1)*(g - e*h/f + h*x^(1/n)/f)^m, x], x], x, (e + f*x)^n] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IGtQ[p, 0] && IntegerQ[1/n] +Int[(g_. + h_.*x_)^m_.*(a_. + b_.*Cos[c_. + d_.*(e_. + f_.*x_)^n_])^ p_., x_Symbol] := 1/(n*f)* Subst[Int[ ExpandIntegrand[(a + b*Cos[c + d*x])^p, x^(1/n - 1)*(g - e*h/f + h*x^(1/n)/f)^m, x], x], x, (e + f*x)^n] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IGtQ[p, 0] && IntegerQ[1/n] +(* Int[(g_.+h_.*x_)^m_.*(a_.+b_.*Sin[c_.+d_.*(e_.+f_.*x_)^n_])^p_.,x_ Symbol] := 1/(n*f^(m+1))*Subst[Int[ExpandIntegrand[(a+b*Sin[c+d*x])^p,x^(1/n-1) *(f*g-e*h+h*x^(1/n))^m,x],x],x,(e+f*x)^n] /; FreeQ[{a,b,c,d,e,f,g,h},x] && IGtQ[p,0] && IntegerQ[m] && IntegerQ[1/n] *) +(* Int[(g_.+h_.*x_)^m_.*(a_.+b_.*Cos[c_.+d_.*(e_.+f_.*x_)^n_])^p_.,x_ Symbol] := 1/(n*f^(m+1))*Subst[Int[ExpandIntegrand[(a+b*Cos[c+d*x])^p,x^(1/n-1) *(f*g-e*h+h*x^(1/n))^m,x],x],x,(e+f*x)^n] /; FreeQ[{a,b,c,d,e,f,g,h},x] && IGtQ[p,0] && IntegerQ[m] && IntegerQ[1/n] *) +Int[(g_. + h_.*x_)^m_.*(a_. + b_.*Sin[c_. + d_.*(e_. + f_.*x_)^n_])^ p_., x_Symbol] := Module[{k = If[FractionQ[n], Denominator[n], 1]}, k/f^(m + 1)* Subst[Int[ ExpandIntegrand[(a + b*Sin[c + d*x^(k*n)])^p, x^(k - 1)*(f*g - e*h + h*x^k)^m, x], x], x, (e + f*x)^(1/k)]] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IGtQ[p, 0] && IGtQ[m, 0] +Int[(g_. + h_.*x_)^m_.*(a_. + b_.*Cos[c_. + d_.*(e_. + f_.*x_)^n_])^ p_., x_Symbol] := Module[{k = If[FractionQ[n], Denominator[n], 1]}, k/f^(m + 1)* Subst[Int[ ExpandIntegrand[(a + b*Cos[c + d*x^(k*n)])^p, x^(k - 1)*(f*g - e*h + h*x^k)^m, x], x], x, (e + f*x)^(1/k)]] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IGtQ[p, 0] && IGtQ[m, 0] +Int[(g_. + h_.*x_)^m_.*(a_. + b_.*Sin[c_. + d_.*(e_. + f_.*x_)^n_])^ p_., x_Symbol] := 1/f*Subst[Int[(h*x/f)^m*(a + b*Sin[c + d*x^n])^p, x], x, e + f*x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IGtQ[p, 0] && EqQ[f*g - e*h, 0] +Int[(g_. + h_.*x_)^m_.*(a_. + b_.*Cos[c_. + d_.*(e_. + f_.*x_)^n_])^ p_., x_Symbol] := 1/f*Subst[Int[(h*x/f)^m*(a + b*Cos[c + d*x^n])^p, x], x, e + f*x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IGtQ[p, 0] && EqQ[f*g - e*h, 0] +Int[(g_. + h_.*x_)^m_.*(a_. + b_.*Sin[c_. + d_.*(e_. + f_.*x_)^n_])^ p_., x_Symbol] := Unintegrable[(g + h*x)^m*(a + b*Sin[c + d*(e + f*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p}, x] +Int[(g_. + h_.*x_)^m_.*(a_. + b_.*Cos[c_. + d_.*(e_. + f_.*x_)^n_])^ p_., x_Symbol] := Unintegrable[(g + h*x)^m*(a + b*Cos[c + d*(e + f*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p}, x] +Int[v_^m_.*(a_. + b_.*Sin[c_. + d_.*u_^n_])^p_., x_Symbol] := Int[ExpandToSum[v, x]^m*(a + b*Sin[c + d*ExpandToSum[u, x]^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && LinearQ[u, x] && LinearQ[v, x] && Not[LinearMatchQ[u, x] && LinearMatchQ[v, x]] +Int[v_^m_.*(a_. + b_.*Cos[c_. + d_.*u_^n_])^p_., x_Symbol] := Int[ExpandToSum[v, x]^m*(a + b*Cos[c + d*ExpandToSum[u, x]^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && LinearQ[u, x] && LinearQ[v, x] && Not[LinearMatchQ[u, x] && LinearMatchQ[v, x]] +Int[x_^m_.*Sin[a_. + b_.*x_^n_.]^p_.*Cos[a_. + b_.*x_^n_.], x_Symbol] := Sin[a + b*x^n]^(p + 1)/(b*n*(p + 1)) /; FreeQ[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1] +Int[x_^m_.*Cos[a_. + b_.*x_^n_.]^p_.*Sin[a_. + b_.*x_^n_.], x_Symbol] := -Cos[a + b*x^n]^(p + 1)/(b*n*(p + 1)) /; FreeQ[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1] +Int[x_^m_.*Sin[a_. + b_.*x_^n_.]^p_.*Cos[a_. + b_.*x_^n_.], x_Symbol] := x^(m - n + 1)*Sin[a + b*x^n]^(p + 1)/(b*n*(p + 1)) - (m - n + 1)/(b*n*(p + 1))* Int[x^(m - n)*Sin[a + b*x^n]^(p + 1), x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1] +Int[x_^m_.*Cos[a_. + b_.*x_^n_.]^p_.*Sin[a_. + b_.*x_^n_.], x_Symbol] := -x^(m - n + 1)*Cos[a + b*x^n]^(p + 1)/(b*n*(p + 1)) + (m - n + 1)/(b*n*(p + 1))* Int[x^(m - n)*Cos[a + b*x^n]^(p + 1), x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.13 (d+e x)^m sin(a+b x+c x^2)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.13 (d+e x)^m sin(a+b x+c x^2)^n.m new file mode 100755 index 0000000..95bb02b --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.13 (d+e x)^m sin(a+b x+c x^2)^n.m @@ -0,0 +1,31 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.13 (d+e x)^m sin(a+b x+c x^2)^n *) +Int[Sin[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := Int[Sin[(b + 2*c*x)^2/(4*c)], x] /; FreeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] +Int[Cos[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := Int[Cos[(b + 2*c*x)^2/(4*c)], x] /; FreeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] +Int[Sin[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := Cos[(b^2 - 4*a*c)/(4*c)]*Int[Sin[(b + 2*c*x)^2/(4*c)], x] - Sin[(b^2 - 4*a*c)/(4*c)]*Int[Cos[(b + 2*c*x)^2/(4*c)], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] +Int[Cos[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := Cos[(b^2 - 4*a*c)/(4*c)]*Int[Cos[(b + 2*c*x)^2/(4*c)], x] + Sin[(b^2 - 4*a*c)/(4*c)]*Int[Sin[(b + 2*c*x)^2/(4*c)], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] +Int[Sin[a_. + b_.*x_ + c_.*x_^2]^n_, x_Symbol] := Int[ExpandTrigReduce[Sin[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 1] +Int[Cos[a_. + b_.*x_ + c_.*x_^2]^n_, x_Symbol] := Int[ExpandTrigReduce[Cos[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 1] +Int[Sin[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Unintegrable[Sin[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, n}, x] +Int[Cos[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Unintegrable[Cos[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, n}, x] +Int[Sin[v_]^n_., x_Symbol] := Int[Sin[ExpandToSum[v, x]]^n, x] /; IGtQ[n, 0] && QuadraticQ[v, x] && Not[QuadraticMatchQ[v, x]] +Int[Cos[v_]^n_., x_Symbol] := Int[Cos[ExpandToSum[v, x]]^n, x] /; IGtQ[n, 0] && QuadraticQ[v, x] && Not[QuadraticMatchQ[v, x]] +Int[(d_ + e_.*x_)*Sin[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := -e*Cos[a + b*x + c*x^2]/(2*c) /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] +Int[(d_ + e_.*x_)*Cos[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*Sin[a + b*x + c*x^2]/(2*c) /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] +Int[(d_. + e_.*x_)^m_*Sin[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := -e*(d + e*x)^(m - 1)*Cos[a + b*x + c*x^2]/(2*c) + e^2*(m - 1)/(2*c)* Int[(d + e*x)^(m - 2)*Cos[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && GtQ[m, 1] +Int[(d_. + e_.*x_)^m_*Cos[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*(d + e*x)^(m - 1)*Sin[a + b*x + c*x^2]/(2*c) - e^2*(m - 1)/(2*c)* Int[(d + e*x)^(m - 2)*Sin[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && GtQ[m, 1] +Int[(d_. + e_.*x_)^m_*Sin[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := (d + e*x)^(m + 1)*Sin[a + b*x + c*x^2]/(e*(m + 1)) - 2*c/(e^2*(m + 1))* Int[(d + e*x)^(m + 2)*Cos[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[m, -1] +Int[(d_. + e_.*x_)^m_*Cos[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := (d + e*x)^(m + 1)*Cos[a + b*x + c*x^2]/(e*(m + 1)) + 2*c/(e^2*(m + 1))* Int[(d + e*x)^(m + 2)*Sin[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[m, -1] +Int[(d_. + e_.*x_)*Sin[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := -e*Cos[a + b*x + c*x^2]/(2*c) + (2*c*d - b*e)/(2*c)*Int[Sin[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] +Int[(d_. + e_.*x_)*Cos[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*Sin[a + b*x + c*x^2]/(2*c) + (2*c*d - b*e)/(2*c)*Int[Cos[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] +Int[(d_. + e_.*x_)^m_*Sin[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := -e*(d + e*x)^(m - 1)*Cos[a + b*x + c*x^2]/(2*c) - (b*e - 2*c*d)/(2*c)* Int[(d + e*x)^(m - 1)*Sin[a + b*x + c*x^2], x] + e^2*(m - 1)/(2*c)* Int[(d + e*x)^(m - 2)*Cos[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && GtQ[m, 1] +Int[(d_. + e_.*x_)^m_*Cos[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*(d + e*x)^(m - 1)*Sin[a + b*x + c*x^2]/(2*c) - (b*e - 2*c*d)/(2*c)* Int[(d + e*x)^(m - 1)*Cos[a + b*x + c*x^2], x] - e^2*(m - 1)/(2*c)* Int[(d + e*x)^(m - 2)*Sin[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && GtQ[m, 1] +Int[(d_. + e_.*x_)^m_*Sin[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := (d + e*x)^(m + 1)*Sin[a + b*x + c*x^2]/(e*(m + 1)) - (b*e - 2*c*d)/(e^2*(m + 1))* Int[(d + e*x)^(m + 1)*Cos[a + b*x + c*x^2], x] - 2*c/(e^2*(m + 1))* Int[(d + e*x)^(m + 2)*Cos[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && LtQ[m, -1] +Int[(d_. + e_.*x_)^m_*Cos[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := (d + e*x)^(m + 1)*Cos[a + b*x + c*x^2]/(e*(m + 1)) + (b*e - 2*c*d)/(e^2*(m + 1))* Int[(d + e*x)^(m + 1)*Sin[a + b*x + c*x^2], x] + 2*c/(e^2*(m + 1))* Int[(d + e*x)^(m + 2)*Sin[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && LtQ[m, -1] +Int[(d_. + e_.*x_)^m_.*Sin[a_. + b_.*x_ + c_.*x_^2]^n_, x_Symbol] := Int[ExpandTrigReduce[(d + e*x)^m, Sin[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 1] +Int[(d_. + e_.*x_)^m_.*Cos[a_. + b_.*x_ + c_.*x_^2]^n_, x_Symbol] := Int[ExpandTrigReduce[(d + e*x)^m, Cos[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 1] +Int[(d_. + e_.*x_)^m_.*Sin[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Unintegrable[(d + e*x)^m*Sin[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[(d_. + e_.*x_)^m_.*Cos[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Unintegrable[(d + e*x)^m*Cos[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[u_^m_.*Sin[v_]^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*Sin[ExpandToSum[v, x]]^n, x] /; FreeQ[m, x] && IGtQ[n, 0] && LinearQ[u, x] && QuadraticQ[v, x] && Not[LinearMatchQ[u, x] && QuadraticMatchQ[v, x]] +Int[u_^m_.*Cos[v_]^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*Cos[ExpandToSum[v, x]]^n, x] /; FreeQ[m, x] && IGtQ[n, 0] && LinearQ[u, x] && QuadraticQ[v, x] && Not[LinearMatchQ[u, x] && QuadraticMatchQ[v, x]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.1 (a+b sin)^m (c+d sin)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.1 (a+b sin)^m (c+d sin)^n.m new file mode 100755 index 0000000..277c7d2 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.1 (a+b sin)^m (c+d sin)^n.m @@ -0,0 +1,107 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.2.1 (a+b sin)^m (c+d sin)^n *) +Int[(a_ + b_.*sin[e_. + f_.*x_])*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := (2*a*c + b*d)*x/2 - (b*c + a*d)*Cos[e + f*x]/f - b*d*Cos[e + f*x]*Sin[e + f*x]/(2*f) /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])/(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := b*x/d - (b*c - a*d)/d*Int[1/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_ + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := a^m*c^m*Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && Not[IntegerQ[ n] && (LtQ[m, 0] && GtQ[n, 0] || LtQ[0, n, m] || LtQ[m, n, 0])] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]/Sqrt[c_ + d_.*sin[e_. + f_.*x_]], x_Symbol] := a*c*Cos[ e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])* Int[Cos[e + f*x]/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -2*b*Cos[ e + f*x]*(c + d*Sin[e + f*x])^ n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]) /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -1/2] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -2*b*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^ n/(f*(2*n + 1)) - b*(2*m - 1)/(d*(2*n + 1))* Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] && Not[ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^ n/(f*(m + n)) + a*(2*m - 1)/(m + n)* Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && Not[LtQ[n, -1]] && Not[IGtQ[n - 1/2, 0] && LtQ[n, m]] && Not[ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0]] +Int[1/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])* Int[1/Cos[e + f*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := b*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1)) /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -1/2] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := b*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1)) + (m + n + 1)/(a*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -1/2] && (SumSimplerQ[m, 1] || Not[SumSimplerQ[n, 1]]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := b*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1)) + (m + n + 1)/(a*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && Not[LtQ[m, n, -1]] && IntegersQ[2*m, 2*n] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := a^IntPart[m]* c^IntPart[m]*(a + b*Sin[e + f*x])^ FracPart[m]*(c + d*Sin[e + f*x])^FracPart[m]/ Cos[e + f*x]^(2*FracPart[m])* Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && (FractionQ[m] || Not[FractionQ[n]]) +Int[(a_. + b_.*sin[e_. + f_.*x_])^2/(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -b^2*Cos[e + f*x]/(d*f) + 1/d*Int[Simp[a^2*d - b*(b*c - 2*a*d)*Sin[e + f*x], x]/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] +Int[1/((a_. + b_.*sin[e_. + f_.*x_])*(c_. + d_.*sin[e_. + f_.*x_])), x_Symbol] := b/(b*c - a*d)*Int[1/(a + b*Sin[e + f*x]), x] - d/(b*c - a*d)*Int[1/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] +Int[(b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_]), x_Symbol] := c*Int[(b*Sin[e + f*x])^m, x] + d/b*Int[(b*Sin[e + f*x])^(m + 1), x] /; FreeQ[{b, c, d, e, f, m}, x] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_]), x_Symbol] := -d*Cos[e + f*x]*(a + b*Sin[e + f*x])^m/(f*(m + 1)) /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[a*d*m + b*c*(m + 1), 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := (b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m/(a*f*(2*m + 1)) + (a*d*m + b*c*(m + 1))/(a*b*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -d*Cos[e + f*x]*(a + b*Sin[e + f*x])^m/(f*(m + 1)) + (a*d*m + b*c*(m + 1))/(b*(m + 1))* Int[(a + b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] +Int[(c_. + d_.*sin[e_. + f_.*x_])/Sqrt[a_ + b_.*sin[e_. + f_.*x_]], x_Symbol] := (b*c - a*d)/b*Int[1/Sqrt[a + b*Sin[e + f*x]], x] + d/b*Int[Sqrt[a + b*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -d*Cos[e + f*x]*(a + b*Sin[e + f*x])^m/(f*(m + 1)) + 1/(m + 1)* Int[(a + b*Sin[e + f*x])^(m - 1)* Simp[b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -(b*c - a*d)* Cos[e + f* x]*(a + b*Sin[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2)) + 1/((m + 1)*(a^2 - b^2))* Int[(a + b*Sin[e + f*x])^(m + 1)* Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_]), x_Symbol] := c*Cos[e + f*x]/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]])* Subst[Int[(a + b*x)^m*Sqrt[1 + d/c*x]/Sqrt[1 - d/c*x], x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && Not[IntegerQ[2*m]] && EqQ[c^2 - d^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := (b*c - a*d)/b*Int[(a + b*Sin[e + f*x])^m, x] + d/b*Int[(a + b*Sin[e + f*x])^(m + 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] && RationalQ[n] +Int[sin[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m/(a*f*(2*m + 1)) - 1/(a^2*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(a*m - b*(2*m + 1)*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] +Int[sin[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2)) + 1/(b*(m + 2))* Int[(a + b*Sin[e + f*x])^m*(b*(m + 1) - a*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^2, x_Symbol] := (b*c - a*d)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])/(a*f*(2*m + 1)) + 1/(a*b*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)* Simp[a*c*d*(m - 1) + b*(d^2 + c^2*(m + 1)) + d*(a*d*(m - 1) + b*c*(m + 2))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^2, x_Symbol] := -d^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2)) + 1/(b*(m + 2))* Int[(a + b*Sin[e + f*x])^m* Simp[b*(d^2*(m + 1) + c^2*(m + 2)) - d*(a*d - 2*b*c*(m + 2))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b^2*(b*c - a*d)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d)) + b^2/(d*(n + 1)*(b*c + a*d))* Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)* Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))* Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || IntegerQ[m] && EqQ[c, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b^2*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n)) + 1/(d*(m + n))* Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n* Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && Not[LtQ[n, -1]] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || IntegerQ[m] && EqQ[c, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := b*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1)) - 1/(a*b*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)* Simp[a*d*n - b*c*(m + 1) - b*d*(m + n + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegersQ[2*m, 2*n] || IntegerQ[m] && EqQ[c, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := (b*c - a*d)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1)) + 1/(a*b*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)* Simp[b*(c^2*(m + 1) + d^2*(n - 1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n] || IntegerQ[m] && EqQ[c, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d)) + 1/(a*(2*m + 1)*(b*c - a*d))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n* Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && Not[GtQ[n, 0]] && (IntegersQ[2*m, 2*n] || IntegerQ[m] && EqQ[c, 0]) +Int[(c_. + d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := -(b*c - a*d)* Cos[e + f*x]*(c + d*Sin[e + f*x])^(n - 1)/(a* f*(a + b*Sin[e + f*x])) - d/(a*b)* Int[(c + d*Sin[e + f*x])^(n - 2)* Simp[b*d*(n - 1) - a*c*n + (b*c*(n - 1) - a*d*n)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && (IntegerQ[2*n] || EqQ[c, 0]) +Int[(c_. + d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := -b^2*Cos[ e + f*x]*(c + d*Sin[e + f*x])^(n + 1)/(a* f*(b*c - a*d)*(a + b*Sin[e + f*x])) + d/(a*(b*c - a*d))* Int[(c + d*Sin[e + f*x])^n*(a*n - b*(n + 1)*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 0] && (IntegerQ[2*n] || EqQ[c, 0]) +Int[(c_. + d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := -b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n/(a*f*(a + b*Sin[e + f*x])) + d*n/(a*b)* Int[(c + d*Sin[e + f*x])^(n - 1)*(a - b*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && (IntegerQ[2*n] || EqQ[c, 0]) +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -2*b*Cos[ e + f*x]*(c + d*Sin[e + f*x])^ n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]) + 2*n*(b*c + a*d)/(b*(2*n + 1))* Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(c_. + d_.*sin[e_. + f_.*x_])^(3/2), x_Symbol] := -2*b^2* Cos[e + f*x]/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]* Sqrt[c + d*Sin[e + f*x]]) /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := (b*c - a*d)* Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)* Sqrt[a + b*Sin[e + f*x]]) + (2*n + 3)*(b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))* Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]/(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -2*b/f* Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]/Sqrt[d_.*sin[e_. + f_.*x_]], x_Symbol] := -2/f*Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]]] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d, a/b] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]/ Sqrt[c_. + d_.*sin[e_. + f_.*x_]], x_Symbol] := -2*b/f* Subst[Int[1/(b + d*x^2), x], x, b*Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]* Sqrt[c + d*Sin[e + f*x]])] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := a^2*Cos[ e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])* Subst[Int[(c + d*x)^n/Sqrt[a - b*x], x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Not[IntegerQ[2*n]] +Int[Sqrt[c_. + d_.*sin[e_. + f_.*x_]]/ Sqrt[a_ + b_.*sin[e_. + f_.*x_]], x_Symbol] := d/b*Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x] + (b*c - a*d)/b* Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(c_. + d_.*sin[e_. + f_.*x_])^n_/Sqrt[a_ + b_.*sin[e_. + f_.*x_]], x_Symbol] := -2*d*Cos[ e + f*x]*(c + d*Sin[e + f*x])^(n - 1)/(f*(2*n - 1)* Sqrt[a + b*Sin[e + f*x]]) - 1/(b*(2*n - 1))* Int[(c + d*Sin[e + f*x])^(n - 2)/Sqrt[a + b*Sin[e + f*x]]* Simp[a*c*d - b*(2*d^2*(n - 1) + c^2*(2*n - 1)) + d*(a*d - b*c*(4*n - 3))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[2*n] +Int[(c_. + d_.*sin[e_. + f_.*x_])^n_/Sqrt[a_ + b_.*sin[e_. + f_.*x_]], x_Symbol] := -d*Cos[ e + f*x]*(c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)* Sqrt[a + b*Sin[e + f*x]]) - 1/(2*b*(n + 1)*(c^2 - d^2))* Int[(c + d*Sin[e + f*x])^(n + 1)* Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e + f*x], x]/ Sqrt[a + b*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n] +Int[1/(Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])), x_Symbol] := b/(b*c - a*d)*Int[1/Sqrt[a + b*Sin[e + f*x]], x] - d/(b*c - a*d)* Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[1/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*Sqrt[d_.*sin[e_. + f_.*x_]]), x_Symbol] := -Sqrt[2]/(Sqrt[a]*f)* Subst[Int[1/Sqrt[1 - x^2], x], x, b*Cos[e + f*x]/(a + b*Sin[e + f*x])] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d, a/b] && GtQ[a, 0] +Int[1/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_. + d_.*sin[e_. + f_.*x_]]), x_Symbol] := -2*a/f* Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]* Sqrt[c + d*Sin[e + f*x]])] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -d*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n - 1)/(f*(m + n)) + 1/(b*(m + n))* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 2)* Simp[d*(a*c*m + b*d*(n - 1)) + b*c^2*(m + n) + d*(a*d*m + b*c*(m + 2*n - 1))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[n] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := a^m*Cos[e + f*x]/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]])* Subst[Int[(1 + b/a*x)^(m - 1/2)*(c + d*x)^n/Sqrt[1 - b/a*x], x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b*(d/b)^n* Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]* Sqrt[a - b*Sin[e + f*x]])* Subst[Int[(a - x)^n*(2*a - x)^(m - 1/2)/Sqrt[x], x], x, a - b*Sin[e + f*x]] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && GtQ[a, 0] && GtQ[d/b, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := (d/b)^ IntPart[n]*(d*Sin[e + f*x])^FracPart[n]/(b*Sin[e + f*x])^ FracPart[n]*Int[(a + b*Sin[e + f*x])^m*(b*Sin[e + f*x])^n, x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && GtQ[a, 0] && Not[GtQ[d/b, 0]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := a^IntPart[m]*(a + b*Sin[e + f*x])^ FracPart[m]/(1 + b/a*Sin[e + f*x])^FracPart[m]* Int[(1 + b/a*Sin[e + f*x])^m*(d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && Not[GtQ[a, 0]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := a^2*Cos[ e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])* Subst[Int[(a + b*x)^(m - 1/2)*(c + d*x)^n/Sqrt[a - b*x], x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Not[IntegerQ[m]] +Int[(b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^2, x_Symbol] := 2*c*d/b*Int[(b*Sin[e + f*x])^(m + 1), x] + Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c, d, e, f, m}, x] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^2, x_Symbol] := -(b^2*c^2 - 2*a*b*c*d + a^2*d^2)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b* f*(m + 1)*(a^2 - b^2)) - 1/(b*(m + 1)*(a^2 - b^2))*Int[(a + b*Sin[e + f*x])^(m + 1)* Simp[b*(m + 1)*(2*b*c*d - a*(c^2 + d^2)) + (a^2*d^2 - 2*a*b*c*d*(m + 2) + b^2*(d^2*(m + 1) + c^2*(m + 2)))* Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^2, x_Symbol] := -d^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2)) + 1/(b*(m + 2))* Int[(a + b*Sin[e + f*x])^m* Simp[b*(d^2*(m + 1) + c^2*(m + 2)) - d*(a*d - 2*b*c*(m + 2))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && Not[LtQ[m, -1]] +(* Int[(a_+b_.*sin[e_.+f_.*x_])^m_.*(d_.*sin[e_.+f_.*x_])^n_.,x_ Symbol] := Int[ExpandTrig[(a+b*sin[e+f*x])^m*(d*sin[e+f*x])^n,x],x] /; FreeQ[{a,b,d,e,f,n},x] && NeQ[a^2-b^2,0] && IGtQ[m,0] *) +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -(b^2*c^2 - 2*a*b*c*d + a^2*d^2)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2)) + 1/(d*(n + 1)*(c^2 - d^2))* Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^(n + 1)* Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 + d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b^2*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n)) + 1/(d*(m + n))* Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n* Simp[a^3*d*(m + n) + b^2*(b*c*(m - 2) + a*d*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 3*a^2*d*(m + n))* Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) && Not[IGtQ[n, 2] && (Not[IntegerQ[m]] || EqQ[a, 0] && NeQ[c, 0])] +Int[Sqrt[d_.*sin[e_. + f_.*x_]]/(a_ + b_.*sin[e_. + f_.*x_])^(3/2), x_Symbol] := -2*a*d* Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]* Sqrt[d*Sin[e + f*x]]) - d^2/(a^2 - b^2)* Int[Sqrt[a + b*Sin[e + f*x]]/(d*Sin[e + f*x])^(3/2), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[Sqrt[ c_ + d_.*sin[e_. + f_.*x_]]/(a_. + b_.*sin[e_. + f_.*x_])^(3/2), x_Symbol] := (c - d)/(a - b)* Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] - (b*c - a*d)/(a - b)* Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)* Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^ n/(f*(m + 1)*(a^2 - b^2)) + 1/((m + 1)*(a^2 - b^2))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)* Simp[a*c*(m + 1) + b*d*n + (a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(m + n + 2)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n] +Int[(d_.*sin[e_. + f_.*x_])^(3/2)/(a_ + b_.*sin[e_. + f_.*x_])^(3/2), x_Symbol] := d/b*Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x] - a*d/b*Int[Sqrt[d*Sin[e + f*x]]/(a + b*Sin[e + f*x])^(3/2), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[(c_ + d_.*sin[e_. + f_.*x_])^(3/2)/(a_. + b_.*sin[e_. + f_.*x_])^(3/2), x_Symbol] := d^2/b^2*Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x] + (b*c - a*d)/b^2* Int[Simp[b*c + a*d + 2*b*d*Sin[e + f*x], x]/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -(b*c - a*d)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2)) + 1/((m + 1)*(a^2 - b^2))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)* Simp[c*(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) + (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d*(b*c - a*d)*(m + n + 1)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n] +Int[1/((a_ + b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[d_.*sin[e_. + f_.*x_]]), x_Symbol] := 2*b*Cos[ e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]* Sqrt[d*Sin[e + f*x]]) + d/(a^2 - b^2)* Int[(b + a*Sin[e + f*x])/(Sqrt[ a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[1/((a_. + b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[c_. + d_.*sin[e_. + f_.*x_]]), x_Symbol] := 1/(a - b)* Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] - b/(a - b)* Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)* Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b^2*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)) + 1/((m + 1)*(b*c - a*d)*(a^2 - b^2))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n* Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))* Sin[e + f*x] - b^2*d*(m + n + 3)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && (EqQ[a, 0] && IntegerQ[m] && Not[IntegerQ[n]] || Not[IntegerQ[2*n] && LtQ[n, -1] && (IntegerQ[n] && Not[IntegerQ[m]] || EqQ[a, 0])]) +Int[Sqrt[c_. + d_.*sin[e_. + f_.*x_]]/(a_. + b_.*sin[e_. + f_.*x_]), x_Symbol] := d/b*Int[1/Sqrt[c + d*Sin[e + f*x]], x] + (b*c - a*d)/b* Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^(3/2)/(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := b/d*Int[Sqrt[a + b*Sin[e + f*x]], x] - (b*c - a*d)/d* Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[1/((a_. + b_.*sin[e_. + f_.*x_])* Sqrt[c_. + d_.*sin[e_. + f_.*x_]]), x_Symbol] := 2/(f*(a + b)*Sqrt[c + d])* EllipticPi[2*b/(a + b), 1/2*(e - Pi/2 + f*x), 2*d/(c + d)] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0] +Int[1/((a_. + b_.*sin[e_. + f_.*x_])* Sqrt[c_. + d_.*sin[e_. + f_.*x_]]), x_Symbol] := 2/(f*(a - b)*Sqrt[c - d])* EllipticPi[-2*b/(a - b), 1/2*(e + Pi/2 + f*x), -2*d/(c - d)] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c - d, 0] +Int[1/((a_. + b_.*sin[e_. + f_.*x_])* Sqrt[c_. + d_.*sin[e_. + f_.*x_]]), x_Symbol] := Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]]* Int[1/((a + b*Sin[e + f*x])* Sqrt[c/(c + d) + d/(c + d)*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Not[GtQ[c + d, 0]] +Int[Sqrt[b_.*sin[e_. + f_.*x_]]/Sqrt[c_ + d_.*sin[e_. + f_.*x_]], x_Symbol] := 2*c*Rt[b*(c + d), 2]*Tan[e + f*x]*Sqrt[1 + Csc[e + f*x]]* Sqrt[1 - Csc[e + f*x]]/(d*f*Sqrt[c^2 - d^2])* EllipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/ Rt[(c + d)/b, 2]], -(c + d)/(c - d)] /; FreeQ[{b, c, d, e, f}, x] && GtQ[c^2 - d^2, 0] && PosQ[(c + d)/b] && GtQ[c^2, 0] +Int[Sqrt[b_.*sin[e_. + f_.*x_]]/Sqrt[c_ + d_.*sin[e_. + f_.*x_]], x_Symbol] := 2*b*Tan[e + f*x]/(d*f)*Rt[(c + d)/b, 2]* Sqrt[c*(1 + Csc[e + f*x])/(c - d)]* Sqrt[c*(1 - Csc[e + f*x])/(c + d)]* EllipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/ Rt[(c + d)/b, 2]], -(c + d)/(c - d)] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b] +Int[Sqrt[b_.*sin[e_. + f_.*x_]]/Sqrt[c_ + d_.*sin[e_. + f_.*x_]], x_Symbol] := Sqrt[b*Sin[e + f*x]]/Sqrt[-b*Sin[e + f*x]]* Int[Sqrt[-b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && NegQ[(c + d)/b] +(* Int[Sqrt[a_+b_.*sin[e_.+f_.*x_]]/Sqrt[d_.*sin[e_.+f_.*x_]],x_ Symbol] := a*Int[1/(Sqrt[a+b*Sin[e+f*x]]*Sqrt[d*Sin[e+f*x]]),x] + b/d*Int[Sqrt[d*Sin[e+f*x]]/Sqrt[a+b*Sin[e+f*x]],x] /; FreeQ[{a,b,d,e,f},x] && NeQ[a^2-b^2,0] *) +(* Int[Sqrt[a_+b_.*sin[e_.+f_.*x_]]/Sqrt[d_.*sin[e_.+f_.*x_]],x_ Symbol] := 2*(a+b*Sin[e+f*x])/(d*f*Rt[(a+b)/d,2]*Cos[e+f*x])*Sqrt[a*(1-Sin[e+f* x])/(a+b*Sin[e+f*x])]*Sqrt[a*(1+Sin[e+f*x])/(a+b*Sin[e+f*x])]* EllipticPi[b/(a+b),ArcSin[Rt[(a+b)/d,2]*(Sqrt[d*Sin[e+f*x]]/Sqrt[ a+b*Sin[e+f*x]])],-(a-b)/(a+b)] /; FreeQ[{a,b,d,e,f},x] && NeQ[a^2-b^2,0] && PosQ[(a+b)/d] *) +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]/ Sqrt[c_. + d_.*sin[e_. + f_.*x_]], x_Symbol] := 2*(a + b*Sin[e + f*x])/(d*f*Rt[(a + b)/(c + d), 2]*Cos[e + f*x])* Sqrt[(b*c - a*d)*(1 + Sin[e + f*x])/((c - d)*(a + b*Sin[e + f*x]))]* Sqrt[-(b*c - a*d)*(1 - Sin[e + f*x])/((c + d)*(a + b*Sin[e + f*x]))]* EllipticPi[b*(c + d)/(d*(a + b)), ArcSin[Rt[(a + b)/(c + d), 2]* Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]]], (a - b)*(c + d)/((a + b)*(c - d))] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && PosQ[(a + b)/(c + d)] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]/ Sqrt[c_. + d_.*sin[e_. + f_.*x_]], x_Symbol] := Sqrt[-c - d*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]]* Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[-c - d*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && NegQ[(a + b)/(c + d)] +Int[1/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*Sqrt[d_.*sin[e_. + f_.*x_]]), x_Symbol] := -2*d/(f*Sqrt[a + b*d])* EllipticF[ ArcSin[Cos[e + f*x]/(1 + d*Sin[e + f*x])], -(a - b*d)/(a + b*d)] /; FreeQ[{a, b, d, e, f}, x] && LtQ[a^2 - b^2, 0] && EqQ[d^2, 1] && GtQ[b*d, 0] +Int[1/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*Sqrt[d_.*sin[e_. + f_.*x_]]), x_Symbol] := Sqrt[Sign[b]*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]* Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[Sign[b]*Sin[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && LtQ[a^2 - b^2, 0] && GtQ[b^2, 0] && Not[EqQ[d^2, 1] && GtQ[b*d, 0]] +Int[1/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*Sqrt[d_.*sin[e_. + f_.*x_]]), x_Symbol] := -2*Sqrt[a^2]* Sqrt[-Cot[e + f*x]^2]/(a*f*Sqrt[a^2 - b^2]*Cot[e + f*x])* Rt[(a + b)/d, 2]* EllipticF[ ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/ Rt[(a + b)/d, 2]], -(a + b)/(a - b)] /; FreeQ[{a, b, d, e, f}, x] && GtQ[a^2 - b^2, 0] && PosQ[(a + b)/d] && GtQ[a^2, 0] +Int[1/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*Sqrt[d_.*sin[e_. + f_.*x_]]), x_Symbol] := -2*Tan[e + f*x]/(a*f)*Rt[(a + b)/d, 2]* Sqrt[a*(1 - Csc[e + f*x])/(a + b)]* Sqrt[a*(1 + Csc[e + f*x])/(a - b)]* EllipticF[ ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/ Rt[(a + b)/d, 2]], -(a + b)/(a - b)] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d] +Int[1/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*Sqrt[d_.*sin[e_. + f_.*x_]]), x_Symbol] := Sqrt[-d*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]* Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[-d*Sin[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && NegQ[(a + b)/d] +Int[1/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := 2*(c + d*Sin[e + f*x])/(f*(b*c - a*d)*Rt[(c + d)/(a + b), 2]* Cos[e + f*x])* Sqrt[(b*c - a*d)*(1 - Sin[e + f*x])/((a + b)*(c + d*Sin[e + f*x]))]* Sqrt[-(b*c - a*d)*(1 + Sin[e + f*x])/((a - b)*(c + d*Sin[e + f*x]))]* EllipticF[ ArcSin[Rt[(c + d)/(a + b), 2]*(Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]])], (a + b)*(c - d)/((a - b)*(c + d))] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/(a + b)] +Int[1/(Sqrt[a_. + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := Sqrt[-a - b*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]]* Int[1/(Sqrt[-a - b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && NegQ[(c + d)/(a + b)] +Int[(d_.*sin[e_. + f_.*x_])^(3/2)/Sqrt[a_. + b_.*sin[e_. + f_.*x_]], x_Symbol] := -a*d/(2*b)* Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x] + d/(2*b)* Int[Sqrt[d*Sin[e + f*x]]*(a + 2*b*Sin[e + f*x])/ Sqrt[a + b*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^ n/(f*(m + n)) + 1/(d*(m + n))* Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n - 1)* Simp[a^2*c*d*(m + n) + b*d*(b*c*(m - 1) + a*d*n) + (a*d*(2*b*c + a*d)*(m + n) - b*d*(a*c - b*d*(m + n - 1)))*Sin[e + f*x] + b*d*(b*c*n + a*d*(2*m + n - 1))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[0, m, 2] && LtQ[-1, n, 2] && NeQ[m + n, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := b/d*Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x] - (b*c - a*d)/d* Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] +Int[(d_.*sin[e_. + f_.*x_])^n_./(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := a*Int[(d*Sin[e + f*x])^n/(a^2 - b^2*Sin[e + f*x]^2), x] - b/d*Int[(d*Sin[e + f*x])^(n + 1)/(a^2 - b^2*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := Int[ExpandTrig[(d*sin[e + f*x])^ n*(a - b*sin[e + f*x])^(-m)/(a^2 - b^2*sin[e + f*x]^2)^(-m), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] && ILtQ[m, -1] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := Unintegrable[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +(* Int[(a_.+b_.*sin[e_.+f_.*x_])^m_.*(d_./sin[e_.+f_.*x_])^n_,x_ Symbol] := d^m*Int[(d*Csc[e+f*x])^(n-m)*(b+a*Csc[e+f*x])^m,x] /; FreeQ[{a,b,d,e,f,n},x] && Not[IntegerQ[n]] && IntegerQ[m] *) +(* Int[(a_.+b_.*cos[e_.+f_.*x_])^m_.*(d_./cos[e_.+f_.*x_])^n_,x_ Symbol] := d^m*Int[(d*Sec[e+f*x])^(n-m)*(b+a*Sec[e+f*x])^m,x] /; FreeQ[{a,b,d,e,f,n},x] && Not[IntegerQ[n]] && IntegerQ[m] *) +Int[(a_. + b_.*sin[e_. + f_.*x_])^ m_.*(c_.*(d_.*sin[e_. + f_.*x_])^p_)^n_, x_Symbol] := c^IntPart[n]*(c*(d*Sin[e + f*x])^p)^ FracPart[n]/(d*Sin[e + f*x])^(p*FracPart[n])* Int[(a + b*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n*p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[n]] +Int[(a_. + b_.*cos[e_. + f_.*x_])^ m_.*(c_.*(d_.*cos[e_. + f_.*x_])^p_)^n_, x_Symbol] := c^IntPart[n]*(c*(d*Cos[e + f*x])^p)^ FracPart[n]/(d*Cos[e + f*x])^(p*FracPart[n])* Int[(a + b*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n*p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[n]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := Int[(a + b*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n/Sin[e + f*x]^n, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IntegerQ[n] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Int[(b + a*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^n/Csc[e + f*x]^m, x] /; FreeQ[{a, b, c, d, e, f, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[(a_ + b_.*cos[e_. + f_.*x_])^m_.*(c_ + d_.*sec[e_. + f_.*x_])^n_, x_Symbol] := Int[(b + a*Sec[e + f*x])^m*(c + d*Sec[e + f*x])^n/Sec[e + f*x]^m, x] /; FreeQ[{a, b, c, d, e, f, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Sin[e + f*x]^n*(c + d*Csc[e + f*x])^n/(d + c*Sin[e + f*x])^n* Int[(a + b*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n/Sin[e + f*x]^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && Not[IntegerQ[n]] && Not[IntegerQ[m]] +Int[(a_ + b_.*cos[e_. + f_.*x_])^m_*(c_ + d_.*sec[e_. + f_.*x_])^n_, x_Symbol] := Cos[e + f*x]^n*(c + d*Sec[e + f*x])^n/(d + c*Cos[e + f*x])^n* Int[(a + b*Cos[e + f*x])^m*(d + c*Cos[e + f*x])^n/Cos[e + f*x]^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && Not[IntegerQ[n]] && Not[IntegerQ[m]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.2 (g cos)^p (a+b sin)^m (c+d sin)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.2 (g cos)^p (a+b sin)^m (c+d sin)^n.m new file mode 100755 index 0000000..f044e5e --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.2 (g cos)^p (a+b sin)^m (c+d sin)^n.m @@ -0,0 +1,100 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.2.2 (g cos)^p (a+b sin)^m (c+d sin)^n *) +Int[cos[e_. + f_.*x_]*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := 1/(b*f)*Subst[Int[(a + x)^m*(c + d/b*x)^n, x], x, b*Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[cos[e_. + f_.*x_]^p_*(d_.*sin[e_. + f_.*x_])^ n_.*(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := a*Int[Cos[e + f*x]^p*(d*Sin[e + f*x])^n, x] + b/d*Int[Cos[e + f*x]^p*(d*Sin[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && IntegerQ[ n] && (LtQ[p, 0] && NeQ[a^2 - b^2, 0] || LtQ[0, n, p - 1] || LtQ[p + 1, -n, 2*p + 1]) +Int[cos[e_. + f_.*x_]^ p_*(d_.*sin[e_. + f_.*x_])^n_./(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := 1/a*Int[Cos[e + f*x]^(p - 2)*(d*Sin[e + f*x])^n, x] - 1/(b*d)*Int[Cos[e + f*x]^(p - 2)*(d*Sin[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && IntegerQ[ n] && (LtQ[0, n, (p + 1)/2] || LeQ[p, -n] && LtQ[-n, 2*p - 3] || GtQ[n, 0] && LeQ[n, -p]) +Int[cos[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := 1/(b^p*f)* Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + d/b*x)^ n, x], x, b*Sin[e + f*x]] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] +Int[cos[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := 1/(b^p*f)* Subst[Int[(a + x)^m*(c + d/b*x)^n*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(d_.*sin[e_. + f_.*x_])^ n_.*(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := a*Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x] + b/d*Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] +Int[(g_.*cos[e_. + f_.*x_])^ p_*(d_.*sin[e_. + f_.*x_])^n_./(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := g^2/a*Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x] - g^2/(b*d)* Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := a^m*c^m/g^(2*m)* Int[(g*Cos[e + f*x])^(2*m + p)*(c + d*Sin[e + f*x])^(n - m), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && Not[IntegerQ[n] && LtQ[n^2, m^2]] +Int[cos[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := 1/(a^(p/2)*c^(p/2))* Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(n + p/2), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p/2] +Int[(g_.*cos[e_. + f_.*x_])^ p_/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := g*Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])* Int[(g*Cos[e + f*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := a^IntPart[m]* c^IntPart[m]*(a + b*Sin[e + f*x])^ FracPart[m]*(c + d*Sin[e + f*x])^FracPart[m]/ (g^(2*IntPart[m])*(g*Cos[e + f*x])^(2*FracPart[m]))* Int[(g*Cos[e + f*x])^(2*m + p)/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && EqQ[m - n - 1, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n/(f*g*(m - n - 1)) /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m - n - 1, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -2*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n/(f*g*(2*n + p + 1)) - b*(2*m + p - 1)/(d*(2*n + p + 1))* Int[(g*Cos[e + f*x])^ p*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[Simplify[m + p/2 - 1/2], 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && Not[ILtQ[Simplify[m + n + p], 0] && GtQ[Simplify[2*m + n + 3*p/2 + 1], 0]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n/(f*g*(m + n + p)) + a*(2*m + p - 1)/(m + n + p)* Int[(g*Cos[e + f*x])^ p*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[Simplify[m + p/2 - 1/2], 0] && Not[LtQ[n, -1]] && Not[IGtQ[Simplify[n + p/2 - 1/2], 0] && GtQ[m - n, 0]] && Not[ILtQ[Simplify[m + n + p], 0] && GtQ[Simplify[2*m + n + 3*p/2 + 1], 0]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^m_, x_Symbol] := a^IntPart[m]* c^IntPart[m]*(a + b*Sin[e + f*x])^ FracPart[m]*(c + d*Sin[e + f*x])^FracPart[m]/ (g^(2*IntPart[m])*(g*Cos[e + f*x])^(2*FracPart[m]))* Int[(g*Cos[e + f*x])^(2*m + p), x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[2*m + p + 1, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(a*f*g*(m - n)) /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + p + 1, 0] && NeQ[m, n] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(a*f*g*(2*m + p + 1)) + (m + n + p + 1)/(a*(2*m + p + 1))* Int[(g*Cos[e + f*x])^ p*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + p + 1], 0] && NeQ[2*m + p + 1, 0] && (SumSimplerQ[m, 1] || Not[SumSimplerQ[n, 1]]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -2*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n/(f*g*(2*n + p + 1)) - b*(2*m + p - 1)/(d*(2*n + p + 1))* Int[(g*Cos[e + f*x])^ p*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := -b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n/(f*g*(m + n + p)) + a*(2*m + p - 1)/(m + n + p)* Int[(g*Cos[e + f*x])^ p*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + n + p, 0] && Not[LtQ[0, n, m]] && IntegersQ[2*m, 2*n, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(a*f*g*(2*m + p + 1)) + (m + n + p + 1)/(a*(2*m + p + 1))* Int[(g*Cos[e + f*x])^ p*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] && Not[LtQ[m, n, -1]] && IntegersQ[2*m, 2*n, 2*p] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := a^IntPart[m]* c^IntPart[m]*(a + b*Sin[e + f*x])^ FracPart[m]*(c + d*Sin[e + f*x])^FracPart[m]/ (g^(2*IntPart[m])*(g*Cos[e + f*x])^(2*FracPart[m]))* Int[(g*Cos[e + f*x])^(2*m + p)*(c + d*Sin[e + f*x])^(n - m), x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && (FractionQ[m] || Not[FractionQ[n]]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -d*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m/(f*g*(m + p + 1)) /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && EqQ[a*d*m + b*c*(m + p + 1), 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -(b*c + a*d)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m/(a*f*g*(p + 1)) + b*(a*d*m + b*c*(m + p + 1))/(a*g^2*(p + 1))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -d*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m/(f*g*(m + p + 1)) + (a*d*m + b*c*(m + p + 1))/(b*(m + p + 1))* Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[Simplify[(2*m + p + 1)/2], 0] && NeQ[m + p + 1, 0] +Int[cos[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := 2*(b*c - a*d)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(2*m + 3)) + 1/(b^3*(2*m + 3))* Int[(a + b*Sin[e + f*x])^(m + 2)*(b*c + 2*a*d*(m + 1) - b*d*(2*m + 3)*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -3/2] +Int[cos[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := d*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 2)/(b^2*f*(m + 3)) - 1/(b^2*(m + 3))* Int[(a + b*Sin[e + f*x])^(m + 1)*(b*d*(m + 2) - a*c*(m + 3) + (b*c*(m + 3) - a*d*(m + 4))*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GeQ[m, -3/2] && LtQ[m, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := (b*c - a*d)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m/(a*f*g*(2*m + p + 1)) + (a*d*m + b*c*(m + p + 1))/(a*b*(2*m + p + 1))* Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && (LtQ[m, -1] || ILtQ[Simplify[m + p], 0]) && NeQ[2*m + p + 1, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -d*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m/(f*g*(m + p + 1)) + (a*d*m + b*c*(m + p + 1))/(b*(m + p + 1))* Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[m + p + 1, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m*(d + c*Sin[e + f*x])/(f*g*(p + 1)) + 1/(g^2*(p + 1))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1)* Simp[a*c*(p + 2) + b*d*m + b*c*(m + p + 2)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && LtQ[p, -1] && IntegerQ[2*m] && Not[EqQ[m, 1] && NeQ[c^2 - d^2, 0] && SimplerQ[c + d*x, a + b*x]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -d*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m/(f*g*(m + p + 1)) + 1/(m + p + 1)* Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1)* Simp[a*c*(m + p + 1) + b*d*m + (a*d*m + b*c*(m + p + 1))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && Not[LtQ[p, -1]] && IntegerQ[2*m] && Not[EqQ[m, 1] && NeQ[c^2 - d^2, 0] && SimplerQ[c + d*x, a + b*x]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) - a*d*p + b*d*(m + 1)*Sin[e + f*x])/(b^2* f*(m + 1)*(m + p + 1)) + g^2*(p - 1)/(b^2*(m + 1)*(m + p + 1))* Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)* Simp[b*d*(m + 1) + (b*c*(m + p + 1) - a*d*p)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && NeQ[m + p + 1, 0] && IntegerQ[2*m] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := -(b*c - a*d)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)/(f*g*(a^2 - b^2)*(m + 1)) + 1/((a^2 - b^2)*(m + 1))* Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)* Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + p + 2)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) - a*d*p + b*d*(m + p)*Sin[e + f*x])/(b^2* f*(m + p)*(m + p + 1)) + g^2*(p - 1)/(b^2*(m + p)*(m + p + 1))* Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m* Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := (g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c - a*d - (a*c - b*d)*Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1)) + 1/(g^2*(a^2 - b^2)*(p + 1))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m* Simp[c*(a^2*(p + 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*m] +Int[(g_.*cos[e_. + f_.*x_])^ p_*(c_. + d_.*sin[e_. + f_.*x_])/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := d/b*Int[(g*Cos[e + f*x])^p, x] + (b*c - a*d)/b* Int[(g*Cos[e + f*x])^p/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_]), x_Symbol] := c*g*(g*Cos[e + f*x])^(p - 1)/(f*(1 + Sin[e + f*x])^((p - 1)/2)*(1 - Sin[e + f*x])^((p - 1)/2))* Subst[ Int[(1 + d/c*x)^((p + 1)/2)*(1 - d/c*x)^((p - 1)/2)*(a + b*x)^m, x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[cos[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := a^(2*m)*Int[(d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_* sin[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)/(2*b*f* g*(m + 1)) + a/(2*g^2)* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && EqQ[m - p, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_* sin[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m/(a*f*g*m) - 1/g^2*Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + p + 1, 0] +Int[cos[e_. + f_.*x_]^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := 1/a^p* Int[ExpandTrig[(d*sin[e + f*x])^ n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x])^(m + p/2), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p/2] && (GtQ[m, 0] && GtQ[p, 0] && LtQ[-m - p, n, -1] || GtQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Int[ExpandTrig[(g*cos[e + f*x])^ p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] +Int[cos[e_. + f_.*x_]^2*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := 1/b^2* Int[(d*Sin[e + f*x])^ n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && (ILtQ[m, 0] || Not[IGtQ[n, 0]]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := (a/g)^(2*m)* Int[(g*Cos[e + f*x])^(2*m + p)*(d*Sin[e + f*x])^ n/(a - b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := (a/g)^(2*m)* Int[(g*Cos[e + f*x])^(2*m + p)*(d*Sin[e + f*x])^ n/(a - b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, d, e, f, g, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[p] && (EqQ[2*m + p, 0] || GtQ[2*m + p, 0] && LtQ[p, -1]) +Int[(g_.*cos[e_. + f_.*x_])^p_* sin[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ m/(a*f*g*(2*m + p + 1)) - 1/(a^2*(2*m + p + 1))* Int[(g*Cos[e + f*x])^ p*(a + b*Sin[e + f*x])^(m + 1)*(a*m - b*(2*m + p + 1)*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -1/2] && NeQ[2*m + p + 1, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_* sin[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)/(b*f* g*(m + p + 2)) + 1/(b*(m + p + 2))* Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^ m*(b*(m + 1) - a*(p + 1)*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[m + p + 2, 0] +Int[cos[e_. + f_.*x_]^2*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := 1/b^2* Int[(d*Sin[e + f*x])^ n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] +Int[cos[e_. + f_.*x_]^4*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := -2/(a*b*d)* Int[(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 2), x] + 1/a^2* Int[(d*Sin[e + f*x])^ n*(a + b*Sin[e + f*x])^(m + 2)*(1 + Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[cos[e_. + f_.*x_]^4*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := 1/d^4*Int[(d*Sin[e + f*x])^(n + 4)*(a + b*Sin[e + f*x])^m, x] + Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^ m*(1 - 2*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[IGtQ[m, 0]] +Int[cos[e_. + f_.*x_]^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := a^m*Cos[ e + f*x]/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]])* Subst[ Int[(d*x)^n*(1 + b/a*x)^(m + (p - 1)/2)*(1 - b/a*x)^((p - 1)/2), x], x, Sin[e + f*x]] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[p/2] && IntegerQ[m] +Int[cos[e_. + f_.*x_]^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Cos[e + f*x]/(a^(p - 2)*f*Sqrt[a + b*Sin[e + f*x]]* Sqrt[a - b*Sin[e + f*x]])* Subst[ Int[(d*x)^n (a + b*x)^(m + p/2 - 1/2)*(a - b*x)^(p/2 - 1/2), x], x, Sin[e + f*x]] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[p/2] && Not[IntegerQ[m]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Int[ExpandTrig[(g*cos[e + f*x])^ p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] && (IntegerQ[p] || IGtQ[n, 0]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := a^m*g*(g*Cos[e + f*x])^(p - 1)/(f*(1 + Sin[e + f*x])^((p - 1)/2)*(1 - Sin[e + f*x])^((p - 1)/2))* Subst[ Int[(d*x)^n*(1 + b/a*x)^(m + (p - 1)/2)*(1 - b/a*x)^((p - 1)/2), x], x, Sin[e + f*x]] /; FreeQ[{a, b, d, e, f, n, p}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m] +Int[(g_.*cos[e_. + f_.*x_])^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)/(f*(a + b*Sin[e + f*x])^((p - 1)/2)*(a - b*Sin[e + f*x])^((p - 1)/2))* Subst[ Int[(d*x)^n*(a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_/ Sqrt[d_.*sin[e_. + f_.*x_]], x_Symbol] := -g*(g*Cos[e + f*x])^(p - 1)* Sqrt[d*Sin[e + f*x]]*(a + b*Sin[e + f*x])^(m + 1)/(a*d* f*(m + 1)) + g^2*(2*m + 3)/(2*a*(m + 1))* Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)/ Sqrt[d*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && EqQ[m + p + 1/2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^m_/ Sqrt[d_.*sin[e_. + f_.*x_]], x_Symbol] := 2*(g*Cos[e + f*x])^(p + 1)* Sqrt[d*Sin[e + f*x]]*(a + b*Sin[e + f*x])^m/(d*f*g*(2*m + 1)) + 2*a*m/(g^2*(2*m + 1))* Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1)/ Sqrt[d*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && EqQ[m + p + 3/2, 0] +Int[cos[e_. + f_.*x_]^2*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n]) +(* Int[cos[e_.+f_.*x_]^4*sin[e_.+f_.*x_]^n_*(a_+b_.*sin[e_.+f_.*x_])^ m_,x_Symbol] := (a^2-b^2)*Cos[e+f*x]*Sin[e+f*x]^(n+1)*(a+b*Sin[e+f*x])^(m+1)/(a*b^2* d*(m+1)) - (a^2*(n+1)-b^2*(m+n+2))*Cos[e+f*x]*Sin[e+f*x]^(n+1)*(a+b*Sin[e+f*x]) ^(m+2)/(a^2*b^2*d*(n+1)*(m+1)) + 1/(a^2*b*(n+1)*(m+1))*Int[Sin[e+f*x]^(n+1)*(a+b*Sin[e+f*x])^(m+1)* Simp[a^2*(n+1)*(n+2)-b^2*(m+n+2)*(m+n+3)+a*b*(m+1)*Sin[e+f*x]-(a^ 2*(n+1)*(n+3)-b^2*(m+n+2)*(m+n+4))*Sin[e+f*x]^2,x],x] /; FreeQ[{a,b,d,e,f},x] && NeQ[a^2-b^2,0] && IntegersQ[2*m,2*n] && LtQ[m,-1] && LtQ[n,-1] *) +Int[cos[e_. + f_.*x_]^4*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Cos[e + f*x]*(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 1)/(a*d* f*(n + 1)) - (a^2*(n + 1) - b^2*(m + n + 2))* Cos[e + f*x]*(d*Sin[e + f*x])^(n + 2)*(a + b*Sin[e + f*x])^(m + 1)/(a^2*b*d^2*f*(n + 1)*(m + 1)) + 1/(a^2*b*d*(n + 1)*(m + 1))* Int[(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 1)* Simp[a^2*(n + 1)*(n + 2) - b^2*(m + n + 2)*(m + n + 3) + a*b*(m + 1)* Sin[e + f*x] - (a^2*(n + 1)*(n + 3) - b^2*(m + n + 2)*(m + n + 4))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] && LtQ[m, -1] && LtQ[n, -1] +Int[cos[e_. + f_.*x_]^4*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := (a^2 - b^2)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 1)/(a*b^2*d*f*(m + 1)) + (a^2*(n - m + 1) - b^2*(m + n + 2))* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 2)*(d*Sin[e + f*x])^(n + 1)/(a^2*b^2*d*f*(m + 1)*(m + 2)) - 1/(a^2*b^2*(m + 1)*(m + 2))* Int[(a + b*Sin[e + f*x])^(m + 2)*(d*Sin[e + f*x])^n* Simp[a^2*(n + 1)*(n + 3) - b^2*(m + n + 2)*(m + n + 3) + a*b*(m + 2)* Sin[e + f*x] - (a^2*(n + 2)*(n + 3) - b^2*(m + n + 2)*(m + n + 4))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] && LtQ[m, -1] && Not[LtQ[n, -1]] && (LtQ[m, -2] || EqQ[m + n + 4, 0]) +Int[cos[e_. + f_.*x_]^4*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := (a^2 - b^2)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 1)/(a*b^2*d*f*(m + 1)) - Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m + 2)*(d*Sin[e + f*x])^(n + 1)/(b^2*d*f*(m + n + 4)) - 1/(a*b^2*(m + 1)*(m + n + 4))* Int[(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^n* Simp[a^2*(n + 1)*(n + 3) - b^2*(m + n + 2)*(m + n + 4) + a*b*(m + 1)* Sin[e + f*x] - (a^2*(n + 2)*(n + 3) - b^2*(m + n + 3)*(m + n + 4))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] && LtQ[m, -1] && Not[LtQ[n, -1]] && NeQ[m + n + 4, 0] +Int[cos[e_. + f_.*x_]^4*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 1)/(a*d* f*(n + 1)) - b*(m + n + 2)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 2)/(a^2*d^2*f*(n + 1)*(n + 2)) - 1/(a^2*d^2*(n + 1)*(n + 2))* Int[(a + b*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n + 2)* Simp[a^2*n*(n + 2) - b^2*(m + n + 2)*(m + n + 3) + a*b*m*Sin[ e + f*x] - (a^2*(n + 1)*(n + 2) - b^2*(m + n + 2)*(m + n + 4))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n]) && Not[m < -1] && LtQ[n, -1] && (LtQ[n, -2] || EqQ[m + n + 4, 0]) +Int[cos[e_. + f_.*x_]^4*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 1)/(a*d* f*(n + 1)) - Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 2)/(b*d^2*f*(m + n + 4)) + 1/(a*b*d*(n + 1)*(m + n + 4))* Int[(a + b*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n + 1)* Simp[a^2*(n + 1)*(n + 2) - b^2*(m + n + 2)*(m + n + 4) + a*b*(m + 3)* Sin[e + f*x] - (a^2*(n + 1)*(n + 3) - b^2*(m + n + 3)*(m + n + 4))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n]) && Not[m < -1] && LtQ[n, -1] && NeQ[m + n + 4, 0] +Int[cos[e_. + f_.*x_]^4*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := a*(n + 3)* Cos[e + f*x]*(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 1)/(b^2*d* f*(m + n + 3)*(m + n + 4)) - Cos[ e + f*x]*(d*Sin[e + f*x])^(n + 2)*(a + b*Sin[e + f*x])^(m + 1)/(b*d^2*f*(m + n + 4)) - 1/(b^2*(m + n + 3)*(m + n + 4))* Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m* Simp[a^2*(n + 1)*(n + 3) - b^2*(m + n + 3)*(m + n + 4) + a*b*m*Sin[ e + f*x] - (a^2*(n + 2)*(n + 3) - b^2*(m + n + 3)*(m + n + 5))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n]) && Not[m < -1] && Not[LtQ[n, -1]] && NeQ[m + n + 3, 0] && NeQ[m + n + 4, 0] +Int[cos[e_. + f_.*x_]^6*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Cos[e + f*x]*(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 1)/(a*d* f*(n + 1)) - b*(m + n + 2)* Cos[e + f*x]*(d*Sin[e + f*x])^(n + 2)*(a + b*Sin[e + f*x])^(m + 1)/(a^2*d^2*f*(n + 1)*(n + 2)) - a*(n + 5)* Cos[e + f*x]*(d*Sin[e + f*x])^(n + 3)*(a + b*Sin[e + f*x])^(m + 1)/(b^2*d^3* f*(m + n + 5)*(m + n + 6)) + Cos[ e + f*x]*(d*Sin[e + f*x])^(n + 4)*(a + b*Sin[e + f*x])^(m + 1)/(b*d^4*f*(m + n + 6)) + 1/(a^2*b^2*d^2*(n + 1)*(n + 2)*(m + n + 5)*(m + n + 6))* Int[(d*Sin[e + f*x])^(n + 2)*(a + b*Sin[e + f*x])^m* Simp[a^4*(n + 1)*(n + 2)*(n + 3)*(n + 5) - a^2*b^2*(n + 2)*(2*n + 1)*(m + n + 5)*(m + n + 6) + b^4*(m + n + 2)*(m + n + 3)*(m + n + 5)*(m + n + 6) + a*b*m*(a^2*(n + 1)*(n + 2) - b^2*(m + n + 5)*(m + n + 6))* Sin[e + f*x] - (a^4*(n + 1)*(n + 2)*(4 + n)*(n + 5) + b^4*(m + n + 2)*(m + n + 4)*(m + n + 5)*(m + n + 6) - a^2*b^2*(n + 1)*(n + 2)*(m + n + 5)*(2*n + 2*m + 13))* Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] && NeQ[n, -1] && NeQ[n, -2] && NeQ[m + n + 5, 0] && NeQ[m + n + 6, 0] && Not[IGtQ[m, 0]] +Int[cos[e_. + f_.*x_]^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Int[ExpandTrig[(d*sin[e + f*x])^n*(a + b*sin[e + f*x])^ m*(1 - sin[e + f*x]^2)^(p/2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[m, 2*n, p/2] && (LtQ[m, -1] || EqQ[m, -1] && GtQ[p, 0]) +Int[(g_.*cos[e_. + f_.*x_])^p_* sin[e_. + f_.*x_]^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := Int[ExpandTrig[(g*cos[e + f*x])^p, sin[e + f*x]^n/(a + b*sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[n, 0] || IGtQ[p + 1/2, 0]) +Int[(g_.*cos[e_. + f_.*x_])^ p_*(d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := g^2/a*Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x] - b*g^2/(a^2*d)* Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x] - g^2*(a^2 - b^2)/(a^2*d^2)* Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 2)/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && GtQ[p, 1] && (LeQ[n, -2] || EqQ[n, -3/2] && EqQ[p, 3/2]) +Int[(g_.*cos[e_. + f_.*x_])^ p_*(d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := g^2/(a*b)* Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^ n*(b - a*Sin[e + f*x]), x] + g^2*(a^2 - b^2)/(a*b*d)* Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1)/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && GtQ[p, 1] && (LtQ[n, -1] || EqQ[p, 3/2] && EqQ[n, -1/2]) +Int[(g_.*cos[e_. + f_.*x_])^ p_*(d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := g^2/b^2* Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^ n*(a - b*Sin[e + f*x]), x] - g^2*(a^2 - b^2)/b^2* Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^ n/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && GtQ[p, 1] +(* Int[(g_.*cos[e_.+f_.*x_])^p_*(d_.*sin[e_.+f_.*x_])^n_/(a_+b_.*sin[ e_.+f_.*x_]),x_Symbol] := g^2*Int[(g*Cos[e+f*x])^(p-2)*(d*Sin[e+f*x])^n/(a+b*Sin[e+f*x]),x] - g^2/d^2*Int[(g*Cos[e+f*x])^(p-2)*(d*Sin[e+f*x])^(n+2)/(a+b*Sin[e+f* x]),x] /; FreeQ[{a,b,d,e,f,g},x] && NeQ[a^2-b^2,0] && IntegersQ[2*n,2*p] && GtQ[p,1] *) +Int[(g_.*cos[e_. + f_.*x_])^ p_*(d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := a*d^2/(a^2 - b^2)* Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 2), x] - b*d/(a^2 - b^2)* Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x] - a^2*d^2/(g^2*(a^2 - b^2))* Int[(g*Cos[e + f*x])^(p + 2)*(d*Sin[e + f*x])^(n - 2)/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1] && GtQ[n, 1] +Int[(g_.*cos[e_. + f_.*x_])^ p_*(d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := -d/(a^2 - b^2)* Int[(g*Cos[e + f*x])^ p*(d*Sin[e + f*x])^(n - 1)*(b - a*Sin[e + f*x]), x] + a*b*d/(g^2*(a^2 - b^2))* Int[(g*Cos[e + f*x])^(p + 2)*(d*Sin[e + f*x])^(n - 1)/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1] && GtQ[n, 0] +Int[(g_.*cos[e_. + f_.*x_])^ p_*(d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := 1/(a^2 - b^2)* Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n*(a - b*Sin[e + f*x]), x] - b^2/(g^2*(a^2 - b^2))* Int[(g*Cos[e + f*x])^(p + 2)*(d*Sin[e + f*x])^ n/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1] +Int[Sqrt[ g_.*cos[e_. + f_.*x_]]/(Sqrt[ sin[e_. + f_.*x_]]*(a_ + b_.*sin[e_. + f_.*x_])), x_Symbol] := -4*Sqrt[2]*g/f* Subst[Int[x^2/(((a + b)*g^2 + (a - b)*x^4)*Sqrt[1 - x^4/g^2]), x], x, Sqrt[g*Cos[e + f*x]]/Sqrt[1 + Sin[e + f*x]]] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] +Int[Sqrt[ g_.*cos[e_. + f_.*x_]]/(Sqrt[ d_*sin[e_. + f_.*x_]]*(a_ + b_.*sin[e_. + f_.*x_])), x_Symbol] := Sqrt[Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]* Int[Sqrt[g*Cos[e + f*x]]/(Sqrt[Sin[e + f*x]]*(a + b*Sin[e + f*x])), x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] +Int[Sqrt[ d_.*sin[e_. + f_.*x_]]/(Sqrt[ cos[e_. + f_.*x_]]*(a_ + b_.*sin[e_. + f_.*x_])), x_Symbol] := With[{q = Rt[-a^2 + b^2, 2]}, 2*Sqrt[2]*d*(b + q)/(f*q)* Subst[Int[1/((d*(b + q) + a*x^2)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]] - 2*Sqrt[2]*d*(b - q)/(f*q)* Subst[Int[1/((d*(b - q) + a*x^2)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]]] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[Sqrt[ d_.*sin[e_. + f_.*x_]]/(Sqrt[ g_.*cos[e_. + f_.*x_]]*(a_ + b_.*sin[e_. + f_.*x_])), x_Symbol] := Sqrt[Cos[e + f*x]]/Sqrt[g*Cos[e + f*x]]* Int[Sqrt[d*Sin[e + f*x]]/(Sqrt[Cos[e + f*x]]*(a + b*Sin[e + f*x])), x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^ p_*(d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := d/b*Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x] - a*d/b* Int[(g*Cos[e + f*x])^ p*(d*Sin[e + f*x])^(n - 1)/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[-1, p, 1] && GtQ[n, 0] +Int[(g_.*cos[e_. + f_.*x_])^ p_*(d_.*sin[e_. + f_.*x_])^n_/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := 1/a*Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x] - b/(a*d)* Int[(g*Cos[e + f*x])^ p*(d*Sin[e + f*x])^(n + 1)/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[-1, p, 1] && LtQ[n, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^2, x_Symbol] := 2*a*b/d*Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n + 1), x] + Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^ n*(a^2 + b^2*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && NeQ[a^2 - b^2, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := Int[ExpandTrig[(g*cos[e + f*x])^ p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[m] && (GtQ[m, 0] || IntegerQ[n]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(d_.*sin[e_. + f_.*x_])^ n_*(a_ + b_.*sin[e_. + f_.*x_])^m_, x_Symbol] := g^2/a* Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^ n*(a + b*Sin[e + f*x])^(m + 1), x] - b*g^2/(a^2*d)* Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 1), x] - g^2*(a^2 - b^2)/(a^2*d^2)* Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 2)*(a + b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[m, 2*n, 2*p] && LtQ[m, 0] && GtQ[p, 1] && (LeQ[n, -2] || EqQ[m, -1] && EqQ[n, -3/2] && EqQ[p, 3/2]) +Int[cos[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := a^(2*m)*Int[(c + d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := (a/g)^(2*m)* Int[(g*Cos[e + f*x])^(2*m + p)*(c + d*Sin[e + f*x])^ n/(a - b*Sin[e + f*x])^m, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && (EqQ[2*m + p, 0] || GtQ[2*m + p, 0] && LtQ[p, -1]) +Int[cos[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := 1/b^2* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^ n*(a - b*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] +Int[cos[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := a^m*Cos[ e + f*x]/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]])* Subst[ Int[(1 + b/a*x)^(m + (p - 1)/2)*(1 - b/a*x)^((p - 1)/2)*(c + d*x)^ n, x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[p/2] && IntegerQ[m] +Int[cos[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := Cos[e + f*x]/(a^(p - 2)*f*Sqrt[a + b*Sin[e + f*x]]* Sqrt[a - b*Sin[e + f*x]])* Subst[ Int[(a + b*x)^(m + p/2 - 1/2)*(a - b*x)^(p/2 - 1/2)*(c + d*x)^n, x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[p/2] && Not[IntegerQ[m]] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := Int[ExpandTrig[(g*cos[e + f*x])^ p, (a + b*sin[e + f*x])^m*(c + d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] && (IntegerQ[p] || IGtQ[n, 0]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := a^m*g*(g*Cos[e + f*x])^(p - 1)/(f*(1 + Sin[e + f*x])^((p - 1)/2)*(1 - Sin[e + f*x])^((p - 1)/2))* Subst[ Int[(1 + b/a*x)^(m + (p - 1)/2)*(1 - b/a*x)^((p - 1)/2)*(c + d*x)^ n, x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := g*(g*Cos[e + f*x])^(p - 1)/(f*(a + b*Sin[e + f*x])^((p - 1)/2)*(a - b*Sin[e + f*x])^((p - 1)/2))* Subst[ Int[(a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2)*(c + d*x)^n, x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] +Int[cos[e_. + f_.*x_]^2*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^ n*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n]) +Int[cos[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := Int[ExpandTrig[(a + b*sin[e + f*x])^m*(c + d*sin[e + f*x])^ n*(1 - sin[e + f*x]^2)^(p/2), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && IGtQ[p/2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n]) +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := Int[ExpandTrig[(g*cos[e + f*x])^p*(a + b*sin[e + f*x])^ m*(c + d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] +Int[(g_.*cos[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := Unintegrable[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[a^2 - b^2, 0] +Int[(g_.*sec[e_. + f_.*x_])^p_*(a_. + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := g^(2*IntPart[p])*(g*Cos[e + f*x])^FracPart[p]*(g*Sec[e + f*x])^ FracPart[p]* Int[(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(g*Cos[e + f*x])^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && Not[IntegerQ[p]] +Int[(g_.*csc[e_. + f_.*x_])^p_*(a_. + b_.*cos[e_. + f_.*x_])^ m_.*(c_. + d_.*cos[e_. + f_.*x_])^n_., x_Symbol] := g^(2*IntPart[p])*(g*Sin[e + f*x])^FracPart[p]*(g*Csc[e + f*x])^ FracPart[p]* Int[(a + b*Cos[e + f*x])^ m*(c + d*Cos[e + f*x])^n/(g*Sin[e + f*x])^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && Not[IntegerQ[p]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.3 (g sin)^p (a+b sin)^m (c+d sin)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.3 (g sin)^p (a+b sin)^m (c+d sin)^n.m new file mode 100755 index 0000000..578df11 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.2.3 (g sin)^p (a+b sin)^m (c+d sin)^n.m @@ -0,0 +1,41 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.2.3 (g sin)^p (a+b sin)^m (c+d sin)^n *) +Int[Sqrt[g_.*sin[e_. + f_.*x_]]* Sqrt[a_ + b_.*sin[e_. + f_.*x_]]/(c_ + d_.*sin[e_. + f_.*x_]), x_Symbol] := g/d*Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[g*Sin[e + f*x]], x] - c*g/d* Int[Sqrt[ a + b*Sin[e + f*x]]/(Sqrt[ g*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0]) +Int[Sqrt[g_.*sin[e_. + f_.*x_]]* Sqrt[a_ + b_.*sin[e_. + f_.*x_]]/(c_ + d_.*sin[e_. + f_.*x_]), x_Symbol] := b/d*Int[Sqrt[g*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x] - (b*c - a*d)/d* Int[Sqrt[ g*Sin[e + f*x]]/(Sqrt[ a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(Sqrt[ g_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := -2*b/f* Subst[Int[1/(b*c + a*d + c*g*x^2), x], x, b*Cos[e + f*x]/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]])] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(Sqrt[ sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := -Sqrt[a + b]/(c*f)* EllipticE[ ArcSin[Cos[e + f*x]/(1 + Sin[e + f*x])], -(a - b)/(a + b)] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[d, c] && GtQ[b^2 - a^2, 0] && GtQ[b, 0] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(Sqrt[ g_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := -Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[e + f*x]/(c + d*Sin[e + f*x])]/ (d*f*Sqrt[g*Sin[e + f*x]]* Sqrt[c^2*(a + b*Sin[e + f*x])/((a*c + b*d)*(c + d*Sin[e + f*x]))])* EllipticE[ ArcSin[c* Cos[e + f*x]/(c + d*Sin[e + f*x])], (b*c - a*d)/(b*c + a*d)] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(Sqrt[ g_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := a/c*Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]), x] + (b*c - a*d)/(c*g)* Int[Sqrt[ g*Sin[e + f*x]]/(Sqrt[ a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(sin[ e_. + f_.*x_]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := 1/c*Int[Sqrt[a + b*Sin[e + f*x]]/Sin[e + f*x], x] - d/c*Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(sin[ e_. + f_.*x_]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := a/c*Int[1/(Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]]), x] + (b*c - a*d)/c* Int[1/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[Sqrt[ g_.*sin[e_. + f_.*x_]]/(Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := -a*g/(b*c - a*d)* Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]), x] + c*g/(b*c - a*d)* Int[Sqrt[ a + b*Sin[e + f*x]]/(Sqrt[ g*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0]) +Int[Sqrt[ g_.*sin[e_. + f_.*x_]]/(Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := 2*Sqrt[-Cot[e + f*x]^2]* Sqrt[g*Sin[e + f*x]]/(f*(c + d)*Cot[e + f*x]* Sqrt[a + b*Sin[e + f*x]])*Sqrt[(b + a*Csc[e + f*x])/(a + b)]* EllipticPi[2*c/(c + d), ArcSin[Sqrt[1 - Csc[e + f*x]]/Sqrt[2]], 2*a/(a + b)] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[1/(Sqrt[g_.*sin[e_. + f_.*x_]]* Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := b/(b*c - a*d)* Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]), x] - d/(b*c - a*d)* Int[Sqrt[ a + b*Sin[e + f*x]]/(Sqrt[ g*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0]) +Int[1/(Sqrt[g_.*sin[e_. + f_.*x_]]* Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := 1/c*Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]), x] - d/(c*g)* Int[Sqrt[ g*Sin[e + f*x]]/(Sqrt[ a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[1/(sin[e_. + f_.*x_]* Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := d^2/(c*(b*c - a*d))* Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x] + 1/(c*(b*c - a*d))* Int[(b*c - a*d - b*d*Sin[e + f*x])/(Sin[e + f*x]* Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] +Int[1/(sin[e_. + f_.*x_]* Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])), x_Symbol] := 1/c*Int[1/(Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]]), x] - d/c*Int[1/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(sin[e_. + f_.*x_]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := -d/c*Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x] + 1/c* Int[Sqrt[a + b*Sin[e + f*x]]* Sqrt[c + d*Sin[e + f*x]]/Sin[e + f*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[b*c + a*d, 0] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(sin[e_. + f_.*x_]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := -2*a/f* Subst[Int[1/(1 - a*c*x^2), x], x, Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]* Sqrt[c + d*Sin[e + f*x]])] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[b*c + a*d, 0] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(sin[e_. + f_.*x_]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := (b*c - a*d)/c* Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] + a/c* Int[Sqrt[ c + d*Sin[e + f*x]]/(Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]/(sin[e_. + f_.*x_]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := -2*(a + b*Sin[e + f*x])/(c*f*Rt[(a + b)/(c + d), 2]*Cos[e + f*x])* Sqrt[-(b*c - a*d)*(1 - Sin[e + f*x])/((c + d)*(a + b*Sin[e + f*x]))]* Sqrt[(b*c - a*d)*(1 + Sin[e + f*x])/((c - d)*(a + b*Sin[e + f*x]))]* EllipticPi[a*(c + d)/(c*(a + b)), ArcSin[Rt[(a + b)/(c + d), 2]* Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]]], (a - b)*(c + d)/((a + b)*(c - d))] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[1/(sin[e_. + f_.*x_]*Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])* Int[1/(Cos[e + f*x]*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[1/(sin[e_. + f_.*x_]*Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := -b/a*Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] + 1/a* Int[Sqrt[ a + b*Sin[e + f*x]]/(Sin[e + f*x]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (NeQ[a^2 - b^2, 0] || NeQ[c^2 - d^2, 0]) +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]/sin[e_. + f_.*x_], x_Symbol] := Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]/Cos[e + f*x]* Int[Cot[e + f*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]/sin[e_. + f_.*x_], x_Symbol] := d*Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x] + c*Int[ Sqrt[a + b*Sin[e + f*x]]/(Sin[e + f*x]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (NeQ[a^2 - b^2, 0] || NeQ[c^2 - d^2, 0]) +Int[sin[e_. + f_.*x_]^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := a^n*c^n*Int[Tan[e + f*x]^p*(a + b*Sin[e + f*x])^(m - n), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[p + 2*n, 0] && IntegerQ[n] +Int[(g_.*sin[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := Sqrt[a - b*Sin[e + f*x]]* Sqrt[a + b*Sin[e + f*x]]/(f*Cos[e + f*x])* Subst[ Int[(g*x)^p*(a + b*x)^(m - 1/2)*(c + d*x)^n/Sqrt[a - b*x], x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m - 1/2] +Int[(g_.*sin[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := Int[ExpandTrig[(g*sin[e + f*x])^p*(a + b*sin[e + f*x])^ m*(c + d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[b*c - a*d, 0] && (IntegersQ[m, n] || IntegersQ[m, p] || IntegersQ[n, p]) && NeQ[p, 2] +Int[(g_.*sin[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*sin[e_. + f_.*x_])^n_, x_Symbol] := Unintegrable[(g*Sin[e + f*x])^p*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[p, 2] +Int[(g_.*sin[e_. + f_.*x_])^p_.*(a_. + b_.*csc[e_. + f_.*x_])^ m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := g^(m + n)* Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^ m*(d + c*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] && Not[IntegerQ[p]] && IntegerQ[m] && IntegerQ[n] +Int[(g_.*sin[e_. + f_.*x_])^p_.*(a_. + b_.*csc[e_. + f_.*x_])^ m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := (g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p* Int[(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && Not[IntegerQ[p]] && Not[IntegerQ[m] && IntegerQ[n]] +Int[(g_.*sin[e_. + f_.*x_])^p_.*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := g^n*Int[(g*Sin[e + f*x])^(p - n)*(a + b*Sin[e + f*x])^ m*(d + c*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && IntegerQ[n] +Int[sin[e_. + f_.*x_]^p_.*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Int[(b + a*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^n/ Csc[e + f*x]^(m + p), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] && IntegerQ[p] +Int[(g_.*sin[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Csc[e + f*x]^p*(g*Sin[e + f*x])^p* Int[(b + a*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^n/ Csc[e + f*x]^(m + p), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && Not[IntegerQ[n]] && IntegerQ[m] && Not[IntegerQ[p]] +Int[(g_.*sin[e_. + f_.*x_])^p_.*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := (g*Sin[e + f*x])^n*(c + d*Csc[e + f*x])^n/(d + c*Sin[e + f*x])^n* Int[(g*Sin[e + f*x])^(p - n)*(a + b*Sin[e + f*x])^ m*(d + c*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && Not[IntegerQ[n]] && Not[IntegerQ[m]] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_. + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := g^(m + n)* Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^ m*(d + c*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] && Not[IntegerQ[p]] && IntegerQ[m] && IntegerQ[n] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_. + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*sin[e_. + f_.*x_])^n_., x_Symbol] := (g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p* Int[(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && Not[IntegerQ[p]] && Not[IntegerQ[m] && IntegerQ[n]] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := g^m*Int[(g*Csc[e + f*x])^(p - m)*(b + a*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && IntegerQ[m] +Int[csc[e_. + f_.*x_]^p_.*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := Int[(a + b*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n/ Sin[e + f*x]^(n + p), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && Not[IntegerQ[m]] && IntegerQ[n] && IntegerQ[p] +Int[(g_.*csc[e_. + f_.*x_])^p_*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := Sin[e + f*x]^p*(g*Csc[e + f*x])^p* Int[(a + b*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n/ Sin[e + f*x]^(n + p), x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && Not[IntegerQ[m]] && IntegerQ[n] && Not[IntegerQ[p]] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_ + b_.*sin[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := (a + b*Sin[e + f*x])^m*(g*Csc[e + f*x])^m/(b + a*Csc[e + f*x])^m* Int[(g*Csc[e + f*x])^(p - m)*(b + a*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && Not[IntegerQ[m]] && Not[IntegerQ[n]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.3.1 (a+b sin)^m (c+d sin)^n (A+B sin).m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.3.1 (a+b sin)^m (c+d sin)^n (A+B sin).m new file mode 100755 index 0000000..6b578f1 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.3.1 (a+b sin)^m (c+d sin)^n (A+B sin).m @@ -0,0 +1,49 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.3.1 (a+b sin)^m (c+d sin)^n (A+B sin) *) +Int[sin[e_. + f_.*x_]^n_.*(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := Int[ExpandTrig[ sin[e + f*x]^n*(a + b*sin[e + f*x])^m*(A + B*sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && EqQ[A*b + a*B, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && IntegerQ[n] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_ + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := a^m*c^m* Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && Not[IntegerQ[ n] && (LtQ[m, 0] && GtQ[n, 0] || LtQ[0, n, m] || LtQ[m, n, 0])] +Int[(a_. + b_.*sin[e_. + f_.*x_])^ m_.*(c_. + d_.*sin[e_. + f_.*x_])*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := Int[(a + b*Sin[e + f*x])^ m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] +Int[(A_. + B_.*sin[e_. + f_.*x_])/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := (A*b + a*B)/(2*a*b)* Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x] + (B*c + A*d)/(2*c*d)* Int[Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -B*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(f*(m + n + 1)) /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[A*b*(m + n + 1) + a*B*(m - n), 0] && NeQ[m, -1/2] +Int[Sqrt[a_. + b_.*sin[e_. + f_.*x_]]*(c_ + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := B/d*Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x] - (B*c - A*d)/d* Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_ + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := (A*b - a*B)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1)) + (a*B*(m - n) + A*b*(m + n + 1))/(a*b*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && (LtQ[m, -1/2] || ILtQ[m + n, 0] && Not[SumSimplerQ[n, 1]]) && NeQ[2*m + 1, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_ + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -B*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(f*(m + n + 1)) - (B*c*(m - n) - A*d*(m + n + 1))/(d*(m + n + 1))* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] && NeQ[m + n + 1, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := (B*c - A*d)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)) /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[m + n + 2, 0] && EqQ[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)), 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -b^2*(B*c - A*d)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d)) - b/(d*(n + 1)*(b*c + a*d))* Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)* Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -b*B*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 1)) + 1/(d*(m + n + 1))* Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n* Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && Not[LtQ[n, -1]] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := (A*b - a*B)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1)) - 1/(a*b*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)* Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1/2] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := b*(A*b - a*B)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d)) + 1/(a*(2*m + 1)*(b*c - a*d))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n* Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 2)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1/2] && Not[GtQ[n, 0]] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0]) +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -2*b*B* Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)* Sqrt[a + b*Sin[e + f*x]]) /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)), 0] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -b^2*(B*c - A*d)* Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1)/(d* f*(n + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]) + (A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2* d*(n + 1)*(b*c + a*d))* Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -2*b*B* Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)* Sqrt[a + b*Sin[e + f*x]]) + (A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3))* Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Not[LtQ[n, -1]] +Int[(A_. + B_.*sin[e_. + f_.*x_])/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_. + d_.*sin[e_. + f_.*x_]]), x_Symbol] := (A*b - a*B)/b* Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] + B/b*Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -B*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^n/(f*(m + n + 1)) + 1/(b*(m + n + 1))* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)* Simp[A*b*c*(m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))* Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && (IntegerQ[n] || EqQ[m + 1/2, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := (B*c - A*d)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)) + 1/(b*(n + 1)*(c^2 - d^2))* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)* Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0]) +Int[(A_. + B_.*sin[e_. + f_.*x_])/(Sqrt[ a_ + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])), x_Symbol] := (A*b - a*B)/(b*c - a*d)*Int[1/Sqrt[a + b*Sin[e + f*x]], x] + (B*c - A*d)/(b*c - a*d)* Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^ m_*(A_. + B_.*sin[e_. + f_.*x_])/(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := B/d*Int[(a + b*Sin[e + f*x])^m, x] - (B*c - A*d)/d* Int[(a + b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && NeQ[m + 1/2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := (A*b - a*B)/b* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n, x] + B/b*Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && NeQ[A*b + a*B, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^2*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := (B*c - A*d)*(b*c - a*d)^2* Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1)/(f* d^2*(n + 1)*(c^2 - d^2)) - 1/(d^2*(n + 1)*(c^2 - d^2))*Int[(c + d*Sin[e + f*x])^(n + 1)* Simp[d*(n + 1)*(B*(b*c - a*d)^2 - A*d*(a^2*c + b^2*c - 2*a*b*d)) - ((B*c - A*d)*(a^2*d^2*(n + 2) + b^2*(c^2 + d^2*(n + 1))) + 2*a*b*d*(A*c*d*(n + 2) - B*(c^2 + d^2*(n + 1))))* Sin[e + f*x] - b^2*B*d*(n + 1)*(c^2 - d^2)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -(b*c - a*d)*(B*c - A*d)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2)) + 1/(d*(n + 1)*(c^2 - d^2))* Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)* Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (A*b + a*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) - a*(b*c - a*d)*(B*c - A*d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -b*B*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 1)) + 1/(d*(m + n + 1))* Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n* Simp[a^2*A*d*(m + n + 1) + b*B*(b*c*(m - 1) + a*d*(n + 1)) + (a*d*(2*A*b + a*B)*(m + n + 1) - b*B*(a*c - b*d*(m + n)))*Sin[e + f*x] + b*(A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))* Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && Not[IGtQ[n, 1] && (Not[IntegerQ[m]] || EqQ[a, 0] && NeQ[c, 0])] +Int[Sqrt[ c_ + d_.*sin[e_. + f_.*x_]]*(A_. + B_.*sin[e_. + f_.*x_])/(b_.*sin[e_. + f_.*x_])^(3/2), x_Symbol] := B*d/b^2*Int[Sqrt[b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x] + Int[(A*c + (B*c + A*d)*Sin[e + f*x])/((b*Sin[e + f*x])^(3/2)* Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] +Int[Sqrt[ c_. + d_.*sin[e_. + f_.*x_]]*(A_. + B_.*sin[e_. + f_.*x_])/(a_ + b_.*sin[e_. + f_.*x_])^(3/2), x_Symbol] := B/b*Int[Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x] + (A*b - a*B)/b* Int[Sqrt[c + d*Sin[e + f*x]]/(a + b*Sin[e + f*x])^(3/2), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(A_. + B_.*sin[e_. + f_.*x_])/((a_ + b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[d_.*sin[e_. + f_.*x_]]), x_Symbol] := 2*(A*b - a*B)* Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]* Sqrt[d*Sin[e + f*x]]) + d/(a^2 - b^2)* Int[(A*b - a*B + (a*A - b*B)*Sin[e + f*x])/(Sqrt[ a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] +Int[(A_ + B_.*sin[e_. + f_.*x_])/((b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := -2*A*(c - d)*Tan[e + f*x]/(f*b*c^2)*Rt[(c + d)/b, 2]* Sqrt[c*(1 + Csc[e + f*x])/(c - d)]* Sqrt[c*(1 - Csc[e + f*x])/(c + d)]* EllipticE[ ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/ Rt[(c + d)/b, 2]], -(c + d)/(c - d)] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && PosQ[(c + d)/b] +Int[(A_ + B_.*sin[e_. + f_.*x_])/((b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := -Sqrt[-b*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]* Int[(A + B*Sin[e + f*x])/((-b*Sin[e + f*x])^(3/2)* Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && NegQ[(c + d)/b] +Int[(A_ + B_.*sin[e_. + f_.*x_])/((a_ + b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := -2*A*(c - d)*(a + b*Sin[e + f*x])/(f*(b*c - a*d)^2*Rt[(a + b)/(c + d), 2]* Cos[e + f*x])* Sqrt[(b*c - a*d)*(1 + Sin[e + f*x])/((c - d)*(a + b*Sin[e + f*x]))]* Sqrt[-(b*c - a*d)*(1 - Sin[e + f*x])/((c + d)*(a + b*Sin[e + f*x]))]* EllipticE[ ArcSin[Rt[(a + b)/(c + d), 2]* Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]]], (a - b)*(c + d)/((a + b)*(c - d))] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && PosQ[(a + b)/(c + d)] +Int[(A_ + B_.*sin[e_. + f_.*x_])/((a_ + b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := Sqrt[-c - d*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]]* Int[(A + B*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)* Sqrt[-c - d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && NegQ[(a + b)/(c + d)] +Int[(A_. + B_.*sin[e_. + f_.*x_])/((a_. + b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := (A - B)/(a - b)* Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] - (A*b - a*B)/(a - b)* Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)* Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && NeQ[A, B] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := (B*a - A*b)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^ n/(f*(m + 1)*(a^2 - b^2)) + 1/((m + 1)*(a^2 - b^2))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)* Simp[c*(a*A - b*B)*(m + 1) + d*n*(A*b - a*B) + (d*(a*A - b*B)*(m + 1) - c*(A*b - a*B)*(m + 2))*Sin[e + f*x] - d*(A*b - a*B)*(m + n + 2)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -(A*b^2 - a*b*B)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)) + 1/((m + 1)*(b*c - a*d)*(a^2 - b^2))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n* Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && RationalQ[m] && m < -1 && (EqQ[a, 0] && IntegerQ[m] && Not[IntegerQ[n]] || Not[IntegerQ[2*n] && LtQ[n, -1] && (IntegerQ[n] && Not[IntegerQ[m]] || EqQ[a, 0])]) +Int[(A_. + B_.*sin[e_. + f_.*x_])/((a_. + b_.*sin[e_. + f_.*x_])*(c_. + d_.*sin[e_. + f_.*x_])), x_Symbol] := (A*b - a*B)/(b*c - a*d)* Int[1/(a + b*Sin[e + f*x]), x] + (B*c - A*d)/(b*c - a*d)* Int[1/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^ m_*(A_. + B_.*sin[e_. + f_.*x_])/(c_. + d_.*sin[e_. + f_.*x_]), x_Symbol] := B/d*Int[(a + b*Sin[e + f*x])^m, x] - (B*c - A*d)/d* Int[(a + b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[Sqrt[a_. + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := -2*B*Cos[e + f*x]* Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n/(f*(2*n + 3)) + 1/(2*n + 3)* Int[(c + d*Sin[e + f*x])^(n - 1)/Sqrt[a + b*Sin[e + f*x]]* Simp[a*A*c*(2*n + 3) + B*(b*c + 2*a*d*n) + (B*(a*c + b*d)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))* Sin[e + f*x] + (A*b*d*(2*n + 3) + B*(a*d + 2*b*c*n))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[n^2, 1/4] +Int[(A_ + B_.*sin[e_. + f_.*x_])/(Sqrt[sin[e_. + f_.*x_]]* Sqrt[a_ + b_.*sin[e_. + f_.*x_]]), x_Symbol] := 4*A/(f*Sqrt[a + b])* EllipticPi[-1, -ArcSin[ Cos[e + f*x]/(1 + Sin[e + f*x])], -(a - b)/(a + b)] /; FreeQ[{a, b, e, f, A, B}, x] && GtQ[b, 0] && GtQ[b^2 - a^2, 0] && EqQ[A, B] +Int[(A_ + B_.*sin[e_. + f_.*x_])/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[d_*sin[e_. + f_.*x_]]), x_Symbol] := Sqrt[Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]* Int[(A + B*Sin[e + f*x])/(Sqrt[Sin[e + f*x]]* Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, e, f, d, A, B}, x] && GtQ[b, 0] && GtQ[b^2 - a^2, 0] && EqQ[A, B] +Int[(A_. + B_.*sin[e_. + f_.*x_])/(Sqrt[a_ + b_.*sin[e_. + f_.*x_]]* Sqrt[c_. + d_.*sin[e_. + f_.*x_]]), x_Symbol] := B/d*Int[Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x] - (B*c - A*d)/d* Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_]), x_Symbol] := Unintegrable[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^ n*(A + B*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +(* Int[(a_+b_.*sin[e_.+f_.*x_])^m_*(c_+d_.*sin[e_.+f_.*x_])^n_*(A_.+B_ .*sin[e_.+f_.*x_])^p_,x_Symbol] := a^m*c^m*Int[Cos[e+f*x]^(2*m)*(c+d*Sin[e+f*x])^(n-m)*(A+B*Sin[e+f*x]) ^p,x] /; FreeQ[{a,b,c,d,e,f,A,B,n,p},x] && EqQ[b*c+a*d,0] && EqQ[a^2-b^2,0] && IntegerQ[m] && Not[IntegerQ[n] && (LtQ[m,0] && GtQ[n,0] || LtQ[0,n,m] || LtQ[m,n,0])] *) +(* Int[(a_+b_.*cos[e_.+f_.*x_])^m_*(c_+d_.*cos[e_.+f_.*x_])^n_*(A_.+B_ .*cos[e_.+f_.*x_])^p_,x_Symbol] := a^m*c^m*Int[Sin[e+f*x]^(2*m)*(c+d*Cos[e+f*x])^(n-m)*(A+B*Cos[e+f*x]) ^p,x] /; FreeQ[{a,b,c,d,e,f,A,B,n,p},x] && EqQ[b*c+a*d,0] && EqQ[a^2-b^2,0] && IntegerQ[m] && Not[IntegerQ[n] && (LtQ[m,0] && GtQ[n,0] || LtQ[0,n,m] || LtQ[m,n,0])] *) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_ + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_])^p_, x_Symbol] := Sqrt[a + b*Sin[e + f*x]]* Sqrt[c + d*Sin[e + f*x]]/(f*Cos[e + f*x])* Subst[ Int[(a + b*x)^(m - 1/2)*(c + d*x)^(n - 1/2)*(A + B*x)^p, x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f, A, B, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*cos[e_. + f_.*x_])^m_.*(c_ + d_.*cos[e_. + f_.*x_])^ n_.*(A_. + B_.*cos[e_. + f_.*x_])^p_, x_Symbol] := -Sqrt[a + b*Cos[e + f*x]]*Sqrt[c + d*Cos[e + f*x]]/(f*Sin[e + f*x])* Subst[ Int[(a + b*x)^(m - 1/2)*(c + d*x)^(n - 1/2)*(A + B*x)^p, x], x, Cos[e + f*x]] /; FreeQ[{a, b, c, d, e, f, A, B, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.4.1 (a+b sin)^m (A+B sin+C sin^2).m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.4.1 (a+b sin)^m (A+B sin+C sin^2).m new file mode 100755 index 0000000..d8aa61a --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.4.1 (a+b sin)^m (A+B sin+C sin^2).m @@ -0,0 +1,22 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.4.1 (a+b sin)^m (A+B sin+C sin^2) *) +Int[(b_.*sin[e_. + f_.*x_])^ m_.*(B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := 1/b*Int[(b*Sin[e + f*x])^(m + 1)*(B + C*Sin[e + f*x]), x] /; FreeQ[{b, e, f, B, C, m}, x] +Int[(b_.*sin[e_. + f_.*x_])^m_.*(A_ + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := A*Cos[e + f*x]*(b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)) /; FreeQ[{b, e, f, A, C, m}, x] && EqQ[A*(m + 2) + C*(m + 1), 0] +Int[(b_.*sin[e_. + f_.*x_])^m_*(A_ + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := A*Cos[ e + f*x]*(b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)) + (A*(m + 2) + C*(m + 1))/(b^2*(m + 1))*Int[(b*Sin[e + f*x])^(m + 2), x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1] +Int[sin[e_. + f_.*x_]^m_.*(A_ + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -1/f*Subst[Int[(1 - x^2)^((m - 1)/2)*(A + C - C*x^2), x], x, Cos[e + f*x]] /; FreeQ[{e, f, A, C}, x] && IGtQ[(m + 1)/2, 0] +Int[(b_.*sin[e_. + f_.*x_])^m_.*(A_ + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*Cos[ e + f*x]*(b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2)) + (A*(m + 2) + C*(m + 1))/(m + 2)*Int[(b*Sin[e + f*x])^m, x] /; FreeQ[{b, e, f, A, C, m}, x] && Not[LtQ[m, -1]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := 1/b^2* Int[(a + b*Sin[e + f*x])^(m + 1)* Simp[b*B - a*C + b*C*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := C/b^2* Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[-a + b*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[A*b^2 + a^2*C, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^ m_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := (A - C)*Int[(a + b*Sin[e + f*x])^m*(1 + Sin[e + f*x]), x] + C*Int[(a + b*Sin[e + f*x])^m*(1 + Sin[e + f*x])^2, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A - B + C, 0] && Not[IntegerQ[2*m]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := (A - C)*Int[(a + b*Sin[e + f*x])^m*(1 + Sin[e + f*x]), x] + C*Int[(a + b*Sin[e + f*x])^m*(1 + Sin[e + f*x])^2, x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[A + C, 0] && Not[IntegerQ[2*m]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^ m_*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := (A*b - a*B + b*C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^m/(a*f*(2*m + 1)) + 1/(a^2*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)* Simp[a*A*(m + 1) + m*(b*B - a*C) + b*C*(2*m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := b*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m/(a*f*(2*m + 1)) + 1/(a^2*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)* Simp[a*A*(m + 1) - a*C*m + b*C*(2*m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^ m_*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(A*b^2 - a*b*B + a^2*C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b* f*(m + 1)*(a^2 - b^2)) + 1/(b*(m + 1)*(a^2 - b^2))* Int[(a + b*Sin[e + f*x])^(m + 1)* Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(A*b^2 + a^2*C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b* f*(m + 1)*(a^2 - b^2)) + 1/(b*(m + 1)*(a^2 - b^2))* Int[(a + b*Sin[e + f*x])^(m + 1)* Simp[a*b*(A + C)*(m + 1) - (A*b^2 + a^2*C + b^2*(A + C)*(m + 1))*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^ m_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2)) + 1/(b*(m + 2))* Int[(a + b*Sin[e + f*x])^m* Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && Not[LtQ[m, -1]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2)) + 1/(b*(m + 2))* Int[(a + b*Sin[e + f*x])^m* Simp[A*b*(m + 2) + b*C*(m + 1) - a*C*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && Not[LtQ[m, -1]] +Int[(b_.*sin[e_. + f_.*x_]^p_)^ m_*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := (b*Sin[e + f*x]^p)^m/(b*Sin[e + f*x])^(m*p)* Int[(b*Sin[e + f*x])^(m*p)*(A + B*Sin[e + f*x] + C*Sin[e + f*x]^2), x] /; FreeQ[{b, e, f, A, B, C, m, p}, x] && Not[IntegerQ[m]] +Int[(b_.*cos[e_. + f_.*x_]^p_)^ m_*(A_. + B_.*cos[e_. + f_.*x_] + C_.*cos[e_. + f_.*x_]^2), x_Symbol] := (b*Cos[e + f*x]^p)^m/(b*Cos[e + f*x])^(m*p)* Int[(b*Cos[e + f*x])^(m*p)*(A + B*Cos[e + f*x] + C*Cos[e + f*x]^2), x] /; FreeQ[{b, e, f, A, B, C, m, p}, x] && Not[IntegerQ[m]] +Int[(b_.*sin[e_. + f_.*x_]^p_)^m_*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := (b*Sin[e + f*x]^p)^m/(b*Sin[e + f*x])^(m*p)* Int[(b*Sin[e + f*x])^(m*p)*(A + C*Sin[e + f*x]^2), x] /; FreeQ[{b, e, f, A, C, m, p}, x] && Not[IntegerQ[m]] +Int[(b_.*cos[e_. + f_.*x_]^p_)^m_*(A_. + C_.*cos[e_. + f_.*x_]^2), x_Symbol] := (b*Cos[e + f*x]^p)^m/(b*Cos[e + f*x])^(m*p)* Int[(b*Cos[e + f*x])^(m*p)*(A + C*Cos[e + f*x]^2), x] /; FreeQ[{b, e, f, A, C, m, p}, x] && Not[IntegerQ[m]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.4.2 (a+b sin)^m (c+d sin)^n (A+B sin+C sin^2).m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.4.2 (a+b sin)^m (c+d sin)^n (A+B sin+C sin^2).m new file mode 100755 index 0000000..f7f59f8 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.4.2 (a+b sin)^m (c+d sin)^n (A+B sin+C sin^2).m @@ -0,0 +1,45 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.4.2 (a+b sin)^m (c+d sin)^n (A+B sin+C sin^2) *) +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := 1/b^2* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^ n*(b*B - a*C + b*C*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C/b^2* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^ n*(a - b*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 + a^2*C, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^ m_*(c_. + d_.*sin[e_. + f_.*x_])*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(b*c - a*d)*(A*b^2 - a*b*B + a^2*C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b^2* f*(m + 1)*(a^2 - b^2)) - 1/(b^2*(m + 1)*(a^2 - b^2))*Int[(a + b*Sin[e + f*x])^(m + 1)* Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b* B*(a^2*d + b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))* Sin[e + f*x] - b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[(a_. + b_.*sin[e_. + f_.*x_])^ m_*(c_. + d_.*sin[e_. + f_.*x_])*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(b*c - a*d)*(A*b^2 + a^2*C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b^2* f*(m + 1)*(a^2 - b^2)) + 1/(b^2*(m + 1)*(a^2 - b^2))*Int[(a + b*Sin[e + f*x])^(m + 1)* Simp[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))* Sin[e + f*x] + b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[(a_. + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*sin[e_. + f_.*x_])*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*d*Cos[e + f*x]* Sin[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 3)) + 1/(b*(m + 3))*Int[(a + b*Sin[e + f*x])^m* Simp[a*C*d + A*b*c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + A*(m + 3)))* Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))* Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && Not[LtQ[m, -1]] +Int[(a_. + b_.*sin[e_. + f_.*x_])^ m_.*(c_ + d_.*sin[e_. + f_.*x_])*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*d*Cos[e + f*x]* Sin[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 3)) + 1/(b*(m + 3))*Int[(a + b*Sin[e + f*x])^m* Simp[a*C*d + A*b*c*(m + 3) + b*d*(C*(m + 2) + A*(m + 3))* Sin[e + f*x] - (2*a*C*d - b*c*C*(m + 3))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && Not[LtQ[m, -1]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := (a*A - b*B + a*C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(2*b*c*f*(2*m + 1)) - 1/(2*b*c*d*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n* Simp[A*(c^2*(m + 1) + d^2*(2*m + n + 2)) - B*c*d*(m - n - 1) - C*(c^2*m - d^2*(n + 1)) + d*((A*c + B*d)*(m + n + 2) - c*C*(3*m - n))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && (LtQ[m, -1/2] || EqQ[m + n + 2, 0] && NeQ[2*m + 1, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := (a*A + a*C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(2*b*c*f*(2*m + 1)) - 1/(2*b*c*d*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n* Simp[A*(c^2*(m + 1) + d^2*(2*m + n + 2)) - C*(c^2*m - d^2*(n + 1)) + d*(A*c*(m + n + 2) - c*C*(3*m - n))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && (LtQ[m, -1/2] || EqQ[m + n + 2, 0] && NeQ[2*m + 1, 0]) +Int[(a_. + b_.*sin[e_. + f_.*x_])^ m_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2)/ Sqrt[c_. + d_.*sin[e_. + f_.*x_]], x_Symbol] := -2*C*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b*f*(2*m + 3)* Sqrt[c + d*Sin[e + f*x]]) + Int[(a + b*Sin[e + f*x])^m* Simp[A + C + B*Sin[e + f*x], x]/Sqrt[c + d*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_.*(A_. + C_.*sin[e_. + f_.*x_]^2)/ Sqrt[c_. + d_.*sin[e_. + f_.*x_]], x_Symbol] := -2*C*Cos[ e + f*x]*(a + b*Sin[e + f*x])^(m + 1)/(b*f*(2*m + 3)* Sqrt[c + d*Sin[e + f*x]]) + (A + C)*Int[(a + b*Sin[e + f*x])^m/Sqrt[c + d*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2)) + 1/(b*d*(m + n + 2))* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n* Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + (b*B*d*(m + n + 2) - b*c*C*(2*m + 1))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] && NeQ[m + n + 2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2)) + 1/(b*d*(m + n + 2))* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n* Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) - b*c*C*(2*m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] && NeQ[m + n + 2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := (a*A - b*B + a*C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1)) + 1/(b*(b*c - a*d)*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n* Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1/2] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := a*(A + C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1)) + 1/(b*(b*c - a*d)*(2*m + 1))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n* Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1/2] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(c^2*C - B*c*d + A*d^2)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2)) + 1/(b*d*(n + 1)*(c^2 - d^2))* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)* Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*(a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))* Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Not[LtQ[m, -1/2]] && (LtQ[n, -1] || EqQ[m + n + 2, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(c^2*C + A*d^2)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2)) + 1/(b*d*(n + 1)*(c^2 - d^2))* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)* Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C*(c^2*(m + 1) + d^2*(n + 1)))* Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Not[LtQ[m, -1/2]] && (LtQ[n, -1] || EqQ[m + n + 2, 0]) +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2)) + 1/(b*d*(m + n + 2))* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n* Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Not[LtQ[m, -1/2]] && NeQ[m + n + 2, 0] +Int[(a_ + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2)) + 1/(b*d*(m + n + 2))* Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n* Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Not[LtQ[m, -1/2]] && NeQ[m + n + 2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(c^2*C - B*c*d + A*d^2)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2)) + 1/(d*(n + 1)*(c^2 - d^2))* Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)* Simp[A*d*(b*d*m + a*c*(n + 1)) + (c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))* Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(c^2*C + A*d^2)* Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2)) + 1/(d*(n + 1)*(c^2 - d^2))* Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)* Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n + 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2*(m + 1) + d^2*(n + 1)))* Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2)) + 1/(d*(m + n + 2))* Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n* Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))* Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))* Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && Not[IGtQ[n, 0] && (Not[IntegerQ[m]] || EqQ[a, 0] && NeQ[c, 0])] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_.*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -C*Cos[e + f*x]*(a + b*Sin[e + f*x])^ m*(c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2)) + 1/(d*(m + n + 2))* Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n* Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (A*b*d*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && Not[IGtQ[n, 0] && (Not[IntegerQ[m]] || EqQ[a, 0] && NeQ[c, 0])] +Int[(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2)/((a_ + b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[d_.*sin[e_. + f_.*x_]]), x_Symbol] := C/(b*d)*Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x] + 1/b* Int[(A*b + (b*B - a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)* Sqrt[d*Sin[e + f*x]]), x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] +Int[(A_. + C_.*sin[e_. + f_.*x_]^2)/((a_ + b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[d_.*sin[e_. + f_.*x_]]), x_Symbol] := C/(b*d)*Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x] + 1/b* Int[(A*b - a*C*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)* Sqrt[d*Sin[e + f*x]]), x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] +Int[(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2)/((a_. + b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[c_. + d_.*sin[e_. + f_.*x_]]), x_Symbol] := C/b^2*Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x] + 1/b^2* Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)* Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(A_. + C_.*sin[e_. + f_.*x_]^2)/((a_. + b_.*sin[e_. + f_.*x_])^(3/2)* Sqrt[c_. + d_.*sin[e_. + f_.*x_]]), x_Symbol] := C/b^2*Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x] + 1/b^2* Int[(A*b^2 - a^2*C - 2*a*b*C*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)* Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(A*b^2 - a*b*B + a^2*C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)) + 1/((m + 1)*(b*c - a*d)*(a^2 - b^2))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n* Simp[(m + 1)*(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && (EqQ[a, 0] && IntegerQ[m] && Not[IntegerQ[n]] || Not[IntegerQ[2*n] && LtQ[n, -1] && (IntegerQ[n] && Not[IntegerQ[m]] || EqQ[a, 0])]) +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(A*b^2 + a^2*C)* Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)) + 1/((m + 1)*(b*c - a*d)*(a^2 - b^2))* Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n* Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))* Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && (EqQ[a, 0] && IntegerQ[m] && Not[IntegerQ[n]] || Not[IntegerQ[2*n] && LtQ[n, -1] && (IntegerQ[n] && Not[IntegerQ[m]] || EqQ[a, 0])]) +Int[(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2)/((a_ + b_.*sin[e_. + f_.*x_])*(c_. + d_.*sin[e_. + f_.*x_])), x_Symbol] := C*x/(b*d) + (A*b^2 - a*b*B + a^2*C)/(b*(b*c - a*d))* Int[1/(a + b*Sin[e + f*x]), x] - (c^2*C - B*c*d + A*d^2)/(d*(b*c - a*d))* Int[1/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(A_. + C_.*sin[e_. + f_.*x_]^2)/((a_ + b_.*sin[e_. + f_.*x_])*(c_. + d_.*sin[e_. + f_.*x_])), x_Symbol] := C*x/(b*d) + (A*b^2 + a^2*C)/(b*(b*c - a*d))* Int[1/(a + b*Sin[e + f*x]), x] - (c^2*C + A*d^2)/(d*(b*c - a*d))*Int[1/(c + d*Sin[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2)/(Sqrt[ a_. + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])), x_Symbol] := C/(b*d)*Int[Sqrt[a + b*Sin[e + f*x]], x] - 1/(b*d)* Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(A_. + C_.*sin[e_. + f_.*x_]^2)/(Sqrt[ a_. + b_.*sin[e_. + f_.*x_]]*(c_. + d_.*sin[e_. + f_.*x_])), x_Symbol] := C/(b*d)*Int[Sqrt[a + b*Sin[e + f*x]], x] - 1/(b*d)* Int[Simp[a*c*C - A*b*d + (b*c*C + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2)/(Sqrt[a_. + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := -C*Cos[e + f*x]* Sqrt[c + d*Sin[e + f*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]]) + 1/(2*d)* Int[1/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]])* Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d*(A*b + a*B))* Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(A_. + C_.*sin[e_. + f_.*x_]^2)/(Sqrt[a_. + b_.*sin[e_. + f_.*x_]]* Sqrt[c_ + d_.*sin[e_. + f_.*x_]]), x_Symbol] := -C*Cos[e + f*x]* Sqrt[c + d*Sin[e + f*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]]) + 1/(2*d)* Int[1/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]])* Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - A*b*d)*Sin[e + f*x] - C*(b*c + a*d)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2)/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := (b*B - a*C)/b^2*Int[(d*Sin[e + f*x])^n, x] + C/(b*d)*Int[(d*Sin[e + f*x])^(n + 1), x] + (A*b^2 - a*b*B + a^2*C)/b^2* Int[(d*Sin[e + f*x])^n/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] +Int[(d_.*sin[e_. + f_.*x_])^ n_.*(A_. + C_.*sin[e_. + f_.*x_]^2)/(a_ + b_.*sin[e_. + f_.*x_]), x_Symbol] := -a*C/b^2*Int[(d*Sin[e + f*x])^n, x] + C/(b*d)*Int[(d*Sin[e + f*x])^(n + 1), x] + (A*b^2 + a^2*C)/b^2* Int[(d*Sin[e + f*x])^n/(a + b*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && NeQ[a^2 - b^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := Unintegrable[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^ n*(A + B*Sin[e + f*x] + C*Sin[e + f*x]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_])^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := Unintegrable[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^ n*(A + C*Sin[e + f*x]^2), x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(b_.*sin[e_. + f_.*x_]^p_)^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + B_.*sin[e_. + f_.*x_] + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := (b*Sin[e + f*x]^p)^m/(b*Sin[e + f*x])^(m*p)* Int[(b*Sin[e + f*x])^(m*p)*(c + d*Sin[e + f*x])^ n*(A + B*Sin[e + f*x] + C*Sin[e + f*x]^2), x] /; FreeQ[{b, c, d, e, f, A, B, C, m, n, p}, x] && Not[IntegerQ[m]] +Int[(b_.*cos[e_. + f_.*x_]^p_)^m_*(c_. + d_.*cos[e_. + f_.*x_])^ n_.*(A_. + B_.*cos[e_. + f_.*x_] + C_.*cos[e_. + f_.*x_]^2), x_Symbol] := (b*Cos[e + f*x]^p)^m/(b*Cos[e + f*x])^(m*p)* Int[(b*Cos[e + f*x])^(m*p)*(c + d*Cos[e + f*x])^ n*(A + B*Cos[e + f*x] + C*Cos[e + f*x]^2), x] /; FreeQ[{b, c, d, e, f, A, B, C, m, n, p}, x] && Not[IntegerQ[m]] +Int[(b_.*sin[e_. + f_.*x_]^p_)^m_*(c_. + d_.*sin[e_. + f_.*x_])^ n_.*(A_. + C_.*sin[e_. + f_.*x_]^2), x_Symbol] := (b*Sin[e + f*x]^p)^m/(b*Sin[e + f*x])^(m*p)* Int[(b*Sin[e + f*x])^(m*p)*(c + d*Sin[e + f*x])^ n*(A + C*Sin[e + f*x]^2), x] /; FreeQ[{b, c, d, e, f, A, C, m, n, p}, x] && Not[IntegerQ[m]] +Int[(b_.*cos[e_. + f_.*x_]^p_)^m_*(c_. + d_.*cos[e_. + f_.*x_])^ n_.*(A_. + C_.*cos[e_. + f_.*x_]^2), x_Symbol] := (b*Cos[e + f*x]^p)^m/(b*Cos[e + f*x])^(m*p)* Int[(b*Cos[e + f*x])^(m*p)*(c + d*Cos[e + f*x])^ n*(A + C*Cos[e + f*x]^2), x] /; FreeQ[{b, c, d, e, f, A, C, m, n, p}, x] && Not[IntegerQ[m]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.5 trig^m (a cos+b sin)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.5 trig^m (a cos+b sin)^n.m new file mode 100755 index 0000000..1f13fd8 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.5 trig^m (a cos+b sin)^n.m @@ -0,0 +1,46 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.5 trig^m (a cos+b sin)^n *) +Int[(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := a*(a*Cos[c + d*x] + b*Sin[c + d*x])^n/(b*d*n) /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 + b^2, 0] +Int[(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -1/d*Subst[Int[(a^2 + b^2 - x^2)^((n - 1)/2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && IGtQ[(n - 1)/2, 0] +Int[(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -(b*Cos[c + d*x] - a*Sin[c + d*x])*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/(d* n) + (n - 1)*(a^2 + b^2)/n* Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && Not[IntegerQ[(n - 1)/2]] && GtQ[n, 1] +Int[1/(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_]), x_Symbol] := -1/d*Subst[Int[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] +Int[1/(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^2, x_Symbol] := Sin[c + d*x]/(a*d*(a*Cos[c + d*x] + b*Sin[c + d*x])) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] +Int[(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := (b*Cos[c + d*x] - a*Sin[c + d*x])*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1)/(d*(n + 1)*(a^2 + b^2)) + (n + 2)/((n + 1)*(a^2 + b^2))* Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1] && NeQ[n, -2] +Int[(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := (a^2 + b^2)^(n/2)*Int[(Cos[c + d*x - ArcTan[a, b]])^n, x] /; FreeQ[{a, b, c, d, n}, x] && Not[GeQ[n, 1] || LeQ[n, -1]] && GtQ[a^2 + b^2, 0] +Int[(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := (a*Cos[c + d*x] + b*Sin[c + d*x])^ n/((a*Cos[c + d*x] + b*Sin[c + d*x])/Sqrt[a^2 + b^2])^n* Int[Cos[c + d*x - ArcTan[a, b]]^n, x] /; FreeQ[{a, b, c, d, n}, x] && Not[GeQ[n, 1] || LeQ[n, -1]] && Not[GtQ[a^2 + b^2, 0] || EqQ[a^2 + b^2, 0]] +Int[sin[c_. + d_.*x_]^ m_*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -a*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/(d*(n - 1)* Sin[c + d*x]^(n - 1)) + 2*b* Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/ Sin[c + d*x]^(n - 1), x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 1] +Int[cos[c_. + d_.*x_]^ m_*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := b*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/(d*(n - 1)* Cos[c + d*x]^(n - 1)) + 2*a* Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/ Cos[c + d*x]^(n - 1), x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 1] +Int[sin[c_. + d_.*x_]^ m_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := a*(a*Cos[c + d*x] + b*Sin[c + d*x])^n/(2*b*d*n*Sin[c + d*x]^n) + 1/(2*b)* Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1)/ Sin[c + d*x]^(n + 1), x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, 0] +Int[cos[c_. + d_.*x_]^ m_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -b*(a*Cos[c + d*x] + b*Sin[c + d*x])^n/(2*a*d*n*Cos[c + d*x]^n) + 1/(2*a)* Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1)/ Cos[c + d*x]^(n + 1), x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, 0] +Int[sin[c_. + d_.*x_]^ m_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := a*(a*Cos[c + d*x] + b*Sin[c + d*x])^n/(2*b*d*n*Sin[c + d*x]^n)* Hypergeometric2F1[1, n, n + 1, (b + a*Cot[c + d*x])/(2*b)] /; FreeQ[{a, b, c, d, n}, x] && EqQ[m + n, 0] && EqQ[a^2 + b^2, 0] && Not[IntegerQ[n]] +Int[cos[c_. + d_.*x_]^ m_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -b*(a*Cos[c + d*x] + b*Sin[c + d*x])^n/(2*a*d*n*Cos[c + d*x]^n)* Hypergeometric2F1[1, n, n + 1, (a + b*Tan[c + d*x])/(2*a)] /; FreeQ[{a, b, c, d, n}, x] && EqQ[m + n, 0] && EqQ[a^2 + b^2, 0] && Not[IntegerQ[n]] +Int[sin[c_. + d_.*x_]^ m_*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_., x_Symbol] := Int[(b + a*Cot[c + d*x])^n, x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && IntegerQ[n] && NeQ[a^2 + b^2, 0] +Int[cos[c_. + d_.*x_]^ m_*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_., x_Symbol] := Int[(a + b*Tan[c + d*x])^n, x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && IntegerQ[n] && NeQ[a^2 + b^2, 0] +Int[sin[c_. + d_.*x_]^ m_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := 1/d*Subst[Int[x^m*(a + b*x)^n/(1 + x^2)^((m + n + 2)/2), x], x, Tan[c + d*x]] /; FreeQ[{a, b, c, d}, x] && IntegerQ[n] && IntegerQ[(m + n)/2] && NeQ[n, -1] && Not[GtQ[n, 0] && GtQ[m, 1]] +Int[cos[c_. + d_.*x_]^ m_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -1/d*Subst[Int[x^m*(b + a*x)^n/(1 + x^2)^((m + n + 2)/2), x], x, Cot[c + d*x]] /; FreeQ[{a, b, c, d}, x] && IntegerQ[n] && IntegerQ[(m + n)/2] && NeQ[n, -1] && Not[GtQ[n, 0] && GtQ[m, 1]] +Int[sin[c_. + d_.*x_]^ m_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_., x_Symbol] := Int[ExpandTrig[sin[c + d*x]^m*(a*cos[c + d*x] + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] && IntegerQ[m] && IGtQ[n, 0] +Int[cos[c_. + d_.*x_]^ m_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_., x_Symbol] := Int[ExpandTrig[cos[c + d*x]^m*(a*cos[c + d*x] + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] && IntegerQ[m] && IGtQ[n, 0] +Int[sin[c_. + d_.*x_]^ m_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := a^n*b^n* Int[Sin[c + d*x]^m*(b*Cos[c + d*x] + a*Sin[c + d*x])^(-n), x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[a^2 + b^2, 0] && ILtQ[n, 0] +Int[cos[c_. + d_.*x_]^ m_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := a^n*b^n* Int[Cos[c + d*x]^m*(b*Cos[c + d*x] + a*Sin[c + d*x])^(-n), x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[a^2 + b^2, 0] && ILtQ[n, 0] +Int[(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_/ sin[c_. + d_.*x_], x_Symbol] := a*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/(d*(n - 1)) + b*Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1), x] + a^2* Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2)/Sin[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1] +Int[(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_/ cos[c_. + d_.*x_], x_Symbol] := -b*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/(d*(n - 1)) + a*Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1), x] + b^2* Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2)/Cos[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1] +Int[sin[c_. + d_.*x_]^ m_*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -(a^2 + b^2)* Int[Sin[c + d*x]^(m + 2)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x] + 2*b* Int[Sin[c + d*x]^(m + 1)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1), x] + a^2* Int[Sin[c + d*x]^m*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[n, 1] && LtQ[m, -1] +Int[cos[c_. + d_.*x_]^ m_*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := -(a^2 + b^2)* Int[Cos[c + d*x]^(m + 2)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x] + 2*a* Int[Cos[c + d*x]^(m + 1)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1), x] + b^2* Int[Cos[c + d*x]^m*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[n, 1] && LtQ[m, -1] +Int[sin[c_. + d_.*x_]/(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_]), x_Symbol] := b*x/(a^2 + b^2) - a/(a^2 + b^2)* Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] +Int[cos[c_. + d_.*x_]/(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_]), x_Symbol] := a*x/(a^2 + b^2) + b/(a^2 + b^2)* Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] +Int[sin[c_. + d_.*x_]^ m_/(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_]), x_Symbol] := -a*Sin[c + d*x]^(m - 1)/(d*(a^2 + b^2)*(m - 1)) + b/(a^2 + b^2)*Int[Sin[c + d*x]^(m - 1), x] + a^2/(a^2 + b^2)* Int[Sin[c + d*x]^(m - 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[m, 1] +Int[cos[c_. + d_.*x_]^ m_/(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_]), x_Symbol] := b*Cos[c + d*x]^(m - 1)/(d*(a^2 + b^2)*(m - 1)) + a/(a^2 + b^2)*Int[Cos[c + d*x]^(m - 1), x] + b^2/(a^2 + b^2)* Int[Cos[c + d*x]^(m - 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[m, 1] +Int[1/(sin[ c_. + d_.*x_]*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])), x_Symbol] := 1/a*Int[Cot[c + d*x], x] - 1/a* Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] +Int[1/(cos[ c_. + d_.*x_]*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])), x_Symbol] := 1/b*Int[Tan[c + d*x], x] + 1/b* Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] +Int[sin[c_. + d_.*x_]^ m_/(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_]), x_Symbol] := Sin[c + d*x]^(m + 1)/(a*d*(m + 1)) - b/a^2*Int[Sin[c + d*x]^(m + 1), x] + (a^2 + b^2)/a^2* Int[Sin[c + d*x]^(m + 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[m, -1] +Int[cos[c_. + d_.*x_]^ m_/(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_]), x_Symbol] := -Cos[c + d*x]^(m + 1)/(b*d*(m + 1)) - a/b^2*Int[Cos[c + d*x]^(m + 1), x] + (a^2 + b^2)/b^2* Int[Cos[c + d*x]^(m + 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[m, -1] +Int[(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_/ sin[c_. + d_.*x_], x_Symbol] := -(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1)/(a*d*(n + 1)) - b/a^2*Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1), x] + 1/a^2* Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 2)/Sin[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1] +Int[(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_/ cos[c_. + d_.*x_], x_Symbol] := (a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1)) - a/b^2*Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1), x] + 1/b^2* Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 2)/Cos[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1] +Int[sin[c_. + d_.*x_]^ m_*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := (a^2 + b^2)/a^2* Int[Sin[c + d*x]^(m + 2)*(a*Cos[c + d*x] + b*Sin[c + d*x])^n, x] - 2*b/a^2* Int[Sin[c + d*x]^(m + 1)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1), x] + 1/a^2* Int[Sin[c + d*x]^m*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1] && LtQ[m, -1] +Int[cos[c_. + d_.*x_]^ m_*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^n_, x_Symbol] := (a^2 + b^2)/b^2* Int[Cos[c + d*x]^(m + 2)*(a*Cos[c + d*x] + b*Sin[c + d*x])^n, x] - 2*a/b^2* Int[Cos[c + d*x]^(m + 1)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1), x] + 1/b^2* Int[Cos[c + d*x]^m*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1] && LtQ[m, -1] +Int[cos[c_. + d_.*x_]^m_.* sin[c_. + d_.*x_]^ n_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^p_., x_Symbol] := Int[ExpandTrig[ cos[c + d*x]^m*sin[c + d*x]^n*(a*cos[c + d*x] + b*sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p, 0] +Int[cos[c_. + d_.*x_]^m_.* sin[c_. + d_.*x_]^ n_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^p_, x_Symbol] := a^p*b^p* Int[Cos[c + d*x]^m* Sin[c + d*x]^n*(b*Cos[c + d*x] + a*Sin[c + d*x])^(-p), x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[a^2 + b^2, 0] && ILtQ[p, 0] +Int[cos[c_. + d_.*x_]^m_.* sin[c_. + d_.*x_]^ n_./(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_]), x_Symbol] := b/(a^2 + b^2)*Int[Cos[c + d*x]^m*Sin[c + d*x]^(n - 1), x] + a/(a^2 + b^2)*Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^n, x] - a*b/(a^2 + b^2)* Int[Cos[c + d*x]^(m - 1)* Sin[c + d*x]^(n - 1)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0] && IGtQ[n, 0] +Int[cos[c_. + d_.*x_]^m_.* sin[c_. + d_.*x_]^ n_./(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_]), x_Symbol] := Int[ExpandTrig[ cos[c + d*x]^m*sin[c + d*x]^n/(a*cos[c + d*x] + b*sin[c + d*x]), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegersQ[m, n] +Int[cos[c_. + d_.*x_]^m_.* sin[c_. + d_.*x_]^ n_.*(a_.*cos[c_. + d_.*x_] + b_.*sin[c_. + d_.*x_])^p_, x_Symbol] := b/(a^2 + b^2)* Int[Cos[c + d*x]^m* Sin[c + d*x]^(n - 1)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(p + 1), x] + a/(a^2 + b^2)* Int[Cos[c + d*x]^(m - 1)* Sin[c + d*x]^n*(a*Cos[c + d*x] + b*Sin[c + d*x])^(p + 1), x] - a*b/(a^2 + b^2)* Int[Cos[c + d*x]^(m - 1)* Sin[c + d*x]^(n - 1)*(a*Cos[c + d*x] + b*Sin[c + d*x])^p, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0] && IGtQ[n, 0] && ILtQ[p, 0] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.6 (a+b cos+c sin)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.6 (a+b cos+c sin)^n.m new file mode 100755 index 0000000..0f78355 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.6 (a+b cos+c sin)^n.m @@ -0,0 +1,62 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.6 (a+b cos+c sin)^n *) +Int[Sqrt[a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]], x_Symbol] := -2*(c*Cos[d + e*x] - b*Sin[d + e*x])/(e* Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0] +Int[(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_, x_Symbol] := -(c*Cos[d + e*x] - b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)/(e*n) + a*(2*n - 1)/n* Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0] && GtQ[n, 0] +Int[1/(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := -(c - a*Sin[d + e*x])/(c*e*(c*Cos[d + e*x] - b*Sin[d + e*x])) /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0] +Int[1/Sqrt[a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]], x_Symbol] := Int[1/Sqrt[a + Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0] +Int[(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_, x_Symbol] := (c*Cos[d + e*x] - b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a*e*(2*n + 1)) + (n + 1)/(a*(2*n + 1))* Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0] && LtQ[n, -1] +Int[Sqrt[a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]], x_Symbol] := b/(c*e)* Subst[Int[Sqrt[a + x]/x, x], x, b*Cos[d + e*x] + c*Sin[d + e*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[b^2 + c^2, 0] +Int[Sqrt[a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]], x_Symbol] := Int[Sqrt[a + Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 + c^2, 0] && GtQ[a + Sqrt[b^2 + c^2], 0] +Int[Sqrt[a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]], x_Symbol] := Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/ Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]* Int[ Sqrt[a/(a + Sqrt[b^2 + c^2]) + Sqrt[b^2 + c^2]/(a + Sqrt[b^2 + c^2])* Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] && Not[GtQ[a + Sqrt[b^2 + c^2], 0]] +Int[(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_, x_Symbol] := -(c*Cos[d + e*x] - b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)/(e*n) + 1/n* Int[Simp[ n*a^2 + (n - 1)*(b^2 + c^2) + a*b*(2*n - 1)*Cos[d + e*x] + a*c*(2*n - 1)*Sin[d + e*x], x]* (a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 2), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && GtQ[n, 1] +(* Int[1/(a_+b_.*cos[d_.+e_.*x_]+c_.*sin[d_.+e_.*x_]),x_Symbol] := x/Sqrt[a^2-b^2-c^2] + 2/(e*Sqrt[a^2-b^2-c^2])*ArcTan[(c*Cos[d+e*x]-b*Sin[d+e*x])/(a+Sqrt[ a^2-b^2-c^2]+b*Cos[d+e*x]+c*Sin[d+e*x])] /; FreeQ[{a,b,c,d,e},x] && GtQ[a^2-b^2-c^2,0] *) +(* Int[1/(a_+b_.*cos[d_.+e_.*x_]+c_.*sin[d_.+e_.*x_]),x_Symbol] := Log[RemoveContent[b^2+c^2+(a*b-c*Rt[-a^2+b^2+c^2,2])*Cos[d+e*x]+(a* c+b*Sqrt[-a^2+b^2+c^2])*Sin[d+e*x],x]]/ (2*e*Rt[-a^2+b^2+c^2,2]) - Log[RemoveContent[b^2+c^2+(a*b+c*Rt[-a^2+b^2+c^2,2])*Cos[d+e*x]+(a* c-b*Sqrt[-a^2+b^2+c^2])*Sin[d+e*x],x]]/ (2*e*Rt[-a^2+b^2+c^2,2]) /; FreeQ[{a,b,c,d,e},x] && LtQ[a^2-b^2-c^2,0] *) +Int[1/(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := Module[{f = FreeFactors[Cot[(d + e*x)/2], x]}, -f/e*Subst[Int[1/(a + c*f*x), x], x, Cot[(d + e*x)/2]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a + b, 0] +Int[1/(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := Module[{f = FreeFactors[Tan[(d + e*x)/2 + Pi/4], x]}, f/e*Subst[Int[1/(a + b*f*x), x], x, Tan[(d + e*x)/2 + Pi/4]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a + c, 0] +Int[1/(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := Module[{f = FreeFactors[Cot[(d + e*x)/2 + Pi/4], x]}, -f/e* Subst[Int[1/(a + b*f*x), x], x, Cot[(d + e*x)/2 + Pi/4]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a - c, 0] && NeQ[a - b, 0] +Int[1/(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := Module[{f = FreeFactors[Tan[(d + e*x)/2], x]}, 2*f/e* Subst[Int[1/(a + b + 2*c*f*x + (a - b)*f^2*x^2), x], x, Tan[(d + e*x)/2]/f]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] +Int[1/Sqrt[a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]], x_Symbol] := b/(c*e)* Subst[Int[1/(x*Sqrt[a + x]), x], x, b*Cos[d + e*x] + c*Sin[d + e*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[b^2 + c^2, 0] +Int[1/Sqrt[a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]], x_Symbol] := Int[1/Sqrt[a + Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 + c^2, 0] && GtQ[a + Sqrt[b^2 + c^2], 0] +Int[1/Sqrt[a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]], x_Symbol] := Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]/ Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]* Int[ 1/Sqrt[a/(a + Sqrt[b^2 + c^2]) + Sqrt[b^2 + c^2]/(a + Sqrt[b^2 + c^2])* Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] && Not[GtQ[a + Sqrt[b^2 + c^2], 0]] +Int[1/(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^(3/2), x_Symbol] := 2*(c*Cos[d + e*x] - b*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)* Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]) + 1/(a^2 - b^2 - c^2)* Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] +Int[(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_, x_Symbol] := (-c*Cos[d + e*x] + b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)/(e*(n + 1)*(a^2 - b^2 - c^2)) + 1/((n + 1)*(a^2 - b^2 - c^2))* Int[(a*(n + 1) - b*(n + 2)*Cos[d + e*x] - c*(n + 2)*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && LtQ[n, -1] && NeQ[n, -3/2] +Int[(A_. + B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])/(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := (2*a*A - b*B - c*C)* x/(2*a^2) - (b*B + c*C)*(b*Cos[d + e*x] - c*Sin[d + e*x])/(2*a*b*c*e) + (a^2*(b*B - c*C) - 2*a*A*b^2 + b^2*(b*B + c*C))* Log[RemoveContent[a + b*Cos[d + e*x] + c*Sin[d + e*x], x]]/(2*a^2* b*c*e) /; FreeQ[{a, b, c, d, e, A, B, C}, x] && EqQ[b^2 + c^2, 0] +Int[(A_. + C_.*sin[d_. + e_.*x_])/(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := (2*a*A - c*C)*x/(2*a^2) - C*Cos[d + e*x]/(2*a*e) + c*C*Sin[d + e*x]/(2*a*b*e) + (-a^2*C + 2*a*c*A + b^2*C)* Log[RemoveContent[a + b*Cos[d + e*x] + c*Sin[d + e*x], x]]/(2*a^2* b*e) /; FreeQ[{a, b, c, d, e, A, C}, x] && EqQ[b^2 + c^2, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_])/(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := (2*a*A - b*B)*x/(2*a^2) - b*B*Cos[d + e*x]/(2*a*c*e) + B*Sin[d + e*x]/(2*a*e) + (a^2*B - 2*a*b*A + b^2*B)* Log[RemoveContent[a + b*Cos[d + e*x] + c*Sin[d + e*x], x]]/(2*a^2* c*e) /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 + c^2, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := (b*B + c*C)*x/(b^2 + c^2) + (c*B - b*C)* Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2)) /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[b^2 + c^2, 0] && EqQ[A*(b^2 + c^2) - a*(b*B + c*C), 0] +Int[(A_. + C_.*sin[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := c*C*x/(b^2 + c^2) - b*C*Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2)) /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[b^2 + c^2, 0] && EqQ[A*(b^2 + c^2) - a*c*C, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := b*B*x/(b^2 + c^2) + c*B*Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2)) /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 + c^2, 0] && EqQ[A*(b^2 + c^2) - a*b*B, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := (b*B + c*C)*x/(b^2 + c^2) + (c*B - b*C)* Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2)) + (A*(b^2 + c^2) - a*(b*B + c*C))/(b^2 + c^2)* Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[b^2 + c^2, 0] && NeQ[A*(b^2 + c^2) - a*(b*B + c*C), 0] +Int[(A_. + C_.*sin[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := c*C*(d + e*x)/(e*(b^2 + c^2)) - b*C*Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2)) + (A*(b^2 + c^2) - a*c*C)/(b^2 + c^2)* Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x] /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[b^2 + c^2, 0] && NeQ[A*(b^2 + c^2) - a*c*C, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]), x_Symbol] := b*B*(d + e*x)/(e*(b^2 + c^2)) + c*B*Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2)) + (A*(b^2 + c^2) - a*b*B)/(b^2 + c^2)* Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 + c^2, 0] && NeQ[A*(b^2 + c^2) - a*b*B, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_., x_Symbol] := (B*c - b*C - a*C*Cos[d + e*x] + a*B*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a*e*(n + 1)) /; FreeQ[{a, b, c, d, e, A, B, C, n}, x] && NeQ[n, -1] && EqQ[a^2 - b^2 - c^2, 0] && EqQ[(b*B + c*C)*n + a*A*(n + 1), 0] +Int[(A_. + C_.*sin[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_., x_Symbol] := -(b*C + a*C*Cos[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a*e*(n + 1)) /; FreeQ[{a, b, c, d, e, A, C, n}, x] && NeQ[n, -1] && EqQ[a^2 - b^2 - c^2, 0] && EqQ[c*C*n + a*A*(n + 1), 0] +Int[(A_. + B_.*cos[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_., x_Symbol] := (B*c + a*B*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a*e*(n + 1)) /; FreeQ[{a, b, c, d, e, A, B, n}, x] && NeQ[n, -1] && EqQ[a^2 - b^2 - c^2, 0] && EqQ[b*B*n + a*A*(n + 1), 0] +Int[(A_. + B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_., x_Symbol] := (B*c - b*C - a*C*Cos[d + e*x] + a*B*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a*e*(n + 1)) + ((b*B + c*C)*n + a*A*(n + 1))/(a*(n + 1))* Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e, A, B, C, n}, x] && NeQ[n, -1] && EqQ[a^2 - b^2 - c^2, 0] && NeQ[(b*B + c*C)*n + a*A*(n + 1), 0] +Int[(A_. + C_.*sin[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_., x_Symbol] := -(b*C + a*C*Cos[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a*e*(n + 1)) + (c*C*n + a*A*(n + 1))/(a*(n + 1))* Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e, A, C, n}, x] && NeQ[n, -1] && EqQ[a^2 - b^2 - c^2, 0] && NeQ[c*C*n + a*A*(n + 1), 0] +Int[(A_. + B_.*cos[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_., x_Symbol] := (B*c + a*B*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a*e*(n + 1)) + (b*B*n + a*A*(n + 1))/(a*(n + 1))* Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && NeQ[n, -1] && EqQ[a^2 - b^2 - c^2, 0] && NeQ[b*B*n + a*A*(n + 1), 0] +Int[(B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])*(b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_., x_Symbol] := (c*B - b*C)*(b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)/(e*(n + 1)*(b^2 + c^2)) /; FreeQ[{b, c, d, e, B, C}, x] && NeQ[n, -1] && NeQ[b^2 + c^2, 0] && EqQ[b*B + c*C, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_., x_Symbol] := (B*c - b*C - a*C*Cos[d + e*x] + a*B*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a*e*(n + 1)) + 1/(a*(n + 1))*Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)* Simp[a*(b*B + c*C)*n + a^2*A*(n + 1) + (n*(a^2*B - B*c^2 + b*c*C) + a*b*A*(n + 1))* Cos[d + e*x] + (n*(b*B*c + a^2*C - b^2*C) + a*c*A*(n + 1))* Sin[d + e*x], x], x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && GtQ[n, 0] && NeQ[a^2 - b^2 - c^2, 0] +Int[(A_. + C_.*sin[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_., x_Symbol] := -(b*C + a*C*Cos[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a*e*(n + 1)) + 1/(a*(n + 1))*Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)* Simp[a*c*C*n + a^2*A*(n + 1) + (c*b*C*n + a*b*A*(n + 1))* Cos[d + e*x] + (a^2*C*n - b^2*C*n + a*c*A*(n + 1))* Sin[d + e*x], x], x] /; FreeQ[{a, b, c, d, e, A, C}, x] && GtQ[n, 0] && NeQ[a^2 - b^2 - c^2, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_., x_Symbol] := (B*c + a*B*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a*e*(n + 1)) + 1/(a*(n + 1))*Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)* Simp[a*b*B*n + a^2*A*(n + 1) + (a^2*B*n - c^2*B*n + a*b*A*(n + 1))* Cos[d + e*x] + (b*c*B*n + a*c*A*(n + 1))*Sin[d + e*x], x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && GtQ[n, 0] && NeQ[a^2 - b^2 - c^2, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])/ Sqrt[a_ + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]], x_Symbol] := B/b*Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x] + (A*b - a*B)/b* Int[1/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && EqQ[B*c - b*C, 0] && NeQ[A*b - a*B, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^2, x_Symbol] := (c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B - b*A)*Sin[d + e*x])/ (e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])) /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[a^2 - b^2 - c^2, 0] && EqQ[a*A - b*B - c*C, 0] +Int[(A_. + C_.*sin[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^2, x_Symbol] := -(b*C + (a*C - c*A)*Cos[d + e*x] + b*A*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])) /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[a^2 - b^2 - c^2, 0] && EqQ[a*A - c*C, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^2, x_Symbol] := (c*B + c*A*Cos[d + e*x] + (a*B - b*A)* Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])) /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[a^2 - b^2 - c^2, 0] && EqQ[a*A - b*B, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^2, x_Symbol] := (c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B - b*A)*Sin[d + e*x])/ (e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])) + (a*A - b*B - c*C)/(a^2 - b^2 - c^2)* Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[a*A - b*B - c*C, 0] +Int[(A_. + C_.*sin[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^2, x_Symbol] := -(b*C + (a*C - c*A)*Cos[d + e*x] + b*A*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])) + (a*A - c*C)/(a^2 - b^2 - c^2)* Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x] /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[a*A - c*C, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^2, x_Symbol] := (c*B + c*A*Cos[d + e*x] + (a*B - b*A)* Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])) + (a*A - b*B)/(a^2 - b^2 - c^2)* Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[a*A - b*B, 0] +Int[(A_. + B_.*cos[d_. + e_.*x_] + C_.*sin[d_. + e_.*x_])*(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_, x_Symbol] := -(c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B - b*A)*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)/ (e*(n + 1)*(a^2 - b^2 - c^2)) + 1/((n + 1)*(a^2 - b^2 - c^2))* Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)* Simp[(n + 1)*(a*A - b*B - c*C) + (n + 2)*(a*B - b*A)* Cos[d + e*x] + (n + 2)*(a*C - c*A)*Sin[d + e*x], x], x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && LtQ[n, -1] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[n, -2] +Int[(A_. + C_.*sin[d_. + e_.*x_])*(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_, x_Symbol] := (b*C + (a*C - c*A)*Cos[d + e*x] + b*A*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)/ (e*(n + 1)*(a^2 - b^2 - c^2)) + 1/((n + 1)*(a^2 - b^2 - c^2))* Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)* Simp[(n + 1)*(a*A - c*C) - (n + 2)*b*A* Cos[d + e*x] + (n + 2)*(a*C - c*A)*Sin[d + e*x], x], x] /; FreeQ[{a, b, c, d, e, A, C}, x] && LtQ[n, -1] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[n, -2] +Int[(A_. + B_.*cos[d_. + e_.*x_])*(a_. + b_.*cos[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_])^n_, x_Symbol] := -(c*B + c*A*Cos[d + e*x] + (a*B - b*A)*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)/ (e*(n + 1)*(a^2 - b^2 - c^2)) + 1/((n + 1)*(a^2 - b^2 - c^2))* Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)* Simp[(n + 1)*(a*A - b*B) + (n + 2)*(a*B - b*A)* Cos[d + e*x] - (n + 2)*c*A*Sin[d + e*x], x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && LtQ[n, -1] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[n, -2] +Int[1/(a_. + b_.*sec[d_. + e_.*x_] + c_.*tan[d_. + e_.*x_]), x_Symbol] := Int[Cos[d + e*x]/(b + a*Cos[d + e*x] + c*Sin[d + e*x]), x] /; FreeQ[{a, b, c, d, e}, x] +Int[1/(a_. + b_.*csc[d_. + e_.*x_] + c_.*cot[d_. + e_.*x_]), x_Symbol] := Int[Sin[d + e*x]/(b + a*Sin[d + e*x] + c*Cos[d + e*x]), x] /; FreeQ[{a, b, c, d, e}, x] +Int[cos[d_. + e_.*x_]^ n_.*(a_. + b_.*sec[d_. + e_.*x_] + c_.*tan[d_. + e_.*x_])^n_., x_Symbol] := Int[(b + a*Cos[d + e*x] + c*Sin[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[n] +Int[sin[d_. + e_.*x_]^ n_.*(a_. + b_.*csc[d_. + e_.*x_] + c_.*cot[d_. + e_.*x_])^n_., x_Symbol] := Int[(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[n] +Int[cos[d_. + e_.*x_]^ n_*(a_. + b_.*sec[d_. + e_.*x_] + c_.*tan[d_. + e_.*x_])^n_, x_Symbol] := Cos[d + e*x]^ n*(a + b*Sec[d + e*x] + c*Tan[d + e*x])^ n/(b + a*Cos[d + e*x] + c*Sin[d + e*x])^n* Int[(b + a*Cos[d + e*x] + c*Sin[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && Not[IntegerQ[n]] +Int[sin[d_. + e_.*x_]^ n_*(a_. + b_.*csc[d_. + e_.*x_] + c_.*cot[d_. + e_.*x_])^n_, x_Symbol] := Sin[d + e*x]^ n*(a + b*Csc[d + e*x] + c*Cot[d + e*x])^ n/(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n* Int[(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && Not[IntegerQ[n]] +Int[sec[d_. + e_.*x_]^ n_.*(a_. + b_.*sec[d_. + e_.*x_] + c_.*tan[d_. + e_.*x_])^m_, x_Symbol] := Int[1/(b + a*Cos[d + e*x] + c*Sin[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + n, 0] && IntegerQ[n] +Int[csc[d_. + e_.*x_]^ n_.*(a_. + b_.*csc[d_. + e_.*x_] + c_.*cot[d_. + e_.*x_])^m_, x_Symbol] := Int[1/(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + n, 0] && IntegerQ[n] +Int[sec[d_. + e_.*x_]^ n_.*(a_. + b_.*sec[d_. + e_.*x_] + c_.*tan[d_. + e_.*x_])^m_, x_Symbol] := Sec[d + e*x]^ n*(b + a*Cos[d + e*x] + c*Sin[d + e*x])^ n/(a + b*Sec[d + e*x] + c*Tan[d + e*x])^n* Int[1/(b + a*Cos[d + e*x] + c*Sin[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + n, 0] && Not[IntegerQ[n]] +Int[csc[d_. + e_.*x_]^ n_.*(a_. + b_.*csc[d_. + e_.*x_] + c_.*cot[d_. + e_.*x_])^m_, x_Symbol] := Csc[d + e*x]^ n*(b + a*Sin[d + e*x] + c*Cos[d + e*x])^ n/(a + b*Csc[d + e*x] + c*Cot[d + e*x])^n* Int[1/(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + n, 0] && Not[IntegerQ[n]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.7 (d trig)^m (a+b (c sin)^n)^p.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.7 (d trig)^m (a+b (c sin)^n)^p.m new file mode 100755 index 0000000..66df6e4 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.7 (d trig)^m (a+b (c sin)^n)^p.m @@ -0,0 +1,79 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.7 (d trig)^m (a+b (c sin)^n)^p *) +Int[(a_ + b_.*sin[e_. + f_.*x_]^2)*(A_. + B_.*sin[e_. + f_.*x_]^2), x_Symbol] := (4*A*(2*a + b) + B*(4*a + 3*b))*x/8 - (4*A*b + B*(4*a + 3*b))*Cos[e + f*x]*Sin[e + f*x]/(8*f) - b*B*Cos[e + f*x]*Sin[e + f*x]^3/(4*f) /; FreeQ[{a, b, e, f, A, B}, x] +Int[(a_ + b_.*sin[e_. + f_.*x_]^2)^p_*(A_. + B_.*sin[e_. + f_.*x_]^2), x_Symbol] := -B*Cos[e + f*x]* Sin[e + f*x]*(a + b*Sin[e + f*x]^2)^p/(2*f*(p + 1)) + 1/(2*(p + 1))*Int[(a + b*Sin[e + f*x]^2)^(p - 1)* Simp[a*B + 2*a*A*(p + 1) + (2*A*b*(p + 1) + B*(b + 2*a*p + 2*b*p))* Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, B}, x] && GtQ[p, 0] +Int[(A_. + B_.*sin[e_. + f_.*x_]^2)/(a_ + b_.*sin[e_. + f_.*x_]^2), x_Symbol] := B*x/b + (A*b - a*B)/b*Int[1/(a + b*Sin[e + f*x]^2), x] /; FreeQ[{a, b, e, f, A, B}, x] +Int[(A_. + B_.*sin[e_. + f_.*x_]^2)/ Sqrt[a_ + b_.*sin[e_. + f_.*x_]^2], x_Symbol] := B/b*Int[Sqrt[a + b*Sin[e + f*x]^2], x] + (A*b - a*B)/b* Int[1/Sqrt[a + b*Sin[e + f*x]^2], x] /; FreeQ[{a, b, e, f, A, B}, x] +Int[(a_ + b_.*sin[e_. + f_.*x_]^2)^p_*(A_. + B_.*sin[e_. + f_.*x_]^2), x_Symbol] := -(A*b - a*B)*Cos[e + f*x]* Sin[e + f*x]*(a + b*Sin[e + f*x]^2)^(p + 1)/(2*a* f*(a + b)*(p + 1)) - 1/(2*a*(a + b)*(p + 1))*Int[(a + b*Sin[e + f*x]^2)^(p + 1)* Simp[a*B - A*(2*a*(p + 1) + b*(2*p + 3)) + 2*(A*b - a*B)*(p + 2)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, B}, x] && LtQ[p, -1] && NeQ[a + b, 0] +Int[(a_. + b_.*sin[e_. + f_.*x_]^2)^ p_*(A_. + B_.*sin[e_. + f_.*x_]^2), x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff*(a + b*Sin[e + f*x]^2)^ p*(Sec[e + f*x]^2)^p/(f*(a + (a + b)*Tan[e + f*x]^2)^p)* Subst[ Int[(a + (a + b)*ff^2*x^2)^ p*(A + (A + B)*ff^2*x^2)/(1 + ff^2*x^2)^(p + 2), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f, A, B}, x] && Not[IntegerQ[p]] +Int[u_.*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_, x_Symbol] := a^p*Int[ActivateTrig[u*cos[e + f*x]^(2*p)], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0] && IntegerQ[p] +Int[u_.*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_, x_Symbol] := Int[ActivateTrig[u*(a*cos[e + f*x]^2)^p], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]^2], x_Symbol] := Sqrt[a]/f*EllipticE[e + f*x, -b/a] /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0] +Int[Sqrt[a_ + b_.*sin[e_. + f_.*x_]^2], x_Symbol] := Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[1 + b*Sin[e + f*x]^2/a]* Int[Sqrt[1 + (b*Sin[e + f*x]^2)/a], x] /; FreeQ[{a, b, e, f}, x] && Not[GtQ[a, 0]] +Int[(a_ + b_.*sin[e_. + f_.*x_]^2)^2, x_Symbol] := (8*a^2 + 8*a*b + 3*b^2)*x/8 - b*(8*a + 3*b)*Cos[e + f*x]*Sin[e + f*x]/(8*f) - b^2*Cos[e + f*x]*Sin[e + f*x]^3/(4*f) /; FreeQ[{a, b, e, f}, x] +Int[(a_ + b_.*sin[e_. + f_.*x_]^2)^p_, x_Symbol] := -b*Cos[e + f*x]* Sin[e + f*x]*(a + b*Sin[e + f*x]^2)^(p - 1)/(2*f*p) + 1/(2*p)* Int[(a + b*Sin[e + f*x]^2)^(p - 2)* Simp[a*(b + 2*a*p) + b*(2*a + b)*(2*p - 1)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a + b, 0] && GtQ[p, 1] +Int[1/(a_ + b_.*sin[e_. + f_.*x_]^2), x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[1/(a + (a + b)*ff^2*x^2), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] +Int[1/Sqrt[a_ + b_.*sin[e_. + f_.*x_]^2], x_Symbol] := 1/(Sqrt[a]*f)*EllipticF[e + f*x, -b/a] /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0] +Int[1/Sqrt[a_ + b_.*sin[e_. + f_.*x_]^2], x_Symbol] := Sqrt[1 + b*Sin[e + f*x]^2/a]/Sqrt[a + b*Sin[e + f*x]^2]* Int[1/Sqrt[1 + (b*Sin[e + f*x]^2)/a], x] /; FreeQ[{a, b, e, f}, x] && Not[GtQ[a, 0]] +Int[(a_ + b_.*sin[e_. + f_.*x_]^2)^p_, x_Symbol] := -b*Cos[e + f*x]* Sin[e + f*x]*(a + b*Sin[e + f*x]^2)^(p + 1)/(2*a* f*(p + 1)*(a + b)) + 1/(2*a*(p + 1)*(a + b))* Int[(a + b*Sin[e + f*x]^2)^(p + 1)* Simp[2*a*(p + 1) + b*(2*p + 3) - 2*b*(p + 2)*Sin[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a + b, 0] && LtQ[p, -1] +Int[(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff*Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])* Subst[Int[(a + b*ff^2*x^2)^p/Sqrt[1 - ff^2*x^2], x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && Not[IntegerQ[p]] +Int[sin[e_. + f_.*x_]^m_.*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Cos[e + f*x], x]}, -ff/f* Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] +Int[sin[e_. + f_.*x_]^m_*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff^(m + 1)/f* Subst[Int[ x^m*(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p] +Int[sin[e_. + f_.*x_]^m_*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff^(m + 1)*Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])* Subst[Int[x^m*(a + b*ff^2*x^2)^p/Sqrt[1 - ff^2*x^2], x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Not[IntegerQ[p]] +Int[(d_.*sin[e_. + f_.*x_])^m_*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Cos[e + f*x], x]}, -ff* d^(2*IntPart[(m - 1)/2] + 1)*(d*Sin[e + f*x])^(2* FracPart[(m - 1)/2])/(f*(Sin[e + f*x]^2)^ FracPart[(m - 1)/2])* Subst[ Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Not[IntegerQ[m]] +Int[cos[e_. + f_.*x_]^m_.*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff/f* Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] +Int[cos[e_. + f_.*x_]^m_*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p] +Int[cos[e_. + f_.*x_]^m_*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff*Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])* Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Not[IntegerQ[p]] +Int[(d_.*cos[e_. + f_.*x_])^m_*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff*d^(2*IntPart[(m - 1)/2] + 1)*(d*Cos[e + f*x])^(2* FracPart[(m - 1)/2])/(f*(Cos[e + f*x]^2)^ FracPart[(m - 1)/2])* Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Not[IntegerQ[m]] +Int[tan[e_. + f_.*x_]^m_.*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x]^2, x]}, ff^((m + 1)/2)/(2*f)* Subst[Int[x^((m - 1)/2)*(a + b*ff*x)^p/(1 - ff*x)^((m + 1)/2), x], x, Sin[e + f*x]^2/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] +Int[(d_.*tan[e_. + f_.*x_])^m_*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(d*ff*x)^ m*(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, m}, x] && IntegerQ[p] +Int[tan[e_. + f_.*x_]^m_*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff^(m + 1)*Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])* Subst[ Int[x^m*(a + b*ff^2*x^2)^p/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Not[IntegerQ[p]] +Int[(d_.*tan[e_. + f_.*x_])^m_*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff*(d*Tan[e + f*x])^(m + 1)*(Cos[e + f*x]^2)^((m + 1)/2)/(d*f* Sin[e + f*x]^(m + 1))* Subst[ Int[(ff*x)^m*(a + b*ff^2*x^2)^p/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Not[IntegerQ[m]] +Int[cos[e_. + f_.*x_]^m_.*(d_.*sin[e_. + f_.*x_])^ n_.*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff/f* Subst[Int[(d*ff*x)^n*(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^ p, x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(m - 1)/2] +Int[(c_.*sin[e_. + f_.*x_])^m_* sin[e_. + f_.*x_]^n_.*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Cos[e + f*x], x]}, -ff/f* Subst[Int[(c*ff*x)^ m*(1 - ff^2*x^2)^((n - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos[e + f*x]/ff]] /; FreeQ[{a, b, c, e, f, m, p}, x] && IntegerQ[(n - 1)/2] +Int[cos[e_. + f_.*x_]^m_* sin[e_. + f_.*x_]^n_*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff^(n + 1)/f* Subst[Int[ x^n*(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^((m + n)/2 + p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[n/2] && IntegerQ[p] +Int[cos[e_. + f_.*x_]^m_*(d_.*sin[e_. + f_.*x_])^ n_.*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff*Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])* Subst[Int[(d*ff*x)^n*(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^ p, x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[m/2] +Int[(c_.*cos[e_. + f_.*x_])^m_*(d_.*sin[e_. + f_.*x_])^ n_.*(a_ + b_.*sin[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff*c^(2*IntPart[(m - 1)/2] + 1)*(c*Cos[e + f*x])^(2* FracPart[(m - 1)/2])/(f*(Cos[e + f*x]^2)^ FracPart[(m - 1)/2])* Subst[ Int[(d*ff*x)^n*(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] +Int[(b_.*sin[e_. + f_.*x_]^2)^p_, x_Symbol] := -Cot[e + f*x]*(b*Sin[e + f*x]^2)^p/(2*f*p) + b*(2*p - 1)/(2*p)*Int[(b*Sin[e + f*x]^2)^(p - 1), x] /; FreeQ[{b, e, f}, x] && Not[IntegerQ[p]] && GtQ[p, 1] +Int[(b_.*sin[e_. + f_.*x_]^2)^p_, x_Symbol] := Cot[e + f*x]*(b*Sin[e + f*x]^2)^(p + 1)/(b*f*(2*p + 1)) + 2*(p + 1)/(b*(2*p + 1))*Int[(b*Sin[e + f*x]^2)^(p + 1), x] /; FreeQ[{b, e, f}, x] && Not[IntegerQ[p]] && LtQ[p, -1] +Int[tan[e_. + f_.*x_]^m_.*(b_.*sin[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x]^2, x]}, ff^((m + 1)/2)/(2*f)* Subst[Int[ x^((m - 1)/2)*(b*ff^(n/2)*x^(n/2))^p/(1 - ff*x)^((m + 1)/2), x], x, Sin[e + f*x]^2/ff]] /; FreeQ[{b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] +Int[tan[e_. + f_.*x_]^m_.*(b_.*(c_.*sin[e_. + f_.*x_])^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff^(m + 1)/f* Subst[Int[x^m*(b*(c*ff*x)^n)^p/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff]] /; FreeQ[{b, c, e, f, n, p}, x] && ILtQ[(m - 1)/2, 0] +Int[u_.*(b_.*sin[e_. + f_.*x_]^n_)^p_, x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, (b*ff^n)^ IntPart[p]*(b*Sin[e + f*x]^n)^ FracPart[p]/(Sin[e + f*x]/ff)^(n*FracPart[p])* Int[ActivateTrig[u]*(Sin[e + f*x]/ff)^(n*p), x]] /; FreeQ[{b, e, f, n, p}, x] && Not[IntegerQ[p]] && IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, (d_.*trig_[e + f*x])^m_. /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]]) +Int[u_.*(b_.*(c_.*sin[e_. + f_.*x_])^n_)^p_, x_Symbol] := b^IntPart[p]*(b*(c*Sin[e + f*x])^n)^ FracPart[p]/(c*Sin[e + f*x])^(n*FracPart[p])* Int[ActivateTrig[u]*(c*Sin[e + f*x])^(n*p), x] /; FreeQ[{b, c, e, f, n, p}, x] && Not[IntegerQ[p]] && Not[IntegerQ[n]] && (EqQ[u, 1] || MatchQ[u, (d_.*trig_[e + f*x])^m_. /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]]) +(* Int[(a_+b_.*sin[e_.+f_.*x_]^4)^p_.,x_Symbol] := With[{ff=FreeFactors[Tan[e+f*x],x]}, -ff/f*Subst[Int[(a+b+2*a*ff^2*x^2+a*ff^4*x^4)^p/(1+ff^2*x^2)^(2*p+1) ,x],x,Cot[e+f*x]/ff]] /; FreeQ[{a,b,e,f},x] && IntegerQ[p] *) +Int[(a_ + b_.*sin[e_. + f_.*x_]^4)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^ p/(1 + ff^2*x^2)^(2*p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[p] +Int[(a_ + b_.*sin[e_. + f_.*x_]^4)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff*(a + b*Sin[e + f*x]^4)^ p*(Sec[e + f*x]^2)^(2* p)/(f*(a + 2*a*Tan[e + f*x]^2 + (a + b)*Tan[e + f*x]^4)^p)* Subst[ Int[(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^ p/(1 + ff^2*x^2)^(2*p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[p - 1/2] +Int[1/(a_ + b_.*sin[e_. + f_.*x_]^n_), x_Symbol] := Module[{k}, Dist[2/(a*n), Sum[Int[1/(1 - Sin[e + f*x]^2/((-1)^(4*k/n)*Rt[-a/b, n/2])), x], {k, 1, n/2}], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[n/2] +(* Int[(a_+b_.*sin[e_.+f_.*x_]^n_)^p_,x_Symbol] := With[{ff=FreeFactors[Tan[e+f*x],x]}, -ff/f*Subst[Int[(b+a*(1+ff^2*x^2)^(n/2))^p/(1+ff^2*x^2)^(n*p/2+1),x] ,x,Cot[e+f*x]/ff]] /; FreeQ[{a,b,e,f},x] && IntegerQ[n/2] && IGtQ[p,0] *) +Int[(a_ + b_.*sin[e_. + f_.*x_]^n_)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(b*ff^n*x^n + a*(1 + ff^2*x^2)^(n/2))^ p/(1 + ff^2*x^2)^(n*p/2 + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[n/2] && IGtQ[p, 0] +Int[(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^p_, x_Symbol] := Int[ExpandTrig[(a + b*(c*sin[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, e, f, n}, x] && (IGtQ[p, 0] || EqQ[p, -1] && IntegerQ[n]) +Int[(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^p_, x_Symbol] := Unintegrable[(a + b*(c*Sin[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, e, f, n, p}, x] +Int[sin[e_. + f_.*x_]^m_.*(a_ + b_.*sin[e_. + f_.*x_]^4)^p_., x_Symbol] := With[{ff = FreeFactors[Cos[e + f*x], x]}, -ff/f* Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4)^p, x], x, Cos[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] +Int[sin[e_. + f_.*x_]^m_.*(a_ + b_.*sin[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Cos[e + f*x], x]}, -ff/f* Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*(1 - ff^2*x^2)^(n/2))^ p, x], x, Cos[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] +Int[sin[e_. + f_.*x_]^m_*(a_ + b_.*sin[e_. + f_.*x_]^4)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff^(m + 1)/f* Subst[Int[ x^m*(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^ p/(1 + ff^2*x^2)^(m/2 + 2*p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p] +Int[sin[e_. + f_.*x_]^m_*(a_ + b_.*sin[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff^(m + 1)/f* Subst[Int[ x^m*(a*(1 + ff^2*x^2)^(n/2) + b*ff^n*x^n)^ p/(1 + ff^2*x^2)^(m/2 + n*p/2 + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[n/2] && IntegerQ[p] +Int[sin[e_. + f_.*x_]^m_*(a_ + b_.*sin[e_. + f_.*x_]^4)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff^(m + 1)*(a + b*Sin[e + f*x]^4)^ p*(Sec[e + f*x]^2)^(2*p)/(f* Apart[a*(1 + Tan[e + f*x]^2)^2 + b*Tan[e + f*x]^4]^p)* Subst[ Int[x^m*ExpandToSum[a*(1 + ff^2*x^2)^2 + b*ff^4*x^4, x]^ p/(1 + ff^2*x^2)^(m/2 + 2*p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[p - 1/2] +Int[sin[e_. + f_.*x_]^m_.*(a_ + b_.*sin[e_. + f_.*x_]^n_)^p_., x_Symbol] := Int[ExpandTrig[sin[e + f*x]^m*(a + b*sin[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, e, f}, x] && IntegersQ[m, p] && (EqQ[n, 4] || GtQ[p, 0] || EqQ[p, -1] && IntegerQ[n]) +Int[(d_.*sin[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Int[ExpandTrig[(d*sin[e + f*x])^m*(a + b*(c*sin[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 0] +Int[(d_.*sin[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Unintegrable[(d*Sin[e + f*x])^m*(a + b*(c*Sin[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[cos[e_. + f_.*x_]^m_.*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff/f* Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p, x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (EqQ[n, 4] || GtQ[m, 0] || IGtQ[p, 0] || IntegersQ[m, p]) +Int[cos[e_. + f_.*x_]^m_*(a_ + b_.*sin[e_. + f_.*x_]^4)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^ p/(1 + ff^2*x^2)^(m/2 + 2*p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p] +Int[cos[e_. + f_.*x_]^m_*(a_ + b_.*sin[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(b*ff^n*x^n + a*(1 + ff^2*x^2)^(n/2))^ p/(1 + ff^2*x^2)^(m/2 + n*p/2 + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[n/2] && IntegerQ[p] +Int[cos[e_. + f_.*x_]^m_/(a_ + b_.*sin[e_. + f_.*x_]^n_), x_Symbol] := Int[Expand[(1 - Sin[e + f*x]^2)^(m/2)/(a + b*Sin[e + f*x]^n), x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m/2, 0] && IntegerQ[(n - 1)/2] +(* Int[cos[e_.+f_.*x_]^m_*(a_+b_.*sin[e_.+f_.*x_]^n_)^p_,x_Symbol] := Int[ExpandTrig[(1-sin[e+f*x]^2)^(m/2)*(a+b*sin[e+f*x]^n)^p,x],x] /; FreeQ[{a,b,e,f},x] && IntegerQ[m/2] && IntegerQ[(n-1)/2] && ILtQ[p,-1] && LtQ[m,0] *) +Int[(d_.*cos[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Int[ExpandTrig[(d*cos[e + f*x])^m*(a + b*(c*sin[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 0] +Int[(d_.*cos[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Unintegrable[(d*Cos[e + f*x])^m*(a + b*(c*Sin[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[tan[e_. + f_.*x_]^m_.*(a_ + b_.*sin[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x]^2, x]}, ff^((m + 1)/2)/(2*f)* Subst[Int[ x^((m - 1)/2)*(a + b*ff^(n/2)*x^(n/2))^p/(1 - ff*x)^((m + 1)/2), x], x, Sin[e + f*x]^2/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] +Int[tan[e_. + f_.*x_]^m_.*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff^(m + 1)/f* Subst[Int[x^m*(a + b*(c*ff*x)^n)^p/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, c, e, f, n, p}, x] && ILtQ[(m - 1)/2, 0] +Int[(d_.*tan[e_. + f_.*x_])^m_*(a_ + b_.*sin[e_. + f_.*x_]^4)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(d*ff*x)^m* ExpandToSum[a*(1 + ff^2*x^2)^2 + b*ff^4*x^4, x]^ p/(1 + ff^2*x^2)^(2*p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, m}, x] && IntegerQ[p] +Int[(d_.*tan[e_. + f_.*x_])^m_*(a_ + b_.*sin[e_. + f_.*x_]^4)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff*(a + b*Sin[e + f*x]^4)^ p*(Sec[e + f*x]^2)^(2*p)/(f* Apart[a*(1 + Tan[e + f*x]^2)^2 + b*Tan[e + f*x]^4]^p)* Subst[ Int[(d*ff*x)^m* ExpandToSum[a*(1 + ff^2*x^2)^2 + b*ff^4*x^4, x]^ p/(1 + ff^2*x^2)^(2*p + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, m}, x] && IntegerQ[p - 1/2] +Int[(d_.*tan[e_. + f_.*x_])^m_*(a_ + b_.*sin[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff^(m + 1)/f* Subst[Int[(d*x)^ m*(b*ff^n*x^n + a*(1 + ff^2*x^2)^(n/2))^ p/(1 + ff^2*x^2)^(n*p/2 + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, m}, x] && IntegerQ[n/2] && IGtQ[p, 0] +Int[(d_.*tan[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Int[ExpandTrig[(d*tan[e + f*x])^m*(a + b*(c*sin[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 0] +Int[(d_.*tan[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Unintegrable[(d*Tan[e + f*x])^m*(a + b*(c*Sin[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[(d_.*cot[e_. + f_.*x_])^m_*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^ p_, x_Symbol] := (d*Cot[e + f*x])^FracPart[m]*(Tan[e + f*x]/d)^FracPart[m]* Int[(Tan[e + f*x]/d)^(-m)*(a + b*(c*Sin[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] +Int[(d_.*sec[e_. + f_.*x_])^m_*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^ p_, x_Symbol] := (d*Sec[e + f*x])^FracPart[m]*(Cos[e + f*x]/d)^FracPart[m]* Int[(Cos[e + f*x]/d)^(-m)*(a + b*(c*Sin[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] +Int[(d_.*csc[e_. + f_.*x_])^m_*(a_ + b_.*sin[e_. + f_.*x_]^n_.)^p_., x_Symbol] := d^(n*p)* Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] && IntegersQ[n, p] +Int[(d_.*csc[e_. + f_.*x_])^m_*(a_ + b_.*(c_.*sin[e_. + f_.*x_])^n_)^ p_, x_Symbol] := (d*Csc[e + f*x])^FracPart[m]*(Sin[e + f*x]/d)^FracPart[m]* Int[(Sin[e + f*x]/d)^(-m)*(a + b*(c*Sin[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] +Int[(a_ + b_.*(c_.*sin[e_. + f_.*x_] + d_.*cos[e_. + f_.*x_])^2)^p_, x_Symbol] := Int[(a + b*(Sqrt[c^2 + d^2]*Sin[ArcTan[c, d] + e + f*x])^2)^p, x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[p^2, 1/4] && GtQ[a, 0] +Int[(a_ + b_.*(c_.*sin[e_. + f_.*x_] + d_.*cos[e_. + f_.*x_])^2)^p_, x_Symbol] := (a + b*(c*Sin[e + f*x] + d*Cos[e + f*x])^2)^ p/(1 + (b*(c*Sin[e + f*x] + d*Cos[e + f*x])^2)/a)^p* Int[(1 + (b*(c*Sin[e + f*x] + d*Cos[e + f*x])^2)/a)^p, x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[p^2, 1/4] && Not[GtQ[a, 0]] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.8 trig^m (a+b cos^p+c sin^q)^n.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.8 trig^m (a+b cos^p+c sin^q)^n.m new file mode 100755 index 0000000..8a279fb --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.8 trig^m (a+b cos^p+c sin^q)^n.m @@ -0,0 +1,11 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.8 trig^m (a+b cos^p+c sin^q)^n *) +Int[sin[d_. + e_.*x_]^ m_*(a_ + b_.*cos[d_. + e_.*x_]^p_ + c_.*sin[d_. + e_.*x_]^q_)^n_, x_Symbol] := Module[{f = FreeFactors[Cot[d + e*x], x]}, -f/e* Subst[Int[ ExpandToSum[ c + b*(1 + f^2*x^2)^(q/2 - p/2) + a*(1 + f^2*x^2)^(q/2), x]^ n/(1 + f^2*x^2)^(m/2 + n*q/2 + 1), x], x, Cot[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] && GtQ[p, 0] && LeQ[p, q] +Int[cos[d_. + e_.*x_]^ m_*(a_ + b_.*sin[d_. + e_.*x_]^p_ + c_.*cos[d_. + e_.*x_]^q_)^n_, x_Symbol] := Module[{f = FreeFactors[Tan[d + e*x], x]}, f/e* Subst[Int[ ExpandToSum[ c + b*(1 + f^2*x^2)^(q/2 - p/2) + a*(1 + f^2*x^2)^(q/2), x]^ n/(1 + f^2*x^2)^(m/2 + n*q/2 + 1), x], x, Tan[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] && GtQ[p, 0] && LeQ[p, q] +Int[sin[d_. + e_.*x_]^ m_*(a_ + b_.*cos[d_. + e_.*x_]^p_ + c_.*sin[d_. + e_.*x_]^q_)^n_, x_Symbol] := Module[{f = FreeFactors[Cot[d + e*x], x]}, -f/e* Subst[Int[ ExpandToSum[ a*(1 + f^2*x^2)^(p/2) + b*f^p*x^p + c*(1 + f^2*x^2)^(p/2 - q/2), x]^ n/(1 + f^2*x^2)^(m/2 + n*p/2 + 1), x], x, Cot[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] && LtQ[0, q, p] +Int[cos[d_. + e_.*x_]^ m_*(a_ + b_.*sin[d_. + e_.*x_]^p_ + c_.*cos[d_. + e_.*x_]^q_)^n_, x_Symbol] := Module[{f = FreeFactors[Tan[d + e*x], x]}, f/e* Subst[Int[ ExpandToSum[ a*(1 + f^2*x^2)^(p/2) + b*f^p*x^p + c*(1 + f^2*x^2)^(p/2 - q/2), x]^ n/(1 + f^2*x^2)^(m/2 + n*p/2 + 1), x], x, Tan[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] && LtQ[0, q, p] +Int[sin[d_. + e_.*x_]^ m_*(a_ + b_.*cos[d_. + e_.*x_]^p_ + c_.*sin[d_. + e_.*x_]^q_)^n_, x_Symbol] := Module[{f = FreeFactors[Cot[d + e*x], x]}, -f/e* Subst[Int[ ExpandToSum[ c + b*(1 + f^2*x^2)^(q/2 - p/2) + a*(1 + f^2*x^2)^(q/2), x]^ n/(1 + f^2*x^2)^(m/2 + n*q/2 + 1), x], x, Cot[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] && GtQ[p, 0] && LeQ[p, q] +Int[cos[d_. + e_.*x_]^ m_*(a_ + b_.*sin[d_. + e_.*x_]^p_ + c_.*cos[d_. + e_.*x_]^q_)^n_, x_Symbol] := Module[{f = FreeFactors[Tan[d + e*x], x]}, f/e* Subst[Int[ ExpandToSum[ c + b*(1 + f^2*x^2)^(q/2 - p/2) + a*(1 + f^2*x^2)^(q/2), x]^ n/(1 + f^2*x^2)^(m/2 + n*q/2 + 1), x], x, Tan[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] && GtQ[p, 0] && LeQ[p, q] +Int[sin[d_. + e_.*x_]^ m_*(a_ + b_.*cos[d_. + e_.*x_]^p_ + c_.*sin[d_. + e_.*x_]^q_)^n_, x_Symbol] := Module[{f = FreeFactors[Cot[d + e*x], x]}, -f/e* Subst[Int[ ExpandToSum[ a*(1 + f^2*x^2)^(p/2) + b*f^p*x^p + c*(1 + f^2*x^2)^(p/2 - q/2), x]^ n/(1 + f^2*x^2)^(m/2 + n*p/2 + 1), x], x, Cot[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] && LtQ[0, q, p] +Int[cos[d_. + e_.*x_]^ m_*(a_ + b_.*sin[d_. + e_.*x_]^p_ + c_.*cos[d_. + e_.*x_]^q_)^n_, x_Symbol] := Module[{f = FreeFactors[Tan[d + e*x], x]}, f/e* Subst[Int[ ExpandToSum[ a*(1 + f^2*x^2)^(p/2) + b*f^p*x^p + c*(1 + f^2*x^2)^(p/2 - q/2), x]^ n/(1 + f^2*x^2)^(m/2 + n*p/2 + 1), x], x, Tan[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] && LtQ[0, q, p] diff --git a/IntegrationRules/4 Trig functions/4.1 Sine/4.1.9 trig^m (a+b sin^n+c sin^(2 n))^p.m b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.9 trig^m (a+b sin^n+c sin^(2 n))^p.m new file mode 100755 index 0000000..9a36efa --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.1 Sine/4.1.9 trig^m (a+b sin^n+c sin^(2 n))^p.m @@ -0,0 +1,55 @@ + +(* ::Subsection::Closed:: *) +(* 4.1.9 trig^m (a+b sin^n+c sin^(2 n))^p *) +Int[(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := 1/(4^p*c^p)*Int[(b + 2*c*Sin[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := 1/(4^p*c^p)*Int[(b + 2*c*Cos[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Sin[d + e*x]^n + c*Sin[d + e*x]^(2*n))^ p/(b + 2*c*Sin[d + e*x]^n)^(2*p)* Int[u*(b + 2*c*Sin[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Cos[d + e*x]^n + c*Cos[d + e*x]^(2*n))^ p/(b + 2*c*Cos[d + e*x]^n)^(2*p)* Int[u*(b + 2*c*Cos[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[1/(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, 2*c/q*Int[1/(b - q + 2*c*Sin[d + e*x]^n), x] - 2*c/q*Int[1/(b + q + 2*c*Sin[d + e*x]^n), x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] +Int[1/(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, 2*c/q*Int[1/(b - q + 2*c*Cos[d + e*x]^n), x] - 2*c/q*Int[1/(b + q + 2*c*Cos[d + e*x]^n), x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] +Int[sin[d_. + e_.*x_]^ m_.*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := 1/(4^p*c^p)*Int[Sin[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[cos[d_. + e_.*x_]^ m_.*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := 1/(4^p*c^p)*Int[Cos[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[sin[d_. + e_.*x_]^ m_.*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Sin[d + e*x]^n + c*Sin[d + e*x]^(2*n))^ p/(b + 2*c*Sin[d + e*x]^n)^(2*p)* Int[Sin[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[cos[d_. + e_.*x_]^ m_.*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Cos[d + e*x]^n + c*Cos[d + e*x]^(2*n))^ p/(b + 2*c*Cos[d + e*x]^n)^(2*p)* Int[Cos[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[sin[d_. + e_.*x_]^ m_*(a_. + b_.*sin[d_. + e_.*x_]^n_ + c_.*sin[d_. + e_.*x_]^n2_)^ p_, x_Symbol] := Module[{f = FreeFactors[Cot[d + e*x], x]}, -f/e* Subst[Int[ ExpandToSum[c + b*(1 + x^2)^(n/2) + a*(1 + x^2)^n, x]^ p/(1 + f^2*x^2)^(m/2 + n*p + 1), x], x, Cot[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] && IntegerQ[p] +Int[cos[d_. + e_.*x_]^ m_.*(a_. + b_.*cos[d_. + e_.*x_]^n_ + c_.*cos[d_. + e_.*x_]^n2_)^ p_, x_Symbol] := Module[{f = FreeFactors[Tan[d + e*x], x]}, f/e* Subst[Int[ ExpandToSum[c + b*(1 + x^2)^(n/2) + a*(1 + x^2)^n, x]^ p/(1 + f^2*x^2)^(m/2 + n*p + 1), x], x, Tan[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] && IntegerQ[p] +Int[sin[d_. + e_.*x_]^ m_.*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := Int[ExpandTrig[ sin[d + e*x]^m*(a + b*sin[d + e*x]^n + c*sin[d + e*x]^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[m, n, p] +Int[cos[d_. + e_.*x_]^ m_.*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := Int[ExpandTrig[ cos[d + e*x]^m*(a + b*cos[d + e*x]^n + c*cos[d + e*x]^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[m, n, p] +Int[cos[d_. + e_.*x_]^ m_.*(a_. + b_.*(f_.*sin[d_. + e_.*x_])^n_. + c_.*(f_.*sin[d_. + e_.*x_])^n2_.)^p_., x_Symbol] := Module[{g = FreeFactors[Sin[d + e*x], x]}, g/e* Subst[Int[(1 - g^2*x^2)^((m - 1)/2)*(a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^p, x], x, Sin[d + e*x]/g]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] +Int[sin[d_. + e_.*x_]^ m_.*(a_. + b_.*(f_.*cos[d_. + e_.*x_])^n_. + c_.*(f_.*cos[d_. + e_.*x_])^n2_.)^p_., x_Symbol] := Module[{g = FreeFactors[Cos[d + e*x], x]}, -g/e* Subst[Int[(1 - g^2*x^2)^((m - 1)/2)*(a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^p, x], x, Cos[d + e*x]/g]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] +Int[cos[d_. + e_.*x_]^ m_*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := 1/(4^p*c^p)*Int[Cos[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[sin[d_. + e_.*x_]^ m_*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := 1/(4^p*c^p)*Int[Sin[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[cos[d_. + e_.*x_]^ m_*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^ p_, x_Symbol] := (a + b*Sin[d + e*x]^n + c*Sin[d + e*x]^(2*n))^ p/(b + 2*c*Sin[d + e*x]^n)^(2*p)* Int[Cos[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[sin[d_. + e_.*x_]^ m_*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^ p_, x_Symbol] := (a + b*Cos[d + e*x]^n + c*Cos[d + e*x]^(2*n))^ p/(b + 2*c*Cos[d + e*x]^n)^(2*p)* Int[Sin[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[cos[d_. + e_.*x_]^ m_*(a_. + b_.*sin[d_. + e_.*x_]^n_ + c_.*sin[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{f = FreeFactors[Cot[d + e*x], x]}, -f^(m + 1)/e* Subst[Int[ x^m*ExpandToSum[c + b*(1 + x^2)^(n/2) + a*(1 + x^2)^n, x]^ p/(1 + f^2*x^2)^(m/2 + n*p + 1), x], x, Cot[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] && IntegerQ[p] +Int[sin[d_. + e_.*x_]^ m_.*(a_. + b_.*cos[d_. + e_.*x_]^n_ + c_.*cos[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{f = FreeFactors[Tan[d + e*x], x]}, f^(m + 1)/e* Subst[Int[ x^m*ExpandToSum[c + b*(1 + x^2)^(n/2) + a*(1 + x^2)^n, x]^ p/(1 + f^2*x^2)^(m/2 + n*p + 1), x], x, Tan[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] && IntegerQ[p] +Int[cos[d_. + e_.*x_]^ m_.*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := Int[ExpandTrig[(1 - sin[d + e*x]^2)^(m/2)*(a + b*sin[d + e*x]^n + c*sin[d + e*x]^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[n, p] +Int[sin[d_. + e_.*x_]^ m_.*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := Int[ExpandTrig[(1 - cos[d + e*x]^2)^(m/2)*(a + b*cos[d + e*x]^n + c*cos[d + e*x]^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[n, p] +Int[tan[d_. + e_.*x_]^ m_.*(a_ + b_.*(f_.*sin[d_. + e_.*x_])^n_ + c_.*(f_.*sin[d_. + e_.*x_])^n2_.)^p_., x_Symbol] := Module[{g = FreeFactors[Sin[d + e*x], x]}, g^(m + 1)/e* Subst[Int[ x^m*(a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^ p/(1 - g^2*x^2)^((m + 1)/2), x], x, Sin[d + e*x]/g]] /; FreeQ[{a, b, c, d, e, f, n}, x] && IntegerQ[(m - 1)/2] && IntegerQ[2*p] +Int[cot[d_. + e_.*x_]^ m_.*(a_ + b_.*(f_.*cos[d_. + e_.*x_])^n_ + c_.*(f_.*cos[d_. + e_.*x_])^n2_.)^p_., x_Symbol] := Module[{g = FreeFactors[Cos[d + e*x], x]}, -g^(m + 1)/e* Subst[Int[ x^m*(a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^ p/(1 - g^2*x^2)^((m + 1)/2), x], x, Cos[d + e*x]/g]] /; FreeQ[{a, b, c, d, e, f, n}, x] && IntegerQ[(m - 1)/2] && IntegerQ[2*p] +Int[tan[d_. + e_.*x_]^ m_*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := 1/(4^p*c^p)*Int[Tan[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[cot[d_. + e_.*x_]^ m_*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := 1/(4^p*c^p)*Int[Cot[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[tan[d_. + e_.*x_]^ m_*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^ p_, x_Symbol] := (a + b*Sin[d + e*x]^n + c*Sin[d + e*x]^(2*n))^ p/(b + 2*c*Sin[d + e*x]^n)^(2*p)* Int[Tan[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[cot[d_. + e_.*x_]^ m_*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^ p_, x_Symbol] := (a + b*Cos[d + e*x]^n + c*Cos[d + e*x]^(2*n))^ p/(b + 2*c*Cos[d + e*x]^n)^(2*p)* Int[Cot[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[tan[d_. + e_.*x_]^ m_.*(a_. + b_.*sin[d_. + e_.*x_]^n_ + c_.*sin[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{f = FreeFactors[Tan[d + e*x], x]}, f^(m + 1)/e* Subst[Int[ x^m*ExpandToSum[ c*x^(2*n) + b*x^n*(1 + x^2)^(n/2) + a*(1 + x^2)^n, x]^ p/(1 + f^2*x^2)^(n*p + 1), x], x, Tan[d + e*x]/f]] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] && IntegerQ[p] +Int[cot[d_. + e_.*x_]^ m_.*(a_. + b_.*cos[d_. + e_.*x_]^n_ + c_.*cos[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{f = FreeFactors[Cot[d + e*x], x]}, -f^(m + 1)/e* Subst[Int[ x^m*ExpandToSum[ c*x^(2*n) + b*x^n*(1 + x^2)^(n/2) + a*(1 + x^2)^n, x]^ p/(1 + f^2*x^2)^(n*p + 1), x], x, Cot[d + e*x]/f]] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] && IntegerQ[p] +Int[tan[d_. + e_.*x_]^ m_.*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := Int[ExpandTrig[ sin[d + e*x]^ m*(a + b*sin[d + e*x]^n + c*sin[d + e*x]^(2*n))^ p/(1 - sin[d + e*x]^2)^(m/2), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[n, p] +Int[cot[d_. + e_.*x_]^ m_.*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := Int[ExpandTrig[ cos[d + e*x]^ m*(a + b*cos[d + e*x]^n + c*cos[d + e*x]^(2*n))^ p/(1 - cos[d + e*x]^2)^(m/2), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[n, p] +Int[cot[d_. + e_.*x_]^ m_.*(a_ + b_.*(f_.*sin[d_. + e_.*x_])^n_ + c_.*(f_.*sin[d_. + e_.*x_])^n2_.)^p_., x_Symbol] := Module[{g = FreeFactors[Sin[d + e*x], x]}, g^(m + 1)/e* Subst[Int[(1 - g^2*x^2)^((m - 1)/ 2)*(a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^p/x^m, x], x, Sin[d + e*x]/g]] /; FreeQ[{a, b, c, d, e, f, n}, x] && IntegerQ[(m - 1)/2] && IntegerQ[2*p] +Int[tan[d_. + e_.*x_]^ m_.*(a_ + b_.*(f_.*cos[d_. + e_.*x_])^n_ + c_.*(f_.*cos[d_. + e_.*x_])^n2_.)^p_., x_Symbol] := Module[{g = FreeFactors[Cos[d + e*x], x]}, -g^(m + 1)/e* Subst[Int[(1 - g^2*x^2)^((m - 1)/ 2)*(a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^p/x^m, x], x, Cos[d + e*x]/g]] /; FreeQ[{a, b, c, d, e, f, n}, x] && IntegerQ[(m - 1)/2] && IntegerQ[2*p] +Int[cot[d_. + e_.*x_]^ m_*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := 1/(4^p*c^p)*Int[Cot[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[tan[d_. + e_.*x_]^ m_*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := 1/(4^p*c^p)*Int[Tan[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[cot[d_. + e_.*x_]^ m_*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^ p_, x_Symbol] := (a + b*Sin[d + e*x]^n + c*Sin[d + e*x]^(2*n))^ p/(b + 2*c*Sin[d + e*x]^n)^(2*p)* Int[Cot[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[tan[d_. + e_.*x_]^ m_*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^ p_, x_Symbol] := (a + b*Cos[d + e*x]^n + c*Cos[d + e*x]^(2*n))^ p/(b + 2*c*Cos[d + e*x]^n)^(2*p)* Int[Tan[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && Not[IntegerQ[(m - 1)/2]] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[cot[d_. + e_.*x_]^ m_.*(a_ + b_.*sin[d_. + e_.*x_]^n_ + c_.*sin[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{f = FreeFactors[Cot[d + e*x], x]}, -f^(m + 1)/e* Subst[Int[ x^m*ExpandToSum[c + b*(1 + f^2*x^2)^(n/2) + a*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2)^(n*p + 1), x], x, Cot[d + e*x]/f]] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[n2, 2*n] && IntegerQ[n/2] && IntegerQ[p] +Int[tan[d_. + e_.*x_]^ m_.*(a_ + b_.*cos[d_. + e_.*x_]^n_ + c_.*cos[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{f = FreeFactors[Tan[d + e*x], x]}, f^(m + 1)/e* Subst[Int[ x^m*ExpandToSum[c + b*(1 + f^2*x^2)^(n/2) + a*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2)^(n*p + 1), x], x, Tan[d + e*x]/f]] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[n2, 2*n] && IntegerQ[n/2] && IntegerQ[p] +Int[cot[d_. + e_.*x_]^ m_.*(a_. + b_.*sin[d_. + e_.*x_]^n_. + c_.*sin[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := Int[ExpandTrig[(1 - sin[d + e*x]^2)^(m/ 2)*(a + b*sin[d + e*x]^n + c*sin[d + e*x]^(2*n))^p/ sin[d + e*x]^m, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[n, p] +Int[tan[d_. + e_.*x_]^ m_.*(a_. + b_.*cos[d_. + e_.*x_]^n_. + c_.*cos[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := Int[ExpandTrig[(1 - cos[d + e*x]^2)^(m/ 2)*(a + b*cos[d + e*x]^n + c*cos[d + e*x]^(2*n))^p/ cos[d + e*x]^m, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[n, p] +Int[(A_ + B_.*sin[d_. + e_.*x_])*(a_ + b_.*sin[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]^2)^n_, x_Symbol] := 1/(4^n*c^n)* Int[(A + B*Sin[d + e*x])*(b + 2*c*Sin[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n] +Int[(A_ + B_.*cos[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*cos[d_. + e_.*x_]^2)^n_, x_Symbol] := 1/(4^n*c^n)* Int[(A + B*Cos[d + e*x])*(b + 2*c*Cos[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n] +Int[(A_ + B_.*sin[d_. + e_.*x_])*(a_ + b_.*sin[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]^2)^n_, x_Symbol] := (a + b*Sin[d + e*x] + c*Sin[d + e*x]^2)^ n/(b + 2*c*Sin[d + e*x])^(2*n)* Int[(A + B*Sin[d + e*x])*(b + 2*c*Sin[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[n]] +Int[(A_ + B_.*cos[d_. + e_.*x_])*(a_ + b_.*cos[d_. + e_.*x_] + c_.*cos[d_. + e_.*x_]^2)^n_, x_Symbol] := (a + b*Cos[d + e*x] + c*Cos[d + e*x]^2)^ n/(b + 2*c*Cos[d + e*x])^(2*n)* Int[(A + B*Cos[d + e*x])*(b + 2*c*Cos[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[n]] +Int[(A_ + B_.*sin[d_. + e_.*x_])/(a_. + b_.*sin[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]^2), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, (B + (b*B - 2*A*c)/q)*Int[1/(b + q + 2*c*Sin[d + e*x]), x] + (B - (b*B - 2*A*c)/q)*Int[1/(b - q + 2*c*Sin[d + e*x]), x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] +Int[(A_ + B_.*cos[d_. + e_.*x_])/(a_. + b_.*cos[d_. + e_.*x_] + c_.*cos[d_. + e_.*x_]^2), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, (B + (b*B - 2*A*c)/q)*Int[1/(b + q + 2*c*Cos[d + e*x]), x] + (B - (b*B - 2*A*c)/q)*Int[1/(b - q + 2*c*Cos[d + e*x]), x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] +Int[(A_ + B_.*sin[d_. + e_.*x_])*(a_. + b_.*sin[d_. + e_.*x_] + c_.*sin[d_. + e_.*x_]^2)^n_, x_Symbol] := Int[ExpandTrig[(A + B*sin[d + e*x])*(a + b*sin[d + e*x] + c*sin[d + e*x]^2)^n, x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n] +Int[(A_ + B_.*cos[d_. + e_.*x_])*(a_. + b_.*cos[d_. + e_.*x_] + c_.*cos[d_. + e_.*x_]^2)^n_, x_Symbol] := Int[ExpandTrig[(A + B*cos[d + e*x])*(a + b*cos[d + e*x] + c*cos[d + e*x]^2)^n, x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.1 (a+b tan)^n.m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.1 (a+b tan)^n.m new file mode 100755 index 0000000..09d905f --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.1 (a+b tan)^n.m @@ -0,0 +1,18 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.1.1 (a+b tan)^n *) +Int[(b_.*tan[c_. + d_.*x_])^n_, x_Symbol] := b*(b*Tan[c + d*x])^(n - 1)/(d*(n - 1)) - b^2*Int[(b*Tan[c + d*x])^(n - 2), x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] +Int[(b_.*tan[c_. + d_.*x_])^n_, x_Symbol] := (b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)) - 1/b^2*Int[(b*Tan[c + d*x])^(n + 2), x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] +Int[tan[c_. + d_.*x_], x_Symbol] := -Log[RemoveContent[Cos[c + d*x], x]]/d /; FreeQ[{c, d}, x] +(* Int[1/tan[c_.+d_.*x_],x_Symbol] := Log[RemoveContent[Sin[c+d*x],x]]/d /; FreeQ[{c,d},x] *) +Int[(b_.*tan[c_. + d_.*x_])^n_, x_Symbol] := b/d*Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]] /; FreeQ[{b, c, d, n}, x] && Not[IntegerQ[n]] +Int[(a_ + b_.*tan[c_. + d_.*x_])^2, x_Symbol] := (a^2 - b^2)*x + b^2*Tan[c + d*x]/d + 2*a*b*Int[Tan[c + d*x], x] /; FreeQ[{a, b, c, d}, x] +(* Int[(a_+b_.*tan[c_.+d_.*x_])^n_,x_Symbol] := Int[ExpandIntegrand[(a+b*Tan[c+d*x])^n,x],x] /; FreeQ[{a,b,c,d},x] && IGtQ[n,0] *) +Int[(a_ + b_.*tan[c_. + d_.*x_])^n_, x_Symbol] := b*(a + b*Tan[c + d*x])^(n - 1)/(d*(n - 1)) + 2*a*Int[(a + b*Tan[c + d*x])^(n - 1), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && GtQ[n, 1] +Int[(a_ + b_.*tan[c_. + d_.*x_])^n_, x_Symbol] := a*(a + b*Tan[c + d*x])^n/(2*b*d*n) + 1/(2*a)*Int[(a + b*Tan[c + d*x])^(n + 1), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, 0] +Int[Sqrt[a_ + b_.*tan[c_. + d_.*x_]], x_Symbol] := -2*b/d*Subst[Int[1/(2*a - x^2), x], x, Sqrt[a + b*Tan[c + d*x]]] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] +Int[(a_ + b_.*tan[c_. + d_.*x_])^n_, x_Symbol] := -b/d*Subst[Int[(a + x)^(n - 1)/(a - x), x], x, b*Tan[c + d*x]] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 + b^2, 0] +Int[(a_ + b_.*tan[c_. + d_.*x_])^n_, x_Symbol] := b*(a + b*Tan[c + d*x])^(n - 1)/(d*(n - 1)) + Int[(a^2 - b^2 + 2*a*b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[n, 1] +Int[(a_ + b_.*tan[c_. + d_.*x_])^n_, x_Symbol] := b*(a + b*Tan[c + d*x])^(n + 1)/(d*(n + 1)*(a^2 + b^2)) + 1/(a^2 + b^2)* Int[(a - b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n + 1), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1] +Int[1/(a_ + b_.*tan[c_. + d_.*x_]), x_Symbol] := a*x/(a^2 + b^2) + b/(a^2 + b^2)*Int[(b - a*Tan[c + d*x])/(a + b*Tan[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] +Int[(a_ + b_.*tan[c_. + d_.*x_])^n_, x_Symbol] := b/d*Subst[Int[(a + x)^n/(b^2 + x^2), x], x, b*Tan[c + d*x]] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 + b^2, 0] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.2 (d sec)^m (a+b tan)^n.m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.2 (d sec)^m (a+b tan)^n.m new file mode 100755 index 0000000..3c1794e --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.2 (d sec)^m (a+b tan)^n.m @@ -0,0 +1,35 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.1.2 (d sec)^m (a+b tan)^n *) +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := b*(d*Sec[e + f*x])^m/(f*m) + a*Int[(d*Sec[e + f*x])^m, x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2*m] || NeQ[a^2 + b^2, 0]) +Int[sec[e_. + f_.*x_]^m_*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := 1/(a^(m - 2)*b*f)* Subst[Int[(a - x)^(m/2 - 1)*(a + x)^(n + m/2 - 1), x], x, b*Tan[e + f*x]] /; FreeQ[{a, b, e, f, n}, x] && EqQ[a^2 + b^2, 0] && IntegerQ[m/2] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n/(a*f*m) /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] && EqQ[Simplify[m + n], 0] +Int[sec[e_. + f_.*x_]/Sqrt[a_ + b_.*tan[e_. + f_.*x_]], x_Symbol] := -2*a/(b*f)* Subst[Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^2, 0] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n/(a*f*m) + a/(2*d^2)* Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan[e + f*x])^(n - 1), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2 + n, 0] && GtQ[n, 0] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := 2*d^2*(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1)/(b* f*(m - 2)) + 2*d^2/a* Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2 + n, 0] && LtQ[n, -1] +Int[(d_.*sec[e_. + f_.*x_])^m_*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (a/d)^(2*IntPart[n])*(a + b*Tan[e + f*x])^ FracPart[n]*(a - b*Tan[e + f*x])^ FracPart[n]/(d*Sec[e + f*x])^(2*FracPart[n])* Int[1/(a - b*Tan[e + f*x])^n, x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] && EqQ[Simplify[m/2 + n], 0] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := 2*b*(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1)/(f*m) /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] && EqQ[Simplify[m/2 + n - 1], 0] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1)) + a*(m + 2*n - 2)/(m + n - 1)* Int[(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] && IGtQ[Simplify[m/2 + n - 1], 0] && Not[IntegerQ[n]] +Int[Sqrt[d_.*sec[e_. + f_.*x_]]*Sqrt[a_ + b_.*tan[e_. + f_.*x_]], x_Symbol] := -4*b*d^2/f* Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] +Int[(d_.*sec[e_. + f_.*x_])^m_*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := 2*b*(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1)/(f*m) - b^2*(m + 2*n - 2)/(d^2*m)* Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n, 1] && (IGtQ[n/2, 0] && ILtQ[m - 1/2, 0] || EqQ[n, 2] && LtQ[m, 0] || LeQ[m, -1] && GtQ[m + n, 0] || ILtQ[m, 0] && LtQ[m/2 + n - 1, 0] && IntegerQ[n] || EqQ[n, 3/2] && EqQ[m, -1/2]) && IntegerQ[2*m] +Int[(d_.*sec[e_. + f_.*x_])^m_*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n/(a*f*m) + a*(m + n)/(m*d^2)* Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan[e + f*x])^(n - 1), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1)) + a*(m + 2*n - 2)/(m + n - 1)* Int[(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && GtQ[n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n] +Int[(d_.*sec[e_. + f_.*x_])^(3/2)/Sqrt[a_ + b_.*tan[e_. + f_.*x_]], x_Symbol] := d*Sec[e + f*x]/(Sqrt[a - b*Tan[e + f*x]]*Sqrt[a + b*Tan[e + f*x]])* Int[Sqrt[d*Sec[e + f*x]]*Sqrt[a - b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] +Int[(d_.*sec[e_. + f_.*x_])^m_*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := 2*d^2*(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1)/(b* f*(m + 2*n)) - d^2*(m - 2)/(b^2*(m + 2*n))* Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, -1] && (ILtQ[n/2, 0] && IGtQ[m - 1/2, 0] || EqQ[n, -2] || IGtQ[m + n, 0] || IntegersQ[n, m + 1/2] && GtQ[2*m + n + 1, 0]) && IntegerQ[2*m] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := d^2*(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1)/(b* f*(m + n - 1)) + d^2*(m - 2)/(a*(m + n - 1))* Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] && Not[ILtQ[m + n, 0]] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a*(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n/(b*f*(m + 2*n)) + Simplify[m + n]/(a*(m + 2*n))* Int[(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(d*Sec[e + f*x])^ m*(a + b*Tan[e + f*x])^(n - 1)/(f*Simplify[m + n - 1]) + a*(m + 2*n - 2)/Simplify[m + n - 1]* Int[(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] && IGtQ[Simplify[m + n - 1], 0] && RationalQ[n] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a*(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n/(b*f*(m + 2*n)) + Simplify[m + n]/(a*(m + 2*n))* Int[(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] && ILtQ[Simplify[m + n], 0] && NeQ[m + 2*n, 0] +(* Int[(d_.*sec[e_.+f_.*x_])^m_.*(a_+b_.*tan[e_.+f_.*x_])^n_,x_Symbol] := a^n*(d*Sec[e+f*x])^m/(b*f*(Sec[e+f*x]^2)^(m/2))*Subst[Int[(1+x/a)^( n+m/2-1)*(1-x/a)^(m/2-1),x],x,b*Tan[e+f*x]] /; FreeQ[{a,b,d,e,f,m},x] && EqQ[a^2+b^2,0] && IntegerQ[n] *) +(* Int[(d_.*sec[e_.+f_.*x_])^m_.*(a_+b_.*tan[e_.+f_.*x_])^n_,x_Symbol] := (d*Sec[e+f*x])^m/(b*f*(Sec[e+f*x]^2)^(m/2))*Subst[Int[(a+x)^n*(1+x^ 2/b^2)^(m/2-1),x],x,b*Tan[e+f*x]] /; FreeQ[{a,b,d,e,f,m,n},x] && EqQ[a^2+b^2,0] *) +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := (d*Sec[e + f*x])^ m/((a + b*Tan[e + f*x])^(m/2)*(a - b*Tan[e + f*x])^(m/2))* Int[(a + b*Tan[e + f*x])^(m/2 + n)*(a - b*Tan[e + f*x])^(m/2), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] +Int[sec[e_. + f_.*x_]^m_*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := 1/(b*f)* Subst[Int[(a + x)^n*(1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]] /; FreeQ[{a, b, e, f, n}, x] && NeQ[a^2 + b^2, 0] && IntegerQ[m/2] +Int[(a_ + b_.*tan[e_. + f_.*x_])^2/sec[e_. + f_.*x_], x_Symbol] := b^2*ArcTanh[Sin[e + f*x]]/f - 2*a*b*Cos[e + f*x]/f + (a^2 - b^2)*Sin[e + f*x]/f /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 + b^2, 0] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^2, x_Symbol] := b*(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])/(f*(m + 1)) + 1/(m + 1)* Int[(d*Sec[e + f*x])^ m*(a^2*(m + 1) - b^2 + a*b*(m + 2)*Tan[e + f*x]), x] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 + b^2, 0] && NeQ[m, -1] +Int[sec[e_. + f_.*x_]/(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := -1/f*Subst[Int[1/(a^2 + b^2 - x^2), x], x, (b - a*Tan[e + f*x])/Sec[e + f*x]] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 + b^2, 0] +Int[(d_.*sec[e_. + f_.*x_])^m_/(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := -d^2/b^2*Int[(d*Sec[e + f*x])^(m - 2)*(a - b*Tan[e + f*x]), x] + d^2*(a^2 + b^2)/b^2* Int[(d*Sec[e + f*x])^(m - 2)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 + b^2, 0] && IGtQ[m, 1] +Int[(d_.*sec[e_. + f_.*x_])^m_/(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := 1/(a^2 + b^2)*Int[(d*Sec[e + f*x])^m*(a - b*Tan[e + f*x]), x] + b^2/(d^2*(a^2 + b^2))* Int[(d*Sec[e + f*x])^(m + 2)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 + b^2, 0] && ILtQ[m, 0] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := d^(2*IntPart[m/2])*(d*Sec[e + f*x])^(2*FracPart[m/2])/(b* f*(Sec[e + f*x]^2)^FracPart[m/2])* Subst[Int[(a + x)^n*(1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] && Not[IntegerQ[m/2]] +Int[Sqrt[a_ + b_.*tan[e_. + f_.*x_]]/Sqrt[d_. cos[e_. + f_.*x_]], x_Symbol] := -4*b/f* Subst[Int[x^2/(a^2*d^2 + x^4), x], x, Sqrt[d*Cos[e + f*x]]*Sqrt[a + b*Tan[e + f*x]]] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] +Int[1/((d_. cos[e_. + f_.*x_])^(3/2)* Sqrt[a_ + b_.*tan[e_. + f_.*x_]]), x_Symbol] := 1/(d*Cos[e + f*x]*Sqrt[a - b*Tan[e + f*x]]* Sqrt[a + b*Tan[e + f*x]])* Int[Sqrt[a - b*Tan[e + f*x]]/Sqrt[d*Cos[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] +Int[(d_.*cos[e_. + f_.*x_])^m_*(a_ + b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := (d*Cos[e + f*x])^m*(d*Sec[e + f*x])^m* Int[(a + b*Tan[e + f*x])^n/(d*Sec[e + f*x])^m, x] /; FreeQ[{a, b, d, e, f, m, n}, x] && Not[IntegerQ[m]] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.3 (d sin)^m (a+b tan)^n.m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.3 (d sin)^m (a+b tan)^n.m new file mode 100755 index 0000000..401894d --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.1.3 (d sin)^m (a+b tan)^n.m @@ -0,0 +1,9 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.1.3 (d sin)^m (a+b tan)^n *) +Int[sin[e_. + f_.*x_]^m_*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b/f*Subst[Int[x^m*(a + x)^n/(b^2 + x^2)^(m/2 + 1), x], x, b*Tan[e + f*x]] /; FreeQ[{a, b, e, f, n}, x] && IntegerQ[m/2] +Int[sin[e_. + f_.*x_]^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := Int[Expand[Sin[e + f*x]^m*(a + b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IGtQ[n, 0] +Int[sin[e_. + f_.*x_]^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := Int[Sin[e + f*x]^m*(a*Cos[e + f*x] + b*Sin[e + f*x])^n/ Cos[e + f*x]^n, x] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && ILtQ[n, 0] && (LtQ[m, 5] && GtQ[n, -4] || EqQ[m, 5] && EqQ[n, -1]) +Int[(d_.*csc[e_. + f_.*x_])^m_*(a_. + b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := (d*Csc[e + f*x])^FracPart[m]*(Sin[e + f*x]/d)^FracPart[m]* Int[(a + b*Tan[e + f*x])^n/(Sin[e + f*x]/d)^m, x] /; FreeQ[{a, b, d, e, f, m, n}, x] && Not[IntegerQ[m]] +Int[cos[e_. + f_.*x_]^m_.* sin[e_. + f_.*x_]^p_.*(a_ + b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := Int[Cos[e + f*x]^(m - n)* Sin[e + f*x]^p*(a*Cos[e + f*x] + b*Sin[e + f*x])^n, x] /; FreeQ[{a, b, e, f, m, p}, x] && IntegerQ[n] +Int[sin[e_. + f_.*x_]^m_.* cos[e_. + f_.*x_]^p_.*(a_ + b_.*cot[e_. + f_.*x_])^n_., x_Symbol] := Int[Sin[e + f*x]^(m - n)* Cos[e + f*x]^p*(a*Sin[e + f*x] + b*Cos[e + f*x])^n, x] /; FreeQ[{a, b, e, f, m, p}, x] && IntegerQ[n] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.10 (c+d x)^m (a+b tan)^n.m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.10 (c+d x)^m (a+b tan)^n.m new file mode 100755 index 0000000..76ef286 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.10 (c+d x)^m (a+b tan)^n.m @@ -0,0 +1,31 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.10 (c+d x)^m (a+b tan)^n *) +Int[(c_. + d_.*x_)^m_.*tan[e_. + k_.*Pi + f_.*Complex[0, fz_]*x_], x_Symbol] := -I*(c + d*x)^(m + 1)/(d*(m + 1)) + 2*I*Int[(c + d*x)^m*E^(-2*I*k*Pi)* E^(2*(-I*e + f*fz*x))/(1 + E^(-2*I*k*Pi)*E^(2*(-I*e + f*fz*x))), x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[4*k] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*tan[e_. + k_.*Pi + f_.*x_], x_Symbol] := I*(c + d*x)^(m + 1)/(d*(m + 1)) - 2*I*Int[(c + d*x)^m*E^(2*I*k*Pi)* E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x))), x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*tan[e_. + f_.*Complex[0, fz_]*x_], x_Symbol] := -I*(c + d*x)^(m + 1)/(d*(m + 1)) + 2*I*Int[(c + d*x)^m* E^(2*(-I*e + f*fz*x))/(1 + E^(2*(-I*e + f*fz*x))), x] /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*tan[e_. + f_.*x_], x_Symbol] := I*(c + d*x)^(m + 1)/(d*(m + 1)) - 2*I*Int[(c + d*x)^m*E^(2*I*(e + f*x))/(1 + E^(2*I*(e + f*x))), x] /; FreeQ[{c, d, e, f}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(c + d*x)^m*(b*Tan[e + f*x])^(n - 1)/(f*(n - 1)) - b*d*m/(f*(n - 1))* Int[(c + d*x)^(m - 1)*(b*Tan[e + f*x])^(n - 1), x] - b^2*Int[(c + d*x)^m*(b*Tan[e + f*x])^(n - 2), x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && GtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*(b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (c + d*x)^m*(b*Tan[e + f*x])^(n + 1)/(b*f*(n + 1)) - d*m/(b*f*(n + 1))* Int[(c + d*x)^(m - 1)*(b*Tan[e + f*x])^(n + 1), x] - 1/b^2*Int[(c + d*x)^m*(b*Tan[e + f*x])^(n + 2), x] /; FreeQ[{b, c, d, e, f}, x] && LtQ[n, -1] && GtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(c + d*x)^m, (a + b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[(c_. + d_.*x_)^m_./(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := (c + d*x)^(m + 1)/(2*a*d*(m + 1)) - a*(c + d*x)^m/(2*b*f*(a + b*Tan[e + f*x])) + a*d*m/(2*b*f)*Int[(c + d*x)^(m - 1)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[m, 0] +Int[1/((c_. + d_.*x_)^2*(a_ + b_.*tan[e_. + f_.*x_])), x_Symbol] := -1/(d*(c + d*x)*(a + b*Tan[e + f*x])) + f/(b*d)*Int[Cos[2*e + 2*f*x]/(c + d*x), x] - f/(a*d)*Int[Sin[2*e + 2*f*x]/(c + d*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0] +Int[(c_. + d_.*x_)^m_/(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := f*(c + d*x)^(m + 2)/(b*d^2*(m + 1)*(m + 2)) + (c + d*x)^(m + 1)/(d*(m + 1)*(a + b*Tan[e + f*x])) + 2*b*f/(a*d*(m + 1))* Int[(c + d*x)^(m + 1)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0] && LtQ[m, -1] && NeQ[m, -2] +(* Int[(c_.+d_.*x_)^m_/(a_+b_.*tan[e_.+f_.*x_]),x_Symbol] := (c+d*x)^(m+1)/(d*(m+1)*(a+b*Tan[e+f*x])) + f/(b*d*(m+1))*Int[(c+d*x)^(m+1),x] + 2*b*f/(a*d*(m+1))*Int[(c+d*x)^(m+1)/(a+b*Tan[e+f*x]),x] /; FreeQ[{a,b,c,d,e,f},x] && EqQ[a^2+b^2,0] && LtQ[m,-1] *) +Int[1/((c_. + d_.*x_)*(a_ + b_.*tan[e_. + f_.*x_])), x_Symbol] := Log[c + d*x]/(2*a*d) + 1/(2*a)*Int[Cos[2*e + 2*f*x]/(c + d*x), x] + 1/(2*b)*Int[Sin[2*e + 2*f*x]/(c + d*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0] +Int[(c_. + d_.*x_)^m_/(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := (c + d*x)^(m + 1)/(2*a*d*(m + 1)) + 1/(2*a)*Int[(c + d*x)^m*E^(2*a/b*(e + f*x)), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && Not[IntegerQ[m]] +Int[(c_. + d_.*x_)^m_*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[(c + d*x)^ m, (1/(2*a) + Cos[2*e + 2*f*x]/(2*a) + Sin[2*e + 2*f*x]/(2*b))^(-n), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0] && ILtQ[m, 0] && ILtQ[n, 0] +Int[(c_. + d_.*x_)^m_*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[(c + d*x)^ m, (1/(2*a) + E^(2*a/b*(e + f*x))/(2*a))^(-n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && ILtQ[n, 0] +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := With[{u = IntHide[(a + b*Tan[e + f*x])^n, x]}, Dist[(c + d*x)^m, u, x] - d*m*Int[Dist[(c + d*x)^(m - 1), u, x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0] && ILtQ[n, -1] && GtQ[m, 0] +Int[(c_. + d_.*x_)^m_./(a_ + b_.*tan[e_. + k_.*Pi + f_.*x_]), x_Symbol] := (c + d*x)^(m + 1)/(d*(m + 1)*(a + I*b)) + 2*I*b* Int[(c + d*x)^m*E^(2*I*k*Pi)* E^Simp[2*I*(e + f*x), x]/((a + I*b)^2 + (a^2 + b^2)*E^(2*I*k*Pi)* E^Simp[2*I*(e + f*x), x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[4*k] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_./(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := (c + d*x)^(m + 1)/(d*(m + 1)*(a + I*b)) + 2*I*b* Int[(c + d*x)^m* E^Simp[2*I*(e + f*x), x]/((a + I*b)^2 + (a^2 + b^2)*E^Simp[2*I*(e + f*x), x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0] +Int[(c_. + d_.*x_)/(a_ + b_.*tan[e_. + f_.*x_])^2, x_Symbol] := -(c + d*x)^2/(2*d*(a^2 + b^2)) - b*(c + d*x)/(f*(a^2 + b^2)*(a + b*Tan[e + f*x])) + 1/(f*(a^2 + b^2))* Int[(b*d + 2*a*c*f + 2*a*d*f*x)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 + b^2, 0] +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*tan[e_. + f_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[(c + d*x)^ m, (1/(a - I*b) - 2*I*b/(a^2 + b^2 + (a - I*b)^2*E^(2*I*(e + f*x))))^(-n), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 + b^2, 0] && ILtQ[n, 0] && IGtQ[m, 0] +Int[(c_. + d_.*x_)*Sqrt[a_ + b_.*tan[e_. + f_.*x_]], x_Symbol] := -Sqrt[2]*b*(c + d*x)* ArcTanh[Sqrt[a + b*Tan[e + f*x]]/(Sqrt[2]*Rt[a, 2])]/(Rt[a, 2]* f) + Sqrt[2]*b*d/(Rt[a, 2]*f)* Int[ArcTanh[Sqrt[a + b*Tan[e + f*x]]/(Sqrt[2]*Rt[a, 2])], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0] +Int[(c_. + d_.*x_)*Sqrt[a_. + b_.*tan[e_. + f_.*x_]], x_Symbol] := -I*Rt[a - I*b, 2]*(c + d*x)/f* ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a - I*b, 2]] + I*Rt[a + I*b, 2]*(c + d*x)/f* ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a + I*b, 2]] + I*d*Rt[a - I*b, 2]/f* Int[ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a - I*b, 2]], x] - I*d*Rt[a + I*b, 2]/f* Int[ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a + I*b, 2]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 + b^2, 0] +Int[(c_. + d_.*x_)/Sqrt[a_ + b_.*tan[e_. + f_.*x_]], x_Symbol] := 1/(2*a)*Int[(c + d*x)*Sqrt[a + b*Tan[e + f*x]], x] + a/2*Int[(c + d*x)*Sec[e + f*x]^2/(a + b*Tan[e + f*x])^(3/2), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0] +Int[(c_. + d_.*x_)/Sqrt[a_. + b_.*tan[e_. + f_.*x_]], x_Symbol] := -I*(c + d*x)/(f*Rt[a - I*b, 2])* ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a - I*b, 2]] + I*(c + d*x)/(f*Rt[a + I*b, 2])* ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a + I*b, 2]] + I*d/(f*Rt[a - I*b, 2])* Int[ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a - I*b, 2]], x] - I*d/(f*Rt[a + I*b, 2])* Int[ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a + I*b, 2]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 + b^2, 0] +Int[(c_. + d_.*x_)^m_.*tan[e_. + f_.*x_]^n_., x_Symbol] := If[MatchQ[f, f1_.*Complex[0, j_]], If[MatchQ[e, e1_. + Pi/2], I^n*Unintegrable[(c + d*x)^m*Coth[-I*(e - Pi/2) - I*f*x]^n, x], I^n*Unintegrable[(c + d*x)^m*Tanh[-I*e - I*f*x]^n, x]], If[MatchQ[e, e1_. + Pi/2], (-1)^n*Unintegrable[(c + d*x)^m*Cot[e - Pi/2 + f*x]^n, x], Unintegrable[(c + d*x)^m*Tan[e + f*x]^n, x]]] /; FreeQ[{c, d, e, f, m, n}, x] && IntegerQ[n] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*tan[e_. + f_.*x_])^n_., x_Symbol] := Unintegrable[(c + d*x)^m*(a + b*Tan[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[u_^m_.*(a_. + b_.*Tan[v_])^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*(a + b*Tan[ExpandToSum[v, x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] +Int[u_^m_.*(a_. + b_.*Cot[v_])^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*(a + b*Cot[ExpandToSum[v, x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.11 (e x)^m (a+b tan(c+d x^n))^p.m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.11 (e x)^m (a+b tan(c+d x^n))^p.m new file mode 100755 index 0000000..13c9cc8 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.11 (e x)^m (a+b tan(c+d x^n))^p.m @@ -0,0 +1,27 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.11 (e x)^m (a+b tan(c+d x^n))^p *) +Int[(a_. + b_.*Tan[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[Int[x^(1/n - 1)*(a + b*Tan[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p] +Int[(a_. + b_.*Cot[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[Int[x^(1/n - 1)*(a + b*Cot[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p] +Int[(a_. + b_.*Tan[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[(a + b*Tan[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(a_. + b_.*Cot[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[(a + b*Cot[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(a_. + b_.*Tan[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]* Subst[Int[(a + b*Tan[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x] +Int[(a_. + b_.*Cot[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]* Subst[Int[(a + b*Cot[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x] +Int[(a_. + b_.*Tan[u_])^p_., x_Symbol] := Int[(a + b*Tan[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(a_. + b_.*Cot[u_])^p_., x_Symbol] := Int[(a + b*Cot[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[x_^m_.*(a_. + b_.*Tan[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Tan[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[(m + 1)/n], 0] && IntegerQ[p] +Int[x_^m_.*(a_. + b_.*Cot[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Cot[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[(m + 1)/n], 0] && IntegerQ[p] +Int[x_^m_.*Tan[c_. + d_.*x_^n_]^2, x_Symbol] := x^(m - n + 1)*Tan[c + d*x^n]/(d*n) - Int[x^m, x] - (m - n + 1)/(d*n)*Int[x^(m - n)*Tan[c + d*x^n], x] /; FreeQ[{c, d, m, n}, x] +Int[x_^m_.*Cot[c_. + d_.*x_^n_]^2, x_Symbol] := -x^(m - n + 1)*Cot[c + d*x^n]/(d*n) - Int[x^m, x] + (m - n + 1)/(d*n)*Int[x^(m - n)*Cot[c + d*x^n], x] /; FreeQ[{c, d, m, n}, x] +(* Int[x_^m_.*Tan[a_.+b_.*x_^n_]^p_,x_Symbol] := x^(m-n+1)*Tan[a+b*x^n]^(p-1)/(b*n*(p-1)) - (m-n+1)/(b*n*(p-1))*Int[x^(m-n)*Tan[a+b*x^n]^(p-1),x] - Int[x^m*Tan[a+b*x^n]^(p-2),x] /; FreeQ[{a,b},x] && LtQ[0,n,m+1] && GtQ[p,1] *) +(* Int[x_^m_.*Cot[a_.+b_.*x_^n_]^p_,x_Symbol] := -x^(m-n+1)*Cot[a+b*x^n]^(p-1)/(b*n*(p-1)) + (m-n+1)/(b*n*(p-1))*Int[x^(m-n)*Cot[a+b*x^n]^(p-1),x] - Int[x^m*Cot[a+b*x^n]^(p-2),x] /; FreeQ[{a,b},x] && LtQ[0,n,m+1] && GtQ[p,1] *) +(* Int[x_^m_.*Tan[a_.+b_.*x_^n_]^p_,x_Symbol] := x^(m-n+1)*Tan[a+b*x^n]^(p+1)/(b*n*(p+1)) - (m-n+1)/(b*n*(p+1))*Int[x^(m-n)*Tan[a+b*x^n]^(p+1),x] - Int[x^m*Tan[a+b*x^n]^(p+2),x] /; FreeQ[{a,b},x] && LtQ[0,n,m+1] && LtQ[p,-1] *) +(* Int[x_^m_.*Cot[a_.+b_.*x_^n_]^p_,x_Symbol] := -x^(m-n+1)*Cot[a+b*x^n]^(p+1)/(b*n*(p+1)) + (m-n+1)/(b*n*(p+1))*Int[x^(m-n)*Cot[a+b*x^n]^(p+1),x] - Int[x^m*Cot[a+b*x^n]^(p+2),x] /; FreeQ[{a,b},x] && LtQ[0,n,m+1] && LtQ[p,-1] *) +Int[x_^m_.*(a_. + b_.*Tan[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[x^m*(a + b*Tan[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[x_^m_.*(a_. + b_.*Cot[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[x^m*(a + b*Cot[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Tan[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Tan[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Cot[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Cot[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Tan[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Tan[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(e_*x_)^m_.*(a_. + b_.*Cot[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Cot[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[x_^m_.*Sec[a_. + b_.*x_^n_.]^p_.*Tan[a_. + b_.*x_^n_.]^q_., x_Symbol] := x^(m - n + 1)*Sec[a + b*x^n]^p/(b*n*p) - (m - n + 1)/(b*n*p)*Int[x^(m - n)*Sec[a + b*x^n]^p, x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m, n] && EqQ[q, 1] +Int[x_^m_.*Csc[a_. + b_.*x_^n_.]^p_.*Cot[a_. + b_.*x_^n_.]^q_., x_Symbol] := -x^(m - n + 1)*Csc[a + b*x^n]^p/(b*n*p) + (m - n + 1)/(b*n*p)*Int[x^(m - n)*Csc[a + b*x^n]^p, x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m, n] && EqQ[q, 1] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.12 (d+e x)^m tan(a+b x+c x^2)^n.m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.12 (d+e x)^m tan(a+b x+c x^2)^n.m new file mode 100755 index 0000000..4ea104d --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.12 (d+e x)^m tan(a+b x+c x^2)^n.m @@ -0,0 +1,13 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.12 (d+e x)^m tan(a+b x+c x^2)^n *) +Int[Tan[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Unintegrable[Tan[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, n}, x] +Int[Cot[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Unintegrable[Cot[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, n}, x] +Int[(d_ + e_.*x_)*Tan[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := -e*Log[Cos[a + b*x + c*x^2]]/(2*c) /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] +Int[(d_ + e_.*x_)*Cot[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*Log[Sin[a + b*x + c*x^2]]/(2*c) /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] +Int[(d_. + e_.*x_)*Tan[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := -e*Log[Cos[a + b*x + c*x^2]]/(2*c) + (2*c*d - b*e)/(2*c)*Int[Tan[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] +Int[(d_. + e_.*x_)*Cot[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*Log[Sin[a + b*x + c*x^2]]/(2*c) + (2*c*d - b*e)/(2*c)*Int[Cot[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] +(* Int[x_^m_*Tan[a_.+b_.*x_+c_.*x_^2],x_Symbol] := -x^(m-1)*Log[Cos[a+b*x+c*x^2]]/(2*c) - b/(2*c)*Int[x^(m-1)*Tan[a+b*x+c*x^2],x] + (m-1)/(2*c)*Int[x^(m-2)*Log[Cos[a+b*x+c*x^2]],x] /; FreeQ[{a,b,c},x] && GtQ[m,1] *) +(* Int[x_^m_*Cot[a_.+b_.*x_+c_.*x_^2],x_Symbol] := x^(m-1)*Log[Sin[a+b*x+c*x^2]]/(2*c) - b/(2*c)*Int[x^(m-1)*Cot[a+b*x+c*x^2],x] - (m-1)/(2*c)*Int[x^(m-2)*Log[Sin[a+b*x+c*x^2]],x] /; FreeQ[{a,b,c},x] && GtQ[m,1]*) +Int[(d_. + e_.*x_)^m_.*Tan[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Unintegrable[(d + e*x)^m*Tan[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[(d_. + e_.*x_)^m_.*Cot[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Unintegrable[(d + e*x)^m*Cot[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.2.1 (a+b tan)^m (c+d tan)^n.m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.2.1 (a+b tan)^m (c+d tan)^n.m new file mode 100755 index 0000000..2c81aae --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.2.1 (a+b tan)^m (c+d tan)^n.m @@ -0,0 +1,63 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.2.1 (a+b tan)^m (c+d tan)^n *) +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_.*(c_ + d_.*tan[e_. + f_.*x_])^n_., x_Symbol] := a^m*c^m*Int[Sec[e + f*x]^(2*m)*(c + d*Tan[e + f*x])^(n - m), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0] && IntegerQ[m] && Not[IGtQ[n, 0] && (LtQ[m, 0] || GtQ[m, n])] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_ + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a*c/f* Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])*(c_ + d_.*tan[e_. + f_.*x_]), x_Symbol] := (a*c - b*d)*x + b*d*Tan[e + f*x]/f /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[b*c + a*d, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])*(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := (a*c - b*d)*x + b*d*Tan[e + f*x]/f + (b*c + a*d)*Int[Tan[e + f*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := -(b*c - a*d)*(a + b*Tan[e + f*x])^m/(2*a*f*m) + (b*c + a*d)/(2*a*b)*Int[(a + b*Tan[e + f*x])^(m + 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := d*(a + b*Tan[e + f*x])^m/(f*m) + (b*c + a*d)/b* Int[(a + b*Tan[e + f*x])^m, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && Not[LtQ[m, 0]] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := d*(a + b*Tan[e + f*x])^m/(f*m) + Int[(a + b*Tan[e + f*x])^(m - 1)* Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := (b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2)) + 1/(a^2 + b^2)* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1] +Int[(c_ + d_.*tan[e_. + f_.*x_])/(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := c/(b*f)*Log[RemoveContent[a*Cos[e + f*x] + b*Sin[e + f*x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0] +Int[(c_. + d_.*tan[e_. + f_.*x_])/(a_. + b_.*tan[e_. + f_.*x_]), x_Symbol] := (a*c + b*d)*x/(a^2 + b^2) + (b*c - a*d)/(a^2 + b^2)* Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0] +Int[(c_ + d_.*tan[e_. + f_.*x_])/Sqrt[b_.*tan[e_. + f_.*x_]], x_Symbol] := -2*d^2/f* Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 - d^2, 0] +(* Int[(c_+d_.*tan[e_.+f_.*x_])/Sqrt[b_.*tan[e_.+f_.*x_]],x_Symbol] := (c+d)/2*Int[(1+Tan[e+f*x])/Sqrt[b*Tan[e+f*x]],x] + (c-d)/2*Int[(1-Tan[e+f*x])/Sqrt[b*Tan[e+f*x]],x] /; FreeQ[{b,c,d,e,f},x] && NeQ[c^2+d^2,0] && NeQ[c^2-d^2,0] *) +Int[(c_ + d_.*tan[e_. + f_.*x_])/Sqrt[b_.*tan[e_. + f_.*x_]], x_Symbol] := 2*c^2/f*Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0] +(* Int[(c_+d_.*tan[e_.+f_.*x_])/Sqrt[b_.*tan[e_.+f_.*x_]],x_Symbol] := (c+I*d)/2*Int[(1-I*Tan[e+f*x])/Sqrt[b*Tan[e+f*x]],x] + (c-I*d)/2*Int[(1+I*Tan[e+f*x])/Sqrt[b*Tan[e+f*x]],x] /; FreeQ[{b,c,d,e,f},x] && NeQ[c^2-d^2,0] && NeQ[c^2+d^2,0] *) +Int[(c_ + d_.*tan[e_. + f_.*x_])/Sqrt[b_.*tan[e_. + f_.*x_]], x_Symbol] := 2/f*Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && NeQ[c^2 + d^2, 0] +Int[(c_. + d_.*tan[e_. + f_.*x_])/Sqrt[a_ + b_.*tan[e_. + f_.*x_]], x_Symbol] := -2*d^2/f* Subst[Int[1/(2*b*c*d - 4*a*d^2 + x^2), x], x, (b*c - 2*a*d - b*d*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[2*a*c*d - b*(c^2 - d^2), 0] +Int[(c_. + d_.*tan[e_. + f_.*x_])/Sqrt[a_ + b_.*tan[e_. + f_.*x_]], x_Symbol] := With[{q = Rt[a^2 + b^2, 2]}, 1/(2*q)* Int[(a*c + b*d + c*q + (b*c - a*d + d*q)*Tan[e + f*x])/ Sqrt[a + b*Tan[e + f*x]], x] - 1/(2*q)* Int[(a*c + b*d - c*q + (b*c - a*d - d*q)*Tan[e + f*x])/ Sqrt[a + b*Tan[e + f*x]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && NeQ[2*a*c*d - b*(c^2 - d^2), 0] && (PerfectSquareQ[a^2 + b^2] || RationalQ[a, b, c, d]) +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_ + d_.*tan[e_. + f_.*x_]), x_Symbol] := c*d/f*Subst[Int[(a + b/d*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0] +Int[(b_.*tan[e_. + f_.*x_])^m_*(c_ + d_.*tan[e_. + f_.*x_]), x_Symbol] := c*Int[(b*Tan[e + f*x])^m, x] + d/b*Int[(b*Tan[e + f*x])^(m + 1), x] /; FreeQ[{b, c, d, e, f, m}, x] && NeQ[c^2 + d^2, 0] && Not[IntegerQ[2*m]] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := (c + I*d)/2*Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x] + (c - I*d)/2*Int[(a + b*Tan[e + f*x])^m*(1 + I*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Not[IntegerQ[m]] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^2, x_Symbol] := -b*(a*c + b*d)^2*(a + b*Tan[e + f*x])^m/(2*a^3*f*m) + 1/(2*a^2)* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[a*c^2 - 2*b*c*d + a*d^2 - 2*b*d^2*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LeQ[m, -1] && EqQ[a^2 + b^2, 0] +Int[(c_. + d_.*tan[e_. + f_.*x_])^2/(a_. + b_.*tan[e_. + f_.*x_]), x_Symbol] := d*(2*b*c - a*d)*x/b^2 + d^2/b*Int[Tan[e + f*x], x] + (b*c - a*d)^2/b^2* Int[1/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^2, x_Symbol] := (b*c - a*d)^2*(a + b*Tan[e + f*x])^(m + 1)/(b* f*(m + 1)*(a^2 + b^2)) + 1/(a^2 + b^2)* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^2, x_Symbol] := d^2*(a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)) + Int[(a + b*Tan[e + f*x])^m* Simp[c^2 - d^2 + 2*c*d*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && Not[LeQ[m, -1]] && Not[EqQ[m, 2] && EqQ[a, 0]] +Int[Sqrt[a_ + b_.*tan[e_. + f_.*x_]]/ Sqrt[c_. + d_.*tan[e_. + f_.*x_]], x_Symbol] := -2*a*b/f* Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a*b*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)/(f*(m - 1)*(a*c - b*d)) + 2*a^2/(a*c - b*d)* Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n/(2*b*f*m) - (a*c - b*d)/(2*b^2)* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && LeQ[m, -1/2] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(2*f*m*(b*c - a*d)) + 1/(2*a)* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n + 1, 0] && LtQ[m, -1] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := -d*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(f*m*(c^2 + d^2)) + a/(a*c - b*d)* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n + 1, 0] && Not[LtQ[m, -1]] +Int[(c_. + d_.*tan[e_. + f_.*x_])^n_/(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := -(a*c + b*d)*(c + d*Tan[e + f*x])^ n/(2*(b*c - a*d)*f*(a + b*Tan[e + f*x])) + 1/(2*a*(b*c - a*d))* Int[(c + d*Tan[e + f*x])^(n - 1)* Simp[a*c*d*(n - 1) + b*c^2 + b*d^2*n - d*(b*c - a*d)*(n - 1)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[0, n, 1] +Int[(c_. + d_.*tan[e_. + f_.*x_])^n_/(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := (b*c - a*d)*(c + d*Tan[e + f*x])^(n - 1)/(2*a*f*(a + b*Tan[e + f*x])) + 1/(2*a^2)* Int[(c + d*Tan[e + f*x])^(n - 2)* Simp[a*c^2 + a*d^2*(n - 1) - b*c*d*n - d*(a*c*(n - 2) + b*d*n)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[n, 1] +Int[1/((a_. + b_.*tan[e_. + f_.*x_])*(c_. + d_.*tan[e_. + f_.*x_])), x_Symbol] := b/(b*c - a*d)*Int[1/(a + b*Tan[e + f*x]), x] - d/(b*c - a*d)*Int[1/(c + d*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(c_. + d_.*tan[e_. + f_.*x_])^n_/(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := -a*(c + d*Tan[e + f*x])^(n + 1)/(2* f*(b*c - a*d)*(a + b*Tan[e + f*x])) + 1/(2*a*(b*c - a*d))* Int[(c + d*Tan[e + f*x])^n* Simp[b*c + a*d*(n - 1) - b*d*n*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Not[GtQ[n, 0]] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := -a^2*(b*c - a*d)*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(b*c + a*d)*(n + 1)) + a/(d*(b*c + a*d)*(n + 1))* Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)* Simp[b*(b*c*(m - 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) +Int[(a_ + b_.*tan[e_. + f_.*x_])^(3/2)/(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := 2*a^2/(a*c - b*d)*Int[Sqrt[a + b*Tan[e + f*x]], x] - (2*b*c*d + a*(c^2 - d^2))/(a*(c^2 + d^2))* Int[(a - b*Tan[e + f*x])* Sqrt[a + b*Tan[e + f*x]]/(c + d*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^(3/2)/ Sqrt[c_. + d_.*tan[e_. + f_.*x_]], x_Symbol] := 2*a*Int[Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x] + b/a* Int[(b + a*Tan[e + f*x])* Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)/(d* f*(m + n - 1)) + a/(d*(m + n - 1))* Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n* Simp[b*c*(m - 2) + a*d*(m + 2*n) + (a*c*(m - 2) + b*d*(3*m + 2*n - 4))* Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*Sqrt[c_. + d_.*tan[e_. + f_.*x_]], x_Symbol] := -b*(a + b*Tan[e + f*x])^m*Sqrt[c + d*Tan[e + f*x]]/(2*a*f*m) + 1/(4*a^2*m)* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[2*a*c*m + b*d + a*d*(2*m + 1)*Tan[e + f*x], x]/ Sqrt[c + d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && IntegersQ[2*m] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := -(b*c - a*d)*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n - 1)/(2*a*f*m) + 1/(2*a^2*m)* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)* Simp[c*(a*c*m + b*d*(n - 1)) - d*(b*c*m + a*d*(n - 1)) - d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(2*f*m*(b*c - a*d)) + 1/(2*a*m*(b*c - a*d))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n* Simp[b*c*m - a*d*(2*m + n + 1) + b*d*(m + n + 1)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := d*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n - 1)/(f*(m + n - 1)) - 1/(a*(m + n - 1))* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 2)* Simp[d*(b*c*m + a*d*(-1 + n)) - a*c^2*(m + n - 1) + d*(b*d*m - a*c*(m + 2*n - 2))*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[n, 1] && NeQ[m + n - 1, 0] && (IntegerQ[n] || IntegersQ[2*m, 2*n]) +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := d*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 + d^2)) - 1/(a*(c^2 + d^2)*(n + 1))* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1)* Simp[b*d*m - a*c*(n + 1) + a*d*(m + n + 1)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || IntegersQ[2*m, 2*n]) +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_/(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := a/(a*c - b*d)*Int[(a + b*Tan[e + f*x])^m, x] - d/(a*c - b*d)* Int[(a + b*Tan[e + f*x])^ m*(b + a*Tan[e + f*x])/(c + d*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[Sqrt[a_ + b_.*tan[e_. + f_.*x_]]* Sqrt[c_. + d_.*tan[e_. + f_.*x_]], x_Symbol] := (a*c - b*d)/a* Int[Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x] + d/a* Int[Sqrt[a + b*Tan[e + f*x]]*(b + a*Tan[e + f*x])/ Sqrt[c + d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := a*b/f* Subst[Int[(a + x)^(m - 1)*(c + d/b*x)^n/(b^2 + a*x), x], x, b*Tan[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (b*c - a*d)^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2)) - 1/(d*(n + 1)*(c^2 + d^2))* Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^(n + 1)* Simp[a^2*d*(b*d*(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3*a*b^2*d)* Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*(n + 1)))*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && IntegerQ[2*m] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)/(d* f*(m + n - 1)) + 1/(d*(m + n - 1))* Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n* Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*(1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) && Not[IGtQ[n, 2] && (Not[IntegerQ[m]] || EqQ[c, 0] && NeQ[a, 0])] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := (b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 + b^2)) + 1/((m + 1)*(a^2 + b^2))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)* Simp[a*c^2*(m + 1) + a*d^2*(n - 1) + b*c*d*(m - n + 2) - (b*c^2 - 2*a*c*d - b*d^2)*(m + 1)* Tan[e + f*x] - d*(b*c - a*d)*(m + n)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegerQ[2*m] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^ n/(f*(m + 1)*(a^2 + b^2)) + 1/((m + 1)*(a^2 + b^2))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)* Simp[a*c*(m + 1) - b*d*n - (b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[2*m] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b^2*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d)) + 1/((m + 1)*(a^2 + b^2)*(b*c - a*d))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n* Simp[a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) && Not[ILtQ[n, -1] && (Not[IntegerQ[m]] || EqQ[c, 0] && NeQ[a, 0])] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := b*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^ n/(f*(m + n - 1)) + 1/(m + n - 1)* Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n - 1)* Simp[a^2*c*(m + n - 1) - b*(b*c*(m - 1) + a*d*n) + (2*a*b*c + a^2*d - b^2*d)*(m + n - 1)*Tan[e + f*x] + b*(b*c*n + a*d*(2*m + n - 2))*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && GtQ[n, 0] && IntegerQ[2*n] +Int[1/((a_ + b_.*tan[e_. + f_.*x_])*(c_. + d_.*tan[e_. + f_.*x_])), x_Symbol] := (a*c - b*d)*x/((a^2 + b^2)*(c^2 + d^2)) + b^2/((b*c - a*d)*(a^2 + b^2))* Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x] - d^2/((b*c - a*d)*(c^2 + d^2))* Int[(d - c*Tan[e + f*x])/(c + d*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[Sqrt[a_. + b_.*tan[e_. + f_.*x_]]/(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := 1/(c^2 + d^2)* Int[Simp[a*c + b*d + (b*c - a*d)*Tan[e + f*x], x]/ Sqrt[a + b*Tan[e + f*x]], x] - d*(b*c - a*d)/(c^2 + d^2)* Int[(1 + Tan[e + f*x]^2)/(Sqrt[ a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^(3/2)/(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := 1/(c^2 + d^2)* Int[Simp[ a^2*c - b^2*c + 2*a*b*d + (2*a*b*c - a^2*d + b^2*d)*Tan[e + f*x], x]/ Sqrt[a + b*Tan[e + f*x]], x] + (b*c - a*d)^2/(c^2 + d^2)* Int[(1 + Tan[e + f*x]^2)/(Sqrt[ a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_/(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := 1/(c^2 + d^2)*Int[(a + b*Tan[e + f*x])^m*(c - d*Tan[e + f*x]), x] + d^2/(c^2 + d^2)* Int[(a + b*Tan[e + f*x])^ m*(1 + Tan[e + f*x]^2)/(c + d*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Not[IntegerQ[m]] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_ + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(a + b*ff*x)^m*(c + d*ff*x)^n/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_.*(d_./tan[e_. + f_.*x_])^n_, x_Symbol] := d^m*Int[(b + a*Cot[e + f*x])^m*(d*Cot[e + f*x])^(n - m), x] /; FreeQ[{a, b, d, e, f, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[(a_. + b_.*cot[e_. + f_.*x_])^m_.*(d_./cot[e_. + f_.*x_])^n_, x_Symbol] := d^m*Int[(b + a*Tan[e + f*x])^m*(d*Tan[e + f*x])^(n - m), x] /; FreeQ[{a, b, d, e, f, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[(a_. + b_.*tan[e_. + f_.*x_])^ m_.*(c_.*(d_.*tan[e_. + f_.*x_])^p_)^n_, x_Symbol] := c^IntPart[n]*(c*(d*Tan[e + f*x])^p)^ FracPart[n]/(d*Tan[e + f*x])^(p*FracPart[n])* Int[(a + b*Tan[e + f*x])^m*(d*Tan[e + f*x])^(n*p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[n]] && Not[IntegerQ[m]] +Int[(a_. + b_.*cot[e_. + f_.*x_])^ m_.*(c_.*(d_.*cot[e_. + f_.*x_])^p_)^n_, x_Symbol] := c^IntPart[n]*(c*(d*Cot[e + f*x])^p)^ FracPart[n]/(d*Cot[e + f*x])^(p*FracPart[n])* Int[(a + b*Cot[e + f*x])^m*(d*Cot[e + f*x])^(n*p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[n]] && Not[IntegerQ[m]] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.2.3 (g tan)^p (a+b tan)^m (c+d tan)^n.m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.2.3 (g tan)^p (a+b tan)^m (c+d tan)^n.m new file mode 100755 index 0000000..4411153 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.2.3 (g tan)^p (a+b tan)^m (c+d tan)^n.m @@ -0,0 +1,11 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.2.3 (g tan)^p (a+b tan)^m (c+d tan)^n *) +Int[(g_.*tan[e_. + f_.*x_])^p_.*(a_ + b_.*tan[e_. + f_.*x_])^ m_*(c_ + d_.*tan[e_. + f_.*x_])^n_, x_Symbol] := Unintegrable[(g*Tan[e + f*x])^p*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] +Int[(g_.*cot[e_. + f_.*x_])^p_*(a_. + b_.*tan[e_. + f_.*x_])^ m_.*(c_ + d_.*tan[e_. + f_.*x_])^n_., x_Symbol] := g^(m + n)* Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^ m*(d + c*Cot[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && Not[IntegerQ[p]] && IntegerQ[m] && IntegerQ[n] +Int[(g_.*tan[e_. + f_.*x_])^p_*(a_. + b_.*cot[e_. + f_.*x_])^ m_.*(c_ + d_.*cot[e_. + f_.*x_])^n_., x_Symbol] := g^(m + n)* Int[(g*Tan[e + f*x])^(p - m - n)*(b + a*Tan[e + f*x])^ m*(d + c*Tan[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && Not[IntegerQ[p]] && IntegerQ[m] && IntegerQ[n] +Int[(g_.*tan[e_. + f_.*x_]^q_)^p_*(a_. + b_.*tan[e_. + f_.*x_])^ m_.*(c_ + d_.*tan[e_. + f_.*x_])^n_., x_Symbol] := (g*Tan[e + f*x]^q)^p/(g*Tan[e + f*x])^(p*q)* Int[(g*Tan[e + f*x])^(p*q)*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q}, x] && Not[IntegerQ[p]] && Not[IntegerQ[m] && IntegerQ[n]] +Int[(g_.*tan[e_. + f_.*x_])^p_.*(a_ + b_.*tan[e_. + f_.*x_])^ m_.*(c_ + d_.*cot[e_. + f_.*x_])^n_., x_Symbol] := g^n*Int[(g*Tan[e + f*x])^(p - n)*(a + b*Tan[e + f*x])^ m*(d + c*Tan[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && IntegerQ[n] +Int[tan[e_. + f_.*x_]^p_.*(a_ + b_.*tan[e_. + f_.*x_])^ m_.*(c_ + d_.*cot[e_. + f_.*x_])^n_, x_Symbol] := Int[(b + a*Cot[e + f*x])^m*(c + d*Cot[e + f*x])^n/ Cot[e + f*x]^(m + p), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] && IntegerQ[p] +Int[(g_.*tan[e_. + f_.*x_])^p_*(a_ + b_.*tan[e_. + f_.*x_])^ m_.*(c_ + d_.*cot[e_. + f_.*x_])^n_, x_Symbol] := Cot[e + f*x]^p*(g*Tan[e + f*x])^p* Int[(b + a*Cot[e + f*x])^m*(c + d*Cot[e + f*x])^n/ Cot[e + f*x]^(m + p), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && Not[IntegerQ[n]] && IntegerQ[m] && Not[IntegerQ[p]] +Int[(g_.*tan[e_. + f_.*x_])^p_.*(a_ + b_.*tan[e_. + f_.*x_])^ m_*(c_ + d_.*cot[e_. + f_.*x_])^n_, x_Symbol] := (g*Tan[e + f*x])^n*(c + d*Cot[e + f*x])^n/(d + c*Tan[e + f*x])^n* Int[(g*Tan[e + f*x])^(p - n)*(a + b*Tan[e + f*x])^ m*(d + c*Tan[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && Not[IntegerQ[n]] && Not[IntegerQ[m]] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.3.1 (a+b tan)^m (c+d tan)^n (A+B tan).m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.3.1 (a+b tan)^m (c+d tan)^n (A+B tan).m new file mode 100755 index 0000000..7a80586 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.3.1 (a+b tan)^m (c+d tan)^n (A+B tan).m @@ -0,0 +1,35 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.3.1 (a+b tan)^m (c+d tan)^n (A+B tan) *) +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_.*(c_ + d_.*tan[e_. + f_.*x_])^ n_.*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := a*c/f* Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x], x, Tan[e + f*x]] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0] +Int[(c_. + d_.*tan[e_. + f_.*x_])*(A_. + B_.*tan[e_. + f_.*x_])/(a_. + b_.*tan[e_. + f_.*x_]), x_Symbol] := B*d/b*Int[Tan[e + f*x], x] + 1/b*Int[Simp[A*b*c + (A*b*d + B*(b*c - a*d))*Tan[e + f*x], x]/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^ m_*(c_. + d_.*tan[e_. + f_.*x_])*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := -(A*b - a*B)*(a*c + b*d)*(a + b*Tan[e + f*x])^m/(2*a^2*f*m) + 1/(2*a*b)* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[A*b*c + a*B*c + a*A*d + b*B*d + 2*a*B*d*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 + b^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^ m_*(c_. + d_.*tan[e_. + f_.*x_])*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := (b*c - a*d)*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2)) + 1/(a^2 + b^2)* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[a*A*c + b*B*c + A*b*d - a*B*d - (A*b*c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^ m_.*(c_. + d_.*tan[e_. + f_.*x_])*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := B*d*(a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)) + Int[(a + b*Tan[e + f*x])^m* Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Not[LeQ[m, -1]] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := -a^2*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(b*c + a*d)*(n + 1)) - a/(d*(b*c + a*d)*(n + 1))* Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)* Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m - 1) + b*d*(n + 1)))*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)/(d* f*(m + n)) + 1/(d*(m + n))* Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n* Simp[a*A*d*(m + n) + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] && Not[LtQ[n, -1]] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := -(A*b - a*B)*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^n/(2*a*f*m) + 1/(2*a^2*m)* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)* Simp[A*(a*c*m + b*d*n) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := (a*A + b*B)*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(2*f*m*(b*c - a*d)) + 1/(2*a*m*(b*c - a*d))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n* Simp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && Not[GtQ[n, 0]] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := B*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n/(f*(m + n)) + 1/(a*(m + n))* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)* Simp[a*A*c*(m + n) - B*(b*c*m + a*d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))* Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := (A*d - B*c)*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 + d^2)) - 1/(a*(n + 1)*(c^2 + d^2))* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1)* Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := b*B/f* Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^ m_*(A_. + B_.*tan[e_. + f_.*x_])/(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := (A*b + a*B)/(b*c + a*d)*Int[(a + b*Tan[e + f*x])^m, x] - (B*c - A*d)/(b*c + a*d)* Int[(a + b*Tan[e + f*x])^ m*(a - b*Tan[e + f*x])/(c + d*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0] +(* Int[(a_+b_.*tan[e_.+f_.*x_])^m_*(c_.+d_.*tan[e_.+f_.*x_])^n_*(A_.+ B_.*tan[e_.+f_.*x_]),x_Symbol] := (A*b-a*B)/b*Int[(a+b*Tan[e+f*x])^m*(c+d*Tan[e+f*x])^n,x] + B/b*Int[(a+b*Tan[e+f*x])^(m+1)*(c+d*Tan[e+f*x])^n,x] /; FreeQ[{a,b,c,d,e,f,A,B,m},x] && NeQ[b*c-a*d,0] && EqQ[a^2+b^2,0] && NeQ[c^2+d^2,0] *) +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := (A*b + a*B)/b* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x] - B/b* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^ n*(a - b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_ + B_.*tan[e_. + f_.*x_]), x_Symbol] := A^2/f* Subst[Int[(a + b*x)^m*(c + d*x)^n/(A - B*x), x], x, Tan[e + f*x]] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && Not[IntegerQ[m]] && Not[IntegerQ[n]] && Not[IntegersQ[2*m, 2*n]] && EqQ[A^2 + B^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := (A + I*B)/2* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^ n*(1 - I*Tan[e + f*x]), x] + (A - I*B)/2* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^ n*(1 + I*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && Not[IntegerQ[m]] && Not[IntegerQ[n]] && Not[IntegersQ[2*m, 2*n]] && NeQ[A^2 + B^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^2*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := -(B*c - A*d)*(b*c - a*d)^2*(c + d*Tan[e + f*x])^(n + 1)/(f* d^2*(n + 1)*(c^2 + d^2)) + 1/(d*(c^2 + d^2))*Int[(c + d*Tan[e + f*x])^(n + 1)* Simp[B*(b*c - a*d)^2 + A*d*(a^2*c - b^2*c + 2*a*b*d) + d*(B*(a^2*c - b^2*c + 2*a*b*d) + A*(2*a*b*c - a^2*d + b^2*d))* Tan[e + f*x] + b^2*B*(c^2 + d^2)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := (b*c - a*d)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2)) - 1/(d*(n + 1)*(c^2 + d^2))* Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)* Simp[a*A* d*(b*d*(m - 1) - a*c*(n + 1)) + (b*B*c - (A*b + a*B)*d)*(b*c*(m - 1) + a*d*(n + 1)) - d*((a*A - b*B)*(b*c - a*d) + (A*b + a*B)*(a*c + b*d))*(n + 1)* Tan[e + f*x] - b*(d*(A*b*c + a*B*c - a*A*d)*(m + n) - b*B*(c^2*(m - 1) - d^2*(n + 1)))*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) +Int[(a_. + b_.*tan[e_. + f_.*x_])^2*(A_. + B_.*tan[e_. + f_.*x_])/(c_. + d_.*tan[e_. + f_.*x_]), x_Symbol] := b^2*B*Tan[e + f*x]/(d*f) + 1/d*Int[(a^2*A*d - b^2*B*c + (2*a*A*b + B*(a^2 - b^2))*d* Tan[e + f*x] + (A*b^2*d - b*B*(b*c - 2*a*d))* Tan[e + f*x]^2)/(c + d*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)/(d* f*(m + n)) + 1/(d*(m + n))* Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n* Simp[a^2*A*d*(m + n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m - 1) - b*(A*b + a*B)*d*(m + n))* Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) && Not[IGtQ[n, 1] && (Not[IntegerQ[m]] || EqQ[c, 0] && NeQ[a, 0])] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := (A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^ n/(f*(m + 1)*(a^2 + b^2)) + 1/(b*(m + 1)*(a^2 + b^2))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)* Simp[b*B*(b*c*(m + 1) + a*d*n) + A*b*(a*c*(m + 1) - b*d*n) - b*(A*(b*c - a*d) - B*(a*c + b*d))*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)) + 1/((m + 1)*(b*c - a*d)*(a^2 + b^2))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n* Simp[b*B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 2)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) && Not[ILtQ[n, -1] && (Not[IntegerQ[m]] || EqQ[c, 0] && NeQ[a, 0])] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := B*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n/(f*(m + n)) + 1/(m + n)* Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n - 1)* Simp[a*A*c*(m + n) - B*(b*c*m + a*d*n) + (A*b*c + a*B*c + a*A*d - b*B*d)*(m + n)* Tan[e + f*x] + (A*b*d*(m + n) + B*(a*d*m + b*c*n))* Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[0, m, 1] && LtQ[0, n, 1] +Int[(A_. + B_.*tan[e_. + f_.*x_])/((a_ + b_.*tan[e_. + f_.*x_])*(c_. + d_.*tan[e_. + f_.*x_])), x_Symbol] := (B*(b*c + a*d) + A*(a*c - b*d))*x/((a^2 + b^2)*(c^2 + d^2)) + b*(A*b - a*B)/((b*c - a*d)*(a^2 + b^2))* Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x] + d*(B*c - A*d)/((b*c - a*d)*(c^2 + d^2))* Int[(d - c*Tan[e + f*x])/(c + d*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[Sqrt[ c_. + d_.*tan[e_. + f_.*x_]]*(A_. + B_.*tan[e_. + f_.*x_])/(a_. + b_.*tan[e_. + f_.*x_]), x_Symbol] := 1/(a^2 + b^2)* Int[Simp[ A*(a*c + b*d) + B*(b*c - a*d) - (A*(b*c - a*d) - B*(a*c + b*d))*Tan[e + f*x], x]/Sqrt[c + d*Tan[e + f*x]], x] - (b*c - a*d)*(B*a - A*b)/(a^2 + b^2)* Int[(1 + Tan[e + f*x]^2)/((a + b*Tan[e + f*x])* Sqrt[c + d*Tan[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_])/(a_. + b_.*tan[e_. + f_.*x_]), x_Symbol] := 1/(a^2 + b^2)* Int[(c + d*Tan[e + f*x])^n* Simp[a*A + b*B - (A*b - a*B)*Tan[e + f*x], x], x] + b*(A*b - a*B)/(a^2 + b^2)* Int[(c + d*Tan[e + f*x])^ n*(1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[Sqrt[a_. + b_.*tan[e_. + f_.*x_]]*(A_. + B_.*tan[e_. + f_.*x_])/ Sqrt[c_. + d_.*tan[e_. + f_.*x_]], x_Symbol] := Int[Simp[a*A - b*B + (A*b + a*B)*Tan[e + f*x], x]/(Sqrt[a + b*Tan[e + f*x]]*Sqrt[c + d*Tan[e + f*x]]), x] + b*B* Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]* Sqrt[c + d*Tan[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +(* Int[(A_.+B_.*tan[e_.+f_.*x_])/(Sqrt[a_.+b_.*tan[e_.+f_.*x_]]*Sqrt[ c_.+d_.*tan[e_.+f_.*x_]]),x_Symbol] := A^2/f*Subst[Int[1/((A-B*x)*Sqrt[a+b*x]*Sqrt[c+d*x]),x],x,Tan[e+f*x]] /; FreeQ[{a,b,c,d,e,f,A,B},x] && NeQ[b*c-a*d,0] && NeQ[a^2+b^2,0] && NeQ[c^2+d^2,0] && EqQ[A^2+B^2,0] *) +(* Int[(A_.+B_.*tan[e_.+f_.*x_])/(Sqrt[a_.+b_.*tan[e_.+f_.*x_]]*Sqrt[ c_.+d_.*tan[e_.+f_.*x_]]),x_Symbol] := (A+I*B)/2*Int[(1-I*Tan[e+f*x])/(Sqrt[a+b*Tan[e+f*x]]*Sqrt[c+d*Tan[e+ f*x]]),x] + (A-I*B)/2*Int[(1+I*Tan[e+f*x])/(Sqrt[a+b*Tan[e+f*x]]*Sqrt[c+d*Tan[e+ f*x]]),x] /; FreeQ[{a,b,c,d,e,f,A,B},x] && NeQ[b*c-a*d,0] && NeQ[a^2+b^2,0] && NeQ[c^2+d^2,0] && NeQ[A^2+B^2,0] *) +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := A^2/f* Subst[Int[(a + b*x)^m*(c + d*x)^n/(A - B*x), x], x, Tan[e + f*x]] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_]), x_Symbol] := (A + I*B)/2* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^ n*(1 - I*Tan[e + f*x]), x] + (A - I*B)/2* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^ n*(1 + I*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 0] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.4.1 (a+b tan)^m (A+B tan+C tan^2).m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.4.1 (a+b tan)^m (A+B tan+C tan^2).m new file mode 100755 index 0000000..dad493e --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.4.1 (a+b tan)^m (A+B tan+C tan^2).m @@ -0,0 +1,18 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.4.1 (a+b tan)^m (A+B tan+C tan^2) *) +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_.*(A_ + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := A/(b*f)*Subst[Int[(a + x)^m, x], x, b*Tan[e + f*x]] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[A, C] +Int[(a_. + b_.*cot[e_. + f_.*x_])^m_.*(A_ + C_.*cot[e_. + f_.*x_]^2), x_Symbol] := -A/(b*f)*Subst[Int[(a + x)^m, x], x, b*Cot[e + f*x]] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[A, C] +Int[(a_. + b_.*tan[e_. + f_.*x_])^ m_.*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := 1/b^2* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[b*B - a*C + b*C*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_.*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := -C/b^2*Int[(a + b*Tan[e + f*x])^(m + 1)*(a - b*Tan[e + f*x]), x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[A*b^2 + a^2*C, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^ m_.*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := -(a*A + b*B - a*C)* Tan[e + f*x]*(a + b*Tan[e + f*x])^m/(2*a*f*m) + 1/(2*a^2*m)* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[(b*B - a*C) + a*A*(2*m + 1) - (b*C*(m - 1) + (A*b - a*B)*(m + 1))* Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LeQ[m, -1] && EqQ[a^2 + b^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_.*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := -(a*A - a*C)*Tan[e + f*x]*(a + b*Tan[e + f*x])^m/(2*a*f*m) + 1/(2*a^2*m)* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[-a*C + a*A*(2*m + 1) - (b*C*(m - 1) + A*b*(m + 1))*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[A*b^2 + a^2*C, 0] && LeQ[m, -1] && EqQ[a^2 + b^2, 0] +Int[(A_ + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2)/(a_. + b_.*tan[e_. + f_.*x_]), x_Symbol] := (a*A + b*B - a*C)*x/(a^2 + b^2) + (A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)* Int[(1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 + b^2, 0] && EqQ[A*b - a*B - b*C, 0] +Int[(A_ + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2)/ tan[e_. + f_.*x_], x_Symbol] := B*x + A*Int[1/Tan[e + f*x], x] + C*Int[Tan[e + f*x], x] /; FreeQ[{e, f, A, B, C}, x] && NeQ[A, C] +Int[(A_ + C_.*tan[e_. + f_.*x_]^2)/tan[e_. + f_.*x_], x_Symbol] := A*Int[1/Tan[e + f*x], x] + C*Int[Tan[e + f*x], x] /; FreeQ[{e, f, A, C}, x] && NeQ[A, C] +Int[(A_ + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2)/(a_. + b_.*tan[e_. + f_.*x_]), x_Symbol] := (a*A + b*B - a*C)*x/(a^2 + b^2) - (A*b - a*B - b*C)/(a^2 + b^2)*Int[Tan[e + f*x], x] + (A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)* Int[(1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && NeQ[a^2 + b^2, 0] && NeQ[A*b - a*B - b*C, 0] +Int[(A_ + C_.*tan[e_. + f_.*x_]^2)/(a_ + b_.*tan[e_. + f_.*x_]), x_Symbol] := a*(A - C)*x/(a^2 + b^2) - b*(A - C)/(a^2 + b^2)*Int[Tan[e + f*x], x] + (a^2*C + A*b^2)/(a^2 + b^2)* Int[(1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2*C + A*b^2, 0] && NeQ[a^2 + b^2, 0] && NeQ[A, C] +Int[(a_. + b_.*tan[e_. + f_.*x_])^ m_*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := (A*b^2 - a*b*B + a^2*C)*(a + b*Tan[e + f*x])^(m + 1)/(b* f*(m + 1)*(a^2 + b^2)) + 1/(a^2 + b^2)* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[b*B + a*(A - C) - (A*b - a*B - b*C)*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := (A*b^2 + a^2*C)*(a + b*Tan[e + f*x])^(m + 1)/(b* f*(m + 1)*(a^2 + b^2)) + 1/(a^2 + b^2)* Int[(a + b*Tan[e + f*x])^(m + 1)* Simp[a*(A - C) - (A*b - b*C)*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[A*b^2 + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^ m_.*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := C*(a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)) + Int[(a + b*Tan[e + f*x])^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && Not[LeQ[m, -1]] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_.*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := C*(a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)) + (A - C)* Int[(a + b*Tan[e + f*x])^m, x] /; FreeQ[{a, b, e, f, A, C, m}, x] && NeQ[A*b^2 + a^2*C, 0] && Not[LeQ[m, -1]] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.4.2 (a+b tan)^m (c+d tan)^n (A+B tan+C tan^2).m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.4.2 (a+b tan)^m (c+d tan)^n (A+B tan+C tan^2).m new file mode 100755 index 0000000..97b675f --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.4.2 (a+b tan)^m (c+d tan)^n (A+B tan+C tan^2).m @@ -0,0 +1,28 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.4.2 (a+b tan)^m (c+d tan)^n (A+B tan+C tan^2) *) +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_.*(c_. + d_.*tan[e_. + f_.*x_])^ n_.*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := 1/b^2* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^ n*(b*B - a*C + b*C*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_.*(c_. + d_.*tan[e_. + f_.*x_])^ n_.*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := -C/b^2* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^ n*(a - b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 + a^2*C, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_.*(c_. + d_.*tan[e_. + f_.*x_])^ n_.*(A_ + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := A/f*Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C] +Int[(a_. + b_.*tan[e_. + f_.*x_])*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := -(b*c - a*d)*(c^2*C - B*c*d + A*d^2)*(c + d*Tan[e + f*x])^(n + 1)/(d^2* f*(n + 1)*(c^2 + d^2)) + 1/(d*(c^2 + d^2))*Int[(c + d*Tan[e + f*x])^(n + 1)* Simp[a*d*(A*c - c*C + B*d) + b*(c^2*C - B*c*d + A*d^2) + d*(A*b*c + a*B*c - b*c*C - a*A*d + b*B*d + a*C*d)* Tan[e + f*x] + b*C*(c^2 + d^2)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1] +Int[(a_. + b_.*tan[e_. + f_.*x_])*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := -(b*c - a*d)*(c^2*C + A*d^2)*(c + d*Tan[e + f*x])^(n + 1)/(d^2* f*(n + 1)*(c^2 + d^2)) + 1/(d*(c^2 + d^2))*Int[(c + d*Tan[e + f*x])^(n + 1)* Simp[a*d*(A*c - c*C) + b*(c^2*C + A*d^2) + d*(A*b*c - b*c*C - a*A*d + a*C*d)*Tan[e + f*x] + b*C*(c^2 + d^2)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1] +Int[(a_ + b_.*tan[e_. + f_.*x_])*(c_. + d_.*tan[e_. + f_.*x_])^ n_.*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := b*C*Tan[e + f*x]*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 2)) - 1/(d*(n + 2))*Int[(c + d*Tan[e + f*x])^n* Simp[b*c*C - a*A*d*(n + 2) - (A*b + a*B - b*C)*d*(n + 2)* Tan[e + f*x] - (a*C*d*(n + 2) - b*(c*C - B*d*(n + 2)))* Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && Not[LtQ[n, -1]] +Int[(a_ + b_.*tan[e_. + f_.*x_])*(c_. + d_.*tan[e_. + f_.*x_])^ n_.*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := b*C*Tan[e + f*x]*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 2)) - 1/(d*(n + 2))*Int[(c + d*Tan[e + f*x])^n* Simp[b*c*C - a*A*d*(n + 2) - (A*b - b*C)*d*(n + 2)* Tan[e + f*x] - (a*C*d*(n + 2) - b*c*C)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && Not[LtQ[n, -1]] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_.*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := (a*A + b*B - a*C)*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(2*f*m*(b*c - a*d)) + 1/(2*a*m*(b*c - a*d))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n* Simp[b*(c*(A + C)*m - B*d*(n + 1)) + a*(B*c*m + C*d*(n + 1) - A*d*(2*m + n + 1)) + (b*C*d*(m - n - 1) + A*b*d*(m + n + 1) + a*(2*c*C*m - B*d*(m + n + 1)))*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && (LtQ[m, 0] || EqQ[m + n + 1, 0]) +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_.*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := a*(A - C)*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(2*f*m*(b*c - a*d)) + 1/(2*a*m*(b*c - a*d))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n* Simp[b*c*(A + C)*m + a*(C*d*(n + 1) - A*d*(2*m + n + 1)) + (b*C*d*(m - n - 1) + A*b*d*(m + n + 1) + 2*a*c*C*m)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && (LtQ[m, 0] || EqQ[m + n + 1, 0]) +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_.*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := (c^2*C - B*c*d + A*d^2)*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2)) - 1/(a*d*(n + 1)*(c^2 + d^2))* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1)* Simp[b*(c^2*C - B*c*d + A*d^2)*m - a*d*(n + 1)*(A*c - c*C + B*d) - a*(d*(B*c - A*d)*(m + n + 1) - C*(c^2*m - d^2*(n + 1)))* Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && Not[LtQ[m, 0]] && LtQ[n, -1] && NeQ[c^2 + d^2, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_.*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := (c^2*C + A*d^2)*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2)) - 1/(a*d*(n + 1)*(c^2 + d^2))* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1)* Simp[b*(c^2*C + A*d^2)*m - a*d*(n + 1)*(A*c - c*C) - a*(-A*d^2*(m + n + 1) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && Not[LtQ[m, 0]] && LtQ[n, -1] && NeQ[c^2 + d^2, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_.*(c_. + d_.*tan[e_. + f_.*x_])^ n_.*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := C*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n + 1)) + 1/(b*d*(m + n + 1))* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n* Simp[A*b*d*(m + n + 1) + C*(a*c*m - b*d*(n + 1)) - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && Not[LtQ[m, 0]] && NeQ[m + n + 1, 0] +Int[(a_ + b_.*tan[e_. + f_.*x_])^m_.*(c_. + d_.*tan[e_. + f_.*x_])^ n_.*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := C*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n + 1)) + 1/(b*d*(m + n + 1))* Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n* Simp[A*b*d*(m + n + 1) + C*(a*c*m - b*d*(n + 1)) - C*m*(b*c - a*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && Not[LtQ[m, 0]] && NeQ[m + n + 1, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := (A*d^2 + c*(c*C - B*d))*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2)) - 1/(d*(n + 1)*(c^2 + d^2))* Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)* Simp[A*d*(b*d*m - a*c*(n + 1)) + (c*C - B*d)*(b*c*m + a*d*(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d) + B*(a*c + b*d))*Tan[e + f*x] - b*(d*(B*c - A*d)*(m + n + 1) - C*(c^2*m - d^2*(n + 1)))* Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := (A*d^2 + c^2*C)*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2)) - 1/(d*(n + 1)*(c^2 + d^2))* Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)* Simp[A*d*(b*d*m - a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d))*Tan[e + f*x] + b*(A*d^2*(m + n + 1) + C*(c^2*m - d^2*(n + 1)))* Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_.*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := C*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n + 1)) + 1/(d*(m + n + 1))* Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n* Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)* Tan[e + f*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))* Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && Not[IGtQ[n, 0] && (Not[IntegerQ[m]] || EqQ[c, 0] && NeQ[a, 0])] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_.*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := C*(a + b*Tan[e + f*x])^ m*(c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n + 1)) + 1/(d*(m + n + 1))* Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n* Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b - b*C)*(m + n + 1)*Tan[e + f*x] - C*m*(b*c - a*d)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && Not[IGtQ[n, 0] && (Not[IntegerQ[m]] || EqQ[c, 0] && NeQ[a, 0])] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := (A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)) + 1/((m + 1)*(b*c - a*d)*(a^2 + b^2))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n* Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && Not[ILtQ[n, -1] && (Not[IntegerQ[m]] || EqQ[c, 0] && NeQ[a, 0])] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := (A*b^2 + a^2*C)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)) + 1/((m + 1)*(b*c - a*d)*(a^2 + b^2))* Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n* Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2)) - a*C*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - b*C)*Tan[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 2)*Tan[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && Not[ILtQ[n, -1] && (Not[IntegerQ[m]] || EqQ[c, 0] && NeQ[a, 0])] +Int[(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2)/((a_ + b_.*tan[e_. + f_.*x_])*(c_. + d_.*tan[e_. + f_.*x_])), x_Symbol] := (a*(A*c - c*C + B*d) + b*(B*c - A*d + C*d))* x/((a^2 + b^2)*(c^2 + d^2)) + (A*b^2 - a*b*B + a^2*C)/((b*c - a*d)*(a^2 + b^2))* Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x] - (c^2*C - B*c*d + A*d^2)/((b*c - a*d)*(c^2 + d^2))* Int[(d - c*Tan[e + f*x])/(c + d*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(A_. + C_.*tan[e_. + f_.*x_]^2)/((a_ + b_.*tan[e_. + f_.*x_])*(c_. + d_.*tan[e_. + f_.*x_])), x_Symbol] := (a*(A*c - c*C) - b*(A*d - C*d))*x/((a^2 + b^2)*(c^2 + d^2)) + (A*b^2 + a^2*C)/((b*c - a*d)*(a^2 + b^2))* Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x] - (c^2*C + A*d^2)/((b*c - a*d)*(c^2 + d^2))* Int[(d - c*Tan[e + f*x])/(c + d*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2)/(a_. + b_.*tan[e_. + f_.*x_]), x_Symbol] := 1/(a^2 + b^2)* Int[(c + d*Tan[e + f*x])^n* Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x] + (A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)* Int[(c + d*Tan[e + f*x])^ n*(1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Not[GtQ[n, 0]] && Not[LeQ[n, -1]] +Int[(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + C_.*tan[e_. + f_.*x_]^2)/(a_. + b_.*tan[e_. + f_.*x_]), x_Symbol] := 1/(a^2 + b^2)* Int[(c + d*Tan[e + f*x])^n* Simp[a*(A - C) - (A*b - b*C)*Tan[e + f*x], x], x] + (A*b^2 + a^2*C)/(a^2 + b^2)* Int[(c + d*Tan[e + f*x])^ n*(1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Not[GtQ[n, 0]] && Not[LeQ[n, -1]] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + B_.*tan[e_. + f_.*x_] + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(a + b*ff*x)^m*(c + d*ff*x)^ n*(A + B*ff*x + C*ff^2*x^2)/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] +Int[(a_. + b_.*tan[e_. + f_.*x_])^m_*(c_. + d_.*tan[e_. + f_.*x_])^ n_*(A_. + C_.*tan[e_. + f_.*x_]^2), x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(a + b*ff*x)^m*(c + d*ff*x)^ n*(A + C*ff^2*x^2)/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.7 (d trig)^m (a+b (c tan)^n)^p.m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.7 (d trig)^m (a+b (c tan)^n)^p.m new file mode 100755 index 0000000..9ff7d52 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.7 (d trig)^m (a+b (c tan)^n)^p.m @@ -0,0 +1,28 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.7 (d trig)^m (a+b (c tan)^n)^p *) +Int[u_.*(a_ + b_.*tan[e_. + f_.*x_]^2)^p_, x_Symbol] := Int[ActivateTrig[u*(a*sec[e + f*x]^2)^p], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a, b] +Int[u_.*(b_.*tan[e_. + f_.*x_]^n_)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, (b*ff^n)^ IntPart[p]*(b*Tan[e + f*x]^n)^ FracPart[p]/(Tan[e + f*x]/ff)^(n*FracPart[p])* Int[ActivateTrig[u]*(Tan[e + f*x]/ff)^(n*p), x]] /; FreeQ[{b, e, f, n, p}, x] && Not[IntegerQ[p]] && IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, (d_.*trig_[e + f*x])^m_. /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]]) +Int[u_.*(b_.*(c_.*tan[e_. + f_.*x_])^n_)^p_, x_Symbol] := b^IntPart[p]*(b*(c*Tan[e + f*x])^n)^ FracPart[p]/(c*Tan[e + f*x])^(n*FracPart[p])* Int[ActivateTrig[u]*(c*Tan[e + f*x])^(n*p), x] /; FreeQ[{b, c, e, f, n, p}, x] && Not[IntegerQ[p]] && Not[IntegerQ[n]] && (EqQ[u, 1] || MatchQ[u, (d_.*trig_[e + f*x])^m_. /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]]) +Int[1/(a_ + b_.*tan[e_. + f_.*x_]^2), x_Symbol] := x/(a - b) - b/(a - b)*Int[Sec[e + f*x]^2/(a + b*Tan[e + f*x]^2), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a, b] +Int[(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, c*ff/f* Subst[Int[(a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2), x], x, c*Tan[e + f*x]/ff]] /; FreeQ[{a, b, c, e, f, n, p}, x] && (IntegersQ[n, p] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16]) +Int[(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^p_., x_Symbol] := Unintegrable[(a + b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, e, f, n, p}, x] +Int[sin[e_. + f_.*x_]^m_*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, c*ff^(m + 1)/f* Subst[Int[x^m*(a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)^(m/2 + 1), x], x, c*Tan[e + f*x]/ff]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] +Int[sin[e_. + f_.*x_]^m_.*(a_ + b_.*tan[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Sec[e + f*x], x]}, 1/(f*ff^m)* Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*(a - b + b*ff^2*x^2)^p/ x^(m + 1), x], x, Sec[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] +Int[sin[e_. + f_.*x_]^m_.*(a_ + b_.*tan[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Sec[e + f*x], x]}, 1/(f*ff^m)* Subst[Int[(-1 + ff^2*x^2)^((m - 1)/ 2)*(a + b*(-1 + ff^2*x^2)^(n/2))^p/x^(m + 1), x], x, Sec[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] +Int[(d_.*sin[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Int[ExpandTrig[(d*sin[e + f*x])^m*(a + b*(c*tan[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 0] +Int[(d_.*sin[e_. + f_.*x_])^m_*(a_ + b_.*tan[e_. + f_.*x_]^2)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff*(d*Sin[e + f*x])^m*(Sec[e + f*x]^2)^(m/2)/(f*Tan[e + f*x]^m)* Subst[ Int[(ff*x)^m*(a + b*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Not[IntegerQ[m]] +Int[(d_.*sin[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Unintegrable[(d*Sin[e + f*x])^m*(a + b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[(d_.*cos[e_. + f_.*x_])^m_*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^ p_, x_Symbol] := (d*Cos[e + f*x])^FracPart[m]*(Sec[e + f*x]/d)^FracPart[m]* Int[(Sec[e + f*x]/d)^(-m)*(a + b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] +Int[(d_.*tan[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^ p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, c*ff/f* Subst[Int[(d*ff*x/c)^m*(a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2), x], x, c*Tan[e + f*x]/ff]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || IntegerQ[p] && RationalQ[n]) +Int[(d_.*tan[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Int[ExpandTrig[(d*tan[e + f*x])^m*(a + b*(c*tan[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 0] +Int[(d_.*tan[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Unintegrable[(d*Tan[e + f*x])^m*(a + b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[(d_.*cot[e_. + f_.*x_])^m_*(a_ + b_.*tan[e_. + f_.*x_]^n_.)^p_., x_Symbol] := d^(n*p)* Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] && IntegersQ[n, p] +Int[(d_.*cot[e_. + f_.*x_])^m_*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^ p_, x_Symbol] := (d*Cot[e + f*x])^FracPart[m]*(Tan[e + f*x]/d)^FracPart[m]* Int[(Tan[e + f*x]/d)^(-m)*(a + b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] +Int[sec[e_. + f_.*x_]^m_*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/(c^(m - 1)*f)* Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)^n)^p, x], x, c*Tan[e + f*x]/ff]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[ m/2] && (IntegersQ[n, p] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16]) +Int[sec[e_. + f_.*x_]^m_.*(a_ + b_.*tan[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff/f* Subst[Int[ ExpandToSum[b*(ff*x)^n + a*(1 - ff^2*x^2)^(n/2), x]^ p/(1 - ff^2*x^2)^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p] +Int[sec[e_. + f_.*x_]^m_.*(a_ + b_.*tan[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff/f* Subst[Int[ 1/(1 - ff^2*x^2)^((m + 1)/ 2)*((b*(ff*x)^n + a*(1 - ff^2*x^2)^(n/2))/(1 - ff^2*x^2)^(n/2))^p, x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && Not[IntegerQ[p]] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Int[ExpandTrig[(d*sec[e + f*x])^m*(a + b*(c*tan[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 0] +Int[(d_.*sec[e_. + f_.*x_])^m_*(a_ + b_.*tan[e_. + f_.*x_]^2)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff*(d*Sec[e + f*x])^m/(f*(Sec[e + f*x]^2)^(m/2))* Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*(a + b*ff^2*x^2)^p, x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Not[IntegerQ[m]] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Unintegrable[(d*Sec[e + f*x])^m*(a + b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[(d_.*csc[e_. + f_.*x_])^m_*(a_ + b_.*(c_.*tan[e_. + f_.*x_])^n_)^ p_, x_Symbol] := (d*Csc[e + f*x])^FracPart[m]*(Sin[e + f*x]/d)^FracPart[m]* Int[(Sin[e + f*x]/d)^(-m)*(a + b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] diff --git a/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.9 trig^m (a+b tan^n+c tan^(2 n))^p.m b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.9 trig^m (a+b tan^n+c tan^(2 n))^p.m new file mode 100755 index 0000000..0e2057a --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.3 Tangent/4.3.9 trig^m (a+b tan^n+c tan^(2 n))^p.m @@ -0,0 +1,37 @@ + +(* ::Subsection::Closed:: *) +(* 4.3.9 trig^m (a+b tan^n+c tan^(2 n))^p *) +Int[(a_ + b_.*tan[d_. + e_.*x_]^n_. + c_.*tan[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := 1/(4^p*c^p)*Int[(b + 2*c*Tan[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[(a_ + b_.*cot[d_. + e_.*x_]^n_. + c_.*cot[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := 1/(4^p*c^p)*Int[(b + 2*c*Cot[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[(a_ + b_.*tan[d_. + e_.*x_]^n_. + c_.*tan[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Tan[d + e*x]^n + c*Tan[d + e*x]^(2*n))^ p/(b + 2*c*Tan[d + e*x]^n)^(2*p)* Int[(b + 2*c*Tan[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[(a_ + b_.*cot[d_. + e_.*x_]^n_. + c_.*cot[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Cot[d + e*x]^n + c*Cot[d + e*x]^(2*n))^ p/(b + 2*c*Cot[d + e*x]^n)^(2*p)* Int[(b + 2*c*Cot[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[1/(a_. + b_.*tan[d_. + e_.*x_]^n_. + c_.*tan[d_. + e_.*x_]^n2_.), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, 2*c/q*Int[1/(b - q + 2*c*Tan[d + e*x]^n), x] - 2*c/q*Int[1/(b + q + 2*c*Tan[d + e*x]^n), x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] +Int[1/(a_. + b_.*cot[d_. + e_.*x_]^n_. + c_.*cot[d_. + e_.*x_]^n2_.), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, 2*c/q*Int[1/(b - q + 2*c*Cot[d + e*x]^n), x] - 2*c/q*Int[1/(b + q + 2*c*Cot[d + e*x]^n), x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] +Int[sin[d_. + e_.*x_]^ m_*(a_. + b_.*(f_.*tan[d_. + e_.*x_])^n_. + c_.*(f_.*tan[d_. + e_.*x_])^n2_.)^p_, x_Symbol] := f/e*Subst[ Int[x^m*(a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)^(m/2 + 1), x], x, f*Tan[d + e*x]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] +Int[cos[d_. + e_.*x_]^ m_*(a_. + b_.*(f_.*cot[d_. + e_.*x_])^n_. + c_.*(f_.*cot[d_. + e_.*x_])^n2_.)^p_, x_Symbol] := -f/e*Subst[ Int[x^m*(a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)^(m/2 + 1), x], x, f*Cot[d + e*x]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] +Int[sin[d_. + e_.*x_]^ m_.*(a_. + b_.*tan[d_. + e_.*x_]^n_. + c_.*tan[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := Module[{g = FreeFactors[Cos[d + e*x], x]}, -g/e* Subst[Int[(1 - g^2*x^2)^((m - 1)/2)* ExpandToSum[ a*(g*x)^(2*n) + b*(g*x)^n*(1 - g^2*x^2)^(n/2) + c*(1 - g^2*x^2)^n, x]^p/(g*x)^(2*n*p), x], x, Cos[d + e*x]/g]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p] +Int[cos[d_. + e_.*x_]^ m_.*(a_. + b_.*cot[d_. + e_.*x_]^n_. + c_.*tan[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := Module[{g = FreeFactors[Sin[d + e*x], x]}, g/e* Subst[Int[(1 - g^2*x^2)^((m - 1)/2)* ExpandToSum[ a*(g*x)^(2*n) + b*(g*x)^n*(1 - g^2*x^2)^(n/2) + c*(1 - g^2*x^2)^n, x]^p/(g*x)^(2*n*p), x], x, Sin[d + e*x]/g]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p] +Int[cos[d_. + e_.*x_]^ m_*(a_. + b_.*(f_.*tan[d_. + e_.*x_])^n_. + c_.*(f_.*tan[d_. + e_.*x_])^n2_.)^p_., x_Symbol] := f^(m + 1)/e* Subst[Int[(a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)^(m/2 + 1), x], x, f*Tan[d + e*x]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] +Int[sin[d_. + e_.*x_]^ m_*(a_. + b_.*(f_.*cot[d_. + e_.*x_])^n_. + c_.*(f_.*cot[d_. + e_.*x_])^n2_.)^p_., x_Symbol] := -f^(m + 1)/e* Subst[Int[(a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)^(m/2 + 1), x], x, f*Cot[d + e*x]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] +Int[cos[d_. + e_.*x_]^ m_*(a_. + b_.*tan[d_. + e_.*x_]^n_. + c_.*tan[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := Module[{g = FreeFactors[Sin[d + e*x], x]}, g/e* Subst[Int[(1 - g^2*x^2)^((m - 2*n*p - 1)/2)* ExpandToSum[c*x^(2*n) + b*x^n*(1 - x^2)^(n/2) + a*(1 - x^2)^n, x]^p, x], x, Sin[d + e*x]/g]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p] +Int[sin[d_. + e_.*x_]^ m_*(a_. + b_.*cot[d_. + e_.*x_]^n_. + c_.*cot[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := Module[{g = FreeFactors[Cos[d + e*x], x]}, -g/e* Subst[Int[(1 - g^2*x^2)^((m - 2*n*p - 1)/2)* ExpandToSum[c*x^(2*n) + b*x^n*(1 - x^2)^(n/2) + a*(1 - x^2)^n, x]^p, x], x, Cos[d + e*x]/g]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p] +Int[tan[d_. + e_.*x_]^ m_.*(a_. + b_.*tan[d_. + e_.*x_]^n_. + c_.*tan[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := 1/(4^p*c^p)*Int[Tan[d + e*x]^m*(b + 2*c*Tan[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[cot[d_. + e_.*x_]^ m_.*(a_. + b_.*cot[d_. + e_.*x_]^n_. + c_.*cot[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := 1/(4^p*c^p)*Int[Cot[d + e*x]^m*(b + 2*c*Cot[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[tan[d_. + e_.*x_]^ m_.*(a_. + b_.*tan[d_. + e_.*x_]^n_. + c_.*tan[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Tan[d + e*x]^n + c*Tan[d + e*x]^(2*n))^ p/(b + 2*c*Tan[d + e*x]^n)^(2*p)* Int[Tan[d + e*x]^m*(b + 2*c*Tan[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[cot[d_. + e_.*x_]^ m_.*(a_. + b_.*cot[d_. + e_.*x_]^n_. + c_.*cot[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Cot[d + e*x]^n + c*Cot[d + e*x]^(2*n))^ p/(b + 2*c*Cot[d + e*x]^n)^(2*p)* Int[Cot[d + e*x]^m*(b + 2*c*Cot[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[tan[d_. + e_.*x_]^ m_.*(a_. + b_.*(f_.*tan[d_. + e_.*x_])^n_. + c_.*(f_.*tan[d_. + e_.*x_])^n2_.)^p_, x_Symbol] := f/e*Subst[Int[(x/f)^m*(a + b*x^n + c*x^(2*n))^p/(f^2 + x^2), x], x, f*Tan[d + e*x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] +Int[cot[d_. + e_.*x_]^ m_.*(a_. + b_.*(f_.*cot[d_. + e_.*x_])^n_. + c_.*(f_.*cot[d_. + e_.*x_])^n2_.)^p_, x_Symbol] := -f/e*Subst[Int[(x/f)^m*(a + b*x^n + c*x^(2*n))^p/(f^2 + x^2), x], x, f*Cot[d + e*x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] +Int[cot[d_. + e_.*x_]^ m_.*(a_. + b_.*tan[d_. + e_.*x_]^n_. + c_.*tan[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := 1/(4^p*c^p)*Int[Cot[d + e*x]^m*(b + 2*c*Tan[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[tan[d_. + e_.*x_]^ m_.*(a_. + b_.*cot[d_. + e_.*x_]^n_. + c_.*cot[d_. + e_.*x_]^n2_.)^p_., x_Symbol] := 1/(4^p*c^p)*Int[Tan[d + e*x]^m*(b + 2*c*Cot[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[cot[d_. + e_.*x_]^ m_.*(a_. + b_.*tan[d_. + e_.*x_]^n_. + c_.*tan[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Tan[d + e*x]^n + c*Tan[d + e*x]^(2*n))^ p/(b + 2*c*Tan[d + e*x]^n)^(2*p)* Int[Cot[d + e*x]^m*(b + 2*c*Tan[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[tan[d_. + e_.*x_]^ m_.*(a_. + b_.*cot[d_. + e_.*x_]^n_. + c_.*cot[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Cot[d + e*x]^n + c*Cot[d + e*x]^(2*n))^ p/(b + 2*c*Cot[d + e*x]^n)^(2*p)* Int[Tan[d + e*x]^m*(b + 2*c*Cot[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[cot[d_. + e_.*x_]^ m_.*(a_. + b_.*tan[d_. + e_.*x_]^n_ + c_.*tan[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{g = FreeFactors[Cot[d + e*x], x]}, g/e* Subst[Int[(g*x)^(m - 2*n*p)*(c + b*(g*x)^n + a*(g*x)^(2*n))^ p/(1 + g^2*x^2), x], x, Cot[d + e*x]/g]] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] +Int[tan[d_. + e_.*x_]^ m_.*(a_. + b_.*cot[d_. + e_.*x_]^n_ + c_.*cot[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{g = FreeFactors[Tan[d + e*x], x]}, -g/e* Subst[Int[(g*x)^(m - 2*n*p)*(c + b*(g*x)^n + a*(g*x)^(2*n))^ p/(1 + g^2*x^2), x], x, Tan[d + e*x]/g]] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] +Int[(A_ + B_.*tan[d_. + e_.*x_])*(a_ + b_.*tan[d_. + e_.*x_] + c_.*tan[d_. + e_.*x_]^2)^n_, x_Symbol] := 1/(4^n*c^n)* Int[(A + B*Tan[d + e*x])*(b + 2*c*Tan[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n] +Int[(A_ + B_.*cot[d_. + e_.*x_])*(a_ + b_.*cot[d_. + e_.*x_] + c_.*cot[d_. + e_.*x_]^2)^n_, x_Symbol] := 1/(4^n*c^n)* Int[(A + B*Cot[d + e*x])*(b + 2*c*Cot[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n] +Int[(A_ + B_.*tan[d_. + e_.*x_])*(a_ + b_.*tan[d_. + e_.*x_] + c_.*tan[d_. + e_.*x_]^2)^n_, x_Symbol] := (a + b*Tan[d + e*x] + c*Tan[d + e*x]^2)^ n/(b + 2*c*Tan[d + e*x])^(2*n)* Int[(A + B*Tan[d + e*x])*(b + 2*c*Tan[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[n]] +Int[(A_ + B_.*cot[d_. + e_.*x_])*(a_ + b_.*cot[d_. + e_.*x_] + c_.*cot[d_. + e_.*x_]^2)^n_, x_Symbol] := (a + b*Cot[d + e*x] + c*Cot[d + e*x]^2)^ n/(b + 2*c*Cot[d + e*x])^(2*n)* Int[(A + B*Cot[d + e*x])*(b + 2*c*Cot[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[n]] +Int[(A_ + B_.*tan[d_. + e_.*x_])/(a_. + b_.*tan[d_. + e_.*x_] + c_.*tan[d_. + e_.*x_]^2), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, (B + (b*B - 2*A*c)/q)* Int[1/Simp[b + q + 2*c*Tan[d + e*x], x], x] + (B - (b*B - 2*A*c)/q)* Int[1/Simp[b - q + 2*c*Tan[d + e*x], x], x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] +Int[(A_ + B_.*cot[d_. + e_.*x_])/(a_. + b_.*cot[d_. + e_.*x_] + c_.*cot[d_. + e_.*x_]^2), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, (B + (b*B - 2*A*c)/q)* Int[1/Simp[b + q + 2*c*Cot[d + e*x], x], x] + (B - (b*B - 2*A*c)/q)* Int[1/Simp[b - q + 2*c*Cot[d + e*x], x], x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] +Int[(A_ + B_.*tan[d_. + e_.*x_])*(a_. + b_.*tan[d_. + e_.*x_] + c_.*tan[d_. + e_.*x_]^2)^n_, x_Symbol] := Int[ExpandTrig[(A + B*tan[d + e*x])*(a + b*tan[d + e*x] + c*tan[d + e*x]^2)^n, x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n] +Int[(A_ + B_.*cot[d_. + e_.*x_])*(a_. + b_.*cot[d_. + e_.*x_] + c_.*cot[d_. + e_.*x_]^2)^n_, x_Symbol] := Int[ExpandTrig[(A + B*cot[d + e*x])*(a + b*cot[d + e*x] + c*cot[d + e*x]^2)^n, x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.1 (a+b sec)^n.m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.1 (a+b sec)^n.m new file mode 100755 index 0000000..b71ea2b --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.1 (a+b sec)^n.m @@ -0,0 +1,24 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.1.1 (a+b sec)^n *) +Int[csc[c_. + d_.*x_]^n_, x_Symbol] := -1/d*Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0] +Int[(b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := -b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1)/(d*(n - 1)) + b^2*(n - 2)/(n - 1)*Int[(b*Csc[c + d*x])^(n - 2), x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[2*n] +Int[(b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1)/(b*d*n) + (n + 1)/(b^2*n)*Int[(b*Csc[c + d*x])^(n + 2), x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2*n] +Int[csc[c_. + d_.*x_], x_Symbol] := (* -ArcCoth[Cos[c+d*x]]/d /; *) -ArcTanh[Cos[c + d*x]]/d /; FreeQ[{c, d}, x] +(* Int[1/csc[c_.+d_.*x_],x_Symbol] := -Cos[c+d*x]/d /; FreeQ[{c,d},x] *) +Int[(b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := (b*Csc[c + d*x])^n*Sin[c + d*x]^n*Int[1/Sin[c + d*x]^n, x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4] +Int[(b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := (b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)* Int[1/(Sin[c + d*x]/b)^n, x]) /; FreeQ[{b, c, d, n}, x] && Not[IntegerQ[n]] +Int[(a_ + b_.*csc[c_. + d_.*x_])^2, x_Symbol] := a^2*x + 2*a*b*Int[Csc[c + d*x], x] + b^2*Int[Csc[c + d*x]^2, x] /; FreeQ[{a, b, c, d}, x] +Int[Sqrt[a_ + b_.*csc[c_. + d_.*x_]], x_Symbol] := -2*b/d* Subst[Int[1/(a + x^2), x], x, b*Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]]] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := -b^2*Cot[c + d*x]*(a + b*Csc[c + d*x])^(n - 2)/(d*(n - 1)) + a/(n - 1)* Int[(a + b*Csc[c + d*x])^(n - 2)*(a*(n - 1) + b*(3*n - 4)*Csc[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n] +Int[1/Sqrt[a_ + b_.*csc[c_. + d_.*x_]], x_Symbol] := 1/a*Int[Sqrt[a + b*Csc[c + d*x]], x] - b/a*Int[Csc[c + d*x]/Sqrt[a + b*Csc[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := -Cot[c + d*x]*(a + b*Csc[c + d*x])^n/(d*(2*n + 1)) + 1/(a^2*(2*n + 1))* Int[(a + b*Csc[c + d*x])^(n + 1)*(a*(2*n + 1) - b*(n + 1)*Csc[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n] +Int[(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := a^n*Cot[ c + d*x]/(d*Sqrt[1 + Csc[c + d*x]]*Sqrt[1 - Csc[c + d*x]])* Subst[Int[(1 + b*x/a)^(n - 1/2)/(x*Sqrt[1 - b*x/a]), x], x, Csc[c + d*x]] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[2*n]] && GtQ[a, 0] +Int[(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := a^IntPart[n]*(a + b*Csc[c + d*x])^ FracPart[n]/(1 + b/a*Csc[c + d*x])^FracPart[n]* Int[(1 + b/a*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[2*n]] && Not[GtQ[a, 0]] +Int[Sqrt[a_ + b_.*csc[c_. + d_.*x_]], x_Symbol] := 2*(a + b*Csc[c + d*x])/(d*Rt[a + b, 2]*Cot[c + d*x])* Sqrt[b*(1 + Csc[c + d*x])/(a + b*Csc[c + d*x])]* Sqrt[-b*(1 - Csc[c + d*x])/(a + b*Csc[c + d*x])]* EllipticPi[a/(a + b), ArcSin[Rt[a + b, 2]/Sqrt[a + b*Csc[c + d*x]]], (a - b)/(a + b)] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[c_. + d_.*x_])^(3/2), x_Symbol] := Int[(a^2 + b*(2*a - b)*Csc[c + d*x])/Sqrt[a + b*Csc[c + d*x]], x] + b^2* Int[Csc[c + d*x]*(1 + Csc[c + d*x])/Sqrt[a + b*Csc[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := -b^2*Cot[c + d*x]*(a + b*Csc[c + d*x])^(n - 2)/(d*(n - 1)) + 1/(n - 1)*Int[(a + b*Csc[c + d*x])^(n - 3)* Simp[a^3*(n - 1) + (b*(b^2*(n - 2) + 3*a^2*(n - 1)))* Csc[c + d*x] + (a*b^2*(3*n - 4))*Csc[c + d*x]^2, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n] +Int[1/(a_ + b_.*csc[c_. + d_.*x_]), x_Symbol] := x/a - 1/a*Int[1/(1 + a/b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] +Int[1/Sqrt[a_ + b_.*csc[c_. + d_.*x_]], x_Symbol] := 2*Rt[a + b, 2]/(a*d*Cot[c + d*x])* Sqrt[b*(1 - Csc[c + d*x])/(a + b)]* Sqrt[-b*(1 + Csc[c + d*x])/(a - b)]* EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := b^2*Cot[ c + d*x]*(a + b*Csc[c + d*x])^(n + 1)/(a*d*(n + 1)*(a^2 - b^2)) + 1/(a*(n + 1)*(a^2 - b^2))* Int[(a + b*Csc[c + d*x])^(n + 1)* Simp[(a^2 - b^2)*(n + 1) - a*b*(n + 1)*Csc[c + d*x] + b^2*(n + 2)*Csc[c + d*x]^2, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n] +Int[(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := Unintegrable[(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0] && Not[IntegerQ[2*n]] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.2 (d sec)^n (a+b sec)^m.m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.2 (d sec)^n (a+b sec)^m.m new file mode 100755 index 0000000..eaf1078 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.2 (d sec)^n (a+b sec)^m.m @@ -0,0 +1,89 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.1.2 (d sec)^n (a+b sec)^m *) +Int[(a_ + b_.*csc[e_. + f_.*x_])*(d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := a*Int[(d*Csc[e + f*x])^n, x] + b/d*Int[(d*Csc[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, n}, x] +Int[(a_ + b_.*csc[e_. + f_.*x_])^2*(d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := 2*a*b/d*Int[(d*Csc[e + f*x])^(n + 1), x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, n}, x] +Int[csc[e_. + f_.*x_]^2/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := 1/b*Int[Csc[e + f*x], x] - a/b*Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] +Int[csc[e_. + f_.*x_]^3/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := -Cot[e + f*x]/(b*f) - a/b*Int[Csc[e + f*x]^2/(a + b*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := Int[ExpandTrig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] && RationalQ[n] +Int[csc[e_. + f_.*x_]*Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := -2*b*Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]) /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -b*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)/(f*m) + a*(2*m - 1)/m*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && IntegerQ[2*m] +Int[csc[e_. + f_.*x_]/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := -Cot[e + f*x]/(f*(b + a*Csc[e + f*x])) /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := -2/f*Subst[Int[1/(2*a + x^2), x], x, b*Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]]] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := b*Cot[ e + f*x]*(a + b*Csc[e + f*x])^ m/(a*f*(2*m + 1)) + (m + 1)/(a*(2*m + 1))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] && IntegerQ[2*m] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(2*m + 1)) + m/(b*(2*m + 1))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(m + 1)) + a*m/(b*(m + 1))*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] +Int[csc[e_. + f_.*x_]^3*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := b*Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(a*f*(2*m + 1)) - 1/(a^2*(2*m + 1))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(a*m - b*(2*m + 1)*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] +Int[csc[e_. + f_.*x_]^3*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2)) + 1/(b*(m + 2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^ m*(b*(m + 1) - a*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*Sqrt[d_.*csc[e_. + f_.*x_]], x_Symbol] := -2*a/(b*f)*Sqrt[a*d/b]* Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]]] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*d/b, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*Sqrt[d_.*csc[e_. + f_.*x_]], x_Symbol] := -2*b*d/f* Subst[Int[1/(b - d*x^2), x], x, b*Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && Not[GtQ[a*d/b, 0]] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -2*b*d* Cot[e + f*x]*(d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)* Sqrt[a + b*Csc[e + f*x]]) + 2*a*d*(n - 1)/(b*(2*n - 1))* Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/Sqrt[d_.*csc[e_. + f_.*x_]], x_Symbol] := -2*a*Cot[ e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]) /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := a*Cot[ e + f*x]*(d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]]) + a*(2*n + 1)/(2*b*d*n)* Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1/2] && IntegerQ[2*n] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := a^2*d* Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])* Subst[Int[(d*x)^(n - 1)/Sqrt[a - b*x], x], x, Csc[e + f*x]] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] +Int[Sqrt[d_.*csc[e_. + f_.*x_]]/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := -Sqrt[2]*Sqrt[a]/(b*f)* Subst[Int[1/Sqrt[1 + x^2], x], x, b*Cot[e + f*x]/(a + b*Csc[e + f*x])] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d - a/b, 0] && GtQ[a, 0] +Int[Sqrt[d_.*csc[e_. + f_.*x_]]/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := -2*b*d/(a*f)* Subst[Int[1/(2*b - d*x^2), x], x, b*Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -a*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^ n/(f*m) + b*(2*m - 1)/(d*m)* Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2] && IntegerQ[2*m] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := b*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n - 1)/(a*f*(2*m + 1)) + d*(m + 1)/(b*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n, 0] && LtQ[m, -1/2] && IntegerQ[2*m] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(f*(2*m + 1)) + m/(a*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && LtQ[m, -1/2] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(f*(m + 1)) + a*m/(b*d*(m + 1))* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && Not[LtQ[m, -1/2]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := b^2*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^ n/(f*n) - a/(d*n)* Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*(b*(m - 2*n - 2) - a*(m + 2*n - 1)*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && (LtQ[n, -1] || EqQ[m, 3/2] && EqQ[n, -1/2]) && IntegerQ[2*m] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -b^2*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^ n/(f*(m + n - 1)) + b/(m + n - 1)* Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^ n*(b*(m + 2*n - 1) + a*(3*m + 2*n - 4)*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := b*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n - 1)/(a*f*(2*m + 1)) - d/(a*b*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*(a*(n - 1) - b*(m + n)*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m]) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -d^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n - 2)/(f*(2*m + 1)) + d^2/(a*b*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m]) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(f*(2*m + 1)) + 1/(a^2*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^ n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m]) +Int[(d_.*csc[e_. + f_.*x_])^n_/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := d^2*Cot[ e + f*x]*(d*Csc[e + f*x])^(n - 2)/(f*(a + b*Csc[e + f*x])) - d^2/(a*b)* Int[(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) - a*(n - 1)*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] +Int[(d_.*csc[e_. + f_.*x_])^n_/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := Cot[e + f*x]*(d*Csc[e + f*x])^n/(f*(a + b*Csc[e + f*x])) - 1/a^2*Int[(d*Csc[e + f*x])^n*(a*(n - 1) - b*n*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, 0] +Int[(d_.*csc[e_. + f_.*x_])^n_/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := -b*d*Cot[ e + f*x]*(d*Csc[e + f*x])^(n - 1)/(a*f*(a + b*Csc[e + f*x])) + d*(n - 1)/(a*b)* Int[(d*Csc[e + f*x])^(n - 1)*(a - b*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^(3/2)/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := d/b*Int[Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]], x] - a*d/b*Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^n_/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := -2*d^2* Cot[e + f*x]*(d*Csc[e + f*x])^(n - 2)/(f*(2*n - 3)* Sqrt[a + b*Csc[e + f*x]]) + d^2/(b*(2*n - 3))* Int[(d*Csc[e + f*x])^(n - 2)*(2*b*(n - 2) - a*Csc[e + f*x])/ Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n] +Int[(d_.*csc[e_. + f_.*x_])^n_/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := Cot[e + f*x]*(d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]]) + 1/(2*b*d*n)* Int[(d*Csc[e + f*x])^(n + 1)*(a + b*(2*n + 1)*Csc[e + f*x])/ Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, 0] && IntegerQ[2*n] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -d^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n - 2)/(f*(m + n - 1)) + d^2/(b*(m + n - 1))* Int[(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*m*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 2] && NeQ[m + n - 1, 0] && IntegerQ[n] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -(a*d/b)^n* Cot[e + f*x]/(a^(n - 2)*f*Sqrt[a + b*Csc[e + f*x]]* Sqrt[a - b*Csc[e + f*x]])* Subst[Int[(a - x)^(n - 1)*(2*a - x)^(m - 1/2)/Sqrt[x], x], x, a - b*Csc[e + f*x]] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && GtQ[a, 0] && Not[IntegerQ[n]] && GtQ[a*d/b, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -(-a*d/b)^n* Cot[e + f*x]/(a^(n - 1)*f*Sqrt[a + b*Csc[e + f*x]]* Sqrt[a - b*Csc[e + f*x]])* Subst[Int[x^(m - 1/2)*(a - x)^(n - 1)/Sqrt[2*a - x], x], x, a + b*Csc[e + f*x]] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && GtQ[a, 0] && Not[IntegerQ[n]] && LtQ[a*d/b, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := a^2*d* Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]* Sqrt[a - b*Csc[e + f*x]])* Subst[Int[(d*x)^(n - 1)*(a + b*x)^(m - 1/2)/Sqrt[a - b*x], x], x, Csc[e + f*x]] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && GtQ[a, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := a^IntPart[m]*(a + b*Csc[e + f*x])^ FracPart[m]/(1 + b/a*Csc[e + f*x])^FracPart[m]* Int[(1 + b/a*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[m]] && Not[GtQ[a, 0]] +Int[csc[e_. + f_.*x_]*Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := (a - b)*Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] + b*Int[Csc[e + f*x]*(1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -b*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)/(f*m) + 1/m* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*m + a*b*(2*m - 1)*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && IntegerQ[2*m] +(* Int[csc[e_.+f_.*x_]/(a_+b_.*csc[e_.+f_.*x_]),x_Symbol] := -2/f*Subst[Int[1/(a+b-(a-b)*x^2),x],x,Cot[e+f*x]/(1+Csc[e+f*x])] /; FreeQ[{a,b,e,f},x] && NeQ[a^2-b^2,0] *) +Int[csc[e_. + f_.*x_]/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := 1/b*Int[1/(1 + a/b*Sin[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := -2*Rt[a + b, 2]/(b*f*Cot[e + f*x])* Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]* Sqrt[-b*(1 + Csc[e + f*x])/(a - b)]* EllipticF[ ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -b*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2)) + 1/((m + 1)*(a^2 - b^2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := Cot[e + f*x]/(f*Sqrt[1 + Csc[e + f*x]]*Sqrt[1 - Csc[e + f*x]])* Subst[Int[(a + b*x)^m/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Csc[e + f*x]] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] && Not[IntegerQ[2*m]] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(m + 1)) + m/(m + 1)* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(b + a*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := a*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2)) - 1/((m + 1)*(a^2 - b^2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(b*(m + 1) - a*(m + 2)*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[csc[e_. + f_.*x_]^2/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := -Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] + Int[Csc[e + f*x]*(1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -a/b*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x] + 1/b*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]^3*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -a^2*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2)) + 1/(b*(m + 1)*(a^2 - b^2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[a*b*(m + 1) - (a^2 + b^2*(m + 1))*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[csc[e_. + f_.*x_]^3*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2)) + 1/(b*(m + 2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^ m*(b*(m + 1) - a*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] && Not[LtQ[m, -1]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := a^2*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^ n/(f*n) - 1/(d*n)*Int[(a + b*Csc[e + f*x])^(m - 3)*(d*Csc[e + f*x])^(n + 1)* Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && (IntegerQ[m] && LtQ[n, -1] || IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -b^2*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^ n/(f*(m + n - 1)) + 1/(d*(m + n - 1))* Int[(a + b*Csc[e + f*x])^(m - 3)*(d*Csc[e + f*x])^n* Simp[a^3*d*(m + n - 1) + a*b^2*d*n + b*(b^2*d*(m + n - 2) + 3*a^2*d*(m + n - 1))*Csc[e + f*x] + a*b^2*d*(3*m + 2*n - 4)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) && Not[IGtQ[n, 2] && Not[IntegerQ[m]]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -b*d*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2)) + 1/((m + 1)*(a^2 - b^2))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)* Simp[b*d*(n - 1) + a*d*(m + 1)*Csc[e + f*x] - b*d*(m + n + 1)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := a*d^2* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)/(f*(m + 1)*(a^2 - b^2)) - d^2/((m + 1)*(a^2 - b^2))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(a*(n - 2) + b*(m + 1)*Csc[e + f*x] - a*(m + n)*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -a^2*d^3* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)/(b*f*(m + 1)*(a^2 - b^2)) + d^3/(b*(m + 1)*(a^2 - b^2))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)* Simp[a^2*(n - 3) + a*b*(m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))* Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^ n/(a*f*n) - 1/(a*d*n)*Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)* Simp[b*(m + n + 1) - a*(n + 1)*Csc[e + f*x] - b*(m + n + 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && ILtQ[m + 1/2, 0] && ILtQ[n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := b^2*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^ n/(a*f*(m + 1)*(a^2 - b^2)) + 1/(a*(m + 1)*(a^2 - b^2))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n* (a^2*(m + 1) - b^2*(m + n + 1) - a*b*(m + 1)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] +Int[Sqrt[d_.*csc[e_. + f_.*x_]]/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := Sqrt[d*Sin[e + f*x]]*Sqrt[d*Csc[e + f*x]]/d* Int[Sqrt[d*Sin[e + f*x]]/(b + a*Sin[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^(3/2)/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := d*Sqrt[d*Sin[e + f*x]]*Sqrt[d*Csc[e + f*x]]* Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^(5/2)/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := d/b*Int[(d*Csc[e + f*x])^(3/2), x] - a*d/b*Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^n_/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := -d^3*Cot[e + f*x]*(d*Csc[e + f*x])^(n - 3)/(b*f*(n - 2)) + d^3/(b*(n - 2))* Int[(d*Csc[e + f*x])^(n - 3)* Simp[a*(n - 3) + b*(n - 3)*Csc[e + f*x] - a*(n - 2)*Csc[e + f*x]^2, x]/(a + b*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 3] +Int[1/(Sqrt[d_.*csc[e_. + f_.*x_]]*(a_ + b_.*csc[e_. + f_.*x_])), x_Symbol] := b^2/(a^2*d^2)*Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x] + 1/a^2*Int[(a - b*Csc[e + f*x])/Sqrt[d*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^n_/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := Cot[e + f*x]*(d*Csc[e + f*x])^n/(a*f*n) - 1/(a*d*n)*Int[(d*Csc[e + f*x])^(n + 1)/(a + b*Csc[e + f*x])* Simp[b*n - a*(n + 1)*Csc[e + f*x] - b*(n + 1)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*Sqrt[d_.*csc[e_. + f_.*x_]], x_Symbol] := a*Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x] + b/d*Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -2*d*Cos[e + f*x]* Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)) + d^2/(2*n - 1)* Int[(d*Csc[e + f*x])^(n - 2)* Simp[2*a*(n - 2) + b*(2*n - 3)*Csc[e + f*x] + a*Csc[e + f*x]^2, x]/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/Sqrt[d_.*csc[e_. + f_.*x_]], x_Symbol] := Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]* Sqrt[b + a*Sin[e + f*x]])*Int[Sqrt[b + a*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Cot[e + f*x]*Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^n/(f*n) - 1/(2*d*n)* Int[(d*Csc[e + f*x])^(n + 1)* Simp[b - 2*a*(n + 1)*Csc[e + f*x] - b*(2*n + 3)*Csc[e + f*x]^2, x]/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n] +Int[Sqrt[d_.*csc[e_. + f_.*x_]]/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := Sqrt[d*Csc[e + f*x]]* Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]* Int[1/Sqrt[b + a*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^(3/2)/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := d*Sqrt[d*Csc[e + f*x]]* Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]* Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^n_/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := -2*d^2*Cos[e + f*x]*(d*Csc[e + f*x])^(n - 2)* Sqrt[a + b*Csc[e + f*x]]/(b*f*(2*n - 3)) + d^3/(b*(2*n - 3))* Int[(d*Csc[e + f*x])^(n - 3)/Sqrt[a + b*Csc[e + f*x]]* Simp[2*a*(n - 3) + b*(2*n - 5)*Csc[e + f*x] - 2*a*(n - 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n] +Int[1/(csc[e_. + f_.*x_]*Sqrt[a_ + b_.*csc[e_. + f_.*x_]]), x_Symbol] := -Cos[e + f*x]*Sqrt[a + b*Csc[e + f*x]]/(a*f) - b/(2*a)*Int[(1 + Csc[e + f*x]^2)/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[1/(Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*Sqrt[d_.*csc[e_. + f_.*x_]]), x_Symbol] := 1/a*Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x] - b/(a*d)*Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^n_/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := Cos[e + f*x]*(d*Csc[e + f*x])^(n + 1)* Sqrt[a + b*Csc[e + f*x]]/(a*d*f*n) + 1/(2*a*d*n)*Int[(d*Csc[e + f*x])^(n + 1)/Sqrt[a + b*Csc[e + f*x]]* Simp[-b*(2*n + 1) + 2*a*(n + 1)*Csc[e + f*x] + b*(2*n + 3)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n] +Int[(a_ + b_.*csc[e_. + f_.*x_])^(3/2)*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := a*Cot[e + f*x]* Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^n/(f*n) + 1/(2*d*n)*Int[(d*Csc[e + f*x])^(n + 1)/Sqrt[a + b*Csc[e + f*x]]* Simp[a*b*(2*n - 1) + 2*(b^2*n + a^2*(n + 1))*Csc[e + f*x] + a*b*(2*n + 3)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegersQ[2*n] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -d^3*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)/(b*f*(m + n - 1)) + d^3/(b*(m + n - 1))* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 3)* Simp[a*(n - 3) + b*(m + n - 2)*Csc[e + f*x] - a*(n - 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 3] && (IntegerQ[n] || IntegersQ[2*m, 2*n]) && Not[IGtQ[m, 2]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -b*d*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n - 1)/(f*(m + n - 1)) + d/(m + n - 1)* Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n - 1)* Simp[a*b*(n - 1) + (b^2*(m + n - 2) + a^2*(m + n - 1))* Csc[e + f*x] + a*b*(2*m + n - 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 2] && LtQ[0, n, 3] && NeQ[m + n - 1, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -d^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n - 2)/(f*(m + n - 1)) + d^2/(b*(m + n - 1))* Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n - 2)* Simp[a*b*(n - 2) + b^2*(m + n - 2)*Csc[e + f*x] + a*b*m*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[-1, m, 2] && LtQ[1, n, 3] && NeQ[m + n - 1, 0] && (IntegerQ[n] || IntegersQ[2*m, 2*n]) +Int[(a_ + b_.*csc[e_. + f_.*x_])^(3/2)/Sqrt[d_.*csc[e_. + f_.*x_]], x_Symbol] := a*Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x] + b/d*Int[Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^n_.*(a_ + b_.*csc[e_. + f_.*x_])^m_., x_Symbol] := Sin[e + f*x]^n*(d*Csc[e + f*x])^n* Int[(b + a*Sin[e + f*x])^m/Sin[e + f*x]^(m + n), x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[m] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := Unintegrable[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, d, e, f, m, n}, x] +Int[(d_.*cos[e_. + f_.*x_])^m_*(a_. + b_.*sec[e_. + f_.*x_])^p_, x_Symbol] := (d*Cos[e + f*x])^FracPart[m]*(Sec[e + f*x]/d)^FracPart[m]* Int[(Sec[e + f*x]/d)^(-m)*(a + b*Sec[e + f*x])^p, x] /; FreeQ[{a, b, d, e, f, m, p}, x] && Not[IntegerQ[m]] && Not[IntegerQ[p]] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.3 (d sin)^n (a+b sec)^m.m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.3 (d sin)^n (a+b sec)^m.m new file mode 100755 index 0000000..ff18973 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.3 (d sin)^n (a+b sec)^m.m @@ -0,0 +1,11 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.1.3 (d sin)^n (a+b sec)^m *) +Int[(g_.*cos[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^m_., x_Symbol] := Int[(g*Cos[e + f*x])^p*(b + a*Sin[e + f*x])^m/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m] +Int[cos[e_. + f_.*x_]^p_.*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -1/(f*b^(p - 1))* Subst[Int[(-a + b*x)^((p - 1)/2)*(a + b*x)^(m + (p - 1)/2)/ x^(p + 1), x], x, Csc[e + f*x]] /; FreeQ[{a, b, e, f, m}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] +Int[cos[e_. + f_.*x_]^p_.*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := -1/f*Subst[ Int[(-1 + x)^((p - 1)/2)*(1 + x)^((p - 1)/2)*(a + b*x)^m/ x^(p + 1), x], x, Csc[e + f*x]] /; FreeQ[{a, b, e, f, m}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_/cos[e_. + f_.*x_]^2, x_Symbol] := Tan[e + f*x]*(a + b*Csc[e + f*x])^m/f + b*m*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x] /; FreeQ[{a, b, e, f, m}, x] +Int[(g_.*cos[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^m_, x_Symbol] := Sin[e + f*x]^ FracPart[m]*(a + b*Csc[e + f*x])^FracPart[m]/(b + a*Sin[e + f*x])^ FracPart[m]* Int[(g*Cos[e + f*x])^p*(b + a*Sin[e + f*x])^m/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, m, p}, x] && (EqQ[a^2 - b^2, 0] || IntegersQ[2*m, p]) +Int[(g_.*cos[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^m_., x_Symbol] := Unintegrable[(g*Cos[e + f*x])^p*(a + b*Csc[e + f*x])^m, x] /; FreeQ[{a, b, e, f, g, m, p}, x] +(* Int[(g_.*sec[e_.+f_.*x_])^p_*(a_+b_.*csc[e_.+f_.*x_])^m_.,x_Symbol] := Int[(g*Sec[e+f*x])^p*(b+a*Sin[e+f*x])^m/Sin[e+f*x]^m,x] /; FreeQ[{a,b,e,f,g,p},x] && Not[IntegerQ[p]] && IntegerQ[m] *) +Int[(g_.*sec[e_. + f_.*x_])^p_*(a_ + b_.*csc[e_. + f_.*x_])^m_., x_Symbol] := g^IntPart[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p]* Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Not[IntegerQ[p]] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.4 (d tan)^n (a+b sec)^m.m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.4 (d tan)^n (a+b sec)^m.m new file mode 100755 index 0000000..b3687e9 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.1.4 (d tan)^n (a+b sec)^m.m @@ -0,0 +1,27 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.1.4 (d tan)^n (a+b sec)^m *) +Int[cot[c_. + d_.*x_]^m_.*(a_ + b_.*csc[c_. + d_.*x_])^n_., x_Symbol] := 1/(a^(m - n - 1)*b^n*d)* Subst[Int[(a - b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n)/ x^(m + n), x], x, Sin[c + d*x]] /; FreeQ[{a, b, c, d}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] && IntegerQ[n] +Int[cot[c_. + d_.*x_]^m_.*(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := -1/(d*b^(m - 1))* Subst[Int[(-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n)/x, x], x, Csc[c + d*x]] /; FreeQ[{a, b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[n]] +Int[(e_.*cot[c_. + d_.*x_])^m_*(a_ + b_.*csc[c_. + d_.*x_]), x_Symbol] := -e*(e*Cot[c + d*x])^(m - 1)*(a*m + b*(m - 1)*Csc[c + d*x])/(d* m*(m - 1)) - e^2/m* Int[(e*Cot[c + d*x])^(m - 2)*(a*m + b*(m - 1)*Csc[c + d*x]), x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1] +Int[(e_.*cot[c_. + d_.*x_])^m_*(a_ + b_.*csc[c_. + d_.*x_]), x_Symbol] := -(e*Cot[c + d*x])^(m + 1)*(a + b*Csc[c + d*x])/(d*e*(m + 1)) - 1/(e^2*(m + 1))* Int[(e*Cot[c + d*x])^(m + 2)*(a*(m + 1) + b*(m + 2)*Csc[c + d*x]), x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[m, -1] +Int[(a_ + b_.*csc[c_. + d_.*x_])/cot[c_. + d_.*x_], x_Symbol] := Int[(b + a*Sin[c + d*x])/Cos[c + d*x], x] /; FreeQ[{a, b, c, d}, x] +Int[(e_.*cot[c_. + d_.*x_])^m_.*(a_ + b_.*csc[c_. + d_.*x_]), x_Symbol] := a*Int[(e*Cot[c + d*x])^m, x] + b*Int[(e*Cot[c + d*x])^m*Csc[c + d*x], x] /; FreeQ[{a, b, c, d, e, m}, x] +Int[cot[c_. + d_.*x_]^m_.*(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := -(-1)^((m - 1)/2)/(d*b^(m - 1))* Subst[Int[(b^2 - x^2)^((m - 1)/2)*(a + x)^n/x, x], x, b*Csc[c + d*x]] /; FreeQ[{a, b, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0] +Int[(e_.*cot[c_. + d_.*x_])^m_*(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] +Int[cot[c_. + d_.*x_]^m_.*(a_ + b_.*csc[c_. + d_.*x_])^n_., x_Symbol] := -2*a^(m/2 + n + 1/2)/d* Subst[Int[x^m*(2 + a*x^2)^(m/2 + n - 1/2)/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]]] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2] +Int[(e_.*cot[c_. + d_.*x_])^m_*(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := a^(2*n)*e^(-2*n)* Int[(e*Cot[c + d*x])^(m + 2*n)/(-a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[a^2 - b^2, 0] && ILtQ[n, 0] +Int[(e_.*cot[c_. + d_.*x_])^m_*(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := -2^(m + n + 1)*(e*Cot[c + d*x])^(m + 1)*(a + b*Csc[c + d*x])^ n/(d*e*(m + 1))*(a/(a + b*Csc[c + d*x]))^(m + n + 1)* AppellF1[(m + 1)/2, m + n, 1, (m + 3)/ 2, -(a - b*Csc[c + d*x])/(a + b*Csc[c + d*x]), (a - b*Csc[c + d*x])/(a + b*Csc[c + d*x])] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[IntegerQ[n]] +Int[Sqrt[e_.*cot[c_. + d_.*x_]]/(a_ + b_.*csc[c_. + d_.*x_]), x_Symbol] := 1/a*Int[Sqrt[e*Cot[c + d*x]], x] - b/a*Int[Sqrt[e*Cot[c + d*x]]/(b + a*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2, 0] +Int[(e_.*cot[c_. + d_.*x_])^m_/(a_ + b_.*csc[c_. + d_.*x_]), x_Symbol] := -e^2/b^2*Int[(e*Cot[c + d*x])^(m - 2)*(a - b*Csc[c + d*x]), x] + e^2*(a^2 - b^2)/b^2* Int[(e*Cot[c + d*x])^(m - 2)/(a + b*Csc[c + d*x]), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] +Int[1/(Sqrt[e_.*cot[c_. + d_.*x_]]*(a_ + b_.*csc[c_. + d_.*x_])), x_Symbol] := 1/a*Int[1/Sqrt[e*Cot[c + d*x]], x] - b/a*Int[1/(Sqrt[e*Cot[c + d*x]]*(b + a*Sin[c + d*x])), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2, 0] +Int[(e_.*cot[c_. + d_.*x_])^m_/(a_ + b_.*csc[c_. + d_.*x_]), x_Symbol] := 1/(a^2 - b^2)*Int[(e*Cot[c + d*x])^m*(a - b*Csc[c + d*x]), x] + b^2/(e^2*(a^2 - b^2))* Int[(e*Cot[c + d*x])^(m + 2)/(a + b*Csc[c + d*x]), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2, 0] && ILtQ[m + 1/2, 0] +Int[cot[c_. + d_.*x_]^2*(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := Int[(-1 + Csc[c + d*x]^2)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0] +Int[cot[c_. + d_.*x_]^m_*(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[(a + b*Csc[c + d*x])^ n, (-1 + Csc[c + d*x]^2)^(m/2), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m/2, 0] && IntegerQ[n - 1/2] +Int[cot[c_. + d_.*x_]^m_*(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[(a + b*Csc[c + d*x])^ n, (-1 + Sec[c + d*x]^2)^(-m/2), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0] && ILtQ[m/2, 0] && IntegerQ[n - 1/2] && EqQ[m, -2] +Int[(e_.*cot[c_. + d_.*x_])^m_*(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[a^2 - b^2, 0] && IGtQ[n, 0] +Int[cot[c_. + d_.*x_]^m_.*(a_ + b_.*csc[c_. + d_.*x_])^n_, x_Symbol] := Int[Cos[c + d*x]^m*(b + a*Sin[c + d*x])^n/Sin[c + d*x]^(m + n), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && IntegerQ[m] && (IntegerQ[m/2] || LeQ[m, 1]) +Int[(e_.*cot[c_. + d_.*x_])^m_.*(a_. + b_.*csc[c_. + d_.*x_])^n_., x_Symbol] := Unintegrable[(e*Cot[c + d*x])^m*(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[(e_.*cot[c_. + d_.*x_])^m_*(a_ + b_.*sec[c_. + d_.*x_])^n_., x_Symbol] := (e*Cot[c + d*x])^m*Tan[c + d*x]^m* Int[(a + b*Sec[c + d*x])^n/Tan[c + d*x]^m, x] /; FreeQ[{a, b, c, d, e, m, n}, x] && Not[IntegerQ[m]] +Int[(e_.*tan[c_. + d_.*x_]^p_)^m_*(a_ + b_.*sec[c_. + d_.*x_])^n_., x_Symbol] := (e*Tan[c + d*x]^p)^m/(e*Tan[c + d*x])^(m*p)* Int[(e*Tan[c + d*x])^(m*p)*(a + b*Sec[c + d*x])^n, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && Not[IntegerQ[m]] +Int[(e_.*cot[c_. + d_.*x_]^p_)^m_*(a_ + b_.*csc[c_. + d_.*x_])^n_., x_Symbol] := (e*Cot[c + d*x]^p)^m/(e*Cot[c + d*x])^(m*p)* Int[(e*Cot[c + d*x])^(m*p)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && Not[IntegerQ[m]] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.10 (c+d x)^m (a+b sec)^n.m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.10 (c+d x)^m (a+b sec)^n.m new file mode 100755 index 0000000..90a9fbd --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.10 (c+d x)^m (a+b sec)^n.m @@ -0,0 +1,19 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.10 (c+d x)^m (a+b sec)^n *) +Int[(c_. + d_.*x_)^m_.*csc[e_. + k_.*Pi + f_.*Complex[0, fz_]*x_], x_Symbol] := -2*(c + d*x)^m*ArcTanh[E^(-I*k*Pi)*E^(-I*e + f*fz*x)]/(f*fz*I) - d*m/(f*fz*I)* Int[(c + d*x)^(m - 1)*Log[1 - E^(-I*k*Pi)*E^(-I*e + f*fz*x)], x] + d*m/(f*fz*I)* Int[(c + d*x)^(m - 1)*Log[1 + E^(-I*k*Pi)*E^(-I*e + f*fz*x)], x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*csc[e_. + k_.*Pi + f_.*x_], x_Symbol] := -2*(c + d*x)^m*ArcTanh[E^(I*k*Pi)*E^(I*(e + f*x))]/f - d*m/f* Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))], x] + d*m/f* Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x))], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[2*k] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*csc[e_. + f_.*Complex[0, fz_]*x_], x_Symbol] := -2*(c + d*x)^m*ArcTanh[E^(-I*e + f*fz*x)]/(f*fz*I) - d*m/(f*fz*I)* Int[(c + d*x)^(m - 1)*Log[1 - E^(-I*e + f*fz*x)], x] + d*m/(f*fz*I)* Int[(c + d*x)^(m - 1)*Log[1 + E^(-I*e + f*fz*x)], x] /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*csc[e_. + f_.*x_], x_Symbol] := -2*(c + d*x)^m*ArcTanh[E^(I*(e + f*x))]/f - d*m/f*Int[(c + d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x] + d*m/f*Int[(c + d*x)^(m - 1)*Log[1 + E^(I*(e + f*x))], x] /; FreeQ[{c, d, e, f}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*csc[e_. + f_.*x_]^2, x_Symbol] := -(c + d*x)^m*Cot[e + f*x]/f + d*m/f*Int[(c + d*x)^(m - 1)*Cot[e + f*x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0] +Int[(c_. + d_.*x_)*(b_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -b^2*(c + d*x)* Cot[e + f*x]*(b*Csc[e + f*x])^(n - 2)/(f*(n - 1)) - b^2*d*(b*Csc[e + f*x])^(n - 2)/(f^2*(n - 1)*(n - 2)) + b^2*(n - 2)/(n - 1)*Int[(c + d*x)*(b*Csc[e + f*x])^(n - 2), x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && NeQ[n, 2] +Int[(c_. + d_.*x_)^m_*(b_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -b^2*(c + d*x)^m* Cot[e + f*x]*(b*Csc[e + f*x])^(n - 2)/(f*(n - 1)) - b^2*d* m*(c + d*x)^(m - 1)*(b*Csc[e + f*x])^(n - 2)/(f^2*(n - 1)*(n - 2)) + b^2*(n - 2)/(n - 1)* Int[(c + d*x)^m*(b*Csc[e + f*x])^(n - 2), x] + b^2*d^2*m*(m - 1)/(f^2*(n - 1)*(n - 2))* Int[(c + d*x)^(m - 2)*(b*Csc[e + f*x])^(n - 2), x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && NeQ[n, 2] && GtQ[m, 1] +Int[(c_. + d_.*x_)*(b_.*csc[e_. + f_.*x_])^n_, x_Symbol] := d*(b*Csc[e + f*x])^n/(f^2*n^2) + (c + d*x)*Cos[e + f*x]*(b*Csc[e + f*x])^(n + 1)/(b*f*n) + (n + 1)/(b^2*n)*Int[(c + d*x)*(b*Csc[e + f*x])^(n + 2), x] /; FreeQ[{b, c, d, e, f}, x] && LtQ[n, -1] +Int[(c_. + d_.*x_)^m_*(b_.*csc[e_. + f_.*x_])^n_, x_Symbol] := d*m*(c + d*x)^(m - 1)*(b*Csc[e + f*x])^n/(f^2*n^2) + (c + d*x)^m*Cos[e + f*x]*(b*Csc[e + f*x])^(n + 1)/(b*f*n) + (n + 1)/(b^2*n)*Int[(c + d*x)^m*(b*Csc[e + f*x])^(n + 2), x] - d^2*m*(m - 1)/(f^2*n^2)* Int[(c + d*x)^(m - 2)*(b*Csc[e + f*x])^n, x] /; FreeQ[{b, c, d, e, f}, x] && LtQ[n, -1] && GtQ[m, 1] +Int[(c_. + d_.*x_)^m_.*(b_.*csc[e_. + f_.*x_])^n_, x_Symbol] := (b*Sin[e + f*x])^n*(b*Csc[e + f*x])^n* Int[(c + d*x)^m/(b*Sin[e + f*x])^n, x] /; FreeQ[{b, c, d, e, f, m, n}, x] && Not[IntegerQ[n]] +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*csc[e_. + f_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(c + d*x)^m, (a + b*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[(c_. + d_.*x_)^m_.*(a_ + b_.*csc[e_. + f_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(c + d*x)^m, Sin[e + f*x]^(-n)/(b + a*Sin[e + f*x])^(-n), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[n, 0] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*csc[e_. + f_.*x_]^n_., x_Symbol] := If[MatchQ[f, f1_.*Complex[0, j_]], If[MatchQ[e, e1_. + Pi/2], Unintegrable[(c + d*x)^m*Sech[I*(e - Pi/2) + I*f*x]^n, x], (-I)^n*Unintegrable[(c + d*x)^m*Csch[-I*e - I*f*x]^n, x]], If[MatchQ[e, e1_. + Pi/2], Unintegrable[(c + d*x)^m*Sec[e - Pi/2 + f*x]^n, x], Unintegrable[(c + d*x)^m*Csc[e + f*x]^n, x]]] /; FreeQ[{c, d, e, f, m, n}, x] && IntegerQ[n] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*csc[e_. + f_.*x_])^n_., x_Symbol] := Unintegrable[(c + d*x)^m*(a + b*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[u_^m_.*(a_. + b_.*Sec[v_])^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*(a + b*Sec[ExpandToSum[v, x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] +Int[u_^m_.*(a_. + b_.*Csc[v_])^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*(a + b*Csc[ExpandToSum[v, x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.11 (e x)^m (a+b sec(c+d x^n))^p.m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.11 (e x)^m (a+b sec(c+d x^n))^p.m new file mode 100755 index 0000000..1ace2ee --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.11 (e x)^m (a+b sec(c+d x^n))^p.m @@ -0,0 +1,21 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.11 (e x)^m (a+b sec(c+d x^n))^p *) +Int[(a_. + b_.*Sec[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[Int[x^(1/n - 1)*(a + b*Sec[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p] +Int[(a_. + b_.*Csc[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[Int[x^(1/n - 1)*(a + b*Csc[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p] +Int[(a_. + b_.*Sec[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[(a + b*Sec[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(a_. + b_.*Csc[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[(a + b*Csc[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(a_. + b_.*Sec[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]* Subst[Int[(a + b*Sec[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x] +Int[(a_. + b_.*Csc[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]* Subst[Int[(a + b*Csc[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x] +Int[(a_. + b_.*Sec[u_])^p_., x_Symbol] := Int[(a + b*Sec[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(a_. + b_.*Csc[u_])^p_., x_Symbol] := Int[(a + b*Csc[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[x_^m_.*(a_. + b_.*Sec[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Sec[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[(m + 1)/n], 0] && IntegerQ[p] +Int[x_^m_.*(a_. + b_.*Csc[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Csc[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[(m + 1)/n], 0] && IntegerQ[p] +Int[x_^m_.*(a_. + b_.*Sec[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[x^m*(a + b*Sec[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[x_^m_.*(a_. + b_.*Csc[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[x^m*(a + b*Csc[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Sec[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Sec[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Csc[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Csc[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Sec[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Sec[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(e_*x_)^m_.*(a_. + b_.*Csc[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Csc[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[x_^m_.*Sec[a_. + b_.*x_^n_.]^p_*Sin[a_. + b_.*x_^n_.], x_Symbol] := x^(m - n + 1)*Sec[a + b*x^n]^(p - 1)/(b*n*(p - 1)) - (m - n + 1)/(b*n*(p - 1))* Int[x^(m - n)*Sec[a + b*x^n]^(p - 1), x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m - n, 0] && NeQ[p, 1] +Int[x_^m_.*Csc[a_. + b_.*x_^n_.]^p_*Cos[a_. + b_.*x_^n_.], x_Symbol] := -x^(m - n + 1)*Csc[a + b*x^n]^(p - 1)/(b*n*(p - 1)) + (m - n + 1)/(b*n*(p - 1))* Int[x^(m - n)*Csc[a + b*x^n]^(p - 1), x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m - n, 0] && NeQ[p, 1] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.2.1 (a+b sec)^m (c+d sec)^n.m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.2.1 (a+b sec)^m (c+d sec)^n.m new file mode 100755 index 0000000..adf73cb --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.2.1 (a+b sec)^m (c+d sec)^n.m @@ -0,0 +1,51 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.2.1 (a+b sec)^m (c+d sec)^n *) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := c^n*Int[ ExpandTrig[(1 + d/c*csc[e + f*x])^n, (a + b*csc[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] && ILtQ[n, 0] && LtQ[m + n, 2] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := (-a*c)^m*Int[Cot[e + f*x]^(2*m)*(c + d*Csc[e + f*x])^(n - m), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] && Not[IntegerQ[n] && GtQ[m - n, 0]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_])^m_, x_Symbol] := (-a*c)^(m + 1/2)* Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])* Int[Cot[e + f*x]^(2*m), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m + 1/2] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := 2*a*c* Cot[e + f*x]*(c + d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)* Sqrt[a + b*Csc[e + f*x]]) + c*Int[Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && GtQ[n, 1/2] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -2*a*Cot[ e + f*x]*(c + d*Csc[e + f*x])^ n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]]) + 1/c* Int[Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, -1/2] +Int[(a_ + b_.*csc[e_. + f_.*x_])^(3/2)*(c_ + d_.*csc[e_. + f_.*x_])^ n_., x_Symbol] := -4*a^2* Cot[e + f*x]*(c + d*Csc[e + f*x])^ n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]]) + a/c* Int[Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, -1/2] +Int[(a_ + b_.*csc[e_. + f_.*x_])^(3/2)*(c_ + d_.*csc[e_. + f_.*x_])^ n_., x_Symbol] := -2*a^2* Cot[e + f*x]*(c + d*Csc[e + f*x])^ n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]]) + a*Int[Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && Not[LeQ[n, -1/2]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^(5/2)*(c_ + d_.*csc[e_. + f_.*x_])^ n_., x_Symbol] := -8*a^3* Cot[e + f*x]*(c + d*Csc[e + f*x])^ n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]]) + a^2/c^2* Int[Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n + 2), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, -1/2] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -a*c*Cot[ e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])* Subst[ Int[(b + a*x)^(m - 1/2)*(d + c*x)^(n - 1/2)/x^(m + n), x], x, Sin[e + f*x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && EqQ[m + n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := a*c*Cot[ e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])* Subst[Int[(a + b*x)^(m - 1/2)*(c + d*x)^(n - 1/2)/x, x], x, Csc[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])*(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := a*c*x + b*d*Int[Csc[e + f*x]^2, x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])*(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := a*c*x + (b*c + a*d)*Int[Csc[e + f*x], x] + b*d*Int[Csc[e + f*x]^2, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := c*Int[Sqrt[a + b*Csc[e + f*x]], x] + d*Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := a*c*Int[1/Sqrt[a + b*Csc[e + f*x]], x] + Int[Csc[e + f*x]*(b*c + a*d + b*d*Csc[e + f*x])/ Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := -b*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)/(f*m) + 1/m* Int[(a + b*Csc[e + f*x])^(m - 1)* Simp[a*c*m + (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := -b*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)/(f*m) + 1/m*Int[(a + b*Csc[e + f*x])^(m - 2)* Simp[a^2*c*m + (b^2*d*(m - 1) + 2*a*b*c*m + a^2*d*m)* Csc[e + f*x] + b*(b*c*m + a*d*(2*m - 1))*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m] +Int[(c_ + d_.*csc[e_. + f_.*x_])/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := c*x/a - (b*c - a*d)/a*Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] +Int[(c_ + d_.*csc[e_. + f_.*x_])/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := c/a*Int[Sqrt[a + b*Csc[e + f*x]], x] - (b*c - a*d)/a* Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(c_ + d_.*csc[e_. + f_.*x_])/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := c*Int[1/Sqrt[a + b*Csc[e + f*x]], x] + d*Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := -(b*c - a*d)* Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(b*f*(2*m + 1)) + 1/(a^2*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)* Simp[a*c*(2*m + 1) - (b*c - a*d)*(m + 1)*Csc[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := b*(b*c - a*d)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(a* f*(m + 1)*(a^2 - b^2)) + 1/(a*(m + 1)*(a^2 - b^2))*Int[(a + b*Csc[e + f*x])^(m + 1)* Simp[c*(a^2 - b^2)*(m + 1) - (a*(b*c - a*d)*(m + 1))* Csc[e + f*x] + b*(b*c - a*d)*(m + 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := c*Int[(a + b*Csc[e + f*x])^m, x] + d*Int[(a + b*Csc[e + f*x])^m*Csc[e + f*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && Not[IntegerQ[2*m]] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := 1/c*Int[Sqrt[a + b*Csc[e + f*x]], x] - d/c*Int[Csc[e + f*x]*Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0]) +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := a/c*Int[1/Sqrt[a + b*Csc[e + f*x]], x] + (b*c - a*d)/c* Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^(3/2)/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := a/c*Int[Sqrt[a + b*Csc[e + f*x]], x] + (b*c - a*d)/c* Int[Csc[e + f*x]*Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0]) +(* Int[(a_+b_.*csc[e_.+f_.*x_])^(3/2)/(c_+d_.*csc[e_.+f_.*x_]),x_ Symbol] := b/d*Int[Sqrt[a+b*Csc[e+f*x]],x] - (b*c-a*d)/d*Int[Sqrt[a+b*Csc[e+f*x]]/(c+d*Csc[e+f*x]),x] /; FreeQ[{a,b,c,d,e,f},x] && NeQ[b*c-a*d,0] && NeQ[a^2-b^2,0] && NeQ[c^2-d^2,0] *) +Int[(a_ + b_.*csc[e_. + f_.*x_])^(3/2)/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := 1/(c*d)* Int[(a^2*d + b^2*c*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] - (b*c - a*d)^2/(c*d)* Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[1/(Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])), x_Symbol] := 1/(c*(b*c - a*d))* Int[(b*c - a*d - b*d*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + d^2/(c*(b*c - a*d))* Int[Csc[e + f*x]*Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0]) +Int[1/(Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])), x_Symbol] := 1/c*Int[1/Sqrt[a + b*Csc[e + f*x]], x] - d/c*Int[Csc[ e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*Sqrt[c_ + d_.*csc[e_. + f_.*x_]], x_Symbol] := Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]/Cot[e + f*x]* Int[Cot[e + f*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*Sqrt[c_ + d_.*csc[e_. + f_.*x_]], x_Symbol] := c*Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]], x] + d*Int[ Csc[e + f*x]*Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/Sqrt[c_ + d_.*csc[e_. + f_.*x_]], x_Symbol] := 1/c*Int[Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]], x] - d/c* Int[Csc[e + f*x]* Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/Sqrt[c_ + d_.*csc[e_. + f_.*x_]], x_Symbol] := -2*a/f* Subst[Int[1/(1 + a*c*x^2), x], x, Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]* Sqrt[c + d*Csc[e + f*x]])] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/Sqrt[c_ + d_.*csc[e_. + f_.*x_]], x_Symbol] := a/c*Int[Sqrt[c + d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x] + (b*c - a*d)/c* Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]* Sqrt[c + d*Csc[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/Sqrt[c_ + d_.*csc[e_. + f_.*x_]], x_Symbol] := 2*(a + b*Csc[e + f*x])/(c*f*Rt[(a + b)/(c + d), 2]*Cot[e + f*x])* Sqrt[(b*c - a*d)*(1 + Csc[e + f*x])/((c - d)*(a + b*Csc[e + f*x]))]* Sqrt[-(b*c - a*d)*(1 - Csc[e + f*x])/((c + d)*(a + b*Csc[e + f*x]))]* EllipticPi[a*(c + d)/(c*(a + b)), ArcSin[Rt[(a + b)/(c + d), 2]* Sqrt[c + d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]], (a - b)*(c + d)/((a + b)*(c - d))] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[1/(Sqrt[a_ + b_.*csc[e_. + f_.*x_]]* Sqrt[c_ + d_.*csc[e_. + f_.*x_]]), x_Symbol] := Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])* Int[1/Cot[e + f*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[1/(Sqrt[a_ + b_.*csc[e_. + f_.*x_]]* Sqrt[c_ + d_.*csc[e_. + f_.*x_]]), x_Symbol] := 1/a*Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]], x] - b/a* Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]* Sqrt[c + d*Csc[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] +Int[Sqrt[ a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_])^(3/2), x_Symbol] := 1/c*Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]], x] - d/c* Int[Csc[e + f*x]* Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x])^(3/2), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 - d^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := a^2*Cot[ e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])* Subst[ Int[(a + b*x)^(m - 1/2)*(c + d*x)^n/(x*Sqrt[a - b*x]), x], x, Csc[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m - 1/2] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Int[(b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n/ Sin[e + f*x]^(m + n), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && IntegerQ[m] && IntegerQ[n] && LeQ[-2, m + n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Sqrt[d + c*Sin[e + f*x]]* Sqrt[a + b*Csc[e + f*x]]/(Sqrt[b + a*Sin[e + f*x]]* Sqrt[c + d*Csc[e + f*x]])* Int[(b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n/ Sin[e + f*x]^(m + n), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && IntegerQ[m + 1/2] && IntegerQ[n + 1/2] && LeQ[-2, m + n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Sin[e + f*x]^(m + n)*(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^ n/((b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n)* Int[(b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n/ Sin[e + f*x]^Simplify[m + n], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n, 0] && Not[IntegerQ[2*m]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Int[ExpandTrig[(a + b*csc[e + f*x])^m, (c + d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := Unintegrable[(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[(a_. + b_.*sec[e_. + f_.*x_])^m_.*(d_./sec[e_. + f_.*x_])^n_, x_Symbol] := d^m*Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m), x] /; FreeQ[{a, b, d, e, f, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[(a_. + b_.*csc[e_. + f_.*x_])^m_.*(d_./csc[e_. + f_.*x_])^n_, x_Symbol] := d^m*Int[(b + a*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n - m), x] /; FreeQ[{a, b, d, e, f, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[(a_. + b_.*sec[e_. + f_.*x_])^ m_.*(c_.*(d_.*sec[e_. + f_.*x_])^p_)^n_, x_Symbol] := c^IntPart[n]*(c*(d*Sec[e + f*x])^p)^ FracPart[n]/(d*Sec[e + f*x])^(p*FracPart[n])* Int[(a + b*Sec[e + f*x])^m*(d*Sec[e + f*x])^(n*p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[n]] +Int[(a_. + b_.*csc[e_. + f_.*x_])^ m_.*(c_.*(d_.*csc[e_. + f_.*x_])^p_)^n_, x_Symbol] := c^IntPart[n]*(c*(d*Csc[e + f*x])^p)^ FracPart[n]/(d*Csc[e + f*x])^(p*FracPart[n])* Int[(a + b*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n*p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[n]] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.2.2 (g sec)^p (a+b sec)^m (c+d sec)^n.m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.2.2 (g sec)^p (a+b sec)^m (c+d sec)^n.m new file mode 100755 index 0000000..95d07fc --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.2.2 (g sec)^p (a+b sec)^m (c+d sec)^n.m @@ -0,0 +1,49 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.2.2 (g sec)^p (a+b sec)^m (c+d sec)^n *) +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := b*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^n/(a*f*(2*m + 1)) /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[2*m + 1, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := b*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^n/(a*f*(2*m + 1)) + (m + n + 1)/(a*(2*m + 1))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[m + n + 1, 0] && NeQ[2*m + 1, 0] && Not[LtQ[n, 0]] && Not[IGtQ[n + 1/2, 0] && LtQ[n + 1/2, -(m + n)]] +Int[csc[e_. + f_.*x_]* Sqrt[c_ + d_.*csc[e_. + f_.*x_]]/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := a*c*Log[1 + b/a*Csc[e + f*x]]* Cot[e + f*x]/(b*f*Sqrt[a + b*Csc[e + f*x]]* Sqrt[c + d*Csc[e + f*x]]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^m_.* Sqrt[c_ + d_.*csc[e_. + f_.*x_]], x_Symbol] := 2*a*c* Cot[e + f*x]*(a + b*Csc[e + f*x])^ m/(b*f*(2*m + 1)*Sqrt[c + d*Csc[e + f*x]]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[m, -1/2] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := 2*a*c* Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^(n - 1)/(b*f*(2*m + 1)) - d*(2*n - 1)/(b*(2*m + 1))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0] && LtQ[m, -1/2] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := -d*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^(n - 1)/(f*(m + n)) + c*(2*n - 1)/(m + n)* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0] && Not[LtQ[m, -1/2]] && Not[IGtQ[m - 1/2, 0] && LtQ[m, n]] +Int[csc[e_. + f_.*x_]*(c_ + d_.*csc[e_. + f_.*x_])^n_./ Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := -2*d*Cot[ e + f*x]*(c + d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)* Sqrt[a + b*Csc[e + f*x]]) + 2*c*(2*n - 1)/(2*n - 1)* Int[Csc[e + f*x]*(c + d*Csc[e + f*x])^(n - 1)/ Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := 2*a*c* Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^(n - 1)/(b*f*(2*m + 1)) - d*(2*n - 1)/(b*(2*m + 1))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n, 0] && LtQ[m, -1/2] && IntegerQ[2*m] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := (-a*c)^m* Int[ExpandTrig[ csc[e + f*x]*cot[e + f*x]^(2*m), (c + d*csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n] && GeQ[n - m, 0] && GtQ[m*n, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^m_, x_Symbol] := (-a*c)^(m + 1/2)* Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])* Int[Csc[e + f*x]*Cot[e + f*x]^(2*m), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m + 1/2] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := b*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^n/(a*f*(2*m + 1)) + (m + n + 1)/(a*(2*m + 1))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && (ILtQ[m, 0] && ILtQ[n - 1/2, 0] || ILtQ[m - 1/2, 0] && ILtQ[n - 1/2, 0] && LtQ[m, n]) +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := a*c*Cot[ e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])* Subst[Int[(a + b*x)^(m - 1/2)*(c + d*x)^(n - 1/2), x], x, Csc[e + f*x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^ m_.*(c_ + d_.*csc[e_. + f_.*x_])^n_., x_Symbol] := (-a*c)^m* Int[ExpandTrig[(g*csc[e + f*x])^p* cot[e + f*x]^(2*m), (c + d*csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n] && GeQ[n - m, 0] && GtQ[m*n, 0] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^m_, x_Symbol] := (-a*c)^(m + 1/2)* Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])* Int[(g*Csc[e + f*x])^p*Cot[e + f*x]^(2*m), x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m + 1/2] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := a*c*g* Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]* Sqrt[c + d*Csc[e + f*x]])* Subst[ Int[(g*x)^(p - 1)*(a + b*x)^(m - 1/2)*(c + d*x)^(n - 1/2), x], x, Csc[e + f*x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] +Int[Sqrt[g_.*csc[e_. + f_.*x_]]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := -2*b*g/f* Subst[Int[1/(b*c + a*d - c*g*x^2), x], x, b*Cot[e + f*x]/(Sqrt[g*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]])] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] +Int[Sqrt[g_.*csc[e_. + f_.*x_]]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := a/c*Int[Sqrt[g*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x] + (b*c - a*d)/(c*g)* Int[(g*Csc[e + f*x])^(3/2)/(Sqrt[ a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := -2*b/f* Subst[Int[1/(b*c + a*d + d*x^2), x], x, b*Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := -Sqrt[a + b*Csc[e + f*x]]* Sqrt[c/(c + d*Csc[e + f*x])]/(d*f* Sqrt[c*d*(a + b*Csc[e + f*x])/((b*c + a*d)*(c + d*Csc[e + f*x]))])* EllipticE[ ArcSin[c* Cot[e + f*x]/(c + d*Csc[e + f*x])], -(b*c - a*d)/(b*c + a*d)] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[csc[e_. + f_.*x_]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := b/d*Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] - (b*c - a*d)/d* Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(g_.*csc[e_. + f_.*x_])^(3/2)* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := g/d*Int[Sqrt[g*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]], x] - c*g/d* Int[Sqrt[g*Csc[e + f*x]]* Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(g_.*csc[e_. + f_.*x_])^(3/2)* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_]), x_Symbol] := b/d*Int[(g*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x] - (b*c - a*d)/d* Int[(g*Csc[e + f*x])^(3/2)/(Sqrt[ a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]/(Sqrt[ a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])), x_Symbol] := b/(b*c - a*d)*Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] - d/(b*c - a*d)* Int[Csc[e + f*x]*Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0]) +Int[csc[e_. + f_.*x_]/(Sqrt[ a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])), x_Symbol] := -2*Cot[ e + f*x]/(f*(c + d)*Sqrt[a + b*Csc[e + f*x]]* Sqrt[-Cot[e + f*x]^2])*Sqrt[(a + b*Csc[e + f*x])/(a + b)]* EllipticPi[2*d/(c + d), ArcSin[Sqrt[1 - Csc[e + f*x]]/Sqrt[2]], 2*b/(a + b)] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(g_.*csc[e_. + f_.*x_])^(3/2)/(Sqrt[ a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])), x_Symbol] := -a*g/(b*c - a*d)* Int[Sqrt[g*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x] + c*g/(b*c - a*d)* Int[Sqrt[g*Csc[e + f*x]]* Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(g_.*csc[e_. + f_.*x_])^(3/2)/(Sqrt[ a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])), x_Symbol] := g*Sqrt[g*Csc[e + f*x]]* Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]* Int[1/(Sqrt[b + a*Sin[e + f*x]]*(d + c*Sin[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]^2/(Sqrt[ a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])), x_Symbol] := -a/(b*c - a*d)*Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] + c/(b*c - a*d)* Int[Csc[e + f*x]*Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0]) +Int[csc[e_. + f_.*x_]^2/(Sqrt[ a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])), x_Symbol] := 1/d*Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] - c/d* Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(g_.*csc[e_. + f_.*x_])^(5/2)/(Sqrt[ a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])), x_Symbol] := -c^2*g^2/(d*(b*c - a*d))* Int[Sqrt[g*Csc[e + f*x]]* Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x]), x] + g^2/(d*(b*c - a*d))* Int[Sqrt[g*Csc[e + f*x]]*(a*c + (b*c - a*d)*Csc[e + f*x])/ Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] +Int[(g_.*csc[e_. + f_.*x_])^(5/2)/(Sqrt[ a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])), x_Symbol] := g/d*Int[(g*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x] - c*g/d* Int[(g*Csc[e + f*x])^(3/2)/(Sqrt[ a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/Sqrt[c_ + d_.*csc[e_. + f_.*x_]], x_Symbol] := -2*b/f* Subst[Int[1/(1 - b*d*x^2), x], x, Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]* Sqrt[c + d*Csc[e + f*x]])] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[csc[e_. + f_.*x_]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/Sqrt[c_ + d_.*csc[e_. + f_.*x_]], x_Symbol] := -(b*c - a*d)/d* Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]* Sqrt[c + d*Csc[e + f*x]]), x] + b/d* Int[Csc[e + f*x]* Sqrt[c + d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0] +Int[csc[e_. + f_.*x_]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/Sqrt[c_ + d_.*csc[e_. + f_.*x_]], x_Symbol] := -2*(a + b*Csc[e + f*x])/(d*f*Sqrt[(a + b)/(c + d)]*Cot[e + f*x])* Sqrt[-(b*c - a*d)*(1 - Csc[e + f*x])/((c + d)*(a + b*Csc[e + f*x]))]* Sqrt[(b*c - a*d)*(1 + Csc[e + f*x])/((c - d)*(a + b*Csc[e + f*x]))]* EllipticPi[b*(c + d)/(d*(a + b)), ArcSin[Sqrt[(a + b)/(c + d)]* Sqrt[c + d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]], (a - b)*(c + d)/((a + b)*(c - d))] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[csc[e_. + f_.*x_]/(Sqrt[a_ + b_.*csc[e_. + f_.*x_]]* Sqrt[c_ + d_.*csc[e_. + f_.*x_]]), x_Symbol] := -2*a/(b*f)* Subst[Int[1/(2 + (a*c - b*d)*x^2), x], x, Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]* Sqrt[c + d*Csc[e + f*x]])] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[csc[e_. + f_.*x_]/(Sqrt[a_ + b_.*csc[e_. + f_.*x_]]* Sqrt[c_ + d_.*csc[e_. + f_.*x_]]), x_Symbol] := -2*(c + d*Csc[e + f*x])/(f*(b*c - a*d)*Rt[(c + d)/(a + b), 2]* Cot[e + f*x])* Sqrt[(b*c - a*d)*(1 - Csc[e + f*x])/((a + b)*(c + d*Csc[e + f*x]))]* Sqrt[-(b*c - a*d)*(1 + Csc[e + f*x])/((a - b)*(c + d*Csc[e + f*x]))]* EllipticF[ ArcSin[Rt[(c + d)/(a + b), 2]*(Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]])], (a + b)*(c - d)/((a - b)*(c + d))] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[csc[e_. + f_.*x_]^2/(Sqrt[a_ + b_.*csc[e_. + f_.*x_]]* Sqrt[c_ + d_.*csc[e_. + f_.*x_]]), x_Symbol] := -a/b*Int[ Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]), x] + 1/b* Int[Csc[e + f*x]* Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] +Int[csc[e_. + f_.*x_]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]/(c_ + d_.*csc[e_. + f_.*x_])^(3/2), x_Symbol] := (a - b)/(c - d)* Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]* Sqrt[c + d*Csc[e + f*x]]), x] + (b*c - a*d)/(c - d)* Int[Csc[e + f*x]*(1 + Csc[e + f*x])/(Sqrt[ a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(3/2)), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := a^2*g* Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]* Sqrt[a - b*Csc[e + f*x]])* Subst[ Int[(g*x)^(p - 1)*(a + b*x)^(m - 1/2)*(c + d*x)^n/Sqrt[a - b*x], x], x, Csc[e + f*x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && (EqQ[p, 1] || IntegerQ[m - 1/2]) +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := 1/g^(m + n)* Int[(g*Csc[e + f*x])^(m + n + p)*(b + a*Sin[e + f*x])^ m*(d + c*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] && IntegerQ[m] && IntegerQ[n] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := (g*Csc[e + f*x])^(m + p)*(c + d*Csc[e + f*x])^ n/(g^m*(d + c*Sin[e + f*x])^n)* Int[(b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + p, 0] && IntegerQ[m] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := (g*Csc[e + f*x])^p*(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^ n/((b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n)* Int[(b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + p, 0] && Not[IntegerQ[m]] +Int[csc[e_. + f_.*x_]^p_.*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Sqrt[d + c*Sin[e + f*x]]* Sqrt[a + b*Csc[e + f*x]]/(Sqrt[b + a*Sin[e + f*x]]* Sqrt[c + d*Csc[e + f*x]])* Int[(b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n/ Sin[e + f*x]^(m + n + p), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && IntegerQ[m - 1/2] && IntegerQ[n - 1/2] && IntegerQ[p] && LeQ[-2, m + n + p, -1] +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(c_ + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Int[ExpandTrig[(g*csc[e + f*x])^p*(a + b*csc[e + f*x])^ m*(c + d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && (IntegersQ[m, n] || IntegersQ[m, p] || IntegersQ[n, p]) +Int[(g_.*csc[e_. + f_.*x_])^p_.*(a_. + b_.*csc[e_. + f_.*x_])^ m_*(c_. + d_.*csc[e_. + f_.*x_])^n_, x_Symbol] := Unintegrable[(g*Csc[e + f*x])^p*(a + b*Csc[e + f*x])^ m*(c + d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] +Int[sec[e_. + f_.*x_]*(A_ + B_.*sec[e_. + f_.*x_])/(Sqrt[ a_ + b_.*sec[e_. + f_.*x_]]*(c_ + d_.*sec[e_. + f_.*x_])^(3/ 2)), x_Symbol] := 2*A*(1 + Sec[e + f*x])* Sqrt[(b*c - a*d)*(1 - Sec[e + f*x])/((a + b)*(c + d*Sec[e + f*x]))]/ (f*(b*c - a*d)*Rt[(c + d)/(a + b), 2]*Tan[e + f*x]* Sqrt[-(b*c - a*d)*(1 + Sec[e + f*x])/((a - b)*(c + d*Sec[e + f*x]))])* EllipticE[ ArcSin[Rt[(c + d)/(a + b), 2]* Sqrt[a + b*Sec[e + f*x]]/Sqrt[c + d*Sec[e + f*x]]], (a + b)*(c - d)/((a - b)*(c + d))] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[A, B] +Int[csc[e_. + f_.*x_]*(A_ + B_.*csc[e_. + f_.*x_])/(Sqrt[ a_ + b_.*csc[e_. + f_.*x_]]*(c_ + d_.*csc[e_. + f_.*x_])^(3/ 2)), x_Symbol] := -2*A*(1 + Csc[e + f*x])* Sqrt[(b*c - a*d)*(1 - Csc[e + f*x])/((a + b)*(c + d*Csc[e + f*x]))]/ (f*(b*c - a*d)*Rt[(c + d)/(a + b), 2]*Cot[e + f*x]* Sqrt[-(b*c - a*d)*(1 + Csc[e + f*x])/((a - b)*(c + d*Csc[e + f*x]))])* EllipticE[ ArcSin[Rt[(c + d)/(a + b), 2]* Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]]], (a + b)*(c - d)/((a - b)*(c + d))] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[A, B] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.3.1 (a+b sec)^m (d sec)^n (A+B sec).m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.3.1 (a+b sec)^m (d sec)^n (A+B sec).m new file mode 100755 index 0000000..73ba9ab --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.3.1 (a+b sec)^m (d sec)^n (A+B sec).m @@ -0,0 +1,49 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.3.1 (a+b sec)^m (d sec)^n (A+B sec) *) +Int[(a_ + b_.*csc[e_. + f_.*x_])*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n/(f*n) + 1/(d*n)* Int[(d*Csc[e + f*x])^(n + 1)* Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && LeQ[n, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])*(d_.*csc[e_. + f_.*x_])^ n_.*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -b*B*Cot[e + f*x]*(d*Csc[e + f*x])^n/(f*(n + 1)) + 1/(n + 1)* Int[(d*Csc[e + f*x])^n* Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && Not[LeQ[n, -1]] +Int[csc[e_. + f_.*x_]*(A_ + B_.*csc[e_. + f_.*x_])/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := B/b*Int[Csc[e + f*x], x] + (A*b - a*B)/b* Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(m + 1)) /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[a*B*m + A*b*(m + 1), 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := (A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(a*f*(2*m + 1)) + (a*B*m + A*b*(m + 1))/(a*b*(2*m + 1))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -1/2] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(m + 1)) + (a*B*m + A*b*(m + 1))/(b*(m + 1))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && Not[LtQ[m, -1/2]] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(m + 1)) + 1/(m + 1)* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)* Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1))*Csc[e + f*x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -(A*b - a*B)* Cot[e + f* x]*(a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2)) + 1/((m + 1)*(a^2 - b^2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[(a*A - b*B)*(m + 1) - (A*b - a*B)*(m + 2)*Csc[e + f*x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[csc[e_. + f_.*x_]*(A_ + B_.*csc[e_. + f_.*x_])/ Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := -2*(A*b - a*B)*Rt[a + b*B/A, 2]*Sqrt[b*(1 - Csc[e + f*x])/(a + b)]* Sqrt[-b*(1 + Csc[e + f*x])/(a - b)]/(b^2*f*Cot[e + f*x])* EllipticE[ ArcSin[Sqrt[a + b*Csc[e + f*x]]/ Rt[a + b*B/A, 2]], (a*A + b*B)/(a*A - b*B)] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0] +Int[csc[e_. + f_.*x_]*(A_ + B_.*csc[e_. + f_.*x_])/ Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := (A - B)*Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] + B*Int[Csc[e + f*x]*(1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := 2*Sqrt[2]*A*(a + b*Csc[e + f*x])^m*(A - B*Csc[e + f*x])* Sqrt[(A + B*Csc[e + f*x])/A]/(B*f* Cot[e + f*x]*(A*(a + b*Csc[e + f*x])/(a*A + b*B))^m)* AppellF1[1/2, -(1/2), -m, 3/2, (A - B*Csc[e + f*x])/(2*A), (b*(A - B*Csc[e + f*x]))/(A*b + a*B)] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0] && Not[IntegerQ[2*m]] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := (A*b - a*B)/b*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x] + B/b*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -(A*b - a*B)* Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(b*f*(2*m + 1)) + 1/(b^2*(2*m + 1))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := a*(A*b - a*B)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b* f*(m + 1)*(a^2 - b^2)) - 1/(b*(m + 1)*(a^2 - b^2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[b*(A*b - a*B)*(m + 1) - (a*A*b*(m + 2) - B*(a^2 + b^2*(m + 1)))*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2)) + 1/(b*(m + 2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m* Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && Not[LtQ[m, -1]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n/(f*n) /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && EqQ[a*A*m - b*B*n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -(A*b - a*B)* Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(b*f*(2*m + 1)) + (a*A*m + b*B*(m + 1))/(a^2*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && LeQ[m, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n/(f*n) - (a*A*m - b*B*n)/(b*d*n)* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && Not[LeQ[m, -1]] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -2*b*B* Cot[e + f*x]*(d*Csc[e + f*x])^ n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]]) /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[A*b*(2*n + 1) + 2*a*B*n, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := A*b^2* Cot[e + f*x]*(d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]]) + (A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)* Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -2*b*B* Cot[e + f*x]*(d*Csc[e + f*x])^ n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]]) + (A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))* Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && Not[LtQ[n, 0]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := a*A*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^ n/(f*n) - b/(a*d*n)* Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)* Simp[a*A*(m - n - 1) - b*B*n - (a*B*n + A*b*(m + n))*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -b*B*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^ n/(f*(m + n)) + 1/(d*(m + n))* Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n* Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && Not[LtQ[n, -1]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := d*(A*b - a*B)* Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n - 1)/(a*f*(2*m + 1)) - 1/(a*b*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)* Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] && GtQ[n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -(A*b - a*B)* Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(b*f*(2*m + 1)) - 1/(a^2*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n* Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] && Not[GtQ[n, 0]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -B*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n - 1)/(f*(m + n)) + d/(b*(m + n))* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)* Simp[b*B*(n - 1) + (A*b*(m + n) + a*B*m)*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n/(f*n) - 1/(b*d*n)* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)* Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := (A*b - a*B)/b*Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x] + B/b*Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^2*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := a^2*A*Cos[e + f*x]*(d*Csc[e + f*x])^(n + 1)/(d*f*n) + 1/(d*n)* Int[(d*Csc[e + f*x])^(n + 1)*(a*(2*A*b + a*B)* n + (2*a*b*B*n + A*(b^2*n + a^2*(n + 1)))*Csc[e + f*x] + b^2*B*n*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := a*A*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^ n/(f*n) + 1/(d*n)*Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)* Simp[a*(a*B*n - A*b*(m - n - 1)) + (2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -b*B*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^ n/(f*(m + n)) + 1/(m + n)*Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n* Simp[a^2*A*(m + n) + a*b*B*n + (a*(2*A*b + a*B)*(m + n) + b^2*B*(m + n - 1))* Csc[e + f*x] + b*(A*b*(m + n) + a*B*(2*m + n - 1))*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && Not[IGtQ[n, 1] && Not[IntegerQ[m]]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -d*(A*b - a*B)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2)) + 1/((m + 1)*(a^2 - b^2))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)* Simp[d*(n - 1)*(A*b - a*B) + d*(a*A - b*B)*(m + 1)*Csc[e + f*x] - d*(A*b - a*B)*(m + n + 1)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] +Int[csc[e_. + f_.*x_]^3*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -a^2*(A*b - a*B)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b^2* f*(m + 1)*(a^2 - b^2)) + 1/(b^2*(m + 1)*(a^2 - b^2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[a*b*(A*b - a*B)*(m + 1) - (A*b - a*B)*(a^2 + b^2*(m + 1))* Csc[e + f*x] + b*B*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := a*d^2*(A*b - a*B)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)/(b*f*(m + 1)*(a^2 - b^2)) - d/(b*(m + 1)*(a^2 - b^2))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)* Simp[a*d*(A*b - a*B)*(n - 2) + b*d*(A*b - a*B)*(m + 1)* Csc[e + f*x] - (a*A*b*d*(m + n) - d*B*(a^2*(n - 1) + b^2*(m + 1)))*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := b*(A*b - a*B)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^ n/(a*f*(m + 1)*(a^2 - b^2)) + 1/(a*(m + 1)*(a^2 - b^2))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n* Simp[A*(a^2*(m + 1) - b^2*(m + n + 1)) + a*b*B*n - a*(A*b - a*B)*(m + 1)*Csc[e + f*x] + b*(A*b - a*B)*(m + n + 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && Not[ILtQ[m + 1/2, 0] && ILtQ[n, 0]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -B*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n - 1)/(f*(m + n)) + d/(m + n)* Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n - 1)* Simp[a*B*(n - 1) + (b*B*(m + n - 1) + a*A*(m + n))* Csc[e + f*x] + (a*B*m + A*b*(m + n))*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && GtQ[n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n/(f*n) - 1/(d*n)*Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)* Simp[A*b*m - a*B*n - (b*B*n + a*A*(n + 1))*Csc[e + f*x] - A*b*(m + n + 1)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && LeQ[n, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := -B*d^2* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)/(b*f*(m + n)) + d^2/(b*(m + n))* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2)* Simp[a*B*(n - 2) + B*b*(m + n - 1)*Csc[e + f*x] + (A*b*(m + n) - a*B*(n - 1))* Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && NeQ[m + n, 0] && Not[IGtQ[m, 1]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := A*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^ n/(a*f*n) + 1/(a*d*n)*Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)* Simp[a*B*n - A*b*(m + n + 1) + A*a*(n + 1)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] +Int[(A_ + B_.*csc[e_. + f_.*x_])/(Sqrt[d_.*csc[e_. + f_.*x_]]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]), x_Symbol] := A/a*Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x] - (A*b - a*B)/(a*d)* Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] +Int[Sqrt[d_.*csc[e_. + f_.*x_]]*(A_ + B_.*csc[e_. + f_.*x_])/ Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := A*Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x] + B/d*Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] +Int[Sqrt[a_ + b_.*csc[e_. + f_.*x_]]*(A_ + B_.*csc[e_. + f_.*x_])/ Sqrt[d_.*csc[e_. + f_.*x_]], x_Symbol] := B/d*Int[Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]], x] + A*Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] +Int[(d_.*csc[e_. + f_.*x_])^ n_*(A_ + B_.*csc[e_. + f_.*x_])/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := A/a*Int[(d*Csc[e + f*x])^n, x] - (A*b - a*B)/(a*d)* Int[(d*Csc[e + f*x])^(n + 1)/(a + b*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_.*(A_ + B_.*csc[e_. + f_.*x_]), x_Symbol] := Unintegrable[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^ n*(A + B*Csc[e + f*x]), x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] +(* Int[(a_+b_.*csc[e_.+f_.*x_])^m_.*(c_+d_.*csc[e_.+f_.*x_])^n_.*(A_.+ B_.*csc[e_.+f_.*x_])^p_.,x_Symbol] := (-a*c)^m*Int[Cot[e+f*x]^(2*m)*(c+d*Csc[e+f*x])^(n-m)*(A+B*Csc[e+f*x] )^p,x] /; FreeQ[{a,b,c,d,e,f,A,B,n,p},x] && EqQ[b*c+a*d,0] && EqQ[a^2-b^2,0] && IntegerQ[m] && Not[IntegerQ[n] && (LtQ[m,0] && GtQ[n,0] || LtQ[0,n,m] || LtQ[m,n,0])] *) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(c_ + d_.*csc[e_. + f_.*x_])^ n_.*(A_. + B_.*csc[e_. + f_.*x_])^p_., x_Symbol] := (-a*c)^m* Int[Cos[e + f*x]^(2*m)*(d + c*Sin[e + f*x])^(n - m)*(B + A*Sin[e + f*x])^p/Sin[e + f*x]^(m + n + p), x] /; FreeQ[{a, b, c, d, e, f, A, B, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.4.1 (a+b sec)^m (A+B sec+C sec^2).m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.4.1 (a+b sec)^m (A+B sec+C sec^2).m new file mode 100755 index 0000000..9396261 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.4.1 (a+b sec)^m (A+B sec+C sec^2).m @@ -0,0 +1,34 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.4.1 (a+b sec)^m (A+B sec+C sec^2) *) +Int[(a_ + b_.*csc[e_. + f_.*x_])^ m_.*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := 1/b^2* Int[(a + b*Csc[e + f*x])^(m + 1)* Simp[b*B - a*C + b*C*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := C/b^2* Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[-a + b*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[A*b^2 + a^2*C, 0] +Int[(b_.*csc[e_. + f_.*x_])^m_.*(A_ + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := A*Cot[e + f*x]*(b*Csc[e + f*x])^m/(f*m) /; FreeQ[{b, e, f, A, C, m}, x] && EqQ[C*m + A*(m + 1), 0] +Int[csc[e_. + f_.*x_]^m_.*(A_ + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := Int[(C + A*Sin[e + f*x]^2)/Sin[e + f*x]^(m + 2), x] /; FreeQ[{e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && ILtQ[(m + 1)/2, 0] +Int[(b_.*csc[e_. + f_.*x_])^m_.*(A_ + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := A*Cot[e + f*x]*(b*Csc[e + f*x])^m/(f*m) + (C*m + A*(m + 1))/(b^2*m)*Int[(b*Csc[e + f*x])^(m + 2), x] /; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1] +Int[(b_.*csc[e_. + f_.*x_])^m_.*(A_ + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(b*Csc[e + f*x])^m/(f*(m + 1)) + (C*m + A*(m + 1))/(m + 1)*Int[(b*Csc[e + f*x])^m, x] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] && Not[LeQ[m, -1]] +Int[(b_.*csc[e_. + f_.*x_])^ m_.*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := B/b*Int[(b*Csc[e + f*x])^(m + 1), x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x] +Int[(a_ + b_.*csc[e_. + f_.*x_])*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -b*C*Csc[e + f*x]*Cot[e + f*x]/(2*f) + 1/2* Int[Simp[ 2*A*a + (2*B*a + b*(2*A + C))*Csc[e + f*x] + 2*(a*C + B*b)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] +Int[(a_ + b_.*csc[e_. + f_.*x_])*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -b*C*Csc[e + f*x]*Cot[e + f*x]/(2*f) + 1/2* Int[Simp[2*A*a + b*(2*A + C)*Csc[e + f*x] + 2*a*C*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, C}, x] +Int[(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2)/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := C/b*Int[Csc[e + f*x], x] + 1/b*Int[(A*b + (b*B - a*C)*Csc[e + f*x])/(a + b*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B, C}, x] +Int[(A_. + C_.*csc[e_. + f_.*x_]^2)/(a_ + b_.*csc[e_. + f_.*x_]), x_Symbol] := C/b*Int[Csc[e + f*x], x] + 1/b*Int[(A*b - a*C*Csc[e + f*x])/(a + b*Csc[e + f*x]), x] /; FreeQ[{a, b, e, f, A, C}, x] +Int[(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -(a*A - b*B + a*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(a*f*(2*m + 1)) + 1/(a*b*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)* Simp[A*b*(2*m + 1) + (b*B*(m + 1) - a*(A*(m + 1) - C*m))* Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -a*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(a*f*(2*m + 1)) + 1/(a*b*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)* Simp[A*b*(2*m + 1) - a*(A*(m + 1) - C*m)*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] +Int[(a_ + b_.*csc[e_. + f_.*x_])^ m_.*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(m + 1)) + 1/(b*(m + 1))* Int[(a + b*Csc[e + f*x])^m* Simp[A*b*(m + 1) + (a*C*m + b*B*(m + 1))*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(m + 1)) + 1/(b*(m + 1))* Int[(a + b*Csc[e + f*x])^m* Simp[A*b*(m + 1) + a*C*m*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^ m_.*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(m + 1)) + 1/(m + 1)*Int[(a + b*Csc[e + f*x])^(m - 1)* Simp[a*A*(m + 1) + ((A*b + a*B)*(m + 1) + b*C*m)* Csc[e + f*x] + (b*B*(m + 1) + a*C*m)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(m + 1)) + 1/(m + 1)* Int[(a + b*Csc[e + f*x])^(m - 1)* Simp[a*A*(m + 1) + (A*b*(m + 1) + b*C*m)*Csc[e + f*x] + a*C*m*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0] +Int[(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2)/ Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + C*Int[Csc[e + f*x]*(1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] +Int[(A_. + C_.*csc[e_. + f_.*x_]^2)/Sqrt[a_ + b_.*csc[e_. + f_.*x_]], x_Symbol] := Int[(A - C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + C*Int[Csc[e + f*x]*(1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := (A*b^2 - a*b*B + a^2*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(a* f*(m + 1)*(a^2 - b^2)) + 1/(a*(m + 1)*(a^2 - b^2))*Int[(a + b*Csc[e + f*x])^(m + 1)* Simp[A*(a^2 - b^2)*(m + 1) - a*(A*b - a*B + b*C)*(m + 1)* Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + 2)* Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := (A*b^2 + a^2*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(a* f*(m + 1)*(a^2 - b^2)) + 1/(a*(m + 1)*(a^2 - b^2))*Int[(a + b*Csc[e + f*x])^(m + 1)* Simp[A*(a^2 - b^2)*(m + 1) - a*b*(A + C)*(m + 1)*Csc[e + f*x] + (A*b^2 + a^2*C)*(m + 2)* Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m] && LtQ[m, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := 1/b*Int[(a + b*Csc[e + f*x])^m*(A*b + (b*B - a*C)*Csc[e + f*x]), x] + C/b*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && Not[IntegerQ[2*m]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := 1/b*Int[(a + b*Csc[e + f*x])^m*(A*b - a*C*Csc[e + f*x]), x] + C/b*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x] /; FreeQ[{a, b, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] && Not[IntegerQ[2*m]] +Int[(b_.*cos[e_. + f_.*x_])^ m_*(A_. + B_.*sec[e_. + f_.*x_] + C_.*sec[e_. + f_.*x_]^2), x_Symbol] := b^2*Int[(b*Cos[e + f*x])^(m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x] && Not[IntegerQ[m]] +Int[(b_.*sin[e_. + f_.*x_])^ m_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := b^2*Int[(b*Sin[e + f*x])^(m - 2)*(C + B*Sin[e + f*x] + A*Sin[e + f*x]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x] && Not[IntegerQ[m]] +Int[(b_.*cos[e_. + f_.*x_])^m_*(A_. + C_.*sec[e_. + f_.*x_]^2), x_Symbol] := b^2*Int[(b*Cos[e + f*x])^(m - 2)*(C + A*Cos[e + f*x]^2), x] /; FreeQ[{b, e, f, A, C, m}, x] && Not[IntegerQ[m]] +Int[(b_.*sin[e_. + f_.*x_])^m_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := b^2*Int[(b*Sin[e + f*x])^(m - 2)*(C + A*Sin[e + f*x]^2), x] /; FreeQ[{b, e, f, A, C, m}, x] && Not[IntegerQ[m]] +Int[(a_.*(b_.*sec[e_. + f_.*x_])^p_)^ m_*(A_. + B_.*sec[e_. + f_.*x_] + C_.*sec[e_. + f_.*x_]^2), x_Symbol] := a^IntPart[m]*(a*(b*Sec[e + f*x])^p)^ FracPart[m]/(b*Sec[e + f*x])^(p*FracPart[m])* Int[(b*Sec[e + f*x])^(m*p)*(A + B*Sec[e + f*x] + C*Sec[e + f*x]^2), x] /; FreeQ[{a, b, e, f, A, B, C, m, p}, x] && Not[IntegerQ[m]] +Int[(a_.*(b_.*csc[e_. + f_.*x_])^p_)^ m_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := a^IntPart[m]*(a*(b*Csc[e + f*x])^p)^ FracPart[m]/(b*Csc[e + f*x])^(p*FracPart[m])* Int[(b*Csc[e + f*x])^(m*p)*(A + B*Csc[e + f*x] + C*Csc[e + f*x]^2), x] /; FreeQ[{a, b, e, f, A, B, C, m, p}, x] && Not[IntegerQ[m]] +Int[(a_.*(b_.*sec[e_. + f_.*x_])^p_)^ m_*(A_. + C_.*sec[e_. + f_.*x_]^2), x_Symbol] := a^IntPart[m]*(a*(b*Sec[e + f*x])^p)^ FracPart[m]/(b*Sec[e + f*x])^(p*FracPart[m])* Int[(b*Sec[e + f*x])^(m*p)*(A + C*Sec[e + f*x]^2), x] /; FreeQ[{a, b, e, f, A, C, m, p}, x] && Not[IntegerQ[m]] +Int[(a_.*(b_.*csc[e_. + f_.*x_])^p_)^ m_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := a^IntPart[m]*(a*(b*Csc[e + f*x])^p)^ FracPart[m]/(b*Csc[e + f*x])^(p*FracPart[m])* Int[(b*Csc[e + f*x])^(m*p)*(A + C*Csc[e + f*x]^2), x] /; FreeQ[{a, b, e, f, A, C, m, p}, x] && Not[IntegerQ[m]] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.4.2 (a+b sec)^m (d sec)^n (A+B sec+C sec^2).m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.4.2 (a+b sec)^m (d sec)^n (A+B sec+C sec^2).m new file mode 100755 index 0000000..bc44059 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.4.2 (a+b sec)^m (d sec)^n (A+B sec+C sec^2).m @@ -0,0 +1,51 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.4.2 (a+b sec)^m (d sec)^n (A+B sec+C sec^2) *) +Int[(a_. + b_.*csc[e_. + f_.*x_])^m_.*(c_. + d_.*csc[e_. + f_.*x_])^ n_.*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := 1/b^2* Int[(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^ n*(b*B - a*C + b*C*Csc[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] +Int[(a_. + b_.*csc[e_. + f_.*x_])^m_.*(c_. + d_.*csc[e_. + f_.*x_])^ n_.*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C/b^2* Int[(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^ n*(a - b*Csc[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A*b^2 + a^2*C, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n/(f*n) + 1/(d*n)* Int[(d*Csc[e + f*x])^(n + 1)* Simp[n*(B*a + A*b) + (n*(a*C + B*b) + A*a*(n + 1))* Csc[e + f*x] + b*C*n*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && LtQ[n, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n/(f*n) + 1/(d*n)* Int[(d*Csc[e + f*x])^(n + 1)* Simp[A*b*n + a*(C*n + A*(n + 1))*Csc[e + f*x] + b*C*n*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && LtQ[n, -1] +Int[(d_.*csc[e_. + f_.*x_])^ n_.*(a_ + b_.*csc[e_. + f_.*x_])*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -b*C*Csc[e + f*x]*Cot[e + f*x]*(d*Csc[e + f*x])^n/(f*(n + 2)) + 1/(n + 2)* Int[(d*Csc[e + f*x])^n* Simp[A*a*(n + 2) + (B*a*(n + 2) + b*(C*(n + 1) + A*(n + 2)))* Csc[e + f*x] + (a*C + B*b)*(n + 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && Not[LtQ[n, -1]] +Int[(d_.*csc[e_. + f_.*x_])^ n_.*(a_ + b_.*csc[e_. + f_.*x_])*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -b*C*Csc[e + f*x]*Cot[e + f*x]*(d*Csc[e + f*x])^n/(f*(n + 2)) + 1/(n + 2)* Int[(d*Csc[e + f*x])^n* Simp[A*a*(n + 2) + b*(C*(n + 1) + A*(n + 2))*Csc[e + f*x] + a*C*(n + 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && Not[LtQ[n, -1]] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -(a*A - b*B + a*C)*Cot[e + f*x]* Csc[e + f*x]*(a + b*Csc[e + f*x])^m/(a*f*(2*m + 1)) - 1/(a*b*(2*m + 1))*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[a*B - b*C - 2*A*b*(m + 1) - (b*B*(m + 2) - a*(A*(m + 2) - C*(m - 1)))* Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -(A + C)*Cot[e + f*x]* Csc[e + f*x]*(a + b*Csc[e + f*x])^m/(f*(2*m + 1)) - 1/(a*b*(2*m + 1))*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[-b*C - 2*A*b*(m + 1) + a*(A*(m + 2) - C*(m - 1))*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -(A*b^2 - a*b*B + a^2*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b* f*(m + 1)*(a^2 - b^2)) + 1/(b*(m + 1)*(a^2 - b^2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -(A*b^2 + a^2*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b* f*(m + 1)*(a^2 - b^2)) + 1/(b*(m + 1)*(a^2 - b^2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[a*b*(A + C)*(m + 1) - (A*b^2 + a^2*C + b*(A*b + b*C)*(m + 1))*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2)) + 1/(b*(m + 2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m* Simp[b*A*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && Not[LtQ[m, -1]] +Int[csc[e_. + f_.*x_]*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2)) + 1/(b*(m + 2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m* Simp[b*A*(m + 2) + b*C*(m + 1) - a*C*Csc[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && Not[LtQ[m, -1]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -(a*A - b*B + a*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(a*f*(2*m + 1)) - 1/(a*b*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n* Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -a*(A + C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(a*f*(2*m + 1)) + 1/(a*b*(2*m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n* Simp[b*C*n + A*b*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))* Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1/2] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n/(f*n) - 1/(b*d*n)* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)* Simp[a*A*m - b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] && (LtQ[n, -1/2] || EqQ[m + n + 1, 0]) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n/(f*n) - 1/(b*d*n)* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)* Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] && (LtQ[n, -1/2] || EqQ[m + n + 1, 0]) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(f*(m + n + 1)) + 1/(b*(m + n + 1))* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n* Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b*B*(m + n + 1))*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] && Not[LtQ[n, -1/2]] && NeQ[m + n + 1, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(f*(m + n + 1)) + 1/(b*(m + n + 1))* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n* Simp[A*b*(m + n + 1) + b*C*n + a*C*m*Csc[e + f*x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] && Not[LtQ[m, -1/2]] && Not[LtQ[n, -1/2]] && NeQ[m + n + 1, 0] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := a*(A*b^2 - a*b*B + a^2*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b^2* f*(m + 1)*(a^2 - b^2)) - 1/(b^2*(m + 1)*(a^2 - b^2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[b*(m + 1)*(-a*(b*B - a*C) + A*b^2) + (b*B*(a^2 + b^2*(m + 1)) - a*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Csc[e + f*x] - b*C*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := a*(A*b^2 + a^2*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b^2* f*(m + 1)*(a^2 - b^2)) - 1/(b^2*(m + 1)*(a^2 - b^2))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* Simp[b*(m + 1)*(a^2*C + A*b^2) - a*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)))*Csc[e + f*x] - b*C*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Csc[e + f*x]* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 3)) + 1/(b*(m + 3))*Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m* Simp[a*C + b*(C*(m + 2) + A*(m + 3))* Csc[e + f*x] - (2*a*C - b*B*(m + 3))*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && Not[LtQ[m, -1]] +Int[csc[e_. + f_.*x_]^2*(a_ + b_.*csc[e_. + f_.*x_])^ m_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Csc[e + f*x]* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 3)) + 1/(b*(m + 3))* Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m* Simp[a*C + b*(C*(m + 2) + A*(m + 3))*Csc[e + f*x] - 2*a*C*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] && Not[LtQ[m, -1]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n/(f*n) - 1/(d*n)*Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)* Simp[A*b*m - a*B*n - (b*B*n + a*(C*n + A*(n + 1)))*Csc[e + f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && LeQ[n, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n/(f*n) - 1/(d*n)*Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)* Simp[A*b*m - a*(C*n + A*(n + 1))*Csc[e + f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && LeQ[n, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(f*(m + n + 1)) + 1/(m + n + 1)*Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n* Simp[a*A*(m + n + 1) + a*C*n + ((A*b + a*B)*(m + n + 1) + b*C*(m + n))* Csc[e + f*x] + (b*B*(m + n + 1) + a*C*m)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && Not[LeQ[n, -1]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*Cot[e + f*x]*(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^n/(f*(m + n + 1)) + 1/(m + n + 1)*Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n* Simp[a*A*(m + n + 1) + a*C*n + b*(A*(m + n + 1) + C*(m + n))*Csc[e + f*x] + a*C*m*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && Not[LeQ[n, -1]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -d*(A*b^2 - a*b*B + a^2*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)/(b*f*(a^2 - b^2)*(m + 1)) + d/(b*(a^2 - b^2)*(m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)* Simp[A*b^2*(n - 1) - a*(b*B - a*C)*(n - 1) + b*(a*A - b*B + a*C)*(m + 1)*Csc[e + f*x] - (b*(A*b - a*B)*(m + n + 1) + C*(a^2*n + b^2*(m + 1)))* Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -d*(A*b^2 + a^2*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)/(b*f*(a^2 - b^2)*(m + 1)) + d/(b*(a^2 - b^2)*(m + 1))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)* Simp[A*b^2*(n - 1) + a^2*C*(n - 1) + a*b*(A + C)*(m + 1)* Csc[e + f*x] - (A*b^2*(m + n + 1) + C*(a^2*n + b^2*(m + 1)))* Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := (A*b^2 - a*b*B + a^2*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^ n/(a*f*(m + 1)*(a^2 - b^2)) + 1/(a*(m + 1)*(a^2 - b^2))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n* Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && Not[ILtQ[m + 1/2, 0] && ILtQ[n, 0]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := (A*b^2 + a^2*C)* Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^ n/(a*f*(m + 1)*(a^2 - b^2)) + 1/(a*(m + 1)*(a^2 - b^2))* Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n* Simp[a^2*(A + C)*(m + 1) - (A*b^2 + a^2*C)*(m + n + 1) - a*b*(A + C)*(m + 1)* Csc[e + f*x] + (A*b^2 + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && Not[ILtQ[m + 1/2, 0] && ILtQ[n, 0]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*d*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)/(b*f*(m + n + 1)) + d/(b*(m + n + 1))* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)* Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))* Csc[e + f*x] + (b*B*(m + n + 1) - a*C*n)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0] (* && Not[IGtQ[m,0] && Not[IntegerQ[n]]] *) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := -C*d*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)/(b*f*(m + n + 1)) + d/(b*(m + n + 1))* Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)* Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))* Csc[e + f*x] - a*C*n*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0] (* && Not[IGtQ[m,0] && Not[IntegerQ[n]]] *) +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := A*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^ n/(a*f*n) + 1/(a*d*n)*Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)* Simp[a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_*(d_.*csc[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := A*Cot[ e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^ n/(a*f*n) + 1/(a*d*n)*Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)* Simp[-A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] +Int[(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2)/(Sqrt[ d_.*csc[e_. + f_.*x_]]*(a_ + b_.*csc[e_. + f_.*x_])), x_Symbol] := (A*b^2 - a*b*B + a^2*C)/(a^2*d^2)* Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x] + 1/a^2* Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] +Int[(A_. + C_.*csc[e_. + f_.*x_]^2)/(Sqrt[ d_.*csc[e_. + f_.*x_]]*(a_ + b_.*csc[e_. + f_.*x_])), x_Symbol] := (A*b^2 + a^2*C)/(a^2*d^2)* Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x] + 1/a^2*Int[(a*A - A*b*Csc[e + f*x])/Sqrt[d*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] +Int[(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2)/(Sqrt[d_.*csc[e_. + f_.*x_]]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]), x_Symbol] := C/d^2*Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]* Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] +Int[(A_. + C_.*csc[e_. + f_.*x_]^2)/(Sqrt[d_.*csc[e_. + f_.*x_]]* Sqrt[a_ + b_.*csc[e_. + f_.*x_]]), x_Symbol] := C/d^2*Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x] + A*Int[1/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(d_.*csc[e_. + f_.*x_])^ n_.*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := Unintegrable[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^ n*(A + B*Csc[e + f*x] + C*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, A, B, C, m, n}, x] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(d_.*csc[e_. + f_.*x_])^ n_.*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := Unintegrable[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^ n*(A + C*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, A, C, m, n}, x] +Int[(a_ + b_.*sec[e_. + f_.*x_])^m_.*(d_.*cos[e_. + f_.*x_])^ n_*(A_. + B_.*sec[e_. + f_.*x_] + C_.*sec[e_. + f_.*x_]^2), x_Symbol] := d^(m + 2)* Int[(b + a*Cos[e + f*x])^ m*(d*Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(d_.*sin[e_. + f_.*x_])^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := d^(m + 2)* Int[(b + a*Sin[e + f*x])^ m*(d*Sin[e + f*x])^(n - m - 2)*(C + B*Sin[e + f*x] + A*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[(a_ + b_.*sec[e_. + f_.*x_])^m_.*(d_.*cos[e_. + f_.*x_])^ n_*(A_. + C_.*sec[e_. + f_.*x_]^2), x_Symbol] := d^(m + 2)* Int[(b + a*Cos[e + f*x])^ m*(d*Cos[e + f*x])^(n - m - 2)*(C + A*Cos[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(d_.*sin[e_. + f_.*x_])^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := d^(m + 2)* Int[(b + a*Sin[e + f*x])^ m*(d*Sin[e + f*x])^(n - m - 2)*(C + A*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[(a_ + b_.*sec[e_. + f_.*x_])^m_.*(c_.*(d_.*sec[e_. + f_.*x_])^p_)^ n_*(A_. + B_.*sec[e_. + f_.*x_] + C_.*sec[e_. + f_.*x_]^2), x_Symbol] := c^IntPart[n]*(c*(d*Sec[e + f*x])^p)^ FracPart[n]/(d*Sec[e + f*x])^(p*FracPart[n])* Int[(a + b*Sec[e + f*x])^ m*(d*Sec[e + f*x])^(n*p)*(A + B*Sec[e + f*x] + C*Sec[e + f*x]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && Not[IntegerQ[n]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(c_.*(d_.*csc[e_. + f_.*x_])^p_)^ n_*(A_. + B_.*csc[e_. + f_.*x_] + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := c^IntPart[n]*(c*(d*Csc[e + f*x])^p)^ FracPart[n]/(d*Csc[e + f*x])^(p*FracPart[n])* Int[(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n*p)*(A + B*Csc[e + f*x] + C*Csc[e + f*x]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && Not[IntegerQ[n]] +Int[(a_ + b_.*sec[e_. + f_.*x_])^m_.*(c_.*(d_.*sec[e_. + f_.*x_])^p_)^ n_*(A_. + C_.*sec[e_. + f_.*x_]^2), x_Symbol] := c^IntPart[n]*(c*(d*Sec[e + f*x])^p)^ FracPart[n]/(d*Sec[e + f*x])^(p*FracPart[n])* Int[(a + b*Sec[e + f*x])^ m*(d*Sec[e + f*x])^(n*p)*(A + C*Sec[e + f*x]^2), x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n, p}, x] && Not[IntegerQ[n]] +Int[(a_ + b_.*csc[e_. + f_.*x_])^m_.*(c_.*(d_.*csc[e_. + f_.*x_])^p_)^ n_*(A_. + C_.*csc[e_. + f_.*x_]^2), x_Symbol] := c^IntPart[n]*(c*(d*Csc[e + f*x])^p)^ FracPart[n]/(d*Csc[e + f*x])^(p*FracPart[n])* Int[(a + b*Csc[e + f*x])^ m*(d*Csc[e + f*x])^(n*p)*(A + C*Csc[e + f*x]^2), x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n, p}, x] && Not[IntegerQ[n]] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.7 (d trig)^m (a+b (c sec)^n)^p.m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.7 (d trig)^m (a+b (c sec)^n)^p.m new file mode 100755 index 0000000..93472d4 --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.7 (d trig)^m (a+b (c sec)^n)^p.m @@ -0,0 +1,35 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.7 (d trig)^m (a+b (c sec)^n)^p *) +Int[u_.*(a_ + b_.*sec[e_. + f_.*x_]^2)^p_, x_Symbol] := b^p*Int[ActivateTrig[u*tan[e + f*x]^(2*p)], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0] && IntegerQ[p] +Int[u_.*(a_ + b_.*sec[e_. + f_.*x_]^2)^p_, x_Symbol] := Int[ActivateTrig[u*(b*tan[e + f*x]^2)^p], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0] +Int[(b_.*sec[e_. + f_.*x_]^2)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, b*ff/f* Subst[Int[(b + b*ff^2*x^2)^(p - 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{b, e, f, p}, x] && Not[IntegerQ[p]] +Int[(b_.*(c_.*sec[e_. + f_.*x_])^n_)^p_, x_Symbol] := b^IntPart[p]*(b*(c*Sec[e + f*x])^n)^ FracPart[p]/(c*Sec[e + f*x])^(n*FracPart[p])* Int[(c*Sec[e + f*x])^(n*p), x] /; FreeQ[{b, c, e, f, n, p}, x] && Not[IntegerQ[p]] +Int[tan[e_. + f_.*x_]^m_.*(b_.*sec[e_. + f_.*x_]^2)^p_., x_Symbol] := b/(2*f)* Subst[Int[(-1 + x)^((m - 1)/2)*(b*x)^(p - 1), x], x, Sec[e + f*x]^2] /; FreeQ[{b, e, f, p}, x] && Not[IntegerQ[p]] && IntegerQ[(m - 1)/2] +Int[u_.*(b_.*sec[e_. + f_.*x_]^n_)^p_, x_Symbol] := With[{ff = FreeFactors[Sec[e + f*x], x]}, (b*ff^n)^ IntPart[p]*(b*Sec[e + f*x]^n)^ FracPart[p]/(Sec[e + f*x]/ff)^(n*FracPart[p])* Int[ActivateTrig[u]*(Sec[e + f*x]/ff)^(n*p), x]] /; FreeQ[{b, e, f, n, p}, x] && Not[IntegerQ[p]] && IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, (d_.*trig_[e + f*x])^m_. /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]]) +Int[u_.*(b_.*(c_.*sec[e_. + f_.*x_])^n_)^p_, x_Symbol] := b^IntPart[p]*(b*(c*Sec[e + f*x])^n)^ FracPart[p]/(c*Sec[e + f*x])^(n*FracPart[p])* Int[ActivateTrig[u]*(c*Sec[e + f*x])^(n*p), x] /; FreeQ[{b, c, e, f, n, p}, x] && Not[IntegerQ[p]] && Not[IntegerQ[n]] && (EqQ[u, 1] || MatchQ[u, (d_.*trig_[e + f*x])^m_. /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]]) +Int[1/(a_ + b_.*sec[e_. + f_.*x_]^2), x_Symbol] := x/a - b/a*Int[1/(b + a*Cos[e + f*x]^2), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a + b, 0] +Int[(a_ + b_.*sec[e_. + f_.*x_]^2)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(a + b + b*ff^2*x^2)^p/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && NeQ[a + b, 0] && NeQ[p, -1] +Int[(a_ + b_.*sec[e_. + f_.*x_]^4)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(a + b + 2*b*ff^2*x^2 + b*ff^4*x^4)^p/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[2*p] +Int[(a_ + b_.*sec[e_. + f_.*x_]^n_)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[n/2] && IGtQ[p, -2] +Int[(a_ + b_.*(c_.*sec[e_. + f_.*x_])^n_)^p_, x_Symbol] := Unintegrable[(a + b*(c*Sec[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, e, f, n, p}, x] +Int[sin[e_. + f_.*x_]^m_*(a_ + b_.*sec[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff^(m + 1)/f* Subst[Int[ x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^ p/(1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2] +Int[sin[e_. + f_.*x_]^m_.*(a_ + b_.*sec[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Cos[e + f*x], x]}, -ff/f* Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(b + a*(ff*x)^n)^ p/(ff*x)^(n*p), x], x, Cos[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n] && IntegerQ[p] +Int[sin[e_. + f_.*x_]^m_.*(a_ + b_.*(c_.*sec[e_. + f_.*x_])^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Cos[e + f*x], x]}, 1/(f*ff^m)* Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p/ x^(m + 1), x], x, Sec[e + f*x]/ff]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[n, 2] || EqQ[n, 4]) +Int[(d_.*sin[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*sec[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Unintegrable[(d*Sin[e + f*x])^m*(a + b*(c*Sec[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[(d_.*cos[e_. + f_.*x_])^m_*(a_ + b_.*sec[e_. + f_.*x_]^n_.)^p_., x_Symbol] := d^(n*p)* Int[(d*Cos[e + f*x])^(m - n*p)*(b + a*Cos[e + f*x]^n)^p, x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] && IntegersQ[n, p] +Int[(d_.*cos[e_. + f_.*x_])^m_*(a_ + b_.*(c_.*sec[e_. + f_.*x_])^n_)^ p_, x_Symbol] := (d*Cos[e + f*x])^FracPart[m]*(Sec[e + f*x]/d)^FracPart[m]* Int[(Sec[e + f*x]/d)^(-m)*(a + b*(c*Sec[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] +Int[tan[e_. + f_.*x_]^m_.*(a_ + b_.*sec[e_. + f_.*x_]^n_)^p_., x_Symbol] := Module[{ff = FreeFactors[Cos[e + f*x], x]}, -1/(f*ff^(m + n*p - 1))* Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(b + a*(ff*x)^n)^p/ x^(m + n*p), x], x, Cos[e + f*x]/ff]] /; FreeQ[{a, b, e, f, n}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n] && IntegerQ[p] +Int[tan[e_. + f_.*x_]^m_.*(a_ + b_.*(c_.*sec[e_. + f_.*x_])^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Sec[e + f*x], x]}, 1/f* Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p/x, x], x, Sec[e + f*x]/ff]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p]) +Int[(d_.*tan[e_. + f_.*x_])^m_*(b_.*sec[e_. + f_.*x_]^2)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, b*ff/f* Subst[Int[(d*ff*x)^m*(b + b*ff^2*x^2)^(p - 1), x], x, Tan[e + f*x]/ff]] /; FreeQ[{b, d, e, f, m, p}, x] +Int[(d_.*tan[e_. + f_.*x_])^m_*(a_ + b_.*sec[e_. + f_.*x_]^n_)^p_., x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(d*ff*x)^ m*(a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2]) +Int[(d_.*tan[e_. + f_.*x_])^m_*(b_.*(c_.*sec[e_. + f_.*x_])^n_)^p_., x_Symbol] := d*(d*Tan[e + f*x])^(m - 1)*(b*(c*Sec[e + f*x])^n)^ p/(f*(p*n + m - 1)) - d^2*(m - 1)/(p*n + m - 1)* Int[(d*Tan[e + f*x])^(m - 2)*(b*(c*Sec[e + f*x])^n)^p, x] /; FreeQ[{b, c, d, e, f, p, n}, x] && GtQ[m, 1] && NeQ[p*n + m - 1, 0] && IntegersQ[2*p*n, 2*m] +Int[(d_.*tan[e_. + f_.*x_])^m_*(b_.*(c_.*sec[e_. + f_.*x_])^n_)^p_., x_Symbol] := (d*Tan[e + f*x])^(m + 1)*(b*(c*Sec[e + f*x])^n)^p/(d*f*(m + 1)) - (p*n + m + 1)/(d^2*(m + 1))* Int[(d*Tan[e + f*x])^(m + 2)*(b*(c*Sec[e + f*x])^n)^p, x] /; FreeQ[{b, c, d, e, f, p, n}, x] && LtQ[m, -1] && NeQ[p*n + m + 1, 0] && IntegersQ[2*p*n, 2*m] +Int[(d_.*tan[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*sec[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Unintegrable[(d*Tan[e + f*x])^m*(a + b*(c*Sec[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[(d_.*cot[e_. + f_.*x_])^m_*(a_ + b_.*(c_.*sec[e_. + f_.*x_])^n_)^ p_, x_Symbol] := (d*Cot[e + f*x])^FracPart[m]*(Tan[e + f*x]/d)^FracPart[m]* Int[(Tan[e + f*x]/d)^(-m)*(a + b*(c*Sec[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] +Int[sec[e_. + f_.*x_]^m_*(a_ + b_.*sec[e_. + f_.*x_]^n_)^p_, x_Symbol] := With[{ff = FreeFactors[Tan[e + f*x], x]}, ff/f* Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)* ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p, x], x, Tan[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2] +Int[sec[e_. + f_.*x_]^m_.*(a_ + b_.*sec[e_. + f_.*x_]^n_)^p_, x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff/f* Subst[Int[ ExpandToSum[b + a*(1 - ff^2*x^2)^(n/2), x]^ p/(1 - ff^2*x^2)^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p] +Int[sec[e_. + f_.*x_]^m_.*(a_ + b_.*sec[e_. + f_.*x_]^n_)^p_, x_Symbol] := With[{ff = FreeFactors[Sin[e + f*x], x]}, ff/f* Subst[Int[(a + b/(1 - ff^2*x^2)^(n/2))^ p/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && Not[IntegerQ[p]] +Int[sec[e_. + f_.*x_]^m_.*(a_ + b_.*sec[e_. + f_.*x_]^n_)^p_, x_Symbol] := Int[ExpandTrig[sec[e + f*x]^m*(a + b*sec[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, e, f}, x] && IntegersQ[m, n, p] +Int[(d_.*sec[e_. + f_.*x_])^m_.*(a_ + b_.*(c_.*sec[e_. + f_.*x_])^n_)^ p_., x_Symbol] := Unintegrable[(d*Sec[e + f*x])^m*(a + b*(c*Sec[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[(d_.*csc[e_. + f_.*x_])^m_*(a_ + b_.*(c_.*sec[e_. + f_.*x_])^n_)^ p_, x_Symbol] := (d*Csc[e + f*x])^FracPart[m]*(Sin[e + f*x]/d)^FracPart[m]* Int[(Sin[e + f*x]/d)^(-m)*(a + b*(c*Sec[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Not[IntegerQ[m]] diff --git a/IntegrationRules/4 Trig functions/4.5 Secant/4.5.9 trig^m (a+b sec^n+c sec^(2 n))^p.m b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.9 trig^m (a+b sec^n+c sec^(2 n))^p.m new file mode 100755 index 0000000..3491eeb --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.5 Secant/4.5.9 trig^m (a+b sec^n+c sec^(2 n))^p.m @@ -0,0 +1,31 @@ + +(* ::Subsection::Closed:: *) +(* 4.5.9 trig^m (a+b sec^n+c sec^(2 n))^p *) +Int[(a_. + b_.*sec[d_. + e_.*x_]^n_. + c_.*sec[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := 1/(4^p*c^p)*Int[(b + 2*c*Sec[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[(a_. + b_.*csc[d_. + e_.*x_]^n_. + c_.*csc[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := 1/(4^p*c^p)*Int[(b + 2*c*Csc[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[(a_. + b_.*sec[d_. + e_.*x_]^n_. + c_.*sec[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Sec[d + e*x]^n + c*Sec[d + e*x]^(2*n))^ p/(b + 2*c*Sec[d + e*x]^n)^(2*p)* Int[u*(b + 2*c*Sec[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[(a_. + b_.*csc[d_. + e_.*x_]^n_. + c_.*csc[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Csc[d + e*x]^n + c*Csc[d + e*x]^(2*n))^ p/(b + 2*c*Csc[d + e*x]^n)^(2*p)* Int[u*(b + 2*c*Csc[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[1/(a_. + b_.*sec[d_. + e_.*x_]^n_. + c_.*sec[d_. + e_.*x_]^n2_.), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, 2*c/q*Int[1/(b - q + 2*c*Sec[d + e*x]^n), x] - 2*c/q*Int[1/(b + q + 2*c*Sec[d + e*x]^n), x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] +Int[1/(a_. + b_.*csc[d_. + e_.*x_]^n_. + c_.*csc[d_. + e_.*x_]^n2_.), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, 2*c/q*Int[1/(b - q + 2*c*Csc[d + e*x]^n), x] - 2*c/q*Int[1/(b + q + 2*c*Csc[d + e*x]^n), x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] +Int[sin[d_. + e_.*x_]^ m_.*(a_. + b_.*sec[d_. + e_.*x_]^n_. + c_.*sec[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{f = FreeFactors[Cos[d + e*x], x]}, -f/e* Subst[Int[(1 - f^2*x^2)^((m - 1)/2)*(b + a*(f*x)^n)^p/(f*x)^(n*p), x], x, Cos[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegersQ[n, p] +Int[cos[d_. + e_.*x_]^ m_.*(a_. + b_.*csc[d_. + e_.*x_]^n_. + c_.*csc[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{f = FreeFactors[Sin[d + e*x], x]}, f/e* Subst[Int[(1 - f^2*x^2)^((m - 1)/2)*(b + a*(f*x)^n)^p/(f*x)^(n*p), x], x, Sin[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegersQ[n, p] +Int[sin[d_. + e_.*x_]^ m_*(a_. + b_.*sec[d_. + e_.*x_]^n_ + c_.*sec[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{f = FreeFactors[Tan[d + e*x], x]}, f^(m + 1)/e* Subst[Int[ x^m*ExpandToSum[a + b*(1 + f^2*x^2)^(n/2) + c*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2)^(m/2 + 1), x], x, Tan[d + e*x]/f]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && IntegerQ[n/2] +Int[cos[d_. + e_.*x_]^ m_*(a_. + b_.*csc[d_. + e_.*x_]^n_ + c_.*csc[d_. + e_.*x_]^n2_)^ p_., x_Symbol] := Module[{f = FreeFactors[Cot[d + e*x], x]}, -f^(m + 1)/e* Subst[Int[ x^m*ExpandToSum[a + b*(1 + f^2*x^2)^(n/2) + c*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2)^(m/2 + 1), x], x, Cot[d + e*x]/f]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && IntegerQ[n/2] +Int[sec[d_. + e_.*x_]^ m_.*(a_. + b_.*sec[d_. + e_.*x_]^n_. + c_.*sec[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := 1/(4^p*c^p)*Int[Sec[d + e*x]^m*(b + 2*c*Sec[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[csc[d_. + e_.*x_]^ m_.*(a_. + b_.*csc[d_. + e_.*x_]^n_. + c_.*csc[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := 1/(4^p*c^p)*Int[Csc[d + e*x]^m*(b + 2*c*Csc[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] +Int[sec[d_. + e_.*x_]^ m_.*(a_. + b_.*sec[d_. + e_.*x_]^n_. + c_.*sec[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Sec[d + e*x]^n + c*Sec[d + e*x]^(2*n))^ p/(b + 2*c*Sec[d + e*x]^n)^(2*p)* Int[Sec[d + e*x]^m*(b + 2*c*Sec[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[csc[d_. + e_.*x_]^ m_.*(a_. + b_.*csc[d_. + e_.*x_]^n_. + c_.*csc[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := (a + b*Csc[d + e*x]^n + c*Csc[d + e*x]^(2*n))^ p/(b + 2*c*Csc[d + e*x]^n)^(2*p)* Int[Csc[d + e*x]^m*(b + 2*c*Csc[d + e*x]^n)^(2*p), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[p]] +Int[sec[d_. + e_.*x_]^ m_.*(a_. + b_.*sec[d_. + e_.*x_]^n_. + c_.*sec[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := Int[ExpandTrig[ sec[d + e*x]^m*(a + b*sec[d + e*x]^n + c*sec[d + e*x]^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegersQ[m, n, p] +Int[csc[d_. + e_.*x_]^ m_.*(a_. + b_.*csc[d_. + e_.*x_]^n_. + c_.*csc[d_. + e_.*x_]^n2_.)^p_, x_Symbol] := Int[ExpandTrig[ csc[d + e*x]^m*(a + b*csc[d + e*x]^n + c*csc[d + e*x]^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegersQ[m, n, p] +Int[tan[d_. + e_.*x_]^ m_.*(a_ + b_.*sec[d_. + e_.*x_]^n_. + c_.*sec[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := Module[{f = FreeFactors[Cos[d + e*x], x]}, -1/(e*f^(m + n*p - 1))* Subst[Int[(1 - f^2*x^2)^((m - 1)/ 2)*(c + b*(f*x)^n + c*(f*x)^(2*n))^p/x^(m + 2*n*p), x], x, Cos[d + e*x]/f]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n] && IntegerQ[p] +Int[cot[d_. + e_.*x_]^ m_.*(a_ + b_.*csc[d_. + e_.*x_]^n_. + c_.*sec[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := Module[{f = FreeFactors[Sin[d + e*x], x]}, 1/(e*f^(m + n*p - 1))* Subst[Int[(1 - f^2*x^2)^((m - 1)/ 2)*(c + b*(f*x)^n + c*(f*x)^(2*n))^p/x^(m + 2*n*p), x], x, Sin[d + e*x]/f]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n] && IntegerQ[p] +Int[tan[d_. + e_.*x_]^ m_.*(a_ + b_.*sec[d_. + e_.*x_]^n_ + c_.*sec[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := Module[{f = FreeFactors[Tan[d + e*x], x]}, f^(m + 1)/e* Subst[Int[ x^m*ExpandToSum[a + b*(1 + f^2*x^2)^(n/2) + c*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2), x], x, Tan[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && IntegerQ[n/2] +Int[cot[d_. + e_.*x_]^ m_.*(a_ + b_.*csc[d_. + e_.*x_]^n_ + c_.*sec[d_. + e_.*x_]^n2_.)^ p_., x_Symbol] := Module[{f = FreeFactors[Cot[d + e*x], x]}, -f^(m + 1)/e* Subst[Int[ x^m*ExpandToSum[a + b*(1 + f^2*x^2)^(n/2) + c*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2), x], x, Cot[d + e*x]/f]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && IntegerQ[n/2] +Int[(A_ + B_.*sec[d_. + e_.*x_])*(a_ + b_.*sec[d_. + e_.*x_] + c_.*sec[d_. + e_.*x_]^2)^n_, x_Symbol] := 1/(4^n*c^n)* Int[(A + B*Sec[d + e*x])*(b + 2*c*Sec[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n] +Int[(A_ + B_.*csc[d_. + e_.*x_])*(a_ + b_.*csc[d_. + e_.*x_] + c_.*csc[d_. + e_.*x_]^2)^n_, x_Symbol] := 1/(4^n*c^n)* Int[(A + B*Csc[d + e*x])*(b + 2*c*Csc[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n] +Int[(A_ + B_.*sec[d_. + e_.*x_])*(a_ + b_.*sec[d_. + e_.*x_] + c_.*sec[d_. + e_.*x_]^2)^n_, x_Symbol] := (a + b*Sec[d + e*x] + c*Sec[d + e*x]^2)^ n/(b + 2*c*Sec[d + e*x])^(2*n)* Int[(A + B*Sec[d + e*x])*(b + 2*c*Sec[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[n]] +Int[(A_ + B_.*csc[d_. + e_.*x_])*(a_ + b_.*csc[d_. + e_.*x_] + c_.*csc[d_. + e_.*x_]^2)^n_, x_Symbol] := (a + b*Csc[d + e*x] + c*Csc[d + e*x]^2)^ n/(b + 2*c*Csc[d + e*x])^(2*n)* Int[(A + B*Csc[d + e*x])*(b + 2*c*Csc[d + e*x])^(2*n), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && Not[IntegerQ[n]] +Int[(A_ + B_.*sec[d_. + e_.*x_])/(a_. + b_.*sec[d_. + e_.*x_] + c_.*sec[d_. + e_.*x_]^2), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, (B + (b*B - 2*A*c)/q)*Int[1/(b + q + 2*c*Sec[d + e*x]), x] + (B - (b*B - 2*A*c)/q)*Int[1/(b - q + 2*c*Sec[d + e*x]), x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] +Int[(A_ + B_.*csc[d_. + e_.*x_])/(a_. + b_.*csc[d_. + e_.*x_] + c_.*csc[d_. + e_.*x_]^2), x_Symbol] := Module[{q = Rt[b^2 - 4*a*c, 2]}, (B + (b*B - 2*A*c)/q)*Int[1/(b + q + 2*c*Csc[d + e*x]), x] + (B - (b*B - 2*A*c)/q)*Int[1/(b - q + 2*c*Csc[d + e*x]), x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] +Int[(A_ + B_.*sec[d_. + e_.*x_])*(a_. + b_.*sec[d_. + e_.*x_] + c_.*sec[d_. + e_.*x_]^2)^n_, x_Symbol] := Int[ExpandTrig[(A + B*sec[d + e*x])*(a + b*sec[d + e*x] + c*sec[d + e*x]^2)^n, x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n] +Int[(A_ + B_.*csc[d_. + e_.*x_])*(a_. + b_.*csc[d_. + e_.*x_] + c_.*csc[d_. + e_.*x_]^2)^n_, x_Symbol] := Int[ExpandTrig[(A + B*csc[d + e*x])*(a + b*csc[d + e*x] + c*csc[d + e*x]^2)^n, x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n] diff --git a/IntegrationRules/4 Trig functions/4.7 Miscellaneous/(a sin(m x) + b cos(n x))^p.m b/IntegrationRules/4 Trig functions/4.7 Miscellaneous/(a sin(m x) + b cos(n x))^p.m new file mode 100755 index 0000000..acbf30b --- /dev/null +++ b/IntegrationRules/4 Trig functions/4.7 Miscellaneous/(a sin(m x) + b cos(n x))^p.m @@ -0,0 +1,154 @@ +(* ::Package:: *) + +(************************************************************************) +(* This file was generated automatically by the Mathematica front end. *) +(* It contains Initialization cells from a Notebook file, which *) +(* typically will have the same name as this file except ending in *) +(* ".nb" instead of ".m". *) +(* *) +(* This file is intended to be loaded into the Mathematica kernel using *) +(* the package loading commands Get or Needs. Doing so is equivalent *) +(* to using the Evaluate Initialization Cells menu command in the front *) +(* end. *) +(* *) +(* DO NOT EDIT THIS FILE. This entire file is regenerated *) +(* automatically each time the parent Notebook file is saved in the *) +(* Mathematica front end. Any changes you make to this file will be *) +(* overwritten. *) +(************************************************************************) + + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*sin[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcTan[x]]+b*Sin[n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m/2] && IntegerQ[n/2] + + +(* ::Code:: *) +Int[(a_.*cos[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + -1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Cos[m*ArcCot[x]]+b*Cos[n*ArcCot[x]]]]^p/(1+x^2),x],x,Cot[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m/2] && IntegerQ[n/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*sin[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcTan[x]]+b*Sin[n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p/2,0] && IntegerQ[(m-1)/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*cos[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Cos[m*ArcTan[x]]+b*Cos[n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p/2,0] && IntegerQ[(m-1)/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*sin[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + -1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcCos[x]]+b*Sin[n*ArcCos[x]]]]^p/Sqrt[1-x^2],x],x,Cos[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[(p-1)/2,0] && IntegerQ[(m-1)/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*cos[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Cos[m*ArcSin[x]]+b*Cos[n*ArcSin[x]]]]^p/Sqrt[1-x^2],x],x,Sin[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[(p-1)/2,0] && IntegerQ[(m-1)/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*sin[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 2/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[2*m*ArcTan[x]]+b*Sin[2*n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[1/2*(c+d*x)]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*cos[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + -2/d \[Star] Subst[Int[Simplify[TrigExpand[a*Cos[2*m*ArcCot[x]]+b*Cos[2*n*ArcCot[x]]]]^p/(1+x^2),x],x,Cot[1/2*(c+d*x)]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcTan[x]]+b*Cos[n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m/2] && IntegerQ[n/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcSin[x]]+b*Cos[n*ArcSin[x]]]]^p/Sqrt[1-x^2],x],x,Sin[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[(p-1)/2,0] && IntegerQ[m/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 2/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[2*m*ArcTan[x]]+b*Cos[2*n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[1/2*(c+d*x)]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m] && IntegerQ[n] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*sin[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcTan[x]]+b*Sin[n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m/2] && IntegerQ[n/2] + + +(* ::Code:: *) +Int[(a_.*cos[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + -1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Cos[m*ArcCot[x]]+b*Cos[n*ArcCot[x]]]]^p/(1+x^2),x],x,Cot[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m/2] && IntegerQ[n/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*sin[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcTan[x]]+b*Sin[n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p/2,0] && IntegerQ[(m-1)/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*cos[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Cos[m*ArcTan[x]]+b*Cos[n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p/2,0] && IntegerQ[(m-1)/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*sin[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + -1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcCos[x]]+b*Sin[n*ArcCos[x]]]]^p/Sqrt[1-x^2],x],x,Cos[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[(p-1)/2,0] && IntegerQ[(m-1)/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*cos[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Cos[m*ArcSin[x]]+b*Cos[n*ArcSin[x]]]]^p/Sqrt[1-x^2],x],x,Sin[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[(p-1)/2,0] && IntegerQ[(m-1)/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*sin[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 2/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[2*m*ArcTan[x]]+b*Sin[2*n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[1/2*(c+d*x)]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*cos[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + -2/d \[Star] Subst[Int[Simplify[TrigExpand[a*Cos[2*m*ArcCot[x]]+b*Cos[2*n*ArcCot[x]]]]^p/(1+x^2),x],x,Cot[1/2*(c+d*x)]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcTan[x]]+b*Cos[n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m/2] && IntegerQ[n/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 1/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcSin[x]]+b*Cos[n*ArcSin[x]]]]^p/Sqrt[1-x^2],x],x,Sin[c+d*x]] /; +FreeQ[{a,b,c,d},x] && ILtQ[(p-1)/2,0] && IntegerQ[m/2] && IntegerQ[(n-1)/2] + + +(* ::Code:: *) +Int[(a_.*sin[m_.*(c_.+d_.*x_)]+b_.*cos[n_.*(c_.+d_.*x_)])^p_,x_Symbol] := + 2/d \[Star] Subst[Int[Simplify[TrigExpand[a*Sin[2*m*ArcTan[x]]+b*Cos[2*n*ArcTan[x]]]]^p/(1+x^2),x],x,Tan[1/2*(c+d*x)]] /; +FreeQ[{a,b,c,d},x] && ILtQ[p,0] && IntegerQ[m] && IntegerQ[n] + + + diff --git a/IntegrationRules/4 Trig functions/4.7 Miscellaneous/(a sin(m x) + b cos(n x))^p.pdf b/IntegrationRules/4 Trig functions/4.7 Miscellaneous/(a sin(m x) + b cos(n x))^p.pdf new file mode 100755 index 0000000000000000000000000000000000000000..3ecd18b131e24159510a129f48a869f4ec97f172 GIT binary patch literal 335610 zcma&MV{~L+@Gd;Dor!JRHYdr%M#r`}NjkP|+jcUsZQJGqH^2XV?^^F#_si`Mwd<*R zcAb5?_CDRK>X82ylb~m2V1p(9@%@2iCSoG8Gqi-|<750~Vr%AXPQ>zUQDT&^uy!_a zWR$Q5IGc!>7}*({2nfJBIXjvFY+&6p4|TO`@LCXjxAp5{Y{Gvz_dJxH(2LLJ+gs%d zWe608?Q_*;4Y|gCzQ@L!O0vpYitRUY*&`E$oc|1I_l|#YAgk`CdAT-1_`2uT>v4CP zJ=8z@8XqQP$nkzt)6ePYD!q&G`*_d_;+$su>imQQGBO^$NxnQ~M5rwbrWn>RJo+;- zGPlbs-8^3t>gwxv2ZB;8I}%qN+M;?d!j_A#T31`nBGNQ*;maUgef=y~ruTcCJsf?% z-!Aaq*0pZcVuSG0?Um$dfoZlXRQ(+VBp0?{fn#`+V=7~`tX50OKRWZK25^FOTZ;RA zG$NqF<0k6n#_Hv=W_P!H-+B2gdfwjbR*X-7-hFhWFzN~Zdwo3ROxfn&Jm&_}9j4an z`3P6J^XGK+c|IC+Qlc%6E5oeW=J)zMx_4vj_K~yTof-HvXx#Sxx?5dWy@q*zCKz}< z_yWN!wfBePtIR*3=;g$P+%fY1;T>aNFKrjFtSjtpSgAml1fE*y=R@WX3h|NOzZPNv zQ|+8b;iXF-M%`oG)io~#r@{t=C|6XOD85T`39kpWU(-BQ`4mb*`VpYZdQp7CT^5Tu zocOg4hiW@YA67A6Llp!si>zLvUMQlIAJ?cgfWEz4#(E1;mIv_IVBfI8>B(i^GsHsE zkB1#fx}{+Ml(jO>>~|jc60_8x8b=tilSa^3jI7*c*w+$i+21aN%uN<24y3`K+{*-4 z;~5HK70HnLWI8Ho1wC=3F9ATzY%-FXby+3ud!_tMnmuAVGHYdl)~((ptBz!bD-r4+ zOKp82Vgbmd9eReXRbE0zG^-v9Hp&aIZC)n-7Nz0#Gykygd)=?R%NRn^7wpJ8?}!Mi zyJDeAyc`_rgjtsm#gxmaWrX!orxFM7s+c$_XY7DA`J|2b2V9M#BaYuyGrABZ)oWiM zRsodXpsM1=wf>~KRAkwt3Q}wm|9lC1OM8q~0gY|&`q4J2aZkW+P}K-k>GXbKqz#5_ zobubzrJ;|0O-dWAqFUOl%EK<@_Vz8kOcCt{FFmGBTKckcGPR}Pv{{6G0{4_a6> zE)ObLKUVn}WLv+4?X&f>(q*2j&aO~4qV>UcZc6k`e)-*$MogSV!}*^_4#hK4UU@5vkQ(HC%G7IsA4=$LT5+_%CG2rnoM`zRvtKg=fs1e? zCi7g6!`51;%j%7kXCl~6N`X&e{5O)-yN#5v0{X`2=8|kHp1dLW-gtNkq07uG&-jY3Jrk5a6_XO&2rSB zRz?C(3w^$3pGGMY2(RuNOCKT0rO^3J z*pTdOJi>}kZCw@OWLpBf)50K8u;L#QwNTPX4G&ka!&dl4iM9}MaVB15Al{XrT`n|b zq*E0ks|tKp-!Tt1Ri=nUzjnTGoffKpKY;V3Z*1~6WmXE-BsG0R1K#ERSSrV; zt8?jZitScqD)6;+y?S3-JOB^xhWBqO${?i+@RAzkYdwR#-S)HCt6yDSAY=Jl5J#J` z3?=n4_F3ucY-ym*djYkp+=2-EH6~G#-i# z4cxzCl|R8pOdLjX$Nrp~kma&K2DU|_tbzYf2U7Eu^&@gkX8vedlk!|{9eHMu%k1QZ zf1w70mIFK-c@98h^;X zAm zIR^C4UnXz8mRDw)27kf)y^8LyA^;B2En>XytsNwUaUj%fjw*`KWGfu=zL0D0zLFNVwp~T=f@73al5J z0}4U!5ZfdA;k1YAg)_Hp{jWNteq})LS%=laou>oFa*59|0QiA7CvkZN@Ey=AIN2p* zbrG|KHQxh$UXu9X;%a)TU&1o}WuAlvDy42S^235x6qf4r&k%?OEh*}X#YDZ(+DI(q z9E~V}REw_^xW&(G7@4)LQliaRVoY@6$~a+=UNsJ>4D4B9kZv^rs@`Q8Xo##%7LjkW z4Al>fT_C7)RpIYH)k!~PD%rHK^7z$c;7$by?nI|$?X_YCCt(-cd%elQ?vAmFYEbI91FQGcgaepQx?`pMV zAenfkMdss;c4kLwp)|lB0K&Y7d9^8nhGTZ07vM+`V?$mz@F;_BV^W0#$g)VXVtD}= z+$N1Tp_(M=H~nYd=kTkSm@YA;PRxjUmtKW(5Y@V8t)TV!^ou#=7*&;T5u({3CJ+HKm5ZR~O7n(he#X!L8$S83Y}B;-dy- z0dps$sfq{=udKv5f9=-HhIp->(G>;Ow;gt9!O9skl9{y~p2EVX3tR@;~wT4c9)H;*vatC#X73UX39RgR$mEDb@dqbz#KJTf0mD zI-aTa#n!zhIgy`hD~NQy)m!_?7$P{n6dpet)U*fQD!sYY?qt4LS3+?eQJ2Nr$+To8 zw}mwj=XU=Jcb3Eq3E1Z~lJHpYsZ1G)3|N$yMlDl?(E#tR$t>i&TuXJfU+-d`J!y_G zs*kgLt|YK6BzSK<)DrfrOx;he)#~V)B(QZIY8XXE##cVl zIB70nkruF7MUGKTQonz7EF5gsMHBF(@t8oUr+2h)*fVwB)4DmzSJqc}NCq4}jH!eJ3%Dbd`3 z;S>5;P_U!T@`WOz>2qA+gSX{Go&gIaGB;HECEBA^jTgy%CS zY|9~GgqMV53xm!PqWC&BW319WpBgzfkF#IOr&|M1$>v~<9D~!^&cADn1E_Q>r$vp; zs|721XqjLom1qlwe=`S4I}0D_X%smBGpTY(Hj5vUV_7MBtW7b|F!rwCBw_xsjv9k& z_xKhzzfUXmsi)u% zTrCmKU7;%M%_+z;(F1&D)h++=)3y|lG8Ivjg>V~h7X|{{CD~0rMG1DlwR1ota5iPqhUSS;ZZmOO8 zK5k(c@#YGf=_;g!krani6!9_f!vOBp8%*?z~L{WEe)S`1dga5Fe;9Hh+|p=~IIDXh9G`g}&QtxgB^gAvV4?Z0Q< zQteh{@`yB?M(9#~6tJ&hL(v^x&*~(9d;e=m{m(JNXO8i2Z0F&U+LGUJqJ~F_%USpS zQBbhb+Qw2?1(!oux;6w>4xv8A?r8!P*xW!pYbk-=W=vEe=Rm`5!do9K-swES9uH!G~tIj_^!?1D*5CmhLIKQIANF}9Nfe| zm9xUqoSXtwAe!Vr)JS#-sy>YZAZjeTJXO7tH1S2jp;{#noh8e=A6EQ-9>XJWw>0+T zo=YqB5ovmJA)NBhgD#Ax1GtnGs{29B@8Lnp%_$F25?ehEhHHGD`+r@pZlaWH*k6ZW zBn2k6%WCX0v4C}wQJFY&veuxN&nJ+K*N}fql3SoL)_Mcdd|yGj?*Qx>GR;TPaBCsg zqXKR3&_8qvC16c#jsL&$$hY=iMdiOb%6}spD<{i;-v4yg|Et=<_Ww|AnbftZ!RNI7 z^z|EjZCsH%U!CnpY!+(h808pjHb(`6SZnm(*WuNBA#ZE$SoPCan#-J>h@G49vcUo| z%<}px8dfNEmM2lb!213y)c2(Wn=;I3tMV!P>i7AQlCk}H+tkkI+`Dq@-)q9+5N74^|V*~zH^^}Y(1a8yZ!ZkaCdiPc9N@ndb~e(y%tbo zIqZ=xH<#j}gaOH}d3X;U?H9C*KBXYg_Imby-7^60*UkKC82j_xivP2)$!dTtL8VW} z8JN9NO9df#-jrvwzNi~Hrn@=F^U}}N#j#Vd_UMLG5ievj;|9892@2rzcDP?>+)=O$ zxI)U=cz-)@nYPpaI=Z`==FAb?_>}dh~R3y{kn;Lw8B8|F$ zPAYjf*^ok}IHzn7@-&SemIa8b_123ev)s~}xBpZN8g-8zHHsGt$--U@KDd@bMWdLM zKZJ_^dv#ew{u)FE@~G|l=0_qe^g%aBCHkqPrSx>E|x$)QJU zNGE>KzmKKi+<320WQhli2|4^Nf1aIKNkt>*xR`F%+k6ktMQm-U@-HlzZy-kuf zu6z}~?hg}T$rpWs!slf_U5#O_;gaNAnlnH4A<;Q)&xeE4F#9NZu$ zM%tdKLiBxj*Zz$)vLA2Poy?e;(7Sd0WgHs>A8e!~%{`mA?~BWHhR^Gx2(lB)Rm-3VFG#X^2fxow>%o=@TEp#%vuWfF2@w%(~v%_`$inL_a5LPEp zp_T0KT0LSTOoh-mdW9;5x*P2>KDJ~{l((A!suVf1Vq^c zy>7Y{eAM|<-7SH+#_g}9sU^CrUW@o;yB@!fqt%QS`W~cwC-!Oa)7JR#`ivz$yNBwd za`&S0q2-~CS$-LguU87t`9hyZTgoS$$t_nBo1m>62aP}?4TE;adej2O-sT1VmW9}sRXVRY?NNtn*9zpRWI)~X`_TMp8RYp-g#OVi&(8W96&ojxw z1IWze^(v{5I@UMy3(y~<+x~XznZkE;e`O<@0ATqLlJl@`h>yH|FJ$=`pngX8;l94H?$jGt;G|GACEr>8tFT=7vWiiL$1}+Q?iP z<5pKW(1&*r371DAeR$)zkr=(OYqOl;>y6V+cqj`{#08LNU4K+--hY1KZp6--XG54) z+6t1+U`Z`GbF}?KZ4=S95DXr*?Wyt8@GVDm2JbAQ~ zrzr-9Y238G6j%#LA-)EVRt1P*0uw?b3cY_3;9^18K*?Kv8c#idd^{#vK)R4-37+$}?c5jT8JURAiXjg!;3e-%1&UDZU^)&xN$_tsDAY>Ma z5zvpEA=$pf1-QeFw=w)lxfJcEcrOhv>@#Dt0P z3B*%9(F0o!g9sy2DnuS8)-@Ww4^CJKpk7O1*D zk`4xQRuXTukukCjSK0%Q3hsxouv{#ZLOTibTM+#u{%D|8-01k@WGJ(eo*XJ24dG0b zVINKQesyzyyC=U2)G3e*&)~0fyotm>%IuL-IXod`Zp`Z_8;aZ(DE|V zv!H<4X+qCk9=H2!&6wo3{Z0LN*B9C6HwtTpm5(O z7iegK#p{BcYD&32%XJ86Kqqyc*$k13dEl~h3+Su&Hvhd{4*CIGcu90K`Cc6j`IyD9 z?vx%3`3OKr>mB<8^(gB5L*(^6b3^(!p<2J*7G)*zBt&kC1{jw;X(OcIdSG&JZucA% zJ%X?gAN+qi*hiQOa_L4f@QqmY_tzUxd>$47`dsHSGOCa!+0OFb8cyk$~tz`BN>#AxtowyWlIxXpl}NRT++fFsU&wHR_%BtPnG>}llPw&fSR zak(Kk_hM`p+jDvfnU^uO47in*Yblby;5i2)%^I{7* z*dRVwF399{MkvN1gxn!U(E?7iY=Fh`^784pB_?~GQyxO+!i-K8N|~O$CEO=?p;=3I zQJ9{YzI0GvzgS$GCV&tB-|L~kAjV!I&-lY+1Lnh`fhkAG;sWZNx>nh%fhfJANBzyL z6VCn(M5Lj4PN&Z+R@v$7&fCJYJX!#+6A~aI%>}GD*f$Aw@h;ILvJqcnSL#9q++WwH25{A9K%5CAv5%%$+WWSZ=23 zIK$#S@jZ8AqZGW%ERBuh?*3QmH&qShAD+rIN=&RzrF7|#@|{E~(9)!?mqb=Xy9hdd zCi#M&GB0w~IpO!zf`s(RiWu`F9Y?zM*up}CMUzB$nOWW3hLY^rYU9aZ8(H3EsC=S~ z73!K&mYfK-{3cmq-md>XIZP6~y|f6n={Me;mlKg>drk#9K5@v4aLce{%@IE&D+y-x zw~LsSemIY<|0HZMwmfL*B{mK@coF6D+f%`2Td-LInr z1tLpOm^(sn9G!PU^X&>WP=k%W`ohH2Q&%>wMq3J4a}=pg7T=YPWQtbNZ*CQY=EzMJ zM^;ELH06!*mRNF_JT#%Qj1@b7bHb+nhcjM`LlDJwyLX_+A+G$`KpkwFA$J;nlC*18 zwVu31;^{t9XsrCI!!}lLLG1_yi<{G$<6Y*!Y1%;T`YLwLoX zxH_`ld1IWs9&PQ7h>jYPY9qV3exLiCrm&VejkcdgbmsA!r{>v zw6@62AEZeGd*Y3?bwi=wiKK8HI^?#tXY+@T@~zcgYLU*IANF0J%!s1iAgWk3wcN?K!b^U#d93~F55^6_`Hk*9k=%CEq%tX;}TA6@u5PXz2&Fl zTl8?L>jJyqAaN|4k<|dDI3szHEbTx1D3Hyn-FXShIgnXlpdjECc>4W^^k6@2X!z84 z#a1Oq`+eecOC=~Qs8w6XZRZiZ7aU8{dIXCrQI_a9t{2q9y@#Zo4h~ng$9EimiuDAaOeOt&qM$) zc=tw^G|NPU5a)3RyKo6OENC;Fe$q0&BYZ*^3LlgeF>Kz_Ixx^0yJWQRVGw_*b{!h* z3Wx0u$&MvIk!P;Xq@y3bML;1=0r$c|$TvkT$D%{`Tpk(^pQ3`egNM?_>V_=NvPHBD zRM**oNFM+pf8=|&*c z_BD_DpDR8R->23T)Y?RtDperSCqRC_#dN4EToW*dK;5BD;2j>`RuI|>^26VBm6Il^ zhwDVDs=`>o_2}roaErTXex+>hwY|dK^dV^UKc^HPAaJdYZ(fp@RB@rjY}hl*FcoKR z-O7E_3Hza5i@i&1|6YnLwOMKL#8KAqVdMjpkMDnK{|kCKly%fbxsPDx6eEoRPIHJQ z1AlcU4Aivc@xMh^;+Efm-v^i90&?tk@}lWVmhs?AYu!oXK?P_9@0~pRCPojTDvX`_ zhbMrb(=jQx1zr=8h#ab3R#+q5B&{1#;Jw@<0Y~(i6F_TiK~Ly zSDLPvvnJ}2>fHHEDTKNIoA53cK{OR&!Z!AHJ2XDU@^;u^_xZN>PyJxF_-)T1?&W5( zFDqA?;I8-lm&fsqf-xx5aZ?F03H)($IlGy;w3dpZRXvu*JY+D6u0i^-H3I!47uaui zRoLN>LG={(sfqA1@H6R#%G5|Jm}3$N_DrV)&!@eTAOfPO#0@{(LAbND$una*iW-53%WR7N1UYNs#K^>M zt$_Tl7ZykU4CJju%m*koM#K#TWHJI8``Eus6Sgu+ULLW3nOH0h#31_04D<D1P0L%X zU>llHip18tBGdBM5aOVzLv6FtiIo;yV}tIspL?03^cFWZ$efOaJ9Mea#7q+KZP=SP zpYNJ;T%GI=33UZVilxHxNJ-%da=kHNdRNplS+|uU#(5=5bhP&*w|b~QFOxtlel-1c zG22wpLxhL<81m9h4h)TA828W1L*h-Z#}o5DlaI;EbIWh0gOcF?lA2FE zB*Mv{Ral(4)9^B&8pY-mG!;#ybW& zjE^Zq3KVN>c8Q(1a~B`I&WPyuF1W>dcFQT5AHJMXY%#3(?CL3+0TFLY8?sMm-)=Oo z(QFU*tD14OD=v>bP1NV>^>ntxahf}=GOG_aQSwu4n0&GucD$ZP3ieuV=eklB{WVJ_0qb=6@?EtUtZaO*Jx-#VxKp`% zt=JA6!Nh2u{+5Zv@_!`AL)|bujNJ6yg>O`U{v9RV)4`fn3d`}99(_8qh7o& z(TzO9kote~XEV>9l7VZ^z%_ zWVf`}hp`TL>7LGUWS8-d%F5yIYrZ7kF$`3zZ<)}Qs&5Sr|GTIo`6ZC0=MYfI$G`9Ool7_0ydb83o=z zW__HkEFHCCQZ1}io68q9kKg2v_cb+-*Pbr9inDD!84oW6%4&^FgfKua?^R1lItWzu z*3Hr{>V^d*pD_%C`B=)G>D%~Hj`M14DsBFhD_3zNS8Mqe7>z1!;%uL-Z&PaDqx&Wr zEod}6f+ zi6&y5;rb^|+93eJ#p=kWQr`+nh8D7^`F~1I_#+G3W&l$`wym%RTl0TrPY8gi`L}7H zSo<4EKmbOyG+_JTE4~RNmqkPqGdB=`u*#HxTB)TbqKVNrF<}j|>+gvxE^z(uIl{uJ z-`fsa7TApr6c^FoS$2zkQ$kLb>cRkG+inKbs+=?t(Zzk62&6yksGtRB&hCg(B!PC(^A5FsdW)gJW!F96$|G?J-Du%@bpS} zk0kME35?&>CN1cfETp4@CsX4FF+vHH=voy^rk~Lj!qj2cymC{pX3q9!`c=$&M#DJt zb`BA82kY_WpaWbOMt;OEw>e^(oc&i#!NSghxA+^pZa~5lW@IlIri%Gv$lsF$3=fqF zv9wt+SuaJ;fv{`0V$bA{fz0vqbC|yO;HznFvSPt*w3I|L z9|MWQOM%&}Zf8|miNr>012Ca=vX3|98@B_Ek)jYr5Mr+cS|mG2bz?Wj!_$CX)Xh_? zmRorv|28XGPqHI|)n53ZeXY8a>|4|J}y> zuR-@;>yDF&h57%q@!0>bHXg_SLmTf<*Q$n~#o^P}ckmyz)P`k4XMzP>qs88WxRy%T zAJD3Gp=1+rfAZD%jg_x%RvpKb4qnkKu48CWP!JyP=~a)Al#tAEQHDjEV80mj_hY42 zelM4jJGH8#koMF>ZS=98zc#UiZ<)mr&Zo9kzd|~0lztrQ)-Q>r8zzM<*2|ZG z#Wb54j zezCccJtPSLq_qKXiP2>CX-3P|%r)UN37N*d1}FMoZ*y*5sVO>EEo~8M30~CLXR6vJ zyxbG!)SSFM$(J}gnb*|q_;5%7Xj_L=a|s@`0bk}C)+8A9S(DpZa2bjli#$bvKdsiJ zT}#pid`-3huUm@l$V%QX5qbn zFzlB9_U>NXPd(bPi+Lz4n6mvv?HeV|-ga@77;-iYJkb&C6N!btZS$SJbN+Z39`spf zhdDb2>||!-^9*FM0U?hPqj=LCmbpv+PMj%b5`dlDxx#K`2aQ;m*gFTL^bZe^N(2+u zQcO9R#tDmp&hxJS6AN7Kn0+425wtV!E%7oheJqd+W7DVDUDiUuxqx5Vs`oT!L+2-9 z)3^W~WSnHfsSLP<@dO4B3sTg&XMTN1^+CnB2k4Vzqs!(tV2GfN7!(?%gi_|ooKL7h zyLvJG)fSrv6+{DN34S!oY-vw^E7R)HtwjN;Zb{85Hr+^vC{Fp&h1(1&%mU$Vb}8U1^ZN1Jkb8IAHmZ*y=g!9~B5o5B zYouQRAOe3fEHT7F>`hN^oyy-QBD7zzfZ;)g^}N#=I2D36JRCuQ!iN^8v~-;dd1a0a z_|Zm(h^=CAQ{4!zqIEnfMw_Sl!(KdfE>v3{0v{a2HYxd`y4n9)mj~AIiD^f)W@{Q% z%;Fj`qMr#oKxoyzK=K@#LBXCAKyYISkG`01^?`5Vne?vd^NS;h@H#W!J7OC`P;>k&&&PwU5ZP>m2pk8r!?yt$ z6b$?M$rhZLSCo;=cCc{PfPIeq879~Z;llFqgqZ}Pevuo6!ao24_bMM6Mmz!b;RJne5$Fa&7}0EK{UKv0JL=twt-ZW2FeIZ!GB+w zi!AhRW^ke)Pj02%)#4)GP>&X{j#>p4;EUC+Cb{AKe)hVa^7Z`iG0s`zCyc;{%0KJa z-!iS&nCDYldYvD& zkx`22=MO94e~74&;=}K#sEwMjJG6CciH)a3d9$+*7mU*FjzdyeaYSI(gC8bjTXCo` zACwY%y#>;hh^Vj3fYM&64S|2*6IQwE17mE#c4{Usj-#fyrfx+xKYF@k zp#>U!HEJmY^Vj2-S`w}+O@GPJg(?9x*@yBL2e6eU&R8_-H4!v@Jk0-{Ts*;;n%V#F zte#W$mzI0fX~~qZI{}Aig+pq$oNUn;Bu~~*MG6N8e$9CQiLfcgFuFt6_`rHL^hG1h zA~eno+#Wws`+4|b9ISEbg-4Y{eSAs!mvS^qaG8-N<{1*Myz~waLSZEHU)Gd!UwE*; zF0C;x@f=+LuSB;_ia8_^ISO?JP&i|HMAmm$I+0ZCI~I*U>&A$11IQSjhzULFDnGIx z5g}&mj;Cp9l81RqHLRqNekQ;xzci8jGEZtL2_>pKLm?8e(pJMnA&KpX*+N9QCH2`b zLY21~*G%mxnz!ds7R*%j+%EKeYGc_@=^wWV9ctnoX{rO(<>3iQ{&J#?uHYxo)>`LiLX!Mdeb9Iy zJfOI?NsjMgxebR)**|zdGhCgJa@l(RWPAWEy@wiuUc_`=GTG^Z{jblao95O%yFH1J zO|cvCc0P7LqhsiSBafnRCUMQ=?Ez2lOKL&V5F+72ztaJ6=fBh^WM*Lez#)2^zwS1! zTa{@bd~!aby=2@7_t6m^BNqQ@gY$ItETMW5w%jEK+k8k>qwN%n)({r1ZBbs<`(tk; z8LG*Gv9dgzNmZvnDl?ZAM9F`7HGvanE(mt{JRMN$PC{q-pyR8f5n+46js{Ks0g>j{ zJzxp?7m}z!bFIQ7({v@!_E#I8R;NU_kh=-F$GHeAR09F-M$vZV8Dk>$(xSix8|#=L z(j!zuC#RlHg_n?J_VO{&>RGARe=57!X)D(GMn zedTe1$yycg7Nr#A3(xiw+mKlHX|oN8I_X8VS!+Z`Q+&#tNND;i@Dref@g?4a7*{(o zsT_lXj9w^6M_{Ok>;R1!h8KgQa8^*!r$%2K(%H`LLKvDfRDU0Mvl8RNYwW9goa|{p z+5-w&)J#d?ZxvaN$VX)Uw0HZu!huZxq$8RIe5GVZ9rw_HE_BQp8Vvxj^#&O#N5TpS zXZPUIDDjP8B&ivC*Mo}oKp8$kMV@wF*{(4J4TU~%u}c(6mP>$Yvr9ktbHIX58PUT^z2*yZ9}!LT5t)DnqMqgF}^9q%Rnbc zGDhnwsJA9@S3x}|n7#eYhs$Z8n=c298fy&8Rb&r~t#h;yF|IUThsJ&$ZDw{YQD|`( zvK(oNs={j)ybgX?6c_N4S%x2hK8q*=)z~a~KkBU1*wf#l-0L>{;DBBv=o{Mbz z%c&ih0dJjTpYVeL%{DTfV3z_!n|y=JpaPgtSVH^%L*W0Ba;uPSN!a0bgHNBHsvuLK zIg2ZxfZ8kx9E981T}k$VM2G{V#Jjrrj%E!Fzvz~jD`h2ToQ0aUu(AYX>zOyzo-kbA`D)OaRs zx_ZWLQ9I+=A38l_wT00ximCb@BXz$8YK*zb23fk=P!tLdvn?v8+cy$88Eci!oJn#> zaL=RNr#O4~hTdaI4o1MYNZfN0M68yBJ24CvTNa(l$P94IZ%W_bH^sh=#TNDdm^k_e zhbLN3xzUH@LdIHcirTpUL#+bO2Ok6&ND&ITg&n}A;jNGI|E|`;PSAfI@=tQc_+gXw+X!Xqu-vKE^8zI} z&V`H9UUi&23yF(oG5Kg=XEUh&?qDuJyJQ`;>%~AQD_XU^Hiw|$a+m>&BC!v*IeA%p zpRep4RZu<@NxbptHOW7pXAjp`{tp(#F44vEa4-U^=q23di#wk0#%whmK#TCIStU_us$*>8mHNrnM|FDXdf+jGQd;peyZU z8x;_@eb0b#WpxIYclDsk+RuD-UP8Hpoci}4d~uHhm|glpmmx44k<|Vftn51LGR3Qf z!INyw;I^-y;E~Hq0d)&6NxcZ3qs!_`QJ|a+osrTVo*iP!EC)XD$Ez;104iUqf=+7N}Zh1dA!j~j9W*x|^=;nrcThP35a_zsfBq3FM>rRU)| zT8vX|L+*L23D(jqgZX5#&|CGh1Fx02{mmbj)S1{mVZi}m1Iy*3H)?hPX+uKf8N1b? zw*$E~iaBGTsWbani9`CoHC_f}f5ZIac&Gnvdm+9%nDe=%P|$dXL&rQUnVUV$Y5X%B zv}F#Yzqcx>ouJj>zxW#c6a;=Fy;1Be1yt5-fEZqRp0Rd++>&FNouN@Z*bS~--yIIU zVaL|wC<_LYi0=zl8K*xZ9NE(|dVMFz7IC>5^)g|(SI*GVa>w*|V%{&dH|n&`c8BBa z5DBfdO$D^Y8$#@x6>k+Ey7H?=W(VU}*moAx|0fHadg}6y=&fyo6yI+|H6M&jc*1OG zk<0mgUUk%TeBb=i_jj7-vy+?=5VQgM!&uu<&X9E2Di7Qiz>L>U&%L*~Z?$ujVnau` zZaTqkem~BUJ1=G&?IB!265S4g=FJ@&kUL2zY)>AmG;Siv+qTP1U~`WfejCkL^RSve z=TM}$V~MAt%Z0~rENA`9HG*W%WxcAL#>kk9+Ig|dw4vOV(C*Cji?E0R53wPFk`yc{ z=CwB#O9dozcb~@L&>qWnJ-!c2LC?ak=EOa80MHgb@ux0ipc2y%?3(!&U+z1`0+|RT z0pk5yc$|O8z{V_*z``z5!ksYNl-f7ZS<*bE<(0@y?bMqM9+u*oXY?7oh8#Zwle64| zIjzQV^k7qj;60(L5bRWN$K&AL#$cnM$5)x5+mkQ1Oori@Biiu-yV4j*WS}Gehuu-> zX}^o&Ptacwr|5};rvvAP7*5}<=e3^&Ca$=z3^ABnY6jGpEpR zQd*6#(frk}5 z20x6PXVZxmcmam)1L%951z`fYkX)R@)mW}PFLYhU&}k=q#PV<@v->tfk9;lV zUT0rHK3?)j%fb$X6sCqhex z?>M@eFo8pG+ljK{5D|C(gQjBe7_lK#?q^}TmB#uR){Cf28VD3OQe^|hsW>} znxk@IBXkq8?&Tu++0vJNeF!H}2>c;OCSN#8o1nbrB)%a^kAG(@9RK?|dSv24Lb#>F zHj_6{jA*=(JeBgcx6^qexsZo&vd5}i0)5pZkf2K1LNNa+d0RB}6}w2TWFjoLY)fAD z8ijM$VpB}9TakpyrX!V9|5X)*^CZ`!aUcrcTWHv3(P>|7PU*^~Gz9JB6DD08USr6i zG<1GJVQs3Xgu<3v{=d~$fFjN!`{MA+NPs~FY>DD4p|a`bbVcD1e^?ibhxTSy?z_67 zvXMNkh{i$ru_=*WJ|$No7u5rxXEjkc$p4EgsY_4Lomyk)`JGB*XrL;irqj4>t~1*QuNrcC zE__8@PR%~6n+qFrQF6@& zwB8Kh`fzb#9ok>niKA4p1_0FL)FgqHoLHN>(RSh>Gg{Y)vyQT9kfLcjv*jvsXqeo6 zx9iX!S=T|pg~$kH)>wtnpIT$dee1>za4c54lyr6CRAnf+u#qqTasZ~OPQ0}0#9A~P z&^1(?BWqEFfSHxZt-I_Rs1iI>woWHc^>{m7)O8w%gBTq<>ad(}wTBjJoakM{YLAdrz`EuZMKH#ERqf{pNf& z%lh$y*!ORL1=C?%Bn-oM6+!!4HXNF-L@K|w$@3voY+fJ{p+EOje;9Ays}CEy8l#{H z-D)XXJH^(}2^UL@b%=Ei8@_gW9aIsOq7|FZHn?@urCbdTJrWbhu^KC(Cfg;c*m$;6 zyvO%>W{simqsW4d{NgFM33H^<=i%iz#vtI|%+eYhQ%UG%_pMOk^ki`nm$9QIbGi@z zn|$dEk$v{_AO`XCI3niv>W9}o9624c3+GIN3^YG0u2Q6s$+cB5+y+SlEAI2sESZInfYk5ARg~^_XNu(B;=;7led{mj8Z&pwa7$T z+is1x0bzMHrD#qZdE_tBljlS#VIud(H9Pj0{ z>$Q!IKr?*FN9+6Y@%@N7x0`Gd!&KvF$z;k$4>#neBmFuWiBPeEy&pG2YG4}lm!3_) zXhSYA{T7sa!b%?X97I{BS|e1|7g-x67z*_6Fcd!+O5|{Ma~m{CO&Wsuk8TA`aN^1Z zYfkurlfO&_oG`|fk_E)#Lfn1cb55`OOm)g}AIk5I`J9WV9&=BpTkyw+`42_#@dvl^32O z8&(0z#iIAl>SwE;yk)WMf~BWeo|_aae6+igzj?Upxs^JJ zN0;mm*1k$Y7^4BJi-j-U-DgXG`ErTJ7;k$(rjsWtf2}b();>pNv}^-bYM7ZhtBa+t zCU!b2sD)Ch|1ED>nMjq3KKPO9D*Es*=2EisUntcCm|Ortc1HNo<@$X7D_1h(!wFYM%W+0D`)K?pya@Ou=A;YN~yUxdav>*N&e+43iE`oI3O6u)<>13>a> z1t%HQzfN*(mNQQqo-r_ljD ztQ3BXVFc8Xd;!Kz1vmyVt^A8*uWHHpvI|nq7rvBh^Z_xkW$$7L5=HM~kADErGXQjX z4KOrQZdQRc3jp%JHqG=J0CkZV*#_zyKHB^Ai(kxaH{FAJfKVDWK;OjpvJJp40nKfl z0ZjV4@Z%IjX!cEfPKoMb_s~e2JHCpSWEv2-AY!0 zl4_Yp7H@HY6J7C6UZQOU0Lnbdgtsn!6&uyE3UJh!WE(KIq@7rpcCiYm4AIZ*PU-?$ zHqBh-lVHh9JO0fl|vZs4~d--z~tT1{X>{ z!V;@m`9p{Pnh^+|HxPUjSiE={C*F@EFW9(F)K&35%JvZ>u<}!xT2hn@6WWC#<3d*&$BK=;%}jf`f`U2qGIcU zb!L=QvDsMCil7P2uvEX3{COqQp~^bn1=sX+%t@B`K-m-P;I?lKf6gWoJJiB;cF!ysmbx~58uaVD23w7t>GP!X9H4U0IW$fr1=UE7GGR!R9>E|I_M z{$kfpk@1{ZJUwm&5A!B)s3!ACIfN*4U5oI__o-;nl+&E|24%*Nl5xGV{`N4{8?UNx zD=wh0$Y-yJs7OJ1n{)==Y9-eoJ7HT0s)E@*Wp@H9sX1T;Wjs+^%-3SK z^xc;sW>Dy9y1aH)88DGOI-IsCpOCjWQM!ZE?>I$;xLGTJY){fRlPs25I@3;ZBBW1; zP1m`Vt(|V~5`23#iUs1hCBY!S}ch8scnA%;1ZC%($3w$b(ZKt|5CSWsNxtTJ#p_4iZ}ZLPmOoJ>^OJN7PiXEXp5n@u&1e0JUoRsz$)lpa!8dEW zDQK&-S(j@x$%6yUQcpLtx85uFZ^5N^=AB0S?7@A-&=1L-10TtyP>r%YQuma}B-!MS z3_mv6B=k`^@dk-#6EXTcIols+`UfuAB#)e?ie@bav0$pBl_Sp0Ld`&X(TrwD?Rc;# zDiDq}ai*?uF<)oNh0HtG6uuC@K$%qn0g^uQRMSXiB-7v=KCB66PC=g?fl%7JB($6A z+4WM{r5+47_MueNHF5_K83fhc26Fx-Z-=+H_5C2|W=|s}AEV-eX-B?0IK9nyl@d#< z9e%28=+JS+?o;)3arzQ<;R$T+Om|?Bl=Jg5U|qlV#6}#wf@RjxYIm|38lk1DEdRaC ze=so&*cPugVIPul>A>b*8x3$!R)w6*=M0peB!2lmALjAh?Gv zO^fZSPp_23DlrD)oNCEhyH{6`x-EgyP_@Rgx%oi=Qo*61g zc_n`d4KFkogv+PKz#Pe0n=U*JKqA1SlKyu;nbPX>gqKvktJR~4jFJmZZ7eESDJ#n8 zh#+cm@LLfBLZ9JgmABmR?n%$LrQ*2HgUq*YmNZdfIrh$>j=y9Vr%@%AfM47b=|^rH z<*wxi_wYkgpis@Ew4r4oHp93-or{s(9#q?)@vB4I>rbuFKW-wBmc^G#tIubHErIU0 z0t*L&Zm(|@>*7{=3`8mK_oL^(pQngnnJ;|NQ&LO*KYZ8H9V3ocz27&F4!gacpL%n* zA=6$jZnI9rE1f&qcX|SsTq{~@+AHV1?9K-NIlqHer7sZv7wiHVIr^8aOASbP)QYkj0kO68Ryw zg;aAr5-}@r6>lW~btQObw(b)un&ji~^f_Yl@KQq9&e|*{4}>((v-4La9O>ZZK4+7; z#1S`%vPbc{GpKy&i>N$KC_airaO85qW+2QK@RFNMrc&YNQL(#EQ$tcxI9hnAYeyLq zAI)U)U}DnJ36oI~Cc3?$VY7gL?_e=Me=xY~0;UxZMTS5;4}JlxA?2q|F&C|{cIqkD zLIaRI@*m1zu~4qfiDZ@rpsY0K!~v3sgW@PdBUi!02c=9in*;*!VF(og%*0I+om2eb~MU{#$`{HaNS*8Q$;l*1xE2jh(H$= zHy4Q--c4N3N=s$bolas@I_FENGjJ^jW!0Ca#netOj-dAqfS*!%bPze^*)wW!_sO=0 zo^K3rv|5NZd7GC)oZjY45104pP^48hhdUdNh-jTip3g$O%Y0SLK>)U<^OrsclY|=~ z%LtOQh?oFH-iuYH#q~a~Y2n0Pk9CI(ob5M{iLNL0xMP4qy=yJ4ARC1#P_3iA|q} zhIFii0C2v>oZ45_Og`^N^*~u2_{+()E)X?h8d2cH|82@(eIwN~w8fE9>-?Tsp**Yl zSfF(4bn}-Tk<`3AL=pERGy4r+2zD5Vo97SIWAqewVS#AyHH6FTYTR6_U-CN#XoAsL z5=JBfV=5ApdK1r+URpjZeKx<^16i_lPw*QJGR=oU8Jx!vC0rFw6ps_eTY&@L$AXl$ z0hl8@BgBhfATuHo)O8~1s+g;8flG8ghv2@Lk|zko2l7_{UUGi4Y7T;_CoK(Y-R)7j zZw>RGr}RPIMg}vf6DoxP6uI{YuqkFn!!yhT?Mi=NFG!MgG@&Y4Dra=xY)V4~DzqHU zwG4U%T1hEA{sS7`fd-wVqCzI;_cl=^I!R3rrOaz@XkF)ULKqq3`dZj)R7;rab_M`X z8K4TVIq-b`%#tPuimMoA2Q*79ohVtT@1d#!xf@h*Al_{`K5zjq2`C^NJJ3IaVI2@`l}Q&|_R;S!;lZAi?~DGIRRFmS~c6eB>2|Fh$gyIGZf zMC)~xe6*!qSA#foRn9^;bFL@jqK|u{{V03HWfYX7Rw0j)x4F8u!c?C%TWiKLQW|#e zO+o3B2RA{rF_9SC^q;d$y}$VIpR*4rVadl^u$yd_H?eweIpJ+zWlthMud=h&QYcva zeY)BtdcMzgeLnEim~fcg+ulv79;qUJ%Xz<{k~in;+&x;QpjnYsjC0EGLnWD9z_)#V zWuf58|NS0$=jrgS02y9Q3K5VCbX_%TA;_hFh*k+lV1u9vlfVZ3D|jp$9DTq41dQ?zz*j5yJA^*r!IF;CFE1oZ<8CofPijnx2 z*FQGm$vbQcQJ?Jpisl%JC+Fc%i>I+-QHtRv005lebR;u zDo7g}@h{-N*+^-zPXH76UuAzAg($h94r(z$arOiMxo=OxuL_)$ZIVMWG?nHTj1dU{k z7tg~V{^XoB{ooD4dIokm`@!s8m6?UCPGMBW3jXzCmnIpFBZ+@>+&EJ_ZwDM^=GF-nesBy43T zEfG{}d3n|sgylqBCliz^#yL`~MyD>IzlFq958aw_CWRY*@YFE5u)CoCI zgidN)?7XiUz{$5zi~*oEXYRkv{W#Cqz9T!&Jm+%7?mkzJ4C{))V{2}(Oit2qJu$A zL>PA~L?sQ>UPI3_TOgPJ~=ZEPc(l2eV^0%@P5L$SG-Mb~#3THaAlI(Ug{ zcQIQBwy#^t(OeBRS3E0wt()Do_e3}fj1tTK*N6-Btm)KcU5}$4Y~SIKGhYh5_*=ch z&d!onuVS}ScvDdH%-Bl^%xMP!1JesbwPH=7(|4SLnA&}sE zkiMFG50*;kyDQe}7~RL_R?q&8vP;6sJ!|%PFM`IWP6087 zhb92i45}GEq)alRQMwm6O3*Sp>BbW*R|iz(2(oSLFJ}GCIS?6vBU^FlP#!@dGjn3w zh|&F6Ok+rG`2AVeYFw*HkHbm)b4{9w$u7w?KCb|c@74)|dm~)d@MhzH`lp)l)w*Il zW$Feud#VfSY5A;4KRUkQspp%o*T1j*pZu701gSp%$A`}~2mKz;mt?Zn@>OrABV9+- za--Yd^PUWDk0T@l>TEiWRkpRWBm-l1It1(0I71`LtzE~B3AtT<8Ro(hVvN5SiJyr> zlVf@{=e7#zbUWNQ`+N%Sdc6C~uVTlcz(*^Mj%sggS zM^(j2tJV9z;eHxb@8)PAc1V6706Wm7C6M?%2d*J}_d)9N86q@_AZDh_h#+dVu&X0t z)tu$xoX1N%1$s^JJ_c${7D4(NJE8TpWAT)!0rXgRFKY7+UNKxMTB6fbc=u|>Hh5-0 ze==wCPJpL=|7T+VGq!mvp!wO{31`5~cUeCDwC7xindF2%{gik5UpvN0sp?4uZdJNE zU9kIr%(MxMzszOs1KU^Ic&QLI$x_u3-$J0uRzOc6?9PA{BtC{b``OtM*9~0yb*9|I zEs@nbz54Yz#$GoIUkd=`W#m~Y1P!&2T=hMUep3ju&b>y9aiFy&w+Zu)A@R(?*YoHhN~%(JfcCI-VpWP&+5KJ<;1A%Usd%{_UbkPA2BqrMn^f z_*e-*dpt^9+v8UVBP?N_#W{h0Av<9f-gIw;S*dHy$5tQOBUmzyrww?K*fSI@}cym+5ZlVx?}?jd`c?I z$bq>!q+%9wGvqjbz8%&P;?%&INdxzYjQS`8v8~iGeak#;_%6*wzE&ElZR`>M{l+h{ zW!^~`$)bUC;)xft0i=zdpm>{wJ*Asyk-@1MJIpn(deMYBD%v8uWU@sR?zhhW?tHZM zbNE5?ys=>BJTFjR6aefo^gi^qaM;j`c2gO5nuxH8{%YL37`82rTYWl5l*lVRHR`;* zge|u_gEsCO=l}O`CRN<=h0tZA(&cODLnY3T)xd_~^F13{Xv;i0L*6+>R^p(UjziK} zbjx3CI)bt{ptZ>Naa#K{M8LZD#EKD51B?Ep;oE6NW0N4Cf+xr}X0LDd~WKV{o+#GTTi z@H=xVFVs5TdvUt*3{H^2NOr> zy!6_6Zwb*X^mZ9c!V|8A1E_TSre~_y%1A46J6c3#5DpY+JC+1WrCYaGSEH7c7%md# zTx8X4b?O5&)n9+b%yM0+PB#Hl3EgVQROSb15lp`BZJjsn0nn;t$)xoLt*9T{jP}h4 zl!$;ck0yB9i)Ud&H6lJblywtbi|ZjgH>>4r+E}^6$QM)z(FWYLY%R(*(93l?BkO3k zgc#BNZJl;MKd>vT_NK&eEsv8BnuF+Y<-3~+KE{~KPW2qc;y&aMeFVy&Iel>y)wRMi zR|VM>qUb-4F&V!v2G#W(>qtfjOBlPE0oCmlO?QYa2d=Y}UO^d)f_6NHfenv@cI-sy zKY<8Fa13%+3h^=q(M6`^-510ox+zm2t^MI3yT=Y6z`CZ>JQYy+`pJ3lp*(vR-ODvV9*5r9xA#09h~-i#)vAj zP|t^&7N60gM9t7UsAMGWok%;(W4+n2xI}I5ra<-Yw(5v#?yN*^^(%61*Gp4QgICKW z##&~M8HIM31xM+=Q6qr-@nPuASP&-a8(1{xK;`qnefY(mnIXM3Jen{N#XwI0mAT|)B zY#1pw62KoB$hCtu?+5G6(QN02wQIK>J(>EM<&EYp5Lx=3Bq z7FeTaj?V^r{9=cb5G6#2XvY&Ht|;uEZ5NgYrjd9xVM1I9;bf55iPFsn3Y-c-U|#s8 zR~Lc8MFLEd55Y157?xvsrezxU>@u%5dOXW>0F^fQk*B*&mAnLH<7%k~-QT?8gZt*X zmGjjN?bKd2TCWMOTKTb9$8kGfik0)Uh_08xXS!^uTKPVsMf8sEze72vh;x~K{p3E= zO8UK?kH_lkKSt$4?YND$@t0(_bi3C;!=%sjfB)T`I{X9ioreU^hI;XBAev=Be9b7v zxswBNrfFv-YVQK)f1=w}8!mCKzhE-z!aCi$>^(kjK4h*I-NHD6R=b<9S!|XjNYLyf z&Xyu`gr1)_l9b#fJ!}(evzhakxS<^Ys@{37O)(NUIjEp$% z>LU^7Mad}HiUzk43xb!kI3Jl^=^FMCW;$r)(l zXyW^lIm^85St?$-F!_z1rcaRBV0cO6wjVmO7=Z`}R%*n?2$3Z8tc}qWR0-8Pi6MsiU)SUlAll+>T8p zU5F$%Hj0MwG<``#vOyDQrV>vEjT-Z+B-pS1vb^I@O~Eg64w6XfQzl}&{nkHOL8z$H zo21R{^CEiAfviO}UAnE|p={vm=Kp<~6?8ab#HRqd>fVw+k#(P`Wk{J4UuJS83x?I5 zK-P2_hEVdEG;a8y37N#CAbHOBR)G%-suOpEX|IXg%ZCM@PLudk#PugQ3VIabN{;)>VNpD zzx3^R==*yqC}c@VuGVM%B&tM`HH=|N$|J6h!p=w|JCxs|$y7hNB=PVTe(Ht?us+C%O-uc`3=0Yx{^WOks2M{Aq zO2O9$U6fz!F%I_If`l3MI*%(T&!j6`5kKv5R;yv`spdST`8tkMkwIv@q>g|f7Ug)u zO&TP2&-EI<=^|W)=Mnf+=uL*ec&U{q-*QVlSjO3u1VLu~?v6lT0MS6yXHptmt|t71 zJd%r34gNF&KB(n~ERg)))GVNavnd*N+lB!ne>Rsl(SZCB9KB}Po9+zaF>ww>U{>db zvxQz%=iC+Lym*hyrV=@lv3+Vz+gHniosk~hf^>|1x!bG$1#;O!2fWW0z=}Q2#qoDf8HqdlW#yVZX+02iDpxwQkyaSVq19h|`<-R#16;em(7Mv4 zIa*=l!?bJm@Y4T=J>0dHjW2cAj9gu8s8bH@v)#@w<<_VgQbB~l$o7r8!SF3iFoTEB zVQ%@?7SEG`&i~d5pX(48dg5;t6=Ghb>l}a|Xb=oK->l>h+Gn9xNQ4urkvDvcjYiE> z!d;#T2TMN~#Odi6_zqtH%%-E6X5fdSI)PFrp0!gN2)`M)V^* zw7>~5JJ!Mk8L?9d8yd1y3ORO^(B{%+IE)G^IG2|f;()=CmRA;r4mnt!T=amobMgD? z38}12>oig#;H0B#Xw5&hMk=YSZ^^({WaLys zZlwr19J)@M9XU+tLAD1vt%#v!u1qgDifdpr>f@KUYZlf^3dOQ5gT`a&S}a_qaJ0p; zQ;J3nW%Xipm#r0Q{Fm8YWCL&Q6>J-A?H7#XYIa%S=xrSYG8ReAkvOG6tF&II0SI4 zr5s_ON~T<|rWLlSH>}8SELS#yOBp*yySHCQ_vz)BjDy4m7<4Rhy0#4lBB>WP)Q^cy zvR}l^?4oFeF|xb@ohh<#sT#|ab)^DBx~GNfsJ)WhDHY|sC9)-azGmv zQ&iI~4VDC{brBppQu})FPhcfFL!_W;4W=lO^)ak2qQvumwIC44k=o!PP@=7&LeWL) zLqs4-G{%|1XLFUtp21`HsV2w`=(1IeGQc(_@Dl@mR)r^D9|Oi&e;UNgCu!-kihX49Gf3@>3`Sk-6l zQry}OKk>dl;cniVdOryIxF!38KAija5f#u=Mj$CHMI4j4qDNIsXv%j|JU{6kD9Icx z%}rFW#A!GKr4$iT@MWVZAWDq>8Lq03%IO<5nhR#LP{p>O#Gi923II?$9-n4|aqGcT zT*Yb1SzLEybRg9FDhLx$kc;5k3C?k8oYgw4`(j z{M9V7p5HeR&rcWZ1pdUb?sR$dGVJ7!#hhZG@I^k4-Zg_LL59WeYH^hcoubY$bGVy} z>obB9aFq!w1WZr+E{f!{J{HS5B$t#?;Y&(ILBQ%ErsJEC%`c?TCQFDrJw);+b#B4Q zB1|WoopJ>Mm>unN$)r+ie&;BoBm@--KkV7q(%!cHQe{k1b$p-?@mH{&Pj?qQ4_3~{ z*gC>d78?0g)QAU8C*DibP!c#dqe&=HT+_VFdPQSfW(bC^8r?=fqj;VKSdBu5unF{h zJx|(YyXP92M#v(d;R~WcKk=$_#bKq8wbb#QaiZ*FKP!9`S9j^CP4287iV|3a;mT2;GZk$ z$gzP+J0{0FY{9OlLv?y!!N2>7IN_yiY2#8j!^F^rH zzOa4MSpi??N5`+vU8CT)ZSC?~b_jq-L?8Pe;&BdP@2ioe2NQ5Fp1-%!n*lC`ZPV)A zf|0}fsKqt zj8taJi9JF_6P=BOXA3%jB~S-bVHRNp*BA7ZN|rjtm_aW_3#*$YV$z^JY{@k;h67yh{_PKhov)ilmbs#lKB zV5riRzWgqJeUdJ^aYm(lmd19ugX0@frl4n*y>Eb+!Rx74y%ZJ1;9mL?UF?7L5%1a) zN0&Q9Xuh4CBK$pR4;Ju#|5B~nAP2op;RHJt?qU^?tTUv(0J_p@y{xAe>yXlrGmvZYG)Tq86;N0?yQ(hD;C?j>b&=9xU< zn!|+Onu5SdpgjjMR$g%J?k4$ob6v{cJ?X>ggFG(Oq{+I0O50q0H7MC`Hue7Zx6WXmnLja_wr6}l|Hn}Iq-o|4MW84Q7b)dwy5qgv)0e>gWjuE#`CuSn%=YImg0bXZ4GJ zJX<1X4R037thOEFt5*Mc8Qouc|Iyh1S7+?8O9t3!c72i(;(!}SrPUI_>)Hk(O*TM; z;MWL9e0~uTV${yy?2J-31@+!nIVV8cd_s*4AZ-ri9tC(T^A{AX@@ksF;75=kkr-j$ z>g=)6wy}y`tcU?w1#dkO1YNsJvDG;3I1$N3EQR~9RO!47Q;h~kns2Wrp{BNdfHA@W z%KSyz=2w|n8(h_q)5Ny87zC2?kbHNEB3r=>=Zl54AD$i?@urfN8{X!4Xn)W1>0><4 zMt+h5*3s^gNsP>q+LfG}@CIQf_{+IXIm<+2k7V3YAfBkKn#`LVOA4lFdl>w&GNwwq z=#W8p7RKL?ckR^dE0Z1_|YI(rS&hkd7u__nEsR9?K3VMtiX64Ib z=TH*e)NV?n<#ImZU6h=CWjoFnF`L)O+^V0w6P#lEYu8e@&hOnE2LyaQ~!~U z=+j-QRK%wOq#i=O*6;Ywn0)mq}4m>%PSPFhSn2&h!9nZE=)|bB`cp+at+cO*_jSjHUO7hDwb6*K%a%@0h`3=hIXoDiRA%FNb3I&mS+8Fu zAx+OTixzKtwQFj%SS$7Gc+|MzMi`}KlAcVc<^teE(;wnV&xDa#rs+xsyN`rXSfT4~ zqIK>hKhw9yYQxg&)Tno>T1t5*X^YpBXVi+>jB2}VjIwAuZ%|SEqQ_k@955rztZYwA zu}arDp-8EryYAdFX$)IVGp`L>t<$e6t4P7B!PfdkH*ws7beW!%p;sn0rflU@Sxq0^ zRi={BM!(4@>iRv>H6r#uM^K-i*riG$v^6(J z;~vI>;TT!;NHI=srZNmjPeqil3Xbc6Mr8^S1lo|~Upyj}fT$VZMJ*Sz98p(vu?*$q z7Go?%ZDI?`@Uch;9&WjWBB>Bm73rwX8#Xa8{|~A-U^^79V{j0qQ)(tnr{*`l8Np|8 zW6FF)I_}6Y)8ZgM`-T@37ko2bS61Q^=1EUalj0e*R401%^(R?+z)G3Y(QJ@LokS78 z{#g2opYod|eE#k_8emF-)N`eNBtAqaKSFVNH|0HOLz0T_49NegB>5ANs*y{5jDEXXJh|$;CIRm3Mef#SgDFd|j~nk> zU6`stl)Yg6yZ6AguD%p9Q(4W-rtB|H$8WQdlF7oKzcn1~t~~=~xrA~f=y>nv96HrTa3B-_^&}5n;s)DWl@v?y|ph+RwBy4kXyplUOVMGK@<0>UE_uRafq4 zjN;1-UI{OD3jd~PCi9)e7s4<%Brem^U~XLmsrIYUmwwx6O0P;wSJYB!KN|^kP~cMV zX5$juRx#QS1#|?Asd*}FdH>tjCh6m>fzpndhNnw{SI|&6G4Pt z%&O(FiHMzluR<1hPSaH`qUXy&x_oL>=HdVxzLw<}4Lljc$rsesA>gf_3|)7{$Nu#c zrKC&(>&2=hSI6~2rezqT@v~M{+H(K6VtX6<=uHP{)w17q8QdySTe?cBFjnkw1uc4G zpQi1km^goU4n7s~-s(DbOPBtt1 z;!+2->tF4s-+;xWnUNHF(?QO>`_QK+>=%n9LMUQfa;Bi8jX(BN)SdEiIGqAyKMtOC}MWRI8Fn;3Vq^t?jSo^#`yU|k^ zRcA6oOE$*HtO%G=_i4(i)!CBpQic;vP(q=NF!fsR5?p0bUYhG{gS+wT_D-#n2Qr7R zGa6uJM(#nI9qCn*Gc1ThXKx_eK%0~?6ZYu|lC7hBe9i_txxWcZ0N2ZE;90gBV9stR z3H0v5Wbd=!ohc0xt1-f^M0VPP!ha%fx}2x@XqA8J2+*ly=~buA{(b6J`q2K>jToav zi(#5}$=0MIzd|{^M&!LhL0G-dM*x>5UJrJ2JgNfXT|V&4-fr9r(G`bJ8E;pjIb6jz zwW<0=08QbwfmxMgzvrs7N+)H{0lbQrp%f8{Mx{RA^T8zy7vdb8xPHcht<@gGq!-^& za;^uIXYaz#jMGtzxymo@@B4%-@h-*&A?d>f4^vA?PVB~uSnos5D*Coa5ZRSMYO>!< zEP%6gZK?#59U1P%b4LO%G(T@&kFlXiiL)K2wPPi;SL;8v@5T^4DpPkq^;afy1{8K{Im8(muFHEWW=$2q-KmjlDm_jB_pNeon8(Rl9P*&jDV_yD*{-iWi zA?6LDZI#pVN^mnhVq@B_;0apGIbTJ2-bi4sjzw1k#GeEYT6m8&MJUa-eQ^oW!F#VJE^<~9@;{t7%vb||?Qu}8 zwBng9o7XHR=*boO+j?%jFcpSl8XyisV(d1h*88fRZMJHZyn^~ zFafl*IEXKGeb{Gv_4%d;-2LAs$e#e4pqrl7J#PNdc`aHe5@TaV2wB>tkZ_eT;!so` zlaqLn*^AtUJT8Pz)xHBRrnR=fWi*B1{%9jLoM1zGd*Bdmm|~J*!cjz|U3_pMWWR0( zHO02AhWf2m)t1()pJ+c$%k<(T8lt0GBV0?nR?jI}rG?B*qz7j1T!m}7cbL}V&f&sj}o#bKrYd*aaVZNC2r`giB6nv9o3oh--~ zu|5)^AgA_i2Ezo4(Kz6xYbBm71T+?Q?tQ+rSp77~7yJbm2r3SP% zl+{M5?zk^Ys@+wl^z&6)`JtFyV4&T3IVvi(<74C{BzFG?A$<{Ey_kS>80Xqu%`6_| zA)^p2bm{n@tC!O+QyiDY0^^&rSt@7g+lj3p(j0V0@(}z<$lXbSk$*&~4JMR3UFk6^ zok4eJ{`A;x@b7uVqh69WTdB9K*40|-bG2M5*d7oULXlra5hkU`sM=_^Wjd# zI6S*l9*RZ`)7fRcpRsro<;4{c~WxdO0wqdBL_+af~VY|7a;NREMVTP;P%!HKvY^!SGXqdOx;=oP% zzMc$dCyI@%<54H}fVfMlS34Tnveb#*EyE(YKOW&nIF6Tk89gDkHv5Wa70?xHN>>DK z+{vkEiF#xA|3}z6MpyDh-=eW?=ft*cJ007$?VQ-Q*)cjD+cr9O(lI(tUViUBeE8on z?w3{T?6c0Q8ns7_Q+v(5=A5`M@}#P%yR#UZ8%n=8Rqp$f&X~9!u$foxPEzW7MA`ZW zh3J$mMnO zO5G_a!#!Rn7g{f#$@EN4ev56yf#N|FCIlm=wYTL zmbcW4Vt`)6J!-5z3y`+f_4g3kLMs&PEO5Y`j0`V8(pL{Ys4u__wtwX=PhNd+epu6E zyEEJ7nY(jl#}EAH{9%)Tc)wR0S9_Dba_$#%S~G9F_4oJpY%}i@NIm&=lZ6yGEKA<` z2y5D<3iAAP=$8ynX+B@Eb?Gp&`J~WiE-9WlO@En#B#L~CKVD?x>Ef~U$Z+(`e@V=YuFVQ~$B|N=Mp$z>M!se+}pQ~cMEBixp z4GsB$w3V4H()jV3u=Mdu(R`tKml2En-MD2yJa9%PGu7)b{e;;1djm->evUfT^ciVM zt)mqZqO(U)8D#G>WXAnT#>1pg4~YUO8>-C$7Fu5xF%hCg+L;*_h5ghE*Hq2}sq8wB zHksXiC9l3Vo$npg8^Pk`;vYVpZIU?ohJ#917ZkV0d5b|?9@ z6qZL)D6*p#DB}>}J60pc>okU^k2XQ-FHmK8o%Rr&8y^VAb{_NZAE{t04V0?X6fI0G zVEyNreUIU++}KP|!r2&4P_urU|GanwNd~8T>q0E7|CGtAW!PFUvvumce^kk0zxZuKis!w4{{Bh=XVNNyd4`NqL~xYRcXkU0_9jb z7%NvR=G4GaES!b$MET8HAcik-V467_p9wBc48wJ)~ zSvCyh!q_d2vLq04`4fOUSxMwh=>}vA#)ER_`ftw6FFF=RFFMEvmwMd;+$J^nMfgHO(i z$!4VkEgjyj8^54Hk&sr;AY`^a@y~OgvrC{}sg6LfIE={2jo|E)X;r%TV*3MIC*Ynd}mCw{PwSBm!5v z9wdTB8#@S`>Mv-}U~1Q7{%nIS7y*tTVG#IW)pst`S2(9kwAbw5K| z$H2nFqu}9~?Z%_KEtGi;hWEdiptm6P)U(~Ub$4LNYj}qgA1HDMzM)v^E3^iFI+gWS z&H4n(FAVl>FRca@+Yf)yOaca1s-771o5q=c|kPc|gH#6&LQj=RZU~py1m`}tp@(x9oWR-Ya1O`urto}rw7*G4ftt@Pm$akCB z{wlobwG*!1(znj=C6CuNTgYyiInzcTJwtj+=@t}wqmC3Ll@5%^xK|Rt1hV;z*wq_C z->G+6=}k{#ozr6e6G-T*&%2nJalPAvz@PPS`8S9l(*g@@E=H^+s$ z)by9|U#965E{|cSiaV%CNfeg^*6y0X2kD0+gb_BeB6A1Q3Zn<*8WW7zo_3;Qxefcd z*YIn9V$NBoeZ$C8qdP?IhM?dcya9{N8lk%iW@ zXYgls)R~^WGe19wy=5lz|0g8)e}jGhi#nc%^Z&&JSy=ujDEOaJv?`ONwVj)}3zMXs zv75QLxv8U>xu782|05~wl{+n9pYTl{zjLk0Ul1}>%XxUSWgSczm&Yv~vw@`yaJI=k zOz{gYZB|k}cz>I6+WFndcBsk&8v;UDaI!}~?p?5#_>&3lOJL!-KyL5u;V5lpC-&dQ(*syr>4^j_~+{?T`l8RT4#3`9`W-&Erf0h z#^=Y55@UT`zz|a6NPytXM>^IgySrK_D=eeU92OOa*5y4y{La4HNK%2n%j40@N$((7 zU>EDBi52y?{IkHqMyqkO#JLe8N+T5qy>UOC7Cy>k-Ia;k)j8wJ9`Z>4MqfdBU9UGk zD(pDWADTc1IWl&XsXpL^C!h@a;`4cZdG>p;y?^}3#F+5q^SFM1h(Rp`k=VyLdv&Ev z?G&0+Lan2Voh69B!vD;}$kf`Ewvwz3v*wbrV1Ojy!F>!7%V`S(6nn$<* zg#y>N(`@>(*$%=2ImQ8x_JC3Xarbyhheh3wGF0^e4Q+x67sWjzhb8`#fs13+(H$o? z1Il|MM0l++i9z@?9FoNt#F=KN5#TZFNHL~F50ktTJ^4ijA99FI5-=$Wcx;2Qtry(C zCXFv>0ML9f2ECsU(iJO)cHw*%UKKIVn`18kmz6t*ES7%Zuk;B#F@Rt2lQSgJ*fBiU zZO=9?neY}7^^_6qm9)<$+Ec^bEiF6Abdi`C&Fk%&~|0IkO(zRXD`p)j72Wpme9 zWc=Ejg+4j0npo%FTST)i&* z)Ph=Na$8B5WdhW(RB4ccJ1jbY>k#}MiK0XC1K3?$V>CYHP`@aTJm}zrA$w>HMUXbA z7JS5nR4@o&jVq2Q3Y~JenkbHduvEKoL?NZANdSJ;s4aySXtW&9d0PLBHc*FBvocSK zq%wf{)1AGVlZ+vEnRlb;Mh@O`IapF32LeRn$jTA8*5=d_s(VYF-oL>f7fW|nWVFD3 z&T-WFOj`y@9@0=FH`9_aV)O!+=qXX$91F>dMDuSKyKnN@92Y)z9j$vu~=2A0#iU}ANh0$`0(ib;)fTWS*L5GS2uc!@P4sVIe$7e3!35)c?i>?yZu;>uV6AguU($U1_fXEu4}cU`@9oZ9SgbwT;GoEdA6a8 z+BIy*d1V%)FN({SfLA&SVXHpH&l}2^8|dXE`Nf~y#I5oJ>9y{>Qb^RJ)XZ=AoV!0# z1?5G}UQi``O- ztD7w1>hH?{sJBin!FT&J7zi~U6E71>X4aSmJz>q|I-|GxP^=JRGTQxSj>*t3foUk= zx zi2DG)*V!;TNN*IuFUx6wN#^X=x;U;mXxJ=B@%4dt^^Hq7O9ZASllepO`n_|EpkKGw0Q@ZQ323a#%r;Qxh zyxw`-_=sr5tz#j(@Pd%qHbgYU%BP#XkMn(tY_h5xhgna~%o#$vQsO1kwF${e9JU%ll)v9rh81oEYq^;vcZytawjS4GNoQJND8#tnaVDwvL?6hJVC>QmUk zLq%5zitm%zC?F9qm}|~i3Za-1$S{2iAw;jGt+4e_q|j7@t#Ddk?*G13B-Fpa7TXrO zoj`#9OM^C5PZF7(oH%H(84wqEcEHgTgRt#(iB|-oPGt;d*0J&xC62CIjH<#ka+2R8 zm9|pG2L#SSFv!>uTh~5@ri|{{TIPyMbzzTOq0U=CyFA10K}B!G19d2SG%B#dM)=Rt8PtY!E?@x0?|hEg zdc6XBB2C%sX#F-#9Pi_D>q18{8(fuYpWBZmsnOJEBiP;&vwBI8DVnwO<{lmgwBsz@6^)J+@^*Drzrknje?0v9x_P`QF86%FFm1cMlxDo6KVd+Azu` zevoB!Sg*CLsApu^G>M0;M@s%XkW(u`SA=NBg1mJr_5pJN+CV8D3t{dB%6+iCC=reV zeuDTKz9EAap(FD&}BeOk=WC^v}`L|L{+f_9@Bn-%0$4^~Q-S%w6C-sGcZXOXZU z&PN~IXyYFsk=_PrSm*p$fM%h6xjY_iTV;A4qzMlDK&TL9Mz1(t87m-3t4;nvavJr+ z)%I}qxAkpqv{L=;tP*n6FBF!4m61=Ea-SGUD#ri?3P9j1r2mZoa+cAtspy3`g zzWLfWNr(W2RlqM6HA}j@PM&D2SzL|jD^Z8`#u~+p+66Z}))63riGz7SVMuqeIq4{_ zTa9Hxn1xpPdujicD$NXDGqe#Eub7%~MewXfW`Ax22Jr~=qtBg4Xo0|N>(Qhb*n{^! zk-T!P z0Vkoy-*YtdpWnl8-2Nm&!}Ws7SEOcT>654YK$&~(E(%}#z+D8n_U0k#{i}+v2<#_E z-W+9&#p)uHq7~M`g-;zrucs(m#<7M|^WXMgUVD1Eb0(5h{{$?lT7q~l!|uqI^OT8> z!_YTa`iEh^H6!_o-nreWT0rj;6)XE3sdAM;lie!-VcFEnTQs!JmGZ4uiafe`wY!Qh z*7!{{aU-*mfVL(CJeT@a4Qoh*YQsy_t1Bv8c9k@SQQnQ`2XHhUdTCwlb;x@+tIKYm zA5eMs-7sxkGO^US8w=W0>u=Tq>h|whVVXIT(Ui~97*kw(D*ZFR&G^vlu(CK!Vm{dL zm~s4DWa-L?nx4E0DiqloA^g=P5o%=z`jSgB3@g5&Jhv{YQDWf)UE?mGDPiCpYBxf& z^SjWP0(fEhPbiRmGw$eg+8LyI8dPPT;zA9gjm2cO+n;kILSFv(L2H z7smV`Qlp=fl{ zLNL{a<@Vkf`ZU@5DHK7f+cny_@N4A3^A`d3&$Ka3tm+vQYh|0xRg|(W-@_h zb%L-rlb8c^35IjFiCjyrB+E*O?V>Yo8xF42R#EX^DA|otkz?8OLqL#ypY( zBe9)S}5jB8g6JcE3&lR%zP5|(l}0h9mUT`SVQ)66}AVL zl>0;bap89fx8SZ??rr6Br47@4-RPS!#!L=fbuP**M`P%vL*0iynktgGp-B@ro(Q?5 znmw#xUU;`#V$7|7yts_<6l?m5KsjD~C)miiDMB682`;xd@#O|LjaFN7+K6xgMmT^- zHUHLAbAgdubr(xJNc$xGlg3H)IV02Nk5;qqxixQaRhPY$ma=s!RFeznev*>K6rLoh zN_dLK?mIh~hHkh|7n`4;Dqo$3W_H;0!|C**#sdnd3OESPm07Ul{_)2dRi31`Ti=Jq z^(5vD#W<_~YVY+82xP!OK0FvhJ3Knu^5iNYqI@BtK1)cOayjyurR4lP=>VA+&5>WySDXfBx~ojIivmP__jZ-&z8 z#@7xNUvlImm|}5FGwk0E({a{Bz93y9D$9{kq=DmrhPij8loXUz=?6|;;h*1f-$7N+ z85c;8i$(5B*O##uQvTfzhva>(JLKrbSUGfA`R%B1O8TN0X8VvxJ9VR$NeHFx>tJPp zRKn9BX3ZX!q$&u$6Ampqefd((D@9kQsgcZ$B>YX9HgMUeg+wO8BHo`V=ihie{9F zy&9}pL+YIi6Gy{Kn_sVWP%rr>4)>XQl}jwwnn_CrLL9`W4QJZ{O*rZoV$qz0+^dc*r~ zq1?Upvoaq27*bygKJWPLmc?hj^P_e$1I(I-*Hv5dky16^x|wB`KobBFD+~v6Vc&D&X;ovmQmr*|GncGC1*soXn6*LT9O53dSz9h`yD;;!;fVI+B0(+WWz4I~E) z55)2;i#uL(hxi2qy55^p>}ZE@eDk6Wt3X8YM^1X7Sd3!JD$1yX0)_sTH*>=P-Y1=n zFe2)VjWD1=CH)3fV)G8DF^VZ7c9VNQ78Nj^h%E4FN)*NSf74$;+ ztU~QA_Kshs1rn}PnVPN#pS-$j*mH5}HQaJb!)VOXutzdz6wiC0&!9$Z+8Ik{$Co_& zc#qJZc*}4bCAh}?NO~g8l`7e!rF_+rs6L|wdH?#0*1n^6UM2_|67lf{WNKoA38hxzorM_}jg! z>wPW9-@IY^7HKi3cgU6h#N)z$&xenKKSuye`Yp}wns3_~%VMCX&wG=Yo6iw>plf~A zTRwt3q5EYbH`B39@Sg?SZ<3vY!1VORNxAs$g63}Y*?M}gGdup(tjBi~?l`1W@5v_4 zzxZ)c70pw;Tj_zxr)um2Lb*r1<79%9n>xdF<5m>%K&1y;GN zM3hu|c1$JrPz~{ueQ{)A1618{?t@yW*o(YGS96 zF*bNZf|QzF@*5S4^989wa{r+M{{d&lh_J=coIn$|S4&Em8go&5jN#~*5reaa9OjEpZE8H}KegTpP&R`e2DsaNlhi8j; zOVVJn0iU4Hbv5~0{j*W8A-PAF5$)Nz1NW8K8K|E1zp3H=SDXE>hReau#qz z-g`NAktcJAdp+6he*cE}R{m6BIB-PF@X*oqLRdrnjDO~_{Rj1K{`d4?82=PTC^XzK zqTwTK$MHAg^BHEZQa*hzgyJ14))AVK%D~b1*0iJ0at1r3r}y3Tbp5m=qtd6}{Tr1g zh=`Il*s~X;mmehBve_a`&;>xL_QxhOi^5FmAO>^bAxLtbA1&ww(oHP*n2)L? z$n*Y@Et2?8W^d4{Kr_&m{Nk`>LgXZ>zmk-7ah;OYIQu;CMvq~+O=74h79;N^HNLEloB-(n&snF+q1a5-vcUQl8J zpJ`9VrQrvf>OfZz7jWnead-8d=e0*zc@=o#=2kNSiy7whrk9V!PtOy8Ygu&5mkDmq zIRt?bRz@XW#JD}eXdW9w`;{mVh6{xI?+)AR1Tc4zxTcMbFsDra41-&MdI0qEWLq1) zYjBpT5#@ZCDH%kQlEfhPHuxfD?AZ!+XLhb7TNEN|H&X1w3iajT`MZ`mr9B!qBf8ev zFycn+O{vLme%2HjApP5dU$}xY&mky%-pVLHWV28(K^VdL$)kYl_2b!}^%5GHj=dAA zBSpqv>H)G>a3h$^30|4}MQx<9CAtR?T*G}Jje6$pxyfnlXFq;|!<)aS-ean*6@8{a ziu`~C56=DVmW{xvs3J%DwdB)#e={N~-MmW_ACAz$^d}`pZ(L;Z;5EJ7F(w#<5Ai;N zSZ39Bh!>4+YHc7S{9!(pkzQ-uYI<&fQcH`8M%y?}nB?6=g24GeGlF9jNeyhS9ptR3 z6&(IboX9BL7uP%zG8ecl+q91c&u!W_Q%VHS|H+fIX!`oZ2D;-Y4ZZ99OFe^M$|b;Y zXh6-|D;B3Jm}8hEIB%tZrEaTkpLJmmHuqOn_HD8=jWuFy9G}Pu&BEj|@2@}j?|*{H zjG~^}Dn2fIJG%p4dS|!0{qA2)9g0|rW#YdJn*Uz6E@OPbjz1g|naKJA9?`EAJIAF5 zyFd1Rwp|vqUAy!9_G?@zf!19ax(Ew4y@y|LE$mI_nW+)%ZaNzZp+$bC@wL zY+e|7ic4lb4LXJ?TyrbldW1*Tc#JM3ifuE#uO?jcu>>W*8_c3lG7ti~3`P3thKS|C zyb`sb2drCm$k|#`*(vGHi>Hnb@>Bu_Wy1{&y5j`t5 ztzCvzPS+&~Ek7oG(9qNw&o+QM0@6mwHG!I$EZgtSvv2v@uo^|lfqOvy_pZ&)1ujex z*xp5#%)44e#MC(LQ+83j=9fBw;Lm)v7-#36fV;H(-<<04555imWr9FT_ z3Q&V)e^DRc7WEf4W~S@E!33+J!AXJ=jRSE5!jP)Lstw!dqXjYW3}7sx(n1F3nt_(9 z(9PY&Y600~qXuDyL)hC{EZ8>G5jIRYP34CR1!VDm(n4Lb;HQIh(Zl%RZMH{?_)b}L z*|1O>^4=8n7rrwaA6pCH;@d1zE+Mf>P=Hkx;Msfl_jm(POtf1FMifzDo&i0@Or$Ve zWv4$!w=^FvZ-Q^gz6hvB6GNU5erX4f=HXK3N3e>sAwqqDxuW{5;Ae?yY!xiIwNWba zWJi?pt;p6BEvC{x#Z15DfZ{FfG(en3{8q55Ap1#G1DPcxnzm$l*#rseAPQT)9wI)1 z6<^a+Y9j0qJ3_S?3YE=O_<8o({=K-6duI)!Y%sG!9HZrghaztqFrHVzC-!qCxocA?h;}+%n~rxm<=6R!eEQRPF$oyiF2PUh>3) z=EN*08VVW>LYCo{5eP|>1dkSlP3 z2HA?Ru%o|YkkrkVKL1GAhfFkBMUii*qtdU8Hh6Ih#%axJ?Fc59?G(Xh&h++F@KN%v zG!a-LgFK&#i%8QQ2WSj!%=a`pj)(d8?uZPk?l3e~a}Tiqy5W*~N)mFL2-{zcPJC$= z&#waFKLKXU(t#Su&k?Nf{@hXu)*nValX7?hxlu{#Tfh{ep_W3l51)x?)hyBjGuN(D zOJoRPd%k>rE8!Gf>L1Az0>Aq&cQ>ZDc zD!z&L=3!JGeM(Y1@v4Ta^2fV_4y(>?eG0Lu^l(BX`hB;z+uL(;bqP$O7%Wpw4L&t9 zCCDSEU{RFOZVsX4*8JzDP#zh7$@D1HW$wyx^-(n1rh(><6fQP*Oq^{)JxItK_}?}t zZ)VvCNWBk`NmhnEM&{-s2Q!T5CGnWG$Az>j<*7g_SAat8#{CGO}kfS^v;b9tD4L5w12uLZ03Q zE&l5wuE0Yem~?!!(`ch?C^w#|E%5Xhe4a%>u_kA;xd$r&nq7SrR!%=gZQQGE=j-MI z6CW%mvMDgyQlTZLsxVz@&}drSmJ4ew4+&Y>v)jtJ^UTyn+XEk=t9x8Z2+PDxyE#p3 ze@6t#2X~Vyl4Wlz-R9Mkt1y_lA*XYkyspQU%T_d-ndOG5|C^rb7)%PHLH_I_Oa%jL;b&~4IB(&fqEM8gL==@iTD72w&=)aoLmSWln&q&H2gvD@Aubd-jzal%dfx(0bnjy!77Tpk06lA#@} zM7!IXYj&3epzu=@5z{y~>_LYOxRcXT(bC3j6Tq?tT+m9WefRa~BM&QL>}j!DaS4K& z%}WM@7b6*dVin#-5$NYpVwpL_oRln6Y-9TTSvH)XWL&xMIfxDdcti6>z$flThc&x- zy>T+wQEPn$qH8)kNvejTuN-67eA6YtSy8)=4Ou(XzbXw~ZL+4Yjy;8p9XYzCk2G4_ zy8X+v{xLz=VV^=^2BhEn*#4k46z2Rvy@|B5LuKx8t2XB&VgGGUTSd zqOgq6VM~zG{3YvX8Si_K2U^iJ((M~_@3{i=jD2xcgL;$L)-2g4HZy|OV)Mi^+IO6+2&dcJLonQwrKI`0 zgi%4uNoR@@ea5n9AgclamJE<2l4n~kkK@K{>J;@rUiU6l@B2jg$K4Y;Yey=2m&1Sb zQPA|LHcm-m#SB4%F$Dbw{5DZ+mh{eCyK63csFLVJT9EwjG;+c!-&k~J86QX zGjgIpyxV@yXc{C0#EV}3eToBsnp%rZf?XvjTt!oM5Bt=#~T9pY=YLwycVP33jDXjwsmOLu|*URT>Cuo4z3v0fXhM;EY?!Ecn($kw_zR_P^-XuWU3!P! zsH<424l}?Rf58A=R4gDc7a1YS9x&E{rFe2&gJ+2(u)QW2UGkLj{ohi-L9m5SoiId9 z2%%J7?1v4*?#HiMVi}|-`X!o=9tglpZFNKuZFnWBzvLxdBjb(zQLi?8?hEsz8tQ63 za^nSIi6fO@Fb6R8>LO_;p?oJ{?gAL6=G^?wvUNhYP4pLcq?;FfP+JkF4eg>+hTe{S zya(EA(#>(3)2Ely_;#pTPFVO3xgi6m6K=RqlJQuziifMQ)2ui!jTyq@;FxUu%qkL3 zT_<3t5Miy+2Vb_Ub6TSqqB;B zFYcxa4BLPjfcitKMKT5wV1CrlCk*{0duV=lagH=ePkYSpQ*|S7TAID{>MTPx4Zxa; z^233R6iS8zvXAyBh1|JvI+&FPRb7!WylS8>@esBU!g+%+>p1|%h+QB8l;ei?k$E~O zig?f>A+B@ihS3QTOj=b1FtJ1{HLF23ka|B|92Yqr1kmlm9z~ank7AmrHRihvCajIu zr8>CyePh;C72zxKrmI{w_<sp&&D1KK&XBXPBPauvrngQ-Vs2 zz1erI%z%9cmkj7J`g>NJ*6;v!dI}0~cLQC@yKqJRL5U(yBl&*I`t>nd@2;gYxXOwo z0J*S~6o|2DLhM_O_)@M^y;cLK2b=-qMGCrH>#;| ze6)}vp5P1|DA>Aw89U}dS5Uq#66KM2rF>B>Z?lL6D;Tn)uugm6Y0&yOnNVu_v78{^ z8D*A-ACc?{T${tdq^4scf|vW6imSW%K!LB>?iZ}A;`!G&aPQMvSW#cjjaN!PBP_y( zHND%P^JZ-RAxK%6sn;AHs70esOX3}h{MDlXZ2917;blER{M@rbKEjcAn2+b04<-;Z z=CqsnGvn!yz@YMw_WZbbsOEvImwz$70S69ip6&b*U6xmJnD?`7O^YVYp?w(lPEFEl zrhToD(9y;@aDrK$!S^E@DbE5YOol;!z(<^MLzYN3BQipUp_yFU9eU4jlGQ(O7Ec6O z1*!K>9m#a1a#Idb57p;|gr9CQTq#%C z9paVd%N?aL*~n@9ZqD!uUy8r&Smaq@gye_ru}fyawzIg;#a}mFNMAY`Tx;yixH@N_ zv9}HdpRt=B8jeZm=kLbu!YFizjPs1_CbMstUHt?q_Xf~R;MrdJuz;$Kr}>ajhl_82 z{*1b0Kfu-C;|9ShkxK82+{Ejn@&&}4<;J8LJs;fRl_`Sl_2L;zpN{}pKy6{rVxN<4 zQlUn(z{O!DpHX1Ut4fbve2IWfYNo%ve>f|Cr5rZ)^9+oNsm8zuJkrsK&@-J`2KtOf zg8^$Tl(CrY(nN-keIc^e-s8peTXifaBmX-G2;G= z4E?FDo*;9}3g(SN#9{ce+JRP38P+OR=GG;6ZCCaE;p9?avT9{bmdP!YBc(d+oD#;4 zLW&B@Qw9Z@q0Svkzn!GobS)rtm2sJ+(4q1QYdLSll-%?FsTkN2%GS{;@0TgpmJn+V z9YGA15jA>^-BeW6^KuQxy_HPKGBiksW=4C{wtA3JrKpwBYf?W#w#jqc7?MzHbehw* zj{UujTth9;>;~U=34a!v(fz5rpNJKjWf=T)u_KV%kaX{hhsoy0F7H<#Hu~vZeFvAW zP{aM`_WAZZA!xiHzxva$5GvYN5G-Pk$dp2J%b>${D$(x3|iQjag9u1~Z~sFn^!x_V^O0pl*Bv z4hQjuWH^NgYr;gh`Bz4tUS?W7%Nh%g?>%f%W!sBC+%*zsD|(OLOjCU|VsA87K${Lu zBxdhoG9aR;_I>bYdBP(L;t)7(K_JHz(|3C-+#4J(KoRa{o5_n6H2r;e{{IJp*Ej{|)N!ADZwV>cGju z`TwI19RCw__)k#m|AabB>)R&~j5>b?^qL6a{z8kd__>n?5lJW)55@;W0S1aj0VP97 zgU7GRo80(*t-s9HyvTR2Hp?l71_o+yt-q?~*{$jRSi=+dejU8`dd z_dYpYANVzro8Q}xJIU1h`C*N>Db)LNz4&#r+lkNnf&cY5%Voj;(J0^9nML$`M=7Zp zC;9nOP>^S^^*)A9t#mJ{bDSsjUg5pZ9m~0BO%Qt^fjAS^6!PKd&4YeyS+K?5_4#t$ zDB}H#<7jX@x1rW7SHy1-&dBlk}d?5H5Qoh*xrbDV>pBE z&+ok-_0FdC=?-&J@cwqMbMlyF?%(Ur{*_EIE@d%6!~A35Y<_FHzL&j%9m3P+;o>;s zpJs(rV9(3`JftwQ*b0cCAqbH{(2#S(8HN?kB7`X2Sldb*jDmb<37!JveLW0dy}tsl zuMQ*uRhV;78m^Cv$$$if4cJc?^J)oWG=LmbA3+bFx*~6`$=t?vI598$(w%K z6HH+8v^63~g-9?WQ@ZcnC@$&M)EAkP$;0#Yzk?V*zo-;3=BNxX8#lj+`3%QtykPD! z?d;@-$80T)IV?mM?29-J3(fQ1{JOI;s@8^nRGWA?9M+!%JhKkgfd_i5Jr=(-R;vl? zY&g?lVh^!{f@S?ijcow?zzzeT)tYj49%Av+B zBh_)vUrbX^lNo{v5!^m;$rePfp^=oc(AhW+XpoaAu@d9xL@F54BNE^p+K_G*LsOoe z{e5%_K0E)sVShb6U&gG~3r1|K@@EYeR@57Gcl!qz202gl8N<>vD1AnYfp8@PuckYx z9Jjyax9UcoWW4e}hFp=bEe+~RE|`8Bl;0__jYMso^z%B;da^aib;jRA_Inuw{glKR z9D2hOlUUptcn`ibo&y*Oq6pwyBZ7_CCyBW)01W!b!|~pNxRZ&SqQPZ-_qD{gUe116 zGGm)$lnm~wjkV0xsDv0-;H-Do8I=Yr@tVpA2m8*C9+%i#l>k7)Y&?-0n&_ zw%e}`Q+s0}Ua4B?Q?x{nGMoLPN2bGY3mRE)f)(M&SLb0|r0UeyZzZv-zhW5yaBOO{OWq)+We8+X!$ngoGGpe$R({xrj)qqdNP z!kEC&Oc+Vu+aDUcczLF%sh7{G1JHU0j|1=-wLwOT)L5GsM(V)fEps`ov>Kx08nrNE zAy!#q)1Kw}Lw@3_5x60$jtk73(;(BL>CH4WW*Q@e{Kc&qpbd8x2yGrK4B3r_>NKc# zk(j47l!u3!r^Og|IC_>gkeAgJ5o9;!aWKD-Hi~2rdW4N#;*c-sOB~nV7sY5}^(JRj zU3L2QIgyvB7!UoNHv|CNX}d^2{_3)};4K|7i$)_Afk-&Z+_w*{%OI@0E`sBcccd{p z5%r`N?NQ0G80EJFJUDzD0x>?W4(?K|ukOy?&Vr0}(P4)tv__h+4DYNa%9liC*U>E> zXfA>q2pX&@w>|^O+Cl0Rxh2c*{&D#x>mpfJMs7xswkK_T>tosj{za6DrVsFefLb1;DECw| zW;W%SgU=JGoFqk{jU}zg*AJd&gWJUt(58V891|W=A@ml%_9R{v7C+{E-}83oMhYfv z>!UV?Nrlkp?2or`g9W#B^sdX-7#Q2&YcCz}12sm&SIb+0L$DR28$)XFIAF`!8z`o)pjgF4oAve!-Htwn)BqGL>4Q$g z4;4AeCJ~bT-`Fq>n1T^>*!=*7vqf4k6 z7tV$E1wPRt7T!T3X@{yC&qP0bap%9CS~8Br-xtM{9L<>%u2*-@ym>bnmP_Z|@@rLu zxME|amo=X6ZVpd%>SOJl&v)o6_tiM54KD=-e*D8K5D8O#8C2fD6{j91hO}s9)=now z1Y@P1+p5Is;O*!bY#!amg66+z_)1N&dS=One@c_zM==}&diIjXO4tdpj^la3o zC37xQp2~wOUfrR9bJAp9_#K{Nu7)F>QIehZzL}L_uBIg&P$QL@_5PrGJG8l^^T8dp z2J>k=%$EKA*{jf%nSfzUQ6%MFU_tmnJ^?(d-~BS;;`h;)GbURq7}-ei61g=UBg`Rq zB}jW!WIfFBWx_R4Z`gWoi};bPJo+%doExr!ORlIuHAVKmN#2B2@_`%60Ga{|*U)hV zvP|=#oWFiE=(oZo$@oR)WKk*@H1cj)_r$4Lz7P9%o^LXVEmZ;Er}L`5{WOa|IyAqK z95!juv0%6uIe*4R<8Y^(&rcX&$~jYH~o@FKxV<0L&=Qb+Qc9b$AGQAE-qluoKlPtdr&m_B^%2wF)rBYPp zf8>Y?=+u|$GmbgXIFWn1>{B29A{L-*9OodwjFqwbLmaS?Ngl>SNrU)@0!>?rL~n%L z`0ON3PUzYjMF+8aUVnXDz!+!N*69(ZBvULIQ$k|0ey7_`k{qRyFwrP+(yMe%4a)qI z{n$rsu_cToAYQ7NIb}*K;U=AjNCsQCZVA*tRU7YABa*Hp$*I3<5J^3%ZOwE9 zB~X&Bv}D>3rk*#QlurX4N3$u{(M%YgPH24CCdH~lTcONa6JeG&StvhE)8&Ia?H~D% z3IBAv>ZEs6YR5YY>EZeqi+vu{@ zg&iE^9VwkFgfbt zWC(LB36t>h zm1IEH&l9=1Q^<>X7em?z2aA$LzLa&etB*y^N+`502=h;_r!~F3Hd|y_$C;Ea1>sV*$yoAk#oOIhjhXeQl8UPqSJ5z1 z{i6YAwjyiD5lDvA%m|1gc3m?X>K~X5Yh2dY&Sb*AkG$+WFjQTSt{19*{w7ea40t{t z>RL*1**+Kv+VPb1zn_UHVZwQNl)=*2R-r-D1RS5%KHidSm^!k}qqdR*UoO)Q_&__x zSpUv1?60K3W@3g*VL09LtsiR;ai0sH2_L594UT^!!LVSID+cZV*lxO+tUy&UAW1gL zCy)&&g8E$|4qn_+oJhFu8bF0t?x{=<&)}!nYa0SkTO?;5c|O1i2Df~Bcz8pT8zjK?^TJRZ~%| zs4b!@^rF|M3fC4aB=omx{78Jp4)H+7o%gb0%+!&LSn0TL1_{MIA5)A9B=i>^h71va-6~-=E%XeQ^^AR%WinCHN&c zYv(yy2k{>kpLJac5Br?aVZ(|Bh2z{mpDoMYH&hxF8 z636+{NSo)0UigjaICljWNj0<(nZf4Nsy z$6np5P8T zJa^4C7#M#{=7BzulTpp189qXCE%f}U9cxNi=|WL{NuAQO)WdILiOrxBH`72~8L2#0 z@*Y~gPh07D@&i*%oci$Dn-aTPj(5_f9MutiyF;L)e%ofnwHP&ZVJ}o|*qp0tjA!o) zQ)6XB81fZ3i74jpvpCUonQVX2{B>OCrl2=yN+HoeUen%cY&2;x@P%+EeBNGEr*}w|lr` zj6*}dueIrcS-6&CmF4LG7@WkM-JL|ktXm6`pFx*8St@$Roc-$}4I8byZO~%MSrsvl zAhM;4Hl+*-V;~Jp1*1`OpD4*|v6HwoZ)FqYgT=9sco4l1Om!QuaKGhMoYG51xJzH0 zuNbjXSzU0R$mPPRx`A%vpLnf|h4iB2)>~Rq3>c?h-%})dOQq{`>~$}*)s#GHF~%Wy z>ZbF8^>P0ZSiilRV0IgLh00xQPwg*V`+f4HbmT%8=Om~wS#oJ3L@yBmwoKyrM=jbj;`9i z-N|?r$x{E_Z~TN{EMlXexlt4=*0Iv z%@h}Ig-()I_qIg@GRk8@tnJ1{&tN?3qI&vdC-@h1l5G0bAX!9jDENkXux|-% zOpgE(%IeTpXM2W2Ue0({Z8>TOrdH70n)W!uUX(mIx_Zyb2>yItu5b}5sXN9MedfAA zDlfzLo|$y)bY{h5ttof>?#_dkxpmY)6~MiB{L;(%ygadY9l3{rPKQzm1_nGH2soH>K^z(Rs8_?sWa|;_STOWcFzgfxB}CLt+HY`RZa(yw}@3Gxdd?cykthc zXF#b&biX=86CX*=sLa$@*upVkRTKVV5CVaS-1Z%J0kSi7hawYam`1*y1V<@;1bk~RZ z;saqT%I>H69g~^|0Mg5ZB7=}f7$pq{kIJc_WwBlZ~p&8|26r42LG8S z2MhbZjIpw^!Te7K{u%$b%zr8VpDh3T{6BZe!NvT4n<>XX7yEnsKh5ADeck_h1^)MH z5G?;u4MNt$*38+QnTUgfnT7E`7#1QHR#tB2|KwPS*x6YBU+`fz-JkRqHvsJ9Y zf2Ns4-GZD+iP-yqL|L7KB%we8VI(DGNa^P**aDlAogAK~Haa0_MYhybC7SFtY=?8C5z`K#jL<8c?`UC{yQ=!E}Z zV6cXOu;4AeQV&;0!c2z*!q`0q z0R>uxTPcHR_v99)Cq7p62VVp?Jpy8S0FmVR*;fEW&S?jU1%}W9E`&!1bdSUvjyg0k z2Tt_RL?}dXeR@2EaO>Zp1=_4rAit~#+2Kh^>G@5o&WY6F+~~UefcT|-D zh|3Ue6W=o6)EAx7pBL>qFdPUd8Y%*LfKdwDgcwMWkPv8U8nit!p*kp}xu~0ev408t z-7**s4uRdxCD;r2o42zSA(j9^;9H`Ie5!xo-cl2mlQKURbZQO0lIWqA7z*kg(-hnV z{MHfr{{AiySkVkO!VwE1Qh{ADrcQ13r*Wq_dQB7wQ82L6HbXqVK=KDD_Fe7=8Q zCAWn9YxidP>pSVg4-(xnuH3WMuRE+gowRaS!r=o^xcvjPvoeJiD$@S3P0E*SDGvWj z5N2P3QWMfi0yaGe9cXG2(!XyHiSe>(^8mz=hpUss6DWIA$B!t#7wJ|X3ZM@)s}FUf z54EEY^{pS?ryst%gYgwM=cf(-wqgBe$2I7S1MjizD8E+@^3#U*)b2poPaE-T!}Hc} z=)>-!|38_X<)H6Yf{(VR-QF6=ZySEV&a%^A!iiOWH97IiZu9(A^iLea}TmobWafGKwlDw%Hk%tytS%mS6>mS z+yt?qNhLr}?u}Nr!++vD-05Hig^wuzm=J0JT4St*c~i)Rw@shoZ&|)NN!WYXUGU02 zyjsBSZx)o}mq|PV-~3ekq2V`7A|N*Z0en9nSdb+=-{F`v*z&8psuWDH#nw>Kx|Seh zVCQ!eQbtZigk#^D9LRF;hmWUm*u}t3{f7ih3~L|6Ic-u>xOw-6~|-8$h9jreBvOH2~`kTIdFS^!GdfN_qF!Aj2VNvFtCUCa@r zF7bW*Mb;GJ7xVMF^~a`0c;JBxR058zJujop#l^_o_pLDW{-HDc`(6;s(Du|m&dVSy zdYgV9BBg2_uppmeQ&`4eod?n1_>DdS)QA198!ebGSH8t3ZPj1uPt|T^3v>H{1^wDm z+=qDK@&%O%w9{+U-z)T$w=7&!EB7)8-fh+TX)nBWgh}!;=pA%10u$&zp==-CLI0=` z2@{Ac4iq9vkH6P@uNseA{;DC7TXpXwfz<1OfP z0q}SU=siIXmjQZ_P!DJa3t0J^k&v&nbdg82oA(MPVt?9V4MP0#0MG#;K7H_{2teBW zyYV3aY0-l}N(gHEgEdSDYX9SG{;35Ca?cJLOa$qqM7uIB{U{qX~Cs*60*x05Lg1t>>8@C|NYRgQp8AY233@&k6->qBC7I zJAZz8B~2Kq3}X?&p-QPuwAv)*kIA2l8Yr_bR0%X%kuBn%M{fII#87IJ7|eMWc0`DZ zuY!ufLEi!QpT(yaQN$A%*X~zXki=AKBbRYWSi$+K9$bew@=w~e+?Z0E^^*Nfuo2(93})Z!%L z<5wqt;|+WdCJ=(w7Jz&|u6#80?#89&-PQ%c2k##EslPZu1!jFOXn~1;r-?(Ae$|B_ z2Y>D~J$xPR2|k1L@31h1cNYZ>yO6%tF(_$;=h~O2qHcnpznxG8D?5J583fdtZ_Oc? z{z7cAcj#$_hcfM5$H5-8!j3fn5FWh|Is=Iyb@Skv`q?-k^ZAv)e=z~~KYpYAVMlUU z<|eAWVbZ9xA|g~=m_~@?(jnGUjI!b)(Z1T8YTh(hkwbl?o9#_erHjvx{yW)CiNs+Mx6d_ zM*NAa=G*TFwnP{pZVrUb$*Yl`wAF$|;_T0}IX8~%i+;1?N!kjFjDa;I4`J%@NihhY zEMi`7Weg)i1%jQOaBmLgLN$jc^b`eG+f+oqs-H*>-;P;3LG_k(c zj}+lNZ4=D(g4|HGp!J;Q3rL+M zH`E>!9cj(%!c&er2+30T!7d(fE(hjNW*;J2OBfB+LIfX_wITc+%PzwGVf}X12qba} zsp&Clo@r&4UQ8!?v-X;6#T1xSETnSn20+gw z@>3@V*w(ZcaQNz$D2RiE2i(#e-C8toL*Gc&X+!?FTcvusoN8(BlPZX zDs@$rZ)NOC*aIoY%D{PMKNN8xZ14uo(2ZXVq&CCr zNT99)gq3L#NwgzD5!fD{7kYa7TH=pz-o}L|1`r`|uW2r*9|NWmo6U z(7>-Sy(&f~k?;?&l3I!Qtap8nuXi-Q@BLo6fp^A_cQ)^D70X_Qfp0-oaMx+MV6xYU zFM%MUTS#{w_F$U1#^2j#=aJtMSje7-5*?cTbtgz7aXJMWyLK4FY~zA2cCdF}u-~R= zBC+OQ_Nmkuhi~_fuNR2Vk7dUY-gS|iK{_OKj~duQkv*naNS$nr zn;IPrzwZyT$9ItLp5^Zcxs>Ql%%I$l#Vs1gone;gMVJJ&RUExAM~Kcev|q_+EM-8`cP- zhcjwR^QAF*?C6R%!BAV=_WSUWS8b>;G zUE*Wb*#@fnUnIlf+pd0W&9iR!IFL8y)IjH)=_=f#CNp-A0KaEA6P zdJae*Uwvmbfkr;!X23iX_hL4JqC4coq#H9DY;$iz;GRZ!iUqo_({9v#&i2r#%aQd- zbhT~|e+Ys45HS1mhlFgWc8{G3-OQo78oDg+I@u~JTE-lYVlFI3&?Mv>=qy%cjJbiz5t4N&JaE`SKDPCR6uD|)QjCs{fP}2brD)cKjN+xwslYuR z^8`;@asjhLwdOEUk(Ia3T!6Q%uSKmT7d$RMUrYrZIx4+9cD^7&)nB>PDUVl7cvbA{ zIY|@7c56#vv)~~aylNAaJ;1?&d?xD&#)wyeAu;sj4o=!y3Yucx!8l^*(3rMEC0u?( zTlP~kHa*TXyt{FT3eyZ%f)vgUt2Ml%6G(BRMoI>iH6 z4bCiHINBO9fw|h44%a8@#{5C>#pjnR3o?*hjO>{&{G2fgqM^qgs1kO^_J%;mq5uTA znn+8FrnYIZF*#+Zgn$T`*?@>>@q$d!Ba|TL5-?M9AaRJZ&Ze5Q@}n>77~7L;e{b1( zV(WQRa%$J8w?QB*2Zg+fUJ{t6Yp%q{_?}U$v(*={57ZbA&RyxWN%eLB^hh&nEo-Dq z2O4{|Ts^MN6 z{d#>Wj$XT(2}HgBP;~O@UNUrfj4deDPjlqa#TvrhtS+EH`V8X$G0YQDT`KRbl~iEv4=d`tJv zBAno2kpRo{rg%%-pIw}xd!*E+S?`@6>YY7G1|4x%K?qIV^EH&HfAZ@ke}T+>vZJ4M z-{)gMbqWyEU*J1!%0&5>c9|2*k*NR84_q)9C7qs}RKvY}gq)`;am8p2`+8X=JnnDy zXl@pOGNvNIU-TTj=HzV^Wq$57Ehl%Zam9{iU5ZAuPX{k^Z^y8dIhm25s*>IEJu+Pe z@Y(`H`LZzO3fw9F?#f^sImCP6Y}cgXS1WD+!sdDC6o+>zZ}^1-^*k+Ij#P6lrPm5Y z?E{a2Mi%>lq>Jei;D3e}E6SN~+F2oxjgp7O`~;9?Rs4N$vXd~EnBd+ z7c`PPk~VlxanW(cGNUjMyMx%7!zC!)+`-$8u8hSJKk8fUv{N_#E+32*bBBwTZCBz} zq^kwFa#@%O5(QrYP9@uO7t3l*=2aqpVOZkWYg+F|rz_vhhzBcwtA0*h`D~rSiO-vp zlq(J}#=gq4yv%TS+4R)U`uWyeKhzr_{_{dAy|AxB*2eS5NKqcm`dE)g-@%5ppa1PC zOF<@6(S**bCe;Rg_gFWm?G>a^go%(tsiXPuB!w>zOc3%il;@wb_ zHa3UR++g!Gf~CEJEu>ejj_yE-vod*OYcvgnCD9hsL}Xu=eq;BSo(;o-WZwAjU?IdE zORvj2BQ73#qn~i{N1jeym8_srE)fUy<^UoXvJLk_%46-Yk%w7H6_-GekYPY^-YsnS zc_jpa*cS4A3O<5s)x?B6xtX`KfKNTXsXki&Exwu$(Wz#QFQv;fDzqytdI{bll39IE zUptfB8RgZ-ZNgCrbj{n+iBx=@#Z0!-9xndR{V5q69=OxFfzUE&=cFl=>nGC+6}`x} z;{`p41~2o9OUlePMe1jEt!`EixljP7zg$I<6D;VjA4d>K)z>^V2$@-S%r4cjm$^!h zT9F!1Ew$5Kl=)&&|dnl7YMJ#%_UxCzRsyeT>aTPbUPegt20 z{=NAm_Q}f|WprUw2T1Xo`J-#S-B*HxXg~QbEUKqM5Dp5U=Onk%i>1ASe4>Uth*f{^ zyANpg=dhU6Hf)R;G?JGyUw$V2di38kyL%=M7&8Kl5?-J)qZtAe$a65sR`91P0a=vW@ zEtps&o2e!Lw)sJAruw92g0*|W18+Ts(fU$Wv4S%=Q}DvB#>~RB2hj_qLj9w*4CAqX zOZO!@oYH_p@K33-MG{Azf*t$`HKy+I@AkwWaBeIUc7Fpv^!r+Y2q+5dj#L$zVX^Wv zMf9C3<7yT2p!F{l8(IS7drk97=37vyNGOMNBU%n|Gs(SzS64S15*`zkEG#P8}Yi$LvkvjT+#?MMc;?sFToxZC%A#g%N3gp0bSD7acyHTAN*SZ|u zxyz1~6+ER0f;63Th^27^;UD{#k+9-qnvNfQA7>I>GDQ;KIQc~!l-a;;U?T}iTCy)B zRSy9%@A2SAIgIE~VyG#!wAV1PjYie^-ke!0Ft8pD4X()2tZ>pvD8x~!gq$8cY087e zS2oXGj=()LUah85qfWtTRgnRm8l~5$L%(OdF&z zXn3L@YO|zYt8Yic7YG6FE_7M zdZ1OAWr6Q7c&$_o_K~`Fd18ZwrRgP$?>_;55~}3^i+ZZR+$dwjA3N-#lX9Up9)1Ya zHvk{!Iztvv9MSv5xq%QvpURt!@gOsfuw}?cjOCg_nng*{Tu1z=1W1mJ*egZ<0vKy1 z`CMd5(KYf?Y~lLf7>x@)*VKSn20o#07L&z0V$2c9y_mabc--*pE_W{4UI~`b7+mZ3 zSZ(`HYE9%MNTJma-g|3^x(*)0qK9@1oJ}MCz^s5^hG^Uu~M#-+p}ajr$-@* zir(i+>dVtWoq=#OtkVO4Vp?)Q}8o zx?Jnq_8y6NAT7{7bXhhXybk7@hc)Vm7O646XgxB(N6l>9I|*mBB6#{0hKFnZOo%ky5Pz@ zh6&|~iAF!|jymSr#!egpo){X{XOU%OUx^NnU2cj)Va$_u1DX-vpzIkUh&BxVF%oUB zRh^CbfrM3VB}Fxfumtu z)Tpf$j;(I&lvsMv8Jfi=i9oMmKOD~?+6+{gwUM)QJC>n9h7J;E?AGYA42Ec7=$1Qj zNCL)Hzq2j!4?pZOfo|#5;Ntd{t$^bQR+Q{o6asq7rE+?Hj1lLr`e)nUGIMt!zw->`8>XTDmJ9FdZEALx>27Sm9e%1Auo`m*j|I+M-clAi8 zD+x-uPbO24=aLr1B=E*F*%hiX_K0?Ds`V5HnLv7eCLUh+1D+XP9e0RWEXvTgdqkB4I?d3y zuF&ThfB?JnwA`i0YO*g;YG2jiotiDmvUvRQNE41A{$9*04T8g*8?-GrGBzI#O>J$O zj}wazP-51jE*tcYJV3q_SRkmz$-lmKOpR^K?<}7lh+Z=S<-`1yd(+cEKFu*k&)`8Y zO?}^gn($YXriw1-56Qve=Uk-_WZ>n^b_oAzby#4!ZH4^S5~}X>JTl?mWSw4bgD%S5 zacl=JvhP6M20d4$yc&Vo9n+84>5n$MZWXpd5z+Pu1~`EQh2>$myrlbBVnJ~2je+U*19u%AX5ED_A2^^!Z)+rSk%6cZm)A-iEgb)>*NZUS-lxG|LN zBorPD0)UFg{w4@=N6enWQCy~OMmM}9hwVvSgd+|st9I!5Ba<@z-%mEC(p_&5kWD2T z5mHFk{A7;ZFgVyC*CFcGxYfC9ZCE4RWlOGO3L3m5Mp1aaD@h zx*CgCxeFuHD*$rbOizNMsOd&*gt{Wqzz^;^x&-=%kucVZS*K5QRu^oItn1Ojk?tj2 z!GE_iOSwuCLnt_1RD9mHGU~k~sQ4_#dLPQ;=j>pi&!Sjr-=+Lw8xJ9q+8ePJ+&FP_ z?t%bi%=Hm{RwDNu!B^;+yg~X!>&nNnOSz|2Uqo~;NIssO>lg$8ipD%V8J3fsa?m{b z-9^-tQQH#Rys6>fo=fIqz92QkMU5;o)_0g%l+O*Qr!>Q>GzLy?`;pjfc87GJ%kDH* z&|Dg%QK6-a&h4ZkHvdN)`%UW!%rzS&AXw*o<(eOleUjm>7!=|qHA;jD&O_pBD(5NC zPsf!NI4v=L7I^!&wg80!Iah({DRTu{yKiz#2NT6~a=TZ%3U?BAJRHeJ%R zDNgVXuxi-bnPjNza#xRnVzV*HW@$J(em%jgm;4Pygp8~d`v5Ot(BQpe5%fh8^@9+t zg!z)9e;mg63S5rxQFbTpbPLOl{7E-g0)FQQp=|rCGtGzunex=hf|DhkWo3oIG2SBB zW$%5<%uv;falml_`J|;Zx9+ExxXEhl#0gL6L(zv4jk*V_*Zo`w#qEHK^ z8_o7L??bgk%=u+noYfO*0P}8Z#H*j=dDV}Kxgx#pf`Q%x<fB*C zYNQ#caQ|XTm2~Pmf=!#Ar|8jhUgm23>E*oN0~%dAW%4do%Hk)N0N4nCWR;tQ>Zc~r6;J;7d3eM~GbY26Ma zEe~-rn)mW!^H0#kg~M=#cJ|mujQHxiEDz{96=RD|T9tFM#dP>rQCs~$ zTKP5}3MzpVYhUS!)z7L~9p!|eKXd9GLdrRkKU`yeSifKAft{x{0ri7Vj_jGX9!>Pe z{Dc+! zEL(X_U-PG=mJMQnukT>^(Os0b+MdG_^+$sIuzwSyN<0rRsr9jvqT$BAP|iK)>`!bi zzhH!svrq9NM+tpX?RlfG0o^fBHE;xVlz@%>r7O8>nioKeSgWlIOkU}nkYL&)HQ|zlm>mlZu}-%o|%`zTFcj&?Hwx$pUE#sq-LK}gc^Hl=l!JtQ*urYt(rdZjO zNI{!McJ_YL-yatGGU9}65Y!>SI^xk-@#}Bfo@5g06~u2s#I{Sg5T)S1oAn$*LVr0hb7Wjwdvxv$j1~PxNlaH%8(5E&b!y2| zX?E`UM5|N!HGagyy75fsU4wnFK%P~X{8MPLt-eC2?N=P&lsHddgwqE$cc@u3V$*lu zH?~`SJu(TfSU$CCs>4m?$h*={6|n8kfMd%4S0azW=AB(#3{U9i7_V_}lUh!HZ5#0I zZWV|z#|m5&R1}s>T`MM~pH5;XQ7w5N1B&Gm8I>71yr0x_@Rd?@SB<|#Z*V35OVGS~ zqXo#b`RtVU7^{{HmaAx)jEF1-W#;c~W_UqqTYe?#!)Ywn&w1N`RL%ZzkAfmnWflmJ zxAj8HOH$OLrU7^xHTshW)>in1PL4#Lg?!2D)K`rfV1pjy3#q%Xb{?LbbZBJOB@AX7 zPr99OnS^TwOb_SvF$086@BT*au^~q9O#1JLTrIs83$3Oghw*qQ0x@hueyCyN)Q;VQ zXfGE-*7EV2vbXD;KS-N2^l6Dc{`MOuLG*M(jUJ* z25#L}y!<8*xAU?4JoG*yg^c=6$x`V3dcz?`u)(bUhi}sMY5uzt*SW7++-BZ2lU$4% z21&}|T}$}Id#@kbF{#T|*PpdtrfX@%hrI5iM42)!?y7ux&>uKqp-3&XWq*ke+enMi zW@ioZ)Y^2h*Q~eUH(ld8$2rn@AHrts&dSBX=B*!k*hv9wOydkYKj}|5vSf2DS6ZuIlDf>>j=ipNcO6 zw-mYy-JDH!&B&Y02Tpp>v?z3;ZnYOHwq^I4EqVc1BkAGBTu@`xq@JTrp@EbtZ0t&| zqnjB^6NY9S>yB-H-aVfq>=z9$Uo%&tWasSRtd7mM9_cQ&R|sufAEs}U`dH=~0-E-P zX=419>($;UJY1xIC*9027N~^@@oCNK8G+`a7SHFF<43?Y)xnUAV~8to?9F187r}r5 zJM)GBT*PZ&R50&M$H7MBG&3W{pO~7g>lSL{$4YYpCj`qBl+jAdZYL6oggKwcrON)25Oo z)hZgf$g2?kZ;`5z#XASvSP9Nz_XVU63l+s%6M9Ay7uuGzE?&`d>rAp~{NIT$Ia8yT z?+wEyjHxYjR8P-Yc_xkme@^6jd+q8!M#L{{TXZzv?`srGJR5Ko`cejZU}8#Qskilo zfLTD@Sne<+NVxShk|yucRTA)8BVi*ID9GoObC-)uni4kU7@DjZoT!`{uF-h(GULU) z+BhlQ{E(?*59zagwLLYmip1wR{EH>whx2+?^?d(CJKu95b3QkrO<6uW-5{lEQS!Pv zBt1T6nlA$l%phIlVe$kQ(*s~;pg&X0A#%oC`c`Vk7B-{GKy^;GSazNl@Z76 z*5P69(E05mT9d8oNnfH?80m`0XQE84t5sk=6>Ib0{*u=|=zrh~H9dBe(H@(1oS8*8 zXE>y*Ef1DEW^KcN7SPt{<2_=|LmhYIO?=+*!tY9YJ;RWXIwu&p4nitvved)Wq&0P# z?6k>nu(yfLQH$6OgQrT{|4<+77F7UBbWcL^QIH{5{*?24bLo)GXakK$wO;tulMB`S z$_Xd0@XiYc+U4ZU`$sMb2A*X=KZXZe`aL%3R;a%Lwm9 z&`&kYE^xBrb7A5`?&@09PH%DTpi*qfa@b7oe5zzx$ zay+K6M0<($AO^&8J%6sLX;&cn9eprv&g4eY%0-p?eGDCn@2<2;!bW?iZZ_7j+>+K4 zRC6}Of@?W2nvTD-vQ!YTZCfI`W7X^_M3YvkcVAp@qvdLIKpgQT2MrJLfse01I*puU zLv1qMaTH433ElQ3gKRb2BeX&SG8G*dyyw-j(;Cvm8mc(iJnnE~&vK)a=n}Q=&1rt@ zx}0|L`EvKnr9bt_9(dw}8HFVP-jrvT<4M`8#B{;oJ&JjBNkrdkINtN2sbxpy@#s~f z+*)#`Zhxq8zHV0}Kj(yj(FB)>$j8o$C-6)!deS?}hp?vDL(Os_E9;Y>LZ$LU(0MT2uo%1B&j(YfEmYRO`7%CdS86W(Z44&_%uZd3`@Y4@Hl*pP z(>m7MddNhAQJwEBVME++u#c}|5!f`Lh44-mlaNKh))8i>&bE48)k2A0`iCutUU;uJ zlMnLa@2BQP%l;TU3jDoN4ZD#dLD(eWs>~ciiO3mbh)L2?ipdRE z3`moyQIxj2d*}-qoNV*79Ay)L5*#$h=B8Erf@w9%Z zov$!lDu*{EXDQGpT^4N4(d}kaclxYWNKf!*BdCc9ptnl4 zHaeFHQwf&;I`p?BQ+nLy3Q*guLkY}GAK`yK$mM*#Zv%HLVT?QVo2Xms-ZvbfLtJWU zRDfzdO6*TF{e`%T={G~%&qvD{#XK&iu_14snHZGj?1ToOFPEb2r8L)ZceP3%yjiB{ z@nrNm)vbyTT3m0G8k~1jnXFMdmq2`Z1WZ_lr-Kxq+y{Evo=vhkg0luR6T1@Vj-TpU zy0p~aT-BG@pU*qSNw6(^Wew7G9#O<`II6EhT-dTDmc@}REWJd1A^k(X0b%i}xg{bn zNLO0~+wAgZC*qsDH}+h;oGOubgk;=cho&Jfv2l?CV{B>-QxoPy-ooIvvI9RI-ZFTy zPe#&d9)zvpr`(2~CYC%)op(XH{^F2zyRzUQ=xmYe z?@Si~(>KTuB8W0Q(gSkK0A8cgh2Wo`Y; zpD`Y^hlQOJRqG98C^Lr5YirC%eeKyX7G_*5a_mo}c9o$dHf&ue)KvB0{!g$0%2Td3#cA{HNvC$5GS4#vDo(qSF*Pt_*~U zeKljs$ghtm)_vpVI=GsfBX9I?cg>1{cjvk!IDoF}oV{&^eMT9h0tfDL zLvPZum>wX#i@p0tnzB@Q5Snx1_EvpxEU*$^ZIC&LJ!I0Y#RT#+@o_Hiy$MN=gkUAEEDV6wrpSfn`gQO0k zIHR`S=@vv*h%y8*uHh&el_9u2i=3aN^kB>SE{!*=1%0Byo3xeRYb4eu$ABG z#42kESJ@BcufMc^Y4A|szwLTfK?x@C#rB0z^{W>(>h(g$UYcUvI*7G=sdOKkr!fQt zaK}n_TY8UI;^sFlU*D4qds#GN54A>+05Btz^qASsBKEG85H=k=3(un*paFCfzf%Rr zd-d_mA$0oRub&kyCmGqE7UBUXsnv15gvS;MsssCt$G9y^aw<$G9g^75s#K2E*Uu-) z{0yNanzY!xI)(*$DvM?CmoarDQd3kZ@WJ?gdqs4C85bp+f+@_)Xg^TGSSy0XYJ?CM zw*^SlxKY}pG69AbM3YaFY|44wGCpu$;>byL@zhsbQKuGoOutr!^Q_m#!Zy7n5|{3O ze8>DiO6|zwyD3!wYCGKba!;~}U%$B4&>pWtOuj!b$boch!_jf>wyt*xnl^%}!kEN8 z;n+T#slw%@^X5RJOIRqg*@T6!u%&z_5Y%I4=m@Q27g@)KQs+lby|HX}snz}rota$R zzXKH@|6Dn*t1Oj;0vLW~ZZV?q9A4i>1|@J`RRRM#1bR)!gWd4hwk|z(Kdg6!u(D%_ z#pZNOX3*cI2t+}Hd*T*v#-(tWupci;3raMe4ZZiXmfb!%nQZqW%YMQc+m*TgS;Bjr zMePb_!Vu~q?I_}Vb6vg~i{Gojf%VEfPDp$C4az}u(T!7RIB|25No82Gfg(`ZJ*`eC z?N}5V)kv`7Nk*E|WiPT*Jn+INHx0}NBF~zoO$FU^ggvuc`*B}`=8jd%OX+~Q{D-AI z-BRG$x~t?ap;bUrB;G;=OsaqsQKIq5 ziL7-18<7V+QF9zFUa2pxyO((|Ee-ZjE(@f;sncrcGjRWYr|s*gCrQ`_Nm~oRv5kxy zBB~4bB+^>)qNH7uS5&7OMlZg1QpUXH^SbXUekaPH zSyQ738V|MxJ>f*BSp)xgBE5)L@*4Uv2wFhzZIY?WY)xY)HqB5}Be%^LfUojsZcjRg z{|t_nX!W4_>WQ?0{8M$pJp)W;VF z*_1G8V3@LIa4tqF=E>MqYl-q+{;eVs_jbaz;ofL;Is+%hh?T#;nQ$3h&{p^+PawXh zVr;-JDt!`0K98iC^Vi6E4XLwW0)s1A24nH=hzvYgW%1B@eCmc;+3c1p#|NRo3QjkX zv7ro9cEspte^NiD;~Zm zU49fqygWpDYd1DSZ_@_-`0>oaT@SI3>W(pMO3t`XW?czYsSh!zcK&1RZTfG8!?HmC>PUO^$we3?Vqa77bgrr(GR*2Oldh? z{&CK%iyozG&!j;*FvP7%ECN^Qy7VH%nOu0j2o5?P_&ty<>_xnZV)7ZcUwno;@3EM` zc!sd@h>~6(Oy;DL#*c;>xLYU}5d_?g;RQJJ6h;(UAX&Bh{26);5%0z5a67n}lGiAU z^4!}zol(35tL?dmjitXs&|`<|EEWYdpFF@$rNObWMyDziIWYd9<+-2J z%4^fQr3KHZmjzWGNbiW5NJm+?=~b0tmrf<8kE6!GFM@7+4aUuAG<1co=~Y>NvE?_a zKGO?SDf2UhVR6t=q`L#63}y))Yh4lJ44Mk0b6L#_v&$@$4FQwVsU&ztn2@5FGc;#|iJmKPd~K2 zy?xLf3a|0r6f{^V)k{{wGMKp36L)ZLlij#2=9J@S{tNUR&GSa&!|A{bwt%RBDP(Bm zV25B>*qZVpKh?l{)H3@$TCYRqhoUU3Cd!bSP(?E4a1`f`3Ob;ptRd5+faL?W(#^-j zfE2Qrd(YX{mBBcEF=J3~f9;VHPNlmX;$a-xOr0H#3$+yE#H5M ze<@38OBd0CI0(x|PvY}f*QZL=vae{9IM+MRKb?8`YHY7QNd`8r(IP*oJ*(Q_GqRsH z?hIpGOK-}wOvQcs_hBn)g-8m`IO*5n!ts<+9jLao)V&>;7-ES^mr5mO{CdRMCeqa& zmz(At`p3#nZOh5LCabPIqS$rIh}7@sgL`KJ5-6aw`q@%v6brATy+ZN z|2i%3I!yO`%AWJvR&#>SyZ%{me#fWc*~Q=RFvr~a!gKqGS>LVbDtBL-Xma2BQ_0 zzz@7Gc`a_SNr}hi5)Vz4@3uYqITNyQX5FoBb1cYa^OWAP(3{tItW%1PD{+|mGblYb zo=k(w2k}aw}E$ zG_R(+rc4jCp2?`VY>oyy=q`5k%tXIa3SL$+vCe!mEV8|cd0+kImNr#c-5a};H|}}T zO}drTG`AZ3AlWGhFFJHDxIxtu=%DDl5^$Tir>nb9qieUk?M3{ak4q1M>Lvq^L)$m8eHv3XRAep95Lbg|4x^Oj{2}zgpyRh3#W+nyC)4%M7(a}2Z z?%_3&$7Sptug#VG=1Cxizt^EpbeU4?3;@rT^9GNdZ(O3Gx0lxMkwnJ0yl45 zmR7zif64eHiLfN$;t0z~RX6(D;W^R0MeoQvGp@H@HB}m#dWzu*f5><7$|h}=*Iny1VJaw0MH9&gF3G=cH}^eOU+mL$A>v zP970YJ|oiTw$(ypEq*kiTfyQRS%sMev1w1$ZS#dn`%eCs?p?DPS!2S&2AeYElIo!f zxvN{lgN66J0{sPrX6fgH!{UNDQm8FcbKFO2HAl@qCmqWh*)7V=mBVZ)et*u-;C~!r z0P2aNec(yBG!6_pyyfKr>8)%<{6txa4Q`hfX4`F;gUNZb>fHASPPu+@b6=%fbmM0a z>HX5si7(uBC8vA+`}W;O_jF$-dG=>c;f1n#mX^8uWR1QyWC(C0ZsTN#4l!Odc9b$` z517a>5jUOI3LNn~qvw{Ts%6g0!QOXH*zWAiXBxkawpM<8@&JK|%~wxkM`j&6>_BySKC%BwKZPFUpvhJpYKr+{?aLj}J9*VCi(hZPWiw5EHfbyTgumYN z_!5`4l32-Q^^VZJpeE;Y`Xfho3Lb`TPOw@waCy8QeUI`StShg`tbpG+^P87DMZ?Xe3bB-cYybROA`6yo#LyHC(E_pQCC$& z_b>T>yrjn^KzU-!YH(|jD`+BRU$;v{Tu^YQKK@Bo>AacMb|{~;EBA=W1un@h%Zuzn zYX!~nfh=vrW?E^9T{%xL&vxJ16qbHyqb4-usXKIGd_VE9xS?#%n^V)=H`1|X-ss#7 zhd8|Q6LA+0nqTWwvd13WS|87L)SPryaQ;>JUM=>jGIQP=EmZthA6EPuP4q4Adp7AA z8x7XwHN>VHGX?#wg{QimIV<{=_3p>uFs`?80~1?aX>%OMb$MFe2u>SLmynpVi5~Bn zkwnqHCQ0C@_5RrX-A_43d1=Y!aj^AVNY|Z@o(Ixw{q#hg4XO{ysp-{g{EEVT@MbF4 z-PDh9w)DSpIIdthS~{|DbGYH!r^uwZg|&ecreh6KKRH(3dLIp=qfV<(O)@UI#baV+ za(z8U#BH!LOrq#;lvK{p^vZ`)i~RtN>&j!vpPrcT=2#wiM@x6Iqj-WarsSu<1YgIs z>fivagQ-Yu zf24DnvX$3-%{(Q=Bbx1PkppTeiT`psL7|gm3`{MlQSNO@XBEM+#KH7;#r*CwwoJp(h_0^r3cBAq-8recJ@6PTA zos$QnMn6il>xWkA#xGZdCKQ{~>Rb&Fs^FN|>u?$Cnh>8W&^e`BfAac~#=APadbf^8 z2{smbh?g~r4+>_ls|?1EK48XobdaucWo^{Be1GYhz2f>nobf#gcy1E=sf!h^)K{xK zIP0m>d+1e$+_iey`_)gMU8sv2j5+)3-+0B2}#lyfBxjP^yY@krti!||L4g2 za}KM@pW>qD<1TTBV3({Cd+-u3s@BW&8Am_oyUd_vrhU8KM@~lDtXO{Ng3{Fx!}_Vf zv&;rVjUt>R?BDiMH{EP3eHmw}sP@nHYoNPdy;5y`sBBU6u;jMZoU*8Hn1@5yE*-gwbE^Y#V%l5mANmrCi?oAApK#+5X^&Kn0mIz($e zOc+*W&`%3|9J3d5@#6i~tbf8}F0e~OmeJxG(~nM>@?jB8tsf0|!lLuLb}8RKst@|Q z@n=ts_S-$O!Do9zl~$A#P%z)^MU$^DCyLR`vvUlSAv<=b{@3*dz~ZthlzVY2BJuXb z820jP0ws;80xRz}yThu_nCPpkkFL}2ttb4NWNC=fA86Va9DT5P>*VG)yei#D3;OS) z=Tnn?XBjY)%zeGvd=tEFp^5#5M?QW3qTghdQ~YMHD4@V{)X1H9`PQ*^t6{F5HLm&- z0bc66AM&&#qh52Vkj_)N%m)cxvfX#K`&uh*uWm0MUL`Z(svbVX)~@a8Rh2(8(V6+W z)A;?>WwJKrkYmft*>T+8Q6|02Un{Jo7tAQ9DDYi)>*f=kI)m&wGPYtf8%j$*8sxf# z;L+W^`J$kK>3N$gHDjl7&#l^F1~J>%;?tX3Pw%}HiwX7@%EV`-4Pjj@c572L*Z*O! zy7|RE<6hK#vZfErt!MddJVdYmOgz?<*)`ZuyKg<{*?jg6S!R)9|1*Q(3*-I+p|i&f zu046jg8KH2Qjs<|sD~o{=NW#3^BAsr@$8dwp<6URco?eD(TUP3Z4@7`8*KJ3K4hZp zua12v_O=i|gsk~VQQ68=<)To+D(8dQfP7O7?MQ8)XsRt;nuwb^>8bti%8lxL$#1SJ zdQR;T9m_Ucn8v@Xc{yh$h2Tnale*B*3BHi`S7%3W3pG7@@+4c#>{!yE_ak}FZ-HEN z4DXg3vacND;W>NLIy&3S%&biHDEj-!LZ!z6YDdGqn9++^iC>vv+ntptM_weOpFZ;x=vQ1FLq&2x;o%V)BCV>S?}99+SS{cOitPzmECXY>6io?$Sf5l z$WwB3r`AeXW`~09}81UihU|yd$OQ(!77z*!| z8#+_G@I1#S&aUhm%}Fnh#;U#CLgzlw+ao>a{IV5=0+mZ;HFr2hiCHpr!|}Pl%k@T1 znqP|^y=qna1n`BYzf z?yuNNI$&P8;QGq%RmtrSJYJ7n367_BZK{_AoLWDBGf|P8na=I4%x$)X`i=&MZds$y z!`=4789tTso7X3fUyt%RVH}h9w&3BK{WKHh%nK}|V}U(4O=d7z?zBs(u?~Y$i%W;- zF|25}`J?R_Bj&J_nAp+XS;{2K(;6DX&T6BdOxmWw&%h0z^2wycYUl5t6U8Gxs1BXk zY2toseWS1p`@G&~xF2ox%xd(tyZOi0?&o3p`=4%Yqw(efU3phW=ykKn^SRSPj|$H< z|E$gVw9UQ(v1ZDW5sXPwCpuP(eA zxpL+6>`J7+m(-6GasOm&X1(jCGuKfizKv)NudD4g{dPfE56{!I7llot|-N%G;Uuz8}hU4Jhbd`w?TGVn0~m$nN+}lW?h6^+K?SU;*Bz zr~K-7r&BK0^JCsD^@*y>+gevhv`83HCy-T377X4Z`H?>*X-VC$D06LgaEZ~VmP1lP zCnf!2$oCufimNW=hPC{<;nzv`CXOnWhR@<=3)xx92NjvAmZ#F!zxPP2xk?@;s$Wx9 zsjWQNP`>x$t_AD;Vds3SP1lr;CPsov6Rq2lqJF_OH=Eq_uFyI2A9i2T1d=ak*Ld~QHX)rEMYS|q=c%f} zgT<$uG0*fJd5&MCF`9_yHc5K3=w4d3lZ!Pc`8F>7jIHdk%s$VX*PqxU#1t#f1Qa?g z9eNom531z-l*c9)FvfMIhjaKIKK&UbcEZQhL^tu)(RZzD+>s5+Su}PWu{6dEoz`-% zk1`yD-qh23(6R73LVm99jne8GbVtFn;4Ws@+-cq7}Mo+o)!_P&qHs z)b#bXBT*<>$(caTcauSw;;)wAfA!jCql zZq06nnjPIJp%ck(U)_H(!MM*W>NcUNfu89klGE+^ny34|sM_q_n}P{7RDZdca`yc6 zzT3GIfd^zNCvP)F`ehoinU#K}IV!xyWe`Bdr1_NOEluQCewU^agZD??3N>5Elg>Gw zbSS6SxpqLNt=vb*FcPEacEdAIca2SFU;K4Sd4a#4^VGSD7T)S7ErzC}BkSRc^dtAP zZ&Qzs&jHVgtQwXc5ql+nk||An8=7wBqer?(cyD{fulL@dYN*Ahycnp1%Cj%$;%M~? zq18E2Y3s}6kkOwR&b+6_|G-%2%iZhK9Vt#gHpBM{&st~wy)D&!$_lQF8S^SX&2G3l z);wB0gnzVR^xQkwl={cx1Cv*qr(ld`_WXr;~Uc2NKW|@G8sSMoYhk7wrnXK|V zIV{oFUJlYv_XU zW!7eYzai34-gUfnF+q^B;;f*Q`PqO)a@H9ZiFJmxU!T&GK3N$Apk9&WI+jT0Jl)_X zMCH4eqI%uW2=m?cc=W=RB0(x=lbJQvIqs}D(_4Og3hOiID~hp$%}RtM2H1mHe@gVD zcTCS>hLj`@DELl`*yNo^J7FW(@*I71BzCQ3BAVL^(vdrdLF@Wy<|gP#q`jae7Y zt1>f?n|{pfGL<{Eoo8SnlPT4S@v7E1*MI!tw6VOYSoD)-_pqeq6L&SDYJZ`o`KSus zIOP=G()IYp%dEAB7jGncYqWD}dq<$c_n;iF^7g=0`E~F6mQN(VXkOkcWlQYVHle<8 z=I%Es+F<%ePZ$U@YhHI;^D7G{;>{$Ux0z>mri{`Url02=kWP#^=*qwQK!93wrX!Bz z(*Vy+enquhyUPbEuc+T&A)vo?VoYzvn)$P71IxY9@o&+AQBeZ!FSc(zvU$Vy)MkgP zGDU`xgi@?rUq<5H=3MB~Zju3hsogTxMOq&4Ft|zcQQLal>9{O}(inS1L!V5pkkA%- zERM;va4CDb44*6GS>r`>PT%6sou4wQ7)W?R7H-R=NwojKR+vagM^fLU%lmLrBz{Tj zZt%UsnCC|xa>|c-h`xPXYwx^Ut+bSJ)H|Ydq3lHUDbj?MB`jVOLn=*e=052)I?2pJ zc}r*W7D?6w$z{pD_K{29K3?!qcKjfHjV6(yFLif1+AF@s`(B}*Xt5&OV0s~KN2*cQ zLxFuWtC!Ub#yS&;zo||w^ z{)lKlD&@Z2Hy18r)YTMCsBfT1oXPB5UNM~Jj!ii+P{qwHN}rq`LwUx{$9j8N(9ckV zBL9`>k4t!fXd>~P{9^-+smJ;zzg~ss)#d*hV9DW=Pk*g-T0bFUJYeRRTIPyiCdW|3 zk^!^p^^pK6b#tNne9}jMmC#C03oMO<`8}{o`!SJd@o9ZzI%}ze{Ad<)WPO2>U=<6C z%CFNxk3Xl7XERou=U39UudRP?O0vciE-9<`RPUf;k!7AjWZ-@$UGMJTj= z(JM|@C_i+tj3TU!yYeK><6I5i3TM+PGo7&Gdlcxhp0=mz%hfo}Q+EV4)fj-cd)DSHTj~bwxtf@1EE6$6T&vy;7pyiz0mHPlEa( zJ^d5CIz4;&K>VqSJ`u0V6Ly6IBh0$(R`W$XVr~9D*Ay*1rSBaIpRGDbBbVP8W+r== z^V}(GM$t;{`i5AXsz>8x9W`QS;fV4et2q~tkba6jE!kMgQk18GE#aq8=(?4x;_mhV z(-WzKYgvvZrx=%|dIS{DqOB&1UMVn?&PkK+mVUBO^0lk9qzsl$;1c)W%Cs353YN3O z7m?Fs(Bx@i5r`%yXR&HJPtz*#{Cdf&cE)HXhm&-n7^WGrl!)2k%lsr&?jN6< z6K;v^_+I{O%haz*rCj$R-r!|jbSXNZSbF<0W=cy{9zTjxX^(ln?XpFoSj^p_$3D_Y zqYO4V>NPJ-71#r)zMd^ZS2+i?@i-h*A8^Z_b1~cV(ZY;wnawgRsN3Xors}KnUaX{e zC#oMrAM)|i19>5zS#PIzsh-;Q(JuQksw@xU*~&+y;)s57)8gZglu)P)HdvLPG8{K& zpfWXVFc3OE8~R~st!plGtA}ckD~5aVu0l+gF~H)m(n zi7nLyzBYc*310W~PCof+Px8A!_i>5gW|L=3ZHcxmtuA6J?j~g_${PyrD@Cly3qHuC zxVPSXH1O%`&m5wkRQwi0E~XLbmgM{=xkV1{iuh!d_&Dp|o0&P!n_15IX}gigEil4Q zj3n9c=Jlx@#gS^k72{Jf77Mo(-dnfc{?c`7b*#wS{-onW)_Qufys%dH(=`vjyAyO@ zA?>y#4h(8!(LO K*`d>qZbe8pTAOn@bZ&?VU?NlI(Rd!l>Bete_5mnWgdmWPZ%3L&;id?-Fc>CmLKL@#pi5re^kWEoCRMI{__k(u27PJ*y?rSzUHuvaU zd}zNTnQrthi&XlSG4I0kRYH|diOWf@3a@NJ>06ueYI)BJ{1DpE&Zfw=YGpZ#w;VX4 zbjFeU#1~zOy|^RCo}^|E=d{uK5)9qwQsLzr>LuDHzm zEIzlC9QG4Bpe1aX!zb#}_2)9<2Nuc_6z$JCm#MfLX)8Ob(=YpIjND%LAWggJdj#bY z{w*k7-Ki?qyOFg(RedIrKTK`;b&2kLiWk+~(>Sj}nHQ&-Bg=W*-tC=xF?E}fnZ;=I zu@b47mfp3GOQ@u;YMzp7Iv$;xt4g*pO*cuORpLkK%=^u`WA4SV5KGlJ3{q~FOWhZ; z?g?mPjy8UEXI+5L<9iR*VBz4bcGt%k5s_H7F+R$los)P9tO1VpdRuwN4ah!aJ$X*% zzZOP5MlMJ&XWLWTzC%WSZnv|ky3zM;2Z*U&F+~NxB+uYJHJ%uUyP5Qj zr$Z04J{LR}NzRXE51AQaT6()PlBi6%$ zUi&e6h5L~|w?3m{4sAizdrI=ttzjvRw9mEJRLZZBoX^c#*=7=_HWP~VPP!(FHqTn2SCKTgL1jY3j5D@3}X{Kja;9A6Y%~)#K2s zo}>bQnp%^s^h(DXMWv?BJMi4e@{d zM3gK3*GH+>qZdsE!?t%xN>yXIBio*r;%P_gR-o5AmG{U#^+|+!I<|b}(m!2yn_{rN z{6so;*x?Pry3eQ2JPf3|bK}hp>AkW@L5GGkKaOutX)XvC>~RaSIXJ|0Z+y&~0j;kB zu5ND%@z+G^#*CeFkQ!0vSn(SfXyA~`t{8S)y)hR*bL?@>Rgdc8j7*lxj2xw5LjyIP z68dG%oyRm5eZ}9rQdciW>wiCsx;dwvx1H=3Z!5ZU?}s?Q1>=3qbDn{-p?Csse#QJ` z)^88hTjoAfN_zcq^*yCyY9wiB;qtuQ(74r#hm#i?>t2~goKL!pW`1bwrvLVKnA8K6 zH9x(gjIqoSOfkASaB$~skb?&v@oa;ET=cCZU(EJpj88hbB71P((9=RsN{1>&4VS?$ z`Wi2|<_)}Wy3#ds?^O!ei*oVgUB3T0o=TimJv*VPrujTs_8VQIvC*fPZKok}LM@qG zJO(3?;m-tqWUpGTk+EdN6RN(HJy&5hziM^XID*;Q1kpOAI(WtZ!eiS5pp4m3U zgYl> zim~}$^atD)+v5;bLg z)UU?TT_=4e$kwH{Mezqs^Oy`FTlmFmM~7ad2T!|c871wpMb19)+-I4rK))X48M**} znnhp1_?xz1bjLPsz9A6ecSzCu`jM!$tOEStCZY})E2`kdi} z`l8sSuf|;cv*YFsUe1b55h8tuN*rDe zeIkHwX?$Y8SZb?>A^4)6U3sRak`4=1` zauhzq+Sd}4U=EI$pAmOR{1loeGN#sDbEvVDK^|_W;g@^=0gEhS!)@-^FRW1#sOE=H zZjpyo1jtp<(U5W>aIvzKRr-j=-dZ@e2P;Y@bytx{bdd5}#c<_huo znZBR7#z!cl7^ZZzVv7e)p~|yWGMJXM+<7b4E8bI<4HL8(>L?kxz7b|`^_3jFxx87y zNT?IZNy=e$<)O)`hp#vTSG)OWZn5RNiw05}>65-4zjq;Vq^Z|M@;o-kQjPsGUwbe6 zX=Xd^1)(orP2TUNgghHed37_6>f!aUwr>o>mbpXRaL ziW;52_*uB8{ZvLoII6>Y@}%6V%lcM3`bqrEE&rQG<^B4j;VA=Gk~_a!&Jb1>=I3y& zC7zZLUnLD{_s|GdOng#1S)U`e67MFx)gtZA@V+RU)#>i(?oM`KeOO$!QTc1^tA@~W z;E51^HLh{^rvk^BTz>LReD!0?>d%btIBB4zy{?|XWS{>bYivZ*c>YKRjXjUI?6s$j zr|w5&7P?OpoZXob?UT%B{AlE=&~Uy`kWtH`eVI>OiqBgeFPa{&8)XVTG2-;Z zM&r_@tJ|uOdPH?E z*7`(}yCDo2*KC zsd0VV?S{EonoG+rrz(%pb6QA$zFU{P82Dgu^U6>C2!rES3p_klKC2OoQv~4YXZ4>Q zIh#qIvh62!CigVS>uavX#)7ZigP*r|sO1-lfA{0^uC~{B@HlbjXoOgdq4jP~I-}1e($n!&JOY{#C0bAN){F{i1-|pu z|3c{~1m3(I`0h?6J1tEDxkuGdqxcQq?M$hFAVJYo5zFR-9%9$nn-nZthWD^)g--@M zVr$h-SJ^I_9oi%vj4igP7v@+wVp|x(=~j+w+!q&Zb>Q?^{b<;EZ04(&jAXvoYRh9* zgCU=yUjc7S6f%!&Osy67t`RPuGF*G*DZ%MC&`feRyywvC(!J}pq^G}$x_?bDI4C*W za_NO!*R9%tNTx?W#~I&8hbZ0r$x;?0=53joB-47|bkNo_wZB}va%#e#;$E13N3{P= zgK=L*^k#G^>RWD@aAd|ClbmP8))c$)=9B>+EyA_el*%8c3(%{Q4^%TPEzs|}ijhT@ zzrJ#4cI!3XP(Hy}ddcnKepT&cnn{u|r|Imxf=1N*$glULO&2#`ZH8`yU$FHk zA$+VHHae|9xAj#rb%ID|VoSGvX1LLD(on3i-!=Wj=bMr|--0sUW?QeHRHro(OY^cY z&;7t0@VG>h&a+>RaW}~?!uE{i#8!W-IR(-8s=C$3fg_ifEsM=0m4P174ZBAVSAuWm zq->fx+^Bw<|0AzcO6mN_%B~NmNw}h*YJVnq-h;Q7>wT~xQl_6;NiKEQ2^Tbn+KjDY z94n+Ajk#-i*_dXN)W3HWtRw%mBIp!0krwZ8Ymw6|1`!**()zQ(4!4h4(#G+*cNj zQAt}6ye4nV{AIL8Ipyg??EM?Fw_L}PME%h3FpGObuAwCK}@EyV|_^_Quw)+P)6~ zjbW2t;Nh^~OJa!JFFNN)qX4Tt{z02!QyyEbd&^_wjrmu|60#N0TlRiQRZGN=D=r6~ zpUldam5({rmWjGIAW{=x!aRt_%T)!x`ncsqwr%jO!dS23scOT%LT8ptV62a8RO!eU zVe=-7UmgjXAA{8>c7EP8Dmo~;USs?viYuiRbGo)MO-s6NE~r|9u}}6zfsk(d$AJs3 z8k$Edocz44_(&=O?2~^;_+p8WWqo zB~kQPr;i_)Ps}lvRU02tdK)fKaXT@@|EjXRh`dj_El*ZX^`4lRknpZ}C`HAQzO+6makulBP40fYyLT%;`Y8{QoTSw&pUL-{Gb{wh z3+}vlE8(FK+nIZ*$@)x`O5N%;s$!1XyQcoB_ny&skPc|FJqromx_NcY9An_9_>1q9 zQD)=yXQp*JAM*{q6kn(L{;NemInQDM&w5yN$Y6KBIEF(u%B^ZnN!~ZxM8czyPskrpGx3Ua^xmn9klmu5$#4zEwsYVAj9vKR{vYo$Dr zQP-_$J{*0#qN6zVJWkcKMA6Ve6Mh89`dHH&#u9qE9=F?AbPX8TJ)ge7!Sl5$*S$Q= zwrZ=mNPoGeF;;IRRYx!6OGmW87fQ-!`4^vXAM^Vm|D`l?Jg|RnxbK3>g$EMn*xmbP z5UMk0KG$owbseR-~r*_>ig~{@G z(CL-4o_mI$vnx9xO&|FwWGIB_X!$kN>uR$zO*@MU+!wUarqWs+U#wpml%}Z{WoQx* z3hQ@C$T6*C9aoeb{igiHvhzw5HM?u5R{OS^uWKcv`+h;2iD(^9Cvmvg)BcnXv0u-5 zKU&d0?ZbV-ee(Wx5hZhxeHivYFyc-MuX_&7#N&sAcow`5UToQMRsKkjy$}#q_jEzd z>~mnUM$@lWp7Cq(Zd6hMw!I@+9t&d9N=Ns%bbm>8-)H8j8+Q6hD50ai{CtlUq=RtVJDjQZN~{xtV08>#q@~XjUP;SO?JqVZ!g&>sVS~dk4E^vf@sj z`>Z}!JJ(_*_wb`;)Q+(Fz4XNYek2v{+#KXsDKRN=aj`!K?1+i}+nH4Ao*uqx_CB`W z&R)Kr-oi*x$J*Uq_`J2RlfApOud}VS=y^{MPeD~rH#=cEa!i<6lZTA-_uUk-s}?aKq2eD@?v6A!Y0mkzD_>uxZ}7CaI*ZPAa?+SY1+H_+au=s%Shr9|6(OE#7dITLWq^b{wFI*{;#bBoBmko zU#ueeA7uQ;D&BtfxZ}@$8%FXU!~7%i84p`eJ7*6^cBp(06%QZhKNavmr$1&A6@f=R z{jn1~SnH3S#1ISocRL|^`&T>tIiby*L|j6gL>!(EB{H6`u`{NhY!Nz4@pYMlE@;*V#&aXAxVqCc_n}IlazvGX?WNd zEK7)r{gwgtLB_!Nf`^02kVwnOl1M>^!li%lkP?OUPfm3;A^jx8pmW3Vh%%8jq%SfDlK$hs z|8ff6?{mA@#gK#U4E{Q|OO#zyT1r+{47!t#ueZImI|)Dm0O%l~fu7ohvleDnc1Bp1(YRowI(z&pH!SPHa++&vu-(d7?Yyb)Mu!qb z0aR;b_Q!F^3(5eboL~hN2ib90PJ`v+PVT;e^ESK| z0N}|0Kr!a#X=^Rsn-ArG0GkQD+^qw>2+rfB!v0mTg53k|)gxXn0|1`;3IJpSUYw}@?pbvby8AQ;xG!~Ri_?m*&% zBnL?Zk{P6ENEwjKA>D&xh9NN!+(Pj|VuvJ+wm?xptu|r&u}?7}Kpm3-q6pZ528I%7 zptFHGfdnk$0}cGkfDr!?wj2`=&Y^u_eFN;f4^wRrjsA#BqcF*^E)Ynd*T4(RD3r$^ zOcJi3xG=%kX7maezyt$4IR6nyJ5cUkxRw>*KnBeZOkiq+Zh>p> z1#0LWK!>3MGI(M@4zKC(JGvYwA$h_MAcNGSN5Mt(K6V5dgYSYHPmRw5uEVyg=o(NC z=V(ILVQXPt94&#J!W;ql_zzK!F-Nc)ux%c)#2H5z6L~>J zKs#bP!X<11)V&^T>w#rFNQh0P;W!%%Cw3gBH=wW0!!@>Iia<3iS3th)klF}tVSf@n zg8CQ*q_C_8eeWUc_X|=pv0{GDv2yUi2?LJw@zIlmwy(hk+^NnG5I7 z#eW6{AnoFDg8}HTXxRS%(hyGP(C&D%SVS%W?T+}ZGX?+^3?3wU@ErQ^1|B!o6aN|3 zlZ+esJmQCl9sZ;+kMljm|NbIGhChV!GsM>*A^L~tWGiwViEB-7B&Q~al}AB;o9-~ObCZV;bC;t`37zf&YO;aXvQlHl`TcaS*6 z#R{T7#4rD(f9c|nPS7#GMf`2xNMHbrpx-c|vEUi>r&wZL zph@rx5TX~MY{S3?Zx&3V{lEy^)0*%y03~_=q~Z;NNQ7X%45nUx>*3#Y^=Iw>p8nDE ze@o$Bh3Ep=vyc?A1ERD4oMPvZJq_7caQj+0U`Fo(z_Z^z30$F1-htGNJTG7y^nW}T==(*OKx_#C9(Y3V6FfodgF-?wP((lo9uuAh z#kd&y^DIF203;TnKm2(HAbP@tV2l6k{}@rYk0SAi4}BFr2Qb#yABY})@Aued=m$&4 zeuL;ACoi(MBfbM|gPV&Kgrk3AhhdzR;uisBq#k_;;*mCV9kfLq_8o==*Ite$fIg4x zrH9x7G!={sWNZ~ykKi^)B8ULz|K^AIK5Rqk5cvsAKq=zGm^*NfhcST2f+J{qqD^cX z5%TF0RtRU4yK4s0d=BFaEuOkL1+Q%ydm8Mctq+jE%?1BpqGFPx*160 zw*qPO4psx%3kYnmZ_r}c&zNIC8X=sHe!=HgDl9X>GO~6gMV^UDzyyg;WDg^#0fxwP z5bo#F=wWDUJRnVY6pmpBP6Xz#E(MYm_A9|_sQ>ryd5!ElRDaEF1)q0t-+=m+Lv)P9 z3!xsim{1RnN9={z3C@9=7wQ?27kMraTfwy;vKWI_NOvGLLmG$sXA|z_=RW{}@9({f zfE>n*2Dl2qA!M~*1i%3YBq!*qY9jXf!}srf4Ax<&uxn7S$g}(|+^f&SdLMYU27j4C)Nk*geyRvpcJs+=7zpa1h5roer!1I9q<Ayd-|Li~iQ~Ku_{J%{1fg;?$aPQwl7XTjSDRvR_6ff*I{mEk& z(Eyx4-er(yGkiv|;$rWg_ci1_%^kP@E`k=^a|iDIkZ&Q}6Df(W!*_B6aFK8VKJ&ui z{!foe#Odi9tRn=zm`HHyPYUa!kaxI0?-Cd{APMrY1fOxnkM8Nm=VYDh}hwu4Ekk6(B_;~Pt5#uqSoZu&ZHxLB-JU~8Kqfjg? zA}9(J1sMv3qNafGUoHv?*n|)l9Tf#NibC)>%%dp81XxkjEYvKpFERu}jX}XYH7O%C zHHs30ISCU^Y6?z-6*8KO0tHW|MJ{R_P$S)t3s?8AKq2yb1Qo0#heU#+M2R5t^Yidf z!xY8*yEg>|=U=RlG6e+}1s50Oiqx^Pvf`S4cNC-+L&T&&QFEd&2m{kel#Do8 z#NhPM02E{hP?2$=$S5f(C=eS`pajThSp+$$smTSYp~R@;lyF%h)Kn-+a#kuzDh!sI zlYxSVlv)g~je-oZ1qBqA6sDA%v{WQ0WX#`}ASLe~)&5-vGsv3%)BRgj{~)3!UW6gk z19CxIak8Kwpm^bQRETs)H9i`G0FwLP^n&L7=N6>=b0fy)rTBAGbN;@e>v8{ChnN@& z@d_9f|Eg8kilL?!Lb1aP>+b+UvM3Z0?q^acfGYqpuuX&oM1Tl;2!FOl0+9rVq<|FW z$p9HdazKtf02F`%A|;@NNQFacKn?RWfCjq{XaOz6BY+Mf9S-RMJ@HvhtPt4%8^mMqXKK5E9fur%1G@t_0VhN*zy6q7V>*C=5g(iU3jUPaujzF(3x>;y@gt z1dxCz38b(;fD{g;fi%p^02zp~Ko+7LkjHKTd7uDM0VqOL#NjD$3g(r7681Y#1}YF$ zaHtAYVg58Y4N(oKVK>1Upbk+TXh77!p(fCT`Lp0Gb^~YuEr{oUHbiZ39^!c%>Hr<= zI?x5W5cPmQM15cY(E#E%Z~4b`b4>JwylKh+P7XzzL!g4xNEB z%)0;=h_1jDy9nHXJ4AOJdH@fY_XM60y?__?E4Tu@A$sG`2l&9eFYtxv2mG)Lz#sTS z3;=-;192Dxf?)nCxQd+z!5|o72ndB3io-Av2J_dzHS8R?4z5EC2N4h>KqSOS9Nqvo zu(KcvL_v%O(GYKf7>F@Aj0LgS84w5JAjX4uh_^rj!~~ECF%jZ4NCHU^lR+}X6p#Wj z72Jk+8{!m518ES`K{~_?kO46hWI@aV+1M{28;3dI4$R-d;azYS=5xV4>?F8{!#r>w z=I`V10eArO55Xhs1b77UA?D-oF(`of0vtX8Pq5>l5EMZy!eKFZ3iD5K_zXP5j)4+T z3b7PChxi=4fcOH3WuOc@3d%t_#FyX|#8;pKVg+~&@ioNHpb}I+yn*-zG+~E96Aqg}Gt9pQEf8BkE5ufaL!b?`L3{_^L2L)@ z5IaC8#7@wK9RywAJ;e7o>;~O1{{i$s>;b*l0nm%XKF|mA{h%M>NAMBiCoq78gu_8F z1oJ~U90tQMKLS2uKZ4I-6yhitgE)r6aWD?^6JP?{4<^AEh+l9x1*Tzs8izAr2HOW_ z!5qXnFb{DaEI?eq;aBh#+Y1)KBE%)I3~?EUD_{lYSHUW_2dsfLh~L0E#C5O%aRY2Z z+=Tc6d&}afed^A3q;O`4I5E5dDVVRHs19NBs3=vESaTQ24 z8W~D}L2ft4sU z4z2)K4dbagcE}pt{<)ySp%#=laL@Pfdio35Zw|ILK`A&2x|gj5<;kU5@aZ1 zT^viCc3=f!L8vU4z=ac_;avD=A|wlY6O%%K*YA&Vgcu?MB!|fLuh-vdfrI{UZbVVg zG-zU+6%bkf>J8U`TP&O#E*M%Lst0-m?Dl)!|Gf|q_CMax7>KTa-+$`|5FjB0FI+&u z6patP1OQU#4S$V*7K4g~(Mg0jJsz|HbbSImoU%zMNdSyLsCiQ8iqJ;TbrCiFb-~yn zBElfHhdP5fI0Cs zgpf!`;8-FOctig{JPTR~Lj=7F@fTz~bUY$b5&{w!2>3`BBqm@-_{&pDWUV+~f@9%) z|H>T+n!lvPEdhhf104{lM*IR7M#!p=3vLIv7TAFh4R7315azhP$fVE%5hR1LizXn& zZ664S-!29@{IL+6;jh^Jy>Z}T7is*>6~`0uC4tOf6A4T)$kK6TWRHRuvUL!`$bu1# z|67T0kAaGSVnD$N|1EYA@!@jdKVn>{PL1-jYer(m zf>=e388JFib1K?BL>L9#qE4FW0wX%sepq6cI(w+94QlEPjfWL(QXDXRBo)$Rs1m+v zK-vJS3h8t}LE1T>6BCv;;X(D=bOvI!$!-F6VMW``24J_{K-eWhTG1vc6Umw^06_qX z1g#toy-bA}F(oi}&43cy+<`X*3F2r>x+U~()AYd}#UV{l0b_WgM z7ATDg2*y6$4@w5Jsog}_rAu0%nYa+xwW9?#r{Yp-Zw7Tj25_M@&lHc^!8AvQp~3Af zbT9Q0g<+S>6R{1G5C#AQvkP!7CPOwPT3U?l9W8BUoYgL1q=*D@95(6Tx6ngV1+g2a;jht29Hjf$mzk5+l&SyY!&W6m%x=tUUnD^7(HfxT!jrbWDEy? zn6b5vkdC*un$5%#6lenzB?y3>sI)ej4LC^fCKZB3LeY2u(P4|t%YY3vLfD<0#am4l zNC!om`Do0vMR(6AQ=|Osdd4MelVKNvHfjB0$ENN9L(n!14LWI|3ru9TCfn6oKU|iY z?EiU5LzzCxMn?;7QXB*-0vI$Is=#p;(grvgFyxRJ7~27(MM@9f1S05Y*BOb~X3F8+Dw~34n zIz!k+AyuC&?F1UYpO}RqU_tEwDRdav?O-sP)Mg+68cI7FcF_S0h4$IC>~F`tsF)M~N7c9RrHW?%tGf<;8a0BR<)5!fZE zVTkP}+`_CTqeV8(WM=a+j)FL_J2{KDnXR}5MZ*ng8f{H7{oo3%{GU`}6-3iU^D1?d z2s2jFL_tbI(CsiAtaO1HUJ0rA;a8^d`I#*Unvkef8XPMeM#KukE(YBSw+3vqnlVhW zvnDLD$pM{g!qOvpf$DeYOvG%9)51Z#8g}9E87L?@$ayx^;C5&bK?f&kqA-GW*kKrh z;U%r00=**aT4y$K>O#jS3&ZZz&J=b#EEe2ruox|%jgy#yFdV4PLF}R* zMysX6qG1<(W&Hz2+8m4+VHd6@ZvPB+5k3%3sMlZ`wF6|4j?giJKMjXg)7Zrjfoxm@ zcag3mVZe~krDQGJZKifW$I?RP0~9n;M1oz+mQ&bm12&=dbb^F8NpUl2Ym#GV8wLfcVWWxHg6?Ru{NaY)DRh2zJv9*RxHd2hk?XLM z9HEq?v!rW!NR;DjRttoOK|($qPzcW0VKtG`!(E05j2${NG28000=sSSr)?Bo8BBy- zMvpCU0(RC4K!9g(HQ{}enKq#xh1KW_mfrbOSv=4(tjx5G% zg!wXb2<8q`YljWM#otVsXpS#)elaOir7#YZHL66Hs4|+MYel;)kPVcwjfT$lF?f3V zM^1#%WP$k1a8+>!>;)!f8U>v}_&}`3SmAVGh5oYxxSqz3E?`>4WG2|aJmLy=t&kgN zkW|4ijM`|i!fS>sL6VS4l!=!h+76^cgP2cE<{PFME}8|Vm0Ge21TZKdD`W*|gKnHr zKC8r2`$S=8B{q?|SfM7Qv~-SLi!qQcAYaB5PQb)#utE@;rO?_we3sL)|Mb?Bu(kEU zfpY*IE3nQGFSMeimDp&vK?_V!cVLYa1j#EKoJ|4^{OT5yL1!Um+aw!d7c;X!;g!)0 z7m?*jCW$f!lUe`=DIA66hA;slNSzL2LctF48cIF`yQEEU2%zZb04|{UgcYV6pT;hP z#PkYZ41ikMP~kH`QO$&RvlW_&ee4h=vw&ZWgqI2PZ!l644Ywi}BoS9=PNn`rF-g@Y z3n2q0osHkZ=$bBkP|`JwU{h)NW-oL zvoJPMEN05P5_TbWwjwd$&tj%y6nvOSKz2K5GVOp4K#Cwq;($~vV5v-9sx?7mm=<0hMku*jwRwFbV{3R_JD}VhU#!lRjoG z7R{14G^$e!R0QZBs31$**NiY}(3Q}e! zlVEn>0;AA@j!(8rZ5}>_#Cxd9gbl=KRWnH#B4@Od90|KvkY=?a;^#PrT_7stgdt3@ znvi(5TPLxLe6!i8$I~H9&t5xW7yh(pMtEhiQjo{!v4!Sf+JOe}%z{7z=>i5M^u`Qx zPSY4%T<{tYLi~mNJ+y%3aZT{U&>fJZsSt?LWW_X`u*>v==^$<}ILo9vW?N*{A)#QFu*-VS761)wVF%Ly6Pq-s z9Sac2OeAh6&SGjKO#yZhanKHwu^pB9%8cc>n*2)|5_)HF+KiSqg9zZ_4-{~k2!Km; zGpm&5q6)tOoM>eSArg)1lpyUG2h^6N)nUgs?ASgAPv1$SfW>UF8Eh6ClEt{g0=EL* zH6#G;;T0bUz!Bwu|6l{)N=PP2z}rSoNbqJeay||RJWb*X`eug|i3UiZQ}|+?8ORpQ zNLfNWFa?Mva4Vb~3=zo%khIxM2#(N8a;Je^K|tGR(eBhdDGfPR(59_vzOyZ2?V&0$ zYGx%iK|ff6BN$kqzmkD@y-7qz^)bi(<%vjN-MO%(E#xUIT2Dp z!GuUlBd|+sbc%L{S~y{lnAMELvuI;!NALl;N0VM4W{Zl*uxm3pC^cfTQGRJ!0Gfk| z7D#KYR=BW87XV1i_>1TgxuA48M9#2lY87dh5;`<56L#SOqu)?DRtTranbA|ngN1~H zk0|0^n`jl`F4AC;n1G)IThNYu8-@o;R)=UpQn|GihcG2F>;fGMaR+fm|f9Hk%D(KjF(^) zfL-*#+5sk5@J(16Ey4##ieVRArkh~vm?YqB<4(dHvhp1rPN$6q$gqo%1F-l4E&4&m z&}sp)?PiOE!~-f;cvom0J3uB#nBf4J0bKNoB4iD_Xvx?ix){Qkr;OMOv<`(`5I9sN z`ZEi$ieg<6CK`QZr!;jZR-$yk(YJ^emx!T==on2;hhLeJytanYPF5y*%tcx~IB*W2 zV+EcStSHU9?Zifx16p8(n*r8CLCi=zJA_H>;#rZ^q{ow8OwWD?J(DvCW+$aa%mUJ> z?D+&40+<5kU{VXlNusPr^;)qqCxmv)C(2jj%DTtEI=`cIU{=@v!1V(*D z9@hqS~PGIDW;}c&`P&VVHZ9>jaj40=wj}rJ*p1DY=W_c zwD7z20#!4x3>$?)!Mnw3hr?t?iU@tMA{P%vfR`98!UsSZ848RHY+%^MaL^5bP1EQI z^c~*1%LPu-R118G0KUZv88Q;E!&V^MZo%UQbRG}SZJe0M0Cm`THSD( z%??BqmctUen(U{RggvdYfnfU5>cL@iW+#I#<fiV@GmBfbq6jo#+x_m%K2- zfZ5X8Zf*slY5K=g4+1sjBV25?*bsiRf(xN%C`>;f5EQ5wK4zyALlK;)0^!{z&|EDz z%%%?PBOoM7g3D=fYS<;zp~vv#TMYr?3VS+*dnwC9)cA)3iu^#X}vHVHbwP zfO~=68PtIc_#eOlNReHQc6+S;i)uvG;xWwOU+GyTwRDXZsjD zI_aV(-c~_0VK#1K*cFhE7V(dNNH5`xXoux8Suj=r)`Da_MKWXr5h>$N@C*hPc_m3A zyhAzQxWH<`wn2sh>;^<5*xYWr!)kM5kEkFM06sBU!D+%QZ4n)yV-i6SE)!BC4l>TT z)+K)myJ&#Ggv(|YV(p>o%xh?y*aQtTI_)&!Fj+ASqu&?@3Nn{An^W+>X|}kKu{=Dn zOEcx6DhV4JHdzmvEDjSUD{y9+Cxl!RW?4>lLksM1Gel&6Ty`rbSlz%bfd-jQFiOL& zJLJambc0c}dMK@F6$!g!1hm3}Lo>Btw?gp=yAFn38%Z4&9N2}`W+5=(sF#lG1@Qe$A-4G>c*~1H9mol_CJXy?bz!ef4n!1xm?{>Rk1`Gr@gcVi>BT5qC z3LqC*Wn!|1U7W}4OZ%i#X1fSi0ImnR>vdS+vU=Jv*)t##DW;}c!ikm#v5OW!S)Fg2yBa?8+X|hUpp(zW{p++a@^3I)a2~vkO4B(`J*%9N>#DnokYW z49X@%MTm@?;Ds5o#Jm8-LG(;^13`nArfM^baxw41xDs}!xIVd_vQVF0Ypj}H606XP zk)UZKYmbHrw}9*w{(n&9&?da4-T8NO3+mlII}3w ziZ*2H@Dp$nw7?EG!vWY~#GKtKIY{Z-zz0lQ))prjN+}`{c1;eOYzKC24#F-G(h3U> zEz|;-D%uf#S{zVdQ6S?lp-aH7gCa~oufu9<>#()~(Zp)Z5Dpy1(^v{$ZFVGMSRtIU z|N5cJpnz1MVi1{Cl3*kpk|-h6!x6iK{A7pQYB6Bnf#HFYC`&ep>_1X0KpkP%hVO1f z@UO`%4@HS6C?-^Ws#w~{han4tLJ_rDk|borjGAkM+ljN3Bm(>~i6J;87QJ` zX&EI4Rj>zxM<*o;-UYi8!Hx^*UG%|@=V)LAcnR(aP6tMBwzXj!xd@t>Net+Q!+~QE zJTk~6Ag@e#hZKM>SS`C?hYT_0f*r7r9*^h}@Td^nfguywe}W4%5af(7AyYgI;G$RX zQJ^>-E*IK^MGQUuS_@CeNbMJlmwYe zL2%m@2}6;P4G<1X>}sfr*VMFj61@ zF5y;i9+kd|MHN0jIMJ?ACAvhF_NaQCc+?|UNm?e4lPX|H{sjtVS(^aI!zH?rt^;;O zJWFzl0(c2ah0q^X7Ew1w1~%Y98t_I305=-H(}oN(uxrB0fgu1W2P_nJ{E8;~e_k?C!%k}T z;J`Udn5@8=Wl;?B#F%9{zYHyK*eHN=%XlJyWOq06u65x;&jto>-OR+eb{$9aZVIn zey?3YmZ}{I7=Vk?pmyZ6Q&312%Th2)SsomoEH)?w9&jRvMr%+!n@v#^aK%K2q1|>P zag_K3_5lbTHq3LF>5wFIAYFjR$tK#TYi%yKonQ)DwxGuj==co)hX4wU6bOJzpya|0 zPCGqbqDl#5P}ZmtU7|{RR27iy5Cz5S63mL5s$D?u9q6P&$p+C0W95|FMF;xeG&vlS zQv@$DT8GDtN8(mHt`@)sLN{PRl5o4hUAx;3)ZwX{IS>FR0aphMpx5qnI-HQ9lN@Ka z!{zY#T(ao!Aryi!6Q<^62nI<22?sqM(1A~lPzhG1-5|@vNSj4b8Nx}4P~5O7w4UPn zhy2pj9SnSWK-R95`q9(c=WTkS<_^w4xmmKYrKO2Q6^fF^d6qid*EIcE5*|zMUR! zK#^KyT*djbe!{NBBL*ooB6^UTXU`Tfd7-dLO7H^>ZV`%aMq1S4mh6&~6v&UR&@@Jt z9DW?!Rph)nd~_cDa$iO8iYGAX(OPdUWy)a zQt<0Z2rJEW82+HhVB~gSfFfWdP|6*rB@w}c_mf#Kmd?} z;1+$N+wF8ghKz*A>2?JIlH$bU26P?SFUjVBLk;R6WQ7DBqU?1@KrpNbCVTudh@!x5 zz_s;@f-@NTEor_*MoWUR3d27>mv83`=m)oL;zu@GPf_&F1xb?J6ch*(u5%i_I-6 z9@!y70VKETcG5KFB};C1I`HfTakC+aJxXsl9bTvbblQu%ogSH@SQMB~2OiKG3{Kj> zr6`yS=%cDZr_-y-D%!-vAbBB3yEo{tTd?m1Btc0I2c0TqV7y)jL5uo|*t&?WFn`!0 z%QD~#FMFzp229#^n~YvMoEVJVuBs}yVxhy(V5gZlD!XL#8`&RJ%yXFO5NM+!&F!>E zn5gJl=rNwzOi`%VuT(ZZ3(Yk$J3-IW~)tFJ8 zND82H4jgcJz2L6X>y!ahq^zS6F9ZN7z>Ef+9*^4t88Q-Hw?_(vWWU=Tl5jU3o@?{6 zn`DTYPnnvR;bS3QfR!xat{$e2;RK!8?B&>qZ1T0J;$ z&KaV#h9n696nsmk#b5?fxp*iD;lWh-06W#|#zUj9kELSqEZzV`YQvLVjtiASc%E*t zDXu7mS1yIHs~H1k5Xiw4sRh~P@XA&jLJlafS3+N;5V}MzD7;j-iB7Z2Mc7rbhioRE zdcd5+-Et|o+a-Hx`b8m};sLF}K&~w&6DlJ6I71=T2K)lSMSZPhi+ZYZ#0uhC(5i*JY){k{!1b zXMtVx+X>_vMH}sSost!mVV77=*E+lkp5-9hi7v;q-x|-w!&X57gnP1G|9$E^s-7Py*6H(QuI}yE_MgpFr9WOfV(B1pQ2b42Q85NG)lCAOQDpQ3-FO*v8cxr zi1}k^6GxN);XM#>J8jqxC^#p}{$$h>LyT%f5GPsS$>DZ9aP2`?(5mJTQ=~ZAf2>?a zvW0dZve<43gK;`zu^2paL1sn~w-Zl&9v}Mcb{SnJ7q0b5egxWHT!XZ>O_8AFAmZ`| z0044hBxgpI6pJfq#>D0Z1+uS1Kynku{UG3zSfU!yF#HBQ{xWJ*i7rtknp9%}$!(I| zv54Poj|HeoZuDM3Cu5XVlYOc)^R8GY~xUO9+a81@*}R1M$(k3+)qTR4`I(d~vi z%_I>BfV)ya0_tSMrm0i_0)Ru}@<~z2=kqF%q0bF{3CKQgJmC+^-nf_CXvoY#()40( zmK>rx2$E{Z<99iOU>hNMCN>+gi1c=V=cUv(wEqa)Wk9Sjh#E z2vNe6C57@&7KbAYS)~zssfs70iVnXN34*5I?+yCXey<;HZ&*=ea9Or_6|+?~r?BTm zn4-vGS#~QRiMy3xCUgrxYce4yDm1js(L2Otj&oEZMOi z4&t2OAIhbav;&T67z$^DC+GDl_%3$SulU)VN|S0Z7&K4zp9q_YpAIgCs*9>N2YR9B6N5W<=#;O2yek4H(`LN%s zLJFRslJcsmKNwL#!teEl{c0eS4JG{kOn|0huN-!hH2oNe*X@!cAQ_8+juZiPgh}|e zQ#=mIDIRCKNDh@GX#fh#s*kp&`Odb8wTG%2tEQL4CKcJ$RG6+-6?7l#fE-X%C@@Gl zB*pJf1&is3-023ow#%B4vBW2z&-wlFd^C?X{Q-X{9)ixtvp!kGemoQifKs%W^XK8` znxR5IyB|Hq&vu(#BSC-APlm)1jYa`|i`IQwdM!bZ>TyMUKE>z9U}QO;&-Orb|rmbySHTX34%`u z`WPt?@GDW!j`}004t%$Ps!LFjLbqsCi7rv4J*xS*Pq7Al`E1nZ%Ezht6aY1ZPUh|C zelU`hQ<1bKsD}J%#G$H*a3C5%k9}$~?jXivtP0qGz`_sfj!9pM$G}|(KI&D2ctTJv z$5mehG6Yt0zDPt3Cn6xB`g}1p5-M~?(?Prg5Bzca6?h~Vgi12>NJ>Hp_>w7q%qu5+ zuwF=bScG&MR?_cv=er;s6b&~qaFDj9`Odb8wTG(2sF{`66oI+OA)r;2h##`TI^+xa zBT5u~fd}DN)m*qMkD=r}zPLKsuGaeDvIH__)R=FolAxhsla&TX6+eF6Nug0FBt?M{ z(h7?`;^(;T&K!j2OR7mV3Iz#rkw7s?N^kbNkZ+FoJ2JS6E6pz@TeIO9TU=*c< zx2`6FuCO&F3LG)#oYoLOLiKZjym`h_;C1GYYZxP*r2q^pe;V5BNOA zBq?|tBMRcaXdtS_0|`S-c^$Cy7XWipv$GHILaKUM)7SwA@y z3aOzm2IKd4b#=itm14d)DsCsvrXneVf4~+H0&+5(3}-@dDUNGGu8@oNiAXS$4I}nc zGU#rj5K1@$b$iI+2st1bA_W3rRdak(;Z&GHWvVjHgR(}I=n_@hqgu^|R3V0!5NASi zHA^+5qW1}Ovdf9?$5I7;ds27Y*cfxP?rxKpKO=fJbVg}F{5TfQP?nVPBwF!$3x$GOPbO0ke=h6sCe>mlAIT?^(R8wwj3yCi7hG^NKw$bPfJxG>*viz zqTxuiP(UzTuh(O_s3!@>AQiyv$w)Gijb~$#SVR?6yQ*YjnOGjaDrz8#^iDdKjuDYi zz7UNdnU;@5)xmN!?NSFE5f`TCWQ0f&fmkFLrJ9XpV;+3-jH=g}gn1J*s*EnE5>2YL zLNshoMrz&ph__at8V#fOX>_vgLidx|Qm~w@3dtn;ko6>!#Y{Y(jU=McWVzspMguV+ z77Z)0r~sV9Gm9b&?ks@25PUwAN_srrSB*CtXECBEse2?9%SQ4MkW$oGD%F!2s&yu#^+2SM zoNSlcJbVg}F{2hDQA6!fne-0QST@zeDDmUC$gYcr|WI36S)(QzE zulmbgFD5)BSp*>)Gj`!BZt(Mi$PIdf-I=*XF%Zafdyvw_+%;JOf$r|^*kC?iD5n#Z zk}r^t^^~f~Y9XI0=4a?j)uNki^~TQnd)> zL5a|Uo-L$VuPG&yiK4YwCOtSfE0gJ-T^&T5I8y8`WMZ-IW-8{zes>Y)^7-oA*_pv$ zP!zknlPOOofSgVS-z)iiJ`KoH1YNCGi^ZZiH2@G6iJyUTDwRy7ySot&4-O7yDrsMy zu@<-Illf#hQ%)z-$(R^(#)74EDP6^USMcW}DR0VKOc&EcBwp=Kr;tpmX40_*^;FRl zo9hNRlAu6RA_D1TB~6t`P^e5bAm!o6iyBp;OH_#_)!E&tq%)tK-K?epv%9ILlIVRW zIyvaUDDtIxw71kR=JV)7$(PUflrq&)GM7r_>)pN-W_dB4P6omIBz&7N9Y}U}gS+YO zbTwYc`+R}XBf9gc5{z2Bl%AC;mGVW%u#_yMQr-D-=kQ2%AYT|RKzY=3vKk?27BZw)c1V-Zo5`uo#pDXtDK%z&3sHrv8~OO>;Pp=rLeEn@AVs>Z76 zC9$cTjH|P%bag2MSz+Co>P(lDRp?VD7|Rq2vq}qQ_vBN9kz{v%vfaZ6x73qrYG&<9 zO;r+fIXhKpa8&VnrV&h2DB%h)LRukuN*Rt@G%~v@Q%&{ed-GK&NRBIK=JW;-or#%1 zR1`}Y^8l{mM$Z`Kyxu^#zjJXnT(r)91x{Dz!4eMl_xGnp%jHU~kg4~m;YzyE)0^w9 zl=I!?Bg*+Q+?oE)&Rii;$YF|hd9$v0g*>L}M4*uE&t?;yAc?yRJ-yvIRuZ(Nz_dWw z7+hK?Kt!GR6h=qqb$0e2(L0JZaiqJy+L=oA&&{U-*zfPcxpKL8(Gi`a@N=F0{n@Mxo1{#c5Mg=r>;V|N3E0_J;mOh9H3a9)vx9Y@q(*R$bt$@NbarM7 zmCk%;ArZ?qvYolvgPnbuR3n!wL{bTSKW2EifR@sc(dCd1iiV#4e62`Z(|l)J#M(nu zV${q^Y^vqbk$HWUY$e;%nTKNlZzESN)N;L0lFo3tvr?JYv+RgQB|nZWTnAT#mmzcV5&ih*MSkz3YXH;$#E+d9MRv|o1a~oUFn5_l(|~x z!r7q^9&dJrlTK$(r)30JaZ4^5 zq}r@RYMDAJZm*SUrDj*NQmhp7QeMu-2dV?rS*3cUj%&)Ha;U%BU#(?p*}|-$N-0xG z&8}8*Yv-2x1Njw7$?q@uYb8bs1S-X5g({JV;GeXp#{KmoC~H)SE>R_#RL6$OMY&cQ zTR5u}9~+`tF1j&zbaF`m1E>wm&CP3!O0`;Fr8W?$*G2}qW(|}8#oFAVNV$@!N|kak zUad&QVzrnqVbU)S4M`P@wKBU7Z!187wvMUR2CHpDx7OLseqb%t~x(6bp&Pv+KoraiCf*mZ9jqrQT|zII9Gj@qD#j zUp%mOY`9)tk|_<u!BMSn)uS=hpro6?2x)~B7^rgG zx}(PitFy}UYV&HdDq}-ET%&9GyjTohhp5Jpvl^({j>J{ms%uwq$ZDoX>+1&Pbh!~B<4H5$#4dUeilBHb)67@pfbx7nx-HdZ!j4Y<6c^?G-$v(~NF>ayA; zA5-tC)e@c2de>-IS7#k0ad&-qE_uQzowT553-ulkadTL!gH4LUyTD59beNHXW=xn0a>LKFkNZ&}kyWU-v%St&tTpzB_ z?P(^OxTY4ZMF;DHbs|!kJ6h{0)bsP|wbIFpdIm$~b%CBxs0S2?6cMO*%*5(!zW zX|>taRhBiXM3<-%O{yzLYhAuZ_sZpSd(taMsn)vC``PH^st^Xy7+zFbJiJtHG|-3P zM6vFx;m9E$1uCCs$d=CzE%^wAK>!bB~m1ZN6NFTp`v{@T& zG#ZuR`Z2ZP;pPxzINS|=8EuTrK6cH#qZ+f0oz-3I&eXc+b@ujl)tbFMy|vDK*O6Vl zJ&VVB=T%Ebc6Zk^rA}E^moBZNrAlViDZR}4YPdO~XQZFDruojcrquPbYmHUYOJdYW zcO`SoJQ&fg;oe$Tt*g;ByJvQNq~$g`?^i`1oz(TqKgnk2O!3r{r?YG0LUu2-6gnN~>jsAgwOeN9i9qWbJ%r(Y_hDI8r z3+MH*QlTY1TWDZk^KX` z{R3lTNZ*c+k2e<#q=zaar~}RDP~TABk+Y6$^fmf=l%7COezY;#SlB<38OaP)1`-2_ zd5w9E;p%X;ws35qzuYJ-Yz}mvwXA<$wC5DHFB0jC4D}HyBGBktFhG?^q!q2^!o$72 zJ&Hz^=n_?;Np;=WKyP5EZ{4vA`*Z8Ys1Ed^_jA$7@hCpA^%8uR-WLP?tWp61BN+R?MtEgc>huk?)#PqwSIez+_b_Rp+~ z`==@idj9OGN`qsSYo0KNmC^!WgtS75jy5^&+!Kyl+*~-Ye0cfr!hv;TL)`pXCoRt* zI#Zgts-lcG#nrfqijL#i+R5o@i}&J#H#KPovDWG6nok#;#QQqwMHBe{LHv#q{=e7Z zbh#yu?8P@A0{9{UlDe^Y0_mYlHkU7S7E9$ywX3_QR`2cWA80gZ%^rk7m@{|Y5u@{u zT(EG_;;|)5k2-qU@)gIdT($ah$F9N4f!B?%|NQYMoOsg7r=0qQ(>9!b#+hfGea^Y( zoqxfF7j3-wl1-OhcKH=oUbXq^FK)T!+Uu^r;l`V8{?eDfa?7o^ef4(kYj@st_dQ>~ z_rCidc<`ZbeDhlm>mT{{qmNB&ef)`S+js2T_2g6EdHR`WpL_nh-1lDm{!1_a;D@jL z=+)PL{Q4W*?l<51$=mPzlzaER_kaGuo)5W}wpAGPD|p*)8{V3HF@Fhv1AjCBb$)_B zpi^`!bT8|EsQW0e&fp8}x?7G^g4yZ%w+3I=f zCF*u{m--)}){rCQ##4nbp6ld8p9|~4ZFn*yh7n2Q;b|s3H@r5yKE}m#F*CBx&X_0m z_1MF)S7NWnejPt4dusN~hk_4X`w!iLUmy77zyXX&xuxaymU~;i(eh}^u9ly*{A;Usax9xLmU{xP z2L7nxsXN9}P)llUax7=5=VC1P9AYdhC&yyPSmepEtO<{QW-Q;DF_zOGQXabcAN+w| z(OB@_WRCm$0Vm#8{M7?n_|x&uZEipQJMh4KywQ2qfh6}iZuGzJ!LiA2VSVy5oKp_S z2k>7=pZxWcKY#Lv{r~aFzhL|2PoCU=#V3tVqJKK~7p7me{NkBkZUSYLy;rj36?^}- z@94ef?t6LPOM7>6+(-LAdSY+S-pszpN2@

BIB)p0KxX&n-}5a`~CZ8zQ6hd?@zmbT3L17s#xo@K+-M-wjZzt4=!}) z0e1MzEV{FB>|)*hy1(NtjDd=t<@YDI>Cw?Y6}?ZN)+0dH59vofeNx}|>HV2|`uVs6 zA1eB}+WLQ9PWD8Pw@F{YU8%na@2LJY-h+KT-gbQ_-X48F-s`>vhU0R)%^Ghg#(S@C z<*w#=ye0YH@pkHO;T^?)#2bq5b((JExDwdyj9zdzs(F8=6nR8Dej?rvek$G${srzHyb=6#ybt^g z?o7P*`z*Zm`&{l{@xJd1xbyLj?~QoF_fGEXc&qotK>4M3xAO0}C;1_MnAh=ozJ+h4 z_aO5l{2YERKabvn%(wCFdpn`7wS8zmz|U zKbl|0FXvbA$M7rpRs3rHbNsRV8h$O_w){5V!`JxZ_;vg^zn=d*Z{e-{@%#zAjTd-3 zFLHaieY}Hr@+a~q@h;xY*ZGtAQ}|Q)FYu@F8+eKL(0jIdnfLOi^Jnl1@8kV^fIpKz z3-56LJKiY$3qHuJe25S8XY=Rq=kn+A=kpiv7xEYJ5kAVt_&C3jCwsPuzm&g>dx}r+ zNj}A=>HX9E<=i`XOEunQjdxh@!TYU0;P2$`;_v3S@b|#>-OJz4Kfpi8Kg557&+y;m zzr{byKf-7EZ}X4BmQ3(l`N#Pu_-*`leh0sk-^J(nC;6xN@9) z|5N^F{JZ>n{QLaR`49L#{D=Hrejoo4{|o+?{IB#k=#sjWF0ISxvbvluuPf*}bwyoC zSJvOCtLUn_E?u|o8r`+JJ9J;u-Ko1vf4lw;{nzw&@;C7}>(A1ktv^S9uKqmz`ML+V zt=!|f9=<~FDd)b&e~I2*&b_F65N~?_F1J~~jr%^|%lGLX(tShsP2IP+Kl5MFJ*<0# z@78@=_o(hM{RQ09x(VG@-Q&6^bldb->aWso)?bZxvwzIJz&*g-pxe&fqI(oRPT$gc zt*5)IS}B)`orQcZn@OjViFhm;!2|MO0N+mY%J^!y3;!R7e@&+!X2#Fg<86yAdL7SY z`3cY9@~v`vMhS&ND{_d?k||&oD(CF z!672Nl^gl>1m~FGof90j!aI&cOOrhr9zQ8EeBy*WIKE~L?ih*)>cq%@6ehdEI=t0n z9E=REH|Db3R-*}MuzKKbzFxfmz@wZ6S~+ieNLKaUb6-pks*u< zXB^XKb{%;B+L@;~+@@W`;WDK5$NWoxjE4B@Ur9>-zB;PTC( z=amT&>){D|W?~NRoO8i175$cB&xtDSZrQR~ow#T5@|kBtbj^wtD?GWZx@9A)1E>uODy20STnxnB?Uk4J{b z*N#&&pguU!T*_A5(qo7n>M&S0v|{qm!p^K2S^-{D$41AN58~`_WbF`iko5H6 zku{S?aA0`qq)PpqH_==(p{`RWxUuCC+}uNp^*!8{bv>lVAj9Xfql>2RnrMv)5p~O- zVG`FwKK>o`c>2iN$s=ts;m;hM9Epsq*|KFMqK<4?vt{kB1DlS+mkT0WwvLW&*)Y5Y ztu9(V!Q=Q-*C-Ps*RGfl)||lC!F$qxk+J0sC1l4qwB1EhyBt&siUk$MaKHup&6`|7 z7TnV1A$4$qJ8Jm~1&mxy+e@*ntx1ufxIK{ZB-@Bb>uIoPh_)v;@&9em&TDoxx#J-B ziA{@_Yx^p9obou=EMy>$HFW0rsWYyl=**_6GY4;96M=BHF{i^d(GfrRXTxtR44+V+ z;NAbj>Gj(A3CG}aJ=|bI;NWtdqNgom21xIlkTTd#X0|{qZ$u`9%tY(*=as${s$ho& zAn7fMj4nQAxjMY%pcZIHCPzwo09B8yJz>iv#7OCR6#`Z#nuBvA1+EWdR5~y+(TvP4 zuruR(xe5JVoPg1oy*0vLy?ASrzk10r%b$d+q+Y#r`QtiXH@If@img$cTmGa9Gt7?a z4j!dzRNCW4NmU=$b+A*)lTD7>#I9{&2iX3)T|CE*X&2!b&#l{~(~b%3I>DZfeci+S}_wL=R6ZWWkble^Ro@jH=qCFe-v^AeLn7XJRi@swPx`e0r z<}QQK#qAV!syp>-wr|+3`^B#!!C(GL4RRlMe!S*m{i3(|=1&&=WW!JNf4tNc{Euy= z;J@Q@_cs3h_p-tF-VX(T{y{$Y!LuR_?uoao0waFlEu+x&=Cd8a-8f-;Blt$)4gKrS z%E9OHd2Zuq@R?_W!Dlb21+Tw$Gh@w3M9dbm)~?MesR+wea=o^-H99|}6ebTFHf6Xy(-B-$<|o8aZglDF z2?vk$lGzjG%;>HTZfv5I8J#dJTDg2H&tJa+M<;YwL*156v|J4hTZ&oan3c6d z8;G^;LIm^(;-)(hZ#~HNuHbdJi$j!fz3fvDn?XYYvWG zh3L5lanTCYZ*jZO)?W}meT};s@zQCCk2WKc`znrXN38W5-obssi}26;bUxjX?rz=> zkNXDwndr~s=*eTcV|5`!3!mVwFQaeU5P5CluGLR)3H0d>c*qCP>pQslI7=lsS(k8| z5Y7BecQ0}e59@#5Qfj%Q<*k-KwF<4#)+1ZDw&~h7;pf56ZvS1!SshOq&NlMKq;Z+? zKI7{qpXpNbT=RpLVas#YtaY>XZQH4~w*^%=NB9N)Gwvq)Kg3hS_Z^#^R_Au-0oPfs zr`;L%Blx+Cb5r0(I=uW$5zE&L#|~@qLi4ISd%zEadYCn#J0ru6F*J- zYx3FD^3;i`jj8KX_oTL`ew2=<&r5$XeS7-h^wa4dr$0*nHDk?0GS$r0nU}KXX8%3+ zO77qCN9X@ic%*Zz^Rdo1JO5H#UVOiFSGl`aF$D>krjm>&^Dw(wFR8+xI>ahgbIB-M^#%wSlz_PovNnX`It|wDF_H$IW>2 z#O8&~FE_t8>ylZ|&pI&s`axlE%i!IE-yQtZ(4L_`51Rq>J|qrL8@_7z?%^H7uMPil z_#Y$UNNQyE$Y~>A8~J!n`<$cZoHFOBIsY zKRSDK#pp?+d*`p4fA#zqj?^8w^2mJ)+7}cT%wO=#g0~j@a=|AHf3)bjMGr38x#-PB zzgT?L;yV{Vu=u&fZ;Y*35?|7{t*~hX<2F6+-09zwqe;-%Whrv?PV`4?^*ug^8Z?K^NJT&yuacv$8;PMI;MQgykm|z z=BAaNm9MN?wCdf}=db?v&-H%pm&Y28^&flDn!DFLwdN;lH>|yN?FYwwWu3BaaNX*4 zSFC$%ykk5tUKpQ?3FFN1E5`30-!cBi_^-zQvEH^mw!Ulqg7wFJKK%KgfBuihTaLf) zgyso9KCyn{?I*r>(&tWk@#NlE4x*&By@q)`P*mA+m7ubvOmji+wBYUAA-pV;{F#yuPVaB;`Q+b?lma@8i& zrl&Xk=F&4S{r+V~TsC&u-!Io)zUA^yt~le0zh3#ZtD0BMy=vW6=U;XGRS#VC?B+R} zkKMdy^RGAm{_6ItZCAhW#m|57S6lckk6a^N6TIfmYaY1f=hu#3d&+gIulv*Wi?09m z4QJf&>l=Q5!(VRLf8(MXm*2SN#uIMbd(+J~-F|b+&6nT&hc8|9rT_f$bzkAXvgww@ zEfcrwx^>R2zqu`Z+qZAq{?$8gpMCo`?ijh_wXZGs+FN%H-Z^^bgLgi9=Z?E{cNy>c z*#iZ|c6OeDhzwHTbQ29}Yi!!o$CPME+FW_U+WSpL%rc(OVz=_Mqn0-dwlB?)+cV+rf$1t+nw7U+xF77pKbfMZJ%rx zwuiUZwvTRKz5TT9Tejc7eaH46Y=3Y2@3!yXA?yh6sO(s};|n`B?fCMJZ|?Zcj@>&x z+VS5ztvi!D>pPe1T)*?eo!9MrbmuEOf3fqgyG*-+yKZ?>_vGRy?|y32cQ!oT`t+Bc zIr-UT&p!8D&5s-thdT&;RMW8(%QIu>OTpUpV`PjW7K5d*k2x!Hd2Z%P*ev z;&;A3_od29KY#hYAKdhV`+oTJD~n$F(T`4k_1f2FzxJO$R)75Q>l6Qf{XgWui?9Fe z_20h!-)~57q}~{M@Xckk{acOSR=yxrIDzIXSI z-9Om<^WA@Zv*k_Y&HS4qZ?1atj5n`-^Y%9<-hAQBci#N>x45^wZ)M*ad~3y9r@wXC zPx^l{@{_0Ee(deIUw!xC zcb|TD-+Qg^UG&}`-{1N3Gk*TS2TMQr~hK5Y5W{Gszh--po;@BHw=y@tJu z_ddGMyf3rwhv@(6gXNuy_xC8QtCAOzQN{amWVtA|HAz zGL)AfOA7L@7YvuQUShbRwWU?B*Xi0{ZRHA|lnRYbzOWkW^6Jf>JYO{M5r;m~UDmy~ z|Ko3caM`QHS6g@g&E7hlp5xxs=~~`Y z+xWJ^>W|BXkGV#yX#>qRquV%%wRws!=5lIO)%9q*OfWWCb1N3RHS zRIbQF^0<5!j>(~Bi0{NgXR$l?;D@qJQB%bN6(udkZ z7%2O6<4F-dWj*_};#`|!{}Z?I71#c6K78rJ`~OIbcU=6Dx9xw`#V>p0(nokJEzmavOS#4M%5kp`)2x>RypqS~}5jNyi3tW0%Rl>%iV-uSw``Rk7f? zo^JeW1G1d?oXx7&$@0Tq9zPbwEBHOG2J-4__*S0xR<@*zTU@TRSKk((sI_Jgx&wi} zw&S8_)1adpDgM&U)q?B}0noX2(%anovkbquV|^NH?q zfS2$`+j+iPiFSkO*l&;E0Br<#m$OChuwv!rEAfPWfY%+h^qjGa-dUItTmwDX%NDLz zdqP*7$NT=?IA>t}bF(tm;jbS*F7*d4xnlpXUS0F0yI1kItv_|mjra2VZ^2`NuH+6! z(k-fb{>gT$A^N4&_y5Ml3;X}5FZ#Dt2io?}YqfQRuQ=}U-|BYr511}Lp?TE)%jYa| z?O$a)AK?@C%z0gIzW)C24K$ns1C4;&VC|0XI`G>j-mBTo z(Ow(v^jo_;+Jj!V<};f&zQ~8;RY5G5knYww2EfjE zB;3}{cvmiU{m*Chc&Neu=F7MJa9PviI@#zIA$^%p{XClS!MjNe`0*@)96a zNq~^h0-+O%3?-o^F?2*kIwC6SD)x?|BBBT)mIZZL*Rtx0WmnnubKP~xy!@W~&V=HA z_q+T1fBuk6Cdr$b_uhN%InO!IIp_Xn=e{3w$)17rLuUDsk_U_#GKV|Z`{R^^YkoZP z(jO1;Hg@IiozPT+_HOS{o+9xB?;JC_p6(K9j213X$tMHmkWn@i&4fsMn zaKua*lUA_HR1soHTA9}u&@nE4z)r!=i zL-!F*M=EES!NI{q?$FT4jloi`3FfHlMfXB8_5r>`tW+yOy)wb-i&RZr3~sb&j?@1_ zB>Gizys&_2Zua>zO~j9dEGaARN6P7@pik6ArE4h>{Ir-p!B&W_Ft&!PADAxutaq)2 zJOA+9`pX*+e^pyqzI{OdiAVu^e#xE3eA)R2){x?2+4ZKwy=1~qiSezq^ESz2Mz@Yu z)_7*7X7#ycUCYr=H!peP?m71i=r`F{zM+2D#_G_pJ5~plmsid9E8EBX@urp~--g-4 zfyu=qC+=>v#<93xX7xtFA_)io%}fxDIN4}PQEv63N|pTu3b)w?K{(T zFddhy`fRHC~P`LJU#^5!`hOi-Q7YxDXA3`AuET{!vp{KD(v;qP`TwGW{RSl8S z?S8wEnMcY6UWtX^0RCe_x-AY$qvOroTkp)#sH@9NWZJ|n!2oY8z{hJ|6&Z=MxDVx+Dbl{~53%4$gx z>~88|;-hN$$mP#uJ*ET68s~ZD0~VOa^27Hk-~p5(tX3Jh0|a(bWD&cK-tm66kSk%o z#w#Ss7V;MBUb@xas;aEY>3@ zhpEQqiD`X$$Gq**H_z~KqT?S&rGdDJS%3KpWR?60QsZaF$XQxRv?NGzmNG76sO5$m zRvN%!2WrTR>3EZ0JxQPYk++k6op>K=n^ z$Mlpfs-C2%wV|6W4%P+|&wsmfLGu^8-a56VZNfJ@&YU_kb4|<6zO{>Iu9td&lx6zxmCETN~!CQsVF0aO=2P9Rvv_1hFlK`&Ky57?^qTAT7u7 zI5BD~$2;)M7}D|a{CK_9JS52b4ES z$#(9C?x_p^`4YWD+vTBVo^>YjHfKH`6w<7D36)$mUo8|%#jbt{b$p#L zKpN<(OSqArFSIxpCUgj0#zm&Ev&-F;kQByBnDw{YB{uPP0*rV38Iz?vk=hs!7Q|~V zFw5o^bJ#2-nG=)D9IM&f6-VOm`{%U!ax@r?!ms9w6o6q&IqEn8=bH-)nlYZ34pI?; zzt^BZKk<@}xA&NXTTgEJ;ms`z#(#CAF01axMQ?s|69# zwyYp8Qey8pt+_lsy;$r8nZQBRQ=tQ_wgHDy7z*`(!KSNnsX|N0AxvZr45s>oqM<8e z7bRy5Uy9t3abN9S@#V;%dC=LV&wjmQ|CG!r4}I9(Ip_O{x}5sIFFg6>$A>bfq-7LO zUVFpXzS+l1ZaDu)>zupqSl=*tMA;dC<(->$eU+lqpbCG^;014C_aRG&e-Y?L#~7I% zvPpCUsMC|{vTSkX#v_;i_`KFyjuQkVi9-2mj7*epuCkV}TO~cuaRyV!P=kylu8gbY znz)5r2PbhjsG&kf8PRtS=ZBa!cccx)a1wvTD9N_#DM z!-r1{oRFC4PB5^S9#m$D;%kSNe@M0G2FUekp!^g__EK5a+l2)56HdrWE|-dP2TL_M zW2MnKNGq~0^o0|;k}Y0wskqd^IT-(b^vto|?qal3a6jYSoRr~6;tX`;I1&^hP#n0K z!*^7xaxtw+fgx-HhL6DqFWN$M!wRWU1d|5br#eIaR7O%qsCq<<{TgVGpFq6XF(3bR zW&2Vx{(N;qqF?7)Sb1J~x}xdSv`Ks6TPTmM-L-SXV+}fEaeCJ5@_XM(A?EKsByHQb z9x`d4(z})4e^%Hhzo=|i%a6(fY(?k#{M?-N)l=7H1kx^G_4mN_nS<3AnHh4PmW^jK zNE4FAT3L}J47rtpJMMNtWb64BKFo7Gk00|O^N70W2Iw!GHpKd%&|uEKprdDD#ONwh za7?Xdbp-i4kl2eGkCSF<(O^o2(w>1|azFJvnSq!5>m`#Acn}tN;^p7+e-{1^lgQ*S zeVJqO?0QpkVSQ+pbAED5dP_!2_JYD`p)OZfd{^?4^sa)g!mgr~ZR1@ak_)Qc3{hXC_KAqaCdRl>~!8pg@?Kv7vnZN~Vb85z5aMAR;2 z1iaXb_-G!FWsXTSh4`fu=`%5y56$Fsh@85}6x~Bn^&?Td50TI8Mfu!!V?Nq({?c=g zPnbY%_~Xg1?mw__$vFGXOK*9tzntD)+p*x)+`J)8Ijv1yoA!3h+IiEkalgEG?_Y)p zWg8oxC7NfqEdQ#%Sh6eJbd)>a)V6nVXiBQR#5L^xo(F=<`wpCu>&!^)_x6(T-fHZK zyDoppe-1oBcf@LWm|)Sm9F_!Ekj>@1o?_BBwQv3aazpA3`QwC%sT1>OanmeQQ>JEz zJx*&g(V5R)XF@^!lyAJ~j;=0Q&DRT0N?D&Q!-25zWmLv@)L2nN+})OWH` z?M^7D=HVd46g*QNRrj&!vjK)gwL%Pr^dtP|ooy?W$37@;O!e#Bt@3$N-)H*cH;%ir zqH+Kkr+oUSHwv;cXZLyNb?lHQM(YjS-#$<}x7>D*-hhok53@8ZZjh4sm=~%p-U5e8V{2)$gPdmt@w~vD3j-Ju>D&~72)J`tCv}fg=tPkp zKH1Gce~N+!P9{m0?gJ2H85fXh@2eFa7ARKbDOPo2hSZn-P&%*S&dGRf{sS@UPy)DC z)7J$!$IDVTUVZ7X3SsGM_Z(MYEFl5r2H_F@E$re2ay;URBL6DK0!iVP1zvnL3ONA* zeW{D(8}6t-wl&WhfUExK84pVP3G^VpPcDnOP886> z+kD2w3qs1<$w50Yyn-&CfSa=3TrLQ9yZ4vL@HweVKsC`tC{nsz@Dpel>=s1YOh||I zBNzn87mEj7ML+~0WA3dHFV8J}rgr$5Q2ns(xh>~L=<RDPO&uEUm*xLQF05sJzk;&!r~D+f$vD`Jz{! zW=M|<#%GsRfuJ6mJTP^lG%>HfY-ZfNUV#&`g$iL9=!YF)WD00?42LZQ8bS@XV}|KG=S0Ko z!JNYA99uR}L@l-WECa zLM86q35;3H?3Hs_Eo-%F)3wFgLE06WZG}sVw7JPic}aPB-Mrx7c_F`sKdc0?GU)U9iVHd zy#@$b1PEO~EMG^_GaXM30O({=HH;2oSyW0#=JzqIkpqUGo}EOp{-y_wY+Ssr$HHtVuUOE zBL-Guu>49WK#f?6Jo`K4E9KbgrAtWtFT1~9k!SV|7*M`%(k*{zY-l-uX38VA{pX~c zg00G*JV>rLzDs6oSa*B%z|Vc5)TGR|)>+CY_rLp9jxS|k($}S9sqR6xjqoQ(j0wK? z0=dp(&1G|~1(4qHwi|6T6T|E(J;rQX>RAMz(~Oqj-IB(Eqw~xi%#jp1g(QbGH5pQw zR4X+}?UEp&TVREBI5}>IhI8!zRR+1ZMjkLFy`D%f2%&<&LlB~vBZp8Nj<|>Lr+@r< zo$~z?%8e*om~b!AFPs}bH)`~#BU|rR{`$*pU(C4YL2l0v%7|ry3xsod!v=r#(Bk{c z%hE5k1w)g_MCw=5kuAZ<^h_uCI#B}eCw1%eXymPDG!_l32_x#sMjWHbZK%*4Hi+BLa-Va5=C~GGVx?oZ>p5w=?i!iDI>M;HQ$PBuz!NxD z)VabZ5td~3{H296<8cjr%ppy}xrdZV4@Ta32=_|V9o&d#S{kbX%Ln)`#-^P5t#$f( zEu34eRldrp5^*>?P#k8Sj5Mc}QkS{Q zvBYi8@sZ@Dr0!HSPfYTp`m#c)HQBylzU6o$w8p7Ok)dc(d^o_wg3u|4Eh7h70<4Sf zo8;}(H>M0G@AGLHb(6p$#CA)-W>Z}QU_lsXs1*$92h}_we)vvKRO@WiOrZ%%8Kv+&s{=VmWF4Xe|*o<=GZ0m-gKMkFjIMe)sjv zr$#m?OETDoT{Uy-2klG(nsL8NCa>w$|){0GHyC{fMCdI=Be*0PN=h{DOxfU(K5#)@-p-?hdTwNU1!dI6XI+#l1 z@hgkH5r`7AV}UBBlsC03l%o}`%0s6fio`#3iZq?t$bPd?IQP#W`$;5CI2U<_y@Bp1 z330^7)bUK0!6q#gy7XL^k!W?g?r1d8@UPKCdb=EFG?T6?Sx)WkieU6$?aOwC!?o zh@b4>AXh5tqjngZI2QiFq?s^RC~qiiCf9mQDz8L^hdr6ETsTv3pg3Ef8LpnVJT)!b zd|El`XANZS$@i^>r%lP|g1Nkwo4*$`I2>GmvO0tJ%5#Gp_9#cZ+O%@g4K<}f2`k#A zmTPaq<^|Noj`r$_q~Z8(;BBC2U<x1_{^jg02^4TqhGj8ZszEuz-R&ra4Na2@%A$=+E$l0gDEHj0y)*D+S>XO6l8+ zpb}0$%gyWQ`6YY%V~PXF;}R!C$}ut^4?Yni6PV$00fHCZgoS6o_M#s_5<_fF1}Q@c zTNBnuAlQTzEf4(D|B6Y z&otc%wu9#kOt+rJOsTgA+Nbl50#-C|f8XT7n8wFO!X}e%Q^bF5QT2;xa zK^Qz-9SHE-@#91t4virK`4CJhHXU^^5j6A(?WajbiyhwP_A?A}*v7D(U1!9FXn5iSOI9!@U8pPSmJhDi% zs<9O%#R4F74mBvf0^vF}atS6ZGH9&Q`pP@WzMfk%yMj|azSi-yzmghup zG%8SSUi9<9sfcysmC-FyhX;O$6!S;ES6Y>~>A14VQWF1?Q1VZjQ6uxmDegdYQ1l?; zPq~%pa&>^q)?^q`tszZ`wN5k8+Q2qg>+Q{nGiLjgv5?0Vl;y>OgHBXK`MnrR z^t3HptQ>z+`BC{``Jx-ipx01PnXjyGXng0$wy($3H@@@2)^E7iUQ_mM-g*y~(C{{y zwq?UT%4a?IEhg~~z5Vgp@Quo+```U^4ILrH;x??B1@WFm@-QUX=;u0Gl2$QY4v~*{ z3+^lW-`Wv25t9i9k9dEk?Y&^w#lznC9V%E6-8&=>YCdYvuLV|A$gacK@L4G>d=+I! z@icx$@f89(gC~7?@HgGq&}7r5r$d$f=FUw`%W0eZ!q%sk-(4|q0DE%8@W^|@xdM0! z6IXr=zIzf`sVpCk z<`DH{qHc7_=(6d|T~@8_o3_kqw0}T#)7HFqCZ;^7#d)k$6r*xDJ`lk zqTf(!2)zz~odY}bFDnkmG#28b*#NPOfuA|67KT4Krtxi60>-`#30ThZGp7{JN%i>q zE$e&xBVeoYJrJ4qS1ejUYN^NsmAA>F#U$aXMErKmpY0j?))6klqh{mnx1wAgia(VY zPLbA|sQ|$@eLeEmUa9dzYD|!tyX5&G=TdOoVoJc$$1>b9!P3etG_+b4BzIv)th6jj z!I`~wNwV9!aoU#y2Z&j^%_(N4Bb-QZ4uRPm6)9&;hNH|;>u7ScI|K(6DaTQ?%^N6nmZsG@YtzP?$7CixBAP8Qy*G8Xi}WbXZJtc`77e- zpZlx+lMk+{nGtW!v1jgYoA%nEVGY!dJPD2TI%G>?TIE_`j~HsBSps!J3-Sa6NzjC} zFl#m25VqqiSJ<<5aAz8=21rh;snaghc4-lc*dDbD*F(5PAc569lBlE<5+Aj7;34jc zTvUE}niNJZX7GO$vi|v@ko6Gm=?>TdT33_AY?Q~P*=MmgN((hz(rU!H8K&El=kdG_26Vcyuv+|Eq@7{+$0;0#~1p&tn5#qNYs;8&Qh|c7S~8Ryscqt#v@^+k?P_)fw@Pc(qt@&o?vdzqYqT`_ ztC2e4k4z9&<7Nbn7L{nAvQVXnTNBlLPed?8r@~eQ#7wd&Y+?n0;%-^w!28f0gwGu4 z=wd`jXe5lfY;*|6EgNZu>6MXC#6$;!56y%~=~uatW1sYWGm9OJ&*5}f{JBdQ+NE6n zgG*lib9e=>VYVq|(laOIxe}uh=iog>NsG#L9ZdqpFNmHOML~^YOIk$a2&1QPNvAug z=N)=I#)mCJG=Q-h79-MXMD#@PlAu&TswF`nIw_rGOM}QTX(pKqtcbKSfv%AqOC|`$ zZF-{T1WC*535Ud5I=rZFfruEA3n*!)hWU|mNL@1eMPsSb(8t#`Ro6bJYgw#*Q1Hm! zq&)Z`F|q#7B16ff-za~I{OY&tMfO7EG3d{Ph?AWVc>wFn{0h7MdCY)@c}QNS*W_qM zXgHaX0qRgO=(Z-6Pt?rQtkQ6rPFyUx#7uD+rl=F5NT3-wK3y2b3=_JTHerLXSCD}0 z1#O52rEUSGJ_wZhG5|x&CzOItTc=y7>(X)Ayo|0891pLBXEC)g*m#|f7gZ0c=YjQY zri7XDTfNM z&`dqSXlBqNnh**{lxi@E`1o5cwFmg_p1qm;gse+#+`Z57iywOQ(mLFcLs`!K7THG< zcJ~lL6gNiwAE;9>z1eJt9m@cuI57x zmTg%qXd0wMvB1H2iWmb;iHfJng{DNAnU-kSnqg&jl$u;fcjk2|QqYXl8B9N+2vX8P$B3rmjIwNJu2YeVke>lea9D53SPhe@b4Lsb!0zvYX^WnsQ z{x0#^<;#(nRw~4CTf|#%ZT?{z@L`eG@cA>q&@{b4Hh}5pxE72JxR7c{sxhJC2?#0L z<7vzGliv$*q@AM1OypWj;Fm*}mom4=uHy3iQTGOg3;dR8{u%)lbr=>K|Rg_(p7G=|7aqg>x z8e$II-2HzVIjUjW?1?XrPV+Pu6nBnZ|3KT4MWp&|QIp~KH}@I)(Lh~#=#!ae&uYad zUSe+${XXBKh9M(Hg$`IMovxHSI@UjrX1ZcxAg-VaN57YQj+!&pZ1wc@M0A+1KA5jV z5Dz=N&*k!1ge%P%_P$7K7{t~($8mGHC1kZ`g*j|*cdkw`3y3YTuC>h3bXtpHGHx*F z4Qa?O%FvhU2k9I2ZF)hUhO;U3FQgfmgxyw)-nU1L&DAw=4b`wA+M%B#*Y7F{rEfj#y?4BAHAvh=>_*aro7ds&z!|$p1xtHyrN;w zFW8>@ln+~PToKGHM`6ha{l}b%Y;HQ+zN~w6Nu)b9V-_T+>GC%~yUW0AjF)XN-r9IX zN@_f#JkvZ~oW?}avJD|{i^a9qU;(MImx)VDGgB$F0Zrp5kh;K>Kv#fESS!9nc?}hA zP@@ePOg|}0Dj=PJf?Jj3yOzZ0O=eUX3?SUZx%c(0l&4K-BFwI7kJSY94jgeXLw@aV z+c#8q<`y>C^;u1?#TS*8+|_y~vCN*)R+j#jt-u+Vq#XHf>%KIntHk(DW(cb|7Wq`! zu~l3zPZ*joG<7bI0uSqIk7#rF{XRA1x`DMr=h@Rj_8O!#vxC@1whd8Mx?mPmAF&qI zNZiEU#)>S96;9ByNo%z)rP&$R9eht4GF`-PvPl|Y(#pJM! zfp0@2C6acZ>>@auR@`T?_sn7WToUEcd+SPu>>k_tAR@@jd_YBgtzTllr)~-qTq2 zmMz(Awm@oOVz}?cWX8>`l^fd;GSuh|8|)?=mAo*4$l7{s7!Y4;WXu+`*X(r{m+buPB14Bb9~5JlVL11jxaVG+l+z{=SNl;5vANKI?>5WuQBbjnvFD;g0`_VMgTh- zUDaYL-KaP~=%5)mR4sL)?k>t{u#jeIcY#ts`^Q$8JE==*$yl{2MN7t{DbIX#?4z!< zE=}N1N2_NAgqb?q>NOdAdP3YAd(vP3(14IE<5b4;uVU@|Dn~m%z!tN`)?qorikgb& zi!<{PACcOuUGA`Nb&iQ48~ka-c3Y~g1Qbe!t<*Ni)@WZ;I@;b? z9`=s!N`erL7*#`;t6ovBWS2`nlWhLgFKd+dl^+_P7@DK&bF5*?`kd@ivuo!5<@X(# zGIq@G*SGBLuBns4q&Q7$MyCB(fHj}tJm7Y>>>aKIafw-f8! z*{gH?1#kM&$JY%zH>bV3wiFW4M_oS$6VL2@zT94GZ?tpnBbPstCxCp9cLp2*XRB$B zbERpyGwcq>YeBMXAUps(Z#EkpjySu;Zn12z+8kD^jkns!i`XwDA!Mt`u$Ec}SsSfw zR>7L!NvN>CkYL#Dve+2GN~0pzbC^F~AyYKi_*Y#=MvXCHQ$RYds_`qTo!_g~Ja}}c z!8m6Ai07MLJqmTcX5LHFcihKKc8^YpoOb0HdOQ+gBpKlc>PYg&nxgSN%$BT zL1OCV66Q`s^f#~wo@>-dA z)wx0zeIY?6uN`29os{=MURY6%B5mj66DO24m+nJ47Q-SeHJ<&m`tI?}GP%x+kbQr6 z{dW>Reglbf#wCO*ox?${aL$@II&bx^7FXECxp2(5nV#PoH$JX4Zb_UN7w2K`BJ_?3 ziQ5-%*6YoCq^K}b^FeQpieWGALk!`{J!0R12U10^Hys(mSdRVYV^5sVJFo1_`|9DW zHQAZEq`H#YDalD0=5xRIlS6|0#6NYfov|1mF~;ZQWOoeYwonG98i$evh;lNe!XTkhXzS%||IiGKZQbyq>xfrF!VFeCC|IgUMp^ZTT5#-n{bE@~qPA(!4>bgR%zY zjT4(vO%|L-#s)0*4TwC(xyoF(pv%SgEmx4~OeqK#u)&b82B!>q2YDO4ZC=3}EC^P3UkDm@=UP0wGb}zc zVw|+V65IB_+PK868oWhn$N`)ffZ6qX7_jx{TRN6UteSYKUaO@W+dN`k-IGnMR=oe{ zPNQYU*s5Ktu*=z_Nv+RJU$oV=?!8$%cX6|P!!p#pJ|T0&=y8?ta(tweUEQxPFmXWN zQ9Z}_=G8+-w~TEWyQ5dzVUFXOZP#hL(a?4QN2_V2iE26F>a_iT)NIo>bvB%3LR>@2+_)Jj6wPT8M5mc`?=@R|d&M{>#o@^m zpj|`y&~)!BaQX`Nx{6tPQ3}6iQbW^)eQ$g=v2n~_w!L~mdABUIVdd2Qeab2}tZF&H zzPCsDe%9P&U!LAWEOTeA{3LQq{d;Y<+}1p*?t{fQ@0x_{u-_;%_(Ql?>N#wbhnYFX zp2AsB&sAw2#12edOjc>a#;|==;?h){qle@2+#apYXw>O8=nV)e865QX(?ZLUFH}>j zZ_+Q*b5Y-c>JSSYQ@slggu$E)4?^!jR4i(%krNs%u(^^!BLQ(z`*WQmf%toIbRA-q zL{TpS3X?xHdu-!{?g@MQ%|A+}9`!UoyWqY@PO4tSj{fZpv+pkp^&TtGzoSv+F7&Fp4gNTH4f>|on=w=HO|H%YR$L7k z#^6efB}TaHbral8n(YAqjymW608?I9?mpTv<>7@_0eD;m0QkIn`=|i?sbPHcKP5I{ zz^GTQAn?35{i(AX>OPyZayiA{s{Z4C41r~xrO3r=)V65_t=(a-(7s>?sM(FOC9{^A1Qm()QsJtf72{l} zk8u@-QjHW_Y8Q7*mo=zx@(W|1J$Ct6#`+h=7UpJidv)5eRXyME&G$DCLG+F=*2`b< zdc+7q%qBTW>lBI-oX(=s;sM1|ob^R5#j7lBd3x3hD~9H2pUZi8vd~3LC9WJkiShZe z_9a=oG+|1=kBKv_WlAhKgNZB2S?elsao%3x#TifL%9P6L%C5>7ZGz}-tZ0`S`eyn- zX%lQ%l^uy@pdTD|EYjb7q!?Y}z=puVcc%^h~c7xN9v~to7JIg{c=Io}+f8aWWyO?C=R(X;EhnVHss_Y}}S8nna&{z|w}aRLe2`wH zrdBfd@)ZC};4HY#RAu#Yon_dJz#@mv->0kaW}we4U8!Bej}GUX_eCO^Gn0o7PSo6M zvaML_tH8Tfq)vC$iItpz<8FvH)a?SwrTrtJ%%$ zexz>ESl$;Zd!v#y<||}P4pvp&)-kpQNg`3UMkP4-zeXxvdgb_5HjUmQyrYfW3cT;D z2xLBldonPmoT#` zLY**0=oFTS0JLFTu97(FXt1YI*;-BG=#&!Gg#oC!Fc;Qv(frnErjbhML<9ZTP&(p6 zk)NInE5(o39#0~t?_5BZ(!q06dhWpl9OPQ)CnWPSN<{@0vp_kWHQ7u$_@@7o(b;sB z(b;f4qceyMk_N#JPbV{_7X3=nCTS^=Lvyx=3gd(p3{;>gRS4H%PEwQ7jQFV&QE+G{~&15`?m zu)idO&b)dT8~2VfgM7*-_PokfW3|4(J{pO;)iMooF*uq8C=$xk@S2TRSekvJxfv$A8btaIdbxg)Za+6KrRNxX=N7JN&xRf}0%Crl zEEj_CS8|yRa=J3o(`cbxtsSETiwz;WY`X#n5zh$_6cru%ql4%nh zf;l%OS9Wvm+|=}HQ=N%5>5iq-f)SjLeavCXb@M{1&ve>sX5vq|ncP!2-8Py5ujao8 zUB$TL9OS(th!mtjBvg^AswxUisCm0mQ(Fy~S_w~_hL&id3C#qcA=662ZQZl?NvFu{Mnf5*(K%S=^cBb4<0%5rv$>ItHX9y9Z@T18J=J@~D~?3l+Nr_2#n?Jo*W zSHN{a=73x)q@zb+dXAKqUdflG*QQVA$C@TP8`2x{7Vrz4)APExHa=|aa4yMnnyiU@ zrj%KyBQ$xJ^|=zF>`Lyj1ghXOp+yoB5|2qfhRe*NRqcchEUu?djb;)!NF{jmN=Z;#G-lU;2&>b z0yphR@mmHL6|Sn*%v)5wV9w%1OteF`)^oQ5F8NiF4#G( z;&Szb(Q9wpR4_9qD_pR6HMNsplPy9IcQ-018|BJLj?vju*}3Kgjv47K*^ zi_1DA!j9O^BqrLjL_RL(S%%4TKFh>e;@CJjj}+v|d1^V9T6hFmhZNBmh#FD9nuq`d z6#bxaWWPF63Xasu>nL<87kb!0UjCXHRZ}uE`lcjQB_zq2%`>%!*g$U1%`JVWW~TQ| zcGb9(`({p=DRFmCKR*11aY>#8*`GW(!Q+4O#Eh437&b8_Azt=-M#d%io;l9oLe!n*lbtIZ2YqS-;~)@JHt-a8GlMG%dk)u11^_nbD{z-r8grM_=?u1Twi=cX+P*a z`inwrU8EsIwH}ln%BOwNS{zl*Vuhx9q=ApII z8z(8F*k`AVoVtTdxnb%qwPt6ze`CWPf4;kY>50OgS819xzir6$?bC+MM42!_cHMZj z5~UAwuRP{|twbry!s5iLQG&tZ(>aOJnv}Zyu6#B>zw8+%%aT=})shv?60&gZ&r4M* zXsHTXm0T%Rp$L>B^=SN`qEdWEP5QrhE-i51OI#zr2YBiHp z-6hm9q`TyIy}Kk(AE3J=kd{neJ-SQq`fART`WJ|2tAFuc^etG{{WTw9C*w=aRs;zuc%&$sm5vH~ zB{=Dd^h&VOm0+bSDJwm1@bnwnv)c<-_pz5yx3dZCcYZD&YMw3|@^nF2LEivnt@|hU z2W#C|#?iv^$dFvqcVrz7=nlm7eX$O#^)-Zb$Uf*)alnj@>4CiB;e7hOkVU>qT%%P< zGqkH3?xXSWf6rahl7x_(=KF!ghNlY44DpTSivA}aJKAt6rX8Y*eel+=Q4#+ozn!^h z=$NUO?pgED!DTylQl9(QS9HjK#dzyHlJDk8cYl9(`^|DcM#S)s$8NBaTY9sN)lhuGP0^;IA|F0I^wvZu3}0>SA|L( zQ!S(V3TmnIHChH!O_fYE?dHEHlK)ko{1?n}I=18|&-7}O^$V>2|G+d`yoNWvQ+3I0 zOIfN*ROVIPX+xrW@o&+6l$~v~NB82-uNZ(U%(4!OfG~l87FRWw!oL2?E1i$MQf?N# zhVC}?mDC*>eXm<_g}Nj2qLizsm)h1gN*lqfLqy@F+Xm0}D6Ma8i$yQ!- z}Bq#jrb=A>C@8DK99Suxrih2=@FCp2?M*b`KHhM&MhO(%_ev(I8v&MiL zA5L9*!K_aaf>qTeRG0$xQAaz&56EVT5pl%suw+K`^dNhl#j6^?KU9a$KfD@OaJ zQt`dg3+nKHNUBq49_r(?U`$v%~Hg65kXZ@SJ6ly ztWT5zh}tZ^u_a zogvmWRqdII%5xexSJ6BC#p@cSQj{uyJc!zP?jOTX&L7=A=E>938pm8*JGy=Jock;C z^aD3feSPB#{qzd^TElL{j+YKgD&Ukm$!y0jpSk<*%@fdoY`Ss}SCVq1Z?)L-jA3;4 zdTxlJskY|y;>}yIH5i--DD)Bj2=C}7*}&@Tx@uRQYl=&Nojoh}g^G21JT8sk@_4oi zTJ+h_qT|{!b5gh8*$z`p7yGdXq3-`-!B`1ACN@*2$eG`sg811C=iR zcj#>~keP%$V!b}*v zc$n*)7FrrwF|vJv;N&Na%nFJ5x}u`8o%xcT*+{c6F&UN%0Cm*4gACCpwAm2#x34EANVFxv&k%-M?*iv0 z+U_FSZRlF20`B>>G)1NwuTW8!9i0uP4jwpaM8g*wo9=B)*Nyze{5{9AvvO9| z?tdU3J#<1t28^g1e&M#J`^Kj0>YkW-;7E2>`kLB(58l=0&z&+ZZA#z7{#m}l36s*s z_fH)_Br$#dzzO^N$o)MjFJ%@i3g`B5#Q7ZAn->jSQdBrRSV`PVhbYM?^-p(z5U7l{U3k4fBz@!9`)noa(hU2dk(uRx?U^^?~I|33ROfS*6l|DWci{(2QHQi)=fuEZY4k zD&I%pK*RTx-QuyIYPh5Pi+B7$is|m{bNO5T7&6j|!HtaNk#B^4L4itJWpKD{c(6Wg zbiq91^t9;(#^ft`3nf2GR-jp1*0oHbrO;c*6$Tx5i+6($5=BQ|A@6ms&89lhW3-iL zXP0_kD9O)r>~nhdA#Orj`t9T5kl3IyMYNfdy2p`yOY>*cZBA?9q8UE1y^cWH^^N?X z^Jsc$`ISz7P=>wnB%00_>%{Td==ayI&U@1TaqRCY zvxg0Oe)2u9AKScc+r)btXPAw5C0NGxuRb`kbM38nuNg7n@n2kemG86uDICbYZO!_3 z(=;iM-n95rz#itz<$UQDR1H$wmc^7a_sdIH8&_Kw+rzGv2}?7Vlu5<}-k+Rc^Ey!P`X|?uMj;Um{3%MB%9V$X)XsX}f+adZ((fI68ghv5Girw8m1pMG=(!_%D!4 z5a3zl(o$upat8m0;zY_a{D1!VXUgGw?b#qRn z{<|NqC;=wR;;hm_XfqQN$Fv?cW`PJm`{38n)zFOo5yf18ZY(#QTg5LIR*ISx27-gA zQ3WGvG)}}S?I)ca3r|aWQd?)19jw`5wmj*u*z4`A9hMpMg9(E4p|mhkr5Y(UorU%y zv-*(?Pi3swLy86Z#9!)@7Or+&tou{^sz1K+%9lOtS6yGRLpdwks`MpiBDb-}l{KWZ zEpnJ0-UfgaVEtuLS{6#OdX&I5{g zi*mDCUqDU^ZoWC@SNUX%h!P>T1sn}`91Yrz3(>o$e~(Rtg$1S%@W~gvnfInrf(Iny zoj3sm?nT$)*Z2ssXWHd~CS+i;tWmF#P=#+Wvh1sz0ZAhUjw3ey49-?ESWTKUdIQTD zQE6m1@;bBGt1HmSI!-4$Nr6*#_VzNPED_!smYgC(gm}=%GgiWb3LbPFiW28lRkTFa zj#g*tC)!>(eH_}JMGnrneU8#ZK5B@($4+j&y_Gzoq>W*NWG>pV*Bu~+1EfxQ>VWbC zrt0!mP`x7|3ucVs$!BbK4ld>oGOa1$*C0huXEd3#NG#WyOx?ta+*7L~6eKHvXltT1 zKdaFO4b{38#4D~4S+iawW<4)}n>#LN09Z?sQ|%iS2I%8<+Kt;=&@W17M;|rqcH2&o zGez4aT#Qyf!wRTwGc^J+8xTtrie`<(G6vM14uHaFs9;wMGLb$&)0lk(RlDNfd+NF) z5#^o_xt9e#BjT9Geviks?DswI-g;VTV}p@%y-jM^barOs4rrJ9%QuQu;&4Ry;-SZX zDKFJ!#b@Pt(!BocoM6aPoITQ0>m8ImEI3*-(K$MQx-{1jmX;ucpv$q^xg#k!6g$bw@@Zp_DITSU=Cx(r|QUcj-EE6VUvTPs%+K za&;u34EzTg!2_sMVH_>|e!8NF#A?8wF7@LnCWSf*_|@Gdk1YNG`yHm?g+G^0SxNKreEXP^fFlu@i{j6~sIZ;1mkFI2WJ)=W|I z3tZ2a!BsbG_c-uD(^-UR*hSo>x!>1jp*}U$>5hK-B17}(ut~s!d zKiMPr(>oT^lJRjndb+v4r}@_`zESz?&c>bZ4LQ3mS|y$xc>MceXEsN>59DN>qB{PU z%t2`*zXH{>xlARqN}i-Q@kyzHoZ{jBL6zf~3CW`ZQ;NoxwK8*)TLKGDUd!y+LQ+ zm!@q!!0zpMrCbJ)Fux}4~E}8Y8LB|-Mm00oG-sx7NmdVrJ=|2=% zpjj+G6fr^CJ)O1|C@eq|Jhgiw?Vs+%GvV_~si?}kz$QKr{qoFRhbaq}uT@+D;NlCbX?2+BSZZa{1vImpc}HG^y4`kyvr2IGIdR3g+;QFLkl;j5AcxBh z(uKIYX|GO9B8J3E8jUV?zz%pugodDUyY&tvY~s^qwVFT>X$_~$qQyZNJ9|nnTT(1R z3um$Doo*)1iC#T6ruumG@w3NOasiPam?O)l_)5#Ov00GMwb4TRE^T}r|19bwa^Bss z-vu}3SeREg(zaFVPdBPHhZG~>A8agj$?1P&y~qC3T4-TKWPKc2nylQKLY5>eTQiPk zDBF_Bq7>!UWU|zz^qhH-e2L=OSEsI9zwQ^mz{3cxA+mr)WdXVTDY8kvMt+79J#;2# zbJ@0#ZMbcMG+&x)lEBO|PUi-6oOR$+K)p<_A2uH+w`+(_Z`5cF2Ca5Otf3kzI^mHa z`=7*xmZR{whPF^!2189-E~$Z68w{k*i3qWvH(Pe2a8ZZ6PPpCC9QZ5wt*X}+wOusB z6^5%BW%{v{FOvmnp0qJhtY0lnca3GZBD!|rS!>nplg2O4S%Kpyj=kpV8r5<~&GBRH zq0uAzME;NPQ_qWih77OdWJD#_UH+WEA5n=^FnlZII=zPXBxxK8UR_#3D6ODic$!?$ zY+q=fn!Sj0Xcp_*^x@=izTGTl>@^s~r1*H}-XuO3$;hq#ETUUtNCP!bDx*q$H!2|Lut77H)wqBfuTujsSBgfiDTcgWaq=q?CXbx(PWKZZ zlH%V^xNC@Hym|A;S10KG{i;{k+(2bXLyox1}zHEfTFtNO5I}*?I6sX{sfJjla ztG)_PXoF{cWD}$rnmA7de*a>BD1(>Uw(x> zz%D!bWaQA0$P(Q1$;;JZA?{g^jPW#15*Y1v9mjX#M9-)w8ih{nZM4sytf|+uXao&C z@PbAJE>M_VghRh5PNm*k6jY0ar%y$mJat-_FZlnNC|sbQkK=t_fKEA~=A5mQ#}}aR z1HhTx5N&scGVcx1ZiswM2I9kmxJJZ>(Qio&DQ8Hf(jci3Cxi+TjV?11^o8W*knN0y z^PI8Th*%_A259%`%&}YQjao#Vc$)AX-3hUf1wnBF+yV7?Ehqxv;F-^keWvuo!x=yS z9`^<z9BDd%!**;W1JZnN=ZeS(1GAN3&&RmW& zwH^hTWG=Uu()=v>i19LRw}xq<+ba8Gx|Uu|80lkazhl7Kx0pDSDN(>VIo}IHqTB8G zE)jk`-CqDDYVTe|L+FI!n`YV-FL;#}@brVCs6;};->n)lp{{=PZEW`BoMG$d zuGpWSlc6bbR#g=l?>G1sFSb>>l!XfKw8u@Z5B2L$XXF%SWN0iJGDI%Z5nkgVaT+fl z)RhR8`X#zm##PoZVk1W9ci>&V6D7mPYP&xh>cJ=_5r#F64lvr5MlIB&=U1sc&@Isp z_tElO8(aL?aZ>Qjp_9t_w)xX{9GO3J+Y7AyREAz52&^$1;Hgi(a*wnF^lXB-JE#X!st;%+w zE8UKC-j$fovgZ60q@VSN&#A5cMyEdqMlCzR7X};k-3OW ziC-As70<=TTRU1(!YOP@bbwLfSdH1xFc&^lXD{Y+R$u(Tw7m&@RMq(ge9v8GpUj$> zOlC4mwn;MCw;^H4Wfj7bu!9(g$|@=W1X&G&;ED($pw@lGS~o=8P^^k*txK&aSc|pp zR@AnCYlTd{=RJ2O8))0__kAr61ZK|Md+s^!d6(yX9ys`q*8rjh(kEC}ggHE|m3*rF zDN^!PqSLd>gAWUov?0u0M0v2|?x_=gJ#g^Y!%tm(c;v{&!o0lsg;P83&S#J3Tz&o0 zg>zZyqj+Qe_%nt*bwPwZ&Mt{AI%CZK%kO&bobluTuxP@?r6r>?6YKB0YQncS>|n+P zbJirj`{z!xJ;tbKaA9qq8olAR;KM;Ns7*D+k~p9!q}GBb!UFLEJ#8gWL?POS_sf~FF@KTN9!cTQwRCq9 zke+Ju@3Fa%0`IC$=_7~+dh9a|I-x&1&3W>7I>W;^Uik5NOTmmkUUdI^{W3179eMxU z%XY6>avmG}h{3e#nu%|Ww&vFzo^#LB(aFcw?tf|DsufqhT?vj2@#KT&e$g~#;konA zd3&M^Olx{*Rb#Nxw{z#z`0sQ2pEt)j!Jk*UWA)ZYE6ehvSY=kz#Msm=US$hEE!i`C7q&KzX&IJLoe?EQ2Xp87^0V@hWX$`J+H5ND=ri24nf(e^rmyxd zDKeZA)BdJsOuLguua!A=d1s}E;@J(Uc=p*k?}n^r`o^=|H%dmYYL>rXbiu*`sX&e7 z$43;*E;vyj84=7*FZiKAMnJnbw&cGGX}Ob;3TgSHONO-kser&c8PZZ1mk(wF>6VV8 z!AaGvx5WF^xjMFp`Qb?wb9U6#40O(|u0tEu-?yBxree*a`)cZDOrHAbu90giw_GT- zbu?rIS|&{V{mQE89k+`w_>I0_shb>V_nFeeJvrT7oYP$jb5eIuy3^8j zbEOrWrG-rd?{rLP1s`o0!&o%HlkB+;yZPYIQI+$zpW}BI2Z7&R z+(7*9i8oK-cbB%mLw5d7yu5|`q8{GCYLQNPUN7t9MtO#OzPtwgmwG*WQ;^DxP~_|XtQcT{u=ZxdIQ1!DdANBkQRvmfYOD!H$b2X`lNiRfz?W5nJNyGH2qZ*?~usH zI~Wt-hqPf91QW3tN{4{nH`w4$8Gu!xv>vWW;EngNFWvPUau=bxLu^nV##)lS5)64z z04_c}v2JwYmT%aV_~w^&Cx5&^`peZPU(vPF`Sn(392|?^3VFg=YK_5Omo`M4l|Dc1 z!gL+*b=g-#P1WXh=yNk|^rAp^#=gtt@)9-NPA}p?%TBPG(>fuSf|m#gpu!9MWh4qj zxKN7E7?us~6jI@&w0{p`021JY-6O^T@$)6c|J+x7UU}4%-CVKa(%^;Pg}*8<_~y6Z z2tem@YyOJWp-MI_EPm7R+1tM}neH_^F1cRRU-t0}A6N|cnw%G1`Pa)3j|YX<;EgsT z=T?R8!oM#3n6)!N)$yks#r*frvS;oq|WtH}5wEVTK%pCkD6xoZK z5#?E}p4TXcAV@`$J*UWMNB!Dkhzh={J(-y`7Hj^VD9GQ-!2nMy1ZJMxsk%DYd;vF) z;ybnx4&CIRk`ym=|NK@7olNdwaw@c$InBQ)zjZ%x>)31h4Ovh$dQ#wK@1EO6UfaK6 zLCKiuu3LQ%-8J&My6C#naZ}v4xc1#T_Nw}vHMOHB`Q_%{9vod#Q`@@ciI*BnE9x&; z+i~*A7e|+b#$34Oz@f&{K-0Oake_`S9y>(_5;80!RGU$bqfG+h9GBu4R`}ATejVNI z$OU1C2?lTwiIQ#`CtGr&4ul(~4T17cEJZ*D8rp~%QfL)FZI`Y>_dHp4+f4sv{uV+27HC;% zOiai;8T9K2<6%es0ofsa7#a2_JD*U^W-G*h6#NTAEd7LK@40el~%TT2% zd!F4jncaCX@onPUH`#O3+5R^YM-xYJ&u8ME?@ZqFt*UXguv#yISsk(Oaekx5Z$W2l zG84I!`8$L^DE@+S>bN=(e<6O$DCF3W{>)~R)nKqP z`m-!sb?;&_$eaJ)@6^cR_(gY0zsc8jEG=XE5^u-Y^NE6v>q^+&iKB(=5wSHfzSYjsmZa@Jmo59~l_S=kjDn~Jzz{LN1CcTN&%$tg0e$%KTb#Dw= z%dJhIxo)#60HR>0&@cF@)D?uJ1uu$FVMLk!diCoax29f>(f^Wo`)@c(S;N~874`xb zoC%IjG#@ds6#|nY77s!00lVT@Wy0tyV>nh>`^UV;y7;^Cj5lI;`~y450~>lTaOjatQy?on5|c}md}Ez7 z!#p!EE4VQ0-0aoHwSo4m_TchJTei#LPPg0B(=XM8%<}8}8PhWsWUR=LGlpCYQkwi| ze!bV@#4kw?(8~ceh?z@Ei-y+f_vO2{wqn{H%)T{a8>kz%dil15^QrNYf-B(%j`h)U z3B4*EnzTeA@h7~l z7k@fAh*@sj{QQNtyfR|+Sx;?ms2lzDjuY(ei|YnyJpEuf%dTrq+;e2%UA2RAXnjoU z{EL1EeEULJV-C^(JT0M0XaXz;dlAHcE2a!%J)?kS&Oo>^P81ft|@^Tm95Gm z*ZGwT`n3+a#BqtYEwVIkX?_;lRppFSNw)G`x%T>0CXtwYqS0XkH)K3BG&x6_3r{$gjuzyfx}Er>2Tuv8)A{Z&=3O21 znyZc|NyD&lL3Y!2x>s`gFS}s*;$w%dXU>K5 z)-GCe-lb1G61k)zP@J)7@vm=4T+#gQ#aCUGc=V^Mt~&?T^A>S{e2@4i%)8?WNF0I4 zjoWN&GaSc=@4(L&$dx`32i#8n5ZFo>~VNeL?eXnr=qO{+IrN4SFXSIZ;9*hB7I5~ zG!Yt5!cWqt^8Ly2RW$}ZCRoD|jZA;i(Vrkx@g9z)ceL+#M*vx7Gn)Ij|4QHUx8(O| zxL6<%n0$Yt?JAakJAVar48Dqg9qu0Y!@lI-7o_U%6DsxjY4-qcLX!}tY16Ly%T3pQ zM;D8EgM0R=l+8bxr)G3tr*>^ZPYL2~$yX^m(RMA%*De9irvt>MpMqOLvzz_ZT=N@- z_n=J0-VoojVeaI=5DDi21%0y2bXtvC)b~36Nf(F;I76LG-cCYni~s!Jowhg9Jw*f&C1=JDgGG17Kvfds6%V{XS>@g}xEF*Grh?H8}@ zs22~42RrK7hl!j-4&l0apC-qmo`tFO2-l)Vf@4vwkmGH(pa6y)DQK~HF3t!o7SEZlqPJMPyssLl*jV(^q+)H*3e+%UBpQ*S3xuQ0x~0z39438tf|SQKN?5EE0ZhyDfI6)b-cvWl)7c6GV=F+YFmXo4@a3fO>jFc7B|4Y*?bg)1~m?MtiYXJn3GfOUYnP_uiE~@%VhQsQiaj} zGTgFRFlO8re~JET7FjgMy%7hIxNkcu<-xpAX-0it4-w1eK@yjW)6hkK?^|@(l%UjmQIp zM<~53fNxby`9%cI)pYmvqWb_vJ~~OZ;cYvT|tEy;00wfS)zyZRTUX z{fV*Iv4gP>N|2|{1joW2b=fkB1#b!H4VwZc>H_R0%g{sPL`>1YX^d~>w&sl1j5aX7 zWuToo+!S6EZVyYgP!Ha>MPPo@SwrArux8yFApWU9z~S?WNe(z2alnB3EgF-BD zSZ16mOH09PRB)J74b6=t<0FOx(+{8~#VdPg5EN)hA;Qy?RC)z}g3@$BARl{kc8&5<}VN&+)*I4gW*QACyJTl^gTX@c!D#TCl|Byz!RBaL?Em>GY!6 zDdn?skGk|6Wr?!HE%`DxVY}Led~kgZM=o(0ywYxFyc8zVnAw*X4_SY3=`RYj2PB*S zlsWPT{Pk9!An)qIj)!n2H8Z5o(VHHR@3$1l9TNhu9Mml|s02m41hl~fkm4Hx!Z?$R zY)I_#_#HP#Ol(w6Vn3=D?K$n{GM4q$kj=HvCvH@h8mt#zRkZVDy>xJA`R`w{Du#dm z4Ri3Yutugc%!Q8R3u_!B98)3Sw%ma#trK-wK=^^shbaLcr$n$Co6%+qDIsH-Qf6#W z8jN5CbhX-AU0akb#z$@S6wE&f_1EVC?%$NSaMEQn6XyrnwpRX%pV;)jO^H?bEpaB`t-|-LQ_PhzVb;_3LbI}4^Bl{pihWF)=bdQN$EmO= z@i$~Y{CH=c>g{z-LzMj;kzh%XiG?(KNB23+uH>!)^J`uSjUoB?81Q=3?Cw$ecqNAo z@;f>mM%CgP40(z#BKZ<+n^^wc{8jq`%@@%N`#b+?egt~JX4Iq#h5qRM9xb#8`&386 zfPn*F9Ms?*G^hbhXld~gPj-HVzJRoNkbcTd{Up#&2&BJK$KenDgTfK#L7l!qH>mtz z?vc8KLEnUfBaX~CsQStVga+{ zQ7-L0?LUgEZn&Q5*zlcOPXf&58+OaY36mxb8*ul;@lz+Ayy55nP08eB@y?%rM>1ml zu1CarSlE$_CvD9(#FId`^@u+EcHtgQ#j1?j$#K3}dUWAxI*dKW-YftEE>L7k?@k56 zsmPX(&HX8@!}nTYcgmmQZwLR8HoE3d!2|1iHA96P@rfXig;3>VER0u9*|-hH_9SH0eCw3rsdJ?9(Yx+~#{W%^@rQOE>otDwtKsoKf43I@Zx&wH-Yw=e=V4Cswf?c5*@7PL zJ}ewfz8l@1cz3dw>}TFRRG_YAdS1EBxp;T7H!b;Y-UH3Y?x)S7@IdmqL(L(qg;0oh zK>y6U52vo1WjANz-Pu~d^v}F|sPGQP&QNWPkKGzd4X-^@*jw}svVWt>|KIZ@^3Fv% z5;RAFcmk*ikR_Y{w4OhByuVQ#@|nQj>V#?)no{WiNg*FdAv*za6{QtE9aZEsAg)X$ z3Jr)0J47Le*7qo%xoiFRce3~=ii63CljwD1Y=M#`qc;z^;4x~Y4tP@!^QFl?pYafZ zlSEJ+SUrbmc)QUf$yVPZplb%*MjK%Gg5?n_*>K1~Q(hOP5y}_hFX$V8HfbwA7~OJS zd|Y;R|J>4nuC+P8YOS0Y&Ka0nGQ^>q_^Tbc1qG#(ChWQ~np;pbbu=cFO;PIQ-|>hg zL$!*p+L_8)8Tqh;iK4HCe@+4W{U;yFktQhh;OAs7C~5Lu%$G};rVjAQMRGj~C1=Wt z(B;_J4;od7F^X?r2T?|mzg#Uy?8;_|;n#G@1(FTx;}CY{xwn~%m&|OL*|Hcfbi+V> zB=3+Aid89l9hdi(eRs#UJ0GE>)!BelpSl&UamZQoIo>6PucF-t5 z2ScnV*D(}Sy2J?54}wzTG2*@ujYj8VIGX4o@i?aiH?nvprVJ?t%FqxD1BscQZRO&T zOLzZt=lb3McTQKIxIF!?Rn!1}`#;#~9(~{UC#IvV-wixF^tM48WIiMX&_k2>lV4+_=dMfUvUp|;p}!a^B6haTrX7a0Xq@G z6_lH?)+LE13`9AQWkB`>v3Dv>-DANM_#8P6mtssjarO6)(2Isb*O2Ip-J6&tEk$nJ zO;;{c*2Ls?+j04z*K@m*&t0qV;lg9uYVQ54tE4IY#ulx-BI3L`%{Q_!Jke)JtW2|9 ze18Agh2e$%{{1t|w0i%IoqI3ex&4qfK?%Vprt4%dQ1LrD9gJS;yL)jr5|I1yy@{7U z-F(N|zvEUmvelh1IPly)gRLjUJge}ux|9@2tOB#b3)Lg@Z2{{PlHS%W7R8O^xdk;r z8Tm^PG+}KMhZol}WzaHZ8ZHKHtTx4Jku7O;te1o-bxg??)84cOOOvJDBFT7=52NC9lB=Vg`5#Dpkq~x^-dzvi&VRx}xfLG0S$IPo)I*B}Dl8CZ zp*uI5A2KO!h|!T&OV^#7jRvC$cfQHM+y>Nb@XxfkDzLc9WmRsIx5&4Vrk#c6z))it zZkS?N2Iv=|uh2X|jok(`b{hcLC$3G@6--1YW0FmvtTCXoil!r079+D>l~jPl^bm!i zhQs=AW+QH6h7GTN*}1Dd z%d?l}TKs61%S01MW+-&2-U9g$i!l%ojC$AFRoEy`M%5_GC$WVdBEwWe(C^I;`VHG# z0X8-3Gq+i!P*QG~@<52@d+;jT|A{_N4Fbjq`+LwRLV^LZo>0z07i@1GVqQ3)f^JVO z;s>7!J+--y9Pxa%Ae7j7d2dZ(@r%pFbGl`T6N4}BcqXY#Ox*o{k$31K0-;a;q23YB z$`6)jAwD*xDZUKm^<{fwv1)y}w>Ec#Z$#FJY&B;{?quJDlG(!9hB?00+_OtoB9Gag zw%XQ~u_|~`c3W;+UMS0Ew+GOY9q>CG57`55{N!+EW(5?#-R>#eLD>{i#DXv2_j`o0 zo#-VDln0s|YG9UQk)z$y7BB=HnSm@R>~z>9OS^}8JYijav1MbJwu>1X1?bjd2tZV( z3JeZSDF8kMugCBTLkf9^r+~jqB0bS#VSfos>GlCH5&56ilc=H8yl9VAqIr0&i2$G# z_v$@Pgj9OKw|Lz+3BUVt^0&KQ`&!qmfs}48b-MV$?m*OuLhw;j{o zSX^Fy{F!xEE=Xl#`R>uOv73d;NXbFL{2K?;b6`yZH-k_n06A%6AV} zLwyIf-6=$XFAmC5x^$jrwbbrWoSA-W8UW>Km)h)Z$Q-!VBBVW_79%x9ImkNukbGOM zZG>&AZMjXcW#?qq+xBMrx3!_%o4E}_CN{fdOIj)d!F8{4p14W^r>WnGNYc6*6O&?) zu+_aa`yliCn}+^_=FL3oueTo_P3o?L*n5$@qP0_>y6lmQZ>=9TNPaO^8e21U@sZJ^ z#w4Co-cI~Iab;zbKb+C=azSbB2O#55RjE=n#9kv< z3;bQ7nQ?!c8XrWaDy$q#>nZ3>$^)*6C?Ak=nO3o42Bp+Alt^M6;n)%vtTgLeX=GfPDAR<{0X`w6lRer2d#W&(FJrM z-!w{Q=`;2v!IW?qXmDF^6+$6Ux8QnEUxZnuZeuvcRnnCmJN=(;{JZb+&F(9o`ADo? zE;d}C4m|lDto$cpt!xBVCkq+}_By3enXW997y4JqYy5gBmHbW31|6{&_=0^2p5!lF zvMno+Ws{iU(`GVL8swV*4?Lg&VI)T@c2rXT3$CFj6toAl9&oRS^kheI_N?b?ceP9% zGwGfhYh?6&Q?I-Ak}C$^I~sB@wZDpA9KCSe_&T*d{D42NeZhIpo>Mxz2uG&yzG#zO zK*yE}8`V~OZaB9pcWCaJ%H-UI%G?mnHszwwMY$^rt%U{7FKjLra+SGep`+kUmtu1@ zxSH@or%Qo!C+;R&`f65?1%sJiWXoxvHW#zvpws)QGgwe8>ss?zULG7}8ntHMK4amwxii~Ci?#hg)<0|(_k=+9X;<=o9-ecJRf zliT6TumPP3{cfzDxY*FS8kL;5@QkQM_1{UicN`K5)J!qWDFU+17&ry&K+(6G!NC(k zI4A;`p#2gW;KwlJCG=Uzu@)!CDkqNybhqJ-*T9Gp2K%5>5}krGT1KqFXgfVy%+_0nuJTmqVYz6GjnMfwmx6 z>2Fk9z*PhmcQbDeVkVo#j0U0gW;+^$>>)>)qm@IkC9}ifa*_!*6Ce0gsB|l4r^{JS z_YBc@o#hoQUuD}{;zx)cVIf2_+h*tDfE?ejm|nT-l1eMUsFORRnf0XGf~FYi8>0L> zRNypxLn_lVv$?3XNEV6;Y4cNpG&SyJJ;puuXKmbAK?aSBXpgkm_QMPGgAeyVY@z}gVh?Lq2Qrz*t%_r?>l5sGlZ>8DMlwO;nkpjS)l08M-50@Dk zn-rCNm&_IQj8y5X^vO2x?wsM5i6ec4+)5MMgY1HwXLFtiCi?f%bd!HPVd$mlc4+-g zH?2?nDyN668xuNom+9g_T%S%o65dK&7bo>d-ATwt;%O(VgrZ0IE$|zhuU9#ruNMsq zctqHTXPc=y#byWGQAgNO?!d@Fs>!6DEU|TN;!k#%X4l`=?0Q{YNeO?loev~tDO+(4 z`gw(ZO;%PQ*o($DD*zf_AXif~zQc9P^(zhfHWzcbKvb5}(>5r2O19|rS{oMV zo4Yq7jC7vMWjo{z6e;!a0wrl%8$6?|pn;)9x|_B48%_p}>>kd^6wME>N0X86OWKW*# zsnPxeGR!;EEGy3&Bkm*8UdnSs6SL$?xc25KVXwMm7-8LiMu4-efi*Pr+tWINjTkYC zcuhwIM|G)jHj)}=g)%31ASmCDn1NKwdNw|w9}2%X2#~kNrAVv@``5#HmQFL9wekOw*fb^F=}*h= zIo%=ee?@EBCFJQlEA>EDEUY}M96RC+$~o~J5aky0m~f@$(TK#WE9B&uOth%6_$9Jf z5J%HAK%>HbbR_oFkIbXBh}!cp^#Yqcp0CnRx%v60$VwLUk(DecEU33Z_hJiVa70_7 zT`VgshwQ~8;xSUjE(|4=H03Ux$%4GR(@0ICAj83~Tq@%9=8ILLc^pOyD!r#OTc_ww zQg!M-YfnnACbqSMDEmK1P%12;XaB~GC$oI8L7&50XTk_ri>0s@VIbiveCRKTOF%SI zx;hkgheBa3O}|I*+x=m`m|71!upned>cT_vL$#q1p{b$e0CYsM zBlV%Z5#83eQ1y4kCiWy6;MqfC!Jm zz=-zWsTQI(9%0JT=*hpgN@;jqkJrRM($c$^?aC{H&W_jF)D%O??wqr-l4j!K^J`lR zFc--9!A59mo&AMv>O@VgvoNPFXL?#nv(pr($?7fKS&+5MK zXReD%)?bkG97uAW1Cos1U2>j%T_<9^!zoGHp6G_{>O3cEL@-?ajJPKZLl+5C%0_ev ze(pc`m($CA7LAM=oMU;NC5sncGP~tJhuGgga60`@Q<{`9k(Xk2QDvrl2Ay}byO;9a zt=0IC3G1=DJ!%>Q*nok0QLs4)L6ADzh&}fXezuL|XWOw8f{^j3SVRdo3$3yuI8lXm zJ3hf982C(bgpW@USg)|T^Ipw*ux6kk1p~+nH0zzD12X8NZUV| z<(CKGdI{q@Yp+7ri}K1bwFcL#qwAGX($bU%4Sm>lNwKmWL`n26^vlRFn8<8$%ZDbG z?z%ds&`1#h18A4hA{1}xGF3Wv>UwDYsH#TucY!*hdy@3jp`q8e8JW@eA1CZK!@~w@ zcEbZsO&c}~>_+d2!(U*!G+P2{C7LqSeyVy*S>xyZKc@*}=b+5bYa-H)fl(*TebVvWl=E!&Roiv{Bq|G3)A%^L2fPvkY zc#E;;PBZ2)9*zZ zlpH=UHOYBt(B?%1)I`L=l%COL1#sokmwepGNh@$JMkY4rbhjxDZ#&I+$AkfW#?uOY z^j?~Y%C7NHm%FBGG>0}?-@4&u;oQ_ytHe{Qtn_-ju8u3d@zJPiNcLBw7FV%9cCjJ*m@_L%Qi@fb#$>B&pWDOYQtzf{w0_OA} zutqJ!x6kpViy?Q$(I_d+Ge)r)9oY!aVnQuQy%3M-BN_v#)^*7yEU9D_9pB{3$MZYB zNxbvtt~fmL`8AuBg5A4+`r=hBv_|#$-@rbQrdt_&zEyoS-6Adwe$O_sklu)R+xT0I=O@mgD+*?GGdrK1>#l;0F z#Wz%zlcH})ryX@?Ycaf-z5zSE+V&(3R^ptgfY)9bhv8`;sWi9v!w zHc351;n-!p6yt1R`I#@YWW>4^Jp|%YvZ5>3yC+I1Dol1;S(MIrxJoi)kbfp-ALZy}g_s&n71~ zhxGPxTS;#(R{>1In%n&tva?$wEb@!0dt^1W!oT(aaQ>XCyr=ox2rS#L)+mqnWffAL26`m{%t~Kr}Kt&$` zgN6n|eTmblsMbPVzO7zYV;iL#Vbg(1k$@FcQPV&ZV8qpk5W^sHbS4W;x@23R3r1S! z=NyNxCVoi#amC^b+3?>o@J=K)PMY%jC%1eyv3bhxpW6I+dB>Ilak2DUjn)t|V0oRL zbM>Y>630&7wS@V0zy867whI#<-t@+Y>)9coUL;|4=XbhU%3shi5*4b!U4~|Box>-3 z9Fv%m5kZzh?@cc(FdDpwISn2Fg*-KNIVckX5>#s#VVG)I4oFZO{getY^O8FG5Iu3-Cc<86TDr5g<%m_7|G#M_aR zXcK7DQo505iTkdQ?M$IfQtYEtljoCXLzT{gUeE zaB&K>Bo#3?FZVQA+#XWDE*pvcilp_6wMUe2@UnX={q|1W!Vy5Q1p9hQsuolxl&9*l z%JNIl|Ma)tJfmCc*Hqd&FAJr~UU^w4{q{)7VlD`+^C$T1J}_2arAACL=%nT8p~<-m zLUVFgDyvQH;Y%XsM(9k|kwjc|Dd&%MgoXvDuuv96~;z zHxB4198i5G2r39!mdqv_$hmZmOlU(F!>@U=ae@lwkH1X%}>soHua;W)9x5mE)_*Po*DRRPm00retM~kS#`Fcw$s6i-?@&q~Y;JpFW7loF z5fU2k7ON0f7a`+05URNLB3-?1q%d8WUU6Q<5~n_c*!$z;K+@u{6z^z?v4>;N$HZ7n z@?>TPcY5sMf#n0mfdlI>51TA(U@Uio-EN5ul#M=`6gO6v&)3k<(9|%ip}j$_+F*QY zP;xnNirZvw2Ie72;esOgH$WO;Noc?#Y$5`D)@Z+JgcM0C4sB&%jx@o=t{(~KRV7`$ z?47nzJL?BDZogsllo@A_dTzqp-<(lqt$VDsc6wE;Uu{A3%zn$Fw+>lURaRe;8=g_M z@TZAZwY(@R5}7}C<%1=9&)iW{w^ZckCCIunKdC*_TOz&c ztSIZqNxYC(_8+9u?Y14U^$BNhxpb_Rd5CBh0a>pX7NN$}MV&_pi#CARWIa9eDr^J_ zBn?YEq3;{K1p~>55uo)YSO{5CQ(4+>G5k(KF$RQ~RPJu(L`#dG8JiyCGCocH# zxepT;pea1Xj|U5vn5~oKRmf8o2_RlBatw6T_y!iKzR}rD`AtP{pxtT9G#2dA>4_7QS`izF zS64HGc&uaxv|H?Ps2m_EXolbjI2(Sbkg`cWIMa!F7X>SR6noK|R8=V_A2W^?owRoT z!o=}g&f0(0$BFOy)l^(R^9%8he|qd!Uq%|E36`CB=!_AM-u}v^hs39DO>|5@Yk?uL zgk5X?=kL#bV)EFXV;$=g&+fkCVMY2@WM6jNHTKDcH~jkK-8y8hI(?`ZZ|Z!AXM)12 zO*#lsSN%bdAP9m{CzibgxB4ZlNZbpY2nEF~`cK|O1ugk&dY!Oh#fK|az*l<^Yi18T zpIT~FfVV5NBk<>}P@)TiT0^v!QDBd?b){G&Pl8|M6Xri9xI1508z_^+_Tw*XcC%%_ z)tcsm)~W3EL_KXD$>Z@`(rl8~8U=gG2avJ!S$fP*yNPHSv zKDc7Mk`4fo523*WJB{=blD-b5dVo{ZaQJ%Z$%j^(tRtp0+}wP}gGV0pP2V%=;wub# zu}DlW9hEb5=!oi$;nJ_qA2e#&#Tml_umU4HKZU@{+rl^k>Z!S=45?Hao0;J*OCMX9 zGdt&k39U0)&su6<5n3^P^@O$=%g%C)eX{d4M4ixxDaXq|vb6csL=whJZ9Ev-R8t*^ z6)z97uw$bzVq-tB{$vi)>B8lMXp^0d$r&_gmTeYm+K^pXK4ofQ(WY2&d2D7~@sRvj zZEQqrYHWE-iOrlfvp%+WrbEaaA@`Ta4vP&9LwELXs$n(#Yl88}uBPg?YOy-EqFO4R zx}&|26&A*(>?|gEVc2)9=osCc9S07-c;nBnoe_HTpeTC6oRT?{c@S1A|tNG_toI5Q)=kN!6KUkSL zq3+xxH;-QTESq-x_&-Fps(NoVJFjeE-PDI`%Z&YQn>_F8enVns$6Dt6^e^BkS5Gb7 zlE31PenW?|RrejQ%X`~h;>!r1e{NN+!;AxQRa1OU&B;dTi8EG}PZ-(puJZOH_Zu@U zAARJ>D9d@J->}(pO8dJknU>6@;+m?7fpDl}XK7j8%@lv@JHOU@_+HUE#!93~*ee0V z-w|8HmLsA^#N_}|ilI(Q{{y}WpQ=Z`Cj*@MxD7cKzduv3+~9@v1j__kmEj|4K|Bdp z;~>;>$Sw9CE}$B=e3eiLugo&*?tk`ri*@4p zWA;sb;aMg^Q2v>7x82nd;cOSuOz_)u#Kbik{C)J;PPHtHyj zQ56Wt(8tj*L`AM+#45t;0%_RDZ7^j*gV=-=FUK$4h2laN#s0W!z~<-q>KHA#q5`Wx58Ws(O8$Bl&eY{(ZB+-iB|axx!@e z-{_mM=PJtS%PAlQrw3htctelt(5^)mUg-R*AwSvC8xe*IcdD5e=FBd?Bxgyv9098T z#c;$O4oA8hcd4m2kJ@-ksf~AtB`vO2vYg7ChF9{ARMx&y3RZ?NntG3*xz|?~42K(n z<>98F8rB8F=+ixJ+aC-U7>&c#;cV#8isJ+J7nFVT4UR_GX zv@5hIzu0!m8*@{IEu5k-8(pecDgP*5rJH!#Mq8~5_v8;1TSwpY#Do#U_s<@(ygrgv zKfB++#id0x7fw}|k4Ve<`F2{Z;r8S=zS!+|uYId=R8u7KKz(U#yyE6F7tQZSJJ8no zg}6z1hhuCmSN*xBNv3m6o1{%yikE7K?l4eT9BN3Lgw_N448K+@iRv?xnb8U0S3FLq z?U2WqcTka>&d{Sa11mFZG2CY81h1}N2$=V03I+)@?g#eRopE3YxR5zk#$rq+cPBM` zzqbzFHg~yQag7m}F#8U!e;iNeGdPgxwJimUoQ%nAkFH+Sx@N^a5S|{kAilWntc6WK zo>OMEntV2!PiMBUd%tF{e0<~j3(iXX>$Ak!(_@jwJBwpW+W&Hn7~8!r9xQjDlP4|x z!fBX`ZSWC>NRM!DBTr4&e-Cnz?g)%;Pou^q{w;I@R+PKI&F=!;^ET;`lg(qK z4Ejx)eew$_gM5h%pmLcYU4!ww;CM!T1)Hrrxg)9B1?_$KtT-W2AzhQG0AC}nq5Cs> zAxCxTz86JYgZw=TE8nL+P2Zim0vbWVRnRDGL*i8y*Tx!?cokRhsBndxE&Us~?}!SA z(k7KjO}Gi2P5`O(?YJ=7qWlH-QVoV*)EES?mORSDeNQkkk$7TXA|a~#=#TrJNF-3J zz%{n92gJG3?Ys+dj%wD~bMoUlyEl`}&v$$91O2Y1<1d`w>vWdy1ta~V(GClX0_Jyn z@B{tMO>X-4kWa!p!p3rFc*;gzO6QI7+8t_p4P6K5OVo0qUap9y9nNgw{OhluKmYn| z3r5YIH*(}WTowID|Bab9a@5?pqejldiN+bt=Iciw51Gr)ruT(gv`n3dA`;rZc``YP zOC$8sUCP^d?=ZaABfS4UW$HvB-lb{W7w>jh_&k+OEJnSg*j_9O#Rd9bz|bB3NXz~e z7npit=y)zMpI_loPy%wC6@$1eBwp>%eU=2|p!y)_ns`nTxkFs((T}xJ3u6|1H=W76 zy3Oxft8Tw9P^UOY=2=;jwb^#It<4722dmb{j{GfsifY`i@EOo*-0z>{dYa)_c}$Hp z$H2^9SYReK*%tB^`c}}72-l^q92ImBs^BXm0U+f*RrIHL&Q|+|BXG*087tE8A~G?& ze$K0Z+8vNyymkjig>4v}t4_2LmTxduA7ua+ejm~pnJ@|80EvvoEozP zW0n;C0!I1pkJ@VJR~-s#bIeEMPmU59Ug4q_R5Q0I=5%wJn4@bDt97HrVY)`!Oxp#vRr+>YyL)Md zEf!%(*<@i)K>^E_f>~LYW=GuFS^n%uZC&<|qDW(81t2MaU)6`G@P^`tV6j`mNFiC` zYP>ZrdLi0gt0^)UWDCKqLc|^^kEjtj5-|!Yr~;q}@7QLPGq<6Un)10Y;Tk{=2c=eO zNW`MQ3rvmjbAC3 z99v#8C;pJQzkTHj)^c9&S5KAzvQ{`~V2pKW>XtGq0>_P&lw{Y74rOSk_BuTQO~ zoNyAIj{JC)5Eq_PHx-HyCv!B$8Y`z(ov)iy+9tN^mpR%q+9GRWY0WjQHElIg^(>@& z+iRt28>HB30ZQGJlUwC-W;^@gA>=!2oWq?{oXedGe(qOqcQV0gcP?_aJJ&g{bLyPV zx^_K8`ARmJe3?Gc_e{TdytX#FBV-qBiX#Bn3@TgJ)baC(z#g)m71rg|Q zE+Gf}81!6&Pza2&BBl1a7-fl^IO&vhVN&&7hpKkw5>i8c;jcpy??<>65=Q@`gX z&Dt0%sgB`FxuZTl@cfG>J}}`(;$IzXp4@UWl=vj^ z?@Z4#zS4@KqD8~c88-Bly<5T4Ja0{LPWh{myy;DiZ_i(T>4+L-I`72RY>Cdn>*O)M zmktY`q;{r8=AnlXN!satIISPz?;V|d?A; z&@0Q5PxY~kKK-N_z6|t}W~4cpM>f3DU~WRUhS{QQearii_dBoD3ffAq&S8<@O(V+S zX<6Q@(E?`A?f@2kD9~l8P@{LZMxRmu)e$T3$hejR@di*}N+4r~G_LNP`x2c8cX#-9 zA7sJ`n}>=72n~1iM!qf2^dEX>_l`H5nkID_m1#R z@k(Ke%9bN4^JNtV3bPiZ&Cgnuwlb?N+!itVe9W_m5W1dTaate{^k;az_H?JiOVOGK z(V9ngc-Yg31X*?+iYPrIHR?`uJeBRwa2_NiU%)O>+RajXl;u5AhMxI0vbq_MguqzlgX~fY0Fhs3 z0_I`5yg*)omh&MOOH9f~SF$8U^KH>kbXIgxRJK^s57`2tfEcg^eA$NpP_u!Kc)LzA zN!y8TxU%7!N|=H!_Kj3Fvsd}38>@>%E`$x@V3))qAu)8#+-jB}M~ha1lnIH8lRF-Z zyvRH+M#OQE7ZYE-$lm!`>W;1Q!&|qW7_X0?%HW~ll_I(Uu&`OeqP}$ z!l~pS6?F$f$Y38_7X|P(BoUyZ9s(*vwjKmsh9&NHxE+}XyG7smZ44PrmO1#YuYVqubdL%MssAJ|(T1!112H+3A$5$m=2 z{E&Y?&EGhXCYYfVew#XVN}4u$}!nQ~# zGAptuA_or6vMsW;+a#OK!u7%JR!7{H&eD6#E#Eh|Y)V}G!UR*~)l$J_uKR46-gF?R z&iMN!#~!%h2F?Z3*gS1bUTTZ9{pRhvwri9ybI)A9NqY{GSvQ}eMqwG~Hz^GFKGu%x zi{r62kebq7sYAZQM0>@AN0ZTKuh7Y3!;yqXLkKD&oPz7-e!1s1fn#u*Ey6WWDq`Kc zr1xE=p52?-dp0dzq*u1-^wpK>bf5MVMe{v-*If{-$@Dk48tUe(BOg`|W|iMyO@)Ok z)#(e^Qf>$3EV`xkY#e~WJ?(a8w@cmoB68{jjR2)BN!bxwb|`yR_M&XL>$zFIUe_Ui z(k0S#p-#U!GU(Jm3j;m7Dwz9}xzi(`dkXsa|Bm;vbCH9#$l$?|5pH8{{-o@=>qE&$ zw>5NbL3NGGywhZ!x1izzR4YD9%n~(4Q$ITNt(iQ5;cR=y^_DfMx)0@|2qsTS^X>BxY4t9e*y-q1r+{?@RgM#TWm5B$&J5EK6Z9?k`xn{?=I+@P9t0Z$+- z4i;q(O~YW67BVwufv-bEpLO~slrXdE`a4EDrXf2!#F-V$s&96+y4qYALWja-C>VB5 zcP?-)B@a26;mzce>A)z+)n+<(rQ3jr+aYPwLtzQ#2hj$SE7;7~(A*jUchwWg+R_K< zhUyj|R*|?yjm0*UeELAa`XZ<(G*yq770k-Fz5QhlyYGr!D?Y!Im3-p=?Q3?+udTjV ztZ3~p>FS-2CkeFR!H!1M7UZ#WDQ3ze{OMm>Or8mHNG)FUBTp{r+=yt$@wxm{=Tanw z5dE@nW>cmp;GJ5GkNty#MUl8t*pq5wn&gx64EbgmsU$Ey<;K}27)wy%BY9F9H(r6} zU-+VcXX_1;ya|wAqd6?(n){n-&4bNT%x$K{W+V7c1&N!GawPUlCTkfOY{){$mO9;# ze6E;21$ya0*!h}7LFiGLkJ?VXL>FJ(y;L_7MxLTi<<~(Fd83qpi_(XFDXiaF1 zx0?H$gjkc}P>(oMR1>-+Ks}oHQu*+aR3LfD5<*_@e(@6x$A|~m8A?nSsfOVa&Q{gr zmFo92FjA+IK>w_4f{k|fvC*7W6k@}$(dn|NXqT%2uql-8<-c^)!F|!Jmj_VQDpsZC z!ji$*P2=MuNH{rRy-TXDpgF|K0mwrx5$!{?Dmb$vU^Lh=p}= zp@Eg_>h)&`qnWB3sh^~qr(3MEm4j`3l%-ie-O{GlmDw8z{cAL>hawE{e@y}Z{8=I2&Dv2LS#0+tfo zQ@{YfW=$E$Dq5#4ixEX7A3ERpi>X}2OMc*zIDl1)sJKOjegldU#xBoSBRh~j_a@?r z*Pmh2SP|RA^v@*jD*xxc=!D!nbNYbb=CwY>qN9oY$JymWP&>Xc{%u5XO{pl)$^lPw^G4q3_>6 z&R1(VS`Kn2Bs;XXYZ=PE`2Hipk2t-6Cl=`o?Dz;eE~7SNVpBOf8vTBrpVUS_@((TR zr@f25A3H$F;oncmI@tM6?H#3IH}76%oi#WEzl81122)ju&r0kKlg)CI&<-C@$lB9j zXfm`L(6VZ@WM*dg&1S!UlhK4Ey~#<3B(cyrodCSDoI2BxZq91ONT_7vQ(%Qu4uu1L z$P3+o+^Wq;=9w%|~?6o_ZRv9bKLfYmt)79`P>FL04r;O4^v;af5Q@+2RA8 z&*g7?YH~$!QOr~@ykh24lONgm0W3~p87$29jdII9Eh82E(46+JR`h1EQg19$taY={cncgVN*_1L2FK1PJ4lpgG8p)THy6%NrKz%4!b3H zTbPB#{EUNszauX@uqzz0A>K^25%3-Y+%s}5)S{Hcu5foMiI;>dK}M0{!*-@oq_X=^R&2PU1@PPB2UW~7b#zVJcH=MAy82nq!ujUhH^ zk!ZxPxJA%Ld_Sa(=m%?hj}f^St&MmD>?p|^4~DZx!pOHvLL@>Ln%WcEbyAm+HtG>K zuNE*hiwRj-G_qDLxH&OPCtzn(3y-Nwa$Ohd7a8V;+x2VQx@rnT+DOqcx(Af8Ig&9e z7`)UUz+n?ev)L}SSltkh3RtYU{@|P=nZx?Vp|>oy9XBkzb3pCjjJFTH5nXX^eAS3F zS9eG4s>`1%8B@UCd8Xm~{?h7`tIL)}F4;I_$e^9)NmrfRc;DCKiwD_rCxlW>wzLyh zp}+Qh*zXcBN?sJBNwgV4h9bi#X_Vm-Jy;)I%e}_h%u(V>QEDSRd}vQ=2`kCS@Q^xJ zCd|3$0|SN6mX@~3YH?ewmg&}oRenS380=Y$=5 z7(8Ohnw|sO%3;;fhSARX7m%;t%}?Spwf72-!7rt5xa8Yl0p3NFw2zOcG3^}|#-w&C zYJ_$x%7k3^B({LmSbeNvYu31F$ZA3XKH2FjTt z(@|gMTx29TrfftKYo`vohS7mcPJ4HtPTnVZqD1Vksrc#PdulmW={X4Y6|7hhN}PC( zDX}jOG|Vql=9rwTHl1jfFMaVS;xM`M0o-SqK|q68I&$)P!pVJ#*<%Lp4dmWFQY)}j z+-_I8q?e=e6nU;J%j+P7=7#S2B~ILr&ZW!IRq2N4Rtn3V`u1FwO$%%Z!ocioTW%;< z%+0k09t)$F)$Z6!y?bEbEXTj66Of7wvZe`Ajz4>FdIPN;e^5O{DA4A-5`8A5^eZ)oT$C&kW4~84=)u`h=Ndo0xq0}(D%E6(R~3#ftg9L==j|%7tHvF!WY+_CPADIq zqR_-@{Kozn3WMBeberWQg$FOv;;|$ro}+P4jwdF#Zu^Tr;g<%+Afamxa!Vp|h|L3? z1F$T~XA*=d=TNvF4+bHZOFHjYUrrc5>D+m9epi?4Zz-?3WWvV#mMvY(21BDaFE`X$ zH|gzhro5a5!`;Cb*DSbtVC~d7M%}~D-Zr>q(2QYK4bz!1@#;-~6vydM$zD2byK!HAU6n3S=qVlKvfHYI&lo+Xj8T#0cdlqv7ZwDTxB3VAJ4{NTe9-hk z!!98MjkESTZfiD+8#TKmf)Y>^JZ`5(t55zv*Iwp!>2~eC;7=zj zA_>!{l_k&n=FSU~TxeUh_i%=J_`gzfJt)-c;qBFVi@MKxt_94;yaVs|pnICg{bMqBZ_j*wE9Ax|#hpWx@aBsGEgnerZ&Wq|nZVYuVcvHH=u0HKR-$ zc9x?Puz`x^{DeR(NQVSH4Sq^+OoetzTuXl=_|Q3+`cSJ=?D?_NoEk#~KfaB3nVN8F zn95C}VEV;#V<>Kf@^-Dntu7cjQ>*5URYNOo0=yz1cGS$_!Ypx-*e=R|RiehC0(y#9 zhl@m1s;CQxBf+TmhylfQ^hb7`&XvS@{tw(uIJImzANncBfs}bfP4oNv` zuV`f8*8$9D2nCF<*eoG#*=38{opFFz}HlRgyEn+>HC?+HE> z-kn>-@?W2`OD!|yT{VBx?r@mh8&0$Y*{$KkoSfU|NF$#NT)XkIYcIS1RVIX8FJ{%< zyW_gaIaRNF>A~SQsYA}nwieC#`=yDKiNCUESp2O|Ovb&6 zZu^$|I!nYg*%L$eKA-ImRA;0+RlbfeEoHBSPeCRjE?EDS}iR!D*=0Bz$JHS5xzTZj=qJPiZp zAn8?%S56GYVyz1=bxn26b!~MLs|a&GOcK%6AsLtC=+xSOX+%U^81bl3E5eTh=H?l3 zH`z^GA&pq8=3=l)8nLFSrkT(-kghCgE?HfIZ6&}(DHoar`84DHmft%`z!%j2)) zomZ-144FpbIvN~J4zxcvz?l;Tv=fyp)P8%)n8^CRoVZprvMlWI(#JtJALs>%{!a*O z(U=&wjSXX29gD>+xJBXrFYN>-o~Kx(Yfy=igp55ziw_TEFZpk8L2wDp6x{S6RUuuo z<@ypx39Mu5;3~4+ibeh>{}idy4p-B4is^So%!wfC4=98mQ;Y}9d@OU^tk9_YXjI`X zvshNu0lP-^c1T3w3$z>pP9}T}6g4i{KxmWa$1wf&Zw?h$r({zZ2b`zJ0`3eP96xd9^- zsaaxFDlcSWREXN6;b?2LExILodlb4KItY8f1#yM$N4gUBjIb{`hKezY)i8^Jej{d&g=4L; zw%C@~n=w6*S!k1JE@>@kE0Jg_iFmc41|BjLZ={Bx`%L-K+a z)AI)Mg6rW08!U!2)UeY~AF=nTk5EF+=1?7|k2qxT>6@Wnj$}nzS_);5T36lS6$g4i z1%@v@dPx?tQ4R&PB~DUmNg*9kE_tvd@ibo8pSDlRO@cZu!RmYQQN9DP27is``wg-= z9zqP`c>`gq^yfe4!G`o!1YfQWp(^fN@aV`&R5t}366+yuAc{^gTdYQuKU>r(qI@Z) zrwy1M0wzwffM?*e z3gWn8q!WoX4R=t$?*Ly$d@T4GR#5wQorC|3CyJkezo1$@{vBOE_<1x|1ywRV;G@Q( zpy*RRj+Lep+SC|ojZrBsjliN_4-#)laVyzMwK77PqRc_lrO0rzI++-@(LeIB8U$Hq zD;BSaRbas?NZmZ(35tZ30|Z=BCS42n(0JSPUJ>h2l}0}P#yuU%VF|2?iti_IAmJ+U zTy$^ns|2HS@@J}adHx^v-UCX?@_ZkDpSMh(o!+<1Y?&>?)?s&9+77+5ORoz{@3JTz z2`u2Q4JkobOEi{fY(ER4VieF=@R!)4Attd9V@o25F~%gyzI@mHyffQaO!A%cedqko z`72u)-g(OX+|OOFOF*Uz^t6A)tPf+<8ei#*e0c(}V%p6=K7ZwX7+n%|0i&y+HRYpsVsv^`dQ21;Yu30|WkqS$0X`Ov zlTIHMtHhDw3~?j+-UTsfN{T4GVFnZsL^}!y6dkp;>W&%Y1L)x4RfSzZA-We5wt{wr znw5C+3rnkWs`s5{W$hvLjnf1>2bwkwC_-CN1!KgR<6I8@jupKPW3~V%A49sR3DQZ~)-3*abykk<4NoldCr_f>piKs58p4(SrHtDBLd@%m>hgWHdg<` z{fC$Tuz;;Dng+V=Z1>U`HW8>MsSUB)FS>{f-n~>Sa0xhFqJ9DS! z^B`9cS5J0!p{HbAGlFzeZOmfjQz2&Nn4Kco!IlE_u8X zu#sZJEU4i^hWw}&_CT);Y^Wg4 zPK*0d#v3m=dK=)_fHB7NF0dlR!#oOtk<+U$nDA;dBEHDS34|9!C$ag$hw^*;nQ!v< zzU>dxqe7@e^|_5O8*{TvJhMn$-QtCJFoJhbqv1h*IxS zVU~Tdez|?6{|e_0x2>#*3a{u>NvT#z@G>Ew=`-+yj7Jog{W2- znh%E75xD#|p>l@uB%F;eNOrQ$=rxLVTgH)0IGJrmR&iMHDrm{44hqdQrr@X6F3}L9 z7%}b`62o&^Q4O^wQ;T6fifFiBjCh)jQCLj?PaDE+8Yx3c90{mIFY%IHaYWr?iOWu~ z>2X&0(Ss*myj|YCSAFP)>ax*7PZ?a=y_2*3pl>=#9nHT;&(< zF?L_;!9Tl3*K!D5IRD#S5{DdKVzbLjMjR=kFZd(cm+*X;oyBl$@Q;-p8g%w}S<c=DLQa+&|=XC0_@QB z2&Rxz6L&HB>-M25Pp*0G`CG*x488Z&LiQ^;`~1@q30OTLA zR?a5+k^qEZwAd_dRv~nR<%IU*f+EMq0@kavoV1+$t86hlSfHh>te9svHOE40(Dv~f zWV(ldy$Rq2us~}#B0ON~M8LF`3(;Q~K~b&D z7XO@iP(8hK$B)zdWNoT!T-3CC?o-m`tMkPNZu>FIYu)vy6~@CYQ~!ANRq9K(me0%b z8rRNQ^3$0qVHC<-&w2Q z9UURnMNKvO>OY_P+r{-KyfpvYeX_qt-3ctf>!8=(#BOH*pQ9SqOTh~LmHG|Qt>A1k zn4>{MR^(M=ai$1I^YeIprP2 zc{w@Jt+S^cz2fqlic9i>dD)w0jDC6h`nCa0Tk1AfC+2#^-G;Py`*xFa&6Rb#`X=Tn zt+hX%Ge-Tad9V8SDHFzyOC)|gtNznN*D=$)iE}2XSKe{BX5^%A=9X_)pQ*TM=nrlh zGHNEg%>NHLPpJ}8{=Gb3@Pi3pj791%!M&1FRgiwFf;4q2gG8lRM;W9)*I(ry;-3y) zcfu?aq%0c?+dv>=BRjtoXWeEC&JVIcj}k~UVW9*v;64oCFTVgE&eEk0vb$}K!@jQf zQb-g;_EHPUvwrauf>5`@NcPLcn-ifa`l#7f>?)kxSN%mtl_a}oPK9`#vJv2oP49e*S)$NC^4O`w{L350Eie6-h@U1P zrGk+pFc@9KaqWJk-1&!(J0|X*I(1{;EhpH56VK=FsBgS==&2JMM-3k_r2TKozs^5B zV8plqQUVqW^49W~as&LRS+Hl2`@!9F7j|!?uqWYEP`z5@tMQHX&Gs$vZuJ>P&^1H_ z;AwOX1*(ozR$6lN+oHnIBNizXNKYUFDpuy^=0r<&Z$Uh!GTj-Kqq5;DK^Q$~_X_70 zr|3LB%KkOKlRB;>%BWH_-dV%1ruGVMf$;lDL7Fak0TCH&QoT^0pr&Z(J03|%VWGk3 z1>zNfX(Ij*l*CDx#~a?!fry;Gw0(>kLEv`!i~)#Wy<#rjgs9`MkyzLT-O;)P#geecJ;=Z2qg zU1Ee{bz4V8XG+tov;4Yn6f0|>PgzD&W~Ry1Vzz*H$)ZC=tLOoqQei>ONXzD~#Bl_| zPZ3Yh$peTC_!>rC=*UX6_Smxz>%3;oqNDZgYR(aSR1gkwx)E`O%W2oDBI~A3`#H(mOsvO9c@u1% zW$@c=A={MPCAnMEw%T?x0Gl9WjIi z=L5EAw=)G0)_@y~O2agR2gm7BBE@mwQ<)u2aLD?RT1aZvugou*yYSvYgNCz%EH>lL zetj&lyXGvrXYhc;O$S#jUdx4J>b^0!oXg6NtYCxK1Nnhh3P;SVn{ax`o&!xZOY#eT z3w;w5_9e>Daw!L4_r;V-&v4HyHr2jEG5G_5mZ0Dc0_MeRZZR35P>h1nv^2<&GS{0a_Rp z+ICdo&^J_U3{p@HTrcHjQ(GPPvE}Nx`j=0hc|&Ko!`lA<@tW@h6@0U8!1gIu#}3WxJ{mc&{? z^-Gk$#Q1CPp!~)60}aXFknIk;J&w>6-7NpB{_XV7*{{yD-^kpj-%^8T*yZA%+8-3B zwu|kGxTO6SOlu!-*Op)<3W5DQU2%C_{XN5jlY=vIS6LV4Zp<}?BRYLcrqPgJ&>|GN zJuQg6WEIt94JFo?Hw;o0NPP*xQ#KUEiu$ibRqlR-U?>1nR5+$^R^iq{xsdkVgM9}q zl`Y0>v8>qIn6%u%9NdJk<8N#QSw@#FqRVVE0`){gT!XSD*?^P6%{wY~;qjPtA0fQ? zUj<|kVCWK)QC>;k**O30_4A&cx8R{fV!Tc{eByeYVL)MQZNCqn{V;LkpxWhu8&0sN zH~p}>s!~yxvo@uyr1+dpeW*5u4ad0EBcek%qy$v_@(tj}s1(lpfV5m+KvW-4td zE-4Nsq!lHbOT>~A*T6l(Gb19qT|XIKGNi;P=>oQVYZVX(ab{|2=nh706cl6Y@ zywL%=12|lCso=EaqlJmSq^=;eGxOpTE#}g3exNg1+Z2UrMyuG$|q|N6U*{^JLz#p+({mj*h-|HJvHS2r1(a4gi(mP|P zh_^0L7j4@zZ}h17!>X$H*KIsCf95^297AtxnDfTvRdt2AeSB_bky9Ms{MmA zUWf=FKKu=0pn2&0iU~R1oFcKmI7VFQ*y_-Gvod{|K3}sx;P(3i1a=TM5w@G(2C!Vb zdmOe7s?5@Z>A`4?5x3CLC`|W}{u%y_e#KAC&|yDlz7A$(`7;9tLXzKbK#xcr6}^)s zgTto9J2kv_(!~^GNx?VjH3nNQTwS9k5U(86Yjd|eB7vv`!lZn&W7)!=w=F6RUw`$G zx`|mi6|F7mKkq-y%GJsF^2&VGvVaX~dwg7JnOL^(<59yZ?spfI-?+GZQYdO~&meqw zwIMpRh;wRD?r0&^6|q0jileUQYOEozg9isl6A^_QWhGe$gcT%wnRCkL$UN;y*eBY@ zMCL@+M6Qsxny-xLfoH0PCkoS|zW!;Iz8z*I_h3$r4+S4t2Ys^Lw8JE#p5tJeYX=Nx z#3vr8aD}?HLGB0T!#;D*X;{(PhR}R>lJcw`f!JZ zJAgYdtrL1eb`rf-%=kPBaM!t zLuFF>%b(W`c_&)M3YgX?`!XBge-p@)~e2aC~P-D!(AgH3&gSXGF6VG{qR9 z8WJrMpy^4Z)HVHA<#Zt;kP>43bDG@#>nawwW?yaH#J9Onx4*|K+W#CH;3=M!Us#tn z_RwVC7;B$2bG|KSRA|}_6VitlNo`lB#M`dP^vO_u`H?+b)RlsjpVuE%|21XC#^}Uq z2`%$}-v~C56|Q2ghua_LVlPr|%dnBJaz47m5b**#Tc*z&rX|k85@%)j1L^63Kyxqz zV=R;v40T;^Z?Lze?#Gw9Fj2?~YC=P!!K&cM;EdqLpb{kWJb0`?AMqc2Bjaqw7a39` zDw#5ZSs^K?t$hc`23^V>At{*#KDZnV=Y?GNwK1;xdNJ%haad! z41LO2PylE;YbcRPmA446#7-rHMh041wBvJ|hwPx#F(+r7tYiSXl2Xbc%FRB`9bYpZgbz5}%z&P|e`rmbEJ!Y03f=O-1?3e}p zpYj1C-UonG=q%}eU~y8JCWOgznrvZgJ=L8z3DGH>P%&4{W;0$Fe0aaWvK^g&Q(|K`h z#Kl2?Hr`{|`h#zT&W64SNr;z+Lf+s3pQNcJ4ajy~&v4>7c$B3bm%*hp5JNIMse9yc zn(q0_RV=5gu78WokUol@|7ZalrL!kg0M*iiAx^I71cVff( zV{Gtz=?e9YgX%rZq&gO;pWUuL%%-Uiuy1}P9%Z+E^Nze*y}A9?R+-m+y!!CpgBH5DMoCWVb+z)Jt)aMaZs!-T7 zL)oaDQVa?Km)Y=JQK2TnGIzaOcGn3_Ai)mf^eYx6&1rF`g-v5E_gS`vUsJwPgrb1RNq~EKsJh=h|&jTou#$D8rV!c zCyL|&wroSFXJ6#oHFPFFP-uA34gPxO~0|iRyx3ceS}Ci{e_n z>XsL8U2tTyH||>c>$^r53>Y{uH@kmi?7;@{!S<>2Az9-$E>BF$NDn^P`Xe}GE0&qW zAGXgkF1R9ldiMWpe=wMtF=Jrs{vzz~xeFi5AHw$UD||oU(_5IX$Xk@-%q{9C?l3et zwq!QNjd`?`6Hu^ZAUcH7692(Qir481nsS@+aP5Q-7RWn{+zm)WYo2?%fIcQryZL9A zt}NZ*m;Jf9{!&3UW^9jD5sPxH%7{Ac7%G%`r8aJ%PA?#d@JHyqknDAxj(O)z1czI5 zrjiimIY@CLsF_St!; znSRUr=ifOb^=XVoD@4<-UyL7-=%4wEes$%A@%;@eSKN8io~iRk4*Er;vhC2pcd~4T z{BUF`-A7ve4S4ykO3W)XERj|iHtErXwab9yM_1B9fz4-YQ6wTWvmNG6y&1Rx`dvsi zn|dG&5WAs#%(PZ))b9|9O8~Zq42%Kl0Vb*Iyosol3n`E!KwHWTqKYcSuHy3Xmze#$ zW%uuhDy>Rw1(*D-P%nJF13Y^E$zsj1E+n|vqA z>V>>mk%pUV1gHJw|X|e%VMRd7>FWLx@>XOrht-|e<@0c!2S}fr2 zp>C|y#5IV3?j}jk#c1wfgLE!VFE$6a0HO23!hMNBW^2e=Xq#=R53RK{qAF;+<%)nw z)bfDMc!|}yGc%M)nZIV39~I%D;q_sH)d**X6psBwv=AOowkdZyo&%-)NaG|GkEV1wlns0Xt%{0&?xs}~a8vP;qOyi!Up%z#wZ~=^%pN#9nwv_8@gXdJLcU~+LUl}vxlLxq~v+QqnUnl$aF-MLl%wrx=9`oo{cL+Vly&3Fv zP}mCwF@Flkad%{*4=QX}1GayZ@Ju z>;G#$u3l#>~R4iDhQ8vQ6~KEbIbB9V&9I)kfnbJ-ea0NnJcUE3fjluKh0e z&Wt)`-Zln$-p*SF*C}WNdir;;v|}j)TcgBHIR%6t!>3HwiBxivn1n2*&xfu;Q4Ubl#E%r1-uz?!(EqpBA@7%kOUs z*XFT5sLP}CGuO;4$q|q@lCh#4-E3pz@db5`7yyPa5d%jU8g9_LPZ{0M;G}E-j zw9j)3B*M{ zJB#bS{#QM&M)eJ`4=YQ3No}nHJDDO8d~P=3^~5zWn|PrFB3{BS)QLm>K*s}6^Z#zj zg2`?Qn<`90O_Mq%ZZer1HblE{cGDrYXSeUQ`Qm5;PNi=diB3z$J1aHY)TY#k6d((Oi)Ohtb^WytbQ$) zQJcenWuZTaXodekplh^(++tV;$)jkcY({WisB%l7&% zwvnVr9(S{1xGVF>Ny_aJ*2x6}q4!v>{$L>B%|`KeGQQ7&oV&zwVsKYsK4JgKqVAH2 zN=f~t0{p3vGPx7-kV~x>BFf2NG80Zi6N`+&=WH>vp|Aeez}g^DjrGd{#SPz&(quSC>1==P|=IH-0pJ z@)YSOXVil`_w0)oAYC@Ce&So(e`N7Gm)}-d*?0WVGkMkHhmZal_b)H}&frCdg#+_{ zJh7*U<(W#o;ey=4T5oNjte~t>R9gKm0 z#B$K@f?I*YI|Mu7GIcp0+G_GUvZhl!P%NXBvvv>yAgQITD`g+6su9V7YK+6LLaZSy z=!d;>Z2#};CQg0%$!k8DICn~fco<6PqOZ~Op@cF&uWnKGu!Twc?m~xQmSRd)0 zSATQWWvkWS+yn~P)$3UB#pl$+SMR?K`AAE}%)af#aJ%l^{n_j(jp_%Gqz7O{9K)Hh z1I_e-V~avp>P2+5ok^_3ts}|1;ArOShUup08g+7DyWN+r!8&YuH=0PUc5 zvNfErH2`<&9Lfmiw0AorQ)hF0zf4M?bVm}L2f>~}m?>JIm>UyZr*v`2kf$PuAKsk? zFqLxhNYU>EQ-bK0QpFPpMY=l5_2Tlp)7Pr6wLjf1uG`vlT~qyw8`6X8hTtYpWx**9}_y=Lzwp;pwk0nYuUQ zy5?EWPH=}yqInA|9{*4}Q+lZJcJ*)b7cTkRpI3Zw-Hy*jj+x^`&C{K-SuqYy6t*p| z8dI(|@40qhpV4m&UD6VbX0pEI&7h<~o`J03;RnZs3UtQ7TErxOgFXjab(6?4 z`xIwn6c@MX4Q{>OkhhzcLkxw00q#fd-EFJ1+eDkKvbJ)5rP#N|Ff^*K)Q`|l*KYts zci+ms{q@KDI{UPN`QYKqlbK>>raq(1U@LB;>WEZ^p-1pSs|Agn>w4^BoVW}til{X& zgP=?v7+|r4JYFhkH8wqdl*?9*pYX$tYM6=au3hWVs0b4h$TW#9k_^N@Y85$^$i^~tFl2W!eImuwUplU1Z8B%} z?4otZa?z&Ef%?!47;OK^S-{ewo%QAOHFz7G`cdjv@&ovmauF{i=Ej{Poim(L@7ah} zWFvGYuc^kg43;BG>?kMEs^uhFwVXstDko879$+3}o(=zDn_1VHm&m~+%%wn463rgh zZe%9VS*Q!^Bpp-iZ6+Hs6K#k=@~lKD$L>bGC5M^#@ADE)!zK>O^W*Lceb6${z^1}X-qN;dh^~m@v)71E4|Ek=r%nBFjY+@Z`J-4uxrzKi> zTB3zA5{A}f-l3%<@6Z*Am@*D#G#IZ^q#erR%FmQ<(PrI7097afaSowB3IJ*eh=z6C@}-MR%Rr=fSGuMkIx-Jh_JMRU>KVZw$@MYL(s!gE zpu#$1h02*XAMDF)uHx>@AD$I_I&s+K06l=-Yv(rXhSJQ9Ip*5^-`TWrpWqnFcCq`z4 zBGal%YV0=CO%}Uga7$utzEEu( z1&csv(J~X2Yy>(Sma+{nM{J0`0_Vcc6BPT|!|X5Y0tz$Cjb?@wBs5{Z=OrM|5LOnW`s9;?=9tw)MG5lWHX+W~_h!b5)ngz)%0n%hW zOaZNVDVEG+kjmnb-mZxZt^BO3W+E{6Ygca~F!!d3yN0-noI@XeaC+{S5D{mV&dG0dMVO_ZYf-0ZFsfeIDbd_T9SO$hh>6aN4z0{f>P6u39 zI6GVu9vhw!-W=A4!%kFSpie0qffvTJ87NWzwex(aWy)ELHPL^^Te19hP{&yk%-kMs}K zZW`hkVTzjcnI`W**MKYfyZZZ(FMN4!TcY*pe#54u56c(t79IBTFW(eSI7lW$od2Vlg1Ug=%;@#NLe?sdh{iy# z_)xS^iH7WH%2JRS7*b>gQd^yYJ#08>K-HXL(%X2YM~Zu^bABBbF&f-RRNz|ijt=y3 zz|$%x5#jzP75<$)v7!B~4Ri=rip48Wuy0ksMX7z+&tWTd??~#LuO3;PMS7a7h{=NB z^FNy`KztYqs*)2m^g2<308x$`B(T}jk&kl-_~f=})4F(0sR>0enX~P0aXa|Fq#cYr z!LQM0axd?zn!J&Y<3~bhOK)53gB?KD(iA^V{aLXm$Z1V>RsfndVLA zo#sR47tG%R)MWUG;r-2KXD&L(M%0d&KSCUg9;x9OLMYRMfIxn~BN3h7>)+s){PrOw zM*y-K&~1f@ueFag#1S{APdIM1kVf>5fl!eu1oifYbs#X&HZTn`2)J$S3-uLs?I%lK zT`5jK-ZKLArPsnK9ld1?m>*h+3$N_1(k*MOpY-ePAAVmNqQE%iNE>qR;y?&k23|(_kty(V1Ui~`kcS=VkPXnC`?KGj#kUXbs9hDo- z)~!HVYNu|$4hV-7@6(aSpqfJ+`YEExM$@HiJ?t%>#W;>z*@o0q+kcUo!p04c z7D`J(C4sql5{esvJ+e?FR7gTW!*$p|sT>r{Xu1UP;j7NUNx94+W#G+kylAY^VBGdR?HXKcc50ub8XpdL1E_n$dT^krchgb#RFt)JTz5 zAR7e|M#@G}Y9`whH;pyTHmxviHSIUygj#LZaA!v9k~@m@j4idJ|1a}WT8+0WuDtTi zWwfd6L2N30O6{ujGR;x_iqFv|yq9R`nv-hPa#E05D!MUSEdS-~vrYZG%pAEmu2Nw; zQf{gioCOkPrY>Fpo}W5S`6*DJrIr942s}C0nV-@!uKzAU)r*+Z1qe}Be)P@3ZmaUa z^_}vblzCBDo|JjYO|3sJWWkM$!i`Mks9LnP3oS=g=^f#n?%j~gQSoy2bj()RZL{SF ze!E|!#8ew4rrH8FLmPEgaMPBoJ1sE<&;%&WF6|VMYAw|gW62;^b+VU&bIn3WLcpcp z`qHCImOnV>=_Tv>R1J7(aow0ZHmXC72x9FmTJnl# zq$(pLBGV#EBO4;Rh%I7A5h*@V@y`Cp!;!y4E<_BGJiRhyBZYtXr(YGNz z2Mo;dxVJ7h{kkVVOC*jVO=3nr4y2OjUA{e)YE@az=W4|!%|5Z|-p~59zZelq#T&03xVf^j&TlQ5b!x%u z{}5llTm93b#mh@FUe2BT^QZP21LoH6huof0+t0Gge}g^j2UN>>=(?xO(`|{>rhw9C z7MpBZ!IqeI1e=Nt$*fXR(vem2ID;Y4xW^W%5A6#{lw8{Fe5N$3v^14mqJuCU$3Thj ztsWNvEJipPfx8T&rPn1LTB z-w26EvPAfKB5k^Fv2Tl6(i7x^gcQ>k2}>}e+90#jV4|R$(^|(GpEzN;J`#NEs2|8F7jr@6<*qr#2hB2V0~zA~vKFPpQ09hu_Te z{aWG)_9~@mDD8wuLM)kj(n6iIl2|{ao;vJJvLvMMpIG*?n)n<0WcAvWjl=Jp!=6=7 z&-%yM(S6Em9j=@O!`Ml62zx8iJa@w#)%pJRbL=XU&)+mMtHc%YPzH*}p*i9=;?TfK zzv1tKV0jV%x5WiUqNb-#)M|ANaL3$WP=7OV6$__lIKr`vNTj$=JTkrVdudxU)`7Oz z5(wmY%gHt@FLzK!d|{5eurNm>G6oq}uk^)*ISy~m(_l?!RXzBNiD2Dvys9UEar|&e z$csY(6r@xRi?^YrE@As8h#qUgi8Uo`Y~Ehwh?DP`rhy4?{T!oi0|>9eI%g+DZ>-R9n!p3D);g=GL zyYAlWjCl{=GAxdj;rv!SYdW2K(*2xvMrfn|MWrSW78*;%jy2sa<8wbadjB~wI&S@t*=$PFxSGw z((%q#yO(*r`P?WW&^j`-YV-AN)WF(SN#+B3SP$oFF|i8|^9{UbU zw)Q#ZK-Hk(qY40Z1#%2cJSM&W7w0)bpzHM&i?;pjDLn{jPW^K zs}A}1jPcM7JWIf}rc=|J$i@+VLmB9R3BN(-(6~QDEv|)Jj9v(#wr9MRY9I4}u_%d1 zi?Y$E;oOXnQY$)w6&bjTq8>cbb}=m03N?UXm@Ui^cL=7?vjzf}GI*XPICTP5H%Jm9 zbsvCm8j(7EhAo4w60bx%mI&ZF4UJJU*nk?~@V{s_D|%5%mux^B=V*+{d<#LHBwN}^ zaM8^Q5N-{%8tIn?6pj;S7=VM|f+0fOTc-#UUuPr!_qp3d@2j`ns*Q%{twvfgH7so`}G18c)e6>D@K9(ABxJU*-*#+Rzy5T{N1A1!Ll z*3ruSKpd#wFTM+(+zSSq{}ly5uS>wgr^zBm6ep3$_k#X zrPO5Bv$g2r5_!00I9_5h#kU%^5EMVBzcuMyFxP7IWAu~tEA=~&l+kE!^>Rgz?yZV= z1-iE?0RHiLBEytcZFl2S*(>Gcv6t-j?3V&EDzEi2(*dlX_bSo$(w}Y_&=+{aS~B&^ z$#6MiI2yfhivV_q8vH1U!$HA`5myV4X#M5fq=aFaZ1PK)MUp;JEpPimy+?iZDK-P8 zX4T9OAg^JAhWxnc(5-_84>-2=&@F$-ij0{&W-$UBqo-!*C4ociH|?ys9XXS$kx_;6Cz=yd-dlsSPf{GwPTwW9{r zgc_oqiGWAvwnlYP>oDDL>onbT>r&knIuqbzIeS|Guwz!8UJrCx>GueDiVz0ms7wZ6 zG@eTM>`pMj+fheo0mc`zeyS*vUXuPm>X%yx2mxsQT7=U;iS1M|${VfkfsLEI-5j|3 zk!o^jBQ7R=a96x7u11Q)c}K3jOML}ispR?KgD1pr`~B?u>Kd&1En>R#3D{VQz-4bS zOREe^9a{~TI~AbC0VW9Y7s>uTm?X(sFNbVrXGWw9_s76BGB#zgEW43q8G+Ue2#!zJ z=IwyHo|maZNaIu8A0wY;qRR+oWRjGO`g?cC`i6%mTaD>51yxECPh5sTEQB1}AF*^E))bFIDxC zn;&dhml*W%eb?W$s%d=v+DYT;4ee$Zs3-=Yt z*^{cSyyuEpBidqe)@-(@I5BomxYB9Lv=mHJcjfmDnnL#I(*A>|E)W=dPOOyHDZd2L zbX6h@!26Gw=;hQ1uyO2wGLb&9$mxiZ$Y4L9gMlgXY(L;NAWf{aoT2=x8Yzspc+0)F zy%}8Il5rh4I3HRUn}M^6E<*hXR7{iRzdbRzP%1J+En!F4S!3wys51N6Um zi_=%+HHl5q4og$|x{MupJEDM$biP!E7HqF1ICR+uZE_5idb_-P#3lJ z*Hzla=tkOf9Dkl-dfkASWNb%e9O^ogu_|X$MW@88_d3K+&mJO`ZPgQ~N%dQa}CG<9k1qo_}6#yJqhlxcMzVXA7@ux#Ok-j?H(x zbKDym)4um|7P#-{zunz*nfl(%D4fQsA;YaqQugpwo0}MH)PtMSH9I`Du+hCTytr_O z!5Fw4Wf)FD7u0!dVkz9r>?1aN41rD0mtMXwS;&=^7VI|ugw}yVb-tQ+sR6zA+zSm{ zA2hs5wZ5H^xm0embIKRpO7gC`Q)hhC_VNdFrce3nz7dG!7(GyBS=TQftp19!ahq_gies;>SQ8?N8qFsbhC%db5& z7c(Vps!_UsB4&{%{5Wx0u4}1C9J`!hH~eKJBIM>ar-$6>xjE^fOS9@GK#gh3FU_yb zug{mG-RX4+-K>LNHPNpUTL<))%S`C0LBD6_{ zu+ceG@32%23q|2liM(Vfiwj@5%t%TF_;Tm|>cGWJx?7Gcx%rVNbmDXn0g7cdvutH!e24Bn`A&mUa^NFV3$Z`cvmYeZqW@eHlS42sW5N5qIGsRghx7$Ye9R~L-NT~wlXcD!4WZ#%?D1@Grpd5EXBi`~^Y^K{+8+ep z6V%s}Y#&NsC8$e!2b?^LDz@)9Q+!6LHexrlsGZu_HI*$$sX?S3=#Ot-KsBBY|Mof7h5CEYVkHHnya}{}virxen zS-jYpS5Z?$yT#iYNC#-OMQ}@8^6a)m{ytnBmW8N9U z>V${S`y>)M=tOjdEF!bO|DbCir{n$24_o+7gPlyYSbQh#%zo5{HSzTr(%aoOKDi_v z`=45wyx!%YW6bPmFA|ZO!}yB?L)%IDYyJC}QCOIr$lx>5+fUnkS-v0oB%eFuv?*bA zRGT0&d}dUJs;zAJQN7@L)J^kvoc0u38as2Y^lcI=8h=gAnb^63xZ?(P?kq@tsBbE& z2{D&p1l&kpbxxtgbL0HV;X!X@AXZ?#-hFs})$pLZDo|8pNlk=JzGi=6z*91K)YS)y z03Hej`Hr=v1o2FMDk$ zB^L$jY9eoNAd zvYdW{eumCeo18mIy$iPB!h{QRhoEZ|*^#2tVIKn++^IwXq{Jt1?$_i36hq#_kJjOG z(p|hub{t_l7yonbH9+{+bxMCPQ~Zvj&~ui6&%e}>=s8)|cG1yb;wi-;{R7(4D~wB& zrtYD7HysDbZQQT0m+JxejNl^ON=_W_UM?hlAI)o+r)?bFN#wcpawkdu=tTwfaw!R- zsMAfA-vTx&>7MP05$=o^!_cLA`-^LR%;szIi9RMOq8dqxb#jsUI=(Pnh1ltv+v5FgU=S(Z|%{+%`EskrgQphDuGksk3H1 z#DvMK0#<7XT+Am0KJ`|Kd zx0TI%yH{N6y#UXmV;yL#_IV|)yJ%MXaFeGLS5iByd#_>L+YOk{<*#a(t|^%#6ELN{ zuwU|Pxi21SIl%4|hYqgaV7cs*=BxGnX0~mcp||T%Raen}R_QD6ywhXMt4VKt^+cMZ zIyLrzGoRhEPJX<{$d@!f@Fj@2GPr&&{PO$A~>ZJ-WKEeS_bzZv&S>=B900)1n-O{#@Fy$%*TC_Jl+E4+uH z=fL>F^&GKIXnL;aj7ZZ#uW>~ODQkeB@#_RRb#BUWu-#rZ=2H5u`(F9R#7z@id1U~# zOt*;+Ti;M+zn&{_S;b&m=~QFX?{*lJF^ZuNcCs4M_ZKdG#i&bmM2cSg02&U*ZEY^I z)9Yxc3qKOk6+eP| ztA}WwJCoFhIC6CI_;OSrJkojYx~v88`?M>T|E^aX;b)%bZn@z`cIULjz%`DSTvyiT zjSPiqa1hNcuC0^vhiC`UsMn3VqG6(pIGZBn=N1=!d(n{;#f_*GKEQQPhH!bp+trez zCL4>(1{6oS1oE*kAy_{))H=gf2iL5`Z8|4-qAqRDok^N=Ty0V)hK!1aS6_%}_B`x4 zC>$0iN{(K1sFKrm=z}|1-bbRdH)Xo)t+&|NqKm9KRM|eD?&6%L;MGNd%O{RgVzAdu zPl#YbP#B6PkcZ00YpAogiaLAgHS)8`*Hl+|EBR|QyiCGmO+IJ3@FFl-T?wn$6k_-z zglsxJ(p4IYIqwyw%vSP=W91u?PaN65u&m>Wx&!)i9Z#Gn9A*o&dJdbJp2Zob@g(JU z9Z&L#6F*7TeDtp>q6cC8d~9EIc~ae_oxtR2Cc;|aXml4lgtc`e>quZ{?dvxD+ zjCgW##Ipxh@$K#HIkWzQ=S=wzo-_MW&(UXgjA!a4o-?J(yyjfuIbC;RT5r!$cPXn= z&%sXoT6hvIeW{a`k#LFiNSR7PIE!yba@D|KNSw*Z)7H{uPk#Mok3AVTmi8o?TuKd* zAMZ(+pjE`{%ipVlpC=}y*-S=$p1}38i+AZ(2~-_Lrv0s3oPE47X3fUS=>6du zDOd3EYtNc4{17MEhJ0C*gV`K*GiU&`k@9*gK2q(8V`bFrbKOzg$8Oi&l|M~?IyExk zSNv&C^lR4#7|RZ5L;=8O#yivV?$AxaYw3Aj;a8~Nf+kWb3%Wc_cT1PCP2^7tChVYi zB;tXDodxXtkqxN!!iV-$<%^C{LPMmg!un{BrPuVFbKQUTTzOZQ=hpT9T-}0>@j_p` zAqc@^BCCZ{PgeyoD&^Bo7}^4Wx? ztO6n?3dvR1WKEAm#zXv_`*4|@enDfBFtRYtNCK_lPhI%y;|{wF8OFQeov0q_D1WD4 z@_#W_TCYhlU{W798bJn{e6qTWGgns;b2ZIH`rp*+9(>$tV`lAj7d}vT@p`K&VSMs+ zU>ML&#e0t%%{ovpRN^fu7ofbWe2%uv9ART(%&06jBfy3QSe1v>*w}I%o2^4Oe7Pjn zh-?)M0kd_xke8mh9o;zJ~!Z+#`D2K9k$z4m-fh5I!iocvPDg>mozf&~Oep zuXt(Pey+m){<(?@*yRFy%+=08WH zcQ09c{kwAyA5@j43)Sn6-bAw2RA@+4ZOmaCGuTQ8o8@4B9a|pBv$=N^$c4-)5MrsU(r6H84>uS-sU=*J_at>5N8$c)%*@4Njr;YP{U_7e z$V~P4suQbj%e;NF+;CXEp+zlcueXQ>jP1g`z*f^xrcH@MMWt-EjZLSj4K__-Rp1a4 zBjIqs=K+hg*0kY{1)8JLm;rsK%|?S8D`;~dVW(>@FYjYC0ffzBbz2YwwK!ZwF=xzP z+{e+!;b?Zo+)ih#AjV=&uh$tZiueNV@WDu|Tqr6&;07C&&F*qJW9*>NCnkBkPLuIK zn#1Wt|BO(2syd{fUXiUD2ekvMV}spwDK2N#EV(GU}Avmw+XGYNtJH%V=1- z_7UaH2m2N8{>$X{2UG)_)CniO;PoNtRasRJUUS!kzJZrr1SakLnZGhr@xx)H`Y)iW zf}?U&0w?_FwH~;0Om;D^lj)rd0>9F-)gsQ&BcQ=W&1HO=9$7qY`bQK8M{wj1ELxesB8J-G9HX@zKFGT@gF#?I_i7M`i-BWBcHtHoZCYec*NMoeg@3 z=%hvEgXM-hZ#^bKeP%xMsPDiuF>_%CM#p-mopkuWez27*Egl}oHyKQ#J7W{gb z-{=5)C{UUoo$KDJs8*d36BG<44=_ak-MXfLpeRJFm+ z5@|!f{oRI&Re0Z>w?*rkIjh;96NZzYIe&l zI5hDNu;ixki>F&>u3B)}lQm#)8-_>cDU^hN0WW0 zU9|gz{ivsC<1(CPcd$0W>9F-8zundgEI)*){9OwMyP*4mCD*G{>EJuu{q%oTT>gFT z#A}wXzLpI+1hK2?fMZxYe&8^>Z_?8T<%ZjSa9535&xI?A$k4CP@<8^MB_u_-AxVmI zS#jdYYcg5COtv(gjqGQh0 zE>|;Y9M32ZGkchahYj8P(pXwp@PX(w81(o^E*(xA@^()A?{Pysy&j0C%T1Sb#~pww zHt2>^_M~u@;y&QF042(Cbti9b$mvTBQ2HGT!C8YQi-uPnwDkC9JD276@P(0;MphY@ z+)gFYO@?zADGFX#&2#KYIgWReVlnM6>J^EWnX5F!@7S;@Eknl6aOCuqV?`XQ{*i4< z;(lA$O7)|Gt)c3aEW>8tvdo$iUj~BA5MO0Pd8iPKJFGbTG=uy`-z2JV_|bF zY^IqlHm)~{Khm-3Xr<)^jAFLJWPm9FwufC8U}*u?9$=pb*!=-^Q-IA4tPY3+0^<<- zWImG@oTx8(7);5v*cgxbZJAw%N+xD{9lL2xGw4uNn!FgWqgmK+?0Tlv=}2>+ftf3t zWp*~w&Z_M!3OU#b#q&1Rh3zwne=xFljqD*Ky9Gh*fZ+CdJa#9YCyUi+-ETc*70p(& z)n>=Za@cXQ(ri7q8oH&+PV=LMEn0_QD)B9L-|lst`wfY}cGGTa+fBhY{6s&~f9uw* z>wX_-zfK*)9DI}9?Fv*>=(``oM?O;jT-`Ebr3Q*Ju%f=DBCD+97`8vnw*HxI)^Jhm zZ0>IgCg2$29F79=vIFPP2Aj0gdc=LVjf%{$puR*K$X)9s!a^3rGdoDl|kBSp8AL`zxYE7H4J26U| zPm4AmJ{ceyB`0I=G8s zO~0`>y@MkZXX{XM$(_9Z6R(x9K3 ztrl4Auwm@Y0(0Xf0wH$j3}%boqKFI^kFHs7fhEPwVLcd>^akaSXhUfL;NkREyO3rD z<`Z{4px4N*MLkrfi4O$@wbj!Dq2KafV)v+&h4zm3fnn0TF%UE>FnvGvy!csB%J_(>=4$l6EH%PbVy5*4%tYM zeF<)WAhM|}GN>Sm3+gB$sEDBAsH3tr6p6C7Nd*5`rZ{50e zPn|loojP^SDH;5)3~)`t5>kJDfInI%EI5SG1v5U1i1mjKeafaH!jUZv;nYeLwl7!-W)bEbY7Wvvjjm59nND|-BloiQixLWE6JiOS z7_6bq9IWH%c7@VkM#iX*#91g{1|7MB%UDqBWaGde#5Hz1lL}yI5*SLsQ@n<_v)~^F*aueJYerOy zK>81E)8;&zAR<>JNAp>EYx(;^M5n+Wf+WlXqjF&858w zIll8Gnv9*cZ)7EN_dciMxPq+nEms7YB%kko&mv}Sf5{9!!3>J@Q8OrFHd8swh+S}{(_}=|@`6IaI=Y3VZ`{Xh*YG*Xi8=Z((8hC!NDs-w8jvv2BZklld#P}kP3z9wD32I zMHPlH#&Ke3b~w-$0&PHA0@+2*gLPwKWR(r^9V7<=gNSpHOcC;Qp=PhV`Sxz+n0PaZ ze&oTXZrU=k(q|&u=Ty8jwtp>(ty-t!@f;|=)B#BL8VoSJa)*Hfb;YGQn zLYY{ggwWDxig1{n1&Wx@fAaPE{_T6`n}3oum~%7Voa27p_w8fTv-nqKW*kU8*Zn*( z9-hm;;G6IJ()SigCPCzG5=YW}ANt;Vsio^*UHh%?ISNj;E&BUvR%Xf17Rnp}?S};= zRrN7sS`1kfLb`*ADHui*q)AN{%ZXY}+>}g*E>pO6HJ2D^j9%TQBrYYfDod0#=nCQ6 zBO_z=+k*7512RokV3ZD3Er@BaDlmaoL?R4i^h`7xq0}cb5s_G0K}0KC^~lq{FJJ!X z(I-jV=?gDj;g0s8D%S8Z{WtRP8PMgVZ~0E0`{eVNNx=snfBG(oeR!fb=}=Op@6(4T zvsPQ^Ymnc9QQX8WEGfdWl&2<~$BiL5L}v_vaXQpzu?Z4x3^j&^_Jv_N1c8}8TnCK` zorywLCR0NB5YiM3%V+Iqw`bY+!dbN00OQ2uArAkbjW(kj(FWjaD3#Ay!src~G1-2>W-Rncn2h=D#RBGHvXz%(;be@Ni$QXJH~+b8s=|O4 zsN{-EQWnZdiJa+5@p5?ocebwX!dd+V zTm-}k^je8*s_%ne$?d+Mgp0z^|0d04U)IXU^Nn&03_@-}Tz$z%2xPlq*NA_DS$SCy znHV%D$Q#55sc@{JlF)@5DdB3kxp;$LC?h4Z8rfVKtOeCX4j&UR!8vi_0-Loj)YX0H zM@Ii4?k+I>M*M-CfscHwZ`AE%Ql0SIB>ZBKx|1&Oe?h$`Fvcn{_9So*mega*L=hDc zMT;V8Bj^n}QXNdXW62^NF&K?-^%tL@NnnC_ChAVm7!z;{hfa`f$>b_^V$AB0cz%13 zqQgKMAZH0R8chk?>Fwa3se&p^+e2l_?HY{4uo8eE3dU=CT(S7Ct78H}3{d)W_P6b) z?2ON33;n?yGh6?md1J3dT-N(V_YmJ3l0$`_Y*JdFgUVVzW+AyE))!Jj-i-C-&LIDa z>0j6G+q3T>BD?3N)S!iTo><;~W7~E7zk7V&_4sb;A<&JPPJ&LqJ^kLbPwso!yM~hW zp#Rz{ljUD2wqnONhs!4kC5NWvk*YkBVkOQ@qRJqn(n)?gv7{4udU!gmN+bDcM3F{j z#gU>ok`YacqKGOgJ&M8=NM}B2%qP?G3Ez=N=)63#*hYG-Bq~2Q!5nFh$jVGgG$k5y zGLlmaDWP&%T54D-7vc;vm?9lZxfnhC_scReyVJ;wwE1Z?IgR6!2$bVDC#9w&niG;_ zA>d>4v*bCOLrsx5*FM4+ift>fJr^+P39OGDWF8r~Wy=%6Oao)&#kVhfcvgSz?Q?9l zXYxQMLlFWW`U6soxYISKZVqc?tfgK3hc$L;8W9C4IC2~xY!anHCB~47nWZ2FUM_H4 zH-6+uh8jYOP@_ryRkm()rEfxX`sQVMDcaomw=}m7eQ4;kaibq{pZ)=(TGbKi5 zWOk|V(=oGr#pSb_|Fq~xrQGxJ=+sL)Wtx=9NpWB1WhN=_+^&v3N)%ggKIET>@zdNV z57N+M7o%qz$)(mLwQOJB?SJzfy6*-yUP$M5K~MCVl7)>pW?=|v)!5@b&w?-TlB1zmU6r0f8sv zRQN{u4xR0A#?nXj?+<>)u*ug+#yiG;dCP5ENEjnCi4*3#D}~A$c?Fk26eaf*Scu7z zW}ylTS!^O66X`ROTBFBEBaNetbW14d3niUeGEM8&Qlll=kX#$?38%VneR!W%2XgB| zwIQh~VJTr&X8IPLfP(>JV)|m^jInW5ans|d69XUV_$w^Uw7wi*wLBUv0uMJVC z?@T4>i7CmbhC3|@iTe0BT}-S#%%JCG*rO1*K>c}fg904{l>ZPnLKT1~3`oM+3{`g) z^Xnjqlo%!S3GK;sa&hfP>ah6Lvb8&_HvivX782b6>?B6y0gh6rDxt>A%9^kTp1mXH zsfjZaGJ5tuTj6{B0G(iby5qg)h1vO|J)b!G58XX$I!WUj%O~__(j{G`yRvkVkM-x1 z6rX`_c4hC{0N*ZkOYVAv^n8^7_n}~%6>J|c1|xbB?4B~nh>|1S$s{d;EKrejxTsde zsA!)OW40WVdbA}WHZm$DDuzOY5gm;k)|4n?N=j5zN^*RhDIz5TZAh(3gigms6=5v+ zOclQ+g5*cwti_awm5C}G+@ngti96VH2oBd|q$ec?C9>VaaI8?nt6AlS2OGlBA+*6M zDob*RTA|sJnh>w&GZG`rG1$;Z+L9I*8%l8&d`5b3cyttm#7f9s{4Bd5P!U#gIIr;q zc4*^?7nl%Hyn6u`VMjyQl^?vRB<}VKI~=e1rN*p+gwYMP#>O~tWh>4zf%F1|;qsnw8BFrFrdH8(0UFH#p~h%jlj2(2_}jV7%r&u+_!j>(G&9+Huo z5`spN5koaG1QP0)kd%;>c`?Skn7kCMhBGbZ_=N0)tfa)a*zDNk^t2#NN|A;{V&?_- zD^oORLK>A^2H6bu9OUYJn9n1Y>Li@NXisVLJxDa^? zvK+Q&EVTnkgyX*zn}yUkBK0TjQThw(BK|Z_W$HNu6}M@i&FlkuUcqNL&!NFzCwF~pBLuq zg*?@NfHkS7p7LGCTGO5{=*{?jACnkdm?}=ne#A;F4(E3_jnxoTC8S7wqFfY$BeqU4 z8pDi>jij25<>|&ksDno_BT)$9L>C=cj}sg~9Tl7q85PyXJmt2*m5RviF}l#0 zU{we_H;2STMax6ORNLjK$9^{Wp2$TtvWXA>dc@%3U+GA~2x+$x8#@@4**1Z&3>xUX z!srW2JedV##KG#=(HR(l(Pv4bS#k21(|6^E{tq5~XbtJwy32gjcRXUuL)F^ve7C}T zelm?Ei)BAvKKu7KsjvUkqFeZE-;a~$_?{<4#lvpC^cIK%z5#1_*h;<$hhPUv=KLj; z#9#+e{{Z$C$q7Q&V7kW=n&?ACA#!La#}kzT=K!n}ci~}dWl&;MM27>;)LQ6UXw}*b zIB`+qz&o`*WQ$U!(LkK1?d-dU z?&zOScc9ddV0~~Br8dDo>eh5UEU+TNF>heBml;CCgTvrsBPa~k^g%KMW)yvRuu2ya z9<0`CXpmZ~q(LZfE?h*#z}gzZ@-%Ve{-gGp==$u3NfL>%kciXsKxuJHx2`*FO#1RaPlip z_-;^cS3C(%lEr92bGQZEzf0~|FoDd>CEb~%dkE=DBfY7NQ|eKZCKYMGF%fizjHJl0 z3qj`bO!$#oVYfQ+3o2?-r!I~rixWw7VuU4m`8YC;traO(F(SQXuCXx!L%at=@bszL z#+s>fr?ySyr^dxbSnc_am}E<0Y+OxrYNE_IJ#3buqG0sUlF_-@im68c(IgsoB)e-%6_))Jd4Lh97}TU!iR6yU8p+=W|c)D z=E8^ev$*rmo~R4)4_y*0Khq>jQ&^a6f-$TG&M>g5GG&^$Zh)*;#%z#~APww@1w9!L znEXx2#BriD3LEJJGO9Er!%`G7M~9uIBGTf|f#(XorRmm>eP1n{S(?6P@2+v9>T2>v z58pbmq1*S-9(m>1XWp6hTh`>8$PRMnjIxGREfsf1=befl=F4yBx~ZkKa!2>fiV{nT zb8`6zU-{6|yC=0*-QG9bTt0H<*GFBW#$7s7SW=LYb^Ykv5LwcTzyEW?m!rzlA6xG# zADQ~lt)zD26JCAI@PzO@GU3kHvbAxS?wfc|PStqdo}rb=^)#uyrY^5&+2*M=vx+iv zW=`T~@2sAxnR#Z3@3`-s+mcEOiD~nh_xs0ZrKA;(tu#Plab=~iR<>Ue4_+<@J`qS8woEbxPF$wJKw`h|ol8e?yQ`pKR ztj-J$3R^9Q8NupQ>vBjB+i>PfS2n51CUMy@bBsi0jL1w)-+KwmN< zDiWi;ZX1rx!iJE*JC8hZ?gHcvb>bas0YWRls`6|dtma-X%I$y6&KCJm%vyr&4WTJG zatAHraZik>X#*Mu>fGr-WjYI3-DBZMOa%rW?S!=evHnelFxmd~?zM5ZxNddL&d|&# zy){-rB6mDCY1>J1S9SS|F`D=$*SZVGs}{zph~Z^<(^}u9qfhqdKU_D$@K{V|l##sq z{9iwOi3a^R8K(`-iOF3)y8M^%-AP8@!vyjg!JCl00i#_kxTkdRPOq0N(Wpsp2FXb4 zjk`IHj*god*8~&)`)P;YQc0-}- z>1cSAJDW%gW4t~t`mrBn&-RR}>^V@L+W!_`(sNr639lR7HYQrz-g8^&(+eS0`8T&+ zzD>3QAtn5Zr<8=sI8_Lwyy{niu?Y zEhR}G8XT(0&WevSgaw7Mc`4Kw9Lk)x1qW+Wm&z%`h*3*nl@4=$=EA4Io@{Yg9FCQ2 zm8!!*8@jpLHca0k`B^r5dY2 z;4|5f$OcRdkxV};1*;cfycBPlJ-mFF@8T~@J^L@`Je&h=a0c0*^KfoX!UMx&-YrNk zp0}?k(f8-`jpxbs85za#c`J8J-|MS5zxsmgwD0E*RpEC_KOfbmJabz9=IPgXnW;Um zXF^Jh$~QB+v`vu`Ps)-dlnNCAk z))!1BR)dqBWighdiP?;VlJMv>ro%4?5ryOrFth(p1-PD2vH?eBbP4aow?dR%NITB$RIbTfe{jKY{jwhUm`6N1Vo_=AH(fWm zC0i@Mu}7ve&QlpPXII4gei#w&`&DJk5_X|{tJp3RtT$kLB3KW!V)ZE4m(U|AX>j}` zYUbAl>`>Tt2D3vsB$V{fYk`|Vgr8_C=G)Qs}aCuzJ#}m z2?bk?YcZVoe+pT$l@K9M{4bE73g8U85iG=E;qgagMH0_SMI9fH~}*{v*V4K*ZoqIcuAhwg=Mw5i%WU z#SZ(RRxF{SO_~Gfw4;NOTgZgf+O{Aq*U(C0Y1oN7{J1E^=2QVUQ>t~=cQIZN)L%@Tno8pZyeug=p{0qi zrVDk=rqa2VHVf5&C5rP~q`}{i>^-5^iZI8>{wC&YOo$I*0}%2Ryfz7KhbaTIwsTNw zJ7};l$~uys7Lv^J7HV4XU?kK{wb*t{(wO%Bkz|Vil8t@W!Yt?h>Tf>)Iyaqg>8T8; zzx`YbwH#0lthHHKnfO?X09vf`Yhcqr`RUxuwoDqGIYffYXv+L81+Zl;iItzV%$l^h zY-=Z#p*#q#@;TI{NQZYp*9EL!Bsm0Jg*p=8u{I=@{$1dSHk2#auHmeL?A#;lE6jC_jJKy;+n zz!yUQ5sg|dmPM#1;bbSF=C2d#sr+uCz3J2{o|y`RHt)d7jcM)`FwH$--q{S=L_bQH zE6ykMCg(&3_xKS_Fps8JC%of7FRFlJP=T);?{exRM6+81Z<&I<i^>?bb?G;oHCGytbm>^mku2JiPVTqc*xy;u5y%^fdiW z1$ZW$MFPizg8NFrRUh+%cZ#j-q_e&xuhxQJF6IqiE;`1Cv<_-Vk-3@pF!$ncSLzJ- zZx`H@nxOQ^xL1b~4oR6qEWeLJCvhe!W#9PTe>P_MU9)#R-7tOH*Q;u`mge}j#FG}w zvz900eZ$IERyXY%nqTDUo_cu9q3No7Sfy>NnTjuJxWQ)bNIx5B#2QAY$oU6_A8t}k-Ewzs_H4>(BsZzy3;UFd|Bflw|WalOt%0ebXyD|R;?P4vB(-IvM z4;r@TLoXv((_ZBJAMLGGx6H!GMoDKyZKaGW@geQ$`T za!)uQhJd3|VOJHRW}K{tJGRj(NUy{nwwyi>t1`b-nJug&Wj7d`nP3Ye=-R+^Mp#Tk z#3Am$vUCt%h`-Qb!ODs$+dv(X?SxCxD7F-1O9D~20a=xq*@cRW0*77ofzNmKfs2=e z(ltY?n>xMYuHRXC^EVrI{QSm|A({p2N0gK7-4!=|v2NoJ=j3lf4d$wI8Hb<9P0SsV z*Ela#n=th0{R?~Notd2$dUke-)?D)Ed)j+3*j)LBM#!J1FJX)ceFC1fWjwqNpC$TJ z`cvZiTK@d+>GJnz#9=50FYCX9&sL5`+K|WLf|=qx5oo_49eOcccDVlz^%Fmj71POI z08BY&coI4-Y}f%%mR5ioo)~HgmA}xx;4ppZ@TH}4yMPB^XZhbz@Ej_4@H=dkZ=p;3 zoB8s?K<4+?@eW-E++P4bEFZZNXbC7mBTCE%SS5x7FM21^*)J_UER~nflHMT-j+f)L zLAbGe9DLU0V{{A4N46U8;K+c#@qd#~fo5uKNsw9-8WkTO8=(mWf)`%TJqz*YSx81f z1}2d-p?ii~m|t56O+ukQjed+Cj7Q|l)I-jR!?W}1aTIZFY{}i%wJhI$}g^oWhLp2~@@#c*xofGIeBRaXx&J4$nyEl2a1nb2sZ!Hl?R?QAVAtC~-50#f^k= z0i<(myoMMEU4redV93URE$p0uau}zCA0`IJ7%lVyn^m3!0UXpfQbY3~p=BzNl3+n- z+fd+Op3@*cN`wPMr9xrAc+Fgwf-EGJH_RAcxnfe+)Q6V$_K>;{?2hp(rWuW^Z^{ny zu1-nq|G8j<`_Tzg??@%Hwv^paQ+da2`+uD_Wm=c5lFEm~1>f`M)Un%13UU499epQ|4O(r&^^P*r{d%j<^Y_hsaLYjm#xcXg6%nLENet zyjduWD}il9SZ@S`cY}7Iu`6MMybjhY*vJyZb(kfwU5K%Uq$MilFQ@x1n%+s<=KQO@ zf60$$e%Y4xj@x%JolGJViE8XC_Ag0UgwNZ+-*fQbL7$84W?uwpUjJ)QLGJY(I>`iz7^?aurEd zk%g2@rt>H@(mYxLf95o#81@l_D=`LU=LWiiZ z;ZbNBZJG&>gi#A4$XqC|CIoFsQmH~6n~P+jo1^@e_sjz3b+)$vJ+TWySlIBtXn&na zH(9e~dNJY+8nrMUvq-de@s17G!Z0mJKhaQ`nMGhP0qt5)l!2HAl29h8DM*2#yWiBE zS@0(_3x15^O8M!un-kM}{?hV3AD?#VN@UOURU7x+wM0AA_a3%o|9;D?(CV~B#<&|E z#)-IDsh4-B@!#o3PTK8z<$G-b6#k-qS~V|7CUYFjvdqs2O+Q$ax6qMVm_Os!MK{%M zb__ol88s`@l&1+fn44JbD7*jLrbV+>STl6e_#o(_S>P?x}5Z-(J&;O&XGJg z_o3i?G5*BCTp@XLTtd7#PG$@@=nPtImU1)9{4kwDONN=~T{s~K%)~ok>SJ0;kSwDT z1WhGLVb9-;2WCk@IQE~E!=RnSiHczna+#nH79nVaO{lGF^L<@i<<|*Yd23R)<-NYW zYwd|(Yr#BUt-MqIJxzr?gX5I^2JSC{R(2@%S%Tn2DV4)XKb(T!5X4eHg4Edm zM66Scoy=lee6{>C`7XrH5MvLpSa>hsJC&~?mielH-+SM0q=ZvFM!}ZoKZHL6?j%kJ zl3!ukh4v?S=J^(DiXTeC;j+wwr#MfZ=T=ajd65&QxJ(k68+~@p^-N#=*(NfhdnNBzQl5e)F?^EIe{f=;Rls~`tA zp(NdAwdUs9a~zJW$Yt3%m?d+9vyzqu<8bhNhgFvo6SK)6OWC9phYWZTXR8e;(fKDi zCQirDz{U#9-bSkBElD{vKQC+qPDG5S!a=)QnZRR@kfpHga>mBZ&6|76!>@HTAL<$D zKzqnyy&4v@r4<4!N-T&Mh^B;P=qIci%H$VAZN#2sBU4DTd!KCB0z6R9^`0}`_ zwCGhiDD9f;oKSq^SxKwq1Et*>tWVhry?Lfe`#+R6lu=nI=m;4rXSh)-6VA^Il$9w9 zv$B%cX52E@ZmDeSyU#WI*1FuJN_XFVWT<=Yhy^ptb0Qn(j9f6IB0Ew(bD*pVPS4gk zGoC!OqrJ@O*)|uUZS7@zNKdD2M%PVujOktCsO`CB3;FZaWnFpY3*`w_6E~5o<=VNK zCD{w>8)~OC;G@Z3R*}3+<2vo}EIi#lb;^{u88c@#w6{CsHkF3TaxybE$yxQCY34D*6<13N31sREtUpM^SJ$~83%&Bz?oIV*QO#TFymXB;8R*CUEzfESir z;r@0(z|vqEV0&XpIq<8mve}?+oYb=}gD*=hY1-#@*aKrvj(6m6ntxtLz0m6CQcmI(x<5W1h152_wmdh@Lv* z^%2)6ym+T`a)~|HmN4J4E+}tItu42*(3)4AaW-*Le15uVSnpFy))B>bFW){%rVb50 z7m*kqRNnok=ihIev2;?}$&+JOA9?HRE<%G$=I{?f!#{dsr|+|0U%7pvDLr2?(pAq- z51zd<#~5#kH{LeJQ(-p5C&n8#3a#$Sr!b%S2|5YWxK?glN!qlDEpx1M=bDDEO;@fl z)tz>`TTZvuOq}SPGIi>l)>h}%Y<=n06tU6$XZq(BojsY$sLyCS*sC>bdT(;wS+u1O;^O%rRJ^##hz+}eW4H%`u|UjO0m>Ma>1jY_2kwJO-vj%AvpnbaEPX`Rk=S`!It53wP$)=RE!cCx7d)<)z>f2>>P z3+W!HV*S94hrUT&iA_EssBT$V_{fm5Da*K^Os)(b1T)Kcmvd=CNbvMc)z!nTn^R>I zhHs8mZPx4M(QMMkIW*{6;sL#Ez-BJ~al9vnQEW@1tFg^VEQE;>9VkLr4M6D|HJn4! z{C!UxbeK|d>Oj{k5Ck3KBQk;)nu#zRDda<&w_l$*!(pG3smaKjmY+T6`dMjldHDqi ztKQf=-r2P6`LEZ;m6i;T%v9UFW$r__dPXJZH*A=xPt|7T#}rIy-!!wV=Q?Nq8>3d& z4;wSiIlVMHHaLS%yy4X+?-`EGUfrV_Rgei=mBC7W%*MBFTKoI?Cs&V#v5oQ>Q*7zN z9giHJ$D=y zlq6YKq^E~FEWBB+DI6ZW)I5Bd+@jg!C@kc3n_~t?=5e>Zf9C{++}SuW*BEx(7&*Mkw)>6CIA>>_QhDUy+(+(MDF31QmY0_o zuN|FGTzKxIgu-#z|BSaLg;j5S=eFc=84C08y0Y9!89|97hUAWv@BZ~*ZGS^*rTLNP z#;kn?b>Yb+YI|Y9EF)xc90efdq1F?4rv5z}h>{^^v5R0@5?B=ukX|O{(iBt-1D!V5Z zQNtPc;J5Mod2qo8uurAnW&sM}@ESkxR497E5B1 zJ?svHK@+n%U6!QT%;Y3Ytj(k(O!t(nDF+XCjL@mCQsvz+1A(x8CFKB0dSH8eL4)ca*;~XV15n0)xGWdxK zGlnNEm4}D%F`Gk!WoeruL>UoSs*#Y|T@=cW-gPzG2+vXWbTaX7m#4r!S&wp=|iS2pE|+~pR%7MSB{?*Gj{X4>sSB# z-A7kc856Uj=KP-97?+!5kT(=HZG7ltQ`5eM!$QqD@%-yCnF(yM!aW9g&Q4hmw6Po| zksRdLu_kAx6w zmt)%0TIak4l->nfOp7Tqx6tBq9zA|yJzqSdXKdp9y5MN7B3KoZ9POMstX~ON6YH>k zM$1!I%D;nd{e+S<9MBY=02>KlWlS)|#+nk0vS_VJ1sk9^Q#2nNl@Jm73cP!I_T|Z6u!@8zRwkBcFAtHs(eeyYL%6gVrL|XKSUQQ z9>Xe4$%Q`!VKuYegdq9ch1Wrpv&@MgMgS(5qYF3m%_I+IJg9igry)OI{{2zRcZA}7 zPvCte)R_SQYwD8&@8ewp#cW!FcYQlvmc zQIo46L3ke$1O=x%!pUSSpf1Oj)QoMkKxS)j(D%1AKJh^Rr@q=_#{?VSI$S z7RH9t%hDlA-1SP+Fn$i~A?g$Jm$G3c7Ys|K^M7 z0_;;luJHuik;9||42`r&z@!ulzG&}N82d9|J&O@Ln}3s~#t04HBar7W^&RHdA|&iD z&=sI3D}v3+WSsok@kht|4wFepXY&07G01;OM~fdW_WeYH0j1X$ulSb&I~AN6_D>Zh zW-gjUMZwdB2A`zlq<=u{r3_O>VUGx(L`xzzG{oiNxwD}~5MmMk{V68OVkR6ZmT;)e zfpJwR!yVH4kjMIawoai!OC?2dGu6C zhHt>WDWfRCb#JQdV5%?Z`xD>$YFJQ4_V2%RMMg;G{{0{@SH(|2+YrmPujsV(w`v974u%FH2!9H-s{) zZ0t;dB3fE3g=Jhk9V>+8LcB)`v-m|qSb_LpdZ!eYaj|r-5LOED$D}ZeKO=-yLi`s} zSjHvMe+pqW%H6<=IKZYEIEeYGS$bZ~OO2HC_|;N+z~r|{VL2DcKOuz`h!^3jLBVdA zL9ueFF@nX){BT0(cG(?Lyq24)%oM`xBqV>?HQ;{zWe-BUQMp`5gT)1xtQ6l3M!a76 zln@_`c(d|lA*@BbO8J!(mT{5Fe+XecgRfFbVZc{~3t@v0?~uYQzElVs5g$xN8X5uL zPs4B_{Tv}pIKxxbB7||Q9^l_9g<1R#Asofvs6;%Y7#!7$LVS#n{v#>O(q9z9aV))* zZ``1K+36p_>L4La0*hChgfKJ4)v87OlNmm05&vuO3`L9p51l;ggHOQ>M*AVl4VHAvc+Wn zmpmP2m$|du)!=S%wJ$Jx8_k_f?md#Ag- z*4t%narK(JI^1{_;2OQHon}{uxy{|);_2*kH<;)33P3BTjVr~|cHyS2-P_Pr-)Z)= znin;B>YE0=3mBf(`sS_%yxQqCH+VYQnvsF4wZYuh?g8+6?nn$tZQ zW_Qax_EG>1K$jB#M~sBz4W8Ed=5}{SXS=7K(SA_wcs&4Xn1DdK2f1{*TUbT4dys2` zcTsDz*EKj(;Or7Hb+?;QTra4F->%NKu1<45pLWyAk>Pl`I@H-gtUvf zi~lk0)lbDc5$?562R|D-DF18I4SI%?dyevl_{aID`A4t8(gxN00?vF@iUYvij(GOW z46&4lt4F!KD5sZe`mlV>P*cwVt`3CK{{ys)YoKLc1?^h8c?67E z{dEeZYXHVAz_lI5U}k{=>`4=1|1)joBc&Jh(iTWvkNXzfvv%RZdmX@byg)Y*&LX5N z7jo#t({>2k+52W8*Irz^1lozYir6(GMJuo{<1I$tHsQS%K<~tdQP|AQ64LoTR@NGaY^#VkXK+#1gA*-7vDdn~KiuWvSJ!-KFIf}V<0=gM@?0FlW zxCAU%$r(;8FZK?@oKb~^+`=zwJJ*(*J#QA?PsdvsNWp4iULYriAuIg=HALL6hWvj{ zqXFm)|5mhLGw@~g#aaTRhQFn=T>n^hF?UAstMM9!)P4%El89wtC1_ZH`Sk?x_ zED}oY#aoPOe}u^57@b)w9iS;|JFJC@zhcdc;Vz_aLoG47vzqEgZuPkO;jq@+j1+^R z{jr8vZ)R|YLd`B0II>R;%D`X^9v^aqx@|$4PShSNA?p(^gqm=l8>p`iga?gMNXOc5 z*EPM>{2$W{j2{c}hWiiiT>HENOO$3nzqYsgzxIxyeeD zgfi%sDZs14qa@a-L0HFxV4b3am(WmlIx=U354s5K&_?1k?`UY}#==%U9&#Wvmk2K# z7OXl`;B6rdlSKx6E@VPWBO47lSD5nbm`3t2p%g&sU5GW*P^^ZAL;gDgYp4{23A+KkaEt3{%{?4J$85If(Y|a zxvUE|3e%&9y8+WmGdd9?WgE8;9fb`yUFf2VK!;us??!G3w-hU~<=hHxCAW%O&8^|q za(&!7ct^dNyM?=zyA4|R8*nDw?c64AGj|8Kg}W2y6;WpRw|LhC9kV3x&Mr zxZ_ZXQE@L2HFuJGi93ar;A!p*_X_ta_ZoMWdmUOCZ*XsNf92kWPuFwMt$vStAE#XY zjXTd>;6CI&;yy;x{*?QS`<(lN`;z;L`cc{hI;A<$0WJ6s!msp97*ddC_Bl)C&I7uPw42P0oWH>1% zBgjZnLP|*)DJK=Al2qX^`q8ACj3HymI5M70fUZ^zG`1#_DP$^{23J%w$V^g8W|7(C zIyfY}p3EV0aaPnkQcoI)n>3R7q=|UQ4P*gnCM~3ucu5;sNZLsU>4c3>H(5k_NH19o zzadM=QnHLJCo9NGvWl#R>%O(5kE|m%k(SMoNujl4t7k$1^^X zzOkCZPXP^v*H|spK_5PphEW5w*}~zQ(L^I*QyooXXe^DR@ic*&X(COc7Me^`Xev#k z=`@25p_w#`X44#+ORdyK?bHEXxO`YpIB6jcn;A-n(c!e1j-VrH2`!~%++DOBx^k7Y zijJbAX*C@~$I@|hJe@!%LgQu;TBhs2lCGkw z=^DD0_R)3pCVDfyh2BbUqwDDgx)GKDo9JeG2i*c)+O2dO-A;GVo%AkxH@%1MqPyuH zx|iNd_t8Jm{WvT4e)<4CKo8Of=^^?MeV87mkI+ZyWAt%)gg!x^q)*X5)2Hb(^eBCn z9;46EEl8yoL{gI(i7N<#oKC59Pz4 zU~A;V`3N2daPv`oG#|sq@^O4TpTL`;hnd7%_+&nXPvz72bUuS0!e{bXd^VrM=i+=t z8*hj2>O9D-3wS4A$QSWL`CKpTbY&r}5MI8T?GXmY>DX=C9-H`0M#O{9N9}&*SU)2Hwp#^7CEqp8Q#gUE+`F6g8@8rAqZhjGT^m`%ey^&wSFXfl<%lQ@jN`4jOSI77@{93+` zU&r6X-^|~_-^$;{uje=L8*wP>CVn%22fu~Cli$j3+IkjuC_m6cK=x0I+-eCif2<6QM! zoo+?5co`=~HVYToxCU>htQkLw3F6~c@iIY7)hb*><}(O!EFU%L2U&N#Z)m-r*M%^gV#YOdFg-NY~&y#Vir# zV&S5h1=L;j^^mk^76*dzQLdI2mwalIyVJ$jGb>pmhI!3ucTat@s|6vU(yY!ZMH}Q>oi18EhI(!YYIU`F zA&T*~HMtcno>oTO4mV^t4Qf}T$5UXl=N0-xg++?dcDofvbdR@3 z?$&u-&CTvkWoe5GmD#FviPxa=dQW?OS4(5FyC^8P!yG7 zBXSEDO=TdV#vKR-jT(R&G=Cth85KyPnI8y>wP%-V&+Z5sJ@7_Q(?D1@dY-FY)`TBL zb*HDf!L9HJ7iG1Cp+~~7TEx&JHuGw!1$)G6(3k;;K{pJ9Rb%Vj4W8y^mui6&2wpJ1 z-R*8|hUCptuNvon-0Tlb@CRC@0AJZUpLe&;S5A}=@=6Fz6cO?Y7u96{d+kynXvzQ@ zK^+5O*;H2GPFCP)Vu8EF0#B3RcS-Q4iSWC`0#B0)+$9xw#sI{iMT5e%gTlQ7VL6)c z{0>bi>n>tXfT&LjDoZQH4(DqpIu_W7X9d9mMAo1z}~Ycr$HKV$H-B_k1x?s0Ycf%0VvVAS*-PS4ug^X0cHP zImj4r`B+z5n@cgy)iSTaMaOs130-ui2W^XqMq6o(ho9W!l}{1InyIcXrIa&Y-sItH zIy}J)hCfH0^w58=5r!=hV`wz(XaxWuSFazMvOm|J@!4eb! ziD2oWaHA1k7J|Y62~}vj!yn4G1w!^fXy9pHATB=;DhPy}fsi=#0&;$lKd!(U2nF&e z@aJL63&67lpx6RXYyl|t02F%wiro*zY7gLN55Thr@UsUX+XIm80mzO3WJdrp4Ds1y zf^s+lG;jp+a0K#j1oChM@^A$5a0K$m3*?a($RjV1M_wS0yg(iUbjb_kkr&8An&N<8 zULcQx09M#imas1fyipLqsvz)&Gk}#dfQvJLi!*?WGXU8cfb0xFb_O6j1CR>?kP8Fl zEezyQ7|5eAkVj!4kHSD6g@HT@19=n%@+b=AQ549dD3C`{AdjLz9z}sXiUN5Q1@dqX zK=J1R`bw0vS^ZCKR(~Egt3MB$)t`sW>d(Vw_2*%;`tz_^{pGM(19{j2c?{s3?~k(< ziEp5*O79lf9Qgtt0KP^TpK;9>hkd70x)!SDH}|$RK~I$OTpja)DKXTws+T7l@OXt+Le0h=Z%J zCcsr7BCZZ8ULYp!1!CeVEGTdlh>B~WlulSP;J#G4FO#n2(zQamR!Y|@@meP3Unb>W zCgooyWCgooy9TQvT&q{^e5s9TQvTxF$yQk|i4^nR&O9^8xh4keK zzY2d>EX;^~8atar!|NHl7MN1umCqyh!Rpt5A}m$gd}Pdva!w8>1qNi=57?T6e3$( zZJvc{@K<71LGwK=?q(_6fV5J)stGm5a8aW?(&NPpCn>hmpHK~wh;e}eN=Z;~=|!P@ zQf!O6MGCcIzY zxC<0kqP*>{Mz<0;u`3qE>>?0EKrU>tyWP9U)6m(}>TSKj>uGhj>jF{IJ?Plk>1}5# z0jA8M6GEL{7R~O3$u8dst$8VwCrxqr&OB)nVHi=K`&aVfADNpUPB(HS9sZRJa>4#Qcb6$^<^S;$`t`BKXP6hEB-#s5Z;9|LE;pTR*o ze~I#?`e5%$C9*rDeDe|V*M7d#CRsW^21OD>%;Ey+{O!-~kl+rPHiFIdB{qPE<#TVkFm>G0u$Q{ux{11j;2&pj_ev%7ux-R#_o&0u>S`P$6*w6%r>_$E3W*b`kn*pP@~@EcuaNSul=82X@~@Qguaxqyl=82X@~@Qg zuaxo^=V@D|I8Wm$r zL6w9-l|+H6B3T0@L25zd#5i7I-nZF>4D9(<|5Yd;?ghl``8FxuCUOt?w!)y6t`1MV ztC@*}MBYJUXE5UnDB&umh0Hs63UX?3iE`IqNKFGb0zY84iHw!qR>l}~2!A}H?CIKs zc~*fw*1UZ2ic?+$0FFF~Lvu>}kW=EIoC5mRJg4+tp_EQ!XTX_B=|oNxoR*YMSiuGhKFA(DGP%Oz_naoI&VRft7A@sy8}XP$fWhIYa+zTu?rBZ zs;WfHtYvUl$NqTi`a_ErK60)w-B82?;~Rl5Wq16O_=S5B;feUG!G1o@fN6Ghw&Gpr z)Q+1v+RQ~vo;cpjyy*iD{s#X_Z)>psKl#7B7eD9?h68&aThttF_SQFZTH%-ZYh!UD z7EB{sE8PKmAvP5_Yhk7!?djl-3cKDM+rt*_;DU)?FF@&(ph@sdjksqy;Lmiub(LwB zLOrB!bl)!_L`nCoGL1#lC}^MCf~+|6K2yunXgOzfDKwc1IR0Gaq(ru7igl7TYfwz= zz40qzq3pmu6QQWU^!=Kls=zdrMzD`HaS$+>v9(^EJ!5wI@V`V}w{61n4}E&TxU*%? zsxX^%m29qc6+dndj>)A|lk;Hc`I;-&-Sg@R|J!jurOlRU%~0^uWI=|ca&KF&z$Tf~ z>od%@q9W%Y-B+fNn`4W&#)^r<$NP0M2dnDZ60JDvY8t%lL=HTk?Dck9iikxIAXe^eaGN1AZ3R?wO?jzx6-lz4CVPqZ{qXo!kX6=SYe*E*6eSayuuV$?&ZQXAX!n zjdySF2)SpPm@DzW&v$_wAKYe?K~A>#&+Bk*_yS>OJ_-y3^A~>|RxKQ>*;Z z{O4~>J~p|rc*lg-GM718*NjrUx$BKFeYCZY`_qYaA5Eb=I?}$Czgt)SVl{xAaVfH3 zt45(hV}`>Yp0}>Nm&Fp<%AMAg+g9jjztQ#&Px~&*q-Dm(#&5Xt>fZMM`|WL&4t89( z4j+C~=$j*cuK)g{6045k2=@(FWO6IcCcI*eV-Z?-LpHt^_j)(iHv8~DKR7vI=cJ09 zeHHaTScBMOolJ&q)HkT>plJ~9#s?o>HYWAQ*PorxdGE}$&LLfo_w_$GZc7h0{+n06 zi#+dnNqg^-f6?+&udI9R*D0^Pu>06_?+^7A2P(L~Z#}*9o!CDI?T!lB^6m%m4`nR< z$Hn_P4sHCfXhZS#8=fs}dF!Ubmi~{vIph-}<=hqZ@snd~(S5^GEN5Jl=M0 z^Jf#EEWCF~_S?mO%L|(4q`Oz%V7d9{>*_Z?GV5s3yK`@wwkF!~?_t~btO~w&&aIDU zJ+*iLs}Fu)e)70AYOUEAGUVCGKb3xbz4f!r>7I4Zw|)Ar`yYILMOk~d7Gum}j4|`1 zF~&vy0`DC7(+%!NI5X-0Wv^xfP7%f!ryXk)dl4IOAkPfkT34?A|7FAp5gHE0RoVE7 zHIw}V6#riasQ-2BIcB~2Qf2!CQx@#Hc_L>y@!Z>S#gEpO6#lDY)2h@jw}x?3-j7|S z9sYXU(PO`qt>5X{wg@$KWW>t$y% zD)uzg=EiTYYkm2_$f8y5llMRSVAoAi->%zcOnrQLYWJVsE-YH}+2g72ME;if&0A+8 zW=&1}aohTJeHs5Bb?+RV+0(6y#x^>(ZN4!(ww-ir+qTg$x?^-~t7F@??VJ96+~3(} z+&jj-W1n&Vde^MCR;^iURXz38tU0URZzX8=BOk%|y~oB<5<=kZLANL0;e^;e7Ml3i zVnkuQ?-!&hv@Ts7@LWl}!`b?9b!y~6rNpfvi&VnWAp8pbE0kpy{pX)Mg}RtJRN%kQ zDM_F(p6vY$^V03}&_oM`s^c)vJz*w|f;xGcMQho79XtMk{&(zoWc0uL@3H4!y_nMt z-0?RKbB10*h)Pv>%fR<)r$Yl#*`Fliyk%QHLL?qZ*nlpT+GW2o-t|4d^1`VVvj1_t9{2zj{Zu6>?b=E^8VPdL}hyt#tln z&lr=^5cuq{`##2Tz-^bNK#0&{UpI6+w;ORtY3De1w$81FRIJVDUMoptZf*LK(oMw@Yg?awS8JdyVhn z8B#S6I$uqFRz8Z*wVUI6IB^){pd5f{L;X8Dxegn@+ct55B1NgyB8(jztH3;uZF+z~lgJXdLMXW~X- za@f##5!^g>Uiyae16G5WieW-vNfivorQZ6RwWRXO+SPhzPT-*5hOaaTN77waHk2y9 znfTaJmy0%ocLNz%ovM}vuF;2|7ti?|7?}*0s}rP7kM?2+2d(oE!ZAJ~%p+0l=bf7E^v9_6LdEEdPc#0l<`>$V~d*Ar934 zKiCcu1oYqM8t9)UzyPVLZkkTIe(7$e*sjI3^G%XmwYR7Or8NGFhZ1_X!M1nayvgXINe8+ zf>JQ<8CQH`fhz2JR09BK>ZQDBsIgjs2*(!6+{Y3$pIGe7s?OSrxJhg#=q4Jm12TfW z`^4wSPDeB+VS03YEv9R$lX}eSbf}VfF0^^XsE>ULlc>{W9gtp&JubvlSJ zgQr+n%LmAk@ss5GGN@BxEw~NbXx1vFf!Eh7j7(%AP7vJCa)|yE=B7P?0VUq{lJNCI z6OQOx;*`wMU#`ju-1811H6-_+09E=4PznE_M-WMLf6*i8|AeOhxk=Ce0tA2P5$7ix zV*7+9W~RR|>JK^k6q){rjQ+L%6ZD9Jk?eE4{bWn{Hp1qg{%#J0B1)o!qDr#d9Dlj3j?Df}-O7Ya;ijPIO9t(2Y>(GdlD$rttrkP9^)p5DH-`cq}EK zWxTD1PQ4(+q8^uWP@=fJ%gC3xq*5n}ZIUVn?tIP67vD(DD$ zosS#`=WPdek*5HC3~Kxm60P5%Lq*Fo@$)TBlMPSqOBd%Nz5zckd#x%Ox@$53=^5x( z;B^l^v_&5}M@bFa)0hpr5X!kZII*piR`Iap~**`NUG4(i#x1$_~Q6 z_`a5L{tHw3ZxQ4F4O4P*v@&Q9<2Wu4F1XgAiDme1OA0p zKQyv&r9Hp3q^bWx}l5Kq1x(*_Kin(sndT!qbRjSF%qIw=Z*kG3hXxa zk0z+$im6)0jwHyaf&&ddG75;wZeWGA-yvPDVQ*04*C|}PZj$e`Li?kv;&V@mG6jHT zd?Hrrr@e~NKlK0Llnn&t-zJj(vYX}l5BwRO{%)Ru24#Z#H>(-gr)BD2Ry9~A1jc{= z7yT18{&^!9)8|xw4u~)#utORvoVig;o7uqb>7%Y^^l_&$wHU;)5DW^#&*{2;Uw<*A6a<_9iYX3$!; z2n6nMX+G1YSS;8rgWt5@E60DTv!F_;9cg7w(KCp2^~CTj+X15k6_m zo4CwdP%!>Jm!ey&^(;5h&NFBj{%Ob&R|aGfc2Ut7Oi~ZR1VN7Nhj&?&IWS};DOApPpx%^fuU@3S>H;Pt*b5IZ6|W z?*cTq$q{_jrMh{0_{JZB9cCMD7PX0`g<}D4}-G1oiT&h=SBe{pGzGM=60V>0e^|IpKc5cf8Y6m_HX+@Fo;hL#M##eQSAl<%mI5c@dETlMm6SE_Pqa+jvOntKu*`G>rikgx_ zEy6^iKjP!=@!BTZ5!PQ2+X#Fx$GPht_&js!$5Uf8HKJ8!`{tpjjV*V6!x$R* z!pZw_rVCdP#V{H{g{h3r4}*1$#~kXL4(1i0h6*F&HL#-~i60sPF(8e?e}e=ji~$-S zJmmp02Jb_X0jGcr!^+3#L)Zti^AqrD0|G+8yRHEe=KvH_^y*}GB`samz+ztmYO&aL znw49F@_`fMXXj&NA}9`jdQDJ21UDMNJvCjr^tGcdJ;WDHj4 z5@^>ilLf|3%GlZpGVVe}tUH$Ip!4dH7YULG!eV`l^2 zxjjQZbj9b94Z&Hy)HBrvfGmDM7$7JzsuhPbk4`PVR{efmD=-NB%0iO{ue>x5?2^0> zq>2PN*y%AhW-yS#E)NL_^q3=xZjB6~+j#%sp7H@mm$wv=sr}et?(4>kKkqEv^o8n~ z&_jCkMMB#et{3$&o~kl>i#`2d6PO-YoCh;8f&g-~2PL%Q?1Mj`o?7&ez`h0oPz>tP zA<3g4*LP~^6QY&$11Guu3gCQ&;Ph8r0H)7PX9A0{yRr4dIkdyu1hx>4%EHb20BRFx z{M<)RUhJ)r>r}wKWaG1hwbd{0o@_{%hi-VAKoMo{HufOSm9~i6AT1yMcA#XtWWF5k zekj|y8#1~gsIRR+x0OIQlf}|Z7XSCCP213}79&n?0jzC||r^k#->2kFiA@Izt9PYo?Y z!Kk&C&iTsQ^f{#k?$}0hy7>*uKUVR4KyHIaXp*ctHkGdV3h?Eov-J&20(;aSUO0)6 zMl$E$``UIxgOtAe6K2|pM8Hr$$}hoCQD$a#(bV|ALNxioEc6Tvc^i|C-Zye(@(9$Q zICsO&`uAA-Ha_`DvUlzb^dl&{KCO*7C(nh=yute+13NuilVCu~!|X@RPCzRMHow~t zmm(ZT?UG;+|LUZ#^991sC5Br9(hW*f{VF~X3`IGM?Si)}7Ibq={$3Q_go9M_^rGI} zEpS9L72pK6iYtIlQQTYawYd*g+FLH2tHyda2%;@uAC^^|ob`0!=IE$rU??w68g>AK z!V&r==2nFSU5tKB*+C;cJq{dl3WoTCUK+)k3h5O5RX7guJLIb+{j>!Su3A_*9dpoE zc#5Xvj25mMd!9}&H<0RD;U1qSLd0rzWcR<{&en@@CqhlV7h!H2Chlhd+gnzFm%a$Pz?Qs{7AFdZ9gxZgTii|Q z`zaC_6pKrZ5VbL1Wv3I^_0PdU_#}VAu{~hj33fi+&3fe>;k4K!8Yo!^-3ewSKt9Yn z6oybVXmZuqHjwTF0}_Bj{(6~OyUVf}-0mH^avTedVIm@RP;3RHLcf)a3$zRWHw2$9*%1Stqn(+xvv+=I|+ z&;kln(5C#4TVNtiG%j}mD3JCPZbC5E_hCFrls@R$pdP&bxN*FoTe@LDm{m> zWtc&m%I2J4;l=_`-01Cvqn|&?znqzC0^Y*|{UxFNU&Nh|XFY;-0bjt{i5upBB?`2) zifq|wVf>)4>})|Y2wmnRlwbtgBIe$;wjSO6$n3cpiPuAolV9%~EPLn5zEGRcV@xO& zM!MbrymEmHj(?cb1r&UY5QC|FEDS&mykE>UzY}lskAnzqqA-TlS42bC#Pg^z5Y^Mz zL#fmT0tE0rGK1qJV;0c997ZfySLl<^%cDYi{xA}df0>*5x=3uy8L;k~eByfv4Ap%* zY?sD1y+s`ME{XeU01|NgK~G4EWWTUPxW2(C&OsW7Q+)glTvWRfiK7@ACFZv(4Fw4s z1!j$ToA2NbBJP!{K-(y8RRPqn_^coFEh1Vsmv0Dx;EOLlVZa01>3bj2!d4CvvBpOh z8q|8KUpkQ#7gE4o)$N`$G_;WXhhFflxU&1>yQ;D;*cT!YwD;L#!cU`c$jb6kPt~@! zHS2a0l7YWqIjMeO;a5&bc{rk;xZh|&abPHnrkDKg`e7nM4md;zKBA|`4Jog5`hrm5m$0eT!M&?h&e{@qoVXB7 zfu%xtS#bm&Q0;^k!EVE!XUYp`h}>&%6HAyP3DFh5^$j@UNLI?{X zrM4yBU9b;sOz1mn0Z7qq`O!)`x}b=zF(^ZD1rcI=cc1RaI6u0p=z8uDy}Yr`Kd9);N7=(h0-^JaKVMOjadm`lt zOFs}87Cv;P7kVQn3H}H|-rC;Vui&p&ObS>aFB=%P_Zy$bz}E}<*3aQq@iCfrOCzC& zvw|t)*`<}y16Jl9lPN)v!Y_t~hru zTi7=ip<|%RcB-oO!csRktd%f{;dABHikZea2j0@OH7W1aVDk{hY%S*KthT?=OZ(if zNO0yu^mT(H@aL?B;25#?ZE`vRMQON&+T87gdCgvwc6C4$Z)(}TJ0DK zjCtJ{2wHv%S2x;^Y1gu?7LXk64j++HEhn1ukJ4YiN-)fI3tXVIlB#*h8t&}qwiXO>N2 zpgIJ1;Gj^%yMc&~(y3*hL%)f)dhQ=r1+u59mr_yQXt&nE4^8!L{l|CsaZo-%&);yk zbQCJQTQf&vS8mySx^}Y{oj#2ep)^_TnXP+n=B%RIVN~BHUZ54uT?<#j8S$fR^99C- zX5NV47Ko|C{M9pvg1LSonb0JD9N0PmYQ`6H$?0sZWJdb|Pxe&rX|OFkO3r5Ge zJhwd;7Bqmbwdp?!{8J#Jwo1X2u0_9#FIPdC-lkvQ?D24U8kTSw^H|rmvfXI0|#YXrxeu0|cDKV#@vf>@s{u z3l^wxWcSVugdnF~1&aq&Wl++w9H093>z9nmH^Dvgq1gp?S;FoIOps#nr6Nlb?<9gA zTJ;y%=5gPW0VjfQ{oJKCY_mG&_g8V#jhA*`4npAzzuU#G$qy{I)hcr&QVU{E4N4hz zclVQkpzLcz#r}+5T5cRZ@?q7t?-euQ8(_H(H&M@J-tb0r)tQ#(?C^zhPL-E> zE26k@0tkwoz^Omo*vObzes2e67Zb6%b1W6~N9 zweDW~ca;1)B8%I7$q4(i@H;uTjtDbcj))&IgwnF)O**@+q0qF*ViXkcAoGUBIw1T6 zEp61b@9KV3-5P|`fgWhiE$HW3)aoN z5j8%ivBvYO??ovgE2#eMAB*Q>paJrfh}-jhvK^}`q>xyUi?Ct%d8awwX<4iQ7@xT zFLYhjEbO+6%9Kpp3FJEkAG8YHdQ*zEy=)HT}Nhtz`E(c9gimRz*0Dy&0ryjp3q?-uq&8#Zn0?Tu$7qj8~USgz8t`jC+zJxiQ9cOR!*=BJ9 zIQ6YLxxn`IL+X<1{w&@=8o?}k!MQ(W!!}kLw6q+ht)Hs+0zg1yxv~))(yaGHzF_Vz z(vb#3$;3Oiy_%Gmc?#UiCPG$DSd8_2M4h(1fDD>xZ$OLhywHaZK2+iZb2~NosgJE0 zzLE!*16UNjuq!ivo*!eTFSZzR>{`t~5!4&2WfYcd_&B*;K3WqfuXcA@lMN_cz=k*R zY}o@k5p2KMDEqM%*;fx1Sib@GrLU7S8?h8<7|$TYXfTg2My?ikv(JoCw+vGz?{9jz zMwU$@74No;5uf51+wR(;t{(R(vG{!)F2op*0&+TE)+nxL6Nzz|Pz;$*y{KO%0z(gQ zH)#wXV%O#q8a8opa^^^E)egXrhCA&Huvb3PM6I;Ar)WCd?)Qk;ag2XFIz_6d`gt8R zvjfP5b;A;l-x?u$SMqo7&Tay%C-tLT+D!>VksLWDcGJhhaCydaN!VJMRN`{G2}xV} zp0xHvh8@SNVf-(6?Pm209+VqeDDm`>R{}5W83+>KbqY}^^*EQdr+(hD!o)Dc*N;M` zeaE$jZ95rQ8zWp&4wX&>-B1fv9-QZibJ`?QS=NTJw&Uy=Npz+mJt_ztKrFl6G{^29 zljJ&qtK#AUjg(JWy-D}nu;1X6H}8n?NW5PP7p8be$Vw^RinuSdKIBH^x-VOVvPF;u z)#H8DI!X0cf(WMJMajS^+-r~I-%D1_(C}4Vq?OxuS_5cV?;Ciy=hdcq%T6)FY;DlO z7VEfz?$^Os1hp+NaOT5Eex*BOUcO$oxovmuMW!{uF?%X_^Y8qHr`m`^st=9fObs5J z84&CL5U3#`j>W-HaE*UbO)E@3Cm*?8k&LV$%U(4j12QH-Cj2ZhfSiX!zFmc}!nb28 zDT#ZfQne8aSDH>!Av2|#LmiiF<=d|9#yX$e{LO%IcF)7XkTYno#yyc}Lp|}HOPtQ+ zMFDjlbdRi8a$K=$lBc9?v^l3<<)*5_SvPI@0khl=!+szjd{2yucoc7hF|9pQrFv%5 z1r-uaM!MAr=lP~o1XUrieDz6tgg^OqApv7bdf4oT{T%eg{*@NB2(obx2k%e^j(HG- z36&_N9jLX853|<6a&PuVm8Psgt4=V#@Z@&$Y_lChdHDy;MWyobH#|{7l{1njTL$X~ z31$;a8ziW8>;Bky_l;HBY9kq8@<&#Wn11 zQz{Hjir$TEBZ+!D0WlF%lJY$mlpFya;Vt!EK(JOS9%2_-HU)%2R5A4}%w0Jz#1|8U zk#rMgjw#U~1-#$O4Je1DUf(a$8XUjyGY;IhQ|O2Hw5Dh`ksI$vh(ex78e`o%+jr?3 z>}KDY>9~K}^08Mei6LM&6thtVx7iU|>KiJ$eR>sW;kLf|vD(&(On0ztjw6PXvw@s) zabQG1ZF+*?zB8gYT+{ZGCH$!gwe8$TqO$lvwBV|zV4G|jz|Yk+spRCIJ(=qh1)38w zM_)3uSh1en3^U@afqW9G|Ag6HY((xm?t%S8fifo%t5B<=5lDhV{50i7eSna{%nCuk z6$syU#=|!zojKRcRG8PC&%-yWnpq&1QMrBDdjGf+ zl`0e17@5r+xo%~Rc%Rb+YMq=9FPD306cvKoY6`7+Y!DyBumQFkEwGo-E9Z3LX2Z{D z)!o`27n4ETsaQpnnM4Z+ZH_xH6~WcJaF}u|cw;@u`ob~9+pg3jxmbXO$7I+HKCBF~ z{X4$}BuSF2M~kIJ`~Z}}G{&8kL6u$&gwNuO8`bU+J8)MwC?)|Y#w}tG40+B#1O~QQ z1_S;`>}`L|b$rg#M%LHf`7a*0;#mzRtMD#?lhL%BxBYOn>))w6D5R}S=zl}c&w}9c zF3vquCdiB#8I4Ud%pIIyVUJH7$(6Cw7wPKqG2)5?hU+%C0`I~s-!mqvEmhF&7sT;N zxy>-O5D8+mqWRY`NMm3w*GDev9yHzd!JsCx@pw{Qy_f_{Dj(zOC?QLMRn47oeR?9q z$(IPZ+%V{J3s50xX6~XLb>lIfjj1+o#t8KAPtoma4y%ksjjCZf#$S1?5+76CisQ@E z*C2DkFc)mh+$Z;ES^*7fcI}?t2N_f;!k>;pS9@7^6=y^YZ)Nx2#d=%VC#cipOp+bl z_VunCzb5BXm3dgzyE3`&$Ki~`v_jJ#GB;;QzqEPx;tKXoXjtcWUsB1sUlj`atc=`L zDMGie_z$NhhH8hQ3eWSDc!_kA^<)jpd7R3k8Z z!#}ztx9*xCnCOQ!ch>TC=4d1l+m&gjk%6_Ddx_M4!zX#Hlgn~^CF8OL7QQs8D04{a z>?up6$6=mhUnXy$F2v+@U2Q3!yd*;O3tE}``b-uEU12#pxb}BsXPhf*%J^;+#AJ;q zuI8lPukiTb7RlpA8o1;H&pD|Rci~&b{Il-qFVAxvp_9@69OdUp4AP=kgUU+GFN3~5 z+)VojTli%twdn>D%zQq1Bvz5_3uXR!C|HnB>I--mG=r1L=9*DCkAy4^DVB9AvN18| zx=RHu&Y|qHVoyMpm2Pd*ws^QX*+*j4L^d5YlCjTIDiiY#8*YAmt>GD=Zs#g?ioGRC zmsMPE{(gf7?yh>;7A%uKl=iH{E7RLcy^bS-(MgtQ(560bzk(>U3@QmL2NRVPGE|>W zjn5Ta8#3F@w3??taA_eJU|Q90<`4Eho~D5C zVU$woT9nLdlzZz6Hnq2Nn`oCY)Yu(ZDU?q-jk+H^gteTE%yh+R+|KJJs8x)HUuM`$ z|4elofBZQSX5VM~^;p!_rv&Q_c|pR^%4W1loBe~+6NN5M06ymi*i-Ag2z}z7)OQ+0 zlh%8mJVc%^4$!GI$QdtxkPalSxer@QodvxWrys@jC3iLhj=&U`N~TasEa_AxTRhs0 zm=iuj`C^hRnnFuYor>l`jw<36s)+`@ZPevN!-B)4;|{)1ZaYZ0mv(cC^zGLvQTyY_ z1#(SUJ-Oeui&lIZn(YHu z*YGUOkSuRe(TcYqOB4MJ$+lZRxu#b~p~JSdJv%~Yd;i)!rDtw5JKH>^==`MGSInzQ zQhSf`m+j|hHqVSuRM-1)gon}$uJrzUUWx1_c0QOS$OC=!!7uwA3ZB1{hRqlz$1ZAS zuZVusF$;ItC2hz>~!uHEvhtbg|@%C zpUUw7@v5W)2{9*9_P$GmD;YCIdM6hg<_a3l;EEQo)AwIzv0)Ad*6XbHcxe`dtL|`g z7%zu9%G#S{7V1M1Z7zv;65ibBe$oVIx2HyK9PrS_5Pu$Xv%(gz>PNVu_9jt!lcm}s z=av3gV#_&+Bm%k6?IDlqBn?OlV3pNPuNd<=Sf#jvJ%seuK0t6`^EzyL7gg2P>>{U< z?8b1;z2T*?`CQ@dB(R5k3!!V3U%Fu!gwHEPfb3+$>z?5@^h_K_P>pK|}bsJW?@x!zOA zyA^i9BV^OaQ~POL%Yn2+B*Yncl0gt^!F_fl_%gIQ0(?G%^5W^qiy|&BT{*B~T)0*f z-^uwr>r4neG-(G#DM}QmcpBpHwOX*(+E=4^Ik?uAop!l{eXTQkc`7^L`n|Cd| z)-;3z)ksKKt;#9I#uds_Cj`H&#xJYo(Rvq`l=Ok3DoLP9^%771Jbk(REx^TYA*uLe zZV-7dJm-fPsIJruqMfMiYI7wNp>cbjLMy-}%DbcP>F^@8PgOL$h`9lEjqn?{o$dC< zYu5h7=>XQ9`=f$aBZeSp@%#nX`MbryS=qs&WGq@*N;<&ee*LGm72J>+$IioV)|-%T z%g!m2$Ggs2HZ4Qn?(>*;Ptz6q;tXzwJKQ#OobKJTq~jO|6Uyu8pOPPS5~6+h>lS&K z>7MZ~dQD1jf+s_#v>aBzJe}c<+-%eM9RZ96Qn}c}81YV(!*(hy44Urb4V~>)0sxP7 zisKUkkI6jz&is%L@qsunjx^-f;v$9{Z;vmZZv3s=*^S6q$8epkWPx~c)WXMQAsEkL ziVK9#>exOD)OSXLtH>mC3$E0D{SP@UmT+aF8=r2(%8aF#w@6E}zme$4A!ITaaDHDMdkl;VnO^Cl7JLWF_a`;%~I*c_40TZKPx-~%q6LON{d*m3Y0lLo9A?Q zrxhUkNJZA6r?UMZ$8c-YMjMRkR$ANB?7M7mgdV!L`8Vm;y`&Vl8|1%&Ki+xjHVi6cbi z>L$vGr6=mXanX!W!KE-~%Jh96O&O4oe-E5U)E=$$a?)ibjg9zCdl5dNB zQn;a5^|mkIv%j~2hgu1O3zw9zt4bUhQ@&9fg_5s`IK(;&Er9@v19B0s?)hNjf`UwJ zKyqWYr-P4WCf^ z%kz>YiyNurvfYFcz8I3lb>*7T1Sr4&J-2m}g2hHr3z4W$i}K~Z5_kkRnA)ztk*(jNhInW3 zV}S;3VxHV+Tu}Bh2LNlvU`)x9FEY-m5DB@S5=_O@hlP7M^1=uxIgvmE%E++G4tx%Y zj8%obY7}y|Xc%u2$AHuQl16?|LA2aQ_>n-Tul4UuIKR?ddkNTQ!?X|#@Ex5$*sPK5 zCH7beDjg1Zyb|eD(OkARL7u&wx}SyO`pcNI?js;hPCT7>^`z+@F82atb}gcgV~2@cQ>Wk0`ds0YPp|bRw5rAD@?HapQ9sgkb>1LQ z&X__v3iHvy<5vbIAke(>8T@eqsK&|+Oy@IG= z(t^!=FM&9=@UTtdSHe;qF);(G$XWl*c*@~Y&#mPYwcQa-x>E5?f0XAwVoID3%`MDW zi73C)xmB)w)FUhJ1tEguf=aZO8{djNvv|gMbzD4<`rQ$n+VT*qRl)5jpn|^NP$rhk zJjVJ|#+&Ty@dl$2zhYaz`kKf4wonbj#E*=?vm0b;qfDN}ahKN}Qr`SagT-{N3s!=M zh&n+QL*Wzo>*MM8LDTe69clBx0AiA+y_3CIspAs|ezlIgK_8yHs>K0cgM(Wv$^)y? zE9+U7RNg$c<7%~GAo79VrX}+W5t`2&F@K9+UhF|^?+wpR(EJzc_H|pT;8Aw3<%aVc z&$sDnc0y-27)t+Ms>Z2k&+QA#-(%J%NMpQ#kaz-1x7RK}k5}Ig2=X>fLyksfe0F1_ zqCXamZrdY3p~7va_bM+@(pkPS(LYeZ%I5i<~YU>sxzEl#hJ{&8tFxgijthG}Sqk}*^y7f#MA&ja@7?;^nS|AQ1M;fM^ zqMJ9Ms2Z#GdVcnKHOIKEQv~JswThA#{-hoG;J7HmVgX^|0d7!j zI0ah-(gL}blAhJCiRno!whA{EdV~U&Js~k5>-ZM? z;%8F$NgbV;f%NzSh+1zWbQk6GFU(`?zMf#bLE?$;Zv|12ohi0}MS+-M34|~VRr=)i zV?&Ua_XGsjBV=qBCa78wWSydRFFz$KZ;g*?&#I#nB(e)7TIYtR1ULEK1ip=IZPKgZ z+qx`kr2#x=ZXwC>fm_hiBbNyJ!6#8{;u)`;*3}@dOr#~A6B3QikRF9*K^p=-As8KA*7b~u`!dRj@vD*dve9>kbjf*Ny(|s zF=<&P&&G>leK%~6lYLy2KBHaVK2X1PSF$bmh9_<1XBltYh`&Sk%kSh&n*wQOVp$W6pYo0uV0;Y zI#;<0z^8W=`e*kn87j_teiPC>XfPel4|i2t4r{B-_4!?|-!qq6UKP$I#LCs*L7a-* z<_rVQ3@vH8@$PgdV*qCBFJ)y7PbsUnH+WAZD-^Y05vj;vs(t5z!Jq`B`Mw^VO+1LxUrc z+c@bYJ2Z|0o@h37w^8;-e_T>ko_)Arn(cLEpLeWPy88k1!}l2khT(f(TW1ol?{_6F zG>k0)D3lgA)qS8w%=eIq%KnoI{+Fmspw-`Wu?p#LagC=1M*BxPN`k=toO8#ht6sWw z=jmPez_X)Oq!&WFN1~Eh!B{sZo$Eza?Bg&iujzIn=5hc}A^u2%95gCMCVpIZYL?I| zJgr*une85&w2UC@Q${R{I+{?X>tD;)ZEW<5{e9kMhr*L%=hj{CY9xx`-`cHF(T13M zhvcyzWT|!3l3C~jsm~f|`bD@hMc~8Gc(X8{wqAlAdl3%oF;t9+nP3o0F~SOyfN1Jc z)kdXm;=LCk2;HZ6<=DV@th%y2r7pOP2Vpi2=wLO_wIn|%5VR0s>x#I^kBNuZ8MlIC zPGFdM^TzUO^VHF(GYHW<>~3!ZEYMu@mHq0Np1NNW00gFBFWut3d3u?SLNoYq9p;Ml zs~H`5o$U{Sl^$_4YKfq|LEa>DeCKzO0KvXmRqYte^BWY+gPD;w*mhH}Q;QHkB|h`~ z6?c<^yQL}ii&0%$!!!ocs;DVUpJl6-;zfwtd*CIQY-T5d^7=#BL~491HO84l3S}nb4%-)?Y`(7}Xk%A<{Jn(&yBNnUC=d=3j zXvz4F(MCNN>p~hI^>JoujWr17e%~o#BlP?vHNI1`-sp{@tDQ9EIjr!nxEEbkr{%;< zNetR!9Oy_!S>*cz?!NoZ`6M?}6OJ20?aqOa{XA5A&8blaF)yq!*f?UzY~u^x5qaR9 z7Zv@Ps;~CEO5`+!@n0#GybcOq+ODm~UTbd+! zZ`l^!(SuTy&Xmkq)|m}_#LthXk`C;OdV)whysYvgAW}`n?56>D7VK2c4tUFq`%NAh ziA5DRj}D&?3P1t_G`VIu#sxV(O^uUO_)&X~gygqlw&0Db z1Hhiur0cXM+cmPwl*d}adj!J-mO_19Ft#N)D%q><&wlUVubWu2fccivR_T@o-2mO|o7YN9_#f$57uV!g6Sfy1MuT+S*b$>Y|tt6d)6Ibg%GQ zBCTw5_&MNnnL`$fO8^KiLkm{U<=nkYsd%2h+Q^JxW^b-bpGGabx0hUvDu;3JR<qNm${?G9bkdf8D=yjI?PB%mqG! zz4r{9k}Cnd%UD;aSrL)*WV(Bz2_8==V^zj5y9B`s=LXnUlWV$tqsd zG_!n>fSIEQa|}6ryuqWIEwz5W-cus>Lghm`g`y?H`C$K5Nhy(sJ}ZW5svvdahXYuv z@JVk^OTfCjm0FvX%~973re)LjJ1&h73z3z;v2lA604}D4<46gd(?J$SWATPqQi`RP z`!~2l8!aOC1so|cCUPZ>7oP$91-g$tsviy4fU6KE$m6uD z$E5IM9KlduY)t|iS#!0Bmx@xs+ZmhIW zG$}Tb$?GyYOvx@bBAs^FuqltSDO|)-yR~?i7!$yq^V0}JhFhyq8=SNlOSj2$EGMmqp9B$s(U3BXP=L-_S@9+X9nsL2F16k1GRj3Y`-k?-0J^AoK)xCDs~ z%@p$_pa-n@Tb30nFU3fb&2{YN#N@hZZ;9?YF&zaf%g(YMyqg&D=C+4yv<7P%L#bsB zXUC;T$nagA-z5$2zMt8+H)~tF*nxdD0PNU#K-DPmoITb$eT=ABn>>b~@n1{icVJ$2>gl}FOU6ub80-=p%q6|btQYVyYTN>t-HK9rX6(&zOVCcOAWy;4E8A{h{sHV{gikKT}l(`4=yISBy5)EoIHfWF_rv z_DvP-k&c}dOMUC3Y>cK#v~3|r{Fr?YJ<24q^7q)R;k06>yPxb(cfJrfTM5*kN8 zN1-t%b>v(aIOTtFJc0b{ zL@u@FbDvVS*vYq6z4WA{>i zJT6MX5-j8mHDDbWl$KJL`fD{gjuD^y9I#%)rWuyra6bKno7{t-58Cuu6zlexa>jOtSiGG(z!uT%yR)BpdrH2N zlGK}8tD5}#PxpM*h3mT_cbKDOlX_w4SSwhcHkz&Q?XbN|uS&)#LLRJLpV6l6fu-t& zV1@y9aYi@7eYo=PrBDsO!s4W+7V8KQuCX@Cqr8x%tZu{9O#C3dp<(B$ITZ{f?ATC3 zGoIT5GBzP@bvnBLGkCW->Pg()5VJ7X`zEO zrW!e>y-(pTdV3ZLM1sA?Q?LeKX|G8KlIGy3m6dfg>}} zCyS9P%h_DBE{Qf8g6;EdMtz^%kIr*mo6x-Nh=OR@4m+Z#m)(824FU@Sc)QE>u(K?8 zKGDunuWBG5lk8g%5=GLEdOp;b@Z(yL{qy8=vzYcoh zPDEgv8PsI4dKkW5rSv@Nt@WQSCc}EEyU?8ujEItCIs$owT-aQJ80qq$I`E9%Fgv0% zwOfvKnnV*@+~ALs^`vSuIKZN5O00glLV<0B+#B_Sv2q_j#yAplc>-9^_>&y5LiB7I-STy<>w$ zofIu{1Bdrcb1ot1G;)QSN&9AN>z?JrzD$sr%irrqOcTw9Hd>)#`5W1TqEN$gmn}V) z{gzdep})*tmchf5rE;ZRGVa~I*ajzY7;ytvP11L2;H>TCMHr0@z7X-0STwuF;@oxI z>Bqy~&W?)5GOC@G_hI4IdJG!PhyCjmeLP0Z>XBOqbA=B}H;=Ojad?!Rq!aUF_pB9yXj`ck_?98w)R_mnm94HuJS2A(~R_ z!XYI9B)09;h~9~XflhE=4oiFUP2sX`X#!>h_A3U}0ts=YsU|h!LaR^P0R@VSSLUG) zzlrNa_X&G1yp0r3!3suUh69>_!<&{&cEK7PjwLM4p{+aBFcz@kA#VS=4Hj36$t;seka{dX%j7;XaqvPsP*~!E& z_vnbr^jE)+6HYzgo+^{63Vudpk_=w;zW+r}_IUbcjp$mHUD;hL zD|6L~=w6leVXpC7_iJdUnkX{!!f#K{ZXvlK~dgzK!jenGrGv$y6g>TJ;@^SnKu(HSpm{=7;|TAFM8 zp2{)n>7~@6BmwGSW4s2!G{Fa)Oe~jP_aW-K_F^&i0IbJbXqsuW+WAm<#_=hUAI8le zS_@5$Xf|ZyFvBE6+it*yCVX58CrTyaWW#U9J&My@g`94_Fp})2xvGdM^!QnGzD#RK z@JQ6%wN0pKVH$5}jp)J_F0V--YH=->&iPQ=jXZu1cW5J@isqBR?N7wp1MVS>Me2jPian4FMpk;}l`&Z&iu zt9wPpS!@>UeKSO*+Ft#If>J^M$_0+On06=VC2gI!O`yTDIf8~Usy9h=$nImvd53aG!dB z<-5YVR3zoMRNwD9^Q3__)wntrO~LmRA43oM#4c^!3dgT{lD|LeNoux9OwfY)`rAEM(N0_ z8bMs!!yjX&u1dnQUG>{XwVmCK3NT)~&rFE>FwYN|=2+zQ6>$DY6f`F$TpGxtMg4aP z2a8F9-FnOUbn0&PTz7=tP$(ae*5c?2tVB1}~6JKusG z^(PJzhs&_FY4=KlM1tawaPd@+gF2-@#Fb?`GLb7dFxRxrL(#?AJ|B8noXQe0hIYNf5do{rzVBblKP_ znm61YkBfDBxO^ru#DrgD!e(ojl?|i*mOfzyle$-J($}BuZW!*Vm9E4-RIQs=xOZt~?lfgTRu=j>(+SfU!Qpo`C5l2@D(rlBFqaGA6)HP6W6c z>(bY9%g&WrL0&mdPxsWhc9CnN3c(@Wu^N8L>&Lj9oAkB>w_C=wVy)W#LRcd1GLE?+ zy8XG7$@T!BvKGClz0WtYgWHVwQM57gqN&H1+`G+Znl^hc49f2qT#zA{4RS1Ir4Qu?U{odteWNx#Q1^zP`s#FYO+vT#kT@1xyMRSOglq)(T zrpD=WmV@!s2O;JL33JIaLSa>Q`w ziR^ppJ53Lj7ezk`4~a366`KCr%%F`(#R%Ef2{NI`6SiK}NNC$%+zX#f11=Vn21cew zLaf`wk0yEPpSd%SZ;c?3Rrf+lY6~aUTUg+~T1EkGT9Js@ZM*_BstYh}6b&X#`fU0f z^Il|{do)@siZM%cajw;B$hOg$=Qiuj@~_K^NCU&SrOPgh!WSJyWcOLS*gr=lO&tkI zUt!3Oe<#@#lIH(LLl03vLL^UF&~QsKEhWld>r#@EJXn;}8(Yd^2vkzX7Y~ckJe(H~ z7LOl3EpQZ)-4KwZrHLA@1SePc$uU($B5_J!bKJF}gu}*H#lO|old4U#+|aJ*O^J$C zdL$C&w{A?^Xd-uR!+6v!DSHAO{uG6ORm_2~Z>UzGG(b@*h98Tgwk{Dmu%(vl{WbAL z=ITv!w^Hrc@T||00&QI7^6rHFRE&34M3kr@ibG5;LgmJe(UscS=4#hNd`{RFgj?%I z{`g@^SvSW=FV1hU&Oei{Pap3)9Wd&6atY0c_Wr=;_8YtD%Ql+*@`r@$VQ**QeTAd! zdjx8TW0=XoZKKkSiYabvGp0xhF0U*Co;roIMRfxVE2w_Pw7Ze_zP)`NCq|tdrT05+ ze0B^k^J=+RyV+i45$~Uzsqj=nv;_iWa@)QXJ`-ubC-KITb!JH`NAVW=6U{rpt)A>O zRa@vBmM)M_3w|u{OrH{uE*8lA+VY`P=J^6!ZA*k$55LFOS?gYtbhr))iPo}^{vReN8c-wskRWve(_9e z4s`CtbmcoMzHJv@8mHlY zBvY3>Ikxv^b?S=2H?zyGtR zONcVt`6y+3WGM;Za4jqD=FPFwK*hHJnG9`btPkWAKmO5)y&loq3Ft}2Rq3`2CPu~W#gH{H6qztwUWCE-7xbY1WC!2o7mS=X|s zu3H5mpkhU+k}SvU8PPC&;72n7RGa0XOF?Kz<5+u!zJ8=BZfw7%G03!MpeV)V`<9nd z_G9}n24`P*YtGw>B_YSxoEW>f1@(|HQS3}_l-mzqyaHv&OJ68l(^%3kzH9W2!v>P~ z^$fsYb*gSe4(Q0TR-k*kK;^(h%T*1J#PKP1;5*zmT_$xb*FEF{U7qkluA2>1;1AxiI3XO4fVb z!}pRIA!O(>kd=)=Nw(J`!VZ7=)9YxzH|o71zm~SjHoP%C*e{ahEnpU>4;+%{+Vv>` zHXgX(9Pz!^JC^f;dv#wFr`>#nwBT>!r|3$eWDlXx4|B*LZu{@EHT?N`4N4Naz3_t} zL@J%X6Z)IUgz$G;{8FlER)Y@gR^sqQa=Xr(&Im_R>O)s1uTG+sSU#X)*KosJR7Mt~!?(Ma|s=vRoe-iZ) z=*X62?Jc!t1b7tRGu%kaQ{AQP26_^l_o$~ssd&70ie^Uq#!Bk~SQ+`zHC$1Tsj(o zxz+YeK2c%em<}MvgYLkb0?5S>OF(lHS6j}|PHMG*?y9^#qeBi1B0p}@GR zDn~TIbx>rYLX zi0kV#NJ#b;9_WTa&rMewf>@d&F0a^uNjk<>Pcs0IHUqy1pq;G_&?LXQ83o_%^7}x{bYrJXLWed01meV&Yl|BOmX)RQ#SGQ=&9z|1#w6#Yv8*F6-`Ofgm1~v z$L{Me2l`EkkRo&4Y-~M-XkAilY@-;aR0P zLsS0247hp-683)B;ncL`xnkycU*k`YiPIP?+_h@@;PHv1lt=gHA>h`kC&oCFWj<@P z=k~8Q1hE1yOH(LPu^8XcKUU!F%1A}6k5T0LohTR=$qy^JM~EC505{qV=Z3y0Y*+5fQESF zTHMDB>775T>Jj_8mD7{>B}mRF;wpp2gJiqQ${QP?^G9y^)s`~?Q)2>fSR0A-%`C+r zSoWb?GFen5&s=>-7A{zk>f~O2WF>K%lTD>n2F>oE*eJ~u5Rlh1eF}PLCg8y`kIEmh z>e%nHud$33D$`>xV5}phkjc53TaNsOyKNC6?Avvby+ zPE3^N6SAO@!jq6N0amuyrdPZ5b%Kr>CI5~6(_|;j1aM3xBQD1m==slj2G%K}3IW2_ zgw?YP?MU8a{nTf|+;JgZJdEOzd~Ri2a)wE#Pz;DZlUxATr)pToA(3Mv7Rjo*%m#Un zhu52RZFB}(;koA^SVvxn?cgSDAl?!{46c@4@w`)ZQwp(Y22B18Xh&g;M26v3`VrhS z;@X)-m7!rBq=}knKzE)9A>bH;eSEr>_0#*4b}0@t6K5B9So$CopvF$u3^`Mcy<_8 zh>#FR6_d#>D7_KwT_dRMb#W;N$vV78?G*A;=!tt3orlT7HT$)jV7bHeCt)&9?7$M2 zCD5Yz!V$e2nHc@`M^nuC^t?cc*fYf)kX0UCV*uJ1^>3ajhXO`-U~3a_&bXNZys2PJ=_4=$3ehW%pV&F<=yBsKVv>G(vAzFQ(#0pw=JH z4Bn`ewJ9c7>aUh9v6ZX?4C`y}!3M2K#{fXUF!uBI^0++YxRS?)aYVEdx1;U3cEGj5 zm$UrX77#@p78{qK{Of*nH&`R7=SbdUi<~C_l~y(YDlaoCaWGLJ0ZlxWxIEYAWd%+d zonV@Qb!?(3m)#@D_JHf;5%%`%?nM)24`RFSh6>e?PC2N{uz`RxTb7n+fO=&$vf*JuM&c;}N)lMwoT2o1^sA|q~+ zFd)HfZ@6_VbPQ)i@)^b_#KlBEWrcBnS~BBbJj7(!#qA|nIGo2|Lp__YGc^CcgaC2$ z65c_OMR<8kdR10?GE!bvDcc!vgz;pWNc8vfTO`2) z_=({+DgZjR{)DjOs-GhzNjN;#S^Nj}<9XsLpsyF16%>1RD#!gD7i(`BFPUx8%2Ujr zRU!=6^;+(;{cqaQgP$c!wEjL0KV^cxl*W zhm$;TH+Yapix?djCDRSZ@m=6@qGheDnc>&MNoZqGlny|DlEU>wWMkacA^E%LXg0xw zZ@6x(S!iQjeACM=IIy{OOk8ny7)HFSf)hmgQ}>*pHnWb>6%=_D&i+W|m|fuzOmGA_ z^ODW_Q1F=*|v#mbzah4G*32zOS$Vrq}! zPJT{}EMBd3I~N@%L2Iq@pNLVtrgEw}1wY#_VgGb-5R8LC32;lSP+Fcby#TLM# zbGYe|jaltkrNXM5nO(ZRB|wH@OM##xrzI&v%|;p%$m~SEOZB<|FZ{JO$}#)p5!VlC zhOuZ^KH+0=+*^M_=|&+k#`oNArNyA>V4#FzQj&)L*hNAdDTk7SX)f^t!&2YlymSLY ztni336#gynQqG!5Q*?<0&9)Kf=gHi_2WmwOH7gnm*00x4`&8lqBS8{{wA5+16Iy_~ z*lP8$CBi2H+iIn%f|h-pi^w28WV5Bqp~ zYV~kNs{N2(==H~Wt}Dj^v3{?8#2_Hfj{cx+o&&Dk1cydGa85rQ>(xR$5sKo}GEZW#+}zv#WJF@$#~tN) zYP?-2N#Dz~%L9~+e3Cm0FZc-6flAH#h)MZbviFuSg~!P|YzKOk_hy`#&ym;FN+TIi z_GX({$)ii@AX2=&lX4J1-(3@i#lXCec^ntQFYv+8G1!ffvC;!Qn)y9gRw-EojjBCr zUkeq>{C-gVs9evF>%Wp`r<6E9z&@)5}c@s6nj0+9R zCd~HiI7v7lozT8nmCh@PQZ-oLGTwlB6ZyShVfuEGS!%evKQOcbRz|BlF~oj`IwjEV zxE#*G7v@3{dTpJVv)?25XXizIMt6cAWZvqE!Td{~@~MlEwbLevs&-D{CGwZ5?f~Mq zFzyqE+6&dLlN)fKYe4q)iOc=Pk;7*5Z>cKz0Gm|T3E_F}BjJNavPuM;VZ;&JmySQa za3;$867N#5`I{mw)tTyX6OXKj6@^4^y)QFD;K`Ardg`3`!BTJrIbqGVALwt3D}%b& zJNu1LzIS+d`c8>JSE#WXyWwf?puz{GU8)pYt z2TI2@E;4NMB!Yz9tCFrd~2|3gb22Y^d~RfNtrFbD=BsD;6q82#UN(0BT_PxP%41)e_~9=vtr9{K#@HQ^`HQ(@)@5^`=(Kcg0`# zsX`6yayRaAG$!n#8rMJ?*Et~i6_{I62m>H&qZ4gM(N0N^x{tJc!k+zBQY9ABZ$d8p zqP|7~Srh-#cwRS0-~v%l@_S6pmIooLjGpVllaC40`_hc6QIv3Sz-=hW;xr!XBR}HO z@#qsFF@ah;nHOPV=LO@NYPAWYLFxw^JtITX7T)4^)rlz!`th~+L2uJYqt~-g0V(;X!5S)NJs) zD)pA5^UW_Kovj(C-|KD!Zr!_whKix9-df%K7;P>Rn2I2s#d9?`GGjKOW?7q9X{-!0 zw+^X)_Pxy>|L~UWBoUVs2*y+wHhtLMl=#Y|(%tX2VDCDN zuFN`1jNP8}eAf?01#ggmCHQGvoXT4?`F;8r8#>IC6(e;0Ts+Gdf!PYdnVpIT0NYbjLiX1 z`iG4pKJUw;RaTH^D0UWQ=QO-jpawH!T;QwJtWmldX&FpCU*{ty zFZ(7UO9%)C4QS3->vE774uCIpk=i=_!)*YPV#OM2BM6^5!LjYFs0D#uMuD;u8s1Sz zFV|-*5hN&<9+Dun6d`|!S8HJa+SJ?a{rcOKiV2laNa4yS-uP1II04gi@JKow9A;ff z&Q}SOqx<%$Qpv2RDaS+B36(6cmkSO$DA~@DlZ3Z+6j93Y&5*t?&(aark7;m8Q2P(m zK{PfWl+QtkcSoFLH5glJI_pf2@xYagn(O`t{-KHT)7-M4Cu)T0 z>mKqx3JqJ7mAo-xUN+v;KBRG@mV*O@9d!R-Svtkm=q_C?I?`_*uvIRGPd{7v#p}F# zFJa#&LtV`XUHd#bH6MA=mf#vLUAiOY)`AH9t=T;RQ-?c9^1Um3rHAAeCj7NwJf5(a zlt*=`*fbSfE25%Ed4z4K3+us|R^jfzzIeKnu^1cD2%U?lA$Ttupf)!k@S=5T+Qa+d z)5NKMC*#f@lIaB&HR2(&+TO>M!Dnd|lkh3zqi3NPFkcj;9L7++UC zdbPt5s%W?>`SWq9L}Cb}d?&oq_V}#)BurM*1nnlh9RgoaxC6P3#uiv~7a#VLB4{}( zC>L=EXKQsq^!#1WuN<_}Hg`oPlH7V{Mn}N;Od0}-_W<>?V-%{vsW%D(;0mmjF7m^& zxDPNcx8KTrcsZe(GRg(36*_rtEE?>G&Uow+Dr|?km_66;eeR&>Z2}ZzO8njlslgX% zQIkm&A79-}b@4%OnuL1`D>>^khrEg`PdR@uh$IEIxrXss`p<2?{6-0x6)fhAl&jma z{+PaUr&$|N^5ihPI!svFrCE&JjJRFaG*gYrk-p#=N3#2(fgvFpbfCHgg}Q>n3c{+q znKRLY0sqT_IID1J4Fmb6mvyq~aVRoht;SOJjTW@aayY;e?~YQlf_YJ zlBLzJ1!epwW}JYH;*Zfr(L!|Bjx}!2du$e{N)?aK1y3RHd_{qukN7_a#jWy^bEZ<^JYdc|e?doo#YqpfPAi-! z$Y6q=!EY57Mi{PDHGEbtMTUW9$^x^|+pa2FnPj+WQE1e?%CO6maXxQ6r#WsY*lXp? zgM(8iGb*ZTW4L1Cyf>BDJ|`jr67!$s>9yJ^6Yp+jA5Xk-pG=hL?Ef;=nX|;J&E{gT zRktdX{(&HfQlAe*H$c>k8vFX^FaJR7+8ZdRZa^J-&OG4uM}c8ok@PBTUI#KL&_nuQ z38Cl3vDr=RTdun$$*W#|+U?SWVzrWm_0o<8w{jj=_>J9B;p>-DR^ZsDG#a8+H z9wXS`NFt8VvkNe)26lZ;aDTU!qX?gE^+N91D|kRvqjnV8-Sw@Cn|(z+u(jC4lt#~5 zVcmu!YVcB|AfJK)9f^-}Q{<6QN?}ve?+GPnG}}G$yDuvYyDsXOhKpdL#vF`bsC?-d z*;B8*Y+;11?~wWEu+$0KZL>qu5&7`o*Ua{7x3~46+5`!oqlc6Fez}z;t$G+v$1N6P z(E!c>=K#1!lJgL_S;?R-WZu4-BAO@E&@Zv`E2}AjvlXCkOSJpP85USTNMRZ|vlU3( z*3ob4u0N|28-v6^h3%PD9Bg%alNLR@2X+{07OrkUN6{xhm`2N`_~v%UBNahnZ6S_+ zdFmyH7NGG^Qag?-L)K+x^-RF4A)iEa@PzIR)okk%Ep6(S^`Ckx`u)(%-(bDYeyV0X zf4(W?r)r)vPW&cG`;6h!eWA8~;(T}d76!xb9PY$bnidLp>CwT9ieRiZt$7RfPsZw} zx%J4YCu&MFm9qCQ=c5+7ukKu(E`3KYaw{%{05Zj7nhJa{fI=|1byp%SL=l~cR( zqIbO6@gVtDh#EX<<|?U5sPW-r(c<}>%zodVq6D6rh$jhU>n%6qrrSMI+%x?iFh5q}PGQ*_k#$&RG)eBJ7sVe@tiq~BzJ`gPBkvhS2B9SH zb@zj1<5m&;#vCCK1J$B8Q1URS8P3BA-`=qh&5^?viQ6KcunfmBCX# zT>q5~1LzWt5o*6#=+T1El`i7s$wDXqOUOc6UwLMVvpHwy*hoApL<~A9W%XMwiqoNq z^OC@+O8>SLS@g0=nsX^9asV-GYXI43`V-(x-U7E^zG(r;=}%s_2;O_B(jO@5$Ybr@ zPk4|;1PbHAPg}`HW{JgzYM=dZ9qQp6KQ$(emz9BRGa3c=`zf2ae%-MF@>Mj#hq4a* zdO{GX^fdBc1~MKdKJK>h)t=noqL7MfE29OvAsdp!*3c|#c)~1@Mk3{DeWSVS49}_Iy&?k0dD-;b%=ukQGD)Oyf0PQc*3E%j^iy z4V18XoXG=<9^}l>9JUKWIJtzUONuXoHk#DA#~H||yCKVI`=)KU0mknQYD*h21JdMmzs3UrVJe?9d7W&G_>Kz^_nwi_%Kk8+ecdi_;k&;&}9~JVATsp6mgy z>RCLBbgg74V@PbNkdkax+bFYY(@^o0Ruy)vz;7Camw?XLqiFDWHleAnWn~>gAXG3l z`B%f91Jwql24 z05H=ewU~s-I&Iym$f$NAuNzJR=04$%1CRU;%r7hB=Z~@beb1$@L*+}QBMP$|@(ubD z*v1qJ3B8&xZ1lonpn6ja>kwnhrS05P8J13!@bdV=GsF32s>PKC;I61eS$xEfuR?>{ zgV8mR+4^OzNn^4SfR5n+0M<5#DlTDO*4~4>M<@tP}2+5MU2oX=l6Q9!4IH? zONfU}LUG1DsxucUJKvBz#sEt5NmF@RI43ubK+SK82;;Etp#6t7xlHkAzJ{Kq(gkV+ z@jF_?rDuKv;Nf{3qgu?T&+)S*i=?6?E#&*N8d0%9KY72%WJ}uSDrd-;O0RQ*mRU;E z8C~xWaS-N^)r~obu%LthdICeC;wD2M4KjH;%j73_Qv(o^;tB=~cPFgc?q$S%$}GS4 z_Hz7Z8pv;<6jBQ*iOd3BH3RDeUdEt7<)tT$g7e*upS#>?OtgB9w)X`JsWF|3-LtOY z7a4()14f|}FUeh^T0P*518*`>BosQ_4}zH6Ujc`#dK5%DQ0PCqwtCeoX2r-!FzaYLhxTj~(GHPhpxveX4vNPnmPiZ951 z3>;nbfPMlC&~X@@)bphKlv0iBG6Mxhbp0xp!d_bZi2!ak#UDQTPf#(@x`r&19)p2>&tJUbj9t^1T$?RcAEr*1za36r`qmX45Onpxi)hAnt(17M^E zJv+*^zY>3T{tTmyE{3x|{u4U=T2%#=YH^!wFbDwK7|GYC=;kil+)@Hx|bhrm~WTDig_}Uw4X3`!%Fe4pv|15F^XZ^ zZa(kq*SIZfHJyIw7y|`5lZJ{qNu-TrNMC#inzf|`+oj^_LPknC}{#&dmjfHC!3~@d00p;w;TcJpCD z=Id#(yUIBcyu=j|Y*ZeyJcmvwPlLr#iPJ?3AmeS=bVRP{YUExyWTzNT86DTa-W2J9 z?#jop*ysbt8g=tRu+|Q(+;jY&v=f}PB{6NCvL^`)EF2k2F@!gX_Y-% zO6nfkRutql`ugH&|DO*^ue=$RLqn=YK>3ZG$g;j4fo|CvO1I^szJ&^dZ|O8xAFn=g z0rPiHA%5B;#Jn#Mv4DV3(*4QRvpf6aOb8Op;xuiQGX3;#LC{U6lt6ci0U8F56?oPv zNz8Na-E`wwZ}v!&3o;8w2$q1q5XQ2@)uZQT3DRXI*fQ?WGIeUF@?RArsX$!`sXP~IqWLRCZ6_(z)RpTL_Xxuce{ogO5QL_o zMGc9O7(?<9kPttHr1jS5PT=2Y_&KriDhem3t1DvSm1X0TB&f}hGKvH$^3QMe(@qP7 zp5{KAQ&K_)NhtowT~Me2sVVa8E3H51dbrOKCQOg#EHpUeO?n*kz*nNtrpuNsWxRu% zHwe-oiKA|mlJsBNa9bmj;L*CbI5L&vh2F7FB53U^wUFK4J`$9{Yn)`lsRr79{aG2q zO}T*{p38R~>{WGz8zGK@s3_LEwJ&#&=^tq)D4x*jAlr^q{BorR0}3G!65d+!V3Y7$ zhQJnIoQj`G@y`7Wtuz4IHrLgQ*fWAcYfiVRI1j?+9O4lFx~bi!XKS8TRLbXMY00;d zP1pS4?GdBnyVlMN!i!P`qpe92q!~q9jFF~r7mej+usWEM{+7OCoTh&^O1o0!W?B@piHoJV(8` zw}6Wwl6RdP;Z6nj5D!SH^NCjPo{XW{xPM>`?2#q_v-X;h?fZJ)fL!eajVla9f=Hfz5i{@ar>4sR78ZekFH2>AFYQw>xIff*Ms%wD!Aa?`o zFsETz`cO-SB{XUWyuI|p;vHULA?pUdX}Ts6u@$WoVYv%JqKE{>ifriR$z`juQN&jqH7~E zSPj@c(i&|Wj}l4t;NyuB>Rl1g+2M&Q;#l2I(@>Z;jUD#{$q4-aAoBCEvY-r?I~ z!p)J^batAw%&$dUAf?I@MH7|ZV@)GA$#XVBRbDzzT=Qtf^4#8moS_%-(}T4U+vg1< z;0X{vsal|RkP>E0BxY{sQVE5*I8rB1u(#2F;Ds=cJeyD+L^w^_ho9y&@on786I8Fv zjaS-7FOIt8cW74eKdzILdMA<+Cqf7-$gd}q7N9f`5}&yFf2&un>ooj+R2Wr!Nj!n2 zIZ&v3z-@%R0zaoriM$YM28-I(oTRIzAIioWe&p50h-|MG0G6Eaj_2&(iDm1(r-m-y)VLwa}juE9v9TTRQ$WOY*8 zH5boIfS5=>K`If)Y`M_g9i2FMHn~T0FNN-GHpa3cT`?Zl{yc_~b5MiWdPPxnKwx9D zfH|wc;~@X6s;!5cuejBi#wG`{>-0+vowhadpj`Dqv^b<$W`zicH4_VwlJFhsHy-mC zqR31k6&9J3&C^1%(%;?Ck#>sF+4*(+vq-jn&g26yOe%CRIvLwT!zDQe1gaHZzW4Ym z(O%SbBcatUl34g@>x2}G74KHtNLR_98q88fmE&T(5(dP#Cb?h^Zf|%(z@^zKMb7-n zMY>Vn4(FTZZdA>YC5bOS?YRn8>>{{|1B};7aL*aPIm-6sJ35^ektOWV^qHvQ*Gj~S zAC&RC9g~j-%B|(PN>v^-ca$|Kl!aHp4ppV^OxH^pw%RIXPQyEu6u%lAT?9Z@u;PTz zS4Fct`|vz|Zj_yIV)xD&>o*D=5c@%!FUfb`pmwC6c&Mg6Xj{f9dnRhw!`;IiE}=U? zQ}$k8E2t+OGW{7e;g;is|fh1^>vR<)7onZvg^gVxpV0|b1rKHe=LRNW|U z4z^d({9TOcuo_WlFp`8si>_+zAGy5|do zk_eqgGN^g4>U1W)D0yji_W^xtYAVQ&u0xbqUw7|JX7eFb-Iki-Enj+#$OsG$57UQ> zsuAZ@ADmfPvrD*@03yOq(HXy{=4|3*C`ZdFNcA$7$j#6Qq9YC=3^a})+yWo;`1rVN zh!_FjRG3}{l*6KdF!7DY z4i)CxvLMNFbH7zcd2G-Xp5+}g(~9SmrCVaq!PLaLan^fZcGClxRA*s5L7cE+<|kTO zs#!55DRlLfOXz+rD`6X3RBPk^AZ~8$089MFc3^LdND=^u8g+mkl(m-h`$V(jBrvhi z^>*$g)^x<#ILJ?>n_aBn!jmuxE;jC-Qk-Off4tLk18;(>Rtco!PUJ1ed!o+`fmzm} zke+lHS=f1$#Za6U5^C#?71;pG*Gg4fCr9P&fIc{VSGK=@rqkBcGOl790TYW9RrlJZ z+IKKO7UDZdl!n=2yyVOlsu4qm~DlL*=tR&e#|J3Tk=#xBjoTL@&L{hgy9Qt&v7`_COaJc^G@s@ z-~BG-uxgh6?&>?tE;K;dyEuhD`dlCbq15|%b$uL>mfxM7uWEs$Hr$(KaOq2K^Kp9m zGbeZ*%*Z=+r`>JM-PT7_`)HB4D&p~14ugT}otDX=c3#@|G(Q|cPy^DzQcx@bK*{S5 zOUfkmJf1#*`Vt*ZyRXK=`#sxf%{!8mZ@gRr4QJ}16!AmfKF62iVAO*)IwT(6L&kCn{FT=7WOYHMUhg*i&Z`er@61$|aip{cBvr-KTwD9XB$&-VErCd}6zPJx(g zx_=TzOgYa&;8sRU;wD7X#h|+nhr}2tcPYwl2pf-k?Jm$hjB>HEpmPY5sHYs2 zFL|whso|r>168i4OM^3|`M`8adD@_QkqinksWGNZ5ilz+e65?l65UxyfK7n6Mz*v@ zu6N2TKEopsjA{0Ufz$->t`)1J^{|Qvwyn!5jzg>V!DI;SN0jpUVHmBLvlCfrVhM z8zkem2o6Mv0?^D})qsrBH282nc0|S$AI<`sRLS7Zg$r6jJ_+z8h`*w7reRZTFK;xh zg^SBPL?&I%eiOk_d-TKU^6M$3BU~^Zl4d$~w~z+tNP1AyxRWK}(xthBSOz`L7llE+ zn{M%!O5J62B*bJI0)m*(o`W451CGslQKg%@6#8bmU$D!Lt6-MVxk;a`aaIlsQPd^(@Y-audh-5_`Z^(&T<{s&%^ zfp%?Cgo{X=d4G6j(lb zfgln5jg={%J%-WT)(50v5I=eOa3!bvD7{HPGoDiy_ba>we^jojZ|}z%g;esYTMX*A z758DuP=x&&QdzUmbVSXmb2dy36{EX35i8Qil_Oj#xQ^;r9yuX;6txb+2Bs7DKB>9E z_~7|1SS686MpR6HNY`bU1&%|`VPT9VX8R#-_tW2n^g4oU`};=QT!y!?)8(YIO8GS+ z_plBwbN^#YYUq>vJt8?dzy*GYy{TehH`P+V+<)j^L&ATjR=Cox>;>;WL^kcqhbJs* zP*#%-c0{7WRex4Am&^H7c_)aqf}!Eyb>;>=NA&9mT$7XF)mjTr#P~%I?Ccxxn;bxF>D$N3+{|dl{P56x@4))le9y=L z>QPVRV3*-9=;i;DN%}X|<=^0>oXkud|AJz&{2Pk--y%t644lnPYz&G z|BWL3!y{#+|2v12{ofqY|6&CH0**4Wa{dQ#^v|1r5J#E+Vu}7A#8KwIoc5pQ{KX~x z%e8-qqnsT7xBUO;gMZUo|Dw_U<>UWk=l+)=Xa0A{h3#A%EleE$alQU4+RPmP5o{*L ze+B#Rc-epPX#Y1pEx~`FaR15o{l5YK?=JX1d})UN&$EGmpy;=`_H!jy=LV6x9)GwVCR71 zU}E@}1K9rP|5lhe|8CY_Ct&>R6O2rM{Km-kr~U6k{hO(O8}wfi2OARhr$6ecNUaY8CM3qo z8c0C_WnRVG3U+ucY!brG zXaEinwW9vB{TKqeKk(=vps_y42`2zXdK(4?01(p-*Emz`ljpF0dO|=1Xy4%Q@BkbD zfr7v=7)RThfAj;40Dy3OcX>Ukz&0v@zKJqc6BY_s6@oMmE3<^Nn@j9%)zseSYy9mycNj0N~u>@nPIWH(rnt5rF#U zmOB8m;Fy`3grDJb1}4U^`o`~JLEsNczySW=N2g;mK0>h5MLGG+DIwJE9x*-32rf-^ z?loqRKs>KA?cd_Syi!Wg%ip$lZZ@d1aosluy+#roCmLy35bBs({s1uFLP}l=O6c+V zS>-_iWBizJY6=ZZAgdZ_ngIt@momNAkDX$@B%;Vlz)sZh-JjV{8(2Jj+v4xv_CLR~ zdE-f6aF{P{K`k3EnNBjS7@1Btr==KL;0}4xv+!fh@!a|I9MGkP0>8{8LE;8SxhXGt< zxhpaPt*t;NdKN}^i0M1Bb=0$S0NLG9=I_+r(FSB^Y7K!|z_YOf{afAsPGJ2<_`3xg z(81aIZ_EzVx3e|}S?TLRKn|d#sg)x{R8F9!qlJU14R{y*T4DyEyuw|H5vT-FVglOR zd_QZy05ect4}4kaSul#YIDo9~LNl}ctK8*|ne`X@vo_nm%3W%i*?+M=Yjgao+-07b z^B4Q0HVebQ3hNzX{Kb?(b`F2GVEUyhg75ZU_}64v|7^el{BhHXf>-F@eB6nwe~EV~ zVPX4AyvqO!`(NVSgjqO%iXay-hUkg&C%TKz%J382MP+6DiSA;tGW|q%8DeGr7yV4o zox<|30+}3E)}Qo`)UdJvr3LN4d**JKtn5D##4tI2B8Xvf{zP}fWCO3{AFp6> z3-(_SB09$}2oad`7rcuJ_9WnEuZ6X>9mM01f$=AUcqTG1{bbA#jQJ;njK}hw*$G)# z8UJxjFf#nRT_GX z)xW~BL8`wG=C@nwudp1D>R(|wA=Tf)f~}7<$jCw5+S(ifG6KH?$VWQkcgOSn&E=1p zckT`XvH%snJAO#S`VWHGreI(513~Oku$%dTAT}x3!w7;${Z~BBI}8yM>}7soh`3-s z^9w`7274MI@H>&Uqn(761IXA;&jLdG@z4?a@xl$(AOsemkd*`Y)EJmM|Ch`P{GSqd z!rxsx=)W}f@81=yt>i2qyf-7*^Ze7|du=;=kin1l;5(V~r~ISo9cP2s>Uxm31=tEf z2oQM#8zKk+B6DC{1R+4=j*aE+0Q}wuE2IF~2OFdS*#|qM0NDq}pX&n|j`Oz#f>6ND z>F*VS)ER;QTVwijjUYwlyG4S;EdQ}ekUA^mGC>Nzo%Y|;$j<(U2HB3|4-F!j?3{mS z5c&Makp1_v{bS1hd*%KyX8*l-|CqD?UO%uw`(yne8?yekevk^=f2<#*&JO(F8pogO z2Ptyitsevid$zyV4^n4@Tt7(RM_zu64Uq|K&wfHC2*?Dq(*OOM{SE31ls%yIDilWWK|YwZY2;xzoXBOBQmIgY6Y~?vNGOzXQk`;PtT7v#?MG zL7W4yefj}aK!(N;7;K&X*{ouA-#_Nx@$c^ipx+4iqOf+h`jh^%=M+sX3?V5C@CShy z6xcldKoExoY@U7~h%*Q_Pv1?>3rA}Q$Z#D0Tp)i7oWMT_>yO97pYYdZ0l|LUdw=6! z*ToP22_djR)c;ch`z31|h|T`TM{7Af)1SYnFx-8`{!wQ9r>x-c{UfG|siA`jWEB}b z2Rl<24F>w}-{~2?|NHlUTEBPj>*t(*f6Dn4LQv4!#hng(`vB-z7??S~-==Kej~kQ6 zZxIX}?Z9t74nKa60a+RTTQ)KUU(Fzp3&;Rz67ErKAvp+f&5ZAZ@`gfPJG~IPmpXU5 zAa2zCmy9yye3!QpM_QQ+XCGxK4csr1We2YH&z6Rk5Pl-&X4y}lAFS8 z0;7qQ-jKz8LN6j^O_hCg@^CRY*G%imf0-M7WWW>ZnW70sQFs5_+02A)*%d|eN4LkG zx<+Fj&)iwU&Q7_q7%{JBb5U!$2u+rI22W5vPpp>|zoE<2Wo8WwnZp-1D0v@V(IpUJ zS#-D^yeNtj)1SEZ_I4;+=JUmA6L+b$(NzytDNQQn28NAxjvS@UnVJ#(HCD0WSt+0J zwikj{Kn`oo#Vt{Lf8$qr7`_CmKAA@}YL_yz#u6@5Lsu))EZ3OxfTw@`r>77rT*6S6u}TZWht37K+O+Hbu7=NruHDw$UBh26DH% zfsnXl%jYQr#p-6wDo%AA94FIbT}+;zE6PK?M|8m!%xln;Ozz796_d^;ziq=Ksw=Hs z@UgcOR?O;Maa?lKt-DnvO(yufyyVUQRb9kokbXw^1%bDEY`4h=|H@F4IjW=f%}(N^ zoKg=_q<04gf!71wTkiE6COEba`C}rM=&ldX7-G~8m^j(O(>)!7Zf%!Co@yCR^GCup zc@Kv==c1@S$oZu4;UT@){l_mRVISO=ISxiZD~D#dTu<42KDnksQ@MJsjnw#Dxw)(? zl{fB02pW&k+%T$cqSDs#%!2SR6*+?pmPxKjn$`|!rsIq2TdS(fNw@4Tl$^|m!{|MD zhv{AM&8XGEpSYG12i~;`V{=3z+Kuq-;?(oG(M><2V_rhj9g-_7P6W2pe&LX&mPe>W zK8kq;qct9e{&7zhuK>rr=f%wZ`|_Sd%B~eLSc1$J+8MeaOQ55bcmGSML`t0&@?|l( zbxm_(Y;DQ*FOAP)w5Y376zo4;1wCg9xKdxk@3l5h^%|$6?R+|jJ+Oq9`)+$!7`=%+ z%~igEdz}`fP0hO>^60%a)zSaiv!R%C zk9R>a?1NA{`HK^O!Gs0=_7qZqQ052ZnevRBF1O9j<%r_NE3H|+(@6BTxfY(Q$OsyQ z%Vs#f&vc}VS6u@<(6$6=E$dzm1y8OT0MDG8yX>XNC)`&oI}RA=qMD-nuNy#BuT+A< zc}0yaNI0nPQ$LwKrQGfsFd7u1<~GvH4cXo)!QaD$%VMoxjhZTiS*l4h8k2mm{T2V> z79YEhW#1seZ0Ra>;kkQ7&^@A1;dz#^l@%G9-23(MT&goy(eVnrPe)>^dZ3a6o1ESm z21${)#mKhmzWS*2m@D(+ z?z$|$5W#h)(eqY%;+=L2f~vZGg^EUGiU}$z{=4xvXM)xiqV~~;qQG~xbrSQEZ_aEz ziQCcM=Uy@CmBX*dHoUX(<4D;7Q9L+JAq<$c~}&jPs7z; zE)FqI8I9Na(kzNVXrwI*?^a%W)Dn+P0FAE}k*m@JvAdYw)be*ZAuRf23)fbP35_9m zQZKQ3$Wdx{%XQx?7-ZRcLib7uv5cvlDts76ofvnhxdEt(HjI}-KJYHT+#_!03*v`1 z4psHbUFP9#!-20B$B{9o@^M`vvMdR=r5Z2ul?9Lu7cGp>@rZgmB=Dz)3-hp{zaou^ zahz@@X`5P>T0aU+mfMBy@7-TUwJ{D>j`K<8YwzlohAY_Icknrx-@yz?Xj>#=KI5m$SPM0 z#cRQh=20!8tZrx8Ey{0%J2xk*kXQOnR#t~pxDNGsY?oKNgX@3JT*TB_?tR zIx)e2c=ckB(JXNYm8>^Y+bKc)0r82jY5RKDv3g1A{k9S2)_a+uQ{*ORTL%a^^d&;W z43!w8F4Ri-f!};>wpDa1=aJPln#jviN-rCHHwoMkRhB1*(bIv!Cccim8Uz6*0u_iRZcH&rho^mrZ zu}}qX3T1d8IJFBr9%`+PyePui4n#%^(nz5`gljDHb)U=`SR6rYbSj{XxYDsyHRjw6 zdoWtcf?S4RX(d&Ef7!BYjKFiq!ndbUtx&b_y$bsbxkmYP$Dm&ZeBt6am+V|ZvvdJ9 zQAf4x*N=FMP4+!sW_YYvcpn%TmkDPQEb2-1=vLXNC+UHD_d~zN4rmKu?HtP@Y>4^G z1uZ&gHak`<5a*z6STZ!P!hC}^m-`s4^R_zQsk!>GI_<71D3`d6qE}}D`zEZSt8)_= z#x;b1azfx8QpD_knt>@91S4Y`<(;}|y``nX+V+2(!b*EB0AawxdyXol9u!_uuOf@?a>vx9oB*3h%4FNw{Ma77b~ zZ11VGjq)(eaJ&5xva++ZaQN$JS$9}K{y~ytcV7QNesl`GyB*?igv*0Bm6gG|x7zWP zra26Nt1UA%#vSgwMaudHW?k2baR37~b*J&;WLnICarZncIZA9phy6Mag#O6})T&4w zlN((1K;T#+VNI+0yjy}xzS41}6h=5T{0mMmHf_D0k01Wg|MnR7|_ zZp6_Z3lST{(mi%~x1iVC{cRj0+dUiO9AAkySE0+Ycym>C%t+=hnr%&dpE^{F=4t!- z)xR;dd*U^<7@0Nv%HM2BCAb(H^-@jR&jn#Dm)#K^N#u!p{_0E9aE0?E)Qoe|xR#-u zxHYYUYL6>J`u)gTM#3QG=$brBq`q8C?p}NBV+#=F@u$PB-73VI(tL#NZd@X*aq`fX z4{+74&B|(GDoe`uGfH)`v}F2_RYk}Vw}^5OS@x9m-sgt+oB0=QE_5foW+r(^ZvIqG z#63}%YK%EGfAfj*~xKOCkf)Du!Em<)%}keEIE&kX~pELj7{cUp0RcF zWo2ZqgqN~QP3(ScFfyn1k>68b?66)1xa5&>Ca|o^squ)g3>KI?tH0e2vP40{74;Zk z!`h(fMzUE5)d0yy_{7PLE0wT&G2kjvABeVemS#6A-=FrkMpa*$t$;qs&p$IW*EXkl zQo9CCgwc~4!PKWlhjZB?=5C&8P``YE!7D^HvG{y*Y{OXV^CR0Vwm@rOJ(mYhNSC>| z2j;)n!`ZH}$m=Z~Cp~B}i$?1n9?qxbY ze`T`sHJ+CNK8Q%Jou3-iPi0$9ifXDZx+dDM3qQYUjYF1RHm0?3|7B9;2iU9b%?Hk* zJ4!FI5maIw>-~VhC6goNKAdvZ4t(#$ORDPmh7}X)ole(>*MXU7WZRo@1>x5HYLiJAM{8AV0*a&QG0Q_H0?8 zd~QjrPezmWc+UB_*p}5d^Jv~(A>&cfrNW!MumMbyt=WhfWs}ld8I74#R9k+7;B-F;i@_Ux0>g4YXem=TXpQ4VWyB`1UZP#l)-h$KFV zyj-PmYDzm2y{GuGqUG?U5ddL1hGGuhNM}BnBig}?8pl&EWuVTxd9|g%S6&I9%3*TzhM}?8nf*hQ`$+*; zcF1r8&pi-ZKowl{w(rK_gZfM-Pa+DEbJCR~)BOg-UTgW&NLIW$Pjyn0^lCn%JY-@Y71&2*!=1vhCd81w4M2yv<$8#4I&OEF4H z1uf0YJ z8%m}r7c+uK%H5KcpsPR@(v7vZ_@G>-%+qImGKEL@PLM&)Goz=FzY&IR2n}Ebe4idw zEJpOr1)UrEvytOdoC}XfUR~!^YUPqvNqxYxsBsIC9ElXV3#ZS@m}H9)M>X44XvG|E zmx2u?wa18auggPkKmqO@AMFzeJxvVXv=#^xmk(!N(#yQ8?&UK5;uf8Uw19be#?Wze zj*YFc*PL?niHibBra#FV2X@GNsm*SwL4>p!Xx;b>i>xy)4bAIiNx}uYnO5V|sY>b< z`?4tLZSHn6+Z>%zoD1ifdzgHvP$kDO$`VQHc#kazJF&zk&)U_#I`>HsM+b{-LaT;m z^W~hOY3|d--9`~=8s?ta;%@GqntNiJ*kwH4I%30LHw|x`GM+`OcX~G*K3hIjjA+tH zn@!N^TQ%FRj^l6eMj3x^*6N;1<}vKidoo@hQ4d>`0TU1GofL+YYaomZ^#+4@^Wf11O7Yp>ttV`v20i();UA*--&e|A=-nrJ{ zp>NBEjci@^5)()*yoosowU82r!&zqo!rkHLT38< zYEdkJ((a!Aa66vNwT61NksxWr3?l`9j-`EvWeGuTt*{b0X(@=};`5ez4S$HwAsXQM z2YJI-g&QQycv}HEX#8eJuUQ$L04W4rED&M2LOM!JFo~-|?^VCVaVlAY(=)Uz_Kcc$ zw@FJci@Y5I2X;$Xb-osliUuyo9F8x2TnuJBd$*6xe&5;3&3p9o$<20~$cs>;P|oZG z5^?iR$1O4-9k&2oTYa9uhV?~IIOPq;+5%x6f8;Z(wu?9)X5I5=Se~Tg4@hO9u@43@ zp-p_ycmy9%lY38~HAVZny>-e=vv(dTPgo5(h31Ypz@bW2q=$>`n3w5m_r!5rAej%Z z2xaPT-;jg9z{W#wN`Kh)@y#Luj>J*6iiqr5MULksrg=Y}mUKzZb-;1vo@6jKMa@nI z&C69KMMOHyIGtp`ni_!tGMM*dNKtw7xXMWM1@%eqa+1*y4MSoi5ov4*@)SIG;DP^Od0|($TLqwp&?^aS z-Nf_E`NR)fuZsn-pyj{UnG!}-NX|^}S$9yCLVsfd9d=pBR64XQ9O;BfM|t&l848CM zw3=9yV7+$4_|-JGmSowLk3dsV>Ws_X=M#y4{o)Ld_5^i3E9}XFtCkH*XM3Zdx6sSC z9CKj~-*#jj8?_5|O_G_uv4yOe$Bm_3w>QwB@3b?-(9w><3V$1fW;`KtTG)#|TB^`; z=)7In^W|AY;p?*Is?=Ye#Y#RFgIhI?;S(57j+yFhMjvbI^-T-%>8?FKiT&(RC(~Fc zNyE_RmVvE77m*eQ+kd5TJt>H!I#l+USfDlZ$+fmL+sk-)2JZW2UjjbPv5O~^Y?JVe zQ^`vO6FH!_=Wec;`qPQs6Z-t@jm~Z=U+TNV8TQpRhle6^b)o`rVPg0fT)5yjB8P62 zGEW0$L%XX2QXCjbtc1!FIGc{=GGvoYj&KZ*eDV@^XVNR!2%+>vk~^I8UX}3ZY;e%H zZ;KmlaEc(kP!J*K)|43hqNI($eKLiE_f5C$AX(CyUs@_ZvO$M)B4JrdM?97twqT;@ z6uLmx_L7-oK1!bQm4jvY&U8<4RG(dt2jVeifyt6N8LP`7!yQS?G;Q??(g@u+cAO9U?cifl+M|d( zwCv&yC}3AX04CZisqLfYCNiW1bg7YTT-D$JxpRC-Ow2Z)99HH$-;>iwH5T zr_`xHiBzd|HQVkZwb<$_hDqp6*1%MPZ~W>v>Buk0S`-AvaW!gM3IHn9B*ZD}QZTJW zO!M&00k0k;w|y93SY0VJZ!!R)wFR%8VFxVU_S#t}2G0}=k?N58C9dho*^x&i34e~p zlABaCmAh)`^}!zCm$%@;VAc;WnL4%Ctm}Mgi}cmYR@+V_dP={W7?f0;iU+=>zrf8pcmb z;d<3V(`xNk(@N-q$p@yMvAr%oY13@ERU|TVa8oxJ4o0L!XW_lXbgCp`P=*s(VN%-u0!Uswq!t^%-t% zu=+>c1HGC;N1b9hjEh!X*!$hWmIijzY~Lf#WD+sDwJl}toMBl_KEzJ4#>3;C!JVv0 z3YJ|=ATF~a;N;=n^=3G>nWM%A;OQ09S3}zY`CO!wX_|Df9%aj?*vm1XF{~mgajI2z z>&pz)OlDj>!i~eF7RhB+B@*3m(RpuTu{YCPWs#?PSuc^{%Lcbd{msPw82KQkLYde- zz0Lr9HNf{#oR+>`yBJX#tM>iOj}>NO&YtX7Z6_;NRkXenLN7!Kc0*e~+V>tI-1LNNjCnb;_Gt;zlBzhF^oOL(QV{Zs{19N7Jg(?0=r-`Gl{;aK#GZI--^2)?Wd3aNtFot+f*UU&oxjr9F ze^8_bqD76~STux~eYuBB@wJKI5*MTVbRGFqiT6Toe_>ywdR=HNpmali^jLC>3gEfz~2-Crl1e7zd^F`C(R$)Q{1g-@vXI8J_}-357R zg9LdzDS|S{<{NUO>XL`xRCJ|*B^8}ar2oz<9-U-iOGGc3V|CsJsK|*pEIy3l3ZkvI z$f?+U`sAFQ2B|iW&|Q}~ymqZ70Hjwmh4qE{+8TwYB=qkz%9^GH&zc+o0^(uh0QG|{ zQA=_698hQX4wEG5$1V3L<8(NWJ^7cg_^(^b`m&42FA=Xz+K$#z{EeZ%4M}260y1wS ze6njSXTEWEBt1@ms-!7+8jUk3d$xRqYps?}@^Yh;;WZrn=gAx81Cm;f;yC+kmvI>x z8a936`)!4cD(Dsd_Pdk;JSq!vqV*I_PoK9v?T6E!R;BP{ii3ar0FZ$rHQ2VX5Tz0} z@z&vEHXS|ms_Eh_{F)sLtc^mIHW!^hXSw$ddBfV+boi=AIU-;~R02z9KAtt(-7_^y~mrrlDDuwyOtDEP2_1|7+zX;Iugx|-wmwp_K6~-4NOp2V}BeI-e)MTro zvO#)jXrHB%=@)X;BG6t3%p`HY41jIrRD*N7Oo2+x=%~W>c`Y+RiFfPt7AN}n;k?&j zlNX6uf5Og85J3^WFiwKgR9VR4KCJ>i-Wky>Tq3v1J51tWol*U$c+RuNkRVbr-b;L` z^S$9jb_up3F>_dA?ARw$GqqX{gekq+$zmB?aEBlzf~?&%j(3mcxb(%`R%;LfjrZoR zaNAZCZF0^7&>QlO$yoA=m7Sb3kFVVWP%bEW$V~c^{Bb@{R1R~gcx83Ls}6KhVU>jH zWp+#pt(3l5{LJnzf(ial6N>!6T-T;cYno!i&QpWJqbuRB0ow1P7sZJ)u1s6-K^ z2CpHc_Uce4b46if7LKFe{1_!o7Mk!1_tsS{==H@Y)flb}%;)$sNyM)&W@{#lk|llU z13a2>nzTQgA-ohS!5)M6gX;PCR+rFLdpnI7ODw;cWcBN(XRvQ}TBx6BY<=4+U`29? zT$AdBn(*f3Dvws}AH{$CtY~U6Itabr`^a7>=B2(q2+uS}^V6936uylTF7+0XCSz+g zM)}H^?lM!fW8o-p-uvc790K!}Bl6(eipqdg7~@eNLj_!mBzSTP4z5%TU(%Cr?LlZ~0Zz#7{=AT8JTQbXV-b`fJ$XaZ%# ze?-VLW?QvjlxSb4Rk%WwJ2S`+Lf9fVIsr`7&_B|%RTMcC{+ywBK+!A;+!idtSMche z0;ajXzTC9POo!)`8iR$`(|A9n(Ggk-9ZP?*;y!cghpoA|=NHQ5%cmP8%ha#l2TfED zBB3p-(MxMZmO%<)N088*d&M=}{bfM}o=qn(Nol1Pyj3ujYjddfHhLRpne%TVrb^xN zD6r?c<14Sv{n-5F9<3wvV`ccj`kX$~ujZV^#Sg-z-!4H7M2|#uZFEQeg5GE~$n;I? z>&q6TS*VUOA3pno3HYV=^*5Ri^GLLi@9TgJB%fVk9(wdDqZ_!jXi%TEV-D_4!=#4? z_Si}B^^XLW4Kh~SWutZ$LFECfV3(U1_E=(g4YT4#YRILxc#Esr$}d{ZBpX)hL@Q6r zDMfcAa9aZM6=o|tSjoM@lD$=y!Z^}nOC`=^ZsNd!yyqg-xnrBjIA;G1)^^YQY!IKd8KiXPer6p~%v@$1F1 z0F{u+GK2}@m>^U?uIKC6E729Q>@GgEsPR&g7Tveq74l(hVPDztXzARcQBii=Qqd3> z=5UnoDagGU=iu=NDe-j2iCj)WLYj#eV}16}Q{9_>F}c5w~#v_}0x`*(;U2G*_N z4<*ThA2mHC@bC@0vk|HS%7YbAn&R^X81*zs6P;s)uE#_-b7pm^gBsm~=_zPA%0k{| z@p6^~7avELVkU2UJBzb3?=2P8Og!pvIJIv-$P-b#>H9!&Y<|*xg&ON+FBkiw=UHZE z-c@9whj^_DO=YqYuvsMA>FGxj??)NY-umh9h&~n38$+q|VZw`qA-kNojq9ihE$DnX z8d%mzZ&eLDh628(Y3d+uErTy^zDQM-bv@hKr}KzJXwc|2J?y8mQ5*}kjtgf940W5sM-44R z7g9l8$tX!51$vj+s}EM6gyLT@REri#otZUw?yE*Uq@wrFdHGU$6d$vNv$HOUMPVSf zxES;4vfvZxDG`5*6ly4P$>;J^%NsVTHj>;!id7C)GbV+_Z}{k^gB_D?R?P9ac{89Q zvh;h`D9)G(py9=?;RvsimpA|#1YwqAX5G3N5)4Up#ulz%Qu$Lj#7>M{SV%&iP0{|5N?seMJ$(gWIHap z*v{4FR0R@iKIVMMkoQu0d~Sd4)8r7JUDBldych9h_`Z|5Ls>=s>-JYidy@qFVx+Tz zpT8j>`K1XE5$YW;U96EX#ikTIxn+`|boZ#0!zd)QKMa2z8lFfgxQk{Q%q(Y!n4yN) zi~o35@S9zrZe4}E@$m;&QQV~W1V#CaS}^ybapv9zVZF4}q;U7FH1`D^jeH1@TNL-Z zCn3+7ESic*(?TfQhx0PvpyC`u$ckkTioSCr=RKb!=ybMJ0m0qL$_c~N&t%TE*5sg| z*77zJg*+H(#IzRI%+vGvr&O!$hxCu&mv$UMh@(sX74r|w*Hm^so{WjBP`JZNo0(Mh z%f!D{$V)n7IXGw=u7?Z+GTX&O_sUybDaTKkJY!;#E2A_&3bM_ z4?5y3V^>Q(iORilj)*GR0q^nNhX%XrUk{=M#c^qBQF$Khstf{cMZ$CllqQXIjE?%N ztu(gZ8;o`dSsq~1NbGXk4~7)iK;U89m{)Xd>bwwA3d-ABB!`eh@xBrO5Wn0tJPFy4#DvQs zJQC#kQgDdGqvaXLR~t#MB87tZ zvNg(WteRK$a~tLqvNGDoJh_74mV;6mp6+ED3eJ`fx{swND`s8JKoa@ay1K)D$;xDzvVaN$j3~RHou@Nel)$K`lgeP-Anrbw!c-FcWZ`G z1Q~!kk4FCjn8iiA=!pIhhqeU!%HvaV7G7?Uw1_iLnOAT)vRnj5V&^9=myyW?;B?)C zOFbX*5o-P5YGv^+b9fn~Xc;jh&U_l;b! zT5igWej<|q+I{G9(UqqPf06U@oaIR4NLlbp^fmq2B*Tzy>Ch#6p?~QML&l)awP1Ic zhy1u~jdR1UQ1pTJaYF+(h}re}Mu~yU9tb`r0bBFdIwKTQWc%U$-BJ&~I_8@+Jby!F zp&8N8_L$4^Iszd)!~2<(1h*ANvl-ns#0+mqX;Rx63#rP;?^@Hv z)@g_SZG3n6I=T5NkZQrfj$Gm3=!6VO_dKXeMXpc1BJd`$J&LF7yKeFNJ4j z%B53h=r#7EGUnbA!b|mOXh+U9=vm#FbE_YqMS-LR@LTNB2M92*Xt7E0ZA$jDv`uOc zTFUKoJfGMfP;F`MCFD}~w-4=H`kHS=bdvnm5=mhRZQ3hz z!xi`}s0YeX#D|)$S>CBj`@B={qm3gRx`;5hFeRoS-DLrW!v1a^V}b-cR+C(}&!$m6 z5~2;9MkvaBlu(R-KgDfLZ~$@D0ncT@q=q)p+Q3i=TQcy$GL?NAd?E}y8pTO53W25P z*U0j)QVtk*^GL_2;*$XnM& za7S)0sK3y>$I0=!d%ygchFHCrC<4ibwsrrr9P%ZEW}jIH|>uknVu^8@0z__`3K4V6C_MNe3ZSsm4{v{WnT zJUX4GKIxtw8xQF$9PYK~a4~+Zf%)vd@-XcOBGaI&S~A8DOWU`?ks+FH#9diA9wsuW z_hzh9>C#L<-}D1AJE67B1@h^cUpeAA9hL!Q^{{i%)UV(snILvCIUnhE)nv4X%eL8tb?dBqv}>pdmX1cwKG?_`?j znBY^<`$3mgN-#ufpT2PAXT~qtAtKVZOrEH@v(A5%>gD6}lk@+$s_VD)^hT-9M1=j9PP^Y(jr03%hoG{^&eP>8rf zUGyPq3qyqpodF4#sB+$JZu?B|G+Or4Z4SXq_MVkvRg({o@JnfjbC<2h<&FqQJ`QSQ zOmx1!V#2=(`P89E!{9+#D8_Qe*D$fJ#fC+o&Xt3yF^DmQ`*OkHg^|ZK^a_Jph1fe z4LK+I6sm|8TkWjk8xa=%(Ct^BvFUBG{<^S zrDs$n$O}!yvu;K1Wfkzqk+Nw(7=1TtAZ8#f%P50qgtC`g!4}B_9!J-Bn=S?6W^#>r zG&P7!-t+ORH#xEav(=6uOC-bX3la|5=j%<>mM~S}@ddbMJXu2_&n4g&;>9N>0T13f zMB4i;H|n-QAI;)7cbHY?2bZ8A=fBa@k_&pYCFk3!RZ;R5hRpL@|5Slj7Jh(Q-GwHz zQl-N(>2#AToUkZM^5b#r%*Tex?)GQdlzV+M$yy)6ubN9ucaG{3_s!colPk z&Z4Ecbp4dvY3w$omBt#sjmTrBihL-Y{boAR3R^n5-4xkAF7pu?2iN-p<4(IGvWDh; z23_gftlLfs`}WoP&m(ZLZe1bT85Z`b%-2(H>{wWgdWC5Q>nVcG$&U_tX5@!NIJ7P< zvCE7yBR{ylQp|2v<`GMYf9&6iOVDbJp*|bG+Yo%yX?TA2w7#{pmZv(@*=Dsx>MZH9 zArLr!Utor+^Ux(YjSDKz*xp9NvAW?+oeMi7Db+zvgqqoSz=*bt2!@M)LF4HV{eC6N z2#a{-Cq6*a!w>CqgIPE6h>C~aLF}*3n*CM_yX)&V;O?1dldk%)Y$A$@@R7-!o=jU zpq#=zS;Uz484Emm(XlctM2#-}S8%gYSe7%VI|DM~a2P({urNv3)98&`%s2 zE-ycI2q>TA#VfO`6kW&2w7(jjHX&zq9g8++yZq!@JP@?}&~KA7XT!=7Eqz_!TrfoD zXiR3!_bh+jpML<;uL)*R^MPjEr9q2==)`Pv^p$|CR?gh%^C3R;V&Vp~7vuGW3KQ00 z8w~HrJock-4(xhh9fFG-p9^#+Gd^j__V|Dj`?Vw1oq%wYdpaj9@K%UJx!Hk2&Gz-v z-YVu(7N>HVDKpz{7eRP;azEL&r2gCRo@+;^#fDwkjus7(7@tWeDVp19BpG;CZjIiG zoyYR}-huGTL+wzpG8O4usyMX|T;t{`0eE>!?emHIG6bQSAt`i-C}q)Uh?DvCZJ4g9 z6Hn*6K3)`t#J0>YYa8*&=POs{y3|&v3l*ZpX6zty+pTe0VG*Kn@M>|#WiCGb*rpyo z{1z|JQ_yBmRXgqp(g!MMw81Jjk8Uo5bCySBd48|uioKtCXSZ+j>ZNYc>k6n4VG zCo+KUqHe)7i5&bPsBI}j&(TN_hZ{fOR)T06Z|hl5Q7;2dlhMQX-N>fLL!@?#w7NR_ z@4NQ$6siV%i}L4WOv|(OUCt}EIg=tup$^!rCKJu8`V8DrOZ+4Qv5&rul5{&WwI~;4 z=iS^mj_}nuccV6x$+b8!552c@T`Ne{gPjUNwhuX<({8!$8tdR=ULT}(PIM>VpM$4; zsG*D6KS}m!o`kUR5{AGS*Q|leX*y8m>Kn&I(+M-BMif5<&P6ZUitT9->XV!DZ}?S2 zM#zz!RZmQ_#8WL1w^*lTTozR{^5lq;d$o2CvT-LqJ0(974dKkX0x@qho4BB(xqOqy zg(<)sX_x9#`4Hy>(7HA&C+2=RkjGOIxc-`BgfH)vVc7=sn^s2?dOOdDJQ#0YwUa`z zbSFZqA8vsxUW?0TzJ5YcsECf*e{%1&u0tZu{8{UH1*17M_Y7Tt#fODKzvbgYY2Zp7 zBmbikC>ypJa#1kLo?y;u|^Mc~m*l5w(?ihl=%00}1m5)L!G!iQ>nzLluu_ z$kr>xL}6TrBLN*=EJ$=GlCAH;4f?8>ZRfV2gnGVMR-guQlrdlvk;*|uG7I-6UrLBP zR*ayZLI{2d+DOwq1;q4*q~K7Yr8$P-sZz+u*x0n;E{+UW^_H};J4yLzn6xK#s*#Ie3*gXG4)>Dg8 z6s(olFIs&eg%X@}_bX^WU%l{UT5v`Dk{RI#*CGNRExG3hRYFwzH8M-ELFK*SG)vYf z1I23@zDiU$grxJ6(a$q{^!KMnZ9V3N&EXe6#bV zxM0$HFZ}4xTwk=*oat-FOim#EAfi|$SJ5Ht^w9|a2`|YdJ#A2K^W_5@^{tY;i3dC} zq00SCC)UU=ExkRm%=EZ}`I)XeHHkjE+_NYqaZ0ubuxPzfXD)B{BcJCp>_)@EQ4py= z(d{M@d&U1cPineWZ%U_}Xjb>VYb$U&iPmUF^-YNi3Y9H9!zyxY7_H#Wmey{%ju2<= zBcQ3+6lEVhDz>)sAS3JN=5l6M!nkWJsX3`@>$J!!WjCd2gqIlaJU&@oh}c zT*_RQkFq|MH9X1ZH>;y3Ubo0ojJ;)aT)VQUYi5i&W@ctP#x~nA#xXN9Gcz+YGutu8 z%*@Qp%>10S&)RFhbM8Cu{!mG?R8zC0QQc#7PpLlPC6x1A^ODtXB!`i87yUhN;zB2OM{T&G;CnspvX`zPzO6`;kNf?U5eSgV^%VwjDD)n?;GUW4+mo5~BXlF}cwHqe*&0Sl8#rT(E zJfk?HK$QtQDHqK|^Vpn4%t!h>_ph}p#+_6it`@lAO38=>&Jdm7{6M)l_r1@T)ND<$ zpOobChGig35;#<-=v-R#Ro13ffKAe->MAT)Xe)YBuCV0P_PHf#Q)}yt?vmF7+P&q( zIH-G)U3(a(5gEtPz%(JNRAQcG?C8KyBkx%2IyH*dt*={rD$Q5HHDE3<>cM_E4Mnfv z;EiY{36(*vG2d|mlHAMyh+(r4x6~V)&x4I$xb2^)JQ6Ah6d(X*zuLB)OyRa&3{?@V z-!LM$`LVw@7%J?O-3{^$%%n3GGg($Va@z?dfVfut{ytI(%W}A3wrGE%eDM&XeJ?i7Roa^}DSiW`?Nb z2c*NJYD*yyd{DLXkYGwI#UK|Z<++9q%yPJ&<7xw0P3X1oifb3H-Z2zWPl)adYl2EY z{Qzt0YZHIZ?lqqhHa`h_nHA9WJqD}K_-g@1^*!(1v>^+`A{F4H?P0~BsbBcFMYFv5Ia-?G!UCiESng$Y^;MC3vCu!VRSO1hW=BKZEe95yYaz z0^oF(73|Q&e%jF*$T~b$rSpZI5BAMcOL}3yRA=nNhs!bYs!7BjM<_nobUI611b%qfz^I0DN*R;`?P-iy1SdG&?2foC6Ly z2-~L84%*w!+y&Ji;lmf6B%oL4ZtT85FTyQJ4e?;mB%DlwI}c8dx~5^27XS(mY}aXsogb zo6IaOl1OA2O8)a|$rsdt6lwjEBi&=>fTuKN3)7Q8XUeAdp>=*(PVGO)x7w5KmoZjxU|@rqnKHDy*PQz> zDTm5|$sHEqYGAC-Oqtwj(I{T>o}w=Hse15Zc!TKK-?jUhdwAl(CGTG0L-QKu^b_S& zZ0YuiEq0YuJ-31i1MT#wk4xsK#<9q$6POWX zW0ASaA@DdFFv@kMBN|gu$A{zl0GeVyB*En?^&}P*W;m`%u3F60bhGS)c_YNn*tow^GWGlfMPlfVZkMTkAbO3W9DKKEBhFPi*epPT711@PyZ<7dl40XyEVF~5T zpL?)OstDqFFhTnzoxrroZT`dPZ4g%z?3?e%@4-og9_^U`5>QBze8SfwFV&K1FX5Dk z>z2oaEXb(WQ8Z)Zl!Q|~4uiOyMNY1!`nj9fAiu<~O7g;R%s2;j2VSfB_g_>oUvQ=_ zu`4(3&=Urth=d+nTGIi57c%^uFN#L2T&@<+M=J65Ll_Of1eX7g;}4yAM!ZpRHOsLVz22D8t~vdNJJEHzR+D(>vZZjPB1xxKZjO$I**8TjNnuv7(k&bcQKyw3Sd>8~?MFUE$^0v~N8s z*x8jwCTm4ws za&TB$REGK4m-0083yN<{aLpqM;2P9)*BV%7c4tv)dKq!kT^7evcct3??-!wpbzi>e zX0n!k1ZR-xQqSatu^lKFI+YvngvS0(r~Y0YF`8dHNZjGuQynV!D{o-B<0WjCKB0EA zcV22e|BE$Ll1Vyu)=(SGcf=F{KipPA< zQDM-ljbH(UF76mfGXt8^-cKz*?&zsmAf#oxLBv(gL(iD^eca|tQs7XX`KV0v><22c z3D)iGoV;HmK85D$%Chsd!zexByWV=c}1VSS%E6HCYX+~4;( z+D{nk6J4)j%q+F2wG*n=E%lmxDMxz%zLrJLR@ zC1{NuMyvGoX9RZGIiy7r-6)V-3(iwY6K@GXEaXBOA}6I$kO49O+UFU1iXT$s94P4- zv4R)Sp{iW%h6v-zwg@D3LW%f87wrs}`CyW;p;hZAEtiK^Qm>p@8~OZC<(3bZd{gs= zcPUo4W5|9BL4kK2Fh+(hDpJY!j4oIE*vY}JwHwqvl{q*ndY!sscHiPjJE=2?F;NQ$ z_cPy@Id$5it>xzL0Sl3;jVhJG8HaSWlx7Ibx>Jj+9;D^Em{`VKPcL@`OeKqN;Ht?w zpk>Dl)PqbE6z7Y)nctq^*u5}Qt2l#XpuT;@dg~6{O=^G8W``91dN)9UCNCc9L0E>M zDl?|_!%lINd!2&=1;Q1~M;)`%!SQ*<98=89^`mJFt zoBV4w6*p#g^?P&o#`Sq&0onGN0Zt>U<*vXG>jX|Be^eD;ElDbh>cJsi5<&@aWAua{-iE?2Y z71zKMTbaB5O(l>W>-V>96+f<734IlM7t-?zcT8&<0)hu-Uul>+Z^a~x{L!l2O8JTI z9bB@#2hFHL!jDxDruG{}c)JppB)KRT`YVl@baF-%(~#n#9dur2O>r(kGBwOHIEiur zoo24!_p#F!82BO5OUN%tYeM$-7LLif8Pk5!--kqPBwN~ZIAk%+Z1h8vGn3MMZ~c3q zh&=W@*#vWrCK2nJ94>N@N+CDqGkWN^JXZ;9-}pH~^HVFb@jVUnvlK1;rjdo}-Xw1L zqwuZOH}%<#SVAOjwXc?CGHWI0X*&SWJ8@d`X|H~H2cb&lNTynpZtN~6r?Fw{TBS^!*=$TRqZE>;ttqM;*0g&$cI+*}tr ze%VkOJ!^6}JfT3$uIURDz1mN-W0alz{i1hhXtd%7__Cj=Ndv%Y37-*fTAaWqvfg(b zC3Uhyy{e#tXt#aB+T%#c+ucrK@0=Ru%$;*lDzrRR9};d^$^PDe0C1@T)v()<=jSGr ztmyigtAuy$??|9XP>262v{t->^hCfem3z5w=t9=u5lJvEtDCf+&$8DJEg?fIc7vD_ z*)z+n{@~1lX6jgNA~Jq0)lsHPNxC-m1AHRa_d;32d%g8Xa?~4@+be zfTl7PoMI=pYh1yWh!a+_=H~UnwWR=YzW_Avp~3iK;9(eZ5GE2`g@>H~!WxEOD$K_QX*5h!G?h2MjnR-LY2c?NIazQeOo_N4OKbZ1gm~%7zAQe#vIz2u z5cpG53iI^D<*no->)2fhEu3PwV@PWC8f1mXYZQ^-2E=zLzFPzAN=FJJkqiJ}=qSZb z&Mm_G9u%4;`yg&gKh5n!3DU%$3Z(--!MuWb?U9BMr1sou7F_ToE_}C zXQI2Ufqih&6z&+nEN7qjJ6Mm+hZkNV<1}Ut^l$`bA0=DN%x0M)S@(M43^;rg%_tOM z{Wv5YY>qM6f25&IR-T%icU_uZ$up2QsD}w~5hvp;IWR@?K-b6rB@Q1|%5`f_b42%^ zNZ&4XyR{<+E4l&vyK5sfa@r$SOGH4U&!-f#S%bUc$8oO+8mCesyp;UvQRA4NOzxK(4g87Q z(Tur8t?`RZe1f7p(WE2vArq(8jw@*TfpxuRe{Xg(5X5KIyvux%gJUbXV}(oG5-w|v zpMj_L@84X)l5Q|4=f@m}h5Q~y$O1HfM7C8>3EiFWc$q~Uf;&_msqXf!#4q$kFqkJb zwM5_%c1LkWHZ!%xbeyD8!yfHR;`Hc`e@(;!<`z!> zdGzv|*BF{as)qVk<5#|dPk@4_7!jfCM`+0|P64w%BcXYIMokjXV43n)3(q$X!lER^ zuJ44T@;FQ^`{hd%T7}xKF2v~%oBC-Awbr&RbXsVFnT?&F2v$XrcXC7R>j7%l4gEI= zZlXZh2jN=k(=cOd$Cu%A%6cm`?W%>?!GxMAUvn!07`zkp#isf#L^Wrq@4bQ2=WKs+xL?(vyH}!yzQs~({v5AlbxQ}T~qj~JQ5+f zw|s>biUmTd)^9pc2P&4*=|znQ<*8UwKQ46g(~p`19pAGbE@9#E&HJ`(&aaScY*u9V*A# z4%BMrgy#(?uB0t6qTV+-4@jpZpfp+E0QFJ4J zafFW9Uh73Ep<))Bh@gIsZLp#Ldi7ih5U;(IBT?IhD_8U#VuvpwD{Ysj+IJ(=iuu+c z$-|`DV&Xo*tV^^~DYu<)vqkf~(c)H zAydfGhpio)c#<`R}fILT7Fph9>etXP3dyO{F#EZ`r(k95k+aWs-R&iKF0k zMT%_w5m?;BWwVxI^(g=2> z(m%mVAuf`y^Q=7@JN>)m7rS)}wKym@#6jm%M|TIzR`aVFLU)jnH(Icb(s2%xM;YcZ zRPE)sWE#=S_Pmjq{-TUqJt{U!ib{i)Oh01xPJ#_u=mina zjeq`p?Z^Kvv1WX7 zoZmYtL5D`|h8zu??do{Gp*o9U)G#pgI|dY`+OA|_0brrV4cA}GtD$E0nZStVHv5~d zmstXXhBEnZ{IBpOxi)dSS{#=Cv`URge_)XgZ-?aZC-KWNhXz$N_e_J~z5f*uPbk^6*i_ z%Su)!;FQ9Vyv|=$pBk&4P&$xqs+1z72RsQ)U8a>E!m7T2CuZU4seYiEUQC~My^b=) zb-@5k)r95q_6v2J2oW+c1n<)mbj|2Q$OkEF*DAn+k+%UWs>>L~ zt`)U*V2%-dA0E0Mh-#}tpsni^>KW8V+!@Bwq+_2xde>rIi|>m7$hKXOWt7S^<)ttp zer6S~iD|@6FSYmb2jM4L501Tq-m+)7X@1LsR>7-3D+>(?-p|y}P$;+un!Rv(vymFh z7R}CkOgRF0XyP_Y`eV@Q!W7-2m1BFRBOV!c`*SZ|(v?^9iJ@vv;Hsrv3>G=w*RG9( z{z5t!Ba2x0!oi0m2`oZVS2tsT-B-@l5PTsTOuOOoEi*I=|MtrWRY(w*C`R&`2!CQA zLNR(261clutD4BfXk0~!7C6%)bz$BoPBswG@D+MVR&r99gjv#~l1(jiBcIp?`%@8; zgz;*iy=gpA0eAG)PB6S_Dbdxjqmja1gmF}B%@R8)zsiOK;@YQcG@#~E&4K=A^g!FI zkft&R3uU7XD4=59mTcr#Wd3g=L$ZNl>G*^2=sOM5tZ9Sn-;7dpt1BLGHFR(3|lY2vjD)jAKy4#scecI1ydY+?TpB`T+xBQ zlZ1ME$M|B^$xgOBLEe{CSLTDNN~3!+q3LJBtrjz{?NsiJ6cAPNotH$<2c5c*%J-o${={VbRn0Hj5YJeCd1l%P(o(&+saV5FC@ZTaA0yX0;YQth^>6K8 zB<|vDcuV;(3T0UeTP+Bqp})~ZKs!g-kx3n$u_e!l4`stK-9Z#t0TrLjC$aT#&1g`w zzb$6%8o8zzrIag9N$0^-y5Ob?4Y0NsH7o3ZR|%te@LrOz^R~+(1zK#5U3PkN>aKy` zM_F8?K`(5j>R!Lmph=I_bGC2E+bM~xp1#a`{5+&5d}YA%d)`mMMfKjaEYTn{IK5$e zq$umsp`h8-jNeS1t)y8)rexW58wUB{v|*}`VB|#5>QVxG0otqZdx9&nG3zho;x=1L zwBm-jTMqUCP2c4e9d*iwFz09R^_j*f)w14xg{FH-vjthFVv@M5G6GRt$=q+O(47wE zHx0wV#8KB&8J=+ay`0bax8m#7TGzfSC^wjB`q-^2&W@01xG^aefcrUZf_qTc>XY&* zj+ydE=sEqi*u9lLNPu=jZiuBpOZ6;>t$}lTsLY8Y3yfy{!x$=;M^wSH>0Ty+cGaZXp@vjW z)E%|K;FKk^fi?%69>$|{G)sxIHi4LozIxa>_~i&(LJ96G>^1s()y2}*s7(|m5@b-0 zE`DV&oeqFMFzD=DVLl}BnY}O|cO&DvGeyP4x?Q(cG$_OFmEP~_!}|jTNK(|y&PfJ? z+|CJ-&&do?2IJww^RefV{?tvE?tfBQ{z{ww7nOyDiG%rXDhtaW?8twIT?iT2>DiiC z+gsWGg{2#KHjchkNi> z;b4Pd{e(mOW&f%BQ~xP{-}C=hGk+2m{**ss{9V`>Sz$OopUd`1pZN2^|F^ET2@1KVz}}YrH@6_}l-# zeE6K}AKf3{|BU;e^&kBo-JkN;T-h1_>i^T`_*{#>`~I$(|E$k{jrT|QZ$t#k|1DTZ z%)s2y;15=a=0B)H%q;&Ayq`!RT1GZj0(J&g0#;Vm|2=Zq*f{sX7RSFn4gb1gB>0SjPrA{6u{ao+Kf~s~uKsUW z9B01`l;c-0KH!7B#fokx$2up)*r(S9fk5F{830ax6l)O#1@TZ&x$$3o?Za4nrwjaj zKd#bubZ(vAt1^`)?0BvPAB;90*4--F7F0Jpw34csjt_5!m%7Xeh8fspG=X_Np}ol# zXOOpH?){g2g;{kh88lsz!*IQ`@Rx=rqDF>Gfr1FQbu2@*WrD$gz)*p&{eZM(yrcc2 z3HU`(p8R79F+fhePf<4^p@G4A{R4!7fYg7^#sFt}o+G(c(}HP33h?8u0HgBreZ+7k59mZB|v;@IlG2M zKz0rRO)f;%UhO$h0RVFz9c#W#FYf6j`28L9ORu9}K`l#5pPMblM{tb~A?_}Hiz(l4 zV7_c=GC~HE^CxSmD+>w10bK#{yIbJ;@D;K1Ki^eJ`($Ar)n@}aC3AP;o%(u%37ioQ zc36WVXcqMU<6!|;Lk-zLc8+tk&6bygw)4R|fTFj&7n zD4S+#V-#1Ur}@Exb$-AKA`i=I1!o}4&dgs~A-)|m+SmDYex4CS!o>u6zNrRv1_uNG zC|c-5Ha$6o5Fh}`_JW-ACB%4o3H{h`S^QWCK~mBey7@4p#MBA~MF3s@3Z!vP}D-v;X0(&k&uGK#=2HYf(Rez<-uBL(_# zZU5Q`4k9S4>dO!B4~uC7?(a?40jiVTPKz1Ia)*HgOymif%db#fkwm_$MF4U8f*TB~ z2w$1lgE%YOZVC+qkE3&0HU-AdKe6FMAS-ZDN(#pE;^7Lcll_4&1Xf&}V?T!qPDKT! z&e|9KeNs^YX9@MUEh1kn<)r<>^bDy?@ntOsMk=K_k1XNCny{kK$oDH z*=Dp>6mcb&|Ht{`2D^}VCU5meUoJm3$0*jeA*hItF27Q78pd$(Hop=*hDFdE_HR;d2$LEq13Adfe(xj;I2xs;76?H55cRB1AhJw3GRLSF-QRNxRMmo;koZN4j~}{Q>8|i5=hTI%Am9y|%W$`3ho1L(nxk5)SMT3Tc znH=g0OBF?^g{l&2AKO{kZJ2J_IGS+H_lMBjMaKmFK3Vft33T00(*iq2)D^ftrXqh# zcc?>k(}q4R$8Jkwvlk5=g~6kTkj+ovu3l*sgZ;eO#Gc(=Lt)=t?;qfZ=x*zz067h^ zO%)4@&nOrWu5YM}P->Vs1=%44G8~wsBz;~gjt=&HUMUU^mVF=f&;?)LYsHWQ-j=E3 ziTXdReED@c?#01BuSpeA@6DoSWf!Y(Tl~5`RdOP`JyU#$C?36*Y#jK(!91680=hp% z#2@i#u#^+_DSYH#z~9GgC{B}bDPRDbNw|T3nj(LMQji?b?Fa%2>ir0U!XLqmdjGKG z`|1b-9{m-l-WZlZ@n;KkyIYc_~Qaqj8OX#{|6@2yPZ%zVTWiC zkUW(42Lg>7Mld~$XsOQ!rUH%%rl-~yc^Gf6M#K_O^N#`Ed^qpdny>jVe@P_o*9FsP zSD@>TG67SN!z{f}kQ}c_N(le=gXC@g!;i?29}t#a%E7bX)qI7Y7K`{Z1mM7@9fblC zAd6m7#Bly^oDooyCle+@KAK+A#1Oa76DGYrnjhTo@<@w5xHz)IZ9wuUi-c>DMAl%@ zrJL-e6yCF7e57e3Rx6>X;84M5R$Kx=lKe#(A!#?EmnJ)eP&Z05snwVkGfZn%Q^Qj)SWC(r z8-0KYOmqH56_yPn_h>z+oWqdAX^!UDY zktK}3y&ckGyF2epSclq+cHhb+p!rti>dEI%kPqbD)Wp9ghll}H0<>!G*-_~e4a0x_ zun0~F?!9^;fG9Zcb;cJ1C94Kq5VA@%tI0^vJBBdVL7+bt)bt)1P5QAgcj+_|?eL*A zfFB6${eJ$me}l!XXO2pGin;*CrpLTu1QkMS`@cyGrcBbvNmrDQ%S6L5)7iR(WLE%7k~ z?rqyq^bJX#isG$GGR9QkD2g~Z9>&zGof_`P%V+#~n|?4BQplc7F!p&bdqsvwp?t9J z%hYV1M_v;G`=i1xdxZzZ!vy|IesJQ+KfOLRFif5seIrJqSc&)n^YPR|aT&D<2nAQF zradO7Mv^CA>?AB!AYcWtg{eNX5=QZlhweBch`yYteQt#VAyo9uOG*R9Jl{J8xfk@n zrbNNfwnQ>QC4u|>?0P@IE{4l+n{~1Ks)SGaVG8@YHvjPY^nDo9^x!D?IhYJHWzv1@ z>B-a6Y479d=0q#8L+0{A^jQo4@B>#+6K@}z0AW+O6lJ$h0h54;=IiZBtCwi`f!4-C zO!KkQ3SQ`{6I3sTZWy@> ztL9zX_>l^I2{xD@C1fdhT1QljQT2K`Ig5>+JQ<$SSELS^p$-=IS@bu1x_yIH;{j2h zVEk`YhU|69nn{f3!0=MSdiuFU3l`K<_YIg>_4oSFMOCChnOCbPl%znw zdxNbijCRSrgZVH)08&zo#AHm@{V~dzBR71CN&GFzJcHO1@|B0{pUV-|1B=^57j)qJ zD8|;m&xzMeytI{gy36^s@QT)7z-ixhf;h_Y?vcW)Op}nQtozxWxxC4Mw@<+3g-1&! zq&hxf?~hy?%&9U3u>*PE_1b9Pd|Si242R*u7zo^>vy#48U*?B$m-s!u16QK!K{^(c z3biJtI0&em)LGZ~jAsIkmj6Cv*PfI^{HcoP-Vpsd`}pe~^-LkB#Ly4Hy%ar*-|EU& zz2?Rz71aCHe|SNSDtn=cZUP2ZHr2HQ%ICar*ig-qR%W3%fF8f{P*QPECd;OJ)|+^W z_!c^@hK-J9%hgS<*v8HH`z9o{QX)}xGu!rL7d6LJG*hUqmJa)<{*Jlz@D@4|S1Cci zcssdo_HT>n*7UQ_yqu!QRv6~4%x^lW$G_YfIj7Rjn%!ovHn4&f@iKEL5l_BinrsXZ z-}SgWfh)6mJ}*}XrvF^(t_xt2X2G6q4Ru(4tNA``_DIs7Tgh*47_s8yh;7Fsuh?L_ zr6LjGojgVZ>J&Y%{>_m5ZXWUkw(vlB>=1e~4MOH%zNfBGr$Xvs_qL3btBg0v;+~|U zsdp1n>ob7`245(rb@_g2`@wTwTM+-XA@YJvA)BmRwJ!4O_n&rhiH)v)2Dd{ZWp)0_ z^|3}L5E&+%A(iuqA^ZTIo5TdW@LOl;umDUUvZdBOuqe(pI*kcC3^(Hv^&-h&_;{8F%lt~FM9+sd8{!yCk#CKwkSFA3 z4o1U3>-bTHR-hqTyxM8g5?aSsM{r2rJwqud#^jeebw1=QxthyaofkJthNLoXiC~oh z_ve5datJ=Gu}6FA6H>09%N|p$8wiaTxPh_SE%7+q_I@u~q{UOD1oHiQX1!TuHkMv# zR2snx9=EzI;nd;j-~+K0@fO_IV-CP+hFH21daZX&b&{JU?vw|QPCW>;R_93CH>{jU z4KQprpbG{on@lnTq;8ZOMKMj$IHf}mE96}?f$NfK2T)@qWojNx3Z=P8fpf?3%wJy? zGwNhSi)XFm5~Y9rp54T!gMcf|go#r%Nai(ApYKGra|lk6y%wL7zamkD_K1Sm3uWxOgkX-*7{x&X*)0a8Pc!-~Ta3;upGKw_xdT zb0kl@ATHBqOXGC=MafBVOF&LQBt1bu>K(J~n)TLG1YhplrB@*%H~5`awGUZ7lYLG( z&*kEaV#nfne0p$Q^BCC~w;qE~dqciye(^ahLmENs=+l-wmT+VD4dKS*;C=iR_P!&IlW0Ttx0Cau~Nx&hWzmr5WnY$g%8obxJo2MELN zWgdEQ?=@_>@kRho5fn$C(w!V3k(j{#bO*#ch0d9mK7<5eThj>JZ`xrCRklfOMw}D* ztv2)wBeBqvQbL9ZHN`-oE8xEN z#gvlpIo7=;ws(k{ej!XiFVkT^2u)Wk%~JF((T5+(;z{IGAZ&vcgApR#$R{0>yq-rI z^~j(GH(Fy1|M-D@;zGn;gA6SRp>P-g~3W_Iji>FeV>!6TxH$# zzN>p?#Aj}r%}a4tHy=2TuyE&Xr?MUBYM z%~F2kMc<=58lI!~x1?J-dloMOyQq4&y`#3_-CYGq;_fNCLL;k)_R0&Ms{tA*7}u&u z7=lJJ6gH%e9_;JPvrTw+3$pGn$*H4n>hfF75ocl5L)S$YNrB(c_ZnL!Qqj!UPl3m~ zvX-P;vAXH}`>C!Y^fdh5>cnZ6CU=^~7rL&86*hk5SMN!|?&6a~G@~iabhq0T4k+8A zLWiU?k*2|fBt#0OCx#4)Zun>87Q9!dp}E#fOuGqrH)04pa@d@v zG6y+ShS{UBPLB`LjVU}OJUpk6DLNap#Gf>rM>(EF6P**3Rlri~|6^j+i51g@4lTnepK3rQ_U!?5U3&DeLb+&f@psI| zDtM%)i{N)$_pda4$=^rj8eWHm3Fh{J`vHVTTx^ub?-0*td$2}u)Hb7gEymEMrsQxb zaaBVcYc3B~{e5O52_I0`b~7W2*rGHXj>$jTU!+YOuKY+yBq-c&zvp}I42U*oFl&sz z2DI1Sg1_bLOB1?ujY_l;FsK|Bi+47hK2HV1Y%wTx_4K2i@%Xbl7Ldj;h%WUK9y&@T znY~zEQXPe_Ry_N3nS#DC5LF%QT9JUyhkFUBR4&(8*dv5i$E+{$r3NF7C)DqF=nH-w zxljpePE5T1sgbspoTD5Q-6PI;kOtVkbdzHy_3dWwR_BC_1gG`Q=_>VGn|Vf#O$pm- zgNtWFkMfJR2xUNMb7whjyQqv3J>Dou^ECW^MEk4b?oOzvKk)#~)g=KoQ5@e~kKf!rV?buMB?;vGyTZ}d)$hfr<=*8tH zU=$vV6tdvm`(ZJE@sO;xPf9ZA0= zi})jJ1Cdr2aZuqqsuI)oF;q@H9Rw@LI0b4f@Cr|6AbE&TT?j`YsnJ8g( z&UoeRokvX7ijJ+8)h>zqZAw4d+sB-o;8xhJ)SL`&vYLLI663TJ{?4(7otaloy$2`@ z*6pzwhNTWYMqCa1`-H9tBHX#!0rGE}L>36bI6Nw5G*uuCv0z%JNpKzX0~hGq3!Ytj zYrm~iw_x1@R$`g!CD&J;e@-Zm1s0RM3->kFbDb0}R*Ykz#AsjHoDe1w5HK54awggzBZH zHP`8Y|DlrrcczLOh^zf*!!7Y}@5*`LUn6u#HNP?IXsVhmq@f zfP(qb0SkKCCh`+^eEYQ5nl+)*g2`f8zTCU;Y0~RVE$+@QC$uv)yiVvsGxh|Y2Pqyw z_5+HJ(dFB%uS^^qpsk@+?&P#MSpC&6WE!Pffjmq;9%d=%d};?lL^!ZrKXerbB-^dn z`fB%XNC7F&*-cB0kgAxsfX&|L#Gg-UyL+-*|Drx*OrBMO(@m97n|-TU z@>5Zu<&xbJA8kHL&55hvKs?w5;eOT^UMbe9=nGzRCpqb^M;DH)#IkHuH3|yrN2l4P z1+&Xf{4`mj$0p<}nqrunXJ#*6SDj6A35`5Z0_{^p=9UZ59>^r`Y~q0T_MkmS6%6KH zUifleXe(W@;YQ1qG*73SHLyg=38-Fp+}nr=(*{JT)Uk(L1ocsBp)Cl=DYQE9 z$ywoH3*Fp-G1{`+Ee?8Crgn(OWk_dsGzh%kzh|<@mT!ckz|H5LG+W1)m(~ph$$dsy zukOJ^3~E&Iegd?Br_Lg8(kEpJdkV?OTC}NS1Y?x^ejsuzv|l!#P`-$5X=L7f9zyEm zYsStEs};4n1Ha@W{hovy)x0mZFZ@&9KRGGyJ&;~+O&EKpdQ#>t68bC<{e;1VpVD8) z5B4qD^w?5FFo$o9H(}8!GygzK?QoXvoX%m>DGo^zLGeS`$kp;iZoIU}E^q#{jUq2D zI0rC3dF<=dfpdEapp(J zfFPh!=?Xx5E29O|mZ9Elg%}VtnVzsX8tk`@rx+zGWd>iM=j!pxqBJfxofr)=G}bfBuXOqSEwE9^2}$oqw7FT}5^??E88tPslH(400) z4ii3}1!tIYhw6k+5mh@x8-&hV2%^9eQhsvZMe;`LAJd6e(2_-`W*0`#@!l?b`du8q z`p9~>E5=Mb%vJ0A!5&@&QJ!=sHdZj22SprB*o7tV7f{ayzr8N>&az)g= zU1q+Mso8C=y`kD?&>lBE#4|scLIhV!WUnAEhaB^Q6$@6{^?q{g;<`c-$4c_}L3`PR zXFBF69;5l%+VaL!i1Vqm4X)khH93XGhX&~!V>-)Rk%Jh+xw8p!)Lz9Dk+GXltdNQ9 z*NNUsq9QJKHUoQ^)e@#>_0$kC1tVl<%Sy0h_D0Nzj>Wb$&hpUK>b`8HnclC5ScQ!5 zG0s~I#U~dh*hzW7PuE-i*Q6(Ep9H9KmIQ37nnR69z(qjjs%;*hc#_ld4l8WAZI+dk z&T3tRE6i=>HvSc@A`d0P$tqQB+`e-zEOFSapF6$nWAg;02W zlj$(_P+9?+XK=U!E>U*ezVDvO-p!sQWQ&(Nuzb+x# za~_mSO)T!^&oCpZ3!B*sd(TC38}vNoG@>{lM=gIc&nTw#F98Qqj!*$28#ckI5Mr6O;WYk`NFAgpG zwO~4$;nyisq-yA>)IjM)=71!GKoSpVgwDNF(%yuBiosVnXM|VHGLG$eC-#Vr!W6Mj z8tm#rcDxQk=;hg5jxWkuXA)1MF?I!%82Ol^+EAW6d{b0r^T{kG2D2G~M^by;=&2gk zkdo?Gh}Dr0_^iM)ydvyibcpCvo(u_%PW7pyr`mg8R-?nMncttU5y{V23^o=E=E6@c zIX7}5+)i~`OBLQ9|#124fi!Se0x;g=hunxUb)K~tmNfL=^GSV;gl7# zt(3I8L7Q4my6CAD?%}AeBoGF$+4qaXmt+&#F&Z1N9=mMnh^*>#Ja~q}HIlpT{JC;G z3RygBEs!>fV*eAEO0N)nEPclb&u*4J{-5$IU>TlM+1>gcr=f?Q+0C~{IkmC1^fyDE zA=n+vv<9?O)5)k%1c>j(6N$A3*X{ciy_J$@-8JdnyTUm}ddgACB5A&T&qaqxou$rK z(S3l1pk70nQ_4X=Mv#Ao!rGT~NdF+TFH5l(B7Cbv4AwVNqb7A{7#z9O+=E1XQH&8W z`32cSXB|#GS^iqU4;hnY<+G1GXgaFx99`ICms`W)0x;N_3Ae^neIAjSqYha{2arZi zqT)qmSzSuxHkw|XiJNZwX5IbabyZ{srt3@;69MdxN)*>*hvabj>kY z@3PZ%z{3H@&Fc8+%QYyH0lu@OQD>w0Iu*JiySYnPOdE*+L1M~Uf>?QTva%Gvk(5KO z9#<>A-J*INn3$Wk5;3*{;-PHhLcJNfeg9u=zu31`x~M8-TgsbGU+M6>Zdfhg-`pPz zZdXJ7Zqp;d#-=xSdW+-D8(l+XX#K$OCr+cz)QvV6k3wqVf_PjKXZoaT&6$F1Mh=Hy zjZ1QBF2#37cp_%hF?j0_0o_UXFv(a)`AM zy?DP{c=u+L%CiGEq90ltZqaA$T7H#<|4(UW0TtEOJ@BVA5`qZQBMnkB!wev$QqoFG zN~hG&sf0))-6)7OQW8?qAl=d>ozl(!4)6J%;#=$c*7u*a?z-phyU*F@?6dbdhqajB z)Tx*jpb8@lc*`bD8{12BDDRREX4dzXy-AZoX?wlA;U<`&Oj>nxoz@RCuVBOtl-_Wb z>+o6Xd4lxXvzy0dS2X?87kU>l1L+m@$AiD83Z4VsuRHQ}LMP1&(+_klWSmNi5IKK0 z5Y5J?ab>T_dvY^zu8hJhMUQGZuf#=_wkXdRp zFu}Pmy_t4>{R4%P=p@e|icrUNcHS+GQQ00dzl=1xJIkd7CG})GV2a145oOhnLm3k8 zR<+cK%o5|NRmsIGiYHI35GlXOD-c!ZFnEwWfWS4ozq0uCWl6!Q{FggLDYrhXW!9D( zQ)rIlUI&>+wOl!U-H;fzgF0$OdRxGWJc*W;c{G+mGqBRETxm?_ljHu1K?`SHEZWVO z?y24Gp1C~Ed2A8yEWY|sZoGkibeA`O-q(Z9L>p1%%672jA{%ES>$YgWN>L9(np;>Rmp9p^mGxVU~m33JTgH`rg`>RIT|A zpE40OL=#r^g_s&@;i+lZx;4Heed{8d{(DNtdt81~r3^A#yx{g^ zMiD>an`0n&;v=hErA%$?2d4xpx_Kw88VaLW<)|t=^FP*^dhNR1(p-y6wLk~2zq_1_ zfF>)KX`W#j^sT0kBXESuz^R#bxk^y_;1d=n;ae}lITD=HtI$q3ptJ848_CM; z`vq38&}p^{W?4*@*+AkzeiP2nV1y|&+(xUwd}J9 zgaFZbCa(bx(cbu0d$#D5K`34P-D;gjoD=A&Cg=4g%KPua{JK`v=XwJ0aNin{xk+<0 zK7Z8s)$`qON~Oq4wVV7~aKQkdnSLA-ZI3Fcx`S7q^9Sk7Bj|=7Xebty`x~56Hk7B9 z^{UBM=-ivLKe+0KKR$anD_bnI8`~4#{_a8NXkhv_8&tmb`QzL2VG9Kq+Fj5-E2mlE z_Jw#`_!L>@OUa;Gbky?hK9>3oIW+m@yi#B3#ADo-YAw20g)L4g3uiy*tFFY2?M0KX;3v%pLpdQOj@xyq3XU5HSax{a6 zygVwYC11v_!rg?JA579&(QMnC)75LTwATwA4AIye4}Iy@7P|U6 zC3?xfb4VPBejKFkB{V8?KSWnlP;|0j@GL*fyIH|Ts-SNj+$FkVcH(}58MAn2Ch6u& zf+T0TFT|-dA8co4KfV}U%}>IAF-XlRvS?~8(kGtA-Dr`CSI!Wb0T8X-cb{J&C_$TP zxK1_Gh;J58#!TZ%7=k8zu|HS zLu6|6!VoboH=gn!H>C%?+}QP4(;Y>zDr=+RZSytvZGyERAA$!sH{QD1%&Qa+kJ=_H zC9b|CauP3Ieu$YVWb#rZMIwZfJ?Z<^k2M|8NZDh)m9%NWvf4dUW0vhF(GM88x}PrNA4&6+ z?2C7LF(VLTOtbVM33ofOQeL?%h!lb+eU{3v=Y^Gu2d6H0PB!v(xX{E#9a2qx3FTdt zm#!_`an{92yRqN0JFD`@N%=cB4_Rk2=7w&Lknf9Q{h5XPjW&m0i!GT@iky~MUs{uN zXCTU$hEJO-O+xPO=`TY)`tzqIht|0r{=j6^$t4+YCx33XUraK=VBFo{FGOQ5T-w$i z%7)Q(|HP2fGR`0l59f1Ke%iUU5!#}Xmm@=Rm*T%@J0V}*pQQV-3)HUz2!VsRw8!kLH6jU4i@l<_=Mf#8vAv;+RLSSgug_jQ?02{D zviJ&NQ}>8|&GmFqDaXotgKE#wV{u}^t+QfIN%w|>m#x)F-u)gc@PI%8_d#0a?oBTC zd+Sd2GOH|Q7`0hR5VE!zJSx=U;XzaSo3@Jr@Sv`F<2<)6%CrNP{ztk4$+m3He9qa` z_$Wpxr37*1RQ#VGyp`BZeM_2dnMBx3LkHUq^CQxd6l9`GCRJ+to}Z>s`zR(>qJ6GJ z;}DIsKLM37N37}$U4ibo=ybJM@=)Kvli&nedW)jl%1O^8vh!VJjI3364WUP~EOk4>ynhmWn_-J0B)ytBA~~wu)M}H9Q8%a)GrTJzm+SW|V)Ce`e4*q=ClW1jZ>4Qt+Xl-DrAK{B41 z%zs90QkY$)CUz<)!161k{&O`=tX3iSvD7@NRw0zG7~9EIFEgQ_Jd(7jTEf9z8&6^2 z3vHb>(F8g^>f^TbCPf|`@<&HUJ6TM}rb6f+iN1wOLtBLE3BD~f57oL_4#v&R+cv>Y zcZ|jCAFF+e-Cw__Q~z02W4eMI#Gh2rvkVQEO6KacxYN$;tMw^5YG6eHg`eT1XCePC z>x|rKUY802v+TKtr zt(z%&gyVG(R8>^#e=oY;Zh~I0q-&izd46zz!_5o((X@=SMvQYMJ%oR7rd!^i#V

    YJbUK$l+8E&wV3+H;{_rJO6g_IZ$@__d0FvMM{+(ZkW28ytkO&OM6Bgh zhd;k97j`2}pdmHg&nIc4U?{EH{fyv_LqHb8(b!aG=#?PltFlwR#&wS>ad){K7;2|U zlgphD%^d6?&O^n+9iC~__YYk;Q^+VdE2&lp^${F9u2nMN%pl3&n~2YJl8gylRjNW@lEm*b_{$0qXgo5|VwK3E0CUab)1eqojLT-bd z)Jf8f_l`s?v)o!`Y;zTl#kL5Ay3{;JMTi*wK&{c!x!G{Ac$;75S%-ps`~B)nD*?sR z$kxz@=Y=6;REN^(>gke`G{Y+Uo+yuHQ5Vt;0x0jf#`cZs@{->ATT zyW@I`Hr|AsAd}l7kbzw8lbSj!Oqb*ueEA4nt#F*j)b52@bN(K`;9xGk;mSMvF1D@` zUiXRDh$j`+kmzvia1A|eiDo*@zFpO(h1Tmr?bjnQBA*MqjPH{R{1VRkwZg9am9$Cf zB9mp~L(Hf0p&!sVtf=TP=E%o0qY4r63Yc0FGM`X5ZsQ!ih!0~KP*9}Tq#dn0E4k`r znxC!YmDK9R!*`{@R1@}EX|V@f?fP!?Yd2XT@hb-tjQSg77Hx@{^j9_wE6tySM>JK6 zGDp7%HJlPW*zJVV9(emFlE`4Ze0p2ze$IWbA#?oH2K#>4U4Ufqm7ETwZ5x=V}D-brI#hS|}Z}nsb&4`!u0N z8}=dPP{*?7UE5-6Cks!<$>AxrpDVvYn&~xJTX(~&70>MH5~y0+d$$B0Y$lnT48Lg& zM4M2bV(_&{6*h>=TyP%Oc{Ez)5I`KW_etDh#QSDyn5=>4D1oo-H7a?9w``#z*3`<@ z3Aewh+Y6}5bTyz9|FN)u1AT{EuvJQ+wy}|0n|4)0#u!6)CBBb!*@b9QXq=GL@8d+G zn##fxoUK49er4lnraC7OZKveXvu{Cqy(Ec@QF)GjRuI|;R#AfMjPl0{6M7t*q>EZl zX6O^KWbkH4?_alLiJt4T9o^8`Z?p`$6)tvq>i9FeK%=Vz1s4&ddfAuZG0lNdP`FLS^!QH!~4$e+@%vU-NPSb>S)CRyi%R9v))fyUC3l%i0VrR<(wzR zpY=$(mMk_rts2kO1L*I=oi0+DGC`2Pl z@Nrlo_RJx-tZXceELD45rc5FI6Pwjl8E$--h)hEAlmyA3+ zMfpDO5vw+;05|4wNvF-xy8PywWen=t{s4*H!vnKuzBZ>hnyS09Gei5-kwfZsQ`CF- zn(uMHn-UAUxDZ2{uJf`NY7PX=f0Oj{ebqyqrA&+E&abGVtyAZ%)Rn{R8EqZ`8QSTr z5<7t!HTp+}e@GM9W!tmx&o6M`$S=O?WAiz2FXx*KRycO@^*XUUyvO%xJ?nUyo6YBD zmDa{_3wQbWy*~MVlD=oTRyOmTTZAQPPgO0PzrYK3ImIA1EjeNnLpDl#SG1)~AU;k| zu4br$Y6bgihgM}^0owfaRK^u;1;$+^fZ+N`Og;)TWAQC}M@K(~un5ikZix7n(T#}q z??REieE9FvJws4pz&_P^wO>pzh03W~y0;zk`}cjTOpCsTZf=%PnMZ#j*R@cudvJEj zb}np=6~&od)g5mCKqZ-9a(l_MN^1O8U85B5dDZNIa_)g@=Lg)*r`nUATbYasD@} zNsjGFRG(3u$b9jc1I|9HQqSQ4wY_hT64}xk?lt(A7|lr{e4?w2tb|E8l&#^T7E1*> zeyaI=+bIUi+M!X#sCtB~%vo*2vJDm5G6TX$OAp`m3kj_X0X5f%JOOq1)>% z_YZxJ!y`u1S$sZ(C91!AcR-mbF^IOcR`$l!hpuZpEBMgERi)Q8kTX)ntw ziqq!9Q(2Vx6LKz)4PGK+IXt;J1$4 zQmEj6wg*{!hI6Hpt344q9`W8F;ug{w7MbKCIES zwrcD{QB4|KQO^Dtoj0dSh^8e!jiFr)D!e05?PFpUpHxx&6HH84q#X4h*4y07S=J<* z%+)3b6J?s*d%NrMpg!jq2zr3<+n~^%gQ6H0)Hr|~7dLQ6Y7qHG}X?1A%HmGjA{!3SIpGFk&?b66bd`xy({u>o)K&z@a(tjNCJ z_Ks9bg4E^Vt6pvN4!XM|9;Ubeon3r4`LPiU<)X$J`)JbUVP}$JRP4H_y6v6F@vv0R zKH|s>_@hFPau($Uap??S#b(~Om%*jMJJho5h6=YV7ShQ5pNllxwF>So+=%9>D+wkl z;Bp(ePg+r}v{y{lr4n`HrD!G3@_=E#e#_c{Gd-sLs%uX)Q!<5fS!{LUn|#NQ_QfUb zgJF53`zgCsP0x8WyKk@cr!*|Iowm1pEo=)9@x zl_TBC;G}!=@d9t_ieP$yxegmg8A55<~iIGxT zW47q*^uSf8gF||S-hr_8u9fp?9IC#PYFWFJa6i*2S49S~W^GKUgfataP+}{^9o1v? zwvhMYo!Z}S>G}12dch^N+8(|?Y<~KFq;SK5V^3q-NRr9c`Qb|?mbQ^>%G7}!-G?=P ztEZAlS~8-Rc4ghi#AZXMZ6sMimaot`hbBZeJo2{)po1pa4{&BB>c$7d zPOH024Kic`wb9OeSiUwD^oxk zTHK-8Dhuqe&rz;94`ReJBdjQe`@9%w^QDCcIJ_6z@Xceuk-lY6;Qk$YE~!t^SeB%A z47Yy~QF0t^MmQL_gh-9mpr=(H9=)Q?KC`{G-`(Y@){~N^ati)~k1qe2hjm8t_`3L& z9Q>T>YzVi9+ZC*LpPjFc;yt2Ud^q!d6Nf($WtjM$zL&B5Oa5dfp=i%)xn9d%HT&|0 zHPmg<{^T!%#jvR{sZXQU$5(J=npT)QvrKwRWN;q#B`%EXy(j4Kmsz^{pwIe>xQ{=A zzEk&_NnF`oHLE&nue5@0XH)*hV)f#xCU1Sggdu86JsY(BBkqiGIz?^VudaGWAA3HJ zyzWq=;zGzqdVxtBEJX9r^Z|1yv6kDb8kwf733Z`yR%A2t1HbH@;zp=1`t) zU-AzJ8R$)x$d~|=;fxb!j^rCgCBsRx9*Hr@D+o-irKSZM4XrT`9cxkpXKfXY>kD?E zWM5(p{PziG4>y&+GPR8<2PT^hJ#au(QVvBoLf2;zUF=QOJ(yFV8kNP6XP8c4>uDlB z-W5}pTVXQ8x~4tOe9U&;KGl!E?G2?%a13(}Z@%7Ehi^`IVq!XxL{%)6n?o9(V+C_+ zJ+se;$FV|K=};B5+rGWh4mr#%A{ok02~wvySg#0)DiU?GXX9)WtFZB2&vbE9Afsbv zJvbwlV;7y*x)GJJnvH^u8y3<>E>Y<=SD$#NdhqlC*~U|dMhNxir?(|yBB}i`TyGl8 zH}%B%*P+X4^D3zmOk?)3D}+stWUrNIrV`$A_VHSDUw)nCCg7#Hye*yv{CFix_iV<{ zR}h@C(f=gL72#DbRr|s+{!Tejt6Y&<fvczGYlSVSa&Z-#H!~sX@mNGbte;&e z4yE*|3yycXRRXbuJ22;sSbB)UT*dcfI5+<2YqLYiU6t3OBNg70vr6zWfim}Q_9ck) z;ARQfBsTFY3rq#f6s8`Oz1IJ}&zkL3*^aZHxp_*!hMn0q^WJPB@6#W1ROWf;N6wEw zD(*y;-g=K{D0|GPffsR`nqqo7TozHR93P-nRcnZfhFd+i5qO5oW#V5 z;xM!(@i`5IUw4FSRzg$AF^;cfQ51I)+JX)zt2=>;T#F{!aA5{|IDvk|Q$NvMpRo#S z-=|AGZ@pH0R^0f#H9dDLtm zwgrWW5v3w-cnkS*tDujn$F%$NJpwbb0-;%0ZZRUFzR1G?*XHxABn|cWWR`xs@_Joh zQq|$z&+B0YzF+e4#S-+R!gqSU!M;DSvz;V8euS#Z>^y+p^}(^xiY&lkK1kEz=tZ}1 zp@9TnXHRPe*7%z)#j`h+@Us`x)(hBH+>I)qK>5K4;$S7q>ag&jxL*QdR@rScp{NWzemQ6f-vY z%#L20R}`w=gswL1Bu%}vsWW)X@zi-{JCFpG`PN#_s0LrZFUR`6nz4Vz(3h!vy@)2B zO^=cisb!XJ05=d1575_AUWQfUFNJ(@Mm5VvsbXSiVIO@MB|8uAJ7YEdOqjwgE5Xa3 zQJd%_u9nRrip8GjKE`OzMh;RvHKO>e-Q+ewA zHH0cFZ6slWMd@4IOjIx8d<1-a=6U6`DclRuK&1s~Y<)>t@{DrO?h>xq~SoG|MA14uYHF1@1v*1e~vX1c!HAu31nG7!$huzP(S_r zhC=1(m~Ww!D6Hw06 zi!@2ioA}r`Uya3meCMueL`%pCMOWY2Iz*E1x-TL*q9x}pfdE)FKB!v7;(iWE3yW;x zJBvfXc{E>F($rAH&PB9o6YX$1wX{BIEfxI76oYPQOV1-jY;-ps(T2sY`m!k;6;!RL z*(>a0&%gIXV-tJTxfoELQ`K(LAzv%Casd1&0C~)G5etH3#w0-~hiS=xf%dg7rE`rr zz21r2#1^B@Y-Q(@-KPDN?j{R^1!~ui^kDHJzm|;?-Yw1as8UEz zuORH&YSo*C;l(>l90ZguIGrWyOhT}<)Lc~t_{kSJcC9!1?aDjwYJSW3{f}9@^IitM z^o1__6^@eE*^+80$|N%v4X5FClfHttjFvXKw>ii9>J;p!Ze}DHj#92rjYJZ6^WFFm z1e3eXd8PZ0-UFF3gctE23HvFQzo_OUWUWj?ZfqY_EAqD;JAYr$icl81U~no<3$lWYxFzn=@8 zcpabPZ=U;IG1mmX(9gKK;L(TwT=;qt=Ructv+uFTA8f{jU;hQ!f}|@Txh7yZoD1?d zvIR*$xlB9x56Bko%g7e^Khz6OfO)|Q;zC}W{{hwl`ZN5212=|9~sXfMcifHwZV zfHrv{aDc1=kW`Sw72y7(33`8h-#ZN(LAb!-jz`LQ{~5nvGbB8;&G1uwD&DHY=a zL6Du72Z}Hd1W9&57I{HXWP~G&+#u)=DHH_#vjGk<2c}2&b8~@Uyxbs74q;0R zTR;l|LPokghr9v8(#}TD00Fuf@z1$=8Bg;+*!Yt#bJ+$q$9)S6OIw7x=1>0q0hs~( zeSy9CAFN&Y_qP%KtF@odHUF!%iz)o?to>NG{~u$!Sf~CwYnS(f|G|^se-Dm-b0z%p z68^uK`|slf{$qjufA|vo-v`P?F8#c@B1eY+lE@B7G#(Bq6Mcj_?1GmB0HTly1%e?1 z8Ms}92MBfnL;_OpLU`dTdCIaEscPb2F(4H(f=e1{HOGP zWMipsr)OXTV)|)c1U(WF1Bp6XS=!h#a|qiQ=m6}tUljh5npj$h0P7lvN#rhs6U@sA zgFwJMU@({mI07(oaxyY=$XM$C2Mt9NTXUcV4JI8B!o)&@=^4mTgBf%OqzlrsL})Ns zARjfDwXE1JbeaDdf}@RrAvPyKh{6W8)W1H!6AV}+4MBg)kTZq+fGmE}47E zWf>R@?4+0U02$A3GF~1iFk!#62j=BLPU0^z2oH=Cn4`-w$YmK62ImD5;uk$Aj2oFx zzsR`25M*dwmhoI}kBb`y0VexbJ#H9sr}#w%gK+a))`LNK0B+f3Js#vb|7%?+{5Kms zoSg8>J_TevKpg*4mxmKD@|%nca@l`CPmufLrMhsQ-}L}TU)BRdAeZ_AfdS`?-(^tX z(E5uFKo15)&t(~aYWrQrd#QiGSDL`kOY?@5UG^U!gCe)~pT`EsxVSId-~kjb%@Lr- z%l%tjUT!3q?dSHOU@ick_PY$Zu3XXsBJejEjPugifcALczv%%XeyJ}|Fbr}z?vb*~ z^8tkdNps21P$-1+H@i>>u*zKOA3!Pm%`OxI98Q1J`z 0 || n == 1 && p > -1 || m == 2 && p < -2) +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCos[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, (f + g*x)^ m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && (m == 1 || p > 0 || n == 1 && p > -1 || m == 2 && p < -2) +Int[(f_ + g_.*x_)^m_* Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcSin[c_.*x_])^n_., x_Symbol] := (f + g*x)^ m*(d + e*x^2)*(a + b*ArcSin[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1)) - 1/(b*c*Sqrt[d]*(n + 1))* Int[(d*g*m + 2*e*f*x + e*g*(m + 2)*x^2)*(f + g*x)^(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && ILtQ[m, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_* Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcCos[c_.*x_])^n_., x_Symbol] := -(f + g*x)^m*(d + e*x^2)*(a + b*ArcCos[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1)) + 1/(b*c*Sqrt[d]*(n + 1))* Int[(d*g*m + 2*e*f*x + e*g*(m + 2)*x^2)*(f + g*x)^(m - 1)*(a + b*ArcCos[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && ILtQ[m, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSin[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[ Sqrt[d + e*x^2]*(a + b*ArcSin[c*x])^n, (f + g*x)^ m*(d + e*x^2)^(p - 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IGtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCos[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[ Sqrt[d + e*x^2]*(a + b*ArcCos[c*x])^n, (f + g*x)^ m*(d + e*x^2)^(p - 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IGtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSin[c_.*x_])^ n_., x_Symbol] := (f + g*x)^ m*(d + e*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n + 1)/(b*c* Sqrt[d]*(n + 1)) - 1/(b*c*Sqrt[d]*(n + 1))* Int[ ExpandIntegrand[(f + g*x)^(m - 1)*(a + b*ArcSin[c*x])^(n + 1), (d*g*m + e*f*(2*p + 1)*x + e*g*(m + 2*p + 1)*x^2)*(d + e*x^2)^(p - 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && ILtQ[m, 0] && IGtQ[p - 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCos[c_.*x_])^ n_., x_Symbol] := -(f + g*x)^ m*(d + e*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n + 1)/(b*c* Sqrt[d]*(n + 1)) + 1/(b*c*Sqrt[d]*(n + 1))* Int[ ExpandIntegrand[(f + g*x)^(m - 1)*(a + b*ArcCos[c*x])^(n + 1), (d*g*m + e*f*(2*p + 1)*x + e*g*(m + 2*p + 1)*x^2)*(d + e*x^2)^(p - 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && ILtQ[m, 0] && IGtQ[p - 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcSin[c_.*x_])^n_/ Sqrt[d_ + e_.*x_^2], x_Symbol] := (f + g*x)^m*(a + b*ArcSin[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1)) - g*m/(b*c*Sqrt[d]*(n + 1))* Int[(f + g*x)^(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && GtQ[d, 0] && LtQ[n, -1] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcCos[c_.*x_])^n_/ Sqrt[d_ + e_.*x_^2], x_Symbol] := -(f + g*x)^m*(a + b*ArcCos[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1)) + g*m/(b*c*Sqrt[d]*(n + 1))* Int[(f + g*x)^(m - 1)*(a + b*ArcCos[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && GtQ[d, 0] && LtQ[n, -1] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcSin[c_.*x_])^n_./ Sqrt[d_ + e_.*x_^2], x_Symbol] := 1/(c^(m + 1)*Sqrt[d])* Subst[Int[(a + b*x)^n*(c*f + g*Sin[x])^m, x], x, ArcSin[c*x]] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && GtQ[d, 0] && (GtQ[m, 0] || IGtQ[n, 0]) +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcCos[c_.*x_])^n_./ Sqrt[d_ + e_.*x_^2], x_Symbol] := -1/(c^(m + 1)*Sqrt[d])* Subst[Int[(a + b*x)^n*(c*f + g*Cos[x])^m, x], x, ArcCos[c*x]] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && GtQ[d, 0] && (GtQ[m, 0] || IGtQ[n, 0]) +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSin[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n/ Sqrt[d + e*x^2], (f + g*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && ILtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCos[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCos[c*x])^n/ Sqrt[d + e*x^2], (f + g*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && ILtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSin[c_.*x_])^ n_., x_Symbol] := Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]* Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcSin[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2] && Not[GtQ[d, 0]] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCos[c_.*x_])^ n_., x_Symbol] := Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]* Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcCos[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2] && Not[GtQ[d, 0]] +Int[Log[h_.*(f_. + g_.*x_)^m_.]*(a_. + b_.*ArcSin[c_.*x_])^n_./ Sqrt[d_ + e_.*x_^2], x_Symbol] := Log[h*(f + g*x)^m]*(a + b*ArcSin[c*x])^(n + 1)/(b*c* Sqrt[d]*(n + 1)) - g*m/(b*c*Sqrt[d]*(n + 1))* Int[(a + b*ArcSin[c*x])^(n + 1)/(f + g*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[Log[h_.*(f_. + g_.*x_)^m_.]*(a_. + b_.*ArcCos[c_.*x_])^n_./ Sqrt[d_ + e_.*x_^2], x_Symbol] := -Log[h*(f + g*x)^m]*(a + b*ArcCos[c*x])^(n + 1)/(b*c* Sqrt[d]*(n + 1)) + g*m/(b*c*Sqrt[d]*(n + 1))* Int[(a + b*ArcCos[c*x])^(n + 1)/(f + g*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[Log[h_.*(f_. + g_.*x_)^m_.]*(d_ + e_.*x_^2)^ p_*(a_. + b_.*ArcSin[c_.*x_])^n_., x_Symbol] := Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]* Int[Log[h*(f + g*x)^m]*(1 - c^2*x^2)^p*(a + b*ArcSin[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] && Not[GtQ[d, 0]] +Int[Log[h_.*(f_. + g_.*x_)^m_.]*(d_ + e_.*x_^2)^ p_*(a_. + b_.*ArcCos[c_.*x_])^n_., x_Symbol] := Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]* Int[Log[h*(f + g*x)^m]*(1 - c^2*x^2)^p*(a + b*ArcCos[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] && Not[GtQ[d, 0]] +Int[(d_ + e_.*x_)^m_*(f_ + g_.*x_)^m_*(a_. + b_.*ArcSin[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x)^m*(f + g*x)^m, x]}, Dist[a + b*ArcSin[c*x], u, x] - b*c*Int[Dist[1/Sqrt[1 - c^2*x^2], u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m + 1/2, 0] +Int[(d_ + e_.*x_)^m_*(f_ + g_.*x_)^m_*(a_. + b_.*ArcCos[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x)^m*(f + g*x)^m, x]}, Dist[a + b*ArcCos[c*x], u, x] + b*c*Int[Dist[1/Sqrt[1 - c^2*x^2], u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m + 1/2, 0] +Int[(d_ + e_.*x_)^m_.*(f_ + g_.*x_)^m_.*(a_. + b_.*ArcSin[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^m*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && IntegerQ[m] +Int[(d_ + e_.*x_)^m_.*(f_ + g_.*x_)^m_.*(a_. + b_.*ArcCos[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^m*(a + b*ArcCos[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && IntegerQ[m] +Int[u_*(a_. + b_.*ArcSin[c_.*x_]), x_Symbol] := With[{v = IntHide[u, x]}, Dist[a + b*ArcSin[c*x], v, x] - b*c*Int[SimplifyIntegrand[v/Sqrt[1 - c^2*x^2], x], x] /; InverseFunctionFreeQ[v, x]] /; FreeQ[{a, b, c}, x] +Int[u_*(a_. + b_.*ArcCos[c_.*x_]), x_Symbol] := With[{v = IntHide[u, x]}, Dist[a + b*ArcCos[c*x], v, x] + b*c*Int[SimplifyIntegrand[v/Sqrt[1 - c^2*x^2], x], x] /; InverseFunctionFreeQ[v, x]] /; FreeQ[{a, b, c}, x] +Int[Px_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSin[c_.*x_])^n_., x_Symbol] := With[{u = ExpandIntegrand[Px*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] && PolynomialQ[Px, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] +Int[Px_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCos[c_.*x_])^n_., x_Symbol] := With[{u = ExpandIntegrand[Px*(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] && PolynomialQ[Px, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] +Int[Px_.*(f_ + g_.*(d_ + e_.*x_^2)^p_)^m_.*(a_. + b_.*ArcSin[c_.*x_])^ n_., x_Symbol] := With[{u = ExpandIntegrand[Px*(f + g*(d + e*x^2)^p)^m*(a + b*ArcSin[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, g}, x] && PolynomialQ[Px, x] && EqQ[c^2*d + e, 0] && IGtQ[p + 1/2, 0] && IntegersQ[m, n] +Int[Px_.*(f_ + g_.*(d_ + e_.*x_^2)^p_)^m_.*(a_. + b_.*ArcCos[c_.*x_])^ n_., x_Symbol] := With[{u = ExpandIntegrand[Px*(f + g*(d + e*x^2)^p)^m*(a + b*ArcCos[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, g}, x] && PolynomialQ[Px, x] && EqQ[c^2*d + e, 0] && IGtQ[p + 1/2, 0] && IntegersQ[m, n] +Int[RFx_*ArcSin[c_.*x_]^n_., x_Symbol] := With[{u = ExpandIntegrand[ArcSin[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[c, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] +Int[RFx_*ArcCos[c_.*x_]^n_., x_Symbol] := With[{u = ExpandIntegrand[ArcCos[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[c, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] +Int[RFx_*(a_ + b_.*ArcSin[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[RFx*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] +Int[RFx_*(a_ + b_.*ArcCos[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[RFx*(a + b*ArcCos[c*x])^n, x], x] /; FreeQ[{a, b, c}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] +Int[RFx_*(d_ + e_.*x_^2)^p_*ArcSin[c_.*x_]^n_., x_Symbol] := With[{u = ExpandIntegrand[(d + e*x^2)^p*ArcSin[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{c, d, e}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] +Int[RFx_*(d_ + e_.*x_^2)^p_*ArcCos[c_.*x_]^n_., x_Symbol] := With[{u = ExpandIntegrand[(d + e*x^2)^p*ArcCos[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{c, d, e}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] +Int[RFx_*(d_ + e_.*x_^2)^p_*(a_ + b_.*ArcSin[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(d + e*x^2)^p, RFx*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] +Int[RFx_*(d_ + e_.*x_^2)^p_*(a_ + b_.*ArcCos[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(d + e*x^2)^p, RFx*(a + b*ArcCos[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] +Int[u_.*(a_. + b_.*ArcSin[c_.*x_])^n_., x_Symbol] := Unintegrable[u*(a + b*ArcSin[c*x])^n, x] /; FreeQ[{a, b, c, n}, x] +Int[u_.*(a_. + b_.*ArcCos[c_.*x_])^n_., x_Symbol] := Unintegrable[u*(a + b*ArcCos[c*x])^n, x] /; FreeQ[{a, b, c, n}, x] diff --git a/IntegrationRules/5 Inverse trig functions/5.1 Inverse sine/5.1.6 Miscellaneous inverse sine.m b/IntegrationRules/5 Inverse trig functions/5.1 Inverse sine/5.1.6 Miscellaneous inverse sine.m new file mode 100755 index 0000000..064ecd5 --- /dev/null +++ b/IntegrationRules/5 Inverse trig functions/5.1 Inverse sine/5.1.6 Miscellaneous inverse sine.m @@ -0,0 +1,46 @@ + +(* ::Subsection::Closed:: *) +(* 5.1.6 Miscellaneous inverse sine *) +Int[(a_. + b_.*ArcSin[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcSin[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, n}, x] +Int[(a_. + b_.*ArcCos[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcCos[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, n}, x] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcSin[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCos[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcCos[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[(A_. + B_.*x_ + C_.*x_^2)^p_.*(a_. + b_.*ArcSin[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[Int[(-C/d^2 + C/d^2*x^2)^p*(a + b*ArcSin[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, A, B, C, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(A_. + B_.*x_ + C_.*x_^2)^p_.*(a_. + b_.*ArcCos[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[Int[(-C/d^2 + C/d^2*x^2)^p*(a + b*ArcCos[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, A, B, C, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(e_. + f_.*x_)^m_.*(A_. + B_.*x_ + C_.*x_^2)^ p_.*(a_. + b_.*ArcSin[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[ Int[((d*e - c*f)/d + f*x/d)^m*(-C/d^2 + C/d^2*x^2)^ p*(a + b*ArcSin[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(e_. + f_.*x_)^m_.*(A_. + B_.*x_ + C_.*x_^2)^ p_.*(a_. + b_.*ArcCos[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[ Int[((d*e - c*f)/d + f*x/d)^m*(-C/d^2 + C/d^2*x^2)^ p*(a + b*ArcCos[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[Sqrt[a_. + b_.*ArcSin[c_ + d_.*x_^2]], x_Symbol] := x*Sqrt[a + b*ArcSin[c + d*x^2]] - Sqrt[Pi]*x*(Cos[a/(2*b)] + c*Sin[a/(2*b)])* FresnelC[Sqrt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*x^2]]]/ (Sqrt[ c/b]*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2])) + Sqrt[Pi]*x*(Cos[a/(2*b)] - c*Sin[a/(2*b)])* FresnelS[Sqrt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*x^2]]]/ (Sqrt[ c/b]*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2])) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] +Int[Sqrt[a_. + b_.*ArcCos[1 + d_.*x_^2]], x_Symbol] := -2*Sqrt[a + b*ArcCos[1 + d*x^2]]*Sin[ArcCos[1 + d*x^2]/2]^2/(d*x) - 2*Sqrt[Pi]*Sin[a/(2*b)]*Sin[ArcCos[1 + d*x^2]/2]* FresnelC[ Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(Sqrt[1/b]*d* x) + 2*Sqrt[Pi]*Cos[a/(2*b)]*Sin[ArcCos[1 + d*x^2]/2]* FresnelS[ Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(Sqrt[1/b]*d*x) /; FreeQ[{a, b, d}, x] +Int[Sqrt[a_. + b_.*ArcCos[-1 + d_.*x_^2]], x_Symbol] := 2*Sqrt[a + b*ArcCos[-1 + d*x^2]]* Cos[(1/2)*ArcCos[-1 + d*x^2]]^2/(d*x) - 2*Sqrt[Pi]*Cos[a/(2*b)]*Cos[ArcCos[-1 + d*x^2]/2]* FresnelC[ Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(Sqrt[1/b]*d*x) - 2*Sqrt[Pi]*Sin[a/(2*b)]*Cos[ArcCos[-1 + d*x^2]/2]* FresnelS[ Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(Sqrt[1/b]*d*x) /; FreeQ[{a, b, d}, x] +Int[(a_. + b_.*ArcSin[c_ + d_.*x_^2])^n_, x_Symbol] := x*(a + b*ArcSin[c + d*x^2])^n + 2*b*n* Sqrt[-2*c*d*x^2 - d^2*x^4]*(a + b*ArcSin[c + d*x^2])^(n - 1)/(d*x) - 4*b^2*n*(n - 1)*Int[(a + b*ArcSin[c + d*x^2])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && GtQ[n, 1] +Int[(a_. + b_.*ArcCos[c_ + d_.*x_^2])^n_, x_Symbol] := x*(a + b*ArcCos[c + d*x^2])^n - 2*b*n* Sqrt[-2*c*d*x^2 - d^2*x^4]*(a + b*ArcCos[c + d*x^2])^(n - 1)/(d*x) - 4*b^2*n*(n - 1)*Int[(a + b*ArcCos[c + d*x^2])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && GtQ[n, 1] +Int[1/(a_. + b_.*ArcSin[c_ + d_.*x_^2]), x_Symbol] := -x*(c*Cos[a/(2*b)] - Sin[a/(2*b)])* CosIntegral[(c/(2*b))*(a + b*ArcSin[c + d*x^2])]/ (2* b*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2])) - x*(c*Cos[a/(2*b)] + Sin[a/(2*b)])* SinIntegral[(c/(2*b))*(a + b*ArcSin[c + d*x^2])]/ (2* b*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2])) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] +Int[1/(a_. + b_.*ArcCos[1 + d_.*x_^2]), x_Symbol] := x*Cos[a/(2*b)]* CosIntegral[(a + b*ArcCos[1 + d*x^2])/(2*b)]/(Sqrt[2]*b* Sqrt[-d*x^2]) + x*Sin[a/(2*b)]* SinIntegral[(a + b*ArcCos[1 + d*x^2])/(2*b)]/(Sqrt[2]*b* Sqrt[-d*x^2]) /; FreeQ[{a, b, d}, x] +Int[1/(a_. + b_.*ArcCos[-1 + d_.*x_^2]), x_Symbol] := x*Sin[a/(2*b)]* CosIntegral[(a + b*ArcCos[-1 + d*x^2])/(2*b)]/(Sqrt[2]*b* Sqrt[d*x^2]) - x*Cos[a/(2*b)]* SinIntegral[(a + b*ArcCos[-1 + d*x^2])/(2*b)]/(Sqrt[2]*b* Sqrt[d*x^2]) /; FreeQ[{a, b, d}, x] +Int[1/Sqrt[a_. + b_.*ArcSin[c_ + d_.*x_^2]], x_Symbol] := -Sqrt[Pi]*x*(Cos[a/(2*b)] - c*Sin[a/(2*b)])* FresnelC[1/(Sqrt[b*c]*Sqrt[Pi])*Sqrt[a + b*ArcSin[c + d*x^2]]]/ (Sqrt[ b*c]*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2])) - Sqrt[Pi]*x*(Cos[a/(2*b)] + c*Sin[a/(2*b)])* FresnelS[(1/(Sqrt[b*c]*Sqrt[Pi]))*Sqrt[a + b*ArcSin[c + d*x^2]]]/ (Sqrt[ b*c]*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2])) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] +Int[1/Sqrt[a_. + b_.*ArcCos[1 + d_.*x_^2]], x_Symbol] := -2*Sqrt[Pi/b]*Cos[a/(2*b)]*Sin[ArcCos[1 + d*x^2]/2]* FresnelC[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(d*x) - 2*Sqrt[Pi/b]*Sin[a/(2*b)]*Sin[ArcCos[1 + d*x^2]/2]* FresnelS[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(d*x) /; FreeQ[{a, b, d}, x] +Int[1/Sqrt[a_. + b_.*ArcCos[-1 + d_.*x_^2]], x_Symbol] := 2*Sqrt[Pi/b]*Sin[a/(2*b)]*Cos[ArcCos[-1 + d*x^2]/2]* FresnelC[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(d*x) - 2*Sqrt[Pi/b]*Cos[a/(2*b)]*Cos[ArcCos[-1 + d*x^2]/2]* FresnelS[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(d*x) /; FreeQ[{a, b, d}, x] +Int[1/(a_. + b_.*ArcSin[c_ + d_.*x_^2])^(3/2), x_Symbol] := -Sqrt[-2*c*d*x^2 - d^2*x^4]/(b*d*x*Sqrt[a + b*ArcSin[c + d*x^2]]) - (c/b)^(3/2)*Sqrt[Pi]*x*(Cos[a/(2*b)] + c*Sin[a/(2*b)])* FresnelC[Sqrt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*x^2]]]/ (Cos[(1/2)*ArcSin[c + d*x^2]] - c*Sin[ArcSin[c + d*x^2]/2]) + (c/b)^(3/2)*Sqrt[Pi]*x*(Cos[a/(2*b)] - c*Sin[a/(2*b)])* FresnelS[Sqrt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*x^2]]]/ (Cos[(1/2)*ArcSin[c + d*x^2]] - c*Sin[ArcSin[c + d*x^2]/2]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] +Int[1/(a_. + b_.*ArcCos[1 + d_.*x_^2])^(3/2), x_Symbol] := Sqrt[-2*d*x^2 - d^2*x^4]/(b*d*x*Sqrt[a + b*ArcCos[1 + d*x^2]]) - 2*(1/b)^(3/2)*Sqrt[Pi]*Sin[a/(2*b)]*Sin[ArcCos[1 + d*x^2]/2]* FresnelC[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(d*x) + 2*(1/b)^(3/2)*Sqrt[Pi]*Cos[a/(2*b)]*Sin[ArcCos[1 + d*x^2]/2]* FresnelS[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(d*x) /; FreeQ[{a, b, d}, x] +Int[1/(a_. + b_.*ArcCos[-1 + d_.*x_^2])^(3/2), x_Symbol] := Sqrt[2*d*x^2 - d^2*x^4]/(b*d*x*Sqrt[a + b*ArcCos[-1 + d*x^2]]) - 2*(1/b)^(3/2)*Sqrt[Pi]*Cos[a/(2*b)]*Cos[ArcCos[-1 + d*x^2]/2]* FresnelC[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(d*x) - 2*(1/b)^(3/2)*Sqrt[Pi]*Sin[a/(2*b)]*Cos[ArcCos[-1 + d*x^2]/2]* FresnelS[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(d*x) /; FreeQ[{a, b, d}, x] +Int[1/(a_. + b_.*ArcSin[c_ + d_.*x_^2])^2, x_Symbol] := -Sqrt[-2*c*d*x^2 - d^2*x^4]/(2*b*d*x*(a + b*ArcSin[c + d*x^2])) - x*(Cos[a/(2*b)] + c*Sin[a/(2*b)])* CosIntegral[(c/(2*b))*(a + b*ArcSin[c + d*x^2])]/ (4* b^2*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2])) + x*(Cos[a/(2*b)] - c*Sin[a/(2*b)])* SinIntegral[(c/(2*b))*(a + b*ArcSin[c + d*x^2])]/ (4* b^2*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2])) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] +Int[1/(a_. + b_.*ArcCos[1 + d_.*x_^2])^2, x_Symbol] := Sqrt[-2*d*x^2 - d^2*x^4]/(2*b*d*x*(a + b*ArcCos[1 + d*x^2])) + x*Sin[a/(2*b)]* CosIntegral[(a + b*ArcCos[1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2* Sqrt[(-d)*x^2]) - x*Cos[a/(2*b)]* SinIntegral[(a + b*ArcCos[1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2* Sqrt[(-d)*x^2]) /; FreeQ[{a, b, d}, x] +Int[1/(a_. + b_.*ArcCos[-1 + d_.*x_^2])^2, x_Symbol] := Sqrt[2*d*x^2 - d^2*x^4]/(2*b*d*x*(a + b*ArcCos[-1 + d*x^2])) - x*Cos[a/(2*b)]* CosIntegral[(a + b*ArcCos[-1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2* Sqrt[d*x^2]) - x*Sin[a/(2*b)]* SinIntegral[(a + b*ArcCos[-1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2* Sqrt[d*x^2]) /; FreeQ[{a, b, d}, x] +Int[(a_. + b_.*ArcSin[c_ + d_.*x_^2])^n_, x_Symbol] := x*(a + b*ArcSin[c + d*x^2])^(n + 2)/(4*b^2*(n + 1)*(n + 2)) + Sqrt[-2*c*d*x^2 - d^2*x^4]*(a + b*ArcSin[c + d*x^2])^(n + 1)/(2*b*d*(n + 1)*x) - 1/(4*b^2*(n + 1)*(n + 2))* Int[(a + b*ArcSin[c + d*x^2])^(n + 2), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && LtQ[n, -1] && NeQ[n, -2] +Int[(a_. + b_.*ArcCos[c_ + d_.*x_^2])^n_, x_Symbol] := x*(a + b*ArcCos[c + d*x^2])^(n + 2)/(4*b^2*(n + 1)*(n + 2)) - Sqrt[-2*c*d*x^2 - d^2*x^4]*(a + b*ArcCos[c + d*x^2])^(n + 1)/(2*b*d*(n + 1)*x) - 1/(4*b^2*(n + 1)*(n + 2))* Int[(a + b*ArcCos[c + d*x^2])^(n + 2), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && LtQ[n, -1] && NeQ[n, -2] +Int[ArcSin[a_.*x_^p_]^n_./x_, x_Symbol] := 1/p*Subst[Int[x^n*Cot[x], x], x, ArcSin[a*x^p]] /; FreeQ[{a, p}, x] && IGtQ[n, 0] +Int[ArcCos[a_.*x_^p_]^n_./x_, x_Symbol] := -1/p*Subst[Int[x^n*Tan[x], x], x, ArcCos[a*x^p]] /; FreeQ[{a, p}, x] && IGtQ[n, 0] +Int[u_.*ArcSin[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcCsc[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[u_.*ArcCos[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcSec[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[ArcSin[Sqrt[1 + b_.*x_^2]]^n_./Sqrt[1 + b_.*x_^2], x_Symbol] := Sqrt[-b*x^2]/(b*x)* Subst[Int[ArcSin[x]^n/Sqrt[1 - x^2], x], x, Sqrt[1 + b*x^2]] /; FreeQ[{b, n}, x] +Int[ArcCos[Sqrt[1 + b_.*x_^2]]^n_./Sqrt[1 + b_.*x_^2], x_Symbol] := Sqrt[-b*x^2]/(b*x)* Subst[Int[ArcCos[x]^n/Sqrt[1 - x^2], x], x, Sqrt[1 + b*x^2]] /; FreeQ[{b, n}, x] +Int[u_.*f_^(c_.*ArcSin[a_. + b_.*x_]^n_.), x_Symbol] := 1/b*Subst[ Int[ReplaceAll[u, x -> -a/b + Sin[x]/b]*f^(c*x^n)*Cos[x], x], x, ArcSin[a + b*x]] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0] +Int[u_.*f_^(c_.*ArcCos[a_. + b_.*x_]^n_.), x_Symbol] := -1/b*Subst[ Int[ReplaceAll[u, x -> -a/b + Cos[x]/b]*f^(c*x^n)*Sin[x], x], x, ArcCos[a + b*x]] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0] +Int[ArcSin[a_.*x_^2 + b_.*Sqrt[c_ + d_.*x_^2]], x_Symbol] := x*ArcSin[a*x^2 + b*Sqrt[c + d*x^2]] - x*Sqrt[b^2*d + a^2*x^2 + 2*a*b*Sqrt[c + d*x^2]]/ Sqrt[(-x^2)*(b^2*d + a^2*x^2 + 2*a*b*Sqrt[c + d*x^2])]* Int[ x*(b*d + 2*a*Sqrt[c + d*x^2])/(Sqrt[c + d*x^2]* Sqrt[b^2*d + a^2*x^2 + 2*a*b*Sqrt[c + d*x^2]]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2*c, 1] +Int[ArcCos[a_.*x_^2 + b_.*Sqrt[c_ + d_.*x_^2]], x_Symbol] := x*ArcCos[a*x^2 + b*Sqrt[c + d*x^2]] + x*Sqrt[b^2*d + a^2*x^2 + 2*a*b*Sqrt[c + d*x^2]]/ Sqrt[(-x^2)*(b^2*d + a^2*x^2 + 2*a*b*Sqrt[c + d*x^2])]* Int[ x*(b*d + 2*a*Sqrt[c + d*x^2])/(Sqrt[c + d*x^2]* Sqrt[b^2*d + a^2*x^2 + 2*a*b*Sqrt[c + d*x^2]]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2*c, 1] +Int[ArcSin[u_], x_Symbol] := x*ArcSin[u] - Int[SimplifyIntegrand[x*D[u, x]/Sqrt[1 - u^2], x], x] /; InverseFunctionFreeQ[u, x] && Not[FunctionOfExponentialQ[u, x]] +Int[ArcCos[u_], x_Symbol] := x*ArcCos[u] + Int[SimplifyIntegrand[x*D[u, x]/Sqrt[1 - u^2], x], x] /; InverseFunctionFreeQ[u, x] && Not[FunctionOfExponentialQ[u, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcSin[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcSin[u])/(d*(m + 1)) - b/(d*(m + 1))* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/Sqrt[1 - u^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && Not[FunctionOfExponentialQ[u, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcCos[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcCos[u])/(d*(m + 1)) + b/(d*(m + 1))* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/Sqrt[1 - u^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && Not[FunctionOfExponentialQ[u, x]] +Int[v_*(a_. + b_.*ArcSin[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcSin[u]), w, x] - b*Int[SimplifyIntegrand[w*D[u, x]/Sqrt[1 - u^2], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] +Int[v_*(a_. + b_.*ArcCos[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcCos[u]), w, x] + b*Int[SimplifyIntegrand[w*D[u, x]/Sqrt[1 - u^2], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] diff --git a/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.1 (a+b arctan(c x^n))^p.m b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.1 (a+b arctan(c x^n))^p.m new file mode 100755 index 0000000..c0b54a3 --- /dev/null +++ b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.1 (a+b arctan(c x^n))^p.m @@ -0,0 +1,13 @@ + +(* ::Subsection::Closed:: *) +(* 5.3.1 (a+b arctan(c x^n))^p *) +Int[(a_. + b_.*ArcTan[c_.*x_^n_.])^p_., x_Symbol] := x*(a + b*ArcTan[c*x^n])^p - b*c*n*p* Int[x^n*(a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n)), x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] && (EqQ[n, 1] || EqQ[p, 1]) +Int[(a_. + b_.*ArcCot[c_.*x_^n_.])^p_., x_Symbol] := x*(a + b*ArcCot[c*x^n])^p + b*c*n*p* Int[x^n*(a + b*ArcCot[c*x^n])^(p - 1)/(1 + c^2*x^(2*n)), x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] && (EqQ[n, 1] || EqQ[p, 1]) +Int[(a_. + b_.*ArcTan[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[(a + (I*b*Log[1 - I*c*x^n])/ 2 - (I*b*Log[1 + I*c*x^n])/2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] +Int[(a_. + b_.*ArcCot[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[(a + (I*b*Log[1 - I*x^(-n)/c])/ 2 - (I*b*Log[1 + I*x^(-n)/c])/2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] +Int[(a_. + b_.*ArcTan[c_.*x_^n_])^p_, x_Symbol] := Int[(a + b*ArcCot[x^(-n)/c])^p, x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0] +Int[(a_. + b_.*ArcCot[c_.*x_^n_])^p_, x_Symbol] := Int[(a + b*ArcTan[x^(-n)/c])^p, x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0] +Int[(a_. + b_.*ArcTan[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*ArcTan[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && FractionQ[n] +Int[(a_. + b_.*ArcCot[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*ArcCot[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && FractionQ[n] +Int[(a_. + b_.*ArcTan[c_.*x_^n_.])^p_, x_Symbol] := Unintegrable[(a + b*ArcTan[c*x^n])^p, x] /; FreeQ[{a, b, c, n, p}, x] +Int[(a_. + b_.*ArcCot[c_.*x_^n_.])^p_, x_Symbol] := Unintegrable[(a + b*ArcCot[c*x^n])^p, x] /; FreeQ[{a, b, c, n, p}, x] diff --git a/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.2 (d x)^m (a+b arctan(c x^n))^p.m b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.2 (d x)^m (a+b arctan(c x^n))^p.m new file mode 100755 index 0000000..20f06b8 --- /dev/null +++ b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.2 (d x)^m (a+b arctan(c x^n))^p.m @@ -0,0 +1,27 @@ + +(* ::Subsection::Closed:: *) +(* 5.3.2 (d x)^m (a+b arctan(c x^n))^p *) +Int[(a_. + b_.*ArcTan[c_.*x_])/x_, x_Symbol] := a*Log[x] + I*b/2*Int[Log[1 - I*c*x]/x, x] - I*b/2*Int[Log[1 + I*c*x]/x, x] /; FreeQ[{a, b, c}, x] +Int[(a_. + b_.*ArcCot[c_.*x_])/x_, x_Symbol] := a*Log[x] + I*b/2*Int[Log[1 - I/(c*x)]/x, x] - I*b/2*Int[Log[1 + I/(c*x)]/x, x] /; FreeQ[{a, b, c}, x] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_/x_, x_Symbol] := 2*(a + b*ArcTan[c*x])^p*ArcTanh[1 - 2/(1 + I*c*x)] - 2*b*c*p* Int[(a + b*ArcTan[c*x])^(p - 1)* ArcTanh[1 - 2/(1 + I*c*x)]/(1 + c^2*x^2), x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_/x_, x_Symbol] := 2*(a + b*ArcCot[c*x])^p*ArcCoth[1 - 2/(1 + I*c*x)] + 2*b*c*p* Int[(a + b*ArcCot[c*x])^(p - 1)* ArcCoth[1 - 2/(1 + I*c*x)]/(1 + c^2*x^2), x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] +Int[(a_. + b_.*ArcTan[c_.*x_^n_])^p_./x_, x_Symbol] := 1/n*Subst[Int[(a + b*ArcTan[c*x])^p/x, x], x, x^n] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcCot[c_.*x_^n_])^p_./x_, x_Symbol] := 1/n*Subst[Int[(a + b*ArcCot[c*x])^p/x, x], x, x^n] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] +Int[x_^m_.*(a_. + b_.*ArcTan[c_.*x_^n_.])^p_., x_Symbol] := x^(m + 1)*(a + b*ArcTan[c*x^n])^p/(m + 1) - b*c*n*p/(m + 1)* Int[x^(m + n)*(a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n)), x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || EqQ[n, 1] && IntegerQ[m]) && NeQ[m, -1] +Int[x_^m_.*(a_. + b_.*ArcCot[c_.*x_^n_.])^p_., x_Symbol] := x^(m + 1)*(a + b*ArcCot[c*x^n])^p/(m + 1) + b*c*n*p/(m + 1)* Int[x^(m + n)*(a + b*ArcCot[c*x^n])^(p - 1)/(1 + c^2*x^(2*n)), x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || EqQ[n, 1] && IntegerQ[m]) && NeQ[m, -1] +Int[x_^m_.*(a_. + b_.*ArcTan[c_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*ArcTan[c*x])^p, x], x, x^n] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[Simplify[(m + 1)/n]] +Int[x_^m_.*(a_. + b_.*ArcCot[c_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*ArcCot[c*x])^p, x], x, x^n] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[Simplify[(m + 1)/n]] +Int[x_^m_.*(a_. + b_.*ArcTan[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[ x^m*(a + (I*b*Log[1 - I*c*x^n])/2 - (I*b*Log[1 + I*c*x^n])/2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] && IntegerQ[m] +Int[x_^m_.*(a_. + b_.*ArcCot[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[ x^m*(a + (I*b*Log[1 - I*x^(-n)/c])/2 - (I*b*Log[1 + I*x^(-n)/c])/ 2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] && IntegerQ[m] +Int[x_^m_.*(a_. + b_.*ArcTan[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[m]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcTan[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] && FractionQ[m] +Int[x_^m_.*(a_. + b_.*ArcCot[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[m]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcCot[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] && FractionQ[m] +Int[x_^m_.*(a_. + b_.*ArcTan[c_.*x_^n_])^p_, x_Symbol] := Int[x^m*(a + b*ArcCot[x^(-n)/c])^p, x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0] +Int[x_^m_.*(a_. + b_.*ArcCot[c_.*x_^n_])^p_, x_Symbol] := Int[x^m*(a + b*ArcTan[x^(-n)/c])^p, x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0] +Int[x_^m_.*(a_. + b_.*ArcTan[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcTan[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && FractionQ[n] +Int[x_^m_.*(a_. + b_.*ArcCot[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcCot[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && FractionQ[n] +Int[(d_*x_)^m_*(a_. + b_.*ArcTan[c_.*x_^n_.]), x_Symbol] := (d*x)^(m + 1)*(a + b*ArcTan[c*x^n])/(d*(m + 1)) - b*c*n/(d^n*(m + 1))*Int[(d*x)^(m + n)/(1 + c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[n] && NeQ[m, -1] +Int[(d_*x_)^m_*(a_. + b_.*ArcCot[c_.*x_^n_.]), x_Symbol] := (d*x)^(m + 1)*(a + b*ArcCot[c*x^n])/(d*(m + 1)) + b*c*n/(d^n*(m + 1))*Int[(d*x)^(m + n)/(1 + c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[n] && NeQ[m, -1] +Int[(d_.*x_)^m_*(a_. + b_.*ArcTan[c_.*x_^n_])^p_., x_Symbol] := d^IntPart[m]*(d*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*ArcTan[c*x])^p, x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || RationalQ[m, n]) +Int[(d_.*x_)^m_*(a_. + b_.*ArcCot[c_.*x_^n_])^p_., x_Symbol] := d^IntPart[m]*(d*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*ArcCot[c*x])^p, x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || RationalQ[m, n]) +Int[(d_.*x_)^m_.*(a_. + b_.*ArcTan[c_.*x_^n_.])^p_., x_Symbol] := Unintegrable[(d*x)^m*(a + b*ArcTan[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcCot[c_.*x_^n_.])^p_., x_Symbol] := Unintegrable[(d*x)^m*(a + b*ArcCot[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] diff --git a/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.3 (d+e x)^m (a+b arctan(c x^n))^p.m b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.3 (d+e x)^m (a+b arctan(c x^n))^p.m new file mode 100755 index 0000000..24f2a87 --- /dev/null +++ b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.3 (d+e x)^m (a+b arctan(c x^n))^p.m @@ -0,0 +1,25 @@ + +(* ::Subsection::Closed:: *) +(* 5.3.3 (d+e x)^m (a+b arctan(c x^n))^p *) +Int[(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTan[c*x])^p*Log[2/(1 + e*x/d)]/e + b*c*p/e* Int[(a + b*ArcTan[c*x])^(p - 1)*Log[2/(1 + e*x/d)]/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCot[c*x])^p*Log[2/(1 + e*x/d)]/e - b*c*p/e* Int[(a + b*ArcCot[c*x])^(p - 1)*Log[2/(1 + e*x/d)]/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTan[c*x])*Log[2/(1 - I*c*x)]/e + b*c/e*Int[Log[2/(1 - I*c*x)]/(1 + c^2*x^2), x] + (a + b*ArcTan[c*x])* Log[2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/e - b*c/e* Int[Log[2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 + e^2, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCot[c*x])*Log[2/(1 - I*c*x)]/e - b*c/e*Int[Log[2/(1 - I*c*x)]/(1 + c^2*x^2), x] + (a + b*ArcCot[c*x])* Log[2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/e + b*c/e* Int[Log[2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 + e^2, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^2/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTan[c*x])^2*Log[2/(1 - I*c*x)]/e + I*b*(a + b*ArcTan[c*x])*PolyLog[2, 1 - 2/(1 - I*c*x)]/e - b^2*PolyLog[3, 1 - 2/(1 - I*c*x)]/(2*e) + (a + b*ArcTan[c*x])^2* Log[2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/e - I*b*(a + b*ArcTan[c*x])* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/e + b^2* PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/(2*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 + e^2, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^2/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCot[c*x])^2*Log[2/(1 - I*c*x)]/e - I*b*(a + b*ArcCot[c*x])*PolyLog[2, 1 - 2/(1 - I*c*x)]/e - b^2*PolyLog[3, 1 - 2/(1 - I*c*x)]/(2*e) + (a + b*ArcCot[c*x])^2* Log[2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/e + I*b*(a + b*ArcCot[c*x])* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/e + b^2* PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/(2*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 + e^2, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^3/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTan[c*x])^3*Log[2/(1 - I*c*x)]/e + 3*I*b*(a + b*ArcTan[c*x])^2*PolyLog[2, 1 - 2/(1 - I*c*x)]/(2*e) - 3*b^2*(a + b*ArcTan[c*x])*PolyLog[3, 1 - 2/(1 - I*c*x)]/(2*e) - 3*I*b^3*PolyLog[4, 1 - 2/(1 - I*c*x)]/(4*e) + (a + b*ArcTan[c*x])^3* Log[2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/e - 3*I*b*(a + b*ArcTan[c*x])^2* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/(2*e) + 3*b^2*(a + b*ArcTan[c*x])* PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/(2*e) + 3*I*b^3* PolyLog[4, 1 - 2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/(4*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 + e^2, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^3/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCot[c*x])^3*Log[2/(1 - I*c*x)]/e - 3*I*b*(a + b*ArcCot[c*x])^2*PolyLog[2, 1 - 2/(1 - I*c*x)]/(2*e) - 3*b^2*(a + b*ArcCot[c*x])*PolyLog[3, 1 - 2/(1 - I*c*x)]/(2*e) + 3*I*b^3*PolyLog[4, 1 - 2/(1 - I*c*x)]/(4*e) + (a + b*ArcCot[c*x])^3* Log[2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/e + 3*I*b*(a + b*ArcCot[c*x])^2* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/(2*e) + 3*b^2*(a + b*ArcCot[c*x])* PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/(2*e) - 3*I*b^3* PolyLog[4, 1 - 2*c*(d + e*x)/((c*d + I*e)*(1 - I*c*x))]/(4*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 + e^2, 0] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcTan[c*x])/(e*(q + 1)) - b*c/(e*(q + 1))*Int[(d + e*x)^(q + 1)/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcCot[c*x])/(e*(q + 1)) + b*c/(e*(q + 1))*Int[(d + e*x)^(q + 1)/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcTan[c_.*x_])^p_, x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcTan[c*x])^p/(e*(q + 1)) - b*c*p/(e*(q + 1))* Int[ExpandIntegrand[(a + b*ArcTan[c*x])^(p - 1), (d + e*x)^(q + 1)/(1 + c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q] && NeQ[q, -1] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcCot[c_.*x_])^p_, x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcCot[c*x])^p/(e*(q + 1)) + b*c*p/(e*(q + 1))* Int[ExpandIntegrand[(a + b*ArcCot[c*x])^(p - 1), (d + e*x)^(q + 1)/(1 + c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q] && NeQ[q, -1] +Int[(a_. + b_.*ArcTan[c_.*x_^n_])/(d_ + e_.*x_), x_Symbol] := Log[d + e*x]*(a + b*ArcTan[c*x^n])/e - b*c*n/e*Int[x^(n - 1)*Log[d + e*x]/(1 + c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[n] +Int[(a_. + b_.*ArcCot[c_.*x_^n_])/(d_ + e_.*x_), x_Symbol] := Log[d + e*x]*(a + b*ArcCot[c*x^n])/e + b*c*n/e*Int[x^(n - 1)*Log[d + e*x]/(1 + c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[n] +Int[(a_. + b_.*ArcTan[c_.*x_^n_])/(d_ + e_.*x_), x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*ArcTan[c*x^(k*n)])/(d + e*x^k), x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && FractionQ[n] +Int[(a_. + b_.*ArcCot[c_.*x_^n_])/(d_ + e_.*x_), x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*ArcCot[c*x^(k*n)])/(d + e*x^k), x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && FractionQ[n] +Int[(d_ + e_.*x_)^m_.*(a_. + b_.*ArcTan[c_.*x_^n_]), x_Symbol] := (d + e*x)^(m + 1)*(a + b*ArcTan[c*x^n])/(e*(m + 1)) - b*c*n/(e*(m + 1))* Int[x^(n - 1)*(d + e*x)^(m + 1)/(1 + c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[(d_ + e_.*x_)^m_.*(a_. + b_.*ArcCot[c_.*x_^n_]), x_Symbol] := (d + e*x)^(m + 1)*(a + b*ArcCot[c*x^n])/(e*(m + 1)) + b*c*n/(e*(m + 1))* Int[x^(n - 1)*(d + e*x)^(m + 1)/(1 + c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[(d_ + e_.*x_)^m_.*(a_. + b_.*ArcTan[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTan[c*x^n])^p, (d + e*x)^m, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 1] && IGtQ[m, 0] +Int[(d_ + e_.*x_)^m_.*(a_. + b_.*ArcCot[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCot[c*x^n])^p, (d + e*x)^m, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 1] && IGtQ[m, 0] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcTan[c_.*x_^n_])^p_., x_Symbol] := Unintegrable[(d + e*x)^m*(a + b*ArcTan[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcCot[c_.*x_^n_])^p_., x_Symbol] := Unintegrable[(d + e*x)^m*(a + b*ArcCot[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] diff --git a/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.4 u (a+b arctan(c x))^p.m b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.4 u (a+b arctan(c x))^p.m new file mode 100755 index 0000000..177e1c7 --- /dev/null +++ b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.4 u (a+b arctan(c x))^p.m @@ -0,0 +1,166 @@ + +(* ::Subsection::Closed:: *) +(* 5.3.4 u (a+b arctan(c x))^p *) +Int[(f_.*x_)^m_.*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := f/e*Int[(f*x)^(m - 1)*(a + b*ArcTan[c*x])^p, x] - d*f/e*Int[(f*x)^(m - 1)*(a + b*ArcTan[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] && GtQ[m, 0] +Int[(f_.*x_)^m_.*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := f/e*Int[(f*x)^(m - 1)*(a + b*ArcCot[c*x])^p, x] - d*f/e*Int[(f*x)^(m - 1)*(a + b*ArcCot[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] && GtQ[m, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_./(x_*(d_ + e_.*x_)), x_Symbol] := (a + b*ArcTan[c*x])^p*Log[2 - 2/(1 + e*x/d)]/d - b*c*p/d* Int[(a + b*ArcTan[c*x])^(p - 1)* Log[2 - 2/(1 + e*x/d)]/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_./(x_*(d_ + e_.*x_)), x_Symbol] := (a + b*ArcCot[c*x])^p*Log[2 - 2/(1 + e*x/d)]/d + b*c*p/d* Int[(a + b*ArcCot[c*x])^(p - 1)* Log[2 - 2/(1 + e*x/d)]/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcTan[c*x])^p, x] - e/(d*f)*Int[(f*x)^(m + 1)*(a + b*ArcTan[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcCot[c*x])^p, x] - e/(d*f)*Int[(f*x)^(m + 1)*(a + b*ArcCot[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_.*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcTan[c*x]), u] - b*c*Int[SimplifyIntegrand[u/(1 + c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[ 2*m] && (IGtQ[m, 0] && IGtQ[q, 0] || ILtQ[m + q + 1, 0] && LtQ[m*q, 0]) +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_.*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcCot[c*x]), u] + b*c*Int[SimplifyIntegrand[u/(1 + c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[ 2*m] && (IGtQ[m, 0] && IGtQ[q, 0] || ILtQ[m + q + 1, 0] && LtQ[m*q, 0]) +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_, x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcTan[c*x])^p, u] - b*c*p*Int[ ExpandIntegrand[(a + b*ArcTan[c*x])^(p - 1), u/(1 + c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && IGtQ[p, 1] && EqQ[c^2*d^2 + e^2, 0] && IntegersQ[m, q] && NeQ[m, -1] && NeQ[q, -1] && ILtQ[m + q + 1, 0] && LtQ[m*q, 0] +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_, x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcCot[c*x])^p, u] + b*c*p*Int[ ExpandIntegrand[(a + b*ArcCot[c*x])^(p - 1), u/(1 + c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && IGtQ[p, 1] && EqQ[c^2*d^2 + e^2, 0] && IntegersQ[m, q] && NeQ[m, -1] && NeQ[q, -1] && ILtQ[m + q + 1, 0] && LtQ[m*q, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_)^q_.*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTan[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_)^q_.*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCot[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m]) +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^q/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcTan[c*x])/(2*q + 1) + 2*d*q/(2*q + 1)*Int[(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[q, 0] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := b*(d + e*x^2)^q/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcCot[c*x])/(2*q + 1) + 2*d*q/(2*q + 1)*Int[(d + e*x^2)^(q - 1)*(a + b*ArcCot[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[q, 0] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_])^p_, x_Symbol] := -b*p*(d + e*x^2)^ q*(a + b*ArcTan[c*x])^(p - 1)/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcTan[c*x])^p/(2*q + 1) + 2*d*q/(2*q + 1)* Int[(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x])^p, x] + b^2*d*p*(p - 1)/(2*q*(2*q + 1))* Int[(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[q, 0] && GtQ[p, 1] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_])^p_, x_Symbol] := b*p*(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p - 1)/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcCot[c*x])^p/(2*q + 1) + 2*d*q/(2*q + 1)* Int[(d + e*x^2)^(q - 1)*(a + b*ArcCot[c*x])^p, x] + b^2*d*p*(p - 1)/(2*q*(2*q + 1))* Int[(d + e*x^2)^(q - 1)*(a + b*ArcCot[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[q, 0] && GtQ[p, 1] +(* Int[(a_.+b_.*ArcTan[c_.*x_])^p_./(d_+e_.*x_^2),x_Symbol] := 1/(c*d)*Subst[Int[(a+b*x)^p,x],x,ArcTan[c*x]] /; FreeQ[{a,b,c,d,e,p},x] && EqQ[e,c^2*d] *) +(* Int[(a_.+b_.*ArcCot[c_.*x_])^p_./(d_+e_.*x_^2),x_Symbol] := -1/(c*d)*Subst[Int[(a+b*x)^p,x],x,ArcCot[c*x]] /; FreeQ[{a,b,c,d,e,p},x] && EqQ[e,c^2*d] *) +Int[1/((d_ + e_.*x_^2)*(a_. + b_.*ArcTan[c_.*x_])), x_Symbol] := Log[RemoveContent[a + b*ArcTan[c*x], x]]/(b*c*d) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] +Int[1/((d_ + e_.*x_^2)*(a_. + b_.*ArcCot[c_.*x_])), x_Symbol] := -Log[RemoveContent[a + b*ArcCot[c*x], x]]/(b*c*d) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTan[c*x])^(p + 1)/(b*c*d*(p + 1)) /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && NeQ[p, -1] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := -(a + b*ArcCot[c*x])^(p + 1)/(b*c*d*(p + 1)) /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && NeQ[p, -1] +Int[(a_. + b_.*ArcTan[c_.*x_])/Sqrt[d_ + e_.*x_^2], x_Symbol] := -2*I*(a + b*ArcTan[c*x])* ArcTan[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]]/(c*Sqrt[d]) + I*b* PolyLog[2, -I*Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]]/(c*Sqrt[d]) - I*b*PolyLog[2, I*Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]]/(c*Sqrt[d]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])/Sqrt[d_ + e_.*x_^2], x_Symbol] := -2*I*(a + b*ArcCot[c*x])* ArcTan[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]]/(c*Sqrt[d]) - I*b* PolyLog[2, -I*Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]]/(c*Sqrt[d]) + I*b*PolyLog[2, I*Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]]/(c*Sqrt[d]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := 1/(c*Sqrt[d])*Subst[Int[(a + b*x)^p*Sec[x], x], x, ArcTan[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := -x*Sqrt[1 + 1/(c^2*x^2)]/Sqrt[d + e*x^2]* Subst[Int[(a + b*x)^p*Csc[x], x], x, ArcCot[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcTan[c*x])^p/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcCot[c*x])^p/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcTan[c*x])^p/(2*d*(d + e*x^2)) + (a + b*ArcTan[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)) - b*c*p/2*Int[x*(a + b*ArcTan[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcCot[c*x])^p/(2*d*(d + e*x^2)) - (a + b*ArcCot[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)) + b*c*p/2*Int[x*(a + b*ArcCot[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])/(d_ + e_.*x_^2)^(3/2), x_Symbol] := b/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcTan[c*x])/(d*Sqrt[d + e*x^2]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] +Int[(a_. + b_.*ArcCot[c_.*x_])/(d_ + e_.*x_^2)^(3/2), x_Symbol] := -b/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcCot[c*x])/(d*Sqrt[d + e*x^2]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := b*(d + e*x^2)^(q + 1)/(4*c*d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && NeQ[q, -3/2] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^(q + 1)/(4*c*d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && NeQ[q, -3/2] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_/(d_ + e_.*x_^2)^(3/2), x_Symbol] := b*p*(a + b*ArcTan[c*x])^(p - 1)/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcTan[c*x])^p/(d*Sqrt[d + e*x^2]) - b^2*p*(p - 1)* Int[(a + b*ArcTan[c*x])^(p - 2)/(d + e*x^2)^(3/2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 1] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_/(d_ + e_.*x_^2)^(3/2), x_Symbol] := -b*p*(a + b*ArcCot[c*x])^(p - 1)/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcCot[c*x])^p/(d*Sqrt[d + e*x^2]) - b^2*p*(p - 1)* Int[(a + b*ArcCot[c*x])^(p - 2)/(d + e*x^2)^(3/2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 1] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_, x_Symbol] := b*p*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^(p - 1)/(4*c* d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x] - b^2*p*(p - 1)/(4*(q + 1)^2)* Int[(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_, x_Symbol] := -b*p*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^(p - 1)/(4*c* d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^p/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^p, x] - b^2*p*(p - 1)/(4*(q + 1)^2)* Int[(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_, x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^(p + 1)/(b*c*d*(p + 1)) - 2*c*(q + 1)/(b*(p + 1))* Int[x*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && LtQ[p, -1] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_, x_Symbol] := -(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^(p + 1)/(b*c* d*(p + 1)) + 2*c*(q + 1)/(b*(p + 1))* Int[x*(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && LtQ[p, -1] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := d^q/c* Subst[Int[(a + b*x)^p/Cos[x]^(2*(q + 1)), x], x, ArcTan[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && ILtQ[2*(q + 1), 0] && (IntegerQ[q] || GtQ[d, 0]) +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := d^(q + 1/2)*Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]* Int[(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && ILtQ[2*(q + 1), 0] && Not[IntegerQ[q] || GtQ[d, 0]] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := -d^q/c* Subst[Int[(a + b*x)^p/Sin[x]^(2*(q + 1)), x], x, ArcCot[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && ILtQ[2*(q + 1), 0] && IntegerQ[q] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := -d^(q + 1/2)*x*Sqrt[(1 + c^2*x^2)/(c^2*x^2)]/Sqrt[d + e*x^2]* Subst[Int[(a + b*x)^p/Sin[x]^(2*(q + 1)), x], x, ArcCot[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && ILtQ[2*(q + 1), 0] && Not[IntegerQ[q]] +Int[ArcTan[c_.*x_]/(d_. + e_.*x_^2), x_Symbol] := I/2*Int[Log[1 - I*c*x]/(d + e*x^2), x] - I/2*Int[Log[1 + I*c*x]/(d + e*x^2), x] /; FreeQ[{c, d, e}, x] +Int[ArcCot[c_.*x_]/(d_. + e_.*x_^2), x_Symbol] := I/2*Int[Log[1 - I/(c*x)]/(d + e*x^2), x] - I/2*Int[Log[1 + I/(c*x)]/(d + e*x^2), x] /; FreeQ[{c, d, e}, x] +Int[(a_ + b_.*ArcTan[c_.*x_])/(d_. + e_.*x_^2), x_Symbol] := a*Int[1/(d + e*x^2), x] + b*Int[ArcTan[c*x]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] +Int[(a_ + b_.*ArcCot[c_.*x_])/(d_. + e_.*x_^2), x_Symbol] := a*Int[1/(d + e*x^2), x] + b*Int[ArcCot[c*x]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] +Int[(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^q, x]}, Dist[a + b*ArcTan[c*x], u, x] - b*c*Int[u/(1 + c^2*x^2), x]] /; FreeQ[{a, b, c, d, e}, x] && (IntegerQ[q] || ILtQ[q + 1/2, 0]) +Int[(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^q, x]}, Dist[a + b*ArcCot[c*x], u, x] + b*c*Int[u/(1 + c^2*x^2), x]] /; FreeQ[{a, b, c, d, e}, x] && (IntegerQ[q] || ILtQ[q + 1/2, 0]) +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTan[c*x])^p, (d + e*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[q] && IGtQ[p, 0] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCot[c*x])^p, (d + e*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[q] && IGtQ[p, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := f^2/e*Int[(f*x)^(m - 2)*(a + b*ArcTan[c*x])^p, x] - d*f^2/e*Int[(f*x)^(m - 2)*(a + b*ArcTan[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := f^2/e*Int[(f*x)^(m - 2)*(a + b*ArcCot[c*x])^p, x] - d*f^2/e*Int[(f*x)^(m - 2)*(a + b*ArcCot[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcTan[c*x])^p, x] - e/(d*f^2)* Int[(f*x)^(m + 2)*(a + b*ArcTan[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcCot[c*x])^p, x] - e/(d*f^2)* Int[(f*x)^(m + 2)*(a + b*ArcCot[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1] +Int[x_*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := -I*(a + b*ArcTan[c*x])^(p + 1)/(b*e*(p + 1)) - 1/(c*d)*Int[(a + b*ArcTan[c*x])^p/(I - c*x), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] +Int[x_*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := I*(a + b*ArcCot[c*x])^(p + 1)/(b*e*(p + 1)) - 1/(c*d)*Int[(a + b*ArcCot[c*x])^p/(I - c*x), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] +Int[x_*(a_. + b_.*ArcTan[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := x*(a + b*ArcTan[c*x])^(p + 1)/(b*c*d*(p + 1)) - 1/(b*c*d*(p + 1))*Int[(a + b*ArcTan[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && Not[IGtQ[p, 0]] && NeQ[p, -1] +Int[x_*(a_. + b_.*ArcCot[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := -x*(a + b*ArcCot[c*x])^(p + 1)/(b*c*d*(p + 1)) + 1/(b*c*d*(p + 1))*Int[(a + b*ArcCot[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && Not[IGtQ[p, 0]] && NeQ[p, -1] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_./(x_*(d_ + e_.*x_^2)), x_Symbol] := -I*(a + b*ArcTan[c*x])^(p + 1)/(b*d*(p + 1)) + I/d*Int[(a + b*ArcTan[c*x])^p/(x*(I + c*x)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_./(x_*(d_ + e_.*x_^2)), x_Symbol] := I*(a + b*ArcCot[c*x])^(p + 1)/(b*d*(p + 1)) + I/d*Int[(a + b*ArcCot[c*x])^p/(x*(I + c*x)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTan[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := (f*x)^m*(a + b*ArcTan[c*x])^(p + 1)/(b*c*d*(p + 1)) - f*m/(b*c*d*(p + 1))* Int[(f*x)^(m - 1)*(a + b*ArcTan[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && LtQ[p, -1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCot[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := -(f*x)^m*(a + b*ArcCot[c*x])^(p + 1)/(b*c*d*(p + 1)) + f*m/(b*c*d*(p + 1))* Int[(f*x)^(m - 1)*(a + b*ArcCot[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && LtQ[p, -1] +Int[x_^m_.*(a_. + b_.*ArcTan[c_.*x_])/(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTan[c*x]), x^m/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m] && Not[EqQ[m, 1] && NeQ[a, 0]] +Int[x_^m_.*(a_. + b_.*ArcCot[c_.*x_])/(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCot[c*x]), x^m/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m] && Not[EqQ[m, 1] && NeQ[a, 0]] +Int[x_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p/(2*e*(q + 1)) - b*p/(2*c*(q + 1))* Int[(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1] +Int[x_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^p/(2*e*(q + 1)) + b*p/(2*c*(q + 1))* Int[(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1] +Int[x_*(a_. + b_.*ArcTan[c_.*x_])^p_/(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcTan[c*x])^(p + 1)/(b*c*d*(p + 1)*(d + e*x^2)) - (1 - c^2*x^2)*(a + b*ArcTan[c*x])^(p + 2)/(b^2* e*(p + 1)*(p + 2)*(d + e*x^2)) - 4/(b^2*(p + 1)*(p + 2))* Int[x*(a + b*ArcTan[c*x])^(p + 2)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[p, -1] && NeQ[p, -2] +Int[x_*(a_. + b_.*ArcCot[c_.*x_])^p_/(d_ + e_.*x_^2)^2, x_Symbol] := -x*(a + b*ArcCot[c*x])^(p + 1)/(b*c*d*(p + 1)*(d + e*x^2)) - (1 - c^2*x^2)*(a + b*ArcCot[c*x])^(p + 2)/(b^2* e*(p + 1)*(p + 2)*(d + e*x^2)) - 4/(b^2*(p + 1)*(p + 2))* Int[x*(a + b*ArcCot[c*x])^(p + 2)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[p, -1] && NeQ[p, -2] +Int[x_^2*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^(q + 1)/(4*c^3*d*(q + 1)^2) + x*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])/(2*c^2*d*(q + 1)) - 1/(2*c^2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && NeQ[q, -5/2] +Int[x_^2*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := b*(d + e*x^2)^(q + 1)/(4*c^3*d*(q + 1)^2) + x*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])/(2*c^2*d*(q + 1)) - 1/(2*c^2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && NeQ[q, -5/2] +Int[x_^2*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := (a + b*ArcTan[c*x])^(p + 1)/(2*b*c^3*d^2*(p + 1)) - x*(a + b*ArcTan[c*x])^p/(2*c^2*d*(d + e*x^2)) + b*p/(2*c)*Int[x*(a + b*ArcTan[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0] +Int[x_^2*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := -(a + b*ArcCot[c*x])^(p + 1)/(2*b*c^3*d^2*(p + 1)) - x*(a + b*ArcCot[c*x])^p/(2*c^2*d*(d + e*x^2)) - b*p/(2*c)*Int[x*(a + b*ArcCot[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := b*(f*x)^m*(d + e*x^2)^(q + 1)/(c*d*m^2) - f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])/(c^2*d* m) + f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := -b*(f*x)^m*(d + e*x^2)^(q + 1)/(c*d*m^2) - f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])/(c^2*d* m) + f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_, x_Symbol] := b*p*(f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^(p - 1)/(c*d*m^2) - f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^ p/(c^2*d*m) - b^2*p*(p - 1)/m^2* Int[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 2), x] + f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] && GtQ[p, 1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_, x_Symbol] := -b*p*(f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^(p - 1)/(c*d*m^2) - f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^ p/(c^2*d*m) - b^2*p*(p - 1)/m^2* Int[(f*x)^m*(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p - 2), x] + f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] && GtQ[p, 1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_])^p_, x_Symbol] := (f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^(p + 1)/(b*c* d*(p + 1)) - f*m/(b*c*(p + 1))* Int[(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_])^p_, x_Symbol] := -(f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^(p + 1)/(b*c* d*(p + 1)) + f*m/(b*c*(p + 1))* Int[(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^ p/(d*f*(m + 1)) - b*c*p/(f*(m + 1))* Int[(f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^ p/(d*f*(m + 1)) + b*c*p/(f*(m + 1))* Int[(f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1] +Int[(f_.*x_)^m_*Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := (f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcTan[c*x])/(f*(m + 2)) - b*c*d/(f*(m + 2))*Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x] + d/(m + 2)*Int[(f*x)^m*(a + b*ArcTan[c*x])/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && NeQ[m, -2] +Int[(f_.*x_)^m_*Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := (f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcCot[c*x])/(f*(m + 2)) + b*c*d/(f*(m + 2))*Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x] + d/(m + 2)*Int[(f*x)^m*(a + b*ArcCot[c*x])/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && NeQ[m, -2] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && IGtQ[q, 1] && (EqQ[p, 1] || IntegerQ[m]) +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcCot[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && IGtQ[q, 1] && (EqQ[p, 1] || IntegerQ[m]) +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := d*Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x])^p, x] + c^2*d/f^2* Int[(f*x)^(m + 2)*(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[q, 0] && IGtQ[p, 0] && (RationalQ[m] || EqQ[p, 1] && IntegerQ[q]) +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := d*Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcCot[c*x])^p, x] + c^2*d/f^2* Int[(f*x)^(m + 2)*(d + e*x^2)^(q - 1)*(a + b*ArcCot[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[q, 0] && IGtQ[p, 0] && (RationalQ[m] || EqQ[p, 1] && IntegerQ[q]) +Int[(f_.*x_)^m_*(a_. + b_.*ArcTan[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcTan[c*x])^p/(c^2*d*m) - b*f*p/(c*m)* Int[(f*x)^(m - 1)*(a + b*ArcTan[c*x])^(p - 1)/Sqrt[d + e*x^2], x] - f^2*(m - 1)/(c^2*m)* Int[(f*x)^(m - 2)*(a + b*ArcTan[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && GtQ[m, 1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCot[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcCot[c*x])^p/(c^2*d*m) + b*f*p/(c*m)* Int[(f*x)^(m - 1)*(a + b*ArcCot[c*x])^(p - 1)/Sqrt[d + e*x^2], x] - f^2*(m - 1)/(c^2*m)* Int[(f*x)^(m - 2)*(a + b*ArcCot[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && GtQ[m, 1] +Int[(a_. + b_.*ArcTan[c_.*x_])/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -2/Sqrt[d]*(a + b*ArcTan[c*x])* ArcTanh[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]] + I*b/Sqrt[d]*PolyLog[2, -Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]] - I*b/Sqrt[d]*PolyLog[2, Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -2/Sqrt[d]*(a + b*ArcCot[c*x])* ArcTanh[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]] - I*b/Sqrt[d]*PolyLog[2, -Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]] + I*b/Sqrt[d]*PolyLog[2, Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := 1/Sqrt[d]*Subst[Int[(a + b*x)^p*Csc[x], x], x, ArcTan[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -c*x*Sqrt[1 + 1/(c^2*x^2)]/Sqrt[d + e*x^2]* Subst[Int[(a + b*x)^p*Sec[x], x], x, ArcCot[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_./(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcTan[c*x])^p/(x*Sqrt[1 + c^2*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_./(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcCot[c*x])^p/(x*Sqrt[1 + c^2*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_./(x_^2*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -Sqrt[d + e*x^2]*(a + b*ArcTan[c*x])^p/(d*x) + b*c*p*Int[(a + b*ArcTan[c*x])^(p - 1)/(x*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_./(x_^2*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -Sqrt[d + e*x^2]*(a + b*ArcCot[c*x])^p/(d*x) - b*c*p*Int[(a + b*ArcCot[c*x])^(p - 1)/(x*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTan[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := (f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcTan[c*x])^p/(d*f*(m + 1)) - b*c*p/(f*(m + 1))* Int[(f*x)^(m + 1)*(a + b*ArcTan[c*x])^(p - 1)/Sqrt[d + e*x^2], x] - c^2*(m + 2)/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(a + b*ArcTan[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && LtQ[m, -1] && NeQ[m, -2] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCot[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := (f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcCot[c*x])^p/(d*f*(m + 1)) + b*c*p/(f*(m + 1))* Int[(f*x)^(m + 1)*(a + b*ArcCot[c*x])^(p - 1)/Sqrt[d + e*x^2], x] - c^2*(m + 2)/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(a + b*ArcCot[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && LtQ[m, -1] && NeQ[m, -2] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := 1/e*Int[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x] - d/e*Int[x^(m - 2)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ[m, 1] && NeQ[p, -1] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := 1/e*Int[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^p, x] - d/e*Int[x^(m - 2)*(d + e*x^2)^q*(a + b*ArcCot[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ[m, 1] && NeQ[p, -1] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := 1/d*Int[x^m*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x] - e/d*Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILtQ[m, 0] && NeQ[p, -1] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := 1/d*Int[x^m*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^p, x] - e/d*Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcCot[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILtQ[m, 0] && NeQ[p, -1] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := x^m*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^(p + 1)/(b*c* d*(p + 1)) - m/(b*c*(p + 1))* Int[x^(m - 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p + 1), x] - c*(m + 2*q + 2)/(b*(p + 1))* Int[x^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[e, c^2*d] && IntegerQ[m] && LtQ[q, -1] && LtQ[p, -1] && NeQ[m + 2*q + 2, 0] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := -x^m*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^(p + 1)/(b*c* d*(p + 1)) + m/(b*c*(p + 1))* Int[x^(m - 1)*(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p + 1), x] + c*(m + 2*q + 2)/(b*(p + 1))* Int[x^(m + 1)*(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[e, c^2*d] && IntegerQ[m] && LtQ[q, -1] && LtQ[p, -1] && NeQ[m + 2*q + 2, 0] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := d^q/c^(m + 1)* Subst[Int[(a + b*x)^p*Sin[x]^m/Cos[x]^(m + 2*(q + 1)), x], x, ArcTan[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0]) +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := d^(q + 1/2)*Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]* Int[x^m*(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && Not[IntegerQ[q] || GtQ[d, 0]] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := -d^q/c^(m + 1)* Subst[Int[(a + b*x)^p*Cos[x]^m/Sin[x]^(m + 2*(q + 1)), x], x, ArcCot[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && IntegerQ[q] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := -d^(q + 1/2)*x*Sqrt[(1 + c^2*x^2)/(c^2*x^2)]/(c^m*Sqrt[d + e*x^2])* Subst[Int[(a + b*x)^p*Cos[x]^m/Sin[x]^(m + 2*(q + 1)), x], x, ArcCot[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && Not[IntegerQ[q]] +Int[x_*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])/(2*e*(q + 1)) - b*c/(2*e*(q + 1))*Int[(d + e*x^2)^(q + 1)/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[x_*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])/(2*e*(q + 1)) + b*c/(2*e*(q + 1))*Int[(d + e*x^2)^(q + 1)/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[(f_.*x_)^m_.*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Dist[a + b*ArcTan[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/(1 + c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ( IGtQ[q, 0] && Not[ILtQ[(m - 1)/2, 0] && GtQ[m + 2*q + 3, 0]] || IGtQ[(m + 1)/2, 0] && Not[ILtQ[q, 0] && GtQ[m + 2*q + 3, 0]] || ILtQ[(m + 2*q + 1)/2, 0] && Not[ILtQ[(m - 1)/2, 0]] ) +Int[(f_.*x_)^m_.*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Dist[a + b*ArcCot[c*x], u, x] + b*c*Int[SimplifyIntegrand[u/(1 + c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ( IGtQ[q, 0] && Not[ILtQ[(m - 1)/2, 0] && GtQ[m + 2*q + 3, 0]] || IGtQ[(m + 1)/2, 0] && Not[ILtQ[q, 0] && GtQ[m + 2*q + 3, 0]] || ILtQ[(m + 2*q + 1)/2, 0] && Not[ILtQ[(m - 1)/2, 0]] ) +Int[x_*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcTan[c*x])^p/(1 - Rt[-e/d, 2]*x)^2, x] - 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcTan[c*x])^p/(1 + Rt[-e/d, 2]*x)^2, x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] +Int[x_*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcCot[c*x])^p/(1 - Rt[-e/d, 2]*x)^2, x] - 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcCot[c*x])^p/(1 + Rt[-e/d, 2]*x)^2, x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*ArcTan[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && (EqQ[p, 1] && GtQ[q, 0] || IntegerQ[m]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*ArcCot[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && (EqQ[p, 1] && GtQ[q, 0] || IntegerQ[m]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_ + b_.*ArcTan[c_.*x_]), x_Symbol] := a*Int[(f*x)^m*(d + e*x^2)^q, x] + b*Int[(f*x)^m*(d + e*x^2)^q*ArcTan[c*x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_ + b_.*ArcCot[c_.*x_]), x_Symbol] := a*Int[(f*x)^m*(d + e*x^2)^q, x] + b*Int[(f*x)^m*(d + e*x^2)^q*ArcCot[c*x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTan[c*x])^p/(d + e*x^2), (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && IGtQ[m, 0] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCot[c*x])^p/(d + e*x^2), (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && IGtQ[m, 0] +Int[ArcTanh[u_]*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[Log[1 + u]*(a + b*ArcTan[c*x])^p/(d + e*x^2), x] - 1/2*Int[Log[1 - u]*(a + b*ArcTan[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*I/(I + c*x))^2, 0] +Int[ArcCoth[u_]*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[ Log[SimplifyIntegrand[1 + 1/u, x]]*(a + b*ArcCot[c*x])^ p/(d + e*x^2), x] - 1/2* Int[Log[SimplifyIntegrand[1 - 1/u, x]]*(a + b*ArcCot[c*x])^ p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*I/(I + c*x))^2, 0] +Int[ArcTanh[u_]*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[Log[1 + u]*(a + b*ArcTan[c*x])^p/(d + e*x^2), x] - 1/2*Int[Log[1 - u]*(a + b*ArcTan[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*I/(I - c*x))^2, 0] +Int[ArcCoth[u_]*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[ Log[SimplifyIntegrand[1 + 1/u, x]]*(a + b*ArcCot[c*x])^ p/(d + e*x^2), x] - 1/2* Int[Log[SimplifyIntegrand[1 - 1/u, x]]*(a + b*ArcCot[c*x])^ p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*I/(I - c*x))^2, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_.*Log[f_ + g_.*x_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTan[c*x])^(p + 1)*Log[f + g*x]/(b*c*d*(p + 1)) - g/(b*c*d*(p + 1))*Int[(a + b*ArcTan[c*x])^(p + 1)/(f + g*x), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[c^2*f^2 + g^2, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_.*Log[f_ + g_.*x_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCot[c*x])^(p + 1)*Log[f + g*x]/(b*c*d*(p + 1)) - g/(b*c*d*(p + 1))*Int[(a + b*ArcCot[c*x])^(p + 1)/(f + g*x), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[c^2*f^2 + g^2, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := I*(a + b*ArcTan[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) - b*p*I/2* Int[(a + b*ArcTan[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[(1 - u)^2 - (1 - 2*I/(I + c*x))^2, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := I*(a + b*ArcCot[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) + b*p*I/2* Int[(a + b*ArcCot[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[(1 - u)^2 - (1 - 2*I/(I + c*x))^2, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := -I*(a + b*ArcTan[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) + b*p*I/2* Int[(a + b*ArcTan[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[(1 - u)^2 - (1 - 2*I/(I - c*x))^2, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := -I*(a + b*ArcCot[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) - b*p*I/2* Int[(a + b*ArcCot[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[(1 - u)^2 - (1 - 2*I/(I - c*x))^2, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := -I*(a + b*ArcTan[c*x])^p*PolyLog[k + 1, u]/(2*c*d) + b*p*I/2* Int[(a + b*ArcTan[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*I/(I + c*x))^2, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := -I*(a + b*ArcCot[c*x])^p*PolyLog[k + 1, u]/(2*c*d) - b*p*I/2* Int[(a + b*ArcCot[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*I/(I + c*x))^2, 0] +Int[(a_. + b_.*ArcTan[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := I*(a + b*ArcTan[c*x])^p*PolyLog[k + 1, u]/(2*c*d) - b*p*I/2* Int[(a + b*ArcTan[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*I/(I - c*x))^2, 0] +Int[(a_. + b_.*ArcCot[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := I*(a + b*ArcCot[c*x])^p*PolyLog[k + 1, u]/(2*c*d) + b*p*I/2* Int[(a + b*ArcCot[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*I/(I - c*x))^2, 0] +Int[1/((d_ + e_.*x_^2)*(a_. + b_.*ArcCot[c_.*x_])*(a_. + b_.*ArcTan[c_.*x_])), x_Symbol] := (-Log[a + b*ArcCot[c*x]] + Log[a + b*ArcTan[c*x]])/(b*c* d*(2*a + b*ArcCot[c*x] + b*ArcTan[c*x])) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] +Int[(a_. + b_.*ArcCot[c_.*x_])^ q_.*(a_. + b_.*ArcTan[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := -(a + b*ArcCot[c*x])^(q + 1)*(a + b*ArcTan[c*x])^p/(b*c*d*(q + 1)) + p/(q + 1)* Int[(a + b*ArcCot[c*x])^(q + 1)*(a + b*ArcTan[c*x])^(p - 1)/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && IGeQ[q, p] +Int[(a_. + b_.*ArcTan[c_.*x_])^ q_.*(a_. + b_.*ArcCot[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTan[c*x])^(q + 1)*(a + b*ArcCot[c*x])^ p/(b*c*d*(q + 1)) + p/(q + 1)* Int[(a + b*ArcTan[c*x])^(q + 1)*(a + b*ArcCot[c*x])^(p - 1)/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && IGeQ[q, p] +Int[ArcTan[a_.*x_]/(c_ + d_.*x_^n_.), x_Symbol] := I/2*Int[Log[1 - I*a*x]/(c + d*x^n), x] - I/2*Int[Log[1 + I*a*x]/(c + d*x^n), x] /; FreeQ[{a, c, d}, x] && IntegerQ[n] && Not[EqQ[n, 2] && EqQ[d, a^2*c]] +Int[ArcCot[a_.*x_]/(c_ + d_.*x_^n_.), x_Symbol] := I/2*Int[Log[1 - I/(a*x)]/(c + d*x^n), x] - I/2*Int[Log[1 + I/(a*x)]/(c + d*x^n), x] /; FreeQ[{a, c, d}, x] && IntegerQ[n] && Not[EqQ[n, 2] && EqQ[d, a^2*c]] +Int[Log[d_.*x_^m_.]*ArcTan[c_.*x_^n_.]/x_, x_Symbol] := I/2*Int[Log[d*x^m]*Log[1 - I*c*x^n]/x, x] - I/2*Int[Log[d*x^m]*Log[1 + I*c*x^n]/x, x] /; FreeQ[{c, d, m, n}, x] +Int[Log[d_.*x_^m_.]*ArcCot[c_.*x_^n_.]/x_, x_Symbol] := I/2*Int[Log[d*x^m]*Log[1 - I/(c*x^n)]/x, x] - I/2*Int[Log[d*x^m]*Log[1 + I/(c*x^n)]/x, x] /; FreeQ[{c, d, m, n}, x] +Int[Log[d_.*x_^m_.]*(a_ + b_.*ArcTan[c_.*x_^n_.])/x_, x_Symbol] := a*Int[Log[d*x^m]/x, x] + b*Int[(Log[d*x^m]*ArcTan[c*x^n])/x, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[Log[d_.*x_^m_.]*(a_ + b_.*ArcCot[c_.*x_^n_.])/x_, x_Symbol] := a*Int[Log[d*x^m]/x, x] + b*Int[(Log[d*x^m]*ArcCot[c*x^n])/x, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := x*(d + e*Log[f + g*x^2])*(a + b*ArcTan[c*x]) - 2*e*g*Int[x^2*(a + b*ArcTan[c*x])/(f + g*x^2), x] - b*c*Int[x*(d + e*Log[f + g*x^2])/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := x*(d + e*Log[f + g*x^2])*(a + b*ArcCot[c*x]) - 2*e*g*Int[x^2*(a + b*ArcCot[c*x])/(f + g*x^2), x] + b*c*Int[x*(d + e*Log[f + g*x^2])/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[Log[f_. + g_.*x_^2]*ArcTan[c_.*x_]/x_, x_Symbol] := (Log[f + g*x^2] - Log[1 - I*c*x] - Log[1 + I*c*x])* Int[ArcTan[c*x]/x, x] + I/2*Int[Log[1 - I*c*x]^2/x, x] - I/2*Int[Log[1 + I*c*x]^2/x, x] /; FreeQ[{c, f, g}, x] && EqQ[g, c^2*f] +Int[Log[f_. + g_.*x_^2]*ArcCot[c_.*x_]/x_, x_Symbol] := (Log[f + g*x^2] - Log[c^2*x^2] - Log[1 - I/(c*x)] - Log[1 + I/(c*x)])*Int[ArcCot[c*x]/x, x] + Int[Log[c^2*x^2]*ArcCot[c*x]/x, x] + I/2*Int[Log[1 - I/(c*x)]^2/x, x] - I/2*Int[Log[1 + I/(c*x)]^2/x, x] /; FreeQ[{c, f, g}, x] && EqQ[g, c^2*f] +Int[Log[f_. + g_.*x_^2]*(a_ + b_.*ArcTan[c_.*x_])/x_, x_Symbol] := a*Int[Log[f + g*x^2]/x, x] + b*Int[Log[f + g*x^2]*ArcTan[c*x]/x, x] /; FreeQ[{a, b, c, f, g}, x] +Int[Log[f_. + g_.*x_^2]*(a_ + b_.*ArcCot[c_.*x_])/x_, x_Symbol] := a*Int[Log[f + g*x^2]/x, x] + b*Int[Log[f + g*x^2]*ArcCot[c*x]/x, x] /; FreeQ[{a, b, c, f, g}, x] +Int[(d_ + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTan[c_.*x_])/x_, x_Symbol] := d*Int[(a + b*ArcTan[c*x])/x, x] + e*Int[Log[f + g*x^2]*(a + b*ArcTan[c*x])/x, x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[(d_ + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCot[c_.*x_])/x_, x_Symbol] := d*Int[(a + b*ArcCot[c*x])/x, x] + e*Int[Log[f + g*x^2]*(a + b*ArcCot[c*x])/x, x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := x^(m + 1)*(d + e*Log[f + g*x^2])*(a + b*ArcTan[c*x])/(m + 1) - 2*e*g/(m + 1)*Int[x^(m + 2)*(a + b*ArcTan[c*x])/(f + g*x^2), x] - b*c/(m + 1)* Int[x^(m + 1)*(d + e*Log[f + g*x^2])/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := x^(m + 1)*(d + e*Log[f + g*x^2])*(a + b*ArcCot[c*x])/(m + 1) - 2*e*g/(m + 1)*Int[x^(m + 2)*(a + b*ArcCot[c*x])/(f + g*x^2), x] + b*c/(m + 1)* Int[x^(m + 1)*(d + e*Log[f + g*x^2])/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Dist[a + b*ArcTan[c*x], u, x] - b*c*Int[ExpandIntegrand[u/(1 + c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Dist[a + b*ArcCot[c*x], u, x] + b*c*Int[ExpandIntegrand[u/(1 + c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTan[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(a + b*ArcTan[c*x]), x]}, Dist[d + e*Log[f + g*x^2], u, x] - 2*e*g*Int[ExpandIntegrand[x*u/(f + g*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[m] && NeQ[m, -1] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCot[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(a + b*ArcCot[c*x]), x]}, Dist[d + e*Log[f + g*x^2], u, x] - 2*e*g*Int[ExpandIntegrand[x*u/(f + g*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[m] && NeQ[m, -1] +Int[x_*(d_. + e_.*Log[f_ + g_.*x_^2])*(a_. + b_.*ArcTan[c_.*x_])^2, x_Symbol] := (f + g*x^2)*(d + e*Log[f + g*x^2])*(a + b*ArcTan[c*x])^2/(2*g) - e*x^2*(a + b*ArcTan[c*x])^2/2 - b/c*Int[(d + e*Log[f + g*x^2])*(a + b*ArcTan[c*x]), x] + b*c*e*Int[x^2*(a + b*ArcTan[c*x])/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[g, c^2*f] +Int[x_*(d_. + e_.*Log[f_ + g_.*x_^2])*(a_. + b_.*ArcCot[c_.*x_])^2, x_Symbol] := (f + g*x^2)*(d + e*Log[f + g*x^2])*(a + b*ArcCot[c*x])^2/(2*g) - e*x^2*(a + b*ArcCot[c*x])^2/2 + b/c*Int[(d + e*Log[f + g*x^2])*(a + b*ArcCot[c*x]), x] - b*c*e*Int[x^2*(a + b*ArcCot[c*x])/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[g, c^2*f] +Int[u_.*(a_. + b_.*ArcTan[c_.*x_])^p_., x_Symbol] := Unintegrable[u*(a + b*ArcTan[c*x])^p, x] /; FreeQ[{a, b, c, p}, x] && (EqQ[u, 1] || MatchQ[u, (d_. + e_.*x)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x)^q_. /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[u, (d_. + e_.*x^2)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x^2)^q_. /; FreeQ[{d, e, f, m, q}, x]]) +Int[u_.*(a_. + b_.*ArcCot[c_.*x_])^p_., x_Symbol] := Unintegrable[u*(a + b*ArcCot[c*x])^p, x] /; FreeQ[{a, b, c, p}, x] && (EqQ[u, 1] || MatchQ[u, (d_. + e_.*x)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x)^q_. /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[u, (d_. + e_.*x^2)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x^2)^q_. /; FreeQ[{d, e, f, m, q}, x]]) diff --git a/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.5 u (a+b arctan(c+d x))^p.m b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.5 u (a+b arctan(c+d x))^p.m new file mode 100755 index 0000000..ec06db2 --- /dev/null +++ b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.5 u (a+b arctan(c+d x))^p.m @@ -0,0 +1,23 @@ + +(* ::Subsection::Closed:: *) +(* 5.3.5 u (a+b arctan(c+d x))^p *) +Int[(a_. + b_.*ArcTan[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcTan[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcCot[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcCot[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcTan[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(a + b*ArcTan[c + d*x])^p, x] /; FreeQ[{a, b, c, d, p}, x] && Not[IGtQ[p, 0]] +Int[(a_. + b_.*ArcCot[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(a + b*ArcCot[c + d*x])^p, x] /; FreeQ[{a, b, c, d, p}, x] && Not[IGtQ[p, 0]] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcTan[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(f*x/d)^m*(a + b*ArcTan[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCot[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(f*x/d)^m*(a + b*ArcCot[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_*(a_. + b_.*ArcTan[c_ + d_.*x_])^p_., x_Symbol] := (e + f*x)^(m + 1)*(a + b*ArcTan[c + d*x])^p/(f*(m + 1)) - b*d*p/(f*(m + 1))* Int[(e + f*x)^(m + 1)*(a + b*ArcTan[c + d*x])^(p - 1)/(1 + (c + d*x)^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[m, -1] +Int[(e_. + f_.*x_)^m_*(a_. + b_.*ArcCot[c_ + d_.*x_])^p_., x_Symbol] := (e + f*x)^(m + 1)*(a + b*ArcCot[c + d*x])^p/(f*(m + 1)) + b*d*p/(f*(m + 1))* Int[(e + f*x)^(m + 1)*(a + b*ArcCot[c + d*x])^(p - 1)/(1 + (c + d*x)^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[m, -1] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcTan[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcTan[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCot[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcCot[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcTan[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(e + f*x)^m*(a + b*ArcTan[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && Not[IGtQ[p, 0]] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCot[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(e + f*x)^m*(a + b*ArcCot[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && Not[IGtQ[p, 0]] +Int[ArcTan[a_ + b_.*x_]/(c_ + d_.*x_^n_.), x_Symbol] := I/2*Int[Log[1 - I*a - I*b*x]/(c + d*x^n), x] - I/2*Int[Log[1 + I*a + I*b*x]/(c + d*x^n), x] /; FreeQ[{a, b, c, d}, x] && RationalQ[n] +Int[ArcCot[a_ + b_.*x_]/(c_ + d_.*x_^n_.), x_Symbol] := I/2*Int[Log[(-I + a + b*x)/(a + b*x)]/(c + d*x^n), x] - I/2*Int[Log[(I + a + b*x)/(a + b*x)]/(c + d*x^n), x] /; FreeQ[{a, b, c, d}, x] && RationalQ[n] +Int[ArcTan[a_ + b_.*x_]/(c_ + d_.*x_^n_), x_Symbol] := Unintegrable[ArcTan[a + b*x]/(c + d*x^n), x] /; FreeQ[{a, b, c, d, n}, x] && Not[RationalQ[n]] +Int[ArcCot[a_ + b_.*x_]/(c_ + d_.*x_^n_), x_Symbol] := Unintegrable[ArcCot[a + b*x]/(c + d*x^n), x] /; FreeQ[{a, b, c, d, n}, x] && Not[RationalQ[n]] +Int[(A_. + B_.*x_ + C_.*x_^2)^q_.*(a_. + b_.*ArcTan[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(C/d^2 + C/d^2*x^2)^q*(a + b*ArcTan[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, A, B, C, p, q}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(A_. + B_.*x_ + C_.*x_^2)^q_.*(a_. + b_.*ArcCot[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(C/d^2 + C/d^2*x^2)^q*(a + b*ArcCot[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, A, B, C, p, q}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(e_. + f_.*x_)^m_.*(A_. + B_.*x_ + C_.*x_^2)^ q_.*(a_. + b_.*ArcTan[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[ Int[((d*e - c*f)/d + f*x/d)^m*(C/d^2 + C/d^2*x^2)^ q*(a + b*ArcTan[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(e_. + f_.*x_)^m_.*(A_. + B_.*x_ + C_.*x_^2)^ q_.*(a_. + b_.*ArcCot[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[ Int[((d*e - c*f)/d + f*x/d)^m*(C/d^2 + C/d^2*x^2)^ q*(a + b*ArcCot[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] diff --git a/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.6 Exponentials of inverse tangent.m b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.6 Exponentials of inverse tangent.m new file mode 100755 index 0000000..23165c0 --- /dev/null +++ b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.6 Exponentials of inverse tangent.m @@ -0,0 +1,80 @@ + +(* ::Subsection::Closed:: *) +(* 5.3.6 Exponentials of inverse tangent *) +Int[E^(n_*ArcTan[a_.*x_]), x_Symbol] := Int[((1 - I*a*x)^((I*n + 1)/2)/((1 + I*a*x)^((I*n - 1)/2)* Sqrt[1 + a^2*x^2])), x] /; FreeQ[a, x] && IntegerQ[(I*n - 1)/2] +Int[x_^m_.*E^(n_*ArcTan[a_.*x_]), x_Symbol] := Int[x^ m*((1 - I*a*x)^((I*n + 1)/2)/((1 + I*a*x)^((I*n - 1)/2)* Sqrt[1 + a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(I*n - 1)/2] +Int[E^(n_.*ArcTan[a_.*x_]), x_Symbol] := Int[(1 - I*a*x)^(I*n/2)/(1 + I*a*x)^(I*n/2), x] /; FreeQ[{a, n}, x] && Not[IntegerQ[(I*n - 1)/2]] +Int[x_^m_.*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := Int[x^m*(1 - I*a*x)^(I*n/2)/(1 + I*a*x)^(I*n/2), x] /; FreeQ[{a, m, n}, x] && Not[IntegerQ[(I*n - 1)/2]] +Int[u_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := c^p*Int[u*(1 + d*x/c)^p*(1 - I*a*x)^(I*n/2)/(1 + I*a*x)^(I*n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 + d^2, 0] && (IntegerQ[p] || GtQ[c, 0]) +Int[u_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := Int[u*(c + d*x)^p*(1 - I*a*x)^(I*n/2)/(1 + I*a*x)^(I*n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 + d^2, 0] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[u_.*(c_ + d_./x_)^p_.*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := d^p*Int[u/x^p*(1 + c*x/d)^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[c^2 + a^2*d^2, 0] && IntegerQ[p] +Int[u_.*(c_ + d_./x_)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := (-1)^(n/2)*c^p* Int[u*(1 + d/(c*x))^ p*(1 - 1/(I*a*x))^(I*n/2)/(1 + 1/(I*a*x))^(I*n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 + a^2*d^2, 0] && Not[IntegerQ[p]] && IntegerQ[I*n/2] && GtQ[c, 0] +Int[u_.*(c_ + d_./x_)^p_*E^(n_*ArcTan[a_.*x_]), x_Symbol] := Int[u*(c + d/x)^p*(1 - I*a*x)^(I*n/2)/(1 + I*a*x)^(I*n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 + a^2*d^2, 0] && Not[IntegerQ[p]] && IntegerQ[I*n/2] && Not[GtQ[c, 0]] +Int[u_.*(c_ + d_./x_)^p_*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := x^p*(c + d/x)^p/(1 + c*x/d)^p* Int[u/x^p*(1 + c*x/d)^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 + a^2*d^2, 0] && Not[IntegerQ[p]] +Int[E^(n_.*ArcTan[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := (n + a*x)*E^(n*ArcTan[a*x])/(a*c*(n^2 + 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && Not[IntegerQ[I*n]] +Int[(c_ + d_.*x_^2)^p_*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := (n - 2*a*(p + 1)*x)*(c + d*x^2)^(p + 1)* E^(n*ArcTan[a*x])/(a*c*(n^2 + 4*(p + 1)^2)) + 2*(p + 1)*(2*p + 3)/(c*(n^2 + 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[p, -1] && Not[IntegerQ[I*n]] && NeQ[n^2 + 4*(p + 1)^2, 0] && IntegerQ[2*p] +Int[E^(n_.*ArcTan[a_.*x_])/(c_ + d_.*x_^2), x_Symbol] := E^(n*ArcTan[a*x])/(a*c*n) /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] +Int[(c_ + d_.*x_^2)^p_.*E^(n_*ArcTan[a_.*x_]), x_Symbol] := c^p*Int[(1 + a^2*x^2)^(p - I*n/2)*(1 - I*a*x)^(I*n), x] /; FreeQ[{a, c, d, p}, x] && EqQ[d, a^2*c] && IntegerQ[p] && IntegerQ[(I*n + 1)/2] && Not[IntegerQ[p - I*n/2]] +Int[(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := c^p*Int[(1 - I*a*x)^(p + I*n/2)*(1 + I*a*x)^(p - I*n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c, 0]) +Int[(c_ + d_.*x_^2)^p_*E^(n_*ArcTan[a_.*x_]), x_Symbol] := c^(I*n/2)*Int[(c + d*x^2)^(p - I*n/2)*(1 - I*a*x)^(I*n), x] /; FreeQ[{a, c, d, p}, x] && EqQ[d, a^2*c] && Not[IntegerQ[p] || GtQ[c, 0]] && IGtQ[I*n/2, 0] +Int[(c_ + d_.*x_^2)^p_*E^(n_*ArcTan[a_.*x_]), x_Symbol] := 1/c^(I*n/2)*Int[(c + d*x^2)^(p + I*n/2)/(1 + I*a*x)^(I*n), x] /; FreeQ[{a, c, d, p}, x] && EqQ[d, a^2*c] && Not[IntegerQ[p] || GtQ[c, 0]] && ILtQ[I*n/2, 0] +Int[(c_ + d_.*x_^2)^p_*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^FracPart[p]/(1 + a^2*x^2)^FracPart[p]* Int[(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[x_*E^(n_.*ArcTan[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := -(1 - a*n*x)*E^(n*ArcTan[a*x])/(d*(n^2 + 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && Not[IntegerQ[I*n]] +Int[x_*(c_ + d_.*x_^2)^p_*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := (c + d*x^2)^(p + 1)*E^(n*ArcTan[a*x])/(2*d*(p + 1)) - a*c*n/(2*d*(p + 1))*Int[(c + d*x^2)^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[p, -1] && Not[IntegerQ[I*n]] && IntegerQ[2*p] +(* Int[x_*(c_+d_.*x_^2)^p_*E^(n_.*ArcTan[a_.*x_]),x_Symbol] := (2*(p+1)+a*n*x)*(c+d*x^2)^(p+1)*E^(n*ArcTan[a*x])/(a^2*c*(n^2+4*(p+ 1)^2)) - n*(2*p+3)/(a*c*(n^2+4*(p+1)^2))*Int[(c+d*x^2)^(p+1)*E^(n*ArcTan[a*x] ),x] /; FreeQ[{a,c,d,n},x] && EqQ[d,a^2*c] && LtQ[p,-1] && NeQ[n^2+4*(p+1)^2,0] && Not[IntegerQ[I*n]] *) +Int[x_^2*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := -(1 - a*n*x)*(c + d*x^2)^(p + 1)* E^(n*ArcTan[a*x])/(a*d*n*(n^2 + 1)) /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && EqQ[n^2 - 2*(p + 1), 0] && Not[IntegerQ[I*n]] +Int[x_^2*(c_ + d_.*x_^2)^p_*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := -(n - 2*(p + 1)*a*x)*(c + d*x^2)^(p + 1)* E^(n*ArcTan[a*x])/(a*d*(n^2 + 4*(p + 1)^2)) + (n^2 - 2*(p + 1))/(d*(n^2 + 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[p, -1] && Not[IntegerQ[I*n]] && NeQ[n^2 + 4*(p + 1)^2, 0] && IntegerQ[2*p] +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_*ArcTan[a_.*x_]), x_Symbol] := c^p*Int[x^m*(1 + a^2*x^2)^(p - I*n/2)*(1 - I*a*x)^(I*n), x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c, 0]) && IntegerQ[(I*n + 1)/2] && Not[IntegerQ[p - I*n/2]] +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := c^p*Int[x^m*(1 - I*a*x)^(p + I*n/2)*(1 + I*a*x)^(p - I*n/2), x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c, 0]) +Int[x_^m_.*(c_ + d_.*x_^2)^p_*E^(n_*ArcTan[a_.*x_]), x_Symbol] := c^(I*n/2)*Int[x^m*(c + d*x^2)^(p - I*n/2)*(1 - I*a*x)^(I*n), x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[d, a^2*c] && Not[IntegerQ[p] || GtQ[c, 0]] && IGtQ[I*n/2, 0] +Int[x_^m_.*(c_ + d_.*x_^2)^p_*E^(n_*ArcTan[a_.*x_]), x_Symbol] := 1/c^(I*n/2)*Int[x^m*(c + d*x^2)^(p + I*n/2)/(1 + I*a*x)^(I*n), x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[d, a^2*c] && Not[IntegerQ[p] || GtQ[c, 0]] && ILtQ[I*n/2, 0] +Int[x_^m_.*(c_ + d_.*x_^2)^p_*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^FracPart[p]/(1 + a^2*x^2)^FracPart[p]* Int[x^m*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[d, a^2*c] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[u_*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := c^p*Int[u*(1 - I*a*x)^(p + I*n/2)*(1 + I*a*x)^(p - I*n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c, 0]) +Int[u_*(c_ + d_.*x_^2)^p_.*E^(n_*ArcTan[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^ FracPart[p]/((1 - I*a*x)^FracPart[p]*(1 + I*a*x)^FracPart[p])* Int[u*(1 - I*a*x)^(p + I*n/2)*(1 + I*a*x)^(p - I*n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c, 0]) && IntegerQ[I*n/2] +Int[u_*(c_ + d_.*x_^2)^p_*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^FracPart[p]/(1 + a^2*x^2)^FracPart[p]* Int[u*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && Not[IntegerQ[p] || GtQ[c, 0]] && Not[IntegerQ[I*n/2]] +Int[u_.*(c_ + d_./x_^2)^p_.*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := d^p*Int[u/x^(2*p)*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[c - a^2*d, 0] && IntegerQ[p] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_*ArcTan[a_.*x_]), x_Symbol] := c^p*Int[u*(1 - I/(a*x))^p*(1 + I/(a*x))^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c - a^2*d, 0] && Not[IntegerQ[p]] && IntegerQ[I*n/2] && GtQ[c, 0] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_*ArcTan[a_.*x_]), x_Symbol] := x^(2*p)*(c + d/x^2)^p/((1 - I*a*x)^p*(1 + I*a*x)^p)* Int[u/x^(2*p)*(1 - I*a*x)^p*(1 + I*a*x)^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c - a^2*d, 0] && Not[IntegerQ[p]] && IntegerQ[I*n/2] && Not[GtQ[c, 0]] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_.*ArcTan[a_.*x_]), x_Symbol] := x^(2*p)*(c + d/x^2)^p/(1 + a^2*x^2)^p* Int[u/x^(2*p)*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c - a^2*d, 0] && Not[IntegerQ[p]] && Not[IntegerQ[I*n/2]] +Int[E^(n_.*ArcTan[c_.*(a_ + b_.*x_)]), x_Symbol] := Int[(1 - I*a*c - I*b*c*x)^(I*n/2)/(1 + I*a*c + I*b*c*x)^(I*n/2), x] /; FreeQ[{a, b, c, n}, x] +Int[x_^m_*E^(n_*ArcTan[c_.*(a_ + b_.*x_)]), x_Symbol] := 4/(I^m*n*b^(m + 1)*c^(m + 1))* Subst[ Int[x^(2/(I*n))*(1 - I*a*c - (1 + I*a*c)*x^(2/(I*n)))^ m/(1 + x^(2/(I*n)))^(m + 2), x], x, (1 - I*c*(a + b*x))^(I*n/2)/(1 + I*c*(a + b*x))^(I*n/2)] /; FreeQ[{a, b, c}, x] && ILtQ[m, 0] && LtQ[-1, I*n, 1] +Int[(d_. + e_.*x_)^m_.*E^(n_.*ArcTan[c_.*(a_ + b_.*x_)]), x_Symbol] := Int[(d + e*x)^ m*(1 - I*a*c - I*b*c*x)^(I*n/2)/(1 + I*a*c + I*b*c*x)^(I*n/2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcTan[a_ + b_.*x_]), x_Symbol] := (c/(1 + a^2))^p* Int[u*(1 - I*a - I*b*x)^(p + I*n/2)*(1 + I*a + I*b*x)^(p - I*n/2), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, 2*a*e] && EqQ[b^2*c - e (1 + a^2), 0] && (IntegerQ[p] || GtQ[c/(1 + a^2), 0]) +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcTan[a_ + b_.*x_]), x_Symbol] := (c + d*x + e*x^2)^p/(1 + a^2 + 2*a*b*x + b^2*x^2)^p* Int[u*(1 + a^2 + 2*a*b*x + b^2*x^2)^p*E^(n*ArcTan[a*x]), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, 2*a*e] && EqQ[b^2*c - e (1 + a^2), 0] && Not[IntegerQ[p] || GtQ[c/(1 + a^2), 0]] +Int[u_.*E^(n_.*ArcTan[c_./(a_. + b_.*x_)]), x_Symbol] := Int[u*E^(n*ArcCot[a/c + b*x/c]), x] /; FreeQ[{a, b, c, n}, x] +Int[u_.*E^(n_*ArcCot[a_.*x_]), x_Symbol] := (-1)^(I*n/2)*Int[u*E^(-n*ArcTan[a*x]), x] /; FreeQ[a, x] && IntegerQ[I*n/2] +Int[E^(n_*ArcCot[a_.*x_]), x_Symbol] := -Subst[ Int[(1 - I*x/a)^((I*n + 1)/2)/(x^2*(1 + I*x/a)^((I*n - 1)/2)* Sqrt[1 + x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(I*n - 1)/2] +Int[x_^m_.*E^(n_*ArcCot[a_.*x_]), x_Symbol] := -Subst[ Int[(1 - I*x/a)^((I*n + 1)/ 2)/(x^(m + 2)*(1 + I*x/a)^((I*n - 1)/2)*Sqrt[1 + x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(I*n - 1)/2] && IntegerQ[m] +Int[E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -Subst[Int[(1 - I*x/a)^(I*n/2)/(x^2*(1 + I*x/a)^(I*n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && Not[IntegerQ[I*n]] +Int[x_^m_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -Subst[Int[(1 - I*x/a)^(n/2)/(x^(m + 2)*(1 + I*x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && Not[IntegerQ[I*n]] && IntegerQ[m] +Int[x_^m_*E^(n_*ArcCot[a_.*x_]), x_Symbol] := -x^m*(1/x)^m* Subst[Int[(1 - I*x/a)^((I*n + 1)/ 2)/(x^(m + 2)*(1 + I*x/a)^((I*n - 1)/2)*Sqrt[1 + x^2/a^2]), x], x, 1/x] /; FreeQ[{a, m}, x] && IntegerQ[(I*n - 1)/2] && Not[IntegerQ[m]] +Int[x_^m_*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -Subst[Int[(1 - I*x/a)^(n/2)/(x^(m + 2)*(1 + I*x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, m, n}, x] && Not[IntegerQ[I*n/2]] && Not[IntegerQ[m]] +Int[u_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := d^p*Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 + d^2, 0] && Not[IntegerQ[I*n/2]] && IntegerQ[p] +Int[u_.*(c_ + d_.*x_)^p_*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := (c + d*x)^p/(x^p*(1 + c/(d*x))^p)* Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 + d^2, 0] && Not[IntegerQ[I*n/2]] && Not[IntegerQ[p]] +Int[(c_ + d_./x_)^p_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -c^p*Subst[ Int[(1 + d*x/c)^p*(1 - I*x/a)^(I*n/2)/(x^2*(1 + I*x/a)^(I*n/2)), x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 + a^2*d^2, 0] && Not[IntegerQ[I*n/2]] && (IntegerQ[p] || GtQ[c, 0]) +Int[x_^m_.*(c_ + d_./x_)^p_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -c^p*Subst[ Int[(1 + d*x/c)^ p*(1 - I*x/a)^(I*n/2)/(x^(m + 2)*(1 + I*x/a)^(I*n/2)), x], x, 1/x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[c^2 + a^2*d^2, 0] && Not[IntegerQ[I*n/2]] && (IntegerQ[p] || GtQ[c, 0]) && IntegerQ[m] +Int[(c_ + d_./x_)^p_*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := (c + d/x)^p/(1 + d/(c*x))^p* Int[(1 + d/(c*x))^p*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 + a^2*d^2, 0] && Not[IntegerQ[I*n/2]] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[x_^m_*(c_ + d_./x_)^p_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -c^p*x^m*(1/x)^m* Subst[Int[(1 + d*x/c)^ p*(1 - I*x/a)^(I*n/2)/(x^(m + 2)*(1 + I*x/a)^(I*n/2)), x], x, 1/x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[c^2 + a^2*d^2, 0] && Not[IntegerQ[I*n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegerQ[m]] +Int[u_.*(c_ + d_./x_)^p_*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := (c + d/x)^p/(1 + d/(c*x))^p* Int[u*(1 + d/(c*x))^p*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 + a^2*d^2, 0] && Not[IntegerQ[I*n/2]] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[E^(n_.*ArcCot[a_.*x_])/(c_ + d_.*x_^2), x_Symbol] := -E^(n*ArcCot[a*x])/(a*c*n) /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] +Int[E^(n_.*ArcCot[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := -(n - a*x)*E^(n*ArcCot[a*x])/(a*c*(n^2 + 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && Not[IntegerQ[(I*n - 1)/2]] +Int[(c_ + d_.*x_^2)^p_*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -(n + 2*a*(p + 1)*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCot[a*x])/(a*c*(n^2 + 4*(p + 1)^2)) + 2*(p + 1)*(2*p + 3)/(c*(n^2 + 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[p, -1] && NeQ[p, -3/2] && NeQ[n^2 + 4*(p + 1)^2, 0] && Not[IntegerQ[p] && IntegerQ[I*n/2]] && Not[Not[IntegerQ[p]] && IntegerQ[(I*n - 1)/2]] +Int[x_*E^(n_.*ArcCot[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := -(1 + a*n*x)*E^(n*ArcCot[a*x])/(a^2*c*(n^2 + 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && Not[IntegerQ[(I*n - 1)/2]] +Int[x_*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := (2*(p + 1) - a*n*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCot[a*x])/(a^2*c*(n^2 + 4*(p + 1)^2)) + n*(2*p + 3)/(a*c*(n^2 + 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LeQ[p, -1] && NeQ[p, -3/2] && NeQ[n^2 + 4*(p + 1)^2, 0] && Not[IntegerQ[p] && IntegerQ[I*n/2]] && Not[Not[IntegerQ[p]] && IntegerQ[(I*n - 1)/2]] +Int[x_^2*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := (n + 2*(p + 1)*a*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCot[a*x])/(a^3*c*n^2*(n^2 + 1)) /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && EqQ[n^2 - 2*(p + 1), 0] && NeQ[n^2 + 1, 0] +Int[x_^2*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := (n + 2*(p + 1)*a*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCot[a*x])/(a^3*c*(n^2 + 4*(p + 1)^2)) + (n^2 - 2*(p + 1))/(a^2*c*(n^2 + 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LeQ[p, -1] && NeQ[n^2 - 2*(p + 1), 0] && NeQ[n^2 + 4*(p + 1)^2, 0] && Not[IntegerQ[p] && IntegerQ[I*n/2]] && Not[Not[IntegerQ[p]] && IntegerQ[(I*n - 1)/2]] +Int[x_^m_.*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -c^p/a^(m + 1)* Subst[Int[E^(n*x)*Cot[x]^(m + 2*(p + 1))/Cos[x]^(2*(p + 1)), x], x, ArcCot[a*x]] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && IntegerQ[m] && LeQ[3, m, -2 (p + 1)] && IntegerQ[p] +Int[u_.*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := d^p*Int[u*x^(2*p)*(1 + 1/(a^2*x^2))^p*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && Not[IntegerQ[I*n/2]] && IntegerQ[p] +Int[u_.*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := (c + d*x^2)^p/(x^(2*p)*(1 + 1/(a^2*x^2))^p)* Int[u*x^(2*p)*(1 + 1/(a^2*x^2))^p*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && Not[IntegerQ[I*n/2]] && Not[IntegerQ[p]] +Int[u_.*(c_ + d_./x_^2)^p_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := c^p/(I*a)^(2*p)* Int[u/x^(2*p)*(-1 + I*a*x)^(p - I*n/2)*(1 + I*a*x)^(p + I*n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c, a^2*d] && Not[IntegerQ[I*n/2]] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + I*n/2] +Int[(c_ + d_./x_^2)^p_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -c^p*Subst[ Int[(1 - I*x/a)^(p + I*n/2)*(1 + I*x/a)^(p - I*n/2)/x^2, x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c, a^2*d] && Not[IntegerQ[I*n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegerQ[2*p] && IntegerQ[p + I*n/2]] +Int[x_^m_.*(c_ + d_./x_^2)^p_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -c^p*Subst[ Int[(1 - I*x/a)^(p + I*n/2)*(1 + I*x/a)^(p - I*n/2)/x^(m + 2), x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c, a^2*d] && Not[IntegerQ[I*n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegerQ[2*p] && IntegerQ[p + I*n/2]] && IntegerQ[m] +Int[x_^m_*(c_ + d_./x_^2)^p_.*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := -c^p*x^m*(1/x)^m* Subst[Int[(1 - I*x/a)^(p + I*n/2)*(1 + I*x/a)^(p - I*n/2)/ x^(m + 2), x], x, 1/x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[c, a^2*d] && Not[IntegerQ[I*n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegerQ[2*p] && IntegerQ[p + I*n/2]] && Not[IntegerQ[m]] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_.*ArcCot[a_.*x_]), x_Symbol] := (c + d/x^2)^p/(1 + 1/(a^2*x^2))^p* Int[u*(1 + 1/(a^2*x^2))^p*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c, a^2*d] && Not[IntegerQ[I*n/2]] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[u_.*E^(n_*ArcCot[c_.*(a_ + b_.*x_)]), x_Symbol] := (-1)^(I*n/2)*Int[u*E^(-n*ArcTan[c*(a + b*x)]), x] /; FreeQ[{a, b, c}, x] && IntegerQ[I*n/2] +Int[E^(n_.*ArcCot[c_.*(a_ + b_.*x_)]), x_Symbol] := (I*c*(a + b*x))^(I* n/2)*(1 + 1/(I*c*(a + b*x)))^(I*n/2)/(1 + I*a*c + I*b*c*x)^(I* n/2)* Int[(1 + I*a*c + I*b*c*x)^(I*n/2)/(-1 + I*a*c + I*b*c*x)^(I* n/2), x] /; FreeQ[{a, b, c, n}, x] && Not[IntegerQ[I*n/2]] +Int[x_^m_*E^(n_*ArcCoth[c_.*(a_ + b_.*x_)]), x_Symbol] := 4/(I^m*n*b^(m + 1)*c^(m + 1))* Subst[ Int[x^(2/(I*n))*(1 + I*a*c + (1 - I*a*c)*x^(2/(I*n)))^ m/(-1 + x^(2/(I*n)))^(m + 2), x], x, (1 + 1/(I*c*(a + b*x)))^(I*n/2)/(1 - 1/(I*c*(a + b*x)))^(I* n/2)] /; FreeQ[{a, b, c}, x] && ILtQ[m, 0] && LtQ[-1, I*n, 1] +Int[(d_. + e_.*x_)^m_.*E^(n_.*ArcCoth[c_.*(a_ + b_.*x_)]), x_Symbol] := (I*c*(a + b*x))^(I* n/2)*(1 + 1/(I*c*(a + b*x)))^(I*n/2)/(1 + I*a*c + I*b*c*x)^(I* n/2)* Int[(d + e*x)^ m*(1 + I*a*c + I*b*c*x)^(I*n/2)/(-1 + I*a*c + I*b*c*x)^(I*n/2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && Not[IntegerQ[I*n/2]] +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcCot[a_ + b_.*x_]), x_Symbol] := (c/(1 + a^2))^ p*((I*a + I*b*x)/(1 + I*a + I*b*x))^(I* n/2)*((1 + I*a + I*b*x)/(I*a + I*b*x))^(I*n/2)* ((1 - I*a - I*b*x)^(I*n/2)/(-1 + I*a + I*b*x)^(I*n/2))* Int[ u*(1 - I*a - I*b*x)^(p - I*n/2)*(1 + I*a + I*b*x)^(p + I*n/2), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && Not[IntegerQ[I*n/2]] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c - e (1 + a^2), 0] && (IntegerQ[p] || GtQ[c/(1 + a^2), 0]) +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcCot[a_ + b_.*x_]), x_Symbol] := (c + d*x + e*x^2)^p/(1 + a^2 + 2*a*b*x + b^2*x^2)^p* Int[u*(1 + a^2 + 2*a*b*x + b^2*x^2)^p*E^(n*ArcCot[a*x]), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && Not[IntegerQ[I*n/2]] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c - e (1 + a^2), 0] && Not[IntegerQ[p] || GtQ[c/(1 + a^2), 0]] +Int[u_.*E^(n_.*ArcCot[c_./(a_. + b_.*x_)]), x_Symbol] := Int[u*E^(n*ArcTan[a/c + b*x/c]), x] /; FreeQ[{a, b, c, n}, x] diff --git a/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.7 Miscellaneous inverse tangent.m b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.7 Miscellaneous inverse tangent.m new file mode 100755 index 0000000..c608bfd --- /dev/null +++ b/IntegrationRules/5 Inverse trig functions/5.3 Inverse tangent/5.3.7 Miscellaneous inverse tangent.m @@ -0,0 +1,82 @@ + +(* ::Subsection::Closed:: *) +(* 5.3.7 Miscellaneous inverse tangent *) +Int[ArcTan[a_ + b_.*x_^n_], x_Symbol] := x*ArcTan[a + b*x^n] - b*n*Int[x^n/(1 + a^2 + 2*a*b*x^n + b^2*x^(2*n)), x] /; FreeQ[{a, b, n}, x] +Int[ArcCot[a_ + b_.*x_^n_], x_Symbol] := x*ArcCot[a + b*x^n] + b*n*Int[x^n/(1 + a^2 + 2*a*b*x^n + b^2*x^(2*n)), x] /; FreeQ[{a, b, n}, x] +Int[ArcTan[a_. + b_.*x_^n_]/x_, x_Symbol] := I/2*Int[Log[1 - I*a - I*b*x^n]/x, x] - I/2*Int[Log[1 + I*a + I*b*x^n]/x, x] /; FreeQ[{a, b, n}, x] +Int[ArcCot[a_. + b_.*x_^n_]/x_, x_Symbol] := I/2*Int[Log[1 - I/(a + b*x^n)]/x, x] - I/2*Int[Log[1 + I/(a + b*x^n)]/x, x] /; FreeQ[{a, b, n}, x] +Int[x_^m_.*ArcTan[a_ + b_.*x_^n_], x_Symbol] := x^(m + 1)*ArcTan[a + b*x^n]/(m + 1) - b*n/(m + 1)* Int[x^(m + n)/(1 + a^2 + 2*a*b*x^n + b^2*x^(2*n)), x] /; FreeQ[{a, b}, x] && RationalQ[m, n] && m + 1 != 0 && m + 1 != n +Int[x_^m_.*ArcCot[a_ + b_.*x_^n_], x_Symbol] := x^(m + 1)*ArcCot[a + b*x^n]/(m + 1) + b*n/(m + 1)* Int[x^(m + n)/(1 + a^2 + 2*a*b*x^n + b^2*x^(2*n)), x] /; FreeQ[{a, b}, x] && RationalQ[m, n] && m + 1 != 0 && m + 1 != n +Int[ArcTan[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := I/2*Int[Log[1 - I*a - I*b*f^(c + d*x)], x] - I/2*Int[Log[1 + I*a + I*b*f^(c + d*x)], x] /; FreeQ[{a, b, c, d, f}, x] +Int[ArcCot[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := I/2*Int[Log[1 - I/(a + b*f^(c + d*x))], x] - I/2*Int[Log[1 + I/(a + b*f^(c + d*x))], x] /; FreeQ[{a, b, c, d, f}, x] +Int[x_^m_.*ArcTan[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := I/2*Int[x^m*Log[1 - I*a - I*b*f^(c + d*x)], x] - I/2*Int[x^m*Log[1 + I*a + I*b*f^(c + d*x)], x] /; FreeQ[{a, b, c, d, f}, x] && IntegerQ[m] && m > 0 +Int[x_^m_.*ArcCot[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := I/2*Int[x^m*Log[1 - I/(a + b*f^(c + d*x))], x] - I/2*Int[x^m*Log[1 + I/(a + b*f^(c + d*x))], x] /; FreeQ[{a, b, c, d, f}, x] && IntegerQ[m] && m > 0 +Int[u_.*ArcTan[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcCot[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[u_.*ArcCot[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcTan[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[ArcTan[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := x*ArcTan[(c*x)/Sqrt[a + b*x^2]] - c*Int[x/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0] +Int[ArcCot[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := x*ArcCot[(c*x)/Sqrt[a + b*x^2]] + c*Int[x/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0] +Int[ArcTan[c_.*x_/Sqrt[a_. + b_.*x_^2]]/x_, x_Symbol] := ArcTan[c*x/Sqrt[a + b*x^2]]*Log[x] - c*Int[Log[x]/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0] +Int[ArcCot[c_.*x_/Sqrt[a_. + b_.*x_^2]]/x_, x_Symbol] := ArcCot[c*x/Sqrt[a + b*x^2]]*Log[x] + c*Int[Log[x]/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0] +Int[(d_.*x_)^m_.*ArcTan[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := (d*x)^(m + 1)*ArcTan[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1)) - c/(d*(m + 1))*Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1] +Int[(d_.*x_)^m_.*ArcCot[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := (d*x)^(m + 1)*ArcCot[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1)) + c/(d*(m + 1))*Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1] +Int[1/(Sqrt[a_. + b_.*x_^2]*ArcTan[c_.*x_/Sqrt[a_. + b_.*x_^2]]), x_Symbol] := 1/c*Log[ArcTan[c*x/Sqrt[a + b*x^2]]] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0] +Int[1/(Sqrt[a_. + b_.*x_^2]*ArcCot[c_.*x_/Sqrt[a_. + b_.*x_^2]]), x_Symbol] := -1/c*Log[ArcCot[c*x/Sqrt[a + b*x^2]]] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0] +Int[ArcTan[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[a_. + b_.*x_^2], x_Symbol] := ArcTan[c*x/Sqrt[a + b*x^2]]^(m + 1)/(c*(m + 1)) /; FreeQ[{a, b, c, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1] +Int[ArcCot[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[a_. + b_.*x_^2], x_Symbol] := -ArcCot[c*x/Sqrt[a + b*x^2]]^(m + 1)/(c*(m + 1)) /; FreeQ[{a, b, c, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1] +Int[ArcTan[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[d_. + e_.*x_^2], x_Symbol] := Sqrt[a + b*x^2]/Sqrt[d + e*x^2]* Int[ArcTan[c*x/Sqrt[a + b*x^2]]^m/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b + c^2, 0] && EqQ[b*d - a*e, 0] +Int[ArcCot[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[d_. + e_.*x_^2], x_Symbol] := Sqrt[a + b*x^2]/Sqrt[d + e*x^2]* Int[ArcCot[c*x/Sqrt[a + b*x^2]]^m/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b + c^2, 0] && EqQ[b*d - a*e, 0] +Int[u_.*ArcTan[v_ + s_.*Sqrt[w_]], x_Symbol] := Pi*s/4*Int[u, x] + 1/2*Int[u*ArcTan[v], x] /; EqQ[s^2, 1] && EqQ[w, v^2 + 1] +Int[u_.*ArcCot[v_ + s_.*Sqrt[w_]], x_Symbol] := Pi*s/4*Int[u, x] - 1/2*Int[u*ArcTan[v], x] /; EqQ[s^2, 1] && EqQ[w, v^2 + 1] +If[TrueQ[$LoadShowSteps], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, ShowStep["", "Int[f[x,ArcTan[a+b*x]]/(1+(a+b*x)^2),x]", "Subst[Int[f[-a/b+Tan[x]/b,x],x],x,ArcTan[a+b*x]]/b", Hold[ (-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[Int[ SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*Sec[x]^(2*(n + 1)), x], x], x, tmp]]] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcTan] && EqQ[Discriminant[v, x]*tmp[[1]]^2 + D[v, x]^2, 0]] /; SimplifyFlag && QuadraticQ[v, x] && ILtQ[n, 0] && NegQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, (-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[ Int[SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*Sec[x]^(2*(n + 1)), x], x], x, tmp] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcTan] && EqQ[Discriminant[v, x]*tmp[[1]]^2 + D[v, x]^2, 0]] /; QuadraticQ[v, x] && ILtQ[n, 0] && NegQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]]] +If[TrueQ[$LoadShowSteps], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, ShowStep["", "Int[f[x,ArcCot[a+b*x]]/(1+(a+b*x)^2),x]", "-Subst[Int[f[-a/b+Cot[x]/b,x],x],x,ArcCot[a+b*x]]/b", Hold[ -(-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[Int[ SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*Csc[x]^(2*(n + 1)), x], x], x, tmp]]] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcCot] && EqQ[Discriminant[v, x]*tmp[[1]]^2 + D[v, x]^2, 0]] /; SimplifyFlag && QuadraticQ[v, x] && ILtQ[n, 0] && NegQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, -(-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[ Int[SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*Csc[x]^(2*(n + 1)), x], x], x, tmp] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcCot] && EqQ[Discriminant[v, x]*tmp[[1]]^2 + D[v, x]^2, 0]] /; QuadraticQ[v, x] && ILtQ[n, 0] && NegQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]]] +Int[ArcTan[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcTan[c + d*Tan[a + b*x]] - I*b*Int[x/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c + I*d)^2, -1] +Int[ArcCot[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcCot[c + d*Tan[a + b*x]] + I*b*Int[x/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c + I*d)^2, -1] +Int[ArcTan[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcTan[c + d*Cot[a + b*x]] - I*b*Int[x/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, -1] +Int[ArcCot[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcCot[c + d*Cot[a + b*x]] + I*b*Int[x/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, -1] +Int[ArcTan[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcTan[c + d*Tan[a + b*x]] - b*(1 + I*c + d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + I*c - d + (1 + I*c + d)*E^(2*I*a + 2*I*b*x)), x] + b*(1 - I*c - d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - I*c + d + (1 - I*c - d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, -1] +Int[ArcCot[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcCot[c + d*Tan[a + b*x]] + b*(1 + I*c + d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + I*c - d + (1 + I*c + d)*E^(2*I*a + 2*I*b*x)), x] - b*(1 - I*c - d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - I*c + d + (1 - I*c - d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, -1] +Int[ArcTan[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcTan[c + d*Cot[a + b*x]] + b*(1 + I*c - d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + I*c + d - (1 + I*c - d)*E^(2*I*a + 2*I*b*x)), x] - b*(1 - I*c + d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - I*c - d - (1 - I*c + d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, -1] +Int[ArcCot[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcCot[c + d*Cot[a + b*x]] - b*(1 + I*c - d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + I*c + d - (1 + I*c - d)*E^(2*I*a + 2*I*b*x)), x] + b*(1 - I*c + d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - I*c - d - (1 - I*c + d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - I*d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcTan[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTan[c + d*Tan[a + b*x]]/(f*(m + 1)) - I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c + I*d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcCot[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCot[c + d*Tan[a + b*x]]/(f*(m + 1)) + I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c + I*d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcTan[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTan[c + d*Cot[a + b*x]]/(f*(m + 1)) - I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcCot[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCot[c + d*Cot[a + b*x]]/(f*(m + 1)) + I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcTan[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTan[c + d*Tan[a + b*x]]/(f*(m + 1)) - b*(1 + I*c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + I*c - d + (1 + I*c + d)*E^(2*I*a + 2*I*b*x)), x] + b*(1 - I*c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - I*c + d + (1 - I*c - d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c + I*d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcCot[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCot[c + d*Tan[a + b*x]]/(f*(m + 1)) + b*(1 + I*c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + I*c - d + (1 + I*c + d)*E^(2*I*a + 2*I*b*x)), x] - b*(1 - I*c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - I*c + d + (1 - I*c - d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c + I*d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcTan[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTan[c + d*Cot[a + b*x]]/(f*(m + 1)) + b*(1 + I*c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + I*c + d - (1 + I*c - d)*E^(2*I*a + 2*I*b*x)), x] - b*(1 - I*c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - I*c - d - (1 - I*c + d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - I*d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcCot[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCot[c + d*Cot[a + b*x]]/(f*(m + 1)) - b*(1 + I*c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + I*c + d - (1 + I*c - d)*E^(2*I*a + 2*I*b*x)), x] + b*(1 - I*c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - I*c - d - (1 - I*c + d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - I*d)^2, -1] +Int[ArcTan[Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcTan[Tanh[a + b*x]] - b*Int[x*Sech[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[ArcCot[Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcCot[Tanh[a + b*x]] + b*Int[x*Sech[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[ArcTan[Coth[a_. + b_.*x_]], x_Symbol] := x*ArcTan[Coth[a + b*x]] + b*Int[x*Sech[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[ArcCot[Coth[a_. + b_.*x_]], x_Symbol] := x*ArcCot[Coth[a + b*x]] - b*Int[x*Sech[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[(e_. + f_.*x_)^m_.*ArcTan[Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTan[Tanh[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sech[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*ArcCot[Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCot[Tanh[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sech[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*ArcTan[Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTan[Coth[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sech[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*ArcCot[Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCot[Coth[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sech[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[ArcTan[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcTan[c + d*Tanh[a + b*x]] - b*Int[x/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, -1] +Int[ArcCot[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcCot[c + d*Tanh[a + b*x]] + b*Int[x/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, -1] +Int[ArcTan[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcTan[c + d*Coth[a + b*x]] - b*Int[x/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, -1] +Int[ArcCot[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcCot[c + d*Coth[a + b*x]] + b*Int[x/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, -1] +Int[ArcTan[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcTan[c + d*Tanh[a + b*x]] + I*b*(I - c - d)* Int[x*E^(2*a + 2*b*x)/(I - c + d + (I - c - d)*E^(2*a + 2*b*x)), x] - I*b*(I + c + d)* Int[x*E^(2*a + 2*b*x)/(I + c - d + (I + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, -1] +Int[ArcCot[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcCot[c + d*Tanh[a + b*x]] - I*b*(I - c - d)* Int[x*E^(2*a + 2*b*x)/(I - c + d + (I - c - d)*E^(2*a + 2*b*x)), x] + I*b*(I + c + d)* Int[x*E^(2*a + 2*b*x)/(I + c - d + (I + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, -1] +Int[ArcTan[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcTan[c + d*Coth[a + b*x]] - I*b*(I - c - d)* Int[x*E^(2*a + 2*b*x)/(I - c + d - (I - c - d)*E^(2*a + 2*b*x)), x] + I*b*(I + c + d)* Int[x*E^(2*a + 2*b*x)/(I + c - d - (I + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, -1] +Int[ArcCot[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcCot[c + d*Coth[a + b*x]] + I*b*(I - c - d)* Int[x*E^(2*a + 2*b*x)/(I - c + d - (I - c - d)*E^(2*a + 2*b*x)), x] - I*b*(I + c + d)* Int[x*E^(2*a + 2*b*x)/(I + c - d - (I + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcTan[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTan[c + d*Tanh[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcCot[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCot[c + d*Tanh[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcTan[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTan[c + d*Coth[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcCot[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCot[c + d*Coth[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcTan[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTan[c + d*Tanh[a + b*x]]/(f*(m + 1)) + I*b*(I - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(I - c + d + (I - c - d)*E^(2*a + 2*b*x)), x] - I*b*(I + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(I + c - d + (I + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcCot[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCot[c + d*Tanh[a + b*x]]/(f*(m + 1)) - I*b*(I - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(I - c + d + (I - c - d)*E^(2*a + 2*b*x)), x] + I*b*(I + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(I + c - d + (I + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcTan[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTan[c + d*Coth[a + b*x]]/(f*(m + 1)) - I*b*(I - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(I - c + d - (I - c - d)*E^(2*a + 2*b*x)), x] + I*b*(I + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(I + c - d - (I + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, -1] +Int[(e_. + f_.*x_)^m_.*ArcCot[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCot[c + d*Coth[a + b*x]]/(f*(m + 1)) + I*b*(I - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(I - c + d - (I - c - d)*E^(2*a + 2*b*x)), x] - I*b*(I + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(I + c - d - (I + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, -1] +Int[ArcTan[u_], x_Symbol] := x*ArcTan[u] - Int[SimplifyIntegrand[x*D[u, x]/(1 + u^2), x], x] /; InverseFunctionFreeQ[u, x] +Int[ArcCot[u_], x_Symbol] := x*ArcCot[u] + Int[SimplifyIntegrand[x*D[u, x]/(1 + u^2), x], x] /; InverseFunctionFreeQ[u, x] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcTan[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcTan[u])/(d*(m + 1)) - b/(d*(m + 1))* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/(1 + u^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && FalseQ[PowerVariableExpn[u, m + 1, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcCot[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcCot[u])/(d*(m + 1)) + b/(d*(m + 1))* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/(1 + u^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && FalseQ[PowerVariableExpn[u, m + 1, x]] +Int[v_*(a_. + b_.*ArcTan[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcTan[u]), w, x] - b*Int[SimplifyIntegrand[w*D[u, x]/(1 + u^2), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] && FalseQ[FunctionOfLinear[v*(a + b*ArcTan[u]), x]] +Int[v_*(a_. + b_.*ArcCot[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcCot[u]), w, x] + b*Int[SimplifyIntegrand[w*D[u, x]/(1 + u^2), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] && FalseQ[FunctionOfLinear[v*(a + b*ArcCot[u]), x]] +Int[ArcTan[v_]*Log[w_]/(a_. + b_.*x_), x_Symbol] := I/2*Int[Log[1 - I*v]*Log[w]/(a + b*x), x] - I/2*Int[Log[1 + I*v]*Log[w]/(a + b*x), x] /; FreeQ[{a, b}, x] && LinearQ[v, x] && LinearQ[w, x] && EqQ[Simplify[D[v/(a + b*x), x]], 0] && EqQ[Simplify[D[w/(a + b*x), x]], 0] +Int[ArcTan[v_]*Log[w_], x_Symbol] := x*ArcTan[v]*Log[w] - Int[SimplifyIntegrand[x*Log[w]*D[v, x]/(1 + v^2), x], x] - Int[SimplifyIntegrand[x*ArcTan[v]*D[w, x]/w, x], x] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x] +Int[ArcCot[v_]*Log[w_], x_Symbol] := x*ArcCot[v]*Log[w] + Int[SimplifyIntegrand[x*Log[w]*D[v, x]/(1 + v^2), x], x] - Int[SimplifyIntegrand[x*ArcCot[v]*D[w, x]/w, x], x] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x] +Int[u_*ArcTan[v_]*Log[w_], x_Symbol] := With[{z = IntHide[u, x]}, Dist[ArcTan[v]*Log[w], z, x] - Int[SimplifyIntegrand[z*Log[w]*D[v, x]/(1 + v^2), x], x] - Int[SimplifyIntegrand[z*ArcTan[v]*D[w, x]/w, x], x] /; InverseFunctionFreeQ[z, x]] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x] +Int[u_*ArcCot[v_]*Log[w_], x_Symbol] := With[{z = IntHide[u, x]}, Dist[ArcCot[v]*Log[w], z, x] + Int[SimplifyIntegrand[z*Log[w]*D[v, x]/(1 + v^2), x], x] - Int[SimplifyIntegrand[z*ArcCot[v]*D[w, x]/w, x], x] /; InverseFunctionFreeQ[z, x]] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x] diff --git a/IntegrationRules/5 Inverse trig functions/5.5 Inverse secant/5.5.1 u (a+b arcsec(c x))^n.m b/IntegrationRules/5 Inverse trig functions/5.5 Inverse secant/5.5.1 u (a+b arcsec(c x))^n.m new file mode 100755 index 0000000..dafd2d6 --- /dev/null +++ b/IntegrationRules/5 Inverse trig functions/5.5 Inverse secant/5.5.1 u (a+b arcsec(c x))^n.m @@ -0,0 +1,39 @@ + +(* ::Subsection::Closed:: *) +(* 5.5.1 u (a+b arcsec(c x))^n *) +Int[ArcSec[c_.*x_], x_Symbol] := x*ArcSec[c*x] - 1/c*Int[1/(x*Sqrt[1 - 1/(c^2*x^2)]), x] /; FreeQ[c, x] +Int[ArcCsc[c_.*x_], x_Symbol] := x*ArcCsc[c*x] + 1/c*Int[1/(x*Sqrt[1 - 1/(c^2*x^2)]), x] /; FreeQ[c, x] +Int[(a_. + b_.*ArcSec[c_.*x_])^n_, x_Symbol] := 1/c*Subst[Int[(a + b*x)^n*Sec[x]*Tan[x], x], x, ArcSec[c*x]] /; FreeQ[{a, b, c, n}, x] && IGtQ[n, 0] +Int[(a_. + b_.*ArcCsc[c_.*x_])^n_, x_Symbol] := -1/c*Subst[Int[(a + b*x)^n*Csc[x]*Cot[x], x], x, ArcCsc[c*x]] /; FreeQ[{a, b, c, n}, x] && IGtQ[n, 0] +Int[(a_. + b_.*ArcSec[c_.*x_])/x_, x_Symbol] := -Subst[Int[(a + b*ArcCos[x/c])/x, x], x, 1/x] /; FreeQ[{a, b, c}, x] +Int[(a_. + b_.*ArcCsc[c_.*x_])/x_, x_Symbol] := -Subst[Int[(a + b*ArcSin[x/c])/x, x], x, 1/x] /; FreeQ[{a, b, c}, x] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcSec[c_.*x_]), x_Symbol] := (d*x)^(m + 1)*(a + b*ArcSec[c*x])/(d*(m + 1)) - b*d/(c*(m + 1))*Int[(d*x)^(m - 1)/Sqrt[1 - 1/(c^2*x^2)], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcCsc[c_.*x_]), x_Symbol] := (d*x)^(m + 1)*(a + b*ArcCsc[c*x])/(d*(m + 1)) + b*d/(c*(m + 1))*Int[(d*x)^(m - 1)/Sqrt[1 - 1/(c^2*x^2)], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[x_^m_.*(a_. + b_.*ArcSec[c_.*x_])^n_, x_Symbol] := 1/c^(m + 1)* Subst[Int[(a + b*x)^n*Sec[x]^(m + 1)*Tan[x], x], x, ArcSec[c*x]] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] && (GtQ[n, 0] || LtQ[m, -1]) +Int[x_^m_.*(a_. + b_.*ArcCsc[c_.*x_])^n_, x_Symbol] := -1/c^(m + 1)* Subst[Int[(a + b*x)^n*Csc[x]^(m + 1)*Cot[x], x], x, ArcCsc[c*x]] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] && (GtQ[n, 0] || LtQ[m, -1]) +Int[(a_. + b_.*ArcSec[c_.*x_])/(d_. + e_.*x_), x_Symbol] := (a + b*ArcSec[c*x])* Log[1 + (e - Sqrt[-c^2*d^2 + e^2])*E^(I*ArcSec[c*x])/(c*d)]/e + (a + b*ArcSec[c*x])* Log[1 + (e + Sqrt[-c^2*d^2 + e^2])*E^(I*ArcSec[c*x])/(c*d)]/e - (a + b*ArcSec[c*x])*Log[1 + E^(2*I*ArcSec[c*x])]/e - b/(c*e)* Int[Log[1 + (e - Sqrt[-c^2*d^2 + e^2])* E^(I*ArcSec[c*x])/(c*d)]/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x] - b/(c*e)* Int[Log[1 + (e + Sqrt[-c^2*d^2 + e^2])* E^(I*ArcSec[c*x])/(c*d)]/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x] + b/(c*e)* Int[Log[1 + E^(2*I*ArcSec[c*x])]/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x] /; FreeQ[{a, b, c, d, e}, x] +Int[(a_. + b_.*ArcCsc[c_.*x_])/(d_. + e_.*x_), x_Symbol] := (a + b*ArcCsc[c*x])* Log[1 - I*(e - Sqrt[-c^2*d^2 + e^2])*E^(I*ArcCsc[c*x])/(c*d)]/ e + (a + b*ArcCsc[c*x])* Log[1 - I*(e + Sqrt[-c^2*d^2 + e^2])*E^(I*ArcCsc[c*x])/(c*d)]/ e - (a + b*ArcCsc[c*x])*Log[1 - E^(2*I*ArcCsc[c*x])]/e + b/(c*e)* Int[Log[1 - I*(e - Sqrt[-c^2*d^2 + e^2])*E^(I*ArcCsc[c*x])/(c*d)]/(x^2* Sqrt[1 - 1/(c^2*x^2)]), x] + b/(c*e)* Int[Log[1 - I*(e + Sqrt[-c^2*d^2 + e^2])*E^(I*ArcCsc[c*x])/(c*d)]/(x^2* Sqrt[1 - 1/(c^2*x^2)]), x] - b/(c*e)* Int[Log[1 - E^(2*I*ArcCsc[c*x])]/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x] /; FreeQ[{a, b, c, d, e}, x] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcSec[c_.*x_]), x_Symbol] := (d + e*x)^(m + 1)*(a + b*ArcSec[c*x])/(e*(m + 1)) - b/(c*e*(m + 1))* Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcCsc[c_.*x_]), x_Symbol] := (d + e*x)^(m + 1)*(a + b*ArcCsc[c*x])/(e*(m + 1)) + b/(c*e*(m + 1))* Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1] +Int[(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcSec[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^p, x]}, Dist[(a + b*ArcSec[c*x]), u, x] - b*c*x/Sqrt[c^2*x^2]* Int[SimplifyIntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0]) +Int[(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcCsc[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^p, x]}, Dist[(a + b*ArcCsc[c*x]), u, x] + b*c*x/Sqrt[c^2*x^2]* Int[SimplifyIntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0]) +Int[(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcSec[c_.*x_])^n_., x_Symbol] := -Subst[Int[(e + d*x^2)^p*(a + b*ArcCos[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[p] +Int[(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcCsc[c_.*x_])^n_., x_Symbol] := -Subst[Int[(e + d*x^2)^p*(a + b*ArcSin[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[p] +Int[(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcSec[c_.*x_])^n_., x_Symbol] := -Sqrt[x^2]/x* Subst[Int[(e + d*x^2)^p*(a + b*ArcCos[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0] +Int[(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcCsc[c_.*x_])^n_., x_Symbol] := -Sqrt[x^2]/x* Subst[Int[(e + d*x^2)^p*(a + b*ArcSin[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0] +Int[(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcSec[c_.*x_])^n_., x_Symbol] := -Sqrt[d + e*x^2]/(x*Sqrt[e + d/x^2])* Subst[Int[(e + d*x^2)^p*(a + b*ArcCos[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && Not[GtQ[e, 0] && LtQ[d, 0]] +Int[(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcCsc[c_.*x_])^n_., x_Symbol] := -Sqrt[d + e*x^2]/(x*Sqrt[e + d/x^2])* Subst[Int[(e + d*x^2)^p*(a + b*ArcSin[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && Not[GtQ[e, 0] && LtQ[d, 0]] +Int[x_*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcSec[c_.*x_]), x_Symbol] := (d + e*x^2)^(p + 1)*(a + b*ArcSec[c*x])/(2*e*(p + 1)) - b*c*x/(2*e*(p + 1)*Sqrt[c^2*x^2])* Int[(d + e*x^2)^(p + 1)/(x*Sqrt[c^2*x^2 - 1]), x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1] +Int[x_*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcCsc[c_.*x_]), x_Symbol] := (d + e*x^2)^(p + 1)*(a + b*ArcCsc[c*x])/(2*e*(p + 1)) + b*c*x/(2*e*(p + 1)*Sqrt[c^2*x^2])* Int[(d + e*x^2)^(p + 1)/(x*Sqrt[c^2*x^2 - 1]), x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1] +Int[(f_.*x_)^m_.*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcSec[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[(a + b*ArcSec[c*x]), u, x] - b*c*x/Sqrt[c^2*x^2]* Int[SimplifyIntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ( IGtQ[p, 0] && Not[ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0]] || IGtQ[(m + 1)/2, 0] && Not[ILtQ[p, 0] && GtQ[m + 2*p + 3, 0]] || ILtQ[(m + 2*p + 1)/2, 0] && Not[ILtQ[(m - 1)/2, 0]]) +Int[(f_.*x_)^m_.*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcCsc[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[(a + b*ArcCsc[c*x]), u, x] + b*c*x/Sqrt[c^2*x^2]* Int[SimplifyIntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ( IGtQ[p, 0] && Not[ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0]] || IGtQ[(m + 1)/2, 0] && Not[ILtQ[p, 0] && GtQ[m + 2*p + 3, 0]] || ILtQ[(m + 2*p + 1)/2, 0] && Not[ILtQ[(m - 1)/2, 0]]) +Int[x_^m_.*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcSec[c_.*x_])^n_., x_Symbol] := -Subst[ Int[(e + d*x^2)^p*(a + b*ArcCos[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[m] && IntegerQ[p] +Int[x_^m_.*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcCsc[c_.*x_])^n_., x_Symbol] := -Subst[ Int[(e + d*x^2)^p*(a + b*ArcSin[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[m] && IntegerQ[p] +Int[x_^m_.*(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcSec[c_.*x_])^n_., x_Symbol] := -Sqrt[x^2]/x* Subst[Int[(e + d*x^2)^p*(a + b*ArcCos[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0] +Int[x_^m_.*(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcCsc[c_.*x_])^n_., x_Symbol] := -Sqrt[x^2]/x* Subst[Int[(e + d*x^2)^p*(a + b*ArcSin[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0] +Int[x_^m_.*(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcSec[c_.*x_])^n_., x_Symbol] := -Sqrt[d + e*x^2]/(x*Sqrt[e + d/x^2])* Subst[Int[(e + d*x^2)^p*(a + b*ArcCos[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && Not[GtQ[e, 0] && LtQ[d, 0]] +Int[x_^m_.*(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcCsc[c_.*x_])^n_., x_Symbol] := -Sqrt[d + e*x^2]/(x*Sqrt[e + d/x^2])* Subst[Int[(e + d*x^2)^p*(a + b*ArcSin[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && Not[GtQ[e, 0] && LtQ[d, 0]] +Int[u_*(a_. + b_.*ArcSec[c_.*x_]), x_Symbol] := With[{v = IntHide[u, x]}, Dist[(a + b*ArcSec[c*x]), v, x] - b/c* Int[SimplifyIntegrand[v/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x], x] /; InverseFunctionFreeQ[v, x]] /; FreeQ[{a, b, c}, x] +Int[u_*(a_. + b_.*ArcCsc[c_.*x_]), x_Symbol] := With[{v = IntHide[u, x]}, Dist[(a + b*ArcCsc[c*x]), v, x] + b/c* Int[SimplifyIntegrand[v/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x], x] /; InverseFunctionFreeQ[v, x]] /; FreeQ[{a, b, c}, x] +Int[u_.*(a_. + b_.*ArcSec[c_.*x_])^n_., x_Symbol] := Unintegrable[u*(a + b*ArcSec[c*x])^n, x] /; FreeQ[{a, b, c, n}, x] +Int[u_.*(a_. + b_.*ArcCsc[c_.*x_])^n_., x_Symbol] := Unintegrable[u*(a + b*ArcCsc[c*x])^n, x] /; FreeQ[{a, b, c, n}, x] diff --git a/IntegrationRules/5 Inverse trig functions/5.5 Inverse secant/5.5.2 Miscellaneous inverse secant.m b/IntegrationRules/5 Inverse trig functions/5.5 Inverse secant/5.5.2 Miscellaneous inverse secant.m new file mode 100755 index 0000000..eb57b97 --- /dev/null +++ b/IntegrationRules/5 Inverse trig functions/5.5 Inverse secant/5.5.2 Miscellaneous inverse secant.m @@ -0,0 +1,27 @@ + +(* ::Subsection::Closed:: *) +(* 5.5.2 Miscellaneous inverse secant *) +Int[ArcSec[c_ + d_.*x_], x_Symbol] := (c + d*x)*ArcSec[c + d*x]/d - Int[1/((c + d*x)*Sqrt[1 - 1/(c + d*x)^2]), x] /; FreeQ[{c, d}, x] +Int[ArcCsc[c_ + d_.*x_], x_Symbol] := (c + d*x)*ArcCsc[c + d*x]/d + Int[1/((c + d*x)*Sqrt[1 - 1/(c + d*x)^2]), x] /; FreeQ[{c, d}, x] +Int[(a_. + b_.*ArcSec[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcSec[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcCsc[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcCsc[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcSec[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(a + b*ArcSec[c + d*x])^p, x] /; FreeQ[{a, b, c, d, p}, x] && Not[IGtQ[p, 0]] +Int[(a_. + b_.*ArcCsc[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(a + b*ArcCsc[c + d*x])^p, x] /; FreeQ[{a, b, c, d, p}, x] && Not[IGtQ[p, 0]] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcSec[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(f*x/d)^m*(a + b*ArcSec[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCsc[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(f*x/d)^m*(a + b*ArcCsc[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcSec[c_ + d_.*x_])^p_., x_Symbol] := 1/d^(m + 1)* Subst[Int[(a + b*x)^p*Sec[x]*Tan[x]*(d*e - c*f + f*Sec[x])^m, x], x, ArcSec[c + d*x]] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && IntegerQ[m] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCsc[c_ + d_.*x_])^p_., x_Symbol] := -1/d^(m + 1)* Subst[Int[(a + b*x)^p*Csc[x]*Cot[x]*(d*e - c*f + f*Csc[x])^m, x], x, ArcCsc[c + d*x]] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && IntegerQ[m] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcSec[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcSec[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCsc[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcCsc[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcSec[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(e + f*x)^m*(a + b*ArcSec[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && Not[IGtQ[p, 0]] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCsc[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(e + f*x)^m*(a + b*ArcCsc[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && Not[IGtQ[p, 0]] +Int[u_.*ArcSec[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcCos[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[u_.*ArcCsc[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcSin[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[u_.*f_^(c_.*ArcSec[a_. + b_.*x_]^n_.), x_Symbol] := 1/b*Subst[ Int[ReplaceAll[u, x -> -a/b + Sec[x]/b]*f^(c*x^n)*Sec[x]*Tan[x], x], x, ArcSec[a + b*x]] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0] +Int[u_.*f_^(c_.*ArcCsc[a_. + b_.*x_]^n_.), x_Symbol] := -1/b*Subst[ Int[ReplaceAll[u, x -> -a/b + Csc[x]/b]*f^(c*x^n)*Csc[x]*Cot[x], x], x, ArcCsc[a + b*x]] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0] +Int[ArcSec[u_], x_Symbol] := x*ArcSec[u] - u/Sqrt[u^2]* Int[SimplifyIntegrand[x*D[u, x]/(u*Sqrt[u^2 - 1]), x], x] /; InverseFunctionFreeQ[u, x] && Not[FunctionOfExponentialQ[u, x]] +Int[ArcCsc[u_], x_Symbol] := x*ArcCsc[u] + u/Sqrt[u^2]* Int[SimplifyIntegrand[x*D[u, x]/(u*Sqrt[u^2 - 1]), x], x] /; InverseFunctionFreeQ[u, x] && Not[FunctionOfExponentialQ[u, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcSec[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcSec[u])/(d*(m + 1)) - b*u/(d*(m + 1)*Sqrt[u^2])* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/(u*Sqrt[u^2 - 1]), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && Not[FunctionOfExponentialQ[u, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcCsc[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcCsc[u])/(d*(m + 1)) + b*u/(d*(m + 1)*Sqrt[u^2])* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/(u*Sqrt[u^2 - 1]), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && Not[FunctionOfExponentialQ[u, x]] +Int[v_*(a_. + b_.*ArcSec[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcSec[u]), w, x] - b*u/Sqrt[u^2]* Int[SimplifyIntegrand[w*D[u, x]/(u*Sqrt[u^2 - 1]), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] +Int[v_*(a_. + b_.*ArcCsc[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcCsc[u]), w, x] + b*u/Sqrt[u^2]* Int[SimplifyIntegrand[w*D[u, x]/(u*Sqrt[u^2 - 1]), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] diff --git a/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.10 (c+d x)^m (a+b sinh)^n.m b/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.10 (c+d x)^m (a+b sinh)^n.m new file mode 100755 index 0000000..3d369c6 --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.10 (c+d x)^m (a+b sinh)^n.m @@ -0,0 +1,5 @@ + +(* ::Subsection::Closed:: *) +(* 6.1.10 (c+d x)^m (a+b sinh)^n *) +Int[u_^m_.*(a_. + b_.*Sinh[v_])^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*(a + b*Sinh[ExpandToSum[v, x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] +Int[u_^m_.*(a_. + b_.*Cosh[v_])^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*(a + b*Cosh[ExpandToSum[v, x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] diff --git a/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.11 (e x)^m (a+b x^n)^p sinh.m b/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.11 (e x)^m (a+b x^n)^p sinh.m new file mode 100755 index 0000000..3ac41bb --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.11 (e x)^m (a+b x^n)^p sinh.m @@ -0,0 +1,25 @@ + +(* ::Subsection::Closed:: *) +(* 6.1.11 (e x)^m (a+b x^n)^p sinh *) +Int[(a_ + b_.*x_^n_)^p_.*Sinh[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Sinh[c + d*x], (a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0] +Int[(a_ + b_.*x_^n_)^p_.*Cosh[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Cosh[c + d*x], (a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0] +Int[(a_ + b_.*x_^n_)^p_*Sinh[c_. + d_.*x_], x_Symbol] := x^(-n + 1)*(a + b*x^n)^(p + 1)*Sinh[c + d*x]/(b*n*(p + 1)) - (-n + 1)/(b*n*(p + 1))* Int[x^(-n)*(a + b*x^n)^(p + 1)*Sinh[c + d*x], x] - d/(b*n*(p + 1))* Int[x^(-n + 1)*(a + b*x^n)^(p + 1)*Cosh[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IntegerQ[p] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[n, 2] +Int[(a_ + b_.*x_^n_)^p_*Cosh[c_. + d_.*x_], x_Symbol] := x^(-n + 1)*(a + b*x^n)^(p + 1)*Cosh[c + d*x]/(b*n*(p + 1)) - (-n + 1)/(b*n*(p + 1))* Int[x^(-n)*(a + b*x^n)^(p + 1)*Cosh[c + d*x], x] - d/(b*n*(p + 1))* Int[x^(-n + 1)*(a + b*x^n)^(p + 1)*Sinh[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IntegerQ[p] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[n, 2] +Int[(a_ + b_.*x_^n_)^p_*Sinh[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Sinh[c + d*x], (a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1]) +Int[(a_ + b_.*x_^n_)^p_*Cosh[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Cosh[c + d*x], (a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1]) +Int[(a_ + b_.*x_^n_)^p_*Sinh[c_. + d_.*x_], x_Symbol] := Int[x^(n*p)*(b + a*x^(-n))^p*Sinh[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && ILtQ[n, 0] +Int[(a_ + b_.*x_^n_)^p_*Cosh[c_. + d_.*x_], x_Symbol] := Int[x^(n*p)*(b + a*x^(-n))^p*Cosh[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && ILtQ[n, 0] +Int[(a_ + b_.*x_^n_)^p_*Sinh[c_. + d_.*x_], x_Symbol] := Unintegrable[(a + b*x^n)^p*Sinh[c + d*x], x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(a_ + b_.*x_^n_)^p_*Cosh[c_. + d_.*x_], x_Symbol] := Unintegrable[(a + b*x^n)^p*Cosh[c + d*x], x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_.*Sinh[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Sinh[c + d*x], (e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0] +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_.*Cosh[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Cosh[c + d*x], (e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0] +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_*Sinh[c_. + d_.*x_], x_Symbol] := e^m*(a + b*x^n)^(p + 1)*Sinh[c + d*x]/(b*n*(p + 1)) - d*e^m/(b*n*(p + 1))*Int[(a + b*x^n)^(p + 1)*Cosh[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IntegerQ[p] && EqQ[m - n + 1, 0] && LtQ[p, -1] && (IntegerQ[n] || GtQ[e, 0]) +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_*Cosh[c_. + d_.*x_], x_Symbol] := e^m*(a + b*x^n)^(p + 1)*Cosh[c + d*x]/(b*n*(p + 1)) - d*e^m/(b*n*(p + 1))*Int[(a + b*x^n)^(p + 1)*Sinh[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IntegerQ[p] && EqQ[m - n + 1, 0] && LtQ[p, -1] && (IntegerQ[n] || GtQ[e, 0]) +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Sinh[c_. + d_.*x_], x_Symbol] := x^(m - n + 1)*(a + b*x^n)^(p + 1)*Sinh[c + d*x]/(b*n*(p + 1)) - (m - n + 1)/(b*n*(p + 1))* Int[x^(m - n)*(a + b*x^n)^(p + 1)*Sinh[c + d*x], x] - d/(b*n*(p + 1))* Int[x^(m - n + 1)*(a + b*x^n)^(p + 1)*Cosh[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, -1] && IGtQ[n, 0] && RationalQ[m] && (GtQ[m - n + 1, 0] || GtQ[n, 2]) +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Cosh[c_. + d_.*x_], x_Symbol] := x^(m - n + 1)*(a + b*x^n)^(p + 1)*Cosh[c + d*x]/(b*n*(p + 1)) - (m - n + 1)/(b*n*(p + 1))* Int[x^(m - n)*(a + b*x^n)^(p + 1)*Cosh[c + d*x], x] - d/(b*n*(p + 1))* Int[x^(m - n + 1)*(a + b*x^n)^(p + 1)*Sinh[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, -1] && IGtQ[n, 0] && RationalQ[m] && (GtQ[m - n + 1, 0] || GtQ[n, 2]) +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Sinh[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Sinh[c + d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1]) +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Cosh[c_. + d_.*x_], x_Symbol] := Int[ExpandIntegrand[Cosh[c + d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1]) +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Sinh[c_. + d_.*x_], x_Symbol] := Int[x^(m + n*p)*(b + a*x^(-n))^p*Sinh[c + d*x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && ILtQ[n, 0] +Int[x_^m_.*(a_ + b_.*x_^n_)^p_*Cosh[c_. + d_.*x_], x_Symbol] := Int[x^(m + n*p)*(b + a*x^(-n))^p*Cosh[c + d*x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && ILtQ[n, 0] +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_.*Sinh[c_. + d_.*x_], x_Symbol] := Unintegrable[(e*x)^m*(a + b*x^n)^p*Sinh[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_.*x_)^m_.*(a_ + b_.*x_^n_)^p_.*Cosh[c_. + d_.*x_], x_Symbol] := Unintegrable[(e*x)^m*(a + b*x^n)^p*Cosh[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] diff --git a/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.12 (e x)^m (a+b sinh(c+d x^n))^p.m b/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.12 (e x)^m (a+b sinh(c+d x^n))^p.m new file mode 100755 index 0000000..6dd3104 --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.12 (e x)^m (a+b sinh(c+d x^n))^p.m @@ -0,0 +1,79 @@ + +(* ::Subsection::Closed:: *) +(* 6.1.12 (e x)^m (a+b sinh(c+d x^n))^p *) +Int[Sinh[c_. + d_.*x_^n_], x_Symbol] := 1/2*Int[E^(c + d*x^n), x] - 1/2*Int[E^(-c - d*x^n), x] /; FreeQ[{c, d}, x] && IGtQ[n, 1] +Int[Cosh[c_. + d_.*x_^n_], x_Symbol] := 1/2*Int[E^(c + d*x^n), x] + 1/2*Int[E^(-c - d*x^n), x] /; FreeQ[{c, d}, x] && IGtQ[n, 1] +Int[(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(a + b*Sinh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 1] && IGtQ[p, 1] +Int[(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(a + b*Cosh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 1] && IGtQ[p, 1] +Int[(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := -Subst[Int[(a + b*Sinh[c + d*x^(-n)])^p/x^2, x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && ILtQ[n, 0] && IntegerQ[p] +Int[(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := -Subst[Int[(a + b*Cosh[c + d*x^(-n)])^p/x^2, x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && ILtQ[n, 0] && IntegerQ[p] +Int[(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := Module[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*Sinh[c + d*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c, d}, x] && FractionQ[n] && IntegerQ[p] +Int[(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := Module[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*Cosh[c + d*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c, d}, x] && FractionQ[n] && IntegerQ[p] +Int[Sinh[c_. + d_.*x_^n_], x_Symbol] := 1/2*Int[E^(c + d*x^n), x] - 1/2*Int[E^(-c - d*x^n), x] /; FreeQ[{c, d, n}, x] +Int[Cosh[c_. + d_.*x_^n_], x_Symbol] := 1/2*Int[E^(c + d*x^n), x] + 1/2*Int[E^(-c - d*x^n), x] /; FreeQ[{c, d, n}, x] +Int[(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(a + b*Sinh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0] +Int[(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(a + b*Cosh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0] +Int[(a_. + b_.*Sinh[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]* Subst[Int[(a + b*Sinh[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n}, x] && IntegerQ[p] && LinearQ[u, x] && NeQ[u, x] +Int[(a_. + b_.*Cosh[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]* Subst[Int[(a + b*Cosh[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n}, x] && IntegerQ[p] && LinearQ[u, x] && NeQ[u, x] +Int[(a_. + b_.*Sinh[c_. + d_.*u_^n_])^p_, x_Symbol] := Unintegrable[(a + b*Sinh[c + d*u^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] +Int[(a_. + b_.*Cosh[c_. + d_.*u_^n_])^p_, x_Symbol] := Unintegrable[(a + b*Cosh[c + d*u^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] +Int[(a_. + b_.*Sinh[u_])^p_., x_Symbol] := Int[(a + b*Sinh[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(a_. + b_.*Cosh[u_])^p_., x_Symbol] := Int[(a + b*Cosh[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[Sinh[d_.*x_^n_]/x_, x_Symbol] := SinhIntegral[d*x^n]/n /; FreeQ[{d, n}, x] +Int[Cosh[d_.*x_^n_]/x_, x_Symbol] := CoshIntegral[d*x^n]/n /; FreeQ[{d, n}, x] +Int[Sinh[c_ + d_.*x_^n_]/x_, x_Symbol] := Sinh[c]*Int[Cosh[d*x^n]/x, x] + Cosh[c]*Int[Sinh[d*x^n]/x, x] /; FreeQ[{c, d, n}, x] +Int[Cosh[c_ + d_.*x_^n_]/x_, x_Symbol] := Cosh[c]*Int[Cosh[d*x^n]/x, x] + Sinh[c]*Int[Sinh[d*x^n]/x, x] /; FreeQ[{c, d, n}, x] +Int[x_^m_.*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Sinh[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[ Simplify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]) +Int[x_^m_.*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Cosh[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[ Simplify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]) +Int[(e_*x_)^m_*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Sinh[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]] +Int[(e_*x_)^m_*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Cosh[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]] +Int[(e_.*x_)^m_.*Sinh[c_. + d_.*x_^n_], x_Symbol] := e^(n - 1)*(e*x)^(m - n + 1)*Cosh[c + d*x^n]/(d*n) - e^n*(m - n + 1)/(d*n)*Int[(e*x)^(m - n)*Cosh[c + d*x^n], x] /; FreeQ[{c, d, e}, x] && IGtQ[n, 0] && LtQ[0, n, m + 1] +Int[(e_.*x_)^m_.*Cosh[c_. + d_.*x_^n_], x_Symbol] := e^(n - 1)*(e*x)^(m - n + 1)*Sinh[c + d*x^n]/(d*n) - e^n*(m - n + 1)/(d*n)*Int[(e*x)^(m - n)*Sinh[c + d*x^n], x] /; FreeQ[{c, d, e}, x] && IGtQ[n, 0] && LtQ[0, n, m + 1] +Int[(e_.*x_)^m_*Sinh[c_. + d_.*x_^n_], x_Symbol] := (e*x)^(m + 1)*Sinh[c + d*x^n]/(e*(m + 1)) - d*n/(e^n*(m + 1))*Int[(e*x)^(m + n)*Cosh[c + d*x^n], x] /; FreeQ[{c, d, e}, x] && IGtQ[n, 0] && LtQ[m, -1] +Int[(e_.*x_)^m_*Cosh[c_. + d_.*x_^n_], x_Symbol] := (e*x)^(m + 1)*Cosh[c + d*x^n]/(e*(m + 1)) - d*n/(e^n*(m + 1))*Int[(e*x)^(m + n)*Sinh[c + d*x^n], x] /; FreeQ[{c, d, e}, x] && IGtQ[n, 0] && LtQ[m, -1] +Int[(e_.*x_)^m_.*Sinh[c_. + d_.*x_^n_], x_Symbol] := 1/2*Int[(e*x)^m*E^(c + d*x^n), x] - 1/2*Int[(e*x)^m*E^(-c - d*x^n), x] /; FreeQ[{c, d, e, m}, x] && IGtQ[n, 0] +Int[(e_.*x_)^m_.*Cosh[c_. + d_.*x_^n_], x_Symbol] := 1/2*Int[(e*x)^m*E^(c + d*x^n), x] + 1/2*Int[(e*x)^m*E^(-c - d*x^n), x] /; FreeQ[{c, d, e, m}, x] && IGtQ[n, 0] +Int[x_^m_.*Sinh[a_. + b_.*x_^n_]^p_, x_Symbol] := -Sinh[a + b*x^n]^p/((n - 1)*x^(n - 1)) + b*n*p/(n - 1)*Int[Sinh[a + b*x^n]^(p - 1)*Cosh[a + b*x^n], x] /; FreeQ[{a, b}, x] && IntegersQ[n, p] && EqQ[m + n, 0] && GtQ[p, 1] && NeQ[n, 1] +Int[x_^m_.*Cosh[a_. + b_.*x_^n_]^p_, x_Symbol] := -Cosh[a + b*x^n]^p/((n - 1)*x^(n - 1)) + b*n*p/(n - 1)*Int[Cosh[a + b*x^n]^(p - 1)*Sinh[a + b*x^n], x] /; FreeQ[{a, b}, x] && IntegersQ[n, p] && EqQ[m + n, 0] && GtQ[p, 1] && NeQ[n, 1] +Int[x_^m_.*Sinh[a_. + b_.*x_^n_]^p_, x_Symbol] := -n*Sinh[a + b*x^n]^p/(b^2*n^2*p^2) + x^n*Cosh[a + b*x^n]*Sinh[a + b*x^n]^(p - 1)/(b*n*p) - (p - 1)/p*Int[x^m*Sinh[a + b*x^n]^(p - 2), x] /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1] && GtQ[p, 1] +Int[x_^m_.*Cosh[a_. + b_.*x_^n_]^p_, x_Symbol] := -n*Cosh[a + b*x^n]^p/(b^2*n^2*p^2) + x^n*Sinh[a + b*x^n]*Cosh[a + b*x^n]^(p - 1)/(b*n*p) + (p - 1)/p*Int[x^m*Cosh[a + b*x^n]^(p - 2), x] /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1] && GtQ[p, 1] +Int[x_^m_.*Sinh[a_. + b_.*x_^n_]^p_, x_Symbol] := -(m - n + 1)*x^(m - 2*n + 1)*Sinh[a + b*x^n]^p/(b^2*n^2*p^2) + x^(m - n + 1)*Cosh[a + b*x^n]*Sinh[a + b*x^n]^(p - 1)/(b*n*p) - (p - 1)/p*Int[x^m*Sinh[a + b*x^n]^(p - 2), x] + (m - n + 1)*(m - 2*n + 1)/(b^2*n^2*p^2)* Int[x^(m - 2*n)*Sinh[a + b*x^n]^p, x] /; FreeQ[{a, b}, x] && IntegersQ[m, n] && GtQ[p, 1] && LtQ[0, 2*n, m + 1] +Int[x_^m_.*Cosh[a_. + b_.*x_^n_]^p_, x_Symbol] := -(m - n + 1)*x^(m - 2*n + 1)*Cosh[a + b*x^n]^p/(b^2*n^2*p^2) + x^(m - n + 1)*Sinh[a + b*x^n]*Cosh[a + b*x^n]^(p - 1)/(b*n*p) + (p - 1)/p*Int[x^m*Cosh[a + b*x^n]^(p - 2), x] + (m - n + 1)*(m - 2*n + 1)/(b^2*n^2*p^2)* Int[x^(m - 2*n)*Cosh[a + b*x^n]^p, x] /; FreeQ[{a, b}, x] && IntegersQ[m, n] && GtQ[p, 1] && LtQ[0, 2*n, m + 1] +Int[x_^m_.*Sinh[a_. + b_.*x_^n_]^p_, x_Symbol] := x^(m + 1)*Sinh[a + b*x^n]^p/(m + 1) - b*n*p*x^(m + n + 1)*Cosh[a + b*x^n]* Sinh[a + b*x^n]^(p - 1)/((m + 1)*(m + n + 1)) + b^2*n^2*p^2/((m + 1)*(m + n + 1))* Int[x^(m + 2*n)*Sinh[a + b*x^n]^p, x] + b^2*n^2*p*(p - 1)/((m + 1)*(m + n + 1))* Int[x^(m + 2*n)*Sinh[a + b*x^n]^(p - 2), x] /; FreeQ[{a, b}, x] && IntegersQ[m, n] && GtQ[p, 1] && LtQ[0, 2*n, 1 - m] && NeQ[m + n + 1, 0] +Int[x_^m_.*Cosh[a_. + b_.*x_^n_]^p_, x_Symbol] := x^(m + 1)*Cosh[a + b*x^n]^p/(m + 1) - b*n*p*x^(m + n + 1)*Sinh[a + b*x^n]* Cosh[a + b*x^n]^(p - 1)/((m + 1)*(m + n + 1)) + b^2*n^2*p^2/((m + 1)*(m + n + 1))* Int[x^(m + 2*n)*Cosh[a + b*x^n]^p, x] - b^2*n^2*p*(p - 1)/((m + 1)*(m + n + 1))* Int[x^(m + 2*n)*Cosh[a + b*x^n]^(p - 2), x] /; FreeQ[{a, b}, x] && IntegersQ[m, n] && GtQ[p, 1] && LtQ[0, 2*n, 1 - m] && NeQ[m + n + 1, 0] +Int[(e_.*x_)^m_*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := With[{k = Denominator[m]}, k/e* Subst[Int[x^(k*(m + 1) - 1)*(a + b*Sinh[c + d*x^(k*n)/e^n])^p, x], x, (e*x)^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[p] && IGtQ[n, 0] && FractionQ[m] +Int[(e_.*x_)^m_*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := With[{k = Denominator[m]}, k/e* Subst[Int[x^(k*(m + 1) - 1)*(a + b*Cosh[c + d*x^(k*n)/e^n])^p, x], x, (e*x)^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[p] && IGtQ[n, 0] && FractionQ[m] +Int[(e_.*x_)^m_.*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(e*x)^m, (a + b*Sinh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 1] && IGtQ[n, 0] +Int[(e_.*x_)^m_.*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(e*x)^m, (a + b*Cosh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 1] && IGtQ[n, 0] +Int[x_^m_.*Sinh[a_. + b_.*x_^n_]^p_, x_Symbol] := x^n*Cosh[a + b*x^n]*Sinh[a + b*x^n]^(p + 1)/(b*n*(p + 1)) - n*Sinh[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2)) - (p + 2)/(p + 1)*Int[x^m*Sinh[a + b*x^n]^(p + 2), x] /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && LtQ[p, -1] && NeQ[p, -2] +Int[x_^m_.*Cosh[a_. + b_.*x_^n_]^p_, x_Symbol] := -x^n*Sinh[a + b*x^n]*Cosh[a + b*x^n]^(p + 1)/(b*n*(p + 1)) + n*Cosh[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2)) + (p + 2)/(p + 1)*Int[x^m*Cosh[a + b*x^n]^(p + 2), x] /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && LtQ[p, -1] && NeQ[p, -2] +Int[x_^m_.*Sinh[a_. + b_.*x_^n_]^p_, x_Symbol] := x^(m - n + 1)*Cosh[a + b*x^n]* Sinh[a + b*x^n]^(p + 1)/(b*n*(p + 1)) - (m - n + 1)*x^(m - 2*n + 1)* Sinh[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2)) - (p + 2)/(p + 1)*Int[x^m*Sinh[a + b*x^n]^(p + 2), x] + (m - n + 1)*(m - 2*n + 1)/(b^2*n^2*(p + 1)*(p + 2))* Int[x^(m - 2*n)*Sinh[a + b*x^n]^(p + 2), x] /; FreeQ[{a, b}, x] && IntegersQ[m, n] && LtQ[p, -1] && NeQ[p, -2] && LtQ[0, 2*n, m + 1] +Int[x_^m_.*Cosh[a_. + b_.*x_^n_]^p_, x_Symbol] := -x^(m - n + 1)*Sinh[a + b*x^n]* Cosh[a + b*x^n]^(p + 1)/(b*n*(p + 1)) + (m - n + 1)*x^(m - 2*n + 1)* Cosh[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2)) + (p + 2)/(p + 1)*Int[x^m*Cosh[a + b*x^n]^(p + 2), x] - (m - n + 1)*(m - 2*n + 1)/(b^2*n^2*(p + 1)*(p + 2))* Int[x^(m - 2*n)*Cosh[a + b*x^n]^(p + 2), x] /; FreeQ[{a, b}, x] && IntegersQ[m, n] && LtQ[p, -1] && NeQ[p, -2] && LtQ[0, 2*n, m + 1] +Int[x_^m_.*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := -Subst[Int[(a + b*Sinh[c + d*x^(-n)])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && IntegerQ[p] && ILtQ[n, 0] && IntegerQ[m] +Int[x_^m_.*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := -Subst[Int[(a + b*Cosh[c + d*x^(-n)])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && IntegerQ[p] && ILtQ[n, 0] && IntegerQ[m] +Int[(e_.*x_)^m_*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := With[{k = Denominator[m]}, -k/e* Subst[Int[(a + b*Sinh[c + d/(e^n*x^(k*n))])^p/x^(k*(m + 1) + 1), x], x, 1/(e*x)^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[p] && ILtQ[n, 0] && FractionQ[m] +Int[(e_.*x_)^m_*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := With[{k = Denominator[m]}, -k/e* Subst[Int[(a + b*Cosh[c + d/(e^n*x^(k*n))])^p/x^(k*(m + 1) + 1), x], x, 1/(e*x)^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[p] && ILtQ[n, 0] && FractionQ[m] +Int[(e_.*x_)^m_*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := -(e*x)^m*(x^(-1))^m* Subst[Int[(a + b*Sinh[c + d*x^(-n)])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d, e, m}, x] && IntegerQ[p] && ILtQ[n, 0] && Not[RationalQ[m]] +Int[(e_.*x_)^m_*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := -(e*x)^m*(x^(-1))^m* Subst[Int[(a + b*Cosh[c + d*x^(-n)])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d, e, m}, x] && IntegerQ[p] && ILtQ[n, 0] && Not[RationalQ[m]] +Int[x_^m_.*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := Module[{k = Denominator[n]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*Sinh[c + d*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, m}, x] && IntegerQ[p] && FractionQ[n] +Int[x_^m_.*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := Module[{k = Denominator[n]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*Cosh[c + d*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, m}, x] && IntegerQ[p] && FractionQ[n] +Int[(e_*x_)^m_*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Sinh[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && IntegerQ[p] && FractionQ[n] +Int[(e_*x_)^m_*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Cosh[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && IntegerQ[p] && FractionQ[n] +Int[x_^m_.*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/(m + 1)* Subst[Int[(a + b*Sinh[c + d*x^Simplify[n/(m + 1)]])^p, x], x, x^(m + 1)] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && Not[IntegerQ[n]] +Int[x_^m_.*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/(m + 1)* Subst[Int[(a + b*Cosh[c + d*x^Simplify[n/(m + 1)]])^p, x], x, x^(m + 1)] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && Not[IntegerQ[n]] +Int[(e_*x_)^m_*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Sinh[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && Not[IntegerQ[n]] +Int[(e_*x_)^m_*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Cosh[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && Not[IntegerQ[n]] +Int[(e_.*x_)^m_.*Sinh[c_. + d_.*x_^n_], x_Symbol] := 1/2*Int[(e*x)^m*E^(c + d*x^n), x] - 1/2*Int[(e*x)^m*E^(-c - d*x^n), x] /; FreeQ[{c, d, e, m, n}, x] +Int[(e_.*x_)^m_.*Cosh[c_. + d_.*x_^n_], x_Symbol] := 1/2*Int[(e*x)^m*E^(c + d*x^n), x] + 1/2*Int[(e*x)^m*E^(-c - d*x^n), x] /; FreeQ[{c, d, e, m, n}, x] +Int[(e_.*x_)^m_.*(a_. + b_.*Sinh[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(e*x)^m, (a + b*Sinh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0] +Int[(e_.*x_)^m_.*(a_. + b_.*Cosh[c_. + d_.*x_^n_])^p_, x_Symbol] := Int[ExpandTrigReduce[(e*x)^m, (a + b*Cosh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0] +Int[x_^m_.*(a_. + b_.*Sinh[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]^(m + 1)* Subst[Int[(x - Coefficient[u, x, 0])^m*(a + b*Sinh[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x] && IntegerQ[m] +Int[x_^m_.*(a_. + b_.*Cosh[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]^(m + 1)* Subst[Int[(x - Coefficient[u, x, 0])^m*(a + b*Cosh[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x] && IntegerQ[m] +Int[(e_.*x_)^m_.*(a_. + b_.*Sinh[c_. + d_.*u_^n_])^p_., x_Symbol] := Unintegrable[(e*x)^m*(a + b*Sinh[c + d*u^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && LinearQ[u, x] +Int[(e_.*x_)^m_.*(a_. + b_.*Cosh[c_. + d_.*u_^n_])^p_., x_Symbol] := Unintegrable[(e*x)^m*(a + b*Cosh[c + d*u^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && LinearQ[u, x] +Int[(e_*x_)^m_.*(a_. + b_.*Sinh[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Sinh[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(e_*x_)^m_.*(a_. + b_.*Cosh[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Cosh[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[x_^m_.*Sinh[a_. + b_.*x_^n_]^p_.*Cosh[a_. + b_.*x_^n_.], x_Symbol] := Sinh[a + b*x^n]^(p + 1)/(b*n*(p + 1)) /; FreeQ[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1] +Int[x_^m_.*Cosh[a_. + b_.*x_^n_]^p_.*Sinh[a_. + b_.*x_^n_.], x_Symbol] := Cosh[a + b*x^n]^(p + 1)/(b*n*(p + 1)) /; FreeQ[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1] +Int[x_^m_.*Sinh[a_. + b_.*x_^n_.]^p_.*Cosh[a_. + b_.*x_^n_.], x_Symbol] := x^(m - n + 1)*Sinh[a + b*x^n]^(p + 1)/(b*n*(p + 1)) - (m - n + 1)/(b*n*(p + 1))* Int[x^(m - n)*Sinh[a + b*x^n]^(p + 1), x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1] +Int[x_^m_.*Cosh[a_. + b_.*x_^n_.]^p_.*Sinh[a_. + b_.*x_^n_.], x_Symbol] := x^(m - n + 1)*Cosh[a + b*x^n]^(p + 1)/(b*n*(p + 1)) - (m - n + 1)/(b*n*(p + 1))* Int[x^(m - n)*Cosh[a + b*x^n]^(p + 1), x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1] diff --git a/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.13 (d+e x)^m sinh(a+b x+c x^2)^n.m b/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.13 (d+e x)^m sinh(a+b x+c x^2)^n.m new file mode 100755 index 0000000..22663b7 --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.1 Hyperbolic sine/6.1.13 (d+e x)^m sinh(a+b x+c x^2)^n.m @@ -0,0 +1,27 @@ + +(* ::Subsection::Closed:: *) +(* 6.1.13 (d+e x)^m sinh(a+b x+c x^2)^n *) +Int[Sinh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := 1/2*Int[E^(a + b*x + c*x^2), x] - 1/2*Int[E^(-a - b*x - c*x^2), x] /; FreeQ[{a, b, c}, x] +Int[Cosh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := 1/2*Int[E^(a + b*x + c*x^2), x] + 1/2*Int[E^(-a - b*x - c*x^2), x] /; FreeQ[{a, b, c}, x] +Int[Sinh[a_. + b_.*x_ + c_.*x_^2]^n_, x_Symbol] := Int[ExpandTrigReduce[Sinh[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 1] +Int[Cosh[a_. + b_.*x_ + c_.*x_^2]^n_, x_Symbol] := Int[ExpandTrigReduce[Cosh[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 1] +Int[Sinh[v_]^n_., x_Symbol] := Int[Sinh[ExpandToSum[v, x]]^n, x] /; IGtQ[n, 0] && QuadraticQ[v, x] && Not[QuadraticMatchQ[v, x]] +Int[Cosh[v_]^n_., x_Symbol] := Int[Cosh[ExpandToSum[v, x]]^n, x] /; IGtQ[n, 0] && QuadraticQ[v, x] && Not[QuadraticMatchQ[v, x]] +Int[(d_. + e_.*x_)*Sinh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*Cosh[a + b*x + c*x^2]/(2*c) /; FreeQ[{a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)*Cosh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*Sinh[a + b*x + c*x^2]/(2*c) /; FreeQ[{a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)*Sinh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*Cosh[a + b*x + c*x^2]/(2*c) - (b*e - 2*c*d)/(2*c)*Int[Sinh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)*Cosh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*Sinh[a + b*x + c*x^2]/(2*c) - (b*e - 2*c*d)/(2*c)*Int[Cosh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*Sinh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*(d + e*x)^(m - 1)*Cosh[a + b*x + c*x^2]/(2*c) - e^2*(m - 1)/(2*c)* Int[(d + e*x)^(m - 2)*Cosh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1] && EqQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*Cosh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*(d + e*x)^(m - 1)*Sinh[a + b*x + c*x^2]/(2*c) - e^2*(m - 1)/(2*c)* Int[(d + e*x)^(m - 2)*Sinh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1] && EqQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*Sinh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*(d + e*x)^(m - 1)*Cosh[a + b*x + c*x^2]/(2*c) - (b*e - 2*c*d)/(2*c)* Int[(d + e*x)^(m - 1)*Sinh[a + b*x + c*x^2], x] - e^2*(m - 1)/(2*c)* Int[(d + e*x)^(m - 2)*Cosh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1] && NeQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*Cosh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*(d + e*x)^(m - 1)*Sinh[a + b*x + c*x^2]/(2*c) - (b*e - 2*c*d)/(2*c)* Int[(d + e*x)^(m - 1)*Cosh[a + b*x + c*x^2], x] - e^2*(m - 1)/(2*c)* Int[(d + e*x)^(m - 2)*Sinh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1] && NeQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*Sinh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := (d + e*x)^(m + 1)*Sinh[a + b*x + c*x^2]/(e*(m + 1)) - 2*c/(e^2*(m + 1))* Int[(d + e*x)^(m + 2)*Cosh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[m, -1] && EqQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*Cosh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := (d + e*x)^(m + 1)*Cosh[a + b*x + c*x^2]/(e*(m + 1)) - 2*c/(e^2*(m + 1))* Int[(d + e*x)^(m + 2)*Sinh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[m, -1] && EqQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*Sinh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := (d + e*x)^(m + 1)*Sinh[a + b*x + c*x^2]/(e*(m + 1)) - (b*e - 2*c*d)/(e^2*(m + 1))* Int[(d + e*x)^(m + 1)*Cosh[a + b*x + c*x^2], x] - 2*c/(e^2*(m + 1))* Int[(d + e*x)^(m + 2)*Cosh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[m, -1] && NeQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_*Cosh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := (d + e*x)^(m + 1)*Cosh[a + b*x + c*x^2]/(e*(m + 1)) - (b*e - 2*c*d)/(e^2*(m + 1))* Int[(d + e*x)^(m + 1)*Sinh[a + b*x + c*x^2], x] - 2*c/(e^2*(m + 1))* Int[(d + e*x)^(m + 2)*Sinh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[m, -1] && NeQ[b*e - 2*c*d, 0] +Int[(d_. + e_.*x_)^m_.*Sinh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := Unintegrable[(d + e*x)^m*Sinh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x] +Int[(d_. + e_.*x_)^m_.*Cosh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := Unintegrable[(d + e*x)^m*Cosh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x] +Int[(d_. + e_.*x_)^m_.*Sinh[a_. + b_.*x_ + c_.*x_^2]^n_, x_Symbol] := Int[ExpandTrigReduce[(d + e*x)^m, Sinh[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 1] +Int[(d_. + e_.*x_)^m_.*Cosh[a_. + b_.*x_ + c_.*x_^2]^n_, x_Symbol] := Int[ExpandTrigReduce[(d + e*x)^m, Cosh[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 1] +Int[u_^m_.*Sinh[v_]^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*Sinh[ExpandToSum[v, x]]^n, x] /; FreeQ[m, x] && IGtQ[n, 0] && LinearQ[u, x] && QuadraticQ[v, x] && Not[LinearMatchQ[u, x] && QuadraticMatchQ[v, x]] +Int[u_^m_.*Cosh[v_]^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*Cosh[ExpandToSum[v, x]]^n, x] /; FreeQ[m, x] && IGtQ[n, 0] && LinearQ[u, x] && QuadraticQ[v, x] && Not[LinearMatchQ[u, x] && QuadraticMatchQ[v, x]] diff --git a/IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.10 (c+d x)^m (a+b tanh)^n.m b/IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.10 (c+d x)^m (a+b tanh)^n.m new file mode 100755 index 0000000..739e215 --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.10 (c+d x)^m (a+b tanh)^n.m @@ -0,0 +1,5 @@ + +(* ::Subsection::Closed:: *) +(* 6.3.10 (c+d x)^m (a+b tanh)^n *) +Int[u_^m_.*(a_. + b_.*Tanh[v_])^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*(a + b*Tanh[ExpandToSum[v, x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] +Int[u_^m_.*(a_. + b_.*Coth[v_])^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*(a + b*Coth[ExpandToSum[v, x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] diff --git a/IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.11 (e x)^m (a+b tanh(c+d x^n))^p.m b/IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.11 (e x)^m (a+b tanh(c+d x^n))^p.m new file mode 100755 index 0000000..388e7db --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.11 (e x)^m (a+b tanh(c+d x^n))^p.m @@ -0,0 +1,23 @@ + +(* ::Subsection::Closed:: *) +(* 6.3.11 (e x)^m (a+b tanh(c+d x^n))^p *) +Int[(a_. + b_.*Tanh[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[Int[x^(1/n - 1)*(a + b*Tanh[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p] +Int[(a_. + b_.*Coth[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[Int[x^(1/n - 1)*(a + b*Coth[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p] +Int[(a_. + b_.*Tanh[c_. + d_.*x_^n_])^p_., x_Symbol] := Integral[(a + b*Tanh[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(a_. + b_.*Coth[c_. + d_.*x_^n_])^p_., x_Symbol] := Integral[(a + b*Coth[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(a_. + b_.*Tanh[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]* Subst[Int[(a + b*Tanh[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x] +Int[(a_. + b_.*Coth[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]* Subst[Int[(a + b*Coth[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x] +Int[(a_. + b_.*Tanh[u_])^p_., x_Symbol] := Int[(a + b*Tanh[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(a_. + b_.*Coth[u_])^p_., x_Symbol] := Int[(a + b*Coth[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[x_^m_.*(a_. + b_.*Tanh[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Tanh[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[(m + 1)/n], 0] && IntegerQ[p] +Int[x_^m_.*(a_. + b_.*Coth[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Coth[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[(m + 1)/n], 0] && IntegerQ[p] +Int[x_^m_.*Tanh[c_. + d_.*x_^n_]^2, x_Symbol] := -x^(m - n + 1)*Tanh[c + d*x^n]/(d*n) + Int[x^m, x] + (m - n + 1)/(d*n)*Int[x^(m - n)*Tanh[c + d*x^n], x] /; FreeQ[{c, d, m, n}, x] +Int[x_^m_.*Coth[c_. + d_.*x_^n_]^2, x_Symbol] := -x^(m - n + 1)*Coth[c + d*x^n]/(d*n) + Int[x^m, x] + (m - n + 1)/(d*n)*Int[x^(m - n)*Coth[c + d*x^n], x] /; FreeQ[{c, d, m, n}, x] +Int[x_^m_.*(a_. + b_.*Tanh[c_. + d_.*x_^n_])^p_., x_Symbol] := Integral[x^m*(a + b*Tanh[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[x_^m_.*(a_. + b_.*Coth[c_. + d_.*x_^n_])^p_., x_Symbol] := Integral[x^m*(a + b*Coth[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Tanh[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Tanh[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Coth[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Coth[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Tanh[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Tanh[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(e_*x_)^m_.*(a_. + b_.*Coth[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Coth[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[x_^m_.*Sech[a_. + b_.*x_^n_.]^p_.*Tanh[a_. + b_.*x_^n_.]^q_., x_Symbol] := -x^(m - n + 1)*Sech[a + b*x^n]^p/(b*n*p) + (m - n + 1)/(b*n*p)*Int[x^(m - n)*Sech[a + b*x^n]^p, x] /; FreeQ[{a, b, p}, x] && RationalQ[m] && IntegerQ[n] && GeQ[m - n, 0] && EqQ[q, 1] +Int[x_^m_.*Csch[a_. + b_.*x_^n_.]^p_.*Coth[a_. + b_.*x_^n_.]^q_., x_Symbol] := -x^(m - n + 1)*Csch[a + b*x^n]^p/(b*n*p) + (m - n + 1)/(b*n*p)*Int[x^(m - n)*Csch[a + b*x^n]^p, x] /; FreeQ[{a, b, p}, x] && RationalQ[m] && IntegerQ[n] && GeQ[m - n, 0] && EqQ[q, 1] diff --git a/IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.12 (d+e x)^m tanh(a+b x+c x^2)^n.m b/IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.12 (d+e x)^m tanh(a+b x+c x^2)^n.m new file mode 100755 index 0000000..d3f708f --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.3 Hyperbolic tangent/6.3.12 (d+e x)^m tanh(a+b x+c x^2)^n.m @@ -0,0 +1,11 @@ + +(* ::Subsection::Closed:: *) +(* 6.3.12 (d+e x)^m tanh(a+b x+c x^2)^n *) +Int[Tanh[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Integral[Tanh[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, n}, x] +Int[Coth[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Integral[Coth[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, n}, x] +Int[(d_. + e_.*x_)*Tanh[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*Log[Cosh[a + b*x + c*x^2]]/(2*c) + (2*c*d - b*e)/(2*c)*Int[Tanh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] +Int[(d_. + e_.*x_)*Coth[a_. + b_.*x_ + c_.*x_^2], x_Symbol] := e*Log[Sinh[a + b*x + c*x^2]]/(2*c) + (2*c*d - b*e)/(2*c)*Int[Coth[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e}, x] +(* Int[x_^m_*Tanh[a_.+b_.*x_+c_.*x_^2],x_Symbol] := x^(m-1)*Log[Cosh[a+b*x+c*x^2]]/(2*c) - b/(2*c)*Int[x^(m-1)*Tanh[a+b*x+c*x^2],x] - (m-1)/(2*c)*Int[x^(m-2)*Log[Cosh[a+b*x+c*x^2]],x] /; FreeQ[{a,b,c},x] && GtQ[m,1] *) +(* Int[x_^m_*Coth[a_.+b_.*x_+c_.*x_^2],x_Symbol] := x^(m-1)*Log[Sinh[a+b*x+c*x^2]]/(2*c) - b/(2*c)*Int[x^(m-1)*Coth[a+b*x+c*x^2],x] - (m-1)/(2*c)*Int[x^(m-2)*Log[Sinh[a+b*x+c*x^2]],x] /; FreeQ[{a,b,c},x] && GtQ[m,1] *) +Int[(d_. + e_.*x_)^m_.*Tanh[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Integral[(d + e*x)^m*Tanh[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[(d_. + e_.*x_)^m_.*Coth[a_. + b_.*x_ + c_.*x_^2]^n_., x_Symbol] := Integral[(d + e*x)^m*Coth[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] diff --git a/IntegrationRules/6 Hyperbolic functions/6.5 Hyperbolic secant/6.5.10 (c+d x)^m (a+b sech)^n.m b/IntegrationRules/6 Hyperbolic functions/6.5 Hyperbolic secant/6.5.10 (c+d x)^m (a+b sech)^n.m new file mode 100755 index 0000000..943cae1 --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.5 Hyperbolic secant/6.5.10 (c+d x)^m (a+b sech)^n.m @@ -0,0 +1,5 @@ + +(* ::Subsection::Closed:: *) +(* 6.5.10 (c+d x)^m (a+b sech)^n *) +Int[u_^m_.*Sech[v_]^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*Sech[ExpandToSum[v, x]]^n, x] /; FreeQ[{m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] +Int[u_^m_.*Csch[v_]^n_., x_Symbol] := Int[ExpandToSum[u, x]^m*Csch[ExpandToSum[v, x]]^n, x] /; FreeQ[{m, n}, x] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] diff --git a/IntegrationRules/6 Hyperbolic functions/6.5 Hyperbolic secant/6.5.11 (e x)^m (a+b sech(c+d x^n))^p.m b/IntegrationRules/6 Hyperbolic functions/6.5 Hyperbolic secant/6.5.11 (e x)^m (a+b sech(c+d x^n))^p.m new file mode 100755 index 0000000..92181cc --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.5 Hyperbolic secant/6.5.11 (e x)^m (a+b sech(c+d x^n))^p.m @@ -0,0 +1,21 @@ + +(* ::Subsection::Closed:: *) +(* 6.5.11 (e x)^m (a+b sech(c+d x^n))^p *) +Int[(a_. + b_.*Sech[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[Int[x^(1/n - 1)*(a + b*Sech[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p] +Int[(a_. + b_.*Csch[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[Int[x^(1/n - 1)*(a + b*Csch[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p] +Int[(a_. + b_.*Sech[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[(a + b*Sech[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(a_. + b_.*Csch[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[(a + b*Csch[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(a_. + b_.*Sech[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]* Subst[Int[(a + b*Sech[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x] +Int[(a_. + b_.*Csch[c_. + d_.*u_^n_])^p_., x_Symbol] := 1/Coefficient[u, x, 1]* Subst[Int[(a + b*Csch[c + d*x^n])^p, x], x, u] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x] +Int[(a_. + b_.*Sech[u_])^p_., x_Symbol] := Int[(a + b*Sech[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(a_. + b_.*Csch[u_])^p_., x_Symbol] := Int[(a + b*Csch[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[x_^m_.*(a_. + b_.*Sech[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Sech[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[(m + 1)/n], 0] && IntegerQ[p] +Int[x_^m_.*(a_. + b_.*Csch[c_. + d_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Csch[c + d*x])^p, x], x, x^n] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[(m + 1)/n], 0] && IntegerQ[p] +Int[x_^m_.*(a_. + b_.*Sech[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[x^m*(a + b*Sech[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[x_^m_.*(a_. + b_.*Csch[c_. + d_.*x_^n_])^p_., x_Symbol] := Unintegrable[x^m*(a + b*Csch[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Sech[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Sech[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Csch[c_. + d_.*x_^n_])^p_., x_Symbol] := e^IntPart[m]*(e*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*Csch[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(e_*x_)^m_.*(a_. + b_.*Sech[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Sech[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[(e_*x_)^m_.*(a_. + b_.*Csch[u_])^p_., x_Symbol] := Int[(e*x)^m*(a + b*Csch[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && Not[BinomialMatchQ[u, x]] +Int[x_^m_.*Sech[a_. + b_.*x_^n_.]^p_*Sinh[a_. + b_.*x_^n_.], x_Symbol] := -x^(m - n + 1)*Sech[a + b*x^n]^(p - 1)/(b*n*(p - 1)) + (m - n + 1)/(b*n*(p - 1))* Int[x^(m - n)*Sech[a + b*x^n]^(p - 1), x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m - n, 0] && NeQ[p, 1] +Int[x_^m_.*Csch[a_. + b_.*x_^n_.]^p_*Cosh[a_. + b_.*x_^n_.], x_Symbol] := -x^(m - n + 1)*Csch[a + b*x^n]^(p - 1)/(b*n*(p - 1)) + (m - n + 1)/(b*n*(p - 1))* Int[x^(m - n)*Csch[a + b*x^n]^(p - 1), x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m - n, 0] && NeQ[p, 1] diff --git a/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.6 (c+d x)^m hyper(a+b x)^n hyper(a+b x)^p.m b/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.6 (c+d x)^m hyper(a+b x)^n hyper(a+b x)^p.m new file mode 100755 index 0000000..2397d56 --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.6 (c+d x)^m hyper(a+b x)^n hyper(a+b x)^p.m @@ -0,0 +1,31 @@ + +(* ::Subsection::Closed:: *) +(* 6.7.6 (c+d x)^m hyper(a+b x)^n hyper(a+b x)^p *) +Int[(c_. + d_.*x_)^m_.*Sinh[a_. + b_.*x_]^n_.*Cosh[a_. + b_.*x_], x_Symbol] := (c + d*x)^m*Sinh[a + b*x]^(n + 1)/(b*(n + 1)) - d*m/(b*(n + 1))*Int[(c + d*x)^(m - 1)*Sinh[a + b*x]^(n + 1), x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1] +Int[(c_. + d_.*x_)^m_.*Sinh[a_. + b_.*x_]*Cosh[a_. + b_.*x_]^n_., x_Symbol] := (c + d*x)^m*Cosh[a + b*x]^(n + 1)/(b*(n + 1)) - d*m/(b*(n + 1))*Int[(c + d*x)^(m - 1)*Cosh[a + b*x]^(n + 1), x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1] +Int[(c_. + d_.*x_)^m_.*Sinh[a_. + b_.*x_]^n_.*Cosh[a_. + b_.*x_]^p_., x_Symbol] := Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(c_. + d_.*x_)^m_.*Sinh[a_. + b_.*x_]^n_.*Tanh[a_. + b_.*x_]^p_., x_Symbol] := Int[(c + d*x)^m*Sinh[a + b*x]^n*Tanh[a + b*x]^(p - 2), x] - Int[(c + d*x)^m*Sinh[a + b*x]^(n - 2)*Tanh[a + b*x]^p, x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(c_. + d_.*x_)^m_.*Cosh[a_. + b_.*x_]^n_.*Coth[a_. + b_.*x_]^p_., x_Symbol] := Int[(c + d*x)^m*Cosh[a + b*x]^n*Coth[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Cosh[a + b*x]^(n - 2)*Coth[a + b*x]^p, x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(c_. + d_.*x_)^m_.*Sech[a_. + b_.*x_]^n_.*Tanh[a_. + b_.*x_]^p_., x_Symbol] := -(c + d*x)^m*Sech[a + b*x]^n/(b*n) + d*m/(b*n)*Int[(c + d*x)^(m - 1)*Sech[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[p, 1] && GtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*Csch[a_. + b_.*x_]^n_.*Coth[a_. + b_.*x_]^p_., x_Symbol] := -(c + d*x)^m*Csch[a + b*x]^n/(b*n) + d*m/(b*n)*Int[(c + d*x)^(m - 1)*Csch[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[p, 1] && GtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*Sech[a_. + b_.*x_]^2*Tanh[a_. + b_.*x_]^n_., x_Symbol] := (c + d*x)^m*Tanh[a + b*x]^(n + 1)/(b*(n + 1)) - d*m/(b*(n + 1))*Int[(c + d*x)^(m - 1)*Tanh[a + b*x]^(n + 1), x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1] +Int[(c_. + d_.*x_)^m_.*Csch[a_. + b_.*x_]^2*Coth[a_. + b_.*x_]^n_., x_Symbol] := -(c + d*x)^m*Coth[a + b*x]^(n + 1)/(b*(n + 1)) + d*m/(b*(n + 1))*Int[(c + d*x)^(m - 1)*Coth[a + b*x]^(n + 1), x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1] +Int[(c_. + d_.*x_)^m_.*Sech[a_. + b_.*x_]*Tanh[a_. + b_.*x_]^p_, x_Symbol] := Int[(c + d*x)^m*Sech[a + b*x]*Tanh[a + b*x]^(p - 2), x] - Int[(c + d*x)^m*Sech[a + b*x]^3*Tanh[a + b*x]^(p - 2), x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p/2, 0] +Int[(c_. + d_.*x_)^m_.*Sech[a_. + b_.*x_]^n_.*Tanh[a_. + b_.*x_]^p_, x_Symbol] := Int[(c + d*x)^m*Sech[a + b*x]^n*Tanh[a + b*x]^(p - 2), x] - Int[(c + d*x)^m*Sech[a + b*x]^(n + 2)*Tanh[a + b*x]^(p - 2), x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p/2, 0] +Int[(c_. + d_.*x_)^m_.*Csch[a_. + b_.*x_]*Coth[a_. + b_.*x_]^p_, x_Symbol] := Int[(c + d*x)^m*Csch[a + b*x]*Coth[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Csch[a + b*x]^3*Coth[a + b*x]^(p - 2), x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p/2, 0] +Int[(c_. + d_.*x_)^m_.*Csch[a_. + b_.*x_]^n_.*Coth[a_. + b_.*x_]^p_, x_Symbol] := Int[(c + d*x)^m*Csch[a + b*x]^n*Coth[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Csch[a + b*x]^(n + 2)*Coth[a + b*x]^(p - 2), x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p/2, 0] +Int[(c_. + d_.*x_)^m_.*Sech[a_. + b_.*x_]^n_.*Tanh[a_. + b_.*x_]^p_., x_Symbol] := With[{u = IntHide[Sech[a + b*x]^n*Tanh[a + b*x]^p, x]}, Dist[(c + d*x)^m, u, x] - d*m*Int[(c + d*x)^(m - 1)*u, x]] /; FreeQ[{a, b, c, d, n, p}, x] && IGtQ[m, 0] && (IntegerQ[n/2] || IntegerQ[(p - 1)/2]) +Int[(c_. + d_.*x_)^m_.*Csch[a_. + b_.*x_]^n_.*Coth[a_. + b_.*x_]^p_., x_Symbol] := With[{u = IntHide[Csch[a + b*x]^n*Coth[a + b*x]^p, x]}, Dist[(c + d*x)^m, u, x] - d*m*Int[(c + d*x)^(m - 1)*u, x]] /; FreeQ[{a, b, c, d, n, p}, x] && IGtQ[m, 0] && (IntegerQ[n/2] || IntegerQ[(p - 1)/2]) +Int[(c_. + d_.*x_)^m_.*Csch[a_. + b_.*x_]^n_.*Sech[a_. + b_.*x_]^n_., x_Symbol] := 2^n*Int[(c + d*x)^m*Csch[2*a + 2*b*x]^n, x] /; FreeQ[{a, b, c, d}, x] && RationalQ[m] && IntegerQ[n] +Int[(c_. + d_.*x_)^m_.*Csch[a_. + b_.*x_]^n_.*Sech[a_. + b_.*x_]^p_., x_Symbol] := With[{u = IntHide[Csch[a + b*x]^n*Sech[a + b*x]^p, x]}, Dist[(c + d*x)^m, u, x] - d*m*Int[(c + d*x)^(m - 1)*u, x]] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p] && GtQ[m, 0] && NeQ[n, p] +Int[u_^m_.*F_[v_]^n_.*G_[w_]^p_., x_Symbol] := Int[ExpandToSum[u, x]^m*F[ExpandToSum[v, x]]^n* G[ExpandToSum[v, x]]^p, x] /; FreeQ[{m, n, p}, x] && HyperbolicQ[F] && HyperbolicQ[G] && EqQ[v, w] && LinearQ[{u, v, w}, x] && Not[LinearMatchQ[{u, v, w}, x]] +Int[(e_. + f_.*x_)^m_.* Cosh[c_. + d_.*x_]*(a_ + b_.*Sinh[c_. + d_.*x_])^n_., x_Symbol] := (e + f*x)^m*(a + b*Sinh[c + d*x])^(n + 1)/(b*d*(n + 1)) - f*m/(b*d*(n + 1))* Int[(e + f*x)^(m - 1)*(a + b*Sinh[c + d*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n, -1] +Int[(e_. + f_.*x_)^m_.* Sinh[c_. + d_.*x_]*(a_ + b_.*Cosh[c_. + d_.*x_])^n_., x_Symbol] := (e + f*x)^m*(a + b*Cosh[c + d*x])^(n + 1)/(b*d*(n + 1)) - f*m/(b*d*(n + 1))* Int[(e + f*x)^(m - 1)*(a + b*Cosh[c + d*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n, -1] +Int[(e_. + f_.*x_)^m_.* Sech[c_. + d_.*x_]^2*(a_ + b_.*Tanh[c_. + d_.*x_])^n_., x_Symbol] := (e + f*x)^m*(a + b*Tanh[c + d*x])^(n + 1)/(b*d*(n + 1)) - f*m/(b*d*(n + 1))* Int[(e + f*x)^(m - 1)*(a + b*Tanh[c + d*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n, -1] +Int[(e_. + f_.*x_)^m_.* Csch[c_. + d_.*x_]^2*(a_ + b_.*Coth[c_. + d_.*x_])^n_., x_Symbol] := -(e + f*x)^m*(a + b*Coth[c + d*x])^(n + 1)/(b*d*(n + 1)) + f*m/(b*d*(n + 1))* Int[(e + f*x)^(m - 1)*(a + b*Coth[c + d*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n, -1] +Int[(e_. + f_.*x_)^m_.*Sech[c_. + d_.*x_]* Tanh[c_. + d_.*x_]*(a_ + b_.*Sech[c_. + d_.*x_])^n_., x_Symbol] := -(e + f*x)^m*(a + b*Sech[c + d*x])^(n + 1)/(b*d*(n + 1)) + f*m/(b*d*(n + 1))* Int[(e + f*x)^(m - 1)*(a + b*Sech[c + d*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n, -1] +Int[(e_. + f_.*x_)^m_.*Csch[c_. + d_.*x_]* Coth[c_. + d_.*x_]*(a_ + b_.*Csch[c_. + d_.*x_])^n_., x_Symbol] := -(e + f*x)^m*(a + b*Csch[c + d*x])^(n + 1)/(b*d*(n + 1)) + f*m/(b*d*(n + 1))* Int[(e + f*x)^(m - 1)*(a + b*Csch[c + d*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n, -1] +Int[(e_. + f_.*x_)^m_.*Sinh[a_. + b_.*x_]^p_.*Sinh[c_. + d_.*x_]^q_., x_Symbol] := Int[ExpandTrigReduce[(e + f*x)^m, Sinh[a + b*x]^p*Sinh[c + d*x]^q, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && IGtQ[q, 0] && IntegerQ[m] +Int[(e_. + f_.*x_)^m_.*Cosh[a_. + b_.*x_]^p_.*Cosh[c_. + d_.*x_]^q_., x_Symbol] := Int[ExpandTrigReduce[(e + f*x)^m, Cosh[a + b*x]^p*Cosh[c + d*x]^q, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && IGtQ[q, 0] && IntegerQ[m] +Int[(e_. + f_.*x_)^m_.*Sinh[a_. + b_.*x_]^p_.*Cosh[c_. + d_.*x_]^q_., x_Symbol] := Int[ExpandTrigReduce[(e + f*x)^m, Sinh[a + b*x]^p*Cosh[c + d*x]^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] && IGtQ[q, 0] +Int[(e_. + f_.*x_)^m_.*F_[a_. + b_.*x_]^p_.*G_[c_. + d_.*x_]^q_., x_Symbol] := Int[ExpandTrigExpand[(e + f*x)^m*G[c + d*x]^q, F, c + d*x, p, b/d, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && MemberQ[{Sinh, Cosh}, F] && MemberQ[{Sech, Csch}, G] && IGtQ[p, 0] && IGtQ[q, 0] && EqQ[b*c - a*d, 0] && IGtQ[b/d, 1] diff --git a/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.7 F^(c (a+b x)) hyper(d+e x)^n.m b/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.7 F^(c (a+b x)) hyper(d+e x)^n.m new file mode 100755 index 0000000..0ffe7ec --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.7 F^(c (a+b x)) hyper(d+e x)^n.m @@ -0,0 +1,51 @@ + +(* ::Subsection::Closed:: *) +(* 6.7.7 F^(c (a+b x)) hyper(d+e x)^n *) +Int[F_^(c_.*(a_. + b_.*x_))*Sinh[d_. + e_.*x_], x_Symbol] := -b*c*Log[F]*F^(c*(a + b*x))* Sinh[d + e*x]/(e^2 - b^2*c^2*Log[F]^2) + e*F^(c*(a + b*x))*Cosh[d + e*x]/(e^2 - b^2*c^2*Log[F]^2) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2 - b^2*c^2*Log[F]^2, 0] +Int[F_^(c_.*(a_. + b_.*x_))*Cosh[d_. + e_.*x_], x_Symbol] := -b*c*Log[F]*F^(c*(a + b*x))* Cosh[d + e*x]/(e^2 - b^2*c^2*Log[F]^2) + e*F^(c*(a + b*x))*Sinh[d + e*x]/(e^2 - b^2*c^2*Log[F]^2) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2 - b^2*c^2*Log[F]^2, 0] +Int[F_^(c_.*(a_. + b_.*x_))*Sinh[d_. + e_.*x_]^n_, x_Symbol] := -b*c*Log[F]*F^(c*(a + b*x))* Sinh[d + e*x]^n/(e^2*n^2 - b^2*c^2*Log[F]^2) + e*n*F^(c*(a + b*x))*Cosh[d + e*x]* Sinh[d + e*x]^(n - 1)/(e^2*n^2 - b^2*c^2*Log[F]^2) - n*(n - 1)*e^2/(e^2*n^2 - b^2*c^2*Log[F]^2)* Int[F^(c*(a + b*x))*Sinh[d + e*x]^(n - 2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 - b^2*c^2*Log[F]^2, 0] && GtQ[n, 1] +Int[F_^(c_.*(a_. + b_.*x_))*Cosh[d_. + e_.*x_]^n_, x_Symbol] := -b*c*Log[F]*F^(c*(a + b*x))* Cosh[d + e*x]^n/(e^2*n^2 - b^2*c^2*Log[F]^2) + e*n*F^(c*(a + b*x))*Sinh[d + e*x]* Cosh[d + e*x]^(n - 1)/(e^2*n^2 - b^2*c^2*Log[F]^2) + n*(n - 1)*e^2/(e^2*n^2 - b^2*c^2*Log[F]^2)* Int[F^(c*(a + b*x))*Cosh[d + e*x]^(n - 2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 - b^2*c^2*Log[F]^2, 0] && GtQ[n, 1] +Int[F_^(c_.*(a_. + b_.*x_))*Sinh[d_. + e_.*x_]^n_, x_Symbol] := -b*c*Log[F]*F^(c*(a + b*x))* Sinh[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2)) + F^(c*(a + b*x))*Cosh[d + e*x]*Sinh[d + e*x]^(n + 1)/(e*(n + 1)) /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[e^2*(n + 2)^2 - b^2*c^2*Log[F]^2, 0] && NeQ[n, -1] && NeQ[n, -2] +Int[F_^(c_.*(a_. + b_.*x_))*Cosh[d_. + e_.*x_]^n_, x_Symbol] := b*c*Log[F]*F^(c*(a + b*x))* Cosh[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2)) - F^(c*(a + b*x))*Sinh[d + e*x]*Cosh[d + e*x]^(n + 1)/(e*(n + 1)) /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[e^2*(n + 2)^2 - b^2*c^2*Log[F]^2, 0] && NeQ[n, -1] && NeQ[n, -2] +Int[F_^(c_.*(a_. + b_.*x_))*Sinh[d_. + e_.*x_]^n_, x_Symbol] := -b*c*Log[F]*F^(c*(a + b*x))* Sinh[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2)) + F^(c*(a + b*x))*Cosh[d + e*x]*Sinh[d + e*x]^(n + 1)/(e*(n + 1)) - (e^2*(n + 2)^2 - b^2*c^2*Log[F]^2)/(e^2*(n + 1)*(n + 2))* Int[F^(c*(a + b*x))*Sinh[d + e*x]^(n + 2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*(n + 2)^2 - b^2*c^2*Log[F]^2, 0] && LtQ[n, -1] && NeQ[n, -2] +Int[F_^(c_.*(a_. + b_.*x_))*Cosh[d_. + e_.*x_]^n_, x_Symbol] := b*c*Log[F]*F^(c*(a + b*x))* Cosh[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2)) - F^(c*(a + b*x))*Sinh[d + e*x]*Cosh[d + e*x]^(n + 1)/(e*(n + 1)) + (e^2*(n + 2)^2 - b^2*c^2*Log[F]^2)/(e^2*(n + 1)*(n + 2))* Int[F^(c*(a + b*x))*Cosh[d + e*x]^(n + 2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*(n + 2)^2 - b^2*c^2*Log[F]^2, 0] && LtQ[n, -1] && NeQ[n, -2] +Int[F_^(c_.*(a_. + b_.*x_))*Sinh[d_. + e_.*x_]^n_, x_Symbol] := E^(n*(d + e*x))*Sinh[d + e*x]^n/(-1 + E^(2*(d + e*x)))^n* Int[F^(c*(a + b*x))*(-1 + E^(2*(d + e*x)))^n/E^(n*(d + e*x)), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && Not[IntegerQ[n]] +Int[F_^(c_.*(a_. + b_.*x_))*Cosh[d_. + e_.*x_]^n_, x_Symbol] := E^(n*(d + e*x))*Cosh[d + e*x]^n/(1 + E^(2*(d + e*x)))^n* Int[F^(c*(a + b*x))*(1 + E^(2*(d + e*x)))^n/E^(n*(d + e*x)), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && Not[IntegerQ[n]] +Int[F_^(c_.*(a_. + b_.*x_))*Tanh[d_. + e_.*x_]^n_., x_Symbol] := Int[ExpandIntegrand[ F^(c*(a + b*x))*(-1 + E^(2*(d + e*x)))^n/(1 + E^(2*(d + e*x)))^n, x], x] /; FreeQ[{F, a, b, c, d, e}, x] && IntegerQ[n] +Int[F_^(c_.*(a_. + b_.*x_))*Coth[d_. + e_.*x_]^n_., x_Symbol] := Int[ExpandIntegrand[ F^(c*(a + b*x))*(1 + E^(2*(d + e*x)))^n/(-1 + E^(2*(d + e*x)))^n, x], x] /; FreeQ[{F, a, b, c, d, e}, x] && IntegerQ[n] +Int[F_^(c_.*(a_. + b_.*x_))*Sech[d_. + e_.*x_]^n_, x_Symbol] := -b*c*Log[F]* F^(c*(a + b*x))*(Sech[d + e*x]^n/(e^2*n^2 - b^2*c^2*Log[F]^2)) - e*n*F^(c*(a + b*x))* Sech[d + e*x]^(n + 1)*(Sinh[ d + e*x]/(e^2*n^2 - b^2*c^2*Log[F]^2)) + e^2*n*((n + 1)/(e^2*n^2 - b^2*c^2*Log[F]^2))* Int[F^(c*(a + b*x))*Sech[d + e*x]^(n + 2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 + b^2*c^2*Log[F]^2, 0] && LtQ[n, -1] +Int[F_^(c_.*(a_. + b_.*x_))*Csch[d_. + e_.*x_]^n_, x_Symbol] := -b*c*Log[F]* F^(c*(a + b*x))*(Csch[d + e*x]^n/(e^2*n^2 - b^2*c^2*Log[F]^2)) - e*n*F^(c*(a + b*x))* Csch[d + e*x]^(n + 1)*(Cosh[ d + e*x]/(e^2*n^2 - b^2*c^2*Log[F]^2)) - e^2*n*((n + 1)/(e^2*n^2 - b^2*c^2*Log[F]^2))* Int[F^(c*(a + b*x))*Csch[d + e*x]^(n + 2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 + b^2*c^2*Log[F]^2, 0] && LtQ[n, -1] +Int[F_^(c_.*(a_. + b_.*x_))*Sech[d_. + e_.*x_]^n_, x_Symbol] := b*c*Log[F]*F^(c*(a + b*x))* Sech[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2)) + F^(c*(a + b*x))*Sech[d + e*x]^(n - 1)*Sinh[d + e*x]/(e*(n - 1)) /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[e^2*(n - 2)^2 - b^2*c^2*Log[F]^2, 0] && NeQ[n, 1] && NeQ[n, 2] +Int[F_^(c_.*(a_. + b_.*x_))*Csch[d_. + e_.*x_]^n_, x_Symbol] := -b*c*Log[F]*F^(c*(a + b*x))* Csch[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2)) - F^(c*(a + b*x))*Csch[d + e*x]^(n - 1)*Cosh[d + e*x]/(e*(n - 1)) /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[e^2*(n - 2)^2 - b^2*c^2*Log[F]^2, 0] && NeQ[n, 1] && NeQ[n, 2] +Int[F_^(c_.*(a_. + b_.*x_))*Sech[d_. + e_.*x_]^n_, x_Symbol] := b*c*Log[F]*F^(c*(a + b*x))* Sech[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2)) + F^(c*(a + b*x))*Sech[d + e*x]^(n - 1)* Sinh[d + e*x]/(e*(n - 1)) + (e^2*(n - 2)^2 - b^2*c^2*Log[F]^2)/(e^2*(n - 1)*(n - 2))* Int[F^(c*(a + b*x))*Sech[d + e*x]^(n - 2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*(n - 2)^2 - b^2*c^2*Log[F]^2, 0] && GtQ[n, 1] && NeQ[n, 2] +Int[F_^(c_.*(a_. + b_.*x_))*Csch[d_. + e_.*x_]^n_, x_Symbol] := -b*c*Log[F]*F^(c*(a + b*x))* Csch[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2)) - F^(c*(a + b*x))*Csch[d + e*x]^(n - 1)* Cosh[d + e*x]/(e*(n - 1)) - (e^2*(n - 2)^2 - b^2*c^2*Log[F]^2)/(e^2*(n - 1)*(n - 2))* Int[F^(c*(a + b*x))*Csch[d + e*x]^(n - 2), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*(n - 2)^2 - b^2*c^2*Log[F]^2, 0] && GtQ[n, 1] && NeQ[n, 2] +(* Int[F_^(c_.*(a_.+b_.*x_))*Sech[d_.+e_.*x_]^n_.,x_Symbol] := 2^n*Int[SimplifyIntegrand[F^(c*(a+b*x))*E^(n*(d+e*x))/(1+E^(2*(d+e* x)))^n,x],x] /; FreeQ[{F,a,b,c,d,e},x] && IntegerQ[n] *) +(* Int[F_^(c_.*(a_.+b_.*x_))*Csch[d_.+e_.*x_]^n_.,x_Symbol] := 2^n*Int[SimplifyIntegrand[F^(c*(a+b*x))*E^(-n*(d+e*x))/(1-E^(-2*(d+ e*x)))^n,x],x] /; FreeQ[{F,a,b,c,d,e},x] && IntegerQ[n] *) +Int[F_^(c_.*(a_. + b_.*x_))*Sech[d_. + e_.*x_]^n_., x_Symbol] := 2^n*E^(n*(d + e*x))*F^(c*(a + b*x))/(e*n + b*c*Log[F])* Hypergeometric2F1[n, n/2 + b*c*Log[F]/(2*e), 1 + n/2 + b*c*Log[F]/(2*e), -E^(2*(d + e*x))] /; FreeQ[{F, a, b, c, d, e}, x] && IntegerQ[n] +Int[F_^(c_.*(a_. + b_.*x_))*Csch[d_. + e_.*x_]^n_., x_Symbol] := (-2)^n*E^(n*(d + e*x))*F^(c*(a + b*x))/(e*n + b*c*Log[F])* Hypergeometric2F1[n, n/2 + b*c*Log[F]/(2*e), 1 + n/2 + b*c*Log[F]/(2*e), E^(2*(d + e*x))] /; FreeQ[{F, a, b, c, d, e}, x] && IntegerQ[n] +Int[F_^(c_.*(a_. + b_.*x_))*Sech[d_. + e_.*x_]^n_., x_Symbol] := (1 + E^(2*(d + e*x)))^n*Sech[d + e*x]^n/E^(n*(d + e*x))* Int[SimplifyIntegrand[ F^(c*(a + b*x))*E^(n*(d + e*x))/(1 + E^(2*(d + e*x)))^n, x], x] /; FreeQ[{F, a, b, c, d, e}, x] && Not[IntegerQ[n]] +Int[F_^(c_.*(a_. + b_.*x_))*Csch[d_. + e_.*x_]^n_., x_Symbol] := (1 - E^(-2*(d + e*x)))^n*Csch[d + e*x]^n/E^(-n*(d + e*x))* Int[SimplifyIntegrand[ F^(c*(a + b*x))*E^(-n*(d + e*x))/(1 - E^(-2*(d + e*x)))^n, x], x] /; FreeQ[{F, a, b, c, d, e}, x] && Not[IntegerQ[n]] +Int[F_^(c_.*(a_. + b_.*x_))*(f_ + g_.*Sinh[d_. + e_.*x_])^n_., x_Symbol] := 2^n*f^n* Int[F^(c*(a + b*x))*Cosh[d/2 - f*Pi/(4*g) + e*x/2]^(2*n), x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && EqQ[f^2 + g^2, 0] && ILtQ[n, 0] +Int[F_^(c_.*(a_. + b_.*x_))*(f_ + g_.*Cosh[d_. + e_.*x_])^n_., x_Symbol] := 2^n*g^n*Int[F^(c*(a + b*x))*Cosh[d/2 + e*x/2]^(2*n), x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && EqQ[f - g, 0] && ILtQ[n, 0] +Int[F_^(c_.*(a_. + b_.*x_))*(f_ + g_.*Cosh[d_. + e_.*x_])^n_., x_Symbol] := 2^n*g^n*Int[F^(c*(a + b*x))*Sinh[d/2 + e*x/2]^(2*n), x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && EqQ[f + g, 0] && ILtQ[n, 0] +Int[F_^(c_.*(a_. + b_.*x_))*(f_ + g_.*Sinh[d_. + e_.*x_])^n_., x_Symbol] := (f + g*Sinh[d + e*x])^n/Cosh[d/2 - f*Pi/(4*g) + e*x/2]^(2*n)* Int[F^(c*(a + b*x))*Cosh[d/2 - f*Pi/(4*g) + e*x/2]^(2*n), x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && EqQ[f^2 + g^2, 0] && Not[IntegerQ[n]] +Int[F_^(c_.*(a_. + b_.*x_))*(f_ + g_.*Cosh[d_. + e_.*x_])^n_., x_Symbol] := (f + g*Cosh[d + e*x])^n/Cosh[d/2 + e*x/2]^(2*n)* Int[F^(c*(a + b*x))*Cosh[d/2 + e*x/2]^(2*n), x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && EqQ[f - g, 0] && Not[IntegerQ[n]] +Int[F_^(c_.*(a_. + b_.*x_))*(f_ + g_.*Cosh[d_. + e_.*x_])^n_., x_Symbol] := (f + g*Cosh[d + e*x])^n/Sinh[d/2 + e*x/2]^(2*n)* Int[F^(c*(a + b*x))*Sinh[d/2 + e*x/2]^(2*n), x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && EqQ[f + g, 0] && Not[IntegerQ[n]] +Int[F_^(c_.*(a_. + b_.*x_))* Cosh[d_. + e_.*x_]^m_.*(f_ + g_.*Sinh[d_. + e_.*x_])^n_., x_Symbol] := g^n*Int[F^(c*(a + b*x))*Tanh[d/2 + e*x/2 - f*Pi/(4*g)]^m, x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && EqQ[f^2 + g^2, 0] && IntegersQ[m, n] && EqQ[m + n, 0] +Int[F_^(c_.*(a_. + b_.*x_))* Sinh[d_. + e_.*x_]^m_.*(f_ + g_.*Cosh[d_. + e_.*x_])^n_., x_Symbol] := g^n*Int[F^(c*(a + b*x))*Tanh[d/2 + e*x/2]^m, x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && EqQ[f - g, 0] && IntegersQ[m, n] && EqQ[m + n, 0] +Int[F_^(c_.*(a_. + b_.*x_))* Sinh[d_. + e_.*x_]^m_.*(f_ + g_.*Cosh[d_. + e_.*x_])^n_., x_Symbol] := g^n*Int[F^(c*(a + b*x))*Coth[d/2 + e*x/2]^m, x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && EqQ[f + g, 0] && IntegersQ[m, n] && EqQ[m + n, 0] +Int[F_^(c_.*(a_. + b_.*x_))*(h_ + i_.*Cosh[d_. + e_.*x_])/(f_ + g_.*Sinh[d_. + e_.*x_]), x_Symbol] := 2*i*Int[F^(c*(a + b*x))*(Cosh[d + e*x]/(f + g*Sinh[d + e*x])), x] + Int[ F^(c*(a + b*x))*((h - i*Cosh[d + e*x])/(f + g*Sinh[d + e*x])), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, i}, x] && EqQ[f^2 + g^2, 0] && EqQ[h^2 - i^2, 0] && EqQ[g*h - f*i, 0] +Int[F_^(c_.*(a_. + b_.*x_))*(h_ + i_.*Sinh[d_. + e_.*x_])/(f_ + g_.*Cosh[d_. + e_.*x_]), x_Symbol] := 2*i*Int[F^(c*(a + b*x))*(Sinh[d + e*x]/(f + g*Cosh[d + e*x])), x] + Int[ F^(c*(a + b*x))*((h - i*Sinh[d + e*x])/(f + g*Cosh[d + e*x])), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, i}, x] && EqQ[f^2 - g^2, 0] && EqQ[h^2 + i^2, 0] && EqQ[g*h + f*i, 0] +Int[F_^(c_.*u_)*G_[v_]^n_., x_Symbol] := Int[F^(c*ExpandToSum[u, x])*G[ExpandToSum[v, x]]^n, x] /; FreeQ[{F, c, n}, x] && HyperbolicQ[G] && LinearQ[{u, v}, x] && Not[LinearMatchQ[{u, v}, x]] +Int[(f_.*x_)^m_.*F_^(c_.*(a_. + b_.*x_))*Sinh[d_. + e_.*x_]^n_., x_Symbol] := Module[{u = IntHide[F^(c*(a + b*x))*Sinh[d + e*x]^n, x]}, Dist[(f*x)^m, u, x] - f*m*Int[(f*x)^(m - 1)*u, x]] /; FreeQ[{F, a, b, c, d, e, f}, x] && IGtQ[n, 0] && GtQ[m, 0] +Int[(f_.*x_)^m_.*F_^(c_.*(a_. + b_.*x_))*Cosh[d_. + e_.*x_]^n_., x_Symbol] := Module[{u = IntHide[F^(c*(a + b*x))*Cosh[d + e*x]^n, x]}, Dist[(f*x)^m, u, x] - f*m*Int[(f*x)^(m - 1)*u, x]] /; FreeQ[{F, a, b, c, d, e, f}, x] && IGtQ[n, 0] && GtQ[m, 0] +Int[(f_.*x_)^m_*F_^(c_.*(a_. + b_.*x_))*Sinh[d_. + e_.*x_], x_Symbol] := (f*x)^(m + 1)/(f*(m + 1))*F^(c*(a + b*x))*Sinh[d + e*x] - e/(f*(m + 1))* Int[(f*x)^(m + 1)*F^(c*(a + b*x))*Cosh[d + e*x], x] - b*c*Log[F]/(f*(m + 1))* Int[(f*x)^(m + 1)*F^(c*(a + b*x))*Sinh[d + e*x], x] /; FreeQ[{F, a, b, c, d, e, f, m}, x] && (LtQ[m, -1] || SumSimplerQ[m, 1]) +Int[(f_.*x_)^m_*F_^(c_.*(a_. + b_.*x_))*Cosh[d_. + e_.*x_], x_Symbol] := (f*x)^(m + 1)/(f*(m + 1))*F^(c*(a + b*x))*Cosh[d + e*x] - e/(f*(m + 1))* Int[(f*x)^(m + 1)*F^(c*(a + b*x))*Sinh[d + e*x], x] - b*c*Log[F]/(f*(m + 1))* Int[(f*x)^(m + 1)*F^(c*(a + b*x))*Cosh[d + e*x], x] /; FreeQ[{F, a, b, c, d, e, f, m}, x] && (LtQ[m, -1] || SumSimplerQ[m, 1]) +(* Int[(f_.*x_)^m_.*F_^(c_.*(a_.+b_.*x_))*Sinh[d_.+e_.*x_]^n_.,x_ Symbol] := (-1)^n/2^n*Int[ExpandIntegrand[(f*x)^m*F^(c*(a+b*x)),(E^(-(d+e*x))- E^(d+e*x))^n,x],x] /; FreeQ[{F,a,b,c,d,e,f},x] && IGtQ[n,0] *) +(* Int[(f_.*x_)^m_.*F_^(c_.*(a_.+b_.*x_))*Cosh[d_.+e_.*x_]^n_.,x_ Symbol] := 1/2^n*Int[ExpandIntegrand[(f*x)^m*F^(c*(a+b*x)),(E^(-(d+e*x))+E^(d+ e*x))^n,x],x] /; FreeQ[{F,a,b,c,d,e,f},x] && IGtQ[n,0] *) +Int[F_^(c_.*(a_. + b_.*x_))*Sinh[d_. + e_.*x_]^m_.* Cosh[f_. + g_.*x_]^n_., x_Symbol] := Int[ExpandTrigReduce[F^(c*(a + b*x)), Sinh[d + e*x]^m*Cosh[f + g*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[x_^p_.*F_^(c_.*(a_. + b_.*x_))*Sinh[d_. + e_.*x_]^m_.* Cosh[f_. + g_.*x_]^n_., x_Symbol] := Int[ExpandTrigReduce[x^p*F^(c*(a + b*x)), Sinh[d + e*x]^m*Cosh[f + g*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[F_^(c_.*(a_. + b_.*x_))*G_[d_. + e_.*x_]^m_.*H_[d_. + e_.*x_]^n_., x_Symbol] := Int[ExpandTrigToExp[F^(c*(a + b*x)), G[d + e*x]^m*H[d + e*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e}, x] && IGtQ[m, 0] && IGtQ[n, 0] && HyperbolicQ[G] && HyperbolicQ[H] +Int[F_^u_*Sinh[v_]^n_., x_Symbol] := Int[ExpandTrigToExp[F^u, Sinh[v]^n, x], x] /; FreeQ[F, x] && (LinearQ[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[n, 0] +Int[F_^u_*Cosh[v_]^n_., x_Symbol] := Int[ExpandTrigToExp[F^u, Cosh[v]^n, x], x] /; FreeQ[F, x] && (LinearQ[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[n, 0] +Int[F_^u_*Sinh[v_]^m_.*Cosh[v_]^n_., x_Symbol] := Int[ExpandTrigToExp[F^u, Sinh[v]^m*Cosh[v]^n, x], x] /; FreeQ[F, x] && (LinearQ[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[m, 0] && IGtQ[n, 0] diff --git a/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.8 u hyper(a+b log(c x^n))^p.m b/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.8 u hyper(a+b log(c x^n))^p.m new file mode 100755 index 0000000..388604d --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.8 u hyper(a+b log(c x^n))^p.m @@ -0,0 +1,57 @@ + +(* ::Subsection::Closed:: *) +(* 6.7.8 u hyper(a+b log(c x^n))^p *) +Int[Sinh[b_.*Log[c_.*x_^n_.]]^p_., x_Symbol] := Int[((c*x^n)^b/2 - 1/(2*(c*x^n)^b))^p, x] /; FreeQ[c, x] && RationalQ[b, n, p] +Int[Cosh[b_.*Log[c_.*x_^n_.]]^p_., x_Symbol] := Int[((c*x^n)^b/2 + 1/(2*(c*x^n)^b))^p, x] /; FreeQ[c, x] && RationalQ[b, n, p] +Int[Sinh[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := -x*Sinh[d*(a + b*Log[c*x^n])]/(b^2*d^2*n^2 - 1) + b*d*n*x*Cosh[d*(a + b*Log[c*x^n])]/(b^2*d^2*n^2 - 1) /; FreeQ[{a, b, c, d, n}, x] && NeQ[b^2*d^2*n^2 - 1, 0] +Int[Cosh[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := -x*Cosh[d*(a + b*Log[c*x^n])]/(b^2*d^2*n^2 - 1) + b*d*n*x*Sinh[d*(a + b*Log[c*x^n])]/(b^2*d^2*n^2 - 1) /; FreeQ[{a, b, c, d, n}, x] && NeQ[b^2*d^2*n^2 - 1, 0] +Int[Sinh[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_, x_Symbol] := -x*Sinh[d*(a + b*Log[c*x^n])]^p/(b^2*d^2*n^2*p^2 - 1) + b*d*n*p*x*Cosh[d*(a + b*Log[c*x^n])]* Sinh[d*(a + b*Log[c*x^n])]^(p - 1)/(b^2*d^2*n^2*p^2 - 1) - b^2*d^2*n^2*p*(p - 1)/(b^2*d^2*n^2*p^2 - 1)* Int[Sinh[d*(a + b*Log[c*x^n])]^(p - 2), x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 - 1, 0] +Int[Cosh[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_, x_Symbol] := -x*Cosh[d*(a + b*Log[c*x^n])]^p/(b^2*d^2*n^2*p^2 - 1) + b*d*n*p*x*Cosh[d*(a + b*Log[c*x^n])]^(p - 1)* Sinh[d*(a + b*Log[c*x^n])]/(b^2*d^2*n^2*p^2 - 1) + b^2*d^2*n^2*p*(p - 1)/(b^2*d^2*n^2*p^2 - 1)* Int[Cosh[d*(a + b*Log[c*x^n])]^(p - 2), x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 - 1, 0] +Int[Sinh[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := 1/(2^p*b^p*d^p*p^p)* Int[ExpandIntegrand[(-E^(-a*b*d^2*p)*x^(-1/p) + E^(a*b*d^2*p)*x^(1/p))^p, x], x] /; FreeQ[{a, b, d}, x] && IGtQ[p, 0] && EqQ[b^2*d^2*p^2 - 1, 0] +Int[Cosh[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := 1/2^p* Int[ExpandIntegrand[(E^(-a*b*d^2*p)*x^(-1/p) + E^(a*b*d^2*p)*x^(1/p))^p, x], x] /; FreeQ[{a, b, d}, x] && IGtQ[p, 0] && EqQ[b^2*d^2*p^2 - 1, 0] +(* Int[Sinh[d_.*(a_.+b_.*Log[x_])]^p_.,x_Symbol] := E^(a*d*p)/2^p*Int[x^(b*d*p)*(1-1/(E^(2*a*d)*x^(2*b*d)))^p,x] /; FreeQ[{a,b,d},x] && IntegerQ[p] *) +(* Int[Cosh[d_.*(a_.+b_.*Log[x_])]^p_.,x_Symbol] := E^(a*d*p)/2^p*Int[x^(b*d*p)*(1+1/(E^(2*a*d)*x^(2*b*d)))^p,x] /; FreeQ[{a,b,d},x] && IntegerQ[p] *) +Int[Sinh[d_.*(a_. + b_.*Log[x_])]^p_, x_Symbol] := Sinh[d*(a + b*Log[x])]^ p/(x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p)* Int[x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p, x] /; FreeQ[{a, b, d, p}, x] && Not[IntegerQ[p]] +Int[Cosh[d_.*(a_. + b_.*Log[x_])]^p_, x_Symbol] := Cosh[d*(a + b*Log[x])]^ p/(x^(b*d*p)*(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p)* Int[x^(b*d*p)*(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p, x] /; FreeQ[{a, b, d, p}, x] && Not[IntegerQ[p]] +Int[Sinh[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := x/(n*(c*x^n)^(1/n))* Subst[Int[x^(1/n - 1)*Sinh[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[Cosh[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := x/(n*(c*x^n)^(1/n))* Subst[Int[x^(1/n - 1)*Cosh[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[(e_.*x_)^m_.*Sinh[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := -(m + 1)*(e*x)^(m + 1)* Sinh[d*(a + b*Log[c*x^n])]/(b^2*d^2*e*n^2 - e*(m + 1)^2) + b*d*n*(e*x)^(m + 1)* Cosh[d*(a + b*Log[c*x^n])]/(b^2*d^2*e*n^2 - e*(m + 1)^2) /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b^2*d^2*n^2 - (m + 1)^2, 0] +Int[(e_.*x_)^m_.*Cosh[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := -(m + 1)*(e*x)^(m + 1)* Cosh[d*(a + b*Log[c*x^n])]/(b^2*d^2*e*n^2 - e*(m + 1)^2) + b*d*n*(e*x)^(m + 1)* Sinh[d*(a + b*Log[c*x^n])]/(b^2*d^2*e*n^2 - e*(m + 1)^2) /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b^2*d^2*n^2 - (m + 1)^2, 0] +Int[(e_.*x_)^m_.*Sinh[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_, x_Symbol] := -(m + 1)*(e*x)^(m + 1)* Sinh[d*(a + b*Log[c*x^n])]^p/(b^2*d^2*e*n^2*p^2 - e*(m + 1)^2) + b*d*n*p*(e*x)^(m + 1)*Cosh[d*(a + b*Log[c*x^n])]* Sinh[d*(a + b*Log[c*x^n])]^(p - 1)/(b^2*d^2*e*n^2*p^2 - e*(m + 1)^2) - b^2*d^2*n^2*p*(p - 1)/(b^2*d^2*n^2*p^2 - (m + 1)^2)* Int[(e*x)^m*Sinh[d*(a + b*Log[c*x^n])]^(p - 2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 - (m + 1)^2, 0] +Int[(e_.*x_)^m_.*Cosh[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_, x_Symbol] := -(m + 1)*(e*x)^(m + 1)* Cosh[d*(a + b*Log[c*x^n])]^p/(b^2*d^2*e*n^2*p^2 - e*(m + 1)^2) + b*d*n*p*(e*x)^(m + 1)*Sinh[d*(a + b*Log[c*x^n])]* Cosh[d*(a + b*Log[c*x^n])]^(p - 1)/(b^2*d^2*e*n^2*p^2 - e*(m + 1)^2) + b^2*d^2*n^2*p*(p - 1)/(b^2*d^2*n^2*p^2 - (m + 1)^2)* Int[(e*x)^m*Cosh[d*(a + b*Log[c*x^n])]^(p - 2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 - (m + 1)^2, 0] +Int[(e_.*x_)^m_.*Sinh[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := (m + 1)^p/(2^p*b^p*d^p*p^p)* Int[ ExpandIntegrand[(e*x)^ m*(-E^(-a*b*d^2*p/(m + 1))*x^(-(m + 1)/p) + E^(a*b*d^2*p/(m + 1))*x^((m + 1)/p))^p, x], x] /; FreeQ[{a, b, d, e, m}, x] && IGtQ[p, 0] && EqQ[b^2*d^2*p^2 - (m + 1)^2, 0] +Int[(e_.*x_)^m_.*Cosh[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := 1/2^p* Int[ExpandIntegrand[(e*x)^ m*(E^(-a*b*d^2*p/(m + 1))*x^(-(m + 1)/p) + E^(a*b*d^2*p/(m + 1))*x^((m + 1)/p))^p, x], x] /; FreeQ[{a, b, d, e, m}, x] && IGtQ[p, 0] && EqQ[b^2*d^2*p^2 - (m + 1)^2, 0] +(* Int[(e_.*x_)^m_.*Sinh[d_.*(a_.+b_.*Log[x_])]^p_.,x_Symbol] := E^(a*d*p)/2^p*Int[(e*x)^m*x^(b*d*p)*(1-1/(E^(2*a*d)*x^(2*b*d)))^p,x] /; FreeQ[{a,b,d,e,m},x] && IntegerQ[p] *) +(* Int[(e_.*x_)^m_.*Cosh[d_.*(a_.+b_.*Log[x_])]^p_.,x_Symbol] := E^(a*d*p)/2^p*Int[(e*x)^m*x^(b*d*p)*(1+1/(E^(2*a*d)*x^(2*b*d)))^p,x] /; FreeQ[{a,b,d,e,m},x] && IntegerQ[p] *) +Int[(e_.*x_)^m_.*Sinh[d_.*(a_. + b_.*Log[x_])]^p_, x_Symbol] := Sinh[d*(a + b*Log[x])]^ p/(x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p)* Int[(e*x)^m*x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p, x] /; FreeQ[{a, b, d, e, m, p}, x] && Not[IntegerQ[p]] +Int[(e_.*x_)^m_.*Cosh[d_.*(a_. + b_.*Log[x_])]^p_, x_Symbol] := Cosh[d*(a + b*Log[x])]^ p/(x^(b*d*p)*(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p)* Int[(e*x)^m*x^(b*d*p)*(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p, x] /; FreeQ[{a, b, d, e, m, p}, x] && Not[IntegerQ[p]] +Int[(e_.*x_)^m_.*Sinh[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := (e*x)^(m + 1)/(e*n*(c*x^n)^((m + 1)/n))* Subst[Int[x^((m + 1)/n - 1)*Sinh[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[(e_.*x_)^m_.*Cosh[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := (e*x)^(m + 1)/(e*n*(c*x^n)^((m + 1)/n))* Subst[Int[x^((m + 1)/n - 1)*Cosh[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[(h_.*(e_. + f_.*Log[g_.*x_^m_.]))^q_.* Sinh[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := -E^(-a*d)*(c*x^n)^(-b*d)/(2*x^(-b*d*n))* Int[x^(-b*d*n)*(h*(e + f*Log[g*x^m]))^q, x] + E^(a*d)*(c*x^n)^(b*d)/(2*x^(b*d*n))* Int[x^(b*d*n)*(h*(e + f*Log[g*x^m]))^q, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, q}, x] +Int[(h_.*(e_. + f_.*Log[g_.*x_^m_.]))^q_.* Cosh[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := E^(-a*d)*(c*x^n)^(-b*d)/(2*x^(-b*d*n))* Int[x^(-b*d*n)*(h*(e + f*Log[g*x^m]))^q, x] + E^(a*d)*(c*x^n)^(b*d)/(2*x^(b*d*n))* Int[x^(b*d*n)*(h*(e + f*Log[g*x^m]))^q, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, q}, x] +Int[(i_.*x_)^r_.*(h_.*(e_. + f_.*Log[g_.*x_^m_.]))^q_.* Sinh[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := -E^(-a*d)*(i*x)^r*(c*x^n)^(-b*d)/(2*x^(r - b*d*n))* Int[x^(r - b*d*n)*(h*(e + f*Log[g*x^m]))^q, x] + E^(a*d)*(i*x)^r*(c*x^n)^(b*d)/(2*x^(r + b*d*n))* Int[x^(r + b*d*n)*(h*(e + f*Log[g*x^m]))^q, x] /; FreeQ[{a, b, c, d, e, f, g, h, i, m, n, q, r}, x] +Int[(i_.*x_)^r_.*(h_.*(e_. + f_.*Log[g_.*x_^m_.]))^q_.* Cosh[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := E^(-a*d)*(i*x)^r*(c*x^n)^(-b*d)/(2*x^(r - b*d*n))* Int[x^(r - b*d*n)*(h*(e + f*Log[g*x^m]))^q, x] + E^(a*d)*(i*x)^r*(c*x^n)^(b*d)/(2*x^(r + b*d*n))* Int[x^(r + b*d*n)*(h*(e + f*Log[g*x^m]))^q, x] /; FreeQ[{a, b, c, d, e, f, g, h, i, m, n, q, r}, x] +Int[Tanh[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := Int[(-1 + E^(2*a*d)*x^(2*b*d))^p/(1 + E^(2*a*d)*x^(2*b*d))^p, x] /; FreeQ[{a, b, d, p}, x] +Int[Coth[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := Int[(-1 - E^(2*a*d)*x^(2*b*d))^p/(1 - E^(2*a*d)*x^(2*b*d))^p, x] /; FreeQ[{a, b, d, p}, x] +Int[Tanh[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := x/(n*(c*x^n)^(1/n))* Subst[Int[x^(1/n - 1)*Tanh[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[Coth[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := x/(n*(c*x^n)^(1/n))* Subst[Int[x^(1/n - 1)*Coth[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[(e_.*x_)^m_.*Tanh[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := Int[(e*x)^ m*(-1 + E^(2*a*d)*x^(2*b*d))^p/(1 + E^(2*a*d)*x^(2*b*d))^p, x] /; FreeQ[{a, b, d, e, m, p}, x] +Int[(e_.*x_)^m_.*Coth[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := Int[(e*x)^ m*(-1 - E^(2*a*d)*x^(2*b*d))^p/(1 - E^(2*a*d)*x^(2*b*d))^p, x] /; FreeQ[{a, b, d, e, m, p}, x] +Int[(e_.*x_)^m_.*Tanh[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := (e*x)^(m + 1)/(e*n*(c*x^n)^((m + 1)/n))* Subst[Int[x^((m + 1)/n - 1)*Tanh[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[(e_.*x_)^m_.*Coth[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := (e*x)^(m + 1)/(e*n*(c*x^n)^((m + 1)/n))* Subst[Int[x^((m + 1)/n - 1)*Coth[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[Sech[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := 2^p*E^(-a*d*p)*Int[x^(-b*d*p)/(1 + E^(-2*a*d)*x^(-2*b*d))^p, x] /; FreeQ[{a, b, d}, x] && IntegerQ[p] +Int[Csch[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := 2^p*E^(-a*d*p)*Int[x^(-b*d*p)/(1 - E^(-2*a*d)*x^(-2*b*d))^p, x] /; FreeQ[{a, b, d}, x] && IntegerQ[p] +Int[Sech[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := Sech[d*(a + b*Log[x])]^p*(1 + E^(-2*a*d)*x^(-2*b*d))^p/x^(-b*d*p)* Int[x^(-b*d*p)/(1 + E^(-2*a*d)*x^(-2*b*d))^p, x] /; FreeQ[{a, b, d, p}, x] && Not[IntegerQ[p]] +Int[Csch[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := Csch[d*(a + b*Log[x])]^p*(1 - E^(-2*a*d)*x^(-2*b*d))^p/x^(-b*d*p)* Int[x^(-b*d*p)/(1 - E^(-2*a*d)*x^(-2*b*d))^p, x] /; FreeQ[{a, b, d, p}, x] && Not[IntegerQ[p]] +Int[Sech[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := x/(n*(c*x^n)^(1/n))* Subst[Int[x^(1/n - 1)*Sech[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[Csch[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := x/(n*(c*x^n)^(1/n))* Subst[Int[x^(1/n - 1)*Csch[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[(e_.*x_)^m_.*Sech[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := 2^p*E^(-a*d*p)* Int[(e*x)^m*x^(-b*d*p)/(1 + E^(-2*a*d)*x^(-2*b*d))^p, x] /; FreeQ[{a, b, d, e, m}, x] && IntegerQ[p] +Int[(e_.*x_)^m_.*Csch[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := 2^p*E^(-a*d*p)* Int[(e*x)^m*x^(-b*d*p)/(1 - E^(-2*a*d)*x^(-2*b*d))^p, x] /; FreeQ[{a, b, d, e, m}, x] && IntegerQ[p] +Int[(e_.*x_)^m_.*Sech[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := Sech[d*(a + b*Log[x])]^p*(1 + E^(-2*a*d)*x^(-2*b*d))^p/x^(-b*d*p)* Int[(e*x)^m*x^(-b*d*p)/(1 + E^(-2*a*d)*x^(-2*b*d))^p, x] /; FreeQ[{a, b, d, e, m, p}, x] && Not[IntegerQ[p]] +Int[(e_.*x_)^m_.*Csch[d_.*(a_. + b_.*Log[x_])]^p_., x_Symbol] := Csch[d*(a + b*Log[x])]^p*(1 - E^(-2*a*d)*x^(-2*b*d))^p/x^(-b*d*p)* Int[(e*x)^m*x^(-b*d*p)/(1 - E^(-2*a*d)*x^(-2*b*d))^p, x] /; FreeQ[{a, b, d, e, m, p}, x] && Not[IntegerQ[p]] +Int[(e_.*x_)^m_.*Sech[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := (e*x)^(m + 1)/(e*n*(c*x^n)^((m + 1)/n))* Subst[Int[x^((m + 1)/n - 1)*Sech[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[(e_.*x_)^m_.*Csch[d_.*(a_. + b_.*Log[c_.*x_^n_.])]^p_., x_Symbol] := (e*x)^(m + 1)/(e*n*(c*x^n)^((m + 1)/n))* Subst[Int[x^((m + 1)/n - 1)*Csch[d*(a + b*Log[x])]^p, x], x, c*x^n] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1]) +Int[Sinh[a_.*x_*Log[b_.*x_]]*Log[b_.*x_], x_Symbol] := Cosh[a*x*Log[b*x]]/a - Int[Sinh[a*x*Log[b*x]], x] /; FreeQ[{a, b}, x] +Int[Cosh[a_.*x_*Log[b_.*x_]]*Log[b_.*x_], x_Symbol] := Sinh[a*x*Log[b*x]]/a - Int[Cosh[a*x*Log[b*x]], x] /; FreeQ[{a, b}, x] +Int[x_^m_.*Sinh[a_.*x_^n_.*Log[b_.*x_]]*Log[b_.*x_], x_Symbol] := Cosh[a*x^n*Log[b*x]]/(a*n) - 1/n*Int[x^m*Sinh[a*x^n*Log[b*x]], x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n - 1] +Int[x_^m_.*Cosh[a_.*x_^n_.*Log[b_.*x_]]*Log[b_.*x_], x_Symbol] := Sinh[a*x^n*Log[b*x]]/(a*n) - 1/n*Int[x^m*Cosh[a*x^n*Log[b*x]], x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n - 1] diff --git a/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.9 Active hyperbolic functions.m b/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.9 Active hyperbolic functions.m new file mode 100755 index 0000000..bf86294 --- /dev/null +++ b/IntegrationRules/6 Hyperbolic functions/6.7 Miscellaneous/6.7.9 Active hyperbolic functions.m @@ -0,0 +1,99 @@ + +(* ::Subsection::Closed:: *) +(* 6.7.9 Active hyperbolic functions *) +Int[(e_. + f_.*x_)^m_.* Sinh[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/b*Int[(e + f*x)^m*Sinh[c + d*x]^(n - 1), x] - a/b*Int[(e + f*x)^m*Sinh[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[(e_. + f_.*x_)^m_.* Cosh[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := 1/b*Int[(e + f*x)^m*Cosh[c + d*x]^(n - 1), x] - a/b*Int[(e + f*x)^m*Cosh[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[(e_. + f_.*x_)^m_.* Cosh[c_. + d_.*x_]/(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := -(e + f*x)^(m + 1)/(b*f*(m + 1)) + 2*Int[(e + f*x)^m*E^(c + d*x)/(a + b*E^(c + d*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[a^2 + b^2, 0] +Int[(e_. + f_.*x_)^m_.* Sinh[c_. + d_.*x_]/(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := -(e + f*x)^(m + 1)/(b*f*(m + 1)) + 2*Int[(e + f*x)^m*E^(c + d*x)/(a + b*E^(c + d*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[a^2 - b^2, 0] +Int[(e_. + f_.*x_)^m_.* Cosh[c_. + d_.*x_]/(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := -(e + f*x)^(m + 1)/(b*f*(m + 1)) + Int[(e + f*x)^m* E^(c + d*x)/(a - Rt[a^2 + b^2, 2] + b*E^(c + d*x)), x] + Int[(e + f*x)^m* E^(c + d*x)/(a + Rt[a^2 + b^2, 2] + b*E^(c + d*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[a^2 + b^2, 0] +Int[(e_. + f_.*x_)^m_.* Sinh[c_. + d_.*x_]/(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := -(e + f*x)^(m + 1)/(b*f*(m + 1)) + Int[(e + f*x)^m* E^(c + d*x)/(a - Rt[a^2 - b^2, 2] + b*E^(c + d*x)), x] + Int[(e + f*x)^m* E^(c + d*x)/(a + Rt[a^2 - b^2, 2] + b*E^(c + d*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[a^2 - b^2, 0] +Int[(e_. + f_.*x_)^m_.* Cosh[c_. + d_.*x_]^n_/(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Cosh[c + d*x]^(n - 2), x] + 1/b*Int[(e + f*x)^m*Cosh[c + d*x]^(n - 2)*Sinh[c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 1] && EqQ[a^2 + b^2, 0] +Int[(e_. + f_.*x_)^m_.* Sinh[c_. + d_.*x_]^n_/(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := -1/a*Int[(e + f*x)^m*Sinh[c + d*x]^(n - 2), x] + 1/b*Int[(e + f*x)^m*Sinh[c + d*x]^(n - 2)*Cosh[c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 1] && EqQ[a^2 - b^2, 0] +Int[(e_. + f_.*x_)^m_.* Cosh[c_. + d_.*x_]^n_/(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := -a/b^2*Int[(e + f*x)^m*Cosh[c + d*x]^(n - 2), x] + 1/b*Int[(e + f*x)^m*Cosh[c + d*x]^(n - 2)*Sinh[c + d*x], x] + (a^2 + b^2)/b^2* Int[(e + f*x)^m*Cosh[c + d*x]^(n - 2)/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[n, 1] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.* Sinh[c_. + d_.*x_]^n_/(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := -a/b^2*Int[(e + f*x)^m*Sinh[c + d*x]^(n - 2), x] + 1/b*Int[(e + f*x)^m*Sinh[c + d*x]^(n - 2)*Cosh[c + d*x], x] + (a^2 - b^2)/b^2* Int[(e + f*x)^m*Sinh[c + d*x]^(n - 2)/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[n, 1] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.* Tanh[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/b*Int[(e + f*x)^m*Sech[c + d*x]*Tanh[c + d*x]^(n - 1), x] - a/b*Int[(e + f*x)^m*Sech[c + d*x]* Tanh[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[(e_. + f_.*x_)^m_.* Coth[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := 1/b*Int[(e + f*x)^m*Csch[c + d*x]*Coth[c + d*x]^(n - 1), x] - a/b*Int[(e + f*x)^m*Csch[c + d*x]* Coth[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[(e_. + f_.*x_)^m_.* Coth[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Coth[c + d*x]^n, x] - b/a*Int[(e + f*x)^m*Cosh[c + d*x]* Coth[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[(e_. + f_.*x_)^m_.* Tanh[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Tanh[c + d*x]^n, x] - b/a*Int[(e + f*x)^m*Sinh[c + d*x]* Tanh[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[(e_. + f_.*x_)^m_.* Sech[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Sech[c + d*x]^(n + 2), x] + 1/b*Int[(e + f*x)^m*Sech[c + d*x]^(n + 1)*Tanh[c + d*x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && EqQ[a^2 + b^2, 0] +Int[(e_. + f_.*x_)^m_.* Csch[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := -1/a*Int[(e + f*x)^m*Csch[c + d*x]^(n + 2), x] + 1/b*Int[(e + f*x)^m*Csch[c + d*x]^(n + 1)*Coth[c + d*x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && EqQ[a^2 - b^2, 0] +Int[(e_. + f_.*x_)^m_.* Sech[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := b^2/(a^2 + b^2)* Int[(e + f*x)^m*Sech[c + d*x]^(n - 2)/(a + b*Sinh[c + d*x]), x] + 1/(a^2 + b^2)* Int[(e + f*x)^m*Sech[c + d*x]^n*(a - b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[a^2 + b^2, 0] && IGtQ[n, 0] +Int[(e_. + f_.*x_)^m_.* Csch[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := b^2/(a^2 - b^2)* Int[(e + f*x)^m*Csch[c + d*x]^(n - 2)/(a + b*Cosh[c + d*x]), x] + 1/(a^2 - b^2)* Int[(e + f*x)^m*Csch[c + d*x]^n*(a - b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[a^2 - b^2, 0] && IGtQ[n, 0] +Int[(e_. + f_.*x_)^m_.* Csch[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Csch[c + d*x]^n, x] - b/a*Int[(e + f*x)^m*Csch[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[(e_. + f_.*x_)^m_.* Sech[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Sech[c + d*x]^n, x] - b/a*Int[(e + f*x)^m*Sech[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[(e_. + f_.*x_)^m_.* F_[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := Unintegrable[(e + f*x)^m*F[c + d*x]^n/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && HyperbolicQ[F] +Int[(e_. + f_.*x_)^m_.* F_[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := Unintegrable[(e + f*x)^m*F[c + d*x]^n/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && HyperbolicQ[F] +Int[(e_. + f_.*x_)^m_.*Cosh[c_. + d_.*x_]^p_.* Sinh[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/b*Int[(e + f*x)^m*Cosh[c + d*x]^p*Sinh[c + d*x]^(n - 1), x] - a/b* Int[(e + f*x)^m*Cosh[c + d*x]^p* Sinh[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Sinh[c_. + d_.*x_]^p_.* Cosh[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := 1/b*Int[(e + f*x)^m*Sinh[c + d*x]^p*Cosh[c + d*x]^(n - 1), x] - a/b* Int[(e + f*x)^m*Sinh[c + d*x]^p* Cosh[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Sinh[c_. + d_.*x_]^p_.* Tanh[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/b*Int[(e + f*x)^m*Sinh[c + d*x]^(p - 1)*Tanh[c + d*x]^n, x] - a/b* Int[(e + f*x)^m*Sinh[c + d*x]^(p - 1)* Tanh[c + d*x]^n/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Cosh[c_. + d_.*x_]^p_.* Coth[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := 1/b*Int[(e + f*x)^m*Cosh[c + d*x]^(p - 1)*Coth[c + d*x]^n, x] - a/b* Int[(e + f*x)^m*Cosh[c + d*x]^(p - 1)* Coth[c + d*x]^n/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Sech[c_. + d_.*x_]^p_.* Tanh[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/b*Int[(e + f*x)^m*Sech[c + d*x]^(p + 1)*Tanh[c + d*x]^(n - 1), x] - a/b* Int[(e + f*x)^m*Sech[c + d*x]^(p + 1)* Tanh[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Csch[c_. + d_.*x_]^p_.* Coth[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := 1/b*Int[(e + f*x)^m*Csch[c + d*x]^(p + 1)*Coth[c + d*x]^(n - 1), x] - a/b* Int[(e + f*x)^m*Csch[c + d*x]^(p + 1)* Coth[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Cosh[c_. + d_.*x_]^p_.* Coth[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Cosh[c + d*x]^p*Coth[c + d*x]^n, x] - b/a* Int[(e + f*x)^m*Cosh[c + d*x]^(p + 1)* Coth[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Sinh[c_. + d_.*x_]^p_.* Tanh[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Sinh[c + d*x]^p*Tanh[c + d*x]^n, x] - b/a* Int[(e + f*x)^m*Sinh[c + d*x]^(p + 1)* Tanh[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Csch[c_. + d_.*x_]^p_.* Coth[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Csch[c + d*x]^p*Coth[c + d*x]^n, x] - b/a* Int[(e + f*x)^m*Csch[c + d*x]^(p - 1)* Coth[c + d*x]^n/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Sech[c_. + d_.*x_]^p_.* Tanh[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Sech[c + d*x]^p*Tanh[c + d*x]^n, x] - b/a* Int[(e + f*x)^m*Sech[c + d*x]^(p - 1)* Tanh[c + d*x]^n/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Sech[c_. + d_.*x_]^p_.* Csch[c_. + d_.*x_]^n_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Sech[c + d*x]^p*Csch[c + d*x]^n, x] - b/a* Int[(e + f*x)^m*Sech[c + d*x]^p* Csch[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*Csch[c_. + d_.*x_]^p_.* Sech[c_. + d_.*x_]^n_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := 1/a*Int[(e + f*x)^m*Csch[c + d*x]^p*Sech[c + d*x]^n, x] - b/a* Int[(e + f*x)^m*Csch[c + d*x]^p* Sech[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*F_[c_. + d_.*x_]^n_.* G_[c_. + d_.*x_]^p_./(a_ + b_.*Sinh[c_. + d_.*x_]), x_Symbol] := Unintegrable[(e + f*x)^m*F[c + d*x]^n* G[c + d*x]^p/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && HyperbolicQ[F] && HyperbolicQ[G] +Int[(e_. + f_.*x_)^m_.*F_[c_. + d_.*x_]^n_.* G_[c_. + d_.*x_]^p_./(a_ + b_.*Cosh[c_. + d_.*x_]), x_Symbol] := Unintegrable[(e + f*x)^m*F[c + d*x]^n* G[c + d*x]^p/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && HyperbolicQ[F] && HyperbolicQ[G] +Int[(e_. + f_.*x_)^m_.* F_[c_. + d_.*x_]^n_./(a_ + b_.*Sech[c_. + d_.*x_]), x_Symbol] := Int[(e + f*x)^m*Cosh[c + d*x]*F[c + d*x]^n/(b + a*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && HyperbolicQ[F] && IntegersQ[m, n] +Int[(e_. + f_.*x_)^m_.* F_[c_. + d_.*x_]^n_./(a_ + b_.*Csch[c_. + d_.*x_]), x_Symbol] := Int[(e + f*x)^m*Sinh[c + d*x]*F[c + d*x]^n/(b + a*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && HyperbolicQ[F] && IntegersQ[m, n] +Int[(e_. + f_.*x_)^m_.*F_[c_. + d_.*x_]^n_.* G_[c_. + d_.*x_]^p_./(a_ + b_.*Sech[c_. + d_.*x_]), x_Symbol] := Int[(e + f*x)^m*Cosh[c + d*x]*F[c + d*x]^n* G[c + d*x]^p/(b + a*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && HyperbolicQ[F] && HyperbolicQ[G] && IntegersQ[m, n, p] +Int[(e_. + f_.*x_)^m_.*F_[c_. + d_.*x_]^n_.* G_[c_. + d_.*x_]^p_./(a_ + b_.*Csch[c_. + d_.*x_]), x_Symbol] := Int[(e + f*x)^m*Sinh[c + d*x]*F[c + d*x]^n* G[c + d*x]^p/(b + a*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && HyperbolicQ[F] && HyperbolicQ[G] && IntegersQ[m, n, p] +Int[Sinh[a_. + b_.*x_]^p_.*Sinh[c_. + d_.*x_]^q_., x_Symbol] := 1/2^(p + q)* Int[ExpandIntegrand[(-E^(-c - d*x) + E^(c + d*x))^ q, (-E^(-a - b*x) + E^(a + b*x))^p, x], x] /; FreeQ[{a, b, c, d, q}, x] && IGtQ[p, 0] && Not[IntegerQ[q]] +Int[Cosh[a_. + b_.*x_]^p_.*Cosh[c_. + d_.*x_]^q_., x_Symbol] := 1/2^(p + q)* Int[ExpandIntegrand[(E^(-c - d*x) + E^(c + d*x))^ q, (E^(-a - b*x) + E^(a + b*x))^p, x], x] /; FreeQ[{a, b, c, d, q}, x] && IGtQ[p, 0] && Not[IntegerQ[q]] +Int[Sinh[a_. + b_.*x_]^p_.*Cosh[c_. + d_.*x_]^q_., x_Symbol] := 1/2^(p + q)* Int[ExpandIntegrand[(E^(-c - d*x) + E^(c + d*x))^ q, (-E^(-a - b*x) + E^(a + b*x))^p, x], x] /; FreeQ[{a, b, c, d, q}, x] && IGtQ[p, 0] && Not[IntegerQ[q]] +Int[Cosh[a_. + b_.*x_]^p_.*Sinh[c_. + d_.*x_]^q_., x_Symbol] := 1/2^(p + q)* Int[ExpandIntegrand[(-E^(-c - d*x) + E^(c + d*x))^ q, (E^(-a - b*x) + E^(a + b*x))^p, x], x] /; FreeQ[{a, b, c, d, q}, x] && IGtQ[p, 0] && Not[IntegerQ[q]] +Int[Sinh[a_. + b_.*x_]*Tanh[c_. + d_.*x_], x_Symbol] := Int[-E^(-(a + b*x))/2 + E^(a + b*x)/2 + E^(-(a + b*x))/(1 + E^(2*(c + d*x))) - E^(a + b*x)/(1 + E^(2*(c + d*x))), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - d^2, 0] +Int[Cosh[a_. + b_.*x_]*Coth[c_. + d_.*x_], x_Symbol] := Int[E^(-(a + b*x))/2 + E^(a + b*x)/2 - E^(-(a + b*x))/(1 - E^(2*(c + d*x))) - E^(a + b*x)/(1 - E^(2*(c + d*x))), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - d^2, 0] +Int[Sinh[a_. + b_.*x_]*Coth[c_. + d_.*x_], x_Symbol] := Int[-E^(-(a + b*x))/2 + E^(a + b*x)/2 + E^(-(a + b*x))/(1 - E^(2*(c + d*x))) - E^(a + b*x)/(1 - E^(2*(c + d*x))), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - d^2, 0] +Int[Cosh[a_. + b_.*x_]*Tanh[c_. + d_.*x_], x_Symbol] := Int[E^(-(a + b*x))/2 + E^(a + b*x)/2 - E^(-(a + b*x))/(1 + E^(2*(c + d*x))) - E^(a + b*x)/(1 + E^(2*(c + d*x))), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - d^2, 0] +Int[Sinh[a_./(c_. + d_.*x_)]^n_., x_Symbol] := -1/d*Subst[Int[Sinh[a*x]^n/x^2, x], x, 1/(c + d*x)] /; FreeQ[{a, c, d}, x] && IGtQ[n, 0] +Int[Cosh[a_./(c_. + d_.*x_)]^n_., x_Symbol] := -1/d*Subst[Int[Cosh[a*x]^n/x^2, x], x, 1/(c + d*x)] /; FreeQ[{a, c, d}, x] && IGtQ[n, 0] +Int[Sinh[e_.*(a_. + b_.*x_)/(c_. + d_.*x_)]^n_., x_Symbol] := -1/d*Subst[Int[Sinh[b*e/d - e*(b*c - a*d)*x/d]^n/x^2, x], x, 1/(c + d*x)] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] +Int[Cosh[e_.*(a_. + b_.*x_)/(c_. + d_.*x_)]^n_., x_Symbol] := -1/d*Subst[Int[Cosh[b*e/d - e*(b*c - a*d)*x/d]^n/x^2, x], x, 1/(c + d*x)] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] +Int[Sinh[u_]^n_., x_Symbol] := With[{lst = QuotientOfLinearsParts[u, x]}, Int[Sinh[(lst[[1]] + lst[[2]]*x)/(lst[[3]] + lst[[4]]*x)]^n, x]] /; IGtQ[n, 0] && QuotientOfLinearsQ[u, x] +Int[Cosh[u_]^n_., x_Symbol] := With[{lst = QuotientOfLinearsParts[u, x]}, Int[Cosh[(lst[[1]] + lst[[2]]*x)/(lst[[3]] + lst[[4]]*x)]^n, x]] /; IGtQ[n, 0] && QuotientOfLinearsQ[u, x] +Int[u_.*Sinh[v_]^p_.*Sinh[w_]^q_., x_Symbol] := Int[u*Sinh[v]^(p + q), x] /; EqQ[w, v] +Int[u_.*Cosh[v_]^p_.*Cosh[w_]^q_., x_Symbol] := Int[u*Cosh[v]^(p + q), x] /; EqQ[w, v] +Int[Sinh[v_]^p_.*Sinh[w_]^q_., x_Symbol] := Int[ExpandTrigReduce[Sinh[v]^p*Sinh[w]^q, x], x] /; IGtQ[p, 0] && IGtQ[q, 0] && (PolynomialQ[v, x] && PolynomialQ[w, x] || BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w], x]) +Int[Cosh[v_]^p_.*Cosh[w_]^q_., x_Symbol] := Int[ExpandTrigReduce[Cosh[v]^p*Cosh[w]^q, x], x] /; IGtQ[p, 0] && IGtQ[q, 0] && (PolynomialQ[v, x] && PolynomialQ[w, x] || BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w], x]) +Int[x_^m_.*Sinh[v_]^p_.*Sinh[w_]^q_., x_Symbol] := Int[ExpandTrigReduce[x^m, Sinh[v]^p*Sinh[w]^q, x], x] /; IGtQ[m, 0] && IGtQ[p, 0] && IGtQ[q, 0] && (PolynomialQ[v, x] && PolynomialQ[w, x] || BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w], x]) +Int[x_^m_.*Cosh[v_]^p_.*Cosh[w_]^q_., x_Symbol] := Int[ExpandTrigReduce[x^m, Cosh[v]^p*Cosh[w]^q, x], x] /; IGtQ[m, 0] && IGtQ[p, 0] && IGtQ[q, 0] && (PolynomialQ[v, x] && PolynomialQ[w, x] || BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w], x]) +Int[u_.*Sinh[v_]^p_.*Cosh[w_]^p_., x_Symbol] := 1/2^p*Int[u*Sinh[2*v]^p, x] /; EqQ[w, v] && IntegerQ[p] +Int[Sinh[v_]^p_.*Cosh[w_]^q_., x_Symbol] := Int[ExpandTrigReduce[Sinh[v]^p*Cosh[w]^q, x], x] /; IGtQ[p, 0] && IGtQ[q, 0] && (PolynomialQ[v, x] && PolynomialQ[w, x] || BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w], x]) +Int[x_^m_.*Sinh[v_]^p_.*Cosh[w_]^q_., x_Symbol] := Int[ExpandTrigReduce[x^m, Sinh[v]^p*Cosh[w]^q, x], x] /; IGtQ[m, 0] && IGtQ[p, 0] && IGtQ[q, 0] && (PolynomialQ[v, x] && PolynomialQ[w, x] || BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w], x]) +Int[Sinh[v_]*Tanh[w_]^n_., x_Symbol] := Int[Cosh[v]*Tanh[w]^(n - 1), x] - Cosh[v - w]*Int[Sech[w]*Tanh[w]^(n - 1), x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x] +Int[Cosh[v_]*Coth[w_]^n_., x_Symbol] := Int[Sinh[v]*Coth[w]^(n - 1), x] + Cosh[v - w]*Int[Csch[w]*Coth[w]^(n - 1), x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x] +Int[Sinh[v_]*Coth[w_]^n_., x_Symbol] := Int[Cosh[v]*Coth[w]^(n - 1), x] + Sinh[v - w]*Int[Csch[w]*Coth[w]^(n - 1), x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x] +Int[Cosh[v_]*Tanh[w_]^n_., x_Symbol] := Int[Sinh[v]*Tanh[w]^(n - 1), x] - Sinh[v - w]*Int[Sech[w]*Tanh[w]^(n - 1), x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x] +Int[Sinh[v_]*Sech[w_]^n_., x_Symbol] := Cosh[v - w]*Int[Tanh[w]*Sech[w]^(n - 1), x] + Sinh[v - w]*Int[Sech[w]^(n - 1), x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x] +Int[Cosh[v_]*Csch[w_]^n_., x_Symbol] := Cosh[v - w]*Int[Coth[w]*Csch[w]^(n - 1), x] + Sinh[v - w]*Int[Csch[w]^(n - 1), x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x] +Int[Sinh[v_]*Csch[w_]^n_., x_Symbol] := Sinh[v - w]*Int[Coth[w]*Csch[w]^(n - 1), x] + Cosh[v - w]*Int[Csch[w]^(n - 1), x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x] +Int[Cosh[v_]*Sech[w_]^n_., x_Symbol] := Sinh[v - w]*Int[Tanh[w]*Sech[w]^(n - 1), x] + Cosh[v - w]*Int[Sech[w]^(n - 1), x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x] +Int[(e_. + f_.*x_)^ m_.*(a_ + b_.*Sinh[c_. + d_.*x_]*Cosh[c_. + d_.*x_])^n_., x_Symbol] := Int[(e + f*x)^m*(a + b*Sinh[2*c + 2*d*x]/2)^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[x_^m_.*(a_ + b_.*Sinh[c_. + d_.*x_]^2)^n_, x_Symbol] := 1/2^n*Int[x^m*(2*a - b + b*Cosh[2*c + 2*d*x])^n, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a - b, 0] && IGtQ[m, 0] && ILtQ[n, 0] && (EqQ[n, -1] || EqQ[m, 1] && EqQ[n, -2]) +Int[x_^m_.*(a_ + b_.*Cosh[c_. + d_.*x_]^2)^n_, x_Symbol] := 1/2^n*Int[x^m*(2*a + b + b*Cosh[2*c + 2*d*x])^n, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a - b, 0] && IGtQ[m, 0] && ILtQ[n, 0] && (EqQ[n, -1] || EqQ[m, 1] && EqQ[n, -2]) +Int[(f_. + g_.*x_)^ m_./(a_. + b_.*Cosh[d_. + e_.*x_]^2 + c_.*Sinh[d_. + e_.*x_]^2), x_Symbol] := 2*Int[(f + g*x)^m/(2*a + b - c + (b + c)*Cosh[2*d + 2*e*x]), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[m, 0] && NeQ[a + b, 0] && NeQ[a + c, 0] +Int[(f_. + g_.*x_)^m_.* Sech[d_. + e_.*x_]^2/(b_ + c_.*Tanh[d_. + e_.*x_]^2), x_Symbol] := 2*Int[(f + g*x)^m/(b - c + (b + c)*Cosh[2*d + 2*e*x]), x] /; FreeQ[{b, c, d, e, f, g}, x] && IGtQ[m, 0] +Int[(f_. + g_.*x_)^m_.* Sech[d_. + e_.*x_]^2/(b_. + a_.*Sech[d_. + e_.*x_]^2 + c_.*Tanh[d_. + e_.*x_]^2), x_Symbol] := 2*Int[(f + g*x)^m/(2*a + b - c + (b + c)*Cosh[2*d + 2*e*x]), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[m, 0] && NeQ[a + b, 0] && NeQ[a + c, 0] +Int[(f_. + g_.*x_)^m_.* Csch[d_. + e_.*x_]^2/(c_ + b_.*Coth[d_. + e_.*x_]^2), x_Symbol] := 2*Int[(f + g*x)^m/(b - c + (b + c)*Cosh[2*d + 2*e*x]), x] /; FreeQ[{b, c, d, e, f, g}, x] && IGtQ[m, 0] +Int[(f_. + g_.*x_)^m_.* Csch[d_. + e_.*x_]^2/(c_. + b_.*Coth[d_. + e_.*x_]^2 + a_.*Csch[d_. + e_.*x_]^2), x_Symbol] := 2*Int[(f + g*x)^m/(2*a + b - c + (b + c)*Cosh[2*d + 2*e*x]), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[m, 0] && NeQ[a + b, 0] && NeQ[a + c, 0] +Int[(e_. + f_.*x_)*(A_ + B_.*Sinh[c_. + d_.*x_])/(a_ + b_.*Sinh[c_. + d_.*x_])^2, x_Symbol] := B*(e + f*x)*Cosh[c + d*x]/(a*d*(a + b*Sinh[c + d*x])) - B*f/(a*d)*Int[Cosh[c + d*x]/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && EqQ[a*A + b*B, 0] +Int[(e_. + f_.*x_)*(A_ + B_.*Cosh[c_. + d_.*x_])/(a_ + b_.*Cosh[c_. + d_.*x_])^2, x_Symbol] := B*(e + f*x)*Sinh[c + d*x]/(a*d*(a + b*Cosh[c + d*x])) - B*f/(a*d)*Int[Sinh[c + d*x]/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && EqQ[a*A - b*B, 0] +Int[(e_. + f_.*x_)^m_.*Sinh[a_. + b_.*(c_ + d_.*x_)^n_]^p_., x_Symbol] := 1/d^(m + 1)* Subst[Int[(d*e - c*f + f*x)^m*Sinh[a + b*x^n]^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && RationalQ[p] +Int[(e_. + f_.*x_)^m_.*Cosh[a_. + b_.*(c_ + d_.*x_)^n_]^p_., x_Symbol] := 1/d^(m + 1)* Subst[Int[(d*e - c*f + f*x)^m*Cosh[a + b*x^n]^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && RationalQ[p] +Int[Sech[v_]^m_.*(a_ + b_.*Tanh[v_])^n_., x_Symbol] := Int[(a*Cosh[v] + b*Sinh[v])^n, x] /; FreeQ[{a, b}, x] && IntegerQ[(m - 1)/2] && EqQ[m + n, 0] +Int[Csch[v_]^m_.*(a_ + b_.*Coth[v_])^n_., x_Symbol] := Int[(b*Cosh[v] + a*Sinh[v])^n, x] /; FreeQ[{a, b}, x] && IntegerQ[(m - 1)/2] && EqQ[m + n, 0] +Int[u_.*Sinh[a_. + b_.*x_]^m_.*Sinh[c_. + d_.*x_]^n_., x_Symbol] := Int[ExpandTrigReduce[u, Sinh[a + b*x]^m*Sinh[c + d*x]^n, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[u_.*Cosh[a_. + b_.*x_]^m_.*Cosh[c_. + d_.*x_]^n_., x_Symbol] := Int[ExpandTrigReduce[u, Cosh[a + b*x]^m*Cosh[c + d*x]^n, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[Sech[a_. + b_.*x_]*Sech[c_ + d_.*x_], x_Symbol] := -Csch[(b*c - a*d)/d]*Int[Tanh[a + b*x], x] + Csch[(b*c - a*d)/b]*Int[Tanh[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0] && NeQ[b*c - a*d, 0] +Int[Csch[a_. + b_.*x_]*Csch[c_ + d_.*x_], x_Symbol] := Csch[(b*c - a*d)/b]*Int[Coth[a + b*x], x] - Csch[(b*c - a*d)/d]*Int[Coth[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0] && NeQ[b*c - a*d, 0] +Int[Tanh[a_. + b_.*x_]*Tanh[c_ + d_.*x_], x_Symbol] := b*x/d - b/d*Cosh[(b*c - a*d)/d]*Int[Sech[a + b*x]*Sech[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0] && NeQ[b*c - a*d, 0] +Int[Coth[a_. + b_.*x_]*Coth[c_ + d_.*x_], x_Symbol] := b*x/d + Cosh[(b*c - a*d)/d]*Int[Csch[a + b*x]*Csch[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0] && NeQ[b*c - a*d, 0] +Int[u_.*(a_.*Cosh[v_] + b_.*Sinh[v_])^n_., x_Symbol] := Int[u*(a*E^(a/b*v))^n, x] /; FreeQ[{a, b, n}, x] && EqQ[a^2 - b^2, 0] +Int[Sinh[d_.*(a_. + b_.*Log[c_.*x_^n_.])^2], x_Symbol] := -1/2*Int[E^(-d*(a + b*Log[c*x^n])^2), x] + 1/2*Int[E^(d*(a + b*Log[c*x^n])^2), x] /; FreeQ[{a, b, c, d, n}, x] +Int[Cosh[d_.*(a_. + b_.*Log[c_.*x_^n_.])^2], x_Symbol] := 1/2*Int[E^(-d*(a + b*Log[c*x^n])^2), x] + 1/2*Int[E^(d*(a + b*Log[c*x^n])^2), x] /; FreeQ[{a, b, c, d, n}, x] +Int[(e_.*x_)^m_.*Sinh[d_.*(a_. + b_.*Log[c_.*x_^n_.])^2], x_Symbol] := -1/2*Int[(e*x)^m*E^(-d*(a + b*Log[c*x^n])^2), x] + 1/2*Int[(e*x)^m*E^(d*(a + b*Log[c*x^n])^2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[(e_.*x_)^m_.*Cosh[d_.*(a_. + b_.*Log[c_.*x_^n_.])^2], x_Symbol] := 1/2*Int[(e*x)^m*E^(-d*(a + b*Log[c*x^n])^2), x] + 1/2*Int[(e*x)^m*E^(d*(a + b*Log[c*x^n])^2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.1 (a+b arcsinh(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.1 (a+b arcsinh(c x))^n.m new file mode 100755 index 0000000..c56d5b5 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.1 (a+b arcsinh(c x))^n.m @@ -0,0 +1,6 @@ + +(* ::Subsection::Closed:: *) +(* 7.1.1 (a+b arcsinh(c x))^n *) +Int[(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := x*(a + b*ArcSinh[c*x])^n - b*c*n*Int[x*(a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0] +Int[(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1)) - c/(b*(n + 1))* Int[x*(a + b*ArcSinh[c*x])^(n + 1)/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c}, x] && LtQ[n, -1] +Int[(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := 1/(b*c)* Subst[Int[x^n*Cosh[-a/b + x/b], x], x, a + b*ArcSinh[c*x]] /; FreeQ[{a, b, c, n}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.2 (d x)^m (a+b arcsinh(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.2 (d x)^m (a+b arcsinh(c x))^n.m new file mode 100755 index 0000000..f399210 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.2 (d x)^m (a+b arcsinh(c x))^n.m @@ -0,0 +1,10 @@ + +(* ::Subsection::Closed:: *) +(* 7.1.2 (d x)^m (a+b arcsinh(c x))^n *) +Int[(a_. + b_.*ArcSinh[c_.*x_])^n_./x_, x_Symbol] := 1/b*Subst[Int[x^n*Coth[-a/b + x/b], x], x, a + b*ArcSinh[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (d*x)^(m + 1)*(a + b*ArcSinh[c*x])^n/(d*(m + 1)) - b*c*n/(d*(m + 1))* Int[(d*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1] +Int[x_^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := x^(m + 1)*(a + b*ArcSinh[c*x])^n/(m + 1) - b*c*n/(m + 1)* Int[x^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0] +Int[x_^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := x^m*Sqrt[ 1 + c^2*x^2]*(a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1)) - 1/(b^2*c^(m + 1)*(n + 1))* Subst[ Int[ExpandTrigReduce[x^(n + 1), Sinh[-a/b + x/b]^(m - 1)*(m + (m + 1)*Sinh[-a/b + x/b]^2), x], x], x, a + b*ArcSinh[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1] +Int[x_^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := x^m*Sqrt[ 1 + c^2*x^2]*(a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1)) - m/(b*c*(n + 1))* Int[x^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1)/Sqrt[1 + c^2*x^2], x] - c*(m + 1)/(b*(n + 1))* Int[x^(m + 1)*(a + b*ArcSinh[c*x])^(n + 1)/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2] +Int[x_^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := 1/(b*c^(m + 1))* Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b], x], x, a + b*ArcSinh[c*x]] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Unintegrable[(d*x)^m*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, d, m, n}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.3 (d+e x^2)^p (a+b arcsinh(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.3 (d+e x^2)^p (a+b arcsinh(c x))^n.m new file mode 100755 index 0000000..3172975 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.3 (d+e x^2)^p (a+b arcsinh(c x))^n.m @@ -0,0 +1,20 @@ + +(* ::Subsection::Closed:: *) +(* 7.1.3 (d+e x^2)^p (a+b arcsinh(c x))^n *) +(* Int[(a_.+b_.*ArcSinh[c_.*x_])^n_./Sqrt[d_+e_.*x_^2],x_Symbol] := 1/c*Simp[Sqrt[1+c^2*x^2]/Sqrt[d+e*x^2]]*Subst[Int[(a+b*x)^n,x],x, ArcSinh[c*x]] /; FreeQ[{a,b,c,d,e,n},x] && EqQ[e,c^2*d] *) +Int[1/(Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcSinh[c_.*x_])), x_Symbol] := 1/(b*c)*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]* Log[a + b*ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] +Int[(a_. + b_.*ArcSinh[c_.*x_])^n_./Sqrt[d_ + e_.*x_^2], x_Symbol] := 1/(b*c*(n + 1))* Simp[Sqrt[1 + c^2*x^2]/ Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1) /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && NeQ[n, -1] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^p, x]}, Dist[a + b*ArcSinh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] +Int[Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := x*Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n/2 - b*c*n/2*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]* Int[x*(a + b*ArcSinh[c*x])^(n - 1), x] + 1/2*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]* Int[(a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := x*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n/(2*p + 1) + 2*d*p/(2*p + 1)* Int[(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x] - b*c*n/(2*p + 1)*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[x*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] +Int[(a_. + b_.*ArcSinh[c_.*x_])^n_./(d_ + e_.*x_^2)^(3/2), x_Symbol] := x*(a + b*ArcSinh[c*x])^n/(d*Sqrt[d + e*x^2]) - b*c*n/d*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]* Int[x*(a + b*ArcSinh[c*x])^(n - 1)/(1 + c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0] +Int[(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := -x*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n/(2*d*(p + 1)) + (2*p + 3)/(2*d*(p + 1))* Int[(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n, x] + b*c*n/(2*(p + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[x*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2] +Int[(a_. + b_.*ArcSinh[c_.*x_])^n_./(d_ + e_.*x_^2), x_Symbol] := 1/(c*d)*Subst[Int[(a + b*x)^n*Sech[x], x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] +(* Int[(d_+e_.*x_^2)^p_.*(a_.+b_.*ArcSinh[c_.*x_])^n_,x_Symbol] := d^p*(1+c^2*x^2)^(p+1/2)*(a+b*ArcSinh[c*x])^(n+1)/(b*c*(n+1)) - c*d^p*(2*p+1)/(b*(n+1))*Int[x*(1+c^2*x^2)^(p-1/2)*(a+b*ArcSinh[c*x]) ^(n+1),x] /; FreeQ[{a,b,c,d,e,p},x] && EqQ[e,c^2*d] && LtQ[n,-1] && (IntegerQ[p] || GtQ[d,0]) *) +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := Simp[Sqrt[1 + c^2*x^2]*(d + e*x^2)^ p]*(a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1)) - c*(2*p + 1)/(b*(n + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[x*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && LtQ[n, -1] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := 1/(b*c)*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Subst[Int[x^n*Cosh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p, 0] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^p, x]}, Dist[a + b*ArcSinh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[e, c^2*d] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0]) +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[e, c^2*d] && IntegerQ[p] && (p > 0 || IGtQ[n, 0]) +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Unintegrable[(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, n, p}, x] +Int[(d_ + e_.*x_)^p_*(f_ + g_.*x_)^q_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (-d^2*g/e)^q* Int[(d + e*x)^(p - q)*(1 + c^2*x^2)^q*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 + e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0] && GtQ[d, 0] && LtQ[g/e, 0] +Int[(d_ + e_.*x_)^p_*(f_ + g_.*x_)^q_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (d + e*x)^q*(f + g*x)^q/(1 + c^2*x^2)^q* Int[(d + e*x)^(p - q)*(1 + c^2*x^2)^q*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 + e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.4 (f x)^m (d+e x^2)^p (a+b arcsinh(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.4 (f x)^m (d+e x^2)^p (a+b arcsinh(c x))^n.m new file mode 100755 index 0000000..abeaa76 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.4 (f x)^m (d+e x^2)^p (a+b arcsinh(c x))^n.m @@ -0,0 +1,34 @@ + +(* ::Subsection::Closed:: *) +(* 7.1.4 (f x)^m (d+e x^2)^p (a+b arcsinh(c x))^n *) +Int[x_*(a_. + b_.*ArcSinh[c_.*x_])^n_./(d_ + e_.*x_^2), x_Symbol] := 1/e*Subst[Int[(a + b*x)^n*Tanh[x], x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] +Int[x_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n/(2*e*(p + 1)) - b*n/(2*c*(p + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && NeQ[p, -1] +Int[(a_. + b_.*ArcSinh[c_.*x_])^n_./(x_*(d_ + e_.*x_^2)), x_Symbol] := 1/d*Subst[Int[(a + b*x)^n/(Cosh[x]*Sinh[x]), x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^ n/(d*f*(m + 1)) - b*c*n/(f*(m + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])/x_, x_Symbol] := (d + e*x^2)^p*(a + b*ArcSinh[c*x])/(2*p) - b*c*d^p/(2*p)*Int[(1 + c^2*x^2)^(p - 1/2), x] + d*Int[(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])/x, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])/(f*(m + 1)) - b*c*d^p/(f*(m + 1))* Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2), x] - 2*e*p/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && ILtQ[(m + 1)/2, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSinh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] +Int[x_^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSinh[c*x], u] - b*c*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]* Int[SimplifyIntegrand[u/Sqrt[d + e*x^2], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegerQ[p - 1/2] && NeQ[p, -1/2] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0]) +Int[(f_.*x_)^m_*Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)* Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n/(f*(m + 1)) - b*c*n/(f*(m + 1))*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]* Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x] - c^2/(f^2*(m + 1))*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]* Int[(f*x)^(m + 2)*(a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)* Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n/(f*(m + 2)) - b*c*n/(f*(m + 2))*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]* Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x] + 1/(m + 2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]* Int[(f*x)^m*(a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1]) +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n/(f*(m + 1)) - 2*e*p/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x] - b*c*n/(f*(m + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^ p*(a + b*ArcSinh[c*x])^n/(f*(m + 2*p + 1)) + 2*d*p/(m + 2*p + 1)* Int[(f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x] - b*c*n/(f*(m + 2*p + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] && Not[LtQ[m, -1]] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^ n/(d*f*(m + 1)) - c^2*(m + 2*p + 3)/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x] - b*c*n/(f*(m + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && ILtQ[m, -1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^ n/(2*e*(p + 1)) - f^2*(m - 1)/(2*e*(p + 1))* Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n, x] - b*f*n/(2*c*(p + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[p, -1] && IGtQ[m, 1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := -(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^ n/(2*d*f*(p + 1)) + (m + 2*p + 3)/(2*d*(p + 1))* Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n, x] + b*c*n/(2*f*(p + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[p, -1] && Not[GtQ[m, 1]] && (IntegerQ[m] || IntegerQ[p] || EqQ[n, 1]) +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^ n/(e*(m + 2*p + 1)) - f^2*(m - 1)/(c^2*(m + 2*p + 1))* Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x] - b*f*n/(c*(m + 2*p + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := (f*x)^m* Sqrt[1 + c^2*x^2]*(d + e*x^2)^ p*(a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1)) - f*m/(b*c*(n + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[e, c^2*d] && LtQ[n, -1] && EqQ[m + 2*p + 1, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := (f*x)^m* Sqrt[1 + c^2*x^2]*(d + e*x^2)^ p*(a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1)) - f*m/(b*c*(n + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x] - c*(m + 2*p + 1)/(b*f*(n + 1))* Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3] +(* Int[(f_.*x_)^m_.*(d_+e_.*x_^2)^p_.*(a_.+b_.*ArcSinh[c_.*x_])^n_,x_ Symbol] := (f*x)^m*Simp[Sqrt[1+c^2*x^2]*(d+e*x^2)^p]*(a+b*ArcSinh[c*x])^(n+1)/( b*c*(n+1)) - f*m/(b*c*(n+1))*Simp[(d+e*x^2)^p/(1+c^2*x^2)^p]*Int[(f*x)^(m-1)*(1+ c^2*x^2)^(p+1/2)*(a+b*ArcSinh[c*x])^(n+1),x] - c*(2*p+1)/(b*f*(n+1))*Simp[(d+e*x^2)^p/(1+c^2*x^2)^p]*Int[(f*x)^(m+ 1)*(1+c^2*x^2)^(p-1/2)*(a+b*ArcSinh[c*x])^(n+1),x] /; FreeQ[{a,b,c,d,e,f,m,p},x] && EqQ[e,c^2*d] && LtQ[n,-1] && IntegerQ[2*p] && NeQ[p,-1/2] && IGtQ[m,-3] *) +Int[(f_.*x_)^m_*(a_. + b_.*ArcSinh[c_.*x_])^n_./Sqrt[d_ + e_.*x_^2], x_Symbol] := f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n/(e*m) - b*f*n/(c*m)*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]* Int[(f*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n - 1), x] - f^2*(m - 1)/(c^2*m)* Int[((f*x)^(m - 2)*(a + b*ArcSinh[c*x])^n)/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && IGtQ[m, 1] +Int[x_^m_*(a_. + b_.*ArcSinh[c_.*x_])^n_./Sqrt[d_ + e_.*x_^2], x_Symbol] := 1/c^(m + 1)*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]* Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[m] +Int[(f_.*x_)^m_*(a_. + b_.*ArcSinh[c_.*x_])/Sqrt[d_ + e_.*x_^2], x_Symbol] := (f*x)^(m + 1)/(f*(m + 1))* Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])* Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, -c^2*x^2] - b*c*(f*x)^(m + 2)/(f^2*(m + 1)*(m + 2))* Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]* HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, -c^2*x^2] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && Not[IntegerQ[m]] +Int[(f_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_/Sqrt[d_ + e_.*x_^2], x_Symbol] := (f*x)^m/(b*c*(n + 1))* Simp[Sqrt[1 + c^2*x^2]/ Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1) - f*m/(b*c*(n + 1))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]* Int[(f*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && LtQ[n, -1] +Int[x_^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := 1/(b*c^(m + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Subst[ Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p + 2, 0] && IGtQ[m, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n/ Sqrt[d + e*x^2], (f*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[e, c^2*d] && IGtQ[p + 1/2, 0] && Not[IGtQ[(m + 1)/2, 0]] && (EqQ[m, -1] || EqQ[m, -2]) +Int[x_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := (d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])/(2*e*(p + 1)) - b*c/(2*e*(p + 1))*Int[(d + e*x^2)^(p + 1)/Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[e, c^2*d] && NeQ[p, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSinh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[e, c^2*d] && IntegerQ[p] && (GtQ[p, 0] || IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Unintegrable[(f*x)^m*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[(h_.*x_)^m_.*(d_ + e_.*x_)^p_*(f_ + g_.*x_)^ q_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (-d^2*g/e)^q* Int[(h*x)^m*(d + e*x)^(p - q)*(1 + c^2*x^2)^q*(a + b*ArcSinh[c*x])^ n, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 + e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0] && GtQ[d, 0] && LtQ[g/e, 0] +Int[(h_.*x_)^m_.*(d_ + e_.*x_)^p_*(f_ + g_.*x_)^ q_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (-d^2*g/e)^IntPart[q]*(d + e*x)^ FracPart[q]*(f + g*x)^FracPart[q]/(1 + c^2*x^2)^FracPart[q]* Int[(h*x)^m*(d + e*x)^(p - q)*(1 + c^2*x^2)^ q*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 + e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.5 u (a+b arcsinh(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.5 u (a+b arcsinh(c x))^n.m new file mode 100755 index 0000000..3724035 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.5 u (a+b arcsinh(c x))^n.m @@ -0,0 +1,35 @@ + +(* ::Subsection::Closed:: *) +(* 7.1.5 u (a+b arcsinh(c x))^n *) +Int[(a_. + b_.*ArcSinh[c_.*x_])^n_./(d_. + e_.*x_), x_Symbol] := Subst[Int[(a + b*x)^n*Cosh[x]/(c*d + e*Sinh[x]), x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (d + e*x)^(m + 1)*(a + b*ArcSinh[c*x])^n/(e*(m + 1)) - b*c*n/(e*(m + 1))* Int[(d + e*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1)/ Sqrt[1 + c^2*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] && NeQ[m, -1] +Int[(d_ + e_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[(d + e*x)^m*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[m, 0] && LtQ[n, -1] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := 1/c^(m + 1)* Subst[Int[(a + b*x)^n*Cosh[x]*(c*d + e*Sinh[x])^m, x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[m, 0] +Int[Px_*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := With[{u = IntHide[ExpandExpression[Px, x], x]}, Dist[a + b*ArcSinh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x]] /; FreeQ[{a, b, c}, x] && PolynomialQ[Px, x] +(* Int[Px_*(a_.+b_.*ArcSinh[c_.*x_])^n_.,x_Symbol] := With[{u=IntHide[Px,x]}, Dist[(a+b*ArcSinh[c*x])^n,u,x] - b*c*n*Int[SimplifyIntegrand[u*(a+b*ArcSinh[c*x])^(n-1)/Sqrt[1+c^2*x^2] ,x],x]] /; FreeQ[{a,b,c},x] && PolynomialQ[Px,x] && IGtQ[n,0] *) +Int[Px_*(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[Px*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, n}, x] && PolynomialQ[Px, x] +Int[Px_*(d_. + e_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := With[{u = IntHide[Px*(d + e*x)^m, x]}, Dist[a + b*ArcSinh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x]] /; FreeQ[{a, b, c, d, e, m}, x] && PolynomialQ[Px, x] +Int[(f_. + g_.*x_)^p_.*(d_ + e_.*x_)^m_*(a_. + b_.*ArcSinh[c_.*x_])^ n_, x_Symbol] := With[{u = IntHide[(f + g*x)^p*(d + e*x)^m, x]}, Dist[(a + b*ArcSinh[c*x])^n, u, x] - b*c*n*Int[ SimplifyIntegrand[ u*(a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[m, 0] && LtQ[m + p + 1, 0] +Int[(f_. + g_.*x_ + h_.*x_^2)^ p_.*(a_. + b_.*ArcSinh[c_.*x_])^n_/(d_ + e_.*x_)^2, x_Symbol] := With[{u = IntHide[(f + g*x + h*x^2)^p/(d + e*x)^2, x]}, Dist[(a + b*ArcSinh[c*x])^n, u, x] - b*c*n*Int[ SimplifyIntegrand[ u*(a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2], x], x]] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IGtQ[n, 0] && IGtQ[p, 0] && EqQ[e*g - 2*d*h, 0] +Int[Px_*(d_ + e_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[Px*(d + e*x)^m*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && PolynomialQ[Px, x] && IGtQ[n, 0] && IntegerQ[m] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := With[{u = IntHide[(f + g*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSinh[c*x], u, x] - b*c*Int[Dist[1/Sqrt[1 + c^2*x^2], u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[p + 1/2, 0] && GtQ[d, 0] && (LtQ[m, -2*p - 1] || GtQ[m, 3]) +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSinh[c*x])^ n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && (EqQ[n, 1] && GtQ[p, -1] || GtQ[p, 0] || EqQ[m, 1] || EqQ[m, 2] && LtQ[p, -2]) +Int[(f_. + g_.*x_)^m_* Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := (f + g*x)^ m*(d + e*x^2)*(a + b*ArcSinh[c*x])^(n + 1)/(b*c* Sqrt[d]*(n + 1)) - 1/(b*c*Sqrt[d]*(n + 1))* Int[(d*g*m + 2*e*f*x + e*g*(m + 2)*x^2)*(f + g*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && ILtQ[m, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[ Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n, (f + g*x)^ m*(d + e*x^2)^(p - 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && IntegerQ[m] && IGtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^ n_., x_Symbol] := (f + g*x)^ m*(d + e*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n + 1)/(b*c* Sqrt[d]*(n + 1)) - 1/(b*c*Sqrt[d]*(n + 1))* Int[ ExpandIntegrand[(f + g*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), (d*g*m + e*f*(2*p + 1)*x + e*g*(m + 2*p + 1)*x^2)*(d + e*x^2)^(p - 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && ILtQ[m, 0] && IGtQ[p - 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_/ Sqrt[d_ + e_.*x_^2], x_Symbol] := (f + g*x)^m*(a + b*ArcSinh[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1)) - g*m/(b*c*Sqrt[d]*(n + 1))* Int[(f + g*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && GtQ[d, 0] && LtQ[n, -1] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_./ Sqrt[d_ + e_.*x_^2], x_Symbol] := 1/(c^(m + 1)*Sqrt[d])* Subst[Int[(a + b*x)^n*(c*f + g*Sinh[x])^m, x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e, c^2*d] && IntegerQ[m] && GtQ[d, 0] && (GtQ[m, 0] || IGtQ[n, 0]) +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n/ Sqrt[d + e*x^2], (f + g*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && IntegerQ[m] && ILtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^ n_., x_Symbol] := Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[(f + g*x)^m*(1 + c^2*x^2)^p*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e, c^2*d] && IntegerQ[m] && IntegerQ[p - 1/2] && Not[GtQ[d, 0]] +Int[Log[h_.*(f_. + g_.*x_)^m_.]*(a_. + b_.*ArcSinh[c_.*x_])^n_./ Sqrt[d_ + e_.*x_^2], x_Symbol] := Log[h*(f + g*x)^m]*(a + b*ArcSinh[c*x])^(n + 1)/(b*c* Sqrt[d]*(n + 1)) - g*m/(b*c*Sqrt[d]*(n + 1))* Int[(a + b*ArcSinh[c*x])^(n + 1)/(f + g*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && IGtQ[n, 0] +Int[Log[h_.*(f_. + g_.*x_)^m_.]*(d_ + e_.*x_^2)^ p_*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]* Int[Log[h*(f + g*x)^m]*(1 + c^2*x^2)^p*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e, c^2*d] && IntegerQ[p - 1/2] && Not[GtQ[d, 0]] +Int[(d_ + e_.*x_)^m_*(f_ + g_.*x_)^m_*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x)^m*(f + g*x)^m, x]}, Dist[a + b*ArcSinh[c*x], u, x] - b*c*Int[Dist[1/Sqrt[1 + c^2*x^2], u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m + 1/2, 0] +Int[(d_ + e_.*x_)^m_.*(f_ + g_.*x_)^m_.*(a_. + b_.*ArcSinh[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^ n, (d + e*x)^m*(f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && IntegerQ[m] +Int[u_*(a_. + b_.*ArcSinh[c_.*x_]), x_Symbol] := With[{v = IntHide[u, x]}, Dist[a + b*ArcSinh[c*x], v, x] - b*c*Int[SimplifyIntegrand[v/Sqrt[1 + c^2*x^2], x], x] /; InverseFunctionFreeQ[v, x]] /; FreeQ[{a, b, c}, x] +Int[Px_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcSinh[c_.*x_])^n_, x_Symbol] := With[{u = ExpandIntegrand[Px*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] && PolynomialQ[Px, x] && EqQ[e, c^2*d] && IntegerQ[p - 1/2] +Int[Px_.*(f_ + g_.*(d_ + e_.*x_^2)^p_)^ m_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := With[{u = ExpandIntegrand[ Px*(f + g*(d + e*x^2)^p)^m*(a + b*ArcSinh[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, g}, x] && PolynomialQ[Px, x] && EqQ[e, c^2*d] && IGtQ[p + 1/2, 0] && IntegersQ[m, n] +Int[RFx_*ArcSinh[c_.*x_]^n_., x_Symbol] := With[{u = ExpandIntegrand[ArcSinh[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[c, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] +Int[RFx_*(a_ + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[RFx*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] +Int[RFx_*(d_ + e_.*x_^2)^p_*ArcSinh[c_.*x_]^n_., x_Symbol] := With[{u = ExpandIntegrand[(d + e*x^2)^p*ArcSinh[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{c, d, e}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && EqQ[e, c^2*d] && IntegerQ[p - 1/2] +Int[RFx_*(d_ + e_.*x_^2)^p_*(a_ + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(d + e*x^2)^p, RFx*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && EqQ[e, c^2*d] && IntegerQ[p - 1/2] +Int[u_.*(a_. + b_.*ArcSinh[c_.*x_])^n_., x_Symbol] := Unintegrable[u*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, n}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.6 Miscellaneous inverse hyperbolic sine.m b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.6 Miscellaneous inverse hyperbolic sine.m new file mode 100755 index 0000000..f03f7a4 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.1 Inverse hyperbolic sine/7.1.6 Miscellaneous inverse hyperbolic sine.m @@ -0,0 +1,24 @@ + +(* ::Subsection::Closed:: *) +(* 7.1.6 Miscellaneous inverse hyperbolic sine *) +Int[(a_. + b_.*ArcSinh[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcSinh[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, n}, x] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcSinh[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[(A_. + B_.*x_ + C_.*x_^2)^p_.*(a_. + b_.*ArcSinh[c_ + d_.*x_])^ n_., x_Symbol] := 1/d*Subst[Int[(C/d^2 + C/d^2*x^2)^p*(a + b*ArcSinh[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, A, B, C, n, p}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(e_. + f_.*x_)^m_.*(A_. + B_.*x_ + C_.*x_^2)^ p_.*(a_. + b_.*ArcSinh[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[ Int[((d*e - c*f)/d + f*x/d)^m*(C/d^2 + C/d^2*x^2)^ p*(a + b*ArcSinh[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[Sqrt[a_. + b_.*ArcSinh[c_ + d_.*x_^2]], x_Symbol] := x*Sqrt[a + b*ArcSinh[c + d*x^2]] - Sqrt[Pi]*x*(Cosh[a/(2*b)] - c*Sinh[a/(2*b)])* FresnelC[Sqrt[-c/(Pi*b)]*Sqrt[a + b*ArcSinh[c + d*x^2]]]/ (Sqrt[-(c/b)]*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2])) + Sqrt[Pi]*x*(Cosh[a/(2*b)] + c*Sinh[a/(2*b)])* FresnelS[Sqrt[-c/(Pi*b)]*Sqrt[a + b*ArcSinh[c + d*x^2]]]/ (Sqrt[-(c/b)]*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2])) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1] +Int[(a_. + b_.*ArcSinh[c_ + d_.*x_^2])^n_, x_Symbol] := x*(a + b*ArcSinh[c + d*x^2])^n - 2*b*n* Sqrt[2*c*d*x^2 + d^2*x^4]*(a + b*ArcSinh[c + d*x^2])^(n - 1)/(d*x) + 4*b^2*n*(n - 1)*Int[(a + b*ArcSinh[c + d*x^2])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1] && GtQ[n, 1] +Int[1/(a_. + b_.*ArcSinh[c_ + d_.*x_^2]), x_Symbol] := x*(c*Cosh[a/(2*b)] - Sinh[a/(2*b)])* CoshIntegral[(a + b*ArcSinh[c + d*x^2])/(2*b)]/ (2* b*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[(1/2)*ArcSinh[c + d*x^2]])) + x*(Cosh[a/(2*b)] - c*Sinh[a/(2*b)])* SinhIntegral[(a + b*ArcSinh[c + d*x^2])/(2*b)]/ (2* b*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[(1/2)*ArcSinh[c + d*x^2]])) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1] +Int[1/Sqrt[a_. + b_.*ArcSinh[c_ + d_.*x_^2]], x_Symbol] := (c + 1)*Sqrt[Pi/2]*x*(Cosh[a/(2*b)] - Sinh[a/(2*b)])* Erfi[Sqrt[a + b*ArcSinh[c + d*x^2]]/Sqrt[2*b]]/ (2* Sqrt[b]*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2])) + (c - 1)*Sqrt[Pi/2]*x*(Cosh[a/(2*b)] + Sinh[a/(2*b)])* Erf[Sqrt[a + b*ArcSinh[c + d*x^2]]/Sqrt[2*b]]/ (2* Sqrt[b]*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2])) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1] +Int[1/(a_. + b_.*ArcSinh[c_ + d_.*x_^2])^(3/2), x_Symbol] := -Sqrt[2*c*d*x^2 + d^2*x^4]/(b*d*x*Sqrt[a + b*ArcSinh[c + d*x^2]]) - (-c/b)^(3/2)*Sqrt[Pi]*x*(Cosh[a/(2*b)] - c*Sinh[a/(2*b)])* FresnelC[Sqrt[-c/(Pi*b)]*Sqrt[a + b*ArcSinh[c + d*x^2]]]/ (Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2]) + (-c/b)^(3/2)*Sqrt[Pi]*x*(Cosh[a/(2*b)] + c*Sinh[a/(2*b)])* FresnelS[Sqrt[-c/(Pi*b)]*Sqrt[a + b*ArcSinh[c + d*x^2]]]/ (Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1] +Int[1/(a_. + b_.*ArcSinh[c_ + d_.*x_^2])^2, x_Symbol] := -Sqrt[2*c*d*x^2 + d^2*x^4]/(2*b*d*x*(a + b*ArcSinh[c + d*x^2])) + x*(Cosh[a/(2*b)] - c*Sinh[a/(2*b)])* CoshIntegral[(a + b*ArcSinh[c + d*x^2])/(2*b)]/ (4* b^2*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2])) + x*(c*Cosh[a/(2*b)] - Sinh[a/(2*b)])* SinhIntegral[(a + b*ArcSinh[c + d*x^2])/(2*b)]/ (4* b^2*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2])) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1] +Int[(a_. + b_.*ArcSinh[c_ + d_.*x_^2])^n_, x_Symbol] := -x*(a + b*ArcSinh[c + d*x^2])^(n + 2)/(4*b^2*(n + 1)*(n + 2)) + Sqrt[ 2*c*d*x^2 + d^2*x^4]*(a + b*ArcSinh[c + d*x^2])^(n + 1)/(2*b*d*(n + 1)* x) + 1/(4*b^2*(n + 1)*(n + 2))* Int[(a + b*ArcSinh[c + d*x^2])^(n + 2), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1] && LtQ[n, -1] && NeQ[n, -2] +Int[ArcSinh[a_.*x_^p_]^n_./x_, x_Symbol] := 1/p*Subst[Int[x^n*Coth[x], x], x, ArcSinh[a*x^p]] /; FreeQ[{a, p}, x] && IGtQ[n, 0] +Int[u_.*ArcSinh[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcCsch[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[ArcSinh[Sqrt[-1 + b_.*x_^2]]^n_./Sqrt[-1 + b_.*x_^2], x_Symbol] := Sqrt[b*x^2]/(b*x)* Subst[Int[ArcSinh[x]^n/Sqrt[1 + x^2], x], x, Sqrt[-1 + b*x^2]] /; FreeQ[{b, n}, x] +Int[f_^(c_.*ArcSinh[a_. + b_.*x_]^n_.), x_Symbol] := 1/b*Subst[Int[f^(c*x^n)*Cosh[x], x], x, ArcSinh[a + b*x]] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0] +Int[x_^m_.*f_^(c_.*ArcSinh[a_. + b_.*x_]^n_.), x_Symbol] := 1/b*Subst[Int[(-a/b + Sinh[x]/b)^m*f^(c*x^n)*Cosh[x], x], x, ArcSinh[a + b*x]] /; FreeQ[{a, b, c, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[ArcSinh[u_], x_Symbol] := x*ArcSinh[u] - Int[SimplifyIntegrand[x*D[u, x]/Sqrt[1 + u^2], x], x] /; InverseFunctionFreeQ[u, x] && Not[FunctionOfExponentialQ[u, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcSinh[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcSinh[u])/(d*(m + 1)) - b/(d*(m + 1))* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/Sqrt[1 + u^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && Not[FunctionOfExponentialQ[u, x]] +Int[v_*(a_. + b_.*ArcSinh[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcSinh[u]), w, x] - b*Int[SimplifyIntegrand[w*D[u, x]/Sqrt[1 + u^2], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] +Int[E^(n_.*ArcSinh[u_]), x_Symbol] := Int[(u + Sqrt[1 + u^2])^n, x] /; IntegerQ[n] && PolyQ[u, x] +Int[x_^m_.*E^(n_.*ArcSinh[u_]), x_Symbol] := Int[x^m*(u + Sqrt[1 + u^2])^n, x] /; RationalQ[m] && IntegerQ[n] && PolyQ[u, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.1 (a+b arccosh(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.1 (a+b arccosh(c x))^n.m new file mode 100755 index 0000000..cb56bfc --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.1 (a+b arccosh(c x))^n.m @@ -0,0 +1,6 @@ + +(* ::Subsection::Closed:: *) +(* 7.2.1 (a+b arccosh(c x))^n *) +Int[(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := x*(a + b*ArcCosh[c*x])^n - b*c*n* Int[x*(a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0] +Int[(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := Sqrt[1 + c*x]* Sqrt[-1 + c*x]*(a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1)) - c/(b*(n + 1))* Int[x*(a + b*ArcCosh[c*x])^(n + 1)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c}, x] && LtQ[n, -1] +Int[(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := 1/(b*c)* Subst[Int[x^n*Sinh[-a/b + x/b], x], x, a + b*ArcCosh[c*x]] /; FreeQ[{a, b, c, n}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.2 (d x)^m (a+b arccosh(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.2 (d x)^m (a+b arccosh(c x))^n.m new file mode 100755 index 0000000..567483a --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.2 (d x)^m (a+b arccosh(c x))^n.m @@ -0,0 +1,10 @@ + +(* ::Subsection::Closed:: *) +(* 7.2.2 (d x)^m (a+b arccosh(c x))^n *) +Int[(a_. + b_.*ArcCosh[c_.*x_])^n_./x_, x_Symbol] := 1/b*Subst[Int[x^n*Tanh[-a/b + x/b], x], x, a + b*ArcCosh[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (d*x)^(m + 1)*(a + b*ArcCosh[c*x])^n/(d*(m + 1)) - b*c*n/(d*(m + 1))* Int[(d*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[1 + c*x]* Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1] +Int[x_^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := x^(m + 1)*(a + b*ArcCosh[c*x])^n/(m + 1) - b*c*n/(m + 1)* Int[x^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[1 + c*x]* Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0] +Int[x_^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := x^m*Sqrt[1 + c*x]* Sqrt[-1 + c*x]*(a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1)) + 1/(b^2*c^(m + 1)*(n + 1))* Subst[ Int[ExpandTrigReduce[x^(n + 1), Cosh[-a/b + x/b]^(m - 1)*(m - (m + 1)*Cosh[-a/b + x/b]^2), x], x], x, a + b*ArcCosh[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1] +Int[x_^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := x^m*Sqrt[1 + c*x]* Sqrt[-1 + c*x]*(a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1)) + m/(b*c*(n + 1))* Int[x^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1)/(Sqrt[1 + c*x]* Sqrt[-1 + c*x]), x] - c*(m + 1)/(b*(n + 1))* Int[x^(m + 1)*(a + b*ArcCosh[c*x])^(n + 1)/(Sqrt[1 + c*x]* Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2] +Int[x_^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := 1/(b*c^(m + 1))* Subst[Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b], x], x, a + b*ArcCosh[c*x]] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Unintegrable[(d*x)^m*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d, m, n}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.3 (d+e x^2)^p (a+b arccosh(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.3 (d+e x^2)^p (a+b arccosh(c x))^n.m new file mode 100755 index 0000000..fb56a6b --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.3 (d+e x^2)^p (a+b arccosh(c x))^n.m @@ -0,0 +1,28 @@ + +(* ::Subsection::Closed:: *) +(* 7.2.3 (d+e x^2)^p (a+b arccosh(c x))^n *) +Int[(d1_ + e1_.*x_)^p_.*(d2_ + e2_.*x_)^ p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[(d1*d2 + e1*e2*x^2)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[d2*e1 + d1*e2, 0] && IntegerQ[p] +(* Int[(a_.+b_.*ArcCosh[c_.*x_])^n_./Sqrt[d_+e_.*x_^2],x_Symbol] := 1/c*Simp[Sqrt[1+c*x]*Sqrt[-1+c*x]/Sqrt[d+e*x^2]]*Subst[Int[(a+b*x)^ n,x],x,ArcCosh[c*x]] /; FreeQ[{a,b,c,d,e,n},x] && EqQ[c^2*d+e,0] *) +Int[1/(Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcCosh[c_.*x_])), x_Symbol] := 1/(b*c)*Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]/Sqrt[d + e*x^2]]* Log[a + b*ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[1/(Sqrt[d1_ + e1_.*x_]* Sqrt[d2_ + e2_.*x_]*(a_. + b_.*ArcCosh[c_.*x_])), x_Symbol] := 1/(b*c)*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]* Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]*Log[a + b*ArcCosh[c*x]] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] +Int[(a_. + b_.*ArcCosh[c_.*x_])^n_./Sqrt[d_ + e_.*x_^2], x_Symbol] := 1/(b*c*(n + 1))* Simp[Sqrt[1 + c*x]* Sqrt[-1 + c*x]/Sqrt[d + e*x^2]]*(a + b*ArcCosh[c*x])^(n + 1) /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && NeQ[n, -1] +Int[(a_. + b_.*ArcCosh[c_.*x_])^ n_./(Sqrt[d1_ + e1_.*x_]*Sqrt[d2_ + e2_.*x_]), x_Symbol] := 1/(b*c*(n + 1))*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]* Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]*(a + b*ArcCosh[c*x])^(n + 1) /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && NeQ[n, -1] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^p, x]}, Dist[a + b*ArcCosh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] +Int[Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := x*Sqrt[d + e*x^2]*(a + b*ArcCosh[c*x])^n/2 - b*c*n/2*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])]* Int[x*(a + b*ArcCosh[c*x])^(n - 1), x] - 1/2*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])]* Int[(a + b*ArcCosh[c*x])^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] +Int[Sqrt[d1_ + e1_.*x_]* Sqrt[d2_ + e2_.*x_]*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := x*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n/2 - b*c*n/2*Simp[Sqrt[d1 + e1*x]/Sqrt[1 + c*x]]* Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]]* Int[x*(a + b*ArcCosh[c*x])^(n - 1), x] - 1/2*Simp[Sqrt[d1 + e1*x]/Sqrt[1 + c*x]]* Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]]* Int[(a + b*ArcCosh[c*x])^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := x*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n/(2*p + 1) + 2*d*p/(2*p + 1)* Int[(d + e*x^2)^(p - 1)*(a + b*ArcCosh[c*x])^n, x] - b*c*n/(2*p + 1)*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[ x*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] +Int[(d1_ + e1_.*x_)^p_.*(d2_ + e2_.*x_)^ p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := x*(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n/(2*p + 1) + 2*d1*d2*p/(2*p + 1)* Int[(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[c*x])^ n, x] - b*c*n/(2*p + 1)*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[ x*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && GtQ[p, 0] +Int[(a_. + b_.*ArcCosh[c_.*x_])^n_./(d_ + e_.*x_^2)^(3/2), x_Symbol] := x*(a + b*ArcCosh[c*x])^n/(d*Sqrt[d + e*x^2]) + b*c*n/d*Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]/Sqrt[d + e*x^2]]* Int[x*(a + b*ArcCosh[c*x])^(n - 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] +Int[(a_. + b_.*ArcCosh[c_.*x_])^ n_./((d1_ + e1_.*x_)^(3/2)*(d2_ + e2_.*x_)^(3/2)), x_Symbol] := x*(a + b*ArcCosh[c*x])^ n/(d1*d2*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]) + b*c*n/(d1*d2)*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]* Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]* Int[x*(a + b*ArcCosh[c*x])^(n - 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] +Int[(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := -x*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n/(2*d*(p + 1)) + (2*p + 3)/(2*d*(p + 1))* Int[(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n, x] - b*c*n/(2*(p + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[ x*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2] +Int[(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^p_*(a_. + b_.*ArcCosh[c_.*x_])^ n_., x_Symbol] := -x*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^ n/(2*d1*d2*(p + 1)) + (2*p + 3)/(2*d1*d2*(p + 1))* Int[(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^ n, x] - b*c*n/(2*(p + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[ x*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2] +Int[(a_. + b_.*ArcCosh[c_.*x_])^n_./(d_ + e_.*x_^2), x_Symbol] := -1/(c*d)*Subst[Int[(a + b*x)^n*Csch[x], x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := Simp[Sqrt[1 + c*x]* Sqrt[-1 + c*x]*(d + e*x^2)^p]*(a + b*ArcCosh[c*x])^(n + 1)/(b* c*(n + 1)) - c*(2*p + 1)/(b*(n + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[ x*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IntegerQ[2*p] +Int[(d1_ + e1_.*x_)^p_.*(d2_ + e2_.*x_)^ p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := Sqrt[1 + c*x]* Sqrt[-1 + c*x]*(d1 + e1*x)^p*(d2 + e2*x)^ p*(a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1)) - c*(2*p + 1)/(b*(n + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[x*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, p}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && LtQ[n, -1] && IntegerQ[p + 1/2] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := 1/(b*c)*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Subst[Int[x^n*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p, 0] +Int[(d1_ + e1_.*x_)^p_.*(d2_ + e2_.*x_)^ p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := 1/(b*c)*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Subst[Int[x^n*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && IGtQ[2*p, 0] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^p, x]}, Dist[a + b*ArcCosh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d + e, 0] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0]) +(* Int[(d_+e_.*x_^2)^p_.*(a_.+b_.*ArcCosh[c_.*x_])^n_,x_Symbol] := 1/(b*c^(2*p+1))*Subst[Int[x^n*(c^2*d+e*Cosh[-a/b+x/b]^2)^p*Sinh[-a/ b+x/b],x],x,a+b*ArcCosh[c*x]] /; FreeQ[{a,b,c,d,e,n},x] && IGtQ[p,0] *) +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (p > 0 || IGtQ[n, 0]) +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Unintegrable[(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, n, p}, x] +Int[(d1_ + e1_.*x_)^p_.*(d2_ + e2_.*x_)^ p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Unintegrable[(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n, p}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.4 (f x)^m (d+e x^2)^p (a+b arccosh(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.4 (f x)^m (d+e x^2)^p (a+b arccosh(c x))^n.m new file mode 100755 index 0000000..06803d3 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.4 (f x)^m (d+e x^2)^p (a+b arccosh(c x))^n.m @@ -0,0 +1,58 @@ + +(* ::Subsection::Closed:: *) +(* 7.2.4 (f x)^m (d+e x^2)^p (a+b arccosh(c x))^n *) +Int[(f_.*x_)^m_.*(d1_ + e1_.*x_)^p_.*(d2_ + e2_.*x_)^ p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[(f*x)^m*(d1*d2 + e1*e2*x^2)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m, n}, x] && EqQ[d2*e1 + d1*e2, 0] && IntegerQ[p] +Int[x_*(a_. + b_.*ArcCosh[c_.*x_])^n_./(d_ + e_.*x_^2), x_Symbol] := 1/e*Subst[Int[(a + b*x)^n*Coth[x], x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] +Int[x_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n/(2*e*(p + 1)) - b*n/(2*c*(p + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1] +Int[x_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^ n/(2*e1*e2*(p + 1)) - b*n/(2*c*(p + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, p}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && NeQ[p, -1] +Int[(a_. + b_.*ArcCosh[c_.*x_])^n_./(x_*(d_ + e_.*x_^2)), x_Symbol] := -1/d*Subst[Int[(a + b*x)^n/(Cosh[x]*Sinh[x]), x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^ n/(d*f*(m + 1)) + b*c*n/(f*(m + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1] +Int[(f_.*x_)^m_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n/(d1*d2*f*(m + 1)) + b*c*n/(f*(m + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m, p}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[p, -1] +Int[(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])/x_, x_Symbol] := (d + e*x^2)^p*(a + b*ArcCosh[c*x])/(2*p) - b*c*(-d)^p/(2*p)* Int[(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2), x] + d*Int[(d + e*x^2)^(p - 1)*(a + b*ArcCosh[c*x])/x, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcCosh[c*x])/(f*(m + 1)) - b*c*(-d)^p/(f*(m + 1))* Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2), x] - 2*e*p/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcCosh[c*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && ILtQ[(m + 1)/2, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCosh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] +Int[x_^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCosh[c*x], u] - b*c*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])]* Int[SimplifyIntegrand[u/Sqrt[d + e*x^2], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] && NeQ[p, -1/2] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0]) +Int[x_^m_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(d1 + e1*x)^p*(d2 + e2*x)^p, x]}, Dist[a + b*ArcCosh[c*x], u] - b*c* Simp[Sqrt[d1 + e1*x]* Sqrt[d2 + e2*x]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])]* Int[SimplifyIntegrand[u/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]), x], x]] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && IntegerQ[p - 1/2] && NeQ[p, -1/2] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0]) +Int[(f_.*x_)^m_*Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)* Sqrt[d + e*x^2]*(a + b*ArcCosh[c*x])^n/(f*(m + 1)) - b*c*n/(f*(m + 1))* Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])]* Int[(f*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1), x] - c^2/(f^2*(m + 1))* Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])]* Int[(f*x)^(m + 2)*(a + b*ArcCosh[c*x])^ n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*Sqrt[d1_ + e1_.*x_]* Sqrt[d2_ + e2_.*x_]*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*Sqrt[d1 + e1*x]* Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n/(f*(m + 1)) - b*c*n/(f*(m + 1))*Simp[Sqrt[d1 + e1*x]/Sqrt[1 + c*x]]* Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]]* Int[(f*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1), x] - c^2/(f^2*(m + 1))*Simp[Sqrt[d1 + e1*x]/Sqrt[1 + c*x]]* Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]]* Int[((f*x)^(m + 2)*(a + b*ArcCosh[c*x])^n)/(Sqrt[1 + c*x]* Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)* Sqrt[d + e*x^2]*(a + b*ArcCosh[c*x])^n/(f*(m + 2)) - b*c*n/(f*(m + 2))* Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])]* Int[(f*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1), x] - 1/(m + 2)*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])]* Int[(f*x)^ m*(a + b*ArcCosh[c*x])^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1]) +Int[(f_.*x_)^m_*Sqrt[d1_ + e1_.*x_]* Sqrt[d2_ + e2_.*x_]*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*Sqrt[d1 + e1*x]* Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n/(f*(m + 2)) - b*c*n/(f*(m + 2))*Simp[Sqrt[d1 + e1*x]/Sqrt[1 + c*x]]* Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]]* Int[(f*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1), x] - 1/(m + 2)*Simp[Sqrt[d1 + e1*x]/Sqrt[1 + c*x]]* Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]]* Int[(f*x)^ m*(a + b*ArcCosh[c*x])^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && IGtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1]) +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n/(f*(m + 1)) - 2*e*p/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcCosh[c*x])^n, x] - b*c*n/(f*(m + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d1 + e1*x)^p*(d2 + e2*x)^ p*(a + b*ArcCosh[c*x])^n/(f*(m + 1)) - 2*e1*e2*p/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[c*x])^n, x] - b*c*n/(f*(m + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] +(* Int[(f_.*x_)^m_*(d_+e_.*x_^2)^p_*(a_.+b_.*ArcCosh[c_.*x_])^n_.,x_ Symbol] := f*(f*x)^(m-1)*(d+e*x^2)^(p+1)*(a+b*ArcCosh[c*x])^n/(e*(m+2*p+1)) + f^2*(m-1)/(c^2*(m+2*p+1))*Int[(f*x)^(m-2)*(d+e*x^2)^p*(a+b*ArcCosh[ c*x])^n,x] - b*f*n/(c*(m+2*p+1))*Simp[(d+e*x^2)^p/((1+c*x)^p*(-1+c*x)^p)]* Int[(f*x)^(m-1)*(-1+c^2*x^2)^(p+1/2)*(a+b*ArcCosh[c*x])^(n-1),x] /; FreeQ[{a,b,c,d,e,f,p},x] && EqQ[c^2*d+e,0] && GtQ[n,0] && EqQ[n,1] && IGtQ[p+1/2,0] && IGtQ[(m-1)/2,0] *) +(* Int[(f_.*x_)^m_*(d_+e_.*x_^2)^p_*(a_.+b_.*ArcCosh[c_.*x_])^n_.,x_ Symbol] := f*(f*x)^(m-1)*(d+e*x^2)^(p+1)*(a+b*ArcCosh[c*x])^n/(2*e*(p+1)) - f^2*(m-1)/(2*e*(p+1))*Int[(f*x)^(m-2)*(d+e*x^2)^(p+1)*(a+b*ArcCosh[ c*x])^n,x] - b*f*n/(2*c*(p+1))*Simp[(d+e*x^2)^p/((1+c*x)^p*(-1+c*x)^p)]* Int[(f*x)^(m-1)*(1+c*x)^(p+1/2)*(-1+c*x)^(p+1/2)*(a+b*ArcCosh[c*x] )^(n-1),x] /; FreeQ[{a,b,c,d,e,f},x] && EqQ[c^2*d+e,0] && GtQ[n,0] && EqQ[n,1] && ILtQ[p-1/2,0] && IGtQ[(m-1)/2,0] *) +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^ p*(a + b*ArcCosh[c*x])^n/(f*(m + 2*p + 1)) + 2*d*p/(m + 2*p + 1)* Int[(f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcCosh[c*x])^n, x] - b*c*n/(f*(m + 2*p + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] && Not[LtQ[m, -1]] +Int[(f_.*x_)^m_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d1 + e1*x)^p*(d2 + e2*x)^ p*(a + b*ArcCosh[c*x])^n/(f*(m + 2*p + 1)) + 2*d1*d2*p/(m + 2*p + 1)* Int[(f*x)^ m*(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[c*x])^ n, x] - b*c*n/(f*(m + 2*p + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && GtQ[p, 0] && Not[LtQ[m, -1]] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^ n/(d*f*(m + 1)) + c^2*(m + 2*p + 3)/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x] + b*c*n/(f*(m + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && ILtQ[m, -1] +Int[(f_.*x_)^m_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f*x)^(m + 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n/(d1*d2*f*(m + 1)) + c^2*(m + 2*p + 3)/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(d1 + e1*x)^p*(d2 + e2*x)^ p*(a + b*ArcCosh[c*x])^n, x] + b*c*n/(f*(m + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, p}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && ILtQ[m, -1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^ n/(2*e*(p + 1)) - f^2*(m - 1)/(2*e*(p + 1))* Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n, x] - b*f*n/(2*c*(p + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && IGtQ[m, 1] +Int[(f_.*x_)^m_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := f*(f*x)^(m - 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n/(2*e1*e2*(p + 1)) - f^2*(m - 1)/(2*e1*e2*(p + 1))* Int[(f*x)^(m - 2)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n, x] - b*f*n/(2*c*(p + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && LtQ[p, -1] && IGtQ[m, 1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := -(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^ n/(2*d*f*(p + 1)) + (m + 2*p + 3)/(2*d*(p + 1))* Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n, x] - b*c*n/(2*f*(p + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && Not[GtQ[m, 1]] && (IntegerQ[m] || IntegerQ[p] || EqQ[n, 1]) +Int[(f_.*x_)^m_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := -(f*x)^(m + 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n/(2*d1*d2*f*(p + 1)) + (m + 2*p + 3)/(2*d1*d2*(p + 1))* Int[(f*x)^ m*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^ n, x] - b*c*n/(2*f*(p + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && LtQ[p, -1] && Not[GtQ[m, 1]] && (IntegerQ[m] || EqQ[n, 1]) +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^ n/(e*(m + 2*p + 1)) + f^2*(m - 1)/(c^2*(m + 2*p + 1))* Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x] - b*f*n/(c*(m + 2*p + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0] +Int[(f_.*x_)^m_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := f*(f*x)^(m - 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n/(e1*e2*(m + 2*p + 1)) + f^2*(m - 1)/(c^2*(m + 2*p + 1))* Int[(f*x)^(m - 2)*(d1 + e1*x)^p*(d2 + e2*x)^ p*(a + b*ArcCosh[c*x])^n, x] - b*f*n/(c*(m + 2*p + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, p}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := (f*x)^m* Simp[Sqrt[1 + c*x]* Sqrt[-1 + c*x]*(d + e*x^2)^p]*(a + b*ArcCosh[c*x])^(n + 1)/(b* c*(n + 1)) + f*m/(b*c*(n + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(f*x)^(m - 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && EqQ[m + 2*p + 1, 0] +Int[(f_.*x_)^m_.*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := (f*x)^m* Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]*(d1 + e1*x)^p]*(d2 + e2*x)^ p*(a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1)) + f*m/(b*c*(n + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(f*x)^(m - 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m, p}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && LtQ[n, -1] && EqQ[m + 2*p + 1, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := (f*x)^m* Simp[Sqrt[1 + c*x]* Sqrt[-1 + c*x]*(d + e*x^2)^p]*(a + b*ArcCosh[c*x])^(n + 1)/(b* c*(n + 1)) + f*m/(b*c*(n + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(f*x)^(m - 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x] - c*(m + 2*p + 1)/(b*f*(n + 1))* Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3] +Int[(f_.*x_)^m_.*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := (f*x)^m*Sqrt[1 + c*x]* Sqrt[-1 + c*x]*(d1 + e1*x)^p*(d2 + e2*x)^ p*(a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1)) + f*m/(b*c*(n + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(f*x)^(m - 1)*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x] - c*(m + 2*p + 1)/(b*f*(n + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Int[(f*x)^(m + 1)*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m, p}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && LtQ[n, -1] && IGtQ[p + 1/2, 0] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3] +(* Int[(f_.*x_)^m_.*(d_+e_.*x_^2)^p_.*(a_.+b_.*ArcCosh[c_.*x_])^n_,x_ Symbol] := (f*x)^m*Simp[Sqrt[1+c*x]*Sqrt[-1+c*x]*(d+e*x^2)^p]*(a+b*ArcCosh[c*x] )^(n+1)/(b*c*(n+1)) - f*m/(b*c*(n+1))*Simp[(d+e*x^2)^p/((1+c*x)^p*(-1+c*x)^p)]* Int[(f*x)^(m-1)*(1+c*x)^(p+1/2)*(-1+c*x)^(p+1/2)*(a+b*ArcCosh[c*x] )^(n+1),x] - c*(2*p+1)/(b*f*(n+1))*Simp[(d+e*x^2)^p/((1+c*x)^p*(-1+c*x)^p)]* Int[(f*x)^(m+1)*(1+c*x)^(p-1/2)*(-1+c*x)^(p-1/2)*(a+b*ArcCosh[c*x] )^(n+1),x] /; FreeQ[{a,b,c,d,e,f,m,p},x] && EqQ[c^2*d+e,0] && LtQ[n,-1] && NeQ[p,-1/2] && IntegerQ[2*p] && IGtQ[m,-3] *) +(* Int[(f_.*x_)^m_.*(d1_+e1_.*x_)^p_*(d2_+e2_.*x_)^p_*(a_.+b_.* ArcCosh[c_.*x_])^n_,x_Symbol] := (f*x)^m*Sqrt[1+c*x]*Sqrt[-1+c*x]*(d1+e1*x)^p*(d2+e2*x)^p*(a+b* ArcCosh[c*x])^(n+1)/(b*c*(n+1)) - f*m/(b*c*(n+1))*Simp[(d1+e1*x)^p/(1+c*x)^p]*Simp[(d2+e2*x)^p/(-1+c* x)^p]* Int[(f*x)^(m-1)*(-1+c^2*x^2)^(p+1/2)*(a+b*ArcCosh[c*x])^(n+1),x] - c*(2*p+1)/(b*f*(n+1))*Simp[(d1+e1*x)^p/(1+c*x)^p]*Simp[(d2+e2*x)^p/( -1+c*x)^p]* Int[(f*x)^(m+1)*(-1+c^2*x^2)^(p-1/2)*(a+b*ArcCosh[c*x])^(n+1),x] /; FreeQ[{a,b,c,d1,e1,d2,e2,f,m,p},x] && EqQ[e1,c*d1] && EqQ[e2,-c*d2] && LtQ[n,-1] && ILtQ[p+1/2,0] && IGtQ[m,-3] *) +Int[(f_.*x_)^m_*(a_. + b_.*ArcCosh[c_.*x_])^n_./Sqrt[d_ + e_.*x_^2], x_Symbol] := f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcCosh[c*x])^n/(e*m) - b*f*n/(c*m)*Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]/Sqrt[d + e*x^2]]* Int[(f*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n - 1), x] + f^2*(m - 1)/(c^2*m)* Int[(f*x)^(m - 2)*(a + b*ArcCosh[c*x])^n/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] +Int[(f_.*x_)^ m_*(a_. + b_.*ArcCosh[c_.*x_])^ n_./(Sqrt[d1_ + e1_.*x_]*Sqrt[d2_ + e2_.*x_]), x_Symbol] := f*(f*x)^(m - 1)*Sqrt[d1 + e1*x]* Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n/(e1*e2*m) - b*f*n/(c*m)*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]* Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]* Int[(f*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n - 1), x] + f^2*(m - 1)/(c^2*m)* Int[(f*x)^(m - 2)*(a + b*ArcCosh[c*x])^ n/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[n, 0] && IGtQ[m, 1] +Int[x_^m_*(a_. + b_.*ArcCosh[c_.*x_])^n_./Sqrt[d_ + e_.*x_^2], x_Symbol] := 1/c^(m + 1)*Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]/Sqrt[d + e*x^2]]* Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[m] +Int[x_^m_*(a_. + b_.*ArcCosh[c_.*x_])^ n_./(Sqrt[d1_ + e1_.*x_]*Sqrt[d2_ + e2_.*x_]), x_Symbol] := 1/c^(m + 1)*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]* Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]* Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && IGtQ[n, 0] && IntegerQ[m] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCosh[c_.*x_])/Sqrt[d_ + e_.*x_^2], x_Symbol] := (f*x)^(m + 1)/(f*(m + 1))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]* (a + b*ArcCosh[c*x])* Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, c^2*x^2] + b*c*(f*x)^(m + 2)/(f^2*(m + 1)*(m + 2))* Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]/Sqrt[d + e*x^2]]* HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && Not[IntegerQ[m]] +Int[(f_.*x_)^ m_*(a_. + b_.*ArcCosh[c_.*x_])/(Sqrt[d1_ + e1_.*x_]* Sqrt[d2_ + e2_.*x_]), x_Symbol] := (f*x)^(m + 1)/(f*(m + 1))* Simp[Sqrt[1 - c^2*x^2]/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])]* (a + b*ArcCosh[c*x])* Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, c^2*x^2] + b*c*(f*x)^(m + 2)/(f^2*(m + 1)*(m + 2))* Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]* Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]* HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && Not[IntegerQ[m]] +Int[(f_.*x_)^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_/Sqrt[d_ + e_.*x_^2], x_Symbol] := (f*x)^m*(a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))* Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]/Sqrt[d + e*x^2]] - f*m/(b*c*(n + 1))* Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]/Sqrt[d + e*x^2]]* Int[(f*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] +Int[(f_.*x_)^ m_.*(a_. + b_.*ArcCosh[c_.*x_])^ n_/(Sqrt[d1_ + e1_.*x_]*Sqrt[d2_ + e2_.*x_]), x_Symbol] := (f*x)^m*(a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))* Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]* Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]] - f*m/(b*c*(n + 1))*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]* Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]* Int[(f*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && LtQ[n, -1] +Int[x_^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := 1/(b*c^(m + 1))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]* Subst[ Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2, 0] && IGtQ[m, 0] +Int[x_^m_.*(d1_ + e1_.*x_)^p_.*(d2_ + e2_.*x_)^ p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := 1/(b*c^(m + 1))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]* Simp[(d2 + e2*x)^p/(-1 + c*x)^p]* Subst[ Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && IGtQ[p + 3/2, 0] && IGtQ[m, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n/ Sqrt[d + e*x^2], (f*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[p + 1/2, 0] && Not[IGtQ[(m + 1)/2, 0]] && (EqQ[m, -1] || EqQ[m, -2]) +Int[(f_.*x_)^m_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^ n/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]), (f*x)^ m*(d1 + e1*x)^(p + 1/2)*(d2 + e2*x)^(p + 1/2), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m, n}, x] && EqQ[e1, c*d1] && EqQ[e2, -c*d2] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[p + 1/2, 0] && Not[IGtQ[(m + 1)/2, 0]] && (EqQ[m, -1] || EqQ[m, -2]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := d*(f*x)^(m + 1)*(a + b*ArcCosh[c*x])/(f*(m + 1)) + e*(f*x)^(m + 3)*(a + b*ArcCosh[c*x])/(f^3*(m + 3)) - b*c/(f*(m + 1)*(m + 3))* Int[(f*x)^(m + 1)*(d*(m + 3) + e*(m + 1)*x^2)/(Sqrt[1 + c*x]* Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 0] && NeQ[m, -1] && NeQ[m, -3] +Int[x_*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := (d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])/(2*e*(p + 1)) - b*c/(2*e*(p + 1))* Int[(d + e*x^2)^(p + 1)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[c^2*d + e, 0] && NeQ[p, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCosh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (GtQ[p, 0] || IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]) +(* Int[x_^m_.*(d_+e_.*x_^2)^p_.*(a_.+b_.*ArcCosh[c_.*x_])^n_,x_Symbol] := 1/(b*c^(m+2*p+1))*Subst[Int[x^n*Cosh[-a/b+x/b]^m*(c^2*d+e*Cosh[-a/b+ x/b]^2)^p*Sinh[-a/b+x/b],x],x,a+b*ArcCosh[c*x]] /; FreeQ[{a,b,c,d,e,n},x] && IGtQ[m,0] && IGtQ[p,0] *) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Unintegrable[(f*x)^m*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] +Int[(f_.*x_)^m_.*(d1_ + e1_.*x_)^p_.*(d2_ + e2_.*x_)^ p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Unintegrable[(f*x)^m*(d1 + e1*x)^p*(d2 + e2*x)^ p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m, n, p}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.5 u (a+b arccosh(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.5 u (a+b arccosh(c x))^n.m new file mode 100755 index 0000000..664faac --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.5 u (a+b arccosh(c x))^n.m @@ -0,0 +1,37 @@ + +(* ::Subsection::Closed:: *) +(* 7.2.5 u (a+b arccosh(c x))^n *) +Int[(a_. + b_.*ArcCosh[c_.*x_])^n_./(d_. + e_.*x_), x_Symbol] := Subst[Int[(a + b*x)^n*Sinh[x]/(c*d + e*Cosh[x]), x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (d + e*x)^(m + 1)*(a + b*ArcCosh[c*x])^n/(e*(m + 1)) - b*c*n/(e*(m + 1))* Int[(d + e*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[-1 + c*x]* Sqrt[1 + c*x]), x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] && NeQ[m, -1] +Int[(d_ + e_.*x_)^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[(d + e*x)^m*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[m, 0] && LtQ[n, -1] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := 1/c^(m + 1)* Subst[Int[(a + b*x)^n*Sinh[x]*(c*d + e*Cosh[x])^m, x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[m, 0] +Int[Px_*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{u = IntHide[ExpandExpression[Px, x], x]}, Dist[a + b*ArcCosh[c*x], u, x] - b*c*Sqrt[1 - c^2*x^2]/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])* Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x] +(* Int[Px_*(a_.+b_.*ArcCosh[c_.*x_])^n_.,x_Symbol] := With[{u=IntHide[Px,x]}, Dist[(a+b*ArcCosh[c*x])^n,u,x] - b*c*n*Sqrt[1-c^2*x^2]/(Sqrt[-1+c*x]*Sqrt[1+c*x])*Int[ SimplifyIntegrand[u*(a+b*ArcCosh[c*x])^(n-1)/Sqrt[1-c^2*x^2],x],x]] /; FreeQ[{a,b,c},x] && PolyQ[Px,x] && IGtQ[n,0] *) +Int[Px_*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := Int[ExpandIntegrand[Px*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, n}, x] && PolyQ[Px, x] +Int[Px_*(d_. + e_.*x_)^m_.*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{u = IntHide[Px*(d + e*x)^m, x]}, Dist[a + b*ArcCosh[c*x], u, x] - b*c*Sqrt[1 - c^2*x^2]/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])* Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x]] /; FreeQ[{a, b, c, d, e, m}, x] && PolyQ[Px, x] +Int[(f_. + g_.*x_)^p_.*(d_ + e_.*x_)^m_*(a_. + b_.*ArcCosh[c_.*x_])^ n_, x_Symbol] := With[{u = IntHide[(f + g*x)^p*(d + e*x)^m, x]}, Dist[(a + b*ArcCosh[c*x])^n, u, x] - b*c*n* Int[SimplifyIntegrand[ u*(a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[m, 0] && LtQ[m + p + 1, 0] +Int[(f_. + g_.*x_ + h_.*x_^2)^ p_.*(a_. + b_.*ArcCosh[c_.*x_])^n_/(d_ + e_.*x_)^2, x_Symbol] := With[{u = IntHide[(f + g*x + h*x^2)^p/(d + e*x)^2, x]}, Dist[(a + b*ArcCosh[c*x])^n, u, x] - b*c*n* Int[SimplifyIntegrand[ u*(a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]), x], x]] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IGtQ[n, 0] && IGtQ[p, 0] && EqQ[e*g - 2*d*h, 0] +Int[Px_*(d_ + e_.*x_)^m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[Px*(d + e*x)^m*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x] && IGtQ[n, 0] && IntegerQ[m] +Int[(f_ + g_.*x_)^m_.*(d_ + e_.*x_^2)^p_*(a_. + b_.*ArcCosh[c_.*x_])^ n_., x_Symbol] := (-d)^IntPart[p]*(d + e*x^2)^ FracPart[p]/((-1 + c*x)^FracPart[p]*(1 + c*x)^FracPart[p])* Int[(f + g*x)^m*(-1 + c*x)^p*(1 + c*x)^p*(a + b*ArcCosh[c*x])^ n, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] && IntegerQ[m] +Int[Log[h_.*(f_. + g_.*x_)^m_.]*(d_ + e_.*x_^2)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (-d)^IntPart[p]*(d + e*x^2)^ FracPart[p]/((-1 + c*x)^FracPart[p]*(1 + c*x)^FracPart[p])* Int[ Log[h*(f + g*x)^m]*(-1 + c*x)^p*(1 + c*x)^p*(a + b*ArcCosh[c*x])^ n, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] +Int[(f_ + g_.*x_)^m_.*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{u = IntHide[(f + g*x)^m*(d1 + e1*x)^p*(d2 + e2*x)^p, x]}, Dist[a + b*ArcCosh[c*x], u, x] - b*c*Int[Dist[1/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]), u, x], x]] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[m, 0] && ILtQ[p + 1/2, 0] && GtQ[d1, 0] && LtQ[d2, 0] && (GtQ[m, 3] || LtQ[m, -2*p - 1]) +Int[(f_ + g_.*x_)^m_.*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(d1 + e1*x)^p*(d2 + e2*x)^ p*(a + b*ArcCosh[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0] && (EqQ[n, 1] && GtQ[p, -1] || GtQ[p, 0] || EqQ[m, 1] || EqQ[m, 2] && LtQ[p, -2]) +Int[(f_ + g_.*x_)^m_*Sqrt[d1_ + e1_.*x_]* Sqrt[d2_ + e2_.*x_]*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f + g*x)^ m*(d1*d2 + e1*e2*x^2)*(a + b*ArcCosh[c*x])^(n + 1)/(b*c* Sqrt[-d1*d2]*(n + 1)) - 1/(b*c*Sqrt[-d1*d2]*(n + 1))* Int[(d1*d2*g*m + 2*e1*e2*f*x + e1*e2*g*(m + 2)*x^2)*(f + g*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && ILtQ[m, 0] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[ Sqrt[d1 + e1*x]* Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n, (f + g*x)^ m*(d1 + e1*x)^(p - 1/2)*(d2 + e2*x)^(p - 1/2), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[m] && IGtQ[p + 1/2, 0] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (f + g*x)^ m*(d1 + e1*x)^(p + 1/2)*(d2 + e2*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n + 1)/(b*c* Sqrt[-d1*d2]*(n + 1)) - 1/(b*c*Sqrt[-d1*d2]*(n + 1))* Int[ ExpandIntegrand[(f + g*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), (d1*d2*g*m + e1*e2*f*(2*p + 1)*x + e1*e2*g*(m + 2*p + 1)*x^2)*(d1 + e1*x)^(p - 1/2)*(d2 + e2*x)^(p - 1/2), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && ILtQ[m, 0] && IGtQ[p - 1/2, 0] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^ m_.*(a_. + b_.*ArcCosh[c_.*x_])^ n_/(Sqrt[d1_ + e1_.*x_]*Sqrt[d2_ + e2_.*x_]), x_Symbol] := (f + g*x)^ m*(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-d1*d2]*(n + 1)) - g*m/(b*c*Sqrt[-d1*d2]*(n + 1))* Int[(f + g*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[m, 0] && GtQ[d1, 0] && LtQ[d2, 0] && LtQ[n, -1] +Int[(f_ + g_.*x_)^ m_.*(a_. + b_.*ArcCosh[c_.*x_])^ n_./(Sqrt[d1_ + e1_.*x_]*Sqrt[d2_ + e2_.*x_]), x_Symbol] := 1/(c^(m + 1)*Sqrt[-d1*d2])* Subst[Int[(a + b*x)^n*(c*f + g*Cosh[x])^m, x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[m] && GtQ[d1, 0] && LtQ[d2, 0] && (GtQ[m, 0] || IGtQ[n, 0]) +Int[(f_ + g_.*x_)^m_.*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^ n/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]), (f + g*x)^ m*(d1 + e1*x)^(p + 1/2)*(d2 + e2*x)^(p + 1/2), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[m] && ILtQ[p + 1/2, 0] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0] +Int[(f_ + g_.*x_)^m_.*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (-d1*d2)^IntPart[p]*(d1 + e1*x)^ FracPart[p]*(d2 + e2*x)^ FracPart[p]/((-1 + c*x)^FracPart[p]*(1 + c*x)^FracPart[p])* Int[(f + g*x)^m*(-1 + c*x)^p*(1 + c*x)^p*(a + b*ArcCosh[c*x])^ n, x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[m] && IntegerQ[p - 1/2] && Not[GtQ[d1, 0] && LtQ[d2, 0]] +Int[Log[h_.*(f_. + g_.*x_)^m_.]*(a_. + b_.*ArcCosh[c_.*x_])^ n_./(Sqrt[d1_ + e1_.*x_]*Sqrt[d2_ + e2_.*x_]), x_Symbol] := Log[h*(f + g*x)^m]*(a + b*ArcCosh[c*x])^(n + 1)/(b*c* Sqrt[-d1*d2]*(n + 1)) - g*m/(b*c*Sqrt[-d1*d2]*(n + 1))* Int[(a + b*ArcCosh[c*x])^(n + 1)/(f + g*x), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g, h, m}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0] +Int[Log[h_.*(f_. + g_.*x_)^m_.]*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := (-d1*d2)^IntPart[p]*(d1 + e1*x)^ FracPart[p]*(d2 + e2*x)^ FracPart[p]/((-1 + c*x)^FracPart[p]*(1 + c*x)^FracPart[p])* Int[ Log[h*(f + g*x)^m]*(-1 + c*x)^p*(1 + c*x)^p*(a + b*ArcCosh[c*x])^ n, x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g, h, m, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p - 1/2] && Not[GtQ[d1, 0] && LtQ[d2, 0]] +Int[(d_ + e_.*x_)^m_*(f_ + g_.*x_)^m_*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x)^m*(f + g*x)^m, x]}, Dist[a + b*ArcCosh[c*x], u, x] - b*c*Int[Dist[1/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]), u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m + 1/2, 0] +Int[(d_ + e_.*x_)^m_.*(f_ + g_.*x_)^m_.*(a_. + b_.*ArcCosh[c_.*x_])^ n_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^ n, (d + e*x)^m*(f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && IntegerQ[m] +Int[u_*(a_. + b_.*ArcCosh[c_.*x_]), x_Symbol] := With[{v = IntHide[u, x]}, Dist[a + b*ArcCosh[c*x], v, x] - b*c*Sqrt[1 - c^2*x^2]/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])* Int[SimplifyIntegrand[v/Sqrt[1 - c^2*x^2], x], x] /; InverseFunctionFreeQ[v, x]] /; FreeQ[{a, b, c}, x] +Int[Px_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_. + b_.*ArcCosh[c_.*x_])^n_, x_Symbol] := With[{u = ExpandIntegrand[ Px*(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && PolyQ[Px, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p - 1/2] +Int[Px_.*(f_ + g_.*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^p_)^ m_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := With[{u = ExpandIntegrand[ Px*(f + g*(d1 + e1*x)^p*(d2 + e2*x)^p)^m*(a + b*ArcCosh[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && PolyQ[Px, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[p + 1/2, 0] && IntegersQ[m, n] +Int[RFx_*ArcCosh[c_.*x_]^n_., x_Symbol] := With[{u = ExpandIntegrand[ArcCosh[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[c, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] +Int[RFx_*(a_ + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[RFx*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] +Int[RFx_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^p_*ArcCosh[c_.*x_]^n_., x_Symbol] := With[{u = ExpandIntegrand[(d1 + e1*x)^p*(d2 + e2*x)^p*ArcCosh[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{c, d1, e1, d2, e2}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p - 1/2] +Int[RFx_*(d1_ + e1_.*x_)^p_*(d2_ + e2_.*x_)^ p_*(a_ + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Int[ExpandIntegrand[(d1 + e1*x)^p*(d2 + e2*x)^p, RFx*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p - 1/2] +Int[u_.*(a_. + b_.*ArcCosh[c_.*x_])^n_., x_Symbol] := Unintegrable[u*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, n}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.6 Miscellaneous inverse hyperbolic cosine.m b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.6 Miscellaneous inverse hyperbolic cosine.m new file mode 100755 index 0000000..70178f8 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.2 Inverse hyperbolic cosine/7.2.6 Miscellaneous inverse hyperbolic cosine.m @@ -0,0 +1,29 @@ + +(* ::Subsection::Closed:: *) +(* 7.2.6 Miscellaneous inverse hyperbolic cosine *) +Int[(a_. + b_.*ArcCosh[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcCosh[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, n}, x] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCosh[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcCosh[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] +Int[(A_. + B_.*x_ + C_.*x_^2)^p_.*(a_. + b_.*ArcCosh[c_ + d_.*x_])^ n_., x_Symbol] := 1/d*Subst[Int[(-C/d^2 + C/d^2*x^2)^p*(a + b*ArcCosh[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, A, B, C, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(e_. + f_.*x_)^m_.*(A_. + B_.*x_ + C_.*x_^2)^ p_.*(a_. + b_.*ArcCosh[c_ + d_.*x_])^n_., x_Symbol] := 1/d*Subst[ Int[((d*e - c*f)/d + f*x/d)^m*(-C/d^2 + C/d^2*x^2)^ p*(a + b*ArcCosh[x])^n, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[Sqrt[a_. + b_.*ArcCosh[1 + d_.*x_^2]], x_Symbol] := 2*Sqrt[a + b*ArcCosh[1 + d*x^2]]* Sinh[(1/2)*ArcCosh[1 + d*x^2]]^2/(d*x) - Sqrt[b]*Sqrt[Pi/2]*(Cosh[a/(2*b)] - Sinh[a/(2*b)])* Sinh[(1/2)*ArcCosh[1 + d*x^2]]* Erfi[(1/Sqrt[2*b])*Sqrt[a + b*ArcCosh[1 + d*x^2]]]/(d*x) + Sqrt[b]*Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])* Sinh[(1/2)*ArcCosh[1 + d*x^2]]* Erf[(1/Sqrt[2*b])*Sqrt[a + b*ArcCosh[1 + d*x^2]]]/(d*x) /; FreeQ[{a, b, d}, x] +Int[Sqrt[a_. + b_.*ArcCosh[-1 + d_.*x_^2]], x_Symbol] := 2*Sqrt[a + b*ArcCosh[-1 + d*x^2]]* Cosh[(1/2)*ArcCosh[-1 + d*x^2]]^2/(d*x) - Sqrt[b]*Sqrt[Pi/2]*(Cosh[a/(2*b)] - Sinh[a/(2*b)])* Cosh[(1/2)*ArcCosh[-1 + d*x^2]]* Erfi[(1/Sqrt[2*b])*Sqrt[a + b*ArcCosh[-1 + d*x^2]]]/(d*x) - Sqrt[b]*Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])* Cosh[(1/2)*ArcCosh[-1 + d*x^2]]* Erf[(1/Sqrt[2*b])*Sqrt[a + b*ArcCosh[-1 + d*x^2]]]/(d*x) /; FreeQ[{a, b, d}, x] +Int[(a_. + b_.*ArcCosh[c_ + d_.*x_^2])^n_, x_Symbol] := x*(a + b*ArcCosh[c + d*x^2])^n - 2*b* n*(2*c*d*x^2 + d^2*x^4)*(a + b*ArcCosh[c + d*x^2])^(n - 1)/(d*x* Sqrt[-1 + c + d*x^2]*Sqrt[1 + c + d*x^2]) + 4*b^2*n*(n - 1)*Int[(a + b*ArcCosh[c + d*x^2])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && GtQ[n, 1] +Int[1/(a_. + b_.*ArcCosh[1 + d_.*x_^2]), x_Symbol] := x*Cosh[a/(2*b)]* CoshIntegral[(a + b*ArcCosh[1 + d*x^2])/(2*b)]/(Sqrt[2]*b* Sqrt[d*x^2]) - x*Sinh[a/(2*b)]* SinhIntegral[(a + b*ArcCosh[1 + d*x^2])/(2*b)]/(Sqrt[2]*b* Sqrt[d*x^2]) /; FreeQ[{a, b, d}, x] +Int[1/(a_. + b_.*ArcCosh[-1 + d_.*x_^2]), x_Symbol] := -x*Sinh[a/(2*b)]* CoshIntegral[(a + b*ArcCosh[-1 + d*x^2])/(2*b)]/(Sqrt[2]*b* Sqrt[d*x^2]) + x*Cosh[a/(2*b)]* SinhIntegral[(a + b*ArcCosh[-1 + d*x^2])/(2*b)]/(Sqrt[2]*b* Sqrt[d*x^2]) /; FreeQ[{a, b, d}, x] +Int[1/Sqrt[a_. + b_.*ArcCosh[1 + d_.*x_^2]], x_Symbol] := Sqrt[Pi/2]*(Cosh[a/(2*b)] - Sinh[a/(2*b)])* Sinh[ArcCosh[1 + d*x^2]/2]* Erfi[Sqrt[a + b*ArcCosh[1 + d*x^2]]/Sqrt[2*b]]/(Sqrt[b]*d*x) + Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])* Sinh[ArcCosh[1 + d*x^2]/2]* Erf[Sqrt[a + b*ArcCosh[1 + d*x^2]]/Sqrt[2*b]]/(Sqrt[b]*d*x) /; FreeQ[{a, b, d}, x] +Int[1/Sqrt[a_. + b_.*ArcCosh[-1 + d_.*x_^2]], x_Symbol] := Sqrt[Pi/2]*(Cosh[a/(2*b)] - Sinh[a/(2*b)])* Cosh[ArcCosh[-1 + d*x^2]/2]* Erfi[Sqrt[a + b*ArcCosh[-1 + d*x^2]]/Sqrt[2*b]]/(Sqrt[b]*d*x) - Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])* Cosh[ArcCosh[-1 + d*x^2]/2]* Erf[Sqrt[a + b*ArcCosh[-1 + d*x^2]]/Sqrt[2*b]]/(Sqrt[b]*d*x) /; FreeQ[{a, b, d}, x] +Int[1/(a_. + b_.*ArcCosh[1 + d_.*x_^2])^(3/2), x_Symbol] := -Sqrt[d*x^2]* Sqrt[2 + d*x^2]/(b*d*x*Sqrt[a + b*ArcCosh[1 + d*x^2]]) + Sqrt[Pi/2]*(Cosh[a/(2*b)] - Sinh[a/(2*b)])* Sinh[ArcCosh[1 + d*x^2]/2]* Erfi[Sqrt[a + b*ArcCosh[1 + d*x^2]]/Sqrt[2*b]]/(b^(3/2)*d*x) - Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])* Sinh[ArcCosh[1 + d*x^2]/2]* Erf[Sqrt[a + b*ArcCosh[1 + d*x^2]]/Sqrt[2*b]]/(b^(3/2)*d*x) /; FreeQ[{a, b, d}, x] +Int[1/(a_. + b_.*ArcCosh[-1 + d_.*x_^2])^(3/2), x_Symbol] := -Sqrt[d*x^2]* Sqrt[-2 + d*x^2]/(b*d*x*Sqrt[a + b*ArcCosh[-1 + d*x^2]]) + Sqrt[Pi/2]*(Cosh[a/(2*b)] - Sinh[a/(2*b)])* Cosh[ArcCosh[-1 + d*x^2]/2]* Erfi[Sqrt[a + b*ArcCosh[-1 + d*x^2]]/Sqrt[2*b]]/(b^(3/2)*d*x) + Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])* Cosh[ArcCosh[-1 + d*x^2]/2]* Erf[Sqrt[a + b*ArcCosh[-1 + d*x^2]]/Sqrt[2*b]]/(b^(3/2)*d*x) /; FreeQ[{a, b, d}, x] +Int[1/(a_. + b_.*ArcCosh[1 + d_.*x_^2])^2, x_Symbol] := -Sqrt[d*x^2]*Sqrt[2 + d*x^2]/(2*b*d*x*(a + b*ArcCosh[1 + d*x^2])) - x*Sinh[a/(2*b)]* CoshIntegral[(a + b*ArcCosh[1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2* Sqrt[d*x^2]) + x*Cosh[a/(2*b)]* SinhIntegral[(a + b*ArcCosh[1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2* Sqrt[d*x^2]) /; FreeQ[{a, b, d}, x] +Int[1/(a_. + b_.*ArcCosh[-1 + d_.*x_^2])^2, x_Symbol] := -Sqrt[d*x^2]* Sqrt[-2 + d*x^2]/(2*b*d*x*(a + b*ArcCosh[-1 + d*x^2])) + x*Cosh[a/(2*b)]* CoshIntegral[(a + b*ArcCosh[-1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2* Sqrt[d*x^2]) - x*Sinh[a/(2*b)]* SinhIntegral[(a + b*ArcCosh[-1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2* Sqrt[d*x^2]) /; FreeQ[{a, b, d}, x] +Int[(a_. + b_.*ArcCosh[c_ + d_.*x_^2])^n_, x_Symbol] := -x*(a + b*ArcCosh[c + d*x^2])^(n + 2)/(4*b^2*(n + 1)*(n + 2)) + (2*c*x^2 + d*x^4)*(a + b*ArcCosh[c + d*x^2])^(n + 1)/(2*b*(n + 1)*x* Sqrt[-1 + c + d*x^2]*Sqrt[1 + c + d*x^2]) + 1/(4*b^2*(n + 1)*(n + 2))* Int[(a + b*ArcCosh[c + d*x^2])^(n + 2), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && LtQ[n, -1] && NeQ[n, -2] +Int[ArcCosh[a_.*x_^p_]^n_./x_, x_Symbol] := 1/p*Subst[Int[x^n*Tanh[x], x], x, ArcCosh[a*x^p]] /; FreeQ[{a, p}, x] && IGtQ[n, 0] +Int[u_.*ArcCosh[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcSech[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[ArcCosh[Sqrt[1 + b_.*x_^2]]^n_./Sqrt[1 + b_.*x_^2], x_Symbol] := Sqrt[-1 + Sqrt[1 + b*x^2]]*Sqrt[1 + Sqrt[1 + b*x^2]]/(b*x)* Subst[Int[ArcCosh[x]^n/(Sqrt[-1 + x]*Sqrt[1 + x]), x], x, Sqrt[1 + b*x^2]] /; FreeQ[{b, n}, x] +Int[f_^(c_.*ArcCosh[a_. + b_.*x_]^n_.), x_Symbol] := 1/b*Subst[Int[f^(c*x^n)*Sinh[x], x], x, ArcCosh[a + b*x]] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0] +Int[x_^m_.*f_^(c_.*ArcCosh[a_. + b_.*x_]^n_.), x_Symbol] := 1/b*Subst[Int[(-a/b + Cosh[x]/b)^m*f^(c*x^n)*Sinh[x], x], x, ArcCosh[a + b*x]] /; FreeQ[{a, b, c, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] +Int[ArcCosh[u_], x_Symbol] := x*ArcCosh[u] - Int[SimplifyIntegrand[x*D[u, x]/(Sqrt[-1 + u]*Sqrt[1 + u]), x], x] /; InverseFunctionFreeQ[u, x] && Not[FunctionOfExponentialQ[u, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcCosh[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcCosh[u])/(d*(m + 1)) - b/(d*(m + 1))* Int[SimplifyIntegrand[(c + d*x)^(m + 1)* D[u, x]/(Sqrt[-1 + u]*Sqrt[1 + u]), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && Not[FunctionOfExponentialQ[u, x]] +Int[v_*(a_. + b_.*ArcCosh[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcCosh[u]), w, x] - b*Int[SimplifyIntegrand[w*D[u, x]/(Sqrt[-1 + u]*Sqrt[1 + u]), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] +Int[E^(n_.*ArcCosh[u_]), x_Symbol] := Int[(u + Sqrt[-1 + u]*Sqrt[1 + u])^n, x] /; IntegerQ[n] && PolyQ[u, x] +Int[x_^m_.*E^(n_.*ArcCosh[u_]), x_Symbol] := Int[x^m*(u + Sqrt[-1 + u]*Sqrt[1 + u])^n, x] /; RationalQ[m] && IntegerQ[n] && PolyQ[u, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.1 (a+b arctanh(c x^n))^p.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.1 (a+b arctanh(c x^n))^p.m new file mode 100755 index 0000000..cbc9744 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.1 (a+b arctanh(c x^n))^p.m @@ -0,0 +1,13 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.1 (a+b arctanh(c x^n))^p *) +Int[(a_. + b_.*ArcTanh[c_.*x_^n_.])^p_., x_Symbol] := x*(a + b*ArcTanh[c*x^n])^p - b*c*n*p* Int[x^n*(a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] && (EqQ[n, 1] || EqQ[p, 1]) +Int[(a_. + b_.*ArcCoth[c_.*x_^n_.])^p_., x_Symbol] := x*(a + b*ArcCoth[c*x^n])^p - b*c*n*p* Int[x^n*(a + b*ArcCoth[c*x^n])^(p - 1)/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] && (EqQ[n, 1] || EqQ[p, 1]) +Int[(a_. + b_.*ArcTanh[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[(a + b*Log[1 + c*x^n]/2 - b*Log[1 - c*x^n]/2)^ p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[(a + b*Log[1 + x^(-n)/c]/2 - b*Log[1 - x^(-n)/c]/2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_^n_])^p_, x_Symbol] := Int[(a + b*ArcCoth[x^(-n)/c])^p, x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_^n_])^p_, x_Symbol] := Int[(a + b*ArcTanh[x^(-n)/c])^p, x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*ArcTanh[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && FractionQ[n] +Int[(a_. + b_.*ArcCoth[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*ArcCoth[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && FractionQ[n] +Int[(a_. + b_.*ArcTanh[c_.*x_^n_.])^p_, x_Symbol] := Unintegrable[(a + b*ArcTanh[c*x^n])^p, x] /; FreeQ[{a, b, c, n, p}, x] +Int[(a_. + b_.*ArcCoth[c_.*x_^n_.])^p_, x_Symbol] := Unintegrable[(a + b*ArcCoth[c*x^n])^p, x] /; FreeQ[{a, b, c, n, p}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.1 u (a+b arctanh(c x^n))^p.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.1 u (a+b arctanh(c x^n))^p.m new file mode 100755 index 0000000..2d374bf --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.1 u (a+b arctanh(c x^n))^p.m @@ -0,0 +1,198 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.1 u (a+b arctanh(c x^n))^p *) +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := x*(a + b*ArcTanh[c*x])^p - b*c*p*Int[x*(a + b*ArcTanh[c*x])^(p - 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := x*(a + b*ArcCoth[c*x])^p - b*c*p*Int[x*(a + b*ArcCoth[c*x])^(p - 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])/x_, x_Symbol] := a*Log[x] - b/2*PolyLog[2, -c*x] + b/2*PolyLog[2, c*x] /; FreeQ[{a, b, c}, x] +Int[(a_. + b_.*ArcCoth[c_.*x_])/x_, x_Symbol] := a*Log[x] + b/2*PolyLog[2, -1/(c*x)] - b/2*PolyLog[2, 1/(c*x)] /; FreeQ[{a, b, c}, x] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_/x_, x_Symbol] := 2*(a + b*ArcTanh[c*x])^p*ArcTanh[1 - 2/(1 - c*x)] - 2*b*c*p* Int[(a + b*ArcTanh[c*x])^(p - 1)* ArcTanh[1 - 2/(1 - c*x)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_/x_, x_Symbol] := 2*(a + b*ArcCoth[c*x])^p*ArcCoth[1 - 2/(1 - c*x)] - 2*b*c*p* Int[(a + b*ArcCoth[c*x])^(p - 1)* ArcCoth[1 - 2/(1 - c*x)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := (d*x)^(m + 1)*(a + b*ArcTanh[c*x])^p/(d*(m + 1)) - b*c*p/(d*(m + 1))* Int[(d*x)^(m + 1)*(a + b*ArcTanh[c*x])^(p - 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := (d*x)^(m + 1)*(a + b*ArcCoth[c*x])^p/(d*(m + 1)) - b*c*p/(d*(m + 1))* Int[(d*x)^(m + 1)*(a + b*ArcCoth[c*x])^(p - 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTanh[c*x])^p*Log[2/(1 + e*x/d)]/e + b*c*p/e* Int[(a + b*ArcTanh[c*x])^(p - 1)*Log[2/(1 + e*x/d)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCoth[c*x])^p*Log[2/(1 + e*x/d)]/e + b*c*p/e* Int[(a + b*ArcCoth[c*x])^(p - 1)*Log[2/(1 + e*x/d)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTanh[c*x])*Log[2/(1 + c*x)]/e + b*c/e*Int[Log[2/(1 + c*x)]/(1 - c^2*x^2), x] + (a + b*ArcTanh[c*x])*Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b*c/e* Int[Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCoth[c*x])*Log[2/(1 + c*x)]/e + b*c/e*Int[Log[2/(1 + c*x)]/(1 - c^2*x^2), x] + (a + b*ArcCoth[c*x])*Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b*c/e* Int[Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^2/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTanh[c*x])^2*Log[2/(1 + c*x)]/e + b*(a + b*ArcTanh[c*x])*PolyLog[2, 1 - 2/(1 + c*x)]/e + b^2*PolyLog[3, 1 - 2/(1 + c*x)]/(2*e) + (a + b*ArcTanh[c*x])^2* Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b*(a + b*ArcTanh[c*x])* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b^2*PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^2/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCoth[c*x])^2*Log[2/(1 + c*x)]/e + b*(a + b*ArcCoth[c*x])*PolyLog[2, 1 - 2/(1 + c*x)]/e + b^2*PolyLog[3, 1 - 2/(1 + c*x)]/(2*e) + (a + b*ArcCoth[c*x])^2* Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b*(a + b*ArcCoth[c*x])* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b^2*PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^3/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTanh[c*x])^3*Log[2/(1 + c*x)]/e + 3*b*(a + b*ArcTanh[c*x])^2*PolyLog[2, 1 - 2/(1 + c*x)]/(2*e) + 3*b^2*(a + b*ArcTanh[c*x])*PolyLog[3, 1 - 2/(1 + c*x)]/(2*e) + 3*b^3*PolyLog[4, 1 - 2/(1 + c*x)]/(4*e) + (a + b*ArcTanh[c*x])^3* Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - 3*b*(a + b*ArcTanh[c*x])^2* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) - 3*b^2*(a + b*ArcTanh[c*x])* PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) - 3*b^3*PolyLog[4, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(4*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^3/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCoth[c*x])^3*Log[2/(1 + c*x)]/e + 3*b*(a + b*ArcCoth[c*x])^2*PolyLog[2, 1 - 2/(1 + c*x)]/(2*e) + 3*b^2*(a + b*ArcCoth[c*x])*PolyLog[3, 1 - 2/(1 + c*x)]/(2*e) + 3*b^3*PolyLog[4, 1 - 2/(1 + c*x)]/(4*e) + (a + b*ArcCoth[c*x])^3* Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - 3*b*(a + b*ArcCoth[c*x])^2* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) - 3*b^2*(a + b*ArcCoth[c*x])* PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) - 3*b^3*PolyLog[4, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(4*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcTanh[c*x])/(e*(q + 1)) - b*c/(e*(q + 1))*Int[(d + e*x)^(q + 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcCoth[c*x])/(e*(q + 1)) - b*c/(e*(q + 1))*Int[(d + e*x)^(q + 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcTanh[c*x])^p/(e*(q + 1)) - b*c*p/(e*(q + 1))* Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^(p - 1), (d + e*x)^(q + 1)/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q] && NeQ[q, -1] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcCoth[c*x])^p/(e*(q + 1)) - b*c*p/(e*(q + 1))* Int[ExpandIntegrand[(a + b*ArcCoth[c*x])^(p - 1), (d + e*x)^(q + 1)/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q] && NeQ[q, -1] +Int[(f_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := f/e*Int[(f*x)^(m - 1)*(a + b*ArcTanh[c*x])^p, x] - d*f/e*Int[(f*x)^(m - 1)*(a + b*ArcTanh[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && GtQ[m, 0] +Int[(f_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := f/e*Int[(f*x)^(m - 1)*(a + b*ArcCoth[c*x])^p, x] - d*f/e*Int[(f*x)^(m - 1)*(a + b*ArcCoth[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && GtQ[m, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(x_*(d_ + e_.*x_)), x_Symbol] := (a + b*ArcTanh[c*x])^p*Log[2 - 2/(1 + e*x/d)]/d - b*c*p/d* Int[(a + b*ArcTanh[c*x])^(p - 1)* Log[2 - 2/(1 + e*x/d)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(x_*(d_ + e_.*x_)), x_Symbol] := (a + b*ArcCoth[c*x])^p*Log[2 - 2/(1 + e*x/d)]/d - b*c*p/d* Int[(a + b*ArcCoth[c*x])^(p - 1)* Log[2 - 2/(1 + e*x/d)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x] - e/(d*f)*Int[(f*x)^(m + 1)*(a + b*ArcTanh[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcCoth[c*x])^p, x] - e/(d*f)*Int[(f*x)^(m + 1)*(a + b*ArcCoth[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcTanh[c*x]), u] - b*c*Int[SimplifyIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[ 2*m] && (IGtQ[m, 0] && IGtQ[q, 0] || ILtQ[m + q + 1, 0] && LtQ[m*q, 0]) +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcCoth[c*x]), u] - b*c*Int[SimplifyIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[ 2*m] && (IGtQ[m, 0] && IGtQ[q, 0] || ILtQ[m + q + 1, 0] && LtQ[m*q, 0]) +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcTanh[c*x])^p, u] - b*c*p*Int[ ExpandIntegrand[(a + b*ArcTanh[c*x])^(p - 1), u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && IGtQ[p, 1] && EqQ[c^2*d^2 - e^2, 0] && IntegersQ[m, q] && NeQ[m, -1] && NeQ[q, -1] && ILtQ[m + q + 1, 0] && LtQ[m*q, 0] +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcCoth[c*x])^p, u] - b*c*p*Int[ ExpandIntegrand[(a + b*ArcCoth[c*x])^(p - 1), u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && IGtQ[p, 1] && EqQ[c^2*d^2 - e^2, 0] && IntegersQ[m, q] && NeQ[m, -1] && NeQ[q, -1] && ILtQ[m + q + 1, 0] && LtQ[m*q, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCoth[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m]) +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := b*(d + e*x^2)^q/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcTanh[c*x])/(2*q + 1) + 2*d*q/(2*q + 1)* Int[(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := b*(d + e*x^2)^q/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcCoth[c*x])/(2*q + 1) + 2*d*q/(2*q + 1)* Int[(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := b*p*(d + e*x^2)^ q*(a + b*ArcTanh[c*x])^(p - 1)/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p/(2*q + 1) + 2*d*q/(2*q + 1)* Int[(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x] - b^2*d*p*(p - 1)/(2*q*(2*q + 1))* Int[(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] && GtQ[p, 1] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := b*p*(d + e*x^2)^ q*(a + b*ArcCoth[c*x])^(p - 1)/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^p/(2*q + 1) + 2*d*q/(2*q + 1)* Int[(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^p, x] - b^2*d*p*(p - 1)/(2*q*(2*q + 1))* Int[(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] && GtQ[p, 1] +(* Int[(a_.+b_.*ArcTanh[c_.*x_])^p_./(d_+e_.*x_^2),x_Symbol] := 1/(c*d)*Subst[Int[(a+b*x)^p,x],x,ArcTanh[c*x]] /; FreeQ[{a,b,c,d,e,p},x] && EqQ[c^2*d+e,0] *) +(* Int[(a_.+b_.*ArcCoth[c_.*x_])^p_./(d_+e_.*x_^2),x_Symbol] := 1/(c*d)*Subst[Int[(a+b*x)^p,x],x,ArcCoth[c*x]] /; FreeQ[{a,b,c,d,e,p},x] && EqQ[c^2*d+e,0] *) +Int[1/((d_ + e_.*x_^2)*(a_. + b_.*ArcTanh[c_.*x_])), x_Symbol] := Log[RemoveContent[a + b*ArcTanh[c*x], x]]/(b*c*d) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[1/((d_ + e_.*x_^2)*(a_. + b_.*ArcCoth[c_.*x_])), x_Symbol] := Log[RemoveContent[a + b*ArcCoth[c*x], x]]/(b*c*d) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1)) /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1)) /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1] +Int[(a_. + b_.*ArcTanh[c_.*x_])/Sqrt[d_ + e_.*x_^2], x_Symbol] := -2*(a + b*ArcTanh[c*x])* ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) - I*b*PolyLog[2, -I*Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) + I*b*PolyLog[2, I*Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])/Sqrt[d_ + e_.*x_^2], x_Symbol] := -2*(a + b*ArcCoth[c*x])* ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) - I*b*PolyLog[2, -I*Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) + I*b*PolyLog[2, I*Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := 1/(c*Sqrt[d])*Subst[Int[(a + b*x)^p*Sech[x], x], x, ArcTanh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := -x*Sqrt[1 - 1/(c^2*x^2)]/Sqrt[d + e*x^2]* Subst[Int[(a + b*x)^p*Csch[x], x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcTanh[c*x])^p/Sqrt[1 - c^2*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcCoth[c*x])^p/Sqrt[1 - c^2*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcTanh[c*x])^p/(2*d*(d + e*x^2)) + (a + b*ArcTanh[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)) - b*c*p/2*Int[x*(a + b*ArcTanh[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcCoth[c*x])^p/(2*d*(d + e*x^2)) + (a + b*ArcCoth[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)) - b*c*p/2*Int[x*(a + b*ArcCoth[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])/(d_ + e_.*x_^2)^(3/2), x_Symbol] := -b/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcTanh[c*x])/(d*Sqrt[d + e*x^2]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])/(d_ + e_.*x_^2)^(3/2), x_Symbol] := -b/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcCoth[c*x])/(d*Sqrt[d + e*x^2]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^(q + 1)/(4*c*d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -3/2] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^(q + 1)/(4*c*d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -3/2] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_/(d_ + e_.*x_^2)^(3/2), x_Symbol] := -b*p*(a + b*ArcTanh[c*x])^(p - 1)/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcTanh[c*x])^p/(d*Sqrt[d + e*x^2]) + b^2*p*(p - 1)* Int[(a + b*ArcTanh[c*x])^(p - 2)/(d + e*x^2)^(3/2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 1] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_/(d_ + e_.*x_^2)^(3/2), x_Symbol] := -b*p*(a + b*ArcCoth[c*x])^(p - 1)/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcCoth[c*x])^p/(d*Sqrt[d + e*x^2]) + b^2*p*(p - 1)* Int[(a + b*ArcCoth[c*x])^(p - 2)/(d + e*x^2)^(3/2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 1] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := -b*p*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^(p - 1)/(4*c* d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x] + b^2*p*(p - 1)/(4*(q + 1)^2)* Int[(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := -b*p*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^(p - 1)/(4*c* d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x] + b^2*p*(p - 1)/(4*(q + 1)^2)* Int[(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^(p + 1)/(b*c* d*(p + 1)) + 2*c*(q + 1)/(b*(p + 1))* Int[x*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && LtQ[p, -1] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^(p + 1)/(b*c* d*(p + 1)) + 2*c*(q + 1)/(b*(p + 1))* Int[x*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && LtQ[p, -1] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := d^q/c* Subst[Int[(a + b*x)^p/Cosh[x]^(2*(q + 1)), x], x, ArcTanh[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && ILtQ[2*(q + 1), 0] && (IntegerQ[q] || GtQ[d, 0]) +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := d^(q + 1/2)*Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[(1 - c^2*x^2)^q*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && ILtQ[2*(q + 1), 0] && Not[IntegerQ[q] || GtQ[d, 0]] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := -(-d)^q/c* Subst[Int[(a + b*x)^p/Sinh[x]^(2*(q + 1)), x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && ILtQ[2*(q + 1), 0] && IntegerQ[q] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := -(-d)^(q + 1/2)*x*Sqrt[(c^2*x^2 - 1)/(c^2*x^2)]/Sqrt[d + e*x^2]* Subst[Int[(a + b*x)^p/Sinh[x]^(2*(q + 1)), x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && ILtQ[2*(q + 1), 0] && Not[IntegerQ[q]] +Int[ArcTanh[c_.*x_]/(d_. + e_.*x_^2), x_Symbol] := 1/2*Int[Log[1 + c*x]/(d + e*x^2), x] - 1/2*Int[Log[1 - c*x]/(d + e*x^2), x] /; FreeQ[{c, d, e}, x] +Int[ArcCoth[c_.*x_]/(d_. + e_.*x_^2), x_Symbol] := 1/2*Int[Log[1 + 1/(c*x)]/(d + e*x^2), x] - 1/2*Int[Log[1 - 1/(c*x)]/(d + e*x^2), x] /; FreeQ[{c, d, e}, x] +Int[(a_ + b_.*ArcTanh[c_.*x_])/(d_. + e_.*x_^2), x_Symbol] := a*Int[1/(d + e*x^2), x] + b*Int[ArcTanh[c*x]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] +Int[(a_ + b_.*ArcCoth[c_.*x_])/(d_. + e_.*x_^2), x_Symbol] := a*Int[1/(d + e*x^2), x] + b*Int[ArcCoth[c*x]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] +Int[(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^q, x]}, Dist[a + b*ArcTanh[c*x], u, x] - b*c*Int[u/(1 - c^2*x^2), x]] /; FreeQ[{a, b, c, d, e}, x] && (IntegerQ[q] || ILtQ[q + 1/2, 0]) +Int[(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^q, x]}, Dist[a + b*ArcCoth[c*x], u, x] - b*c*Int[u/(1 - c^2*x^2), x]] /; FreeQ[{a, b, c, d, e}, x] && (IntegerQ[q] || ILtQ[q + 1/2, 0]) +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^p, (d + e*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[q] && IGtQ[p, 0] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCoth[c*x])^p, (d + e*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[q] && IGtQ[p, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := f^2/e*Int[(f*x)^(m - 2)*(a + b*ArcTanh[c*x])^p, x] - d*f^2/e* Int[(f*x)^(m - 2)*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := f^2/e*Int[(f*x)^(m - 2)*(a + b*ArcCoth[c*x])^p, x] - d*f^2/e* Int[(f*x)^(m - 2)*(a + b*ArcCoth[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x] - e/(d*f^2)* Int[(f*x)^(m + 2)*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcCoth[c*x])^p, x] - e/(d*f^2)* Int[(f*x)^(m + 2)*(a + b*ArcCoth[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1] +Int[x_*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^(p + 1)/(b*e*(p + 1)) + 1/(c*d)*Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] +Int[x_*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^(p + 1)/(b*e*(p + 1)) + 1/(c*d)*Int[(a + b*ArcCoth[c*x])^p/(1 - c*x), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] +Int[x_*(a_. + b_.*ArcTanh[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := x*(a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1)) - 1/(b*c*d*(p + 1))*Int[(a + b*ArcTanh[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && Not[IGtQ[p, 0]] && NeQ[p, -1] +Int[x_*(a_. + b_.*ArcCoth[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := -x*(a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1)) - 1/(b*c*d*(p + 1))*Int[(a + b*ArcCoth[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && Not[IGtQ[p, 0]] && NeQ[p, -1] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(x_*(d_ + e_.*x_^2)), x_Symbol] := (a + b*ArcTanh[c*x])^(p + 1)/(b*d*(p + 1)) + 1/d*Int[(a + b*ArcTanh[c*x])^p/(x*(1 + c*x)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(x_*(d_ + e_.*x_^2)), x_Symbol] := (a + b*ArcCoth[c*x])^(p + 1)/(b*d*(p + 1)) + 1/d*Int[(a + b*ArcCoth[c*x])^p/(x*(1 + c*x)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := (f*x)^m*(a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1)) - f*m/(b*c*d*(p + 1))* Int[(f*x)^(m - 1)*(a + b*ArcTanh[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := (f*x)^m*(a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1)) - f*m/(b*c*d*(p + 1))* Int[(f*x)^(m - 1)*(a + b*ArcCoth[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1] +Int[x_^m_.*(a_. + b_.*ArcTanh[c_.*x_])/(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTanh[c*x]), x^m/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m] && Not[EqQ[m, 1] && NeQ[a, 0]] +Int[x_^m_.*(a_. + b_.*ArcCoth[c_.*x_])/(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCoth[c*x]), x^m/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m] && Not[EqQ[m, 1] && NeQ[a, 0]] +Int[x_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p/(2*e*(q + 1)) + b*p/(2*c*(q + 1))* Int[(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && NeQ[q, -1] +Int[x_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p/(2*e*(q + 1)) + b*p/(2*c*(q + 1))* Int[(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && NeQ[q, -1] +Int[x_*(a_. + b_.*ArcTanh[c_.*x_])^p_/(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1)*(d + e*x^2)) + (1 + c^2*x^2)*(a + b*ArcTanh[c*x])^(p + 2)/(b^2* e*(p + 1)*(p + 2)*(d + e*x^2)) + 4/(b^2*(p + 1)*(p + 2))* Int[x*(a + b*ArcTanh[c*x])^(p + 2)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1] && NeQ[p, -2] +Int[x_*(a_. + b_.*ArcCoth[c_.*x_])^p_/(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1)*(d + e*x^2)) + (1 + c^2*x^2)*(a + b*ArcCoth[c*x])^(p + 2)/(b^2* e*(p + 1)*(p + 2)*(d + e*x^2)) + 4/(b^2*(p + 1)*(p + 2))* Int[x*(a + b*ArcCoth[c*x])^(p + 2)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1] && NeQ[p, -2] +Int[x_^2*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^(q + 1)/(4*c^3*d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])/(2*c^2*d*(q + 1)) + 1/(2*c^2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -5/2] +Int[x_^2*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^(q + 1)/(4*c^3*d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])/(2*c^2*d*(q + 1)) + 1/(2*c^2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -5/2] +Int[x_^2*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := -(a + b*ArcTanh[c*x])^(p + 1)/(2*b*c^3*d^2*(p + 1)) + x*(a + b*ArcTanh[c*x])^p/(2*c^2*d*(d + e*x^2)) - b*p/(2*c)*Int[x*(a + b*ArcTanh[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[x_^2*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := -(a + b*ArcCoth[c*x])^(p + 1)/(2*b*c^3*d^2*(p + 1)) + x*(a + b*ArcCoth[c*x])^p/(2*c^2*d*(d + e*x^2)) - b*p/(2*c)*Int[x*(a + b*ArcCoth[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := -b*(f*x)^m*(d + e*x^2)^(q + 1)/(c*d*m^2) + f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])/(c^2*d* m) - f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := -b*(f*x)^m*(d + e*x^2)^(q + 1)/(c*d*m^2) + f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])/(c^2*d* m) - f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := -b*p*(f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^(p - 1)/(c*d*m^2) + f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^ p/(c^2*d*m) + b^2*p*(p - 1)/m^2* Int[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 2), x] - f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] && GtQ[p, 1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := -b*p*(f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^(p - 1)/(c*d*m^2) + f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^ p/(c^2*d*m) + b^2*p*(p - 1)/m^2* Int[(f*x)^m*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p - 2), x] - f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] && GtQ[p, 1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := (f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^(p + 1)/(b*c* d*(p + 1)) - f*m/(b*c*(p + 1))* Int[(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := (f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^(p + 1)/(b*c* d*(p + 1)) - f*m/(b*c*(p + 1))* Int[(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^ p/(d*(m + 1)) - b*c*p/(m + 1)* Int[(f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^ p/(d*f*(m + 1)) - b*c*p/(f*(m + 1))* Int[(f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1] +Int[(f_.*x_)^m_*Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := (f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcTanh[c*x])/(f*(m + 2)) - b*c*d/(f*(m + 2))*Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x] + d/(m + 2)*Int[(f*x)^m*(a + b*ArcTanh[c*x])/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && NeQ[m, -2] +Int[(f_.*x_)^m_*Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := (f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcCoth[c*x])/(f*(m + 2)) - b*c*d/(f*(m + 2))*Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x] + d/(m + 2)*Int[(f*x)^m*(a + b*ArcCoth[c*x])/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && NeQ[m, -2] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[q, 1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[q, 1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := d*Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x] - c^2*d/f^2* Int[(f*x)^(m + 2)*(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] && IGtQ[p, 0] && (RationalQ[m] || EqQ[p, 1] && IntegerQ[q]) +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := d*Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^p, x] - c^2*d/f^2* Int[(f*x)^(m + 2)*(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] && IGtQ[p, 0] && (RationalQ[m] || EqQ[p, 1] && IntegerQ[q]) +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := -f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcTanh[c*x])^p/(c^2*d*m) + b*f*p/(c*m)* Int[(f*x)^(m - 1)*(a + b*ArcTanh[c*x])^(p - 1)/Sqrt[d + e*x^2], x] + f^2*(m - 1)/(c^2*m)* Int[(f*x)^(m - 2)*(a + b*ArcTanh[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && GtQ[m, 1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := -f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcCoth[c*x])^p/(c^2*d*m) + b*f*p/(c*m)* Int[(f*x)^(m - 1)*(a + b*ArcCoth[c*x])^(p - 1)/Sqrt[d + e*x^2], x] + f^2*(m - 1)/(c^2*m)* Int[(f*x)^(m - 2)*(a + b*ArcCoth[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && GtQ[m, 1] +Int[(a_. + b_.*ArcTanh[c_.*x_])/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -2/Sqrt[d]*(a + b*ArcTanh[c*x])* ArcTanh[Sqrt[1 - c*x]/Sqrt[1 + c*x]] + b/Sqrt[d]*PolyLog[2, -Sqrt[1 - c*x]/Sqrt[1 + c*x]] - b/Sqrt[d]*PolyLog[2, Sqrt[1 - c*x]/Sqrt[1 + c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -2/Sqrt[d]*(a + b*ArcCoth[c*x])* ArcTanh[Sqrt[1 - c*x]/Sqrt[1 + c*x]] + b/Sqrt[d]*PolyLog[2, -Sqrt[1 - c*x]/Sqrt[1 + c*x]] - b/Sqrt[d]*PolyLog[2, Sqrt[1 - c*x]/Sqrt[1 + c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := 1/Sqrt[d]*Subst[Int[(a + b*x)^p*Csch[x], x], x, ArcTanh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -c*x*Sqrt[1 - 1/(c^2*x^2)]/Sqrt[d + e*x^2]* Subst[Int[(a + b*x)^p*Sech[x], x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcTanh[c*x])^p/(x*Sqrt[1 - c^2*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcCoth[c*x])^p/(x*Sqrt[1 - c^2*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(x_^2*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -Sqrt[d + e*x^2]*(a + b*ArcTanh[c*x])^p/(d*x) + b*c*p*Int[(a + b*ArcTanh[c*x])^(p - 1)/(x*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(x_^2*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -Sqrt[d + e*x^2]*(a + b*ArcCoth[c*x])^p/(d*x) + b*c*p*Int[(a + b*ArcCoth[c*x])^(p - 1)/(x*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := (f*x)^(m + 1)* Sqrt[d + e*x^2]*(a + b*ArcTanh[c*x])^p/(d*f*(m + 1)) - b*c*p/(f*(m + 1))* Int[(f*x)^(m + 1)*(a + b*ArcTanh[c*x])^(p - 1)/Sqrt[d + e*x^2], x] + c^2*(m + 2)/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(a + b*ArcTanh[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && LtQ[m, -1] && NeQ[m, -2] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := (f*x)^(m + 1)* Sqrt[d + e*x^2]*(a + b*ArcCoth[c*x])^p/(d*f*(m + 1)) - b*c*p/(f*(m + 1))* Int[(f*x)^(m + 1)*(a + b*ArcCoth[c*x])^(p - 1)/Sqrt[d + e*x^2], x] + c^2*(m + 2)/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(a + b*ArcCoth[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && LtQ[m, -1] && NeQ[m, -2] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := 1/e*Int[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x] - d/e*Int[x^(m - 2)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ[m, 1] && NeQ[p, -1] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := 1/e*Int[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x] - d/e*Int[x^(m - 2)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ[m, 1] && NeQ[p, -1] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := 1/d*Int[x^m*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x] - e/d*Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILtQ[m, 0] && NeQ[p, -1] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := 1/d*Int[x^m*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x] - e/d*Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILtQ[m, 0] && NeQ[p, -1] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := x^m*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^(p + 1)/(b*c* d*(p + 1)) - m/(b*c*(p + 1))* Int[x^(m - 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x] + c*(m + 2*q + 2)/(b*(p + 1))* Int[x^(m + 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && LtQ[q, -1] && LtQ[p, -1] && NeQ[m + 2*q + 2, 0] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := x^m*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^(p + 1)/(b*c* d*(p + 1)) - m/(b*c*(p + 1))* Int[x^(m - 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x] + c*(m + 2*q + 2)/(b*(p + 1))* Int[x^(m + 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && LtQ[q, -1] && LtQ[p, -1] && NeQ[m + 2*q + 2, 0] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := d^q/c^(m + 1)* Subst[Int[(a + b*x)^p*Sinh[x]^m/Cosh[x]^(m + 2*(q + 1)), x], x, ArcTanh[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0]) +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := d^(q + 1/2)*Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[x^m*(1 - c^2*x^2)^q*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && Not[IntegerQ[q] || GtQ[d, 0]] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := -(-d)^q/c^(m + 1)* Subst[Int[(a + b*x)^p*Cosh[x]^m/Sinh[x]^(m + 2*(q + 1)), x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && IntegerQ[q] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := -(-d)^(q + 1/2)*x* Sqrt[(c^2*x^2 - 1)/(c^2*x^2)]/(c^m*Sqrt[d + e*x^2])* Subst[Int[(a + b*x)^p*Cosh[x]^m/Sinh[x]^(m + 2*(q + 1)), x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && Not[IntegerQ[q]] +Int[x_*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])/(2*e*(q + 1)) - b*c/(2*e*(q + 1))*Int[(d + e*x^2)^(q + 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[x_*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])/(2*e*(q + 1)) - b*c/(2*e*(q + 1))*Int[(d + e*x^2)^(q + 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[(f_.*x_)^m_.*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Dist[a + b*ArcTanh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ( IGtQ[q, 0] && Not[ILtQ[(m - 1)/2, 0] && GtQ[m + 2*q + 3, 0]] || IGtQ[(m + 1)/2, 0] && Not[ILtQ[q, 0] && GtQ[m + 2*q + 3, 0]] || ILtQ[(m + 2*q + 1)/2, 0] && Not[ILtQ[(m - 1)/2, 0]] ) +Int[(f_.*x_)^m_.*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Dist[a + b*ArcCoth[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ( IGtQ[q, 0] && Not[ILtQ[(m - 1)/2, 0] && GtQ[m + 2*q + 3, 0]] || IGtQ[(m + 1)/2, 0] && Not[ILtQ[q, 0] && GtQ[m + 2*q + 3, 0]] || ILtQ[(m + 2*q + 1)/2, 0] && Not[ILtQ[(m - 1)/2, 0]] ) +Int[x_*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcTanh[c*x])^p/(1 - Rt[-e/d, 2]*x)^2, x] - 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcTanh[c*x])^p/(1 + Rt[-e/d, 2]*x)^2, x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] +Int[x_*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcCoth[c*x])^p/(1 - Rt[-e/d, 2]*x)^2, x] - 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcCoth[c*x])^p/(1 + Rt[-e/d, 2]*x)^2, x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && (GtQ[q, 0] || IntegerQ[m]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*ArcCoth[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && (GtQ[q, 0] || IntegerQ[m]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_ + b_.*ArcTanh[c_.*x_]), x_Symbol] := a*Int[(f*x)^m*(d + e*x^2)^q, x] + b*Int[(f*x)^m*(d + e*x^2)^q*ArcTanh[c*x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_ + b_.*ArcCoth[c_.*x_]), x_Symbol] := a*Int[(f*x)^m*(d + e*x^2)^q, x] + b*Int[(f*x)^m*(d + e*x^2)^q*ArcCoth[c*x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^p/(d + e*x^2), (f + g*x)^ m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCoth[c*x])^p/(d + e*x^2), (f + g*x)^ m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] +Int[ArcTanh[u_]*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[Log[1 + u]*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] - 1/2*Int[Log[1 - u]*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 + c*x))^2, 0] +Int[ArcCoth[u_]*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[ Log[SimplifyIntegrand[1 + 1/u, x]]*(a + b*ArcCoth[c*x])^ p/(d + e*x^2), x] - 1/2* Int[Log[SimplifyIntegrand[1 - 1/u, x]]*(a + b*ArcCoth[c*x])^ p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 + c*x))^2, 0] +Int[ArcTanh[u_]*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[Log[1 + u]*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] - 1/2*Int[Log[1 - u]*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x))^2, 0] +Int[ArcCoth[u_]*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[ Log[SimplifyIntegrand[1 + 1/u, x]]*(a + b*ArcCoth[c*x])^ p/(d + e*x^2), x] - 1/2* Int[Log[SimplifyIntegrand[1 - 1/u, x]]*(a + b*ArcCoth[c*x])^ p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x))^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_.*Log[f_ + g_.*x_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^(p + 1)*Log[f + g*x]/(b*c*d*(p + 1)) - g/(b*c*d*(p + 1))* Int[(a + b*ArcTanh[c*x])^(p + 1)/(f + g*x), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[c^2*f^2 - g^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_.*Log[f_ + g_.*x_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^(p + 1)*Log[f + g*x]/(b*c*d*(p + 1)) - g/(b*c*d*(p + 1))* Int[(a + b*ArcCoth[c*x])^(p + 1)/(f + g*x), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[c^2*f^2 - g^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) - b*p/2* Int[(a + b*ArcTanh[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2/(1 + c*x))^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) - b*p/2* Int[(a + b*ArcCoth[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2/(1 + c*x))^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := -(a + b*ArcTanh[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) + b*p/2* Int[(a + b*ArcTanh[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2/(1 - c*x))^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := -(a + b*ArcCoth[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) + b*p/2* Int[(a + b*ArcCoth[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2/(1 - c*x))^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := -(a + b*ArcTanh[c*x])^p*PolyLog[k + 1, u]/(2*c*d) + b*p/2* Int[(a + b*ArcTanh[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 + c*x))^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := -(a + b*ArcCoth[c*x])^p*PolyLog[k + 1, u]/(2*c*d) + b*p/2* Int[(a + b*ArcCoth[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 + c*x))^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^p*PolyLog[k + 1, u]/(2*c*d) - b*p/2* Int[(a + b*ArcTanh[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x))^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^p*PolyLog[k + 1, u]/(2*c*d) - b*p/2* Int[(a + b*ArcCoth[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x))^2, 0] +Int[1/((d_ + e_.*x_^2)*(a_. + b_.*ArcCoth[c_.*x_])*(a_. + b_.*ArcTanh[c_.*x_])), x_Symbol] := (-Log[a + b*ArcCoth[c*x]] + Log[a + b*ArcTanh[c*x]])/(b^2*c* d*(ArcCoth[c*x] - ArcTanh[c*x])) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^ m_.*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^(m + 1)*(a + b*ArcTanh[c*x])^ p/(b*c*d*(m + 1)) - p/(m + 1)* Int[(a + b*ArcCoth[c*x])^(m + 1)*(a + b*ArcTanh[c*x])^(p - 1)/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && IGeQ[m, p] +Int[(a_. + b_.*ArcTanh[c_.*x_])^ m_.*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^(m + 1)*(a + b*ArcCoth[c*x])^ p/(b*c*d*(m + 1)) - p/(m + 1)* Int[(a + b*ArcTanh[c*x])^(m + 1)*(a + b*ArcCoth[c*x])^(p - 1)/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[m, p] +Int[ArcTanh[a_.*x_]/(c_ + d_.*x_^n_.), x_Symbol] := 1/2*Int[Log[1 + a*x]/(c + d*x^n), x] - 1/2*Int[Log[1 - a*x]/(c + d*x^n), x] /; FreeQ[{a, c, d}, x] && IntegerQ[n] && Not[EqQ[n, 2] && EqQ[a^2*c + d, 0]] +Int[ArcCoth[a_.*x_]/(c_ + d_.*x_^n_.), x_Symbol] := 1/2*Int[Log[1 + 1/(a*x)]/(c + d*x^n), x] - 1/2*Int[Log[1 - 1/(a*x)]/(c + d*x^n), x] /; FreeQ[{a, c, d}, x] && IntegerQ[n] && Not[EqQ[n, 2] && EqQ[a^2*c + d, 0]] +Int[Log[d_.*x_^m_.]*ArcTanh[c_.*x_^n_.]/x_, x_Symbol] := 1/2*Int[Log[d*x^m]*Log[1 + c*x^n]/x, x] - 1/2*Int[Log[d*x^m]*Log[1 - c*x^n]/x, x] /; FreeQ[{c, d, m, n}, x] +Int[Log[d_.*x_^m_.]*ArcCoth[c_.*x_^n_.]/x_, x_Symbol] := 1/2*Int[Log[d*x^m]*Log[1 + 1/(c*x^n)]/x, x] - 1/2*Int[Log[d*x^m]*Log[1 - 1/(c*x^n)]/x, x] /; FreeQ[{c, d, m, n}, x] +Int[Log[d_.*x_^m_.]*(a_ + b_.*ArcTanh[c_.*x_^n_.])/x_, x_Symbol] := a*Int[Log[d*x^m]/x, x] + b*Int[(Log[d*x^m]*ArcTanh[c*x^n])/x, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[Log[d_.*x_^m_.]*(a_ + b_.*ArcCoth[c_.*x_^n_.])/x_, x_Symbol] := a*Int[Log[d*x^m]/x, x] + b*Int[(Log[d*x^m]*ArcCoth[c*x^n])/x, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := x*(d + e*Log[f + g*x^2])*(a + b*ArcTanh[c*x]) - 2*e*g*Int[x^2*(a + b*ArcTanh[c*x])/(f + g*x^2), x] - b*c*Int[x*(d + e*Log[f + g*x^2])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := x*(d + e*Log[f + g*x^2])*(a + b*ArcCoth[c*x]) - 2*e*g*Int[x^2*(a + b*ArcCoth[c*x])/(f + g*x^2), x] - b*c*Int[x*(d + e*Log[f + g*x^2])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[Log[f_. + g_.*x_^2]*ArcTanh[c_.*x_]/x_, x_Symbol] := (Log[f + g*x^2] - Log[1 - c*x] - Log[1 + c*x])* Int[ArcTanh[c*x]/x, x] - 1/2*Int[Log[1 - c*x]^2/x, x] + 1/2*Int[Log[1 + c*x]^2/x, x] /; FreeQ[{c, f, g}, x] && EqQ[c^2*f + g, 0] +Int[Log[f_. + g_.*x_^2]*ArcCoth[c_.*x_]/x_, x_Symbol] := (Log[f + g*x^2] - Log[-c^2*x^2] - Log[1 - 1/(c*x)] - Log[1 + 1/(c*x)])*Int[ArcCoth[c*x]/x, x] + Int[Log[-c^2*x^2]*ArcCoth[c*x]/x, x] - 1/2*Int[Log[1 - 1/(c*x)]^2/x, x] + 1/2*Int[Log[1 + 1/(c*x)]^2/x, x] /; FreeQ[{c, f, g}, x] && EqQ[c^2*f + g, 0] +Int[Log[f_. + g_.*x_^2]*(a_ + b_.*ArcTanh[c_.*x_])/x_, x_Symbol] := a*Int[Log[f + g*x^2]/x, x] + b*Int[Log[f + g*x^2]*ArcTanh[c*x]/x, x] /; FreeQ[{a, b, c, f, g}, x] +Int[Log[f_. + g_.*x_^2]*(a_ + b_.*ArcCoth[c_.*x_])/x_, x_Symbol] := a*Int[Log[f + g*x^2]/x, x] + b*Int[Log[f + g*x^2]*ArcCoth[c*x]/x, x] /; FreeQ[{a, b, c, f, g}, x] +Int[(d_ + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_])/x_, x_Symbol] := d*Int[(a + b*ArcTanh[c*x])/x, x] + e*Int[Log[f + g*x^2]*(a + b*ArcTanh[c*x])/x, x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[(d_ + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_])/x_, x_Symbol] := d*Int[(a + b*ArcCoth[c*x])/x, x] + e*Int[Log[f + g*x^2]*(a + b*ArcCoth[c*x])/x, x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := x^(m + 1)*(d + e*Log[f + g*x^2])*(a + b*ArcTanh[c*x])/(m + 1) - 2*e*g/(m + 1)* Int[x^(m + 2)*(a + b*ArcTanh[c*x])/(f + g*x^2), x] - b*c/(m + 1)* Int[x^(m + 1)*(d + e*Log[f + g*x^2])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := x^(m + 1)*(d + e*Log[f + g*x^2])*(a + b*ArcCoth[c*x])/(m + 1) - 2*e*g/(m + 1)* Int[x^(m + 2)*(a + b*ArcCoth[c*x])/(f + g*x^2), x] - b*c/(m + 1)* Int[x^(m + 1)*(d + e*Log[f + g*x^2])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Dist[a + b*ArcTanh[c*x], u, x] - b*c*Int[ExpandIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Dist[a + b*ArcCoth[c*x], u, x] - b*c*Int[ExpandIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(a + b*ArcTanh[c*x]), x]}, Dist[d + e*Log[f + g*x^2], u, x] - 2*e*g*Int[ExpandIntegrand[x*u/(f + g*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[m] && NeQ[m, -1] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(a + b*ArcCoth[c*x]), x]}, Dist[d + e*Log[f + g*x^2], u, x] - 2*e*g*Int[ExpandIntegrand[x*u/(f + g*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[m] && NeQ[m, -1] +Int[x_*(d_. + e_.*Log[f_ + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_])^2, x_Symbol] := (f + g*x^2)*(d + e*Log[f + g*x^2])*(a + b*ArcTanh[c*x])^2/(2*g) - e*x^2*(a + b*ArcTanh[c*x])^2/2 + b/c*Int[(d + e*Log[f + g*x^2])*(a + b*ArcTanh[c*x]), x] + b*c*e*Int[x^2*(a + b*ArcTanh[c*x])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*f + g, 0] +Int[x_*(d_. + e_.*Log[f_ + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_])^2, x_Symbol] := (f + g*x^2)*(d + e*Log[f + g*x^2])*(a + b*ArcCoth[c*x])^2/(2*g) - e*x^2*(a + b*ArcCoth[c*x])^2/2 + b/c*Int[(d + e*Log[f + g*x^2])*(a + b*ArcCoth[c*x]), x] + b*c*e*Int[x^2*(a + b*ArcCoth[c*x])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*f + g, 0] +Int[u_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := Unintegrable[u*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, p}, x] && (EqQ[u, 1] || MatchQ[u, (d_. + e_.*x)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x)^q_. /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[u, (d_. + e_.*x^2)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x^2)^q_. /; FreeQ[{d, e, f, m, q}, x]]) +Int[u_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := Unintegrable[u*(a + b*ArcCoth[c*x])^p, x] /; FreeQ[{a, b, c, p}, x] && (EqQ[u, 1] || MatchQ[u, (d_. + e_.*x)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x)^q_. /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[u, (d_. + e_.*x^2)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x^2)^q_. /; FreeQ[{d, e, f, m, q}, x]]) +Int[ArcTanh[c_.*x_^n_], x_Symbol] := x*ArcTanh[c*x^n] - c*n*Int[x^n/(1 - c^2*x^(2*n)), x] /; FreeQ[{c, n}, x] +Int[ArcCoth[c_.*x_^n_], x_Symbol] := x*ArcCoth[c*x^n] - c*n*Int[x^n/(1 - c^2*x^(2*n)), x] /; FreeQ[{c, n}, x] +Int[(a_. + b_.*ArcTanh[c_.*x_^n_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*Log[1 + c*x^n]/2 - b*Log[1 - c*x^n]/2)^ p, x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] && IntegerQ[n] +Int[(a_. + b_.*ArcCoth[c_.*x_^n_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*Log[1 + x^(-n)/c]/2 - b*Log[1 - x^(-n)/c]/2)^p, x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] && IntegerQ[n] +Int[(a_. + b_.*ArcTanh[c_.*x_^n_])^p_./x_, x_Symbol] := 1/n*Subst[Int[(a + b*ArcTanh[c*x])^p/x, x], x, x^n] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_^n_])^p_./x_, x_Symbol] := 1/n*Subst[Int[(a + b*ArcCoth[c*x])^p/x, x], x, x^n] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_]), x_Symbol] := (d*x)^(m + 1)*(a + b*ArcTanh[c*x^n])/(d*(m + 1)) - b*c*n/(d*(m + 1))* Int[x^(n - 1)*(d*x)^(m + 1)/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_]), x_Symbol] := (d*x)^(m + 1)*(a + b*ArcCoth[c*x^n])/(d*(m + 1)) - b*c*n/(d*(m + 1))* Int[x^(n - 1)*(d*x)^(m + 1)/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_])^p_., x_Symbol] := Int[ExpandIntegrand[(d*x)^ m*(a + b*Log[1 + c*x^n]/2 - b*Log[1 - c*x^n]/2)^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p, 0] && IntegerQ[m] && IntegerQ[n] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_])^p_., x_Symbol] := Int[ExpandIntegrand[(d*x)^ m*(a + b*Log[1 + x^(-n)/c]/2 - b*Log[1 - x^(-n)/c]/2)^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p, 0] && IntegerQ[m] && IntegerQ[n] +Int[u_.*(a_. + b_.*ArcTanh[c_.*x_^n_])^p_., x_Symbol] := Unintegrable[u*(a + b*ArcTanh[c*x^n])^p, x] /; FreeQ[{a, b, c, n, p}, x] && (EqQ[u, 1] || MatchQ[u, (d_.*x)^m_. /; FreeQ[{d, m}, x]]) +Int[u_.*(a_. + b_.*ArcCoth[c_.*x_^n_])^p_., x_Symbol] := Unintegrable[u*(a + b*ArcCoth[c*x^n])^p, x] /; FreeQ[{a, b, c, n, p}, x] && (EqQ[u, 1] || MatchQ[u, (d_.*x)^m_. /; FreeQ[{d, m}, x]]) diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.2 (d x)^m (a+b arctanh(c x^n))^p.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.2 (d x)^m (a+b arctanh(c x^n))^p.m new file mode 100755 index 0000000..2b71784 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.2 (d x)^m (a+b arctanh(c x^n))^p.m @@ -0,0 +1,27 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.2 (d x)^m (a+b arctanh(c x^n))^p *) +Int[(a_. + b_.*ArcTanh[c_.*x_])/x_, x_Symbol] := a*Log[x] - b/2*PolyLog[2, -c*x] + b/2*PolyLog[2, c*x] /; FreeQ[{a, b, c}, x] +Int[(a_. + b_.*ArcCoth[c_.*x_])/x_, x_Symbol] := a*Log[x] + b/2*PolyLog[2, -1/(c*x)] - b/2*PolyLog[2, 1/(c*x)] /; FreeQ[{a, b, c}, x] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_/x_, x_Symbol] := 2*(a + b*ArcTanh[c*x])^p*ArcTanh[1 - 2/(1 - c*x)] - 2*b*c*p* Int[(a + b*ArcTanh[c*x])^(p - 1)* ArcTanh[1 - 2/(1 - c*x)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_/x_, x_Symbol] := 2*(a + b*ArcCoth[c*x])^p*ArcCoth[1 - 2/(1 - c*x)] - 2*b*c*p* Int[(a + b*ArcCoth[c*x])^(p - 1)* ArcCoth[1 - 2/(1 - c*x)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] +Int[(a_. + b_.*ArcTanh[c_.*x_^n_])^p_./x_, x_Symbol] := 1/n*Subst[Int[(a + b*ArcTanh[c*x])^p/x, x], x, x^n] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_^n_])^p_./x_, x_Symbol] := 1/n*Subst[Int[(a + b*ArcCoth[c*x])^p/x, x], x, x^n] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0] +Int[x_^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_.])^p_., x_Symbol] := x^(m + 1)*(a + b*ArcTanh[c*x^n])^p/(m + 1) - b*c*n*p/(m + 1)* Int[x^(m + n)*(a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || EqQ[n, 1] && IntegerQ[m]) && NeQ[m, -1] +Int[x_^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_.])^p_., x_Symbol] := x^(m + 1)*(a + b*ArcCoth[c*x^n])^p/(m + 1) - b*c*n*p/(m + 1)* Int[x^(m + n)*(a + b*ArcCoth[c*x^n])^(p - 1)/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || EqQ[n, 1] && IntegerQ[m]) && NeQ[m, -1] +Int[x_^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*ArcTanh[c*x])^p, x], x, x^n] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[Simplify[(m + 1)/n]] +Int[x_^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_])^p_., x_Symbol] := 1/n*Subst[ Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*ArcCoth[c*x])^p, x], x, x^n] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[Simplify[(m + 1)/n]] +Int[x_^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[ x^m*(a + b*Log[1 + c*x^n]/2 - b*Log[1 - c*x^n]/2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] && IntegerQ[m] +Int[x_^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[ x^m*(a + b*Log[1 + x^(-n)/c]/2 - b*Log[1 - x^(-n)/c]/2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] && IntegerQ[m] +Int[x_^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[m]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcTanh[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] && FractionQ[m] +Int[x_^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[m]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcCoth[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] && FractionQ[m] +Int[x_^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_])^p_, x_Symbol] := Int[x^m*(a + b*ArcCoth[x^(-n)/c])^p, x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p, 1] && ILtQ[n, 0] +Int[x_^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_])^p_, x_Symbol] := Int[x^m*(a + b*ArcTanh[x^(-n)/c])^p, x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p, 1] && ILtQ[n, 0] +Int[x_^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcTanh[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c, m}, x] && IGtQ[p, 1] && FractionQ[n] +Int[x_^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_])^p_, x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcCoth[c*x^(k*n)])^p, x], x, x^(1/k)]] /; FreeQ[{a, b, c, m}, x] && IGtQ[p, 1] && FractionQ[n] +Int[(d_*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_^n_.]), x_Symbol] := (d*x)^(m + 1)*(a + b*ArcTanh[c*x^n])/(d*(m + 1)) - b*c*n/(d^n*(m + 1))*Int[(d*x)^(m + n)/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[n] && NeQ[m, -1] +Int[(d_*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_^n_.]), x_Symbol] := (d*x)^(m + 1)*(a + b*ArcCoth[c*x^n])/(d*(m + 1)) - b*c*n/(d^n*(m + 1))*Int[(d*x)^(m + n)/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[n] && NeQ[m, -1] +Int[(d_*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_^n_.])^p_., x_Symbol] := d^IntPart[m]*(d*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*ArcTanh[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || RationalQ[m, n]) +Int[(d_*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_^n_.])^p_., x_Symbol] := d^IntPart[m]*(d*x)^FracPart[m]/x^FracPart[m]* Int[x^m*(a + b*ArcCoth[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || RationalQ[m, n]) +Int[(d_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_.])^p_., x_Symbol] := Unintegrable[(d*x)^m*(a + b*ArcTanh[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_.])^p_., x_Symbol] := Unintegrable[(d*x)^m*(a + b*ArcCoth[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.2 u (a+b arctanh(c+d x))^p.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.2 u (a+b arctanh(c+d x))^p.m new file mode 100755 index 0000000..8b62506 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.2 u (a+b arctanh(c+d x))^p.m @@ -0,0 +1,23 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.2 u (a+b arctanh(c+d x))^p *) +Int[(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcTanh[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcCoth[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(a + b*ArcTanh[c + d*x])^p, x] /; FreeQ[{a, b, c, d, p}, x] && Not[IGtQ[p, 0]] +Int[(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(a + b*ArcCoth[c + d*x])^p, x] /; FreeQ[{a, b, c, d, p}, x] && Not[IGtQ[p, 0]] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(f*x/d)^m*(a + b*ArcTanh[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(f*x/d)^m*(a + b*ArcCoth[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_*(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_., x_Symbol] := (e + f*x)^(m + 1)*(a + b*ArcTanh[c + d*x])^p/(f*(m + 1)) - b*d*p/(f*(m + 1))* Int[(e + f*x)^(m + 1)*(a + b*ArcTanh[c + d*x])^(p - 1)/(1 - (c + d*x)^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[m, -1] +Int[(e_. + f_.*x_)^m_*(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_., x_Symbol] := (e + f*x)^(m + 1)*(a + b*ArcCoth[c + d*x])^p/(f*(m + 1)) - b*d*p/(f*(m + 1))* Int[(e + f*x)^(m + 1)*(a + b*ArcCoth[c + d*x])^(p - 1)/(1 - (c + d*x)^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[m, -1] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcTanh[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcCoth[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(e + f*x)^m*(a + b*ArcTanh[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && Not[IGtQ[p, 0]] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(e + f*x)^m*(a + b*ArcCoth[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && Not[IGtQ[p, 0]] +Int[ArcTanh[c_ + d_.*x_]/(e_ + f_.*x_^n_.), x_Symbol] := 1/2*Int[Log[1 + c + d*x]/(e + f*x^n), x] - 1/2*Int[Log[1 - c - d*x]/(e + f*x^n), x] /; FreeQ[{c, d, e, f}, x] && RationalQ[n] +Int[ArcCoth[c_ + d_.*x_]/(e_ + f_.*x_^n_.), x_Symbol] := 1/2*Int[Log[(1 + c + d*x)/(c + d*x)]/(e + f*x^n), x] - 1/2*Int[Log[(-1 + c + d*x)/(c + d*x)]/(e + f*x^n), x] /; FreeQ[{c, d, e, f}, x] && RationalQ[n] +Int[ArcTanh[c_ + d_.*x_]/(e_ + f_.*x_^n_), x_Symbol] := Unintegrable[ArcTanh[c + d*x]/(e + f*x^n), x] /; FreeQ[{c, d, e, f, n}, x] && Not[RationalQ[n]] +Int[ArcCoth[c_ + d_.*x_]/(e_ + f_.*x_^n_), x_Symbol] := Unintegrable[ArcCoth[c + d*x]/(e + f*x^n), x] /; FreeQ[{c, d, e, f, n}, x] && Not[RationalQ[n]] +Int[(A_. + B_.*x_ + C_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_ + d_.*x_])^ p_., x_Symbol] := 1/d*Subst[Int[(-C/d^2 + C/d^2*x^2)^q*(a + b*ArcTanh[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, A, B, C, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(A_. + B_.*x_ + C_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_ + d_.*x_])^ p_., x_Symbol] := 1/d*Subst[Int[(C/d^2 + C/d^2*x^2)^q*(a + b*ArcCoth[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, A, B, C, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(e_. + f_.*x_)^m_.*(A_. + B_.*x_ + C_.*x_^2)^ q_.*(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[ Int[((d*e - c*f)/d + f*x/d)^m*(-C/d^2 + C/d^2*x^2)^ q*(a + b*ArcTanh[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(e_. + f_.*x_)^m_.*(A_. + B_.*x_ + C_.*x_^2)^ q_.*(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[ Int[((d*e - c*f)/d + f*x/d)^m*(-C/d^2 + C/d^2*x^2)^ q*(a + b*ArcCoth[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.3 (d+e x)^m (a+b arctanh(c x^n))^p.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.3 (d+e x)^m (a+b arctanh(c x^n))^p.m new file mode 100755 index 0000000..b2cfe36 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.3 (d+e x)^m (a+b arctanh(c x^n))^p.m @@ -0,0 +1,25 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.3 (d+e x)^m (a+b arctanh(c x^n))^p *) +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTanh[c*x])^p*Log[2/(1 + e*x/d)]/e + b*c*p/e* Int[(a + b*ArcTanh[c*x])^(p - 1)*Log[2/(1 + e*x/d)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCoth[c*x])^p*Log[2/(1 + e*x/d)]/e + b*c*p/e* Int[(a + b*ArcCoth[c*x])^(p - 1)*Log[2/(1 + e*x/d)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTanh[c*x])*Log[2/(1 + c*x)]/e + b*c/e*Int[Log[2/(1 + c*x)]/(1 - c^2*x^2), x] + (a + b*ArcTanh[c*x])*Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b*c/e* Int[Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCoth[c*x])*Log[2/(1 + c*x)]/e + b*c/e*Int[Log[2/(1 + c*x)]/(1 - c^2*x^2), x] + (a + b*ArcCoth[c*x])*Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b*c/e* Int[Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^2/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTanh[c*x])^2*Log[2/(1 + c*x)]/e + b*(a + b*ArcTanh[c*x])*PolyLog[2, 1 - 2/(1 + c*x)]/e + b^2*PolyLog[3, 1 - 2/(1 + c*x)]/(2*e) + (a + b*ArcTanh[c*x])^2* Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b*(a + b*ArcTanh[c*x])* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b^2*PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^2/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCoth[c*x])^2*Log[2/(1 + c*x)]/e + b*(a + b*ArcCoth[c*x])*PolyLog[2, 1 - 2/(1 + c*x)]/e + b^2*PolyLog[3, 1 - 2/(1 + c*x)]/(2*e) + (a + b*ArcCoth[c*x])^2* Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b*(a + b*ArcCoth[c*x])* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - b^2*PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^3/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcTanh[c*x])^3*Log[2/(1 + c*x)]/e + 3*b*(a + b*ArcTanh[c*x])^2*PolyLog[2, 1 - 2/(1 + c*x)]/(2*e) + 3*b^2*(a + b*ArcTanh[c*x])*PolyLog[3, 1 - 2/(1 + c*x)]/(2*e) + 3*b^3*PolyLog[4, 1 - 2/(1 + c*x)]/(4*e) + (a + b*ArcTanh[c*x])^3* Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - 3*b*(a + b*ArcTanh[c*x])^2* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) - 3*b^2*(a + b*ArcTanh[c*x])* PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) - 3*b^3*PolyLog[4, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(4*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^3/(d_ + e_.*x_), x_Symbol] := -(a + b*ArcCoth[c*x])^3*Log[2/(1 + c*x)]/e + 3*b*(a + b*ArcCoth[c*x])^2*PolyLog[2, 1 - 2/(1 + c*x)]/(2*e) + 3*b^2*(a + b*ArcCoth[c*x])*PolyLog[3, 1 - 2/(1 + c*x)]/(2*e) + 3*b^3*PolyLog[4, 1 - 2/(1 + c*x)]/(4*e) + (a + b*ArcCoth[c*x])^3* Log[2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/e - 3*b*(a + b*ArcCoth[c*x])^2* PolyLog[2, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) - 3*b^2*(a + b*ArcCoth[c*x])* PolyLog[3, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(2*e) - 3*b^3*PolyLog[4, 1 - 2*c*(d + e*x)/((c*d + e)*(1 + c*x))]/(4*e) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcTanh[c*x])/(e*(q + 1)) - b*c/(e*(q + 1))*Int[(d + e*x)^(q + 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcCoth[c*x])/(e*(q + 1)) - b*c/(e*(q + 1))*Int[(d + e*x)^(q + 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcTanh[c*x])^p/(e*(q + 1)) - b*c*p/(e*(q + 1))* Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^(p - 1), (d + e*x)^(q + 1)/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q] && NeQ[q, -1] +Int[(d_ + e_.*x_)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := (d + e*x)^(q + 1)*(a + b*ArcCoth[c*x])^p/(e*(q + 1)) - b*c*p/(e*(q + 1))* Int[ExpandIntegrand[(a + b*ArcCoth[c*x])^(p - 1), (d + e*x)^(q + 1)/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q] && NeQ[q, -1] +Int[(a_. + b_.*ArcTanh[c_.*x_^n_])/(d_. + e_.*x_), x_Symbol] := Log[d + e*x]*(a + b*ArcTanh[c*x^n])/e - b*c*n/e*Int[x^(n - 1)*Log[d + e*x]/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[n] +Int[(a_. + b_.*ArcCoth[c_.*x_^n_])/(d_. + e_.*x_), x_Symbol] := Log[d + e*x]*(a + b*ArcCoth[c*x^n])/e - b*c*n/e*Int[x^(n - 1)*Log[d + e*x]/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[n] +Int[(a_. + b_.*ArcTanh[c_.*x_^n_])/(d_ + e_.*x_), x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*ArcTanh[c*x^(k*n)])/(d + e*x^k), x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && FractionQ[n] +Int[(a_. + b_.*ArcCoth[c_.*x_^n_])/(d_ + e_.*x_), x_Symbol] := With[{k = Denominator[n]}, k*Subst[Int[x^(k - 1)*(a + b*ArcCoth[c*x^(k*n)])/(d + e*x^k), x], x, x^(1/k)]] /; FreeQ[{a, b, c, d, e}, x] && FractionQ[n] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_]), x_Symbol] := (d + e*x)^(m + 1)*(a + b*ArcTanh[c*x^n])/(e*(m + 1)) - b*c*n/(e*(m + 1))* Int[x^(n - 1)*(d + e*x)^(m + 1)/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_]), x_Symbol] := (d + e*x)^(m + 1)*(a + b*ArcCoth[c*x^n])/(e*(m + 1)) - b*c*n/(e*(m + 1))* Int[x^(n - 1)*(d + e*x)^(m + 1)/(1 - c^2*x^(2*n)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[(d_ + e_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTanh[c*x^n])^p, (d + e*x)^m, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 1] && IGtQ[m, 0] +Int[(d_ + e_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_])^p_, x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCoth[c*x^n])^p, (d + e*x)^m, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 1] && IGtQ[m, 0] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_^n_])^p_., x_Symbol] := Unintegrable[(d + e*x)^m*(a + b*ArcTanh[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_^n_])^p_., x_Symbol] := Unintegrable[(d + e*x)^m*(a + b*ArcCoth[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.3 Exponentials of inverse hyperbolic tangent.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.3 Exponentials of inverse hyperbolic tangent.m new file mode 100755 index 0000000..cd2b5f7 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.3 Exponentials of inverse hyperbolic tangent.m @@ -0,0 +1,90 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.3 Exponentials of inverse hyperbolic tangent *) +Int[E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := Int[((1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/2)* Sqrt[1 - a^2*x^2])), x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2] +Int[x_^m_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := Int[x^ m*((1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/2)* Sqrt[1 - a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(n - 1)/2] +Int[E^(n_*ArcTanh[a_.*x_]), x_Symbol] := Int[(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, n}, x] && Not[IntegerQ[(n - 1)/2]] +Int[x_^m_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := Int[x^m*(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, m, n}, x] && Not[IntegerQ[(n - 1)/2]] +Int[(c_ + d_.*x_)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^n*Int[(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p] +Int[(e_. + f_.*x_)^m_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^n*Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p] +Int[u_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[u*(1 + d*x/c)^p*(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ[p] || GtQ[c, 0]) +Int[u_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := Int[u*(c + d*x)^p*(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[u_.*(c_ + d_./x_)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := d^p*Int[u*(1 + c*x/d)^p*E^(n*ArcTanh[a*x])/x^p, x] /; FreeQ[{a, c, d, n}, x] && EqQ[c^2 - a^2*d^2, 0] && IntegerQ[p] +Int[u_.*(c_ + d_./x_)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := (-1)^(n/2)*c^p* Int[u*(1 + d/(c*x))^p*(1 + 1/(a*x))^(n/2)/(1 - 1/(a*x))^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[p]] && IntegerQ[n/2] && GtQ[c, 0] +Int[u_.*(c_ + d_./x_)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := Int[u*(c + d/x)^p*(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[p]] && IntegerQ[n/2] && Not[GtQ[c, 0]] +Int[u_.*(c_ + d_./x_)^p_*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := x^p*(c + d/x)^p/(1 + c*x/d)^p* Int[u*(1 + c*x/d)^p*E^(n*ArcTanh[a*x])/x^p, x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[p]] +Int[E^(n_*ArcTanh[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := (n - a*x)*E^(n*ArcTanh[a*x])/(a*c*(n^2 - 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n]] +Int[(c_ + d_.*x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := (n + 2*a*(p + 1)*x)*(c + d*x^2)^(p + 1)* E^(n*ArcTanh[a*x])/(a*c*(n^2 - 4*(p + 1)^2)) - 2*(p + 1)*(2*p + 3)/(c*(n^2 - 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && LtQ[p, -1] && Not[IntegerQ[n]] && NeQ[n^2 - 4*(p + 1)^2, 0] && IntegerQ[2*p] +Int[E^(n_.*ArcTanh[a_.*x_])/(c_ + d_.*x_^2), x_Symbol] := E^(n*ArcTanh[a*x])/(a*c*n) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] +Int[(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[(1 - a^2*x^2)^(p - n/2)*(1 + a*x)^n, x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && IntegerQ[p] && IGtQ[(n + 1)/2, 0] && Not[IntegerQ[p - n/2]] +Int[(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[(1 - a^2*x^2)^(p + n/2)/(1 - a*x)^n, x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && IntegerQ[p] && ILtQ[(n - 1)/2, 0] && Not[IntegerQ[p - n/2]] +Int[(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0]) +Int[(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^(n/2)*Int[(c + d*x^2)^(p - n/2)*(1 + a*x)^n, x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && IGtQ[n/2, 0] +Int[(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := 1/c^(n/2)*Int[(c + d*x^2)^(p + n/2)/(1 - a*x)^n, x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && ILtQ[n/2, 0] +Int[(c_ + d_.*x_^2)^p_*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPart[p]* Int[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[x_*E^(n_*ArcTanh[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := (1 - a*n*x)*E^(n*ArcTanh[a*x])/(d*(n^2 - 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n]] +Int[x_*(c_ + d_.*x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := (c + d*x^2)^(p + 1)*E^(n*ArcTanh[a*x])/(2*d*(p + 1)) - a*c*n/(2*d*(p + 1))*Int[(c + d*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && LtQ[p, -1] && Not[IntegerQ[n]] && IntegerQ[2*p] +(* Int[x_*(c_+d_.*x_^2)^p_*E^(n_*ArcTanh[a_.*x_]),x_Symbol] := -(2*(p+1)+a*n*x)*(c+d*x^2)^(p+1)*E^(n*ArcTanh[a*x])/(d*(n^2-4*(p+1)^ 2)) - n*(2*p+3)/(a*c*(n^2-4*(p+1)^2))*Int[(c+d*x^2)^(p+1)*E^(n*ArcTanh[a* x]),x] /; FreeQ[{a,c,d,n},x] && EqQ[a^2*c+d,0] && LeQ[p,-1] && NeQ[n^2-4*(p+1)^2,0] && Not[IntegerQ[n]] *) +Int[x_^2*(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := (1 - a*n*x)*(c + d*x^2)^(p + 1)* E^(n*ArcTanh[a*x])/(a*d*n*(n^2 - 1)) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && EqQ[n^2 + 2*(p + 1), 0] && Not[IntegerQ[n]] +Int[x_^2*(c_ + d_.*x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := -(n + 2*(p + 1)*a*x)*(c + d*x^2)^(p + 1)* E^(n*ArcTanh[a*x])/(a*d*(n^2 - 4*(p + 1)^2)) + (n^2 + 2*(p + 1))/(d*(n^2 - 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && LtQ[p, -1] && Not[IntegerQ[n]] && NeQ[n^2 - 4*(p + 1)^2, 0] && IntegerQ[2*p] +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[x^m*(1 - a^2*x^2)^(p - n/2)*(1 + a*x)^n, x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0]) && IGtQ[(n + 1)/2, 0] && Not[IntegerQ[p - n/2]] +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[x^m*(1 - a^2*x^2)^(p + n/2)/(1 - a*x)^n, x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0]) && ILtQ[(n - 1)/2, 0] && Not[IntegerQ[p - n/2]] +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[x^m*(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0]) +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^(n/2)*Int[x^m*(c + d*x^2)^(p - n/2)*(1 + a*x)^n, x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && IGtQ[n/2, 0] +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := 1/c^(n/2)*Int[x^m*(c + d*x^2)^(p + n/2)/(1 - a*x)^n, x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && ILtQ[n/2, 0] +Int[x_^m_.*(c_ + d_.*x_^2)^p_*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPart[p]* Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && Not[IntegerQ[n/2]] +Int[u_*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[u*(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0]) +Int[u_*(c_ + d_.*x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^ FracPart[p]/((1 - a*x)^FracPart[p]*(1 + a*x)^FracPart[p])* Int[u*(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && IntegerQ[n/2] +Int[u_*(c_ + d_.*x_^2)^p_*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPart[p]* Int[u*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && Not[IntegerQ[n/2]] +Int[u_.*(c_ + d_./x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := d^p*Int[u/x^(2*p)*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[c + a^2*d, 0] && IntegerQ[p] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[u*(1 - 1/(a*x))^p*(1 + 1/(a*x))^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[p]] && IntegerQ[n/2] && GtQ[c, 0] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := x^(2*p)*(c + d/x^2)^p/((1 - a*x)^p*(1 + a*x)^p)* Int[u/x^(2*p)*(1 - a*x)^p*(1 + a*x)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[p]] && IntegerQ[n/2] && Not[GtQ[c, 0]] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := x^(2*p)*(c + d/x^2)^p/(1 + c*x^2/d)^p* Int[u/x^(2*p)*(1 + c*x^2/d)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[p]] && Not[IntegerQ[n/2]] +Int[E^(n_.*ArcTanh[c_.*(a_ + b_.*x_)]), x_Symbol] := Int[(1 + a*c + b*c*x)^(n/2)/(1 - a*c - b*c*x)^(n/2), x] /; FreeQ[{a, b, c, n}, x] +Int[x_^m_*E^(n_*ArcTanh[c_.*(a_ + b_.*x_)]), x_Symbol] := 4/(n*b^(m + 1)*c^(m + 1))* Subst[ Int[x^(2/n)*(-1 - a*c + (1 - a*c)*x^(2/n))^ m/(1 + x^(2/n))^(m + 2), x], x, (1 + c*(a + b*x))^(n/2)/(1 - c*(a + b*x))^(n/2)] /; FreeQ[{a, b, c}, x] && ILtQ[m, 0] && LtQ[-1, n, 1] +Int[(d_. + e_.*x_)^m_.*E^(n_.*ArcTanh[c_.*(a_ + b_.*x_)]), x_Symbol] := Int[(d + e*x)^m*(1 + a*c + b*c*x)^(n/2)/(1 - a*c - b*c*x)^(n/2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcTanh[a_ + b_.*x_]), x_Symbol] := (c/(1 - a^2))^p* Int[u*(1 - a - b*x)^(p - n/2)*(1 + a + b*x)^(p + n/2), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e (1 - a^2), 0] && (IntegerQ[p] || GtQ[c/(1 - a^2), 0]) +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcTanh[a_ + b_.*x_]), x_Symbol] := (c + d*x + e*x^2)^p/(1 - a^2 - 2*a*b*x - b^2*x^2)^p* Int[u*(1 - a^2 - 2*a*b*x - b^2*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e (1 - a^2), 0] && Not[IntegerQ[p] || GtQ[c/(1 - a^2), 0]] +Int[u_.*E^(n_.*ArcTanh[c_./(a_. + b_.*x_)]), x_Symbol] := Int[u*E^(n*ArcCoth[a/c + b*x/c]), x] /; FreeQ[{a, b, c, n}, x] +Int[u_.*E^(n_*ArcCoth[a_.*x_]), x_Symbol] := (-1)^(n/2)*Int[u*E^(n*ArcTanh[a*x]), x] /; FreeQ[a, x] && IntegerQ[n/2] +Int[E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -Subst[ Int[(1 + x/a)^((n + 1)/2)/(x^2*(1 - x/a)^((n - 1)/2)* Sqrt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2] +Int[x_^m_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -Subst[ Int[(1 + x/a)^((n + 1)/2)/(x^(m + 2)*(1 - x/a)^((n - 1)/2)* Sqrt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2] && IntegerQ[m] +Int[E^(n_*ArcCoth[a_.*x_]), x_Symbol] := -Subst[Int[(1 + x/a)^(n/2)/(x^2*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && Not[IntegerQ[n]] +Int[x_^m_.*E^(n_*ArcCoth[a_.*x_]), x_Symbol] := -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[x_^m_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -x^m*(1/x)^m* Subst[Int[(1 + x/a)^((n + 1)/2)/(x^(m + 2)*(1 - x/a)^((n - 1)/2)* Sqrt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[{a, m}, x] && IntegerQ[(n - 1)/2] && Not[IntegerQ[m]] +Int[x_^m_*E^(n_*ArcCoth[a_.*x_]), x_Symbol] := -x^m*(1/x)^m* Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, m, n}, x] && Not[IntegerQ[n]] && Not[IntegerQ[m]] +Int[(c_ + d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (1 + a*x)*(c + d*x)^p*E^(n*ArcCoth[a*x])/(a*(p + 1)) /; FreeQ[{a, c, d, n, p}, x] && EqQ[a*c + d, 0] && EqQ[p, n/2] && Not[IntegerQ[n/2]] +(* Int[(c_+d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]),x_Symbol] := -(-a)^n*c^n*Subst[Int[(d+c*x)^(p-n)*(1-x^2/a^2)^(n/2)/x^(p+2),x],x, 1/x] /; FreeQ[{a,c,d},x] && EqQ[a*c+d,0] && IntegerQ[(n-1)/2] && IntegerQ[p] *) +(* Int[x_^m_.*(c_+d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]),x_Symbol] := -(-a)^n*c^n*Subst[Int[(d+c*x)^(p-n)*(1-x^2/a^2)^(n/2)/x^(m+p+2),x], x,1/x] /; FreeQ[{a,c,d},x] && EqQ[a*c+d,0] && IntegerQ[(n-1)/2] && IntegerQ[m] && IntegerQ[p] *) +(* Int[(c_+d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]),x_Symbol] := -(-a)^n*c^n*Sqrt[c+d*x]/(Sqrt[x]*Sqrt[d+c/x])*Subst[Int[(d+c*x)^(p- n)*(1-x^2/a^2)^(n/2)/x^(p+2),x],x,1/x] /; FreeQ[{a,c,d},x] && EqQ[a*c+d,0] && IntegerQ[(n-1)/2] && IntegerQ[p-1/2] *) +(* Int[x_^m_.*(c_+d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]),x_Symbol] := -(-a)^n*c^n*Sqrt[c+d*x]/(Sqrt[x]*Sqrt[d+c/x])*Subst[Int[(d+c*x)^(p- n)*(1-x^2/a^2)^(n/2)/x^(m+p+2),x],x,1/x] /; FreeQ[{a,c,d},x] && EqQ[a*c+d,0] && IntegerQ[(n-1)/2] && IntegerQ[m] && IntegerQ[p-1/2] *) +Int[u_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := d^p*Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 - d^2, 0] && Not[IntegerQ[n/2]] && IntegerQ[p] +Int[u_.*(c_ + d_.*x_)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (c + d*x)^p/(x^p*(1 + c/(d*x))^p)* Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && Not[IntegerQ[n/2]] && Not[IntegerQ[p]] +Int[(c_ + d_./x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^n*Subst[Int[(c + d*x)^(p - n)*(1 - x^2/a^2)^(n/2)/x^2, x], x, 1/x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1]) && IntegerQ[2*p] +Int[x_^m_.*(c_ + d_./x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^n*Subst[Int[(c + d*x)^(p - n)*(1 - x^2/a^2)^(n/2)/x^(m + 2), x], x, 1/x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[ m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && IntegerQ[2*p] +Int[(c_ + d_./x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*Subst[ Int[(1 + d*x/c)^p*(1 + x/a)^(n/2)/(x^2*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) +Int[x_^m_.*(c_ + d_./x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*Subst[ Int[(1 + d*x/c)^p*(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && IntegerQ[m] +Int[x_^m_*(c_ + d_./x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*x^m*(1/x)^m* Subst[Int[(1 + d*x/c)^ p*(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegerQ[m]] +Int[u_.*(c_ + d_./x_)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (c + d/x)^p/(1 + d/(c*x))^p* Int[u*(1 + d/(c*x))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[n/2]] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[E^(n_.*ArcCoth[a_.*x_])/(c_ + d_.*x_^2), x_Symbol] := E^(n*ArcCoth[a*x])/(a*c*n) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] +Int[E^(n_*ArcCoth[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := (n - a*x)*E^(n*ArcCoth[a*x])/(a*c*(n^2 - 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n]] +Int[(c_ + d_.*x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (n + 2*a*(p + 1)*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCoth[a*x])/(a*c*(n^2 - 4*(p + 1)^2)) - 2*(p + 1)*(2*p + 3)/(c*(n^2 - 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && LtQ[p, -1] && NeQ[p, -3/2] && NeQ[n^2 - 4*(p + 1)^2, 0] && (IntegerQ[p] || Not[IntegerQ[n]]) +Int[x_*E^(n_*ArcCoth[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := -(1 - a*n*x)*E^(n*ArcCoth[a*x])/(a^2*c*(n^2 - 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n]] +Int[x_*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (2*(p + 1) + a*n*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCoth[a*x])/(a^2*c*(n^2 - 4*(p + 1)^2)) - n*(2*p + 3)/(a*c*(n^2 - 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && LeQ[p, -1] && NeQ[p, -3/2] && NeQ[n^2 - 4*(p + 1)^2, 0] && (IntegerQ[p] || Not[IntegerQ[n]]) +Int[x_^2*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -(n + 2*(p + 1)*a*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCoth[a*x])/(a^3*c*n^2*(n^2 - 1)) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && EqQ[n^2 + 2*(p + 1), 0] && NeQ[n^2, 1] +Int[x_^2*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (n + 2*(p + 1)*a*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCoth[a*x])/(a^3*c*(n^2 - 4*(p + 1)^2)) - (n^2 + 2*(p + 1))/(a^2*c*(n^2 - 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && LeQ[p, -1] && NeQ[n^2 + 2*(p + 1), 0] && NeQ[n^2 - 4*(p + 1)^2, 0] && (IntegerQ[p] || Not[IntegerQ[n]]) +Int[x_^m_.*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -(-c)^p/a^(m + 1)* Subst[Int[E^(n*x)*Coth[x]^(m + 2*(p + 1))/Cosh[x]^(2*(p + 1)), x], x, ArcCoth[a*x]] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && IntegerQ[m] && LeQ[3, m, -2 (p + 1)] && IntegerQ[p] +Int[u_.*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := d^p*Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && IntegerQ[p] +Int[u_.*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (c + d*x^2)^p/(x^(2*p)*(1 - 1/(a^2*x^2))^p)* Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && Not[IntegerQ[p]] +Int[u_.*(c_ + d_./x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := c^p/a^(2*p)* Int[u/x^(2*p)*(-1 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2] +Int[(c_ + d_./x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*Subst[Int[(1 - x/a)^(p - n/2)*(1 + x/a)^(p + n/2)/x^2, x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegersQ[2*p, p + n/2]] +Int[x_^m_.*(c_ + d_./x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*Subst[ Int[(1 - x/a)^(p - n/2)*(1 + x/a)^(p + n/2)/x^(m + 2), x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegersQ[2*p, p + n/2]] && IntegerQ[m] +Int[x_^m_*(c_ + d_./x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*x^m*(1/x)^m* Subst[Int[(1 - x/a)^(p - n/2)*(1 + x/a)^(p + n/2)/x^(m + 2), x], x, 1/x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegersQ[2*p, p + n/2]] && Not[IntegerQ[m]] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d/x^2)^FracPart[p]/(1 - 1/(a^2*x^2))^FracPart[p]* Int[u*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[n/2]] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[u_.*E^(n_*ArcCoth[c_.*(a_ + b_.*x_)]), x_Symbol] := (-1)^(n/2)*Int[u*E^(n*ArcTanh[c*(a + b*x)]), x] /; FreeQ[{a, b, c}, x] && IntegerQ[n/2] +Int[E^(n_.*ArcCoth[c_.*(a_ + b_.*x_)]), x_Symbol] := (c*(a + b*x))^(n/ 2)*(1 + 1/(c*(a + b*x)))^(n/2)/(1 + a*c + b*c*x)^(n/2)* Int[(1 + a*c + b*c*x)^(n/2)/(-1 + a*c + b*c*x)^(n/2), x] /; FreeQ[{a, b, c, n}, x] && Not[IntegerQ[n/2]] +Int[x_^m_*E^(n_*ArcCoth[c_.*(a_ + b_.*x_)]), x_Symbol] := -4/(n*b^(m + 1)*c^(m + 1))* Subst[ Int[x^(2/n)*(1 + a*c + (1 - a*c)*x^(2/n))^ m/(-1 + x^(2/n))^(m + 2), x], x, (1 + 1/(c*(a + b*x)))^(n/2)/(1 - 1/(c*(a + b*x)))^(n/2)] /; FreeQ[{a, b, c}, x] && ILtQ[m, 0] && LtQ[-1, n, 1] +Int[(d_. + e_.*x_)^m_.*E^(n_.*ArcCoth[c_.*(a_ + b_.*x_)]), x_Symbol] := (c*(a + b*x))^(n/ 2)*(1 + 1/(c*(a + b*x)))^(n/2)/(1 + a*c + b*c*x)^(n/2)* Int[(d + e*x)^m*(1 + a*c + b*c*x)^(n/2)/(-1 + a*c + b*c*x)^(n/2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && Not[IntegerQ[n/2]] +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcCoth[a_ + b_.*x_]), x_Symbol] := (c/(1 - a^2))^ p*((a + b*x)/(1 + a + b*x))^(n/2)*((1 + a + b*x)/(a + b*x))^(n/ 2)*((1 - a - b*x)^(n/2)/(-1 + a + b*x)^(n/2))* Int[u*(1 - a - b*x)^(p - n/2)*(1 + a + b*x)^(p + n/2), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && Not[IntegerQ[n/2]] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e (1 - a^2), 0] && (IntegerQ[p] || GtQ[c/(1 - a^2), 0]) +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcCoth[a_ + b_.*x_]), x_Symbol] := (c + d*x + e*x^2)^p/(1 - a^2 - 2*a*b*x - b^2*x^2)^p* Int[u*(1 - a^2 - 2*a*b*x - b^2*x^2)^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && Not[IntegerQ[n/2]] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e (1 - a^2), 0] && Not[IntegerQ[p] || GtQ[c/(1 - a^2), 0]] +Int[u_.*E^(n_.*ArcCoth[c_./(a_. + b_.*x_)]), x_Symbol] := Int[u*E^(n*ArcTanh[a/c + b*x/c]), x] /; FreeQ[{a, b, c, n}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.4 Miscellaneous inverse hyperbolic tangent.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.4 Miscellaneous inverse hyperbolic tangent.m new file mode 100755 index 0000000..6beeb7b --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.4 Miscellaneous inverse hyperbolic tangent.m @@ -0,0 +1,75 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.4 Miscellaneous inverse hyperbolic tangent *) +Int[ArcTanh[a_ + b_.*x_^n_], x_Symbol] := x*ArcTanh[a + b*x^n] - b*n*Int[x^n/(1 - a^2 - 2*a*b*x^n - b^2*x^(2*n)), x] /; FreeQ[{a, b, n}, x] +Int[ArcCoth[a_ + b_.*x_^n_], x_Symbol] := x*ArcCoth[a + b*x^n] - b*n*Int[x^n/(1 - a^2 - 2*a*b*x^n - b^2*x^(2*n)), x] /; FreeQ[{a, b, n}, x] +Int[ArcTanh[a_. + b_.*x_^n_.]/x_, x_Symbol] := 1/2*Int[Log[1 + a + b*x^n]/x, x] - 1/2*Int[Log[1 - a - b*x^n]/x, x] /; FreeQ[{a, b, n}, x] +Int[ArcCoth[a_. + b_.*x_^n_.]/x_, x_Symbol] := 1/2*Int[Log[1 + 1/(a + b*x^n)]/x, x] - 1/2*Int[Log[1 - 1/(a + b*x^n)]/x, x] /; FreeQ[{a, b, n}, x] +Int[x_^m_.*ArcTanh[a_ + b_.*x_^n_], x_Symbol] := x^(m + 1)*ArcTanh[a + b*x^n]/(m + 1) - b*n/(m + 1)* Int[x^(m + n)/(1 - a^2 - 2*a*b*x^n - b^2*x^(2*n)), x] /; FreeQ[{a, b}, x] && RationalQ[m, n] && NeQ[m, -1] && NeQ[m + 1, n] +Int[x_^m_.*ArcCoth[a_ + b_.*x_^n_], x_Symbol] := x^(m + 1)*ArcCoth[a + b*x^n]/(m + 1) - b*n/(m + 1)* Int[x^(m + n)/(1 - a^2 - 2*a*b*x^n - b^2*x^(2*n)), x] /; FreeQ[{a, b}, x] && RationalQ[m, n] && NeQ[m, -1] && NeQ[m + 1, n] +Int[ArcTanh[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := 1/2*Int[Log[1 + a + b*f^(c + d*x)], x] - 1/2*Int[Log[1 - a - b*f^(c + d*x)], x] /; FreeQ[{a, b, c, d, f}, x] +Int[ArcCoth[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := 1/2*Int[Log[1 + 1/(a + b*f^(c + d*x))], x] - 1/2*Int[Log[1 - 1/(a + b*f^(c + d*x))], x] /; FreeQ[{a, b, c, d, f}, x] +Int[x_^m_.*ArcTanh[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := 1/2*Int[x^m*Log[1 + a + b*f^(c + d*x)], x] - 1/2*Int[x^m*Log[1 - a - b*f^(c + d*x)], x] /; FreeQ[{a, b, c, d, f}, x] && IGtQ[m, 0] +Int[x_^m_.*ArcCoth[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := 1/2*Int[x^m*Log[1 + 1/(a + b*f^(c + d*x))], x] - 1/2*Int[x^m*Log[1 - 1/(a + b*f^(c + d*x))], x] /; FreeQ[{a, b, c, d, f}, x] && IGtQ[m, 0] +Int[u_.*ArcTanh[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcCoth[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[u_.*ArcCoth[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcTanh[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := x*ArcTanh[(c*x)/Sqrt[a + b*x^2]] - c*Int[x/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := x*ArcCoth[(c*x)/Sqrt[a + b*x^2]] - c*Int[x/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]]/x_, x_Symbol] := ArcTanh[c*x/Sqrt[a + b*x^2]]*Log[x] - c*Int[Log[x]/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]]/x_, x_Symbol] := ArcCoth[c*x/Sqrt[a + b*x^2]]*Log[x] - c*Int[Log[x]/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[(d_.*x_)^m_.*ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := (d*x)^(m + 1)*ArcTanh[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1)) - c/(d*(m + 1))*Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1] +Int[(d_.*x_)^m_.*ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := (d*x)^(m + 1)*ArcCoth[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1)) - c/(d*(m + 1))*Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1] +Int[1/(Sqrt[a_. + b_.*x_^2]*ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]]), x_Symbol] := 1/c*Log[ArcTanh[c*x/Sqrt[a + b*x^2]]] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[1/(Sqrt[a_. + b_.*x_^2]*ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]]), x_Symbol] := -1/c*Log[ArcCoth[c*x/Sqrt[a + b*x^2]]] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[a_. + b_.*x_^2], x_Symbol] := ArcTanh[c*x/Sqrt[a + b*x^2]]^(m + 1)/(c*(m + 1)) /; FreeQ[{a, b, c, m}, x] && EqQ[b, c^2] && NeQ[m, -1] +Int[ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[a_. + b_.*x_^2], x_Symbol] := -ArcCoth[c*x/Sqrt[a + b*x^2]]^(m + 1)/(c*(m + 1)) /; FreeQ[{a, b, c, m}, x] && EqQ[b, c^2] && NeQ[m, -1] +Int[ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[d_. + e_.*x_^2], x_Symbol] := Sqrt[a + b*x^2]/Sqrt[d + e*x^2]* Int[ArcTanh[c*x/Sqrt[a + b*x^2]]^m/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b, c^2] && EqQ[b*d - a*e, 0] +Int[ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[d_. + e_.*x_^2], x_Symbol] := Sqrt[a + b*x^2]/Sqrt[d + e*x^2]* Int[ArcCoth[c*x/Sqrt[a + b*x^2]]^m/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b, c^2] && EqQ[b*d - a*e, 0] +If[TrueQ[$LoadShowSteps], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, ShowStep["", "Int[f[x,ArcTanh[a+b*x]]/(1-(a+b*x)^2),x]", "Subst[Int[f[-a/b+Tanh[x]/b,x],x],x,ArcTanh[a+b*x]]/b", Hold[ (-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[Int[ SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*Sech[x]^(2*(n + 1)), x], x], x, tmp]]] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcTanh] && EqQ[Discriminant[v, x]*tmp[[1]]^2 - D[v, x]^2, 0]] /; SimplifyFlag && QuadraticQ[v, x] && ILtQ[n, 0] && PosQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, (-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[ Int[SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*Sech[x]^(2*(n + 1)), x], x], x, tmp] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcTanh] && EqQ[Discriminant[v, x]*tmp[[1]]^2 - D[v, x]^2, 0]] /; QuadraticQ[v, x] && ILtQ[n, 0] && PosQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]]] +If[TrueQ[$LoadShowSteps], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, ShowStep["", "Int[f[x,ArcCoth[a+b*x]]/(1-(a+b*x)^2),x]", "Subst[Int[f[-a/b+Coth[x]/b,x],x],x,ArcCoth[a+b*x]]/b", Hold[ (-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[Int[ SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*(-Csch[x]^2)^(n + 1), x], x], x, tmp]]] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcCoth] && EqQ[Discriminant[v, x]*tmp[[1]]^2 - D[v, x]^2, 0]] /; SimplifyFlag && QuadraticQ[v, x] && ILtQ[n, 0] && PosQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, (-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[ Int[SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*(-Csch[x]^2)^(n + 1), x], x], x, tmp] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcCoth] && EqQ[Discriminant[v, x]*tmp[[1]]^2 - D[v, x]^2, 0]] /; QuadraticQ[v, x] && ILtQ[n, 0] && PosQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]]] +Int[ArcTanh[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Tanh[a + b*x]] + b*Int[x/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1] +Int[ArcCoth[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Tanh[a + b*x]] + b*Int[x/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1] +Int[ArcTanh[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Coth[a + b*x]] + b*Int[x/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1] +Int[ArcCoth[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Coth[a + b*x]] + b*Int[x/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1] +Int[ArcTanh[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Tanh[a + b*x]] + b*(1 - c - d)* Int[x*E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x)), x] - b*(1 + c + d)* Int[x*E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, 1] +Int[ArcCoth[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Tanh[a + b*x]] + b*(1 - c - d)* Int[x*E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x)), x] - b*(1 + c + d)* Int[x*E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, 1] +Int[ArcTanh[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Coth[a + b*x]] + b*(1 + c + d)* Int[x*E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x)), x] - b*(1 - c - d)* Int[x*E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, 1] +Int[ArcCoth[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Coth[a + b*x]] + b*(1 + c + d)* Int[x*E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x)), x] - b*(1 - c - d)* Int[x*E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Tanh[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Tanh[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Coth[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Coth[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Tanh[a + b*x]]/(f*(m + 1)) + b*(1 - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x)), x] - b*(1 + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Tanh[a + b*x]]/(f*(m + 1)) + b*(1 - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x)), x] - b*(1 + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Coth[a + b*x]]/(f*(m + 1)) + b*(1 + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x)), x] - b*(1 - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Coth[a + b*x]]/(f*(m + 1)) + b*(1 + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x)), x] - b*(1 - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1] +Int[ArcTanh[Tan[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[Tan[a + b*x]] - b*Int[x*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[ArcCoth[Tan[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[Tan[a + b*x]] - b*Int[x*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[ArcTanh[Cot[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[Cot[a + b*x]] - b*Int[x*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[ArcCoth[Cot[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[Cot[a + b*x]] - b*Int[x*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[(e_. + f_.*x_)^m_.*ArcTanh[Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[Tan[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*ArcCoth[Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[Tan[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*ArcTanh[Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[Cot[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*ArcCoth[Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[Cot[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[ArcTanh[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Tan[a + b*x]] + I*b*Int[x/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c + I*d)^2, 1] +Int[ArcCoth[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Tan[a + b*x]] + I*b*Int[x/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c + I*d)^2, 1] +Int[ArcTanh[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Cot[a + b*x]] + I*b*Int[x/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, 1] +Int[ArcCoth[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Cot[a + b*x]] + I*b*Int[x/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, 1] +Int[ArcTanh[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Tan[a + b*x]] + I*b*(1 - c + I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x)), x] - I*b*(1 + c - I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, 1] +Int[ArcCoth[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Tan[a + b*x]] + I*b*(1 - c + I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x)), x] - I*b*(1 + c - I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, 1] +Int[ArcTanh[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Cot[a + b*x]] - I*b*(1 - c - I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x)), x] + I*b*(1 + c + I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - I*d)^2, 1] +Int[ArcCoth[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Cot[a + b*x]] - I*b*(1 - c - I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x)), x] + I*b*(1 + c + I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Tan[a + b*x]]/(f*(m + 1)) + I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c + I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Tan[a + b*x]]/(f*(m + 1)) + I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c + I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Cot[a + b*x]]/(f*(m + 1)) + I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Cot[a + b*x]]/(f*(m + 1)) + I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Tan[a + b*x]]/(f*(m + 1)) + I*b*(1 - c + I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x)), x] - I*b*(1 + c - I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c + I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Tan[a + b*x]]/(f*(m + 1)) + I*b*(1 - c + I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x)), x] - I*b*(1 + c - I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c + I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Cot[a + b*x]]/(f*(m + 1)) - I*b*(1 - c - I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x)), x] + I*b*(1 + c + I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Cot[a + b*x]]/(f*(m + 1)) - I*b*(1 - c - I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x)), x] + I*b*(1 + c + I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - I*d)^2, 1] +Int[ArcTanh[u_], x_Symbol] := x*ArcTanh[u] - Int[SimplifyIntegrand[x*D[u, x]/(1 - u^2), x], x] /; InverseFunctionFreeQ[u, x] +Int[ArcCoth[u_], x_Symbol] := x*ArcCoth[u] - Int[SimplifyIntegrand[x*D[u, x]/(1 - u^2), x], x] /; InverseFunctionFreeQ[u, x] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcTanh[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcTanh[u])/(d*(m + 1)) - b/(d*(m + 1))* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/(1 - u^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && FalseQ[PowerVariableExpn[u, m + 1, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcCoth[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcCoth[u])/(d*(m + 1)) - b/(d*(m + 1))* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/(1 - u^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && FalseQ[PowerVariableExpn[u, m + 1, x]] +Int[v_*(a_. + b_.*ArcTanh[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcTanh[u]), w, x] - b*Int[SimplifyIntegrand[w*D[u, x]/(1 - u^2), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] && FalseQ[FunctionOfLinear[v*(a + b*ArcTanh[u]), x]] +Int[v_*(a_. + b_.*ArcCoth[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcCoth[u]), w, x] - b*Int[SimplifyIntegrand[w*D[u, x]/(1 - u^2), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] && FalseQ[FunctionOfLinear[v*(a + b*ArcCoth[u]), x]] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.4 u (a+b arctanh(c x))^p.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.4 u (a+b arctanh(c x))^p.m new file mode 100755 index 0000000..613b774 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.4 u (a+b arctanh(c x))^p.m @@ -0,0 +1,166 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.4 u (a+b arctanh(c x))^p *) +Int[(f_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := f/e*Int[(f*x)^(m - 1)*(a + b*ArcTanh[c*x])^p, x] - d*f/e*Int[(f*x)^(m - 1)*(a + b*ArcTanh[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && GtQ[m, 0] +Int[(f_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := f/e*Int[(f*x)^(m - 1)*(a + b*ArcCoth[c*x])^p, x] - d*f/e*Int[(f*x)^(m - 1)*(a + b*ArcCoth[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && GtQ[m, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(x_*(d_ + e_.*x_)), x_Symbol] := (a + b*ArcTanh[c*x])^p*Log[2 - 2/(1 + e*x/d)]/d - b*c*p/d* Int[(a + b*ArcTanh[c*x])^(p - 1)* Log[2 - 2/(1 + e*x/d)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(x_*(d_ + e_.*x_)), x_Symbol] := (a + b*ArcCoth[c*x])^p*Log[2 - 2/(1 + e*x/d)]/d - b*c*p/d* Int[(a + b*ArcCoth[c*x])^(p - 1)* Log[2 - 2/(1 + e*x/d)]/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x] - e/(d*f)*Int[(f*x)^(m + 1)*(a + b*ArcTanh[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcCoth[c*x])^p, x] - e/(d*f)*Int[(f*x)^(m + 1)*(a + b*ArcCoth[c*x])^p/(d + e*x), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcTanh[c*x]), u] - b*c*Int[SimplifyIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[ 2*m] && (IGtQ[m, 0] && IGtQ[q, 0] || ILtQ[m + q + 1, 0] && LtQ[m*q, 0]) +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcCoth[c*x]), u] - b*c*Int[SimplifyIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[ 2*m] && (IGtQ[m, 0] && IGtQ[q, 0] || ILtQ[m + q + 1, 0] && LtQ[m*q, 0]) +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcTanh[c*x])^p, u] - b*c*p*Int[ ExpandIntegrand[(a + b*ArcTanh[c*x])^(p - 1), u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && IGtQ[p, 1] && EqQ[c^2*d^2 - e^2, 0] && IntegersQ[m, q] && NeQ[m, -1] && NeQ[q, -1] && ILtQ[m + q + 1, 0] && LtQ[m*q, 0] +Int[(f_.*x_)^m_.*(d_. + e_.*x_)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[(a + b*ArcCoth[c*x])^p, u] - b*c*p*Int[ ExpandIntegrand[(a + b*ArcCoth[c*x])^(p - 1), u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && IGtQ[p, 1] && EqQ[c^2*d^2 - e^2, 0] && IntegersQ[m, q] && NeQ[m, -1] && NeQ[q, -1] && ILtQ[m + q + 1, 0] && LtQ[m*q, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCoth[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m]) +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := b*(d + e*x^2)^q/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcTanh[c*x])/(2*q + 1) + 2*d*q/(2*q + 1)* Int[(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := b*(d + e*x^2)^q/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcCoth[c*x])/(2*q + 1) + 2*d*q/(2*q + 1)* Int[(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := b*p*(d + e*x^2)^ q*(a + b*ArcTanh[c*x])^(p - 1)/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p/(2*q + 1) + 2*d*q/(2*q + 1)* Int[(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x] - b^2*d*p*(p - 1)/(2*q*(2*q + 1))* Int[(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] && GtQ[p, 1] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := b*p*(d + e*x^2)^ q*(a + b*ArcCoth[c*x])^(p - 1)/(2*c*q*(2*q + 1)) + x*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^p/(2*q + 1) + 2*d*q/(2*q + 1)* Int[(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^p, x] - b^2*d*p*(p - 1)/(2*q*(2*q + 1))* Int[(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] && GtQ[p, 1] +(* Int[(a_.+b_.*ArcTanh[c_.*x_])^p_./(d_+e_.*x_^2),x_Symbol] := 1/(c*d)*Subst[Int[(a+b*x)^p,x],x,ArcTanh[c*x]] /; FreeQ[{a,b,c,d,e,p},x] && EqQ[c^2*d+e,0] *) +(* Int[(a_.+b_.*ArcCoth[c_.*x_])^p_./(d_+e_.*x_^2),x_Symbol] := 1/(c*d)*Subst[Int[(a+b*x)^p,x],x,ArcCoth[c*x]] /; FreeQ[{a,b,c,d,e,p},x] && EqQ[c^2*d+e,0] *) +Int[1/((d_ + e_.*x_^2)*(a_. + b_.*ArcTanh[c_.*x_])), x_Symbol] := Log[RemoveContent[a + b*ArcTanh[c*x], x]]/(b*c*d) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[1/((d_ + e_.*x_^2)*(a_. + b_.*ArcCoth[c_.*x_])), x_Symbol] := Log[RemoveContent[a + b*ArcCoth[c*x], x]]/(b*c*d) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1)) /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1)) /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1] +Int[(a_. + b_.*ArcTanh[c_.*x_])/Sqrt[d_ + e_.*x_^2], x_Symbol] := -2*(a + b*ArcTanh[c*x])* ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) - I*b*PolyLog[2, -I*Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) + I*b*PolyLog[2, I*Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])/Sqrt[d_ + e_.*x_^2], x_Symbol] := -2*(a + b*ArcCoth[c*x])* ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) - I*b*PolyLog[2, -I*Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) + I*b*PolyLog[2, I*Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := 1/(c*Sqrt[d])*Subst[Int[(a + b*x)^p*Sech[x], x], x, ArcTanh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := -x*Sqrt[1 - 1/(c^2*x^2)]/Sqrt[d + e*x^2]* Subst[Int[(a + b*x)^p*Csch[x], x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcTanh[c*x])^p/Sqrt[1 - c^2*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcCoth[c*x])^p/Sqrt[1 - c^2*x^2], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcTanh[c*x])^p/(2*d*(d + e*x^2)) + (a + b*ArcTanh[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)) - b*c*p/2*Int[x*(a + b*ArcTanh[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcCoth[c*x])^p/(2*d*(d + e*x^2)) + (a + b*ArcCoth[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)) - b*c*p/2*Int[x*(a + b*ArcCoth[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])/(d_ + e_.*x_^2)^(3/2), x_Symbol] := -b/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcTanh[c*x])/(d*Sqrt[d + e*x^2]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])/(d_ + e_.*x_^2)^(3/2), x_Symbol] := -b/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcCoth[c*x])/(d*Sqrt[d + e*x^2]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^(q + 1)/(4*c*d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -3/2] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^(q + 1)/(4*c*d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -3/2] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_/(d_ + e_.*x_^2)^(3/2), x_Symbol] := -b*p*(a + b*ArcTanh[c*x])^(p - 1)/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcTanh[c*x])^p/(d*Sqrt[d + e*x^2]) + b^2*p*(p - 1)* Int[(a + b*ArcTanh[c*x])^(p - 2)/(d + e*x^2)^(3/2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 1] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_/(d_ + e_.*x_^2)^(3/2), x_Symbol] := -b*p*(a + b*ArcCoth[c*x])^(p - 1)/(c*d*Sqrt[d + e*x^2]) + x*(a + b*ArcCoth[c*x])^p/(d*Sqrt[d + e*x^2]) + b^2*p*(p - 1)* Int[(a + b*ArcCoth[c*x])^(p - 2)/(d + e*x^2)^(3/2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 1] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := -b*p*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^(p - 1)/(4*c* d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x] + b^2*p*(p - 1)/(4*(q + 1)^2)* Int[(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := -b*p*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^(p - 1)/(4*c* d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p/(2*d*(q + 1)) + (2*q + 3)/(2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x] + b^2*p*(p - 1)/(4*(q + 1)^2)* Int[(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p - 2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^(p + 1)/(b*c* d*(p + 1)) + 2*c*(q + 1)/(b*(p + 1))* Int[x*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && LtQ[p, -1] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^(p + 1)/(b*c* d*(p + 1)) + 2*c*(q + 1)/(b*(p + 1))* Int[x*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && LtQ[p, -1] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := d^q/c* Subst[Int[(a + b*x)^p/Cosh[x]^(2*(q + 1)), x], x, ArcTanh[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && ILtQ[2*(q + 1), 0] && (IntegerQ[q] || GtQ[d, 0]) +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := d^(q + 1/2)*Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[(1 - c^2*x^2)^q*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && ILtQ[2*(q + 1), 0] && Not[IntegerQ[q] || GtQ[d, 0]] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := -(-d)^q/c* Subst[Int[(a + b*x)^p/Sinh[x]^(2*(q + 1)), x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && ILtQ[2*(q + 1), 0] && IntegerQ[q] +Int[(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := -(-d)^(q + 1/2)*x*Sqrt[(c^2*x^2 - 1)/(c^2*x^2)]/Sqrt[d + e*x^2]* Subst[Int[(a + b*x)^p/Sinh[x]^(2*(q + 1)), x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && ILtQ[2*(q + 1), 0] && Not[IntegerQ[q]] +Int[ArcTanh[c_.*x_]/(d_. + e_.*x_^2), x_Symbol] := 1/2*Int[Log[1 + c*x]/(d + e*x^2), x] - 1/2*Int[Log[1 - c*x]/(d + e*x^2), x] /; FreeQ[{c, d, e}, x] +Int[ArcCoth[c_.*x_]/(d_. + e_.*x_^2), x_Symbol] := 1/2*Int[Log[1 + 1/(c*x)]/(d + e*x^2), x] - 1/2*Int[Log[1 - 1/(c*x)]/(d + e*x^2), x] /; FreeQ[{c, d, e}, x] +Int[(a_ + b_.*ArcTanh[c_.*x_])/(d_. + e_.*x_^2), x_Symbol] := a*Int[1/(d + e*x^2), x] + b*Int[ArcTanh[c*x]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] +Int[(a_ + b_.*ArcCoth[c_.*x_])/(d_. + e_.*x_^2), x_Symbol] := a*Int[1/(d + e*x^2), x] + b*Int[ArcCoth[c*x]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] +Int[(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^q, x]}, Dist[a + b*ArcTanh[c*x], u, x] - b*c*Int[u/(1 - c^2*x^2), x]] /; FreeQ[{a, b, c, d, e}, x] && (IntegerQ[q] || ILtQ[q + 1/2, 0]) +Int[(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^q, x]}, Dist[a + b*ArcCoth[c*x], u, x] - b*c*Int[u/(1 - c^2*x^2), x]] /; FreeQ[{a, b, c, d, e}, x] && (IntegerQ[q] || ILtQ[q + 1/2, 0]) +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^p, (d + e*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[q] && IGtQ[p, 0] +Int[(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCoth[c*x])^p, (d + e*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[q] && IGtQ[p, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := f^2/e*Int[(f*x)^(m - 2)*(a + b*ArcTanh[c*x])^p, x] - d*f^2/e* Int[(f*x)^(m - 2)*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := f^2/e*Int[(f*x)^(m - 2)*(a + b*ArcCoth[c*x])^p, x] - d*f^2/e* Int[(f*x)^(m - 2)*(a + b*ArcCoth[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x] - e/(d*f^2)* Int[(f*x)^(m + 2)*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/d*Int[(f*x)^m*(a + b*ArcCoth[c*x])^p, x] - e/(d*f^2)* Int[(f*x)^(m + 2)*(a + b*ArcCoth[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1] +Int[x_*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^(p + 1)/(b*e*(p + 1)) + 1/(c*d)*Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] +Int[x_*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^(p + 1)/(b*e*(p + 1)) + 1/(c*d)*Int[(a + b*ArcCoth[c*x])^p/(1 - c*x), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] +Int[x_*(a_. + b_.*ArcTanh[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := x*(a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1)) - 1/(b*c*d*(p + 1))*Int[(a + b*ArcTanh[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && Not[IGtQ[p, 0]] && NeQ[p, -1] +Int[x_*(a_. + b_.*ArcCoth[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := -x*(a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1)) - 1/(b*c*d*(p + 1))*Int[(a + b*ArcCoth[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && Not[IGtQ[p, 0]] && NeQ[p, -1] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(x_*(d_ + e_.*x_^2)), x_Symbol] := (a + b*ArcTanh[c*x])^(p + 1)/(b*d*(p + 1)) + 1/d*Int[(a + b*ArcTanh[c*x])^p/(x*(1 + c*x)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(x_*(d_ + e_.*x_^2)), x_Symbol] := (a + b*ArcCoth[c*x])^(p + 1)/(b*d*(p + 1)) + 1/d*Int[(a + b*ArcCoth[c*x])^p/(x*(1 + c*x)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := (f*x)^m*(a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1)) - f*m/(b*c*d*(p + 1))* Int[(f*x)^(m - 1)*(a + b*ArcTanh[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_/(d_ + e_.*x_^2), x_Symbol] := (f*x)^m*(a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1)) - f*m/(b*c*d*(p + 1))* Int[(f*x)^(m - 1)*(a + b*ArcCoth[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1] +Int[x_^m_.*(a_. + b_.*ArcTanh[c_.*x_])/(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTanh[c*x]), x^m/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m] && Not[EqQ[m, 1] && NeQ[a, 0]] +Int[x_^m_.*(a_. + b_.*ArcCoth[c_.*x_])/(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCoth[c*x]), x^m/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m] && Not[EqQ[m, 1] && NeQ[a, 0]] +Int[x_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p/(2*e*(q + 1)) + b*p/(2*c*(q + 1))* Int[(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && NeQ[q, -1] +Int[x_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p/(2*e*(q + 1)) + b*p/(2*c*(q + 1))* Int[(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && NeQ[q, -1] +Int[x_*(a_. + b_.*ArcTanh[c_.*x_])^p_/(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1)*(d + e*x^2)) + (1 + c^2*x^2)*(a + b*ArcTanh[c*x])^(p + 2)/(b^2* e*(p + 1)*(p + 2)*(d + e*x^2)) + 4/(b^2*(p + 1)*(p + 2))* Int[x*(a + b*ArcTanh[c*x])^(p + 2)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1] && NeQ[p, -2] +Int[x_*(a_. + b_.*ArcCoth[c_.*x_])^p_/(d_ + e_.*x_^2)^2, x_Symbol] := x*(a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1)*(d + e*x^2)) + (1 + c^2*x^2)*(a + b*ArcCoth[c*x])^(p + 2)/(b^2* e*(p + 1)*(p + 2)*(d + e*x^2)) + 4/(b^2*(p + 1)*(p + 2))* Int[x*(a + b*ArcCoth[c*x])^(p + 2)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1] && NeQ[p, -2] +Int[x_^2*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^(q + 1)/(4*c^3*d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])/(2*c^2*d*(q + 1)) + 1/(2*c^2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -5/2] +Int[x_^2*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := -b*(d + e*x^2)^(q + 1)/(4*c^3*d*(q + 1)^2) - x*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])/(2*c^2*d*(q + 1)) + 1/(2*c^2*d*(q + 1))* Int[(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -5/2] +Int[x_^2*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := -(a + b*ArcTanh[c*x])^(p + 1)/(2*b*c^3*d^2*(p + 1)) + x*(a + b*ArcTanh[c*x])^p/(2*c^2*d*(d + e*x^2)) - b*p/(2*c)*Int[x*(a + b*ArcTanh[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[x_^2*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := -(a + b*ArcCoth[c*x])^(p + 1)/(2*b*c^3*d^2*(p + 1)) + x*(a + b*ArcCoth[c*x])^p/(2*c^2*d*(d + e*x^2)) - b*p/(2*c)*Int[x*(a + b*ArcCoth[c*x])^(p - 1)/(d + e*x^2)^2, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := -b*(f*x)^m*(d + e*x^2)^(q + 1)/(c*d*m^2) + f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])/(c^2*d* m) - f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := -b*(f*x)^m*(d + e*x^2)^(q + 1)/(c*d*m^2) + f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])/(c^2*d* m) - f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := -b*p*(f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^(p - 1)/(c*d*m^2) + f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^ p/(c^2*d*m) + b^2*p*(p - 1)/m^2* Int[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 2), x] - f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] && GtQ[p, 1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := -b*p*(f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^(p - 1)/(c*d*m^2) + f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^ p/(c^2*d*m) + b^2*p*(p - 1)/m^2* Int[(f*x)^m*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p - 2), x] - f^2*(m - 1)/(c^2*d*m)* Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] && GtQ[p, 1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_, x_Symbol] := (f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^(p + 1)/(b*c* d*(p + 1)) - f*m/(b*c*(p + 1))* Int[(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_, x_Symbol] := (f*x)^ m*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^(p + 1)/(b*c* d*(p + 1)) - f*m/(b*c*(p + 1))* Int[(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^ p/(d*(m + 1)) - b*c*p/(m + 1)* Int[(f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := (f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^ p/(d*f*(m + 1)) - b*c*p/(f*(m + 1))* Int[(f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1] +Int[(f_.*x_)^m_*Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := (f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcTanh[c*x])/(f*(m + 2)) - b*c*d/(f*(m + 2))*Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x] + d/(m + 2)*Int[(f*x)^m*(a + b*ArcTanh[c*x])/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && NeQ[m, -2] +Int[(f_.*x_)^m_*Sqrt[d_ + e_.*x_^2]*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := (f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcCoth[c*x])/(f*(m + 2)) - b*c*d/(f*(m + 2))*Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x] + d/(m + 2)*Int[(f*x)^m*(a + b*ArcCoth[c*x])/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && NeQ[m, -2] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[q, 1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := Int[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[q, 1] +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := d*Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x] - c^2*d/f^2* Int[(f*x)^(m + 2)*(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] && IGtQ[p, 0] && (RationalQ[m] || EqQ[p, 1] && IntegerQ[q]) +Int[(f_.*x_)^m_*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := d*Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^p, x] - c^2*d/f^2* Int[(f*x)^(m + 2)*(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0] && IGtQ[p, 0] && (RationalQ[m] || EqQ[p, 1] && IntegerQ[q]) +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := -f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcTanh[c*x])^p/(c^2*d*m) + b*f*p/(c*m)* Int[(f*x)^(m - 1)*(a + b*ArcTanh[c*x])^(p - 1)/Sqrt[d + e*x^2], x] + f^2*(m - 1)/(c^2*m)* Int[(f*x)^(m - 2)*(a + b*ArcTanh[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && GtQ[m, 1] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := -f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcCoth[c*x])^p/(c^2*d*m) + b*f*p/(c*m)* Int[(f*x)^(m - 1)*(a + b*ArcCoth[c*x])^(p - 1)/Sqrt[d + e*x^2], x] + f^2*(m - 1)/(c^2*m)* Int[(f*x)^(m - 2)*(a + b*ArcCoth[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && GtQ[m, 1] +Int[(a_. + b_.*ArcTanh[c_.*x_])/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -2/Sqrt[d]*(a + b*ArcTanh[c*x])* ArcTanh[Sqrt[1 - c*x]/Sqrt[1 + c*x]] + b/Sqrt[d]*PolyLog[2, -Sqrt[1 - c*x]/Sqrt[1 + c*x]] - b/Sqrt[d]*PolyLog[2, Sqrt[1 - c*x]/Sqrt[1 + c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -2/Sqrt[d]*(a + b*ArcCoth[c*x])* ArcTanh[Sqrt[1 - c*x]/Sqrt[1 + c*x]] + b/Sqrt[d]*PolyLog[2, -Sqrt[1 - c*x]/Sqrt[1 + c*x]] - b/Sqrt[d]*PolyLog[2, Sqrt[1 - c*x]/Sqrt[1 + c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := 1/Sqrt[d]*Subst[Int[(a + b*x)^p*Csch[x], x], x, ArcTanh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_/(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -c*x*Sqrt[1 - 1/(c^2*x^2)]/Sqrt[d + e*x^2]* Subst[Int[(a + b*x)^p*Sech[x], x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && GtQ[d, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcTanh[c*x])^p/(x*Sqrt[1 - c^2*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(x_*Sqrt[d_ + e_.*x_^2]), x_Symbol] := Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[(a + b*ArcCoth[c*x])^p/(x*Sqrt[1 - c^2*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && Not[GtQ[d, 0]] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_./(x_^2*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -Sqrt[d + e*x^2]*(a + b*ArcTanh[c*x])^p/(d*x) + b*c*p*Int[(a + b*ArcTanh[c*x])^(p - 1)/(x*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_./(x_^2*Sqrt[d_ + e_.*x_^2]), x_Symbol] := -Sqrt[d + e*x^2]*(a + b*ArcCoth[c*x])^p/(d*x) + b*c*p*Int[(a + b*ArcCoth[c*x])^(p - 1)/(x*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] +Int[(f_.*x_)^m_*(a_. + b_.*ArcTanh[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := (f*x)^(m + 1)* Sqrt[d + e*x^2]*(a + b*ArcTanh[c*x])^p/(d*f*(m + 1)) - b*c*p/(f*(m + 1))* Int[(f*x)^(m + 1)*(a + b*ArcTanh[c*x])^(p - 1)/Sqrt[d + e*x^2], x] + c^2*(m + 2)/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(a + b*ArcTanh[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && LtQ[m, -1] && NeQ[m, -2] +Int[(f_.*x_)^m_*(a_. + b_.*ArcCoth[c_.*x_])^p_./Sqrt[d_ + e_.*x_^2], x_Symbol] := (f*x)^(m + 1)* Sqrt[d + e*x^2]*(a + b*ArcCoth[c*x])^p/(d*f*(m + 1)) - b*c*p/(f*(m + 1))* Int[(f*x)^(m + 1)*(a + b*ArcCoth[c*x])^(p - 1)/Sqrt[d + e*x^2], x] + c^2*(m + 2)/(f^2*(m + 1))* Int[(f*x)^(m + 2)*(a + b*ArcCoth[c*x])^p/Sqrt[d + e*x^2], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && LtQ[m, -1] && NeQ[m, -2] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := 1/e*Int[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x] - d/e*Int[x^(m - 2)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ[m, 1] && NeQ[p, -1] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := 1/e*Int[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x] - d/e*Int[x^(m - 2)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ[m, 1] && NeQ[p, -1] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := 1/d*Int[x^m*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x] - e/d*Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILtQ[m, 0] && NeQ[p, -1] +Int[x_^m_*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := 1/d*Int[x^m*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x] - e/d*Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^p, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILtQ[m, 0] && NeQ[p, -1] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := x^m*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^(p + 1)/(b*c* d*(p + 1)) - m/(b*c*(p + 1))* Int[x^(m - 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x] + c*(m + 2*q + 2)/(b*(p + 1))* Int[x^(m + 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && LtQ[q, -1] && LtQ[p, -1] && NeQ[m + 2*q + 2, 0] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := x^m*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^(p + 1)/(b*c* d*(p + 1)) - m/(b*c*(p + 1))* Int[x^(m - 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x] + c*(m + 2*q + 2)/(b*(p + 1))* Int[x^(m + 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && LtQ[q, -1] && LtQ[p, -1] && NeQ[m + 2*q + 2, 0] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := d^q/c^(m + 1)* Subst[Int[(a + b*x)^p*Sinh[x]^m/Cosh[x]^(m + 2*(q + 1)), x], x, ArcTanh[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0]) +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := d^(q + 1/2)*Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]* Int[x^m*(1 - c^2*x^2)^q*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && Not[IntegerQ[q] || GtQ[d, 0]] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := -(-d)^q/c^(m + 1)* Subst[Int[(a + b*x)^p*Cosh[x]^m/Sinh[x]^(m + 2*(q + 1)), x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && IntegerQ[q] +Int[x_^m_.*(d_ + e_.*x_^2)^q_*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := -(-d)^(q + 1/2)*x* Sqrt[(c^2*x^2 - 1)/(c^2*x^2)]/(c^m*Sqrt[d + e*x^2])* Subst[Int[(a + b*x)^p*Cosh[x]^m/Sinh[x]^(m + 2*(q + 1)), x], x, ArcCoth[c*x]] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && Not[IntegerQ[q]] +Int[x_*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])/(2*e*(q + 1)) - b*c/(2*e*(q + 1))*Int[(d + e*x^2)^(q + 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[x_*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := (d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])/(2*e*(q + 1)) - b*c/(2*e*(q + 1))*Int[(d + e*x^2)^(q + 1)/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1] +Int[(f_.*x_)^m_.*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Dist[a + b*ArcTanh[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ( IGtQ[q, 0] && Not[ILtQ[(m - 1)/2, 0] && GtQ[m + 2*q + 3, 0]] || IGtQ[(m + 1)/2, 0] && Not[ILtQ[q, 0] && GtQ[m + 2*q + 3, 0]] || ILtQ[(m + 2*q + 1)/2, 0] && Not[ILtQ[(m - 1)/2, 0]] ) +Int[(f_.*x_)^m_.*(d_. + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Dist[a + b*ArcCoth[c*x], u, x] - b*c*Int[SimplifyIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ( IGtQ[q, 0] && Not[ILtQ[(m - 1)/2, 0] && GtQ[m + 2*q + 3, 0]] || IGtQ[(m + 1)/2, 0] && Not[ILtQ[q, 0] && GtQ[m + 2*q + 3, 0]] || ILtQ[(m + 2*q + 1)/2, 0] && Not[ILtQ[(m - 1)/2, 0]] ) +Int[x_*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcTanh[c*x])^p/(1 - Rt[-e/d, 2]*x)^2, x] - 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcTanh[c*x])^p/(1 + Rt[-e/d, 2]*x)^2, x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] +Int[x_*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2)^2, x_Symbol] := 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcCoth[c*x])^p/(1 - Rt[-e/d, 2]*x)^2, x] - 1/(4*d^2*Rt[-e/d, 2])* Int[(a + b*ArcCoth[c*x])^p/(1 + Rt[-e/d, 2]*x)^2, x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && (GtQ[q, 0] || IntegerQ[m]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := With[{u = ExpandIntegrand[(a + b*ArcCoth[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && (GtQ[q, 0] || IntegerQ[m]) +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_ + b_.*ArcTanh[c_.*x_]), x_Symbol] := a*Int[(f*x)^m*(d + e*x^2)^q, x] + b*Int[(f*x)^m*(d + e*x^2)^q*ArcTanh[c*x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] +Int[(f_.*x_)^m_.*(d_ + e_.*x_^2)^q_.*(a_ + b_.*ArcCoth[c_.*x_]), x_Symbol] := a*Int[(f*x)^m*(d + e*x^2)^q, x] + b*Int[(f*x)^m*(d + e*x^2)^q*ArcCoth[c*x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^p/(d + e*x^2), (f + g*x)^ m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] +Int[(f_ + g_.*x_)^m_.*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := Int[ExpandIntegrand[(a + b*ArcCoth[c*x])^p/(d + e*x^2), (f + g*x)^ m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] +Int[ArcTanh[u_]*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[Log[1 + u]*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] - 1/2*Int[Log[1 - u]*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 + c*x))^2, 0] +Int[ArcCoth[u_]*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[ Log[SimplifyIntegrand[1 + 1/u, x]]*(a + b*ArcCoth[c*x])^ p/(d + e*x^2), x] - 1/2* Int[Log[SimplifyIntegrand[1 - 1/u, x]]*(a + b*ArcCoth[c*x])^ p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 + c*x))^2, 0] +Int[ArcTanh[u_]*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[Log[1 + u]*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] - 1/2*Int[Log[1 - u]*(a + b*ArcTanh[c*x])^p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x))^2, 0] +Int[ArcCoth[u_]*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := 1/2*Int[ Log[SimplifyIntegrand[1 + 1/u, x]]*(a + b*ArcCoth[c*x])^ p/(d + e*x^2), x] - 1/2* Int[Log[SimplifyIntegrand[1 - 1/u, x]]*(a + b*ArcCoth[c*x])^ p/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x))^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_.*Log[f_ + g_.*x_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^(p + 1)*Log[f + g*x]/(b*c*d*(p + 1)) - g/(b*c*d*(p + 1))* Int[(a + b*ArcTanh[c*x])^(p + 1)/(f + g*x), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[c^2*f^2 - g^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_.*Log[f_ + g_.*x_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^(p + 1)*Log[f + g*x]/(b*c*d*(p + 1)) - g/(b*c*d*(p + 1))* Int[(a + b*ArcCoth[c*x])^(p + 1)/(f + g*x), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[c^2*f^2 - g^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) - b*p/2* Int[(a + b*ArcTanh[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2/(1 + c*x))^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) - b*p/2* Int[(a + b*ArcCoth[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2/(1 + c*x))^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := -(a + b*ArcTanh[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) + b*p/2* Int[(a + b*ArcTanh[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2/(1 - c*x))^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_.*Log[u_]/(d_ + e_.*x_^2), x_Symbol] := -(a + b*ArcCoth[c*x])^p*PolyLog[2, 1 - u]/(2*c*d) + b*p/2* Int[(a + b*ArcCoth[c*x])^(p - 1)*PolyLog[2, 1 - u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2/(1 - c*x))^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := -(a + b*ArcTanh[c*x])^p*PolyLog[k + 1, u]/(2*c*d) + b*p/2* Int[(a + b*ArcTanh[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 + c*x))^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := -(a + b*ArcCoth[c*x])^p*PolyLog[k + 1, u]/(2*c*d) + b*p/2* Int[(a + b*ArcCoth[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 + c*x))^2, 0] +Int[(a_. + b_.*ArcTanh[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^p*PolyLog[k + 1, u]/(2*c*d) - b*p/2* Int[(a + b*ArcTanh[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x))^2, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^p_.*PolyLog[k_, u_]/(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^p*PolyLog[k + 1, u]/(2*c*d) - b*p/2* Int[(a + b*ArcCoth[c*x])^(p - 1)*PolyLog[k + 1, u]/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x))^2, 0] +Int[1/((d_ + e_.*x_^2)*(a_. + b_.*ArcCoth[c_.*x_])*(a_. + b_.*ArcTanh[c_.*x_])), x_Symbol] := (-Log[a + b*ArcCoth[c*x]] + Log[a + b*ArcTanh[c*x]])/(b^2*c* d*(ArcCoth[c*x] - ArcTanh[c*x])) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] +Int[(a_. + b_.*ArcCoth[c_.*x_])^ m_.*(a_. + b_.*ArcTanh[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcCoth[c*x])^(m + 1)*(a + b*ArcTanh[c*x])^ p/(b*c*d*(m + 1)) - p/(m + 1)* Int[(a + b*ArcCoth[c*x])^(m + 1)*(a + b*ArcTanh[c*x])^(p - 1)/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && IGeQ[m, p] +Int[(a_. + b_.*ArcTanh[c_.*x_])^ m_.*(a_. + b_.*ArcCoth[c_.*x_])^p_./(d_ + e_.*x_^2), x_Symbol] := (a + b*ArcTanh[c*x])^(m + 1)*(a + b*ArcCoth[c*x])^ p/(b*c*d*(m + 1)) - p/(m + 1)* Int[(a + b*ArcTanh[c*x])^(m + 1)*(a + b*ArcCoth[c*x])^(p - 1)/(d + e*x^2), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[m, p] +Int[ArcTanh[a_.*x_]/(c_ + d_.*x_^n_.), x_Symbol] := 1/2*Int[Log[1 + a*x]/(c + d*x^n), x] - 1/2*Int[Log[1 - a*x]/(c + d*x^n), x] /; FreeQ[{a, c, d}, x] && IntegerQ[n] && Not[EqQ[n, 2] && EqQ[a^2*c + d, 0]] +Int[ArcCoth[a_.*x_]/(c_ + d_.*x_^n_.), x_Symbol] := 1/2*Int[Log[1 + 1/(a*x)]/(c + d*x^n), x] - 1/2*Int[Log[1 - 1/(a*x)]/(c + d*x^n), x] /; FreeQ[{a, c, d}, x] && IntegerQ[n] && Not[EqQ[n, 2] && EqQ[a^2*c + d, 0]] +Int[Log[d_.*x_^m_.]*ArcTanh[c_.*x_^n_.]/x_, x_Symbol] := 1/2*Int[Log[d*x^m]*Log[1 + c*x^n]/x, x] - 1/2*Int[Log[d*x^m]*Log[1 - c*x^n]/x, x] /; FreeQ[{c, d, m, n}, x] +Int[Log[d_.*x_^m_.]*ArcCoth[c_.*x_^n_.]/x_, x_Symbol] := 1/2*Int[Log[d*x^m]*Log[1 + 1/(c*x^n)]/x, x] - 1/2*Int[Log[d*x^m]*Log[1 - 1/(c*x^n)]/x, x] /; FreeQ[{c, d, m, n}, x] +Int[Log[d_.*x_^m_.]*(a_ + b_.*ArcTanh[c_.*x_^n_.])/x_, x_Symbol] := a*Int[Log[d*x^m]/x, x] + b*Int[(Log[d*x^m]*ArcTanh[c*x^n])/x, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[Log[d_.*x_^m_.]*(a_ + b_.*ArcCoth[c_.*x_^n_.])/x_, x_Symbol] := a*Int[Log[d*x^m]/x, x] + b*Int[(Log[d*x^m]*ArcCoth[c*x^n])/x, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := x*(d + e*Log[f + g*x^2])*(a + b*ArcTanh[c*x]) - 2*e*g*Int[x^2*(a + b*ArcTanh[c*x])/(f + g*x^2), x] - b*c*Int[x*(d + e*Log[f + g*x^2])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := x*(d + e*Log[f + g*x^2])*(a + b*ArcCoth[c*x]) - 2*e*g*Int[x^2*(a + b*ArcCoth[c*x])/(f + g*x^2), x] - b*c*Int[x*(d + e*Log[f + g*x^2])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[Log[f_. + g_.*x_^2]*ArcTanh[c_.*x_]/x_, x_Symbol] := (Log[f + g*x^2] - Log[1 - c*x] - Log[1 + c*x])* Int[ArcTanh[c*x]/x, x] - 1/2*Int[Log[1 - c*x]^2/x, x] + 1/2*Int[Log[1 + c*x]^2/x, x] /; FreeQ[{c, f, g}, x] && EqQ[c^2*f + g, 0] +Int[Log[f_. + g_.*x_^2]*ArcCoth[c_.*x_]/x_, x_Symbol] := (Log[f + g*x^2] - Log[-c^2*x^2] - Log[1 - 1/(c*x)] - Log[1 + 1/(c*x)])*Int[ArcCoth[c*x]/x, x] + Int[Log[-c^2*x^2]*ArcCoth[c*x]/x, x] - 1/2*Int[Log[1 - 1/(c*x)]^2/x, x] + 1/2*Int[Log[1 + 1/(c*x)]^2/x, x] /; FreeQ[{c, f, g}, x] && EqQ[c^2*f + g, 0] +Int[Log[f_. + g_.*x_^2]*(a_ + b_.*ArcTanh[c_.*x_])/x_, x_Symbol] := a*Int[Log[f + g*x^2]/x, x] + b*Int[Log[f + g*x^2]*ArcTanh[c*x]/x, x] /; FreeQ[{a, b, c, f, g}, x] +Int[Log[f_. + g_.*x_^2]*(a_ + b_.*ArcCoth[c_.*x_])/x_, x_Symbol] := a*Int[Log[f + g*x^2]/x, x] + b*Int[Log[f + g*x^2]*ArcCoth[c*x]/x, x] /; FreeQ[{a, b, c, f, g}, x] +Int[(d_ + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_])/x_, x_Symbol] := d*Int[(a + b*ArcTanh[c*x])/x, x] + e*Int[Log[f + g*x^2]*(a + b*ArcTanh[c*x])/x, x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[(d_ + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_])/x_, x_Symbol] := d*Int[(a + b*ArcCoth[c*x])/x, x] + e*Int[Log[f + g*x^2]*(a + b*ArcCoth[c*x])/x, x] /; FreeQ[{a, b, c, d, e, f, g}, x] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := x^(m + 1)*(d + e*Log[f + g*x^2])*(a + b*ArcTanh[c*x])/(m + 1) - 2*e*g/(m + 1)* Int[x^(m + 2)*(a + b*ArcTanh[c*x])/(f + g*x^2), x] - b*c/(m + 1)* Int[x^(m + 1)*(d + e*Log[f + g*x^2])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := x^(m + 1)*(d + e*Log[f + g*x^2])*(a + b*ArcCoth[c*x])/(m + 1) - 2*e*g/(m + 1)* Int[x^(m + 2)*(a + b*ArcCoth[c*x])/(f + g*x^2), x] - b*c/(m + 1)* Int[x^(m + 1)*(d + e*Log[f + g*x^2])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Dist[a + b*ArcTanh[c*x], u, x] - b*c*Int[ExpandIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Dist[a + b*ArcCoth[c*x], u, x] - b*c*Int[ExpandIntegrand[u/(1 - c^2*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(a + b*ArcTanh[c*x]), x]}, Dist[d + e*Log[f + g*x^2], u, x] - 2*e*g*Int[ExpandIntegrand[x*u/(f + g*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[m] && NeQ[m, -1] +Int[x_^m_.*(d_. + e_.*Log[f_. + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_]), x_Symbol] := With[{u = IntHide[x^m*(a + b*ArcCoth[c*x]), x]}, Dist[d + e*Log[f + g*x^2], u, x] - 2*e*g*Int[ExpandIntegrand[x*u/(f + g*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[m] && NeQ[m, -1] +Int[x_*(d_. + e_.*Log[f_ + g_.*x_^2])*(a_. + b_.*ArcTanh[c_.*x_])^2, x_Symbol] := (f + g*x^2)*(d + e*Log[f + g*x^2])*(a + b*ArcTanh[c*x])^2/(2*g) - e*x^2*(a + b*ArcTanh[c*x])^2/2 + b/c*Int[(d + e*Log[f + g*x^2])*(a + b*ArcTanh[c*x]), x] + b*c*e*Int[x^2*(a + b*ArcTanh[c*x])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*f + g, 0] +Int[x_*(d_. + e_.*Log[f_ + g_.*x_^2])*(a_. + b_.*ArcCoth[c_.*x_])^2, x_Symbol] := (f + g*x^2)*(d + e*Log[f + g*x^2])*(a + b*ArcCoth[c*x])^2/(2*g) - e*x^2*(a + b*ArcCoth[c*x])^2/2 + b/c*Int[(d + e*Log[f + g*x^2])*(a + b*ArcCoth[c*x]), x] + b*c*e*Int[x^2*(a + b*ArcCoth[c*x])/(1 - c^2*x^2), x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*f + g, 0] +Int[u_.*(a_. + b_.*ArcTanh[c_.*x_])^p_., x_Symbol] := Unintegrable[u*(a + b*ArcTanh[c*x])^p, x] /; FreeQ[{a, b, c, p}, x] && (EqQ[u, 1] || MatchQ[u, (d_. + e_.*x)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x)^q_. /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[u, (d_. + e_.*x^2)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x^2)^q_. /; FreeQ[{d, e, f, m, q}, x]]) +Int[u_.*(a_. + b_.*ArcCoth[c_.*x_])^p_., x_Symbol] := Unintegrable[u*(a + b*ArcCoth[c*x])^p, x] /; FreeQ[{a, b, c, p}, x] && (EqQ[u, 1] || MatchQ[u, (d_. + e_.*x)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x)^q_. /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[u, (d_. + e_.*x^2)^q_. /; FreeQ[{d, e, q}, x]] || MatchQ[ u, (f_.*x)^m_.*(d_. + e_.*x^2)^q_. /; FreeQ[{d, e, f, m, q}, x]]) diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.5 u (a+b arctanh(c+d x))^p.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.5 u (a+b arctanh(c+d x))^p.m new file mode 100755 index 0000000..67fbe56 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.5 u (a+b arctanh(c+d x))^p.m @@ -0,0 +1,23 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.5 u (a+b arctanh(c+d x))^p *) +Int[(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcTanh[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcCoth[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(a + b*ArcTanh[c + d*x])^p, x] /; FreeQ[{a, b, c, d, p}, x] && Not[IGtQ[p, 0]] +Int[(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(a + b*ArcCoth[c + d*x])^p, x] /; FreeQ[{a, b, c, d, p}, x] && Not[IGtQ[p, 0]] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(f*x/d)^m*(a + b*ArcTanh[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(f*x/d)^m*(a + b*ArcCoth[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_*(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_., x_Symbol] := (e + f*x)^(m + 1)*(a + b*ArcTanh[c + d*x])^p/(f*(m + 1)) - b*d*p/(f*(m + 1))* Int[(e + f*x)^(m + 1)*(a + b*ArcTanh[c + d*x])^(p - 1)/(1 - (c + d*x)^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[m, -1] +Int[(e_. + f_.*x_)^m_*(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_., x_Symbol] := (e + f*x)^(m + 1)*(a + b*ArcCoth[c + d*x])^p/(f*(m + 1)) - b*d*p/(f*(m + 1))* Int[(e + f*x)^(m + 1)*(a + b*ArcCoth[c + d*x])^(p - 1)/(1 - (c + d*x)^2), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[m, -1] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcTanh[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcCoth[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(e + f*x)^m*(a + b*ArcTanh[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && Not[IGtQ[p, 0]] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(e + f*x)^m*(a + b*ArcCoth[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && Not[IGtQ[p, 0]] +Int[ArcTanh[c_ + d_.*x_]/(e_ + f_.*x_^n_.), x_Symbol] := 1/2*Int[Log[1 + c + d*x]/(e + f*x^n), x] - 1/2*Int[Log[1 - c - d*x]/(e + f*x^n), x] /; FreeQ[{c, d, e, f}, x] && RationalQ[n] +Int[ArcCoth[c_ + d_.*x_]/(e_ + f_.*x_^n_.), x_Symbol] := 1/2*Int[Log[(1 + c + d*x)/(c + d*x)]/(e + f*x^n), x] - 1/2*Int[Log[(-1 + c + d*x)/(c + d*x)]/(e + f*x^n), x] /; FreeQ[{c, d, e, f}, x] && RationalQ[n] +Int[ArcTanh[c_ + d_.*x_]/(e_ + f_.*x_^n_), x_Symbol] := Unintegrable[ArcTanh[c + d*x]/(e + f*x^n), x] /; FreeQ[{c, d, e, f, n}, x] && Not[RationalQ[n]] +Int[ArcCoth[c_ + d_.*x_]/(e_ + f_.*x_^n_), x_Symbol] := Unintegrable[ArcCoth[c + d*x]/(e + f*x^n), x] /; FreeQ[{c, d, e, f, n}, x] && Not[RationalQ[n]] +Int[(A_. + B_.*x_ + C_.*x_^2)^q_.*(a_. + b_.*ArcTanh[c_ + d_.*x_])^ p_., x_Symbol] := 1/d*Subst[Int[(-C/d^2 + C/d^2*x^2)^q*(a + b*ArcTanh[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, A, B, C, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(A_. + B_.*x_ + C_.*x_^2)^q_.*(a_. + b_.*ArcCoth[c_ + d_.*x_])^ p_., x_Symbol] := 1/d*Subst[Int[(C/d^2 + C/d^2*x^2)^q*(a + b*ArcCoth[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, A, B, C, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(e_. + f_.*x_)^m_.*(A_. + B_.*x_ + C_.*x_^2)^ q_.*(a_. + b_.*ArcTanh[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[ Int[((d*e - c*f)/d + f*x/d)^m*(-C/d^2 + C/d^2*x^2)^ q*(a + b*ArcTanh[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] +Int[(e_. + f_.*x_)^m_.*(A_. + B_.*x_ + C_.*x_^2)^ q_.*(a_. + b_.*ArcCoth[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[ Int[((d*e - c*f)/d + f*x/d)^m*(-C/d^2 + C/d^2*x^2)^ q*(a + b*ArcCoth[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.6 Exponentials of inverse hyperbolic tangent.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.6 Exponentials of inverse hyperbolic tangent.m new file mode 100755 index 0000000..c1736b3 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.6 Exponentials of inverse hyperbolic tangent.m @@ -0,0 +1,90 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.6 Exponentials of inverse hyperbolic tangent *) +Int[E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := Int[((1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/2)* Sqrt[1 - a^2*x^2])), x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2] +Int[x_^m_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := Int[x^ m*((1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/2)* Sqrt[1 - a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(n - 1)/2] +Int[E^(n_*ArcTanh[a_.*x_]), x_Symbol] := Int[(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, n}, x] && Not[IntegerQ[(n - 1)/2]] +Int[x_^m_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := Int[x^m*(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, m, n}, x] && Not[IntegerQ[(n - 1)/2]] +Int[(c_ + d_.*x_)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^n*Int[(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p] +Int[(e_. + f_.*x_)^m_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^n*Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p] +Int[u_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[u*(1 + d*x/c)^p*(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ[p] || GtQ[c, 0]) +Int[u_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := Int[u*(c + d*x)^p*(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[u_.*(c_ + d_./x_)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := d^p*Int[u*(1 + c*x/d)^p*E^(n*ArcTanh[a*x])/x^p, x] /; FreeQ[{a, c, d, n}, x] && EqQ[c^2 - a^2*d^2, 0] && IntegerQ[p] +Int[u_.*(c_ + d_./x_)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := (-1)^(n/2)*c^p* Int[u*(1 + d/(c*x))^p*(1 + 1/(a*x))^(n/2)/(1 - 1/(a*x))^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[p]] && IntegerQ[n/2] && GtQ[c, 0] +Int[u_.*(c_ + d_./x_)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := Int[u*(c + d/x)^p*(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[p]] && IntegerQ[n/2] && Not[GtQ[c, 0]] +Int[u_.*(c_ + d_./x_)^p_*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := x^p*(c + d/x)^p/(1 + c*x/d)^p* Int[u*(1 + c*x/d)^p*E^(n*ArcTanh[a*x])/x^p, x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[p]] +Int[E^(n_*ArcTanh[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := (n - a*x)*E^(n*ArcTanh[a*x])/(a*c*(n^2 - 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n]] +Int[(c_ + d_.*x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := (n + 2*a*(p + 1)*x)*(c + d*x^2)^(p + 1)* E^(n*ArcTanh[a*x])/(a*c*(n^2 - 4*(p + 1)^2)) - 2*(p + 1)*(2*p + 3)/(c*(n^2 - 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && LtQ[p, -1] && Not[IntegerQ[n]] && NeQ[n^2 - 4*(p + 1)^2, 0] && IntegerQ[2*p] +Int[E^(n_.*ArcTanh[a_.*x_])/(c_ + d_.*x_^2), x_Symbol] := E^(n*ArcTanh[a*x])/(a*c*n) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] +Int[(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[(1 - a^2*x^2)^(p - n/2)*(1 + a*x)^n, x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && IntegerQ[p] && IGtQ[(n + 1)/2, 0] && Not[IntegerQ[p - n/2]] +Int[(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[(1 - a^2*x^2)^(p + n/2)/(1 - a*x)^n, x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && IntegerQ[p] && ILtQ[(n - 1)/2, 0] && Not[IntegerQ[p - n/2]] +Int[(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0]) +Int[(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^(n/2)*Int[(c + d*x^2)^(p - n/2)*(1 + a*x)^n, x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && IGtQ[n/2, 0] +Int[(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := 1/c^(n/2)*Int[(c + d*x^2)^(p + n/2)/(1 - a*x)^n, x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && ILtQ[n/2, 0] +Int[(c_ + d_.*x_^2)^p_*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPart[p]* Int[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[x_*E^(n_*ArcTanh[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := (1 - a*n*x)*E^(n*ArcTanh[a*x])/(d*(n^2 - 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n]] +Int[x_*(c_ + d_.*x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := (c + d*x^2)^(p + 1)*E^(n*ArcTanh[a*x])/(2*d*(p + 1)) - a*c*n/(2*d*(p + 1))*Int[(c + d*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && LtQ[p, -1] && Not[IntegerQ[n]] && IntegerQ[2*p] +(* Int[x_*(c_+d_.*x_^2)^p_*E^(n_*ArcTanh[a_.*x_]),x_Symbol] := -(2*(p+1)+a*n*x)*(c+d*x^2)^(p+1)*E^(n*ArcTanh[a*x])/(d*(n^2-4*(p+1)^ 2)) - n*(2*p+3)/(a*c*(n^2-4*(p+1)^2))*Int[(c+d*x^2)^(p+1)*E^(n*ArcTanh[a* x]),x] /; FreeQ[{a,c,d,n},x] && EqQ[a^2*c+d,0] && LeQ[p,-1] && NeQ[n^2-4*(p+1)^2,0] && Not[IntegerQ[n]] *) +Int[x_^2*(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := (1 - a*n*x)*(c + d*x^2)^(p + 1)* E^(n*ArcTanh[a*x])/(a*d*n*(n^2 - 1)) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && EqQ[n^2 + 2*(p + 1), 0] && Not[IntegerQ[n]] +Int[x_^2*(c_ + d_.*x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := -(n + 2*(p + 1)*a*x)*(c + d*x^2)^(p + 1)* E^(n*ArcTanh[a*x])/(a*d*(n^2 - 4*(p + 1)^2)) + (n^2 + 2*(p + 1))/(d*(n^2 - 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && LtQ[p, -1] && Not[IntegerQ[n]] && NeQ[n^2 - 4*(p + 1)^2, 0] && IntegerQ[2*p] +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[x^m*(1 - a^2*x^2)^(p - n/2)*(1 + a*x)^n, x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0]) && IGtQ[(n + 1)/2, 0] && Not[IntegerQ[p - n/2]] +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[x^m*(1 - a^2*x^2)^(p + n/2)/(1 - a*x)^n, x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0]) && ILtQ[(n - 1)/2, 0] && Not[IntegerQ[p - n/2]] +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[x^m*(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0]) +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^(n/2)*Int[x^m*(c + d*x^2)^(p - n/2)*(1 + a*x)^n, x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && IGtQ[n/2, 0] +Int[x_^m_.*(c_ + d_.*x_^2)^p_.*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := 1/c^(n/2)*Int[x^m*(c + d*x^2)^(p + n/2)/(1 - a*x)^n, x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && ILtQ[n/2, 0] +Int[x_^m_.*(c_ + d_.*x_^2)^p_*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPart[p]* Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && Not[IntegerQ[n/2]] +Int[u_*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[u*(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0]) +Int[u_*(c_ + d_.*x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^ FracPart[p]/((1 - a*x)^FracPart[p]*(1 + a*x)^FracPart[p])* Int[u*(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && IntegerQ[n/2] +Int[u_*(c_ + d_.*x_^2)^p_*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPart[p]* Int[u*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[p] || GtQ[c, 0]] && Not[IntegerQ[n/2]] +Int[u_.*(c_ + d_./x_^2)^p_.*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := d^p*Int[u/x^(2*p)*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[c + a^2*d, 0] && IntegerQ[p] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := c^p*Int[u*(1 - 1/(a*x))^p*(1 + 1/(a*x))^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[p]] && IntegerQ[n/2] && GtQ[c, 0] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_*ArcTanh[a_.*x_]), x_Symbol] := x^(2*p)*(c + d/x^2)^p/((1 - a*x)^p*(1 + a*x)^p)* Int[u/x^(2*p)*(1 - a*x)^p*(1 + a*x)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[p]] && IntegerQ[n/2] && Not[GtQ[c, 0]] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_.*ArcTanh[a_.*x_]), x_Symbol] := x^(2*p)*(c + d/x^2)^p/(1 + c*x^2/d)^p* Int[u/x^(2*p)*(1 + c*x^2/d)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[p]] && Not[IntegerQ[n/2]] +Int[E^(n_.*ArcTanh[c_.*(a_ + b_.*x_)]), x_Symbol] := Int[(1 + a*c + b*c*x)^(n/2)/(1 - a*c - b*c*x)^(n/2), x] /; FreeQ[{a, b, c, n}, x] +Int[x_^m_*E^(n_*ArcTanh[c_.*(a_ + b_.*x_)]), x_Symbol] := 4/(n*b^(m + 1)*c^(m + 1))* Subst[ Int[x^(2/n)*(-1 - a*c + (1 - a*c)*x^(2/n))^ m/(1 + x^(2/n))^(m + 2), x], x, (1 + c*(a + b*x))^(n/2)/(1 - c*(a + b*x))^(n/2)] /; FreeQ[{a, b, c}, x] && ILtQ[m, 0] && LtQ[-1, n, 1] +Int[(d_. + e_.*x_)^m_.*E^(n_.*ArcTanh[c_.*(a_ + b_.*x_)]), x_Symbol] := Int[(d + e*x)^m*(1 + a*c + b*c*x)^(n/2)/(1 - a*c - b*c*x)^(n/2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcTanh[a_ + b_.*x_]), x_Symbol] := (c/(1 - a^2))^p* Int[u*(1 - a - b*x)^(p - n/2)*(1 + a + b*x)^(p + n/2), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e (1 - a^2), 0] && (IntegerQ[p] || GtQ[c/(1 - a^2), 0]) +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcTanh[a_ + b_.*x_]), x_Symbol] := (c + d*x + e*x^2)^p/(1 - a^2 - 2*a*b*x - b^2*x^2)^p* Int[u*(1 - a^2 - 2*a*b*x - b^2*x^2)^p*E^(n*ArcTanh[a*x]), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e (1 - a^2), 0] && Not[IntegerQ[p] || GtQ[c/(1 - a^2), 0]] +Int[u_.*E^(n_.*ArcTanh[c_./(a_. + b_.*x_)]), x_Symbol] := Int[u*E^(n*ArcCoth[a/c + b*x/c]), x] /; FreeQ[{a, b, c, n}, x] +Int[u_.*E^(n_*ArcCoth[a_.*x_]), x_Symbol] := (-1)^(n/2)*Int[u*E^(n*ArcTanh[a*x]), x] /; FreeQ[a, x] && IntegerQ[n/2] +Int[E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -Subst[ Int[(1 + x/a)^((n + 1)/2)/(x^2*(1 - x/a)^((n - 1)/2)* Sqrt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2] +Int[x_^m_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -Subst[ Int[(1 + x/a)^((n + 1)/2)/(x^(m + 2)*(1 - x/a)^((n - 1)/2)* Sqrt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2] && IntegerQ[m] +Int[E^(n_*ArcCoth[a_.*x_]), x_Symbol] := -Subst[Int[(1 + x/a)^(n/2)/(x^2*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && Not[IntegerQ[n]] +Int[x_^m_.*E^(n_*ArcCoth[a_.*x_]), x_Symbol] := -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && Not[IntegerQ[n]] && IntegerQ[m] +Int[x_^m_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -x^m*(1/x)^m* Subst[Int[(1 + x/a)^((n + 1)/2)/(x^(m + 2)*(1 - x/a)^((n - 1)/2)* Sqrt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[{a, m}, x] && IntegerQ[(n - 1)/2] && Not[IntegerQ[m]] +Int[x_^m_*E^(n_*ArcCoth[a_.*x_]), x_Symbol] := -x^m*(1/x)^m* Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, m, n}, x] && Not[IntegerQ[n]] && Not[IntegerQ[m]] +Int[(c_ + d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (1 + a*x)*(c + d*x)^p*E^(n*ArcCoth[a*x])/(a*(p + 1)) /; FreeQ[{a, c, d, n, p}, x] && EqQ[a*c + d, 0] && EqQ[p, n/2] && Not[IntegerQ[n/2]] +(* Int[(c_+d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]),x_Symbol] := -(-a)^n*c^n*Subst[Int[(d+c*x)^(p-n)*(1-x^2/a^2)^(n/2)/x^(p+2),x],x, 1/x] /; FreeQ[{a,c,d},x] && EqQ[a*c+d,0] && IntegerQ[(n-1)/2] && IntegerQ[p] *) +(* Int[x_^m_.*(c_+d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]),x_Symbol] := -(-a)^n*c^n*Subst[Int[(d+c*x)^(p-n)*(1-x^2/a^2)^(n/2)/x^(m+p+2),x], x,1/x] /; FreeQ[{a,c,d},x] && EqQ[a*c+d,0] && IntegerQ[(n-1)/2] && IntegerQ[m] && IntegerQ[p] *) +(* Int[(c_+d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]),x_Symbol] := -(-a)^n*c^n*Sqrt[c+d*x]/(Sqrt[x]*Sqrt[d+c/x])*Subst[Int[(d+c*x)^(p- n)*(1-x^2/a^2)^(n/2)/x^(p+2),x],x,1/x] /; FreeQ[{a,c,d},x] && EqQ[a*c+d,0] && IntegerQ[(n-1)/2] && IntegerQ[p-1/2] *) +(* Int[x_^m_.*(c_+d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]),x_Symbol] := -(-a)^n*c^n*Sqrt[c+d*x]/(Sqrt[x]*Sqrt[d+c/x])*Subst[Int[(d+c*x)^(p- n)*(1-x^2/a^2)^(n/2)/x^(m+p+2),x],x,1/x] /; FreeQ[{a,c,d},x] && EqQ[a*c+d,0] && IntegerQ[(n-1)/2] && IntegerQ[m] && IntegerQ[p-1/2] *) +Int[u_.*(c_ + d_.*x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := d^p*Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 - d^2, 0] && Not[IntegerQ[n/2]] && IntegerQ[p] +Int[u_.*(c_ + d_.*x_)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (c + d*x)^p/(x^p*(1 + c/(d*x))^p)* Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && Not[IntegerQ[n/2]] && Not[IntegerQ[p]] +Int[(c_ + d_./x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^n*Subst[Int[(c + d*x)^(p - n)*(1 - x^2/a^2)^(n/2)/x^2, x], x, 1/x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1]) && IntegerQ[2*p] +Int[x_^m_.*(c_ + d_./x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^n*Subst[Int[(c + d*x)^(p - n)*(1 - x^2/a^2)^(n/2)/x^(m + 2), x], x, 1/x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[ m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && IntegerQ[2*p] +Int[(c_ + d_./x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*Subst[ Int[(1 + d*x/c)^p*(1 + x/a)^(n/2)/(x^2*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) +Int[x_^m_.*(c_ + d_./x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*Subst[ Int[(1 + d*x/c)^p*(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && IntegerQ[m] +Int[x_^m_*(c_ + d_./x_)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*x^m*(1/x)^m* Subst[Int[(1 + d*x/c)^ p*(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegerQ[m]] +Int[u_.*(c_ + d_./x_)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (c + d/x)^p/(1 + d/(c*x))^p* Int[u*(1 + d/(c*x))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && Not[IntegerQ[n/2]] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[E^(n_.*ArcCoth[a_.*x_])/(c_ + d_.*x_^2), x_Symbol] := E^(n*ArcCoth[a*x])/(a*c*n) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] +Int[E^(n_*ArcCoth[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := (n - a*x)*E^(n*ArcCoth[a*x])/(a*c*(n^2 - 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n]] +Int[(c_ + d_.*x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (n + 2*a*(p + 1)*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCoth[a*x])/(a*c*(n^2 - 4*(p + 1)^2)) - 2*(p + 1)*(2*p + 3)/(c*(n^2 - 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && LtQ[p, -1] && NeQ[p, -3/2] && NeQ[n^2 - 4*(p + 1)^2, 0] && (IntegerQ[p] || Not[IntegerQ[n]]) +Int[x_*E^(n_*ArcCoth[a_.*x_])/(c_ + d_.*x_^2)^(3/2), x_Symbol] := -(1 - a*n*x)*E^(n*ArcCoth[a*x])/(a^2*c*(n^2 - 1)*Sqrt[c + d*x^2]) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n]] +Int[x_*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (2*(p + 1) + a*n*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCoth[a*x])/(a^2*c*(n^2 - 4*(p + 1)^2)) - n*(2*p + 3)/(a*c*(n^2 - 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && LeQ[p, -1] && NeQ[p, -3/2] && NeQ[n^2 - 4*(p + 1)^2, 0] && (IntegerQ[p] || Not[IntegerQ[n]]) +Int[x_^2*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -(n + 2*(p + 1)*a*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCoth[a*x])/(a^3*c*n^2*(n^2 - 1)) /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && EqQ[n^2 + 2*(p + 1), 0] && NeQ[n^2, 1] +Int[x_^2*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (n + 2*(p + 1)*a*x)*(c + d*x^2)^(p + 1)* E^(n*ArcCoth[a*x])/(a^3*c*(n^2 - 4*(p + 1)^2)) - (n^2 + 2*(p + 1))/(a^2*c*(n^2 - 4*(p + 1)^2))* Int[(c + d*x^2)^(p + 1)*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && LeQ[p, -1] && NeQ[n^2 + 2*(p + 1), 0] && NeQ[n^2 - 4*(p + 1)^2, 0] && (IntegerQ[p] || Not[IntegerQ[n]]) +Int[x_^m_.*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -(-c)^p/a^(m + 1)* Subst[Int[E^(n*x)*Coth[x]^(m + 2*(p + 1))/Cosh[x]^(2*(p + 1)), x], x, ArcCoth[a*x]] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && IntegerQ[m] && LeQ[3, m, -2 (p + 1)] && IntegerQ[p] +Int[u_.*(c_ + d_.*x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := d^p*Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && IntegerQ[p] +Int[u_.*(c_ + d_.*x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := (c + d*x^2)^p/(x^(2*p)*(1 - 1/(a^2*x^2))^p)* Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && Not[IntegerQ[n/2]] && Not[IntegerQ[p]] +Int[u_.*(c_ + d_./x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := c^p/a^(2*p)* Int[u/x^(2*p)*(-1 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2] +Int[(c_ + d_./x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*Subst[Int[(1 - x/a)^(p - n/2)*(1 + x/a)^(p + n/2)/x^2, x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegersQ[2*p, p + n/2]] +Int[x_^m_.*(c_ + d_./x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*Subst[ Int[(1 - x/a)^(p - n/2)*(1 + x/a)^(p + n/2)/x^(m + 2), x], x, 1/x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegersQ[2*p, p + n/2]] && IntegerQ[m] +Int[x_^m_*(c_ + d_./x_^2)^p_.*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := -c^p*x^m*(1/x)^m* Subst[Int[(1 - x/a)^(p - n/2)*(1 + x/a)^(p + n/2)/x^(m + 2), x], x, 1/x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[n/2]] && (IntegerQ[p] || GtQ[c, 0]) && Not[IntegersQ[2*p, p + n/2]] && Not[IntegerQ[m]] +Int[u_.*(c_ + d_./x_^2)^p_*E^(n_.*ArcCoth[a_.*x_]), x_Symbol] := c^IntPart[p]*(c + d/x^2)^FracPart[p]/(1 - 1/(a^2*x^2))^FracPart[p]* Int[u*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && Not[IntegerQ[n/2]] && Not[IntegerQ[p] || GtQ[c, 0]] +Int[u_.*E^(n_*ArcCoth[c_.*(a_ + b_.*x_)]), x_Symbol] := (-1)^(n/2)*Int[u*E^(n*ArcTanh[c*(a + b*x)]), x] /; FreeQ[{a, b, c}, x] && IntegerQ[n/2] +Int[E^(n_.*ArcCoth[c_.*(a_ + b_.*x_)]), x_Symbol] := (c*(a + b*x))^(n/ 2)*(1 + 1/(c*(a + b*x)))^(n/2)/(1 + a*c + b*c*x)^(n/2)* Int[(1 + a*c + b*c*x)^(n/2)/(-1 + a*c + b*c*x)^(n/2), x] /; FreeQ[{a, b, c, n}, x] && Not[IntegerQ[n/2]] +Int[x_^m_*E^(n_*ArcCoth[c_.*(a_ + b_.*x_)]), x_Symbol] := -4/(n*b^(m + 1)*c^(m + 1))* Subst[ Int[x^(2/n)*(1 + a*c + (1 - a*c)*x^(2/n))^ m/(-1 + x^(2/n))^(m + 2), x], x, (1 + 1/(c*(a + b*x)))^(n/2)/(1 - 1/(c*(a + b*x)))^(n/2)] /; FreeQ[{a, b, c}, x] && ILtQ[m, 0] && LtQ[-1, n, 1] +Int[(d_. + e_.*x_)^m_.*E^(n_.*ArcCoth[c_.*(a_ + b_.*x_)]), x_Symbol] := (c*(a + b*x))^(n/ 2)*(1 + 1/(c*(a + b*x)))^(n/2)/(1 + a*c + b*c*x)^(n/2)* Int[(d + e*x)^m*(1 + a*c + b*c*x)^(n/2)/(-1 + a*c + b*c*x)^(n/2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && Not[IntegerQ[n/2]] +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcCoth[a_ + b_.*x_]), x_Symbol] := (c/(1 - a^2))^ p*((a + b*x)/(1 + a + b*x))^(n/2)*((1 + a + b*x)/(a + b*x))^(n/ 2)*((1 - a - b*x)^(n/2)/(-1 + a + b*x)^(n/2))* Int[u*(1 - a - b*x)^(p - n/2)*(1 + a + b*x)^(p + n/2), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && Not[IntegerQ[n/2]] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e (1 - a^2), 0] && (IntegerQ[p] || GtQ[c/(1 - a^2), 0]) +Int[u_.*(c_ + d_.*x_ + e_.*x_^2)^p_.*E^(n_.*ArcCoth[a_ + b_.*x_]), x_Symbol] := (c + d*x + e*x^2)^p/(1 - a^2 - 2*a*b*x - b^2*x^2)^p* Int[u*(1 - a^2 - 2*a*b*x - b^2*x^2)^p*E^(n*ArcCoth[a*x]), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && Not[IntegerQ[n/2]] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e (1 - a^2), 0] && Not[IntegerQ[p] || GtQ[c/(1 - a^2), 0]] +Int[u_.*E^(n_.*ArcCoth[c_./(a_. + b_.*x_)]), x_Symbol] := Int[u*E^(n*ArcTanh[a/c + b*x/c]), x] /; FreeQ[{a, b, c, n}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.7 Miscellaneous inverse hyperbolic tangent.m b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.7 Miscellaneous inverse hyperbolic tangent.m new file mode 100755 index 0000000..e2d6051 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.3 Inverse hyperbolic tangent/7.3.7 Miscellaneous inverse hyperbolic tangent.m @@ -0,0 +1,75 @@ + +(* ::Subsection::Closed:: *) +(* 7.3.7 Miscellaneous inverse hyperbolic tangent *) +Int[ArcTanh[a_ + b_.*x_^n_], x_Symbol] := x*ArcTanh[a + b*x^n] - b*n*Int[x^n/(1 - a^2 - 2*a*b*x^n - b^2*x^(2*n)), x] /; FreeQ[{a, b, n}, x] +Int[ArcCoth[a_ + b_.*x_^n_], x_Symbol] := x*ArcCoth[a + b*x^n] - b*n*Int[x^n/(1 - a^2 - 2*a*b*x^n - b^2*x^(2*n)), x] /; FreeQ[{a, b, n}, x] +Int[ArcTanh[a_. + b_.*x_^n_.]/x_, x_Symbol] := 1/2*Int[Log[1 + a + b*x^n]/x, x] - 1/2*Int[Log[1 - a - b*x^n]/x, x] /; FreeQ[{a, b, n}, x] +Int[ArcCoth[a_. + b_.*x_^n_.]/x_, x_Symbol] := 1/2*Int[Log[1 + 1/(a + b*x^n)]/x, x] - 1/2*Int[Log[1 - 1/(a + b*x^n)]/x, x] /; FreeQ[{a, b, n}, x] +Int[x_^m_.*ArcTanh[a_ + b_.*x_^n_], x_Symbol] := x^(m + 1)*ArcTanh[a + b*x^n]/(m + 1) - b*n/(m + 1)* Int[x^(m + n)/(1 - a^2 - 2*a*b*x^n - b^2*x^(2*n)), x] /; FreeQ[{a, b}, x] && RationalQ[m, n] && NeQ[m, -1] && NeQ[m + 1, n] +Int[x_^m_.*ArcCoth[a_ + b_.*x_^n_], x_Symbol] := x^(m + 1)*ArcCoth[a + b*x^n]/(m + 1) - b*n/(m + 1)* Int[x^(m + n)/(1 - a^2 - 2*a*b*x^n - b^2*x^(2*n)), x] /; FreeQ[{a, b}, x] && RationalQ[m, n] && NeQ[m, -1] && NeQ[m + 1, n] +Int[ArcTanh[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := 1/2*Int[Log[1 + a + b*f^(c + d*x)], x] - 1/2*Int[Log[1 - a - b*f^(c + d*x)], x] /; FreeQ[{a, b, c, d, f}, x] +Int[ArcCoth[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := 1/2*Int[Log[1 + 1/(a + b*f^(c + d*x))], x] - 1/2*Int[Log[1 - 1/(a + b*f^(c + d*x))], x] /; FreeQ[{a, b, c, d, f}, x] +Int[x_^m_.*ArcTanh[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := 1/2*Int[x^m*Log[1 + a + b*f^(c + d*x)], x] - 1/2*Int[x^m*Log[1 - a - b*f^(c + d*x)], x] /; FreeQ[{a, b, c, d, f}, x] && IGtQ[m, 0] +Int[x_^m_.*ArcCoth[a_. + b_.*f_^(c_. + d_.*x_)], x_Symbol] := 1/2*Int[x^m*Log[1 + 1/(a + b*f^(c + d*x))], x] - 1/2*Int[x^m*Log[1 - 1/(a + b*f^(c + d*x))], x] /; FreeQ[{a, b, c, d, f}, x] && IGtQ[m, 0] +Int[u_.*ArcTanh[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcCoth[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[u_.*ArcCoth[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcTanh[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := x*ArcTanh[(c*x)/Sqrt[a + b*x^2]] - c*Int[x/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := x*ArcCoth[(c*x)/Sqrt[a + b*x^2]] - c*Int[x/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]]/x_, x_Symbol] := ArcTanh[c*x/Sqrt[a + b*x^2]]*Log[x] - c*Int[Log[x]/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]]/x_, x_Symbol] := ArcCoth[c*x/Sqrt[a + b*x^2]]*Log[x] - c*Int[Log[x]/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[(d_.*x_)^m_.*ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := (d*x)^(m + 1)*ArcTanh[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1)) - c/(d*(m + 1))*Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1] +Int[(d_.*x_)^m_.*ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]], x_Symbol] := (d*x)^(m + 1)*ArcCoth[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1)) - c/(d*(m + 1))*Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1] +Int[1/(Sqrt[a_. + b_.*x_^2]*ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]]), x_Symbol] := 1/c*Log[ArcTanh[c*x/Sqrt[a + b*x^2]]] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[1/(Sqrt[a_. + b_.*x_^2]*ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]]), x_Symbol] := -1/c*Log[ArcCoth[c*x/Sqrt[a + b*x^2]]] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2] +Int[ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[a_. + b_.*x_^2], x_Symbol] := ArcTanh[c*x/Sqrt[a + b*x^2]]^(m + 1)/(c*(m + 1)) /; FreeQ[{a, b, c, m}, x] && EqQ[b, c^2] && NeQ[m, -1] +Int[ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[a_. + b_.*x_^2], x_Symbol] := -ArcCoth[c*x/Sqrt[a + b*x^2]]^(m + 1)/(c*(m + 1)) /; FreeQ[{a, b, c, m}, x] && EqQ[b, c^2] && NeQ[m, -1] +Int[ArcTanh[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[d_. + e_.*x_^2], x_Symbol] := Sqrt[a + b*x^2]/Sqrt[d + e*x^2]* Int[ArcTanh[c*x/Sqrt[a + b*x^2]]^m/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b, c^2] && EqQ[b*d - a*e, 0] +Int[ArcCoth[c_.*x_/Sqrt[a_. + b_.*x_^2]]^m_./Sqrt[d_. + e_.*x_^2], x_Symbol] := Sqrt[a + b*x^2]/Sqrt[d + e*x^2]* Int[ArcCoth[c*x/Sqrt[a + b*x^2]]^m/Sqrt[a + b*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b, c^2] && EqQ[b*d - a*e, 0] +If[TrueQ[$LoadShowSteps], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, ShowStep["", "Int[f[x,ArcTanh[a+b*x]]/(1-(a+b*x)^2),x]", "Subst[Int[f[-a/b+Tanh[x]/b,x],x],x,ArcTanh[a+b*x]]/b", Hold[ (-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[Int[ SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*Sech[x]^(2*(n + 1)), x], x], x, tmp]]] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcTanh] && EqQ[Discriminant[v, x]*tmp[[1]]^2 - D[v, x]^2, 0]] /; SimplifyFlag && QuadraticQ[v, x] && ILtQ[n, 0] && PosQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, (-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[ Int[SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*Sech[x]^(2*(n + 1)), x], x], x, tmp] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcTanh] && EqQ[Discriminant[v, x]*tmp[[1]]^2 - D[v, x]^2, 0]] /; QuadraticQ[v, x] && ILtQ[n, 0] && PosQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]]] +If[TrueQ[$LoadShowSteps], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, ShowStep["", "Int[f[x,ArcCoth[a+b*x]]/(1-(a+b*x)^2),x]", "Subst[Int[f[-a/b+Coth[x]/b,x],x],x,ArcCoth[a+b*x]]/b", Hold[ (-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[Int[ SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*(-Csch[x]^2)^(n + 1), x], x], x, tmp]]] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcCoth] && EqQ[Discriminant[v, x]*tmp[[1]]^2 - D[v, x]^2, 0]] /; SimplifyFlag && QuadraticQ[v, x] && ILtQ[n, 0] && PosQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]], Int[u_*v_^n_., x_Symbol] := With[{tmp = InverseFunctionOfLinear[u, x]}, (-Discriminant[v, x]/(4*Coefficient[v, x, 2]))^n/ Coefficient[tmp[[1]], x, 1]* Subst[ Int[SimplifyIntegrand[ SubstForInverseFunction[u, tmp, x]*(-Csch[x]^2)^(n + 1), x], x], x, tmp] /; Not[FalseQ[tmp]] && EqQ[Head[tmp], ArcCoth] && EqQ[Discriminant[v, x]*tmp[[1]]^2 - D[v, x]^2, 0]] /; QuadraticQ[v, x] && ILtQ[n, 0] && PosQ[Discriminant[v, x]] && MatchQ[u, r_.*f_^w_ /; FreeQ[f, x]]] +Int[ArcTanh[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Tanh[a + b*x]] + b*Int[x/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1] +Int[ArcCoth[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Tanh[a + b*x]] + b*Int[x/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1] +Int[ArcTanh[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Coth[a + b*x]] + b*Int[x/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1] +Int[ArcCoth[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Coth[a + b*x]] + b*Int[x/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1] +Int[ArcTanh[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Tanh[a + b*x]] + b*(1 - c - d)* Int[x*E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x)), x] - b*(1 + c + d)* Int[x*E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, 1] +Int[ArcCoth[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Tanh[a + b*x]] + b*(1 - c - d)* Int[x*E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x)), x] - b*(1 + c + d)* Int[x*E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, 1] +Int[ArcTanh[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Coth[a + b*x]] + b*(1 + c + d)* Int[x*E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x)), x] - b*(1 - c - d)* Int[x*E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, 1] +Int[ArcCoth[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Coth[a + b*x]] + b*(1 + c + d)* Int[x*E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x)), x] - b*(1 - c - d)* Int[x*E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Tanh[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Tanh[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d + c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Coth[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Coth[a + b*x]]/(f*(m + 1)) + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - d - c*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Tanh[a + b*x]]/(f*(m + 1)) + b*(1 - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x)), x] - b*(1 + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Tanh[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Tanh[a + b*x]]/(f*(m + 1)) + b*(1 - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x)), x] - b*(1 + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Coth[a + b*x]]/(f*(m + 1)) + b*(1 + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x)), x] - b*(1 - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Coth[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Coth[a + b*x]]/(f*(m + 1)) + b*(1 + c + d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x)), x] - b*(1 - c - d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1] +Int[ArcTanh[Tan[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[Tan[a + b*x]] - b*Int[x*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[ArcCoth[Tan[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[Tan[a + b*x]] - b*Int[x*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[ArcTanh[Cot[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[Cot[a + b*x]] - b*Int[x*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[ArcCoth[Cot[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[Cot[a + b*x]] - b*Int[x*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b}, x] +Int[(e_. + f_.*x_)^m_.*ArcTanh[Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[Tan[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*ArcCoth[Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[Tan[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*ArcTanh[Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[Cot[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*ArcCoth[Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[Cot[a + b*x]]/(f*(m + 1)) - b/(f*(m + 1))*Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m, 0] +Int[ArcTanh[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Tan[a + b*x]] + I*b*Int[x/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c + I*d)^2, 1] +Int[ArcCoth[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Tan[a + b*x]] + I*b*Int[x/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c + I*d)^2, 1] +Int[ArcTanh[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Cot[a + b*x]] + I*b*Int[x/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, 1] +Int[ArcCoth[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Cot[a + b*x]] + I*b*Int[x/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, 1] +Int[ArcTanh[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Tan[a + b*x]] + I*b*(1 - c + I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x)), x] - I*b*(1 + c - I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, 1] +Int[ArcCoth[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Tan[a + b*x]] + I*b*(1 - c + I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x)), x] - I*b*(1 + c - I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, 1] +Int[ArcTanh[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcTanh[c + d*Cot[a + b*x]] - I*b*(1 - c - I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x)), x] + I*b*(1 + c + I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - I*d)^2, 1] +Int[ArcCoth[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := x*ArcCoth[c + d*Cot[a + b*x]] - I*b*(1 - c - I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x)), x] + I*b*(1 + c + I*d)* Int[x*E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[(c - I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Tan[a + b*x]]/(f*(m + 1)) + I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c + I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Tan[a + b*x]]/(f*(m + 1)) + I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c + I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Cot[a + b*x]]/(f*(m + 1)) + I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Cot[a + b*x]]/(f*(m + 1)) + I*b/(f*(m + 1))* Int[(e + f*x)^(m + 1)/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Tan[a + b*x]]/(f*(m + 1)) + I*b*(1 - c + I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x)), x] - I*b*(1 + c - I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c + I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Tan[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Tan[a + b*x]]/(f*(m + 1)) + I*b*(1 - c + I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x)), x] - I*b*(1 + c - I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c + I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcTanh[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcTanh[c + d*Cot[a + b*x]]/(f*(m + 1)) - I*b*(1 - c - I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x)), x] + I*b*(1 + c + I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - I*d)^2, 1] +Int[(e_. + f_.*x_)^m_.*ArcCoth[c_. + d_.*Cot[a_. + b_.*x_]], x_Symbol] := (e + f*x)^(m + 1)*ArcCoth[c + d*Cot[a + b*x]]/(f*(m + 1)) - I*b*(1 - c - I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x)), x] + I*b*(1 + c + I*d)/(f*(m + 1))* Int[(e + f*x)^(m + 1)* E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x)), x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - I*d)^2, 1] +Int[ArcTanh[u_], x_Symbol] := x*ArcTanh[u] - Int[SimplifyIntegrand[x*D[u, x]/(1 - u^2), x], x] /; InverseFunctionFreeQ[u, x] +Int[ArcCoth[u_], x_Symbol] := x*ArcCoth[u] - Int[SimplifyIntegrand[x*D[u, x]/(1 - u^2), x], x] /; InverseFunctionFreeQ[u, x] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcTanh[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcTanh[u])/(d*(m + 1)) - b/(d*(m + 1))* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/(1 - u^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && FalseQ[PowerVariableExpn[u, m + 1, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcCoth[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcCoth[u])/(d*(m + 1)) - b/(d*(m + 1))* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/(1 - u^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && FalseQ[PowerVariableExpn[u, m + 1, x]] +Int[v_*(a_. + b_.*ArcTanh[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcTanh[u]), w, x] - b*Int[SimplifyIntegrand[w*D[u, x]/(1 - u^2), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] && FalseQ[FunctionOfLinear[v*(a + b*ArcTanh[u]), x]] +Int[v_*(a_. + b_.*ArcCoth[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcCoth[u]), w, x] - b*Int[SimplifyIntegrand[w*D[u, x]/(1 - u^2), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] && FalseQ[FunctionOfLinear[v*(a + b*ArcCoth[u]), x]] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.5 Inverse hyperbolic secant/7.5.1 u (a+b arcsech(c x))^n.m b/IntegrationRules/7 Inverse hyperbolic functions/7.5 Inverse hyperbolic secant/7.5.1 u (a+b arcsech(c x))^n.m new file mode 100755 index 0000000..be23281 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.5 Inverse hyperbolic secant/7.5.1 u (a+b arcsech(c x))^n.m @@ -0,0 +1,39 @@ + +(* ::Subsection::Closed:: *) +(* 7.5.1 u (a+b arcsech(c x))^n *) +Int[ArcSech[c_.*x_], x_Symbol] := x*ArcSech[c*x] + Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)]*Int[1/Sqrt[1 - c^2*x^2], x] /; FreeQ[c, x] +Int[ArcCsch[c_.*x_], x_Symbol] := x*ArcCsch[c*x] + 1/c*Int[1/(x*Sqrt[1 + 1/(c^2*x^2)]), x] /; FreeQ[c, x] +Int[(a_. + b_.*ArcSech[c_.*x_])^n_, x_Symbol] := -1/c*Subst[Int[(a + b*x)^n*Sech[x]*Tanh[x], x], x, ArcSech[c*x]] /; FreeQ[{a, b, c, n}, x] && IGtQ[n, 0] +Int[(a_. + b_.*ArcCsch[c_.*x_])^n_, x_Symbol] := -1/c*Subst[Int[(a + b*x)^n*Csch[x]*Coth[x], x], x, ArcCsch[c*x]] /; FreeQ[{a, b, c, n}, x] && IGtQ[n, 0] +Int[(a_. + b_.*ArcSech[c_.*x_])/x_, x_Symbol] := -Subst[Int[(a + b*ArcCosh[x/c])/x, x], x, 1/x] /; FreeQ[{a, b, c}, x] +Int[(a_. + b_.*ArcCsch[c_.*x_])/x_, x_Symbol] := -Subst[Int[(a + b*ArcSinh[x/c])/x, x], x, 1/x] /; FreeQ[{a, b, c}, x] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcSech[c_.*x_]), x_Symbol] := (d*x)^(m + 1)*(a + b*ArcSech[c*x])/(d*(m + 1)) + b*Sqrt[1 + c*x]/(m + 1)*Sqrt[1/(1 + c*x)]* Int[(d*x)^m/(Sqrt[1 - c*x]*Sqrt[1 + c*x]), x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[(d_.*x_)^m_.*(a_. + b_.*ArcCsch[c_.*x_]), x_Symbol] := (d*x)^(m + 1)*(a + b*ArcCsch[c*x])/(d*(m + 1)) + b*d/(c*(m + 1))*Int[(d*x)^(m - 1)/Sqrt[1 + 1/(c^2*x^2)], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[x_^m_.*(a_. + b_.*ArcSech[c_.*x_])^n_, x_Symbol] := -1/c^(m + 1)* Subst[Int[(a + b*x)^n*Sech[x]^(m + 1)*Tanh[x], x], x, ArcSech[c*x]] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] && (GtQ[n, 0] || LtQ[m, -1]) +Int[x_^m_.*(a_. + b_.*ArcCsch[c_.*x_])^n_, x_Symbol] := -1/c^(m + 1)* Subst[Int[(a + b*x)^n*Csch[x]^(m + 1)*Coth[x], x], x, ArcCsch[c*x]] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] && (GtQ[n, 0] || LtQ[m, -1]) +Int[(a_. + b_.*ArcSech[c_.*x_])/(d_. + e_.*x_), x_Symbol] := (a + b*ArcSech[c*x])* Log[1 + (e - Sqrt[-c^2*d^2 + e^2])/(c*d*E^ArcSech[c*x])]/e + (a + b*ArcSech[c*x])* Log[1 + (e + Sqrt[-c^2*d^2 + e^2])/(c*d*E^ArcSech[c*x])]/e - (a + b*ArcSech[c*x])*Log[1 + 1/E^(2*ArcSech[c*x])]/e + b/e* Int[(Sqrt[(1 - c*x)/(1 + c*x)]* Log[1 + (e - Sqrt[-c^2*d^2 + e^2])/(c*d* E^ArcSech[c*x])])/(x*(1 - c*x)), x] + b/e* Int[(Sqrt[(1 - c*x)/(1 + c*x)]* Log[1 + (e + Sqrt[-c^2*d^2 + e^2])/(c*d* E^ArcSech[c*x])])/(x*(1 - c*x)), x] - b/e* Int[(Sqrt[(1 - c*x)/(1 + c*x)]* Log[1 + 1/E^(2*ArcSech[c*x])])/(x*(1 - c*x)), x] /; FreeQ[{a, b, c, d, e}, x] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcSech[c_.*x_]), x_Symbol] := (d + e*x)^(m + 1)*(a + b*ArcSech[c*x])/(e*(m + 1)) + b*Sqrt[1 + c*x]/(e*(m + 1))*Sqrt[1/(1 + c*x)]* Int[(d + e*x)^(m + 1)/(x*Sqrt[1 - c^2*x^2]), x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1] +Int[(a_. + b_.*ArcCsch[c_.*x_])/(d_. + e_.*x_), x_Symbol] := (a + b*ArcCsch[c*x])* Log[1 - (e - Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x]/(c*d)]/e + (a + b*ArcCsch[c*x])* Log[1 - (e + Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x]/(c*d)]/e - (a + b*ArcCsch[c*x])*Log[1 - E^(2*ArcCsch[c*x])]/e + b/(c*e)* Int[Log[1 - (e - Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x]/(c*d)]/(x^2* Sqrt[1 + 1/(c^2*x^2)]), x] + b/(c*e)* Int[Log[1 - (e + Sqrt[c^2*d^2 + e^2])*E^ArcCsch[c*x]/(c*d)]/(x^2* Sqrt[1 + 1/(c^2*x^2)]), x] - b/(c*e)* Int[Log[1 - E^(2*ArcCsch[c*x])]/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x] /; FreeQ[{a, b, c, d, e}, x] +Int[(d_. + e_.*x_)^m_.*(a_. + b_.*ArcCsch[c_.*x_]), x_Symbol] := (d + e*x)^(m + 1)*(a + b*ArcCsch[c*x])/(e*(m + 1)) + b/(c*e*(m + 1))* Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1] +Int[(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcSech[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^p, x]}, Dist[(a + b*ArcSech[c*x]), u, x] + b*Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)]* Int[SimplifyIntegrand[u/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0]) +Int[(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcCsch[c_.*x_]), x_Symbol] := With[{u = IntHide[(d + e*x^2)^p, x]}, Dist[(a + b*ArcCsch[c*x]), u, x] - b*c*x/Sqrt[-c^2*x^2]* Int[SimplifyIntegrand[u/(x*Sqrt[-1 - c^2*x^2]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0]) +Int[(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcSech[c_.*x_])^n_., x_Symbol] := -Subst[Int[(e + d*x^2)^p*(a + b*ArcCosh[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[p] +Int[(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcCsch[c_.*x_])^n_., x_Symbol] := -Subst[Int[(e + d*x^2)^p*(a + b*ArcSinh[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[p] +Int[(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcSech[c_.*x_])^n_., x_Symbol] := -Sqrt[x^2]/x* Subst[Int[(e + d*x^2)^p*(a + b*ArcCosh[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0] +Int[(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcCsch[c_.*x_])^n_., x_Symbol] := -Sqrt[x^2]/x* Subst[Int[(e + d*x^2)^p*(a + b*ArcSinh[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[e - c^2*d, 0] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0] +Int[(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcSech[c_.*x_])^n_., x_Symbol] := -Sqrt[d + e*x^2]/(x*Sqrt[e + d/x^2])* Subst[Int[(e + d*x^2)^p*(a + b*ArcCosh[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && Not[GtQ[e, 0] && LtQ[d, 0]] +Int[(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcCsch[c_.*x_])^n_., x_Symbol] := -Sqrt[d + e*x^2]/(x*Sqrt[e + d/x^2])* Subst[Int[(e + d*x^2)^p*(a + b*ArcSinh[x/c])^n/x^(2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[e - c^2*d, 0] && IntegerQ[p + 1/2] && Not[GtQ[e, 0] && LtQ[d, 0]] +Int[x_*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcSech[c_.*x_]), x_Symbol] := (d + e*x^2)^(p + 1)*(a + b*ArcSech[c*x])/(2*e*(p + 1)) + b*Sqrt[1 + c*x]/(2*e*(p + 1))*Sqrt[1/(1 + c*x)]* Int[(d + e*x^2)^(p + 1)/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1] +Int[x_*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcCsch[c_.*x_]), x_Symbol] := (d + e*x^2)^(p + 1)*(a + b*ArcCsch[c*x])/(2*e*(p + 1)) - b*c*x/(2*e*(p + 1)*Sqrt[-c^2*x^2])* Int[(d + e*x^2)^(p + 1)/(x*Sqrt[-1 - c^2*x^2]), x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1] +Int[(f_.*x_)^m_.*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcSech[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[(a + b*ArcSech[c*x]), u, x] + b*Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)]* Int[SimplifyIntegrand[u/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ( IGtQ[p, 0] && Not[ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0]] || IGtQ[(m + 1)/2, 0] && Not[ILtQ[p, 0] && GtQ[m + 2*p + 3, 0]] || ILtQ[(m + 2*p + 1)/2, 0] && Not[ILtQ[(m - 1)/2, 0]]) +Int[(f_.*x_)^m_.*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcCsch[c_.*x_]), x_Symbol] := With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[(a + b*ArcCsch[c*x]), u, x] - b*c*x/Sqrt[-c^2*x^2]* Int[SimplifyIntegrand[u/(x*Sqrt[-1 - c^2*x^2]), x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ( IGtQ[p, 0] && Not[ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0]] || IGtQ[(m + 1)/2, 0] && Not[ILtQ[p, 0] && GtQ[m + 2*p + 3, 0]] || ILtQ[(m + 2*p + 1)/2, 0] && Not[ILtQ[(m - 1)/2, 0]] ) +Int[x_^m_.*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcSech[c_.*x_])^n_., x_Symbol] := -Subst[ Int[(e + d*x^2)^p*(a + b*ArcCosh[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegersQ[m, p] +Int[x_^m_.*(d_. + e_.*x_^2)^p_.*(a_. + b_.*ArcCsch[c_.*x_])^n_., x_Symbol] := -Subst[ Int[(e + d*x^2)^p*(a + b*ArcSinh[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegersQ[m, p] +Int[x_^m_.*(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcSech[c_.*x_])^n_., x_Symbol] := -Sqrt[x^2]/x* Subst[Int[(e + d*x^2)^p*(a + b*ArcCosh[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0] +Int[x_^m_.*(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcCsch[c_.*x_])^n_., x_Symbol] := -Sqrt[x^2]/x* Subst[Int[(e + d*x^2)^p*(a + b*ArcSinh[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[e - c^2*d, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0] +Int[x_^m_.*(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcSech[c_.*x_])^n_., x_Symbol] := -Sqrt[d + e*x^2]/(x*Sqrt[e + d/x^2])* Subst[Int[(e + d*x^2)^p*(a + b*ArcCosh[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && Not[GtQ[e, 0] && LtQ[d, 0]] +Int[x_^m_.*(d_. + e_.*x_^2)^p_*(a_. + b_.*ArcCsch[c_.*x_])^n_., x_Symbol] := -Sqrt[d + e*x^2]/(x*Sqrt[e + d/x^2])* Subst[Int[(e + d*x^2)^p*(a + b*ArcSinh[x/c])^n/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[e - c^2*d, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && Not[GtQ[e, 0] && LtQ[d, 0]] +Int[u_*(a_. + b_.*ArcSech[c_.*x_]), x_Symbol] := With[{v = IntHide[u, x]}, Dist[(a + b*ArcSech[c*x]), v, x] + b* Sqrt[1 - c^2*x^2]/(c*x*Sqrt[-1 + 1/(c*x)]*Sqrt[1 + 1/(c*x)])* Int[SimplifyIntegrand[v/(x*Sqrt[1 - c^2*x^2]), x], x] /; InverseFunctionFreeQ[v, x]] /; FreeQ[{a, b, c}, x] +Int[u_*(a_. + b_.*ArcCsch[c_.*x_]), x_Symbol] := With[{v = IntHide[u, x]}, Dist[(a + b*ArcCsch[c*x]), v, x] + b/c* Int[SimplifyIntegrand[v/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x], x] /; InverseFunctionFreeQ[v, x]] /; FreeQ[{a, b, c}, x] +Int[u_.*(a_. + b_.*ArcSech[c_.*x_])^n_., x_Symbol] := Unintegrable[u*(a + b*ArcSech[c*x])^n, x] /; FreeQ[{a, b, c, n}, x] +Int[u_.*(a_. + b_.*ArcCsch[c_.*x_])^n_., x_Symbol] := Unintegrable[u*(a + b*ArcCsch[c*x])^n, x] /; FreeQ[{a, b, c, n}, x] diff --git a/IntegrationRules/7 Inverse hyperbolic functions/7.5 Inverse hyperbolic secant/7.5.2 Miscellaneous inverse hyperbolic secant.m b/IntegrationRules/7 Inverse hyperbolic functions/7.5 Inverse hyperbolic secant/7.5.2 Miscellaneous inverse hyperbolic secant.m new file mode 100755 index 0000000..1571087 --- /dev/null +++ b/IntegrationRules/7 Inverse hyperbolic functions/7.5 Inverse hyperbolic secant/7.5.2 Miscellaneous inverse hyperbolic secant.m @@ -0,0 +1,41 @@ + +(* ::Subsection::Closed:: *) +(* 7.5.2 Miscellaneous inverse hyperbolic secant *) +Int[ArcSech[c_ + d_.*x_], x_Symbol] := (c + d*x)*ArcSech[c + d*x]/d + Int[Sqrt[(1 - c - d*x)/(1 + c + d*x)]/(1 - c - d*x), x] /; FreeQ[{c, d}, x] +Int[ArcCsch[c_ + d_.*x_], x_Symbol] := (c + d*x)*ArcCsch[c + d*x]/d + Int[1/((c + d*x)*Sqrt[1 + 1/(c + d*x)^2]), x] /; FreeQ[{c, d}, x] +Int[(a_. + b_.*ArcSech[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcSech[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcCsch[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(a + b*ArcCsch[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] +Int[(a_. + b_.*ArcSech[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(a + b*ArcSech[c + d*x])^p, x] /; FreeQ[{a, b, c, d, p}, x] && Not[IGtQ[p, 0]] +Int[(a_. + b_.*ArcCsch[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(a + b*ArcCsch[c + d*x])^p, x] /; FreeQ[{a, b, c, d, p}, x] && Not[IGtQ[p, 0]] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcSech[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(f*x/d)^m*(a + b*ArcSech[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCsch[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[(f*x/d)^m*(a + b*ArcCsch[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0] && IGtQ[p, 0] +(* Int[x_^m_.*ArcSech[a_+b_.*x_],x_Symbol] := -((-a)^(m+1)-b^(m+1)*x^(m+1))*ArcSech[a+b*x]/(b^(m+1)*(m+1)) + 1/(b^(m+1)*(m+1))*Subst[Int[((-a*x)^(m+1)-(1-a*x)^(m+1))/(x^(m+1)* Sqrt[-1+x]*Sqrt[1+x]),x],x,1/(a+b*x)] /; FreeQ[{a,b},x] && IntegerQ[m] && NeQ[m,-1] *) +(* Int[x_^m_.*ArcCsch[a_+b_.*x_],x_Symbol] := -((-a)^(m+1)-b^(m+1)*x^(m+1))*ArcCsch[a+b*x]/(b^(m+1)*(m+1)) + 1/(b^(m+1)*(m+1))*Subst[Int[((-a*x)^(m+1)-(1-a*x)^(m+1))/(x^(m+1)* Sqrt[1+x^2]),x],x,1/(a+b*x)] /; FreeQ[{a,b},x] && IntegerQ[m] && NeQ[m,-1] *) +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcSech[c_ + d_.*x_])^p_., x_Symbol] := -1/d^(m + 1)* Subst[Int[(a + b*x)^p*Sech[x]*Tanh[x]*(d*e - c*f + f*Sech[x])^m, x], x, ArcSech[c + d*x]] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && IntegerQ[m] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCsch[c_ + d_.*x_])^p_., x_Symbol] := -1/d^(m + 1)* Subst[Int[(a + b*x)^p*Csch[x]*Coth[x]*(d*e - c*f + f*Csch[x])^m, x], x, ArcCsch[c + d*x]] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && IntegerQ[m] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcSech[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcSech[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCsch[c_ + d_.*x_])^p_., x_Symbol] := 1/d*Subst[Int[((d*e - c*f)/d + f*x/d)^m*(a + b*ArcCsch[x])^p, x], x, c + d*x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p, 0] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcSech[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(e + f*x)^m*(a + b*ArcSech[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && Not[IGtQ[p, 0]] +Int[(e_. + f_.*x_)^m_.*(a_. + b_.*ArcCsch[c_ + d_.*x_])^p_, x_Symbol] := Unintegrable[(e + f*x)^m*(a + b*ArcCsch[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && Not[IGtQ[p, 0]] +Int[u_.*ArcSech[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcCosh[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[u_.*ArcCsch[c_./(a_. + b_.*x_^n_.)]^m_., x_Symbol] := Int[u*ArcSinh[a/c + b*x^n/c]^m, x] /; FreeQ[{a, b, c, n, m}, x] +Int[E^ArcSech[a_.*x_], x_Symbol] := x*E^ArcSech[a*x] + Log[x]/a + 1/a*Int[1/(x*(1 - a*x))*Sqrt[(1 - a*x)/(1 + a*x)], x] /; FreeQ[a, x] +Int[E^ArcSech[a_.*x_^p_], x_Symbol] := x*E^ArcSech[a*x^p] + p/a*Int[1/x^p, x] + p*Sqrt[1 + a*x^p]/a*Sqrt[1/(1 + a*x^p)]* Int[1/(x^p*Sqrt[1 + a*x^p]*Sqrt[1 - a*x^p]), x] /; FreeQ[{a, p}, x] +Int[E^ArcCsch[a_.*x_^p_.], x_Symbol] := 1/a*Int[1/x^p, x] + Int[Sqrt[1 + 1/(a^2*x^(2*p))], x] /; FreeQ[{a, p}, x] +Int[E^(n_.*ArcSech[u_]), x_Symbol] := Int[(1/u + Sqrt[(1 - u)/(1 + u)] + 1/u*Sqrt[(1 - u)/(1 + u)])^n, x] /; IntegerQ[n] +Int[E^(n_.*ArcCsch[u_]), x_Symbol] := Int[(1/u + Sqrt[1 + 1/u^2])^n, x] /; IntegerQ[n] +Int[E^ArcSech[a_.*x_^p_.]/x_, x_Symbol] := -1/(a*p*x^p) + Sqrt[1 + a*x^p]/a*Sqrt[1/(1 + a*x^p)]* Int[Sqrt[1 + a*x^p]*Sqrt[1 - a*x^p]/x^(p + 1), x] /; FreeQ[{a, p}, x] +Int[x_^m_.*E^ArcSech[a_.*x_^p_.], x_Symbol] := x^(m + 1)*E^ArcSech[a*x^p]/(m + 1) + p/(a*(m + 1))*Int[x^(m - p), x] + p*Sqrt[1 + a*x^p]/(a*(m + 1))*Sqrt[1/(1 + a*x^p)]* Int[x^(m - p)/(Sqrt[1 + a*x^p]*Sqrt[1 - a*x^p]), x] /; FreeQ[{a, m, p}, x] && NeQ[m, -1] +Int[x_^m_.*E^ArcCsch[a_.*x_^p_.], x_Symbol] := 1/a*Int[x^(m - p), x] + Int[x^m*Sqrt[1 + 1/(a^2*x^(2*p))], x] /; FreeQ[{a, m, p}, x] +Int[x_^m_.*E^(n_.*ArcSech[u_]), x_Symbol] := Int[x^m*(1/u + Sqrt[(1 - u)/(1 + u)] + 1/u*Sqrt[(1 - u)/(1 + u)])^ n, x] /; FreeQ[m, x] && IntegerQ[n] +Int[x_^m_.*E^(n_.*ArcCsch[u_]), x_Symbol] := Int[x^m*(1/u + Sqrt[1 + 1/u^2])^n, x] /; FreeQ[m, x] && IntegerQ[n] +Int[E^(ArcSech[c_.*x_])/(a_ + b_.*x_^2), x_Symbol] := 1/(a*c)*Int[Sqrt[1/(1 + c*x)]/(x*Sqrt[1 - c*x]), x] + 1/c*Int[1/(x*(a + b*x^2)), x] /; FreeQ[{a, b, c}, x] && EqQ[b + a*c^2, 0] +Int[E^(ArcCsch[c_.*x_])/(a_ + b_.*x_^2), x_Symbol] := 1/(a*c^2)*Int[1/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x] + 1/c*Int[1/(x*(a + b*x^2)), x] /; FreeQ[{a, b, c}, x] && EqQ[b - a*c^2, 0] +Int[(d_.*x_)^m_.*E^(ArcSech[c_.*x_])/(a_ + b_.*x_^2), x_Symbol] := d/(a*c)*Int[(d*x)^(m - 1)*Sqrt[1/(1 + c*x)]/Sqrt[1 - c*x], x] + d/c*Int[(d*x)^(m - 1)/(a + b*x^2), x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b + a*c^2, 0] +Int[(d_.*x_)^m_.*E^(ArcCsch[c_.*x_])/(a_ + b_.*x_^2), x_Symbol] := d^2/(a*c^2)*Int[(d*x)^(m - 2)/Sqrt[1 + 1/(c^2*x^2)], x] + d/c*Int[(d*x)^(m - 1)/(a + b*x^2), x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b - a*c^2, 0] +Int[ArcSech[u_], x_Symbol] := x*ArcSech[u] + Sqrt[1 - u^2]/(u*Sqrt[-1 + 1/u]*Sqrt[1 + 1/u])* Int[SimplifyIntegrand[x*D[u, x]/(u*Sqrt[1 - u^2]), x], x] /; InverseFunctionFreeQ[u, x] && Not[FunctionOfExponentialQ[u, x]] +Int[ArcCsch[u_], x_Symbol] := x*ArcCsch[u] - u/Sqrt[-u^2]* Int[SimplifyIntegrand[x*D[u, x]/(u*Sqrt[-1 - u^2]), x], x] /; InverseFunctionFreeQ[u, x] && Not[FunctionOfExponentialQ[u, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcSech[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcSech[u])/(d*(m + 1)) + b*Sqrt[1 - u^2]/(d*(m + 1)*u*Sqrt[-1 + 1/u]*Sqrt[1 + 1/u])* Int[SimplifyIntegrand[(c + d*x)^(m + 1)*D[u, x]/(u*Sqrt[1 - u^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && Not[FunctionOfExponentialQ[u, x]] +Int[(c_. + d_.*x_)^m_.*(a_. + b_.*ArcCsch[u_]), x_Symbol] := (c + d*x)^(m + 1)*(a + b*ArcCsch[u])/(d*(m + 1)) - b*u/(d*(m + 1)*Sqrt[-u^2])* Int[SimplifyIntegrand[(c + d*x)^(m + 1)* D[u, x]/(u*Sqrt[-1 - u^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && Not[FunctionOfQ[(c + d*x)^(m + 1), u, x]] && Not[FunctionOfExponentialQ[u, x]] +Int[v_*(a_. + b_.*ArcSech[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcSech[u]), w, x] + b*Sqrt[1 - u^2]/(u*Sqrt[-1 + 1/u]*Sqrt[1 + 1/u])* Int[SimplifyIntegrand[w*D[u, x]/(u*Sqrt[1 - u^2]), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] +Int[v_*(a_. + b_.*ArcCsch[u_]), x_Symbol] := With[{w = IntHide[v, x]}, Dist[(a + b*ArcCsch[u]), w, x] - b*u/Sqrt[-u^2]* Int[SimplifyIntegrand[w*D[u, x]/(u*Sqrt[-1 - u^2]), x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && Not[MatchQ[v, (c_. + d_.*x)^m_. /; FreeQ[{c, d, m}, x]]] diff --git a/IntegrationRules/8 Special functions/8.1 Error functions.m b/IntegrationRules/8 Special functions/8.1 Error functions.m new file mode 100755 index 0000000..e5daf8a --- /dev/null +++ b/IntegrationRules/8 Special functions/8.1 Error functions.m @@ -0,0 +1,72 @@ + +(* ::Subsection::Closed:: *) +(* 8.1 Error functions *) +Int[Erf[a_. + b_.*x_], x_Symbol] := (a + b*x)*Erf[a + b*x]/b + 1/(b*Sqrt[Pi]*E^(a + b*x)^2) /; FreeQ[{a, b}, x] +Int[Erfc[a_. + b_.*x_], x_Symbol] := (a + b*x)*Erfc[a + b*x]/b - 1/(b*Sqrt[Pi]*E^(a + b*x)^2) /; FreeQ[{a, b}, x] +Int[Erfi[a_. + b_.*x_], x_Symbol] := (a + b*x)*Erfi[a + b*x]/b - E^(a + b*x)^2/(b*Sqrt[Pi]) /; FreeQ[{a, b}, x] +Int[Erf[a_. + b_.*x_]^2, x_Symbol] := (a + b*x)*Erf[a + b*x]^2/b - 4/Sqrt[Pi]*Int[(a + b*x)*Erf[a + b*x]/E^(a + b*x)^2, x] /; FreeQ[{a, b}, x] +Int[Erfc[a_. + b_.*x_]^2, x_Symbol] := (a + b*x)*Erfc[a + b*x]^2/b + 4/Sqrt[Pi]*Int[(a + b*x)*Erfc[a + b*x]/E^(a + b*x)^2, x] /; FreeQ[{a, b}, x] +Int[Erfi[a_. + b_.*x_]^2, x_Symbol] := (a + b*x)*Erfi[a + b*x]^2/b - 4/Sqrt[Pi]*Int[(a + b*x)*E^(a + b*x)^2*Erfi[a + b*x], x] /; FreeQ[{a, b}, x] +Int[Erf[a_. + b_.*x_]^n_, x_Symbol] := Unintegrable[Erf[a + b*x]^n, x] /; FreeQ[{a, b, n}, x] && NeQ[n, 1] && NeQ[n, 2] +Int[Erfc[a_. + b_.*x_]^n_, x_Symbol] := Unintegrable[Erfc[a + b*x]^n, x] /; FreeQ[{a, b, n}, x] && NeQ[n, 1] && NeQ[n, 2] +Int[Erfi[a_. + b_.*x_]^n_, x_Symbol] := Unintegrable[Erfi[a + b*x]^n, x] /; FreeQ[{a, b, n}, x] && NeQ[n, 1] && NeQ[n, 2] +Int[Erf[b_.*x_]/x_, x_Symbol] := 2*b*x/Sqrt[Pi]* HypergeometricPFQ[{1/2, 1/2}, {3/2, 3/2}, -b^2*x^2] /; FreeQ[b, x] +Int[Erfc[b_.*x_]/x_, x_Symbol] := Log[x] - Int[Erf[b*x]/x, x] /; FreeQ[b, x] +Int[Erfi[b_.*x_]/x_, x_Symbol] := 2*b*x/Sqrt[Pi]*HypergeometricPFQ[{1/2, 1/2}, {3/2, 3/2}, b^2*x^2] /; FreeQ[b, x] +Int[(c_. + d_.*x_)^m_.*Erf[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*Erf[a + b*x]/(d*(m + 1)) - 2*b/(Sqrt[Pi]*d*(m + 1))* Int[(c + d*x)^(m + 1)/E^(a + b*x)^2, x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[(c_. + d_.*x_)^m_.*Erfc[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*Erfc[a + b*x]/(d*(m + 1)) + 2*b/(Sqrt[Pi]*d*(m + 1))* Int[(c + d*x)^(m + 1)/E^(a + b*x)^2, x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[(c_. + d_.*x_)^m_.*Erfi[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*Erfi[a + b*x]/(d*(m + 1)) - 2*b/(Sqrt[Pi]*d*(m + 1))* Int[(c + d*x)^(m + 1)*E^(a + b*x)^2, x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[x_^m_.*Erf[b_.*x_]^2, x_Symbol] := x^(m + 1)*Erf[b*x]^2/(m + 1) - 4*b/(Sqrt[Pi]*(m + 1))*Int[x^(m + 1)*E^(-b^2*x^2)*Erf[b*x], x] /; FreeQ[b, x] && (IGtQ[m, 0] || ILtQ[(m + 1)/2, 0]) +Int[x_^m_.*Erfc[b_.*x_]^2, x_Symbol] := x^(m + 1)*Erfc[b*x]^2/(m + 1) + 4*b/(Sqrt[Pi]*(m + 1))*Int[x^(m + 1)*E^(-b^2*x^2)*Erfc[b*x], x] /; FreeQ[b, x] && (IGtQ[m, 0] || ILtQ[(m + 1)/2, 0]) +Int[x_^m_.*Erfi[b_.*x_]^2, x_Symbol] := x^(m + 1)*Erfi[b*x]^2/(m + 1) - 4*b/(Sqrt[Pi]*(m + 1))*Int[x^(m + 1)*E^(b^2*x^2)*Erfi[b*x], x] /; FreeQ[b, x] && (IGtQ[m, 0] || ILtQ[(m + 1)/2, 0]) +Int[(c_. + d_.*x_)^m_.*Erf[a_ + b_.*x_]^2, x_Symbol] := 1/b^(m + 1)* Subst[Int[ExpandIntegrand[Erf[x]^2, (b*c - a*d + d*x)^m, x], x], x, a + b*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*Erfc[a_ + b_.*x_]^2, x_Symbol] := 1/b^(m + 1)* Subst[Int[ExpandIntegrand[Erfc[x]^2, (b*c - a*d + d*x)^m, x], x], x, a + b*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*Erfi[a_ + b_.*x_]^2, x_Symbol] := 1/b^(m + 1)* Subst[Int[ExpandIntegrand[Erfi[x]^2, (b*c - a*d + d*x)^m, x], x], x, a + b*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*Erf[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(c + d*x)^m*Erf[a + b*x]^n, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[(c_. + d_.*x_)^m_.*Erfc[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(c + d*x)^m*Erfc[a + b*x]^n, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[(c_. + d_.*x_)^m_.*Erfi[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(c + d*x)^m*Erfi[a + b*x]^n, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[E^(c_. + d_.*x_^2)*Erf[b_.*x_]^n_., x_Symbol] := E^c*Sqrt[Pi]/(2*b)*Subst[Int[x^n, x], x, Erf[b*x]] /; FreeQ[{b, c, d, n}, x] && EqQ[d, -b^2] +Int[E^(c_. + d_.*x_^2)*Erfc[b_.*x_]^n_., x_Symbol] := -E^c*Sqrt[Pi]/(2*b)*Subst[Int[x^n, x], x, Erfc[b*x]] /; FreeQ[{b, c, d, n}, x] && EqQ[d, -b^2] +Int[E^(c_. + d_.*x_^2)*Erfi[b_.*x_]^n_., x_Symbol] := E^c*Sqrt[Pi]/(2*b)*Subst[Int[x^n, x], x, Erfi[b*x]] /; FreeQ[{b, c, d, n}, x] && EqQ[d, b^2] +Int[E^(c_. + d_.*x_^2)*Erf[b_.*x_], x_Symbol] := b*E^c*x^2/Sqrt[Pi]*HypergeometricPFQ[{1, 1}, {3/2, 2}, b^2*x^2] /; FreeQ[{b, c, d}, x] && EqQ[d, b^2] +Int[E^(c_. + d_.*x_^2)*Erfc[b_.*x_], x_Symbol] := Int[E^(c + d*x^2), x] - Int[E^(c + d*x^2)*Erf[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d, b^2] +Int[E^(c_. + d_.*x_^2)*Erfi[b_.*x_], x_Symbol] := b*E^c*x^2/Sqrt[Pi]*HypergeometricPFQ[{1, 1}, {3/2, 2}, -b^2*x^2] /; FreeQ[{b, c, d}, x] && EqQ[d, -b^2] +Int[E^(c_. + d_.*x_^2)*Erf[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[E^(c + d*x^2)*Erf[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] +Int[E^(c_. + d_.*x_^2)*Erfc[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[E^(c + d*x^2)*Erfc[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] +Int[E^(c_. + d_.*x_^2)*Erfi[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[E^(c + d*x^2)*Erfi[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] +Int[x_*E^(c_. + d_.*x_^2)*Erf[a_. + b_.*x_], x_Symbol] := E^(c + d*x^2)*Erf[a + b*x]/(2*d) - b/(d*Sqrt[Pi])*Int[E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x] /; FreeQ[{a, b, c, d}, x] +Int[x_*E^(c_. + d_.*x_^2)*Erfc[a_. + b_.*x_], x_Symbol] := E^(c + d*x^2)*Erfc[a + b*x]/(2*d) + b/(d*Sqrt[Pi])*Int[E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x] /; FreeQ[{a, b, c, d}, x] +Int[x_*E^(c_. + d_.*x_^2)*Erfi[a_. + b_.*x_], x_Symbol] := E^(c + d*x^2)*Erfi[a + b*x]/(2*d) - b/(d*Sqrt[Pi])*Int[E^(a^2 + c + 2*a*b*x + (b^2 + d)*x^2), x] /; FreeQ[{a, b, c, d}, x] +Int[x_^m_*E^(c_. + d_.*x_^2)*Erf[a_. + b_.*x_], x_Symbol] := x^(m - 1)*E^(c + d*x^2)*Erf[a + b*x]/(2*d) - b/(d*Sqrt[Pi])* Int[x^(m - 1)*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x] - (m - 1)/(2*d)*Int[x^(m - 2)*E^(c + d*x^2)*Erf[a + b*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 1] +Int[x_^m_*E^(c_. + d_.*x_^2)*Erfc[a_. + b_.*x_], x_Symbol] := x^(m - 1)*E^(c + d*x^2)*Erfc[a + b*x]/(2*d) + b/(d*Sqrt[Pi])* Int[x^(m - 1)*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x] - (m - 1)/(2*d)*Int[x^(m - 2)*E^(c + d*x^2)*Erfc[a + b*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 1] +Int[x_^m_*E^(c_. + d_.*x_^2)*Erfi[a_. + b_.*x_], x_Symbol] := x^(m - 1)*E^(c + d*x^2)*Erfi[a + b*x]/(2*d) - b/(d*Sqrt[Pi])* Int[x^(m - 1)*E^(a^2 + c + 2*a*b*x + (b^2 + d)*x^2), x] - (m - 1)/(2*d)*Int[x^(m - 2)*E^(c + d*x^2)*Erfi[a + b*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 1] +Int[E^(c_. + d_.*x_^2)*Erf[b_.*x_]/x_, x_Symbol] := 2*b*E^c*x/Sqrt[Pi]* HypergeometricPFQ[{1/2, 1}, {3/2, 3/2}, b^2*x^2] /; FreeQ[{b, c, d}, x] && EqQ[d, b^2] +Int[E^(c_. + d_.*x_^2)*Erfc[b_.*x_]/x_, x_Symbol] := Int[E^(c + d*x^2)/x, x] - Int[E^(c + d*x^2)*Erf[b*x]/x, x] /; FreeQ[{b, c, d}, x] && EqQ[d, b^2] +Int[E^(c_. + d_.*x_^2)*Erfi[b_.*x_]/x_, x_Symbol] := 2*b*E^c*x/Sqrt[Pi]* HypergeometricPFQ[{1/2, 1}, {3/2, 3/2}, -b^2*x^2] /; FreeQ[{b, c, d}, x] && EqQ[d, -b^2] +Int[x_^m_*E^(c_. + d_.*x_^2)*Erf[a_. + b_.*x_], x_Symbol] := x^(m + 1)*E^(c + d*x^2)*Erf[a + b*x]/(m + 1) - 2*b/((m + 1)*Sqrt[Pi])* Int[x^(m + 1)*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x] - 2*d/(m + 1)*Int[x^(m + 2)*E^(c + d*x^2)*Erf[a + b*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[m, -1] +Int[x_^m_*E^(c_. + d_.*x_^2)*Erfc[a_. + b_.*x_], x_Symbol] := x^(m + 1)*E^(c + d*x^2)*Erfc[a + b*x]/(m + 1) + 2*b/((m + 1)*Sqrt[Pi])* Int[x^(m + 1)*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x] - 2*d/(m + 1)*Int[x^(m + 2)*E^(c + d*x^2)*Erfc[a + b*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[m, -1] +Int[x_^m_*E^(c_. + d_.*x_^2)*Erfi[a_. + b_.*x_], x_Symbol] := x^(m + 1)*E^(c + d*x^2)*Erfi[a + b*x]/(m + 1) - 2*b/((m + 1)*Sqrt[Pi])* Int[x^(m + 1)*E^(a^2 + c + 2*a*b*x + (b^2 + d)*x^2), x] - 2*d/(m + 1)*Int[x^(m + 2)*E^(c + d*x^2)*Erfi[a + b*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[m, -1] +Int[(e_.*x_)^m_.*E^(c_. + d_.*x_^2)*Erf[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(e*x)^m*E^(c + d*x^2)*Erf[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[(e_.*x_)^m_.*E^(c_. + d_.*x_^2)*Erfc[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(e*x)^m*E^(c + d*x^2)*Erfc[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[(e_.*x_)^m_.*E^(c_. + d_.*x_^2)*Erfi[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(e*x)^m*E^(c + d*x^2)*Erfi[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[Erf[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*Erf[d*(a + b*Log[c*x^n])] - 2*b*d*n/(Sqrt[Pi])*Int[1/E^(d*(a + b*Log[c*x^n]))^2, x] /; FreeQ[{a, b, c, d, n}, x] +Int[Erfc[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*Erfc[d*(a + b*Log[c*x^n])] + 2*b*d*n/(Sqrt[Pi])*Int[1/E^(d*(a + b*Log[c*x^n]))^2, x] /; FreeQ[{a, b, c, d, n}, x] +Int[Erfi[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*Erfi[d*(a + b*Log[c*x^n])] - 2*b*d*n/(Sqrt[Pi])*Int[E^(d*(a + b*Log[c*x^n]))^2, x] /; FreeQ[{a, b, c, d, n}, x] +Int[F_[d_.*(a_. + b_.*Log[c_.*x_^n_.])]/x_, x_Symbol] := 1/n*Subst[F[d*(a + b*x)], x, Log[c*x^n]] /; FreeQ[{a, b, c, d, n}, x] && MemberQ[{Erf, Erfc, Erfi}, F] +Int[(e_.*x_)^m_.*Erf[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*Erf[d*(a + b*Log[c*x^n])]/(e*(m + 1)) - 2*b*d*n/(Sqrt[Pi]*(m + 1))* Int[(e*x)^m/E^(d*(a + b*Log[c*x^n]))^2, x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[(e_.*x_)^m_.*Erfc[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*Erfc[d*(a + b*Log[c*x^n])]/(e*(m + 1)) + 2*b*d*n/(Sqrt[Pi]*(m + 1))* Int[(e*x)^m/E^(d*(a + b*Log[c*x^n]))^2, x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[(e_.*x_)^m_.*Erfi[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*Erfi[d*(a + b*Log[c*x^n])]/(e*(m + 1)) - 2*b*d*n/(Sqrt[Pi]*(m + 1))* Int[(e*x)^m*E^(d*(a + b*Log[c*x^n]))^2, x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[Sin[c_. + d_.*x_^2]*Erf[b_.*x_], x_Symbol] := I/2*Int[E^(-I*c - I*d*x^2)*Erf[b*x], x] - I/2*Int[E^(I*c + I*d*x^2)*Erf[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4] +Int[Sin[c_. + d_.*x_^2]*Erfc[b_.*x_], x_Symbol] := I/2*Int[E^(-I*c - I*d*x^2)*Erfc[b*x], x] - I/2*Int[E^(I*c + I*d*x^2)*Erfc[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4] +Int[Sin[c_. + d_.*x_^2]*Erfi[b_.*x_], x_Symbol] := I/2*Int[E^(-I*c - I*d*x^2)*Erfi[b*x], x] - I/2*Int[E^(I*c + I*d*x^2)*Erfi[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4] +Int[Cos[c_. + d_.*x_^2]*Erf[b_.*x_], x_Symbol] := 1/2*Int[E^(-I*c - I*d*x^2)*Erf[b*x], x] + 1/2*Int[E^(I*c + I*d*x^2)*Erf[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4] +Int[Cos[c_. + d_.*x_^2]*Erfc[b_.*x_], x_Symbol] := 1/2*Int[E^(-I*c - I*d*x^2)*Erfc[b*x], x] + 1/2*Int[E^(I*c + I*d*x^2)*Erfc[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4] +Int[Cos[c_. + d_.*x_^2]*Erfi[b_.*x_], x_Symbol] := 1/2*Int[E^(-I*c - I*d*x^2)*Erfi[b*x], x] + 1/2*Int[E^(I*c + I*d*x^2)*Erfi[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4] +Int[Sinh[c_. + d_.*x_^2]*Erf[b_.*x_], x_Symbol] := 1/2*Int[E^(c + d*x^2)*Erf[b*x], x] - 1/2*Int[E^(-c - d*x^2)*Erf[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4] +Int[Sinh[c_. + d_.*x_^2]*Erfc[b_.*x_], x_Symbol] := 1/2*Int[E^(c + d*x^2)*Erfc[b*x], x] - 1/2*Int[E^(-c - d*x^2)*Erfc[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4] +Int[Sinh[c_. + d_.*x_^2]*Erfi[b_.*x_], x_Symbol] := 1/2*Int[E^(c + d*x^2)*Erfi[b*x], x] - 1/2*Int[E^(-c - d*x^2)*Erfi[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4] +Int[Cosh[c_. + d_.*x_^2]*Erf[b_.*x_], x_Symbol] := 1/2*Int[E^(c + d*x^2)*Erf[b*x], x] + 1/2*Int[E^(-c - d*x^2)*Erf[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4] +Int[Cosh[c_. + d_.*x_^2]*Erfc[b_.*x_], x_Symbol] := 1/2*Int[E^(c + d*x^2)*Erfc[b*x], x] + 1/2*Int[E^(-c - d*x^2)*Erfc[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4] +Int[Cosh[c_. + d_.*x_^2]*Erfi[b_.*x_], x_Symbol] := 1/2*Int[E^(c + d*x^2)*Erfi[b*x], x] + 1/2*Int[E^(-c - d*x^2)*Erfi[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4] +Int[F_[f_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])], x_Symbol] := 1/e*Subst[Int[F[f*(a + b*Log[c*x^n])], x], x, d + e*x] /; FreeQ[{a, b, c, d, e, f, n}, x] && MemberQ[{Erf, Erfc, Erfi, FresnelS, FresnelC, ExpIntegralEi, SinIntegral, CosIntegral, SinhIntegral, CoshIntegral}, F] +Int[(g_ + h_. x_)^m_.*F_[f_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])], x_Symbol] := 1/e*Subst[Int[(g*x/d)^m*F[f*(a + b*Log[c*x^n])], x], x, d + e*x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && EqQ[e*f - d*g, 0] && MemberQ[{Erf, Erfc, Erfi, FresnelS, FresnelC, ExpIntegralEi, SinIntegral, CosIntegral, SinhIntegral, CoshIntegral}, F] diff --git a/IntegrationRules/8 Special functions/8.10 Bessel functions.m b/IntegrationRules/8 Special functions/8.10 Bessel functions.m new file mode 100755 index 0000000..22c3eb6 --- /dev/null +++ b/IntegrationRules/8 Special functions/8.10 Bessel functions.m @@ -0,0 +1,7 @@ + +(* ::Subsection::Closed:: *) +(* 8.10 Bessel functions *) +Int[BesselJ[1, a_. + b_.*x_], x_Symbol] := -BesselJ[0, a + b*x]/b /; FreeQ[{a, b}, x] +Int[BesselJ[n_, a_. + b_.*x_], x_Symbol] := -2*BesselJ[n - 1, a + b*x]/b + Int[BesselJ[n - 2, a + b*x], x] /; FreeQ[{a, b}, x] && IGtQ[(n - 1)/2, 0] +(* Int[BesselJ[n_,a_.+b_.*x_],x_Symbol] := (-1)^n*Int[BesselJ[-n,a+b*x],x] /; FreeQ[{a,b},x] && ILtQ[n,0] *) +Int[BesselJ[n_, a_. + b_.*x_], x_Symbol] := (a + b*x)^(n + 1)* HypergeometricPFQ[{(n + 1)/2}, {(n + 3)/2, n + 1}, -1/4*(a + b*x)^2]/(2^n*b*Gamma[n + 2]) /; FreeQ[{a, b, n}, x] diff --git a/IntegrationRules/8 Special functions/8.2 Fresnel integral functions.m b/IntegrationRules/8 Special functions/8.2 Fresnel integral functions.m new file mode 100755 index 0000000..ef156fb --- /dev/null +++ b/IntegrationRules/8 Special functions/8.2 Fresnel integral functions.m @@ -0,0 +1,58 @@ + +(* ::Subsection::Closed:: *) +(* 8.2 Fresnel integral functions *) +Int[FresnelS[a_. + b_.*x_], x_Symbol] := (a + b*x)*FresnelS[a + b*x]/b + Cos[Pi/2*(a + b*x)^2]/(b*Pi) /; FreeQ[{a, b}, x] +Int[FresnelC[a_. + b_.*x_], x_Symbol] := (a + b*x)*FresnelC[a + b*x]/b - Sin[Pi/2*(a + b*x)^2]/(b*Pi) /; FreeQ[{a, b}, x] +Int[FresnelS[a_. + b_.*x_]^2, x_Symbol] := (a + b*x)*FresnelS[a + b*x]^2/b - 2*Int[(a + b*x)*Sin[Pi/2*(a + b*x)^2]*FresnelS[a + b*x], x] /; FreeQ[{a, b}, x] +Int[FresnelC[a_. + b_.*x_]^2, x_Symbol] := (a + b*x)*FresnelC[a + b*x]^2/b - 2*Int[(a + b*x)*Cos[Pi/2*(a + b*x)^2]*FresnelC[a + b*x], x] /; FreeQ[{a, b}, x] +Int[FresnelS[a_. + b_.*x_]^n_, x_Symbol] := Unintegrable[FresnelS[a + b*x]^n, x] /; FreeQ[{a, b, n}, x] && NeQ[n, 1] && NeQ[n, 2] +Int[FresnelC[a_. + b_.*x_]^n_, x_Symbol] := Unintegrable[FresnelC[a + b*x]^n, x] /; FreeQ[{a, b, n}, x] && NeQ[n, 1] && NeQ[n, 2] +Int[FresnelS[b_.*x_]/x_, x_Symbol] := (1 + I)/4*Int[Erf[Sqrt[Pi]/2*(1 + I)*b*x]/x, x] + (1 - I)/4* Int[Erf[Sqrt[Pi]/2*(1 - I)*b*x]/x, x] /; FreeQ[b, x] +Int[FresnelC[b_.*x_]/x_, x_Symbol] := (1 - I)/4*Int[Erf[Sqrt[Pi]/2*(1 + I)*b*x]/x, x] + (1 + I)/4* Int[Erf[Sqrt[Pi]/2*(1 - I)*b*x]/x, x] /; FreeQ[b, x] +Int[(d_.*x_)^m_.*FresnelS[b_.*x_], x_Symbol] := (d*x)^(m + 1)*FresnelS[b*x]/(d*(m + 1)) - b/(d*(m + 1))*Int[(d*x)^(m + 1)*Sin[Pi/2*b^2*x^2], x] /; FreeQ[{b, d, m}, x] && NeQ[m, -1] +Int[(d_.*x_)^m_.*FresnelC[b_.*x_], x_Symbol] := (d*x)^(m + 1)*FresnelC[b*x]/(d*(m + 1)) - b/(d*(m + 1))*Int[(d*x)^(m + 1)*Cos[Pi/2*b^2*x^2], x] /; FreeQ[{b, d, m}, x] && NeQ[m, -1] +Int[(c_. + d_.*x_)^m_.*FresnelS[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*FresnelS[a + b*x]/(d*(m + 1)) - b/(d*(m + 1))*Int[(c + d*x)^(m + 1)*Sin[Pi/2*(a + b*x)^2], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*FresnelC[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*FresnelC[a + b*x]/(d*(m + 1)) - b/(d*(m + 1))*Int[(c + d*x)^(m + 1)*Cos[Pi/2*(a + b*x)^2], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[x_^m_.*FresnelS[b_.*x_]^2, x_Symbol] := x^(m + 1)*FresnelS[b*x]^2/(m + 1) - 2*b/(m + 1)*Int[x^(m + 1)*Sin[Pi/2*b^2*x^2]*FresnelS[b*x], x] /; FreeQ[b, x] && IntegerQ[m] && NeQ[m, -1] +Int[x_^m_.*FresnelC[b_.*x_]^2, x_Symbol] := x^(m + 1)*FresnelC[b*x]^2/(m + 1) - 2*b/(m + 1)*Int[x^(m + 1)*Cos[Pi/2*b^2*x^2]*FresnelC[b*x], x] /; FreeQ[b, x] && IntegerQ[m] && NeQ[m, -1] +Int[(c_. + d_.*x_)^m_.*FresnelS[a_ + b_.*x_]^2, x_Symbol] := 1/b^(m + 1)* Subst[Int[ExpandIntegrand[FresnelS[x]^2, (b*c - a*d + d*x)^m, x], x], x, a + b*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*FresnelC[a_ + b_.*x_]^2, x_Symbol] := 1/b^(m + 1)* Subst[Int[ExpandIntegrand[FresnelC[x]^2, (b*c - a*d + d*x)^m, x], x], x, a + b*x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*FresnelS[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(c + d*x)^m*FresnelS[a + b*x]^n, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[(c_. + d_.*x_)^m_.*FresnelC[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(c + d*x)^m*FresnelC[a + b*x]^n, x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[E^(c_. + d_.*x_^2)*FresnelS[b_.*x_], x_Symbol] := (1 + I)/4* Int[E^(c + d*x^2)*Erf[Sqrt[Pi]/2*(1 + I)*b*x], x] + (1 - I)/4* Int[E^(c + d*x^2)*Erf[Sqrt[Pi]/2*(1 - I)*b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -Pi^2/4*b^4] +Int[E^(c_. + d_.*x_^2)*FresnelC[b_.*x_], x_Symbol] := (1 - I)/4* Int[E^(c + d*x^2)*Erf[Sqrt[Pi]/2*(1 + I)*b*x], x] + (1 + I)/4* Int[E^(c + d*x^2)*Erf[Sqrt[Pi]/2*(1 - I)*b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -Pi^2/4*b^4] +Int[E^(c_. + d_.*x_^2)*FresnelS[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[E^(c + d*x^2)*FresnelS[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] +Int[E^(c_. + d_.*x_^2)*FresnelC[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[E^(c + d*x^2)*FresnelC[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] +Int[Sin[d_.*x_^2]*FresnelS[b_.*x_]^n_., x_Symbol] := Pi*b/(2*d)*Subst[Int[x^n, x], x, FresnelS[b*x]] /; FreeQ[{b, d, n}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[Cos[d_.*x_^2]*FresnelC[b_.*x_]^n_., x_Symbol] := Pi*b/(2*d)*Subst[Int[x^n, x], x, FresnelC[b*x]] /; FreeQ[{b, d, n}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[Sin[c_ + d_.*x_^2]*FresnelS[b_.*x_], x_Symbol] := Sin[c]*Int[Cos[d*x^2]*FresnelS[b*x], x] + Cos[c]*Int[Sin[d*x^2]*FresnelS[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[Cos[c_ + d_.*x_^2]*FresnelC[b_.*x_], x_Symbol] := Cos[c]*Int[Cos[d*x^2]*FresnelC[b*x], x] - Sin[c]*Int[Sin[d*x^2]*FresnelC[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[Sin[c_. + d_.*x_^2]*FresnelS[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[Sin[c + d*x^2]*FresnelS[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] +Int[Cos[c_. + d_.*x_^2]*FresnelC[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[Cos[c + d*x^2]*FresnelC[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] +Int[Cos[d_.*x_^2]*FresnelS[b_.*x_], x_Symbol] := FresnelC[b*x]*FresnelS[b*x]/(2*b) - 1/8*I*b*x^2* HypergeometricPFQ[{1, 1}, {3/2, 2}, -1/2*I*b^2*Pi*x^2] + 1/8*I*b*x^2* HypergeometricPFQ[{1, 1}, {3/2, 2}, 1/2*I*b^2*Pi*x^2] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[Sin[d_.*x_^2]*FresnelC[b_.*x_], x_Symbol] := b*Pi*FresnelC[b*x]*FresnelS[b*x]/(4*d) + 1/8*I*b*x^2*HypergeometricPFQ[{1, 1}, {3/2, 2}, -I*d*x^2] - 1/8*I*b*x^2*HypergeometricPFQ[{1, 1}, {3/2, 2}, I*d*x^2] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[Cos[c_ + d_.*x_^2]*FresnelS[b_.*x_], x_Symbol] := Cos[c]*Int[Cos[d*x^2]*FresnelS[b*x], x] - Sin[c]*Int[Sin[d*x^2]*FresnelS[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[Sin[c_ + d_.*x_^2]*FresnelC[b_.*x_], x_Symbol] := Sin[c]*Int[Cos[d*x^2]*FresnelC[b*x], x] + Cos[c]*Int[Sin[d*x^2]*FresnelC[b*x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[Cos[c_. + d_.*x_^2]*FresnelS[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[Cos[c + d*x^2]*FresnelS[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] +Int[Sin[c_. + d_.*x_^2]*FresnelC[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[Sin[c + d*x^2]*FresnelC[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x] +Int[x_*Sin[d_.*x_^2]*FresnelS[b_.*x_], x_Symbol] := -Cos[d*x^2]*FresnelS[b*x]/(2*d) + 1/(2*b*Pi)*Int[Sin[2*d*x^2], x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[x_*Cos[d_.*x_^2]*FresnelC[b_.*x_], x_Symbol] := Sin[d*x^2]*FresnelC[b*x]/(2*d) - b/(4*d)*Int[Sin[2*d*x^2], x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[x_^m_*Sin[d_.*x_^2]*FresnelS[b_.*x_], x_Symbol] := -x^(m - 1)*Cos[d*x^2]*FresnelS[b*x]/(2*d) + 1/(2*b*Pi)*Int[x^(m - 1)*Sin[2*d*x^2], x] + (m - 1)/(2*d)*Int[x^(m - 2)*Cos[d*x^2]*FresnelS[b*x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] && IGtQ[m, 1] +Int[x_^m_*Cos[d_.*x_^2]*FresnelC[b_.*x_], x_Symbol] := x^(m - 1)*Sin[d*x^2]*FresnelC[b*x]/(2*d) - b/(4*d)*Int[x^(m - 1)*Sin[2*d*x^2], x] - (m - 1)/(2*d)*Int[x^(m - 2)*Sin[d*x^2]*FresnelC[b*x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] && IGtQ[m, 1] +Int[x_^m_*Sin[d_.*x_^2]*FresnelS[b_.*x_], x_Symbol] := x^(m + 1)*Sin[d*x^2]*FresnelS[b*x]/(m + 1) - d*x^(m + 2)/(Pi*b*(m + 1)*(m + 2)) + d/(Pi*b*(m + 1))*Int[x^(m + 1)*Cos[2*d*x^2], x] - 2*d/(m + 1)*Int[x^(m + 2)*Cos[d*x^2]*FresnelS[b*x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] && ILtQ[m, -2] +Int[x_^m_*Cos[d_.*x_^2]*FresnelC[b_.*x_], x_Symbol] := x^(m + 1)*Cos[d*x^2]*FresnelC[b*x]/(m + 1) - b*x^(m + 2)/(2*(m + 1)*(m + 2)) - b/(2*(m + 1))*Int[x^(m + 1)*Cos[2*d*x^2], x] + 2*d/(m + 1)*Int[x^(m + 2)*Sin[d*x^2]*FresnelC[b*x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] && ILtQ[m, -2] +Int[(e_.*x_)^m_.*Sin[c_. + d_.*x_^2]*FresnelS[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(e*x)^m*Sin[c + d*x^2]*FresnelS[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[(e_.*x_)^m_.*Cos[c_. + d_.*x_^2]*FresnelC[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(e*x)^m*Cos[c + d*x^2]*FresnelC[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[x_*Cos[d_.*x_^2]*FresnelS[b_.*x_], x_Symbol] := Sin[d*x^2]*FresnelS[b*x]/(2*d) - 1/(Pi*b)*Int[Sin[d*x^2]^2, x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[x_*Sin[d_.*x_^2]*FresnelC[b_.*x_], x_Symbol] := -Cos[d*x^2]*FresnelC[b*x]/(2*d) + b/(2*d)*Int[Cos[d*x^2]^2, x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] +Int[x_^m_*Cos[d_.*x_^2]*FresnelS[b_.*x_], x_Symbol] := x^(m - 1)*Sin[d*x^2]*FresnelS[b*x]/(2*d) - 1/(Pi*b)*Int[x^(m - 1)*Sin[d*x^2]^2, x] - (m - 1)/(2*d)*Int[x^(m - 2)*Sin[d*x^2]*FresnelS[b*x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] && IGtQ[m, 1] +Int[x_^m_*Sin[d_.*x_^2]*FresnelC[b_.*x_], x_Symbol] := -x^(m - 1)*Cos[d*x^2]*FresnelC[b*x]/(2*d) + b/(2*d)*Int[x^(m - 1)*Cos[d*x^2]^2, x] + (m - 1)/(2*d)*Int[x^(m - 2)*Cos[d*x^2]*FresnelC[b*x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] && IGtQ[m, 1] +Int[x_^m_*Cos[d_.*x_^2]*FresnelS[b_.*x_], x_Symbol] := x^(m + 1)*Cos[d*x^2]*FresnelS[b*x]/(m + 1) - d/(Pi*b*(m + 1))*Int[x^(m + 1)*Sin[2*d*x^2], x] + 2*d/(m + 1)*Int[x^(m + 2)*Sin[d*x^2]*FresnelS[b*x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] && ILtQ[m, -1] +Int[x_^m_*Sin[d_.*x_^2]*FresnelC[b_.*x_], x_Symbol] := x^(m + 1)*Sin[d*x^2]*FresnelC[b*x]/(m + 1) - b/(2*(m + 1))*Int[x^(m + 1)*Sin[2*d*x^2], x] - 2*d/(m + 1)*Int[x^(m + 2)*Cos[d*x^2]*FresnelC[b*x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, Pi^2/4*b^4] && ILtQ[m, -1] +Int[(e_.*x_)^m_.*Cos[c_. + d_.*x_^2]*FresnelS[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(e*x)^m*Cos[c + d*x^2]*FresnelS[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[(e_.*x_)^m_.*Sin[c_. + d_.*x_^2]*FresnelC[a_. + b_.*x_]^n_., x_Symbol] := Unintegrable[(e*x)^m*Sin[c + d*x^2]*FresnelC[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x] +Int[FresnelS[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*FresnelS[d*(a + b*Log[c*x^n])] - b*d*n*Int[Sin[Pi/2*(d*(a + b*Log[c*x^n]))^2], x] /; FreeQ[{a, b, c, d, n}, x] +Int[FresnelC[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*FresnelC[d*(a + b*Log[c*x^n])] - b*d*n*Int[Cos[Pi/2*(d*(a + b*Log[c*x^n]))^2], x] /; FreeQ[{a, b, c, d, n}, x] +Int[F_[d_.*(a_. + b_.*Log[c_.*x_^n_.])]/x_, x_Symbol] := 1/n*Subst[F[d*(a + b*x)], x, Log[c*x^n]] /; FreeQ[{a, b, c, d, n}, x] && MemberQ[{FresnelS, FresnelC}, F] +Int[(e_.*x_)^m_.*FresnelS[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*FresnelS[d*(a + b*Log[c*x^n])]/(e*(m + 1)) - b*d*n/(m + 1)* Int[(e*x)^m*Sin[Pi/2*(d*(a + b*Log[c*x^n]))^2], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[(e_.*x_)^m_.*FresnelC[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*FresnelC[d*(a + b*Log[c*x^n])]/(e*(m + 1)) - b*d*n/(m + 1)* Int[(e*x)^m*Cos[Pi/2*(d*(a + b*Log[c*x^n]))^2], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] diff --git a/IntegrationRules/8 Special functions/8.3 Exponential integral functions.m b/IntegrationRules/8 Special functions/8.3 Exponential integral functions.m new file mode 100755 index 0000000..1e594c9 --- /dev/null +++ b/IntegrationRules/8 Special functions/8.3 Exponential integral functions.m @@ -0,0 +1,30 @@ + +(* ::Subsection::Closed:: *) +(* 8.3 Exponential integral functions *) +Int[ExpIntegralE[n_, a_. + b_.*x_], x_Symbol] := -ExpIntegralE[n + 1, a + b*x]/b /; FreeQ[{a, b, n}, x] +Int[x_^m_.*ExpIntegralE[n_, b_.*x_], x_Symbol] := -x^m*ExpIntegralE[n + 1, b*x]/b + m/b*Int[x^(m - 1)*ExpIntegralE[n + 1, b*x], x] /; FreeQ[b, x] && EqQ[m + n, 0] && IGtQ[m, 0] +Int[ExpIntegralE[1, b_.*x_]/x_, x_Symbol] := b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -b*x] - EulerGamma*Log[x] - 1/2*Log[b*x]^2 /; FreeQ[b, x] +Int[x_^m_*ExpIntegralE[n_, b_.*x_], x_Symbol] := x^(m + 1)*ExpIntegralE[n, b*x]/(m + 1) + b/(m + 1)*Int[x^(m + 1)*ExpIntegralE[n - 1, b*x], x] /; FreeQ[b, x] && EqQ[m + n, 0] && ILtQ[m, -1] +Int[(d_.*x_)^m_*ExpIntegralE[n_, b_.*x_], x_Symbol] := (d*x)^m*Gamma[m + 1]*Log[x]/(b*(b*x)^m) - (d*x)^(m + 1)* HypergeometricPFQ[{m + 1, m + 1}, {m + 2, m + 2}, -b* x]/(d*(m + 1)^2) /; FreeQ[{b, d, m, n}, x] && EqQ[m + n, 0] && Not[IntegerQ[m]] +Int[(d_.*x_)^m_.*ExpIntegralE[n_, b_.*x_], x_Symbol] := (d*x)^(m + 1)*ExpIntegralE[n, b*x]/(d*(m + n)) - (d*x)^(m + 1)* ExpIntegralE[-m, b*x]/(d*(m + n)) /; FreeQ[{b, d, m, n}, x] && NeQ[m + n, 0] +Int[(c_. + d_.*x_)^m_.*ExpIntegralE[n_, a_ + b_.*x_], x_Symbol] := -(c + d*x)^m*ExpIntegralE[n + 1, a + b*x]/b + d*m/b*Int[(c + d*x)^(m - 1)*ExpIntegralE[n + 1, a + b*x], x] /; FreeQ[{a, b, c, d, m, n}, x] && (IGtQ[m, 0] || ILtQ[n, 0] || GtQ[m, 0] && LtQ[n, -1]) +Int[(c_. + d_.*x_)^m_.*ExpIntegralE[n_, a_ + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*ExpIntegralE[n, a + b*x]/(d*(m + 1)) + b/(d*(m + 1))* Int[(c + d*x)^(m + 1)*ExpIntegralE[n - 1, a + b*x], x] /; FreeQ[{a, b, c, d, m, n}, x] && (IGtQ[n, 0] || LtQ[m, -1] && GtQ[n, 0]) && NeQ[m, -1] +Int[(c_. + d_.*x_)^m_.*ExpIntegralE[n_, a_ + b_.*x_], x_Symbol] := Unintegrable[(c + d*x)^m*ExpIntegralE[n, a + b*x], x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[ExpIntegralEi[a_. + b_.*x_], x_Symbol] := (a + b*x)*ExpIntegralEi[a + b*x]/b - E^(a + b*x)/b /; FreeQ[{a, b}, x] +Int[ExpIntegralEi[b_.*x_]/x_, x_Symbol] := Log[x]*(ExpIntegralEi[b*x] + ExpIntegralE[1, -b*x]) - Int[ExpIntegralE[1, -b*x]/x, x] /; FreeQ[b, x] +Int[ExpIntegralEi[a_. + b_.*x_]/(c_. + d_.*x_), x_Symbol] := Unintegrable[ExpIntegralEi[a + b*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[(c_. + d_.*x_)^m_.*ExpIntegralEi[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*ExpIntegralEi[a + b*x]/(d*(m + 1)) - b/(d*(m + 1))*Int[(c + d*x)^(m + 1)*E^(a + b*x)/(a + b*x), x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[ExpIntegralEi[a_. + b_.*x_]^2, x_Symbol] := (a + b*x)*ExpIntegralEi[a + b*x]^2/b - 2*Int[E^(a + b*x)*ExpIntegralEi[a + b*x], x] /; FreeQ[{a, b}, x] +Int[x_^m_.*ExpIntegralEi[b_.*x_]^2, x_Symbol] := x^(m + 1)*ExpIntegralEi[b*x]^2/(m + 1) - 2/(m + 1)*Int[x^m*E^(b*x)*ExpIntegralEi[b*x], x] /; FreeQ[b, x] && IGtQ[m, 0] +Int[x_^m_.*ExpIntegralEi[a_ + b_.*x_]^2, x_Symbol] := x^(m + 1)*ExpIntegralEi[a + b*x]^2/(m + 1) + a*x^m*ExpIntegralEi[a + b*x]^2/(b*(m + 1)) - 2/(m + 1)*Int[x^m*E^(a + b*x)*ExpIntegralEi[a + b*x], x] - a*m/(b*(m + 1))*Int[x^(m - 1)*ExpIntegralEi[a + b*x]^2, x] /; FreeQ[{a, b}, x] && IGtQ[m, 0] +(* Int[x_^m_.*ExpIntegralEi[a_+b_.*x_]^2,x_Symbol] := b*x^(m+2)*ExpIntegralEi[a+b*x]^2/(a*(m+1)) + x^(m+1)*ExpIntegralEi[a+b*x]^2/(m+1) - 2*b/(a*(m+1))*Int[x^(m+1)*E^(a+b*x)*ExpIntegralEi[a+b*x],x] - b*(m+2)/(a*(m+1))*Int[x^(m+1)*ExpIntegralEi[a+b*x]^2,x] /; FreeQ[{a,b},x] && ILtQ[m,-2] *) +Int[E^(a_. + b_.*x_)*ExpIntegralEi[c_. + d_.*x_], x_Symbol] := E^(a + b*x)*ExpIntegralEi[c + d*x]/b - d/b*Int[E^(a + c + (b + d)*x)/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[x_^m_.*E^(a_. + b_.*x_)*ExpIntegralEi[c_. + d_.*x_], x_Symbol] := x^m*E^(a + b*x)*ExpIntegralEi[c + d*x]/b - d/b*Int[x^m*E^(a + c + (b + d)*x)/(c + d*x), x] - m/b*Int[x^(m - 1)*E^(a + b*x)*ExpIntegralEi[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[x_^m_*E^(a_. + b_.*x_)*ExpIntegralEi[c_. + d_.*x_], x_Symbol] := x^(m + 1)*E^(a + b*x)*ExpIntegralEi[c + d*x]/(m + 1) - d/(m + 1)*Int[x^(m + 1)*E^(a + c + (b + d)*x)/(c + d*x), x] - b/(m + 1)*Int[x^(m + 1)*E^(a + b*x)*ExpIntegralEi[c + d*x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[m, -1] +Int[ExpIntegralEi[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*ExpIntegralEi[d*(a + b*Log[c*x^n])] - b*n*E^(a*d)*Int[(c*x^n)^(b*d)/(a + b*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, n}, x] +Int[ExpIntegralEi[d_.*(a_. + b_.*Log[c_.*x_^n_.])]/x_, x_Symbol] := 1/n*Subst[ExpIntegralEi[d*(a + b*x)], x, Log[c*x^n]] /; FreeQ[{a, b, c, d, n}, x] +Int[(e_.*x_)^m_.*ExpIntegralEi[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*ExpIntegralEi[d*(a + b*Log[c*x^n])]/(e*(m + 1)) - b*n*E^(a*d)*(c*x^n)^(b*d)/((m + 1)*(e*x)^(b*d*n))* Int[(e*x)^(m + b*d*n)/(a + b*Log[c*x^n]), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[LogIntegral[a_. + b_.*x_], x_Symbol] := (a + b*x)*LogIntegral[a + b*x]/b - ExpIntegralEi[2*Log[a + b*x]]/b /; FreeQ[{a, b}, x] +Int[LogIntegral[b_.*x_]/x_, x_Symbol] := -b*x + Log[b*x]*LogIntegral[b*x] /; FreeQ[b, x] +Int[LogIntegral[a_. + b_.*x_]/(c_. + d_.*x_), x_Symbol] := Unintegrable[LogIntegral[a + b*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[(c_. + d_.*x_)^m_.*LogIntegral[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*LogIntegral[a + b*x]/(d*(m + 1)) - b/(d*(m + 1))*Int[(c + d*x)^(m + 1)/Log[a + b*x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] diff --git a/IntegrationRules/8 Special functions/8.4 Trig integral functions.m b/IntegrationRules/8 Special functions/8.4 Trig integral functions.m new file mode 100755 index 0000000..0531280 --- /dev/null +++ b/IntegrationRules/8 Special functions/8.4 Trig integral functions.m @@ -0,0 +1,34 @@ + +(* ::Subsection::Closed:: *) +(* 8.4 Trig integral functions *) +Int[SinIntegral[a_. + b_.*x_], x_Symbol] := (a + b*x)*SinIntegral[a + b*x]/b + Cos[a + b*x]/b /; FreeQ[{a, b}, x] +Int[CosIntegral[a_. + b_.*x_], x_Symbol] := (a + b*x)*CosIntegral[a + b*x]/b - Sin[a + b*x]/b /; FreeQ[{a, b}, x] +Int[SinIntegral[b_.*x_]/x_, x_Symbol] := 1/2*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -I*b*x] + 1/2*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, I*b*x] /; FreeQ[b, x] +Int[CosIntegral[b_.*x_]/x_, x_Symbol] := -1/2*I*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -I*b*x] + 1/2*I*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, I*b*x] + EulerGamma*Log[x] + 1/2*Log[b*x]^2 /; FreeQ[b, x] +Int[(c_. + d_.*x_)^m_.*SinIntegral[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*SinIntegral[a + b*x]/(d*(m + 1)) - b/(d*(m + 1))*Int[(c + d*x)^(m + 1)*Sin[a + b*x]/(a + b*x), x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[(c_. + d_.*x_)^m_.*CosIntegral[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*CosIntegral[a + b*x]/(d*(m + 1)) - b/(d*(m + 1))*Int[(c + d*x)^(m + 1)*Cos[a + b*x]/(a + b*x), x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[SinIntegral[a_. + b_.*x_]^2, x_Symbol] := (a + b*x)*SinIntegral[a + b*x]^2/b - 2*Int[Sin[a + b*x]*SinIntegral[a + b*x], x] /; FreeQ[{a, b}, x] +Int[CosIntegral[a_. + b_.*x_]^2, x_Symbol] := (a + b*x)*CosIntegral[a + b*x]^2/b - 2*Int[Cos[a + b*x]*CosIntegral[a + b*x], x] /; FreeQ[{a, b}, x] +Int[x_^m_.*SinIntegral[b_.*x_]^2, x_Symbol] := x^(m + 1)*SinIntegral[b*x]^2/(m + 1) - 2/(m + 1)*Int[x^m*Sin[b*x]*SinIntegral[b*x], x] /; FreeQ[b, x] && IGtQ[m, 0] +Int[x_^m_.*CosIntegral[b_.*x_]^2, x_Symbol] := x^(m + 1)*CosIntegral[b*x]^2/(m + 1) - 2/(m + 1)*Int[x^m*Cos[b*x]*CosIntegral[b*x], x] /; FreeQ[b, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*SinIntegral[a_ + b_.*x_]^2, x_Symbol] := (a + b*x)*(c + d*x)^m*SinIntegral[a + b*x]^2/(b*(m + 1)) - 2/(m + 1)*Int[(c + d*x)^m*Sin[a + b*x]*SinIntegral[a + b*x], x] + (b*c - a*d)*m/(b*(m + 1))* Int[(c + d*x)^(m - 1)*SinIntegral[a + b*x]^2, x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*CosIntegral[a_ + b_.*x_]^2, x_Symbol] := (a + b*x)*(c + d*x)^m*CosIntegral[a + b*x]^2/(b*(m + 1)) - 2/(m + 1)*Int[(c + d*x)^m*Cos[a + b*x]*CosIntegral[a + b*x], x] + (b*c - a*d)*m/(b*(m + 1))* Int[(c + d*x)^(m - 1)*CosIntegral[a + b*x]^2, x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +(* Int[x_^m_.*SinIntegral[a_+b_.*x_]^2,x_Symbol] := b*x^(m+2)*SinIntegral[a+b*x]^2/(a*(m+1)) + x^(m+1)*SinIntegral[a+b*x]^2/(m+1) - 2*b/(a*(m+1))*Int[x^(m+1)*Sin[a+b*x]*SinIntegral[a+b*x],x] - b*(m+2)/(a*(m+1))*Int[x^(m+1)*SinIntegral[a+b*x]^2,x] /; FreeQ[{a,b},x] && ILtQ[m,-2] *) +(* Int[x_^m_.*CosIntegral[a_+b_.*x_]^2,x_Symbol] := b*x^(m+2)*CosIntegral[a+b*x]^2/(a*(m+1)) + x^(m+1)*CosIntegral[a+b*x]^2/(m+1) - 2*b/(a*(m+1))*Int[x^(m+1)*Cos[a+b*x]*CosIntegral[a+b*x],x] - b*(m+2)/(a*(m+1))*Int[x^(m+1)*CosIntegral[a+b*x]^2,x] /; FreeQ[{a,b},x] && ILtQ[m,-2] *) +Int[Sin[a_. + b_.*x_]*SinIntegral[c_. + d_.*x_], x_Symbol] := -Cos[a + b*x]*SinIntegral[c + d*x]/b + d/b*Int[Cos[a + b*x]*Sin[c + d*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[Cos[a_. + b_.*x_]*CosIntegral[c_. + d_.*x_], x_Symbol] := Sin[a + b*x]*CosIntegral[c + d*x]/b - d/b*Int[Sin[a + b*x]*Cos[c + d*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[(e_. + f_.*x_)^m_.*Sin[a_. + b_.*x_]*SinIntegral[c_. + d_.*x_], x_Symbol] := -(e + f*x)^m*Cos[a + b*x]*SinIntegral[c + d*x]/b + d/b*Int[(e + f*x)^m*Cos[a + b*x]*Sin[c + d*x]/(c + d*x), x] + f*m/b* Int[(e + f*x)^(m - 1)*Cos[a + b*x]*SinIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*Cos[a_. + b_.*x_]*CosIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^m*Sin[a + b*x]*CosIntegral[c + d*x]/b - d/b*Int[(e + f*x)^m*Sin[a + b*x]*Cos[c + d*x]/(c + d*x), x] - f*m/b* Int[(e + f*x)^(m - 1)*Sin[a + b*x]*CosIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_*Sin[a_. + b_.*x_]*SinIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^(m + 1)*Sin[a + b*x]*SinIntegral[c + d*x]/(f*(m + 1)) - d/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Sin[a + b*x]*Sin[c + d*x]/(c + d*x), x] - b/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Cos[a + b*x]*SinIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1] +Int[(e_. + f_.*x_)^m_.*Cos[a_. + b_.*x_]*CosIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^(m + 1)*Cos[a + b*x]*CosIntegral[c + d*x]/(f*(m + 1)) - d/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Cos[a + b*x]*Cos[c + d*x]/(c + d*x), x] + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Sin[a + b*x]*CosIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1] +Int[Cos[a_. + b_.*x_]*SinIntegral[c_. + d_.*x_], x_Symbol] := Sin[a + b*x]*SinIntegral[c + d*x]/b - d/b*Int[Sin[a + b*x]*Sin[c + d*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[Sin[a_. + b_.*x_]*CosIntegral[c_. + d_.*x_], x_Symbol] := -Cos[a + b*x]*CosIntegral[c + d*x]/b + d/b*Int[Cos[a + b*x]*Cos[c + d*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[(e_. + f_.*x_)^m_.*Cos[a_. + b_.*x_]*SinIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^m*Sin[a + b*x]*SinIntegral[c + d*x]/b - d/b*Int[(e + f*x)^m*Sin[a + b*x]*Sin[c + d*x]/(c + d*x), x] - f*m/b* Int[(e + f*x)^(m - 1)*Sin[a + b*x]*SinIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*Sin[a_. + b_.*x_]*CosIntegral[c_. + d_.*x_], x_Symbol] := -(e + f*x)^m*Cos[a + b*x]*CosIntegral[c + d*x]/b + d/b*Int[(e + f*x)^m*Cos[a + b*x]*Cos[c + d*x]/(c + d*x), x] + f*m/b* Int[(e + f*x)^(m - 1)*Cos[a + b*x]*CosIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*Cos[a_. + b_.*x_]*SinIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^(m + 1)*Cos[a + b*x]*SinIntegral[c + d*x]/(f*(m + 1)) - d/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Cos[a + b*x]*Sin[c + d*x]/(c + d*x), x] + b/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Sin[a + b*x]*SinIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1] +Int[(e_. + f_.*x_)^m_*Sin[a_. + b_.*x_]*CosIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^(m + 1)*Sin[a + b*x]*CosIntegral[c + d*x]/(f*(m + 1)) - d/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Sin[a + b*x]*Cos[c + d*x]/(c + d*x), x] - b/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Cos[a + b*x]*CosIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1] +Int[SinIntegral[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*SinIntegral[d*(a + b*Log[c*x^n])] - b*d*n*Int[Sin[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x] /; FreeQ[{a, b, c, d, n}, x] +Int[CosIntegral[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*CosIntegral[d*(a + b*Log[c*x^n])] - b*d*n*Int[Cos[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x] /; FreeQ[{a, b, c, d, n}, x] +Int[F_[d_.*(a_. + b_.*Log[c_.*x_^n_.])]/x_, x_Symbol] := 1/n*Subst[F[d*(a + b*x)], x, Log[c*x^n]] /; FreeQ[{a, b, c, d, n}, x] && MemberQ[{SinIntegral, CosIntegral}, x] +Int[(e_.*x_)^m_.*SinIntegral[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*SinIntegral[d*(a + b*Log[c*x^n])]/(e*(m + 1)) - b*d*n/(m + 1)* Int[(e*x)^m*Sin[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[(e_.*x_)^m_.*CosIntegral[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*CosIntegral[d*(a + b*Log[c*x^n])]/(e*(m + 1)) - b*d*n/(m + 1)* Int[(e*x)^m*Cos[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] diff --git a/IntegrationRules/8 Special functions/8.5 Hyperbolic integral functions.m b/IntegrationRules/8 Special functions/8.5 Hyperbolic integral functions.m new file mode 100755 index 0000000..32b2fa8 --- /dev/null +++ b/IntegrationRules/8 Special functions/8.5 Hyperbolic integral functions.m @@ -0,0 +1,34 @@ + +(* ::Subsection::Closed:: *) +(* 8.5 Hyperbolic integral functions *) +Int[SinhIntegral[a_. + b_.*x_], x_Symbol] := (a + b*x)*SinhIntegral[a + b*x]/b - Cosh[a + b*x]/b /; FreeQ[{a, b}, x] +Int[CoshIntegral[a_. + b_.*x_], x_Symbol] := (a + b*x)*CoshIntegral[a + b*x]/b - Sinh[a + b*x]/b /; FreeQ[{a, b}, x] +Int[SinhIntegral[b_.*x_]/x_, x_Symbol] := 1/2*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -b*x] + 1/2*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, b*x] /; FreeQ[b, x] +Int[CoshIntegral[b_.*x_]/x_, x_Symbol] := -1/2*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -b*x] + 1/2*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, b*x] + EulerGamma*Log[x] + 1/2*Log[b*x]^2 /; FreeQ[b, x] +Int[(c_. + d_.*x_)^m_.*SinhIntegral[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*SinhIntegral[a + b*x]/(d*(m + 1)) - b/(d*(m + 1))*Int[(c + d*x)^(m + 1)*Sinh[a + b*x]/(a + b*x), x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[(c_. + d_.*x_)^m_.*CoshIntegral[a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*CoshIntegral[a + b*x]/(d*(m + 1)) - b/(d*(m + 1))*Int[(c + d*x)^(m + 1)*Cosh[a + b*x]/(a + b*x), x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] +Int[SinhIntegral[a_. + b_.*x_]^2, x_Symbol] := (a + b*x)*SinhIntegral[a + b*x]^2/b - 2*Int[Sinh[a + b*x]*SinhIntegral[a + b*x], x] /; FreeQ[{a, b}, x] +Int[CoshIntegral[a_. + b_.*x_]^2, x_Symbol] := (a + b*x)*CoshIntegral[a + b*x]^2/b - 2*Int[Cosh[a + b*x]*CoshIntegral[a + b*x], x] /; FreeQ[{a, b}, x] +Int[x_^m_.*SinhIntegral[b_.*x_]^2, x_Symbol] := x^(m + 1)*SinhIntegral[b*x]^2/(m + 1) - 2/(m + 1)*Int[x^m*Sinh[b*x]*SinhIntegral[b*x], x] /; FreeQ[b, x] && IGtQ[m, 0] +Int[x_^m_.*CoshIntegral[b_.*x_]^2, x_Symbol] := x^(m + 1)*CoshIntegral[b*x]^2/(m + 1) - 2/(m + 1)*Int[x^m*Cosh[b*x]*CoshIntegral[b*x], x] /; FreeQ[b, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*SinhIntegral[a_ + b_.*x_]^2, x_Symbol] := (a + b*x)*(c + d*x)^m*SinhIntegral[a + b*x]^2/(b*(m + 1)) - 2/(m + 1)* Int[(c + d*x)^m*Sinh[a + b*x]*SinhIntegral[a + b*x], x] + (b*c - a*d)*m/(b*(m + 1))* Int[(c + d*x)^(m - 1)*SinhIntegral[a + b*x]^2, x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*CoshIntegral[a_ + b_.*x_]^2, x_Symbol] := (a + b*x)*(c + d*x)^m*CoshIntegral[a + b*x]^2/(b*(m + 1)) - 2/(m + 1)* Int[(c + d*x)^m*Cosh[a + b*x]*CoshIntegral[a + b*x], x] + (b*c - a*d)*m/(b*(m + 1))* Int[(c + d*x)^(m - 1)*CoshIntegral[a + b*x]^2, x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +(* Int[x_^m_.*SinhIntegral[a_+b_.*x_]^2,x_Symbol] := b*x^(m+2)*SinhIntegral[a+b*x]^2/(a*(m+1)) + x^(m+1)*SinhIntegral[a+b*x]^2/(m+1) - 2*b/(a*(m+1))*Int[x^(m+1)*Sinh[a+b*x]*SinhIntegral[a+b*x],x] - b*(m+2)/(a*(m+1))*Int[x^(m+1)*SinhIntegral[a+b*x]^2,x] /; FreeQ[{a,b},x] && ILtQ[m,-2] *) +(* Int[x_^m_.*CoshIntegral[a_+b_.*x_]^2,x_Symbol] := b*x^(m+2)*CoshIntegral[a+b*x]^2/(a*(m+1)) + x^(m+1)*CoshIntegral[a+b*x]^2/(m+1) - 2*b/(a*(m+1))*Int[x^(m+1)*Cosh[a+b*x]*CoshIntegral[a+b*x],x] - b*(m+2)/(a*(m+1))*Int[x^(m+1)*CoshIntegral[a+b*x]^2,x] /; FreeQ[{a,b},x] && ILtQ[m,-2] *) +Int[Sinh[a_. + b_.*x_]*SinhIntegral[c_. + d_.*x_], x_Symbol] := Cosh[a + b*x]*SinhIntegral[c + d*x]/b - d/b*Int[Cosh[a + b*x]*Sinh[c + d*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[Cosh[a_. + b_.*x_]*CoshIntegral[c_. + d_.*x_], x_Symbol] := Sinh[a + b*x]*CoshIntegral[c + d*x]/b - d/b*Int[Sinh[a + b*x]*Cosh[c + d*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[(e_. + f_.*x_)^m_.*Sinh[a_. + b_.*x_]*SinhIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^m*Cosh[a + b*x]*SinhIntegral[c + d*x]/b - d/b*Int[(e + f*x)^m*Cosh[a + b*x]*Sinh[c + d*x]/(c + d*x), x] - f*m/b* Int[(e + f*x)^(m - 1)*Cosh[a + b*x]*SinhIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*Cosh[a_. + b_.*x_]*CoshIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^m*Sinh[a + b*x]*CoshIntegral[c + d*x]/b - d/b*Int[(e + f*x)^m*Sinh[a + b*x]*Cosh[c + d*x]/(c + d*x), x] - f*m/b* Int[(e + f*x)^(m - 1)*Sinh[a + b*x]*CoshIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_*Sinh[a_. + b_.*x_]*SinhIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^(m + 1)*Sinh[a + b*x]*SinhIntegral[c + d*x]/(f*(m + 1)) - d/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Sinh[a + b*x]*Sinh[c + d*x]/(c + d*x), x] - b/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Cosh[a + b*x]*SinhIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1] +Int[(e_. + f_.*x_)^m_.*Cosh[a_. + b_.*x_]*CoshIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^(m + 1)*Cosh[a + b*x]*CoshIntegral[c + d*x]/(f*(m + 1)) - d/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Cosh[a + b*x]*Cosh[c + d*x]/(c + d*x), x] - b/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Sinh[a + b*x]*CoshIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1] +Int[Cosh[a_. + b_.*x_]*SinhIntegral[c_. + d_.*x_], x_Symbol] := Sinh[a + b*x]*SinhIntegral[c + d*x]/b - d/b*Int[Sinh[a + b*x]*Sinh[c + d*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[Sinh[a_. + b_.*x_]*CoshIntegral[c_. + d_.*x_], x_Symbol] := Cosh[a + b*x]*CoshIntegral[c + d*x]/b - d/b*Int[Cosh[a + b*x]*Cosh[c + d*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] +Int[(e_. + f_.*x_)^m_.*Cosh[a_. + b_.*x_]*SinhIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^m*Sinh[a + b*x]*SinhIntegral[c + d*x]/b - d/b*Int[(e + f*x)^m*Sinh[a + b*x]*Sinh[c + d*x]/(c + d*x), x] - f*m/b* Int[(e + f*x)^(m - 1)*Sinh[a + b*x]*SinhIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*Sinh[a_. + b_.*x_]*CoshIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^m*Cosh[a + b*x]*CoshIntegral[c + d*x]/b - d/b*Int[(e + f*x)^m*Cosh[a + b*x]*Cosh[c + d*x]/(c + d*x), x] - f*m/b* Int[(e + f*x)^(m - 1)*Cosh[a + b*x]*CoshIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^m_.*Cosh[a_. + b_.*x_]*SinhIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^(m + 1)*Cosh[a + b*x]* SinhIntegral[c + d*x]/(f*(m + 1)) - d/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Cosh[a + b*x]*Sinh[c + d*x]/(c + d*x), x] - b/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Sinh[a + b*x]*SinhIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1] +Int[(e_. + f_.*x_)^m_*Sinh[a_. + b_.*x_]*CoshIntegral[c_. + d_.*x_], x_Symbol] := (e + f*x)^(m + 1)*Sinh[a + b*x]* CoshIntegral[c + d*x]/(f*(m + 1)) - d/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Sinh[a + b*x]*Cosh[c + d*x]/(c + d*x), x] - b/(f*(m + 1))* Int[(e + f*x)^(m + 1)*Cosh[a + b*x]*CoshIntegral[c + d*x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1] +Int[SinhIntegral[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*SinhIntegral[d*(a + b*Log[c*x^n])] - b*d*n*Int[Sinh[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x] /; FreeQ[{a, b, c, d, n}, x] +Int[CoshIntegral[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*CoshIntegral[d*(a + b*Log[c*x^n])] - b*d*n*Int[Cosh[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x] /; FreeQ[{a, b, c, d, n}, x] +Int[F_[d_.*(a_. + b_.*Log[c_.*x_^n_.])]/x_, x_Symbol] := 1/n*Subst[F[d*(a + b*x)], x, Log[c*x^n]] /; FreeQ[{a, b, c, d, n}, x] && MemberQ[{SinhIntegral, CoshIntegral}, x] +Int[(e_.*x_)^m_.*SinhIntegral[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*SinhIntegral[d*(a + b*Log[c*x^n])]/(e*(m + 1)) - b*d*n/(m + 1)* Int[(e*x)^m*Sinh[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] +Int[(e_.*x_)^m_.*CoshIntegral[d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*CoshIntegral[d*(a + b*Log[c*x^n])]/(e*(m + 1)) - b*d*n/(m + 1)* Int[(e*x)^m*Cosh[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1] diff --git a/IntegrationRules/8 Special functions/8.6 Gamma functions.m b/IntegrationRules/8 Special functions/8.6 Gamma functions.m new file mode 100755 index 0000000..390e846 --- /dev/null +++ b/IntegrationRules/8 Special functions/8.6 Gamma functions.m @@ -0,0 +1,28 @@ + +(* ::Subsection::Closed:: *) +(* 8.6 Gamma functions *) +Int[Gamma[n_, a_. + b_.*x_], x_Symbol] := (a + b*x)*Gamma[n, a + b*x]/b - Gamma[n + 1, a + b*x]/b /; FreeQ[{a, b, n}, x] +Int[Gamma[0, b_.*x_]/x_, x_Symbol] := b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -b*x] - EulerGamma*Log[x] - 1/2*Log[b*x]^2 /; FreeQ[b, x] +(* Int[Gamma[1,b_.*x_]/x_,x_Symbol] := Int[1/(x*E^(b*x)),x] /; FreeQ[b,x] *) +Int[Gamma[n_, b_.*x_]/x_, x_Symbol] := -Gamma[n - 1, b*x] + (n - 1)*Int[Gamma[n - 1, b*x]/x, x] /; FreeQ[b, x] && IGtQ[n, 1] +Int[Gamma[n_, b_.*x_]/x_, x_Symbol] := Gamma[n, b*x]/n + 1/n*Int[Gamma[n + 1, b*x]/x, x] /; FreeQ[b, x] && ILtQ[n, 0] +Int[Gamma[n_, b_.*x_]/x_, x_Symbol] := Gamma[n]*Log[x] - (b*x)^n/n^2* HypergeometricPFQ[{n, n}, {1 + n, 1 + n}, -b*x] /; FreeQ[{b, n}, x] && Not[IntegerQ[n]] +Int[(d_.*x_)^m_.*Gamma[n_, b_.*x_], x_Symbol] := (d*x)^(m + 1)*Gamma[n, b*x]/(d*(m + 1)) - (d*x)^m*Gamma[m + n + 1, b*x]/(b*(m + 1)*(b*x)^m) /; FreeQ[{b, d, m, n}, x] && NeQ[m, -1] +Int[(c_ + d_.*x_)^m_.*Gamma[n_, a_ + b_.*x_], x_Symbol] := 1/b*Subst[Int[(d*x/b)^m*Gamma[n, x], x], x, a + b*x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[b*c - a*d, 0] +Int[Gamma[n_, a_. + b_.*x_]/(c_. + d_.*x_), x_Symbol] := Int[(a + b*x)^(n - 1)/((c + d*x)*E^(a + b*x)), x] + (n - 1)* Int[Gamma[n - 1, a + b*x]/(c + d*x), x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 1] +Int[(c_. + d_.*x_)^m_.*Gamma[n_, a_. + b_.*x_], x_Symbol] := Block[{$UseGamma = True}, (c + d*x)^(m + 1)*Gamma[n, a + b*x]/(d*(m + 1)) + b/(d*(m + 1))* Int[(c + d*x)^(m + 1)*(a + b*x)^(n - 1)/E^(a + b*x), x]] /; FreeQ[{a, b, c, d, m, n}, x] && (IGtQ[m, 0] || IGtQ[n, 0] || IntegersQ[m, n]) && NeQ[m, -1] +Int[(c_. + d_.*x_)^m_.*Gamma[n_, a_. + b_.*x_], x_Symbol] := Unintegrable[(c + d*x)^m*Gamma[n, a + b*x], x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[LogGamma[a_. + b_.*x_], x_Symbol] := PolyGamma[-2, a + b*x]/b /; FreeQ[{a, b}, x] +Int[(c_. + d_.*x_)^m_.*LogGamma[a_. + b_.*x_], x_Symbol] := (c + d*x)^m*PolyGamma[-2, a + b*x]/b - d*m/b*Int[(c + d*x)^(m - 1)*PolyGamma[-2, a + b*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*LogGamma[a_. + b_.*x_], x_Symbol] := Unintegrable[(c + d*x)^m*LogGamma[a + b*x], x] /; FreeQ[{a, b, c, d, m}, x] +Int[PolyGamma[n_, a_. + b_.*x_], x_Symbol] := PolyGamma[n - 1, a + b*x]/b /; FreeQ[{a, b, n}, x] +Int[(c_. + d_.*x_)^m_.*PolyGamma[n_, a_. + b_.*x_], x_Symbol] := (c + d*x)^m*PolyGamma[n - 1, a + b*x]/b - d*m/b*Int[(c + d*x)^(m - 1)*PolyGamma[n - 1, a + b*x], x] /; FreeQ[{a, b, c, d, n}, x] && GtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*PolyGamma[n_, a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*PolyGamma[n, a + b*x]/(d*(m + 1)) - b/(d*(m + 1))* Int[(c + d*x)^(m + 1)*PolyGamma[n + 1, a + b*x], x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] +Int[(c_. + d_.*x_)^m_.*PolyGamma[n_, a_. + b_.*x_], x_Symbol] := Unintegrable[(c + d*x)^m*PolyGamma[n, a + b*x], x] /; FreeQ[{a, b, c, d, m, n}, x] +Int[Gamma[a_. + b_.*x_]^n_.*PolyGamma[0, a_. + b_.*x_], x_Symbol] := Gamma[a + b*x]^n/(b*n) /; FreeQ[{a, b, n}, x] +Int[((a_. + b_.*x_)!)^n_.*PolyGamma[0, c_. + b_.*x_], x_Symbol] := ((a + b*x)!)^n/(b*n) /; FreeQ[{a, b, c, n}, x] && EqQ[c, a + 1] +Int[Gamma[p_, d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := x*Gamma[p, d*(a + b*Log[c*x^n])] + b*d*n*E^(-a*d)* Int[(d*(a + b*Log[c*x^n]))^(p - 1)/(c*x^n)^(b*d), x] /; FreeQ[{a, b, c, d, n, p}, x] +Int[Gamma[p_, d_.*(a_. + b_.*Log[c_.*x_^n_.])]/x_, x_Symbol] := 1/n*Subst[Gamma[p, d*(a + b*x)], x, Log[c*x^n]] /; FreeQ[{a, b, c, d, n, p}, x] +Int[(e_.*x_)^m_.*Gamma[p_, d_.*(a_. + b_.*Log[c_.*x_^n_.])], x_Symbol] := (e*x)^(m + 1)*Gamma[p, d*(a + b*Log[c*x^n])]/(e*(m + 1)) + b*d*n*E^(-a*d)*(e*x)^(b*d*n)/((m + 1)*(c*x^n)^(b*d))* Int[(e*x)^(m - b*d*n)*(d*(a + b*Log[c*x^n]))^(p - 1), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[m, -1] +Int[Gamma[p_, f_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])], x_Symbol] := 1/e*Subst[Int[Gamma[p, f*(a + b*Log[c*x^n])], x], x, d + e*x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] +Int[(g_ + h_. x_)^m_.* Gamma[p_, f_.*(a_. + b_.*Log[c_.*(d_ + e_.*x_)^n_.])], x_Symbol] := 1/e*Subst[Int[(g*x/d)^m*Gamma[p, f*(a + b*Log[c*x^n])], x], x, d + e*x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p}, x] && EqQ[e*g - d*h, 0] diff --git a/IntegrationRules/8 Special functions/8.7 Zeta function.m b/IntegrationRules/8 Special functions/8.7 Zeta function.m new file mode 100755 index 0000000..2062c39 --- /dev/null +++ b/IntegrationRules/8 Special functions/8.7 Zeta function.m @@ -0,0 +1,8 @@ + +(* ::Subsection::Closed:: *) +(* 8.7 Zeta function *) +Int[Zeta[2, a_. + b_.*x_], x_Symbol] := Int[PolyGamma[1, a + b*x], x] /; FreeQ[{a, b}, x] +Int[Zeta[s_, a_. + b_.*x_], x_Symbol] := -Zeta[s - 1, a + b*x]/(b*(s - 1)) /; FreeQ[{a, b, s}, x] && NeQ[s, 1] && NeQ[s, 2] +Int[(c_. + d_.*x_)^m_.*Zeta[2, a_. + b_.*x_], x_Symbol] := Int[(c + d*x)^m*PolyGamma[1, a + b*x], x] /; FreeQ[{a, b, c, d}, x] && RationalQ[m] +Int[(c_. + d_.*x_)^m_.*Zeta[s_, a_. + b_.*x_], x_Symbol] := -(c + d*x)^m*Zeta[s - 1, a + b*x]/(b*(s - 1)) + d*m/(b*(s - 1))*Int[(c + d*x)^(m - 1)*Zeta[s - 1, a + b*x], x] /; FreeQ[{a, b, c, d, s}, x] && NeQ[s, 1] && NeQ[s, 2] && GtQ[m, 0] +Int[(c_. + d_.*x_)^m_.*Zeta[s_, a_. + b_.*x_], x_Symbol] := (c + d*x)^(m + 1)*Zeta[s, a + b*x]/(d*(m + 1)) + b*s/(d*(m + 1))*Int[(c + d*x)^(m + 1)*Zeta[s + 1, a + b*x], x] /; FreeQ[{a, b, c, d, s}, x] && NeQ[s, 1] && NeQ[s, 2] && LtQ[m, -1] diff --git a/IntegrationRules/8 Special functions/8.8 Polylogarithm function.m b/IntegrationRules/8 Special functions/8.8 Polylogarithm function.m new file mode 100755 index 0000000..0e495a9 --- /dev/null +++ b/IntegrationRules/8 Special functions/8.8 Polylogarithm function.m @@ -0,0 +1,31 @@ + +(* ::Subsection::Closed:: *) +(* 8.8 Polylogarithm function *) +(* Int[PolyLog[2,a_.*(b_.*x_^p_.)^q_.],x_Symbol] := x*PolyLog[2,a*(b*x^p)^q] + p*q*Int[Log[1-a*(b*x^p)^q],x] /; FreeQ[{a,b,p,q},x] *) +Int[PolyLog[n_, a_.*(b_.*x_^p_.)^q_.], x_Symbol] := x*PolyLog[n, a*(b*x^p)^q] - p*q*Int[PolyLog[n - 1, a*(b*x^p)^q], x] /; FreeQ[{a, b, p, q}, x] && GtQ[n, 0] +Int[PolyLog[n_, a_.*(b_.*x_^p_.)^q_.], x_Symbol] := x*PolyLog[n + 1, a*(b*x^p)^q]/(p*q) - 1/(p*q)*Int[PolyLog[n + 1, a*(b*x^p)^q], x] /; FreeQ[{a, b, p, q}, x] && LtQ[n, -1] +Int[PolyLog[n_, a_.*(b_.*x_^p_.)^q_.], x_Symbol] := Unintegrable[PolyLog[n, a*(b*x^p)^q], x] /; FreeQ[{a, b, n, p, q}, x] +Int[PolyLog[n_, c_.*(a_. + b_.*x_)^p_.]/(d_. + e_.*x_), x_Symbol] := PolyLog[n + 1, c*(a + b*x)^p]/(e*p) /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e] +Int[PolyLog[n_, a_.*(b_.*x_^p_.)^q_.]/x_, x_Symbol] := PolyLog[n + 1, a*(b*x^p)^q]/(p*q) /; FreeQ[{a, b, n, p, q}, x] +Int[(d_.*x_)^m_.*PolyLog[n_, a_.*(b_.*x_^p_.)^q_.], x_Symbol] := (d*x)^(m + 1)*PolyLog[n, a*(b*x^p)^q]/(d*(m + 1)) - p*q/(m + 1)*Int[(d*x)^m*PolyLog[n - 1, a*(b*x^p)^q], x] /; FreeQ[{a, b, d, m, p, q}, x] && NeQ[m, -1] && GtQ[n, 0] +Int[(d_.*x_)^m_.*PolyLog[n_, a_.*(b_.*x_^p_.)^q_.], x_Symbol] := (d*x)^(m + 1)*PolyLog[n + 1, a*(b*x^p)^q]/(d*p*q) - (m + 1)/(p*q)*Int[(d*x)^m*PolyLog[n + 1, a*(b*x^p)^q], x] /; FreeQ[{a, b, d, m, p, q}, x] && NeQ[m, -1] && LtQ[n, -1] +Int[(d_.*x_)^m_.*PolyLog[n_, a_.*(b_.*x_^p_.)^q_.], x_Symbol] := Unintegrable[(d*x)^m*PolyLog[n, a*(b*x^p)^q], x] /; FreeQ[{a, b, d, m, n, p, q}, x] +Int[Log[c_.*x_^m_.]^r_.*PolyLog[n_, a_.*(b_.*x_^p_.)^q_.]/x_, x_Symbol] := Log[c*x^m]^r*PolyLog[n + 1, a*(b*x^p)^q]/(p*q) - m*r/(p*q)* Int[Log[c*x^m]^(r - 1)*PolyLog[n + 1, a*(b*x^p)^q]/x, x] /; FreeQ[{a, b, c, m, n, q, r}, x] && GtQ[r, 0] +Int[PolyLog[n_, c_.*(a_. + b_.*x_)^p_.], x_Symbol] := x*PolyLog[n, c*(a + b*x)^p] - p*Int[PolyLog[n - 1, c*(a + b*x)^p], x] + a*p*Int[PolyLog[n - 1, c*(a + b*x)^p]/(a + b*x), x] /; FreeQ[{a, b, c, p}, x] && GtQ[n, 0] +Int[PolyLog[2, c_.*(a_. + b_.*x_)]/(d_. + e_.*x_), x_Symbol] := Log[1 - a*c - b*c*x]*PolyLog[2, c*(a + b*x)]/e + b/e*Int[Log[1 - a*c - b*c*x]^2/(a + b*x), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*(b*d - a*e) + e, 0] +Int[PolyLog[2, c_.*(a_. + b_.*x_)]/(d_. + e_.*x_), x_Symbol] := Log[d + e*x]*PolyLog[2, c*(a + b*x)]/e + b/e*Int[Log[d + e*x]*Log[1 - a*c - b*c*x]/(a + b*x), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[c*(b*d - a*e) + e, 0] +Int[(d_. + e_.*x_)^m_.*PolyLog[2, c_.*(a_. + b_.*x_)], x_Symbol] := (d + e*x)^(m + 1)*PolyLog[2, c*(a + b*x)]/(e*(m + 1)) + b/(e*(m + 1))* Int[(d + e*x)^(m + 1)*Log[1 - a*c - b*c*x]/(a + b*x), x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1] +(* Int[(d_.+e_.*x_)^m_.*PolyLog[n_,c_.*(a_.+b_.*x_)^p_.],x_Symbol] := (d+e*x)^(m+1)*PolyLog[n,c*(a+b*x)^p]/(e*(m+1)) - b*p/(e*(m+1))*Int[(d+e*x)^(m+1)*PolyLog[n-1,c*(a+b*x)^p]/(a+b*x),x] /; FreeQ[{a,b,c,d,e,m,p},x] && GtQ[n,0] && IGtQ[m,0] *) +Int[x_^m_.*PolyLog[n_, c_.*(a_. + b_.*x_)^p_.], x_Symbol] := -(a^(m + 1) - b^(m + 1)*x^(m + 1))* PolyLog[n, c*(a + b*x)^p]/((m + 1)*b^(m + 1)) + p/((m + 1)*b^m)* Int[ExpandIntegrand[ PolyLog[n - 1, c*(a + b*x)^p], (a^(m + 1) - b^(m + 1)*x^(m + 1))/(a + b*x), x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[n, 0] && IntegerQ[m] && NeQ[m, -1] +Int[(g_. + h_.*Log[f_.*(d_. + e_.*x_)^n_.])* PolyLog[2, c_.*(a_. + b_.*x_)], x_Symbol] := x*(g + h*Log[f*(d + e*x)^n])*PolyLog[2, c*(a + b*x)] + b*Int[(g + h*Log[f*(d + e*x)^n])*Log[1 - a*c - b*c*x]* ExpandIntegrand[x/(a + b*x), x], x] - e*h*n* Int[PolyLog[2, c*(a + b*x)]*ExpandIntegrand[x/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n}, x] +Int[Log[1 + e_.*x_]*PolyLog[2, c_.*x_]/x_, x_Symbol] := -PolyLog[2, c*x]^2/2 /; FreeQ[{c, e}, x] && EqQ[c + e, 0] +Int[(g_ + h_.*Log[1 + e_.*x_])*PolyLog[2, c_.*x_]/x_, x_Symbol] := g*Int[PolyLog[2, c*x]/x, x] + h*Int[(Log[1 + e*x]*PolyLog[2, c*x])/x, x] /; FreeQ[{c, e, g, h}, x] && EqQ[c + e, 0] +Int[x_^m_.*(g_. + h_.*Log[f_.*(d_. + e_.*x_)^n_.])* PolyLog[2, c_.*(a_. + b_.*x_)], x_Symbol] := x^(m + 1)*(g + h*Log[f*(d + e*x)^n])* PolyLog[2, c*(a + b*x)]/(m + 1) + b/(m + 1)* Int[ExpandIntegrand[(g + h*Log[f*(d + e*x)^n])* Log[1 - a*c - b*c*x], x^(m + 1)/(a + b*x), x], x] - e*h*n/(m + 1)* Int[ExpandIntegrand[PolyLog[2, c*(a + b*x)], x^(m + 1)/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n}, x] && IntegerQ[m] && NeQ[m, -1] +Int[Px_*(g_. + h_.*Log[f_.*(d_. + e_.*x_)^n_.])* PolyLog[2, c_.*(a_. + b_.*x_)], x_Symbol] := With[{u = IntHide[Px, x]}, u*(g + h*Log[f*(d + e*x)^n])*PolyLog[2, c*(a + b*x)] + b*Int[ ExpandIntegrand[(g + h*Log[f*(d + e*x)^n])*Log[1 - a*c - b*c*x], u/(a + b*x), x], x] - e*h*n* Int[ExpandIntegrand[PolyLog[2, c*(a + b*x)], u/(d + e*x), x], x]] /; FreeQ[{a, b, c, d, e, f, g, h, n}, x] && PolyQ[Px, x] +Int[x_^m_*Px_*(g_. + h_.*Log[1 + e_.*x_])*PolyLog[2, c_.*x_], x_Symbol] := Coeff[Px, x, -m - 1]* Int[(g + h*Log[1 + e*x])*PolyLog[2, c*x]/x, x] + Int[ x^m*(Px - Coeff[Px, x, -m - 1]*x^(-m - 1))*(g + h*Log[1 + e*x])* PolyLog[2, c*x], x] /; FreeQ[{c, e, g, h}, x] && PolyQ[Px, x] && ILtQ[m, 0] && EqQ[c + e, 0] && NeQ[Coeff[Px, x, -m - 1], 0] +Int[x_^m_.*Px_*(g_. + h_.*Log[f_.*(d_. + e_.*x_)^n_.])* PolyLog[2, c_.*(a_. + b_.*x_)], x_Symbol] := With[{u = IntHide[x^m*Px, x]}, u*(g + h*Log[f*(d + e*x)^n])*PolyLog[2, c*(a + b*x)] + b*Int[ ExpandIntegrand[(g + h*Log[f*(d + e*x)^n])*Log[1 - a*c - b*c*x], u/(a + b*x), x], x] - e*h*n* Int[ExpandIntegrand[PolyLog[2, c*(a + b*x)], u/(d + e*x), x], x]] /; FreeQ[{a, b, c, d, e, f, g, h, n}, x] && PolyQ[Px, x] && IntegerQ[m] +Int[x_^m_*Px_.*(g_. + h_.*Log[f_.*(d_. + e_.*x_)^n_.])* PolyLog[2, c_.*(a_. + b_.*x_)], x_Symbol] := Unintegrable[ x^m*Px*(g + h*Log[f*(d + e*x)^n])*PolyLog[2, c*(a + b*x)], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && PolyQ[Px, x] +Int[PolyLog[n_, d_.*(F_^(c_.*(a_. + b_.*x_)))^p_.], x_Symbol] := PolyLog[n + 1, d*(F^(c*(a + b*x)))^p]/(b*c*p*Log[F]) /; FreeQ[{F, a, b, c, d, n, p}, x] +Int[(e_. + f_.*x_)^m_.*PolyLog[n_, d_.*(F_^(c_.*(a_. + b_.*x_)))^p_.], x_Symbol] := (e + f*x)^m* PolyLog[n + 1, d*(F^(c*(a + b*x)))^p]/(b*c*p*Log[F]) - f*m/(b*c*p*Log[F])* Int[(e + f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m, 0] +Int[u_*PolyLog[n_, v_], x_Symbol] := With[{w = DerivativeDivides[v, u*v, x]}, w*PolyLog[n + 1, v] /; Not[FalseQ[w]]] /; FreeQ[n, x] +Int[u_*Log[w_]*PolyLog[n_, v_], x_Symbol] := With[{z = DerivativeDivides[v, u*v, x]}, z*Log[w]*PolyLog[n + 1, v] - Int[SimplifyIntegrand[z*D[w, x]*PolyLog[n + 1, v]/w, x], x] /; Not[FalseQ[z]]] /; FreeQ[n, x] && InverseFunctionFreeQ[w, x] diff --git a/IntegrationRules/8 Special functions/8.9 Product logarithm function.m b/IntegrationRules/8 Special functions/8.9 Product logarithm function.m new file mode 100755 index 0000000..b1f9bef --- /dev/null +++ b/IntegrationRules/8 Special functions/8.9 Product logarithm function.m @@ -0,0 +1,47 @@ + +(* ::Subsection::Closed:: *) +(* 8.9 Product logarithm function *) +Int[(c_.*ProductLog[a_. + b_.*x_])^p_, x_Symbol] := (a + b*x)*(c*ProductLog[a + b*x])^p/(b*(p + 1)) + p/(c*(p + 1))* Int[(c*ProductLog[a + b*x])^(p + 1)/(1 + ProductLog[a + b*x]), x] /; FreeQ[{a, b, c}, x] && LtQ[p, -1] +Int[(c_.*ProductLog[a_. + b_.*x_])^p_., x_Symbol] := (a + b*x)*(c*ProductLog[a + b*x])^p/b - p*Int[(c*ProductLog[a + b*x])^p/(1 + ProductLog[a + b*x]), x] /; FreeQ[{a, b, c}, x] && Not[LtQ[p, -1]] +Int[(e_. + f_.*x_)^m_.*(c_.*ProductLog[a_ + b_.*x_])^p_., x_Symbol] := 1/b^(m + 1)* Subst[Int[ ExpandIntegrand[(c*ProductLog[x])^p, (b*e - a*f + f*x)^m, x], x], x, a + b*x] /; FreeQ[{a, b, c, e, f, p}, x] && IGtQ[m, 0] +Int[(c_.*ProductLog[a_.*x_^n_])^p_., x_Symbol] := x*(c*ProductLog[a*x^n])^p - n*p*Int[(c*ProductLog[a*x^n])^p/(1 + ProductLog[a*x^n]), x] /; FreeQ[{a, c, n, p}, x] && (EqQ[n*(p - 1), -1] || IntegerQ[p - 1/2] && EqQ[n*(p - 1/2), -1]) +Int[(c_.*ProductLog[a_.*x_^n_])^p_., x_Symbol] := x*(c*ProductLog[a*x^n])^p/(n*p + 1) + n*p/(c*(n*p + 1))* Int[(c*ProductLog[a*x^n])^(p + 1)/(1 + ProductLog[a*x^n]), x] /; FreeQ[{a, c, n}, x] && (IntegerQ[p] && EqQ[n*(p + 1), -1] || IntegerQ[p - 1/2] && EqQ[n*(p + 1/2), -1]) +Int[(c_.*ProductLog[a_.*x_^n_])^p_., x_Symbol] := -Subst[Int[(c*ProductLog[a*x^(-n)])^p/x^2, x], x, 1/x] /; FreeQ[{a, c, p}, x] && ILtQ[n, 0] +Int[x_^m_.*(c_.*ProductLog[a_.*x_^n_.])^p_., x_Symbol] := x^(m + 1)*(c*ProductLog[a*x^n])^p/(m + 1) - n*p/(m + 1)* Int[x^m*(c*ProductLog[a*x^n])^p/(1 + ProductLog[a*x^n]), x] /; FreeQ[{a, c, m, n, p}, x] && NeQ[m, -1] && (IntegerQ[p - 1/2] && IGtQ[2*Simplify[p + (m + 1)/n], 0] || Not[IntegerQ[p - 1/2]] && IGtQ[Simplify[p + (m + 1)/n] + 1, 0]) +Int[x_^m_.*(c_.*ProductLog[a_.*x_^n_.])^p_., x_Symbol] := x^(m + 1)*(c*ProductLog[a*x^n])^p/(m + n*p + 1) + n*p/(c*(m + n*p + 1))* Int[x^m*(c*ProductLog[a*x^n])^(p + 1)/(1 + ProductLog[a*x^n]), x] /; FreeQ[{a, c, m, n, p}, x] && (EqQ[m, -1] || IntegerQ[p - 1/2] && ILtQ[Simplify[p + (m + 1)/n] - 1/2, 0] || Not[IntegerQ[p - 1/2]] && ILtQ[Simplify[p + (m + 1)/n], 0]) +Int[x_^m_.*(c_.*ProductLog[a_.*x_])^p_., x_Symbol] := Int[x^m*(c*ProductLog[a*x])^p/(1 + ProductLog[a*x]), x] + 1/c* Int[x^m*(c*ProductLog[a*x])^(p + 1)/(1 + ProductLog[a*x]), x] /; FreeQ[{a, c, m}, x] +Int[x_^m_.*(c_.*ProductLog[a_.*x_^n_])^p_., x_Symbol] := -Subst[Int[(c*ProductLog[a*x^(-n)])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, c, p}, x] && ILtQ[n, 0] && IntegerQ[m] && NeQ[m, -1] +Int[1/(d_ + d_.*ProductLog[a_. + b_.*x_]), x_Symbol] := (a + b*x)/(b*d*ProductLog[a + b*x]) /; FreeQ[{a, b, d}, x] +Int[ProductLog[a_. + b_.*x_]/(d_ + d_.*ProductLog[a_. + b_.*x_]), x_Symbol] := d*x - Int[1/(d + d*ProductLog[a + b*x]), x] /; FreeQ[{a, b, d}, x] +Int[(c_.*ProductLog[a_. + b_.*x_])^ p_/(d_ + d_.*ProductLog[a_. + b_.*x_]), x_Symbol] := c*(a + b*x)*(c*ProductLog[a + b*x])^(p - 1)/(b*d) - c*p* Int[(c*ProductLog[a + b*x])^(p - 1)/(d + d*ProductLog[a + b*x]), x] /; FreeQ[{a, b, c, d}, x] && GtQ[p, 0] +Int[1/(ProductLog[a_. + b_.*x_]*(d_ + d_.*ProductLog[a_. + b_.*x_])), x_Symbol] := ExpIntegralEi[ProductLog[a + b*x]]/(b*d) /; FreeQ[{a, b, d}, x] +Int[1/(Sqrt[ c_.*ProductLog[a_. + b_.*x_]]*(d_ + d_.*ProductLog[a_. + b_.*x_])), x_Symbol] := Rt[Pi*c, 2]*Erfi[Sqrt[c*ProductLog[a + b*x]]/Rt[c, 2]]/(b*c*d) /; FreeQ[{a, b, c, d}, x] && PosQ[c] +Int[1/(Sqrt[ c_.*ProductLog[a_. + b_.*x_]]*(d_ + d_.*ProductLog[a_. + b_.*x_])), x_Symbol] := Rt[-Pi*c, 2]*Erf[Sqrt[c*ProductLog[a + b*x]]/Rt[-c, 2]]/(b*c*d) /; FreeQ[{a, b, c, d}, x] && NegQ[c] +Int[(c_.*ProductLog[a_. + b_.*x_])^ p_/(d_ + d_.*ProductLog[a_. + b_.*x_]), x_Symbol] := (a + b*x)*(c*ProductLog[a + b*x])^p/(b*d*(p + 1)) - 1/(c*(p + 1))* Int[(c*ProductLog[a + b*x])^(p + 1)/(d + d*ProductLog[a + b*x]), x] /; FreeQ[{a, b, c, d}, x] && LtQ[p, -1] +Int[(c_.*ProductLog[a_. + b_.*x_])^ p_./(d_ + d_.*ProductLog[a_. + b_.*x_]), x_Symbol] := Gamma[ p + 1, -ProductLog[a + b*x]]*(c*ProductLog[a + b*x])^ p/(b*d*(-ProductLog[a + b*x])^p) /; FreeQ[{a, b, c, d, p}, x] +Int[(e_. + f_.*x_)^m_./(d_ + d_.*ProductLog[a_ + b_.*x_]), x_Symbol] := 1/b^(m + 1)* Subst[Int[ ExpandIntegrand[1/(d + d*ProductLog[x]), (b*e - a*f + f*x)^m, x], x], x, a + b*x] /; FreeQ[{a, b, d, e, f}, x] && IGtQ[m, 0] +Int[(e_. + f_.*x_)^ m_.*(c_.*ProductLog[a_ + b_.*x_])^ p_./(d_ + d_.*ProductLog[a_ + b_.*x_]), x_Symbol] := 1/b^(m + 1)* Subst[Int[ ExpandIntegrand[(c*ProductLog[x])^ p/(d + d*ProductLog[x]), (b*e - a*f + f*x)^m, x], x], x, a + b*x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IGtQ[m, 0] +Int[1/(d_ + d_.*ProductLog[a_.*x_^n_]), x_Symbol] := -Subst[Int[1/(x^2*(d + d*ProductLog[a*x^(-n)])), x], x, 1/x] /; FreeQ[{a, d}, x] && ILtQ[n, 0] +Int[(c_.*ProductLog[a_.*x_^n_.])^ p_./(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := c*x*(c*ProductLog[a*x^n])^(p - 1)/d /; FreeQ[{a, c, d, n, p}, x] && EqQ[n*(p - 1), -1] +Int[ProductLog[a_.*x_^n_.]^p_./(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := a^p*ExpIntegralEi[-p*ProductLog[a*x^n]]/(d*n) /; FreeQ[{a, d}, x] && IntegerQ[p] && EqQ[n*p, -1] +Int[(c_.*ProductLog[a_.*x_^n_.])^p_/(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := Rt[Pi*c*n, 2]/(d*n*a^(1/n)*c^(1/n))* Erfi[Sqrt[c*ProductLog[a*x^n]]/Rt[c*n, 2]] /; FreeQ[{a, c, d}, x] && IntegerQ[1/n] && EqQ[p, 1/2 - 1/n] && PosQ[c*n] +Int[(c_.*ProductLog[a_.*x_^n_.])^p_/(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := Rt[-Pi*c*n, 2]/(d*n*a^(1/n)*c^(1/n))* Erf[Sqrt[c*ProductLog[a*x^n]]/Rt[-c*n, 2]] /; FreeQ[{a, c, d}, x] && IntegerQ[1/n] && EqQ[p, 1/2 - 1/n] && NegQ[c*n] +Int[(c_.*ProductLog[a_.*x_^n_.])^ p_./(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := c*x*(c*ProductLog[a*x^n])^(p - 1)/d - c*(n*(p - 1) + 1)* Int[(c*ProductLog[a*x^n])^(p - 1)/(d + d*ProductLog[a*x^n]), x] /; FreeQ[{a, c, d}, x] && GtQ[n, 0] && GtQ[n*(p - 1) + 1, 0] +Int[(c_.*ProductLog[a_.*x_^n_.])^ p_./(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := x*(c*ProductLog[a*x^n])^p/(d*(n*p + 1)) - 1/(c*(n*p + 1))* Int[(c*ProductLog[a*x^n])^(p + 1)/(d + d*ProductLog[a*x^n]), x] /; FreeQ[{a, c, d}, x] && GtQ[n, 0] && LtQ[n*p + 1, 0] +Int[(c_.*ProductLog[a_.*x_^n_])^p_./(d_ + d_.*ProductLog[a_.*x_^n_]), x_Symbol] := -Subst[ Int[(c*ProductLog[a*x^(-n)])^p/(x^2*(d + d*ProductLog[a*x^(-n)])), x], x, 1/x] /; FreeQ[{a, c, d, p}, x] && ILtQ[n, 0] +Int[x_^m_./(d_ + d_.*ProductLog[a_.*x_]), x_Symbol] := x^(m + 1)/(d*(m + 1)*ProductLog[a*x]) - m/(m + 1)*Int[x^m/(ProductLog[a*x]*(d + d*ProductLog[a*x])), x] /; FreeQ[{a, d}, x] && GtQ[m, 0] +Int[1/(x_*(d_ + d_.*ProductLog[a_.*x_])), x_Symbol] := Log[ProductLog[a*x]]/d /; FreeQ[{a, d}, x] +Int[x_^m_./(d_ + d_.*ProductLog[a_.*x_]), x_Symbol] := x^(m + 1)/(d*(m + 1)) - Int[x^m*ProductLog[a*x]/(d + d*ProductLog[a*x]), x] /; FreeQ[{a, d}, x] && LtQ[m, -1] +Int[x_^m_./(d_ + d_.*ProductLog[a_.*x_]), x_Symbol] := x^m*Gamma[m + 1, -(m + 1)*ProductLog[a*x]]/ (a*d*(m + 1)* E^(m*ProductLog[a*x])*(-(m + 1)*ProductLog[a*x])^m) /; FreeQ[{a, d, m}, x] && Not[IntegerQ[m]] +Int[1/(x_*(d_ + d_.*ProductLog[a_.*x_^n_.])), x_Symbol] := Log[ProductLog[a*x^n]]/(d*n) /; FreeQ[{a, d, n}, x] +Int[x_^m_./(d_ + d_.*ProductLog[a_.*x_^n_]), x_Symbol] := -Subst[Int[1/(x^(m + 2)*(d + d*ProductLog[a*x^(-n)])), x], x, 1/x] /; FreeQ[{a, d}, x] && IntegerQ[m] && ILtQ[n, 0] && NeQ[m, -1] +Int[(c_.*ProductLog[a_.*x_^n_.])^ p_./(x_*(d_ + d_.*ProductLog[a_.*x_^n_.])), x_Symbol] := (c*ProductLog[a*x^n])^p/(d*n*p) /; FreeQ[{a, c, d, n, p}, x] +Int[x_^m_.*(c_.*ProductLog[a_.*x_^n_.])^ p_./(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := c*x^(m + 1)*(c*ProductLog[a*x^n])^(p - 1)/(d*(m + 1)) /; FreeQ[{a, c, d, m, n, p}, x] && NeQ[m, -1] && EqQ[m + n*(p - 1), -1] +Int[x_^m_.* ProductLog[a_.*x_^n_.]^p_./(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := a^p*ExpIntegralEi[-p*ProductLog[a*x^n]]/(d*n) /; FreeQ[{a, d, m, n}, x] && IntegerQ[p] && EqQ[m + n*p, -1] +Int[x_^m_.*(c_.*ProductLog[a_.*x_^n_.])^ p_/(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := a^(p - 1/2)*c^(p - 1/2)*Rt[Pi*c/(p - 1/2), 2]* Erf[Sqrt[c*ProductLog[a*x^n]]/Rt[c/(p - 1/2), 2]]/(d*n) /; FreeQ[{a, c, d, m, n}, x] && NeQ[m, -1] && IntegerQ[p - 1/2] && EqQ[m + n*(p - 1/2), -1] && PosQ[c/(p - 1/2)] +Int[x_^m_.*(c_.*ProductLog[a_.*x_^n_.])^ p_/(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := a^(p - 1/2)*c^(p - 1/2)*Rt[-Pi*c/(p - 1/2), 2]* Erfi[Sqrt[c*ProductLog[a*x^n]]/Rt[-c/(p - 1/2), 2]]/(d*n) /; FreeQ[{a, c, d, m, n}, x] && NeQ[m, -1] && IntegerQ[p - 1/2] && EqQ[m + n*(p - 1/2), -1] && NegQ[c/(p - 1/2)] +Int[x_^m_.*(c_.*ProductLog[a_.*x_^n_.])^ p_./(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := c*x^(m + 1)*(c*ProductLog[a*x^n])^(p - 1)/(d*(m + 1)) - c*(m + n*(p - 1) + 1)/(m + 1)* Int[x^m*(c*ProductLog[a*x^n])^(p - 1)/(d + d*ProductLog[a*x^n]), x] /; FreeQ[{a, c, d, m, n, p}, x] && NeQ[m, -1] && GtQ[Simplify[p + (m + 1)/n], 1] +Int[x_^m_.*(c_.*ProductLog[a_.*x_^n_.])^ p_./(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := x^(m + 1)*(c*ProductLog[a*x^n])^p/(d*(m + n*p + 1)) - (m + 1)/(c*(m + n*p + 1))* Int[x^m*(c*ProductLog[a*x^n])^(p + 1)/(d + d*ProductLog[a*x^n]), x] /; FreeQ[{a, c, d, m, n, p}, x] && NeQ[m, -1] && LtQ[Simplify[p + (m + 1)/n], 0] +Int[x_^m_.*(c_.*ProductLog[a_.*x_])^p_./(d_ + d_.*ProductLog[a_.*x_]), x_Symbol] := x^m*Gamma[ m + p + 1, -(m + 1)*ProductLog[a*x]]*(c*ProductLog[a*x])^p/ (a*d*(m + 1)* E^(m*ProductLog[a*x])*(-(m + 1)*ProductLog[a*x])^(m + p)) /; FreeQ[{a, c, d, m, p}, x] && NeQ[m, -1] +Int[x_^m_.*(c_.*ProductLog[a_.*x_^n_.])^ p_./(d_ + d_.*ProductLog[a_.*x_^n_.]), x_Symbol] := -Subst[ Int[(c*ProductLog[a*x^(-n)])^ p/(x^(m + 2)*(d + d*ProductLog[a*x^(-n)])), x], x, 1/x] /; FreeQ[{a, c, d, p}, x] && NeQ[m, -1] && IntegerQ[m] && LtQ[n, 0] +Int[u_, x_Symbol] := Subst[ Int[SimplifyIntegrand[(x + 1)*E^x*SubstFor[ProductLog[x], u, x], x], x], x, ProductLog[x]] /; FunctionOfQ[ProductLog[x], u, x] diff --git a/Rubi.m b/Rubi.m index c03ebe3..70aed3d 100644 --- a/Rubi.m +++ b/Rubi.m @@ -72,6 +72,9 @@ $RubiVersion = StringJoin["Rubi ", Version /. List@@Get[FileNameJoin[{$RubiDir, "PacletInfo.m"}]]]; Print["Loading " <> $RubiVersion <> " will take a minute or two. In the future this will take less than a second."]; +(* Elementary function rules *) +$LoadElementaryFunctionRules = If[Not[ValueQ[Global`$LoadElementaryFunctionRules]], True, TrueQ[Global`$LoadElementaryFunctionRules]]; + (* Disable Steps *) (* $LoadShowSteps = If[Not[ValueQ[Global`$LoadShowSteps]], True, TrueQ[Global`$LoadShowSteps]]; *) $LoadShowSteps = False @@ -186,6 +189,167 @@ LoadRules[FileNameJoin[{"1 Algebraic functions", "1.4 Miscellaneous", "1.4.3 Miscellaneous algebraic functions"}]]; +If[$LoadElementaryFunctionRules===True, + LoadRules[FileNameJoin[{"2 Exponentials", "2.1 (c+d x)^m (a+b (F^(g (e+f x)))^n)^p"}]]; + LoadRules[FileNameJoin[{"2 Exponentials", "2.2 (c+d x)^m (F^(g (e+f x)))^n (a+b (F^(g (e+f x)))^n)^p"}]]; + LoadRules[FileNameJoin[{"2 Exponentials", "2.3 Miscellaneous exponentials"}]]; + + LoadRules[FileNameJoin[{"3 Logarithms", "3.1.1 (a+b log(c x^n))^p"}]]; + LoadRules[FileNameJoin[{"3 Logarithms", "3.1.2 (d x)^m (a+b log(c x^n))^p"}]]; + LoadRules[FileNameJoin[{"3 Logarithms", "3.1.3 (d+e x^r)^q (a+b log(c x^n))^p"}]]; + LoadRules[FileNameJoin[{"3 Logarithms", "3.1.4 (f x)^m (d+e x^r)^q (a+b log(c x^n))^p"}]]; + (* + LoadRules[FileNameJoin[{"3 Logarithms", "3.1.5 u (a+b log(c x^n))^p"}]]; + LoadRules[FileNameJoin[{"3 Logarithms", "3.3 u (a+b log(c (d+e x)^n))^p"}]]; + *) + LoadRules[FileNameJoin[{"3 Logarithms", "3.4 u (a+b log(c (d+e x^m)^n))^p"}]]; + LoadRules[FileNameJoin[{"3 Logarithms", "3.2.1 (f+g x)^m (A+B log(e ((a+b x) over (c+d x))^n))^p"}]]; + LoadRules[FileNameJoin[{"3 Logarithms", "3.2.2 (f+g x)^m (h+i x)^q (A+B log(e ((a+b x) over (c+d x))^n))^p"}]]; + (* + LoadRules[FileNameJoin[{"3 Logarithms", "3.2.3 u log(e (f (a+b x)^p (c+d x)^q)^r)^s"}]]; + *) + LoadRules[FileNameJoin[{"3 Logarithms", "3.5 Miscellaneous logarithms"}]]; + + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.0.1 (a sin)^m (b trg)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.0.2 (a trg)^m (b tan)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.0.3 (a csc)^m (b sec)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.1.1 (a+b sin)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.1.2 (g cos)^p (a+b sin)^m"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.1.3 (g tan)^p (a+b sin)^m"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.2.1 (a+b sin)^m (c+d sin)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.2.2 (g cos)^p (a+b sin)^m (c+d sin)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.2.3 (g sin)^p (a+b sin)^m (c+d sin)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.3.1 (a+b sin)^m (c+d sin)^n (A+B sin)"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.4.1 (a+b sin)^m (A+B sin+C sin^2)"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.4.2 (a+b sin)^m (c+d sin)^n (A+B sin+C sin^2)"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.5 trig^m (a cos+b sin)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.6 (a+b cos+c sin)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.7 (d trig)^m (a+b (c sin)^n)^p"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.8 trig^m (a+b cos^p+c sin^q)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.9 trig^m (a+b sin^n+c sin^(2 n))^p"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.10 (c+d x)^m (a+b sin)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.11 (e x)^m (a+b x^n)^p sin"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.12 (e x)^m (a+b sin(c+d x^n))^p"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.1 Sine", "4.1.13 (d+e x)^m sin(a+b x+c x^2)^n"}]]; + + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.1.1 (a+b tan)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.1.2 (d sec)^m (a+b tan)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.1.3 (d sin)^m (a+b tan)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.2.1 (a+b tan)^m (c+d tan)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.2.3 (g tan)^p (a+b tan)^m (c+d tan)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.3.1 (a+b tan)^m (c+d tan)^n (A+B tan)"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.4.1 (a+b tan)^m (A+B tan+C tan^2)"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.4.2 (a+b tan)^m (c+d tan)^n (A+B tan+C tan^2)"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.7 (d trig)^m (a+b (c tan)^n)^p"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.9 trig^m (a+b tan^n+c tan^(2 n))^p"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.10 (c+d x)^m (a+b tan)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.11 (e x)^m (a+b tan(c+d x^n))^p"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.3 Tangent", "4.3.12 (d+e x)^m tan(a+b x+c x^2)^n"}]]; + + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.1.1 (a+b sec)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.1.2 (d sec)^n (a+b sec)^m"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.1.3 (d sin)^n (a+b sec)^m"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.1.4 (d tan)^n (a+b sec)^m"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.2.1 (a+b sec)^m (c+d sec)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.2.2 (g sec)^p (a+b sec)^m (c+d sec)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.3.1 (a+b sec)^m (d sec)^n (A+B sec)"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.4.1 (a+b sec)^m (A+B sec+C sec^2)"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.4.2 (a+b sec)^m (d sec)^n (A+B sec+C sec^2)"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.7 (d trig)^m (a+b (c sec)^n)^p"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.9 trig^m (a+b sec^n+c sec^(2 n))^p"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.10 (c+d x)^m (a+b sec)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.5 Secant", "4.5.11 (e x)^m (a+b sec(c+d x^n))^p"}]]; + + LoadRules[FileNameJoin[{"4 Trig functions", "4.7 Miscellaneous", "4.7.1 Sine normalization rules"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.7 Miscellaneous", "4.7.2 Tangent normalization rules"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.7 Miscellaneous", "4.7.3 Secant normalization rules"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.7 Miscellaneous", "4.7.4 (c trig)^m (d trig)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.7 Miscellaneous", "4.7.5 Inert trig functions"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.7 Miscellaneous", "4.7.6 (c+d x)^m trig(a+b x)^n trig(a+b x)^p"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.7 Miscellaneous", "4.7.7 F^(c (a+b x)) trig(d+e x)^n"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.7 Miscellaneous", "4.7.8 u trig(a+b log(c x^n))^p"}]]; + LoadRules[FileNameJoin[{"4 Trig functions", "4.7 Miscellaneous", "4.7.9 Active trig functions"}]]; + + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.1 Inverse sine", "5.1.1 (a+b arcsin(c x))^n"}]]; + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.1 Inverse sine", "5.1.2 (d x)^m (a+b arcsin(c x))^n"}]]; + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.1 Inverse sine", "5.1.3 (d+e x^2)^p (a+b arcsin(c x))^n"}]]; + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.1 Inverse sine", "5.1.4 (f x)^m (d+e x^2)^p (a+b arcsin(c x))^n"}]]; + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.1 Inverse sine", "5.1.5 u (a+b arcsin(c x))^n"}]]; + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.1 Inverse sine", "5.1.6 Miscellaneous inverse sine"}]]; + + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.3 Inverse tangent", "5.3.1 (a+b arctan(c x^n))^p"}]]; + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.3 Inverse tangent", "5.3.2 (d x)^m (a+b arctan(c x^n))^p"}]]; + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.3 Inverse tangent", "5.3.3 (d+e x)^m (a+b arctan(c x^n))^p"}]]; + (* + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.3 Inverse tangent", "5.3.4 u (a+b arctan(c x))^p"}]]; + *) + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.3 Inverse tangent", "5.3.5 u (a+b arctan(c+d x))^p"}]]; + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.3 Inverse tangent", "5.3.6 Exponentials of inverse tangent"}]]; + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.3 Inverse tangent", "5.3.7 Miscellaneous inverse tangent"}]]; + + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.5 Inverse secant", "5.5.1 u (a+b arcsec(c x))^n"}]]; + LoadRules[FileNameJoin[{"5 Inverse trig functions", "5.5 Inverse secant", "5.5.2 Miscellaneous inverse secant"}]]; + + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.1 Hyperbolic sine", "6.1.10 (c+d x)^m (a+b sinh)^n"}]]; + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.1 Hyperbolic sine", "6.1.11 (e x)^m (a+b x^n)^p sinh"}]]; + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.1 Hyperbolic sine", "6.1.12 (e x)^m (a+b sinh(c+d x^n))^p"}]]; + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.1 Hyperbolic sine", "6.1.13 (d+e x)^m sinh(a+b x+c x^2)^n"}]]; + + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.3 Hyperbolic tangent", "6.3.10 (c+d x)^m (a+b tanh)^n"}]]; + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.3 Hyperbolic tangent", "6.3.11 (e x)^m (a+b tanh(c+d x^n))^p"}]]; + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.3 Hyperbolic tangent", "6.3.12 (d+e x)^m tanh(a+b x+c x^2)^n"}]]; + + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.5 Hyperbolic secant", "6.5.10 (c+d x)^m (a+b sech)^n"}]]; + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.5 Hyperbolic secant", "6.5.11 (e x)^m (a+b sech(c+d x^n))^p"}]]; + + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.7 Miscellaneous", "6.7.6 (c+d x)^m hyper(a+b x)^n hyper(a+b x)^p"}]]; + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.7 Miscellaneous", "6.7.7 F^(c (a+b x)) hyper(d+e x)^n"}]]; + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.7 Miscellaneous", "6.7.8 u hyper(a+b log(c x^n))^p"}]]; + LoadRules[FileNameJoin[{"6 Hyperbolic functions", "6.7 Miscellaneous", "6.7.9 Active hyperbolic functions"}]]; + + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.1 Inverse hyperbolic sine", "7.1.1 (a+b arcsinh(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.1 Inverse hyperbolic sine", "7.1.2 (d x)^m (a+b arcsinh(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.1 Inverse hyperbolic sine", "7.1.3 (d+e x^2)^p (a+b arcsinh(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.1 Inverse hyperbolic sine", "7.1.4 (f x)^m (d+e x^2)^p (a+b arcsinh(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.1 Inverse hyperbolic sine", "7.1.5 u (a+b arcsinh(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.1 Inverse hyperbolic sine", "7.1.6 Miscellaneous inverse hyperbolic sine"}]]; + + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.2 Inverse hyperbolic cosine", "7.2.1 (a+b arccosh(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.2 Inverse hyperbolic cosine", "7.2.2 (d x)^m (a+b arccosh(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.2 Inverse hyperbolic cosine", "7.2.3 (d+e x^2)^p (a+b arccosh(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.2 Inverse hyperbolic cosine", "7.2.4 (f x)^m (d+e x^2)^p (a+b arccosh(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.2 Inverse hyperbolic cosine", "7.2.5 u (a+b arccosh(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.2 Inverse hyperbolic cosine", "7.2.6 Miscellaneous inverse hyperbolic cosine"}]]; + + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.3 Inverse hyperbolic tangent", "7.3.1 (a+b arctanh(c x^n))^p"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.3 Inverse hyperbolic tangent", "7.3.2 (d x)^m (a+b arctanh(c x^n))^p"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.3 Inverse hyperbolic tangent", "7.3.3 (d+e x)^m (a+b arctanh(c x^n))^p"}]]; + (* + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.3 Inverse hyperbolic tangent", "7.3.4 u (a+b arctanh(c x))^p"}]]; + *) + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.3 Inverse hyperbolic tangent", "7.3.5 u (a+b arctanh(c+d x))^p"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.3 Inverse hyperbolic tangent", "7.3.6 Exponentials of inverse hyperbolic tangent"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.3 Inverse hyperbolic tangent", "7.3.7 Miscellaneous inverse hyperbolic tangent"}]]; + + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.5 Inverse hyperbolic secant", "7.5.1 u (a+b arcsech(c x))^n"}]]; + LoadRules[FileNameJoin[{"7 Inverse hyperbolic functions", "7.5 Inverse hyperbolic secant", "7.5.2 Miscellaneous inverse hyperbolic secant"}]]; + + LoadRules[FileNameJoin[{"8 Special functions", "8.1 Error functions"}]]; + LoadRules[FileNameJoin[{"8 Special functions", "8.2 Fresnel integral functions"}]]; + LoadRules[FileNameJoin[{"8 Special functions", "8.3 Exponential integral functions"}]]; + LoadRules[FileNameJoin[{"8 Special functions", "8.4 Trig integral functions"}]]; + LoadRules[FileNameJoin[{"8 Special functions", "8.5 Hyperbolic integral functions"}]]; + LoadRules[FileNameJoin[{"8 Special functions", "8.6 Gamma functions"}]]; + LoadRules[FileNameJoin[{"8 Special functions", "8.7 Zeta function"}]]; + (* + LoadRules[FileNameJoin[{"8 Special functions", "8.8 Polylogarithm function"}]]; + *) + LoadRules[FileNameJoin[{"8 Special functions", "8.9 Product logarithm function"}]]; + (*LoadRules[FileNameJoin[{"8 Special functions", "8.10 Bessel functions"}]]; *) + + LoadRules[FileNameJoin[{"9 Miscellaneous", "9.1 Derivative integration rules"}]] +]; + (* Required rules from Section 9 *) LoadRules[FileNameJoin[{"9 Miscellaneous", "9.1 Integrand simplification rules"}]]; LoadRules[FileNameJoin[{"9 Miscellaneous", "9.2 Piecewise linear functions"}]]; From ff6ef36a2a279025bde496dfdd0da44eb0fe4c59 Mon Sep 17 00:00:00 2001 From: Aravindh Krishnamoorthy Date: Sun, 6 Apr 2025 17:53:16 +0100 Subject: [PATCH 2/3] Add missing file 9.1 Derivative... --- .../9.1 Derivative integration rules.m | 160 ++++++++++++++++++ 1 file changed, 160 insertions(+) create mode 100755 IntegrationRules/9 Miscellaneous/9.1 Derivative integration rules.m diff --git a/IntegrationRules/9 Miscellaneous/9.1 Derivative integration rules.m b/IntegrationRules/9 Miscellaneous/9.1 Derivative integration rules.m new file mode 100755 index 0000000..881e789 --- /dev/null +++ b/IntegrationRules/9 Miscellaneous/9.1 Derivative integration rules.m @@ -0,0 +1,160 @@ +(* ::Package:: *) + +(************************************************************************) +(* This file was generated automatically by the Mathematica front end. *) +(* It contains Initialization cells from a Notebook file, which *) +(* typically will have the same name as this file except ending in *) +(* ".nb" instead of ".m". *) +(* *) +(* This file is intended to be loaded into the Mathematica kernel using *) +(* the package loading commands Get or Needs. Doing so is equivalent *) +(* to using the Evaluate Initialization Cells menu command in the front *) +(* end. *) +(* *) +(* DO NOT EDIT THIS FILE. This entire file is regenerated *) +(* automatically each time the parent Notebook file is saved in the *) +(* Mathematica front end. Any changes you make to this file will be *) +(* overwritten. *) +(************************************************************************) + + + +(* ::Code:: *) +Int[Derivative[n_][f_][x_],x_Symbol] := + Derivative[n-1][f][x] /; +FreeQ[{f,n},x] + + +(* ::Code:: *) +Int[(c_.*F_^(a_.+b_.*x_))^p_.*Derivative[n_][f_][x_],x_Symbol] := + (c*F^(a+b*x))^p*Derivative[n-1][f][x] - b*p*Log[F] \[Star] Int[(c*F^(a+b*x))^p*Derivative[n-1][f][x],x] /; +FreeQ[{a,b,c,f,F,p},x] && IGtQ[n,0] + + +(* ::Code:: *) +Int[(c_.*F_^(a_.+b_.*x_))^p_.*Derivative[n_][f_][x_],x_Symbol] := + (c*F^(a+b*x))^p*Derivative[n][f][x]/(b*p*Log[F]) - 1/(b*p*Log[F]) \[Star] Int[(c*F^(a+b*x))^p*Derivative[n+1][f][x],x] /; +FreeQ[{a,b,c,f,F,p},x] && ILtQ[n,0] + + +(* ::Code:: *) +Int[Sin[a_.+b_.*x_]*Derivative[n_][f_][x_],x_Symbol] := + Sin[a+b*x]*Derivative[n-1][f][x] - b \[Star] Int[Cos[a+b*x]*Derivative[n-1][f][x],x] /; +FreeQ[{a,b,f},x] && IGtQ[n,0] + + +(* ::Code:: *) +Int[Cos[a_.+b_.*x_]*Derivative[n_][f_][x_],x_Symbol] := + Cos[a+b*x]*Derivative[n-1][f][x] + b \[Star] Int[Sin[a+b*x]*Derivative[n-1][f][x],x] /; +FreeQ[{a,b,f},x] && IGtQ[n,0] + + +(* ::Code:: *) +Int[Sin[a_.+b_.*x_]*Derivative[n_][f_][x_],x_Symbol] := + -Cos[a+b*x]*Derivative[n][f][x]/b + 1/b \[Star] Int[Cos[a+b*x]*Derivative[n+1][f][x],x] /; +FreeQ[{a,b,f},x] && ILtQ[n,0] + + +(* ::Code:: *) +Int[Cos[a_.+b_.*x_]*Derivative[n_][f_][x_],x_Symbol] := + Sin[a+b*x]*Derivative[n][f][x]/b - 1/b \[Star] Int[Sin[a+b*x]*Derivative[n+1][f][x],x] /; +FreeQ[{a,b,f},x] && ILtQ[n,0] + + +(* ::Code:: *) +Int[u_*Derivative[n_][f_][x_],x_Symbol] := + Subst[Int[SimplifyIntegrand[SubstFor[Derivative[n-1][f][x],u,x],x],x],x,Derivative[n-1][f][x]] /; +FreeQ[{f,n},x] && FunctionOfQ[Derivative[n-1][f][x],u,x] + + +(* ::Code:: *) +Int[u_*(a_.*Derivative[1][f_][x_]*g_[x_]+a_.*f_[x_]*Derivative[1][g_][x_]),x_Symbol] := + a \[Star] Subst[Int[SimplifyIntegrand[SubstFor[f[x]*g[x],u,x],x],x],x,f[x]*g[x]] /; +FreeQ[{a,f,g},x] && FunctionOfQ[f[x]*g[x],u,x] + + +(* ::Code:: *) +Int[u_*(a_.*Derivative[m_][f_][x_]*g_[x_]+a_.*Derivative[m1_][f_][x_]*Derivative[1][g_][x_]),x_Symbol] := + a \[Star] Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m-1][f][x]*g[x],u,x],x],x],x,Derivative[m-1][f][x]*g[x]] /; +FreeQ[{a,f,g,m},x] && EqQ[m1,m-1] && FunctionOfQ[Derivative[m-1][f][x]*g[x],u,x] + + +(* ::Code:: *) +Int[u_*(a_.*Derivative[m_][f_][x_]*Derivative[n1_][g_][x_]+a_.*Derivative[m1_][f_][x_]*Derivative[n_][g_][x_]),x_Symbol] := + a \[Star] Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m-1][f][x]*Derivative[n-1][g][x],u,x],x],x],x,Derivative[m-1][f][x]*Derivative[n-1][g][x]] /; +FreeQ[{a,f,g,m,n},x] && EqQ[m1,m-1] && EqQ[n1,n-1] && FunctionOfQ[Derivative[m-1][f][x]*Derivative[n-1][g][x],u,x] + + +(* ::Code:: *) +Int[u_*f_[x_]^p_.*(a_.*Derivative[1][f_][x_]*g_[x_]+b_.*f_[x_]*Derivative[1][g_][x_]),x_Symbol] := + b \[Star] Subst[Int[SimplifyIntegrand[SubstFor[f[x]^(p+1)*g[x],u,x],x],x],x,f[x]^(p+1)*g[x]] /; +FreeQ[{a,b,f,g,p},x] && EqQ[a,b*(p+1)] && FunctionOfQ[f[x]^(p+1)*g[x],u,x] + + +(* ::Code:: *) +Int[u_*Derivative[m1_][f_][x_]^p_.* + (a_.*Derivative[m_][f_][x_]*g_[x_]+b_.*Derivative[m1_][f_][x_]*Derivative[1][g_][x_]),x_Symbol] := + b \[Star] Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m-1][f][x]^(p+1)*g[x],u,x],x],x],x, + Derivative[m-1][f][x]^(p+1)*g[x]] /; +FreeQ[{a,b,f,g,m,p},x] && EqQ[m1,m-1] && EqQ[a,b*(p+1)] && FunctionOfQ[Derivative[m-1][f][x]^(p+1)*g[x],u,x] + + +(* ::Code:: *) +Int[u_*g_[x_]^q_.* + (a_.*Derivative[m_][f_][x_]*g_[x_]+b_.*Derivative[m1_][f_][x_]*Derivative[1][g_][x_]),x_Symbol] := + a \[Star] Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m-1][f][x]*g[x]^(q+1),u,x],x],x],x, + Derivative[m-1][f][x]*g[x]^(q+1)] /; +FreeQ[{a,b,f,g,m,q},x] && EqQ[m1,m-1] && EqQ[a*(q+1),b] && FunctionOfQ[Derivative[m-1][f][x]*g[x]^(q+1),u,x] + + +(* ::Code:: *) +Int[u_*Derivative[m1_][f_][x_]^p_.* + (a_.*Derivative[m_][f_][x_]*Derivative[n1_][g_][x_]+b_.*Derivative[m1_][f_][x_]*Derivative[n_][g_][x_]),x_Symbol] := + b \[Star] Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m-1][f][x]^(p+1)*Derivative[n-1][g][x],u,x],x],x],x, + Derivative[m-1][f][x]^(p+1)*Derivative[n-1][g][x]] /; +FreeQ[{a,b,f,g,m,n,p},x] && EqQ[m1,m-1] && EqQ[n1,n-1] && EqQ[a,b*(p+1)] && + FunctionOfQ[Derivative[m-1][f][x]^(p+1)*Derivative[n-1][g][x],u,x] + + +(* ::Code:: *) +Int[u_*f_[x_]^p_.*g_[x_]^q_.*(a_.*Derivative[1][f_][x_]*g_[x_]+b_.*f_[x_]*Derivative[1][g_][x_]),x_Symbol] := + a/(p+1) \[Star] Subst[Int[SimplifyIntegrand[SubstFor[f[x]^(p+1)*g[x]^(q+1),u,x],x],x],x,f[x]^(p+1)*g[x]^(q+1)] /; +FreeQ[{a,b,f,g,p,q},x] && EqQ[a*(q+1),b*(p+1)] && FunctionOfQ[f[x]^(p+1)*g[x]^(q+1),u,x] + + +(* ::Code:: *) +Int[u_*Derivative[m1_][f_][x_]^p_.*g_[x_]^q_.* + (a_.*Derivative[m_][f_][x_]*g_[x_]+b_.*Derivative[m1_][f_][x_]*Derivative[1][g_][x_]),x_Symbol] := + a/(p+1) \[Star] Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m-1][f][x]^(p+1)*g[x]^(q+1),u,x],x],x],x, + Derivative[m-1][f][x]^(p+1)*g[x]^(q+1)] /; +FreeQ[{a,b,f,g,m,p,q},x] && EqQ[m1,m-1] && EqQ[a*(q+1),b*(p+1)] && FunctionOfQ[Derivative[m-1][f][x]^(p+1)*g[x]^(q+1),u,x] + + +(* ::Code:: *) +Int[u_*Derivative[m1_][f_][x_]^p_.*Derivative[n1_][g_][x_]^q_.* + (a_.*Derivative[m_][f_][x_]*Derivative[n1_][g_][x_]+b_.*Derivative[m1_][f_][x_]*Derivative[n_][g_][x_]),x_Symbol] := + a/(p+1) \[Star] Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m-1][f][x]^(p+1)*Derivative[n-1][g][x]^(q+1),u,x],x],x],x, + Derivative[m-1][f][x]^(p+1)*Derivative[n-1][g][x]^(q+1)] /; +FreeQ[{a,b,f,g,m,n,p,q},x] && EqQ[m1,m-1] && EqQ[n1,n-1] && EqQ[a*(q+1),b*(p+1)] && + FunctionOfQ[Derivative[m-1][f][x]^(p+1)*Derivative[n-1][g][x]^(q+1),u,x] + + +(* ::Code:: *) +Int[f_'[x_]*g_[x_] + f_[x_]*g_'[x_],x_Symbol] := + f[x]*g[x] /; +FreeQ[{f,g},x] + + +(* ::Code:: *) +Int[(f_'[x_]*g_[x_] - f_[x_]*g_'[x_])/g_[x_]^2,x_Symbol] := + f[x]/g[x] /; +FreeQ[{f,g},x] + + +(* ::Code:: *) +Int[(f_'[x_]*g_[x_] - f_[x_]*g_'[x_])/(f_[x_]*g_[x_]),x_Symbol] := + Log[f[x]/g[x]] /; +FreeQ[{f,g},x] + + + From 865033041f98926738e33ca342850d02c33734cf Mon Sep 17 00:00:00 2001 From: Aravindh Krishnamoorthy Date: Sun, 6 Apr 2025 18:03:24 +0100 Subject: [PATCH 3/3] Sanity Check now includes first few tests of all sections. Not yet fully operational. --- Integration Test Suite/SanityCheck.m | 164 +++++++++++++++++++++++---- 1 file changed, 143 insertions(+), 21 deletions(-) diff --git a/Integration Test Suite/SanityCheck.m b/Integration Test Suite/SanityCheck.m index 1b99801..99171eb 100644 --- a/Integration Test Suite/SanityCheck.m +++ b/Integration Test Suite/SanityCheck.m @@ -1,16 +1,6 @@ (* ::Package:: *) -(* ::Title::Closed:: *) -(*Integrands of the form (c x)^m (a+b x)^n*) - - -(* ::Section::Closed:: *) -(*Integrands of the form (b x)^n*) - - -(* ::Subsection::Closed:: *) -(*Integrands of the form b*) - +(* Section 1 *) {0, x, 1, 0} {1, x, 1, x} @@ -22,11 +12,6 @@ {3*a, x, 1, 3*a*x} {Pi/Sqrt[16 - E^2], x, 1, (Pi*x)/Sqrt[16 - E^2]} - -(* ::Subsection::Closed:: *) -(*Integrands of the form x^n*) - - {x^100, x, 1, x^101/101} {x^3, x, 1, x^4/4} {x^2, x, 1, x^3/3} @@ -38,14 +23,151 @@ {1/x^4, x, 1, -(1/(3*x^3))} {1/x^100, x, 1, -1/(99*x^99)} - -(* ::Subsection::Closed:: *) -(*Integrands of the form (b x)^(n/2)*) - - {x^(5/2), x, 1, 2*x^(7/2)/7} {x^(3/2), x, 1, 2*x^(5/2)/5} {x^(1/2), x, 1, 2*x^(3/2)/3} {1/x^(1/2), x, 1, 2*Sqrt[x]} {1/x^(3/2), x, 1, -2/Sqrt[x]} {1/x^(5/2), x, 1, -2/(3*x^(3/2))} + +(* Section 2 *) + +{F^(c*(a + b*x))*(d + e*x)^m, x, 1, (F^(c*(a - (b*d)/e))*(d + e*x)^m*Gamma[1 + m, -((b*c*(d + e*x)*Log[F])/e)])/((-((b*c*(d + e*x)*Log[F])/e))^m*(b*c*Log[F]))} + +{F^(c*(a + b*x))*(d + e*x)^4, x, 5, (24*e^4*F^(c*(a + b*x)))/(b^5*c^5*Log[F]^5) - (24*e^3*F^(c*(a + b*x))*(d + e*x))/(b^4*c^4*Log[F]^4) + (12*e^2*F^(c*(a + b*x))*(d + e*x)^2)/(b^3*c^3*Log[F]^3) - (4*e*F^(c*(a + b*x))*(d + e*x)^3)/(b^2*c^2*Log[F]^2) + (F^(c*(a + b*x))*(d + e*x)^4)/(b*c*Log[F])} +{F^(c*(a + b*x))*(d + e*x)^3, x, 4, -((6*e^3*F^(c*(a + b*x)))/(b^4*c^4*Log[F]^4)) + (6*e^2*F^(c*(a + b*x))*(d + e*x))/(b^3*c^3*Log[F]^3) - (3*e*F^(c*(a + b*x))*(d + e*x)^2)/(b^2*c^2*Log[F]^2) + (F^(c*(a + b*x))*(d + e*x)^3)/(b*c*Log[F])} +{F^(c*(a + b*x))*(d + e*x)^2, x, 3, (2*e^2*F^(c*(a + b*x)))/(b^3*c^3*Log[F]^3) - (2*e*F^(c*(a + b*x))*(d + e*x))/(b^2*c^2*Log[F]^2) + (F^(c*(a + b*x))*(d + e*x)^2)/(b*c*Log[F])} +{F^(c*(a + b*x))*(d + e*x)^1, x, 2, -((e*F^(c*(a + b*x)))/(b^2*c^2*Log[F]^2)) + (F^(c*(a + b*x))*(d + e*x))/(b*c*Log[F])} +{F^(c*(a + b*x))*(d + e*x)^0, x, 1, F^(c*(a + b*x))/(b*c*Log[F])} +{F^(c*(a + b*x))/(d + e*x)^1, x, 1, (F^(c*(a - (b*d)/e))*ExpIntegralEi[(b*c*(d + e*x)*Log[F])/e])/e} +{F^(c*(a + b*x))/(d + e*x)^2, x, 2, -(F^(c*(a + b*x))/(e*(d + e*x))) + (b*c*F^(c*(a - (b*d)/e))*ExpIntegralEi[(b*c*(d + e*x)*Log[F])/e]*Log[F])/e^2} +{F^(c*(a + b*x))/(d + e*x)^3, x, 3, -(F^(c*(a + b*x))/(2*e*(d + e*x)^2)) - (b*c*F^(c*(a + b*x))*Log[F])/(2*e^2*(d + e*x)) + (b^2*c^2*F^(c*(a - (b*d)/e))*ExpIntegralEi[(b*c*(d + e*x)*Log[F])/e]*Log[F]^2)/(2*e^3)} +{F^(c*(a + b*x))/(d + e*x)^4, x, 4, -(F^(c*(a + b*x))/(3*e*(d + e*x)^3)) - (b*c*F^(c*(a + b*x))*Log[F])/(6*e^2*(d + e*x)^2) - (b^2*c^2*F^(c*(a + b*x))*Log[F]^2)/(6*e^3*(d + e*x)) + (b^3*c^3*F^(c*(a - (b*d)/e))*ExpIntegralEi[(b*c*(d + e*x)*Log[F])/e]*Log[F]^3)/(6*e^4)} +{F^(c*(a + b*x))/(d + e*x)^5, x, 5, -(F^(c*(a + b*x))/(4*e*(d + e*x)^4)) - (b*c*F^(c*(a + b*x))*Log[F])/(12*e^2*(d + e*x)^3) - (b^2*c^2*F^(c*(a + b*x))*Log[F]^2)/(24*e^3*(d + e*x)^2) - (b^3*c^3*F^(c*(a + b*x))*Log[F]^3)/(24*e^4*(d + e*x)) + (b^4*c^4*F^(c*(a - (b*d)/e))*ExpIntegralEi[(b*c*(d + e*x)*Log[F])/e]*Log[F]^4)/(24*e^5)} + +(* +(* Section 3 *) +{x^3*Log[c*x], x, 1, -x^4/16 + (x^4*Log[c*x])/4} +{x^2*Log[c*x], x, 1, -x^3/9 + (x^3*Log[c*x])/3} +{x^1*Log[c*x], x, 1, -x^2/4 + (x^2*Log[c*x])/2} +{x^0*Log[c*x], x, 1, -x + x*Log[c*x]} +{Log[c*x]/x^1, x, 1, Log[c*x]^2/2} +{Log[c*x]/x^2, x, 1, -x^(-1) - Log[c*x]/x} +{Log[c*x]/x^3, x, 1, -1/(4*x^2) - Log[c*x]/(2*x^2)} + + +{x^3*Log[c*x]^2, x, 2, x^4/32 - (x^4*Log[c*x])/8 + (x^4*Log[c*x]^2)/4} +{x^2*Log[c*x]^2, x, 2, (2*x^3)/27 - (2*x^3*Log[c*x])/9 + (x^3*Log[c*x]^2)/3} +{x^1*Log[c*x]^2, x, 2, x^2/4 - (x^2*Log[c*x])/2 + (x^2*Log[c*x]^2)/2} +{x^0*Log[c*x]^2, x, 2, 2*x - 2*x*Log[c*x] + x*Log[c*x]^2} +{Log[c*x]^2/x^1, x, 2, Log[c*x]^3/3} +{Log[c*x]^2/x^2, x, 2, -2/x - (2*Log[c*x])/x - Log[c*x]^2/x} +{Log[c*x]^2/x^3, x, 2, -1/(4*x^2) - Log[c*x]/(2*x^2) - Log[c*x]^2/(2*x^2)} + +(* Section 4 *) +{Sin[a + b*x]^1, x, 1, -(Cos[a + b*x]/b)} +{Sin[a + b*x]^2, x, 2, x/2 - (Cos[a + b*x]*Sin[a + b*x])/(2*b)} +{Sin[a + b*x]^3, x, 2, -(Cos[a + b*x]/b) + Cos[a + b*x]^3/(3*b)} +{Sin[a + b*x]^4, x, 3, (3*x)/8 - (3*Cos[a + b*x]*Sin[a + b*x])/(8*b) - (Cos[a + b*x]*Sin[a + b*x]^3)/(4*b)} +{Sin[a + b*x]^5, x, 2, -(Cos[a + b*x]/b) + (2*Cos[a + b*x]^3)/(3*b) - Cos[a + b*x]^5/(5*b)} +{Sin[a + b*x]^6, x, 4, (5*x)/16 - (5*Cos[a + b*x]*Sin[a + b*x])/(16*b) - (5*Cos[a + b*x]*Sin[a + b*x]^3)/(24*b) - (Cos[a + b*x]*Sin[a + b*x]^5)/(6*b)} +{Sin[a + b*x]^7, x, 2, -(Cos[a + b*x]/b) + Cos[a + b*x]^3/b - (3*Cos[a + b*x]^5)/(5*b) + Cos[a + b*x]^7/(7*b)} +{Sin[a + b*x]^8, x, 5, (35*x)/128 - (35*Cos[a + b*x]*Sin[a + b*x])/(128*b) - (35*Cos[a + b*x]*Sin[a + b*x]^3)/(192*b) - (7*Cos[a + b*x]*Sin[a + b*x]^5)/(48*b) - (Cos[a + b*x]*Sin[a + b*x]^7)/(8*b)} + +{Sin[b*x]^(7/2), x, 3, -((10*EllipticF[Pi/4 - (b*x)/2, 2])/(21*b)) - (10*Cos[b*x]*Sqrt[Sin[b*x]])/(21*b) - (2*Cos[b*x]*Sin[b*x]^(5/2))/(7*b)} +{Sin[b*x]^(5/2), x, 2, -((6*EllipticE[Pi/4 - (b*x)/2, 2])/(5*b)) - (2*Cos[b*x]*Sin[b*x]^(3/2))/(5*b)} +{Sin[b*x]^(3/2), x, 2, -((2*EllipticF[Pi/4 - (b*x)/2, 2])/(3*b)) - (2*Cos[b*x]*Sqrt[Sin[b*x]])/(3*b)} +{Sin[b*x]^(1/2), x, 1, -((2*EllipticE[Pi/4 - (b*x)/2, 2])/b)} +{1/Sin[b*x]^(1/2), x, 1, -((2*EllipticF[Pi/4 - (b*x)/2, 2])/b)} +{1/Sin[b*x]^(3/2), x, 2, (2*EllipticE[Pi/4 - (b*x)/2, 2])/b - (2*Cos[b*x])/(b*Sqrt[Sin[b*x]])} +{1/Sin[b*x]^(5/2), x, 2, -((2*EllipticF[Pi/4 - (b*x)/2, 2])/(3*b)) - (2*Cos[b*x])/(3*b*Sin[b*x]^(3/2))} +{1/Sin[b*x]^(7/2), x, 3, (6*EllipticE[Pi/4 - (b*x)/2, 2])/(5*b) - (2*Cos[b*x])/(5*b*Sin[b*x]^(5/2)) - (6*Cos[b*x])/(5*b*Sqrt[Sin[b*x]])} + +(* Section 5 *) +{x^6*(a + b*ArcCsc[c*x]), x, 7, (5*b*Sqrt[1 - 1/(c^2*x^2)]*x^2)/(112*c^5) + (5*b*Sqrt[1 - 1/(c^2*x^2)]*x^4)/(168*c^3) + (b*Sqrt[1 - 1/(c^2*x^2)]*x^6)/(42*c) + (x^7*(a + b*ArcCsc[c*x]))/7 + (5*b*ArcTanh[Sqrt[1 - 1/(c^2*x^2)]])/(112*c^7)} +{x^5*(a + b*ArcCsc[c*x]), x, 4, (4*b*Sqrt[1 - 1/(c^2*x^2)]*x)/(45*c^5) + (2*b*Sqrt[1 - 1/(c^2*x^2)]*x^3)/(45*c^3) + (b*Sqrt[1 - 1/(c^2*x^2)]*x^5)/(30*c) + (x^6*(a + b*ArcCsc[c*x]))/6} +{x^4*(a + b*ArcCsc[c*x]), x, 6, (3*b*Sqrt[1 - 1/(c^2*x^2)]*x^2)/(40*c^3) + (b*Sqrt[1 - 1/(c^2*x^2)]*x^4)/(20*c) + (x^5*(a + b*ArcCsc[c*x]))/5 + (3*b*ArcTanh[Sqrt[1 - 1/(c^2*x^2)]])/(40*c^5)} +{x^3*(a + b*ArcCsc[c*x]), x, 3, (b*Sqrt[1 - 1/(c^2*x^2)]*x)/(6*c^3) + (b*Sqrt[1 - 1/(c^2*x^2)]*x^3)/(12*c) + (x^4*(a + b*ArcCsc[c*x]))/4} +{x^2*(a + b*ArcCsc[c*x]), x, 5, (b*Sqrt[1 - 1/(c^2*x^2)]*x^2)/(6*c) + (x^3*(a + b*ArcCsc[c*x]))/3 + (b*ArcTanh[Sqrt[1 - 1/(c^2*x^2)]])/(6*c^3)} +{x*(a + b*ArcCsc[c*x]), x, 2, (b*Sqrt[1 - 1/(c^2*x^2)]*x)/(2*c) + (x^2*(a + b*ArcCsc[c*x]))/2} +{a + b*ArcCsc[c*x], x, 5, a*x + b*x*ArcCsc[c*x] + (b*ArcTanh[Sqrt[1 - 1/(c^2*x^2)]])/c} +{(a + b*ArcCsc[c*x])/x, x, 6, ((I/2)*(a + b*ArcCsc[c*x])^2)/b - (a + b*ArcCsc[c*x])*Log[1 - E^((2*I)*ArcCsc[c*x])] + (I/2)*b*PolyLog[2, E^((2*I)*ArcCsc[c*x])]} +{(a + b*ArcCsc[c*x])/x^2, x, 2, -(b*c*Sqrt[1 - 1/(c^2*x^2)]) - (a + b*ArcCsc[c*x])/x} +{(a + b*ArcCsc[c*x])/x^3, x, 4, -(b*c*Sqrt[1 - 1/(c^2*x^2)])/(4*x) + (b*c^2*ArcCsc[c*x])/4 - (a + b*ArcCsc[c*x])/(2*x^2)} +{(a + b*ArcCsc[c*x])/x^4, x, 4, -(b*c^3*Sqrt[1 - 1/(c^2*x^2)])/3 + (b*c^3*(1 - 1/(c^2*x^2))^(3/2))/9 - (a + b*ArcCsc[c*x])/(3*x^3)} +{(a + b*ArcCsc[c*x])/x^5, x, 5, -(b*c*Sqrt[1 - 1/(c^2*x^2)])/(16*x^3) - (3*b*c^3*Sqrt[1 - 1/(c^2*x^2)])/(32*x) + (3*b*c^4*ArcCsc[c*x])/32 - (a + b*ArcCsc[c*x])/(4*x^4)} +{(a + b*ArcCsc[c*x])/x^6, x, 4, -(b*c^5*Sqrt[1 - 1/(c^2*x^2)])/5 + (2*b*c^5*(1 - 1/(c^2*x^2))^(3/2))/15 - (b*c^5*(1 - 1/(c^2*x^2))^(5/2))/25 - (a + b*ArcCsc[c*x])/(5*x^5)} +{(a + b*ArcCsc[c*x])/x^7, x, 6, -(b*c*Sqrt[1 - 1/(c^2*x^2)])/(36*x^5) - (5*b*c^3*Sqrt[1 - 1/(c^2*x^2)])/(144*x^3) - (5*b*c^5*Sqrt[1 - 1/(c^2*x^2)])/(96*x) + (5*b*c^6*ArcCsc[c*x])/96 - (a + b*ArcCsc[c*x])/(6*x^6)} + + +{x^3*(a + b*ArcCsc[c*x])^2, x, 5, (b^2*x^2)/(12*c^2) + (b*Sqrt[1 - 1/(c^2*x^2)]*x*(a + b*ArcCsc[c*x]))/(3*c^3) + (b*Sqrt[1 - 1/(c^2*x^2)]*x^3*(a + b*ArcCsc[c*x]))/(6*c) + (x^4*(a + b*ArcCsc[c*x])^2)/4 + (b^2*Log[x])/(3*c^4)} +{x^2*(a + b*ArcCsc[c*x])^2, x, 8, (b^2*x)/(3*c^2) + (b*Sqrt[1 - 1/(c^2*x^2)]*x^2*(a + b*ArcCsc[c*x]))/(3*c) + (x^3*(a + b*ArcCsc[c*x])^2)/3 + (2*b*(a + b*ArcCsc[c*x])*ArcTanh[E^(I*ArcCsc[c*x])])/(3*c^3) - ((I/3)*b^2*PolyLog[2, -E^(I*ArcCsc[c*x])])/c^3 + ((I/3)*b^2*PolyLog[2, E^(I*ArcCsc[c*x])])/c^3} +{x*(a + b*ArcCsc[c*x])^2, x, 4, (b*Sqrt[1 - 1/(c^2*x^2)]*x*(a + b*ArcCsc[c*x]))/c + (x^2*(a + b*ArcCsc[c*x])^2)/2 + (b^2*Log[x])/c^2} +{(a + b*ArcCsc[c*x])^2, x, 7, x*(a + b*ArcCsc[c*x])^2 + (4*b*(a + b*ArcCsc[c*x])*ArcTanh[E^(I*ArcCsc[c*x])])/c - ((2*I)*b^2*PolyLog[2, -E^(I*ArcCsc[c*x])])/c + ((2*I)*b^2*PolyLog[2, E^(I*ArcCsc[c*x])])/c} +{(a + b*ArcCsc[c*x])^2/x, x, 6, ((I/3)*(a + b*ArcCsc[c*x])^3)/b - (a + b*ArcCsc[c*x])^2*Log[1 - E^((2*I)*ArcCsc[c*x])] + I*b*(a + b*ArcCsc[c*x])*PolyLog[2, E^((2*I)*ArcCsc[c*x])] - (b^2*PolyLog[3, E^((2*I)*ArcCsc[c*x])])/2} +{(a + b*ArcCsc[c*x])^2/x^2, x, 4, (2*b^2)/x - 2*b*c*Sqrt[1 - 1/(c^2*x^2)]*(a + b*ArcCsc[c*x]) - (a + b*ArcCsc[c*x])^2/x} +{(a + b*ArcCsc[c*x])^2/x^3, x, 4, b^2/(4*x^2) + (a*b*c^2*ArcCsc[c*x])/2 + (b^2*c^2*ArcCsc[c*x]^2)/4 - (b*c*Sqrt[1 - 1/(c^2*x^2)]*(a + b*ArcCsc[c*x]))/(2*x) - (a + b*ArcCsc[c*x])^2/(2*x^2)} +{(a + b*ArcCsc[c*x])^2/x^4, x, 5, (2*b^2)/(27*x^3) + (4*b^2*c^2)/(9*x) - (4*b*c^3*Sqrt[1 - 1/(c^2*x^2)]*(a + b*ArcCsc[c*x]))/9 - (2*b*c*Sqrt[1 - 1/(c^2*x^2)]*(a + b*ArcCsc[c*x]))/(9*x^2) - (a + b*ArcCsc[c*x])^2/(3*x^3)} +{(a + b*ArcCsc[c*x])^2/x^5, x, 5, b^2/(32*x^4) + (3*b^2*c^2)/(32*x^2) + (3*a*b*c^4*ArcCsc[c*x])/16 + (3*b^2*c^4*ArcCsc[c*x]^2)/32 - (b*c*Sqrt[1 - 1/(c^2*x^2)]*(a + b*ArcCsc[c*x]))/(8*x^3) - (3*b*c^3*Sqrt[1 - 1/(c^2*x^2)]*(a + b*ArcCsc[c*x]))/(16*x) - (a + b*ArcCsc[c*x])^2/(4*x^4)} + +(* Section 6 *) +{(c + d*x)^4*Sinh[a + b*x], x, 5, (24*d^4*Cosh[a + b*x])/b^5 + (12*d^2*(c + d*x)^2*Cosh[a + b*x])/b^3 + ((c + d*x)^4*Cosh[a + b*x])/b - (24*d^3*(c + d*x)*Sinh[a + b*x])/b^4 - (4*d*(c + d*x)^3*Sinh[a + b*x])/b^2} +{(c + d*x)^3*Sinh[a + b*x], x, 4, (6*d^2*(c + d*x)*Cosh[a + b*x])/b^3 + ((c + d*x)^3*Cosh[a + b*x])/b - (6*d^3*Sinh[a + b*x])/b^4 - (3*d*(c + d*x)^2*Sinh[a + b*x])/b^2} +{(c + d*x)^2*Sinh[a + b*x], x, 3, (2*d^2*Cosh[a + b*x])/b^3 + ((c + d*x)^2*Cosh[a + b*x])/b - (2*d*(c + d*x)*Sinh[a + b*x])/b^2} +{(c + d*x)*Sinh[a + b*x], x, 2, ((c + d*x)*Cosh[a + b*x])/b - (d*Sinh[a + b*x])/b^2} +{Sinh[a + b*x]/(c + d*x), x, 3, (CoshIntegral[(b*c)/d + b*x]*Sinh[a - (b*c)/d])/d + (Cosh[a - (b*c)/d]*SinhIntegral[(b*c)/d + b*x])/d} +{Sinh[a + b*x]/(c + d*x)^2, x, 4, (b*Cosh[a - (b*c)/d]*CoshIntegral[(b*c)/d + b*x])/d^2 - Sinh[a + b*x]/(d*(c + d*x)) + (b*Sinh[a - (b*c)/d]*SinhIntegral[(b*c)/d + b*x])/d^2} +{Sinh[a + b*x]/(c + d*x)^3, x, 5, -(b*Cosh[a + b*x])/(2*d^2*(c + d*x)) + (b^2*CoshIntegral[(b*c)/d + b*x]*Sinh[a - (b*c)/d])/(2*d^3) - Sinh[a + b*x]/(2*d*(c + d*x)^2) + (b^2*Cosh[a - (b*c)/d]*SinhIntegral[(b*c)/d + b*x])/(2*d^3)} + + +{(c + d*x)^4*Sinh[a + b*x]^2, x, 6, (-3*d^4*x)/(4*b^4) - (d*(c + d*x)^3)/(2*b^2) - (c + d*x)^5/(10*d) + (3*d^4*Cosh[a + b*x]*Sinh[a + b*x])/(4*b^5) + (3*d^2*(c + d*x)^2*Cosh[a + b*x]*Sinh[a + b*x])/(2*b^3) + ((c + d*x)^4*Cosh[a + b*x]*Sinh[a + b*x])/(2*b) - (3*d^3*(c + d*x)*Sinh[a + b*x]^2)/(2*b^4) - (d*(c + d*x)^3*Sinh[a + b*x]^2)/b^2} +{(c + d*x)^3*Sinh[a + b*x]^2, x, 4, (-3*c*d^2*x)/(4*b^2) - (3*d^3*x^2)/(8*b^2) - (c + d*x)^4/(8*d) + (3*d^2*(c + d*x)*Cosh[a + b*x]*Sinh[a + b*x])/(4*b^3) + ((c + d*x)^3*Cosh[a + b*x]*Sinh[a + b*x])/(2*b) - (3*d^3*Sinh[a + b*x]^2)/(8*b^4) - (3*d*(c + d*x)^2*Sinh[a + b*x]^2)/(4*b^2)} +{(c + d*x)^2*Sinh[a + b*x]^2, x, 4, -(d^2*x)/(4*b^2) - (c + d*x)^3/(6*d) + (d^2*Cosh[a + b*x]*Sinh[a + b*x])/(4*b^3) + ((c + d*x)^2*Cosh[a + b*x]*Sinh[a + b*x])/(2*b) - (d*(c + d*x)*Sinh[a + b*x]^2)/(2*b^2)} +{(c + d*x)*Sinh[a + b*x]^2, x, 2, -(c*x)/2 - (d*x^2)/4 + ((c + d*x)*Cosh[a + b*x]*Sinh[a + b*x])/(2*b) - (d*Sinh[a + b*x]^2)/(4*b^2)} +{Sinh[a + b*x]^2/(c + d*x), x, 5, (Cosh[2*a - (2*b*c)/d]*CoshIntegral[(2*b*c)/d + 2*b*x])/(2*d) - Log[c + d*x]/(2*d) + (Sinh[2*a - (2*b*c)/d]*SinhIntegral[(2*b*c)/d + 2*b*x])/(2*d)} +{Sinh[a + b*x]^2/(c + d*x)^2, x, 5, (b*CoshIntegral[(2*b*c)/d + 2*b*x]*Sinh[2*a - (2*b*c)/d])/d^2 - Sinh[a + b*x]^2/(d*(c + d*x)) + (b*Cosh[2*a - (2*b*c)/d]*SinhIntegral[(2*b*c)/d + 2*b*x])/d^2} +{Sinh[a + b*x]^2/(c + d*x)^3, x, 7, (b^2*Cosh[2*a - (2*b*c)/d]*CoshIntegral[(2*b*c)/d + 2*b*x])/d^3 - (b*Cosh[a + b*x]*Sinh[a + b*x])/(d^2*(c + d*x)) - Sinh[a + b*x]^2/(2*d*(c + d*x)^2) + (b^2*Sinh[2*a - (2*b*c)/d]*SinhIntegral[(2*b*c)/d + 2*b*x])/d^3} +{Sinh[a + b*x]^2/(c + d*x)^4, x, 7, -b^2/(3*d^3*(c + d*x)) + (2*b^3*CoshIntegral[(2*b*c)/d + 2*b*x]*Sinh[2*a - (2*b*c)/d])/(3*d^4) - (b*Cosh[a + b*x]*Sinh[a + b*x])/(3*d^2*(c + d*x)^2) - Sinh[a + b*x]^2/(3*d*(c + d*x)^3) - (2*b^2*Sinh[a + b*x]^2)/(3*d^3*(c + d*x)) + (2*b^3*Cosh[2*a - (2*b*c)/d]*SinhIntegral[(2*b*c)/d + 2*b*x])/(3*d^4)} + +(* Section 7 *) +{x^4*ArcSinh[a*x], x, 4, -(Sqrt[1 + a^2*x^2]/(5*a^5)) + (2*(1 + a^2*x^2)^(3/2))/(15*a^5) - (1 + a^2*x^2)^(5/2)/(25*a^5) + (1/5)*x^5*ArcSinh[a*x]} +{x^3*ArcSinh[a*x], x, 4, (3*x*Sqrt[1 + a^2*x^2])/(32*a^3) - (x^3*Sqrt[1 + a^2*x^2])/(16*a) - (3*ArcSinh[a*x])/(32*a^4) + (1/4)*x^4*ArcSinh[a*x]} +{x^2*ArcSinh[a*x], x, 4, Sqrt[1 + a^2*x^2]/(3*a^3) - (1 + a^2*x^2)^(3/2)/(9*a^3) + (1/3)*x^3*ArcSinh[a*x]} +{x^1*ArcSinh[a*x], x, 3, -((x*Sqrt[1 + a^2*x^2])/(4*a)) + ArcSinh[a*x]/(4*a^2) + (1/2)*x^2*ArcSinh[a*x]} +{x^0*ArcSinh[a*x], x, 2, -(Sqrt[1 + a^2*x^2]/a) + x*ArcSinh[a*x]} +{ArcSinh[a*x]/x^1, x, 5, (-(1/2))*ArcSinh[a*x]^2 + ArcSinh[a*x]*Log[1 - E^(2*ArcSinh[a*x])] + (1/2)*PolyLog[2, E^(2*ArcSinh[a*x])]} +{ArcSinh[a*x]/x^2, x, 4, -(ArcSinh[a*x]/x) - a*ArcTanh[Sqrt[1 + a^2*x^2]]} +{ArcSinh[a*x]/x^3, x, 2, -((a*Sqrt[1 + a^2*x^2])/(2*x)) - ArcSinh[a*x]/(2*x^2)} +{ArcSinh[a*x]/x^4, x, 5, -((a*Sqrt[1 + a^2*x^2])/(6*x^2)) - ArcSinh[a*x]/(3*x^3) + (1/6)*a^3*ArcTanh[Sqrt[1 + a^2*x^2]]} +{ArcSinh[a*x]/x^5, x, 3, -((a*Sqrt[1 + a^2*x^2])/(12*x^3)) + (a^3*Sqrt[1 + a^2*x^2])/(6*x) - ArcSinh[a*x]/(4*x^4)} +{ArcSinh[a*x]/x^6, x, 6, -((a*Sqrt[1 + a^2*x^2])/(20*x^4)) + (3*a^3*Sqrt[1 + a^2*x^2])/(40*x^2) - ArcSinh[a*x]/(5*x^5) - (3/40)*a^5*ArcTanh[Sqrt[1 + a^2*x^2]]} + + +{x^4*ArcSinh[a*x]^2, x, 7, (16*x)/(75*a^4) - (8*x^3)/(225*a^2) + (2*x^5)/125 - (16*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(75*a^5) + (8*x^2*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(75*a^3) - (2*x^4*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(25*a) + (1/5)*x^5*ArcSinh[a*x]^2} +{x^3*ArcSinh[a*x]^2, x, 6, (-3*x^2)/(32*a^2) + x^4/32 + (3*x*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(16*a^3) - (x^3*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(8*a) - (3*ArcSinh[a*x]^2)/(32*a^4) + (x^4*ArcSinh[a*x]^2)/4} +{x^2*ArcSinh[a*x]^2, x, 5, -((4*x)/(9*a^2)) + (2*x^3)/27 + (4*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(9*a^3) - (2*x^2*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(9*a) + (1/3)*x^3*ArcSinh[a*x]^2} +{x*ArcSinh[a*x]^2, x, 4, x^2/4 - (x*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(2*a) + ArcSinh[a*x]^2/(4*a^2) + (x^2*ArcSinh[a*x]^2)/2} +{ArcSinh[a*x]^2, x, 3, 2*x - (2*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/a + x*ArcSinh[a*x]^2} +{ArcSinh[a*x]^2/x, x, 6, -ArcSinh[a*x]^3/3 + ArcSinh[a*x]^2*Log[1 - E^(2*ArcSinh[a*x])] + ArcSinh[a*x]*PolyLog[2, E^(2*ArcSinh[a*x])] - PolyLog[3, E^(2*ArcSinh[a*x])]/2} +{ArcSinh[a*x]^2/x^2, x, 7, -(ArcSinh[a*x]^2/x) - 4*a*ArcSinh[a*x]*ArcTanh[E^ArcSinh[a*x]] - 2*a*PolyLog[2, -E^ArcSinh[a*x]] + 2*a*PolyLog[2, E^ArcSinh[a*x]]} +{ArcSinh[a*x]^2/x^3, x, 3, -((a*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/x) - ArcSinh[a*x]^2/(2*x^2) + a^2*Log[x]} +{ArcSinh[a*x]^2/x^4, x, 9, -(a^2/(3*x)) - (a*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(3*x^2) - ArcSinh[a*x]^2/(3*x^3) + (2/3)*a^3*ArcSinh[a*x]*ArcTanh[E^ArcSinh[a*x]] + (1/3)*a^3*PolyLog[2, -E^ArcSinh[a*x]] - (1/3)*a^3*PolyLog[2, E^ArcSinh[a*x]]} +{ArcSinh[a*x]^2/x^5, x, 5, -a^2/(12*x^2) - (a*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(6*x^3) + (a^3*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(3*x) - ArcSinh[a*x]^2/(4*x^4) - (a^4*Log[x])/3} + +(* Section 8 *) +{x^5*Erf[b*x], x, 5, (5*x)/(E^(b^2*x^2)*(8*b^5*Sqrt[Pi])) + (5*x^3)/(E^(b^2*x^2)*(12*b^3*Sqrt[Pi])) + x^5/(E^(b^2*x^2)*(6*b*Sqrt[Pi])) - (5*Erf[b*x])/(16*b^6) + (1/6)*x^6*Erf[b*x]} +{x^3*Erf[b*x], x, 4, (3*x)/(E^(b^2*x^2)*(8*b^3*Sqrt[Pi])) + x^3/(E^(b^2*x^2)*(4*b*Sqrt[Pi])) - (3*Erf[b*x])/(16*b^4) + (1/4)*x^4*Erf[b*x]} +{x^1*Erf[b*x], x, 3, x/(E^(b^2*x^2)*(2*b*Sqrt[Pi])) - Erf[b*x]/(4*b^2) + (1/2)*x^2*Erf[b*x]} +{Erf[b*x]/x^1, x, 1, (2*b*x*HypergeometricPFQ[{1/2, 1/2}, {3/2, 3/2}, (-b^2)*x^2])/Sqrt[Pi]} +{Erf[b*x]/x^3, x, 3, -(b/(E^(b^2*x^2)*(Sqrt[Pi]*x))) - b^2*Erf[b*x] - Erf[b*x]/(2*x^2)} +{Erf[b*x]/x^5, x, 4, -(b/(E^(b^2*x^2)*(6*Sqrt[Pi]*x^3))) + b^3/(E^(b^2*x^2)*(3*Sqrt[Pi]*x)) + (1/3)*b^4*Erf[b*x] - Erf[b*x]/(4*x^4)} +{Erf[b*x]/x^7, x, 5, -(b/(E^(b^2*x^2)*(15*Sqrt[Pi]*x^5))) + (2*b^3)/(E^(b^2*x^2)*(45*Sqrt[Pi]*x^3)) - (4*b^5)/(E^(b^2*x^2)*(45*Sqrt[Pi]*x)) - (4/45)*b^6*Erf[b*x] - Erf[b*x]/(6*x^6)} + +{x^6*Erf[b*x], x, 5, 6/(E^(b^2*x^2)*(7*b^7*Sqrt[Pi])) + (6*x^2)/(E^(b^2*x^2)*(7*b^5*Sqrt[Pi])) + (3*x^4)/(E^(b^2*x^2)*(7*b^3*Sqrt[Pi])) + x^6/(E^(b^2*x^2)*(7*b*Sqrt[Pi])) + (1/7)*x^7*Erf[b*x]} +{x^4*Erf[b*x], x, 4, 2/(E^(b^2*x^2)*(5*b^5*Sqrt[Pi])) + (2*x^2)/(E^(b^2*x^2)*(5*b^3*Sqrt[Pi])) + x^4/(E^(b^2*x^2)*(5*b*Sqrt[Pi])) + (1/5)*x^5*Erf[b*x]} +{x^2*Erf[b*x], x, 3, 1/(E^(b^2*x^2)*(3*b^3*Sqrt[Pi])) + x^2/(E^(b^2*x^2)*(3*b*Sqrt[Pi])) + (1/3)*x^3*Erf[b*x]} +{x^0*Erf[b*x], x, 1, 1/(E^(b^2*x^2)*(b*Sqrt[Pi])) + x*Erf[b*x]} +{Erf[b*x]/x^2, x, 2, -(Erf[b*x]/x) + (b*ExpIntegralEi[(-b^2)*x^2])/Sqrt[Pi]} +{Erf[b*x]/x^4, x, 3, -(b/(E^(b^2*x^2)*(3*Sqrt[Pi]*x^2))) - Erf[b*x]/(3*x^3) - (b^3*ExpIntegralEi[(-b^2)*x^2])/(3*Sqrt[Pi])} +{Erf[b*x]/x^6, x, 4, -(b/(E^(b^2*x^2)*(10*Sqrt[Pi]*x^4))) + b^3/(E^(b^2*x^2)*(10*Sqrt[Pi]*x^2)) - Erf[b*x]/(5*x^5) + (b^5*ExpIntegralEi[(-b^2)*x^2])/(10*Sqrt[Pi])} +*)